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Abstract

Dielectric oxides exhibit many intriguing properties. For example, ferroic materials are central
to developing transducers due to their ability to convert energy owing to the presence of coupled
orders. In particular, lead-based perovskite relaxor-ferroelectric single crystal have attracted
great attention in recent years, with exceptional piezoelectric and dielectric responses reported.
Suitable for high-power industrial and underwater SONAR ultrasonic applications due to their
high energy density, the performance of these materials has been linked to compositional disor-
der and short-range order but the mechanism is not yet well-understood.

In general, coupling and competition of different orders can result in thought-provoking
physics and, in this work, this link was investigated by studying the fundamental behaviour of
complex ferroelectrics and multiferroics. Polarised neutrons were used to characterise the mag-
netic ground state of Cu3Nb2O8, addressing an issue in the literature regarding the microscopic
ordering mechanism. Furthermore, muon techniques were used to study the composition and
magnetic structure of the relaxor-multiferroic Pb(Fe1/2Nb1/2)O3 which provided insight into the
role of disorder and random fields. This work was then extended to study the Mn distribution
and valence in doped Pb(In1/2Nb1/2)O3 - Pb(Mg1/3Nb2/3)O3 - PbTiO3. These materials are indi-
cated to be amongst the highest performance piezoelectric but the microscopic mechanisms are
not fully understood.

This raised the question of best practice in material comparison, with unbiased comparison
of transduction materials desired. To address this, a new method was developed to quantify the
energy density of piezoelectric materials, which was verified in silico to be independent of a
single use case or application.

Overall, this work extends the understanding of three complex ferroelectric and multiferroic
systems using fundamental characterisation methods with a foundation in applications.
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Glossary of Terms

ceramic Polycrystalline material containing many differently orientated grains.

crystal The infinite repetition of identical units of atoms (unit cells) in a periodic way possess-
ing long-range order and translational symmetry.

Curie temperature Temperature at which a system undergoes a phase transition from a dis-
ordered state to one with ferroic order, e.g. ferroelectric-paraelectric, ferromagnetic-
paramagnetic. A Curie-Weiss law is obeyed above the transition in the disordered state.

domain Regions within a crystal that have similar crystal structures or other properties. Usually
results from spontaneous symmetry breaking during a phase transition or other process.

domain engineered A ferroelectric crystal which has been poled by the application of a large
electric field along a direction other than the spontaneous polarisation direction. This
creates a set of symmetry-related domains in which the polarisation vectors are oriented
so as to minimise their angles to the poling direction and has been shown to unlock new
piezoelectric modes, e.g. d36, and large piezoelectric coefficients.

electromechanical coupling factor The proportion of the instantaneous work converted from
electrical to mechanical energy (and vice-versa) and stored in a piezoelectric material.
Denoted as k2.

electrostriction A quadratic coupling between mechanical and dielectric properties present in
all materials.

ferroelectric Supporting a spontaneous dielectric polarisation which is reversible under an ex-
ternal field.

ferromagnetic Supporting a spontaneous and macroscopic magnetisation which may persist
after removal of an applied field.

Generation I Binary solid solutions of a relaxor component with PbTiO3.

Generation II Ternary solid solutions of two relaxor components with PbTiO3.

xxi



Glossary of Terms xxii

Generation III Doped ternary solid solutions of two relaxor components with PbTiO3.

lattice vector Vectors which define the geometry of the unit cell. Typically denoted as 1⃗, 2⃗ and
3⃗ or a⃗, b⃗ and c⃗.

magnetoelectric A coupling between magnetic and dielectric order.

mechanical quality The reciprocal quantity to mechanical losses.

Miller index System for labelling crystallographic planes: a plane is denoted by indices (h,k, l)
where h, k and l are proportional to the reciprocal of the intercepts of the plane with the
lattice vectors a⃗, b⃗ and c⃗ respectively. They also label points on the reciprocal lattice.

morphotropic phase boundary A phase boundary which arises due to compositional changes.

multiferroic A coupling between ferroic orders, usually magnetism and ferroelectricity. See

magnetoelectric

muon A fundamental subatomic particle with a mass (105.7MeV/c2) approximately 200 times
that of an electron and an electric charge of either ±e. Can be used to sensitively probe
magnetic systems (µ+) through µSR and compositional heterogeneity (µ−).

Néel temperature Temperature at which a system undergoes a phase transition from a disor-
dered state to one with antiferromagnetic or other type of magnetic order.

Neumann’s principle Provides a link between crystal symmetry and physical properties: crys-
tal point group symmetries must be obeyed by the physical properties of that crystal.

neutron A subatomic particle of approximately the same mass (939.6 MeV/c2) as a proton
and no electric charge. Typically found within the nuclei of atoms, it can also be used
to probe condensed matter system’s nuclear structure, due to interaction of the scale of
crystal typical intra-lattice spacing, and magnetism, due to the neutron’s large magnetic
moment.

normal ferroelectric A material which supports ferroelectric behaviour and shows a sharp fer-
roelectric-paraelectric phase transition at the Curie temperature and follows a Curie-Weiss
law in the paraelectric phase.

paraelectric Supporting no overall electric polarisation vector.

perovskite A material with chemical formula ABX3, where A and B represent cations and X
anions (typically O), which shares a crystal structure with calcium titanate CaTiO3.
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phase transition A qualitative change in the state of a system typically associated with sponta-
neous symmetry breaking and the emergence of an order parameter.

piezoelectric A linear coupling between mechanical and dielectric properties only present in
certain crystal symmetries.

point group Group of symmetry operations that leave the unit cell of a crystal unchanged.

pyroelectric Develops an electric charge homogenously when heated.

relaxor-ferroelectric A material which supports ferroelectric behaviour but shows a frequency
dependent, diffuse ferroelectric-paraelectric phase transition and deviates from the Curie-
Weiss law in the paraelectric phase. These features are linked to compositional disorder.

relaxor-PT Solid solutions of relaxor components, e.g. PMN, with PbTiO3 which are of interest
due to their large piezoelectric effects.

Rochelle salt Sodium potassium tartrate tetrahydrate - NaKC4H4O6 · 4H2O.

single crystal A material which consists of a single unbroken crystal lattice across its entire
volume.

transducer A device which converts energy from one form to another, e.g. mechanical to
dielectric.

ultrasound Sound or vibrations with a frequency above the human hearing threshold (>20 kHz).
Widely used in medical and industrial situations such as diagnostic imaging and SONAR.

unit cell The most fundamental repeating unit of a crystal.

Voigt notation Also known as ‘matrix’ notation. Allows, through exploitation of the intrinsi-
cally symmetric nature of the stress and strain tensors, representation of three dimensional
tensors as matrices by pairing indices according to Table 2.2. In this thesis, Voigt indices
are denoted with greek letters such that µ,ν , . . .= 1−6.
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BF bismuth ferrite - BiFeO3

BNT bismuth sodium titanate - Bi1/2Na1/2TiO3

BT barium titanate - BaTiO3

BVP boundary value problem

cD
µν components of the stiffness at constant electric displacement (stiffened) in Voigt notation

cE
µν components of the stiffness at constant electric field in Voigt notation

CNO copper niobium oxide - Cu3Nb2O8

Di components of the electric displacement field

diµ components of the piezoelectric strain constant in Voigt notation

Ei components of the electric field

eiµ components of the piezoelectric stress constant in Voigt notation

EPD elasto-piezo-dielectric matrix

εS
i j components of the dielectric permittivity at constant strain (clamped)

εσ
i j components of the dielectric permittivity at constant stress (unclamped)

F Helmholtz free energy

FEA finite element analysis

FOM figure of merit

G Gibbs free energy

giµ components of the piezoelectric voltage constant in Voigt notation
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H enthalpy

hiµ components of the piezoelectric stiffness constant in Voigt notation

k see electromechanical coupling factor

KDP potassium dihydrogen phosphase - KH2PO4

LE length extensional mode, also known as the ‘33’ mode.

LF longitudinal field

LNO lithium niobate - LiNbO3

LT low temperature phase in CNO which exists for T < 24 K

LTE length-thickness extensional mode, also known as the ‘31’ mode.

LTO lithium tantalate - LiTaO3

Mn:PIN-PMN-PT solid solution of lead indium niobate, lead magnesium niobate and lead
titanate doped or modified with Mn - Mn:Pb(In1/2Nb1/2)O3 - Pb(Mg1/3Nb2/3)O3 - PbTiO3

Mn:PMN-PZ-PT solid solution of lead magnesium niobate, lead zirconate and lead titanate
doped or modified with Mn - Mn:Pb(Mg1/3Nb2/3)O3 - PbZrO3 - PbTiO3

MPB see morphotropic phase boundary

MT middle temperature phase in CNO which exists for 24 K < T < 26.5 K

µ− negative muon

µ+ positive muon

µSR muon spin relaxation, also known as muon spin rotation

PFN lead iron niobate - Pb(Fe1/2Nb1/2)O3

PIN lead indium niobate - Pb(In1/2Nb1/2)O3

PIN-PMN-PT solid solution of lead indium niobate, lead magnesium niobate and lead titanate -
Pb(In1/2Nb1/2)O3 - Pb(Mg1/3Nb2/3)O3 - PbTiO3

PMN lead magnesium niobate - Pb(Mg1/3Nb2/3)O3

PMN-PT solid solution of lead magnesium niobate and lead titanate - Pb(Mg1/3Nb2/3)O3 -
PbTiO3



List of Abbreviations xxvi

PMN-PZ-PT solid solution of lead magnesium niobate, lead zirconate and lead titanate -
Pb(Mg1/3Nb2/3)O3 - PbZrO3 - PbTiO3

PNR polar nano-region

P′
i components of the polarisation created in a SNP experiment

P̃i j components of the polarisation matrix

Pi j components of the polarisation tensor

PT lead titanate - PbTiO3

PZ lead zirconate - PbZrO3

PZN lead zinc niobate - Pb(Zr1/3Nb2/3)O3

PZN-PT solid solution of lead zinc niobate and lead titanate - Pb(Zn1/3Nb2/3)O3 - PbTiO3

PZT lead zirconate titanate - Pb(TixZr1−x)O3

Qm see mechanical quality factor

RMS root mean square

Sµ components of the strain tensor in Voigt notation

sD
µν components of the compliance at constant electric displacement (stiffened) in Voigt notation

SDW spin density wave

sE
µν components of the compliance at constant electric field in Voigt notation

σµ components of the stress tensor in Voigt notation

SNP spherical neutron polarimetry

SONAR SOund Navigation And Ranging
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TF transverse field
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Chapter 1

Introduction

This chapter provides a brief introduction to the thesis. Following a general overview, the mo-
tivation, aims and objectives are laid out. Next, the contributions to knowledge contained in
this thesis are summarised. Finally, the structure of the thesis and publications arising from this
work are outlined.

1.1 General Overview

Dielectric oxides, as a class of materials, are represented in most branches of modern physics
and engineering. A classic example of this is the field of piezoelectricity. Whilst piezoelectric
materials have been under continuous development for the past 140 years [1], driven both by
their wide ranging applicability and unique properties [2], it is the coupling between dielec-
tric properties and mechanical deformation on which many industries rely for their ability to
generate and receive ultrasound. Examples include: medical diagnostic imaging [3], therapeu-
tic ultrasound [4, 5], surgical ultrasound [6, 7], underwater acoustics such as SOund Naviga-
tion And Ranging (SONAR) [8], ultrasonic cleaning [9], and industrial non-destructive evalua-
tion [10, 11].

Whilst early piezoelectric materials were varied in structure, the current best performing
piezoelectric materials are the dielectric oxide perovskite class, with general chemical formula
ABO3 [12]. They include the current standard piezoelectric material Pb(TixZr1−x)O3 (PZT), a
solid solution between the perovskites PbZrO3 (PZ) and PbTiO3 (PT) [13], which is used in
ceramic form and has been shown to exhibit a substantial piezoelectric effect [13]. However,
PZT’s main strength is the versatility allowed by chemical variations (through the parameter
x or other dopants) to obtain materials with a wide range of operating parameters but without
serious reduction of the piezoelectric properties [14].

Despite the advantages of the PZT family, development of other piezoelectric materials has
actively been pursued and this evolution is illustrated in Figure 1.1. One other emerging class
of materials is the relaxor-ferroelectrics [15]. Named in analogy with ferromagnets, a ferroelec-

1
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tric material has a permanent and reversible electric dipole moment [16]. This thesis mostly
considers the class of relaxor-ferroelectrics, with some comparison to the so-called normal fer-
roelectrics. Ferroelectricity was first discovered in Rochelle salt [17] but the prime example of
a normal ferroelectric material is the perovskite BaTiO3 (BT) [18]. The prototypical relaxor-
ferroelectric is Pb(Mg1/3Nb2/3)O3 (PMN) which was first reported in 1961 [19] and again adopts
a perovskite structure. It was first noted for its exceptional dielectric properties but its piezoelec-
tric potential was not realised until it was combined, again in solid solution, with PT (similar to
PZT), whence it exhibited a piezoelectric coefficient, d33, almost three times that of PZT [20].
Furthermore, whilst the growth of single crystal samples of PZT has been reported [21], it has
generally been found to be difficult to produce large single crystal samples due to chemical
decomposition of the constituent perovskites during the crystal growth process [22, 23]. How-
ever, it has proved relatively simple to grow single crystal specimens of relaxor-PT solid solu-
tions [24].

Figure 1.1: The development of piezoelectric materials. The superiority of relaxor-PT single
crystal materials over PZT and other early materials is clearly demonstrated. Reprinted from S.
Zhang et al., “Advantages and challenges of relaxor-PbTiO3 ferroelectric crystals for electroa-
coustic transducers - a review,” Prog. Mater. Sci., vol. 68, pp. 1–66, 2015, Copyright (2015),
with permission from Elsevier.

After decades of dominance by PZT ceramics, relaxor-PT single crystals have attracted much
attention in recent years and are now finding applications in commercial ultrasound transducers,
with PMN-PT already commercialised in the medical ultrasonic imaging industry [15, 25]. They
allow transducers with larger bandwidths and higher sensitivity than PZT based devices [15].
Adding a third constituent perovskite, i.e. PMN-PT becomes Pb(In1/2Nb1/2)O3 - Pb(Mg1/3Nb2/3)O3
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- PbTiO3 (PIN-PMN-PT), increased the upper temperature usage limits and provided greater
stability, thus allowing device usage conditions to be broadened with respect to temperature,
electric field and mechanical stress [26]. Recently Mn modification of PIN-PMN-PT (denoted
as Mn:PIN-PMN-PT) has further reduced the mechanical losses, increasing suitability for high-
power application such as ultrasonic surgery devices and underwater SONAR [15].

More generally, perovskites have been shown to display a range of interesting properties
including superconductivity and large magneto-resistance and have recently become of interest
for photovoltaic applications [27] where promise is shown by both halide and hybrid organic-
inorganic perovskites [28, 29].

Indeed the main strength of these materials, not only in piezoelectricity but also in other
applications, is the exploitation of multiple simultaneous, and often competing, orders. For ex-
ample, a material which exhibits both ferromagnetic (or some other form of magnetic ordering)
and ferroelectric behaviour is called a multiferroic. Typically, these materials are of interest due
to the potential to influence, for example, magnetic properties by the application of an electric
field in a magnetoelectric device [30]. However, despite the inherent link between electricity
and magnetism shown in the theory, i.e. Maxwell’s equations [31], multiferroics are somewhat
rare and this has been suggested to be caused by to differing requirements in the crystal’s elec-
tronic structure [32]. Regardless, where a coupling does occur, it can be seen to arise from a
delicate balance between these competing requirements and if this can be understood, more of
such materials may be developed.

This work provides further investigation into the fundamental behaviour of complex fer-
roelectrics and multiferroics with a specific focus on piezoelectric applications. However, a
comprehensive understanding of the mechanisms is required to fully exploit these materials and
this thesis closes that gap.

1.2 Motivation

Due to the delicate competition between different orders, complex ferroelectrics and multifer-
roics provide the opportunity for potentially novel structural and magnetic ground states with
relaxors [33–36] and skyrmion phases [37] being just several of many examples. A specific case
of this is relaxor-PT single crystals, which are emerging as materials with great potential for
high-power industrial, surgical and underwater SONAR applications. By exploiting their crystal
anisotropy, they allow novel transducer designs. However, methods of crystal growth result from
experimentally-developed specifications following a historical lack of theoretical input, which
is essential to develop materials with enhanced properties.

Understanding the origins of observed behaviour of relaxor-ferroelectrics is also key to en-
able exploitation of these materials for use in devices. Historically, SONAR was the driving
force behind development of piezoelectric materials (especially during the second world war).



CHAPTER 1. INTRODUCTION 4

SONAR is most widely associated with military applications, where it can be used for both nav-
igation and object detection, but it can also be used outside military contexts e.g. underwater
cartography, construction, maintenance, exploration and to detect underwater life [8]. Due to
the long detection ranges involved and the possibility to use optical techniques at very short
ranges, SONAR typically uses low frequencies (< 1 MHz) and high power and the properties of
relaxor-PT single crystals make them perfect for SONAR transducers [15].

More widely, the performance of a piezoelectric material for a particular application can be
quantified by a figure of merit (FOM) [15]. These are typically constructed from relevant mate-
rial properties, e.g. piezoelectric constant, dielectric constant, and the FOMs for many ultrasonic
applications are reviewed by Zhang et al. in Ref. [15]. This concept will be explored further in
the review of relaxor-PT single crystals in Chapter 6 but, in summary, relaxor-PT single crystals
have been shown to exhibit a FOM twice that of standard PZT for SONAR [38–40] and other
high-power applications, meriting further study and one of the reasons behind their continued
research attention. Furthermore, relaxor-PT single crystals may be suitable for other applica-
tions such as tactile sensors and acoustic tweezing due to their superior piezoelectric, dielectric,
and compliance when compared to the standard materials.

Another motivation for studying materials with competing orders is for their innate coupling
between these orders, which results in transduction properties. Ferroelectrics are well-known
to be strongly piezoelectric, converting between mechanical and dielectric energy, whereas the
coupling in multiferroics, if at workable temperatures, opens up the ability to create new mag-
netoelectric devices independently controllable with magnetic and electric fields [30].

This transduction is key in piezoelectric devices and relaxor-PT single crystals are reported
to possess high energy density, which may be exploited to give smaller, lighter devices [15].
However, this is hard to quantify historically, making specific comparisons difficult. This issue
must be addressed if it is to be used to justify the conversion of devices from PZT to relaxor-PT
single crystals. This study could also be used to determine device power limits: whilst there
are some studies in the literature regarding power limits of transducers [41], there is a lack of
generality, with very limited applications considered.

Furthermore, the high dielectric and piezoelectric performance of relaxor-ferroelectrics has
been linked to short-range order resulting from compositional disorder but the mechanism is not
well-understood. In the class of mixed perovskites with structure A(BxB′

1−x)O3 such as PMN,
materials exhibit a random mixture of cations on the B-site and this disorder has been indicated
as, at least partially, a reason for their high performance [42]. Indeed, the phase transitions in
these materials have also challenged understanding of ferroelectric transitions in the presence of
disorder as relaxor-ferroelectrics display characteristic transitions distinct from those of normal
ferroelectrics [33]. They show huge dielectric properties over a large temperature range which
must be encompassed for full characterisation. Furthermore, the cryogenic temperature region
has provided insight into the role short-range order plays in the enhanced performance [43].
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Also, given the inherent anisotropy tied to ferroelectricity through supporting a macroscopic
electric dipole vector, relaxor-ferroelectrics provide unique systems to study the effects of dis-
order and random fields.

Hence, complete fundamental characterisation, with a foundation in applications, is needed
to realise the potential of dielectric oxides such as relaxor-PT single crystals. This is essential to
enabling the continuing development and use of such complex materials, which play a notable
role in the modern world.

1.3 Aims and Objectives

The overall aim of this thesis is to further the understanding of complex ferroelectrics and mul-
tiferroics. As set out above, these materials not only have wide applicability but also pose intel-
lectually stimulating questions regarding the mechanisms behind their structures and behaviour.
This leads to the first of three more specific aims of this thesis:

1. To use condensed matter probes to advance understanding of the fundamental behaviour
of complex ferroelectrics and multiferroics and to elucidate the mechanisms by which they
emerge.

The potential applications of materials must not be forgotten and should be used to direct
research. To this end, the main application considered in this thesis is in ultrasonic devices.
Hence, investigation of the transduction properties which arise from the order coupling must be
forthright. This leads to the second aim of the thesis which attempts to address a more applied
question:

2. To arrive at a universal and comparable metric for the energy density of a piezoelectric
material and to understand the different energy conversion mechanisms at play in relaxor-
PT single crystals.

Lastly, relaxor-PT single crystals represent the culmination of both competing order effects
suitable for more theoretical studies, and applicability in high-power ultrasonics and underwater
SONAR. However, much of their behaviour is still not well-understood and this leads to the final
aim:

3. To explore the mechanisms behind the high performance of relaxor-PT single crystals
with a focus on Mn doping and the cryogenic temperature regime.

In order to realise these aims, the following objectives were set for this work:

• Characterise the structure of multiferroics with neutrons and muons, including looking
at both the low temperature magnetic structure and any compositional gradients. This
supports Aims 1 and 3.



CHAPTER 1. INTRODUCTION 6

• Use muon techniques to characterise relaxor-ferroelectrics and assess the feasibility of
studying Mn:PIN-PMN-PT. This objective supports Aim 3.

• Explore the electromechanical mechanisms of piezoelectric materials in order to further
understand the concept of energy density, allowing Aim 2 to be realised.

1.4 Contributions to Knowledge

This thesis has contributed to the understanding of complex ferroelectric materials in many
ways. Specifically these contributions can be summarised as follows:

1. This thesis contains, for the first time, a successful demonstration of the use of spherical
neutron polarimetry to characterise the magnetic ground state of the complex multifer-
roic Cu3Nb2O8 (CNO) (N. Giles-Donovan et al., Physical Review B, 2020 [44]; Oral
presentation: Fundamentals of Ferroelectrics and Related Materials 2019). This directly
addressed and provided a solution to an issue in the literature of CNO regarding the mi-
croscopic mechanism behind this magnetic structure. This work is detailed in Chapter 4.

2. By characterising the composition gradient in the near surface region of multiferroic
relaxor-ferroelectric Pb(Fe1/2Nb1/2)O3 (PFN), insight into the behaviour of the materials
in the context of disorder and random fields was gained. Furthermore, the links to mag-
netic structure were investigated and mechanisms behind this were discussed (N. Giles-
Donovan et al., submitted to Physical Review B [45]; Oral presentation: 2020 Interna-
tional Symposium on Applications of Ferroelectrics). This work is detailed in Chapter 5.

3. In order to study the Mn valence and distribution in Generation III (doped ternary) relaxor-
ferroelectric single crystals, this thesis also includes an investigation into the feasibility of
using the negative muon compositional analysis technique (N. Giles-Donovan et al., in
preparation for Acta Crystallographica A [46]). This work is detailed in Chapter 6.

4. In this thesis, a method for quantifying the energy density of piezoelectric materials was
developed allowing for an unbiased comparison (Conference Preceedings: 2018 IEEE
International Ultrasonics Symposium [47]; Oral presentation: Fundamentals of Ferro-
electrics and Related Materials 2021, PIEZO2021: Piezoelectrics for End Users XI; Poster
presentation: 2019 International Workshop on Acoustic Transduction Materials and De-
vices, 2021 IEEE International Ultrasonics Symposium). This work is detailed in Chap-
ter 7.
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1.5 Thesis Structure

Chapter 2 provides the background knowledge and literature review necessary for this thesis.
This includes the theory behind piezoelectricity, ferroelectricity and magnetic order and the
cases where these intermingle. Chapter 3 reviews the experimental methods that were used to
gather data for this thesis. This includes details of the experimental setups and facilities where
the experiments were performed.

The next four chapters contain the core results of the thesis. They begin with Chapter 4
which details the characterisation of the multiferroic Cu3Nb2O8 (CNO) using polarised neutron
scattering. Through careful analysis of the results, a new mechanism is proposed which accounts
for the magnetic structure and provides insight into the emergence of the electric polarisation.

Chapters 5 and 6 detail the application of muon techniques to study the behaviour of relaxor-
ferroelectrics. The near-surface region of Pb(Fe1/2Nb1/2)O3 (PFN) is studied in Chapter 5. This
study probes both the composition and magnetic structure and links the phenomenology to the
presence of random fields. Chapter 6 details attempts at characterisation of Generation III
relaxor-PT single crystals with muons. Specifically the valence of the Mn dopant was inves-
tigated using negative muon techniques. Theoretically predicted, an experimental feasibility
study was conducted into the sensitivity of the method to the valence of Mn using three oxide
samples with known Mn oxidation. This was followed by an application of these results in
Mn:Pb(In1/2Nb1/2)O3 - Pb(Mg1/3Nb2/3)O3 - PbTiO3 (Mn:PIN-PMN-PT).

Chapter 7 presents work on quantifying the higher energy density of relaxor-PT single crys-
tals. This starts with a review of energy in a piezoelectric material followed by the development
of a generalised, static electromechanical coupling factor. In silico validation is provided. This
method is then applied to two cases in which comparison of piezoelectric material is important
- relaxor-PT single crystals and the development of Pb-free materials.

Finally, Chapter 8 provides a summary of all results and, after the conclusions are laid out,
future work is presented.

1.6 Publications Arising

1.6.1 Peer Reviewed

• N. Giles-Donovan, N. Qureshi, R. D. Johnson, L. Y. Zhang, S.-W. Cheong, S. Cochran,
and C. Stock, “Imitation of spin density wave order in Cu3Nb2O8”, Physical Review B,
vol. 102, no. 2, pp. 024414, (2020). DOI: 10.1103/PhysRevB.102.024414.

• N. G. Fenu, X. Li, N. Giles-Donovan, M. Lucas, and S. Cochran, “Comparison of high-Q
piezocrystal with hard PZT in a bolted Langevin-style transducer for power ultrasonics”,
IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, (submitted).



CHAPTER 1. INTRODUCTION 8

• N. Giles-Donovan, A. D. Hillier, K. Ishida, B. V. Hampshire, B. Roessli, P. M. Gehring,
G. Xu, X. Li, H. Luo, S. Cochran, and C. Stock “Depth dependent magnetic clustering
in Pb(Fe1/2Nb1/2)O3 - (1) Positive and negative muon spectroscopy”, Physical Review B,
(submitted).

• N. Giles-Donovan, A. D. Hillier, K. Ishida, L. Stoica, S. Cochran, and C. Stock “Iden-
tification of transition metal oxidation states with negative muons in Mn oxides”, Acta

Crystallographica A, (in preparation).

1.6.2 Conference Proceedings

• N. G. Fenu, N. Giles-Donovan, X. Li, Z. Liang, A. H. Chibli, H. Luo, C. Stock, S.
Zhang, M. Lucas, and S. Cochran, “Progress Towards the Miniaturization of an Ultra-
sonic Scalpel for Robotic Endoscopic Surgery Using Mn:PIN-PMN-PT High Performance
Piezocrystals”, 2020 IEEE International Ultrasonics Symposium, Virtual, 2020. DOI:
10.1109/IUS46767.2020.9251823.

• N. Giles-Donovan, N. G. Fenu, C. Stock, S. Zhang, and S. Cochran, “A Measure of En-
ergy Density to Quantify Progress in Pb-free Piezoelectric Material Development”, 2021

IEEE International Ultrasonics Symposium, Virtual, 2021.
DOI: 10.1109/IUS52206.2021.9593449.

1.6.3 Conference Presentations

Oral

• N. Giles-Donovan, N. Qureshi, S.-W. Cheong, S. Cochran, and C. Stock, “Spin Density
Waves and Cycloidal Order in the Multiferroic Cu3Nb2O8 Determined with Polarised
Neutrons”, Fundamentals of Ferroelectrics and Related Materials 2019, Embassy Suites,
Tampa, FL, USA, 28-30 January 2019.

• N. Giles-Donovan, C. Stock, S. Cochran, and L. Stoica, “Subatomic Probes Aid Under-
standing of Fundamental Piezocrystal Behaviour”, International Symposium on Piezocrys-

tals and Their Applications, Starling Hotel, École Polytechnique Fédérale de Lausanne,
Lausanne, Switzerland, 14 July 2019.

• N. Giles-Donovan, A.D. Hillier, A. Berlie , X. Li, H. Luo, S. Cochran, and C. Stock,
“Compositional Heterogeneity and its Links to Magnetic Order in the Near Surface Region
of PbFe1/2Nb1/2O3 Probed with Muons”, 2020 International Symposium on Applications

of Ferroelectrics, Virtual, 19-23 July 2020.



CHAPTER 1. INTRODUCTION 9

• N. Giles-Donovan, N. G. Fenu, C. Stock, S. Zhang, and S. Cochran, “Towards a Method
of Quantifying the Higher Energy Density of Relaxor-PT Single Crystals”, Fundamentals

of Ferroelectrics and Related Materials 2021, Virtual, 1-3 February 2021.

• N. Giles-Donovan, N. G. Fenu, C. Stock, S. Zhang, and S. Cochran, “Towards a Method
of Quantifying the Higher Energy Density of Piezoelectric Single Crystals”, PIEZO2021:

Piezoelectrics for End Users XI, Virtual, 21-24 February 2021.

Poster

• N. Giles-Donovan, N. G. Fenu, H. Rose, L. Stoica, C. Stock, and S. Cochran, “Generation
II/III Piezocrystal for SONAR Transducers”, Thales UK Academic Showcase, Reading,
UK, 11 November 2018.

• N. Giles-Donovan, N. G. Fenu, C. Stock, and S. Cochran, “Towards a Fundamental
Understanding of Energy Density for Piezoelectrics”, 2019 International Workshop on

Acoustic Transduction Materials and Devices, Pennsylvania State University, PA, USA,
7-9 May 2019.

• N. Giles-Donovan, N. G. Fenu, C. Stock, S. Zhang, and S. Cochran, “A Measure of En-
ergy Density to Quantify Progress in Pb-free Piezoelectric Material Development”, 2021

IEEE International Ultrasonics Symposium, Virtual, 11-16 September 2021.

1.6.4 Awards

• ISAF Student Paper Finalist - Lecture, 2020 International Symposium on Applications of

Ferroelectrics, Virtual, 19-23 July 2020.

1.7 Other Publications

• N. G. Fenu, N. Giles-Donovan, M. R. Sadiq, and S. Cochran, “Progress towards Piezocrys-
tal and Pb-Free Piezoceramic Performance Prediction for High Power Ultrasound De-
vices”, 2018 IEEE International Ultrasonics Symposium, Kobe, 2018, pp. 1-4. DOI:
10.1109/ULTSYM.2018.8579653.

• M. Songvilay, N. Giles-Donovan, M. Bari, Z.-G. Ye, J. L. Minns, M. A. Green, Guangy-
ong Xu, P. M. Gehring, K. Schmalzl, W. D. Ratcliff, C. M. Brown, D. Chernyshov, W. van
Beek, S. Cochran, and C. Stock, “Common acoustic phonon lifetimes in inorganic and
hybrid lead halide perovskites”, Physical Review Materials, vol. 3, no. 9, pp. 093602,
(2019). DOI: 10.1103/PhysRevMaterials.3.093602.



CHAPTER 1. INTRODUCTION 10

• C. Stock, R. D. Johnson, N. Giles-Donovan, M. Songvilay, J. A. Rodriguez-Rivera, N.
Lee, X. Xu, P. G. Radaelli, L. C. Chapon, A. Bombardi, S. Cochran, Ch. Niedermayer,
A. Schneidewind, Z. Husges, Z. Lu, S. Meng, and S.-W. Cheong, “Spin-wave directional
anisotropies in antiferromagnetic Ba3NbFe3Si2O14”, Physical Review B, vol. 100, no. 13,
pp. 134429, (2019). DOI: 10.1103/PhysRevB.100.134429.

• N. G. Fenu, N. Giles-Donovan, X. Li, Z. Liang, A. H. Chibli, H. Luo, C. Stock, S.
Zhang, M. Lucas, and S. Cochran, “Progress Towards the Miniaturization of an Ultra-
sonics Scalpel for Robotic Endoscopic Surgery Using Mn:PIN-PMN-PT”, 2020 IEEE

International Ultrasonics Symposium, Virtual/Las Vegas, USA, 7-11 September 2020.

• N. G. Fenu, N. Giles-Donovan, M. R. Sadiq, and S. Cochran, “Full Set of Material Prop-
erties of Lead-Free PIC 700 for Transducer Designers”, IEEE Transactions on Ultrason-

ics, Ferroelectrics and Frequency Control, vol. 68, no. 5, pp. 1797-1807 (2021). DOI:
10.1109/TUFFC.2020.3044790.

• S. Cochran, N. G. Fenu, N. Giles-Donovan and H Rose, “Piezocrystals for Power Ultra-
sonics”, Joint Conference of the IEEE International Frequency Control Symposium and

International Symposium on Applications of Ferroelectrics, Virtual, 19-21 May 2021.

• S. Devireddy, J. Stevenson, N. G. Fenu, N. Giles-Donovan and S. Cochran, “High-Power
Characterization of d32-Mode Mn:PIN-PMN-PT Piezoelectric Single Crystals at Dif-
ferent Temperatures”, 2021 IEEE International Ultrasonics Symposium, Virtual, 11-16
September 2021. DOI: 10.1109/IUS52206.2021.9593597.

• C. Stock, B. Roessli, P. M. Gehring, J. A. Rodriguez-Rivera, N. Giles-Donovan, S.
Cochran, G. Xu, P. Manuel, M. J. Gutmann, W. D. Ratcliff, T. Fennell, Y. Su, X. Li
and H. Luo, “From paramagentic to glassy dynamics in Pb(Fe1/2Nb1/2)O3 - (2) Neutron
scattering”, Physical Review B, (submitted).

References

[1] J. Curie and P. Curie, “Development, via compression, of electric polarization in hemi-
hedral crystals with inclined faces,” Bulletin de la Societe de Minerologique de France,
vol. 3, pp. 90–93, 1880.

[2] J. D. B. Cheeke, Fundamentals and Applications of Ultrasonic Waves, 2nd. CRC Press,
2002, ISBN: 9781138077201.

[3] M. Postema, Fundamentals of Medical Ultrasonics, 1st. Spon Press, 2011, ch. 7, ISBN:
978-0-203-86350-3.



CHAPTER 1. INTRODUCTION 11

[4] N. P. K. Ellens and K. Hynynen, “High-intensity focused ultrasound for medical ther-
apy,” in Power Ultrasonics : Applications of High-Intensity Ultrasound, Woodhead Pub-
lishing, 2015, ch. 22, ISBN: 978-1-78242-036-1.

[5] P. D. Mourad, “Therapeutic ultrasound with an emphasis on applications to the brain,” in
Ultrasonic Transducers, Woodhead Publishing, 2012, ch. 17, ISBN: 978-1-84569-989-5.

[6] M. E. Schafer, “Ultrasonic surgical devices and procedures,” in Power Ultrasonics :

Applications of High-Intensity Ultrasound, Woodhead Publishing, 2015, ch. 21, ISBN:
978-1-78242-036-1.

[7] M. Lucas and A. Matheison, “Ultrasonic cutting for surgical applications,” in Power

Ultrasonics : Applications of High-Intensity Ultrasound, Woodhead Publishing, 2015,
ch. 23, ISBN: 978-1-78242-036-1.

[8] J. L. Butler and C. H. Sherman, Transducers and Arrays for Underwater Sound, 2nd.
Springer, 2016, ISBN: 978-3-319-39044-4.

[9] F. J. Fuchs, “Ultrasonic cleaning and washing of surfaces,” in Power Ultrasonics : Ap-

plications of High-Intensity Ultrasound, Woodhead Publishing, 2015, ch. 19, ISBN: 978-
1-78242-036-1.

[10] J. Krautkrämer and H. Krautkrämer, Ultrasonic Testing of Materials, 4th. Springer-
Verlag, 1990, ISBN: 978-3-662-10682-2.

[11] P. McIntire, G. L. Workman, and D. Kishoni, Eds., Nondestructive Testing Handbook,
3rd. American Society for Nondestructive Testing, 2007, vol. 7, ISBN: 978-1-57117-
105-4.

[12] F. Li et al., “Piezoelectric activity in perovskite ferroelectric crystals,” IEEE Trans. Ul-

trason. Ferroelectr. Freq. Contr., vol. 62, no. 1, pp. 18–32, 2015. DOI: 10.1109/
TUFFC.2014.006660.

[13] B. Jaffe, W. J. Cook, and H. Jaffe, Piezoelectric Ceramics, 3rd. London: Academic Press,
1971, ISBN: 978-0-12-379550-2.

[14] G. H. Haertling, “Ferroelectric ceramics: History and technology,” J. Am. Ceram. Soc.,
vol. 82, no. 4, pp. 797–818, 1999. DOI: 10.1111/j.1151-2916.1999.tb01840.
x.

[15] S. Zhang, F. Li, X. Jiang, J. Kim, J. Luo, and X. Geng, “Advantages and challenges of
relaxor-PbTiO3 ferroelectric crystals for electroacoustic transducers - a review,” Prog.

Mater. Sci., vol. 68, pp. 1–66, 2015. DOI: 10.1016/j.pmatsci.2014.10.002.

[16] C. Kittel, Introduction to Solid State Physics, 8th. John Wiley & Sons, Inc., 2005, ch. 16,
ISBN: 0-471-41526-X.

https://doi.org/10.1109/TUFFC.2014.006660
https://doi.org/10.1109/TUFFC.2014.006660
https://doi.org/10.1111/j.1151-2916.1999.tb01840.x
https://doi.org/10.1111/j.1151-2916.1999.tb01840.x
https://doi.org/10.1016/j.pmatsci.2014.10.002


CHAPTER 1. INTRODUCTION 12

[17] J. Valasek, “Piezo-electric and allied phenomena in rochelle salt,” Phys. Rev., vol. 17,
pp. 475–481, 4 1921. DOI: 10.1103/PhysRev.17.475.

[18] A. von Hippel, R. G. Breckenridge, F. G. Chesley, and L. Tisza, “High dielectric constant
ceramics,” Industrial and Engineering Chemisty, vol. 38, no. 11, pp. 1097–109, 1946.
DOI: 10.1021/ie50443a009.

[19] G. A. Smolenskii, V. A. Isupov, A. I. Agranovskaya, and N. N. Krainik, “New ferro-
electrics of complex composition,” Sov. Phys. Solid State, vol. 2, pp. 2651–4, 1961.

[20] S. Zhang and T. R. Shrout, “Relaxor-PT single crystals: Observations and develop-
ments,” IEEE Trans. Ultrason. Ferroelectr. Freq. Contr., vol. 57, no. 10, pp. 2138–2146,
2010. DOI: 10.1109/TUFFC.2010.1670.

[21] D. Phelan et al., “Single crystal study of competing rhombohedral and monoclinic order
in lead zirconate titanate,” Phys. Rev. Lett., vol. 105, p. 207 601, 20 2010. DOI: 10.
1103/PhysRevLett.105.207601.

[22] S. Zhang and F. Li, “High performance ferroelectric relaxor-PbTiO3 single crystals: Sta-
tus and perspective,” J. Appl. Phys., vol. 111, p. 031 301, 3 2012. DOI: 10.1063/1.
3679521.

[23] K. Uchino, “The development of piezoelectric materials and the new perspective,” in
Advanced Piezoelectric Materials, K. Uchino, Ed., Woodhead Publishing, 2017, ch. 1,
pp. 1–92, ISBN: 978-0-08-102135-4. DOI: 10.1016/B978-0-08-102135-4.
00001-1.

[24] S.-E. Park and T. R. Shrout, “Ultrahigh strain and piezoelectric behavior in relaxor based
ferroelectric single crystals,” J. Appl. Phys., vol. 82, p. 1804, 1997. DOI: 10.1063/1.
365983.

[25] D. Zhou et al., “Fabrication and performance of endoscopic ultrasound radial arrays
based on PMN-PT single crystal/epoxy 1-3 composite,” IEEE Trans. Ultrason. Ferro-

electr. Freq. Contr., vol. 58, pp. 477–484, 2 2011. DOI: 10.1109/TUFFC.2011.
1825.

[26] J. Luo, W. Hackenberger, S. Zhang, and T. R. Shrout, “Elastic, piezoelectric and dielec-
tric properties of PIN-PMN-PT crystals grown by bridgman method,” 2008 IEEE Int.

Ultrason. Symp., pp. 261–264, 2008. DOI: 10.1109/ULTSYM.2008.0064.

[27] I. Grinberg et al., “Perovskite oxides for visible-light-absorbing ferroelectric and photo-
voltaic materials,” Nature, vol. 503, pp. 18–32, 2013. DOI: doi:10.1038/nature12622.

[28] D. A. Egger et al., “What remains unexplained about the properties of halide perovskites?”
Adv., vol. 30, no. 20, p. 1 800 691, 2018. DOI: 10.1002/adma.201800691.

[29] M. Antonietta Loi and J. C. Hummelen, “Hybrid solar cells: Perovskites under the sun,”
Nat. Mater., vol. 12, pp. 1087–1089, 2013. DOI: 10.1038/nmat3815.

https://doi.org/10.1103/PhysRev.17.475
https://doi.org/10.1021/ie50443a009
https://doi.org/10.1109/TUFFC.2010.1670
https://doi.org/10.1103/PhysRevLett.105.207601
https://doi.org/10.1103/PhysRevLett.105.207601
https://doi.org/10.1063/1.3679521
https://doi.org/10.1063/1.3679521
https://doi.org/10.1016/B978-0-08-102135-4.00001-1
https://doi.org/10.1016/B978-0-08-102135-4.00001-1
https://doi.org/10.1063/1.365983
https://doi.org/10.1063/1.365983
https://doi.org/10.1109/TUFFC.2011.1825
https://doi.org/10.1109/TUFFC.2011.1825
https://doi.org/10.1109/ULTSYM.2008.0064
https://doi.org/doi:10.1038/nature12622
https://doi.org/10.1002/adma.201800691
https://doi.org/10.1038/nmat3815


CHAPTER 1. INTRODUCTION 13

[30] T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, and Y. Tokura, “Magnetic control
of ferroelectric polarization,” Nature, vol. 426, no. 6962, pp. 55–58, 2003. DOI: 10.
1038/nature02018.

[31] J. Clerk Maxwell, “VIII. a dynamical theory of the electromagnetic field,” Philos. Trans.

Roy. Soc. London, vol. 155, pp. 459–512, 1865. DOI: 10.1098/rstl.1865.0008.

[32] N. A. Hill, “Why are there so few magnetic ferroelectrics?” J. Phys. Chem. B, vol. 104,
no. 29, pp. 6694–6709, 2000. DOI: 10.1021/jp000114x.

[33] Z. Ye, “Relaxor ferroelectric complex perovskites: Structure, properties and phase tran-
sitions,” Key Eng. Mater., vol. 155-156, pp. 81–122, 1998. DOI: 10.4028/www.
scientific.net/KEM.155-156.81.

[34] Z.-G. Ye, “High-performance piezoelectric single crystals of complex perovskite solid
solutions,” MRS Bull., vol. 34, no. 4, pp. 277–283, 2009. DOI: 10.1557/mrs2009.
79.

[35] R. A. Cowley, S. N. Gvasaliy, S. G. Lushnikov, B. Roessli, and G. M. Rotaru, “Relaxing
with relaxors: A review of relaxor ferroelectrics,” Adv. Phys., vol. 60, no. 2, pp. 229–327,
2011. DOI: 10.1080/00018732.2011.555385.

[36] C. Stock, M. Songvilay, P. M. Gehring, G. Xu, and B. Roessli, “Broadband critical dy-
namics in disordered lead-based perovskites,” J. Condens. Matter Phys., vol. 32, no. 37,
p. 374 012, 2020. DOI: 10.1088/1361-648x/ab86ee.

[37] A. Fert, N. Reyren, and V. Cros, “Magnetic skyrmions: Advances in physics and po-
tential applications,” Nat. Rev. Mater., vol. 2, no. 7, p. 17 031, 2017. DOI: 10.1038/
natrevmats.2017.31.

[38] X. Huo et al., “Complete set of elastic, dielectric, and piezoelectric constants of [011]C

poled rhombohedral Pb(In0.5Nb0.5)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3:mn single crystals,” J.

Appl. Phys., vol. 113, no. 7, p. 074 106, 2013. DOI: 10.1063/1.4792661.

[39] E. Sun, S. Zhang, J. Luo, T. R. Shrout, and W. Cao, “Elastic, dielectric, and piezo-
electric constants of Pb(In1/2Nb1/2)O3-pPb(Mg1/3Nb2/3)O3-PbTiO3 single crystal poled
along [011]C,” Appl. Phys. Lett., vol. 97, no. 3, p. 032 902, 2010. DOI: 10.1063/1.
3466906.

[40] S. Zhang, J. Luo, W. Hackenberger, and T. R. Shrout, “Characterization of
Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 ferroelectric crystal with enhanced phase
transition temperatures,” J. Appl. Phys., vol. 104, no. 6, p. 064 106, 2008. DOI: 10.
1063/1.2978333.

[41] R. Woollett, “Theoretical power limits of sonar transducers,” in 1962 IRE National Con-

vention, 1962, pp. 90–94. DOI: 10.1109/IRENC.1962.199227.

https://doi.org/10.1038/nature02018
https://doi.org/10.1038/nature02018
https://doi.org/10.1098/rstl.1865.0008
https://doi.org/10.1021/jp000114x
https://doi.org/10.4028/www.scientific.net/KEM.155-156.81
https://doi.org/10.4028/www.scientific.net/KEM.155-156.81
https://doi.org/10.1557/mrs2009.79
https://doi.org/10.1557/mrs2009.79
https://doi.org/10.1080/00018732.2011.555385
https://doi.org/10.1088/1361-648x/ab86ee
https://doi.org/10.1038/natrevmats.2017.31
https://doi.org/10.1038/natrevmats.2017.31
https://doi.org/10.1063/1.4792661
https://doi.org/10.1063/1.3466906
https://doi.org/10.1063/1.3466906
https://doi.org/10.1063/1.2978333
https://doi.org/10.1063/1.2978333
https://doi.org/10.1109/IRENC.1962.199227


CHAPTER 1. INTRODUCTION 14

[42] F. Li, S. Zhang, Z. Xu, and L.-Q. Chen, “The contributions of polar nanoregions to
the dielectric and piezoelectric responses in domain-engineered relaxor-PbTiO3 crys-
tals,” Adv. Funct. Mater, vol. 27, no. 18, p. 1 700 310, 2017. DOI: 10.1002/adfm.
201700310.

[43] F. Li et al., “The origin of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution
crystals,” Nat. Commun, vol. 7, p. 13 807, 2016. DOI: 10.1038/ncomms13807.

[44] N. Giles-Donovan et al., “Imitation of spin density wave order in Cu3Nb2O8,” Phys.

Rev. B, vol. 102, p. 024 414, 2 2020. DOI: 10.1103/PhysRevB.102.024414.

[45] N. Giles-Donovan et al., “Depth dependent chemical and magnetic disorder in
Pb(Fe1/2Nb1/2)O3 - (1) positive and negative muon spectroscopy,” Phys. Rev. B, Sub-
mitted.

[46] N. Giles-Donovan, A. D. Hillier, K. Ishida, L. Stoica, S. Cochran, and C. Stock, “Iden-
tification of transition metal oxidation states with negative muons in Mn oxides,” Acta

Crystallogr. A, In Preparation.

[47] N. Giles-Donovan, N. G. Fenu, C. Stock, S. Zhang, and S. Cochran, “A measure of
energy density to quantify progress in Pb-free piezoelectric material development,” in
2021 IEEE Int. Ultrason. Symp., 2021, pp. 1–4. DOI: 10.1109/IUS52206.2021.
9593449.

https://doi.org/10.1002/adfm.201700310
https://doi.org/10.1002/adfm.201700310
https://doi.org/10.1038/ncomms13807
https://doi.org/10.1103/PhysRevB.102.024414
https://doi.org/10.1109/IUS52206.2021.9593449
https://doi.org/10.1109/IUS52206.2021.9593449


Chapter 2

Background and Theory

This chapter provides a technical introduction and background to the material contained within
the thesis. As the main application considered here, piezoelectricity is discussed including a
review of the development of piezoelectric materials followed by derivation of the piezoelectric
constitutive equations via a thermodynamic argument. This section also includes the influence of
crystal symmetry on the material properties and more practical considerations such as resonant
modes, the electromechanical coupling factor and losses.

Magnetic systems are also reviewed, with the different types of magnetic ordering outlined
and classified. Two systems where two or more orders/disorders interact are then introduced
being the main topic of study in this work. These are relaxor-ferroelectrics, which show coupling
between structural disorder and ferroelectricity, and multiferroics, which show coupling between
magnetism and electricity, with the mechanisms outlined.

2.1 Chapter Introduction

Ferroelectrics are a class of materials which exhibit a spontaneous order. In that case, it is an
electric polarisation but there exist analogous cases in both magnetism and elasticity [1]. This
ordering can be attributed to a loss of symmetry when the material passes through a phase tran-
sition. The consideration of symmetry in physics can often provide a short-cut when analysing
complex phenomena. Thus, the concept of symmetry in crystals will be examined first, to lay
the ground work for the discussion of piezoelectricity, magnetism and structural disorder.

2.2 Crystal Symmetry

A perfect crystal is defined by the infinite repetition of identical units of atoms on a periodic
lattice [2]. This periodicity (or long-range ordering) causes the crystal to naturally display some
form of translational symmetry. There are 14 admittable crystal lattices known as Bravais lattices
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which can be split into seven crystal classes which classify the shape of the unit cell, e.g. cubic,
tetragonal, rhombohedral [3–5].

The unit cell of a crystal is the most fundamental repeating unit and it is common to introduce
lattice vectors, typically denoted as 1⃗, 2⃗ and 3⃗ or a⃗, b⃗ and c⃗, which define the geometry of the
unit cell. Figure 2.1 shows an example of a unit cell of the perovskite structure with chemical
formula ABO3.

Figure 2.1: Unit cell of the perovskite structure with chemical formula ABO3.

2.2.1 The Reciprocal Lattice

Being highly periodic, it is natural to try and apply Fourier methods to crystal structures. Con-
sider a function f (⃗r) defined in three dimensions on a crystal lattice (a physical example could
be the electron density which is central to X-ray scattering). This function must obey the trans-
lational symmetry of the crystal, f (⃗r) = f (⃗r+ L⃗), where L⃗ = u⃗a+ v⃗b+ w⃗c is a real-space lattice
vector. As this function is periodic it may be expressed as a Fourier series

f (⃗r) = ∑
H⃗

fH⃗eiH⃗ ·⃗r, (2.1)

where {H⃗} is the set of allowed vectors that are compatible with the symmetry. If the translation
property is imposed, the condition on H⃗ is

H⃗ · L⃗ = 2πn, (2.2)

where n is an integer. This is conventionally enforced by constructing the reciprocal lattice. Like
the real-space crystal lattice, this can be described by three unit vectors (⃗a∗, b⃗∗ and c⃗∗) which
define the unit cell of the reciprocal lattice and satisfy
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a⃗ · a⃗∗ = 2π, b⃗ · a⃗∗ = 0, c⃗ · a⃗∗ = 0,

a⃗ · b⃗∗ = 0, b⃗ · b⃗∗ = 2π, c⃗ · b⃗∗ = 0, (2.3)

a⃗ · c⃗∗ = 0, b⃗ · c⃗∗ = 0, c⃗ · c⃗∗ = 2π.

In this way, the reciprocal lattice vectors, H⃗, may be expressed in terms of the starred unit
vectors. Once these are known, it is easy to construct Fourier representations for any crystal,
something that is essential for the understanding of scattering phenomena, as will be explored
in more detail in the next chapter. This can be easily motivated by considering the planes in a
crystal. These may be described in terms of Miller indices [2] notation that will be followed
in this thesis. Briefly, a plane is denoted by indices (h,k, l) where h, k and l are equal to the
reciprocal of the intercepts of the plane with the lattice vectors a⃗, b⃗ and c⃗ respectively. Bars
denote negative Miller indices and a zero index indicates that the plane does not intersect the
associated lattice vector i.e. the intercept is said to be ‘at infinity’.

As a plane corresponds to an infinite real-space structure, the reciprocal-space counterpart
must be a point - indeed, a point on the reciprocal lattice. This allows the reciprocal lattice to be
expressed as the collection of all H⃗ = h⃗a∗+ k⃗b∗+ l⃗c∗ which form a periodic lattice.

2.2.2 Point Groups

For a given crystal, the point group is the set of operations (closed under multiplication and com-
patible with the translational symmetry of the lattice) under which the structure of the unit cell,
and hence the crystal, is unchanged. Basic point group symmetry operations include rotations,
reflections and inversions [6]. All groups contain an identity element (E) and combinations of
these operations give 32 different symmetry groups which are physically realisable in a three
dimensional crystal [3]. When these point groups are combined with the translation symmetry
of the 14 Bravais lattices, they form the 230 crystal space groups [7].

Rotations about an axis may be described in terms of how many operations are required to
reach 360◦. In this thesis, the rotation axis will be denoted by a superscript and the sense (i.e.
clockwise or anticlockwise) by subscript + or − respectively. For example, a 4(3) symmetry
describes a four-fold rotational symmetry and requires four operations to reach 360◦, hence
denoting 90◦ rotations around the 3⃗/⃗c axis. Reflections, σP, may be described in terms of a
reflection plane P. Finally, inversion I must be defined with respect to an inversion centre
through which the operation is performed.
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The importance of symmetry in crystals is reinforced by Neumann’s principle which states [8]

“Any type of symmetry which is exhibited by the point group of the crystal is possessed by every

physical property for the crystal.”

Neumann’s principle may be seen as a specific case of Curie’s later, more general principle [9]
and so, by understanding the symmetry of the crystal, the behaviour can also be predicted. This
is a very powerful concept used throughout this thesis.

2.3 Piezoelectricity and Ferroelectricity

The piezoelectric effect is the generation of a mechanical deformation in a material when ex-
posed to an electric field or vice-versa. It was first discovered in 1880 when brothers Jacques and
Pierre Curie observed that materials with certain crystal asymmetries developed an electric po-
tential when compressed, later dubbed the direct piezoelectric effect [10]. The following year,
Gabriel Lippmann predicted the existence of the converse piezoelectric effect [11]. This was
done using thermodynamic theory and showed that the application of an electric field to one of
the Curies’ piezoelectric materials should produce a mechanical strain. This was soon verified
by the brothers [12]. The concept of piezoelectricity is illustrated in Figure 2.2.

Figure 2.2: The direct (a) and converse (b) piezoelectric effect. Reprinted from S. Cochran,
“Piezoelectricity and basic configurations for piezoelectric ultrasonic transducers,” in Ultra-
sonic Transducers, Woodhead Publishing, 2012, ch. 1, Copyright (2012), with permission from
Elsevier.
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Typically piezoelectricity is defined as the linear coupling between electricity and mechan-
ics. As will be demonstrated in the next section, it is only present in certain types of materials.
However, there is always the quadratic analogue - electrostriction - which causes a strain to
develop that is quadratic in polarisation [14]. As a non-linear component, this can often be
neglected to first order in piezoelectric materials.

2.3.1 Piezoelectric Symmetries

In order to support a macroscopic electric polarisation and hence piezoelectricity, a crystal must
not exhibit an inversion centre (following Neumann’s principle, a inversion would force the
polarisation vector to be equal to its inverse and hence be zero in magnitude). There are 21
non-centrosymmetric point groups of which 20 are piezoelectrically active (excluding the cubic
group 432 as, though lacking an inversion centre, the symmetry is still too high to allow a
polarisation) [15]. Of these piezoelectric groups, there is a further subclass of ten point groups
that display a unique polar axis (i.e. invariant under all symmetry operations) and hence a
spontaneous electric polarisation (that is in the absence of electric field, mechanical stress or
other stimuli) [16]. If this spontaneous polarisation changes with temperature then the crystal
is said to be pyroelectric. This is where the change in temperature causes the development of
a charge on the ends of the crystal (through affecting the size of the electric dipole moment).
Furthermore, if this spontaneous polarisation is reversible under the application of an electric
field, then the crystal is said to be ferroelectric [16]. Throughout this chapter, piezoelectrics will
be used as an umbrella term to represent the whole class of piezoelectric materials including the
sub-class of ferroelectrics, as much of the same mathematics is used in their description.

The most relevant point group symmetries for this thesis are those displayed by ferroelectric
perovskites. These are 4mm (crystal class: tetragonal), mm2 (crystal class: orthorhombic) and
3m (crystal class: rhombohedral). All symmetry elements in these groups are listed in Table 2.1
where the rotation axis is necessarily taken to be the poling direction.

Table 2.1: Symmetry elements for the point groups of ferroelectric perovskites [17]. Rotation
axes are about the polar axis.

Point Group Crystal Class Polar Axis Symmetry Elements

4mm Tetragonal <100> E, 4+, 4−, 2, σ(100), σ(010), σ(110), σ(1̄10)

mm2 Orthorhombic <110> E, 2, σ(100), σ(010)

3m Rhombohedral <111> E, 3+, 3−, σd1, σd2 , σd3

* d1, d2 and d3 denote the three equiangular planes perpendicular to <111>
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2.3.2 Brief Historical Review of Piezoelectric Material Development

The Curie brothers’ ground-breaking discovery in 1880 [10] fired the developmental starting
pistol for piezoelectric materials. Their experiments as well as the early development of piezo-
electrics are well catalogued by Katzir [18]. Briefly, the Curies studied crystals (which included
tourmaline and quartz amongst others) and concluded that compression resulted in an electric
charge developing across the material. As an aside, the Curies were initially investigating py-
roelectricity and, as such, actually concluded that the effect of compression was like that of
cooling whereas that of decompression was like heating, in terms of the sign of the produced
charge.

With Lippmann’s prediction [11] of the reciprocal relation and the brothers’ confirmation [12],
many models for piezoelectricity were proposed. Lippmann’s theory relied on the conservation
laws of charge and energy and provided a phenomenological description whereas the Curie
brothers had an approach which involved ‘polarised molecules’ (although they were not referred
to as such) and built upon the contemporary theories of pyroelectricity [19] (also see [20]). These
studies myhlalong with numerous others culminated in the first ‘complete’ theory of piezoelec-
tricity set out by the theoretician Voigt in 1890 [21] (again see [20] for a summary). This theory
had a basis in symmetry which underlines the importance of this concept for piezoelectrics and
is somewhat formalised by the Curie principle [9].

The development of piezoelectric materials was closely associated with that of ultrasonic
technology [22]. With the advancement of maritime technology and the eventual outbreak of
the first world war, there was a push to develop underwater ultrasonic technology. This led to
the development of the Langevin transducer in 1917 in collaboration with the French navy [23]
- a design which is still used to this day. The initial design used quartz but the performance
was limited by its small piezoelectric effect. This led to the search for a higher performance
material by US researchers, identifying Rochelle salt as a suitable alternative. It had much
better electromechanical properties than quartz and proved easy to grow in large crystals [24].
A history of Rochelle salt is given by Busch [25]. Despite its advantages, the fact that Rochelle
salt is water soluble put an end to its use as the material of choice in underwater devices and a
new solution was required. However, Rochelle salt is still noteworthy for being the first to be
reported to be ferroelectric by Valasek in 1921 [26].

During the interwar period many other piezoelectric materials were tried, most of which
have faded into the annals of history. One noteworthy exception is KH2PO4 [27] which was
‘designed’ based on Mueller’s ‘interaction’ theory of Rochelle salt rather than serendipitously
discovered [28]. This theory is nicely set out in more familiar ‘Landau’ style by Mueller [29])
and a personal account of the discovery can be read here [30]. However, none of these compared
to the perovskite BaTiO3 (BT) which was independently discovered by four different countries
(USA, UK, Russia and Japan) at the start of the second world war. The reader is invited to
refer to the review by Kanzig [31] as well as the summary by Uchino [32]. BT also saw the
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generalisation of Mueller’s ‘interaction’ argument to a full Landau theory approach by Devon-
shire in 1949 [33] as detailed in Section 2.4.3. Another development came with the confirmation
of piezoelectricity in polycrystalline ceramic BT in 1948 by Mason [34], which allowed easy
and consistent manufacturability for transducer applications. Whilst BT had large piezoelectric
coefficients and did not suffer from water solubility like Rochelle salt, it still had the issue of
a relatively low ferroelectric to paraelectric transition temperature - the Curie temperature at
≈ 120◦C - which limited applicability and caused ageing issues, with performance rapidly de-
grading over time. Again an alternative was desired and staying within the family of perovskites
would prove to be the solution.

By the 1950s, Pb-based perovskites had become the material of choice for piezoelectric
applications. This dominance started with the discovery of high piezoelectric coefficients in the
solid solution formed by PbZrO3 (PZ) and PbTiO3 (PT) dubbed Pb(TixZr1−x)O3 (PZT) by Jaffe
et al. [35] following studies by Japanese groups such as Shirane et al. [36] and Sawaguchi [37].
The development of PZT continued in the Clevite Corporation (Cleveland, Ohio, USA); much
of this and the characteristics of PZT are summarised in the definitive textbook by Jaffe, Cook
and Jaffe [38].

In short, the high piezoelectric performance of PZT is due to the presence of the mor-
photropic phase boundary (MPB) shown in Figure 2.3 as the near-vertical line at ≈50% PT.
Whilst ‘morphotropic’ strictly should apply to phase transitions induced by changes in compo-
sition, in the field of ferroelectrics the term MPB usually refers to the transition between the
tetragonal and rhombohedral ferroelectric phases, though typically still as a result of varying the
composition [39]. Near the MPB, the crystal structure undergoes an abrupt change which results
in local maxima of the dielectric and electromechanical properties. The presence of the MPB
in PZT ensures that, nearby, the piezoelectric coefficient is large but the real strength is that the
phase boundary remains relatively stable against temperature, reflected in the vertical orienta-
tion of the MPB [39]. Furthermore, a monoclinic phase was discovered at the MPB in PZT in
1999 by Noheda et al. [40] and this was later confirmed in theoretical studies [41]. This has
been indicated to increase the strength of the piezoelectric effect and will be discussed further
in the context of relaxor-ferroelectric materials in Chapter 6.

The superior Curie temperature of PZT is also shown in Figure 2.3, with TC > 200◦C and
TC ≈ 375◦C near the MPB - a vast improvement over BT. Another strength of PZT is its versa-
tility under doping with a large range of properties achievable [42]. However, PZT is difficult
to grow as a single crystal [43]. Nevertheless, its advantages have ensured that polycrystalline
PZT has become the main ‘workhorse’ material for piezoelectric transducer applications [44].

Protected by their patent, Clevite remained the primary manufacturer of PZT apart from the
exception of the Murata Manufacturing Company Ltd. (Kyoto, Japan), which also produced
PZT under license. However, most other companies were not content with this agreement and
so their attention turned to other materials, specifically the development of ternary PZT systems
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Figure 2.3: A schematic phase diagram for Pb(TixZr1−x)O3 (PZT). Shows the high temperature
paraelectric (PE) phase and the low temperature ferroelectric (FE) and antiferroelectric (AFE)
phases after Jaffe et al. [38].

by mixing PZT with other perovskites [22].
Whilst the US and Japan were primarily concerned with PZT based ceramic production, the

Russian group of Smolenskii was investigating a new class of compounds with huge dielec-
tric permittivities - the relaxor-ferroelectrics. Their studies concerned the prototypical relaxor-
ferroelectrics Pb(Mg1/3Nb2/3)O3 (PMN) [45] and Pb(Zn1/3Nb2/3)O3 (PZN) [46]. These materials
retain an averagely cubic structure down to low temperatures and so are unable to be piezoelec-
trically active by symmetry [47]. However, when combined in a solid solution with PT, akin to
PZT, piezoelectric coefficients up to an order of magnitude larger than PZT can be achieved [48].
The development of these materials, as well as a technical overview, is covered in more detail in
Sections 2.6 and 6.3 respectively. A historical review of their early development against PZT is
also given by Uchino [22] along with review articles by Zhang et al. [49] and Cowley et al. [50].

Whilst this thesis primarily concerns Pb-based relaxor-ferroelectric materials, a brief men-
tion of the recent development of Pb-free materials is also warranted. Following the emergence
of PZT in the 1950s, development of Pb-free materials continued, somewhat subdued, in par-
allel, such as for LiNbO3 (LNO) which, despite its chemical formula, is not a perovskite [51].
LNO was discovered to be ferroelectric in 1949 by Matthias and Remeika [52] and showed
a very high Curie temperature but was no match for PZT with regard to the most sought af-
ter FOMs. However LNO single crystals have since been commercialised in, amongst others,
acoustic wave filter applications [22].

There has been a resurgence of interest in Pb-free piezoelectric materials since the millen-
nium because of the toxicity of Pb and fears that contamination of the natural environment may
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cause irreversible damage [53]. Indeed, the European Restrictions on Hazardous Substances
regulations (RoHs-2002 and RoHS 2-2011) have imposed a 0.1% limit on Pb content by weight.
This was also accompanied by similar legislation in Japan and China [54]. Regardless, the diffi-
culty in replacing Pb-based piezoelectric materials is due to their historically poor performance.
Promising candidate materials include the alkali niobate family (such as LNO) [55], the mixed
relaxor-ferroelectric Bi1/2Na1/2TiO3 (BNT) system [56–58], as well as systems derived from the
aforementioned BT [59, 60]. Another interesting Pb-free candidate is the BiFeO3 (BF) system
which shows multiferroic behaviour and is well-studied [61, 62].

Whilst their performance is still inferior to Pb-based materials, PZT in particular, Pb-free
materials have started to become commercialised in ultrasonics. The issues behind their lack
of performance are reviewed by Koruza et al. [63] but many prototype devices are being devel-
oped in applications such as energy harvesting [64] and ultrasonics actuators [57, 59, 65]. The
development of Pb-free materials and their properties and applications are more conclusively
reviewed in the books by Wu [54] and Uchino [22] as well as the many review articles refer-
enced here. The question of Pb-based/Pb-free material comparison will be addressed more in
Chapter 7.

2.4 Physics of Piezoelectrics

This section will provide a brief technical summary of the physical mechanisms that apply in
piezoelectric materials, as a foundation for all other topics discussed in this thesis. This chapter,
and indeed the remainder of the thesis, will use index notation to represent tensor and vector
properties.

Unless otherwise stated, Einstein summation convention is assumed, where repeated in-
dices are implicitly summed over [66]. Here Latin indices represent three dimensions and so
i, j,k, . . .= 1,2,3. Furthermore, reduced ‘matrix’ (or Voigt) notation will also be used [67]. By
exploiting the intrinsically symmetric nature of the stress and strain tensors, a simpler represen-
tation can be formed by pairing indices. Greek letters will be used here to denote Voigt indices
such that µ,ν , . . . = 1− 6. In this representation the ‘new’ directions (4, 5 and 6) can be seen
as representing shears - 4 is shearing about direction 1, 5 is shearing about direction 2 and 6 is
shearing about direction 3. For this to hold, the conversion rules in Table 2.2 are introduced.

2.4.1 Constitutive Equations

The behaviour of a piezoelectric material can be fully described by a set of constitutive equa-
tions [13]. These equations link together the electric properties Di (electric displacement) and
Ei (electric field) with the mechanical properties σµ (stress) and Sµ (strain). In order to un-
ambiguously describe the material’s behaviour, any electromechanical pair of these properties
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Table 2.2: Conversion between Cartesian index and reduced ‘matrix’ or Voigt notation [67].
Cartesian Voigt/Matrix

f i j µ

11 1
22 2
33 3

23 or 32 4
13 or 31 5
12 or 21 6

(e.g. Di and Sµ ) may be written as functions of the other pair. Hence, there are four equivalent
formulations of constitutive equations.

In a non-piezoelectric material the mechanical and electric behaviour, denoted by super-
scripts (M) and (E) respectively, are independent and so may be treated separately. Thus the
thermodynamics of each remains disparate. However, in a piezoelectric material this is not the
case, and so this coupling must be reflected in any thermodynamic theory. Technically, in or-
der to provide a complete treatment, the temperature should also be considered and this gives
rise to phenomena such as pyroelectricity and thermal expansion [67]. However, these will be
neglected here as the focus is on the coupling between elasticity and electricity with the temper-
ature assumed constant.

A Thermodynamic Argument

From conventional elasticity theory, the mechanical energy density is the work done against
the stress forces inside the material. Introducing σµ and Sµ , this energy density is given in
differential form by [68]

dU (M) = σµdSµ . (2.4)

Furthermore, the differential dielectric energy density is given by [69]

dU (E) = EidDi. (2.5)

Hence, in a piezoelectric material the total internal energy density will be the sum of the me-
chanical and electrical energy densities

dU = dU (M)+dU (E) = σµdSµ +EidDi. (2.6)

Equation 2.6 is the equivalent of the first law of thermodynamics for a piezoelectric material
and is the starting point for the study of energy density in Chapter 7. Furthermore, writing
the energy density in this form clearly displays the natural variables of U as Sµ and Di such
that U = U(Sµ ,Di). This follows from the laws of partial differentiation [70] and also allows
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identification of

Ei =
∂U
∂Di

, (2.7)

σµ =
∂U
∂Sµ

, (2.8)

where the partial derivatives are implicitly defined so that the other thermodynamic variables
are fixed. Identification of the natural variables of U then allows expansion of σµ and Ei as
σµ(Sν ,Di) and Ei(Sµ ,D j) to give [71]

dEi =
∂Ei

∂Sµ

dSµ +
∂Ei

∂D j
dD j, dσµ =

∂σµ

∂Sν

dSν +
∂σµ

∂Di
dDi. (2.9)

These are the differential forms of the piezoelectric constitutive equations formulated in
terms of Sµ and Di and explicitly show the piezoelectric coupling. If the rest state of the material
is defined in the absence of any stress, strain, electric field or electric displacement then it follows
that the constitutive equations must be at least linear [72]. Furthermore, as piezoelectricity
includes only the linear part of the coupling between elasticity and electricity [73], Equation 2.9
can be integrated to give linear constitutive equations

Ei =
∂Ei

∂Sµ

Sµ +
∂Ei

∂D j
D j, σµ =

∂σµ

∂Sν

Sν +
∂σµ

∂Di
Di. (2.10)

Finally, Equations 2.7 and 2.8 may be substituted to arrive at

Ei =
∂ 2U

∂Di∂Sµ

Sµ +
∂ 2U

∂Di∂D j
D j, σµ =

∂ 2U
∂Sµ∂Sν

Sν +
∂ 2U

∂Sµ∂Di
Di, (2.11)

where the material constants have been expressed as second differentials of the potential U .
These are the constitutive equations in what will be referred to as the strain-displacement for-
mulation (named for the natural variables of the associated potential). Comparison with conven-
tional theory of elastic and dielectric materials allows identification [74] of the elastic stiffness
at constant electric displacement

cD
µν =

∂ 2U
∂Sµ∂Sν

, (2.12)
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and inverse dielectric permittivity at constant strain

(εS)−1
i j =

∂ 2U
∂Di∂D j

, (2.13)

whilst the mixed derivative defines the piezoelectric stiffness constant

hiµ =− ∂ 2U
∂Di∂Sµ

. (2.14)

One advantage of this derivation is that the reciprocity of the piezoelectric effect is clearly
shown here as ∂Ei

∂Sµ
=

∂σµ

∂Di
. As such, it can be expected that the stress produced by the presence of

an electric displacement has the same coefficient as the electric field produced by a strain - hiµ .
This is similar to the reasoning used by Lippmann in his derivation of the converse piezoelectric
effect in 1881 [11].

Equivalent Formulations

Thermodynamic potentials with other combinations of natural variables can be constructed using
the Legendre transform [75]. These are

H ≡U −EiDi, (2.15)

F ≡U −σµSµ , (2.16)

G ≡U −σµSµ −EiDi, (2.17)

which are referred to as the enthalpy, Helmholtz free energy and Gibbs free energy respectively,
in analogy with classical thermodynamic theory [71, 76]. Expanding these relations into differ-
ential form gives

dH = σµdSµ −DidEi, (2.18)

dF =−Sµdσµ +EidDi, (2.19)

dG =−Sµdσµ −DidEi, (2.20)

thus allowing the natural variables to be established as H = H(Sµ ,Ei), F = F(σµ ,Di) and G =

G(σµ ,Ei). Each of these potentials will result in a different but equivalent formulation of the
piezoelectric constitutive equations. The full set of constitutive equations is then given by
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Di = ε
S
i jE j + eiµSµ σµ = cE

µνSν − eiµEi (2.21)

Di = ε
σ
i j E j +diνσν Sµ = sE

µνσν +diµEi (2.22)

Ei =−giµσµ +(εσ )−1
i j D j Sµ = sD

µνσν +giµDi (2.23)

Ei =−hiµSµ +(εS)−1
i j D j σµ = cD

µνSν −hiµDi (2.24)

where εS
i j and εσ

i j are the dielectric permittivity at constant strain (clamped) and stress (un-
clamped) respectively; cE

µν and sE
µν= (cE

µν)
−1 are the stiffness and compliance at constant elec-

tric field respectively; cD
µν and sD

µν= (cD
µν)

−1 are the stiffness and compliance at constant electric
displacement respectively (often referred to as the stiffened parameters); eiµ is the piezoelectric
stress constant; diµ is the piezoelectric strain constant; giµ is the piezoelectric voltage constant;
and hiµ is the piezoelectric stiffness constant [13].

2.4.2 Elasto-Piezo-Dielectric Matrix

The piezoelectric constitutive equations may be succinctly written in matrix form [13]. For
example, Equation 2.21 may be written as



σ1

σ2

σ3

σ4

σ5

σ6

D1

D2

D3


=



cE
11 cE

12 cE
13 cE

14 cE
15 cE

16

cE
21 cE

22 cE
23 cE

24 cE
25 cE

26

cE
31 cE

32 cE
33 cE

34 cE
35 cE

36

cE
41 cE

42 cE
43 cE

44 cE
45 cE

46

cE
51 cE

52 cE
53 cE

54 cE
55 cE

56

cE
61 cE

62 cE
63 cE

64 cE
65 cE

66

e11 e12 e13 e14 e15 e16

e21 e22 e23 e24 e25 e26

e31 e32 e33 e34 e35 e36

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−e11 −e21 −e31

−e12 −e22 −e32

−e13 −e23 −e33

−e14 −e24 −e34

−e15 −e25 −e35

−e16 −e26 −e36

εS
11 εS

12 εS
13

εS
21 εS

22 εS
23

εS
31 εS

32 εS
33





S1

S2

S3

S4

S5

S6

E1

E2

E3


. (2.25)

This defines the elasto-piezo-dielectric (EPD) matrix in the strain-field formulation. Knowledge
of this matrix allows the material’s behaviour to be fully defined. In general, Equation 2.25
shows that the EPD matrix has 81 components. However, this number can be greatly reduced
by considering the symmetry of the material, as shown using the following argument [77]:

The thermodynamic potentials may generally be expanded in the natural variables of a sys-
tem and, as previously argued, the lowest non-trivial terms in the potentials must be quadratic
(this ensures linear constitutive equations). For example, considering the enthalpy function (the
thermodynamic potential associated with the strain-field formulation), by this logic it may be
expressed as
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H(Sµ ,Ei) =
1
2

Φi jklSi jSkl +
1
2

Xi jEiE j +Ψi jkEiS jk + · · · , (2.26)

where the use of Voigt notation is temporarily suspended. The enthalpy must be a scalar and so
Φi jkl , Xi j and Ψi jk may be identified as a fourth, second and third rank tensor respectively.

It follows from Neumann’s principle that any thermodynamics potential must respect the
symmetry of the situation and so be invariant under any symmetry transformations. Hence, it
must be expressible as a linear combination of all symmetry obeying invariant quantities [77]
and so, by constructing all such second-order invariants, a form for the coefficients Φi jkl , Xi j

and Ψi jk can be easily computed. The natural variables of H are Sµ and Ei, hence, the complete
list of second-order invariants in 4mm symmetry is

SiiS j j, Si jS ji, S2
33, SiiS33, S3iS3i, S12S12,

EiEi, E2
3 ,

E3S33, E3Sii, EiS3i.

(2.27)

These quantities are invariant under the four-fold rotation and reflections in the mirror planes
of 4mm [17]. This means that, in order to fully describe the anisotropic behaviour of a material
with 4mm symmetry, six independent elastic, two independent dielectric and three independent
piezoelectric constants are needed. As an aside, this argument can also be used to see why all
materials display the higher order phenomena of electrostriction (quadratic electromechanical
coupling) [14, 71]. This is because third order invariants of the form Si jEiE j are always present
in the potential expansion whereas second order coupling in Equation 2.27 is only present for
certain symmetries (such as here in 4mm).

Therefore, the coefficients Φi jkl , Xi j and Ψi jk may be written as

Φi jkl = aδi jδkl +
b
2
(δikδ jl +δilδ jk)+ cδi3δ j3δk3δl3 +

d
2
(δi jδk3δl3 +δklδi3δ j3)

+
e
4
(δi3δ jlδk3 +δilδ j3δk3 +δi3δ jkδl3 +δikδ j3δl3)

+
f
4
(δi1δ j2δk1δl2 +δi1δ j2δk2δl1 +δi2δ j1δk1δl2 +δi2δ j1δk2δl1),

(2.28)

Xi j = gδi j +hδi3δ j3, (2.29)

Ψi jk = kδi3δ j3δk3 + lδi3δ jk +
m
2
(δi jδk3 +δikδ j3). (2.30)

where δi j is the Kronecker delta (defined such that δi j is unity if i = j and zero otherwise) [78].
Care must be taken to express these in appropriately symmetrised form. For example, the term
1
2Φi jklSi jSkl is clearly invariant under i ↔ j, k ↔ l and i, j ↔ k, l requiring Φi jkl = Φ jikl , Φi jkl =

Φi jlk and Φi jkl = Φkli j respectively. This follows from the properties of the strain tensor [67].
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Furthermore, by considering derivatives of H,

cE
i jkl =

∂ 2H
∂Si j∂Skl

= Φi jkl, (2.31)

ε
S
i j =

∂ 2H
∂Ei∂E j

= Xi j, (2.32)

ei jk =− ∂ 2H
∂Ei∂S jk

=−Ψi jk. (2.33)

This allows the form of the EPD matrix for 4mm (reintroducing Voigt notation) to be written
as 

cE
11 cE

12 cE
13 0 0 0

cE
12 cE

11 cE
13 0 0 0

cE
13 cE

23 cE
33 0 0 0

0 0 0 cE
44 0 0

0 0 0 0 cE
44 0

0 0 0 0 0 cE
66

0 0 0 0 e15 0
0 0 0 e15 0 0

e31 e31 e33 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 −e31

0 0 −e31

0 0 −e33

0 −e15 0
−e15 0 0

0 0 0

εS
11 0 0
0 εS

11 0
0 0 εS

33


, (2.34)

where cE
11 = a+b, cE

12 = a, cE
13 = a+ d

2 , cE
33 = a+b+c+d+e, cE

44 =
b
2 +

e
2 , cE

66 =
b
2 +

f
2 , εS

11 = g,
εS

33 = g+h, e31 =−l, e33 =−k− l −m, e15 =−m
2 .

The structure of the EPD matrix wholly encompasses the symmetry of the material and,
therefore, can be used to predict its behaviour. This shows the power of the thermodynamic
argument, where the whole array of material behaviour emerges as a result of the combination
of mechanical and elastic energy densities and using the principle that the resulting potential
should respect the material’s symmetry. The EPD matrix is regularly used to describe behaviour
in ultrasonic and material science applications and will be further used in Chapter 7 to analyse
the material’s response in the context of energy conversion mechanisms.

2.4.3 Devonshire Theory

Another strength of considering the free energy of a system is its ability to describe phase
transitions phenomenologically though Landau theory [79]. The classic ‘normal’ ferroelec-
tric perovskite is BT. It was reported as ferroelectric in 1945 [31] and undergoes three phase
transitions: Below -90◦C, BT has a rhombohedral structure; between -90◦C and 5◦C, the crys-
tal is orthorhombic; and, finally, forms a tetragonal structure until undergoing a paraelectric-
ferroelectric transition at 123◦C [80]. Above this transition, BT is a perfect cubic perovksite.
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These transitions were first reported during the latter half of the 1940s [81–83] culminating in
a phenomenological Landau model being proposed by Devonshire in 1949 [33]. By expressing
the free energy as an even power series that obeys symmetry in polarisation, and later strain, the
observed sequence of phases was reproduced [33]. Devonshire later went on to use this theory
to derive relations between material constants [84].

With a rise in use of PZT during the 1980s, there was a push to construct a Devonshire
expansion. This proved more difficult than BT due to the more complex behaviour of PZT and
the lack of single crystal data [43]. From the phase diagram of PZT (Figure 2.3), several phases
are present: at low temperatures and percentage of Ti a second rhombohedral phase appears
characterised by a tilting of the oxygen octahedra; and, with almost no Ti, there is a rise in
antiferroelectric behaviour [85].

These required many more terms to be included in the free energy expansion proposed by
Haun et al. in a series of five papers in 1989 [86–90]. A tilt angle for the oxygen octahedra
had been first included in a one dimensional case by Halemane et al. in 1985 [91]. This theory
reproduces the observed phases and was also used to construct expressions for physical constants
and properties. The results gained from this (assumed to be a single domain sample) were then
used to give a greater understanding of properties of PZT that arise from its polycrystalline
nature. For example, the large electromechanical anisotropy that occurs in PZT ceramics, but not
in single crystals, was explained as where the intrinsic (e.g. lattice deformations) and extrinsic
(e.g. domain wall movement near the grain boundaries in polycrystalline samples) contributions.
The intrinsic effects are dominant in single crystals but extrinsic effects contribute 20 - 60% to
the material properties in ceramics [92]. The separation of these effects was a major motivation
for the treatment [90].

2.4.4 Relations between Material Properties

Through mutual substitution of Equations 2.21 - 2.24, the relations between the material proper-
ties present in the various formulations of the piezoelectric constitutive equations can be derived
and they are reproduced here for convenience [48].

In a general material the four piezoelectric coefficients are related by

eiµ = ε
S
i jh jµ = diνcE

µν , (2.35)

diµ = ε
σ
i j g jµ = eiνsE

µν , (2.36)

giµ = (εσ )−1
i j d jµ = hiνsD

µν , (2.37)

hiµ = (εS)−1
i j e jµ = giνcD

µν . (2.38)
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Furthermore, the stiffened cD
µν and sD

µν are related to the unstiffened parameters cE and sE by

cD
µν = cE

µν +(εS)−1
i j eiµe jν = cE

µν + ε
S
i jhiµh jν , (2.39)

sD
µν = sE

µν − (εσ )−1
i j diµd jν = sE

µν − ε
σ
i j giµg jν , (2.40)

and the clamped permittivity εS
i j is given by:

ε
S
i j = ε

σ
i j −diµd jνcE

µν . (2.41)

2.4.5 Piezoelectric Equations of Motion

The general behaviour of a piezoelectric material can be fully described by the displacement
vector, ui, and the quasi-static electric potential, φ . This potential maybe introduced under the
magnetostatic approximation where, because the speed of sound is much less the speed of light,
any induced magnetic fields may be treated as static and so the electric field may be taken
as irrotational [93]. Due to the piezoelectric coupling, both a mechanical equation of motion
(Newton’s 2nd Law) and an electric equation of motion (Gauss’ Law) are required to fully
describe the behaviour of the material [77]:

ρ
∂ 2ui

∂ t2 = fi +
∂σi j

∂x j
, (2.42)

∂Di

∂xi
= ρe, (2.43)

where fi and ρe correspond to an external force and charge density respectively (Voigt notation
is suppressed for Equation 2.42 only). Substitution of Equation 2.21 then gives

ρ
∂ 2

∂ t2 ui − cE
i jkl

∂ 2

∂x j∂xk
ul = fi + eki j

∂ 2

∂x j∂xk
φ , (2.44)

ε
S
i j

∂ 2

∂xi∂x j
φ =−ρe + ei jk

∂ 2

∂xi∂x j
uk. (2.45)

Equation 2.44 takes the form of a wave equation with two sources: one represents the external
force density whilst the other corresponds to the piezoelectric coupling. Similarly, Equation 2.45
takes the form of Poisson’s equation with source terms corresponding to external charge density
and piezoelectric coupling. These equations are generally difficult to solve and so a numerical
solution is usually the most convenient option, through a method such as finite element analysis.
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2.4.6 Piezoelectric Modes

Resonance is a well known phenomenon in oscillating systems. The simplest occurrence of
resonance is in the one dimensional damped simple harmonic oscillator under the influence of a
periodic forcing term, F0eiωt [94]. One definition of resonance is the frequency that corresponds
to the maximum response amplitude, which occurs at the frequency ω2 = ω2

0 − γ2

2 , where γ

gives the mass normalised damping coefficient and ω0 is the natural frequency of the system i.e.
the square root of the mass normalised spring constant [95]. Alternatively, the resonance may
be defined when the driving force delivers the greatest possible power to the system [95]. In a
mechanical oscillator this occurs when the force is always acting in the same direction as the
velocity - so when the phase difference is π/2 or ω = ω0. These two frequencies are typically
very close together but only coincide in the absence of damping.

Resonance can also occur in electrical circuits, with the best known example being the RLC

circuit [96]. This circuit is described by the same differential equation as simple harmonic
motion and so an analogous set of properties may be defined, with the inductance in the role
of mass, capacitance as the inverse of the spring constant, resistance as the damping and the
external voltage as the driving force. An electrical resonance may be found by considering the
minimum of the electrical impedance as this will correspond to the maximum current, which
plays the role of velocity in the mechanical analogy. In a piezoelectric material there exists
coupling between the elastic and dielectric properties and so the material must exhibit both

mechanical and electrical resonances.
Geometry can be used to isolate resonant behaviour. For example, a bar of length ten times

the width will resonate in the so-called length extensional (LE) mode whilst a plate of width ten
times the thickness will resonate is the so-called thickness extensional (TE) mode [73]. These
modes are illustrated in Figure 2.4(a) and (b) respectively and, whilst the motion is similar, they
are actually very distinct. One example of this is when considering the proportion of energy
that is converted and stored (this will be covered in the next section). A summary of common
piezoelectric modes is included in Table 2.3 which also shows their geometric conditions. Whilst
the frequency of resonance is based on material properties, the isolation of resonant behaviour
is linked purely to sample geometry and this coupling will obscure the pure material response at
these frequencies.

Typically, ultrasonic devices are driven at or near a resonance frequency in order to max-
imise the output with the geometry chosen to simplify the piezoelectric response. This is key
in actuating application such as active SONAR and high-power ultrasonic cutting. Of course,
the resonance may also be used to increase the sensitivity (volt per displacement) and this is
more relevant for receive applications such as passive SONAR and imaging. However, in a
piezoelectric material, every resonance is followed by an antiresonance. An antiresonance is not
present in the driven simple harmonic oscillator but can be found when this oscillator is coupled
to another. As these two oscillators exert a force on each other, there exists a frequency when
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the driving force is cancelled out by the reaction force of the other oscillator. In the converse of
a resonance, this results in the displacement of the driven oscillator becoming minimum. Again,
an antiresonance may also occur in electrical systems - this corresponds to a minimum of electric
current and so can be identified by a maxima in the electrical impedance.

Figure 2.4: A schematic diagram showing the length extensional (a) and thickness extensional
(b) geometries.

Table 2.3: Common piezoelectric modes. The table shows their geometric constraints and typi-
cal resonant behaviour along with the appropriate electromechanical coupling factor. Geometric
constraints from [97].

Mode Name Geometry Electromechanical
Constraints∗ Diagram Coupling Factor

Length extensional t > 10w1, t > 10w2 k33 =
d33√
sE

33εσ
33

Length-thickness extensional w1 > 10t, w2 > 3t k31 =
d11√
sE

1 εσ
33

Face shear w1 = w2 > 10t k36 =
d36√
sE

66εσ
33

Thickness extensional w1, w2 > 10t kt =
e33√
cD

33εσ
33

Length shear w1, w2 > 10t k15 =
e15√
cD

55εσ
11

* w1 , w2 = widths of sample, t = thickness of sample
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Piezoelectrics are both complex mechanical and electrical systems and so exhibit a large
number of resonance and antiresonance pairs. Together these are said to form a piezoelectric
mode; the next two sections will briefly explore two important parameters of a mode.

2.4.7 Electromechanical Coupling Factor

The proportion of the instantaneous work converted from electrical to mechanical energy (and
vice-versa) and stored in a piezoelectric material is given by the electromechanical coupling
factor (k2). Mathematically this is written as

k2 =
converted energy

input energy
. (2.46)

Clearly, 0 ≤ k2 ≤ 1 and, practically, it is useful to conceptualise k2 in the role of a ‘piezo-
efficiency’. This can be visualised in Figure 2.5, where a work diagram is presented for the
LE mode. The square of the electromechanical coupling factor is then given by the ratio of
the energy contained inside the cycle, labelled W1 in Figure 2.5, to the whole area, W1 +W2

in Figure 2.5. However, the concepts of converted/stored energy and the electromechanical
coupling are expanded upon in Chapter 7 and more rigorous distinction will be made there.

Figure 2.5: Graphic illustration of the electromechanical coupling factor k33 for conversion
between mechanical to electrical work (a) and electrical to mechanical work (b) after Meitzler et
al. [73].

The electromechanical coupling factors associated with the common modes are given in
Table 2.3 where one penalty for such a simple definition is that a different k must be used for
each mode. For example, the TE mode has a lower electromechanical coupling, kt, than the LE
mode, k33, and this can be seen theoretically [98]:

Consider a bar of piezoelectric material with the small faces electroded and subjected to
a normal force such that σ33 = F where F is the normal force per unit area. The equations
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of motion can be solved under this assumption and used to calculate energies. By applying
the boundary conditions that all normal stresses are zero on the non-electroded surfaces, it is
deduced that S1 = S2, S3 and D3 are the only non-zero components of S and D⃗. If the electrodes
are shorted, the potential on each must be the same which implies that E3 = 0. This gives
S1 = S2 = sE

13F , S3 = sE
33F and D3 = d33F and hence the work done is

Ws =
1
2

sE
33F2. (2.47)

When the electrodes are open, there is no net charge so D3 = 0, although this is a somewhat
idealised assumption. Hence, S3 = sE

33

(
1− d2

33
εσ

33sE
33

)
F so the only term that survives in the energy

is the mechanical one

Wo =
1
2

sE
33

(
1−

d2
33

εσ
33sE

33

)
F2. (2.48)

In an experiment, a mechanical load is applied and a voltage is measured by the connection
of an electrical circuit. This corresponds to the shorted case considered above. However, this
process can also be split into two steps:

1. The force is applied under open circuit conditions. This steps stores mechanical energy in
the material with the amount corresponding to Wo.

2. The circuit is closed under constant force. This step corresponds to the extraction of any
electrical energy stored in the material into the circuit. Due to conservation of energy this
must be equal to the difference between Ws and Wo.

Hence, for the geometry of this mode, k2 ≡ k2
33 can be calculated as

k2
33 =

Ws −Wo

Ws
=

sE
33F2 − sE

33

(
1− d2

33
εσ

33sE
33

)
F2

sE
33F2 =

d2
33

εσ
33sE

33
, (2.49)

and a similar analysis of a TE plate can be performed and a coupling constant derived. The steps
are the same and are not be repeated here but k2 ≡ k2

t can be calculated as [98]

k2
t =

Ws −Wo

Ws
=

F2

2cE
33

(
1− 1

1+k2
33

)
F2

2cE
33

=
k2

33

1+ k2
33

=
e2

33

cD
33εS

33
. (2.50)

This shows that kt must always be less than k33 implying that the TE mode is less able to
convert and store than the LE regardless of their similar motion. Whilst, k2 is always built out of
material properties, and is commonly considered a material property itself, this link to sample
geometry (via the mode dependence and definitely not a material property) is unsettling. This
issue will also be examined further in Chapter 7.
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The effective electromechanical coupling factor of any resonance mode may be determined
from the electrical impedance curve in the vicinity of that mode by the following [73]

k2
eff =

f 2
a − f 2

r
f 2
a

, (2.51)

where fr and fa are the associated resonance and antiresonance frequencies respectively. This
relation inherently ties k to the bandwidth of the mode, given by the frequency spacing between
fr and fa, noting that in this region, the piezoelectric material is deviating from its overall ca-
pacitive trend as illustrated in Figure 2.6.

Figure 2.6: Typical piezoelectric mode shape in electrical impedance and phase. The resonance
and antiresonance frequencies, fr and fa respectively, are indicated as is the overall capacitive
trend (dashed lines).

2.4.8 Losses

Understanding of losses in piezoelectric materials is key, especially in high-power applications
such as in many SONAR systems. Like the material properties, these losses can be split into
three different types: dielectric, mechanical and piezoelectric. Mathematically, this can be ex-
pressed by extending the material properties to be complex numbers of the following form [99]

m̃ = m(1− i tanψ), (2.52)

where m stands for any material property and the tilde denotes its complex nature. Then the
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angle ψ (or its tangent) measures how much m̃ deviates from its conventional (real) counterpart
m.

The motivation for introducing a complex representation of material properties follows as an
extension of the standard ultrasonic attenuation treatment which may be summarised as [100, 101]:

Loss mechanisms may be introduced though the addition of a suitable term to the constitutive
equations. For example, when considering ultrasound propagating in human tissue, viscous
damping is the dominant loss mechanism [102] and the stress correction is of the form

ηi jkl
dSkl

dt
=−iωηi jklSkl, (2.53)

where ηi jkl is the material’s viscosity tensor and the equality holds for periodic displacements.
Then, upon solving the relevant equation of motion (wave equation), it can be shown that the in-
troduction of the losses via the complex mechanical properties leads to an exponentially damped
plane wave [100]. Furthermore, in this case, the lossy attenuative behaviour may equally be ac-
counted for by simply allowing the material property ci jkl to become complex with imaginary
part −iωηi jkl . This principle works well in general and may be applied beyond this case - the
lossy behaviour of the solution is purely a consequence of introducing complex material prop-
erties which, in turn, represent some underlying loss mechanism. However, by applying this
principle to a generic material, the losses are only treated on a phenomenological level and,
unless care is taken, the connection to the loss mechanism is lost [103, 104].

In piezoelectric materials, implementation of this principle leads to the definition of the three
loss tangents

s̃ =s(1− i tanγ), (2.54)

ε̃ =ε(1− i tanδ ), (2.55)

d̃ =d(1− i tanθ), (2.56)

following the notation of Liu et al. where tanγ , tanδ and tanθ represent the elastic, dielectric
and piezoelectric losses, respectively [99]. This approach was first reported by Holland after
other studies had concluded that conventional elastic and dielectric loss models were insuffi-
cient [105]. The description in Equations 2.54 - 2.56 is illustrative only - in a real case, the
complex nature must, of course, be extended to all components of the EPD matrix. These loss
tangents may be physically interpreted as the phase lag between the two variables they con-
nect [106].

For most functional device-based applications, a phenomenological approach (such as this
complex model or by direct inclusion of damping terms into the equation of motion) is sufficient
to account for losses and allows for excellent agreement between simulations and real devices.
However, the mechanisms behind the losses are harder to study due to the complicated way they
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interact [107]. Some important mechanisms for ferroelectric losses include lattice deformation
(either through polarisation rotation or extension), domain wall motion, grain boundary effects
(not in single crystals), interphase boundaries and crystal defects [99]. The presence of losses
may also be linked to the hysteretic behaviour of piezoelectrics [108].

The topic of losses in ferroelectric materials is a well-studied one and the reader is referred
to the reviews by Liu et al. [99] and Uchino et al. [104, 108]. A general overview of loss
mechanisms is also given in Mason [106].

Quality Factor

Whilst the complex property representation for piezoelectric losses is theoretically convenient,
the loss tangents are typically hard to measure accurately in practice - especially the piezoelec-
tric tanθ [107, 109]. A more practical method uses quality factors which are defined as being
proportional to the ratio of the stored energy over the energy loss within one complete vibration
cycle [106]. The quality factors are inversely proportional to the loss tangents - for example, the
mechanical quality factor Qm is inversely proportional to tanγ [106]. This establishes quality
factors as an alternative way to account for losses in the treatment of piezoelectric materials.

The advantage of quality factors over loss tangents is that the effective quality factor is very
easy to determine and can, in a similar way to k, be linked to the electrical impedance spectrum
at a resonance mode. For any resonance or antiresonance, the effective quality factor is given by
the so-called ‘3 dB rule’:

Qeff =
f0

f1 − f2
, (2.57)

where f0 is either the resonance or antiresonance frequency and f1 and f2 are the frequency
points corresponding to an impedance value which is 3 dB or

√
2 higher, or lower respectively,

than the impedance measured at f0 [99] This is illustrated in Figure 2.7. This definition of Qeff

links it to the sharpness of the resonance or antiresonance feature and makes it very easy to
measure. However, it inherently ties Qeff to a specific mode and so cannot be used, in general,
to determine losses over all frequencies.
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Figure 2.7: The 3 dB method for determining the effective mechanical quality factor. Electrical
impedance of a piezoelectric mode is shown along with the 3 dB line for both the resonance and
antiresonance.

2.5 Physics of Magnetic Materials

Unlike ferroelectrics, materials with spontaneous and magnetic properties have been known
about since the ancient times. However, it was not until 1819 that Ørsted discovered the link
between electricity and magnetism [110]. It was this connection that provided the ground work
for one of the first great unifications in physics as set out in Maxwell’s equations [111]. Further-
more, it is now know that, whilst the magnetic field produced by Ørsted’s electrical current is a
product of special relativity, the origin of permanent magnetic materials also requires quantum
mechanics for a satisfactory explanation. This section provides a brief review of some of the
physical mechanisms at play in magnetic materials.

2.5.1 Magnetic Symmetries

Whereas the electric polarisation in a crystal is a polar or proper vector, the magnetic moment
is an axial or pseudo-vector [112]. This can be understood by considering an atomic moment
as resulting from a current loop [113], thus illustrating that magnetic moments should behave
differently to electric ones. For example, under the effect of a perpendicular mirror plane, the
electric polarisation will flip but the magnetic moments will not. This is illustrated in Figure 2.8.

Furthermore, when the magnetic system is in a disordered state, typically at high tempera-
ture, the large number of moments present in a macroscopic crystal ensures that, on average, as
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Figure 2.8: Illustration showing the difference between polar vectors, e.g. electric dipoles, and
axial vectors, e.g. magnetic dipoles, and their transformation under reflection.

many moments will be pointing up as down. Hence, if all magnetic moments are now flipped
then this situation is unchanged. Remembering the current loop model of magnetic moments,
flipping the direction of the current will flip the sign of the corresponding moment. With the cur-
rent being the temporal derivative of the charge, this is ‘equivalent’ to reversing time. Hence, this
symmetry is known as time reversal symmetry (TRS) and is illustrated in Figure 2.9 [112, 114].
So a new symmetry operation can be introduced to represent TRS and will be denoted as E ′. If,
upon cooling, the crystal magnetically orders, then all moments will not be at random directions
and so the system is no longer invariant under TRS. It is also important to note that TRS does
not affect the crystal structure itself or any dielectric or piezoelectric properties.

Figure 2.9: Illustration of the effect of TRS, E ′, on an axial magnetic dipole vector.

The symmetry of magnetic systems can differ from the symmetry of the crystal lattice in
which they are embedded. As such, the theory of point groups must be extended to encompass
these extra classes. Whilst there are only 32 crystal point groups, there are 122 magnetic point
groups. These are formed by various combinations of the crystal point groups with the spin
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reversal group R = {E,E ′} although not all are physically admissible. Magnetic space groups
are formed similarly by combining these magnetic point groups with the translational symmetry
operations of the lattice. There are 1651 magnetic space groups [115].

2.5.2 Magnetic Ordering

Figure 2.10: Common magnetic ordered structures and the corresponding magnetic dipole con-
figurations.

The most familiar type of magnetic order is ferromagnetism. This is a material in which
at least some of the atoms possess a magnetic dipole moment. Typically, at high temperatures,
these moments are arranged randomly, called the paramagnetic state, but, upon cooling, will or-
der at some transition temperature, also called the Curie temperature, to produce a spontaneous
magnetisation in the sample. These states are shown in Figure 2.10(a) and (b). This magneti-
sation is caused by the mutual alignment of all moments as originally proposed by Weiss to
occur from interaction with an internal ‘molecular field’ [116]. This field is now known to re-
sult from the quantum exchange interaction with the magnetic moments arising from unpaired
electrons. One of the simplest variations of this theory is the so-called nearest neighbour inter-
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action model [117]. In this case, a magnetic moment is assumed to interact only with the closest
neighbouring spins, the number depending on the lattice type. This allows the interaction field
at the ith magnetic site to be written as

H⃗i = ∑
j=nearest

neighbours

Ji jm⃗ j, (2.58)

where Ji j represents the exchange interaction and is positive for ferromagnetic materials. From
elementary magnetic theory, the interaction energy of magnetic moment m⃗i in this field is simply
given by

Um ∝ m⃗i · H⃗i = ∑
j=nearest

neighbours

Ji jm⃗i · m⃗ j, (2.59)

and the ordered state occurs when this energy scale matches the thermal energy kBT where kB is
Boltzmann’s constant. As Ji j > 0, the lowest ordered energy state will occur when neighbouring
spins are aligned, giving a positive dot product.

However, the exchange interaction can also be negative, Ji j < 0. In this case, the lowest
energy ordered state corresponds to antiparallel neighbouring spins. This is called antiferro-
magnetic order and it is illustrated in Figure 2.10(c). In ferromagnetic systems which are typi-
cally metallic, the exchange interaction stems from coupling between the outer electrons in the
material’s band structure. However, antiferromagnets are typically insulators and so the inter-
action instead is between localised electrons. One mechanism for this is superexchange, where
two magnetic cations, e.g. Mn2+, will indirectly couple through the intervening anions such as
O2− [118].

Contrary to ferromagnetism, the alternating order in an antiferromagnet results in an overall
zero magnetisation. It also means that the material unit cell is effectively doubled. This can be
directly seen by the presence of a Bragg peak at wavevector (1/2,1/2,1/2) in magnetic neutron
diffraction experiments. The temperature at which antiferromagnetic order sets in is referred
to as the Néel temperature. Antiferromagnetism is common in transition metal oxides such as
MnO, FeO, CoO and NiO.

Beyond these two simple cases of order exists a myriad of magnetic structures. These in-
clude such cases as ferrimagnetism (shown in Figure 2.10(d)), which may be considered a weak
case of antiferromagnetism, and spin-spiral ordering which will be revisited in the context of
multiferroics.
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2.5.3 Propagation Vectors

As is usual in crystallography, consideration of the reciprocal space can further understanding of
the magnetic order. Consider a material which is magnetically ordered. Then the configuration
of magnetic moments, m⃗l j where l labels the unit cell and j the atom number in that cell, can be
express as a Fourier series

m⃗l j = ∑
k⃗

S⃗⃗k je
−i⃗k·⃗L, (2.60)

where k⃗ are the ‘propagation’ vectors, S⃗⃗k j are the complex Fourier coefficients and L⃗ is a real-
space lattice vector, here pointing to the lth unit cell. Like the reciprocal lattice, the power
of this Fourier representation is that it allows an explicit expression of the periodicity of the
magnetic order through the values of the propagation vector, k⃗. It should also be noted that
conventionally the propagation vectors are restricted to the first Brillouin zone, the unit cell
of the reciprocal lattice, and so the exponential factor above can be seen as a development of
Bloch’s theorem [119].

A disordered structure will lack any real-space long-range coordination and so must be like-
wise broad in reciprocal space. This means that disordered magnetic structures, such as a para-
magnetic ones, require a near continuous distribution of k⃗ vectors. Conversely, well-ordered
structures require only a single propagation vector as they exhibit long-range order in real-space.
Within ordered structures there are three categories of propagation vector:

• ‘Null’ (⃗k = 0): From the Fourier expansion, it can be seen that this corresponds to the
case where the magnetic structure is identical in all unit cells (independent of l) and so the
magnetic translation symmetry is identical to that of the crystal. For Bravais lattices, this
case corresponds to a ferromagnetic structure.

• Fraction of reciprocal lattice vector (⃗k = aH⃗): From the definition of H⃗, the product H⃗ · L⃗
is equal to an integer (nl) multiple of 2π and so this corresponds to the case where the
magnetic system has lower symmetry than the crystal. For example, consider the case
where a = 1

2 :

m⃗l j = S⃗ 1
2 H⃗ je

−i 1
2 H⃗ ·⃗L = S⃗ 1

2 H⃗ je
−iπnl = S⃗ 1

2 H⃗ j(−1)nl = m⃗0 j(−1)nl , (2.61)

and so, in a given unit cell, m⃗l j is either identical or opposite to that of the zero cell. This
corresponds to an antiferromagnetic structure.

• k⃗ is arbitrary: In this case the magnetic structure is said to be incommensurate meaning
that, after the zero cell, the magnetic translation symmetry will never again coincide with
the crystal lattice and so the structure cannot be described by a magnetic space group.
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2.6 Relaxor-Ferroelectrics

Now that the basics of dielectric and magnetic order have been set out, two pertinent examples
of materials will be reviewed in which two or more orders/disorders are present. This coexis-
tence allows for materials which display novel and exciting properties. The first are relaxor-
ferroelectrics which have attracted great attention in recent years, with exceptional piezoelectric
and dielectric responses reported [49, 120–124]. They typically consist of mixed perovskites
with structure A(BxB′

1−x)O3 such as Pb(Mg1/3Nb2/3)O3 (PMN) and Pb(Zn1/3Nb2/3)O3 (PZN) [50]
and exhibit a random mixture of cations on the B-site. This disorder has been indicated as, at
least partially, a reason for their high performance [50, 122, 125].

Cross defines relaxor-ferroelectrics by three distinguishing features which separate these
from ‘normal’ ferroelectrics [126]:

1. The temperature of the maximum in dielectric permittivity, Tm, increases with frequency.

2. The dielectric hysteresis response slowly reduces as temperature increases.

3. Samples cooled to low temperatures show no evidence of optical anisotropy/X-ray line
splitting to longer coherence length probing radiation.

Cross presents evidence that all these conditions are met in PMN, the prototypical relaxor-
ferroelectric. However, practically, the distinction is most clearly seen from the first of these
features as relaxor-ferroelectrics characteristically display a temperature broadened ferroelec-
tric-paraelectric transition. This is illustrated in Figures 2.11 and 2.12. These figures compare
this transition of BT against the relaxor-ferroelectrics PMN [127] and PZN [128] respectively.
Figure 2.11 clearly shows a defined sharp peak in the dielectric permittivity of BT above which
the Curie-Weiss law

ε ∼ 1
T −TC

, (2.62)

is obeyed. This behaviour is predicted by conventional soft mode theory [129] and the Devon-
shire theory [71].

In contrast, PMN and PZN, Figure 2.12, show broadened phase transitions with frequency
dependent peaks. This cannot be accounted for within the framework of the Devonshire theory,
indicating that the peaks do not correspond to a ‘traditional’ phase transition as in BT and other
normal ferroelectrics [128]. Furthermore, the shapes of the peaks also indicate that relaxor-
ferroelectrics do not follow the Curie-Weiss law close to Tm [130, 131].

2.6.1 The Smolenskii Model and Superparaelectricity

One of the first models to describe the behaviour of relaxor-ferroelectrics was proposed by
Smolenskii et al. [45]. It suggested that the B-site disorder was responsible for the broaden-
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Figure 2.11: Schematic diagram showing the dielectric permittivity, ε , at the paraelectric-
ferroelectric phase transition of a ‘normal’ ferroelectric such as BT. The response shows a sharp
peak with Curie-Weiss dependence above.

ing of the phase transition. Due to random fluctuations, some regions will be richer in one
B-site ion than the other. This would cause a non-uniform Curie temperature with an “intimate

mix of ferroelectric (polar) and para-electric (non polar) regions” [126] over a large range of
temperatures, as illustrated in Figure 2.13.

Moreover, it can be expected that this effect should result in broadening of the peak and
the deviations from the Curie-Weiss law seen in Figure 2.12. The disorder-induced regions
will display a distribution of Curie temperatures due to their differing composition [131]. If
a Gaussian distribution is taken, then by considering the electrical polarisation in a statistical
fashion, the modified Curie law

ε ∼ 1
(T −T0)2 , (2.63)

is found near the mean transition temperature (T0). This gives excellent agreement with mea-
sured results, shown in Figure 2.14, in many relaxor-ferroelectric compounds [133].

In 1987, Cross proposed an extension to this model termed superparaelectricity [126]. Named
in analogy with superparamagnetism [134] where small clusters of aligned magnetic moments,
unstable due to thermal fluctuations, may be thought of as nano-particles embedded in the para-
magnetic base phase.

Cross’s argument is summarised thus: The free energy profile, calculated through a De-
vonshire approach, for a given Smolenskii nano-region, must be of a multiple well structure.
The potential barrier between these wells represents the cost of domain reorientation and must
scale with the volume of the nano-region because ferroelectricity is a co-operative phenomenon.
Hence, for small regions, it can be expected that this barrier is ∼ kBT and, therefore, subject
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Figure 2.12: The dielectric permittivity and losses (tanδ ) at the paraelectric-ferroelectric
phase transition in the relaxor-ferroelectric PMN, (a) and (b) respectively, and (c)
PZN. Both show a broadened phase transition with a frequency dependent peak
and no Curie-Weiss law in contrast to BT. (a) and (b) reproduced with permis-
sion from V. Bovtun et al., “Central-peak components and polar soft mode in relaxor
Pb(Mg1/3Nb2/3)O3 crystals,” Ferroelectrics, vol. 298, no. 1, pp. 23–30, 2004; (c) Reproduced
with permission from M. L. Mulvihill et al., “Domain-related phase transitionlike behavior in
lead zinc niobate relaxor ferroelectric single crystals,” J. Am. Ceram. Soc., vol. 80, no. 6,
pp. 1462–1468, 1997. Copyright (1997) John Wiley and Sons.

to thermal fluctuations. This process bears a striking resemblance to superparamagnetism, the
mechanisms of which are well-understood.

Cross proposed three tests that would support the Smolenskii model and his own theory of
superparaelectricity [126]:

1. Are fluctuations in the B-site ion responsible for the diffuse nature of the maximum in
dielectric permittivity?

2. Is there direct evidence for a substantial value of root mean square (RMS) polarisation
above TC?

3. Are the polar micro-regions ‘flipping’ like in a superparamagnet or are they fixed?
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Figure 2.13: Illustration of how a fluctuating Curie temperature (paraelectric-ferroelectric tran-
sition) can create polar and non-polar micro-regions in PMN due to B-site (Mg:Nb) disorder.
Reproduced with permission from L. E. Cross, “Relaxor ferroelectrics,” Ferroelectrics, vol. 76,
pp. 241–267, 1 1987

Cross presented evidence in favour of these points: Firstly, disorder in the B-site ion would
necessarily produce regions rich in either ion and would, therefore, destroy any translational
symmetry. However, if a system could be constructed with alternating B-site ions, a transla-
tionally invariant super-lattice would be constructed. This alternating state must surely recover
‘normal’ ferroelectric behaviour due to the recovering of this symmetry. This is supported by
studies into Pb(Sc1/2Ta1/2)O3 [135, 136] where an annealed sample was compared to a quenched
one. The results are summarised in Figure 2.15.

Secondly, the RMS polarisation may be obtained from electrostriction as the strain shows
deviation from the expected linear thermal behaviour in the region above the effective TC [126].
This deviation is indicative of random fluctuations in P⃗ which must average to zero but will
give

√
P⃗2 ̸= 0. The presence of an RMS polarisation was previously reported in BT by Burns

and Dacol who studied the refractive index [137]. This was followed by reporting of similar
deviation in PMN and PZN by the same authors [138]. The temperature at which this RMS
polarisation emerges upon cooling is referred to as the Burns temperature, TB, and it marks the
upper temperature limit of the deviation from Curie-Weiss behaviour in relaxor-ferroelectrics.

Thirdly, assuming these regions are dynamic, electrostrictive strain can be introduced ei-
ther by a switching of the already polar micro-regions to an equivalent state or by chang-
ing the intrinsic polarisation. As electrostriction is quadratic in polarisation, switching of the
micro-regions must give no contribution to electrostriction. However, changing the polarisation
changes the volume and therefore must contribute to electrostriction. Hence, if domain switch-
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Figure 2.14: Scaling plot for the dielectric permittivity for 13 different relaxor-ferroelectrics. A
universal quadratic trend is clearly shown. Reprinted figure with permission from A. A. Bokov
et al., “Empirical scaling of the dielectric permittivity peak in relaxor ferroelectrics,” Phys. Rev.
B, vol. 68, p. 052 102, 5 2003. Copyright (2003) by the American Physical Society. The reader
is referred to Ref. [133] to find the composition of relaxor-ferroelectrics 1-13.

ing becomes dominant, the induced strain should show anomalously low values [126]. Cross
studied (Ba0.4Sr0.6)Nb2O6 with the results shown in Figure 2.16. These support the first strain
mechanism and, therefore, that the micro-regions are dynamical.

Furthermore, Viehland et al. [139] proposed a model in which correlations between these
polar regions result in a frustration of their dynamical nature until they are frozen into a glassy
state analogous to a spin glass. This happens at a ‘freezing’ temperature, Tf, and, as a result, the
flipping time given by the Arrhenius equation in superparamagnetism is actually shown to be
well-described by an exponential Vogel-Fulcher law [140, 141].

In conclusion, the Smolenskii model of disordered B-site ions accounts for the diffuse transi-
tion on a phenomenological level and is capable of predicting the behaviour into the paraeletric
phase. The evidence presented by Cross in 1987 [126], further supports this model and also sup-
ports the theory that relaxor-ferroelectrics exhibit the electrical analogue to superparamagnetism
- superparaelectricity.
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Figure 2.15: Differences between ordered (annealed) and disordered (quenched)
Pb(Sc1/2Ta1/2)O3. This shows that all the classic relaxor behaviours displayed by the
quenched sample disappear upon annealing, supporting Smolenskii’s conclusion that relaxor
behaviour comes from compositional disorder. Reproduced with permission from L. E. Cross,
“Relaxor ferroelectrics,” Ferroelectrics, vol. 76, pp. 241–267, 1 1987

Figure 2.16: Values of electrostriction constants Q33, Q31 and Q11 in (Ba0.4Sr0.6)Nb2O6 (ferro-
electric symmetry 4mm). The polar vectors are dominantly orientated along the four-fold axis
(direction 3). Hence, switching of micro-regions should be induced by applying a field in di-
rection 3 but not in direction 1. This shows the values of electrostriction constants Q33 and
Q31 going to zero at the Curie temperature whereas Q11 remains normal supporting dynamic
behaviour of micro-regions. Reproduced with permission from L. E. Cross, “Relaxor ferro-
electrics,” Ferroelectrics, vol. 76, pp. 241–267, 1 1987
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2.6.2 Paraelectric-Ferroelectric Transition Temperatures in Relaxors

From the sections above, it is clear that the transition from a paraelectric state to a ferroelectric
one is much more complicated in a relaxor-ferroelectric than in, say, BT. It is more accurate
to say that there is a temperature range between TB, i.e. the temperature at which polar micro-
regions start to appear and emergence of RMS polarisation upon cooling, at the upper end and
the depoling temperature, Td, i.e. the temperature at which net polarisation emerges upon cool-
ing, at the lower end. This contains many temperatures which are summarised by Davis [128]
and describes how the system changes from a paraelectric state to one with long-range ferro-
electric order. Most notably, the temperature of maximum permittivity is strongly frequency
dependent but does not correspond to an abrupt structural phase transition. This contrasts with a
‘normal’ ferroelectric which transforms with a well-defined phase transition at one temperature,
TC.

2.6.3 Polar Nano-regions

The nano-regions of Smolenskii and Cross have also been implicated in the high dielectric and
piezoelectric properties of relaxor-ferroelectrics [122, 125]. The main evidence for their exis-
tence can be seen in refractive index measurements [137] and in the presence of a diffuse scat-
tering component in both neutron and X-ray experiments [142–145]. In a long-range ordered
structure, Bragg scattering peaks occur as typically sharp effects, usually with some broadening
due to experimental resolution. However, these diffuse regions in relaxor-ferroelectrics appear
as a ‘smearing’ of the Bragg peaks and broadening in reciprocal-space implies short-range real-
space correlations.

Figure 2.17: Diffuse component of the elastic neutron scattering response seen in PMN.
Reprinted figure with permission from C. Stock et al., “Evidence for anisotropic polar nanore-
gions in relaxor Pb(Mg1/3Nb2/3)O3: A neutron study of the elastic constants and anomalous TA
phonon damping in PMN,” Phys. Rev. B, vol. 86, no. 10, pp. 1–18, 2012. Copyright (2012) by
the American Physical Society.
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The diffuse scattering of PMN is shown in Figure 2.17, where the classic so-called ‘butterfly’
shape can be easily seen [146]. The butterfly shape shows that the diffuse regions are highly
anisotropic, with rods extending along the ⟨110⟩ directions. This reciprocal space anisotropy is
reflective of the existence of both long and short-range correlations in real-space. Furthermore,
damping of acoustic phonons shows that these short-range PNRs are also highly anisotropic in
real-space [146].

2.6.4 Random Fields

Further building on the Smolenskii disorder, another model proposed for understanding relaxor-
ferroelectric behaviour is the random field model. First introduced by Imry and Ma [147], this
model introduces a random ‘external’ field which, in the case of relaxor-ferroelectrics, comes
from charge inhomogeneity due to B-site mixing, ionic shifts from the ideal positions and even
Pb and O vacancies [148]. These effects lead to imperfections which can be treated as sources
of a random electric field embedded in a paraelectric phase [50].

The classic example of a random field approach is the Ising model used to study systems
which exhibit co-operative behaviour such as ferromagnetism; the context in which it was orig-
inally proposed [149]. This model uses Equation 2.59 but implements a spatially homogeneous
nearest-neighbour coupling, i.e. Ji j = J is a scalar. Random field effects may be introduced by
extending this coupling and modifying the ‘external’ field to include random contributions with
zero mean that are uncorrelated for different sites [150]. This may be motivated by factors such
as compositional defects, lattice dislocations and vacancies which can break down the spatial
homogeneity of the pure Ising model.

In relaxor-ferroelectrics, the disorder can be modelled as sources of a random field and
this model can be used to account for many experimental results. For example, many relaxor-
ferroelectrics such as PMN and PZN display a skin effect [151–153] which is a phenomenon
familiar from magnetic systems [154, 155]. This effect will be further explored in Chapter 5 in
the relaxor-ferroelectric Pb(Fe1/2Nb1/2)O3 (PFN).

The random field model applied to relaxor-ferroelectrics is reviewed by Glinchuck [148]
and Cowley [50]. The main approach is to consider a self-consistent random field distribution
function which is then used to derive average values; many references within Ref. [148] contain
methods to try to calculate this function.

Whilst the random field model is able to account for most of the phenomenology of relaxor-
ferroelectrics, there remains some question regarding the mixing of relaxors and the inclusions
of other ordering mechanisms. These will be addressed in this thesis.
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2.7 Multiferroics

The second class of materials which this thesis will explore is known as multiferroics. A mul-
tiferroic displays a coupling between two ‘ferroic’ orders in the same phase, with this usually
limited to intertwined magnetic and electrical order i.e. magnetoelectric coupling [62, 156, 157].
As with piezoelectricity, the origin of the magnetoelectric effect may be traced back to Pierre
Curie, who posited its existence in 1894 [9], but it was not until the late 1950s/1960s that this
prediction was followed by substantial theoretical work [158] which led to the first experimental
observation [159].

The coexistence of both electric and magnetic order is not a harmonious one, with mag-
netic systems requiring partially-filled atomic orbitals and ferroelectric systems favouring filled
orbitals [160]. An example of this is the perovskite oxides, e.g. BT or PT, in which ferro-
electricity arises through a relative displacement between the B-site ion and the surrounding O
octahedra. However, in these cases, the B-site ion is typically Ti4+ which lacks electron occu-
pancy in the d orbital which makes magnetic ordering impossible. This also applies to common
B-site ions Zr4+ and Nb5+. This was referred to as the ‘d0 rule’ by Hill [160] and breaking this
‘rule’ is crucial to allowing simultaneous magnetic and electric orders to develop.

Furthermore, the temperature scales corresponding to both electrical and magnetic order are
often disparate, which together indicate that the microscopic origins behind each mechanism
must be likewise separate. This competition means that, typically, magnetoelectric coupling
is weak. Despite this drawback, coupling of these order parameters would allow hybrid mag-
netoelectric devices independently controllable using magnetic and electric fields [161] and so
alternative systems are desired.

One such candidate is spiral multiferroics [162]. With the extension of the classical multifer-
roic definition to include any type of magnetic order, large coupling has been found in systems
which contain cycloidal magnetic structures such as the rare-earth manganites, e.g. the per-
ovskite TbMnO3 [163–166]. As ferroelectricity is closely linked to helicoidal order since both
require noncentrosymmetry [156], chiral magnetic ordering can induce ferroelectricity even if
the parent phase forbids it by symmetry, such as in Cr2BeO4 [167] or TbMnO3 [161].

The various types of spiral magnetic structures are illustrated in Figure 2.18, with the classic
mechanism of induced magnetoelectric effect through a coupling to the spin chirality S⃗i × S⃗ j,
where i, j are neighbouring spins. This is known as the KNB spin-current model [163] and there
exists a strict constraint on the direction of any spontaneous polarization. Where all spins rotate
in a common plane, the induced polarization is P⃗ ∝ e⃗i j × S⃗i× S⃗ j where e⃗i j is the vector that joins
the two neighbouring spins, S⃗i, S⃗ j, and is also in the rotation plane. This results in a polarisation
which is constrained to lie in the rotation plane. The KNB model has been verified for many
systems such as MnWO4 [168]. However, it cannot fully account for new spiral multiferroics
such as Cu3Nb2O8, where the electric polarisation is reported to be nearly perpendicular to the
rotation plane - a clear violation of the KNB model [169]. This material is studied further in
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Chapter 4 and an alternative mechanism is proposed in order to overcome this issue.
Another mechanism which can account for spiral multiferroics is the inverse Dzyaloshinskii-

Moriya (D.-M.) effect [170, 171]. The D.-M. interaction is the anitsymmetric magnetic ex-
change which arises from a second-order perturbation expansion of spin-orbit coupling, a rel-
ativistic correction to atomic theory [171, 172]. Considering the case, for simplicity, of two
magnetic ions, this interaction produces a perturbative Hamiltonian (quantum mechanical en-
ergy operator) of the form [172]

HDM = D⃗ · (⃗S1 × S⃗2), (2.64)

where D⃗ is known as the D.-M. vector and S⃗1 and S⃗2 are the spins of the two ions. The vector
D⃗ is totally antisymmetric under swapping of the ions and so will vanish when the surrounding
symmetry possesses an inversion centre. Furthermore, this interaction plays a large role in
the case of magnetic ions with S = 1/2, such as Cu2+, as lower order effects will typically
vanish [173]. The D.-M. interaction has been linked to non-collinear spin structures such as in
high-temperature superconductors [174] and multiferroics such as BiFeO3 [175].

However, this magnetic interaction can induce a shift in the crystal ions due to a competi-
tion between magnetic and lattice energies [157]. Whereas in conventional D.-M. interaction
reviewed above, a lack of inversion in the structure supports the existence of D⃗, in the ‘inverse’
D.-M. interaction, D⃗ induces an ionic shift which can allow ferroelectricity to manifest. The
superexchange interaction between adjacent magnetic ions is typically mediated through O2−

ions and the strength of D⃗ is proportional to the displacement between the magnetic and O ions.
As such, the D.-M. vector can cause a shift in the positions of the O ions relative to the magnetic
ions, thus inducing an electrical polarisation. This mechanism has been shown to play a large
role in multiferroic perovskites [166].

Mixed perovskites have also been reported to show magnetoelectric coupling. For example,
Pb2(CoW)O6 displays both ferromagnetic and ferroelectric order, and Pb2(FeTa)O6 displays
both antiferromagnetic and ferroelectric order [176]. The introduction of ions with partially-
filled d orbital has broken the ‘d0 rule’ and is what allows the development of magnetism. How-
ever, these materials have rather low Curie/Néel temperatures (∼ 10 K) which may be attributed
to the dilution of the magnetic ions. Despite this, relaxor-ferroelectrics such as Pb(Fe1/2Nb1/2)O3

are still of interest and are reported to show strong magnetoelectric coupling [177]. Study of this
material will be the focus of Chapter 5: given the context of random electric fields in relaxor-
ferroelectrics, investigation of magnetic order might provide some insight into both the coupling
and individual ordering mechanisms. Relaxor-ferroelectrics provide unique systems to study the
effects of disorder and random fields, due to the inherent anisotropy tied to ferroelectricity [50],
and so are an interesting candidate for multiferroic materials.
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Figure 2.18: Spiral magnetic structures. (left to right) a spin density wave, helix, cycloid. Also
shown in the diagrams are the vector e⃗i j which joins the two neighbouring spins S⃗i, S⃗ j and the
chirality vector S⃗i × S⃗ j.

2.8 Chapter Summary

This chapter has reviewed the base theory behind piezoelectricity, ferroelectricity and mag-
netism in dielectric oxide materials.

It was shown that the piezoelectric coupling arises from the combination of mechanical and
dielectric energy densities and all formulations of the piezoelectric constitutive equations follow
through the standard tools of thermodynamics. The importance of crystal symmetry was high-
lighted and its influence on the structure of the EPD matrix was explicitly computed for 4mm

material though an invariant argument. An overview of the development of phenomenological
(Devonshire) theory was also included as another illustration of the power of the thermody-
namic argument. The more practical aspects of piezoelectric materials such as resonant modes,
electromechanical coupling and losses were also considered.

An historical overview of the development of piezoelectric materials for ultrasound was un-
dertaken. Following this development, from the Curie brothers in 1880 to the present, highlights
the need for new theories to guide the continued evolution of these materials especially in the
context of Pb-free piezoelectrics.

The structures of magnetic crystals were then reviewed, with the different types of mag-
netic ordering classified using the concept of the propagation vector. The extension of point and
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space group symmetry to include magnetic structures was also discussed. Two cases where these
properties are mixed either with each other or with other orders were then reviewed. The first
example is relaxor-ferroelectric materials. They display increased dielectric and piezoelectric
properties through the interplay of structural disorder and ferroelectricity. This means that they
have further potential to revolutionise the ultrasonic industry with their high electromechanical
coupling and piezoelectric coefficients. The second example introduced are multiferroic materi-
als, in which a magnetoelectric coupling exists between electric and magnetic order. The issues
that prevent strong coupling in classic multiferroic materials were outlined and two alternative
material classes were proposed - study of which will form part of this thesis.
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Chapter 3

Experimental Methods

This chapter provides a brief review of experimental methods used in this thesis. This includes
outlining the scientific principles behind each technique and a short description of how they
were implemented.

3.1 Chapter Introduction

The work described in this thesis used two main techniques in order to probe the fundamental
behaviour of dielectric oxides which are reviewed in this chapter. Sub-atomic condensed matter
probes such as neutrons and muons were used and the workings of the various experimental
sources of both types of particle are outlined as is their interaction with matter.

3.2 Review of Fundamental Particles

An essential aspect of modern condensed matter physics is the use of sub-atomic probes at large-
scale facilities. These facilities are able to provide access to techniques that are not feasible in
a lab setting. The most widest used of these probes are probably X-rays, neutrons and muons,
with the last two being used in this thesis. As such these are the main focus of this review.

The standard model is one of the most fully tested theories in physics [1]. It sets out the types
and roles of all fundamental particles which, together, are understood to make up the universe.
It also covers interactions of the fundamental strong and electroweak forces. Historically, the
standard model came about as an effort by physicists to provide a classification system for the
many subatomic particles discovered in the twentieth century.

Broadly speaking the standard model splits particles into two types - fermions and bosons
(named for Fermi and Bose respectively). The distinction between these depends on their spin:
Typically measured in units of reduced Planck’s constant ℏ, spin is a consequence of the inclu-
sion of relativistic theory into quantum mechanics and its existence can be derived purely though
symmetry [2].
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The full taxonomy of particles within the standard model is not required for this thesis but
two important classes of fermion must be discussed. Fermions have half-integer spin (e.g. 1/2,
3/2 etc.) and are subject to rules such as the Pauli exclusion principle. They make up ordinary
matter and include objects such as electrons, protons and neutrons. Elementary fermions can
be further divided into two classes - quarks and leptons - which both contain six members (or
flavours, in the jargon). This distinction is made according to fermions which carry colour
charge (allowing interaction with the strong force) i.e. quarks, and those that do not i.e. leptons.

Quarks can either form together in threes, to make baryons such as protons and neutrons,
or as a quark-antiquark pair, to make mesons. Antiparticles are identical in every way apart
from opposite charge - positive electrical charge to negative and colour charge to anti-colour
charge. The most common quarks are the so-called first generation, consisting of up quarks
and down quarks. The other quarks are very unstable and, due to their large masses, have short
lifetimes ∼ 10−8 - 10−12 s [3]. The extreme of this can be seen in the case of the top quark which
has ≈ 187 times the mass of a proton, the most massive quark, and a lifetime of 0.5 ×10−24 s [4].

The six flavours of leptons are electrons, muons and taus (charged) and their respective neu-
trinos (no charge). Again, as muons and taus have larger mass than electrons, they are also un-
stable. In the standard model, the three neutrino flavours have no mass but this is now known to
be purely a measurement limitation [5]. Conventionally, charged leptons have negative charges
(−e) and antileptons have positive charges (the antielectron being referred to as a positron).

3.3 Neutron Techniques

Neutrons have been used to probe condensed matter systems since they were found to display
Bragg scattering in 1936 [6]. Discovered in 1932 by James Chadwick, they are slightly more
massive than a proton but have no charge [7] allowing them to probe deeply into matter in
the absence of Coulomb interaction. This means that neutrons are unaffected by an atom’s
electron cloud and interact only with the nucleus via the strong nuclear force. The likelihood of a
neutron to scatter is given by the scattering cross-section. Whereas X-ray scattering is dependent
upon electromagnetic interactions with the electron cloud and, therefore, cross-sections increase
with atomic number, neutron cross-sections vary in a non-systematic way across the periodic
table [8]. Also, the neutron possesses a non-zero magnetic moment (1.913 nuclear magnetons)
and can, therefore, scatter off unpaired electrons in an atom through the electromagnetic dipole-
dipole interaction. The for most magnetic atoms, the effective magnetic scattering length is
comparable to the nuclear scattering length and so the magnetic interactions have a similar
strength to nuclear ones [8].
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3.3.1 Neutron Sources

Most neutrons are bound within the nuclei of atoms. A lone neutron, being slightly heavier than
a proton, will undergo beta decay with a half-life of around 15 minutes. Hence, to use neutrons
in scattering experiments, they must be obtained from a specific source. There are many neutron
facilities around the world using either one of two methods to produce experimental neutrons:

• Continuous Source neutrons are produced by a nuclear reactor. Here the neutrons are
produced continuously in time as a by-product of the spontaneous fission of 235U. An
example of a continuous source is the Institut Laue-Langevin (ILL, Grenoble, France)
which produces 1.5×1015 neutrons s−1cm−2 [9]. These sources are capable of high time-
integrated neutron fluxes and so are well-suited to Bragg diffraction type experiments.

• Pulsed/Spallation Source neutrons are produced by the bombardment of a heavy target
(e.g. Ta, W) by an accelerated proton beam. An example is ISIS (STFC Rutherford Apple-
ton Laboratory, Didcot, UK). Here, a beam of protons is accelerated in a synchrotron and
is then directed to be incident onto a target, triggering the expulsion of neutrons. Whilst
continuous sources may produce greater time-integrated neutron flux, pulsed sources can
provide brighter bursts. They are also better suited to time of flight measurements as they
provide better time resolution.

In this thesis, a continuous source of neutrons was used to study the multiferroic Cu3Nb2O8

(CNO) in Chapter 4.

3.3.2 Nuclear Interactions

The theory of neutron interaction will now be reviewed. Consider a mono-energetic beam with
wavevector k⃗I . The rate at which neutrons are scattered into solid angle dΩ f in direction k⃗F with
final energy between EF and EF +dEF is given by the product of the flux, i.e. the wavevector

dependent intensity of neutrons, with the differential cross-section,
d2σ

dΩFdEF .
Fermi’s golden rule combined with the Born approximation provide the basis for the treat-

ment of neutron-nuclear scattering [10]. The Born approximation states that the incoming neu-
tron’s quantum wavefunction may be written as a plane wave ∼ ei⃗kI ·⃗r and the outgoing, scattered
neutron’s wavefunction is a spherical wave ∼ ei|⃗kF |r

r . This approximation will be used again in
Chapter 4. Fermi’s golden rule states the differential cross-section corresponding to a transition
between two quantum states, labelled with wavevectors k⃗I and k⃗F and quantum numbers λ I and
λ F , is proportional to the square of the matrix element of the interaction operator, V , which links
these two states. This gives the form for the differential cross-section [8]

d2σ

dΩ f dE f
=

kF

kI

(
mn

2πℏ2

)2∣∣∣∣ 〈⃗kI,λ I
∣∣∣V ∣∣∣⃗kF ,λ F

〉∣∣∣∣2δ (ℏω +EI −EF), (3.1)
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where mn is the mass of the neutron and the Dirac delta function ensures conservation of energy.
However, in a nuclear scattering experiment, rather than measuring a transition from state

λ I to λ F , the differential cross-section is measured as defined above. This means that the final
states in Equation 3.1 must be summed over, whilst keeping the initial state fixed, and then
averaged over initial states. This leads to the expression [11]

d2σ

dΩ f dE f
=

kF

kI
1

2πℏ∑
i, j

bib j

∫
∞

∞

dt
〈
e−iQ⃗·R⃗i(0)eiQ⃗·R⃗ j(t)

〉
e−iωt , (3.2)

where bi is the scattering length of nucleus i, i.e. a constant which effectively mediates the
strength of neutron-nuclear scattering, Q⃗≡ k⃗ f − k⃗i is the momentum transfer or scattering vector,
R⃗i(t) is the position of nucleus i at time t (formally R⃗i(t) should be interpreted as a quantum
mechanical Heisenberg, i.e. time dependent, operator), and ω is the frequency corresponding
to the energy difference as specified by the Dirac delta function. The angled brackets denote a
thermal average.

Like in optics, the differential cross-section may be expressed as a sum of coherent and in-
coherent parts. However, whereas the definition of coherence is typically expressed in terms of
phase between scattered particles [12], it makes more sense to consider the question of coher-
ence in neutron scattering more in terms of correlation functions. This is because, in a neutron
experiment, the number of neutrons is known and there exists an uncertainty relation between
the number and phase operators in the quantised theory [13]. Therefore, the phase of the neutron
is not knowable to an arbitrary precision and so an alternative definition is sought.

Consider a system which consists of a single scattering species. The strength of the neutron
scattering is mediated by b and this can vary between nuclei due to differences such as nuclear
spin states or the presence of isotopes [14, 15]. In this case, the average scattering length will
just be given by

b̄ = ∑
i

pibi, (3.3)

where pi are the weights characterising the variation (such that ∑i pi = 1), and i labels the nuclei.
Then, under the assumptions that the different b values are uncorrelated and that the system
contains a large number of nuclei, the measured differential cross-section is may be written as
the cross-section averaged over the system
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d2σ

dΩ f dE f
=

kF

kI
1

2πℏ
(b̄)2

∑
i, j

∫
∞

∞

dt
〈
e−iQ⃗·R⃗i(0)eiQ⃗·R⃗ j(t)

〉
e−iωt

+
kF

kI
1

2πℏ
[
b̄2 − (b̄)2]

∑
i

∫
∞

∞

dt
〈
e−iQ⃗·R⃗i(0)eiQ⃗·R⃗i(t)

〉
e−iωt

≡

(
d2σ

dΩ f dE f

)
coh

+

(
d2σ

dΩ f dE f

)
inc

.

(3.4)

This explicitly shows the splitting of the differential cross-section into coherent and incoher-
ent parts [10, 14, 16]. From this expression, it can be seen that coherent scattering physically
corresponds to the case if all the nuclear scattering lengths were equal to b̄, i.e. no variations.
Then, the incoherent scattering arises from the random deviations of the scattering lengths from
b̄. Furthermore, Equation 3.4 shows that coherent scattering depends of the correlations between
both the positions of the same nucleus and different nuclei at different times and so may give
rise to interference effects such as Bragg scattering. The incoherent cross-section only depends
of correlations between the same nucleus at different times and so cannot include interference
effects.

Finally, observe that the assumption of elastic scattering, i.e. that the initial and final energies
are equal, has not been imposed in Equation 3.4 and so both the coherent and incoherent scat-
tering cross-sections may be further separated into elastic and inelastic parts. Elastic, coherent
scattering contains information about the structure of the system, as described above, and so pri-
marily consist of Bragg scattering. The elastic, incoherent scattering arising from fluctuations,
only contributes a constant background and is usually not of interest [17].

However, this is not the case for inelastic scattering where both parts of the scattering cross-
section can contain useful information about the sample. The coherent part of inelastic scattering
arise from correlated motion of atoms whereas incoherent inelastic scattering arises from atoms
independent behaviour [15, 18]. This means that inelastic, coherent scattering contains infor-
mation about collective and co-operative excitations such as phonons and other modes as these
will provide correlated atomic motion on the scale of the whole crystal lattice. On the other
hand, inelastic, incoherent scattering arises from phenomena such as local dynamics or particle
diffusion. However, this thesis will not explore inelastic scattering and so will now restrict to
the case of elastic scattering.

In the case of simple Bragg scattering i.e. coherent elastic scattering from the nuclear struc-
ture, this cross-section reduces to

dσ

dΩ
= N

(2π)3

v0
b2

∑
H⃗

δ (Q⃗− H⃗), (3.5)

where N is the number of nuclei, v0 is the volume of the unit cell, and {H⃗} is the set of vectors
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that make up the reciprocal lattice. This inclusion of the Dirac delta function δ (Q⃗− H⃗) means
that the scattering response will be a maximum whenever Q⃗ is equal to a reciprocal lattice vector;
this is an exact restatement of the von-Laue scattering conditions which are identical to Bragg’s
law [19]. To generalise this expression to the whole lattice it must be multiplied by the nuclear
structure factor FN(H⃗) which contains information on atomic positions within a unit cell.

Inelastic scattering occurs when momentum and energy are transferred to or from the sam-
ple. This can be thought of as either creating or annihilating a phonon, a quantum of lattice
vibration defined in an analogous way to a photon with regard to light waves. As these phonons
propagate through the material, they provide information about mechanical properties. In this
case the scattering response is linked to the imaginary part of the material’s dynamic suscepti-
bility through the fluctuation-dissipation theorem [10].

3.3.3 Magnetic Interactions

Due to its magnetic moment, a neutron can also scatter from the magnetic moment of atoms in
a crystal via the dipole-dipole interaction with a similar strength to nuclear scattering. However,
unlike nuclear scattering, magnetic scattering depends not only on the initial and final wave
vectors of the neutron but also on the corresponding neutron spin states. The neutron is sensitive
to the so-called magnetic interaction vector, which is the component of the magnetic structure
perpendicular to Q⃗. For unpolarised neutron scattering, this interaction over the whole crystal is
given by

M⃗⊥(Q⃗) =
1

Q2 Q⃗× M⃗T (Q⃗)× Q⃗, (3.6)

where M⃗T (Q⃗) is the total magnetic interaction:

M⃗T (Q⃗) ∝ ∑
j

f j(Q⃗)eiQ⃗·⃗r j ∑
k⃗

S⃗⃗k j ∑
H⃗

δ (Q⃗− k⃗− H⃗). (3.7)

In this Equation 3.7, f j(Q⃗) is the magnetic form factor for atom j i.e. the Fourier transform
of the unpaired electron density, r⃗ j is the vector to the jth atom, k⃗ is the magnetic propagation
vector as discussed in Section 2.5.3 and S⃗⃗k j are the Fourier components of the magnetic spins.
Again, the inclusion of the Dirac delta function means that magnetic Bragg peaks will occur but
now only when Q⃗ = k⃗+ H⃗. Hence, only if k⃗ = 0 do these peaks combine with the ones from
nuclear scattering.

As was laid out in the last chapter, the allowed values of k⃗ are determined by the magnetic
structure and k⃗ = 0 corresponds to the case where the magnetic moments are independent of
real-space location: the magnetic structure has the same translational symmetry as the crystal
lattice so it makes sense that the Bragg peaks should coincide.
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3.3.4 Polarised Neutron Scattering

The scattering of a polarised beam of neutrons with a single crystal is governed by the Blume-
Maleev equations [20, 21]. The most general technique using polarised neutrons is called spheri-
cal neutron polarimetry (SNP). Whereas unpolarised scattering as shown in Section 3.3.3 probes
only the magnitude of the interaction vector |M⃗⊥|2, SNP is directly sensitive to its components.
This allows a much greater level of accuracy and affords the ability to distinguish between struc-
tures which appear similar in an unpolarised study [22–24]. This has been shown in the case of
FeAs, using both polarised neutron [25] and X-ray [26] scattering, and CeRhIn5 [27, 28], where
the structures were found to be spin density wave and helical arrangement respectively. It is also
for this reason that SNP can determine complex magnetic structures as shown in the cases of
CaBa(Co3Fe)O7 [29] and Mn2GeO4 [30].

Blume-Maleev Equations

State scattering
∣∣χ I〉→ ∣∣χF〉 can be expressed as a transformation in spin-half space by the

2 × 2 matrix S = N + M⃗⊥ · σ⃗ :
∣∣χF〉= S

∣∣χ I〉, where {σi} are the Pauli matrices, N corresponds
to nuclear scattering, and M⃗⊥ · σ⃗ is due to magnetic scattering [20]. Scattering from nuclear
spins can be discounted as these are taken to be disordered and any linear terms must average to
zero.

The scattering cross-section dσ is given by the ratio of the number of particles (NdΩ) scat-
tered into the solid angle dΩ in angular direction (θ ,φ) per unit time to the incident flux,
(|⃗ jI|) [31]:

dσ

dΩ
=

N
|⃗ jI|

. (3.8)

Away from the direction of the incident beam, k̂I , NdΩ = j⃗F ·dA⃗ where j⃗F is the resultant flux,
which is number of particles scattered into the solid angle dΩ in angular direction (θ ,φ) per
unit time per unit area. At a distance r, dA⃗ is given by r2r̂dΩ and

dσ

dΩ
=

1
|⃗ jI|

j⃗F · r̂r2. (3.9)

In a reactor-based neutron experiment, the incident flux is a free particle current:

j⃗I =
ℏ⃗kI

m
. (3.10)

j⃗F is derived from the Schrödinger equation [32]:

j⃗ =
ℏ
m
Im
{

ψ (⃗r)†
∇⃗ψ (⃗r)

}
, (3.11)

where ψ (⃗r) is the total wavefunction projected into real space. Given that the wavefunction is a
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product of a spatial |φ⟩ and a spin part |χ⟩ i.e. |ψ⟩= |φ⟩⊗|χ⟩, the total wavefunction is a linear
combination of the initial and final states

|ψ⟩=
∣∣φ I〉⊗ ∣∣χ I〉+ ∣∣φ F〉⊗ ∣∣χF〉 . (3.12)

Considering the spatial part, this is projected into coordinate space by left multiplication of ⟨⃗r|.
Then, the initial and final parts are given according to the Born approximation:

ψ (⃗r) = ⟨⃗r|ψ⟩= ⟨⃗r|
(∣∣φ I〉⊗ ∣∣χ I〉+ ∣∣φ F〉⊗ ∣∣χF〉)= ei⃗kI ·⃗r ∣∣χ I〉+ ei|⃗kF |r

r

∣∣χF〉 . (3.13)

Substituting this into Equation 3.11 and neglecting cross terms, which average to zero, and
higher order terms in 1

r ,

j⃗ =
ℏ⃗kI

m
+

ℏ|⃗kF |
m

〈
χF
∣∣χF〉
r2 r̂. (3.14)

The first term corresponds to the initial flux j⃗I and, therefore, the second term must correspond
to the outgoing flux j⃗F . Substituting these expressions into Equation 3.9, the cross-section is

dσ

dΩ
=

1

| ℏ⃗kI

m |
ℏ|⃗kF |

m

〈
χF
∣∣χF〉
r2 r2 =

〈
χ

F ∣∣χF〉= 〈χ I∣∣S†S
∣∣χ I〉= Tr(ρS†S), (3.15)

where ρ =
∣∣χ I〉〈χ I

∣∣ is the density matrix and elastic scattering dictates that k⃗I and k⃗F have equal
magnitudes. This result is also expected from Fermi’s golden rule.

In order to arrive at a more useful form for ρ , consider the vector space formed by 2 × 2
Hermitian matrices, MH

2. Whilst perhaps the most familiar example of a vector space is the
one that contains three dimensional Cartesian vectors, R3, a more rigorous definition of a vector
space is: a set of elements called vectors along with two operations, ‘addition’ and ‘scalar
multiplication’, that satisfy a set of axioms [33]. Whilst this is not considered here, it is trivial
to show that MH

2 satisfies the axioms of a vector space. As members of this space have four
free components, four basis ‘vectors’ are needed to span this space, with the only requirement
being that they are linearly independent. This can be expressed for a basis {vi} as

4

∑
i=1

civi = 0 iff ci = 0 ∀i (3.16)

In this context, consider a candidate basis formed by the Pauli matrices {σ1,σ2,σ3} and the
2 × 2 identity, σ0 ≡ I. This gives

3

∑
i=0

ciσi =

(
c0 + c3 c1 + ic2

c1 − ic2 c0 − c3

)
. (3.17)
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For the {σi}’s to be linearly independent, all elements of this matrix must be equal to zero,
which results in four simultaneous equations:

c0 ± c3 = 0,c1 ± ic2 = 0, (3.18)

which may be recast as the matrix problem
1 0 0 1
0 1 i 0
0 1 −i 0
1 0 0 −1




c0

c1

c2

c3

≡ A⃗c =


0
0
0
0

 . (3.19)

For {σi} to be linearly independent, the only solution to this equation must be for c⃗ = 0. An
easy way to achieve this is to require that det|A| ≠ 0. This ensures that A is not singular and so
Equation 3.19 may be left multiplied by an appropriate inverse, leaving only the desired result,
c⃗ = 0. In this case, det|A| = 4i and hence {σi} forms a basis and spans the space of 2 × 2
Hermitian matrices.

Now, as ρ belongs to MH
2, it can be written in the form

ρ = aI+biσi (3.20)

using Einstein summation notation. Noting the following relations for the traces of Pauli matri-
ces

Tr(σi) = 0,

Tr(σiσ j) = 2δi j,

Tr(σiσ jσk) = 2iεi jk,

Tr(σiσ jσkσl) = 2(δi jδkl −δikδ jl +δilδ jk),

(3.21)

which as come a consequence of the commutator/anticommutator ([σi,σ j] ≡ σiσ j − σ jσi =

2iεi jkσk and {σi,σ j} ≡ σiσ j + σ jσi = 2δi jI respectively), a and bi can be determined. Fur-
thermore, a and b must be real as ρ is Hermitian. To determine the coefficient a, consider the
trace of ρ:

Tr(ρ) = Tr(aI+biσi) = aTr(I)+biTr(σi) = aTr(I) = 2a. (3.22)

However, this can also be written using an arbitrary basis {|ui⟩} as:

Tr(ρ) = Tr(
∣∣χ I〉〈

χ
I∣∣) = 〈ui

∣∣χ I〉〈
χ

I∣∣ui
〉
=
〈
χ

I∣∣ui
〉〈

ui
∣∣χ I〉= 〈χ I∣∣χ I〉= 1, (3.23)
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where closure or completeness of the basis {|ui⟩} (|ui⟩⟨ui|= I) was used along with the fact that∣∣χ I〉 is normalised by convention. Equations 3.22 and 3.23 thus give

a =
1
2
. (3.24)

The components {bi} may be found by considering the polarisation of the neutron beam.
This is defined as an average of σ⃗ : PI

i = ⟨σi⟩. Using the density matrix to perform this average
gives

PI
i = ⟨σi⟩= Tr(ρσi) = Tr([

1
2
I+b jσ j]σi) =

1
2

Tr(σi)+b jTr(σ jσi) = 2b jδi j = 2bi. (3.25)

Using the expressions for a,b, ρ can be expressed in terms of the incident polarisation:

ρ =
1
2
(I+ P⃗I · σ⃗). (3.26)

This dependence of the density matrix makes sense physically. If, for example, the system is
fully polarised in the ‘up’ direction then all the wavefunction density will be concentrated into
the ‘up’ state. This is reflected in ρ due to the presence of P⃗I . Similarly, if the state is unpolarised
then ρ is diagonal.

An expression for the final polarisation can be constructed as an average of σ⃗ over the final

spin state:

PF
i =

〈
χF
∣∣σi
∣∣χF〉

⟨χF |χF⟩ =
Tr(ρS†σiS)

dσ

dΩ

. (3.27)

Importantly, as S is not unitary, the norm of a state is not conserved in the scattering process and
so this average must be normalised appropriately.

By computing these traces using the properties of the Pauli matrices viz. Equation 3.21,
the cross-section and final polarisation may be calculated. These are the Blume-Maleev equa-
tions [20, 21]

dσ

dΩ
= Tr(SρS†) = |N|2 + |M⃗⊥|2 +N(PI

i M∗
⊥i)+N∗(PI

i M⊥i)− iεi jkPI
i (M⊥ jM∗

⊥k), (3.28)
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PF
i =

1
dσ

dΩ

Tr(SρS†
σi) =

1
dσ

dΩ

[
(|N|2 −|M⃗⊥|2)δi j + i(N∗M⊥k −NM∗

⊥k)εi jk +M⊥iM∗
⊥ j +M⊥ jM∗

⊥i

]
PI

j + . . .

+
1

dσ

dΩ

[
NM∗

⊥i +N∗M⊥i + i(M⃗⊥× M⃗∗
⊥)i

]
≡Pi jPI

j +P′
i ,

(3.29)

where P is the ‘polarisation tensor’ and contains information about how the polarisation rotates
during the scattering. P⃗′ corresponds to the polarisation created during the interaction.

When a material has a non-zero propagation vector as in the case studied in this thesis,
CNO, magnetic Bragg peaks occur as satellites of the nuclear ones. These will be referred to
here (Figures 4.4 and 4.5) as

(hkl)±≡ (hkl)± k⃗, (3.30)

For CNO, the propagation vector is k⃗ = (0.4876,0.2813,0.2029) and, therefore, this work con-
siders the case where there is no nuclear contribution. This allows N = 0 in Equations 3.28
and 3.29.

The Polarisation Matrix

The ‘polarisation matrix’, with components P̃i j, is defined as the ratio of scattered polarisation
in the jth direction to an incident polarisation which is in the ith direction. It is conventional
to use the so-called ‘standard’ co-ordinates with x ∥ to the scattering vector Q⃗, z vertical and y

completing a right-handed co-ordinate system. P̃ can be defined using Equations 3.28 and 3.29
as

P̃i j =

〈
P jkPI

k +P′
j

PI
i

〉
, (3.31)

where the angled brackets indicate an average over domains. It is important to also note that the
cross-section contained within P and P⃗′ must also be averaged over domains [34]. However, if
an initial beam is assumed to be polarised along one axis, Equation 3.31 can be rewritten with
no Einstein convention as:

P̃i j =
〈
P ji +P′

j

〉
. (3.32)

Now, it is useful to consider dσ

dΩ
, P and P⃗′ in the ‘standard’ co-ordinates only as, in this basis,

the x component of M⃗⊥ is always zero [34]:



CHAPTER 3. EXPERIMENTAL METHODS 80

dσ

dΩ
= |M⃗⊥|2 +2PI

xIm{M⊥yM∗
⊥z}, (3.33)

P=
1

dσ

dΩ

−|M⃗⊥|2 0 0
0 |M⊥y|2 −|M⊥z|2 2Re{M⊥yM∗

⊥z}
0 2Re{M⊥yM∗

⊥z} |M⊥z|2 −|M⊥y|2

 , (3.34)

P⃗′ =
1

dσ

dΩ

−2Im{M⊥yM∗
⊥z}

0
0

 . (3.35)

Substituting these expression into Equation 3.32 for a single domain structure gives

P̃=
1

|M⃗⊥|2

−|M⃗⊥|2 0 0
A B C

A C −B

 , (3.36)

where A =−2Im{M⊥yM∗
⊥z}, B = |M⊥y|2 −|M⊥z|2 and C = 2Re{M⊥yM∗

⊥z}.
There are two key points to note about this matrix for the purposes of the analysis contained

within this thesis. Firstly, P̃xx ≡−1 is required for magnetic scattering. Secondly, P̃xy = P̃xz ≡ 0.
This point will be discussed in Chapter 4 in the context of the measured matrix elements of CNO
which motivated an analysis of the errors in SNP.

Naturally, this expression must be averaged over all domains if present. If the structure is
chiral, it may have multiple domains of opposite chirality, with each domain polarising the beam
in the opposite way due to the opposing handednesses. This has the results that P̃yx and P̃zx will
cancel out under equal chiral domains. This can also be seen mathematically because these
two terms are resultant from a cross-product which is odd under a chiral inversion. Practically,
this effect can be offset by, for example, cooling under an electric field to offset the domain
population [35].

SNP Example

In order to briefly show the power of SNP, consider an example using a simple magnetic struc-
ture adapted from Brown [34]. Consider the tetragonal structure illustrated in Figure 3.1 with
magnetic moments in the a-b plane. Now suppose that this structure magnetically orders along
the c axis with propagation vector (0,0,1/2). This can occur in two ways:

1. The magnetic structure preserves the four-fold rotational symmetry and so remains tetrag-
onal. In this case the magnetic moments are aligned along ⟨110⟩, illustrated in Figure 3.1
as structure (1).



CHAPTER 3. EXPERIMENTAL METHODS 81

2. The magnetic structure breaks the four-fold rotational symmetry, becoming orthorhombic.
In this case the magnetic moments are aligned along either ±[100] or ±[010] illustrated
in Figure 3.1 as structures (2) and (3) respectively. As these structures derive from spon-
taneous breaking of the four-fold axis, a mixture of structures (2) and (3) will occur.

Figure 3.1: A simple tetragonal model. Upon magnetically ordering, it can form any of the
three structures shown below.

Now, the unpolarised neutron interaction (∝ |M⃗⊥|2) can be calculated to find

|M⃗⊥|2(1) ∝ 1+ sin2
φ , (3.37)

|M⃗⊥|2(2) ∝ 1, (3.38)

|M⃗⊥|2(3) ∝ sin2
φ , (3.39)

where φ is the angle between the Q⃗ and the direction [010] and the constant of proportional-
ity is dependent on the magnetic moment length. In this case, a scattering experiment cannot
distinguish between structure (1) and an equal mixture of structures (2) and (3). However, now
consider the polarisation matrix for the three structures
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P̃(1) =


−1 0 0

0 sin2
φ−1

1+sin2
φ

2sinφ

1+sin2
φ

0 2sinφ

1+sin2
φ

1−sin2
φ

1+sin2
φ

 , (3.40)

P̃(2) =

−1 0 0
0 −1 0
0 0 1

 , (3.41)

P̃(3) =

−1 0 0
0 1 0
0 0 −1

 . (3.42)

The two cases are now easily distinguished by the off-diagonal matrix elements P̃yz and P̃zy.
However, these are only dependent on the angle φ and so are no longer sensitive to the lengths
of the moments, only their directions.

Experimental Realisation

Experimentally, all components of the polarisation matrix can be directly measured using CRY-
OPAD (Cryogenic Polarisation Analysis Device), Figure 3.2 [36], a method of performing SNP.
It consists of a cryostat surrounded by two cylindrical Meissner shields with superconducting
coils in between. The Meissner shields ensure the sample space is field free. The coils, along
with incoming and outgoing nutators, allow the polarisation vector of the neutron beam to be
orientated in any direction. The up-down orientation of the scattered neutron beam is measured
using a 3He detector [34]. In this way, the number of neutrons aligned with or against the de-
sired measurement axis, j, n(+)

j and n(−)
j respectively, can be measured for any given initial

polarisation direction, i. This gives a means of connecting the intensity with the polarisation
matrix

P̃i j =
n(+)

j −n(−)
j

n(+)
j +n(−)

j

, (3.43)

where it is assumed that the initial beam is fully polarised. This relation provides a direct link
between the measured intensity and the polarisation matrix elements. Throughout the rest of
this thesis, only the matrix elements P̃i j will be used.
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Figure 3.2: The experimental setup of CRYOPAD.

3.4 Muon Techniques

Muon techniques form the basis of Chapters 5 and 6 and are used to study the behaviour of
relaxor-ferroelectric samples. In this work both negative and positive muons, µ− and µ+, were
used to characterise various dielectric oxides non-destructively. Muon science is typically used
to study magnetism in materials. The muon possesses a large magnetic moment which means
that it is very sensitive to magnetic fields down to ≈ 10−5 T [37] and has been used to charac-
terise many systems [38].

Another advantage of the muon is that it is a local probe. Unlike the Bragg scattering of neu-
trons which requires long-range correlations, the muon only interacts with the implantation site.
This means that it is uniquely able to probe short-range order or disordered/random magnetic
structures [39]. It also has the advantage that a single crystal sample is not always essential and
this allows muon experiments to provide information about magnetic order where conventional
magnetic neutron diffraction cannot be simply performed, i.e. in a powder sample.

3.4.1 Muon Sources

One source of muons is from cosmic rays in the upper atmosphere. These are generated with an
energy of ≈ 4 GeV which corresponds to a long stopping range of about 20 m [40]. This, com-
bined with their low flux and lack of beam polarisation, means cosmic muons are not suitable for
probing condensed matter systems. However, they have been used for larger scale tomographic
studies [40].

In terms of experimental muons, there are five muon facilities around the world and, as
with neutrons, these work by one of two methods. In a ‘continuous’ source (e.g. PSI, Villigen,
Switzerland) muons are produced one-by-one in a cyclotron whereas a ‘pulsed’ source (e.g.
ISIS, STFC Rutherford Appleton Laboratory, Didcot, UK) uses the same setup as a spallation
neutron source. However, in this case the target is made from graphite [41]. At ISIS, muons are
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produced by the interaction of the accelerated proton beam with this target, consuming approxi-
mately 5% of the proton beam. The interaction of the accelerated proton with either a proton or
neutron in the target produces a charged pion, albeit of different charges:

p++ p+ → p++n+π
+, (3.44)

p++n → p++ p++π
−, (3.45)

where p+ refers to a proton, n a neutron and π± a pion. The pion is a meson and so consists
of two quarks: an up quark and an anti-down quark (π+) or a down quark and an anti-up quark
(π−). Hence, the π+ and π− are antiparticles of one another. Pions have a mass of 139.6 MeV/c2

and a mean lifetime of 2.603×10−8 s.
The main decay channel, probability ≈ 99.99%, of charged pions is to a muon (µ±) and

muon neutrino (νµ )/antineutrino (ν̄µ ) via the electroweak interaction [42]:

π
+ → µ

++νµ , (3.46)

π
− → µ

−+ ν̄µ . (3.47)

Depending on the energy of the pion when it decays, it can produce either ‘surface’ or ‘decay’
muons. The former are from pions that form at rest i.e on the surface of the target, and are
only capable of producing µ+ due to the re-capture of µ−, whilst the latter form from pions that
decay in the beamline and can produce both µ+ and µ− [43].

In this thesis, experiments were carried out at the RIKEN-RAL facility, ISIS so a brief
overview of the facility is given:

Each spill from the accelerator produces two pulses of charged pions, separated by 320 ns,
with each pulse having FWHM of 70 ns [43]. These pions then decay into muons which can
be used for experiments. Whereas the other beamlines at ISIS operate at a fixed momentum of
28 MeV/c, the RIKEN-RAL beamline illustrated in Figure 3.3(a) contains an array of magnets
which allows the momentum of the muon beam to be tuned to experimental need. The muon
intensity as a function of momentum is shown in Figure 3.3(b). These magnets also enable pions
to be extracted from the muon target and thus allow the formation of decay muons. Hence, the
RIKEN-RAL beamline is capable of production of both µ+ and µ− at a range of momenta [43].
Given that the key advantage of muon techniques is that they are local probes, varying the mo-
mentum of the muon beam allows the implantation depth to be controlled and thus provides
depth dependent analysis. The resolution of implantation depths is typically ∼ 10 µm although
this can vary with momentum and so should be calculated through simulation for each exper-
iment. This point will be addressed further in Chapter 5 where details of such simulations are
given.
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Figure 3.3: (a) The RIKEN-RAL facility at ISIS, Didcot, UK. All experiments in this thesis
were carried out on Port 4/CHRONUS. (b) The muon intensity as a function of momentum on
the RIKEN-RAL beamlines. Republished with permission of The Royal Society (U.K.), from
A. D. Hillier et al., “Muons at isis,” Philos. Trans. R. Soc. A., vol. 377, no. 2137, p. 20 180 064,
2019; permission conveyed through Copyright Clearance Center, Inc.
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3.4.2 Compositional Analysis (µ−)

The µ− technique provides a method to analyse the composition of a material in a non-destructive
way. In this technique [44], µ−s are implanted into the sample where they interact locally with
an ionic site. After muon capture onto the valence band, the µ− cascades down the modified
atomic orbitals, emitting a characteristic X-ray spectrum which allows the ionic site to be identi-
fied. This process is illustrated in Figure 3.4. Due to the larger mass of the µ− (105.7 MeV/c2),
these muonic X-rays show less re-absorption by the material than if this experiment were carried
out with electrons (0.5110 MeV/c2). Furthermore, varying the momentum of the muon beam
allows the implantation depth to be controlled, thus providing a method for depth dependent,
non-destructive elemental analysis.

Figure 3.4: Illustration of the µ− compositional analysis technique. Reprinted from A. D. Hillier
et al., “Probing beneath the surface without a scratch - bulk non-destructive elemental analysis
using negative muons,” Microchem. J., vol. 125, p. 203, 2016, Copyright (2016), with permis-
sion from Elsevier.

The experimental setup consists of four Ge based ORTEC (Oak Ridge, TN, US) X-ray de-
tectors, two upstream and two downstream, placed on a flat surface with the sample held in the
centre. The four detectors are split into two pairs, low and high energy, with detection ranges
of 3 keV - 1 MeV and 3 keV - 8 MeV respectively. One of each pair was placed upstream and
downstream of the sample to increase the amount of solid angle covered. The four detectors are
labelled in Figure 3.5. The details of the individual samples used in this thesis will be discussed
in the relevant chapters but, in both experiments, these samples were held in an Al foil packet
and suspended into the beam as illustrated in Figure 3.5. Due to the penetration depths required
in this work, the incident muons have enough momentum to pass through the Al packet.
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Figure 3.5: The experimental setup for µ− experiments at ISIS.

3.4.3 Muon Spin Relaxation (µ+)

Muon spin relaxation (µSR) is used to probe internal magnetic structures. It uses a polarised
µ+ beam which will show spin precession under a magnetic field. Upon generation, the muon
beam at ISIS is polarised due to the parity-violating electroweak pion decay process. Further-
more, when the µ+ subsequently decays into a positron, e+, it is preferentially emitted along the
direction of the spin, again due to an electroweak interaction. As the spin of a µ+ will precess
under the influence of a magnetic field, by detecting the angle of emission of the e+, the preces-
sion can be measured. As the precession frequency is directly proportional to the field strength,
this measurement can be used to determine the magnetic field at the site of muon implantation.
The incident polarisation direction of the muon is known due to the polarised beam. This is
illustrated in Figure 3.6

In a µSR experiment, the measured quantity, known as the asymmetry, A, is the normalised
difference between the number of e+ detected in the forward, F , and backwards, B, directions

A =
F −αB
F +αB

, (3.48)

where the parameter α corrects for the difference in efficiency between the two detectors. This
removes the characteristic decay curve of the muons which would otherwise be superimposed
on the data. In this way, the asymmetry measures the polarisation of the muon beam and so
allows the internal magnetic fields to be probed.
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Figure 3.6: Illustration of the two µSR setups used in this thesis. (a) shows transverse field (TF)
setup where the applied magnetic field is perpendicular to the initial muon spin polarisation. (b)
shows longitudinal field (LF) setup where the applied magnetic field is aligned with the initial
muon spin polarisation. This is also used for zero field (ZF) measurements. Republished with
permission of IOP Publishing, Ltd., from P. Dalmas de Réotier et al., “Muon spin rotation and
relaxation in magnetic materials,” J. Phys.: Condens. Matter, vol. 9, p. 9113, 1997; permission
conveyed through Copyright Clearance Center, Inc.
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Chapter 4

Cu3Nb2O8

This chapter starts the presentation of results in this thesis. After putting the topic of mate-
rial characterisation in context with regards to device applications, analysis of the multiferroic
Cu3Nb2O8 is presented. Its magnetic ground state is determined by polarised neutron scattering
in order to provide clarity into the mechanism by which ferroelectricty arises as well as address-
ing an issue in the literature regarding the transition between ordered and disordered phases.

4.1 Chapter Introduction

Choosing the correct material is a key step in any device design process. Furthermore, accurate
and reliable characterisation of the internal mechanisms of the materials allows the designer to
make a much more informed decision. In this way, if the behaviour of the material understood
can be understood at a fundamental level, this ultimately leads the way for new and innovative
devices.

A real-world example of this process is the development of piezoelectric devices. These
typically use ferroelectric materials and the introduction of new materials, such as relaxor-
ferroelectric single crystals, has been shown to be capable of extending their use to novel appli-
cations. Typically, the characterisation of ferroelectric materials may be split into two parts:

Functional Characterisation

Functional characterisation of piezoelectric materials is a topic that has been in continual devel-
opment over the past century. This is where the EPD matrix and other functional parameters
such as k2 are determined. The first document to collate equations, definition, and methods
was the IRE piezoelectric standard in 1961 [1]. The method used here was the so-called ‘reso-
nance method’ which uses the electrical impedance at resonance of known sample geometries,
along with Mason’s equivalent circuit model, to determine the full EPD matrix [2]. The lat-
est version of this document is the 1987 IEEE standard which, whilst still citable, is no longer
maintained [3].
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However, this method was developed for materials with high energy conversion and Qm,
failing when the resonance is weak. It also uses multiple samples to determine all material
properties. Whilst this is appropriate for mass-produced piezoceramics, the growth methods of
single crystals make sample-to-sample variations almost impossible to avoid. This means that
this ‘standard‘ method, when applied to crystal materials, leads to a lack of self-consistency in
the measured EPD matrix. With the rise of simulation, e.g. using finite element analysis (FEA),
allowing virtual prototyping, self-consistent and accurate material properties are necessarily es-
sential to obtain accurate results. Furthermore, the use of complex material properties to address
material losses is not covered in these characterisation methods or many FEA packages, with
more phenomenological approaches being taken.

Self-consistent and widely applicable functional characterisation is improving with more
numerical methods being developed [4–8]. This includes the inclusion of complex material
properties, reduction of sample numbers and iterative approaches. However, some of these
come at the cost of more difficult measurement methodologies and, until recently, the prob-
lem of self-consistency remained. This is now being addressed though the development of
‘inverse impedance spectroscopy’ methods where roughly measured material properties, deter-
mined from wave velocities measured through ultrasonic time of flight measurement, are refined
through a FEA simulation suite to match to a measured impedance curves [9, 10]. This method
has shown to be effective at accurately determining the full EPD matrix from a single sample
for both ceramic and single crystal samples [11, 12]. Furthermore, with the development of AI
and machine learning, this method shows great promise.

Fundamental Characterisation

Where functional characterisation may be seen as concerned with determining ‘useful’ proper-
ties, fundamental characterisation is about the determination of material behaviour and mech-
anisms at a more microscopic level. For example, a device designer needs little knowledge of
the microstructure of a piezoelectric material to adequately design a transducer which uses that
material. However, it is also true to say that a good knowledge of fundamental behaviour will
allow that designer to fully exploit their chosen material.

As fundamental characterisation probes deeper into the structure of the material, more elab-
orate methods are required. This includes but is not limited to the use of sub-atomic probes
such as X-rays, neutrons and muons which interact at the correct length-scales to probe the
atomic level of materials [13]. Furthermore, electron diffraction methods may also be used to
study crystal structure and techniques such as ‘electron energy loss spectroscopy’ can be used
to investigate composition. Electron microscopy can reveal structure on a range of length-scales
including both the surfaces of samples, through scanning electron microscopy, and the bulk,
through transmission electron microscopy [14]. Whilst these measurements are still sensitive to
the ‘useful’ properties of functional characterisation such as elastic constants, they can be used
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to investigate the microscopic mechanisms of the material.
This and the next two chapters present three studies in fundamental characterisation of fer-

roelectrics and multiferroics. It will be shown that the inclusion of multiple competing orders
is capable of introducing novel mechanisms which may eventually allow device designers to
exploit these materials in ways which suit a wide range of applications.

4.1.1 Cu3Nb2O8

Cu3Nb2O8 (CNO) has room temperature space group symmetry P1̄ consisting of a primitive
triclinic lattice which possesses a single inversion centre. It experiences two phase transitions
at low temperatures magnetically ordering at TN ≈ 26.5 K with incommensurate propagation
vector k⃗ = (0.4876,0.2813,0.2029) and developing an electric polarisation along the real space
direction [1,3,2] below T2 ≈ 24 K [15]. These two phases will be referred to as the MT and LT
phases respectively. As the system possesses only two symmetry elements, it is easy to assign
their breaking with the two transitions. The upper transition corresponds to the loss of time
reversal symmetry (TRS) characterised by the onset of magnetic diffraction peaks. The lower
transition reflects the breaking of the inversion centre, P1̄ → P1, which allows both a chiral
structure, as reported by Johnson et al., and the emergence of the electric polarisation, following
Neumann’s principle. This is shown in Figure 4.1.

The nuclear structure as reported by Johnson et al. is shown in Figure 4.2. The two Cu sites
are labelled using Wyckoff notation as 1a and 2i. Wyckoff special positions denote points which
are left invariant by the application of the identity and at least one other symmetry operator.
In this case 2i corresponds to a position which is invariant under the inversion centre and 1a

denotes the origin. The 1a site has square-planar oxygen coordination while the 2i has a square-
pyramidal coordination. The structure can be thought of as layers of Cu separated by layers
of Nb along the b axis and the Cu sites form saw-tooth chains along the a axis. Whilst not a
perovskite, CNO still provides an interesting study of a complex multiferroic and is able to shed
light upon coupling in other materials.

Johnson et al. reported that the low temperature phase is generically helicoidal with all spins
rotating in a common plane and the 1a site wholly out of phase with the two 2i sites which
are slightly out of phase with each other. The term generic helicoid is used as an intermediary
between the cases of a cycloid, where the propagation vector is contained within the rotation
plane, and a helix, where the propagation vector is perpendicular to the rotation plane.

The low temperature dielectric polarisation observed in CNO is reported to be almost per-
pendicular to the rotation plane [15]. This is incompatible with the KNB model where this
polarisation is required to be contained within the rotation plane of the spins [18]. In order to
circumvent this, Johnson et al. proposed the phenomenological ‘ferro-axial’ model which cou-
ples the polarisation through a chiral term to a macroscopic axial vector, as allowed in certain
crystals classes by symmetry. In P1̄, there is no specified direction of this axial vector and so
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Figure 4.1: (a) The specific heat, (b) magnetic susceptibility, (c) electric polarisation and (d)
neutron magnetic diffraction intensity from a powder study of CNO. The two transitions are
clearly shown. The same phenomenology has been observed in single crystal samples [16].
Reprinted figure with permission from R. D. Johnson et al., “Cu3Nb2O8: A multiferroic with
chiral coupling to the crystal structure,” Phys. Rev. Lett., vol. 107, p. 137 205, 13 2011. Copy-
right (2011) by the American Physical Society.

the polarisation may be along an arbitrary direction.
This model was supported by Sharma et al. [19]. However, Xiang et al. proposed a more

general model of helical multiferroics [20] in which a polarisation is induced purely through
the presence of a non-collinear magnetic structure. The polarisation results from non-collinear
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Figure 4.2: The nuclear structure of CNO. (a) shows a view along the a direction illustrating
that the Cu sites are separated along b by layers of Nb. (b) shows the saw-tooth chains along a
made by the Cu sites. The different Wyckoff sites occupied by Cu are labelled. Figure made in
VESTA [17]. ©2020 APS

spin dimers, termed exchange pairs, and is expanded as a power series and the coefficients
determined by first principles density functional field calculations. This model was found to
explain the polarisation displayed by MnI2 [20] and later extended to CaMn7O12 [21] where a
noncentrosymmetric structure was considered. This model has also been applied to CNO [22]
where it was concluded that the polarisation arises from exchange striction between Cu pairs,
not spin-orbit coupling which the authors claim is in contradiction with the ferro-axial coupling
mechanism. Furthermore, it is suggested that the small magnitude of the polarisation is due to
the small phase difference between the Cu(2i) sites.

Given this, a conclusive method to classify the magnetic structure is required. In this study,
the magnetic structure in a single crystal sample of CNO is reported as determined by SNP.
There are two aims to this work: Firstly, to confirm the low temperature magnetic structure in a
single crystal given the discussion surrounding the mechanism for ferroelectricity. Secondly, to
investigate the unusual spin density wave phase and its relation to the two magnetic transitions.
This is accomplished by reporting the magnetic structure in both ordered phases using SNP’s
sensitivity to individual components of the magnetic interaction vector. SNP involves measuring
the polarisation matrix which contains information about how the sample interacts with the
polarised neutron beam. Without the use of polarised neutrons, it is very difficult to distinguish
between complex structures such as helicoidal or a spin density wave.

4.2 Results and Discussion

In order to unambiguously determine the magnetic structure of CNO, a review of the Blume-
Maleev equations, presented in Section 3.3.4, allows comparison of these equations to the data
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which shows several problems that can be accounted for by consideration of the systematic er-
rors, given in Section 4.2.2. However, this theory can now be used to understand the neutron
polarisation results from CNO. The refinement is described and some of the apparent inconsis-
tencies between the data and the Blume-Maleev equations are reconciled. This is then applied
to refine the magnetic structure.

4.2.1 Sample Details

The study in this chapter was carried out on a single crystal of CNO which is shown in Figure 4.3.
This was grown at Rutgers University using the floating-zone technique whereby heat is used to
melt a section of a vertically-mounted rod sample and this ‘molten zone’ is then moved along
the sample to produce a single crystal [23].

Figure 4.3: Single crystal sample of CNO shown attached to the mounting plate used for neutron
scattering.

This single crystal sample has been shown to undergo the same transitions as are shown in
the powder study by Johnson et al. and shown in Figure 4.1 [15]. Heat capacity measurements
show the double-peak indicative of both the TN and T2 phase transitions and the emergence
of electric polarisation and magnetisation have been confirmed [16]. Furthermore, the crystal
structure has been confirmed with X-ray diffraction and the symmetry group with both X-ray
and neutron Laue diffraction [16].
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4.2.2 Full Matrix Refinement and Application of Systematic Errors

In order to determine the magnetic structure of CNO in both ordered phases, SNP was used
to measure the polarisation matrix for multiple magnetic Bragg peaks. The experiment was
performed using CRYOPAD on D3 (ILL, Grenoble, France; λ = 0.85 Å) which allows the
polarisation matrix to be directly measured using the method detailed in Section 3.3.4. The
full matrix was determined for multiple magnetic Bragg peaks in the LT phase, T ≈ 3.5 K, and
just below TN in the MT phase, T ≈ 26.4 K. The data-sets were refined in MAG2POL [24] and
cross checked using the Blume-Maleev equations in MATLAB. Figures 4.4 and 4.5 show the
outcome of the refinement in the LT and MT phase respectively. Also shown in Figure 4.6 are
the refined matrix elements plotted against their measured counterparts for both phases. The
overlaid linear pattern provides an indication that the refinement is of good quality.

The two Cu2+ ions occupying the Wyckoff position 2i are identical in all but the LT phase
where the inversion centre is broken. This symmetry was taken into account in the MT phase
by setting the moments of the Cu(2i) sites to be identical. Constraints regarding the lengths
of the moments were also implemented into MAG2POL refinement as SNP is not sensitive to
the lengths of the moments unless there is nuclear-magnetic overlap [25]. This means that SNP
cannot be used to determine the absolute length of the magnetic moments, only their relative size
and directions. However, this usually provides sufficient information to ascertain the magnetic
ground state, especially given published work refining the magnetic moment value [15].

There are two strict conditions on the polarisation matrix in the Blume-Maleev equation: the
elements P̃xx ≡−1 and P̃xy = P̃xz = 0. From the matrix elements plotted in Figures 4.4 and 4.5,
these two conditions do not seem to be obeyed with P̃xx consistently ̸=−1 and P̃xy = P̃xz, though
small, ̸= 0. These two points will now be addressed in detail:

Due to the chiral nature of the LT structure, the option to refine using uncorrected matrix
elements was implemented in MAG2POL (see Qureshi) [24]. The detector on D3 relies on a
3He spin filter which, over time, will lose efficiency. This results in a reduced intensity of mea-
surements [24] but can be corrected for in MAG2POL and so was taken into account for the
refinement process. However, due to the presence of terms which do and don’t depend on the
initial polarisation, the correction process is computed only during the refinement. To quantify
the goodness of the fit, the reduced χ2 on the uncorrected matrix elements was calculated by
MAG2POL [24] as χ2

r = 37.98 and χ2
r = 36.69 in the LT and MT phases respectively. This

value for χ2 is shown in Figures 4.4 and 4.5. However, the data were later corrected for spin
filter efficiency and so Figures 4.4 and 4.5 show the corrected matrix elements. It is the correc-
tion resulting from the incomplete beam polarisation that is the dominant reason for the matrix
element P̃xx deviating from -1 as will be demonstrated in Section 4.2.2.
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Figure 4.6: The refined (in MAG2POL and confirmed in MATLAB) elements of the polarisation
matrix against those observed in (a) ≈ 3.5 K - LT phase and (b) ≈ 26.4 K - MT phase. The error
bars shown are the systematic and statistical errors on the observed elements. ©2020 APS

The effects of the experimental setup can provide reason for the systematic ̸= 0 values for
the matrix elements P̃xy and P̃xz. This is due to an imperfect initial polarisation of the neutron
beam which can be due to two reasons: the monochromator used is not 100% effective, or
the magnetic fields used to align the beam’s polarisation to the desired direction have a finite
resolution. Both of these effects are purely due to instrumental/sample alignment precision and
are discussed more fully in Section 4.2.2. However, the non-zero values for P̃xy and P̃xz shown
in Figure 4.4 and Figure 4.5 can be fully accounted for by an angular resolution of 2◦ as quoted
in the literature [26]. This deviation only reduces the overall beam polarisation by 0.06%. As
such, the actual systematic experimental errors should be considered larger than the statistical
counting errors. The polarisation is known to be 93.5% on D3 so these effects can be assumed
to have a non-negligible impact on the results. These errors were computed using custom code
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implemented in MATLAB. Due to the nature of these errors, individual components of M⃗⊥

were required to be calculated and used according to the equations given in the next section.
The systematic errors are plotted in Figures 4.4 and 4.5 but were not taken into account in the
calculation of χ2

r .

Initial Polarisation Error Analysis

Systematic errors in a polarised neutron experiment can be attributed to two mechanisms:

1. Not all of the neutron beam is polarised - only a fraction ζ ≈ 1 - the rest remains unpo-
larised.

2. The polarisation vector is not exactly aligned to the specified direction, e.g. x, or some
other small misalignment is present.

The causes of these mechanisms lay in the instrumental setup: The first case is consequent
of a non-ideal monochromator crystal. Unlike muons, neutrons are generated in an unpolarised
state and, so, must be aligned. However, this process may leave part of the beam unpolarised.
The second is dependent on the apparatus used to align the polarisation vector of the neutron
beam. On D3, this is a setup of a guide magnetic field and a magnetic nutator as shown in
Figure 3.2. The nutator is a device which allows the polarisation to be rotated adiabatically
towards a direction transverse to the beam through application magnetic fields up to 150 G [27].
The neutron then passes through a Meissner sheild where it encounters the second guide field,
causing the spin to undergo precession. In this way, the combination of these two fields can
orientate the neutron’s spin in any direction.

Any small misalignment can be due to either the incoming/outgoing polarisation vector or
the sample not being aligned correctly. This effects can all be included into an ‘angular resolu-
tion’ parameter θ and let, without loss of generality, the outgoing polarisation be taken as exact
in this analysis.

The first mechanism may be treated using the density matrix formalism as a density matrix
that represents this partially polarised ‘mixed state’ is easily constructed. This can be done by
combining the density matrices that correspond to the separate ‘pure states’ multiplied by their
respective population fraction in the beam:

ρmixed = ∑
i

niρi, (4.1)

where i counts the number of pure states that are being combined and the population fractions
{ni} sum to unity. The density matrix of the polarised fraction is given by Equation 3.26. The
density matrix of the unpolarised fraction can be computed in two ways: either by setting P⃗I = 0
in Equation 3.26, or from first principles. An unpolarised beam is made up of equal parts spin
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up and down neutrons where the spin projection axis may be chosen as z. Hence, an unpolarised
beam is also a ‘mixed state’ and so the density matrix is constructed according to

ρunpol =
1
2

ρup +
1
2

ρdown =
1
2

(
1 0
0 0

)
+

1
2

(
0 0
0 1

)
=

1
2
I. (4.2)

This can be combined with 3.26 to write the full density matrix

ρ1 = ζ ρpol +(1−ζ )ρunpol =
[ζ

2
(I+PI

i σi)
]
+

(1−ζ )

2
I=

1
2
(I+ζ PI

i σi). (4.3)

Interestingly, this has the same form as Equation 3.26, except that the polarisation part has
acquired a factor of ζ such that

P⃗I → ζ P⃗I, (4.4)

must now used in the analysis. This can only affect the magnitude of the polarisation matrix
elements and, therefore, the anomalous values of P̃xy and P̃xz must result from the second mech-
anism, which will now be considered.

Suppose that the alignment of the polarisation vector, with the direction n̂, has an angular
resolution of θ . This means a cone of angle θ may be constructed around n̂, within which, the
polarisation vector is expected to be contained. By considering the worse case, i.e the limit of the
resolution, the polarisation vector must lie on the surface of this cone. In this case, its direction
may be described using two angles: the angular deviation from n̂, θ , and the azimuth angle at
the base of the cone, φ . Therefore, in the general case, the polarisation vector of the incoming
beam acquires components in the other two Cartesian directions perpendicular to n̂. Hence, the
final polarisation along the measurement direction will also contain terms which come from the
scattering of these other components, and so this mechanism is able to change the form of the
polarisation matrix. This effect is able to explain the observed non-zero value for P̃xy and P̃xz.
Furthermore, as the cause of the misalignment comes from the instrumentation, it should be
consistent during a measurement, i.e. one matrix element, and will only be reset when either
the initial polarisation vector direction changes or the sample is rotated. Hence, this mechanism
adds a small, but non-zero, contribution to all matrix elements.

Allowing for both of these error mechanisms, the initial polarisation vector may be written
as

P⃗I → ζ (P⃗I + α⃗
(i)(θ ,φ)), (4.5)

where α⃗(i)(θ ,φ) contains the additional contribution from the non-zero angular resolution when
the initial polarisation is in the ith direction. The error εi j in the polarisation matrix element P̃i j

may be written as



CHAPTER 4. Cu3Nb2O8 104

εi j = max
0<φ<2π

∣∣∣∣∣
〈

ζP jk[PI
k +α

(i)
k (θ ,φ)]+P′

j

ζ cos(θ)

〉
− P̃i j

∣∣∣∣∣, (4.6)

where care must be taken to use Equation 4.5 for the calculation of the cross-section inside the
components of the polarisation tensor P jk and the created polarisation vector P⃗′. The angled
brackets indicate an average over domains. Furthermore, as the angle φ is attributed randomly
due to the experimental precision, the maximum value of the function inside the absolute value
sign should be taken to give the best estimate of the ’worst-case’ error.

The vector α⃗(i)(θ ,φ) will be dependent on the initial polarisation direction and can be writ-
ten as

α⃗
(x) =[cos(θ)−1]x̂+ sin(θ)[cos(φ)ŷ+ sin(φ)ẑ],

α⃗
(y) =[cos(θ)−1]ŷ+ sin(θ)[cos(φ)ẑ+ sin(φ)x̂], (4.7)

α⃗
(z) =[cos(θ)−1]ẑ+ sin(θ)[cos(φ)x̂+ sin(φ)ŷ],

for an initial polarisation in the x, y and z direction respectively. These directions are in reference
to the standard coordinate system.

Then the error terms can be computed as:

εxx =

∣∣∣∣∣
〈

−ζ |M⃗⊥|2 cos(θ)−2Im{M⊥yM∗
⊥z}

ζ cos(θ)
〈
|M⃗⊥|2 +2ζ cos(θ)Im{M⊥yM∗

⊥z}
〉〉+1

∣∣∣∣∣, (4.8)

εxy = max
0<φ<2π

∣∣∣∣∣tan(θ)

〈
[|M⃗⊥y|2 −|M⃗⊥z|2]cos(φ)+2Re{M⊥yM∗

⊥z}sin(φ)
〉〈

|M⃗⊥|2 +2ζ cos(θ)Im{M⊥yM∗
⊥z}
〉 ∣∣∣∣∣, (4.9)

εxz = max
0<φ<2π

∣∣∣∣∣tan(θ)

〈
2Re{M⊥yM∗

⊥z}cos(φ)− [|M⃗⊥y|2 −|M⃗⊥z|2]sin(φ)
〉〈

|M⃗⊥|2 +2ζ cos(θ)Im{M⊥yM∗
⊥z}
〉 ∣∣∣∣∣, (4.10)

εyx = max
0<φ<2π

∣∣∣∣∣
〈

−ζ |M⃗⊥|2 sin(θ)sin(φ)−2Im{M⊥yM∗
⊥z}

ζ cos(θ)
〈
|M⃗⊥|2 +2ζ sin(θ)sin(φ)Im{M⊥yM∗

⊥z}
〉〉− P̃yx

∣∣∣∣∣, (4.11)

εyy = max
0<φ<2π

∣∣∣∣∣
〈
|M⃗⊥y|2 −|M⃗⊥z|2 +2tan(θ)cos(φ)Re{M⊥yM∗

⊥z}
〉〈

|M⃗⊥|2 +2ζ sin(θ)sin(φ)Im{M⊥yM∗
⊥z}
〉 − P̃yy

∣∣∣∣∣, (4.12)

εyz = max
0<φ<2π

∣∣∣∣∣
〈
2Re{M⊥yM∗

⊥z}− [|M⃗⊥y|2 −|M⃗⊥z|2]tan(θ)cos(φ)
〉〈

|M⃗⊥|2 +2ζ sin(θ)sin(φ)Im{M⊥yM∗
⊥z}
〉 − P̃yz

∣∣∣∣∣, (4.13)
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εzx = max
0<φ<2π

∣∣∣∣∣
〈

−ζ |M⃗⊥|2 sin(θ)cos(φ)−2Im{M⊥yM∗
⊥z}

ζ cos(θ)
〈
|M⃗⊥|2 +2ζ sin(θ)cos(φ)Im{M⊥yM∗

⊥z}
〉〉− P̃zx

∣∣∣∣∣, (4.14)

εzy = max
0<φ<2π

∣∣∣∣∣
〈
tan(θ)sin(φ)[|M⃗⊥y|2 −|M⃗⊥z|2]+2Re{M⊥yM∗

⊥z}
〉〈

|M⃗⊥|2 +2ζ sin(θ)cos(φ)Im{M⊥yM∗
⊥z}
〉 − P̃zy

∣∣∣∣∣, (4.15)

εzz = max
0<φ<2π

∣∣∣∣∣
〈
2tan(θ)sin(φ)Re{M⊥yM∗

⊥z}− [|M⃗⊥y|2 −|M⃗⊥z|2]
〉〈

|M⃗⊥|2 +2ζ sin(θ)cos(φ)Im{M⊥yM∗
⊥z}
〉 − P̃zz

∣∣∣∣∣. (4.16)

These equations explicitly show the additional terms which may arise from additional po-
larisation directions and all reduce to zero in the limit θ → 0. However, the presence of the
azimuth angle φ in all errors, apart from Equation 4.8, allows Equations 4.8 - 4.16 to be plot-
ted as a function of φ . These are shown in Figures 4.7 - 4.15 along with the measured value
for the respective matrix element. These figures are produced using the reported [26] angular
resolution and initial polarisation fraction, ≈ 2◦ and 93.5% respectively, for CRYOPAD. This
provided values for θ and ζ respectively in Equations 4.8 - 4.16 and allowed calculation of all
errors εi j in MATLAB. The refined matrix elements were used for this calculation and these
systematic errors were combined with the statistical counting errors.

The curves shown in Figures 4.7 - 4.15 graphically display the errors against the angle φ

for both phases of CNO. The different panels show all magnetic Bragg peaks and, for clarity
and consistency, the two different y scales are used are displayed in different colours. As stated
above, the ‘worst-case’ error estimate is given by the maximum of the absolute value of these
curves over the domain of φ and it can be seen in the case of the elements P̃xy and P̃xz (Figs. 4.8
and 4.9), that these error calculations are able to account for the systematic non-zero measured
values in both phases. These curve amplitudes were calculated in MATLAB and the resultant
errors were subsequently included in Figures 4.4 and 4.5.
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Having understood the matrix elements and deviations from some of the strict rules estab-
lished by the Blume-Maleev equations, the results for the refined magnetic structures of CNO
can be discussed.

4.2.3 Refined Magnetic Structure

The magnetic structures that result from the polarisation matrix refinements are detailed in Ta-
bles 4.1 and 4.2, and illustrated in Figures 4.16, 4.17, and 4.19. They can both be described by
a rotating spin model:

Si(⃗L) =Ri cos
(⃗

k · L⃗+Φi

)
+Ii sin

(⃗
k · L⃗+Φi

)
, (4.17)

where i labels the Cu sites and L⃗ is a real space lattice vector. Coordinates in this section
are given with respect to a spherical polar coordinate system (r,φ ,θ) constructed inside an
orthonormal basis (x′,y′,z′) where x′ ∥ a with b in the x′− y′ plane.

In the LT phase, the ground state of the system exhibits a generic helicoidal structure (Ta-
ble 4.1, Figure 4.16). Here the spin rotation is confined to the plane spanned by the real and
imaginary parts of M⃗⊥(Q⃗). This plane can be wholly described by its normal direction which
may be written in angular coordinates (φ ,θ). In this study, a rotation plane whose normal has
angular coordinates of (59.73◦,80.81◦) for the Cu(1a) site and (59.78◦,81.00◦) for Cu(2i) was
refined. As noted in Section 3.3.4, CRYOPAD is not sensitive to the absolute moment value, but
as shown in Table 4.1, the ratio of the Cu2+ moments on different sites is consistent with the
unpolarised work giving a value of |MCu(1a)/MCu(2i)|= 0.89µB/0.69µB [15].

Table 4.1: The refined magnetic structure at ≈ 3.5 K. Magnitudes are normalised. ©2020 APS
|M| (arb. units) φ (◦) θ (◦) Φ (2π rad.)

R1 1 −43.62 35.01 0
I1 0.76 −23.93 124.32
R2 0.78 −43.41 34.77 0.515
I2 0.59 −24.04 123.15
R3 0.78 −43.41 34.77 0.525
I3 0.59 −24.04 123.15

In this phase, the Cu2+ sites form ferromagnetic trimers which in turn form an antiferro-
magnetic saw-tooth chain along the a direction. This is illustrated in Figure 4.17. Two chiral
domains, as reflected by the loss of the inversion centre, were permitted in the refinement and the
populations were refined to be roughly equal (46%\54%). This accounts for the small value of
P̃yx and P̃zx as these terms have the opposite sign in the two domains as discussed in the context
of the Blume-Maleev equations.
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Figure 4.16: The refined magnetic structure of CNO in the LT phase. The Cu2+ magnetic
moments are shown along with their rotational envelope. The two Wyckoff positions are labelled
and shown in a different shade of blue for clarity. Figure made in VESTA [17]. ©2020 APS

Figure 4.17: The Cu trimer saw-tooth chain. These trimers are ferromagnetically aligned
but antiferromagnetically aligned with neighbouring trimers. The two Wyckoff positions are
labelled and shown in a different shade of blue for clarity. Figure made in VESTA [17]. ©2020
APS
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This structure is broadly in agreement with Johnson et al. who reported a plane normal of
(54.9◦,75.5◦) [15]. This gives a discrepancy of ≈ 7◦. Furthermore, whereas Johnson et al.

reported a helicoidal structure with a circular rotation envelope from their powder sample, the
best refinement of the SNP data from the single crystal results in an elliptical envelope. In the
refinement presented in Figure 4.4, the length of the imaginary part of M(Q⃗) is 76% of the real
part. This results in an elliptical rotation envelope with eccentricity of 0.65 compared to 0 from
the circular structure reported by Johnson et al.

Whilst these differences may be attributed to the greater sensitivity of the SNP technique
to the direction of the magnetic moments, a constraint was added into the refinement process
in the LT phase such that the real and imaginary parts of M⃗⊥(Q⃗) were of equal magnitude.
Recalling Equation 4.17, if Ri and Ii have equal magnitude, then the rotation envelope becomes
circular. This was to verify the elliptical fit. However, addition of this constraint produced
a worse refinement than that presented in Section 4.2.3 with χ2

r = 62.40 which is larger than
the unconstrained fit (χ2

r = 37.98). This refinement is shown in Figure 4.18, but the error bars
only represent the purely statistical errors as this fit was not included in the systematic error
calculations detailed in Section 4.2.2. However, this elliptical deviation can be expected to arise
due to thermal fluctuations and, as this experiment was performed at finite temperature, it is
possible the circular envelope is recovered as T → 0.

In the structure reported here, the electric polarisation is still out of the rotation plane at ≈ 17◦

to the plane normal. Moreover, although the phase difference of approximately π between the
Cu(1a) and Cu(2i) sites strongly agrees with that reported by Johnson et al., it is worth noting
that the different coordinate systems used results in an overall ≈ 55◦ phase factor.

In the MT phase, a spin density wave (SDW) structure is refined as the ground state (Ta-
ble 4.2, Figure 4.19). SDW structures are typically found in metallic materials and are defined
as a modulation of the local magnetic moment [28]. As in the LT case, the spin can be described
by the rotating model with the rotation plane given by the real and imaginary parts of M(Q⃗).
An SDW-like structure results when one of these becomes small compared to the other. In the
refined structure, Im{M⊥(Q⃗)} becomes almost zero resulting in a highly elliptical rotational
envelope which manifests as a modulation of the spins as can be seen in Figure 4.19(b) - (d).
The polarisation of this SDW coincides with the LT rotation plane to within 2.5◦. Also, all
Cu2+ sites are now in phase. With the loss of TRS at TN, 180◦ domains should be expected in
this phase. However, as these will produce the same polarisation matrix, only one domain was
included in the refinement.
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Table 4.2: The refined magnetic structure at ≈ 26.4 K. Due to symmetry (P1̄) R2 =R3 and
I2 = I3 and so the latter are omitted from the table. Magnitudes are normalised. ©2020 APS

|M| (arb. units) φ (◦) θ (◦) Φ (2π rad.)
R1 0.75 −43.00 30.60 0
I1 0.063 −154.36 80.46
R2 1 −46.35 30.34 0.000
I2 0.036 −150.28 72.99

Figure 4.19: The refined magnetic structure of CNO in the MT phase. The Cu2+ magnetic
moments in the context of the unit cell are shown in (a) whilst the in-plane oscillations along
each crystal axis are shown in (b) - (d). As the propagation vector may be approximated as
(1/2, 3/11, 1/5), approximately one complete oscillation along a should be contained within two
unit cells, three complete oscillations along b contained within eleven unit cells and one com-
plete oscillation along c contained within five unit cells. This is seen in the figure. The out-
of-plane oscillations are much smaller in comparison and so are not plotted. This is due to
Im{M⊥(Q⃗)} ≪Re{M⊥(Q⃗)} in this phase. The two Wyckoff positions are labelled and shown
in a different shade of blue for clarity. Figure (a) made in VESTA [17]. ©2020 APS
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4.2.4 Temperature Dependence

The temperature dependence of the polarisation matrix was also measured. Figure 4.20 shows
the element P̃yz measured on the Bragg peak (2̄10)+ against temperature. A power law |T −TN|2β

was fitted with an exponent β = 0.154. The fact that this is centred on TN reflects that P̃yz is
indicative of magnetic ordering. This exponent is consistent with an Ising interpretation [29].
This can be motivated by considering the crystal field as the O polyhedra surrounding the Cu2+

are distorted by the crystal field which induces an anisotropy in a direction in which there is an
energy cost associated with flipping a spin [30].

Figure 4.20: Plot of matrix element P̃yz against temperature. This was measured on the Bragg
peak (2̄10)+. The Néel temperature TN ≈ 26.5 K is indicated. The fit (solid line) shows a power
law |T −TN|2β with exponent β = 0.154. ©2020 APS

4.2.5 Multiferroic Mechanism

This subsection will address the interpretation of the refined structure and discuss the possible
mechanisms behind the reported magnetic structure and, in particular, the presence of a SDW
in the MT phase. Multiferroics, where one of the order parameters of interest is electric polar-
isation, are typically insulators [31–33]. Despite this, recently non-metallic systems have been
reported where SDW-like structures have been found [34] to coexist with ferroelectricity. In a
metallic material, a SDW arises due the presence of a nesting vector which links parts of the
Fermi surface [28, 35, 36]. However, insulators lack such a surface and so these spin density
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waves must be the product of a different mechanism.
Triclinic CNO is constrained by few symmetry elements with only an inversion centre in the

paramagnetic phase and, as such, the magnetic free energy near TN can, therefore, be expanded
in symmetry-allowed even powers of the components of the site magnetisation M⃗ [37]

fM(T ) = f0 +αx(T )|Mx|2 +αy(T )|My|2 +αz(T )|Mz|2 +βi j|Mi|2|M j|2 + · · · . (4.18)

For the purpose of this simple illustration, any cross and gradient terms have been neglected.
Owing to the lack of symmetry elements with only the presence of an inversion centre, there is
no requirement that the αi components are equal and a magnetic transition occurs when one of
these goes to zero. However, even with the assumption that the magnitude of M⃗ must be fixed,
the free energy can be written as

fM(T ) = f0+(αx(T )−αz(T ))|Mx|2+(αy(T )−αz(T ))|My|2+αz(T )|M|2+βi j|Mi|2|M j|2+ · · · ,
(4.19)

which preserves the fact that each component of the order parameter may have different temper-
ature dependencies.

This description of the phase transition gives an anisotropy in the spatial structure of the
real-space magnetism near the magnetic transition. However, it is not a SDW in the context of
those observed in metallic systems owing to a nesting wave vector across an electronic Fermi
surface [28, 35, 36]. This is corroborated by the temperature dependence of the off-diagonal
term in the polarisation matrix P̃yz which shows little response to the second transition. Fur-
thermore, if the structure did become a collinear SDW in this phase, all off diagonal terms in
the polarisation matrix should go to zero - this is not observed in Figure 4.20. Therefore, it is
concluded that the ‘SDW’ phase in CNO near the Néel transition is rather a manifestation of the
symmetry-allowed decoupling of the different components of the order parameter.

In this way the decoupled magnetic structure destabilises the crystal structure to the point
where it induces the structural chirality at T2 due to the presence of critical fluctuations around
TN . This implies that the two transitions are indirectly coupled in an analogue with the Jahn-
Teller effect where a structural distortion lifts the orbital degeneracy and lowers the symmetry.
This allows magnetic ordering to occur at a lower temperature [38] c.f. MgV2O4, ZnV2O4 [39–42].

Microscopically this mechanism can be motivated from the inverse D.-M. effect whereby a
magnetic structure with a helical component will induce structural chirality [43, 44]. Further-
more, it is compatible with ferro-axial coupling [15] and other symmetry considerations [45, 46].
The generic helicoidal structure is returned at low temperatures and is consistent with this study.
Choosing the z direction to be component that that goes to zero at TN , such that αz(T )∝ |T −TN|,
at a temperature below TN one component of the magnetisation will dominate the free energy.
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Terms in the free energy coupling magnetisation and structural order parameters will then allow
it to become energetically favourable for the structure to distort when the transition from P1 →
P1 occurs, as observed in CNO.

Further analogy may be drawn with the nematic phase in Fe-based superconductors, i.e.
the Fe pnictides [47]. Here it is argued the introduction of one type of ordering induces, via
symmetry, others and thus the nematic order must be considered as resultant from “correlation-

driven electronic instabilities” [47], which are likely driven by magnetic fluctuations. Similarly,
in the case of Fe1+xTe, a SDW structure is observed near the phase transition which is reported
to be stabilised by magnetic fluctuations [48, 49].

Many of the ‘SDW’ phases reported in the literature for magnetic insulators may be spec-
ulated to arise due to the decoupling of the different components of the order parameter. In
analogy with a fictitious force, whilst these ‘SDW’ phases appear genuine, they are simply the
result of a deeper mechanism. Measuring the temperature dependence of the polarisation matrix
is clearly important in understanding these transitions. Indeed, in the case of Ni3V2O8 [34, 50],
a similar mechanism has also been proposed in order to account for the presence of such a mag-
netic and ferroelectric structure where the ferroelectricity is due to a spin-induced symmetry
breaking [51]. This has interesting consequences for the controlling of electric properties in
these materials by applied magnetic fields which merits further study.

4.3 Chapter Conclusions

In conclusion, spherical neutron polarimetry was used to study the magnetic structure of
CNO. The full polarisation matrix was determined in both low temperature phases for multi-
ple magnetic Bragg peaks and the structure was refined to an apparent SDW below TN ≈ 26.5 K,
which becomes generically helicoidal below T2 ≈ 24 K. The low temperature phase was found
to be generally in agreement with the powder structure reported by Johnson et al. The tem-
perature dependence of the matrix was also measured and the critical exponent extracted. A
mechanism was proposed which could explain the presence of the SDW in this insulator. The
structure, which manifests as an imitation of a SDW at finite temperatures, is actually reflective
of the symmetry-allowed decoupling of the components of the order parameter allowing one
to dominate the free energy. In turn, this then allows, through a coupling between magnetic
and structural order parameters, the structural distortion and the manifestation of the electric
polarisation.
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Chapter 5

Pb(Fe1/2Nb1/2)O3

This chapter presents the analysis through depth dependent muon techniques of the perovskite
relaxor-ferroelectric Pb(Fe1/2Nb1/2)O3 (PFN). After a review of the contrasting previous studies
of PFN, negative muon elemental analysis and zero field (ZF) positive muon spin relaxation
results are presented. They confirm the absence of spatially long-range magnetic order and
reveal a change near the surface concerning the magnetic ion Fe3+ and a two-state mechanism
to account for this is discussed.

5.1 Chapter Introduction

Pb-based relaxor-ferroelectrics have challenged understanding of ferroelectric transitions in the
presence of disorder, characteristically displaying a diffuse transition with a broadened, fre-
quency dependent dielectric response [1–5]. Even with the diffuse nature of the paraelectric-
ferroelectric transition, conventionally a single temperature scale is associated with this onset of
ferroelectric order. However, two scales have been observed in relaxors [6]. Typically, a high
temperature scale, defined by the Burns temperature and corresponding soft mode [7], intro-
duces a root mean square (RMS) electric polarisation caused by short-range and dynamic corre-
lations [8–10]. These so-called polar nano-region (PNR) have been directly observed in neutron
and X-ray diffuse measurements and are characterised by momentum broadening [11–13]. The
second, lower, temperature scale corresponds to when long-range ferroelectric correlations can
be stabilised under an applied electric and when the PNRs become static [14, 15]. This is re-
flected by a large drop in the piezoelectric response [16].

This multiple-scale property of relaxors is also reflected in other domains with two length
scales also being reported. Splitting of Bragg peaks indicate the introduction of a strain in the
low temperature phases and this can be explained by the introduction of coexisting unit cell
shapes such as rhombohedral and cubic phases observed [17]. Near-surface regions, where
the unit cell shape seems to differ from the bulk, have been directly observed using diffraction
techniques in relaxors such as PMN, PMN and their PT doped variants [17–22].
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The cause behind this near-surface region is yet to be found but, in analogy to a similar effect
observed in model magnets [23, 24], random field models are good candidates. These readily
explain the two temperature scales in PMN and PZN based on random dipolar fields that result
from the valence mismatch due to the B-site disorder [25–27].

5.1.1 Pb(Fe1/2Nb1/2)O3

Pb(Fe1/2Nb1/2)O3 (PFN) is a mixed perovskite relaxor-ferroelectric which has been reported to
exhibit a coupling between magnetic and dielectric orders [28]. PFN contains a mixture of
magnetic Fe3+, with S = 5/2, L = 0, and non-magnetic Nb5+ on the B-site. Ferroelectric or-
der has been observed below 400 K, evidenced by a corresponding recovery of a zone centre
transverse optic soft mode [28]. PFN has been reported to show magnetoelectric coupling with
anomalies reported in dielectric permittivity at the Néel temperature [29]. Unlike classic ferro-
electrics [30, 31] and non-magnetic relaxors [25, 32], the energy of the polar soft mode in PFN
deviates from the mean-field result at low temperatures. This has been suggested to correlate
with the development of short-range magnetic correlations [28].

The magnetic structure of PFN is not well or consistently understood. It is reported to un-
dergo two magnetic phase transitions with the first at TN ≈ 140 - 160 K [33] which supposedly
corresponds to long-range ordering. Single crystal diffraction indicates that the system orders
as an antiferromagnet with a momentum resolution-limited peak measured at (1/2,1/2,1/2) [34],
indicative of spatially long-range magnetic correlations. However, further anomalies were ob-
served near 20 K in nuclear magnetic resonance (NMR) and magnetic susceptibility measure-
ments indicating a second transition [35, 36]. This has now been interpreted as a transition to
a spin glass structure [37] which coexists with the aforementioned long-range order [38, 39].
Neutron diffraction measurements have directly shown short and long-range order coexistence
leading to models involving two phases defined by different Fe3+ clustering sizes [38].

However, Stock et al. reported a large single crystal sample which only shows short-range,
glass ordering [28]. This will be referred to here as the size/order discrepancy as it may be
correlated with the sample size: smaller and thinner samples have been found to display evidence
for long-range magnetic ordering, whilst larger single crystals show only extremely short-range
correlations [29, 39].

This study aims to address the question of the size/order discrepancy using depth dependent
muon spectroscopy. In this way composition and magnetic properties can be probed over the
near-surface region of the sample.
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5.2 Results

Results are presented from two muon experiments that studied the near-surface composition,
Section 5.2.2, and magnetic properties, Section 5.2.3. A discussion of both µ± experiments will
follow in Section 5.3.

5.2.1 Sample Details

For both muon experiments detailed in this chapter a single crystal sample of PFN was used with
dimensions of 1×1×1 cm3. This is shown in Figure 5.1 and was grown at the Shanghai Institute
of Ceramics using the modified-Bridgman method. This method is widely used in relaxor-
ferroelectric crystal growth and is further reviewed in Chapter 6. The µ± beam was incident
onto a [100] crystallographic face. No sample preparation was required other than wrapping in
foil and mounting the sample onto the experimental mount.

Figure 5.1: Single crystal sample of PFN.

This sample has be extensively characterised with neutron scattering [28, 40] and has previ-
ously been heated and cooled up to a maximum temperature of 500 K. These scattering experi-
ments have confirmed the coupling between magnetic and ferroelectric orders [28] in agreement
with the literature [29]. Furthermore, as described in the Section 5.1.1, these experiments have
confirmed short-range order in this sample through diffuse scattering around both nuclear, as in
non-magnetic relaxor-ferroelectrics such as PMN [11], and magnetic Bragg peaks [28, 40].
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Table 5.1: Theoretical energies of the muonic transition lines of Pb, Fe and Nb that are
relevant to this study [46].

Atom Atomic Transition Energy (keV)
Pb O 6h → 5g 233.7, 235
Fe L 3d → 2p 265.7, 269.4
Nb M 4f → 3d 231.4

These studies have also further confirmed the spatial B-site disorder in PFN where polarised
neutrons were used to examine the nuclear scattering at Q⃗ = (1/2,1/2,1/2) [40]. Due to the equal
fractions of Fe3+ and Nb5+, structural ordering would establish a superlattice, as discussed in
Chapter 2 in the compound Pb(Sc1/2Ta1/2)O3 [41, 42]. This superlattice would double the unit
cell and so give rise to a Bragg peak at (1/2,1/2,1/2). The lack of such a peak in this sample of
PFN confirms the disorder of Fe3+ and Nb5+ ions in agreement with other studies [43, 44].

5.2.2 Compositional Analysis

First the composition near the surface was probed with the µ− technique as detailed in Sec-
tion 3.4.2. Six experimental runs, each at a different muon momentum corresponding to differ-
ent implantation depths, allowed the relative concentration of Pb, Fe and Nb to be profiled with
respect to depth. Stopping of the muons was simulated in SRIM/TRIM [45]. SRIM/TRIM
calculates the stopping profile of ions in materials using statistical algorithms to simulate the
collisions and other interactions in the stopping process. For the purpose of this simulation, the
muon may be treated as a modified H+ ion (the muon is approximately nine times lighter than
the proton). In this simulation, the experimental setup was reconstructed which allowed the im-
plantation depth of the muons to be determined for a given momenta. This involved measuring
the ‘layers’ through which the muon will pass before implantation in the sample, i.e. air gap
between the beam snout and the sample and the Al sample holder.

In this µ− experiment, the range of muon momenta was 20 MeV/c - 35 MeV/c and the
simulated stopping profiles for three of these momenta are shown in Fig. 5.2. This shows that
20 MeV/c corresponds to ‘surface’ implantation at ≈ 65 µm and 35 MeV/c to ‘bulk’ implan-
tation at ≈ 570 µm, as indicated by the maxima of the distributions in Fig. 5.2. Also shown is
the stopping distribution for 28 MeV/c to illustrate the shape of the intermediate profiles. This
penetration range overlaps with the length-scales observed for the skin effect in non-magnetic
relaxors ∼ 100 µm [19, 22].

The main X-ray energy range of interest for this experiment is 220 - 280 keV and the emis-
sion lines contained within were tracked against implantation momentum. These peaks result
from muonic X-ray emission by Nb, Pb and Fe and the energies and corresponding atomic tran-
sitions are detailed in Table 5.1 [46]. In this energy range, the observed transitions form part of
the O series for Pb, the L series for Fe, and the M series for Nb [47].
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Figure 5.2: The results of a simulation in SRIM/TRIM [45] of µ− implantation with momenta
of 20 MeV/c, 28 MeV/c and 35 MeV/c. The peak of the distributions give the implantation
depths as 65 µm, 260 µm and 570 µm respectively.

Figure 5.3 shows the five emission lines resulting from the transitions in Table 5.1 with
each panel corresponding to a different momentum/depth. Gaussian fits are shown fitted to
these five peaks and the overall fit is shown in red. A linear background term was also included
determined by a least squares regression fit to the ‘flat’ portion of the spectrum between 240 keV
and 260 keV. All fitting was carried out using MATLAB. The plots in Figure 5.3 have had this
background term subtracted and are normalised to the fitted Pb peak at ≈ 233 keV which was
assumed to be constant with depth. The issue of Pb vacancies was not specifically taken into
account here as previous studies have reported little change in Pb with depth [48]. As the Pb
atoms will have the least mobility, due to their relatively high mass, they are, therefore, assumed
constant throughout the sample.

The normalised integrated intensity against depth for each peak is shown in Figure 5.4 and
a simple linear fit is included as a guide to the eye. The width of each peak was found, within
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Figure 5.3: X-ray spectra resulting from µ− implantation into the [001] face of PFN. The panels
show different µ− momenta corresponding to implantation depths between 65 µm (20 MeV/c)
and 570 µm (35 MeV/c). The data were normalised to the Pb peak at ≈ 233 keV under the
assumption that Pb is constant throughout the sample. This energy range clearly shows the
emission lines in Table 5.1 for all momenta which allowed easy comparison. The red line shows
the fit to the data and the linear background has been subtracted. Errors were estimated using
Poisson/counting statistics. The small feature at ≈ 238 keV is likely to be another Nb emission
line. However, it was not taken into account for this study as it is noticeably weaker than the
line at ≈ 231 keV.

error, to be constant as a function of depth and so an average width was used for the integrated
intensity calculation. This is indicative of broadening due to experimental mechanisms. Fig-
ure 5.4 appears to show a comparative deficiency of Fe near the surface of the sample and this
will be discussed further in Section 5.3 in context of the µSR results. However, it would be
advantageous to confirm this depth profile with other techniques. However, whilst methods such
as energy dispersive X-ray spectroscopy or Rutherford backscattering are not inherently destruc-
tive and can be used to profile composition against depth, the preparation required can be. For
example, in order to carry out energy dispersive X-ray spectroscopy in a scanning electron mi-
croscope, a cross-section of the sample must be made, typically through mechanical means such
as grinding or cutting, which is destructive. This means that these sort of methods are not suited
to rare, expensive or particularly interesting samples.
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Figure 5.4: The integrated peak intensity of the muonic transition lines against momentum
(depth). The range of depths probed is between 60 and 570 µm. The data are normalised
to the Pb peaks at ≈ 233 keV. Straight lines are included as a guide to the eye. A deficiency in
Fe appears to be shown near the surface of the sample and this can be correlated with the skin
effect as measured in other relaxors.

5.2.3 Muon Spin Relaxation

To study the near-surface magnetic properties, the µSR technique with µ+, as described in
Section 3.4.3, was used. In this section, ZF µSR is first presented as a function of depth, tuned
with incident muon momentum, followed by a temperature dependence study. All data are
parameterised with a stretched exponential. Finally, the lack of magnetic order is confirmed
using a longitudinal field (LF). The sample was wrapped in Ag foil and the experiment was
carried out in a Janis dynamic He flow cryostat.
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Depth Study

Firstly, four experimental runs at different momenta (implantation depths) were undertaken in
order to allow the local magnetic properties to be profiled against depth. Muon implantation at a
given momentum was again simulated in SRIM/TRIM [45]. The experimental setup distances
were measured and reconstructed in the simulation in order to determine the stopping distance
of the muons. The results of these calculations are shown in Figure 5.5(a) and it was found
that 23 MeV/c corresponded best to a surface implantation depth of ≈ 5 µm as indicated by
the maximum of the blue distribution in Figure 5.5(a). The maximum momentum of 27 MeV/c
is also shown in red and corresponds to an implantation depth of ≈ 110 µm. As shown in
Figure 3.3(b), any momentum above 27 MeV/c would require a change to decay muons in order
to preserve the muon flux, although it still drops by two orders of magnitude. This change in the
instrument settings was not feasible due to beam time constraints. Again, this penetration range
overlaps with the length-scales observed for the skin effect in non-magnetic relaxors [19, 22].

Once the simulations had been run, the characterisation of the experimental setup could be
carried out under a field of 20 G orientated transverse (TF) to the direction of spin polarisation, as
standard. This allows the value of the forward-backward efficiency correction α and the initial
values of the asymmetry to be estimated for each momentum. A relatively large TF ensures
that there will be a strong muon precession signal and the amplitude of this gives a measure
of the initial asymmetry. The results of this are shown in Figure 5.6. The full asymmetry
on CHRONUS is ≈ 23% and any dip in this value would indicate a reduced stopping of muons
which is indicative of the surface of the sample. The measured values of α and initial asymmetry
are plotted in Figure 5.5 (b) and (c) respectively against momentum. These are taken from the
fits shown in Figure 5.6 in red. The drop-off in initial asymmetry clearly indicates that the
surface is around 23 MeV/c, which agrees with the simulations. Based on these preliminary
measurements, the momenta for the main experiment were chosen as 22.5 MeV/c, 23 MeV/c,
25 MeV/c and 27 MeV/c. All fitting was done using the WIMDA data analysis package [49].
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Figure 5.5: (a) Shows the results of a simulation in SRIM/TRIM [45] of µ+ implantation with
momenta of 23 MeV/c and 27 MeV/c. The peaks of the distributions give the implantation
depths as ≈ 5 µm and ≈ 110 µm respectively. Also shown are (b) the measured initial asym-
metry and (c) α values plotted against depth for a 20 G magnetic field orientated in the direction
transverse to the muon spin polarisation measured on CHRONUS. The drop in asymmetry be-
low 23 MeV/c indicates that the surface is near here which is in excellent agreement with the
simulation.

Figure 5.6: Muon asymmetry against time showing the µSR response under TF conditions
against momentum (depth) for a field = 20 G. Oscillating fit is shown in red. The drop-off in
amplitude below 23 MeV/c clearly indicates that this is the surface region in agreement with the
simulations (Figure 5.5). For clarity, not all data points are plotted - a bunching factor (average)
of 5 was used in WiMDA.
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To study the spontaneous magnetic properties of the system, the main experiment was carried
out under ZF conditions at a temperature of 5 K. The shallowest and deepest relaxation data are
compared in Figure 5.7, where a slowing down of the relaxation with depth can be seen. These
data were normalised using the initial symmetry values taken from the preliminary TF runs. The
data were fitted using the stretched exponential function

A(t) = A0e−(λ t)β

, (5.1)

where A0 is the normalised initial asymmetry, λ is the effective depolarisation rate and β is a
power exponent. The use of this function will be discussed later, but it allows effective parame-
terisation of the asymmetry decay curve.

Figure 5.7: Muon asymmetry against time showing the µSR response under ZF conditions.
Plotted are the shallowest (≈ 5 µm, momentum = 22.5 MeV/c, blue) and deepest (≈ 110 µm,
momentum = 27 MeV/c, red) depths, to highlight the difference in the muon spin relaxation as a
function of depth. Also plotted as solid lines are the stretched exponential fits that are discussed
further in the main text.

The fitted values for these three parameters are plotted against muon momentum (depth) in
Figure 5.8. It can be seen that both λ and β decrease with depth whilst A0 remains roughly
constant at near unity. This indicates that there is indeed a change in the magnetic properties as
the depth is increased, which is consistent with the hypothesis that the change in Fe3+ near the
surface impacts the magnetic structure. However, the constant A0 ≈ 1 implies that there is no
long-range magnetic order in the sample. This is consistent with the measurements by Stock et

al., but in contradiction with the previous µSR of PFN.



CHAPTER 5. Pb(Fe1/2Nb1/2)O3 138

Figure 5.8: Values of normalised initial asymmetry, A0, relaxation rate, λ , and exponent, β

plotted against muon momentum (depth). A0 remains roughly constant against depth at near
unity whilst both λ and β decrease with depth. The error bars are smaller than the symbols used
to plot the data.

Temperature Study

A ZF µSR experiment was also carried out to track the magnetic properties against temperature.
In this way, magnetic transitions of the material could be identified. These measurements were
done in the bulk, 27 MeV/c, as this momentum has the highest µ+ flux.

Again, a stretched exponential was used to fit the data and the evolution of the fitting pa-
rameters is shown in Figure 5.9. A0 remains near unity over the whole temperature range but a
feature at ≈ 20 K may be seen in λ and β which coincides with the glassy transition identified
through magnetic susceptibility measurements [29]. However, there is no clear sign of the sec-
ond transition at ≈ 140 K to spatially long-range magnetic order which is consistent with A0 ≈ 1
further pointing to a lack of long-range order in this sample.
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Figure 5.9: Values of normalised initial asymmetry, A0, relaxation rate, λ , and exponent, β

plotted against temperature. A0 remains roughly constant against temperature at near unity.
Both λ and β show a feature near 20 K which aligns with the glass transition reported by Rotaru
et al. The exponent β softens near this transition but recovers as the temperature increases. λ

also displays a minimum near the transition, which is unexpected. These trends are discussed in
the main text. Some error bars are smaller than the symbols used to plot the data.

Longitudinal Field Study

With the absence of any observable long-range order in the ZF measurements, a LF study was
used to determine the strength of the magnetic structure. Figure 5.10 shows the µSR relaxation
under LF conditions for various µ+ momenta. In this setup the magnetic field is orientated
parallel to the initial µ+ spin polarisation direction and so, under a large enough field, the spin
of the µ+ will align to this rather than the magnetic structure of the sample. This causes the
asymmetry to remain near or above unity. At large enough fields, this response can also be due
to the relaxation of nuclear moments which takes on more of a Gaussian signature. This can be
seen in the 500 G curve at 22.5 MeV/c, i.e. near the surface.
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Figure 5.10: Muon asymmetry against time showing the µSR response under LF conditions at
a momentum of 27 MeV/c. Magnetic field strengths from 0 G (ZF) to 500 G are shown. For
clarity, not all data points are plotted - a bunching factor (average) of 5 was used in WiMDA.

The flattening of the relaxation above ZF shown in Figure 5.10 indicates that the µ+ re-
sponse decouples from the internal magnetic structure at low field strength. Fields up to 500 G
were applied but no changes in the response were seen after 20 G with the asymmetry staying
constant near unity. This was found to be consistent across all momenta (depths). The reason
behind the anomalously high 20 G measurement at 25 MeV/c is unaccounted for but, even if
this measurement is disregarded, a flattening trend is still shown across the other curves at this
momentum. Overall, such a low decoupling threshold would indicate that the internal magnetic
fields are weak. This agrees with the glassy behaviour seen in the ZF measurements.
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5.3 Discussion

The negative muon data (Section 5.2.2) appears to show a deficiency of Fe near the surface
of the sample. This provides evidence of a skin effect related to compositional inhomogeneity
analogous to studies on other relaxor compounds such as PMN [48]. However, in this study, the
inhomogeneity in Fe is supported by a change in the magnetic properties between the surface
and the bulk seen with µSR in Section 5.2.3, as Fe3+ is the only magnetic species.

The random occupation of the B-site in relaxors has been shown to result in regions which are
richer in one cation which arise though compositional fluctuations [10]. This is the basis for the
Fe3+ cluster model proposed by Kleemann et al. [38]. Thus, if the proportion of Fe3+ decreases,
it may be expected that these regions decrease in size and show larger separations. In the cluster
model of PFN, the short-range spin-glass behaviour stems from small isolated clusters whereas
the antiferromagnetic state exists within the larger exchange-coupled Fe3+ cluster. Hence, it
should be expected that, if fewer isolated Fe3+ ions exist near the surface of the sample, the
majority are contained within larger clusters.

The impact of this is seen in the ZF µ+ depth study which showed is a difference in the local
magnetic dynamics between the surface and the bulk as reflected in the changing relaxation.
This data was parameterised using the stretched exponential function, i.e. Equation 5.1. The use
of this function can be motivated by a general phenomenological argument: the muon spin ex-
periences exponential relaxation e−st with the relaxation rate s determined by the local magnetic
field. This is due to the glassy nature of the magnetic fields in PFN and is a typical response
to dynamics [50, 51]. However, the B-site disorder means that the total µSR signal will corre-
spond to the spatial average of relaxation rates. Hence, the overall relaxation may be modelled
stochastically, averaged over a probability distribution Hλ ,β (s) based on the implantation site,
which mathematically corresponds to the stretched exponential [52]

e−(λ t)β

=
∫

∞

0
dsHλ ,β (s)e

−st . (5.2)

An integral representation for Hλ ,β (s) was first obtained by Pollard [53] using contour inte-
gration

Hλ ,β (s) =
1

πλ

∫
∞

0
due−

su
λ e−uβ cos(βπ) sin

[
uβ sin(βπ)

]
. (5.3)

A complementary form

Hλ ,β (s) =
1

πλ

∫
∞

0
dye−yβ cos

(
βπ

2

)
cos
[
yβ sin

(
βπ

2

)
− sy

λ

]
, (5.4)

was also derived by Berberan-Santos et al. [54] and this derivation is reproduced below. The
equivalence of Equations 5.3 and 5.4 is explicitly shown. These integrals are only solvable in
terms of standard functions for the cases where β = 1 or β = 1

2 [55]. Finally, a series form for
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Hλ ,β (s) is also derived following Humbert and is convergent for all s [56]. It provides an easy
computation method and was used to tabulate the distributions for various values of λ and β by
Dishon et al. [57]. The normalisation of Hλ ,β is guaranteed by the assumption that the relaxing
asymmetry is likewise normalised - i.e. it starts from unity.

As shown in Equation 5.2, the stretched exponential function e−(λ t)β

can be motivated as
an average over individual exponential relaxations e−st with the relaxation rate s drawn from a
distribution Hλ ,β (s) [52]. The dependence of the effective relaxation rate λ can be removed but
introducing the variables T = λ t and S = s

λ
so that

e−T β

=
∫

∞

0
dSGβ (S)e

−ST , (5.5)

where the function Gβ (S) = λHλ ,β (s) is the scaled distribution. Clearly, this integral amounts
to a Laplace transform [58] and so Gβ (S) may be calculated by performing the inverse Laplace
transform of e−T β

[54] which may be inverted by the Bromwich integral

Gβ (S) = lim
γ→0

1
2πi

∫
γ+i∞

γ−i∞
dTe−T β+ST , (5.6)

where the customary γ allows the integration contour to be shifted away from T = 0 where the
integrand has a branch point. Taking the branch cut along the negative real axis, the integration
variable may be split into real and imaginary components T = γ + iy. Furthermore, a polar rep-
resentation of T may also be implemented where T = Reiθ and this will be used in the following
to show that the imaginary part of the integral vanishes due to symmetry. Combining these rep-
resentations gives R = γ

cosθ
and T = γeiθ

cosθ
= γ
[
1+ i tanθ

]
. Substitution into Equation 5.6 then

gives an integral purely in terms of the angle θ

Gβ (S) = lim
γ→0

1
2π

∫ π

2

− π

2

dθ
γ

cos2 θ
exp
{
−
(

γ

cosθ

)β [
cos(βθ)+ isin(βθ)

]
+Sγ(1+ i tanθ)

}
.

(5.7)
After some manipulation using trigonometric identities, this may be rewritten as

Gβ (S) = lim
γ→0

1
2π

∫ π

2

− π

2

dθ
γ

cos2 θ
exp
{
−
(

γ

cosθ

)β

cos(βθ)+Sγ

}
×
[

cosφ − isinφ
]
, (5.8)

where φ =
(

γ

cosθ

)β

sin(βθ)−Sγ tanθ .
Observing that φ is an odd function of θ , together with the fact that the other terms in the

integrand are even, means that the real part of Equation 5.8 is totally even and the imaginary part
is totally odd. Hence, since the limits of the integral are symmetric, the odd part must vanish
due to symmetry. This leaves
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Gβ (S) = lim
γ→0

1
π

∫ π

2

0
dθ

γ

cos2 θ
exp
{
−
(

γ

cosθ

)β

cos(βθ)+Sγ

}
cosφ , (5.9)

where the symmetry has also been used to reduce the integration range to positive angles. Rein-
troducing the variable y = γ tanθ transforms the integral to

Gβ (S) = lim
γ→0

1
π

∫
∞

0
dyexp

{
Sγ − (γ2 + y2)

β

2 cos
(
βθ(y)

)}
cos
[
(γ2 + y2)

β

2 sin
(
βθ(y)

)
−Sy

]
.

(5.10)
The final steps in order to arrive at Equation 5.4 are to impose the limit γ → 0 and counteract

the scaling of the distribution. As y = γ tanθ , in order for y to remain finite as γ → 0, θ → π

2

should also be imposed so that the tangent becomes large. This ensures that the integration
contour is wholly in the imaginary direction. Hence, in order to fully account for this limit
γ → 0 and θ → π

2 must be set in Equation 5.10 to give

Gβ (S) =
1
π

∫
∞

0
dye−yβ cos

(
βπ

2

)
cos
[
yβ sin

(
βπ

2

)
−Sy

]
. (5.11)

This is equal to Equation 5.4 once the scaling of S is removed. However, Pollard first derived
an alternative integral form, again using contour integration [53] and the equivalence of Equa-
tions 5.4 and 5.3 will now be shown. Observe that Equation 5.4 maybe be rewritten as

Hλ ,β (s) =Re

{
1

πλ

∫
∞

0
dye−yβ cos

(
βπ

2

)
ei
[

yβ sin
(

βπ

2

)
− sy

λ

]}

=Re

{
1

πλ

∫
∞

0
dye−

(
ye

−iπ
2
)β

e−
isy
λ

}
.

(5.12)

This more compact representation may be motivated as the zero imaginary part has already been
shown. Performing a rotation in the complex plane, let u = iy to give

Hλ ,β (s) =Re

{
−i
πλ

∫
∞

0
due−

(
ue−iπ

)β

e−
su
λ

}

=Im

{
1

πλ

∫
∞

0
due−

(
ue−iπ

)β

e−
su
λ

}
.

(5.13)

Finally, expanding the complex exponentials gives
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Hλ ,β (s) =Im

{
1

πλ

∫
∞

0
due−uβ cos(βπ)+iuβ sin(βπ)e−

su
λ

}

=
1

πλ

∫
∞

0
due−

su
λ e−uβ cos(βπ)Im

{
eiuβ sin(βπ)

}
,

(5.14)

which, when the imaginary part is taken, gives Equation 5.3. As noted by Berberan-Santos et al.,
these two integral representations are actually complementary with Equation 5.3 being easier to
compute numerically at large s whilst Equation 5.4 is hard to compute at large s due to the large
oscillations of the integrand [54].

As these integrals are difficult to compute, a series representation of Hλ ,β (s) is desired.
Returning to Equation 5.13, a series form may be derived by alternatively Taylor expanding the
first exponential

Hλ ,β (s) = Im

{
1

πλ

∫
∞

0
du

∞

∑
n=0

1
n!

[
−uβ e−iβπ

]n
e−

su
λ

}
. (5.15)

Integrating term by term, permitted since the power series is convergent, this gives

Hλ ,β (s) = Im

{
1

πλ

∞

∑
n=0

e−iβnπ

n!
(−1)n

∫
∞

0
duuβne−

su
λ

}
, (5.16)

which, along with the substitution x = su
λ

allows recognition of the integral form of the gamma
function

Hλ ,β (s) =Im

{
1

πλ

∞

∑
n=0

e−iβnπ

n!
(−1)n

(
λ

s

)βn+1 ∫ ∞

0
dxxβne−x

}

=Im

{
1

πλ

∞

∑
n=0

e−iβnπ

n!
(−1)n

(
λ

s

)βn+1
Γ(1+βn)

}
.

(5.17)

Lastly, apart from the complex exponential, the whole expression is real and so, taking the
imaginary part simply transforms this exponential to a sine function. Then, the odd property
of sine may be used along with the fact that sin0 = 0, meaning that n = 0 term in the series
correspondingly vanishes, to give the series form for the distribution Hλ ,β (s):

Hλ ,β (s) =
1

πλ

∞

∑
n=1

sin(βnπ)

n!
(−1)n+1

(
λ

s

)βn+1
Γ(1+βn). (5.18)

This series was first derived by Humbert and is convergent for all s [56]. It is this form that was
used by Dishon et al. to tabulate Hλ ,β (s) [57], the values of which were used in this work.
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Figure 5.11: Distribution of relaxation rates Hλ ,β that, when averaged, produces the observed
stretched exponential relaxation from the ZF measurements at 5 K. All depths are shown, along
with the distribution that produces the relaxation observed at PSI by Rotaru et. al [39]. As the
penetration depth increases, the distribution narrows and slows.

Figure 5.11 shows the distribution of local relaxation rates that produce the observed relax-
ation of the muon polarisation under ZF conditions for all momenta (depths). These distributions
were computed using Equation 5.18 and values from the tables by Dishon et al. [57]. It clearly
shows that the distribution narrows with depth into the sample and that the peak moves left indi-
cating that the relaxation slows in the bulk. The frequency distribution near the surface indicates
a broadening of the relaxation presumably due to the greater inter-cluster distances near the sur-
face - larger separation means that the coupling between neighbouring regions will be weaker
and this will lead to a larger spread of responses.

In order to put this into context, the results reported here may be compared to the study
performed at PSI by Rotaru et. al [39]. Also parameterising their decay with a stretched expo-
nential, two discrepancies are seen and are summarised in Table 5.2.

Table 5.2: Comparison of the muon relaxation parameterisation for the extreme depths in this
study with the literature values taken from Rotaru et. al [39].

A0 λ (MHz) β

Rotaru et. al (‘Bulk’) [39] ≈ 1/3 ≈ 0.05 ≈ 0.8

T
hi

s
st

ud
y

Bulk (27 MeV/c) 1.09(1) 0.016(1) 0.54(3)

Surface (22.5 MeV/c) 1.08(1) 0.055(1) 0.73(3)
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Firstly, the PSI study’s relaxing asymmetry begins at 1/3 whereas the relaxation in this study
begins from unity. This can be attributed to the lack of long-range order in this sample as,
with antiferromagnetic order as reported by Rotaru et. al, the experiment will only effectively
be sensitive to one out of three component of the relaxation. This is supported by the µSR
temperature study presented in Section 5.2.3 which observed no evidence of the Néel transition
at ≈ 140 - 160 K.

Secondly, the two relaxation parameters of the PSI study can be seen to agree much more
closely with this study’s surface measurements than the bulk as should be expected. The dis-
tribution resulting in the PSI relaxation was back-calculated and is also plotted with a dashed
line in Figure 5.11. This graphically illustrates the similarity between that study and our surface
measurements and shows that the PSI response contains a much broader range of frequencies.
When taken into context with the size difference between the two samples, Rotaru et al. used
a small single crystal sample, this comparison would indicate that this larger sample is able to
stabilise a bulk phase which is different from that probed in smaller samples.

Additionally, the shape of these distributions may be linked to the presence of random fields
with Fe3+ being particularly susceptible to their influence due to a lack of an orbital degree of
freedom. A narrowing and slowing of the distribution would indicate that the random fields are
stronger in the bulk. It is well-known that the random occupation of the B-site results in an ionic
charge disorder that produces random electric fields [59]. It is proposed that the mixing of Nb5+

and Fe3+ results too in frustrated random magnetic fields. Random field models also provide
the current best description of phenomena such as the skin effect [23, 24, 60].

Consider a Fe3+ cluster near the surface. Due to the compositional gradient, it may be
expected that it is relatively isolated and, within this region, that the antiferromagnetic superex-
change mechanism is likely to be dominant. However, this order will be frustrated due to the
presence of Nb5+, which will alter the molecular field. As the cation distribution is random,
these fields may also be considered as such.

However, moving into the bulk of the sample, the Fe3+ clusters will grow and start to couple
which introduces a further frustration mechanism. Being in different Nb5+ molecular fields, any
intra-cluster order will be destroyed by the interaction of these random fields. This can be seen
as the frequency response narrows in the bulk.

It is proposed that this provides a solution to the size/order discrepancy in PFN as the bulk
structure present here, and absent from smaller samples, disrupts the long-range magnetic order.
This structure can be expected to have larger random fields due to the B-site disorder.
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5.4 Chapter Conclusions

In conclusion, depth dependent muon spectroscopy was used to probe the near-surface properties
of the multiferroic relaxor-ferroelectric PFN. This was done in order to investigate the skin
effect which is well-reported in relaxors. However, the driving force behind the skin effect
is implicated to be due to random fields arising from B-site disorder but this is still not well-
understood and so requires further study.

Negative muon elemental analysis showed that there appears to be a deficiency of Fe near
the surface of PFN in agreement with studies in non-magnetic relaxors. Furthermore, ZF µSR
experiments showed that this compositional gradient is correlated with a change in the magnetic
properties over this region. This supports inhomogeneity in Fe as this is the only magnetic
species.

By parameterising the relaxing muon asymmetry in terms of a phenomenologically moti-
vated stretched exponential, a solution to the size/order discrepancy was proposed. The parametri-
sation allows the change in the magnetic dynamics to be quantified and compared to literature
measurements. The B-site disorder causes the development of random fields and this model has
been successful in describing other relaxor properties. Here in PFN, it has been shown that the
‘bulk’ response observed in small samples is in agreement with the surface measurements of this
larger sample. This implies that the presence of a bulk structure, characterised by a slowing of
the muon relaxation, disrupts the long-range order causing it to be absent from the large sample.
This has been seen by neutron measurements and is confirmed here.
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Chapter 6

Mn-Modified Relaxor-PT Single Crystals

This chapter reports the investigation into the chemical valence of Mn in modified relaxor-
ferroelectric piezocrystals. This was done using the negative muon technique and the chapter
starts with a comprehensive examination of the muonic X-ray emission lines in several Mn
oxides - MnO, Mn2O3 and MnO2 - with each having a different valence on the Mn site. The
different spectra were compared to search for any differences which would suggest that the
technique is sensitive to this. This is followed by a study of the feasibility of using this method
in a sample of Mn:PIN-PMN-PT to study the dopant valence with the aim of providing insight
into the doping process and the behaviour of the Mn.

6.1 Chapter Introduction

Mn-modified relaxor-ferroelectric piezocrystals, i.e. Mn:PIN-PMN-PT, have shown great
promise for applications requiring high power ultrasound [1–3]. However, the mechanism by
which the Mn is doped into PIN-PMN-PT is not fully understood, and any segregation may af-
fect the performance of these crystals [4]. In order to fully exploit Mn:PIN-PMN-PT and other
doped materials, these effects should be understood. It is, therefore, desirable to study the dis-
tribution of Mn ions throughout the crystal. Another feature of interest is the valence state of
Mn in these piezocrystals which is difficult to determine non-destructively in bulk crystalline
samples.

Thus, this chapter aims to establish the feasibility of using negative muons (µ−) to determine
the valence of Mn in Mn:PIN-PMN-PT. Furthermore, as with PFN, by changing the momentum
of the muons, this study can be performed as a function of depth, providing a way to measure
any segregation of the Mn.
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6.2 Brief Review of Crystal Growth Methods

As segregation of components is a major issue in relaxor-PT single crystal, the growth process
will now be briefly reviewed. Various methods of crystal growth have been developed [5, 6],
but one of the most relevant to this thesis is the Bridgman method [7]. This has been used
extensively to grow single crystal piezoelectric materials [8–11].

The Bridgman method originally used a vertically mounted furnace which was heated to
above the melting point of the charge i.e. the source materials to be crystallised. The material
was then lowered out of the bottom of the furnace, causing a thermal gradient along the sam-
ple and inducing a gradual crystallisation along its height. This method was later modified by
Stockbarger to include two co-axial furnaces such that the sample was now lowered into a lower
temperature zone, with the high temperature zone still above the charge’s melting point [12].
This setup is illustrated in Figure 6.1 and is known as the modified-Bridgman method.

Figure 6.1: Schematic of a modified-Bridgman furnace set-up. Reprinted from S. Zhang et
al., “High performance ferroelectric relaxor-PbTiO3 single crystals: Status and perspective,” J.
Appl. Phys., vol. 111, p. 031 301, 3 2012, with the permission of AIP Publishing.

PMN-PT grown with the modified-Bridgman method was first reported in 1997, after pre-
vious techniques such as flux growth proved to have unsuitably slow growth rates [14–16].
Modified-Bridgman has now become the standard method for commercial manufacturing of
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relaxor-ferroelectric single crystals [13]. However, due to congruent melting, segregation is
present in the boule. This is most easily seen in the case of PMN-PT where the concentration
of the PT component varies along the crystal boule [17, 18]. This can lead to high sample-to-
sample variation and means that large samples are difficult to grow; both of which are a problem
for ultrasonic device applications [19]. Furthermore, this variation can lead to differing phases
in the boule, which means that some material has to be discarded. This is not cost effective and
so presents a barrier to commercialisation [20].

Alternative methods have been developed [21]; the most notable is the solid-state conver-
sion method where a small seed crystal is used to convert the grains in a dense polycrystalline
matrix after a long annealing period [22, 23]. However, this has proved difficult to replicate
and has gained no commercial acceptance. As such, no alternatives have yet replaced modified-
Bridgman in commercial manufacturing.

6.3 Relaxor-PT Single Crystals

The currently best performing piezoelectric materials in terms of large piezoelectric coefficients,
d, and large electromechanical coupling, k2, are the relaxor-PT single crystal class. Although
PMN had been reported to possess large dielectric permittivity, it retains an averagely cubic
structure down to low temperatures [24]. However, if doped with a small amount of PT, the
transition to a ferroelectric state can be increased to a useful temperature [25] and, therefore,
applications of relaxor-ferroelectrics use these mixed compositions.

Whereas attempts to grow single crystal PZT were unsuccessful, there are many systems that
have been grown as single crystals. These have been studied extensively since the 1990s [9, 20].
A comparison of the properties of each generation is included in Table 6.1 along with the refer-
ence of PZT. For the appropriate use case, relaxor-PT materials are far superior to PZT [26].

6.3.1 Development of Relaxor-PT Single Crystals

For convenience, the development of relaxor-PT single crystals is split into three generations [20]
and these are now reviewed in turn:

First Generation Relaxor-PT Single Crystals

The first generation consists of binary compounds, where the relaxor-ferroelectric component
is mixed with PT. These binary mixtures were first studied in the 1970s and 80s in ceramic
form [27]. Whilst pure PMN showed no piezoelectric behaviour at room temperature, it did
display a large electrostrictive coefficient [28], which was further improved upon the addition
of PT [29]. The phase diagram for the binary mixture Pb(Mg1/3Nb2/3)O3 - PbTiO3 (PMN-PT)
was mapped by the late 1980s and a MPB was identified at ≈ 30% PT [30]. Similar work was
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also carried out for Pb(Zn1/3Nb2/3)O3 - PbTiO3 (PZN-PT) in 1981, with the MPB being now
at ≈ 9% PT [31]. These phase diagrams are shown in Figure 6.2.

Table 6.1: Table comparing material properties for various relaxor-PT single crystal composi-
tions against PZT. (Data compiled from [9, 13, 20])

Material
Properties

εT
33 Tlim* EC d33 k33 tanδ Qm

[ε0] [◦C] [kV/cm] [pC/N] [%]
Ceramic

PZT4 1300 328 14.2 300 0.70 0.4 500
PZT8 1000 300 18.7 230 0.64 0.4 1000

Piezocrystal - Generation I
PMN-0.29PT 5400 96 2.3 1540 0.91 - 150
PMN-0.33PT 8200 70 2.8 2800 0.95 - 100
PZN-0.08PT 6000 95 3 2500 0.93 - -

Piezocrystal - Generation II
PIN-PMN-PT (MPB) 7241 96 5.5 2740 0.95 0.2 120

PIN-PMN-PT 4400 70 5 1510 0.92 0.2 180
PMN-PZ-PT 4850 144 4.5 1530 0.92 0.5 100

Piezocrystal - Generation III
Mn:PIN-PMN-PT 3700 119 6.0 1120 0.90 0.4 810
Mn:PMN-PZ-PT 3410 141 6.3 1140 0.92 0.2 1050

* Tlim is the upper phase transition temperature that limits the materials usage. For ceramic this corresponds to the Curie temperature TC but for the various piezocrystal materials,
this corresponds to another ferroelectric-ferroelectric phase transition such as TRT .

Figure 6.2: Phase diagram of PMN-PT (a) and PZN-PT (b). Curvature of the MPB
can clearly be seen in both diagrams. (a) Reprinted from S. W. Choi et al., “Mor-
photropic phase boundary in Pb(Mg1/3Nb2/3)O3-PbTiO3 system,” Mater. Lett., vol. 8,
no. 6, pp. 253–255, 1989, Copyright (1989), with permission from Elsevier. (b) Repro-
duced with permission from J. Kuwata et al., “Phase transitions in the Pb(Zn1/3Nb2/3)O3-
PbTiO3 system,” Ferroelectrics, vol. 37, no. 1, pp. 579–582, 1981.
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The promising electrostrictive and dielectric performance of these ceramics, combined with
the identification of a MPB, led to renewed interest in the materials which intensified when
Kuwata et al. reported PZN-PT single crystals with d33 > 1500 pm/V [32]. MPB composi-
tion PZN-PT ceramic had been hard to manufacture but it could readily be grown as a single
crystal. Furthermore, its large piezoelectric coupling was measured in crystals which were not
poled along the polar direction. Specifically, the crystals were measured to be in the rhombohe-
dral phase, which has polar direction along [111], but the best performing crystals were poled
along [001]. This highlights one of the main advantages of single crystal materials over poly-
crystalline: their ability to form domain engineered samples. This is where the macroscopic
polarisation direction differs from the spontaneous, microscopic, one as allowed by symmetry.
This is possible because of the pronounced crystal anisotropy, compared to ceramics [33]. A
detailed review of the development of Gen. I single crystal materials, with a focus on PMN-PT,
is given by Luo et al. [10].

Gen. I material has been reported to have a very large electromechanical coupling factor,
k33 ≈ 0.9, which far exceeds PZT, k33 ≈ 0.7. This has allowed it to be commercialised in medical
imaging [11, 19, 34]. The FOMs for many ultrasonic applications are reviewed by Zhang et al.;
in this case, the correct FOM is simply the electromechanical coupling factor. This ensures that
the medical imaging device will have high resolution and power efficiency as well as a broad
bandwidth [20]. Hence, the superior k of relaxor-PT single crystals makes them very applicable
in this case [35]. Furthermore, Gen. I’s low mechanical quality factor, Qm ≈ 100, aids the
broad bandwidth requirement. This is because, as stated in Section 2.4.8, Qm may be linked to
the sharpness of the resonance and antiresonance. A poor Qm produces broad resonance and
antiresonance features in the electrical impedance, and so give large bandwidths.

Despite these advantages, binary compositions have some drawbacks. Unlike in PZT, where
the MPB is largely temperature independent, as seen in Figure 2.3, PMN-PT and PZN-PT both
show a curved MPB, as can clearly been seen in Figure 6.2. The region beneath the MPB is now
thought to contain a monoclinic phase which likely contributes towards the high piezoelectric
performance here [36]. However, this curvature means that, for compositions near the MPB,
upon heating, they will encounter a ferroelectric-ferroelectric phase transition below the ‘Curie’
temperature. Commonly between rhombohedral and tetragonal phases, and referred to accord-
ingly as TRT, this temperature represents the upper temperature limit in many use cases as the
piezoelectric performance is unstable across this transition and device behaviour will suffer as
a result. Unfortunately, in MPB composition PMN-PT, TRT ≈ 80 - 100 ◦C [10] which severely
reduces the use window of Gen. I materials, especially in high-power and SONAR applications.
This is compounded by Gen. I material’s low Qm which indicates that it has high losses and will
suffer from self-heating.



CHAPTER 6. Mn-MODIFIED RELAXOR-PT SINGLE CRYSTALS 158

Second Generation Relaxor-PT Single Crystals

Second generation materials are ternary mixtures, where a binary Gen. I crystal is doped with
a third relaxor. An example is Pb(In1/2Nb1/2)O3 - Pb(Mg1/3Nb2/3)O3 - PbTiO3 (PIN-PMN-PT)
where In is doped into PMN-PT by the addition of the relaxor component Pb(In1/2Nb1/2)O3

(PIN). PIN-PMN-PT was first reported in the early 2000s and shares much of the phenomenol-
ogy with Gen. I materials, such as the presence of a MPB which results in very high dielectric
and piezoelectric coefficients [37]. Furthermore, it shows great promise for improving the ap-
plicability of relaxor-PT materials for two main reasons [38–40]:

Firstly, TRT is raised to ≈ 115 - 135 ◦C [8]. This gives a much larger use window for
high-power applications. Moreover, this gain does not come at the expense of any loss in the
piezoelectric coefficient or electromechanical coupling factor [8], as shown in table 6.1.

Secondly, PIN-PMN-PT also shows a higher coercive field, on the order of 4.5 - 5.6 kV/cm,
a two to three fold increase over Gen. I PMN-PT [8]. This greater stability diminishes the risk
of an electric field induced transition, and allows the material to be driven with larger voltages -
key in high-power ultrasound.

However, as shown in Table 6.1, PIN-PMN-PT still displays relatively low Qm which, re-
gardless of the previously mentioned improvements, limits its use in high-power and SONAR
applications, where Qm is linked to both the device electro-acoustic efficiency, FOM: k2Qm, and
the device surface’s vibration velocity amplitude, FOM: dQm [20].

Third Generation Relaxor-PT Single Crystals and Beyond

The continued low Qm in Gen. II materials has motivated further experimentation with dop-
ing which had been found to be a good mechanism to tune material properties in PZT [41, 42].
Hence, doped ternary compositions make up the third generation of relaxor-ferroelectric mate-
rials.

The ‘classic’ Gen. III material is Mn-modified PIN-PMN-PT, written as Mn:PIN-PMN-PT.
The addition of Mn has been reported to increase Qm by four to five times compared to Gens.
I and II [1, 43] and the same effect has been seen in Mn-modified PMN-PZ-PT [3]. Again,
this increase comes almost ‘free’ as the electromechanical coupling and piezoelectric constants
are not significantly impacted. Indeed, these materials defy the inverse trend between k33 and
Qm seen in PZT as illustrated in Figure 6.3 [9]. This means that materials, such as Mn:PIN-
PMN-PT, may be produced with simultaneously high k33 and Qm, hence, greatly increasing the
suitability for high-power and underwater SONAR devices [20].

Whilst the positive effects of Mn modification are clear, the reason behind this is not well-
understood. A proposed mechanism by which the Mn increases Qm is through the formation
of defect dipoles which, by creating internal bias fields, hinder the extrinsic loss mechanism
of domain wall movement [44]. However, this applies only if the Mn substitutes as Mn2+ on
the perovskite B-site [45], replacing a more positively charged ion e.g. Ti4+ or Nb5+. As the
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Figure 6.3: The inverse relationship between k33 and Qm seen in PZT. This trend is not seen in
Mn-modified relaxor-PT single crystals, suggesting as possible materials with simultaneously
high k and Qm. Reproduced from S. Zhang et al., “Relaxor-PT single crystals: Observations
and developments,” IEEE Trans. Ultrason. Ferroelectr. Freq. Contr., vol. 57, no. 10, pp. 2138–
2146, 2010. ©2010 IEEE

valence and dopant site of the Mn have been reported to be variable [46, 47], a more general
mechanism may be present. Furthermore, it is believed that material processing conditions may
also impact this variability [48].

Another doped composition that has attracted recent attention is Sm doped PMN-PT [49].
This material has shown huge piezoelectric coefficients with d33 in the range 3400 - 4100 pC/N,
and much higher dielectric permittivity. However, it also shows an increase in dielectric losses
and much lower TRT ≈ 60 ◦C [50], both of which need to be addressed for it to have any real
impact.

6.3.2 Piezoelectric Mechanisms

This section briefly reviews some proposed mechanisms to account for the large piezoelectric
behaviour in relaxor-PT single crystals.

The first is domain engineering: where multiple symmetry-related domains are combined to
create a state with a different macroscopic symmetry [51]. This is typically achieved by poling
the crystal along a non-polar axis which, so as to minimise the angle to this poling direction,
favours certain symmetry-related domains. The different configurations are reviewed by Zhang
et al. [20]. This effect was first reported by Kuwata et al. when they observed higher piezo-
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electric coupling in crystals which were not poled along the polar direction [32]. The domains,
in turn, induce other phenomena such as the domain wall motion, which has been implicated
in the high performance of these materials. This is one of the dominant extrinsic mechanisms
but can also lead to increased losses [52]. Furthermore, domain engineering enables, through
the creation of new macroscopic symmetries, exploitation of novel resonance modes such as the
face-shear, d36, and length-thickness extensional, d32, modes [20].

The impact of the MPB and its link to high material property values has also been studied.
Following its discovery in PZT [53], monoclinic phases were also soon reported in relaxor-
ferroelectrics such as PMN-PT [54] and PZN-PT [55]. Near the MPB, the free energies of the
different phases are naturally similar, and so the appearance of the monoclinic phase permits
a new rotation path between the tetragonal and rhombohedral phases which classically sit on
either side of the MPB [56]. This polarisation rotation was shown by Fu and Cohen to be a
viable mechanism behind the ‘ultrahigh’ piezoelectric responses in relaxor-ferroelectrics [57].
This is a so-called ‘intrinsic’ mechanism and is believed to be dominant in multi-domain relaxor-
PT single crystals and behind their strong uniaxial piezoelectric activity, i.e. d33 [13]. However,
as with domain wall motion, easy polarisation rotation has also been linked to higher losses due
to rotationally-induced torques [58].

Lastly, there is the contribution of PNRs. These have been linked to the large dielectric and
piezoelectric responses shown in relaxor-PT materials and have been implicated in flattening the
free energy profile near the MPB, which facilitates the polarisation rotation mechanism, through
phase-field simulations [59]. It has been suggested by Li et al. that this is corroborated by mea-
surements, showing that the PNR contribution can be frozen out at cryogenic temperatures [60].
This is illustrated in Figure 6.4, where the large jump is seen in relaxor-PT materials only. The
authors attribute this to the unlocking of the dynamic nature of the PNRs as it is unable to be
accounted for by any long range phenomena.

Figure 6.4: Schematic plot comparing the temperature dependence of the dielectric and piezo-
electric properties in normal and relaxor-PT ferroelectric crystals. Figure reproduced under the
terms of the Creative Commons CC BY license from F. Li et al., “The origin of ultrahigh piezo-
electricity in relaxor-ferroelectric solid solution crystals,” Nat. Commun, vol. 7, p. 13 807, 2016.
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To the contrary, Shepley et al. argue that this contribution is a result of domain wall motion
and not PNRs [61]. They report that the large dielectric relaxation seen in Figure 6.4 is present
only when the sample is poled and is more prominent in multi-domain samples. They argue that,
if this contribution were purely PNR based, as suggested by Li et al., then it should be universally
present. Furthermore, they cast doubt upon the freezing nature of this behavioural ‘transition’
and conclude that no current mechanism can fully account for the observed behaviour. This
dilemma leaves many unanswered questions as to what is behind the low temperature behaviour
of the materials, providing motivations for further cryogenic studies.

If the large piezoelectric effect is due to domain wall motion, it is unclear how the pinning
of these domain walls in Mn:PIN-PMN-PT, responsible for their simultaneous large Qm, is
consistent. This provides further motivation for studying the Mn content and, as such, this
chapter will discuss a feasibility study for determining the Mn content and valence using the
negative muon technique.

6.4 Mn Valence Study

Given that the chemistry of Mn:PIN-PMN-PT is complicated, the first step was to characterise
the change in muonic emission between samples with different, known Mn oxidation states.
Whilst the use of µ− implantation as a means of chemical analysis in relaxor-ferroelectrics has
been established both in the literature [62] and here in Chapter 5, the aim of the present study
was to explore whether this technique can be used to determine valence states of Mn. Given that
the exact mechanisms by which the Mn increases Qm are still not entirely understood, a method
to non-destructively determine the Mn valence in a sample would be invaluable.

Previous theoretical and experimental studies have provided evidence that the muon capture
may be dependent on valence. The Fermi-Teller ‘Z law’, postulated in 1947, states that the
stopping cross-section for µ−s is proportional to the number of electrons [63]. This is based on
the assumption that the primary mechanism for slowing the µ−s is through electron collisions.
Further analysis confirmed that the cross-section is sensitive to the electronic structure of the
atom [64]. The Z law has since been refined, with many muon capture models being developed
subsequently [65, 66], culminating in the more general muon-cascade model [67].

Recently, the µ− technique has been used to investigate local chemistry. Previously this
was achieved using methods such as X-ray absorption spectroscopy (XAS) and X-ray emission
spectroscopy (XES) [68] but these are not suited to low atomic number (Z) materials due to the
high rates of soft photon reabsorption. The larger mass of the µ−, can overcome this problem
with muonic X-rays, as these have higher energy, and can pass through condensed matter with
little reabsorption.

Muonic X-rays have been shown to be sensitive to the density of both gases [69] and carbon-
based solid-state materials [70] but, only recently, has evidence been presented to show their
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sensitivity to electronic structure solidifying the link with the Fermi-Teller and muon-cascade
models [71]. The intensities of muonic X-rays from Fe oxides and the mixed-hydride system
Ca(BH4)2-Mg2NiH4 were used to determine the electronic structure and a variation was found
in the ratio of doublet Kα emission lines (2p → 1s) of FeO, Fe3O4 and Fe2O3 which decreased
with Fe oxidation number, and a similar shift was observed in iron halides.

This evidence suggests that the µ− technique should be able to distinguish between the
different valences of Mn. In order to verify this, a series of measurements on MnO - Mn(II);
Mn2O3 - Mn(III); and MnO2 - Mn(IV) were performed to test whether there is a measurable
change in the muonic X-ray emission either through a change in their intensity or energy.

6.4.1 Sample Preparation

Powders of MnO, Mn2O3 and MnO2 (Sigma-Aldrich, Merck KGaA, Darmstadt, Germany) were
ground and pressed into pellets for the beamline experiment. These pellets were 32 mm in
diameter and 10 mm in thickness with their weights as follows: MnO - 10.42 g; Mn2O3 -
10.71 g; and MnO2 - 40.33 g. The three oxides have different crystal structures with MnO
adopting a rock salt lattice, Mn2O3 a bixbyite structure, and MnO2 a rutile structure. However,
in the case of the powders used here, these structures have not been independently confirmed
and were assumed based on the quoted compositions. As with PFN, the pellets were wrapped in
an Al foil packet, illustrated in Figure 6.5, which was suspended in the µ− beam.

The larger weight of the MnO2 pellet was aimed at increasing the muon count rate. However,
this was juxtaposed with issues with the detector efficiency. In order to ensure that X-ray detec-
tors are not saturated, care must be taken to reduce the number of photons detected to a suitable
level. This arises because of the finite reaction time of the detector and so saturation may result
in a so-called ‘double peak’ where a false splitting is observed. Though this can be overcome by
using a larger number of detectors, each covering a smaller solid angle, only four detectors were
used in the measurements described here, and a detuning of the µ− beam was necessary. The
µ− beam is focused and steered through the beam guide by a series of superconducting magnets
as illustrated in Figure 3.3(a). To reduce the µ− flux slightly, the first two focussing quadrupole
magnets were set to 90% efficiency but this was reduced to 85% for the larger pellet.

6.4.2 Emission Lines

The theory of muonic atoms is well-characterised and so both theoretical and experimental
atomic transition levels are extensively documented both in the literature [72] and in other re-
sources such as the Mesoroentgen Spectra Catalogue website [73], the latter compiled over many
years by scientists using instruments at both the PSI (Villigen, Switzerland) and MuSIC (Osaka,
Japan) muon sources. Hence, the expected emission lines for Mn and O are listed in Tables 6.2
and 6.3.
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Figure 6.5: A pressed pellet of MnO2 shown (a) before and (b) after wrapping in Al foil.

Table 6.2: Theoretical energies of the muonic
emission lines of Mn [72, 73].

Atomic Transition Energy (keV)

K

2p → 1s 1170.6, 1174.2

3p → 1s 1419.3

4p → 1s 1505.3

L
3d → 2p 245.5, 248.8

4d → 2p 331.2, 334.7

M

4f → 3d 85.1

5f → 3d 125

6f → 3d 146.6

7f → 3d 159.1

8f → 3d 168

9f → 3d 173.6

Table 6.3: Theoretical energies of the muonic
emission lines of O [72, 73].

Atomic Transition Energy (keV)

K

2p → 1s 133.5

3p → 1s 158.4

4p → 1s 167.1

5p → 1s 171.1

6p → 1s 173.3
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6.4.3 Results

This section presents the emission spectra from the three oxides. All samples were measured at
room temperature on Port 4 of the RIKEN-RAL beamline at ISIS. The counting time was ap-
proximately 24 hours per sample. A µ− momentum of 30 MeV/c was used to ensure sufficient
penetration into the samples. Two regions of interest are considered here: 80 keV - 350 keV,
encompassing the M and L lines of Mn and the K lines of O, and 1100 keV - 1550 keV, encom-
passing the K lines of Mn.

Also observed in the spectra were several spurious peaks that could not be identified as
resulting from a muonic transition. However, once the muon has completed its cascade, it can
be captured into the nucleus in a process analogous to electron capture. This results in an excited
nucleus of reduced Z, which undergoes gamma decay. In this case, the µ− is captured into the
Mn nucleus (Z = 25), producing an excited isotope of Cr (Z = 24). The resulting gamma emission
is of sufficient energy to be detected in this experiment. This effect was observed in all oxides
and has been labelled accordingly in Figures 6.9, 6.12 and 6.15.

Data Analysis

As detailed in Chapter 3, the four Ge based X-ray detectors were split into two pairs, low and
high energy, with detection ranges of 3 keV - 1 MeV and 3 keV - 8 MeV respectively. In
this experiment, due to the relatively small samples, all four detectors could be used, and so,
the counts from the upstream and downstream detectors were added in both energy ranges.
Errors in these measurements were estimated as the square root of the counts, according to the
Poisson statistics which apply to counting experiments [74, 75]. These errors were appropriately
propagated through the analysis [76].

A background was fitted and subtracted from the raw count data. Inclusion of a background
term accounts for phenomena such as the low energy profile of the photoelectric absorption
and inelastic Compton scattering [71]. Assuming, over the energy regions of interest, that this
background is linear, a least squares fit was performed to the sections of the spectra without
discernable peaks. In the low energy region of interest, a piecewise fit of two linear polynomials
was required due to the more pronounced curvature of the measured background over this larger
range. This is illustrated in Figure 6.6, with an error in this background was estimated from the
95% confidence interval for the fitting procedure.

In order to fit the observed emission lines, a Gaussian profile was assumed. This is justified
due to the broadening being caused by the experimental energy resolution, limited by the detec-
tor. This allowed an amplitude and energy to be estimated for each line and these are detailed in
the subsections that follow.
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Figure 6.6: The fitted background (red) to the two regions of interest for the three samples.
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MnO - Mn(II)

The first powder to be studied was MnO. As oxygen has an oxidation number of 2-, the one-
to-one stoichiometry in MnO ensures that Mn also has a valence of 2. Sections of the emission
spectra are shown in Figures 6.7 - 6.9. All of the expected Mn and O lines were identified in
accordance with Tables 6.2 and 6.3. The fitted Mn values for both peak amplitude and energy
are shown in Table 6.4. Good agreement is shown with the expected emission lines.

Table 6.4: Fitted values for the measured muonic emission lines of Mn in MnO.

Atomic Transition Fitted Amplitude Fitted Energy (keV)

K

2p → 1s
1385 ± 172 1168.1 ± 0.2

2273 ± 132 1172.0 ± 0.2

3p → 1s 305 ± 39 1417.2 ± 0.3

4p → 1s 93 ± 35 1503 ± 1.2

L

3d → 2p
2744 ± 414 245.3 ± 0.1

1552 ± 435 248.7 ± 0.2

4d → 2p
301 ± 398 331 ± 1

182 ± 423 334 ± 2

M

4f → 3d 8335 ± 218 85.57 ± 0.01

5f → 3d 1844 ± 196 125.16 ± 0.07

6f → 3d 697 ± 200 146.6 ± 0.2

7f → 3d 326 ± 455 159 ± 3

8f → 3d 127 ± 1247 167 ± 15

9f → 3d 119 ± 1792 173 ±36
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Figure 6.7: X-ray spectra resulting from µ− implantation into a powder sample of MnO, show-
ing the M lines of Mn (nf → 3d) and the K lines of O (np → 1s). Errors were estimated using
Poisson/counting statistics. A linear background has been subtracted.
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Figure 6.8: X-ray spectra resulting from µ− implantation into a powder sample of MnO, show-
ing the L lines of Mn (nd → 2p). The absence of a line at ≈ 346 keV indicates that the µ− were
correctly stopping in the sample rather than in the Al foil coating. Errors were estimated using
Poisson/counting statistics. A linear background has been subtracted.

Figure 6.9: X-ray spectra resulting from µ− implantation into a powder sample of MnO, show-
ing the K lines of Mn (np → 1s). Also labelled are the γ emission signals from 54Cr/53Cr formed
as a product of muon capture by the Mn nucleus. Errors were estimated using Poisson/counting
statistics. A linear background has been subtracted.
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Mn2O3 - Mn(III)

Mn2O3 was studied next with sections of the emission spectra shown in Figures 6.10 - 6.12. In
this compound, Mn has a valence of 3. Again, all expected Mn and O lines were identified and
fitted Mn values are given in Table 6.5. Good agreement is shown with Tables 6.2 and 6.3.

Table 6.5: Fitted values for the measured muonic emission lines of Mn in Mn2O3.

Atomic Transition Fitted Amplitude Fitted Energy (keV)

K

2p → 1s
1570 ± 177 1168.7 ± 0.2

2422 ± 145 1172.9 ± 0.2

3p → 1s 309 ± 43 1418 ± 0.4

4p → 1s 104 ± 38 1504 ± 1.4

L

3d → 2p
2737 ± 467 245.5 ± 0.1

1500 ± 478 248.8 ± 0.2

4d → 2p
313 ± 447 331 ± 1

179 ± 453 334 ± 2

M

4f → 3d 8370 ± 236 85.60 ± 0.02

5f → 3d 1906 ± 212 125.22 ± 0.07

6f → 3d 706 ± 219 146.7 ± 0.2

7f → 3d 384 ± 735 159 ± 5

8f → 3d 165 ± 3111 167 ± 25

9f → 3d 225 ± 17462 173 ± 6
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Figure 6.10: X-ray spectra resulting from µ− implantation into a powder sample of Mn2O3,
showing the M lines of Mn (nf → 3d) and the K lines of O (np → 1s). Errors were estimated
using Poisson/counting statistics. A linear background has been subtracted.
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Figure 6.11: X-ray spectra resulting from µ− implantation into a powder sample of Mn2O3,
showing the L lines of Mn (nd → 2p). The absence of a line at ≈ 346 keV indicates that the µ−

were correctly stopping in the sample rather than in the Al foil coating. Errors were estimated
using Poisson/counting statistics. A linear background has been subtracted.

Figure 6.12: X-ray spectra resulting from µ− implantation into a powder sample of Mn2O3,
showing the K lines of Mn (np → 1s). Also labelled are the γ emission signals from 54Cr/53Cr
formed as a product of muon capture by the Mn nucleus. Errors were estimated using Pois-
son/counting statistics. A linear background has been subtracted.
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MnO2 - Mn(IV)

Finally, MnO2 (Mn valence of 4) completed the study. Relevant sections of the emission spectra
are shown in Figures 6.13 - 6.15 and the Mn and O lines were identified with fitted Mn values
given in Table 6.5. Again, good agreement is shown to the theoretical lines.

Table 6.6: Fitted values for the measured muonic emission lines of Mn in MnO2.

Atomic Transition Fitted Amplitude Fitted Energy (keV)

K

2p → 1s
1235 ± 127 1168.8 ± 0.2

1872 ± 105 1172.8 ± 0.1

3p → 1s 268 ± 37 1417.9 ± 0.4

4p → 1s 61 ± 24 1504 ± 2.5

L

3d → 2p
1907 ± 349 245.4 ± 0.1

1058 ± 356 248.7 ± 0.2

4d → 2p
213 ± 336 331 ± 1

132 ± 345 334 ± 2

M

4f → 3d 5317 ± 187 85.57 ± 0.02

5f → 3d 1345 ± 157 125.21 ± 0.08

6f → 3d 547 ± 168 146.6 ± 0.2

7f → 3d 312 ± 468 159 ± 4

8f → 3d 218.6 ± 2508 167 ± 7

9f → 3d 224 ± 1837 173 ± 1
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Figure 6.13: X-ray spectra resulting from µ− implantation into a powder sample of MnO2,
showing the M lines of Mn (nf → 3d) and the K lines of O (np → 1s). Errors were estimated
using Poisson/counting statistics. A linear background has been subtracted.



CHAPTER 6. Mn-MODIFIED RELAXOR-PT SINGLE CRYSTALS 174

Figure 6.14: X-ray spectra resulting from µ− implantation into a powder sample of MnO2,
showing the L lines of Mn (nd → 2p). The absence of a line at ≈ 346 keV indicates that the µ−

were correctly stopping in the sample rather than in the Al foil coating. Errors were estimated
using Poisson/counting statistics. A linear background has been subtracted.

Figure 6.15: X-ray spectra resulting from µ− implantation into a powder sample of MnO2,
showing the K lines of Mn (np → 1s). Also labelled are the γ emission signals from 54Cr/53Cr
formed as a product of muon capture by the Mn nucleus. Errors were estimated using Pois-
son/counting statistics. A linear background has been subtracted.
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6.4.4 Discussion

According to Fermi/Teller and others, the muon capture process should be dependent on the
number of electrons and the emission spectra from the different Mn oxides should thus be dif-
ferent. Furthermore, due to the differing electronic structures, it is logical to assume that the
change in valence should affect both emission line energy and intensity.

The lowest K lines are usually easily identified and may be expected to show the largest
change, as they are both high in energy and of sufficient intensity. These are typically denoted
as Kα1 and Kα2 corresponding to the transitions 2p3/2 → 1s1/2 and 2p1/2 → 1s1/2 respectively,
with Kα1 being the higher in energy. The subscript refers to the angular momentum of the state,
with the splitting being induced by fine structure corrections such as spin-orbit coupling. These
two peaks are compared using the fitted data. Whilst the splitting is not strong enough nor the
instrument of sufficient resolution to fully, separate Kα1 and Kα2, the resulting peak shape is
well-fitted with two constituent Gaussian profiles as shown in Figures 6.9, 6.12 and 6.15.

Figure 6.16 shows the combined Kα1/Kα2 2p → 1s peak for Mn, in arbitrary units, for all
three oxides. A shift can clearly be seen between the MnO peak, shown in black, and the other
two. In order to discount any systematic shift, the combined Kα1/Kα2 2p → 1s peak for O, in
arbitrary units, is also compared in Figure 6.17 and no such effect is observed. The fitted peak
energies are compared in Table 6.7.

Table 6.7: Comparison of the fitted energies of the muonic 2p → 1s muonic emission line for
Mn and O in various Mn oxides.

Element Atomic Transition MnO Mn2O3 MnO2

Mn 2p → 1s
Kα1 1172.0 ± 0.2 1172.9 ± 0.2 1172.8 ± 0.1

Kα2 1168.1 ± 0.2 1168.7 ± 0.2 1168.8 ± 0.2

O 2p → 1s Kα 133.25 ± 0.2 133.30 ± 0.2 133.26 ± 0.2

The ratio of the Mn Kα1 and Kα2 peaks was calculated and is plotted against valence in
Figure 6.18(a). Previous studies had measured a systematic decrease in this ratio against va-
lence [71] and a similar pattern is observed here. However, it should be noted that the change is
within the error bar and so further measurements may required to verify this trend.

This previous study also compared the ratio of the first L lines [71]. Unable to observe the
splitting of Lα , they compared the combined Lα to Lβ . However, in the case of Mn oxides
presented here, this splitting is clear and the two peaks of Lα1 and Lα2 are discernable. Their
ratio is plotted in Figure 6.18(b) but no real trend was observed. Again, the error bars are so
large that further measurements are desirable to verify this result.
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Figure 6.16: Comparison of the muonic Mn 2p → 1s Kα1/Kα2 emission line for various Mn
oxides. Errors were estimated using Poisson/counting statistics.

Figure 6.17: Comparison of the muonic O 2p → 1s Kα emission line for various Mn oxides.
Errors were estimated using Poisson/counting statistics.
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Figure 6.18: Comparison of the ratios of the Mn muonic emission lines (a) Kα1 and Kα2 and
(b) Lα1 and Lα2. Straight lines are included as a guide to the eye.

6.5 Extension to Mn-Modified Single Crystal

With the distinction between Mn oxidation states observable in Mn oxides, the next step was
to test the feasibility of applying this method to a single crystal sample and see whether the
marginal changes are observable with the ultimate goal being a non-destructive way to determine
valence of Mn.

6.5.1 Sample Preparation

A disk of Mn:PIN-PMN-PT crystal (Innovia Materials Co., Ltd., Shanghai, China), with a nom-
inal doping level of 5%, was cut straight from the boule with a diameter of ≈ 6 cm. It is shown
in Figure 6.19. This disk was not a single crystal, having been grown with multiple orientations.
As can be seen in Figure 6.19, a large, single grain, portion of the wafer is orientated along the
[011] direction. However, the rest of the sample is visibly split into other domains. However,
this multi-component structure is irrelevant because the muon is a local probe and so is sensitive
only to the implantation site.

As with the Mn oxide powders, the wafer was wrapped in Al foil, as seen in Figure 6.19, and
placed in the muon beamline.
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Figure 6.19: Crystal sample of Mn:PIN-PMN-PT (a) before and (b) after wrapping in Al foil.
The multi-grain structure of the sample is clearly visible.

6.5.2 Emission Lines

The study focused on two regions of the emission spectra - the range of K lines, 900 keV -
1500 keV, and of L lines, 225 keV - 350 keV, of Mn. As only a small quantity of Mn is added
to the crystal, it should be expected that the Mn lines are very weak. This is further complicated
by the large quantity of other elements in the crystal. Emission lines of other element in these
two regions are given in Table 6.8.

6.5.3 Results and Discussion

The sample was again measured at room temperature on Port 4, RIKEN-RAL, ISIS. However,
unlike the powder experiment, two µ− momenta were tested here, 30 MeV/c and 40 MeV/c.
This was to ascertain any changes with depth as the issue of Mn segregation is well-known [4, 48].
Due to beam time constraints, the counting time was only approximately 12 hours per sample.
Due to the anticipated weakness of the Mn lines, the data analysis has been concentrated in the
energy ranges containing the K and L Mn lines as these were observed to be the strongest in the
powder experiment.
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Table 6.8: Theoretical energies of the muonic emission lines of Mg, Nb, In, Pb and O that occur
in the ranges of K and L lines of Mn [72, 73].

Element Atomic Transition Energy (keV)

Mg K 2p → 1s 296.5

Nb M 4f → 3d 231.4, 238.3

In
L 3d → 2p 941.9, 947.6, 982.9

M 4f → 3d 331.3, 335.6

Pb
M

4f → 3d 936.7, 970.7

5f → 3d 1365.0, 1403.8

O 6h → 5g 233.7, 235

The data analysis method was the same as for the powder samples; the outputs of same-
energy detectors were summed and a linear background was fitted. Figures 6.20 - 6.23 show
the emission spectra in the two regions of interest for both muon momenta with Figures 6.20
and 6.21 at 30 MeV/c and Figures 6.22 and 6.23 at 40 MeV/c.

Figure 6.20: X-ray spectra resulting from µ− implantation into a crystal sample of Mn:PIN-
PMN-PT for a muon momentum of 30 MeV/c, showing the energy range in which the K lines
of Mn, np → 1s, should be present. However, no Mn lines were observed. The fit (red) shows
the Pb lines. Errors were estimated using Poisson/counting statistics. A linear background has
been subtracted.
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Figure 6.21: X-ray spectra resulting from µ− implantation into a crystal sample of Mn:PIN-
PMN-PT for a muon momentum of 40 MeV/c, showing the energy range in which the K lines
of Mn, np → 1s, should be present. However, no Mn lines were observed. The fit (red) shows
the Pb lines. Errors were estimated using Poisson/counting statistics. A linear background has
been subtracted.

Figure 6.22: X-ray spectra resulting from µ− implantation into a crystal sample of Mn:PIN-
PMN-PT for a muon momentum of 30 MeV/c, showing the energy range in which the L lines of
Mn, nd → 2p, should be present. However, no Mn lines were observed. The fit (red) shows
the Pb, Nb and In lines. Errors were estimated using Poisson/counting statistics. A linear
background has been subtracted.
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Figure 6.23: X-ray spectra resulting from µ− implantation into a crystal sample of Mn:PIN-
PMN-PT for a muon momentum of 40 MeV/c, showing the energy range in which the L lines of
Mn, nd → 2p, should be present. However, no Mn lines were observed. The fit (red) shows
the Pb, Nb and In lines. Errors were estimated using Poisson/counting statistics. A linear
background has been subtracted.

The clearest identified lines result from Pb transitions. This is expected as Pb is the most
abundant element in the sample. A fit of the Pb lines is shown in red in Figures 6.20 - 6.21;
the fit in Figures 6.22 - 6.23 also incorporates the Nb and In lines. However, it appears that
this fit alone cannot describe the observed counting pattern, e.g. as seen for the M Pb lines at
936.7/970.7 keV. It should be noted, with reference to Table 6.8, that these transitions overlap
with the In 3d → 2p triplet, and so, this may be assumed to account for any discrepancies. Other
In lines were identified, i.e. the doublet at 331.3/335.6 keV, but these were also quite weak.
Whilst they result from a higher energy transition then those at ≈ 930/970 keV, and may thus be
assumed to be naturally softer, this is a good indication that the small discrepancy in the Pb lines
may be attributed to the overlap of the In lines. Additionally, the In doublet at 331.3/335.6 keV
completely obscures the L Mn doublet, with energies of 331.2/334.7 keV. Hence, this energy
range cannot be used to analyse Mn transitions.

A number of lines in Figures 6.20 - 6.23 remain unidentified. These are likely from another
reaction present in the sample space. A good candidate for this is gamma decay resulting from
muon capture, as observed in the powder experiment. Whilst most of these lines are weak, the
peak at ≈ 265 keV warrants attention for its relative strength. This has not been linked to any
specific decay or transition, but a similar, yet still unidentified line, appears in the Pb spectra
measured by the Mesoroentgen Spectra Catalogue website [73]. It is suggested that the line in
the spectra measured here arises through the same, unidentified, mechanism.
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Mn Content

When considering Figures 6.20 - 6.23, no Mn lines are discernible, within error, above the
background. Some possible reasons for this are now discussed.

First, the Mn content is very low; the manufacturer-specified dopant level in the crystal is
5% Mn. However, even at ‘5%’, some evidence of the Mn should be seen. Given that no lines
were observed, this might point to the Mn content being lower than specified. PIN-PMN-PT
undergoes a colour change when Mn is added, changing from yellow to black. Given that the
sample shown in Figure 6.19 is black, there is certainly a non-zero amount of Mn added. This
question requires further study, possibly through techniques such as X-ray fluorescence (XRF).

Another, somewhat linked, point is that the spectra of Mn:PIN-PMN-PT is very crowded.
This was touched on when discussing the Pb peaks at ≈ 930/970 keV. Tables 6.2 and 6.8 show
many emission lines which are close in energy and, due to experimental broadening, will sub-
sequently overlap in the measured spectra. This can make identification of individual lines
difficult. Whilst some Mn lines are masked by others, thankfully, the Kα and Lα lines are
unobscured and so the lack of lines can be analysed properly.

This leads on to the last point for discussion: instrument details such as resolution, detector
setup and counting time can severely impact the data. A higher X-ray count can produce a much
clearer spectra. This would also proportionately reduce the error, given by the square root of
counts. This would allow time for more muon implantation events, which would increase the
likelihood that a significant number of muons land on the, rare, Mn sites. A simple way to
increase the count is to increase the experiment time but this can be restricted by beam time
requirements, as was the case here.

However, if the counting rate, i.e. events recorded per second, could be increased, this would
serve the same end. A higher counting rate may be achieved in two ways: The first would be to
increase the muon flux. However, due to the momentum tuning apparatus and the need for decay
muons, the RIKEN-RAL facility can only support one instrument at a time when being used in
µ− mode. This means that Port 4 already receives the full double pulse of muons. Furthermore,
given that the quantity of muons had to be reduced in this experiment to avoid saturating the
detectors, any increase in flux would most likely not be usable with the current setup. The other
way to improve the counting rate, is to improve the detector setup. One weakness of the current
setup is that only four X-ray detectors are used, leaving a lot of solid angle uncovered. By
increasing not only the number, but also the spread of detectors, more X-rays could be counted
in the same time.

Another method that could be used to improve data analysis is the inclusion of better peak
detection algorithms, possible including machine learning. Here, the data were analysed using
bespoke MATLAB scripts and simple Gaussian fits were made.
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However, whilst it is possible that a more sophisticated analysis routine might improve the pro-
cess and allow the Mn peaks to be identified, the present spectra were simply too noisy. In all
cases, the background subtracted counts in the energy ranges of the Mn lines was zero to within

experimental error.

6.6 Chapter Conclusions

In conclusion, powder samples of three Mn oxides and a multi-grain crystal of Mn:PIN-PMN-
PT were studied using the negative muon technique. The aim was to study the valence of Mn
in a non-destructive way with possible future application in characterising relaxor-ferroelectric
single crystals. Being the strongest lines, the Kα muonic X-ray emission lines were investi-
gated and a difference was seen with a shift in energy in MnO. The ratio of the constituent
peaks in the Kα doublet was also calculated against depth and a decrease was observed against
valence in agreement with literature [71]. However, the change is technically within error but
still merits further study as, whilst the technique might be sensitive to oxidation states, better
instrumentation should be able to verify this.

The feasibility of using this technique to study the Mn distribution in Mn:PIN-PMN-PT was
also considered and, without significant detector upgrades, was also found to be impractical.
None of the Mn emission lines could be identified in the measured spectra, let alone any of the
small effects observed from the powder experiments.

Strategies to improve the data collection rate and analysis were discussed. It is argued that
the primary method of improvement is to increase the X-ray detector coverage by the develop-
ment of a new instrument setup. This will allow further study of this topic and potential future
experiments are outline in Section 8.2.1.
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Chapter 7

Energy Density

In Chapter 6, various comparative FOMs were noted for piezocrystals. However, these did
not provide a means of fundamental material comparison, with the use of k being particularly
concerning. This chapter, therefore, develops a method to quantify, in a meaningful way, the
energy density of piezoelectric material in order to provide a universal and comparable metric,
thus allowing raw material performance to be benchmarked.

First, the concept of energy density in a piezoelectric material is reviewed, with the exam-
ple of the length extensional bar used for illustration. This is followed by the derivation of a
generalised electromechanical coupling factor which is verified in silico and applied to two test
cases - comparison of relaxor-PT single crystal materials with piezoceramic standards and the
potential of Pb-free materials.

7.1 Chapter Introduction

The motivation for studying Gen. III relaxor-PT single crystals is their superior piezoelectric
performance. However, there is a conflation between a material’s performance and a specific
use case in any FOM by design. Typically, comparisons are done using parameters such as
piezoelectric charge constants, d, electromechanical coupling factors, k2, and the effective Curie
temperature, TC. With the new vibrational modes unlocked by Pb-based relaxor-ferroelectric
single crystal materials, powered by different crystal symmetries, a more generalised measure
is sought which can determine the piezoelectric performance of a material based purely on its
material properties, i.e. the EPD matrix.

Furthermore, due to safety concerns over the continued use of Pb in electrical equipment [1],
Pb-free piezoelectric materials are also a subject of interest, though still to be fully commer-
cialised [2]. Similarly, a generalised metric would enable the progress of Pb-free material to be
tracked away from any single application.

In both cases, comparison between different materials can be difficult and are usually re-
stricted to specific use cases. For example, underwater SONAR and high power ultrasonic
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devices require simultaneous high d, k2
33 and mechanical quality factor, Qm, to ensure good

electro-acoustic efficiency and large vibration velocity at the transducer’s surface. This contrasts
with the requirement for medical imaging devices which have no restrictions on Qm; instead the
focus is on high k2 to ensure a broad bandwidth and good ultrasonics energy conversion [3].
These different requirements can lead to disparate results when comparing materials, with the
potential to bias decisions relating to specific use cases.

To circumvent this, a universal method is sought to support unbiased comparison. A good
candidate is the energy density of the material i.e. the material’s ability to store energy and con-
vert from mechanical to dielectric and vice-versa. This is usually quantified by k2 but still lacks
generality as k2 is linked to a resonant mode e.g. k33 or kt for length-extensional or thickness-
extensional modes respectively. This link is very much central to standard material characteri-
sation methods [4].

Hence, in this chapter, a generalised k2 is developed to better represent the pure piezoelectric
response of the material without being obscured by any resonance behaviour. Developing such
a metric also provides insight into the different energy conversion mechanisms at play in the
material and how these influence its response.

7.2 Calculating Energy Density

The energy density of a piezoelectric material is related to the quantity of work converted per
unit work input with energy conversion linked to the electromechanical coupling factor, k2,
which defines the proportion of work instantaneously converted by the material from electrical
to mechanical energy, or vice versa [5]. Before considering conversion in detail, the different
types of energy density and how they can flow in and out of a material are reviewed.

7.2.1 Types of Energy Density

Typically, energy density in a piezoelectric material is considered as four types [6]:

1. Kinetic: T = ρ

2
∂ui
∂ t

∂ui
∂ t

2. Elastic: U (E) = 1
2cE

µνSµSν

3. Dielectric: U (D) = 1
2εS

i jEiE j

4. Piezoelectric: U (P) = 1
2eiµEiSµ

where ρ is the density, ∂u
∂ t is the velocity, cE is the stiffness, S is the strain, εS is the dielectric

permittivity at constant strain, E is the electric field and e is the piezoelectric stress constant.
These last three together make up the total ‘potential’ energy density U . It may be easily verified
that these four terms have dimensions of Jm−3 and so indeed correspond to energy densities.
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Then, to find the energy contained with a specific type, the relevant density must be integrated
over the material volume.

7.2.2 Poynting’s Theorem

Similarly to the more familiar case of electromagnetism, Poynting’s theorem defines the flow of
energy in and out of a volume. In order to derive Poynting’s theorem for a piezoelectric material,
one may start at Equation 2.6 (which is reproduced here for convenience):

dU = σµdSµ +EidDi. (7.1)

This follows from the combination of mechanical and electric energy densities and provides a
function equivalent to the first law of thermodynamics in a piezoelectric material. As it clearly
expresses the natural variables of U as Sµ and Di, an expression for the time derivative of U is

∂U
∂ t

= σµ

∂Sµ

∂ t
+Ei

∂Di

∂ t
. (7.2)

This can also be found by ‘dividing’ Equation 2.6 by dt.
Equation 7.2 then gives the total change in time of the potential energy stored within the

material [7]. Following Yang and suspending Voigt notation, upon introduction of the definition
of strain, this becomes

∂U
∂ t

= σi j
∂

∂ t

[
1
2

(
∂ui

∂x j
+

∂u j

∂xi

)]
+Ei

∂Di

∂ t

= σi j
∂ 2

∂ t∂xi
u j +Ei

∂Di

∂ t

(7.3)

where the second equality is due to the symmetry of the stress tensor. Then, by using the
product rule of partial differentiation and introducing the quasi-static electric potential, this can
be rewritten as

∂U
∂ t

= σi j
∂ 2

∂ t∂xi
u j −

∂φ

∂xi

∂Di

∂ t

=
∂

∂xi

(
σi j

∂u j

∂ t

)
−

∂u j

∂ t
∂σi j

∂xi
− ∂

∂xi

(
φ

∂Di

∂ t

)
+φ

∂ 2Di

∂ t∂xi
.

(7.4)

Using Newton’s second law (Equation 2.42), Gauss’ Law (Equation 2.43) and rearranging terms,
this becomes

∂U
∂ t

=
∂

∂xi

(
σi j

∂u j

∂ t
−φ

∂Di

∂ t

)
−

∂u j

∂ t

(
ρ

∂ 2u j

∂ t2 − f j

)
+φ

∂ρe

∂ t
, (7.5)
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which may be immediately rewritten as

∂U
∂ t

=− ∂

∂xi

(
φ

∂Di

∂ t
−σi j

∂u j

∂ t

)
− ∂

∂ t

(
ρ

2
∂u j

∂ t
∂u j

∂ t

)
+

∂u j

∂ t
f j +φ

∂ρe

∂ t
. (7.6)

Finally, recognising the third term as the kinetic energy density, T , allows an expression for the
time derivative of the total internal energy to be written as

∂

∂ t

(
U +T

)
=− ∂

∂xi

(
φ

∂Di

∂ t
−σi j

∂u j

∂ t

)
+

∂u j

∂ t
f j +φ

∂ρe

∂ t
. (7.7)

Equation 7.7 is then a continuity equation with two energy sources, one corresponding to
mechanical stimulation though the external force density, fi, and the other to electric stimula-
tion through the external charge density, ρe. The other term of the right hand side is then the
piezoelectric Poynting vector, S(P)i , which contains information about energy flow in the mate-
rial [8]. In the absence of external forces or charges, Poynting’s theorem then states

∂

∂ t

(
U +T

)
=− ∂

∂xi

(
φ

∂Di

∂ t
−σi j

∂u j

∂ t

)
=−

∂S(P)i
∂xi

. (7.8)

7.3 Analysis of a Length Extensional Bar

One of the simplest piezoelectric geometries is the length extensional (LE) bar, in which the
length is 10 times each width, Figure 2.4(a). Assuming the bar is poled through its length
direction, then it will resonate in the LE mode. Consider the case where this material is driven
in ‘transmit’ mode with a DC signal and has mechanically free surfaces, S, which can be defined
as the electroded, Se, and un-electroded, Su, such that S = Se ∪Su. In this case, the input energy
is purely electrical, no mechanical work can be extracted, and all converted energy is stored.
Hence this case can be used to study k2.

7.3.1 Analytic Treatment

More specifically, this is a boundary value problem (BVP), which is defined by a system of
differential equations along with suitable boundary conditions [9]. In this case, the differential
equations are the piezoelectric equations of motion, Equations 2.44 and 2.45, and the boundary
conditions are:

• Mechanically free: σi j = 0 on S

• Electrical continuity: D⃗ · n̂ = 0 on Su

• Driving voltage: φ(z = h)−φ(z = −h) = V Θ(t − ts) on Se, where V is the amplitude of
the DC voltage, Θ is the Heaviside step function defined as zero for t < ts and unity for
t > ts, and ts is the time the voltage is switched on.
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Figure 7.1: A schematic diagram showing the length extensional bar BVP setup. The electroded
and non-electroded surfaces, Se and Su respectively, are labelled, as is the height of the bar = 2h.

These boundary conditions are illustrated in Figure 7.1 and allow the behaviour to be com-
pletely solved. As only DC voltage is considered, the solution is likewise static. In addition to
being simpler to solve, the standard electromechanical coupling factor calculations are derived
under quasi-static conditions so this approach does not stray too far from the standard approach.
Under these conditions, the equations of motion may be rewritten as

cE
i jkl

∂ 2

∂x j∂xk
ul + eki j

∂ 2

∂x j∂xk
φ = 0, (7.9)

ε
S
i j

∂ 2

∂xi∂x j
φ − ei jk

∂ 2

∂xi∂x j
uk = 0, (7.10)

where all time dependence may now be ignored. As stated above, Newton’s 2nd law now reads

∂σi j

∂x j
= 0. (7.11)

Combined with the boundary conditions, this implies that the whole bar is stress free and allows
proposition of the following ansatz
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u1 =u1(x),

u2 =u2(y),

u3 =u3(z),

φ =φ(z).

(7.12)

Mechanically, this form is justified as no shear strains can arise from an electric field in the 3
direction due to the material symmetry, e.g. 4mm but true for most piezoelectric symmetries. In
terms of the electrical potential, the induced electric field should behave in a similar way due to
the uniformity of the driving voltage and the electroded surface in the x-y plane. Furthermore,
taken with the electric continuity boundary condition, this specifies that the components E1 and
E2 should be zero.

The equations of motion, Equations 7.9 and 7.10, may then be expanded as

cE
11

∂ 2u1(x)
∂x2 = 0, (7.13)

cE
11

∂ 2u2(y)
∂y2 = 0, (7.14)

∂ 2

∂ z2

(
cE

33u3(z)+ e33φ(z)
)
= 0, (7.15)

∂ 2

∂ z2

(
ε

S
33φ(z)− e33u(z)

)
= 0, (7.16)

which may trivially be solved by solutions of the form

u1 = A1x+B1, (7.17)

u2 = A2y+B2, (7.18)

u3 = A3z+B3, (7.19)

φ = A4z+B4, (7.20)

where the eight constants of integration must be fixed by the boundary conditions.
First, the {B} coefficients may all be set to zero as, in the case of the displacements, they

correspond to translations which can be fixed in this way without loss of generality. In the
remaining case, it is standard that a constant term in a potential may be disregarded.

The remaining {A} constants are now fixed from the boundary conditions at a time after ts
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u1 =
V
2h

[
e31(sE

11 + sE
12)+ e33sE

13
]
x =

V
2h

d31x, (7.21)

u2 =
V
2h

[
e31(sE

11 + sE
12)+ e33sE

13
]
y =

V
2h

d31y, (7.22)

u3 =
V
2h

[
2e31sE

13 + e33sE
33
]
z =

V
2h

d33z, (7.23)

φ =
V
2h

z. (7.24)

Two points must be addressed here. The first is that the electric field, i.e. the first derivative
of φ , is just the voltage divided by the bar length. This is as expected and it also shows that
the axial strains, i.e. first derivatives of the displacements, indeed follow Sµ = diµEi, again as
expected. Whilst this is a simple example, it shows that much information can be gained.

7.3.2 Input Energy Density

From Poynting’s theorem, the input energy between times t0 and t1 is given by

∆W =−
∮

S
dSi

∫ t1

t0

(
φ

∂Di

∂ t
−σi j

∂u j

∂ t

)

=−
∫

Se

dS
∫ t1

t0
φ

∂ D⃗ · n̂
∂ t

−
∫

Su

dS
∫ t1

t0
φ

∂ D⃗ · n̂
∂ t

+
∫

S
dS
∫ t1

t0
σi jn̂i

∂u j

∂ t
,

(7.25)

where the first term corresponds to dielectric energy flow in the electrodes, the second to di-
electric energy flow over the non-electroded surface and the third to the mechanical energy flow
over the whole surface. As the second and third terms are zero due to the electrical continuity
and mechanically free boundary conditions respectively

∆W =−
∫

Se

dS
∫ t1

t0
φ

∂ D⃗ · n̂
∂ t

. (7.26)

For the LE bar, the normal vector to the electrodes is in the 3 direction so D⃗ · n̂ =±D3 for
the top and bottom electrodes, St and Sb respectively, to give

∆W =−
∫ t1

t0

(∫
St

dSφ(z = h)
∂D3

∂ t
−
∫

Sb

dSφ(z =−h)
∂D3

∂ t

)
. (7.27)

Gauss’s law states ∂D3/∂ z = 0. Hence D3 is independent of z and is the same at both ends of the
bar. Therefore,
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∆W =−
∫ t1

t0
(φ(z = h)−φ(z =−h))

∫
St

dS
∂D3

∂ t

=−ε
σ
33

∫ t1

t0
V Θ(t − ts)

∂

∂ t

∫
St

dSE3,

(7.28)

where the electrical driving boundary condition and the constitutive equation, Equation 2.22,
were used in the second equality. Furthermore, the electric field can be substituted by differen-
tiating Equation 7.24 and multiplying by the Heaviside function

∆W =−ε
σ
33

∫ t1

t0
V Θ(t − ts)

∂

∂ t

∫
St

dS
V
2h

Θ(t − ts),

=−V 2

2h
Aε

σ
33

∫ t1

t0
Θ(t − ts)

∂Θ(t − ts)
∂ t

.

(7.29)

As the electric field is non-zero only in the 3 direction and is uniform in the cross-section, the
surface integral can be trivially performed to obtain the cross-sectional area, A. The remaining
time integral can be evaluated using integration by parts to arrive at

∆W =−V 2

2h
Aε

σ
33

[
Θ2(t − ts)

2

]t1

t0

, (7.30)

which gives

∆W =

{
−1

2
V 2

2h Aεσ
33 if t0 < ts < t1

0 if ts < t0 or ts > t1,
(7.31)

where the negative sign shows that energy is flowing into the bar and can be ignored further.
This expression also shows that the energy only really flows at time ts, meaning that the energy
is introduced only when the source is switched on. This follows as ts is the only time when the
internal electric field, and hence the internal energy, will change.

Assuming t0 < ts < t1, the input energy is

Winput =
1
2

V
2h

V
2h

ε
σ
332Ah

=
1
2

E3D3Ω,

(7.32)

where Ω is the volume of the bar. As E2, E3 ≈ 0, this verifies that the input energy density,
denotes by a lower case w, is then

winput =
1
2

DiEi. (7.33)
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Although focussing on the LE bar geometry, the arguments presented also apply to many of
the quasi-static conditions under which the electromechanical coupling factor is defined, given
that the excitation is in the 3 direction. This section has therefore built up and verified many of
the relations that will be used to generalise the electromechanical coupling factor.

7.4 The Electromechanical Coupling Factor Revisited

As introduced in Section 2.4.7, the electromechanical coupling factor quantifies the proportion
of work stored by the piezoelectric material. It is defined as

k2 =
Converted/Stored energy

Input energy
. (7.34)

7.4.1 Energy Storage vs. Transmission vs. Efficiency

Whilst it is conceptually useful sometimes to interpret k2 as piezoelectric efficiency, this is
not strictly the case. As such, the distinction should be made between the energy converted
and stored by a material, converted and transmitted by a material, and the ‘true’ piezoelectric
efficiency. By definition, k2 gives the energy converted and stored within the material relating to
storing energy within the different parts of the potential energy density defined above. However,
energy transmission requires a different, though related, constant. Not all energy that is stored
can be extracted and this depends on the external conditions. For example, Equation 7.8 shows
that without stress, no mechanical work can flow out of the material. In this case a second
constant must be defined, the maximal electromechanical energy transmission coefficient:

λmax =
Output energy
Input energy

. (7.35)

For simple geometries and with materials with small k2, it can be shown that λmax ≈ k2/4.
However, λmax ≈ k2/2 for large k2 and λmax ≈ k2 for the case of k ≫ 0.95 [5].

Importantly, in the case of both conversion and storage/transmission, the unconverted energy
is not lost, merely stored inaccessibly within the material [5]. This creates a distinction with the
final constant, η , which is the efficiency in the proper sense, i.e. taking into account losses. η

can be defined over a work cycle and accounts for losses in the electrical circuit, the mechanical
coupling and the piezoelectric material itself, as set out in Section 2.4.8. However, if the material
losses are small, most of the energy is retained within the system and η ≈ λmax.

7.4.2 The Generalised Coupling Factor

Now that the energy conversion nomenclature has been clarified, the quantification of the energy
density can be considered. As this is concerned with the conversion ability of the material and
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should not be dependent on any external loads, apart from the driving one, the correct constant
to focus on is indeed the electromechanical coupling factor, k2.

Specific equations for k2 have been derived for use in specific cases [4], and are listed in
Table 2.3, but, to use k2 as a generalised metric, a generalised equation needs to be derived.

The coupling factor is defined under quasi-static conditions [4] and so the result of Sec-
tion 7.3.2 may be used: under static electrical stimulation, the input energy density may be
written as

winput =
1
2

DiEi =
1
2

(
ε

S
i jEiE j + eiµEiSµ

)
, (7.36)

where the driving voltage will be contained within the electric field. Taking this discussion
at zero frequency ensures that no resonance effects are present. Now, the two terms in Equa-
tion 7.36 may be recognised as the purely dielectric energy density and the energy density re-
sulting from piezoelectric coupling respectively. Hence the electromechanical coupling factor
is

k2 =

∫
dVeiµEiSµ∫

dV
(
εS

i jEiE j + eiµEiSµ

) , (7.37)

where the energy densities must be integrated over the material volume due to k2 being defined in
terms of energies. Furthermore, electromechanical coupling factors are typically derived under
static or quasi-static conditions and so the equation of motion is ∇ ·σ = 0, meaning that there is
no stress, σ , present in the material. In the absence of stress, the strain results purely from the
piezoelectric effect, Sµ = diµEi where d is the piezoelectric charge coefficient. Substituting this
form of strain and writing e in terms of d, Equation 2.35:

k2 =
(diνcE

νµ)
∫

V dV (d jµE j)Ei

εS
kl
∫

V dV EkEl +(dkρcE
ρσ )

∫
V dV (dlσ El)Ek

=
diνcE

νµd jµ
∫

V dV EiE j

(εS
kl +dkρcE

ρσ dlσ )
∫

V dV EkEl

=
diνcE

νµd jµ
∫

V dV EiE j

εσ
kl
∫

V dV EkEl
,

(7.38)

where the material properties may be taken to be spatially independent and so are removed from
the integral. Now, under an electric field assumed purely in the poling direction, E1 = E2 = 0,
the strain can be rewritten as Sµ = d3µE3 which allows the volume integral of the square of E3 to
cancel from the numerator and denominator in Equation 7.38. This assumption is implemented
by setting i, j,k, l = 3 in Equation 7.38, hence
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k2 ≈
d3νcE

νµd3µ

∫
V dV (E3)

2

εσ
33
∫

V dV (E3)2 . (7.39)

This means that the generalised coupling factor can be expressed as

k2
G =

d3µcE
µνd3ν

εσ
33

, (7.40)

where εσ is the dielectric permittivity at constant stress.
The inclusion of the summations fully incorporates the material anisotropy and ensures this

expression quantifies all conversion mechanisms allowed by symmetry for a given electric field.
Importantly, as no assumptions have been made regarding the dimensions of the material, k2

G

should be universally applicable, achieving the aim to provide a useful comparison between
materials.

7.4.3 Expansion of the Generalised Coupling Factor for 4mm Symmetry

k2
G may be explored for 4mm symmetry first by expanding the Einstein sums in Equation 7.40 to

give

k2
G =

d2
33cE

33
εσ

33
+4

d31cE
13d33

εσ
33

+2
d2

31(c
E
11 + cE

12)

εσ
33

. (7.41)

Now, from matrix inversion, the stiffness constant cE
33 can be expressed as

cE
33 =

1
sE

33
−

2(cE
13)

2

cE
11 + cE

12
, (7.42)

which allows k2
G to be expanded fully as

k2
G =

d2
33

sE
33εσ

33
+2

d2
33

εσ
33

(cE
13)

2

(cE
11 + cE

12)
+2

d2
31(c

E
11 + cE

12)

εσ
33

+4
d31cE

13d33

εσ
33

. (7.43)

The four terms in this expansion can be broken down as follows: the first is recognised
as the standard LE coupling factor, k2

33; the second arrives as a mathematical artefact of the
matrix nature of cE i.e. from Equation 7.42; the third term arises from energy conversion in the
lateral direction and the forth term as a cross-coupling of that lateral energy conversion with the
thickness motion. The numerical coefficients of the terms arise from the four-fold symmetry.

It is the three additional terms, missing from the conventional analysis of the LE bar, that
allow a generalisation of the coupling factor. In the remainder of this thesis they will be collec-
tively grouped together as

λ ≡ 2
d2

33
εσ

33

(cE
13)

2

(cE
11 + cE

12)
+2

d2
31(c

E
11 + cE

12)

εσ
33

+4
d31cE

13d33

εσ
33

. (7.44)
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The value of this correction is shown in Table 7.1 for some common materials, along with k2
33

for comparison. The value of λ is small though not negligible, which reinforces the conclusion
that the LE or any other thickness mode is a dominant one. This is mainly due to the large value
of d33 typically seen in Pb-based piezoelectric materials.

Table 7.1: Comparison the LE coupling factor, k33, with the expanded correction term, λ , in the
generalised coupling factor, kG.

Material k2
33 λ

PZT4 0.4556 0.0527

PMN-PT 0.8355 0.0169

Mn:PIN-PMN-PT 0.8295 0.0270

7.5 In Silico Verification

In order to verify Equation 7.40, finite element analysis (FEA) was chosen as it allows simulation
of complete samples. FEA is very much a standard tool today in the field of piezoelectrics with
many packages available. The software used in this study was OnScale (previously PZFlex,
Redwood City, CA, USA).

FEA allows computation of solutions of boundary value, initial value and eigenvalue prob-
lems by discretisation of the problem domain effectively to reduce it to a finite set of coupled dif-
ferential equations defined on a lattice of nodes. Approximate solutions to the problem are then
constructed on this lattice, allowing practical and reliable evaluation of complex behaviour [10].

The simulation here was applied to a material sample which was excited along the 3 direction
with a DC voltage of 1 V. Once the steady state had been reached, the four energy densities were
calculated across the whole sample. As any transient effects were allowed to dissipate, the
energy densities are spatially constant across the whole sample with any deviation interpreted as
arising from numerical error in the simulation. As such, an average over the sample was taken
and the error estimated as the standard error on this mean.

Due to the summation present in k2
G, a full set of material properties is required for calcula-

tion. This coincides with the requirement for a full EPD matrix for FEA. Full and self-consistent
sets of material properties are rare in the literature especially for single crystal materials. For
this reason, two specific use cases were chosen to explore the application of Equation 7.40.

7.5.1 Application to Piezocrystal

The first application was chosen to show the superior performance of relaxor-ferroelectric
piezocrystal over piezoceramics. Four materials were compared, each representing a differ-
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ent stage in the development of Pb-based piezoelectrics. The first is [001]-poled piezoceramic,
PZT4, used as a reference, with the properties taken from the internal OnScale material database.
The second is, Gen. I [001]-poled piezocrystal, PMN-PT, representing the broad class of single
crystal materials already commercialised. Properties were taken from the crystal manufacturer’s
(TRS Technologies, State College, PA, USA) datasheet. Finally two sets of Mn:PIN-PMN-
PT were used to represent the most advanced piezocrystals. The first is [001]-poled and was
characterised using a single sample method [11, 12] and the second is a domain engineered,
[011]-poled sample taken from the literature [13]. The different poling means that the material
has a different symmetry which allows excitation and exploitation of new modes. This is ex-
emplified by the introduction of the ‘32’ mode which is usually degenerate with the LTE, ‘31’
mode in 4mm symmetry due to the four-fold rotation axis. However, [011]-poled samples have
mm2 symmetry and so allow the 32 mode to manifest. This mode has both a high k2

32 and Qm,
making it of interest to many fields.

Table 7.2 shows the calculated and simulated values for k2
G, with excellent agreement being

shown. Both the calculated and in silico values of k2
G are invariant under different geometries

for all materials. It can be seen that the piezocrystal materials possess a much higher k2
G than

the piezoceramic. This was expected as high electromechanical coupling is a reported property
of piezocrystal. However, it is interesting to note that the generalised coupling does not increase
much between Gens. I and III materials, indicative of the fact that development of Gen. II and
Gen. III materials was driven by other factors, namely the poor Qm and TRT shown by PMN-PT.

7.5.2 Application to Pb-Free Materials

The second application was chosen to explore the performance of Pb-free materials. This study
compares three Pb-free materials, LiNbO3 (LNO) and LiTaO3 (LTO) with properties from Smith
and Welsh [14], and PIC 700 - Bi1/2Na1/2TiO3 (BNT) - properties from Fenu et al. [12]. The
two Li compounds admit a 3m symmetry and the properties were measured from single crystal
samples through a mixture of ultrasonic phase-velocity measurements, the resonant and antires-
onant frequencies of a single length-extensional bar resonator, and low-frequency capacitance
measurements. PIC 700 is a piezoceramic and so admits ∞mm symmetry. The full EPD ma-
trix from a single sample was obtained using a hybrid approach combining resonant ultrasound
spectroscopy with an optimisation algorithm [12].

Table 7.3 shows the calculated and simulated values for k2
G. Excellent agreement is ev-

ident. LNO and LTO display very low values, attributed to their weak piezoelectric effect,
with d33 = 6 pC/N and 5.7 pC/N respectively [14]. PIC 700 has a larger piezoelectric effect
(d33 = 101.3 pC/N) and, correspondingly, shows an improved k2

G. Whilst this is not too dissim-
ilar from PZT4 (d33 = 253.3 pC/N), and so these materials display k2

G values that differ only by
a factor of ∼ 2.5, this is still quite a large gap in the context of applications.

Undoubtedly, the large d33 > 1500 pC/N of the Pb-based piezocrystals is mainly responsible
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for their very large k2
G. However, d is not the only parameter that will influence k2

G. For example,
if the increase in piezoelectric coefficients alone was responsible for the change in k2

G, then a
∼ 200-fold increase should be expected between LNO and PIC 700 but this is clearly unphysical
and was not observed. Instead the increase is tempered to a reasonable level by the changes in
the permittivity and stiffness, showing that the value of k2

G is set by a delicate interplay of many
material properties.

Again both the calculated and in silico values of k2
G are invariant under different geometries,

seen after simulating. Classically, a LE bar will be characterised by k33 and TE plate by kt.
These are linked through the relation [6]

k2
t =

k2
33

1+ k2
33
, (7.45)

derived in Chapter 2, implying that the LE mode is better able to convert and store energy than
the TE mode. This stems from a combination of two factors: the inherent material response
and resonance effects. The invariance of k2

G indicates that it is indeed free of any influence of a
resonance mode, as expected, and provides strong evidence that k2

G quantifies purely the material
response.

Furthermore, as k2
G encompasses all energy conversion mechanisms for a given field, it may

be interpreted as a maximum electromechanical coupling value. Interestingly, the value of k2
33

in PIC 700 matches closely that of k2
G indicating that this an ‘efficient’ mode in which to use this

material. The Li compounds on the other hand, show a small gap. This means the ‘efficiency’
of the LE mode is poorer and is instead representative of energy being lost to other motion (i.e.
d31).
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7.6 Impact of Losses

The discussion of the generalised electromechanical coupling factor here has, necessarily, been
conducted without consideration of material losses. However, if this method is to be applied
to real world materials, then the inclusion of losses is unavoidable. Losses may simply be in-
corporated into Equation 7.40 by allowing the material properties to become complex, with the
imaginary parts accounting for the losses. This would lead to the coupling factor becoming com-
plex, with its imaginary part corresponding to the overall loss in the transduction process [15].
In this way, if the dielectric, mechanical and piezoelectric loss tangents could be determined
for all material properties present in k2

G, the impact of losses on transduction may be further
examined in general without relying on resonance-determined quality factors.

However, for the static case considered here, losses have little impact. This is due to the
fact that, once the steady state is reached, the energy is necessarily balanced and so loss terms
can safely be ignored. This is not the case for dynamic driving where such a balance cannot be
assumed. Further discussion of the case of dynamic driving is included in Section 8.2.3.

7.7 Chapter Conclusions

A generalised electromechanical coupling factor, k2
G, defined at zero frequency, was developed in

order to allow unbiased comparison of piezoelectric materials. This coupling factor includes all
conversion mechanisms allowed by symmetry and so is not restricted to a single resonance mode
or application. The coupling factor was verified in silico using FEA and excellent agreement was
found between the calculations and simulations.

This new metric was then applied to two cases where comparison between materials is dif-
ficult to separate from specific use cases. Firstly, the superiority of relaxor-PT single crystal
materials over the piezoceramic standard PZT4 was shown. As expected, k2

G calculated for all
generations of crystal was almost double that of PZT4, quantifying the piezocrystal’s better
transduction capability. Secondly, k2

G was shown to be useful for the comparison of Pb-free
LNO, LTO, and PIC 700. Poor performance of Pb-free piezoelectrics is a major barrier to their
commercialisation and so an unbiased metric by which their transduction can be tracked is de-
sirable. In this study, the Pb-free materials were compared against the standard PZT4 and high
performance, cutting-edge piezocrystal PMN-PT and Mn:PIN-PMN-PT. Classic materials such
as LNO and LTO showed very low k2

G whereas the more recent composition, PIC 700, displayed
a value which was an order of magnitude higher.

These two applications show that the generalised electromechanical coupling factor is able
to quantify the pure material transduction of many piezoelectric materials. By decoupling trans-
duction from a resonance mode or specific material geometry, a more rounded and fundamental
comparison may be made.
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Chapter 8

Conclusions and Future Work

This chapter presents the conclusion of the thesis. The main findings of each chapter are re-
viewed and assessed against the aims and objectives as set out in the introduction. Following
this, some suggestions for ways in which the work may be taken forward are laid out.

8.1 Conclusions

This thesis aimed to advance the fundamental understanding of complex ferroelectric and mul-
tiferroic oxides.

The first way reported (Chapter 4) was through the use of spherical neutron polarimetry
to characterise the magnetic ground state of Cu3Nb2O8 (CNO). This addressed issues in the
literature relating to the nature of the magnetic structure in both low temperature phases and the
mechanism by which the ferroelectric polarisation emerges.

By determining the full polarisation matrix for multiple magnetic Bragg peaks, the magnetic
structure in both low temperature phases was found to be a generic helicoid in the low tempera-
ture phase (LT: T < 24 K), in agreement with the powder structure reported by Johnson et al [1],
and an apparent spin density wave in the intermediate phase (MT: 24 K < T < 26.5 K). How-
ever, the temperature dependence of the off-diagonal polarisation matrix elements revealed that
it is not a true spin density wave. Therefore, a mechanism was proposed by which the magnetic
ground state of the MT phase mimics a spin density wave at finite temperatures but really stems
from the decoupling of the components of the order parameter, as allowed in CNO due to its lack
of strong symmetry. This magnetic structure then induces a structural distortion which allows
the ferroelectric order to develop. This mechanism alleviates the constraints on the polarisation
imposed by classical models, i.e. the KNB model [2], yet is still consistent with others such as
ferro-axial model [1].

The competition between order parameters in CNO creates a situation which, superficially,
displays simple phenomenology but hides a more complex and subtle mechanism revealed using
sensitive neutron techniques. A similar situation occurs in the multiferroic relaxor-ferroelectric

210
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Pb(Fe1/2Nb1/2)O3 (PFN) (Chapter 5) with contrasting magnetic results reported in multiple sam-
ples with magnetic Bragg peaks [3], momentum broadened correlations [4], and cluster glass
dynamics [5]. Here depth dependent muon techniques were adopted to study the near-surface
region.

Relaxor-ferroelectrics have been shown to exhibit a skin effect (e.g. in PMN [6, 7]) where
the near-surface structure seems to differ from the bulk, but the mechanism is still not well-
understood although random field models are good candidates. Previous muon studies have
linked this skin region to compositional heterogeneity [8] and this was probed here for the
first time in the magnetoelectric relaxor-ferroelectric PFN. A deficiency of Fe3+ was seen near
the surface using the µ− elemental analysis method supported by µ+ µSR experiments which
showed a change in the magnetic properties through this region. As Fe3+ is the only magnetic
ion present, this supports the link to compositional heterogeneity. Furthermore, µSR results in
the literature [3] agree more closely with the near-surface relaxation than in the bulk, but these
results used a small sample. A larger sample was studied here and the bulk showed a slowing
down of the relaxation and a tightening of the frequency distribution, which was linked to the
presence of random fields induced by the compositional disorder of Fe3+. It was posited that the
presence of this ‘bulk’ structure disrupts the long-range magnetic order seen in smaller samples.

Another application of the negative muon technique to characterise relaxor-ferroelectrics
was in the study of Mn modification (Chapter 6). Third generation relaxor-ferroelectric single
crystals are a promising candidate for high power ultrasonics including SONAR and ultrasound
actuated surgical tools [9]. However, the Mn doping mechanism is not well understood with
Mn segregation reported [10]. Furthermore, being a transition metal, Mn may take on many
oxidation states and this can affect material properties. Hence the µ− technique was used with
the aim of both identifying the Mn oxidation state and allowing it to be tracked in a crystal
sample of Mn:PIN-PMN-PT. The muonic X-ray spectra is sensitive to valence state as the muon
stopping interaction is dependent on the number of electrons [11], and three Mn oxide powder
samples were used to verify this. Difference was seen between the energies of the Kα emission
lines of the three oxide samples confirming the µ−’s sensitivity.

A further feasibility study was carried out using the µ− technique to investigate the Mn dis-
tribution in a multi-domain crystal of Mn:PIN-PMN-PT. None of the Mn emission lines were
able to be identified in the measured spectra, and it was concluded that significant detector
upgrades would be needed to detect the small effects observed from the Mn oxide powder ex-
periments.

As the performance of Mn:PIN-PMN-PT remains of interest for ultrasonic devices, a method
was developed (Chapter 7) by which electromechanical performance may be measured. The
fundamental characterisation carried out in the preceding chapters provides the base for under-
standing of the complex mechanisms present in these materials but, without a practical end,
there is little to guide their development. Hence, the comparison of electromechanical coupling
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factor (k) is essential if new materials are to be developed to fulfil specific purposes.
Present comparisons between candidate materials rely on figures of merit for specific use

cases. However, a universal metric for unbiased comparison would allow more general discus-
sion of material performance.

In this thesis, a generalised electromechanical coupling factor k2
G was developed. k2

G includes
all symmetry-allowed conversion mechanisms for a given electric field and thus is not restricted
to a single resonance mode or use case. FEA was carried out to verify this method in silico and
excellent agreement was shown.

Two case studies were detailed for k2
G. The first related to the already introduced superior

performance of Pb-based relaxor-ferroelectric single crystals which were shown to well out-
perform standard piezoelectric ceramic. k2

G was then calculated for Pb-free piezoelectric materi-
als. Whilst their performance was found to be significantly lower than Pb-based materials by the
measure of k2

G, the comparison illustrates the effectiveness of this method and its applicability
to a range of materials and symmetries.

Overall, this thesis presents fundamental characterisation of complex ferroelectric and multi-
ferroic oxides, with context provided by ultrasonic device applications. Device designers do not
need to understand the microscopic mechanisms at play but it is only through understanding of
these mechanisms that new materials may be developed, in turn unlocking novel device designs
and future applications.

8.2 Future Work

The contributions to knowledge made by this thesis address the overall aims and objectives set
out, and suggest further avenues of research.

8.2.1 Further Study of Mn Valence and Distribution in Mn:PIN-PMN-PT

Given that the µ− technique was able to distinguish between Mn oxidation state in oxide pow-
ders, it was disappointing that a similar result was not found in a crystal sample of Mn:PIN-
PMN-PT. However, as no Mn lines were observed, the change is likely simply to be below the
noise floor of the experiment. Better instrument resolution should be able to combat this absence
of signal and a repeat measurement is warranted at such time as the instrument is improved.

8.2.2 Cryogenic Measurements

Temperature was considered only occasionally in this thesis, but it offers a way to explore further
the behaviour of materials, especially in the cryogenic regime [12, 13]. An ultra-low vibration
cryogenic measurement system is now available at the University of Glasgow which is suited
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to study of electromechanical properties in relaxor-ferroelectric materials with the following
experiments suggested:

Dielectric Measurements

Through use of an LCR bridge, dielectric measurements may be performed as a function of
temperature. Given the temperature broadening effects in relaxor-ferroelectrics, an instrument
with a large temperature range is indicated. A low vibration interface will make it addition-
ally suitable for sensitive capacitance measurements through which phase transitions may be
monitored.

Piezoelectric Measurements and Conventional Characterisation

Once an ultrasonic device is assembled, temperature effects may affect performance. These can
stem from self-heating due to losses, e.g. power ultrasonics applications, or ambient conditions,
such as in extraterrestrial applications. Hence, investigation of the influence of temperature on
piezoelectric mode shapes, probed through conventional material characterisation techniques or
with laser Doppler vibrometry, is of great interest. A cryostat with a heating capability is able to
simulate almost any operating conditions with regards to temperature and can provide real-world
applicable information.

Non-Contact Material Characterisation

Accurate material characterisation is critical to modern ultrasonics device design due to the role
played by FEA. This is true for single crystal materials, where sample-to-sample variation re-
duces the accuracy of standard characterisation mechanisms, and also for characterisation of
extremely small piezoelectric samples where the coupling introduced by the measurement pro-
cedure itself can affect the results. To circumvent this issue, all-optical, non-contact characteri-
sation with laser generated ultrasound can be used [14]. A low vibration cryogenic measurement
system enables non-contact ultrasonic characterisation as a function of temperature, further ex-
tending the range of this promising technique.

8.2.3 Extension of Generalised Electromechanical Coupling Factor

Whilst k2
G (Chapter 7) is able to provide unbiased comparison between materials, some exten-

sions may be considered.

Experimental Verification

Experimental verification of the values of k2
G is desirable. However, this may run into issues

with material property consistency. It is well-known, especially with single crystal samples,
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that, when characterised with methods such as the IEEE standard, the set of material proper-
ties obtained may be internally inconsistent. This can be overcome by single-sample methods,
e.g. [15]. This consistency problem did not affect the present study because, if the properties
used for both the calculations and simulations match, the results will do so too, regardless of
how well the material properties actually relate to a real sample.

Incorporation of Other Electric Field Directions

Another avenue concerns an extension to k2
G to incorporate additional behaviour. This is most

clearly seen in the case of the Pb-free comparison: the LE associated constants of the Li based
materials are weak but the shear coefficients, e.g. d15, are strong. This behaviour is not fully
captured by k2

G because of the assumption that the electric field is only uniaxial, in the 3 di-
rection. The method developed in Chapter 7 is compatible with an electric field in a different
direction and inclusion of all electric field directions is desirable for a comprehensive metric.

Dynamic Driving

An area for further study of k2
G is an extension to AC driving. By considering the dynamic case,

it should be possible to link the material’s inherent performance as quantified by the static k2
G

and resonant behaviour used in ultrasonic devices.
One approach to achieve this is to reintroduce the stress term in Equation 7.38 through

utilisation of the full constitutive equation. Recall, the stress was neglected based on the static
equation of motion, ∇ ·σ = 0. This is not the case in a general dynamic situation where the
strain is Sµ = sE

µνσν + diµEi. Substituting this into Equation 7.37 and again taking the electric
field to be uniaxial in the 3 direction,

k2
D =

d3µ

∫
V dV σµE3 +d3µcE

µνd3ν

∫
V dV (E3)

2

d3µ

∫
V dV σµE3 + εσ

33
∫

V dV (E3)2 . (8.1)

With some algebraic manipulation, this can be rewritten as

k2
D =

µ[V ]+
d3µ cE

µν d3ν

εσ
33

µ[V ]+1
= 1+

k2
G −1

1+µ[V ]
, (8.2)

where

µ[V ] =
d3µ

∫
V dV σµE3

εσ
33
∫

V dV (E3)2 , (8.3)

with k2
G the static, generalised coupling factor.

Through the functional µ[V ], this dynamic coupling factor depends not only on material
properties but also on the material dimensions, through the integrals in µ[V ], and the driving
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conditions, as the stress and electric field are present in µ[V ]. However, upon in silico verifi-
cation, unphysical effects were seen. Over the frequency domain, k2

D displayed negative values
with magnitude greater than unity. This behaviour was correlated to frequency regions where
the stress and electric field were out of phase rendering the piezoelectric coupling energy density
negative. Again, this is clearly unphysical and so an alternative approach, inclusive of losses and
which reduces to k2

G for DC excitation, is required.
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