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Abstract

The polarisation property of light has been known about for hundreds of years.

Often its use in technology has been limited to uniform states, however, more

recently light with structured polarisation has gained interest. This is largely

prompted by availability of spatial light modulators for generation, and increased

computation speed to model complex focal fields. My PhD research has extended

upon work carried out during a master’s project where we investigated the use of

a solid glass cone (so-called Fresnel cone) for generating vector vortex beams. The

aim of this thesis is to report on the potential use of a Fresnel cone in microscopy

and polarimetry applications, and practical implications discovered. Expanding

on the previous work, enhanced fidelity polarisation states are measured and a

newly developed Fresnel cone coupling technique is shown, allowing high-efficiency

annular vector vortex beam generation. We demonstrate through simulations based

on vector diffraction theory that azimuthally polarised light with OAM generated

using a Fresnel cone can provide sub-diffraction limited focal spots, below those of

more well-known radially polarised light. Practical implications were encountered,

prompting investigation into the effects of phase aberrations on resulting focal spots,

and experimental measurement of cone surface topology. We find the uniformity of

the Fresnel cone shape and apex angle is crucial to the focussing properties. For

polarimetry application, full details are provided for a single-shot full-Stokes po-

larimeter technique and proof-of-principle experiment, where broadband operation

is demonstrated. I conclude by summarising the findings of my research and suggest

potential future work in this area.
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Chapter 1

Introduction

‘Everything starts somewhere, although many physicists disagree.’ - Terry Pratchett

1.1 The vector nature of light

The study of light is perhaps humanity’s oldest scientific endeavour. There is ev-

idence for elementary optical theories dating back to the 5th-6th centuries B.C.

originating separately in ancient India, China and Greece [1]. After the works of

Euclid and Ptolemy in Greece on geometrical optics, a vast amount of knowledge on

the behaviour of light was gained in the Islamic world over several hundred years,

including a correct explanation of the rainbow (circa 900 A.D.) [2]. The following

centuries saw the basic laws of reflection and refraction expanded upon, and em-

ployed practically in components such as lenses and mirrors, eventually culminating

in inventions such as the telescope in 1608 [3].

The history of the vector nature of light however, began in 1669, when Rasmus

Bartholin (1625-1698) discovered the phenomenon of double refraction of light by

calcite [4]. Christiaan Huygens (1629-1695) was able to show that the twin beams

refracted by calcite had a certain ‘sidedness’, though neither he, using a wave de-

scription of light, nor Isaac Newton (1642-1727) pursuing a corpuscular theory of

light, could explain this [5]. It was not until a hundred years later or so that piv-

otal investigations by Étienne-Louis Malus (1775-1812) on the reflection of light

also revealed this ‘sidedness’, and the term ‘polarisation’ was conceived. Following

Huygens’ wave description of light, Thomas Young (1773-1829) reasoned that light

1
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behaves as a transverse wave, oscillating orthogonal to the direction of propaga-

tion. These discoveries led Augustin Jean Fresnel (1788-1827) to deduce his famous

formulae for light’s complex amplitude coefficients upon reflection and transmis-

sion [6]. Though the results of Fresnel are hundreds of years old, they are an im-

portant discovery and are in fact still useful in optics manufacturing and research

today (see chapter 3).

With the first telescopes, the first microscopes were also developed during the 17th

century, alongside the initial discoveries of polarised light. It was not until the

mid-20th century however, that the mathematical techniques to calculate the ef-

fects of high-angle (non-paraxial) focussing on polarisation were developed, and so

for a long time the effects of polarisation upon focussing were neglected. It was

much later still that the computational power was available to model complex focal

fields involving three-dimensional polarisation (where the longitudinal z-direction

is considered). For a lens, a higher numerical aperture relates to a reduction in

the resulting focal spot size, where often in applications it is desirable to obtain

the smallest possible focal spot. Hence, widespread use of high numerical aperture

lenses in both technology and research means that the effects of polarisation should

not be ignored. Furthermore, investigations on the effects of polarisation in the

non-paraxial regime have revealed that previously thought fundamental limits on

focal spot volume to be surpassed (see chapter 4).

Though evidently known about since the times of Huygens and Newton, this vector

property of light is only relatively recently finding application in both common and

complex technology [7–10]. In order to work with polarisation it must be measur-

able, and while the measurement of intensity (brightness) and wavelength (colour)

is well-understood and ubiquitously found in optical devices, polarisation is often

neglected in the design of common detectors. This is largely due to conventional

cameras and the human eye1 being insensitive to electric field orientation, mak-

ing measurement difficult. Polarisation characterisation is hence an active area of

current research (see chapter 5).

1With the exception of ‘Haidinger’s brush’ - an entoptic phenomenon whereby the eye produces
a faint image of a fuzzy yellow bar (with orthogonal blue/purple bar) whose direction depends on
polarisation!
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1.2 Motivation for my research

1.2.1 Vector beams and the Fresnel cone

The ability to produce tailored light fields is not new, though for decades the cus-

tomisation was limited to intensity patterns ignoring phase and polarisation. These

were generated using amplitude masks [11] or diffractive optical elements [12], of-

ten for use in photolithography. Interestingly however, amplitude and phase are

inherently linked in propagating beams through the phenomenon of interference.

This is strikingly evident in the Talbot effect [13, 14] for example. Here, upon

incidence at a diffractive grating element it is shown that periodic phase patterns

evolve into intensity patterns and back - eventually re-imaging the original grating

at a certain distance. Interest in the structuring of light’s phase gained traction

upon the discovery of light beams carrying orbital angular momentum (OAM) [15].

These OAM beams possess a helical phase front with a phase singularity on the

optic axis (optical vortex), where the phase is undefined and the intensity goes

to zero. Interesting beam structures have been subsequently studied, such as the

optical ‘bottle beam’ [16] or ‘Ferris wheel’ [17]. In three dimensional space these

vortices are lines, where more complicated optical knots and loops have also been

shown [18]. This phase-structuring of light, while clearly very interesting to study,

is also finding application in a range of areas from optical communications [19] to

particle trapping [20].

Following the structuring of light’s amplitude and phase it was inevitable that po-

larisation structuring would also emerge. In the past only beams with homogeneous

polarisation states were considered, where the polarisation is unchanged across the

beam’s cross-section, while these structured polarisation beams (vector beams) have

a spatially dependent state in the transverse plane. Anything deviating from a ho-

mogeneous state was previously considered unwanted and actually something to be

fixed. Beams with polarisation structuring that also carry OAM are of particular

interest (vector vortex beams), exhibiting classical entanglement [21–23]. The term

classical entanglement here refers to the non-separability of these beams in their

polarisation state and spatial distribution. Correlations akin to quantum entangle-

ment are observed, however, an important distinction is the lack of non-locality [24].

Since the early 2000s, there has been a rapid increase in the publication of new meth-

ods for generating these sorts of beams [25–27]. This has been largely prompted by
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the availability of technology such as liquid-crystal spatial light modulators [28, 29]

digital micro-mirror devices [30, 31], and q-plates [32], along with interest in polar-

isation effects reported in the non-paraxial regime (particularly effects which allow

focussing below the conventional diffraction limit - see subsection 1.2.2). Passive

methods for generating vector beams within the laser cavity have also been de-

veloped [33]. Structured light is now not only used to investigate fundamental

physics [34, 35], but is applied in a wide variety of areas [36–39]. The impact is

clearly evidenced when considering the Nobel prize awarded in 2014 for Stimulated

Emission-Depletion (StED) Microscopy [40]. There are now various approaches to

this technique, however, to put it simply a sample is illuminated by two beams - the

first focusses light to a diffraction-limited spot, while the second beam is structured

in a way that focusses to a doughnut-shaped intensity (known as the StED beam).

This StED beam is used to photobleach fluorophores excited by the first beam, forc-

ing them to their ground state. The result of this is that only the remaining excited

fluorophores at the centre of the doughnut mode are able to fluoresce, revealing a

significantly reduced spot size.

The polarisation property of light is most commonly controlled by introducing

a phase difference between orthogonal polarisation components through differen-

tial optical path lengths, through the use of birefringent optical elements (such as

quarter- and half-wave plates). Less commonly known however, a phase difference

can also be achieved by a geometric phase effect [41]. Conversely, this allows mod-

ulation of the optical wavefront of a beam through control of its polarisation [42].

This can be implemented through a number of different ways [43–45], however,

this thesis explicitly uses the spin-redirection geometric phase effect found when

operating a Fresnel cone in a back-reflection mode [46]. This uses a phase-shift be-

tween s and p polarisation components upon total internal reflection at a boundary

between glass and air. Unlike the common methods for introducing phase-shifts

through differential optical path length (such as the use of birefringent material),

this phase shift upon total internal reflection allows use with relatively broadband

light (see subsection 3.3.1).

I first became familiar with the ability of a Fresnel cone to be used to structure

the polarisation of light during my Masters project, prior to beginning my PhD

research. Initially this work was intended as a short project driven entirely by

curiosity, however, the practical and technological applications in areas such as

laser machining, microscopy and polarimetry soon became clear and collaborative
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projects with industry partners began. Since then we have improved upon the

generated polarisation states and developed high-efficiency coupling techniques (∼
100% efficiency as opposed to the previous ∼ 25%), one of which generates annular

vector vortex beams. In chapter 2, I will give full details on the theory, formalisms

and conventions used throughout my thesis, before describing the Fresnel cone high-

efficiency coupling investigations in chapter 3.

1.2.2 Non-paraxial light and 3D polarisation

In 1959, Richards and Wolf reported a numerical method for calculating the result-

ing focal field in a high focussing-angle system, taking into account the full vector

nature of light [47, 48]. It is only during the last few decades however that research

has been taken up in this area, as in the past computational power was not sufficient

to attempt these problems. It may be at first surprising that a beam with Gaus-

sian intensity profile, that is strongly focussed by a circularly symmetric lens, does

not necessarily have a circularly shaped focal spot. In a strong focussing regime, a

longitudinal polarisation component emerges from the focussed radial polarisation

component of the incident beam (as is discussed in chapter 4). If focussing linearly

polarised light for example, the radial component is non-uniform in the azimuthal

direction at the lens aperture, and the resulting focal spot is an elongated ellipti-

cal shape with an orientation depending on the linear polarisation orientation of

the incident beam [49]. This is perhaps detrimental for certain applications, such

as scanning microscopy (however, a circular focal spot is still easily achievable by

focussing circularly polarised light2). For example, see Figure 1.1 where I show

experimentally measured focal spots under strong focussing for certain polarisation

input states, highlighting this polarisation dependence3. The knowledge that both

size and shape of a focal volume depends on the incident polarisation has brought

about a recent interest into both tight [50–52] and customised focal spots [53–56].

2Circular focal spot shapes are also possible from more complicated polarisation structures,
as well as when focussing unpolarised light - as this is an ensemble of photons with random
polarisations, resulting in an averaged focal spot with contributions from every polarisation state.

3I note here that the simulated focal spots are produced using the simulation described in chap-
ter 4.
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a)

b)

Horizontal input Diagonal input Circular input

Figure 1.1: a) Simulated focal spots for certain input polarisation states with
high NA focussing b) experimental measured focal spots.

In the early-2000s, the effects of high angle focussing of cylindrical vector beams

became a topic of particular interest, where focal spots with a size below the con-

ventional diffraction limit were reported possible [25]. More recently, a further

reduction in size was reported by strongly focussing a beam with both spatially

dependent polarisation and phase [57]. Given that lenses are ubiquitous in opti-

cal technology, applications for these tight focal volumes can be found not only in

optical microscopy, but in a wide range of areas [58–61].

Following the report in 2016 of Fresnel cone vector vortex beams, we investigated

the strong focussing properties of these beams by simulating the resulting focal

spots using Richards and Wolf vector diffraction theory. In chapter 4, the details of

the strong focussing investigation are given. We discovered through simulation that

a Fresnel cone can be used to generate beams which allow sub-diffraction limited

focal spots. Experimentally we found that the surface flatness and manufacturing

quality of a Fresnel cone are crucial factors in the focussing ability of the resulting

beams. Detrimental polarisation effects can also be found when using these beams

in real microscope system, however, it is shown in this thesis that these effects can

be pre-compensated for. This work is reported in the SPIE proceedings [62].
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1.2.3 Polarimetry

In the previous sections, emphasis has been on the statement that there has been

a rapid increase in reports of generation methods for light beams with structured

polarisation, and how these beams can be useful. It is important however, not

only to be able to generate useful polarisation states but also to have the ability to

measure them.

Light can become at least partially polarised when it is reflected or transmitted

through optically transparent media. The resulting polarisation state can depend on

the surface geometry of the interacting object, or the birefringence and/or dichroic

properties of the media transmitted through. This means that the polarisation

property of light can contain information about its source, complimentary to the

information usually gained from measuring wavelength and intensity. As already

raised, polarisation is essentially invisible to conventional detectors, however, de-

vices do exist which can reveal the polarisation state of incident light, known as po-

larimeters. These devices are found in a wide range of fields, including astronomy,

remote observation, medical diagnosis and target detection, to name just some [63].

Numerous measurement domains exist for performing polarimetry on light, each

with various benefits and drawbacks. The most common of these modulate the

incident light in either a spatial, temporal or spectral manner - this will be dis-

cussed in more detail in chapter 5. A ‘rotating waveplate’ approach is preferred for

commercial devices as it is fairly low-cost and compact, however, these devices rely

on moving parts and contain birefringent components (limiting the use to specific

wavelengths). In chapter 5 I will show that the same back-reflection technique for

structuring light’s polarisation with a Fresnel cone given in chapter 3 can be used

to reveal the incident polarisation state, in a single-shot polarimeter device. Unlike

the rotating waveplate approach this technique contains no moving parts and allows

broadband use. I will also give details about future work on developing a portable

Fresnel cone polarimeter demonstrator, for use with high-power ultra-short pulse

laser systems for characterisation.



Chapter 2

Background theory and

conventions

2.1 Introduction

In this chapter I will provide the background theory from which the work shown in

this thesis is derived, particularly with respect to the simulations developed, reasons

for experimental decisions and the visual representations of polarised light I have

used. In the real world, many light sources are both incoherent and unpolarised,

such as sunlight, candlelight, or light from an incandescent bulb. Light in these

cases is a random composition of different wavelengths, complex amplitudes, polar-

isation states and spatial distributions. In order to understand the characteristics

and interactions of electromagnetic waves with optical components, I will initially

consider the case of uniformly polarised coherent plane waves (sinusoidal waves that

have a single wavelength and amplitude). As any wave can be decomposed into a

sum of plane waves, the general theory can then be expanded to include other spatial

distributions and compositions of light. The decomposition of a propagating wave

as a sum of plane waves is an important concept and leads to the angular spectrum

representation of optical fields, and will be important later in this chapter.

8
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2.2 Complex vector light fields

Through this section I show how the vectorial electromagnetic wave nature of light

emerges from Maxwell’s equations with a few reasonable assumptions.

2.2.1 Revealing the wave equation

In the absence of any charges and assuming a vacuum, Maxwell’s famous four

equations become

∇ · E = 0, (2.1)

∇ ·B = 0, (2.2)

∇× E = −∂B

∂t
, (2.3)

∇×B = ε0µ0
∂E

∂t
, (2.4)

where E and B are the electric and magnetic fields respectively (in space and time,

E(x, y, z, t) and B(x, y, z, t)), ∇ is the nabla operator1, ε0 is the permitivitty of free

space, µ0 is the permeability of free space and t is time [6]. Upon taking the curl of

both sides of Equation 2.3, we have

∇×∇× E = −∂(∇×B)

∂t
. (2.5)

We can use Equation 2.4 to eliminate B in Equation 2.5, obtaining

∇×∇× E = −ε0µ0
∂

∂t

(
∂E

∂t

)
. (2.6)

Using the known vector identity

∇×∇× E = ∇(∇ · E)−∇2E, (2.7)

and realising that in the absence of any free charges ∇ · E = 0 [6], we can sim-

plify Equation 2.6 to

−∇2E = −ε0µ0
∂2E

∂t2
. (2.8)

1Where ∇ ·E is the divergence and ∇×E is the curl of the field in Cartesian coordinates.
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Gathering the terms onto one side reveals the vector wave equation for the electric

field E(r, t) in free-space,

∇2E(r, t)− ε0µ0
∂2E(r, t)

∂t2
= 0. (2.9)

This is a three-dimensional vector equation containing three separate equations for

the components of the electric field in Cartesian coordinate directions x, y and z.

For each component there is a second derivative in space associated with a second

derivative in time - this coupled-space and -time dependence is a hallmark of the

general differential wave equation. Equation 2.9 written as

∇2E(r, t)− 1

c2

∂2E(r, t)

∂t2
= 0, (2.10)

implies the speed of the wave in free-space is c = 1/
√
ε0µ0. An important solution

to the vector wave equation is the plane wave solution,

E(r, t) = E0 e[i(k·r−ωt+φ)]er, (2.11)

where E0 is the amplitude of the wave, ω is angular frequency, i is the imaginary

number, φ is the phase offset at t = 0, er is a unit vector in the direction of

oscillation, and k is the wavevector. The wavevector k has magnitude equal to

the wavenumber k = 2π/λ (λ being the monochromatic wavelength), and direction

perpendicular to surfaces of constant phase (k ·r−ωt+φ = constant). Importantly,

any linear superposition of solutions such as Equation 2.10 are also solutions to the

wave equation. The common convention of exponential notation is used (specifically

Euler’s formula is made use of) as this can simplify algebra, however it is important

to note that care must be taken to examine only the real part of this wave when

considering the physical electric field.

Similar treatment can be given to the magnetic field, B, and the concept of oscil-

lating electromagnetic waves is established. These electromagnetic waves follow the

restrictions given by Maxwell’s equations, where it is particularly important to note

that this restricts the electric and magnetic field to be oscillating transverse waves

- both perpendicular to each other, as well as to the direction of propagation. In

this thesis I will only consider the electric field, E, and the magnetic field is largely

disregarded from this point on (but could easily be established from the electric

field through Maxwell’s equations).
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2.2.2 Polarisation

In the previous section I established that Maxwell’s equations allow the propaga-

tion of electromagnetic plane waves in free space2. As shown in Equation 2.11, er

describes the oscillation direction (or orientation) of the electric field, and it is this

which is conventionally used to specify the polarisation of the light3. In the general

case and given that a superposition of plane waves is also a solution to the vector

wave equation, the electric field can be written

E(z, t) =
1√
2

(E0x e[i(kz−ωt+φx)]ex + E0y e[i(kz−ωt+φy)]ey). (2.12)

If the electric field vector orientation is constant, the wave is said to be linearly

polarised. As an example, for an electromagnetic wave travelling in the positive

z-direction and polarised in the x-direction, the electric field is written

E(z, t) = E0x e[i(kz−ωt+φ)]ex. (2.13)

As a further example of a special case of linear polarisation, if E0x = E0y = E0 and

φx = φy = φ, then

E(z, t) =
1√
2

(E0 e[i(kz−ωt+φ)]ex + E0 e[i(kz−ωt+φ)]ey), (2.14)

resulting in an electric field polarised in the (ex + ey) direction at 45◦ to the x-axis

(see Figure 2.1).

2Note that these are not the only solutions, for example, spherical and cylindrical waves are
also possible.

3Conventionally the electric field of an electromagnetic wave is used to specify the polarisation
direction as when light interacts with matter, the force exerted on electrons by the electric field is
much greater in magnitude than that of the magnetic field [64].
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x

y

E0ey

E0ex

E0(ex+ey)

Figure 2.1: Vector addition of two linearly polarised waves in the x- and y-
directions, resulting in a single linearly polarised wave at 45◦ to the x-axis.

In the above example, E0x = E0y = E0, but if this is not the case then the result

is simply linearly polarised light propagating in the +z-direction, but with a polar-

isation angle θ to the x-axis with θ = tan−1(E0y/E0x). These linear combinations

are simply vector additions of two linearly polarised waves with φx = φy = φ.

Exploring this further, if E0x = E0y = E0 but the phases are not equal, ellipti-

cal polarisation states are possible. Given a phase difference of +π/2 (and equal

amplitudes) a special case is found. This is known as circular polarisation:

E(z, t) = E0 e[i(kz−ωt+φ)]ex + E0 e[i(kz−ωt+φ+π/2)]ey. (2.15)

The second term on the right can be expanded as

E0 e[i(kz−ωt+φ+π/2)]ey = e(iπ/2) e[i(kz−ωt+φ)]. (2.16)

Since e(iπ/2) = i,

e(iπ/2) e[i(kz−ωt+φ)] = i e[i(kz−ωt+φ)], (2.17)

and the resulting electric field can be written as

E(z, t) = E0 e[i(kz−ωt+φ)](ex + iey). (2.18)

For this wave the electric field vector rotates around the propagation axis with

the tip tracing out a circle in the x-y plane, which is why it is known as circular

polarisation. The handedness of the rotation depends on whether the π/2 phase
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shift is added or subtracted. I would like to note here that when superposing

two electromagnetic waves, one right- and one left-circularly polarised with equal

amplitudes, the result is a linearly polarised wave (with orientation dependent on

the phase offset between the two circularly polarised waves) [6]. For example, the

case just mentioned is

[
E0 e[i(kz−ωt+φ)](ex + iey)

]
+
[
E0 e[i(kz−ωt+φ)](ex − iey)

]
= E0 e[i(kz−ωt+φ)]ex + E0 e[i(kz−ωt+φ)]iey

+ E0 e[i(kz−ωt+φ)]ex − E0 e[i(kz−ωt+φ)]iey

= 2E0 e[i(kz−ωt+φ)]ex, (2.19)

which is horizontally linearly polarised light with amplitude twice that of the indi-

vidual circularly components.

What I have described in this section is just a set of specific special cases, and given

a linear combination of two monochromatic waves with E0x 6= E0y and φx 6= φy

a whole range of elliptical polarisation states are possible. In all cases however,

the electric and magnetic fields are always perpendicular to each other and to the

direction of propagation.

2.3 Polarisation formalisms and conventions

In the previous section I have discussed the orientation of the electric field vector

of the light to represent the polarisation state. When viewed looking towards the

light source the tip of the electric field vector traces out the shape of an ellipse as

it oscillates, where circles and lines are special cases (representing circularly and

linearly polarised light). I note here that these oscillations are far too fast to be

experimentally measured by conventional detectors and any polarisation measure-

ment is an average in time of many oscillations. In this section I will detail useful

mathematical descriptions for polarised light. The most well known formalisms for

dealing with polarisation interactions with optical elements include Jones calcu-

lus [65], Mueller calculus [66] and coherency matrices [67]. In my research I have

made use of the Jones formalism as it is especially concise (when using the nor-

malised form), and the Mueller formalism as it involves experimentally measurable

observables (intensities), so I explain these two descriptions in this section.
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2.3.1 Jones formalism

In the paraxial regime4 where only small angles are made with respect to the optical

axis, polarisation is considered to be purely transverse to the direction of propaga-

tion. This means that any polarisation state can be decomposed into two orthogonal

components, where in a Cartesian coordinate system this is usually an x- and y-

components. Established by Robert Clark Jones in 1941 [65], Jones calculus shows

that light’s polarisation can be represented by a Jones vector, which is a 2×1 vector

consisting of the complex amplitudes of the orthogonal x and y electric field compo-

nents. Optical elements which act on a Jones vector are represented by 2× 2 Jones

matrices. These are transformation matrices that reveal the resulting output Jones

vector when taking the product of the Jones matrix with the incident Jones vector.

As mentioned, this representation is often preferred as it is very concise, however,

it should be noted that it can only deal with fully polarised states (for partially or

unpolarised light see subsection 2.3.2). Propagating in the +z-direction, the electric

field, E can be written as

E(z, t) = E0x e[i(kz−ωt+φx)]ex + E0y e[i(kz−ωt+φy)]ey. (2.20)

The polarisation is not time dependent so time can be neglected, and we consider

the instantaneous case at z = 0. This can be written in vector form as a Jones

vector

J =

[
Ex(0, 0)

Ey(0, 0)

]
=

[
E0x exp (iφx)

E0y exp (iφy)

]
, (2.21)

where E0x and E0y are amplitudes, φx and φy are phases. It is just the difference

in phase which is important5, so we can arbitrarily set φx to 0. The intensity I can

be calculated using

I =
[
Ex
∗Ey

∗
] [ Ex

Ey

]
= ExEx

∗ + EyEy
∗ = |Ex|2 + |Ey|2. (2.22)

4Here, the paraxial regime refers to situations where the paraxial approximation is assumed.
This is a small-angle approximation requiring that rays only make small angles to an optical
axis (an imaginary line defining the direction in which light propagates in a system), such that
sin θ ≈ θ, cos θ = 1 and tan θ ≈ θ.

5Unless nonlinear processes, e.g. the interference between multiple light beams, are considered.
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By normalising I to 1, the Jones vector representation for a horizontal (JH) and

vertical (JV) polarisation states for example is then

JH =

[
E0x exp (iφx)

0

]
=

[
1

0

]
(2.23)

and

JV =

[
0

E0y exp (iφy)

]
=

[
0

1

]
. (2.24)

If E0x = E0y and φx = φy in Equation 2.21, then

J =

[
E0x exp (iφx)

E0x exp (iφx)

]
. (2.25)

This Jones vector is normalised by dividing both components by
√

2E0x e(iφx) to get

JD =
1√
2

[
1

1

]
, (2.26)

which is the Jones vector for diagonally polarised light (45◦ to the x-axis). Similarly

anti-diagonal light is represented by

JA =
1√
2

[
1

−1

]
. (2.27)

Finally considering the case for circularly polarised light, where E0x = E0y and

φx = φy + π/2, as shown in [6] we get

J =

[
E0x e(iφx)

E0x ei(φx+π/2)

]
, (2.28)

where upon dividing both elements by
√

2E0x e(iφx) becomes

JR =
1√
2

[
1

e(iπ/2)

]
=

1√
2

[
1

i

]
. (2.29)

This is the normalised Jones vector for right-handed circular polarisation. Similarly

it can be found that

JL =
1√
2

[
1

−i

]
(2.30)
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for left-handed circular polarisation. I note here that the sign of the second element

in the circular polarisation state only depends on the frame of reference defined -

i.e. these could be oppositely signed if considering the case looking away from the

light’s source rather than towards it (a simple but important distinction to make

clear when defining one’s polarisation basis).

Two complex vectors are orthogonal if X ·Y? = 0, and it can be shown that

H ·V? = A ·D? = R · L? = 0. (2.31)

Hence, horizontal/vertical, diagonal/anti-diagonal and right-/left-circular polarisa-

tion are orthogonal sets which are mutually unbiased and form six basis states used

throughout this thesis - see Figure 2.2 for a diagram depicting these defined states.

Figure 2.2: Diagram showing the six polarisation basis states and conventions
used throughout this thesis.

By using Jones vectors and the Jones calculus approach, optical components such

as simple mirrors and polarising filters can be represented by 2× 2 Jones matrices

(which are commonly known) to represent the action of these components, and the

output state of a given system (Jout) can be calculated for a known input state (Jin)

as

Jout = N · Jin. (2.32)
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When a system contains multiple components, N is the product of the matrices

of the separate components such as N = N3·N2·N1 (the order of multiplication is

important, N1 should act on the input Jones vector first).

2.3.2 Stokes and Mueller formalisms

Although a Jones vector can be used to completely specify the polarisation state

of light, it is limited to fully polarised states. In reality, whether in nature or

experiment this is hardly ever the case as many objects either partially polarise light

or cause depolarisation, resulting in partially or unpolarised light. Importantly, the

phases contained in a Jones vector are not experimentally accessible.

Fortunately, a polarisation state can also be represented using a Stokes vector S,

which is a four-element vector containing parameters that are related to measurable

intensities [66], written as

S =
[
S0 S1 S2 S3

]T
. (2.33)

These four parameters (S0, S1, S2 and S3) are related to intensities of the light

when it is projected into six polarisation basis states (namely horizontal 〈|Ex|2〉,
vertical 〈|Ev|2〉, diagonal 〈|Ed|2〉, anti-diagonal 〈|Ea|2〉, right-circular 〈|Er|2〉 and

left-circular 〈|El|2〉 polarisations, where 〈...〉 signifies a time average) as follows:

S0 = 〈|Ex|2〉+ 〈|Ey|2〉 = 〈|Ed|2〉+ 〈|Ea|2〉 = 〈|Er|2〉+ 〈|El|2〉,

S1 = 〈|Ex|2〉 − 〈|Ey|2〉,

S2 = 〈|Ed|2〉 − 〈|Ea|2〉,

S3 = 〈|Er|2〉 − 〈|El|2〉.

As before, the total intensity I is conventionally normalised to 1, giving the states

shown in the table below.
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Basis state Stokes vector

|H〉
[

1 1 0 0
]T

|V 〉
[

1 −1 0 0
]T

|D〉
[

1 0 1 0
]T

|A〉
[

1 0 −1 0
]T

|R〉
[

1 0 0 i
]T

|L〉
[

1 0 0 −i
]T

By using Stokes vectors and a Mueller calculus approach [68], the action of optical

components is represented by 4×4 Mueller matrices (which are again commonly

known), and the output polarisation state of a given system can be calculated for

a known input using

Sout = M Sin, (2.34)

where Sin and Sout are the initial and final polarisation states and M is the Mueller

matrix representing the optical system. When a system contains multiple com-

ponents, M is the product of the matrices of the separate components such as

M = M3·M2·M1 (the order of multiplication is important, M1 should act on the

input Stokes vector first). Stokes vectors are also applicable to polarisation states

that are not fully polarised.

As detectors are only sensitive to intensity and not the phase or orientation of the

electric field, the Stokes formalism is ideal for application in polarimetry.

2.3.3 Jones-to-Stokes conversions

It has often been useful for me to be able to convert from a Jones vector to a Stokes

vector. The method to carry this out will be described here. Given the Jones vector

shown in Equation 2.21, and the Stokes parameters

S0 = |Eh|2 + |Ev|2

S1 = |Eh|2 − |Ev|2

S2 = |Ed|2 − |Ea|2

S3 = |Er|2 − |El|2 ,

(2.35)
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where the subscripts h, v, d, a, r and l are used to signify the horizontal, vertical,

diagonal, anti-diagonal, right-circular and left-circular polarisation components, and

Ed =
1√
2

(Eh + Ev)

Ea =
1√
2

(Eh − Ev)

Er =
1√
2

(Eh + iEv)

El =
1√
2

(Eh − iEv),

(2.36)

the Stokes parameters in terms of the Eh,v components are thus

S0 = EhE
∗
h + EvE

∗
v

S1 = EhE
∗
h − EvE∗v

S2 = E∗hEv + EhE
∗
v

S3 = −i(E∗hEv − EhE∗v).

(2.37)

Following this, the individual amplitudes and phases are found to be

E0x =
√
EhE∗h =

√
S0 + S1

2

E0y =
√
EvE∗v =

√
S0 − S1

2

φh − φv = arctan
S3

S2

φv = − arctan
S3

S2

when φh = 0.

(2.38)

Throughout my research it has also been necessary to convert from a Jones matrix

to a Mueller matrix. Here I will show how to convert from a 2× 2 Jones matrix to

a 4 × 4 Mueller matrix following the method described by Azzam [64]. As I have

previously explained, a Jones vector describes the complex x- and y-components

of the electric field, while a Stokes vector describes intensities of light according to

different polarisation states. The conversion method is thus derived by calculating

light intensities from electric fields. In order to do this a mathematical operation

known as the Kronecker product is needed, which constructs a 4 × 4 matrix when
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applied to 2× 2 Jones matrices. For example, if A and B are two Jones matrices

A =

[
a11 a12

a21 a22

]
(2.39)

and

B =

[
b11 b12

b21 b22

]
, (2.40)

then

A⊗B =

[
a11B a12B

a21B a22B

]
=


a11b11 a11b12 a12b11 a12b12

a11b21 a11b22 a12b21 a12b22

a21b11 a21b12 a22b11 a22b12

a21b21 a21b22 a22b21 a22b22

 . (2.41)

With knowledge of how to apply the Kronecker product to two matrices, the next

step in the conversion considers a Jones matrix N acting on an input Jones vector

Jin as [
Jx

Jy

]
out

=

[
N11 N12

N21 N22

][
Jx

Jy

]
in

. (2.42)

By taking the Kronecker product of Equation 2.42 with its complex conjugate we

can express the Jones vectors in terms of intensities:

Jout ⊗ J∗out = (N⊗N∗)(Jin ⊗ J∗in). (2.43)

The Kronecker product of J⊗ J∗ results in a 4× 1 coherency vector C as

C =

[
Jx

Jy

]
⊗

[
J∗x

J∗y

]
=


JxJ

∗
x

JxJ
∗
y

JyJ
∗
x

JyJ
∗
y

 . (2.44)

Thus,

Cout = (N⊗N∗)Cin. (2.45)

Using the coherency vector, a Stokes vector S can be expressed as

S = XC, (2.46)
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where

X =


1 0 0 1

1 0 0 −1

0 1 1 0

0 i −i 0

 . (2.47)

Multiplying out Equation 2.46 we get
S0

S1

S2

S3

 =


JxJ

∗
x + JyJ

∗
y

JxJ
∗
x − JyJ∗y

JxJ
∗
y + JyJ

∗
x

i(JxJ
∗
y − JyJ∗x)

 , (2.48)

which agrees with Equation 2.37 for the definition of the Stokes vector. Addi-

tionally, Equation 2.46 can be rearranged for both the input and output cases as

Cin = X−1Sin and Cout = X−1Sout, which, by inserting into Equation 2.45 it can

be shown that

Sout = X(J⊗ J∗)X−1Sin. (2.49)

Here, X(J ⊗ J∗)X−1 represents a Mueller matrix M in terms of Jones matrices

(acting on an input Stokes vector as described in subsection 2.3.2), allowing con-

version from Jones-to-Mueller. It is important to note here that when performing

this conversion it must be assumed that the system represented by the Jones matrix

does not depolarise the light, even though the resulting Mueller matrix can describe

depolarisation.

2.3.4 Measuring the Mueller matrix of a system

As described in previous sections there are various methods for analysing polari-

sation, using either Jones matrices [65], Mueller calculus [66] or coherency matri-

ces [67]. For experimental determination of the polarisation properties of a system,

Mueller matrices are the most straightforward to work with as these rely on experi-

mental intensity measurements. Here a system could be a single optical component,

transmission through an optically transparent sample, reflection from a surface, or

a series of a combination of any number of these. For example, in chapter 4 I show

that I determine a single Mueller matrix for an entire microscope system, consisting

of multiple mirror reflections and transmissions through dichroic beam-splitters. I

will now describe the method I used for experimentally determining the Mueller
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matrix, closely following that laid out in [69]. Matrix normalisation is discussed

in chapter 5, while this section deals only with the experimental measurement and

subsequent determination of the Mueller matrix.

Firstly some assumptions must be made clear - as the elements of a Mueller matrix

can depend on wavelength and angle of incidence on the component being measured,

these are assumed to be fixed. The general setup used for measuring the Mueller

matrix is shown in Figure 2.3.

Light source λ/2PBS Detectorλ/4 LPλ/4Sample

Figure 2.3: Diagram showing typical setup used to measure a Mueller matrix.
PBS is a polarising beam-splitter, λ/2 and λ/4 are half- and quarter-wave plates

respectively, and LP is a linear polariser.

In Figure 2.3, PBS is a polarising beam-splitter, λ/2 and λ/4 are half- and quarter-

wave plates respectively, and LP is a linear polariser. The light source can be either

a laser, where care must be taken to ensure the waveplates are of the correct wave-

length specification, or alternatively a white light source can be used to investigate

the Mueller matrix across the visible spectrum. If using a white light source how-

ever, Fresnel rhombs should be used in place of waveplates as they allow achromatic

operation (See subsection 2.4.3). The detector used can be any detector capable of

providing a quantitative intensity measurement. The PBS is used to ensure a clean

polarisation input state6. The waveplates prior to the sample are used to generate

the required input polarisation states, while the waveplate and linear polariser after

the sample are used to analyse the polarisation state.

In general, a total of 36 measurements q = 0, 1, 2...35 are made in order to determine

all 16 elements of a Mueller matrix M (using the 6 polarisation basis state settings

for both the polarisation state generator and analyser) . As there are technically

only 16 unknown values in a 4× 4 Mueller matrix, full matrix determination could

be made with 16 measurements if the required generator and analyser settings are

known. Using a half- and quarter-wave plate, polarisation states are generated

with Stokes vectors Gq. Following the Stokes and Mueller formalism described

6A spirit level can be used to ensure the PBS is aligned with the optical table.
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in subsection 2.3.2, the resulting polarisation state after the sample is MGq. These

resulting states are then analysed using a quarter-wave plate and linear polariser,

which have an analyser Stokes vector Aq. The intensity on the detector is then

Iq = AT
q MGq. From a set of intensity measurements, a system of linear equations

can be solved for certain Mueller matrix elements. For example, if setting the

generated state to be horizontally linearly polarised (H) and the analyser state to

analyse horizontally (H), we get

I = AT
HMGH =

1

2

[
1 1 0 0

]

m00 m01 m02 m03

m10 m11 m12 m13

m20 m21 m22 m23

m30 m31 m32 m33

 1

2


1

1

0

0


=
m00 +m01 +m10 +m11

4
.

It can be seen that the intensity observed on the detector with the generated and

analyser states both set to horizontal, depends on the Mueller matrix elements m00,

m01, m10, and m11 of M. Carrying out this process with both horizontally and

vertically aligned generator and analyser settings in the four combinations H/H,

H/V, V/H and V/V (for generator/analyser) yields intensities

I0 =
m00 +m01 +m10 +m11

4
, (2.50)

I1 =
m00 −m01 +m10 −m11

4
, (2.51)

I2 =
m00 +m01 −m10 −m11

4
, (2.52)

and

I3 =
m00 −m01 −m10 +m11

4
. (2.53)

These four equations form a set of linear equations which can be used to solve for

the four matrix elements as
m00

m01

m10

m11

 =


I0 + I1 + I2 + I3

I0 + I1 − I2 − I3

I0 − I1 + I2 − I3

I0 − I1 − I2 + I3

 (2.54)

This process is repeated using generator and analyser settings including diagonal
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and anti-diagonal linear polarisation (D and A) and right- and left-circular polari-

sation (R and L) for a total of 36 intensity measurements, to obtain intensities for

determining the remaining Mueller matrix elements. For completeness, the follow-

ing table shows the intensity calculations with generator/analyser settings required

for the remaining Mueller matrix elements.

Mueller element Intensity equation

m00 IHH + IV H + IHV + IV V

m01 IHH − IV H + IHV − IV V
m10 IHH + IV H − IHV − IV V
m11 IHH − IV H − IHV + IV V

m02 IAA − IDA + IAD − IDD
m20 IAA + IDA − IAD − IDD
m22 IAA − IDA − IAD + IDD

m03 IRR − ILR + IRL − ILL
m30 IRR + ILR − IRL − ILL
m33 IRR − ILR − IRL + ILL

m12 IAH − IAV − IDH + IDV

m21 IHA − IV A − IHD + IV D

m13 IRH − IRV − ILH + ILV

m31 IHR − IV R − IHL + IV L

m23 IRA − ILA − IRD + ILD

m32 IAR − IDR − IAL + IDL

It is worth noting that from the 36 measurements taken there are multiple com-

binations to determine the element m00, which could be used as a simple check.

Over-complete determination can also help to analyse and reduce errors, as is done

for the Fresnel cone polarimeter work described in chapter 5.

2.3.5 Polarisation ellipse and the Poincaré sphere

As well as understanding the various useful mathematical methods for describing

polarised light, visual representations can also be useful as they often facilitate an

intuitive interpretation. In this section I will detail the polarisation ellipse and the

Poincaré sphere.
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The polarisation of light is described as being elliptical, as when looking towards

the source of a light beam the electric field vector E traces out the shape of an

ellipse in the x-y plane. Linear and circular are simply special cases of elliptical

polarisation. From [70], the Stokes parameters are related to the eccentricity e

(ratio of semi-minor axis to semi-major axis), orientation θ and chirality (sign of

S3) of a polarisation ellipse through

S1 =
e2 cos(2θ)

2− e2
(2.55)

S2 =
e2 sin(2θ)

2− e2
(2.56)

S2
3 =

4(1− e2)

2(2− e2)
(2.57)

Derivation is found in the appendix of [70]. These can be rearranged to find

e2 =
2
√
S2

1 + S2
2

1 +
√
S2

1 + S2
2

(2.58)

tan(2θ) =
S1

S2

(2.59)

The handedness, denoted by the sign of S3 can be incorporated into the eccentricity

to give −1 ≤ e ≤ 1 (−1 and 1 represent left- and right-circularly polarised light,

while 0 represents linear). The angle θ is measured clockwise from the negative

x-axis. Figure 2.4 shows the plotted ellipses and colour scheme used throughout

this thesis to visually represent polarisation. Note that when these ellipses are

plotted for experimental data, a resolution of 21×21 superpixels will be used which

encompasses an average Stokes vector for the superpixel.

|H〉 |D〉|V〉 |L〉|R〉|A〉

a)

b)

e
0-1 1

Figure 2.4: a) Polarisation ellipses plotted from theoretical Stokes vectors for
the six basis states. b) The colour scheme used to depict all ellipticities.
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Polarisation states can also be visually represented as points on a Poincaré sphere,

shown below in Figure 2.5 in Cartesian coordinates. This is a sphere of unit radius,

so that fully polarised states which have
√
S2

1 + S2
2 + S2

3 = 1 lie on the surface of

the sphere, while partially polarised states lie within the sphere. In this depiction,

conventionally right- and left-circular polarisation are positioned at the poles, all

linear states lie on the equator of the Poincaré sphere and antipodal points are

orthogonal states.

L

R

DA

V

H

x

y

z

Figure 2.5: Diagram showing the Poincaré sphere.

2.3.6 Polarimetry conventions

Optical polarimetry is employed in a wide range of fields, and while the same math-

ematics and Stokes formalism is used in each case, different terms and naming

conventions can be found - I will briefly discuss these here.

In the previous sub-section I elected to use throughout this thesis [S0, S1, S2, S3]T to

denote the Stokes parameters, which is also the convention often used in the fields

of target detection and remote sensing. This designation is convenient when con-

sidering element-indexing while working with linear algebra and matrices, however,

care must be taken when using this convention as occasionally [S1, S2, S3, S4]T is

used instead by some authors. Additionally, Si is sometimes used to denote signal
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measurements. The second most common naming convention for the Stokes pa-

rameters is the use of [I,Q, U, V ]T for historical reasons in the field of astronomy,

as these were used by Chandrasekhar in 1947 [71] when re-introducing the work of

Stokes from 1852.

In addition to the various naming conventions for the Stokes parameters, it is im-

portant to be clear on the coordinate system being used. For example, defining the

polarisation basis states using a right- or left-handed coordinate system may affect

the sign of S1, S2, or the handedness of the circular component, S3. Similarly, it is

important to state for the definition of the handedness of S3 whether the observer

is looking towards the light source (often used in astronomy) or away from the light

source (often used in particle and quantum physics). Here I restate that throughout

my thesis I choose to use the convention of looking towards the light source (moti-

vated by use of a camera to record data), as well as using a right-handed coordinate

system.

2.4 Polarisation and interactions with optical el-

ements

In this section I will describe the effects on the polarisation of light as it interacts

with different optical components. The optical elements I will discuss will primarily

be those used in an optics laboratory as these are most relevant for this thesis,

such as the use of linear polarisers, transmission through birefringent material and

reflections at glass-air boundaries.

2.4.1 Dichroism

When beginning work with polarisation in an optics laboratory, the first component

one usually encounters is a linear polariser. These rely on (linear) dichroism (some-

times referred to as diattenuation), which is the property of a material to selectively

absorb one polarisation state while transmitting the orthogonal state7.

7Most commonly the polariser will be a linear polariser, however, circular polarisers do exist
where the phenomenon is known as circular dichroism.
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A wire-grid polariser consists of a set of parallel conducting wires. When an electro-

magnetic wave is incident on this wire-grid, it can be decomposed into two orthog-

onal fields - one parallel and one perpendicular to the wire-grid orientation. The

component of the electric field aligned with the wire-grid interacts with electrons

in the conducting wires and causes a current to flow, transferring energy. The elec-

trons are not able to move much in the perpendicular direction and the component

of the wave in this direction is almost fully transmitted [6]. This is perhaps con-

trary to intuition where it is often thought that the electric field component parallel

to the wire-grid spaces is that allowed to pass - this is not the case (as depicted

in Figure 2.6.

x

y

z

Figure 2.6: Figure showing the transmission of the electric field component
orthogonal to the orientation of parallel wires in a wire-grid polariser. Here the
blue (red) field component is parallel (perpendicular) to the wire-grid orientation.

Today most linear polarisers are instead based on a polaroid sheet. These consist

of a polyvinyl alcohol sheet which is stretched causing hydrocarbon molecules to

configure into long chains, which are analogous and function similarly to the wire-

grid polariser [6]. When selecting a linear polariser, it is important to note the

operational wavelength range and the transmission:extinction ratio. Crystal based

polarisers also exist which can provide a high extinction ratio, though these rely on

birefringence.

2.4.2 Birefringence

The common method for inducing a differential phase-shift between orthogonal

polarisation components is through birefringence. This phenomenon is present in

optically anisotropic crystals which have two separately defined refractive indices for
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orthogonal polarisation components8. The result of this is that the two polarisation

components propagate through the crystal at different phase velocities, inducing a

phase shift between them. By manufacturing a plate of this material with specific

thickness, one obtains an optical component for modulating light’s polarisation state

in a controlled way without diverting or attenuating the beam9. These are known

as waveplates and are most commonly manufactured to induce a quarter- or half-

wavelength phase shift (quarter- or half-wave plate respectively). It is important to

note that these components operate accurately only for a specific wavelength.

When selecting a waveplate to use there is often the option of zero-order and multi-

order features. Multi-order waveplates are manufactured to have an integer multiple

of the required phase-shift, for example a thickness of 50λ/2 for a half-wave plate.

Zero-order plates achieve the exact required phase-shift by combining two multi-

order plates oppositely orientated so that the resulting phase-shift is, for example,

λ/2 for a half-wave plate10. The error for deviating from the specified operational

wavelength is thus much larger in a multi-order waveplate, however, zero-order

plates are much more expensive. I have used wave-plates of both types throughout

my experiments, however, I have also used what are known as Fresnel rhombs for

the same result when using broadband white light - these are explained in the next

section.

2.4.3 Total internal reflection

The optical phenomenon of total internal reflection (TIR) is well known, by which

light incident above a certain critical angle11 at a boundary between a higher re-

fractive index and lower refractive index material is completely reflected (there is

no refracted light). What is often not so well known is the more subtle phenomena

of “attenuated internal reflection” due to absorption of the evanescent wave, and an

accompanied phase-shift upon TIR between orthogonal polarisation components,

parallel and perpendicular at the boundary plane of incidence. It is the latter of

these which is important for this thesis and so I will go into more detail here.

8Such as calcite or quartz.
9experimentally there is often a very slight attenuation

10The reason for doing this is perhaps not obvious, but it would not be practical to manufacture
a waveplate for the lab with a thickness of only λ/2.

11Approx. 49◦ for a water-to-air and 42◦ for glass-to-air.
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Augustin-Jean Fresnel discovered during his work with polarisation in the 1800s,

that upon TIR there is an associated non-trivial phase-shift. The polarisation vec-

tor of the incident light at a boundary where the condition for TIR is satisfied can

be decomposed into two orthogonal components, perpendicular and parallel to the

plane of incidence. These are commonly known as s and p polarisation, for perpen-

dicular and parallel, respectively (from the German senkrecht and parallel, meaning

perpendicular and parallel). Fresnel deduced equations for the reflection coefficients

for s and p polarisation components (rs and rp respectively), which when taking into

consideration an exponentially decaying transmitted evanescent wave can be shown

as

rs =
n cos (θi)− i

√
n2 sin2 (θi)− 1

n cos (θi) + i
√
n2 sin2 (θi)− 1

(2.60)

and

rp =
n cos (θi)− in

√
n2 sin2 (θi)− 1

n cos (θi) + in
√
n2 sin2 (θi)− 1

, (2.61)

where n = n1/n2 (the ratio of the refractive index of the two materials) and θi is

the angle of incidence at the boundary. If θi > θc (where θc is the critical angle

for TIR to occur), then the magnitude rp = rp = 1 and only the phase is affected

by the reflection. As shown in [46], when the angle of incidence is 45◦ (an angle of

incidence of particular importance for chapter 3 and chapter 4) the relative phase-

shift between s and p components is

δ = arg (rs)− arg (rp) = arg

(
n2 + i

√
1− 2n2

1− n2

)
. (2.62)

For a typical glass-air interface (where nglass = 1.55 and nair = 1) the reflection

coefficients, phases and phase shift δ are plotted for different θi in Figure 2.7. The

grey shaded region shows the region above θc, where both reflection coefficients

are equal to 1 showing TIR. Note that Brewster’s angle can be seen on this plot

(∼ 32.8◦) where rp is 0 and the phase of the p component abruptly changes from

180◦ to 0◦. The dotted line in Figure 2.7 shows a 45◦ angle of incidence, which

coincides with a relative phase-shift of ∼ π/4 (indicated by the solid black line,

equal to φp − φs).
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Figure 2.7: Fresnel coefficients for angle of incidence at a glass-air boundary.

In glass with n = 1.51, a relative phase-shift of π/4 is achieved for an incidence

angle of θi = 54.6◦. By manufacturing a glass prism with a geometry such that

incident light upon a specified front surface undergoes two total internal reflections,

each at an angle of θi = 54.6◦, a component known as a Fresnel rhomb is con-

structed. A Fresnel rhomb such as this then imposes a π/2 total phase-shift, akin

to the polarisation transformation of a quarter-wave plate. For example, if diago-

nal linearly polarised light is incident, the final result will be circularly polarised

light. As such, the Fresnel rhomb functions similarly to a birefringent quarter-wave

plate12. Importantly however, the refractive index and thus imparted phase-shift is

relatively stable across a broad wavelength range (see Figure 3.4 in subsection 3.3.1)

for the Fresnel rhomb and allows achromatic operation. Note also that double Fres-

nel rhombs are commonly used, which contain four reflections imparting a total π

phase-shift (acting as achromatic half-wave plates). On occasion in my work it has

been necessary to experiment with polarisation and broadband white light (from

12I note here for experimental considerations that there is an associated beam-shift/translation
of the beam for the output beam with respect to the beam incident to a single Fresnel rhomb (this
is not the case with a double-Fresnel rhomb.
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an LED source), and as such, I have often used Fresnel rhombs in place of bire-

fringent waveplates (it will be noted where this has been the case in the relevant

experimental setup diagrams).

2.5 Propagation and focussing of optical fields

The spatial profile of a light beam evolves upon propagation, so it is useful to be

able to calculate this for arbitrary propagation distances. I will detail in this section

the key pieces of theory used in the simulations shown for the propagation of optical

fields in chapter 3 and the focussing of vector beams in chapter 4.

2.5.1 Angular spectrum representation

The first tool we need for the calculations of beam propagation and focussing by

a lens, is the so-called angular spectrum representation. This is a mathematical

technique where an electromagnetic field at a particular plane is considered as a

decomposition of an infinite sum of plane waves - each with their own amplitudes and

directions of propagation. The plane wave decomposition of an electromagnetic field

E(r) is equivalent to the two-dimensional Fourier spectrum at position r = (x, y, z).

As the Fourier spectrum of a beam in a particular image plane (z = constant) is

uniquely defined by knowledge of the Fourier spectrum at an object plane (z = 0),

this consideration allows one to calculate the resulting spatial profile of a light beam

for an arbitrary propagation distance using Fourier transforms.

For a chosen z-axis (optical axis), Novotny shows in [48] that the Fourier spectrum

Ê(kx, ky; z) of the electric field E(x, y, z), evolves in the z-direction according to

Ê(kx, ky; z) = Ê(kx, ky; 0) e±ikzz, (2.63)

where

kz =
√
k2 − (k2

x + k2
y), (2.64)

and |k| = 2π/λ. The exponential factor in Equation 2.63 is known as the propagator

in reciprocal space [48], and can be used to calculate the Fourier spectrum Ê at an

arbitrary z plane as long as the field is known for the plane at z = 0. Thus, the

steps to calculate the propagation of a field are as follows:
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• Apply a 2D Fourier transform operation to the complex amplitudes,

• Multiply the result of this by the optical propagator in reciprocal space,

• Apply an inverse Fourier transform operation to the result to acquire the

propagated field.

This plane wave decomposition method can be summarised in the following equation

E(x, y, z) =

∫∫ ∞
−∞

Ê(kx, ky; 0) ei[kxx+kyy±kzz] dkxdky, (2.65)

or, with Fourier transforms -

E(x, y, z) = F−1
{
F {E(x, y, 0)} ei[kxx+kyy±kzz]

}
. (2.66)

Here, the ± sign allows computation of propagation in either the positive or negative

z-direction. When considering polarised light, each polarisation component can be

propagated separately, followed by a vector sum of the resulting fields.

In many real-world optical situations, light fields propagate along a chosen direc-

tion (usually chosen to be the z-axis) and do not diverge much in the x- and y-

directions. When this is the case, geometric optics can be used where ray tracing is

applied to approximate the propagation of light through an optical system, by us-

ing approximate solutions to Maxwell’s equations. More specifically, the square-root

of Equation 2.64 from the previous section can be Taylor series expanded as

kz =
√
k2 − (k2

x + k2
y) ≈ k −

k2
x + k2

y

2k
, (2.67)

where by removing the square root the problem is computationally greatly simpli-

fied. This approximation (known as the paraxial approximation) however does not

take into account diffraction and interference effects, and relies on the ability to

apply the small-angle approximation which is only valid for light propagating at

small angles to the optical axis.

2.5.2 Far field approximation

In the near field, optical wavefronts are considered spherical while in the far field

wavefronts are considered planar, and so the far field can be an approximation
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of the optical field far from a focus. Novotny [48] shows that by considering the

propagation of a field to a far away point (r = r∞, an infinite distance from the

source), the angular spectrum representation of Equation 2.65 becomes

E(x, y, z) =
ir e−ikr

2π

∫∫
(k2x+k2y)≤k2

E∞

(
kx
k
,
ky
k

)
ei[kxx+kyy±kzz] 1

kz
dkxdky, (2.68)

where r =
√
x2 + y2 + z2. While kz ≈ k, the result is equivalent to Fourier optics,

though this is the limit of Fourier optics, beyond which simple Fourier transforms

will not provide the correct result. This far field approximation is useful as the near

field region of an optical field would require complicated calculations, however, the

result here links the more common far field representation of an optical field with

the near field in a Fourier transform pair.

2.5.3 Propagation through a lens

From the last section we find that to calculate the optical field at a focus, we need

to know the far field distribution of the electric field. For a strongly focussing

lens the paraxial approximation is not valid and focussing of vector beams is most

often numerically calculated using the vector diffraction theory of Richards and

Wolf [47, 72], more recently summarised in [25, 73] and described in detail in [48]. I

will describe the theory below closely following the summaries by Novotny [48] and

Zhan [25]. The general idea is a mapping of the incident field in cylindrical into

spherical coordinates at a discrete spherical surface in space, with the focal point

at the centre. Given that light propagates as Gaussian waves rather than rays, this

approach works surprisingly well. An incident electric field Einc upon an aplanatic

lens must obey two rules - the Abbe sine condition (see Figure 2.8) and the intensity

law (see Figure 2.9).
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Refracted ray
h=f sin(𝜃)

Figure 2.8: Diagram showing the sine condition - an ideal aplanatic lens refracts
light rays through a reference sphere with radius r. Note that the reference sphere
represents refraction due to a change in refractive index. Image adapted from [48]

.

z
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µ n1 1
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dA  =       cosϑ1 dA2

F

Figure 2.9: Diagram of the intensity law, where due to energy conservation the
energy carried by a ray must remain constant. Image adapted from [48]

.

The sine condition states that each ray that converges to a focus of an aplanatic lens

should intersect with a ray that propagates parallel to the optic axis at a reference

sphere of radius f - the focal length of the lens. The distance between the parallel

ray and the optic axis is given by

h = f sin (θ), (2.69)

as shown previously in Figure 2.8. Combining the sine condition and the conserva-

tion of energy law (the energy transported by a ray must remain constant) results

in an intensity law for determining the magnitude of the field just after the lens.

This requirement makes sure the energy incident on the lens is the same at the exit

pupil. Assuming a magnetic permeability of µ = 1 (a reasonable assumption for
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most media), the electric fields before the lens and after (E∞) should satisfy the

following equation,

|E∞| = |Einc|
√
n1

n2

cos (θ)1/2. (2.70)

The incident field Einc is a generalised vector beam that may have any allowed

spatial distribution of amplitude and polarisation and is assumed to have a planar

phase front at the back-aperture or entrance pupil of the objective lens. Vector

diffraction theory uses multiple coordinate systems. The table below shows the

conventions used in the proceeding theory.

Cylindrical coordinates

(ρ, φ, z) Arbitrary transverse plane

Cartesian coordinates

(x, y, z) Arbitrary point near focus

(x∞, y∞, z∞) Arbitrary point on reference sphere surface

Spherical coordinates

(r, ϑ, ϕ) Arbitrary point near focus

(f, θ, φ) Arbitrary point on reference sphere surface

To calculate refraction by the lens, the problem is simplified by considering the

reference sphere as a conversion of Einc in a cylindrical coordinate frame to E∞ in a

spherical coordinate frame, as shown in Figure 2.10. Here I introduce unit vectors

eρ, eφ and eθ, where eρ and eφ are unit vectors of a cylindrical system and eθ and

eφ are of a spherical system [48]. The incident electric field at the reference sphere

can be decomposed into an s and p component, where, using cylindrical unit vectors

these are

Es
inc = [Einc · eφ] eφ, (2.71)

and

Ep
inc = [Einc · eρ] eρ. (2.72)
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Figure 2.10: Definition of coordinates and unit vectors for conversion from
cylindrical frame to spherical frame at reference sphere. Image adapted from [48].

It can be seen in Figure 2.10 that upon refraction at the reference sphere, the unit

vector eφ is unaffected, while eρ is mapped to eθ in the spherical system. Taking

into account the sine condition and intensity law shown previously for the aplanatic

system, the field after refraction is then,

E∞ = [[Einc · eφ] eφ + [Einc · eρ] eθ]
√
n1

n2

cos (θ)1/2. (2.73)

If s and p Fresnel transmission coefficients are needed, these can easily be included.

The following transformations allow the expression of eρ, eφ and eθ in Cartesian

unit vectors using spherical coordinates θ and φ:

eρ = cos (φ)ex + sin (φ)ey (2.74)

eφ = − sin (φ)ex + cos (φ)ey (2.75)

eθ = cos (θ) cos (φ)ex + cos (θ) sin (φ)ey − sin (θ)ez. (2.76)
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Inserting these into Equation 2.73 provides the field at the reference sphere in

Cartesian unit vectors, as

E∞(θ, φ) =

Einc(θ, φ) ·


− sin (φ)

cos (φ)

0




− sin (φ)

cos (φ)

0

√n1

n2

(cos (θ)1/2

+

Einc(θ, φ) ·


cos (φ)

sin (φ)

0





cos (φ) cos (θ)

sin (φ) cos (θ)

− sin (θ)

√n1

n2

(cos (θ)1/2 (2.77)

It can be beneficial to re-state the far field angular spectrum representation of Equa-

tion 2.68 in spherical coordinates rather than in terms of kx and ky due to the

symmetry of the system in a spherical frame. In order to carry out the diffraction

integral over a solid angle in θ and φ instead of the planar integration over kx and

ky in Equation 2.68, Richards and Wolf [47] show the following conversion can be

used for the differentials,

1

kz
dkxdky = k sin (θ)dθdφ. (2.78)

Finally, by replacing r with the focal length of the lens f , and limiting the integration

to the maximum focussing angle of the lens θmax, given by the numerical aperture

of the lens, NA = n sin (θmax), the focal field can be evaluated using

E(ρ, φ, z) = −ikf e−ikf

2π

∫ θmax

0

∫ 2π

0

E∞(θ, φ) eikz cos (θ) eikρ sin (θ) cos (φ−ϕ) sin (θ) dφdθ.

(2.79)

With Equation 2.77, this allows the evaluation of the focal field E(ρ, φ, z) for any

incident field Einc, using the far field approximation E∞(θ, φ) at the reference sphere

of an aplanatic lens.



Chapter 3

Polarisation structuring with a

Fresnel cone

3.1 Introduction

The polarisation property of light has been known about for hundreds of years,

however, only relatively recently has polarisation been used in technology, with the

use of spatially dependent states being a current popular subject [25]. In chap-

ter 1 some applications benefiting from spatially structured vector light were given

- for a review of complex vector light field applications see [74]. During my mas-

ter’s project, I contributed to work where we showed that light’s polarisation (and

phase) can be structured through back-reflection from a solid glass cone [46]. My

research has continued this work, expanding and improving upon, and investigat-

ing where Fresnel cone beams can be applied practically. In chapter 4 I will show

how beams generated using a Fresnel cone reveal interesting results when tightly

focussed. Conversely, in chapter 5 I show how a Fresnel cone can not only be used

to generate useful polarisation states, but also to measure the unknown polarisation

of an incident light beam. In this chapter I will highlight some known methods for

polarisation structuring from the literature, before detailing the theory and experi-

mental techniques of the Fresnel cone polarisation structuring. I will also describe

a new coupling device developed for use with the Fresnel cone for generating high

efficiency annular vector vortex beams.

39
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My contributions to this work included setting up and performing experiments to

enhance cone beam fidelity, to collaboratively test an axicon-coupling technique, to

simulate Fresnel cone Poincaré beam generation, and co-writing the manuscript-in-

preparation titled ‘High-efficiency high-NA vector beams from a Fresnel cone’.

3.2 Polarisation structuring in the literature

There have been numerous techniques developed to generate beams of light with

structured polarisation. These are sometimes categorised as being either an active

or passive method, where active techniques convert the polarisation state inside the

laser cavity, while in passive techniques the polarisation conversion is done outside

of the cavity (here laser output is usually linearly or circularly polarised). This

categorisation of the various methods was reviewed in detail by Q. Zhan [25]. More

relevant to my work is the distinction between a static generation component and

one which allows dynamic control - here I will review cases of both, before providing

a full description of structured polarisation generation using a Fresnel cone.

3.2.1 Static generation methods

As discussed in subsection 2.4.2, the most common optical components for

manipulating the polarisation state of a light beam use birefringent materials. Many

of the early designs for polarisation structuring are focussed on the generation of

radially polarised light, since this showed potential for application in the mid-2000s

(as explained in chapter 1). A common approach was to use a ‘radial analyser’ - a

system using birefringent components with the resulting polarisation transmission

axis aligned in the radial direction [75]. The required input for this system is cir-

cularly polarised light, which can be expressed in terms of unit vectors in a polar

coordinate frame as

Ein = ex + iey = (cos (θ)er − sin (θ)eθ) + i(cos (θ)er + sin (θ)eθ)

= eiθ(er + ieθ),
(3.1)

where ex and ey are unit vectors in a Cartesian coordinate frame and er and eθ

are unit vectors in a polar coordinate frame (θ being azimuthal angle). Upon

transmission through a radial analyser, Eout = eiθer, where the unit vector is in

the radial direction only, however, the output beam has gained a spiral phase factor
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(this is a geometric phase, or Pancharatnam-Berry phase [43]). In chapter 4 I show

that the global phase is crucial to the focussing properties of a beam, and so this

additional spiral phase may not be desirable for the generated radially polarised

beam. This phase could be compensated for using a variety of methods, but all add

additional components or limitations to the setup.

Given instead a linearly polarised input, to convert this to a radially polarised beam

the polarisation at each point in the transverse plane must be rotated by azimuthally

varying amounts. By taking four waveplate segments, each rotated differently to

give varying fast-axis orientations, Quabis et al. was able to generate a radially

polarised beam [76], and later an eight-segmented waveplate was constructed by

Machavariani et al. to produce a more continuous radially polarised beam [77]

(both cases diagramatically shown below in Figure 3.1). Perhaps obvious however,

these segmented waveplates produce only approximate radially polarised beams due

to the finite number of the individual segments, and the discontinuity between the

segments.

a) b)

Figure 3.1: a) Four-segment and b) eight-segment waveplates for generating
radially polarised light by Quabis et al. and Machavariani et al., respectively.

Images adapted from [76] and [77].

Progressing forward a decade from the work of the previous paragraph, and active

generation of a variety of vector beams with [78] and without [79] optical vortices is

demonstrated using devices called q-plates (though these were first introduced circa

2006 - for a recent review of q-plate development see [80]). These are constructed

using dynamic photo-lithography techniques to photo-align a layer of ‘rice-shaped’

birefringent liquid crystals on a substrate (oriented in the x-y plane at predefined

angles), providing the potential for an assortment of passive components that allow

a variety of vector beams generation.
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Most recently, it was shown that a variety of interesting vector beams can be gen-

erated using graded index (GRIN) lenses in ‘cascade’ setups [81]. These lenses

have been previously used in on-chip waveguide coupling [82] as well as in micro-

endoscopy [83] due to their small compact size. During fabrication of the rod-shaped

lens, an azimuthally symmetric refractive index profile is created. Additionally dur-

ing fabrication, a (normally) undesirable birefringence profile is created that has a

radially increasing retardance that is fixed at a given radius, and azimuthally orien-

tated fast-axis. The result for polarisation manipulation is that a GRIN lens can be

thought of as an array of tiny waveplates, with spatially dependent retardance and

fast-axis orientation. For example, Figure 3.2 below shows the output polarisation

state for a circularly polarised input to a single GRIN lens - demonstrated by He

et al. [81].

Figure 3.2: Polarisation profile for operation of a single GRIN lens on a circu-
larly polarised input. Image from [81].

As GRIN lenses are already used in certain medical imaging applications there is

potential for development of GRIN lens Stokes and Mueller matrix polarimetry, to

aid in diagnosis. Polarimetry as mentioned earlier will be the subject of chapter 5.

There are obvious benefits to using static components for vector beam generation,

whatever the application may be, due to the inherent robustness and stability. The

above discussed components however, each rely on birefringent material - limiting

operation to monochromatic light.
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3.2.2 Dynamic generation methods

The previous section showed examples of the generation of vector beams using sim-

ple static components, however, dynamic polarisation state generation may be more

desirable. With the increased availability of spatial light modulators (SLMs) in re-

cent years, various methods have been developed for the complete arbitrary control

of a light beam’s amplitude, phase and polarisation. The most common SLMs used

are liquid crystal based, consisting of an array of individual ‘rice-shaped’ liquid

crystals. These liquid crystals are birefringent, and are usually oriented horizon-

tally (parallel to the laboratory optical table). Their alignment can be controlled

by passing an electric field through them changing their inclination angle to the

propagation direction. This essentially changes the path length and the resulting

polarisation dependent phase-shift magnitude.

Using additional polarisation optics, arbitrary control has been demonstrated using

two phase-only SLMs [84]. Here a cascade of two SLMs is used in a 2f setup, where

the first SLM displays a hologram projecting the desired amplitude in the plane

of the second SLM, which subsequently is used to modulate the phase. Alterna-

tively, amplitude can be controlled by changing the blazing height of a spatially

resolved blazed grating displayed on an SLM, changing the diffraction efficiency in

the first order [85]. More complex setups have managed arbitrary control using

only a single SLM [86, 87]. Generally, vector beam generation using SLMs involves

shaping the horizontal and vertical polarisation components separately and then

superimposing [88, 89] - for a review of SLM beam generation techniques see [28].

Recently, another type of SLM has gained popularity for generating complex vector

light fields, known as a digital micro-mirror device (DMD) [90, 91]. While liquid

crystal SLMs require specific linearly polarised inputs, DMDs have been shown to

be polarisation insensitive [31, 92]. Complex vector light beam generation with

a single DMD is possible by first spatially separating an incident beam into two

orthogonal polarisation components. These individual beams are directed to the

DMD plane, at which point two multiplexed holograms are displayed (each inde-

pendently controllable). For vector beam generation, each hologram encodes the

desired amplitude and phase of a Laguerre-Gauss mode (in Rosales-Guzman et al.

system [31] - other mode pairs can be used such as the Hermite-Gauss modes [93]),

which are then spatially overlapped in the first diffraction order resulting in the

final beam. Though this system is not restricted to linearly polarised light, it is
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however highly inefficient as the first diffraction order contains ∼ 10% of the total

input power, and broadband operation remains an issue.

3.3 Fresnel cone theoretical description

In the last section I highlighted both static and dynamic methods for polarisation

structuring, however, these are for the most part restricted to monochromatic light

or involve complex setups. In this section I will detail the operation of the central

component investigated throughout this thesis - the so-called Fresnel cone [46] (see

photograph below).

Figure 3.3: Photograph showing the rear side of a mounted Fresnel cone with
a 90◦ apex.

When light is incident at the front surface of a solid glass cone with a 90◦ apex angle,

the angle of incidence at the rear surface is above that required for total internal

reflection to occur. This means that the beam is completely reflected and exits the

cone in the opposite direction it entered. As shown in subsection 2.4.3, when light

undergoes total internal reflection at a boundary such as this, between glass and

air, Fresnel’s equations predict a phase-shift between the orthogonal s and p po-

larisation components. Given the conical geometry the decomposition of the initial

polarisation state into s and p components varies azimuthally around the cone tip,

resulting in an azimuthally varying polarisation state in the output beam. As stated

in [46], in addition to the phase induced upon TIR there is also a spin redirection
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phase that occurs during Fresnel cone back reflection. This will be discussed in more

detail shortly, but the result is a conversion of spin angular momentum to orbital

angular momentum1. I note here that Bouchard et al. reported a related approach

to vector vortex beam generation using TIR, using two glued hollow axicons [95].

An advantage of using a single Fresnel cone is that it does not require any spatial

splitting of the incident beam and recombination. Similar methods for generating

vector beams without OAM have also been previously reported [96, 97].

To determine the polarisation effects of the Fresnel cone, I will next show how the

Jones calculus approach described in chapter 2 can be used. Using the Fresnel

reflection coefficients described in subsection 2.4.3, rs and rp, from [46] in an s-p

eigensystem the Jones matrix for two TIR reflections is then

Mwedge =

[
r2

p 0

0 r2
s

]
= r2

p

[
1 0

0 ei2δ

]
, (3.2)

where δ is given in subsection 2.4.3. During my research I have used three genera-

tions of Fresnel cones. The first generation are aluminium-coated N-BK7 glass cones

from Edmund Optics (the aluminium was first etched away to reveal the glass-air

boundary). The second and third generation cones are both H-BaK6 glass from

G&H and Laser Components, respectively. This glass was chosen specifically for

the second and third generation cones as it provides an s-p phase-shift of 0.25π (to

2 s.f.) at each reflection, compared to the first generation cones for which δ = 0.22π

(to 2 s.f.), when used at a wavelength of 850 nm. The choice to manufacture cones

for use at 850 nm is due to common applications operating at this wavelength -

discussed in chapter 4. See Table 3.1 below for specifications.

Generation ∅ Material n (633/850 nm) δ (633/850 nm)

First 10 mm N-BK7 1.52/1.51 0.22/0.22 π

Second 15 mm H-BaK6 1.56/1.56 0.26/0.25 π

Third 25 mm H-BaK6 1.56/1.56 0.26/0.25 π

Table 3.1: Table showing specifications for the three generations of Fresnel
cones used throughout my research. n and δ are to 2 significant figures.

1This is true for both solid glass cones as well as reflection in metallic cones [94].
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By using rotation matrices (given in chapter 2), the input polarisation state in an

x-y coordinate system can be rotated into the s-p eigensystem of the Fresnel cone,

then operated on by the two TIRs given in the form of Mwedge above, before using

a second rotation matrix to rotate back into the x-y coordinate frame as follows,

Mcone = R(−φ)MwedgeR(−φ). (3.3)

Here I note that due to the change of sense of rotation by the conical back-reflection,

the rotation matrices must be in the same direction in order to rotate back into the

original x-y coordinate frame.

Due to the cylindrical symmetry of the Fresnel cone, it is advantageous to use a

circular polarisation basis (σ+,σ−) to describe the action of the device [46]. This

results in a simplification of the Jones matrix, and it is shown that when for example

right-handed circularly polarised light is input into the cone,

σ+ → −ie(Φs+Φp)
[
ei2(φ+π/4) cos (δ)σ+ + sin (δ)σ−

]
. (3.4)

In this case, 2~ units of OAM have been acquired by the right-handed circular

polarisation components and none in the left. Assuming a Fresnel cone with the

exact refractive index to provide δ = π/4 this simplifies to

σ+ → −
i√
2

e(Φs+Φp)
[
ei2(φ+π/4)σ+ + σ−

]
. (3.5)

Here, the amounts of left and right handed circular polarisation are equal, with a

phase shift varying azimuthally around the cone tip. The polarisation profile is thus

linear everywhere but with azimuthally varying orientation. When considering an

ideal phase-shift of δ = π/4 at each reflection, the result of linearly polarised light at

each transverse point makes sense, as a total phase-shift of 2δ = π/2 is the same a

quarter-wave plate - often used for converting linear to circularly polarised light and

vice-versa. I will show both simulated and experimental results for varying input

states to a Fresnel cone in section 3.4, in the form of spatially resolved polarisation

plots using the ellipticity visualisation previously shown in Figure 2.4. I note here

to demonstrate the potential flexibility of Fresnel cone use, that by manufacturing

different cones with different refractive indices, a range of δ values can be achieved,

as shown in Figure 3.4 below.
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Figure 3.4: The theoretical phase-shift acquired between s and p polarisation
components upon TIR for increasing refractive index (for an angle of incidence
of 45◦), calculated using the complex amplitude Fresnel equations for reflection

coefficients.

3.3.1 Broadband nature

Unlike many optical components used for modulating light’s polarisation property,

the Fresnel cone does not rely on birefringence. Instead as mentioned, the phase-

shifts that occur between orthogonal polarisation components are reliant upon the

refractive index of the cone material, and importantly the geometry of the cone,

which determines the s and p decomposition at the boundary where TIR occurs.

In glass, refractive index varies only slowly with wavelength for large wavelength

ranges, and so can be considered essentially constant for the purposes of the Fresnel

cone. Cauchy’s equation2 is well known and describes the dispersion relationship

between refractive index and wavelength, which I use to examine this relationship

for different types of glass below. Cauchy’s equation is

n(λ) = A+
B

λ2
+
C

λ4
+ ..., (3.6)

where n is the refractive index, λ is the wavelength and A, B, C and so on are

constants that can be determined by fitting the equation at known wavelengths to

measured refractive indicesI note that Cauchy’s equation is only valid for dispersion

2Defined in 1836 and named after Augustin-Louis Cauchy.
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in the visible region and the Sellmeier equation must be used when considering the

ultraviolet or infrared regions.. For most cases it is adequate to employ just the

two-term equation

n(λ) = A+
B

λ2
, (3.7)

since higher terms become negligibly small. The constants A and B are well known

for common types of glass and are shown in Table 3.2 below (from [78]).

Material A B(µm2)

Fused silica 1.4580 0.00354

Borosilicate glass BK7 1.5046 0.00420

Hard crown glass K5 1.5220 0.00459

Barium crown glass BaK4 1.5690 0.00531

Barium flint glass BaF10 1.6700 0.00743

Dense flint glass SF10 1.7280 0.01342

Table 3.2: Table showing values for A and B constants for Cauchy’s equation
for common types of glass.

Using these known constants and Equation 3.7 I show the relationship between

refractive index and wavelength below in Figure 3.5.
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Figure 3.5: Refractive index versus wavelength for some common glass types.
The visible region is highlighted in the grey box.

This enables the optimum selection of glass material for the Fresnel cone depending

on the wavelength in use, optimising for δ in Equation 2.62. As was earlier stated,

for the second and third generation cones obtained, H-BaK6 glass was selected as

the cone material due to providing a close to ideal phase-shift value of δ = π/4

at a wavelength of 850 nm. This is a typical operating wavelength of scanning

microscopes and will be discussed more in the next chapter.

3.4 Fresnel cone experimental technique

In this section I will describe the typical experimental setup for coupling light into

a Fresnel cone and subsequently measuring its polarisation profile. In order to

plot spatially resolved polarisation ellipses for visualisation of the generated beam’s

transverse polarisation profile, measurement of the Stokes vector described in sub-

section 2.3.2 must be carried out. This involves taking six images of the beam’s

intensity profile on a camera after projection into the six polarisation basis states,

namely horizontal (H), vertical (V), diagonal (D), anti-diagonal (A), right-circular
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(R) and left-circular (L). The setup for Fresnel cone beam generation and Stokes

measurement is shown below in Figure 3.6.

Laser PBS

L1

L2

L3

M1

M2

P

λ/2 λ/4

NPBS Cone

Camera

λ/2

λ/4

L4

LP

Figure 3.6: Experimental setup used to generate Fresnel cone beams and per-
form Stokes measurement. PBS is a polarising beam-splitter. NPBS is a 50:50
non-polarising beam-splitter. L1-4 are lenses f=50, 200, 175, 25 mm respectively.
P is a 10 µm pinhole. M1-2 are mirrors (angle not to scale). λ/2 and λ/4 are

half- and quarter-wave plates respectively, and LP is a linear polariser.

In the above setup, the light source used is a 633 nm Helium Neon laser. The

polarising beam-splitter (PBS) is used to provide an initial horizontally polarised

state. Lens (L1, f = 50 mm) and 2 (L2, f = 200 mm) are positioned at the sum

of their focal lengths apart, forming a 2f telescope system. This, combined with

the 10 µm pinhole (P) perform two tasks: (1) the pinhole spatially filters the beam,

removing noise and leaving a clean Gaussian intensity profile and (2) the telescope

expands the diameter of the beam to fill the aperture of the Fresnel cone. Mirrors

1 and 2 (M1 and M2) are used for beam steering to aid in alignment into the cone.

The initial half- and quarter-wave plate (λ/2 and λ/4) are used to operate on the

horizontally polarised beam to generate any desired uniformly polarised state. The

non-polarising beam-splitter (NPBS) is a 50:50 transmission:reflection ratio beam-

splitter, used to couple light in and out of a Fresnel cone. I note here that the result

of this coupling method is a maximum 25% efficiency, due to the two passes through

the beam-splitter. Lenses 3 (L3, f = 175 mm) and 4 (L4, f = 25 mm) are used

to image the cone surface plane to the camera, as well as to de-magnify the beam

diameter to fit onto the camera sensor. In the measurement arm, the half-wave

plate (λ/2) is used to rotate the generated state (this will be discussed later in this

section), and the final quarter-wave plate (λ/4) and linear polariser (LP) is used to
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project the beam into the six polarisation basis states. Examples of the six data

images taken when an azimuthally polarised beam is generated, are shown below

in Figure 3.7.

H

V A

D R

L

Figure 3.7: Six data images taken when generating azimuthally polarised light,
labelled with the basis state the beam is measured in.

The above data shows that there is maximal intensity for the linear polarisation ori-

entations (H, V, D and A) in the correct regions when considering an azimuthally

polarised input, and similarly minimal intensity in the orthogonal linear orientation

(in this case being the orthogonal radial direction). For example, azimuthally po-

larised light has horizontal polarisation along the vertical axis (maximum intensity

in H image above) and vertical polarisation on the horizontal axis (maximum inten-

sity in V image above). Also correctly for an azimuthally polarised input, there is

an even intensity distribution observed in each of the circular polarisation bases (R

and L) - as noted in subsection 2.2.2 linearly polarised light contains equal contri-

butions of both right and left circular components. From these six images, spatially

resolved Stokes vectors can be calculated and polarisation ellipses plotted using the

definition detailed in subsection 2.3.5. Examples of the spatially dependent po-

larisation profiles generated by a Fresnel cone for three different input states are

shown below in Figure 3.8, from both simulation and experiment. I note here that

throughout this thesis I have chosen to calculate polarisation ellipses for a resolution

of 21x21 super-pixels, where the ellipse plotted is an average Stokes vector for that
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super-pixel, following the colour mapping shown in Figure 2.4. The simulation was

performed using the Jones calculus approach described in subsection 2.3.1.

Figure 3.8: Example data from simulation and experiment showing 2D trans-
verse polarisation profiles for three different input states into a Fresnel cone.
First row shows horizontally polarised input, second row diagonal and third row
right-hand circular. The results are shown for the polarisation profile before and
after the experimental beam-splitter (BS) reflection, as in reality this must be
accounted for as the state prior to it can not be measured with the current setup.

Above in Figure 3.8 it is seen that the experimentally measured polarisation profile

of the generated cone beams closely matches theoryI note that in the experiment

the Fresnel cone was overfilled, and so the experimental data does not display

the same Gaussian intensity profile as the simulation.. Interestingly, starting from

the horizontal position, the polarisation detected in the azimuthal direction is the

same polarisation state that would be generated by a quarter-wave plate at that

orientation angle, for that given input. This means that the Fresnel cone provides a
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spatial mapping of the temporal rotation of a quarter-wave plate - something that

will become useful for polarimetry in chapter 5. As shown in the previous section,

for a circularly polarised input state the result is everywhere linearly polarised light

(equal amounts of right and left circular polarisation), but with varying orientation

angle. The key to this varying orientation angle is in the OAM generated in one of

the circular components, providing an azimuthally varying phase-shift between the

two circular components, and thus an azimuthally varying orientation of linearly

polarised light. Upon operation of a half-wave plate on the linearly polarised output

structure from a circular input beam, the linear polarisation orientation can be

everywhere rotated. This allows conversion from the generated beam to either

radial or azimuthally polarised light by rotation of the half-wave plate by ±22.5◦

from a horizontally positioned fast-axis3. Results for simulated and experimentally

measured radial and azimuthal polarisation is shown below in Figure 3.9.

After-BS

ExperimentSimulation

After HWP 1st Gen cone 3rd Gen cone

Figure 3.9: Simulated and experimental spatially resolved polarisation plots
showing azimuthal (top row) and radial (bottom row) polarisation states gener-
ated from right and left circular input to a Fresnel cone. Experimental results
are shown for both the 1st generation cones as was used in [46] and with 3rd
generation cones. BS is a non-polarising beam-splitter and HWP is a half-wave

plate at ±22.5◦.

3More generally, all super-positions of radial and azimuthal polarisation can be created through
transformation with a half-wave plate.
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Above, I have recreated the results of [46] for the first generation Fresnel cone

for comparison with the enhanced fidelity4 of the generated states with the higher

quality third generation cone. This improvement is largely due to acquisition of

newly manufactured cones with a refractive index that provides a δ value closer

to π/4 (π/2 total for both reflections), resulting in equal contributions of both

right and left circular polarisation in the generated beam (see Equation 3.4). The

significance of these beams will be discussed more in the following chapters, where

applications are shown.

3.4.1 High efficiency coupling using an axicon

In the last section, describing the experimental technique to generate vector beams

using a Fresnel cone, it was shown that the most simple method for coupling light in

and out of the cone is to use a 50:50 non-polarisation beam-splitter. This method is

relatively straight-forward as far as beam-alignment goes, however, it allows max-

imally a 25% efficiency. Certain potential applications for broadband vector beam

generation use high-power lasers, where efficiency is critical. For this reason, al-

ternate coupling methods were investigated for the Fresnel cone beam generation.

In chapter 4 I will detail a coupling technique based on a ‘dual cone-based polariser’

design, which was developed as part of an industry-led collaborative project forming

a major component. This method uses complex beam-splitter geometries and two

Fresnel cones to provide high efficiency coupling. In the remainder of this section I

will show an alternate method for coupling light into a Fresnel cone using a holed-

mirror and axicon. This technique allows broadband operation and close to 100%

efficiency is demonstrated. In addition to this, the intensity profile of an incident

Gaussian beam is inverted to an annular beam. This may be beneficial for some

applications, such as high numerical aperture microscopy.

An axicon can be thought of as a rotationally symmetric prism, and is often used for

Bessel beam generation [98, 99]. Containing one flat surface and one conical surface

it is similar to a Fresnel cone, but with much smaller apex angle. This smaller angle

does not allow TIR to occur as in the Fresnel cone, and the action is in some ways

similar to that of a lens (see Figure 3.10). Axicons are usually manufactured to

have a physical angle (θ1 in Figure 3.10) of 0.5 − 40◦ - for comparison this angle

4Fidelity can be determined by averaging the absolute error of the Stokes parameters from the
ideal case.
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in a Fresnel cone is 45◦. Using Snell’s law the deflection angle of an axicon can be

found:

n sin (θ1) = sin (θ1 + θ2), (3.8)

where n is the refractive index of the axicon, θ1 is the physical angle of the axicon

and θ2 is the angle of deflection of the light to the optic axis.

θ

θ

Incident light

1

2

Figure 3.10: Diagram showing an axicon (angles not to scale). θ1 is the physical
angle of the axicon and θ2 is the deflection angle of the beam to the optic axis.

Below in Figure 3.11 I show a sketch-diagram to outline the basic idea behind the

holed-mirror and axicon coupling scheme into a Fresnel cone.

10° axicon 90° cone

~10cm Spacing

Holed-mirror

Figure 3.11: Sketch-diagram showing the idea of the holed-mirror and axicon
coupling technique. Note that the angles are not drawn to scale.

Light is incident at the rear side of a mirror angled at 45◦, through a central hole.

Upon deflection by an axicon, the incident Gaussian beam becomes a diverging
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annulus with the peak intensity on the outside edge. This light is incident to

a Fresnel cone, where although the angle of incidence is not the usual 45◦, it is

still above the critical angle for total internal reflection to occur. This difference

in incidence angle at the Fresnel cone rear surface is small enough to result in a

negligible phase-shift difference between s and p components. The distance between

the axicon and cone is chosen such that the reflected beam passes in the opposite

direction through the initial axicon before it has diverged to a radius greater than

the physical axicon (∼ 12.5 mm) and is deflected to propagate parallel to the optic

axis (which turns out to be ∼ 10 cm for a 10◦ axicon). The annular beam is now at

a diameter large enough to be reflected by the 45◦ mirror, avoiding the hole at the

centre. In theory this should provide Fresnel cone coupling with 100% efficiency.

The experimental setup for the axicon coupling and vector beam generation is shown

below in Figure 3.12.

Figure 3.12: Diagram showing the experimental setup for the axicon-coupling
experiment. The laser used was a helium-neon laser with a wavelength of 633
nm. λ/4 and λ/2 are quarter- and half-wave plates respectively, while λ/4 FR
and λ/2 FR are quarter- and half-wave Fresnel rhombs, respectively. M1, M2 and
M3 are mirrors, where M3 has a central hole for the beam to pass through. The
pinhole used is a 50µm pinhole which was aligned using a 3-axis mount. PBS is
a polarising beam-splitter. L1, L2, L3, L4 are lenses with focal lengths 50, 150,

175 and 50 mm, respectively.
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In the experimental setup shown above, the light source is a 633 nm Helium-neon

laser. the initial half-wave plate (λ/2) and polarising beam-splitter (PBS) are used

to control the incident power and provide a horizontally polarised input. The two

lenses (L1, f = 50 mm, and L2, f = 150 mm) and pinhole are used to both expand

the beam and spatially filter any noise, allowing transmission of a clean Gaussian

beam. Mirrors M1 and M2 are used to steer the beam for alignment. The following

double and single Fresnel rhombs (λ/2 FR and λ/4 FR) are used to generate uni-

formly polarised input states to the Fresnel cone system. M3 is a mirror at 45◦ with

a central hole. The axicon (10◦) and Fresnel cone (3rd generation, H-BaK6) are po-

sitioned at a distance such that the output beam after the second pass through the

axicon is aligned with the optical axis, as described previously. Lenses L3 (f = 175

mm) and L4 (f = 50 mm) are used to image the plane of the Fresnel cone surface

to the camera (Thorlabs, DCC1645C). The quarter-wave plate (λ/4) and linear po-

lariser (LP) are used to perform Stokes analysis for spatially resolved polarisation

measurement with the camera, as described earlier in the chapter. An image of a

prototype design for a compact version of the Fresnel cone-axicon coupling device

is shown below in Figure 3.13.

Figure 3.13: Prototype compact version of the axicon coupling device.

To first test the efficiency of the technique, a mirror was placed at the position of

the Fresnel cone for simplification of alignment during power measurement, and the

power was recorded using a photodiode power sensor (Thorlabs, S121C) and power
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meter (Thorlabs, PM100D). The power was recorded at incremental positions in

the axicon system in an attempt to locate potential losses - see Table 3.3 below.

Position Power (mW)

Background 0.014

Prior to axicon 33.51

After axicon pass 1 32.76

After mirror (cone position) 32.06

After axicon pass 2 31.37

After M3 reflection 27.88

Table 3.3: Table showing power measurements at incremental positions through
the axicon coupling scheme.

Considering the final and initial power readings, the experimental efficiency of the

axicon coupling technique was found to be ∼ 83.2%. These losses can be attributed

to the typical 4% losses at incidence upon the un-coated axicon and reflection by the

non-ideal M3 mirror (lenses and waveplates in the system are for characterisation

and not part of the coupling device). In addition to this, a non-ideal axicon tip

(rounded) can cause undesirable diffraction losses - Brzobohaty et al. showed that

spatial filtering in a Fourier plane could perhaps help to avoid this [100]. By using

an axicon with anti-reflection coating and ideal mirrors for the wavelength range in

use, this could also assist in achieving an efficiency closer to the theoretical 100%.

To investigate the intensity distribution of the annular beam generated by the axicon

coupling, an intensity image was recorded on the camera and analysed (see below).
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Figure 3.14: Investigation of intensity profile of generated annular beam by
axicon device. a) camera image, b) coordinate transform from x-y to r-θ, c)
region of interest selected and d) azimuthally averaged intensity line profile in

radial direction.

Figure 3.14 a) shows the captured intensity image of the generated annular beam.

Figure 3.14 b) shows this image after a coordinate transformation from a Cartesian

x-y frame to a polar coordinate frame in r and θ. Figure 3.14 c) shows a region of

interest selected, which is then averaged in the azimuthal direction (as the intensity

should remain the same azimuthally, for a fixed radius), to provide an intensity

line-profile in Figure 3.14 d). The peak intensity is towards the outer edge of the

annular beam, as the incident Gaussian intensity profile has been inverted through

deflection by the axicon. The inner rings observed can be attributed to the diverging

rings of the generated Bessel beam [101], which have not yet propagated far enough

to become negligible.

After investigating the efficiency of the coupling technique and the intensity dis-

tribution of the generated beams, the spatially resolved polarisation profile was
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measured - results are shown below in Figure 3.15 for generated azimuthal and

radial polarisation.

Figure 3.15: a) intensity image at camera plane, and spatially resolved Stokes
measurement for b) azimuthal and c) radial polarisation.

To generate the desired vector beams, circularly polarised light is input to the system

for back-reflection from a Fresnel cone, with the output afterwards operated on by a

half-wave plate oriented at ±22.5◦ to generate either radial or azimuthally polarised

light. Figure 3.15 a) shows the intensity profile at the camera plane for comparison,

Figure 3.15 b) and c) show the spatially resolved Stokes measurements for azimuthal

and radial polarisation, respectively. Unlike previous vector beams generated using

the Fresnel cone, this coupling method results in an annular beam, which may be

beneficial for applications where these beams are focussed using a high numerical

aperture (NA) lens. This is because as will be explained in the next chapter,

interesting effects are found upon high NA focussing5, and the peak intensity of

the annular beam is positioned to benefit more from the high NA focussing than a

typical Gaussian intensity profile.

3.5 Conclusions

In this chapter I have discussed popular methods for vector beam generation. I

have shown that a simple setup using a solid glass cone can allow broadband gener-

ation of interesting vector vortex beams, such as radial and azimuthal polarisation.

This is largely possible due to the ability to manufacture glass cones with the re-

quired refractive index to provide a total phase-shift of π/2 upon two total internal

reflections.
5Here I consider a high NA to be an NA above ∼ 0.7.
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The second part of this chapter contains results I have obtained during my PhD,

based on Fresnel cones. Upon obtaining higher quality Fresnel cones, I have shown

higher fidelity results for the vector beams generated using the Fresnel cone than

was previously achieved (see Figure 3.9). I have also shown the development of a

new coupling technique into a Fresnel cone, based on the use of a holed-mirror and

axicon subsection 3.4.1. I have shown that this technique allows theoretically 100%

and experimentally ∼ 83% efficiency. A manuscript is currently in preparation for

submission detailing the results of this coupling technique. As discussed, due to

the annular beam generated from this technique benefits may be found in high

numerical aperture focussing of vector beams.



Chapter 4

Strong focussing and practical

considerations

4.1 Introduction

So far, I have shown that there is an increased interest in the structuring of not only

the scalar properties of light (intensity and phase), but more recently of its vectorial

polarisation property. Applications are suggested in a range of fields, for example,

from laser machining [53, 102] to precision particle sensing [103]. For a review of

this area see ref. [25]. In this chapter, the application of polarisation-structured

beams in a strong focussing system is the subject of interest, where polarisation

structuring allows focal spots smaller than those formed by conventional beams

(uniformly polarised beams) [49–51]. This has the potential to enhance imaging

resolution in scanning microscopy techniques.

The development of the optical microscope began in the 17th century when Antoni

van Leeuwenhoek first described biological observations using the single-lens micro-

scope [104]. Since then, there have been continual technological advancements in

the design of optical microscopes to reduce aberrations, increase magnification and

improve the quality of images. An arbitrary high magnification however, does not

necessarily result in the ability to see fine detail and even with modern advanced

manufacturing techniques, optical resolution is fundamentally limited by the diffrac-

tive nature of light. This diffraction limit generally prevents the optical imaging

system to discriminate between two point objects positioned less than around half

the wavelength of the illumination light used [6].

62
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It is necessary for discussion throughout this chapter to introduce the light collecting

power for a microscope objective, known as the numerical aperture (NA), which can

be defined as

NA = n sin (θ), (4.1)

where n is the refractive index of the imaging medium and θ is the collection half-

angle of the cone of light entering the lens. To obtain a higher NA, a stronger

lens and thus larger focussing angle, or a higher refractive index imaging medium

can be used, such as certain oils (n ∼ 1.5) in an oil-immersion lens rather than air

(n ∼ 1.0). Additionally it will be useful to state here the common criterion for the

conventional diffraction limit, proposed by Ernst Abbe in 18731 and expressed as

d =
λ

2 NA
, (4.2)

where d is the radius of the spot that the light in an optical system converges to

and λ is the wavelength of illumination light used. From Equation 4.2, in addition

to increasing the NA to see smaller details we can also use shorter wavelength light,

however, shorter wavelengths may damage certain biological samples. Considering

light of ∼ 600 nm and a high numerical aperture of ∼ 1.5, we find that the Abbe

diffraction limit is ∼ 200 nm in the lateral direction. Systems limited by diffraction

are therefore not able to resolve sub-cellular structures, such as organelles, on the

scale of tens of nanometers [105].

Over the last two decades so-called super-resolution techniques have emerged, which

essentially bypass the conventional diffraction limit to obtain higher resolution. The

various super-resolution techniques can be generally be placed in two groups: deter-

ministic techniques including stimulated emission-depletion (StED) [40, 106, 107]

and ground state depletion (GSD) [108–110], and stochastic techniques including

photo-activated localisation microscopy (PALM) [111] and stochastic optical recon-

struction microscopy (STORM) [112]. These techniques are able to achieve imaging

resolution on the scale of tens of nanometers.

Super-resolution techniques are clearly impressive and exhibit clever ways to bypass

Abbe’s diffraction limit, rather than overcome it. This conventional diffraction limit

however, assumes homogeneously polarised light and does not take into account the

possibility of vector beams. As mentioned in chapter 1, it has been shown that

polarisation has a significant effect in a strong focussing regime, where uniformly

1His famous equation is actually carved into his gravestone, in Jena, Germany.
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polarised beams focus to elliptical spot shapes [49, 113], and structured beams are

found to focus below what Equation 4.2 predicts for a conventional beam [50–52].

This is important as in a scanning microscope system, the imaging resolution is

restricted by the size of the spot to which the light is focussed.

In this chapter, I will show that the polarisation structures produced by back-

reflection from a Fresnel cone exhibit interesting effects when tightly focussed. Not

only are these effects interesting, but for one particular case - that of the azimuthally

polarised Fresnel cone beam - allows focal spots which are even more tightly confined

than those of the conventional radially polarised beam [50–52]. I will show simu-

lated results for the strong focussing of different Fresnel cone beams, based on the

vector diffraction theory outlined in section 2.5, as well as experimental attempts to

measure these. I will also discuss work done as part of an industry-led collaborative

project to develop a prototype microscope module to provide broadband polarisa-

tion structuring. Theoretically I show that Fresnel cone beams can be beneficial

for resolution enhancement in microscopy, however, experimental issues arose due

to phase coherence proving detrimental for the practical realisation. I will discuss

the practical implications encountered and describe the resulting experiments and

analysis performed to characterise the surface quality of the Fresnel cones, using

interferometry and Fourier analysis techniques. Though immediate practical use

for resolution enhancement was not possible, this resulted in a thorough study of

the practical effects of various parameter deviations.

My contributions to this work included expanding on an inherited strong-focussing

simulation program to investigate focussing effects on Fresnel cone beams, building

and testing the prototype microscope bolt-on module as part of an industry col-

laboration, setting up and performing the experiments, writing a Fourier analysis

program for cone surface flatness measurements, analysing the data and co-writing

a manuscript for publication [62], presented at Photonics Europe 2020.

4.2 Radially and azimuthally polarised light

Interest in beams of light with cylindrically-symmetric polarisation profiles rapidly

increased upon discovery of the tight focal spots produced by a strongly focussed ra-

dially polarised beam [50–52]. It was shown theoretically [50, 51] and demonstrated

experimentally [52] that a focal spot size of ∼ 0.16λ2 is achieved with a radially



Chapter 4. Strong focussing and practical considerations 65

polarised beam, compared to ∼ 0.26λ2 for a homogeneously linearly polarised beam

(close to the theoretical Abbe prediction for a homogeneously polarised beam dis-

cussed in section 4.1 of (0.5λ)2 = 0.25λ2). A qualitative understanding of why

a radially polarised beam produces a smaller focal spot is discussed by Zhan [25]

and considers a radiating dipole aligned along the optic axis at the focus of a lens.

The oscillating dipole radiates outwards in the well known toroidal pattern which

is captured by the lens in one direction. Intuitively, at the lens plane the polarisa-

tion pattern is radial and beyond the lens the light is collimated. If a second lens

is positioned in a 4π setup (as depicted below in Figure 4.1), recovery of all the

propagating light is possible.

Figure 4.1: Simple diagram showing two high NA lenses in a 4π setup. The
orientation of the discussed dipole analogy is also depicted in yellow.

Another intuitive consideration of the focussing effects of a high NA lens on a radi-

ally polarised beam are depicted by Wang et al. [114] and shown below in Figure 4.2.

Optical axis

Objective lens

Optical axis

Objective lens

Figure 4.2: Diagram showing focusing properties of a radial polarisation (left)
compared with a linearly polarised beam (right) (image adapted from [114]).

The left diagram in Figure 4.2 depicts that for the case of the radial polarised beam,

as the k -vectors change direction upon strong focussing, the interference effects in

the focal region result in a strong longitudinal (axial) electric field component at

the focus. For the linearly polarised beam shown on the right of Figure 4.2, the

resulting electric field at the focal point is asymmetric.

There almost always exists a small longitudinal component in the focal region of a

high NA lens (except in the case for an azimuthally polarised input), however, for
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the radially polarised input the resulting longitudinal field component is stronger

than the transverse component [53]. More generally, the radial component of the

incident light contributes to both the radial and longitudinal field components, while

an azimuthal component of the incident light contributes only to the azimuthal field

component at the focus [25]. Furthermore, the magnitude of the longitudinal electric

field component for a focussed radially polarised beam depends on the NA of the

objective lens used - by fine tuning the NA it is possible to produce flat-top focal

fields with a radially polarised input [115]. A simple way to achieve this could be

to spatially restrict the diameter of the input beam to a high NA lens, resulting in

a lower effective NA.

Given that the azimuthal polarisation component of the input beam contributes

only to the azimuthal component in the focal region, when focussing an azimuthally

polarised beam the resulting electric field is purely transverse at the focus (there

is zero longitudinal component). Youngworth et al. [51] noted in 2000 that the

intensity distribution of a strongly focussed azimuthally polarised beam is that of a

ring. Ten years after this, Hao et al. [57] showed that an azimuthally polarised beam

which also carries one unit of OAM actually focusses to a spot, rather than a ring,

and that this spot is even smaller than that of the focussed conventional radially

polarised beam. I note here that this finding is very interesting for work related to

Fresnel cone beams, as this particular beam structure can be passively generated

using the back-reflection from a Fresnel cone (as was discussed in chapter 3). More

recently, there has been a considerable amount of research into the use of azimuthally

polarised light for uses in StED microscopy [116–118]. For a short review of how

these types of beams can be generated, please see section 3.2.

4.3 Tight focussing of Fresnel cone beams

To summarise some key points of the previous section - in the mid 2000s there

was interest in radially polarised light as it was found to focus to a smaller spot

than a uniformly circularly polarised beam (for a high NA). More recently, Hao et

al. [57] found that an azimuthally polarised beam possessing OAM focusses even

smaller still. In chapter 3 I showed that through back reflection from a Fresnel

cone both azimuthally and radially polarised beams can be generated. In contrast

to what I have called ‘conventional’ radially and azimuthally polarised beams, the

Fresnel cone beams have a net OAM of 1~. In this section I will show and discuss
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simulated results for the focussing of Fresnel cone beams and the results of various

aperturing of the incident beams at the pupil plane. The potential use of a Fresnel

cone for broadband polarisation structuring, with benefits for microscopy resolution

enhancement, resulted in the establishing of an industry-led collaboration project

to develop a bolt-on microscopy module - this will also be detailed in this section.

4.3.1 Simulated strong focussing of vector beams

To investigate the resulting focal fields of strongly focussed Fresnel cone beams, a

program was written using a combination of LabVIEW and MATLAB code, using

the vector diffraction theory of Richards and Wolf [47] (this strong focussing theory

is detailed in section 2.5). For the following simulated results, a wavelength of

850 nm was used as this is a typical wavelength used in two-photon microscopy

techniques. For the right-handed circularly polarised beam, a purely right-handed

polarised plane wave input is used. For the conventional radially polarised beam, a

horizontally polarised plane wave is operated on by a Q-plate with a Q number of

Q = 0.5. Finally, for the azimuthally polarised Fresnel cone beam, a right-handed

circularly polarised plane wave is operated on by a Fresnel cone which imparts a

total phase-shift between s and p components upon TIR of π/4, an ideal 45◦ mirror-

reflection representing the reflection in the necessary non-polarising beam-splitter

used for coupling to the Fresnel cone, and finally the action of a half-wave plate

with fast-axis rotated by 22.5◦ from the horizontal position. See section 3.3 for a

reminder on the generation of particular Fresnel cone beams such as this. For each

case, the beam-width and objective lens diameter is 20 mm, and the initial beam

has a Gaussian intensity profile.

Focal spot sizes for differently polarised input beams were investigated using the

strong focussing simulation. Focal spot sizes for the three input beams described

in the previous paragraph are shown in Figure 4.3 for increasing focussing angle

(NA), confirming the previous findings of [50–52] that for a high NA objective lens,

a radially polarised beam focusses to a spot size below that of a conventionally

(circularly) polarised beam. I note here that for lower NAs, the radially polarised

beam does not focus to a smaller spot - below a focussing angle of ∼ 67◦. Figure 4.3

also shows that an azimuthally polarised beam generated by a Fresnel cone (where

the right-circular component of the beam possesses two units of OAM and the left-

circular component has zero OAM) focusses to a spot size below that of both the
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conventional circular and radially polarised beams. Importantly, the azimuthally

polarised beam does not require the high NA focussing lens to achieve a smaller

spot than radial polarisation. This agrees with the findings of Hao et al. for an

azimuthally polarised beam with different OAM components [57]. It can also be

seen in Figure 4.3 that as the focussing angle increases, eventually the focal spot

size for a radially polarised beam approaches that of the Fresnel cone azimuthally

polarised beam.

Figure 4.3: Simulated results showing a comparison of focal spot size for conven-
tional circular and radially polarised beams and an azimuthally polarised Fresnel

cone beam, for increasing focussing angle (where NA= n · sin θ).

Figure 4.4 shows the 2D (transverse plane) normalised intensity profiles at the focal

plane for the focussing of a right-handed circular, conventional radial and Fresnel

cone azimuthally polarised beam, for a focussing angle of 75◦ (NA∼1). By summing

the irradiance of the Ex and Ey fields, |Ex|2 + |Ey|2, the total transverse intensity

is shown, as well as the total longitudinal intensity |Ez|2. The total intensity is the

sum of all three field components, |Ex|2 + |Ey|2 + |Ez|2.
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Figure 4.4: Normalised intensity profiles in the focal plane for three differently
polarised input fields (Right-circular, radial and Fresnel cone azimuthal). The

transverse, longitudinal and total intensity is shown.

As discussed, the results for the right-hand circular input light show only a small

longitudinal field at the focus, the radially polarised beam shows a strong on-axis

longitudinal field, while the focal intensity of the azimuthally polarised beam is

purely transverse. As each of these focal spots are symmetric in shape, a line profile

in any direction is sufficient to further investigate the intensity distribution. To

compare the focal spot size, Figure 4.5 below shows line profiles of each case in

both the x- and y-direction (as a check for symmetry), for a focussing angle of 75◦.

The full-width at half maximum (FWHM) is also shown, as quantification of the

focal spot sizes.
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Figure 4.5: Overlapped line profiles of the normalised focal spot intensity profile
at the focal plane in both the x- (solid red) and y-directions (dashed blue), for a)
circularly polarised, b) radially polarised and c) cone-azimuthally polarised input

beams.

Figure 4.5 supports the suggestion that the focal spots are symmetric in shape,

and further analysis will assume this is the case for radial, azimuthal and circu-

larly polarised input beams. It is also noted that the focal spot resulting from the

cone-azimuthally polarised beam exhibits slightly more pronounced sidelobes when

compared to the other cases.

To further investigate the behaviour of the focal spot size, which clearly has a

dependence on the NA of the focussing lens, the focal spot size was simulated with

an increasing centre stop in the lens pupil plane. This means that for an increasing

centre stop size, the contribution of the input beam from the lower NA region of

the focussing lens (closer to the centre) is increasingly reduced. Figure 4.6 below

shows the focal spot size for the same three input beams investigated in this section,

for a centre stop increasing in radius from 0 to 8 mm (as before the objective lens

diameter is 20 mm), for a focussing angle of 75◦.
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Figure 4.6: Simulated results showing a comparison of focal spot size for conven-
tional circular and radially polarised beams and an azimuthally polarised Fresnel
cone beam, for increasing centre stop radius. This is for a focussing angle of 75◦

(an NA of ∼ 1).

The results shown in Figure 4.6 show that similarly to the case for increasing fo-

cussing angle (NA) on the focal spot, the focal spot size for the radially polarised

input beam gradually approaches that of the Fresnel cone azimuthally polarised

input, for increasing centre stop size. The results in Figure 4.6 also show that when

considering only the azimuthally polarised input, a centre stop still offers an en-

hancement to the focal spot size and is not only a mechanism by which the radially

polarised input produces a spot size increasingly close in size to that produced by

the azimuthal case.

So far the radially polarised beam produced by the Fresnel cone has not been dis-

cussed. This beam was initially disregarded for further investigation as the strong

focussing of this beam actually results in a larger focal spot size than the conven-

tional circularly polarised beams, however, a brief study was carried out. Interest-

ingly for this beam a relatively strong donut-shaped longitudinal field component
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is generated in the focal region of a high-NA lens2 (as shown below in Figure 4.7).

Furthermore, it was noticed that the phase of this field in the longitudinal direction

intriguingly varies azimuthally twice from 0-2π, in some ways akin to an OAM, with

a topological charge of two3, as can be seen in Figure 4.7d). This will be investi-

gated further in the context of geometric phase in future work at the University of

Glasgow.

a) b) c)

d)

Total transverse Total longitudinal Total intensity

Longitudinal phase

Phase map

2 μm

d)

Figure 4.7: Simulated results showing the normalised focal spot intensities for
the a) transverse, b) longitudinal and c) total planes, and d) shows a phase map

for the longitudinal electric field component.

4.3.2 Industry collaboration - add-on microscope module

In an effort to exploit the findings of the Fresnel cone beam tight focussing simula-

tion, an industry-led collaboration was formed, with an aim of developing a low-cost

add-on microscope module to provide broadband polarisation structuring for exist-

ing microscopes. The collaboration was between the University of Glasgow, the

Beatson Institute for Cancer Research, and companies Elliot Scientific and G&H. I

2NA∼ 1.
3This comparison is purely a statement of similarity and not a claim that it also necessarily

possesses the physical properties of OAM.
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was tasked with constructing the prototype and initial testing at the University of

Glasgow, G&H would provide the glass optics with Elliot scientific delivering assis-

tance on the optomechanics, and final testing would be carried out at the Beatson

Institute.

In the previous section it was mentioned that even non-polarising beam-splitters

introduce unwanted phase-shifts to light that is either transmitted or reflected by

them. More broadly, many optical components can introduce these unwanted shifts

to the incident polarisation state. This is detrimental in any application employing

polarisation, for example, in a polarimeter it becomes more difficult to calibrate the

system and accuracy is reduced. Another perhaps more common application where

this occurs is in optical microscopy. In a commercial microscope system there are

usually several passes and reflections through beam-splitters and mirrors of various

types, each altering the polarisation state of the light. The phase-shifts introduced

by the elements in a microscope system vary in size, however, the largest is usually

caused by dichroic elements (often used in fluorescence microscopy). If attempting

to use polarisation in a microscopy application, for example, to control the size

and/or shape of the resulting focal spot, understanding and being able to compen-

sate for these unwanted polarisation shifts is of great importance. Therefore, the

first task in this project was to determine whether the desired azimuthal polari-

sation state can be directed to the back-aperture of a microscope’s objective lens,

after generation prior to entering the microscope body.

The polarisation shifts caused by a number of optical elements in a microscope

system can be summarised by a single Mueller matrix representing the entire system.

It was conjectured that by experimentally determining this Mueller matrix, it would

then possible to pre-compensate for this by adjusting the state of the input light

accordingly. The instructions for determining a system’s Mueller matrix were given

in subsection 2.3.4. Through knowledge of a system’s Mueller matrix, the two

angles of rotation for a quarter- and half-wave plate can be calculated in order to

pre-compensate the incident polarisation state. This way, the previously detrimental

polarisation shifts caused in the microscope system actually correct the polarisation

to the desired state at the microscope objective’s back aperture, similarly to what

was achieved by Chou et al. for uniformly polarised light [119]. The setup used

to each generate, pre-compensate and measure the spatially resolved polarisation

structures from a Fresnel cone, through a microscope system is shown in Figure 4.8.
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Figure 4.8: The experimental setup for generating, pre-compensating and mea-
suring structured polarisation beams from a Fresnel cone, through a microscope
system. L1, L2, L3, L4 are lenses, λ/2 and λ/4 are half- and quarter-wave plates
respectively (for use at 850 nm). NPBS is a 50:50 non-polarising beam-splitter
and LP is a linear polariser. The microscope body consists of mirrors, lenses and

dichroic beam-splitters.

A single Mueller matrix was measured, representing the microscope system as a

whole. An ideal theoretical Mueller matrix for the effects of the microscope system

would be the identity matrix, having no overall effect on the incident polarisation

state, however, the measured Mueller matrix for the system was found to be
1 0 0 0

0.0026 0.93 0.16 0.16

0.024 −0.063 −0.85 0.35

0.033 0.087 0.31 0.73

 . (4.3)

The minus sign of the third diagonal components essentially flips diagonal and anti-

diagonal polarisation states. Using the pre-compensation method described above

(and presented in [62]), azimuthally polarised light was detected using spatially

resolved Stokes measurement at the plane in the microscope where the back aperture

of the objective lens would be positioned. The resulting azimuthal polarisation state

is shown below in Figure 4.9. In this case the beam over-fills the camera due to

the beam-expanding telescope inside the microscope body, included to ensure the

back-aperture of the objective lens is filled.
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Figure 4.9: Spatially resolved Stokes measurement of beam at the plane of the
objective lens’ back aperture, after pre-compensation using rotations of a half-

and quarter-wave plate on the incident light.

Once it was deemed that the required polarisation state could be measured at the

back-aperture of the microscope’s objective lens, the next task was to enhance

the efficiency of the coupling into the Fresnel cone. As discussed in section 3.4,

the most straightforward setup for coupling light into a Fresnel cone involves a

50:50 non-polarising beam-splitter, however, one result of this is that the maximum

efficiency is limited to 25% (as there are two passes through the beam-splitter before

detection). A frequency-based coupling method could also be used instead of a 50:50

beam-splitter, where for example, the incident beam into the cone is wavelength

converted before incidence on the Fresnel cone, which is then coupled out using a

dichroic mirror. In reality however, wavelength conversion is largely inefficient.

For high-efficiency coupling, complex geometry beam-splitters offer the most rea-

sonable approach. In subsection 3.4.1 I showed an alternate method for coupling

light into a Fresnel cone, using an axicon and mirror. We demonstrated an efficiency

of ∼ 90% and the successful generation of radial and azimuthally polarised light,

however, the resulting intensity profile is in the form of a ring (for a Gaussian input

beam) - this may not always be desirable. Alternately, another complex geome-

try beam-splitter approach has been previously suggested, using an arrangement of

prisms with two Fresnel cones (see [46] supplementary material). A modification of

this approach was chosen for use in the microscope bolt-on module device, where

the original schematic is shown in Figure 4.10 ([46] supplementary material).
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Figure 4.10: Complex geometry beam-splitter design for high-efficiency Fresnel
cone beam generation.

Figure 4.10 shows the incident beam is split into two halves, which each indepen-

dently reflects from co-aligned Fresnel cones, before being recombined using further

reflections. This theoretically allows 100% efficiency, as well as broadband opera-

tion due to the achromatic nature of the system (as the reflections are TIR using

prisms). After further development, a patent was secured for the dual cone beam-

splitter device [120] and a prototype was build using a 3D printed housing to secure

the prisms in place, adding further stability. Using an additional prism in the form

of a single Fresnel rhomb at the input side, the device can be constructed so that

the output beam is co-linear with the input - an added benefit of this is that only

diagonally polarised incident light is required as the initial Fresnel rhomb generates

the required circularly polarised light for azimuthal polarisation generation by the

Fresnel cone. A photograph of the prototype is shown below in Figure 4.11.
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Fresnel cone

Figure 4.11: Prototype coupling device showing bonded prisms housed in 3D
printed unit (the device is patented and so a detailed description could not be
included with this thesis). Red path indicates input light, which is split in two
in the purple region where one beam is directed upwards to one Fresnel cone and
the other half is directed downwards to a second Fresnel cone. The blue path is

shows the output beam.

In Figure 4.11 the red path represents the input beam, which first undergoes two

total internal reflections at the angle required to obtain a total π/2 phase-shift be-

tween s and p polarisation components - thus producing circularly polarised light

from diagonally polarised incident light. The combination of the two following re-

flections firstly results in no overall change to the circular polarisation state, and

secondly, splits the beam into two halves (purple path region), each of which is

directed to co-aligned Fresnel cones positioned above and below the device. These

two beam halves are then recombined and leave the device through a final reflec-

tion, shown by the blue path. This final reflection acts similarly to the reflection

encountered when using a the standard 50:50 beam-splitter coupling method, and

forms part of the generation of azimuthal (or radial) polarisation. A further dou-

ble Fresnel rhomb (not pictured) is used to rotate the polarisation by the required

amount to produce the azimuthal state, as discussed in section 3.4.

It was anticipated that difficulties with this device may arise when attempting to

recombine the two beam-halves, due to diffraction of the individual halves and the

mechanical precision of available mounts. Figure 4.12 below shows the spatially
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resolved polarisation measurement for states generated using the dual cone-based

polariser device, demonstrating both radial and azimuthal polarisation generation.

Though there are visible issues with the polarisation state at the centre of the beam,

these spatially resolved Stokes measurements are comparable with those generated

using the standard 50:50 beam-splitter coupling method (see section 3.4).

Figure 4.12: Spatially resolved polarisation measurement showing both a) ra-
dial and b) azimuthal polarisation states generated using the dual cone-based

polariser device.

Although azimuthally polarised light was measured in the correct plane of the mi-

croscope, the recombination of two beam halves was later found to result in detri-

mental phase coherence effects and focussing issues. As the consequences of the

strong focussing of the Fresnel cone beam relies on not only the polarisation state,

but also the net-one unit of OAM, it was postulated that the precise positioning

of the two Fresnel cones in the dual cone-based polariser device was critical to ob-

tain the correct global phase of the final beam. Simulations were performed to

obtain focal spot results given varying degrees of phase misalignment of the two

beam halves, imitating misalignment of the Fresnel cones, with results shown below

in Figure 4.13.
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0 0 ��� 0 � 0

Figure 4.13: From left to right, simulated increase in global phase-shift for
half of the beam diameter to imitate misalignment of the dual cone-based device
described in the text, and resulting focal spot for a focussing angle of ∼ 75◦.

Phase shift increases from zero to π for one semicircle.

As can be seen in Figure 4.13, a slight misalignment between the two Fresnel cones

in the dual cone-based polariser device will likely result in a non-ideal focal spot

shape - detrimental for any imaging capability of the intended microscope system.

Using the 3D printed cone mounts in the prototype device, alignment of the two

Fresnel cones with wavelength-scale precision is not currently possible.

4.4 Focal spots and imperfect cones

In an optical microscope, if the wavefront of a propagating beam is deformed (per-

haps by less than ideal optical components) the resulting focal spot can deviate

from the ideal theoretical spot. Considering ray optics, a ray that is not propagat-

ing parallel to the optic axis is not focussed to the focal point of a lens, and so a

beam with a distorted phase-front may focus to a non-uniform distribution in the

focal region. For example, a convergent/divergent ray will focus before/after the

focal point of a lens (or sometimes continue diverging for large divergence angles).

In extreme cases where optical components have significant surface roughness and

are not simply slightly misshaped, the phase is essentially randomised, resulting in

a speckle phase that cannot be focussed to a spot at all.

In this section, I show that unfortunately, even weakly focussed beams from the

current Fresnel cones resulted in distorted focal spots. I then show results from an
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experiment performed to look into the surface form of a Fresnel cone by interfero-

metrically investigating the phase of the cone beams, accompanied by simulations to

imitate effects of the surface roughness and non-uniform cone shape on the focussing

properties.

4.4.1 Low NA focussing result

As an initial test of the Fresnel cone beam focussing, a simple experiment was set

up to view the resulting focal spot of a relatively weakly focussed beam. The exper-

imental setup is shown below in Figure 4.14. For these initial tests, 2nd generation

cones were selected as 1st generation were already assumed to have too poor surface

quality from previous visual inspections, and the 3rd generation cones had not yet

been manufactured.

Laser PBS

L1

L2

L3

M1

M2

P

λ/2 λ/4 NPBS

Cone

Camera

λ/2

Figure 4.14: Experimental setup diagram for weak focussing measurement.
PBS is a polarising beam-splitter, L1, L2, L3 are lenses 50 mm, 200 mm and 175
mm focal lengths respectively, M1 and M2 are mirrors, λ/2 and λ/4 are half- and
quarter-wave plates respectively, NPBS is a 50:50 non-polarising beam-splitter

and P is a 10 µm pinhole.

A 633 nm Helium-Neon laser was used as the light source. In the diagram above the

initial PBS is used to provide initially horizontally polarised light. The following

telescope and pinhole function as both a beam expander and spatial filter to ensure

a ‘clean’ Gaussian beam, of a diameter sufficient for filling the front cone aperture.

Mirrors M1 and M2 are used to steer the beam assisting alignment. The two

waveplates (chosen for use at 633 nm) allow control of the incident polarisation

state to the Fresnel cone, for generating radial and azimuthal polarisation states

(using the second half-wave plate in the setup to rotate between the two states).

The non-polarising beam-splitter (NPBS) is used to couple the light in and out of

the Fresnel cone, as described in section 3.4. L3 is a 175 mm focal length lens, used

to focus the beam onto a camera sensor for visualising the focal spot shape. The
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camera is a Thorlabs CMOS DCC1545M with 1280 × 1024 pixels and a pixel size

of 3.6 µm2. The resulting image of the focal spot is shown below in Figure 4.15 for

azimuthally polarised light.

250 µm

Figure 4.15: Camera image of the focal spot intensity profile from Fresnel cone
beam for low NA focussing.

The non-uniform intensity distribution in the focal plane shown above for the weak

focussing of a Fresnel cone beam suggests that there are issues with the quality of the

Fresnel cone used. It was postulated that this was likely due to either non-uniform

conical shape, non-90◦ cone apex angle, surface roughness or a combination of these

issues. The spatial profile of the HeNe light source was not considered to be the

reason as this was spatially filtered with a pinhole in the optical setup. To begin

the investigation into this, simulations were performed to visualise the resulting

focal spot for different distortions of the global phase, imitating surface roughness

and non-uniform cone shape on the generated beam. For these simulations it is

assumed any change to the polarisation is negligible and the angle of incidence at

the rear surface is always above that needed for TIR to occur (and so amplitude is

unaffected).

To investigate varying degrees of surface roughness, a randomised phase offset is

added to the simulated beam prior to focussing (NA∼ 1). Results are shown below

in Figure 4.16 for randomised phase offsets of ±λ/8, ±λ/4 and ±λ/2 with resulting

focal intensity profiles.
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±λ/8

±λ/4
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Figure 4.16: Simulation showing the effects on focal intensity for increased
phase offset, imitating surface roughness.

The figure above shows the focal intensity distribution when three different maxi-

mum amounts of randomised phase offset are added to the global phase of a strongly

focussed cone beam. For the first two rows, the focal spot remains arguably robust

to the simulated surface roughness, while the third row shows the complete loss of

focal spot. In the final case with a randomised phase of ±λ/2 the phase is com-

pletely randomised as speckle. This simulation was carried out for continuously

increasing phase offset, for each the circularly polarised beam, conventional radially

polarised and azimuthal Fresnel cone beam, to compare robustness of the spot size

(FWHM) to simulated surface roughness (shown below).
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Figure 4.17: Focal spot FWHM for strongly focussed circular (red), radial
(green) and Fresnel cone azimuthal (blue) polarisation, for increasing randomised
phase offset to simulate surface roughness. Note this is an average of three ran-

domised phase realisations.

The results above in Figure 4.17 show that the FWHM of the focal spot for the

three focussed beams is fairly equally robust to simulated surface roughness, until an

offset of ∼ ±0.9λ/2, at which point there is an abrupt loss of focal spot. Arguably

the radial beam produces a spot that remains given slightly more surface roughness

than the other cases, but further simulation is required to confirm this.

Given that the focal spot shape is fairly robust to simulated surface roughness until

a certain amount of roughness is encountered (at which point the light no longer

focusses to a spot at all), it is likely not the main cause of the non-uniformity of the

measured cone beam focal spot. To further investigate this, the strong focussing

program was used to simulate the effects on the focal spot for a symmetrically

warped conical form. This was achieved by adding an azimuthally varying sinusoidal

phase to the cone beam prior to focussing, with a period of 2 (4) to imitate a cone

form warped in 1 (2) directions. The results are shown below in Figure 4.18.
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Figure 4.18: Simulation showing the effects on focal intensity for simulated non-
uniform Fresnel cone form. First row shows an additional azimuthally varying
sinusoidal phase with a period of 2 and amplitude of λ, second row shows a period
of 2 and amplitude of 2λ, and third row shows a period of 4 and amplitude of
λ. Note that the line profile is in the x-direction (horizontal axis), through the

centre of the plot.

When adding an azimuthally varying sinusoidal phase to the simulated cone beam

prior to focussing, Figure 4.18 shows that if this sinusoidal variation has a period of

2, it acts as though there is a tilting of the Fresnel cone and the focal spot intensity is

distorted in a particular direction. Furthermore, if the amplitude of this additional

phase is increased, the effect on the focal spot is further exaggerated. Interestingly,

given a period of 4 (imitating a physical Fresnel cone that is perhaps ‘warped’ or

‘pinched’ across two perpendicular axes), the intensity pattern generated in the

focal plane consists of an arrangement of focal spots and shapes. While not as

uniformly or symmetrically distorted as the simulated results shown in Figure 4.18,

the measured focal spot shown in Figure 4.15 suggests that perhaps the non-ideal

focal spot is more due to a non-uniform distortion of the Fresnel cone shape rather

than surface roughness.

As a final part of the investigation of the distorted focal spots generated by the

Fresnel cone beam, an additional lens (f=25 mm, in order to de-magnify the beam
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to fit on the camera sensor) was placed in the above setup prior to the camera,

in order to image the cone surface to the camera plane for visual inspection. The

surface of six separate 2nd generation Fresnel cones was inspected in this way, with

camera images shown below in Figure 4.19.

Figure 4.19: Camera image of Fresnel cone surfaces for six separate 2nd gener-
ation Fresnel cones, as visual inspection of quality.

Figure 4.19 visually reveals an issue in the form of dark areas (or optical voids). In

some cases this manifests as a single circular void and in others a two or four lobed

shape. As previously explained, given a 90◦ apex angle, the optical path length at

each transverse position into a cone results in the possibility to image the entire

surface plane to a camera. These dark regions may therefore be due to in some

areas a lower or higher than 90◦ apex angle. One could argue that it may possibly

be of an angle lower than that required for TIR to occur, resulting in light in those

transverse positions transmitting through the rear surface of the cone. I note that

although these patterns appear to suggest non-uniformity on opposite sides of the

cone surface (due to the pattern symmetry), it is equally possible that the defect

is encountered only on one side. This is because light entering the cone at any

position must undergo two reflections at opposing sides of the rear cone surface,

so light impinging either at the transverse position of the defect or the opposite

side of the cone would encounter the defected surface at least once. I note that the

apparent darkened ring at the outer edge of the cone images is due to the rubber

o-ring used to secure the cones in their mount.
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The images of the 2nd generation cone surface appear is visibly smooth without

the periodic ridges encountered during previous work with the 1st generation cones,

however, there are apparent optical voids in the centre. This is likely an imaging

problem and suggests that perhaps the apex angle is not uniform in the 2nd gener-

ation cones, though surface quality is visibly relatively smooth. In an attempt to

rectify the problem, higher quality Fresnel cones were purchased through a bespoke

order where we specified a requirements for an apex angle of 90◦ ± 30′ and a max-

imum surface irregularity of 0.5 fringes. An image of the new 3rd generation cone

surface is shown below in Figure 4.20.

10 mm

Figure 4.20: Camera intensity image of 3rd generation Fresnel cone surface.

Visual inspection of the 3rd generation Fresnel cones showed an apparently en-

hanced surface smoothness, and although there still appeared an optical void this

was limited to the central (cone tip) area. I additionally note there are closely-

packed concentric lines visible which may not be insignificant. Unfortunately, upon

insertion of the newly acquired Fresnel cones into the low NA focussing experiment,

results did not improve and the same distorted focal spots were observed. The next

section describes a more in depth analysis of the Fresnel cone surface quality in an

effort to understand the focussing problem encountered, and ascertain whether the

issue can be rectified.
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4.4.2 Surface topography measurement and fringe pattern

analysis

In the previous section, a distorted focal spot was observed for an azimuthally

polarised Fresnel cone beam, focussed by a low NA lens. Investigations into the

possible cause of this consisted of measuring a simulated focal spot for a variety

of added phase aberrations to the focussed beam, imitating Fresnel cone surface

roughness and non-uniform conical form. The results of these simulations and visual

inspection of the cone surface when imaged to a camera, suggest there are issues with

the physical shape of the Fresnel cone. To further investigate this, an interferometry

experiment was performed to experimentally measure the surface of a Fresnel cone.

A technique demonstrated by Takeda et al. [121], often used to determine the surface

flatness of components such as mirrors or spatial light modulators, was followed.

It was supposed that given the fact that totally internally reflected light from a

Fresnel cone experiences the same optical path length at each incident transverse

position, the same technique could be similarly applied as if measuring the flatness

of a plane reflective mirror.

The surface measurement technique involves analysis of the Fourier spectrum of a

non-contour fringe pattern. This is advantageous over other techniques, such as

Moire topography [122], as sensitivity in this case is limited to surface elevations

above 2π4. The experimental setup used to generate the fringe patterns for analysis

is shown below in Figure 4.21.

4Surface elevations below 2π generate no fringes.
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Figure 4.21: Experimental setup used to generate fringe patterns for Fresnel
cone surface flatness analysis. PBS is a polarising beam-splitter. NPBS is a
50:50 non-polarising beam-splitter. L1-5 are lenses f=50, 200, 2500, 175, 25 mm
respectively. P is a 10 µm pinhole. M1-3 are mirrors. λ/2 and λ/4 are half- and

quarter-wave plates respectively.

To generate the required fringe pattern, firstly, azimuthually polarised light must be

generated using the Fresnel cone technique outlined earlier in this thesis. A 633 nm

Helium Neon laser is used as the light source for this experiment. PBS is polarising

beam-splitter. L1-5 are lenses f=50, 200, 2500, 175, 25 mm respectively. P is a

10 µm pinhole. M1-3 are mirrors. λ/2 and λ/4 are half- and quarter-wave plates

respectively. The first telescope and pinhole are used to expand the beam to fill the

Fresnel cone aperture, as well as being a spatial filter to provide a ‘clean’ Gaussian

beam. M1 and M2 are used to aid alignment by steering the beam. The first

half- and quarter-wave plate are used to generate the required circularly polarised

light for incidence on the cone. One arm of the NPBS beam is directed towards

a mirror, which reflects the beam to be used as the reference beam. The quarter-

wave plate in this arm is to ensure the correct handedness of circular polarisation

for interference. In the other beam-splitter arm, L3 is a long focal length lens of

f=2500 mm, to provide a very slight focussing of the resulting cone beam. This is

required to produce enough concentric tilt of the beam for generating fringes at the

camera, with respect to the reference beam. The camera arm of the beam-splitter

consists of imaging lenses which image the cone surface plane to the camera, as

well as de-magnifying the beam to fit on the camera sensor. A half-wave plate

is included to rotate the structured state to azimuthal polarisation, as discussed
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in section 3.4. A PBS and quarter-wave plate is also included in this arm in order

to select only the circular component possessing OAM. The spiraling fringe result

for the 1st generation cone was recreated (first achieved in [46]), for comparison

in Figure 4.22a). Figure 4.22b) shows the observed spiral fringe pattern for the

higher quality 3rd generation cone under investigation.

Figure 4.22: Spiral fringe patterns observed in the interferometer experiment
described for a) 1st generation Fresnel cone and b) 3rd generation Fresnel cone.

Upon counting the fringe pattern spirals, it is found that the pattern spirals twice

over 360◦. This is as expected for a circular polarisation component possessing two

units of OAM - a feature described earlier of the Fresnel cone beams. Comparing

the fringe patterns for the two cones above, the pattern is visibly more ‘jagged’ for

the 1st generation cone than that of the 3rd - suggesting that the surface quality is

of a smoother finish. There is clearly issues near the central tip area of the beam

in both cases, as well as a certain ‘warping’ of the fringe pattern.

In order to carry out the proposed Fourier spectrum analysis, I first performed a

coordinate transform, unwrapping the x-y image to a polar coordinate frame in

radius (r) and azimuth (θ), shown below in Figure 4.23a) and b).
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Figure 4.23: a) shows the fringe pattern in the x-y frame, b) shows the fringe
pattern in the polar r-θ frame, c) shows the selected region of interest avoiding
the noisy centre and outer edge and d) shows plotted lines matching the troughs
in the fringe pattern using the in-built peak-matching algorithm to LabVIEW.

The crosshairs in Figure 4.23 a) are used to select the centre of the image for

coordinate transformation. Figure 4.23 b) shows the fringe pattern in the polar

coordinate frame, where two vertical cursors are used to select a region of interest

(ROI) for analysis. Selecting an ROI in this way avoids including the distorted

tip area and blank outer edges (left over from coordinate transformation) in the

analysis. Figure 4.23 c) shows the selected ROI (rotated for aesthetic reasons).

Already from this data, visually it appears there are raised ridge-like areas in the

fringe pattern. Given the OAM, the unwrapped fringe pattern should theoretically

consist of straight fringes with a slight slope. A peak-matching algorithm inbuilt to

LabVIEW was utilised to locate the line coordinates of a single fringe (sub VI (Lab-

VIEW Virtual Instrument file) named “NI AAL SigProc.lvlib:Peak Detector.vi”).

This is in order to measure the fringe height difference of the apparent ridge-like

feature. Figure 4.23 d) shows that the measured height difference taken from the

emboldened line coordinates is ∼ 2 fringes. This is larger than the surface irregu-

larity quoted when purchasing the 3rd generation Fresnel cones of < 0.5 fringes -

communication with the company to rectify this is ongoing at this time.

For Fourier spectrum analysis, a 2D Fast Fourier Transform (FFT) is performed

on the fringe pattern Figure 4.24a), with the result shown in Figure 4.24b). As

described in [121] similarly for analysis of a 1D signal, the two Fourier spectra in
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the spatial frequency domain are separated by a carrier frequency. One of these

spectra is chosen, and shifted by the carrier frequency to the centre. Figure 4.24b)

shows the two crosshairs used labelled ‘TL’ and ‘BR’ for top-right and bottom-left,

used to select the rectangular area of the Fourier spectrum for shifting. Once shifted,

an inverse complex-FFT is performed and the imaginary component is selected to

visualise the phase, with the modulo-2π result shown in Figure 4.24c). This modulo-

2π result has discontinuities at every phase step of 2π, similarly to what was shown

for the 1D case in [121], shown in Figure 4.25a).

In order to correct for the phase discontinuities, an offset phase distribution can be

determined, which can be added to the discontinuous distribution. By calculating

the phase difference between two adjacent points in a particular direction (x or y),

as the variation in phase should change only slowly (increments much less than 2π),

any phase differences close to π indicates a discontinuity (as the phase map ranges

from −π to +π). I chose to specify that where any absolute phase differences of

at least 0.9π occurs, a phase offset is recorded where 2π is added or subtracted

depending on the sign of the phase difference detected (starting at 0 for the first

point). A phase offset is constructed similarly to as is shown in Figure 4.25b). This

can then be added to the calculated phase distribution Figure 4.24c) to remove

the discontinuities. This was carried out for discontinuities in the x-direction with

result shown in Figure 4.24d). This could also be carried out for discontinuities in

the y-direction to produce a more continuous phase distribution.
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Figure 4.24: a) shows ROI fringe pattern for Fourier analysis, b) shows Fourier
spectrum after FFT, c) shows modulo-2π phase distribution, d) shows phase

distribution corrected for discontinuities in the x-direction.

Figure 4.25: Image from [121]. a) example of phase discontinuities, b) offset to
phase distribution for discontinuity correction and c) corrected continuous phase

distribution.
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The corrected phase distribution was coordinate transformed back to an x-y coor-

dinate frame from the polar coordinate frame - shown below in Figure 4.26a). The

centre of the image and outer edge of the cone surface is missing due to the ROI

selection performed during analysis, however, there are clearly two raised ridge-like

elevations seen in the reconstructed phase map of the cone surface. The maximum

height of the detected elevation from the baseline is ∼ 25.5/2π ≈ 4.06λ. Given that

there are two units of OAM to account for in the spiral fringe pattern (resulting

in an overall artificial slope being included in the surface measurement), 4π can be

subtracted, leaving an actual elevation of ∼ 12.94/2π ≈ 2.06λ. This agrees with the

earlier observed fringe height of the elevated ridges of ∼two fringes. These raised

elevations can also be seen in both the original measured fringe pattern as well as

the camera intensity image of the cone surface, highlighted in Figure 4.26b) and c).

a) b) c)

0

6.45

12.9

Figure 4.26: a) Reconstructed phase distribution of cone beam, highlighted
elevations in b) measured fringe pattern from interferometry experiment and c)

camera intensity image of cone surface.

Elevated ridges discovered on the cone surface likely result in a non-uniform aberra-

tion to the generated beam, where simulation results showed earlier in this chapter

have a detrimental effect on the resulting focal spot.

4.5 Conclusions

In this chapter, I have shown through simulation (based on the Richards and Wolf

vector diffraction theory [47]) that azimuthally polarised light generated using the

Fresnel cone technique can allow sub-diffraction limited focal spots. Not only this,

but these beams produce a smaller focal spot than conventional beams, even for

lower NA focussing (unlike the results of conventional radial polarisation). It is
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noted however, that as NA increases, the radially polarised focal spot size does

approach that of the azimuthal beam. Similarly, this is also the case for a fixed

high NA but with an increasing centre-stop in the objective lens pupil plane -

essentially restricting the focussing also to an increasing NA.

I have shown simulation results for the case of the radially polarised Fresnel cone

beam, which do not initially appear interesting for microscopy due to a relatively

large focal spot size. From these results however, it was noticed that the phase of the

(ring-shaped) longitudinal electric field component varies azimuthally from 0-2π. It

is likely that this is a result of orbit-spin conversion in the focussing region, as shown

recently by Kotlyar et al. [123], with a resulting transverse spin component [124].

It is expected that this longitudinal field component and azimuthally varying phase

will be of interest to the fields of microscopy and particle trapping.

Evidence through simulation that Fresnel cone beams can allow the sub-diffraction

limited focal spots demonstrated by Hao et al. [57] and our own unpublished results,

prompted the formation of an industry-led collaboration project to develop a bolt-on

microscope module for provide high efficiency broadband polarisation structuring.

During this project I developed a technique for pre-compensation of vector beams.

This technique allowed the desired azimuthally polarised light to reach the pupil

plane of an objective lens, following interaction with compulsory optical elements

that are often detrimental to the polarisation state. I implemented a patented

dual cone-based polariser [120] into a prototype device, for initial testing at the

University of Glasgow. I was able to generate high fidelity polarisation structures

with this prototype, however, the reliance on two individual cone halves in the dual

cone-based polariser revealed a crucial issue with the cone alignment and resulting

global phase of the generated beam. Focussing simulation which included this phase

misalignment highlighted that with the current cone-mount precision and 3D printed

housing, it would not be possible to generate sub-diffraction focal spots.

Knowledge gained through the industry-led collaboration project highlighted the

previously unconsidered effects on focussing of non-ideal phase aberration to the

generated Fresnel cone beams. A simple low NA focussing experiment was set up

as an initial test of the focussing such beams (with the previously used beam-splitter

coupling into the cone rather than prototype device), where non-ideal distorted focal

spots were observed. This suggested there were possible issues with the surface

quality of the Fresnel cones and so higher quality cones were obtained, however,

results did not improve. I began an investigation into both the surface roughness
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and conical form of the newly acquired Fresnel cones, in an attempt to identify the

issue. Using an interferometry experiment and Fourier spectrum analysis, previously

demonstrated for use to measure the surface of components such as mirrors [121], I

was able to use interference of the generated cone beam with a reference beam, to

identify elevated ridge-like regions of the cone surface with an approximate height

of ∼ 2λ ≈ 1 µm. As shown in simulations, where I used phase distortions to imitate

a warping of the Fresnel cone surface, these types of phase aberration are extremely

damaging to the desired focal spot (while surface roughness is less critical below a

certain amount).

It may be possible to correct the phase aberrations gained by the generated cone

beams using a liquid crystal spatial light modulator (SLM) - an array of individually

tunable birefringent liquid crystals - allowing an ideal focussing situation. Given

the time available this possibility was not further explored, as initially where the

industry-led collaboration was concerned the stated benefits of the bolt-on device

were that it would be low-cost and allow broadband operation. If including a liquid

crystal SLM in the setup, this would no longer be the case. Further comments on

the findings and future of this work can be found in chapter 6.



Chapter 5

Single-shot polarimetry using a

Fresnel cone

5.1 Introduction

In the previous two chapters I have discussed the use of a Fresnel cone for generating

beams with interesting polarisation states (chapter 3) and where these beams could

be applied (chapter 4). In this chapter I will show how a Fresnel cone can also be

used to measure light’s polarisation. This can be extremely useful as knowledge of

light’s polarisation can reveal information about its source, due to light becoming

polarised to at least some degree upon reflection or transmission. For example, im-

portant uses are found in tissue polarimetry in biomedical research [125] and target

detection in radar polarimetry [126]. Conventional cameras are blind to this vector

property of light as they are sensitive only to intensity (and colour), not orientation

and phase of the electric field, however, devices do exist that can measure polar-

isation. These are known as polarimeters, where the majority use the relation of

the Stokes parameters to intensities of light to perform a polarisation measurement.

This establishes a requirement for multiple measurements of the incident light to

be able to achieve full-Stokes polarimetry and recovery of the complete polarisation

state (in the form of a Stokes vector - described in subsection 2.3.2).

Commercial polarimeters are often based on a “rotating-waveplate” design [127]

due to the technique being simple and compact, however, this has drawbacks if the

incident polarisation signal is changing on time-scales comparable to (or faster than)

96
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the temporal rotation frequency of these devices (for example, if the polarimeter and

light source are in motion relative to each other). Devices with moving parts are also

inherently unstable and may require regular maintenance or re-calibration, however,

this technique is still commercially preferred when compared to more expensive

and complex spatially-modulated (or amplitude-splitting) techniques which record

multiple measurements simultaneously [128, 129].

Using the polarisation structuring of a Fresnel cone, I performed an experiment to

show that it can be used as a single-shot polarimeter that is both compact and

relatively low-cost. Not only this, but it has no moving parts and unlike the ma-

jority of polarimeters it allows broadband operation, as it is not based on the use

of birefringent components. It should be noted however that the Fresnel cone po-

larimeter does not currently allow imaging polarimetry, as the incident polarisation

state must be homogeneous over the front surface of the Fresnel cone (see Figure 5.4

for polarimeter diagram). An imaging capacity could potentially be implemented

using a scanning technique1, though the device would no longer provide results in

a ‘single-shot’. On a positive note however, the Fresnel cone device may be bet-

ter suited for polarisation spectroscopy of homogeneous samples, for example, for

chirality measurement of liquid samples.

In this chapter I will describe some of the useful applications for polarimetry, high-

lighting that different applications have different requirements for the polarimeter

device. I will discuss the various measurement domains used for polarisation mod-

ulation of the incident light, such as the temporal, spatial, and spectral domains. I

will go into particular detail describing the common “rotating-waveplate” approach,

as the Fresnel cone polarimeter is revealed to be a spatial analogue to this. I will

then show the theory, experiment and results of the Fresnel cone polarimeter, before

discussing its benefits, recent research into similar devices, and the challenges and

future of the field.

My contributions to this work included writing programs to simulate the experiment

and analyse data, setting up the experiment, collecting and analysing the data, and

co-writing the manuscript for publication [130].

1Providing it is possible to include the Fresnel cone polarimeter in the beam-path prior to the
detector
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5.2 Conventional polarimetry

As mentioned, polarimeters can reveal useful information about light’s origin and

the object’s it interacts with by measuring its polarisation state. They are therefore

important tools in a wide range of fields such as material characterisation [131–

133], astronomy [134–136], medicine [125, 137, 138] and remote observation [126,

139, 140]. In subsection 2.3.2 I showed that the two orthogonal complex electric

field components representing a polarisation state (Jones vector) can be expressed

as four real numbers in a Stokes vector. As there are four unknown quantities, at

least four measurements must be made for complete Stokes vector recovery. These

are usually achieved by modulating the polarisation of the incident light in either a

spatial, spectral or temporal manner. It may be useful to note that these different

approaches can be labelled differently depending on the community in question. In

the field of astronomy for example, the polarisation measurement domain is called

a ‘modulation’, such as spatial, spectral or temporal modulation. Alternatively, in

the field of remote observation and target detection, these measurement domains

are labelled as a ‘division of amplitude’, ‘division of time’ and so on. Each approach

to polarimetry may have benefits and drawbacks, but polarimeters can be designed

to be optimal for the required application. For example, a low-cost birefringent

rotating wave-plate design may be compact and suitable for general laboratory use,

while a passive broadband polarimeter that has no moving parts is more suitable for

applications in space or remote observation where the source is in motion relative

to the detector, or remote observation where spectro-polarimetry may be required.

5.2.1 Applications

Polarimeters can clearly be useful in a wide range of application areas, where infor-

mation is sought that normal cameras are not able to reveal. While the intensity

and wavelength of light are affected by the material of the object the light interacts

with, the resulting polarisation state depends on an objects parameters such as ori-

entation and surface roughness, and so provides complimentary information to the

conventionally measured intensity and colour. Since light’s polarisation is affected

by the surface features of objects in a scene, it is a very useful tool in the field of

target detection as man-made objects tend to differ in these regards when compared

with objects in nature. By applying imaging polarimetry to a scene where a Stokes

vector is measured for each camera pixel, the image contrast can be enhanced to
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reveal objects that would usually be hidden to visible and thermal cameras, for ex-

ample, exposing a camouflaged tank in thermal equilibrium with its surroundings.

Polarimeters are also useful for detecting marine oil spills [141, 142], where previ-

ously infrared imaging was used to try and detect these spills, however, at times the

contrast between oil and surrounding water can be minimal when thermal equilib-

rium sets in. Since oil and water have different optical properties, by illuminating

a scene with polarised light and then observing the polarisation properties of the

reflected light, devices can be made to provide high contrast for detecting these

spills (see Figure 5.1). Using a polarimeter in this way has the benefit that it does

not solely rely on temperature difference, and functions even if a target oil spill is

in thermal equilibrium with the surrounding water [143]. As large areas often need

to be measured, polarimeters for target detection must allow fast operation as they

would ideally function in real time.

Figure 5.1: Here work by a company called Polaris Sensor Technologies shows
a) oil spill scene captured using visible light, b) an infrared thermal image c) an
image of the degree of linear polarisation and d) a fused image of the thermal and
polarisation data. It is also possible to see that the man-made objects around

the pool clearly polarise the light. Image adapted from reference [143].

Polarimeters have also long been a tool in the field of remote sensing, where they

are primarily used to characterise aerosol particles in the atmosphere. Climate

modelling is an obvious research area where atmospheric aerosol data is essential,

however, this data is also required to be able to remotely monitor atmospheric
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particles such as hazardous pollution and ash particles from volcanic eruptions.

Polarimeters used for remote sensing are often housed on orbiting satellites, where

the most well-known satellite polarimeter is the POLDER instrument [144, 145].

This device employs a filter wheel at three different wavelengths (440, 670 and 885

nm) for recording spectral data, where each filter is also polarisation filtered with

a linear polariser at three different angles (0◦, 60◦ and 120◦). As the POLDER

polarimeter device records time sequential polarisation images however, there is an

inherent error due to the scene changing between measurements due to the relative

motion between scene and detector. The result is that the accuracy of the POLDER

polarimeter is limited to ∼ 2% [146].

For applications in astronomy, there are two commonly used types of polarimetry.

Spectro-polarimetry is used to study the atmospheres of exoplanets (where polari-

sation is measured as a function of wavelength), while imaging polarimetry can be

used to study stellar atmospheres and the surrounding region. Recently, a spectro-

polarimeter device was developed with the aim of using it to aid in the detection of

life on exoplanets [147]. The device is based on the technique devised by Sparks et

al. [148], which uses a patterned quarter-wave plate with varying fast axis followed

by a linear polariser and a slit to produce a modulated spectrum (See Figure 5.2).

Two dimensional detector
records modulated spectrum

Polarimetric 
dimension

Wavelength

Long-slit
spectrometer

Retarder with
changing fast axis
detection and 
polarization analyzer

Figure 5.2: A diagram showing the polarimeter design by Sparks et al. [148].
Light is incident on a patterned quarter-wave plate followed by a linear polariser
and long slit spectrometer. The intensity patterns to the right are simulations of

what is expected for linear and circularly polarised light. Image from [148].
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The spectrum resulting from the setup shown above is recorded by a camera for

Fourier analysis to reveal the incident polarisation state. This is similar to the

Fourier analysis approach I show for the Fresnel cone polarimeter I describe in sub-

section 5.3.3. Importantly, the design by Sparks et al. allows high accuracy for

measuring the circular polarisation component without cross-talk with the linear

polarisation components. This facet is essential to be able to use polarimetry to

search for signs of life as the main molecules required for constructing life are chiral.

Chirality2 results in light becoming partially circularly polarised upon interaction -

hence is suggested as a possible biomarker in the search for extraterrestrial life [149].

It is further advantageous that the device design is solid-state, i.e. it has no moving

parts and hence is suitable for use in space. In addition, a polarimeter for this

application needs to be both highly accurate and sensitive, as the contrast between

polarised reflected light from exoplanets and the unpolarised light from its host star

can be as low as 10−7 to 10−10 [146].

Simple polarisation microscopy techniques have been developed for use in biomedical

diagnosis, usually involving imaging some form of birefringent sample between two

crossed polarisers [150, 151] or investigating chiral samples [152]. These simple

methods however only qualitatively enhance contrast and are usually used as a

complimentary second or third back-up technique to assist in sample identification.

Quantitative polarimetry methods are also being developed for tissue imaging where

these devices additionally use a dynamically controllable input polarisation state

(polarisation state generator), allowing full Mueller matrix polarimetry [81, 153] and

more in depth analysis. A straightforward method for experimentally measuring a

Mueller matrix was given in section subsection 2.3.4. A sample’s Mueller matrix

can be decomposed to give depolarisation, retardance and polarisance, assisting in

identifying potential tumours [153, 154].

From these applications it is clear that the requirements and desires of the polarime-

ter design depend on its purpose, for example, an application in space requires that

the device is especially robust and has no moving parts, applications in target de-

tection often require real-time polarimetry and so the technique must have fast

operation, remote observation requires high sensitive and biomedical applications

often use in addition to the polarimeter a polarisation state generator to allow

dynamic control of the incident state and Mueller matrix measurement. For many

2Actually they essentially have homochirality, as 19 of the 20 molecules required for constructing
life are left-handed, with the remaining one is right-handed.
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applications it would be very useful to be able to perform the polarimetry spectrally,

or that the device itself allowed broadband operation, however, many polarisation

optics rely on birefringence which is inherently wavelength dependent.

5.2.2 Modulation domains

In this section I will discuss the different modulations of the incident polarisation

signal that may be addressed with a polarimeter device. The spatial modulation

approach to full-Stokes polarimetry involves taking the incident light beam and di-

viding it into several sub-beams, where each sub-beam is individually analysed by

its own set of analysing optics. This can be achieved straightforwardly with mul-

tiple beam-splitters, polarisation optics and detectors in a “division of amplitude”

approach such as the experiment devised by Campain and Drevillon [155]. Here an

uncoated beam-splitter is first used to split the incident light into two sub-beams,

which are subsequently divided again by two Wollaston prisms, before incidence on

four individual detectors. An advantage of this technique is that it does not rely on

birefringence and was demonstrated to operate in a broad wavelength range of 0.4 to

2 µm [155]. More recent approaches for achieving simultaneous Stokes measurement

use a “division of focal plane” design where instead the detector itself is divided, us-

ing components made by advanced manufacturing techniques. One example of this

is the elliptical-polariser array system demonstrated by Hsu et al. [156]. Designing

a polarimeter based on spatial splitting has the advantage that the measurements

are acquired simultaneously (crucial for some applications) and some devices allow

spatial resolution, however, these devices can be complex and expensive.

An alternate measurement technique is to modulate the incident light spectrally -

sometimes known as ‘channeled spectro-polarimetry’, or the spectral modulation

approach. This technique usually assumes that the incident light is broadband in

nature. The main idea in this technique is to create an analyser system that is a

function of wavelength, for example, achieved by using two multi-order waveplates

at 45◦ to each other before an analyser polariser. These multi-order waveplates re-

tard the phase chromatically, introducing side-bands in interferogram space which

are subsequently measured using a diffractive spectrometer [146]. These polarime-

ters offer many benefits associated with space and remote sensing applications, such

as single-shot, compact, passive and accurate, however, a potential major drawback
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arises when there is absorption at certain frequencies (such as in atmospheric ab-

sorption), causing false measurements in the intensity spectrum [157].

The third and perhaps most popular method for polarimetry is the temporal mod-

ulation approach, where incident light is modulated in a time-sequential manner.

The most basic temporal modulation design uses a rotating quarter-wave plate,

though there are numerous techniques reported investigating photo-elastic mod-

ulators [158, 159] and liquid crystal variable retarders [160, 161] for temporally

modulated polarimetry. From a commercial point of view a device is preferentially

simple, low-cost and compact, and although the spatial measurement domain offers

simultaneous Stokes measurements a temporally modulated design satisfies these

criteria. The basic setup for the typical commercial rotating wave-plate device is a

motorised spinning quarter-wave plate followed by a linear polariser and an inten-

sity measurement on a detector. Using the Stokes formalism detailed in chapter 2

this can be summarised as

S’ = MpolR(−θ)MqwpR(θ)S, (5.1)

where S = [S0, S1, S2, S3]T and S’ = [S ′0, S
′
1, S

′
2, S

′
3]T are the initial and final Stokes

vectors respectively, the M matrices are Mueller matrices corresponding to a hori-

zontally aligned linear polariser (Mpol), a quarter-wave plate with horizontal fast-

axis (Mqwp), and R(θ) is the Mueller rotation matrix for a rotation of θ. Here I note

that θ = ωt for the rotating wave-plate. The matrices for the terms R(−θ)MqwpR(θ)

represent a quarter-wave plate rotated from the horizontal by the angle θ. The

Mueller matrices used in Equation 5.1 are

R(θ) =


1 0 0 0

0 cos (2θ) sin (2θ) 0

0 − sin (2θ) cos (2θ) 0

0 0 0 1

 , (5.2)

Mqwp =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 −1 0

 , (5.3)
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and

Mpol =
1

2


1 1 0 0

1 1 0 0

0 0 0 0

0 0 0 0

 . (5.4)

As mentioned in subsection 2.3.6, it is important to define the coordinate system by

stating whether a right or left-handed Cartesian coordinate system is used, whether

light propagates in the ±z-direction and whether the observer is looking from or

towards the light’s source. Here I am discussing a right-handed Cartesian coordi-

nate system, with light propagating in the +z-direction and the observer is looking

towards the light’s source. Upon inserting the known matrices into Equation 5.1 I

obtain

S’ =
1

2


1 1 0 0

1 1 0 0

0 0 0 0

0 0 0 0

 ·


1 0 0 0

0 cos (2θ) − sin (2θ) 0

0 sin (2θ) cos (2θ) 0

0 0 0 1

 ·


1 0 0 0

0 1 0 0

0 0 0 1

0 0 −1 0



·


1 0 0 0

0 cos (2θ) sin (2θ) 0

0 − sin (2θ) cos (2θ) 0

0 0 0 1

 ·

S0

S1

S2

S3

 . (5.5)

Upon matrix multiplication, this becomes

S’ =


S ′0

S ′1

S ′2

S ′3

 =
1

2


S0 + 1

2
S1(1 + cos (4θ))− S3(sin (2θ)) + 1

2
S2(sin (4θ))

S0 + 1
2
S1(1 + cos (4θ))− S3(sin (2θ)) + 1

2
S2(sin (4θ))

0

0

 . (5.6)

The first element of the final Stokes vector (S ′0 in Equation 5.6) is by definition the

total intensity on the detector,

S ′0 = I(θ) =
1

2

[
S0 +

1

2
S1(1 + cos (4θ)) − S3(sin (2θ)) +

1

2
S2(sin (4θ))

]
. (5.7)

By rotating the quarter-wave plate, intensity measurements are taken for a range of

θ angles and recorded as a function of time. As long as the frequency of the rotation

is known, each temporal measurement can be mapped to an angle of rotation. By
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converting Equation 5.7 to a truncated Fourier series in θ, the Fourier coefficients

can be expressed in terms of the initial Stokes vector components as shown in sub-

section 5.3.3. These Fourier coefficients can be experimentally measured, and by

performing a matrix inversion, the initial Stokes vector S can be recovered [162].

This will be shown in more detail below for the case of the Fresnel cone polarimeter,

as the angular position in the conical geometry of a Fresnel cone allows its use as a

spatial analogue to the temporally rotating wave-plate component.

5.3 Polarimetry using a Fresnel cone

When investigating the types of beams that can be generated with the back-

reflection from a Fresnel cone (as described in chapter 3) we noticed that when

imaging the cone onto a camera through a linear polariser filter, for each polarisa-

tion state input to the Fresnel cone a different intensity pattern was observed as

shown in Figure 5.3. The question was then asked - is it possible from a particular

observed intensity pattern (such as the example shown in the rightmost intensity

pattern in Figure 5.3) to reveal what the polarisation state is for an arbitrary un-

known input? After reading through the literature there were two approaches found

that would allow the initial Stokes vector to be recovered from a single intensity

image such as the example shown. A numerical approach as shown in [162] and

a more analytical approach which I will describe below in subsection 5.3.1 for the

Fresnel cone polarimeter.
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Horizontal

Vertical

Diagonal

Anti-diagonal

Right-handed

Left-handed

Unknown

Figure 5.3: Experimental data. Intensity images of the Fresnel cone surface
through a linear polariser for the labelled input states to the cone. It can be
seen that linearly polarised inputs result in a four-lobed intensity pattern while
circularly polarised inputs result in a two-lobed pattern. Also shown an intensity

pattern for an arbitrary unknown input state.

5.3.1 Analogy to the rotating-waveplate polarimeter

The Fresnel cone based polarimeter consists of a Fresnel cone, a non-polarising 50:50

beam-splitter, a linear polariser, and a camera (See the components enclosed by the

blue box in Figure 5.4). Similarly to Equation 5.1, the equation representing the

Fresnel cone polarimeter using the Stokes and Mueller formalism is

S’ = MpolR(−θ)MwedgeR(θ)S. (5.8)

Here, R(−θ)MwedgeR(θ) is a rotated glass wedge (by an angle θ from the horizontal)

which constitutes two total internal reflections, representing the function of a Fresnel

cone. In order to derive the Mueller matrix for the glass wedge, the Jones matrix

(first derived in [46], in which I was involved with during a Master’s project) was

converted using the method described in subsection 2.3.3. The Jones matrix used
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for the glass wedge is

Mwedge =

[
rp

2 0

0 rs
2

]
= rp

2

[
1 0

0 ei2δ,

]
, (5.9)

where

δ = arg(rs)− arg(rp) = arg

(
n2 + i

√
1− 2n2

1− n2

)
. (5.10)

Here, n = nair/ncone, and rp and rs are Fresnel reflection coefficients for the par-

allel (p) and perpendicular (s) polarisation components respectively. The angle of

incidence at the back conical surface is above the critical angle for total internal

reflection to occur, and so only the phase is affected at the boundary reflection and

not the amplitude. By using a Fresnel cone with the correctly chosen refractive

index n (see section 3.3 for theory), the phase-shift at each total internal reflec-

tion can be engineered to be π/8 for a cone with a 90◦ apex. As there are two

reflections the result is that a Fresnel cone with a correctly chosen n acts similarly

to a quarter-wave plate, with a fast axis varying azimuthally around the cone tip.

Shown for completeness the Mueller matrix for the cone is

Mcone =


1 0 0 0

0 cos2 (2θ) 1
2

sin (4θ) −2 cos (θ) sin (θ)

0 −1
2

sin (4θ) − sin2 (2θ) − cos (2θ)

0 −2 cos (θ) sin (θ) cos (2θ) 0

 , (5.11)

where here θ is the azimuthal angle from the horizontal around the cone tip. The

Fresnel cone Mueller matrix derivation was performed using the Jones-to-Mueller

conversion method shown in subsection 2.3.3. Performing the matrix multiplica-

tions of Equation 5.8 and as before with the motorised rotating quarter-wave plate

polarimeter, looking at the first element of the resulting Stokes vector S ′0 I find that

for the case of the Fresnel cone polarimeter system

S ′0 = I(θ) =
1

2

[
S0 +

1

2
S1(1 + cos (4θ)) − S3(sin (2θ)) +

1

2
S2(sin (4θ))

]
. (5.12)

This is identical to Equation 5.7 except here as stated θ now represents azimuthal

angle around the cone tip rather than quarter-wave plate rotation angle at a given

time, and so the Fresnel cone polarimeter is revealed to be a spatial analogue to the

conventional temporally rotating quarter-wave plate device. This means that the

intensity measurements required to determine an unknown incident Stokes vector
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can be recorded in a single intensity image for the Fresnel cone device, compared

with the requirement to take sequential intensity measurements temporally with

the conventional rotating wave-plate device.

5.3.2 Experimental setup

The experimental setup used in a proof-of-principle experiment is shown in Fig-

ure 5.4. The general principle is to generate visible broadband light that can be

arbitrarily polarised and demonstrate that this polarisation state can be recovered

in the form of a Stokes vector from Fourier analysis of the spatial intensity pattern

of a light beam that has been reflected from a Fresnel cone and passed through a

linear polariser. Using this system I am able to demonstrate the operation of the

Fresnel cone polarimeter for broadband light. In this case I show operation across

the visible spectrum, however, as explained in section 3.3 the technique could oper-

ate broadly across other frequency bands if the Fresnel cone material is engineered

with a specifically chosen refractive index. It is also possible that even if a less-

than-ideal refractive index is used for a given wavelength, this could be accounted

for in the analysis, however, the polarimeter accuracy may be reduced (due to not

encompassing a sufficient volume of the Poincaré sphere).

Figure 5.4: Fresnel cone polarimeter experimental setup. Polarisation states are
generated using the polarisation state generator in the green box, before analysis
by the Fresnel cone polarimeter in the blue box on the right. Figure adapted

from [130].
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The LED light source used for the demonstration of broadband operation is an

incoherent white mounted LED (400 − 700 nm wavelength range) from Thorlabs

(MCWHL6) with the LED driver LEDD1B also from Thorlabs. A 25 mm focal

length lens (Thorlabs, LA1951-A) is used to collimate the LED source, followed by

an iris to produce a beam of white light with the desired diameter3. The linear

polarisers used were Thorlabs LPVISE100-A, with an operating wavelength range

of 400−700 nm. The beam-splitter is a non-polarising 50:50 (reflection:transmission

ratio) beam-splitter from Thorlabs, BS013, with an operational range of 400− 700

nm. The Fresnel rhomb retarders (FR600QM and FR600HM for the quarter- and

half-wave retarder respectively) are from Thorlabs. These Fresnel rhomb retarders

provide a quarter- (an optional addition if circular/elliptical polarisation input is

required) or half-wave retardance for a broad wavelength range (400 − 1550 nm

in this case) and the details of their operation is described in subsection 2.4.3.

These are essential for use with white light to demonstrate the broadband nature

of the Fresnel cone polarimeter. First and second generation cones were tested in

the polarimeter device. The 150 mm and 50 mm focal length lenses image the cone

surface (this is possible as the optical path lengths for perpendicularly incident light

rays are all equal regardless of which transverse position the light enters the cone)

to the camera, as well as provide a de-magnification of 50
150

of the beam so that it

fits onto the camera sensor. The lenses, linear polarisers and non-polarising beam-

splitter have an anti-reflective coating for use in the visible wavelength range. The

camera is a colour CMOS camera with 1280 × 1024 pixels, Thorlabs DCC1645C,

which is connected to a computer via USB 2.0.

The first step is to generate arbitrarily polarised light, for testing of the polarimeter.

As light from the LED source is unpolarised, the first linear polariser is set to have

its axis horizontally aligned (arbitrarily chosen) and the half-wave Fresnel rhomb

retarder is rotated to generate all linear inputs (with the quarter-wave Fresnel rhomb

retarder removed from the setup). This quarter-wave Fresnel rhomb retarder is

replaced and fixed to have its fast axis horizontally aligned, and the half-wave

Fresnel rhomb retarder is again rotated to generate a range of circular through

elliptical input states. The non-polarising 50:50 beam-splitter then allows ∼ 50%

of the light to be transmitted to the Fresnel cone. The light is then back-reflected

from the Fresnel cone (as described in section 3.4), of which ∼ 50% is then reflected

towards the polarisation state analysis arm. The polarisation state analyser arm

3The beam diameter used depended on the Fresnel cone being used, either 10, 15 or 25 mm
depending on the generation of cone.



Chapter 5. Single-shot polarimetry using a Fresnel cone 110

of the system consists of a pair of imaging lenses and a horizontally aligned linear

polariser, producing an intensity pattern on the camera for analysis.

In the case described above, the device is only ∼ 25% efficient due to the two passes

through the non-polarising beam-splitter, however, high efficiency Fresnel cone cou-

pling (∼ 100%) has since been investigated as was explained in subsection 3.4.1.

This could likely be applied to this device, though has not yet been tested.

5.3.3 Stokes vector recovery

In this section I will first describe the details of how to recover the full Stokes vector

given an ideal system with perfect optical components. I will then go into detail

on the differences that less-than-ideal optical components introduce to the analysis.

Equation 5.12 contains the four initial Stokes parameters S0, S1, S2 and S3, so the

initial full Stokes vector can be recovered by solving Equation 5.12 for a minimum

of at least four experimental θi measurements4. To do this, Equation 5.12 is a

truncated Fourier series in θi as

I(θi) =
1

2

[
a0 + b2 sin(2θi) + a4 cos(4θi) + b4 sin(4θi)

]
, (5.13)

where a0, b2, a4 and b4 are the discrete Fourier coefficients, which, for N discrete

angles are

a0 = S0 +
S1

2
=

2

N

N∑
i=1

Ii, (5.14)

b2 = −S3 =
4

N

N∑
i=1

Ii sin(2θi), (5.15)

a4 =
S1

2
=

4

N

N∑
i=1

Ii cos(4θi) and (5.16)

b4 =
S2

2
=

4

N

N∑
i=1

Ii sin(4θi). (5.17)

After background correction and normalisation image processing steps of the mea-

sured cone intensity pattern (of which I will go into more detail shortly), Fourier

analysis can be applied to the intensity signal I(θ) by performing a Fast Fourier

4Where θi corresponds to the ith azimuthal angle around the cone tip.
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transform to provide values corresponding to the right hand side of Equations 5.15-

5.18. These four equations can be expressed in matrix form as
1 1

2
0 0

0 0 0 −1
2

0 1
2

0 0

0 0 1
2

0


︸ ︷︷ ︸

M


S0

S1

S2

S3


︸ ︷︷ ︸

S

=


a0

b2

a4

b4

 .
︸ ︷︷ ︸

C

(5.18)

The matrix M is known from theory and the vector C is obtained from Fourier

analysis of measured data, so by multiplying both sides of Equation 5.18 by M−1,

the result is

S = M-1C, (5.19)

and the initial Stokes vector S can be found.

This analysis is true for systems which contain ideal optical components that do

not diattenuate5, deflect or retard an incident beam. In reality however, many

optical components, such as the 50:50 non-polarising beam-splitter in the Fresnel

cone polarimeter setup, can cause detrimental phase shifts or diattenuation, leading

to a deviation of the experimental Mueller matrix from its theoretical form M.

In subsection 2.3.4 I show that it is possible to measure the experimental Mueller

matrix of an optical component (or series thereof) by following the steps detailed

in [69]. A total of 36 intensity measurements are made in order to construct a

Mueller matrix by generating and analysing in the six polarisation basis states, H,

V, A, D, R and L. As there are only 16 unknown values in a Mueller matrix in

theory it is possible to measure a Mueller matrix from only 16 experimental mea-

surements, however, the focus of this work is Stokes polarimetry and I will not go

further into this here. When taking experimental measurements to determine the

Mueller matrix, due to measurement noise and imprecisely calibrated components

(wave plates, polarisers etc.), the Stokes vector recovery shown above can return

non-physical Stokes vectors without careful normalisation of the 4 × 4 experimen-

tal Mueller matrix6. I chose to follow the Mueller matrix normalisation described

in [163] to avoid non-physical Mueller matrices, where it is shown that the matrix

5A differential absorption of light polarised parallel and perpendicular to an orientation axis.
6Note that this normalisation does not correct for errors in the result from incorrect compo-

nents, it only coerces any non-physical Stokes parameters to be their closest physically realisable
value.
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for an optical component can be parameterised as

M =


1 a b 0

a u v −x
b v w y

0 x −y p

 , (5.20)

where
p = sin(2ψ) cos(δ) ∼= 0,

r = sin(2ψ) sin(δ) ∼= 1,

s = cos(2ψ) ∼= 0,

a = s cos(2C),

u = f cos(4C) + (1− f),

b = s sin(2C),

v = f sin(4C),

x = r sin(2C),

w = −f cos(4C) + (1− f),

y = r cos(2C),

and f = (1− p)/2 w 0.5.

(5.21)

It is important to note that this normalisation method assumes no depolarisation

(loss of polarisation) or diattenuation (differential absorption of s and p polarised

light) in the optical component under investigation and that it is possible to param-

eterise the Mueller matrix by three angles, namely a phase-shift induced between s

and p polarisation components (δ), a rotation of the linear polarisation components

(ψ), and an orientation of the optical component from the horizontal (C). I choose

to calculate the above matrix M for 300 values of the three angles (δ, ψ and C)

ranging from 0 to π. I then determine the sum of the squared difference between

each calculated Mueller matrix and my experimentally measured matrix, and se-

lect the matrix with the smallest difference to be the normalised Mueller matrix

representing the real system.

The effects of the imperfect non-polarising 50:50 beam-splitter can be accounted

for by including the beam-splitter transmission (Btrans) and reflection (Brefl) in the

Mueller matrix equation representing the system, which now becomes

S’ = MpolBreflR(−θ)MwedgeRBtrans(θ)S. (5.22)
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I carried out experimental Mueller matrix measurements to find Brefl and Btrans for

each of the red, green and blue colour channels separately as I aimed to demonstrate

the broadband operation of the Fresnel cone polarimeter using white light and a

colour CCD camera. Using the normalised versions of these experimental Mueller

matrices in the analysis results in M in Equation 5.18 becoming a 5 × 4 matrix

rather than a 4× 4 matrix, and C in Equation 5.18 gaining an additional term. As

an example of one such case, for the red frequency band Equation 5.18 becomes

31
237

52
1301

− 1
23754

1
1176

1
10822

− 1
38210

− 1
300

− 1
430

1
460

1
1453

− 5
203

− 9
118

1
1944

22
551

1
322

1
6482

− 1
1452

− 1
480

13
310

− 3
322


︸ ︷︷ ︸

M


s0

s1

s2

s3


︸ ︷︷ ︸

S

=



a0

a2

b2

a4

b4


,

︸ ︷︷ ︸
C

(5.23)

where the a2 Fourier component has emerged and is

a2 =
4

N

N∑
i=1

Ii cos 2θi. (5.24)

The set of linear equations is now over-determined as there are five equations with

just four unknown values. This results in the matrix M no longer being a square

4 × 4 matrix and so the pseudo-inverse of M must be used. This is calculated by

using an in-built LabVIEW function, based on the singular value decomposition

method.

5.3.4 Results and discussion

The experimental setup for the Fresnel cone polarimeter is shown in Figure 5.4,

where the actual polarimeter device is shown in the blue box and the green box

encompasses the optical setup used to generate desired input states for testing. As

mentioned, different input polarisation states to the polarimeter generate different

intensity patterns on the camera, such as those shown in Figure 5.3. For calibration

I first record a background image with the light source powered off, which is sub-

tracted from the intensity pattern data images to reduce background noise. I also

record two images for normalisation - one with the analyser-arm linear polariser

horizontally aligned and one where it is vertically aligned. The intensity pattern
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data images are normalised to the sum of these two images, to reduce local intensity

modulations present within the input beam which would lead to deterioration of

the Fourier signal.

Figure 5.5 shows an example of how the data images are processed ready for Fourier

analysis. In Figure 5.5a), a data image has been background corrected and nor-

malised (as explained above) where a region of interest (ROI) is highlighted which

will later be cropped to avoid the central tip area. This central tip area is often

noisy due to insufficient manufacturing capability to acquire a fine cone tip. This

image is then unwrapped from an x-y Cartesian coordinate system to an r-θ polar

coordinate system, where the result of this is shown in Figure 5.5b). The resulting

ROI is shown in Figure 5.5c), where it can be seen that as expected the intensity

varies only azimuthally and appears constant radially. This feature can be used to

reduce the error from noise in the system by averaging the I(θ) values radially. I

note here that the resolution appears lower at smaller radii in Figure 5.5b) and c)

due to an artifact of the coordinate transformation.

c)

r

θ

b)

r

θ

a)

x

y

500μm

Figure 5.5: This is an example of how data images are processed ready for the
Fourier analysis. In this case the intensity pattern is for an input of horizontally
polarised light. a) shows cone intensity image in x-y coordinate system with ROI
highlighted, b) shows cone intensity image unwrapped to r-θ coordinate system,

c) shows resulting ROI cropped in r-θ. Image adapted from [130].

An example of the resulting averaged one-dimensional intensity profile is shown

below in Figure 5.6 for the data example shown in Figure 5.5c). This intensity

profile is I(θi) in Equation 5.13, from which a Fast Fourier Transform (FFT) is

performed in order to extract the Fourier coefficients a0, a2, b2, a4 and b4 (elements

of C in Equation 5.23).
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Figure 5.6: An example of the averaged radial intensity profile for the red, green
and blue colour channels individually. The y-axis shows normalised intensity and
x-axis shows azimuthal angle around the cone tip. Image adapted from [130].

To characterise the performance of the polarimeter quantitatively, I consider the

polarised and unpolarised portions of the measured light independently. I evaluate

the measurement of the polarised component by determining the angular accuracy

of the resulting Stokes vector. This can be visualised as the difference in angle of

the measured Stokes vector and the incident Stokes vector on the Poincaré sphere

- described in subsection 2.3.5 and shown in Figure 5.7 below.
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Figure 5.7: A Poincaré sphere representation of the Fresnel cone polarimeter
accuracy, where the angular accuracy is shown as a solid cone and degree of
polarisation is shown as the length of the vector inside the sphere. The angular
accuracy in this case is set to 3.6◦ and the degree of polarisation is set to 0.85.

Image adapted from [130].

I define the angular accuracy with the following equation,

α = cos−1

(
S123 · S′123

|S123||S′123|

)
, (5.25)

where S123 = [s1, s2, s3]T and S′123 = [s′1, s
′
2, s
′
3]T . Note that this only takes into ac-

count the angle between the direction of the theoretical incident and experimentally

measured Stokes vectors and not the length of the vector (degree of polarisation) as

previously stated - i.e. this is a characterisation of the performance for measuring

the polarised component of the light. I characterise the performance of the un-

polarised component measurement by assessing the degree of polarisation, defined

as

DOP =

√
s′1

2 + s′2
2 + s′3

2. (5.26)

The DOP accuracy of the polarimeter is determined by the magnitude difference of

the theoretical incident and experimentally measured DOP. The characterisation of

the DOP accuracy is also visualised in Figure 5.7, where the DOP is shown as the

length of the Stokes vector inside the sphere.
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When characterising the accuracy of the polarimeter device it is important to test it

over a large range of input states. I chose to test it for two sets of inputs, firstly a set

of linear polarisation states with varying orientation, and secondly a set of states

with varying ellipticity. I generated the linear input states by rotating a linear

polariser in front of the unpolarised light source, in increments of 5◦ over a 180◦

range. This spans the equator of the Poincaré sphere. For the elliptically polarised

input states I again rotate a linear polariser in front of the unpolarised light source,

followed by a horizontally aligned quarter-wave Fresnel rhomb. Again this is done

in 5◦ increments over a 180◦ range and the polarisation states this system generates

on the Poincaré sphere is depicted in Figure 5.8. Testing the polarimeter against

these two sets of input states is not testing for all possible polarisation input states,

however, it is testing for full variation of both ellipticity and orientation of major

axis of the polarisation ellipse.

Figure 5.8: This Poincaré sphere diagram shows where the elliptically polarised
input states lie (black dots), which are generated by rotating a linear polariser in
front of a horizontally aligned quarter-wave Fresnel rhomb for characterising the

polarimeter performance. Image adapted from [130].

By setting the DOP to be equal to 1, I am able to visualise the angular accuracy,

where Figure 5.9 and Figure 5.10 show the theoretical and measured Stokes param-

eters S1, S2 and S3 in this case for the two input ranges (linearly and elliptically

polarised light). Also shown in these two figures are the averaged angular accuracy

for these inputs.
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Figure 5.9: Demonstration of the Fresnel cone polarimeter effectiveness for mea-
suring the Stokes parameters S1 (cyan), S2 (magenta) and S3 (yellow) for linearly
polarised input states. The solid line represents the ideal Stokes parameter value

from theory and the markers show experimental data.
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Figure 5.10: Demonstration of the Fresnel cone polarimeter effectiveness for
measuring the Stokes parameters S1 (cyan), S2 (magenta) and S3 (yellow) for
elliptically polarised input states. The solid line represents the ideal Stokes pa-

rameter value from theory and the markers show experimental data.
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Here I note that the Stokes vector result is actually calculated for each the red,

green and blue colour channels of the camera individually in the proof of principle

experiment, the angular accuracy characteristic chosen to represent the polarimeter

device is an average of the angular accuracy of the red, green and blue results.

Certain optical components chosen for this experiment, such as the non-polarising

beam-splitter, are suggested for operation across a broad wavelength range (en-

compassing the visible spectrum in this case), however, these components can still

possess slight frequency dependencies. Hence in order to enhance the accuracy of

the technique, I performed full Mueller matrix measurement of the supposed non-

polarising beam-splitter in the polarimeter system for each the red, green and blue

camera channels (for both the transmission and reflection). After accounting for the

measured Mueller matrices, the enhanced results are shown below in figures Fig-

ure 5.11 and Figure 5.12. These show results for the same two input sets as the

previous two figures. Visually inspecting the measured data points it is clear that

the results are of higher accuracy, confirmed by an enhanced angular accuracy av-

erage. The achieved angular accuracy is comparable to commercial devices and

suitable for applications in laser characterisation and microscopy, however, higher

accuracy is likely required for space-based applications (such as in the search for

life [147]).
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Figure 5.11: Demonstration of the Fresnel cone polarimeter effectiveness for
measuring the Stokes parameters S1 (cyan), S2 (magenta) and S3 (yellow) for
linearly polarised input states, after taking into account the non-ideal beam-
splitter Mueller matrices in the analysis. The solid line represents the ideal Stokes

parameter value from theory and the markers show experimental data.
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Figure 5.12: Demonstration of the Fresnel cone polarimeter effectiveness for
measuring the Stokes parameters S1 (cyan), S2 (magenta) and S3 (yellow) for
elliptically polarised input states, after taking into account the non-ideal beam-
splitter Mueller matrices in the analysis. The solid line represents the ideal Stokes

parameter value from theory and the markers show experimental data.
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I note here that from the camera intensity image of the Fresnel cone surface plane,

the intensity value I(θ) for all θ values is recorded simultaneously, however, not

all are needed to recover the incident Stokes vector. Stokes vector recovery could

instead be achieved by accurately positioning five individual photo-diode detectors,

ideally positioned at equally spaced intervals covering half of the Fresnel cone output

light beam. Even though there are four unknown values, five measurements are

needed to obtain the 0th, 2nd and 4th azimuthal frequency components (required

to solve the linear system such as in the example Equation 5.24). For the current

Fresnel cone polarimeter setup however, by using a camera I record quasi-continuous

values of I(θ), where in the analysis I use 499 values of I(θ).

In my setup I use a colour camera (Thorlabs DCC1645C) from which I obtain 24-

bit colour images of the Fresnel cone intensity pattern. From these images I can

obtain an 8-bit colour image for the red, green and blue channels, which allows me to

observe the polarimeter performance in the visible wavelength range to demonstrate

the broadband nature of the device, as shown in Figure 5.13. Here I note that the

experimental Mueller matrices Btrans and Brefl were each measured for the red, green

and blue colour channels, so that during the analysis of the three individual 8-bit

colour images these could each be applied to enhance accuracy.
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Figure 5.13: This figure shows how the polarimeter performance is relatively
consistent throughout the visible spectrum, by observing the angular accuracy
for the red, green and blue colour camera channels (for elliptical input states).

Image adapted from [130].

Figure 5.13 shows that there is very little deviation in the angular accuracy between
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the red, green and blue colour camera camera channels, providing evidence that

the device operates across a broad spectrum (visible spectrum). Although, I note

that the average angular accuracy is slightly worse in the blue frequency which is

attributed to the anti-reflection coating of the beam-splitter in the system being

less efficient at this frequency. Furthermore, although other polarimeters can claim

they allow broadband operation this is often through re-calibration depending on

what wavelength is being investigated, while the Fresnel cone polarimeter allows

simultaneous broadband operation across a broad spectrum.

The Fresnel cone imparts a total phase-shift between s and p polarisation compo-

nents upon TIR of ∼ 90◦ (π/2, see section 3.3), however, it has been shown that

the optimal retardance of a polarimeter of this nature to be ∼ 132◦ [164]. As the

Fresnel cone can be engineered with different refractive indices depending on the

type of glass used, the angular accuracy could further be enhanced by manufactur-

ing a Fresnel cone from LaSF9 glass, providing a refractive index of ∼ 1.86 across

the visible spectrum and a phase-shift of ∼ 132◦.

5.4 Conclusions

In this chapter I demonstrated the use of a Fresnel cone to measure the polari-

sation property of an incident light beam in a single-shot polarimeter device. I

first discussed the usefulness of these devices in a number of important research

areas and described some real-world applications. I showed that although the use

of polarimeters is widespread, different polarimeter devices are tailored to different

measurement problems.

The Fresnel cone polarimeter may be beneficial where true broadband polarimetry is

required, as it is capable of performing Stokes measurements simultaneously across

a broad spectrum. Often commercial polarimeters that claim broadband operation

rely on re-calibration of the system depending on the wavelength being used. An-

other area where the Fresnel cone polarimeter may be beneficial is for applications

in space, as it contains no moving parts and is relatively robust. The proof of prin-

ciple device I demonstrated in this chapter relies on the incident polarisation state

to be uniform across the cone front surface (if not, the result will be an average). As

the incident polarisation must be uniform, this does not allow imaging polarimetry
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with this device, however, it could be possible if coupled with a scanning technique

such as confocal or two-photon microscopy.

Future work could involve enhancing the accuracy and speed of the Fresnel cone

polarimeter, the development of a Mueller matrix polarimeter technique and testing

with ultra-short pulse high power lasers. These thoughts will be discussed more

in chapter 6.



Chapter 6

Conclusions

‘All you really need to know for the moment is that the universe is a lot more

complicated than you might think, even if you start from a position of thinking it’s

pretty damn complicated in the first place.’ - Douglas Adams

In this chapter I will first summarise my thesis, highlighting the enhancements made

to the original experiment, my main findings for uses of Fresnel cone vector beams

in tight focussing and single-shot polarimetry, and the potential impact of the work.

I will then discuss future work for these projects that follows from the results of

this thesis.

6.1 Thesis summary

I was first introduced to the Fresnel cone during a short Master’s project, where

I worked on an experiment devised to measure the polarisation structures gener-

ated through its use. This was for the most part an investigation of curiosity, to

investigate what was possible. Following this short project it became apparent that

certain beams generated by a Fresnel cone could be useful in technology. Thus,

I began my PhD research in an attempt to exploit this Fresnel cone polarisation

structuring for application in both microscopy and polarimetry.

Following necessary background and theoretical considerations in chapter 2, in chap-

ter 3 I showed the theory and experimental technique of Fresnel cone polarisation

structuring. I first presented results showing improved polarisation fidelity of the

well-known radial and azimuthal polarisation states, since the original publication

124
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in 2016 [46]. I then detailed an experiment devised to enhance the efficiency of the

coupling of light into and out of a Fresnel cone, which was previously restricted to

a maximum of 25%. This new coupling technique allows in theory an efficiency of

100%, and was measured experimentally to be ∼ 83%. Reasons for not reaching

the theoretical value were discussed, concluding higher efficiency should be possible

if more suitable optical components with anti-reflection coating are used. Not only

does this coupling method allow high efficiency, but generates a high NA annular

beam profile, potentially useful for microscopy applications. I showed results for the

annular beam intensity generated as well as confirming generation of radial and az-

imuthal polarisation states is still possible. A manuscript is currently in preparation

to report on the new axicon-based coupling technique.

In chapter 4, I showed results from simulation where I confirmed that the az-

imuthally polarised beam generated using a Fresnel cone can focus below that of

both conventional circular and radial polarised beams. Through further simulation,

I investigated the effects on focal spot for increasing centre-stop radius at the objec-

tive aperture, showing that the spot size for a radial beam approaches that of the

Fresnel cone azimuthal for the increasing radius. Unfortunately, practically major

issues were encountered when focussing the Fresnel cone beams, which appeared

visually distorted, noisy and much larger than expected (true even for low-NA fo-

cussing). To investigate, I devised an interferometry experiment to obtain fringe

patterns from a Fresnel cone beam overlapped with a reference beam. Using these

fringe patterns and Fourier analysis techniques, I discovered raised elevations on the

physical Fresnel cone surface. I further showed through simulations that distortions

to the phase of the generated beam of this nature can be detrimental to the focussing

properties. Aspects of this work, including an experimental technique developed to

pre-compensate a vector beam for transmission through a microscope system, were

presented in SPIE proceedings for the Photonics Europe 2020 event [62].

In chapter 5, I established the importance of polarisation characterisation - dis-

cussing the recent literature on polarimetry techniques and applications. I then

presented the details of a proof of principle experiment where I show that a Fresnel

cone can be used in a simple polarimeter setup to achieve single-shot full Stokes

polarimetry. I showed that theoretically the Stokes recovery operation of the device

reveals the Fresnel cone polarimeter to be a spatial analogue to the popular rotat-

ing wave-plate technique. Not only this, but compared to temporally modulated
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techniques the Fresnel cone approach is robust, low-cost and allows broadband op-

eration. I note that the potential drawback of the system is the requirement for

uniformly polarised light across the input to the cone, limiting its use in imaging

polarimetry to scanning systems. This work was presented in a Scientific Reports

publication in 2019 [130].

6.2 Future work

Following from the experiments performed to generate various beams using the

Fresnel cone, further investigation could be carried out on the propagation of these

beams. For all the experiments reported on in this thesis, the plane of the Fresnel

cone surface is imaged to a camera plane and so propagation of the cone-beam is not

relevant. As discussed in chapter 3, when circularly polarised light is back-reflected

from a Fresnel cone, the generated beam contains 2~ units of OAM in one circular

component and none in the other. These two components do not propagate in the

same way, with the component possessing OAM diverging at a greater rate than

the other. Preliminary simulations have shown that after a sufficient propagation

distance, a full Poincaré beam is found. These beams possess simultaneously all

polarisation states spanning the surface of the Poincaré sphere, and may be useful

in polarimetry or more fundamental investigations.

Though eventually there were implications in the practical realisation of strongly

focussed Fresnel cone beams, these Fresnel cone beams could be generated artificially

using a spatial light modulator system for validation of the focussing properties.

These techniques however are inherently low-efficiency for vector beam generation

and would not suit application in a real microscope system. Alternatively, given that

the topology of the Fresnel cone was measured in chapter 4, the associated phase

aberrations could perhaps be pre-compensated for using a spatial light modulator

and polarisation structuring still performed using a Fresnel cone. Combined with

the newly developed axicon coupling technique, high efficiency annular vector vortex

beams that have been phase-corrected for focussing could be achieved.

Following the proof-of-principle Fresnel cone polarimeter experiment reported in chap-

ter 5, funding has been secured to continue this work in the form of an Impact Accel-

eration Account - an award to support impact generation from research funded by

the Engineering and Physical Sciences Research Council (EPSRC) and knowledge
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exchange. This is currently a six month project with the primary aim of building a

compact demonstrator of the Fresnel cone polarimeter to take to companies and in-

dustry exhibits. During this time, recent knowledge gained in high efficiency Fresnel

cone coupling and polarimeter accuracy will be applied to the demonstrator. The

use of carefully positioned photo-diodes instead of the camera in the polarimetry

setup will be investigated to enhance speed, as well as making the software more

efficient and user interface more stream-lined. A number of industry and academic

partners are involved in the project, including an optical component specialist who

will assist with the optics, a laser development company for testing with high-power

lasers, as well as a cancer research institute for testing with ultra-short pulse lasers

in a biomedical research environment. Funding has also been secured to travel with

the demonstrator to industry exhibit events, however, this is dependent on travel

restrictions due to the global pandemic.

Progressing on from Stokes vector measurement, devices that can measure the full

Mueller matrix of a sample are also desirable, for biomedical research, diagnosis and

in the field of chemistry to name a few. While a Stokes vector uses a dynamic po-

larisation state analyser to perform multiple polarisation measurements, a Mueller

matrix polarimeter would also require a dynamic polarisation state generator for

input to a sample. I have shown that the Fresnel cone can act as a single-shot

polarisation state analyser for Stokes measurement, however, the requirement of

Mueller matrix measurement for each generated state to be analysed by numerous

polarisation state analysers does not allow a Fresnel cone to also be used as the

generation source. An additional degree of freedom is needed here, and perhaps the

use of a graded-index (GRIN) lens provides this, as these components possess a ra-

dially varying phase-shift magnitude. This was previously considered an unwanted

artifact of the manufacturing process but is recently providing fruitful for vector

beam generation [81, 165].

6.3 Final thoughts

The field of structured light has grown drastically in the recent decades, from struc-

turing simple two-dimensional intensity patterns in a single plane to control over

amplitude, phase and polarisation in three-dimensions - for example, the optical

polarisation Mobius strip [166]. Availability of technology such as spatial light
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modulators (and research into new ways to exploit this technology) is fuelling re-

search into fundamental physics, such as experimentation with cold atoms and the

study of classical analogues to quantum systems, as well as in practical application.

Developments in the areas of imaging and microscopy are also expected, where

challenges are not only with resolution limits due to diffraction (as was highlighted

in this thesis), but also in deep imaging through scattering media - such as tissue

samples. Complementary to the various methods developed for generating these

beams, techniques for detection are also an area of active study.

Simulation investigations into the amplitude and phase of longitudinal field com-

ponents in a strong focussing regime provided surprising results (subsection 4.3.1).

These longitudinal focal field components are only recently beginning to be in-

vestigated in the community [123] - such as the azimuthal phase variation of the

longitudinal field component of a radially polarised vector vortex beam. Further

research into these fields that result from the complicated interference that occurs

in the focussing volume of a strong lens is desirable, though in this early stage cur-

rently lacks potential application. Conversely, there may be value in considering

the shaping of the orthogonal magnetic field component in these cases, perhaps for

uses in the field of condensed matter physics.

Many demonstrations of the interesting effects of structured light are currently

found only as large experiments on optical research tables, it is anticipated that

the near future will see miniaturisation of these systems and industrial implementa-

tion [26]. While many structured light systems rely on complicated devices, expen-

sive nanofabrication abilities and extended complex optical setups, simple solutions

are still discovered today - such as the vector vortex beam generation, and single-

shot polarisation detection, from a simple glass cone [46, 130].
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[50] S Quabis, R Dorn, M Eberler, O. Glöckl, and G Leuchs. Focusing light to a

tighter spot. Optics Communications, 179(1):1–7, 2000.

[51] K. S. Youngworth and T. G Brown. Focusing of high numerical aperture

cylindrical-vector beams. Optics Express, 7(2):77, 2000.

[52] R. Dorn, S. Quabis, and G. Leuchs. Sharper focus for a radially polarized

light beam. Physical Review Letters, 91(23):1–4, 2003.

[53] Qiwen Zhan and James Leger. Focus shaping using cylindrical vector beams.

Optics Express, 10(7):324, 2002.



Bibliography 134

[54] Eileen Otte, Christina Alpmann, and Cornelia Denz. Tailored vectorial light

fields: flower, spider web and hybrid structures. Optical Manipulation Con-

ference, 10252(April 2017):102520D, 2017.

[55] Eileen Otte, Kemal Tekce, and Cornelia Denz. Tailored intensity landscapes

by tight focusing of singular vector beams. Optics Express, 25(17):20194,

2017.

[56] Eileen Otte. Structured Singular Light Fields. Springer International Publish-

ing, 2021.

[57] Xiang Hao, Cuifang Kuang, Tingting Wang, and Xu Liu. Phase encoding

for sharper focus of the azimuthally polarized beam. Opt. Lett., 35(23):3928–

3930, Dec 2010.

[58] Qiwen Zhan. Trapping metallic Rayleigh particles with radial polarization.

Optics Express, 12(15):3377, 2004.

[59] M. Meier, V. Romano, and T. Feurer. Material processing with pulsed radi-

ally and azimuthally polarized laser radiation. Applied Physics A: Materials

Science and Processing, 86(3):329–334, 2007.

[60] Avner Yanai and Uriel Levy. Plasmonic focusing with coaxial illuminated by

radially polarized light. Optics InfoBase Conference Papers, 17(2):924–932,

2008.

[61] Godofredo Bautista, Mikko J. Huttunen, Jouni Mäkitalo, Juha M. Kontio,
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Leroy, Alain Podaire, Annick Bricaud, and Geneviève Sèze. The POLDER
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Hoeijmakers, Vidhya Pallichadath, Daphne Stam, Antoine Pommerol, Olivier

Poch, and Brice-Olivier Demory. A snapshot full-Stokes spectropolarimeter

for detecting life on Earth. arXiv, (May):10, 2019.

[148] William B. Sparks, Thomas A. Germer, and Rebecca M. Sparks. Classical

polarimetry with a twist: A compact, geometric approach. Publications of the

Astronomical Society of the Pacific, 131(1001):75002, 2019.

[149] W. B. Sparks, J. H. Hough, L. Kolokolova, T. A. Germer, F. Chen, S. Das-

Sarma, P. DasSarma, F. T. Robb, N. Manset, I. N. Reid, F. D. Mac-

chetto, and W. Martin. Circular polarization in scattered light as a possi-

ble biomarker. Journal of Quantitative Spectroscopy and Radiative Transfer,

110(14-16):1771–1779, 2009.

[150] Richard J. Maude, Wanchana Buapetch, and Kamolrat Silamut. Short re-

port: A simplified, low-cost method for polarized light microscopy. American

Journal of Tropical Medicine and Hygiene, 81(5):782–783, 2009.

[151] D. W. I. Ramadhani, S. I. T. I. Nurhayati, and T. U. R. Rahardjo. Haemozoin

Detection in Mouse Liver Histology Using Simple Polarized Light Microscope.

Hayati Journal of Biosciences, 21(1):48–52, 2014.

[152] Chao Chen, Liang Gao, Wanru Gao, Cong Ge, Xinyuan Du, Zha Li, Ying

Yang, Guangda Niu, and Jiang Tang. Circularly polarized light detection

using chiral hybrid perovskite. Nature Communications, 10(1):1–7, 2019.

[153] Sanaz Alali and Alex Vitkin. Polarized light imaging in biomedicine: emerging

Mueller matrix methodologies for bulk tissue assessment. Journal of Biomed-

ical Optics, 20(6):061104, 2015.
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