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Test Particle - Plasma Interactions 

Abstract

This thesis describes investigations into the properties of 

a two-dimensional plasma carried out by theory and computer 

simulation. The predictions of previous work concerning the wake 

generated by a suprathermal test particle in a two-dimensional 

plasma have been verified within the very noticeable constraints 

of the computer simulation model. Other work has been done, which 

has lent itself better to a good description by simulation. 

Primarily, in the electrostatic case, the slowing of a test 

particle in a two-dimensional collisionless plasma has been 

adequately quantitatively demonstrated.

In the case of two-dimensional magnetised plasma, expressions 

for the potential due to a test charge have been derived. It is 

shown that the nature of the potential distribution round the test 

particle, and a fortiori, the shielding properties of the plasma 

have been radically altered by the inclusion of the magnetic field. 

Whatever tractable means were available have been used to indicate 

the form of the potential distributions for both stationary and 

moving test particles.



(1) (a) Introduction

Ever since large electronic digital computers became widely 

available, use has been made of them by physicists to simulate the 

behaviour of the fully or partially ionised gases known as plasmas. 

There have been several reasons for this eagerness to use a new 

analytical tool as soon as it became available.

Firstly, a plasma is quite a difficult object on which to 

perform an experiment, since it often lasts in the apparatus for 

only a short time, can have its properties modified by the 

instruments intended for their measurement, and cannot easily be 

produced to the experimenters’ desired specifications eg to given 

values of temperature and pressure. These objections do not 

apply where a computer simulation is concerned, since one can 

control exactly the plasma being set up, and can take any desired 

diagnostic measurements at any time.

The theorist as well as the experimentalist can have good 

motives for simulation; in this case there are two distinct 

situations in which it can prove useful f The first is in a problem 

where a linear analysis has been done and a solution has been found, 

but it may be felt desirable that a simulation be done to 

verify the results or reinforce them especially for regions of 

parameter space where the applicability of the linearisation is 

in doubt. The second case is that of non-linear phenomena, the 

equations describing which are not readily amenable to analytic 

treatment by known methods. In this instance the simulation provides 

an invaluable tool for research into the physics of the problem.
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There are two main approaches to "simulation11 of plasmas.

Both involve the numerical solution of appropriate equations, but 

they differ in the range of physical effects which they describe.

The first of these treats the plasma as a fluid, and is used for 

a regime where collision times are not long compared with, say, 

the plasma period. The phenomena which are treated 

occur on a much longer time scale, which may be that of the time 

it take3 for an Alfven wave to cross the plasma, or the time in 

which appreciable plasma diffusion occurs.

The second approach is to consider the plasma ao a large 

collection of charged particles each acting in the averaged 

field due to all the others. This latter is used to describe the 

"collisionless" regime where the collision time , the average 

time between collisions for a typical particle, is much greater than 

the plasma p e r i o d ^  . In this regime, events on a timescale ^ j? 

and on a length scale of the Debye length , can be studied, as 

well as events on a timescale of the cyclotron period for the 

electrons. Since it takes of the order of a "relaxation time", 

which is much greater than a collision time, for a distribution 

function to relax to Maxwellian, it is possible to study non- 

Maxwellian distributions with such a model.

The results described below describe short time and length-

scale phenomena of the type outlined in the previous paragraph, and

were all obtained using a particle simulation code. They are all

concerned with the interaction of a "test particle" with the

background plasma, or with another "test particle", in the case where 
the plasma is two dimensional.
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Chapter (1) is introductory and contains a chronological 

review of simple test-particle shielding theory and of plasma 

simulation. Chapter (2) describes the method of simulation of 

plasmas that is employed in this work. Chapter (3) reviews 

immediately previous work in detail. Chapter (4) gives results 

for theory and simulation in the electrostatic case which extend 

the results described in (3)» Chapter (5) analyses the case where 

a constant magnetic field acts perpendicular to the two-dimensional 

plasma.
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(1) (b) Review of Previous VTork

a )  Simuli ation of Plasmab

The first part of this review will be concerned with the 

development of computer codes for plasma simulation by following 

the motion of each "particle” in the field due to all the others.

An indication will be given of the nature and scope of work which 

has been done in this field. The second part of this section will 

be concerned with the theory which has been previously done 

concerning *test particles* interacting with a plasma.

The simulation of plasmas by computer codes has been an 

accepted tool for research in the subject for over a decade. Some 

of the earliest work in this field was done by Buneman (ref 1) in 

1959* As time passes it is noticeable that the number of "particles” 

involved in each new reported simulation increases monotonically for 

several years with the increasing core stores available in the 

computers concerned. Buneman was restricted to using 256 positive 

and 256 negative sheets of charge in a one-dimensional model, in 

which these sheets were moved according to their mutual electric 

fields. The mass ratio between the *ions* and *electrons* was 10, 

and the code was first employed to study the destruction of electron 

drifts by instabilities. Variations on the one-dimensional scheme 

followed such as that by Dawson (ref 2) who used a model which 

consisted of a large number of identically charged sheets in a 

uniform neutralising background. He used approximately 1000 sheets 

in these early calculations. Later this was extended to two species, 

of different masses but equal and opposite charge, where the mass 

ratio was taken to be less than that between the ion and electron.

In order to reduce the collisional effects in a sheet model smoothing
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methods wore developed (3) and the emergence of codes which used 

finite size particles began. An indication of the size of the 

computations being performed by this point in time is that by 

Burger (4) in 1965 which 10000 sheets of charge were used*

Once the idea of smoothing the electric field by introducing 

a spatial grid and assigning fractions of charge due to each particle 

to points of the grid had been established, one major stumbling block 

still remained in the way of economical codes. This was the absence 

of a fast method of solving Boissons equation

Hockney (5) contributed greatly to the solution of this problem by 

developing rapid techniques to solve the equation in a grid with 2* 

grid points. The gain in speed obtained now made two dimensional 

calculations feasible, and one of the first was reported by 

Hockney (3) and concerned a plasma experiment of anomalous diffusion* 
Other results using the same or similar techniques including the 

simulation of rotating discs of stars, are given in (6)*

Since the original advances in two-dimensional calculation, 

other codes have been written at various laboratories. One such, the 

GALAXY code of Boris and Roberts (7) was used by several workers at 

Culham Laboratory for various applications, and was used in the work 

immediately previous to that done in this thesis (8).

With the advent of the latest generation of large, fast, 

computers, 70$ of world production being by one firm, time and space 

limitations are less of a problem than formerly. This has led to 

the development of codes such as H0VA ( 9 ) which is used in the work 

described below, and is also designed to be ‘portable1 between 

computers. Portability is facilitated by the near monopolistic 

market giving a general uniformity among computers at different 

establishments.
5



One-dimensional plasma simulations are still very much in use, 

however, and they continue to give useful results. In fact for 

reasons of economy it can sometimes be the case that one-dimensional 

simulations are dons instead of two-dimensional unless a description 

of a strictly two-dimensional phenomenon is being sought, even 

although a one-dimensional simulation is farther from an accurate 

description of a plasma than is a two-dimensional one. Occasionally, 

new generalisations or developments of the one-dimensional simulation 

plasma are published: one such is that by Hasegawa and Okuda (10), 

which is suitable for studying one-dimensional electromagnetokinetic 

disturbances propagating at an arbitrary angle to an applied magnetic 

field.

Some examples of successful plasma work which involved the 

use of computer particle simulation will now be given. Dawson (11) 

cites the example of research into the side-band instability due to 

trapped electrons in a finite amplitude plasma oscillation. It was 

first observed experimentally, and a crude theory which treated the 

trapped electrons as harmonic oscillators was developed and verified 

by simulation. After that, more detailed theories were carried out, 

but it is probable that, without the computer simulation, the original 

phenomenological theory would not have been published. Subsequently 

more complete and detailed experiments have been carried out and these 

exhibit much of the detail shown in the numerical simulation. This 

he cites as a good example of the usefulness of interplay between 

experiment, simulation, and theory. (References given in ref 11.)

There are many examples of simulation of actual experimental 

configurations using a particle code in order the better to under­

stand or predict the behaviour in these cases. P Burger (op. cit.) 

used a one-dimensional code to give a satisfactory explanation of
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the operation of a thermionic converter and the large amplitude 

oscillations which are observed, A two-dimensional particle 

calculation is at present being applied to an idealisation of the 

Levitron (12,13) configuration in the hope of simulating the 

behaviour of the machine under certain conditions.

In the case of non-linear phenomena, often the initial linear 

development of a phenomenon can be adequately dealt with by theory, 

but the configuration of the plasma in the subsequent non-1 incar 

regime can be best elucidated by simulation, A good example is the 

paper by Cook et al (14) describing computations of the non-linear 

growth of the ion sound instability in two dimensions. In this case 

in the linear growth phase theory agreed closely with simulation 

but the subsequent development of the two-dimensional simulation 

gave more insight into the physical process involved. Another 

example in the same vein, where a refinement of the one-dimensional 

code is reported for the first time is given in (15)* Here the 

authors suppress unwanted noise by a 1quiet start* technique 

(described below) in their simulation, and follow the growth of 

plasma cyclotron instabilities from very low amplitudes.

Another example of a simulation which has given a fresh 

impetus to a topic is in the work of Taylor & McNamara (16) followed 

by that of Dawson and Okuda (17)» on plasma diffusion in two 

dimensions in a magnetic field. Here it has been found, that 

contrary to previous ideas on the subject, there exist three regimes 

characterised^/the strength of B, and the dependence of the 

diffusion upon B in each of these regimes is notably different.

This has led to the realisation of the need for revision of the 

theory of a two-dimensional magnetised plasma. Work on other physical

7



aspects of the subject such as that in (18), (19) &nd (20 ) followed, 
as the subject of a magnetised two-dimensional plasma became of 

interest in its ov/n right. This work has also led on to the 

consideration of three-dimensional plasma diffusion in a very 

strong magnetic field (21).

It can be seen from the above that simulation, used in an 

appropriate context, can be used to gain deeper insight into the 

physical properties of plasmas, and as such is a useful tool for 

the theoretical and experimental plasma physicist.
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(ii) Theories of Plasma - Test Particle Interactions

Several authors in the past two decades have concerned them­

selves with the shielding of the charge of a test particle in a 

plasma, and with the forces induced on itself by the motion of such 

a particle in the plasma. The usual motivation for this work has 

been an interest in the fundamental properties of a fully ionised 

gas, and also the hope that results might be obtained which would 

advance the kinetic theory of plasmas.

The theoretical result giving an analytic expression for the 

potential distribution around a shielded test charge, and the value 

of the plasma .dielectric function which are rederived in Chapter 3(a), 

below, has been known for some time. A derivation is given in 

Thompson (22), for example, and the method used derives from that 

of Landau (23).

An early paper which investigated screening of a charge in a 

plasma, was that of Bohm and Pines (24). They were concerned with 

trying to demonstrate the relationship between collective electron 

interactions and individual particle interactions. They described 

the gas by means of the Fourier coefficients 5* of the electron 

density at each point in space. A function was then developed,

which oscillates harmonically for appreciable values of k, and 

tends to in the small U limit. Subsequent by the problem

of separating individual and collective interactions is tackled 

by letting

%  ■■ ♦ '•u

where describes the collective interactions and /i\k the individual ones,
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in that it describes fluctuations associated only with the random 

thermal motions of the individual particles. Later the '’J* are 

shown to be the Fourier coefficients of a density distribution in 

which each electron is surrounded by a comoving cloud containing a 

deficiency of electrons. It is then shov/n that the properties of 

this cloud are such that for a particle moving with less than the 

mean thermal speed the charge is screened by its comoving cloud, 

with a screening radius of the order of Ao ^the Debye length. This 

is a direct consequence of the authors1 stipulation that is 

describing phenomena where k  which was decided after an

earlier section in which it was concluded that collective 

oscillations were to be expected for U.

Further development reveals that a particle moving with 

velocity less than electron thermal cannot set up collective 

oscillations in the form of a wake behind it. It is then shown 

that if the particle is moving with velocity V o  ^  ^ 3  < v l>*v 

then it will cause the excitation of oscillations in its wake. Again, 

it is deduced that the particle will lose energy to these oscillations 

and an expression for the rate of energy loss is given, as is an 

expression for the energy loss due to short-range collisions. It 

is subsequently concluded that except for particles whose velocity 

is much greater than electron thermal, the charge is screened in a 

distance , but for the fast particles the screening is **not as good**. 

However the fact that these latter lose energy to oscillations of the 

plasma is given as a mechanism for bringing them into thermal 

equilibrium with the rest of the assembly.

This paper demonstrates what it is possible to achieve by 

means of elementary techniques which seldom lose sight of the fact
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that the plasma is a collection of particles. It is evident, in the 

main, that sound, general conclusions about shielding are obtained, 

but that in order to obtain more detail, a more mathematically 

sophisticated approach may be desired.

In contrast, Neufeld and Ritchie (25) commence by treating 

the plasma as a continuous medium characterised by a polarisation 

vector , and start from an equation of motion for P.

This equation is Pourier-analysed along with Maxwell's equations, P 

is eliminated and some relations are obtained between the various 

electromagnetic variables, among which we have

e t, ( K , w ) *  i  - w ?  (  ^J (to-k.v) 4- t g (to - k. y)

the dielectric constant for the longitudinal electric field, is

the plasma frequency, g is a damping term, v is velocity, 

k is wave number.

The response of the plasma, described by the derived 

relationships, to a moving charge of velocity V is now ascertained 

and expressed by giving the form of the potential distribution in

cylindrical co-ordinates as

t) 1 jS. f  K d *  Je(K1) r

where \t} * K x + w V V  ^  is the test particle charge.

Now comes the approximation which ensures that much detail is

lost of the form of the potential for a subthermal particle. It is

assumed that where the right hand quantity is the

root mean square plasma velocity. This leads to

5 I * where S ’* ,

Thus essentially the authors are assuming for a slow particle what
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is demonstrated later to be the form of the dielectric function for 

V - O  • They obtain

w k&re ^  ^

a screened coulomb potential with screening distance , the 

Debye length.

Other matters are now discussed, concerning such things as 

binary collision, which have no applicability to our present work 

where the plasma is taken to be ’collisionless'.

The authors consider the case of a high-velocity incident 

particle, where . An expansion for £  « is

done in powers of % ■  and the following results are obtained. The 

potential ahead of the particle for large distances , falls off as

, approximately. This agrees with later work (29). Behind

the particle, an oscillation is set up, which has the plasma frequency,, 

and which is not damped. This last corresponds with the result of 

ref (24). Subsequent calculations of stopping power are of little 

interest, because they use the asymptotic forms of the dielectric 

function, and because they involve terms arising from binary collisions.

Thus, because of approximations, the authors do not find the 

exact form of the potential due to the test charge, but they have 

produced one or two results which correspond with earlier and later 

work.

Chronologically, the next paper which uses the concept of

ftest particles' and is of some interest, is that of Rostoker (26).

This author uses Vlasov’s equation and Poissons equation, suitably

linearised, to find the electric field due to a 'dressed* test

particle, at a point. By ’dressed’ he means that the particle's field
12



has been modified by the presence of the plasma around it, and what 

it is ’dressed* with is a cloud of charge of opposite sign, 

which shields the particle in a way which he does not qualitatively 

specify. He uses the expression for the field to obtain results by 

a superposition method for electric field correlations and similar 

quantities. The case of non-zero magnetic field is also considered.

This author is interested mainly in the concept of the ’dressed* test 

charge as an analytical tool rather than something of interest in its 

own right.

Another paper which uses the concept of the field due to a test 

particle moving with a velocity v is that by Thompson and Hubbard (27). 

They agree with the authors of ref (24) that for small v the particle 

is Debye shielded, while for large .v it leaves a wake. However they 

go on to calculate the Tbkher-Plank diffusion coefficients of the 

plasma by using integrals of the energy spectrum of the fluctuating 

microfield, the latter being given as a function of and

In their results they claim agreement with previous workers.

The next paper that concerns itself with test charge screening

in a plasma is that by Joyce and Montgomery (28). Here the plasma

is given a streaming velocity in a certain direction, and the test

charge is taken to be at rest at the origin. It is found that for

large distances x from the test particle, in three dimensions, the

potential falls off as X  , while for zero streaming a Debye screening
j -(xfajyof the form is obtained. Using methods similar in

conception to those of ref (26), a result is obtained for the density

pair correlation function, and this is shown to fall off as an inverse

power of X i-j, » the separation.
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Subsequently Montgomery and Joyce, along with Sugihara, 

performed a more general calculation (29). Again, they start off 

from the expression for the effective potential of a test charge as 

given in (22)* They then consider the dielectric function

where V o  is the velocity of the test
%>

particle. By dint of expressing it as

and expressing ^  as a sum of two terras, the expression for the 

potential is split up into two terms, such that $  effective z 

Assuming an electrostatically stable plasma, the second term in (^£J,4 

is then expanded in inverse powers of r, the distance of the 

observer from the moving test particle. It is found that the first 

term in (j) cancels with for V 0 f  o  , leaving the effective 

potential at large r given by ^

being the charge and Xj a specified constant. This is proved 

without any assumptions on the distribution function except that the 

plasma is electrostatically stable. The results of ref (28) are 

recovered in a straightforward manner.

Another paper which concerns itself with shielding of slow 

test particles in a plasma is that by G. Cooper (30). The function 

is expressed as a small-argument limit, in k.V 

This is inserted into the potential of ref (22) and an expansion 

carried out to second order in M  (v, where v is the velocity by 

the test particle, as previously, and is the electron thermal 

velocity. Some manipulations are done, and the Beries of terms which 

result is such that to lowest order inlVl/v/^ » the potential is of the 

shielded Debye type again. It is shown that for large distances from 

the test charge, the potential falls off as ^  ̂  , where r is the 

distance of the observer from the charge. It is shown that the 

shielding near the test chsxge is of exponential form, and a3 v gets

14



emaller, the exponential field dominates over a larger and larger 

range of r. This is to be expected since in the small v limit 

we are approaching the stationary particle case.

The paper by Laing et al (8), which forms the starting point 

for the work below is dealt with in more detail in a later section 

of this account. (Chap. 3a), calculates exact forms for the potential 

distribution in two dimensions.

In the summing up of the paper by Montgomery and Tappert (19)>

and these helped to provide a stimulus for the later part of the work 

described below.

Other work concerning itself with the slowing of test-particles 

in a plasma, in general considers a system which is collisional and 

can be described by, say, the Fokker-Planck equation, and so is not 

comparable with the analysis below, which is concerned with the 

collisionless Vlasov equation. A summary of some early work on the 

subject appears in ref (31).

results are quoted for the form of in a magnetic field
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(2) (a) Method of Plnz-rna Simulate on by Particle Model

In the computer program NOVA (9)» the method used to simulate 

a collisionless plasma is to follow the motion of each of a large 

number of charged per tide 3 in two dimensions. Whenever the word 

particle is used here, it has the equivalent and more accurate meaning 

of ’rod1. This is because the simulation is a two-dimensional one, 

and the potential due to any charge moving in the plane of the 

simulation is actually that of a rod of infinite extent which passes 

through the position of the charge. Thus we are following the motion 

of each of between 10,000 and 20,000 'rods' in the field due to all 

the others. The approximations which are involved will be outlined 

as the description proceeds, and their effect will be discussed in a 

later section, along with the relevance of their effects to the 

present numerical experiments.

We follow the motion, in the present instance, only of the 

electrons, assuming the ions to provide a fixed, neutralising 

background. Ion movement can be built into the code easily, but it 

was not thought necessary here, especially since our investigations 

will be concerned with phenomena attributable to electrons.

Inclusion of an equal number of ions in the calculation, though not 

increasing dramatically the computer time required for an average 

timestep, will increase the storage required for the code quite 

substantially. /~The reason why the time required does not increase 

to an inconvenient degree, is that ions would be ascribed a higher 

mass than electrons, typically 4-10 electron masses, and so, they 

would have a correspondingly smaller plasma frequency (Op • Thus, 

using the stability criterion quoted below (equation (10)), we see 

that we could afford to use a larger timestep to move the ions._J7

16



In brief, before embarking upon a more detailed description, 

what is done in a NOVA simulation is as follows*

( D  Before the calculation proper gets under way the computer, 

plasma is set up by assigning positions and velocities to 8,11 the 

particles* By means of a random number generator the distribution 

of particles in velocity space is made approximately Maxwellian and 

the distribution in the real space of the problem is made even down 

to a scale of the order of a computational grid length. Now come the 

three main stages in every timestep of the calculation.

(2) Knowing the positions and charges of all the particles in 

the computer plasma, the charge density can be calculated at all points 

of a superimposed computational grid.

To save time, this is in fact done to each particle immediately after 

a position has been assigned to that particle.

(3) Poissons equation, suitably scaled, is solved at all 

points of the grid. This is

(4) Using suitable equations of motion, the positions and 

velocities of all the simulation particles are advanced by putting 

the equations into difference form and solving, using a suitable 

timestep. The steps 2, 3» 4 are now repeated.

Now follows a more detailed description.

In order to determine a suitably averaged value for charge 

density at all points of the computational grid, two methods have been 

commonly employed in the past. These are referred to as the Nearest 

Grid Point (N.G.P.) and Cloud in Cell (C.I.C.) methods, and it is the

where = potential, charge density. 
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latter which is ivtilised in NOVA. For the sake of comparison, ?/ith a 

view to outlining the relative advantages of C.I.C. over N.G.P., both 

will be described here.

In the N.G.P. approximation, with the computational area 

divided into a rectangular raesh, the position of each particle being 

given with respect to the mesh, the charge due to any particle is 

ascribed to a sum of charge which is assigned to the nearest grid 

point of the computational grid (see Pig (1)). When this has been 

done for all particles, individual point particle interactions have 

been eliminated, and a smoothing has been effected. What has in fact 

been done is to say that the particle gives rise to a charge density 

contribution which is the same wherever it is in the rectangle whose 

dimensions are the same as a grid rectangle and which is centred on 

the nearest grid point. Another point of view is to consider that 

we have ascribed a finite size to the particle.

In comparison, the C.I.C. method shares the charge, in NOVA, 

among the four nearest grid points. There are a number of ways of 

doing this, but the simplest is just to draw a rectangle, centred on 

the particle under consideration, and of the same size as a rectangle 

of the space grid, and assign fractions of charge proportionately to 

the areas of this rectangle which intersect the four rectangles drawn 

with centres on the four grid points nearest (see Pig (2)). This is 

exactly the method used in NOVA. Intuitively one expects this method 

to give a more accurate approximation than the N.G.P. method of charge 

sharing and this is confirmed in practice. One way of looking at this 

approximation to the charge density due to a particle is in the sense 

of an even cloud of charge which can overlap all the other similar 

cloud3 of which the computer plasma is composed.

18



With the charge density distribution now set up, Poiocon’s 

equation is solved at all points of the computational grid. In general 

this will be expected to be a time-consuming part of the calculation, 

and in NOVA with this point in mind, the main Poisson-solving routines 

have been written in USERCODE in preference to FORTRAN.

The method used to solve Poisson*s equation is one of Double 

Fourier Analysis (D.F.A.) which is very similar to that of Boris and 

Roberts (7). The authors of the code consider that though this method 

is expected to be slower than others mentioned in Hockney (6), the 

availability of Fourier transforms at every step is a useful 

diagnostic as well as being a connection with theory. It is also 

useful to apply simple smoothing to the fields and into the code is 

built a data-driven method of suppressing unwanted short-wave length 

high-frequency modes, to decrease noise.

All Fourier transforms in the code use the complex periodic 

transform method due to Singleton (33). The boundary conditions are 

periodic in the simulation so that in effect we are considering an 

area of plasma of L* by Ltj Debye lengths which is surrounded by an 
infinite mesh of identical such areas. The real transforms are done 

two (rows or columns) at a time.

Instead of the analytical transform equation

(2)

the transform routine uses

(3)

where l-v are the dimensions of the rectangle of the computation in
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appropriate units (usually Debye lengths), are the number
of grid suacings, and points in the x and y directions. Z^x, ^ y  aie the

ji 'L~ - d.TC Lgnd-spacmgs, and /C^ —  — ---- - i /Cw — -------i— J  i
The Fourier coefficients of the density having been found, 

the corresponding Fourier coefficients of the potential are simply 

obtained from the transform of Poisson's equation

(4 )

In a continuum, we would have

However, the area-weighting of force and charge, and the finite

differencing of ^  to get the electric field E, introduce errors

of order (K6j)̂ . ® ie factor ( ! + 1/3( k x k *)1 * i ^ ( k ^

is therefore used to remove these errors along with the use of a

six-point difference formula for calculating the electric field.

Before this stage the potential is obtained by an inverse transform.
Mi

, I V  iWxt \  Ik-*!; 7
^ • C 7 l 2  4  L  ‘ 4 <5)

1.
which is the discrete analogue of a Fourier series of infinite 

summation limits. E is now found by a simple difference method 

from E a* - grad ̂  , and then modified as follows

EX^Xjjy) s Ex(T^jy+1)+ <f£x(Tx,jy) vgxCTK,jy-0]
where JX, JY are levels for the grid points

and similarly for EY. This removes anisotropy errors of 0 ( k ^ Y  

while introducing a magnitude error which is compensated for by the 

factor described above.

The third main part of the calculation is the moving of the 

particles. The equations of motion used in the work described below are
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These are solved by a difference method

t * k t - <\> _

It can be seen from these that we have imposed a time-staggering’ 

of the dependent variables X and v, X being defined at all points 

after integral numbers of timesteps, while v is defined at half­

integral times. This is a convenient manipulation as it enables 

us to write an explicit time-centred scheme which has by virtue 

of being time-centred an accuracy of Q  ( . This is

important since time is the only independent variable in these 

equations which appears explicitly and is discretised explicitly.

These equations (8) and (9) are solved for X , V  ^ 

at all points of the spatial grid. This is a fast method, being 

explicit, but it involves the stability criterion.

condition, which has the meaning that the timestep must be smaller 

than a time of the order of the inverse plasma frequency. This is

would be obliterated by the computation; this would be wholly 

unsatisfactory. In practice the timestep, for the sake of achieving

Z. (10)

where Wp is the plasma frequency. This is a 'Courant-I'riedrichs-Lewy

physically reasonable, for otherwise physics

reasonable accuracy, in taken as o f  &ri<̂

C - P - L  condition is well satisfied.



Before going’ on to more details about the code itself and 

its structure, the possible sources of discrepancy between real 

and simulated plasmas will now be discussed, in the following 

section.
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(2) (b) Critique of Particle Cories

Much work has been done by way of theory and numerical 

experiment to isola/te the main causes of non-physical effects in 

simulated plasmas.

Most of the drawbacks which have to be allowed for in the
t *
fundamental all-particle model used in NOVA and similar codes are 

associated vfith the small number of particles which can be represented, 

partly due to the limitations imposed by the storage space available 

in the computer. If we were to include the individual forces between 

every pair of particles, we would only be able to deal with approxi­

mately 1000 particles. In the present instance, where averaged 

forces derived from the electromagnetic field equations are used, we 

can use many more particles, and the number we decide to use depends 

as much upon the time available on the machine for performing the 

calculation, as on space available, though it will also depend to

some extent upon the phenomenon we are hoping to simulate. However,
6 Vdespite the approximations we make, a factor of 10 -10 less particles

is being used in these simulations, compared with the number density

we should expect in a real plasma. Thus every particle in the

simulation can be thought of as a **superparticle” representing some 
£

10 actual plasma particles.

One result of an insufficient number of particles is that the
I'l̂e

fluctuation about the mean, say of^ density n, which is theoretically
1/ 3' 5n will be noticeably increased - in this case by a factor 10 

over the value which would obtain in a real plasma. This is referred 

to as particle noise (34).

23



Also, this lower particle density will lead to a decrease in 

collision times compared with a real plasma; this would, for example, 

act towards reducing the persistence of a non-MaxweIlian distribution 

function in the plasma, which would be a drawback if such a distribution 

was being used, since if collision times are reduced, relaxation times 

will be reduced also. The ratio between the collision frequency V  

and the electron plasma frequency Wpe is given by /~ref (32) J

where K  is the number of particles in a Debye square, in the two- 

dimensional case. T y p i c a l l y i s  of the order of 64> so that in 

the numerical experiments described below there are only about 64 
plasma periods in a collision time. In most cases, our initial 

distribution is of Maxwellian form, so that this is not a factor to 

give rise to worry in that respect. Since the theory that is used 

below utilises the Vlasov equation, which assumes that the plasma is 

■collisionless*, that is, that the collision times are much longer 

than times of interest, we should like to be sure that our simulation 

will obey this condition also. Since no run, below, lasts longer 

than a few ( 64) plasma periods, we can see that this "collisionless1

criterion certainly will hold for the duration of any of

these numerical experiments.

Both the effects described above can be reduced by increasing 

the number of particles in the simulation plasma, if the need arises.

Fortunately, however, such quantities as the Debye length and 

the electron plasma period remain the same whether a plasma of 

particles of charge q and mass m, density n, or a simulation 

of it with particles of charge sq, mass sm, and density n/s is 

being considered. For the electron plasma period of the real plasma 

is given by
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where w*Jp« is evidently the plasma period of the computer plasma, 

consisting of a density N of charges Q with mass M.

In Hockney (32) results are given for the measurement of certain 

average parameters, all expected to be approximately the same, and all 

estimates of relaxation time by different methods. Uiey all agree 

with the value ^  calculable from the expression

-  = 0>t p ,  1  '3>

where » relaxation time,^ 5̂  » electron plasma period, and

number of simulation particles per Debye square. This is 

dearly seen to be the inverse of equation (1) above and shows that 

when is substantially less than the number of plasma particles per 

Debye square in the real plasma, the relaxation time is, correspondingly, 

proportionately less.

Another, equally important source of error or difficulty is 

the non-physical interaction of the particles with the spatial or 

temporal grids used for computing such quantities as densities, 

potentials, fields and forces. This also gives rise to an increase 

in noise, called grid noise. It can always be reduced, but never 

totally eliminated by using finer grids.

Inaccuracies due to the presence of the grid can lead to 

numerical heating of the plasma. Let us suppose that the electric 

field is given at any grid point by



The error field will be random, and will therefore tend to heat 

the computer plasma g to chaotically. However, in the case of NOVA, no 

serious increase has occurred in total kinetic energy during any run, 

so that this heating is not a worry though it is noticeable always 

that total kinetic energy increases monotonically. According to 

Hockney (32) the C.I.C. method, the one used here, only heats up
A

at /10 the rate of the N.G.P. method.

The use of N.G.P. and C.I.C. methods give rise to effective 

force laws between the 'superparticles' in the simulation which ere 

notably different from those in the physical plasma.

The effective force laws are given in the diagrams shown in Figs.

(3) and (4)* It is evident from these diagrams that the force 

singularity at has been completely removed. A smoothing

has in fact been made which has eliminated the short range inter­

particle interactions which produce effects characterised by short 

wavelengths: that is short range collisional effects between 

’superparticles' are reduced as compared with the point-particle 

case, because of the nature of the superparticles under consideration. 

This does no harm to the calculation since one is at present interested 

in the more important collective long-range interactions with typical 

wavelengths much larger than inter-particle spaoings and frequencies 

whose periods are much longer than particle crossing times. Also, 

any factor which reduces short range collisional effects is welcome 

since we are intending to simulate a 'collisionless* plasma.

In (34)* mathematical formulations are given for the case 

where we consider the simulation particles with their associated 

charge which essentially covers an area equal to a grid cell uniformly, 

as particles of finite size or clouds which can pass through one another.
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Various pl&sraa parameters have been rederived for these 'finite size 

particles'; these are modified versions of the equivalent parameters

is called the shape factor and gives the density of the cloud, suitably 

normalised, as a function of X* In the present case, for example,

S(x) is as shown in Ilg. (5) and has the cross-section of a 

rectangle centred on the particle* This leads to results such as 

the formula for the longitudinal dielectric function c.f* Chapter 3*

Another result given by these authors is for the potential 

energy V(X) of charged clouds in the vicinity of a stationary test 

particle in the plasma, which they plot as a function of X*

The smaller the size of the charge cloud, the larger the value of V(0), 

but it is noticeable primarily that the value of V(0) is finite, in 

contrast to the point-particle case* It is noticeable in the numerical 

output from the simulation below that the potential actually at the 

position of one of our simulated test particles is always finite, 

because of the fact that it is in reality a 'test cloud of charge' 

instead of being a 'test-particle', bearing out this result of 

Birdsall et al. This has to be borne in mind when simulating test- 

particle interactions, along with the result for the form of the

in the real case. Instead of a charge density of being allotted

to any particle in the theory, ^ § 6 0

(5)

where S(k) is given by the transformation

S C O  - ( A x  $ ( * )  < ^ p ( r ‘k.x) (6)
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interparticle force~law reproduced in Fig, (4). Care has to be taken 

that the centres of two interacting charged clouds, whoso interaction 

is to be studied, come no closer than the width of the clouds, for at 

closer distances the forces which act will be seriously non-physical.

The results of Birdsall et al, concerning small amplitude 

electron plasma oscillations, show discrepancies between point- 

particle plasmas and finite-size cloud plasmas only when very short 

wavelengths are being considered, Y/ell into the region where damping 

dominates.

Another fact that must always be borne in mind in discussing

the results of a given simulation is that the disposition of the

particles in phase space is unlikely to be exactly in thermal 

equilibrium. In fact, in many of the computer simulations described 

below the initialisation of the velocity components of the particles 

was almost random in the interval where is

the thermal speed. Also, since the laying-down of particles was 

done in position s >̂a c €. similarly - positioning every 4 particles 

randomly in successive grid squares, we might expect there to be

more energy in certain short wavelength modes than might be obtained

in a real plasma. Even if we set up the simulation plasma as close 

as possible to a state of thermal equilibrium, it must be remembered 

that fluctuations are a few orders of magnitude greater than for the 

corresponding real plasma because of the difference in particle 

density.

In order to study, for example, the linear growth phase of an 

instability, as a check on the basic physics of the model before 

going on to tho non-linear phase, one would like to be able to 

follow modes of small amplitude, without their being obscured by
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fluctuation effects. One would therefore like these fluctuations 

to be many orders of magnitude lees than typical particle kinetic 

energies, in order to be able to ’prime* the required mods at a low

typical plasma kinetic energy. To make the system 'quiet* ie to 

substantially reduce noise, and ensure that it remains so for the 

duration of the experiment one would like to have

Methods of doing this have been used with success by other

workers, especially in one-dimensional simulations. Byers and

Grewal (15) record one of the earliest instances of their use, in

which they simulate the linear phase and saturation of an instability.

They not only load phase space in a uniform way, to reduce noise, but

do this also by truncating the spatial Fourier spectrum in the

simulation. (A facility for doing this is built into NOVA.) In

the work of Hung (35) this is done, in one dimension by having many

streams of particles at different velocities. /~The layout of

particles on these would be ideal if in one timestep each one ^umps

into the position of the particle immediately in front of it on its

particular orbit. J  If this happens, then to a very good approximation

the simulation plasma is such that the distribution function is a

constant to within the accuracy of the computer, and since the

particles are evenly spaced E is near to zero at all points. The

only difficulty is discovering how many orbits, or streams of

particles are required. If there are too few, an unwanted instability,

the two-stream instability will develop. Using this method, effective
—6 —7potential energies of 10"" or 10 of the kinetic energy of the plasma

can be obtained, compared with kinetic energy for a non-*quiet* start 
-3of say 10 times the kinetic energy.

-2energy and observe its growth until saturation at around 10 of the

- 0  for each species and (J * o *
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In two dimensions, similar principles can be applied* The 

author has written a quiet start procedure which, on the basis of an 

assumed Maxwellian velocity distribution generates sets of orbits 

closed in the computational rectangle, modulo the lengths of the sides. 

Unfortunately it is somewhat expensive in computer time and space to 

'tune' this when say 10,000 particles are used, and no value of 

potent: ' energy smaller than that of the 'random' start has been 

obtained. Whether this lack of success is due to poor 'tuning', or 

to the fact that a 'quiet* start is difficult to achieve by this 

method in a two-dimensional electrostatic plasma is a matter for 

conjeoture.

Many predictions of the theory for a plasma of finite size 

particles have been verified by Okuda (36), who concludes that 

"it is certain that the finite size particle model with a spatial 

grid behaves like a real plasma as long as the Debye length and the 

particle size are not too small compared with the grid size". Since 

in our numerical experiments below we are dealing with the case 

where the Debye length is 4 times the grid size and the particle size, 

we can proceed in the confident expectation that a plasma will be 

adequately represented by the computer simulation.
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(2) (c) Structure and Eunnlncr of KOVA» f ' # n nirimn̂ f̂ TM inrff TI r iinw     fmirrr 1 t •• n * ttmtvmet

The program 1I0VA Is ”a general purpose particle code for 

plasma simulation” and was originated in 1970-71 at 1 .I$j .

Livermore by McNamara and Lsngdon (9). It is written in a modular 

form, and is designed to be run in a variety of modes for a variety 

of purposes. It is also intended to be easy to use v/ithout the 

user’s having to appreciate any of the finer points of the calculation.

The user’s main task is two-fold. He has to decide, on the 

basis of the problem he wishes to solve, what initial conditions to 

set up. Hore he becomes involved with the need for scaling of the 

values of the physical quantities of the problem, but there are 

default options built into the code. In all the simulations described 

below the length is scaled to Lebyelength units, which is one of the 

default options. Once this length scaling is established, other 

quantities are automatically scaled by one of the routines. In order 

to set up the initial conditions the user has to set up a module, 

called by the name YOUSET, for the purpose. Then the second part 

of preparing the code for dealing with a given problem is to decide 

what diagnostics are required; for these, extra routines may have to 

be written. Once all this has been completed, the code, in theory can 

be data-driven without further additions.

However, on the I.C.L. 4/70 installation, running under the 

MHI/TIJOB system, limitations of space become apparent. In its present 

fora the code cannot be run at convenient times of day, since there 

are only 200K bytes available in daylight hours, and the code requires 

over 400. However it can be run, as it has been in almost every case 

below, with a non-standard supervisor which allows 500K bytes. Even 

co, in order to allow for the possibility, if required, of as many
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particles a3 possible in the simulation, the code is segmented, as 

sho?m in Pig (6) in order to save as much space as possible. On the 

I.B.M. system 370/165, however, with 1000K bytes of store always 

available, no space problem as outlined above was encountered on the 

few occasions where this machine was used. Of the two computers 

mentioned above, the I.C,L. machine is at the U.K,A.E.A. Culham 

Laboratory, while the I,B,M* one is at A,E,R.E. Harwell,

A typical run of 100 timestep3 with 16000 particles on the 

4/70 took about 30 minutes. This was after some optimization. The 

fact that NOVA is written mainly as a large number of FORTRAN 

subroutines has facilitated development, but leads to slow running.

The "particle pushing** in which the equation of motion is solved by 

a finite difference method for each particle in turn, can be 

expected to take up some 50$ of the computation time, so it is of 

great importance to optimise the routines involved. At present they 

are written in optimised FORTRAN, with the minimum number of 

arithmetic operations being performed, by means of absorbing scaling 

factors and timestep into both the position and velocity co-ordinate 

values. Also the original versions have now been modified to include 

the statements from the two area-weighting routines called by the 

’pushers*. Since these routines were called once each for every 

particle, a Savt^<| of 32,000 subroutine cadis per time step has been 

effected in a typical simulation with 16,000 particles. This reduced 

the time taken for a typical run by some 20$. It would certainly have 

been preferable to have the particle-pushing routines written in 

U3ERC0DE, but because of large delays in implementing properly at 

Culham Laboratory the author's version of the code, time was not 

available to do this.
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Few more details will be given here of the code. It is more 

flexible than GALAXY (7) the previous large particle code at the 

Culham Laboratory which was designed to be of optical speed on the 

English Electric K.D.F9, a machine of one quarter the power of the 

I.C.L. 4/70* So far no outstanding improvement in performance speed 

of KOVA over GALAXY in a similar mode has been noted.

The increased flexibility of use comes from the following 

sources.

(1) NOVA is in FORTRAN, while GALAXY was latterly in ALGOL 

and USERCODE: this makes NOVA more transportable, since not all 

systems have an ALGOL compiler and no other assembly language

is the same as &D.F.9 usercode, while 4/70 USERCODE is the same 

as I.B.M. system 360 and 370 assembler.

(2) NOVA allows for more variety in boundary conditions.

The computational area is not constrained to be a square, and

»perfectly conducting walls' are available as a boundary condition 

to supplement the double-periodic case. It can also, with some 

alteration to the Poisson-solving routines, be run a3 a one­

dimensional simulation code which, for example, is at present being 

done by Hung (35)» with good results.

GALAXY, however, can avoid these criticisms somewhat, since 

it was designed more as an exercise in optimisation of a given 

computer's facilities than with many users in mind.
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(3) ( & ) riT̂ .ed.iat&Iy Previous Work; K/X-.ot Forma for Field Due
to a Test Particle in a Plasma in T.to Dimensions

The subject of all the investigations reported below is that of 

the interaction of a test particle with a plasma* A test particle 

not in equilibrium with a plasma is not an object which commonly 

occurs in nature, but consideration of it can lead to results about 

electrostatic shielding in two dimensions vdiich are of soma interest.

A short historical review of previous work on the subject is given 

in Chapter (i) (b) above*

This section of this chapter contains a detailed description 

of the work done by Laing et al which is reported in Ref (8). This 

forms the starting point for the investigations described in 

Chapter 4, and concerns the calculation of the exact form of the 

potential due to a moving charged particle in a collisionless plasma. 

Previous investigators eg Montgomery et al (29), had merely given 

asymptotic forms for the potential.

The analytic form for the potential due to a moving test- 

particle has been given by several authors, for example by 

Thompson (1964). In Ref (8) it is derived in a slightly different way.

It is supposed in this derivation that for times t < 0  , there 

is a uniform collisionless plasma described by an equilibrium 

distribution function V v )  , and that there is no electric field.

At t • 0 , the test particle is introduced into the plasma, inducing

and a perturbation of the 

he charge density due to the

test particle is given by '

i

where u -- velocity of particle; q = charge on particle.
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The reaction of the plasma on the test particle (see 4 below) 

is not included in this ana lysis. The equations used are the VIp^sov 
and Poisson equations, and once these have been linearised as 

described above, we obtain

eLw-E, = l+rre ( ? j. (2)
Introducing a Fourier analysis of the v-dependence, end a 

Laplace transformation of the time variable, we get

k2i -- kite f { cW 4*
* 1 (p4* Lfo .uj

(4)

The ‘barred1 quantities are the Fourier-Laplace transforms of 

the corresponding functions of X and t,; the relation E . - V J  

has been used. We now eliminate f, to obtain

£ ( - ,P)= ( P ^ W . \ ) k ' « d £ , p )
(5)

where

(6)
( p  + 1 W  >i)

is the Fourier-Laplace transform of the plasma dielectric

coefficient.
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Thus if we now assume that the plasma is two-dimensional> which 

is done in this paper to facilitate comparison of results of analysis 

with those from a two-dimensional computer code, we obtain an expression 

for the potential

(£(y t): i  r~~. ( --- -------------------- n—  (7)
S  i tfJ * lift J (p'c-'A'

C'-loO
where G* is such that the path of the p-integration lies to the 

right of all singularities of the integrand.

The solution of the inner integral here is taken to be that 

which ignores contributions due to the zeros of^C&fJand includes 

only the residue at the pole p * - ik.u • Thi3 leads to

& Qg 0 -- - f lz ‘ ̂  r*^ ■ (8)jP ~ ' tc J )
This is the equilibrium state. Introduction of the relative 

co-ordinate r = x - ut leads to

& ( + )  V I f  H s . t l ' A U  ^
*  "  *  J  k M l- C

Introduction of polar co-ordinates (^,&) and (k for r and k, 

with u along the polar axis, gives

$ o,f>) , i  ( I  avf  ^  <10)
o 0

Hsre = 1 +  TThere^
where is the electron thermal speed, and 2 is the plasma

dispersion function ( ) % - /̂a , where is the Debye length

4 . - K / W ) 1
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Using the expression

£(. : V  i- - <|>jj (11)
A * - c O

and the substitutions - K'fc CC , we obtain

r  *f

> ( * »  '
J

feh'-pl- M >  (12)3 rt(xV*x

<» o

This expression, suitably put entirely in terms of real

quantities is used in an exact calculation of , where it is

expressed in the form
c£>

2 l  LCrt A  & 03)
A -  o

Each term /\y\ (h) is separately evaluated by numerical techniques. 

Depending upon the value of ^  a cut off in the summation is imposed 

at N, which is 7 for low velocities, and as high as 16 for some

values of ^  ^  1.

The diagrams showing.the result of this exact computation 

are reproduced here in Figs (7a), (7b) and (7c). The first of these 

shows a contour map of ̂ )(&) for^ » 1, with the test-particle at the 

origin of co-ordinates. The second of these shows the cross section 

of the potential distribution along the line of motion of the test- 

particle, for ^  = 1 .  The third shows part of the potential

distribution for a fast test-particle which has ^  = 2.4.

In the case when ^  = 1, ths test-particle is moving with

a velocity of the same order as the electron thermal velocity. A 

great concentration of electrons has occurred downstream, immediately
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behind the teat particle. The authors state that this is in effect 

a heavily damped plasiaa oscillation. With increasing velocity the 

damping has diminished, until we observe the fully developed plasma 

oscillation shown in the 3rd diagram, established behind the test 

particle as a wake.

In the second diagram (Fig 7b), there is a comparison between 

the potential profile obtained by the calculation described above and 

that obtained from a plasma simulation using the GALAXY code (7) of 

Boris and Roberts. The two results agree very closely indeed.

A second section of Ref (8) deals with the series expansion 

for In terms of powers of u/'vy-g taken to third order, starting 

from equation (10). Using the expression for Z(t) valid for t <  I 

given in Ref (37)

Z(t)= (14)

leads to an expansion of the denominator of the integrand of 
equation (10) as follows

t f + f c U M )  = ' < * ^ ( i  + (15)

where t = ^  cos , as above.

The inverse of D is expanded to order t , and exp ( ))

is expanded again as in equation (11). When these are both inserted

in equation (10) we obtain
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V*
* ltv

with similar expressions involving powers of ? for end A^ . 

The factors I are given by

to

I * ( ^  = . (17)•■“ A ' 1 J a»L. <L\lNV*»
{  C x  + « ■ >

For n $ 0, it can be shown that I® - (a) behaves as V & 2

for large a • M s  is then the dominant asymptotic behaviour of 

^  , except when ^  * 0, the stationary test-particle case, when 

<jĵ » I® (a) ® Kq (a) , the modified bessel function,which is 

the two-dimensional analogue of exponential Debye shielding.

The result concerning asymptotic behaviour for ^  ^  0 is the two- 

dimensional analogue of the result of Montgomery et al, who proved 

the asymptotic dependence of the test-particle potential to bo 1/a3

given a stable distribution function, in three dimensions*

An analysis was done of a comparison between these results

and those found by the "exact calculation1*, and resulting plots of

5  B M t / f  A v ™ n«io„ “ e reproduced in Pig (8A). This diagramX  exact X  expansion
shows this ratio as a function of f for various values of a •

One can readily see from this diagram and from the other one in 

this paper that the expansion method gives its best results when 

^  <1 1. To get greater accuracy would necessitate taking more

terms in the expansions, which would have been a prohibitively time- 

consuming process.

39



The third piece of analytic work which is described is an

asymptotic expansion for 0) in terms of \T - <5 &  when*
, ie when | is large. Since ^ there will

only be a small range of (j) , centred upon 1\/z 2nd 3^/^ where the 
approximation of large "fc will be invalid, and the authors assume 

that the effect of extending the range of validity to the whole rango 

is negligible, Erom Ref (37) we take

t Z(t) * - (l + t (18)

making the denominator of equation (10)

J )  j  Id - *. I 'vi
a t '

where 'VJ very small.

s J U w v  %

—  &0
fob

rt
-

, Ikx.'dO d k
VvJ— ec'-t

: o  : x > «

•: n*vrei a v . p ^ - <̂ l ' ^ | ) s U \ e C 2 C  ; Jt ̂  O

(19)

*7

How let oi “ r This leads to

l u . )  s j U *    (20)

Expressing as we obtain

■ $ m  s xcvw i  r r  >*» & h p ( > m  ^  < h h  ^ }- ^orrj) -94S
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A diagram showing contours of this function is reproduced in 

Fig (SB). It can be compared with Fig (7C) which was the result of

damping of the maxima behind the particle is evident, but in the case 

of the asymptotic expansion outlined above no damping is manifest 

because of the approximations that have been made.

by the authors for reasons outlined below.

The simulation program, GALAXY, Ref (7) > used by the authors 

followed the motion of a large number of charged particles in 

two dimensions. Provision was made for whatever diagnostics were 

required; in this case the potential distribution over the plane of 

the calculation was of most interest. The calculation is performed in 

a square, of typically 16 x 16 Debye lengths; the simulation plasma 

consisted of about 16,000 •ions* and Electrons*. Thess parameters 

are very close to those used in most of the square mesh calculations 

described below in Chapter 4* The boundary conditions are double- 

periodic, so that the authors were in fact following one of an infinite 

array of test particles moving in a plasma. It was hoped that with 

boundaries of length 16 Debye lengths '■ ~ spurious effects due to 

boundary periodicity would not be important within, say, 8 Debye 

lengths of the test particle, and so a comparison should be possible 

with the theory outlined above, which applies to a single test particle 

in an infinite medium. The fact that good agreement between theory and 

simulation is obtained Fig (7b) shows the assumptions about the effect 

of the boundary conditions to be justified. The result of another 

procedure for comparing theoretical and analytic results is reproduced 

in Fig (8c). Here, for the case of zero test particle velocity, the

San exact calculation for ^  - 2.4. In the latter, some slight

In this case, of no computer simulation was done
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potential distribution near the test particle is compared with 

and with - *or various values oft. C05^0 is the form of the 
potential for an unshielded charged rod. The diagram indicates clearly 

that at fcsO 9 no shielding has been set up, but that at later times 

the potential agrees well with the shielded form KoCk) for the two- 

dimensional case.

The reason why the authors of Ref (8) could not proceed with
S vsimulation of the case where ̂  ̂  I was due to a restriction in the

code. GALAXY was written to run on a square mesh, and in order to

encompass the whole of a wake in the computational area, the dimensions 

of the square required would have been cuch as to make any computation 

prohibitively expensive. The flexibility of NOVA in this regard makes 

it ideally suitable for use in a programme of investigations starting 

off from this unfinished work by attempting to simulate the wake of a 

fast particle using a rectangular array.

The main achievement of Ref (8), thenjis the calculation of 

the exact form of the potential due to a test charge in two dimensions, 

which had not previously been done. Another notable feature of the 

paper is the excellent agreement between results of collisionless 

plasma theory and those from computer simulation.

In addition, the work outlined in that paper gives ideas for

further research into plasma-test particle interactions and simulations 

of such interactions. The fact that the authors* method, of 

introducing a large charge at t * Q caused large oscillations in the 

value of the potential in the plasma which persited for several COp' 

suggests that a better simulation would be done if this oscillation 

could be prevented by introducing the test charge in some gradual 

fashion. There is also the direct extension of this work which can
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be done if a test particle moving with **> f can be successfully 

simulated and its wake observed. Other possibilities

arise such as performing similar analyses with either a 

different plasma velocity distribution function, or in the presence 

of a magnetic field Q  •

Work concerning the case of a different plasma velocity 

distribution function has been done theoretically by Whipple (40). 

Numerical calculations by the present author using these theoretical 

results have been done, as have a small number of simulations, but 

the results are of too preliminary a nature to describe here.

The case where a magnetic field is present is gone into in 

come detail in Chapter 5 below.
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(3) (b) Siffliificance of Insults Concerning Tent Particles

The work described in Ref (8) and the precent work are probably 

the only cases in which® in a computer plasma simulation, by the 

expression "test particle" is meant an extra-large superparticle 

moving in the plasma. Jfost other investigators who use the concept 

and give "test particle” results adopt a different approach. They 

have a one or two component plasma which is set off from an initial 

condition and allowed to evolve with time, without a large test charge 

and its possible attendant transients embedded in it. In these cases 

when it is desired to find the potential due to a test charge 

(eg Olcuda, Ref (36)), the authors select all particles in the plasma 

at or near the chosen velocity and note the potentials at grid points 

on either side of them. Then an average is taken of corresponding 

points, and a graph can be plotted showing what is taken to be the 

potential due to a test charge moving at the given velocity. It is 

probable that this gives reasonable answers in the case of Ref (36) 

because, firstly, his simulation is one-dimensional and so he can 

afford more grid points, thus achieving greater detail, and secondly, 

his average charge cloud occupies up to a Debye length or more, and 

go can be expected to have more influence over distances comparable 

with the scale lengths of the variations of potential in lig (7b).

In our case, with two dimensions, and the charge ’cloud* occupying 

one grid rectangle, which itself is much less than a Debye

square, we do not expect a similar method to be useful. Another 

drawback if OKUTA’s method was employed in two dimensions is that 

great inaccuracies would come in because the particles are not 

conveniently moving parallel to the grid lines. This would mean 

that the potentials at pre-selected distances from them along their 

lines of motion could not be easily read off but would have to be 

obtained from interpolation.
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Accordingly, in two dimensions, in order to produce a “test 

particle” effect which can be easily seen the method is implemented 

of using one large charge and mass. The greatest convenience of this 

is that only one potential distribution has to be measured.

Another result of the fact that the test particle is given a 

large charge is that the forces acting on it will be very much larger 

than if it was a sample particle from the background simulation plasma. 

This is because the forces acting on it, for example the drag due to 

the charge which it induces in the plasma, are such that

It  rtest charge, m-p s test particle mass, 

CC is the acceleration.

Thus if is greater than the charge ^  of a typical 

‘electron’ in the plasma, then if has not been increased as the

square of , the force acting will be increased. This is useful, 

for it enables, by a suitable choice of rt\*p , the slowing down of a 

particle to be observed in a reasonably short time, a time in which 

any sample electron from the plasma will not have appreciably slowed*

The concept of a ’dressed test particle* was introduced by 

Rostoker (Ref (26)), and defined to be a charge plus its attendant 

polarisation cloud. He uses it to obtain certain expressions 

concerning the collective behaviour of a system by the superposition 

of many of these entities, but it is not known at present how widely 

applicable this technique might be. He introduces a test particle, 

in his analysis, into the plasma using an ’adiabatic switching factor*: 

that is he lets the charge density be given as 

D  _ X a v n  o (ji to) 6#p(l(,k.X ■+

where /\ approaches zero from below. It was this that led us to the
45
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procedure adopted in the simulations described belov?, of gradually 

increasing the charge on the tost particle frosi t  - O  to a roaximuni 

value at t  -'I'p • This proved markedly beneficial in the reduction 

of the amplitude of transients in the system.
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(4) (a) Introduction to Results of Electrostatic Plasma Simulation' r > w a-v, ¥in»giTv wat̂jsao.q«fc:»» mi— n'Ĥ icc —wv.f*. m.s-- * j m ; m , v v 3 . : o . ~ . ■• n nB'iai *>•' •&»•»

In general, in each simlation described below, similar 

parameters were employed as in the work done in Ref (8), raid beside 

the description of each individual simulation, should be found the 

| data which relates to it,

|
I A typical program, compiled and composed by the I.C,L. Systeim 4

| J&iltijob system, occupied some 410-450 kilobytes of core storo. The

upper limit occurred when ‘on-line graphics* was included. This 

program was large enough for the simulation of the motion of 16,384
\j particles. Since each particle has four co-ordinates, all requiring

j a word of store, and since there are four bytes per word, this means

that 16 bytes are required to describe one particle. Thus since the 

maximum limit of store available is 500 kilobytes, we can only fit 

in about 3>000 more particles in the remaining storage space. Hius 

with 16,384 particles we are working close to the limits of the machine, 

in that it would be impracticable to increase the number of particles 

in the simulation by more than 20$, whereas a change in particle number 

which would give noticeably finer resolution would probably require 

I an order of magnitude increase, lhus we sure getting almost the best

detail possible with the core space available.

In every section of this chapter is included the additional 

theory required (where this is the case) and a description of the 

results of the simulations associated with it, as well as any other 

calculations which may have been performed.

Because of the desirability of minimising the storage occupied 

by the program in the computer, instead of using the standard GHOST 

system contour plotting routine, a simpler one was written by the
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author, and this proved quite adequate for the purpose 

plot reproduced below was generated using this routine 

straightforward linear interpolation to find points on 

and joins up these points with straight lines.

Any contour 

It uses 

contours,
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Before any of the calculations involving a moving test-particle 

were done, a preliminary numerical experiment was done to test a 

proposed method of introducing the test-particle "adiabatically1* into 

the plasma. This was prompted by the idea of the use of the 

’adiabatic switching factor' by Rostoker (26) to describe the 

introduction of his test particle into a plasma. The object of this 

is to ascertain whether the large fluctuations in the potential 

observed in GALAXY runs Ref (52) over the first several ( ^  8 or more) 

XtOp and which can be ascribed to the transient effects set up by 

the sudden introduction of the test charge at fc* 0 , can be eliminated 

or reduced.

In the GALAXY runs, however, the overall shape of the potential 

distribution remained the same once the dynamic screening had been set 

up; only the unwanted transient effects caused the values of potential 

over the whole distribution to oscillate upwards and downwards in step. 

The fact that the overall shape of the distribution remained the same 

meant that this did not adversely affect the results. However, in 

the numerical experiments below, where, for example, we want to set 

off a particle with a given initial velocity and observe its slowing 

down under the effect of the reaction of the plasma, we would prefer 

to have transient effects eliminated, in order to prevent any possible 

adverse effects on the results.

Since the NOVA program is written in modular form in FORTRAN, 

the modification required to perform an experiment to decide whether 

the adiabatic introduction of a test charge is advantageous, is simple. 

In fact a switch was built in so that the tests could be data-driven.



V/hr.t was in fact done was straightfon?ard. It was decided that 

the charge on the test-particle should increase with time such that, 

for times less than the plasma period the charge is given by

= CHKAX *  tf'Yp (1)

where CA\HAX « maximum charge, ^  - plasma period, t  *= time elapsed. 

For times greater than “Vp , the charge was held constant at the value 

CtrWfVX.

It was also hoped that after a time had passed, the local 

charge distribution would have rearranged itself, such tlxat the 

expected shielding would be set up. This is of importance for later 

experiments when we do not want to allow the drag force, due to the 

charge induced in the plasma, to act on the test particle until such 

time as the induced charge has been fully established. An early test 

run gave an indication of likely errors in a calculation of drag on a 

particle, starting with at t ; 0

The following two runs were implemented subsequently

(1) The test particle was set up with charge equal to^HKft^ at"fcs Q 

as follows:

MESH DIMENSIONS 64 x 64
PHYSICAL DIMENSIONS OF PLASMA 16x16 DEBYE LENGTHS

TIMESTEP DT 0.25

NO. OF •PARTICLES1 IN PLASMA 16384

CHARGE ON TEST PARTICLE 200 UNITS
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(2) The test particle was originally given a charge of one unit, 

the same as the plasma particles, and this was, gradually increased to 

ClUlA^ ■' . The other data remained the same.

A graphical analysis of the results clearly demonstrates that 

transient oscillations are almost eliminated in the second case, where 

the charge is entered adiabatically.

In case (1), where the test charge is introduced with its 

maximum value at the beginning of the simulation, it can be seen from 

Fig (9) that oscillations of a large amplitude are set up, which show 

little sign of damping as time passes, as far as the simulation proceeds, 

that is, a total of 17*5 plasma times • This graph shows the

value of the potential, in arbitrary units, at the co-ordinates of the 

test-particle, and it can be seen that the amplitude of the unwanted 

oscillations is about ■&- of the average value of the potential. The 

period of the oscillations was estimated to be about 2' ̂  oOjs 1 .

We should like to check that shielding has occurred before a 

time of has elapsed in the simulation.

According to theory, the unshielded charge in two dimensions 

gives rise to a potential distribution ^ 0 0  ** > while

the shielded charge gives rise to a potential distribution $£x)'vK©(5(J 

where ^  is the modified Bessel function of order Q  • For various 

values of elapsed time “t , the potential distribution in the region 

of the test charge was plotted against -Ic^X a*1** against K«(*J 

It was found that shielding had been already set up after 10 timesteps, 

ie after 2.,^ W p '  .The plot of the potential ^)(xj against

K 0 <*) Fig (10) for t • 2'5’i'Op̂  shows good linearity,

demonstrating that shielding has taken place in the expected manner.

Thus shielding will certainly have taken place by » as had

been hoped.
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For case (2) with gradual increase of test-particle charge, the 

potential at the position of the test particle was plotted as s function 

of time, and this in reproduced in Fig (12), It can. be seen that, as 

was hoped, there do not occur the large amplitude oscillations which 

dominated the behaviour in Fig (9). One can see clearly the gradual 

increase in potential with increasing test-particlo charge, and once 

the maximum charge has been established, it is noticeable that there 

is merely an oscillation of small amplitude which is quickly damped 

leaving the potential at a valuo which remains almost constant with time.

In this case also, the potential distribution near the test 

particle wa3 plotted against and Ko ) for a chosen value

of fr . Examination of Fig (14) and Fig (13) show that by t  a 

the line of $  ( > 0 / has deviated from linearity while

fcoO appears to be a good straî it line. For the purposes 
of comparison, a graph of against (fr€jCtf) is shown in
Fig (1*1) * which indicates that the plot of against (ĉ (xj in 
Fig (14) has taken up a form which one might expect for a shielded 
potential distribution. This, in addition to the results above give 
us the utmost confidence that full electrostatic shielding of the 
test charge will have been set up by t s

The results of this preliminary work,are satisfactory, and enable us 

to proceed with confidence to further numerical experiments where the 

reduction of transients, which we can new achieve, ensures that the 

physical effects in which we are interested will not be obscured or 

adversely modified.

Mathematically, what is now being done is the following.
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Instead of the term & c -  ufc) in the equation (3a(2)) we

now have Q (jj O C k ** tct) where

? < ^ f c / r  •. t  £  T "  (2)

' . T ^ t

When we perform a Fourier-Laplace transform on this new function 

we obtain, where ^  means Fourier transform, ^  means Laplace 

transform. .
r f (

%  - tk.v)j^o(ih,(x-w.t|d!^d'<

£yp ( - ( p  *  A t
/

: j « ^ 0 0
o

Splitting this up into two integrals from 0  toT end fromTtJo^O

we obtain

*  st T W W 3 ‘ E 1 " «>

which tends to as T - ^  O  , and which becomes

very small as X  becomes very large. When we deal with the pole in 

the inverse Laplace transform in equation (3a7), at p *  • ife.M * this 

term tends to 4ft ̂  as before, but the oscillating terns derived from 

the roots of > and assumed to be damped in the analysis

of Ref (8) such that they do not affect the large time solution, are 

modified so that their initial amplitudes, compared with what it would 

be in the case of the sudden ewitch-on of test particle at fc" O  , 

are reduced by a factor  ̂('"T . The potential is given by 

(see Ref 8)

f h , t ) - i  t o V ' : ,(x- L % " ‘" • HJ £ C iS- — / ttrms J
53



Using the procedure outlined above, this becomes

T f  ±.\ _ fiHf ^  J. V
$ ^ v - ^  v-'frCkj-tfe.i) L  -*

where X  0 ( ^ r )

Intuitively, and demonstrably, the longer the time I , the more 

the amplitude of oscillating torins would be expected to be reduced. 

However the longer the time I the greater the computing time 

required. The present value of seems quite adequate

for the purpose of bringing down the amplitude of unwanted oscillations 

in the level of the potential in the simulation plasma.
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In part this section is a repeat of previous work (Ref 8), 

serving as a check upon the performance of the NOVA program.

(1) A test particle, of greater than thermal velocity was introduced 

into the simulation plasma at t  - 0  , and the resulting potential 

distribution after a time when transients had been eliminated somewhat, 

was noted, with special interest in the cross section parallel to the 

direction of motion* Some relevant simulation parameters were;

MESH DIMENSIONS 64 x 64
PLASMA DIMENSIONS 16x16 DEBYE LENGTHS
TIMESTEP DT 0.25
NO. OF PARTICLES IN PLASMA 16384
VELOCITY OF TEST PARTICLE

The above mentioned potential distribution cross-section after 70 

steps was plotted, but is not reproduced here, and was found to compare 

favourably with that in Fig (7b), which is the result of a run in (8). 

This was one of the preliminary testing runs with the full NOVA code 

on the I.B.M. 370/165 at A.E.R.E. Harwell*

After this result had been obtained, it was decided to repeat 

the run with a gradually increasing charge on the test particle, and 

this was successful in reducing transients as before. A slightly 

smoother collection of potential values through which to draw another 

curve as in Fig (7b) was obtained, and a good similarity was obtained, 

though, again, this curve is not reproduced here.



As in 4(b)» in tha first part of this experiment the potential value 

at the test particle fluctuated wildly as time progressed, while in 

the second part, once the charge had "been established, fluctuations 

were of much smaller amplitude.

The next part of this section concerns the verification of the 

predictions of Ref (8) concerning a test particle in a plasma moving 

with a velocity greater than any of the velocities simulated by the 

authors of that paper, using GALAXY. Their analysis, like that of 

earlier work (Ref3 24, 25, 27) predicts that the toot particle will 
leave a wake in the form of a plasma oscillation behind it as it moves 

with a high velocity, this wake being damped slightly. In order to 

allow a suitable physical length along the direction of motion of 

the test charge, in which to observe the wake, which will be much 

longer than the strongly damped one observed in earlier runs with 

smaller test particle velocities, the computation had to be switched 

to a simulation of a rectangular two-dimensional plasma. This 

involved a few changes in coding.

It was decided that no pair of sides of the rectangle should 

be less than eight Debye lengths, in order to ensure the suppression 

of boundary effects; also it was decided to keep a plasma of the same 

physical properties, and to keep, in the new case, a computational 

mesh in the same relation to the physical lengths as previously. 

Accordingly, the number of mesh steps and Debye lengths were doubled 

in the x-direction and halved in the y-direction, to give a 128 x 32 

computational grid, and a 32 x 8 Debye length rectangle. Thus there 

are still four mesh steps per Debye length, and 64 particles per 

D8bye square (it̂  - 64).
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It would be preferable to hove a rectangle which represents a 

physically longer area, but this produces problems. This is because 

we can only have a grid of a number of meshes which is a power of 2 

because the Poisson-eolvers require this constraint. Therefore, we 

would need a grid which was 256 mesh lengths in the x-direction, while 

retaining 32 in the x-direction, say, if we wanted to increase, in the 

slightest, the number of mesh steps along the direction of motion of 

the particle. The motive behind increasing the number of mesh lengths 

would be to ensure that there were a suitable number of grid steps 

per Debye length, when we increase the physical length of the simulation 

plasma. The present level of 4 grid lengths per Debye length is near 

the lowest limit which can usefully be used if shielding properties 

are to be represented accurately. When we double the number of mesh 

squares, if we retain the same number of simulation particles, we 

are reducing by a factor of 2, noticeably altering plasma

properties. However it would be outwith the storage capabilities of 

the computer to double the number of plasma particles, or even to 

increase it by more than a few thousand, in order to try to keep 

plasma properties the same as previously. Thus any proposed 

simulation with a longer physical area must be affected by the fact 

that the system which will be simulated on the computer, will be a 

less accurate representation of a plasma of the type of interest.

Having a rectangle of 32 Debye lengths end to end, we are 

clearly somewhat limited in the length of test-particle wake we 

can hope to simulate. This is because the calculation has periodic 

boundary conditions, and if the wake is of the same order of magnitude 

as the length of the rectangle, the test particle will interfere with 

the end of its own wake. Tims we have to ensure that we would not be 

dealing with wakes of such a length (unless interested in the interaction



of a tect particle with a walcei)* Thus however long the lightly 

damped oscillatory wake may be that is left behind a particle, which 

is travelling at velocity IX , in the steady state, we cannot describe 

it in the simulation after more than 32 Debye lengths of it have 

been generated by the test particle.

The first run which was performed was with a test particle of 

velocity 2.0 0 ^  , wh©re 1.0 in scaled units. The form of the

cross section of the potential distribution parallel to the direction 

of motion of the particle after 70 steps is given in Fig (15)*
It can be seen that the ’wake1 is still quite strongly damped, as in 

the previous results. The value of V ' l x  used here is larger than 

the greatest value I used in any of the actual simulations in 

Ref (8), so that, at this point we have gone beyond the work of that 

paper. Data for this run were a3 follows.

MESH DIMENSIONS 128x32

PHYSICAL DIMENSION 3 2 x 8  Debye Lengths

TIMS STEP DT 0.125

NO. OF •PARTICLES' IN SIMULATION 16584

VELOCITY OF TEST PARTICLE 2.0

This run completed and the results noted, it was decided to 

attempt another run with a higher test-particle velocity of 

This means a value of ^  of 1.78. The results show that the test- 

particle is now moving fast enough to generate a wake, and the cross- 

section of the potential distribution after 80 steps is shown in 

Fig (16). The latter shows the state where the 'bow wave* in front 

of the particle has almost caught up with the end of the 'wake*.

This is as far as the calculation proceeded. The fact that this wake



occupies 32 Debye lengths and probably would rcqui.ro many more to 

simulate it in its entirety, leads one to the conclusion that for 

higher velocities, specifically in order to compare simulation with 

the analytic result Ref (8) for ^  -̂ i .({* , a prohibitively long rectangle 

would be required if identical plasma properties are to be maintained in 

a simulation and if wake interference is to be avoided.

It was, however, decided to attempt a simulation which could 

describe a longer wake, by using the same number of simulation plasma 

particles and the same computational grid, but changing the physical 

scaling from a 32 x 8 Debye length rectangle to a 43 x 10 Debye length 

rectangle. The hope here was that one could describe more of the wake 

without any interference occurring between the end of the wake and the 

build-up of potential in front of the test particle. A DOYA run was 

implemented with the seme data os the last one described, except for 

the new 43 x 10 ^2> scaling.

The potential distribution which had been set up by the time 

that 80 steps of had passed is represented in Fig (17)

where the cross section of the potential distribution along the line 

of motion of the particle is plotted. Consideration of this diagram 

reveals 2 noticeable minima behind the test particle, at about 2 and 17 

Debye lengths distant from the test particle. This is a good indication 

of the tendency toward the setting up of a spatial oscillation of 

potential behind the test particle with respect to the test particle 

position. Any indication of how strong damping effects may be at this 

velocity, is unclear from the data, but it is evident that they have 

largely disappeared compared with the slow test particle case.

Further increase in the number of Debye squares simulated by 

the 128 x 32 grid mesh and the 16000 particles, will have two deleterious
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effects. Because of the decrease in the number of grid cells per Debye 

cell the effective ‘size* of each particle will increase, tending to 

make the plasma more collisional. The decrease in the number of 

particles per Debye square will have a similar effect, as well as 

reducing relaxation times. Together these two effects act towards 

making the simulation a poorer representation of a collisionless plasma, 

and results obtained begin to have doubtful validity. Because of these 

considerations it was decided that little would be gained by ‘diluting1 

the plasma in the simulation any further especially since the main 

motive for this would be to simulate a wake in something much nearer 

its entirety than in any of the above examples. The fact that thin 

would require an order of magnitude increase in physical plasma length 

indicates the amount of ‘dilution1 which would have to be done.

This does not detract from the fact that we have here demonstrated 

that for fast-moving particles in the plasma a more pronounced 

dscillatory wake is set up behind them as they move than in the case 

of eubthermal particles. However due to the lightness of the damping 

of the wake, and the periodicity and finite length of the simulation 

plasma it is impractical to simulate the whole wake, the best 

quantitative description of which must be given by calculations along 

the same lines as those in (8).

60



In the purely electrostatic caso the shielding of a test particle 

in a plasma is equivalent to its inducing an equal and opposite charge 

in the plasma,; this induced charge reacts upon the test particle, 

producing a drag opposing its motion.

In order to work out the value of this drag force we proceed as 

follows.

the point of measurement from the test particle, is given by the sum of 

two terms, which we refer to as the ’self term* and the ’induced term*.

The self term is just the potential which would be measured if the 

plasma was not present, while the induced terra is the potential due to 

the equal and opposite charge induced in the plasma by the test particle. 

So

The potential

iMcWai ( D

We know from Chapter

the vacuum potential, so that we can write, using

equation (3a(9))

r
(2)

Therefore, the induced electric field is given by

(3)
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Nov/, the drag force at the position of the particle will be given by

(4)
where r = 0. Thus from (8)

where ^

(5)

is defined as previously. This result is for the two-dimensional case.

o
A graph of this function, which was obtained by numerical 

integration, is reproduced in Fig (18), It has a maximum round about

expression (6) reduces to the following form, if the Debye length is 

taken as the unit of length

This differs from the expression obtained in Ref (25) for 

example, but this can be explained by the fact that not only are 

collisions considered, but the analysis is for 3 dimensions, and the 

approximation mentioned in Chapter (1b) has been made. In fact there 

are few grounds for comparison at all.

For large velocities ( ^  > > 0  the limiting expression for F 

is given by

(6)

, and goes to zero for very small and very large values 

if ^  . In the case of a slow test particle, ie I , the

(7)

(8)
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It i3 notable that this result differs from the three-dimensional 

case, where there is a log divergence for large {* , and a cut-off 

usually taken at distance of closest approach cL -

A small program was written to solve the simultaneous equations 

of motion, where is the charge on the test particle,

^  - h  <»>

'  *2  5 a  <>»>

where A3* » velocity, A = mass, Z- « position of test particle 

respectively* These describe the motion of the test charge in a plasma 

in two-dimensions acted on only by the drag force given in equation (6) 

above. The particle was given an initial velocity V  and the equations

were solved using a Runge-Khtta technique (Ref 39)* ^h® result is plotted

in Figs (20) and (21) showing the distance travelled by the particle in 

Debye lengths and the reduction of its velocity as it moves* The data 

used in the plot of velocity against time were now used to plot logfo^

against time, in order to demonstrate graphically the range of O'

over which linearity could be expected in the function F(*0

For if we let F(v3 - - k v  then

W\ (11)

A “StThen \j Z A and B constants, so that the graph

of against t  would be a straight line. The result of this

plot is given in Fig (19) where it can be seen that linearity holds for

A T  up to at least ^  (i \ ) #
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This result having he cm obtained from straightforward Vlasov 

theory, it was nov/ an opportune moment to run the NOVA cods with 

appropriate input data in order to see whether the linear theory we 

have used, which essentially treats the plasma as a dielectric medium 

with frequency and wavelength dependent dielectric constant, is 

sufficient to describe the slowing of a test particle in a plasma. It 

turns out that this is, in fact, the case over most of the range of 

velocity used, as i3 shown below.

A run was set up with the following data.

MESH DIMENSIONS 64 x 64
PHYSICAL DIMENSIONS 16x16 DEBYE LENGTHS

TIMESTBP DT 0.25 U>f~ '

NUMBER OF PLASM PARTICLES 16,384
CHARGE ON TEST PARTICLE 200 UNITS

MASS OF TEST PARTICLE 1000 UNITS

VELOCITY OF TEST PARTICLE ELECTRON THERMAL

The I.C.L. 4/70 was used for these runs. The first twenty-five 

timesteps were occupied in establishing the full charge on the test 

particle, so that data was taken from the 26th step onwards. Since, 

by this time, according to the results of 4(b), shielding will have 

occurred, ie, the induced potential will have been set up, we perform 

this numerical experiment in the confidence that the force acting on 

the test particle will be attributable to an equal and opposite induced 

charge in the plasma. After the run described above, two other runs 

were made with different timesteps 3>TsO,«L > and initial velocities 

, and respectively, and the results were merged to

give the one graphs of Figs (22) and (23). The parameters used
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were euch that the slowing down was quite gradual, and quite a long 

time would have been necessary to follow the whole of the particle 

trajectory in one calculation - a run of such a length that there might 

have been delay in getting it implemented on the machine. The plots in 

Figs (22) and (23) compare well with the results of the calculations 

from the analytic formula. Therefore we can be confident that in the 

calculations of test-particle interactions, the drag force acting on 

the particles at least at velocities which are the order of cf 

less than * will tie that given by the derived formula.

It is of interest here to repeat the plot of the variation of the 

logarithm of velocity of the test particle with time, to compare with 

the theoretical result. For the NOVA run described above, this was 

done, and a straight line was obtained which included almost all values 

of ̂  used, from 1.4 downwards. This is shown in Fig (24) where only 

points representing high velocities ( £  I.O ) and points representing

low velocities show any deviation. In the former case this can be 

ascribed to the non-linearity of the force law for larger ^  , and

in the latter case the deviations can be ascribed to fluctuations.

There is a good comparison here with results of Fig (19) 
especially since the data points seem to deviate from linearity at 

the same place on the straight line at the high velocity end. This 

shows a good agreement between theory and simulation.

It is noticeable from the results obtained, that the test particle 

does not keep moving parallel to the direction in which it was set off 

at first. The amount by which it is deflected is not large in comparison 

with the total distance it travels, and the transverse velocities it 

develops are not large compared with its velocity parallel to its 

original direction of motion. The forces causing the test charge to
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leave its original vector direction of motion are due to fluctuations 

in the transverse electric field which it experiences along its path; 

only here, since the force is proportional to and this ratio

is much great (a factor of 40) than the same ratio for a plasma 

particle, the deflection in a given time for a test particle moving 

with a given velocity, is much greater than that for a plasma particle. 

In other words the deflection time for a test particle is much 

shorter than that for a plasma particle, where ^  is defined to be 

the time required for a moving particle to be deflected by */a. •

Deflection times in simulations of this type, as discussed in 

Hockney (32) are shorter than in real plasmas, so these larger 

deflections, experienced by the test particles, are a non-physical 

product of the simulation, which can only be reduced by having smaller 

fluctuations in the field. This in its turn requires smaller 

fluctuations in density, which in turn requires either many more 

-particles in the simulation, or some form of *quiet* start, where as 

even as possible a distribution of particles in phase space is set up 

in order to generate force fields which are as even as possible.

The effects of field fluctuations were most noticeable in a run 

with mass and charge of test particle put equal to 200 units. This 

gives a scaled value of V " ' t  k , as compared with for the

previous case and for the plasma particles, where in the test

particle case the charge i t  is 200 units. In this case one can 

clearly see fluctuations on top of the general line of the slowing-down 

graphs in Fig (25) where both position and velocity are plotted as 

function of time. The fluctuations in the parallel field clearly affect 

the shape of the slowing-down graph, and when a plot of against

t  was roughly sketched, a very poor result was obtained with respect 

to linearity.
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Consideration in more detail of the results shows that the 

fluctuations begin to have a serious effect long before thermal!sation 

of the test particle ha.s been reached. By thermal!sation we mean the 

state where the test charge has lost kinetic energy to the plasma to
/, \ • \ L

on extent where ^ t ^ x  =. £
where are simulation electron mass and thermal velocity

respectively, and tw-fjAJy 8X8 mass and velocity of the test particle.

At the stage where the particle has been slowed to V f  x 

it is noticeable from numerical output that changes in kinetic energy, 

under the effect of the fluctuations in field, are of the same order 

of magnitude as the kinetic energy of the test particle itself.

There are changes, over times ' , in the transverse kinetic

energy (perpendicular to original direction of motion) of the same 

order of magnitude once the test particle has slowed.

These fluctuation effects are disastrous from the point of view 

of simulating the slowing of a test particle in the plasma due to 

collective interactions. V?hen the larger mass of units

was used, however, as described above, the factor of 5 in mass proved 

enough to remove these computational effects to an extent where the 

results that are produced, are satisfactory.

It is evident from the foregoing that in discussing the reliability 

of 2-particle interaction simulations, allowance will have to be made 

for the amount by which a particle may be deflected from its path merely 

by local variations in the electric field £  , and this will be borne

in mind later.

At this point it is of interest to discover whether the presence 

of ions in the plasma will affect the slowing of a test charge in the 

plasma, at the velocities which are considered here, which are of the 

order of magnitude of the electron thermal velocity.
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The analysis is a straightforward adaptation of that given in 

Ref (8). Another (Via sov) equation is required, to describe the 

effect of the ions. The Pourier-Lapl&cc transformed equation is

c W
- O

where *&., is the transformed 1st order perturbation in the ion 

distribution function. If we let ^  be that for the electrons, 

we can express Poieson's equation, transformed, as in chapter 3

(12)

di m - - 
u  - i i * ? (̂ p v.

(13)

Using these two new equations in the analysis as before, we

obtain

1 -  ^
rv\e :

k .  <kv
-  -  (14)
C p - ^ k v )

As in Ref (8), this leads to the expression for the potential

distribution due to the test charge
J»w

a^4>( I  b *  - f t ) )  d<ft ( 15)

*>*■ +

where

ft) for the ions

and similarly for the electrons, and the definition of v , > «  

as for ? before, for the two species.

are

68



If ions and electrons are at the same temperature, wc get

, and when we follow the oamo 

procedure as outlined earlier in t M s  section, we get the drag force

on the test particle as
A m

V* “s I*̂» *» K <5

o
here ^  is ^  and ©C. is given by J  ~  • Por the case where

the plasma is fully ionised hydrogen where the molecule is ionised 

into protons'and'electrons, we have rftllmt* giving ^ ^ * 0>1 MSi. (

If v/e examine the contribution from the two f terms in the expression 

(14) by taking the asymptotic large velocity expression for the ion 

and the lov/ velocity expression for the electrons, we can estimate 

when the contribution due to the ions equals in importance that of the 

electrons for test particle slowing purposes. The reason why we adopt 

this procedure is that the ions can be expected to have a contribution 

which is peaked at a much lower velocity than that for the electrons, 

bo that that part of the distribution described by the asymptotic 

expression will certainly apply over the range of velocities of the 

order of electron thermal.

Thus, we are comparing

I r j M *  I . ^

H-

With *: tf O  , we obtain \ 0. ̂  * or IX *- 0  * ̂

where U. is the test particle velocity in units of electron thermal. 

Thus for the lightest possible ions, the electron contribution to 

test-particle slowing is greater for Ia  ^  0 * 3  » than the ion

contribution. Thus we can feel justified in leaving out the ions from

the analysis since they will not seriously affect the slowing-down

69



results for the velocities which v/e have investigated above. From 

theory and simulation therefore this chapter has given an adequate 

quantitative description of the slowing of a test particle in a 

collisionleos plasma.
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Using the expressions for the potential derived in Ref (8), and 

the expression for the drag force due to the plasma derived in the 

previous section, we can derive equations of motion for the interaction 

of two test particles in a  plasma (Ref (44))•

It is assumed that as the test particles approach, slow down 

and collide, the change in their velocities leads to changing potentials 

with negligible transients. We give to the two test-par tides space 

co-ordinates and velocities A){ t respectively,
potential

The equilibriumy(field at *t“| due to the second test particle

(T.P.2) is X  A j I  f  - ± 0 )  Ak 0 )

where, again <c is given by the expression in equation (6) Chapter (3a), 
potential

Similarly, the^field at due to T.P.1 is

I
rr

As in Ref (8) the distribution function for the plasma is taken 

to be Maxwellian in form so that &  is independent of position, and

& I Z  t t v i  axe ^unc^ 0ns ^  only, where ^  z ^

r  /v \ i f  M t p (.'■'£•£’) A k  (ri\

-- f  ) ------

-*■' ^ J £*■

is a scaler function of fSp' and 4^ Aj , For smallil > x • i ■
velocities, relative to the electron thermal speed, can be*
expanded in the form •f t k . \ / i \ t / % »

Jf (5)
+ higher order terms.



Also <5 is obtained from (p  ̂ i by interchanging'i« 1r\ ̂ - f * ’ 1,1 *3 «, J ^  )

and \J\ sndAJ^ -fc’* Thus to lowest order in y

*a e *

Cp (/V a A  " a(-V) -  V,\Z, (6)
*— al —  —

The equations of notion for test particle (1)is given by 

(Wf O- • V  t - ^  ̂ ̂  , and similarly for the other.

This gives, for small Ajv ^AJ^

<' ■* = - £ i - i t (t-£ - H  - n-i)
^  -  b, ^  (4-/vj^  -  b ^  -  ̂ 0\)

(7)

K m ) is a linear function of AT for small velocities, a,s shown in 

the previous section? we shall write, for convenience, * y ) - - F v  

where (=■ 2 Ti H d  , having chosen unity for the scaling of thermal 

velocity, and Debye length. Introducing a relative velocity 

we can get

<̂C ' i  • ■ ~  ^  (■v ,\A 4jo-^p) v (8)

Also, if we introduce a centre of mass velocity we get

*(<£'V  ; O.Nj) -ts? **0 v (9)

Thus the drag coefficient is increased if o in the

equation for centre of mass motion, and there is also a drag aligned 

along in this case. Similarly for relative motion the drag is modified, 

as is the force acting along the relative co-ordinate £  •
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If we take the cross-product of the equation for relative motion 
V  with A!'**' , and let L. ^ /NX'\) we obtain
« 0 9  mm

~ x t K Y  - f cr L  -  : £  <^T - ( b - p ) L  (10)

In the special case of a symmetric collision s , and

so \l ~ Q  • Thus if we use a polar co-ordinate system 0,s>) , we 

obtain

&(± - t - V ^ O  -  - 1 o , '+  V>' * *  * ( > -  f ) *  (11) •

&  L  - 0 =  - 0  L  (12)4/ —

c\. and V} can be obtained from Ref ( £), by comparing, for I

$  A 0 * A  t CJtt (13 )

with : o. +

O  <y V
This gives ^  - I X  a •. b  - a H  so that

— « ~  ■— '

a  = H U * )  , V> , — > < w )

the unit of length being taken as the Debye length. Knowing functional 

forms for 0* and D  it is possible now to solve the equations (11) 

and (12) numerically along with the equation c*£ .• j- (15)
<£J:

These are three simultaneous equations in three dependent variables 

and one independent variable, and they were tackled successfully using 

a Runge-Khtta method. By varying parameters such as the effective 

charge and mass of the test particle, it was attempted to find an
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estimate of the parameters which would, best suit a computer simulation 

of the same event. The joints ms.de in the previous section concerning 

fluctuations in field, etc, had to bo borne in mind carefully here.

In order to ensure that the potential energy due to the coulomb 

repulsion between the two .test charges was great enough that they did 

not approach within (one grid mesh length), a suitably small

initial velocity was taken in the simulations, A NOVA run was now- 

initiated, with the following details.

MESH DIMENSIONS 64 by 64
PLASMA DIMENSIONS 16x16 DEBYE LENGTH

NUMBER OF PARTICLES IN PLASMA 16384
TEST PARTICLE CHARGE 100

TEST PARTICLE MASS 1000

INITIAL RELATIVE VELOCITY 0.5 ELECTRON THERMAL

What was done was as follows. The test particles were set up, 

with zero charge, some distance apart, the distance being pre-calculated 

and dependent on the relative velocity • The particles were

allowed to approach each other at constant velocity, until such time as 

their charge had attained its maximum, when they were approximately 

apart. At this point they were treated as any other plasma 

particle, being advanced in time using the standard particle pusher 

which is used for all the other plasma particles. It proved impossible 

to use the standard particle pusher to perform a •head-on* collision, 

because even with N\r CtTD. C  there are deflections perpendicular to 

particle trajectories due to field fluctuations, and once the particles 

have been deflected from their head-on course their mutual interaction 

causes them to be deflected even further.
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The results of the Runge-Kutta solution wore processed with the 

view of comparing them with a set obtained from the simulation. The 

particle trajectories were drawn for each case, and one example is 
shown in Fig (26). We can see from these that we have but a moderately 

good comparison between analytic prediction and simulation for the 

two slow test particle collision in the symmetric collision case. Other 

values of impact parameter tended to give similar discrepancies.

Factors which can have given rise to the disparity between 

the two trajectories are as follows:

(a) The fluctuations in transverse electric field which the 

particles experience as soon as the force is switched on 

could cause them to be deflected from their paths more 

than otherwise, giving an effectively larger impact parameter*

in the expansion in the theoretical case could lead to 

inaccuracy though one would not expect much error at 

these low velocities*

(c) It may be that the assumption of negligible transient 

effects, when the particles collide, i3 erroneous.

(b) The fact that we have only taken the term
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It was considered of interest to examine the shielding of a 

test particle in a constant magnetic field, by means of plasma 

simulations in two dimensions using NOVA. The magnetic field in 

question is uniform, constant, and perpendicular to the plane of the 

plasma.

Plasma dielectric functions in the case of a uniform magnetic 

field in 3 dimensions have been known for some time, and have been 

used to deduce oscillation modes of the plasma. The current state of 

the art is given in Ref (41) in a long review article. However, the 

only authors who claim to have used the strictly 2-dimensional form to 

give the field due to a test particle are Montgomery and Tappert (Ref 19)» 

who only give a value of £  for the large field limit and who do not 

give their analysis, which they promise to present fat a later dater.

It is therefore of interest to derive the form of the field due to a 

test particle in a two-dimensional magnetised plasma, and to investigate 

whether there are any phenomena, in the case of less strong magnetic 

fields, which are noticeable and which serve to differentiate the 

shielding in this case from that in the electrostatic case. By less

order of the Lasmor radius C\,\ • In particular, we anticipate a priori 

that for weak fields the test particle may be shielded in a manner similar 

to that which pertains in the electrostatic case, and that, therefore, 

there must be some intermediate region between this and the strong field 

situation in which the authors of Ref (19) predict that shielding will 

have disappeared, a region where the potential will take some 

transitional form between the \^Q (•f) of electrostatic shielding, and 

the - of the unshielded case.

strong fields is meant those where the Debye length is of the
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Therefore in this case there is motivation for performing some 

analysis, and also motivation for being prepared to do a plasma 
simulation in the event of the analysis becoming intractable, or to 

support the results obtained.

An analysis similar to that of Ref (42) was followed in the 

early part of the derivation of the teot-particle potential.

As usual the plasma is assumed collisionless, and the equation 

governing the evolution of the distribution function is Vlasovs 

equation

+• *a r.  + l ( l i  +  ^ ^ V 4 r o  <1)
“T ”  /

If we linearise as follows,

I then, where

^  is the angle between M  and the X-direction , we obtain

^  , (2)
IX SD

where S I  -■ , the Larmor frequency. This simplified form of

the equation has appeared because we are considering a strictly two- 

dimensional case i there are no velocity components perpendicular to 

the plane of the plasma.

On the assumption that t U + \  , which holds, for

example, for a Maxwellian distribution, we can perform a Fourier-Laplace 

Transform in space and time on this equation, as follows

(pVv.V.\/) -  JT-^i t le (3)
J  Si> / ,  *

" VA \ where
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is the Fourier-Laplace transform of jj- , and the equation
y ̂ , has been used.

The equation (3) can b© solved using the integrating factor 

as follows.

(4)

F(i>) {(%) • - f F£6')^!<-^^| 4 6' <»
t CiO

the lower limit being chosen to be appropriate later on,

S

!(&)-- f I (6)
r gtQ

w h e r e  .

G * ^  (7)

where ^  is the angle between N  and X  - direction. Again, adhering
I

to strict two-dimensionality, the only components of the v/ave-vector 

those in the plane of the plasma. So

G ' (s)

As in 3(a), we have Poisson's equation to solve for ^  , where 

the linearised, Fourier-Laplace transformed equation is

r t  (9)
J ( f *

Thus, in order to solve for ^  , we will require the integral

(10)
0 78
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The first necessitv is to evaluate the function

This is given by

ft

rfc

?o is parallel to <\j if ^  ’ 80 "̂ ie ^  integral

becomes, using L a h ^ ^ O   ̂ 3 * ( < \ ( o \ ( > * 0

™  ̂ 7  W K *  {•]) +■ w p  - v(b’ -^AS1 (13)
Aa-<sb

which gives, if ^  has a real part, and the lower limit is chosen 

appropriately,

'̂l ] -Cjfc * i-<$)

-  i-lvNvO “ P/ju - C(.k - 0 -  ?/$..
(14)

1
Taking the factor &  

-r «. »̂v\
wo get JL - ^  n *

In $
into the exponential in each case

where
pC _  ,

A v ’- .£.^2.0 'y s j ( k y ^

’ ' 1 av A ,  * A  I <*'*♦ c ^ + 0
v\ -'

(15)

and similarly for a>ft , with A*' in place of A +  \ . In order
«v*V - v\- V

to express the two sums and in a form which can be

dealt with, we use

/\<V

- C w O g ) X * * ( *

\ , (n-0_£; <  (KvA  t -’ (kv\

V
sfi

(16) and

(17)
i- f  tx**'in the sums and respectively. This gives two infinite
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sums which when we respectively perform the displacements I and
—  v

f\ * v A v/o can easily add together, noting that the term3 in vj ̂  cancel, 

so getting

15: b;pC-i-n5-p| 
#v £*. ,sw (iV p/ (18)

We are now in a position to perform the B  - integration in (10), 

and so we include the factors which have been omitted up till now, in the 

integrand. The &  * integral is

2% w>
e 4 ^ L  1 ^ L . ( 1 9 )

 ̂ ^  L  VjL/l<V
0 n« -c&

Again using (12), and performing the integration, we find that 

the result is

- < t  4 & r - " 3 ; ®  -
Hi, - cO

Thus we now have only the A T  integral in equation (10) to perform. Now

if we choose to be an isotropic Maxwellian distribution function in 

2-dimensions we have 7 £. where is

the electron thermal velocity.

® ~ s  r - 2L ( - J —  ^  ' V  (w (21)
Ve\ V 3 i T V k \ )

The integral is *o ■
'vrdv ©

= £  / " t  C2!>
IT. -at5 0

(where all non 'O’ - dependent factors are collected in A)
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Thus, rearranging Poisson’s equation (Q) in order to solve for , 

we have

wh9ra (24)

oo

« M - S & J ) * ’*  ( £ )  (25)
no -CiOV

where  ̂the Debye wave number and i<«i '/a  ; jthe Larmor wave— » w ^ ' * f
number.

We now have to consider the application, first of an inverse 

Laplace transform, then of an inverse Fourier transform, upon the 

potential function <jT O ^ p )  •

This is not so simple as in the electrostatic case, because 

of the nature of the function in the denominator. In

the derivation of Landau damping (eg Montgomery and Tidman, Ref 31), 

it is shown that all the zeros of (s are to the left of the imaginary 

p  -axis. However, in the present case, it is a straightforward 

matter to demonstrate that there is an infinite set of zeros of <£ 

which lie on the imaginary p  -axis. For



Now JLn ( X )  “ £ t'Z,') for all 2L » so that we ceil group*** * /
together terms with ft and - r» • The term with O disappears and 

we obtain

*(*,<•>  I ‘  |  <CT)
I

If p  is parely imaginary, ^ - tho » the denominator of each 

term in the sun is « td*“-t-ft* JL** • It is obvious that for every vn , 

there will be a point, as U j varies, where this factor is zero, making 

(—• — -t* ©O if this point is approached from the left, and £  —£> - 

if approached from the right. Given continuity of the function <r 

between these *poles* of £  , there must be a value of to , between

every point lO n  and to v(y\-> \) SL where £  = Q  . These zercs 

of g , are poles of and because CO has no imaginary part,

represent undamped oscillations. It is to be noted that if p -  + 

is a pole of then p  c - t tO* is also. There is an infinitely 

denumerable set of poles with zero real part in thep-plane in the 

expression for ^  • To help complete a description of £  , a graph

has been drawn (Fig 27) showing 6 ( k , w )  for k  5 I , out to to 5 £ k-Jl,

A very similar graph occurs in Ref (41)» in which the authors are dealing 

with longitudinal modes of plasma oscillation in a constant magnetic 

field. When they consider perpendicular propagation ( K n  - ® )  they 

demonstrate the existence of essentially the same infinity of undamped 

modes as occur here. As to increases, (c tends to a constant value 

near unity between its poles, rising very sharply at the multiples of C l .  

Also, as to increases, tOw » between rtjl and (r»+'J S I  , tends 

towards n  , though never quite reaches it.
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Thus the Pourier transform of the potential will be given by

where, by inspection, f w
fcp'* •» a p  ' ’

The question of what amplitude the purely oscillatory terms will 

have once a Pourier transform has been applied, is of importance. It 

was to be hoped that they would, in the stationary test particle case 

at least, leave the plasma with a background of noise of an amplitude 

dependent upon whatever perturbation (in this case the test charge) has 

caused the disturbance, this noise element being produced by some form 

of phase mixing of modes as the k -  integration is performed.

In the case of a moving test charge we would hope for the same 

sort of effect to take place. Whether these things are what takes place, 

it was hoped to demonstrate from runs of NOVA with a constant magnetic 

field included.

The potential in real space is given by

(29)

as before.
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(b) T>jnt Jfort i cl o V/ith Zero Velocity

If we take the special case of IA - 0 , that is, a stationary

test particle, we get

r  1 k % z k

Using the relationship *

&)sX»co+ 2-Z xrt(-z.) we obtain
i

TT
Sjj.p i k'.CX-- u.t~) ckU. ._ _ _ _ _ _ + ̂  (2)

k s v ^ o  -  r 0 ( ^ )

Here we can recover the claimed result of Ref (19)» Xor if we 

consider the denominator, which is k* £  C b  >°) in the limit of

large b e  where kc is proportional to the field B, we obtain the 

form *"* I + z k 6 ( I where U5ts J7.

for large U)c , the claiim is made that £  is independent of l< and 

that, therefore the form of the potential is -

Y/hat this represents is the partial disappearance of shielding, which

disappears altogether as O  » and. the potential

the unshielded potential due to a charged rod in two dimensions*

However, this is only in the large C O t limit, and there is more 

information which can be obtained about shielding if we actually perform 

the integration in equation (2)*

U r s t  of all, the results of a ’NOVA* run would be of interest 

to quote here since they serve to confirm some of the propositions 

concerning background noise put forward above. A simulation was 

performed using the following parameters.
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COMPUTATIONAL MESH DIMENSIONS

•PLASMA* DIMENSIONS 16 x 16 DEBYE LENGTH

NUMBER OF PARTICLES IK PLASMA 16334
TEST PARTICLE CHARGE 200 UNITS
MAGNETIC FIELD FACTOR U-'c/lOo 1.0

TEST PARTICIE VELOCITY 0.0

An identical run, without magnetic field, had already been performed 

(see 4b) so that there were grounds for comparison of, say, the total

potential energy in these runs. Accordingly, a graph was drawn showing 

the time variation of the potential energy in all modes as calculated

described above, and for the earlier run, described in Chapter 4(b) and 

using identical parameters, (Fig 28). It is noticeable at once that 

the mean value of potential energy in the plasma is significantly 

higher in the magnetic case. It is in fact greater by a mean of 

some 20$. Using the expected result, then, that there will be an amount 

of background noise due to the undamped modes of the two-dimensional 

plasma, we can explain this discrepancy in the values of potential 

energy, and can see also that 20$ of the potential energy in the 

magnetised simulation plasma is in these modes.

of the potential at the test particle position with time, for the same 

two cases for which data of potential energies were -plotted in Fig (28). 

Again it is noticeable that the potential values in the magnetic case 

are significantly greater than in the non-magnetic situation, here by 

some 20-25$.

in the NOVA diagnostic routines, for both the run with tOc/l0p - f .0

A subsequent figure was drawn (Fig (29))showing the variation
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Again, similar data became available for a ram with a non- 

* adiabatic1 start procedure, and this was then directly comparable 

with the previous run (Chapter 4(b)) in the electrostatic case. A 

graph comparing the mode potential energies for the magnetic,

^ c (  5 \ t case, with thi3 previous run, is reproduced in

-Pig (30). The mean values of the two potential energies are within 

5$, but in the magnetic case the time-variation of amplitude has a 

much longer period.
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For the particular ’NOVA1 run described above, it was found by 

plotting a graph that the potential distribution was not quite the 

same as in the electrostatic case; it was thought that any dissimilarities 

would be accentuated if the magnetic field was increased.

Accordingly a similar run to the above was done with 0

and a stationary test particle. We have plotted thepotential, at 

points close to the test particle, against ^  can seen

that something very close to a linear relationship has been obtained 

(Fig 31).

From these preliminary simulations, it is to be expected that 

analytic results for the shielding of a stationary test particle in a 

magnetic field will be noticeably different from those for the 

electrostatic case, in two dimensions.

The next part of the work to be described is the evaluation of 

the potential given by the integral in equation (2) , on the assumption 

that the other terms merely give rise to background noise, and can be 

ignored for the purposes of evaluation of the form of the shielding 

of the stationary test-charge.

If we use polar co-ordinates 0 < ,  we have

^  ‘ 0  '  *  V  J  I -  C- (3)

w  M e ___________

^ ^  k b C ! “ C"

On inspection of this integral we see that as © , the

denominator tends to (̂ \<- + (l • 1 ^  • !<'( I •

Since I as l<*3>o > we have demonstrated that the integrand

goes to infinity as o • However, we know that the Fourier
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transform of in two dimensions is -U^(k |* inasmuch as this is

the form of the potential of a charged rod in two dimensions, found by

Gauss* law. So we adopt the tactics of subtracting this,suitably

normalised by I /( H  ̂ 5/(4̂ ) from the integrand, performing the integration

numerically, and adding the factor -Lcr^X /{ft- k&/kj, 3 i° the result*
T  I- k\*fThat is we propose to subtract the term w a f r o m  the
ViK k k V iO

integrand in (3). By the rules of mathematical analysis, this is not 

integrable; yet it is derivable from the form of the Fourier transform 

of ' !(u.X'+kV * i  )) by using the expansion used in (3)* The reason why

this is not integrable is because of the infinity in the integrand at

f<. - $ , which manifests itself in the fact that is not

normalisable. But since it can be shown from Gauss* law that the 

potential due to a charged rod is-C^lo-i^iO » we can use this result 

in the full confidence that if the Fourier transform could be done and 

normalised this would be the answer. Evidently the result would be

where the second term is indeterminate, though Gauss*s 

law*s renormalisation makes b  : \ . If we were working with the

electric field here we would not have this integrability problem since 

the functions are all better behaved; but it is the form of the potential 

which we are interested in elucidating directly.

The integral which we now perform numerically, then, is 
&0
C  o d f c  ___________  ̂ ^  d a   /^\

L  ‘ f k1 * (l -
o

By subtracting these two we are effectively cancelling the unknown 

normalisation constants, which were mentioned above. We get

0
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A3 (</^D now, this goes as ^ l< , so that we have no

integrability problems at this point. Let ft* ' 3C

-j- I
(p "

If we express Cv"k-v/f* _ b , we get> u > *■

~ ^ 0  - * * p ( ~ £ ) x X 0 ) ^  (6) 

* c i •+ +«•'( i - w f >C'xV )  « 5 )

Cs$r

To get we have to add to this the term

- o- /( | +• o>Vb*)

The computation was performed for a range of values of the ratio 

. Ow is the radial distance from the test particle measured in 

Debye lengths, while b  is the same distance measured in Lannor radii. 

This ratio is the same as . The results of numerical integration

of the expression (6) are graphically presented for values of Cl out 

to 7.0 in Fig (32). A plot of is also sketched in. It can be

seen that for strong magnetic field ^  | , the potential is

tending to large negative numbers as Cl increases. From the actual 

numbers produced it can be seen that in every case, once a certain value 

of <\ has been reached, the dependence of the potential on CV, becomes 

more and more that of (( , which is - Ow \ 4-

or - Cl^ ‘ ̂ /u« ) • For k^j(<c large eg 10 as in the diagram,

this is a very slowly decreasing function of a. , while for k$/kc small 

eg & as in the diagram, it tends to large negative numbers almost as 

quickly as — Lc-q a. itself. For (O , in fact, we can see

that for small a* the function is very close to k 0 (^v) , the

result for the electrostatic case, but as tx, increases the log 

dependence eventually takes over.

The fact that, at large distances for non-zero field the form of

the potential is ] indicates that incomplete shielding has& )
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occurred. This represents the potential due to a line charge %j(\^

in a ve-cuura. In other words the charge ^  has induced a charge

ka/te’J i-e ^ in the plasma and so is not completely

shielded in the two-dimensional case in the presence of a magnetic field. 

As the field increases while the electrostatic plasma properties remain 

the same, it is evident that the charge induced in the plasma will 

decrease accordingly.

Tlius in the magnetic field case we have got away altogether from

dimension electrostatic shielding. In this non-magnetised case the 

particle could always be shown to be completely shielded by the plasma, 

while here we have demonstrated that the particle is never completely 

shielded in the presence of a magnetic field perpendicular to the plane 

of the plasma, though except in the infinite field case shielding will 

never disappear entirely.

Our numerical results show that the potential distribution is 

very close to for small field at points near the particle,

while for large field it is very close to . - A. in its dependence.

Next, to see whether simulation and theory agreed for the 

magnetised, stationary test-particle case* a graphical comparison was 

done. For bJc/ w p » 1.0 and tOc/^Op ' *1.0 , the values obtained 

from theory were plotted against those from the appropriate NOVA run, 

and the graphs obtained are reproduced in Fig (33). It can be seen at 

once from these that good linearity has been obtained in the relationship. 

This shows that (a) the expression (3) describes adequately the potential 

distribution about a stationary test particle in a two-dimensional 

magnetised plasma and that (b) it is justifiable to state that the only 

effect that the undamped modes have is to provide a noise background

dependence for the potential which exists in two
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which doe3 not affect the form of the potential distribution.

The fact that the test particle (and therefore, by implication, 

any given particle) is not completely shielded is a similar type of 

result to one derived in Ref (18). Here the authors solve for the 

motion of 2 line charges from the two-dimensional plasma interacting in 

the field of each other and also in the constant magnetic field 

perpendicular to the plane of the plasma, when all other charges are 

removed. It is foixnd that the geometrical relationship between them is 

a periodic function of time. The anthors deduce that this indicates that 

two particle correlations will not disappear with time in the two- 

dimensional magnetised plasma, a result similar in nature to ours, above, 

which says that as a consequence of incomplete shielding the presence of 

a test charge can be felt by any other charge in the plasma.
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(c) Non-Zero Tost Chaiyte Velocity

The case when O  provided more complications analytically 

than the previous case of (A » G  • Mien the Laplace transforms have

been done we have to integrate

§ < « * )
Lfex .ik.uct Pit

^ ) U  \3f f « W  f WH1! III •mxrtâ  nnnui.niwii P

I ' • of 0$ Ji

Now the first term here will have a pole on the real 1^ axis 

every time that as U  varies for all L • However,
ithere will always he a term in the sum over t which cancels this out. 

For

j u *  c- M - a M  s w  c - P < , p )
<bP ‘ p*pi P-Pv P-=>?i (p-(nj

and as 1<- a value such that A j + ' i k . U ^ O  > then the 

appropriate terra in the sum is

(2)

JUw, ^ ____________

4 7 * - . .  c- u - p )

.i
2

- ft1- £-(> , (3)

if we take the limits appropriately, which exactly cancels the first 

term in the expression for ^  above, (Equation (1)).

If we assume as in the previous case that for long times, the 

time varying terms give only noise, then we can demonstrate a general 

property of the first term in the integral in equation (1) which serves 

to differentiate shielding in the magnetic case for a moving particle 

from the result for the purely electrostatic case. We consider that 

the time-varying terms, as demonstrated above, remove the contributions 

from the poles of the first term as we integrate along the real W - axis,
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but that their contribution does not otherwise affect the general form

of the potential. If we include an analysis such as in 4(b) of the

gradual introduction of the test charge, we can consider the amplitude

of the noise terms to be proportional to 1 (r compared with the

principal terms. For if we express as in Chapter 4(b)6,
*

we have

kAk Ac v4p(- ik.ut) ,y / (
*  i / i  I | r  Tiir .rtiiwnnrTirTrrwT.if iniaiit ■ w utllL (4)

where

The factor , which is due to the gradual introduction of the 

test charge into the plasma, is of order f/r , and becomes smaller as 
I becomes larger, so that in the limit of very slow introduction of 

the particle, the *noise* terras arising from the undamped modes have 

negligible amplitude. This applies except at or near the points where 

the contribution from these terms are required to cancel the large 

contribution from the first term.

Consider, then, the first term only 
00
r C

- - 1 WIU (5)

0 o
(£) is the angle between and IA ; let y - * expand <■!<.£) 

and C: O s -  i.k,u^ , to give

<j)(x )̂ -  -  ^ ------,--------------— -----77yrz-(6)
k %  ztj J  — h r -  ■V r  ( if \

j h , * ■ - £ £ K<v—  ̂|\
where ^  * an<̂  ^  ^ 10 an^ e VC and k
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CO
We 'now ehow that this is of the form

&  o
The denominator of each term in the sum over tv\ , is, by

jinspection, even in (p . Let us group the terms in (W and -WS
\ / \ , sm. «iv\

together, noting that H j  4«P*vk<'J^ c : C
/

<&
4  k . We have for these 2 terras

C

i,1̂  3 "«a  Ci<<f b a  wv. fd>— ^  ^= f C- cCCs^ ( Cw }

This is non-zero only for even by a straightforward argument, so 

that we can express the function

Qt)

<f,u where (8)

<* ^  
r r

C— v} c*y\ 'X-P $ d  fa

A • • *

(9)

' tr

O 0 ( k r )  (5,<5j
°  T  (10)

By showing that only even multiples of &  appear in the expression 

for , on the assumption that the undamped terras produce noise which 

is of low amplitude and isotropic, we have demonstrated that the 

potential distribution due to a moving particle in a magnetic field in 

two dimensions takes a significantly different fora from that in the
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electrostatic case. The significant difference is that in the present 

ins tance, while we still have symmetry about the line of motion of the 

particle, we also have symmetry about the line . In other

words, the result implies that the distribution is such that

< r » ^or example. The potential fin front1 of the

particle takes the same form as the 'wake* behind it. It will be recalled 

that in the electrostatic case i d) y 2 V )  , the distribution

in front and behind the particle being significantly different.

We could demonstrate the symmetry of the potential distribution 

along the line of motion of the particle equally well by noting that 

we can express the r.h.s. of (6) as fit'?) • ^  fact that rc

shows that the potential distribution is identical whether the direction 

of motion is along or

Care should always be taken in taking limits as certain parameters 

vary, in such expressions as those in equations (9* 10). Tentatively, we

examine what happens in the large field limit, and get

»

° IT
f  3 c(kf)tk&>

------------ (11)
J
O

exactly the form of the large - potential for U  - O , while we get

k & k
Ol-S if? A ft

fc1-( (+ki lkcx ) (12)
C 0

This will give finite values for small fa and as fa increases will 

become very small, leaving only the a 0 term. Thus for large field the 

potential distribution at large distances will be of the same forvn 

as that for the stationary test charge. So, not surprisingly, there 

is no increase in the total shielding in the moving particle case, and 

the particle is still incompletely shielded.
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Trio integrals in equations (9) and (10) are intractable by 

analytic or numerical means as they stand. Thus it would be of interest 

to investigate by means of plasma simulation, whether the conclusion of 

the symmetries holds, and whether the assumption of a noise level which 

has not an adverse affect on the analysis, is Justified. It would also 

be of interest if any details of the distributions could be elucidated, 

especially for moderate fields where ; for in the high

field case we do not, after the rough limit-taking above, expect 

anything of interest. Also, the case is most convenient

to deal with by simulation because (a) for the high field case we need 

to use a small timestep with respect to */wp in order to follow 

particles properly as they move in their orbits round field lines, and 

this means very much computing time before we even compute for one plasma 

period, and we want to compute for fa few* plasma periods. o o  Ibr the 

low-field case we need to compute for many plasma periods before a particle 

has completed an orbit, and it needs to complete some few orbits before 

we can reasonably claim to be simulating the flong time* state of the 

system in terms of magnetic effects. In other words the most convenient 

part of parameter space, in which we minimise the computing time required 

to include effects both on timescales and * I \Oc is when these

two timescales are of the same order of magnitude.

T o t the case a NOVA run was initiated, and the

parameters used were as follows.

96



COMPUTATIONAL MESH DIMENSIONS 64 x 64
16x16 DEBYE LENGTHPLASMA DIMENSIONS

NUMBER OF PLASMA PARTICLES 16,334

CHARGE ON TEST PARTICLE 200 UNITS

VELOCITY OF TEST PARTICLE ELECTRON THERMAL

Because of teclinical problems, the program with a square computational 

area was used here, although the rectangular plasma would have been 

preferable in that it gives more physical spa.ce for the potential 

distribution to set itself up in along the direction of test-particlo 

motion* Fig (34) shows the cross-section along the line of motion of 

the test particle after 70 timesteps have passed. At this point there 

is a slight beginning of interference between the front and back of the 

potential distribution. However, examination of Fig (34) shows that a 

distribution has been set up different in character to that set up in 

the electrostatic case. As the theory predicted, the distribution is 

symmetrical about the particle along its line of motion, to within 

statistical fluctuations. This is another instance where the 1quiet 

start’ procedure would have helped to give better detail.

A similar run was done for COt W p  z 'I . Q , using a timestep 

of “b T - O * ^  5 in order to ensure that particle motion in orbits 

around magnetic fields wa3 as well simulated as previously. The results 

here also tend to confirm the symmetry of the distribution between 0*" O 

and IT • Fig (35) shows a cross-section of the potential along the 

line of motion of the particle, while Fig (36) gives a contour plot of the 

entire distribution. From these it can be seen that the claim of symmetry 

is indeed well-founded to within simulation fluctuations. However, in 

this case it is noticeable that spatial variations in the potential at



distances greater than a few Debye lengths from the test particle are 

of a smaller amplitude than in the lower-field case of to&(wp:',0

It would also be of interest here to perform a comparison, 

similar to Pigs (28) and (29) of potential energy variations with time, 

between magnetised and unmagnetised cases for a test-particle velocity 

. The appropriate comparison graph is given in Pig (37)» 

where again there is 20jj$> greater potential energy in the modes in the 

magnetic case than there is in the electrostatic caso, indicating the 

presence of an extra noise background in the magnetic case. The next 

graph Pig (38) compares values of potential at the test-particle 

position for the two cases, and again the values in the magnetic caso 

are some 20-25/6 greater than in the other case.

- We now investigate whether any other diagnostic 

output from the two NOVA runs would be of interest to compare. We had 

available a3 output at each timestep the normalised mode amplitudes for 

a small number of selected modes, one of which is that for which in 

two dimensions I , k ^ : o  ; sine and cosine modes were available.

We present here a plot Pig (39) of the comparison between the sine mode 

amplitude in the magnetised case where • I , and the amplitude

of the same mode in the electrostatic case. Prom this plot it is evident 

that on average the mode amplitude in the magnetic case was greater. A 

similar result holds for the cosine modes. Both of these were in the 

run where the test particle velocity was V-r c KK” *n sca^e^ units.

The fact that the amplitude is greater in the magnetic case can be 

construed as being due to the lack of damping of modes which was 

demonstrated earlier, and this greater amplitude in each mode will 

contribute to the greater potential energy (and background noise) in the 

magnetic case compared with the electrostatic case.
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These two NOVA runs having been made, which confirm the general 

results of equation (8), and our assumptions about noise, it was now 

thought a reasonable proposition to attempt to integrate the leading 

term in equation (1) in order to ascertain whether any numerical results 

could be obtained which would give further quantitative detail on the 

potential distribution.

If we express this as in equation (5) we can proceed to expand 
- Ck,u\ in the following way in powers of Y
1 ~ V  t*

/ 7  ( t 4 t
‘ k' L-. v , , . . u )

1
* (&) (13)

By the rules of mathematical analysis this expansion is valid when

.v. ^ ^
\ , that is, ^   ̂ • Thus, the smaller the

\<z . * *  .

value of { , the larger the range of \< in terms of for which

there is validity. If k t \c^ , then since ~  and '• J'q

by taking small we have validity over wavelengths from the largest 

down to significantly less than . Since shielding is a phenomenon

whose typical scale length is that of ^  or greater, it is evident that 

all important wavelengths will be included eveh if we cut off the integral 

at a value of \< just below the value - kc , which is what we

propose to do here, though the functions obtained after the expansion 

is completed, are numerically integrable over the whole range of l< , 

by means of the manipulation of section (b). In order to claim a 

meaning for the results obtained numerically below, we have to assume 

that the contribution to the integral from values of k  is

negligible, and that the effects of the infinities in the integrand are
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nullified as outlined above. These infinities all occur for: kV'ifv;

We proceed to expand the newly-expanded denominator of in

(5) and obtain, using1 %. JLrvC^D  ̂-Ltit* 0 ( ~ r

r h  \ l r r
r* C AgiW 11 » nil />■* feMp cU,(A-»ur)

; »*
1 ' ‘ ( ' - f W i )

( w  ' f  0  ~ ( '  •» f  (14)

VUv, 1? 1
0 +  ' ^ / k g \ - (.-u> , : ; J  

to order . Thus we can express <j) as A -  f f?  + F y

where the definitions of A, B, F are evident, and F-- f; - f x  

As before we put and define ^  to be the angle between

the observer and the direction of motion u. , the latter chosen in 

the X  direction, so that we get

so

m«- <5

In an integral over llT , this factor, multiplied by 

picks out only terms with J( or - X  • In particular, for c & j* <j4 w< 

have
Zf\

r «^p <.1^8 «*> ̂
Tt/a  •. m  - -2
tT i *v\ * o
W  r* 5 *3L

Tr

Thus from the sums in (15) we get after the <j) integration,

[pd ■“ 0 ^ 4  1  & ]  (16)
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For the €A/\* ̂ term, the expression remaining is

^  ̂ ^  3*̂( ‘c 0 US*i 7 § ■*? V ^  ̂̂ (17)

If we include only terms up to order 5 we have

%  :  A - G V  - A  -  Y C c - b u u l k )  (18)

It is brought out most clearly here that, as in the expressions 

for <|) previously, only even terms in occur and only angular 

variations about the direction of motion by even multiples of §  . This
‘Niis in contrast to the non-magnetic case where all powers of  ̂ are 

included and all multiples of ^

The terms in the exnression are as follows.
**A>tr

0

a  2  T . t e O  elkfc f-, a? a x 1 ________ (20),

(21)
0

The integral for f\ is very similar to that for the stationary particle

case apart from the upper integration limit, as we would expect; for

when ^  -̂ > o  > every other term disappears because of the coefficients 
IX , and also the limit in the integration tends to infinity. If 

we assume that it is allowable to extend the range of integration beyond 

for mathematical convenience assuming the normal mode terms 

to deal with the poles, we can deal with the integrals in A and C by
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the same and similar means, respectively, as were employed in part (b).

These give rise to a log variation at large ©w. . The term D does

not have any divergence problems, so can be integrated in a straightforward

manner.

It should be emphasised that this calculation is not being

presented as a definitive analysis of the form of the potential due to

the test charge, merely as an indication of what sort of distribution
N.one can expect the formula to give rise to, to second order in %

The fact that there is no first order term indicates that for small t 

at least, one can expect a distribution very similar to the stationary 

test charge; however, it is difficult to tell anything about the case 

of slightly larger , and in the large limit there does not seem 

to be any expansion of the denominator which one can use, for moderate 

field strengths.

The function C is similar in general form to A, but D 

is somewhat different. It is plotted in Fig (40) for a few field strengths, 

and it is noticeable that the value of at any point decreases as

the field increases, showing that there is a smaller perturbation from1
the stationary-particle form the larger the field becomes. For reduction

test charge, as the effect of the angular dependence is thus reduced. 

The form of D shows that it may be possible, for certain values of 

parameters, to obtain a potential distribution showing 'bumps* as in 

Fig (34)» but no parameters used in the calculation gave anything like 

so pronounced an effect.

of D will tend to give symmetry about any line through the

The results for moderate values

of B were that, keeping 4* email, no spatial oscillations of an 

amplitude comparable with those in Fig (34) were observed.
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Ao B increases, to a point where ^c( t-Op 4 2. o , the simulation shows 

that for Vr-V? ̂  the amplitude of the spatial variations at distances 

far from the test particle has decreased markedly. This implies that 

they would have decreased even more for even higher magnetic field.

In this limit the expansion technique even for moderate velocities was 

seen to give results closer to the simulation’s results.

The conclusion is that for such parameters as make the expansion 

valid, and given a high enough value so as to include the

range of wave numbers required to completely describe the physics, the 

expansion (14) is a satisfactory way of calculating from analysis the 

test particle’s potential distribution. The parameter range which gives 

this validity is | and . However for these values

of the parameters, the potential distribution around the test-particle 

is very similar to that for the stationary test particle case, and 

is thus of no great interest.

In general terms however, given that we know that the potential 

distribution is going to take the form (8)

plus other terms, we can 

make one or two general comments about its shape. If we make the not 

unreasonable assumption, that the form of U < )  might be similar to the 

of equation (21), for non-negligible velocities, then we might 

expect to see a distribution such as is outlined by the rough sketches 

in Pig (41)*

The first of these shows the cross-section of potential 

distribution along the line of motion of the particle if the function 

Q  was of sufficient amplitude, as it might well be for a sufficiently 

high test-particle velocity. The ’contour1 map shows a plan view of
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what the distribution might be, where the dotted contours represent 

either minima or some kind of quasi minima or ’areas of inflexion’ in 

the downward trend of the potential value.

In conclusion, what can now be stated about the potential 

distribution about a moving; test charge in a two-dimensional magnetised 

Maxwellian plasma is as follows. The shielding of the particle is 

incomplete just as in the stationary test particle case. The potential 

distribution according to theory exhibits symmetry about the line through 

the particle perpendicular to the direction of motion. Both these facts 

are in contrast to the situation in the electrostatic case. The claim 

of symmetry is supported by simulation. However, due to the analytic 

difficulties involved it did not prove possible to produce from the theory 
a quantitative description of the potential distribution around the 
test-particle for moderate values of magnetic field and non-negligible 
test particle velocities.
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(d) Tent Particle injr,hrGej»Bî en{3.ipnal fr'agnot-lsod Plasma

Expressions for the dielectric function of a throc-dimenaicnal

magnetised plasma have been known for some time (Eafs 4*1 *43) • If wo take

the expression given in Ref (43) for longitudinal inodes
&Q * .

e ( k w >  i , ^ '  ?  [ r C O i ^

We can follow an analysis which leads to the result of Ref (19) for 

^ef (26) for stationary test particle.

If we integrate in cylindrical co-ordinates in velocity space, 

we obtain

— G&J

where we chose ^  to be luaxwellian, and

/1 *where V ,

From (2) we get

' * §  1 0 -
-06 _ x

(3)

After a change of variable we obtain
eA

■ w> u ki  %  - w f
k.v / A  j

.&/<«;

Assuming that is going to be the term of interest in the

test-particle shielding case, that is, that there are no •unstable modes
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and that undamped modes have suitably lo'-v amplitude because we consider 

the gradual introduction of the test-particle, we now consider what 

form this function takes.

We have

V L  k'-V i n  L  I si\h. k t

r v  u.s / -  v k:

(5)

V  v J*.
Here ^ takes the value it had in Ref (8); ie ^ 9

is given in Ref (37).

Thus for u i  O  , we obtain

< ^ 0 < , o ‘) 3 V +  l<» d < (6)

Thus shielding in this case, for a stationary test particle in 

a magnetic field, is the same as it is in the electrostatic case. This 

agrees with Ref (19).

In the case of non-zero ^  , we can show immediately from (5) that

we do not obtain the same fore-and-aft symmetry about the line 

perpendicular to the test-particle direction of motion. For 

£  (tej - k.u)^ £({<, , by inspection, using the known properties of

the plasma dispersion function Z  (Ref (57)), showing that if the 

velocity vector is reversed the distribution will be different.

Inspection of (1) shows that if either k ^ s  O  , (the field 

being in the "Z. direction) or no component of particle velocity is 

allowed in the 7*-- direction, the expression of £  (k,w) reduces to the 

expression arrived at in 5(&) for the two-dimensional case.
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Thus the presence of physical effects along the field lines causes the 

removal of the lack of total shielding* and the symmetry of potential 

distribution about a test particle. These effects which occur in the 

two-dimensional case indicate at least two ways in which the two- 

dimensional plasma used in many simulations differs from a real plasma 

where a magnetic field is present.
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APPENDIX

IIOU TO RIJN NOVA FOR 2-J) SIMULATIONS ON ICE V 7 Q

Main reference - McNamara and Langdon - to be published

The basic routines of NOVA existed in August 1972 on cards 
and on private disc store belonging to user BMCTHE (BrSndan 
McNamara). They are in the main fairly well commented and 
they are ready to use but for the fact that one has to substitute 
certain common blocks, etc., by a procedure outlined below. (No 
doubt, since Alan Sykes was taking over Brendan’s code, the 
routines will now be under user AASTIIE) .

A list of routines which were needed for the test particle 
work is attached and there will now follow a description of each 
of them. Note that there is often a difference between a file 
name and a routine name.
(1) ('NOV M A I 1) - main program
(2) UCP - ’Universal Control Package’ supposed to be able to 
control any multistep process and it is the only thing called by 
main program.
(3) JOBID - This routine not necessary for test runs but this or 
any other routine containing blank common (substitute into it 
from NOVCOM(f) can be used to increase the dimension of XV, the 
vector which holds the co-ordinates of the particles, etc. The 
usefulness of this lies in the fact that merely by editing and 
recompiling one routine and re-composing the program we can vary 
the size of the plasma in the simulation.

One merely edits the common block which is being substituted, 
renaming it JOVCOM, say, such as to dimension XV to the required 
value. Since XV is the last item in blank common and since 
blank common comes at the end of the root segment, no over writing 
will be done and the only effect will be to increase XV's dimension 
N B : This is not to be done with any other array, anywhere.

AREAWT - is described by its name: assigns charge to
computation grid points using CIC method. 6^WT is an entry point
(5) MORE - checks if calculation has done enough steps (NSTEPS) 
returns argument as appropriate.



(6) VALUES - takes account of the plasma scaling chosen which 
deduces from the values given in YOUSET and calculates scaling 
factors accordingly. Throws program off if dimension of plasma 
omitted.
( 7 )  DEFALT - mnemonic title - sets up default values of man}?' 
parameters (see listing).
(8) FINISH - ends current run but can return an argument (logical) 
to tell NOVA to start another run.
(9) PROBES - control routine for most of diagnostics, called 
with many (integer) arguments from many parts of the code.
(10) REPORT - diagnostic routine which prints out seventL NAMELISTS 
containing interesting variables dependent on argument (care with 
REPORT (4) of standard version - it prints out several arrays 
dimensioned SIDEX^SIDEY: rather paper-consuming if both these
equal ^  64 ) .
(11) POISOL - FORTRAN control of poisson-solvers.
(12) BRE N D N , URPFT - poisson-solvers in USERCODE
(13) POTXV - routine which is called when PROBES calls for potential 
output. If it is required, one can write this routine oneself for 
onds own specific purposes. If not, it is dummied out (see below).
(14) TESTON - user^s own 'particle pusher’ if he has a group of 
particles which cannot be moved by. the standard pushers (this 
corresponds to ’equation 4* when calling HEADIN from YOUSET in 
the creating phase).
(15) SETACE - sets acceleration matrices, given potential.
(16) PRPTCL - prints every PRTHEM particles7 co-ordinates at each 
step.
(17) UNMAG - electrostatic particle pusher (equation 2).
(18) MAGON - includes constant B perp. to plasma (equation 3)»
(19) DOSTEP - controls running of one computational timestep; is 
called by UCP
(20) RPPFT - connected with poisson solvers.
(21) FMODES - prints out up to 6 selected mode amplitudes (sin and 
cos) and stores values in FS and F C .
(22) PLMODE - prints out after 5 0  steps the whole of F C , FS in 
suitable format and returns p<finter from 50 to 1 so that F C , FS 
start filling up again from beginning.



(23) ENERGY - calculates (l) kinetic energy of group , (3) potential
energy in modes. (2) print-out of energies at each step.
(24) PLENRG - similar to PLMODE, except prints out energies.
(25) YOUSET - user writes this. It controls the setting up of 
his particular plasma. He can include any amount of necessary 
routines to be called by this equation.
(26) RNMAXU, which sets up GALAXY velocity distribution.
(27) CHEKBC - in the setting up (CREATE) phase this checks the 
boundary conditions to ensure that all particles fall inside the 
computational grid. Standard version only pulls in erring 
particles by an amount equal to the linear dimension of the plasma#/
(28) HEADIN - sets up header for particle description in the array 
XV. It has several arguments which are required, most of which 
end up in some position in the header.
(29) DONEIT - closes down (parts of ) create phase.
(30) CHRGIT - lays down charge of a particle given its co-ordinates.
(31) PTCLIN - puts particle co-ordinates which are in the array 
(dimensioned 4) which is its argument into the next available 4 
co-ordinates in XV.

DATA BLOCKS - file names

(1) DENERG(f ) - gives certain data for the common block ENERG
(2) DFMODE(f ) - gives some data for common FMOD
(3 ) DNOVA(s) - gives some data for common NOVPAR
(4) DPOIS(s) - gives some data for common POIS (data for poisson-
solvers, eg array dimensions.
(5) DPROBE - gives data for probes routines in PROBIT common

COMMON BLOCKS in (f ) files files |~AU subroutines are in (s)  files.~J 
Files are as follows:

(1) BUILD(f ) - purpose obscure
(2) LANGDP(f) - contains common block (ABLANG?) connected with 
double periodic poisson-solvers.



( k ) EQLADP - equivalence statements for LANGDP
(5) TRIBUF - contains common block used in triple buffering mode.
(6) EQPOIS - contains equivalence statements for common block POIS.
(?) EQNOYC - contains equivalence statements for common block NOVCO
(8) POISON - contains common block POIS mainly required for
poisson-solvers•
(9) GRAFXV - common related to graphical output
(10) DIAGCM - connected with diagnostics
(11) PROBIT - common Tor probes.

The table shows which segment each routine is usually put 
into in the program. It also indicates whether the name of the 
file and the name of the routine are the same. When they are not 
the same, it is in general because the file contains the double 
periodic version of the given routine.

In general (s)  files are in group NOVA, and compiled files 
in group NOVCOD. ( You do not need to compile BRENDN, URPFT).



Routine name Appropriate 
file name 
if different

Segment Common block 
associated

*If there is 
no need to 
compile file

MAIN PROGRAM
UCP

[jOBID
AREAWT 
(ENTRY QWT)
MORE
VALUES
DEFALT
FINISH
PROBES
REPORT

NOVMAI

SHARED

PROBED

ROOT
ROOT
ROOT
ROOT

ROOT
ROOT
ROOT
ROOT
ROOT
ROOT

]

YOUSET 
CIIEKBC 
IIEADIN 
DONEIT 
CHRGIT 
PTCLIN

CHKDP
01
01
01
01
01
01

POISOL
BRENDN
URPFT
POTXV
TESTON
SETACC
PRPTCL
UNMAG
MAG ON
DOSTEP
RPPFT

DPP01S

SETACD

RPPF

02
02
02
02
02
02
02
02
02
02

FMODES
PLMODE
ENERGY
PLENRG

FMODED
JJPLMD
ENERGD
JJPLEN

02
02
02
02



Data block 
Tile name

Appropriate Common block 
a s s o c i a t e d

r

^Jf there is
file name Segment no need to
if different compile file

DE.NERG (F ) ROOT ENERG
d f m o d e (f ) ROOT FMOD
d n o v a (s ) ROOT NOYPAR, 

BLANK
DPOIS(s) ROOT POIS
d f r o b e (s ) ROOT PROBIT?

Files
containing
common
block

Common blocks 
which are con­
tained, or
which are
associated

BUILD(F)
l a n g d p (f ) ABLANG?
n o v c o m (f ) BLANK,

NOVPAR
e q l a d p (f ) ABLANG
t r x d u f (f )
p o x s o n (f ) POIS
e q p o i s (f ) POIS
e q n o v c (f ) B LANK, 

NOVPAR
g r a f x v (f ) ?
d i a g c m (f )
p r o b i t (f )?



Set t j.. n g u p a s i m u 3 a 11 o n

Xt is possible to use one of two standard length scalings, 
or alternatively to sot up your own scaling0 The procedure to 
follow if one is using DEBYE length scaling is straightforward - 
just give the plasma dimensions by setting LXDEBY and LYDEBY.
In this scaling a plasma time is unity, and the thermal
velocity is unity. The scaling factor M* (STARM) is worked 
out for you. If one decides to include a magnetic field 
perpendicular to the plasma one gives a value for VCIWPI 
( ^ c ^ C o ^ j  and the extra scaling factor concerned (STARB) is worked 
o u t .

Larmor radius scaling is probably equally straightforward 
to set up. One does not have to think to set up standard 
scaling, but one certainly will have to when setting up o n e ’s 
o w n .

Scaling having been decided on, the next move is to decide 
on the array dimensions required (for the poisson solvers, this 
must be (2n + 1 x 2 m  + l)) and edit o n e ’s common block files 
accordingly. This will depend on the particular simulation - 
fineness of resolution required, number of particles, number of 
groups of particles, etc. It should always be remembered to 
edit accordingly equivalence blocks and data blocks as well.

YOUSET will generally need to have both POIS and (BLANK) 
common blocks in it. It is here that one gives all the 
parameters of the problem; this is most conveniently done by 
data reading from an appropriate DSET97 o r  D S E T 5 « Here also 
the plasma will be set up by whatever initialisation procedure 
one thinks fit for the job in hand.

The next consideration is that of diagnostics. These are 
strongly problem dej^endent. Probes(n) for n= 1.....7 is called 
at many points in each timestep so that the easiest thing to do 
is to edit PROBES itself to call routines which one writes 
oneself, at the appropriate moment, or perhaps to edit or put 
in ones own version of the routines which PROBES calls as it 
stands at present. The user will also have to find ways of



switching on and off diagnostics when he wants to - PHDIAG is the 
logical switch to do this, but the question of operating the 
switch is left to the user, as is the question of how much it 
switches off or on. (in test particle work this was done in 
POTXV. This worked because it was called every timestep.)

Parameters such as TENERG, ... etc., control whether or 
not PROBES calls ENERGY ... etc., ie every TENERG steps 
Energy is called. TENERG, etc., can be set in YOUSET if the 
appropriate common block is there as well.

The actual process for setting up the plasma once the 
scaling has been established is straightforward.

For the first group HEADIN is called, with appropriate
parameters - group number, record number, equation, etc.

Then the 'PSPACE1 NCOORD co-ordinates of the first particle 
are generated by the user, put into XY ( ) and the routine
PTCLIN(XY) is called. This puts the co-ordinates into the 
next PSPACE h  words of XV and lays down the charge by calling 
QWT and calls boundary condition check.

This is repeated for all particles in the group.
This is repeated for all remaining groups with a new call

to IIEADIN for each.
The array XV ends up containing a head and tail for every 

group, the tail containing the particle co-ordinates. The 
first few elements of XV are pointers to the beginnings of the 
other parts in XV. The integer parameter IN is set always to 
that word of XV which is next to be filled in each part of the
create process. At the end of setting up the plasma, the
numbers at the beginning of XV should refer to the positions of 
the start of all the HEAD records, and the last one should
indicate the end of the last tail.

All this is given in the report by ABL and BMcN.



TO RUN NOVA USING IGL h / 70

First of all, we require a USERNAME. For the purjjoses 
of this it will be GLASGO, password GL8877*
A familiarity with MULTIJOB is useful before commencing, but 
this can be easily required.

It is assumed that all routines acquired have been written.
It is quite useful to test each routine by including it in a 
NOVA test run instead of testing it in vacuO. The principles 
outlined below apply both to the test run and to the production 
run. The basic difference is that for the test one can use 
standard common blocks (in group NOVA in the BNLTIIE space) and 
for the production run one uses one's own blocks. The standard 
ones are quite small so the program which is generated will be 
quite quick.

First of all, a few important points concerning the system.
Each user has a certain amount of private disc space allocated 

to him, the amount being measured in "Extents" where one extent 
/>j \  track and | ̂  —- %  pages of FORTRAN. In this space he can
have various types of Files, 'S', 'F', *U', *Y*, 'P®, 'N'.
An 'S' file contains card images of any kind. An 'F® file 
contains card images, but the 'F' designation informs the 
compiler that this is a FORTRAN file. 'U* is for usercode.
A 'Y' file is any compiled file, and a !P* file contains a 
composed program. ®N' files are less common but for example, 
straightforward calls to GIIOST routines will generate 'N' files. 
Files are allocated to Groups for convenience in handling, so 
that the full description of a file is

USERNAME: GROUPNAME: FILE NAME (IDENTIFIER/RUN NUMBER)
eg GLASGO:. GLASGI. NOVGO (P03^0)

B M C T H E : NOVCOD. URPFT(u)
where all names have no more than 6 letters.
Before the user can use files in another us e r ’s space these 
files must be protected using the PROTECT command 
(see A. Sherwood, or manual for details)®



A facility which is always used in a NOVA run coinposition 
is the ERREXIT facility which is used to insert a dummy sub­
routine TJDUMMY instead of any routine which one docs not want to 
include. Statements which do this for all possible standard 
routines are in 3NCT H E : NOVA. NOVDUIl(s). If the subroutine
is included the composer ignores the ERREXIT statement.

There are (4) stages in running NOVA (or any other similar
program) on the 4/70.
(1) Substitution of common blocks into ’S ’ files containing 
the executable statements.
(2) Compilation of such routines as are being changed.
(3) Composition of program (Linkage editing).
(4) Running of program.

(l), (2), (3) are done in ’A* or fB ’ stream and (4) is done in
’E ’ stream. No test program is small enough to fit into A or B. 
There is a default option for (2) and (3)> but (l) is generally 
done in B for reasons of space.

(l) To substitute common blocks

In the 'S' file which contains the routine, instead of many 
common statements we merely have, eg.,

/ / ^  SUBSTITUTE NOVCDM ( P )

So to get the card images from NOVCOII(f ) into this position, we 
run a program called D M G C S S : PREP. NEWJIP. This can be done
from teletype or on cards. Either way, it requires a file 
giving details of the substitutions to be done. For example, 
if the user wanted to create a large fF' file called ROOT which 
he proposed to compile and put into the ’root* segment, he would 
set up an ’S ’ file with run number say, containing the following 

If GROUP v  FRED
//<, REPLACE ^ ROOT(f) (£> Cp> S  cf>
//u SUBSTITUTE w  NOVA. PROBED(s) '
//<✓ SUBSTITUTE u UCp(s)
K v  SUBSTITUTE v  SHARED(S )

H v  ENDFILE



If tlie NETvJIP program acted on this file, it would put all 
the Fortran cards required into a large file called FEED.ROOT(f )• 
The common blocks would also have to be in group FRED, in this 
case. UCP and SHARED would also be in FRED.

(2) Compilations
In the same ’S ’ file, or in another, the following cards 

will then compile the !F' files which are quoted

/jyj GROUP y  JACK *—  not needed 
/(v TRIALS
H y  SCHEDULE S^TRIALS, > RUN NUliBBR 
fly EXEC TROUT

^ j  FTRAN1 v  FRED. ROOT, C ,D / M A P ,L I S T ,DEBUG
/ ( y  FTRAN1 yj GROUPNAME, FILENAME, C,D / ____

•D1 deletes the fF f file.
We can immediately follow this, if desired, by the 

composition (linkage editing) which as for the compilation is done 
in the TRIALS system and must have its cards preceded by

/ / y TRIALS 
and followed by

//y ENDTRIALS.
So, either we finish what we are doing by putting a J /y ENDTRIALS 
after the last / /  FTRAN1 card, or we proceed with the 
composition, which we do as follows.

(3) Composition of a version of NOVA
TRIALS ......  understood) o

//.x COMPOSE .1 GROUPNAME. FILENAME ( P (na™ e. of program//U U v ' to be run
eg NOVGO(P1230)

(where --- signify run number)
OPTION LET, -MAP, X R E F , TREE 

(TREE only required if program is segmented)
SUB ST BMCTI-IE: NOVA. NOVDUM

(puts in NOVMAI, UDUMMY and ERREXIT cards)



INCLUDE GROUPNAME, FILENAME, (FILENAME ......)

all compiled modules for ro°^ segment *  m a m

4SX- SEGMENT 01, ONROOT
iQC' INCLUDE GROUPNAME, FILENAME, (FILENAME) 

all compiled modules for segment 01 
SEGMENT 02 , ONROOT 
I N C L U D E .......

after which we must have ENDTRIALS, to signify the end of
the composition.

In the INCLUDE cards one must have all the compiled
modules that he wants in the program. The SEGMENT cards signify
the start of a segment. The opereition of automatic segmentation
is far from perfect, however, and it is common to get SYSTEM
modules in the wrong segment, or too low down the tree. These
have to be explicitly included where they ought to be once their 
erroneous presence has been found (they cause the program to
crunch with negligible error messages)•

Running the program
This requires a sequence of control cards which can be either 

put into a file, and then that file is scheduled, or, alternatively, 
run from a teletype; or instead of putting them in a file, these 
cards can be entered as a job directly. Details of what is
required can be obtained from manuals (not advisable) or
consultants (frequently available) at Culham. In connection
with NOVA it should be noted that with 64x64 computational grid 
it was possible to do a run in core with 2048 particles,
in the day-time 'Ef stream. This streams can run jobs of up
to /v 396 store units (where 1 store unit = $ 1 2  bytes). The 
large-stream supervisor can run jobs of up to 500K bytes, and is 
essential in the absence of triple buffering, for a large NOVA 
code to be runincore • (This is defined as stream 'A1, in fact.)

Further points concerning running of program:
The user may have generated in GLASGO space a large number of 
files which he requires and may find that his private store is 
getting a bit tight (GLASGO was allocated 600 extents at the end



of August, and the system was full so that there was no chance of 
getting this increased). lie may also find himself wanting to do 
a large NOVA, run, and will realize that the output file DSET99 is 
stored in his space before it is printed and deleted. If it is 
too big for the space much output will inevitably be lost. To 
obviate this a /j FILE card is used (see consultant) to direct 
the output into the public disc space on ’Volume 4 ’ in group TEMP 
where to all intents and purposes there is infinite space avail­
able, or at least, a great deal more than the user will ever 
require since this Volume is scribbled completely almost every 
day by the systems programmers. If this procedure is followed, 
one need never worry about the size of output files, since the 
file is put into the print queue as soon as it is established and 
so will get printed out before the systems people start deleting 
Volume 4. (Every one automatically has access to Volume 4 
because the systems people leave all users, after every clean-up, 
with one small file on this Volume in group TEMP, so that every 
file you create in group TEMP will go into Volume 4 and not 
clutter up your own space.)

Points of use or things for which to watch out

(1) Every time a program is composed, a composition map is 
generated from which one can tell quite a few things. It gives 
the size and location of COMMON blocks, SYSTEM routines as well as 
of the users own compiled modules. It can help towards 
optimisation of segmentation in order to minimise the space 
required.

(2) If mode amplitudes or potential energies are required, it is 
necessary to ensure that the variable FACMOD, a scaling factor,' 
is set equal to ^/STARM. This gives the correct scaling between 
kinetic and potential energies of the NOVA plasma, for example.

(3) A run with l6K particles in a 64 x 64 mesh takes the order 
of half an hour to do of the order of 100 steps. Accurate 
numbers for timing are hard to give because the timing is done 
in ETU (elapsed time counts!) and it is said that this is not a 
constant, though it is in general /v 3 seconds.



(4) Triple buffering is probably, even in FORTRAN, not 
significantly slower than a core calculation. However, since 
one cannot run jobs of over 100 g, t tb in the 200K !E ! stream
during the day, it seems pointless to employ triple buffering vdiile
the large stream is available each night. (This is subject to 
the availability of a night-shift of operators, about which there 
is, periodically, a deal of doubt.) Another point is that T.33.
is just another complication and one would like to keep things as 
simple as possible.

(5 ) Those with experience of the Phase-Space plotting package, 
eg Charlie Hung, are more qualified to discuss the subject than 
the present writer. Charlie can probably say what routines he 
calls and with what arguments in order to get his phase space 
plots. He plots the only two co-ordinates he has (X and V ) soXL
his case may be simpler than for the 2-D case. There is an
extra data block (check with Charlie) to be included, as well as
High Level and Low Level Ghost routines (which Brendan has in 
Files called HIGOST and L0G0ST). These latter he recommends to 
be put in certain segments explicitly; this is more space-efficient 
than following the procedure in the Ghost manual. It is possible 
to generate film, etc., by appropriate use of the package.

(6) Care should be taken if more than two groups of particles are 
to be used. In the standard common blocks, there afta number of 
small arrays which are, in fact, dimensioned 2 , where this refers 
to the number of groups. These dimensions should all be altered 
accordingly as the number of groups increases.
(7 ) Difference between a group and a record:
Groups are sets of simulation particles.
Records, consisting of a head and a tail are where all the 
data concerning these particles is stored.
(8) Brendan had written an ANALYSER package which is intended 
for use with NOVA. The principle was that there should be two 
runs - one to generate output and store it some where, eg on disc, 
the second, another NOVA run, but including only the analysers,was 
intended to analyse the results in a prescribed manner. Analysers 
are in files with names beginning JJ. The present writer has no 
experience with them.

It is to be hoped by this time Alan Sykes, if he has indeed taken over 
NOVA as JBT wanted him to, will know iiis way around it; pretty well and 
will be able to advise upon matters’connected with it.
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generated by a supra,thermal test particle in a two-dimens: 

plasma have been verified within the very noticeable const: 

of the computer simulation model# Other work has been don 

has lent itself better to a good description by simulation 

Primarily, in the electrostatic case, the slowing of a tes' 

particle in a two-dimensional collisionless plasma has bees 

adequately quantitatively demonstrated.

In the case of two-dimensional magnetised plasma, e: 

for the potential due to a test charge have been derived, 

shown that the nature of the potential distribution round 1 

particle, and a fortiori, the shielding properties of the 3 

have been radically altered by the inclusion of the magnetd 

Whatever tractable means were available have been used to d 

the form of the potential distributions for both stationary 

moving test particles.
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