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Abstract

Soil is a fundamental natural resource which is relied upon globally for its

vital ecological and economic functions. It is important for many reasons

including the production of food, support of wildlife and in supporting the

mitigation of global warming. With an increasing world population, tremen-

dous pressure is placed on the worlds natural resources. In order to keep up

with the agricultural needs of a growing global population, soil management

and monitoring practices need to be put in place. However, the standard pro-

cedures for monitoring soil quality are prohibitively expensive and slow, with

an additional hazard to the environment through use of harmful chemicals.

Thus, there has been a widespread interest into the use of diffuse reflectance

spectroscopy for the prediction of physical and chemical properties in the

soil. This method of recording soil data is cost-effective, rapid, requires min-

imal sample preparation and does not involve the use of hazardous chemicals.

Currently, multivariate analyses such as partial least squares regression are

routinely used to predict a wide range of soil properties from spectral data

obtained from a mid- and near-infrared diffuse reflectance spectroscopy of

soil samples. Whilst this method has been shown to successfully predict a

multitude of soil quantities, methods of functional data analysis provide an

alternate way of studying continuous data, recognising that it is sometimes

more natural, and often fruitful, to view a collection of data points as ob-

served realisations of random functions. In this thesis, the main focus is to

compare standard multivariate techniques of analysing soil spectra to meth-

ods of functional data analysis. Chapter 1 provides an introduction to the

importance of soil monitoring, mid-infrared spectroscopy, a description of

the data and the objectives of the thesis. Following this, Chapter 2 demon-

strates the performances of principal component analysis, linear discriminant
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analysis and support vector machines in investigating the variability of the

soil spectra across the mid-infrared range. These multivariate methods are

assessed on their ability to distinguish differences between groups of spectra

based on various grouping variables. In Chapter 3, functional data analysis is

introduced and methods of functional principal component analysis and func-

tional hypothesis testing are implemented. Functional principal component

analysis is applied to identify regions of the spectra which contain the prin-

cipal modes of variation which could be pertinent to explaining differences

between samples of different land-uses or sampling sites. Functional hypoth-

esis tests are used to directly test for differences between groups of spectra

and pointwise permutation F -tests are used to locate regions of the spectra

where these group differences are prominent. Chapter 4 introduces func-

tional linear regression as an alternative to the industry standard of partial

least squares regression for relating the spectra to the physical wet chemistry

properties of the soil. In this chapter, it is of interest to identify physical

soil properties which can be successfully predicted by functional and partial

least squares regression; and what the achievable performances of these pre-

dictions are. Comparisons between the two approaches are made and the

advantages of each approach are considered. Finally, Chapter 5 provides a

summary of the work presented and discusses the limitations and remaining

challenges for the use of functional data analysis for the characterization of

soil.
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Chapter 1

Introduction

1.1 Background

Soil is a fundamental natural resource which is relied upon globally for its

vital ecological and economic functions. Soil is important for the production

of food, support of wildlife and the regulation of water movement in the land-

scape (Stenberg et al., 2010). It provides the foundations of our buildings

and a basis for plant life. Furthermore, there is scope for the development of

soil management practices which can support carbon sequestration to reduce

atmospheric carbon dioxide in the mitigation of global warming (Bricklemyer

et al., 2005; Mooney et al., 2004; Stenberg et al., 2010).

Soil health and soil quality are terms that are used interchangeably to de-

scribe soils that are not only fertile but also possess adequate physical and

biological properties to sustain productivity, maintain environmental quality

and promote plant and animal health (Doran and Parkin, 1994). However,

soil quality is often considered a complex characteristic and thus there are

multiple definitions of what soil quality encompasses. For instance, Larson

and Pierce (1991) define soil quality as the capacity of a soil to function
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whereas (Anderson and Gregorich, 1984) define soil quality as the soil’s abil-

ity to sustain, accept, store and recycle nutrients, water and energy. However,

regardless of how soil quality is defined, regular soil quality monitoring is im-

perative.

Over the years, scientists have developed and applied various methods for

the characterization of soil constituents. For example, traditional methods

for quantifying Total Carbon include methods of chromate oxidation (Walk-

ley and Black, 1934) and combustion (Allison et al., 1965). However, these

methods are expensive and slow (McDowell et al., 2012). Furthermore, recent

estimates suggest that more than 200,000 soil samples are analysed commer-

cially in Australia each year and thus there is much need for the develop-

ment of more time- and cost-effective alternatives to conventional lab-based

analysis (Viscarra-Rossel et al., 2006). The majority of these conventional,

laboratory-based analyses involve soil pH, salinity, extractable phosphorus

and nitrate nitrogen, exchangeable cations, organic carbon and extractable

trace elements (Merry and Janik, 2001). With an increasing demand for good

quality and inexpensive data, the method of diffuse reflectance mid-infrared

(MIR) spectroscopy has been presented in the literature as a promising new

technology for the characterization of soil.

1.2 Mid-Infrared Soil Spectroscopy

The use of spectroscopy for soil analyses is simple, fast, cost-effective, and

non-destructive. There is no need for hazardous chemicals, and it requires

minimal sample preparation (Batten, 1998; Viscarra-Rossel et al., 2006). Fur-

thermore, the spectrum obtained from one sample contains comprehensive

information on a wide range of soil properties and can be used to predict

2



these simultaneously (Cozzolino and Moron, 2006; Nocita et al., 2015). This

means that the method is less expensive than conventional laboratory anal-

yses with lower per analysis costs and quick turnaround times (Merry and

Janik, 2001; Viscarra-Rossel et al., 2006). This is especially true when it

is necessary to analyse a large number of samples. Furthermore, the rapid

development of portable spectrometers will permit the method to be imple-

mented in-situ.

The mid-infrared (MIR) range spans the electromagnetic spectrum between

4000 and 400cm−1 in wavenumber or 2.5 to 50µm in wavelength. In the

context of spectroscopy, wavenumbers are most commonly reported and thus

from here on only wavenumbers will be considered. However, the two mea-

sures can be related as follows:

ṽ =
1

λ

where ṽ represents the wavenumber as the number of wavelengths per unit

distance, and λ is the wavelength.

MIR spectroscopy obtains spectra from the mid-infrared range where di-

rect information about the elements of a sample is provided (Etzion et al.,

2004). In the generation of a MIR soil spectrum, radiation of the relevant

frequencies (4000-400cm−1) is directed at a soil sample. The spectral signa-

ture obtained depends on the constituents present in the soil which influence

the frequencies at which light is absorbed. The directed radiation causes

individual molecular bonds of the soil chemistry to vibrate, either by bend-

ing or stretching, and they absorb light to various degrees. The frequencies

at which light is absorbed are reported as % reflectance (R). However, this

3



is commonly transformed to a value of apparent absorbance: A = log(1/R)

(Stenberg et al., 2010). The objective of mid-infrared spectroscopy is to asso-

ciate specific absorbances with functional groups common in the soil mineral

and organic matter. However, with soil having a complex nature due to its

composition, the combined contributions from various soil components can

result in very complicated spectral signatures which can be difficult to inter-

pret. The spectral signatures from soil samples are largely nonspecific due to

the overlapping absorption regions of different soil constituents. Addition-

ally, some soil constituents such as quartz can cause a scattering effect which

further complicates the interpretation of spectra (Stenberg et al., 2010).

1.3 Spectroscopic Calibrations

Due to the lack of specificity and the presence of highly correlated neighbour-

ing wavenumbers, multivariate calibration techniques are commonly used to

correlate the spectra with various physical and chemical soil properties of in-

terest (Martens and Naes, 1990; Wetterlind et al., 2013). Once a calibration

model is established it can be used for the prediction of soil quantities not

used in the original calibration of the model (Cobo et al., 2010).

First introduced for spectral data by Haaland and Thomas (1988), partial

least squares regression (PLSR) is the most widely used calibration method

in soil science. It is based on the assumption of a multilinear relationship be-

tween predictor variables (e.g. the absorbance peaks in the spectra) and the

response variable of interest (e.g. Total Carbon in soil) (Niazi et al., 2015).

The PLS regression analysis reduces the number of predictors by constructing

linear combinations (components) of the original predictor variables. Com-

bined with spectroscopic techniques, PLSR has been frequently reported for
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the successful prediction of soil pH, Soil Organic Matter (SOM), Total Or-

ganic Carbon (TOC), Phosphorus (P), Potassium (K), Iron (Fe), Calcium

(Ca), Sodium (Na), Magnesium (Mg), Total Carbon, Total Nitrogen, tex-

ture as well as biological properties (Bellino et al., 2016; Feyziyev et al.,

2016; Stenberg et al., 2010; Zornoza et al., 2008; Viscarra-Rossel et al., 2006;

Yang et al., 2012; Heinze et al., 2013; Conforti et al., 2015). Forrester et al.

(2015) successfully predicted phosphorus via the phosphorus buffer index

(PBI) through the implementation of PLSR to mid-infrared spectra of 601

Australian agricultural soils. Reeves et al. (2001) also showed that results

using partial least-squares regression gave accurate calibrations for the de-

termination of a number of compositional parameters of soil including Total

Carbon, Total Nitrogen, pH, and different measures of biological activity.

PLSR has also been applied to the near-infrared range of spectra and this

method has been shown to have a good capacity to predict soil organic mat-

ter, even for samples of different types (Fidencio et al., 2002; Nocita et al.,

2013).

Mid-infrared spectroscopy has been introduced as a cheaper alternative to the

prohibitively expensive laboratory based techniques for soil analysis. Partial

least squares regression has previously been successful in the prediction of

many soil properties from mid-infrared soil spectra. However, despite the

success of partial least squares regression and the popularity within the soil

science community, there is an argument that methods of functional data

analysis are more suited to this problem. Advances in technology enables

large volumes of data to be recorded and often these observations are recorded

over high frequencies of time, space and various other continua. This allows

the idea that these collections of data points are observed realisations of un-
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derlying smooth functions. Philosophically, functional data analysis presents

a more natural and more advantageous method of studying continuous data.

The main focus of this work is to compare these approaches and assess the

information which is provided by an FDA approach.

1.4 What can be measured?

A comprehensive knowledge of soil optical characterisation is essential to

finely interpret the output from calibration techniques such as PLSR. In this

work, the guide provided by Soriano-Disla et al. (2014) which outlines ap-

proximate wavenumbers of spectral absorptions in the MIR region for some

of the major soil components will be used. These are summarised in Table 1.1.

Major Soil Component Wavenumber (cm−1)

Quartz (sand) 1100-1000
Clay Minerals: 3690-3620 (Kaolinite)

3620-3630 (Smectite)
3400-3300 (Illite)

Carbonates 1430 and 2520
Iron Oxides 600-700
Iron oxyhydroxides 3100, 900, 800
Organic Matter: 2930-2850 (Alkyl (−CH2))

1670 and 1530 (Protein Amide (OC −NH))
1720 (Carboxylic Acid (COOH))
1630 (Water associated)
1600 and 1400 (Carboxylate anion (−COO−)
1600-1570 (Aromatic Groups)

Table 1.1: Approximate wavenumbers of spectral absorptions in the
MIR region for major soil components as identified by Soriano-Disla

et al. (2014)

This table is only used as a general guide for the interpretation of output

from the statistical analyses of this thesis. The major soil components iden-

tified in the mid-infrared range comprise of quartz, clay minerals (Kaolinite,
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Smectite/Illite), carbonates, iron oxides and soil organic matter. Following

discussions with soil scientists at CSIRO it has also been learned that at

either end of the MIR spectral range, mineral signals may be found at ap-

proximately 3800-3500cm−1 and 1300-400cm−1. Nitrates can also be found

to be absorbed at approximately 1370cm−1 and lignin at 900-860cm−1. Given

the complexity of soils and the non-specificity of absorption regions this infor-

mation should not be treated as exhaustive. The MIR spectra are difficult to

finely characterize with many constituents having frequencies which overlap

with each other. For example, it has been found that Fe oxide minerals have

frequencies that overlap with other soil mineral peaks near 600-700cm−1,

making them difficult to identify. The COO- anion and water frequencies

have also been found to overlap with aromatic groups near 1600-1570cm−1

(Soriano-Disla et al., 2014). Additionally, the scattering effect caused by

minerals such as quartz can also complicate interpretation.

1.5 Description of the Data

Geographically, this study focuses on sampled data from three paired farm-

land sites in the Bookham area within the region of New South Wales, Aus-

tralia (Figure 1.1). Used extensively for sheep grazing, the sample sites were

on farms that had been established for more than forty years and were lo-

cated within 15km of one another: Bogo (34.813746◦S, 148.704558◦E), Glen-

rock (34.858413◦S, 148.56724◦E) and Talmo (34.936976◦S, 148.625293◦E).

At each farm, one pasture plot was selected that lay adjacent to an area

of native woodland, which was not grazed or actively managed apart from

fence maintenance to keep livestock out. With the sites being within 15km of

each other, the local climactic conditions are quite similar. The approximate

7



Figure 1.1: Geographic map of the sampling region (de Menezes et al.
(2015))

distances between the woodland and pasture plots at each site were 160m

(Talmo), 200m (Glenrock) and 440m (Bogo). Adjacent sites were chosen for

analysis to minimize the differences in parent soil type between land uses.

A total of 240 soil samples were collected for analysis, and a third of these

samples (n = 60) were obtained from each farmland. Within each farmland,

the sixty samples were obtained equally between their woodland and pasture

sampling plots. These data were supplied by CSIRO, and a more compre-
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hensive description of the study sites and soil sampling procedures may be

found in De Menezes et al. (2015). In short, at each woodland or pasture site,

a 100× 100m sampling plot was measured out with 25m intervals and three

subplots also marked out at 12.5m intervals. Two soil cores of approximately

10cm depth and 2cm diameter were taken at the intersections of the grids and

composited. The soil cores were kept cold (4◦C) until they were processed

and the samples were later sieved, homogenized and separated into aliquots.

These aliquots were then prepared differently depending on the aspect of wet

chemistry being investigated.

The MIR soil reflectance spectra obtained from the samples had a short

range with a mean coarse resolution of about 4cm−1 between each wavenum-

ber. This allowed for 921 diffuse reflectance measurements per spectra to

be defined in the MIR range from approximately 4000-450cm−1 . In the

presentation of results, these diffuse reflectance measurements may also be

referred to in this thesis and in the wider literature as spectral bands, band-

widths or as the wavenumber. An example of the type of data analysed in

this thesis is presented in Figure 1.2 where the soil spectra obtained from

the soil samples of the Talmo farmland can be observed. In the laboratory,

methods of wet chemistry were also carried out on the same soil samples and

the data recorded was paired with the soil spectra data. The soil properties

investigated are summarised in Table 1.2.
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Figure 1.2: Exploratory plot of the spectral signatures resulting from
an MIR diffuse reflectance spectrscopy of the soil samples obtained from

the Talmo woodland

Variable No. Wet Chemistry Variables Units

1 pH pH
2 Moisture %
3 Carbon (C) mg/g
4 Nitrogen (N) mg/g
5 Total Dissolved Nitrogen (TDN) mg/g
6 Dissolved Organic Nitrogen (DON) mg/g
7 Amino-N mg/g
8 NH4-N mg/g
9 NO3.N mg/g
10 Biomass N mg/g
11 Total Dissolved Carbon (TDC) mg/g
12 Microbial Carbon mg/g
13 Inorganic Phosphorus mg/g
14 Organic Phosphorus mg/g

Table 1.2: Soil Wet Chemistry Variables investigated via standard
laboratory procedures
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1.6 Aims and Objectives

Research has previously been published in evaluating the potential of mid-

infrared (MIR) spectroscopy for the determination of physical soil quantities

using the data described in the previous sections. However, this research has

predominantly investigated multivariate methods and in particular, partial

least squares regression as a means of calibrating the spectra with specific

soil physical and chemical attributes. Partial least squares regression has

been shown to facilitate mid-infrared spectroscopy as an effective method of

soil characterization which is far cheaper than the laboratory based alterna-

tives. In this study, the general overarching goal is to introduce functional

data analysis (FDA), presenting it as an alternative approach to the clas-

sical multivariate statistical methods currently employed for the analysis of

soils. Functional data analysis is investigated as it appears to be a theo-

retically more sound approach to the MIR spectroscopy problem with the

current multivariate approaches violating assumptions about the data. Fur-

thermore, with growth in the field functional data analysis has the potential

to unlock more information beneath the data and has additional exploratory

benefits.

Using the data which has been provided by CSIRO; soil spectra and wet

chemistry data will be considered for the investigation of the following general

objectives:

1. Using FDA, explore the variability across the soil spectra and between

different groups of spectra

2. Investigate functional principal components analysis as a means of iden-

tifying the areas of highest variability across the spectra
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3. Investigate functional regression as an alternative to PLSR for the pre-

diction of soil properties

In Chapter 2, only the soil spectra data are considered and standard sta-

tistical methods of analysis are used to investigate the variability across the

mid-infrared range. Multivariate methods of principal components analy-

sis, linear discriminant analysis and support vector machines are assessed on

their ability to distinguish differences between groups of spectra based on

land-use, sampling site location and an interaction between these grouping

variables.

In Chapter 3, functional data theory is introduced and methods of functional

data analysis are applied to the soil spectra data in the same vein as Chapter

2. After a functional exploration of the data, a functional principal compo-

nents analysis is carried out and contrasted with the multivariate equivalent.

Additionally, functional hypothesis testing is used to test for differences be-

tween groups of spectra.

Chapter 4 introduces the various forms of functional regression to relate the

soil spectra with the physical wet chemistry data. Functional regression mod-

els are formed to predict the MIR spectra from wet chemistry variables, and

the more interesting scalar-on-function regression is pursued for the individ-

ual predictions of specific soil constituents. In this chapter, it is of interest to

find which physical soil properties can be predicted by a functional regression

approach and what the achievable performance of these predictions are. Ad-

ditionally, comparisons with a partial least squares approach are made and

the advantages of each approach are considered.
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Finally, Chapter 5 will conclude and discuss the findings of the study, present

the advantages and disadvantages of a functional data approach, and sug-

gest the steps which could be taken to overcome the remaining challenges of

functional data analysis.
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Chapter 2

Exploring the Spectra via

Multivariate Methods

In this chapter, standard approaches such as Principal Component Analysis,

Linear Discriminant Analysis and Support Vector Machines are used to ex-

plore the soil spectra. Predominantly, the focus is on identifying regions of

the spectra which may be responsible for differences between samples from

different groups (i.e. site and land-use combinations). These regions of differ-

ence may then be related to particular soil constituents which are absorbed

in these spectral ranges.

Firstly, some necessary theoretical foundations of multivariate analyses are

introduced. It is crucial for these concepts to be familiarised since they pro-

vide the basis for functional equivalents introduced in Chapter 3. Although

the statistical theory is widely available in the literature, it has been adapted

and presented in such a way to suit this thesis.
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2.1 Multivariate Theory

2.1.1 Principal Component Analysis

First introduced by Pearson (1901), Principal Components Analysis (PCA) is

now an established multivariate statistical method which is well described in

the literature. It is commonly used as a dimension reduction technique and a

way of summarising the principal modes of variation within the data. Whilst

reducing the complexity of a dataset, the goal is to minimize information loss

by finding the best low-dimensional representation of the variation. This is

done by transforming the original correlated variables into a smaller number

of uncorrelated variables called principal components (PCs) (Jolliffe, 2002).

These principal components are linear combinations of the original variables

given in decreasing order of importance, where the importance is determined

by the percentage of variation of the original data that is explained by each

component. Thus, the first principal component (PC1) explains the most

of the total variability. In the case that the original variables are highly

correlated, then the first few PCs will account for most of the variation and

the remaining PCs can be discarded with minimal information loss. It is then

hoped that the first few components, containing most of the information, will

be meaningful.

Principal Components

The first principal component, z1, is simply a linear combination of the orig-

inal variables x1, x2,. . . , xp, and can be defined as follows:

z1 = αT1 x = α11x1 + α12x2 + . . .+ α1pxp =

p∑
j=1

α1jxj (2.1)
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The coefficients in Equation 2.1, α11, α12,. . . , α1p, are known as the loadings.

These indicate the relative importance of the variable in the component.

These loadings, also referred to as weights, are mathematically determined to

maximise the variation of the original data in x, subject to the normalization

constraint

α2
11 + α2

12 + . . .+ α2
1p = 1. (2.2)

Next, the second principal component, z2 = αT2 x, is determined and has the

maximum variance that is uncorrelated with z1. This process is continued to

identify the rest of the principal components, all subject to the same normal-

ization constraint (Equation 2.2). The number of principal components for-

mulated is equal to the number of original variables, p . In highly correlated

datasets, most of the variation will be accounted for in just a few principal

components. However, there may be valuable information contained within

trailing PCs and thus caution must be taken when choosing the number of

PCs to extract.

Eigenvectors, Eigenvalues and Eigen-analysis

For an n× n matrix, C, and nonzero vector q, the values of λ satisfying the

equation,

Cq = λq (2.3)

are defined as the eigenvalues of C . The vectors q satisfying Equation 2.3

are the corresponding eigenvectors. At an absolute maximum, the number of

non-zero eigenvalues of C is equal to the total number of linearly independent

columns of C - the definition of a full rank matrix. This can be rewritten
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as,

(C− In)q = 0

Provided C , and (C − In), are n × n square and full rank matrices the

eigenvalues of C can be found by solving,

det(C− Im) = 0

where det(S) denotes the determinant of a square matrix, S .

With n linearly independent eigenvectors [q1, . . . , qn], C can be expressed as

the product of the matrices,

C = QΛQ−1 (2.4)

where Λ is a diagonal matrix with the eigenvalues of C decreasing along

the main diagonal (λ1, . . . , λn). The matrix Q is the matrix of eigenvectors,

Q = [q1, . . . , qn], with the ith eigenvector corresponding to the ith largest

eigenvalue. Equation 2.4 above is known as the eigen-decomposition of C

and is used to perform PCA. The eigen-decomposition can be carried out

in a variety of methods including singular value decomposition, the Jacobi

method, QR or Choleskey decomposition.

The eigenvalues represent how much of the variation in the data is described

by the corresponding principal component, making it possible to rank the

principal components in order of importance. The associated eigenvectors

provide the coefficients (weights) referred to as the loadings.
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Visualisations in PCA

In this thesis, scores and loadings plots are produced in order to determine

which variables appear to explain the differences between grouping variables.

Scores plots project an observation onto the first two or three components,

and can be used to look for class separations in the data. If a particular

principal component is found to consistently exhibit class separations in its

score plots with other principal components then its loadings plot should be

examined. The loadings plot is a simple visualisation method which shows

the weights of the original variables in each principal component. The original

variables associated with loadings of largest magnitudes are identified as

having a strong influence on their corresponding principal component.

Selection of Principal Components

A key step in PCA is the determination of the reduced number of dimen-

sions which adequately describe the variation in the data. This is most easily

determined by consulting the scree plot as developed by Cattell (1966). Fig-

ure 2.1 gives an example of a screeplot where the eigenvalues are plotted

against the number of principal components. Cattell suggests identifying the

point where the smooth decrease in eigenvalues levels off to the right as the

appropriate number of principal components. All components prior to this

point should be retained, with the variance represented in the tail of the

curve assumed to represent only the random variability in the data, i.e. the

noise.

Proposed by Kaiser (1960), the Kaiser criterion is another widely used se-

lection criteria stating that principal components should only be retained

with eigenvalues greater than one. This is essentially saying that only com-
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Figure 2.1: An example of a scree plot as developed by Cattell (1966).
The number of principal components should be selected at the point

where the decrease in eigenvalues levels off.

.

ponents which extract at least as much variance as the equivalent of one

original variable should be extracted. Another popular proposal is to con-

sider the proportion of variance explained. It is standard to decide a priori

that a certain amount of variance is to be explained (usually 80-90%). Only

the leading components which contribute to this arbitrary threshold are kept.

These methods work when there are relatively few clearly defined principal

components. However, in practice, the context of a problem should also be

considered before deciding on the optimal number of components to retain.

For example, it may be of interest to retain additional principal components
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further than the recommended 90% variability threshold. These additional

PCs could contain information crucial to explaining the subtleties between

classes of data that are not given by larger preceding PCs. This is common in

high dimensional data such as hyperspectral data. Thus, in order to minimize

the risk of information loss in the forthcoming analyses it was decided that

principal components should be retained by the following criteria:

1. Leading PCs were retained accounting for a cumulative 90% of the total

variance explained.

2. Thereafter, trailing PCs were retained providing they satisfied Kaisers

criterion and explained at least 0.01% of the variance.

Rotation Methods

The interpretability of principal components can sometimes be problematic.

Rotation is a method by which the interpretation of components can be made

easier. It is a procedure usually carried out after the extraction of principal

components to maximize high correlations between components and vari-

ables, and minimize low correlations (Tabachnick and Fidell., 2007). In this

way, the solution is made more interpretable without changing its mathemat-

ical properties. Thurstone (1947) and Cattell (1978) recognised the proce-

dure for its ability to achieve simple structure. Essentially, simple structure

is achieved when each variable has a substantial loading on one and only one

factor with the rest of the loadings being zero or close to zero. The initial

loadings matrix is transformed in order to achieve simple structure, and the

adopted transformations are orthogonal or oblique rotations which gives rise

to the methods’ name.
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Thurstone (1947) suggests a matrix of loadings is simple if it satisfies the

following five criteria:

1. Each row contains at least one zero;

2. For each column, there are at least as many zeros as there are columns;

3. For any pair of factors, there are some variables with zero loadings on

one factor and large loadings on the other factor;

4. For any pair of factors, there is a sizeable proportion of zero loadings;

5. For any pair of factors, there are only a small number of large loadings.

There are many methods which could be used to rotate the initial factor load-

ings, both oblique and orthogonal. However, Gorsuch (1983) suggests that if

simple structure is made clear, any one of the more popular procedures can

be expected to lead to the same interpretations. Developed by Kaiser (1958),

Varimax is unquestionably the most popular rotation method. Varimax aims

to maximise the sum of variances of squared loadings in the columns of the

factor matrix producing loadings in each column which are either very high

or near zero.

2.1.2 Linear Discriminant Analysis

Basic LDA

In the classification of data into a known number of groups, one possible

way is to fit a linear model to determine a decision boundary which would

discriminate a set of K independent classes. Originally developed by Fisher

(1936), Linear Discriminant Analysis (LDA) is a well-established statistical

technique used for the classification of multivariate data. It is a method of
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finding linear combinations of variables which maximize the separation be-

tween two or more classes. It is similar to principal components analysis in

that it is a data driven technique for dimensionality reduction. However,

unlike PCA, linear discriminant analysis is a supervised learning method in

which the class labels are known a priori in an attempt to preserve as much

of the class discriminatory information as possible. In calculating the linear

discriminants, important variables are identified and the functions can be

used to allow new observations to be classified.

The linear combinations of the original variables which achieve the best pos-

sible separation between classes are known as the discriminant functions.

These discriminant functions are found such that the ratio of between-class

variance to within-class variance is maximized to allow for adequate class

separability. Additionally, the linear combinations are sorted by the rela-

tive importance they have in distinguishing between groups. Geometrically,

LDA has the goal of finding the axis which provides the maximum separation

between the distributions of the discriminant scores of different groups as il-

lustrated in Figure 2.2. In this two-class problem, a great deal of overlapping

in the classes can be observed. However, in the direction of the first linear

discriminant (LD1) the classes can be seen to be well separated. Since this

is a two-class problem, no other linear discriminant function can be obtained

to achieve a better discrimination.

22



Figure 2.2: Geometric representation of linear discriminant analysis.
In the direction of the first linear discriminant the classes become lin-

early separable.

The application of LDA has some important assumptions regarding the

groups including multivariate normality and the sharing of a common covari-

ance matrix σ (Balakrishnama, 1998). Suppose there are K different groups,

each obeying these assumptions with mean vectors µk(k = 1, . . . , K). The

idea of LDA is to classify observations xi to the group k, which minimize the

within-group variance, i.e.,

k = argmink(xi − µk)Tσ−1 (xi − µk)
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Under multivariate normal assumptions, this is equivalent to finding the

group that maximizes the likelihood of the observation. In this problem,

N objects are observed and for each object the values and class member-

ship of variables X1, . . . , Xp are known. Providing the assumptions of mul-

tivariate normality and homogeneity of the covariance matrices hold, the

linear discriminant function provides an optimal classification rule to min-

imise the probability of misclassification. The original linear discriminant

was described for a two-class problem, and later generalised by Rao (1948)

for multi-class linear discriminant analysis.

Stepwise Linear Discriminant Analysis

With high dimensional data, linear discriminant analysis may involve con-

structing linear combinations of many predictor variables. Thus, a more

practical method of performing LDA could be to select significant variables

via a stepwise procedure. In stepwise discriminant analysis, the model of

discrimination or decision rule is built step by step. At each of these steps,

variables are evaluated on their contribution to the discrimination between

classes. The variable identified as having the greatest contribution is selected

for inclusion before repeating the process for the remaining variables. This

particular form is known as forward stepwise selection. In a backward step-

wise selection the process works similarly but removes the variables with the

least contribution to discrimination one by one. In both cases the process

identifies the most influential variables for discrimination between classes.

2.1.3 Support Vector Machines

Introduced by Cortes and Vapnik (1995), support vector machines are a rel-

atively new supervised learning technique for solving difficult classification
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problems. The technique is used across a wide range of application domains

and is well known for its strong theoretical foundations, generalization per-

formance and ability to handle high dimensional data (Batuwita and Palade,

2013; Devos et al., 2009). Despite its advanced underlying theory, SVMs are

mostly treated as a black box technique and thus this section only presents

an overview of support vector learning including the popular extension to

non-linear problems. A more in depth description of the mathematical the-

ory can be found in Vapnik’s The Nature of Statistical Learning Theory and

in section 4.5 Separating Hyperplanes of the book: Elements of Statistical

Learning by Hastie et al. (2009).

The Linearly Separable Case

In the binary classification problem, the objective of an SVM classifier is

to derive a function, f : RN 7→ {±}, that describes the decision boundary

or hyperplane separating the classes by maximising a margin between them

(Figure 2.3). A two-class problem is linearly separable if the hyperplane can

be positioned such that all data of one class fall on one side and all data of

another class fall on the opposite side. There can be many linearly separating

hyperplanes as illustrated in Figure 2.3 (right); however the goal is to find

the optimal hyperplane that maximizes the margin where the margin is the

distance between the nearest datum and the hyperplane.

The Soft Margin Approach

For linearly separable data, the SVM produces an optimal hyperplane with

the largest possible margin with the decision boundary separating the two

classes without error. This is referred to as a hard margin SVM. However in

practice, data points are not frequently linearly separable and even in the lin-
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Figure 2.3: The margin and separating hyperplanes

Figure 2.4: The effect of varying C on the hyperplanes obtained
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early separable case a greater margin with better generalization performance

can be achieved by allowing the classifier to misclassify points. Proposed by

Cortes and Vapnik (1995), this type of SVM is referred to as the soft margin

SVM.

With an infinite number of separating hyperplanes available there is a risk

of selecting a classifier based on a hyperplane which separates the training

data perfectly but will perform poorly on unseen data. Within the SVM

framework, this is referred to as overfitting (Cortes and Vapnik, 1995). By

artificially separating the data through projecting the training data to higher

dimensional feature spaces, support vector machines are at risk of finding

these trivial solutions that overfit the data. Misclassifying some training

points allows a separating hyperplane to be obtained with an overall bet-

ter position. The misclassification rate is regulated by a penalty weight C,

known as the cost function. Figure 2.4 demonstrates the effect of varying the

value of C on the choice of hyperplane.

A large C makes the cost of misclassification high causing the SVM to behave

as a hard margin-SVM. The data are explained very strictly and the decision

boundary results in a perfect classification rate. This risks overfitting and

the small margin limits the generalization of the SVM. Reducing the penalty

C increases the margin and some points can now fall within it. When the

penalty value is reduced even further, an even larger margin is obtained. It is

intuitively clear that by lowering the cost values, the underlying distribution

of the data is captured much better and greater generalization behaviour can

be achieved.
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Extension to Non-Linear Class Boundaries

One of the reasons support vector machines have risen in popularity is the use

of the so-called kernel trick (Kivinen et al., 2004). It is a convenient method

to solve the more realistic non-linear classification problems in arbitrarily

high dimensional feature spaces (Shivaswamy, 2007). Figure 2.5 illustrates

how kernel functions map data into a higher dimensional feature space in

which these non-linear problems become linearly separable.

Figure 2.5: The mapping of data into higher dimensional feature
spaces via kernel functions to linearly separate data.

Though new kernels are being proposed all the time, three of the most com-

monly implemented functions found in the literature are:

• Linear

• Polynomial

• Gaussian Radial Basis Function (RBF)

Depending on the type of kernel, specific parameters must be set. With fewer

numerical difficulties, Hsu and Lin (2010) recommend using the RBF kernel,
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and an advantage of this kernel is that there are only two hyper-parameters

to consider, the cost function C and gamma (γ)- where γ defines how far the

influence of a single training point reaches.
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2.2 Multivariate Applications

Now that some multivariate theory has been introduced, the focus switches

to applying these multivariate methods to the soil spectra data. As a starting

point some exploratory analyses are investigated to gain a general impression

of the data structure. The raw spectra are presented in Figure 2.6, and

the general spectral signature is shown to be quite variable throughout the

entire mid-infrared range exhibiting many peaks and troughs in the data.

However, the variability in the curves is different depending on the MIR

region observed. For example, in the 3500-2000cm−1 range the variability

is quite low in comparison with the variability observed at approximately

1000-450cm−1 where there is a high degree of variability and a large number

of local features.

Figure 2.6: Exploratory plot of the raw spectral data investigating the
variability in the curves
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Furthermore, in examining the shape of the spectral signatures, there is no

regular periodic nature to the data. However, the curves of each replicate

tend to follow each other very tightly. Boxplots of the data were also pro-

duced and Figure 2.7 (top) gives the absorption ranges across the MIR range

for each subgroup of the data (i.e. site and land-use combinations). Descrip-

tive statistics associated with each of these boxplots are also presented in

Table 2.1.

All Data Pasture Woodland Bogo Talmo Glenrock

Minimum -1.51 -1.43 -1.51 -1.47 -1.41 -1.51
Median -0.26 -0.26 -0.27 -0.30 -0.25 -0.24

Maximum 2.90 2.90 2.81 2.85 2.90 2.85

Table 2.1: Descriptive Statistics for the Absorption Ranges of the
Spectra for each class

The descriptive statistics and boxplots of each subgroup are very similar

demonstrating that if differences between each class exist then they are likely

to be very subtle. Boxplots corresponding to each individual wavenumber are

also presented in Figure 2.7 (bottom) across the approximate wavenumber

range 3770-3650cm−1. The 3770-3650cm−1 range has been presented since

the dataset is too large to present all boxplots for the full mid-infrared range.

Furthermore, plotting over this wavenumber range is useful for demonstrat-

ing that there is existing correlation between neighbouring wavenumbers with

boxplots in close proximity which exhibit very similar ranges and shapes.

This plot is also useful for highlighting that the range of absorption values is

different depending on the wavenumber range considered, which is an aspect

overlooked in the original boxplots of all data. Furthermore, the variability

exhibited in the boxplots is different across the spectral range. For example,

boxplots in the 3770-3720cm−1 range exhibit very tight ranges in comparison
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Figure 2.7: Boxplots of the absorption ranges exhibited by the spec-
tra. The top plot gives the overall range of absorptions investigated by
subgroup; the lower plot investigates the range of absorptions observed

per wavenumber over the approximate 3770-3650cm−1 range.
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with those at approximately 3700-3650cm−1. Note, these differences are ex-

hibited across the entire mid-infrared region and not just within the spectral

range presented.

Given the high dimensionality of the spectral data and the close proximity be-

tween each diffuse reflectance measurement (wavenumber measurement), the

correlation exhibited in Figure 2.7 (bottom) was not unexpected. This cor-

relation can be likened to temporal correlation found within time series data.

Since it is not likely that each of these wavenumbers contains completely in-

dependent information it is necessary to apply statistical techniques to both

reduce the dimensionality of the dataset and identify the influential informa-

tion within. In the next sections methods of Principal Components Analysis,

Linear Discriminant Analysis and Support Vector Machines are applied to

address this issue and also to investigate class discrimination.

2.2.1 Principal Components Analyses

Principal component analysis (PCA) is used to transform the MIR data set

into linear combinations of the original spectra variables and attempt to re-

duce the dimensionality. In the process, combinations responsible for most of

the variation in the data are identified. Basic PC analyses are implemented

on the full spectra as well as on subsets of the data split by land-use and sam-

pling site. The objective is to examine the data for possible class separations

and locate regions of the spectra responsible for any observed differences. It

is hoped that the identified MIR band regions can point towards specific as-

pects of the soil mineralogy which may be responsible for differences between

land-uses, sites and the interaction between.
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Suitability of Principal Components Analysis

With such high dimensional data, graphical display of data is not a luxury

and gaining a general impression of the relationships between variables is not

easily achieved. Since the MIR dataset is too vast to fully explore, Figure 2.8

gives pairwise scatterplots for the first nine of the 921 wavenumber MIR mea-

surements. The spectral bands appear almost perfectly positively correlated

reporting Pearson correlation coefficients very close to one. Additionally, the

distributions of the diffuse reflectance measurements appear approximately

normal confirming the Gaussian assumptions made in PCA.

Figure 2.8: Scatterplot matrix of the first nine of 921 MIR spectral
bands with associated Pearson Correlation Coefficients displayed in the

upper panel

34



PCA of the MIR data

A standard principal components analysis was carried out for determining

the appropriate dimension reduction. Table 2.2 lists the percentage of cumu-

lative variability for the first 12 principal components defined. In all analyses,

a singular value decomposition (SVD) algorithm was implemented and fol-

lowing the selection of principal components, a varimax rotation was applied

to the resulting loadings matrices in order to achieve simple structure. All

analyses were also investigated using the statistics of both the standardized

correlation and covariance matrices. However, yielding very similar results,

only the use of the covariance matrix is reported.

PC Standard Deviation Proportion of Variance Cumulative Proportion
PC1 19.2 0.409 0.409
PC2 14.2 0.225 0.634
PC3 11.9 0.158 0.792
PC4 7.92 0.0699 0.862
PC5 6.84 0.0521 0.914
PC6 5.02 0.0281 0.945
PC7 4.52 0.0228 0.964
PC8 3.08 0.0106 0.975
PC9 2.88 0.00923 0.984
PC10 2.23 0.00555 0.99
PC11 2.18 0.00528 0.995
PC12 2.10 0.00492 1

Table 2.2: General summary of the PCA on the complete MIR spectra
dataset

Based on the scree plot in Figure 2.9, one might choose to retain five prin-

cipal components since the curve appears to flatten after this point. Opting

to retain these five components would explain 91.36% of the total variability,

thus achieving the cumulative variance criterion requiring at least 90% of the

total variability to be explained. The Kaiser criterion is also satisfied with

all components achieving eigenvalues greater than one. However, in order to
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minimize the risk of information loss it was decided a priori to retain subse-

quent trailing PCs contributing to at least 0.01% of the total variability. By

this additional criterion, eight PCs explaining 97.50% of the total variability

(Table 2.2) were extracted for further analysis. Each of these eight com-

ponents define a linear combination of the 921 spectral bands. The weight

(loading) of each spectral band is the related number in the eigenvectors.

Next, scores plots are visually inspected for potential class separations and

for the identification of principal components that contain useful information.

Figure 2.9: Scree plot of the first 12 eigenvalues of the covariance
matrix for the complete MIR spectra

Figure 2.10 displays the scores plots in the space of the first eight princi-

pal components. The scores are coloured by the site that each soil sample
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originated from. In inspection of these scores plots there does not appear

to be any definite separation between the sites. On the whole, there is no

apparently clear group separation in any of the pairwise principal compo-

nent scores plots displayed. Similarly, scores plots were produced identifying

classes of land-use and the site*land-use interaction. However, no definite

class separations were apparent in either visualisation. Although it has not

been possible to view any class separation in the principal component scores,

it is still possible to find the areas of the spectra most responsible for the

sources of variation across the spectra. Figure 2.11 gives the loadings plots

of all eight principal components retained following the PCA. The higher the

loading of a particular spectral variable onto a PC, the more it contributes

to that PC.
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Figure 2.10: Scores plots of PCs 1-8 from the PCA on the complete
MIR spectra dataset. Coloured by site. (Bogo: Red, Talmo: Blue,

Glenrock: Green)
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Figure 2.11: Loadings plots for PCs 1-8 of the original PCA on the
complete MIR spectra dataset
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Since the first principal component is the direction along which there is great-

est variation, the loadings plot for PC1 indicates the spectral variables most

responsible for the variation across the entire spectra. The first principal

component captured 40.9% of the variation and the spectral variables asso-

ciated with the majority of this variation have been found to lie in the 3500-

3000cm−1 range. Consulting Table 1.1 of Chapter 1, it appears that these

wavenumbers could relate to the spectral absorptions of clay minerals, and

in particular Illite would fall within the 3400-3300cm−1 range. The second

principal component gives the orthogonal direction to PC1 along which the

majority of the remaining variation in the spectra is captured. The loadings

plot for PC2 indicates that the 22.5% of variation it has captured originates

from the 1800-1300cm−1 range, and this region could similarly be related to

organic matter such as Protein Amide (1670 & 1530cm−1), Carboxylic Acid

and aromatic groups (1600-1570cm−1). Similar interpretations can be made

for the remainder of the loadings plots. However, since no clean clusterings

were observable in the scores plots, these sources of variation cannot be at-

tributed to a certain difference in land-use, site or site*land-use interaction.

PCA of the MIR data: Sampling Site Subsets

The principal component analysis applied to the entire MIR spectra revealed

no concretely clear group separation either by land use, sampling site or the

interaction between. In this section, the original MIR data are divided into

subsets investigating principal component analyses for each farmland site in-

dependently. Using the same selection criteria used previously, the results of

the PC analyses on the Bogo, Talmo and Glenrock subsets are summarised

in Table 2.3.
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Site No. PCs retained Cumulative Proportion of Variance Explained

Bogo 6 98.35%

Talmo 7 98.29%

Glenrock 6 97.97%

Table 2.3: Number of PCs retained and Cumulative Proportion of
Variance Explained for each Site-Specific PCA

The principal component component analyses for Bogo, Talmo and Glenrock

reduced their spectral variable data to just 6, 7 and 6 principal components

respectively. The original PCA managed to capture 97.5% of the variation

in eight components, but the site-specific PC analyses retained less principal

components whilst capturing marginally more of the total variability.

Following the same protocol, scores plots were visually inspected for potential

class separations. This time there were arguably slight clusterings by land

use revealed. With respect to the Bogo PCA, there was notable land-use

class separation along the sixth principal component. And there was great-

est separation noted in the scores plot between PC1 and PC6. The Talmo

and Glenrock PC analyses also revealed some land-use class separation but

not as much as for the scores plots of Bogo. The strongest spectral distinc-

tion observed in the PCA of the Talmo data was found along the scores plots

for its second principal component. Lastly, the PCA of the Glenrock subset

revealed land-use class separation along its fourth principal component. Fig-

ure 2.12 displays the scores plots of the land-use class separations mentioned

for each independent PCA by sampling site.
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Figure 2.12: Scores plots investigating differences by land-use within
each site. Woodland sites are identified in brown and Pasture sites in

green.

Figure 2.12 illustrates that the strongest spectral distinction with land-use

is evident at Bogo, with lesser land-use differences in the Talmo and Glen-

rock scores plots. With Bogo, the separation on PC6 is noted with samples

from woodland sites (brown) having more positive scores on PC6 compared

with pasture sites (green). Talmo displays smaller land-use differences but

class separation can be observed along the second principal component with

pasture sites giving more positive scores on PC2. Finally, the PCA of the

Glenrock MIR data also appears to show some class separation with samples

from pastures giving on the whole more negative scores on PC4.

There is potentially useful information contained within the identified prin-

cipal components and thus there should be an examination of their load-

ings plots. These loadings plots may reveal the sources of variation across

the spectra for driving land-use differences within each farmland site. Fig-

ure 2.13 (top) gives the loadings plot for PC6 of the Bogo solution. The plot

indicates that the majority of spectral differences originated from regions
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dominated by mineral signals (3700-3590cm−1). This is an indication that

these minerals could be having an influence on the differences observed by

land-use in Bogo. Similarly, loadings plots for the second principal compo-

nent of the Talmo PCA and the fourth principal of the Glenrock PCA have

been reported in Figure 2.13. The differences in land-use plots of Talmo ap-

pear to be driven by spectral absorptions in the 3500-2900cm−1 range, and

this also loosely corresponds to mineral signals. The land-use differences of

Glenrock are harder to be related to soil components since the loadings plot

is not dominated largely by a single span of wavenumbers. The most influ-

ential spectral absorptions appear to be scattered in the 900-450cm−1 range.

However, with only weak class separations observed in the scores plots for

Glenrock, these interpretations are very subjective.
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Figure 2.13: Loadings plots of PC6 of the Bogo solution (top), Talmo
solution (centre) and Glenrock (bottom). These loadings are used to
identify regions of the spectra which dominate PCs. These regions may

be related to soil constituents with known absorption regions.

44



PCA of the MIR data: Land-Use Subsets

Independent principal component analyses were also applied to subsets of

the MIR data based on land-use. In both the woodland and pasture cases,

PCA successfully reduced the dimensionality of the datasets to just seven

principal components and coincidentally they both explained 98.5% of the

total variability in the original data (Table 2.4).

Site No. PCs retained Proportion of Variance Explained

Woodland 7 98.5%

Pasture 7 98.5%

Table 2.4: Number of PCs retained and Cumulative Proportion of
Variance Explained for each Land use-Specific PCA

This time the resulting scores plots were inspected for class differences be-

tween the sample sites; Bogo, Talmo and Glenrock. These are presented in

Figure 2.14a and Figure 2.14b. In Figure 2.14a, the woodland scores plots

do not indicate any clear separation between the scores of different sampling

sites for all extracted PCs. This does not mean that there are no differences

in the woodland plots of different sampling sites as the differences could just

be very subtle. To the eye there are no obvious clusters with a great deal

of mixing exhibited. However, on closer inspection there does appear to be

some vague separation between the sampling sites along the scores associated

with PC1. In green, the scores associated with the Glenrock soil samples tend

to be more positive along PC1 whilst scores belonging to Bogo (in red) tend

to be more negative along PC1. Scores associated with Talmo (blue) appear

to closely lie either side of the zero line but appear to cluster somewhere in

between the clouds of Glenrock and Bogo scores.
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(a) Scores plots obtained from a PCA on woodland MIR data

(b) Scores plots obtained from a PCA on pasture MIR data

Figure 2.14: Scores plots obtained from a PCA on woodland and
pasture MIR data separately. Coloured by soil sample site (Bogo: Red,

Talmo: Blue, Glenrock: Green)
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Figure 2.15 (top) gives the loadings associated with PC1 of the woodland

PCA. It is thought that PC1 may represent the variability in the data that

describes the differences between the woodland plots of Bogo, Talmo and

Glenrock. The loadings plot indicates that the most important variables for

explaining the variability captured by PC1 are the wavenumber variables

between 1300-1000cm−1. With the scores plots of PC1 in Figure 2.14a high-

lighting differences by site, it is possible that soil constituents related to these

wavenumbers could be responsible. Of the major soil components listed in

Table 1.1 of Chapter 1, quartz is the only soil component which falls within

this range. With attention turned to the scores plots corresponding to the

PCA of the pasture subset (Figure 2.14b) there also appears to be some dis-

tinctive separations observed between scores of different sample sites. The

scores plot with perhaps the most obvious display of score clustering can be

found between PC2 and PC3. In this particular score plot, Glenrock pasture

sites (in green) tend to have more positive scores on PC3 and more nega-

tive scores on PC2. Talmo pasture sites represented in blue are more widely

spread but on the whole have more negative scores on PC2 and PC3, whilst

pasture sites of Bogo (red) show the opposite- clustering tighter with more

positive scores on PC2 and PC3.

In the remaining scores plots, there was no detection of class distinction with

plots presenting highly mixed scores between different sample sites. It ap-

pears that the best class separation is between PC2 and PC3, with discernible

distinctions along the scores plots with at least one of these principal compo-

nents. Thus, it is reasonable to suggest that the loadings plots of these two

principal components could indicate the individual wavenumber variables or

wavenumber regions responsible for the differences between the woodland
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plots of Bogo, Talmo and Glenrock. Figure 2.15 also gives the loadings plots

for PC2 (centre) and PC3 (bottom) of the pasture PCA. The highest loadings

are observed in the 1000-500cm−1 range of PC3 and these can be attributed

to organic signals. With respect PC2, the influential loadings are quite spread

but the highest is observed around 3400cm−1 which can be related to clay

mineral signals.

Summary of the Principal Component Analyses

The use of principal components analysis has shown that it is possible to

significantly reduce the dimensionality of the MIR spectra to a much smaller

set of variables. A principal components analysis on the complete set of soil

samples did not reveal convincing class separation in the data. However,

on applying PCA to subsets based on a sampling site and land-use basis it

was found that class separations became apparent. The clearest differences

were found not based on geographic differences but by land-use differences

within particular sites. However, these differences were small and the PCA

projections yielded were not linearly separable. Despite no concretely clear

exhibitions of class differences observed in the scores plots this does not mean

clean differences do not exist. Differences may be very subtle and whilst prin-

cipal component analysis extracts the most descriptive information this does

not necessarily mean that the variation captured will be responsible for dif-

ferences between individual spectra.

Overall, principal component analysis has performed successfully as a method

of dimension reduction. However, its ability to identify areas of the spectra

responsible for driving differences in the classes has been limited. In the

next section Linear Discriminant Analysis (LDA), as a supervised learning
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Figure 2.15: Loadings plots of PC1 of the Woodland solution (top),
PC2 of the Pasture solution (centre) and PC3 of the Pasture solution
(bottom). These loadings are used to identify regions of the spectra
which dominate PCs. These regions may be related to soil constituents

with known absorption regions.
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technique, makes use of class labels known a priori and it is expected that

LDA should perform well in classifying the soil spectra.

2.2.2 Linear Discriminant Analyses

Linear discriminant analysis searches for linear combinations of the original

variables that best discriminate among classes rather than those that best

describe the data. More formally, given a number of independent features

relative to which the data are described, LDA creates a linear combination

of these which yields the largest mean differences between the desired classes

(Mart́ınez and Kak, 2001). If effective classifiers can be reliably achieved,

then regions of the spectra which drive class separability may be identified.

LDA vs PCA

In contrast to PCA, LDA explicitly attempts to model the differences be-

tween classes whereas PCA does not take into account any differences in

class. Thus, PCA is often described as an unsupervised algorithm since class

labels are ignored and the only goal is to find the directions (principal com-

ponents) that maximize the variance in a dataset.

Linear discriminant analysis is routinely performed on a set of training data

to establish a classification rule before assessing the performance of this clas-

sifier on a previously unseen set of test data. This approach will be taken

in the next section but first a comparison will be made between the original

PCA of the previous section and a linear discriminant analysis performed on

the entire MIR soil spectra dataset. Figure 2.16 gives the scores plot between

the first and second principal components together with a plot of the first

two linear discriminants of an LDA.
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Figure 2.16: Comparison of LDA and PCA for identifying groups of
different classes in the data.

The PCA ignored class labels to find the directions that maximise the vari-

ance in the data set, and the first two principal components accounted for

40.9% and 22.5% of the total variance respectively. The scores plot revealed

no patterns or clustering in any of the classes that can be observed. The

classes in this scores plot are identified as the interaction between land-use

and sample site. As reported in the previous sections, the results were very

similar when considering either land-use or sampling site classes indepen-

dently. Since LDA takes into account class labels a priori the superior class

separation observed in the lower panel is not unexpected. Here, the first two

linear discriminants cumulatively explain more than 66% of the between-
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group variance in the data whilst the first two PCs explain 63.4% of the

total variability in the data.

LDA: Class Separation problems

The performance of LDA is evaluated for the three different class separa-

tion problems using different proportional splits of training and test data.

The separation problem between sampling sites involves three different sites,

so the number of groups (G) is 3, and the number of variables is equal to

the number of uniquely defined spectral bands (921). With three classes,

the maximum number of useful discriminant functions that can separate the

data is two (G − 1 = 2). Similarly, the land-use separation problem gives

one discriminant function and the interaction problem gives five.

It is typical for classification problems to make use of training and test data.

The training set is a set of data used to build a prediction model which can

be employed to predict the outcome or class membership of future unseen

objects. A test set is a set of data that is used to evaluate the prediction

performance of the classification rule created. By varying the percentages of

data allocated to the training and test data subsets then the performance of

LDA in distinguishing classes can be evaluated. The performance of the linear

discriminant analyses were assessed for 100 random splits into: 50% labelled,

50% unlabelled data; 25% labelled, 75% unlabelled and 10% labelled, 90%

unlabelled data. It was chosen to obtain 100 random splits so that average

misclassification rates could be calculated and these are reported in Table 2.5.

The classification performance of LDA is impressive in all class separation

problems giving very low misclassification rates. Unsurprisingly, classifica-

tion accuracy decreased when a classification rule was based on a smaller
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LDA Training/Test Split Average Misclassification Rate

Site
50/50 0.009
25/75 0.034
10/90 0.127

Land-use
50/50 0.0104
25/75 0.052
10/90 0.138

Site*Land-use
50/50 0.003
25/75 0.028
10/90 0.200

Table 2.5: Performance of Linear Discriminant Analyses on classifying
Site, Land-use and Site*Land-use test data.

set of training data. With less points to train a model on, it is intuitive

that a models predictive power would be lower. As expected, all three LDA

analyses give much greater performance after training on 50% and 25% of

the data compared with just 10%. The classification performance of LDA

is greatest separating the data into classes based on the interaction between

site and land-use, and poorest separating the land-use classes independently.

However, only 1% of the land-use test data are missclassified when using a

50/50 split. The interaction class is separated better than the other class

variables in the 50/50 and 25/75 splits, but reducing to a 10% training set

and the LDA on the Site*Land-use interaction actually performs the poorest.

Figure 2.17 gives a scores plot between the first two linear discriminant func-

tions of a linear discriminant analysis on the interaction class performed on

the full data set (no training and test data split). The LDA has achieved

excellent class separation in the space of the first two linear discriminant

functions explaining 37.7% and 28.9% of the total variation respectively. It

is clear to see that there are definite differences between the spectra belong-

ing to different farmland plots. Figure 2.17 only presents the class separation

of the interaction classes. However, it should be noted that LDAs performed
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to discriminate by land-use and sampling site independently yielded results

just as emphatic.

Figure 2.17: Scores plot between the first two linear discriminant
functions of an LDA on the Site*Land use class for the full dataset.

The first linear discriminant function explains the majority of the total vari-

ance. To find the most influencing wavenumbers for class discrimination,

the coefficients can be examined and interpretated similarly to that of PCA

loadings. Since each linear discriminant function is a linear combination of

921 wavenumber variables, displaying the full formulations is not appropri-

ate. However, the top five wavenumbers with the highest influence for each

class separation problem have been identified graphically in Figure 2.18 and

also summarised in order of importance in Table 2.6.
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Figure 2.18: The most influencing regions of the spectra as identified
by the top five contributing wavenumber variables to LD1 of each class

separation problem

Figure 2.18 identifies the wavenumbers that are most influential to class dis-

tinction to be constrained within a central region of the MIR spectra ranging

from 2720-2290cm−1. This was not anticipated as it would be expected that

there would be features across the entire spectral range that would be in-

fluencing differences between the classes. Furthermore, discussions with soil

scientists at CSIRO prior to analysis informed that this region would not

be flagged as it does not contain any elements which would be responsible

for differences between groups. It was also suggested from a soil science

stand point that the regions of greatest influence should originate from the

upper and lower ends of the MIR spectral range. In comparison to other re-

gions which exhibit a higher degree of variability and an abundance of local

features, this central region of the spectra is relatively uneventful and unin-
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teresting. There are no spikes over this central range which would indicate

the presence of chemicals which would be responsible for differences between

spectra of different land-use/site classification. However, these results and

the identification of this region could be due to the very strong correlations

between neighbouring wavenumbers.

Class Separated Top 5 Wavenumbers for Class Distinction

Land-use

2680 (1)

2692 (2)

2430 (3)

2492 (4)

2700 (5)

Sampling Site

2290 (1)

2670 (2)

2719 (3)

2310 (4)

2302 (5)

Land-use*Sampling Site

2440 (1)

2680 (2)

2670 (3)

2407 (4)

2692 (5)

Table 2.6: Wavenumbers most responsible for class discrimination
(site, land-use, land-use*site interaction) in linear discriminant analyses

on the MIR dataset
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Stepwise Linear Discriminant Analysis

With the high dimensional nature of the MIR dataset, a more practical

method of performing LDA would be to select the most influencing wavenum-

ber variables via a stepwise selection process. Forward stepwise linear dis-

criminant analyses were performed to identify the wavenumbers that con-

tribute most to the class separation of land-use, sample sites and in the

interaction case.

In the forward selection process, variables are evaluated based on their con-

tribution to the discrimination between classes with variables having the

greatest contribution selected for inclusion first. The stepwise selection pro-

cess used 10-fold cross-validation and only the most influencing wavenumbers

were included if they improved the final correct classification rate by at least

2%. Table 2.7 summarises the wavenumber variables that were added itera-

tively to the discriminant functions for the three classification problems. The

most influencing wavenumbers are listed in order of their selection based on

the total amount of variation they explain. The cumulative correct classifi-

cation rate is also reported for each additional variable retained.

Of the wavenumbers identified, none were common across each linear dis-

criminant analysis. However, with such a high dimensional dataset it is not

a surprise that there are no wavenumbers/spectral bandwidths with a com-

mon influencing impact on class separation. However, since the wavenumbers

are form a continuous spectrum across the mid-infrared range it may be the

case that a highly influencing variable lies within a region of high influence for

class separation. Figure 2.19 shows the entire range of the mid-infrared spec-

tra highlighting the variables identified from the stepwise linear discriminant
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analysis which are found to contribute significantly to the class separations

between land-uses, sites and the interaction class.

Class Separated Wavenumber Variables Retained Classification Rate

Land-use

906.3793 (1) 0.771

752.102 (2) 0.833

2410.583 (3) 0.888

740.5312 (4) 0.908

3575.377 (5) 0.929

2850.274 (6) 0.950

2931.269 (7) 0.988

Sampling Site

3139.269 (1) 0.629

983.518 (2) 0.775

698.1049 (3) 0.842

620.9662 (4) 0.908

2919.698 (5) 0.950

3282.25 (6) 0.971

Land-use*Sampling Site

2915.842 (1) 0.450

2935.126 (2) 0.767

3185.827 (3) 0.871

3602.376 (4) 0.938

3594.662 (5) 0.992

Table 2.7: Wavenumbers most responsible for class discrimination
(site, land-use, land-use*site interaction) in linear discriminant analyses

on the MIR dataset via a stepwise approach to LDA.

58



Figure 2.19: The most influencing wavenumbers to the class separa-
tion problems as identified by a Stepwise LDA approach

The results of the two approaches to the linear discriminant analyses are very

different. The basic linear discriminant analyses indicate that the most im-

portant spectral variables for determining class membership of all classes (i.e.

Site, Land-use and the interaction) are found in the central region of the mid-

infrared range. With the stepwise linear discriminant analyses, the strongest

influencing wavenumbers for determining class separations are found scat-

tered across the entire mid-infrared range. The differences in these plots

seem unusual as it is not expected that a basic linear discriminant analysis

would pick out this central region which appears very uninformative. This

central region has the smallest spectral variability in comparison with the

rest of the mid-infrared range. There is also a lack of features in this portion

of the MIR range and this is confirmed by a close-up in Figure 2.20.
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The wavenumbers identified by the stepwise procedure in Figure 2.19 were

more expected of this analysis identifying regions of higher variability and

with areas with interesting features (peaks/troughs) that differ from their

surrounding data. The wavenumbers which seemed responsible for differences

between the classes based on sampling site were originally concentrated at

wavenumbers of approximately 2300cm−1 and 2700cm−1, indicated by the

green bands in Figure 2.20.

Figure 2.20: Close-up of the central region of the MIR spectra where
the basic LDA identifies the most influencing wavenumbers for the class

separation problems.

However, with the stepwise LDA it seems that the wavenumbers with the

most influence on site differences are found at the following approximate

wavenumbers: 3280, 3140, 2920, 985, 700 and 620 cm−1. It seems more

reasonable that these wavenumbers pick out areas of the spectra which are

much more variable than the central region as identified by the straightfor-
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ward LDA. However, it may be surprising that only one wavenumber now

identifies with this central region via the stepwise approach. A wavenumber

of 2410cm−1 is identified by the stepwise LDA as having a high influence

on the discrimination between spectra of different sites, with additional ap-

proximate wavenumbers 3960, 2930, 2850, 905, 750 and 740cm−1 similarly

identified. With respect to the wavenumbers identified as having influence on

the discrimination between the six interaction groups of spectra, it is found

that attention shifts to the 3600-2900 cm−1 range. The stepwise approach to

LDA seems much more appropriate to this problem than the standard case.

This is believed since it is much more intuitive that the spectra of different

classes would differ across multiple different regions of the spectra rather

than confined to a central region of discrimination.

Assumptions of LDA

Although Linear Discriminant Analysis via a stepwise selection procedure

has performed well, there are assumptions of LDA that have to be relaxed.

LDA requires an assumption that the classes report equal variance-covariance

matrices to give accurate results. If these differ considerably then observa-

tions will tend to be assigned to the class where the variability is greater.

Woodland plots could differ in terms of density of foliage and this would

have an influence on the pulls of classification. However, there is literature

to support that although relying on heavy assumptions which are not true in

many applications, LDA has been proven to be effective (Lim et al., 2000),

and this is mainly due to the fact that a simple linear model is more robust

against noise, and most likely will not overfit (Gorecki and Luczak, 2013).
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2.2.3 Support Vector Machines

The last classification technique explored in this chapter is the machine learn-

ing method of Support Vector Machines. Support Vector Machines (SVMs)

are a fairly new method of classification for both linear and non-linear data.

The popularity of SVMs rests firmly on their ability to non-linearly map

original data points into higher dimensions. In the higher dimension, an op-

timal separating hyperplane can be found which defines decision boundaries

separating data based on their class labels.

Hyper-parameter selection

The most criticial step for support vector machines is the tuning of the

SVM hyperparameters and these are classically optimized using an exhaus-

tive search algorithm or grid search (Devos et al., 2009). Since the MIR

data are not linearly separable, the data were non-linearly mapped to a

higher dimension by the RBF kernel function. With this kernel, there are

two hyper-parameters which must be considered, the cost (C) and a gamma

(γ) value. The goal is to select well-performing C and γ hyper-parameters

such that the resulting classifier can accurately predict future unknown data.

However, it may not be useful to achieve very high training accuracy as this

could lead to overfitting and a classifier which is not generalizable.

In order to identify the best hyper-parameters a grid search on C and γ was

performed using cross-validation. There are often high computational costs

associated with exhaustive grid-searches. However, with only two hyper-

parameters to locate the computation is still relatively quick and the grid-

search is favoured over other approximate methods. The performance of

various SVM classifiers are evaluated similarly to the linear discriminant
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analyses using different training and test data splits for the three class sepa-

ration problems. Table 2.8 summarises the hyper-parameter values identified

for each SVM by 10-fold cross validated grid searches.

Table 2.8: Values of the hyper-parameters as selected by an exhaustive
grid search

Separating Classes Cost Gamma (γ)

Land-use 10 0.001

Site 10 0.0001

Land-use*Site 10 0.001

In the land-use classification problem, the best model in the parameter range

is obtained using C = 10 and γ = 0.001. A graphical overview of these tun-

ing results can be obtained by creating a contour plot of the error landscape,

and this is presented in Figure 2.21. The areas of deepest blue show the ar-

eas where the optimal hyper parameters may be located and thus where the

misclassification rates are lowest. The top and bottom plots show the same

cost and gamma parameters for the land-use classification problem. How-

ever, the lower plot represents possible gamma hyper parameters through a

log10 transform to improve the graphical presentation.

SVM Performance

Having identified the best hyper parameters, SVM classifiers were then trained

on various splits and their predictive accuracy assessed on a test split of the

data. The performance of the SVM classifiers were assessed in the same man-

ner as with LDA. That is, assessment was carried out based on 100 random

splits into: 50% labelled, 50% unlabelled data; 25% labelled, 75% unlabelled
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Figure 2.21: Contour plots illustrating error landscape resulting from
a hyper parameter grid search for the land-use classification problem
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and 10% labelled, 90% unlabelled data. The average misclassification rates

are reported in Table 2.9.

SVM Classifier Training/Test Split Average Misclass. Rate LDA error rates

Site

50/50 0.039 0.009

25/75 0.083 0.034

10/90 0.195 0.127

Land-use

50/50 0.009 0.0104

25/75 0.008 0.052

10/90 0.009 0.138

Site*Land-use

50/50 <0.001 0.003

25/75 <0.001 0.028

10/90 <0.001 0.200

Table 2.9: Performance of SVM Classifiers evaluated with average
misclassification rates and LDA error rates for various training and test

data splits for each class separation problem.

The optimal value for the cost hyper-parameter was C = 10 for all classifi-

cation problems. The optimal gamma value was found to be γ = 0.001 for

the land-use and land-use*site classification problems, but γ = 0.0001 for the

site classification problem. In the site problem, for a 50/50 training and test

data split the misclassification rate yielded is 0.0393. As the training sets

get smaller the misclassification rates increase, and this is true for all the

SVM classifiers. Overall, misclassification rates are very low for the SVM

classifiers. For example, the SVM classifiers built for the interaction class

discrimination misclassify less than 0.1% of the test data for all training/test

splits. The misclassification rates are most variable for the SVM classifiers

built for the discrimination of spectra by sampling site. However, with only
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a 25% training data set the associated SVM classifier still only misclassified

8.3% of the test set. The SVMs built to discriminate the spectra by their

land-uses performed very well across all training and data splits- correctly

classifying over 99% of the test data in all cases. On the whole, the SVM

performance in comparison with that of the linear discriminant analyses of

the previous section has been far superior in the class separation problems in-

volving land-use and the interaction class. However, the LDA corresponding

with discriminating the sampling site of spectra achieved better classification

than the SVM method.

In SVM classification problems, it is common to provide SVM classifica-

tion plots to illustrate the non-linear decision boundaries and class regions.

However, given the high dimensional nature of the MIR data and the high

performance of the SVM classifiers, pairwise plots of variables were uninfor-

mative. This is a major downfall for the application of SVMs. Although

SVMs have been found to achieve high performance in discriminating be-

tween the different classes of spectra, it is of no utility since the method has

been unable to give any indication of where the differences lie. Whilst this

black box nature of SVMs allows for easy implementation, it fails to identify

areas of interest along the MIR spectra. However, the application of SVMs

has given sufficient evidence to confirm that differences between groups in

all classes of the spectra do exist.

2.2.4 Summary

This chapter investigated the applicability of standard multivariate tech-

niques for the purpose of explaining the variation in the spectra across the

mid-infrared range and for the classification of groups of soil spectra.
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Principal component analysis successfully reduced the MIR dataset from 921

wavenumber variables to just eight principal components. This PCA achieved

a massive reduction in dimensionality whilst preserving 97.5% of the total

variability found in the spectra. Following examination of the scores plots

there were no substantive differences between any of the classes and thus

PCA only managed to function as a dimension reduction technique in this

case. However, on application of PCA to subsets of the data there were

some class distinctions detected. These PCAs summarised the original data

in just six or seven principal components whilst explaining upwards of 97%

of the total variability. It was found that the PCAs on spectra of individual

sampling sites revealed some land-use class separation in the scores plots and

inspection of the associated loadings plots managed to give some direction

towards potentially responsible regions of the spectra. Within these regions,

signals were related to components of the soil which could be responsible

for driving the differences between classes (i.e. site, land-use, site*land-use).

In all cases the clusters in the scores plots were not linearly separable and

in some cases the differences were slight. However, given the initially high

degree of dimensionality and the density of the spectra it should be expected

that any differences between classes would be subtle. Furthermore, since

principal component analysis extracts the most descriptive information then

the variation captured does not necessarily translate to variation in the data

responsible for differences in spectra of different classes. Whilst the multi-

variate PCA has been very successful as a dimension reduction technique, the

interpretations of the loadings plots in order to identify regions of distinction

between classes may be fallible. The interpretations are highly subjective

and require the input of a soil science expert.
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With additional class information supplied a priori , LDA was extremely

effective in predicting future class membership of unseen data. This was

demonstrated for various training and test data splits for the three class sep-

aration problems yielding very low misclassification rates across the board.

Just as the loadings were interpreted in the principal component analyses,

the coefficients in the linear discriminant functions were examined to identify

wavenumbers with the greatest influence on class discrimination. The influ-

encing wavenumbers as identified by a straightforward LDA were compared

with those similarly acquired from linear discriminant analyses following a

stepwise approach. The original LDA identified only spectral bands in the

central region of the mid-infrared range (2750-2230cm−1). It would be un-

usual for this region of the spectra to influence differences in class discrimina-

tion since the absorptions in this range are not dominated by either mineral

or organic signals.

In study of the stepwise LDAs, it may be suggested that the original LDA ap-

proach is näıve. With the stepwise linear discriminant analyses, the strongest

influencing wavenumbers for determining class separations are found scat-

tered across the entire mid-infrared range. The wavenumbers identified by

the stepwise procedure were more expected of this analysis identifying regions

of higher variability with interesting features (peaks/troughs) that differ from

their surrounding data. With a wide array of chemical moieties found in soil,

it is likely that a greater number of spectral bands relating to these properties

will have an influence on discriminating between the classes of different land-

uses, sample sites and the interactions between. Additionally, with different

chemical moeities or functional groups associated with different frequencies,
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it is expected that regions of interest would be scattered across the full range

of the spectra.

Despite the high performance of LDA, the interpretation of the results must

be taken with caution. By design, both LDA approaches identify specific

wavenumbers which are deemed to be important in the separation of spectra

of different classes. It is more likely that the components of soil subjected to

spectroscopy are defined by multiple wavenumbers or a range of wavenum-

bers, and that these wavenumber ranges may be partly shared by other soil

constituents. Thus, with the identification of a singular wavenumber variable

it may be hard to relate to a specific soil component.

Support vector machine methods achieved excellent classification perfor-

mance. SVMs successfully mapped the MIR data to a higher dimension

in which optimal separating hyperplanes could be constructed to separate

the data into the appropriate classes. Achieving very low misclassification

rates, SVMs outperformed the linear discriminant analyses on the most part

but visualisations identifying the most influential regions of the MIR spectra

for class discrimination could not be produced. This is a major downfall

of the SVM approach in the high-dimensional setting as it was unable to

give any indication of where class differences lay. However, the application

of SVMs has provided additional evidence that there do exist regions of the

mid-infrared range whereby groups of spectra belonging to different land-

uses, sites and interaction class differ from one another.
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Chapter 3

Functional Data Analysis with

MIR soil spectra

First named by Ramsay and Dalzell (1991), Functional Data Analysis (FDA)

has received a lot of attention in recent years. This is due to modern tech-

nology that now has the capabilities to generate unprecedented amounts of

high-dimensional data in many scientific disciplines. The data being ob-

served are not the standard multivariate observations of classical statistics

but are observations recorded as curves (functions) or images along a con-

tinuous domain. This domain for functional data is usually time but can be

anything continuous such as distance, space, frequency and age. The key

assumption in FDA is that the underlying process which generates the data

is smooth. However, the data are still only observed at discrete points which

are subject to measurement error. Thus, an integral part of functional data

analysis is the smoothing so that adequate functional data representation

can be achieved. Furthermore, FDA makes no assumption of independence

between adjacent observations- an assumption often violated in multivariate

analysis.
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In functional data analysis, the idea is to view each curve or replication as

the single observation or entity of interest. To get a feel for functional data,

Figure 3.1 displays three different functional datasets from various fields.

The top panel represents a dataset of near-infrared reflectance spectra of 100

wheat samples measured in 2nm intervals from 1100 to 2500nm with the asso-

ciated response variable being the samples’ moisture content (Kalivas, 1997).

The bottom left panel gives half-hourly electricity demands for Saturdays in

Adelaide from 1997-2007 where Magnano et al., 2008 performed analyses to

test whether or not, under different temperature scenarios, there would be

enough capacity to satisfy electricity demands in the future. The bottom-

right panel gives the age-specific cancer rates for Australian females with

data provided from the Australian Institute of Health and Welfare (AIHW),

an organization that that provides anonymised health and welfare data to

national and regional government and community organizations (Erbas et al.,

2007). The crude age-specific mortality rates are used which are defined as

the number of deaths in a particular age group during the year by the cor-

responding population in that age group at 30 June of the same year. The

rate is expressed per 100,000 people. These plots demonstrate that func-

tional data is often complex with a large number of related quantities not

easily described by mathematical formulae. There is also variation between

replications which may be hard to explain.

It is becoming more and more common to work with large datasets, and

with a wide range of potential applications under the functional data frame-

work considerable efforts have been made in adapting classical statistical

methods (Tarrio-Saavedra et al., 2010). For example, principal component
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Figure 3.1: Examples of functional data from various fields of sci-
ence. Note. Original data from Kalivas (1997), Magnano et al (2008)
and Australian Institute of Health and Welfare (AIHW) website at

http://www.aihw.gov.au/cancer/data/index.cfm.

analysis for functional data is studied by Locantore et al. (1999), regression

models with functional covariates are analysed by Cardot et al. (1999) and

functional data classification is another important field (Ferraty and Vieu,

2003). Functional data classification includes both supervised and unsuper-

vised classification, and Support Vector Machines have even been adapted

(Rossi and Villa, 2006). Some of these methods are straightforward exten-

sions of existing techniques, while others are more complex. Later in this

chapter, some of these functional equivalents are introduced.
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One of the biggest challenges that comes with FDA is the estimation of

functional data from the (potentially) noisy discrete observations. In any

functional data analysis, the raw data are also unlikely to be regular in na-

ture and thus an essential first step is the estimation of smooth functions

from the observed data. Once these functions are obtained, the original dis-

crete data can be discarded and only the functions are used in subsequent

analyses. There are a variety of smoothing methods available but Ramsay

and Silverman (1997) advocate that B-splines are most commonly used in

functional data analysis than any other smoothing approach due to their high

degree of flexibility and computational efficiency.

In this section an introduction to the concept of functional data is pro-

vided alongside the general underlying theory of some popular FDA sta-

tistical methods. In further sections the application of FDA methods to soil

spectroscopy is explored. The methods explained in the following sections

are based on Ramsay and Silverman (2005). For a more detailed reading,

Functional Data Analysis by Ramsay and Silverman (2005) gives a manage-

able overview of the foundations and possible applications of FDA, and their

earlier Applied Functional Data Analysis (2002) provides many further ex-

amples of functional data applied in R statistical software, most often with

continuums of age or time.
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3.1 Functional Data Theory

According to Ferraty and Vieu (2006), a random variable X is called a func-

tional variable if it takes values in an infinite dimensional space. A sample

X = X1, . . . , Xn is called functional data when the ith observation is a real

function Xi(t), t ∈ J, i = 1, . . . , n, and hence, each Xi(t) is a point in some

function H. In order to avoid confusion, a single functional datum meaning

a single observed function is referred to as a replicate. A functional dataset

is thus a random sample of replications (Figure 3.2). The argument t is the

continuum along which each of these functions or replications is measured at

discrete points. Although t is often represented as time, this continuum can

be any such continuous domain.

With such continuums, observations are often dependent on adjacent obser-

vations and this is commonly true of temporal data bringing about temporal

correlation. This correlation between adjacent observations causes problems

with classical multivariate analyses violating the assumptions of indepen-

dence. However in FDA, no such assumption is made and each observed

curve is thought of as a single observation rather than a collection of indi-

vidual observations. Regarding the data in this way also makes it easier to

observe common long-term patterns.

Over the last two to three decades, methods of FDA have been applied

to functional datasets within medicine, econometrics, biostatistics, environ-

metrics, geophysics and chemometrics. More generally, examples of func-

tional data can be found in multiple time series analysis where each obser-

vation is a complete time series. A number of excellent illustrations of the

applications of FDA can be found in Ramsay and Silverman’s book (2005)
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(a) Single Functional Observation

(b) Functional Dataset

Figure 3.2: An example of functional data generated from the mid-
infrared soil spectral data. The top plot gives a single functional ob-
servation originating from a single sample. The bottom plot gives all
240 smoothed spectra as the entire functional dataset. Smoothing has
been achieved by a generalised cross-validation approach to selecting

the number of basis functions.
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where data on gait, handwriting, yearly weather data and the growth of

children are explored.

3.1.1 Modelling Functional Data

Despite the ith observation in a functional data analysis being a real function,

functional data are most often observed and recorded discretely. Typically,

there will be a sample of n independent replications, i.e. curves, and a record

of replication Xi(t), i = 1, . . . , n consisting of ni pairs {tij, nij}, j = 1, . . . , ni,

where tij denotes the argument, and yij the observed functional value. These

argument values may vary between replications and do not necessarily have

to be equally spaced. There must be caution taken when interpreting inde-

pendence under the functional framework- it should be noted there is inde-

pendence assumed between replications (curves) but not over the continuum.

The number of observations, ni, are also permitted to differ between repli-

cations, but the argument values should fall within the same range of values

of interest, i.e. tij ∈ J for all i, j.

Like most observed data, usually functional observations are observed with

some form of error or noise. Let yi = (yi1, . . . , yini
)T , ti = (ti1, . . . , tini

)T , and

εi = (εi1, . . . , εini
)T . Then a functional data model can be defined as follows:

yi = Xi(ti) + εi

where εi is assumed to be the error term with εi ∼ N(0,
∑

i) and
∑

i =

diag(σ2
i1, . . . , σ

2
ini

).

3.1.2 Smoothing and the Basis Function Approach

In representing functional data as smooth functions a flexible method is

needed that can track local curvature and minimize the short-term devia-
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tions due to observational errors, such as measurement errors or inherent

system noise (Ullah and Finch, 2013). One such smoothing procedure is the

basis function approach. According to Ramsay and Silverman (2005) a basis

function structure is a set of known functions, φk(t), that are mathematically

independent of one another combined and used to estimate a function, x(t).

Each functional datum is represented by a finite basis such that an explicit

form for the function is obtained as follows:

y(t) = x(t) + ε(t) =
∑K

k=1 ckφk(t) + ε(t),

The term ck represents the basis coefficients, t is time (or any other contin-

uum) and K is the number of basis functions. In this way, any function can

be approximated by a linear combination of these basis functions.

There is a large number of basis types to choose from and no basis is con-

sidered optimal. However, basis functions should be chosen to represent the

characteristics of the functional data. For instance, Fourier basis functions

are a good choice for data with a periodic nature and spline basis functions

are more suitable for non-periodic data. It is preferable that the basis func-

tions and functions to be approximated should have similar characteristics

in order to make it more straightforward to attain a sufficient approximation

using a relatively small K (Ramsay and Silverman, 2005).

Two of the most popular choices are Fourier basis systems and B-spline

bases. B-splines are additionally advantageous since they can model sharp

changes in the underlying function as well as its smooth variation. They also

have fast computation times favouring their extensive usage within functional

data analysis due to the frequent high dimensionality of datasets. The closer

the features of the basis functions are to those of the data the better the
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estimation of the function x(t) will be.

The B-Spline Basis System

Splines are the long flexible strips of wood that shipbuilders bend and hold at

control points and their elasticity allows the curved shape of the ships hull to

be formed. A spline smoother is analogous to this definition as it consists of

linear fits bent at particular control points called knots (Schoenberg, 1964).

Splines are non-parametric or semi-parametric techniques for fitting curves

to data, and the term was first coined by Schoenberg (1946) describing the

process of fitting a smooth function to data.

While there are many other smoothing methods available, B-splines have

been especially popular due to their easy implementation and their greater

flexibility with respect to other spline methods. However, it was not until

the 1970s that B-splines rose in popularity and this was due to growing com-

puting power and stable boundary estimates. The boundary problem was

solved by De Boor (1972) who detailed a mathematically stable formula for

calculating B-splines using the concept of divided differences and recursively

higher-order splines.

The interval along which basis functions are calculated can be divided into

L subintervals by the values τl(l = 1, . . . , L− 1) called breakpoints or knots.

The B-spline is a piecewise polynomial function of order m over each inter-

val, which is smoothly connected at these breakpoints. The order m is the

number of parameters used to define a function, and is defined to be one

more than the degree of a polynomial- where degree represents the highest

degree in a polynomial. For example, a cubic spline has a degree of 3 and
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order 4.

A B-spline, φK(t), of order m and knot sequence, τ , is given by

φK(t) = BK(t, τ), K = 1, . . . ,m+ L− 1

where K refers to the number of the largest knot at or to the immediate

left of value t. They are created using the following recursive formula as

developed by de Boor (1972):

Ni,1(t) =


1, ki ≤ t ≤ ki+1

0, otherwise

Ni,δ(t) =
t− ki

ki+δ−1 − ki
Ni,δ−1(t) +

ki+δ − t
ti+δ − ti+1

Ni+1,δ−1(t)

where Ni,δ(t) is the basis function evaluated at ti, k1, . . . , kn are the knots;

and δ is the order of the basis function being calculated. The recursive nature

of the formula is illustrated in Table 3.1. The basis functions are recursively

calculated by first calculating the lower degree splines. Ni,δ(t) is greater than

zero only at δ knots; it is zero everywhere else.

Table 3.1: The recursive nature of de Boor’s (1972) formula

Order 1 Order 2 . . . Order δ

ki−1 0 0 · · · 0

ki Ni,1(t) = 1 Ni,2(t) · · · Ni,δ(t)

ki+1 0 Ni+1,2(t) · · · Ni+1,δ(t)
... 0

. . .
...

ki+δ 0 Ni+δ,δ(t)

ki+δ+1 0
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Placing Breakpoints

The primary way of achieving more flexibility in a spline is through increas-

ing the number of breakpoints defined. However, there are often regions of

a function with more complicated variation that needs to be captured. In

this scenario more breakpoints are often loaded in these areas. Conversely,

in regions where the function is only slightly non-linear or there are few local

features, fewer breakpoints may be desired. Equal spacing of breakpoints

or knots is used as a default in the majority of applications. This is com-

mon practice when there are lots of sample points per function and if the

samples are observed at approximately equal points. However, in the case of

irregularly spaced data it may be more sensible to manually design the place-

ment of knots. Figure 3.3 demonstrates a set of fifty B-spline functions with

equally spaced knots and another set of fifty B-spline basis functions irregu-

larly spaced. In both cases, the more basis functions that are involved then

the more complex the fitted functions can be. The degree to which the data

are smoothed, rather than exactly reproduced or interpolated, is determined

by the number K of basis functions (Ramsay and Silverman, 1997).

Choosing K

Selecting the number K of basis functions is an important question in the

basis expansion problem. If a large enough K is chosen then the data may

fit well, but any additive noise may also be fitted. If K is chosen to be

too small then structure in the data important to the analysis may be re-

moved. Generally the value of K is chosen so that the plotted functional

object resembles the original data with some smoothing that eliminates the

most obvious noise (Ramsay & Silverman, 2005; Garca-Portugus et al., 2014).
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(a) Equally spaced basis functions

(b) Irregularly spaced basis functions

Figure 3.3: Equi-spaced vs Irregularly Spaced Basis Functions. The
top plot illustrates 50 equally spaced B-spline basis functions, and the
bottom plot gives 50 irregularly spaced B-spline basis functions for

t=921
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Figure 3.4 presents an example of smoothing by increasing the number of

basis functions on the mcycle data from the MASS package of R. The data

are a series of head acceleration measurements in a simulated motorcycle

accident used to test crash helmets. A B-spline basis was used and as the

number of basis functions increases a better fit of the data is observed but

eventually it overfits to the noise. As the number of basis functions decreases

more smoothing occurs.

Figure 3.4: The effect of varying the number of basis elements on the
smoothing of functional data. The data originates from a motorcycle
accident dataset (Silverman, 1985). The data consists of measurements
of head acceleration of a motorcycle rider as a function of time in the

first moments after an impact.

Green and Silverman (1994) consider two approaches when it comes to select-

ing smoothing parameters. The first is to choose the smoothing parameter
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entirely subjectively. By varying the number of basis functions there are

features of the data that arise at the different levels of smoothness, and the

particular value for which the fit looks best may be chosen. The second ap-

proach uses an automatic method such as cross validation. In the functional

data context where large datasets with many replications are commonplace,

an automatic method seems the more sensible approach. However, if an au-

tomatic choice does not provide an adequate level of smoothing it can still

serve as a starting point for subsequent subjective fine-tuning (Silverman,

1985).

Cross-Validation (CV) and Generalized Cross Validation are two widely used

automatic selection methods for smoothing parameters. The main idea be-

hind cross validation is to set aside a subset of the data, called the validation

sample, and to fit and assess a model based on the remaining data against

the validation set. By this method the smoothing parameter which gives

the best fit is identified. The generalized cross-validation (GCV) method, as

developed by Craven and Wahba (1978), can be described as:

GCV =
1

n

n∑
i=1

( yi − f̂i
1− 1

n
tr(H)

)2
where, H is a hat matrix with H = X(XTX)−1XT and where X is a matrix

of explanatory variables and containing the basis of smooths. The term f̂ is

the estimate of yi from fitting all of the data.

The cross-validation (CV) approach is based on minimizing the mean squared

error (MSE). However, GCV has the advantage over CV with less of a ten-

dency to undersmooth the data.
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3.1.3 Functional Descriptive Statistics

The theory from this point on only deals with functional data as smooth

curves. Once the functional form has been achieved, the original discrete data

can be discarded. The next step, and often the first step of any statistical

analysis, is the exploratory analysis of the functional data for summarizing

and visualizing the important characteristics. With a functional nature to

data, the associated descriptive statistics must also be functional. Much work

has been done to create functional equivalents of various statistical analyses

and similarly, exploratory plots are also being developed as a tool in the

initial analysis of functional data. For example, Sun and Genton (2011) have

proposed a functional boxplot in order to visualize summary statistics of

functional data as well as identifying outliers.

Mean and Variance Functions

One of the more basic of functional data analysis problems is the estimation

of the mean function. Since functional data analysis sees each curve as a

distinct datum, the mean function is calculated by averaging the functions

point-wise across the replications. The mean function is defined as υx(t) =

E(X(t)),∀t ∈ T , and the sample mean curve can be defined as

X̄(t) =
1

N
(X1(t) + . . .+XN(t)),∀t ∈ T

where N is the number of curves or replications and Xi(t) is the ith function

evaluated at time t. The estimation of the functional variance is also very sim-

ilar to the classical variance. It is defined as σ2
x(t) = E[X(t)−E(X(t))2],∀t ∈

T , and the sample variance curve is:

V arx(t) =
1

N

∑N
i=1[Xi(t)− X̄(t)]2
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The corresponding correlation function can also be defined as:

Corrx(t1, t2) =
Covx(t1, t2)√

V arx(t1)V arx(t2)

Figure 3.5 illustrates the concept of the functional mean applied on the Cana-

dian Weather dataset from Ramsay and Silverman (2005). The functional

mean is calculated for four weather stations represented using a Fourier Basis

expansion with K=50.

Figure 3.5: Plot of temperature from four selected weather stations
with a functional mean curve fitted. Data from the Canadian weather
dataset commonly featured in FDA literature (Ramsay and Silverman,

2005)
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3.2 Popular Functional Data Methods

After discarding the original discrete data points, the smooth functions can

be used in subsequent functional data analyses. Many of the methods used in

classical statistics have counterparts available within a functional data con-

text and some of these functional equivalents are introduced in the following

sections.

3.2.1 Functional Principal Component Analysis (FPCA)

The most common statistical technique applied to functional data is the

dimension reduction method of Functional Principal Component Analysis

(FPCA). This technique is used to explore and distinguish any components

of variations in the data. The motivation is similar to that of multivariate

principal component analysis (PCA) that the directions of high variance will

contain more information than the directions of low variance.

In the functional framework, each functional principal component (FPC) is

defined by a principal component weight function, ξ(t) and is defined over

the functional data argument range of t (Ramsay and Silverman, 2002). The

PC scores are given by the values zi where

zi =

∫
ξ(t)Yi(t)dt (3.1)

The objective in FPCA is to find the weight function ξ1(t) that maximises

the variance of the PC scores zi subject to the constraint

∫
ξ(t)2dt = 1. (3.2)
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From this point the remaining principal components are defined similarly

but with additional constraints. For example, the principal component func-

tion ξ2(t) maximises the variance of the principal component scores whilst

satisfying the constraint (3.2) and the additional constraint,

∫
ξ2(t)ξ1(t)dt = 0. (3.3)

Furthermore, in general, for the jth component the additional constraints

can be defined as follows:

∫
ξj(t)ξ1(t)dt =

∫
ξj(t)ξ2(t)dt = . . . =

∫
ξj(t)ξj−1(t)dt = 0. (3.4)

This constraint ensures that all of the estimated functional principal compo-

nents are mutually orthogonal.

3.2.2 Functional Hypothesis Testing

Ramsay and Graves (2009) state that common statistical tests tend to ad-

dress questions in determining whether two or more groups of functions are

statistically distinct, and whether statistically significant relationships among

functional random variables exist. In a functional context, hypothesis tests

may be used to investigate whether the shape of mean functions differ for

different groups of functions. One such hypothesis test is the Functional

ANOVA (FANOVA).

Permutation tests for functional hypothesis tests can be used to determine

if there are any statistically significant differences between different groups.

In this section, Functional F-tests and permutation t-tests are introduced.

Functional F-tests are used to test if there are any statistically significant
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relationships between functional variables, and permutation t-tests can be

used to test if there are any statistically significant differences between spe-

cific groups of functions.

Functional ANOVA

This functional version of the one-way ANOVA is achieved when a func-

tional response variable is predicted using the conventional design matrix Z

(Ramsay & Silverman, 2005). Suppose there are k independent groups with

functional samples yi1(t), . . . , yini
(t), i = 1, . . . , k. The FANOVA model takes

the following form:

yij(t) = µ(t) + αj(t) + εij(t), j = 1, . . . , ni, i = 1, . . . , k (3.5)

where yij(t) are the observed functional data, µ(t) is a mean function, αj(t)

are the group effects and εij(t) are independent N(0, σ2) errors. Alternatively

Model 3.5 can be rewritten as:

yij(t) = µi(t) + εij(t), j = 1, . . . , ni; i = 1, . . . , k (3.6)

where the aim of the FANOVA is to test if the mean functions vary among

k groups over a continuum t:

H0 : µ1(t) = · · · = µk(t), for all t ∈ T ,

HA : µi(t) 6= µj(t), for at least one i 6= j and t ∈ T .

Permutation Tests

By using permutation tests for functional hypothesis tests, statistically sig-

nificant differences between groups may be determined. Permutation tests

88



date all the way back to R.A. Fisher’s The Design of Experiments published

in 1935 and involve the process of permuting observed data in order to gen-

erate a reference distribution of a test statistic for the purposes of testing

a hypothesis. They operate under the belief that if the null hypothesis is

true, then the arrangement of the observed data is purely due to chance, and

thus all of the possible permutations are equally likely. Permutation tests all

follow the same general order:

1. A test statistic is calculated using the observed data

2. All possible permutations are enumerated

3. A new test statistic is calculated for each permutation of the data

4. A hypothesis test p-value is then calculated as the proportion of the

permutation distribution with values as extreme or more extreme than

the observed test statistic.

Although these steps are straightforward, the challenge lies in selecting an

appropriate test statistic and determining how to permute the data cor-

rectly. To determine if there are any statistically significant differences be-

tween groups permutation tests can be used for functional hypothesis testing.

Functional F -tests can be used to test for the presence of any statistically sig-

nificant relationship between functional variables. Permutation t-tests how-

ever can be used to test if there are any statistically significant differences

between groups of functions.

Functional F -tests

Based on the functional ANOVA, permutation F -statistics can be used to

assess if there are any significant differences between groups of curves. For
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a set of N curves represented by the smooth functions gi(t), Ramsay and

Silverman (1997) define the functional equivalent of the univariate F -test

statistic as:

F (t) =
V ar[ĝ(t)])

1

n

∑
(gi(t)− g(t))2

(3.7)

where i = 1, . . . , N and ĝ are the predicted values from a fitted FANOVA

model. This equation (3.7) gives a function built from a series of point es-

timates at each t. However, to formally test the null hypothesis that there

is no relationship between the functional variables a single test statistic is

required, along with a p-value indicating the probability of observing a result

as extreme, or more extreme, in the case that the null hypothesis is true.

The maximum of the test statistic function, F (t), is used as the test statistic

and a distribution of the test statistic under the null hypothesis can be ob-

tained by calculating the test-statistic several times, each time using random

permutations of curves. The p-value corresponding to this test is the propor-

tion of instances where the maximum value of the permutation F-statistic

function is greater than the maximum of the observed F -statistic function.

A pointwise curve can be plotted alongside the observed test statistic curve

to provide an indication to the regions whereby the groups are less distinctive.

If N individuals are assumed to form K distinct groups then the null and

alternative hypotheses can be defined as:

H0: There is no difference between the K groups

HA: There is some difference between at least two of the K groups
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Functional t-tests

Similarly to the functional F -test, a permutation t-test can be used to assess if

there are any statistically significant differences between groups of functions.

Assuming there are two distinct groups of curves, g1(t) and g2(t), with N1

curves in group 1 and N2 curves in group 2, then a t-test statistic function

can be defined as:

T (t) =
| ḡ1(t)− ḡ2(t) |√

1

n1

V ar[g1(t)]
1

n2

V ar[g2(t)]

and the null and alternative hypotheses tested are as follows:

H0: There is no difference between the groups 1 mean and the group 2 mean

HA: There exists some form of difference between group means in question

The maximum of the observed t-statistic function can be used as the test

statistic and can be compared to a relevant null distribution which is cal-

culated from a set of permutations. Similarly to the functional F -test, this

test is based on the idea that under the null hypothesis, for any given t, the

pairing of the value of the ith curve in the kth group, gik(t), and the group

number k are entirely random. It is important to note that an assumption

of the permutation t-test is that all groups of curves must have the same

variability.

A similar procedure to that outlined for the functional F -test can be used to

estimate a distribution of the test statistic under the null hypothesis. Again,

a p-value is computed by calculating the proportion of instances where the

maximum value of the permutation t-statistic function is greater than the

maximum observed t-statistic function.
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3.3 Applications to the MIR Data

In the analysis of spectrometric data as functional data, each spectrum is

a function that maps wavenumbers of the illuminating light to the corre-

sponding absorbances (the responses) of the sample (Rossi and Villa, 2006).

However, for functional data representation to be achieved, smoothing must

first be applied to the discrete MIR soil spectra data.

3.3.1 Functional Exploration of the MIR Data

To better understand how to approach the problem of smoothing, the origi-

nal exploratory plot of the spectra in Figure 2.6 of Chapter 2 was revisited in

order to inform on the selection of the type of basis and for the placement of

basis functions. Different modes of variation are considered in a functional

paradigm including within-curve variation and curve-to-curve variation. The

plot of the raw spectral signatures showed that the curves tend to follow each

other quite tightly with not much variability between them. Across the entire

range there is a great deal of fluctuation with a high number of peaks and

valleys in the data for all replications. With these spectra there are no irreg-

ularities in terms of missing data or misalignment of curves. However, the

spectra as a whole exhibit many areas of pronounced curvature interspersed

with areas of relative inactivity. For instance, the majority of the curves in

the latter regions of the mid-infrared range from 1700-450 cm−1 demonstrate

a high degree of curvature with lots of local features. In contrast, the middle

regions of the spectra from 3400-3200 cm−1 and 2800-2400 cm−1 appear more

linear with a lack of any discernible features.

Given that the soil spectra data are non-recurrent and there is a high degree

of local features, a B-spline basis approach to smoothing was adopted. Orig-
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inally, GCV was used to choose the appropriate smoothing parameters, and

these were computed using the min.basis function in R within the fda.usc

package (CRAN, 2015). However, by this approach the spectral data ap-

peared almost unchanged so a subjective approach to smoothing was adopted

instead. It was decided to irregularly space basis functions due to the high

degree of varying curvature with periods of inactivity across the spectra. It

also makes sense to place more knots in areas known to contain high cur-

vature and fewer knots in areas with less curvature. Discussions with soil

scientists also informed the smoothing process. The quantity of smoothing

and placement of breakpoints was kept the same for all curves to ensure fair

comparisons were made. In total, forty-five irregularly spaced basis func-

tions appeared to represent the spectra best. This was based on the plotted

functional object resembling the original data with the applied smoothing

eliminating the most obvious noise. Figure 3.6 shows the resulting smoothed

spectra (top plot) and a plot of the associated basis functions (bottom plot).

It is these functions (curves) in Figure 3.6 (a) which are used in all subse-

quent functional analyses. The discrete data from which these curves were

estimated are no longer considered.

There are several aspects of Figure 3.6 (a) which are worth commenting on

here. First of all, the most apparent feature is that there is a huge degree of

overlap in the spectra with mixing across the entire range. However, looking

at specific regions it is possible to see distinct separations. For example, ap-

proximately between 3600 and 2900cm−1 , the pasture samples of Bogo in red

appear clustered lower in the absorbance range than the rest of the curves

whilst the woodland samples of Bogo appear fairly central. All samples ap-

pear very tightly gathered in the middle range of the MIR spectra between
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(a) The functional representation of the MIR spectra using
k = 45 basis functions with irregularly spaced knots. These
smoothed spectral curves are coloured by the Site*Land-use

interaction.

(b) A plot of the k = 45 basis functions with irregularly
spaced knots.

Figure 3.6: Functional Data Representation of the MIR soil spectra
and the associated Basis Functions

94



2900-2000cm−1. At approximately 1900cm−1 there is again clear clustering

of the Bogo pasture samples separating from the rest and in the remainder

of the curve there is a great deal of mixing and high degree of between-curve

variability. It is also possible to view the curves as subsets of stand-alone

farmland sites and land-uses. However, these plots also exhibited a high de-

gree of mixing across the entire spectra and it was difficult to identify any

specific regions where there were large differences between these groups of

spectra.

It is well known that the boxplot is a graphical method for displaying the

five common descriptive statistics namely the median, the first and third

quartiles, and the maximum and minimum observations. Boxplots may also

indicate which observations, if any, can be considered to be outliers. For

functional data, Lopez-Pintado and Romo (2009) introduced the notion of

band depth which allows for the ordering of a sample of curves from the

centre outward. This allows quantiles, centrality and outliers to be defined

in the functional context. More recently, Sun and Genton (2011) proposed

a natural extension to the classical boxplot using the ranking of curves to

compute functional boxplots. These functional boxplots are used to visualize

summary statistics of functional data as well as having the ability to identify

outliers. Figure 3.7 displays a functional boxplot allowing for an examination

of variation between spectra.

Previously, the variability of curves across the mid-infrared range was exam-

ined and there was a high degree of variability exhibited with certain regions

showing more extensive curvature. Here, the functional boxplot allows for

the between-curve variation to be examined. In the classical boxplot, the
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Figure 3.7: Functional Boxplot of the functional data representation
of the MIR soil spectra.

box itself represents the central 50% of the data but in the functional setting

this is not as easily defined due to the crossing of curves. Liu and Singh

(1999) conceptualised the central region of functional data to which the grey

portion of the functional boxplot corresponds. Examining the grey central

region across the mid-infrared range, it can be seen that variability changes

across the spectra. Between 2850cm−1 and 2200cm−1 the variability is low

with the grey central region narrow. However, there are areas of high vari-

ability found across the entire range (e.g. 3500-3300cm−1, 1600-1000cm−1,

600-450cm−1). The black curve in the grey ’box’ indicates the median or

most central curve. The median curve is a robust statistic to measure cen-

trality and thus gives an indication of the general spectral signature. The

outer green lines correspond to the whiskers of the boxplot and in this case

no outlying curves have been identified.
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3.3.2 Functional Hypothesis Testing

Another way to look at the data is to consult the functional means in Fig-

ure 3.8. The functional group means and the overall mean function (black)

are used to informally assess if the curves of different groups are distinct

from one another. Again, this plot shows a large amount of overlap in the

groups with the lines of each spectra crossing frequently. However, this plot

highlights that each group mean differs from the overall mean within some

interval or multiple intervals across the spectrum. Areas to note include

the 3600-3000cm−1, 1950-1700cm−1, 1400-1300cm−1 and 1200-1000 cm−1 in-

tervals. In all these regions, the functional group means are a discernible

deviation from the overall functional mean in black. These regions indicate

sources of variation which could be responsible for differences between the

groups of spectra. The functional means demonstrate that there is separa-

bility between the groups in terms of mean levels, although it is in the form

of small deviances at specific intervals rather than across the entire spectrum.

Observing the functional means for each of the groups gives the reader an

informal impression of how similar or different the current groups are. How-

ever, more formal techniques can be implemented to determine if the mean

levels truly differ and if groups can be said to be statistically distinct. Thus,

functional F -tests were carried out and permuted functional t-tests were used

in order to test for group effects. An important assumption of permutation

t-tests is that all groups of curves should have the same variability and this

was found to hold by a visual inspection of the curves.
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Figure 3.8: Overall mean function curve and the group mean functions
for each site*land-use interaction

Functional F -tests

Functional F -tests were used in order to investigate if there exists any differ-

ences between any of the groups. Regardless if the samples were grouped by

site, land-use or the land-use*site interaction, in all cases the p-values of the

functional F -tests were highly significant (<0.001) and therefore implied that

there are clear differences between at least some of the groupings in terms of

their mean function. Given the straying of the group mean functions away

from the overall mean function in Figure 3.8, this is unsurprising. In several

areas it is clear to see that there is at least one group where the mean level

is quite different.
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Functional t-tests

In order to find out more specifically where the differences lie, functional

t-tests were carried out for each grouping variable. With each pair of groups

a p-value was calculated corresponding to the test of the null hypothesis

that there is no difference between the mean functions of the two groups in

question, against the alternative hypothesis that there exists some form of

difference. It was found that each pair of groups in all cases were found to be

statistically distinct reporting highly significant p-values (<0.001). It should

be noted that to account for the multiple comparisons between variables

Bonferroni corrections were applied to the quantiles of the null distributions

that the observed t-statistics were compared to.

Although there are only two land-use groups and the functional F -test was

enough to confirm a statistically significant difference between their mean

functions, a functional t-test was still applied as the resulting output al-

lows the regions of difference to be displayed. Figure 3.9a gives a plot of

the observed t-statistic over the entire spectrum range, where the red curve

represents the value of the observed test statistic at all values in the range.

The dotted blue line represents the pointwise critical values and the higher

dashed blue line gives the maximum critical value, both at the 5% level.

This test and indeed all the functional t-tests are based on a null distribu-

tion which has been constructed using 100 random permutations of the curve

labels. Since the red line breaches the maximum critical value level at several

intervals along the range it is clear that there is sufficient evidence to reject

the null hypothesis, and conclude that there are statistically significant dif-

ferences between land-use groups. The p-value corresponding to this test is

less than 0.001 which further indicates a highly significant result.
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(a) Observed functional t-statistic over the mid-infrared
range. Statistically significant differences between curves of
different land-use groups are observed where the observed

statistic breaches the 0.05 critical level

(b) Plot of the functional mean curves for woodland and pas-
ture spectra with statistically distinct regions of the spectra

highlighted by purple overlays

Figure 3.9: Plot of the observed functional t-statistic testing for differ-
ences between land-use and the associated wavenumber regions where

differences lie in the MIR range
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Furthermore, by consulting the test statistic across the range of the spectra

it is possible to observe the specific regions of interest whereby the mean

functions of the land-use groups are more statistically significantly different.

These regions are highlighted by the light purple overlays.

The F -tests found that some unspecified statistically significant differences

existed between the grouping variables of site and for the interaction vari-

ables. In the further application of functional t-tests, it was found that all

pairs of groups were statistically distinct from one another and in all cases

highly significant p-values of less than 0.001 were reported. As with the

land-use grouping variable, associated plots indicating the regions of specific

differences in the mean functions of the groups were produced. Figures 3.10-

3.12 display the regions of interest for these three pairwise site comparisons.
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Figure 3.10: Plot of the functional means of Bogo and Glenrock
spectra with statistically distinct regions highlighted by purple overlays
(left). Plot of the observed functional t-statistic testing for differences

between Bogo and Glenrock (right)

Figure 3.11: Plot of the functional means of Talmo and Glenrock
spectra with statistically distinct regions highlighted by purple overlays
(left). Plot of the observed functional t-statistic testing for differences

between Talmo and Glenrock (right)

Figure 3.12: Plot of the functional means of Bogo and Talmo spectra
with statistically distinct regions highlighted by purple overlays (left).
Plot of the observed functional t-statistic testing for differences between

Bogo and Talmo (right)
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3.3.3 Functional Principal Component Analysis

In this section, Functional PCA is applied to the MIR soil sample data in

order to study the variation in the 240 fitted smooth spectra. FPCA char-

acterizes the modes of variability by decomposing functional observations

into population level basis functions and subject-specific scores (Ramsay &

Silverman, 2005). These basis functions have a clear interpretation that is

analogous to that of PCA with the first basis function explaining the largest

direction of variation, and each subsequent basis function describing less.

After applying FPCA to the smooth curves developed in Section 3.3.1, it

was found that over 90% of the variation between individually fitted curves

was expressed in the first five functional principal components. However, it

was decided to retain FPCs in line with the selection criteria set out for the

multivariate PCA. To recap, principal components were retained to satisfy

a cumulative 90% of the total variance explained and trailing PCs were ad-

ditionally retained if they satisfied Kaisers criterion and explained at least a

further 0.01% of the variance.

With these criteria satisfied, the essential modes of variation between the

fitted curves were extracted by FPCA and a subsequent Varimax rotation

was applied to the eigen-functions. The results of the functional principal

component analysis are given in Table 3.2. The purpose of using the ro-

tated principal components was to improve interpretability of the principal

component plots.
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Functional PC Proportion variance explained Cumulative variance explained

FPC 1 28.39% 28.39%

FPC 2 19.84% 48.22%

FPC 3 13.75% 61.98%

FPC 4 13.30% 75.28%

FPC 5 8.80% 84.08%

FPC 6 4.51% 88.59%

FPC 7 7.58% 96.17%

Table 3.2: Proportion of variability explained by FPCA

In total, more than 96% of the total variation between individual curves

was explained by the first seven FPC curves chosen for retention. The first

functional principal component explained 28.39% of the total variation in

the spectra with the second and third FPCs explaining 19.84% and 13.75%

respectively. FPCA has successfully managed to extract a limited number of

FPCs that describe the patterns associated with the largest proportions of

the variation in the individual fitted curves. However, the scores plots and

FPC curves can reveal the more interesting aspects of the data and show

where the differences between groups lie. These are indicated by perturba-

tions of the mean function in the principal component function plots.

The first principal component function (Figure 3.13), accounting for 28.4% of

the variation, reveals that the greatest between-curve variation occurs in the

1300-1000cm−1 wavenumber range. There also appears to be some widen-

ing in the confidence bands between 1880-1760cm−1. Considering the scores

plots, it seems that these sources of variation in the first principal component

could be driven by the origin of the soil samples in terms of both site and
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(a) The principal component function plot for FPC1 over the entire
mid-infrared range

(b) A close-up of the 2460-530cm-1 range

Figure 3.13: The Principal Component Function plot for FPC1 rep-
resented as perturbations of the mean function
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land-use. The scores plots (Figure 3.14) corresponding to the first FPC also

exhibit some clustering. For example, there appears to be a general cluster

of pasture scores with two clear split groups of woodland sites in the scores

plot between the first and seventh FPC. This is perhaps indicative that there

could be subgroups within woodland sites which differ in their chemical moi-

eties and mineralogy in the 1300-1000cm−1 and 1880-1760 cm−1 regions. The

scores plots coloured by site also show similar clustering in the scores plots

corresponding to FPC1. Here, it seems that Bogo (black) and Talmo (red)

differ most in the ranges identified above. However, this is subjective with the

graphical presentation perhaps limiting here. In any case, it seems that there

is a visible difference between sites in the 1300-1000cm−1 and 1880-1760cm−1

wavenumber ranges. The scores plots labelled by the site and land-use inter-

action have been omitted since with six interactions it is difficult to visually

assess the presence of groupings. However, the results of the functional hy-

pothesis testing did indicate the presence of distinct groupings between the

interactions, as well as between land-use and sampling site classes.

The second principal component function (Figure 3.15a), accounting for

19.8% of the variance, identifies important variation at approximately 1900cm−1

and more noticeably at 1450cm−1. There are differences exhibited in the

scores plots of the second functional principal component with respect to

land-uses (Figure 3.14a), where there is clear clustering of woodland sites in

the negative aspect of the scores plot between FPC2 and FPC7. Similar clus-

tering of woodland scores can be viewed across all the scores plots of FPC2

indicative of soil components relating to wavenumbers around 1900cm−1 and

1450cm−1 influencing land-use differences. Interpretation of the scores plots

coloured by site is much more difficult and no obvious clustering of scores is

apparent.
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(a) Coloured by Land-use (Pasture- green, Woodland-brown)

(b) Coloured by Site (Bogo: Red, Talmo: Blue, Glenrock: Green)

Figure 3.14: Functional Scores Plots used to identify clusters of data
grouped by site and land-use
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(a) The Principal Component Function plot for FPC2 represented as
perturbations of the mean function

(b) The Principal Component Function plot for FPC3 represented as
perturbations of the mean function

Figure 3.15: FPC Function Plots for FPC2 and FPC3
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The third FPC (Figure 3.15b) contributes to explaining the variation in the

3550-3150cm−1 region accounting for 13.8% of the variation. By examination

of the scores plots it appears that this wavenumber range has less of an impact

on land-use differentiation in comparison with both FPC1 and FPC2. How-

ever, there does appear to be a strong indication of differentiation between

sites. In particular, the scores corresponding with Bogo appear to cluster in

the positive aspect of all scores plots featuring FPC3. The remaining prin-

cipal component functions (FPCs 4-7) account for the remaining variation

as summarized in Table 3.2, but their function plots appear to demonstrate

little effect on the mean function and thus are not presented here.

3.3.4 Summary

In Chapter 2, it was found that the multivariate PCA successfully reduced

the MIR spectral dataset to just eight principal components explaining 97.5%

of the total variability. Similarly, the functional PCA reduced the spectra to

just seven FPC curves and over 96% of the total variability was preserved.

However, whilst only vague class clustering was observed in the scores plots

of the multivariate PCA, there was greater evidence of class separation in

the scores of the functional PCA. Furthermore, of the seven FPC curves

extracted, the first three exhibited perturbations from the mean function.

These FPC curves were interpreted alongside their respective scores and it is

thought that the regions identified are responsible for the class separations.

Figure 3.16 illustrates the regions where these differences were found via a

functional approach.

There are 3-4 main areas of interest identified by the FPCA. FPC1 iden-

tifies the 1880-1750 and 1300-1000cm−1 ranges accounting for 28.4% of the
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Figure 3.16: Wavenumber ranges identified as the modes of functional
variation by the first three FPCs from an FPCA on the MIR data

total variation and consultation of the scores plots for this FPC seems to

suggest that these regions contain data responsible for differences between

soil sample spectra of different sites and land-uses. FPC2 accounts for 19.8%

of the total variability in the spectra and identifies two very narrow bands

of wavenumbers in which spectra appear to differ. These narrow bands at

approximately 1900 and 1450cm−1 are identified as potentially containing in-

formation which may drive differences in soil samples of different land-uses.

The third principal component accounts for 13.75% of the total variability

and identifies with a larger region of wavenumbers at the beginning of the

wavenumber range from 3550-3150cm−1. From the examination of the scores

plots, these wavenumbers are thought to explain differences between soil sam-

ples of both different land-uses and sample sites. Interestingly, these same
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general regions were informally identified by a visual inspection based on the

group functional means.

In contrast with multivariate methods, the functional PCA had the ability

to identify important wavenumbers spanning regions. Linear discriminant

analysis is too precise for the problem as it identifies distinct bands, and

the multivariate PCA requires a more subjective interpretation of principal

component loadings. The absorption regions of soil constituents are known

to span ranges of the mid-infrared spectra and so the functional approach is

found to be more coherent. Thus, by considering entire intervals of the MIR

range, aspects of the soil composition are less likely to be overlooked. The

functional approach also takes into consideration the between-curve variabil-

ity which is key to identifying differences between spectra of different classes

(i.e. site and land-use).

The application of functional F -testing also allowed statistically significant

differences between all grouping variables to be confirmed. In addition, func-

tional t-tests further indicated statistically significant differences between the

mean functions of all levels of each grouping variable. The functional t-tests

additionally enable the interpretation of p-values along the range of the spec-

tra, and thus regions of the spectra driving differences between groups could

be established for all pairs. There were 3-4 main regions where groups are

found to be statistically distinct. These regions were found to approximately

similar to those identified by FPCA in Figure 3.16.
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Chapter 4

Functional Regression Analysis

The focus up until now has been on exploring the variability of a functional

data object derived from the mid-infrared soil spectra. However, this has not

investigated how much of the variation can be explained by what is actually

in the soil. Classical statistical methods such as linear regression and analysis

of variance investigate the way in which variability in the observed data can

be explained by predictor variables. Similarly, extensions of these classical

methods in the form of functional linear regression can be employed to relate

physical wet chemistry attributes of the soil to the mid-infrared soil spectra.

The last decade or so has seen methods of partial least squares regression

(PLSR) being developed for the rapid and cost-effective prediction of soil

properties based on near-infrared and mid-infrared spectra (Janik and Raw-

son, 2009). One of the central aims of this study is the presentation of

functional regression as a possible alternative to PLSR for the prediction of

soil properties. Mid-infrared technology in conjunction with PLSR has previ-

ously been demonstrated to provide a much cheaper method of characterizing

the constituents in soil. The main interest of this chapter is to investigate

whether functional regression can equally provide a cost-effective approach
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and successfully predict components in the soil. Additionally, any benefits

of adopting a functional approach are explored.

In the first half of this chapter, a brief review of the different classes of

functional regression model are introduced, and regression models based on

derived inputs (including PLSR) are also discussed. The second half of this

chapter applies these methods and compares the functional approach to the

soil science industry standard of PLSR.

4.1 Functional Linear Regression

The models considered for analysis fall generally within the class of func-

tional regression models (Ramsay and Silverman, 1997) whereby the regres-

sion model is said to be functional when at least one of the involved variables,

either predictor or response, is functional (Febrero-Bande and Oviedo de la

Fuente, 2012). There are three broad subcategories that can be defined:

1. Function-on-Function regression (both predictors and responses are

functions)

2. Function-on-Scalar regression (responses are functions and predictors

are scalars)

3. Scalar-on-Function regression (responses are scalars and predictors are

functions)

A large literature exists for both function-on-scalar and the more widely used

scalar-on-function regression. In contrast, the literature addressing function-

on-function regression is quite sparse (Meyer, 2014). However, due to its

inapplicability to the data and research aims, function-on-function regression
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theory is omitted for this thesis. It should be noted that the majority of the

theory in this chapter follows that of Ramsay and Silverman (2005), and if the

reader desires a fuller description of the theory they should consult Chapters

12-17 of their book Functional Data Analysis. Ramsay and Silverman (2002)

also provide additional illustrations of a wide range of applications across all

functional regression types in Applied Functional Data Analysis: Methods

and Case Studies.

4.2 Scalar-on-Function Regression

In this section, the functional linear model with scalar response and func-

tional predictor is considered. However, first the classical multivariate gen-

eral model should be introduced. Interest lies in explaining the variabil-

ity observed in quantity Y by a number of other quantities or covariates,

x = (x1, x2, . . . , xp). In classical linear regression, models are often of the

form

yi =

p∑
j=0

xijβj + εi, i = 1, . . . , N (4.1)

where βj are regression parameters, xij are the covariates and εi are the error

terms. The purpose of the error term is to allow for sources of extraneous

variation such as measurement error to be accounted for in the model. Note,

when j = 0, β0 is a constant intercept term incorporated in the model. There

are several approaches which have been developed to estimate the parameters

and the simplest is based on minimizing the sum of residual squares and is

commonly known as the ordinary least squares (OLS) method. The classical

model in Equation 4.1 can be rewritten in vector form as
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y = Xβ + ε (4.2)

where y is typically a vector of observations, βββ is a vector of parameters,

X is a matrix of regressors and εεε is an error vector with mean zero. For

a scalar-on-function regression model, the vector of covariate observations

xij =(xi1, . . . , xip) in Equation 4.1 is replaced by a function xi(t), and the

model can be defined with an integral and intercept as

yi = β0 +

∫
xi(t)β(t)dt+ εi, i = 1, . . . , n. (4.3)

where the β(t) are known as the coefficient functions and β0 represents some

constant parameter.

The coefficient functions determine the effect of Xi(t) on Yi. This means that

in regions where β(t) = 0, any changes in Xi(t) have no effect on the response

and changes in Xi(t) have a greater effect on the response in regions where

|β(t)| is large (James and Zhu, 2009). This is important since it means that

the interpretation of the relationship between predictors and the response can

be challenging, especially when presented with complicated shapes of β(t).

In addition, estimates of β(t) can be accompanied by confidence intervals

which are used for determining the significance of effects.

4.3 Function-on-Scalar Regression

Under the framework of a function-on-scalar regression, there are two general

formats for predicting a functional response. There is the prediction of the

functional response with values x(t) by the standard design matrix which

is known as functional analysis of variance, or there is functional multiple
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regression by a set of scalar covariates. As in scalar-on-function regression,

the main change from a classical regression is that the regression coefficients

now become coefficient functions with values βj(t).

The theory for functional analysis of variance (FANOVA) was covered in

Chapter 3. More generally, a functional response can be predicted using a set

of scalar variables rather than just 0s and 1s representing group membership.

In some cases, a model may involve both types of predictors. However, the

most common function-on-scalar model and the one applied in this thesis

follows:

yi(t) = β0(t) +
∑

xijβj(t) + εi(t), i = 1, . . . , n (4.4)

where the βj(t) are the effects associated with scalar covariates and the εi(t)

are residual functions (curves). As with scalar-on-function regression, the

coefficients βj(t) are interpreted analogously to the coefficients of a standard

multiple linear regression. That is, βj(t) can be interpreted as the expected

change in the response for a single unit change in the predictor. However,

differing from multiple linear regression, the coefficient functions are defined

over a continuum t and are assumed smooth in t.The intercept coefficient,

β0(t), represents the effects on the response not accounted for by the covari-

ates.

4.4 Model Diagnostics and Assessment of Fit

Diagnostic procedures are just as important for functional regression as they

are in traditional models. Once a regression model has been constructed, it

is necessary to assess the adequacy of the model and confirm that the model
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fits the data well. The validity of the inference depends on the model as-

sumptions holding, and classical regression diagnostics are based on residuals

(Anscombe and Tukey, 1963). Despite this, residual diagnostics specific to

functional linear regression is a largely unexplored area. However, common

approaches to residual diagnostics are still applied and Ramsay & Silver-

man (2009) advise checking regression assumptions via residual versus fitted

values plots and normal probability plots. The most commonly used resid-

ual plot is the scatterplot of residuals versus fitted values, and it serves the

purpose of assessing whether the residuals depend in any way on the fitted

response. If there are any deviations from a random scattering of points then

this is indicative of a lack of fit.

In order to validate the performance of a regression function, it is appropriate

to use a goodness-of-fit measure, meaning how well the model fits the data.

The conventional coefficient of determination is still used within functional

regression as a performance measure. It is denoted R2 and defined as

R2 = 1− SSE

SSY
.

SSE is the sum of squares of the residuals, and SSY is the total sum of

squares where

SSE =
∑
t

(yt − ŷt)2,

SSY =
∑
t

(yt − ȳt)2,

and where

117



ȳ =
1

N

N∑
t=1

yt

is the mean of the observed data. In regression, R2 can be said to explain how

well the model approximates the data and the closer an R2 approaches the

value one the better the model fits the data. These goodness-of-fit statistics

can be calculated using functional analogues of the sums of squares, and

their inference holds in the functional regression case. In the functional case,

there is a dependence of these quantities on the continuum t that makes the

calculation of R2 different. In the functional framework, the sums of squared

errors function is calculated by

SSE(t) =
∑
i

[yi(t)− Ziβ(t)]2 ,

where Zi is a row vector of covariate values. Similarly, the sum of squares

for regression is calculated by

SSY (t) =
∑
i

[
yi(t)− X̄(t)

]2
where X̄(t) is the overall mean function. The functional analogue of the R2

can then be calculated as:

R2 = 1− SSE(t)

SSY (t)
.

However, diagnostic checks should be considered cautiously and a model does

not have to be perfect to be worthwhile. As George Box states, ‘all models

are wrong, but some are useful’ (Box, 1979). Thus, the purpose of residual

diagnostics is to check that the model is not grossly wrong (Faraway, 2006).
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4.5 Regression via Derived Inputs

There can be situations where there are a large number of inputs which are

also highly correlated. In these situations it can be of interest to produce a

smaller number of linear combinations of the original variables and then use

these new combinations as the inputs in a regression (Hastie et al., 2009).

One such method of derived inputs is Principal Components Regression.

Essentially, principal components regression uses the principal components

retained from a principal components analysis in the construction of a regres-

sion model. Similarly, partial least squares regression (PLSR) defines linear

combinations or components to be used in regression.

Partial Least Squares Regression

Similarly to PCA, Partial Least Squares Regression (PLSR) seeks to select

components that maximise the covariance between the response and selected

components (De Jong, 1993). For p predictor variables x1, x2, . . . , xp, each

PLS component is a weighted linear combination of the p covariates. These

new linear combinations are called eigenspectra or PLS loadings (Haaland

and Thomas, 1988). In PCA, the extraction of components is independent

of the response. However, PLS selects components by taking into account

their relationships with the response and the goal is to identify as few of

these components which describe most of the inherent variable information

in the response. In partial least squares regression, the extraction of the

components operates under the same constraints as PCA (Tu et al., 2011).

These include the sum of squared weights equalling one, and the orthogo-

nality of PLS components. Following extraction, the PLS components are

ranked in order of importance according to the amount of variance in the

response that they explain. For example, the first PLS component has the
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largest covariance with the response and the second PLS component has the

second largest covariance with the response.

The key difference between PCA and PLSR is that PLSR seeks the directions

that have high variance and high correlation with the response, whereas PCA

only considers the variability in the predictors (Stone, 1990; Frank, 1993).

For further reading, Hastie et al. (2009) set out an algorithm for the partial

least squares regression procedure and this can be found in Section 3.5 of

their book, The Elements of Statistical Learning.

4.5.1 Performance Measures

The performance of a PLSR model can be assessed by the coefficient of

determination (R2) between predicted and measured observations and the

root mean square error of prediction (RMSEP). A good model should have a

relatively high R2 and a low RMSEP. In this study, the optimum number of

PLS components were chosen according to the lowest RMSEP achieved via

a leave-one-out cross-validated approach. RMSEP is calculated as:

RMSEP =

√∑n
i=n(yi − ypredicted)2

n

where n is the number of points used in the calculation, yi is the observed

value and ypredicted are the predicted values.

4.6 Applied Functional Regression

In this section, methods of Functional Linear Regression are used to relate the

functional data objects formed from the MIR spectra data to the wet chem-

istry variables in Table 4.1. These wet chemistry variables were recorded
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by standard wet chemistry laboratory methods and when it came to the re-

gression analyses some of these variables were transformed before the fitting

procedure. These transformations are also outlined in Table 4.1, and they

were performed in order to make each of their distributions approximately

symmetric. This table also presents the range of values for which these wet

chemistry values were observed.

Wet Chemistry Variables Units Transformations Min. Max

pH pH - 4.64 6.35
Moisture % - 6.74 38.67
Carbon mg/g Square-Root 3.21 8.92
Nitrogen mg/g Square-Root 0.57 2.07
Total Dissolved Nitrogen mg/g - 4.53 76.90
Dissolved Organic Nitrogen mg/g - 1.00 44.10
Amino-N mg/g Log 0.06 2.62
NH4-N mg/g Log -1.90 4.33
NO3.N mg/g Log -4.6050 1.5830
Biomass N mg/g - 2.00 115.00
Total Dissolved Carbon mg/g - 38.49 276.40
Microbial Carbon mg/g - 3.98 984.20
Inorganic Phosphorus mg/g - 2.40 129.70
Organic Phosphorus mg/g - 21.20 347.30

Table 4.1: The wet chemistry variables, their transformations, units
and approximate ranges

All functional regression fitting and statistical analyses including confidence

intervals for regression coefficients and goodness-of-fit statistics were imple-

mented using the fda package (Ramsay and Silverman, 2012). Partial least

squares regression was performed using the pls package (Mevik, 2007).

4.6.1 Function-on-Scalar Regression

This section explores function-on-scalar regression whereby the MIR spectra

is collectively predicted by all the scalar covariates in Table 4.1 together.
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Following Equation 4.4, the function-on-scalar regression model was of the

following form:

yi(t) = β0 + β1(t)pH + . . . β14(t)Organic Phosphorus + ε(t)

The main focus of any functional regression is the estimation of the regres-

sion coefficients, and the coefficient functions associated with the prediction

of the MIR spectra are displayed in Figure 4.1 (top).

The intercept function is taken to represent the overall mean trend over all

covariates and thus generally follows the shape of the original smooth spectra

in Figure 4.1 (bottom). However, sizeable differences can be observed in ap-

proximate wavenumber regions 3700-3000cm−1 and 1300-1000cm−1. These

regions are where the coefficient functions appear to demonstrate some form

of influence on the response. However, at this scale and plotted alongside the

intercept function it is difficult to get a feel for the size of the effects of each

coefficient function on the MIR spectra. Thus, Figure 4.2 presents the same

coefficient functions, zoomed in and plotted without the intercept function.

It is clear to see that each covariate appears to have a different effect on

the response and the strength of these effects varies across the wavenumber

range. However, with some coefficient functions maintaining values of zero

across the entire range it appears that some of the wet chemistry variables

have no influence on the MIR spectra. There are also some covariates which

have greater effects across different regions of the wavenumber range.

For example, it appears that pH (red) has a minimal effect on the spectra in

the middle region of the range but at other regions both negative and posi-

tive effects may be observed. It can be observed that Nitrogen (light blue)
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Figure 4.1: Function-on-scalar coefficient function estimates (top)
and the smoothed spectra (bottom)
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Figure 4.2: Function-on-scalar coefficient function estimates plotted
without the intercept function

has the greatest influence on the response than any other covariate with its

maximum value of approximately 0.45 at a wavenumber around 1000cm−1.

Although other covariates such as pH, Carbon, Amino-N and NH4-N have

some form of influence in the surrounding regions, it appears that Nitrogen

has the widest range of influence with greatest effect on the response from

approximately 1550-900cm−1. Nitrogen also exhibits effects of a large magni-

tude at around 3600-3500cm−1. Most of the covariate effects appear to have

greatest magnitude at either end of the spectra, and this coincides with the

regions whereby organic and mineral signals may be found. The shapes of

the β(t) in Figure 4.2 are quite complicated and thus interpretation of the

predictor-response relationship is difficult. If any of the β(t) had been con-

stant for any given non-zero region then the effect of the associated covariate

on the response would be considered constant within that wavenumber re-
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gion. Similarly, if the coefficient function had been exactly linear for any

given range then the change in the effect of the covariate would be constant

over that region. The coefficient function plots allow the magnitude of each

covariate effect to be investigated across the mid-infrared range. However,

confidence intervals of the coefficient functions are able to confirm the signif-

icance of these effects.

Upon study of the covariate effects with associated confidence intervals it

was found that Total Dissolved Nitrogen (TDN), Moisture, Dissolved Or-

ganic Nitrogen (DON), Biomass-N, Total Dissolved Carbon (TDC), Micro-

bial Carbon, Inorganic Phosphorus and Organic Phosphorus have had no

influence on the functional MIR spectra. This is demonstrated by their coef-

ficient function estimate either not diverging at all from the zero line or with

zero being contained in their confidence interval in the minimal instances

that it does diverge. For all other covariates, zero was not contained in their

respective confidence intervals for at least some interval along the range.

This allowed for conclusions to be made about where along the wavenumber

range a covariate played a strong role in prediction. The most influenc-

ing covariates were pH, Carbon (Square-Root), Nitrogen (Square-Root) and

Amino-N. Most of their influences on the response can be indicated to come

from either end of the spectra with the greatest influence coming from the

1500-500cm−1 region. Figure 4.3 gives the coefficient function estimate with

confidence intervals associated with Nitrogen. Amongst all influential vari-

ables, the confidence intervals were all quite variable with respect to their

width but Nitrogen in particular exhibited the widest intervals. Again, Ni-

trogen exhibits the greatest influence on the response in the 1500-500cm−1

region with additional significant influence around 3600cm−1. Nitrogen also
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Figure 4.3: Function-on-scalar coefficient function estimate with 95%
confidence interval for Nitrogen

provides a perfect example of the kind of complicated shapes which can be

exhibited in a coefficient function plot.

Suitable diagnostic checks on the residuals were performed as recommended

by Ramsay & Silverman (2002) to make sure there were no residual patterns

remaining. Figure 4.4a gives the fitted values from the functional regression

with the residual curves (grey) over the mid-infrared range. The residual

checks did not reveal anything unusual here but it is worth noting that the

residuals appear to vary across the mid-infrared range with the largest values

noted around 1500-1000cm−1. The residual functions are evaluated at a fine

grid of points with residuals plotted against the predictor value for each t.

Figure 4.4b gives the first nine of such plots. These residual checks did not

reveal anything unusual and no curvature or lack of model fit was detected.

Whilst nothing irregular was detected there may still be potential to simplify

the model. However, it is difficult to simplify the current model as there
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(a) Fitted values resulting from the Function-on-scalar regression with residual
curves in grey

(b) Fine Grid of Residuals from the function-on-scalar regression analysis for
argument values t=1, . . . , 9.

Figure 4.4: Functional Residual Diagnostic Plots
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is a lack of variable selection methods within function-on-scalar regression

(Chen and Ogden, 2016). However, since there were a considerable number of

covariates which had no effect on the response, as indicated by the coefficient

function plots and associated confidence intervals, an alternative model was

fitted without these particular covariates. The new model only included

an intercept term along with the scalar covariates; pH, Carbon (Square-

root), Nitrogen (Square-root), Amino-N (log), NH4-N (log) and NO3-N (log).

The results of this regression were near identical to the full model and all

covariates appeared to have the same effects as found by the original model.

Function-on-Scalar Regression using Principal Components

Complicated by the dimensionality of the response and the correlation struc-

ture of the residuals, variable selection is difficult in the functional setting

(Chen and Ogden, 2016). Few approaches considering variable selection in

the context of functional regression have been proposed in current literature.

In an attempt at modelling the response using only the most essential pre-

dictors, Principal Component Regression was investigated.

By the same retention criteria of Chapter 2, a PCA on the fourteen wet

chemistry variables successfully reduced the data to just four principal com-

ponents which cumulatively accounted for 99.3% of the variability in the

original data. These principal components were retained and had a Vari-

max rotation applied to improve their interpretability. The loadings plots

for these principal components are given in Figure 4.5. These loadings plots

indicate which variables are dominant within each principal component. For

example, 76.4% of the total variability in the data is explained by the first

principal component (PC1), and this is dominated by the 12th variable which
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Figure 4.5: Loadings for the principal components retained from a
PCA on the wet chemistry dataset

corresponds to Microbial Carbon (Table 1.2). Similarly, Organic Phosphorus,

Total Dissolved Carbon and Inorganic Phosphorus dominate the remaining

principal components which respectively account for 16.3%, 5.4% and 0.01%

of the total variability. Subsequently, these principal components were ex-

tracted and used in a function-on-scalar regression to predict the functional

spectral response, yi(t):

yi(t) = β0 + β1(t)PC1 + . . . β4(t)PC4 + ε(t)

Coefficient function plots were similarly produced and these are displayed in

Figure 4.6. By using the principal components, it is clear to observe that all

principal component coefficient functions have some form of influence on the
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spectral response with values falling above and below the zero line and the

confidence intervals confirming the presence of a covariate effect. However,

consulting the values of the y-axis, the magnitude of these covariate effects

is very small. The same diagnostic checks were performed as before and

the assumptions appeared reasonable. It should be noted that the principal

components analysis has not picked up Nitrogen as an important predictor,

where in the original function-on-scalar regression Nitrogen was found to be

the most influential. However, one reason for this could be that PCA only

considers the variability in the explanatory variables before they are fed into

the regression.

Alternatively, the loadings from the PCA in Figure 4.5 could be used to

identify the wet chemistry variables which contain most of the variability

in the data, and these variables could be used in a functional regression.

The loadings had indicated that these variables were Microbial Carbon, To-

tal Dissolved Carbon, Inorganic Phosphorus and Organic Phosphorus. A

function-on-scalar regression was explored for the prediction of the spectra

using just these variables. However, the coefficient function plots achieved

very similar shapes carrying the same interpretations.
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Figure 4.6: Coefficient function estimates with associated 95% con-
fidence intervals from a function-on-scalar regression on the retained

principal components from a PCA on the wet chemistry dataset

Function-on-Scalar Regression Summary

In summary, function-on-scalar regression has been successfully applied to

these type of data and it has been shown that a model can be established

between the functional MIR response and scalar wet chemistry covariates.

Additionally, it has been shown that covariates have different effects on a re-

sponse across the wavenumber range both in terms of magnitude and polarity.

However, this section has been primarily exploratory to introduce functional

regression and it’s associated output. There is limited use in predicting an

MIR curve from a series of wet chemistry variables. The primary aims of the

study have much more interest in the scalar-on-function regression whereby

the reverse is considered. In this form, the components in the soil may be

predicted by the MIR spectra. In this way, soil samples can be analysed via
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MIR spectra to identify soils which contain valuable chemical compositions.

For example, a soil with greater carbon content may be of more value with

respect for agricultural needs.

4.6.2 Scalar-on-Function Regression

The problem of predicting continuous scalar outcomes from functional pre-

dictors has received high levels of interest in recent years, driven partly by the

collection of increasingly larger complex datasets and an increase in compu-

tational power (Goldsmith and Scheipl, 2014). Despite the increased interest

and development in this area of statistics, functional regression is not widely

applied in soil science for the prediction of physical soil properties. This

section describes a scalar-on-function regression approach for the prediction

of the fourteen wet chemistry variables introduced in the previous sections.

The value of this type of functional regression within soil science is the abil-

ity to use the cheap method of MIR spectrscopy to estimate the chemical

composition of a soil; avoiding rigorous, time consuming and expensive wet

chemistry techniques.

As with classical regression analyses, the fit of scalar-on-function models can

be summarized in terms of R2 statistics (Ramsay & Silverman, 2005). For

each scalar-on-function regression, the coefficients of determination (R2) were

obtained and these are presented in Table 4.2. The largest coefficients of de-

termination are reported for the models associated with Carbon, Nitrogen

and Organic Phosphorus with R2 values of 0.625, 0.611 and 0.550 respec-

tively. These values indicate that their functional linear relationships with

the spectra are moderately strong. The relationships which appear poorest

are with the models predicting Amino-N and NH4-N compounds, giving R2
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values of just 0.106 and 0.065.

Wet Chemistry Variable R2

pH 0.381

Moisture 0.258

Carbon (C) 0.625

Nitrogen (N) 0.611

Total Dissolved Nitrogen 0.153

Dissolved Organic Nitrogen (DON) 0.150

Amino-N 0.106

NH4-N 0.065

NO3-N 0.122

Biomass-N 0.275

Total Dissolved Carbon (TDC) 0.117

Microbial Carbon 0.246

Inorganic Phosphorus 0.335

Organic Phosphorus 0.550

Table 4.2: Soil chemical, physical and mineralogical properties, with
indicative coefficients of determination (R2) or capability predicted us-

ing MIR

Fitted value plots were produced following each regression and a couple ex-

amples are explored here. The fitted value plot for the functional linear

model predicting Carbon is given in Figure 4.7. There appears to be consid-

erable agreement between the two methods with a moderately strong positive

linear correlation. With an R2 of 0.625, the functional regression model pre-

dicting soil carbon exhibited the strongest relationship to the MIR spectra.

However, the majority of the other soil quantities exhibited only weak linear
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correlations with the spectra indicating poor predictive performance.

Figure 4.7: Fitted Value Plot associated with the scalar-on-function
regression predicting Carbon, coloured by site and land-use ID

Additionally, the fitted values plots indicate group memberships (i.e. site

and land-use) and this allowed for the investigation of possible groupings

and the informal assessment of whether certain classes of the spectra should

be modelled separately. In the Carbon example of Figure 4.7, the fitted val-

ues for the pasture site of Bogo (red) tend to group together having generally

lower Carbon values. Values for the pasture sites of Glenrock (green) and

Talmo (blue) have congregated around the middle portion of the fitted line.

Meanwhile all woodland sites in teal, pink and yellow appear to straddle the

fitted line across the entire range. This suggests that there is reason to form

functional linear regression models separately according to the type of land-

use the soil samples originate from. By splitting the data and performing

regression analysis on each land-use grouping separately any improvements
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in prediction performance and model fit can be assessed.

The prediction of moisture is another example where differences between

sampling locations is highlighted. In Figure 4.8, the fitted values associated

with the pasture site of Talmo are elevated above the fitted line. For what-

ever reason, the soil samples taken from this sampling location are far more

saturated than the rest of the samples. Thus there is scope to remove this

grouping entirely, or alternatively model based on land-use splits of the data.

Studying the residual plots for the moisture regression model also revealed

poor fit (Figure 4.9a). The residuals versus fitted values plot exhibits a clus-

tering of points and no random scatter showing that there is some structure

in the data which has not been accounted for. Upon exclusion of the Talmo

pasture data, the residuals behave satisfactorily (Figure 4.9b). The fitted

values plot for this subset, Figure 4.8 (bottom), also indicates a weak posi-

tive linear relationship between the lab-measured and the predicted values.

Similar residual analysis was conducted for all regression models, however no

irregularities were discovered.
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Figure 4.8: Fitted value plots for the prediction of moisture with data
on all sites (top) and with the exclusion of Talmo pasture data (bottom)
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(a) Residual plots from the regression for the prediction of moisture

using all data

(b) Residual plots from the regression for the prediction of moisture

with the exclusion of the Talmo pasture data

Figure 4.9: Residual Diagnostic Plots with and without the inclusion
of Talmo Pasture Data
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4.6.3 Scalar-on-Function Regression by land-use

The fitted values plots gave some evidence for the rationale behind con-

structing separate regression models based on different land-use types. Ad-

ditionally, the functional F -tests in Chapter 3 also indicated that there were

significant differences between woodland and pasture groups of spectra.

In line with the previous section, Table 4.3 presents the R2 values for regres-

sion models based on the three subsets of the data investigated. Following

the separation of land-use types it was found that higher R2 values were

achievable. The R2 values highlighted in bold indicate that in comparison

with the original regression, the overall fit has been improved. The values

not highlighted in bold exhibited poorer fit than the original regression model.

Wet Chemistry Variable R2 R2 (woodland) R2 (pasture)

pH 0.381 0.535 0.459
Moisture 0.258 0.200 0.394
Sqrt Carbon (C) 0.625 0.686 0.720
Sqrt Nitrogen (N) 0.611 0.658 0.538
Total Dissolved Nitrogen 0.153 0.187 0.028
Dissolved Organic Nitrogen (DON) 0.150 0.215 0.079
LogAmino-N 0.106 0.227 0.079
Log NH4-N 0.065 0.191 0.119
Log NO3.N 0.122 0.075 0.136
Biomass N 0.275 0.363 0.190
Total Dissolved Carbon (TDC) 0.117 0.326 0.084
Microbial Carbon 0.246 0.330 0.185
Inorganic Phosphorus 0.335 0.377 0.631
Organic Phosphorus 0.550 0.557 0.602

Table 4.3: Soil chemical, physical and mineralogical properties, with
indicative coefficients of determination (R2) or capability predicted us-

ing MIR
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Woodland Models: For the woodland data specifically, in almost all cases

the model fit improved with the exceptions of models predicting N03-N and

Moisture. Similarly to the original regressions, the models associated with

Carbon, Nitrogen and Organic phosphorus achieved the highest coefficients of

determination with R2 values of 0.686, 0.658 and 0.557 respectively. Interest-

ingly, the most notable improvement was with the model for Total Dissolved

Carbon achieving an R2 value of 0.326 contrasting with a value of 0.117 from

the original model. The pH regression also improved to an R2 of 0.535 in

contrast to a previous value of 0.381. This example is presented in the fitted

value plots in Figure 4.10.

The top panel gives the original fitted values plot, the centre panel gives

the fitted values plot corresponding to the pasture regression model and the

lower panel gives the plot corresponding to the woodland specific model. It

is observed that higher R2 values are achieved by splitting the data into

these separate models. The original regression achieved an R2 value of 0.381

and following the separation, R2 values of 0.535 and 0.459 were realised for

woodland and pasture regression models respectively. A stronger positive

linear relationship can be observed with the fitted values of the Woodland

model in Figure 4.10 (bottom). This is exhibited by a greater density of

clustering around the fitted line. In contrast, the spread of points in the

Pasture model’s fitted value plot is slightly wider. However, despite the

improved R2 values in the land-use specific models, the residual diagnostics

revealed that the original model still performed adequately in capturing the

relationship between pH values and the spectra.
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Figure 4.10: Fitted values plots for the regression models predicting
pH using all data (top), only pasture data (centre) and only woodland

data (bottom).
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Pasture Models: Constructing models based on the pasture data alone

did not highlight the same overall improvements that were observed with

the woodland models. Only half of all pasture models achieved better fit

than their original models. However, in the cases that the changes in R2

values were negative, these changes were mostly negligible and these were

found with original models which were already poorly fitting. Following the

changes in fit reported in Table 4.3, the overall conclusions about which

models achieved the best fit remained the same. Interestingly, performing

separate regressions appears to have considerably improved the prediction of

Inorganic Phosphorus. In the original regression model for the prediction of

Inorganic Phosphorus, an R2 value of 0.335 was achieved but following the

split, R2 values of 0.377 and 0.631 were realized for the woodland and pas-

ture regressions respectively. Although the fit of the woodland model has not

improved by much, the fit of the pasture model has considerably improved.

Similarly, Figure 4.11 gives all the fitted value plots for the regression models

involving Inorganic Phosphorus. The fitted values of the pasture model are

observed to follow the fitted line more tightly than those of the woodland

model. The data also appear to be associated with different ranges and this

can be more easily visualized by boxplot comparison in Figure 4.12. This

gives further reason to investigate regression models per land-use. As before,

all the relevant diagnostic checks were performed and assumptions appeared

justified for all models constructed.
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Figure 4.11: Fitted values plots for the regression models predicting
Inorganic Phosphorus using all data (top), only pasture data (centre)

and only woodland data (bottom).
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Figure 4.12: Boxplots of Inorganic Phosphorus Wet Chemistry Data
illustrating the different ranges observed between land-uses
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Interpretation of Coefficient Function Plots

Following the identification of the best fitting models the focus turns to

the coefficient functions, β(t), and their interpretation. For illustration, the

reported interpretations are limited to the top two best fitting models as

indicated by the coefficients of determination. These models were developed

to predict Carbon and Nitrogen. A summary of the coefficients of determi-

nation for these regression models are given in Table 4.4.

Wet Chemistry Variable R2 R2 (woodland model) R2 (pasture model)

Square-Root Carbon (C) 0.625 0.686 0.720

Square-Root Nitrogen (N) 0.611 0.658 0.538

Table 4.4: Soil chemical, physical and mineralogical properties, with
indicative coefficients of determination (R2) or capability predicted us-

ing MIR

In the scalar-on-function set-up the coefficient plots indicate the effect that

the functional MIR spectra has on a particular soil wet chemistry response

at any given wavenumber. As a reminder, the natural interpretation of the

coefficient function, β(t), is that the locations t with largest |β(t)| are most

influential to the response. That is, regions of the coefficient function plots

where β(t) 6= 0 correspond to the regions of the spectra where a relationship

between the MIR spectra, X(t), and corresponding wet chemistry response

exist. Conversely, where β(t) = 0 there is thought to be no indication of a

relationship.

Given that each scalar-on-function regression was performed with only a sin-

gle functional covariate, there is only one coefficient function plot associated
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with each regression model. In addition, confidence intervals for the coeffi-

cient functions were produced in order to allow conclusions about where along

the wavenumber axis a covariate plays a strong role in prediction. Where the

confidence intervals contain zero it can be said that the effect of the MIR

spectra on the respective wet chemistry response is not statistically signifi-

cant. In contrast, regions whereby the confidence interval does not contain

zero are thought to be important in prediction.

Carbon Model Coefficient Function Estimates:

The coefficient function plots with associated 95% pointwise confidence in-

tervals for the regression models concerned with the prediction of Carbon are

given in Figure 4.13. To reduce the chances of obtaining any Type I errors

(false-positive results), Bonferroni corrections were made for the calculation

of the pointwise intervals. The confidence intervals do not contain the value

zero at any point and thus reveal that the functional MIR spectra has a

significant influence on Carbon values across the entire spectrum.

The Bonferroni correction is used to reduce the chances of obtaining false-

positive results (type I errors) when multiple pair wise tests are performed

on a single set of dat

However, the shapes of the coefficient functions indicate where the spectra

has the greatest effect on Carbon. The coefficient function plot from the

functional regression on the entire dataset (Figure 4.13 (top)) shows that

the greatest influence is exhibited at the beginning of the spectra at around

4000cm−1. This influence then diminishes with the weakest effect exhibited

around 3000cm−1. The coefficient estimate then drops to around a −0.15

effect on Carbon and remains steadily around this value for the remainder

of the range (2000-450cm−1).
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Figure 4.13: Coefficient Function Estimates with confidence intervals
from the full Carbon Regression Model (top), pasture regression model

(centre), and woodland regression model (bottom).
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The shapes of the coefficient functions for the land-use subsets are very simi-

lar and this suggests that similar relationships exist between the spectra and

the Carbon responses of either land-use type. However, the confidence inter-

val provided for the woodland estimate appears slightly wider than that of

the pasture estimate. This suggests that pasture functional regression models

can achieve higher accuracy in prediction. The pasture coefficient function

estimate (Figure 4.13 (centre)) also appears the closest in shape to that of the

general model. The estimates for the woodland coefficient function appear

slightly larger in absolute value and thus have a greater effect on the response.

Nitrogen Model Coefficient Function Estimates:

The coefficient function plots with associated confidence intervals for the

regression models concerned with the prediction of Nitrogen are given in

Figure 4.14. Each coefficient function exhibits a very similar shape and gives

an overall negative effect on the Nitrogen responses at all points along the

spectral range. Whilst the construction of separate regression models per

land-use did not have much of an effect on the estimates of Carbon, this is

not the case for Nitrogen. Study of the confidence intervals indicated that

the effects observed in the coefficient function of the original model are not

statistically significant. However, the confidence intervals of the pasture and

woodland models indicated statistically significant negative effects on Nitro-

gen across the entire spectral range.

The shapes of the coefficient function estimates remain very similar in the

new models. However, confidence intervals have become a lot tighter and

zero is not contained within the intervals. This shows that there has been
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a benefit to constructing models separately by land-use type. The spectra

is now shown to have a significant effect on the Nitrogen response in each

pasture and woodland model. For both cases however, it appears that the

same areas of the spectra are important for the prediction of Nitrogen and

have similar influence on the response.

4.6.4 Alternative Functional Data Representation for

Scalar-on-Function Regression

In a brief investigation into the representation of the functional data it ap-

pears that the level of smoothing has influenced the prediction performance

of the functional regression models of the previous section. Originally, the

spectral data were smoothed via B-splines with k = 45 basis functions. The

placement of knots were irregularly spaced corresponding to the areas of high-

est curvature in the spectra. By varying k and keeping the placement of knots

equal across the argument range, various functional data representations of

the spectra were obtained. Scalar-on-function models were constructed using

these new functional data and their prediction performance is presented in

Table 4.5.

Through increasing k larger coefficients of determination can be achieved

by the scalar-on-function regression models. For example, the functional

regression models predicting Carbon and Nitrogen achieved R2 values of

0.62 and 0.61 respectively in the original model. By changing the smoothing

design and increasing the number of basis functions to k = 200 then these R2

values increase to 0.95 and 0.93 for Carbon and Nitrogen respectively. These

improvements in R2 are achieved for all models through increasing k and

using an equal spacing approach for knot placement. However, caution must
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Figure 4.14: Coefficient Function Estimates with confidence intervals
from the full Nitrogen Regression Model (top), pasture regression model

(centre), and woodland regression model (bottom).
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be taken in interpreting these results. By increasing k, the level of smoothing

is altered such that more flexibility is allowed and there could be a case of

overfitting with a large k. Thus, there needs to be care in choosing k such

that the resulting model does not describe random error or noise instead of

the underlying relationship.

Model Response R2 (original) R2 (k=100) R2 (k=150) R2 (k=200)

pH 0.38 0.73 0.79 0.82

Moisture 0.26 0.43 0.66 0.72

Carbon 0.62 0.80 0.94 0.95

Nitrogen 0.61 0.77 0.91 0.93

TDN 0.15 0.13 0.17 0.38

DON 0.15 0.18 0.31 0.40

Amino-N 0.11 0.15 0.23 0.35

NH4-N 0.07 0.19 0.28 0.37

N03-N 0.12 0.26 0.37 0.40

Biomass-N 0.28 0.31 0.62 0.65

TDC 0.12 0.18 0.28 0.38

Microbial Carbon 0.25 0.37 0.48 0.55

Inorganic Phosphorus 0.34 0.47 0.62 0.64

Organic Phosphorus 0.55 0.67 0.83 0.84

Table 4.5: Coefficients of Determination obtained from Scalar-on-
Function Regression Models with different levels of smoothing applied

to the functional data object
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4.7 Applied Partial Least Squares Regression

It has already been established that Partial Least Squares Regression (PLSR)

is the industry standard for the characterization of soil spectra and has been

successful in the prediction of a multitude of soil consituents. In this sec-

tion, prediction models are developed using PLSR to investigate what is

currently acheivable without a functional regression approach. PLSR is a

method which reduces the number of predictor variables to a smaller set of

uncorrelated components and carries out least squares regression on these

components. Often, PLSR is used when the predictor variables are highly

collinear and this is reason for its application to soil spectral data with highly

correlated wavenumber variables.

In examining the prediction performance of regression models, the original

dataset is often split into training and test datasets. The training data are

used to estimate and fine-tune the parameters in a model, while the test

sets are used to validate model performance. Thus, a test set is kept en-

tirely independent from the training set. However, this approach was not

adopted in evaluating the performance of the functional regression models

of the previous section. This would have involved the construction of many

different functional data representations, and comparisons between models

with different levels of smoothing applied to their spectral responses would

not have been permitted. In this section, the original data were randomly

split so that 75% of the total observations were used in all training datasets

with the remaining 25% making up the test datasets.

In building a PLS regression model, an important part of the process is

selecting the optimal number of components. Initially, PLS models were
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constructed using the training datasets and allowed as many as 20 compo-

nents to be considered. The optimal models for each soil property were then

determined by choosing the number of components that gave the first local

minimum in cross-validated root mean squared error of prediction (RMSEP).

Figure 4.15 (left) gives a plot of the RMSEP against the number of compo-

nents for the general PLS training model concerning the prediction of Carbon.

Figure 4.15: Plot of the root mean square error of prediction (left) and
coefficient of determination (right) against the number of components

retained in a PLS regression model for Carbon.

The first local minimum RMSEP can be observed when 10 components con-

tribute to the PLS model. Thus, only the first 10 components are retained in

the prediction model for Carbon. Figure 4.15 (right) demonstrates how the

number of components retained affects the R2 value which indicates goodness

of fit. The first two components in the PLS model are able to explain approx-

imately 70% of the relationship between the original predictor space and the

response variable. However, the optimal model is chosen with 10 components
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and achieves an R2 value of 0.95. Thereafter, any additional components do

not add greatly to the R2. In general, a PLS regression model is thought to

provide significant and good predictions when R2 is greater than 0.5. Thus,

the model for the prediction of Carbon appears to be a very good fitting

model. Training models were constructed in the same manner for the pre-

diction of all wet chemistry variables. However, all these training models

require to have their performance validated using the test sets of previously

unseen data.

The prediction equations obtained from the PLS training models were ex-

tracted and applied to the validation test sets. The predictive abilities of the

models were then assessed through the coefficients of determination for both

training and test data. The Rc
2 values inform on the performance of the

PLSR on the training data and the Rv
2 values indicate how well the models

perform on the test data. These coefficients of determination indicated that

successful prediction and better fitting models were found with the same core

soil property variables as found by the functional linear regression models.

These were for Carbon, Nitrogen, Organic Phosphorus and Inorganic Phos-

phorus. Additionally, PLS regression also found good predictive ability for

Moisture and pH. Table 4.6 presents the coefficients of determination ob-

tained. The soil property with best behaviour and best fitting relationship

was Nitrogen. This model achieved an R2
c value of 0.95 with the training

data and excellent validation performance with R2
v= 0.92. Closely following,

the PLS model predicting Carbon achieved coefficients of determination of

0.94 and 0.87 in the calibration (training) and validation subsets respectively.

To illustrate the excellent performance of the PLS models in the prediction

of Carbon and Nitrogen, Figure 4.16 presents their Observed vs Predicted

value plots.
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Wet Chemistry Variable R2
c R2

v

pH 0.80 0.81

Moisture 0.75 0.72

Carbon 0.94 0.87

Nitrogen 0.95 0.92

Inorganic Phosphorus 0.53 0.61

Organic Phosphorus 0.79 0.88

Table 4.6: Coefficients of Determination from PLSR models using
calibration (c) and validation (v) data

Figure 4.16: Observed vs Predicted Values for Carbon (left) and
Nitrogen (right) PLSR models with y = x line

These plots demonstrate the prediction performance of the models con-

structed using the training data evaluated on the validation subsets for each

variable. In both examples, all points appear to follow the target line closely

with no indication of curvature or other anomalies. In particular, the points

corresponding with Nitrogen estimates appear to follow the line y = x very
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tightly. This is reflected in the R2
v values, with a superior R2

v= 0.92 achieved

in the prediction of Nitrogen compared with R2
v= 0.87 from the prediction

of Carbon. The remaining wet chemistry variables of Table 4.6 all exhibited

good behaviour with all R2 values greater than 0.5. All other PLS models

exhibited low values of R2
v and poor predictive ability of their respective soil

properties.

Figure 4.17 gives the loadings for the first two PLS components from the PLS

model predicting Carbon. These PLS components cumulatively represent

66.2% of the total variability and individually explain the most variability

of all the PLS components. These components can be given a physically

meaningful interpretation by inspecting which variables they weight most

heavily. Similarly to PCA, it is possible to interpret the intensity peaks of

the PLS loadings in terms of compounds present in the soil.

Figure 4.17: Loadings for PLS Component 1 and PLS Component 2
from the PLS regression model for the prediction of Carbon
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4.8 Summary

In this chapter, two forms of functional linear regression were successfully

applied to relate the MIR spectra to the wet chemistry. Function-on-scalar

regression found that the scalar covariates associated with pH, Amino-N,

Carbon and Nitrogen had the most influence on the MIR spectra with the

remaining covariates having minimal or no effect on the response. Similarly, it

was shown that principal components could be incorporated into a function-

on-scalar regression model. However, different scalar covariates were identi-

fied as having the greatest influence on the spectra by this method. Since

PCA only identifies components which account for the total variability in

the wet chemistry dataset, this does not necessarily mean that the variables

identified by this approach are those that are most strongly related to the

response. Following on from function-on-scalar regression, the more inter-

esting application of scalar-on-function regression was applied. The models

constructed in this approach achieved best prediction performance for scalar

responses characterized by Carbon, Nitrogen, Organic Phosphorus and Inor-

ganic Phosphorus. Furthermore, performing scalar-on-function regression on

a land-use basis was found to achieve higher prediction performance. This

was especially true for regression models based on pasture data. The influ-

ence of the MIR spectra on the prediction of wet chemistry was examined via

coefficient function plots for each of the soil variables. It was found that the

MIR spectra had different intensities of influence depending on the wavenum-

ber region considered. In a brief investigation into different functional data

representations of the soil spectra it was found that the level of smoothing

has influenced the prediction performance of the scalar-on-function regres-

sion models. It was found that by varying k and standardizing the equal

placement of knots, greater coefficients of determination could be achieved.
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Furthermore, the results of partial least squares regression mirrored that

of the scalar-on-function regression models in terms of the most successful

predictions. The best predictive ability was found for Carbon, Nitrogen,

Organic Phosphorus and Inorganic Phosphorus. Additionally, PLSR demon-

strated successful prediction performance for Moisture and pH. In terms of

fit, the PLSR models appeared to outperform the original scalar-on-function

models; achieving higher R2 values across the board. However, with k= 200

the prediction performances of scalar-on-function regression models actually

appear to rival that of PLSR. For example, the functional regression model

predicting Nitrogen (k= 200) attains an R2 value of 0.93 and the correspond-

ing model via PLSR attains an R2
v of 0.92. By allowing more flexibility in the

smooth representation of the functional data, functional regression models

can have greater prediction performance.
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Chapter 5

Findings and Conclusions

5.1 Introduction

Functional data analysis provides an alternate way of studying continuous

data, recognising that it is sometimes more natural, and often fruitful, to

view a collection of data points as observed realisations of random functions.

The evolution of data collection technologies is allowing vast amounts of

data to be recorded and often at a large number of finely spaced observation

points. These new data collection capabilities strengthen the justification

for taking a functional approach across a wide range of disciplines. Further-

more, functional data analysis provides access to many functional equivalents

of methods currently used in chemometrics, with the benefits of no strong

assumptions regarding neighbouring observations.

Motivated by problems of MIR diffuse reflectance spectroscopy for the pre-

diction of soil properties, this thesis explored functional data applications to

the mid-infrared spectra of soil samples. Traditionally, classical multivariate

approaches such as linear discriminant analysis, principal component analy-

sis and partial least squares regression are used to explore the soil spectra.
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In particular, these multivariate approaches are used in conjunction with

mid-infrared spectroscopy as a cost effective means of characterizing the soil

in contrast with expensive laboratory procedures. In soil science, the use of

functional data analysis has been under-represented and the focus remains

on these standard multivariate approaches. This is despite the fact that the

functional data analysis methods appear more theoretically coherent, espe-

cially with spectral data being inherently functional in nature. Furthermore,

functional data anaysis makes no assumption of independence between adja-

cent observations- an assumption often violated by the classical approaches.

5.2 Methods Discussion

5.2.1 Multivariate Methods

The thesis began with an investigation into standard multivariate approaches

to explore the soil spectra and to give a baseline of what is currently achiev-

able without FDA. Principal Component Analysis successfully reduced the

high-dimensional spectra defined at 921 wavenumbers to a set of just eight

wavenumber variables (principal components). This is a massive reduction

in dimensionality and a high percentage (97.5%) of the total variability in

the data was preserved. Additionally, with the combined study of loadings

and scores plots, it was possible to identify wavenumbers with spectral differ-

ences depending on site/land-use groupings. Principal component analyses

on independent groups of spectra found that the clearest separations could

be found between land-uses within sampling sites. However, these differences

were slight and made for subjective inferences to be made based on loadings

plots. Likewise, stepwise linear discriminant analysis identified wavenumbers

responsible for class separations in regions not dissimilar to those identified
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by PCA. The classification rates achieved by the linear discriminant analyses

were also very high. Similarly, support vector machines demonstrated high

classification rates. However, the technique was very black-box in nature and

did not inform graphically, or otherwise, as to the locations along the spectra

which may be of interest.

There has been evidence in recent literature of the successful prediction of a

wide range of soil quantities via Partial Least Squares Regression. This tech-

nique was also applied in this thesis and found particularly successful in the

prediction of Carbon, Nitrogen, Organic Phosphorus, Inorganic Phosphorus,

Moisture and soil pH. The PLS models predicting these soil properties were

evaluated on test datasets via coefficients of determination.

5.2.2 Functional Data Analyses

In place of working with discrete data, the abilities of functional data anal-

yses were showcased from Chapter 3. Taking advantage of the smooth func-

tions underlying the data, various methods of functional data analysis proved

successful. Functional Principal Component Analysis was explored and the

method reduced the dimensionality of the soil spectra data to just seven

functional principal component curves whilst explaining 96.17% of the to-

tal variability. Furthermore, functional hypothesis testing revealed that all

groups of spectra were statistically distinct and additionally had the ability

to inform where along the wavenumber range these differences were most

significant.

In Chapter 4 functional linear regression was introduced for the prediction of

soil properties as measured by laboratory based methods. Firstly, function-
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on-scalar regression found that the mid-infrared spectra could be successfully

predicted by the wet chemistry variables. In accompaniment, functional prin-

cipal component regression showed how the wet chemistry variables could be

reduced to a selection of principal components for the prediction of the soil

spectra. However, these analyses were all secondary interests to the more

interesting scalar-on-function regression. The scalar-on-function regression

analyses permitted the prediction of a wide range of soil constituents from

the functional data representation of the soil spectra. Carbon, Nitrogen, Or-

ganic Phosphorus and Inorganic Phosphorus were amongst the most success-

fully predicted, and the predictive ability of the models was assessed based

on R2 statistics. It was found that better prediction performance could be

achieved by constructing models separately for woodland and pasture data.

Once effective models had been identified, the coefficient function plots with

confidence intervals were produced. Interpretation of these plots permitted

conclusions to be made about what areas of the spectra had more or less of

an influence on the value of the response predicted.

5.2.3 Multivariate Methods vs. Methods of Functional

Data Analysis

Despite the success of the multivariate methods, functional data analysis

provides a superior approach for identifying the regions of the mid-infrared

spectra which comprise of the essential modes of spectral variation. The ab-

sorbance of different soil quantities is not limited to specific spectral wavenum-

bers and spans absorbance regions of the spectra. For this reason, Linear

Discriminant Analysis is not effective in the context of relating regions of the

spectra to components in the soil. Linear Discriminant Analysis is found to
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be too specific to the problem and cannot relate an individual wavenumber to

a certain soil property over another due to the overlapping nature of absorp-

tion regions of different soil properties. The intensity peaks in the loadings

of a principal component analysis are similarly difficult to interpret and any

inferences made can be subjective. These methods were contrasted to the

results of a functional principal components analysis. Whilst FPCA suffers

the same interpretability issues which come with the overlapping absorption

regions, FPCA has the ability to direct attention to wavenumber regions of

interest. This reduces the problem of interpretability and minimizes the risk

of overlooking soil quantities which could contribute significantly to differ-

ences observed in the spectra.

In the prediction of wet chemistry from the MIR spectral data, Partial Least

Squares Regression proved to be more successful than the scalar-on-function

approach with a superior level of performance achieved for all soil quanti-

ties considered. However, with further exploration into different levels of

smoothing for functional data objects it was found that the functional re-

gression methods could be just as effective as PLSR. With this in mind,

functional regression could be considered to be more favourable since it can

provide extra information on prediction through coefficient function plots.

Presented in the same domain as the spectra, the coefficient function plots

allow the user to identify which regions of the spectra are best for predicting

an individual soil constituent. This information is lost with a partial least

squares regression approach, and thus there is no indication of a spectral

range where focus could be concentrated for further study. Despite this,

the performance of PLSR was evaluated on training and test data and thus

direct comparisons with the scalar-on-function approach is not permitted.
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However, the formation of training and test data sets to evaluate the per-

formance of functional regression models is challenging; involving separate

functional data representations for both training and test data.

More broadly, functional data analysis has a wealth of functional exploratory

methods which can reveal aspects of the data lost in a multivariate frame-

work. Functional data analysis allows for the ordering of data outward from

the centre based on a notion of band depth. Through the development of

these functional depth measures, functional boxplots are available to be used

as an informative exploratory tool. Additionally, functional measures of cen-

trality and assessment of functional outliers are possible. Although not in-

vestigated in this thesis, functional data analysis also provides access to the

data derivatives. Functions are differentiable, and the derivatives can be a

potential source of additional information about the nature of the data that

is otherwise locked away in the data.

5.2.4 Shortcomings

Functional data analysis is a very powerful tool and is philosophically the

most coherent of approaches for the characterization of soil properties. How-

ever, in addition to its advantages it also has shortcomings. One of the

prevailing issues associated with functional data is the initial construction

of a functional data object. The first step in any FDA is to convert raw

discrete values into functions via methods of smoothing. Various smoothing

techniques are available and they are applied to emphasize patterns in the

data by minimizing short-term deviations due to errors. However, the pro-

cess of transforming data into a functional form is not an exact science and

somewhat of an art form. Given the nature of the spectra, a basis function
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approach using B-splines was chosen to smooth the data due to their high

degree of flexibility and ability to model sharp changes in curvature. Basis

functions were also irregularly spaced and knots loaded at areas of high in-

terest. However, a great deal of care must be taken not to over smooth data

which would result in the loss of information and cause important features of

the true underlying curves to be missed. Under smoothing would also cause

noise (random error) to be estimated. In reflection, it is feasible to suggest

that the spectra in this study did not require to be smoothed as much as

they were. This is suspected due to the strong performance of the multi-

varate approaches which have already been in place. Furthermore, the data

were very finely spaced and appeared fairly smooth to begin with. In FDA,

the data of interest may be subject to substantial measurement error or could

be so accurate that the associated errors may be ignored. The absorptions

in the mid-infrared range were recorded at a large number of finely spaced

wavenumber bands and thus the latter scenario is suspected.

Another issue with functional data representation is the decision to use ir-

regularly spaced basis functions. The rationale was coherent in that it is

more sensible to manually design the placement of knots so that more knots

are placed in areas of the spectra with high curvature and less in areas of

relative inactivity. By increasing the number of knots in a particular region

this allows for more flexibility. This was guided by soil scientists to help

identify where the pertinent areas of the spectra responsible for driving dif-

ferences between groups of soil spectra were located. However, this method

is not generalizable since these recommendations were made based solely on

previous studies of the same Australian soil data. Thus, for a wider study of

soils a standard approach to selecting the level of smoothing should be de-
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veloped. This may involve different smoothing approaches for different soils

as spectral signatures may differ vastly depending on their origins.

Although the methods of functional data analysis are not more computa-

tionally intensive than methods of a multivariate framework; the time taken

to create a functional data object and the soil science input required makes

functional data analyses a much lengthier process. However, in the devel-

opment of a more efficient approach to smoothing the data this would not

be an issue. This would also not be a problem for data of a more regular

nature. For example, regional temperature data could be easily and quickly

smoothed using Fourier splines. However, PLSR does appear to be a more

robust method suffering from none of these issues.

Another downfall of functional data is the lack of consistent diagnostics. This

is an area of functional regression which has been largely ignored in the lit-

erature. Classical regression diagnostics are based on residuals (Anscombe

and Tukey, 1963) and have an important place in applied statistics for the

task of checking model assumptions that underlie statistical analysis. These

techniques have largely been limited to classical linear and non-linear regres-

sion models, where response and predictor variables are scalars. However,

with increasing attention in functional regression analysis it is of interest to

develop similar diagnostic procedures for functional regression models. Al-

though there is a general lack of diagnostic procedures, some methods have

been developed and for the reader’s interest, Chiou and Muller (2007) provide

some extensions for functional regression diagnostics.
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5.3 Remaining Challenges

Finding the best functional data representation of the data is the backbone of

functional data analysis and thus deserves careful consideration. Otherwise,

by misrepresenting the underlying true functions a wealth of information may

be lost. Given that the utility of functional data analysis is pivotal on achiev-

ing suitable functional data representation; further research is needed into

how an efficient, reliable and optimal smoothing procedure can be developed

for soil spectral data. Rossel et al. (2016) describe a global spectral library

for soil vis-NIR spectra which has been in development since 2008. With

the collection of such data and similar recording of soil mid-infrared spectra,

analysis of spectral signatures across a wide range of soil origins could direct

the development of functional data representation within soil science.
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