
 
 
 
 
 
 
 
 

 

Trovarelli, Federico (2022) Strategies for attitude control of reconfigurable 

modular spacecraft. MSc(R) thesis. 

 

 

https://theses.gla.ac.uk/82678/  

 

 

 

Copyright and moral rights for this work are retained by the author  

A copy can be downloaded for personal non-commercial research or study, 

without prior permission or charge  

This work cannot be reproduced or quoted extensively from without first 

obtaining permission in writing from the author  

The content must not be changed in any way or sold commercially in any 

format or medium without the formal permission of the author  

When referring to this work, full bibliographic details including the author, 

title, awarding institution and date of the thesis must be given 

 
 
 
 

 
 
 
 
 
 
 

Enlighten: Theses  

https://theses.gla.ac.uk/ 

research-enlighten@glasgow.ac.uk 
 

https://theses.gla.ac.uk/82678/
https://theses.gla.ac.uk/
mailto:research-enlighten@glasgow.ac.uk


Strategies for Attitude Control of 
Reconfigurable Modular Spacecraft

Submitted January 2022, in partial fulfilment of the conditions for
the award of the degree Master of Science by Research.

Federico Trovarelli

Supervised by Prof Colin McInnes

James Watt School of Engineering

University of Glasgow

I hereby declare that this dissertation is all my own work, except as indicated in the 

text:

Signature

Date / /

I hereby declare that I have all necessary rights and consents to publicly distribute this
dissertation via the University of Glasgow e-dissertation archive.

Public access to this dissertation is restricted until: / /

23 01 2022





Abstract

The purpose of this thesis is to propose, investigate and develop an innovative approach to the

attitude control of Cubesat-sized, modular and variable-shape spacecraft. These systems could

ideally comply with the requirements of a larger variety of in-orbit functions and better adapt

to the needs of specific subsystems in achieving and maintaining the desired attitude.

The reference array is assumed to consist of a certain number of modules interconnected by

means of revolute joints. One interesting aspect, which is the specific focus of the present thesis,

is that such system can be capable of exploiting the dynamic effect of momentum conserving

internal torques generated by the modules rotating with respect to each other for reorientation

purposes. Initial inspiration for this proposed approach to spacecraft attitude control design

has been drawn from the study of the well-known ’falling cat ’ problem.

In the long term, this innovative attitude control methodology, could justify the increase in

cost and complexity modular reconfigurable systems require not only with advantages in the

added versatility with respect to the mission tasks but also with better performance in attitude

control system efficiency, accuracy, stability and even robustness.

Specifically, this thesis discusses the available information present in literature about momen-

tum preserving attitude control of multibody arrays and possible space applications, builds and

validates a tool for the investigation of the peculiarities of these systems and finally investigates

their non-linear behaviour for both the 2D and 3D cases. With respect to previous work in

the field, optimal attitude control trajectories that take into account module impingement are

discussed and the dynamics of momentum-preserving manoeuvres is analysed from the physical

and mathematical points of view for both 2D and 3D manoeuvres. The results of the analysis

demonstrate the validity of the concept and highlighted some the potentialities but also the

critical points for a further development of the technology.
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1 Introduction

In the last few years interest in versatile reconfigurable arrays for space applications has been

growing and several concepts tailored for different mission needs have been proposed [1, 2, 3].

Nevertheless, a compelling application that justifies their higher cost and complexity with

respect to conventional systems has not yet been found. Here a novel approach to the design

of an Attitude Control System (ACS) for small reconfigurable spacecraft is proposed. It shall

exploit momentum-preserving internal torques generated by the modules of a multibody array

rotating relative to each other. The end goal is to achieve better performance in efficiency,

accuracy and robustness with respect to state-of-the-art ACS, which is a bottleneck for small

spacecraft technology [4].

1.1 The Reconfigurable Spacecraft

A system is said to be reconfigurable if it can adapt its configuration to different situations

and comply with the requirements of a certain number of operational needs. Reconfigurable

arrays represent the state of the art in robotics technology, closely related to advanced nonlinear

control and artificial intelligence. According to the definition of [5], “self-reconfiguring robots

are able to deliberately change their own shape by rearranging the connectivity of their parts, in

order to adapt to new circumstances, perform new tasks, or recover from damage”, and so can

potentially be employed for more than one task.

In [5] it is also suggested that space engineering could represent a technological field where it

is possible to consider a number of applications that would benefit from the advantages that

autonomous reconfigurable arrays offer. Spacecraft whose solar panels remain folded during

the launch phase and are deployed to maximise the area exposed to the Sun once released into

orbit and robotic manipulators are examples of already existing reconfigurable space systems.

In the last few years the research effort for the development of new classes of reconfigurable

arrays, such as formation-flying systems, has been growing. An interesting concept, presented

by [6] and further developed by [7], is a batch of cubic modules linked by means of temporary

electromagnetically-actuated hinges. The shape of the array can be modified by sequentially

creating and breaking these interconnections between the cubes. Other examples are self-

1



2 Chapter 1. Introduction

assembling [8] and self-folding origami structures [9].

Despite the advantages reconfigurable arrays offer over fixed-configuration systems and the im-

pressive technological growth they have been recently experiencing, many challenges to their

commercial exploitation still have to be overcome. One obstacle is to find specific compelling

applications that justify the increase in overall system complexity and theoretical lower perfor-

mance in single tasks compared to the gain in versatility they could guarantee. Also, as again

suggested by [6], “spacecraft reconfiguration technologies have not matured yet to the point in

which they can be considered robust”, this being a driving requirement for every space system.

Another research field that has been increasingly drawing attention and investments over recent

years is that of small satellites. These systems, that today are mostly used for Earth Observation

and Low Earth Orbit (LEO) communications, are cheaper and have shorter development times

with respect to large satellites [10]. They are used by universities for educational purposes,

commercial stakeholders seeking low-risk missions and technology demonstration opportunities

or other applications requiring prompt deployment. Also, small satellites are more suitable for

serving as modules of distributed space systems such as formations, which may be a crucial

technology for the future.

As suggested by [11], however, “cheap and light, implies a lot of compromises not only on the

operational side but also on the design, the reliability and the lifetime”. The reason is that today

small spacecraft can be equipped with the latest technologies but these are not always space

qualified. Also, small spacecraft “will always be limited by their capacity to carry a payload and

to supply it with the required power” and are still outperformed by large spacecraft in terms of

ACS performance. As a result, small satellite missions are often considered complimentary and

not competitive to large satellite missions. The latter represents indeed the most appropriate

choice when high reliability, functional flexibility, pointing accuracy or high payload power

supply are key requirements.

According to [4], ACS for small satellites are still in an early development phase and represent

a bottleneck for their technology, especially from the points of view of dynamic control and

accuracy. The result is that current systems cannot satisfy stringent requirements for tasks

including precise remote sensing. It is clear then that consistent improvements of the ACS

subsystem would allow for their employment in high performance missions and pave the way

for the commercial development of a novel class of space arrays that can compete with large

satellites in a wider variety of market sectors.

An ingenious solution to the issues introduced by this analysis could be the redefinition of

the architecture of small spacecraft so that the reconfiguration capability is used not only

for complying with the requirements of different mission phases, but also actively for attitude

control purposes. In particular, the idea is to exploit the effect of momentum-preserving internal

torques that are generated by the elements of a modular spacecraft rotating with respect to

each other. These dynamic contributions in fact have an indirect influence on the absolute

orientation of the array and of the single modules themselves. The reference spacecraft we wish
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(a) Unfolded layout.
(b) Folded layout.

Figure 1.1: Multipanel cubic spacecraft.

to control, whose layout is given in Fig. 1.1, consists of rigid panels to which instrumentation,

solar cells or other subsystems can be attached, interconnected using robust revolute joints.

The research objective is to evaluate the potential of an innovative approach to the design of

ACS for small spacecraft in which the configuration of the array, i.e., the relative position and

relative motion of its modular components, become active players in the control of the attitude

of the system in space.

1.2 Internal Torques for Attitude Control

The well-known falling-cat problem [12] represents the base of the idea introduced. Its physical

explanation demonstrates the possibility, under certain conditions, to obtain absolute reorien-

tation by exclusively using momentum-preserving internal torque contributions. Examples of

this concept relevant for our case include the study of [2], that determine optimal 3D reorien-

tation trajectories for a three panel array in an L-shape, and [1, 13], which instead focus on

the design of a planning algorithm that is able to build a reorientation trajectory by patching

together a certain number of motion primitives taken from a database obtained by numerical

simulation. This algorithm is also developed for the L-shape three panel array but then it is

adapted and tested on a system with a larger number of interconnected panels.

A long-term development of this novel approach could justify the increase in cost and complexity

of the reconfigurable array with advantages in the added versatility of the entire system that

is able to fold, unfold and in general tune the orientation of its panels singularly according to

pointing, thermal, structural and other subsystem requirements. It could additionally allow for

better performance in ACS efficiency, accuracy, stability and even robustness, if appropriate

failure mitigation and recovery strategies based on module reconfiguration are developed.



4 Chapter 1. Introduction

This thesis represents the first building block to reach the final goal of an autonomous, intelligent

reconfigurable spacecraft. Here the focus is to understand what is the characteristic behaviour of

a multibody system rotating in free space when it is subjected to momentum-preserving internal

torques and how these can be exploited for attitude control. As explained in Chapter 2, the

analysis will first be conducted on a planar array that is an approximation of the multipanel

spacecraft of Fig. 1.1 and recalls the dynamical properties that are relevant for the purpose of

the study. As shown later in Fig. 2.3, the simplified system is a chain of three rods and its three

rotational Degrees Of Freedom (DOF) are to be controlled with only two internal joint torques,

which makes its full attitude stabilization fall in the class of underactuated control problems.

These problems are characterised by complex dynamics due to dominating nonlinearities and

are most often treated by means of numerical and artificial intelligence techniques, especially

in the field of advanced robotics.

The determination of a control scheme for the orientation of a planar system of three rods only

using two internal torques is a representative problem in its field that has already been analysed

by several authors. The results obtained for it are indeed also valid for analogous chains which

count N > 3 modules since these can always be reduced to N = 3 by locking some hinges.

Also, as stated by [3], a simpler planar system with N = 2 does not satisfy the mathematical

condition of (small time) local controllability. This is the ability of a control system to reach a

definite state from a fixed initial state in a (small) finite amount of time and is necessary for

the internal torque reorientation problem to be solved. Interesting data were derived from the

analytical study of rest-to-rest manoeuvres. Reyhanoglu and McClamroch [3, 14, 15] prove that

smooth feedback control of the three rod planar arrays is impossible and derive an explicit non-

smooth mathematical scheme for the system to reach a chosen equilibrium configuration. Walsh

and Sastry [16] tested an analogous law on a lab prototype of the three rod system and adapted

it for controlling the attitude of a satellite with two rotors. Finally, [17] and [18] analyse in

general how to control the configuration and attitude of classes of planar multibobody systems

with N modules.

After proving the validity of the concept with the planar system the focus will be moved to a

3D multipanel array analogous to the one in Figure 1.1. The increase in mechanical complexity

will result in more extended reorientation possibilities and a deeper understanding of the use of

internal torques for attitude control in real applications. It is remarked that the focus is on the

reorientation of the spacecraft as a whole and not on relative pointing of the single modules.

1.3 Thesis Overview

The primary objective of this thesis is to investigate the characteristic behaviour of planar

and non-planar multibody arrays whose attitude is controlled using internal joint torques. To

do this, first a multibody formalism is introduced and adapted to the specific needs of the

research and then this is applied for the development of 2D and 3D simulation tools that, after
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validation, can be used for analysing the peculiar dynamic behaviour of this class of under-

actuated systems. The development of these tools represents the secondary objective of this

work.

The multibody behaviour analysis, that shall serve the achievement of the primary objective,

is done by discussing relevant reorientation trajectories generated using the tools developep

in fullfilment of the secondary objective. With respect to previous work on the topic, this

thesis adds the analysis of optimal reorientation trajectories for which impingement constraint

avoidance is enforced and, importantly, explains in detail the mechanics, planar and non-planar,

of momentum-preserving reorientation manoeuvres from both physical and mathematical points

of view.

Starting by studying the behaviour of a simpler array, whose mechanics can be related to that of

the system in Figure 1.1, is the most efficient choice for this purpose. Chapter 2 introduces the

mathematical/physical background and multibody formalisms which is adapted and exploited

for defining the reference models to be simulated. In particular, Section 2.2 describes the planar

multibody array, while the modelling of the multipanel array in 3D is the core of Section 2.3.

Both the developed planar and 3D multibody simulation tools have been validated. The test

campaign is the main topic of Chapter 3, where also other resources used for this study are

presented. In Chapter 4 the motion of the arrays is simulated and their dynamical behaviour

is discussed. Chapter 5 concludes the study and suggests the next steps.

1.4 Published work

The present thesis describes in detail the tools developed and the corresponding validation

process that have been used for obtaining the results published in:

Trovarelli, F., McRobb, M., Hu, Z., and McInnes, C. (2020)

Attitude Control of an Underactuated Planar Multibody System Using Momentum Preserving

Internal Torques. AIAA Scitech 2020 Forum, AIAA 2020-1686, DOI:10.2514/6.2020-1686.

and extends these to more complex 3D systems, paving the way to further developments in the

field.



2 Mechanics Background

Newton’s laws of motion are the starting point for determining the EOM of any dynamic system.

Nevertheless, they only hold for an inertial reference frame. In flight dynamics or multibody

modelling applications, however, several non-inertial frames are commonly used, for example

for defining the inertia of a body with respect to a local reference frame fixed to its centre of

mass. When defining the dynamics of a mechanical system it is important that all vectors and

matrices are defined with respect to same reference frame and because of this sometimes frame

transformations are necessary. In addition to this, when interconnected bodies move relative

to each other, apparent and internal torques have to be defined. This Chapter is dedicated to

these topics. In Section 2.1 the tools that are used for representing the position and attitude

of a body and how to transform from one reference to another are discussed. Then in Sections

2.2 and 2.3 the chosen multibody formalism is described and applied for the definition of the

planar and 3D multibody models that will be exploited in the following Chapters for obtaining

the desired results.

2.1 Reference Frames & Transformations

A reference frame consists of a set of three mutually orthogonal axes that intersect in the origin

of the frame. For the purpose of studying the dynamics of a flying vehicle, many reference

frames, either inertial or non-inertial, can be used. Frame transformations are possible if the

relative position and orientation of a frame with respect to another, namely the state and

attitude of the vehicle, is known. For identifying the spacecraft position and velocity several

sets of variables can efficiently be adopted. In our case we will use cartesian components that

identify the position with the elements x,y,z and the velocity with ẋ,ẏ,ż.

On the other hand, the attitude of a vehicle can be determined using the sets of Euler angles,

namely the roll angle φ, the pitch angle θ and the yaw angle ψ, that determine the attitude of

the body with respect to a chosen inertial frame or a local horizontal plane. When using these

angles it is important to determine the sequence of rotations that realizes the transformation.

For aerospace applications the most commonly used sequence is the 3-2-1, consisting of a yaw

rotation about the Z− axis followed by pitch and roll rotations around, respectively, the local

Y− and X− axes, as shown in Fig. 2.1.

6



2.1. Reference Frames & Transformations 7

58 Fundamentals of Motion

Figure 3-5: The Euler transformation: successive rotations about the ZI -axis (yaw angle ψ), the Y1-
axis (pitch angle θ) and the X2-axis (roll angle φ) brings us from the inertial planetocentric
reference frame (index I) to the body reference frame (index B).

Figure 2.1: Classical angles θ, φ, ψ relating body B- and inertial I-frames [19] [used with permission].

Another attitude representation is the Euler axis–angle set. In this case the attitude or rotation

is represented by a rotation axis a and a rotation angle φ around it for a total of 4 elements.

The axis–angle representation is convenient when dealing with rigid body dynamics. It is useful

to both characterize rotations, and also for converting between different representations of rigid

body motion, such as homogeneous transformations.

For better numerical efficiency in 3D dynamic simulations, quaternions are the best solution

because are not affected by the singularities that characterize Euler angles. Quaternions are

4-dimensional hyper-complex vectors consisting of one real number, the scalar part, and three

imaginary numbers, the vector part. The imaginary numbers are square roots of -1 and are

linked through the constraint:

i2 = j2 = k2 = ijk = −1 (2.1)

A quaternion can be defined in terms of the Euler axis a and Euler angle φ. The scalar and

vector part are respectively:

q0 = cos
φ

2
(2.2)

q =

q1q2
q3

 sin
φ

2
(2.3)

Attitude quaternions specify a rotation and have to satisfy the normality constraint:

q0 + qTq = q0 + q1 + q2 + q3 = 1 (2.4)

Finally, we need to define the angular rate of the body that is defined as the rotational velocity

of the body frame with respect to the chosen inertial frame, expressed in components along the

body axes. The angular rate vector ω contains the roll rate p, the pitch rate q and the yaw
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3-2 Reference Frames, State Variables and Frame Transformations 61

Figure 3-8: Axis transformation from frame A to frame B, composed of a translation and a rotation.

Unit axis-rotations

The transformation from one (right-handed Cartesian) frame to another one can be expressed
by means of, for instance, unit axis-rotations, Directional Cosine Matrices and quaternions.
In this section we will concentrate on unit axis-rotations (positive rotations according to the
right-hand rule).

Let us have a look at the transformation from reference frame A to reference frame B. Frame
B is obtained from frame A by rotating this frame about its unit axis XA by the angle α.
This rotation is shown in Fig. 3-9.

Figure 3-9: Rotation from reference frame A to reference frame B.

From this figure, the following equations can be derived:

xB = xA (3-9a)

Re-entry Systems

Figure 2.2: Reference frame transformation from A to B [19] [used with permission].

rate r. Any frame transformation can be written as the sum of a translation and a rotation.

As suggested by Fig. 2.2, to express the vector vA in the A frame with respect to the B frame

we write:

vB = T + CB,AvA (2.5)

where T is the translation vector that goes from the origin of the A frame OA to the origin of

the B frame OB and CB,A is the rotation matrix from frame A to frame B given by [19]:

CB,A =

1 0 0

0 cosα sinα

0 − sinα cosα

 (2.6)

This orthonormal matrix, as suggested in Fig. 2.2, can be derived by expressing the components

of the vector vA, defined with respect to the axes of the A frame, with respect to the axes of the

B frame. More generally, if identified with the notation C1(α), the matrix in Eq. (2.6) gives

the counter-clockwise rotation of a frame around its X-axis of a generic angle α. Analogous

expressions hold for the rotations around the Y - and Z- axes. We have respectively:

C2(α) =

cosα 0 − sinα

0 1 0

sinα 0 cosα

 (2.7)

C3(α) =

 cosα sinα 0

− sinα cosα 0

0 0 1

 (2.8)

Also, a frame rotation can always be decomposed in a sequence of three rotations each around

one of its independent axes. The resulting transformation matrix, that is still orthonormal, is

found as the product of the three matrices C1, C2 and C3. Moreover, if CB,A is the matrix

transforming frame A into frame B, then the opposite transformation, thanks to the fact that
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Figure 2.3: Planar array of 3 interconnected rods (Z-axes pointing out-of-plane).

rotation matrices are orthonormal, is given by the transpose:

CA,B = C−1B,A = CT
B,A (2.9)

In cases when one is dealing with 2D vectors in a plane, then the rotation matrix can be reduced

to size [2 × 2]. In fact every 2D rotation can be described using a single angle and the row

and column corresponding to the rotation axis (the one with only one term different from zero)

is not needed any more. As for the 3D case the right hand rule determines the sign of the

elements in the rotation matrix and the frame rotation direction can be counter-clockwise (as

the one given by Eq. (2.6)) or clockwise.

Quaternions describe a sphere in 4-dimensions. Any quaternion rotation is a trajectory on this

sphere. The quaternions [q0 q] and [−q0 − q] indicate the same orientation but correspond to

paths with different length on the sphere. Transforming a vector given in frame A to frame B

then can also be done using quaternions. The rotation process in this case is called quaternion

multiplication. In general, the topic of quaternions is vast and will not be covered here, but

more details will be discussed in the following when quaternions are applied.

2.2 Planar Multibody Mechanics

The most simple subset of the array in Fig. 1.1, to which internal torques can be successfully

applied for attitude control purposes and that can yield relevant information, is the chain

of three panels highlighted in red interconnected by two revolute joints. The array rotates

in vacuum around its Centre Of Mass (COM), in absence of gravity or any other external

disturbance. It is assumed that panels have uniform density and that their COMs always

lie on the same common plane, perpendicular to the rotation axes of the frictionless revolute

joints. As a result the rotation of the system is constrained to this plane. In consideration

of this, without loss of generality with respect to the objectives of the thesis, we can study

the equivalent planar system of three interconnected rods given in Fig. 2.3 rotating around its

COM.
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Internal joint torques only redistribute angular momentum among the modules and cannot be

used for manoeuvres such as detumbling. The attitude control trajectories that will be analysed

in the following describe rest-to-rest reorientation procedures that start and end in a condition

where all the rods are stationary in space. The total angular momentum is always null. The

objective is to obtain a variation in the net absolute orientation of the modules at the end of

the manoeuvre by exclusively using internal joint torques which cause the shape of the array

to change.

The equations of motion for the three-rod array are determined and propagated using the

approach in Ref. [20] which is based on Lagrangian dynamics [21]. Each of its rigid elements,

considered singularly, has one rotational and two translational DOF for a total of 9 DOF for

the whole set of 3 rigid elements unconstrained with respect to each other or any external body.

To get a multibody system the constraints that relate these rigid single elements have to be

defined. The first constraint to take into account fixes the COM of the multibody to the origin

of the inertial frame I and removes two translational DOF, so the following holds:

C1 :
maRa +mbRb +mcRc

ma +mb +mc

= 0 (2.10)

where Rk = [xk, yk] is the position of the COM of rod k = a, b, c in the I frame and mk is the

corresponding inertial mass as shown in Fig. 2.3. Two other constraints model the revolute

joints connecting the rods such that:

C2 : Ra + Aal1a − Rb − Abl1b = 0 (2.11)

C3 : Rb + Abl2b − Rc − Acl2c = 0 (2.12)

in which Ai are the rotation matrices expressing the orientation of the rods and ljk, where

k = 1, 2 is the position of hinge j with respect to the COM of rod k. C2 and C3 also remove two

translational DOF each. The multibody system, as modelled, is left with only three rotational

DOF that, as already mentioned, can be controlled with only two inputs, the joint torques u1

and u2. The state of the multibody system is described by a set of generalised coordinates q.

These can be subdivided in a group of independent coordinates qi, whose value can be chosen

freely, and a group of dependent coordinates qd, which are a function of the independent

coordinates through the constraint equations. The number of independent coordinates for the

three rod array is ni = 3 and corresponds to the number of DOF of the system. The number of

dependent coordinates nd instead is equal to the number of available constraints. One can add

an arbitrary number of dependent coordinates as long as these can be linked to the independent

coordinates by means of some mathematical relationship.

The independent coordinates that will be used for our case are the orientation of rod a, θa,

defined as the angle between the inertial frame reference axis negative YI and the direction of

rod a (see Fig. 2.3), and the relative angles ψ1 and ψ2 determining the shape of the array given
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by1:

C4 : ψ1 = θb − θa (2.13)

C5 : ψ2 = θc − θb (2.14)

Both Eqs. (2.13) and (2.14) have to be included together with Eqs. (2.10), (2.11), and (2.12)

in the constraint vector C. The sets of generalised coordinates are then qi = [θa, ψ1, ψ2]

and qd = [θb, θc, xa, ya, xb, yb, xc, yc]. When using the multibody methodology of [20] only the

generalised independent accelerations q̈i, whose full general derivation and specific application

both follow below, are directly defined as a function of the inertia of the array and the forces

and torques acting on it and then integrated twice in time to get qi. In the classical Newtonian

form we have:

q̈i = M−1
i Qi (2.15)

where Qi and Mi are respectively the generalised force vector and mass inertia matrix with

respect to the independent coordinates. The generalised force vector Qi can be broken into 3

main terms. The Coriolis and gyroscopic inertia forces are taken into account by means of the

vector Qv. These forces, however, are null for our case because the array is planar. Q represents

instead the explicit external and internal forces and torques contributions. It is remarked that

all forces and torques contributions are decomposed with respect to the generalised coordinates

q. The order for listing them in Q is fundamental and has to be the same as specified by the

vector q. This is valid also for the other vectors and matrices that are being defined. Since the

only explicit contributions are the joint torques u1 and u2 directly acting on the shape angles

ψ1 and ψ2, for the three rod planar system described, in absence of external disturbances, the

Q vector is built as:

Q = [0 u1 u2 0 0 0 0 0 0 0 0]T (2.16)

Finally, Q̄c is defined as the vector that is used for taking into account the dynamic contributions

due to the variation of the constraint matrix C with respect to time [21]:

Q̄c =

[
0[ni×1]

C−1qd
Qc

]
, Qc = −∂

2C

∂t2
− ∂ (Cqq̇)

∂q
− 2

∂Cq

∂t
(2.17)

where in Qc the first and last terms are null for the three rod array. In consideration of this,

Qi can be written as:

Qi = BT
di (Q + Qv) − BT

diMQ̄c (2.18)

in which Bdi is by definition a matrix that expresses the virtual displacement of the dependent

1Note that the physical meaning of the results that will follow does not depend on which of the angles θa,
θb or θc is chosen as a reference for the orientation of the array.
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coordinates with respect to the independent coordinates and is defined as:

Bdi =

[
Ini

−C−1qd
Cqi

]
(2.19)

In Eq. (2.19) Ini
is the identity matrix of size ni and Cqd

and Cqi
are derived from the Jacobian

constraint matrix Cq:

Cq =
∂C

∂q
, q = [qi qd] (2.20)

In particular, Cqi
is the left submatrix of Cq having its same number of rows and taking the

first ni columns while Cqd
is the remaining squared submatrix with size nd. The generalised

dependent coordinates qd can instead be propagated indirectly by integrating the generalised

dependent velocities q̇d which are expressed as a function of the generalised independent veloc-

ities q̇i through the constraint equations [21]:

q̇d = −C−1qd
Cqi

q̇i (2.21)

The generalised mass inertia matrix with respect to the independent coordinates Mi in Eq.

(2.15) is given by:

Mi = BT
diMBdi (2.22)

in which M assuming that the origins of the body frames of the single rigid elements are placed

at their respective COM, is a diagonal matrix. Similarly to the vector Q, it contains the inertia

terms of the body elements themselves that directly relate to the generalised coordinates, again

arranged according to the order defined by q. Since the mass/inertia terms corresponding to

the relative shape angles are null, we have:

M = diag(Ia, 0, 0, Ib, Ic,ma,ma,mb,mb,mc,mc) (2.23)

with Ik being the moment of inertia of rod k around body axis Zk. The rods, if not explicitly

mentioned otherwise, are assumed to have a mass mk of 1 kg and a half-length lk of 1 m from

which the corresponding moment of inertia can easily be calculated.

2.3 3D Multibody Mechanics

The 3D array mathematically described here is that depicted in Fig. 2.4. It is used as a

reference for introducing the multibody modelling methodology and in the following simulations

of Chapter 3 and 4. This L-shape mechanical system is particularly significant because it is the

most simple multibody array consisting of equivalent panels that can rotate with respect to the

3 body-fixed axes of the reference panel (one of the three panels is selected as a reference for
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Figure 2.4: L-shape multipanel system with local reference frames.

calculating the absolute rotation of the whole array) by only exploiting internal torques in the

hinges connecting the modules. As already suggested, a chain of equivalent panels would only

rotate in one plane. The structure of the mechanical model is the same as for the planar case.

The difference consists in the definition of several parameter matrices and vectors for taking

into account cross-couplings of 3D rotational rates.

Each rigid body freely moving in 3D space features 3 translational and 3 rotational physical

DOF. The state vector can be mathematically defined using different sets of variables that can

eventually be more than 6. If this happens then it means that some of these variables are

constrained between each other. A common approach is to use Cartesian variables [x, y, z] for

defining the linear position of the COM of the body and quaternions [q0, q1, q2, q3] for its attitude,

which gives a total of 7 state variables. In this case one of the quaternion elements is a function

of the others through the quaternion constraint. For practical reasons we can subdivide between

physical DOF and mathematical DOF. Physical DOF are related to the linear and rotational

motion of the rigid body elements, are fixed to a maximum of 6 per each unconstrained rigid

body and can be reduced if physical constraints are introduced in the mechanics. Mathematical

DOF are not directly related to the motion of the rigid body elements and one can add as many

mathematical DOF as desired as long as each of the corresponding mathematical variables

depends on those already existing through some mathematical constraint function.

The unconstrained 3-body 3D array has a total of 3 × 6 = 18 physical DOF. The state of each

of the modules is defined by the variable set:

xk = [Rk,qk] = [xk, yk, zk, q0,k, q1,k, q2,k, q3,k] (2.24)

where k = a, b, c is the panel index. Since there are 3 modules, at this point the system has 21

DOF of which 18 are physical and 3 are mathematical. The elements of the quaternion vector

qk are mutually dependent due to the normal quaternion equation. This gives the first three
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mathematical constraints:

C1 : q20,a + q21,a + q22,a + q23,a = 1 (2.25)

C2 : q20,b + q21,b + q22,b + q23,b = 1 (2.26)

C3 : q20,c + q21,c + q22,c + q23,c = 1 (2.27)

We now consider the physical constraints defining the dynamics of the system. Since the interest

is exclusively in the array rotation, in this case we also fix its COM to the origin of an ideal

inertial reference frame I:

C4 :
maRa +mbRb +mcRc

ma +mb +mc

= 0 (2.28)

where mk is the corresponding inertial mass. Differently from C1, C2 and C3, the constraint C4

is 3-dimensional and removes 3 physical DOF. The relative position of the COM of the panels

are again constrained using the mathematical definition of the spherical articulation:

C5 : Ra + Aal1a − Rb − Abl1b = 0 (2.29)

C6 : Rb + Abl2b − Rc − Acl2c = 0 (2.30)

in which Ai are the rotation matrices expressing the rotation from panel-fixed frames to the

inertial frame I and ljk, where j = 1, 2, is the position of hinge j with respect to the COM of

panel k. Also C5 and C6 remove 3 translational DOF each.

Now also the relative rotation of the panels has to be constrained. In particular, it is required

that rotation is only possible around the axes defined by the hinges connecting them. This can

be achieved using the panel normal vectors that are defined in panel fixed frames as:

Xk = [1 0 0], Yk = [0 1 0], Zk = [0 0 1] (2.31)

From Fig. 2.4 it is straightforward to understand that if panel b rotates only around the edge

it shares with panel a then it means that its panel b−fixed body axes Xb and Zb always remain

perpendicular to panel a−fixed body axis Ya. Mathematically this can be written as:

C7 : Ya · Xb = AaY · AbX = 0 (2.32)

C8 : Ya · Zb = AaY · AbZ = 0 (2.33)

The same analysis for the rotation of panel c with respect to panel b leads to:

C9 : Za · Xc = AbZ · AcX = 0 (2.34)

C10 : Za · Yc = AbZ · AcY = 0 (2.35)

By including constraints C7 to C9, 5 additional physical DOF have been removed which leaves

a system of only 5 DOF. Of these 5, 3 are for the rotation of the whole array in 3D space and
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2 are for the relative rotations around the hinge axes. From a physical point of view this is the

system which needs to be defined. From a mathematical perspective, however, there any set of

variable can be used for describing the attitude state of the array. In particular, new variables

can be introduced that are more suitable for the specific purpose of the model. Because of the

requirement to control the attitude of the array using internal hinge torques, as a state variable

the angle between two panels in introduced. This quantity, again by looking at the panel-fixed

reference frames in Fig. 2.4, is defined as the angle between the normals to the panel surfaces.

Mathematically this can be written as:

C11 : αba = sin−1(AaX × AbX) (2.36)

C12 : αcb = sin−1(AbX × AcX) (2.37)

These generalised coordinates describe the state of the system defined by:

q = [xa ya za q0a q1a q2a q3a ...

xb yb zb q0b q1b q2b q3b ...

xc yc zc q0c q1c q2c q3c ...

αba αcb]

(2.38)

It is now required to select 5 that will be the set of independent generalised coordinates qi
while the others will be the dependent generalised coordinates qd. This choice is suggested by

the initial conditions to be specified when simulating the system and by the state variables that

define our control strategy. For the specific case of interest an initial attitude of the array must

be specified, for which one of the three quaternion sets can be chosen that give the orientation

of the panels, and the shape of the array represented by the angles α. Therefore, the vectors

of generalised coordinates are given by:

qi = [q1a q2a q3a αba αcb]

qd = [q0a q0b q1b q2b q3b q0c q1c q2c q3c ...

xa ya za xb yb zb xc yc zc]

(2.39)

Then, the full generalised coordinate vector, that shall have first the independent and then the

dependent coordinates, can be written as:

q = [qi qd] (2.40)

The order in which the variables are reported in the vector of generalised coordinates plays a

fundamental role in the definition of the equations of motion:

q̈i =M−1
i Qi (2.41)

q̇d = − C−1qd
Cqi

q̇i (2.42)

The process of determining the terms appearing in Eq. (2.15) and (2.42), which fully describe
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in matrix form the dynamical contributions acting on the array, its geometry/inertia properties

and kinematics, is analogous to that described in Section 2.2. Nevertheless, the increased

complexity of 3D mechanical systems results in some relevant variations in the definition of

these terms. First, in this case Coriolis and gyroscopic forces are not null because of cross-

coupling of 3D rotational rates. We have for each of the rigid modules k:

FC,k = −2ωkIkĠk (2.43)

in which ωk and Ik are respectively the rotational rate and inertia tensor of body k both

expressed in its corresponding local frame. The term Ġk is instead the time derivative of

the matrix that transforms attitude rotational rates, that are the quaternion elements time

derivatives, to body rotational rates ωk. The size and elements of this matrix depend on the

choice of attitude representation used. For quaternions this can be written as:

Gk = 2

−q1,k q0,k q3,k −q2,k
−q2,k −q3,k q0,k q1,k

−q3,k q2,k −q1,k q0,k

 (2.44)

Ġk = 2

−q̇1,k q̇0,k q̇3,k −q̇2,k
−q̇2,k −q̇3,k q̇0,k q̇1,k

−q̇3,k q̇2,k −q̇1,k q̇0,k

 (2.45)

The rotational rate ωk is then defined as:

ωk = −2Gkq̇k (2.46)

The apparent force dynamic contribution FC,k has size [1× 4]. Each of its elements expresses a

dynamic contribution applied to the corresponding quaternion element, which is indicated by

the superscript (1 corresponds to q0, 2 to q1 and so on per each of the panels k). Considering

this and keeping in mind the generalised coordinates ordering chosen earlier in Eq. (2.39), the

vector Qv of Coriolis and gyroscopic dynamic contributions can be defined for the system as:

Qv = [F
{2}
C,a F

{3}
C,a F

{4}
C,a 0 0 ...

F
{1}
C,a F

{1}
C,b F

{2}
C,b F

{3}
C,b F

{4}
C,b F

{1}
C,c F

{2}
C,c F

{3}
C,c F

{4}
C,c ...

0 0 0 0 0 0 0 0 0]

(2.47)

If the set of generalised coordinates uses quaternions then the definition of the mass-inertia

matrix M of the system has to be adjusted accordingly. In particular, first the inertia of each

array needs to be defined with respect to the generalised coordinates that are selected. For

each module k the mass-inertia matrix that relates to its physical DOF is defined as:

Mk =

[
mRR,k mRθ,k

mRθ,k mθθ,k

]
(2.48)

in which mRR,k is the sub-matrix containing the inertia terms that relate to the translational
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DOF:

mRR,k =

mk 0 0

0 mk 0

0 0 mk

 (2.49)

with mk being the mass of module k. The sub-matrix mRθ,k represents the inertia coupling

between the translation and rotation of the module and contains only 0 if the origin of the body

axes is attached to the centre of mass of the module, which is assumed to be the case. Finally,

the sub-matrix mθθ,k is associated with the rotational DOF of the module and is defined as:

mθθ,k = GT
k IkGk (2.50)

and has size [4 × 4] if quaternions are used. The mass-inertia matrix elements that relate

to the mathematical DOF, that in this case are the two shape angles αba and αcb are null.

At this point the sub-matrices defined for each module k can be put together to get a single

comprehensive mass-inertia matrix and rearrange its elements in agreement with the chosen

order for the generalised coordinates vector. For this specific case M is the diagonal block

matrix (the superscripts indicate the specific elements selected in the matrices m of the single

elements defined earlier):

M =



m
(2,2)
θθ,a m

(2,3)
θθ,a m

(2,4)
θθ,a 0 0 m

(2,1)
θθ,a

m
(3,2)
θθ,a m

(3,3)
θθ,a m

(3,4)
θθ,a 0 0 m

(3,1)
θθ,a

m
(4,2)
θθ,a m

(4,3)
θθ,a m

(4,4)
θθ,a 0 0 m

(4,1)
θθ,a

0 0 0 0 0 0

0 0 0 0 0 0

m
(1,2)
θθ,a m

(1,3)
θθ,a m

(1,4)
θθ,a 0 0 m

(1,1)
θθ,a

mθθ,b

mθθ,c

mRR,a

mRR,b

mRR,c



(2.51)

which, analogously to the 2D case, has to be expressed in the reference of independent gener-

alised coordinates qi using the transformation of Eq. (2.22).

The last term of the total force vector Qi expressed in the independent coordinate frame of Eq.

(2.18) that must be defined is the vector Qe. This allows any external dynamic contributions

acting on the system to be taken into account. Also in this case each element of this vector

directly affects the generalised coordinate which occupies the equivalent position in the vector

q, that can be either independent and dependent. In the assumption that the system moves in

vacuum and that the only available actuators for influencing its orientation are hinge motors



18 Chapter 2. Mechanics Background

that control the shape angles αba and αcb it is found that:

Qe = [0 0 0 u1 u2 ...

0 0 0 0 0 0 0 0 0 ...

0 0 0 0 0 0 0 0 0]

(2.52)

where u1 and u2 are the commanded hinge torques. Finally, it is important to calculate the

total energy and total angular momentum of the system that can be used for monitoring its

state and for model validation purposes for both the 3D and previous 2D cases. The former is

the sum of rotational and translational energies of the system that can be found respectively

as:

Erot =
1

2

[
q̇a q̇b q̇c

]mθθ,a

mθθ,b

mθθ,c

[
q̇a q̇b q̇c

]T
(2.53)

Etra =
1

2

[
Ṙa Ṙb Ṙc

]mRR,a

mRR,b

mRR,c

[
Ṙa Ṙb Ṙc

]T
(2.54)

For the latter, the angular momentum of each of the modules is defined as:

Hk = Ikωk (2.55)

Then, these momenta have to be expressed with respect to a common reference and also the

additional momenta due to the shift of reference have to be computed. The total angular

momentum of the system then is:

Htot =
∑
k

AkHk + Rk ×mkṘk (2.56)

The multibody mechanical models presented in this Chapter is coded in MATLAB for simula-

tion purposes. Chapter 3 validates these models by exploiting the output of available simulators

tested, amongst others, with respect to the introduced definitions of system energy and total

angular momentum which are particularly relevant for this class of systems.



3 Simulator Development

The present Chapter is dedicated to describing the simulator that implements the mechanics

of the multibody systems introduced in the previous Chapter. For both the planar and 3D

cases, first the mass and inertia properties are defined and then the validity of the simulation

environment is validated with some significant tests. Some software aspects to take into account

when designing a multibody simulator are discussed and finally the supporting tools that have

been exploited for this thesis are introduced.

3.1 Planar Model Model Simulator

The objective of the model is to prove the validity of the internal torque control strategy.

For this reason the absolute mass and inertia properties of the array that is simulated are

not a primary concern as long they are relatively consistent with each other. Nevertheless, as

a reference for the purpose of being able to reproduce the results the mass-geometry inertia

parameters of the model implemented are reported here. Each equivalent rod is assumed to

have a mass of m =1 [kg] and a length of l =2 [m]. The moment of inertia around the respective

rotational axis passing through their COM, at the geometric centre of the rod, is:

Ik =
ml2

12
(3.1)

In the following Section the Validation & Verification process is described and then some

relevant details related to the development of the multibody array simulation software that

have to be taken into account when working with analogous systems are discussed.

3.1.1 Validation & Verification

For the purpose of testing its validity, this multibody design approach was used for building a

triple pendulum system oscillating under the effect of Earth gravity. This model features minor

modifications with respect to the three rod model presented earlier. It was verified that its

total energy remains constant. Also it was checked that, for the spacecraft control problem, the

total angular momentum for every attitude control manoeuvre not involving external dynamic

19
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contributions always remains constant. In both cases an acceptable inaccuracy due to numerical

propagation error, that reduces if more stringent integrator tolerances are selected, was present.

This Validation & Verification process is not further described here because it is analogous to

that for the 3D model discussed in the following Section 3.2.1 in much greater detail.

3.1.2 Implementation Aspects

In Section 4.1.2 the multi-rod planar model will be used to simulate so-called rectangular

trajectories. These trajectories, that will be better explained later, require that the system

has the ability to lock a certain hinge at an arbitrary instant in time. The array has been

designed for being able to input desired hinge torques for controlling its attitude. While it is

straightforward to define a hinge torque as a function of the shape angles using a proportional

feedback control logic, there is not a law that allows us to determine the torque that applies to

the hinge when one of these shape angles gets locked.

The solution that has been adopted for the planar model consists of assuming that when locked

the hinge behaves as an extremely stiff rotational spring. In particular, the command sequence

that is given in input to the simulator includes a flag for the activation of the locking mode.

In this case the command torque is computed using a proportional-derivative law with very

large gains. While this apporach is physically consistent because every rigid body is elastic

to some extent, simulating micro-oscillations is extremely computationally intensive. It was

also verified that the approach does not violate the validity tests mentioned above, but when

the locking takes place the numerical error experiences a discontinuity causing it to increase in

magnitude. This increase also depends on the the integrator properties.

3.2 3D Model Simulator

As with the planar model, the objective of this model is to prove the validity of internal torque

control strategy. Again, the absolute mass inertia properties of the array that is simulated are

not a primary concern as long they are relatively consistent with each other. Nevertheless, as

a reference for the purpose of being able to reproduce the results, the mass-geometry inertia

parameters of the 3D model implemented are reported here. Each equivalent square panel is

assumed to have a mass of m =1 [kg] and side length of l =1 [m]. Assuming that the panels

are t =0.01 [m] thick, its moment of inertia relative to the reference frame fixed to its COM,

which is located at the geometric centre of the panels as depicted in Fig. 2.4, can be found

using the formula that applies for a cylindrical prism:

Ik =


m(l2+t2)

12
0 0

0 m(l2+l2)
12

0

0 0 m(l2+t2)
12

 (3.2)
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Figure 3.1: Typical revolute joint motion.

Again, in the following the Validation & Verification process is described and then some relevant

details related to the development of the multibody array simulation software that have to be

taken into account when working with analogous systems are discussed.

3.2.1 Validation & Verification

The Validation & Verification process for the 3D multibody modelling methodology presented in

Section 2.3 was run in parallel with model development and was based on simulating multibody

pendulums oscillating in a constant Earth gravity field. The first test consisted of analysing the

motion of a single panel that is suspended through a spherical connection placed in the central

point of one of its sides. This simple test showed that the rigid body oscillates as expected

in the 3D space and thus verified that the equations of motion for the 3D case are correctly

implemented.

The second test consisted of several steps. First, to the single panel moving under the effect of

gravity a second panel was attached below by means of a revolute joint that only allows one

degree of freedom between the two rigid elements. These rotate relatively only around their

common side, i.e., the one connected through the revolute joint axis whose schematic is shown

in Figure 3.1. In this case the oscillatory motion of the system was analysed more in depth.

The focus was on the total energy of the system that, because of the fact that it moves in a

conservative force field, shall remain constant. With respect to the study case of Section 2.3, in

addition to rotational and translation kinetic energies computed using Eq. (2.54) and (2.53),

for this specific validation case the gravitational potential has to be taken into account for

calculating the total energy of the system. In the assumption that gravitational acceleration

only has a component along the Z inertial direction, the gravitational potential energy can be

determined as:

Epot =
∑
k

mkg0Rz,k (3.3)

where k is the rigid element index and g0 = 9.81 [m/s2] is the Earth surface gravitational

acceleration. Figure 3.2 shows conditions of the pendulum at t = 0[s] that is fixed to the
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Figure 3.2: 2-panel pendulum in con-
stant gravitational field, conditions at
t = 0 [s].

Figure 3.3: 3-panel pendulum in con-
stant gravitational field, conditions at
t = 0 [s].
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Figure 3.4: Total energy variation for
a 2-panel pendulum oscillating in con-
stant gravity field.
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Figure 3.5: Total energy variation for
a 2-panel pendulum oscillating in con-
stant gravity field.

inertial frame only through the light blue hinge. Part of the potential energy that the pendulum

has at this moment transforms to kinetic energy as soon as it starts oscillating. Nevertheless,

Fig. 3.4 shows how the total energy, as expected, remains almost constant with respect to

its initial value. The small variation, however, is not exactly zero as expected from theory

because of numerical integration errors that accumulates during the simulation and reduces if

more stringent integrator tolerances are used at the expense of a lower computational efficiency.

This is especially true when dealing with complex systems whose dynamics are complex and

requires matrix multiplication and inversions as for our case. This is confirmed by the fact that

by running the same total energy test using the L-shape model of 3 panels, whose dynamics is

defined by a larger number of constraints, the resulting propagation error was still compatible

with what is expected from numerical propagation inaccuracy, but is some orders of magnitude

larger than the error for the 2 panel model simulation, as Figure 3.5 confirms.
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Figure 3.6: Satellite before
array rotation.

Figure 3.7: Satellite after
90◦ array symmetric rota-
tion.

Figure 3.8: Satellite after
90◦ array asymmetric rota-
tion.

Also in these two cases the sample oscillatory trajectories were analysed graphically and it

was verified that the motion was consistent with what was physically expected. A graphical

validation test was additionally run by designing the multibody system representing the dy-

namics of a spacecraft consisting of a central body with 2 solar arrays attached symmetrically

on it sides moving in vacuum. By comparing Fig. 3.6, 3.7 and 3.8, it can be verified that

when the equivalent solar arrays rotate about their respective longitudinal axes in the same

direction with respect to the central block then the latter rotates in the opposite direction. If

however the arrays rotate in opposite directions then they exert equal and opposite torques

on the central block that remains fixed with respect to the inertial reference frame. This test

additionally proves the flexibility of the multibody dynamics tool that can be adapted to any

different system configuration.

This second test demonstrated that the revolute joint constraints, that are very prone to cause

numerical errors, were implemented correctly and that the model behaviour was consistent with

physical expectations.

The last and third test involved the analysis of the angular momentum of the multibody

array moving in vacuum and controlled using exclusively internal torques whose mechanics

was described in Section 2.3. Its angular momentum shall always remain constant irrespective

of the internal torques applied to it. Figure 3.9 shows the variation of angular momentum

for a sample internal torque reorientation trajectory. Also in this case the absolute variation

is compatible with numerical propagation inaccuracy. The relative error had to be calculated

using the final anguular momentum because the initial angular momentum is null and is thus

not significant for the test.

The success of this last test demonstrates that the integration of internal torques in the multi-

body dynamics is correct and the resulting simulation environment yields physically consistent

results.
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Figure 3.9: Angular momentum error for a sample internal torque reorientation trajectory of
an array of three interconnected panels (L-shape) moving in vacuum.

3.2.2 Implementation Aspects

As already done for the planar multibody model, the system shall be able to simulate the locking

of the hinge angles. Given the much larger number of variables and constraints involved in the

definition of the hinge angles for the 3D multipanel case, the approach of implementing locking

by means of the stiff spring method is not applicable since it causes significant numerical

instability and dramatically reduces computational efficiency. The alternative solution that

was implemented to solve this issue consists of first substituting the two shape angles αba and

αcb with αlock and αfree. Second, the constraint

αlock = α∗lock (3.4)

where α∗lock is the desired locking position for the angle that is kept locked. This additional

constraint is different from the others already defined for the 3-panel system because it can only

constrain one of the two shape angles at a time, thus acting as a sort of double constraint. From

a mathematical point of view this requires that two analogous constraint Jacobian matrices are

generated. During the simulation then it is sufficient to use a flag to select one of the two

Jacobian matrices, that means specifying which of the shape angles αba and αcb is either the

locked or free angle at that specific instant in time. Adding this new constraints means that

now the L-shape 3 panel array, already shown in Fig. 2.4, has only 4 DOF because either

one of the hinges remains locked. In other words, when one of the angles is locked the system

becomes a 2-body system with only one shape angle rotational DOF. This approach is much

more computationally efficient than using the rotational spring solution but is less scalable to

cases when the shape angles are more than two because it requires the generation of multiple

Jacobian matrices.

A second numerical aspect that has to be taken into account when dealing with the modelling

of 3D-multipanel arrays constrained with revolute joints is that for getting the shape angles
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αba and αcb it is not sufficient to determine their sine using the cross products of Eq. (2.36)

and (2.37) because this could indicate either an angle in the range [-90 90] [deg] or in the range

[90 270] [deg]. This ambiguity leads to numerical discontinuities and non-physical behaviour of

the model. For solving this issue it is necessary to also determine the sign of the cosine of the

desired shape angle. This can be done by calculating the dot product of the two panel-fixed

axes that are parallel to the revolute joint axis that the panels have in common. If these are

oriented in the same direction that the cosine is positive and the desired shape angle is in the

right quadrants, otherwise it is in the left quadrants.

By using the cosine of the shape angle as described we are basically adding a variable and

the corresponding constraints that relates it to the other generalised coordinates. This is an

example of an auxiliary variable. These variables can also be used for defining intermediate

generalised coordinates, such as the elements of cross products, so that they appear in the

constraints Jacobian matrix instead of the corresponding formulas that define them. The latter

in fact, when derived, yields extremely long formulas that are not only hard to handle for

symbolic calculus software but are also computationally inefficient.

3.3 Other Tools

In this Section some additional mathematical tools that have been exploited for the development

of the multibody simulation environment and their specific use is discussed.

3.3.1 Closed-Loop Feedback Control

In this thesis the system is controlled through an open-loop strategy. A reference shape angle

sequence which is parametrized with respect to time is fed to the controller which, by interpolat-

ing it with current simulation time, retrieves a commanded shape angle. The hinge torques are

then defined using a Proportional-Derivative control logic that drives to zero the error between

the current value of the shape angle and the reference signal to be achieved:

u(t) =

[
−kp (αba(t) − α∗ba(t)) − kdα̇ba(t)

−kp (αcb(t) − α∗cb(t)) − kdα̇cb(t)

]
(3.5)

in which kp and kd have been manually tuned for minimum overshoot, settling error and settling

time. For our specific configuration, by setting kp and kd both equal to 5 we obtain a settling

time of 5.9 [s] for a settling error 10−5 [rad]. More details about PD controllers can be found

in [22].
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3.3.2 Pseudospectral Local Optimization

Some of the results obtained in Section 4.1.1 are obtained by solving an optimal control problem.

The objective in this case is to obtain preliminary internal torques reorientation trajectories

for the multibody systems defined, eventually in case of path constraints. Among the many

existing possibilities for achieving this it was chosen to exploit GPOPS-II [23].

GPOPS-II tool is based on local psudospectral methods which belong to the class of direct

methods. These are a family of algorithms whose aim is a clear and efficient discretization of

the original optimal-control problem. The basic idea of these methods is to use of a particular

set of nodes in which the states and the control are discretized. The optimal control problem

transcription in this case defines an equivalent problem featuring a finite number of variables

and constraints. The solution of this Nonlinear Programming Problem (NLP) approximates

the continuous one. Pseudospectral methods are becoming more popular recently and are being

applied in fields such as satellite attitude manoeuvring [24] and entry guidance [25].

In particular, GPOPS-II implements the Legendre-Gauss-Radau quadrature orthogonal colloca-

tion method where the continuous-time optimal control problem is transcribed to a large sparse

NLP problem. The number of mesh intervals and the degree of the approximating polynomial

within each mesh interval to achieve a specified accuracy is determined by means of an adaptive

mesh refinement method. GPOPS-II can interface with both quasi-Newton (first derivative)

and Newton (second derivative) nonlinear programming solvers. Also, it approximates all

derivatives required by the nonlinear programming solver using sparse finite-differencing of the

optimal control problem functions.

3.3.3 Newthon-Raphson Root Estimation Method

For the purpose of simulating a mechanical system it is necessary to define initial values for

its state variables. In principle one can specify the independent coordinates and determine

the remaining dependent ones by means of the available constraints. It is possible however

that the constraint equations are nonlinear or that solving the system of these many equations

analytically is a process too lengthy. This is the case when simulating the 3D multipanel model

for which it is desirable to define the initial state of the system by specifying the attitude

quaternion of one of the panels and the two shape angles between them.

A time-efficient and accurate solution is to determine the remaining dependent coordinates,

that are a function of the independent ones, using the Newton-Raphson method. This is a

well-known numerical method that allows one find the unique solution of a system of equations

within a specific interval. The iterative process starts with the determination of an initial guess

x1 for the solution to be found and then the updated solution xi, where i is the iteration index,
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Figure 3.10: Situation of no-collision for an
array of 3 rods of equal length.
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Figure 3.11: Situation of collision for an ar-
ray of 3 rods of equal length.

is obtained as:

xi+1 = xi − J−1F (3.6)

in which F is the vector containing the equations of the system to be solved, that in this case

are the constraints of the mechanical array, and J the corresponding Jacobian matrix with

respect to the variables to be approximated. The iterative process stops when the difference

between two successive solutions is below a chosen accuracy threshold.

3.3.4 Collision Maps

A relevant problem for multibody arrays is impingement. The collision of two adjacent rods of

the three rod chain can be avoided by constraining the range of the shape angles ψ1 and ψ2 to

[−180◦, 180◦]. When the two external rods a and c (see Figure 2.3 for reference) are concerned,

however, the collision area in the shape-plane depends on the relative lengths of all rods.

Figure 3.10 and 3.11 show respectively the situations of no-impingement and impingement for

the reference planar array of 3 equally long rods. In particular, collision domains in 2D can be

obtained with an algorithm that establishes whether two segments intersect using the concept of

orientation (clockwise, counter-clockwise or collinear) of triplets of extreme points [26]. Figure

3.12 shows half of the whole collision domain (the other half is clearly symmetric with respect

to the origin) for different geometric configurations of the array. The domain disappears when

lb > la + lc. For the 3D case the definition of the collision domain is a more complex and

lengthy process and is not treated in this work. The main objective of this work is infact to

characterize the basic behaviour of the class of underactuated systems defined above and the

preliminary analysis of the 2D system in presence of collision constraints was considered to be

sufficient for the purpose.
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Figure 3.12: Collision domains (in blue) for different geometric configurations of the three rods
array.



4 Results

This Chapter is dedicated to presenting the results obtained by simulating the motion of the

multibody systems developed in Chapter 3. The focus, as already mentioned, is on understand-

ing how it is possible to reorient an array in space by only exploiting internal torques that cause

it to change its shape as part of the manoeuvre.

The approach consists in producing results that can be discussed in detail with the purpose of

extracting interesting features of this class of underactuated control problem, whose dynamics

are counter-intuitive because of the relevant role played by nonlinearities. In particular, the

mechanics of the 3D system is much more complex because of the cross-couplings between

rotational rates. However, the planar system already features the majority of the typical

properties of this type of systems and is thus analysed first. The analysis of the 3D configuration

extends these concepts to a configuration that has more complex behaviour and is closer to

what could be applied for an operational system.

4.1 Planar Reorientation Trajectories

In this Section the three rod multibody model presented earlier is used to generate attitude

reorientation trajectories that are significant for the research objectives discussed in Chapter

1. The manoeuvres taken into account are not only rest-to-rest but also flat-to-flat, which

means that both at the beginning and at the end of the trajectory the COM of the rods are

aligned and the chain is flat. The initial (dashed) and final (solid) states of the 3-rod planar

array for a sample of such a trajectory is shown in Fig. 4.1. The assumptions rest-to-rest and

flat-to-flat manoeuvre allow for easier comparison of while not affecting the physical meaning

of the results. In fact, what is relevant is the overall angular variation ∆θ = θa,end − θa,start

obtained, and the fact that the system has the same shape and total angular momentum at the

beginning and at the end of the manoeuvre. The initial orientation can be chosen arbitrarily

because there is no external dynamic contribution that depends on the state of the system.

Section 4.1.1 will discuss optimal control trajectories and then in Sec. 4.1.2 the focus will be

moved to the so-called rectangular reorientation manoeuvres which are named after their shape

in the shape-angles domain and are particularly useful to understand the dynamical behaviour

of the system.

29
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Figure 4.1: Initial (dashed) and final (solid) states of the 3-rod planar array for a sample
rest-to-rest and flat-to-flat reorientation manoeuvre.
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Figure 4.2: Comparison of optimal control effort trajectories correcting ∆θ=10◦ in tM=25 s
(dashed in Sub-figures (a,b)) and tM=50 s (solid in Sub-figures (a,b)). Dashed in Sub-figures
(c,d,e,f) indicates the initial configuration of the rods which follow the same reorientation path
in both cases.

4.1.1 Optimal Control Trajectories

The first exploratory results needed for understanding how to exploit internal joint torques for

spacecraft attitude control have been gathered exploiting a numerical optimization approach.

The objective of the manoeuvres here is to achieve a net desired reorientation ∆θ starting from

an arbitrary initial attitude. Two types of reorientation trajectories for obtaining ∆θ in the

range [-180◦,180◦] have been tested, optimising either manoeuvre time or control effort using
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cost functions, respectively:

J =

∫ tf

t0

1dt; J =

∫ tf

t0

uT Iu dt; (4.1)

The control input sequences generated for minimum time manoeuvres, not unexpectedly, are

bang-bang sequences. However, this is the case only when the control input range is small

in relation to the inertia of the rods. The projection of flat-to-flat manoeuvres in the ψ1ψ2-

plane, that will be defined as shape-plane or configuration space, are closed curves. Figure

4.2 shows that two minimum control effort manoeuvres with different durations and control

input sequences that achieve the same net orientation change ∆θ=10◦ follow the same path

in the configuration space. This demonstrates that net orientation variation depends on the

trajectory travelled in the shape angles-plane and not directly on the magnitude of the internal

joint torques u, which instead influences the control effort and duration of the manoeuvre.

Analogous results in [16] were obtained using an analytical approach that finds a procedure

to obtain a desired ∆θ as a function of the area enclosed by circular paths or other simple

curves in the ψ1ψ2-plane, without considering path constraints. The problem of controlling the

attitude of the three rod array can then eventually be separated in two parts. One consists of

defining the path in the shape-angles configuration plane that generates the desired net change

in orientation and the other part is to determine the control inputs that allow to get that path

for a desired control effort and manoeuvre time.

Local pseudospectral optimization algorithms can only handle properly path constraints ex-

pressed by continuous functions so that the collision domains have to be defined accordingly if

an optimal trajectory enforcing impingement avoidance has to be generated. A straightforward

solution to this problem, that works satisfactorily only for some convex collision domains such

as the one for the standard case in Figure 3.12a, is to approximate the forbidden area with

an ellipse. Figure 4.3 shows the same minimum time manoeuvre reorientation trajectory with

and without the collision avoidance constraint. The results demonstrate that the system is

able to circumnavigate the obstacle but the path can become significantly more complex given

the non-linear highly nature of the problem. A more in depth analysis of the performance of

the system in case of external effects and path constraints, e.g., in terms of control effort and

manoeuvre time variations, is recommended but is out of the scope of this thesis.

The optimal reorientation trajectories introduced show the peculiar dynamics of the array but

obtaining such trajectories is an intensive task from the computational point of view. Using

a standard Intel Core i7-7700 CPU @ 3.60 GHz Windows machine the optimization time for

a flat-to-flat manoeuvre is in the order of minutes, and increases to tens of minutes when the

collision avoidance path constraint is enforced.
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Figure 4.3: Comparison of minimum time trajectories correcting ∆θ=70◦ with (solid in Sub-
figures (a,b)) and without (dashed in Sub-figures (a,b)) impingement avoidance constraint.
Dashed in Sub-figures (c,d,e,f) indicates the initial configuration of the rods which follow the
same reorientation path for both cases.

4.1.2 Rectangular Trajectories

Rectangular trajectories are named after their shape in the shape angles-domain. They consist

of one of the shape angles varying while the other remains locked. These trajectories are very

useful to gain a better understanding of the counter-intuitive dynamic behaviour of the system

under analysis. Also, they allow to easily parametrize and map the reorientation achieved as a

function of the shape angle variation.

Assume that the two internal shape angles are labelled ψv and ψw, where either [v, w] = [1, 2] or

[v, w] = [2, 1]. Also assume that only one shape angle ψv at a time varies due to the application

of the corresponding internal joint torque while the other angle ψw is locked in position ψw,0,

where the second index, 0 in this case, indicates the locking position. In the configuration

space, i.e. the ψ1ψ2-plane, the trajectory going from ψv,0 to ψv,1, is a segment parallel to the

horizontal axis if v = 1 or to the vertical axis if v = 2. This motion, in agreement with the

law of conservation of angular momentum, results in a variation of the orientation angle ∆θa,1.
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Figure 4.4: Clockwise rectangular flat-to-flat reorientation manoeuvre.



34 Chapter 4. Results

At the end of this first segment ψv gets locked in position ψv,1 and ψw is unlocked and brought

from ψw,0 to ψw,1, where again it gets locked. Then, θa is subjected to a variation ∆θa,2. The

third and fourth segments are respectively given by ψv going from ψv,1 back to ψv,0, with ψw

locked in position ψw,1 and ψw going from ψw,1 back to ψw,0, with ψv fixed to ψv,0. While the

array configuration travels along these two segments the orientation angle of rod a changes by

∆θa,3 and ∆θa,4. The net change in absolute orientation of the system at the end of the path

is:

∆θ = ∆θa,1 + ∆θa,2 + ∆θa,3 + ∆θa,4 (4.2)

that, assuming flat-to-flat manoeuvres (ψv,0 = ψw,0 = 0), exclusively depends on ψv,1 and ψw,1

and on the direction the path is travelled, clockwise (v = 1, w = 2) or anticlockwise (v = 2,

w = 1). In particular, the same rectangular path travelled in opposite directions yields the

opposite ∆θ. Figure 4.4 shows the rectangular reorientation trajectory described travelling

clockwise.

The problem of determining the input joint torque that allows the chosen reorientation trajec-

tory to be followed, that as noted earlier can be treated separately, can be solved easily for the

case of rectangular manoeuvres. A proportional-derivative control law drives the array along

each segment:

uj = −kp(ψj − ψ∗j ) − kdψ̇j (4.3)

where ψ∗j is the shape angle to reach at the end of the segment. The gains kp and kd have been

optimised by means of a step response analysis for the default system mass and geometry to

achieve minimum settling time with no overshoot. Each side of the rectangle takes the same

time to be travelled.

To obtain a better understanding of the dynamics of the array consider that an arbitrary

segment h between ψv,start and ψv,end, with ψw locked in position ψw,lock describes the motion of

a N = 2 multibody array. One of the two rigid-bodies is the two rods interconnected by joint

w while the other is the remaining rod. The two rods rigidly linked have a specific moment of

inertia that depends on the lock angle position ψw,lock and determines how the orientation angle

θa varies as a function of ψv. The following relationship, determined by fitting the trajectory

data with a polynomial, holds true:

∆θh = fh (ψv,end) − fh (ψv,start) , fh(ψv) = b1ψv + b2 sin(b3ψv + b4) + b5 (4.4)

in which the average slope b1 and the other parameters b2−4 depend on the mass and geometric

properties of the array and on ψw,lock while b5 is determined by the initial conditions of the

segment. The function fh has been estimated numerically for different shape angle lock positions

of the default array configuration and is given in Figure 4.5 for v = 1, w = 2. In agreement

with the law of conservation of angular momentum, when the two rods linked rigidly are folded

in on themselves (ψw,lock = 180◦) the moment of inertia of the rigid element they make is lower

and the same ∆ψv = ψv,end - ψv,start yields a larger ∆θa,h.

From what has been observed until now, it can be stated that the direction of the overall
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Figure 4.5: Variation of θa as a function of ψ1 for different lock angle positions ψ2,lock and
b5 = 0.
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Figure 4.6: Shape angle flat-to-flat manoeuvre for N < 3 array achieving no reorientation.

orientation variation for a rectangular path depends on the direction the path is travelled and

the magnitude of this variation is a function of the area that is enclosed in the rectangle1. If

this area is null then at the end of the manoeuvre the array goes back to its initial conditions.

This happens for example if, just after reaching ψv,1, the angle ψv is brought back to initial

position ψv,0, while always keeping ψw,0 locked so that the full manoeuvre path in the ψ1ψ2-

plane encloses no area and the net change in θa is null. If one hinge is locked then the number

of modules is N = 2, and the system is equivalent to a 2-rods array. In such case the specific

moments of inertia of the 2 linked elements is the same for both segments so that they have

the same fh and achieve exactly the opposite ∆θa,h going back and forth between the extremes.

This is the reason why there is no rest-to-rest manoeuvre that achieves absolute reorientation

for a planar multibody system with N = 2. The situation described is shown in Figure 4.6.

The situation is different when we have N = 3 modules. In fact, before ψv is brought back

to its initial condition ψv,0 as a result of the third segment of the rectangular trajectory, the

angle ψw has gone from ψw,0 to ψw,1 with the result that the moment of inertia of the block of

two rods interconnected by hinge w has changed. The parameters of fh, b1 in particular, are

not the same for the two parallel segments travelling in opposite directions. In summary, the

net change in absolute orientation obtained at the end of the manoeuvre described is due to a

1This holds assuming rectangular trajectories. For trajectories of different shape the net reorientation would
depend on other parameters that relate to that specific shape. For a rectangular trajectory the area enclosed is
a parameter easy to evaluate but for other shapes this could not be the case.
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Figure 4.7: Net reorientation for different flat-to-flat clockwise rectangular manoeuvres. The
red prisms contain those shape-angles configurations of the reference system that are not feasible
due to rods impingement.

nonlinear dynamic effect caused by the variable inertia of the array. This effect is particularly

evident for the rectangular path analysed, but the same physical concept applies in general to

all rest-to-rest manoeuvres such as those in Figure 4.2 and 4.3.

Finally, Figure 4.7 shows how ∆θ for a clockwise rectangular flat-to-flat manoeuvre varies as

a function of the two shape angles positions characterising it, ψ1,1 and ψ2,1. The red prisms

contain those shape angle configurations that are not feasible due to rod collision. As expected,

the larger the difference in the moment of inertia of the array when parallel opposite segments

are travelled, the larger the ∆θ that can be obtained. Also, given a desired ∆θ, the function

in Figure 4.7 can be interpolated to obtain the corresponding set of ψ1,1 and ψ2,1 that allow us

to achieve this change in orientation. The same function can additionally be used for building

trajectories that patch together multiple rectangular paths for reaching any planar attitude

condition.

4.2 3D Reorientation Trajectories

As already discussed, 3D reorientation manoeuvres are much more complex than planar ones

because of the rotational rate cross-couplings that the system experiences. This makes its

kinematic behaviour less intuitive than for the 2D case. Nevertheless, the same reorientation

concepts based on the exploitation of momentum-preserving internal torques can be applied

and analogous results can be obtained. Figure 4.8 shows the sequence of sequential shapes for a

sample 3D rectangular reorientation trajectory of 40 [s] divided in sections of 10 [s] each during

which one of the shape angles has a variation of 90◦.

Also for the 3D L-shape system a sample database of rectangular trajectories, i.e., parametrized

with respect to 2 shape angles, was built. This array, however, does not only rotate in the plane
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(a) t = 0 [s] (b) t = 10 [s] (c) t = 20 [s]

(d) t = 30 [s] (e) t = 40 [s]

Figure 4.8: L-shape array performing a 3D flat-to-flat rectangular reorientation manoeuvre.

but in 3 dimensions, meaning that at least 3 independent quantities are needed for parametrizing

a non-holonomic turn. These can be Euler angles but a more appropriate representation, already

exploited in [13], is the axis-angle formalism introduced in Chapter 2. Using this approach each

flat-to-flat non-holonomic turn, generated by the system following a commanded rectangular

path in the shape-angle plane, results in a precise rotational direction and a rotation angle

around it.

The attitude of the system is propagated in quaternions for numerical efficiency reasons. The

non-holomic turn in terms of this attitude representation is found by multiplying the attitude

quaternion at the beginning of the manoeuvre by the conjugate of the quaternion at the end

of the manoeuvre:

dqNHT = quatmultiply(qNHT,end,q
′

NHT,start) (4.5)

The change in attitude in terms of rotation axis and angle around it is given by simply trans-

forming dqNHT from a quaternion to an axis-angle representation. For comparing the 3D

non-holonomic turns a spherical plot was chosen. In this plot the position of the points on the

sphere gives the direction of the rotation axis. Their colour indicates the efficiency of the turn

that is defined as the product between the angular distance θNHT around the non-holonomic

turn rotation axis and the inverse of the angular shape distance covered:

effNHT =
θNHT

2(∆ψ1 + ∆ψ2)
(4.6)
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Figure 4.9: L-shape multipanel sys-
tem non-holonomic turn direction and
efficiency.

Figure 4.10: L-shape multipanel sys-
tem non-holonomic turn efficiency as
a function of shape angle variation.

Figure 4.9 gives the reorientation directions for a set of 400 sample rectangular non-holonomic

turn rectangular trajectories followed clockwise (first ψ1 varies) obtained by sampling both

∆ψ1 and ∆ψ2 in the interval [−180◦180◦]. All the reorientation manoeuvres start from the

condition of Figure 4.8 (a). Figure 4.9 shows clearly that the array cannot reorient, with a single

rectangular manoeuvre, in any direction. Also, it is clear that the most efficient reorientation

trajectories only cover specific directions.

The same set of 400 samples is depicted in Figure 4.10 which shows the non-holonomic reori-

entation efficiency as a function of ∆ψ1 and ∆ψ2 total variations. It is clear that, analogously

to the planar case, also in the 3D case the better efficiency, the largest reorientation angular

distance is obtained for the cases in which the difference in terms of moment of inertia of the

array between two parallel segments is larger, as explained in the previous Sections. This hap-

pens, as expected, for shape angle variations close to 180◦ corresponding to the case in which

two panels of the array fold together starting from the flat unfolded condition. A third relevant

plot that was obtained with the same set of 400 sample trajectories is shown in Figure 4.11.

This plot shows how the direction of the body axes of one of the panels, which is equivalent

to that of the others when the array is in a flat configuration, varies after the non-holonomic

turn manoeuvre. This plot confirms that there exist some preferential rotation directions that

can be achieved by the array using this reorientation mechanism. These preferential directions

depend on the characteristics of the array.

A relevant remark has to be made concerning the fact that the rectangular trajectories followed

in the opposite direction to those shown, i.e., counter-clockwise, generate plots that are mirrored

with respect to those shown above. This behaviour is analogous to that already observed for

the planar case. Finally, it has to be noted that with a proper selection of sequential non-

holonomic turns, in principle it could be possible to achieve a larger range of array orientations.

In fact, after one turn has been realised the set of axes rotates accordingly on the surface of the

orientation sphere. In other words, the χ-like point clouds that we see in Figure 4.11 shift and
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Figure 4.11: Multipanel system body axes directions after non-holonomic turns (X-axis is blue,
Y-axis is red, Z-axis is green).

are now centred on the new directions of the XY Z-axes of the array. This suggests that it is

possible to find a sequence of flat-to-flat reorientation manoeuvres that can rotate the axes of

the array from the initial attitude X0Y0Z0 to arbitrary attitude conditions within a particular

range. Similarly, it was also possible for the previously discussed planar 3-rods array to achieve

any reorientation angle in the range [0 360◦] by performing a planned sequence of rectangular

manoeuvres, or a sequence of any other type of closed-path manoeuvres in the shape-angles

domain. The range of achievable orientations that can be achieved by the 3D array, however,

depends on the properties of the array, including the number of modules, their inertia and

geometric properties, the hinges it has and how these modules can move with respect to each

other.



5 Conclusions & Recommendations

The present Chapter summarises the information and results presented up to this point and

suggests possible research directions to undertake on the base of these findings.

5.1 Conclusions

The present study has presented multiple phases. First of all, it gathered together the available

information and literature regarding the exploitation of internal torques for control purposes.

From the literature study summarized in Chapter 1 it is clear that the topic is of great interest

for space applications. In fact, the high costs characterising any space mission are pushing

for the development of technological solutions that increase the efficiency and versatility of

systems. A possible solution is an array that requires a low amount of energy for controlling

its own state, thanks to the use of internal torques. The envisioned system would be able to

reconfigure its shape for complying with the requirements of a larger number of orbital functions

with respect to existing systems. It could revolutionise classes of small satellite missions and

ensure a cheaper access to space for instrumentation testing or scientific data harvesting.

Reconfigurable systems represent the state of the art of robotics. At the moment many con-

cepts are being investigated and tested even if an application that would justify the increased

development cost, with respect to fixed configuration systems, that perform optimally for a

specific task, has not been identified yet. This application, for the reasons introduced above,

could be the used in space. Nevertheless, space systems are required to ensure high robustness.

State of the art reconfigurable systems are still limited and the advantages of this technology,

as well as its flaws, are still unknown. This is especially because of the non-linearities that

dominate their behaviour which prevent the use of classical control approaches which dominate

space technology which remains resilient to tried-and-tested solutions. From this it follows that

a better understanding of the peculiar behaviour and dynamics of reconfigurable system, with

a particular focus on what a space system of this type could look like, represents a necessary

step for the future operational space scenarios.

The second step consisted in the development of a validated simulation tool and a framework

that allows the extraction of information about the most peculiar traits of internal torques whose

behaviour, as already mentioned, is highly non-linear and thus unintuitive. This development

40
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required high-level multibody mechanics and the solution of some issues related to the numerical

stability and computational efficiency of the simulation for both the planar and, then, the 3D

case which is significantly more critical in terms of complexity. The resulting tools simulate

respectively the motion of a sequence of rods in 2D and that of an L-shape multipanel array

in 3D. The dynamics of both these configurations are relevant for a multipanel cube which

is assumed to be the reference case for a reconfigurable system for space applications. The

simulation tool does not only allow the investigation of how the system responds to internal

control torques but can easily be adapted to different configurations from those studied here

and can be extended with more modules eventually featuring different mass/inertia properties

or producing/responding to forces.

The third and final step of the thesis, starting from the information gathered during the litera-

ture review, exploited the potentialities of the multibody simulation tools for determining the

characteristic behaviour of the reference array in both 2D and 3D domains. This study proved

the feasibility of the concept and documented some valid reorientation strategies that represent

a baseline to be expanded and modified depending on the specific characteristics and needs of

the reconfigurable system that has to be developed.

5.2 Recommendations

One of the major achievements of this work consisted in identifying some critical points and

research directions to follow for generating the results that could be most relevant for a future

implementation of internal torques attitude control and shape reconfiguration technology for

space applications:

1. Even if the results gathered here are valid in general for any reconfigurable systems

exploiting internal torques for reorientation purposes, arrays that do not comply with

the assumptions made for the reference system could reveal different behaviours. For

example if the centres of gravity of the panel modules are not aligned then also the

motion of three panels in the chain configuration would generate an off-plane rotation of

the system. Different rotational behaviours would also be experienced if the panels are

constrained along their sides, but can rotate about the axes perpendicular to it or if these

can translate relative to each other.

2. The reorientation maps that have been produced are valid for a specific array configura-

tion. Each base configuration of the panels/rods will result in a different map. If an array

is composed of more than three elements an interesting solution for its attitude control is

to define reorientation maps for different combinations of groups of panels moving relative

to each other. This would add various options for the internal angles control trajectory

that can be followed for reorientation between two fixed attitude conditions.

3. In Chapter 4 it was verified that a reorientation trajectory in the shape-angles plane is
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a closed path enclosing a non-null area. The focus was on rectangular reorientation tra-

jectories because they represent the most appropriate option to understand the dynamic

behaviour of this class of underactuated systems, which is the primary objective of this

thesis. However, the solution of the optimal control problem has shown that the control

input sequence in the shape-angle domain that minimizes control effort is not a rectangle

but can have different shapes, still enclosing a non-null area, depending on the constraints

and the properties of the system. This suggests that it could be possible to design re-

orientation trajectories in the shape-angle domain that can be still parametrized easily,

such as ovals, circles or other more complicated closed shapes, but can be more efficient

than rectangular ones with respect to some specific reorientation tasks.

4. It was verified that a planar array made of at least three rods can achieve any orientation

in the range [0◦ 360◦] by following a sequence of single reorientation trajectories that in

the shape-angle domain are closed paths of arbitrary shape enclosing a non-null area. For

the 3D case the determination of the range of possible orientation, that can be achieved

by exploiting internal torques is more complicated due to the kinematic coupling that

characterises 3D multibody systems. In any case, this range is limited by the properties

of the array, including the number of modules, their inertia and geometric properties, the

hinges it has and how the modules of the array can move with respect to each other.

5. The interest in the field of underactuated control problems, of which internal torque

reorientation in space is an example, has been growing sharply in the last few years in

parallel with the developments in the field of Artificial Intelligence. In fact, despite the

advantages internal torques can yield, their behaviour is highly nonlinear and unintuitive.

Mathematical methods such as neural networks represent a promising option for the

development of control algorithms for this type of system. Some tests of network training

were conducted within this research work but the performance achieved by the algorithm

was low and the increase in system complexity not needed, especially for the 2D case

where the reorientation trajectory can be determined by simply interpolating the map.

It is believed however that an increase in the number of modules and the need for 3D

reorientation control could optimally exploit the advantages of neural networks that can

be trained using previously built reorientation maps.

6. The array mechanics simulations that have been run were aimed at isolating the effect of

internal torques on the array attitude. Nevertheless, it is possible to extend the model

to also include external dynamic contributions such as solar radiation pressure and drag

or gravity gradient. These additions would significantly increase the complexity of the

system and produce completely different reorientation maps. The same can be achieved

by including the effect of thrusters or other actuators that can be used in synergy with

internal torques.

7. Impingement avoidance has been analysed for the 2D planar system. The definition of

this problem increases in terms of complexity with the number of modules involved in the

manoeuvre. This is especially true for 3D-reorientations. The solution of the reorientation
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problem, apart from the case of simple trajectories in which efficiency is not a concern,

can be found by exploiting a motion planning approach.

8. The active use of the shape of the array could allow the control of the orientation of each

module singularly. This would be useful for example in the situation in which the system

has to support multiple payloads pointing at different targets in 3D space.

9. The simulation environment developed using the multibody methodology presented can

serve as a kernel for an extended tool that can simulate the motion of systems featuring

a larger number of modules.
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