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Test Particle = TPlazmg Interections

Abstract

This thesis describes investigations into the properties of
& two-dimensional plasma carried out by theofy and computer
similation. The predictions of previous work concerning the wake
generated by a suprathermal test particle in a two-dimensional
placma have been verified within the véry noticeable constraints
of the computer simulation model. Other work has been done, which
has lent itself befter to a good description by simulation.
Primarily, in the electrostatic case, the slowing of a test
particle in a'two-dimensional'collisidnless plasma has been

adequately quantitatively demonstrated.

In the case of two-dimensional magnetised plasma, expressions
for the potential due to a test charge have been derived. It is
shown that the nature of the potential distribution round the test
particle, and a fortiori, thé shielding properties of the plasna
have been radically altered by the inclusion of the magnetic field.
Whatever tractable means were available have been used to indicate

the form of the potential distributions for both stationary and

moving test particles.



(1) (2) Introduction

Ever since large electronic digital computers became widely
available, use has been made of them by physicists to simulate the
behaviour of the fully or partially ionised gases known as plasmag.
There have been several reasons for this eagerness to use a new

analytical tool as soon as it became available.

Firstly, a plasma is quite a difficult object on which to
perform an experiment, since it often lasts in the epparatus for
oniy a short time, can have its properties modified by the
instruments intehded for their measurement, and cannot easily be
produced to the experimenters’desired specifications eg to given
values of temperature and pressure. These objections do not
apply where a computer simulation is concerned, since one can
control exactly the plasm# being set up, and can take any desired

diagnostic measurements at any time.

The theorist as well as the experimentalist can have good
motives for simulation; in thié cése there are two distinct
-situations in which it can prove useful. The firat is in a problem
where a linear analysis has been done and a solution has been found,
but it may be felt desirable that a simulation be done to
verify the results or reinforce them especially for regions of
parameter space where the applicability of the linearisation is
in doubt. The second case is that of non-linear phenomena, the
equations describing whiéh are not readily amenable to analytic
treatment by known methods. In this instance the simulation provides

an invaluable tool for research into the physics of fhe problem.



There are two m2in approaches to "sirulation" of plasmas.
Both involve the numerical solution of appropriate equations, but
they differ in the range of physical effects which they describe.
The first of these treats the plasma as a fluld, and is used for
a regime where collision times are not long compared with, say,
the plasma period. The phenomena which are treated
occur on a much longer timescale, which may be that of the time
it takes for an Alfven wgve to cross the plasma, or the time in

which appreciable plasma diffusion occurs.

The second approach is to consider the plasma ag a large
collection of charged particles each acting in the averaged
field due to all the others. This latter is used to describe the
"ecollisionless" regime where the collision time Te , fhe awérage
time bétween collisions for & typical paxrticle, is much greater than
the plasma period‘T} . In this regime, events on a timeécale ifr

and on a length scale of the Debye length lb s can be studied, as

‘well as events on a timescale of the cyclotron period for the

electrons. Since it takes of the order of a "relaxation time",
which is much greater than & collision time, for a distribution
function to relax to Maxwellian, it is possible to study non-

Maxwellian distributions with such a model.

The results described below describe short time aﬁd length-~
scale phenomena of the type outlined in the previous paragraph, and
were all obtained using'a particle simulation code. They are all
concerned with the interaction of a "test particle" with the

background plasma, or with another "test particle", in the case where

the plasma is two dimensional.



Chapter (1) is introductory end contains a chrenological
review of gimple test-particle ghielding theory and of plasma
similation. Chapter (2) describes the method of simulation of
plasmas that is employed in this work. Chapter (3) reviews
immediately previous work in detail. Chapter (4) gives results
for theory and gimulation in the electrostatic case which extend
the results described in (3)., Chapter (5) analyses the case where
a constant magnetic field acts perpendicular to the two-dimensional

plasma.



(1) (b) Review of Previous Work

(1) Simvlation of Plesmas

The first part of this review will be comncernecd with the
development of computer codes for plasma sismlation by following
the motion of each "particle" in the field due to all the others.
An indication will be given of the nature and scope of work which
has been done in this field. The second part of this section will
be concerned with the theory which has been previously done

concerning ‘test particles' interacting with a plasma.

The simulation of plasmas by computér codes has been an
accepted tool for research in the subject for over a decade. Some
of the earliest work in this field was done by Buneman (ref 1) in
1959. Asrtime passes it is noticeable that the number of "particles"
involved in each new reported simulation increases monotonically for
geveral years with the increasing core stores available in the
computers concerned. Buneman was restricted to using 256 positive -
and 256 negative sheets of charge in a one-dimensional model,>in
ﬁhich these sheets were moved according to their matual electric
fields. The mass ratio between the 'ions' and ‘electrons' was 10,
and the code was first employed to study the destruction of electron
drifts by instabilities. Variations on the one-dimensional scheme
followed such as that by Dawson (ref 2) who used a model which
consisted of & large number of identically charged sheets in a
uniform neutrélis@ng background. He used approximately 1000 sheets
in these early calculations. Later this was extended to two species,
of different masses but equal and opposite charge, where the mass
ratio was taken to be less than that between the ion and electron.

In order to reduce the collisional effects in a sheet model smoothing



methods were developecd (3) and the emergence of codes which ussd
finite gize particles began. An indication of the =ize of the
computations being performed by this point in time is that by

Burger (4) in 1965 in which 10000 sheets of charge were used.

Once the idea of smoothing the electric field by introducing
a spatial grid and assigning fractions of charge due to each particle
to points of the grid had been established, one major stumbling block
still remained in the way of economical codes. This was the ebsence
of a fast method of solving Foissons equation vqu z %
Hockney (5) contributed greatly to the solution of this problem by
developing rapid techniques to solve the equation in a grid with 2"
grid points. The gain in speed obtained now made two dimengional
calculations feasible, and one of thé first was repofted by
Hockne& (3) and concerned a plasma experiment of anomalous diffusion.
Other results using the same or similar techniques including the

similation of rotating discs of stars, are given in (6).

Since the'original advahoea in two-dimensional calculation,
other codes have been written at various laboratories. One such, the
GALAXY code of Boris and Roberts (7) was used by several workers at
Culham Lzboratory for various appiications, and was used in the work

immediately previous to that done in this thesis (8).

With the advent of the lateast generation of large, fast,
computers, 70% of world production being by one firm, time and space
limitations are less of a problem than formerly. This has led to
the development of codes such as NOVA (9 ) which is used in the work
described below, and is also designed to be !portable' between
computers. Portability is facilitated by the near monopolistic
market giving a general uniformity among computers at different

establishments.



One-dimensional plesms simulations are still very much in use,
however, and they continue to give useful results. In fact for
reasons of economy it can sometimes be the case that one-dimensional
slmilations are done instead of two-dimensional unless a description
of a strictly two-dimensional phenomenon is being sought, even
although a one-dimensional simulation is farther from an accurate
description of a plasma than is a two—dimensional one. Occasionally,
new generalisations or developments of the one-dimensional simmlation
plasma are published: one such is that by Hasegawa and Okuda (10),
which is suitable for studying one-dimensional electromagnetokinestic
disturbances propagating at an arbitrary angle to an applied masnetic

field.

Some examples of successful plasma work which.involfed the
use of#computer particle simulation will now be given. Dawson (11)
cites the example of research into the side;band instability due to
trapped electrons in a finite amplitude plasma oscillation. It was
first observed experimentally, and a crude theory which treatedrthe.

trapped electrons as harmonic oscillators was developed and verified

by simulation. After that, more detailed theories were carried out,

but it is probable that, without the computer simulation, the original
Phenomenological theory would not have been published. Subsequently
more complete and detailed experiments have ﬁeen carried out and these
exhibit much of the detail shown in the numerical simulation. This

he cites as a éood example of the usefulness of interplay between

experiment, sirmmlation, and theory. (References given in ref 11.)

There are many examples of simulation of actual experimental
configurations using a particle code in order the better to under-
stand or predict the behaviour in these cases. P Burger (op. cit.)

used a one-dimensional code to give a satisfactory explanation of

6



the operation of a thermionic converter and the large amplitvude
oscillations which are obscrved. A two-dimensionzl particle
calculation is at present being applied to an idealisation of the
Levitron (12,13) configuration in the hope of simulating the

behaviour of the machine undexr certain conditions.

In the case of non-linear phenomena, often the initial linear
development of a phenomencn can be adequately dealt with by theory,
but the configuration of the plasma in the subsequent non-linecar
regime can be best elucidated by simulation. A good éxample is the
paper by Cook et al (14) describing computations of the non-linear
growth of the ion sound instability in two dimensions. In this case
in the linear growth phase theory agreed closely with simulatiﬁﬁ |
but the subsequent development of the two-dimensionai similation
gave more insight into the physical process involved. Another
examplé in the same vein, where a refinemeﬁt of the one-dimensional
code ie reported for the first time ia given in (15). Here the
authors suppress unwanted noise by a 'quiet start!' techniqué
(described below) in their simlation, and follow the growth of

plasma cyclotron instabilities from very low amplitudes.

Another example of a simulation which has given a fresh
impetus to a toﬁic is in the work of Taylor & McNamara (16) followed
by that of Dawson and Okuda (17), on plasma diffusion in two
dimensions in a magnetic field. Here it has been found, that
contrary to previous ideas on the subject, there exist three regimes
characterised v the strength of B, and the dependence of the
diffusion upon B in each of these regimes is notably different.

This has led to the realisation of the need for revision of the

theory of a two-dimensional magnetised plasma. Work on other physical



agpecis of the subject such as that in (18), (19) and (20) followed,
as the subject of a magnetised two-dimensional plaswa became of
interest in its own right. This work has also led on to the
consideration of three-dimensional plasma diffusion in a very

strong magnetic field (21).

It can be seen from the above that simulation, used in an
appropriate context, can be used to gain deeper insight into the
physical properties of plasmas, and as such is a useful tool for

the theoretical and experimental plasma physicist.



(ii) Theories of Plagsma - Test Particle Interactiona

Several authors in the past two decades have concerned them-
selves with the shielding of the charge of a test particle in a
plasma, and with the forces induced on itself by the motion of such
a particle in the plasma. The usual motivation for this work has
been an interest in the fundamental properties ofia fully ionised
gas, and also the hope that results might be obtained which would

advance the kinetic theory of plasmas.

The theoretical result giving an analytic expression for the
potential distribution around a shielded test charge, and the value
of the plasma dielectric function which axre rederived in‘Chapter 3(a),
below, hasg been known for some time. ‘A derivation is given in
Thompson (22), for example, and the method used derives from that

of Landeu (23).

An early paper which investigated screening of a charge in a
plasma, was that of Bohm and Pines (24). They were concerned with

trying to demonstrate the relationship between collective electron

interactions and individual particle interactions. They described

the gas by means of the Fourier coefficients $§,. of the electron
density at each point in space. A function 9« was then developed,
which oscillates harmonically for appreciable values of k, and
tends to gk in the small K 1imit. Subsequent by the problem

of separating individual and collective interactioné is tackled

by letting

S * % * Nk

where q, describes the collective interactions and Ny the individual ones,



in that it deacribes fluctuations associsted only with the random
thermzl motions of the individual particles. Later the M are
shom to be the Fourier coefficients of a density distribution in
which each electron is surrounded by a comoving cloud containing a
deficiency of electrons. It is then shown that the properties of
this cloud are such that for a particle moving with less than the
mean thermal speed the charge is screened by its comoving cloud,
with a screening radius of the order of % ,the Debye length. This
is a direct consequence of the authors' stipulation that "?“ is

-
describing rhenomena where k ,,>;_ ‘)\D which was decided after an

earlier section in which it was concluded that collective

K<< Ay

ogcillations were to be expected for

Further development reveals that a particle moving with
velocity less than electron thermal cannot set up collective
oscillations in the form of a wake behind it. It is then shown

2
that if the particle is moving with velocity \, ~> bf 3 % v

. then it will cause the excitation of éscillations in its wake. Again,

it is deduced that the particle will lose energy to these oscillations
Va.nd an expression for the rate of energy loss is given, as is an
expression for the energy loss due to short-range collisions. It

is subsequently concluded that except for particles whose velocity

is much grea.tér than électron thermal, the charge is screened in a
distance ')cg , but for the fast particles the screening is ™ot as good".
However the fact that these latter lose energy to os-cillations of the
plasma is given as a mechanism for bringing them into thermal

equilibrium with the rest of the assembly.

This paper demonstrates what it is possible to achieve by

neans of elementary techniques which seldom lose sight of the fact

10
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that the plasma is a collection of particles. It is evident, in the

main, that sound, general conclusions about shielding are obtained,

" but that in ordexr to obtain more detail, & more mathematically

gophisticated approach may bs desired.

In contrast, Neufeld and Ritchie (25) commence by treating
the plasma as a continuous medium characterised bj a polarisation
vector fv('i“,ﬁ)c\\{ y end start from an equation of motion for P.
This equatioﬁ is Fourier-analysed along with Maxwell's equations, P
is eliminated and some relations are obtained between the various
electromagnetic variables, among which we have

eu(k,uﬂe 'l -w; f ‘%(Q v

(w-kM)° « ig(w-kyv)

the dielectric constant for the longitudinal electric field. Hp is
the plasma frequency, g 1s a damping term, v is velocity,

k is wave number.

The response of the plasma, described by the deriired
relationships, to a moving charge of wvelocity V is now ascertained
and expressed by giving the form of the potential distribution in

cylindrical co-ordinates g Z,as

where kzt K"M’é /\l"', q is the test particle charge.

Now comes the approximation which ensures that much detail is
lost of the form of the potential for a subthermal particle. It is
agssuned that \/ <<<Vz} where the right hand quantity is the

root mean square plasma velocity. This leads to
1
€,z L+ wf’/s‘k‘ where 9+ UP'XD .

Thus essentially the authors are assuming for a slow particle what

11



is demonstrated later to be the form of the dielectric function for
V20 . They obtain
¢ (4,6) = q e (T/2) /4
where A :(%;'-fr (1—-\/&)‘)%‘
a screened coulomb potential with screening distance 9&; ’ thé

Debye length.

Other matters are now discussed, concerning such things as
binary collision, which have no applicability to our present work

where the plasma is taken to be 'collisionless'.

The authors consider the casn of a high-velocity incident

particle, where V >> <V1>1' . An expansion for éu is

done in powers of /’*and the following results are obtained. The

potential shead of the particle for large distances 1~ , falls off as
“/ a approximately. This og?ees with later work (29). Behind

the particle, an oscillation is set up, which has the plasma frequency,,

and which is not damped. This last corresponds with the xesult of

ref (24). Subseouent calculations of stopping power are of little

interest, because they use the osymptotic forms of the dielectric

function, and because they involve terms arising from binary collisions.

Thus, because of approximations, the authors do not find the
exact form of the potential due to the test charge, but they have
produced one or two results which correspond with earlier and later

work.

Chronologically, the next paper which uses the concent of
'test particlés' and is of some interest, is that of Rostoker (26).
This author uses Vlasov's equation and Poissons equation, suitably
linearised, to find the electric field due to a ‘dressed' test

particle, at a point. By 'dressed' he means that the particle's fiecld
12



.

has been modified by the presence of the plasma around it, and what
it is 'dressed' with is a cloud of charge of opposite sign,

which shields the particle in a way which he does not qualitatively
specify. He uses the expression for the field to obtain results by
a superposition method for electric field correlations and similar
quantities. The case of non-zero magnetic field is aiso considered.
This author is interested mainly in the concept of the 'dressed' test
charge as an analytical tool rather than something of interest in its

own right.

Another paper which uses the concept of the field due to a test

particle moving with a velocity v is that by Thompson and Hubbard (27).

- They agree with the authors of ref (24) that for small v the particle

is Debye shielded; while for large v 1t leaves a wake. However they
go on to calculate the Fokher-Plank diffusion c-oe-fficients of the
plasma by gsing integrals of the energy spectrum of the fluctua,ting. T
microfield, the latter being given as a function of é(K,w) and (.

In their results they claim agreement with previous workers.

The next paper that concerns itself with test charge écreening
in a plasma is that by Joyce and Montgomery (28). Here the plasma
is given a streaming velocity in a certain direction, and. the test
charge is taken to be at rest at the origin. It is found that for
large distances x from the test particle, in three dimensions, the
potential falls off as K“; , while for zero streaming a Debye screening
of the form (é)n- e[e(x&’%(is obtained. Usging methods similar in
conception to those of ref (26), a result is obtained for the density

pair correlation function, and this is shown to fall off as an inverse

power of X!‘L , the separation.

13



Subsequently MNontgomexy and Joyce, along with Sugihara,
performed a more general calculation (29). Again, they start off
from the expression for the effective potential of a test charge as
given in (22). They then consider the dielesctric function

G 3 .b(\{l-—t k\’g where Vo is the velocity of the test
-t
particle. By dint of expreasirg it as 1) % | K \g’(/a,d;) ,
a.nd expressing ‘/D as a sum of two termg, the expression for the

effective ° ¢‘ "é"!.
Assuning an electrostatically stable plasma, the second term in ééf‘fu

potential is split up into two terms, such that é

is then expanded in inverse powers of r, the distance of the
obgserver from the moving test particle. It is found that the first

term in é’t cancels with ¢‘ for \/0{:0 y leaving the effective

potential at large r given by ¢GF - "z&,‘.#.b I‘ +9Q
‘ ™

4+ e

 being the charge and 1, a specified constant. This is proved

without any assumptions on the distribution function except that the
plasma is electrostatically stable. The results of ref (28) are

recovered in a straightforward manner.

Another paper which concerns itself with shielding of sloﬁ
test particles in a plasma is that by G. Coopei‘ (30). The function
:D(K,-lk\/a) is expressed as a small-argument limit, in k.y .

This is inserted into the potential of ref (22) and an expansion
carried out to second order in |Y_‘ (\Je where v is the velocity by
the test particle, as previously, and VQ is the electron thermal
velocity. Some manipulations are done, a.nd_fhe series of terms which
result is such that to lowe-st order in ‘\‘/VUQ s the potential is of the
shielded Debye type again. It is shown that for large distances from
the test charge, the potential falls off ag /?;3 , Where 1 1is the
distance of the observer from the charge. It is shown that the

shielding near the test charge is of exponential form, and as v gets

14



smaller, the exponential field dominates over a larger and larger

range of r., This is to be expected since in the small v 1limit

we are approaching the stationary particle case.

The paper by Laing et al (8), which forms the starting point
for the work below is dealt with in more detail in a later section
of this account. (Chap. 3a), calculates exact forms for the potential

distribution in two dimensions.

In the summing up of the paper by Montgomery and Tappert (19),
results are quoted for the form of C—(K ,0) in a magnetic fielgd,
and these helped to provide a stimulus for the later part of the work

described below.

Other work concerning itself with the slowing of test—particle§
in a plasma, in general considers a system which is collisional and
can ﬂe described by, say, the Fbkker—Plahck equation, and so is not
comparable with the analysis below, which is concerned with the
collisionless Vlasov equation. A summary of some.early work on the

subject appears in ref (31).

15



(2) (a) Mothod of Plosma Simulrtion by Particle Model

In the computer program NOVA (9), the mathod used to sirmlate
& collisionless plasma is to follow the motion of each of a large
number of charged perticles in two dimensions. Whenever the word
particle is used here, it has the equivalent and more accurafe meaning
of 'rod'. This is because the simulation is a two-dimensional one,
end the potential due to any charge moving in the plane of the
similation is actually that of a rod of infinite extent which passes
through the position of the charge. Thus we are.follcwing the motion
of each of between 10,000 and 20,000 'rods' in the field due to all
the others. The approximations which are involved will be outlined
as the description proceeds, and their effect will be discussed in a
later section, along with the relevance of their effects to the

present nmumerical experiments.

We follow the motion, in the present instance, only of the
electrons, assuning the ions to provide a fixed, neutralising
background. Jon movement can be built into the code easily, but it
was not thought necessary here. especially since our investigations
will be concerned with phenomena attributazble to electrons.
Inclusion of an equal number of ions in the calculation, though not
increasing dramatically the computer time required for an average
timestep, will increase the storage required for the code guite
substantially. [Tﬁhe reason why the time required does not increase
to an inconvenient degree, is that ions would be ascribed a higher
mz2s8s than electrons, typically 4-10 electron masses, and so, they
would have a correspondingly smallexr plasma frequency'ujp . Thus,
using the stability criterion quoted below (équation (10)), we see

that we could afford to use a larger timestep to move the ions.;7

16



In brief, before embarking upon a mors detalled description,

what ig done in a NOVA simulation is as follows.

(1) Before the calculation proper gets under way the computer
plasma is set.up by assigning positions and velocities to all thev
particles. By means of a random number generator the distribution
of particies in velocity space is made approximatély Maxwellian and
the distribution in the real space of the problem is made even down
to a scale of the order of a computational grid length. Now come the

three main stages in every timestep of the calculation.

(2) Knowing the positions and charges of all the particles in
the computer plasma, the charge density can be calculated at all points
of a superimposed computational grid.

To save time, this is in fact done to each particle immediately after

a position has been assigned to that particle.

(3) Poissons equation, suitably scaled, is solved at all -

points of the grid. This is
LY o .
\Y/ ¢ = ﬁ' here ¢ = potentia.l,§= charge density.
(4) Using sultable equations of motion, the positions and

velocities of all the simulation particles are advanced by putting

the equations into difference form and solving, using a suitable

- timestep. The steps 2, 3, 4 are now repeated.

Now follows a more detailed description.

In oxder to determine a suitably averaged value for charge
density at all points of the computational grid, two methods have been
comuonly employed in the past. These are referred to as the Nearest

Grid Point (N.G.P.) and Cloud in Cell (C.I.C.) methods, and it is the

17



latter which is utilised in NOVA. For the =ake of comparison, with a
view to ouvtlining the relative advantages of C.I.C. over N.G.P., both

will be described here.

In thelN.G.P. approximation, with the computational area
divided into a rectangular mesh, the position of each particle being
given with respect to the mesh, the charge due to any particle is
ascribed to a sum of charge which is assigned to the nearest griad
point of the computational grid (see Fig (1)). When this has been
done for all particles, individuel point particle interactions have
been eliminated, and a smoothing has been effected. What has in fact
been done is to say that the particle gives rise to a'charge density

contribution which is the same wherever it is in the rectangle whose.

- dimensions are the same as a grid rectangle and which is centred on

the nearest grid point. Another point of view is to consider that

we have ascribed a finite size to the particle.

In comparison, the C.I.C. method shares the charge, in NOVA,
among the four nearest grid points. There are a mumber of ways of
doing thig, but the simplest is just to draw a rectangle, centred on
the particle under consideration, and of the same size as a rectangle
of the space grid, and assign fractions of charge proportionﬁtely to

the areas of this rectangle which intersect the four rectangles drawn

" with centres on the four grid points nearest (see Fig (2)). This is

exactly the method used in NOVA. Intuitively one expects this method

to give a more accurate approximation than the N.G.P. method of charge
sharing and this is confirmed in practice. One way of looking at this
approximation to the charge density due to a particle is in the sense

of an even cloud of charge which can overlap all the other similar

clouds of which the computer plasma is composed.

18



With the charge density distribution now set up, Poisson's
equation is solved at all points of the computational grid. In general
this will be expected to be a time-consuning part of the calculation,

and in NOVA with this point in mind, the main Poisson-solving routines

~ have been written in USERCODE in preference to FORTRAN.

The method used to solve Poisson's equation is one of Double
Fourier Analysis (D.F.A.) which is very similar to that of Boris and
Roberts (7). The authors of the code consider that though this method
is expected to be slower than others mentioned in Hockmey (€), the
availability of Fourier transforms at every step is a useful
diagnostic as well as being a connection with theory. It ig also
useful to apply simple smoothing to the fields and into the code is
built a datapdriven.method of suppressing unwanted sﬁort-wavelengfh

high-frequency modes, to decrease noise.

All Pourier transforms in the code use the complex periodic

" transform method due to Singleton (33). The boundary conditions are

periodic in the simulation so that in effect we are considering an
area of plasma of l.x by L.g Debye lengths which is surrounded by an
infinite mesh of identical such areas. The real transforms are done

two (rows or columns) at a time.

Instead of the analytical transform equation

H b kex - gy
gem : { d‘j X 2 " * g(xn‘j) (2)
) )

the transform routine uses

Nu- Nyt |
] (z:; El -t Z -l 3)
g-Qm = xAy Lt ‘ e Q4
J=o L3I0 :

where Ll )L"U are the dimensions of the rectangle of the computation in
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appropriate units (usually Debye lengths), Nx ,?\5‘*3 are the number

of grid spacings, and points in the x and y directions. [3X, Ay are the

‘ . = AT = AT
grid-spacings, and l\-)c AL«F ) }ij i

The Fourier coefficients of the density having been found,
the corresponding Fourier coefficients of the potential are simply

obtained from the transform of Poisson's equation

Py (krvkzm) S ()

In a continuum, we would have ,.P(em . (k:+ k«: )‘i .
However, the area-weighting of force and charge, and the finite
differencing of <}5 to get the electric field E, introduce errors
of order (ICA)Z. The factor ( | & Va(kxbx)z ¥ %Q{%&ﬂ;))l)
is therefore used to remove these errors along with the use of a
 pix-point difference formula for calculating the electric field.

Before this stage the potential is obtained by an inverse transform.

s g
¢'. . | Z kaxt ‘L\‘\sl‘j& T (5)
L c-xT-sj ¢ ¢ ¢Qm
l”% ' m=-'}_‘_:s |

' 1.
which is the discrete analogue of a Fourier series of infinite
summation limits. E is now found by a simple difference method

from E = = gra.dé y and then modified as follows

EX(TX,TY) = K[ EX(TK,TY+ 1)+ hEX(TK,TY) ¥ EX(IX 3Y- !)}
where JX, JY aré levels for the grid points » _
and similarly for EY. This removesarnisotropy errors of O(k&\.L
while introducing a magnitude error which is compensated for by the

factor described above,

The third main part of the calculation is the moving of the

particles. The equations of motion used in the work described below are
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dv £ . A

ax (D
e * VY

These are solved by a difference method

teist tebag s t ¢85 ¢ont
m(@' - A ) - i(Eb‘i‘ Ay Ay ~ 9- (8)
ot X s
t+ik + ’
X - X - ,\yt*% wheve AT is the timestep. (9)
Ot

It can be seen from these that we have imposed a time-staggering
of the dependent variables X and v, X being defined at all points
after integral numbers of timesteps, while v 1is defined at half-
integi‘al times. This is a convenient manipulation as it enables
us to writé an explicit time-centred scheme which haé by virtue
of being time-centred an accuracy of Q ( Q.{',)t . This is
important since time is the only independent wvariable in these
equations which appears explicitly and 1s‘ discretised explicitly.

o
1~ % Vt@b.f

t
These equations (8) and (9) are solved for X .

at all points of the spatial grid. This is a fast method, being

explicit, but it involves the stability criterion.
webt <2 (10)

where wp is the plasma frequency. This is a 'Courant-Friedrichs-Lewy'
condition, which has the meaning that the timestep A& must be smaller
than a time of the order of the inverse plasma frequency. This is
physically reasonable, for otheﬁise vhysics on a timescale O(w('; ‘
would be obliterated by the computation; this would be wholly
unsatisfactory. In practice the timestep, for the sake of achieving
reasonable accuracy, is taken as ‘/ﬁ wp.‘ or ‘/wwp‘" and the

C=-F-L condition is well satisfied.
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Before going on to more details about the code itself and

its structure, the possible sources of discrepancy between real

" and simzlated plasmag will now be discuesed, in the following

section.
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(2) (b) Critigque of Particle Codesg

Mach work has been done by way of theory and numerical
experiment to isolate the main causes of non-physical effects in
simulated plaémas.

Moet of the drawbacks which have to be allowed for in the
}undémental all-paxrticle modef‘used in NOVA and similar codes are
gssociated with the gmall number of particles which can be represented,
partly due to the limitations luposed by the storage space available
in the computef. If we were to include the individual forces between
every pair of particles, we would only be gble to deal with approxi-
mately " 1000 particles. In the present instance, where averaged
forces derived from the‘electromagnetic field equations are used, we.
can use many more particles, and thé number we decide to use depends
as much upon the time available on the machine for performing the
calculation, as on space available, though it will also depend tq‘
some extent upon the phenomenon we are hoping to simulate. However,

6- 107 less particles

deépite"the approximations we make, a factor of 10
ig being used in these simulations, compared with the number density
we should expect in a real plagsma., Thus every particle in the
simulation can be thought of as a "superparticle" representing some
106 actual plasm§ particles.

One result of an insufficient number of particles is that the
fluctuation about the mean, say o§522nsity n, which is theoretically
1/5n will be noticeably increased - in this case by a factor 103

over the value which would obtain in a real plasma. This is referred

to as particle noise (34).
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Also, this lower particle density will lead to a decrease in
collision times compared with a real plasma; this would, for example,
act towards reducing the persistence of a non-Maxwellian distribution
function in the plasma, which would be a drawback if such a distribution
was being used, since if collision times are reduced, relaxation times.

will be reduced also. The ratio between the collision frequency VY

‘and the electron plasma frequency (¥pe is given by /[ ref (32) 7

v |
o— - s
Wee PU)Q

wheref“ab is the number of particles in a Debye square, in the two-
dimensional casce. TypicallyN;\D is of the order of 64, so that in
the numerical experiments described below there are only about 64
plésma periods in a collision time. In most cases, our initial
distribution is of szwellian‘form, go that this is not a factor to
give rise to worry in that respect. Since the theory that is used
below utilises the Vlasov equation, which assumes that the plasma is
fcollisionless', that is, that the collision times are much longer
than times of interest, we should likeito be sure that our simulation
will obey this condition also. Since no run, belqw, Jlasts longer
than a few ( <& 64) plasma periods, we can see that this ‘collisionless'
. criterion certainly will hold for the duration of any of

these numerical experiments.

Both the effects described above can be reduced by increasing

the number of particles in the simulation plasma, if the need arises.

Fortunately, however, such quantities as the Debye length and
the electron plasma period remain the same whether a plasma of
particles of charge q and mass m, densgity n, or a simulation
of it with particles of charre sq, mass sm, and density n/s is
being considered. For the electron plasma period of the real plasma

is given by
24
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w";@, L L TY.Y TR (2)

Lt [ e T NI, m ¢
Me Sl %“3) ¢
t,
where wi:sc is evidently the plesma period of the computer plasma,

consisting of a density N of charges Q with mass M.

In Hockney (32) results are given for the messurement of certain
average parzmeters, all expected to be approximately the same, and all
estimates of relexation time by different methods. They all agree

with the value T“ calculable from the expression

T . Na,

;‘{T':‘ = T ' (3)
where 'z' = relaxation time,'\?:@ = electron plasxﬁa period, and

N, p = mumber of simulation particles per Debye equare. This is
clearly seen to be the inverse of equation (1) above and shows that
when Mx, is substantially less than the number of plasma particles per
Debye square in the real plasma, the relaxation time is, correspondingly,

proportionately less.

Another, equally important source of error or difficulty is
the non-physical interaction of the particles with the spatial or
temporal grids used for computing such quantities as densities,
potentials, fields and forces. This also gives rise to an increase
in noise, called grid noise. It can always be reduced, but never

totally eliminated by using finer grids.

Inaccuracies due to the presence of the grid can lead to
numerical heating of the plasma. ILet us supposge that the electric

field is given at eny grid point by

E : Eeﬁ't&& - E?;.rref Lot (4)
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The error field will te random, and will therefore tend to heat
the computer plasma gtochastically. However, in the case of NOVA, no
gerious increase has occurred in total lkinstic energy during any run,
so that this heating is not a worry though it is noticesble always
that total kinetic energy increaces monotonically. According to

Hockney (32) the C.I.C. method, the one used here, only heats up

“at 1/10 the rate of the N.G.P. method.

The use of N.G.P. and C.IX.C. methods give rise to effective

~ force laws between the 'superparticles' in the simulation which exe

notably different from those in the physical plasma.-

The effective force laws are given in the diagrams shown in Figs.

(3) and (4). It is evident from these diagrams that the force
singularity at A= O has been completely removed. VA smoéthing

has in fact been made which hés eliminated the short range inter-
particle interactions which produce effects charactérised by short
wavelengths: that is short range collisional effects between
'superparticles' are reduced as conmpared with the’poin§~partic1e

case, because of the nature of the superparticles under consideration. -
This does no harm to the calculation since one is at present interested
in the more important collective long-range interactions with fypical
wavelengths much larger than inter-particle spacings and frequencies
whose periods are much longer than particle crossing times. Aiso,

any factor which reduces short range collisional effects-is welcone

since we are intending to simulate a 'collisionless' plasma.

In (34), mathematical formulations are given for the case
where we consider the simulation particleg with their associated
charge which essentially covers an area equal to a grid cell uniformly,

as particles of finite size or clouds which can pass through one another.

3
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Varioug plasma paramneters have been rederived for these 'finite size
particles'; these are modificd versions of the ecuivalent varameters

is used where the factor (ﬂ)
in the real case. Instead of a charge density of ¢ 3|&) being allotted
to any particle in the theory, %S(ﬂ) ig used where the factor S(ﬂ)
is called the shazpe factor and gives the density of the cloud, suitably

normalised, as a function of X. In the present case, for example,

" 8(x) is as shown in Fg. (5) and has the cross-section of a

rectangle centred on the particle. This leads to results such as

the formla for the longitudinal dielectric function c.f. Chapter 3.

e(k,uw) = | + S'(xz)‘:f l< ay (5)
av (- kAJ)

where S(k) is given by the transformation

Slk) - fo\x S({) wxp (s X) B (6)

Another result given by these authors is for the potential
enoergy V(X) of charged clouds in the vicinity of a stationary test
particle in the plasma, which they plot as a function of X.

The smaller the size of the charge cloud, the larger the value of V(0),
put it is noticeable primarily that the value of V(0) is finite, in
contrast'to the point-particle case. It is noticeable in the numerical
output from the simulation below that the potential actually at the
positibn of one of our sirmlated test particles is always finite,
because of the fact that it is in reality a 'test cloud of charge'
ingtead of being a 'test-particle', bearing out this result of

Birdesall et al. This haé to be borne in mind when simlating test-

particle interactions, along with the result for the form of the
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interparticle force~law reproduced in Fig. (4). Care has to be taken
that the centres of two interccting charged clouds, whose intsraction
is to be gtudied, come no closer than the width of the clouds, for at

closexr dictances the forces which act will be seriously non=-physiczl.

The results of Birdsall et al, concerning small amplitude

electron plasma oscillationsg, show discrepancies between point-

particle plesmas and finite-size cloud plasmas only when very shori
wavelengths are being considered, well into the region where damping

dominates.

Another fact that must always be borne in mind in discussing
the results of a given similation is that the disposition of the
paerticles in phase gpace is unlikely to be exactly in thermal
equilibrium. In.fact, in many of the computer simulations described
belqw the initialisation of the velocity components of the particles
was almost random in the interval [AV&\_ s Q.Vﬂ:l whexre \/4}“ is
the thermal speed. Also, since the laying-down of particles was
done in positionvspace similarly ~ positioning every 4 particles
randomly in successive grid squares, we might expect there to be
more enexrgy in certain short wavelength modes than might be obtained
in a real plasma. Even if we setl up the simulation plasma as close
as possible to a gtate of thermal equilibrium, it must be remembered
that fluctuations are a few orders of magnitude greater than for the
corresponding real plasma because of the difference in particle

density.

In order to study, for example, the linear growth'phase of an
instability, as a check on the basic physics of the model before
going on to the non-linear phase, one would like to be able to

follow modeg of small amplitude, without their dbeing obscured by
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fluctuation effects. One would therefore like these fluctuations
to be meny orders of magnitude less than typical particle kinetic
" energies, in order to be able to 'prime' the required mods at a low
energy and obperve its growth until saturation at around 10-2 of the
typical plasma kinetic energy. To nmake the systen 'quiet' ie to

substantially reduce noise, and ensure that it remains so for the

‘duration of the experiment one would like to have

B__% =Q for each species and (Zz0 , or ‘(CL g&_’d_ = Q
PES

Methods of doing this have been used with success by other
workers, especially in one-dimensional simulations. Byers and
Grewal (15) record one of the earliest instances of their use, in
which they simulate the linear phase and saturation of an instability.
They not only load rhase gpace in a uniform way, to reduce noise, but
do this also by truncating the spatial Fourier spectrum in the
simﬁlation. (A facility for doing this is built into NOVA.) In
'the work of Hung (35) this is done, in one dimension by having many
streams of particles at different velocities. Zrﬁhe layout of
particles on these would be ideal if in one timestep each one Jumpsa
into the position of the particle immediately in front of it on its
particular orbit. / If this happens, then to a very good approximation
the simlation plasma is éuch that the distribution function is a
constant to within the accuracy of the computer, and since the
particles are evenly spaced E 1is near to zero at all pointa. The
only difficulty is discovering how many orbits, or streams of
particles are required. If there'are too few, an unwanted instability,
the two-stream instability will develop. Using this method, effective

6 or 10°7 of the kinetic energy of the plasma

potential enexgies of 10~
can be obtained, compared with kinetic energy for a non-‘'quiet' start

of say 1073 times the kinetic energy.
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In tvo dimensicns, similar principles can be applied. The
author hag written a quiet start procedurc which, on the baslsc of an
agsumed Haxwellian velocity distritution generates sets of orbits
closed in the ccmputational rectangle, modulo the lengths of the sides.
Unfortunately it is somevhat expensive in computer time and space to
'tune' this whon say 10,000 particles are used, and no value of
potent’::} energy smaller than that of the 'random' start has beén
obtain::. Vhether this lack of guccess is due to poor 'tuning', or
to the fact that a 'quiet' start is difficult to achieve by this
ﬁethod in a two-dimensional electrostatic plasma is a matter for

conjecture.

Many predictions of the theory for a plasma of finite size
particles have been verified by Okuda (36), who concludes that
"it is certain that the finite size particle model with a gpatial
grid behaves like a real piasma as long as the Debye length and the
particle size are not too small.compared with the grid size". Since
in our numerical experiments below we are dealing with the case
where the Debye length is 4 times the grid size and the particle size,
we can proceed in the confident expectation that a plasma will be

adequately represented by the computer simletion.
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(2) (¢) Structuve cnd Preonine of NOVA

The progrzia BOVA is “a genceral purpose particle code for
placm2 sirmulation” and was originated in 1970-71 at L.RL .
Livermore by McNemara and Langdon (9); It is written in a modular
form, eand is designed to be run in a variety of modes for a variety
of purposes.‘ It is also intendod to be easy to use without the

uger's having to appreciate any of the finer points of the calculation.

The user's mzin task is twvo-fold. He has to decide, on the
basis of the problem he wishes to solve, what ;nitial conditions to
set up. Heore he becomes involved with the need for scaling of the
values of the physical quantities of the problem, but there are
default options builtd into the cocde. In &1l the simlations deacribéd
below the length is scaled to Debyelength units, which is one of the
default options. Once this lehgth scaling is established, other
quantities are automatically scaled by one of the routines. In oxrder
to set up the initial conditions the user has to set up a module,
called by the name YOUSET, for the purpose. Then the second part
of ﬁreparing the code for dealing with a given problem is to decide
what diagnostics are required; for these, extra routines may have to
be written. Once zll this has been completed, the code, in theory can

be data~driven without further additions.

However, on the I.C.L. 4/70 install#tion, running under the
MULTIJOB system, limitations of space becoms apparent. In its present
form the code cannot be run at convenient times of day, since there
are only 200K bytes available in daylight hours, and the code requires
over 400, However it can be run, as it has been in almost every case
below, with a non-gstandard supervisor which allows 500K bytes. Even

5o, in order to allew for the pogsibility, if required, of as many
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particles as possible in the simlation, the code is segrented, as
shovm in Fig (6) in order to save as much space as possible. On the
I.B.M. sysfém 370/165, hovwever, with 1000K bytes of store always
available, no space probleu as outlined above was encountered on the
few occasions vliiere thig machiﬁe was used. Of the two computers
mentioned above, the I.C.L. machine iz at the U.K.A.E.A. Culham

Laboratory, while the I.B.M. cne iz at A.E.R.E. Harwell,

A typiéal run of 100 timeateps with 16000 particles on tﬁe .
4/70 took about 30 minutes. This was after some optimization. The
fact that NOVA is written mainly as a large number of FORTRAN
subroutines has facilitated development, but leads to slow running.
The “particle pushing" in which the equation of motion is soived by
a finite difference method for each particle in turn; can be
expected to take up some 50 of the computation time, so it is of
great importanée to optimise the routines involved. At present they
are written-in optimised FORTRAN, with the minimum number of
arithmetic operations being performed, by means of absorbing scaling
factors and timestep inté both the position and velocity co-ordinate
values. Also»the original versions have now been modified to include
the statements from the two area-weighting routines called by the
'pushers'. Since these routines were called once each for every
‘particle, a Saving of 32,000 subroutine calls per tims step has been
effected in a typical simulation with 16,000 particles. This reduced
the time taken for a typical run by some 20%. It would certainly have
been preferable to have the particle-pushing routines written in
USERCODE, but because of large delays in implementing properly at
. Culham Laboratory the author's version of the code, time was not

available to do this.
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Few more detaeils will be given here of the cede. It is moxe
flexible than GALAXY (7) the previous lerpe particle code at the
Culhem Labbra.tcry vhich wag designed to be of optimzl spsed on the

English Electric K.D.F9, a machine of one quarter the power of the

I.C.L. 4/70. So far no ocutstanding improvement in perfornmonce epeed

of KOVA over GALAXY in a similar mode has been noted.

The increased flexibility of use comes from the following

gouxrces.

(1) NOVA is in FORTRAN, vhile GALAXY was latterly in ALGOL
and USERCODE: this mskes NOVA more transportable, since not al]:
gystems have an ALGOL compiler and no other assembly lang'g.age
ig the same as K.D.F.9 usercode, while 4/70 USERCODE is the same

a9 I.B.M. system 360 and 370 assembler.

(2) NOVA allows for more variety in boundary conditions.
The computational area is not constrained to be a square, and
‘perfectly conducting walls' are available as é boundary condition
to supplement the double;periodic case. It can also, with some.
alteration to the Poisson-solving routines, be run as a one-
dimensional simmlation code which, for example, is at present being

done by Hung (35), with good results.

GALAXY, however, can avoid these criticisms somewhat, since
it was designed more as an exercise in thimisation of a given

computer's facilities than with many users in mind.
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(3) (a) Ippediately Previovue Vorlk: Brost Formg for Field Due

=

(3) (a) Imnedisteiy Previous Vorlk: Froot Formg for Fleld Due

to a2 Test Prrticle in a Ploema in Tro Dimencions
The subject of all the investigations reported below is that of

the interaction of a test particle with a plasma. A test particle
not in equilibriun with a plssma is not an object which commonly
occurs in nature, but consideration of it can lead to results aboutr
electrostatic chielding in two dimensions which are of some interest.
A short historical review of previous work on the subject is given

in Chapter (1) (b) above.

e

This section of this chapter ;:ontains a detailed description
of the work done by Laing et al which is reported in Ref (8). This
forms the starting point for the investigations described in
Chapter 4, aﬁd concerns the calculation of the exact form of the
potential due to a moving charged particle in a collisicnless plasina..
Previous investigators eog Montgomery et al (29), had merely given

asynptotic forms for the potential.

The analytic form for the potential due to a moving test-
particle has been given by several authors, for example by

Thompson (1964). In Ref (8) it is dexrived in a slightly different way.

It is supposed in this derivation that for times £40 , there
is a uniform collisionless plasma described by an equilibrium
distribution function fef\l) , and that there is no electric field.
At £: 0, the test particle is introduced into the plasma, inducing
a first order electric field E.(X,t) and a perturbation of the
distribution function 'ﬁt(x,v,' t) . The charge density due to the
test particle is given by %,k *q 8 ()é - tj_.f:)

where u = velocity of particle; q = charge on particle.
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The resction of the plasma on the test paxticle (2o 4 below)
is not included in this analyeis. The equations used are the Viesov
and Foisson equations, and once these have been linezriged es

described above, we obtain

%‘é&'.%’\f}gs*g_g,béago (1)

(2)

Introducing a Fourier analysis of the v-dependence, end a

Laplecs transformation of the time variable, we get

(P*"‘i‘-‘i)% - ‘%% k.2 2o " (3)

?
.
K- WHO\HP?M) o

The '‘barred' quantities are the Fourier-Laplace transforms of

_ the corresponding functions of X and 1; the relation E = -Vé

has been used. We now eliminate -t-‘;, to obtain

where

(P ik U)kte(k, 0)

17"

et 3o
c(k,p)= 1 - t:‘if v K. aﬁv )
(peikn)

is the Fourier-lLaplace tranaform of the plasma diclectric

cocfficient.
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Thus if we now assums thait the plasma is iwo=-dimensional, which
is done in this paper to facilitazte comparison of results of analycis
with those from a two-dimensional computer code, we obtain an expreasicn

for the potential

G’dab

i ) Tk IR lee)

¢ -0

§)e Logln)ag & [ olet)ee

where G" is ouch that the path of tho p~integration lies to the

right of all singularities of the integrand.

The solution of the inner integral here is taken to be that
which ignores contributions due to the zeros ofé(&i,?) and includes

only the residue at the pole p = = ik.u . This leads to

L2 wpl ik (- at) ] 4k (s
375(25"&)'1? kt e (K ,-iky) ©

This is the equilibrium astate. Introduction of the relative

co-ordinate r = X - ut 1leads to

(4) = & wplika)di
0 ¢ B e 0

Introduction of polar co-ordinates (&, 8) and (k,({’) for r and k,

with u along the polar axis, gives

&) 20 |
4 mp[tkkww(@-qs)] (10)
D e (e

Here '@(b:f\sf’) = |+ ?m%Z(%mq;) where\i:é&::,i

where '\>e is the electron thermal speed, and Z is the plasma

dispersion function ( ), kD P ‘/ﬂ.'b , where AD ig the Debye length
kT z |
P = ( /ume")t
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and the substitutions 3¢z RA

Using the expressicn

=)
wrp [toren®-4) « ) Te)espLintd-4)]
Ar-c :

y & =-l‘<l3~ , we obtain

o (<

%(‘*,3) : %ZL(‘”{@(&A%) Ja ) dex wolind)dd

) X2 -+ o2 leon )

This expression, suitably put entirely in terms of real
quantities is used in en exact calculation of % , where it is

expressed in the form

§(a~,©)‘ z 2 An(a) cos nd - (13)

Each term A,\(a) is separately evaluated by numerical techniques.

Depending upon the value of ?‘ a cut off in the summztiion is imposed

‘at N, which is 7 for low velocities, and as high as 16 for sone

values of g > 1.‘

The diagrams showing. the result of this exact computation
are reproduced hére in Figs (7a), (7b) and (7c). The first of these
shows a contour map of é@t} for? = 1, with the test-particle at the
origin of co-ordinates. The second of these chows the crosa section
of the potential distribution along the line of motion of the test-
particle, for T = 1, The third shows part of the potential

distribution for a fast test-particle which has ? = 2.4.

In the case when ? = 1, the test-particle is moving with
a velocity of the same order as the electron thermal velocity. A

great concentration of electrons has occurred downstiream, irmediately
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behind the tegst particle. The enthors state that this in in effect
a heavily dzmped pleema oscillation. With increasing velocity the

damping has diminiched, until we observe the fully developed plaswa

| oacillation shown in the 3rd diagram, estabtlished behind the test

" particle as & wake.

In the second diagram (Fig Tb), there is a comparison between
the potential profile obtained by the calculation deacribed above and
that obtained from a plasma simulation using the GALAXY code (7) of:

Boris and Roberts. The two resulits agree very closely indeed.

A second section of Ref (8) deals with the series expansion
for & in terms of powers of “”U‘c taken to third order, starting
from equation (10). Using the expression for Z(t) valid for t < |

given in Ref (37)

ZE)E v (-t )-2t (14)

leads to an expansion of the denominator of the integrand of

equation (10) as follows

Cr R fend) 21k (4 + init(1-£)-2€) 2D 09

vhere t = \i cos¢ y a8 above.

3, ana exp (k4 en(9-4))

is expanded again as in equation (11). When these are both inserted

The inverse of D is expanded to order t

in equation (10) we obtain
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%(ﬁy,s) = A%(P\ %-A e O i\z(fﬁjﬁ} .g.{\.am'%?;) (16)

with similar expressions involving powers of } for A2 end A3 .

The factors I are given by

L]

™) = o}M( % Ja)dX o)
4 .

(=4 &)™

For n§ O, it can be shown that If:’ (a) behaves as /2

for large a . This is then the dominant asymptotié behaviour of

% » ¢xcept when ? = 0, the stationary test-particle case, when
§ = Ig (a) = K, (a) , the modified bessel function,which is
the two-dimensional analogue of exponential Debye shielding.
The resglt concerning asymptotic behaviour for ? :Ie 0 is the two-
dimensional analogue of the result of Mcntgomery et al, who proved
the asymptotic dependenée of the test-particle potential to be 1/ ad

given a stable distribution function, in three dimensions.

An gnalyeis wag done of a comparison between these resultis

and those found by the "exact calculation", end resulting plots of

§ exa.ct/ § expansion °%° reproduced in Fig (84). This diegram

shows this ratio as a function of ? for various values of a .
One can readily see from this diagram and from the other one in
this paper that the expansion method gives its best results when

} .‘< 1. To get greater accuracy would neccssitate taking more
terms in the expansions, which would have been a prohibitively time-
conouming procoes.
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The third piece of analytic work which iz deseribed is an
caymptotic expongion for S;ﬁl? in terms of “{1' < 5% CAJ“'JS% when
A >> )¢ , ie when \‘é’ ias large. Since \? is large there will
cnly be a small range of (‘"Q , centred upon 'H/z_ and 3“‘1')_ vhere the
approximation of large "i: will -be invalid, end the authors assums
that the efi;ect of extending the range of validity to the whole range

is ziegngible. From Ref (37) we take

tZ) = -(1+ th‘) ¢ Lt onp (-tY) (18)

mzking the denominator of equation (10)

D e K- B it o

where 'YZ is very small.

Now let of = gw% o lf}__‘:’_s This leads to
PR U
@(’7’) Q)gp(_bk -@.) okk (20)
ﬂz>o k= (o eon?$ ) + 10 o

Expressing K as (k’,‘ }kﬂ) we obtain

oh
5() Jam, Q ([ k: MQ(‘_’kK%) UL@(&\*«J‘%) K« é\‘évj (21)
ﬁz‘%Q “- (!;:{*- %xk; _o(‘l-* ;‘Vzkx) ]

).MM %J .JLE(LLX,,)-Q}'P(" kx‘\;jD 41\‘ Ak
P>Q N KE - o™+ v"zkx

o XSO |
g—. Aty wep (- dlM)simecse 1 <O
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A diagrem ghowing contoura of this function is reproduced in
Fig (8B). It can be compaved with Fig (7C) which was the result of
an exect calculation for t% = 2.4. In the latter, some slight
damping of the mzxima behind the particle ig. evident, but in the case
of the egymptotic expansion outlined ahove no damﬁing is manifest

because of the approximations that have been mode.

In this cazse, of ;? f) { , no computer sirmmlation was done

by the authors for reasons outlined below.

The simlation program, GALAXY, Ref (7), used by the authors
followed the motion of a largé nunber of charged particles in
two dimensions. Provision was made for whatever diagnostice were
required; in this case the potential distribution over the ﬁlane of
the calculation was of most interest. The calculation is perforrzad in
a square, of typically 16 x 16 Debye lengths; the simlation plasma
consisted of about 16,000 'ions' and 'electrons'. These paraseters
are very close to those used in most of the square mesh calculations
described below in Chapter 4. The boundary conditions are doublé- ‘
beriodio, so that the authors were in fact following one of an infinite
array of test particles moving in a plasma. It was hoped that with
boundaries of length 16 Debye lengths “- -  spurioua effects due to
boundary periodicity would not be important within, say, 8 Debye
lengths of the test particle, and so¢ a comparison should be possible
with the theory outlined above, which applies to a single test particle
in an infinite medium., The fact that good agreement between theory and
simlation is obtained Fig (7b) chows the assumptions about the effect
of the boundary conditions to be justified. The result of anothex
procedure for comparing theoretical and analytic results is reproduced

in Fig (8¢). Here, for the case of zero test particle velocity, the
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potentisl diotribution near the test particle is compexed with [Ko(%)
end with =(65(x) for various values o €. [0g{Q) is the fom of the
potential for an unchielded charged rod. The diagran indicatea cleaxly
that at ﬁ:o , no shielding has been set up, but that at later times
the potential egrees well with the shielded form Kg(%) for the two-

dimensional case.

The reason why the authors of Ref (8) could not proceed with
éimula,tion of the case where \"g> | was due to a restriction in the
code., GALAXY was written to run on a sguare mesh, and in ordsr to
encompags the whole of a wake in the coumputational erca, the dimensions
61‘ the square required would have been cuch as to make any computation
prohibitively expensive. The flexibility of NOVA in this regard makes
it ideally suitable for use in a progremme of investigations starting
off from this unfinished work by attempting to simulate the wake of &

fast particle using a rectangular array.

The main achievement of Ref (8), then,is the calculation of
the exact form of the potential due to a test charge in two dimsnsions,
which had not previously been done. Another x;otable feature of the
paper is the excellent agreement between results of collicionlees

plasma theory and those from computer simulation.

In addition, the work cutlined in that paper gives ideas for
further research into plasma-test particle interactions and sirulations
of such infera.ctions. The fact that the authors' me’chod, of
introducing a large charge at 29 caused large oscillations in the
value of the potential in the plasma which persited for sevexral 005‘
suggests that a better simulation would be done if this oscillation
could be prevented by introducing the test charge in some gradual

fashion. There is also the direct extension of this work which can
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be done if a test particle moving with %“) [ can be guccessfully
sirmleted and ite wake obssxved. Other possibllities

~arise guch as performing similar analyses with either a
different placsma veloéity distribution function, or in the presence

of a magnetic field ﬁé .

'Wbrk conéerning the case of a different plésma velocity
ﬁistribution function has been done theoretically by  Whipple (40).
Rumerical calculations by the present author using these theoretical
results have been done, az have a small number of simlations, but

the results are of too preliminary a nature to describe here.

The case where a magnetic field is present is gone into in

comé detzil in Chapter 5 below.
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(3) (v) Significance of Reesalts Concaxming Tost Parvticles

The work Gescribed in Ref (&) and the precent work are probably
the only cases in which, in a computer placma sizulation, by the
expression "iest pérticle“ is meant an extra-large superpzrticle
moving in the plasma. !%s8t other investigators who use the concept
and give “test particle™ results sdopt a differenf approach. They
have a one or two component plasma which is set off from an initial
condition and sllowed to evolve with time, without a large test charge
and its possible attendant transients embedded in it. In these cases
vhen it is desired to find the potential dug to a test charge
" (eg Okuda, Ref (36)), the authors celoct all particles in the plasma
at or near fhe chosen velocity and note the potentials at grid points
. on either side of them. Then an averoge is taken of corresponding
points, and a graph can be plotted showing what is taken to be the
potential due to a test charge mo?ing at the given velocity. It is
probable that this gives reasonable answers in the case of Ref (36)
because, firstly, his simulation is one-dimensional and so he can
afford more grid points, thus achieving greater detail, and éecondly,
his average charge cloud occupies up to a Debye length or more, and
80 can be expected to have more influence over distances comparable
with the scale lengths of the variations of potential in Fig (7b).

In our case, with two dimensions, and the charge 'cloud' occupying
one grid rectangle, which itself is much (1/16) less than a Debye
square, we do not expect a similar method to be useful. Another
drawback if OKUDA's method was employed in two dimensions is that
great inaccuracies would come in because the particles are not
convenliently moving parallel to the grid lines. This would mean
that the potentials at pre-selected distances from them along their
lines of motion could not be easily recd off but would have to be

obtained from interpolation.
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Accordingly, in iwo dirensions, in order to produce a Wiest
particle® ¢ffect which cazn be easily seen the method iz implemented
of uslng one large charge and mzss. The greatest convenience of thig

is that only one potential distribution has to be measured.

Another result of the fact that the tecst particle is given a
large chargs is that the forces acting on it will be very mmch larger
than if it wes a sample particle from the background simulation plagma.
This is because the forces acting on it, for example the drag due to

the charge which it induces in the plasma, are such that

. .
o =< -2t Q= test charge, vy ¢ test particle mass,

G is the acceleration.

Thus 1f Q. is greater than the charge q‘ of a typical
‘electron' in the plasma, then if My has not been increased as the
square of Ur s the force a.t:t:!.n:g,F will be increcased. This is useful,
for it enables, by a suitable choice of Mm¢ , the slowing down of a
pa.fticlel to be observed in a reasonably éhort tims, & time in which

a.ﬁy sample electron from the plasma will not have appreciably slowed.

The concept of a 'dressed test particle' was introduced by
Rostoker (Ref (26)), and defined to be a charge plus its attendant
polarigation cloud. He uses it to obtain certain expressions
concerning the collective behaviour of a system by.the superposition
of many of these entities, but it is not known at present how widely
applicable this technique might be. He introduces a te'st particle,
in his analyeis, into the plasma using an 'adiabatic switching factor':

that is he lets the charge density be given as

- , " v
Qo 7 o 8 (1,0) mp(illsx+ e

where A approaches zero from below., It was this that led us to the
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procedure adopited in the simulations deseribed below, of graduslly
increasing the charge on the tost particle from £+20t0 a roximan
valus at € =t . This proved parizedly beneficial in the reduction

of the auplitude of transients in the system.
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(4) (a) Introduction to Rasults of Flectrogtatie Plasma Simalation

In genexral, in each simalation described below, similax
parameters were employed as in the work done in Ref (8), and beside
the description of each individual simlation, should be found the

data which relates to it.

A typical program, compiled and composed by the I.C.L. System 4
Mltijob system, occupied some 410-450 kilobytes of core store. The
upper limit occurred vwhen ‘on-line graphics' was included. This
program was large enough for the simmlation of the motion of 16,384
particles. Since each particle has four co-ordinztes, all requiring
a word of store, and since there are four bytes per word, this means
that 16 bytes are required to describe one particle. Thus since the
naximum limit of store available is 500 kilobytes, we can only fit
in about 3,000 more particles in the remaining storage space. Thus
with 16,384 particles we are working close to the limits of the machine,
in that it would be impracticable to increase the number of particles
in the simlation by more than 20%, whereas a change in particle number
which would give noticeably finer resclution would probably xrequire
an order of magnitude increase. Thus we are getting almost the best

detail possible with the core space available,

In every section of this chapter is included the additional
theory required (where this is the case) and a description of the
results of the simulations associated with it, as well as any other

calculations which may have been perforumed.

Because of the desirability of minimising the storage occupied
by the program in the computer, instead of using the standard GHOST

system contour plotting routine, a simpler one was written by the
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anthor, and this proved quite zdequate for the parpose. Any contour
plot reproduced below was generated using thig routine. It uses
stralghtforvsazrd linear interpolation to find points on contours,

end Joing up these points with straight lines.
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(4) (v) staticnary Teat Porticlas Stortine Procedureg for Sirmlations

Before any of the calculaticns involving e moving teste—particle
were done, a preliminary numerical experiment was done to test &
proposed method of introducing the test-particle "adiabatically® into
the plasma. This was prompted by the idea of the use of the
‘adiabatic switching factor' by Rostoker (26) to describe the
introduction of his test particle into a plasma. The object of this
;s to ascertain whether the lorge fluctuations in the potentiai
observed in GALAXY runs Ref (32) over the first several ( ~ 8 or more)
Xté}: and which can be ascribed to the transient effects set up by
the sudden introduction of the test charge at €20, can be eliminated

or reduced.

in the GALAXY runs, however, the overall shapz of the potential
distribution remained the same once the dynamic screening had bsen set
up; only the unwanted transient effects caused the values of potential
over the whole distribution to oscillate upwards and dovmwards in step.
The fact that the overall shape of the distribution remsined the same h
meant that this did not adversely affect the results. Homever, in
the numerical exferiments below, where, for example, we want to set
off a particle with a given initial velocity and observe its slowing
down under the effect of the reaction of the plasma, we would prefer
to have transient effects eliminated, in order to prevent any possible

adverse effects on the results.

Since the NOVA program is written in modulaxr form‘in FORTRAN,
the modificétion required to perform an experiment to decide whether
the adiabatic introduction of a test charge is advantageous, is simple.

In fact & switch was built in so that the tests could be data-driven.
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Vhet wag in fact done was stroightforward. It vas dscided that
the charge on the test-particle should increase with time such that,

for times less than the plasma period the .cha,rge q:(.‘t) is given by

alt) = cumax 2t (% @

/

vhere CWMAX = maximum charge, 't’p = plasma period, £ = time elapsed.

For times greater than '\"p s the charge was held constant at the value

CHNAN .

It was also hoped thzat after a time fp had passed, the local
charge distribution would have rearranged itself, such that the
expzcted shielding would be set up. This is of importance for later
experiqents when ve do not want to allow the drag force, due to the
charge induced in fhe plasma, to act on the teat particle until such
time as the induced charge has been fully established. An early test
run gave an indication of likely errors in a calculation of drag on a

particle, starting with q, =CHMAX at €:Q
The following two runs were implemented subsequently

(1) The test particle was set up with charge equal tolHMAX att:o©

as follows:

MESH DIMENSIONS 64 x 64

PHYSICAL DILENSIONS OF PLASMA 16 x 16 DEBYE LENGTHS

TINMESTEP DT | 0425

NO. OF 'PARTICLES' IN PLASMA 16384

CHARGE ON TEST PARTICLE 200 UNITS
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(2) The teet particle was orizinzlly eiven a charge of one unit,
the eame a3 the plasma particleas, ond this was, gradually increased to

CHMQ*}J?..EQ-G « The other data remained the sane.

A graphical enalysis of the results clearly demonstrates that
transient oscillations are elmost eliminated in the second caze, where

the charge is entered adisbatically.

In case (1), where the test charge is introduced with its
maxinum value at the beginning of the simlation, it can be seen from
Fig (9) that oscillations of a large amplitude are set up, which show
little sign of damping as time passes, as far as the simmlation proceeds,
that is, a total of 17.5 plasma times (wg‘) . This graph shows the
value of the potential, ‘in arbitrary units, at the co-ordinates of the -
test-particle, and it can be seen that the amplitude of the wivanted
oscillations is about % of the average value of the potentizl. The

period of the oscillations was estimated to be sbout 2°5 «Of ',

We should like to check that shielding has occurred befoxe 2

time of t'p hes elapsed in the simulation.

According to theory, the unshielded charge in two dimensions
gives rise to a potential distribution %(X) ~ M(X) , while
the shielded cherge gives rise to a potential distribution q;-(x)n\.KQQ(J

where Ko is the modified Beassel function of order Q . For various

- values of elapsed time T » the potential distribution in the region

of the test charge was plotted zgainst -\mx and against Ka (X_)

It was found that shielding had been already set up after 10 timesters,

fe after 2.5wW5  .The plot of the potential (¢) egainst
Ko(x) Fig (10) for ¢ ¢ Z-S'Nf," shows good linearity,

demonstrating that shielding has taken place in the expected manner.

Thue shielding vzfill certeinly have taken place by 't'?,s’lr;-w;‘ y a3 had

been hoped.
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For caze (2) with gradunl increcse of testepariicle chargs, the
potential at the rozition of the test particle wasg plotted as & function
of tire, and this is reproduced in Fig (12). It can be scen that; a8
was hoped, there do not occur the large anmplitude oscillations which
dominated the behaviour in Fig (9). One czn see clearly the gradual
increase in potential with incressing test-particle charge, and once
the maximum charge has been established, it is noticeable that there
islmerely an oscillation of small smplitude which is quickly damped

leaving the potentizal at a value which remains almost constant with time.

In this case also, the potential distribution near the test
particle was plotted against LM:,(XB end Ko (X) for a chosen value
of €. Exemination of Fig (14) and Fig (13) show that by {: 4“
the line of Q&(k’)/ Lc»s(k) hag deviated from linee.rity while :
§Q()/ (':L) appears to be a good streight line. For the purposes
of comparison, a graph of Kb(xg against lc@y(%) ia shown in
Fig (11), which indicates that the plot of @)againet (&3()()

Fig (14) has talken up a form which one might expect for a shielded
potential distribution. This, in addition to the results abcve give
us the utmoét confidence that full electrostatic shielding of the

test charge will have been set up by ‘t < Q"p

The results of this preliminary work. are satisfactory, and enable us

to proceed with confidence to further numerical experiments where the

- reduction of transients, which we can ncw achieve, ensures that the

physical effecta in which we are interested will not be obscured or

adveresely modified.

Mathematically, vhat is now being done is the following.
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Instced of the term L;‘*ﬂ'i‘t S(‘A-LL{”:) in the equation (3a(2)) we
now have Mg %Lt_x SC"A« U:f) where

k) = gt/ T 02t T (2)
!

o = q gt

Vhen we perform a Fourier-Laplace transform on this new functiom
we obtain, where ’3(’ means Fourier transform, ;f means Laplace

transform.

¥= %L ‘*WU@S& ’9-1(—1@9@0 ng(-ir\x)JLs@(ak,(x-ut)}a(sgsak

: f{m q’(t) exp (-(p ¥ L‘.s,g)‘ﬂ At

o) . .
Splitting this up into two integrals from O toT and from T tpod

we obtain

- Le-ﬂ“(' ‘ | - ke N
8 ‘T(.P‘”LE"ED’.[‘ ~ ’W?( (p+ *:'P_‘)ﬂ} (2)

which tends to lﬁ'“‘tkp«-i‘ﬁg) as T==> O , and which becomes

very small asg T becomes very large. When we deal with the pole in
the inverse Laplace transform in equation (3a7), at p=- iﬁ:.g , this
term tende to lﬂ'(q_ as before, but the oscillating terms derived from
the roots of é(k,w}:O s and assumed to be damped in the analysis
of Ref (8) such that they do not affect the large time solution, are
modified so that their initial amplitudes, compé.red with what it would
be in the case of the sudden ewitch—on of test particle at t=0 ,

are reduced by a factor - ‘ { T . The potential is given by

(see Ref 8)

L { ol L k. (x-ut]dke
’7( ‘& S -~ D_)ép - L . ,Q,h.,\m l
é—( J ) T e (K,-i.\’s.g_\) - +[0\0~m(st&;);nc‘>:u \c».ﬁ‘deﬁ]
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Uging the procedure outlined above, this becomssg

4 [ [:\.«\E()}'; ‘&«'{3)] a‘\,lff ‘ dowmpad Cﬂw\o‘\’wl
f‘{_g-(’(;t) * R ix eCk, - 1k.q) + % #?:Wm (6)

e X 2 0(&)

e

Intuitively, and demonstrably, the longer the time { , the more

the amplitude of oscillating terms would be expected to be reduced.
. —

Howevexr the longer the time [ the greater the computing time

g
required. The present value of | = Q-W{m? seems quite edequate

for the purpose of bringing dovmn the amplitude of umwented oscillations

‘in the level of the potefxtial in the simulation plasma.
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(4) (¢) Iowinz Test Derticlas ¥o Penction of Plaswa Upon Teet Perpticls

o Gaisvewe

In part this section is a repsat of provious work (I2f 8),
serving as a check upon the performnnce of the KOVA progran.
(1) A test particle of greater than thermal velocity waa introduced
into the simmlation plasma at € :9Q , and the resulting potential
distribution after a time when trensients had been eliminated somewhat,
was noted, with special interest in the cross =section parallel to the

direction of motion. Soxze relevant simlation parameters were:

MESH DIMENSIONS 64 x 64

PLASMA DIMENSIONS 16 x 16 DEBYE LENGTLS
TIMESTEP DT 0.25

NO. OF PARTICLES IN PLASMA 16384

VELOCITY OF TEST PARTICLE

The above mentiohed potential distribution cross-gection after 70
ateps was plotted, but is not reproduced here, and was found to compare
favourably with that in Fig (7b), which is the result of a run in (8).
This was one of the preliminary testing runs with the full NOVA code

on the I.B.M. 370/165 at A.E.R.E. Harwell.

After this result had been obtained, it was decided to repeat
the run with a gradually increasing charge on the test particle, and
this was successful in reducing transients as before. A slightly
smoother collection of potential values through which to drew another
cuxve as in Fig (7b) was obiained, and a g@od similarity was obtained,

though, again, this curve is not reproduced here.
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As in 4(b), in the first part of this experizent the potentiel valus
at the test particle fluctugted wildly zs time progrussed, while in
the second part, once the charge had been cstsblished, fluctuaticns

were of much smallexr amplitude.

Thevnext part of this section conceras the verification of the
predictions of Ref (8) concerning a test particle in a plasma moving
with a velocity greater than any of the velocities simulated by the
suthors of that paper, using GALAXY. Their analysis, like that of
earlier work (Refs 24, 25, 27) predicts that the test particle will
leave a wake in the form of a plasma oscillation behind it as it moves
with a high velocity, this wake being damped slightly. In order to
allow a suitable physical length along the directicn of motion of
the test charge, in which to observe the wake, which will be much
longexr than the strongly demped one observed in earlier runs with
smaller test particle velocities, the computation had to be switchad
to a simulation of a rectangular {two-dimensional plasma. This

involved a few changes in coding.

It was decided that no pair of sides of the rectangie should
be less than eight Debye lengths, in order to ensurs the suppression
of boundasry effects; aléo it was decided to keep a plasma of the same
vhysical properties, and to keep, in the new case, a computational
mesh in the same relation to the physical lengths as previously.
Accordingly, the number of mesh steps and Debye lengths were doubled
in the x-direction and halved in the y-direction, to give a 128 x 32
computational grid, and a 32 x 8 Debye length rectangle. Thus there
are still four mesh steps per Debye length, and 64 particles per

Debye square (Nb = 64).
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I% would be preferable to have a rectengle which represeats a
vhysically longer axea, but this produces problems. This is because
we can only have a grid of a mumber of meches which is o power of 2
because the Poisson-solverg require this constraint. Therefore, we
wéuld need e grid which was 256 mesch lengths in the x-direction, while
retaining 32 in the x~direction, szy, if we wanted to‘increaae, in the
slightest, the numwber of mesh steps along the direction of motion of
the particle. The motive behind increasing the number of mesh lengths
would be to ensure that there were a suitable’number of grid steps
per Debye length, when we incrcase the physical length of the simlation
plasma. The present level of 4 grid lengths per Debye length is near
the lowest 1imit which can usefully be used if shielding properties
are to be represented accurately. When we double the number of mesh
gquares, if we retain the same number of simulation particles, we
are reducing hd%b by a factor of 2, noticeably altering plasma
properties. However it would be outwith the storage capabilities of
the computer to double the number of plasma particles, or even to
increase it by more than a few thousand, in order to try to keep
plasma properties the same as previously. Thus any propéaed
similation with a longer physical area must be affected by the fact
that the system which ﬁill be simulated on the computer, will be a

less accurate representation of a plasma of the type of interest.

Having & rectangle of 32 Debye lengths end to end, we are
clearly somewhat limited in the length of test-particle wake we
can hope to simulate. This is because the calculation has periodic
boundary conditions, and if the weke is of the sams order of magnitude
as the length of the rectangle, the test particle will interfere with
the end of its own wake. Thus we have to ensure that we would not be

dealing with wakes of such a length (unleés interosted in the.interacﬁion
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of a teat particle wlth & walkel). Tous howover long the lightly
~ demped oscilletory wake may be that is left behind a particle, which
is travelling at velocity U ,' in the pteady state, we cannot describe
it in the simulation after more than 32 Debye lengthis of it have

been generated by the test particle.

The first run which was performed was with a test particle of
vf;locity 2.0V, » where ey = 1.0 in ecaled units. The form of the
cioss gsection of the potential distribution parallel to the direction
of motion of the particle after /0 steps is given in Fig (15).

It can be seen that the 'wake' is still quite strongly damped, as in
the previous -results. The value of \‘i’\rﬁ. used here is larger than
the greatest value %'3 | used in eny of the actual simul‘ationa in

Ref (8), so that, at this point we have gone beyond the work of that

paper. Data for this run wexre as follows.

JESH DINENSICNS 128x 32
PAYSICAL DIMENSION 32x 8 Debye Lengtha
TIMESTEP DT : 0.125

KO. OF 'PARTICLES' IN SIEULATION 16384

VEIQCITY OF TEST PARTICLE 2.0

This run completed and the results noted, it was decided to
attempt another run with a higher test-particle velocity of ATx 3.5
Thiz means a value of ? of 1.78. The results show that the test~
particle is now moving fast enough to generate a wake, and the crogs-
section of the potential distribution after 80 steps is shown in
Fig (16). The latter zhows the state where the 'bow wave' in front
of the particle has alwmost czaught up with the end of the 'wake'.

This is as far as the calculation proceeded. ‘The fact that this weke
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ccouples 32 Dabye lengths and probsbly would require many more to

girnlate it in its entirety, leads one to the conclusion that for

"~ highex velocitiesz, specificzlly in oxder to compore simlation with

the analytic result Ref (8) for ¥*=3 Ju , a prohibitively lonz rectangle
5 ” .

would be regquired if identical plasma properties are to be mazintained in

a similation snd if wske interference is to be avoided.

It was, hcowever, decided to attenpt a sirmletion which could
describe a longer wake, by using the game number of gimlation plasma
particles and the same computational grid, but changing the physical

scaling from a 32 x 8 Debye length rectangle to a 43 x 10 Dsbye length

| rectangle. The hopa here was that one could describe more of the wake

without any interference occurring between the end of the wake and the
bﬁild-up of potential in front of the test particle. A NOVA run was
implexented with the same data as the last one described, except for

the new 43 x 10 Ay scaling.

The potentizl distribution which had been set up by the time
that 80 steps of IONE = 0«1%:‘;' had passed is represented in FJ:.g 7
where the cross section of the potential distribution along the line
of métion of the particle is plotted. Consideration of this diagram
reveals 2 noticeable ﬁinima behind the test particle, at about 2 and 17
Debye lengths distant from the test paxrticle. This is a good indication
of the tendency toward the setting up of 2 spatial osecillation of
potential behind the test particle wifh respect to the test particle
position. Any indication of how gtrong damping effects may be at this
velocity, is unclear frém the data, but it‘is evident that they have

largely disappeared compared with the slow test particle case.

Further increase in the number of Debye squares simulated by

the 128 x 32 grid mesh and the 16000 particles, will have two deleterxious
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effectz. ZTFecause of the decreace in the number of grid cells per Dobye
cell the effective ‘aize' of each particle will inecrease, tending to
make the plasma more collisional. The decrcease in the number of
particles per Debye mquare will have a similar effect, as well as
reducing relexation times. Together these two effects act towards
making the simulaticn a poorer representation of a collisionless plasmz,
and results obtainéd begin to have doubtful validity. Bzcause of these
considerations it was decided that little would be gained by 'diluting'
tﬁe plasma in the sirulation any further espzscially since the main
motive for this would be to simmlate a wake in something much nearex
its entirety than in any of the above examples. The fact that this
would require an order of magnitude increase in physical plasma length

indicates the amount of 'dilution' which would have to be done.

This does not detract from the fact that we have here demonstrated
that for fast-moving particles in the plasma a more proncunced
Gscillatory wake is set up behind them as they move than in the case
of cubthermal particles. However due to the lightness of the damping
of the wake, and the periodicity and finite length of the simulation
plasma it is impractical to simulate the whole wake, the best
quantitative description of which must be given by calculations along

the same lines as those in (8).
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(4) (4) Slowinz of o Tost Perticle in o Fleomn

In the rurely electrostatic case the ghielding of a test particle
in a plasna is equivalent to its indveing an equal and opposite charge
in the plasmza; this indueed charge reacts upon the test particle,

producing a drag opposing its motion.

In oxder to worlt out the value of this drag force we proceed as

follows.

The potential%(/ﬁ') in the plasma, whore ’?"' ig the disfance of
the point of measurement from the test particle, is given by the sum of
two terms, which we refer to as the 'self term' and the 'induced term'.
The self term is Jjust the potential which would be measured_ if the ‘
piasma was not present, while the induced term is the potential due to

the equal and opposite charge induced in the plasia by the test particls.

So

g - ?Tmm’f@mg | | )

We know from Chapter (3) an expression for (5 and we also know
that for §M % , “the vacuvum potential, so that we can write, using

equation (3a(9))
§ s QL%@’(_.L - L\ Ak )
Londuees ~ T K¢  K*) =

Thercfore, the induced electric field is given by

. Lk, :
% "an \fa -i'(’-l‘-— -.-‘—-)c,“:.’_ (3)

Ewmu\ — kG k*
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Now, the drag force at the position of the particle will be given by

F oz g Eues® @

where r = 0. Thus from (8)

. 3y ob ( l
- gged| Rk A—, - L) ®
F 1‘( dsgﬁ L& ¢ %‘- A {iz+ kb % {:1>
0 3
where 'f) = é(u}’\Q}) = (4\‘{’:‘&\% Z.(\“?mqi)) where 2?

ig defined as previously. This result is for the two-dimensional case.

F L?‘f:'f» db m‘é[‘* %o Z(?mcﬁ)]%' | (6)

A graph of this function, which was obtained by nume_rica,l
integration, is reproduced in Fig (18). It has a ma#imm round about
\tg = ';5 , and goes to zero for very small and very large values
of } » In the case of a slow teat particle, ie \? <L , the
expression (6) reduces to the following form, if the Debye length is

taken as the unit of length
% '
L 2
F= - q % (7)
a3 ‘

This differs from the expression obtained in Ref (25) for
example, but this can be explained By the fact that not only are
collisions considered, but the analysis is for 3 dimensions, and the
approximation mentioned in Chapter (1b) has been made. In fact there

are few grounds for comparison at all.

For large velocities (}i >> I) the limiting expression for F

is given by
g - _'Rq} kp __L @)
NER

62



It is notable that this xesult differs from the three-dirmeonsionzl
case, where there is a log divergence for large !E , and a cut=off

kmm is usually taken at distence of closcst approach o. = fi/r’:‘,"f"
A snall progranm was written to solve the simultaneocus equations

of motion, where Q-r is the charge on the tsst particle,

M

C&:}’ = '\“ F<”J%‘T) o (9)

o &

&% | ' (10)

. where AV = velocity, M = mass, T = position of test particle

respectively. These describe the motion of the test charge in a plasme
in two-dimensions acted on only by the drag force given in equation (6)
above, The particle was given an initial velocity \/ and the equations

were solved using a Runge-Kutta technique (Ref 39). The result is plotted

in Figs (20) and (21) showing the distance travelled by the particle in

Debye lengths and the reduction of its velocity as it moves. The data
uséd in .the plot of velocity against timé were now _u_s:ed‘»to plot log(@_)’ )
against time, in order to demonsirate graphically the range of AY |
over which linearity could be expected in the function F(%J ,

For if we let F(v)z= =KV  then

Mmav _ _kw (1)

d&:
Rt

Then (2 A2 | A and B constants, so that the graph
of \63(/0) against 1T would be a straight line. The result of this
plot is given in Fig (19) where it can be seen that linearity holds for
AT up to at least '\J,eﬁ\(: \ ).
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This resmult having becn obtained from straightforward Vlasov
theory, it was now an opportune moment Vto run the NOVA code with
aypropriate input data in order to see whether the linear theory we
have uged, which essentially treats the plasma a3 a dieleétric redlun
with frequency end wavelength dependent dielectric constant, is
sufficient to dezcribe the slcowing of & test particle in & plasma., It
turns out that this is, in fact, the case over most of the range of

velocity used, ez is shown below.

A run wes net up with the following data.

MESH DINENSIONS 64x 64
PHYSICAL DIMENSIONS 16 = 16 DEBYE LENGTHS
TIMESTEP DT 0.25 w;‘

NUMBER OF PLASWMA PARTICLES 16,384

CHARGE ON TEST PARTICIE 200 UNITS

MASS OF TEST PARTICLE 1000 UNITS

VEIOCITY OF TEST PARTICLE {1 ELECTRON THERMAL

The I.C.L. 4/70 was used for these runs. The first twenty-five
timesteps were occupied in establishing the full charge on the test
particle, so thaf data.was taken from the 26th step onwards. Since,
by this time, according to the results of 4(b), shielding will have
occurred, ie, the induced potential will have been set up, we perform
this numerical experiment in the confidence that the force acting on
the test particle will be attributable to an equal and opposite induced
charge in the plasma. After the run déscribed above,.two other runs
were made with different timesteps DT:0.2 , and initial velocities

y &nd respectively, and the results were marged to

give the one graphs of Figs (22) and (23). The parameters used
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were such that the slowing dovn was quite gradual, and quite a long
tins would have been neceszsory to follow the wﬁole of the particle
trajactory in one calculation - a run of such a length that there might
have been délaj in getting it implexented on the machine., The plots in
Figs (22) and (23) compare well with the results of the calculations
from the analytic formumla. Therefore we can be confident that in the
czlculations of tegt-particle intexacticns, the drag forece acting on
.the particles at least at velocities which are the oréer of c*’

less than Ve will be that given by the derived formula.

It is of intereat here to repeat the plot of the variation of the

. logarithm of velocity of the test particle with time, to compare with

the theoretical result. For the NOVA run described cbove, this wes
done, and a straight line was obtained which included almost all valucs
of‘~3 used, from 1.4 downwards. This is shown in Fig (24) where only

points representing high velocities ( ? ~ |.0 ) and points representing

‘low velocities show any deviation. In the former case this can be

ascribed to the non-linearity of the force law for larger ‘; s and

in the latter cagse the deviations can be ascribed to fluctuations.

There is a good comparison here with results of Fig (19)
especially since the data points secem to deviate from linearity at
the same place on the straight line at the high velocity end. This

shows a good agreement between theory and similation.

It is noticeable from the results obtained, that the test particle
does not keep moving parallel to the direction in which it was set off
at first. The amount by which it is deflected is not large in comparison
with the total distance it travels, and the transverse velocities it
develops are not large compared with its velocity parallel to its

original direction of motion. The forces causing the test charge to



leave its original vector direction of motion are due to fluctuations
in the transyerse electric field which it experiences along its pathg
only here, since the force is proportional.to q;/%h- and this ratio
is mich great (& factor of 40) than the same ratio for a plasma
particle, the deflection in a given time for a test particle moving
with a given velocity, is mich greater than that for a placma particle.
In other words the deflection time ?5 for a test particle is much
shorter than that for a plasma particle, where 73 ig defined to bYe

the time required for a moving particle to be deflected by TW&L .
Deflection times in simulations of this type, as discussed in

Hockney (32) are shorter than in real plasmas, so these larger
deflections, experienced by the test particles, are a non-physical
product of fhe sirmlation, which can only te reduced by having smallér :
fluctuations in the field. This in its turn requires smaller

fluctuations in density, which in turn requires either many more

-particles in the simulation, or some form of 'quiet' start, where as

even as possible a distribution of particles in phase space is set up

in order to generate force fields which are as even as possible.

The effects of field flﬁctuations were most noticeable in a run
with mass and chérge of test particle put equal to 200 units. This
gives a scaled value of Q:L“T %'ﬁ* , a8 compared with ‘Zio for the
previous case and 34%0 for the plasma particles, where in the test
particle case the charge q,f is 200 units. In this case one can
clearly see fluctuations on top of the general line of the slowing-down
graphs in Fig (25) where both position and velocity are plotted as
functién of time. The fluctuations in the parallel field clearly affect
the shape of the slowing-down graprh, and when a plot of ,Q@,W) against

t was roughly sketched, & very poor result was obtained with respect

to linearity.
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Congideration in move detall of the results shows that the
fluctuations begin to have a serious effect long before thermalisation
of the test particle haes been reached. By thermaligation we mean the
state where the test charge has lost kinetic energy to the plasma to
an extent where '{ My U;' ':_ '{W\N;L '
where rw\g’ﬂdeﬂ\ are simulation electron mass and thermal velocity

respectively, and “\T'fgyr are mass and velocity of the test particle.

| At the stage where the particle has been slowed to Vo~ 0:24p "
it is noticeable from numerical output that changes in kinetic energy,
under the effect of the fluctﬁations in field, axre of the same oxder
of magnitude a3 the kinetic energy of the test particle itszelf,
There are changes, over times /uuos‘ , in the transverse kinetic
energy (pérpendicular to original direction of motion) of the same

order of magnitude once the test particle has slowed.

These fluctuation effects are disastrous from the point of view

of sirulating the slowing of a test particle in the plasma due to

‘collective interactions. When the larger mass of MT3(0T0 units

' was used, however, as described above, the factor of 5 in mass proved

enough to remove these computationél effects to an extent where the

results that are produced, are satisfactory.

It is evident from the foregoing that in discussing the reliability
of 2-particle interaction simulations, allowance will have to be made
for the amount by which.a particle may be deflected from its path merely
by local variations in the electric field EE , and this will be borne

in mind later.

At this point it is of interest to discover whether the presence
of ions in the plasma will affect the slowing of a test charge in the
plasnma, at the velocities which are considered here, which are of the

order of magnitude of the electron thermal velocity.
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The analysis is a straightforward zdaptation of that given in
Ref (8). Anothecr (Vlasov) equation is reguired, to describe the

effect of the iong. The Fourier-Laplace transformed équation is

}

G

LN D ~ Y
+ikv)ix + & L k.o
Lp - “). @0‘_ mc - i}

sy

. = O | (12)

i<

-

where -é‘, is the transformed 1st order perturbation in the ion
¢ -
distribution function. If we let 'g‘e be that for the electrons,

we cen express Poigson's equation, transformed, as in chapter 3

as
k‘$= lerce fgdu-i&ne Igi_d\v + bereq, (13)
- R R GRS .
Using fhese two new equations in the analysis a3 before, we
obtain
. \i.%w.e d\) L&. P \(' BE_‘Z; é\\, .
C(k,) \-L”:Y:& = -—-x‘je' = 3N = ()
¢

mw
(p+ i) (p+iky)
As in Ref (8), this leads to the expression for the potential

distribution due to the test charge
iy

M‘kwﬂ@ ¢)) dd 1
@(k’@):% kdk w '%Q(beﬂc?) (-\\b % Lwﬁé) i

Q Q

where

Lilord)s s NieobZ (300 8) s e tone

and similarly for the electrons, and the definition of E;; ,\fg are

as for ﬁ? before, for the two species,
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If ions and elecirons are at the same temperature, we get
k'bl T 5*‘;‘3 e’ kB » and when we folicw the same
procedure as outlined earlier in this section, we get the drag force

on the test particle as

ax A
Fr ik | dhand[24 eordZ (R und)s Ruanh LRwd)[ (9

a L
: ™M
here § is ?e and 4 is given by -;;"& . For the case where

the plasma is fully ionised hydrogen where the molecule i.s ionised
into protons and’ electrons, we have Mi[m,: 1200 giving J"%‘ =40
If wé examine the contribution from the two & terms in the expression

(14) by taking the asymptotic large velocity expression for the ion

© and the low velocity expression for the electrons, we can estimate

when the contribution due to the ions equals in importance that of the
electrons forltest particle slowing purposes. The reason why we adopt
this procedure is that thé ions can be expected to have a contribution
which is peaked at a much lower velocity than that for the electrons,
so that that part of the distribution described by the asyﬁptotic
expression will certainly apply over the range pf velocities of the

order of electron thermal.

Thus, we are cémparing

ko ~ - -ri‘» ‘Ltkﬁ‘
& %%k )

With &40 , we obtain }A::‘ 0.2 ,o0r (=03

where 4 is the test particle velocity in units of electron thermal.

Thus for the lightest possible ions, the electron c;ontribution to

test-particle slowing is greater for w % O3 , than the ion

contribution., Thus we can feel justified in leaving out the ions from

the analysis since they will not seriously affect the slowing-down
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results for the velocities which we have investigated above. From
theory and simlation therefore this chapter has given an adequate
quantitative description of the slowing of a test particle in a

collisionlens plasma,
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(4) (e) Symmatric Slow Collisicn of Test Particles in 2-Dimensions

Using the expressions for the potential derived in Ref (8), and
the expression for the drag force due to the plasma derived in the
previous section, we can derive egquations of motion for the interaction

of two tect particles in Q plasma (Ref (44)).

It is essumed that as the test particles approach, slow down
and collide, the change in their velocities leads to chenging potentials
with negligible transients. We give to the two teat-particles space

co~ordinates .4‘" Ay and velocities A , Ay, respectively.

potential
The equilibrium/\field at A~ d}xe to the second test particle
(7.P.2) is $ e A «))’3._ M@(L‘;‘Sﬁj '.-‘.‘:v.‘)) dle (1)
Lt k* e(lg, -k

where, again & is given by the expression in equation (6) Chapter (3a).
potential :
Similarly, the{field at rh due to T.P.1 is

'§u(,}:‘"§‘t«l> : g.?' MQ( CE . (&L- 4:\)) dk o (2)

As in Ref (8) the distribution function for the plasma is taken
to be Mé.xwellian in form so that & is independent of position, and
N -
§’z , é_u are functions of A" only, where ": 2 T‘ -k:z_

g ([ anp(ilr) dk
§\7_(h:\'0:) ol Kl&(\é,-u“:_.\l,_) (3)

FTOR ! (A die o
PAUTI WP RS
§&'(. \Ml§ B1y \ﬁ'c_(k -Lkw') .

é N is a scaler function of f\-z,'\):: and 4&4\)1 .  For small
]

velocities, relative to the electron thermal speed, (g 1q can be

expanded in the form (gn( 1\)1) oY x L) AWy (5)

+ higher order terms,
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T
Aleo 5 (/{\ t\)) is obtzined from @ (“%' 4w 3 by interchenzing
\f-a 'Z,( -/ ' nn.‘% —’ ..%

and AJ, &nd’\)z ’r“iweé;;&.?@n Thus to loweat oxder in V‘

G (b)) =elr) = by, ©)
The equations of motion for test particle (1)is given by
N\—-r"}'\ DA b%(i‘ \f,. , and similarly for the other.

This gives, for small AN /\)z

, \
Q - ‘& Al ”
wg E TR % £ ()= b - Fly) 1)
M,q:‘ N, = i:-\_"\:_ - ‘9_‘_ (4-,«).)- by, ":(M’)
@ - - bt -

F('\J) is a linear function of AF for small velocities, as shown in

the previous section; we shall write, for convenience, R\/) (:V

where F '“41'/ r' , having chosen unity for the scaling of thermal

velocity; and Debye length. Introducing a relative velocity

'o\_,:‘. f\)\-'\i,. we can get

ARV ‘9;-5{*: *\'&%\,*:(4:-!)*&\"“:)\-’ | ®)

Also, if we introduce a centre of mass velocity \/‘. \;L('\).-M)z)we get
|

W‘C_\‘/i ‘%’t(’i'.\l) ‘Q’M‘:)\[ ()

Thus the drag coefficient is increased if b > Q in the
equation for centre of mass motion, and there is also a drag aligned
along & in this case, Similarly for relative motion the drag is modified,

as is the force acting along the relative co-ordinate ’_t .
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If we toke the cross-product of the eguation for relative motion
V with 4, and let = &A%Y we obtain
M Axar - & L o= Axar)f _@ b (b-F)L (10)
. &k :

In the special case of a symmetric collision \/‘ ==V, , and

80 '\f = Q . Thus if we use a polar co-ordinate system (ﬁ%‘, ?)) , Ve

%@-c (%) = ~Ad+ b ad {b-F) & (1)

%L— = (-F)L - ()

é:(&uv) = Q.( AQ “"p\\c’m %> (1‘3')

mm o §(An) 2 o+ b))

This gives @ = lIZ b 'lﬂ ‘ = so that
= —!
, . >
AU TR N VN (SO I S O
’ (_xz-t-"i‘v"
o

the unit of length being taken as the Debye length. Knowing functional

forms for O. and | it is possible now to solve the equations (11)
: A (15)

These are three simultaneous equations in three dependent variables

and (12) numerically along with the equation OE&/"’

and one independent variable, and they were tackled successfully using
a Runge-Kutta method. By varying parameters such as the effective

charge and mass of the test particle, it was attempted to find an
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estimate of the paramsiers which would best suit a computer simulation
of the same event, The points madc in the previous section concerning

fluctuations in field, ete, had to be borme in mind carefully here.

In order to ensure that the potential ehergy due to the couloub
repulsion between the two test charges was great enough that they did
not approach within 0'153\9 (one grid mesh length), a suitably small
initial velocity was taken in the sirmlations. A NOVA run was now |

initiated, with the following details.

MESH DIMENSIONS 64 by 64

PLASMA DIMENSIONS 16 x 16 DEBYE LENGTH

NUMBER OF PARTICLES IN PLASMA 16384

TEST PARTICLE CHARGE 100
TEST PARTICLE MASS 1000

INITIAL RELATIVE VELOCITY 0.5 ELECTRON THERMAL

What was done was as follows. The test particles were set up,
with zero charge, some distance apart, the distance being pre-calculated
and dependent on the relative ve;ocity N X) «)Q A C The particles were
allowed to approach each other ét constant velocity, until such time as |
their charge had attained its maximim, when they were approximately
3\%) apart. At this point they were treated as any other plasma
particle, being advanced in time using the standard pa.rticlel pusher
which is used for all the other plasma particles. It proved impossible
to use the standard particle pusher to perform a 'head-on' collision,
because even with MT %/ 50D, © there are deflections pefpendicular to
particle trajectories due to field fluctuations, and once the particles
have been deflected from their head-on course their mutual interaction

causes them to be deflected even further.
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The results of the Runge-Futta solution were processed with the
view of comparing them with a cet oblained from the simulation. The
particle trajectories were drawm for each case, and onz example is
showvn in Fig (26). Ve can see from these that we have but a moderately
good comparigon between analytic prediction and simlation for the
two slow teat particle collision in the symmetric collision case. Other

values of impact parameter tended to give similar discrepancies.

Factors which can have given rise to the disparity between

the two trajectories are zas follows:

~(a) The fluctuations in transverse electric field which the
particles experience ag soon as the force is switched on
coﬁld cause them to be deflected from their paths more

‘than otherwise, giving an effectively larger impact parameter.

(b) The fact that we have only taken the term C)( n:)
in the expansion in the theoretical case could lead to
inaccuracy though one would not expect much error at

these low velocities.

(¢) It may be that the assumption of negligible transient

effects, when the particles collide, is erroneous.
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(5) Single Test Tarticle in a jlrrmetic Tield

(e) Derivation of Potential Distribution

It was consldered of interest to examine the shielding of a
test particle in & constant magnetic fieid, by means of plasma
simlations in two dimensions using NOVA. The magnetic field in
question is uniform, congtant, and perpendicular to the plane of the

plasma.

Plasma dielectiric functions in the case of a uniform magnetic
field in 3 dimensions have been knovn for some time, and have been
used to deduce oscillation modes of the plasma. The cwrrent state of
the art is given in Ref (41) in a long review article. However, the
only authors who claim to have uged the strictly 2-dimensiona1 form to
give the field due to a test particle are Montgomery and Tappert (Ref 19),
who only give a value of & for the large field limit and who do not
give their analysis, which they promise to present‘fat a later date'
It is therefore of interest to derive the form of the field due to &
tést particle in a two-dimensional magnetised plasma, and to investigate
whether there are any phenomena, in the case of less strong magnetic
fields, which are noticeable an& which serve to differentiate the
ghielding in this case from that in the electrostatic case. By less
st:ong fields is meant those where the Debye length 3Vb ig of the
order of the Lasmor radius Q) . In particular, we anticipate a priori
that for weak fields the test_partiole may be shielded in a menner similar
to that which pertains in the electrostatic case, and that, thexrefore,
there must be some internediate region between this and the strong field
situation in which the authors of Ref (19) predict that shielding will
have disappeared, a region where the potential will take some
transitional form between the ¥50(¢) of electrostatic shielding, end

the - ﬁ&gbﬁv\ of the unshielded case.
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Therefore in this case there is motivation for performing soms
analysis, and also motivation for being prenared to do & plasma
similation in the event of the analysis becoming intractable, or to

support the resulis ohtained.

An analysis similar to that of Ref (42) was followed in the

early part of the derivation of the test-particle potential.

As usual the plasma is assumed collisiohless, and thellequation
governing the evolution of the distribution function '% is Vla.sov:e

equation

* .4 (1)
If we lincarise as follows,

-~ - . ’ . .
I :.Q+L-‘ N G 2 (SQ . "% 2%01-‘“ then, where

% is the angle between AY and the A€ 3¢-direction , we obtain

Mook oM L ez |
AR RS o

where .Sl s e.fﬁ_? , the Larmor frequency. This simplified form‘of
mc

the equation has appeared because we are considering a strictly two-

dimensional case: there are no velocity components perpendicular to

the plane of the plasma.

On the assumption that -€° : ﬁ‘(v\ , which holds, for
example, for a Maxwellian distribution, we can perform a Fourier-Laplace

Transform in space and time on this equation, as follows
<P'\'\b\f\_)_) 'g' - ﬂ-B__gl - Ve § \:"),gjd (3)
3b &

= W (@) i | where
77



is the Fourier-Laplace tranzform of é , and the equation

[ a N |

- ~vg) s has been used.
E [ - L :

—

The equation (3) can be solved using the integrating factor

brprikyy
Fe MP[' fgg(%}) 61 )

ag follovws.

b
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the lower limit being chosen to be appropriate later on.

s _
%A&)'-f 6(2) % g a0 ©
) ~

wl\ere .

6 = sl ([[f tevenle g “

where ¢> is the angle between k and X - direction. Again, adhering
to strict two-dimensionality, the only components of the wave-vector '%’\'

~

those in the plane of the plasma. So

G- Me{%(%-&‘)*— E%}_’(s'w@ -Cﬁ)-sbv@'-fb))} (8)

As in 3(a), we have Poisson's equation to solve for @‘ ., Whera

the linearised, Fourier-Laplace transformed equation is

1T Y ketvq_ :
k §' = LHT’Q S"g‘ é-\’ *‘(P‘? L\é@ | (9)

Thus, in order to solve for § ;0 we will require the integral

f@,du = (w'\)(bd glﬂ&& =€.<'\)'£>) | (10)
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The first necessity is to evaluate the functien “b‘ (’\) )a) .

This is given by

T le SO ERIWARTD - S
,é‘(/\))g)-; - & 4 %P(“U* 4}{ .‘MU} %‘}'}3 _3_.5__; ﬁ»“iP(’ g%-t‘ws 9 E,ﬂ %( )

Now Bﬁ? ie parallel to Ay §c ~e“<€(f\}), so the 8'\ integral
<

st"‘ ab) P (KMN) (12)

&Y VAl
becomes, using ,cu,f,(;(w.o \:.AL)

O
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which gives,' if P has a real part, and the lower limit is chosen

appropriately,

wip ...L«(VWDB =% « ué) W@(QL(A—.\\% .Léwp{;\&)
[ ] ¢ A (14)
- nse) —P/_g,. - n-- (‘/_SL

' g
Taking the factor ¢

na we |
wo get I’,Sn “S,\

into the exponential in each cage

where
o
Aet
st kb Z Ta( k) orp G tnd -5 +~‘“*’¢ﬂ
" 2 oV .n J
A _ Pl + C(net)
Wt B
and similarly for <-'|\ , with A=\ in place of A+ \ . 1In order
A\ . RN

to express the two sums ‘iw and S“ " in a form which can be

dealt with, we use

Q<V> (n-\) sn_.@“’> Q.\(‘é{) (16) and
%O“‘) QM.QN> (“*“) :\.m\(%> (17)

n4! _
in the sums Sﬂ and g reapecuvcly. This gives two infinite
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sums vhich when we rcspectively perform tne displacements N =\ -=>% gng
\

Nyl "2 we can eazily add together, neoting that the terms in ) n  cancel,

so getting

7= -k}‘j“z 3 (.t‘l'lff) 08 pplind 2P eind)
- 2

kv Q/ﬂ_ 4o

(18)

We are now in a position to perform the g - integration in (10),
and so we include the factors which have been omitted up till now, in the

integrand. The % = integral is

27 . [

0 :;@ ASM.‘&(PSi-“szM(Q ¢m¢d ZI,\("E‘./){‘_@ x%@(-lnﬁ-ﬂ% 4-1\\‘25) (19)

- S ) ey in+ /n
9 ﬂ:-w

Again using (12), and performing the integration, we find that

the result is
5] d %

e 5, "S- - kv
x ' 2t ) (’J (20)
a-¢ m(mmmw "\ -

N =

Thus we now have only the A integral in equation (10) to perform. Now

if we choose "8 to be an isotropic Maxwelliaq distribution function in

9
- - - '\,9? b
2-dimensions we have ‘80('\.’) : 2..__“‘\;& e fa where Uz, :Fs
the electron thermal velocity.
1

h) =V / 2
Thus _ﬁh s - _'\..:‘_. (._-.‘-—..;.‘) e \389\ . (21)

ov \Ieﬁ\ an Ueﬁ\ : . » oo

The integral is

f'g'dv
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ns =-ad

(where all non AY = dependent factors are collected in A)
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Thus, rearranging Poisson's equation () in order to solve for § ,

we have

T _ ki '
é(k){)) - (p - c&:.e)‘cf. é( k.p) vhere (24)

e(kp)= 1*“5»L Z (P ?'-P( IO—‘;—) (25)

N2 =G0

where ‘(3;: ‘/4)) ,the Debye wave number and kgf- ‘/ q. ,the Larmor wave

number.

Ve now have to consider the application, first of an inverse

Laplace transfornm, thgn of an inverse Fourier transform, upon the

potential function g (k‘ P)

’I‘hié is not so simple as in the electrostatic case, becauce
of the nature of the function & (k ,P) in the denominator. In
the derivation of Landau damping (eg _L{bntgomery and Tidman, Ref 31),
it is shown that all the zeros of (¢ are to the left of the imaginary
P -axis. However, in the present case, it is a straightforward
matter to demonstrate that there is an infinite set of zeros of G

which lie on the imaginary P -axis. For

, o (KT (€
ekp) = L Z b eing m?(g}) J—“(@’i) (26)

n
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lry - vm
Few o (4:) = ! n(?j;) for a1l 7. , so that we can group
together fexrme with nw and =n .« The texm with N= Q disappears and

we obtain

s
2 2 o™ 2 2
!ﬁ Q“ﬁ \SZ; . k. Lanaid !{
oo+ 3 B )12
( ’P) I - Pz*s'\'z.ﬂ,‘“ P ke J"n k2 (27)<

If P is parely imaginary, ? Z (Ly , the denominator of each

term in the sum is w Ot =N 52:“ . It is obvious that for every v ,
there will be a point, as W varies, where this factor is zero,'-mak:ing

G —> 4+ o) if this point is approached from the left, and G - -~ &
if approached from the right. . Given continuity of the function &
between these 'poles' of & , there must be a value of (WO , between
every point W-=nJd zind \n.)-.(n-!,-\),n where €= & .+ These zerés :
of ¢ , are poles of é(k,{) and because W has no imaginary part,
represent undamped oscillations. It is to be noted that if © =+Lk‘:n
is a pole of @ then @ =~ i"w‘,\ is also. There is an infinitely
denunerable set of poles with zero real part in thep-plane in the
expression for § . To help éonﬁplete a description of & , a graph
has been drawn (Fig 27) showing 6(k,w) for k= |, out to taz £l
A very similar graph occurs in Ref (41), in which the authors are dealing
with longitudinal modes of j)lasma oscillation in a constant magnetic -
field. When they consider perpendicular propagation ( ku = Q) they
demonstrate the existence of essentially the same infinity of undamped
modes as occur here. As W increa.s.ﬁes, G tends to a constant value
near unity between its poles, rising very sharply at the multiples ofn .
Also, as W increases, Wy o between N L and Q‘\-H)JL , tends

towards pn [, , though never quite reaches it.
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Thug the Fourler transform of the potential will be given by

Juni L. c‘} ut wit CLiwk
d): bTg e e
- G (f\ -L“U\) (‘Ww#- bl’*"\yé (K \\% (-uw ik u}&- (k*w

Y :
where, by inspsction, -2 (\¢ ,\,w) ¢ - ( W
. 39( 3 )

The question of what amplitude the purely oscillatory terms will
have once a Fourier transform has been applied, is of importance. It
was to be hoped thét they would, in the stationary test particle casé
at least, leave the plasma with a background of noise of an amplitude
dependent upon whatever perturbation (in this case the test charge) has
caused the disturbance, this noise element being produced by soﬁe form

of phase mixing of modes as the k- integration is performed.

In the case of a moving test charge we would hope for the szme

sort of effect to take place. Whether these things are what takes place,

it was hoped to demonstrate from runs of NOVA with a constant magnetic

field included.
The potential in real space is given by

oo 3 [22000 Fow

LT

as before.
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(b) et Porticle Vith ZFesro Velocity

If we take the special case of W= 0 , that is, a stationary

test particle, we get

TG . Hex4u®) ol s+ ofnee barms (1)

K428 snp(-kE ).1. ()

ne

Using the relationchip

orplzeend) s Tole)s 9_24 I.(2) 7o obtatn

+ ele (2)

. i 'P Lk (x- u&) dale
P T kg (1 - ap (-1 =) (&‘ m

t<‘

Here we can recover the claimed result of Ref (19), for if we
2
consider the denominator, which is K G'(K,O) in the limit of

kS
large kc where kc is proportional to the field B, we obtain the

form ~ \<1(|+k}>/kg) : k:(hw?»/wt) vhere Wes JL .

for large W, , the claim is made that & is independent of < ana
that, therefore the form of the potential is -4 fog(w)/ ((-;-w}, /w}’)
Vhat this represents ié the partial disappearance of shielding, which
disappears altogether aé wplw‘_-’-b O , and the potential ¢) . %Luab ,
the unshielded potential due to -é. charged rod in two dimensions.

However, this is only in the large W . limit, and there is more
information which can be obtained about shielding ‘if we actually ;;erform

the integration in equation (2).

First of all, the results of a 'NOVA' run would be of interest
to quote here since they serve to confirm some of the propositions
concerning background noise put forward above. A simulation was

performed using the following parameters.
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COMFUTATICRAL }SY DINEHNSION 64 3 64

'PLASMA' DIMENSIONS 16 x 16 DERYE LINGTH

NUMBER OF PARTICIES IN PLASMA 16384

TEST PARTICLE CHARGE 200 UNITS

MAGNETIC FIELD FACTOR teftdp | 1.0

TEST PARTICLE VEIOCITY 0.0

An identical run, without magnetic fiéld,-had already been performed
(see 4b) o that there were grounds for comparison of, say, the total
potential energy in these rﬁns. Accordingly, a graph was drawvn showing
the time variation of the potential energy in all modes as calculated
in the NOVA diagnostic routines, for both the run with uo;[usp = 1,0
described above, and for the earlier run, described in Chapter 4(b) and’
using identical parameters, (Fig 28). It is noticeable at once that

the mean value of potential energy in the plasma is significantly
higher in the magnetic case. It is in fact gfeater by a mean of

some 20%. Using the expected result, then, that there will te an amount
of background noise due to the undamped modes of the two-dimensional
plasma, we can explain this discrepancy in the values of potential
energy, and can see also that 20% of the potential energy in the

magnetised simulation plasma is in these modes.

A subsequent figure was drawn (Fig (29))showing the variation
of the potential at the test particle position ﬁith time; for the same
two cases for which data of potential energies were -plotted in Fig (28).
Again it is noticeable that the potential values in the magnetic case
are significantly greater than in the non-mzgnetic situation, here by

some 20—25%.
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Again, similar data became available for a run with a non-
'adiabatic' start procedure, and this was then directly comparable
with the previous run (Chapter 4(b)) in the electrosiatic case. A
graph comparing the mode potential ensrgies for the masmetic,

batfgﬁgp : | , case, with this previocus run, is reproduced in
Fig (30). The mean values of the two potential energies are within
5%, but in the magnetic case the time-variation of amplitude has a

much longer period.
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Yor the particular ‘NOVA' run described above, it was found by
plotting a graph that the potentizl distribution was not quite the
seme as in the electrostatic case; it wag thousght that any dissimilaritien

vould be accentuated if the magnetic field was increased.

Accordingly a similar run to the above was done with k)‘( (W o N o
and a stationary test particle. We have plotted thepotential, at
points close to the test particle, against ng(x‘) and it can be seen
that something very clogse to a linear relationship has been obtained

(Fig 31).

From these preliminary simulations, it is to be expected that
analytic results for the shielding of a stationary test pér‘ticle in a
magnetic field will be noticeably different from those for the

electrostatic case, in two dimensions.

" The next part of the work to be described is the evaluation of
the potential given by the integral in equation (2), on the assumption
that the other terms merely give rise to background noise, and can be
ignored for the purposes of evaluation of the form of the shielding

of the stationary test-charge.

If we use polar co-ordinates (k, &3 we have

o 4T . imd
v dmlke ¥
b (x,¢) ?;[k&k Z "I s

[

g (¢ ek 1= (- %‘)10(%)“ e
i |

1%J‘ 'So(k}i) \i A—\‘ 2 :
J (4 kg (L=anp(- %)la(%;a)ﬂ

On inspection of this inteé'ral we gee that as \4-’»-'5 o , the
k3 - 1
denominator tends to (\‘z‘}’r kg(\" \ *“/k:m) ) (‘ +l<p (kt).

Since 39(\&x3-7> | as & <>0 , we have demonstrated that the integrend

goeg to infinity as l->ya . However, we know that the Fourier



tranaform of -:.T@Ql"{:’/ g{-" in two diwmensiong is -‘Jjﬁ(}‘\‘], inasmuch as this is
the form of the polential of a charged rod in two dimenszionas, found by
Geauga' law, So we adopt the taciics of subtracting this suitably
normalised by ,/ (M’ g"t’}/e:'.‘) from the integrand, perforining the integration

numerically, and adding the factor -»LG 2 W / (H’ !‘b/ k‘) to the result.

That is we propose to subtract the term _‘”"’ (kxdis ‘%\“ from the
' (1)

integrand in (3). By the rules of mathematical analysis, this is not

integrable; yet it is derivable from the forzﬁ of the Fourier transform

of \,(k"(H kiD/KS) by using the expansion used in (3). 'i‘he reason why

this is not integrable is because of the infinity in the integrand at

k= ® , which manifests itself in the fact that (W0gli%) is not

normalisable. Bﬁt since it can be shown from Gauss' lew that the

potential due to a charged rod is .QL&%(M\ , we can use this result.

in the full confidence that if the Fourier transform could te done and

normalised this would be the answer. Evidently the result would be
,\,..qu X & L@-ab where the second term is indeterminate, though Gauasg'e

law's renormalisation makes b=\ . If we were working with the

electric field here we would not have this integrability problem since

the functions are all better bghaved; but it is the form of the pétential

which we are interested in elucidating directly.

The integral which we now perform rmmerically, then, is

ol
[ T (oK dk ~ Ta(r)kdk )
g - ke (e e (R Lo (e k(L 3 fie )
Qo

By subtracting these two we are effectively cancelling the unknown

normalisation constants, which were mentioned above, We get

e e (e (- ) DW' (5)
[ SETER R

&)
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Az f"«if"}m now, this goes as ~l¢ , so that we have no

integrability problems at this point. Let A== 3¢,

If we express 3(_7_‘;;;{\, o = ‘fzz»a,ﬁ”- \ b fk(a':- s wWa got

o)

I“ 'ja(x‘)(\xl% o &’-(\ - 24 («é)zg(%‘; ))) a!\.&
PRRIEE S Cay (et G SRR

To get CA(*“‘,‘&} we have to add to this the term

- Log & /(( + o\"{lo‘) '

(6)

S

0

The computation was performed for a renge of values of the ratio
G&!b . O is the radial distance from the test particle measured in
Debye lengths, while \:) is the same distance neasured in Larmor radii.
This ratio is the same as ‘%lk‘ +« The results of numerical integraticn
of the expression (6) are grarhically presented for values of & out
to 7.0 in Fig (32). A plot of Kqla) is also sketched in. It can be
seen that for strong magnetic field k;, h@‘.‘{‘ { s the potential is
tending to large negative numbers as <L increases. From the actual
numbers produced.it can be seen that in every case, once a certain value
of o  has been reached, the dependence of the potential on & becomes
more and more fhat of —\«aios/( (»o?/g-), which ig = Lm o (( i + kb /ké)
or —Lg% oT= %7y ) . TFor kylle, large eg 10 as in the disgram,
this is a very slowly decreasing function of & , while for Kslk. emall
.eg 4 as in the diagram, it tends to large negative fxumbers almost as
quickly as —(.M&cx \itself. For Kplle.z 1o , in fact, we can see
that for small o the function  is very close to Kg(a) , the
result for the electrostatic case, but as L increases the log

dependence eventually takes over.

The fact that, at large distances for non-zero field the form of

the potential is -i{}ofjfi/{wi;a) indicates that incomplete shielding has
e
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] T

occurred., This reprcesents the potential due to a lina charge %.k%ﬁ#ﬁﬁ/kf)

[
in & vecuun. In other words the chargse Ci has induced a charge

I L'"ZB s )

-(cL-Q[H' kg/k_‘:) ie § o (H h/,ls,g) in the plasma and so is not complately
shielded in the twec-dimensional case in the presence of a magnetic field.
As the field increases while the electrostatic plasma properties remain
the same, it 1s evident that the charge induced in the plasma will

decreage accordingly.

Thus in the mametic field case we have got away altogether from
the ' ‘Cg A I‘(g(k) dependence for the potential which exists in two
dimension electrostatic shielding. In this non-magnetised case the
particle could always be shown to be 'completely shielded by the plasma,
while here we have deronstrated that the particle is never completely
ghielded in the presence of a magnetic field perpendicular to the plane
of the plasma, though except in the infinite field case shielding will

never disappear entirely.

Our numerical results show that the potential distribution is
very close to KQCC«) for small field at points near the particle,

while for large field it is very close to. = C«c»gj Q in its dependence.

Next, to see whether simlation and theory agreed for the
magnetised, sté,tionary test-particle case, a graphical comparison wa,s.'
done. TFor w,_/w‘,z |.o and wc,/bQP = 1.0 , the values obtained
from fheory were plotted against those from the appropriate NOVA run,
and the graphs obta.ine;:l are reproduced in Fig (33). It can be seen at
once from these that good linearity has been obtained in the relationship.
This shows that (a) the expression (3) describes adequately the potential
distribution about a sfationary test particle in a two-dimensional
magnetised plasma and that (b) it is justifiable to state that the only

effect that the undamped modes have is to provide a noise background
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which does not affect the form of the potential distribution.

The fact that the test porticle (and therefore, by implication,
any given particle) is not completely shielded is a similar type of
result to one derived in Ref (18). Here the authors solve for the
motion of 2 line charges from the itwo-dimensional plasma interacting in
the field of each other and also in the constant magnetic field
perpendicular to the plane of the plasma, when all other charges are
removed. It is found that the geometrical relationship bhetween them is
a periodic function of time. The authors deducs that this indicates that
two particle correlations will not disappear with time in the two-
dimensional magnetised‘plasma, a result similar in natuxe to ours, ahove,
which says that as a consequence of incomplete shielding the presence of

a test charge can be felt by any other charge in the plasma.
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(¢) Non~Zevo Test Charme Velccity

The case when ufz O provided more complications analytically
than the previous case of =0 . When the 'La,pla.ce transformg have
been done we have to integrate

» Skt .t -pit
A A _Q‘-Lé e l 2 g (1)

-2 AT T

4+ 7 . = .
T ellymben) L) Crulite)
Y )

Now the first term here will have a pole on the recal ’< axise
every time that (;=-iR.W as [{ varies for all ( . However,
there will always be a term in the sum over 't which cancels this ou‘ﬁ.

For

AG:CK,P;)_ M G'(k;P)"‘ e({é:lp.l) . /LVW\ G(‘C,P)

] (2)
Sp P P-p e (p-pi)
and as k. = a value such that 0. +l\<,L:-“-’-> ¢ » then the
appropriate term . in the sum is
put -ileut
. e' Q
'=> » X ‘ Z . : T 9
S () e(k,p) ~krelk, -iky) O
- (P "'py)

if we take the limits appropriately, which exactly cancels the first

term in the expression for é. above, (Equation (1)).

If we assume as in the previous case that for long times, the
time varying terms give only noise, then we can demonstrate a general
property of the first term in the integral in equation (1) which serves
to differentiate shielding in the magnetic case for a moving particle
from the result for the purely electrostatic case. We consider that
the time-varying terms, as.demonstrated above, remove the contributions

from the poles of the first term 29 we integrate 2long the reoal ‘r"-f-“ axic,
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but that their contributicn does not otherviise affect the general form

of the potential. If we include an analysis such as in 4(b) of the

- gradual introduction of the test charge, we can consider the amplitude

of the noise terms to be p“oportional to ' /T compared with the
principal terms. TFor if we express (g)@ !%') as in Chapter 4(b)6,

we have
&0 0

_é(x {“) ,, ! ISX Q]@,(‘( cku‘t‘) 2,, (‘W‘P(PQ - 9—3\0(-("”
ﬂ‘ ek «Lk\(\ > \\P ik )6(‘ QG ik u}&-" (4)

vhere & = Lmq‘[|-we‘.((}-elk.u}“']/[T(P*‘"ﬁ"jEfB

The factor X s Which is due to the gradual introduction of the
test chai'ge into the plasma, is of order '{T , and becomes smaller as
'r becomes larger, so that in the limit of very slow introduction of
~the particle, the 'noise' terms arising from the undamped nodes have
negligible amplitude. This applies except at or near the points where
the contribution from these terms are required to cancel the large

contribution from the first term.

Congider, then, the first term only
) n

Fexye) = Tlrad e Lk (x-ut) 44 (5)
n k*e(k,-ik.u)

o 0
¢) is the angle between }.& and K ; let A2 y¢-ul , expand QK?{“_‘_-‘;‘)

and é(k,, -\:\: u) , to give
? T (k1) Mp(cv‘f\@ @) ab
B T A A

o é nat '\\"

b (x,4)= 2  lkak

13

where é; “ll\%ﬁ\ , and O is the engle between ¥ and ik .
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| @ .
te mow chow that this is of the form 2, @.geg@x@‘.«@ &»)

=z

The denominator of each term in the sum over wA , is, by

—t

inspection, even in €Z:é Let us group the terms in M and =wnA4
- WA
togather, noting that \lm(‘(‘(\ H_) T;M(Kf) (=) ,
and ignoring for the moment the d X . We have for these 2 terus
' [

A M g \ .
J}\aﬁ 2;_"‘) Tk Yerplindd )] « 0 C1) Cﬂ«<"fJMG’-°'J9-@) (1)

o

et 2ley l\,kzm‘%> avp (- W )1 (L )

] y"‘“ T (k) L coe (6 )d 8
Tl L\WWAc'Id\’(ww\.«Acb)

This is non-zero only for even WA by a straightforward argument, so

that we can express the function

ob
(e, D)= gu “19('(30'&'3 129 where (8)

s 20
..\) ngc(\d‘)wi-@(}: db
AT ) By

A

o o
w20
adr)=E [kdk 5 ;:(;‘fkg 7(?’ )up( \«.‘)— (...) (10)
J Z L%

By showing that only even multiples of & appear .in the expression
for- 56 , on the assumption that the undamped terms produce noise which
is of low amplitude and isotropic, we have demonstr.ated that the
potential distribution dve to a moving particle in a magnetic field in

two dimensions takes a significantly different form from that in the
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electrostatic caze. The significant difference is that in the prozent
instance, while we gtill have symmetry about the line of motlon of the
particle, we also have gymmetry about the line 8,- 'Wi['l. .« In other
words, the result implies that the distribution is such that

;5(,5\,0) - E}ﬂfq, ‘{;f') y for example. The potential'in front'of the
par‘;icle takes the same form as the 'wazke' behind it. It will be recalled
that in the electrostatic case ECQJ o) f# ;;)‘(QI?T) y the distribution

in front and behind the particle being significantly different.

We could demongtrate the gymmetry of the potential distribution
along the line of motion of the particle equally well by notiug that
we can express the r.h.s. of (6) as &(?) . The fact that g(?) :ﬁ-:%)
shows that the potential distribution is identical whether the direction

of motion is along =0 or %:7\' .

Care should always be taken in taking limits as certain parameters
vary, in such expressions as those in equations (9,10). Tentatively, we

examine what happens in the large field 1limit, and get

)
3 (Kf\é\q:»
= L [k °
IS ey R qra=ypry
e o

(11)

exactly the form of the large-& potential for W= Q , while we get

ES
OF Tnyker) eor 226 4 6
e ((+ kb [k

A = | ki

(12)
-I Q |
This will give finite values for small A&~ and as 4 increases will
become very small, leaving only thé Q o term. V‘I‘hus for large field the
potential distribution at large distances will bé of the same )[orm
as that for the stationary test charge. So, not surprisingly, there
is no increase in the total shielding; in the moving particle case, and

the particle is still incompletely shielded.
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The integrale in equations (9) and (10) are intractable by

enalytic or numerical means as they stand., Thwus it wouvld be of intereszt

- to investigate by means of plasma similaticn, whether the conclusion of

the symmetries holds, and whether the assumntion of a noise level which
has not an adverse affect on the analysis, is Justified. It would also
be of interest if any defails of the distributions could be elucidated,
especlially for moderate fields whare LOP A~We s for in the high
field case we do not, after the rough iimit—taking above, expect
anything of interest. Also, the case 00(5«~VO¢ is most convenient
to deal with by simulation because (a) for the high field case we need
to use a small timestep with respect to ‘/(op in ordex» to follow
particles properly as they move in their orbits round field lines, and

this means very mich computing time before we even compute for one plasma

period, and we want to compute for 'a few' plasma periods. (b) For the

low=~field case we need to compute for many plasma periodg before a particle
has conmpleted an orbit, aﬁd it needs to complete some few orbits before
we can reascnably claim to be simuleting the 'long time' state of the
system in terms of magnetic effects. In other words‘the most convenient
part of param=ter space, in which we minimise the computing time reguired
to include effects both on timescales\lqu and | le( is when these

two timescales are of the same order of magnitude.

For the case hh,:»op a NOVA run was initiated, and the

parameters used were as follows.
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COMPUTATIONAYL IRST DIMENSICHS 64 x 64

PLASHMA DINMENSICNS | 16 x 16 DESYE LENGTH
NULIBBER OF PLASMA PARTICLES 16,384

CHARGE OF TEST PARTICLE 200 UNITS

VELOCITY OF TEST PARTICLE ELECTRCN TURRMAL

Because of technical problems, the program with a sguare computaticonal

area was used here, although the rectangular plasma would haves been
preferable in that it gives more physical space for the potential
distribvution to set itself up in along the direction of test-particle

motion. Fig (34) shows the cross-section along the line of motion of

~the test particle after 70 timesteps have passed. At this point there

is a slight beginning of interference between the front and back of the

‘potential distribution. However, examination of Fig (34) shows that a

distribution has been set up different in character to that set up in
the electrostatic case. As the theory prediéted, the distribution is
symmetrical about the particle along its line of motion, to within

statistical fluctuations. This is another instance where the 'quiet

start' procedure would have helped to give better detail.

A gimilar run was done for LO¢1LJF =“..0 , using a timestep
of DT=-ad42 5 in 6rder to ensure that particle motion in orbits .
around magnetic fields was as well simulated as previously. The results
here also tend to confirm the symmetry of the distribution between é}:c:
and &-. T . Fig (35) shows a cross-section of the potential along the
line of motion of the particle, while Fig (36) gives a contour plot of the
enfire distribution. From these it caﬁ be seen that the claim of symmetry
is indeed well-founded to within simlation fluctuations. However, in

this case it is noticeable that spatial variations in the potential at
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distances graater than a few Debye lengths from the test particle axe

of a gmaller ampliiude than in the lower-field case of té;“d@:‘.@

It would also be of interest here to perform a comparison,
similar tc Figs (28) and (29) of potential energy variations with time,
between magnetised ond unmagnetised cases for a test-particle velocity

V-t =\lg ¢n + The appropriate comparison graph is given in Fig (37),
where again there is 20 greater potential energy in the modes in the
magnetic case than there is in the electrostatic case, indiceting the
presehce of an extra noise background in the magnetic case. The next
graph Fig (38) compares values of potential at the test-particle
pogition for the two cases, ana again the values in the magnetic case

are some 20-25% greater than in the other case.

" .. We now investigate whether any other diagnostic

output from the two NOVA runs would be of interest to compare. We had

available ag output at each timestep the normalised mode amplitudes for

a small nunmber of selected modes; one of which is that for which in

two dimensions k,.-. | ’ kﬁ @ 3 sine and cosine modes were available.
We’present here a plot'Fig (39) of the comparison between-the sine mode
amplitude in the magnetised case where bJprQc:‘,Cl, and the amplitude
of the same mode in the electrostatic case. From this plot it is evident
that on average the mode amplitude in the magnetic case was greater. A
similar result holds for the cosine modes. Both of these were in the
run where the test particle velocity was Vt:\p-~ |.© in scaled units.
The fact that the amplitude is greater in the magnetic case can be
construed as being due to the lack of damping of modes which was
demonstrated earlier, and this greater amplitude in each mode will
contribute to the greater potential energy (and background noige) in the

magnetic case compared with the electrostatic case.
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Thege two NOVA runa having been made, which confirm the general
results of equation (8), and our ascumptions about noise, it was now
thought a reasonzble proposition to attempt to integrate the leading
term in equation (1) in order to ascertain whether any mumerical results
qould be obtained which would give further quantitative detail on the

potential distributicn.

If we express this as in equation (5) we can proceed to expand
+ - ‘
e(k - \\<,u\ in the following way in powers of ?
ot e

' A B2 N W
é(%f)—;.\f"{\_\): \‘\‘2-&\ Z (l 4 \(‘%&:G@H) . \‘é\\g thG,J)

\< e lelnt

A= |

2 A
* W(‘%)In(%) (13)

'By the rules of mathematical analysis this expansion is valid when

gy ™1
k:%cﬁ(}’ <\, that is,‘ ' %_ < | . Thus, the smaller the
va.lu; of } , the larger the range of k in terms of k( for which
there is validity. If K¢ =2 ley , then since kf.:é\-,t and ¥p: '5:‘0

by taking small N'% we have validity over wavelengths. from the lé,rges‘b
down to significantly less than '\b . Since shielding is a phenomenon
whose typical scale length is that of ")\’D or greater, it is evident that
all important wavelengths will be included evenh if we cut- off the integral
at a value of K just below the value Kk = l<c/ ¥ , vhich is what we
propose to do here, though the functions obtained after the expansion

is completed, are numerically integrable over the whole range of i< ’

by means of the manipulation of section (b). In order to claim a

meaning for the results obtained nuinerically below, we have to assume

. that the contribution to the integral from values of ke 2‘5&‘ ? is

negligible, and that the effects of the infinities in the integrand are
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s e : $ et . S,
nullified as cutlined above. These infinities all occur for ~»z < !t}

We procezd to expand the newly-expanded denominator of in
(5) and obtain, using ‘X ég T z) 5’%(‘;{"“"1) = |- .,L@(\?ﬁ}f’«#f-g(“’l)'
&2 210
ko k
)(y RAp s (stuunt‘) ‘ -

; I 55 (1wl 3{;3 -
% Z (, iy L s M‘ﬁ k) \( ) ;(Mé (1"‘. k% i ,\?%Z' la \}‘)

}»’ N AR f\ ::‘ =
(R -l ENTEN (R (ot RYTE) o
z}"\
Map E g:r\”’ ﬂ‘ )""" ) _ A:}
(B (- anp ‘“4;‘)’.?.@(“/&;‘)))“
to order 3;‘4 . Thus we can express § as iﬂx - G\{L-‘- F?H‘

-where the definitions of A, B, F are evident, and = F = F

As before we put Az x-wV and define ® to be the angle between
the observer and the direction of motion A , the latter chosen in

the x direction, so that we get

T RAP Lk (K—vd‘) wp Lk, “w‘)\& dg 2 ) (k’()&xp U“a ¢) (15)

MN1=

In an integral over PRy s this factor, multiplied by w—a‘e&

picks out only terms with £ or =4 . 1In particular, for m’q& we

have
Zn . T‘(-’_ . DR 2 A T4 -2
fmpzdg-@w*w¢ = T imso
o 17/7- " M ‘2_

Thus from the sums in (15) we get after the qS integration,

W[Ja (kv) =T (k) coa . 8] (16)
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For the c«‘::‘sk ;5 tern, the ewpression remaining is
%/ % T, ber) = w3 :\,(t‘i")w\lg % “/q\:\‘l,&(*f\(\ ro WD (17)

g
If we include only terms up to oxrder \:{ ve have

-

52 A-8%": A -X(C-Desr2d) (18)

It is brought oui: most clearly here that, as in the expressions
for ?é previocusly, only even terms in }L occur and only angular
variations about the direction of motion by even multiples of ® . This
is in contrast to the non-magnetic case where all powers of \‘; are

included and all rmltiples of {} .

The terms in the expression are as follows.

K maax

:&_QCV.() kdle (19)
K e 3 (- g% VT /)

E *ﬁhﬁ" — T‘-:) T (k) dle
¢ =1 s : e (20),
(s:. aleg (( -M\,(,ww) 7. (¢ Y)) |
14}

dq,

11

A

KW

D 24 [ ¥ J(«')(,U E‘)) &
(1 te (1= -‘WP(“‘/“?) I"(K./““‘))).m

(21)
e
The integw_:a.l for A is very similar to that for the stationary particle
case apart from the upper integration limit, as we would expect; for
when %-:) o , every other term disappears because of the coefficients

?‘2.(

y and also the limit in the integration tends to infinity. If

we assume that it is allowable to extend the range of integration beyond

JZMW , for mathematical convenience assuming the normal mode terms

to deal with the pbles, we can deal with the integrals in A &nd C by
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the mame and similar meens, respectively, as were employed in parct (b).

These give rise to a lox variation at large e. . The term D doexn

- not have any divergence problems, o can be integrated in a straightfozwerd

nannar.

It should be emphasised that this calculation is not being
presented as a definitive analysis of the form of the potential due to
the test charge, merely as an indication of what sort of distribution
b

one can expect the formula to give rise to, to second order in ¢ .

The fact that there is no first oxder term indicates that for small E
at least, one can expect a distribution very similar to the stationary
test charge; however, it is difficult to tell anything about the case

of slightly larger ? , and in the large \g' limit there does not seem

to be any expansion of the denominator which one can use, for moderate

field gtrengths.

The function C is similar in general form to A, but D
is somewhat different. It is plotted in Fig (40) for a few field strengths,
and it is noticeable that the value of .D(CL) at any point decreases as
the field' increases, showing that there is a._sna,ller perturbation from
the stationary-particle form the larger the field becomes. For reduction
of D will tend to give symmetry §in space about any line through the
test charge, as the effect of the angular dependence is thus reduced.
The form of D shows that it ﬁay be possible, for certain values of
parameters, to obtain a potential distribution showing 'bumps' as in
Fig (34), but no parameters used in the calculation gave anything like

80 pronounced an effect,

1
The results of forming the sun A - B? for moderate values

" of B were that, keeping ? small, no spatial oscillations of an

emplitude comparable with those in Fig (34) were observed.
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Az B increzses, to a polnt where é@g(Ld(:=2. 2 , the simulation chows
that for %@tV@ﬁ\ the anplitude of the spatial vavriations at distances
far from tnha test particle has decreased markedly. This implies that
they would have decreased even more for even higher magnatic field.

In this limit the expangion technique even for moderate velocities was

secen to give results closer to the simulation's results.

The conclusion is that for such parameters as make the expansion
valid, and given kyNw* a high enough value so ag to inclqde the
range of wave numbers required to completely describe the physics, the
expansion (14) is a satisfactory way of calculating from analysis the
test pa?ticle's potential distribution. The poarameter range which gives
this validity is § << | and WelW P> | . However for these values
of the parameters, the potential distribution around the test-particle |
is very similar to that for the stationary test particle case, and

is thus of no great interest.

In general terms however, given that we know that the potential

distribution is going to take the form (8)

: é;('f\ B) = &:((3'*' G‘({BW‘\Z B ‘plus other terms,ﬁ we can

‘make one or two general comments about its shape. If we make the not

!
unreasonable assumption, that the form of B(¢)might be similar to the
'b(ﬂ{) of equation (21), for non-negligible velocities, then we might
expect to seze a distribution such as is outlined by the rough sketches

in Fig (41).

The first of these shows the cross-section of potential
distribution along the line of motion of the particle if the function
\
EB wag of sufficient amplitude, as it might well be for a sufficiently

high test-particle velocity. The 'contour' map shows a plah view of
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vhat the distribution might be, where the dotted contours repressnt
either minima or some kind of quasi minima or 'areas of inflexion' in

the dovmrard trend of the potential value.

In conclusion, what can now be stated about the potential
distribution about a moving tsst charge in a two-dimensional masmetised
Maxwellian plasma is as follows. The shielding of the particle ins
incomplete just as in the stationary test particle case. The potential
digtribution according to theory exhibits gsymmetry ebout the line through
the ﬁarticle perpendicular to the directicn of motion. Both these\facts
are in contrast to the situation in the electrostatic case. The claim
of symmetry is supported by similation. However, due to the analytic
difficulties involved it did not prove possible to produce from the theory
a quantitative description of the potentisl distribution around the
test-particle for moderate values of megnstic field and non-negligible

test particle velocities.

104



(d) Test Particle in Th arce=Dimensional Masmetized Placina

Expregsiong for the dielectric function of a three-dimensional

magnetised plasma have been known for some time (Rafs 41,43). If we take

the expressiocn given in Ref (43) for longitudinal modes
w .
- t ‘sj\s/)
MTQ ll ~n ('U o N (_r\‘fi bg. N kd
m (o-¥aVe ...w“) L v v

Ty -

G (}\,\A) (1)

We can follow an analysis which lezds to the result of Ref (19) for

é(\g,o) , and Ref (26) for stationary test particle.

If we integré.te in cylindrical co=-ordinates in velocity space,

we obtain
od)

& 7 | (ntoe v ke v, Y \ k)
o [Emd e B )

w—kzvt“ n w;-
-chd

| (} , ﬁ A '«.1’xb)*'-("\'z R
where we chose [ to be Maxwellian, ?-(QW,\)Q‘Q P QV&;\,\ y and

where \/,L& \[L:\/t -(h, s
]

(I % ,
@nve,) “(’,(“\" I Q |

From (2) we get

- 1< oy L/‘L\] ))\V _k: - ]1
Q(k,w) = |+ l«.b (I-— wf P te Q"‘P(Q)l %(3)

13 = KV =NWe

After a change of variable we obtain

‘ b
N 2
z PR ..w[ &’,ip(%ﬁ}d"\ Sy
e(kw)z (+2 ) e |epl) L
-eQ Jilke  J3 kaVeq,

Assuming that GC{”{’- LE&) is going to be the term of interest in the

test-particle chielding case, that is, that there are no unstable modes
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and that uwndamped modes have suitably low amplituds because we consider
the gradusl intrcduction of the test-particle, we now consider what

form this functicn takes.

¥ o have

AT

!.:; I I{,% (__\’\kr. _ k\::(;
é(k‘) “}:'%) =(_‘—Z !:“( -jFl z jﬁ:a '”Q"' )

[

N ' _ “w
\, y
Here ¢ takes the value it had in Ref (8); ie < : ﬁ\)cﬂ‘ , and

"“2‘__(7‘\) is given in Ref (37).

Thus for w-=: O , we obtain

ACTY AR Y (6)

Thus shielding in this case, for a stationary test particle in
a magnetic field, ig the same as it is in the electrostatic case. This

agrees with Ref (19).

In the case of non-zero >? ’ v}e can show immediately from (5) that
we do not obtain the same fore-and-aft symmstry about the line
perpendicular to the test-particle direction of motion. For

G (kJ - ’St_._x)j é(!(, };_u}) , by inspection, using the known properties of
the plasma dispersion function | Z (Ref (37)), showing that if the

velocity vector is reversed the distribution will be different.

Inspection of (1) shows that if either Kgz © , (the field
being in the "2 direction) or no component of particle velocity is
allowed in the &« direction, the expression of G(%»‘-,h\. reduces to the

expression arrived at in 5(a) for the two-dimensional case.

106



Thus the presence of vhysical effects 2long the field lines ceuges the
renmcval of the lack of total shielding, and the -symmetry of potential
digtribution about a test particle. These effects which occur in the
two-dimensional case indicate at least two ways in which the two-

dirmensionzl plasma uszed in many simulations differs from a real plasma

where a magnetic field is present,
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ADPPINDIXY

1O TO RUN NOVA IPOR_2-D SIMULATIONS O ICIL 4/70

Main reference - IlicNamara and Langdon - to be published

The basic routines of NOVA existed in August 1972 on cards
and on private disc store belonging to user BHCTHE (Br&ndan
Mcllamara) . They arc in the main fairly well commented and
they are ready to use but for the fact that one has to substitute
certain common blocks, etc., by a procecdure outlined below. (No
doubt, since Alan Sykes was taking over Brendan's code, the

routines will now be under uscr AASTIIE).

A list of routines which were needed for the test particle
work is attached and there will now follow a description of each
of them. Note that there is often a difference betwecen a file
name and a routine name. .

(1) ('NOVMAI') - main program A

(2) UCP - 'Universal Control Package' supposed to be able to
control any multistep process and it is the only thing called by
main program,

(3) JOBID - This routine not necessary for test runs but this or
any other routine containing blank common (substitute into it
from NOVCOM(F) can be used to increase the dimension of XV, the
vector whiclh holds the co-ordinates of the particles, etc. The
usefulness of this lies in the fact that merely by editing and
recompiling one routine and re-composing the program we can vary

the size of the plasma in the simulation.

One merely edits the common block which is being substituted,
renaming it JOVCOM, say, such as to dimension XV to the required
value. Since XV is the last item in blank common and since
blank commdon comes at the end of the root segment, no over writing
will be done and the dnly effect will be to increase XV's dimension.
NB: This is not to be done with any other array, anywhere.

(4) AREAWT - is described by its name: assigns charge to
computation grid points using CIC method. (QWT is an entry point.
(5) MORE - checks if calculation has done enough steps (NSTEPS)

returns argument as appropriate.



(6) VALUES -~ takes account of the plasma scaling chosen which
deduces from the values given in YOUSET and calculates scaliug
factors accordingly. Throws program off if dimension of plasma
omitted.

(7) DEFALT - mnemonic title - scts up default values of many
parametcers (sce listing).

(8) TIINISH - ends current run but can return an argument (logical)
to tell NOVA to start anmother rﬁn.

(9) PROBES - control routine for most of diagnostics, called

with many (integer) arguments from many parts of the code.

(10) REPORT - diagnostic routine which printé out seveml NAMELISTS
containing interesting variables dependent on argument (care with
REPORT (h) of standard version - it prints out several arrays
dimensioned SIDEXXSIDEY: rather paper-consuming if both these
equal < 64), .

(11) POISOL - FORTRAN control of_péissoh—solvers.

(12) BRENDN, URPFT - poisson-solvers in USERCODE

(13) POTXV - routine which is called when PROBES calls for potential
output. If it is required, one can write this routine oneself for
onds own specific purposes. If not, it is dummied out (see below).
(14) TESTON - users own 'particle pusher' if he has a group of.
particles which cannot be moved by. the standard pushers (this
corresponds to 'equation 4' when calling IEADIN from YOUSET in

the creating phase).

(15) SETACE - sets acceleration matrices, given potential.

(16) PRPTCL - prints every PRTHEM particles co-ordinates at each
step. .

(17) UNMAG - electrostatic particle pusher (equation 2),

(18) MAGON - includes constant B perp. to plasma (equation 3).
(19) DOSTEP - controls running of one computational timestep; is
called by UCP'

(20) RPPFT - connected with poisson solvers.

(21) FMODES - prints out up to 6 selected mode amplitudes (sin and
cos) and stores values in FS and FC.

(22) PLMODE - prints out after 50 steps the whole of FC, FS in
suitable format and returns pginter from 50 to 1 so that I'C, FS

start filling up again from beginning.



(23) ENERGY - calculates (l) kinetic energy of group , (3) potential
p.

energy in modes. (2) print-out of energies at cach ster

(ZM) PLENRG - similar to PLMODE, except prints out energies.
(25) YOUSET - uscr writes this, It controls the setting up of
his particular plasma, HHe can include any amount of nccessary

routines to be called by this equation.

(26) RWMAXVW, which sets up GALAXY velocity distribution.

(27) CHEKBC - in the setting up (CREATE) phase this checks the
boundary conditions to ensurce that all particlzs fall inside the
computational grid. Standard version only pulls in erring
particles by an amount equal to the linear dimension of the plasma,,
(28) HEADIN - sets up header for particle description in the array
XV. It has several arguments which are required, most of which
end up in some position in the header.

(29) DONEIT - closcs down (parts of ) create phase.

(30) CHRGIT - lays down éharge of a particle given its co-ordinates.
(31) PTCLIN - puts particle co-ordinates which are in the array
(dimensioned 4) which is its argument into the next available 4

co-ordinates in XV.

DATA BLOCKS -~ file mnames

(1) DENERG(F) - gives certain data for the common block ENERG

(2) DrMODE(F) - gives some data for common FHOD

(3) DNOVA(S) - gives.some data for common NOVPAR

(4) ppors(s) - gives some data for common POIS (data for poisson-
solvers, eg 'arfay dimensions. |

(5) DPROBE - gives data for probes routines in PROBIT common

COMMON BLOCKS in (F) files files [AU subroutines are in (S) files.7

Files are as follows:

(1) BUILD(F) - purpose obscure
(2) LANGDP(F) - contains common block (ABLANG?) connected with

double periodic poisson-solvers.



(3)
(4)
(5)
(6)
(7)
(8)

NOVCOM(F) - contains blank common and NOVPAR

EQLADP
TRIBUT
EQPOIS
EQNOVC
POISON

equivalence statements for LANGDP

contains conmon block used in triple buffering mode.
contains equivalence statements for common block POILS.
contains equivalcnce Statemcnts for common block HOVCO.

contains common block POIS mainly required for

poisson-solvers.

(9)

GRAFXV - common related to graphical output

(10) DIACOM - connected with diagnostics
(11) PROBIT - common for probes.

The table shows which segment each routine is usually put
into in thc program, It also indicates whether the name of the
file and the name of the routine are the same. When they are not

the same,

it is in general because the file coantains the double

periodic version of the given routine.

In general (S) files are in group NOVA,'and compiled files
in group NOVCOD. ( You do not need to compile BRENDN, URPFT).



Appropriate

Common block

b - .
If there is

Routine name file name Segment associated no n?ed t?
ifT different compile file

MATN PROGRAM NOVHMAT ROOT

UCcP RCOT
[sonID ROOT ]

ARBAWT SIIARED ROOT

(ENTRY QWT)

MORE ROOT

VALULS RrROOT

DEFALT ROOT

FINISH ROOT

PROBES PROBED ROOT

REPORT ROOT

YOUSET o1

CHEXBC CHKDP 01

HEADIN 01

DONEIT Oi

CHRGIT 0l

PTCLIN 01

POISOL DPPO1s 02

'BRENDN | 02 *
URPFT 02 *
POTXV 02

TESTON 02

SETACC SETACD 02

PRPTCL 02

UNMAG 02

MAGON 02

DOSTEP 02

RPPFT RPPIF

FMODES FIODED 02

PLMODE JJIPLMD 02

ENERGY ENERGD 02

PLENRG JJPLEN 02




Data block

Appropriate

Comiion block

“TL lhere is

file namo file name Segment associnted no need to
o if difflcrent ssocLnbed compile file
DENERG (F) ROOT ENERG
DI'MODE (T') ROOT FHOD
DHOVA(S) ROOT NOVPAR,
BLANK
DPOIS(S) ROOT POIS
DPROBE(S) ROOT PROBIT?
Files Common blocks
.. which are cors
containing tained, or
gigﬁ;n which are
associated
BUILD(F)
LANGDP (T) ABLANG?
NOVCOM(F) BLANK,
NOVPAR
EQLADP(F) ABLANG
RIBUF (F)
POLSON(F) POIS
EQPOIS(F) POLS
EQNOVC(T) BLANK,
NOVPAR

GRATFXV(F)?
DIAGCM(F)
PROBIT(F)?




Sctliing up a simulation

It is possible to use onc of two standard length scalings,
or alternatively to sct up your own scaling, ‘1The procedure vo
follow 1f omne is using OEBYE length scaling is straightforward -
just give the plasma dimensions by setting LXDEBY and LYDEBY.

In this scaling a plasma tinie (‘/LOP) is unity, and the thermal
velocity is unity. The scaling factor M¥* (STARM) is worked
out for you. If one decides to include a magnetic field
perpendicular to the plasma one gives a value for WC1WPI
(b)c/aw>and the extra scaling factor concerned (STARB) is worked

out,

Larmor radius scaling is probably equally straightforward
to set up. One does not have to think to set up standard
scaling, but one certainly will have to when setting up onec's

owl.

Scaling having been decided on, the next move is to dccide
on the array dimensions required (for the poisson solvers, this
must be (27 + 1 x 2™ + 1)) and edit one's common block files
accordingly. This will depend on the particular simulation -
fineness of resolution required, npmber of particles, number of
groups of particles, etc. It should always be remembered to

edit accordingly equivalence blocks and data blocks as well,

YOUSET will generaliy need to have both POIS and'(BLANK)
common blocks in it. It is here that one gives all the
parameters of the problem; this is most conveniently done by
data reading from an appropriate DSET97 or DSET5. HHere also
the plasma will be set up by whatever initialisation procedure

one thinks fit for the job in hand.

The next consideration is that of diagnostics, These are
strongly problem dependent. Probes(n) for n= l.....7 is called
at many points in each timestep so that the easiest thing to do
is to edit PROBES itself to call routines which one writes
oneself, at the appropriate moment, or perhaps to edit or put
in oneg own version of the routines which PROBES calls as it

stands at present. The user will also have to find ways of



switching on and off diagnecstics when he wants to - PRDIAG is the
logical switch to do this, but the question of opcrating the
[ ’ »

switch is left to the user, as is the question of how much it

switches off or on. (In test particle work this was done in
POTXV. This worked becausc it was called every timestep.)

Parameters such as TENERG, ... etc., control whether or
not PROBES calls LNERGY ... etc., ie every TENERG steps
Energy is called. TENERG, etc., can be sect in YOUSET if the

appropriate common bloclt is there as well.

The actual process for setting up the plasma once the

scaling has been established is straightforward.

For the first group HEADIN is called, with appropriate

parameters - group number, record number, equation, etc.,

Then the 'PSPACE!' NCOORD co-ordinates of the first particle
are gencrated by the user, put into XY (. ) and the routine
PTCLIN(XY) is called. This puts the co-ordinates into the
next PSPACE 4 words of XV and lays down the charge by calling

QWT and calls boundary condition check.
This is repeated for all particles in the group.

This is repcated for ali remaining groups with a new call

to HEADIN for each,

The array XV ends up containing é head and féil for every
group, the tail containing the particle co-ordinates. The
first few elements of XV are pointers to the beginnings of the
other parts in XV. . The integer parameter IN is set always to
that word of XV which is next to be filled in each part of the
create process. At the end of setting up the plasma, the
numbers at the beginning of XV should refer to the positions of
the start of all the HEAD records, and the last one should
indicate the end of the last tail.

All this is given in the report by ABL and BMcN.



TO RUN NOVA USTNG ICL 4/70

First of all, we rcguire a USERNAME. FFor the purposes
of this it will be GLASGO, password GL8377.
A familiarity with HULTIJOB is useful before commencing, but

this can be easily required.

It is assumed that all routines acquired have been written.
It is quite useful to test each routine by including it in a
NOVA test run instead of testing it in wvacug@. The principles
outlinced below apply both to the test run and to the production
run, The basic difference is that for the test one can use
standard common blocks (in group NOVA in the BNLTHE space) and
for the production run one uses one's own blocks. The standard
ones are quite small so the program which is generated will be
guite quick.

First of all, a few important points concerning the system,

EFEach user has a certain amount of private disc space allocated
to him, the amount being measured in "Lxtents" where one extent
~ % track and l%ﬁ“ 2 pages of FORTRAN. In this space he can
have various types of Files, 'Sft, 'R, tyr, 1Yyt, 1PV, Nt
An 'S' file céntains card images of any kind. An 'F' file

contains card iniages, but the !'F! designétion informs the

~compiler that this is a FORTRAN file. 'U' is for usercode.

A 'Y' file is any compiled file, and a 'P' file contains a ,
composed program. IN' files are less common but for example,
straightforward calls to GIOST routines will generate 'N' files,
Files are allocated to Groups for convenience in handling, so
that the full description of a file is
USERNAME : GROUPNAME: FILE NAME (IDENTIFIER/RUN NUMBER)
eg  GLASGO: GLASGI. NOVGO (P0O340)
BMCTHE : NOVCOD., URPFT(U)

where all names have no more than 6 letters.

Before the user can use files in another user's space these
files must be protected using the PROTECT command

(see A. Sherwood, or manual for details).



A facility which is always used in a NOVA run compnosition
is the IERREXIT facility which is used to insert a dunsny sub-
routine UDUMMY instcad of any routine which one docs not want to
include. Statements whichh do this for all possible standard
routines are in BNCTHE: NOVA. NOVDU(S). If the subroutine

is included the composer ignores the ERREXIT statement,.

There are (I) stages in running NOVA (or any other similar
program) on the 4/70. 4
(1) sSubstitution of common blocks into 'S' files containing
the executable statements.
(2) Compilation of such routines as are being changed.
(3) Composition of program (Linkage editing).
(4) Running of program.
(1), (2), (3) are done in 'A!' or 'B' stream and (4) is done in
'E' stream., No test program is small enough to fit into A or B.
There is a default option for (2) and (3), but (1) is generally

done in B for reasons of space,

(1) To substitute common blocks

In the 'S' file which contains the routine, instead of many

common statements we merely have, eg.,

/C ammmﬂHEunmmmﬂF)

So to get the card images from NOVCOM(F) into this position, we
run a program called DMNGCSS: PREP. NEWJIP, This can be done
from teletype or on cards, Either way, it requires a file
giving details of the substitutions to be done. For example,
if the user wanted to create a large 'F' file called ROOT which
he proposed to compile and put into the 'root!' segment, he would

set up an 'S' file with run number say, containing the following

yu GROUP (, FRED —\\\\-

|, REPLACE _, ROOT(F) q5cp<4>cﬁ
/{ v SUBSTITUTE , NOVA. PROBED(S)

Il v suBsTITUTE ( UCP(S)

/v SUBSTITUTE [, SHARED(S)

/ ENDIFILE
My



If the NEWJID prograwm acted on this file, it would put all
the Fortran cards required into a large [ile called FRED.ROOT(F).
‘the comnon blocks would also have to be in groupn FRED, in this

case. UCP and SiLARED would also be in FRED.

(2) cCompilations

In the same 'S!' file, or in another, the following cards

will then compile the 'F' files which are quoted

/Jy GROUP  , JACK — not needed
/l, TRIALS
//, SCHEDULE S{TRIALS
[/l EXEC TROUT
AVUFTRANI v FRED. ROOT, C,D/MAP,LIST,DEBUG
//y FTRAN1 y GROUPNAME, FILENAME, C,D/....
'D' deletes the 'I'' file.

'y RUN NUINBER

We can immediately follow this, if desired, by the
composition (linkage editing) which as for the compilation is done

in the TRIALS system and must have its cards preceded by

AZ}TRIALS

and followed by

/{,ENDTRIALS.

So, either we finish what we are doing by putting a /{,ENDTRIALS
after the last /% FTRAN1 card, or we proceed with the

composition, which we do as follows.

(3) Composition of a version of NOVA
(AK)TRIALS +¢es... understood).

(name of program
to be run

AK}COMPOSE‘/GROUPNAME. FILENAME (Peeeoo)
' eg NOVGO(P1230)

(where -——= signify run number)
X% OPTION LET, MAP, XREF, TRLE
(TREE only required if program is segmented)

¥¥ SUBST , BMCTHE: NOVA. NOVDUM
(puts in NOVMAI, UDUMMY and ERREXIT cards)



39¢ INCLUDL GROUPNAME, FILENAME, (FILENAME .....)

. all compiled modules for root

. seguent
main

30t SBEGMENT 01,0NROOT
38¢ INCLUDE GROUPNAME, FILENAME, (FILENAME)

all compiled modules for segment Ol
X SEGMENT 02,0NROOCT
¢ INCLUDE sevvaee
after which we must have A7 ENDTRIALS, to signify the end of

the compasition.

In the 3% INCLUDE cards one must have all the compiled
modules that he wants in the program, The SIEGMNENT cards signify
the start of a segment, The operation of automatic segmentation

is far from perfect, however, and it is comnron to get SYSTEM
modules in the wrong segment, or too low down the tree. Thesc
have to be explicitly included where they ought to be once their
erroneous presence has been found (they cause the program to

crunch with negligible error messages).

(4) Running the program

This requires a sequence of control cards which can be either
put into a file, and then that file is scheduled, or, alternatively,
run.ffbm a teletype; or instead of putting them in a file, these
cards can be entered as a job directly. Details of what is
required can be obtained from manuals (not advisable) or
consultants (frequently available) at Culham. In connection
with NOVA it should be noted that with 64x6L4 computational grid
it was possible to do a run in core with "~ 2048 particles,
in the day-time 'E' stream. This streams can run jobs of up
to ~ 396 store units (where 1 store unit = 512 bytes). The
large-stream supervisor can run Jjobs of up to 500K bytes, and is
essential in the absence of triple buffering, for a large NOVA

code to be runincore. (This is defined as stream 'A', in fact.)

Further points concerning running of program:

The user may have generated in GLASGO space a large number of
files which he requires and may find that his private store is

getting a bit tight (GLASGO was allocated 600 extents at the end



of August, and the systcem wds full so that there was no chance of
getting this increasod). lle may also find himself wanting to do
a large NOVA run, and will realize that the output file DSET99 is
stored in his space before it is printed and deleted. If it is
too big for the space much output will inevitably be lost. To
obviate this a /Z}FILE card is usecd (see consultant) to direct
the output into the public disc space on 'Volume 4' in group TENMP
where to all intents and purposes there is infinite space avail-
able, or at least, a great deal more than the user will ever
require since this Volume is scribbled completely almost every
day by the systems programmecrs. If this procedure is followed,
onc need never worry about the size of output files, siﬁce the
file is put into the print queue as soon as it is established and
so will get printed out before the systems people start deleting
Volume 4. (Every one automatically has access to Volume 4
because the systems people leave all users, after every clean-up,
with one small file on this Volume in group TEMP, so that every
file you create in group TEMP will go into Volume 4 and not

clutter up your own space.)

Points of use or things for which to watch out

(1) Every time a program is composed, a composition map is

generated from which one can tell quite a few things, It gives

"the size and location of COMMON blocks, SYSTEM routines as well as

’ .
of the users own compiled modules. It can help towards
optimisation of segmentation in order to minimise the space

required.

(2) If mode amplitudes or potential energies are required, it is
necessary to ensure that the variable FACMOD, a scaling factor,
is set equal to l/STARM. This gives the correct scaling between

kinetic and potential energies of the NOVA plasma, for example.

(3) A run with 16K particles in a 64 x 64 mesh takes the order
of half an hour to do of the order of 100 steps. Accurate
numbers for timing are hard to give because the timing is done
in ETU (elapsed time counts!) and it is said that this is not a

constant, though it is in general ~v 3 seconds.



(H) Triple buffering is probably, even in IMORTIAN, not
significantly slower than a core calculation, dowvever, since

one cannotlt run jobs of over 100 aELL in the 200K 'E' stream
during the day, it seems pointless to employ triple buffering while
the large stream is available eacii night, (Tbis is subject to

the availability of a night-shift of operators, aboul which there
is, periodically, a deal of doubt.) Another point is that T.3.

is just another complication and one would like to keep things as

simple as possible.

(5) Those with experience of the Phase-Space plotting package,
eg Charlie Hung, are more qualified 1o discuss the subject than
the present writer. Charlie can probably say wnat routines he
calls and with what arguwents in order to get his phase space
plots. He plots the only two co-ordinates he has (X and VX) so
his case may be simpler than for the 2-~D case. There is an
extra data block (check with Charlie) to be included, as well as
High Level and Low Level Ghost routines (which Briendan has in

Files called HIGOST and LOGOST). These latter he recommends to

be put in certain segments explicitly; +this is more space-efficient
than following the procedure in the Ghost manual, It is possible

to generate film, etc,, by appropriate use of the package.

(6) Care should be taken if more than two groups of particles are
to be used. In the standard common blocks, there aka number of

small'arrays which are, in fact, dimensioned 2 , where this refers
to the number of groups. These dimensions should all be altered

accordingly as the number of groups increases.

(7) Difference between a group and a record:
Groups are sets of simulation particles.
Records, consisting of a head and a tail are where all the

data concerning these particles is stored.

(8) Brendan had written an ANALYSER package which is intended

for use with NOVA, The principle was tihat there should be two

runs - one to generate output and store it some where, eg on disc,
the second, another NOVA run, but including only the analysers,was
intended to analyse the results in a prescribed manner, Analysers
are in files with names beginning JJ. The present writer has no
experience with them,

It is to be hoped by this time Alan Sykes, if he has indeed tlalken over

NOVA as JBT wanted him to, will know his way oaround it pretty well and
will be able to advise upon matters connected with it.
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generated Dby a suprathermal test particle in a two-dimens
plasma have been verified within the very noticeable const:
of the computer simulation model. Other work hss been don:
hag lent itselfvbetter tova good description by simulation
Primarily, in the electrostatic case, the slowing of a tés
particle in a two-dimenaional-colliﬂioniess placma h&s_beeﬁ

 adequately quentitatively demonstrated.

In the éase of two-dimensional magnetised plasma, e
.for the potential due to a test charge have been derived.
‘shown that the nature d£ the poteﬁtial_distribution round
‘particle, and a fortiori, Fhé shielding properties of the 3
have been radieally altered by the inclusion of the magneti
Whatover tractable means were available have been used to i
the form of the potential distributions for both stationary

moving test particles.



