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Abstract

Over 100 years ago Einstein formulated his now famous theory of General Relativity. In his the-

ory he lays out a set of equations which lead to the beginning of a brand-new astronomical field,

Gravitational wave (GW) astronomy. The LIGO-Virgo-KAGRA Collaboration (LVK)’s aim is

the detection of GW events from some of the most violent and cataclysmic events in the known

universe. The LVK detectors are composed of large-scale Michelson Morley interferometers

which are able to detect GWs from a range of sources including: binary black holes (BBHs),

binary neutron stars (BNSs), neutron star black holes (NSBHs), supernovae and stochastic GWs.

Although these GW events release an incredible amount of energy, the amplitudes of the GWs

from such events are also incredibly small.

The LVK uses sophisticated techniques such as matched filtering and Bayesian inference

in order to both detect and infer source parameters from GW events. Although optimal under

many circumstances, these standard methods are computationally expensive to use. Given that

the expected number of GW detections by the LVK will be of order 100s in the coming years,

there is an urgent need for less computationally expensive detection and parameter inference

techniques. A possible solution to reducing the computational expense of such techniques is the

exciting field of machine learning (ML).

In the first chapter of this thesis, GWs are introduced and it is explained how GWs are

detected by the LVK. The sources of GWs are given, as well as methodologies for detecting

various source types, such as matched filtering. In addition to GW signal detection techniques,

the methods for estimating the parameters of detected GW signals is described (i.e. Bayesian

inference). In the second chapter several machine learning algorithms are introduced including:

perceptrons, convolutional neural networks (CNNs), autoencoders (AEs), variational autoen-
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ABSTRACT ii

coders (VAEs) and conditional variational autoencoders (CVAEs). Practical advice on train-

ing/data augmentation techniques is also provided to the reader. In the third chapter, a survey on

several ML techniques applied a variety of GW problems are shown.

In this thesis, various ML and statistical techniques were deployed such as CVAEs and CNNs

in two first-of-their-kind proof-of-principle studies. In the fourth chapter it is described how a

CNN may be used to match the sensitivity of matched filtering, the standard technique used

by the LVK for detecting GWs. It was shown how a CNN may be trained using simulated

BBH waveforms buried in Gaussian noise and signals with Gaussian noise alone. Results of

the CNN classification predictions were compared to results from matched filtering given the

same testing data as the CNN. In the results it was demonstrated through receiver operating

characteristics and efficiency curves that the ML approach is able to achieve the same levels

of sensitivity as that of matched filtering. It is also shown that the CNN approach is able to

generate predictions in low-latency. Given approximately 25000 GW time series, the CNN is

able to produce classification predictions for all 25000 in 1s.

In the fifth and sixth chapters, it is shown how CVAEs may be used in order to perform

Bayesian inference. A CVAE was trained using simulated BBH waveforms in Gaussian noise,

as well as the source parameter values of those waveforms. When testing, the CVAE is only

supplied the BBH waveform and is able to produce samples from the Bayesian posterior. Re-

sults were compared to that of several standard Bayesian samplers used by the LVK including:

Dynesty, ptemcee, emcee, and CPnest. It is shown that when properly trained the CVAE

method is able to produce Bayesian posteriors which are consistent with other Bayesian sam-

plers. Results are quantified using a variety of figures of merit such as probability-probability

(p-p) plots in order to check the 1-dimensional marginalised posteriors from all approaches are

self-consistent with the frequentist perspective. The Jensen—Shannon (JS)-divergence was also

employed in order to compute the similarity of different posterior distributions from one an-

other, as well as other figures of merit. It was also demonstrated that the CVAE model was able

to produce posteriors with 8000 samples in under a second, representing a 6 order of magnitude

increase in performance over traditional sampling methods.
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Chapter 1

An Introduction to Gravitational Waves,

Search Methods and Parameter

Estimation Techniques

1.1 Gravitational Wave Detections

Since it’s inception, the LVK has carried out several observation runs. Initial operations ran from

2002 to 2010, but no GWs were detected during this time period. During the first observing run

in the advanced detector era (September 2015 - January 2016), the LVC detected a total of 3

BBH mergers including: GW150914 [3], GW151226 [4] and GW151012 [5]. GW150914 was

the very first detected BBH with a SNR value of ∼ 25.1 [6]. GW151012 was originally labeled

as a less significant potential GW detection (LVT151012) due to its high false alarm rate, but

was subsequently upgraded to a confirmed GW event in the GWTC-1 catalogue [7] because its

false alarm rate was less than 1 per 30 days (a threshold determined by the LVC). The change

in false alarm rate for GW151012 can largely be attributed to various improvements made to

all search algorithms used in the first observation run between the initial detection and up to

publication of the GWTC-1 catalogue paper (for further details, see [7, 8]).

During the second observing run (November 2016 - August 2017) the LVC detected an ad-

ditional 7 BBHs with total masses between ∼ 18.6M� and ∼ 85.1M�. The second observation

1
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run excitingly also saw the very first detection of a BNS event. The BNS event had the high-

est network SNR of any event over all of O1 and O2 (∼ 32.4). Interestingly, there was also a

large non-astrophysical noise transient which overlapped with a portion of the BNS event in the

LIGO Livingston detector. This noise transient was successfully mitigated through an excis-

ing technique known as time-domain gating [9]. Approximately 1.7s following GW170817,

a gamma-ray burst (GRB) (GRB170817) was observed across multiple wavelengths of the

electromagnetic (EM) spectrum over the course of several weeks [10]. The delay between

GRB170817 and GW170817 has been used to place strong constraints on various physical phe-

nomena including: the speed of gravity, Lorentz invariance and tests of the equivalence princi-

pal [10]. Additionally, given that GW observations provide direct estimates on the redshift and

luminosity distance of the system, it was shown in [11] that these observations may be used to

provide the first gravitational wave based independent measurement on the Hubble constant.

Most recently, during the first half of the third observing run (April 2019 - March 2020) the

LVK collaboration made an additional 39 confirmed GW event detections [5, 7] . The increase

in number of detections can largely be attributed to higher sensitivities of the detectors during

this observation run over previous runs, with a BNS range1 of 108Mpc, 135Mpc and 45Mpc for

Hanford, Livingston and Virgo respectively (approximately 80Mpc, 80Mpc and 25Mpc during

O2). The GWTC-2 catalogue contains detected signals with component masses lower and higher

than the lowest and highest component masses contained in all of GWTC-1. The most up-to-

date merger rate constraints according to GWTC-2 were also updated to be ∼ 23.9Gpc−3yr−1

for BBHs and ∼ 320Gpc−3yr−1 for BNSs (originally 9.7−101Gpc−3yr−1 for BBHs and 110−

3840Gpc−3yr−1 for BNSs for O2).

In January of 2020, the LVC collaboration reported the first detection of two NSBH events

(GW200105,GW200115) [15] . The primary component masses of both events are ∼ 8.9M�

and ∼ 5.7M� respectively, whose mass values are both above the maximum allowed mass of a

neutron star (NS) defined in [16], so may therefore be likely classified as black hole (BH)s. The

1The BNS range is a scalar value which is often used to represent the performance of the LVC detectors. It is
quantified by determining the luminosity distance at which a single detector could detect a 1.4M� BNS pair with
an SNR ≥ 8 averaged over the sky location and orientation of the source with respect to the detector. The range is
dependent on a number of factors including: source mass/spin and the noise curve [12] of the detector. See [13, 14]
for more details.
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secondary masses of each event were given as ∼ 1.5M� and ∼ 1.9M� respectively and were

reported to be within the range of known NSs [17].

As improvements are made to the LVC detectors over the coming years, it is expected that

the rate of detections will increase dramatically [18]. It is predicted that at design sensitivity, the

LVC will observe O(100s) of events per year [18]. Current methods for both GW detection and

parameter estimation, while optimal in many cases, are often computationally expensive [6, 19,

20]. Algorithms which produce estimates on source parameter values of GW signals can take

upwards of weeks to run (see Tab. 5.1 and Tab. 5.2 in Ch. 5). Given that follow-up observations

of GW EM components heavily depend upon GW sky location alerts from the LVC and the

rapid decay of GW EM signatures [21], there is an urgent need for faster techniques which can

not only identify the presence of GW signals in detector data, but also identify source parameter

values like the sky location of a GW event.

1.2 Multi-Messenger Astronomy

After a GW signal has been identified, alerts are sent out to EM partners around the globe in

order to perform follow-up observations. Astronomical partners include instruments which look

across the whole range of the EM spectrum: Radio, Microwave, infrared, visible light, ultra-

violet, X-ray and gamma ray. A full Bayesian posterior (Sec. 1.7) is generally produced on

all viable GW candidates. In addition to the full Bayesian analysis, the collaboration is also

able to produce low-latency parameter estimation products (e.g. sky maps) using tools such as

Bayestar [22], where an analysis using Bayestar is shown in Fig. 1.1. Bayestar op-

erates under the assumption that a large degree of the information contained in a GW signal is

encapsulated within a small number of data products produced by the search matched filtering

process, namely: the time, amplitude and phase of the signal at each detector. Using a simpli-

fied likelihood function and the Fisher information matrix [23], Bayestar is able to produce

estimates on a limited number of source parameters (sky location, distance and orientation) in

under a few minutes which provides a good approximate of the full Bayesian posterior [24].

Prompt sky location, distance and orientation data products using tools like Bayestar and
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Bilby along with observations from EM partners can provide new insights into fundamental

astrophysical processes. For example, as BNS signals reach the final stages of the inspiral phase

of the merger, the internal structure of the sources has more of a pronounced effect on the result-

ing GW signal. Information on tidal disruption processes may be gleamed from this part of the

GW signal in combination with prompt observations from the EM spectrum [25]. EM follow-up

analysis can also be used in tandem with Bayesian analysis in order to produce inferences on

the Hubble constant, though may also be performed without an EM counterpart using galaxy

catalogues [26]. A Hubble constant measurement can be done by obtaining accurate estimates

on the luminosity distance directly from the GW signal through Bayesian inference and using

EM partners to identify a likely host galaxy, whereby correct identification of the host galaxy

may benefit from low-latency alerts. For GW170817, LVC and EM partners were able to infer

a Hubble constant value of ∼ 69+17
−8 kms−1Mpc−1 [9, 11, 27].

The arrival time (along with an accurate estimation of the luminosity distance) of a GW

event can be compared to the observation time of the GRB from a BNS merger counterpart.

Comparing arrival times of both components allows us to test the effect gravitational poten-

tials have on BNS EM radiation and BNS GWs (equivalence principle), as well as the speed

of gravity [10]. In addition, we can perform tests on the accuracy of general relativity itself

through residual noise waveform subtraction tests, inspiral-merger-ringdown consistency tests

and parameterised tests of GW generation under a Bayesian framework [28]. Depending on the

duration and SNR of the signal, accurate constraints may be placed on the graviton Compton

wavelength and non-general relativity (GR) polarization states. Other tests of GR performed

over both event catalogues GWTC-1 and GWTC-2 are listed in great detail in [28, 29, 30].

1.3 The Weber Bar Detector and the Hulse-Taylor Pulsar

By the early 1950s technology had progressed enough such that serious attempts at experimen-

tally verifying the existence of GWs by Einstein were possible. One of the earliest and most

well-known attempts at doing so was by Joseph Weber at the University of Maryland where

he used an instrument known as a resonant-mass detector (Weber Bar Detector) [31]. The We-
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Figure 1.1: Sky localization for the first confirmed detection of a BNS merger by the LVC. Areas
shaded in green are the data products from Bayestar using both LIGO alone and LIGO/Virgo
combined, dark blue are predictions from Fermi/GBM and light blue are predictions from IPN
Fermi/INTEGRAL. Black and white images on right-hand side are visible light measurements
of a bright event around the galaxy NGC 4993 thought to contain the afterglow of the BNS
event. This figure was produced by the authors of [21].
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ber Bar operates on the principle that when a GW impinges on the bar (usually made of some

type of metal alloy, in this case high Q aluminium2) at a specific frequency, since the bar is a

harmonic oscillator which is driven by the Riemann curvature tensor, it will cause the bar to

resonate. If the frequency of the GW is equivalent to the natural resonant frequency of the bar,

the bar will oscillate at a higher amplitude than if the signal were at any other frequency, thus a

GW would theoretically be detectable [32] Weber made the claim in 1968 that there was “good

evidence” for several detections made by his experiment [32], but unfortunately no others were

able to reproduce his results. Although follow-up results from other independent studies were

disappointing, Weber’s work encouraged many others to build their own improved experiments

with breakthrough technological developments at the time and kick-started the subsequent field

of GW detection [33]. Fortunately, in the subsequent years after Weber’s first published results,

there would come the first indirect observational evidence for the existence of GWs.

In 1975, Russell Hulse and Joseph Taylor made the first direct observation of a binary pulsar,

which subsequently won them the 1993 Nobel Prize in Physics [34]. Both Hulse and Taylor

observed that the orbital period of the binary pulsar appeared to experience orbital decay as a

function of time. The orbital decay was thought to likely be attributed to a loss of energy in the

system due to GW radiation predicted by GR. The observed period decay as a function of time

(in years) is represented in Fig. 1.2. As can be seen in the figure, there is a striking level of

agreement between the theoretical decay curve predicted by Einstein’s GR and the observations

made by Hulse and Taylor. Importantly, this work was also one of the first pieces of indirect

observational evidence for the existence of GWs. Pioneering work by both Hulse-Taylor and

Weber, spurred the development of advanced GW detectors aimed at directly observing GW

events. In the following section we will discuss how the current generation of GW detectors

works and detects GWs.
2Q is approximately equivalent to the ratio of the initial energy stored in the oscillator to the energy lost over

one radian of the oscillation cycle.
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Figure 1.2: Illustrated is Hulse and Taylor’s observations of binary pulsar PSR B1913+16 or-
bital decay as a function of time in years. The orbital decay is quantified by the total cumulative
amount the binary system has been offset from it’s first observation in 1975 with respect to the
binary’s perihelion point (black dots). The solid black curve is representative of the theoretical
decay curve predicted by GR. This figure was produced by the authors of [35].
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1.4 Ground Based Interferometric Detectors

The current generation of GW ground-based detectors in the LVK are composed of three ob-

servatories, two in North America (Hanford, Washington State and Livingston, Louisiana) [36]

and one in Pisa, Italy (Virgo) [37]. There are also other ground-based detectors in Hannover,

Germany (GEO) [38] and Kamioka, Japan (KAGRA) [39]. In addition to ground-based detec-

tors there are eventual plans to build space-based observatories such as the Laser Interferometer

Space Antenna (LISA) [40] and TianQin [41] which will search for super massive BBHs (among

other sources). Each detector (with LISA and TianQin being the exception) can be thought of as

a large-scale Michelson-Morley Interferometer [42] composed of two arms orthogonal to each

other. Each arm of the LIGO detectors is 4km in length, with the Virgo arms being slightly

shorter in length at 3km in length.

A simplified schematic of an interferometric GW detector is shown in Fig. 1.3. In the

schematic, it is shown that a 1064nm laser beam is emitted from a laser on the left-hand side, it

then passes through a phase modulator (PMOD) and enters the power recycling cavity (PRM).

This effectively boosts the power of the signal. The laser then passes through a beam splitter

(BS), which splits the laser beam path into two separate parts. Each part travels through an input

test mass and hits end test masses at the end of both interferometer arms. The beams are then

caught in a Fabry-Perot cavity [43] which acts to extend the distance traveled of the laser light

photons, as well as the power [44]. In other words, the cavity “stores” the photons for a long

period (∼ 1 ms) which allows a potential GW signal more time to interact with the photons,

thus increasing the sensitivity of the interferometer at low frequencies. Some laser light escapes

back down both arms and recombines at the BS where the recombined beam passes through a

signal recycling mirror (SRM). Finally, the beam hits a set of photodiodes (PD) which produce

the interferometer readout, where the readout is also a measure of the phase difference between

photons from both arms. The phase difference information is encoded in the interference pattern

on the readout of the the detector photodiodes, which is the final output of the detectors.

Starting from the well-known postulate from relativity that the distance between two points

in spacetime, known as the interval, along the path of a light ray travelling along the coordinate
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Figure 1.3: An illustration of the LIGO detectors. An illustration of the LIGO detectors. The
detectors operate by first emitting photons from an initial laser port. Photons emitted from the
laser pass through a beam splitter and down two orthogonal arms of the detectors in the form
of vacuum sealed beam tubes guided by mirror optics. The photons then hit test mass mirrors
at both ends and are caught in what is known as a Fabry-Perot signal recycling cavity [43]. A
Fabry-Perot cavity acts to effectively increase the sensitivity of the arms by positively modulat-
ing the amount of time spent by the light in the arm, which consequently also increases the laser
power in the arm [44]. After reflecting back and forth in the Fabry-Perot cavities, photons are
released from the Fabry-Perot cavities and return to the beam splitter, subsequently recombining
and are recorded on a set of photodiodes which measure the phase difference between photons
from both encoded in the interference pattern on the readout of the detector photodiodes, which
is the final output of the detectors.
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vector defined by dx0,dx1,dx2,dx3 = t,x,y,z may be expressed as

ds2 = 0 = gµνdxµdxν . (1.1)

It can be shown through some algebraic manipulation (explained in [45]) that we can quantify

the light travel time difference of photons originating from the initial laser port traveling up and

down the two interferometer arms as

∆τ(t) = h(t)
2L
c

= h(t)τrt0. (1.2)

where τrt0 is the return trip time down one arm and the phase difference being

∆φ(t) = h(t)τrt0
2πc
λ

. (1.3)

Here we can clearly see that the phase difference between the two light signals is scaled by the

length of the interferometer arms L. The detectors are tuned through control systems such that

the photons arriving back at the final readout port of the detector act to destructively interfere

with each other (i.e. create an interference pattern on a dark fringe). If a GW impinges on the

detector it will compress one arm while stretching the other arm. There will then be a detectable

difference in phase between the light traveling down both arms. Due to this phase difference,

the light recombining at the beam splitter will no longer destructively interfere and a signal will

appear on the photodetectors in the form of a interference pattern [46]. In the next section,

we will discuss how the sensitivity of the detectors may be influenced by the orientation of the

detectors with respect to the GW source.

1.4.1 Detector Response

The LVC detectors are not equally sensitive to all parts of the sky. Mathematically, the sky

dependent sensitivity of the detectors may be expressed through their antenna patterns. The

antenna pattern of a detector is dependent upon the location and wave polarisation of the GW

source with respect to the detector. The antenna patterns themselves have a direct impact on the
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Figure 1.4: An illustration of the LVC detector antenna patterns for both the h× and h+ GW
polarisations. The detector itself would lie in the x-y plane with one arm along the x-axis and
the other along the y-axis.

amount of strain measured by the LVC detectors.

As shown in [47], the antenna pattern may be expressed as

F+ =−1
2
(1+ cos2

θ)cos2ϕcos2ψ− cosθsin2ϕsin2ψ (1.4)

F× =+
1
2
(1+ cos2

θ)cos2ϕsin2ψ− cosθsin2ϕcos2ψ (1.5)

where θ is the azimuthal angle and ϕ is the polar angle, both with respect to a reference frame

fixed at the center of the Earth. Parameter ψ is the polarisation angle which is defined as being

counter-clockwise around the direction of GW propagation and is the angle from the line of

nodes to the x-axis of the GW source reference frame. We note that both θ and ϕ may also

be used to convert to the standard right ascension α = (ϕ+ Greenwich mean sidereal time of

GW signal arrival time) and declination δ = (π/2)− θ coordinates. Parameters θ , ϕ and ψ

are all Euler angles which describe the frame of the binary system with respect to the detector.

The shape of the antenna response is illustrated pictorially in Fig. 1.6 in a Cartesian coordinate

system, where the detector arms lie along the x-y plane perpendicular to each other. Areas where
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the detector is least sensitive to GWs are given by the null areas of Fig. 1.6 and occur when both

ψ = 0 and ι = 0. Areas where the detectors are most sensitive correspond to systems where

ι = 0 (i.e. GW sources directly above and below the detectors).

The GW strain of both the “plus” and “cross” polarized portions (Eq. 1.19, Eq. 1.20) may

be generalised for a given polarization angle with respect to the direction of GW propagation

as [48]

h
′
+ = h+cos2ψ−h×sin2ψ, (1.6)

h
′
× = h+sin2ψ +h×cos2ψ. (1.7)

Measured GW strain is then shown to be a summation of h
′
× and h

′
+ attenuated by antenna

patterns F× and F+ and is given by

h(t) = F×(θ ,ψ,φ)h
′
×+F+(θ ,ψ,φ)h

′
+, (1.8)

Since the antenna patterns are sky dependent, they are therefore also time dependent. They

are time dependent because the Earth rotates as a function of time and thus the orientation of

the antenna pattern for a given detector therefore also changes. For example, very long signals

(e.g., continuous gravitational waves (CW) signals, Sec. 1.6.3)) experience time varying antenna

responses as the Earth rotates and search methods are designed to take this into account [49].

In the next section, we will discuss how the detectors are also influenced by non-astrophysical

sources of strain.

1.4.2 Detector Noise

The LVC detectors, in addition to being incredibly sensitive to strain from GW signals, are also

sensitive to an abundant number of non-astrophysical noise sources. These noise sources can

produce periods of excess power in measured detector data which may limit the sensitivity of the

detectors. Some common noise sources include gravity-gradient noise, seismic noise, thermal

noise and quantum shot noise.
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In practice, the performance of the detector may largely be characterized by a quantity known

as the power spectral density (PSD). Assuming the absence of a GW signal, the output of the

detector may be assumed to be equivalent to the detector noise as a function of time n(t) sampled

at regular intervals of ∆t. We define the auto-correlation function as

K(t1, t2)≡ E[n(t1)n∗(t2)], (1.9)

where E is the expectation value over an ensemble of realisations of the noise and ∗ is the

complex conjugate. Assuming stationary noise, we can write K as being merely dependent on

τ ≡ |t1− t2|. As shown in [50, 51], the PSD of the detector may thus be written as the Fourier

transform of the auto-correlation function K(τ)

Sn( f )≡ 1
2

∫
∞

−∞

K(τ)e2πi f τdτ = lim
∆t→0

2σ
2
∆t, f ≥ 0, (1.10)

where frequencies are given to be greater than zero and σ2 is the variance. We will now describe

in detail the types of noise sources which may affect the performance of the detector PSD.

Seismic Noise

Seismic noise largely affects the sensitivity of the detectors in the low frequency regime (∼

10−2− 102Hz [53]) due to a variety of sources including: earthquakes, anthropogenic motion

and wind. Earthquakes produce sets of waves (p,s,r-waves) which travel both through the Earth’s

core/mantel and also along the surface of the earth [54]. When one of these seismic waves hits

the detectors they can induce horizontal ground motion on the optical components of the de-

tector. In order to isolate the detector optics from horizontal ground motion (∼ 0.03− 0.1Hz),

optics are suspended on multi-layered seismic isolation stacks [55]. Between ∼ 1− 3Hz an-

thropogenic noise can cause short duration noise transients in the detector output. Sources of

anthropogenic noise may result from individuals walking around in the LVC control rooms or

large trucks passing on a nearby highway [56]. Wind greater than 10−20Mph can also adversely

influence the detector sensitivity at frequencies of 0.15−15Hz [57].



CHAPTER 1. INTRODUCTION TO GRAVITATIONAL WAVES 14

101 102 103

Frequency [Hz]

10 24

10 23

10 22

10 21

10 20

St
ra

in
 [1

/
Hz

]

Total
Quantum Vacuum
Seismic
Newtonian Gravity
Suspension Thermal

Coating Brownian
Coating Thermo-Optic
Substrate Brownian
Substrate Thermo-Elastic
Excess Gas

Figure 1.5: The theoretical design sensitivity noise budget curves for Advanced LIGO. As can
be seen in the illustration, lower frequencies are largely dominated by seismic motion, mid-
range frequencies are dominated by thermal coating Brownian motion on the mirrors as well
as quantum vacuum noise between 10 and 100 Hz and higher frequencies are dominated by
quantum vacuum shot noise. The plot was generated using the pygwinc computing package
[52].
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Thermal Noise

Thermal noise may be classified into two distinct types: suspension and Brownian coating ther-

mal noise and primarily limits detector sensitivity in the frequency band of 10−500Hz. Suspen-

sion noise results from thermal motion in the suspension fibers which can induce motion into

the detector mirrors [58]. Brownian coating noise results from thermal fluctuations in detector

mirror coatings [59]. Both of these sources may be quantified through the application of the

fluctuation-dissipation theorem as shown in [58]. Materials for the mirror coatings are chosen

such that they have minimal light absorption at the wavelength of the laser [60]. Possible miti-

gation strategies for reducing thermal noise also involve careful choice of coating thickness, as

well as the use of Cryogenic systems for cooling the suspensions/optics of the detector [61].

Quantum Noise Sources

There are two sources of quantum noise in the detectors: quantum shot noise and quantum

thermal radiation pressure noise. Both are produced by internal measurement/readout processes.

Quantum shot noise is related to from the wave packet-like behavior of light as it travels through

a medium. Since the distribution of photons arriving within a time interval is governed by

Poisson statistics, we know that the uncertainty on the number of photons arriving at the detector

photodiodes after is proportional to the square root of the expected number of photons arriving

within that same time interval (optical power). We can express mathematically the amount of

strain induced by shot noise on the detectors hS, where subscript s stands for shot noise. given

by

hS =
1
L

√
}cλ

2πP
, (1.11)

where L is the arm length of the interferometer, } is Planck’s constant, λ is the laser light

wavelength, P is the power of the laser and c is the speed of light [62].

The second type of noise source is quantum radiation pressure noise. Radiation pressure

noise arises from the effect of photon momentum transfer onto the test mass mirrors of the

detector. When a photon from the detector laser hits a mirror, it transfers some momentum

to that mirror. Since all photons do not hit the mirror at the exact same time, there is some
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variability of pressure exerted on the mirror as a function of time. This moves the mirror in a

variable manner which leads to a change in the detector arms length and thus the noise on the

output. This can be mathematically expressed as the amount of strain induced on the detector

due to radiation pressure noise hR by

hR =
1

Lm f 2

√
}P

2π3cλ
, (1.12)

where m is the mass of the mirror, R stands for radiation pressure and f is the frequency mea-

sured in the GW detector [62].

Shot noise may be partially mitigated through increasing the circulating light power of the

laser, since it is known that sensitivity of the detector to GWs is proportional to the laser power,

whereas shot noise is proportional to the square root of the optical power [63]. Unfortunately, as

the optical power of the laser is increased, so to does thermal radiation pressure noise, which sets

an effective upper limit on optical laser power in the detector. Radiation pressure noise can be

reduced by either increasing the mass of the mirrors m, or the length of the detectors L, though it

should be noted that any increase in either of these values comes with added technological and

sheer monetary cost constraints. For a more detailed description of shot noise, see [62].

Gravity-Gradient Noise

Gravity-gradient noise (or Newtonian noise) is noise which results from small stochastic pertur-

bations to the gravitational field background in and around the LVC detector test masses. Some

sources of gravity gradient noise include: seismic noise and atmospheric fluctuations (specifi-

cally, changes in air pressure which carry with it changes in air density) [64]. Gravity-gradient

noise decreases steeply with increasing frequency and is a primary limiting factor in detector

sensitivity below frequencies of 1Hz [50].
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1.5 General Relativity and Gravitational Waves

GWs were predicted by Einstein in his theory of GR well over 100 years ago [65]. In his theory,

Einstein shows that the more massive an object is, the more curvature in spacetime that object

creates. This curvature then has an effect on the motion of objects which encounter it. This

effect is summarized succinctly by John Archibald Wheeler where he states that “Spacetime

tells matter how to move; matter tells spacetime how to curve”. Curvature may be quantified

by first defining a term known as the Riemann curvature tensor Rρ

σ µν . The Riemann tensor

describes the change experienced by a vector which has been parallel transported over a curved

manifold[66]. Einstein formalises the relationship between matter/energy and the curvature of

space-time in his field equations as

Gµν +Λgµν =
8πG
c4 Tµν , (1.13)

where Λ is the cosmological constant (scalar measurement describing the energy density of

space), gµν is the metric which describes the geometric structure of space-time, G is Newton’s

gravitational constant, c is the speed of light, and Tµν is the stress energy tensor which describes

the density, direction, and flow of energy in space-time. The Einstein tensor, Gµν , is defined as

Gµν = Rµν −
1
2

Rgµν (1.14)

where Rµν is the Ricci curvature tensor (a contraction of the Riemann curvature tensor) and R

is the Ricci scalar defined as the trace of the Ricci curvature tensor with respect to the metric.

The Einstein field equations described by Eq. 1.13 can unfortunately only be solved exactly

analytically in a limited number of situations. Some solutions include the Schwarzschild solu-

tion for a non-spinning singularity (where a singularity is defined as a point in spacetime where

there is predicted to be infinite curvature [66]) and the Kerr solution for a spinning singularity.

In the regime of small perturbations to spacetime, considering we would like to explore the

behavior of non-linear, time-dependent systems in terms of Einstein’s field equations, we need

to put his equations into a more linear form. This can be done by describing the spacetime
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metric gµν in terms of an easily computable known solution in flat spacetime with the addition

of some small perturbation, where GWs may be defined as small perturbations over the curved

background spacetime metric gµν . In Euclidean space, the metric is generally described by the

identity matrix in Cartesian coordinates. However, in GR we have to add the time dimension

and in flat spacetime this can be described by the Minkowski metric tensor ηµν given by

ηµν =



−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


, (1.15)

where each column and row represent a dimension of spacetime (from left to right and top to

bottom: ct,x,y,z) where t denotes time, c is the speed of light, and x,y,z denote the 3 spacial

dimensions. Although the Minkowski metric can be written in non-diagonal forms depending on

choice of coordinates, this diagonal form is chosen because it is computationally easy to invert

and simple to compute the determinant of the matrix.

Since a GW is a perturbation, we can write the metric tensor of a small perturbation in flat

spacetime as

gµν = ηµν +hµν , (1.16)

where hµν is the GW perturbation tensor (|hµν � 1|).

Using gµν , we find that one of the solutions Einstein’s field equations may be written as a

plane-wave solution given by

hµν = Re[Aµνeikα xα

], (1.17)

where Aµν is a amplitude tensor made up of multiple independent components and hµν is a

sinusoidal wave traveling along the null wavevector k [48].

Exploiting guage freedoms [66], we can shift to the Transverse Traceless gauge (since this

simplifies the plane-wave solution of Einstein’s field equations to a simplified metric which is
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only made up of two unique components) and hµν can be rewritten as

hµν =



0 0 0 0

0 h+ h× 0

0 h× −h+ 0

0 0 0 0


. (1.18)

where h+ and h× are representative of the two polarization states of a GW which are orthogonal

to one-another [51, 66].

As derived in [67], assuming that the source of the GW is emitted from a binary astrophysical

system (Sec. 1.6.1) with component masses m1,m2, the leading order terms of the plus and cross

polarization states can be expressed as being equivalent to

h+ ≡
1
d
(1+ cos2

ι)2µ(MΩ
2/3)cos(2(Ωt−φ0)) (1.19)

h× ≡
1
d

cosι2µ(MΩ
2/3)sin(2(Ωt−φ0)) (1.20)

where d is the distance to the source, ι is the inclination angle of the binary with respect to an

observer, M is the total mass of the system, φ0 is the initial phase of the system, t is time, µ is

the reduced mass given as (m1m2)/(M) and Ω is an approximation in a non-relativistic regime

of the orbital angular frequency given by

Ω =

√
M
a3 (1.21)

where a is the separation distance between the two component masses of the system. The sep-

aration distance between the two bodies will decrease and the orbital angular frequency will

increase as a function of time via GW emission.

The effect that a passing GW waveform has on a set of freely floating test particles as a

function of the waveform’s phase φ for a given polarization state is illustrated in Fig. 1.6. This

effect on freely floating test masses is what is measured by LVK GW detectors in the form of

strain h. As shown derived in [48], the strain a GW induces on only two free point masses can
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Figure 1.6: An illustration of the h+ and h× polarizations of a GW signal impinging on a set of
freely floating test masses as a function of the phase of the GW φ from 0 to 3π/2.

be expressed as

h(t) =
2∆L

L
, (1.22)

where h(t) is the strain amplitude of the GW as a function of time, ∆L is the absolute change in

distance between two point masses induced by the GW and L is the distance between two point

masses in the non-presence of a GW.

For a full derivation concerning the generation and propagation of GW signals, I refer the

interested reader to [68]. Now that we have defined how GWs propagate and induce strain on

freely floating test masses, we will introduce in the following section the various sources and

methods for detecting GWs.

1.6 Astrophysical Sources and Search Methods

There are a variety of sources which produce GW signals. Most signals are not large enough to

be seen by the LVC detectors, but some are indeed sufficiently strong enough to be detected. GW

signals may be categorized into 4 distinct types including: compact binary coalescence (CBC),
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burst, continuous and stochastic GWs. In this section I will explain the unique characteristics

which describe each of these signal types. I will also describe several methods used by the LVC

to search for signals from CBC, GW, burst and stochastic GWs.

1.6.1 Compact Binary Coalescences

CBC signals arise from the collision of massive ( of order∼M�) compact binary objects (such as

BHs and NSs) moving at relativistic speeds. NSs are defined as being the leftover cores of dead

stars which have exploded in a supernovae and then collapsed down into an object roughly the

mass of our sun and with a radius of O(10) km. CBC systems can include BBHs, NSBH pairs

and BNSs. A CBC signal waveform is described by three components: the inspiral, merger

and ringdown phase and can be approximated using a combination of post-Newtonian theory

[69, 70, 71, 72], the effective-one-body formalism [73], phenom waveform approach [74, 75? ],

and numerical relativity simulations [76].

BBH signals are parameterised by 15 different parameters (discounting eccentricity [77]).

Two of these parameters describe the two component masses of each compact object in the

binary system (m1,m2) and are sometimes commonly combined in an expression known as the

chirp mass given by

Mc =
(m1m2)

3/5

(m1 +m2)1/5 . (1.23)

Other parameters include: the time at which the binary coalesced, luminosity distance, phase

of the waveform at coalescence, sky location (right ascension, declination), inclination angle,

polarization angle, spin magnitudes, tilt angles, spin azimuthal angle and azimuthal position.

BNS and NSBH events are also parameterized by the same BBH parameters mentioned above,

but their waveform is additionally impacted by the internal structure of the NS. The affect the

NS internal structure has on the GW waveform may be parameterized in the form of additional

tidal parameters given in [78].

As the two objects rotate about each other, energy is radiated away in the form of GWs

primarily due to the mass quadrupole moment of the binary system [48]. Over the course of

millions or even billions of years [79] , the two objects will inspiral towards each other [80]. As
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the orbital separation decreases, the objects will move faster and increasingly radiate away more

and more energy in the form GWs. This is known as the “inspiral” phase where the frequency

and amplitude of the GW waveform increases as a “chirp-like” signal. During the “merger”

phase, the objects plunge towards each other releasing a tremendous amount of energy, pro-

ducing peak luminosities equivalent to O(1056erg s−1) , making CBC signals some of the most

luminous events in the universe [5, 7]. If the objects are BBHs, they will merge and coalesce

into a single perturbed BH which emits GWs at a set of frequencies which is parameterised by

the remnant single black hole total mass and spin angular momentum [81, 82, 83] (also known

as the “ringdown” phase of the GW signal). When BNSs collide, they are thought to generate

short GRBs followed by a kilonovae [10]. Importantly, both the short GRB and kilonovae com-

ponents may be measured by other EM telescopes across the spectrum. Theoretically, NSBH

events should also be able to produce EM radiation, but this is largely dependent on several

factors including the mass ratio of the binary system, BH spin and NS radius [84].

The frequency near which the two objects will merge (and the point at which the frequency

of the GW waveform stops increasing) is related to a quantity known as the innermost stable

circular orbit RISCO. This radius is the distance between two compact objects in orbit at which

their motion becomes unstable and the two objects rapidly decrease their radial distance between

each other. The radius at which this occurs is defined as

RISCO =
6GM

c2 , (1.24)

where G is the gravitational constant, M is the total mass of the system, and c is the speed of

light. The corresponding frequency at which the orbit becomes unstable may be estimated using

Kepler’s third law and can be expressed as

fISCO =
1
T

.

√
GM

4π2R3
ISCO

' 2.2kHz
M�
M

, (1.25)

where T is the period of the orbit and M is the total mass of the system [48]. Now that we’ve

characterised CBC signals, we will describe data analysis methods used for detecting CBC sig-

nals.
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1.6.2 Compact Binary Coalescence Search Method

The output of the LVK GW detector (measured strain) is given as a time series s(t)

s(t) = h(t)+n(t). (1.26)

where h(t) is the astrophysical GW strain as a function of time and n(t) is a combination of all

other forms of the noise in the detector also as a function of time. If no signal is present, the

measured strain of the detector is simply equivalent to the noise s(t) = n(t). This is generally

known as the null hypothesis H0. We define Eq. 1.26 as the alternative hypothesis H1. We

assume that the noise is governed by a stochastic process and the joint-probability distribution

of n. The noise is also assumed to good approximation to be both stationary and Gaussian,

where stationary Gaussian noise has the consequence that noise samples are uncorrelated across

frequency bins and that the noise in each frequency individual bin is characterised by a normal

distribution [12]. In reality there are some exceptions where the detector noise may contain

non-Gaussian noise transients and non-stationary noise. For those cases where there are non-

Gaussian noise transients, various glitch identification tools and techniques are used to identify

periods of excess noise in the detector data output s(t) [12, 56, 85, 86, 87]. We note that in the

context of short duration GW signals, we may assume that the detectors contain stationary noise

if the performance of the detectors does not vary significantly over large time periods.

For simplicity-sake, let us first consider the case with purely Gaussian and stationary noise

(we will later explain how non-Gaussian noise transients are dealt with). How do we then dis-

tinguish noise from actual GW signal? Fortunately, the problem of extracting low SNR signals

from the background is not uncommon in physics and the field of statistics and may be accom-

plished through a technique known as matched filtering.

Matched Filtering

The primary method for detecting CBC signals is through matched filtering [88]. Matched filter-

ing has been applied in a variety of contexts outside of GW astronomy including: radar/sonar [89]

and digital communications [90]. In this subsection, I will describe how matched filtering is used
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within the context of GW detection of CBC signals including deriving the optimal matched fil-

ter, explanation of additional statistical tests such as the χ2 statistic, as well as a discussion on

template bank generation and coincidence testing.

To start, we can take advantage of the fact that we generally have a good understanding of

the form of h(t) through a combination of analytic and numerical waveform modeling [91]. At

large distances between the two compact objects of the binary system and velocities which are

smaller than the speed of light v� c (slow motion, weak-field), a post-Newtonian (PN) approx-

imation may be used to model the GW waveform, as outlined in [71, 92]. However, at smaller

separation distances, this approximation is not valid and computationally expensive numerical

solutions to Einstein’s field equations are then required through numerical relativity (NR) [93].

Modeling the entire waveform requires stitching together both PN and NR estimates in a semi-

analytic approximate of the entire waveform. The two main approaches currently used to model

the inspiral-merger-ringdown (IMR) phases of the whole signal use either the effective-one-

body (EOB) formalism [94] (SEOBNR waveform family) or the Phenomenological (Phenom)

framework [74, 75] (IMRPhenom waveform family). For further details and an overview of GW

waveform modeling see [95].

Given that we have an accurate understanding of GW waveforms through waveform ap-

proximation techniques, we will derive an algorithm for testing the alternative hypothesis H1 of

whether or not a signal is present in the detector noise assuming that h is exactly known. We will

be following the derivation found in [51]. In order to do this we must first define the likelihood

ratio given by

Λ(B|A) :=
P(A|B)

P(A|¬B)
, (1.27)

where Λ(B|A) is the likelihood of B given A, P(A|B) is the conditional probability of A given B

and P(A|¬B) is the conditional probability of A given B is not true where P(¬B) = 1−P(B). If

we want to find the likelihood of the alternative hypothesis H1, given the measured strain output

of the detector s, we can substitute this into Eq. 1.27 and rewrite as

Λ(H1|s) =
p(s|H1)

p(s|H0)
, (1.28)
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where p is representative of a probability density We also define the joint probability distribu-

tion of a Gaussian pG(x) as a function of a frequency series x = (x1,x2, . . . ,xN) indexed by N

frequency bins where each bin is composed of independent Gaussian random variables as

pG(x) =
N

∏
j=1

(
1

σ j
√

2π

)
e
− 1

2σ2
j

x2
j

(1.29)

where the mean of the jth bin of the frequency frequency series with M samples in the bin (

µ j = (1/M)∑
M
i=0 xi) is assumed to be zero since this is a Gaussian series, and σ j is the standard

deviation of the jth frequency bin distribution

(σ j =
√

(1/M)∑
M
i=1(xi−µ j)2). Acknowledging that Eq. 1.26 may be rewritten as n(t) = s(t)−

h(t) under H1 and as n(t) = s(t) under the null hypothesis H0, we can substitute Eq. 1.29 into

Eq. 1.28 under the two different hypotheses H0,H1 and write as

Λ(H1|s) =
∏

N
j=1

(
1

σ j
√

2π

)
e
− 1

2σ2
j
|s̃ j−h̃ j|2

∏
N
j=1

(
1

σ j
√

2π

)
e
− 1

2σ2
j
|s̃ j|2

, (1.30)

where |s̃ j| represents the modulus of the Fourier transform of timeseries s j. Rearranging we see

that the two pre-factor terms in both the numerator and denominator cancel out and we get

Λ(H1|s) =
{∏N

j=1

(
1

σ j
√

2π

)
}e

∑
N
j=1−

1
2σ2

j
|s̃ j−h̃ j|2

{∏N
j=1

(
1

σ j
√

2π

)
}e

∑
N
j=1−

1
2σ2

j
|s̃ j|2

,

=
e

∑
N
j=1−

1
2σ2

j
|s̃ j−h̃ j|2

e
∑

N
j=1−

1
2σ2

j
|s̃ j|2

. (1.31)

Performing some simple algebraic manipulations we then arrive at

Λ(H1|s) = e
− 1

2 ∑
N
j=1
|s̃ j−h̃ j |2

σ2
j

+ 1
2 ∑

N
j=1
|s̃ j |2

σ2
j ,

lnΛ(H1|s) =−
1
2

N

∑
j=1

(s̃re
j − h̃re

j )
2 +(s̃im

j − h̃im
j )2− (s̃re

j )
2− (s̃im

j )2

σ2
j

. (1.32)
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where “re” and “im” denote the real and imaginary parts of the data respectively. Further sim-

plifying we get

lnΛ(H1|s) =−
1
2

N

∑
j=1

(h̃re
j )

2 +(h̃im
j )2−2(s̃re

j h̃re
j + s̃im

j h̃im
j )

σ2
j

=−1
2

N

∑
j=1

|h̃ j|2

σ2
j
−

s̃ jh̃∗j + s̃∗j h̃ j

σ2
j

. (1.33)

As shown in [96], the variance σ2
j can be written as being equivalent to S jT/4 where T is the

total length of timeseries and S j is the PSD for the jth frequency bin. Converting to be in terms

of frequency we get that σ2
j = S j/4∆ f . Plugging this in for the variance in Eq. 1.33 we see

lnΛ(H1|s) =−
1
2

N

∑
j=1

(
4|h̃ j|2

S j
−

4s̃ jh̃∗j + s̃∗j h̃ j

S j

)
∆ f

= 2
N

∑
j=1

(
s̃ jh̃∗j + s̃∗j h̃ j

S j
−
|h̃ j|2

S j

)
∆ f . (1.34)

It then follows that the matched filter SNR, ρ , may be expressed as [97]

ρ =
N

∑
j=0

s̃ jh̃∗j + s̃∗j h̃ j

S j
∆ f = 〈s̃, h̃〉, (1.35)

where the greater the value of ρ , the more likely a given GW waveform h(t) is in the detector

output s(t)

The phase of the template waveform is also maximised over, whereby each template wave-

form has orthogonal phase components h′+ and h′× (Eq. 1.6,Eq. 1.7). As shown in [6], after

maximising over phase we arrive at

ρ
2 =
〈s,h′+〉2

〈h′+,h′+〉
+
〈s,h′×〉2

〈h′×,h′×〉
=
〈s,h′+〉2 + 〈s,h′×〉2

〈h′+,h′+〉
, (1.36)

where ρ2 is the matched filter SNR and 〈a,b〉 denotes the noise weighted inner product of

timeseries a and b. The matched filter SNR is the primary statistic used to determine if a specific

template is a good match for a given detector output s(t). If ρ2 is above a pre-determined

threshold using a given template waveform h(t), at a specific time t within a given period, we
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say that there is a trigger in the observed data at this time. There are also additional statistical

tests performed, such as the the χ2 test, which will be discussed later in this section.

Whitening

We also mention briefly here that LVK timeseries data can have information content which

is broadband. Often, low frequency noise power in a given timeseries can contain so much

power that it effectively “drowns out” the high frequency portion of the signal. One method for

dealing with this issue is using a technique known as whitening. In whitening, we normalise the

content in a given timeseries, such that the power is equal across all frequency bins in the signal.

Whitening is usually applied prior to performing any kind of signal analysis, such as matched

filtering, and only requires assuming a PSD and knowledge of the sampling frequency of the

timeseries. For a timeseries, s, this whitening procedure is given by the following mathematical

expression as

sw = F−1

(
F (s)

√
2

Sn( f ) fs

)
, (1.37)

where F and F−1 are the fast Fourier transform (FFT) [98] and inverse FFT respectively, fs is

the sampling frequency of the timeseries, Sn( f ) is the PSD and sw is the whitened timeseries.

After whitening, the noise content of the whitened data will have unit variance (assuming that

the PSD used in the Eq. 1.37 is the correct PSD).

Template Bank Placement

Choosing how to sample GW templates from the vast parameter space which best match h(t)

can be challenging. This is typically done by first constructing what is known as a template

bank (a bank of GW template waveforms). We can quantify the coverage of the template bank

through an expression known as the minimal match MM given as [99]

min
θθθ

max
θθθ i

〈
h(θθθ),h(θθθ i)

〉
≥MM (1.38)

where h(θθθ) denotes a given template waveform characterised by parameters θθθ and h(θθθ i) is rep-

resentative of a set of templates characterised by set a of parameters over a range θi, i = 1,2, . . ..



CHAPTER 1. INTRODUCTION TO GRAVITATIONAL WAVES 28

A high minimal match percentage value (where maximum coverage would be 100%) for a given

template bank essentially means for any given GW, the distance of that GW waveform from any

existing template in the template bank should be no more than a pre-determined distance away.

This distance is quantified by determining the amount of optimal SNR (Eq. 4.1) loss if that

GW waveform were to lie exactly in between its nearest templates [100]. The spacing between

discrete templates in the template bank is parameterised by the square of the proper distance

between intrinsic template waveform parameters given by Eq. 2.14 of [100].

In practice, the template bank is constructed such that at least one template in the bank has

a minimum match greater than or equal to ∼ 97% for any GW. Deciding on an MM value can

be tricky, if one chooses an MM value which is too low, then template bank will be coarse and

GW signals may be missed. On the flip side, if we generate a bank of templates which is too

finely spaced, then we run the risk of having a higher false alarm rate (where a high false alarm

rate means a higher probability of falsely identifying periods of excess noise as GW signal)

There is also the added trade-off of larger template banks being exceedingly computationally

expensive to build. There are a multitude of techniques used to generate template banks given in

[88, 100, 101, 102, 103, 104, 105, 106, 107, 108] and we refer the reader to those manuscripts for

a more detailed discussion on template bank placement. Following template bank generation,

we compute the matched filter SNR of templates in the template bank with observed pieces of

data s(t), in order to determine the best matching template waveform for h(t).

The χ2 Test

Up to now, we have assumed only Gaussian noise, but unfortunately the global network of inter-

ferometric detectors are also often affected by non-Gaussian noise artefacts. These “glitches”,

or noise transients, can mimic high SNR events. High SNR glitch events typically contain lots of

power across a broad frequency band, where distinguishing factors which separate glitches from

GW events include: glitches only appearing in one detector at a time rather than coincidentally

across multiple detectors, as well as signal morphology in time, frequency or the time-frequency

plane. To take this into account, an additional test for quantifying the likelihood of a candidate

event originating from a real GW signal is used known as the χ2 test. The test operates under
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the principle that the time-frequency distribution of the power of the observed data s(t) should

be consistent with the expected power in the matched template waveform h(t), as explained in

greater detail here [6, 109].

Given a trigger with a corresponding best matching template waveform, the χ2 test is con-

structed by first dividing up the best matching template waveform into q frequency bins, whereby

each bin is defined such that they contribute an equal amount of power to the total matched filter

SNR. Next, a matched filter SNR, ρi, is then computed for given observed data s(t) and template

h(t) summed over all q frequency bins. The resulting statistic may be described by

χ
2 = q

q

∑
i=1

[(
ρ2
×
q
−ρ

2
×,i

)2

+

(
ρ2
+

q
−ρ

2
+,i

)2]
, (1.39)

where ρ+ and ρ× are the SNR values of orthogonal templates h′+,h
′
×. Large values of χ2

indicate a greater likelihood of a trigger resulting from a noise transient and as such are typically

downweighted if their reduced chi-squared value χ2
r = χ2/2q− 2 is greater than 1 in the form

of a re-weighted SNR ρ̂ given as

ρ̂ =
ρ[

(1+(χ2
r )

3)
2

] 1
6
. (1.40)

If after SNR re-weighting the match filter SNR lies below a user predefined value, the candidate

trigger is discarded and not considered for further analyses [6]. The final detection statistic is

the quadrature sum of the chi-squared weighted matched filter SNR across all detectors where

the event was seen.

It is also important to ensure that triggers which we observe in one detector are generally

consistent with what we would expect to find in other active GW detectors around the globe. If a

trigger has been identified in one detector, it must also be coincident in time with other triggers

in other active detectors. Coincidence is defined as triggers from multiple detectors being within

the expected maximum window of time it would require for the GW to travel from one detector

to another ( at the speed of light). Travel time varies depending on sky location of the event (with

added noise due to measurement uncertainty), where for example at a maximum it is expected

that it should take a GW to travel from the LIGO Livingston detector to the LIGO Hanford



CHAPTER 1. INTRODUCTION TO GRAVITATIONAL WAVES 30

detector in ∼ 10ms [6]. In order to account for added noise from measurement uncertainty, the

maximum allowed GW travel time between detectors is usually expanded to ∼ 15ms [6], also

known as the coincidence window. Triggers which are within the coincidence window are then

ranked by the expression

ρ̂c =

√√√√ Nd

∑
i=1

ρ̂i
2, (1.41)

where ρ̂i are the re-weighted SNRs of the coincident triggers in each detector [6], Nd is the total

number of detectors, and ρ̂c is our final detection statistic for a coincident event.

Timeslides

Now that we have a detection statistic in the form of ρ̂c, we need a method for determining the

statistical significance of this statistic. This can be done by first determining the false alarm rate

(FAR), where a false alarm is defined as how often the search would identify a non-astrophysical

noise event with a re-weighted SNR as high (or higher) than a given candidate GW event’s re-

weighted SNR. An accurate FAR requires that we have an accurate estimate on the statistical

properties of the background noise distribution. In order to get an accurate approximate of

the noise background of the LVC detectors, we perform an exercise known as time-slides [6,

110]. Time slides involve artificially randomly shifting the time stamps of triggers from one

detector by an offset which is greater than the coincidence window (∼ 10ms if considering only

LIGO Hanford and Livingston). We then compute ρ̂c for all coincident triggers (above a pre-

determined low SNR threshold) between the time-slide triggers and those from other detectors

which are within the coincidence window. These post time-slide coincident triggers are unlikely

to contain real GW events. It should be noted that a real GW from LIGO Livingston would no

longer be coincidence with the same signal in another detector such as LIGO Hanford, but it

may get matched up with some noise above threshold, so thus it is still possible a coincident

trigger could contain a real GW event. Time-slide triggers are considered to be a representative

approximation of the distribution of noise background events. The FAR may thus be calculated
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for a given event with a measured matched filter SNR as

FAR =
Nb

Tb
, (1.42)

where Nb are the total number of noise background time-slide events found which have a co-

incident SNR greater than or equal to the given event measured matched-filter SNR and Tb is

the total duration of the background event data. The total duration of the background data Tb

may be defined by considering that we have T seconds of data from say 2 detectors which have

been time-slide in steps of dt where dt is the maximum allowed coincidence window . We then

get T/dt possible slides, which means we get a total simulated background time of T/dt sets

equivalent to Tb = T 2/dt.

Given ρ̂c for these noise background coincident events, we can additionally calculate the

false alarm probability (FAP) of a particular event resulting from non-astrophysical noise by

comparing ρ̂c from background events, to ρ̂c from the foreground (candidate GW trigger) events.

The FAP can be expressed in the form

FAP = 1− e−Nb(T0/Tb), (1.43)

where T0 is the search time. Eq. 1.43 is essentially the Poisson probability of getting one or more

events given an expected number of events equal to Nb(T0/Tb). Since Nb/Tb is the expected

number of background events per unit time then by multiplying by the foreground time (the

actual time over which the search is done) then the expected number of events in that time is

obtained. For more details on determining GW candidate trigger significance, see [6, 110, 111].

We will now move on to discuss another source GW radiation, CWs.

1.6.3 Continuous Waves

CW signals are canonically associated with spinning non-axisymmetric NSs. Other more exotic

sources include boson clouds, which may produce CW GW signals through boson annihilation

or level transition around fast-spinning BHs [49]. Continuous GW signals from rotating NSs are
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produced through the mechanism of mass quadrupole radiation. Radiation is most commonly

emitted through cracking and cooling of the NS crust, internal non-axisymmetric magnetic field

flows, and mountains of mass accrued on the surface from a larger companion star [49]. CW

signals are incredibly long in duration and will span (or even outlast) an entire observing run. A

CW waveform is fairly simple in shape (resembling that of a standard sinusoid) and the period

to complete one full NS spin revolution can be on the order of ∼ 10−3s up to ∼ 10s [112] 3.

The frequency of CW signals on short time scales is generally constant, however on longer time

scales the frequency will shift due to a loss in angular momentum resulting from GW radiation,

magnetic braking of the NS, and the shifting position of the LVC detectors with respect to the

source due to Earth’s rotation and orbit around the Sun [49]. Many searches have also been

carried out by the LVC over the past several years for CW signals and while upper bounds have

been placed on the intrinsic CW GW strain, NS elipticity and other CW parameters, there have

yet to be any direct detections [113, 114]. We will now focus our attention on methods for

detecting CW signals.

1.6.4 Continuous Wave Search Methods

There are estimated to be roughly ∼ 108− 109 NSs in our own Milky Way Galaxy [115], of

which only ∼ 2500 have already been observed by the EM community [49, 116] and many

of these NSs may emit detectable GWs in the form of CWs (of the 2500, only the few hun-

dred known millisecond (rapidly rotating) pulsars fall into the ground based detector sensitivity

band [49, 117]). Methods for detecting CWs from NSs may be classified into 3 types: targeted,

directed and all-sky. We will now briefly summarise each of these approaches.

Targeted Search

One method for detecting CW signals is to go after these already known O(100)s NSs and

perform targeted searches. The GW strain given by a non-axisymmetric spinning NS is typically

defined by [49]

h0 =
16π2G

c4
I f 2

d
ε, (1.44)

3For the quadrupole GW mode, the CW waveform frequency is twice the NS spin frequency.
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where d is the distance to the NS, I is the moment of inertia with respect to the rotation axis

of the NS, f is the GW frequency ( equivalent to twice the spin frequency for quadrupolar

emission, ≈ 4/3 of the spin frequency for r-mode emission, and has a component equal to the

spin frequency if it is wobbling (precessing)) and ε is the elipticity defined as (I1− I2)/I where

I1 and I2 are the moments of inertia of the star with respect to the principal axis orthogonal to

the rotation axis [118]. In a targeted search, observations from EM observers, which provide

estimates on the sky position, frequency, spin, are used as input to CW GW searches in order to

search for unknown parameters (h0,φ0,ψ,cos ι). Where cos ι is the cosine of the angle between

the NS source’s rotation axis and the line-of-sight of the detector to the source, φ0 is the signal

phase offset and ψ is the polarization angle. There are many methods for performing a targeted

search, such as the use of data reduction techniques (time-domain heterodyne) in combination

with Bayesian inference to produce posteriors on unknown parameters [119]. There is also

matched filtering, specifically the F statistic, which analytically maximises the log likelihood

ratio of a signal+noise (combined noise-free GW signal and detector noise) model over the 4

unknown parameters previous listed [120]. Then finally there is Fourier domain analysis using

the “5-vector” method, as outlined in detail here [121]. For further discussions on each technique

listed above, see [119, 120, 121].

All-Sky and Directed Searches

In contrast to both a targeted and a directed search, all-sky searches impose the least amount of

constraints on the observable parameter space, with a lower computational cost. Specifically, it’s

a search for a well modelled signal with unknown frequency, frequency derivative(s), unknown

sky location and potentially unknown orbital parameters4. Generally speaking, an all-sky search

is performed by first breaking up observational time series data into many smaller time segments,

or different frequency bands using the sideband method [122]. These time segments are then

analysed coherently, after which the results for each time segment may be recombined in an

incoherent manner. This is otherwise known as a semi-coherent search.

In order to combine results from coherent segments incoherently, there are many methods

4if in a binary system
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which have been developed over the past several years. Such methods include: time-domain

F -statistic, frequency-Hough, Viterbi, Powerflux and cross-corr. For a full description of these

and other methods for combining coherent segments, I refer the reader to [123].

We also briefly mention a second method, a directed search, where it is only assumed that

the sky location is well known and that the rotational frequency and other parameters are not

known. Examples of such searches include: GW searches in the core of our own galaxy [124]

and Scorpius X-1 [125]. Although not too dissimilar from an all-sky search, directed searches

are useful when we have a particular source in mind and would like to tune our search to that

source [126]. It should also be noted that directed searches, since they do not have to search

over the sky, may thus lengthen their coherent segments to gain more sensitivity, which is done

at a greater computational cost. Directed searches are also less sensitive than targeted searches

due to the fact that they are mostly semi-coherent which is intrinsically less sensitive and that

by searching over many templates, they also incur a trials factor which increases the FAR [127]

We will now discuss another GW source type, burst signals.

1.6.5 Burst Signals

A burst GW signal is produced by sources which are either unknown or known, but difficult

to model due to complicated physics. Unknown sources produced by as-yet understood astro-

physical mechanisms have the potential to produce transient bursts of excess power in the LVK

detectors which may be detectable. Known, difficult to model burst signals are typically short in

duration (less than a second) can result from core-collapse supernovae which may emit GWs via

a mass-energy quadrupole moment at possible frequencies of ∼ 200− & 1000Hz [128] Other

potential known sources include pulsar “glitches” from a NS rapidly increasing and then expo-

nentially decreasing its spin due to surface mountain distortions [129] and soft gamma-ray flares

from brief (∼ 0.1s) bursts of soft gamma-rays with possible sources such as: Magnetars [130] or

quake stars [131]. Due to the fact that GWs are likely emitted from deep inside the core of a star

going supernovae and are not heavily influenced by extraneous material between the source and

the detector, there is the potential for much insight to be gained on the physics which govern the

dynamics inside collapse such as the equation of state of hot nuclear matter inside the star [50].
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In the next subsection we will discuss methods used to detect both known and unknown burst

signals.

1.6.6 Burst Search Method

Burst-like signals are typically not modeled due to the complicated nature of the event and

the possibility of detecting as yet unknown signals. Since the search is unmodeled, template

waveforms which are exactly described by a deep knowledge of numerical relativity, post-

Newtonian dynamics or GR aren’t necessarily employed. As such, burst searches use meth-

ods which can detect a wide range of possible waveform types and may be classified into two

distinct categories: coincident and coherent searches. Coincident searches identify clusters of

times of excess power (sometimes represented through wavelet transformations) in individual

detectors. After times of excess power have been individually identified in each detector, coin-

cidence between times across multiple detectors is checked [132]. Coherent searches such as

[133, 134, 135], are fundamentally different from coincident searches in that detector responses

are first summed together into a single combined piece of data. Burst events are then identified

in the combined data through a coherent statistic derived from the likelihood ratio functional

shown in [136]. Coherent methods have the added advantage of not being limited by the least

sensitive detector in the analysis, the generation of other useful coherent statistics as a byproduct

of the analysis and the ability to construct the source coordinates of the GW waveforms [134],

but coherent analyses are slow because they have to essentially search over the entire sky. We

end this section by explaining another source of GWs, stochastic GWs.

1.6.7 Stochastic Gravitational Waves

There exists a background noise of random (stochastic) GW events which is detectable and may

be classified into two categories (cosmological and astrophysical) which are broadly defined by

their different amplitudes and spectral properties. The cosmological stochastic GW background

is produced by a number of mechanisms including: density perturbations resulting from the

amplification of vacuum fluctuations during the inflationary period, and cosmic strings resulting
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from phase transitions in the early universe [137, 138]. If detected, GWs from the cosmolog-

ical stochastic background could provide key insights into fundamental physical mechanisms

and processes of the early universe [139]. The astrophysical stochastic GW background may be

described as the random supposition of many GWs from a wide range of signals (core-collapse

supernovae, compact binary inspirals, isolated neutron stars) which are weak in SNR, inde-

pendent and unresolvable [140]. If detected, the astrophysical GW background would provide

us with a further understanding on early astrophysical source population properties, as well as

surce population formation mechanisms [140]. In subsection. 1.6.8, we move on to briefly dis-

cuss methods for detecting stochastic GW backgrounds.

1.6.8 Stochastic Search Method

The stochastic search method largely involves attempting to separate GW stochastic noise from

the detector environmental/non-astrophysical noise. The noise background associated with

stochastic GWs may be characterised by its energy density per unit logarithmic frequency and

is very similar to the the detector instrumental noise (i.e. may be approximately described by

a non-white Gaussian-normal distribution [50]). Assuming an isotropic stochastic GW back-

ground, the noise induces a strain spectral noise density on the detector. This strain would be

detectable using a single detector only if it were significantly stronger than the detector noise

PSD [50]. The noise is typically cross-correlated between more than one detector in order to

search for a correlated noise components and one can obtain improved sensitivities using multi-

ple detectors [137, 141]5. This may be computed using a multitude of techniques discussed in

further detail here [50, 137, 140, 141].

We also briefly mention that there are methods, other than through laser interferometers,

which stochastic GWs may be detected. Given that the arrival times of pulses from Millisec-

ond pulsars are so incredibly stable over large time scales [142], one can also perform cross-

correlation analysis between pulses from multiple pulsars. Through cross-correlation, one may

then be able to to distinguish between intrinsic pulse variability and pulse variability associated

with the stochastic GW background. This method is known as pulsar timing and is discussed

5This is performed under the assumption that instrumental noise is not correlated between multiple detectors
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in more detail here [142, 143]. In the following chapter, we will move from discussing GW

sources and their detectability, to inferring the parameters which characterise GW sources, us-

ing a technique known as Bayesian inference.

1.7 Bayesian Inference

It is not only important that we detect a GW event, but also vital that we infer the underlying

properties of that event in the form of its source parameters (i.e. component mass, distance,

sky location, etc.). In LVK, the tried-and-true method for inferring source parameters is done

through Bayesian inference, which is derived from Bayes theorem [144]. Bayes theorem was

first proposed by Reverend Thomas Bayes in the 18th century and in it he formulated a new

paradigm for thinking about the laws of conditional probability.

Bayesian probability, is a fundamentally different way of interpreting statistics from the

more traditional frequentist approach. For a frequentist, an unknown parameter of interest θ is

often considered to be a fixed quantity. A frequentist would determine the value of θ through

sampling of observational data to form a distribution. From this distribution, a frequentist would

then be able to determine confidence intervals on their estimate of θ . For example a confidence

interval of 95% is stating that the true value of θ (for say 100 observations) would lie within

the confidence interval in 95/100 repeat observations. The other 5 repeat observations are not

guaranteed to be close to the confidence interval and may take on any value.

On the other hand, a Bayesian does not consider the unknown parameter to be a fixed value.

Rather, the Bayesian considers the unknown parameter to be a random variable which is de-

scribed by a probability distribution with credibility intervals. A 95% credibility interval, corre-

sponds to a 95% probability that the true value of parameter θ lies within the interval, given a

single piece of observational data ddd = d1,d2, . . .dn. Parameters θθθ = θ1,θ2, . . .θn may then be in-

ferred through direct application of Bayes theorem. In the following section will describe Bayes

theorem in detail and refer the reader to [145] for further discussions on frequentist inference.

To describe succinctly, Bayes theorem states that one can infer the distribution of an un-

known parameter, the posterior, by computing the likelihood of a given observation, scaled by
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our prior belief on the distribution of that unknown parameter. To put it in the context of GW

astronomy, given observed detector data and some prior assumptions about the source parame-

ters of a GW signal, the posterior can be described by the source parameter values of that signal

while also taking into account the uncertainty added by the signal being buried in noise. The

posterior may be expressed as p(θθθ |ddd, I), where p(θθθ |ddd, I) is the probability density of the source

parameters of the signal (θθθ being a continuous variable), given some observed data and all other

assumed relevant information I. The integral over the total posterior is normalised such that

∫
dθθθ p(θθθ |ddd, I) = 1. (1.45)

According to Bayes theorem, we can write the posterior as

p(θθθ |ddd, I) = p(ddd|θθθ , I)p(θθθ |I)
p(ddd|I)

. (1.46)

Where each term in Eq. 1.46 can be described as

• p(ddd|θθθ , I): The probability of the data ddd given the source parameters θθθ and information I,

also known as the likelihood of the source parameters.

• p(θθθ |I): Our prior belief on the distribution of source parameters θθθ given information I.

• p(ddd|I): A normalisation factor called the Bayesian evidence which is obtained by inte-

grating the likelihood times the prior over all possible parameters θθθ given information

I.

The prior p(θθθ |I) is largely informed by our understanding on the formation channels of GW

sources and our current knowledge on the general physics which govern events. For example,

one would intuitively think that the distance of an object in 3-dimensions should always be

positive and governed by a Euclidian distance, so will set the priors such that the distance of a

GW source with respect to the detectors must always lie between two positive values and also

be in the form of a Euclidian distance However, if we aren’t as knowledgeable about a particular

parameter θθθ , we might try choosing a relatively uninformative prior. Choice of prior can also be
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incredibly influential on the posterior shape for some GW parameters [146], but in general both

the prior and the likelihood have equal weight in terms of how they influence the posterior.

The way in which the likelihood p(ddd|θθθ , I) is defined is characterised by the noise distribution

model. For GW astronomy, we typically define a likelihood which assumes that the detectors

operate under Gaussian noise-like conditions. The Gaussian-noise likelihood function may be

written as

p(ddd|θθθ , I) =∏
i

1√
2πσ2

i

exp
(
−1

2
(di−µ(θ)i)

2

σ2
i

)
, (1.47)

where i is the frequency bin index, di is the observed data and µ(θθθ)i is a the signal model GW

waveform parameterised by source parameters θθθ . The parameter σ2
i is proportional to the noise

PSD defined earlier in Eq. 1.10, since the amplitude spectral density (ASD) is given as being

the square root of the PSD. We note that the likelihood function in Eq. 1.47 for GW analysis

is calculated on the frequency domain representation of the data. It is only in the frequency

domain whereby the probabilities from each frequency bin can be multiplied since the data is

independent.

The evidence p(ddd|I) can be defined as

p(ddd|I) =
∫

p(ddd|θθθ , I)p(θθθ |I)dθθθ . (1.48)

The evidence is usually also referred to as the marginal likelihood. It is often used in order to

perform model selection where the evidence is required in order to calculate a quantity known as

the Bayes factor. The Bayes factor is a quantifiable method for which computing the likelihood

of one model versus another. The Bayes factor is defined as the ratio of evidence for two different

models/hypothesis. For example, as shown in [147] one could investigate the likelihood for a

model which assumes a signal+noise model p(ddd|I)s versus a noise-alone model p(ddd|I)n. The

Bayes factor for such an investigation may be written as the ratio of one evidence assuming the

signal+noise hypothesis over another evidence assuming the noise-alone hypothesis expressed

as

Bs
n =

p(ddd|I)s

p(ddd|I)n
, (1.49)
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where the noise-alone evidence integral p(ddd|I)n may be written as

p(ddd|I)n = ∏
i

1
2πσ2

i
exp
(

1
2
|d2

i |
σ2

i

)
, (1.50)

where again the data is considered to be in the frequency domain. If one uses a more formal

definition, determining the preference of one model A over another B given observed data ddd is

actually determined through a term known as the odds ratio OA
B. The odds ratio is a combination

of the Bayes factor and the prior odds ratio given as

OA
B =

p(ddd|I)A

p(ddd|I)B

πA

πB
, (1.51)

where πA,πB are the prior beliefs on hypothesis A and B respectively.

If we are purely interested in parameter estimation and since we are marginalising over all

parameters θθθ in Eq. 1.48, we can state that the evidence is independent of θθθ . Since the evidence

is independent of θθθ and it is prohibitively expensive to compute this factor6 (because we are

integrating over the whole parameter space of θθθ ), most Bayesian practitioners purely interested

in performing parameter estimation will ignore Eq. 1.48 (and rewrite Bayes theorem in the

simpler form

p(θθθ |ddd, I) ∝ p(ddd|θθθ , I)p(θθθ |I). (1.52)

Given that sampling from the posterior distribution can become prohibitively computationally

expensive as the number of dimensions θθθ is increased [147], there is prime motivation for the

use of efficient methods for sampling from the posterior. In the following subsections I will

describe the basic principle of two popular methods for sampling from the posterior p(θθθ |ddd, I):

Markov Chain Monte Carlo (MCMC) and Nested Sampling.

6We note that in nested sampling, the main purpose of the algorithm is in fact to compute this quantity in a
computationally feasible manner. See Sec. 1.7.2 for further details.
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1.7.1 Markov Chain Monte Carlo

MCMC is used when we would like to try and sample from some distribution, for example the

posterior p(θθθ |ddd), or approximate the expectation value E( f ) of some function f (θθθ) which is

of a high dimension/complexity Where the posterior is so complex that trying to sample from

the posterior through traditional means would be prohibitively expensive. Other methods for

sampling from complicated distributions such as, importance sampling and random sampling

may also be used, but are outside of the scope of this thesis and I refer the interested reader

to [148] for a more through discussion on both techniques.

The Monte Carlo portion of MCMC refers to a technique known as Monte Carlo sam-

pling [149]. Monte Carlo sampling means to randomly sample from some distribution. For

example, we could choose to randomly sample from a normal distribution N (0,1) or from uni-

form distribution U(0,1) between 0 and 1. We would then define the normal or the uniform

distribution that we’re sampling from the proposal distribution. If we randomly sample from the

proposal distribution enough times a histogram of the resulting samples should resemble that of

the original proposal distribution.

A Markov Chain [150] is a sequence of numbers whereby each number in the sequence is

only dependent on the previous number in the sequence. For example, if we again decided to

randomly sample from proposal distribution N (0,1), but instead after each sample is drawn

we change the mean of the proposal distribution to be equal to that of the previous sample

N (θi−1,1), we would end up with something known as a random walk.

In order to construct an algorithm which is able to generate n samples from the posterior in

steps indexed by i, we want to ensure that two criterion are met: stationarity (i.e. in the limit

where n→ ∞, random numbers drawn from the sequence vary a significant amount) and a final

set of samples which is equivalent to the posterior p(θθθ |ddd, I) [148]. One method for ensuring

both criteria is the Metropolis-Hastings (MH) algorithm [151]. We will now go on to explain

how the MH algorithm works and have also provided a pseudo code of the algorithm (Alg. 1)

for reference.

The MH algorithm begins by first drawing a random point, θc, (also sometimes known as a

walker) (always from the prior space, p(θθθ |I)) and calculating the posterior probability density
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Algorithm 1 A simple MH MCMC algorithm.
Generate random initial starting point θc;
for i = 1 to n do;

θp = Q(θp|θc),
α =

p(θp|d,I)
p(θc|d,I)

Q(θc|θp)
Q(θp|θc)

if α >U(0,1) then
θc = θp

end if
end for
return {θ 1

c ,θ
2
c , . . .θ

n
c }.

function (PDF) at that point p(θc|d, I). We also define a simple proposal distribution Q which is

dependent on the current state θc and from which we will sample from over n steps of the algo-

rithm (Q is usually described by a Multi-variate Gaussian distribution whose mean is equivalent

to the current state θc). Q is chosen to be a simple distribution since it is easy to sample from at

each step, as opposed to the complex posterior distribution.

The MH algorithm then calculates the posterior PDF, p(θp|d, I) using the likelihood and the

prior, given a new proposed sample θp drawn from the proposal distribution Q(θp|θc) evaluated

at current state θc. The posterior PDF value of the current position p(θc|d, I) is also evaluated

with current state sample θc drawn from proposal distribution Q(θc|θp) evaluated at θp. The

ratio of the two posterior PDF values scaled by the ratio of Q(θc|θp) and Q(θp|θc) is then

computed
p(θp|d, I)
p(θc|d, I)

Q(θc|θp)

Q(θp|θc)
,

where both p(θp|d, I) and p(θc|d, I) are estimated through evaluating the prior distribution and

the likelihood function at θp and θc respectively. The ratio is derived from the statistical concept

of “detailed balance” which states that probability is conserved from one position to another and

the full derivation is given in [148]. If this ratio is greater than 1, then we always accept the

new proposed sample as the new current state. If however, the ratio is less than 1, we will not

necessarily reject the new proposed sample. Instead, we determine an acceptance probability

based on the ratio. The acceptance probability is determined by first drawing a uniform random

number between 0 and 1. We accept the new proposed sample as the new current state if the

ratio value is greater than the randomly drawn number. Otherwise, the current state remains at
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position θc. As shown in [148], the probability of acceptance (α) of a new sample in the Markov

Chain can be expressed as

α =


p(θp|d,I)
p(θc|d,I)

Q(θc|θp)
Q(θp|θc)

if p(θp|d, I)< p(θc|d, I)

1 if p(θp|d, I)≥ p(θc|d, I).
(1.53)

There are a few downsides to using the Metropolis Hastings algorithm. One of those down-

sides being that we have to choose a starting point for the random walk, which is initially liable

to be far from the true posterior. This could be problematic if the posterior is composed of a

small concentration(s) of probability with a large amount of likelihood concentrated in a small

region of the parameter space. It may also take a large number of iterations for the algorithm to

walk towards areas of high likelihood contained within a small region of the parameter space.

Commonly, a number of samples at the beginning of the walk are discarded such that the remain-

ing represent a point after which the algorithm has reached a stable equilibrium. The interval

over which we choose to throw away samples is called the burn-in period. Another issue relates

to something known as autocorrelation. Samples θθθ generated through the Markov Chains in the

Metropolis Hastings algorithm may be statistically correlated with each other and are thus not

necessarily fully representative of the posterior [147], since correlation implies that the samples

drawn are not statistically independent from each other (i.e. it violates the Markovian princi-

ple outlined earlier). We can mitigate such correlations through a process known as thinning.

Thinning involves generating a large amount of samples from the proposal distribution, but only

keeping every Nth sample from that large sample set, described in further detail here [152].

Expanding on from traditional MCMC methods, the MCMC algorithms used in this thesis

(emcee [153], and ptemcee [154]) both apply their own additional methodologies and tweaks

to the original algorithm. For example, in emcee there is an operation applied known as the

“stretch move”. The stretch move by be described by first considering an ensemble of walkers

being evolved simultaneously over n steps. The stretch move involves proposing a new state for

the kth walker, θ k
p, which is dependent on the current state of another randomly selected walker,

θ
j

c , from the ensemble. This is opposed to the traditional method where new proposed states are
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entirely dependent on the previous state of that same chain. The new state of the kth walker is

then given by

θ
k
p = θ

j
c +Z[θ k

c −θ
j

c ] (1.54)

where Z is a randomly selected variable from a proposal distribution parameterised by θ k
c −

θ
j

c . This process is then repeated in a series over all walkers. The stretch move may also

then be parallelised by splitting the walkers into two separate sets and updating walkers from

one set with walkers from another. The methodology employed by emcee can have superior

performance over other traditional methods in the form of shorter autocorrelation times (i.e.

more statistically independent samples) when run on several complex distributions [153].

In ptemcee, multiple Markov chains are run in parallel at varying temperatures. Tempera-

tures refer to different tempered versions of the posterior given by

p(θθθ |ddd)T ∝ p(ddd|θθθ)1/T p(θθθ), (1.55)

where T is the temperature value. Temperatures are assigned to all Markov chains in a geo-

metrically spaced ladder from 1 up to a Tmax, where the maximum temperature, Tmax, and the

number of temperatures is pre-determined by the user. Temperature values for each chain are

also periodically swapped with other adjacent chains according to an acceptance ratio defined in

Eq. 2 of [154]. The advantage of using temperatures is that the likelihood p(ddd|θθθ)1/T gets flat-

tened out at high T , thus making the distribution easier to sample from. ptemcee is especially

useful when one wants to find the global maximum and multiple modes of a complex posterior

distribution [155]. For further details which are outside the scope of this thesis, see [154, 155].

We will now discuss an alternative sampling method to MCMC, nested sampling.

1.7.2 Nested Sampling

Nested sampling is another method which can be used in order to sample from the posterior.

However, that wasn’t the primary goal in mind when the method was first developed [156,

157] and the posterior is only really obtained as a byproduct (unlike MCMC which directly
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samples from the posterior). An additional motivation for nested sampling relates to the fact

that MCMC can have issues when trying to deal with widely spaced multi-modal and degenerate

distributions, where a degenerate distribution in this case is defined as having posterior shapes

which are very narrow. Nested sampling was first introduced by Skilling in 2004 [156] (later

expanded upon in 2006 [157]) because he wanted a tractable method for computing the Bayesian

evidence (sometimes known as the marginal likelihood) in order to compare different models

effectively (See Bayes factor in Sec. 1.7). In nested sampling, samples from the posterior can

be obtained as a byproduct following the evaluation of the evidence. One would be forgiven

for naively assuming that it would be easy to compute this integral by simply evaluating the

integrand for many values of θθθ and then numerically integrating over the θθθ space. Unfortunately,

this procedure can get computationally expensive quickly as the number of inferred parameters

θθθ increases. Rather than integrating over the whole space of parameters θθθ explicitly, it would be

advantageous to redefine Eq. 1.48 such that it was only dependent on a single parameter and an

approximate method for computing the integral could possibly be found. The fundamental idea

that a complex high-dimensional problem with many inferred parameters may be represented in

a simplified 1-dimensional form is one of the key ideas of nested sampling. This then begs the

question, how do we convert to a simplified 1D form and compute the evidence from this 1D

form? I will now describe the details of such an algorithm.

In order to convert the problem to a simpler 1D form, Skilling starts by defining the total

prior mass X , stated as the total amount of prior contained within a given likelihood contour λ

expressed as

X(λ ) =
∫

p(ddd|θθθ ,I)>λ

p(θθθ |I)dθθθ . (1.56)

Rearranging Eq. 1.56 through an inversion of the equation we arrive at a new definition of the

evidence integral

p(ddd|I) =
∫ 1

0
p(X)dX , (1.57)

where dX = p(θθθ |I)dθ and p(X) is the likelihood evaluated at p(ddd|θθθ I) > λ . It can be clearly

seen from Eq. 1.57 that that the evidence integral is now a function of a single parameter X ,

the prior mass. The integral in Eq. 1.57 has limits from 0 to 1 since the prior mass decreases
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from 1 to 0 as the likelihood contour λ increases. The reasoning for these limits is most clearly

illustrated in Fig. 2 of [157] where at low likelihood values (i.e. broad likelihood contour and

low λ ), we see total contained prior mass as close to 1, and at increasing likelihood values the

prior mass approaches values of 0.

In order to compute the integral of Eq. 1.57, Skilling applies the trapezoid rule to Eq. 1.57

and expresses Eq. 1.57 as a weighted summation defined as

p(ddd|I) =
M

∑
i

ωi p(Xi), (1.58)

where ωi =
1
2(Xi−1−Xi+1). Since p(X) is not typically well-known, the nested sampling al-

gorithm instead approximates p(X) by drawing samples from the constrained prior mass X in

M slices, where 0 < XM < ... < X1 < X0 = 1. As outlined in Alg. 2, the algorithm begins by

first generating an initial set of Nlive “live points” initially drawn from the prior p(θθθ) (usually

on the order of ∼ 1000). At each prior mass volume slice Xi, the likelihood values for each

live point is calculated and the live point with the lowest likelihood value identified which gives

us our approximate p(Xi). The parameters associated with the minimum likelihood live point,

θi, are then saved for later use in constructing the posterior (described shortly). The minimum

likelihood live point is then discarded and replaced with a new live point from the prior p(θθθ |I)

such that the likelihood value of the new live point is greater than the likelihood value of the

old minimum live point from the previous step i. There are several methods for generating a

new live point from the prior under the given likelihood constraints, which will also be outlined

shortly.

As shown in [157], the prior mass at each step Xi is equivalent to Xi = tiXi−1, where ti is a

probability distribution defined on the bounds U(0,1). The probability distribution associated

with taking the largest of Nlive numbers from a uniform distribution may be expressed as

p(ti) = Nlivet
Nlive−1
i . (1.59)

Taking the expectation value of the distribution E[log p(ti)], it is shown in [157] that the log prior
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Algorithm 2 A simple nested sampling algorithm. A set of live points, Nlive, are first initialised.
For each step, i, over M iterations, the minimum likelihood value for all current live points is de-
termined, pi(ddd|θθθ , I). A weight, ωi, is then calculated which is parameterised by the constrained
prior volume, Xi. The likelihood of the minimum live point is then multiplied by the weight
and added to the running evidence value, p(ddd|I). Both the minimum live point values θθθ i and
weight ωi are saved and the minimum likelihood live point is replaced with a new live point
which is sampled from the constrained prior such that the new point likelihood is greater than
the removed live point’s. Sampling concludes once a user pre-defined stopping criterion is met.

set Generate Nlive points θ j, ...,θNlive from the prior;
for i = 1 to M do;

set pi(ddd|θθθ , I) = min ( likelihood values of active live points ),
set Xi ≈− 1

Nlive
Xi−1,

set ωi =
1
2(Xi−1−Xi+1),

set p(ddd|I) = p(ddd|I)+ pi(ddd|θθθ , I)ωi,
save live point θθθ i along with weight ωi,
remove θθθ i,
replace θθθ i with new live point sampled from constrained prior,
ensure new live point likelihood ≥ old θi min likelihood,

end for
return p(ddd|I).

mass shrinks approximately by a factor of ≈ −1/Nlive for each step, thus giving us an accurate

method for approximating Xi.

Unfortunately, there is no exact figure merit which guarantees that the nested sampler has

converged. This is because there is always the marginal possibility that there will unexplored

regions of the parameter space which may contain high likelihood in a small contour [157]. A

rough approximate which most practitioners use to determine convergence is through a quantity

known as the log evidence ratio. The log evidence ratio is defined as the estimated total evidence

and the current accumulated evidence pi(ddd|I) [158]. The estimated total evidence is a summa-

tion of the current accumulated evidence and the estimated remaining evidence. The estimated

remaining evidence is approximated by identifying the current maximum likelihood value out of

all current active live points pmax(ddd|θθθ , I) multiplied by the current enclosed prior mass Xi given

by

pest(ddd|I) = pmax(ddd|θθθ , I)Xi. (1.60)

A stopping criterion for the algorithm, dlogZ, is then defined as the ratio of the estimated total
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evidence and the current accumulated evidence expressed as

dlogZ = log
(

pest(ddd|I)+ pi(ddd|I)
pi(ddd|I)

)
< ζ , (1.61)

where ζ is a user pre-defined stopping threshold, most nominally chosen to be ∼ 0.1 [158]. The

reasoning behind this definition of algorithm stopping criterion is that small changes in p(ddd|I)

indicate that the accumulation of the evidence is tailing off, so thus the evidence is nearly fully

integrated and sampling may thus be terminated.

Now that we have described how one may use nested sampling to accurately and efficiently

approximate the evidence, it turns out that the posterior may also easily be sampled from as a

byproduct of the nested sampling algorithm. Given that the posterior is simply the prior weighted

by the likelihood and since we have already accumulated likelihood samples through Eq. 1.58 in

the form of the minimum live point likelihood value over M steps, pi(ddd|θθθ , I) and samples from

the prior through the saved parameter values of each that same minimum live point it is shown

in [20, 159] that the posterior may thus be approximated as

p(θθθ |ddd, I)≈ ∑
M
i p(Xi)ωiδ (θi)

p(ddd|I)
, (1.62)

where δ (θi) is the Dirac delta function centered on the ith posterior sample θi.

The two nested sampling software packages used in this thesis (Dynesty [160], CPNest [161])

apply their own tweaks to the original nested sampling algorithm proposed in [157]. The pri-

mary difference between approaches lies in how each method decides to replace the discarded

lowest likelihood live point at each step/contour i, given the constrained prior distribution at

that step. In CPNest, this is accomplished by first randomly selecting one of the current active

live points. An MCMC chain is then run from the starting point value equivalent to the ran-

domly selected live point. The maximum length of the chain may be pre-defined by the user and

varies from step to step in the CPnest algorithm according to the autocorrelation time scale

(see Eq. 23 of [20] for the definition). Additional features are also included in CPNest which

reduce the amount of manual tuning required for convergence and are explained in more detail

here [20].
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Dynesty by default uses a combination of MCMC chains and ellipsoids to produce inde-

pendently and identically distributed posterior samples. Specifically, new live points are drawn

to replace the lowest likelihood point at each step by approximating the bounds of the current

prior mass Xi using ellipsoids (by default, the algorithm uses multiple ellipsoids). Ellipsoids are

constructed and optimised using k-means clustering. Once a proper bound has been constructed,

samples may be generated conditioned on those bounds using a multitude of methods outlined

in Sec. 4.2 of [160]. By default, Dynesty draws a new sample from the constrained prior such

that it is within the bounds defined by the ellipsoids and then evolves that sample through to

an MCMC chain whose proposal distribution by default is dependent on one of the ellipsoids

(selected randomly). Further details and additional tuning options available in Dynesty are

outlined in [160]. We also briefly mention that many of the sampling methods included here

are packaged into user-friendly analysis tools such as bilby [19] and lalinference [20]

which are used extensively by the LVK.

1.8 Summary

The chapter opens by discussing the detections made by the LVC in the past 3 observation runs

and how those detections have been used to further our understanding of cosmology, astro-

physics and GW astronomy. A brief introduction to Einstein’s Field Equations and how those

field equations lead to the prediction that GWs exist was provided. It was shown that various

sources are able to produce GWs and it was described how the LVC detectors physically op-

erate to detect such signals. The search techniques for all source signals was described, along

with a description on how predictions are generated on the underlying source parameters of

GW signals. From the descriptions of the search and parameter estimation techniques given

in Sec. 1.6.2 and Sec. 1.7 it was shown that while optimal under Gaussian-noise conditions,

standard approaches used by the LVC are computationally expensive to run. This is especially

problematic given the large number of expected signals the LVC will see in the coming years,

with the additional need of alerting EM partners in low-latency due to short-lived GW EM

counterparts. Given the urgent need for low-latency tools to perform both GW detection and
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GW parameter estimation, we will show in the subsequent chapters (Ch. 4, Ch. 5) how recent

advances in the field of ML may be applied in order to solve these problems. In the next chapter

(Ch. 2), we will describe the basics of ML, as well as provide detailed descriptions of the ML

algorithms used in this thesis.



Chapter 2

An Introduction to Machine Learning

In this chapter we will explain in detail the machine learning techniques used in this thesis in-

cluding: fully-connected neural networks [162], CNNs [163] and CVAEs [164]. We will also

describe some of the basic principals of how neural networks learn (i.e., backpropagation [165]),

how they are initialized, best training practices, methods for evaluating performance, and meth-

ods for data augmentation/pre-processing. In order to dispel the notion of machine learning be-

ing uninterpretable, it should be stated that machine learning is perhaps most simply described

as just function approximation. The overarching goal being to approximate a function which

is obtained by finding a global minimum according to a cost function. How one defines this

minimised function is the key and there are many methods for doing so.

A machine learning algorithm can perform a variety of objectives including: classifica-

tion [166], regression [167], anomaly detection [168], denoising [169] and density estima-

tion [170]. There are many other tasks a machine learning algorithm can tackle, but the two

which are primarily used in this thesis are classification and density estimation. In classifica-

tion, a machine learning algorithm attempts to learn the optimal function to classify a given set

of inputs (e.g. a timeseries, image or any other data input) and returns as output the likelihood

that the given input came from a particular class or set of classes (e.g. animal type, number).

A machine learning algorithm can also alternatively perform non-linear regression by switching

from outputting numeric values describing class probability to predicting a continuous variable

(i.e. a changing temperature). Finally, we can even have a machine learning algorithm produce

51
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probability distributions (e.g. GW source parameter posteriors) for a given input by enforc-

ing that the algorithm predict parameters which fully describe a distribution (i.e. the mean and

variance of a Gaussian).

2.1 Fully-Connected Deep Neural Networks

So, how do we build a machine learning algorithm? Let us first define a simple neural

network architecture, the perceptron [171]. A perceptron is made up of a neuron which is

composed of several tunable variables called weights and biases. Given an input sample (e.g.

an image of a cat/dog), the neuron produces a prediction on a corresponding characteristic of

that sample (i.e. likelihood of being an image of a cat or a dog). An illustrated diagram of a

perceptron network is given in Fig. 2.1. Predictions from a perceptron could be in the form of

a class or a parameter value which describes that given input sample. Multiple perceptrons can

then be grouped into a layer of perceptrons (henceforth referred to as neurons) to form a network

of neurons [162]. Multiple layers of neurons can then also be stacked together to form what is

known as a fully-connected deep neural network (illustrated in Fig. 2.2). “Fully-connected” in

this case meaning that the output from every neuron in the previous layer is given as input to

every neuron in the next layer. This neural network, made up of many neurons, may then be

trained to give better predictions by showing it multiple input samples (training samples). Better

predictions are achieved by adjusting the tunable parameters of each neuron according to a term

known as a cost function. The cost function describes how well the network is performing with

respect to the true value of each input training sample [172].

For the sake of simplicity lets presume that we want to perform what is known as a binary

classification task, defined as having the network predict a value which assigns the likelihood

that a given input belongs to one of two classes. Lets presume that the true value for each class

is in the form of a number from 0 to 1 where 0 represents one class and 1 represents the other.

In order to get the neural network to make the correct predictions, weights and biases of each

neuron are updated according to the performance of the output of the network with respect to the
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cost function. The cost function of a neural network can take many forms, but the mean squared

error is one of many well established choices for a binary classification problem and may be

defined as

H =
1
n

n

∑
i

∑
j

(
yM

j (x
(i))− yt

j(x
(i))
)2

, (2.1)

where yM
j is the neural network prediction from the final layer M, superscript i indicates the

sum over elements in a group (batch) of n training samples (x(i)), subscript j indicates the sum

over the output of neurons in the layer, and yt
j is the true class label or parameter value for each

training sample. When the predicted labels over all training samples in the final layer yM
j are

similar to the training sample true labels yt
i over all training samples, the cost term approaches

zero and is near a minimum (the absolute minimum, which for mean squared error is actually

zero, is when all predictions are exactly correct).

The output of each neuron in every layer may then be defined recursively as a learned func-

tion expressed as

ym
k = σ

(
∑

j
wm

jkym−1
j +bm

k

)
, (2.2)

where ym−1
j is our given input from neuron j in previous layer m− 1, wm

jk is our tunable scalar

weight parameter, bm
k is our tunable scalar bias term, and σ is a non-linear function which

rescales the output. Since we usually frame the binary classification problem such that a predic-

tion of 0 represents the first class and a prediction of 1 represents the second class, we typically

apply a sigmoid activation function (Fig. 2.3) since it limits the output to be between 0 and 1.

Nonlinear activation functions are also applied throughout all layers of the network in order to

allow our network to learn non-linear functions/features [173]. From Eq. 2.2 it can be clearly

seen that each layer is dependent on the previous layer. For example, Eq. 2.2 can be used to

explicitly write out a network which has 3 layers defined as

y3
u = σ

(
∑
v

w3
vuσ

(
∑
k

w2
kvσ

(
∑

j
w1

jkx j +b1
k

)
+b2

v

)
+b3

u

)
, (2.3)

where we see that our neural network is composed of many nested functions. It is clear that

the more layers we use, the more complex our neural network approximated function (Eq. 2.3)
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Figure 2.1: A perceptron network whose inputs x1, . . . ,xN are each multiplied by a learned set
of corresponding weights w1, . . . ,wN and summed together. The summed value is then passed
through an activation function to get the final output of the network, y.

becomes.

The reader’s next question may rightly be, how does one go about choosing the right weights

and biases for each neuron in the network? In other words, how much of an effect will changing

the weights and biases have on the resulting cost function H. We can quantify the amount to

change in weights and biases such that the cost is minimised through an operation known as

gradient decent [174]. We will specifically be discussing a variant of this optimisation method

called stochastic gradient decent.

Stochastic gradient decent is an iterative algorithm used to find the global minimum of a

function. In general, the minimum of a function may be determined by computing where the

derivative (or gradient) of that function is equal to zero. Specifically, we are interested in min-

imising the cost function defined in Eq. 2.1. This cost function is itself a function of the weights

and biases of the neural network. The amount that each weight and bias term in the neural

network needs to be adjusted in order to minimise the cost function may be defined as

g1 = g0− γ∇H(g0,x), (2.4)



CHAPTER 2. AN INTRODUCTION TO MACHINE LEARNING 55

Figure 2.2: A deep fully-connected neural network. Samples x1...xN are given as input to every
neuron (blue unlabeled circles) in the first layer of the neural network. The outputs of each
neuron are then passed through an activation function (See perceptron illustration in Fig. 2.1)
on to the next set of nodes in the following layer (represented as blue lines). The outputs from
the final layer of neurons pass through a single neuron which determines the class/value of the
given input.
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Figure 2.3: A sigmoid activation function plotted over the input range -10 to 10. Given an input,
the activation function will rescale the input to be between the range of 0 to 1.

where γ is a tunable step size scale factor (learning rate), ∇H(g0,x) is the gradient of the cost

with respect to the weights and biases of the network, g0 is the current value for all weight and

bias terms, and g1 is the updated value for all weight and bias terms. In order to compute the

gradient, we must compute the partial derivative of the cost with respect to each weight and bias.

For example, one can explicitly write out the partial derivative of the cost with respect to weight

w1
11 for our simple 3 layer network defined in Eq. 2.3 using the chain rule as

∂H
∂w1

11
=

∂H
∂y3

1

∂y3
1

∂w1
11

+
∂H
∂y3

2

∂y3
2

∂w1
11

+ . . . , (2.5)

where we see that the derivative is a sum over the partial derivatives from each neuron in the

third layer y3. We now need to continue expanding backwards to the previous layers using the

chain rule

∂H
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∂y3

1

(
∂y3

1
∂y2

1
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1
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+ . . . , (2.6)
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where it can be seen that we end up with an expanding sum of partial derivative products. This

process of propagating the gradients back through the network is known as backpropagation.

This is done for every weight and bias term in the network. Ideally, we would compute the

gradient over more than just one training sample, but rather the whole training set during each

tunable parameter update. However, computing the gradient over the whole network for all

training samples is computationally expensive, thus the training set is normally split into batches

of samples in order to reduce the computational cost. If we used all training samples then

this would be called “gradient descent” but by using batches we include randomness, hence

this is called “stochastic” gradient descent. We also note that all weight and bias values are

typically initialised randomly prior to training and there are many schemes for choosing the

optimal initialisation [175].

2.2 Training Best Practices (practical advice for the reader)

We were commonly told when first wading into the pool of deep learning that the practical im-

plementation/training of deep learning models is largely a dark art. In this section, we would like

to clear up the picture by offering some best practices from personal experience when training

machine learning models in general.

2.2.1 Dataset Size, Pre-Processing and Augmentation

Training Data Size

When in doubt, the more training data you make available to yourself, the better [176, 177]1.

Time and again, during a large part of this thesis work, we would spend countless hours tuning

and tweaking the neural network architecture only to run up against some seemingly insurmount-

able wall of impeded progress. Only then to increase the number of training samples by several

factors and see a significant increase in performance. There is no hard rule for the exact number

of training samples needed, as it is dependent on many factors associated with the problem being

1We note that if the user is employing an ML model which is complex with respect to the training parameter
space that there is a risk of over-fitting when using a large training set.
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addressed, including the structure of the data, the data space itself. There is some theoretical

work using the concept of Vapnik-Chervonenkis (VC) Dimension [178] which may possibly

inform the practitioner on a lower bound for the number of training samples to use (typically

of order billions of training samples for a standard fully-connected network [178]). However,

it should be noted that this concept is only applicable to a handful of standard algorithms and

there is much disagreement in the computational science literature concerning the relevance of

VC dimension in the practical implementation of machine learning algorithms [179, 180, 181].

Specifically, it is known that simple neural network models perform well using a lower number

of training samples than the VC dimension would demand.

Data pre-processing

Commonly, input datasets may span a large dynamic range of several orders of magnitude. In

order to help the network learn more efficiently, it is beneficial to perform some pre-procesing

steps [182]. It’s important to do this because if the input data has large values over a wide range,

and our network is trying to learn a mapping from input to prediction, the learned weights may

also end up being very large. Large learned variable weights can lead to large gradients which

cause the network to update weights in large step sizes, making the whole network more unstable

in the process. Normalisation can also help ensure equal importance is assigned to all features

in the training set [183], i.e., greater numeric features do not dominate smaller numeric features.

We can partially solve this issue by normalising our input dataset to be between the range of

zero to one2. For example, one can normalise a series of given inputs by

x′ =
x− xmin

xmax− xmin
, (2.7)

where x′ is our new normalised data, x is our original un-normalised data, xmin is our un-

normalised data minimum value and xmax is our un-normalised data maximum value. It can

also be advantageous to rescale our input data to a standard normal distribution if our data has

2There are multiple options for ranges one can use (i.e. -1 to 1).
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widely varying scales by applying

x′ =
x− xmean

σx
, (2.8)

where xmean is the mean of our data and σx is the standard deviation of our data. In addition

to rescaling our input data, we occasionally need to also rescale our training labels. This is

especially relevant if the activation function in our final neural network layer is fixed to be

between some values. For example, if we were using a sigmoid activation function where the

values of the output of the sigmoid are only allowed to be between zero and one, then we would

also want our training label values to lie between zero and one since the network would not be

able to produce values outside of that range.

Data Augmentation

Neural networks can sometimes be composed of hundreds, thousands, even million of param-

eters to be tuned during training. Given the massive number of parameters, many complex

networks also require a massive number of training samples. But, what do you do if you are

only given a limited number of training samples? This is where data augmentation comes to

the rescue. In order to generate more training data, we can apply simple changes to the existing

limited dataset in order to greatly expand the number of training samples. Data augmentation

can be accomplished in various ways, including the methods briefly mentioned here:

• Translation: Shifting the input data sample across n dimensions in the input data sample

space. For example, if we had a dataset with images which were all centered in the x-y

plane, we could shift each image by a random amount on either the x or y axis in order to

translate it (the remaining space after translation could be filled with a constant value, or

random Gaussian noise).

• Rotation: Primarily useful for 2-dimensional images, one can also rotate each image in a

dataset about a fixed point in the x-y plane. All remaining space after rotation can again

be filled with a constant value or random noise.

• Cropping: One can choose a random subsection of an n-dimensional input in a dataset,
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remove all data outside of this subsection, rescale the cropped data to the original input

size.

It should be noted that the augmentation applied has to be consistent with what we wants

the network to be able to learn. For example, we wouldn’t do rotation if we were identifying

buildings in images because they are all usually upright. More directly relevant to GW data

analysis, one can also make additional fake signals using existing data (as outlined in detail in

Ch. 5, Sec. 6.4). We draw a subset of the parameters which characterise or signals and then

use them to augment the existing training sample such that it is representative of those newly

drawn parameters. If the training signals are buried in noise which is well-defined, new noise

realisations may then be drawn and added to noise-free versions of the training signal in order

generate further training signals.

2.2.2 Validation

In order to understand how well your model is performing with respect to the training data,

one may plot the resultant average output of the loss function as a function of the number of

training iterations. Ideally, we would like the loss to rapidly decrease and to then flatten out. If

the loss flattens out, it may indicate that the network has reached a minimum in the loss space,

much like one would find in the minimum of a parabola, thus it may be reasonable to terminate

training. Although this will give us an indication of how well the network is performing on the

training set, it does not inform us as to how well the model will generalise to a new testing set.

In order to quantify the generalisation ability of the network, we may set aside a small portion

of the training set prior to training as a validation set. During training, we can temporarily fix

the weights and run the validation set through the model in order to compute a validation loss.

If we plot both the validation loss and the training loss as a function of time, we would

preferably like to see both curves decrease as a function of training iteration, level out and trace

each other . However, if we see that the training curve initially decreases and then continues to

decrease while the validation curve initially decreases and then subsequently increases we may

say that the model has overfit the training data. Overfitting the training set generally indicates
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that either our model is too complicated and has essentially memorised the training set or that we

do not have enough training data to sufficiently cover the entire parameter space. What is meant

by “memorising the training set” is that the network is parameterised by so many parameters that

it is essentially able to model each data point in the training set with a weight or bias coefficient.

This is similar to if we had a polynomial composed of 3 coefficients and a data set of 3 data

points, we could in principle perfectly fit the polynomial to the dataset such that there was zero

loss, but obviously this means the model will not be able to generalise well to other data points

from that parameter space. Overfitting can be mitigated by increasing the training set size,

adding dropout connections (Sec. 2.3.1), batch normalisation (Sec. 2.3.2), early stopping of the

training run if the model loss has flattened out and before it overfits to the training data [162] or

reducing the complexity of the neural network [162].

2.3 Regularisation

Regularisation is used to help prevent a machine learning model from overfitting the training

data. In the following subsections we will discuss various regularisation techniques which are

used in this thesis.

2.3.1 Dropout

One of the easiest regularisation techniques to implement is dropout. The method is used in order

to effectively simulate training and evaluating many different network architectures relatively

cheaply. Dropout may be implemented across most types of neural network layers (i.e. fully-

connected, convolutional filters, etc.). During training, if dropout is implemented, a randomly

selected subset of the neurons in a layer will be switched off and not used when the gradient is

computed and backpropogated through the network for a given training iteration. The percentage

of neurons in a layer to switch off is a tunable parameter, though typically we have found through

our own work it is best to set a value of no more than 50%. Due to the fact that dropout

essentially forces neurons to take on more or less information from a given set of inputs variably

during training, dropout may help the network to generalise better. Since a neuron in a given
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layer is forced to not rely upon other neurons, which in a non-dropout network may specialise

in learning a particular set of feature from the inputs and not any others [184].

2.3.2 Batch normalisation

Batch normalisation aims to standardise the inputs to a neural network at each layer of the

network. As such, batch normalisation is essentially a normalisation computed on the output

of each individual neuron within a neural network to have zero mean and unit variance. This

normalisation in effect prevents weights or biases from becoming too large. This is formalised

as

ŷ =
y−µ

σ2 + ε
, (2.9)

where y is a given input to a network layer (i.e. output of a neuron), µ and σ2 are the mean and

variance of y computed over the batch and ε is a small constant. The epsilon parameter is used

to avoid instances where the variance σ is very small and thus preventing from having large

values. Rescaling of ŷ is then applied through two learned variables (α and β )

y′ = α ŷ+β , (2.10)

where α and β are learnable parameters, and y′ is the normalised input to the next layer. If it

turns out that the application of batch normalisation is not optimal, then the network may undo

the above normalization in Eq. 2.9 through the optimization of (α,β ) in each layer. We also note

that the mean and variance (µ ,σ ) are also recorded during training through a running mean and

variance updated at each training iteration . When going to test/validate the network, µ and σ in

Eq. 2.9 use these running means/variances. For more information on other batch normalisation

techniques, see [162, 185].

2.4 Hyperparameter Optimization

Given the increased complexity and time cost of training neural networks in recent years, de-

spite the significant speed increase in graphics processing units (GPUs), choosing the optimal
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hyperparameters and run settings is key to efficient resource/time management. For example,

for a practitioner trying to train a standard model such as ResNet-101 [186], training the model

to completion can take O(24) hours and further tuning of hyperparameters to find the optimal

ResNet-101 model can take several weeks [187]. Much of this work involves training the model

multiple times with different settings and architectures. Hyperparameters may govern a number

of model attributes, as well as model performance and may include: the number of neurons,

number of layers, learning rate, activation functions, etc. In this section, we will describe three

approaches that have been used during the course of this thesis work to optimise hyperparameter

choices for a given model. In practical terms, the search space for each of these optimisation

algorithms is composed of an n-dimensional hypercube, where each side of the cube is a range

of possible values, or binary choices (i.e. turning on/off batch normalisation) for each tunable

parameter.

2.4.1 The “Intuitive” Approach

The first technique which should be used to determine optimal hyperparameters is through what

one might call the “intuitive” approach. In this approach, hyperparameters are manually tuned

based on common-sense and experience. Start with a small number of network parameters and

see if the network is performing better than random chance. Following this, slowly build up

the complexity of the network by widening the layers, adding layers, iteratively increasing the

training data volume, etc. This approach is in large part how different models were tested over

the course of the work completed in this thesis.

2.4.2 Random Search

Probably the simplest of the three approaches, a random search determines model hyperparame-

ters given a predefined prior distribution for each hyperparameter. The user may define whatever

distribution they prefer whether that be a multivariate Gaussian distribution or a uniform distri-

bution and may also choose the bounds of that distribution. Optimisation is carried out in a series

of trials, whereby a random subset of hyperparameters is sampled from each hyperparameter dis-
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tribution and the model is trained for a number of training iterations determined beforehand by

the practitioner. In terms of discrete parameters, such as activation functions, one can simply

randomly select an activation function from a list of activation functions for each layer (or all

layers) during each trial. Since by definition a random search is sampling statistically indepen-

dent hyperparameter realisations from a distribution, one gains some practical benefits from this

statistical independence. One of those benefits being the fact that the optimisation process may

be stopped at any time, since hyperparameters may be drawn from anywhere within the range

defined by the distribution priors [188]. Further trials only enhance the coverage of the hyper-

parameter parameter space by the random search. Additionally, if a trial fails (i.e. say a mouse

chews through your computer power cable), the trial may either be restarted or ignored without

having any affect on the statistical significance on the trials already performed [188]. Through

a random search, we are able to discover a set of hyperparameters which provides a fast avenue

to achieve a low loss.

2.4.3 Grid Search

In a grid search approach we define both an upper and a lower limit for each hyperparameter.

Additionally, we define a step size by which we increase the the hyperparameter value after each

model evaluation (much like steps on a ladder). Each of these hyperparameter ladders are iter-

ated over in an n-dimensional grid, where n is representative of n hyperparameters describing the

model. Although a fine spacing in an n dimensional grid may make it likely that the practitioner

is sufficiently sampling the hyperparameter space, a grid search suffers from the curse of dimen-

sionality, whereby as the number of hyperparameters used (dimensions) increases, the number

of evaluations required to perform trials across the entire grid increases geometrically [188].

Additionally, we can’t necessarily stop a grid search in the middle of its process, like we can

with a random search, since we would have only searched half of the parameter space at that

point.
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2.5 Convolutional Neural Networks

CNNs were first made popular in the late 1980s to early 1990s and one of the most famous

examples is that of the LeNet architecture made by Yann LeCunn in 1998 [189]. In their paper,

LeCunn illustrated that CNNs outperformed other simpler techniques like k-Nearest Neigh-

bour [190] and fully-connected neural networks (Sec. 2.1) on a variety of tasks. In recent years

CNNs have been applied to many more domains including image object detection [191], fraud

identification [192], healthcare analysis [193], and many others. In this section we will explain

how CNNs work, mechanisms for improving CNN performance, and why they are so powerful.

2.5.1 The Convolutional Filter

The basic building block of a CNN, convolutional filters, are analogous to neurons in a standard

fully-connected neural network. A convolutional filter is typically made up of an N×M matrix,

where N and M may be different sizes (for an illustrated example, see Fig. 2.4). There is also

sometimes an additional dimension in the form of channels we’ll denote here as D. Channels

are typically other components of the input which represent different types of information. For

example, the red, blue and green components of an RBG image could be considered as 3 separate

channel dimensions, or the outputs from multiple GW detectors in a global network. The output

for a single filter ym
i jk in a given layer may be defined recursively as

ym
i jk = σ

(
N/2

∑
a=−N/2

M/2

∑
b=−M/2

∑
c

hm
abck ym−1

i+a, j+b,c +bm
ck

)
, (2.11)

where i and j index the x and y-axes of a 2-dimensional image and k indexes the output channel.

The output from a given filter then becomes a separate channel in the output. The filter is denoted

as hm
abck where k denotes the k’th filter for the m’th layer and c’th input channel. The input to

the filter is given as ym−1
i+a, j+b,c where a and b index the x,y input dimensions of the filter whose

length is N,M in those dimensions. The summation over a,b represent the convolution of the

filter sliding with respect to the indices i, j and the summation over c sums the contributions

from the input channels. For each input channel c and output channel k there is a bias term bm
ck.
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Figure 2.4: An illustration of a simple CNN filter. The filter is a 2×2 filter randomly initialised
with a set of weights for each element of the filter. Each filter weight is multiplied by the
corresponding input element over which it is currently covering. All multiplied values are then
summed together to produce the output of the filter (explicitly defined in the equation in the
bottom of the figure). The filter slides over one element (if stride is set to 1) and the computation
is done again until the whole input space has been covered.
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Values in the N×M matrix of the filter are initialised randomly with an added bias term [175].

The initialised values in the filter are the weights of the filter. During training, the filter is con-

volved with its given input where each element in the filter is multiplied by the corresponding

overlapping element in the input. All the multiplied values are then summed together to produce

the output of the filter. If there are multiple channels, the filter may also be convolved with each

input channel representation and then summed over all channels, where there is a unique filter

per input channel. A bias term, b, is also added to the output, where there is a bias for each input

and output channel. We may then slide the filter over by 1 column and repeat the convolution

process until the edge of the filter reaches the last column of the input. We then slide the filter

back to the 1st column of the input and down one row and repeat the convolution process on

all columns again. This is done until we have convolved the filter over the whole input. We

note that in the case where the data input to the filter is 1-dimensional, we need only simply

change the filter size to also be 1-dimensional (i.e. 1×M), or just omit the summation over that

particular feature axis and have all quantities described by 1 less dimension.

2.5.2 Pooling Layers

Pooling is a form of regularisation which typically takes the maximum value over a pre-defined

local pool of neural network layer outputs. One can also take the average or the weighted

average based on the distance from the central element of the local pool, which is generally

used as a data reduction step. Pooling is an operation which generally enforces that the output

from convolutional filters is invariant to small translations to the input data space. Invariance

in this case meaning that if a given input to a filter were shifted by a small amount, the output

of the filter would not change by a significant amount. This invariance property is useful if the

network is being applied towards a problem where we do not care as much about the location of

features in the input data space, but rather would like to place more importance on the features

themselves. Pooling can also be useful when dealing with large data inputs to a given layer

since a large local pool size provides a single summary statistic for a portion of the input which

is equivalent to the local pool size [162].
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2.5.3 Striding

In addition to pooling, another form of regularization is striding. Striding determines the number

of elements a convolutional filter (or other operation such as pooling) moves after each convolu-

tion is performed. Standard techniques which use striding nominally employ a stride of 2 [162].

The two main reasons why striding is applied are to reduce the spatial complexity from one

layer to the next and to reduce the overlap of the receptive field of the CNN [194]. The Re-

ceptive field is defined as a region of the input space to a given layer which affects the output

of the filter being used. With regards to spatial complexity reduction, because we are skipping

over some parts of the input when sequentially sliding the filter over each element of the input to

the filter, we reduce the amount of computations required and thus the total memory usage of a

CNN during training. In terms of reducing overlap of the receptive field, if we reference Fig. 2.5

we see that the input grid is now a 4×4 grid. We can see that with a stride of unity (one) from

left to right, the elements in the corners of the of the input will only be convolved with the filter

once, whereas the two elements in the middle will each be included in the convolution twice.

With a stride of two both the middle two and outer two elements will only be convolved once,

thus reducing the amount of repeated convolutions of a filter over some of the receptive field and

giving more uniform importance to all areas of the input space.

2.5.4 The Fully-Connected Layers

Following the convolutional filter layers, we now have to convert the output of the CNN to

predict a discrete set of classes or regress on some set of parameters. Typically, a flattening

operation is applied to the output of the last convolutional layer where the concatenated output

from the previous layer’s filters are flattened into a 1-dimensional string of elements. This 1-

dimensional string of elements are then given as input to a fully-connected layer of neurons.

One can then add additional fully-connected layers and a final layer equivalent to either the

number of classes to predict, or the number of parameters to regress on. A logical question may

be why add this extra fully-connected complication? The primary reason for the addition of

fully-connected layers is that we want to unify the learned features across all CNN filters and
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Figure 2.5: An illustration of striding a 2×2 CNN filter (green) with a given data input (blue).
The top row is an example of striding the filter across all columns of the input from left to right
with a stride of 1. The bottom is an example of striding the filter across all columns with a stride
of 2.
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use those features as a combined whole to learn how to either classify or regress.

2.6 Conditional Variational Autoencoders

In this section we will describe the network architecture of a CVAE. This will be done by first

describing an AE network, then a VAE network and finally a CVAE network.

2.6.1 Autoencoders

An AE is comprised of two neural networks called an encoder and decoder. The encoder is

given a data input from a pre-generated training set. The predicted numbers from the encoder

representing the latent space are then given as input to the decoder network. The decoder then

tries to reconstruct the given input to the encoder network (Fig. 2.6). We also note that the output

of the encoder network is typically smaller than the dimension of the input, essentially forming

a bottleneck of the data flowing from the encoder to the decoder network. We call the output of

the encoder the latent space representation. We can measure how well the network is performing

through the same mean squared error function given in Eq. 2.1 but now expressed as

HAE-MSE =
1
n

n

∑
i
(ym(x(i))− x(i))2, (2.12)

where y is now the output from the decoder network on a given training/validation/testing sample

of the AE and x(i) is the input training/testing sample. During training, y(x(i)) is trained to be

as similar to x(i) as possible in order to minimise HAE-MSE. The lower the value HAE-MSE is, the

better the network is performing. The loss HAE-MSE is then backpropagated (Sec. 2.1) through

the network adjusting the weights and biases in order to further minimise the loss. Through

training, the AE learns a latent space representation which is essentially the compressed form of

the data.

AEs can be used across a variety of applications including: dimensionality reduction (also

known as compression) [195], image denoising [196] and feature extraction [197]. Although

powerful, one of the limitations of an AE is the way it represents the latent space, which has
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Figure 2.6: An autoencoder network composed of two neural networks defined as the encoder
and the decoder networks. Here, both networks are represented as fully-connected networks, but
could also be any number of other network architectures such CNNs and LSTM networks. Both
networks can also be of any depth or shape. The encoder network takes as input a set of data and
compresses the data through a bottleneck called the latent space. The latent space representation
is then given as input to the decoder network which tries to reconstruct the given input x1...xN .
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implications for their usefulness as generative models. A generative model is one which can

produce predictions from the training set parameter space. Within the context of AEs as gener-

ative models, the reader would be forgiven for thinking that, if properly trained, one could just

simply sample from the latent space uniformly in order to generate unique predictions from the

training set parameter space. However, due to the fact that the network is not required to dis-

tribute learned latent space representations during training (features are allowed to be encoded

anywhere in the latent space), it is not guaranteed that randomly drawn latent space samples will

be from a learned part of the latent space.

2.6.2 Variational Autoencoders

A VAE (see illustration in Fig.2.7) is nearly identical to an AE, except for how the latent space

is represented and how the loss function is constructed. Considering that the encoder is given an

input sample; instead of having the encoder network output a single predicted value for each di-

mension in the latent space, we now have it output both a predicted mean and standard deviation

value describing a Gaussian for each dimension3. Samples are then drawn from the predicted

distributions and given as input the decoder network. The decoder network produces estimates

trying to reconstruct the given input to the encoder network. Through making our encoder net-

work generate latent space samples drawn from a probability distribution, we are essentially

forcing the encoder network to make a continuous and smooth latent space representation. If the

latent space is smooth and continuous (i.e. two similar classes being “close” in their latent space

representation) then the decoder may be able to more easily reconstruct a given input. The loss

for a VAE is also slightly different and is represented as

HVAE-MSE =
1
n

n

∑
i
(y(x(i))− x(i))2 +DKL[N (µi,σi),N (0,1)], (2.13)

where y is the predicted output from the decoder, x(i) is the given input to the encoder, µi and σi

are predicted means and standard deviations describing Gaussians for each latent space dimen-

3In principle they don’t have to be Gaussians nor do they have to be separate distributions for each latent space
dimension.
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Figure 2.7: A simplified diagram of a VAE network. The input data x is passed to the en-
coder neural network which produces predictions on the means µ and standard deviations σ of
multivariate Gaussian distributions describing the latent space. Samples, z, are drawn from the
predicted distributions described by µ and σ in order to get samples from the latent space. These
latent space samples are then passed to the decoder network which attempts to reconstruct the
given input x.
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sion, DKL is the Kullback–Leibler (KL)-divergence between latent space samples from predicted

Gaussians N (µi,σi) produced by the encoder network and samples from a mean zero unit vari-

ant Gaussian distribution N (0,1).

We can derive this loss function by first assuming that we want to approximate the true poste-

rior in the latent space. We are assuming here that there is a true posterior in the latent space that

is a faithful representation of the input data given a limited latent space dimensionality. We are

also limited by the capacity of the encoder/decoder in conjunction with finite training time/data

representation using a neural network. We will be directly following a similar derivation done

in [198]. We can define the difference between the approximated distribution of the latent space

and the true distribution of the latent space as the KL-divergence defined in Eq. 2.13 as

DKL(qθ (z|x)||p(z|x)) =−
∫

qθ (z|x) log
(

p(z|x)
qθ (z|x)

)
dz, (2.14)

where qθ (z|x) is the approximate distribution of the latent space given data x and p(z|x) is the

true representation given data x. The approximate , qθ (z|x), is parameterised by an encoder

neural network whose tunable parameters θ are learned during training. We can then substitute

Bayes theorem (Eq. 5.1) in for p(z|x) as

DKL(qθ (z|x)||p(z|x)) =−
∫

qθ (z|x) log
(

pθ2(x|z)p(z)
qθ (z|x)p(x)

)
dz (2.15)

where pθ2(x|z) is in practice modelled by the decoder network whose tunable parameters we

denote here as θ2. We now separate out the division using the rules of logarithms and distribute

the integral

DKL(qθ (z|x)||p(z|x)) =−
∫

qθ (z|x) log
(

pθ2(x|z)p(z)
qθ (z|x)

)
dz+

∫
qθ (z|x) log(p(x))dz. (2.16)

We also know that by definition the KL-divergence must be greater than zero, so we can can

therefore define the inequality

−
∫

qθ (z|x) log
(

pθ2(x|z)p(z)
qθ (z|x)

)
dz+

∫
qθ (z|x) log(p(x))dz≥ 0. (2.17)
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Since log(p(x)) is not a function of z, we can move it outside the integral on the right-hand side.

We also know that because qθ (z|x) is a probability distribution, we can state that the integral of

qθ (z|x) with respect to z is equal to 1. Moving the integral over to the right-hand side to isolate

log(p(x)) we get

log(p(x))≥
∫

qθ (z|x) log
(

pθ2(x|z)p(z)
qθ (z|x)

)
dz. (2.18)

Using the rules of logarithms we can write

log(p(x))≥
∫

qθ (z|x)
[

log
(

p(z)
qθ (z|x)

)
+ log(pθ2(x|z))

]
dz. (2.19)

Distributing the qθ (z|x) term and the integral we get

log(p(x))≥
∫

qθ (z|x) log
(

p(z)
qθ (z|x)

)
dz+

∫
qθ (z|x) log(pθ2(x|z))dz. (2.20)

We can now see clearly that the first expression on the right-hand side of the above inequality is

equivalent to the negative KL divergence between our approximate latent space representation

qθ (z|x) and our prior on the latent space p(z) such that

log(p(x))≥−DKL(qθ (z|x)||p(z))+
∫

qθ (z|x) log(pθ2(x|z))dz. (2.21)

Conveniently, we also see that the right most term on the right-hand side of the inequality can

be approximated as the expectation value of the log probability of the data x given z assuming z

is drawn from q(z|x). Hence

log(p(x))≥−DKL(qθ (z|x)||p(z))+E∼qθ (z|x)[log(pθ2(x|z))], (2.22)

where z ∼ q(z|x). This term now gives us an evidence lower bound (ELBO), which places a

lower bound on the log-evidence of the data log(p(x)). If we assume that the output of the

VAE decoder, pθ2(x|z) has a Gaussian distribution, then the log-probability of the output x will

be equivalent to the log of a Gaussian. Thus the expectation value on the right reduces to the

mean squared error between predictions on x by a neural network called the decoder which is
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given latent space samples from a multivariate Gaussian distribution whose mean and variance

are predicted by the encoder network qθ (z|x). Assuming a Gaussian prior on our latent space,

we can also write the KL-divergence term as the KL-divergence between samples drawn from a

mean zero unit variate Gaussian distribution and those from a multivariate Gaussian distribution

whose mean and standard deviation is predicted by the encoder network q. The KL term essen-

tially acts to constrain the form of the approximate posterior log(p(x)) according to the chosen

prior on the latent space representation p(z) across the whole input parameter space. Further-

more, the KL term helps the model to learn a well-formed latent space and reduce the likelihood

of the posterior being too different from the prior [199]. Thus Eq. 2.22 can be rewritten in the

form of a cost function to be minimised given earlier by Eq. 2.13.

2.6.3 Conditional Variational Autoencoders

Through our derivations in the previous sections we have now formulated a loss function which

can be trained to maximize the expected log-probability of our decoder’s prediction, while also

regularising its model within the latent space to a smooth representation that matches a pre-

defined Gaussian prior. However, there are some minor drawbacks to the VAE which make

it unsuitable for some generative tasks. Generative in this case means to draw samples from

the latent space on a pre-trained encoder network and then feed those samples to a pre-trained

decoder network in order to generate new data samples from the prior distribution defined by

the training set.

For example, if we wanted to train our VAE on the fashion Modified National Institute of

Standards and Technology dataset (MNIST) dataset [200]4 , a database of digital images repre-

sentative of various classes of fashion items (shoes, shirts, trousers), in order to generate new

images of fashion items we would run into a problem. This problem is most clearly illustrated

when taking a closer look at the VAE cost function in Eq. 2.13. In the VAE cost function, it

can seen that the encoder is solely conditioned on inputs from the training space x, but not on

what class/type of image x is. Similarly, the decoder is solely conditioned on the latent space

4Each image in the sets are normalised to be 28× 28 pixels in size and are grayscale, such that each pixel is
represented by a single scalar.
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z. In order to produce a particular class of input from the decoder, we would have to know in

which part of the latent space each class lives and to then draw from the region of the latent

space that our class of interest resides. Knowledge of class location is infeasible to obtain after

training because the KL-divergence term in Eq. 2.13 enforces that on average across the whole

training set that the predicted latent space locations are representative of a mean zero Gaussian

distribution, but does not constrain where individual classes of input may reside.

The natural question then arises, is it possible to condition the network on classes of interest?

It turns out that this is possible to do by starting from first principles (as was the done for the

VAE in Eq. 2.13) and then deriving an expression through modeling the joint distribution on x

and c such that

log(p(x,c))≥−DKL(qθ (z|x,c)||p(z,c))+E∼qθ (z|x,c)[log(pθ2(x|z,c))]. (2.23)

Here, we now condition the encoder qθ (z|x,c) on both the training data x and the class of said

images c (see Fig.2.8). In the decoder pθ2(x|z,c) we condition on samples from the latent space

z and the class c. For classification purposes, the class may be parameterised as a single scalar

number which is appended to the input to the encoder and decoder networks. Now, if we wanted

to use the decoder as a fashion image generator, we would only simply need to draw a random

sample from the latent space from the prior on z, choose a class label, and then feed both as

inputs to the decoder network. In Ch. 5 we will show how we use a form of CVAE in order to

perform low-latency GW Bayesian parameter estimation.

2.7 Summary

In this chapter we introduced the concept of machine learning starting from one of the simplest

neural networks, a perceptron. We showed how perceptrons may be used to provide predictions

on a given input in the form of classification or regression tasks. We then built on the concept of

perceptrons discussing how perceptrons can be strung together to form a layer, and from there

layers can be stacked to form a deep fully-connected neural network. The cost function for a
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Figure 2.8: A simple CVAE diagram consisting of an encoder and decoder network. x data is
given as input to the encoder and latent space samples are given as input to the decoder as was
the case with the VAE diagram in Fig.2.7. However, now we additionally condition the encoder
on the class of x by appending the class label in numerical form to x. We also condition the
decoder on class c by appending it to the latent space samples z.
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deep network was described, along with how that cost is used to update the tunable parameters

(weights and biases) of a neural network through a mechanism known as backpropagation. We

also provided some best practices on hyperparameter optimisation and training procedures such

as dropout, batch normalisation and data augmentation. We additionally introduced the concept

of CNNs, AEs, VAEs, and CVAEs. We mathematically expressed how the cost function for

each method may be described and discussed how all models are used in practice. Two of

the networks introduced in this chapter (CNNs, CVAEs) are the primary methods used in this

author’s thesis work. In the following chapter (Ch. 3), we will discuss how many of the ML

techniques discussed in this chapter (including others not mentioned) are being applied across a

variety of domains in GW astronomy to great success.



Chapter 3

Machine Learning in Gravitational Wave

Astronomy

It is expected that in the coming years the global advanced detector network will see an increase

in sensitivity. With this increase in sensitivity also comes an increase in the number of CBC sig-

nals which will be detectable by the collaboration. The number of signals per year is expected

to be anywhere on the order of 100s to 1000s (depending on the source type) [18]. We also note

that the time to compute full Bayesian posteriors on the sky location of such events can take up-

wards of weeks to months, where delays in sky location alerts to EM partners can mean missed

EM signatures [21] (with possible adverse future science discovery impacts). As such, it is im-

perative that we develop new techniques to deal with this massive influx of detectable sources.

We also note that some signals [201] and noise cannot be accurately modelled using traditional

approaches, thus there is also a need to develop flexible tools to solve this problem. ML has been

proven to be an excellent resource for tackling many problems in the GW community. Over the

past several years, there has been a boon in the use of ML methods across a variety of applica-

tions in detection, parameter estimation and detector characterization algorithms (among other

domains). This surge in applications has seen marked success not only in proof-of-principle

studies, but even in studies involving the use of actual LVK data. Going forward, it is the hope

of this author and surely other ML GW practitioners, that after rigorous testing, these meth-

ods continue to be more widely used and for some, eventually implemented in realtime during

80
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observing runs in order to further enhance the capabilities of future GW detectors.

In this chapter we will provide an overview of recent advances in ML approaches in GW

astronomy in signal detection, parameter estimation, population inference and detector charac-

terization.

3.1 Machine Learning for Gravitational Wave Detection

Algorithms which search for GWs are typically concerned with four types of sources: CBC,

Burst, CW and stochastic GWs (Sec. 1.6). CBC sources being composed of BBH, BNS and

NSBH signals (Sec. 1.6.1), CW sources composed of fast spinning NSs (Sec. 1.6.3), Burst are

unmodelled/poorly modeled signals like supernovae or even as yet unknown sources (Sec. 1.6.5),

and stochastic GWs result from left over remnants of the Big Bang along with poorly resolved

CBC signals from extreme distances (Sec. 1.6.7). In this section we will outline several recent

and interesting studies which have used ML to directly detect GWs from a variety of the afore-

mentioned sources listed above. We also note that there a number of papers which have been

applied to this area and have thus not mentioned all for the sake of brevity.

3.1.1 Compact Binary Coalescence Detection Studies

Deep learning algorithms were first applied to the task of detecting simulated GWs by George

& Huerta [202] and Gabbard et al. [1]. In our work (Ch. 4), our ML algorithm was trained on

two distinct timeseries classes, simulated BBH waveforms buried in Gaussian noise, as well as

purely Gaussian noise timeseries1 in order to perform a classification task. Gaussian noise was

used because it is known that matched filtering performs efficiently under Gaussian noise con-

ditions [67] and the analysis of signal in Gaussian noise was a simple first step towards trying

to match the efficiency of matched filtering. We note that it is known that matched filtering

is not the optimal approach when searching over discrete waveform templates [203, 204] and

ML has in fact since been shown to even exceed matched filtering sensitivity in some circum-

stances [204]. Using a CNN, we were able to show that deep learning could match the efficiency

1The noise generated was not white and was simulated from a realistic detector PSD
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of matched filtering. In [202], they also show that a similar CNN approach (“deep filtering”)

could reproduce predictions from matched filtering. In addition to signal detection, they were

able to show that a CNN, for the first time, could perform point-estimate parameter estimation on

both BBH and eccentric BBH waveforms, closely matching the best-fitting templates predicted

by matched filtering. It should be noted here that “close” is a relative and somewhat mean-

ingless term if there are no uncertainties on those estimates. They additionally compare their

ML approach to other common ML approaches including: K-nearest neighbor, support vector

machines and logistic regression (among others) showing their CNN to have superior results.2

George & Heurta use two network architectures in their study: one for parameter estimation

and one for signal detection. The parameter estimation network is composed of 4 convolutional

layers, 4 max pooling layers, 1 flattening layer, 3 fully-connected layers and rectified linear

unit activation functions on all fully-connected/convolutional layers, whereas the signal detec-

tion network is slightly smaller with 3 convolutional layers, 3 pooling layers, 1 flattening layer

and 2 fully-connected. Gabbard et al. on the other hand used a slightly deeper network with

6 convolutional layers, 3 max pooling layers, 1 flattening layer, 2 fully-connected layers and

exponential linear unit activation functions on all fully-connected/convolutional layers. In both

studies, the number of filters in each convolutional layer increases up to the flattening layer,

while conversely the kernel size decreases. The time to train both George & Huerta networks

was shown to be a few hours and evaluation of a single test sample took ∼ 6.7ms for signal

detection and ∼ 85ms using the parameter estimation network. Gabbard et al.’s network took

∼ 1 hour on a single GPU and could produce signal detection statistics for a test sample on the

order of milliseconds.

It was first shown by Krastev et al. [206] that using artificial neural network (ANN)s one

could accurately recover BNS signals in Gaussian noise. The problem was posed as a trinary

classification task whereby the ANN model was tasked with distinguishing between BBH, BNS

and Gaussian noise alone timeseries segments. Their neural network was limited to analysing

data selected from a sliding window of ∼ 10s due to computational expense associated with

2An alternative approach to CNNs that may be interesting to explore are wavelet convolutional neural networks
which have been shown in some circumstances to have similar performance with respect to CNNs with the added
advantage of significantly lower computational expense [205].
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analysing long timeseries segments. They also train their network through curriculum learning

whereby the network is initially trained on easy-to-detect high SNR signals and then gradually

given more and more low SNR signals as training progresses. Their results are quantified by

comparing the true alarm probability (TAP), the fraction of signals correctly identified and FAP

of predictions from their neural network classifier for different classes of signal (i.e. BBH,

BNS, noise-alone) (also known as a receiver operator characteristic (ROC) curve [207]). Their

results show that that their network is more sensitive to detecting BBH events than for BNS

events. The authors show that their ANN performs more poorly on BNS signals than on BBH

signals. To expand, 100% of BBH events are detected above an SNR of 10, whereas 100% of

BNS events are only detected above an SNR of 18. They additionally quantify their results by

plotting the TAP as a function of SNR at different FAP values for both BBH and BNS neural

network predictions. Their results for the BBH case reach similar levels of sensitivity as those

achieved by Gabbard et al. [1]. They state that the sensitivity difference between BNS and BBH

neural network predictions could be due to a number of reasons including: sliding window size,

network architecture choice and signal complexity. The authors do not compare their approach

to any other existing currently used signal detection method such as matched filtering.

In Marlin et al. [208], the authors perform a more in-depth study on ML for BNS detection

and use a different neural network architecture. In order to reduce the overall complexity of

the input space they deal with 32s long BNS signals and vary the sample rate as a function of

different segments in time of the signal. The authors justify this sampling approach by describing

that most of the SNR of the signal is contained in the final few seconds. Additionally, if one looks

at the frequency evolution of a BNS signal, we see that, for example, at 16 s prior to merger for a

1.35-1.35 system, the GW frequency is 48.7 Hz. Hence prior to this, a sampling frequency of at

least 100Hz would theoretically suffice. They state that using a varying sample rate also reduces

the size of input signal space by a factor of ∼ 9, thus decreasing the computational expense

needed to run their approach. Their approach was also the first to probe ML-based detection

algorithm sensitivities down to FARs of about 0.5 per month. The authors also improve on

previous architecture approaches by employing inception modules [209], temporal convolutions

for signal amplification, [210] and tailoring inception modules for each different sampled section
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of the input time series [208]. Results from their study show an overall improvement in BNS

detection sensitivity with respect to results from Krastev et al. [206]. They quantify this by

comparing results from their study with Krastev’s study by plotting the TAP as a function of

SNR for both studies. Marlin et al. are able to produce predictions with their neural network on a

given input with a latency of∼ 10.2s. The authors compare their results to traditional techniques

like matched filtering (i.e. the PyCBC live event trigger generator [6]) using a quantity known

as the sensitivity distance [208] at fixed FARs. The authors find that their ML approach has a

sensitivity distance which is∼ 6 times lower (less sensitive) than that of results from PyCBC [6]

at a FAR of 0.6 per month. The authors also compare their results to Krastev et al. [206] and see

that for a given fixed FAR, Marlin et al.’s network does not generalise well to high SNR signals

to the same sensitivity as Krastev et al. [206] in terms of TAP values. On the other hand, the

results of Marlin et al. show a ∼ 4 times increase in TAP sensitivity over Krastev et al. [206] in

the lower SNR regime (8 ≤ SNR ≤ 15). The authors mention that some general improvements

could be made including: lowering the latency of their ML approach by reducing the complexity

of the network, the addition of real noise to the training/ testing sets, and using results form

their approach as input to follow-up analysis by a traditional matched filtering algorithm with a

heavily reduced template bank.

We also note here that there are many other studies that have been done within the context

of CBC detection using ML that we do not have the space to mention in this chapter. Some

other notable examples include: using scalable autoencoders for CBC GW detection [211],

fully-convolutional neural networks for GW signal detection [212, 213], genetic-algorithm-

optimized neural networks for CBC GW detection [214], using CNNs given time-frequency

input representations to detect CBC GWs [215], and detecting the early inspiral of CBC GW

signals using CNNs [216]. We will now discuss how ML is being applied towards the detection

of burst GW signals.

3.1.2 Burst Detection Studies

The first implementation of a ML algorithm for the purpose of identifying burst-like signals

was by Astone et al. in 2018 [217]. In their paper they build upon the already existing Coherent
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WaveBurst (CWB) pipeline [136] used by the LVC. Specifically, they are interested in searching

for core-collapse supernovae events [128]. Their method can be summarised in two steps. First,

they prepare time-frequency images of detector data using the CWB event trigger generator,

which searches for periods of excess power and combines these periods coherently among the

various detectors (for further details on coherent searches see either Ch. 1 or [136]). Once

periods of excess power have been identified, a time-frequency spectrogram image is constructed

for each active detector. In their approach, they use three detectors and combine them in such

a way that each detector essentially acts as a colour channel, akin to a red-green-blue (RBG)

colour scheme. The authors then use a CNN to classify the identified time-frequency image into

either noise or signal+noise classes. They test their network on a range of signals spanning SNR

values from 8 up to ∼ 40. They show that their method is overall more efficient at detecting

core-collapse supernovae signals than the standard detection pipeline CWB at a FAR of around

7×10−5Hz.

It was also shown in Chan et al. [218], that CNNs may be used to detect GWs resulting from

core collapse supernovae events. In their work they find that their approach would be able to de-

tect core collapse supernovae events out to a distance of 60kpc with a TAP of∼ 54% at a FAP of

0.1%, well within the distance to the large and small Magellanic clouds. Additionally, McGinn

et al. [201] applied a ML algorithm known as a generative adversarial network (GAN) [219]

in order to produce generalised GW burst waveforms in the time domain. Their network was

trained over 5 different classes of waveforms commonly used by burst searches and find that,

once trained, their GAN model is able to accurately produce waveforms on-command which

are similar in waveform characteristics those it was trained over, as well as generalise to other

waveforms which act as hybrids between the 5 training classes. They test the practical aspects

of their work by first training a CNN solely using the 5 well-defined classes of waveforms used

by their GAN during training and then training another identical CNN using a training set which

is generated using waveform timeseries produced by their GAN. The authors find that the CNN

trained with waveforms generated by the GAN had superior performance over the CNN trained

with the 5 classes alone and quantify this through efficiency curves which measure the TAP as a

function of SNR at fixed FAP values.
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Finally, we note the recent study by Skliris et al. [220] which showed for the first time that

a multi-component CNN architecture was able to classify unmodelled bust signals. They train

their model using white-noise burst signals [135] buried in Gaussian noise and Gaussian noise-

alone timeseries. Their network architecture is unique in that it employs two CNNs: one for

identifying signals which are coincident between detectors and the other for detecting correla-

tions between detectors. The first CNN was derived from the same architecture as Gabbard et

al. [1] and is given as input a timeseries and produces an output between 0 and 1, denoting the

probability of the timeseries containing either a signal or noise respectively. The second network

takes as input again a timeseries, but is also given the Pearson correlation [220] for each pair of

detectors and outputs values between 0 and 1, where 0 indicates low correlation and 1 indicates

high correlation between detectors. This dual CNN setup is inspired by the operation of stan-

dard burst GW detection pipelines which require that a signal is both coincident and correlated

between detectors [220]. They test their method under a variety of waveform morphologies and

illustrate their sensitivities through computing TAP values at fixed FAPs across a range of SNR

values.

3.1.3 Continuous Wave Detection Studies

In terms of CW searches, the standard coherent or semicoherent searches can be computationally

expensive, sometimes taking well over a month to complete [221]. Dreissigacker et al. [221] try

to decrease this computational time with respect to standard CW detection approaches using

ResNet neural networks [186] in the first application of deep learning for the CW search. They

frame the problem such that their training set consists of two types of input. One, being long

106s signals and shorter 105s signals. Rather than doing a search over the entire frequency range,

they limit their test cases to a discrete set of frequency bands, 50mHz in width, at (20Hz, 100Hz,

200Hz, 500Hz and 1000 Hz). They compare their ML results to a “gold standard” CW search

method pipeline WEAVE [222]. The pipeline sums coherent F-statistics [118] over semicoherent

segments on lattice-based GW template banks [223], although their study employs the fully

coherent search version of the code. The reason there is both a semicoherent and a fully coherent

version of the WEAVE code is related to the computational cost of performing a fully coherent
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search. Given that CW signals are weak in amplitude, one needs to analyse long periods of data

in order to accumulate enough SNR to make a detection. However, the computational expense of

performing the optimal fully coherent search scales as T n where n & 5 and T is the length of the

data analysed (this is especially problematic at high frequencies [224]). Semicoherent methods

for performing a CW search were thus developed with the purpose of making it possible to

analyse longer stretches of data with reduced computational cost.

For the training set, Dreissigacker et al. generate over 104 training waveforms in the fre-

quency domain with half containing Gaussian noise and the other half containing signal+noise.

They found that using a set greater than 104 training signals provided little gain in efficiency.

After training, the authors found that at a fixed FAP, their deep learning approach appears to be

competitive (88− 73% detection probability) with the matched filtering search (∼ 90% detec-

tion probability) on short time scale inputs (105s). However, when tasked with longer time scale

inputs (106s), the neural network performs at a diminished detection probability (69− 13%).

In terms of computational speed, it was also shown that their neural network outperformed the

matched template search, taking only on the order of a few milliseconds (3−10ms) as opposed

to the 106− 109s of the matched filter method. The authors do also note however that the net-

work requires ∼ 1−10 days to train depending on the length of the observed data, T , used. As

the authors state, there is much work to be done in order to improve the efficiency of deep neural

networks within the context of CW searches. There is also much promise given the quality of

results achieved thus far. In a follow-up to [221], Dreissigacker et al. show in [225] that using

an Inception-ResNet [226] architecture they were able to train a deep neural network to classify

the presence of CW signals given data from 2 detectors simultaneously. They also showed that

their network code was able to show an approximately equivalent sensitivity under both targeted

search and all-sky search CW scenarios. We also briefly note other recent ML CW studies such

as Morawski et al. who showed an application of CW signal detection using CNNs [227], as well

as Beheshtipour and Papa who used a Mask R-CNN [228] architecture for CW signal candidate

clustering [229].
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3.2 Machine Learning for Gravitational Wave Bayesian Pa-

rameter Estimation

For many, GW parameter estimation was the “holy grail” of ML in the field of GW astron-

omy. Although prior to 2019 there were some attempts to compute point estimates for GW

source parameters directly, as well as to incorporate ANNs directly into subsections of existing

Bayesian inference algorithms [159], there had up to that point been no studies done using an

ML algorithm which went from directly from strain to computing samples from the Bayesian

posterior on GW source parameters. In this subsection, we will outline some recent studies on

incorporating artificial intelligence (AI) into existing GW parameter estimation pipelines, ML

for point estimate parameter estimation, and finally ML for directly computing samples from

the Bayesian posterior.

ML was first used in the context of GW parameter estimation by Graff et al. [159] in their

modified nested sampling algorithm BAMBI. In their algorithm, the authors exploit the ten-

ants of the universal approximation theorem [230], which implies that even a properly opti-

mized ANN should be able to approximate any sufficiently complicated likelihood function.

This is done by essentially replacing the computationally expensive likelihood calculation in the

MultiNest [231] nested sampling algorithm (Sec. 1.7.2). After the nested sampling algorithm

has produced a sufficient number of samples, their ANN is trained on those samples. The inputs

to the ANN are the sample parameter values and the output is a single scalar which represents

the likelihood values for each of those samples. The ANN is then trained such that it’s pre-

dictions for the likelihood values match those computed within the nested sampling algorithm.

The advantage of having such a ANN is that once trained, the ANN can provide low-latency

likelihood evaluations. In order to quantify when the ANN has been trained sufficiently to fully

replace the standard likelihood function, a tolerance level is calculated. The tolerance is defined

as the standard deviation of the difference between the true log-likelihood values from nested

sampling and the predicted values from the ANN. The actual value of this tolerance level may

be specified by the user. Once the network has reached an acceptable tolerance level of perfor-

mance it then replaces the original likelihood function calculation. Periodic tolerance checks
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are made throughout the rest of the nested sampling iterations to ensure that the ANN is still

providing solid predictions.

The authors find that their algorithm performs well across a variety of toy model cases (Gaus-

sian shells, Rosenbrock functions [232], eggbox [231]). They also compare their approach

(BAMBI) to unmodified MultiNest on a few real physics examples including predicting the

posteriors of 8 cosmological parameters using data from cosmic microwave background (CMB)

observations and CMB observations plus Hubble Space Telescope constraints on H0, the Sloan

Digital Sky Survey and Type 1a Supernovae data (see [159] for more details on datasets used).

The gain in speed goes from taking on the order of seconds per likelihood calculation, down

to milliseconds, a three order of magnitude increase in computational performance with accu-

rate evidence predictions and posterior probability distributions [159]. It has also been shown

within the context of GW BNS signals that BAMBI can produce posteriors which are consistent

with traditional nested sampling algorithms, generating samples from the posterior ∼ 100 times

faster [233].

One of the first implementations to use a purely ML-based algorithm to produce Bayesian

posteriors was performed by Gabbard et al. in [2]. In our study (also discussed in detail in

Ch. 4), we show that using a particular type of CVAE, given a timeseries, we can produce

Bayesian posteriors over the full GW BBH parameter space. The network is trained over BBH

GW waveforms in Gaussian noise with a component mass range of 35− 80M�, as well as

the source parameters which characterise the BBH waveforms. Once trained, our network can

produce ∼ 104 posterior samples per given timeseries in ∼ 0.1ms. We compare our results

against four benchmark Bayesian samplers (Dynesty, ptemcee, emcee, CPNest) and find

that our ML model is generally consistent with other benchmark approaches. Consistency is

quantified through a combination of JS-divergence and p-p plot tests, as further outlined in

Ch. 4.

Released at the same time as Gabbard et al. [2], Chua et al. [234] also aimed to show that

ML methods could accurately approximate Bayesian GW posteriors. Their method used fully-

connected neural networks (Ch. 2). They represent their training waveforms by first training a

neural network to predict coefficients which describe a reduced order framework [235]. Once
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trained, the network is able to quickly produce training GW waveforms. Their training GW

waveforms are represented in the frequency domain, whereby there are both real and imaginary

components of the wavefrom. The authors use two networks which produce the real and imag-

inary components of the waveform separately. To produce posteriors, Chua et al. again use

a fully-connected neural network which takes as input during training the training waveforms

(in Gaussian noise), as well as the source parameter values of those training waveforms. Their

model then outputs a 1 or 2−dimensional posterior in the form of a multivariate Gaussian whose

means and covariance matrix are predicted by the neural network. When testing, the model is

constructed such that it only needs as input the test sample waveform alone. One can then pro-

duce samples from the posterior for a given input waveform by sampling from the predicted

multivariate Gaussian.

Chua et al. [234] test and train their model on BBH waveforms, expected to be seen by

space-based detectors such as LISA, in Gaussian noise with masses ranging from 1.5× 105−

10× 105 with aligned spins between −1 and 1. They then train their model to predict both

the chirp mass and the symmetric mass ratio . Their results show good agreement between

the posteriors produced by their machine learning approach and traditional Bayesian sampling

approaches [234, 235]. They more formally quantify the accuracy of their results by computing

the sample covariance matrix of the posterior predicted by their neural network, as well as the

covariance matrix of the true Bayesian posterior and then comparing both through a log ratio

expression given in Eq. 9 of [234].

Following on from Chua et al. [234] and Gabbard et al. [2], Green et al. [236] wanted to

tackle two outstanding problems which both Chua et al. and Gabbard et al. had yet to solve

at the time. With regards to Chua et al.’s approach, it was to expand upon the limited number

of source parameter dimensions that their algorithm could produce posteriors on at a time (no

more than 2). With regards to Gabbard et al., it was the initial difficulty of dealing with multi-

modal posteriors (which was later rectified in subsequent updates to our paper). In Green et al.’s

first paper [236], they implemented a new ML approach using a combination of normalising

flows [237] and CVAEs (Ch. 2).

A normalising flow is a mechanism for mapping simple distributions to more complex distri-
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butions through a series of transformations, while also retaining the property of being invertible.

Invertibility meaning that in order to sample from the complex distribution, we must also still

be able to sample from the simple distribution. As stated in [237], a normalising flow may in

fact be represented as a neural network where the parameters which characterise the series of

transformations in a flow, are learned by the neural network over the course of training [233].

In their paper, Green et al. use three distinctly different models to produce Bayesian pos-

teriors: a CVAE, a masked autoregressive flow (MAF) [238] and a combination of a CVAE

and a MAF. The combined CVAE+MAF network, is constructed by appending flows to the

end of both encoders and the decoder network of the CVAE in order to better model more

complex distributions in the latent space of the CVAE. The authors test their methods on 1 s

long BBH signals in Gaussian noise sampled at 1024Hz and try to predict a 5 parameter case

(m1,m2,φ , t0,dL) in order to directly compare with Gabbard et al. [2], and an eight dimensional

case (m1,m2,φ , t0,dL,χ1,χ2, ι) which uses an aligned spin model. Both of these cases are using

a single detector with fixed sky location. Prior to training, they perform a unique pre-processing

step whereby they transform their training samples ( GW waveforms in Gaussian noise) via

principal component analysis into 100 element long series of principal components, thereby re-

ducing the dimensionality of the input and vastly improving the overall computational cost of

training/testing their network. They find that all three methods perform reasonably well, al-

though the basic CVAE alone method is not able to resolve the multi-modal source parameters

such as phase. They validate their results quantitatively through a combination of p-p tests and

computing the KL divergence between multi- dimensional posterior distributions from their ML

approaches and those from a benchmark Bayesian sampler, emcee, with KL values of ∼ 0.3.

For context they also computed the KL divergence between samples which are drawn from

identical posteriors and found that value to be ∼ 0.1.

In a subsequent paper, Green et al. [239] used a pure MAF flow network with spline cou-

plings [240]. The authors train their model and then test on a known GW signal in Gaussian

noise (GW150914 [3]). After training, they find that their approach is able to to closely match

a standard Bayesian sampler (Dynesty [160]), according to corner plots, JS-divergence val-

ues and p-p plot tests. They find minor inaccuracies on the inclination angle, where their ML



CHAPTER 3. MACHINE LEARNING IN GRAVITATIONAL WAVE ASTRONOMY 92

approach puts more imbalance in the posterior on one of the two modes in the posterior space.

Using normalizing flows, Williams et al. [241] were able to replace the computationally

costly task of drawing samples from the prior constrained by the likelihood contour of the low-

est (worst) live point in an existing nested sampling algorithm with flows. The flow tries to

model the multi-dimensional multi-modal likelihood contour defined by the worst live point.

Classically, the nested sampling algorithm has the issue of trying to efficiently sample from

inside the final likelihood contour, where as the analysis progresses and the contour becomes

smaller, basic nested sampling algorithms become less efficient. The authors use an algorithm,

dubbed Nested Sampling with Artificial Intelligence (NESSAI), to try and solve this problem

with a specific type of flow, coupling flows, because of their computational cheapness (although

with the added disadvantage of tending to be slightly less flexible than autoregressive flows).

The flow is trained on the current set of live points through a loss function defined in Appendix

A of [241]. Once trained, the flow is then used to generate a population of new proposal points.

A point is randomly drawn from this proposal population and its likelihood is calculated. The

proposed point replaces the old worst live point if the proposed point likelihood is greater than

the worst live point likelihood. This process is repeated until one of a number of criteria are

met: the proposal population generated is depleted, acceptance rate of points drawn from pro-

posal population is too low, a pre-determined number of new live points have been accepted,

some user-defined nested sampling convergence threshold is passed. This is all further outlined

in Sec. 3B of [241]. The authors find that when compared to the Bayesian sampler Dynesty,

their approach is between ∼ 2.32 (without distance marginalisation) and ∼ 1.40 (with distance

marginalisation) times faster. The majority of the computational cost of the NESSAI algorithm

is expended through the proposal population generation stage (36% of the total cost for a given

injection), while flow training only accounts for a small percentage (9%). The proposal point

likelihood evaluation stage cost decreases as the number of CPU threads used in the analysis

increases, falling to approximately 9% of the total cost when using 16 threads. We also men-

tion that there are many other works in ML for Bayesian parameter estimation which we do not

have the space to discuss in more detail here. We highlight a few additional studies where for

example it was shown that CNNs could be used to model the likelihood-to-evidence ratio in an
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MCMC sampling algorithm [242]. It was demonstrated in [243] that a CVAE (using a similar

scheme as Gabbard et al. [2]) could be trained by also conditioning on the ASD, thus allowing

their network to generalise to a time varying ASD. Finally, it was also illustrated in [244] that a

cross-residual network [245], given spectrogram data, could produce probability distribution of

estimates on GW source parameters3. We will now discuss in the next section some new work

on using ML for GW population inference.

3.3 Machine Learning for Population Inference

Given the recent accumulation of GW detections over the past several LVC observation runs,

we are now able to perform more detailed studies across a population of GW events. It is also

expected that as detector upgrades are made and new detectors come online, that we will start

to see hundreds to thousands of GW events per year [18]. Such abundance of signals will only

enhance population studies which aid us in understanding GW source formation channels, the

general properties of GW source parameters (masses, redshifts, spins etc.), progenitor merger

rates, as well as possible modifications of GR [247]. In order to constrain certain phenomeno-

logical models, it is common to employ the use of Bayes factors (Ch. 1, Sec. 1.7)) comparing

different model assumptions. Employing such Bayes factors commonly involves the production

of computationally costly simulations of synthetic populations of GW events and then com-

paring those synthetic populations to real-world data [248]. One way of circumventing this is

through ML.

Wong et al. [249] showed for the first time that a hybrid normalizing flow—hierarchical

Bayesian model framework was able to accurately constrain GW population models [249].

Specifically, the authors try to get a normalising flow to estimate the population likelihood,

p(θθθ |λλλ ) (See Eq. 1 in [249]), where λλλ are a set of hyperparameters which describe the gen-

eral properties of a set of GW events. Parameters which characterise GW events from the GW

event set are given as θθθ . The population likelihood p(θθθ |λλλ ) is needed in order to calculate the

3We note that the probability distribution generated is not a Bayesian posterior, but rather a distribution which
models the uncertainty due to the stochastic processes of the neural network itself. This is done through a process
known as Monte Carlo Dropout [246]
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likelihood of observing a particular set of GW events given population hyperparameters p(ddd|λλλ )

(See Eq. 1 of [249]) through hierarchical Bayesian model selection. Their normalising flow is

given as input parameters θθθ and λλλ which characterise simulated GW event catalogue sets and

produces as output the population likelihood p(θθθ |λλλ ). Wong et al. show that their technique

performs well over what were once considered highly intractable models. They compare their

results to simulations using an analytic phenomenological model, which provides an exact ana-

lytic expression for p(θθθ |λλλ ) which they can directly compare their predictions of p(θθθ |λλλ ) from

the normalising flow against. Although the authors neglect to take into account event uncertain-

ties and selection bias, their ML technique is shown to scale well, with up to 3000 GW events in

a set characterised by 6 GW event parameters θθθ and 4 population hyperparameters λλλ , producing

100 samples from p(θθθ |λλλ ) in ∼ 0.1s. Given that their model performs just as efficiently as other

analytic approaches in a fraction of the time, it is likely that normalizing flows will play a crucial

role in testing different state of the art models and even families of models in future GW event

catalogue releases. As is the case with most ML approaches, more data and greater ML model

complexity may also improve results. We will now discuss in the next section how ML has been

used for the purposes of identifying and characterising non-astrophysical noise transients and

glitches.

3.4 Machine Learning for Detector Characterisation

Non-astrophysical noise sources can affect the data quality of the detectors adversely. Poor

data quality can not only be a source of confusion when doing data analysis, but can even

entirely corrupt segments of data. It is the job of detector characterisation experts to identify

and mitigate such noise disturbances. If we are able to identify and prioritize classes of glitches

(non-astrophysical transients), this is an important first step in mitigating such events. In this

subsection I will describe some recent efforts to use ML to identify and mitigate noise in the

ground based GW detectors.

In order to better classify known and unknown classes of glitches, Zevin et al. [86] use a

unique combination of human learning and ML in a pipeline called Gravity Spy [250]. In
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Figure 3.1: In this figure we see examples of two glitch types commonly identified by Gravity
Spy. The top panels show a blip glitch in the time-frequency plane at 4 different time windows
and is colorised by the normalised energy, which is essentially a measure of loudness. The
bottom panels are an example of a whistle glitch, again at 4 different time windows. This figure
was produced by the authors of [86].

Gravity Spy a set of glitch triggers (Ch. 1, Sec. 1.4.2) are chosen for training which occur

in “lock” (meaning the detector was in a proper state to search for GWs, i.e. a state when

it’s sensitive to GWs). The glitches themselves are represented through Omega scans [251],

which essentially search over sine-Gaussian waveform templates characterised by Q (quality)

factor. Each template is represented as a time-frequency tiling and the Omega Scan searches

for templates which most closely match a given piece of data where a good match is defined as

having a high SNR value of the data with the template. A time-frequency spectrogram is finally

generated for the most significant tile of the best matching template. See Fig. 3.1 for an example

of some glitches represented as Omega Scans.

Their initial training set was generated from a set of 105 Omicron [252] glitch triggers, from

which about 100 glitches per class were identified by eye from trained detector characterization

experts. Approximately 20 classes were identified, where each were characterised by their cor-

responding waveform morphology. These 100×20 “gold-standard” glitches were then used to
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train a preliminary neural network (a basic deep CNN model (Ch. 2)) to identify the remain-

ing glitches in the rest of the 105 Omicron triggers. These triggers are then uploaded to the

Zooniverse website [250] where volunteer citizen scientists are able to try classifying the trigger

spectrograms by eye. Volunteers are initially trained on “gold standard” glitch images and other

well known glitches which have a high probability of belonging to a specific class. After succes-

sive successful classifications by volunteers, the difficulty of glitches presented to the volunteers

is ramped up. If a glitch is identified enough times by both the ML algorithm and volunteers to

a high degree of confidence, it is then “retired” whereby it is taken out of the volunteer glitch

lookup pool and then added to the ML labeled training set to improve the accuracy of the ML

model.

Overall, Gravity Spy has been an incredibly successful use of ML and a unique example

of use citizen scientists for great gain. In addition, Gravity Spy is an excellent example of

outreach which energises the general public to get more interested in GW astronomy. Citizen

scientists were able to identify more than 45,000 glitches and several new glitch classes such

as “Paired Doves” and “Helix” glitches. The “Paired Doves” class was a particularly useful

identification as it closely resembled that of a company binary inspiral signals, which means that

it was a particularly problematic glitch type, since it mimics the general structure of a known

GW waveform.

One of the downsides of many ML algorithms (and a topic this author is personally very in-

terested in) is the idea of interpretability. Many ML models such as CNNs, GANs, CVAEs, etc.,

while powerful, are composed of millions of model parameters which interact in complicated

non-linear ways. Trying to interpret why a particular network configuration works over another

is an active area of ongoing research in the ML community. Genetic algorithms are unique in

that they are more easily interpretable than many other approaches.

A genetic algorithm operates by first generating an initial population of programs. Each

program may be parameterised as a mathematical function whereby operands/variables and op-

erators of the function are learned during training. Variables are representative of different types

of data input to the algorithm. The program functions themselves are commonly represented

as syntax trees, which are similar to decision trees [253], where the GP syntax tree is made up
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of three components: nodes, branches and leaves. Nodes are representative of tests on a given

input, branches are the outcomes of those tests, and leaves are the final predictions for a given

input to the tree.

Each program/function may then be used to produce a prediction on a given input. The ac-

curacy of the program’s prediction with respect to the true value associated with the given input

is quantified as the fitness score. Predictions from the program can be in the form of either a

regression or a classification. A new generation of programs is then composed based on the

fitness scores of all current programs, where the higher the fitness score, the more likely that

program will be used to produce the next generation of programs. New programs are primarily

produced through 2 avenues: reproduction and crossover mutation. Crossover mutation finds

programs above a user predefined fitness score and then pairs them off with another chosen pro-

gram above a predefined fitness to produce offspring programs to be used in the next generation

( paired off programs are known as parents). Offspring are produced by choosing a crossover

point (usually randomly) in each parent syntax tree, which essentially equates to a sub-portion of

each parent tree (could also just be one single operator/operand). The two sub-portions of each

parent tree are then swapped between the parent trees to produce 2 new offspring trees. These

offspring trees are then used as part of the next generation of programs. If the fitness score is

high enough for a program in the current generation, one can also simply copy that program to

be used in the next generation; this is known as reproduction. For further details on training and

the operation of genetic programs, see [254].

Genetic algorithms were first used in the LVC by Cavaglia et al. in [255]. This was done

by training a genetic algorithm over many auxiliary channels in the detector, where an auxil-

iary channel is defined as a monitor or data channel which measures the internal state of the

instrument, or the physical environment surrounding the detectors. Once trained, their genetic

algorithm produces a final set of functions where each variable in the function is representative

of different auxiliary data channels. They train their algorithm using periods of observing data

where there were known glitch classes (for comparison, a random forest algorithm was also run

over the same dataset). They tested their algorithm on two glitch classes from both the first ob-

serving run and the second LVC observing run [7]. The first set are magnetometer glitches from
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O2 and the second set or those from an air compressor seen in O1. Their training set consists

of 2000 Omicron triggers (greater than SNR 5.5) and 749 auxiliary channels for the magne-

tometer glitches and 16 triggers and 429 auxiliary channels for the compressor glitches. When

testing, the authors find that the genetic algorithm determines that 7/10 (9/10 for the random

forest algorithm) of the most likely auxiliary channels for the magnetometer glitches result from

the correct magnetometer LIGO detector subsystem (as identified by detector characterisation

experts). The most likely auxiliary channel for a given glitch type was determined by counting

the number of times a variable associated with a particular auxiliary channel was seen across the

final multivariate expressions produced by the genetic algorithm. Both the genetic programming

and the random forest algorithms were shown to generally be able to identify the source of the

most likely auxiliary channels for both the air compressor glitches and magnetometer glitches.

What the work of Cavaglia et al. [255] shows is that both random forest (RF) and genetic

programming (GP) have the ability to work well with complex GW channel data to identify

complicated relationships between GW subsystems in a human readable fashion. The clear

advantage of using such algorithms is in their interpretability, where in genetic algorithms one

can look at the multivariate expressions chosen at each generation to see how the population

was evolved exactly. The difficult to interpret internal nature of many deep ML algorithms is an

interesting area of research not only in ML, but also in ML for GW astronomy. Going forward,

this author believes that more work will need to be done in order to understand what features

ML algorithms determine to be most important and in what instances an ML algorithm may be

fooled into returning false positives, which this author believes algorithms like GP may have an

important role to play.

We also note that ML has been used in a wide variety of other detector characterisation tasks

including: transient classification using difference boosting networks [256], noise subtraction

and denoising [257, 258], glitch classification using random forests, ANNs and support vector

machines [259], and many other studies not listed here. In the next section we will summarise the

topics covered and provide some final concluding thoughts on the state of ML in GW astronomy.
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3.5 Summary

In this chapter we have provided an overview of recent advances in ML applications for GW

astronomy. In the first section, we discussed how ML is being used for the detection of GWs

from several sources including: BBH, NSBH, BNS, burst and CW searches. Algorithms used

in these studies range from simple algorithms such as ANNs and CNNs, to more complex al-

gorithms such as normalising flows and CVAEs. It was found in most of these studies that ML

approaches are able to match the sensitivity of existing detection techniques. We also discussed

recent work in ML for population inference, as well as ML for Bayesian parameter estimation.

It was shown that algorithms developed by Gabbard et al., Chua et al. and Green et al. were

able to reproduce Bayesian posteriors for CBC signals detected by both ground-based detectors

(Gabbard et al.,Green et al.) and space-based detectors (Chua et al.). In all approaches, it was

found that ML methods were faster when compared to existing inference techniques.

We additionally showed how ML is being used for detector characterisation to both classify

non-astrophysical noise transients and mitigate such sources. We discussed the classification

algorithm (Gravity Spy) and how it has been used in the LVK for several years and has been

widely successful in classifying both known glitches (e.g. “Scattering”, “whistle”, etc.), as well

as identified new glitch types (e.g. “Helix”, “Paired Doves”, etc.). We also described work by

Cavaglia et al. which showed how interpretable algorithms, such as genetic algorithms, may be

used for noise source hunting.

Given all of the many advances using ML mentioned in this chapter across a wide variety

of domains in GW astronomy, it is clear to this author that ML will have a key role to play

going forward. One of the primary benefits discussed many times throughout this chapter is

that of speed. In the subsequent chapters we will show how we have used two ML methods,

CNNs and CVAEs in order to tackle two outstanding problems in GW data analysis, low-latency

signal detection and low-latency Bayesian parameter estimation. In our work we will show how

these methods can not only be used in low-latency, but can also match the efficiency of existing

techniques.



Chapter 4

Matching matched filtering using deep

networks for gravitational wave astronomy

We note to the reader that this text is a modified version of the published paper here [1]. Mod-

ifications include: the addition of several diagnostic plots and some textual expansion on the

background of techniques used.

In brief: we report in this chapter on the construction of a deep convolutional neural net-

work that can reproduce the sensitivity of a matched-filtering search for binary black hole

gravitational-wave signals. The standard method for the detection of well-modeled transient

gravitational-wave signals is matched filtering. We use only whitened time series of measured

gravitational-wave strain as an input, and we train and test on simulated binary black hole sig-

nals in synthetic Gaussian noise representative of Advanced LIGO sensitivity. We show that our

network can classify signal from noise with a performance that emulates that of match filter-

ing applied to the same datasets when considering the sensitivity defined by receiver-operator

characteristics.

4.1 Introduction

The field of GW astronomy has seen an explosion of CBC detections over the past several years.

The first of these were BBH detections [3, 4, 5, 7, 260], then the first detection of a binary

100
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neutron star system [9], as well as the first NSBH detections [15]. This BNS event was seen in

conjunction with a gamma-ray burst [10, 261, 262] and multiple post-merger electromagnetic

signatures [21]. These detections were made possible by the detectors of the LVK. Over the

coming years many more such observations, including BBHs, BNSs, NSBHs, as well as other

more exotic sources are likely to be observed on a more frequent basis. As such, the need for

more efficient search methods will be more pertinent as the detectors increase in sensitivity.

The algorithms used by the search pipelines to make detections of CBC signals [6, 263,

264] are, in general, computationally expensive. The methods used are complex, sophisticated

processes computed over a large parameter space using advanced signal processing techniques.

The computational cost to run the search analysis is due to the large parameter space, as well as

analysis of the high frequency components of the waveform where high data sample rates are

required. Distinguishing noise from signal in these search pipelines is achieved, in part, using a

technique known as template based matched-filtering (Sec. 1.6.2).

Matched-filtering uses a bank [103, 104, 105, 264, 265] of template waveforms [71, 94, 106,

266] each with different component mass and/or spin values. A template bank will span a large

astrophysical parameter space since we do not know a priori the true GWs parameter values.

Waveform models that cover the inspiral, merger, and ringdown phases of a compact binary

coalescence are based on combining post-Newtonian theory [69, 70, 71, 72], the effective-one-

body formalism [73], and numerical relativity simulations [76].

Deep learning is a subset of machine learning which has gained in popularity in recent

years [163, 209, 219, 267, 268, 269] with the rapid development of GPU technology. Some suc-

cessful implementations of deep learning include image processing [163, 270, 271], medical di-

agnosis [272], and microarray gene expression classification [273]. There has also been success

in the field of gravitational-wave astronomy in the form of glitch classification [86, 256, 274]

and notably for signal identification [212, 275] where it was first shown that deep learning could

be a detection tool [275]. See Ch. 3 for an overview of other studies where ML is being used

for GW astronomy. Deep learning is able to perform analyses rapidly since the method’s com-

putationally intensive stage is pre-computed during the training prior to the analysis of actual

data [162]. This could result in low-latency searches that have the potential to be orders of
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magnitude faster than other comparable classification methods.

A deep learning algorithm is composed of stacked arrays of processing units, called neurons,

which can be from one to several layers deep. A neuron acts as a filter, whereby it performs a

transformation on an array of inputs. This transformation is a linear operation between the input

array and the weight and bias parameters associated to the neuron. The resulting array is then

typically passed to a non-linear activation function to constrain the neuron output to be within a

set range. Deep learning algorithms typically consist of an input layer, followed by one to several

hidden layers and then one to multiple output neurons. The scalars produced from the output

neurons can be used to solve classification problems, where each output neuron corresponds to

the probability that an input sample is of a certain class. We refer the reader back to Ch. 2 for a

more in-depth description of machine learning principals/concepts.

In this chapter we investigate the simplest case of establishing whether a signal is present

in the data or if the data contains only detector noise. We propose a deep learning procedure

requiring only the data time series as input with minimal signal pre-processing. We compare

the results of our network with the widely used matched-filtering technique. We show how a

deep learning approach can be pre-trained using simulated datasets and applied in low-latency

to achieve the same sensitivity as established techniques.

4.2 Simulation Details

In order to make a clean comparison between deep learning approach and matched-filtering, we

distinguish between two cases, BBH merger signals in additive Gaussian noise (signal+noise)

and Gaussian noise alone (noise-only). We choose to focus on BBH signals rather than including

binary neutron star systems for the reason that BBH systems are higher mass systems and have

shorter duration signals once the inspiralling systems have entered the Advanced detector fre-

quency band. They typically then merge on the timescale of O(1)s allowing us to use relatively

small datasets for this study.

The input datasets consist of “whitened” simulated GW timeseries where the whitening pro-

cess (see Sec. 1.6.2 of Ch. 1) uses the detector noise PSD (see Sec. 1.4.2 of Ch. 1) to rescale the
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noise contribution at each frequency to have equal power. Our noise is initially generated from

a PSD equivalent to the Advanced LIGO design sensitivity [276].

Signals are simulated using a library of GW data analysis routines called LALSuite. We

use the IMRPhenomD type waveform [74, 75] which models the inspiral, merger and ringdown

components of BBH GW signals. We simulate systems with component black hole masses

in the range from 5M� to 95M�, m1 > m2, with zero spin. Training, validation and testing

datasets contain signals drawn from an astrophysically motivated distribution where we assume

m1,2 ∼ logm1,2 [277]1. Each signal is given a random right ascension and declination assuming

an isotropic prior on the sky, the polarization angle and phase are drawn from a uniform prior on

the range [0,2π], and the inclination angle is drawn such that the cosine of inclination is uniform

on the range [−1,1]. The waveforms are then randomly placed within the time series such that

the peak amplitude of each waveform is uniformly randomly positioned within the fractional

range [0.75,0.95] of the timeseries.

The waveform amplitude is scaled to achieve a predefined optimal SNR defined as

ρ
2
opt = 4

∞∫
fmin

| ˜h( f )|2

Sn( f )
d f , (4.1)

where ˜h( f ) is the frequency domain representation of the GW strain and Sn( f ) is the single-

sided detector noise PSD [97] (Sec. 1.4.2 of Ch. 1). The simulated time series were chosen to

be 1 s in duration sampled at 8192 Hz. Therefore we consider fmin as the frequency of the GW

signal at the start of the sample timeseries hence each signal will have a mass dependent and

merger time dependent minimum frequency. An example timeseries can be seen in Fig. 4.1.

Due to the requirements of the matched-filtering comparison it was necessary to add padding

to the edges of each timeseries in the time domain so as to avoid non-physical boundary artefacts

from the whitening procedure2. The Gaussianity of the noise and smoothness of the simulated

advanced LIGO PSD allows the use of relatively short padding. Therefore each 1 s timeseries

has an additional 0.5 s of data prior to and after the signal. The signal itself has a Tukey win-

1We note here that the inferred mass distribution from Observation run 3 does in fact differ from this distribution,
but is not known at the time of writing this chapter.

2We note that for matched-filtering, whitening is typically done over a far longer segment.
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dow (α = 1/8) applied to truncate the signal content to the central 1 s, where the window is

constructed such that it has no attenuation within the central 1 s. The CNN approach only has

access to this central 1 s of data. Similarly, the optimal SNR is computed considering only the

central 1 s.

Supervised deep learning requires datasets to be sub-divided into training, validation, and

testing sets. Training sets are the data samples that the network learns from, the validation set

allows the developer to verify that the network is learning correctly, and the test set is used

to quantify the performance of the trained network. In a practical scenario the training and

validation sets are used to train the network prior to data taking (See Ch. 2 for further details).

This constitutes the vast majority of computational effort and is a procedure that needs to be

computed only once. The trained network can then be applied to test data at a vastly reduced

cost in comparison to the training stage [162]. Of the dataset generated, we use 90% of these

samples for training, 5% for validation, and 5% for testing. A dataset was generated for each

predefined optimal SNR value ranging from 1–10 in integer steps.

Our training datasets contain 5×105 independent timeseries with 50% containing signal+noise

and 50% noise-only. For each simulated gravitational-wave signal (drawn from the signal pa-

rameter space) we generate 25 independent noise realizations from which 25 signal+noise sam-

ples are produced. This procedure is standard within machine learning classification and allows

the network to learn how to identify individual signals under different noise scenario (See [278]

and Ch. 2). Each noise-only sample consists of an independent noise realization and in total we

therefore use 10000 unique waveforms in the m1,m2 mass space. Each data sample timeseries

is then represented in the form of a 1× 8192 pixel image with the gray-scale intensity of each

pixel proportional to the measured GW strain.

4.3 The Deep Network Approach

In our model, we use a variant of a deep learning algorithm called a CNN [189] composed of

multiple layers (See Ch. 2). The input layer holds the raw pixel values of the sample image

which, in our case, is a 1-dimensional timeseries vector. The convolutional filters of the network
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Figure 4.1: A whitened noise-free timeseries of a BBH signal sampled at 8192 Hz with com-
ponent masses m1 = 41.86M� and m2 = 6.65M� with optimal SNR = 8 (cyan). The dark blue
timeseries shows the same gravitational-wave signal with additive whitened Gaussian noise of
unit variance. This latter timeseries is representative of the datasets used to train, validate, and
test the deep neural network.
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are also in 1-dimensional vector form. This is opposed to the traditional 2-dimensional form

more commonly used by ML practitioners when applying CNNs towards 2-dimensional image

analysis. We do not use a 2-dimensional form because our inputs are 1-dimensional, thus we

would ideally like our CNN filters to reflect that reality. Each neuron in the convolutional layer

computes the convolution between the neuron’s weight vector and the outputs from the layer

below it, and then the result is summed with the bias vector. Neuron weight vectors are updated

through an optimisation algorithm called back-propagation [165]. Activation functions apply

an element-wise non-linear operation rescaling their inputs onto a specific range and leaving

the size of the previous layer’s output unchanged. Pooling layers perform a downsampling

operation along the spatial dimensions of their input. Finally we have a hidden layer connected

to an output layer which computes the inferred class probabilities. These values are input to a

loss function, chosen as the binary cross-entropy [279], defined as

f (p, t) =−∑
i∈S

tS
i log(pS

i )−∑
i∈N

tN
i log(pN

i ), (4.2)

where pS/N
i is the predicted probability of the class signal+noise (S) or noise-only (N) and tS/N

i

is the true value for the i’th training sample. The loss function is minimised when input data

samples are assigned the correct class with the highest confidence.

In order to optimise a network, multiple hyper-parameters must be tuned. We define hyper-

parameters as parameters that we are free to choose. Such parameters include the number and

type of network layers, the number of neurons within each layer, the size of the neuron weight

vectors, the max-pooling parameters, the type of activation functions, the preprocessing of input

data, the learning rate, and the application (or otherwise) of specific deep learning techniques.

We begin the process with the simplest network that provides a discernible level of effective

classification. In most cases this consists of an input, convolutional, hidden, and logistic output

layer. The optimal network structure was determined through multiple tests and tunings of

hyperparameters by means of trial and error3.

3We have also used multiple other hyperparameter optimisation techniques, as introduced in Ch. 2, in subsequent
projects. We tried some of these optimisation schemes in Ch. 4, but in the end settled on a network design which
was determined through random trial and error.
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Within our optimisation process we experimented with rescaling the input data, which we

found to have minimal effect on the network performance. The reason for this is that our input

data is whitened and our signals are buried beneath the noise. Therefore our data is effectively

prescaled on a range ±O(1) due to the natural variation of Gaussian noise. We also experi-

mented with using transfer learning [280] where networks pre-trained on high SNR datasets are

used as starting points for application to successively lower SNR datasets. We found that there

were no performance benefits in using this approach compared to training the network solely on

each SNR dataset separately. The network depth was adjusted between 2 and 10 convolutional

layers. The inclusion of dropout (See Sec. 2.3.1 of Ch. 2) was used within the final 2 hidden

layers as a form of regularisation to avoid overfitting.

During the training stage an optimisation function (back-propagation) works by computing

the gradient of the loss function (Eq. 4.2) with respect to the weights of the network for a given

training sample, then attempting to minimize that loss function. The value of the loss is prop-

agated back through the network by taking the partial derivative of the loss with respect to the

weights of the network and applying the chain rule. Using the calculated partial derivatives, one

can then update the weight and bias terms of the network such that the loss is minimised. Back

propagation is done over multiple iterations where at each iteration the gradients are computed

all at once over a batch of training samples. We also use Nesterov momentum [281], which is

described by

vi = µvi−1−η∇ f (θi−1 +µvi−1), (4.3)

θi = θi−1 + vi, (4.4)

where θi−1 are the parameters of the neural network from the previous layer, θi are the param-

eters of the current layer of the network and vi is the momentum for the current layer. We also

have µ which is a scalar constant term which determines the amount of momentum to apply

per gradient update (the higher the number, the more momentum), vi−1 is the momentum term

from the previous layer, η is the learning rate, ∇ f (θi−1 + µvi−1) is the gradient of the model

parameters with respect to the previous layer (including the momentum term from the previous
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layer (µvi−1)). There are a variety of initialisation schemes for the momentum term in each

layer, but prior to training, the momentum in each layer is nominally chosen from a uniform

distribution between 0 and 1. We use a learning rate which alternates between η = 10−3 and

η = 5× 10−5, and the Adam optimiser [282] which is parameterised by a set of user-defined

hyperparameters given as: β1 = 0.9, β2 = 0.999, ε = 10−8 and a momentum schedule of 0.004

(See [282] for further details on the function of these Adam hyperparameter values). We outline

the structure of the final neural network architecture in Table 4.1. We also note that the same

network structure was used for each SNR, but that a separate neural network was trained for

every SNR value.

The final ranking statistic that we extract from the CNN analysis is taken from the output

layer, composed of 2 neurons, where each neuron gives the inferred probability that the input

data belongs to the noise or signal+noise class respectively. Both neurons will produce a prob-

ability value between 0 and 1 with their sum being unity, which is the default behaviour of the

softmax activation function given by

Softmax(xi) =
exi

∑ j ex j
, (4.5)

where exi is the exponent of the value of one of the 2 output layer neurons for class i and ∑ j ex j is

a summation over the exponent of both neuron output layer values, representing the predictions

for all classes. The computational time spent on training the network for each SNR is O(1) hour

on a single GPU4. This one-time cost can be compared to the O(1s) spent applying the trained

network to all 25,000 1 s test data samples also using a single GPU. Therefore at the point of

data taking this particular analysis can be run at 104 times faster than real-time.

In Fig. 4.2, we plot three different quantities as a function of training epoch for one of our

networks trained on SNR 8 signals. The top panel shows the loss as a function of training

epoch, which we see decreases rapidly initially and then levels out as training progresses. In

the middle panel, we show the detection probability (fraction of GW signals correctly identified

4It should be noted that this study was carried out in 2017 and as such GPUs have become more efficient since
then. If the study were carried out today, it is possible that the speed of the network could be improved by some
factor.
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Parameter Layer
(Option) 1 2 3 4 5 6 7 8 9
Type C C C C C C H H H
No. Neurons 8 8 16 16 32 32 64 64 2
Filter Size 64 32 32 16 16 16 n/a n/a n/a
MaxPool Size n/a 8 n/a 6 n/a 4 n/a n/a n/a
Drop out 0 0 0 0 0 0 0.5 0.5 0
Act. Func. Elu Elu Elu Elu Elu Elu Elu Elu SMax

Table 4.1: The optimised network consisting of 6 convolutional layers (C), followed by 3 hidden
layers (H). Max-pooling is performed on the first, fifth, and eighth layer, whereas dropout is only
performed on the two hidden layers. Each layer uses an exponential linear unit (Elu) activation
function (with range [−1,∞]) while the last layer uses a Softmax (SMax) activation function in
order to normalize the output values to be between zero and one so as to give a probability value
for each class.

by the neural network) as a function of training epoch where the training, validation and testing

detection probability are denoted as the purple, blue and orange curves respectively. The goal

is to minimize the loss function, which will in turn maximise the detection probability of the

classifier. We see in Fig. 4.2 that as the loss decreases, the detection probability increases,

indicating the the network is performing more accurately as training progresses. We should note

here though that it does appear that the network is slightly overfitting to the training data. This

is because the validation/testing detection probability curves (blue, orange) are lower than the

training probability curve (purple). The bottom panel shows the learning rate used as a function

of training epoch which alternates between 10−3 and 5×10−3.

Our learning rate alternates between a minimum and upper bound because we decided to

employ a cyclic learning rate scheduler [283]. A cyclic learning rate is commonly used avoid

saddle points, or local minima, in the loss function parameter space. Specifically, a learning rate

which is too low will only apply small updates to the neural network weights and thus may get

stuck in that saddle point. A cyclic learning rate will allow both large and small network weight

updates to occur, thus increasing the likelihood of breaking out of saddle points. There is also

the issue of choosing a poor initial learning rate at the beginning of training. If our network

and/or optimiser is strongly influenced by the initial learning rate, we may never see the loss

function minimised. A cyclic learning rate allows us apply a variety of learning rate values over

a broad range, thus minimising the chance of choosing an inappropriate learning rate.
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Figure 4.2: The loss, detection probability and learning rate plots (shown above top panel) for
a network trained on SNR 8 signals illustrate how the network’s performance is defined as a
function of the number of training epochs. The first initial epochs see an exponential decrease
in the loss function and then a slowly falling values to follow. This indicates that the longer our
network is trained, a limit with respect to the accuracy is approached. In our case, we cyclically
adjust the learning rate to alternate between 5× 10−4 and 10−3 at a constant frequency. The
detection probability on training samples is represented by the purple curve, validation detection
probability as the blue, and testing detection probability as the orange curve.
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4.4 Applying Matched-Filtering

In order to establish the power of the deep learning approach we must compare our results to the

standard matched-filtering process used in the detection of CBC signals [97, 284]. The ranking

statistic used in this case is the matched-filter SNR (Eq. 1.35 in Ch. 1) numerically maximized

over arrival time and analytically maximised over phase and distance [51]. By first defining the

noise weighted inner product as a function of a time shift ∆t between a and b given as,

(a | b)(∆t) = 4
∫

∞

fmin

ã( f )b̃∗( f )
Sn( f )

e2πi f ∆t d f , (4.6)

where ∆t = 1/ fs, fs is the sampling frequency, and the exponential term e2πi f ∆t allows us to use

the FFT to compute the SNR for every discrete time shift between the data and template. We

can construct the squared matched-filter SNR as

ρ
2 =
〈s,h〉2 + 〈s,h〉2

〈h,h〉
, (4.7)

where s is the data containing noise and a potential signal, and h is the noise-free gravitational-

wave template [99]. For a given template this quantity is efficiently computed using the FFT,

where the FFT allows the SNR to be computed for all possible signal arrival times within the

observation window with cost N logN, where N is the number of samples we have5. The max-

imum SNR value from the output SNR timeseries, defined by Eq. 4.7, is also computed. The

subsequent step is to further numerically maximize this quantity over a collection of component

mass combinations. In this analysis a comprehensive template bank is generated in the m1,m2

mass space covering our predefined range of masses. We use a maximum mismatch of 3%

and a lower frequency cutoff of 20 Hz using the PyCBC geometric non-spinning template bank

generation tool [6, 285]. This template bank contained 8056 individual templates.

When generating an SNR timeseries (Eq. 4.7) for an input dataset we select fmin accord-

ing to the conservative case in which the signal merger occurs at the 0.95 fraction of the 1 s

timeseries. We therefore select only maximised SNR timeseries values recovered from within

5If we didn’t use the FFT, then the brute force cost would N2 ( correlating the template once costs N operations
and then shifting it by one bin and doing it again N times.
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the [0.75,0.95] fractional range since this is the parameter space on which the CNN has been

trained. For the practical computation of the matched-filtering analysis we take each of the data

samples from the testing dataset to compute the matched-filter ranking statistic.

4.5 Matching Matched Filtering Results

After tuning the multiple hyper-parameters (Table 4.1) and training the neural network (Fig. 4.2),

we present the results of our CNN classifier on a noise versus signal+noise sample set. With val-

ues of ranking statistics now assigned to each test data sample from both the CNN and matched-

filtering approaches, and having knowledge of the true class associated with each sample, we

may now construct ROC curves to compare performance.

A standard method for displaying the accuracy of a classifier is through a confusion matrix

in which the number of samples of each true class identified as every possible class are listed

in a square matrix. A fully diagonal matrix would imply no incorrectly classified samples and

a uniform matrix would imply no classification power (with the stipulation that there are equal

numbers of testing samples in each class). Classification, within the context of a confusion

matrix, is defined as when the neural network predicts a value of greater than p = 0.5 for a

single class. In Fig. 4.3 we show results for the CNN approach from which we highlight the

overall accuracy (the ratio of incorrectly identified samples to the total number of samples)

is [51.88%,65.51%,85.63%,96.66%,99.41%,99.99%] at ρopt = [2,4,6,8,10,12], for a fixed

detection threshold of p = 0.5. We highlight that the measure of CNN accuracy illustrated by

Fig. 4.3 is interesting in general, but not useful for us in practice since we want to maximise the

TAP (fraction of signal samples correctly identified) at a fixed FAP (fraction of noise samples

incorrectly identified as signals) value.

In Fig. 4.4 we compare our CNN results to that of matched-filtering. Given the ranking

statistic from a particular analysis and defining a parametric threshold value on that statistic we

are able to plot the FAP) versus the TAP. These curves are defined as ROC curves and a ranking

statistic is deemed superior to another if at a given FAP it achieves a higher detection probability.

Our results show that the CNN approach closely matches the sensitivity of matched-filtering for
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Figure 4.3: Confusion matrices for testing datasets containing signals with optimal SNR (Given
in Eq. 4.1) ρopt = 2,4,6,8,10,12. Numerical values superimposed within matrix elements rep-
resent the number of samples that were of true class indicated by the y-axis label but identified
as the corresponding x-axis label. For our 2 class system these are equivalent to the numbers
of true alarm, true dismissal, false dismissal, or false alarm, for a fixed detection threshold of
p = 0.5. The accuracy percentages for all injection SNR values are listed as follows: 51.86% at
ρopt = 2, 65.51% at ρopt = 4, 85.63% at ρopt = 6, 96.66% at ρopt = 8, 99.41% at ρopt = 10 and
99.99% at ρopt = 12.
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Figure 4.4: The ROC curves for test datasets containing signals with optimal SNR, ρopt = 2,4,6.
We plot the true alarm probability versus the false alarm probability estimated from the output
of the CNN (purple) and matched-filtering (cyan) approaches. Uncertainties in the true alarm
probability correspond to 1-σ bounds assuming a binomial distribution. We note that because
the results from the SNR 2 analyses follow a diagonal line from the bottom-left corner of the
plot to the upper-right corner, that the predictions from both the machine learning approach and
the matched filtering approach are essentially equivalent to random guessing.

all test datasets across the range of FAPs explored in this analysis6. It can clearly be seen that

our classifier also exceeds the performance of the matched-filtering method at optimal SNR

ρopt = 2,4,6. This is an interesting result and is not entirely unexpected given that matched-

filtering is not expected to be completely optimal [203, 204].

We can make an additional direct comparison between approaches by fixing a FAP and plot-

ting the corresponding TAP versus the optimal SNR of the signals in each test dataset. We show

these efficiency curves in Fig. 4.5 at FAPs 10−1,10−2,10−3 for both the CNN and matched-

6We are limited to a minimal FAP of ∼ 10−4 due to the limited number of testing samples used.
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Figure 4.5: Efficiency curves comparing the performance of the CNN and matched-filtering
approaches for false alarm probabilities 10−1 (solid), 10−2 (dashed), and 10−3 (dot-dashed).
The true alarm probability is plotted as a function of the optimal SNR for the CNN (purple) and
the matched-filtering (cyan) analyses. Solid dots indicate at which SNR values analyses were
performed and light shaded areas are representative of the statistical uncertainties in the curves
(which are all smaller than the line thicknesses).

filtering approaches. We again see very good agreement between the approaches at all FAPs

with the CNN sensitivity exceeding that of the matched-filter approach at low SNR and high

FAP. Conversely we see the matched-filter sensitivity marginally exceeds the CNN at high SNR

and low false alarm probability. This latter discrepancy could be mitigated by increasing the

number of training samples in the CNN approach.

We acknowledge that because we do not include a trials factor which takes into account the

outputs of all neural networks used for each SNR value the FAP would be underestimated if one

were to apply our method to a realistic search scenario. There are multiple methods we could

have employed in order to take this into account. First, we could have used the median SNR
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network (SNR 6) and then applied it to the whole range of SNR testing sets, thus avoiding the

additional trials factors. However, it is unclear how well the network would then be able to gener-

alise to lower and higher SNR values. Secondly, one could exploit techniques such as ensemble

learning whereby the outputs from all networks could be given as input to another network in

order to produce a final detection statistic. We note that many other practitioners in the ML

community commonly employ such methods in order to optimise their approaches [286, 287].

Finally, the most optimal method to use would be to simply use a single neural network which

has been trained over a range of SNR values that we would expect to see in the data. This spe-

cific method has already been used in a wide variety of GW signal detection applications and

has been shown to generalise well to a large range of SNR values [288, 289, 290]. We further

note that including a range of SNRs in the training set, rather than just 1 SNR value is essentially

equivalent to adding an additional dimension in the parameter space (i.e. luminosity distance).

In fact, it has already been shown in this chapter that our multiple SNR neural networks show

no signs of bias across the full prior space for a range of source parameters including sky po-

sition, inclination angle, etc. This has also been shown to be the case for our own work in

Bayesian parameter estimation [2], as well as in ML signal detection for other source types (e.g.

CWs [221, 225]).

4.6 Conclusions

We have demonstrated that deep learning, when applied to GW timeseries data, is able to closely

reproduce the results of a matched-filtering analysis in Gaussian noise. We employ a deep con-

volutional neural network with rigorously tuned hyperparameters and produce an output that

returns a ranking statistic interpreted as the inferred probability that data contains a signal.

Matched-filtering analyses are often described as the optimal approach for signal detection in

Gaussian noise, but in reality are only close to optimal [203, 204]. By building a neural network

that is capable of matching the efficiency of matched filtering we answer a fundamental question

regarding the applicability of neural networks for GW data analysis.

In practice, searches for transient signals in GW data are strongly affected by non-Gaussian
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noise artefacts. To account for this, standard matched-filtering approaches are modified to in-

clude carefully chosen changes to the ranking statistic [109, 291] together with the excision of

poor quality data [292, 293]. Our analysis represents a starting point from which a deep network

can be trained on realistic non-Gaussian data. Since the claim of matched-filtering near optimal-

ity is applicable only in the Gaussian noise case, there exists the potential for deep networks to

exceed the sensitivity of existing matched-filtering approaches in real data.

We should also note that one of the downsides of our approach has been the use of separate

neural networks for each SNR value. This could easily be overcome by simply training a single

CNN model using a training set which contains GW waveforms with multiple SNR values. In

fact, it was shown in [221] that single networks can generalise well to different SNR values.

In this work we have presented results for BBH mergers, however, this method could be

applied to other merger types, such as BNS (as was shown in [206, 208]) and NSBH signals. This

supervised learning approach can also be extended to other well modelled GW targets such as the

continuous emission from rapidly rotating non-axisymmetric NSs (as was done by [221, 225]).

Moreover, unsupervised approaches have the potential to be powerful detection tools in searches

for unmodelled burst-like GW signals, where it was shown in [201] that GANs could be used

for such a task. Finally we mention the possibilities for parameter estimation [275] where in the

simplest cases an output regression layer can return point estimates of parameter values. There

have also been several other studies done since the publication of this work which have used

various ML techniques to perform Bayesian parameter estimation in low-latency [2, 234, 294]

As was exemplified in the case of GW170817 [9], rapid detection confidence coupled with

robust and equally rapid parameter estimates is critical for GW multi-messenger astronomy.

Since the publication of this paper, a lot has changed in the field of ML for GW signal

detection. Many of the outstanding problems we outlined here in the conclusions have now been

largely solved, such as applying deep learning towards other signal types [201, 206, 208, 216,

233]. There has also been much work using other unique network architectures such as Bayesian

neural networks [295] for CBC detection, as well as the early-warning detection of BNS signals

using CNNs [296]. Following this paper, we decided to pivot towards the more challenging

unsolved problem of ML for Bayesian parameter estimation. In the following chapter (Ch. 5)
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we will show how we have used CVAEs for the purpose of generating rapid Bayesian posterior

parameter estimates.



Chapter 5

Variational Inference for GW Parameter

Estimation

We note to the reader that this text is a modified version of the paper [2] recently accepted for

publication in Nature Physics.

So far, we have introduced fundamental concepts from GW astronomy and ML. We have

also provided a broad survey of how ML is being applied across a variety of domains within

GW astronomy. In the previous chapter (Ch. 4) we showed one of the first implementations of

deep learning for GW signal detection and how our approach was able to match the sensitivities

of standard methods, opening the door for a variety of follow-up studies listed in Ch. 3. We

now move on to the more challenging task of applying ML methods towards GW Bayesian

parameter estimation. We show for the first time that a form of ML, CVAEs, may be used to

produce Bayesian posteriors of GW source parameter values given GW time series data in a

fraction of the time taken by more traditional samplers.

5.1 Introduction

GW detection is now commonplace [9, 277] and as the sensitivity of the global network of GW

detectors improves, we will observe O(100)s of transient GW events per year [7, 18, 297]. The

current methods used to estimate their source parameters employ optimally sensitive [298] but

119
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computationally costly Bayesian inference approaches [20] where typical analyses have taken

between 6 hours and 38 days [299] to run. We determined these values by compiling tables

(Tab. 5.1 and Tab. 5.2) containing of all detected events during the O3 observing run using the

GraceDB database. We provide in the tables the length of time to complete parameter estimation

analyses using the lalinference pipeline [20], as well as the predicted source class using the

p-astro1 computing package.

For BNS and NSBH systems prompt counterpart EM signatures are expected on timescales

of 1 s – 1 minute and the current fastest method for alerting EM follow-up observers [22], can

provide estimates in O(1) minute, on a limited range of key source parameters. Here we show

that a CVAE [164, 300] pre-trained on BBH signals can return Bayesian posterior probability

estimates. The training procedure need only be performed once for a given prior parameter space

and detector network configuration and the resulting trained machine can then generate samples

describing the posterior distribution ∼ 6 orders of magnitude faster than existing techniques.

With the overwhelmingly successful observation runs of O1, O2 and now O3 complete,

LIGO and Virgo have produced a large catalogue of GW data covering both BBH and BNS

signals [5]. Over the next five years we expect the number of detections to increase to be upwards

of ∼ 180 BNS and ∼ 400 BBH events per year [7, 18, 297]. This large influx in the number of

detections will put an increased amount of pressure on the current computationally costly GW

inference methods used for parameter estimation.

The problem of detecting GWs has largely been solved through the use of template based

matched-filtering, a process recently replicated using machine learning techniques [1, 204, 212,

275]. Once a GW has been identified through this process, Bayesian inference, known to be

the optimal approach [298], is used to extract information about the source parameters of the

detected GW signal.

In the standard Bayesian GW inference approach (See Sec. 1.7 of Ch. 1), we assume a sig-

nal and noise model and both may have unknown parameters that we are either interested in

inferring or prefer to marginalise away. Each parameter is given a prior astrophysically mo-

tivated probability distribution and in the GW case, we typically assume a Gaussian additive

1See https://pypi.org/project/p-astro/.

https://pypi.org/project/p-astro/
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noise model (in reality, the data is not truly Gaussian). Given a noisy GW waveform, we would

like to find an optimal procedure for inferring some set of the unknown GW parameters. Such

a procedure should be able to give us an accurate estimate of the parameters of our observed

signal, whilst accounting for the uncertainty arising from the noise in the data.

According to Bayes’ Theorem, a posterior probability distribution on a set of parameters,

conditional on the measured data, can be represented as

p(x|y) ∝ p(y|x)p(x), (5.1)

where x are the parameters, y is the observed data, p(x|y) is the posterior, p(y|x) is the likelihood,

and p(x) is the prior on the parameters. The constant of proportionality, which we omit here,

is p(y), the probability of our data, known as the Bayesian evidence or the marginal likelihood.

We typically ignore p(y) since it is a constant and for parameter estimation purposes we are only

interested in the shape of the posterior (See Sec. 1.7 of Ch. 1 for further details).

Due to the size, dimensionality and volume of the parameter space typically encountered

in GW parameter estimation and the volume of data analysed, we must stochastically sample

the parameter space in order to estimate the posterior. Sampling is done using a variety of

techniques including Nested Sampling [157, 160, 161] and Markov chain Monte Carlo meth-

ods [153, 154]. The primary software tools used by the LIGO parameter estimation analysis are

LALInference and Bilby [19, 20], which offer multiple sampling methods.

Machine learning has featured prominently in many areas of GW research over the last few

years. These techniques have shown to be particularly promising in signal detection [1, 212,

275], glitch classification [86], earthquake prediction [301], and to augment existing Bayesian

sampling methods [159]. We also highlight recent developments in GW parameter estimation

(independent to this work) where one- and two-dimensional marginalised Bayesian posteriors

are produced rapidly using neural networks [234], and where normalised flows in conjunction

with CVAEs can reproduce Bayesian posteriors for a single GW detector case [236, 239]. These

methods, including the one presented in this paper, are known as “likelihood-free” approaches

in which there is no requirement for explicit likelihood evaluation [302], only the need to sample
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from the likelihood. Nor is it the case that pre-computed posterior distributions are required in

the training procedure.

Recently, a type of neural network known as CVAE was shown to perform exceptionally

well when applied towards computational imaging inference [300, 303], text to image infer-

ence [304], high-resolution synthetic image generation [305], end-to-end text-to-speech syn-

thesis [306], and the fitting of incomplete heterogeneous data [307]. CVAEs, as part of the

variational family of inference techniques are ideally suited to the problem of function approxi-

mation and have the potential to be significantly faster than existing approaches. It is therefore

this type of ML network that we apply in the GW case to accurately approximate the Bayesian

posterior p(x|y), where x represents the physical parameters that govern the GW signal, and

are the quantities we are interested in inferring. The data y represents the noisy measurement

containing the GW signal and obtained from a network of GW detectors.

The construction of a CVAE begins with the definition of a quantity to be minimised (referred

to as a cost, or loss function). In our case we take the expectation over the cross entropy

H(p,r) =−
〈∫

dx p(x|y) logrθ (x|y)
〉

(5.2)

between the true posterior p(x|y) and rθ (x|y), the parametric distribution that we will use neural

networks to model and which we aim to be equal to the true posterior. The expectation value

is taken over different realisations of signal and noise, y. The parametric model is constructed

from a combination of 2 (encoder and decoder) neural networks rθ1(z|y) and rθ2(x|y,z) where

rθ (x|y) =
∫

dzrθ1(z|y)rθ2(x|y,z). (5.3)

In this case the θ subscripts represent sets of trainable neural network parameters and the vari-

able z represents locations within a latent space. This latter object is typically a lower dimen-

sional space within which an encoder can represent the input data, and via marginalisation over

z allows the construction of a rich family of possible probability densities of x.

Starting from Eq. 5.2 it is possible to derive a computable bound for the cross-entropy that is

reliant on the rθ1 and rθ2 networks and a third “recognition” encoder network qφ (z|x,y) governed
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by the trainable parameter-set φ . The details of the derivation are described in the cost function

derivation section (Sec. 5.2) and in [300] but equate to an optimisation of the ELBO (Sec. 2.6.2).

The final form of the cross-entropy cost function is given by the bound

H .
1
N

Nb

∑
n=1

[ L︷ ︸︸ ︷
− logrθ2(xn|zn,yn)+

KL︷ ︸︸ ︷
KL
[
qφ (z|xn,yn)||rθ1(z|yn)

]]
, (5.4)

which is also represented graphically in Fig. 5.1. The cost function is composed of 2 terms, the

“reconstruction” cost L which is a measure of how well the decoder network rθ2 predicts the true

signal parameters x, and the KL-divergence cost that measures the similarity between the latent

space distributions modelled by the rθ1 and qφ encoder networks. In practice, for each iteration

of the training procedure, the integrations over x,y and z are approximated by a sum over a batch

of Nb draws from the user defined prior p(x), the known likelihood p(y|x), and the recognition

function qφ (z|,x,y). Details of the training procedure are given in Sec. 5.4.

The implementation of the CVAE that we employ in this chapter has a number of specific

features that were included in order to tailor the analysis to GW signals. The details of these

enhancements are described in the network design (Sec. 5.3), training procedure (Sec. 5.4),

data augmentation (Sec. 6.4), and phase/polarisation angle reparameterisation (Sec. 6.5) sec-

tions but in summary, the primary modifications are as follows, 1) Physically appropriate output

decoder distributions are used for each output parameter: von Mises-Fisher distribution on the

sky location parameters, von Mises distributions on all parameters with cyclic prior bounds, and

truncated Gaussians for parameters with defined prior bounds. 2) Each of the functions rθ1,rθ2 ,

and qφ are modelled using deep convolutional neural networks with multi-detector timeseries

represented as independent input channels. 3) The rθ1 encoder models an M = 32 component

Gaussian mixture model within the nz = 15 dimensional latent space in order to capture the cor-

responding typical multi-modal nature of GW posterior distributions. 4.) All cyclic parameters

are represented as points in an abstract 2D plane. In the next section, we will now derive the

cost function used to train the entire CVAE outlined above.
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Figure 5.1: The configuration of the CVAE neural network. During training (left-hand side),
a training set of noisy GW signals (y) and their corresponding true parameters (x) are given as
input to encoder network qφ , while only y is given to encoder network rθ1 . The KL-divergence
(Eq. 5.9) is computed between the encoder output latent space representations (µq and µr) form-
ing one component of the total cost function. Samples (zq) from the qφ latent space representa-
tion are generated and passed to the decoder network rθ2 together with the original input data y.
The output of the decoder (µx) describes a distribution in the physical parameter space and the
cost component L is computed by evaluating that distribution at the location of the original input
x. When performed in batches this scheme allows the computation of the total cost function
Eq. 5.4. After having trained the network and therefore having minimised the cross-entropy H,
the testing stage (right-hand side) is performed using only the rθ1 encoder and the rθ2 decoder
to produce samples (xsamp). These samples are drawn from the distribution rθ (x|y) (Eq. 5.3) and
accurately model the true posterior p(x|y).
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5.2 VItamin Cost Function Derivation

A CVAE is a form of variational autoencoder that is conditioned on an observation, where in

our case the observation is a one-dimensional GW timeseries signal y, over a multi-detector

network. The autoencoders from which variational autoencoders are derived are typically used

for problems involving image reconstruction and/or dimensionality reduction. They perform a

regression task whereby the autoencoder attempts to predict its own given input (model the iden-

tity function) through a “bottleneck layer” — a limited and therefore distilled representation of

the input parameter space. An autoencoder is composed of two neural networks, an encoder and

a decoder [308]. The encoder network takes as input a vector, where the number of dimensions

is a fixed number predefined by the user. The encoder converts the input vector into a (typically)

lower dimensional space, referred to as the latent space. A representation of the data in the

latent space is passed to the decoder network which generates a reconstruction of the original

input data to the encoder network. Through training, the two sub-networks learn how to effi-

ciently represent a dataset within a lower dimensional latent space which will take on the most

important properties of the input training data. In this way, the data can be compressed with

little loss of fidelity. Additionally, the decoder simultaneously learns to decode the latent space

representation and reconstruct that data back to its original form (the input data).

The primary difference between a variational autoencoder [164] and an autoencoder con-

cerns the method by which locations within the latent space are produced. In our variant of the

variational autoencoder, the output of the encoder is interpreted as a set of parameters governing

statistical distributions in the latent space. In proceeding to the decoder network, samples from

the latent space (z) are randomly drawn from these distributions and fed into the decoder, there-

fore adding an element of variation into the process. A particular input can then have a range of

possible outputs. Any trainable network architectures can be used in both the decoder and the

encoder networks and within VItamin we use deep convolutional neural networks in all cases.

We will now derive the cost function and the corresponding network structure and we begin

with the statement defining the aim of the analysis. We wish to obtain a function that reproduces

the posterior distribution (the probability of our physical parameters x given some measured
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data y). The cross-entropy between 2 distributions is defined in Eq. 5.2 where we have made

the distributions explicitly conditional on y (our measurement). In this case p(x|y) is the target

distribution (the true posterior) and rθ (x|y) is the parametric distribution that we will use neural

networks to construct. The variable θ represents the trainable neural network parameters.

The cross-entropy is minimised when p(x|y) = rθ (x|y) and so by minimising

H =−Ep(y)

[∫
dx p(x|y) logrθ (x|y)

]
, (5.5)

where Ep(y)[·] indicates the expectation value over the distribution of measurements y, we there-

fore make the parametric distribution as similar as possible to the target for all possible mea-

surements y.

Converting the expectation value into an integral over y weighted by p(y) we get

H =−
∫

dy p(y)
∫

dx p(x|y) logrθ (x|y). (5.6)

We then apply Bayes’ theorem to obtain

H =−
∫

dy p(y)
∫

dx
p(y|x)p(x)

p(y)
logrθ (x|y) (5.7)

where p(x) is the prior distribution on the physical parameters x, and p(y|x) is the likelihood of

x (the probability of measuring the data y given the parameters x). Cancelling out the p(y) terms

we arrive at

H =−
∫

dx p(x)
∫

dy p(y|x) logrθ (x|y). (5.8)

The CVAE network outlined in Fig. 5.1 makes use of a conditional latent variable model and

our parametric model is constructed from the product of 2 separate distributions marginalised

over the latent space as defined in Eq. 5.3. We have used θ1 and θ2 to indicate that the 2 separate

networks modelling these distributions will be trained on these parameter sets respectively. The

encoder rθ1(z|y) takes as input the data y and outputs parameters that describe a probability dis-
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tribution within the latent space. The decoder rθ2(x|z,y) takes as input a single location z within

the latent space together with the data y and outputs sets of parameters describing a probability

distribution in the physical parameter space. The explicit mathematical form rθ2(x|z,y) takes is

that of multiple multivariate Gaussian distributions whose moments, µr2 , are predicted by the

parametric model given latent space samples z and input data y. rθ1(z|y) takes the form of a

Gaussian mixture model with a whose moments and mixture component weights (collectively

labeled as µr2) are also inferred by the parametric model given only observed data y.

One could be forgiven for thinking that by setting up networks that simply aim to minimise

H over the θ1 and θ2 would be enough to solve this problem. However, as shown in [303], this

is an intractable problem and a network cannot be trained directly to do this. Instead, we have

to also train an additional network to approximate the theoretical joint probability distribution

rθ (z|x,y), which is essentially already defined by the existing rθ (x|y), rθ1(z|y) and rθ2(x|z,y)

joint distributions. We call the neural network which approximates the theoretical distribution,

rθ (z|x,y), the recognition function , qφ (z|x,y), which is governed by the trainable network pa-

rameters, φ , that will be used to derive an ELBO. Furthermore, qφ (z|x,y) takes the form of

multiple multivariate Gaussian distributions whose moments, µq, are predicted by the paramet-

ric model given parameters x and observed data y. It will become more clear in the derivation

below that both defining and approximating this extra joint probability distribution is necessary

because it allows us to define a computable form for logrθ (x|y).

We first define the KL-divergence between the recognition function and the distribution

rθ (z|x,y) as

KL
[
qφ (z|x,y)||rθ (z|x,y)

]
=
∫

dzqφ (z|x,y) log
(

qφ (z|x,y)
rθ (z|x,y)

)
. (5.9)

This is done because we want to minimise the difference between the theoretical joint distri-

bution rθ (z|x,y) and the approximate version, qφ (z|x,y). Using Bayes theorem we can write

rθ (z|x,y) as

rθ (z|x,y) =
rθ2(x|z,y)rθ1(z|y)

rθ (x|y)
. (5.10)
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Plugging this into Eq. 5.9 we get

KL
[
qφ (z|x,y)||rθ (z|x,y)

]
=
∫

dzqφ (z|x,y) log
(

qφ (z|x,y)rθ (x|y)
rθ2(x|z,y)rθ1(z|y)

)
. (5.11)

Using the logarithm multiplication rule we arrive at

KL
[
qφ (z|x,y)||rθ (z|x,y)

]
=
∫

dzqφ (z|x,y) log
(

qφ (z|x,y)
rθ2(x|z,y)rθ1(z|y)

)
+∫

dzqφ (z|x,y) logrθ (x|y). (5.12)

Realising then that the logrθ (x|y) may be taken out of the integral since it is not a function of z

and that the integral of a probability distribution, qφ (z|x,y) in this case, is simply equivalent to

1 we can write

KL
[
qφ (z|x,y)||rθ (z|x,y)

]
=
∫

dzqφ (z|x,y) log
(

qφ (z|x,y)
rθ2(x|z,y)rθ1(z|y)

)
+ logrθ (x|y). (5.13)

Moving logrθ (x|y) to the left-hand side of the equation and moving the KL term to the right-

hand side we get

logrθ (x|y) =KL
[
qφ (z|x,y)||rθ (z|x,y)

]
+∫

dzqφ (z|x,y) log
(

qφ (z|x,y)
rθ2(x|z,y)rθ1(z|y)

)
, (5.14)

where we realise that the right-hand integral term is simply a KL-divergence which we define as

the ELBO given by

ELBO =
∫

dzqφ (z|x,y) log
(

rθ2(x|y,z)rθ1(z|y)
qφ (z|x,y)

)
. (5.15)

It is so-named since the KL-divergence has a minimum of zero and cannot be negative. Plugging

Eq. 5.15 into Eq. 5.14 we arrive at

logrθ (x|y) = ELBO+KL
[
qφ (z|x,y)||rθ (z|x,y)

]
. (5.16)
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where we now have logrθ (x|y) which we need for Eq. 5.8. If we were to find a qφ (z|x,y) function

(optimised on φ ) that minimised the KL-divergence defined in Eq. 5.9 then we can state that

logrθ (x|y)≥ ELBO. (5.17)

Substituting Eq. 5.15 into Eq. 5.17 we get

logrθ (x|y)≥
∫

dzqφ (z|x,y) log
(

rθ2(x|y,z)rθ1(z|y)
qφ (z|x,y)

)
. (5.18)

Using the logarithm division property we find

logrθ (x|y)≥
∫

dzqφ (z|x,y)
[
log(rθ2(x|y,z)rθ1(z|y))− logqφ (z|x,y)

]
. (5.19)

Distributing qφ (z|x,y) to the log terms and using the logarithm multiplicative property it can be

shown that

logrθ (x|y)≥
∫

dzqφ (z|x,y) logrθ2(x|y,z)+
∫

dzqφ (z|x,y) logrθ1(z|y)

−
∫

dzqφ (z|x,y) logqφ (z|x,y). (5.20)

Making the realisation that
∫

dzqφ (z|x,y)rθ2(x|y,z) is simply an expectation value and pulling

out qφ (z|x,y) from the other two integrals we get

logrθ (x|y)≥ Eqφ (z|x,y) [logrθ2(x|z,y)]+
∫

dzqφ (z|x,y)(logrθ1(z|y)− logqφ (z|x,y)).

and using the logarithm division property we get

logrθ (x|y)≥ Eqφ (z|x,y) [logrθ2(x|z,y)]+
∫

dzqφ (z|x,y)
logrθ1(z|y)

logqφ (z|x,y)

Finally, we make the realisation that the integral term is the negative KL-divergence of qφ (z|x,y)



CHAPTER 5. VARIATIONAL INFERENCE FOR GW PARAMETER ESTIMATION 132

and rθ1(z|y) and find that

logrθ (x|y)≥Eqφ (z|x,y) [logrθ2(x|z,y)]

−KL
[
qφ (z|x,y)||rθ1(z|y)

]
. (5.21)

We can now substitute this inequality into our cost function as defined by Eq. 5.8 to obtain

H ≤−
∫

dx p(x)
∫

dy p(y|x)
[
Eqφ (z|x,y) [logrθ2(x|z,y)]

−KL
[
qφ (z|x,y)||rθ1(z|y)

]]
, (5.22)

which can in practice be approximated as a stochastic integral over draws of x from the prior,

y from the likelihood function p(y|x), and from the recognition function, giving us Eq. 5.4, the

actual function evaluated within the training procedure. In standard sampling algorithms it is

required that the likelihood is calculated explicitly during the exploration of the parameter space

and hence an analytic noise and signal model must be assumed. For a CVAE implementation

we are required only to sample from the likelihood distribution, i.e., generate simulated noisy

measurements given a set of signal parameters. This gives us the option of avoiding the assump-

tion of detector noise Gaussianity in the future by training the CVAE using "real" non-Gaussian

detector noise. We note that while the mathematics which describe our CVAE method outlined

above are similar to those of the VAE and CVAE described in Ch. 2, Sec. 2.6, they are not the

same (i.e. all methods are constructed to accomplish different objectives). In the next section,

we will discuss in detail the CVAE network architecture, as well as specific design choices meant

to tailor the model to our GW-specific problem domain.

5.3 VItamin Network Design

The CVAE network outlined in Fig. 5.1 is constructed from the 3 separate neural networks

modelling the encoder and decoder distributions rθ1 and rθ2 as well as the recognition function

qφ . Each of these components is a deep convolutional network consisting of a series of one-
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Figure 5.2: The cost as a function of training epoch. We show the total cost function (green) to-
gether with its component parts: the KL-divergence component (orange) and the reconstruction
component (blue) which are simply summed to obtain the total. The dark curves correspond to
the cost computed per epoch, defined as the network seeing 2× 104 data samples, of training
data and the lighter curves represent the cost when computed on independent validation data.
The close agreement between training and validation cost values indicates that the network is
not overfitting to the training data. The change in behavior of the cost between 102 and 3×102

epochs is a consequence of gradually introducing the KL cost term contribution via an annealing
process, described in Sec. 5.4.
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dimensional convolutional layers followed by a series of fully-connected layers. The details of

each network structure are given in Table 5.3 where we indicate the activations used. We arrived

at this network design through trial and error.

The rθ1 network takes the input timeseries data y in the form of multi-channel 1-dimensional

vectors where channels represent different GW detectors. After passing through a series of 1-

dimensional convolutional and fully connected layers, the output then defines the parameters

of a nz-dimensional (diagonal covariance matrices) Gaussian mixture model in the latent space.

We label these parameters as µr1 containing nz×M means and log-covariances, where M = 32

mixture component weights and nz = 15. The motivation for using this mixture model represen-

tation comes from the multi-modal nature of GW posterior distributions. The encoder network

can use this flexibility to represent the y timeseries data as belonging to multiple possible latent

space regions.

The recognition function network qφ is very similar to the rθ1 network with only 2 differ-

ences. The network takes as input the y timeseries and the true signal parameters x, however,

only the y data is passed through the 1-dimensional convolutional layers. Only after the final

convolutional layer where the output is flattened is the x data appended. It is then this compound

timeseries data “feature-space” and true signal parameters that are processed using the remain-

ing fully-connected layers. The second difference is that the output of the network defines a

single-modal (diagonal) nz-dimensional Gaussian. We label these parameters as µq containing

nz = 15 means and log-covariances. The rationale behind this choice is that since the qφ dis-

tribution is conditional on the true signal parameters, there should be no ambiguity as to which

mode in the latent space that a particular timeseries belongs to.

The decoder network rθ2 is identical in structure to the qφ network but with a difference in

the form of their outputs and inputs. The rθ2 network takes as input both latent space samples z

and timeseries y. The rθ2 output represents the parameters (µr2) that govern an nx-dimensional

distribution in the physical parameter space where we have carefully chosen appropriate distri-

butions for each of the physical parameters. For the luminosity distance, the binary inclination,

the time of coalescence, and spin parameters a1,a2,Θ1,Θ2 we have adopted truncated Gaussian

distributions where the truncation occurs at the predefined prior boundaries of the respective
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Table 5.3: The VItamin network hyper-parameters. Dashed lines “—” indicate that convolu-
tional layers are shared between all 3 networks.

Layer
Network

rθ1(z|y) rθ2(x|y,z) qφ (z|x,y)

Input y [1024,3]a [1024,3] [1024,3]

Layer 1
conv(64,3,96)b — —
L2Reg(0.001)c — —

actd=LeakyReLU — —

Layer 2
conv(32,96,96) — —

stride(4)e — —
L2Reg(0.001) — —

act=LeakyReLU — —

Layer 3
conv(32,96,96) — —
L2Reg(0.001) — —

act=LeakyReLU — —

Layer 4
conv(16,96,96) — —

stride(2) — —
L2Reg(0.001) — —

act=LeakyReLU — —

Layer 5
conv(16,96,96) — —
L2Reg(0.001) — —

act=LeakyReLU — —

Layer 6
conv(16,96,96) — —

stride(2) — —
L2Reg(0.001) — —

act=LeakyReLU — —

Input z,x flattenf→[6144]
flatten→[6144] flatten→[6144]

appendg(z)→[6159] append(x)→[6159]

Layer 7 FC(6159,4096)h

act=LeakyReLU
FC(6159,4096)

act=LeakyReLU
FC(6159,4096)

act=LeakyReLU

Layer 8
FC(4096,2048)

act=LeakyReLU
FC(4096,2048)

act=LeakyReLU
FC(4096,2048)

act=LeakyReLU

Layer 9
FC(2048,1024)

act=LeakyReLU
FC(2048,1024)

act=LeakyReLU
FC(2048,1024)

act=LeakyReLU

Layer 10

FC(1024,960)
act=None
output=µr1

→[15,32,2]i

FC(1024,30)
act=(Sigmoid,-ReLU)j

output=µr2

→[19,2]k

FC(1024,30)
act=None
output=µq
→[15,2]l

aThe shape of the data [one-dimensional dataset length, No. channels].
bone-dimensional convolutional filter with arguments (filter size, No. channels, No. filters).
cL2 regularization funciton applied to the kernel weights matrix.
dThe activation function used.
eStriding layer with arguments (stride length).
fTake the multi-channel output of the previous layer and reshape it into a one-dimensional vector.
gAppend the argument to the current dataset.
hFully connected layer with arguments (input size, output size).
iThe rθ1 output has size [latent space dimension, No. modes, No. parameters defining each component per

dimension].
jDifferent activations are used for different parameters. For the scaled parameter means we use sigmoids and

for log-variances we use negative ReLU functions.
kThe rθ2 output has size [physical space dimension+additional cyclic dimensions, No. parameters defining the

distribution per dimension]. The additional cyclic dimensions account for the 2 parameters each cyclic parameter
is represented by in the abstract 2D plane.

lThe qφ output has size [latent space dimension, No. parameters defining the distribution per dimension].
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parameter space dimensions. For the component masses we had initially adopted conditional

truncated Gaussians where the conditional aspect was to ensure that m1 ≥ m2
2, but found that

training duration increased significantly because of this choice. We also found that the network

typically learned this conditional boundary based on the training data alone anyways, so have

now instead opted for using truncated Gaussian distributions alone for m1 and m2. Independent

von Mises distributions are applied to phase, polarisation angle and spin parameters φ12,φ jl in

order to capture the periodic nature of these parameters. We model all cyclic parameters as lo-

cations in an abstract 2D plane (Sec. 6.4) and apply an additional reparameterisation on φ0 and

ψ (Sec. 6.5). Finally, we use the von Mises-Fisher distribution to model the right ascension and

declination (sky) parameters.

5.4 Training Procedure

Our cost function is composed of 3 probability distributions modelled by neural networks with

well defined inputs and outputs where the mapping of those inputs to outputs is governed by

the parameter sets θ1,θ2 and φ . These parameters are the weights and biases of 3 neural net-

works acting as (variational) encoder, decoder, and encoder respectively, as well as the trainable

parameters of the optimiser. To train such a network one must connect the inputs and outputs

appropriately to compute the cost function H (Eq. 5.4) and back-propagate cost function deriva-

tives to update the network parameters.

Training is performed via a series of steps illustrated schematically in Fig. 5.1. A batch of

data composed of pairs of timeseries y and their corresponding true GW signal parameters x are

passed as input and the following steps are applied to each element of the batch.

1. The encoder qφ takes both the timeseries y and the true parameters x defining the GW sig-

nal. It then encodes these instances into parameters µq defining an uncorrelated (diagonal

covariance matrix) nz-dimensional Gaussian distribution in the latent space.

2. The encoder rθ1 is given only the timeseries data y and encodes it into a set of variables

2We note that this additional complication of requiring conditional decoder output distributions could have been
avoided if a different mass parameterisation were chosen, e.g., total mass and symmetric mass ratio.
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µr1 defining a multi-component multivariate Gaussian mixture distribution in the latent

space.

3. We then draw a sample from the distribution described by µq giving us a location zq within

the latent space.

4. This sample, along with its corresponding y data, are then passed as input to the decoder

rθ2 . This decoder outputs µθ2 comprising a set of parameters that define a distribution in

the physical x space.

5. The first term of the loss function, the reconstruction loss (defined as L in Eq. 5.4), is then

computed by evaluating the probability density defined by µθ2 at the true x training value

(the average is then taken over the batch of input data).

6. The second loss component, the KL-divergence between the distributions qφ (z|x,y) and

rθ1(z|y) (described by the parameter sets µq and µr1), is given as

KL
[
qφ (z|xn,yn)||rθ1(z|yn)

]
= qφ (z|xn,yn) log

(
qφ (z|xn,yn)

rθ1(z|yn)

)

where zq is the sample drawn from qφ (z|xn,yn) in the first training stage. We use this

single-sample Monte-Carlo integration approximation since the KL-divergence between

a single-component and a multi-component multivariate Gaussian distribution has no an-

alytic solution (the average is then taken over the batch of input data, hence the index

n).

7. The 2 loss components are then summed according to Eq. 5.4 and all trainable network

parameters (defined by θ1,θ2,φ ) are updated based on the derivative of the cost function

with respect to these parameters.

A problematic aspect of training relates to the behaviour of the network during the initial

stages of training. The network has a strong tendency to become trapped in local minima result-

ing in a decreasing cost component L (the reconstruction cost) but a non-evolving KL-divergence

term that remains close to zero. To avoid this state we apply an annealing process in which the
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KL-divergence term is initially ignored but its contribution is then increased logarithmically

from 0 to 1 between the epoch indices 102–3× 102. This allows the qφ encoder to learn the

latent space representation of the data via the reconstruction cost before being required to simul-

taneously try to best match its distribution to that modelled by the rθ1 encoder. In parallel with

the gradual introduction of the KL cost term, we also find that the stability of training is nega-

tively affected by the complexity of our tailored output decoder likelihood functions. To resolve

this we apply the same annealing procedure over the same epoch range in transitioning between

unbound Gaussian likelihoods on all physical parameters to the tailored likelihoods, where the

boundaries of the Gaussian likelihoods are brought in from −10 to 0 on the lower bound and 11

to 1 on the upper bound.

As is standard practice in ML applications, the cost is computed over a batch of training

samples and repeated for a pre-defined number of epochs. An epoch traditionally is defined as

the point at which the network has been trained on a number of samples equivalent to the size

of the entire training set. However, in this study we define an epoch as the network having been

trained on a number of samples equivalent to 2×104. For our purposes, we found that∼ 3×104

training epochs, a batch size of 1500 training samples and a learning rate of 10−4 was sufficient.

We used a total of 107 training samples in order to adequately cover the BBH parameter space.

We additionally ensure that an (effectively) infinite number of noise realizations are employed

by making sure that every time a training sample is used it is given a unique noise realisation

despite only having a finite number of waveforms. Every epoch we also randomly shuffle the

phase, time of coalescence and distance parameters for all training samples loaded from disk.

See Sec. 6.4 for further details on data augmentation techniques used in this chapter.

Completion of training is determined by comparing output posteriors on test samples with

those of Bilby iteratively during training. This comparison is done using standard figures of

merit such as the p-p-plot and JS-divergence (see Figs. 5.5 and 5.10). We also assess training

completion based on whether the evolution of the cost function and its component parts (Fig. 5.2)

have converged to a reasonable degree. We use a single Nvidia Tesla V100 GPUs with 16/32

Gb of RAM although consumer grade “gaming" GPU cards are equally fast for this application.

We also state that the onboard RAM memory of the machine/cluster itself has implications for
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the batch size and consequently the speed and optimal learning rate to use.

5.5 Testing Procedure

After training has completed and we wish to use the network for inference we follow the proce-

dure described in the right hand panel of Fig. 5.1. Given a new y data sample (not taken from

the training set) we simply input this into the trained encoder rθ1 from which we obtain a single

value of µr1 describing a distribution (conditional on the data y) in the latent space. We then

repeat the following steps:

1. We randomly draw a latent space sample zr1 from the latent space distribution defined by

µr1 .

2. The zr1 sample and the corresponding original y data are fed as input to our pre-trained

decoder network rθ2 . The decoder network returns a set of parameters µr2 which describe

a multivariate distribution in the physical parameter space.

3. We then draw a random x realisation from that distribution.

A comprehensive representation in the form of samples drawn from the entire joint posterior

distribution can then be obtained by simply repeating this procedure and hence sampling from

our latent model rθ (x|y) (see Eq. 5.3). We also note that some physical parameters are in-fact

reparameterised in the neural network model (i.e. all cyclic parameters, φ0, ψ , and α) and must

then be converted back to their original parameterisation immediately following step 3 above.

See Sec. 6.4 for further details regarding how this is done.

5.6 Primary VItamin Results

We present results on 250 multi-detector GW test BBH waveforms in simulated advanced de-

tector noise [309] from the LIGO Hanford, Livingston and Virgo detectors. We compare be-

tween variants of the existing Bayesian approaches and our CVAE implementation which we
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call VItamin. Posteriors produced by the Bilby inference library [19] are used as a bench-

mark in order to assess the efficiency and quality of our machine learning approach with the

existing methods for posterior sampling.

For the benchmark analysis we assume that 15 parameters are unknown: the component

masses m1,m2, the luminosity distance dL, the sky position α,δ , the binary inclination Θ jn, the

GW polarisation angle ψ , the time of coalescence t0, and the spin parameters a1,a2,Θ1,Θ2,φ12,φ jl .

We do not include phase φ0 in our results because we apply phase marginalisation to all Bayesian

samplers since this improves overall stability and runtime [19]. For each parameter we use a uni-

form prior with the exception of the declination, inclination, and tilt angle parameters for which

we use priors uniform in cosδ , sinΘ jn, sinΘ1, and sinΘ2 respectively. We also use a condi-

tional mass prior, such that m2 is constrained to be m2 < m1. The corresponding prior ranges

are defined in Table 5.5 and result in a training set SNR distribution that has a median value

of SNR ≈ 9 and ranging between 0 and 85 (see Fig. 5.3). We use a sampling frequency of

1024 Hz, a timeseries duration of 1 s, and the waveform model used is IMRPhenomPv2 [310]

with a minimum cutoff frequency of 20Hz. For each input test waveform we run the benchmark

analysis using multiple sampling algorithms (ptemcee,Dynesty,emcee, CPnest) available

within Bilby. For each run and sampler we extract O(8000) samples from the posterior on the

14 physical parameters.

With regards to the parameters choices in Table 5.4, after having discussed with experts in the

Bayesian sampler community, it is evident that Bayesian samplers are certainly not guaranteed

to converge to the same results. Full convergence in many cases may require much fine tuning

over many iterations for each individual run. Although we do not fine tune Bayesian benchmark

samplers for each sampler and each individual test case, we do use settings which have been

recommended to us by bilby developers and outside experts for each respective Bayesian

sampler. Both the Dynesty and CPNest samplers have a tolerance threshold (change in the

log evidence from one proposal to the next) which guarantees a certain level of convergence.

We use the recommended tolerance level of 0.1 for both nested samplers. For the MCMC

samplers, emcee performs poorly, but is known to have difficulties with convergence within

the community. There are a handful of ptemcee test cases ( 5 of the 250) which show some
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Table 5.4: Benchmark sampler configuration parameters. Values were chosen based on a com-
bination of their recommended default parameters [19] and private communication with the
Bilby development team.

sampler parameters

Dynesty [160]
live-points = 1000, dlogz = 0.1, nact = 50, npool = 8,

bound = None, sample = uniform

ptemcee [154]

walkers = 200, temperatures = 20, burn_in_nact = 50,
thin_by_nact = 0.5, nsamples = 10000, threads = 10,

autocorr_tol = 50, autocorr_csafety = 1, autocorr_tau = 1,
gradient_tau = 0.1, gradient_mean_log_posterior = 0.1,

Q_tol = 1.01, min_tau = 1, threads = 1,

CPNest [161]
live-points = 2048, maxmcmc = 1000, nthreads = 1,

seed = 1994, dlogz = 0.1

emcee [153]
nwalkers = 250, nsteps = 14000, nburn = 4000, a = 1.4,

burn_in_fraction = 0.25, burn_in_act_ = 3

minor indication of incomplete convergence, but after careful review we have determined that a

lengthier burn-in period does not significantly improve the resulting posteriors.

The VItamin training process uses as input 107 whitened waveforms corresponding to pa-

rameters drawn from the same priors as assumed for the benchmark analysis. The waveforms

are also of identical duration, sampling frequency, and use the same waveform model as in the

benchmark analysis. The signals are whitened3 using the same advanced detector PSDs [309] as

assumed in the benchmark analysis. When each whitened waveform is placed within a training

batch it is given a unique detector Gaussian noise realisation (after signal whitening this is sim-

ply zero mean, unit variance Gaussian noise). See Sec. 6.4 for further data augmentation details.

The VItamin posterior results are produced by passing each of our 250 whitened noisy testing

set of GW waveforms as input into the testing path of the pre-trained CVAE (Fig. 5.1). For

each input waveform we sample until we have generated 8000 posterior samples on 15 physi-

cal parameters x = (m1,m2,dL, t0,Θ jn,a1,a2,Θ1,Θ2,ψ,φ0,φ12,φ jl,α,δ ). We also note that any

parameters (such as φ0) can (if desired) be marginalised out within the CVAE procedure itself,

rather than after training by choosing only to output a subset of the source parameter space in the

final layer of the decoder network. When performing comparisons between the VItamin ap-

3The whitening is used primarily to scale the input to a magnitude range more suitable to neural networks. The
true PSD does not have to be used for whitening, but training data and test data must be contain signals that have
been whitened by the same PSD.
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Table 5.5: The prior boundaries used on the BBH signal parameters for the benchmark and the
CVAE analyses. We note that the polarisation angle and phase are represented in the 2D plane
through a reparameterisation given in (Sec. 6.5).

Parameter name symbol min max units prior function
mass 1 m1 35 80 solar masses Uniform
mass 2 m2

a 35 80 solar masses Uniform
luminosity distance dL 1 3 Gpc Uniform
time of coalescence t0 0.65 0.85 s Uniform
phase at coalescence φ0 0 2π radians Uniformb

right ascension α 0 2π radians Uniformc

declination δ −π/2 π/2 radians Cosine
inclination ι 0 π radians Sine
polarisation ψ 0 π radians Uniformd

spin magnitude 1 a1 0 0.8 - Uniform
spin magnitude 2 a2 0 0.8 - Uniform
tilt angle 1 Θ1 0 π radians Sine
tilt angle 2 Θ2 0 π radians Sine
azimuthal angle φ12 0 2π radians Uniforme

azimuthal position φ jl 0 2π radians Uniformf

epoch 1126259642 GPS time -
detector network LIGO H1,L1, & Virgo V1 - -

aAdditionally m2 is constrained such that m2 < m1.
bPhase has a periodic boundary condition.
cRight ascension has a periodic boundary condition.
dPolarisation has a periodic boundary condition.
eAzimuthal angle has a periodic boundary condition.
fAzimuthal position has a periodic boundary condition.
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Figure 5.3: We show here a histogram of the optimal network SNR values of the VItamin
training, validation and testing sets. The mode for all plotted distributions occurs at an SNR
value of ∼ 8 which drops off quickly to zero on the left-hand side. There is a tail on the right-
hand side which drops off more gradually up to a maximum SNR value of ∼ 85 for the training
set, ∼ 70 for the validation set and ∼ 57 for the testing set. The peak location and general
distribution of the SNR values is heavily dependent on both the chosen source parameter priors
(Tab. 5.5) and the PSD.
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proach and other bilby samplers, we only compare using 14 parameters (i.e. excluding φ0) since

we apply phase marginalisation to the bilby samplers when generating benchmark Bayesian test

case posteriors.

We can immediately illustrate the accuracy of our machine learning predictions by directly

plotting 2- and 1-dimensional marginalised posteriors generated using the output samples from

our VItamin and Bilby approaches superimposed on each other. We show this for one ex-

ample test dataset in Fig. 5.4 where strong agreement between the Bilby sampler Dynesty in

blue, and the CVAE (red) is clear. It is also evident that whilst we refer to the Bilby sampler re-

sults as benchmark cases, different existing samplers do not perfectly agree with each other (i.e.

ptemcee in green) despite using expert recommended sampler settings shown in Tab. 5.4. For

each of our 250 test cases we see reasonable levels of agreement between pairs of benchmark

samplers and between any benchmark sampler and our CVAE results.

Figures 5.5 and 5.10 show the results of multiple statistical tests (the p-p plot test and JS-

divergence tests) performed on the entire test dataset and between all samplers (Dynesty,

ptemcee, CPNest, emcee, and VItamin). In both tests the quality of the VItamin results

are reasonably consistent with the benchmark samplers . A standard test used within the GW

parameter estimation community is the production of so-called p-p plots which we show for our

analysis and the benchmark comparisons in Fig. 5.5. The plot is constructed by computing a

cumulative probability for each 1-dimensional marginalised test posterior evaluated at the true

simulation parameter value (the fraction of posterior samples ≤ the simulation value). We then

plot the cumulative distribution of these values [20]. Curves consistent with the black dashed

diagonal line indicate that the 1-dimensional Bayesian probability distributions are consistent

with the frequentist interpretation - that the truth will lie within an interval containing X% of

the posterior probability with a frequency of X% of the time. It is clear to see that results

obtained using VItamin show deviations from the diagonal that are entirely consistent with

those observed in all benchmark samplers. The p-value has also been calculated for each sampler

and each parameter under the null-hypothesis that they are consistent with the diagonal. These

results show that for at least 1 parameter, emcee shows inconsistency with the modal at the

0.4% level. Dynesty has a worst case that is consistent only at the 0.7% level. All other
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Figure 5.4: Corner plot showing 1 and 2-dimensional marginalised posterior distributions on
the GW parameters for one example test dataset. Red contours represent the two-dimensional
joint posteriors obtained from VItamin and blue and green contours are the corresponding
posteriors output from our benchmark analyses (using the Dynesty and ptemcee samplers
within Bilby). In each case, the contour boundaries enclose 68,90 and 95% probability. 1
dimensional histograms of the posterior distribution for each parameter from both methods are
plotted along the diagonal. Orange vertical and horizontal lines denote the true parameter values
of the simulated signal. Vertical dashed lines in the 1 dimensional plots are representative of the
5% and 95% symmetric confidence bounds of the 3 sampler 1 dimensional posteriors. At the top
right of the figure we include a Mollweide projection of the sky location posteriors from all three
analyses. All results presented in this chapter correspond to a three-detector configuration but
for clarity we only plot the H1 whitened noisy timeseries y and the noise-free whitened signal
(in blue and cyan respectively) to the right of the figure. The test signal was simulated with an
optimal multi-detector signal-to-noise ratio of 14.3.
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samplers (including VItamin) show consistency at > 0.4% in the worst case. What these p-p

plot results show is that the posteriors produced by VItamin, whilst perhaps not optimal, are

still trustworthy and are unbiased in their estimation.

The JS-divergence is generally used as measure of the similarity between distributions de-

fined as

JS(P||Q) =
1
2

KL[P||Q]+
1
2

KL[Q||P] (5.23)

where KL is the KL-divergence as defined in Eq. 5.9, and (P,Q) are two distributions we would

like to measure the similarity between. In Fig. 5.6 we use this quantity to compare the output

posterior estimates between samplers for the same input test data. To do this we run each in-

dependent sampler (including VItamin) on the same test data to produce samples from the

corresponding posterior. We then compute the 1-dimensional JS-divergence between the output

single parameter distributions from each sampler with every other sampler [311]. For distri-

butions that are identical, the JS-divergence should equal zero but since we are representing

our posterior distributions using finite numbers of samples, identical distributions result in finite

JS-divergence values [312]. In Fig. 5.6, it can be seen that Dynesty vs. VItamin JS values

closely match results from Dynesty vs. Ptemcee for nearly all parameters, with the exception

of φ jl , and φ12. VItamin predictions have slightly higher JS values across all source parame-

ters except for the spin parameters. Dynesty vs. CPNest seems to generally have similar JS

values to Dynesty vs. Ptemcee with the exception of having broader credible intervals on

t0, θ jn, φ jl , α and δ . We also note in the 1-dimensional case that while JS-divergence values are

reliable, they do not directly test the multi-dimensional correlations between source parameters.

We also provide additional JS-divergence figures of merit on 1-dimensional source param-

eter posteriors in Figs. 5.7, 5.8, and 5.9, where in each we highlight the comparison results of

one Bayesian sampler (i.e. Fig. 5.7 highlights CPNest). In all 3 figures it can be seen that

VItamin is generally consistent with the Bayesian sampler highlighted. In particular, we point

out that VItamin appears to most closely agree with CPNest, as shown in the maroon col-

ored bars of Fig. 5.7. Across all 3 figures there is generally more strong agreement between

samplers on the spin parameters, and the least amount of agreement on the sky location pa-
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Figure 5.5: One-dimensional p-p plots for each parameter and for each benchmark sampler and
VItamin. The curves were constructed using the 250 test datasets and the dashed black diag-
onal line indicates the ideal result. The best and worst-case p-values associated with each sam-
pling method are (0.918, 0.047 VItamin), (0.912, 0.007 Dynesty), (0.931,0.007 ptemcee),
(0.706,0.007 CPNest), (0.667,0.004 emcee ).
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Figure 5.6: We show JS divergence values for all 250 test samples as a function of test sample
source parameter for Dynesty against every other sampling approach. Each sampler method
vs. another sampler method are denoted as different colors. The lower and upper end of boxes
represent the 25th and 75th percentile credible regions respectively. The lower and upper end
of the whiskers represent the 5th and 95th percentile credible regions. The orange lines are
representative of the median JS values for each pair of compared samplers. The red horizontal
line is representative of a JS baseline which is computed by taking the mean of all mean JS
values computed over the 14 histograms in Fig. 6.9.
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rameters. VItamin also consistently performs most poorly with respect to each sampler on the

polarisation angle. What is also interesting to note is the level of disagreement of other Bayesian

samplers with themselves across all 3 figures. This disagreement is especially prominent with

regards to source parameters t0, θ jn, φ jl , α , and δ . emcee vs. all other methods generally

has higher JS-divergence values than all other comparison results. This is expected given the

difficulty of obtaining emcee convergence. Finally, we note that although emcee results are

fairly poor in comparison with other approaches, they are a useful benchmark for indicating

underperformance.

In Fig. 5.10 we show the distributions of 14 dimensional JS-divergences for the 250 test GW

samples. In each panel we plot the distribution of JS-divergences obtained when comparing one

of the 4 benchmark samplers with all other benchmark samplers (excluding VItamin). We

also plot the distribution of JS-divergences obtained when comparing the same sampler with

VItamin alone. In all 4 cases the VItamin results show distributions completely consistent

with the deviations observed between benchmark samplers. It is evident from the plot that

Dynesty, CPNest, and ptemcee comparison results between themselves reach JS values far

lower than any comparison result with VItamin. On the flip side, they also have tails at high

JS values in their distributions which are consistent with those of VItamin comparison results.

We see in all 4 subplots of Fig. 5.10 (and most clearly in the lower right subplot) that emcee

continues to have the highest JS values of all comparison results. We also state here that the

14-dimensional JS-divergence distributions were estimated using an approximation technique4

and a finite number of samples such that there was a fundamental noise of ∼ +/−0.15 on the

output values - hence even samples from 2 different sampler runs on the same test data would

have JS-divergence scatter of this magnitude around 0. We have also carried out an additional

study in Sec. 6.3 where we provide an approximated limit through two independent Dynesty

runs over the entire test set.

The dominating computational cost of running VItamin lies in the training time, which can

take O(7) days to complete. Completion is determined by comparing posteriors produced by the

machine learning model and those of Bilby iteratively during training. We additionally assess

4(https://pypi.org/project/universal-divergence/)

(https://pypi.org/project/universal-divergence/
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Figure 5.7: We show JS divergence values for all 250 test samples as a function of test sample
source parameter for CPnest against every other sampling approach. Each sampler method
vs. another sampler method are denoted as different colors. The lower and upper end of boxes
represent the 25th and 75th percentile credible regions respectively. The lower and upper end
of the whiskers represent the 5th and 95th percentile credible regions. The orange lines are
representative of the median JS values for each pair of compared samplers. The red horizontal
line is representative of a JS baseline which is computed by taking the mean of all mean JS
values computed over the 14 histograms in Fig. 6.9.
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Figure 5.8: We show JS divergence values for all 250 test samples as a function of test sample
source parameter for emcee against every other sampling approach. Each sampler method vs.
another sampler method are denoted as different colors. The lower and upper end of boxes rep-
resent the 25th and 75th percentile credible regions respectively. The lower and upper end of the
whiskers represent the 5th and 95th percentile credible regions. The orange lines are represen-
tative of the median JS values for each pair of compared samplers. We see here that VItamin
performs to within a degree of accuracy which is consistent with other Bayesian samplers when
looking at predictions on an individual source parameter basis. The red horizontal line is repre-
sentative of a JS baseline which is computed by taking the mean of all mean JS values computed
over the 14 histograms in Fig. 6.9.
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Figure 5.9: We show JS divergence values for all 250 test samples as a function of test sample
source parameter for Ptemcee against every other sampling approach. Each sampler method
vs. another sampler method are denoted as different colors. The lower and upper end of boxes
represent the 25th and 75th percentile credible regions respectively. The lower and upper end
of the whiskers represent the 5th and 95th percentile credible regions. The orange lines are
representative of the median JS values for each pair of compared samplers. We see here that
VItamin performs to within a degree of accuracy which is consistent with other Bayesian
samplers when looking at predictions on an individual source parameter basis. The red horizon-
tal line is representative of a JS baseline which is computed by taking the mean of all mean JS
values computed over the 14 histograms in Fig. 6.9.
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Figure 5.10: Distributions of JS-divergence values between posteriors produced by different
samplers. In each panel we show the distribution of JS-divergences computed between a sin-
gle benchmark sampler and every other benchmark sampler over all 250 GW test cases (grey
histogram outlines). JS-divergence is in terms of nats where nat stands for “natural unit of
measurement” and is a unit of information. Also plotted in each panel are the corresponding
JS-divergence distributions between the single benchmark sampler and the VItamin outputs
(colored histogram outlines).
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whether the cost curves (Fig. 5.2) have converged, such that their slope is starting to approach

zero. In Fig. 5.11 we plot the validation set moving average cost as a function of training epoch,

where each color is a different run of VItamin using different hyperparameters/run settings

carried out over the course of this thesis. We see that, generally speaking, the cost for all runs

increases and then subsequently decreases over the course of training. The reason for the initial

increase is because we slowly anneal in the KL component of the cost and thus it is high initially

since it is not being used to update the parameters of the network. There are also other runs

which are flat in the initial epochs and this is because those runs are in-fact runs which have

been resumed from previously trained networks, so thus do not have KL annealing applied and

are initially much lower in cost value. Overall, what we see for all VItamin runs near the end

of training is that the cost values all start to approach a reasonable equilibrium. One could argue

that if we were to allow all networks to continue training, that it would possible that the loss

may decrease a significant amount. Whilst this could happen, it can take about a week to reach

5× 104 epochs. One could then infer that given the general trends in Fig. 5.11 that we would

receive diminishing returns in terms of improved cost values with further training time. We stress

that once trained, there is no need to retrain the network unless the user wishes to use different

priors p(x) or assume different noise characteristics. The speed at which posterior samples are

generated for all samplers used, including VItamin, is shown in Table 5.6. Run-time for the

benchmark samplers is defined as the time to complete their analyses when configured using the

parameter choices defined in Table 5.4. For VItamin, the run-time is defined as the total time

to produce 8000 samples. To be clear, this does not include the O(7) days required to train the

network. For our test case of BBH signals VItamin produces samples from the posterior at a

rate which is∼ 6 orders of magnitude faster than our benchmark analysis using current inference

techniques, representing a dramatic speed-up in performance.

5.7 Summary

In this chapter we have demonstrated that we are able to reproduce, to a high degree of accuracy,

Bayesian posterior probability distributions generated through ML. This is accomplished using
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Figure 5.11: We plot multiple independent runs of VItamin validation set cost curves as a
function of training epoch. All validation curve values are computed using a moving average.
Epoch values are plotted in log-scale on the x-axis.
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Table 5.6: Durations required to produce samples from each of the different posterior sampling
approaches.

sampler
run time (s) ratio

τVItamin

τXmin max median
Dynestya [160] 21564 261268 45607 b 2.2×10−6

emcee [153] 16712 39930 19821 5.1×10−6

ptemcee [154] 2392 501632 41151.0 2.4×10−6

CPNest [161] 10309 437008 83807 1.2×10−6

VItaminc 111×××111000−1 1

aThe benchmark samplers all produced O(8000) samples dependent on the default sampling parameters used.
bWe note that there are a growing number of specialised techniques [313, 314, 315, 316] designed to speed

up traditional sampling algorithms that could be used to reduce the runtimes quoted here by O(1− 2) orders of
magnitude.

cFor the VItamin sampler 8000 samples are produced as representative of a typical posterior. The run time is
independent of the signal content in the data and is therefore constant for all test cases.

a CVAE trained on simulated GW signals and does not require the input of pre-computed poste-

rior estimates. We have demonstrated that our neural network model, which when trained, can

produce complete and accurate posterior estimates in a fraction of a second, achieves the same

quality of results as the trusted benchmark analyses used within the LVK.

The significance of our results is most evident in the orders of magnitude increase in speed

over existing algorithms. We have demonstrated the approach using BBH signals but with ad-

ditional work to increase sample rate and signal duration, the method can also be extended

for application to signals from BNS mergers (e.g., GW170817 [9], and GW190425 [317]) and

NSBH [15] systems where improved low-latency alerts will be especially pertinent. By us-

ing our approach, parameter estimation speed will no longer be limiting factor5 in observing

the prompt EM emission expected on shorter time scales than is achievable with existing LVK

analysis tools such as Bayestar [22].

The predicted number of future detections of BNS mergers (∼ 180 [18]) will severely strain

the GW community’s current computational resources using existing Bayesian methods (Tab. 5.1

and Tab. 5.2). We anticipate that future iterations of our approach will provide full-parameter

estimation on all classes of CBC signals in O(1) s on single GPUs. Our trained network is

5A complete low-latency pipeline includes a number of steps. The process of GW data acquisition is followed by
the transfer of data. There is then the corresponding candidate event identification, parameter estimation analysis,
and the subsequent communication of results to the EM astronomy community after which there are physical
aspects such as slewing observing instruments to the correct pointing.
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also modular, and can be shared and used easily by any user to produce results. The specific

analysis described in this chapter assumes a uniform prior on the signal parameters. However,

this is a choice and the network can be trained with any prior the user demands, or users can

cheaply resample accordingly from the output of the network trained on the uniform prior. We

also note that our method will be invaluable for population studies since populations may now

be generated and analysed in a fully-Bayesian manner on a vastly reduced time scale.

For BBH signals, GW data is usually sampled at 1—4 kHz dependent upon the mass of

binary. We have chosen to use the noticeably low sampling rate of 1024Hz in order to decrease

the computational time required to develop our approach and the computational burden of com-

puting our 250 benchmark analyses for each of 4 benchmark samplers. We have found that

increasing the sampling frequency of our input comes at the cost of a small increase in training

time and a similar increase on the GPU memory requirement. We note that with the excep-

tion of requiring 1-dimensional convolutional layers and an increase in the amount of training

data to efficiently deal with a multi-detector analysis, the network complexity has not increased

with the dimensionality of the physical parameter space nor with the sampling rate of the input

data. Given this, it is possible that extending the parameter space to lower masses may not be

problematic.

In reality, GW detectors are affected by non-Gaussian noise artefacts and time-dependent

variation in the detector noise PSD. Existing methods incorporate a parameterised PSD estima-

tion into their inference [318]. To account for these and to exploit the “likelihood-free” nature

of the CVAE approach, we could re-train our network at regular intervals using samples of real

detector noise (preferably recent examples to best reflect the state of the detectors). In this case

we could also apply transfer learning to speed up each training instance based on the previ-

ously trained network state. Alternatively, since the PSD is an estimated quantity, we could

marginalise over its uncertainty by providing training data whitened by samples drawn from a

distribution of possible PSDs. Furthermore, one could also provide the PSD estimates from a

distribution of PSDs as an additional conditional input to the CVAE. Our work can naturally be

extended to include the full range of CBC signal types but also to any and all other parameterised

GW signals and to analyses of GW data beyond that of ground based experiments. Given the
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abundant benefits of this method, we hope that a variant of this of approach will form the basis

for future GW parameter estimation.



Chapter 6

Supplemental VItamin Results and

Analysis

In the following sections we will discuss additional analysis which supplement the main results

of Ch. 5 including the training set SNR distribution and it’s relationship to the performance of

VItamin, as well as the structure and behavior of the CVAE latent space and it’s relationship

with the predicted posterior distributions.

6.1 Jensen-Shannon Divergence as a Function of Signal-to-

Noise Ratio

Over the course of the work carried out in this chapter it was thought that there was the possibility

that high SNR signals could be a limiting factor with regards to the performance of the neural

network model. It was originally hypothesised that due to the low number of high SNR signals

in our training set (as seen in Fig. 5.3), that the network would perform worse on high SNR

signals. This hypothesis is supported by the well known understanding in ML literature that

less available data in specific regions of the parameter space can cause a neural network model

to underfit to those regions [162]. In Fig. 6.1 we plot the 14-dimensional JS-divergence for

all test sample cases of VItamin vs. Dynesty as a function of SNR. Each triangle sign is

representative of individual test cases and different colors correspond to each interferometer.

159
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Figure 6.1: Illustrated in the plot are the 14-dimensional JS-divergence values of Dynesty vs.
VItamin as a function of optimal SNR (Ch. 1, Sec. 1.6.2). Different colours are representative
of each of the 3 detectors (H1, L1, V1) used in the analysis. Each triangle symbol represents a
different test GW case. As can be seen, there does not appear to be a strong positive correlation
with SNR.
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We see in Fig. 6.1 that there is little to no positive correlation between SNR and the 14-

dimensional JS- divergence; instead, it appears that there is a slight negative correlation. This

plot shows that there would be marginal benefit gained from augmenting the training set to

more strongly emphasise high SNR signals, and that the neural network may in fact struggle the

most with low SNR events. Given that the highest JS-divergence values appears to be loosely

correlated with low SNR values, one might assume that this could partially be solved by over-

sampling our training set in the low SNR regime. This is not necessarily practical given that

the prior would then need to be changed and thus the output posterior would then need to be

resampled to compensate through techniques such as importance sampling [319] or rejection

sampling [320].

One other interesting relationship to analyse is that between the 14-dimensional JS-divergence

and the optimal SNR spread across all 3 detectors for a given GW test signal. The SNR spread

is calculated by taking the difference between the maximum and minimum optimal SNR values

from each detector for each test sample. We plot the JS-divergence as a function of SNR spread

in Fig. 6.2 in order to gauge whether our neural network model performs worse when 1 or more

detectors sees the test signal at a lower SNR than the other detectors. We see in Fig. 6.2 that there

appears to be no positive correlation and possibly a very weak negative correlation between the

two quantities. This could indicate that our model has some difficulties with signals which have

an equal amount of optimal SNR across all detectors.

We also plot in Fig. 6.3 the JS-divergence as a function of the second highest SNR for each

test signal. We plot as a function of the second highest SNR so as to highlight the cases where

only one detector sees the GW signal clearly. This is of interest because cases such as these are

more likely to be an issue for reliable parameter estimation. We see in Fig. 6.3 that there is little

positive correlation and perhaps some negative correlation.

6.2 VItamin Latent Space Analysis

In this section we will introduce diagnostic plots we have used in order to gauge the behaviour

of our neural network model with respect to the latent space. For context, we will first examine
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Figure 6.2: Illustrated in this plot are the 14-dimensional JS-divergence values of Dynesty
vs. VItamin as a function of optimal SNR (Ch. 1, Sec. 1.6.2) spread between the 3 detectors
for each test sample. Each triangle symbol represents a different test GW case.



CHAPTER 6. SUPPLEMENTAL VITAMIN RESULTS AND ANALYSIS 163

Figure 6.3: Illustrated in this plot are the 14-dimensional JS-divergence values of Dynesty
vs. VItamin as a function of the second highest SNR between the 3 detectors for each test
sample. Each triangle symbol represents a different test GW case.
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a test case at an approximately median network SNR value of 10.89. As seen in Fig. 6.4, this

median SNR event exhibits complex multi-modal behavior on multiple parameters including:

the polarisation angle, time of coalescence, right ascension and declination. We will discuss in

the following paragraphs the latent space structure associated with this test sample.

There is no hard and fast rule for determining the number of latent space dimensions to use

when deciding on the architecture for a CVAE. That being said, our primary logical motivation

for choosing a latent space size of 15 is directly related to the total number of source parameters

we are trying to get the neural network model to learn. We want to ensure that the information

in each source parameter dimension can be encoded in a latent space which is of sufficient size

to do so. As can be seen in Fig. 6.5, there are some indications that this hypothesis may indeed

be holding true.

In Fig. 6.5 we plot latent space samples drawn from latent space predictions made by both

the q (blue) and r1 (red) encoder networks after training. The probability distributions modeled

by the encoder networks are multivariate Gaussians, whose means and standard deviations are

inferred by the encoders. If a dimension of the latent space is informing posterior predictions, we

would expect that the corresponding 1-dimensional marginalised posterior for that latent space

dimension along the diagonal of the corner plot to show some level of disagreement between

the predictions from both encoder networks. The reasoning behind this statement is that the q

network is given a different level of information with respect to the r1 network. Specifically, the

q network is given not only the GW timeseries, but also the true values of the source parameters

themselves, whereas the r1 network is given the GW time series by itself. If a latent space

dimension is not being used it means that there is no additional amount of information that

can be gleaned from that dimension, so both encoder networks will return a simple Gaussian

distributions, which contribute little to the loss function. If little is being contributed to the loss

function, then little is being learned from that latent space dimension. We can say that there is

a near null contribution to the loss function because the KL divergence between two Gaussian

distributions is known to be close zero. Since the KL component of the loss is near zero for this

dimension, weights will not be updated during the backpropagation process which encourage

this dimension to be used.
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Figure 6.4: Corner plot showing 2 and 1-dimensional marginalised posterior distributions for
the median SNR test dataset sample. Filled (red) contours represent the posteriors obtained
from the CVAE approach and solid (blue) contours are the posteriors output from our baseline
analysis (Bilby using the Dynesty sampler). In each case, the contour boundaries enclose
68,90 and 95% probability. One dimensional marginalised posteriors for each parameter from
both methods are plotted along the diagonal. Blue and red vertical lines represent the 5—95%
symmetric confidence bounds for Bilby and variational inference respectively. Orange crosses
and vertical orange lines denote the true parameter values of the simulated signal. The original
whitened noisy timeseries y and the noise-free signal are plotted in blue and cyan respectively in
the upper right hand panel. The test signal was simulated with network optimal signal-to-noise
ratio of 10.89.
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Figure 6.5: We show in this figure latent space samples from all latent space dimensions of both
the q encoder network (blue) and the r1 encoder network (red). Each point is representative of the
predicted mean values for each latent space dimension (15). Each dimension on the horizontal
and vertical axis represents a different latent space dimension. 1-dimensional histograms of
latent space samples for each dimension are plotted along the diagonal. Contours represent the
68,90,95% credibility intervals.
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Mathematically, we can describe why latent space dimensions aren’t being used when pre-

dicted distributions from r1 and q are nearly identical by first expressing the theoretical proba-

bility distribution of p(z|x,y) as

p(z|x,y) = p(x|z,y)p(z|y)
p(x|y)

, (6.1)

where p(z|x,y) ≈ q(z|x,y), p(z|y) ≈ r1(z|y) and p(x|z,y) ≈ r2(x|z,y). Here, we are assuming

that we have reached a point where our neural network model has been successfully trained

and we are under the scenario where the true theoretical distributions (p(z|x,y), p(z|y),p(x|z,y))

and those predicted by our network (q(z|x,y), r1(z|y),r2(x|z,y)) are modelling their distributions

correctly. If we were to consider this equation given a fixed y and x (i.e. one test sample as in

Fig. 6.5), then p(x|y) becomes a constant as a function of the latent space location z and we can

say

q(z) ∝ r1(z)r2(z), (6.2)

where q(z), r1(z) and r2(z) are functions of z. Furthermore, if it turned out that for all dimensions

of z, q(z) ∝ r1(z) (i.e. if all blue and red distributions matched in Fig. 6.5) then therefore r2(z)

would not be a function of z, but rather a constant. Since r2 would not be a function of z in

this case, posterior samples predicted by the r2 decoder are also not a function of z, thus z is not

being used at all to make those predictions. In other words, the connection between the encoders

in Fig. 5.1 is broken and r2 only gets access to the timeseries data.

We would also like to know if this holds when only individual dimensions of z are equivalent

between q and r1. We may determine this by first defining ztot = {z1,z′}, where z1 is a single

dimension in the latent space, z′ is all other dimensions in the latent space and ztot is the total

set of latent dimensions. If we then marginalise the distribution q(ztot) with respect to z′ for the
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left-hand side of Eq. 6.2

∫
q(ztot)dz′ =

M

∏
b=1

qb(zb)

=
∫

q(z1)q(z2)q(z3) . . .q(zn)dz2dz3 . . .dzn,

= q(z1)
∫

. . .
∫

q(z2)q(z3) . . .dzn . . . ,

= q(z1), (6.3)

where there are M dimensions and we see that have been able to marginalise over all but one

latent space dimension z1. This is possible because the q encoder network models a diagonal co-

variance, so there are no correlations between dimensions. We now define the decoder network

as a function of z as the product of r2 over multiple dimensions, M, of z given as

r2(z) =
M

∏
a=1

ra
2(za), (6.4)

and also define the encoder network r1 as a product over multiple latent dimensions and a sum-

mation over modes N of the latent space as

r1(z) =
N

∑
j=1

α j

M

∏
k=1

r jk
1 (zk), (6.5)

where α is the mode weight. If we then marginalise r1(ztot) over z′ for the right-hand side of
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Eq. 6.2 and plug in Eq. 6.4 and Eq. 6.5 we get

∫
r2(ztot)r1(ztot)dz′ =

∫ M

∏
a=1

ra
2(za)

N

∑
j=1

αi

M

∏
k=1

r jk
1 (zk)dz′,

=
∫

r1
2(z1)[α1(r11

1 (z1)r12
1 (z2) . . .r1M

1 (zM))+α2(r21
1 (z1)r22

1 (z2) . . .r2M
1 (zM))

+ . . .+αN(. . .rNM
1 (zM))]r2

2(z2)dz2r3
2(z3)dz3 . . .rM

2 (zM)dzM,

= r1
2(z1)α1r11

1 (z1)
∫

r12
1 (z2)dz2r13

1 (z3)dz3 . . .r1M
1 (zM)dzM

+ r1
2(z1)α2r21

1 (z1)
∫

r22
1 (z2)dz2r23

1 (z3)dz3 . . .r2M
1 (zM)dzM

+ . . .+ r1
2(z1)α2r21

1 (z1)
∫

. . .rNM
1 (zM)dzM,

= r1
2(z1)[α1r11

1 (z1)+α2r21
1 (z1)+ . . .+αNrN1

1 (z1)],

= r1
2(z1)

N

∑
j=1

αir
j1
1 (z1). (6.6)

Therefore, given Eq. 6.3 and Eq. 6.6, if one of our latent space dimensions predictions, z1, from

both the q encoder and the r1 encoder are proportional to each other then

q(z1) ∝

N

∑
j=1

r j1
1 (z1), (6.7)

therefore predictions from the decoder network r2 are not a function of latent space dimension

z1 (i.e. r2(z1) 6= f (z1)). This also means that the latent space dimension z1 is not being used to

pass information to the decoder network.

From Fig. 6.5 we see that 5 of the 15 latent space dimensions are not being used for this

test case, where the 5 not being used from left to right on the horizontal axis are dimensions

z2,z3,z7,z9, and z14. This could possibly indicate that we do not need to use as many latent

space dimensions as are being employed to accurately model the posterior. It also appears

that the r1 encoder network (red) is in-fact choosing to produce latent space samples which

are representative of multimodal distributions on some dimensions (z2 and z14). This should

not be surprising given that the r1 encoder network’s final output latent space distributions are

generated using a Gaussian Mixture model, where the motivation for using the Gaussian mixture

model was to encourage the r1 network to encode different modes from the posterior directly in
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the latent space. It is also evident from the 2D posterior panels (i.e. z1 vs. z4) that the mixture

model in the r1 encoder network is allowing for far more expressive non-Gaussian shaped uni-

modal distributions.

We see show in Fig. 6.6 predicted weights from the r1 encoder network for the median SNR

test sample. It can be seen that the r1 encoder network has assigned a measurable amount of

probabilistic weight to 16 out of the 32 available latent space modes, with all other modes having

essentially zero weight. The fact that there are several modes which are not assigned any weight

at all may indicate that the Gaussian mixture model in the r1 encoder network could have a

higher level of capacity than what is be needed.

The effect that the integrated Gaussian mixture model in the r1 network has on final posterior

samples, is perhaps most clearly illustrated in Fig. 6.7. Here, we sample from the 4 most likely

latent space modes predicted by the r1 encoder (colored from highest to lowest likelihood as

blue, orange, green and red), where “most likely” is quantified through the Gaussian mixture

model weights. Posteriors for each mode are produced by using latent samples from each mode

and passing them through the r2 decoder network. What we are left with are posteriors which

represent the degree to which individual modes in the VItamin latent space contribute to the

final posterior product. We note that the weight associated with the probability of drawing a

sample from each mode is [2.785,2.043,1.768,1.601]. We see in Fig. 6.7, that the 2 most likely

modes (blue, orange) agree strongly with each other across most dimensions (Θ jn and φ jl being

possible exceptions), while the least likely 2 (green, red) also show strong disagreement on some

parameters (t0, ψ , α , δ ). One might point out that the r1 network has not chosen to represent

each mode in the posterior on ψ using distinct modes in the latent space. We note that this

is in-fact not surprising given that we apply a reparameterisation to the ψ and φ0 parameters

(Sec. 6.5) such that the number of modes the network actually “sees” is effectively reduced.

What the results from Fig. 6.7 may imply is that the multi-modality clearly seen in the final

posteriors of Fig. 6.4 is being encoded across several modes in the latent space produced by r1

encoder network. This could indicate that the r1 encoder network is partially determining what

level of probabilistic weight to assign to each mode in the posterior space. More work could be

done in future studies to more rigorously quantify this.
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Figure 6.6: Plotted are the predicted weight values from the r1 encoder network for a given
posterior sample of the median SNR test case as a function of latent space mode dimension
number. Each value is normalised such that the sum of the weights is 1, where 1 is representative
of the network model assigning a high likelihood of sampling from that particular mode.
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Figure 6.7: Shown are posterior samples drawn from the 4 most likely latent space modes pre-
dicted by the r1 encoder network. Colors denote each mode from highest to lowest mean mode
weight as blue, orange, green and red respectively. The log weight associated with each mode
from most likely to least likely is given as [2.785,2.043,1.768,1.601]. Each dimension on the x
and y axis represents 15 source parameter posteriors predicted. 1-dimensional marginalised pos-
teriors of posterior samples for each source parameter are plotted along the diagonal. Contours
represent the 68,90,95% credibility intervals. The orange vertical and and cross hairs represent
the true source parameter values.
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6.3 Dynesty vs. Dynesty Jensen–Shannon Divergence

Here we provide some discussion regarding the range of JS values we might expect from

VItamin. We approximate a rough limit by comparing two independent Dynesty runs on

all 250 test sample cases for both the full 14-dimensional JS-divergence and the 1-dimensional

JS-divergence. We use Dynesty since the sampler is known within the GW parameter estima-

tion community to be one of the most trusted and reviewed samplers [5].

In Fig. 6.8, we compute the JS-divergence between two independent runs of Dynesty for

each of the 250 test cases across all 14 dimensions. The mean JS value across all test cases

is 0.05 with tails extending to an upper bound of ∼ 1, hence 0.05 is a measurement of our

uncertainty in JS value error. Given that Dynesty is generally consistent between runs of the

same data, we would expect that two independent runs of the Dynesty sampler should provide

us with a reliable estimate on our fundamental JS results uncertainty. Observing the range of JS

values seen in Fig. 6.8 and comparing those values to those of Fig. 5.10, we see that VItamin

results plotted against other sampler results do generally seem to have larger JS values than

the mean of 0.05 seen in Fig. 6.8. We also see that a sizeable fraction of the VItamin JS

distributions do exceed the upper bound of the Dynesty vs. Dynesty JS results, though this

trend is also seen in comparison results of other Bayesian samples vs. other Bayesian samplers.

In all, this may indicate that there is room for improvement in VItamin results given that the

VItamin JS values in Fig. 5.10 generally tend to exceed the fundamental mean JS uncertainty

of 0.05.

In Fig. 6.9 we plot the JS-divergence between independent Dynesty runs for using 1-

dimensional marginalised source parameter posterior results. Instead of using the

universal-divergence code, we calculate the JS-divergence using the analytic expres-

sion defined in Eq. 5.23 on the 1-dimensional marginalised posteriors between the two Dynesty

runs. In the figure, different colors represent different source parameter JS distributions over all

250 test cases. We see that JS-diverence values across all source parameter distributions range

from∼ 1×10−4−10−1. The mean 1-dimensional JS value across all source parameter distribu-

tions is approximately∼ 10−3. This value indicates a lower limit on the JS-divergence values we
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Figure 6.8: A probability distribution of JS-divergence values for Dynesty vs. another inde-
pendent run of Dynesty using 14-dimensional posteriors on the same test data. The mean JS
divergence has a value of 0.05 . We note that since since the JS-statistic is calculated using the
universal-divergence [311] code-base, that there are some negative values which are
not shown here.
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Figure 6.9: Shown are histograms of 1-dimensional JS divergence values for Dynesty vs.
another independent run of Dynesty. Different colors represent JS values with respect to in-
dividual source parameter posterior Dynesty predictions. Mean JS values for each source pa-
rameter are given as: m1 ∼ 0.00139, m2 ∼ 0.00143, dl ∼ 0.00142, t0 ∼ 0.00358, θ jn ∼ 0.00192,
ψ ∼ 0.00134, a1 ∼ 0.00101, a2 ∼ 0.00088, Θ1 ∼ 0.00143, Θ2 ∼ 0.00123, φ12 ∼ 0.00080,
φ jl ∼ 0.00136, α ∼ 0.00538, δ ∼ 0.00401. JS values are calculated using the scipy JS di-
vergence code-base.

would expect to see with respect to comparison results using 1-dimensional marginalised pos-

teriors. If we compare this mean value with Fig. 5.6 of Ch. 5 we see that the tails of VItamin

vs. Dynesty 5th and 95th credibility regions lie either within or near the mean lower limit

calculated above of 10−3. Some exceptions to this include t0,Θ jn,α,δ where the tails are higher

than this mean, and φ12 where the tails are lower.
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6.4 Data Augmentation and Normalisation

As discussed previously in in Ch. 2, it is often advantageous to augment the training set during

training of a neural network. This is done to decrease the complexity of the search space [162],

as well as to provide a greater variety of signals to the network such that it is better able to

generalise to new signals when testing the model.

A form of pre-processing that we employ is that of normalisation. We normalise each source

parameter value (x) for all training samples such that they lie between the values of zero and

one (i.e. on the unit-hypercube). We also normalise all timeseries (y) in the training set using

a normalisation factor such that all timeseries values are safely contained within the range of

(−1,1). We note that this timeseries normalisation factor must also then be applied during

testing when using a pre-trained neural network. Both of these normalisations are performed in

order to reduce the search space complexity and to avoid exploding gradients (Ch. 2, Sec. 2.2).

We also convert the right ascension source parameter values to the hour angle coordinate

system. This is done because the right ascension of a source is measured with respect to it’s

position on the celestial sphere. For a given GW signal, if we were to fix all source parameters

except for the sky location and change it’s GPS time, we would be left with a different form of

the signal in the data since the Earth rotates, and thus so will the relative position between the

source and the detectors. We can avoid this issue by reparameterising the signal such that its

right ascension is now an hour angle given by

αHA = (tGMT−α) mod 2π, (6.8)

where αHA is the hour angle, tGMT is the Greenwich mean sidereal time of the GW signal arrival

time, “mod” is the modulus, and α is the right ascension. This reparameterisation makes it such

that different GPS times for a fixed GW signal does not change the form of the signal in the data

when also changing the GPS time.

In order to make it easier for the network to predict cyclic parameter values, we reparame-

terise all cyclic parameter values to be represented on the abstract 2D plane. The motivation here

is to help the network realise that the bounds which define the cyclic parameters are actually at
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equivalent locations. The conversion is done by enforcing the decoder network to produce 2

means and 1 standard deviation characterising multivariate Gaussians for each cyclic parameter

(as opposed to the 1 mean for all other source parameters). 1 The angle is then computed be-

tween the 2 predicted cyclic parameter means through the inverse tangent function. The inverse

tangent converts the 2-dimensional representation back to the original parameter space for all

cyclic parameters.

Another augmentation technique that we apply is to allow the network to see multiple noise

realizations of the same signal multiple times. This is done by first enforcing that the network be

run over a subset of the entire training set, 2×104 unique training sample waveforms, 4 times.

The cost function of the network is calculated by drawing a random batch of signals from the

current training subset of 2× 104 signals, whereby each signal in the batch is assigned a new

white Gaussian noise realisation. This means that we effectively train over an infinite number

of Gaussian noise realisations. After the network has seen 2× 104 training signals 4 times we

then load in a new subset of 2× 104 training signals. By giving the network multiple noise

realisations for the same signals, we are hopefully encouraging the network to generalise to new

noise realisations during testing.

Every time we give the network a new chunk of 2× 104 signals, we also randomize the

phase, time of arrival and distance of the new loaded in training samples. We note that the new

chunk of signals is read in already having existing values which have been drawn from the prior.

This process is to relabel the source parameter values with new draws from the prior and to also

modify the associated noise-free timeseries of the training samples accordingly. For distance, we

first choose values uniformly at random from 0 to 1 for each distance training sample parameter.

These values are then converted to units of Mpc by

dnew = dmin +ud(dmax−dmin), (6.9)

where ud is a uniform set of numbers between 0 and 1, dmax represents the maximum allowed

distance according to the prior and dmin is the minimum allowed distance according to the prior.

1The predicted standard deviation in this case is the concentration parameter which partially characterises the
decoder output von Mises distributions used to represent the cyclic parameter posterior distributions.
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We sample duni from a uniform distribution simply because that is the prior we use for the

luminosity distance. We then determine the scale factor by which the distance has changed from

its old value for each training sample by dividing the old distance by the new distance value

S =
dold

dnew
, (6.10)

where dold is the original distance value for the sample and dnew is the new value. In summary, all

we’re doing here is drawing a new distance from the prior, and then computing a ratio between

the old and new distance.

In order to get the phase augmentation correction term we do a similar process as the distance

augmentation above. We begin by drawing a new phase value from the prior. A phase correction

term is then calculated

Γ
corr
φ0

=−exp
(

i(φ new
0 −φ

old
0 )
)
, (6.11)

where Γcorr
φ0

is the phase correction factor we will use to randomize the phase, φ new
0 is the new

randomized phase value and φ old
0 is the original training sample phase value.

The time of coalescence correction term is then computed by first randomly drawing a new

time of coalescence from the prior. We then find the difference between the new and old times

and compute a correction factor applied in the frequency domain given by the expression

ΓΓΓ
corr
t0 =−exp

(
2π i fff t(t

new
0 − told

0 )
)

(6.12)

where tnew
0 is the new time of coalescence, told

0 is the old time of coalescence, fff t is a frequency

vector with values from 0 to the Nyquist frequency, and ΓΓΓ
corr
t0 is the time of coalescence correc-

tion factor. Finally, given all the correction factors for time of coalescence ΓΓΓ
corr
t0 , distance scale

factor S and phase at coalescence Γcorr
φ0

have been calculated, we need only simply multiply the

phase correction term and the time correction term by the real FFT [98] of the training sam-

ple timeseries, y, where we note the time correction term is frequency dependent and the phase

correction term is a constant. The application of the time and phase correction terms may be
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expressed as

ỹ
Γcorr = F (y)Γ

corr
φ0

ΓΓΓ
corr
t0 , (6.13)

where F is the FFT. We note here that the time correction term effectively “slides” the signal

in time, such that the end of the signal can be slid past the end of the timeseries and end up at

the start of the timeseries, and vice versa. This is obviously unphysical, but we emphasise that

our signals are constructed so that they do not have significant amplitude at the boundaries of

our timeseries. Additionally, the time of coalescence window defined by the prior is relatively

narrow, hence we expect no unphysical signal wrapping.

We then compute the inverse real FFT [98], F−1, of ỹ
Γcorr in order to get back to the time

domain and also multiply by the distance correction scale factor

y
Γcorr = F−1(ỹ

Γcorr)S. (6.14)

Adding these randomized elements to the existing training workflow may help to ensure that the

neural network model does not overfit the training set. We also note that these augmentations

were a computationally cheap and simple method for expanding the effective training set size.

6.5 Phase and Polarisation Reparameterisation

One of the biggest issues we have faced while training the neural network has been dealing with

the complex multi-modal nature of the phase (φ ) and polarisation (ψ) parameters. Along with

the addition of the Gaussian mixture model component of the network mentioned previously,

we have also implemented a reparameterization of both phase and polarisation angle in order to

simplify the search space for the neural network partly inspired by the work of Jones in [321].

We are allowed to make the following reparameterisation due to the degeneracies in ψ and

φ0 of the signal model we use, where degeneracy refers to different ψ,φ0 combinations which

give rise to the same GW waveform. In order to go from ψ and φ to a new representation ψ
′

and X , we first define X as

X = (ψ +φ0) mod π. (6.15)
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We then define ψ
′
as

ψ
′
= ψ mod

π

2
. (6.16)

The reparameterisation process is visually illustrated in Fig. 6.10. It can be seen that the

2-dimensional representation X ,ψ
′
in both the upper left and lower right subplots, is vastly sim-

pler than the original 2-dimensional φ0,ψ representation in the lower left. The transformation

is also able to maintain the property of being reversible. We note that this process does not

guarantee that transforming a sample forward and backward would put it in the same location.

A forward transformation maps the sample to the X ,ψ
′

space (i.e. upper left plot of Fig. 6.10),

but a backwards transformation will equally randomly place the sample in one of the 4 other

tessellations of the (X −ψ
′
),ψ

′
shape ( upper right plot of Fig. 6.10) in the original φ ,ψ space

(lower left plot of Fig. 6.10).

In order to get back to the original ψ,φ0 representation, we first subtract off ψ
′
from X (upper

left to upper right plot of Fig. 6.10). We then need to convert the (X −ψ ′) parameter to the φ0

space and can do so by choosing a uniform random variable with equal probability between zero

and 2π , denoted as D1, as well as one between 0 and π/2, denoted as D2, and then adding D1

and D2 to (X −ψ ′) (upper right to lower left plot in Fig. 6.10). This process is given by the

expression

φ0 =
(
(X−ψ

′
)+D1 +D2

)
mod 2π (6.17)

To get back to ψ we add D2 to ψ ′ given as

ψ = (ψ
′
+D2) mod π. (6.18)

As seen going from the upper right plot to the lower left plot of Fig. 6.10, the distribution on the

full physical ψ,φ0 space (lower left plot) is just 4 copies of the ψ
′

and (X −ψ
′
) shape (upper

right plot) tessellated in the φ0,ψ space. We also highlight that if one considers GW template

waveforms with higher order modes this degeneracy is broken and the above reparameterisation

would not be valid [321].
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Figure 6.10: An illustration of the polarisation angle and phase reparameterisation process.
Upper left plot: representative of samples in the ψ ′ and X space where distributions are ran-
domly generated according to a 6 component Gaussian mixture model. Red crosses denote each
Gaussian’s component mean. Upper right: Samples from the ψ

′
,X space are converted to the

ψ
′
, (X −ψ

′
) space. Lower left: We then apply a tessellation of the samples (i.e. (X −ψ

′
),ψ

′

shape) in the upper right figure using the D1 and D2 randomisation process to get samples in
the original ψ,φ0 space. Lower right: We can get back to the ψ ′ and X space by applying our
reparameterisation process again and see that it is identical to the original upper left plot.
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6.6 Summary

In this chapter we begin by outlining several studies which investigated the relationship between

the JS divergence of VItamin results vs. Dynesty results as a function of SNR. It was found

that there was little positive correlation between the two, but instead there was slight negative

correlation.

There was also some studies done on the VItamin latent space for a given test sample. It

was found that not all latent space dimensions are being used for this test sample and it was

shown mathematically that dimensions not used imply not information is being passed to the

decoder network to produce posterior samples.

We then end the chapter discussing the expected lower limit on JS values of VItamin vs.

other samplers. We also outline several data augmentation and normalisation techniques which

we use in order to optimise the training of the VItamin network.



Chapter 7

Conclusions and Future Work

In this thesis it was shown for the first time how machine learning may be used for both GW

signal detection and parameter estimation. Whilst current state-of-the-art algorithms used by the

LVK are optimal to a certain degree (e.g. matched filtering) or optimal but slow (e.g. Bayesian

inference) for both the detection and parameter estimation of GWs, the number of signals ex-

pected to be seen in future observation runs have the potential to tax the computational resources

needed for continued use of such techniques. The work in this thesis has shown several first of its

kind proof-of-principal studies which illustrate that ML techniques are a powerful and accurate

tool for signal detection and parameter estimation.

In Ch. 1 the basic concept of GR and how GWs arise from that concept was introduced. The

standard techniques for GW detection and parameter estimation (matched template filtering and

Bayesian inference respectively) was discussed. It was shown how the LIGO/Virgo detectors

detect GWs, as well as account for various noise sources during operation. It was also dis-

cussed that while matched filtering and Bayesian parameter estimation are generally efficient

and reliable, they can also be computationally expensive. An overview was provided on GW

detections made by the LVK up to the present day and how future observation runs will produce

an abundance of GW signals. Given the expected number of signals in future observing runs, it

was made clear in this introductory chapter that there is a need for efficient low-latency signal

detection and parameter estimation methods.

In Ch. 2 the simple concept of a perceptron neural network was introduced. From there, it

183
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was shown how the concept of a perceptron may be expanded to include multiple perceptrons in

a layer and multiple layers of perceptrons into a deep neural network. It was also discussed how

a deep neural network is trained and how one may then construct other neural network types,

such as CNNs, AEs, VAEs and CVAEs.

In Ch. 3 a survey of various ML techniques employed in GW astronomy was performed.

It was seen that ML has had a surge in use in only the recent past and has been applied to a

variety of tasks including glitch classification, GW population analysis, GW Bayesian parameter

estimation and point estimate parameter estimation, signal detection and PSD estimation. Given

the wide scope of tasks in which neural networks have been applied across the whole of GW

astronomy, it is perhaps an indication that ML will play an increasingly pivotal role in the LVK

over the coming years.

In Ch. 4 I presented my study in which I used CNNs to perform GW signal detection. Given

that the expected number of detections made by the LVK is expected to increase dramatically

in the coming years, there is an urgent need for faster signal detection techniques. A CNN,

is one such technique which is able to produce predictions on signal classes in low-latency.

This method also has the potential to provide added flexibility to be trained on real noise, thus

allowing CNN to directly learn the noise distribution and detector artefacts. In my study I trained

a CNN model on BBH signals buried in whitened Gaussian noise. The results from the CNN

model were compared to those from the standard signal detection method used in the ground

based GW community (matched filtering). Results between both the ML approach and the

matched filtering were seen to be in strong agreement with each other. These results showed for

the first time that deep learning could match the efficiency of existing signal detection techniques

and as such contributed to an increased level of confidence within the GW astronomy community

that deep learning could be a powerful tool.

In Ch. 5 and Ch. 6 I presented my study in which I used CVAEs to produce Bayesian pos-

teriors on 15 BBH parameters accepted in Nature Physics. Our CVAE model (VItamin) was

trained on whitened BBH signals injected in Gaussian noise. I also produced benchmark re-

sults using known and trusted Bayesian nested sampling and MCMC samplers (Dynesty,

Ptemcee, CPNest, Emcee). Results from both VItamin and Bayesian samplers were com-
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pared against each other using many different figures of merit such as the JS-divergence be-

tween posteriors and p-p plots. It was shown that results from the ML approach had similar

levels of agreement as those between Bayesian samplers against other Bayesian samplers. It

was also shown that the speed of VItamin was ∼ 6 orders of magnitude greater than those

of the Bayesian samplers, producing posteriors in less than 1 s. Given the speed gains from

this approach and the accuracy of CVAEs with respect traditional samplers, it is evident that

CVAEs may be useful for low-latency EM follow-up analyses. The low-latency data products

from CVAEs will allow for the observation of prompt EM emission on timescales which are far

shorter than existing Bayesian sampling techniques. It was also stated in this chapter that the

ML model used may be extended to a variety of other source types and may also in future work

be trained/tested using real non-Gaussian detector noise.

ML has been used in countless applications across a wide variety of fields including: eco-

nomics [322, 323, 324], biology [325, 326, 327] , chemistry [328, 329, 330] and physics [331,

332, 333]. GW astronomy has only in the past several years seen an increase in the number of

studies which apply ML to a wide variety of applications including: GW signal detection, GW

parameter estimation, and many other studies (See Ch. 3). Several first proof-of-principal stud-

ies were shown which proved that ML can match the accuracy of standard trusted techniques

currently used in the collaboration for both signal detection and parameter estimation. Going

forward, there are many future directions that could be taken with this work.

At the time of publication for the signal detection paper [1], it was mentioned that one could

apply our method (or similar ML models) to sources other than BBH signals including: BNS,

NSBH, CW and stochastic GW events. In the subsequent years, there have been many follow-

up studies which have demonstrated success using a variety of ML algorithms for BNS signal

detection [206, 208, 334], BNS early-warning signal detection [335], CW detection [221, 336],

and stochastic background detection [337]. Moreover, it has been shown that unmodelled ML

approaches may also be used to detect burst-like signals [218, 338]. Given the success of many

of the aforementioned studies, there is still much work left to be done in the regime of testing

such algorithms on real data in real noise (including our own work). There is also much interest

in the community with regards to the FARs of such algorithms and there should be more studies
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done concerning what classes of spurious non-astrophysical signals may “trick” ML models into

outputting false detections. I also mentioned the possibilities of using CNNs for point-estimate

parameter estimation in my signal detection paper [1], but acknowledge that this may not be the

most useful when compared with recent developments in ML for Bayesian parameter estimation

which returns the posterior directly.

There have also been many recent developments in the field of ML hyperparameter optimi-

sation [339, 340, 341] (Ch. 2, Sec. 2.4), and such optimisation algorithms have become more

widely available and easier to use [342]. It would be interesting to see whether the use of such

algorithms can outperform a random hyperparameter search used by most GW astronomy ML

practitioners today. It should also be noted that the gap must be bridged between proof-of-

principal studies to the development of easy-to-use packaged ML GW detection pipelines in

order to make the most use of these approaches.

Following the initial release of my study on Bayesian parameter estimation using CVAEs,

there has been a flurry of follow-up studies which have used many alternative ML techniques

to produce similar data products. Such work includes those done by [234] using reduced order

modeling and perceptron networks and also [236] using normalising flows. There has also been

a study which uses hybrid normalising flows - nested sampling algorithms in order to boost

sampler convergence times [241], as well as a study using CVAEs which have built upon my

own work [243]. It was also noted that there has been exciting recent developments which have

shown for the first time that ML models (normalising flows) may be used to accurately estimate

Bayesian posteriors for real GW signals in real noise [239]. Applying variational inference

algorithms such as CVAEs and normalising flows to BNS signals should also be explored, given

the expected increase in detected GW signals by the LVK. Some issues that will need to be

overcome will be the large length of BNS signals (∼ 100s or more depending on the lower cut-

off frequency) and the large standard sampling rate of preprocessed data used by data analysis

pipelines (∼ 8kHz), where the computational power needed to train may be large. Possible

solutions could be to use similar techniques as those employed by [236] like principal component

analysis to reduce the dimensionality of the GW timeseries, or those employed by [208] who

used varying sample rates at different intervals of the input signal. As mentioned earlier in Ch. 6
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Sec. 6.4, data augmentation to phase, distance and time of coalescence was also applied. It

should be noted that this form of signal augmentation can be extended in future work to include

more parameters and may therefore reduce the need for a large training set.

One issue that was not addressed in this thesis is accounting for an unknown (static) PSD,

or an estimated PSD as conditional input to the VItamin network. It is also known that the

PSD of GW detectors varies as a function of time over the course of a given observation run.

A changing noise floor can have adverse impact on the performance of neural networks which

have been pre-trained on a PSD which does not encompass such variance. One solution may be

to provide many different PSD realisations within the bounds of what the variance of the PSD is

to be expected over the course of an observing run as input to the neural network during training,

thus marginalizing over the PSD. Careful decisions would then have to be made as to how often

one should re-train such a model as an observing run progresses. It should also be acknowledged

that there is the option to use the estimated PSD for each training/validation/testing sample as a

conditional input together with the data, as was done by [294] using normalising flows.

Re-training periodically may also benefit from the use of transfer learning [162] whereby

previous iterations of the neural network model are used as the initialised values for the new

neural network’s weights. It is also important to produce packaged, reviewed pipelines of varia-

tional inference GW algorithms, so that their benefits may be more fully utilised by others in the

GW astronomical community. Extending the VItamin analysis presented in Ch. 5, to larger

prior ranges, as well as increasing the sample rate will be necessary in order to confirm the

degree to which the computational cost may or may not increase for more complicated signals.

It is also acknowledged that one of the limiting factors of my own work has been the use

of Gaussian noise, rather than realistic non-Gaussian noise. If the ML models used by myself

for signal detection and parameter estimation were trained on real data, then (in principle) the

ML model would be able to learn the true likelihood and not be limited to the analytically

imposed version. Assuming this to be the case, it may be possible that ML will be able to

exceed the performance of existing methods in non-Gaussian noise both in terms of speed and

accuracy [203, 204]. It is my hope that the next generation of Ph.D. students and/or postdocs

will apply CVAEs under realistic noise conditions and test on real GW signals in future work.
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It is my hope that my own work will continue to be expanded upon and serve as a foundation

for future studies which aim to provide rapid ML data products, such as signal detection statistics

and Bayesian posteriors, in real time to scientists both inside and outside of the LVK. Given that

ML studies for GW astronomy have largely focused on CBC events, possibly due in-part to the

fact that they are the only sources detected so far, I believe that ML will also have a crucial role

to play regarding sources yet to be detected or remain unmodelled. It is my belief that rapid

data products from ML will only enhance current and future analyses, hopefully continuing to

advance the field of GW data analysis.
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