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Abstract

Dielectric oxides exhibit many intriguing properties. For example, ferroic materials are central
to developing transducers due to their ability to convert energy owing to the presence of coupled
orders. In particular, lead-based perovskite relaxor-ferroelectric single crystal have attracted
great attention in recent years, with exceptional piezoelectric and dielectric responses reported.
Suitable for high-power industrial and underwater SONAR ultrasonic applications due to their
high energy density, the performance of these materials has been linked to compositional disor-
der and short-range order but the mechanism is not yet well-understood.

In general, coupling and competition of different orders can result in thought-provoking
physics and, in this work, this link was investigated by studying the fundamental behaviour of
complex ferroelectrics and multiferroics. Polarised neutrons were used to characterise the mag-
netic ground state of CuzNb,Og, addressing an issue in the literature regarding the microscopic
ordering mechanism. Furthermore, muon techniques were used to study the composition and
magnetic structure of the relaxor-multiferroic Pb(Fe;/,Nb,/,)O3 which provided insight into the
role of disorder and random fields. This work was then extended to study the Mn distribution
and valence in doped Pb(In;, /2Nb1 /2)03 - Pb(Mg; /3Nb2/3)03 - PbTiO3. These materials are indi-
cated to be amongst the highest performance piezoelectric but the microscopic mechanisms are
not fully understood.

This raised the question of best practice in material comparison, with unbiased comparison
of transduction materials desired. To address this, a new method was developed to quantify the
energy density of piezoelectric materials, which was verified in silico to be independent of a
single use case or application.

Overall, this work extends the understanding of three complex ferroelectric and multiferroic

systems using fundamental characterisation methods with a foundation in applications.
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Glossary of Terms

ceramic Polycrystalline material containing many differently orientated grains.

crystal The infinite repetition of identical units of atoms (unit cells) in a periodic way possess-

ing long-range order and translational symmetry.

Curie temperature Temperature at which a system undergoes a phase transition from a dis-
ordered state to one with ferroic order, e.g. ferroelectric-paraelectric, ferromagnetic-

paramagnetic. A Curie-Weiss law is obeyed above the transition in the disordered state.

domain Regions within a crystal that have similar crystal structures or other properties. Usually

results from spontaneous symmetry breaking during a phase transition or other process.

domain engineered A ferroelectric crystal which has been poled by the application of a large
electric field along a direction other than the spontaneous polarisation direction. This
creates a set of symmetry-related domains in which the polarisation vectors are oriented
so as to minimise their angles to the poling direction and has been shown to unlock new

piezoelectric modes, e.g. dsg, and large piezoelectric coefficients.

electromechanical coupling factor The proportion of the instantaneous work converted from
electrical to mechanical energy (and vice-versa) and stored in a piezoelectric material.
Denoted as k2.

electrostriction A quadratic coupling between mechanical and dielectric properties present in

all materials.

ferroelectric Supporting a spontaneous dielectric polarisation which is reversible under an ex-
ternal field.

ferromagnetic Supporting a spontaneous and macroscopic magnetisation which may persist

after removal of an applied field.

Generation I Binary solid solutions of a relaxor component with PbTiO3.

Generation II Ternary solid solutions of two relaxor components with PbTiOs.

xxi
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Generation III Doped ternary solid solutions of two relaxor components with PbTiO3.

lattice vector Vectors which define the geometry of the unit cell. Typically denoted as 1,2 and

3ord, band?C.

magnetoelectric A coupling between magnetic and dielectric order.
mechanical quality The reciprocal quantity to mechanical losses.

Miller index System for labelling crystallographic planes: a plane is denoted by indices (4, k, ()
where h, k and [ are proportional to the reciprocal of the intercepts of the plane with the

lattice vectors @, b and ¢ respectively. They also label points on the reciprocal lattice.
morphotropic phase boundary A phase boundary which arises due to compositional changes.

multiferroic A coupling between ferroic orders, usually magnetism and ferroelectricity. See

magnetoelectric

muon A fundamental subatomic particle with a mass (105.7MeV/c?) approximately 200 times
that of an electron and an electric charge of either +e. Can be used to sensitively probe

magnetic systems (") through uSR and compositional heterogeneity (1 ™).

Néel temperature Temperature at which a system undergoes a phase transition from a disor-

dered state to one with antiferromagnetic or other type of magnetic order.

Neumann’s principle Provides a link between crystal symmetry and physical properties: crys-

tal point group symmetries must be obeyed by the physical properties of that crystal.

neutron A subatomic particle of approximately the same mass (939.6 MeV/c?) as a proton
and no electric charge. Typically found within the nuclei of atoms, it can also be used
to probe condensed matter system’s nuclear structure, due to interaction of the scale of
crystal typical intra-lattice spacing, and magnetism, due to the neutron’s large magnetic

moment.

normal ferroelectric A material which supports ferroelectric behaviour and shows a sharp fer-
roelectric-paraelectric phase transition at the Curie temperature and follows a Curie-Weiss

law in the paraelectric phase.

paraelectric Supporting no overall electric polarisation vector.

perovskite A material with chemical formula ABX3, where A and B represent cations and X

anions (typically O), which shares a crystal structure with calcium titanate CaTiOs.



Glossary of Terms XXiii

phase transition A qualitative change in the state of a system typically associated with sponta-

neous symmetry breaking and the emergence of an order parameter.

piezoelectric A linear coupling between mechanical and dielectric properties only present in

certain crystal symmetries.
point group Group of symmetry operations that leave the unit cell of a crystal unchanged.

pyroelectric Develops an electric charge homogenously when heated.

relaxor-ferroelectric A material which supports ferroelectric behaviour but shows a frequency
dependent, diffuse ferroelectric-paraelectric phase transition and deviates from the Curie-

Weiss law in the paraelectric phase. These features are linked to compositional disorder.

relaxor-PT Solid solutions of relaxor components, e.g. PMN, with PbTiO3 which are of interest

due to their large piezoelectric effects.

Rochelle salt Sodium potassium tartrate tetrahydrate - NaKC4H4Og - 4H5O.

single crystal A material which consists of a single unbroken crystal lattice across its entire

volume.

transducer A device which converts energy from one form to another, e.g. mechanical to

dielectric.

ultrasound Sound or vibrations with a frequency above the human hearing threshold (>20 kHz).

Widely used in medical and industrial situations such as diagnostic imaging and SONAR.

unit cell The most fundamental repeating unit of a crystal.

Voigt notation Also known as ‘matrix’ notation. Allows, through exploitation of the intrinsi-
cally symmetric nature of the stress and strain tensors, representation of three dimensional
tensors as matrices by pairing indices according to Table 2.2. In this thesis, Voigt indices
are denoted with greek letters such that u,v,...=1—6.



List of Abbreviations

BF bismuth ferrite - BiFeO3
BNT bismuth sodium titanate - Bi; ,Na;, TiO3
BT barium titanate - BaTiO3

BVP boundary value problem

P

v components of the stiffness at constant electric displacement (stiffened) in Voigt notation

cﬁ v components of the stiffness at constant electric field in Voigt notation

CNO copper niobium oxide - CuzNb,Og

D; components of the electric displacement field

djy, components of the piezoelectric strain constant in Voigt notation

E; components of the electric field

e, components of the piezoelectric stress constant in Voigt notation
EPD elasto-piezo-dielectric matrix

efj components of the dielectric permittivity at constant strain (clamped)

sl-‘]’- components of the dielectric permittivity at constant stress (unclamped)

F Helmholtz free energy
FEA finite element analysis

FOM figure of merit

G Gibbs free energy

gin components of the piezoelectric voltage constant in Voigt notation
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H enthalpy

hi, components of the piezoelectric stiffness constant in Voigt notation

k see electromechanical coupling factor

KDP potassium dihydrogen phosphase - KH,PO4

LE length extensional mode, also known as the ‘33" mode.

LF longitudinal field

LNO lithium niobate - LiNbO3

LT low temperature phase in CNO which exists for 7 < 24 K

LTE length-thickness extensional mode, also known as the ‘31° mode.

LTO lithium tantalate - LiTaO3

Mn:PIN-PMN-PT solid solution of lead indium niobate, lead magnesium niobate and lead
titanate doped or modified with Mn - Mn:Pb(In, /2Nb1/,)O3 - Pb(Mg;/3Nb2/5)O3 - PbTiO;5

Mn:PMN-PZ-PT solid solution of lead magnesium niobate, lead zirconate and lead titanate
doped or modified with Mn - Mn:Pb(Mg;, /sNb2/3)O3 - PbZrO; - PbTiO;3

MPB see morphotropic phase boundary

MT middle temperature phase in CNO which exists for 24 K< 7T <26.5 K
U~ negative muon

Ut positive muon

USR muon spin relaxation, also known as muon spin rotation

PFN lead iron niobate - Pb(Fe; /ZNbl /)03
PIN lead indium niobate - Pb(In; /2Nb1 /2)03

PIN-PMN-PT solid solution of lead indium niobate, lead magnesium niobate and lead titanate -
Pb(In, /2Nb1 /2)03 - Pb(Mg, /3Nb2/3)03 - PbTiO3

PMN lead magnesium niobate - Pb(Mg;/3;Nb,/3)O3

PMN-PT solid solution of lead magnesium niobate and lead titanate - Pb(Mg,;;;Nby;)0O3 -
PbTiO3
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Chapter 1
Introduction

This chapter provides a brief introduction to the thesis. Following a general overview, the mo-
tivation, aims and objectives are laid out. Next, the contributions to knowledge contained in
this thesis are summarised. Finally, the structure of the thesis and publications arising from this

work are outlined.

1.1 General Overview

Dielectric oxides, as a class of materials, are represented in most branches of modern physics
and engineering. A classic example of this is the field of piezoelectricity. Whilst piezoelectric
materials have been under continuous development for the past 140 years [1], driven both by
their wide ranging applicability and unique properties [2], it is the coupling between dielec-
tric properties and mechanical deformation on which many industries rely for their ability to
generate and receive ultrasound. Examples include: medical diagnostic imaging [3], therapeu-
tic ultrasound [4, 5], surgical ultrasound [6, 7], underwater acoustics such as SOund Naviga-
tion And Ranging (SONAR) [8], ultrasonic cleaning [9], and industrial non-destructive evalua-
tion [10, 11].

Whilst early piezoelectric materials were varied in structure, the current best performing
piezoelectric materials are the dielectric oxide perovskite class, with general chemical formula
ABOj [12]. They include the current standard piezoelectric material Pb(Ti, Zr;_,)O3 (PZT), a
solid solution between the perovskites PbZrOs3 (PZ) and PbTiO3 (PT) [13], which is used in
ceramic form and has been shown to exhibit a substantial piezoelectric effect [13]. However,
PZT’s main strength is the versatility allowed by chemical variations (through the parameter
x or other dopants) to obtain materials with a wide range of operating parameters but without
serious reduction of the piezoelectric properties [14].

Despite the advantages of the PZT family, development of other piezoelectric materials has
actively been pursued and this evolution is illustrated in Figure 1.1. One other emerging class

of materials is the relaxor-ferroelectrics [15]. Named in analogy with ferromagnets, a ferroelec-
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tric material has a permanent and reversible electric dipole moment [16]. This thesis mostly
considers the class of relaxor-ferroelectrics, with some comparison to the so-called normal fer-
roelectrics. Ferroelectricity was first discovered in Rochelle salt [17] but the prime example of
a normal ferroelectric material is the perovskite BaTiO3 (BT) [18]. The prototypical relaxor-
ferroelectric is Pb(Mg,;Nb,/;)O3 (PMN) which was first reported in 1961 [19] and again adopts
a perovskite structure. It was first noted for its exceptional dielectric properties but its piezoelec-
tric potential was not realised until it was combined, again in solid solution, with PT (similar to
PZT), whence it exhibited a piezoelectric coefficient, d33, almost three times that of PZT [20].
Furthermore, whilst the growth of single crystal samples of PZT has been reported [21], it has
generally been found to be difficult to produce large single crystal samples due to chemical
decomposition of the constituent perovskites during the crystal growth process [22, 23]. How-
ever, it has proved relatively simple to grow single crystal specimens of relaxor-PT solid solu-
tions [24].

Relaxor-PT

Engineered
Connectivity

Temperature (°C)

< 4_&
Perovskite

Piezoelectric Performance

Oxygen Octahedron
PMN
(relaxor)
. Rochelle KDP PN
0-S10; oo R
1880 1921 1935 1944 1949 1950 1953 1961 1978 1981 m
1917 1940 1953 1997

Development Years

Figure 1.1: The development of piezoelectric materials. The superiority of relaxor-PT single
crystal materials over PZT and other early materials is clearly demonstrated. Reprinted from S.
Zhang et al., “Advantages and challenges of relaxor-PbTiO3 ferroelectric crystals for electroa-
coustic transducers - a review,” Prog. Mater. Sci., vol. 68, pp. 1-66, 2015, Copyright (2015),
with permission from Elsevier.

After decades of dominance by PZT ceramics, relaxor-PT single crystals have attracted much
attention in recent years and are now finding applications in commercial ultrasound transducers,
with PMN-PT already commercialised in the medical ultrasonic imaging industry [15, 25]. They
allow transducers with larger bandwidths and higher sensitivity than PZT based devices [15].
Adding a third constituent perovskite, i.e. PMN-PT becomes Pb(In, /szl /)03 - Pb(Mg;, /3Nb2/3)03
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- PbTiO3 (PIN-PMN-PT), increased the upper temperature usage limits and provided greater
stability, thus allowing device usage conditions to be broadened with respect to temperature,
electric field and mechanical stress [26]. Recently Mn modification of PIN-PMN-PT (denoted
as Mn:PIN-PMN-PT) has further reduced the mechanical losses, increasing suitability for high-
power application such as ultrasonic surgery devices and underwater SONAR [15].

More generally, perovskites have been shown to display a range of interesting properties
including superconductivity and large magneto-resistance and have recently become of interest
for photovoltaic applications [27] where promise is shown by both halide and hybrid organic-
inorganic perovskites [28, 29].

Indeed the main strength of these materials, not only in piezoelectricity but also in other
applications, is the exploitation of multiple simultaneous, and often competing, orders. For ex-
ample, a material which exhibits both ferromagnetic (or some other form of magnetic ordering)
and ferroelectric behaviour is called a multiferroic. Typically, these materials are of interest due
to the potential to influence, for example, magnetic properties by the application of an electric
field in a magnetoelectric device [30]. However, despite the inherent link between electricity
and magnetism shown in the theory, i.e. Maxwell’s equations [31], multiferroics are somewhat
rare and this has been suggested to be caused by to differing requirements in the crystal’s elec-
tronic structure [32]. Regardless, where a coupling does occur, it can be seen to arise from a
delicate balance between these competing requirements and if this can be understood, more of
such materials may be developed.

This work provides further investigation into the fundamental behaviour of complex fer-
roelectrics and multiferroics with a specific focus on piezoelectric applications. However, a
comprehensive understanding of the mechanisms is required to fully exploit these materials and

this thesis closes that gap.

1.2 Motivation

Due to the delicate competition between different orders, complex ferroelectrics and multifer-
roics provide the opportunity for potentially novel structural and magnetic ground states with
relaxors [33-36] and skyrmion phases [37] being just several of many examples. A specific case
of this is relaxor-PT single crystals, which are emerging as materials with great potential for
high-power industrial, surgical and underwater SONAR applications. By exploiting their crystal
anisotropy, they allow novel transducer designs. However, methods of crystal growth result from
experimentally-developed specifications following a historical lack of theoretical input, which
is essential to develop materials with enhanced properties.

Understanding the origins of observed behaviour of relaxor-ferroelectrics is also key to en-
able exploitation of these materials for use in devices. Historically, SONAR was the driving

force behind development of piezoelectric materials (especially during the second world war).



CHAPTER 1. INTRODUCTION 4

SONAR is most widely associated with military applications, where it can be used for both nav-
igation and object detection, but it can also be used outside military contexts e.g. underwater
cartography, construction, maintenance, exploration and to detect underwater life [8]. Due to
the long detection ranges involved and the possibility to use optical techniques at very short
ranges, SONAR typically uses low frequencies (< 1 MHz) and high power and the properties of
relaxor-PT single crystals make them perfect for SONAR transducers [15].

More widely, the performance of a piezoelectric material for a particular application can be
quantified by a figure of merit (FOM) [15]. These are typically constructed from relevant mate-
rial properties, e.g. piezoelectric constant, dielectric constant, and the FOMs for many ultrasonic
applications are reviewed by Zhang et al. in Ref. [15]. This concept will be explored further in
the review of relaxor-PT single crystals in Chapter 6 but, in summary, relaxor-PT single crystals
have been shown to exhibit a FOM twice that of standard PZT for SONAR [38—40] and other
high-power applications, meriting further study and one of the reasons behind their continued
research attention. Furthermore, relaxor-PT single crystals may be suitable for other applica-
tions such as tactile sensors and acoustic tweezing due to their superior piezoelectric, dielectric,
and compliance when compared to the standard materials.

Another motivation for studying materials with competing orders is for their innate coupling
between these orders, which results in transduction properties. Ferroelectrics are well-known
to be strongly piezoelectric, converting between mechanical and dielectric energy, whereas the
coupling in multiferroics, if at workable temperatures, opens up the ability to create new mag-
netoelectric devices independently controllable with magnetic and electric fields [30].

This transduction is key in piezoelectric devices and relaxor-PT single crystals are reported
to possess high energy density, which may be exploited to give smaller, lighter devices [15].
However, this is hard to quantify historically, making specific comparisons difficult. This issue
must be addressed if it is to be used to justify the conversion of devices from PZT to relaxor-PT
single crystals. This study could also be used to determine device power limits: whilst there
are some studies in the literature regarding power limits of transducers [41], there is a lack of
generality, with very limited applications considered.

Furthermore, the high dielectric and piezoelectric performance of relaxor-ferroelectrics has
been linked to short-range order resulting from compositional disorder but the mechanism is not
well-understood. In the class of mixed perovskites with structure A(B,B}_,)O3 such as PMN,
materials exhibit a random mixture of cations on the B-site and this disorder has been indicated
as, at least partially, a reason for their high performance [42]. Indeed, the phase transitions in
these materials have also challenged understanding of ferroelectric transitions in the presence of
disorder as relaxor-ferroelectrics display characteristic transitions distinct from those of normal
ferroelectrics [33]. They show huge dielectric properties over a large temperature range which
must be encompassed for full characterisation. Furthermore, the cryogenic temperature region

has provided insight into the role short-range order plays in the enhanced performance [43].
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Also, given the inherent anisotropy tied to ferroelectricity through supporting a macroscopic
electric dipole vector, relaxor-ferroelectrics provide unique systems to study the effects of dis-
order and random fields.

Hence, complete fundamental characterisation, with a foundation in applications, is needed
to realise the potential of dielectric oxides such as relaxor-PT single crystals. This is essential to
enabling the continuing development and use of such complex materials, which play a notable

role in the modern world.

1.3 Aims and Objectives

The overall aim of this thesis is to further the understanding of complex ferroelectrics and mul-
tiferroics. As set out above, these materials not only have wide applicability but also pose intel-
lectually stimulating questions regarding the mechanisms behind their structures and behaviour.

This leads to the first of three more specific aims of this thesis:

1. To use condensed matter probes to advance understanding of the fundamental behaviour
of complex ferroelectrics and multiferroics and to elucidate the mechanisms by which they

emerge.

The potential applications of materials must not be forgotten and should be used to direct
research. To this end, the main application considered in this thesis is in ultrasonic devices.
Hence, investigation of the transduction properties which arise from the order coupling must be
forthright. This leads to the second aim of the thesis which attempts to address a more applied

question:

2. To arrive at a universal and comparable metric for the energy density of a piezoelectric
material and to understand the different energy conversion mechanisms at play in relaxor-

PT single crystals.

Lastly, relaxor-PT single crystals represent the culmination of both competing order effects
suitable for more theoretical studies, and applicability in high-power ultrasonics and underwater
SONAR. However, much of their behaviour is still not well-understood and this leads to the final

aim:
3. To explore the mechanisms behind the high performance of relaxor-PT single crystals
with a focus on Mn doping and the cryogenic temperature regime.

In order to realise these aims, the following objectives were set for this work:

 Characterise the structure of multiferroics with neutrons and muons, including looking
at both the low temperature magnetic structure and any compositional gradients. This

supports Aims 1 and 3.
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* Use muon techniques to characterise relaxor-ferroelectrics and assess the feasibility of
studying Mn:PIN-PMN-PT. This objective supports Aim 3.

» Explore the electromechanical mechanisms of piezoelectric materials in order to further

understand the concept of energy density, allowing Aim 2 to be realised.

1.4 Contributions to Knowledge

This thesis has contributed to the understanding of complex ferroelectric materials in many

ways. Specifically these contributions can be summarised as follows:

1. This thesis contains, for the first time, a successful demonstration of the use of spherical
neutron polarimetry to characterise the magnetic ground state of the complex multifer-
roic CuzNb,Og (CNO) (N. Giles-Donovan et al., Physical Review B, 2020 [44]; Oral
presentation: Fundamentals of Ferroelectrics and Related Materials 2019). This directly
addressed and provided a solution to an issue in the literature of CNO regarding the mi-

croscopic mechanism behind this magnetic structure. This work is detailed in Chapter 4.

2. By characterising the composition gradient in the near surface region of multiferroic
relaxor-ferroelectric Pb(Fe; /szl /2)03 (PEN), insight into the behaviour of the materials
in the context of disorder and random fields was gained. Furthermore, the links to mag-
netic structure were investigated and mechanisms behind this were discussed (N. Giles-
Donovan et al., submitted to Physical Review B [45]; Oral presentation: 2020 Interna-

tional Symposium on Applications of Ferroelectrics). This work is detailed in Chapter 5.

3. Inorder to study the Mn valence and distribution in Generation III (doped ternary) relaxor-
ferroelectric single crystals, this thesis also includes an investigation into the feasibility of
using the negative muon compositional analysis technique (N. Giles-Donovan et al., in

preparation for Acta Crystallographica A [46]). This work is detailed in Chapter 6.

4. In this thesis, a method for quantifying the energy density of piezoelectric materials was
developed allowing for an unbiased comparison (Conference Preceedings: 2018 IEEE
International Ultrasonics Symposium [47]; Oral presentation: Fundamentals of Ferro-
electrics and Related Materials 2021, PIEZ0O2021: Piezoelectrics for End Users XI; Poster
presentation: 2019 International Workshop on Acoustic Transduction Materials and De-
vices, 2021 IEEE International Ultrasonics Symposium). This work is detailed in Chap-
ter 7.
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1.5 Thesis Structure

Chapter 2 provides the background knowledge and literature review necessary for this thesis.
This includes the theory behind piezoelectricity, ferroelectricity and magnetic order and the
cases where these intermingle. Chapter 3 reviews the experimental methods that were used to
gather data for this thesis. This includes details of the experimental setups and facilities where
the experiments were performed.

The next four chapters contain the core results of the thesis. They begin with Chapter 4
which details the characterisation of the multiferroic CuzNb,Og (CNO) using polarised neutron
scattering. Through careful analysis of the results, a new mechanism is proposed which accounts
for the magnetic structure and provides insight into the emergence of the electric polarisation.

Chapters 5 and 6 detail the application of muon techniques to study the behaviour of relaxor-
ferroelectrics. The near-surface region of Pb(Fe, /2Nb1 /2)03 (PEN) is studied in Chapter 5. This
study probes both the composition and magnetic structure and links the phenomenology to the
presence of random fields. Chapter 6 details attempts at characterisation of Generation III
relaxor-PT single crystals with muons. Specifically the valence of the Mn dopant was inves-
tigated using negative muon techniques. Theoretically predicted, an experimental feasibility
study was conducted into the sensitivity of the method to the valence of Mn using three oxide
samples with known Mn oxidation. This was followed by an application of these results in
Mn:Pb(In; ,Nb,,)O3 - Pb(Mg;3Nb,/;)O3 - PbTiO3 (Mn:PIN-PMN-PT).

Chapter 7 presents work on quantifying the higher energy density of relaxor-PT single crys-
tals. This starts with a review of energy in a piezoelectric material followed by the development
of a generalised, static electromechanical coupling factor. In silico validation is provided. This
method is then applied to two cases in which comparison of piezoelectric material is important
- relaxor-PT single crystals and the development of Pb-free materials.

Finally, Chapter 8 provides a summary of all results and, after the conclusions are laid out,

future work is presented.
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Chapter 2
Background and Theory

This chapter provides a technical introduction and background to the material contained within
the thesis. As the main application considered here, piezoe