M Universit
of GlasgowY

L

Gabbard, Hunter (2021) Advancing the search for gravitational waves using
machine learning. PhD thesis.

https://theses.qgla.ac.uk/82605/

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study,
without prior permission or charge

This work cannot be reproduced or quoted extensively from without first
obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author,
title, awarding institution and date of the thesis must be given

Enlighten: Theses

https://theses.gla.ac.uk/
research-enlighten@aglasgow.ac.uk

https://theses.gla.ac.uk/82605/
https://theses.gla.ac.uk/
mailto:research-enlighten@glasgow.ac.uk

Advancing the Search for Gravitational Waves using Machine

Learning

Hunter Gabbard

Submitted in fulfilment of the requirements for the

Degree of Doctor of Philosophy

School of Physics and Astronomy
College of Science and Engineering

University of Glasgow

M University
of Glasgow

September 2021

Abstract

Over 100 years ago Einstein formulated his now famous theory of General Relativity. In his the-
ory he lays out a set of equations which lead to the beginning of a brand-new astronomical field,
Gravitational wave (GW) astronomy. The LIGO-Virgo-KAGRA Collaboration ()’s aim is
the detection of events from some of the most violent and cataclysmic events in the known
universe. The detectors are composed of large-scale Michelson Morley interferometers
which are able to detect s from a range of sources including: binary black holes (s),
binary neutron stars (s), neutron star black holes (s), supernovae and stochastic S.
Although these events release an incredible amount of energy, the amplitudes of the S
from such events are also incredibly small.

The uses sophisticated techniques such as matched filtering and Bayesian inference
in order to both detect and infer source parameters from events. Although optimal under
many circumstances, these standard methods are computationally expensive to use. Given that
the expected number of detections by the will be of order 100s in the coming years,
there is an urgent need for less computationally expensive detection and parameter inference
techniques. A possible solution to reducing the computational expense of such techniques is the
exciting field of machine learning (IML).

In the first chapter of this thesis, s are introduced and it is explained how s are
detected by the . The sources of s are given, as well as methodologies for detecting
various source types, such as matched filtering. In addition to signal detection techniques,
the methods for estimating the parameters of detected signals is described (i.e. Bayesian
inference). In the second chapter several machine learning algorithms are introduced including:

perceptrons, convolutional neural networks (s), autoencoders (AFEs), variational autoen-

ABSTRACT il

coders (s) and conditional variational autoencoders (s). Practical advice on train-
ing/data augmentation techniques is also provided to the reader. In the third chapter, a survey on
several techniques applied a variety of problems are shown.

In this thesis, various and statistical techniques were deployed such as s and S
in two first-of-their-kind proof-of-principle studies. In the fourth chapter it is described how a

may be used to match the sensitivity of matched filtering, the standard technique used
by the for detecting s. It was shown how a may be trained using simulated

waveforms buried in Gaussian noise and signals with Gaussian noise alone. Results of
the classification predictions were compared to results from matched filtering given the
same testing data as the . In the results it was demonstrated through receiver operating
characteristics and efficiency curves that the approach is able to achieve the same levels
of sensitivity as that of matched filtering. It is also shown that the approach is able to
generate predictions in low-latency. Given approximately 25000 time series, the is
able to produce classification predictions for all 25000 in 1s.

In the fifth and sixth chapters, it is shown how s may be used in order to perform
Bayesian inference. A was trained using simulated waveforms in Gaussian noise,
as well as the source parameter values of those waveforms. When testing, the is only
supplied the waveform and is able to produce samples from the Bayesian posterior. Re-
sults were compared to that of several standard Bayesian samplers used by the including:
Dynesty, ptemcee, emcee, and CPnest. It is shown that when properly trained the
method is able to produce Bayesian posteriors which are consistent with other Bayesian sam-
plers. Results are quantified using a variety of figures of merit such as probability-probability
(p-p) plots in order to check the 1-dimensional marginalised posteriors from all approaches are
self-consistent with the frequentist perspective. The Jensen—Shannon (J5)-divergence was also
employed in order to compute the similarity of different posterior distributions from one an-
other, as well as other figures of merit. It was also demonstrated that the model was able
to produce posteriors with 8000 samples in under a second, representing a 6 order of magnitude

increase in performance over traditional sampling methods.

Contents

Abstract

List of Acronyms

Acknowledgements

Declaration

1 Introduction to Gravitational waves

1.1
1.2
1.3
1.4

1.5
1.6

Gravitational Wave Detections
Multi-Messenger AStronomy vt i e e e e e e
The Weber Bar Detector and the Hulse-Taylor Pulsar
Ground Based Interferometric Detectors
1.4.1 Detector Response
1.42 Detector Noisettt i e
General Relativity and Gravitational Waves
Astrophysical Sources and Search Methods
1.6.1 Compact Binary Coalescences
1.6.2 Compact Binary Coalescence Search Method
1.6.3 Continuous Waves o e
1.6.4 Continuous Wave Search Methods
1.6.5 BurstSignals e e
1.6.6 BurstSearchMethod

1.6.7 Stochastic Gravitational Waves

1

xi

Xiv

XV

CONTENTS v

1.6.8 Stochastic Search Method 36

1.7 BayesianInference o 37
1.7.1 Markov ChainMonte Carlo 41

1.7.2 Nested Sampling 44

1.8 Summary e e e e e e e e e 49
2 An Introduction to Machine Learning 51
2.1 Fully-Connected Deep Neural Networks 52
2.2 Training Best Practices (practical advice for thereader) 57
2.2.1 Dataset Size, Pre-Processing and Augmentation 57

2272 Validation L e e 60

2.3 Regularisation o e e e e e e e e e e e e e e e e 61
23.1 Dropout e e e e 61

2.3.2 Batchnormalisation 62

2.4 Hyperparameter Optimization v v v v v vt e 62
24.1 The “Intuitive” Approach, 63

242 RandomSearch o 63

243 GridSearch e 64

2.5 Convolutional Neural Networks, 65
2.5.1 The Convolutional Filter 65

252 PoolingLayers 67

253 Striding L e e e 68

2.5.4 The Fully-Connected Layers 68

2.6 Conditional Variational Autoencoders 70
2.6.1 Autoencoders oL e e e e e e e e 70

2.6.2 Variational Autoencoders Lo oo e 72

2.6.3 Conditional Variational Autoencoders 76

277 Summary . .o .. e 77

CONTENTS v

3 Machine Learning in Gravitational wave Astronomy 80
3.1 Machine Learning for Gravitational Wave Detection 81
3.1.1 Compact Binary Coalescence Detection Studies 81

3.1.2 Burst Detection Studies 0 Lo, 84

3.1.3 Continuous Wave Detection Studies 86

3.2 Machine Learning for Gravitational Wave Bayesian Parameter Estimation . . . 88

3.3 Machine Learning for Population Inference 93

3.4 Machine Learning for Detector Characterisation 94

35 SUMMArYo e e e e e e e e e e e e e e e e 99

4 Matching matched filtering 100
4.1 Introduction e e e e e e 100

4.2 Simulation Details 102

4.3 The Deep Network Approach 104
4.4 Applying Matched-Filtering, 111

4.5 Matching Matched Filtering Results 112
4.6 Conclusionsl e e e e e e e 116

S Variational Inference for GW Parameter Estimation 119
5.1 Introduction L e e e e e 119

5.2 VItamin Cost Function Derivation 127

5.3 VItamin Network Design 132

5.4 Training Procedure e e e 136

5.5 TestingProcedure 139

5.6 Primary VItaminResults o o o oL 139

57 Summary ... e 154

6 Supplemental VItamin Results and Analysis 159
6.1 Jensen-Shannon Divergence as a Function of Signal-to-Noise Ratio 159

6.2 VItamin Latent Space Analysis 161

CONTENTS vi

6.3 Dynesty vs. Dynesty Jensen—Shannon Divergence 173
6.4 Data Augmentation and Normalisation 176
6.5 Phase and Polarisation Reparameterisation 179
6.6 SUMMATY i vt e e e e e e e e e e e e e e e e e e e 182

7 Conclusions and Future Work 183

List of Tables

4.1 CNN optimised network configuration consisting of 6 convolutional layers (C),

followed by 3 hidden layers (H). 109

5.1 O3 events table containing information on detected event parameter estimation
runtimes from April 8, 2019 - September 10,2019. 121

5.2 O3 events table containing information on detected event parameter estimation

runtimes from September 10, 2019 - March 16,2020. 122
5.3 The VItamin network hyper-parameters. Dashed lines “—" indicate that con-

volutional layers are shared between all 3 networks. 135
5.4 Benchmark sampler configuration parameters. 141

5.5 The prior boundaries used on the BBH signal parameters for the benchmark and
the CVAE analyses. We note that the polarisation angle and phase are repre-
sented in the 2D plane through a reparameterisation given in (Sec. 6.5). 142

5.6 Durations required to produced samples from different posterior approaches. . . 156

vii

List of Figures

1.1

1.2
1.3

1.4

1.5
1.6

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8

3.1

4.1

Sky localization for the first confirmed detection of a BNS merger by the LIGO-
Virgo Collaboration (LVC)., 5
Hulse-Taylor binary pulsardecay. 7
[ustration of the advanced Laser Interferometer Gravitational wave Observa-
tory (LIGO) detectors. o v i v i e e e e e e e e e e e e e e 9

[lustration of the LVC detector antenna patterns for both the i, and h;. GW

polarisations e e e e e e e 11
Theoretical design sensitivity noise budget curves for Advanced LIGO. 14
hy and hy polarization illustration 0., 20
Perceptron network illustration Lo, 54
Deep fully-connected neural network illustration. 55
Sigmoid activation function illustration. 56
Convolutional neural network filter illustration. 66
Convolutional filter striding example. 69
Simple autoencoder network illustration. oo 71
Simple variational autoencoder network illustration 73
Simple conditional variational autoencoder illustration. 78

An example of two glitches commonly identified by Gravity Spy (blip and whistle) 95

Whitened noise-free timeseries of a BBH signal 105

viil

LIST OF FIGURES

4.2

4.3

4.4

4.5

5.1

5.2

53

54

5.5

5.6

5.7

5.8

59

5.10

5.11

6.1

CNN loss, detection probability and learning rate plots illustrate how the net-
work’s performance is defined as a function of the number of training epochs. .
Confusion matrices for testing datasets containing signals with optimal SNR
Popt =2,4,6,8,10,12 e
Receiver operating characteristic curves for test datasets containing signals with
optimal signal to noise ratio, Popt =2,4,6o
Efficiency curves comparing the performance of the convolutional neural net-

works and matched-filtering approaches.

The configuration of the VItamin neural network.
The VItamin cost as a function of trainingepoch.
VlItamin signal-to-noise ratio training, validation and testing set distributions.

Corner plot showing 1 and 2-dimensional marginalised posterior distributions
on the GW parameters for one example testdataset.
One-dimensional p-p plots for each parameter and for each benchmark sampler
and VItamin., e e e e
JS divergences of individual source parameters for Dynesty against all other
approaches. L L e e
JS divergences of individual source parameters for CPNest against all other
approaches. e e e e e
JS divergences of individual source parameters for Emcee against all other ap-
Proaches. e e e e e e e e e e e e e e
JS divergences of individual source parameters for Pt emcee against all other
approaches. o e e e e e e e e e e e e e e e e e e
Distributions of the JS-divergence values across 14 parameters between posteri-
ors produced by different samplers. 0 L.

Mulitple VItamin run validation cost curves as a function of training epoch. .

14-dimensional JS-divergences of Dynesty vs. VItamin as a function of

individual detector optimal SNR. oL,

iX

110

133
143

148

150

152

LIST OF FIGURES

6.2

6.3

6.4

6.5

6.6

6.7

6.8

14-dimensional JS-divergences of Dynesty vs. VItamin as a function of
individual detector optimal SNRspread.
14-dimensional JS-divergences of Dynesty vs. VItamin as a function of the
second highest signal-to-noise ratio (SNR) for each test sample.
Posterior predictions from VItamin, Dynesty and Ptemcee for the median
SNR test sample case in the VItamin paper training set.

Latent space samples corner plot for a test sample in the VItamin paper train-

Latent space weight plot for the median SNR test sample in the VIt amin paper
training SEL. . . . v v v e i e
Modal posterior corner plot for a medium signal-to-noise ratio test sample in the
VItamin paper trainin@ Set. v v v v v v v e e e e e e e e e e e e

Dynesty vs. Dynesty 14-dimensional JS divergence probability distribution

6.10 An illustration of the polarisation angle and phase reparameterisation process. .

List of Acronyms

GW Gravitational wave

VC Vapnik-Chervonenkis

GRB gamma-ray burst

BBH binary black hole

CW continuous gravitational waves
EM electromagnetic

TAP true alarm probability

CBC compact binary coalescence
BNS binary neutron star

NSBH neutron star black hole
PSD power spectral density
ELBO evidence lower bound

PN post-Newtonian

NR numerical relativity

IMR inspiral-merger-ringdown
Phenom Phenomenological

xi

LIST OF ACRONYMS

EOB effective-one-body

LIGO advanced Laser Interferometer Gravitational wave Observatory
LISA Laser Interferometer Space Antenna
CVAE conditional variational autoencoder
KL Kullback—Leibler

GPU graphics processing unit

LVC LIGO-Virgo Collaboration

p-p probability-probability

SNR signal-to-noise ratio

AE autoencoder

VAE variational autoencoder

LSTM Long Short Term Memory

GR general relativity

CWB Coherent WaveBurst

FAR false alarm rate

FAP false alarm probability

MH Metropolis-Hastings

ASD amplitude spectral density

FFT fast Fourier transform

CNN convolutional neural network

ROC receiver operator characteristic

LIST OF ACRONYMS

MCMC Markov Chain Monte Carlo

ML machine learning

ANN artificial neural network

MAF masked autoregressive flow

GAN generative adversarial network

RF random forest

GP genetic programming

JS Jensen—Shannon

NS neutron star

BH black hole

PDF probability density function

LVK LIGO-Virgo-KAGRA Collaboration

Al artificial intelligence

GMST Greenwich mean sidereal time

CMB cosmic microwave background

NESSAI Nested Sampling with Artificial Intelligence

MNIST Modified National Institute of Standards and Technology dataset

xiii

Acknowledgements

I would first off like to thank my parents (Lisa and Kurt) for all that they’ve done for me. Without
their constant support and encouragement over the course of my life, I would not be where I am
today. Additionally, I would like to thank the rest of my family including my siblings (Mallory
and Schuyler), as well as my grandfather (Evan Lewis).

To my friends here in Glasgow, I can confidently say that the last 4 years have been some of
the best of my life. I’ve had so many wonderful experiences with you all; from many nights out
to the pub, camping/hiking trips, climbing and random hangouts. I will dearly miss having you
all in one place, but I’m sure that our paths will cross again at some point in the near future. A
special thank you to Jennie Wright. I could not ask for a better best friend.

To the many advisors that I’ve had over my short research career including: Prof. Marco
Cavaglia, Dr. Florent Robinet, Dr. Soma Mukherjee, Dr. Andrew Lundgren, Prof. Ik Siong
Heng and Dr. Chris Messenger. You have all in your own way inspired me to continue in
physics through to my PhD. A big thank you to my primary PhD advisor Chris, who has taught
me more than I ever could have imagined I would learn. You really are a truly gifted and amazing

advisor and I feel incredibly lucky to have had the opportunity to work with you.

Xiv

Declaration

With the exception of chapters |, 2 and 3, which contain introductory material, all work in this
thesis was carried out by the author under the supervision of Dr. Chris Messenger and Prof. Ik
Siong Heng unless otherwise explicitly stated.

The work carried out in Ch. 4, was primarily done by myself under the supervision of Dr.
Messenger and Prof. Heng, along with support from co-authors Mr. Fergus Hayes and Mr.
Michael Williams. Both Mr. Williams and Mr. Hayes had carried out preliminary studies
and produced some initial code to work from. Mr. Williams, along with myself, produced the
machine learning code used in the analysis. I produced the matched filtering code used in the
analysis. All co-authors on the published paper version of this analysis [1] have also contributed
to the text of the published manuscript. Both Dr. Messenger and Prof. Heng provided advice on
the thesis chapter version of the published manuscript.

The work carried out in Ch. 5 and Ch. 6 was lead by myself under the supervision of Dr.
Messenger and Prof. Heng, along with support from co-authors Mr. Francesco Tonolini and
Prof. Roderick Murray-Smith. Both Mr. Tonolini and Prof. Murray-Smith provided guidance
on the machine learning methods used, some initial machine learning code to work from, as
well as input on the text released in the public version of the manuscript found here [2]. Dr.
Messenger and Prof. Heng also provided input to the text in the public form of the manuscript,
as well as advice on the thesis chapter version.

The final conclusions chapter (Ch. 7) was written by myself, with advice from Dr. Messenger

and Prof. Heng.

XV

Chapter 1

An Introduction to Gravitational Waves,
Search Methods and Parameter

Estimation Techniques

1.1 Gravitational Wave Detections

Since it’s inception, the has carried out several observation runs. Initial operations ran from
2002 to 2010, but no s were detected during this time period. During the first observing run
in the advanced detector era (September 2015 - January 2016), the detected a total of 3
mergers including: GW150914 [3], GW151226 [4] and GW 151012 [5]. GW150914 was
the very first detected with a value of ~ 25.1 [6]. GW151012 was originally labeled
as a less significant potential GW detection (LVT151012) due to its high false alarm rate, but
was subsequently upgraded to a confirmed event in the GWTC-1 catalogue [7] because its
false alarm rate was less than 1 per 30 days (a threshold determined by the). The change
in false alarm rate for GW151012 can largely be attributed to various improvements made to
all search algorithms used in the first observation run between the initial detection and up to
publication of the GWTC-1 catalogue paper (for further details, see [7, 8]).
During the second observing run (November 2016 - August 2017) the detected an ad-

ditional 7 s with total masses between ~ 18.6M, and ~ 85.1M,. The second observation

CHAPTER 1. INTRODUCTION TO GRAVITATIONAL WAVES 2

run excitingly also saw the very first detection of a event. The event had the high-
est network of any event over all of Ol and O2 (~ 32.4). Interestingly, there was also a
large non-astrophysical noise transient which overlapped with a portion of the event in the
Livingston detector. This noise transient was successfully mitigated through an excis-
ing technique known as time-domain gating [9]. Approximately 1.7s following GW170817,
a gamma-ray burst () (GRB170817) was observed across multiple wavelengths of the
electromagnetic (EM) spectrum over the course of several weeks [10]. The delay between
GRB170817 and GW170817 has been used to place strong constraints on various physical phe-
nomena including: the speed of gravity, Lorentz invariance and tests of the equivalence princi-
pal [10]. Additionally, given that observations provide direct estimates on the redshift and
luminosity distance of the system, it was shown in [1 1] that these observations may be used to
provide the first gravitational wave based independent measurement on the Hubble constant.
Most recently, during the first half of the third observing run (April 2019 - March 2020) the
collaboration made an additional 39 confirmed event detections [5, 7] . The increase
in number of detections can largely be attributed to higher sensitivities of the detectors during
this observation run over previous runs, with a range of 108Mpc, 135Mpc and 45Mpc for
Hanford, Livingston and Virgo respectively (approximately 80Mpc, 80Mpc and 25Mpc during
02). The GWTC-2 catalogue contains detected signals with component masses lower and higher
than the lowest and highest component masses contained in all of GWTC-1. The most up-to-
date merger rate constraints according to GWTC-2 were also updated to be ~ 23.9Gpc yr~!
for s and ~ 320Gpc 3yr~! for s (originally 9.7 — 101Gpc—2yr~! for BBHs and 110 —
3840Gpc—3yr~! for BNSs for 02).
In January of 2020, the collaboration reported the first detection of two events
(GW200105,GW200115) [15] . The primary component masses of both events are ~ 8.9My,
and ~ 5.7M, respectively, whose mass values are both above the maximum allowed mass of a

neutron star (NS) defined in [16], so may therefore be likely classified as black hole (BH)s. The

I'The range is a scalar value which is often used to represent the performance of the detectors. It is
quantified by determining the luminosity distance at which a single detector could detect a 1.4Mg pair with
an > 8 averaged over the sky location and orientation of the source with respect to the detector. The range is
dependent on a number of factors including: source mass/spin and the noise curve [12] of the detector. See [13, 14]
for more details.

CHAPTER 1. INTRODUCTION TO GRAVITATIONAL WAVES 3

secondary masses of each event were given as ~ 1.5My and ~ 1.9Mg, respectively and were
reported to be within the range of known NSs [17].
As improvements are made to the detectors over the coming years, it is expected that
the rate of detections will increase dramatically [18]. It is predicted that at design sensitivity, the
will observe &'(100s) of events per year [18]. Current methods for both detection and
parameter estimation, while optimal in many cases, are often computationally expensive [6, 19,
20]. Algorithms which produce estimates on source parameter values of signals can take
upwards of weeks to run (see Tab. and Tab. in Ch. 5). Given that follow-up observations
of components heavily depend upon sky location alerts from the and the
rapid decay of signatures [21], there is an urgent need for faster techniques which can
not only identify the presence of signals in detector data, but also identify source parameter

values like the sky location of a event.

1.2 Multi-Messenger Astronomy

After a signal has been identified, alerts are sent out to partners around the globe in
order to perform follow-up observations. Astronomical partners include instruments which look
across the whole range of the spectrum: Radio, Microwave, infrared, visible light, ultra-
violet, X-ray and gamma ray. A full Bayesian posterior (Sec. 1.7) is generally produced on
all viable candidates. In addition to the full Bayesian analysis, the collaboration is also
able to produce low-latency parameter estimation products (e.g. sky maps) using tools such as
Bayestar [22], where an analysis using Bayestar is shown in Fig. 1.1. Bayestar op-
erates under the assumption that a large degree of the information contained in a signal is
encapsulated within a small number of data products produced by the search matched filtering
process, namely: the time, amplitude and phase of the signal at each detector. Using a simpli-
fied likelihood function and the Fisher information matrix [23], Bayestar is able to produce
estimates on a limited number of source parameters (sky location, distance and orientation) in
under a few minutes which provides a good approximate of the full Bayesian posterior [24].

Prompt sky location, distance and orientation data products using tools like Bayestar and

CHAPTER 1. INTRODUCTION TO GRAVITATIONAL WAVES 4

Bilby along with observations from partners can provide new insights into fundamental
astrophysical processes. For example, as signals reach the final stages of the inspiral phase
of the merger, the internal structure of the sources has more of a pronounced effect on the result-
ing signal. Information on tidal disruption processes may be gleamed from this part of the

signal in combination with prompt observations from the spectrum [25]. follow-up
analysis can also be used in tandem with Bayesian analysis in order to produce inferences on
the Hubble constant, though may also be performed without an counterpart using galaxy
catalogues [26]. A Hubble constant measurement can be done by obtaining accurate estimates
on the luminosity distance directly from the signal through Bayesian inference and using

partners to identify a likely host galaxy, whereby correct identification of the host galaxy
may benefit from low-latency alerts. For GW 170817, and partners were able to infer
a Hubble constant value of ~ 69fé7kms_lMpc_l [9, 11, 27].

The arrival time (along with an accurate estimation of the luminosity distance) of a
event can be compared to the observation time of the from a merger counterpart.
Comparing arrival times of both components allows us to test the effect gravitational poten-
tials have on radiation and s (equivalence principle), as well as the speed
of gravity [10]. In addition, we can perform tests on the accuracy of general relativity itself
through residual noise waveform subtraction tests, inspiral-merger-ringdown consistency tests
and parameterised tests of generation under a Bayesian framework [28]. Depending on the
duration and of the signal, accurate constraints may be placed on the graviton Compton
wavelength and non-general relativity (GR) polarization states. Other tests of performed

over both event catalogues GWTC-1 and GWTC-2 are listed in great detail in [28, 29, 30].

1.3 The Weber Bar Detector and the Hulse-Taylor Pulsar

By the early 1950s technology had progressed enough such that serious attempts at experimen-
tally verifying the existence of s by Einstein were possible. One of the earliest and most
well-known attempts at doing so was by Joseph Weber at the University of Maryland where

he used an instrument known as a resonant-mass detector (Weber Bar Detector) [31]. The We-

CHAPTER 1. INTRODUCTION TO GRAVITATIONAL WAVES 5

LIGO ' ™
30° \ l Swope +10.9 h
LIGO/ g | .
Virgo 4 J :
™ ; N
y Fermi/ ! . l
o - GBM —— E
16h 12h gh
DLT40 -20.5 d
IPN Fermi /
INTEGRAL
» -
-30° —\ W -30°

Figure 1.1: Sky localization for the first confirmed detection of a BNS merger by the [.VC. Areas
shaded in green are the data products from Bayestar using both [.LIGO alone and [.IGO/Virgo
combined, dark blue are predictions from Fermi/GBM and light blue are predictions from IPN
Fermi/INTEGRAL. Black and white images on right-hand side are visible light measurements
of a bright event around the galaxy NGC 4993 thought to contain the afterglow of the BNS
event. This figure was produced by the authors of [21].

CHAPTER 1. INTRODUCTION TO GRAVITATIONAL WAVES 6

ber Bar operates on the principle that when a impinges on the bar (usually made of some
type of metal alloy, in this case high Q aluminium~) at a specific frequency, since the bar is a
harmonic oscillator which is driven by the Riemann curvature tensor, it will cause the bar to
resonate. If the frequency of the is equivalent to the natural resonant frequency of the bar,
the bar will oscillate at a higher amplitude than if the signal were at any other frequency, thus a

would theoretically be detectable [32] Weber made the claim in 1968 that there was “good
evidence” for several detections made by his experiment [32], but unfortunately no others were
able to reproduce his results. Although follow-up results from other independent studies were
disappointing, Weber’s work encouraged many others to build their own improved experiments
with breakthrough technological developments at the time and kick-started the subsequent field
of detection [33]. Fortunately, in the subsequent years after Weber’s first published results,
there would come the first indirect observational evidence for the existence of .

In 1975, Russell Hulse and Joseph Taylor made the first direct observation of a binary pulsar,
which subsequently won them the 1993 Nobel Prize in Physics [34]. Both Hulse and Taylor
observed that the orbital period of the binary pulsar appeared to experience orbital decay as a
function of time. The orbital decay was thought to likely be attributed to a loss of energy in the
system due to radiation predicted by GR. The observed period decay as a function of time
(in years) is represented in Fig. . As can be seen in the figure, there is a striking level of
agreement between the theoretical decay curve predicted by Einstein’s and the observations

made by Hulse and Taylor. Importantly, this work was also one of the first pieces of indirect

observational evidence for the existence of s. Pioneering work by both Hulse-Taylor and
Weber, spurred the development of advanced detectors aimed at directly observing
events. In the following section we will discuss how the current generation of detectors
works and detects S.

2Q is approximately equivalent to the ratio of the initial energy stored in the oscillator to the energy lost over
one radian of the oscillation cycle.

CHAPTER 1. INTRODUCTION TO GRAVITATIONAL WAVES 7

I T T T T T T T T T T T T | T T T T | T T T T | T T T T | T I
0

C Line of Yero Orbital Decay

—~ =5 [—
2, B :
L B i
E-10 -
+ -]
= N .
e—15 |- -
4 - .
£ - -
= - .
E—zﬂ - -
© - :
£ TR0 [T 7]
= - :
E_SO :_ General Kelativity Prediction — _:
ge, B i
i C]
= _a5 []
= -]
~ - i
O B i
—40 — —

—43 T I T T T T T T T N N T T N O A A

197%5 1980 1985 19040 18285 2000 =005
Year

Figure 1.2: Illustrated is Hulse and Taylor’s observations of binary pulsar PSR B1913+16 or-
bital decay as a function of time in years. The orbital decay is quantified by the total cumulative
amount the binary system has been offset from it’s first observation in 1975 with respect to the
binary’s perihelion point (black dots). The solid black curve is representative of the theoretical
decay curve predicted by GR. This figure was produced by the authors of [35].

CHAPTER 1. INTRODUCTION TO GRAVITATIONAL WAVES 8

1.4 Ground Based Interferometric Detectors

The current generation of ground-based detectors in the are composed of three ob-
servatories, two in North America (Hanford, Washington State and Livingston, Louisiana) [36]
and one in Pisa, Italy (Virgo) [37]. There are also other ground-based detectors in Hannover,
Germany (GEO) [38] and Kamioka, Japan (KAGRA) [39]. In addition to ground-based detec-
tors there are eventual plans to build space-based observatories such as the Laser Interferometer
Space Antenna () [40] and TianQin [4 1] which will search for super massive s (among
other sources). Each detector (with and TianQin being the exception) can be thought of as
a large-scale Michelson-Morley Interferometer [42] composed of two arms orthogonal to each
other. Each arm of the detectors is 4km in length, with the Virgo arms being slightly
shorter in length at 3km in length.

A simplified schematic of an interferometric GW detector is shown in Fig. . In the
schematic, it is shown that a 1064nm laser beam is emitted from a laser on the left-hand side, it
then passes through a phase modulator (PMOD) and enters the power recycling cavity (PRM).
This effectively boosts the power of the signal. The laser then passes through a beam splitter
(BS), which splits the laser beam path into two separate parts. Each part travels through an input
test mass and hits end test masses at the end of both interferometer arms. The beams are then
caught in a Fabry-Perot cavity [43] which acts to extend the distance traveled of the laser light
photons, as well as the power [44]. In other words, the cavity “stores” the photons for a long
period (~ 1 ms) which allows a potential signal more time to interact with the photons,
thus increasing the sensitivity of the interferometer at low frequencies. Some laser light escapes
back down both arms and recombines at the BS where the recombined beam passes through a
signal recycling mirror (SRM). Finally, the beam hits a set of photodiodes (PD) which produce
the interferometer readout, where the readout is also a measure of the phase difference between
photons from both arms. The phase difference information is encoded in the interference pattern
on the readout of the the detector photodiodes, which is the final output of the detectors.

Starting from the well-known postulate from relativity that the distance between two points

in spacetime, known as the interval, along the path of a light ray travelling along the coordinate

CHAPTER 1. INTRODUCTION TO GRAVITATIONAL WAVES 9

IS
A
Fabry-Perot
v
S TS
TS TS
PMOD PRM BS
Bl = |—v | — |
I Fabry-Perot
WS SRV

PD - E— Interferometer Readout

Figure 1.3: An illustration of the detectors. An illustration of the LIGO detectors. The
detectors operate by first emitting photons from an initial laser port. Photons emitted from the
laser pass through a beam splitter and down two orthogonal arms of the detectors in the form
of vacuum sealed beam tubes guided by mirror optics. The photons then hit test mass mirrors
at both ends and are caught in what is known as a Fabry-Perot signal recycling cavity [43]. A
Fabry-Perot cavity acts to effectively increase the sensitivity of the arms by positively modulat-
ing the amount of time spent by the light in the arm, which consequently also increases the laser
power in the arm [44]. After reflecting back and forth in the Fabry-Perot cavities, photons are
released from the Fabry-Perot cavities and return to the beam splitter, subsequently recombining
and are recorded on a set of photodiodes which measure the phase difference between photons
from both encoded in the interference pattern on the readout of the detector photodiodes, which
is the final output of the detectors.

CHAPTER 1. INTRODUCTION TO GRAVITATIONAL WAVES 10

vector defined by dx?,dx',dx?,dx> =t,x,y,z may be expressed as
ds* =0 = gyydx*dx”. (1.1)

It can be shown through some algebraic manipulation (explained in [45]) that we can quantify
the light travel time difference of photons originating from the initial laser port traveling up and

down the two interferometer arms as

At(t) = h(t)%L = h(t)Tyo- (1.2)

where Ty 1s the return trip time down one arm and the phase difference being

27c

A1) = h(t) o =5~ (1.3)

Here we can clearly see that the phase difference between the two light signals is scaled by the
length of the interferometer arms L. The detectors are tuned through control systems such that
the photons arriving back at the final readout port of the detector act to destructively interfere
with each other (i.e. create an interference pattern on a dark fringe). If a impinges on the
detector it will compress one arm while stretching the other arm. There will then be a detectable
difference in phase between the light traveling down both arms. Due to this phase difference,
the light recombining at the beam splitter will no longer destructively interfere and a signal will
appear on the photodetectors in the form of a interference pattern [46]. In the next section,
we will discuss how the sensitivity of the detectors may be influenced by the orientation of the

detectors with respect to the source.

1.4.1 Detector Response

The detectors are not equally sensitive to all parts of the sky. Mathematically, the sky
dependent sensitivity of the detectors may be expressed through their antenna patterns. The
antenna pattern of a detector is dependent upon the location and wave polarisation of the

source with respect to the detector. The antenna patterns themselves have a direct impact on the

CHAPTER 1. INTRODUCTION TO GRAVITATIONAL WAVES 11

Plus Polarization Cross Polarization

05

Figure 1.4: An illustration of the [.VC detector antenna patterns for both the 4, and hy GW
polarisations. The detector itself would lie in the x-y plane with one arm along the x-axis and
the other along the y-axis.

amount of strain measured by the [.VC detectors.

As shown in [47], the antenna pattern may be expressed as

1

F, = —3 (14 cos?0)cos2@cos2y — cosOsin2sin2y (1.4)
1

Fy = +§(1 +c0s20)cos2@sin2y — cosOsin2@cos2y (1.5)

where 0 is the azimuthal angle and ¢ is the polar angle, both with respect to a reference frame
fixed at the center of the Earth. Parameter y is the polarisation angle which is defined as being
counter-clockwise around the direction of GW propagation and is the angle from the line of
nodes to the x-axis of the GW source reference frame. We note that both 6 and ¢ may also
be used to convert to the standard right ascension & = (¢+ Greenwich mean sidereal time of
GW signal arrival time) and declination 6 = (7/2) — 0 coordinates. Parameters 0, ¢ and y
are all Euler angles which describe the frame of the binary system with respect to the detector.
The shape of the antenna response is illustrated pictorially in Fig. 1.6 in a Cartesian coordinate

system, where the detector arms lie along the x-y plane perpendicular to each other. Areas where

CHAPTER 1. INTRODUCTION TO GRAVITATIONAL WAVES 12

the detector is least sensitive to s are given by the null areas of Fig. and occur when both

v =0 and 1t = 0. Areas where the detectors are most sensitive correspond to systems where

1 =0 (e. sources directly above and below the detectors).

The strain of both the “plus” and “cross” polarized portions (Eq. , Eq.) may
be generalised for a given polarization angle with respect to the direction of propagation
as [48]

h, = hycos2y — hysin2y, (1.6)
h, = hysin2y + hycos2y. (1.7)
Measured strain is then shown to be a summation of h/X and hl+ attenuated by antenna

patterns Fy and F and is given by

h(t) =F.(0,y,0)h, +F(0,y,0)h, (1.8)

Since the antenna patterns are sky dependent, they are therefore also time dependent. They
are time dependent because the Earth rotates as a function of time and thus the orientation of
the antenna pattern for a given detector therefore also changes. For example, very long signals
(e.g., continuous gravitational waves (C'W) signals, Sec.)) experience time varying antenna
responses as the Earth rotates and search methods are designed to take this into account [49].
In the next section, we will discuss how the detectors are also influenced by non-astrophysical

sources of strain.

1.4.2 Detector Noise

The detectors, in addition to being incredibly sensitive to strain from signals, are also
sensitive to an abundant number of non-astrophysical noise sources. These noise sources can
produce periods of excess power in measured detector data which may limit the sensitivity of the
detectors. Some common noise sources include gravity-gradient noise, seismic noise, thermal

noise and quantum shot noise.

CHAPTER 1. INTRODUCTION TO GRAVITATIONAL WAVES 13

In practice, the performance of the detector may largely be characterized by a quantity known
as the power spectral density (). Assuming the absence of a signal, the output of the
detector may be assumed to be equivalent to the detector noise as a function of time n(¢) sampled

at regular intervals of Ar. We define the auto-correlation function as
K(1,12) = E[n(t)n"(12)], (1.9)

where E is the expectation value over an ensemble of realisations of the noise and * is the
complex conjugate. Assuming stationary noise, we can write K as being merely dependent on
T =|t; —tp]. As shown in [50, 51], the of the detector may thus be written as the Fourier
transform of the auto-correlation function K(7)

1 [~ .
K(1)e*™%dt = lim 26°At, f >0, (1.10)
At—0

Sn(f)EE .

where frequencies are given to be greater than zero and o is the variance. We will now describe

in detail the types of noise sources which may affect the performance of the detector

Seismic Noise

Seismic noise largely affects the sensitivity of the detectors in the low frequency regime (~
1072 — 10?Hz [53]) due to a variety of sources including: earthquakes, anthropogenic motion
and wind. Earthquakes produce sets of waves (p,s,r-waves) which travel both through the Earth’s
core/mantel and also along the surface of the earth [54]. When one of these seismic waves hits
the detectors they can induce horizontal ground motion on the optical components of the de-
tector. In order to isolate the detector optics from horizontal ground motion (~ 0.03 —0.1Hz),
optics are suspended on multi-layered seismic isolation stacks [55]. Between ~ 1 —3Hz an-
thropogenic noise can cause short duration noise transients in the detector output. Sources of
anthropogenic noise may result from individuals walking around in the control rooms or
large trucks passing on a nearby highway [56]. Wind greater than 10 —20Mph can also adversely

influence the detector sensitivity at frequencies of 0.15 — 15Hz [57].

CHAPTER 1. INTRODUCTION TO GRAVITATIONAL WAVES 14

10-20 = Total === Coating Brownian
=== Quantum Vacuum === 1 Coating Thermo-Optic
= Seismic === 1 Substrate Brownian
=== Newtonian Gravity Substrate Thermo-Elastic
=== Suspension Thermal Excess Gas

Strain [1/VHZz]

Frequency [Hz]

Figure 1.5: The theoretical design sensitivity noise budget curves for Advanced [.IGO. As can
be seen in the illustration, lower frequencies are largely dominated by seismic motion, mid-
range frequencies are dominated by thermal coating Brownian motion on the mirrors as well
as quantum vacuum noise between 10 and 100 Hz and higher frequencies are dominated by

quantum vacuum shot noise. The plot was generated using the pygwinc computing package
[52].

CHAPTER 1. INTRODUCTION TO GRAVITATIONAL WAVES 15
Thermal Noise

Thermal noise may be classified into two distinct types: suspension and Brownian coating ther-
mal noise and primarily limits detector sensitivity in the frequency band of 10 —500Hz. Suspen-
sion noise results from thermal motion in the suspension fibers which can induce motion into
the detector mirrors [58]. Brownian coating noise results from thermal fluctuations in detector
mirror coatings [59]. Both of these sources may be quantified through the application of the
fluctuation-dissipation theorem as shown in [58]. Materials for the mirror coatings are chosen
such that they have minimal light absorption at the wavelength of the laser [60]. Possible miti-
gation strategies for reducing thermal noise also involve careful choice of coating thickness, as

well as the use of Cryogenic systems for cooling the suspensions/optics of the detector [61].

Quantum Noise Sources

There are two sources of quantum noise in the detectors: quantum shot noise and quantum
thermal radiation pressure noise. Both are produced by internal measurement/readout processes.
Quantum shot noise is related to from the wave packet-like behavior of light as it travels through
a medium. Since the distribution of photons arriving within a time interval is governed by
Poisson statistics, we know that the uncertainty on the number of photons arriving at the detector
photodiodes after is proportional to the square root of the expected number of photons arriving
within that same time interval (optical power). We can express mathematically the amount of

strain induced by shot noise on the detectors hg, where subscript s stands for shot noise. given

1 [hcA
hs = —\] —— 1.11
STLV 2zp’ (1.11)

where L is the arm length of the interferometer, 7 is Planck’s constant, A is the laser light

by

wavelength, P is the power of the laser and c is the speed of light [62].

The second type of noise source is quantum radiation pressure noise. Radiation pressure
noise arises from the effect of photon momentum transfer onto the test mass mirrors of the
detector. When a photon from the detector laser hits a mirror, it transfers some momentum

to that mirror. Since all photons do not hit the mirror at the exact same time, there is some

CHAPTER 1. INTRODUCTION TO GRAVITATIONAL WAVES 16

variability of pressure exerted on the mirror as a function of time. This moves the mirror in a
variable manner which leads to a change in the detector arms length and thus the noise on the
output. This can be mathematically expressed as the amount of strain induced on the detector

due to radiation pressure noise iR by

1 hP
_ N 1.12
=T 2\ 273’ (1.12)

where m is the mass of the mirror, R stands for radiation pressure and f is the frequency mea-

sured in the detector [62].

Shot noise may be partially mitigated through increasing the circulating light power of the
laser, since it is known that sensitivity of the detector to s is proportional to the laser power,
whereas shot noise is proportional to the square root of the optical power [63]. Unfortunately, as
the optical power of the laser is increased, so to does thermal radiation pressure noise, which sets
an effective upper limit on optical laser power in the detector. Radiation pressure noise can be
reduced by either increasing the mass of the mirrors m, or the length of the detectors L, though it
should be noted that any increase in either of these values comes with added technological and

sheer monetary cost constraints. For a more detailed description of shot noise, see [62].

Gravity-Gradient Noise

Gravity-gradient noise (or Newtonian noise) is noise which results from small stochastic pertur-
bations to the gravitational field background in and around the detector test masses. Some
sources of gravity gradient noise include: seismic noise and atmospheric fluctuations (specifi-
cally, changes in air pressure which carry with it changes in air density) [64]. Gravity-gradient
noise decreases steeply with increasing frequency and is a primary limiting factor in detector

sensitivity below frequencies of 1Hz [50].

CHAPTER 1. INTRODUCTION TO GRAVITATIONAL WAVES 17

1.5 General Relativity and Gravitational Waves

s were predicted by Einstein in his theory of well over 100 years ago [65]. In his theory,
Einstein shows that the more massive an object is, the more curvature in spacetime that object
creates. This curvature then has an effect on the motion of objects which encounter it. This
effect is summarized succinctly by John Archibald Wheeler where he states that “Spacetime
tells matter how to move; matter tells spacetime how to curve”. Curvature may be quantified
by first defining a term known as the Riemann curvature tensor R’éuv. The Riemann tensor
describes the change experienced by a vector which has been parallel transported over a curved
manifold[66]. Einstein formalises the relationship between matter/energy and the curvature of

space-time in his field equations as

8nG

where A is the cosmological constant (scalar measurement describing the energy density of
space), guv is the metric which describes the geometric structure of space-time, G is Newton’s
gravitational constant, c is the speed of light, and 7}, is the stress energy tensor which describes

the density, direction, and flow of energy in space-time. The Einstein tensor, Gy, is defined as

1
Guv :R“V_ERg“v (1.14)

where Ry,y is the Ricci curvature tensor (a contraction of the Riemann curvature tensor) and R
is the Ricci scalar defined as the trace of the Ricci curvature tensor with respect to the metric.
The Einstein field equations described by Eq. can unfortunately only be solved exactly
analytically in a limited number of situations. Some solutions include the Schwarzschild solu-
tion for a non-spinning singularity (where a singularity is defined as a point in spacetime where
there is predicted to be infinite curvature [66]) and the Kerr solution for a spinning singularity.
In the regime of small perturbations to spacetime, considering we would like to explore the
behavior of non-linear, time-dependent systems in terms of Einstein’s field equations, we need

to put his equations into a more linear form. This can be done by describing the spacetime

CHAPTER 1. INTRODUCTION TO GRAVITATIONAL WAVES 18

metric g,y in terms of an easily computable known solution in flat spacetime with the addition
of some small perturbation, where s may be defined as small perturbations over the curved
background spacetime metric g,v. In Euclidean space, the metric is generally described by the
identity matrix in Cartesian coordinates. However, in we have to add the time dimension

and in flat spacetime this can be described by the Minkowski metric tensor 1),y given by

-1 0 0 O
0 1 00
Nuv =) (1.15)
0 010
0 001

where each column and row represent a dimension of spacetime (from left to right and top to
bottom: ct,x,y,z) where ¢ denotes time, ¢ is the speed of light, and x,y,z denote the 3 spacial
dimensions. Although the Minkowski metric can be written in non-diagonal forms depending on
choice of coordinates, this diagonal form is chosen because it is computationally easy to invert
and simple to compute the determinant of the matrix.

Since a is a perturbation, we can write the metric tensor of a small perturbation in flat

spacetime as

guv = Nuv +hyy, (1.16)

where A,y is the perturbation tensor (|,y < 1]).
Using g,,v, we find that one of the solutions Einstein’s field equations may be written as a
plane-wave solution given by

huy = Re[Ayye e, (1.17)

where Ay is a amplitude tensor made up of multiple independent components and /Ay is a
sinusoidal wave traveling along the null wavevector k [48].
Exploiting guage freedoms [66], we can shift to the Transverse Traceless gauge (since this

simplifies the plane-wave solution of Einstein’s field equations to a simplified metric which is

CHAPTER 1. INTRODUCTION TO GRAVITATIONAL WAVES 19

only made up of two unique components) and 4, can be rewritten as

0 O 0 O
0 hy hy O
hyy = (1.18)
0 O 0 O
where /. and hy are representative of the two polarization states of a which are orthogonal
to one-another [51, 66].

As derived in [67], assuming that the source of the is emitted from a binary astrophysical
system (Sec.) with component masses m1,m,, the leading order terms of the plus and cross
polarization states can be expressed as being equivalent to

_ 1 2 2/3 _
hy = d(l +cos71)2u(MQ")cos(2(Qr — ¢p)) (1.19)
1
hy = EcostZu(MQ2/3)sin(2(Qt —) (1.20)

where d is the distance to the source, 1 is the inclination angle of the binary with respect to an
observer, M is the total mass of the system, ¢y is the initial phase of the system, ¢ is time, u is
the reduced mass given as (m;my)/(M) and Q is an approximation in a non-relativistic regime

of the orbital angular frequency given by

-4 (1.21)

where a is the separation distance between the two component masses of the system. The sep-
aration distance between the two bodies will decrease and the orbital angular frequency will
increase as a function of time via emission.

The effect that a passing waveform has on a set of freely floating test particles as a
function of the waveform’s phase ¢ for a given polarization state is illustrated in Fig. 1.6. This
effect on freely floating test masses is what is measured by detectors in the form of

strain h. As shown derived in [48], the strain a induces on only two free point masses can

CHAPTER 1. INTRODUCTION TO GRAVITATIONAL WAVES 20

" .
el N .‘ .‘ . el N .‘
. % H . . . S Sk
h, = -] u u . & ..
" ¥ u " .’ : '. e .
'-l" " : .'--“ fEmmn®
. .
a®
u
ot e R .‘. S N a* "t
L4 Y * L4 e u *
) & n » 1 *
h [- &’ L - a Py 0’
X 8 L] & L] » L] * .
. » ~ > . ¥ ‘e -
ML . R vaus? Yoo .
*an® "
¢
—
n 3
0 2 s 2
Figure 1.6: An illustration of the 4 and & polarizations of a signal impinging on a set of
freely floating test masses as a function of the phase of the ¢ from 0 to 37/2.
be expressed as
2AL
h(t) = 5 (1.22)
where A(t) is the strain amplitude of the as a function of time, AL is the absolute change in
distance between two point masses induced by the and L is the distance between two point
masses in the non-presence of a
For a full derivation concerning the generation and propagation of signals, I refer the
interested reader to [68]. Now that we have defined how s propagate and induce strain on

freely floating test masses, we will introduce in the following section the various sources and

methods for detecting S.

1.6 Astrophysical Sources and Search Methods

There are a variety of sources which produce signals. Most signals are not large enough to
be seen by the detectors, but some are indeed sufficiently strong enough to be detected.

signals may be categorized into 4 distinct types including: compact binary coalescence (),

CHAPTER 1. INTRODUCTION TO GRAVITATIONAL WAVES 21

burst, continuous and stochastic s. In this section I will explain the unique characteristics
which describe each of these signal types. I will also describe several methods used by the

to search for signals from , , burst and stochastic S.

1.6.1 Compact Binary Coalescences

signals arise from the collision of massive (of order ~ M) compact binary objects (such as
s and NSs) moving at relativistic speeds. NSs are defined as being the leftover cores of dead
stars which have exploded in a supernovae and then collapsed down into an object roughly the
mass of our sun and with a radius of O(10) km. systems can include S, pairs
and s. A signal waveform is described by three components: the inspiral, merger
and ringdown phase and can be approximated using a combination of post-Newtonian theory
[69, 70, 71, 72], the effective-one-body formalism [73], phenom waveform approach [74, 75?],
and numerical relativity simulations [76].
signals are parameterised by 15 different parameters (discounting eccentricity [77]).
Two of these parameters describe the two component masses of each compact object in the
binary system (m,m;) and are sometimes commonly combined in an expression known as the

chirp mass given by
(m1m2)3/5

M, = M)

(1.23)

Other parameters include: the time at which the binary coalesced, luminosity distance, phase
of the waveform at coalescence, sky location (right ascension, declination), inclination angle,
polarization angle, spin magnitudes, tilt angles, spin azimuthal angle and azimuthal position.
and events are also parameterized by the same parameters mentioned above,
but their waveform is additionally impacted by the internal structure of the NS. The affect the
internal structure has on the waveform may be parameterized in the form of additional
tidal parameters given in [78].
As the two objects rotate about each other, energy is radiated away in the form of S
primarily due to the mass quadrupole moment of the binary system [48]. Over the course of

millions or even billions of years [79] , the two objects will inspiral towards each other [80]. As

CHAPTER 1. INTRODUCTION TO GRAVITATIONAL WAVES 22

the orbital separation decreases, the objects will move faster and increasingly radiate away more
and more energy in the form s. This is known as the “inspiral” phase where the frequency
and amplitude of the waveform increases as a “chirp-like” signal. During the “merger”
phase, the objects plunge towards each other releasing a tremendous amount of energy, pro-
ducing peak luminosities equivalent to ¢(10°%erg s~!) , making signals some of the most
luminous events in the universe [5, 7]. If the objects are s, they will merge and coalesce
into a single perturbed which emits s at a set of frequencies which is parameterised by
the remnant single black hole total mass and spin angular momentum [81, 82, 83] (also known
as the “ringdown” phase of the signal). When s collide, they are thought to generate
short s followed by a kilonovae [10]. Importantly, both the short and kilonovae com-
ponents may be measured by other telescopes across the spectrum. Theoretically,

events should also be able to produce radiation, but this is largely dependent on several
factors including the mass ratio of the binary system, spin and NS radius [84].

The frequency near which the two objects will merge (and the point at which the frequency
of the waveform stops increasing) is related to a quantity known as the innermost stable
circular orbit Risco. This radius is the distance between two compact objects in orbit at which
their motion becomes unstable and the two objects rapidly decrease their radial distance between

each other. The radius at which this occurs is defined as

6GM
Risco = 2 (1.24)

where G is the gravitational constant, M is the total mass of the system, and c is the speed of
light. The corresponding frequency at which the orbit becomes unstable may be estimated using

Kepler’s third law and can be expressed as

| GM M.
< [L2 0kH A2, 1.25
fisco=7 354/ Koo v (1.25)

where T is the period of the orbit and M is the total mass of the system [48]. Now that we’ve
characterised signals, we will describe data analysis methods used for detecting sig-

nals.

CHAPTER 1. INTRODUCTION TO GRAVITATIONAL WAVES 23

1.6.2 Compact Binary Coalescence Search Method

The output of the detector (measured strain) is given as a time series s(7)
s(t) = h(t) +n(z). (1.26)
where h(t) is the astrophysical strain as a function of time and n(¢) is a combination of all

other forms of the noise in the detector also as a function of time. If no signal is present, the
measured strain of the detector is simply equivalent to the noise s(f) = n(t). This is generally
known as the null hypothesis Hy. We define Eq. as the alternative hypothesis H;. We
assume that the noise is governed by a stochastic process and the joint-probability distribution
of n. The noise is also assumed to good approximation to be both stationary and Gaussian,
where stationary Gaussian noise has the consequence that noise samples are uncorrelated across
frequency bins and that the noise in each frequency individual bin is characterised by a normal
distribution [12]. In reality there are some exceptions where the detector noise may contain
non-Gaussian noise transients and non-stationary noise. For those cases where there are non-
Gaussian noise transients, various glitch identification tools and techniques are used to identify
periods of excess noise in the detector data output s(¢) [12, 56, 85, 86, 87]. We note that in the
context of short duration signals, we may assume that the detectors contain stationary noise
if the performance of the detectors does not vary significantly over large time periods.

For simplicity-sake, let us first consider the case with purely Gaussian and stationary noise
(we will later explain how non-Gaussian noise transients are dealt with). How do we then dis-
tinguish noise from actual signal? Fortunately, the problem of extracting low signals
from the background is not uncommon in physics and the field of statistics and may be accom-

plished through a technique known as matched filtering.

Matched Filtering
The primary method for detecting signals is through matched filtering [88]. Matched filter-
ing has been applied in a variety of contexts outside of astronomy including: radar/sonar [89]

and digital communications [20]. In this subsection, I will describe how matched filtering is used

CHAPTER 1. INTRODUCTION TO GRAVITATIONAL WAVES 24

within the context of detection of signals including deriving the optimal matched fil-
ter, explanation of additional statistical tests such as the y? statistic, as well as a discussion on
template bank generation and coincidence testing.

To start, we can take advantage of the fact that we generally have a good understanding of
the form of A(z) through a combination of analytic and numerical waveform modeling [91]. At
large distances between the two compact objects of the binary system and velocities which are
smaller than the speed of light v < ¢ (slow motion, weak-field), a post-Newtonian (PN) approx-
imation may be used to model the waveform, as outlined in [71, 92]. However, at smaller
separation distances, this approximation is not valid and computationally expensive numerical
solutions to Einstein’s field equations are then required through numerical relativity (NR) [93].
Modeling the entire waveform requires stitching together both and estimates in a semi-
analytic approximate of the entire waveform. The two main approaches currently used to model
the inspiral-merger-ringdown () phases of the whole signal use either the effective-one-
body () formalism [94] (SEOBNR waveform family) or the Phenomenological ()
framework [74, 75] (IMRPhenom waveform family). For further details and an overview of
waveform modeling see [95].

Given that we have an accurate understanding of waveforms through waveform ap-
proximation techniques, we will derive an algorithm for testing the alternative hypothesis H; of
whether or not a signal is present in the detector noise assuming that 4 is exactly known. We will
be following the derivation found in [51]. In order to do this we must first define the likelihood

ratio given by
P(A|B)

A(B|A) = P(A|-B)’

(1.27)

where A(B|A) is the likelihood of B given A, P(A|B) is the conditional probability of A given B
and P(A|—B) is the conditional probability of A given B is not true where P(—~B) = 1 — P(B). If

we want to find the likelihood of the alternative hypothesis Hj, given the measured strain output

of the detector s, we can substitute this into Eq. and rewrite as
H
A(HyJs) = PSIEL). (1.28)
p(s|Ho)

CHAPTER 1. INTRODUCTION TO GRAVITATIONAL WAVES 25

where p is representative of a probability density We also define the joint probability distribu-
tion of a Gaussian pg(x) as a function of a frequency series x = (x1,x2,...,xy) indexed by N

frequency bins where each bin is composed of independent Gaussian random variables as

N 1 3
= 29 1.2
Pc(x) H1 (qﬂ) e (1.29)

J=

where the mean of the jth bin of the frequency frequency series with M samples in the bin (
wi = (1/M)Y¥ x;) is assumed to be zero since this is a Gaussian series, and o; is the standard

deviation of the jth frequency bin distribution

(0;= \/(I/M) M. (xi — 1;)?). Acknowledging that Eq. may be rewritten as n(t) = s(t) —

h(t) under H; and as n(r) = s(¢) under the null hypothesis Hy, we can substitute Eq. into
Eq. under the two different hypotheses Hy, H and write as
N < 1) e—%lsﬁ—%lz
=1\
A(H, |s) = ——\01V2" S (1.30)

where |§;| represents the modulus of the Fourier transform of timeseries s;. Rearranging we see

that the two pre-factor terms in both the numerator and denominator cancel out and we get

N 1 5.2
M (e 7
T
i 5o lsi?
N 1 J 20+
{Hj:] (Gj 2ﬂ>}e J

A(H[s) =

Y

Y=gz [5-h,P
e J
— . (1.31)

N 1|z
Zj:l_mhﬂz
J

Performing some simple algebraic manipulations we then arrive at

): + Z’]V 1 s.‘z
A(H1|S) Gj Gj)
1Y (8% — A)? + (U — Ri™)2 — (3%F)2 — (5m)2
InA(H;|s) EZ / 612 / . (1.32)

CHAPTER 1. INTRODUCTION TO GRAVITATIONAL WAVES 26

where “re” and “im” denote the real and imaginary parts of the data respectively. Further sim-

plifying we get
1 N (~re)2+(~im)2_2(§r§:hr§:+§1mh1m)
lnA(H1|S):_§Z J J - J J
Jj=1 J
_ 1 i 125 B Sih +585h; (1.33)
2 2 ’ :
23 o; o;

As shown in [96], the variance GJZ can be written as being equivalent to S;7 /4 where T is the

total length of timeseries and S is the for the jth frequency bin. Converting to be in terms
of frequency we get that GJZ = S;/4Af. Plugging this in for the variance in Eq. we see
1N (4alh2 45hE+55h;
InAHls)=—= Y T Y TR DN
2 = S S
NS+ 55hy |2
=2 A e IR YN (1.34)
Jg’l (Sj Sj
It then follows that the matched filter , p, may be expressed as [97]
N 55
J J .
p=) — A=) (1.35)
j=0 J
where the greater the value of p, the more likely a given waveform A(t) is in the detector

output s()
The phase of the template waveform is also maximised over, whereby each template wave-
form has orthogonal phase components 4. and 4 (Eq. 1.6,Eq. 1.7). As shown in [6], after

maximising over phase we arrive at

(W) (s T (Wshy) '

where p? is the matched filter and (a,b) denotes the noise weighted inner product of
timeseries a and b. The matched filter is the primary statistic used to determine if a specific
template is a good match for a given detector output s(t). If p? is above a pre-determined

threshold using a given template waveform A(z), at a specific time ¢ within a given period, we

CHAPTER 1. INTRODUCTION TO GRAVITATIONAL WAVES 27

say that there is a trigger in the observed data at this time. There are also additional statistical

tests performed, such as the the x2 test, which will be discussed later in this section.

Whitening

We also mention briefly here that timeseries data can have information content which
is broadband. Often, low frequency noise power in a given timeseries can contain so much
power that it effectively “drowns out” the high frequency portion of the signal. One method for
dealing with this issue is using a technique known as whitening. In whitening, we normalise the
content in a given timeseries, such that the power is equal across all frequency bins in the signal.
Whitening is usually applied prior to performing any kind of signal analysis, such as matched
filtering, and only requires assuming a and knowledge of the sampling frequency of the
timeseries. For a timeseries, s, this whitening procedure is given by the following mathematical

expression as

2
sw=F | Z(s , (1.37)
: (“ &Um>
where .# and .Z ~! are the fast Fourier transform () [98] and inverse respectively, f; is
the sampling frequency of the timeseries, S, (f) is the and sy, is the whitened timeseries.

After whitening, the noise content of the whitened data will have unit variance (assuming that

the used in the Eq. is the correct).

Template Bank Placement

Choosing how to sample templates from the vast parameter space which best match A(r)
can be challenging. This is typically done by first constructing what is known as a template
bank (a bank of template waveforms). We can quantify the coverage of the template bank

through an expression known as the minimal match MM given as [99]

ngnrrng<h(0),h(9,~)> > MM (1.38)

where h(0) denotes a given template waveform characterised by parameters 0 and i(0;) is rep-

resentative of a set of templates characterised by set a of parameters over a range 6;,i = 1,2,....

CHAPTER 1. INTRODUCTION TO GRAVITATIONAL WAVES 28

A high minimal match percentage value (where maximum coverage would be 100%) for a given
template bank essentially means for any given , the distance of that waveform from any
existing template in the template bank should be no more than a pre-determined distance away.
This distance is quantified by determining the amount of optimal (Eq. 4.1) loss if that
waveform were to lie exactly in between its nearest templates [100]. The spacing between
discrete templates in the template bank is parameterised by the square of the proper distance
between intrinsic template waveform parameters given by Eq. 2.14 of [100].
In practice, the template bank is constructed such that at least one template in the bank has
a minimum match greater than or equal to ~ 97% for any . Deciding on an MM value can
be tricky, if one chooses an MM value which is too low, then template bank will be coarse and
signals may be missed. On the flip side, if we generate a bank of templates which is too
finely spaced, then we run the risk of having a higher false alarm rate (where a high false alarm
rate means a higher probability of falsely identifying periods of excess noise as signal)
There is also the added trade-off of larger template banks being exceedingly computationally
expensive to build. There are a multitude of techniques used to generate template banks given in
[88, 100, 101, 102, 103, 104, 105, 106, 107, 108] and we refer the reader to those manuscripts for
a more detailed discussion on template bank placement. Following template bank generation,
we compute the matched filter of templates in the template bank with observed pieces of

data s(¢), in order to determine the best matching template waveform for A(z).

The x? Test

Up to now, we have assumed only Gaussian noise, but unfortunately the global network of inter-
ferometric detectors are also often affected by non-Gaussian noise artefacts. These “glitches”,
or noise transients, can mimic high events. High glitch events typically contain lots of
power across a broad frequency band, where distinguishing factors which separate glitches from

events include: glitches only appearing in one detector at a time rather than coincidentally
across multiple detectors, as well as signal morphology in time, frequency or the time-frequency
plane. To take this into account, an additional test for quantifying the likelihood of a candidate

event originating from a real signal is used known as the y? test. The test operates under

CHAPTER 1. INTRODUCTION TO GRAVITATIONAL WAVES 29

the principle that the time-frequency distribution of the power of the observed data s(¢) should
be consistent with the expected power in the matched template waveform A(t), as explained in
greater detail here [6, 109].

Given a trigger with a corresponding best matching template waveform, the x? test is con-
structed by first dividing up the best matching template waveform into ¢ frequency bins, whereby
each bin is defined such that they contribute an equal amount of power to the total matched filter

. Next, a matched filter , Pi» is then computed for given observed data s(¢) and template

h(t) summed over all ¢ frequency bins. The resulting statistic may be described by

2 Ll(PE toe 2 ’
X
r=a) (——pm) +(—+—p+,,~) , (1.39)

i=1 | \ 4 q
where p; and py are the values of orthogonal templates 4’ ,h’,. Large values of x>
indicate a greater likelihood of a trigger resulting from a noise transient and as such are typically
downweighted if their reduced chi-squared value y> = x?/2¢q — 2 is greater than 1 in the form
of a re-weighted p given as

p—— P (1.40)

[een) 2

2

If after re-weighting the match filter lies below a user predefined value, the candidate
trigger is discarded and not considered for further analyses [6]. The final detection statistic is
the quadrature sum of the chi-squared weighted matched filter across all detectors where
the event was seen.

It is also important to ensure that triggers which we observe in one detector are generally
consistent with what we would expect to find in other active detectors around the globe. If a
trigger has been identified in one detector, it must also be coincident in time with other triggers
in other active detectors. Coincidence is defined as triggers from multiple detectors being within
the expected maximum window of time it would require for the to travel from one detector
to another (at the speed of light). Travel time varies depending on sky location of the event (with
added noise due to measurement uncertainty), where for example at a maximum it is expected

that it should take a to travel from the Livingston detector to the Hanford

CHAPTER 1. INTRODUCTION TO GRAVITATIONAL WAVES 30

detector in ~ 10ms [6]. In order to account for added noise from measurement uncertainty, the
maximum allowed travel time between detectors is usually expanded to ~ 15ms [6], also
known as the coincidence window. Triggers which are within the coincidence window are then

ranked by the expression

(1.41)

where p; are the re-weighted s of the coincident triggers in each detector [6], Ny is the total

number of detectors, and J. is our final detection statistic for a coincident event.

Timeslides

Now that we have a detection statistic in the form of p., we need a method for determining the
statistical significance of this statistic. This can be done by first determining the false alarm rate
(), where a false alarm is defined as how often the search would identify a non-astrophysical
noise event with a re-weighted as high (or higher) than a given candidate event’s re-
weighted . An accurate requires that we have an accurate estimate on the statistical
properties of the background noise distribution. In order to get an accurate approximate of
the noise background of the detectors, we perform an exercise known as time-slides [6,
[10]. Time slides involve artificially randomly shifting the time stamps of triggers from one
detector by an offset which is greater than the coincidence window (~ 10ms if considering only

Hanford and Livingston). We then compute p. for all coincident triggers (above a pre-
determined low threshold) between the time-slide triggers and those from other detectors
which are within the coincidence window. These post time-slide coincident triggers are unlikely
to contain real events. It should be noted that a real from Livingston would no
longer be coincidence with the same signal in another detector such as Hanford, but it
may get matched up with some noise above threshold, so thus it is still possible a coincident
trigger could contain a real event. Time-slide triggers are considered to be a representative

approximation of the distribution of noise background events. The may thus be calculated

CHAPTER 1. INTRODUCTION TO GRAVITATIONAL WAVES 31

for a given event with a measured matched filter as

FAR = —, (1.42)

where NV, are the total number of noise background time-slide events found which have a co-
incident greater than or equal to the given event measured matched-filter and T, is
the total duration of the background event data. The total duration of the background data Ty,
may be defined by considering that we have T seconds of data from say 2 detectors which have
been time-slide in steps of dr where dt is the maximum allowed coincidence window . We then
get T /dt possible slides, which means we get a total simulated background time of 7' /dr sets
equivalent to Ty, = T2 /dt.

Given p. for these noise background coincident events, we can additionally calculate the

false alarm probability () of a particular event resulting from non-astrophysical noise by

comparing p. from background events, to P, from the foreground (candidate trigger) events.
The can be expressed in the form

FAP = 1 — ¢ M(0/T) (1.43)
where 7 is the search time. Eq. is essentially the Poisson probability of getting one or more

events given an expected number of events equal to Ny(7p/Ty). Since Np/T, is the expected
number of background events per unit time then by multiplying by the foreground time (the
actual time over which the search is done) then the expected number of events in that time is
obtained. For more details on determining candidate trigger significance, see [6, 110, 111].

We will now move on to discuss another source radiation, S.

1.6.3 Continuous Waves

signals are canonically associated with spinning non-axisymmetric NSs. Other more exotic
sources include boson clouds, which may produce signals through boson annihilation

or level transition around fast-spinning B Hs [49]. Continuous signals from rotating N Ss are

CHAPTER 1. INTRODUCTION TO GRAVITATIONAL WAVES 32

produced through the mechanism of mass quadrupole radiation. Radiation is most commonly
emitted through cracking and cooling of the NS crust, internal non-axisymmetric magnetic field
flows, and mountains of mass accrued on the surface from a larger companion star [49].
signals are incredibly long in duration and will span (or even outlast) an entire observing run. A
waveform is fairly simple in shape (resembling that of a standard sinusoid) and the period
to complete one full spin revolution can be on the order of ~ 10735 up to ~ 10s [112]
The frequency of signals on short time scales is generally constant, however on longer time
scales the frequency will shift due to a loss in angular momentum resulting from radiation,
magnetic braking of the NS, and the shifting position of the detectors with respect to the
source due to Earth’s rotation and orbit around the Sun [49]. Many searches have also been
carried out by the over the past several years for signals and while upper bounds have
been placed on the intrinsic strain, elipticity and other parameters, there have
yet to be any direct detections [113, 114]. We will now focus our attention on methods for

detecting signals.

1.6.4 Continuous Wave Search Methods

There are estimated to be roughly ~ 103 — 10° NSs in our own Milky Way Galaxy [115], of
which only ~ 2500 have already been observed by the community [49, 116] and many
of these NSs may emit detectable s in the form of s (of the 2500, only the few hun-
dred known millisecond (rapidly rotating) pulsars fall into the ground based detector sensitivity
band [49, 117]). Methods for detecting s from NSs may be classified into 3 types: targeted,

directed and all-sky. We will now briefly summarise each of these approaches.

Targeted Search
One method for detecting signals is to go after these already known O(100)s NSs and
perform targeted searches. The strain given by a non-axisymmetric spinning NS is typically

defined by [49]
167G If2
hO — L4i87
c d

3For the quadrupole mode, the waveform frequency is twice the spin frequency.

(1.44)

CHAPTER 1. INTRODUCTION TO GRAVITATIONAL WAVES 33

where d is the distance to the , I is the moment of inertia with respect to the rotation axis
of the NS, f is the frequency (equivalent to twice the spin frequency for quadrupolar
emission, =~ 4/3 of the spin frequency for r-mode emission, and has a component equal to the
spin frequency if it is wobbling (precessing)) and € is the elipticity defined as (I; — I>)/I where
11 and I, are the moments of inertia of the star with respect to the principal axis orthogonal to
the rotation axis [118]. In a targeted search, observations from observers, which provide
estimates on the sky position, frequency, spin, are used as input to searches in order to
search for unknown parameters (g, ¢g, W, cos 1). Where cos 1 is the cosine of the angle between
the source’s rotation axis and the line-of-sight of the detector to the source, ¢y is the signal
phase offset and y is the polarization angle. There are many methods for performing a targeted
search, such as the use of data reduction techniques (time-domain heterodyne) in combination
with Bayesian inference to produce posteriors on unknown parameters [119]. There is also
matched filtering, specifically the .# statistic, which analytically maximises the log likelihood
ratio of a signal+noise (combined noise-free signal and detector noise) model over the 4
unknown parameters previous listed [120]. Then finally there is Fourier domain analysis using
the “5S-vector” method, as outlined in detail here [121]. For further discussions on each technique

listed above, see [119, 120, 121].

All-Sky and Directed Searches

In contrast to both a targeted and a directed search, all-sky searches impose the least amount of
constraints on the observable parameter space, with a lower computational cost. Specifically, it’s
a search for a well modelled signal with unknown frequency, frequency derivative(s), unknown
sky location and potentially unknown orbital parameters . Generally speaking, an all-sky search
is performed by first breaking up observational time series data into many smaller time segments,
or different frequency bands using the sideband method [122]. These time segments are then
analysed coherently, after which the results for each time segment may be recombined in an
incoherent manner. This is otherwise known as a semi-coherent search.

In order to combine results from coherent segments incoherently, there are many methods

4if in a binary system

CHAPTER 1. INTRODUCTION TO GRAVITATIONAL WAVES 34

which have been developed over the past several years. Such methods include: time-domain
Z -statistic, frequency-Hough, Viterbi, Powerflux and cross-corr. For a full description of these
and other methods for combining coherent segments, I refer the reader to [123].

We also briefly mention a second method, a directed search, where it is only assumed that
the sky location is well known and that the rotational frequency and other parameters are not
known. Examples of such searches include: searches in the core of our own galaxy [124]
and Scorpius X-1 [125]. Although not too dissimilar from an all-sky search, directed searches
are useful when we have a particular source in mind and would like to tune our search to that
source [126]. It should also be noted that directed searches, since they do not have to search
over the sky, may thus lengthen their coherent segments to gain more sensitivity, which is done
at a greater computational cost. Directed searches are also less sensitive than targeted searches
due to the fact that they are mostly semi-coherent which is intrinsically less sensitive and that
by searching over many templates, they also incur a trials factor which increases the [127]

We will now discuss another source type, burst signals.

1.6.5 Burst Signals

A burst signal is produced by sources which are either unknown or known, but difficult
to model due to complicated physics. Unknown sources produced by as-yet understood astro-
physical mechanisms have the potential to produce transient bursts of excess power in the

detectors which may be detectable. Known, difficult to model burst signals are typically short in
duration (less than a second) can result from core-collapse supernovae which may emit s via
a mass-energy quadrupole moment at possible frequencies of ~ 200— = 1000Hz [128] Other
potential known sources include pulsar “glitches” from a rapidly increasing and then expo-
nentially decreasing its spin due to surface mountain distortions [129] and soft gamma-ray flares
from brief (~ 0.1s) bursts of soft gamma-rays with possible sources such as: Magnetars [130] or
quake stars [131]. Due to the fact that s are likely emitted from deep inside the core of a star
going supernovae and are not heavily influenced by extraneous material between the source and
the detector, there is the potential for much insight to be gained on the physics which govern the

dynamics inside collapse such as the equation of state of hot nuclear matter inside the star [50].

CHAPTER 1. INTRODUCTION TO GRAVITATIONAL WAVES 35

In the next subsection we will discuss methods used to detect both known and unknown burst

signals.

1.6.6 Burst Search Method

Burst-like signals are typically not modeled due to the complicated nature of the event and
the possibility of detecting as yet unknown signals. Since the search is unmodeled, template
waveforms which are exactly described by a deep knowledge of numerical relativity, post-
Newtonian dynamics or aren’t necessarily employed. As such, burst searches use meth-
ods which can detect a wide range of possible waveform types and may be classified into two
distinct categories: coincident and coherent searches. Coincident searches identify clusters of
times of excess power (sometimes represented through wavelet transformations) in individual
detectors. After times of excess power have been individually identified in each detector, coin-
cidence between times across multiple detectors is checked [132]. Coherent searches such as
[133, 134, 135], are fundamentally different from coincident searches in that detector responses
are first summed together into a single combined piece of data. Burst events are then identified
in the combined data through a coherent statistic derived from the likelihood ratio functional
shown in [136]. Coherent methods have the added advantage of not being limited by the least
sensitive detector in the analysis, the generation of other useful coherent statistics as a byproduct
of the analysis and the ability to construct the source coordinates of the waveforms [134],
but coherent analyses are slow because they have to essentially search over the entire sky. We

end this section by explaining another source of s, stochastic .

1.6.7 Stochastic Gravitational Waves

There exists a background noise of random (stochastic) events which is detectable and may
be classified into two categories (cosmological and astrophysical) which are broadly defined by
their different amplitudes and spectral properties. The cosmological stochastic background
is produced by a number of mechanisms including: density perturbations resulting from the

amplification of vacuum fluctuations during the inflationary period, and cosmic strings resulting

CHAPTER 1. INTRODUCTION TO GRAVITATIONAL WAVES 36

from phase transitions in the early universe [137, 138]. If detected, s from the cosmolog-
ical stochastic background could provide key insights into fundamental physical mechanisms
and processes of the early universe [139]. The astrophysical stochastic background may be
described as the random supposition of many s from a wide range of signals (core-collapse
supernovae, compact binary inspirals, isolated neutron stars) which are weak in , inde-
pendent and unresolvable [140]. If detected, the astrophysical background would provide
us with a further understanding on early astrophysical source population properties, as well as
surce population formation mechanisms [140]. In subsection. , we move on to briefly dis-

cuss methods for detecting stochastic backgrounds.

1.6.8 Stochastic Search Method

The stochastic search method largely involves attempting to separate stochastic noise from
the detector environmental/non-astrophysical noise. The noise background associated with
stochastic s may be characterised by its energy density per unit logarithmic frequency and
is very similar to the the detector instrumental noise (i.e. may be approximately described by
a non-white Gaussian-normal distribution [50]). Assuming an isotropic stochastic back-
ground, the noise induces a strain spectral noise density on the detector. This strain would be
detectable using a single detector only if it were significantly stronger than the detector noise

[50]. The noise is typically cross-correlated between more than one detector in order to
search for a correlated noise components and one can obtain improved sensitivities using multi-
ple detectors [137, 141]’. This may be computed using a multitude of techniques discussed in
further detail here [50, 137, 140, 141].

We also briefly mention that there are methods, other than through laser interferometers,
which stochastic s may be detected. Given that the arrival times of pulses from Millisec-
ond pulsars are so incredibly stable over large time scales [142], one can also perform cross-
correlation analysis between pulses from multiple pulsars. Through cross-correlation, one may
then be able to to distinguish between intrinsic pulse variability and pulse variability associated

with the stochastic background. This method is known as pulsar timing and is discussed

>This is performed under the assumption that instrumental noise is not correlated between multiple detectors

CHAPTER 1. INTRODUCTION TO GRAVITATIONAL WAVES 37

in more detail here [142, 143]. In the following chapter, we will move from discussing
sources and their detectability, to inferring the parameters which characterise sources, us-

ing a technique known as Bayesian inference.

1.7 Bayesian Inference

It is not only important that we detect a event, but also vital that we infer the underlying
properties of that event in the form of its source parameters (i.e. component mass, distance,
sky location, etc.). In , the tried-and-true method for inferring source parameters is done
through Bayesian inference, which is derived from Bayes theorem [144]. Bayes theorem was
first proposed by Reverend Thomas Bayes in the 18th century and in it he formulated a new
paradigm for thinking about the laws of conditional probability.

Bayesian probability, is a fundamentally different way of interpreting statistics from the
more traditional frequentist approach. For a frequentist, an unknown parameter of interest 0 is
often considered to be a fixed quantity. A frequentist would determine the value of 6 through
sampling of observational data to form a distribution. From this distribution, a frequentist would
then be able to determine confidence intervals on their estimate of 6. For example a confidence
interval of 95% is stating that the true value of 6 (for say 100 observations) would lie within
the confidence interval in 95/100 repeat observations. The other 5 repeat observations are not
guaranteed to be close to the confidence interval and may take on any value.

On the other hand, a Bayesian does not consider the unknown parameter to be a fixed value.
Rather, the Bayesian considers the unknown parameter to be a random variable which is de-
scribed by a probability distribution with credibility intervals. A 95% credibility interval, corre-
sponds to a 95% probability that the true value of parameter 0 lies within the interval, given a
single piece of observational datad = d,,d>, . ..d,. Parameters @ = 0;,6,, ... 6, may then be in-
ferred through direct application of Bayes theorem. In the following section will describe Bayes
theorem in detail and refer the reader to [145] for further discussions on frequentist inference.

To describe succinctly, Bayes theorem states that one can infer the distribution of an un-

known parameter, the posterior, by computing the likelihood of a given observation, scaled by

CHAPTER 1. INTRODUCTION TO GRAVITATIONAL WAVES 38

our prior belief on the distribution of that unknown parameter. To put it in the context of

astronomy, given observed detector data and some prior assumptions about the source parame-
ters of a signal, the posterior can be described by the source parameter values of that signal
while also taking into account the uncertainty added by the signal being buried in noise. The
posterior may be expressed as p(0|d,I), where p(0|d,I) is the probability density of the source
parameters of the signal (8 being a continuous variable), given some observed data and all other

assumed relevant information /. The integral over the total posterior is normalised such that

/dop(eyd,z) —1. (1.45)

According to Bayes theorem, we can write the posterior as

p(0|d.I) = p(d|@.1)p(8]I)

1.46
() (1.40

Where each term in Eq. can be described as

e p(d|0.1): The probability of the data d given the source parameters 8 and information 7,

also known as the likelihood of the source parameters.
e p(0|I): Our prior belief on the distribution of source parameters @ given information /.

e p(d|I): A normalisation factor called the Bayesian evidence which is obtained by inte-
grating the likelihood times the prior over all possible parameters 8 given information

I.

The prior p(0|1) is largely informed by our understanding on the formation channels of
sources and our current knowledge on the general physics which govern events. For example,
one would intuitively think that the distance of an object in 3-dimensions should always be
positive and governed by a Euclidian distance, so will set the priors such that the distance of a

source with respect to the detectors must always lie between two positive values and also
be in the form of a Euclidian distance However, if we aren’t as knowledgeable about a particular

parameter @, we might try choosing a relatively uninformative prior. Choice of prior can also be

CHAPTER 1. INTRODUCTION TO GRAVITATIONAL WAVES 39

incredibly influential on the posterior shape for some parameters [146], but in general both
the prior and the likelihood have equal weight in terms of how they influence the posterior.

The way in which the likelihood p(d|0,1) is defined is characterised by the noise distribution
model. For astronomy, we typically define a likelihood which assumes that the detectors
operate under Gaussian noise-like conditions. The Gaussian-noise likelihood function may be

written as

pde.n=]] : exp(—lw>, (1.47)

i \/2mo? 2 G

i
where i is the frequency bin index, d; is the observed data and p(0); is a the signal model
waveform parameterised by source parameters 6. The parameter Gl-z is proportional to the noise

defined earlier in Eq. , since the amplitude spectral density () is given as being
the square root of the . We note that the likelihood function in Eq. for analysis
is calculated on the frequency domain representation of the data. It is only in the frequency
domain whereby the probabilities from each frequency bin can be multiplied since the data is
independent.

The evidence p(d|l) can be defined as

p(d|l) = / p(d|0,1)p(6]1)d6. (1.48)

The evidence is usually also referred to as the marginal likelihood. It is often used in order to
perform model selection where the evidence is required in order to calculate a quantity known as
the Bayes factor. The Bayes factor is a quantifiable method for which computing the likelihood
of one model versus another. The Bayes factor is defined as the ratio of evidence for two different
models/hypothesis. For example, as shown in [147] one could investigate the likelihood for a
model which assumes a signal+noise model p(d|); versus a noise-alone model p(d|I),. The
Bayes factor for such an investigation may be written as the ratio of one evidence assuming the
signal+noise hypothesis over another evidence assuming the noise-alone hypothesis expressed

as
P(dms

B, =)
p(d|l)x

(1.49)

CHAPTER 1. INTRODUCTION TO GRAVITATIONAL WAVES 40

where the noise-alone evidence integral p(d|I), may be written as

dl), = ! l@ 1.50
p(|)n_H27FGZeXP 262 ’ ()

i i i

where again the data is considered to be in the frequency domain. If one uses a more formal
definition, determining the preference of one model A over another B given observed data d is
actually determined through a term known as the odds ratio O‘g,. The odds ratio is a combination

of the Bayes factor and the prior odds ratio given as

_ pd|la ma
B pld)p g’

(1.51)

where 74, 7wz are the prior beliefs on hypothesis A and B respectively.

If we are purely interested in parameter estimation and since we are marginalising over all
parameters 0 in Eq. , we can state that the evidence is independent of 6. Since the evidence
is independent of @ and it is prohibitively expensive to compute this factor” (because we are
integrating over the whole parameter space of), most Bayesian practitioners purely interested
in performing parameter estimation will ignore Eq. (and rewrite Bayes theorem in the

simpler form

p(6|d.I) < p(d|6,I)p(6]I). (1.52)

Given that sampling from the posterior distribution can become prohibitively computationally
expensive as the number of dimensions 0 is increased [147], there is prime motivation for the
use of efficient methods for sampling from the posterior. In the following subsections I will
describe the basic principle of two popular methods for sampling from the posterior p(0|d,1):

Markov Chain Monte Carlo () and Nested Sampling.

®We note that in nested sampling, the main purpose of the algorithm is in fact to compute this quantity in a
computationally feasible manner. See Sec. for further details.

CHAPTER 1. INTRODUCTION TO GRAVITATIONAL WAVES 41

1.7.1 Markov Chain Monte Carlo

is used when we would like to try and sample from some distribution, for example the
posterior p(0|d), or approximate the expectation value E(f) of some function f(6) which is
of a high dimension/complexity Where the posterior is so complex that trying to sample from
the posterior through traditional means would be prohibitively expensive. Other methods for
sampling from complicated distributions such as, importance sampling and random sampling
may also be used, but are outside of the scope of this thesis and I refer the interested reader
to [148] for a more through discussion on both techniques.

The Monte Carlo portion of refers to a technique known as Monte Carlo sam-
pling [149]. Monte Carlo sampling means to randomly sample from some distribution. For
example, we could choose to randomly sample from a normal distribution .4#"(0, 1) or from uni-
form distribution U(0,1) between 0 and 1. We would then define the normal or the uniform
distribution that we’re sampling from the proposal distribution. If we randomly sample from the
proposal distribution enough times a histogram of the resulting samples should resemble that of
the original proposal distribution.

A Markov Chain [150] is a sequence of numbers whereby each number in the sequence is
only dependent on the previous number in the sequence. For example, if we again decided to
randomly sample from proposal distribution .47(0, 1), but instead after each sample is drawn
we change the mean of the proposal distribution to be equal to that of the previous sample
A (6,—1,1), we would end up with something known as a random walk.

In order to construct an algorithm which is able to generate n samples from the posterior in
steps indexed by i, we want to ensure that two criterion are met: stationarity (i.e. in the limit
where n — oo, random numbers drawn from the sequence vary a significant amount) and a final
set of samples which is equivalent to the posterior p(0|d,I) [148]. One method for ensuring
both criteria is the Metropolis-Hastings (IVIH) algorithm [151]. We will now go on to explain
how the algorithm works and have also provided a pseudo code of the algorithm (Alg. 1)
for reference.

The algorithm begins by first drawing a random point, 6., (also sometimes known as a

walker) (always from the prior space, p(0|I)) and calculating the posterior probability density

CHAPTER 1. INTRODUCTION TO GRAVITATIONAL WAVES 42

Algorithm 1 A simple algorithm.
Generate random initial starting point 6,;
for i =1tondo;

ep = Q(OP‘OC)’
_ p(6pld.1) O(6:]6))
P(ec|d71) Q(ep‘ec)
if « > U(0,1) then
end if
end for
return {6),62,...6"}.

function (PDF) at that point p(6.|d,I). We also define a simple proposal distribution Q which is
dependent on the current state 6, and from which we will sample from over n steps of the algo-
rithm (Q is usually described by a Multi-variate Gaussian distribution whose mean is equivalent
to the current state 6,). Q is chosen to be a simple distribution since it is easy to sample from at
each step, as opposed to the complex posterior distribution.

The algorithm then calculates the posterior , p(6,]d,I) using the likelihood and the
prior, given a new proposed sample 6, drawn from the proposal distribution Q(6,|6,) evaluated
at current state 6.. The posterior value of the current position p(6,|d,) is also evaluated
with current state sample 6. drawn from proposal distribution Q(6.|6,) evaluated at 6,. The
ratio of the two posterior values scaled by the ratio of Q(6,|6,) and Q(6,|6.) is then

computed
p(ep’d,l) Q(eclep)
p(6c|d,I) Q(GP‘GC)’

where both p(6,|d,I) and p(6.|d,I) are estimated through evaluating the prior distribution and
the likelihood function at 6, and 6, respectively. The ratio is derived from the statistical concept
of “detailed balance” which states that probability is conserved from one position to another and
the full derivation is given in [148]. If this ratio is greater than 1, then we always accept the
new proposed sample as the new current state. If however, the ratio is less than 1, we will not
necessarily reject the new proposed sample. Instead, we determine an acceptance probability
based on the ratio. The acceptance probability is determined by first drawing a uniform random
number between 0 and 1. We accept the new proposed sample as the new current state if the

ratio value is greater than the randomly drawn number. Otherwise, the current state remains at

CHAPTER 1. INTRODUCTION TO GRAVITATIONAL WAVES 43

position B.. As shown in [148], the probability of acceptance () of a new sample in the Markov

Chain can be expressed as

PO L) QO%) it p(6,|d, 1) < p(Bc|d,I)
o ; » (1.53)

1 if p(6,|d,I) > p(6.|d.I).

There are a few downsides to using the Metropolis Hastings algorithm. One of those down-
sides being that we have to choose a starting point for the random walk, which is initially liable
to be far from the true posterior. This could be problematic if the posterior is composed of a
small concentration(s) of probability with a large amount of likelihood concentrated in a small
region of the parameter space. It may also take a large number of iterations for the algorithm to
walk towards areas of high likelihood contained within a small region of the parameter space.
Commonly, a number of samples at the beginning of the walk are discarded such that the remain-
ing represent a point after which the algorithm has reached a stable equilibrium. The interval
over which we choose to throw away samples is called the burn-in period. Another issue relates
to something known as autocorrelation. Samples 0 generated through the Markov Chains in the
Metropolis Hastings algorithm may be statistically correlated with each other and are thus not
necessarily fully representative of the posterior [147], since correlation implies that the samples
drawn are not statistically independent from each other (i.e. it violates the Markovian princi-
ple outlined earlier). We can mitigate such correlations through a process known as thinning.
Thinning involves generating a large amount of samples from the proposal distribution, but only
keeping every N sample from that large sample set, described in further detail here [152].

Expanding on from traditional methods, the algorithms used in this thesis
(emcee [153], and ptemcee [154]) both apply their own additional methodologies and tweaks
to the original algorithm. For example, in emcee there is an operation applied known as the
“stretch move”. The stretch move by be described by first considering an ensemble of walkers
being evolved simultaneously over n steps. The stretch move involves proposing a new state for
the kth walker, 6;‘, which is dependent on the current state of another randomly selected walker,

ch , from the ensemble. This is opposed to the traditional method where new proposed states are

CHAPTER 1. INTRODUCTION TO GRAVITATIONAL WAVES 44

entirely dependent on the previous state of that same chain. The new state of the kth walker is
then given by
6y =6/ +Z[6f — 6/] (1.54)

where Z is a randomly selected variable from a proposal distribution parameterised by 6% —
ch . This process is then repeated in a series over all walkers. The stretch move may also
then be parallelised by splitting the walkers into two separate sets and updating walkers from
one set with walkers from another. The methodology employed by emcee can have superior
performance over other traditional methods in the form of shorter autocorrelation times (i.e.
more statistically independent samples) when run on several complex distributions [153].

In ptemcee, multiple Markov chains are run in parallel at varying temperatures. Tempera-

tures refer to different tempered versions of the posterior given by
p(8ld)r =< p(d|6)"/"p(8), (1.55)

where T is the temperature value. Temperatures are assigned to all Markov chains in a geo-
metrically spaced ladder from 1 up to a Tinax, where the maximum temperature, Tpax, and the
number of temperatures is pre-determined by the user. Temperature values for each chain are
also periodically swapped with other adjacent chains according to an acceptance ratio defined in
Eq. 2 of [154]. The advantage of using temperatures is that the likelihood p(d |0)1/ T gets flat-
tened out at high 7', thus making the distribution easier to sample from. ptemcee is especially
useful when one wants to find the global maximum and multiple modes of a complex posterior
distribution [155]. For further details which are outside the scope of this thesis, see [154, 155].

We will now discuss an alternative sampling method to , nested sampling.

1.7.2 Nested Sampling

Nested sampling is another method which can be used in order to sample from the posterior.
However, that wasn’t the primary goal in mind when the method was first developed [156,

157] and the posterior is only really obtained as a byproduct (unlike which directly

CHAPTER 1. INTRODUCTION TO GRAVITATIONAL WAVES 45

samples from the posterior). An additional motivation for nested sampling relates to the fact
that can have issues when trying to deal with widely spaced multi-modal and degenerate
distributions, where a degenerate distribution in this case is defined as having posterior shapes
which are very narrow. Nested sampling was first introduced by Skilling in 2004 [156] (later
expanded upon in 2006 [157]) because he wanted a tractable method for computing the Bayesian
evidence (sometimes known as the marginal likelihood) in order to compare different models
effectively (See Bayes factor in Sec. 1.7). In nested sampling, samples from the posterior can
be obtained as a byproduct following the evaluation of the evidence. One would be forgiven
for naively assuming that it would be easy to compute this integral by simply evaluating the
integrand for many values of 8 and then numerically integrating over the 8 space. Unfortunately,
this procedure can get computationally expensive quickly as the number of inferred parameters
0 increases. Rather than integrating over the whole space of parameters 0 explicitly, it would be
advantageous to redefine Eq. such that it was only dependent on a single parameter and an
approximate method for computing the integral could possibly be found. The fundamental idea
that a complex high-dimensional problem with many inferred parameters may be represented in
a simplified 1-dimensional form is one of the key ideas of nested sampling. This then begs the
question, how do we convert to a simplified 1D form and compute the evidence from this 1D
form? I will now describe the details of such an algorithm.

In order to convert the problem to a simpler 1D form, Skilling starts by defining the total
prior mass X, stated as the total amount of prior contained within a given likelihood contour A

expressed as

X(4) = /p o, POIE. (1.56)

Rearranging Eq. through an inversion of the equation we arrive at a new definition of the
evidence integral

p(aln) = [pxjax. (1.57)

where dX = p(0|1)d0 and p(X) is the likelihood evaluated at p(d|0I) > A . It can be clearly
seen from Eq. that that the evidence integral is now a function of a single parameter X,

the prior mass. The integral in Eq. has limits from O to 1 since the prior mass decreases

CHAPTER 1. INTRODUCTION TO GRAVITATIONAL WAVES 46

from 1 to 0 as the likelihood contour A increases. The reasoning for these limits is most clearly
illustrated in Fig. 2 of [157] where at low likelihood values (i.e. broad likelihood contour and
low A1), we see total contained prior mass as close to 1, and at increasing likelihood values the

prior mass approaches values of 0.

In order to compute the integral of Eq. , Skilling applies the trapezoid rule to Eq.
and expresses Eq. as a weighted summation defined as
M
p(d|l) =} wip(X:). (1.58)
i

where @; = %(Xl-,l —Xi+1). Since p(X) is not typically well-known, the nested sampling al-
gorithm instead approximates p(X) by drawing samples from the constrained prior mass X in
M slices, where 0 < Xy < ... < X] < Xg = 1. As outlined in Alg. 2, the algorithm begins by
first generating an initial set of N “live points” initially drawn from the prior p(0) (usually
on the order of ~ 1000). At each prior mass volume slice X;, the likelihood values for each
live point is calculated and the live point with the lowest likelihood value identified which gives
us our approximate p(X;). The parameters associated with the minimum likelihood live point,
0;, are then saved for later use in constructing the posterior (described shortly). The minimum
likelihood live point is then discarded and replaced with a new live point from the prior p(0|I)
such that the likelihood value of the new live point is greater than the likelihood value of the
old minimum live point from the previous step i. There are several methods for generating a
new live point from the prior under the given likelihood constraints, which will also be outlined
shortly.

As shown in [157], the prior mass at each step X; is equivalent to X; = #;X;_1, where #; is a
probability distribution defined on the bounds U(0,1). The probability distribution associated
with taking the largest of My numbers from a uniform distribution may be expressed as

p(ti) = Nijver e 1. (1.59)

i

Taking the expectation value of the distribution E[log p(#;)], it is shown in [157] that the log prior

CHAPTER 1. INTRODUCTION TO GRAVITATIONAL WAVES 47

Algorithm 2 A simple nested sampling algorithm. A set of live points, Njjve, are first initialised.
For each step, i, over M iterations, the minimum likelihood value for all current live points is de-
termined, p;(d|0,I). A weight, w;, is then calculated which is parameterised by the constrained
prior volume, X;. The likelihood of the minimum live point is then multiplied by the weight
and added to the running evidence value, p(d|I). Both the minimum live point values 6; and
weight @; are saved and the minimum likelihood live point is replaced with a new live point
which is sampled from the constrained prior such that the new point likelihood is greater than
the removed live point’s. Sampling concludes once a user pre-defined stopping criterion is met.
set Generate Njjye points 0}, ..., Oy, . from the prior;
for i =1 to M do;
set p;(d|0,1) = min (likelihood values of active live points),
set X; ~ —]ﬁXl;l,

set @ = (X1 — Xi11),

set p(d|l) = p(d|l) + pi(d|6,])w;,

save live point 0; along with weight ®;,

remove 0;,

replace 0; with new live point sampled from constrained prior,

ensure new live point likelihood > old 6; min likelihood,
end for
return p(d|I).

mass shrinks approximately by a factor of ~ —1 /Ny for each step, thus giving us an accurate
method for approximating X;.

Unfortunately, there is no exact figure merit which guarantees that the nested sampler has
converged. This is because there is always the marginal possibility that there will unexplored
regions of the parameter space which may contain high likelihood in a small contour [157]. A
rough approximate which most practitioners use to determine convergence is through a quantity
known as the log evidence ratio. The log evidence ratio is defined as the estimated total evidence
and the current accumulated evidence p;(d|I) [158]. The estimated total evidence is a summa-
tion of the current accumulated evidence and the estimated remaining evidence. The estimated
remaining evidence is approximated by identifying the current maximum likelihood value out of
all current active live points pmax(d|0,1) multiplied by the current enclosed prior mass X; given
by

Pest(d|l) = pmax(d|6,1)X;. (1.60)

A stopping criterion for the algorithm, dlogZ, is then defined as the ratio of the estimated total

CHAPTER 1. INTRODUCTION TO GRAVITATIONAL WAVES 48

evidence and the current accumulated evidence expressed as

pest(d|1)+pi(dll>) <c (1.61)

dlogZ = lo
s g(pid]l)

where (is a user pre-defined stopping threshold, most nominally chosen to be ~ 0.1 [158]. The
reasoning behind this definition of algorithm stopping criterion is that small changes in p(d|I)
indicate that the accumulation of the evidence is tailing off, so thus the evidence is nearly fully
integrated and sampling may thus be terminated.

Now that we have described how one may use nested sampling to accurately and efficiently
approximate the evidence, it turns out that the posterior may also easily be sampled from as a
byproduct of the nested sampling algorithm. Given that the posterior is simply the prior weighted
by the likelihood and since we have already accumulated likelihood samples through Eq. in
the form of the minimum live point likelihood value over M steps, p;(d|0,I) and samples from
the prior through the saved parameter values of each that same minimum live point it is shown

in [20, 159] that the posterior may thus be approximated as

YM p(X) @:8(6;)
0|d.1) ~ , 1.62

where 8(6;) is the Dirac delta function centered on the ith posterior sample 6;.

The two nested sampling software packages used in this thesis (Dynesty [160], CPNest [161])
apply their own tweaks to the original nested sampling algorithm proposed in [157]. The pri-
mary difference between approaches lies in how each method decides to replace the discarded
lowest likelihood live point at each step/contour i, given the constrained prior distribution at
that step. In CPNest, this is accomplished by first randomly selecting one of the current active
live points. An chain is then run from the starting point value equivalent to the ran-
domly selected live point. The maximum length of the chain may be pre-defined by the user and
varies from step to step in the CPnest algorithm according to the autocorrelation time scale
(see Eq. 23 of [20] for the definition). Additional features are also included in CPNest which
reduce the amount of manual tuning required for convergence and are explained in more detail

here [20].

CHAPTER 1. INTRODUCTION TO GRAVITATIONAL WAVES 49

Dynesty by default uses a combination of chains and ellipsoids to produce inde-
pendently and identically distributed posterior samples. Specifically, new live points are drawn
to replace the lowest likelihood point at each step by approximating the bounds of the current
prior mass X; using ellipsoids (by default, the algorithm uses multiple ellipsoids). Ellipsoids are
constructed and optimised using k-means clustering. Once a proper bound has been constructed,
samples may be generated conditioned on those bounds using a multitude of methods outlined
in Sec. 4.2 of [160]. By default, Dynesty draws a new sample from the constrained prior such
that it is within the bounds defined by the ellipsoids and then evolves that sample through to
an chain whose proposal distribution by default is dependent on one of the ellipsoids
(selected randomly). Further details and additional tuning options available in Dynesty are
outlined in [160]. We also briefly mention that many of the sampling methods included here
are packaged into user-friendly analysis tools such as bilby [19] and 1lalinference [20]

which are used extensively by the

1.8 Summary

The chapter opens by discussing the detections made by the in the past 3 observation runs

and how those detections have been used to further our understanding of cosmology, astro-

physics and astronomy. A brief introduction to Einstein’s Field Equations and how those
field equations lead to the prediction that s exist was provided. It was shown that various
sources are able to produce s and it was described how the detectors physically op-

erate to detect such signals. The search techniques for all source signals was described, along
with a description on how predictions are generated on the underlying source parameters of

signals. From the descriptions of the search and parameter estimation techniques given
in Sec. and Sec. it was shown that while optimal under Gaussian-noise conditions,
standard approaches used by the are computationally expensive to run. This is especially
problematic given the large number of expected signals the will see in the coming years,
with the additional need of alerting partners in low-latency due to short-lived

counterparts. Given the urgent need for low-latency tools to perform both detection and

CHAPTER 1. INTRODUCTION TO GRAVITATIONAL WAVES 50

parameter estimation, we will show in the subsequent chapters (Ch. 4, Ch. 5) how recent
advances in the field of may be applied in order to solve these problems. In the next chapter
(Ch. 2), we will describe the basics of , as well as provide detailed descriptions of the

algorithms used in this thesis.

Chapter 2

An Introduction to Machine Learning

In this chapter we will explain in detail the machine learning techniques used in this thesis in-
cluding: fully-connected neural networks [162], s [163] and s [164]. We will also
describe some of the basic principals of how neural networks learn (i.e., backpropagation [165]),
how they are initialized, best training practices, methods for evaluating performance, and meth-
ods for data augmentation/pre-processing. In order to dispel the notion of machine learning be-
ing uninterpretable, it should be stated that machine learning is perhaps most simply described
as just function approximation. The overarching goal being to approximate a function which
is obtained by finding a global minimum according to a cost function. How one defines this
minimised function is the key and there are many methods for doing so.

A machine learning algorithm can perform a variety of objectives including: classifica-
tion [166], regression [167], anomaly detection [168], denoising [169] and density estima-
tion [170]. There are many other tasks a machine learning algorithm can tackle, but the two
which are primarily used in this thesis are classification and density estimation. In classifica-
tion, a machine learning algorithm attempts to learn the optimal function to classify a given set
of inputs (e.g. a timeseries, image or any other data input) and returns as output the likelihood
that the given input came from a particular class or set of classes (e.g. animal type, number).
A machine learning algorithm can also alternatively perform non-linear regression by switching
from outputting numeric values describing class probability to predicting a continuous variable

(i.e. a changing temperature). Finally, we can even have a machine learning algorithm produce

51

CHAPTER 2. AN INTRODUCTION TO MACHINE LEARNING 52

probability distributions (e.g. source parameter posteriors) for a given input by enforc-
ing that the algorithm predict parameters which fully describe a distribution (i.e. the mean and

variance of a Gaussian).

2.1 Fully-Connected Deep Neural Networks

So, how do we build a machine learning algorithm? Let us first define a simple neural
network architecture, the perceptron [171]. A perceptron is made up of a neuron which is
composed of several tunable variables called weights and biases. Given an input sample (e.g.
an image of a cat/dog), the neuron produces a prediction on a corresponding characteristic of
that sample (i.e. likelihood of being an image of a cat or a dog). An illustrated diagram of a
perceptron network is given in Fig. 2.1. Predictions from a perceptron could be in the form of
a class or a parameter value which describes that given input sample. Multiple perceptrons can
then be grouped into a layer of perceptrons (henceforth referred to as neurons) to form a network
of neurons [162]. Multiple layers of neurons can then also be stacked together to form what is
known as a fully-connected deep neural network (illustrated in Fig. 2.2). “Fully-connected” in
this case meaning that the output from every neuron in the previous layer is given as input to
every neuron in the next layer. This neural network, made up of many neurons, may then be
trained to give better predictions by showing it multiple input samples (training samples). Better
predictions are achieved by adjusting the tunable parameters of each neuron according to a term
known as a cost function. The cost function describes how well the network is performing with
respect to the true value of each input training sample [172].

For the sake of simplicity lets presume that we want to perform what is known as a binary
classification task, defined as having the network predict a value which assigns the likelihood
that a given input belongs to one of two classes. Lets presume that the true value for each class
is in the form of a number from 0 to 1 where O represents one class and 1 represents the other.
In order to get the neural network to make the correct predictions, weights and biases of each

neuron are updated according to the performance of the output of the network with respect to the

CHAPTER 2. AN INTRODUCTION TO MACHINE LEARNING 53

cost function. The cost function of a neural network can take many forms, but the mean squared
error is one of many well established choices for a binary classification problem and may be

defined as
2

n
_ %ZZ((x(i))> , 2.1)
i

where ylj\-’[is the neural network prediction from the final layer M, superscript i indicates the
sum over elements in a group (batch) of n training samples (x(®), subscript j indicates the sum
over the output of neurons in the layer, and y} is the true class label or parameter value for each
training sample. When the predicted labels over all training samples in the final layer ylj\/[are
similar to the training sample true labels y! over all training samples, the cost term approaches
zero and is near a minimum (the absolute minimum, which for mean squared error is actually

zero, is when all predictions are exactly correct).
The output of each neuron in every layer may then be defined recursively as a learned func-

tion expressed as
W=o (Zw’;}(y;” ! +bk’”> , (2.2)
J

where y;-"*l

is our given input from neuron j in previous layer m — 1, w?}(is our tunable scalar
weight parameter, b}’ is our tunable scalar bias term, and ¢ is a non-linear function which
rescales the output. Since we usually frame the binary classification problem such that a predic-
tion of O represents the first class and a prediction of 1 represents the second class, we typically
apply a sigmoid activation function (Fig.) since it limits the output to be between 0 and 1.
Nonlinear activation functions are also applied throughout all layers of the network in order to
allow our network to learn non-linear functions/features [173]. From Eq. it can be clearly

seen that each layer is dependent on the previous layer. For example, Eq. can be used to

explicitly write out a network which has 3 layers defined as

yz =0 (nguo (Zw,%vo (ZW}ka‘i‘b/l() +b€> +b2) , (2.3)
v k j

where we see that our neural network is composed of many nested functions. It is clear that

the more layers we use, the more complex our neural network approximated function (Eq. 2.3)

CHAPTER 2. AN INTRODUCTION TO MACHINE LEARNING 54

X1
X2 J .
@ P—
§ X3 \" : \z Wj'kx]' +bk‘ > — \/ y
r @Y
\i’/ | 4 =
~— /"
XN
@
Figure 2.1: A perceptron network whose inputs xi,...,xy are each multiplied by a learned set
of corresponding weights wy,...,wy and summed together. The summed value is then passed

through an activation function to get the final output of the network, y.

becomes.

The reader’s next question may rightly be, how does one go about choosing the right weights
and biases for each neuron in the network? In other words, how much of an effect will changing
the weights and biases have on the resulting cost function H. We can quantify the amount to
change in weights and biases such that the cost is minimised through an operation known as
gradient decent [174]. We will specifically be discussing a variant of this optimisation method
called stochastic gradient decent.

Stochastic gradient decent is an iterative algorithm used to find the global minimum of a
function. In general, the minimum of a function may be determined by computing where the
derivative (or gradient) of that function is equal to zero. Specifically, we are interested in min-
imising the cost function defined in Eq. 2. 1. This cost function is itself a function of the weights
and biases of the neural network. The amount that each weight and bias term in the neural

network needs to be adjusted in order to minimise the cost function may be defined as

g1 =80— YVH(go,x), (2.4)

CHAPTER 2. AN INTRODUCTION TO MACHINE LEARNING 55

Input Data Network layers Output

-

ARVZ/AN
W«» WL
oty Yy YWY Y
NVUSA QW AN g
T g i i
Nelee
‘ H/ ‘\\ N AN N AN

i
)
a4

Al

Figure 2.2: A deep fully-connected neural network. Samples xi...xy are given as input to every
neuron (blue unlabeled circles) in the first layer of the neural network. The outputs of each
neuron are then passed through an activation function (See perceptron illustration in Fig. 2.1)
on to the next set of nodes in the following layer (represented as blue lines). The outputs from
the final layer of neurons pass through a single neuron which determines the class/value of the
given input.

CHAPTER 2. AN INTRODUCTION TO MACHINE LEARNING 56

1.0 -

0.8 A1

0.6 A

Sigmoid(X)

0.2 A

0.0 A

-10.0 -75 =50 =25 0.0 2.5 5.0 7.5 10.0
X

Figure 2.3: A sigmoid activation function plotted over the input range -10 to 10. Given an input,
the activation function will rescale the input to be between the range of 0 to 1.

where 7 is a tunable step size scale factor (learning rate), VH(go,x) is the gradient of the cost
with respect to the weights and biases of the network, g¢ is the current value for all weight and
bias terms, and g; is the updated value for all weight and bias terms. In order to compute the
gradient, we must compute the partial derivative of the cost with respect to each weight and bias.
For example, one can explicitly write out the partial derivative of the cost with respect to weight

w% | for our simple 3 layer network defined in Eq. using the chain rule as

OH _0H dy} dH 9y
(S?W%1 n 8y% awh 8y3 8w%1 Y

(2.5)

where we see that the derivative is a sum over the partial derivatives from each neuron in the
third layer y>. We now need to continue expanding backwards to the previous layers using the

chain rule

OH _OH <8_y? dy} dyi 9y3 > oH (8y§ A 2.6)
8w%1 N 8y% ayfawh 8)% 8wi1 8y% ay% 8wi1 Y ’

CHAPTER 2. AN INTRODUCTION TO MACHINE LEARNING 57

where it can be seen that we end up with an expanding sum of partial derivative products. This
process of propagating the gradients back through the network is known as backpropagation.
This is done for every weight and bias term in the network. Ideally, we would compute the
gradient over more than just one training sample, but rather the whole training set during each
tunable parameter update. However, computing the gradient over the whole network for all
training samples is computationally expensive, thus the training set is normally split into batches
of samples in order to reduce the computational cost. If we used all training samples then
this would be called “gradient descent” but by using batches we include randomness, hence
this is called “stochastic” gradient descent. We also note that all weight and bias values are
typically initialised randomly prior to training and there are many schemes for choosing the

optimal initialisation [175].

2.2 Training Best Practices (practical advice for the reader)

We were commonly told when first wading into the pool of deep learning that the practical im-
plementation/training of deep learning models is largely a dark art. In this section, we would like
to clear up the picture by offering some best practices from personal experience when training

machine learning models in general.

2.2.1 Dataset Size, Pre-Processing and Augmentation
Training Data Size

When in doubt, the more training data you make available to yourself, the better [176, 177] .
Time and again, during a large part of this thesis work, we would spend countless hours tuning
and tweaking the neural network architecture only to run up against some seemingly insurmount-
able wall of impeded progress. Only then to increase the number of training samples by several
factors and see a significant increase in performance. There is no hard rule for the exact number

of training samples needed, as it is dependent on many factors associated with the problem being

'We note that if the user is employing an ML model which is complex with respect to the training parameter
space that there is a risk of over-fitting when using a large training set.

CHAPTER 2. AN INTRODUCTION TO MACHINE LEARNING 58

addressed, including the structure of the data, the data space itself. There is some theoretical
work using the concept of Vapnik-Chervonenkis (V) Dimension [178] which may possibly
inform the practitioner on a lower bound for the number of training samples to use (typically
of order billions of training samples for a standard fully-connected network [178]). However,
it should be noted that this concept is only applicable to a handful of standard algorithms and
there is much disagreement in the computational science literature concerning the relevance of

dimension in the practical implementation of machine learning algorithms [179, 180, 181].
Specifically, it is known that simple neural network models perform well using a lower number

of training samples than the dimension would demand.

Data pre-processing

Commonly, input datasets may span a large dynamic range of several orders of magnitude. In
order to help the network learn more efficiently, it is beneficial to perform some pre-procesing
steps [182]. It’s important to do this because if the input data has large values over a wide range,
and our network is trying to learn a mapping from input to prediction, the learned weights may
also end up being very large. Large learned variable weights can lead to large gradients which
cause the network to update weights in large step sizes, making the whole network more unstable
in the process. Normalisation can also help ensure equal importance is assigned to all features
in the training set [183], i.e., greater numeric features do not dominate smaller numeric features.
We can partially solve this issue by normalising our input dataset to be between the range of

zero to one”. For example, one can normalise a series of given inputs by

¥ = ﬂ, 2.7)

Xmax — Xmin

where x' is our new normalised data, x is our original un-normalised data, x.;, is our un-
normalised data minimum value and x;ax 1S our un-normalised data maximum value. It can

also be advantageous to rescale our input data to a standard normal distribution if our data has

There are multiple options for ranges one can use (i.e. -1 to 1).

CHAPTER 2. AN INTRODUCTION TO MACHINE LEARNING 59

widely varying scales by applying

;X —Xmean (28)

where Xmean 18 the mean of our data and o, is the standard deviation of our data. In addition
to rescaling our input data, we occasionally need to also rescale our training labels. This is
especially relevant if the activation function in our final neural network layer is fixed to be
between some values. For example, if we were using a sigmoid activation function where the
values of the output of the sigmoid are only allowed to be between zero and one, then we would
also want our training label values to lie between zero and one since the network would not be

able to produce values outside of that range.

Data Augmentation

Neural networks can sometimes be composed of hundreds, thousands, even million of param-
eters to be tuned during training. Given the massive number of parameters, many complex
networks also require a massive number of training samples. But, what do you do if you are
only given a limited number of training samples? This is where data augmentation comes to
the rescue. In order to generate more training data, we can apply simple changes to the existing
limited dataset in order to greatly expand the number of training samples. Data augmentation

can be accomplished in various ways, including the methods briefly mentioned here:

e Translation: Shifting the input data sample across n dimensions in the input data sample
space. For example, if we had a dataset with images which were all centered in the x-y
plane, we could shift each image by a random amount on either the x or y axis in order to
translate it (the remaining space after translation could be filled with a constant value, or

random Gaussian noise).

e Rotation: Primarily useful for 2-dimensional images, one can also rotate each image in a
dataset about a fixed point in the x-y plane. All remaining space after rotation can again

be filled with a constant value or random noise.

e Cropping: One can choose a random subsection of an n-dimensional input in a dataset,

CHAPTER 2. AN INTRODUCTION TO MACHINE LEARNING 60

remove all data outside of this subsection, rescale the cropped data to the original input

size.

It should be noted that the augmentation applied has to be consistent with what we wants
the network to be able to learn. For example, we wouldn’t do rotation if we were identifying
buildings in images because they are all usually upright. More directly relevant to data
analysis, one can also make additional fake signals using existing data (as outlined in detail in
Ch. 5, Sec. 6.4). We draw a subset of the parameters which characterise or signals and then
use them to augment the existing training sample such that it is representative of those newly
drawn parameters. If the training signals are buried in noise which is well-defined, new noise
realisations may then be drawn and added to noise-free versions of the training signal in order

generate further training signals.

2.2.2 Validation

In order to understand how well your model is performing with respect to the training data,
one may plot the resultant average output of the loss function as a function of the number of
training iterations. Ideally, we would like the loss to rapidly decrease and to then flatten out. If
the loss flattens out, it may indicate that the network has reached a minimum in the loss space,
much like one would find in the minimum of a parabola, thus it may be reasonable to terminate
training. Although this will give us an indication of how well the network is performing on the
training set, it does not inform us as to how well the model will generalise to a new testing set.
In order to quantify the generalisation ability of the network, we may set aside a small portion
of the training set prior to training as a validation set. During training, we can temporarily fix
the weights and run the validation set through the model in order to compute a validation loss.
If we plot both the validation loss and the training loss as a function of time, we would
preferably like to see both curves decrease as a function of training iteration, level out and trace
each other . However, if we see that the training curve initially decreases and then continues to
decrease while the validation curve initially decreases and then subsequently increases we may

say that the model has overfit the training data. Overfitting the training set generally indicates

CHAPTER 2. AN INTRODUCTION TO MACHINE LEARNING 61

that either our model is too complicated and has essentially memorised the training set or that we
do not have enough training data to sufficiently cover the entire parameter space. What is meant
by “memorising the training set” is that the network is parameterised by so many parameters that
it is essentially able to model each data point in the training set with a weight or bias coefficient.
This is similar to if we had a polynomial composed of 3 coefficients and a data set of 3 data
points, we could in principle perfectly fit the polynomial to the dataset such that there was zero
loss, but obviously this means the model will not be able to generalise well to other data points
from that parameter space. Overfitting can be mitigated by increasing the training set size,
adding dropout connections (Sec.), batch normalisation (Sec.), early stopping of the
training run if the model loss has flattened out and before it overfits to the training data [162] or

reducing the complexity of the neural network [162].

2.3 Regularisation

Regularisation is used to help prevent a machine learning model from overfitting the training
data. In the following subsections we will discuss various regularisation techniques which are

used in this thesis.

2.3.1 Dropout

One of the easiest regularisation techniques to implement is dropout. The method is used in order
to effectively simulate training and evaluating many different network architectures relatively
cheaply. Dropout may be implemented across most types of neural network layers (i.e. fully-
connected, convolutional filters, etc.). During training, if dropout is implemented, a randomly
selected subset of the neurons in a layer will be switched off and not used when the gradient is
computed and backpropogated through the network for a given training iteration. The percentage
of neurons in a layer to switch off is a tunable parameter, though typically we have found through
our own work it is best to set a value of no more than 50%. Due to the fact that dropout
essentially forces neurons to take on more or less information from a given set of inputs variably

during training, dropout may help the network to generalise better. Since a neuron in a given

CHAPTER 2. AN INTRODUCTION TO MACHINE LEARNING 62

layer is forced to not rely upon other neurons, which in a non-dropout network may specialise

in learning a particular set of feature from the inputs and not any others [184].

2.3.2 Batch normalisation

Batch normalisation aims to standardise the inputs to a neural network at each layer of the
network. As such, batch normalisation is essentially a normalisation computed on the output
of each individual neuron within a neural network to have zero mean and unit variance. This
normalisation in effect prevents weights or biases from becoming too large. This is formalised

as
y—u
o2+¢’

y= (2.9)

where y is a given input to a network layer (i.e. output of a neuron), u and 62 are the mean and
variance of y computed over the batch and € is a small constant. The epsilon parameter is used
to avoid instances where the variance o is very small and thus preventing from having large

values. Rescaling of ¥ is then applied through two learned variables (¢ and f3)
y =ag+B, (2.10)

where o and f are learnable parameters, and y’ is the normalised input to the next layer. If it
turns out that the application of batch normalisation is not optimal, then the network may undo
the above normalization in Eq. 2.9 through the optimization of (¢,) in each layer. We also note
that the mean and variance (i,0) are also recorded during training through a running mean and
variance updated at each training iteration . When going to test/validate the network, t and ¢ in
Eq. use these running means/variances. For more information on other batch normalisation

techniques, see [162, 185].

2.4 Hyperparameter Optimization

Given the increased complexity and time cost of training neural networks in recent years, de-

spite the significant speed increase in graphics processing units (s), choosing the optimal

CHAPTER 2. AN INTRODUCTION TO MACHINE LEARNING 63

hyperparameters and run settings is key to efficient resource/time management. For example,
for a practitioner trying to train a standard model such as ResNet-101 [186], training the model
to completion can take O(24) hours and further tuning of hyperparameters to find the optimal
ResNet-101 model can take several weeks [187]. Much of this work involves training the model
multiple times with different settings and architectures. Hyperparameters may govern a number
of model attributes, as well as model performance and may include: the number of neurons,
number of layers, learning rate, activation functions, etc. In this section, we will describe three
approaches that have been used during the course of this thesis work to optimise hyperparameter
choices for a given model. In practical terms, the search space for each of these optimisation
algorithms is composed of an n-dimensional hypercube, where each side of the cube is a range
of possible values, or binary choices (i.e. turning on/off batch normalisation) for each tunable

parameter.

2.4.1 The “Intuitive” Approach

The first technique which should be used to determine optimal hyperparameters is through what
one might call the “intuitive” approach. In this approach, hyperparameters are manually tuned
based on common-sense and experience. Start with a small number of network parameters and
see if the network is performing better than random chance. Following this, slowly build up
the complexity of the network by widening the layers, adding layers, iteratively increasing the
training data volume, etc. This approach is in large part how different models were tested over

the course of the work completed in this thesis.

2.4.2 Random Search

Probably the simplest of the three approaches, a random search determines model hyperparame-
ters given a predefined prior distribution for each hyperparameter. The user may define whatever
distribution they prefer whether that be a multivariate Gaussian distribution or a uniform distri-
bution and may also choose the bounds of that distribution. Optimisation is carried out in a series

of trials, whereby a random subset of hyperparameters is sampled from each hyperparameter dis-

CHAPTER 2. AN INTRODUCTION TO MACHINE LEARNING 64

tribution and the model is trained for a number of training iterations determined beforehand by
the practitioner. In terms of discrete parameters, such as activation functions, one can simply
randomly select an activation function from a list of activation functions for each layer (or all
layers) during each trial. Since by definition a random search is sampling statistically indepen-
dent hyperparameter realisations from a distribution, one gains some practical benefits from this
statistical independence. One of those benefits being the fact that the optimisation process may
be stopped at any time, since hyperparameters may be drawn from anywhere within the range
defined by the distribution priors [188]. Further trials only enhance the coverage of the hyper-
parameter parameter space by the random search. Additionally, if a trial fails (i.e. say a mouse
chews through your computer power cable), the trial may either be restarted or ignored without
having any affect on the statistical significance on the trials already performed [188]. Through
a random search, we are able to discover a set of hyperparameters which provides a fast avenue

to achieve a low loss.

2.4.3 Grid Search

In a grid search approach we define both an upper and a lower limit for each hyperparameter.
Additionally, we define a step size by which we increase the the hyperparameter value after each
model evaluation (much like steps on a ladder). Each of these hyperparameter ladders are iter-
ated over in an n-dimensional grid, where 7 is representative of n hyperparameters describing the
model. Although a fine spacing in an n» dimensional grid may make it likely that the practitioner
1s sufficiently sampling the hyperparameter space, a grid search suffers from the curse of dimen-
sionality, whereby as the number of hyperparameters used (dimensions) increases, the number
of evaluations required to perform trials across the entire grid increases geometrically [188].
Additionally, we can’t necessarily stop a grid search in the middle of its process, like we can
with a random search, since we would have only searched half of the parameter space at that

point.

CHAPTER 2. AN INTRODUCTION TO MACHINE LEARNING 65

2.5 Convolutional Neural Networks

s were first made popular in the late 1980s to early 1990s and one of the most famous
examples is that of the LeNet architecture made by Yann LeCunn in 1998 [189]. In their paper,
LeCunn illustrated that s outperformed other simpler techniques like k-Nearest Neigh-
bour [190] and fully-connected neural networks (Sec. 2.1) on a variety of tasks. In recent years

s have been applied to many more domains including image object detection [191], fraud
identification [192], healthcare analysis [193], and many others. In this section we will explain

how s work, mechanisms for improving performance, and why they are so powerful.

2.5.1 The Convolutional Filter

The basic building block of a , convolutional filters, are analogous to neurons in a standard
fully-connected neural network. A convolutional filter is typically made up of an N x M matrix,
where N and M may be different sizes (for an illustrated example, see Fig. 2.4). There is also
sometimes an additional dimension in the form of channels we’ll denote here as D. Channels
are typically other components of the input which represent different types of information. For
example, the red, blue and green components of an RBG image could be considered as 3 separate
channel dimensions, or the outputs from multiple detectors in a global network. The output

for a single filter y;’jl.k in a given layer may be defined recursively as

N/2 M/2
m m m—1 m
Yijk =0 (Z Z Zhabckyi+a,j+b,c + bck>) (2.11)

a=—N/2b=—M/2 ¢

where i and j index the x and y-axes of a 2-dimensional image and & indexes the output channel.
The output from a given filter then becomes a separate channel in the output. The filter is denoted
as hl; . where k denotes the k’th filter for the m’th layer and c’th input channel. The input to

the filter is given as y;.”jali be

where a and b index the x,y input dimensions of the filter whose
length is N, M in those dimensions. The summation over a,b represent the convolution of the
filter sliding with respect to the indices i, j and the summation over ¢ sums the contributions

from the input channels. For each input channel ¢ and output channel k there is a bias term b7;.

CHAPTER 2. AN INTRODUCTION TO MACHINE LEARNING 66

Input Filter Output

(6%X5)+(8%x5)+(0x8)+(7%x1)=77

Figure 2.4: An illustration of a simple CNN filter. The filter is a 2 x 2 filter randomly initialised
with a set of weights for each element of the filter. Each filter weight is multiplied by the
corresponding input element over which it is currently covering. All multiplied values are then
summed together to produce the output of the filter (explicitly defined in the equation in the
bottom of the figure). The filter slides over one element (if stride is set to 1) and the computation
is done again until the whole input space has been covered.

CHAPTER 2. AN INTRODUCTION TO MACHINE LEARNING 67

Values in the N x M matrix of the filter are initialised randomly with an added bias term [175].
The initialised values in the filter are the weights of the filter. During training, the filter is con-
volved with its given input where each element in the filter is multiplied by the corresponding
overlapping element in the input. All the multiplied values are then summed together to produce
the output of the filter. If there are multiple channels, the filter may also be convolved with each
input channel representation and then summed over all channels, where there is a unique filter
per input channel. A bias term, b, is also added to the output, where there is a bias for each input
and output channel. We may then slide the filter over by 1 column and repeat the convolution
process until the edge of the filter reaches the last column of the input. We then slide the filter
back to the Ist column of the input and down one row and repeat the convolution process on
all columns again. This is done until we have convolved the filter over the whole input. We
note that in the case where the data input to the filter is 1-dimensional, we need only simply
change the filter size to also be 1-dimensional (i.e. 1 x M), or just omit the summation over that

particular feature axis and have all quantities described by 1 less dimension.

2.5.2 Pooling Layers

Pooling is a form of regularisation which typically takes the maximum value over a pre-defined
local pool of neural network layer outputs. One can also take the average or the weighted
average based on the distance from the central element of the local pool, which is generally
used as a data reduction step. Pooling is an operation which generally enforces that the output
from convolutional filters is invariant to small translations to the input data space. Invariance
in this case meaning that if a given input to a filter were shifted by a small amount, the output
of the filter would not change by a significant amount. This invariance property is useful if the
network is being applied towards a problem where we do not care as much about the location of
features in the input data space, but rather would like to place more importance on the features
themselves. Pooling can also be useful when dealing with large data inputs to a given layer
since a large local pool size provides a single summary statistic for a portion of the input which

is equivalent to the local pool size [162].

CHAPTER 2. AN INTRODUCTION TO MACHINE LEARNING 68

2.5.3 Striding

In addition to pooling, another form of regularization is striding. Striding determines the number
of elements a convolutional filter (or other operation such as pooling) moves after each convolu-
tion is performed. Standard techniques which use striding nominally employ a stride of 2 [162].
The two main reasons why striding is applied are to reduce the spatial complexity from one
layer to the next and to reduce the overlap of the receptive field of the [194]. The Re-
ceptive field is defined as a region of the input space to a given layer which affects the output
of the filter being used. With regards to spatial complexity reduction, because we are skipping
over some parts of the input when sequentially sliding the filter over each element of the input to
the filter, we reduce the amount of computations required and thus the total memory usage of a
during training. In terms of reducing overlap of the receptive field, if we reference Fig.
we see that the input grid is now a 4 x 4 grid. We can see that with a stride of unity (one) from
left to right, the elements in the corners of the of the input will only be convolved with the filter
once, whereas the two elements in the middle will each be included in the convolution twice.
With a stride of two both the middle two and outer two elements will only be convolved once,
thus reducing the amount of repeated convolutions of a filter over some of the receptive field and

giving more uniform importance to all areas of the input space.

2.5.4 The Fully-Connected Layers

Following the convolutional filter layers, we now have to convert the output of the CNN to
predict a discrete set of classes or regress on some set of parameters. Typically, a flattening
operation is applied to the output of the last convolutional layer where the concatenated output
from the previous layer’s filters are flattened into a 1-dimensional string of elements. This 1-
dimensional string of elements are then given as input to a fully-connected layer of neurons.
One can then add additional fully-connected layers and a final layer equivalent to either the
number of classes to predict, or the number of parameters to regress on. A logical question may
be why add this extra fully-connected complication? The primary reason for the addition of

fully-connected layers is that we want to unify the learned features across all filters and

CHAPTER 2. AN INTRODUCTION TO MACHINE LEARNING 69

Stride 1

Stride 2

Figure 2.5: An illustration of striding a 2 x 2 CNN filter (green) with a given data input (blue).
The top row is an example of striding the filter across all columns of the input from left to right
with a stride of 1. The bottom is an example of striding the filter across all columns with a stride
of 2.

CHAPTER 2. AN INTRODUCTION TO MACHINE LEARNING 70

use those features as a combined whole to learn how to either classify or regress.

2.6 Conditional Variational Autoencoders

In this section we will describe the network architecture of a . This will be done by first

describing an network, then a network and finally a network.

2.6.1 Autoencoders

An is comprised of two neural networks called an encoder and decoder. The encoder is
given a data input from a pre-generated training set. The predicted numbers from the encoder
representing the latent space are then given as input to the decoder network. The decoder then
tries to reconstruct the given input to the encoder network (Fig. 2.6). We also note that the output
of the encoder network is typically smaller than the dimension of the input, essentially forming
a bottleneck of the data flowing from the encoder to the decoder network. We call the output of
the encoder the latent space representation. We can measure how well the network is performing

through the same mean squared error function given in Eq. but now expressed as

1 & ; .

Hap-mse = ; O () =20y, (2.12)
where y is now the output from the decoder network on a given training/validation/testing sample
of the and x\9) is the input training/testing sample. During training, y(x(i)) is trained to be
as similar to x() as possible in order to minimise Hag msg. The lower the value Hag msE 1S, the
better the network is performing. The loss Hag-Mmsg 1s then backpropagated (Sec. 2.1) through
the network adjusting the weights and biases in order to further minimise the loss. Through
training, the learns a latent space representation which is essentially the compressed form of
the data.

s can be used across a variety of applications including: dimensionality reduction (also

known as compression) [195], image denoising [196] and feature extraction [197]. Although

powerful, one of the limitations of an is the way it represents the latent space, which has

CHAPTER 2. AN INTRODUCTION TO MACHINE LEARNING 71

Input Data Encoder Latent Space Decoder Output

\\ N \
Aﬁk '@A ﬂ

e @
NS

Figure 2.6: An autoencoder network composed of two neural networks defined as the encoder
and the decoder networks. Here, both networks are represented as fully-connected networks, but
could also be any number of other network architectures such CNNs and [.5TM networks. Both
networks can also be of any depth or shape. The encoder network takes as input a set of data and
compresses the data through a bottleneck called the latent space. The latent space representation
is then given as input to the decoder network which tries to reconstruct the given input xj...xy.

CHAPTER 2. AN INTRODUCTION TO MACHINE LEARNING 72

implications for their usefulness as generative models. A generative model is one which can
produce predictions from the training set parameter space. Within the context of AEs as gener-
ative models, the reader would be forgiven for thinking that, if properly trained, one could just
simply sample from the latent space uniformly in order to generate unique predictions from the
training set parameter space. However, due to the fact that the network is not required to dis-
tribute learned latent space representations during training (features are allowed to be encoded
anywhere in the latent space), it is not guaranteed that randomly drawn latent space samples will

be from a learned part of the latent space.

2.6.2 Variational Autoencoders

A (see illustration in Fig.2.7) is nearly identical to an AE, except for how the latent space
is represented and how the loss function is constructed. Considering that the encoder is given an
input sample; instead of having the encoder network output a single predicted value for each di-
mension in the latent space, we now have it output both a predicted mean and standard deviation
value describing a Gaussian for each dimension’. Samples are then drawn from the predicted
distributions and given as input the decoder network. The decoder network produces estimates
trying to reconstruct the given input to the encoder network. Through making our encoder net-
work generate latent space samples drawn from a probability distribution, we are essentially
forcing the encoder network to make a continuous and smooth latent space representation. If the
latent space is smooth and continuous (i.e. two similar classes being “close” in their latent space
representation) then the decoder may be able to more easily reconstruct a given input. The loss

for a is also slightly different and is represented as

n

1 . .
Hyamise = -) () = 29)2 4+ D [(0,47 (0,1)], (2.13)

i

where y is the predicted output from the decoder, x{¥) is the given input to the encoder, y; and o;

are predicted means and standard deviations describing Gaussians for each latent space dimen-

3n principle they don’t have to be Gaussians nor do they have to be separate distributions for each latent space
dimension.

CHAPTER 2. AN INTRODUCTION TO MACHINE LEARNING 73

Input Data Encoder Latent Space Decoder Output

»|
— —
—™ Z L

Figure 2.7: A simplified diagram of a network. The input data x is passed to the en-
coder neural network which produces predictions on the means p and standard deviations ¢ of
multivariate Gaussian distributions describing the latent space. Samples, z, are drawn from the
predicted distributions described by tt and ¢ in order to get samples from the latent space. These
latent space samples are then passed to the decoder network which attempts to reconstruct the
given input x.

CHAPTER 2. AN INTRODUCTION TO MACHINE LEARNING 74

sion, Dt is the Kullback—Leibler (K1.)-divergence between latent space samples from predicted
Gaussians .4 (;, 0;) produced by the encoder network and samples from a mean zero unit vari-
ant Gaussian distribution .47(0, 1).

We can derive this loss function by first assuming that we want to approximate the true poste-
rior in the latent space. We are assuming here that there is a true posterior in the latent space that
is a faithful representation of the input data given a limited latent space dimensionality. We are
also limited by the capacity of the encoder/decoder in conjunction with finite training time/data
representation using a neural network. We will be directly following a similar derivation done

in [198]. We can define the difference between the approximated distribution of the latent space

and the true distribution of the latent space as the K1 -divergence defined in Eq. as
Fabs
Dr(aa(cllp(ele)) = - [go(el)tog (252)z @19
qe(z|x)

where gg(z|x) is the approximate distribution of the latent space given data x and p(z|x) is the
true representation given data x. The approximate , gg(z|x), is parameterised by an encoder
neural network whose tunable parameters 6 are learned during training. We can then substitute

Bayes theorem (Eq. 5.1) in for p(z|x) as

Di(aaclo)llp(e) = - [atcoytog (22) g, @15

where pg, (x|z) is in practice modelled by the decoder network whose tunable parameters we
denote here as 8,. We now separate out the division using the rules of logarithms and distribute

the integral

Pe,(*[2)p(2)

702l)dz+/q9(zlx) log(p(x))dz. (2.16)

i ao(cho) () = - [gafcltog (P25

We also know that by definition the KI -divergence must be greater than zero, so we can can

therefore define the inequality

/qe (z|x)log (%) dz+/q9(z|x) log(p(x))dz > 0. (2.17)

CHAPTER 2. AN INTRODUCTION TO MACHINE LEARNING 75

Since log(p(x)) is not a function of z, we can move it outside the integral on the right-hand side.
We also know that because gg(z|x) is a probability distribution, we can state that the integral of

qe(z]x) with respect to z is equal to 1. Moving the integral over to the right-hand side to isolate

log (p(x)) we get

log(p(x)) > / g (z|x)log (%) dz. (2.18)

Using the rules of logarithms we can write

(p(2)) > [aacho) tog (L) +tog(pe, 1)) = @19

Distributing the gg(z|x) term and the integral we get

g(p(0)) > [qo(co)tog (LE) det [aulcbotontpaiands. 220

We can now see clearly that the first expression on the right-hand side of the above inequality is
equivalent to the negative divergence between our approximate latent space representation

qe(z|x) and our prior on the latent space p(z) such that

log(p(x)) > —Dxkv(qe(zx)||p(z)) + / q¢(z|x)log(pe, (x|2))dz. (2.21)

Conveniently, we also see that the right most term on the right-hand side of the inequality can
be approximated as the expectation value of the log probability of the data x given z assuming z

is drawn from ¢(z|x). Hence

log(p(x)) = =Dx1(qe(2x)[|P(2)) + E~gy (2 [l02(Pe, (x]2))], (2.22)

where z ~ ¢(z|x). This term now gives us an evidence lower bound (), which places a
lower bound on the log-evidence of the data log(p(x)). If we assume that the output of the

decoder, pg, (x|z) has a Gaussian distribution, then the log-probability of the output x will
be equivalent to the log of a Gaussian. Thus the expectation value on the right reduces to the

mean squared error between predictions on x by a neural network called the decoder which is

CHAPTER 2. AN INTRODUCTION TO MACHINE LEARNING 76

given latent space samples from a multivariate Gaussian distribution whose mean and variance
are predicted by the encoder network gg(z|x). Assuming a Gaussian prior on our latent space,
we can also write the K -divergence term as the K1 .-divergence between samples drawn from a
mean zero unit variate Gaussian distribution and those from a multivariate Gaussian distribution
whose mean and standard deviation is predicted by the encoder network g. The term essen-
tially acts to constrain the form of the approximate posterior log(p(x)) according to the chosen
prior on the latent space representation p(z) across the whole input parameter space. Further-
more, the term helps the model to learn a well-formed latent space and reduce the likelihood
of the posterior being too different from the prior [199]. Thus Eq. can be rewritten in the

form of a cost function to be minimised given earlier by Eq.

2.6.3 Conditional Variational Autoencoders

Through our derivations in the previous sections we have now formulated a loss function which
can be trained to maximize the expected log-probability of our decoder’s prediction, while also
regularising its model within the latent space to a smooth representation that matches a pre-
defined Gaussian prior. However, there are some minor drawbacks to the which make
it unsuitable for some generative tasks. Generative in this case means to draw samples from
the latent space on a pre-trained encoder network and then feed those samples to a pre-trained
decoder network in order to generate new data samples from the prior distribution defined by
the training set.

For example, if we wanted to train our on the fashion Modified National Institute of
Standards and Technology dataset () dataset [200]" , a database of digital images repre-
sentative of various classes of fashion items (shoes, shirts, trousers), in order to generate new
images of fashion items we would run into a problem. This problem is most clearly illustrated
when taking a closer look at the cost function in Eq. . In the cost function, it
can seen that the encoder is solely conditioned on inputs from the training space x, but not on

what class/type of image x is. Similarly, the decoder is solely conditioned on the latent space

4Each image in the sets are normalised to be 28 x 28 pixels in size and are grayscale, such that each pixel is
represented by a single scalar.

CHAPTER 2. AN INTRODUCTION TO MACHINE LEARNING 77

z. In order to produce a particular class of input from the decoder, we would have to know in
which part of the latent space each class lives and to then draw from the region of the latent
space that our class of interest resides. Knowledge of class location is infeasible to obtain after
training because the K1 .-divergence term in Eq. enforces that on average across the whole
training set that the predicted latent space locations are representative of a mean zero Gaussian
distribution, but does not constrain where individual classes of input may reside.
The natural question then arises, is it possible to condition the network on classes of interest?
It turns out that this is possible to do by starting from first principles (as was the done for the
in Eq.) and then deriving an expression through modeling the joint distribution on x

and ¢ such that

log(p(x,c)) > —Dxr(qe(z|x,c)|[p(z,¢)) + E~yg(zlx.c) l0g(po, (x2,¢))]. (2.23)

Here, we now condition the encoder gg(z|x,c) on both the training data x and the class of said
images ¢ (see Fig.2.8). In the decoder pg, (x|z,c) we condition on samples from the latent space
z and the class c¢. For classification purposes, the class may be parameterised as a single scalar
number which is appended to the input to the encoder and decoder networks. Now, if we wanted
to use the decoder as a fashion image generator, we would only simply need to draw a random
sample from the latent space from the prior on z, choose a class label, and then feed both as
inputs to the decoder network. In Ch. 5 we will show how we use a form of in order to

perform low-latency Bayesian parameter estimation.

2.7 Summary

In this chapter we introduced the concept of machine learning starting from one of the simplest
neural networks, a perceptron. We showed how perceptrons may be used to provide predictions
on a given input in the form of classification or regression tasks. We then built on the concept of
perceptrons discussing how perceptrons can be strung together to form a layer, and from there

layers can be stacked to form a deep fully-connected neural network. The cost function for a

CHAPTER 2. AN INTRODUCTION TO MACHINE LEARNING 78

Input Data Encoder Latent Space Decoder Output

®_ C
®_

»
—
— z _

Figure 2.8: A simple diagram consisting of an encoder and decoder network. x data is
given as input to the encoder and latent space samples are given as input to the decoder as was
the case with the diagram in Fig.”.7. However, now we additionally condition the encoder
on the class of x by appending the class label in numerical form to x. We also condition the
decoder on class ¢ by appending it to the latent space samples z.

CHAPTER 2. AN INTRODUCTION TO MACHINE LEARNING 79

deep network was described, along with how that cost is used to update the tunable parameters
(weights and biases) of a neural network through a mechanism known as backpropagation. We
also provided some best practices on hyperparameter optimisation and training procedures such
as dropout, batch normalisation and data augmentation. We additionally introduced the concept
of S, S, s, and s. We mathematically expressed how the cost function for
each method may be described and discussed how all models are used in practice. Two of
the networks introduced in this chapter (S, s) are the primary methods used in this
author’s thesis work. In the following chapter (Ch. 3), we will discuss how many of the

techniques discussed in this chapter (including others not mentioned) are being applied across a

variety of domains in astronomy to great success.

Chapter 3

Machine Learning in Gravitational Wave

Astronomy

It is expected that in the coming years the global advanced detector network will see an increase
in sensitivity. With this increase in sensitivity also comes an increase in the number of sig-
nals which will be detectable by the collaboration. The number of signals per year is expected
to be anywhere on the order of 100s to 1000s (depending on the source type) [18]. We also note
that the time to compute full Bayesian posteriors on the sky location of such events can take up-
wards of weeks to months, where delays in sky location alerts to partners can mean missed

signatures [21] (with possible adverse future science discovery impacts). As such, it is im-
perative that we develop new techniques to deal with this massive influx of detectable sources.
We also note that some signals [201] and noise cannot be accurately modelled using traditional
approaches, thus there is also a need to develop flexible tools to solve this problem. has been
proven to be an excellent resource for tackling many problems in the community. Over the
past several years, there has been a boon in the use of methods across a variety of applica-
tions in detection, parameter estimation and detector characterization algorithms (among other
domains). This surge in applications has seen marked success not only in proof-of-principle
studies, but even in studies involving the use of actual data. Going forward, it is the hope
of this author and surely other practitioners, that after rigorous testing, these meth-

ods continue to be more widely used and for some, eventually implemented in realtime during

80

CHAPTER 3. MACHINE LEARNING IN GRAVITATIONAL WAVE ASTRONOMY 81

observing runs in order to further enhance the capabilities of future detectors.
In this chapter we will provide an overview of recent advances in approaches in
astronomy in signal detection, parameter estimation, population inference and detector charac-

terization.

3.1 Machine Learning for Gravitational Wave Detection

Algorithms which search for s are typically concerned with four types of sources: ,
Burst, and stochastic s (Sec.). sources being composed of , and
signals (Sec.), sources composed of fast spinning NSs (Sec.), Burst are
unmodelled/poorly modeled signals like supernovae or even as yet unknown sources (Sec.)
and stochastic s result from left over remnants of the Big Bang along with poorly resolved
signals from extreme distances (Sec.). In this section we will outline several recent

and interesting studies which have used to directly detect s from a variety of the afore-
mentioned sources listed above. We also note that there a number of papers which have been

applied to this area and have thus not mentioned all for the sake of brevity.

3.1.1 Compact Binary Coalescence Detection Studies

Deep learning algorithms were first applied to the task of detecting simulated s by George
& Huerta [202] and Gabbard et al. [1]. In our work (Ch. 4), our algorithm was trained on
two distinct timeseries classes, simulated waveforms buried in Gaussian noise, as well as
purely Gaussian noise timeseries in order to perform a classification task. Gaussian noise was
used because it is known that matched filtering performs efficiently under Gaussian noise con-
ditions [67] and the analysis of signal in Gaussian noise was a simple first step towards trying
to match the efficiency of matched filtering. We note that it is known that matched filtering
is not the optimal approach when searching over discrete waveform templates [203, 204] and

has in fact since been shown to even exceed matched filtering sensitivity in some circum-

stances [204]. Using a , we were able to show that deep learning could match the efficiency

IThe noise generated was not white and was simulated from a realistic detector

CHAPTER 3. MACHINE LEARNING IN GRAVITATIONAL WAVE ASTRONOMY 82

of matched filtering. In [202], they also show that a similar approach (“deep filtering”)
could reproduce predictions from matched filtering. In addition to signal detection, they were
able to show that a , for the first time, could perform point-estimate parameter estimation on
both and eccentric waveforms, closely matching the best-fitting templates predicted
by matched filtering. It should be noted here that “close” is a relative and somewhat mean-
ingless term if there are no uncertainties on those estimates. They additionally compare their
approach to other common approaches including: K-nearest neighbor, support vector
machines and logistic regression (among others) showing their to have superior results.
George & Heurta use two network architectures in their study: one for parameter estimation
and one for signal detection. The parameter estimation network is composed of 4 convolutional
layers, 4 max pooling layers, 1 flattening layer, 3 fully-connected layers and rectified linear
unit activation functions on all fully-connected/convolutional layers, whereas the signal detec-
tion network is slightly smaller with 3 convolutional layers, 3 pooling layers, 1 flattening layer
and 2 fully-connected. Gabbard et al. on the other hand used a slightly deeper network with
6 convolutional layers, 3 max pooling layers, 1 flattening layer, 2 fully-connected layers and
exponential linear unit activation functions on all fully-connected/convolutional layers. In both
studies, the number of filters in each convolutional layer increases up to the flattening layer,
while conversely the kernel size decreases. The time to train both George & Huerta networks
was shown to be a few hours and evaluation of a single test sample took ~ 6.7ms for signal
detection and ~ 85ms using the parameter estimation network. Gabbard et al.’s network took
~ 1 hour on a single and could produce signal detection statistics for a test sample on the

order of milliseconds.

It was first shown by Krastev et al. [206] that using artificial neural network ()s one
could accurately recover signals in Gaussian noise. The problem was posed as a trinary
classification task whereby the model was tasked with distinguishing between ,

and Gaussian noise alone timeseries segments. Their neural network was limited to analysing

data selected from a sliding window of ~ 10s due to computational expense associated with

2 An alternative approach to s that may be interesting to explore are wavelet convolutional neural networks
which have been shown in some circumstances to have similar performance with respect to s with the added
advantage of significantly lower computational expense [205].

CHAPTER 3. MACHINE LEARNING IN GRAVITATIONAL WAVE ASTRONOMY 83

analysing long timeseries segments. They also train their network through curriculum learning
whereby the network is initially trained on easy-to-detect high signals and then gradually
given more and more low signals as training progresses. Their results are quantified by
comparing the true alarm probability (), the fraction of signals correctly identified and
of predictions from their neural network classifier for different classes of signal (i.e. ,
, hoise-alone) (also known as a receiver operator characteristic () curve [207]). Their
results show that that their network is more sensitive to detecting events than for
events. The authors show that their performs more poorly on signals than on
signals. To expand, 100% of events are detected above an of 10, whereas 100% of
events are only detected above an of 18. They additionally quantify their results by
plotting the as a function of at different values for both and neural
network predictions. Their results for the case reach similar levels of sensitivity as those
achieved by Gabbard et al. [1]. They state that the sensitivity difference between and
neural network predictions could be due to a number of reasons including: sliding window size,
network architecture choice and signal complexity. The authors do not compare their approach
to any other existing currently used signal detection method such as matched filtering.

In Marlin et al. [208], the authors perform a more in-depth study on for detection
and use a different neural network architecture. In order to reduce the overall complexity of
the input space they deal with 32s long signals and vary the sample rate as a function of
different segments in time of the signal. The authors justify this sampling approach by describing
that most of the of the signal is contained in the final few seconds. Additionally, if one looks
at the frequency evolution of a signal, we see that, for example, at 16 s prior to merger for a
1.35-1.35 system, the frequency is 48.7 Hz. Hence prior to this, a sampling frequency of at
least 100Hz would theoretically suffice. They state that using a varying sample rate also reduces
the size of input signal space by a factor of ~ 9, thus decreasing the computational expense
needed to run their approach. Their approach was also the first to probe -based detection
algorithm sensitivities down to s of about 0.5 per month. The authors also improve on
previous architecture approaches by employing inception modules [209], temporal convolutions

for signal amplification, [210] and tailoring inception modules for each different sampled section

CHAPTER 3. MACHINE LEARNING IN GRAVITATIONAL WAVE ASTRONOMY 84

of the input time series [208]. Results from their study show an overall improvement in
detection sensitivity with respect to results from Krastev et al. [206]. They quantify this by
comparing results from their study with Krastev’s study by plotting the as a function of

for both studies. Marlin et al. are able to produce predictions with their neural network on a
given input with a latency of ~ 10.2s. The authors compare their results to traditional techniques
like matched filtering (i.e. the PyCBC live event trigger generator [6]) using a quantity known
as the sensitivity distance [208] at fixed s. The authors find that their approach has a
sensitivity distance which is ~ 6 times lower (less sensitive) than that of results from PyCBC [6]
ata of 0.6 per month. The authors also compare their results to Krastev et al. [206] and see
that for a given fixed , Marlin et al.’s network does not generalise well to high signals
to the same sensitivity as Krastev et al. [206] in terms of values. On the other hand, the
results of Marlin et al. show a ~ 4 times increase in sensitivity over Krastev et al. [206] in
the lower regime (8 < SNR < 15). The authors mention that some general improvements
could be made including: lowering the latency of their approach by reducing the complexity
of the network, the addition of real noise to the training/ testing sets, and using results form
their approach as input to follow-up analysis by a traditional matched filtering algorithm with a
heavily reduced template bank.

We also note here that there are many other studies that have been done within the context
of detection using that we do not have the space to mention in this chapter. Some
other notable examples include: using scalable autoencoders for detection [211],
fully-convolutional neural networks for signal detection [212, 213], genetic-algorithm-
optimized neural networks for detection [214], using s given time-frequency
input representations to detect s [215], and detecting the early inspiral of
signals using s [216]. We will now discuss how is being applied towards the detection

of burst signals.

3.1.2 Burst Detection Studies

The first implementation of a algorithm for the purpose of identifying burst-like signals

was by Astone et al. in 2018 [217]. In their paper they build upon the already existing Coherent

CHAPTER 3. MACHINE LEARNING IN GRAVITATIONAL WAVE ASTRONOMY 85

WaveBurst () pipeline [136] used by the . Specifically, they are interested in searching
for core-collapse supernovae events [128]. Their method can be summarised in two steps. First,
they prepare time-frequency images of detector data using the event trigger generator,
which searches for periods of excess power and combines these periods coherently among the
various detectors (for further details on coherent searches see either Ch. | or [136]). Once
periods of excess power have been identified, a time-frequency spectrogram image is constructed
for each active detector. In their approach, they use three detectors and combine them in such
a way that each detector essentially acts as a colour channel, akin to a red-green-blue (RBG)
colour scheme. The authors then use a to classify the identified time-frequency image into
either noise or signal+noise classes. They test their network on a range of signals spanning

values from 8 up to ~ 40. They show that their method is overall more efficient at detecting

core-collapse supernovae signals than the standard detection pipeline ata of around
7 x 10°Hz.
It was also shown in Chan et al. [218], that s may be used to detect s resulting from

core collapse supernovae events. In their work they find that their approach would be able to de-
tect core collapse supernovae events out to a distance of 60kpc with a of ~54% at a of
0.1%, well within the distance to the large and small Magellanic clouds. Additionally, McGinn
et al. [201] applied a algorithm known as a generative adversarial network () [219]
in order to produce generalised burst waveforms in the time domain. Their network was
trained over 5 different classes of waveforms commonly used by burst searches and find that,
once trained, their model is able to accurately produce waveforms on-command which
are similar in waveform characteristics those it was trained over, as well as generalise to other
waveforms which act as hybrids between the 5 training classes. They test the practical aspects
of their work by first training a solely using the 5 well-defined classes of waveforms used
by their during training and then training another identical using a training set which
is generated using waveform timeseries produced by their . The authors find that the

trained with waveforms generated by the had superior performance over the trained
with the 5 classes alone and quantify this through efficiency curves which measure the as a

function of at fixed values.

CHAPTER 3. MACHINE LEARNING IN GRAVITATIONAL WAVE ASTRONOMY 86

Finally, we note the recent study by Skliris et al. [220] which showed for the first time that
a multi-component architecture was able to classify unmodelled bust signals. They train
their model using white-noise burst signals [135] buried in Gaussian noise and Gaussian noise-
alone timeseries. Their network architecture is unique in that it employs two s: one for
identifying signals which are coincident between detectors and the other for detecting correla-
tions between detectors. The first was derived from the same architecture as Gabbard et
al. [1] and is given as input a timeseries and produces an output between 0 and 1, denoting the
probability of the timeseries containing either a signal or noise respectively. The second network
takes as input again a timeseries, but is also given the Pearson correlation [220] for each pair of
detectors and outputs values between 0 and 1, where 0 indicates low correlation and 1 indicates
high correlation between detectors. This dual setup is inspired by the operation of stan-
dard burst detection pipelines which require that a signal is both coincident and correlated
between detectors [220]. They test their method under a variety of waveform morphologies and
illustrate their sensitivities through computing values at fixed s across a range of

values.

3.1.3 Continuous Wave Detection Studies

In terms of searches, the standard coherent or semicoherent searches can be computationally
expensive, sometimes taking well over a month to complete [221]. Dreissigacker et al. [221] try
to decrease this computational time with respect to standard detection approaches using
ResNet neural networks [186] in the first application of deep learning for the search. They
frame the problem such that their training set consists of two types of input. One, being long
10%s signals and shorter 103s signals. Rather than doing a search over the entire frequency range,
they limit their test cases to a discrete set of frequency bands, 50mHz in width, at (20Hz, 100Hz,
200Hz, 500Hz and 1000 Hz). They compare their results to a “gold standard” search
method pipeline WEAVE [222]. The pipeline sums coherent F'-statistics [| | 8] over semicoherent
segments on lattice-based template banks [223], although their study employs the fully
coherent search version of the code. The reason there is both a semicoherent and a fully coherent

version of the WEAVE code is related to the computational cost of performing a fully coherent

CHAPTER 3. MACHINE LEARNING IN GRAVITATIONAL WAVE ASTRONOMY 87

search. Given that signals are weak in amplitude, one needs to analyse long periods of data
in order to accumulate enough to make a detection. However, the computational expense of
performing the optimal fully coherent search scales as 7" where n 2 5 and T is the length of the
data analysed (this is especially problematic at high frequencies [224]). Semicoherent methods
for performing a search were thus developed with the purpose of making it possible to
analyse longer stretches of data with reduced computational cost.

For the training set, Dreissigacker et al. generate over 10* training waveforms in the fre-
quency domain with half containing Gaussian noise and the other half containing signal+noise.
They found that using a set greater than 10* training signals provided little gain in efficiency.
After training, the authors found that at a fixed , their deep learning approach appears to be
competitive (88 — 73% detection probability) with the matched filtering search (~ 90% detec-
tion probability) on short time scale inputs (10°s). However, when tasked with longer time scale
inputs (10%s), the neural network performs at a diminished detection probability (69 — 13%).
In terms of computational speed, it was also shown that their neural network outperformed the
matched template search, taking only on the order of a few milliseconds (3 — 10ms) as opposed
to the 10® — 10°%s of the matched filter method. The authors do also note however that the net-
work requires ~ 1 — 10 days to train depending on the length of the observed data, T, used. As
the authors state, there is much work to be done in order to improve the efficiency of deep neural
networks within the context of searches. There is also much promise given the quality of
results achieved thus far. In a follow-up to [221], Dreissigacker et al. show in [225] that using
an Inception-ResNet [226] architecture they were able to train a deep neural network to classify
the presence of signals given data from 2 detectors simultaneously. They also showed that

their network code was able to show an approximately equivalent sensitivity under both targeted

search and all-sky search scenarios. We also briefly note other recent studies such
as Morawski et al. who showed an application of signal detection using s [227], as well
as Beheshtipour and Papa who used a Mask R- [228] architecture for signal candidate

clustering [229].

CHAPTER 3. MACHINE LEARNING IN GRAVITATIONAL WAVE ASTRONOMY 88

3.2 Machine Learning for Gravitational Wave Bayesian Pa-
rameter Estimation

For many, parameter estimation was the “holy grail” of in the field of astron-
omy. Although prior to 2019 there were some attempts to compute point estimates for

source parameters directly, as well as to incorporate s directly into subsections of existing
Bayesian inference algorithms [159], there had up to that point been no studies done using an

algorithm which went from directly from strain to computing samples from the Bayesian

posterior on source parameters. In this subsection, we will outline some recent studies on
incorporating artificial intelligence (Al) into existing parameter estimation pipelines,
for point estimate parameter estimation, and finally for directly computing samples from

the Bayesian posterior.

was first used in the context of parameter estimation by Graff et al. [159] in their
modified nested sampling algorithm BAMBI. In their algorithm, the authors exploit the ten-
ants of the universal approximation theorem [230], which implies that even a properly opti-
mized should be able to approximate any sufficiently complicated likelihood function.
This is done by essentially replacing the computationally expensive likelihood calculation in the
MultiNest [231] nested sampling algorithm (Sec.). After the nested sampling algorithm
has produced a sufficient number of samples, their is trained on those samples. The inputs
to the are the sample parameter values and the output is a single scalar which represents
the likelihood values for each of those samples. The is then trained such that it’s pre-
dictions for the likelihood values match those computed within the nested sampling algorithm.
The advantage of having such a is that once trained, the can provide low-latency
likelihood evaluations. In order to quantify when the has been trained sufficiently to fully
replace the standard likelihood function, a tolerance level is calculated. The tolerance is defined
as the standard deviation of the difference between the true log-likelihood values from nested
sampling and the predicted values from the . The actual value of this tolerance level may
be specified by the user. Once the network has reached an acceptable tolerance level of perfor-

mance it then replaces the original likelihood function calculation. Periodic tolerance checks

CHAPTER 3. MACHINE LEARNING IN GRAVITATIONAL WAVE ASTRONOMY 89

are made throughout the rest of the nested sampling iterations to ensure that the is still
providing solid predictions.

The authors find that their algorithm performs well across a variety of toy model cases (Gaus-
sian shells, Rosenbrock functions [232], eggbox [231]). They also compare their approach
(BAMBI) to unmodified Mult iNest on a few real physics examples including predicting the
posteriors of 8 cosmological parameters using data from cosmic microwave background ()
observations and observations plus Hubble Space Telescope constraints on H, the Sloan
Digital Sky Survey and Type 1a Supernovae data (see [159] for more details on datasets used).
The gain in speed goes from taking on the order of seconds per likelihood calculation, down
to milliseconds, a three order of magnitude increase in computational performance with accu-
rate evidence predictions and posterior probability distributions [159]. It has also been shown
within the context of signals that BAMBT can produce posteriors which are consistent
with traditional nested sampling algorithms, generating samples from the posterior ~ 100 times
faster [233].

One of the first implementations to use a purely -based algorithm to produce Bayesian
posteriors was performed by Gabbard et al. in [2]. In our study (also discussed in detail in
Ch. 4), we show that using a particular type of , given a timeseries, we can produce
Bayesian posteriors over the full parameter space. The network is trained over

waveforms in Gaussian noise with a component mass range of 35 —80M), as well as
the source parameters which characterise the waveforms. Once trained, our network can
produce ~ 10* posterior samples per given timeseries in ~ 0.1ms. We compare our results

against four benchmark Bayesian samplers (Dynesty, ptemcee, emcee, CPNest) and find

that our model is generally consistent with other benchmark approaches. Consistency is
quantified through a combination of JS-divergence and plot tests, as further outlined in
Ch.

Released at the same time as Gabbard et al. [2], Chua et al. [234] also aimed to show that
methods could accurately approximate Bayesian posteriors. Their method used fully-
connected neural networks (Ch. 2). They represent their training waveforms by first training a

neural network to predict coefficients which describe a reduced order framework [235]. Once

CHAPTER 3. MACHINE LEARNING IN GRAVITATIONAL WAVE ASTRONOMY 90

trained, the network is able to quickly produce training waveforms. Their training
waveforms are represented in the frequency domain, whereby there are both real and imaginary
components of the wavefrom. The authors use two networks which produce the real and imag-
inary components of the waveform separately. To produce posteriors, Chua et al. again use
a fully-connected neural network which takes as input during training the training waveforms
(in Gaussian noise), as well as the source parameter values of those training waveforms. Their
model then outputs a 1 or 2—dimensional posterior in the form of a multivariate Gaussian whose
means and covariance matrix are predicted by the neural network. When testing, the model is
constructed such that it only needs as input the test sample waveform alone. One can then pro-
duce samples from the posterior for a given input waveform by sampling from the predicted
multivariate Gaussian.

Chua et al. [234] test and train their model on waveforms, expected to be seen by
space-based detectors such as , in Gaussian noise with masses ranging from 1.5 x 10 —
10 x 10° with aligned spins between —1 and 1. They then train their model to predict both
the chirp mass and the symmetric mass ratio . Their results show good agreement between
the posteriors produced by their machine learning approach and traditional Bayesian sampling
approaches [234, 235]. They more formally quantify the accuracy of their results by computing
the sample covariance matrix of the posterior predicted by their neural network, as well as the
covariance matrix of the true Bayesian posterior and then comparing both through a log ratio
expression given in Eq. 9 of [234].

Following on from Chua et al. [234] and Gabbard et al. [2], Green et al. [236] wanted to
tackle two outstanding problems which both Chua et al. and Gabbard et al. had yet to solve
at the time. With regards to Chua et al.’s approach, it was to expand upon the limited number
of source parameter dimensions that their algorithm could produce posteriors on at a time (no
more than 2). With regards to Gabbard et al., it was the initial difficulty of dealing with multi-
modal posteriors (which was later rectified in subsequent updates to our paper). In Green et al.’s
first paper [236], they implemented a new approach using a combination of normalising
flows [237] and s (Ch. 2).

A normalising flow is a mechanism for mapping simple distributions to more complex distri-

CHAPTER 3. MACHINE LEARNING IN GRAVITATIONAL WAVE ASTRONOMY 91

butions through a series of transformations, while also retaining the property of being invertible.
Invertibility meaning that in order to sample from the complex distribution, we must also still
be able to sample from the simple distribution. As stated in [237], a normalising flow may in
fact be represented as a neural network where the parameters which characterise the series of
transformations in a flow, are learned by the neural network over the course of training [233].

In their paper, Green et al. use three distinctly different models to produce Bayesian pos-
teriors: a , a masked autoregressive flow () [238] and a combination of a
and a . The combined + network, is constructed by appending flows to the
end of both encoders and the decoder network of the in order to better model more
complex distributions in the latent space of the . The authors test their methods on 1 s
long signals in Gaussian noise sampled at 1024Hz and try to predict a 5 parameter case
(my,my, ¢,ty,dy) in order to directly compare with Gabbard et al. [2], and an eight dimensional
case (my,ma, 9 ,ty,dL, X1, X2,1) which uses an aligned spin model. Both of these cases are using
a single detector with fixed sky location. Prior to training, they perform a unique pre-processing
step whereby they transform their training samples (waveforms in Gaussian noise) via
principal component analysis into 100 element long series of principal components, thereby re-
ducing the dimensionality of the input and vastly improving the overall computational cost of
training/testing their network. They find that all three methods perform reasonably well, al-
though the basic alone method is not able to resolve the multi-modal source parameters
such as phase. They validate their results quantitatively through a combination of tests and
computing the divergence between multi- dimensional posterior distributions from their
approaches and those from a benchmark Bayesian sampler, emcee, with values of ~ 0.3.
For context they also computed the divergence between samples which are drawn from
identical posteriors and found that value to be ~ 0.1.

In a subsequent paper, Green et al. [239] used a pure flow network with spline cou-
plings [240]. The authors train their model and then test on a known signal in Gaussian
noise (GW150914 [3]). After training, they find that their approach is able to to closely match
a standard Bayesian sampler (Dynesty [160]), according to corner plots, JS-divergence val-

ues and plot tests. They find minor inaccuracies on the inclination angle, where their

CHAPTER 3. MACHINE LEARNING IN GRAVITATIONAL WAVE ASTRONOMY 92

approach puts more imbalance in the posterior on one of the two modes in the posterior space.
Using normalizing flows, Williams et al. [241] were able to replace the computationally
costly task of drawing samples from the prior constrained by the likelihood contour of the low-
est (worst) live point in an existing nested sampling algorithm with flows. The flow tries to
model the multi-dimensional multi-modal likelihood contour defined by the worst live point.
Classically, the nested sampling algorithm has the issue of trying to efficiently sample from
inside the final likelihood contour, where as the analysis progresses and the contour becomes
smaller, basic nested sampling algorithms become less efficient. The authors use an algorithm,
dubbed Nested Sampling with Artificial Intelligence (), to try and solve this problem
with a specific type of flow, coupling flows, because of their computational cheapness (although
with the added disadvantage of tending to be slightly less flexible than autoregressive flows).
The flow is trained on the current set of live points through a loss function defined in Appendix
A of [241]. Once trained, the flow is then used to generate a population of new proposal points.
A point is randomly drawn from this proposal population and its likelihood is calculated. The
proposed point replaces the old worst live point if the proposed point likelihood is greater than
the worst live point likelihood. This process is repeated until one of a number of criteria are
met: the proposal population generated is depleted, acceptance rate of points drawn from pro-
posal population is too low, a pre-determined number of new live points have been accepted,
some user-defined nested sampling convergence threshold is passed. This is all further outlined
in Sec. 3B of [241]. The authors find that when compared to the Bayesian sampler Dynesty,
their approach is between ~ 2.32 (without distance marginalisation) and ~ 1.40 (with distance
marginalisation) times faster. The majority of the computational cost of the algorithm
is expended through the proposal population generation stage (36% of the total cost for a given
injection), while flow training only accounts for a small percentage (9%). The proposal point
likelihood evaluation stage cost decreases as the number of CPU threads used in the analysis
increases, falling to approximately 9% of the total cost when using 16 threads. We also men-
tion that there are many other works in for Bayesian parameter estimation which we do not
have the space to discuss in more detail here. We highlight a few additional studies where for

example it was shown that s could be used to model the likelihood-to-evidence ratio in an

CHAPTER 3. MACHINE LEARNING IN GRAVITATIONAL WAVE ASTRONOMY 93

sampling algorithm [242]. It was demonstrated in [243] that a (using a similar
scheme as Gabbard et al. [2]) could be trained by also conditioning on the , thus allowing
their network to generalise to a time varying . Finally, it was also illustrated in [244] that a

cross-residual network [245], given spectrogram data, could produce probability distribution of
estimates on source parameters’. We will now discuss in the next section some new work

on using for population inference.

3.3 Machine Learning for Population Inference

Given the recent accumulation of detections over the past several observation runs,
we are now able to perform more detailed studies across a population of events. It is also
expected that as detector upgrades are made and new detectors come online, that we will start
to see hundreds to thousands of events per year [18]. Such abundance of signals will only
enhance population studies which aid us in understanding source formation channels, the
general properties of source parameters (masses, redshifts, spins etc.), progenitor merger
rates, as well as possible modifications of [247]. In order to constrain certain phenomeno-
logical models, it is common to employ the use of Bayes factors (Ch. |, Sec. 1.7)) comparing
different model assumptions. Employing such Bayes factors commonly involves the production
of computationally costly simulations of synthetic populations of events and then com-
paring those synthetic populations to real-world data [248]. One way of circumventing this is
through

Wong et al. [249] showed for the first time that a hybrid normalizing flow—hierarchical
Bayesian model framework was able to accurately constrain population models [249].
Specifically, the authors try to get a normalising flow to estimate the population likelihood,
p(0|A) (See Eq. 1 in [249]), where A are a set of hyperparameters which describe the gen-
eral properties of a set of events. Parameters which characterise events from the

event set are given as 0. The population likelihood p(0|A) is needed in order to calculate the

3We note that the probability distribution generated is not a Bayesian posterior, but rather a distribution which
models the uncertainty due to the stochastic processes of the neural network itself. This is done through a process
known as Monte Carlo Dropout [246]

CHAPTER 3. MACHINE LEARNING IN GRAVITATIONAL WAVE ASTRONOMY 94

likelihood of observing a particular set of events given population hyperparameters p(d|A)
(See Eq. 1 of [249]) through hierarchical Bayesian model selection. Their normalising flow is
given as input parameters @ and A which characterise simulated event catalogue sets and
produces as output the population likelihood p(@|A). Wong et al. show that their technique
performs well over what were once considered highly intractable models. They compare their
results to simulations using an analytic phenomenological model, which provides an exact ana-
lytic expression for p(@|A) which they can directly compare their predictions of p(0|A) from
the normalising flow against. Although the authors neglect to take into account event uncertain-
ties and selection bias, their technique is shown to scale well, with up to 3000 events in
a set characterised by 6 event parameters 6 and 4 population hyperparameters A, producing
100 samples from p(@|A) in ~ 0.1s. Given that their model performs just as efficiently as other
analytic approaches in a fraction of the time, it is likely that normalizing flows will play a crucial
role in testing different state of the art models and even families of models in future event
catalogue releases. As is the case with most approaches, more data and greater model
complexity may also improve results. We will now discuss in the next section how has been
used for the purposes of identifying and characterising non-astrophysical noise transients and

glitches.

3.4 Machine Learning for Detector Characterisation

Non-astrophysical noise sources can affect the data quality of the detectors adversely. Poor
data quality can not only be a source of confusion when doing data analysis, but can even
entirely corrupt segments of data. It is the job of detector characterisation experts to identify
and mitigate such noise disturbances. If we are able to identify and prioritize classes of glitches
(non-astrophysical transients), this is an important first step in mitigating such events. In this
subsection I will describe some recent efforts to use to identify and mitigate noise in the
ground based detectors.

In order to better classify known and unknown classes of glitches, Zevin et al. [86] use a

unique combination of human learning and in a pipeline called Gravity Spy [250]. In

CHAPTER 3. MACHINE LEARNING IN GRAVITATIONAL WAVE ASTRONOMY 95

Livingston

Frequency (Hz)
Normalized energy

-0.125 0.0 0.125 -0.5 -0.25 0.0 . 05 -1 -0.5 0.0 -1.0 0.0 1.0
Time (s) Time (s) Time (s) Time (s)

(a)

Livingston

Frequency (Hz)
Normalized energy

-0.125 0.0 0.125 025 -0.5 -0.25 0.0 0.25 05 L 0.5 0.0
Time (s) Time (s) Time (s)

Figure 3.1: In this figure we see examples of two glitch types commonly identified by Gravity
Spy. The top panels show a blip glitch in the time-frequency plane at 4 different time windows
and is colorised by the normalised energy, which is essentially a measure of loudness. The
bottom panels are an example of a whistle glitch, again at 4 different time windows. This figure
was produced by the authors of [86].
Gravity Spy a set of glitch triggers (Ch. 1, Sec.) are chosen for training which occur
in “lock” (meaning the detector was in a proper state to search for s, i.e. a state when
it’s sensitive to s). The glitches themselves are represented through Omega scans [251],
which essentially search over sine-Gaussian waveform templates characterised by Q (quality)
factor. Each template is represented as a time-frequency tiling and the Omega Scan searches
for templates which most closely match a given piece of data where a good match is defined as
having a high value of the data with the template. A time-frequency spectrogram is finally
generated for the most significant tile of the best matching template. See Fig. 3.1 for an example
of some glitches represented as Omega Scans.

Their initial training set was generated from a set of 10° Omicron [252] glitch triggers, from
which about 100 glitches per class were identified by eye from trained detector characterization

experts. Approximately 20 classes were identified, where each were characterised by their cor-

responding waveform morphology. These 100 x 20 “gold-standard” glitches were then used to

CHAPTER 3. MACHINE LEARNING IN GRAVITATIONAL WAVE ASTRONOMY 96

train a preliminary neural network (a basic deep model (Ch. 2)) to identify the remain-
ing glitches in the rest of the 10° Omicron triggers. These triggers are then uploaded to the
Zooniverse website [250] where volunteer citizen scientists are able to try classifying the trigger
spectrograms by eye. Volunteers are initially trained on “gold standard” glitch images and other
well known glitches which have a high probability of belonging to a specific class. After succes-
sive successful classifications by volunteers, the difficulty of glitches presented to the volunteers
is ramped up. If a glitch is identified enough times by both the algorithm and volunteers to
a high degree of confidence, it is then “retired” whereby it is taken out of the volunteer glitch
lookup pool and then added to the labeled training set to improve the accuracy of the
model.

Overall, Gravity Spy hasbeen an incredibly successful use of and a unique example
of use citizen scientists for great gain. In addition, Gravity Spy is an excellent example of
outreach which energises the general public to get more interested in astronomy. Citizen
scientists were able to identify more than 45,000 glitches and several new glitch classes such
as “Paired Doves” and “Helix” glitches. The “Paired Doves” class was a particularly useful
identification as it closely resembled that of a company binary inspiral signals, which means that

it was a particularly problematic glitch type, since it mimics the general structure of a known

waveform.
One of the downsides of many algorithms (and a topic this author is personally very in-
terested in) is the idea of interpretability. Many models such as S, S, s, etc.,

while powerful, are composed of millions of model parameters which interact in complicated
non-linear ways. Trying to interpret why a particular network configuration works over another
is an active area of ongoing research in the community. Genetic algorithms are unique in
that they are more easily interpretable than many other approaches.

A genetic algorithm operates by first generating an initial population of programs. Each
program may be parameterised as a mathematical function whereby operands/variables and op-
erators of the function are learned during training. Variables are representative of different types
of data input to the algorithm. The program functions themselves are commonly represented

as syntax trees, which are similar to decision trees [253], where the GP syntax tree is made up

CHAPTER 3. MACHINE LEARNING IN GRAVITATIONAL WAVE ASTRONOMY 97

of three components: nodes, branches and leaves. Nodes are representative of tests on a given
input, branches are the outcomes of those tests, and leaves are the final predictions for a given
input to the tree.

Each program/function may then be used to produce a prediction on a given input. The ac-
curacy of the program’s prediction with respect to the true value associated with the given input
is quantified as the fitness score. Predictions from the program can be in the form of either a
regression or a classification. A new generation of programs is then composed based on the
fitness scores of all current programs, where the higher the fitness score, the more likely that
program will be used to produce the next generation of programs. New programs are primarily
produced through 2 avenues: reproduction and crossover mutation. Crossover mutation finds
programs above a user predefined fitness score and then pairs them off with another chosen pro-
gram above a predefined fitness to produce offspring programs to be used in the next generation
(paired off programs are known as parents). Offspring are produced by choosing a crossover
point (usually randomly) in each parent syntax tree, which essentially equates to a sub-portion of
each parent tree (could also just be one single operator/operand). The two sub-portions of each
parent tree are then swapped between the parent trees to produce 2 new offspring trees. These
offspring trees are then used as part of the next generation of programs. If the fitness score is
high enough for a program in the current generation, one can also simply copy that program to
be used in the next generation; this is known as reproduction. For further details on training and
the operation of genetic programs, see [254].

Genetic algorithms were first used in the by Cavaglia et al. in [255]. This was done
by training a genetic algorithm over many auxiliary channels in the detector, where an auxil-
iary channel is defined as a monitor or data channel which measures the internal state of the
instrument, or the physical environment surrounding the detectors. Once trained, their genetic
algorithm produces a final set of functions where each variable in the function is representative
of different auxiliary data channels. They train their algorithm using periods of observing data
where there were known glitch classes (for comparison, a random forest algorithm was also run
over the same dataset). They tested their algorithm on two glitch classes from both the first ob-

serving run and the second observing run [7]. The first set are magnetometer glitches from

CHAPTER 3. MACHINE LEARNING IN GRAVITATIONAL WAVE ASTRONOMY 98

02 and the second set or those from an air compressor seen in O1. Their training set consists
of 2000 Omicron triggers (greater than SNR 5.5) and 749 auxiliary channels for the magne-
tometer glitches and 16 triggers and 429 auxiliary channels for the compressor glitches. When
testing, the authors find that the genetic algorithm determines that 7/10 (9/10 for the random
forest algorithm) of the most likely auxiliary channels for the magnetometer glitches result from
the correct magnetometer detector subsystem (as identified by detector characterisation
experts). The most likely auxiliary channel for a given glitch type was determined by counting
the number of times a variable associated with a particular auxiliary channel was seen across the
final multivariate expressions produced by the genetic algorithm. Both the genetic programming
and the random forest algorithms were shown to generally be able to identify the source of the
most likely auxiliary channels for both the air compressor glitches and magnetometer glitches.

What the work of Cavaglia et al. [255] shows is that both random forest (RIF) and genetic
programming (GP) have the ability to work well with complex channel data to identify
complicated relationships between subsystems in a human readable fashion. The clear
advantage of using such algorithms is in their interpretability, where in genetic algorithms one
can look at the multivariate expressions chosen at each generation to see how the population
was evolved exactly. The difficult to interpret internal nature of many deep algorithms is an
interesting area of research not only in , but also in for astronomy. Going forward,
this author believes that more work will need to be done in order to understand what features

algorithms determine to be most important and in what instances an algorithm may be
fooled into returning false positives, which this author believes algorithms like may have an
important role to play.

We also note that has been used in a wide variety of other detector characterisation tasks
including: transient classification using difference boosting networks [256], noise subtraction
and denoising [257, 258], glitch classification using random forests, s and support vector
machines [259], and many other studies not listed here. In the next section we will summarise the

topics covered and provide some final concluding thoughts on the state of in astronomy.

CHAPTER 3. MACHINE LEARNING IN GRAVITATIONAL WAVE ASTRONOMY 99

3.5 Summary

In this chapter we have provided an overview of recent advances in applications for
astronomy. In the first section, we discussed how is being used for the detection of S
from several sources including: , , , burst and searches. Algorithms used
in these studies range from simple algorithms such as s and s, to more complex al-
gorithms such as normalising flows and s. It was found in most of these studies that
approaches are able to match the sensitivity of existing detection techniques. We also discussed
recent work in for population inference, as well as for Bayesian parameter estimation.
It was shown that algorithms developed by Gabbard et al., Chua et al. and Green et al. were
able to reproduce Bayesian posteriors for signals detected by both ground-based detectors
(Gabbard et al.,Green et al.) and space-based detectors (Chua et al.). In all approaches, it was
found that methods were faster when compared to existing inference techniques.

We additionally showed how is being used for detector characterisation to both classify
non-astrophysical noise transients and mitigate such sources. We discussed the classification
algorithm (Gravity Spy) and how it has been used in the for several years and has been
widely successful in classifying both known glitches (e.g. “Scattering”, “whistle”, etc.), as well
as identified new glitch types (e.g. “Helix”, “Paired Doves”, etc.). We also described work by
Cavaglia et al. which showed how interpretable algorithms, such as genetic algorithms, may be
used for noise source hunting.

Given all of the many advances using mentioned in this chapter across a wide variety
of domains in astronomy, it is clear to this author that will have a key role to play
going forward. One of the primary benefits discussed many times throughout this chapter is
that of speed. In the subsequent chapters we will show how we have used two methods,

s and s in order to tackle two outstanding problems in data analysis, low-latency
signal detection and low-latency Bayesian parameter estimation. In our work we will show how
these methods can not only be used in low-latency, but can also match the efficiency of existing

techniques.

Chapter 4

Matching matched filtering using deep

networks for gravitational wave astronomy

We note to the reader that this text is a modified version of the published paper here [1]. Mod-
ifications include: the addition of several diagnostic plots and some textual expansion on the
background of techniques used.

In brief: we report in this chapter on the construction of a deep convolutional neural net-
work that can reproduce the sensitivity of a matched-filtering search for binary black hole
gravitational-wave signals. The standard method for the detection of well-modeled transient
gravitational-wave signals is matched filtering. We use only whitened time series of measured
gravitational-wave strain as an input, and we train and test on simulated binary black hole sig-
nals in synthetic Gaussian noise representative of Advanced LIGO sensitivity. We show that our
network can classify signal from noise with a performance that emulates that of match filter-
ing applied to the same datasets when considering the sensitivity defined by receiver-operator

characteristics.

4.1 Introduction

The field of astronomy has seen an explosion of detections over the past several years.

The first of these were detections [3, 4, 5, 7, 260], then the first detection of a binary

100

CHAPTER 4. MATCHING MATCHED FILTERING 101

neutron star system [9], as well as the first detections [15]. This event was seen in
conjunction with a gamma-ray burst [10, 261, 262] and multiple post-merger electromagnetic
signatures [21]. These detections were made possible by the detectors of the . Over the
coming years many more such observations, including S, S, s, as well as other
more exotic sources are likely to be observed on a more frequent basis. As such, the need for
more efficient search methods will be more pertinent as the detectors increase in sensitivity.

The algorithms used by the search pipelines to make detections of signals [6, 263,
264] are, in general, computationally expensive. The methods used are complex, sophisticated
processes computed over a large parameter space using advanced signal processing techniques.
The computational cost to run the search analysis is due to the large parameter space, as well as
analysis of the high frequency components of the waveform where high data sample rates are
required. Distinguishing noise from signal in these search pipelines is achieved, in part, using a
technique known as template based matched-filtering (Sec.).

Matched-filtering uses a bank [103, 104, 105, 264, 265] of template waveforms [71, 94, 106,
266] each with different component mass and/or spin values. A template bank will span a large
astrophysical parameter space since we do not know a priori the true s parameter values.
Waveform models that cover the inspiral, merger, and ringdown phases of a compact binary
coalescence are based on combining post-Newtonian theory [69, 70, 71, 72], the effective-one-
body formalism [73], and numerical relativity simulations [76].

Deep learning is a subset of machine learning which has gained in popularity in recent
years [163, 209, 219, 267, 268, 269] with the rapid development of technology. Some suc-
cessful implementations of deep learning include image processing [163, 270, 271], medical di-
agnosis [272], and microarray gene expression classification [273]. There has also been success
in the field of gravitational-wave astronomy in the form of glitch classification [86, 256, 274]
and notably for signal identification [212, 275] where it was first shown that deep learning could
be a detection tool [275]. See Ch. 3 for an overview of other studies where is being used
for astronomy. Deep learning is able to perform analyses rapidly since the method’s com-
putationally intensive stage is pre-computed during the training prior to the analysis of actual

data [162]. This could result in low-latency searches that have the potential to be orders of

CHAPTER 4. MATCHING MATCHED FILTERING 102

magnitude faster than other comparable classification methods.

A deep learning algorithm is composed of stacked arrays of processing units, called neurons,
which can be from one to several layers deep. A neuron acts as a filter, whereby it performs a
transformation on an array of inputs. This transformation is a linear operation between the input
array and the weight and bias parameters associated to the neuron. The resulting array is then
typically passed to a non-linear activation function to constrain the neuron output to be within a
setrange. Deep learning algorithms typically consist of an input layer, followed by one to several
hidden layers and then one to multiple output neurons. The scalars produced from the output
neurons can be used to solve classification problems, where each output neuron corresponds to
the probability that an input sample is of a certain class. We refer the reader back to Ch. 2 for a
more in-depth description of machine learning principals/concepts.

In this chapter we investigate the simplest case of establishing whether a signal is present
in the data or if the data contains only detector noise. We propose a deep learning procedure
requiring only the data time series as input with minimal signal pre-processing. We compare
the results of our network with the widely used matched-filtering technique. We show how a
deep learning approach can be pre-trained using simulated datasets and applied in low-latency

to achieve the same sensitivity as established techniques.

4.2 Simulation Details

In order to make a clean comparison between deep learning approach and matched-filtering, we
distinguish between two cases, merger signals in additive Gaussian noise (signal+noise)
and Gaussian noise alone (noise-only). We choose to focus on signals rather than including
binary neutron star systems for the reason that systems are higher mass systems and have
shorter duration signals once the inspiralling systems have entered the Advanced detector fre-
quency band. They typically then merge on the timescale of &'(1)s allowing us to use relatively
small datasets for this study.

The input datasets consist of “whitened” simulated timeseries where the whitening pro-

cess (see Sec. of Ch. 1) uses the detector noise (see Sec. of Ch. 1) to rescale the

CHAPTER 4. MATCHING MATCHED FILTERING 103

noise contribution at each frequency to have equal power. Our noise is initially generated from
a equivalent to the Advanced design sensitivity [276].

Signals are simulated using a library of data analysis routines called LALSuite. We
use the IMRPhenomD type waveform [74, 75] which models the inspiral, merger and ringdown
components of signals. We simulate systems with component black hole masses
in the range from 5M. to 95M, m; > my, with zero spin. Training, validation and testing
datasets contain signals drawn from an astrophysically motivated distribution where we assume
my ~logmy > [277] . Each signal is given a random right ascension and declination assuming
an isotropic prior on the sky, the polarization angle and phase are drawn from a uniform prior on
the range [0, 27|, and the inclination angle is drawn such that the cosine of inclination is uniform
on the range [—1, 1]. The waveforms are then randomly placed within the time series such that
the peak amplitude of each waveform is uniformly randomly positioned within the fractional
range [0.75,0.95] of the timeseries.

The waveform amplitude is scaled to achieve a predefined optimal defined as
p2 =4 / |1 (f)
opt 2 Sn (f

where h(f) is the frequency domain representation of the strain and S, (f) is the single-

2

|
)

df, 4.1)

sided detector noise [97] (Sec. of Ch. 1). The simulated time series were chosen to
be 1 s in duration sampled at 8192 Hz. Therefore we consider fp,;, as the frequency of the
signal at the start of the sample timeseries hence each signal will have a mass dependent and
merger time dependent minimum frequency. An example timeseries can be seen in Fig.

Due to the requirements of the matched-filtering comparison it was necessary to add padding
to the edges of each timeseries in the time domain so as to avoid non-physical boundary artefacts
from the whitening procedure”. The Gaussianity of the noise and smoothness of the simulated
advanced allows the use of relatively short padding. Therefore each 1 s timeseries

has an additional 0.5 s of data prior to and after the signal. The signal itself has a Tukey win-

I'We note here that the inferred mass distribution from Observation run 3 does in fact differ from this distribution,
but is not known at the time of writing this chapter.
2We note that for matched-filtering, whitening is typically done over a far longer segment.

CHAPTER 4. MATCHING MATCHED FILTERING 104

dow (a = 1/8) applied to truncate the signal content to the central 1 s, where the window is

constructed such that it has no attenuation within the central 1 s. The approach only has
access to this central 1 s of data. Similarly, the optimal is computed considering only the
central 1 s.

Supervised deep learning requires datasets to be sub-divided into training, validation, and
testing sets. Training sets are the data samples that the network learns from, the validation set
allows the developer to verify that the network is learning correctly, and the test set is used
to quantify the performance of the trained network. In a practical scenario the training and
validation sets are used to train the network prior to data taking (See Ch. 2 for further details).
This constitutes the vast majority of computational effort and is a procedure that needs to be
computed only once. The trained network can then be applied to test data at a vastly reduced
cost in comparison to the training stage [162]. Of the dataset generated, we use 90% of these
samples for training, 5% for validation, and 5% for testing. A dataset was generated for each
predefined optimal value ranging from 1-10 in integer steps.

Our training datasets contain 5 x 10° independent timeseries with 50% containing signal+noise
and 50% noise-only. For each simulated gravitational-wave signal (drawn from the signal pa-
rameter space) we generate 25 independent noise realizations from which 25 signal+noise sam-
ples are produced. This procedure is standard within machine learning classification and allows
the network to learn how to identify individual signals under different noise scenario (See [278]
and Ch. 2). Each noise-only sample consists of an independent noise realization and in total we
therefore use 10000 unique waveforms in the m1,m, mass space. Each data sample timeseries
is then represented in the form of a 1 x 8192 pixel image with the gray-scale intensity of each

pixel proportional to the measured strain.

4.3 The Deep Network Approach

In our model, we use a variant of a deep learning algorithm called a [189] composed of
multiple layers (See Ch. 2). The input layer holds the raw pixel values of the sample image

which, in our case, is a 1-dimensional timeseries vector. The convolutional filters of the network

CHAPTER 4. MATCHING MATCHED FILTERING 105

Whitened strain

-3} i
~6.0 0.2 0.4 0.6 0.8 1.0
Time (s)
Figure 4.1: A whitened noise-free timeseries of a signal sampled at 8192 Hz with com-
ponent masses m; = 41.86M, and mp = 6.65M, with optimal = 8 (cyan). The dark blue

timeseries shows the same gravitational-wave signal with additive whitened Gaussian noise of
unit variance. This latter timeseries is representative of the datasets used to train, validate, and
test the deep neural network.

CHAPTER 4. MATCHING MATCHED FILTERING 106

are also in 1-dimensional vector form. This is opposed to the traditional 2-dimensional form
more commonly used by practitioners when applying s towards 2-dimensional image
analysis. We do not use a 2-dimensional form because our inputs are 1-dimensional, thus we
would ideally like our filters to reflect that reality. Each neuron in the convolutional layer
computes the convolution between the neuron’s weight vector and the outputs from the layer
below it, and then the result is summed with the bias vector. Neuron weight vectors are updated
through an optimisation algorithm called back-propagation [165]. Activation functions apply
an element-wise non-linear operation rescaling their inputs onto a specific range and leaving
the size of the previous layer’s output unchanged. Pooling layers perform a downsampling
operation along the spatial dimensions of their input. Finally we have a hidden layer connected
to an output layer which computes the inferred class probabilities. These values are input to a

loss function, chosen as the binary cross-entropy [279], defined as

flp.t) = = Y log(p}) — Y ' log(p})), 4.2)
ieS ieN
where piS/N is the predicted probability of the class signal+noise (S) or noise-only (N) and tiS/N

is the true value for the i’th training sample. The loss function is minimised when input data
samples are assigned the correct class with the highest confidence.

In order to optimise a network, multiple hyper-parameters must be tuned. We define hyper-
parameters as parameters that we are free to choose. Such parameters include the number and
type of network layers, the number of neurons within each layer, the size of the neuron weight
vectors, the max-pooling parameters, the type of activation functions, the preprocessing of input
data, the learning rate, and the application (or otherwise) of specific deep learning techniques.
We begin the process with the simplest network that provides a discernible level of effective
classification. In most cases this consists of an input, convolutional, hidden, and logistic output
layer. The optimal network structure was determined through multiple tests and tunings of

hyperparameters by means of trial and error-.

3We have also used multiple other hyperparameter optimisation techniques, as introduced in Ch. 2, in subsequent
projects. We tried some of these optimisation schemes in Ch. 4, but in the end settled on a network design which
was determined through random trial and error.

CHAPTER 4. MATCHING MATCHED FILTERING 107

Within our optimisation process we experimented with rescaling the input data, which we
found to have minimal effect on the network performance. The reason for this is that our input
data is whitened and our signals are buried beneath the noise. Therefore our data is effectively
prescaled on a range +¢'(1) due to the natural variation of Gaussian noise. We also experi-
mented with using transfer learning [280] where networks pre-trained on high datasets are
used as starting points for application to successively lower datasets. We found that there
were no performance benefits in using this approach compared to training the network solely on
each dataset separately. The network depth was adjusted between 2 and 10 convolutional
layers. The inclusion of dropout (See Sec. of Ch. 2) was used within the final 2 hidden
layers as a form of regularisation to avoid overfitting.

During the training stage an optimisation function (back-propagation) works by computing
the gradient of the loss function (Eq. 4.2) with respect to the weights of the network for a given
training sample, then attempting to minimize that loss function. The value of the loss is prop-
agated back through the network by taking the partial derivative of the loss with respect to the
weights of the network and applying the chain rule. Using the calculated partial derivatives, one
can then update the weight and bias terms of the network such that the loss is minimised. Back
propagation is done over multiple iterations where at each iteration the gradients are computed
all at once over a batch of training samples. We also use Nesterov momentum [281], which is

described by

Vi=Wvi1 —nVf(6_1+uvi1), (4.3)

6; = 0,—1 +vi, (4.4)

where 0;_; are the parameters of the neural network from the previous layer, 6; are the param-
eters of the current layer of the network and v; is the momentum for the current layer. We also
have p which is a scalar constant term which determines the amount of momentum to apply
per gradient update (the higher the number, the more momentum), v;_; is the momentum term
from the previous layer, 7 is the learning rate, Vf(6;,_1 + uv;_1) is the gradient of the model

parameters with respect to the previous layer (including the momentum term from the previous

CHAPTER 4. MATCHING MATCHED FILTERING 108

layer (v;—1)). There are a variety of initialisation schemes for the momentum term in each
layer, but prior to training, the momentum in each layer is nominally chosen from a uniform
distribution between 0 and 1. We use a learning rate which alternates between n = 10~ and
N =5 x 107>, and the Adam optimiser [282] which is parameterised by a set of user-defined
hyperparameters given as: 8; = 0.9, B = 0.999, £ = 1078 and a momentum schedule of 0.004
(See [282] for further details on the function of these Adam hyperparameter values). We outline
the structure of the final neural network architecture in Table 4.1. We also note that the same
network structure was used for each , but that a separate neural network was trained for
every value.

The final ranking statistic that we extract from the analysis is taken from the output
layer, composed of 2 neurons, where each neuron gives the inferred probability that the input
data belongs to the noise or signal+noise class respectively. Both neurons will produce a prob-
ability value between 0 and 1 with their sum being unity, which is the default behaviour of the

softmax activation function given by

Softmax(x;) = (4.5)

where " is the exponent of the value of one of the 2 output layer neurons for class i and }_; €'/ is
a summation over the exponent of both neuron output layer values, representing the predictions
for all classes. The computational time spent on training the network for each SNR is &/(1) hour
on a single GPU". This one-time cost can be compared to the &(1s) spent applying the trained
network to all 25,000 1 s test data samples also using a single GPU. Therefore at the point of
data taking this particular analysis can be run at 10* times faster than real-time.

In Fig. 4.2, we plot three different quantities as a function of training epoch for one of our
networks trained on 8 signals. The top panel shows the loss as a function of training
epoch, which we see decreases rapidly initially and then levels out as training progresses. In

the middle panel, we show the detection probability (fraction of signals correctly identified

“It should be noted that this study was carried out in 2017 and as such s have become more efficient since
then. If the study were carried out today, it is possible that the speed of the network could be improved by some
factor.

CHAPTER 4. MATCHING MATCHED FILTERING 109

Parameter Layer

(Option) 1 2 3 4 5 6 7 8 9
Type C C C C C C H H H
No. Neurons 8 8 16 16 32 32 64 64 2
Filter Size 64 32 32 16 16 16 n/a n/a n/a
MaxPool Size n/a 8 n/a 6 n/a 4 n/a n/a n/a
Drop out 0 0 0 0 0 0 05 05 0
Act. Func. Elu Elu Elu Elu Elu Elu Elu Elu SMax

Table 4.1: The optimised network consisting of 6 convolutional layers (C), followed by 3 hidden
layers (H). Max-pooling is performed on the first, fifth, and eighth layer, whereas dropout is only
performed on the two hidden layers. Each layer uses an exponential linear unit (Elu) activation
function (with range [—1,o0]) while the last layer uses a Softmax (SMax) activation function in
order to normalize the output values to be between zero and one so as to give a probability value
for each class.

by the neural network) as a function of training epoch where the training, validation and testing
detection probability are denoted as the purple, blue and orange curves respectively. The goal
is to minimize the loss function, which will in turn maximise the detection probability of the
classifier. We see in Fig. that as the loss decreases, the detection probability increases,
indicating the the network is performing more accurately as training progresses. We should note
here though that it does appear that the network is slightly overfitting to the training data. This
is because the validation/testing detection probability curves (blue, orange) are lower than the
training probability curve (purple). The bottom panel shows the learning rate used as a function
of training epoch which alternates between 1073 and 5 x 1072,

Our learning rate alternates between a minimum and upper bound because we decided to
employ a cyclic learning rate scheduler [283]. A cyclic learning rate is commonly used avoid
saddle points, or local minima, in the loss function parameter space. Specifically, a learning rate
which is too low will only apply small updates to the neural network weights and thus may get
stuck in that saddle point. A cyclic learning rate will allow both large and small network weight
updates to occur, thus increasing the likelihood of breaking out of saddle points. There is also
the issue of choosing a poor initial learning rate at the beginning of training. If our network
and/or optimiser is strongly influenced by the initial learning rate, we may never see the loss
function minimised. A cyclic learning rate allows us apply a variety of learning rate values over

a broad range, thus minimising the chance of choosing an inappropriate learning rate.

CHAPTER 4. MATCHING MATCHED FILTERING 110

1.5

o 10

S

0.5

5 00T
£ 0.975 - — —
© :
£ 0.950 I
C
2 0.925 -
(®)
Q
.‘G—.; 0.900 T T T T T T T T T T T T T T T T T
o
v 0.005 1
T
o
(@]
£
©
Q
— 0.001 -

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Epochs

Figure 4.2: The loss, detection probability and learning rate plots (shown above top panel) for
a network trained on 8 signals illustrate how the network’s performance is defined as a
function of the number of training epochs. The first initial epochs see an exponential decrease
in the loss function and then a slowly falling values to follow. This indicates that the longer our
network is trained, a limit with respect to the accuracy is approached. In our case, we cyclically
adjust the learning rate to alternate between 5 x 10™* and 103 at a constant frequency. The
detection probability on training samples is represented by the purple curve, validation detection
probability as the blue, and testing detection probability as the orange curve.

CHAPTER 4. MATCHING MATCHED FILTERING 111

4.4 Applying Matched-Filtering

In order to establish the power of the deep learning approach we must compare our results to the
standard matched-filtering process used in the detection of signals [97, 284]. The ranking
statistic used in this case is the matched-filter (Eq. in Ch. 1) numerically maximized
over arrival time and analytically maximised over phase and distance [51]. By first defining the

noise weighted inner product as a function of a time shift Az between a and b given as,

AN () amirar
(@lp)an =4 | SCE Ny, 4.6)

2mifAL gllows us to use

where Ar = 1/ f;, f is the sampling frequency, and the exponential term e
the to compute the for every discrete time shift between the data and template. We

can construct the squared matched-filter as

p-= ; (4.7)

where s is the data containing noise and a potential signal, and /% is the noise-free gravitational-
wave template [99]. For a given template this quantity is efficiently computed using the ,
where the allows the to be computed for all possible signal arrival times within the
observation window with cost NlogN, where N is the number of samples we have’. The max-
imum value from the output timeseries, defined by Eq. 4.7, is also computed. The
subsequent step is to further numerically maximize this quantity over a collection of component
mass combinations. In this analysis a comprehensive template bank is generated in the m,m,
mass space covering our predefined range of masses. We use a maximum mismatch of 3%
and a lower frequency cutoff of 20 Hz using the PyCBC geometric non-spinning template bank
generation tool [6, 285]. This template bank contained 8056 individual templates.

When generating an timeseries (Eq.) for an input dataset we select f,i, accord-
ing to the conservative case in which the signal merger occurs at the 0.95 fraction of the 1 s

timeseries. We therefore select only maximised timeseries values recovered from within

>If we didn’t use the , then the brute force cost would N? (correlating the template once costs N operations
and then shifting it by one bin and doing it again N times.

CHAPTER 4. MATCHING MATCHED FILTERING 112

the [0.75,0.95] fractional range since this is the parameter space on which the has been
trained. For the practical computation of the matched-filtering analysis we take each of the data

samples from the testing dataset to compute the matched-filter ranking statistic.

4.5 Matching Matched Filtering Results

After tuning the multiple hyper-parameters (Table 4.1) and training the neural network (Fig. 4.2),
we present the results of our classifier on a noise versus signal+noise sample set. With val-
ues of ranking statistics now assigned to each test data sample from both the and matched-
filtering approaches, and having knowledge of the true class associated with each sample, we
may now construct curves to compare performance.

A standard method for displaying the accuracy of a classifier is through a confusion matrix
in which the number of samples of each true class identified as every possible class are listed
in a square matrix. A fully diagonal matrix would imply no incorrectly classified samples and
a uniform matrix would imply no classification power (with the stipulation that there are equal
numbers of testing samples in each class). Classification, within the context of a confusion
matrix, is defined as when the neural network predicts a value of greater than p = 0.5 for a
single class. In Fig. we show results for the approach from which we highlight the
overall accuracy (the ratio of incorrectly identified samples to the total number of samples)

is [51.88%,65.51%,85.63%,96.66%,99.41%,99.99%)] at poy = [2,4,6,8,10,12], for a fixed

detection threshold of p = 0.5. We highlight that the measure of accuracy illustrated by
Fig. is interesting in general, but not useful for us in practice since we want to maximise the
(fraction of signal samples correctly identified) at a fixed (fraction of noise samples

incorrectly identified as signals) value.

In Fig. we compare our results to that of matched-filtering. Given the ranking
statistic from a particular analysis and defining a parametric threshold value on that statistic we
are able to plot the) versus the . These curves are defined as curves and a ranking
statistic is deemed superior to another if at a given it achieves a higher detection probability.

Our results show that the approach closely matches the sensitivity of matched-filtering for

CHAPTER 4. MATCHING MATCHED FILTERING 113

SNR2
3 noise 1071
i)
[}
2 injection 1257
I_

SNR6
% noise 4856l
% injection 4073 4810
|_
9] .
Q noise
o
[}
2 injection
|_

S

N)
S
Predicted label Predicted label
Figure 4.3: Confusion matrices for testing datasets containing signals with optimal (Given

in Eq. 4.1) popt = 2,4,6,8,10,12. Numerical values superimposed within matrix elements rep-
resent the number of samples that were of true class indicated by the y-axis label but identified
as the corresponding x-axis label. For our 2 class system these are equivalent to the numbers
of true alarm, true dismissal, false dismissal, or false alarm, for a fixed detection threshold of
p = 0.5. The accuracy percentages for all injection values are listed as follows: 51.86% at
Popt = 2, 65.51% at popt = 4, 85.63% at Popt = 6, 96.66% at pope = 8, 99.41% at pope = 10 and
99.99% at pope = 12.

CHAPTER 4. MATCHING MATCHED FILTERING 114

10° 5
1071 4
>]
=
©
o]
o
Q .9-2 .
£ 10]
(©
©
(]
2
I_
10-3 - ® CNN
] ® Matched filtering
—— SNR2
-==- SNR4
—-= SNR6
10_4 ' LA | T T L | T T L | T T T
1074 1073 1072 1071 10°
False alarm probability
Figure 4.4: The curves for test datasets containing signals with optimal s Popt = 2,4,6.
We plot the true alarm probability versus the false alarm probability estimated from the output
of the (purple) and matched-filtering (cyan) approaches. Uncertainties in the true alarm
probability correspond to 1-0 bounds assuming a binomial distribution. We note that because
the results from the 2 analyses follow a diagonal line from the bottom-left corner of the

plot to the upper-right corner, that the predictions from both the machine learning approach and
the matched filtering approach are essentially equivalent to random guessing.
all test datasets across the range of s explored in this analysis”. It can clearly be seen that
our classifier also exceeds the performance of the matched-filtering method at optimal
Popt = 2,4,6. This is an interesting result and is not entirely unexpected given that matched-
filtering is not expected to be completely optimal [203, 204].

We can make an additional direct comparison between approaches by fixing a and plot-
ting the corresponding versus the optimal of the signals in each test dataset. We show

these efficiency curves in Fig. at s 1071,1072,1073 for both the and matched-

®We are limited to a minimal of ~ 10~* due to the limited number of testing samples used.

CHAPTER 4. MATCHING MATCHED FILTERING 115

1.0
® CNN
® Matched filtering
— FAP=0.1 Py
081 -—- FAP=10.01 e
FAP = 0.001 s
£ 4
8 0.61 VAW
s /
o
é /
® 0.4 {
> /
|_
0.2 1
,./’ ”/'/ ‘ - /
0.0 === "‘545"':? | | . . .
1 2 3 4 5 6 7 8 9 10
Popt
Figure 4.5: Efficiency curves comparing the performance of the and matched-filtering
approaches for false alarm probabilities 107! (solid), 1072 (dashed), and 103 (dot-dashed).
The true alarm probability is plotted as a function of the optimal for the (purple) and
the matched-filtering (cyan) analyses. Solid dots indicate at which values analyses were

performed and light shaded areas are representative of the statistical uncertainties in the curves
(which are all smaller than the line thicknesses).

filtering approaches. We again see very good agreement between the approaches at all S
with the sensitivity exceeding that of the matched-filter approach at low and high
. Conversely we see the matched-filter sensitivity marginally exceeds the at high

and low false alarm probability. This latter discrepancy could be mitigated by increasing the
number of training samples in the CNN approach.

We acknowledge that because we do not include a trials factor which takes into account the
outputs of all neural networks used for each value the would be underestimated if one
were to apply our method to a realistic search scenario. There are multiple methods we could

have employed in order to take this into account. First, we could have used the median

CHAPTER 4. MATCHING MATCHED FILTERING 116

network (6) and then applied it to the whole range of testing sets, thus avoiding the
additional trials factors. However, it is unclear how well the network would then be able to gener-
alise to lower and higher values. Secondly, one could exploit techniques such as ensemble
learning whereby the outputs from all networks could be given as input to another network in
order to produce a final detection statistic. We note that many other practitioners in the

community commonly employ such methods in order to optimise their approaches [286, 287].
Finally, the most optimal method to use would be to simply use a single neural network which
has been trained over a range of values that we would expect to see in the data. This spe-
cific method has already been used in a wide variety of signal detection applications and
has been shown to generalise well to a large range of values [288, 289, 290]. We further
note that including a range of s in the training set, rather than just 1 value is essentially
equivalent to adding an additional dimension in the parameter space (i.e. luminosity distance).
In fact, it has already been shown in this chapter that our multiple neural networks show
no signs of bias across the full prior space for a range of source parameters including sky po-
sition, inclination angle, etc. This has also been shown to be the case for our own work in
Bayesian parameter estimation [2], as well as in signal detection for other source types (e.g.

s[221,225]).

4.6 Conclusions

We have demonstrated that deep learning, when applied to timeseries data, is able to closely
reproduce the results of a matched-filtering analysis in Gaussian noise. We employ a deep con-
volutional neural network with rigorously tuned hyperparameters and produce an output that
returns a ranking statistic interpreted as the inferred probability that data contains a signal.
Matched-filtering analyses are often described as the optimal approach for signal detection in
Gaussian noise, but in reality are only close to optimal [203, 204]. By building a neural network
that is capable of matching the efficiency of matched filtering we answer a fundamental question
regarding the applicability of neural networks for data analysis.

In practice, searches for transient signals in data are strongly affected by non-Gaussian

CHAPTER 4. MATCHING MATCHED FILTERING 117

noise artefacts. To account for this, standard matched-filtering approaches are modified to in-
clude carefully chosen changes to the ranking statistic [109, 291] together with the excision of
poor quality data [292, 293]. Our analysis represents a starting point from which a deep network
can be trained on realistic non-Gaussian data. Since the claim of matched-filtering near optimal-
ity is applicable only in the Gaussian noise case, there exists the potential for deep networks to
exceed the sensitivity of existing matched-filtering approaches in real data.

We should also note that one of the downsides of our approach has been the use of separate
neural networks for each value. This could easily be overcome by simply training a single

model using a training set which contains waveforms with multiple values. In
fact, it was shown in [221] that single networks can generalise well to different values.

In this work we have presented results for mergers, however, this method could be
applied to other merger types, such as (as was shown in [206, 208]) and signals. This
supervised learning approach can also be extended to other well modelled targets such as the
continuous emission from rapidly rotating non-axisymmetric NSs (as was done by [221, 225]).
Moreover, unsupervised approaches have the potential to be powerful detection tools in searches
for unmodelled burst-like signals, where it was shown in [201] that s could be used
for such a task. Finally we mention the possibilities for parameter estimation [275] where in the
simplest cases an output regression layer can return point estimates of parameter values. There
have also been several other studies done since the publication of this work which have used
various techniques to perform Bayesian parameter estimation in low-latency [2, 234, 294]
As was exemplified in the case of GW170817 [9], rapid detection confidence coupled with
robust and equally rapid parameter estimates is critical for multi-messenger astronomy.

Since the publication of this paper, a lot has changed in the field of for signal
detection. Many of the outstanding problems we outlined here in the conclusions have now been
largely solved, such as applying deep learning towards other signal types [201, 206, 208, 216,
233]. There has also been much work using other unique network architectures such as Bayesian
neural networks [295] for detection, as well as the early-warning detection of signals
using s [296]. Following this paper, we decided to pivot towards the more challenging

unsolved problem of for Bayesian parameter estimation. In the following chapter (Ch. 5)

CHAPTER 4. MATCHING MATCHED FILTERING 118

we will show how we have used s for the purpose of generating rapid Bayesian posterior

parameter estimates.

Chapter 5

Variational Inference for GW Parameter

Estimation

We note to the reader that this text is a modified version of the paper [2] recently accepted for
publication in Nature Physics.
So far, we have introduced fundamental concepts from astronomy and . We have
also provided a broad survey of how is being applied across a variety of domains within
astronomy. In the previous chapter (Ch. 4) we showed one of the first implementations of
deep learning for signal detection and how our approach was able to match the sensitivities
of standard methods, opening the door for a variety of follow-up studies listed in Ch. 3. We
now move on to the more challenging task of applying methods towards Bayesian
parameter estimation. We show for the first time that a form of , s, may be used to
produce Bayesian posteriors of source parameter values given time series data in a

fraction of the time taken by more traditional samplers.

5.1 Introduction

detection is now commonplace [9, 277] and as the sensitivity of the global network of
detectors improves, we will observe ¢'(100)s of transient events per year [7, 18, 297]. The

current methods used to estimate their source parameters employ optimally sensitive [298] but

119

CHAPTER 5. VARIATIONAL INFERENCE FOR GW PARAMETER ESTIMATION 120

computationally costly Bayesian inference approaches [20] where typical analyses have taken
between 6 hours and 38 days [299] to run. We determined these values by compiling tables
(Tab. and Tab. 5.2) containing of all detected events during the O3 observing run using the
GraceDB database. We provide in the tables the length of time to complete parameter estimation
analyses using the lalinference pipeline [20], as well as the predicted source class using the
p-astro computing package.

For and systems prompt counterpart signatures are expected on timescales
of 1 s — 1 minute and the current fastest method for alerting follow-up observers [22], can
provide estimates in ¢(1) minute, on a limited range of key source parameters. Here we show
that a [164, 300] pre-trained on signals can return Bayesian posterior probability
estimates. The training procedure need only be performed once for a given prior parameter space
and detector network configuration and the resulting trained machine can then generate samples
describing the posterior distribution ~ 6 orders of magnitude faster than existing techniques.

With the overwhelmingly successful observation runs of O1, O2 and now O3 complete,

and Virgo have produced a large catalogue of data covering both and
signals [5]. Over the next five years we expect the number of detections to increase to be upwards
of ~ 180 and ~ 400 events per year [/, 18, 297]. This large influx in the number of
detections will put an increased amount of pressure on the current computationally costly
inference methods used for parameter estimation.

The problem of detecting s has largely been solved through the use of template based
matched-filtering, a process recently replicated using machine learning techniques [1, 204,212,
275]. Once a has been identified through this process, Bayesian inference, known to be
the optimal approach [298], is used to extract information about the source parameters of the
detected signal.

In the standard Bayesian inference approach (See Sec. of Ch. 1), we assume a sig-
nal and noise model and both may have unknown parameters that we are either interested in
inferring or prefer to marginalise away. Each parameter is given a prior astrophysically mo-

tivated probability distribution and in the case, we typically assume a Gaussian additive

ISee https://pypi.org/project/p-astro/.

https://pypi.org/project/p-astro/

121

CHAPTER 5. VARIATIONAL INFERENCE FOR GW PARAMETER ESTIMATION

S §¢ ‘Ut £ ‘s1y [OLN LS€€TT 610C ‘01 doS DLN 61:92:10 610T ‘01 S (%) [eMsa1d], “(%86) HASN PO16061S

S §G ‘UIw (G ‘sIY || OLN 6S 1T 116102 ‘TdeS DLN T10:1€:€T610T ‘T 1deS (%¥1) [esAIRL (%98) SN de106061S

S gy puB UTW Qp ‘SIYQ ‘P [DLN LS'EH:ST 610T ‘6T 30V DLN 60:55:90 610T ‘8T 'Sy (%66 <) HAd 1828061S

STTPURBUIW HT 1Y [‘PT DLN LT:8S:LO 610T ‘0€ 30V DLN SOHE:90 610T ‘8T SNy (%66 <) HAd [878061S

SGGpuUBUIW [GSIY [T DILA +£:70°60 610T ‘ST 80V DLN 6€:01: 1T 610T ‘¥1 'Sy (%66 <) HASN AQH18061S

S Q7 ‘UI [‘SIY ¢ ‘P T DLN 9€:T€:01 610T ‘0 I DLN 0I:S+:90 610C ‘8T AL (%S) densseN (%S$6) HALD bgzL061S
(%¢) depssey

S LE ‘UIW § ‘SIY] P § DLN 01:80:0T 610T ‘T€ ML DLN ££€:€0:90 610T ‘LT A ‘(%6) remsanid], ‘(%6) HAL YLTLO6TS

SLTUWGHSIYELPT DLN €OHSET 610T TZ ML DLN 9£:80:00 610T ‘0T AL (%1) [BMSAIRL, (%66) HII e0TLO61S

- - OLN TI:SEHT 610T ‘81 AL (%7) SN (%86) [BLISALIA], AQ1L061S

SO ‘Ul G ‘ST QP ¢ DLN TE8F:LT 610T ‘6 Inf DLN 9T:€€:60 610T ‘L Anf (%66 <) HAd br0L061S

S G¢ ‘Ut OG ‘SIY 9 p | DLN 9T:L1:S0 610T ‘8 Inf OLN 1#:92:7T 610T ‘9 AInf (%1) TemsaIRL, “(%66) HAd 1©90L061S

S 8 “UIW G¢ ‘SIY G ‘P | DL +1:80:20 610T ‘€ Inf OLN 90:€£:0T 610T ‘T AInf (%L) TemsaiL ‘(%€6) HAD YBI0LOG6IS

S ¢ ‘UIW L] ‘SIY €T P () DLN 6€:60:81 610C ‘TIf DLN SO:TS'8T 610T ‘0g dunf (%¢) depsseN ‘(%+6) HAL 3e0€9061S

ST UM TSI OT Py OLN ISTTHI 610T ‘Lunf DLN LT6S:LI 610T ‘T dung (%66) HAD bez09061S

S @y UMW QE ‘SIY T ‘PE DL LY'TTIT 610T ‘¥T AN DLN 6S:€H:L0 610T ‘1T ABIN (%66 <) HAd 11250618

sgeuugsIy9‘py DLN YO'T1:60 610T ‘1T AN DLN 6T:20:€0 610T ‘1T AN (%€) [eMsA1IRL, ((%L6) HAHD 31TS061S

S CF U 67 ‘SIY QT ‘PT DL LT:SO0T 610T ‘TT ABIN DN #7:5€:6T 610T ‘61 ABIN (%¥) [eISIL, ((%96) HAI [A615061S

SQE UIW [¢SIY 6Py DLN I€TTSI 610T ‘TTABIN DLN 10:16:S0 610T ‘LT AeIN (%) deDsseN (%86) HAd YL1S061S

SEUIW G ‘SIY LT ‘PT DLOLEEYHI 610 OT AN DLN 8THS:0T 610T ‘€T AN (%S) deDsseN (%y6) HAd WALIS061S

STTUWOT SIY [Py DLN9ELTST 610T ‘LT AeIN DLN #1:L0:81 610C ‘TT AN (%1) [eISIRL, ((%66) HAI 1eTIS061S

Sty UMW G ‘SIY] PHC DLN €T61:91 6107 ‘€Unf DILN 6£:65:20 610C ‘01 AN (%Th) SNA (%8S) [e1saLR, 3015061S

SLE U 7 ‘SIY ¢ ‘PYE DLN [H:81:80 610C ‘TT Unf DLN +0:+S:81 610T ‘€ KB (%¢) densse (%96) HAHD J9€0S061S

(%€1) HASN “(%¥1) [emsardy,

S LE U 6 T PT DLN TETI:LT 610 ‘823 DLN SSITST 610T ‘9T 1Ay “(%+7) densseN “(%61) SN 29Z#061S

S LT SUIW $ ‘SIY T P DLN TTT0:11 610C ‘97 3y DLN S0:81:80 610¢ ‘ST [HdY (%66 <) SN ZGTH061S
(9%¢) TeImsarR,

S ‘SUlW Op ‘SIY O P11 DLN 9S:81:80 610T ‘€ AeIN DLN 9S:8€:1T 610T ‘I [1dy ‘(%%L6) HAL TBIZH061S

- - D10 $#:0€:60 610 ‘T1 [HdY (%66 <) HAd wziy061S

SpE UG ‘SIY [T PGS DLN9LLESOYI-+0-610C DLN T0:81:81 610T ‘§ [Hdy (%66 <) HAd uegOy061S

Kea(SINsoyY

SINSoY TV TISI]

QuwiL], JUaAY

uonesyIsse[)

QWIeN JUIAF

“puUNOJ 9q 10U P[NOJ I0 ‘g([IeID) AQ Pa1I0dal JOU JOYIIS I9M [ITIYM SON[BA I8 -, B 1M SUWIN[O)) "PIIOBIRI)] 2Iom Jey) g(IodeIn) Aq pas3ey
SJUQAQ UOTDIIIP AUB 13U MOUS JOU OP AN "OOUIIJUI[R] WOI SINSAI uonewns? soouwered pajiodar 1siy oY) pue dwn JUIAD) UM JOUILJIP
U} AQ UDAIS SI sj[nsar uonewnsd rdjowered [euy aonpoid 0) uni v J0J dwn JO Junowe YL, ‘6107 ‘01 Foquadas - 6107 ‘| [1dy woy (godein
0} Surpiodoe) Aiqeqoid uoneoyISSe[d pue SWNUNI UONBWNS Jojoweted JUOAd PIJO9Jop UO UONBULIOJUT SUTUIBIUOD J[qe) SJUIAD €O]G 9[qeL

122

CHAPTER 5. VARIATIONAL INFERENCE FOR GW PARAMETER ESTIMATION

SCp UMW Ry ‘SIY Py DLN 1+:9%:70 12-€0-020C DL 9S:LS: 1T 0TOT ‘9T YT (%66 <) depssey [991€00zS
SgUuw /GSIY9T PT DLN SSSSH0 €1-€0-020C DLN €5:8S:T1 020T ‘11 Yd2IeN (%66 <) HAd 8911€00TS
ST U g ‘sIy /] DLN €1:90:61 2O-€0-020C DLN T1:85:10 020T ‘TUSBIN (%I11) [eMsaIRL, ‘(%68) HAd 920£00ZS
SgUUGE Sy [PT DL PTTHLO9T-T0-020T DLN 1T:#0:90 0TOT ‘ST ‘9°d (%%) 1TemsaIdL, ‘(%96) HAA bgzzo0ts
S UMW LT SIYGT PT DLN 8E6FET 92-20-020C DLN ¥€:TTTT 0T0T ‘+T "9°d (%66 <) HAd ©47T00CS
- - DLN ST:H¥:60 0T0T ‘61 "9od (%) 1eImsa1dY, “(%96) HAI 2861200CS

- - DLN 0¥:01:40 020T ‘€1 924 (%L€) oS, “(%€£9) SNA 1€1200TS

SCCuU G ‘sIy L ‘Pz DLATIT01Z01-20-020C DLN LITT0€T 0TOT ‘8 "9°d (%66) HAd bg0z00zS
SO UM ¢l ‘sIY L] ‘P DLA $S:80:00 £0-20-020CT DLN 8S:+5:90 0TOT ‘6T "uef (%66 <) HAd wez100CS
Sy UGSy L PT DLN TSSE60 0£-10-020C DN 11:02:T0 0TOT ‘8T "uer (9%¢) TemsaIdL, “(%L6) HA P8Z100TS
SQI ‘UM QT ‘P ¢ DLN STISH0 02-10-020C DLN 60:€T:#0 0TOT ‘ST "uer (%66 <) densseN [S1100TS

- - DLN 81:80:20 0TOT ‘+1 "uef - 1100ZS

S LU GESIY ¢z PT DLASEPSST #1-10-020C DLN 8€:8S:ST 0TOT ‘CI "uef (%66 <) HAd IT1100TS
ST U ge ‘py DLN 8T:95:91 60-10-020C DLN 9T:#7:91 0TOT ‘S “uef (%€) HASN ‘(%L6) [e1Isa1Ia], 2850100TS

S 6S ‘UIW (¢ ‘SIY Q] DLN 9€:90:7C 2¢-TI-6107 DLN LESEE0 610T ‘TT "9°d (%66 <) HAd ugzele6ls

- - DLN 8EIEETT 610T 91 "2 (%66) HAd degizI61S

Sy UMW L SIY O] P+ DLN 9€:81:60 02-CI-610C DLN TS:0€:TT 610T ‘ST 92 (%66 <) HAd MGITI6IS
- - DLN 80:7€:40 610T ‘€1 "2 (%€7) 1esAIRL, “(%LL) SNA 3¢1T161S

- - DLN 80:ZS: 1T 610T ‘S "2 (9% L) remsa1dy, “(%¢£6) HASN qesozI6Is

- - DLN 9T:ST:LT 610T ‘¥ "°d (%66 <) HAd $0T161S

S 8y ‘U ¢] ‘p 9 DLN LIFSET S0-TI-610C DLN LIHS'E1 610T ‘6T AON (%66 <) HAd n6z1161S
SET UMW HZ SIYE] PT DLAOFIEFI OI-T11-610C DLN LT:L0:T0 610T ‘6 AON (%66 <) HAd P60TI61S
SCEU Q[‘SIYZZ ‘P9 DLN 9S1S:TI TI-T1-610C DLN 1T:SE+T 610T ‘S 'AON (%¢) remsandy, (%56) HAL 601161S
- - DLN LOWEFT 610T ‘0€ 1daS (%97) [BsIR], “(%¥L) HASN 10€6061S

SYZ UMW 6L SIY S Py DL SO:ST61 #0-01-610C DLN IH#:SE:ET 610T ‘0¢ 1S (%€) 1emsaid, “(%S6) deDsseN S0€6061S
SCC U QG SIY 9L ‘P ¢ DLN IHLI61 LT-60-610C DLN 9¥:81:20 610T ‘v 1deS (%66 <) depssey UrT6061S
- - DLN 6S:6S:TI 610T ‘€T 1dos (%T¢) 1emsAua, ‘(%89) HASN AET6061S

S6C UMW GH ‘SIY L ‘P DLA IETHEL LI-60-610C DLN TO:LS'ET 610T ‘ST 1das (%66) HAd ¥eS16061S
SOC U [HsIyQPT DLAPETILI 610 ‘TT1deS DLN 85:67:80 610T ‘0T 1dS (%6¢) RIS, “(%19) SN Y016061S
Keo(T SInsoy SINSAY TV ISI] QUILT, JUIAY uoneoyIsse[D QN JUAH

"puNoJ 9q J0U P[NOd 10 ‘gAJeID) AQ pPa110dal JOU JOYIIS I9M UIIYM SIN[BA AT -, B [}IM SUWN[OD) "PIIOBIIAI IJR] 2IoM Jey) g(odeIn) Aq pag3ey
SJUQAQ UOTJOIIP AU IY MOUS JOU OP A\ "OOUIQJUI[R] WOIJ SINSAI Uonewns? 1ejouered pajrodal 1s1y oY) pue oW JUIAS AU} UM SOUIIJJIP
oY) AQ UAAIS ST S)[nsal uonewnsa Iejowered [euy 9onpoid 03 unl e J0J SWin Jo Junowe Y, ‘0Z0Z ‘91 YoIeIA - 610T ‘01 Iequaideg woij (ggaoein
0) Surp10ooe) A1Iqeqoid UONEOYISSE[O Ppu SWNUILL UOIIBWNS? Jdjowered JUdAd PIJodJop UO UONBULIOJUT SUIUTBIUOD J[ge) SJUAAD €O :T°S 9[qeL

CHAPTER 5. VARIATIONAL INFERENCE FOR GW PARAMETER ESTIMATION 123

noise model (in reality, the data is not truly Gaussian). Given a noisy waveform, we would
like to find an optimal procedure for inferring some set of the unknown parameters. Such
a procedure should be able to give us an accurate estimate of the parameters of our observed
signal, whilst accounting for the uncertainty arising from the noise in the data.

According to Bayes’ Theorem, a posterior probability distribution on a set of parameters,

conditional on the measured data, can be represented as

p(x]y) o= p(yx) p(x), (5.1)

where x are the parameters, y is the observed data, p(x|y) is the posterior, p(y|x) is the likelihood,
and p(x) is the prior on the parameters. The constant of proportionality, which we omit here,
is p(y), the probability of our data, known as the Bayesian evidence or the marginal likelihood.
We typically ignore p(y) since it is a constant and for parameter estimation purposes we are only
interested in the shape of the posterior (See Sec. of Ch. 1 for further details).

Due to the size, dimensionality and volume of the parameter space typically encountered
in parameter estimation and the volume of data analysed, we must stochastically sample
the parameter space in order to estimate the posterior. Sampling is done using a variety of
techniques including Nested Sampling [157, 160, 161] and Markov chain Monte Carlo meth-
ods [153, 154]. The primary software tools used by the parameter estimation analysis are
LALInference and Bilby [19, 20], which offer multiple sampling methods.

Machine learning has featured prominently in many areas of research over the last few
years. These techniques have shown to be particularly promising in signal detection [1, 212,
275], glitch classification [86], earthquake prediction [301], and to augment existing Bayesian
sampling methods [159]. We also highlight recent developments in parameter estimation
(independent to this work) where one- and two-dimensional marginalised Bayesian posteriors
are produced rapidly using neural networks [234], and where normalised flows in conjunction
with s can reproduce Bayesian posteriors for a single detector case [236, 239]. These
methods, including the one presented in this paper, are known as “likelihood-free” approaches

in which there is no requirement for explicit likelihood evaluation [302], only the need to sample

CHAPTER 5. VARIATIONAL INFERENCE FOR GW PARAMETER ESTIMATION 124

from the likelihood. Nor is it the case that pre-computed posterior distributions are required in
the training procedure.

Recently, a type of neural network known as was shown to perform exceptionally
well when applied towards computational imaging inference [300, 303], text to image infer-
ence [304], high-resolution synthetic image generation [305], end-to-end text-to-speech syn-
thesis [306], and the fitting of incomplete heterogeneous data [307]. s, as part of the
variational family of inference techniques are ideally suited to the problem of function approxi-
mation and have the potential to be significantly faster than existing approaches. It is therefore
this type of network that we apply in the case to accurately approximate the Bayesian
posterior p(x|y), where x represents the physical parameters that govern the signal, and
are the quantities we are interested in inferring. The data y represents the noisy measurement
containing the signal and obtained from a network of detectors.

The construction of a begins with the definition of a quantity to be minimised (referred

to as a cost, or loss function). In our case we take the expectation over the cross entropy

H(p,r)=— < / dx p(x[y)logrg (XIy)> (5.2)

between the true posterior p(x|y) and rg(x|y), the parametric distribution that we will use neural
networks to model and which we aim to be equal to the true posterior. The expectation value
is taken over different realisations of signal and noise, y. The parametric model is constructed

from a combination of 2 (encoder and decoder) neural networks rg, (z|y) and rg, (x|y,z) where

ro(xly) = [dzr, (2ly)re, (dy.2). 53)

In this case the 6 subscripts represent sets of trainable neural network parameters and the vari-
able z represents locations within a latent space. This latter object is typically a lower dimen-
sional space within which an encoder can represent the input data, and via marginalisation over
z allows the construction of a rich family of possible probability densities of x.

Starting from Eq. 5.2 it is possible to derive a computable bound for the cross-entropy that is

reliant on the rg, and rg, networks and a third “recognition” encoder network g4 (z|x,y) governed

CHAPTER 5. VARIATIONAL INFERENCE FOR GW PARAMETER ESTIMATION 125

by the trainable parameter-set ¢. The details of the derivation are described in the cost function
derivation section (Sec. 5.2) and in [300] but equate to an optimisation of the (Sec.).

The final form of the cross-entropy cost function is given by the bound

L KL

Ny
Z [—logrez xnkn;)’n) +KL [QQ)(|xna)’n)Hr9| (Zlyn>] } (5.4)

which is also represented graphically in Fig. 5.1. The cost function is composed of 2 terms, the
“reconstruction” cost L which is a measure of how well the decoder network rg, predicts the true
signal parameters x, and the K[-divergence cost that measures the similarity between the latent
space distributions modelled by the rg, and g4 encoder networks. In practice, for each iteration
of the training procedure, the integrations over x,y and z are approximated by a sum over a batch
of Ny draws from the user defined prior p(x), the known likelihood p(y|x), and the recognition
function g4 (z|,x,y). Details of the training procedure are given in Sec.

The implementation of the that we employ in this chapter has a number of specific
features that were included in order to tailor the analysis to signals. The details of these
enhancements are described in the network design (Sec.), training procedure (Sec.),
data augmentation (Sec. 6.4), and phase/polarisation angle reparameterisation (Sec. 6.5) sec-
tions but in summary, the primary modifications are as follows, 1) Physically appropriate output
decoder distributions are used for each output parameter: von Mises-Fisher distribution on the
sky location parameters, von Mises distributions on all parameters with cyclic prior bounds, and
truncated Gaussians for parameters with defined prior bounds. 2) Each of the functions rg,, rg,,
and gy are modelled using deep convolutional neural networks with multi-detector timeseries
represented as independent input channels. 3) The rg, encoder models an M = 32 component
Gaussian mixture model within the n, = 15 dimensional latent space in order to capture the cor-
responding typical multi-modal nature of posterior distributions. 4.) All cyclic parameters
are represented as points in an abstract 2D plane. In the next section, we will now derive the

cost function used to train the entire outlined above.

CHAPTER 5. VARIATIONAL INFERENCE FOR GW PARAMETER ESTIMATION 126

Train Test
?/ by
Ky —>@<— oy | 1y,
Zq
tr,
Xsamp

Figure 5.1: The configuration of the neural network. During training (left-hand side),
a training set of noisy signals (y) and their corresponding true parameters (x) are given as
input to encoder network gy, while only y is given to encoder network rg,. The KI.-divergence

(Eq. 5.9) is computed between the encoder output latent space representations (i, and () form-
ing one component of the total cost function. Samples (z,) from the g4 latent space representa-
tion are generated and passed to the decoder network rg, together with the original input data y.
The output of the decoder (u,) describes a distribution in the physical parameter space and the
cost component L is computed by evaluating that distribution at the location of the original input
x. When performed in batches this scheme allows the computation of the total cost function
Eq. 5.4. After having trained the network and therefore having minimised the cross-entropy H,
the testing stage (right-hand side) is performed using only the rg, encoder and the rg, decoder
to produce samples (xsamp). These samples are drawn from the distribution rg (x]y) (Eq. 5.3) and
accurately model the true posterior p(x|y).

CHAPTER 5. VARIATIONAL INFERENCE FOR GW PARAMETER ESTIMATION 127

5.2 VItamin Cost Function Derivation

A 18 a form of variational autoencoder that is conditioned on an observation, where in
our case the observation is a one-dimensional timeseries signal y, over a multi-detector
network. The autoencoders from which variational autoencoders are derived are typically used
for problems involving image reconstruction and/or dimensionality reduction. They perform a
regression task whereby the autoencoder attempts to predict its own given input (model the iden-
tity function) through a “bottleneck layer” — a limited and therefore distilled representation of
the input parameter space. An autoencoder is composed of two neural networks, an encoder and
a decoder [308]. The encoder network takes as input a vector, where the number of dimensions
is a fixed number predefined by the user. The encoder converts the input vector into a (typically)
lower dimensional space, referred to as the latent space. A representation of the data in the
latent space is passed to the decoder network which generates a reconstruction of the original
input data to the encoder network. Through training, the two sub-networks learn how to effi-
ciently represent a dataset within a lower dimensional latent space which will take on the most
important properties of the input training data. In this way, the data can be compressed with
little loss of fidelity. Additionally, the decoder simultaneously learns to decode the latent space
representation and reconstruct that data back to its original form (the input data).

The primary difference between a variational autoencoder [164] and an autoencoder con-
cerns the method by which locations within the latent space are produced. In our variant of the
variational autoencoder, the output of the encoder is interpreted as a set of parameters governing
statistical distributions in the latent space. In proceeding to the decoder network, samples from
the latent space (z) are randomly drawn from these distributions and fed into the decoder, there-
fore adding an element of variation into the process. A particular input can then have a range of
possible outputs. Any trainable network architectures can be used in both the decoder and the
encoder networks and within VIt amin we use deep convolutional neural networks in all cases.

We will now derive the cost function and the corresponding network structure and we begin
with the statement defining the aim of the analysis. We wish to obtain a function that reproduces

the posterior distribution (the probability of our physical parameters x given some measured

CHAPTER 5. VARIATIONAL INFERENCE FOR GW PARAMETER ESTIMATION 128

data y). The cross-entropy between 2 distributions is defined in Eq. where we have made
the distributions explicitly conditional on y (our measurement). In this case p(x|y) is the target
distribution (the true posterior) and rg(x|y) is the parametric distribution that we will use neural
networks to construct. The variable 6 represents the trainable neural network parameters.

The cross-entropy is minimised when p(x|y) = rg(x|y) and so by minimising

H=~Epy | [drplabylogratel). 55

where E,,,)[-] indicates the expectation value over the distribution of measurements y, we there-
fore make the parametric distribution as similar as possible to the target for all possible mea-
surements y.

Converting the expectation value into an integral over y weighted by p(y) we get

H=— / dyp(y) / dx p(x|y)logre(x]y). (5.6)

We then apply Bayes’ theorem to obtain

H=— / dyp(y) / dxwlogre(xm (5.7)

where p(x) is the prior distribution on the physical parameters x, and p(y|x) is the likelihood of
x (the probability of measuring the data y given the parameters x). Cancelling out the p(y) terms

we arrive at

H = [dp(x) [dyplyix)togro(xl). (5.8)

The network outlined in Fig. 5.1 makes use of a conditional latent variable model and
our parametric model is constructed from the product of 2 separate distributions marginalised
over the latent space as defined in Eq. 5.3. We have used 8, and 6, to indicate that the 2 separate
networks modelling these distributions will be trained on these parameter sets respectively. The

encoder rg, (z|y) takes as input the data y and outputs parameters that describe a probability dis-

CHAPTER 5. VARIATIONAL INFERENCE FOR GW PARAMETER ESTIMATION 129

tribution within the latent space. The decoder rg, (x|z,y) takes as input a single location z within
the latent space together with the data y and outputs sets of parameters describing a probability
distribution in the physical parameter space. The explicit mathematical form rg,(x|z,y) takes is
that of multiple multivariate Gaussian distributions whose moments, L;,, are predicted by the
parametric model given latent space samples z and input data y. rg, (z|y) takes the form of a
Gaussian mixture model with a whose moments and mixture component weights (collectively
labeled as p,) are also inferred by the parametric model given only observed data y.

One could be forgiven for thinking that by setting up networks that simply aim to minimise
H over the 0; and 6, would be enough to solve this problem. However, as shown in [303], this
is an intractable problem and a network cannot be trained directly to do this. Instead, we have
to also train an additional network to approximate the theoretical joint probability distribution
re(z|x,y), which is essentially already defined by the existing rg(x|y), rg, (z|y) and rg, (x|z,y)
joint distributions. We call the neural network which approximates the theoretical distribution,
re(z|x,y), the recognition function , gy (z|x,y), which is governed by the trainable network pa-
rameters, @, that will be used to derive an . Furthermore, g4 (z|x,y) takes the form of
multiple multivariate Gaussian distributions whose moments, L4, are predicted by the paramet-
ric model given parameters x and observed data y. It will become more clear in the derivation
below that both defining and approximating this extra joint probability distribution is necessary
because it allows us to define a computable form for log rg (x|y).

We first define the KI.-divergence between the recognition function and the distribution

re (Z|x7y) as

99 (le,y)) . (5.9

KL g4 (z]x,y)|ro (lx,y)] = / d24(zlx.y) log (re(Z!x,y)

This is done because we want to minimise the difference between the theoretical joint distri-

bution rg(z|x,y) and the approximate version, g4 (z|x,y). Using Bayes theorem we can write

re (Z|x,y) as

1’92(X|Z,y)1’91 (Zly)

5.10
ro () 610

ra(Z'X,)’) =

CHAPTER 5. VARIATIONAL INFERENCE FOR GW PARAMETER ESTIMATION 130

Plugging this into Eq. 5.9 we get

q9 (zx,y)re (x]y)
KL |g¢(z|x,y)||re(z|x,y :/dzq z|x,y log(. (5.11)
902l Iro (2be,y)] o(ebe)tog (TS
Using the logarithm multiplication rule we arrive at
KL g0 o)l ehe)] = [deap ey tog (2T
re, (X|Z,y)l"91 <Z|y)
[dzas(zhr.y)togro(xly). (5.12)

Realising then that the log rg (x|y) may be taken out of the integral since it is not a function of z
and that the integral of a probability distribution, gy (z|x,y) in this case, is simply equivalent to

1 we can write

q¢(z|x,y)
ro, (x|z,y)re, (z|y

KL g0zl rche)] = | dzao o) Hogralib). (513

Moving logrg(x|y) to the left-hand side of the equation and moving the term to the right-

hand side we get

logre (xy) =KL [gg (z]x,y)||re (z}x,y)] +
/dzq¢ (z]x,y)log (9 (,))) , (5.14)

ro, (x|z,y)re, (z]y)

where we realise that the right-hand integral term is simply a K| -divergence which we define as

the given by

(5.15)

%@M@m@@)

ELBO:/dzq z|x,y 10g<
olehi)loe \ = ey

It is so-named since the K1 -divergence has a minimum of zero and cannot be negative. Plugging

Eq. into Eq. we arrive at

logrg(x|y) = ELBO +KL [g¢(zlx,y)[|re (z]x,y)] (5.16)

CHAPTER 5. VARIATIONAL INFERENCE FOR GW PARAMETER ESTIMATION 131

where we now have log rg (x|y) which we need for Eq. 5.8. If we were to find a g4 (z|x,y) function
(optimised on ¢) that minimised the KI -divergence defined in Eq. then we can state that
logre(x|y) > ELBO. (5.17)
Substituting Eq. into Eq. we get
ro, (x[y,2)re, (2ly)
logrg(xly) = [dzqy(zlx,y)log : (5.18)
q¢(zlx,y)
Using the logarithm division property we find
logrg (xly) > / dzqy (z|x,y) [log(re, (x]y, 2)re, (z]y)) —loggy (z}x,y)] - (5.19)

Distributing g (z|x,y) to the log terms and using the logarithm multiplicative property it can be

shown that

logrg(x|y) > / dzqy(z|x,y)logre, (x[y,z) + / dzqy(z|x,y)logre, (z|y)

- / dz e (2],) 1og gy (z]x.). (5.20)

Making the realisation that [dzgy(z|x,y)re,(x]y,z) is simply an expectation value and pulling

out g4 (z|x,y) from the other two integrals we get

logre(x[y) = Ey;(¢|xy) [logre, (x|z,y)] + / dzqy(z|x,y)(logre, (z]y) —loggy(z|x,y)).

and using the logarithm division property we get

logrg, (z]y)

logre (x[y) = Ey, (¢|xy) [logre, (xz,y)] + /dZ‘I¢(Z|x;}’)m

Finally, we make the realisation that the integral term is the negative I -divergence of g4 (z|x,)

CHAPTER 5. VARIATIONAL INFERENCE FOR GW PARAMETER ESTIMATION 132

and rg, (z|y) and find that

logrg(x|y) Zqu,(z\x,y) [log e, (x[z,y)]

— KL [g¢(2lx,y)[Ire, (2]y)] - (5.21)

We can now substitute this inequality into our cost function as defined by Eq. to obtain

H< —/dxp(x)/dyp(y|x) [Eq¢(z|x,y) [logrgz(x|z,y)]

KL [g9(2lx,y)lIro, ()] | (5.22)

which can in practice be approximated as a stochastic integral over draws of x from the prior,
y from the likelihood function p(y|x), and from the recognition function, giving us Eq. 5.4, the
actual function evaluated within the training procedure. In standard sampling algorithms it is
required that the likelihood is calculated explicitly during the exploration of the parameter space
and hence an analytic noise and signal model must be assumed. For a implementation
we are required only to sample from the likelihood distribution, i.e., generate simulated noisy

measurements given a set of signal parameters. This gives us the option of avoiding the assump-

tion of detector noise Gaussianity in the future by training the using "real" non-Gaussian
detector noise. We note that while the mathematics which describe our method outlined
above are similar to those of the and described in Ch. 2, Sec. , they are not the

same (i.e. all methods are constructed to accomplish different objectives). In the next section,
we will discuss in detail the network architecture, as well as specific design choices meant

to tailor the model to our -specific problem domain.

5.3 VItamin Network Design

The network outlined in Fig. is constructed from the 3 separate neural networks
modelling the encoder and decoder distributions rg, and rg, as well as the recognition function

q¢. Each of these components is a deep convolutional network consisting of a series of one-

CHAPTER 5. VARIATIONAL INFERENCE FOR GW PARAMETER ESTIMATION 133

10 1

—30 7| = Total(H)

o

”101 o '””1'02 | '””1'03 | '””1'04

Figure 5.2: The cost as a function of training epoch. We show the total cost function (green) to-
gether with its component parts: the K -divergence component (orange) and the reconstruction
component (blue) which are simply summed to obtain the total. The dark curves correspond to
the cost computed per epoch, defined as the network seeing 2 x 10* data samples, of training
data and the lighter curves represent the cost when computed on independent validation data.
The close agreement between training and validation cost values indicates that the network is
not overfitting to the training data. The change in behavior of the cost between 10 and 3 x 102
epochs is a consequence of gradually introducing the K. cost term contribution via an annealing
process, described in Sec. 5.4.

CHAPTER 5. VARIATIONAL INFERENCE FOR GW PARAMETER ESTIMATION 134

dimensional convolutional layers followed by a series of fully-connected layers. The details of
each network structure are given in Table 5.3 where we indicate the activations used. We arrived
at this network design through trial and error.

The rg, network takes the input timeseries data y in the form of multi-channel 1-dimensional
vectors where channels represent different detectors. After passing through a series of 1-
dimensional convolutional and fully connected layers, the output then defines the parameters
of a n,-dimensional (diagonal covariance matrices) Gaussian mixture model in the latent space.
We label these parameters as i, containing n, X M means and log-covariances, where M = 32
mixture component weights and n, = 15. The motivation for using this mixture model represen-
tation comes from the multi-modal nature of posterior distributions. The encoder network
can use this flexibility to represent the y timeseries data as belonging to multiple possible latent
space regions.

The recognition function network gy is very similar to the rg, network with only 2 differ-
ences. The network takes as input the y timeseries and the true signal parameters x, however,
only the y data is passed through the 1-dimensional convolutional layers. Only after the final
convolutional layer where the output is flattened is the x data appended. It is then this compound
timeseries data “feature-space” and true signal parameters that are processed using the remain-
ing fully-connected layers. The second difference is that the output of the network defines a
single-modal (diagonal) n,-dimensional Gaussian. We label these parameters as [, containing
n; = 15 means and log-covariances. The rationale behind this choice is that since the gy dis-
tribution is conditional on the true signal parameters, there should be no ambiguity as to which
mode in the latent space that a particular timeseries belongs to.

The decoder network rg, is identical in structure to the gy network but with a difference in
the form of their outputs and inputs. The rg, network takes as input both latent space samples z
and timeseries y. The rg, output represents the parameters ({,,) that govern an n,-dimensional
distribution in the physical parameter space where we have carefully chosen appropriate distri-
butions for each of the physical parameters. For the luminosity distance, the binary inclination,
the time of coalescence, and spin parameters a;,az,®,0;, we have adopted truncated Gaussian

distributions where the truncation occurs at the predefined prior boundaries of the respective

CHAPTER 5. VARIATIONAL INFERENCE FOR GW PARAMETER ESTIMATION

Table 5.3: The VItamin network hyper-parameters. Dashed lines “—” indicate that convolu-
tional layers are shared between all 3 networks.

Layer

Network

re, (zy)

7, (X[y,2)

q(z|x,y)

Input y

[1024,3]

[1024,3]

[1024,3]

Layer 1

conv(64,3,96)
L2Reg(0.001)
act’=LeakyReLLU

Layer 2

conv(32,96,96)
stride(4)
L2Reg(0.001)
act=LeakyReLU

Layer 3

conv(32,96,96)
L2Reg(0.001)
act=LeakyReLU

Layer 4

conv(16,96,96)
stride(2)
L2Reg(0.001)
act=LeakyReLU

Layer 5

conv(16,96,96)
L2Reg(0.001)
act=LeakyReLU

Layer 6

conv(16,96,96)
stride(2)
L2Reg(0.001)
act=LeakyReLU

Input z,x

flatten/ —[6144]

flatten—[6144]
append®(z)—[6159]

flatten—[6144]
append(x)—[6159]

Layer 7

FC(6159,4096)
act=LeakyReLU

FC(6159,4096)
act=LeakyReLU

FC(6159,4096)
act=LeakyReL.U

Layer 8

FC(4096,2048)
act=LeakyReLU

FC(4096,2048)
act=LeakyReLU

FC(4096,2048)
act=LeakyReLLU

Layer 9

FC(2048,1024)
act=LeakyReLU

FC(2048,1024)
act=LeakyReLU

FC(2048,1024)
act=LeakyReL.U

Layer 10

FC(1024,960)
act=None
output=fi,,
—[15,32,2]

FC(1024,30)

act=(Sigmoid,-ReL.U)

output=Li,,
—[19,2]

“The shape of the data [one-dimensional dataset length, No. channels].
bone-dimensional convolutional filter with arguments (filter size, No. channels, No. filters).
L2 regularization funciton applied to the kernel weights matrix.
4The activation function used.

¢Striding layer with arguments (stride length).
fTake the multi-channel output of the previous layer and reshape it into a one-dimensional vector.
8 Append the argument to the current dataset.
hFully connected layer with arguments (input size, output size).

The rp, output has size [latent space dimension, No. modes, No. parameters defining each component per

dimension].

Different activations are used for different parameters. For the scaled parameter means we use sigmoids and

for log-variances we use negative ReLU functions.

kThe rg, output has size [physical space dimension+additional cyclic dimensions, No. parameters defining the
distribution per dimension]. The additional cyclic dimensions account for the 2 parameters each cyclic parameter

is represented by in the abstract 2D plane.
IThe q¢ output has size [latent space dimension, No. parameters defining the distribution per dimension].

FC(1024,30)
act=None
output=L,
—[15,2]

135

CHAPTER 5. VARIATIONAL INFERENCE FOR GW PARAMETER ESTIMATION 136

parameter space dimensions. For the component masses we had initially adopted conditional
truncated Gaussians where the conditional aspect was to ensure that m; > m,~, but found that
training duration increased significantly because of this choice. We also found that the network
typically learned this conditional boundary based on the training data alone anyways, so have
now instead opted for using truncated Gaussian distributions alone for m; and m,. Independent
von Mises distributions are applied to phase, polarisation angle and spin parameters @12, ¢;; in
order to capture the periodic nature of these parameters. We model all cyclic parameters as lo-
cations in an abstract 2D plane (Sec. 6.4) and apply an additional reparameterisation on ¢y and
V¥ (Sec. 6.5). Finally, we use the von Mises-Fisher distribution to model the right ascension and

declination (sky) parameters.

5.4 Training Procedure

Our cost function is composed of 3 probability distributions modelled by neural networks with
well defined inputs and outputs where the mapping of those inputs to outputs is governed by
the parameter sets 01,60, and ¢. These parameters are the weights and biases of 3 neural net-
works acting as (variational) encoder, decoder, and encoder respectively, as well as the trainable
parameters of the optimiser. To train such a network one must connect the inputs and outputs
appropriately to compute the cost function H (Eq. 5.4) and back-propagate cost function deriva-
tives to update the network parameters.

Training is performed via a series of steps illustrated schematically in Fig. 5.1. A batch of
data composed of pairs of timeseries y and their corresponding true signal parameters x are

passed as input and the following steps are applied to each element of the batch.

1. The encoder g4 takes both the timeseries y and the true parameters x defining the sig-
nal. It then encodes these instances into parameters [, defining an uncorrelated (diagonal

covariance matrix) n,-dimensional Gaussian distribution in the latent space.

2. The encoder rg, is given only the timeseries data y and encodes it into a set of variables

ZWe note that this additional complication of requiring conditional decoder output distributions could have been
avoided if a different mass parameterisation were chosen, e.g., total mass and symmetric mass ratio.

CHAPTER 5. VARIATIONAL INFERENCE FOR GW PARAMETER ESTIMATION 137

Uy, defining a multi-component multivariate Gaussian mixture distribution in the latent

space.

3. We then draw a sample from the distribution described by p, giving us a location z, within

the latent space.

4. This sample, along with its corresponding y data, are then passed as input to the decoder
re,. This decoder outputs g, comprising a set of parameters that define a distribution in

the physical x space.

5. The first term of the loss function, the reconstruction loss (defined as L in Eq. 5.4), is then
computed by evaluating the probability density defined by (g, at the true x training value

(the average is then taken over the batch of input data).

6. The second loss component, the KI .-divergence between the distributions g4 (z|x,y) and

ro, (z|y) (described by the parameter sets i, and fi,,), is given as

4 (Z|xn,yn))

KL g4 (2l yn)|| 7 = 4o (kn, yu) lo
[q¢(z\ V)| el(Zb’n)} q‘P(Z‘ ns ¥n) g< I”Q(Zb’n)

where z, is the sample drawn from g (z|x,,y,) in the first training stage. We use this
single-sample Monte-Carlo integration approximation since the KI.-divergence between
a single-component and a multi-component multivariate Gaussian distribution has no an-

alytic solution (the average is then taken over the batch of input data, hence the index

n).

7. The 2 loss components are then summed according to Eq. and all trainable network
parameters (defined by 60, 0, ¢) are updated based on the derivative of the cost function

with respect to these parameters.

A problematic aspect of training relates to the behaviour of the network during the initial
stages of training. The network has a strong tendency to become trapped in local minima result-
ing in a decreasing cost component L (the reconstruction cost) but a non-evolving K1 -divergence

term that remains close to zero. To avoid this state we apply an annealing process in which the

CHAPTER 5. VARIATIONAL INFERENCE FOR GW PARAMETER ESTIMATION 138

-divergence term is initially ignored but its contribution is then increased logarithmically
from O to 1 between the epoch indices 103 x 10%. This allows the g encoder to learn the
latent space representation of the data via the reconstruction cost before being required to simul-
taneously try to best match its distribution to that modelled by the rg, encoder. In parallel with
the gradual introduction of the cost term, we also find that the stability of training is nega-
tively affected by the complexity of our tailored output decoder likelihood functions. To resolve
this we apply the same annealing procedure over the same epoch range in transitioning between
unbound Gaussian likelihoods on all physical parameters to the tailored likelihoods, where the
boundaries of the Gaussian likelihoods are brought in from —10 to 0 on the lower bound and 11
to 1 on the upper bound.

As is standard practice in applications, the cost is computed over a batch of training
samples and repeated for a pre-defined number of epochs. An epoch traditionally is defined as
the point at which the network has been trained on a number of samples equivalent to the size
of the entire training set. However, in this study we define an epoch as the network having been
trained on a number of samples equivalent to 2 x 10*. For our purposes, we found that ~ 3 x 10*
training epochs, a batch size of 1500 training samples and a learning rate of 10~* was sufficient.
We used a total of 107 training samples in order to adequately cover the parameter space.
We additionally ensure that an (effectively) infinite number of noise realizations are employed
by making sure that every time a training sample is used it is given a unique noise realisation
despite only having a finite number of waveforms. Every epoch we also randomly shuffle the
phase, time of coalescence and distance parameters for all training samples loaded from disk.
See Sec. for further details on data augmentation techniques used in this chapter.

Completion of training is determined by comparing output posteriors on test samples with
those of Bi1by iteratively during training. This comparison is done using standard figures of
merit such as the p-p-plot and JS-divergence (see Figs. and). We also assess training
completion based on whether the evolution of the cost function and its component parts (Fig. 5.2)
have converged to a reasonable degree. We use a single Nvidia Tesla V100 s with 16/32
Gb of RAM although consumer grade “gaming" cards are equally fast for this application.

We also state that the onboard RAM memory of the machine/cluster itself has implications for

CHAPTER 5. VARIATIONAL INFERENCE FOR GW PARAMETER ESTIMATION 139

the batch size and consequently the speed and optimal learning rate to use.

5.5 Testing Procedure

After training has completed and we wish to use the network for inference we follow the proce-
dure described in the right hand panel of Fig. 5.1. Given a new y data sample (not taken from
the training set) we simply input this into the trained encoder rg, from which we obtain a single
value of u,, describing a distribution (conditional on the data y) in the latent space. We then

repeat the following steps:

1. We randomly draw a latent space sample z,, from the latent space distribution defined by

Hry-

2. The z,, sample and the corresponding original y data are fed as input to our pre-trained
decoder network rg,. The decoder network returns a set of parameters p,, which describe

a multivariate distribution in the physical parameter space.

3. We then draw a random x realisation from that distribution.

A comprehensive representation in the form of samples drawn from the entire joint posterior
distribution can then be obtained by simply repeating this procedure and hence sampling from
our latent model rg(x|y) (see Eq. 5.3). We also note that some physical parameters are in-fact
reparameterised in the neural network model (i.e. all cyclic parameters, ¢g, ¥, and &) and must
then be converted back to their original parameterisation immediately following step 3 above.

See Sec. 6.4 for further details regarding how this is done.

5.6 Primary VItamin Results

We present results on 250 multi-detector test waveforms in simulated advanced de-
tector noise [309] from the LIGO Hanford, Livingston and Virgo detectors. We compare be-

tween variants of the existing Bayesian approaches and our implementation which we

CHAPTER 5. VARIATIONAL INFERENCE FOR GW PARAMETER ESTIMATION 140

call VItamin. Posteriors produced by the Bilby inference library [19] are used as a bench-
mark in order to assess the efficiency and quality of our machine learning approach with the
existing methods for posterior sampling.

For the benchmark analysis we assume that 15 parameters are unknown: the component
masses mp,my, the luminosity distance dy, the sky position a, 8, the binary inclination ® in» the

polarisation angle v, the time of coalescence 1y, and the spin parameters a,a;, 01,02, ¢12,9;;.

We do not include phase ¢ in our results because we apply phase marginalisation to all Bayesian
samplers since this improves overall stability and runtime [19]. For each parameter we use a uni-
form prior with the exception of the declination, inclination, and tilt angle parameters for which
we use priors uniform in cosd, sin®j,, sin®j, and sin®; respectively. We also use a condi-
tional mass prior, such that m, is constrained to be my < m;. The corresponding prior ranges
are defined in Table and result in a training set distribution that has a median value
of SNR ~ 9 and ranging between 0 and 85 (see Fig. 5.3). We use a sampling frequency of
1024 Hz, a timeseries duration of 1 s, and the waveform model used is IMRPhenomPv2 [310]
with a minimum cutoff frequency of 20Hz. For each input test waveform we run the benchmark
analysis using multiple sampling algorithms (ptemcee,Dynesty,emcee, CPnest) available
within Bi1by. For each run and sampler we extract ¢(8000) samples from the posterior on the
14 physical parameters.

With regards to the parameters choices in Table 5.4, after having discussed with experts in the
Bayesian sampler community, it is evident that Bayesian samplers are certainly not guaranteed
to converge to the same results. Full convergence in many cases may require much fine tuning
over many iterations for each individual run. Although we do not fine tune Bayesian benchmark
samplers for each sampler and each individual test case, we do use settings which have been
recommended to us by bilby developers and outside experts for each respective Bayesian
sampler. Both the Dynesty and CPNest samplers have a tolerance threshold (change in the
log evidence from one proposal to the next) which guarantees a certain level of convergence.
We use the recommended tolerance level of 0.1 for both nested samplers. For the
samplers, emcee performs poorly, but is known to have difficulties with convergence within

the community. There are a handful of ptemcee test cases (5 of the 250) which show some

CHAPTER 5. VARIATIONAL INFERENCE FOR GW PARAMETER ESTIMATION 141

Table 5.4: Benchmark sampler configuration parameters. Values were chosen based on a com-
bination of their recommended default parameters [19] and private communication with the
Bilby development team.

sampler parameters
live-points = 1000, dlogz = 0.1, nact = 50, npool = 8§,

bound = None, sample = uniform
walkers = 200, temperatures = 20, burn_in_nact = 50,
thin_by_nact = 0.5, nsamples = 10000, threads = 10,
ptemcee [154] autocorr_tol = 50, autocorr_csafety = 1, autocorr_tau = 1,
gradient_tau = 0.1, gradient_mean_log_posterior = 0.1,
Q_tol = 1.01, min_tau = 1, threads = 1,
live-points = 2048, maxmcmc = 1000, nthreads = 1,
seed = 1994, dlogz = 0.1

nwalkers = 250, nsteps = 14000, nburn = 4000, a = 1.4,

burn_in_fraction = 0.25, burn_in_act_ =3

Dynesty [160]

CPNest [161]

emcee [153]

minor indication of incomplete convergence, but after careful review we have determined that a
lengthier burn-in period does not significantly improve the resulting posteriors.

The VItamin training process uses as input 10’ whitened waveforms corresponding to pa-
rameters drawn from the same priors as assumed for the benchmark analysis. The waveforms
are also of identical duration, sampling frequency, and use the same waveform model as in the
benchmark analysis. The signals are whitened” using the same advanced detector s [309] as
assumed in the benchmark analysis. When each whitened waveform is placed within a training
batch it is given a unique detector Gaussian noise realisation (after signal whitening this is sim-
ply zero mean, unit variance Gaussian noise). See Sec. 6.4 for further data augmentation details.
The VItamin posterior results are produced by passing each of our 250 whitened noisy testing
set of waveforms as input into the testing path of the pre-trained (Fig. 5.1). For
each input waveform we sample until we have generated 8000 posterior samples on 15 physi-
cal parameters x = (my,mp,dyr,t0,0 j,,a1,a2,01,02, ¥, o, ¢12,0j, &, §). We also note that any
parameters (such as ¢p) can (if desired) be marginalised out within the procedure itself,
rather than after training by choosing only to output a subset of the source parameter space in the

final layer of the decoder network. When performing comparisons between the VItamin ap-

3The whitening is used primarily to scale the input to a magnitude range more suitable to neural networks. The
true does not have to be used for whitening, but training data and test data must be contain signals that have
been whitened by the same

CHAPTER 5. VARIATIONAL INFERENCE FOR GW PARAMETER ESTIMATION 142
Table 5.5: The prior boundaries used on the signal parameters for the benchmark and the

analyses. We note that the polarisation angle and phase are represented in the 2D plane
through a reparameterisation given in (Sec.).

Parameter name symbol min max units prior function

mass 1 my 35 80 solar masses Uniform

mass 2 my 35 80 solar masses Uniform

luminosity distance dy, 1 3 Gpc Uniform

time of coalescence to 0.65 0.85 S Uniform

phase at coalescence o 0 2 radians Uniform

right ascension (07 0 2 radians Uniform

declination 0 —-n/2 ®w/2 radians Cosine

inclination l 0 T radians Sine

polarisation 74 0 T radians Uniform

spin magnitude 1 aj 0 0.8 - Uniform

spin magnitude 2 a 0 0.8 - Uniform

tilt angle 1 0 0 T radians Sine

tilt angle 2 0, 0 T radians Sine

azimuthal angle 12 0 2 radians Uniform

azimuthal position Ol 0 2r radians Uniform

epoch 1126259642 GPS time -

detector network LIGO H1,L1, & Virgo V1 -

¢ Additionally m; is constrained such that my < m;.
bPhase has a periodic boundary condition.

“Right ascension has a periodic boundary condition.
dpolarisation has a periodic boundary condition.

¢ Azimuthal angle has a periodic boundary condition.
fAzimuthal position has a periodic boundary condition.

CHAPTER 5. VARIATIONAL INFERENCE FOR GW PARAMETER ESTIMATION 143

0.08 - 0 Training
Validation
0.07 + 0 Test

0.03 -

0.02 ~

0.01 -

0 20 40 60 80
Optimal Network SNR

Figure 5.3: We show here a histogram of the optimal network SNR values of the VItamin
training, validation and testing sets. The mode for all plotted distributions occurs at an SNR
value of ~ 8 which drops off quickly to zero on the left-hand side. There is a tail on the right-
hand side which drops off more gradually up to a maximum SNR value of ~ 85 for the training
set, ~ 70 for the validation set and ~ 57 for the testing set. The peak location and general

distribution of the SNR values is heavily dependent on both the chosen source parameter priors
(Tab. 5.5) and the PSD.

CHAPTER 5. VARIATIONAL INFERENCE FOR GW PARAMETER ESTIMATION 144

proach and other bilby samplers, we only compare using 14 parameters (i.e. excluding ¢p) since
we apply phase marginalisation to the bilby samplers when generating benchmark Bayesian test
case posteriors.

We can immediately illustrate the accuracy of our machine learning predictions by directly
plotting 2- and 1-dimensional marginalised posteriors generated using the output samples from
our VItamin and Bilby approaches superimposed on each other. We show this for one ex-
ample test dataset in Fig. 5.4 where strong agreement between the Bi 1by sampler Dynesty in
blue, and the (red) is clear. It is also evident that whilst we refer to the Bi 1by sampler re-
sults as benchmark cases, different existing samplers do not perfectly agree with each other (i.e.
ptemcee in green) despite using expert recommended sampler settings shown in Tab. 5.4. For
each of our 250 test cases we see reasonable levels of agreement between pairs of benchmark
samplers and between any benchmark sampler and our results.

Figures and show the results of multiple statistical tests (the plot test and JS-
divergence tests) performed on the entire test dataset and between all samplers (Dynesty,
ptemcee, CPNest, emcee, and VItamin). In both tests the quality of the VIt amin results
are reasonably consistent with the benchmark samplers . A standard test used within the
parameter estimation community is the production of so-called p-p plots which we show for our
analysis and the benchmark comparisons in Fig. 5.5. The plot is constructed by computing a
cumulative probability for each 1-dimensional marginalised test posterior evaluated at the true
simulation parameter value (the fraction of posterior samples < the simulation value). We then
plot the cumulative distribution of these values [20]. Curves consistent with the black dashed
diagonal line indicate that the 1-dimensional Bayesian probability distributions are consistent
with the frequentist interpretation - that the truth will lie within an interval containing X% of
the posterior probability with a frequency of X% of the time. It is clear to see that results
obtained using VItamin show deviations from the diagonal that are entirely consistent with
those observed in all benchmark samplers. The p-value has also been calculated for each sampler
and each parameter under the null-hypothesis that they are consistent with the diagonal. These
results show that for at least 1 parameter, emcee shows inconsistency with the modal at the

0.4% level. Dynesty has a worst case that is consistent only at the 0.7% level. All other

CHAPTER 5. VARIATIONAL INFERENCE FOR GW PARAMETER ESTIMATION 145

m;(Ms)

2638.3773%30

dy (Mpc)

ty (seconds)

1.51793%

O)n(rad)

b
time (scconds)

o

o,

d12

= Dynesty
3.1473% - Ptemcee
| = Vitamin

&

af(rad)

-0.72433

6 (rad)

to (seconds) O)n(rad) v a a o ©; [4 a(rad) 6(rad)

Figure 5.4: Corner plot showing 1 and 2-dimensional marginalised posterior distributions on
the GW parameters for one example test dataset. Red contours represent the two-dimensional
joint posteriors obtained from VItamin and blue and green contours are the corresponding
posteriors output from our benchmark analyses (using the Dynesty and ptemcee samplers
within Bilby). In each case, the contour boundaries enclose 68,90 and 95% probability. 1
dimensional histograms of the posterior distribution for each parameter from both methods are
plotted along the diagonal. Orange vertical and horizontal lines denote the true parameter values
of the simulated signal. Vertical dashed lines in the 1 dimensional plots are representative of the
5% and 95% symmetric confidence bounds of the 3 sampler 1 dimensional posteriors. At the top
right of the figure we include a Mollweide projection of the sky location posteriors from all three
analyses. All results presented in this chapter correspond to a three-detector configuration but
for clarity we only plot the H1 whitened noisy timeseries y and the noise-free whitened signal
(in blue and cyan respectively) to the right of the figure. The test signal was simulated with an
optimal multi-detector signal-to-noise ratio of 14.3.

CHAPTER 5. VARIATIONAL INFERENCE FOR GW PARAMETER ESTIMATION 146

samplers (including VItamin) show consistency at > 0.4% in the worst case. What these
plot results show is that the posteriors produced by VItamin, whilst perhaps not optimal, are
still trustworthy and are unbiased in their estimation.

The JS-divergence is generally used as measure of the similarity between distributions de-

fined as
1 1
IS(PIQ) = 5KLIPI|Q] + 5KL[QIP] (5.23)
where KL is the KI.-divergence as defined in Eq. 5.9, and (P, Q) are two distributions we would
like to measure the similarity between. In Fig. we use this quantity to compare the output

posterior estimates between samplers for the same input test data. To do this we run each in-
dependent sampler (including VItamin) on the same test data to produce samples from the
corresponding posterior. We then compute the 1-dimensional JS-divergence between the output
single parameter distributions from each sampler with every other sampler [311]. For distri-
butions that are identical, the JS-divergence should equal zero but since we are representing
our posterior distributions using finite numbers of samples, identical distributions result in finite
-divergence values [312]. In Fig. 5.6, it can be seen that Dynesty vs. VItamin JS values
closely match results from Dynesty vs. Ptemcee for nearly all parameters, with the exception
of ¢;;, and ¢12. VItamin predictions have slightly higher JS values across all source parame-
ters except for the spin parameters. Dynesty vs. CPNest seems to generally have similar JS
values to Dynesty vs. Ptemcee with the exception of having broader credible intervals on
10, Ojn, ¢j1, @ and 0. We also note in the 1-dimensional case that while JS-divergence values are
reliable, they do not directly test the multi-dimensional correlations between source parameters.
We also provide additional JS-divergence figures of merit on 1-dimensional source param-
eter posteriors in Figs. , , and , where in each we highlight the comparison results of
one Bayesian sampler (i.e. Fig. highlights CPNest). In all 3 figures it can be seen that
VItamin is generally consistent with the Bayesian sampler highlighted. In particular, we point
out that VItamin appears to most closely agree with CPNest, as shown in the maroon col-
ored bars of Fig. 5.7. Across all 3 figures there is generally more strong agreement between

samplers on the spin parameters, and the least amount of agreement on the sky location pa-

CHAPTER 5. VARIATIONAL INFERENCE FOR GW PARAMETER ESTIMATION 147

1.0

E 0.8 -

<2

=

S

5

- 0.6 -

=

+—

g

=

E

2 0.4 -

o

(D]

>

eb]

3 m VItamin
.g 0.9 - m Dynesty
§ . m Ptemcee
- m (CPNest

== Emcee
0.0 . | . .
0.0 0.2 0.4 0.6 0.8 1.0

Probability within the Credible Interval

Figure 5.5: One-dimensional p-p plots for each parameter and for each benchmark sampler and
VItamin. The curves were constructed using the 250 test datasets and the dashed black diag-
onal line indicates the ideal result. The best and worst-case p-values associated with each sam-
pling method are (0.918, 0.047 VItamin), (0.912, 0.007 Dynesty), (0.931,0.007 ptemcee),
(0.706,0.007 CPNest), (0.667,0.004 emcee).

CHAPTER 5. VARIATIONAL INFERENCE FOR GW PARAMETER ESTIMATION 148

10° E

. | ﬁ ;;
T

10—3-é Ml Hl

I Dynesty vs. VItamin
[Dynesty vs. Emcee

Il Dynesty vs. CPNest
] Bl Dynesty vs. Ptemcee

DD D D Ve e o D D

©
Y & &
(d\'\, \{Qﬂ) 6\) \%Q) ®,\-(\'
XQ

Source Parameters

Figure 5.6: We show JS divergence values for all 250 test samples as a function of test sample
source parameter for Dynesty against every other sampling approach. Each sampler method
vs. another sampler method are denoted as different colors. The lower and upper end of boxes
represent the 25th and 75th percentile credible regions respectively. The lower and upper end
of the whiskers represent the 5th and 95th percentile credible regions. The orange lines are
representative of the median JS values for each pair of compared samplers. The red horizontal
line is representative of a JS baseline which is computed by taking the mean of all mean JS
values computed over the 14 histograms in Fig. 6.9.

CHAPTER 5. VARIATIONAL INFERENCE FOR GW PARAMETER ESTIMATION 149

rameters. VItamin also consistently performs most poorly with respect to each sampler on the
polarisation angle. What is also interesting to note is the level of disagreement of other Bayesian
samplers with themselves across all 3 figures. This disagreement is especially prominent with
regards to source parameters o, 0j,, @;;, o, and 0. emcee vs. all other methods generally
has higher JS-divergence values than all other comparison results. This is expected given the
difficulty of obtaining emcee convergence. Finally, we note that although emcee results are
fairly poor in comparison with other approaches, they are a useful benchmark for indicating
underperformance.

In Fig. we show the distributions of 14 dimensional JS-divergences for the 250 test
samples. In each panel we plot the distribution of JS-divergences obtained when comparing one
of the 4 benchmark samplers with all other benchmark samplers (excluding VItamin). We
also plot the distribution of JS-divergences obtained when comparing the same sampler with
VItamin alone. In all 4 cases the VItamin results show distributions completely consistent
with the deviations observed between benchmark samplers. It is evident from the plot that
Dynesty, CPNest, and ptemcee comparison results between themselves reach JS values far
lower than any comparison result with VItamin. On the flip side, they also have tails at high

values in their distributions which are consistent with those of VItamin comparison results.
We see in all 4 subplots of Fig. (and most clearly in the lower right subplot) that emcee
continues to have the highest /S values of all comparison results. We also state here that the
14-dimensional JS-divergence distributions were estimated using an approximation technique
and a finite number of samples such that there was a fundamental noise of ~ +/ —0.15 on the
output values - hence even samples from 2 different sampler runs on the same test data would
have JS-divergence scatter of this magnitude around 0. We have also carried out an additional
study in Sec. where we provide an approximated limit through two independent Dynesty
runs over the entire test set.

The dominating computational cost of running VItamin lies in the training time, which can
take &(7) days to complete. Completion is determined by comparing posteriors produced by the

machine learning model and those of Bi 1by iteratively during training. We additionally assess

4 (https://pypi.org/project/universal-divergence/)

(https://pypi.org/project/universal-divergence/

CHAPTER 5. VARIATIONAL INFERENCE FOR GW PARAMETER ESTIMATION 150

10° -

10_13

10_3?

J|IM CPNest vs. VIitamin
CPNest vs. Dynesty

Bl CPNest vs. Ptemcee

+{I8 CPNest vs. Emcee

A) O gﬁ D N I\ QY QY W Y D gg

Source Parameters

Figure 5.7: We show JS divergence values for all 250 test samples as a function of test sample
source parameter for CPnest against every other sampling approach. Each sampler method
vs. another sampler method are denoted as different colors. The lower and upper end of boxes
represent the 25th and 75th percentile credible regions respectively. The lower and upper end
of the whiskers represent the 5th and 95th percentile credible regions. The orange lines are
representative of the median JS values for each pair of compared samplers. The red horizontal
line is representative of a JS baseline which is computed by taking the mean of all mean JS
values computed over the 14 histograms in Fig. 6.9.

CHAPTER 5. VARIATIONAL INFERENCE FOR GW PARAMETER ESTIMATION 151

p—

——
—_—
==

1071?

[—

—

JS(nats)

1072 4

—=
p—t
=5
—— R ———

Source Parameters

Figure 5.8: We show JS divergence values for all 250 test samples as a function of test sample
source parameter for emcee against every other sampling approach. Each sampler method vs.
another sampler method are denoted as different colors. The lower and upper end of boxes rep-
resent the 25th and 75th percentile credible regions respectively. The lower and upper end of the
whiskers represent the 5th and 95th percentile credible regions. The orange lines are represen-
tative of the median JS values for each pair of compared samplers. We see here that VItamin
performs to within a degree of accuracy which is consistent with other Bayesian samplers when
looking at predictions on an individual source parameter basis. The red horizontal line is repre-
sentative of a JS baseline which is computed by taking the mean of all mean JS values computed
over the 14 histograms in Fig. 6.9.

CHAPTER 5. VARIATIONAL INFERENCE FOR GW PARAMETER ESTIMATION 152

10° 5

s A iT ol H
7 I __ 'W

SLARERR A AR

Ml Ptemcee vs. VItamin

Ptemcee vs. Dynesty

1074 7|8 Ptemcee vs. Emcee
1/IM Ptemcee vs. CPNest
D W O D N Y W o DD
© © NS Q
x@ Q @\Q zooQ 0&@ Q 0\\@ %\3%)
Q MW@ QN

Source Parameters

Figure 5.9: We show JS divergence values for all 250 test samples as a function of test sample
source parameter for Pt emcee against every other sampling approach. Each sampler method
vs. another sampler method are denoted as different colors. The lower and upper end of boxes
represent the 25th and 75th percentile credible regions respectively. The lower and upper end
of the whiskers represent the 5th and 95th percentile credible regions. The orange lines are
representative of the median JS values for each pair of compared samplers. We see here that
VItamin performs to within a degree of accuracy which is consistent with other Bayesian
samplers when looking at predictions on an individual source parameter basis. The red horizon-
tal line is representative of a JS baseline which is computed by taking the mean of all mean JS
values computed over the 14 histograms in Fig. 6.9.

CHAPTER 5. VARIATIONAL INFERENCE FOR GW PARAMETER ESTIMATION 153

B Dynesty vs. Vitamin i W Ptomcee vs. Vitamin
M Dynesty vs. Emcee Ptemcee vs. Dynesty
M Dynesty vs. CPNest M Ptemcee vs. Emcee
M Dynesty vs. Ptemcee W Ptemcee vs. CPNest
10° E
1
N 1071 4 _
- O
N
1072 3 E
1072 3 E
10! - W CPNest vs. VItamin E = Emcee vs. VItamin

CPNest vs. Dynesty Emcee vs. Dynesty
M CPNest vs. Ptemcee M Emcee vs. Ptemcee
M CPNest vs. Emcee M Emcee vs. CPNest

1073 1072 107! 10° 10* 102 10—3""16L2""I6L1' - 100 10 10%
JS — Statistic(nats) JS — Statistic(nats)

Figure 5.10: Distributions of JS-divergence values between posteriors produced by different
samplers. In each panel we show the distribution of JS-divergences computed between a sin-
gle benchmark sampler and every other benchmark sampler over all 250 GW test cases (grey
histogram outlines). JS-divergence is in terms of nats where nat stands for “natural unit of
measurement” and is a unit of information. Also plotted in each panel are the corresponding
JS-divergence distributions between the single benchmark sampler and the VItamin outputs
(colored histogram outlines).

CHAPTER 5. VARIATIONAL INFERENCE FOR GW PARAMETER ESTIMATION 154

whether the cost curves (Fig. 5.2) have converged, such that their slope is starting to approach
zero. In Fig. we plot the validation set moving average cost as a function of training epoch,
where each color is a different run of VItamin using different hyperparameters/run settings
carried out over the course of this thesis. We see that, generally speaking, the cost for all runs
increases and then subsequently decreases over the course of training. The reason for the initial
increase is because we slowly anneal in the component of the cost and thus it is high initially
since it is not being used to update the parameters of the network. There are also other runs
which are flat in the initial epochs and this is because those runs are in-fact runs which have
been resumed from previously trained networks, so thus do not have annealing applied and
are initially much lower in cost value. Overall, what we see for all VItamin runs near the end
of training is that the cost values all start to approach a reasonable equilibrium. One could argue
that if we were to allow all networks to continue training, that it would possible that the loss
may decrease a significant amount. Whilst this could happen, it can take about a week to reach
5 x 10* epochs. One could then infer that given the general trends in Fig. that we would
receive diminishing returns in terms of improved cost values with further training time. We stress
that once trained, there is no need to retrain the network unless the user wishes to use different
priors p(x) or assume different noise characteristics. The speed at which posterior samples are
generated for all samplers used, including VItamin, is shown in Table 5.6. Run-time for the
benchmark samplers is defined as the time to complete their analyses when configured using the
parameter choices defined in Table 5.4. For VItamin, the run-time is defined as the total time
to produce 8000 samples. To be clear, this does not include the &'(7) days required to train the
network. For our test case of signals VItamin produces samples from the posterior at a
rate which is ~ 6 orders of magnitude faster than our benchmark analysis using current inference

techniques, representing a dramatic speed-up in performance.

5.7 Summary

In this chapter we have demonstrated that we are able to reproduce, to a high degree of accuracy,

Bayesian posterior probability distributions generated through . This is accomplished using

CHAPTER 5. VARIATIONAL INFERENCE FOR GW PARAMETER ESTIMATION

y J/ "\
—81
—101
7 —127 B | AT
Q
(@)
\ \| in_c\un12
—14 X S
~ A —1 - ’tmueq amin c4E |c_run33_fast_testing
! i Amsdel-run3
06 s MR
- oy ! Vitamin P vt
T — e T
ﬁ V ,‘ \vitam\ e B’é_ﬁésﬁ!ﬁﬂﬁ&zmmmuml
o / /\\/v
-2
Qo1 107 10° 10* 10° 106

Epochs

Figure 5.11: We plot multiple independent runs of VItamin validation set cost curves as a
function of training epoch. All validation curve values are computed using a moving average.
Epoch values are plotted in log-scale on the x-axis.

CHAPTER 5. VARIATIONAL INFERENCE FOR GW PARAMETER ESTIMATION 156

Table 5.6: Durations required to produce samples from each of the different posterior sampling
approaches.

run time (s) . TVItamin
sampler)) ratio ———
min max median Tx
Dynesty” [160] 21564 261268 45607 22x107°
emcee [153] 16712 39930 19821 51x10°°

ptemcee [154] 2392 501632 411510 2.4x10°°
CPNest [161] 10309 437008 83807 1.2x10°°
VItamin 1x10°! 1

“The benchmark samplers all produced ¢(8000) samples dependent on the default sampling parameters used.
bWe note that there are a growing number of specialised techniques [313, 314, 315, 316] designed to speed
up traditional sampling algorithms that could be used to reduce the runtimes quoted here by &(1 —2) orders of
magnitude.
“For the VItamin sampler 8000 samples are produced as representative of a typical posterior. The run time is
independent of the signal content in the data and is therefore constant for all test cases.
a trained on simulated signals and does not require the input of pre-computed poste-
rior estimates. We have demonstrated that our neural network model, which when trained, can
produce complete and accurate posterior estimates in a fraction of a second, achieves the same
quality of results as the trusted benchmark analyses used within the
The significance of our results is most evident in the orders of magnitude increase in speed
over existing algorithms. We have demonstrated the approach using signals but with ad-
ditional work to increase sample rate and signal duration, the method can also be extended
for application to signals from mergers (e.g., GW170817 [9], and GW 190425 [317]) and
[15] systems where improved low-latency alerts will be especially pertinent. By us-
ing our approach, parameter estimation speed will no longer be limiting factor’ in observing
the prompt emission expected on shorter time scales than is achievable with existing
analysis tools such as Bayestar [22].
The predicted number of future detections of mergers (~ 180 [18]) will severely strain
the community’s current computational resources using existing Bayesian methods (Tab.

and Tab. 5.2). We anticipate that future iterations of our approach will provide full-parameter

estimation on all classes of signals in &'(1) s on single s. Our trained network is

> A complete low-latency pipeline includes a number of steps. The process of data acquisition is followed by
the transfer of data. There is then the corresponding candidate event identification, parameter estimation analysis,
and the subsequent communication of results to the astronomy community after which there are physical
aspects such as slewing observing instruments to the correct pointing.

CHAPTER 5. VARIATIONAL INFERENCE FOR GW PARAMETER ESTIMATION 157

also modular, and can be shared and used easily by any user to produce results. The specific
analysis described in this chapter assumes a uniform prior on the signal parameters. However,
this is a choice and the network can be trained with any prior the user demands, or users can
cheaply resample accordingly from the output of the network trained on the uniform prior. We
also note that our method will be invaluable for population studies since populations may now
be generated and analysed in a fully-Bayesian manner on a vastly reduced time scale.

For signals, data is usually sampled at 1—4 kHz dependent upon the mass of
binary. We have chosen to use the noticeably low sampling rate of 1024Hz in order to decrease
the computational time required to develop our approach and the computational burden of com-
puting our 250 benchmark analyses for each of 4 benchmark samplers. We have found that
increasing the sampling frequency of our input comes at the cost of a small increase in training
time and a similar increase on the memory requirement. We note that with the excep-
tion of requiring 1-dimensional convolutional layers and an increase in the amount of training
data to efficiently deal with a multi-detector analysis, the network complexity has not increased
with the dimensionality of the physical parameter space nor with the sampling rate of the input

data. Given this, it is possible that extending the parameter space to lower masses may not be

problematic.
In reality, detectors are affected by non-Gaussian noise artefacts and time-dependent
variation in the detector noise . Existing methods incorporate a parameterised estima-

tion into their inference [318]. To account for these and to exploit the “likelihood-free” nature
of the approach, we could re-train our network at regular intervals using samples of real
detector noise (preferably recent examples to best reflect the state of the detectors). In this case
we could also apply transfer learning to speed up each training instance based on the previ-
ously trained network state. Alternatively, since the is an estimated quantity, we could
marginalise over its uncertainty by providing training data whitened by samples drawn from a
distribution of possible s. Furthermore, one could also provide the estimates from a
distribution of s as an additional conditional input to the . Our work can naturally be
extended to include the full range of signal types but also to any and all other parameterised

signals and to analyses of data beyond that of ground based experiments. Given the

CHAPTER 5. VARIATIONAL INFERENCE FOR GW PARAMETER ESTIMATION 158

abundant benefits of this method, we hope that a variant of this of approach will form the basis

for future parameter estimation.

Chapter 6

Supplemental VItamin Results and

Analysis

In the following sections we will discuss additional analysis which supplement the main results
of Ch. 5 including the training set distribution and it’s relationship to the performance of
VItamin, as well as the structure and behavior of the latent space and it’s relationship

with the predicted posterior distributions.

6.1 Jensen-Shannon Divergence as a Function of Signal-to-
Noise Ratio

Over the course of the work carried out in this chapter it was thought that there was the possibility
that high signals could be a limiting factor with regards to the performance of the neural
network model. It was originally hypothesised that due to the low number of high signals
in our training set (as seen in Fig. 5.3), that the network would perform worse on high

signals. This hypothesis is supported by the well known understanding in literature that
less available data in specific regions of the parameter space can cause a neural network model
to underfit to those regions [162]. In Fig. we plot the 14-dimensional JS-divergence for
all test sample cases of VItamin vs. Dynesty as a function of . Each triangle sign is

representative of individual test cases and different colors correspond to each interferometer.

159

CHAPTER 6. SUPPLEMENTAL VITAMIN RESULTS AND ANALYSIS 160

14 T AA

L1
12 1 A

10 1

JS Divergence

A
A A A as A MaA a

Al i Pbasadiiafess B
. A A A
2 AA .Qbﬁg I EEYE < N A

Optimal SNR

Figure 6.1: Illustrated in the plot are the 14-dimensional JS-divergence values of Dynesty vs.
VItamin as a function of optimal SNR (Ch. 1, Sec. 1.6.2). Different colours are representative
of each of the 3 detectors (H1, L1, V1) used in the analysis. Each triangle symbol represents a

different test GW case. As can be seen, there does not appear to be a strong positive correlation
with SNR.

CHAPTER 6. SUPPLEMENTAL VITAMIN RESULTS AND ANALYSIS 161

We see in Fig. that there is little to no positive correlation between and the 14-
dimensional JS- divergence; instead, it appears that there is a slight negative correlation. This
plot shows that there would be marginal benefit gained from augmenting the training set to
more strongly emphasise high signals, and that the neural network may in fact struggle the
most with low events. Given that the highest JS-divergence values appears to be loosely
correlated with low values, one might assume that this could partially be solved by over-
sampling our training set in the low regime. This is not necessarily practical given that
the prior would then need to be changed and thus the output posterior would then need to be
resampled to compensate through techniques such as importance sampling [319] or rejection
sampling [320].

One other interesting relationship to analyse is that between the 14-dimensional JS-divergence

and the optimal spread across all 3 detectors for a given test signal. The spread
is calculated by taking the difference between the maximum and minimum optimal values
from each detector for each test sample. We plot the JS-divergence as a function of spread
in Fig. 6.2 in order to gauge whether our neural network model performs worse when 1 or more
detectors sees the test signal at a lower than the other detectors. We see in Fig. 6.2 that there

appears to be no positive correlation and possibly a very weak negative correlation between the
two quantities. This could indicate that our model has some difficulties with signals which have
an equal amount of optimal across all detectors.

We also plot in Fig. the JS-divergence as a function of the second highest for each
test signal. We plot as a function of the second highest so as to highlight the cases where
only one detector sees the signal clearly. This is of interest because cases such as these are
more likely to be an issue for reliable parameter estimation. We see in Fig. that there is little

positive correlation and perhaps some negative correlation.

6.2 VItamin Latent Space Analysis

In this section we will introduce diagnostic plots we have used in order to gauge the behaviour

of our neural network model with respect to the latent space. For context, we will first examine

CHAPTER 6. SUPPLEMENTAL VITAMIN RESULTS AND ANALYSIS 162

14 -
12 1
10 -
)
O
g
o s
[}
2
A s
p)
h
4 -
2 i :AAA%‘AAAAA AA AA A.t QA
:\3 A;:A:% *@f‘“‘“%‘ ala : A
0 :?’AAMQ \ & ‘;;A‘ AA‘%‘A 4, :AAMAAA
0) 10 15 20 25 30 35
SNR spread

Figure 6.2: [Illustrated in this plot are the 14-dimensional JS-divergence values of Dynesty
vs. VItamin as a function of optimal SNR (Ch. 1, Sec. 1.<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>