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Abstract 

 

This thesis examined the behavioural and electrophysiological signatures of cross-modal 

phase resetting. This functional connectivity is evident in the brains oscillations that are 

coordinated through synchronous rhythmic fluctuations. Neural oscillations are ubiquitous in 

the brain and the synchronised activity between neural populations is thought to be 

instrumental in the formation of transient coalitions of neurons that guide, modulate or drive 

behaviour. The key assumption is that this neural coordination is controlled intrinsically, 

although external input can affect the brains internal dynamics. This is achieved through phase 

resetting, the alignment of ongoing oscillations. This describes a mechanism whereby an event 

in one modality can reorganise or phase align oscillations in another, such that subsequent 

event in that modality are predictable. Through this mechanism, it is possible to investigate 

modulation of sensory gain across modalities, highlighting the role oscillations play in the 

discretisation observed in perception. Another well-studied model case for this fundamental 

operation is the interaction between motor and sensory areas. Motor action leads to 

predictable sensory consequences. The results of this thesis indicates that, cross-modal phase 

resetting is a candidate mechanism that could describe the interaction between sensory areas 

included motor regions.      
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Chapter 1 
 

Introduction 

 

Neural oscillations are ubiquitous in the brain and their synchronisation may provide the neural 

architecture to allow flexible communication within and between cortical areas. This rhythmic activity 

is a fundamental mechanism for enabling coordinated activity during cognitive processing (Buzsaki, 

2006; György Buzsáki & Draguhn, 2004; Singer, 2013; VanRullen, 2016b; Ward, 2003). Hans Berger 

(1873-1941)  was one of the first scientists to observe brain rhythms from recorded electrical activity 

from the scalp (Berger, 1929). Since then it has been proposed that spontaneous rhythms reflect the 

brains internal “state” and may have a fundamental influence on its response to incoming stimuli, as 

neuronal oscillations signal rhythmic variability in cortical excitability along the temporal and spatial 

dimensions (Buzsáki & Draguhn, 2004; Fries, 2005; Lakatos, Shah, Knuth, & Ulbert, 2005b)  

 

A complete understanding of how different neural populations communicate is unknown and 

research continues to investigate the brains exceptionally complex system. At the microscopic level, 

one of the fundamental models that describe neural communication mechanisms is that of a neuron, 

which propagates its signals, that are encoded in an action potential (or the degree of action potential 

synchronisation), along its axon to all other anatomically connected neurons. Effective cognition, 

however, is flexible and therefore cannot be constrained by a fixed anatomical structure that exists 

between these neurons. A dynamic communication structure is required for the routing of these 

signals through these cortical networks. There is strong evidence that oscillations are involved in the 

process (Fries, 2005). Specifically, the phase locking of oscillations between neural ensembles. It is this 

synchronous oscillating between neural groups across close and distant regions that constitute the 

rhythmic modulations of neural excitability that affect the probability of signal propagation and 

sensitivity to synaptic input. Similarly, the neuro-dynamics of this functional connectivity is evident as 

activity fluctuations that are coordinated at the macroscopic level as well (Schnitzler & Gross, 2005). 

Both the micro- and macroscopic activity typically fall within delta (1-4 Hz), theta (4-8 Hz), alpha (8-

16 Hz), beta (16-30 Hz), and gamma (30-100 Hz) range. 

 

The existence of oscillatory brain rhythms in these specific narrow frequency bands are believed 

to be instrumental in the formation of transient coalitions of neurons that modulate or drive sensory 

cognitive functions (Buzsaki, 2006; Fries, 2015; Voloh & Womelsdorf, 2016). This supports the notion 

that certain mental processes operate rhythmically (Busch & VanRullen, 2010b; Landau & Fries, 
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2012a; Neuling, Rach, Wagner, Wolters, & Herrmann, 2012; Thut, Miniussi, & Gross, 2012a; VanRullen, 

2016b). It has consistently been demonstrated that the phase of these periodic fluctuations are linked 

to the periodicities observed in perceptual performance (Thut, Miniussi, & Gross, 2012; VanRullen, 

VanRullen, 2016b). Emerging evidence points to multiple perceptual cycles that could indeed coexist 

in distinct brain networks, with different frequencies.  

 

The brains neural oscillations have been linked to the notion that perception may be modulated in 

a discrete manner which can be measured in various frequency bands. This is one of the overarching 

theory that is being investigated by this thesis and will be discussed in greater detail below.  The brains 

neural activity can be recorded with a variety of techniques from single-neuron recordings or at the 

macroscopic level, this include but not limited to, electrophysiological techniques such as 

magnetoencephalography (MEG) and electroencephalography (EEG). Frequency-specific activity 

emerges from neural interactions that are often localised to specific cortical layers of the neocortex 

(Wang, 2010). This thesis will contribute uniquely to the existing literature which demonstrates that 

the brains rhythms play a crucial role in sensory perceptual processing, including motor mechanisms 

(Buzsaki, 2006; Buzsáki & Draguhn, 2004; Thut et al., 2012; VanRullen, 2016b; VanRullen & Dubois, 

2011), and that these rhythms can be modulated via internal cross-modal interactions (Kayser, Petkov, 

& Logothetis, 2008; Naue et al., 2011; Romei, Gross, & Thut, 2012; Schroeder & Lakatos, 2009a; Thorne 

& Debener, 2014; Voloh & Womelsdorf, 2016).  

O s c i l l a t o r y  p h a s e  m o d u l a t e s  p e r c e p t i o n  

Modulation of sensory perception depends not only on the physical properties of the stimulus but 

also on the temporal dynamics of instantaneous state of the sensory system at the time of input. This 

instantaneous state, defined by ongoing neural oscillations, reflects the fluctuations in local field 

potential between high and low excitability states (Başar, 1998; Buzsaki, 2006; Fries, Nikolić, & Singer, 

2007). This can which can be conceptualised as the peaks or troughs (or phases) of a sine wave (see 

figure 1.1). Changes in the phase of these rhythms over time reflect the dynamically evolving state of 

the brain and may contribute to this temporal modulation of sensory information processing. Such 

that, each oscillator has an optimal phase for processing associated with high neuronal excitability 

(Aoyagi et al., 1993; Schroeder & Lakatos, 2009). During a high excitability state when neurons are 

closer to their firing threshold, a near-threshold stimulus is more likely to be detected and 

subsequently acted upon (Henry & Obleser, 2012; Lakatos et al., 2009; Lakatos, Chen, O’Connell, Mills, 

& Schroeder, 2007). This is because inputs arriving during the optimal phase are ‘amplified’ (these 

generate relatively large responses); whereas input arriving at the non-optimal phase are ‘supressed’ 

(generating relatively small responses). This enables oscillations to have a pivotal role in perceptual 

processing (Lakatos et al., 2005; Schroeder & Wilson, 2010; VanRullen, 2016b).  
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Within this framework, depending on what phase a particular sensory brain area is in, would 

determine whether a stimulus is perceived and subsequently acted upon. However, studying this effect 

in behavioural experiments (without MEG or EEG) is difficult because the state at time of stimulus 

presentation is unpredictable. One method used to avoid the unpredictability in perceptual responses 

is to perturb the system, and eliminated the somewhat arbitrary state of the underlying phase of the 

cortex. (Klimesch, Hanslmayr, Sauseng, & Gruber, 2006; Makeig, Debener, Onton, & Delorme, 2004a; 

Voloh & Womelsdorf, 2016). Through the mechanism of phase reset, input from an external event 

cause the uniform random distribution, across trials, of the phase of MEG in one or more frequencies 

to partially collapse. Such an event causes a partial ‘phase resetting’ induced by the stimulus and 

contributes to the event-related response (ERF) with or without an increase in MEG power (Makeig et 

al., 2004). Research indicates that phase reset is more likely to occur in the trough of theta (4-6 Hz), 

alpha (4-8 Hz) and gamma (25-55 Hz) frequency ranges (Haegens, Händel, & Jensen, 2011; Jacobs, 

Kahana, & Ekstrom, 2007; Quyen & Bragin, 2007).  

 

This seemingly direct link to the underlying physiology is less conclusive for oscillatory power. 

However, while fast fluctuations of neural activity reflected by changes in phase are important, changes 

in amplitude, which typically occur on the scale of hundreds of milliseconds to seconds, are also 

thought to be influential. It has been demonstrated that variability in the power of spontaneous 

oscillations in specific frequency bands predicts perceptual performance (Ergenoglu et al., 2004;  

Hanslmayr, Klimesch, & Sauseng, 2007; Thut, Nietzel, Brandt, & Pascual-Leone, 2006) and sensory-

driven changes (Dijk, Schoffelen, & Oostenveld, 2008; Gross, Schnitzler, Timmermann, & Ploner, 2007). 

Ongoing pre-stimulus oscillatory power has been instrumental in demonstrating a variation in 

perceptual processing. For example, alpha amplitude reduction correlate with improved performance 

(e.g. Thut et al., 2006) and amplitude increments associated with impaired performance (e.g. Kelly et 

al., 2006). 

 

These ongoing brain oscillations suggest that sensory systems operates in a discrete manner, 

sampling information in the sensory environment within these specific time-windows of high and low 

excitability states (VanRullen & Busch, 2011; VanRullen, 2016 ). Sensory perceptual sampling at the 

neuronal level may be characterised by the specific features in the amplitude and phase of neural 

oscillations. For example; previous findings show the amplitude of pre-stimulus alpha (8-12 Hz) 

oscillations (Ergenoglu et al., 2004; Hanslmayr, Klimesch, & Sauseng, 2007; Klimesch, Sauseng, & 

Hanslmayr, 2007; Romei, Gross, & Thut, 2012; Romei, Gross, & Thut, 2010; Romei, Rihs, Brodbeck, & 

Thut, 2008; Thut, Nietzel, Brandt, & Pascual-Leone, 2006); and the phase of occipital alpha rhythms, 

are associated with accuracy in perceptual  discrimination of near-threshold visual stimuli (Buschman 

& Miller, 2009; Laura Dugué, Marque, & VanRullen, 2011; Hanslmayr et al., 2007; Mathewson, Gratton, 

& Fabiani, 2009; VanRullen, Guyonneau, & Thorpe, 2005); including the probability of neural firing 
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(Fries et al., 2007; Lakatos et al., 2005; VanRullen, Reddy, & Koch, 2005; Whittingstall & Logothetis, 

2009). These findings reveal that alpha-band oscillations modulate incoming sensory information, 

whereby a phase correlated inhibitory influence gates neuronal firing in a cyclic manner as a function 

of time (Busch, Dubois, & VanRullen, 2009; Jensen & Mazaheri, 2010; Klimesch & Schack, 2004; 

Mathewson & Gratton, 2009; Sauseng, Klimesch, & Gruber, 2007; Sauseng, 2012; Thut et al., 2006).   

 

 

R h y t h m i c  v e r s u s  d i s c r e t e  p e r c e p t i o n  

Having introduced neural oscillations their role perception suggests that the brain subsamples its 

environment in a discrete way. However, the notion of whether perception really does operate in a 

discrete way has been widely debated (for reviews see; Vanrullen, 2013; VanRullen & Koch, 2003; 

VanRullen, 2016b). Opponents argue that perception operates in a rather continuous way, and this 

debate has gained the term the “discrete vs. continuous perception”. Researchers in support for the 

continuous nature of perception, argue that oscillations could drive a continuous sequence of sensory 

inputs into our perceptual systems forming a series of discrete cycles or “snapshots” (Harter, 1967; 

Pitts & McCulloch, 1947; Stroud, 1956). However, this view has become less accepted nowadays. The 

argument for rhythmic perception (also known as, cyclic or periodic perception – and these terms will 

Figure 1.1. Schematic of phase-resetting influence on perception. The instantaneous neural 
oscillatory systems are present prior to stimulation and is at a higher probability of being below the 
threshold for neural firing to occur, the membrane voltage of visual neurons oscillate between states 
of depolarization (high excitability) and hyperpolarisation (low excitability). At the onset of the 
transient auditory stimulus (vertical dotted line), the phase of ongoing oscillations are either reset to 
a fixed value (phase-reset) or a visual oscillations is evoked. Whereby, if the target visual stimulus 
(V1) is presented during a state of more depolarization (after SOA1), the probability of accurately 
detecting and/or discriminating a near-threshold stimulus is higher because it can more readily 
exceed the firing threshold of visual neurons and evoked a brain response with specific perceptual 
consequences for conscious detection and subsequent reaction. If, however, the target stimulus (V2) 
occurs during the more hyperpolarized state (After SOA2), it is less likely to excite visual neurons 
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be used interchangeably throughout this thesis) implies that the oscillatory phase dynamics modulate 

perception rhythmically, where certain phases give rise to more efficient processing while at another 

phase the same process is less efficient. Discrete perception on the other hand, further necessitates 

that sensory perceptual events and neural processes are separated into discrete epochs (“snapshots”). 

By this account, events that are not perceived in one snapshot are differed to the next. Thus, oscillatory 

cycles modulate the temporal parsing of perceptual cycles. Within this framework, it is clear that 

neural oscillations are the optimal “candidate” mechanism that can reflect these perceptual cycles.  

 

One illusion that demonstrates both sides of this argument is the continuous wagon wheel illusion 

(Purves & Paydarfar, 1996). In this illusion a continuous periodic motion stimulus can sometimes be 

perceived as moving in the opposite direction, known as temporal aliasing (VanRullen, Reddy, & Koch, 

2006). In temporal aliasing, the signal (the wagon wheel) is a moving pattern, and the information 

processing system is taking temporally discrete samples with a sampling rate lower than the critical 

limit (of the system), then the system’s representation of the signal is inaccurate. This critical limit has 

been found to exists around 13 Hz and thus, around alpha band. The perception of the illusion is 

represented in with a peak in the power spectrum of the EEG at the same frequency. This illusion 

occurs sporadically and requires some time to adapt, leading some researchers to argue that 

perception is dependent on spurious activation of low-level motion detectors, requiring sufficient 

adaptation time, after which they begin to dominate perception (Kline & Eagleman, 2008) suggesting 

that the visual system is continually sampling our environment. In contrast, another theory which 

could explain the causes of this illusion is that the visual system samples the environment in a series 

of snap shots suggesting that our environment is not continuously sampled, but rather is discretely 

sampled (VanRullen, Carlson, & Cavanagh, 2007). However, these two seemingly independent theories 

can be reconciled (VanRullen, 2016b). Any periodic modulation of sensory processing will result in 

distortions of perceived timing that would in fact resemble a discrete temporal framing. Vanrullen 

(2016b) argues that essentially the distinction between these concepts is a matter of degree, and 

fundamentally, any perceptual periodicities are principally relevant to the question of discrete 

perception.    

C r o s s - m o d a l  p h a s e  r e s e t  

Conventional investigations into the mechanisms of perceptual processing have focused on activity 

within the primary sensory cortices as a function of their respective inputs. Research investigating 

multisensory stimulation have demonstrated that in addition to the preferred modality, extended 

cortical regions are modulated via cross-modal inputs related to nonpreferred modalities at the level 

of primary cortical areas (Kayser, Petkov, & Logothetis, 2008; Lakatos et al., 2009; Lakatos, Karmos, 

Mehta, Ulbert, & Schroeder, 2008). For example, stimulus input in one modality can cause a transient 

phase reorganisation of oscillations in another modality and eliminate the somewhat arbitrary state of 
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the underlying phase in the cortex. This in principle could lead to responses that are more predictable 

in the nonpreferred modality. This is often referred to as cross-modal phase resetting (CMPR) (Kayser 

et al., 2008; Lakatos et al., 2009).  

 

By  aligning the phase of separate oscillators, pre-synaptic potentials from one will arrive during a 

time when they can have maximal impact on a post-synaptic neuron (Fries, 2005; Voloh & Womelsdorf, 

2016). Aligning the phase thereby results in predictable “windows” of integration, and provide a way 

for an upstream receiver to segregate information that should be processed from that which should be 

ignored simply by shifting the relative phase (Fries, 2009). For example, during a low excitability phase 

(when local circuitry is less sensitive to perturbation), relatively stronger incoming excitation is 

necessary to elicit a post-synaptic spike, whereas a relatively weaker excitation is sufficient during the 

period of high excitability (Vinck et al., 2010). Therefore, a low intensity stimulus could encode in the 

high excitability phase, and the opposite hold true for a high intensity stimulus (see figure 1.1). In other 

words, on the macroscopic level, this characterises the mechanism whereby cross-sensory interactions 

prompts an evoked response by the occurrence of an exogenous sensory stimulus shifting or realigning 

the phase of ongoing neural ensembles to a specific value with each event. This is an index of functional 

connectivity between the two regions. To this end, the processing of a subsequent stimulus in another 

modality is either facilitated or supressed and is dependent on the exact relation between phase of an 

oscillation and the occurrence of a second stimulus. Through this mechanism of aligning neural events 

across modalities in relation to an extraneous event suggests that this is a candidate mechanism for 

multisensory integration. Several lines of research suggest that transient auditory stimulation can 

modulate visual responses in the visual cortex, in doing so influencing early sensory-perceptual 

processing (Fort, Delpuech, Pernier, & Giard, 2002; Giard & Peronnet, 1999; Mercier et al., 2013b; 

Mishra & Martinez, 2007; Molholm, Ritter, & Murray, 2002; Naue et al., 2011; Raij et al., 2010; Romei, 

Gross, & Thut, 2012). This idea is central to this thesis. 

E v i d e n c e  f o r  u n i m o d a l  a n d  c r o s s - m o d a l  p h a s e  r e s e t  

Sounds have consistently been shown to enhance the perception and detection of visual target 

stimuli through this mechanism (Diederich, Schomburg, & Colonius, 2012; Fiebelkorn et al., 2011; 

Lakatos et al., 2009; Mercier et al., 2013; Naue et al., 2011; Romei et al., 2012). Visual input leads to 

widespread modulation of processing and some have found visual input alone may activate the 

auditory cortex (Raij et al., 2010).  The exact underlying mechanisms however are still up for debate. 

In the dominant model, CMPR would not lead to increased signal amplitude (as measured with MEG or 

EEG) in the target sensory area (e.g. auditory input does not increase amplitude of visual activity) but 

rather realigns –or resets- ongoing activity to a state of high or low excitability. Through this 

mechanism, the visual system is systematically prepared for the expected imminent visual input, 

leading to potential gains in efficiency or sensitivity in sensory perceptual processing (Thorne, De Vos, 
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Viola, & Debener, 2011). Therefore, an exogenous auditory stimulus, such as a salient transient tone, 

is able to reset ongoing activity and thereby reveal the oscillatory modulation in perceptual 

performance.  

 

One of the first influential and fundamental studies to demonstrate pure phase resetting, was an 

investigation of multisensory interactions in primary auditory cortex (A1) in the macaque using 

somatosensory and auditory stimuli (Lakatos et al., 2007). In this study Lakatos et al. demonstrated 

that somatosensory related responses in A1 are characterized by a low amplitude supragranularly 

weighted current source density (CSD) modulation combined with no transient multiunit activity 

(MUA) correlate, indicating that while somatosensory input does alter the net local neuronal 

excitability (attributed by an organized post-stimulus CSD pattern in the averaged response) it does 

not alter the amount of net post-stimulus transmembrane current, and therefore does not “trigger” 

neuronal firing. In contrast to these findings, they also found that auditory, preferred modality stimuli 

result in an increase of net transmembrane current in all cortical layers, that aggregates to an evoked 

type response (but see section below: conceptual issues). Coincidently, this type of response is 

similarly characterised by a phasic MUA response caused by an increase in synaptic currents. As a 

result, phase-reset and evoked type responses are functionally different. Phase-reset is modulatory 

since it does not trigger suprathreshold neural firing, whereas evoked activity is a driving type of 

response, which results in significant increase in post-stimulus MUA indicating that specific 

information (e.g. frequency, location, intensity, etc.) about the stimulus is being transmitted. 

 

 They found that these two different types of responses have different spectral signatures. Here in 

the time-frequency domain, phase reset was restricted to enhancement of physiological responses at 

specific SOAs that correspond to cycles of the dominant delta, theta and gamma frequencies observed 

in the spectral profile of spontaneous auditory activity (Lakatos et al., 2005). The biased post-stimulus 

phase distribution (i.e., phase locking) was accompanied by little or no pre- to post stimulus increase 

in oscillatory amplitude, which is the hallmark of oscillatory phase resetting (Delorme & Makeig, 2004; 

Shah et al., 2004; but see conceptual issues section below). Opposed to this, they found that evoked type 

or driving responses were characterised by a sharp onset de-novo generated waveform, which in the 

time-frequency domain is represented by a spectrally distributed amplitude increase, coupled with a 

biased phase distribution similarly spanning the whole spectrum due to the sharp onset. It is 

noteworthy that these findings do not necessarily indicate that auditory, preferred modality stimuli do 

not reset ongoing oscillations, but that signatures of phase reset are “masked” by larger amplitude 

evoked activity.  

 

In a further study, they demonstrated through electrophysiological recordings in A1 from the 

macaque, that a somatosensory stimulus alone has a minimal effect on the amplitude of local field 
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potentials (LFP) but systematically aligns the phase of individual trials with a specific phase angle 

known to elicit maximal stimulus driven responses (Lakatos et al., 2007). Here they found evidence for 

a perceptual facilitation in the primary visual cortex following an auditory induced phase-reset. These 

findings suggest a supramodal coordination of theta-band oscillatory activity. Lakatos et al. (2009), in 

a follow on study, showed that visual stimuli modulated primary auditory activity via phase resetting. 

Notably, phase reset followed only when sensory stimuli were attended to or inherently salient, in 

contrast to evoked typed responses. Kayser et al. (2008) further demonstrated that oscillatory phase 

in auditory cortex can also be reset by visual input, and the opposite hold true whereby auditory 

regions can phase align visual oscillations. 

 

Thorne et al. (2011) using a combined reaction time- (RT) electroencephalography (EEG) 

paradigm, found similar results using an auditory frequency discrimination task. Here a short 

audiovisual stream was presented where two responses were recorded, the initial stimulus response 

and another to the target. Their findings revealed significant increases in phase concentration in alpha 

(8-12 Hz) and beta-band (13-30 Hz) when the visual stimulus preceded the auditory stimulus by a 30 

to 75 ms lag. By implementing a variable SOA, it was possible to show that visual perception 

systematically varied in a cyclic pattern time-locked to the auditory stimuli. Naue et al. (2011) provided 

complimentary evidence in a similar RT-EEG paradigm. They demonstrated how auditory stimuli can 

modulate visual discrimination of brief flashes of light to the left and right eye preceded by a binaural 

auditory stimulus with varying SOAs. Auditory stimuli were presented at 40 to 70 ms in increments of 

5 ms, prior to the light flashes. They found that the amplitude of beta-band (28.9 Hz) response was 

modulated as a function of SOA. Although manual RTs decreased with increasing SOA, they were not 

able to discern oscillatory effects, this could be due to the SOA range not being sufficiently long enough 

to reveal any oscillatory signatures.  

 

Romei et al. demonstrated that auditory stimulation can decrease the threshold of perceived 

phosphenes induced by a single pulse of transcranial magnetic stimulation (TMS) when applied over 

the occipital pole (Romei, Murray, & Merabet, 2007). Excitability of low-level visual cortices is pre-

perceptual and stimulus selective (Romei, Murray, Cappe, & Thut, 2009) and demonstrated both 

physiological and perceptual periodic fluctuations in visual alpha (~10 Hz) which followed an auditory 

induced-phase reset (Romei et al., 2012). Romei et al. (Romei, Gross, and Thut., 2012) presented brief 

sounds while simultaneously recording EEG and visual perceptual performance was assessed via 

visual excitability using TMS to induced phosphenes.. In the first of two experiments, phosphene 

perception rate showed a periodic fluctuation at ~10 Hz phase-aligned to the sound. In a second study 

combining TMS and EEG, on trials where TMS was administered revealed the same fluctuations of 

phosphene perception at a ~10 Hz pattern of EEG-derived measure of occipital cortex reactivity to the 

TMS pulses. On no-TMS trials, there was alpha phase-locking over both the auditory cortex and 
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posterior parietal-occipital regions implicating the visual cortex. These independently recorded 

variables were significantly correlated. This was taken as evidence that cross-modal phase locking of 

oscillatory visual cortex activity can show both physiological and perceptual properties consistent 

with auditory induced resetting of visual alpha activity. Importantly, perceptual and physiological 

periodicities were recorded on separate trials and revealed that electrophysiological fluctuations were 

representative of physiological substratum of the periodicities observed in the perceptual data. This 

was taken as evidence that cross-modal phase locking of oscillatory visual cortex activity can show 

both physiological and perceptual properties consistent with auditory induced resetting of visual alpha 

activity.  

 

Busch et al. (2009) used EEG to demonstrate how auditory stimuli can modulate visual perception 

of near-threshold brief flashes of light to the left and right hemifields preceded by a binaural auditory 

stimulus. In this signal detection paradigm on average only half the stimuli were perceived although 

all stimuli were identical. The results show that the trial-by-trial variability of perception was 

systematically phase-locked to the tone onset at theta (4-7 Hz) and at alpha (8-12 Hz). This suggests 

that pre-stimulus phase angle of alpha-band activity predicts target detection performance. This 

notion was further support by Mathewson et al. (2009) who found that for undetected trials, the phase 

at stimulus onset was difference from that of detected trials. These findings demonstrate that 

mechanism whereby at certain phases of alpha and theta cycles, visual target detection of near 

threshold stimuli was higher compared to other phases. These accumulating findings provide the 

underpinnings of the inhibitory role of alpha activity, and is evidence towards the model of pulsed 

inhibition as described in  detail by Jensen & Mazaheri (2010).  

 

Mercier and colleagues (2013), using a simple detection task with data measured from intracranial 

recording from patients with epilepsy, found an auditory-driven phase reset in visual cortices. Here 

theta and alpha bands showed increased phase coherence to audio-visual stimuli relative to audio or 

visual presented separately. Fiebelkorn et al. (2013), were also able to show both physiological and 

perceptual phase related effects recorded from EEG using long auditory and visual SOAs between 2.5 

and 5 s. The data show phase-detection relationships were not confined to small set of certain 

frequencies, but rather were shown across a wide range of frequencies from low delta to high beta (1-

30 Hz). Stimulus detection was found to depend on the modulation of high-frequency phase from 

lower-frequency phase. Target detection was dependent not only on specific higher frequencies but 

was dependent on low-frequency phase. 

 

Until recently, the majority of studies investigating neural oscillations and the CMPR model have 

primarily come from electrophysiological measures such as EEG and MEG. However, electrophysiology 

is not the only tool that can be used to probe perceptual rhythms. Increasing new evidence using purely 
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psychophysical and behavioural measures are contributing to the literature (Diederich et al., 2012; 

Diederich et al., 2014; Fiebelkorn et al., 2011; VanRullen & Dubois, 2011). Early research report 

oscillations in perceptual accuracy (e.g. detection thresholds) and reaction time (Harter & White, 1968; 

Latour, 1967; Poppel & Logothetis, 1986; Venables, 1960). These are often reported in ‘alpha’ 

frequency range. For example, Diederich et al. (Diederich et al., 2012) used saccadic reaction onset 

times to visual stimuli preceded by an extraneous auditory stimulus across a range of 200 ms in steps 

of 2 ms to probe for underlying oscillatory activity, time-locked to the auditory stimulus. They found a 

reduction in mean response times which revealed a cyclic temporal profile. Using spectral analyses on 

the detrended mean response times, as a function of SOA, they found that performance was modulated 

in a cyclic way showing an oscillatory frequency in the 20-40 Hz frequency band. Spectral analysis of 

the trend in the response profile revealed an additional behavioural response at an oscillation between 

7 and 12 Hz. In a follow up study, Diederich et al. (2014) presented suprathreshold non-target auditory 

stimuli followed by a visual target stimulus at specific SOA. However, here SOA ranged from 0 to 404 

ms in increments of 4 ms, allowing them to detect lower frequencies that included the theta range. 

Furthermore, they recorded EEG simultaneously and provided direct evidence for an auditory induced 

phase resetting with specific consequences on visual target detection at 7 Hz (theta). In both studies, 

RTs to near-threshold visual target were reduced when the visual stimulus was presented in the 

optimal phase of theta.  

 

Consistent with these results another study using a purely psychophysical approach found an 

auditory induced facilitation of visual target detection of a near-threshold stimulus presented at 

varying SOAs (Fiebelkorn et al., 2011). They found that hit rates of visual-target detection were 

modulated as a function of SOA (that ranged from 500 ms to 6000 ms), phase locked to the auditory 

stimulus. Applying spectral analyses across the different SOAs, they found that the temporal profile of 

performance fluctuated at intervals that correspond to the wavelengths of delta and taken as indirect 

measurement in support for CMPR. In contrast to Diederich and colleagues, the emphasis was on a 

wide range of SOAs rather than small incrementing steps. This precluded identification of specific 

frequencies, but nonetheless identified periodicities in the response profile. This suggests that effects 

of phase reorganisation persist for the full six seconds tested. Furthermore, de Graaf et al. (Graaf, Gross, 

Paterson, & Rusch, 2013) reported a rhythmic modulation in hit rate following a 5.3 Hz and 10.6 Hz 

visual stimulation.  

 

In summary, the above reviewed research provides ample evidence for the periodic nature of 

perception, termed the perceptual cycles theory. These perceptual cycles represent clear support for a 

discretisation of information in the brain, both at the neuronal level and perceptual level. However, the 

majority of these studies focus of brief momentary stimuli presentations; in Chapter 2 and Chapter 3, 

I will provide evidence for a modulation of visual motion perception following a task irrelevant 
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auditory stimulus. VanRullen (2016) recently published a review article, and summarised the entire 

body of research as a spectral distribution of reported perceptual cycles, separated into visual and 

other modalities (including cross-modal interactions). The data shows that the majority of research 

report a primary peak at 10 Hz with a second at 7 Hz. This would suggest that similar neural 

mechanisms could support perceptual cycles in distinct modalities. Taken together the literature 

highlights a role for alpha (~ 10 Hz) for sensory periodicities, while theta (~ 7 Hz) rhythm can 

contribute to higher-level, attentional cycles. Chapter 2 and Chapter 3 will contribute to the existing 

literature and demonstrate a role of neural oscillations play in the integration of temporal information 

over time. In Chapter 3, demonstrates that these cross-modal findings are not constrained within 

sensory modalities, but can involve motor-sensory interactions.  

C y c l i c  m o d u l a t i o n  i n  c o r t i c a l  e x c i t a b i l i t y  

As early as 1933, George Bishop reported that the physiological importance of the brains oscillatory 

activity, in conjunction with stimulating the optic nerve he detected recurring or cyclic excitability 

variations in the visual cortex of the rabbit (Bishop, 1932). In the last couple of decades there has been 

a wealth of both human and animal research that demonstrates that neural excitability is inexorably 

linked to oscillatory phase (Bishop, 1932; Busch et al., 2009; Mathewson et al., 2009; Ploner, Gross, 

Timmermann, & Pollok, 2006; Rinzel & Ermentrout, 1998; Romei, Gross, & Thut, 2012; Schroeder et 

al., 2008; Whittingstall & Logothetis, 2009). Within this framework, the exact phase reset of ongoing 

oscillations following sensory input, in A1 for example, determines the effect of phase reset on 

subsequent, driving responses, if the subsequent ongoing oscillatory activity is reset to a high 

excitability phase. This concept is discussed in detail above, but here it is worth expanding on the 

findings from Lakatos et al. (2007); they found phase reset of ongoing oscillations in A1 to their high 

excitability phase following somatosensory stimulation contralateral to the recording area, which 

when delivered simultaneously with auditory stimuli produced an enhanced auditory response. In 

contrast, ipsilateral somatosensory stimuli reset ongoing oscillations to their opposite or low 

excitability phase and when paired with auditory stimuli resulted in suppressed auditory responses. 

An additional mechanism determining the effect of phase reset on a subsequent driving type input is 

the temporal relationship between phase reset and incoming-evoked responses. In other words, there 

are more optimal and less optimal periods following the phase resetting event (in this study the 

somatosensory stimulus) for multisensory enhancement that are represented at immediate post-reset 

and there are further attributed to periods of delta-, theta-, and gamma-band oscillations.  

 

Studies combining ongoing oscillations with evoked responses (ERF/ERP) have revealed an inverse 

relationship between spontaneous oscillatory amplitudes and event-related responses in several 

modalities. These include visual evoked potential (Brandt & Jansen, 1991; Rahn & Basar, 1993a) 

somatosensory evoked potentials (Ploner et al., 2006), auditory evoked potentials (Rahn & Basar, 
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1993b), and TMS-evoked phosphenes (Romei, Brodbeck, Michel, & Amedi, 2008; Romei, Brodbeck, et 

al., 2008). Including an inverse relationship between occipital alpha activity and visual perception 

(Dijk, Schoffelen, & Oostenveld, 2008; Hanslmayr et al., 2007; Romei, Rihs, Brodbeck, & Thut, 2008; 

Romei, Brodbeck, et al., 2008; Thut et al., 2006). These studies scrutinise the interaction between 

perception and neural mechanisms that underlie the excitation of visual ensembles by transient 

sounds. For example, brief sounds can facilitate the excitability of the visual cortex whereby increasing 

the threshold of detection of TMS induced phosphenes (Romei et al., 2009, 2007; Romei et al., 2012). 

Specifically, auditory induced modulations in visual cortices and subsequent visual processing 

exhibited direct neural underpinnings in oscillatory activity, as auditory stimulation induced phase-

locking in the alpha-band oscillations over parieto-temporal areas (Romei et al., 2012). The networks 

in the visual cortex constitutes the alpha rhythm (Klimesch, Sauseng, Hanslmayr, & Gruber, 2007), and 

the nature of alpha oscillations provide a candidate proxy to the excitability of the visual areas (Busch 

& VanRullen, 2010; Dijk et al., 2008; Thut, Miniussi, & Gross, 2012; Thut et al., 2006). Furthermore, 

studies inducing changes in alpha phase using rhythmic transcranial magnetic stimulation (rTMS; 

Dugué, Marque, & VanRullen, 2011), and oscillatory transcranial direct stimulation (Neuling et al., 

2012) have demonstrated how the selective realignment of phase supports the idea that particular 

phases correspond to temporal windows of increased excitation that improve sensory processing.  

 

Trial-by-trial variablity in pre-stimulus activity (i.e. baseline) is shown to covary with the variability 

of iminent stimulus processing in specific frequency bands over posterior cortical regions (Dijk et al., 

2008; Hanslmayr et al., 2007; Romei, Gross, & Thut, 2010). The phase of pre-stimulus oscillations seem 

to be implicated in the perceptual fate of the upcoming visual input. Some studies demonstrate a 

relationship between pre-stimulus EEG, ERP amplitudes, and response latencies (Başar, Başar-Eroğlu, 

Karakaş, & Schürmann, 1999; Başar, 1998). Others focus on the relationship between ongoing 

neurophysiology and cognitive processes (Busch, Dubois, & VanRullen, 2009b; de Graaf et al., 2013; 

Vanrullen et al., 2011). Experimental tasks that probe perception of near threshold stimuli are able to 

integrate both these approaches. Animal studies, are a prime example showing that a subset of neurons 

preferentially fire during specific phases of the ongoing local field potential (LFP; Lakatos, Karmos, 

Mehta, Ulbert, & Schroeder, 2008; Lőrincz, Kékesi, Juhász, & Crunelli, 2009). It is increasingly reported 

that evoked responses (N1 and P1) to identical visual stimulation varies as a function of the phase of 

ongoing oscillations at the time of stimulation (Barry, Blasio, & Pascalis, 2014; Barry, Pascalis, Hodder, 

& Clarke, 2003; Jansen & Brandt, 1991; Kruglikov & Schiff, 2003; Lakatos et al., 2008; Mathewson, 

Gratton, & Fabiani, 2009; Sachdev & Ebner, 2004). For example, Haig & Gordon (1998) showed a cyclic 

modulation of the amplitude of the M3 evoked component that was phase-locked to alpha oscillatory 

phase. Their findings show that late ERP components (P3) are influenced by the phase of ongoing 

oscillations. 
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B a s i c  p r i n i p l e s  o f  o s c i l l a t i o n s   

 Apart from the role of an oscillation, a question of similar importance that is shrouded in ambiguity 

is where these oscillations actually come from. Although the membrane potential of single neurons 

inherently demonstrate regular fluctuations (Llinás, 1988), it appears that it is rather the interplay 

between many different neurons that produce the oscillations that are relevant for the perception in 

behaviour (Buzsáki & Draguhn, 2004). Neural oscillations as they are commonly measure, are the 

synchronised activity of neural populations (Uhlhaas, Roux, & Singer, 2009). Interestingly, different 

neural population exhibit different preferred frequencies in which they oscillate (Hutcheon & Yarom, 

2000). Neural oscillations can be recorded at various frequencies over different spatial locations, some 

of which will appear in this thesis. Chapter 1 and Chapter 2, demonstrate their reflection in 

psychophysical data. Whereas Chapter 2 and Chapter 3, will show oscillations recorded from the 

scalp with MEG. Other methods include intracranial recordings as local field potentials or their second 

spatial derivative, current source density on the cortical surface (ECoG). The later of these methods 

have laid the foundation on CMPR primarily been carried out in the animal literature as discussed 

previously (Kayser & Logothetis, 2007; Lakatos et al., 2009). Oscillations recorded from MEG have 

been associated with neural firing (Whittingstall & Logothetis, 2009).  

 

Oscillatory phase is defined as a fraction of a complete period that has elapsed with respect to an 

arbitrary reference (Canavier, 2015). Most commonly, a cosine wave is used as a reference (curve 

fitting procedures fitting cosine models, Chapter 2 and 3). Figure 1.2a shows two 1 Hz waves, which 

are shifted by 
𝜋

2
 . These two waves differ in time at each arbitrary point due to the phase shift. 

Alternatively, an oscillation can be conceptualised as a rotating vector in a complex plane, where the 

Figure 1.2. Oscillatory phase. A) Two phase-shifted oscillations (Blue and green; frequency 1 Hz, 
amplitude AU) differ in phase (upper panel, in radians) at each arbitrary moment in time. B) 
Oscillatory phase on a unit circle represented in the complex plane. The radius r reflects the 
amplitude and the angle reflects phase. Signals shown here correspond to the blue and green waves 
at the time t=0.5 s in A. Note, that their phase shift is now visible as the angle between them. 
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radius r (or absolute value) represents the amplitude and phase, the angle of an oscillations (Figure 

1.2b). Within this framework, every revolution of a full 360° cycle (or 2𝜋) by the vector represents a 

single cycle of the oscillation. The example shown in Figure 1.2a, the two signals (blue and green) at 

time t = 0 s, is shown again in Figure 1.2b, rather here this is in the complex plan on a unit circle.  

 

As previously introduced, oscillations in the brain vary across a broad range of frequencies. In 

general, frequency varies inversely as a function of spatial scale upon which that oscillation is 

maintained. Neurons that are closer together tend to have the strongest interconnections; this is due 

to the short conduction times for synaptic transmission. Therefore, fast oscillations (> 80 Hz) are 

typically confined to networks for a few thousands neurons, whereas slow delta (0.5-3Hz), theta (3-8 

Hz) and alpha (8-12 Hz) rhythms can be effectively synchronized regionally across large areas of the 

cerebral cortex. The relationship between frequency and the spatial scale of coherence leads to a 

characteristic of regional brain measurements by which the power of an oscillation decreases directly 

as a function of its frequency, the 1/f distribution. In principle, this 1/f distribution is largely attributed 

to the focal characteristics of higher oscillations and the attributes of waveform summation. 

Accordingly, after summation over a specific region, focal waveforms at different phases will partially 

cancel each other out.  

 

A variety of signal processing methods are used to estimate amplitude (or power, the squared 

amplitude) or phase of an oscillation. Whichever method, the intended outcome is a decomposition of 

the complex recorded signal into different frequency bands, each defined by amplitude and phase. 

After transformation, the spectra density of the signal is computed, this is used to define the relative 

contributions of various frequencies to the observed signal in an epoch. The outcome produces plots 

which exhibit a 1/𝑓 law (Buzsaki, 2006; Cohen, 2014). Oscillations that are present in the signal are 

thus expected to manifest themselves in the spectral plots as “peaks” deviating from the 1/𝑓 structure. 

Whereas broadband increases in power typically reflect asynchronous activity (Miller, Honey, Hermes, 

Rao, & Ojemann, 2014). As a results of lower frequencies contributing more power, peaks in higher 

frequencies may not be apparent on visual inspection (Buzsaki, 2006; Cohen, 2014). This can be solved 

by scaling the spectral density by 𝑓, in order to detect peaks. 

 

The MEG signal is thought to originate from dendrites of the pyramidal neurons (Buzsaki, 2006; 

Cohen, 2014). The magnetic field of individual action potentials are not typically measurable using 

MEG. These neurons have dendrites that are oriented in parallel to other neurons in large cortical 

columns. This is in opposition to the stellate neuron whose dendrites are arranged symmetrically 

around the soma. In the instance of the stellate neuron, electromagnetic fields generated by multiple 

dendrites will cancel because of its symmetric orientation. The electromagnetic signal is generated 

when the postsynaptic dendrite receives excitatory or inhibitory neurotransmitter across the synapse 
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resulting in an excitatory postsynaptic potential (EPSP) or inhibitory postsynaptic potential (IPSP). 

Before this takes place, the action potential in a pyramidal neuron maintains a negative voltage of 

about -70 mV (hyperpolarization) between the cell body and the extracellular fluid by actively 

transporting positively changed Na+ and Ca+ ions out of the cell body and negatively charged Cl- ions 

into the cell body. When excitatory neurotransmitters (e.g. glutamate) binds with ligand-gated ion 

channels at the synapse, the channels open and allow the influx of positive ions into the post-synaptic 

cell, partially reducing the polarization and increasing the probability of firing. Conversely, inhibitory 

neurotransmitters (e.g. gamma-aminobutyric acid), open negative ion channels, increasing 

polarization. If the post-synaptic cell reaches a critical threshold, voltage sensitive Na+ or Ca+ channels 

in the axon open, resulting in an action potential, propagated along the axon resulting in the release of 

neurotransmitters to the post-synaptic cell across the synapse. A secondary volume, current travels in 

the opposite direction in the extracellular space.  The pre-synaptic cell shifts to a hyperpolarized state 

by closing Na+ channels and opening K+ channels, resulting in the efflux of K+ and hyperpolarization 

of the cell, preventing the cell from firing again for a brief refractory period.  

 

 

 

Slower and more sustained oscillations occur due to the interconnectivity of populations of 

neurons. Many network oscillations in the brain, particular gamma (30-80 Hz) oscillations, involve the 

concerted activity of coupled populations of inhibitory interneurons. Many interneurons are 

connected directly electrically via synaptic gap junctions, increasing the probability of simultaneous 

firing between neighbouring cells. Complex interconnectivity of GABA interneurons with each other 

and principal excitatory pyramidal cells can lead to temporal windows of pyramidal activity counter-

phase to the activity of the local interneuron cluster (Bartos, Vida, & Jonas, 2007). This precise 

Figure 1.3. Schematic of morphology of a neuron.  
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rhythmic timing of pyramidal activity can greatly enhance the efficiency of communication between 

separate local circuits through synchronous spike timing (Womelsdorf, Schoffelen, & Oostenveld, 

2007), a process known as “communication through neural coherence” (Fries, 2005). As inhibitory 

interneuron ensembles can be triggered and phase-locked by a single neuronal input (Miles, 1990), 

functional phase locking can occur between distant cortical sites (Traub, Whittington, Stanford, & 

Jefferys, 1996). Although, the majority of cross-regional phase coupling is mediated by slower 

frequencies which in turn modulates gamma activity (Engel, Gerloff, Hilgetag, & Nolte, 2013; Liebe, 

Hoerzer, Logothetis, & Rainer, 2012; Sauseng & Griesmayr, 2010), to allow for the longer windows of 

integration required for sustained long range coupling. The exact frequency and direction of coupling 

in the brain depends on the region and task. 

P h a s e  r e s e t  m o d e l   

Phase-resetting characteristics can be measured for a single oscillating neuron (Farries & Wilson, 

2012; Wang, Musharoff, & Canavier, 2013) or network of neurons (Akam, Oren, Mantoan, & Ferenczi, 

2012; Zhang & Lewis, 2013). Establishing that a phase reset has occurred first requires signal 

processing tools to measure that an oscillations was present (Sauseng, Klimesch, & Gruber, 2007). One 

general procedure for detecting an oscillation requires signal filtering based on a priori knowledge and 

a transformation of the signal using time-frequency analyses using one of a variety of methods (Bruns, 

2004). The majority of studies concerning the functional role of oscillations have primarily focused on 

oscillatory amplitude in particular frequency bands. However, oscillations are not only defined by 

frequency and amplitude but also by phase (see figure 1.2). 

 

 Figure 1.4 shows an oscillatory where phase is defined and shows how it can be reset, using a 

simple network oscillator model (Wilson & Cowan, 1972), that consists of the average firing rates of 

two neural populations, one excitatory (E) and one inhibitory (I). In the model, the phase ɸ evolves 

from 0 to 1 (this is also commonly represented by the modulo 2𝜋 instead) in proportion to the elapsed 

time (ɸ = 𝑡/2𝜋) for an undistributed oscillator, but can be phase reset by an external stimulus. Here, 

the advance or delay is quantified as the phase resetting ∆ɸ in a phase transmission curve (PTC) with 

the new phase a function of the old phase ɸ𝑛𝑒𝑤  +  ɸ𝑜𝑙𝑑  +  ∆ɸ. In figure 1.4.C, the new phase is 

established within a single cycle, but in principle, more cycles may be required. A continuous PTC is 

shown for a near-threshold stimulus (the type of stimuli that is used on Chapters 2 and 3) shown in 

Figure 1.4.D2. The discontinuity results from the abrupt transition between the delays due to 

prolonging an existing peak (Figure 1.4.C1) and advances due to initiating a new peak (Figure 1.4.C2). 

Here, the figure shows that both PTCs reflect partial resetting, although E2 is more complete than that 

of E1. Many coding mechanisms require full resetting; this is depicted, as the PTC being flat and the 

new phase is independent of the old phase. Full resetting is not assured for arbitrary stimuli to a given 

oscillator. LFP and M/EEG measure the synchronisation of neural ensembles collectively. Numerous 
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studies investigating phase resetting (and by extension CMPR) have used a variety of methodologies 

to investigate this model. This in part, is due to the inherent measurement limitations involved in 

determining genuine phase reset (Thorne & Debener, 2014). This is because transient sensory 

responses are evoked in both the visual and auditory cortex, making it difficult to differentiate between 

transient responses, and genuine cross modal phase resetting (Makeig et al., 2004; Shah et al., 2004; 

Sauseng et al., 2007). 

 

 

 

Figure 1.4. Schematic explaining phase resetting using the Wilson-Cowan model. A) Excitatory 
(E) and inhibitory (I) activity and the simulated local field potential (LFP). Phase 0 is the peak of the 
E activity. B) Phase is marked on the circle in the plane of firing rates of the two populations. Green 
and magenta arrows indicate the direction of an external excitation (applied to the excitatory 
population). C) An external perturbation (vertical coloured arrows) phase shifts the perturbed 
(coloured) traces for the excitatory population compared to unperturbed (black) traces by the 
amount shown by the horizontal arrows. C1) an input at phase 0.05 causes a delay. C2) an input at 
phase 0.4 causes and advance. The old phase just prior to the stimulus is repeated on the unperturbed 
(black) waveform at multiples of the cycle period (vertical dashed line) after the input, but the new 
phase on the coloured traces at that point differs from the old phase by the phase shift. D) The PRC 
plots the phase shift as a function of the phase of the input perturbation. Slopes outside the stabilizing 
range (−2 to 0) are indicated in red. (D1) Weak input. (D2) Strong input. The arrows correspond to 
the perturbations in B and C. E. The phase transition curve plots the new phase (modulo one) versus 
the old phase. E1. For a weak input, the range of new phases is equal to that of old phases. E2. For a 
strong input, the range of new phases can be much smaller than the range of old phases. (reproduced 
with permission;  Canavier, 2015).  
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C o n c e p t u a l  i s s u e s :  n e u r a l  g e n e r a t o r  o f  p h a s e  r e s e t  

As early as 1974 (Sayers, Beagley, & Henshall, 1974), the oscillatory phase reset mechanism from 

sensory inputs was proposed whereby the brain aligns a specific phase of its neural oscillations to 

these inputs. This notion did not gain scientific interest until a controversial paper by Makeig (Makeig, 

Westerfield, & Jung, 2002), where he argues that sensory ERPs are attributable to the reorganisation 

or reset of the phase of neural oscillations in particular frequency bands by sensory related inputs. 

This sparked a decade long debate, in which research groups endeavoured to elucidate what – if any- 

portion of the sensory ERP is due to phase reset (Barry, 2009; Başar et al., 1999; Brandt, 1997; David, 

Harrison, & Friston, 2005; Fell et al., 2004; Gruber, Klimesch, & Sauseng, 2005; Hanslmayr et al., 2007; 

Klimesch, Sauseng, Hanslmayr, et al., 2007; Klimesch et al., 2004; Kruglikov & Schiff, 2003; Makeig, 

Westerfield, Jung, & Enghoff, 2002; Mäkinen, Tiitinen, & May, 2005; Mazaheri & Jensen, 2006; Mazaheri 

& Picton, 2005; Naruse, Matani, Hayakawa, & Fujimaki, 2006; Penny, Kiebel, Kilner, & Rugg, 2002; 

Rizzuto et al., 2003; Sauseng et al., 2007; Shah et al., 2004).  

 

The pure phase reset model, argues that there is simply a phase resetting of ongoing oscillations to 

a specific value in each trial, without any amplitude increase in the post stimulus time-window 

compared to the baseline period. To this end post stimulus M/EEG oscillations are aligned or “phase-

locked” across trials, as a result positive and negative peaks do not average out and are detectable in 

the average responses a speaks and troughs of the ERF/P (Başar, 1980; Klimesch, Sauseng, Hanslmayr, 

et al., 2007; Makeig, Westerfield, Jung, et al., 2002a; Sayers et al., 1974). This theory contradicts the 

long held assumption that neural responses are newly generated in response to an external stimulus 

(i.e., “evoked response”), are a superposition on the ongoing M/EEG and are characterised by an 

amplitude increase from pre-to-post stimulus time-windows in each trial (Jervis, Nichols, Johnson, & 

Allen, 1983; Mäkinen et al., 2005). In recent years, this debate has become less polarised following 

substantial findings from intracranial recordings, which show that there is a non-linear relationship 

between these mechanisms (Lakatos, Schroeder, & Leitman, 2013; Lakatos, Shah, Knuth, & Ulbert, 

2005; Peter Lakatos et al., 2009, 2013, 2007, 2008; Mäkinen et al., 2005). These studies reconcile both 

hard arguments and demonstrate that it is both phase reset and evoked typed neural activity that 

contribute to the ERF/P.  

 

In addition, recent evidence suggests that ERF/Ps recorded on the scalp are a combination of 

evoked activity and phase reset of ongoing oscillatory activity (Barry, 2009; Olivier David, Kilner, & 

Friston, 2006; Delorme & Makeig, 2004; Gomez-Ramirez, Kelly, & Molholm, 2011; Min, Busch, Debener, 

& Kranczioch, 2007; Telenczuk & Nikulin, 2010); although the relative contribution from each is still 

very much debated since due to volume conduction and summation of synchronous neural activity, 

even pure phase reset involving several different neural ensembles exhibit an evoked type, “added” 
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post-stimulus activity (Sauseng, Klimesch, & Gruber, 2007). Nonetheless, due to elimination of volume 

conduction and the existence of high temporal resolution measures, intercortical recordings on the 

mesoscopic scale can distinguish between stimulus related phase reset and evoked type activity.  

M a g n e t o e n c e p h a l o g r a p h y  

The first biomagnetic signal measurements were magnetocardiographic (MCG), recorded by Baule 

& McFee (1963). Here two coils with a ferrite core and when wired to create a series of opposite 

polarity, they formed a gradiometer that could detect biomagnetic fields. Considerable improvements 

to this concept was made by David Cohen, he used a low-noise amplifier and a magnetically shielded 

room (Cohen, 2004). Using this set-up, Cohen attempted to record the first MEG measurement in 1968, 

although signal-to-noise was extremely poor. Then in 1969 a new type of sensor was created by Jim 

Zimmerman, known as super-conducting quantum interference device (SQUID; Wikswo, 1995).  By 

1971, commercially manufactured SQUIDS had become available, which Cohen utilised to record the 

first MEG recording, figure 1.4 (Cohen, 1972). 

 

 

 

 

Traditionally, it was thought that only the primary current is detectable outside of the head but 

more recent analyses have cast doubt on this view and suggest that volume currents, in some instances, 

may be more prominent at the sensor level than primary currents (Uitert & Johnson, 2004). It is 

estimated that approximately 100,000 synchronised dendritic currents (±1nAm) are required to 

detect a field outside of the head. If there are a suitable number or EPSPs as compared to IPSPs that 

reach the axon hillock, an action potential is initiated down the axon to the dendrite of the next neuron. 

This process within the axon is similar to that of the dendrite but happens on a much faster time scale. 

Furthermore, the magnetic field generated by an action potential is representative to a current 

quadrupole where there is a flowing ‘train’ of cell depolarisation followed by repolarisation. The 

magnetic field generated by an action potential falls off as 
1

𝑟3 as compared to 
1

𝑟2 for a current dipole. 

This decrease in field propagation coupled with the rapid nature of action potentials, which makes 

synchronised firing less likely, results in the majority of MEG signal being generated by dendritic rather 

than axonal currents. Even with the synchronous activity of 100,000 dendrites, the magnetic field 

outside of the head is extremely small, ±100fT. This is far smaller than the earth’s magnetic field and 

Figure 1.5. The first MEG measurement. MEG signal recorded in 1971 (taken from Cohen, 2004)) 
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typically electronic equipment found in most laboratories. SQUIDS can be arranged either as a 

magnetometer, an axial gradiometer or planar gradiometer. Magnetometers are the simplest of pick 

up coils, which consist of a wire with a single loop that measures the magnetic field (figure 1.5., B) 

through the loop.  An axial gradiometer consists of two coils arranged atop one-another and the 

magnetic field gradient can be measured from the difference between the two, thus enhancing noise 

cancellation. Finally, planar gradiometers also consist of two coils, but these are aligned on the same 

horizontal plane. These too measure the magnetic field gradient but in the orthogonal orientation to 

axial gradiometers. As the strength of B follows the inverse square law (Figure 1.5), which dictates that 

closer sources have a larger field, external environmental noise can be removed. 

 

 

The neuromagnetic fields being measured are many orders of magnitude smaller than typical 

ambient magnetic fields (e.g., geomagnetic field of the planet Earth). MEG equipment must be sensitive 

enough to measure the relevant neurological fields, but insensitive to much larger noise signals. MEG 

systems employ specific design features to overcome potential sources of noise. Firstly, environmental 

noise fields are greatly attenuated by housing the complete measuring instrument in a magnetically 

shielded room. Secondly, SQUID magnetometers are utilised for their superior noise performance. 

Finally, the output from the SQUIDs are amplified using low-noise instrumentation amplifiers. These 

features can lead to spectral noise densities of less than 5𝑓𝑇/√𝐻𝑧 . Many systems implement analogue 

and digital noise reduction improve further the signal-to-noise ratio. During MEG, the output from 

every magnetometer (or a subset of them) is recorded over time. Stimuli (auditory or visual) often 

presented to the participant during the recording to investigate neurological responses. Spontaneous 

brain activity can also be measured. MEG spatial resolution can be better than 3 mm (Cohen, 1972; 

Hämäläinen, Hari, Ilmoniemi, Knuutila, & Lounasmaa, 1993; Hari, 1993). However, this depends on 

several factors including the analysis method, number of sensors, the location of the activity and the 

presence of noise. Temporal resolutions in MEG range down to 1 ms or less. 

Figure 1.6. MEG field gradient. Schematic of the magnetic field gradient from external and neural 
sources as detected by axial-gradiometer 
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Thesis overview 

C h a p t e r  2  a b s t r a c t :  B e h a v i o u r a l  o s c i l l a t i o n s  r e f l e c t  s e n s o r y  

p e r c e p t u a l  c o n s e q u e n c e s  o f  c r o s s - m o d a l  p h a s e  r e s e t  

Cortical oscillations are implicated in the gating of information flow. Oscillations are linked to 

variety of cognitive processes such as visual sensory perception which cycles at the characteristic 

frequencies of brain rhythms. The inherent fluctuations in the phase of neural oscillations are thought 

to be linked to the periodicities observed in sensory perception. Previous research has shown that the 

presentation of a brief sensory event in one modality can affect activity within hierarchically organised 

early sensory cortical regions in another modality. This modulation by cross-modal input through 

resetting the phase of ongoing intrinsic oscillations has been demonstrated in animal and human 

research. Here we investigated this mechanism and evaluate whether auditory induced phase resetting 

of primary sensory visual oscillations would affect perceptual performance. 24 Participants performed 

an apparent motion discrimination task of a dynamic dot pattern presented at one of 18 delays (SOAs) 

following a brief tone. If the target stimulus was presented at the optimal phase of the auditory-induced 

phase reset of visual cortical oscillations, then this should have specific behavioural consequences in 

sensory perception. The second aim of the experiment was to probe the underlying visual systems 

sampling frequency. To this end, the phase detection relationships were probed at various coherent 

motion stimulation lengths (i.e. temporal integration windows). Signal processing methods revealed a 

systematic variation in perceptual accuracy across the SOAs. Revealing a cyclic modulation that was 

explained by fitting 4-9 Hz sine models, consistent with an auditory phase resetting of visual theta-

alpha oscillations. In conclusion, these data provide evidence for the discrete sampling of perception 

that is modulation through cross-modal interaction. Specifically, we demonstrate the role low 

frequencies oscillations play in the integration of temporal information over time. Finally, we show 

that a transient exogenous tone can modulate visual motion perception. 

C h a p t e r  3  a b s t r a c t :  A u d i t o r y  d r i v e n  c r o s s - m o d a l  p h a s e  r e s e t  o f  

v i s u a l  o s c i l l a t i o n s  p r e d i c t s  v i s u a l  m o t i o n  p e r c e p t i o n .  

This chapter was a partial replication of the previous chapter. In the study we extend these finding 

using MEG. To this end, the underlying oscillatory dynamics were investigated. Results clearly show a 

significant cyclic pattern in behavioural d-prime accuracy performance and an oscillatory modulation 

in the ERF component in alpha frequency in the visual cortex. These findings are in-line with occipital 

alpha-oscillations underlying the periodicity in visual perception. This offers support that visual ERF 

component may serve as a proxy for cortical excitability that is modulated by tone-onset. Cross-modal 

phase resetting modulates intrinsic brain-rhythms and subsequently influences sensory perception.  
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C h a p t e r  4  a b s t r a c t :  C r o s s  m o d a l  e n h a n c e m e n t  f o r  m u l t i s e n s o r y  

p r e d i c t i o n s  o f  s e l f - g e n e r a t e d  s t i m u l i .  

The first two experiments support the view that CMPR is a versatile, flexible and efficient 

mechanism for sensory gain control. The process of selective attention is an attribute of the biased 

competition model that assumes that attention influences visual processing by enhancing the input 

gain for the group of low-level neurons associated with an attended behaviourally relevant stimulus 

over those groups of neurons related to the unattended stimulus. Another well-studied model case for 

this fundamental operation is the interaction between motor and sensory areas. Motor action leads to 

predictable sensory consequences. This predictive coding is associated with attentional 

neuromodulatory gain control in sensory processing, which reflects encoding of precision by the 

excitability of neural populations that report prediction errors. The very fact that the sensory 

consequences are predictable, changes the way they are processed in the brain and the associated 

percept. Specifically, self-induced sensory stimuli lead to reduced activation in sensory cortex. The 

exact mechanisms are yet unclear. However, inter-areal phase resetting is a potential mechanism, 

which may index the forward model account of motor-to-somatosensory prediction account to 

different sensory modalities. This experiment demonstrates that CMPR may be a candidate mechanism 

that could index the interactions between motor and sensory modalities. Here we demonstrate the role 

of neural oscillations play in sensory attenuation for self-generated unisensory and multisensory 

stimuli. 
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Chapter 2 

 

Behavioural oscillations reflect sensory perceptual 
consequences of cross-modal phase reset 
 

2.1 Introduction 

Research has demonstrated a mechanism whereby a transient tone can modulate the phase of 

visual oscillations whereby enhancing perceptual salience for detecting or discriminating subsequent 

visual stimuli (Fiebelkorn et al., 2011; Naue et al., 2011; Romei et al., 2012; Watkins, Shams, Josephs, 

& Rees, 2007; Watkins, Shams, Tanaka, Haynes, & Rees, 2006). For example, a tone has been shown to 

improve detection of near threshold lights (McDonald, Teder-Sälejärvi, & Hillyard, 2000; Noesselt et 

al., 2010), or enhance the detection of phosphene perception (Romei et al., 2012). This suggests that 

the underlying neuronal oscillatory systems have direct consequences on behaviour. Research 

suggests that this inter-regional communication can be achieved through oscillatory synchrony 

between modalities (Diederich, Schomburg, & Colonius, 2012; Fiebelkorn et al., 2011; Graaf et al., 

2013; Song, Meng, Chen, Zhou, & Luo, 2014). However, the majority of studies investigating this 

mechanism within the framework of multisensory integration use brief, momentary stimuli, and focus 

either on the spatial domain (Eimer & Driver, 2000; Landau & Fries, 2012a) or detection of a single 

transient near-threshold stimulus (Fiebelkorn et al., 2011; Kayser et al., 2008; Naue, Rach, Strüber, & 

Huster, 2011; Romei, Gross, & Thut, 2012). What is less known, is the interaction between the auditory 

modality on spatiotemporal visual motion perception.  

 

Previous studies have demonstrated that different presentations of sounds can affect the precision 

or quality of a visual motion percept, similarly when the sound in not task relevant (Kim, Peters, & 

Shams, 2012; Sekuler, Sekuler, & Lau, 1997).  For example, brief sounds can alter bi-stable visual 

motion precepts (Sekuler, Sekuler, & Lau, 1997) and task-irrelevant acoustic motion can enhance 

visual motion detection (Kim, Peters, & Shams, 2012). This suggests that there is a dynamic interaction 

between auditory and visual motion evidence and that it is task dependent. One candidate mechanism 

that could account for these inter-regional connections, is cross-modal phase resetting. Studies which 

investigate this possible mechanism have suggested that the direction of cross-modal interactions 

depends, at least in part, on the structure of the stimuli; that is, the modality that carries a signal which 

is more discontinuous (and hence more salient) becomes the influential or modulating modality (Luo, 

Liu, & Poeppel, 2010; Shinsuke Shimojo & Shams, 2001). Where a transient, and therefore more 

http://www.sciencedirect.com/science/article/pii/S0028393213003941#bib77
http://www.sciencedirect.com/science/article/pii/S0028393213003941#bib34
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discontinuous and structured, stimulus alters the perception of a continuous visual stimuli regardless 

of its modality (Sekuler et al., 1997; Shimojo, Watanabe, & Scheier, 2001; Watanabe & Shimojo, 2001; 

Katsumi Watanabe, 2001). However, the exact neural mechanism associated with auditory induced 

enhancement of dynamic visual motion detection remains poorly understood, with only sparse 

behavioural evidence.  

 

Behavioural studies have failed to find conclusive evidence for sensory interaction between the two 

modalities within the framework of auditory to visual motion perception. For example, in a motion 

detection task of near threshold auditory and visual stimuli researchers (Alais & Burr, 2004; Wuerger, 

Hofbauer, & Meyer, 2003) found that detection accuracy could be explained rather by statistical 

(probability summation) or maximum likelihood integration of the two modalities, rather than through 

sensory interactions. In the current study using a purely behavioural approach, we investigated 

whether an exogenous salient tone (task irrelevant) could modulate the detection of motion in a near-

threshold visual stimulus. Here the results are interpreted as evidence of inter-areal phase resetting. 

Similar to other behavioural studies we concentrate on purely psychophysical measures. Which 

enables inferences to be made on the underlying oscillatory activity, and will also inform on the 

psychological and perceptual consequences of visual motion discrimination and detection. Several 

studies (Mercier et al., 2013; Naue et al., 2011; Romei et al., 2012) introduced in the main introduction 

have shown that a transient sound can modulate the amplitude and phase of low frequency oscillation 

over occipital areas. Within this framework, we could investigate whether behavioural oscillations are 

evident, that may underlie an auditory induced enhancement of the temporal integration of motion 

perception. 

 T h e  c u r r e n t  s t u d y  

The current paradigm required participants to detect and discriminate, at near-threshold stimulus, 

the direction of apparent coherent motion in a circular dynamic random dot kinematogram (RDK). At 

the start of each trial, the RDK remained as dynamic moving dots “noise”, with no coherent motion 

until at one of eighteen SOAs, which followed a salient exogenous tone that was not task relevant. At 

this point, a defined percentage of dots in the circular random dot pattern would appear to rotate 

coherently, for a set number frames, producing the phenomenon a global coherent motion. The motion 

sequences rotated either clockwise, anticlockwise or not at all and participants were required to report 

the direction of coherent motion. The assumption is that the auditory stimulus would phase-reset the 

underlying visual oscillations to approximately the same phase on each trial and behavioural 

performance would change in a sinusoidal manner across SOAs following the tone-onset. By these 

means, we gain systematic control over visual cortical excitability. This would index an enhancement 

of perceptual sensitivity, as measured by d-prime (d’), for visual motion perception governing 

multisensory integration at the neuronal level. 
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In our signal detection paradigm, we predicted that, by presenting the target coherent motion at 

varying delays post-auditory-onset, we are able to reveal the temporal profile of discrimination (of the 

direction of visual motion) and detection (of motion or no motion) accuracy performance as a function 

of SOA. We would expect that depending on when the target coherent motion is presented (i.e. SOAs) 

would determine whether that coherent motion was accurately perceived or not. In other words, if the 

target motion falls within the optimal phase of the visual systems sampling rhythms, participants will 

have a higher probability of accurately detecting and discriminating the direction of coherent motion. 

Signal detection measures (McNicol, 2005) allows for the separation of perceptual level and decision-

level of near-threshold visual motion stimuli, in equation 2 (Methods section) with d’ parameter 

reflecting the participants accuracy to discern a sensory event from its background (perceptual level), 

and β parameter reflecting the participants decision criterion of response level (decision level). To this 

end, if these psychophysical measures were analogous to the modulation in cortical excitability 

indexed by oscillatory phase, then we would expect to see a cyclic modulation in performance accuracy 

time-locked to the tone-onset. We predict that if perception is rhythmically modulated this could be 

taken as evidence in support for the CMPR mechanism. Importantly and in contrast to previous studies, 

here accuracy in behavioural performance relies on the temporal integration of motion displacement 

frames. The present study therefore gives insight into the role phase has on visual motion perception, 

quantified here in behavioural oscillations which are a proxy of the underlying neural oscillatory 

mechanism. 

 

Previous research has found contrasting evidence for the frequency of phase detection 

relationships in a multisensory context. Considerable evidence demonstrates how pre-stimulus phase 

of ongoing oscillations contribute to the perceptual consequences, for example if a near-threshold 

stimulus is detected. What is less established however, is the relative contribution that different 

frequencies have on perception. Some previous work (Busch et al., 2009; Dugué, Marque, & VanRullen, 

2015; Lakatos et al., 2009; Mathewson et al., 2009; Romei et al., 2010, 2012) indicate frequencies 

between 4-14 Hz, while others (Besle et al., 2011; Fiebelkorn et al., 2011; Gomez-Ramirez et al., 2011; 

Lakatos et al., 2008; Schürmann, Başar-Eroglu, Kolev, & Başar, 2001) emphasis 1-2 Hz low delta-band 

frequencies to be particularly relevant to visual perception and awareness. It is noteworthy that the 

central difference between these findings is due to the manipulation of attention in experimental 

paradigms. Findings that report delta-band tend to manipulate attention in contrast to those in the 

alpha/theta range that have not. Frequently, studies manipulating attention appear to report lower 

frequencies entraining higher frequencies via functionally interconnected attentional-related brain 

areas.  

 

Taken together it is clear that neural oscillations exist in multiple frequency bands and as a product 

their perceptual consequences should display similar periodicities (VanRullen, 2016b; VanRullen & 
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Koch, 2003). By this account, we would argue that there is no one central sampling rhythm 

simultaneously affecting all aspects of perceptual experience often reported as the critical alpha (10 

Hz) sampling frequency. Multiple perceptual waves could indeed coexist within the brains networks, 

with different periodicities. To this end, the second aim of our experiment was to explore the specificity 

of the phase detection relationships at varying lengths of target visual stimulation. Specifically, we 

investigated the perceptual consequences of increasing numbers of displacement frames of target 

coherent motion. To achieve this there were three experimental conditions consisting of a, 5-frames, 

10-frames, 25-frames. Using a 100 Hz monitor these would result in temporal coherent motion 

stimulation lengths of 50, 100, 250 ms respectively. Importantly, the task difficulty remains constant 

across the experimental conditions the percentage of moving dots was individually titrated for each 

condition and participant. Such that the coherence level was set to near-threshold for each participant, 

such that on 75% of the trials, coherent motion could be detected and on the other 25%, coherent 

motion could go undetected. 

 

To successfully perceive global coherent motion, the visual system must integrate information 

across frames of spatiotemporal information for each successive frame displacement (Eagle & Rogers, 

1996; Lappin & Bell, 1976; Maloney, Mitchison, & Barlow, 1987; Swettenham, Anderson, & Thai, 2010). 

Whereby consecutive frame displacements are retrospectively perceived as continuous motion 

(Morand, Gross, & Thut, 2015; Ramachandran & Anstis, 1986). This integration of information over 

time is under attentional control (Cavanagh & Mather, 1989). Considerable evidence indicates that 

attention samples information rhythmically (Busch & VanRullen, 2010; Fiebelkorn, Saalmann, & 

Kastner, 2013; Gross & Schmitz, 2004; Landau & Fries, 2012; VanRullen, 2006; VanRullen, Carlson, & 

Cavanagh, 2007).  If it is by discrete processing that we sample our environment, then the displacement 

frames are bound together by the visual sensory system to produce the effect of global coherent motion 

at some points and not others, resulting in an oscillatory phase-detection relationship, representative 

of the underlying neuronal oscillations.  

 

 Visual neural ensembles enable the integration of inputs over a range of intervals that correspond 

to half cycles of oscillatory activity at various frequencies  (Schroeder, Lakatos, & Kajikawa, 2008). 

Therefore, a 10 Hz oscillation would integrate inputs that arrive within the duration of their ideal phase 

(half the period of a 10 Hz oscillations is 50 ms). Consistent with this idea, the three experimental 

manipulations, 2 Hz, 5 Hz and 10 Hz would correspond to temporal integration windows of 250 ms, 

100 ms and 50 ms respectively. Such that, these would integrate over their corresponding intervals of 

half cycles of ideal phase. Within this framework, by manipulating the length of coherent motion 

frames, we could investigate any behavioural sensory consequence induced by this “frequency-

tagging” type approach. The target coherent motion has a defined temporal frequency and here we 

explore the elicited effects of quasi-sinusoidal brain responses. There are two possible outcomes, 
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either the varying lengths of coherent motion will induce visual neural ensembles to oscillations at the 

stimulus frequency (fundamental frequency), which will be reflected as a corresponding frequency-

code reflected in behavioural perceptual performance. Alternatively, the underlying visual sampling 

frequency will remain stable irrespective of coherent motion stimulation lengths. 

2.2 Methods 

P a r t i c i p a n t s   

Twenty-four right-handed volunteers participated in the study (10 male, mean age 21.6 ± 1.1 

years). All participants provided informed written consent and received a monetary compensation for 

their participation. One participant was excluded for further analysis due to technical issues 

concerning behavioural threshold performance. None had been diagnosed with a hearing disability or 

had a history of significant neurological or psychiatric illness. Participants had normal to corrected-to-

normal vision. Handedness was defined by the Annett Hand Preference Questionnaire (Annett, 1970). 

Experiments were approved by the local ethical committee (University of Glasgow, The College of 

Science and Engineering) and conducted in conformity with the declaration of Helsinki. 

D e s i g n  a n d  p r o c e d u r e  

Participants performed an apparent motion discrimination task. Using a three forced choice design 

procedure, participants were required to indicate the direction of apparent coherent motion 

(henceforth, motion) in the RDK stimulus. The target onset of apparent coherent motion was presented 

at near-threshold. The three possible motion conditions were; coherent clockwise-, coherent 

anticlockwise- and/or no coherent-motion (control) condition. For the purposes of simplicity, both 

coherent motion directions will henceforth be referred to as the motion condition (MC), since data 

from these were concatenated to form one condition, and the incoherent motion condition (control) 

will be referred to the as no-motion condition (NMC). Reponses were made with the right hand using 

a nonmagnetic response pad (Lumitouch). They were instructed to respond either by pressing with 

their right index finger (placed on right most key), middle finger (placed on middle key) and ring finger 

(placed on left most key) for coherent anticlockwise motion, no-coherent motion, and coherent 

clockwise motion responses respectively.  

 

The experimental paradigm and stimuli are illustrated in Figure 2.1. Each trial started with the 

presentation of a circular random dot kinematogram (RDK) around a central fixation point. Dots 

appeared as ‘noise’ flashing on and off with an incoherent motion for a period of 0-300 ms, and 

remained for a jittered period (300-780 ms, intervals of 10 ms), after which depending on the type of 

condition either a binaural tone was present (tone condition) or not (no-tone condition). Following the 
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cessation of the tone or no-tone condition, the random dots remain as incoherent motion until one of 

18 possible stimulus-onset-asynchrony (SOAs) time points (310-490 ms, intervals of 10 ms), after 

which, a certain percentage of dots either rotated in a clockwise- or anticlockwise manner or remained 

as incoherent motion (control). The experiment consisted of three experimental conditions (described 

below) with 3 blocks in each lasting for approximately 6-7 mins in length. The design was created in 

such a way that blocks were continuous. A block consisted of 144 trials, where each SOA delay point 

was repeated 8 times. There were 48 trials per motion direction condition, where 18 trials were no-

tone trials and 126 were tone trials. No-tone trials formed 12.4 % of the total trials. The three 

experimental conditions manipulated the number of successive frames in the apparent motion 

sequence. Critically, this manipulation targeted the length of the temporal integration window in the 

RDK stimulus where information is integrated into a single percept over time. Each RDK frame was 

one refresh rate of the 100 Hz monitor (1 frame equal to 10 ms). The three experimental conditions 

were, five RDK frames, ten RDK frames and twenty-five RDK frames. These will be referred to as 5-

frames, 10-frames and 25-frames. Here the temporal framing integration window was 50 ms, 100 ms 

and 250 ms for each experimental condition respectively. 

S t i m u l i  

Stimuli were presented on a Sun Microsystems® 21-inch Flat-Screen Trinitron CRT colour monitor 

(X7136A FD, spatial resolution 1280 x 1024 pixels and refresh rate of 100 Hz). A chinrest maintained 

a constant viewing distance of 90cm to the screen. Tone were delivered binaurally via a set of 

headphones (Beyerdynamic®, DT770 PRO Headset-250 OHM). Sound stimuli levels were calibrated 

using a condenser using microphone and sound level meter. Sounds were presented at a self-adjusted 

comfortable level of approximately 65 dB SPL. Stimuli were generated off-line using Matlab 2013.b 

(The MathWorks®) and controlled using routines from Psychophysics toolbox (Brainard, 1997). To 

create a dynamic dot pattern, 1000 dots (white) with a 0.06° diameter and consistent separation 

formed a concentric-form random array, were centred around the fixation spot (0.15°), covered 7° of 

visual angle (with the centre 0.4° devoid of dots) and were presented on a uniform black screen (0.1 

cd/m² background luminance). A random dot pattern sequence was created whereby the oriented dots 

were aligned along a common trajectory, creating the effect of a dynamic Glass pattern (Ramachandran 

& Anstis, 1983, 1986; Ramachandran & Anstis, n.d.).  This alignment generates a global structure 

pattern of coherent motion, a fraction of dots moved at 15°/s for either 5-frames, 10-frames or 25-

frames depending on the conditions (10 ms/frames), and a titrated percentage (individual participant 

titration performed before each block) of dots were randomly replaced after each frame. Each trial 

commenced with a dot array as the first frame, the second frame was constructed by displacing 40% 

of dots in the first frame with a new random distribution for dots. A fraction of dots would displace a 

threshold amount of dots in the first frame 4 arc min distance in coherent clockwise, coherent 

anticlockwise, or no-coherent motion, this would be repeated for a four-frame apparent motion. This 
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fraction of dots moved coherently either clockwise- or anticlockwise to produce the target motion, 

theoretically conceptualised as apparent motion, while the other dots contained only random dot 

motion, with no coherent motion direction.  

 

The direction of coherent apparent and random motion was randomised for each trial. The 

coherence level was adjusted for each subject to attain a threshold detection rate of around 75 ± 5%, 

as previously reported by  Kim, Peters, & Shams (2012), auditory enhancement of visual motion 

detection in such a task is largest at intermediate levels of performance. This coherent apparent motion 

detection threshold was initially established in a separate session in which the patterns of the different 

coherences were systematically tested to measure psychometric curves. Then for the actual 

experiment this coherent motion detection level was adapted before the beginning of each 

experimental block. This ensured that the performance of coherence motion detection was kept 

constant over time. Across participants coherence levels were comparable (75 ± 15%; mean ± S.E.M; 

corresponding to 75% of dots moving in the same direction) and this varied of approximately 6% over 

time (subject average standard deviation). 

 

Figure 2.1. Experimental design.  RDK stimulus remained as random no coherent motion and 
presented on for a minimum of 300ms, and continued for a randomised jittered interval between 
300 and 700 ms to the onset of the binaural tone. Then at one of eighteen SOAs, following the tone-
onset, the dots in the RDK stimulus would appear to rotate in a coherent notion for a set number of 
frames. This producing the phenomenon a global coherent motion, which either rotated clockwise or 
anticlockwise, or remain as no coherent motion. The SOAs are at intervals of 10 ms.  

SOA (10 ms intervals) 
310 ms – 490 ms 

Jitter (10 ms intervals) 
300 ms – 780 ms 

0 ms – 300 ms 
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2.2.1  Data analyses  

P r e p r o c e s s i n g  b e h a v i o u r a l  d a t a  

To remove outliers’ only trials with reaction times between 200 and 1400 ms were used for 

analysis. Accuracy discrimination (as calculated below using signal detection theory) was the 

dependent variable. 

S i g n a l  d e t e c t i o n  t h e o r y  

The data were divided into cases where participants correctly discriminated the true direction of 

coherent motion in the dot pattern (hit) or incorrectly discriminated the direction of rotation (miss). 

Signal detection theory can be applied when there are two possible stimulus types – signal and noise – 

which must be discriminated (Green & Sets, 1966; Macmillan & Creelman, 2005). This measure takes 

the standardised (z-) value of the proportion of hits minus the standardised value of the proportion of 

false alarms (d’). This is necessary because an increase in hit-rate does not provide any information 

whether false alarms also increased due to a shift in response bias. Therefore, accuracy rate as 

characterised by d-prime (d’) served as the dependent variable of interest. This provides a more 

reliable indication of apparent motion discrimination ability in which hit-rate is corrected for the false 

positive rate. Equation 1 represents how d’-prime was implemented:   

𝑑′ =  𝓏(P(γ|𝑠)) −  𝓏(P(γ|𝑛))  

(1)  

 

 where 𝑑′ is the d’-prime statistic, with 𝓏(P(γ|𝑠)) the 𝓏-score of hits rates (correct responses), and 

𝓏(P(γ|𝑛)) being the 𝓏-score of the false positives, and finally the z-transforms of these two rates 

(where the z scores represent the area under a normally distributed curve with a mean of 0 and a 

standard deviation of 1 for the Hits and False Alarms ratios). Because the 𝓏 transform reaches infinity 

when percentages are equal to 0 or 100, datasets with values of 0 and 100% were assigned values of 1 

and 99%, respectively (Macmillan & Creelman, 2005). Response criterion was calculated as the 

normalized sum of hit and false alarm rates multiplied by − .5 for each SOA across conditions (i.e., 5-

Frames, 10-Frames, 25-Frames). The formula corresponded to  

 

𝑐 =  −0.5[ 𝓏(P(γ|𝑠)) +  𝓏(P(γ|𝑛)) ] 

(2)  

The criterion provided information about the participants' response bias in judging the target onset 

of RDK as coherent motion or no coherent motion, with a more conservative or liberal bias across SOAs 

(and conditions). A more conservative bias corresponds to positive criterion values. Instead, a more 
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liberal bias corresponds to negative criterion values. Unbiased responses are obtained when the 

criterion value is close to zero. As changes in sensitivity (d′) and response bias (criterion) are 

independent, signal detection theory distinguishes between discriminative and motivational 

components in perceptual decision-making. Criterion scores obtained were subjected to a Wilcoxon 

signed ranks test to evaluate any significant deviation of these values from 0. Further, we evaluated 

whether there was a significant difference in response bias across the three conditions.  

C y c l i c  m o d u l a t i o n  i n  b e h a v i o u r a l  p e r f o r m a n c e  

Group-level statistics. The behavioural experiment focused on the temporal profile of d’ as a function 

of the visual motion discrimination accuracy over the variable delay time points (18 SOAs) between 

tone onset and onset of target stimulus (coherent motion). To investigate whether there was a cyclic 

pattern in d’ performance, a curve-fitting procedure (cosinusoidal curve) was applied with custom 

software in MATLAB using the robust nonlinear least-squares method.  Group-averaged d’ was 

analysed for each experimental condition seperately after linearly detrending the data to remove 

linear effects across SOAs and retain any cyclic patterns around the mean. Next, the optimal fitting 

cosine curves to the data were computed from a variable frequency between 0 Hz – 25 Hz . For each 

frequency, the coefficient of determination, 𝑅2, provided a goodness-of-fit measure. Bootstrapping was 

used to statistically evaluate the R-squared group mean. Using this statistical method, random 

permutations of the 18 SOAs over the 2000 iterations were computed and a model cosinusoidal curve 

was fitted to the resulting behavioural pattern contained within the data each time. This generated a 

null distribution of 2000 R-squared values.  

 

The R-squared value acquired from the original data was compared to the null-distribution 

generated by the bootstrapping and used to evaluate whether the model fell in the upper 95th 

percentile. To this end, if this was the case, it would be by definition then an indication that the model 

cosine significantly explained variance in the group data. The cosine function was fitted with equation 

2, where y the dependant variable represents the residuals following detrending of d’ accuracy, x the 

independent variable is the time points of SOA delay from tone-onset and the target stimulus (dot 

rotation), and coefficients a, b, c,  and a represent the amplitude, phase lag, and frequencyrespectively. 

Coefficients a,b,c are determined by numerical optimisation. 

 

y = a ∗ cos(c ∗ 2π ∗ x + b) 

(3)  

 

Individual participant statistics. Using similar methods as describes on the group-level a secondary 

analyses was performed where model cosine fits were implemented on the behavioural data of 
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individual participants. Here, rather than averaging data over the group, models for each individual 

participant were first fitted and then these were statistically bootstrapped. Finally a second-level 

anlyses using a RM-ANOVA was computed on the cosine model fitting R-squared values for each SOA 

across all three experimental conditions. 

S t a t i s t i c a l  c o m p a r i s o n s  a c r o s s  c o n d t i o n s  

In all the experimental conditions a repeated-measures analyses of variance (RM-ANOVA) was 

implemented. In principle, although this test cannot specifically inform on the periodicity within the 

data as it can only test for equality of class means. Here, the variability is computed between SOA time 

bins and the variability computed within groups, if there is rhythmicity evident in the data, however, 

the variability among SOA time bins will be larger than the variability within SOA time bins (F > 1). 

Although, the ANOVA can guide the inferences about a lack of uniformity further evaluation will 

provide direct evidence for the existence of any particular rhythmicity in sensory perceptual 

performance. Significant results were further explored using two-tailed paired-samples t-tests.  

 

The data from the bootstrapping procedure, which was conducted on the curve fitting models, were 

compared cross conditions. In order to test for significant differences in fitting frequencies between 

conditions, individual participant peak fitting frequencies were obtained by applying a jackknife 

approach (Kiesel, Miller, Jolicœur, & Brisson, 2008; Miller, Ulrich, & Schwarz, 2009; Smulders, 2010). 

The jackknifing procedure was used to scale the peak fitting frequency at subsets of the grand-average 

fitting frequency of the cosine fitting models. Subsets were generated by using data from an iteration 

of n-1 participants (N-different-leave-one-out subsets) of the original sample included in the grand-

average cosine model fitting of d’. By doings so the standard error of the estimated peak fitting 

frequencies were derived. In order to test for significant differences between peak fitting frequencies 

across the three conditions, estimates of the individual participant peak fitting frequencies (𝑜1 … , 𝑜𝑛) 

were calculated from the sub average scores (𝑗1 … , 𝑗𝑛) using the following equation (Smulders, 2010); 

 

𝑜𝑖 = 𝑛𝐽 − (𝑛 − 1)𝑗𝑖   

(4)  

 

 Next, an RM-ANOVA was conducted to examine the differences in the peak fitting frequency 

estimates across conditions and participants. Significance was tested using a two-tailed criterion and 

a 95% confidence interval. 
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A v e r a g e  P o w e r  S p e c t r a l  D e n s i t y  e s t i m a t i o n  

In order to investigate the amount of power contribution in the d-prime curve fitting models, the 

power spectral density (PSD) was computed, which is a measure of the magnitude of a signal of a given 

frequency within the average time-series. Power is equivilant to the squared amplitude of a signal and 

is used here to quantify the strength of the oscillations within a given frequency band. The integral of 

the PSD over a given frequency band computes the average power in the signal over that frequency 

band. A Welch spectral estimator (Percival & Walden, 1993) was applied to obtain the PSD (MATLAB 

Signal Processing Toolbox function, spectrum.welch; using a discrete Fourier transform with a 

Hamming window segmented length of 64. The signal is real-valued so the PSD is one-sided and this 

contains the total power of the signal in the frequency interval from DC (0 Hz) to half of the sampling 

rate (Nyquist rate of 50 Hz).  

O s c i l l a t o r y  p h a s e  c o n c e n t r a t i o n  

Phase concentration was calculated across subject separately. The complex Fourier-spectra was 

computed by applying a non-overlapped fixed Hanning tapered window, short time Fast Fourier 

Transform (FFT). The window had a length of 18 data points, each point representing one of the 18 

SOAs and was padded with zeros up to 64 data points. The absolute value (magnitude) of the Fourier 

coefficients represents the amplitude of the spectral components, with its square as the power 

spectrum. This expresses how much periodicity is visible in the SOAs at each particular frequency. The 

frequencies of interest ranges from 1 to 25 Hz in steps of 1 Hz. Phase was measured by taking the mean 

normalised complex Fourier spectrum with respect to subject’s d-prime curve fitting across SOAs and 

frequency. The phase time series assumes values within (− π, π] radians with a cosine phase such that 

−/+ π radians correspond to the troughs and 0 radians to the peak. These were carried out in Matlab 

using custom programming code established on standard mathematical and signal analysis functions.  

Statistical significance of phase consistency was then determined by taking the instantaneous 

Rayleigh 𝑍 score (against a hypothetical uniform distribution) and associated 𝑃 value using the 

circ_rtest function found in the Circular statistics toolbox (Berens, 2009). The function calculates the 

mean resultant vector length for the phase distribution (von Mises distribution), which indicates the 

direction (preferred phase) and magnitude of directionality (length) of a given distribution by first 

averaging direction vectors: 
 

𝑟̅ =  
1

𝑛
 ∑ 𝑟𝑖

𝑟

 

(5)  
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Then the preferred phase angle: 
 

cos 𝑎 + 𝑖 sin 𝑎 = exp (𝑖𝑎) 

(6)  

 And finally calculating the length of the mean resultant vector: 
 

𝑅 =  ‖𝑟̅‖ 

 (7) 

This results in a value between 0 and 1, with 0 indicating no directionality, and 1 indicating the 

maximum directionality. A limitation of using the mean resultant vector length as the dependent 

vairable is that it is affected by the number of samples contained within the phase-angle distribution. 

Therefore, a bootstrapping procedure was implemented on the mean resultant vector length for each 

participant’s d’ accuracy by randomly sub-sampling from the distribution a 1000 times taking the mean 

from the bootstrapped distribution to obtain a normalised mean resultant vector length.    

2.3 Results 

B e h a v i o u r a l  p e r f o r m a n c e  

We assessed the temporal profile of visual perceptual performance over the 18 SOAs (delay time 

points) between tone onset and target stimulus was assessed.  Figure 2.2 shows box plots of the d’ 

performance and reaction times (RT) for each subject across the conditions. This enabled visual 

inspection of the data to identify outliers and determine which data sets to exclude for further analyses. 

Participants were excluded if the average d’ performance was consistently below or above the peri-

threshold level set between 65% and 80% accuracy. Based on these criteria subject eighteen was 

excluded for having consistently low accuracy scores and slow RTs. Individual trials with RTs outside 

the specified criterion of 200 and 14000 ms, were excluded. These data show the variability between 

subject performance within and across conditions. Table 1-3 shows the Hit Rate, False Alarm, and 

Response Bias(c) shows the data for each SOA across the conditions. A non-parametric contrast 

(Wilcoxon signed ranks test) between the mean values of c against zero (no response bias) revealed 

that these were significantly greater than zero for all conditions (5-Frames:  𝑍 = −3.725, 𝑝 < 0.05; 10-

Frames:  𝑍 = −3.724, 𝑝 < 0.05; and 25-Frames: 𝑍 = −3.724, 𝑝 < 0.05). This indicates that 

participants were biased to respond that there was coherent motion; however, this bias was in the 

same direction across all conditions. Indicating that the d’ scores were not confounded by a difference 

in response bias.  
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Table 2. 10-Frames descriptive statistics. Hit rates (HIT), false alarm 
rates (FA) and bias criterion (c) 
                     

SOA  HIT % (S.E.M.)  FA % (S.E.M.)  c  (S.E.M.) 
                  
10 ms   78 (± 2.89 )   5 (± 1 )   0.46 (± 0.06 ) 

20 ms  
76 (± 2.84 ) 

 
4 (± 0.93 ) 

 
0.49 (± 0.06 ) 

30 ms   78 (± 3.32 )   5 (± 1.08 )   0.43 (± 0.05 ) 

40 ms  
78 (± 2.49 ) 

 
4 (± 1.16 ) 

 
0.5 (± 0.05 ) 

50 ms   79 (± 2.81 )   5 (± 0.87 )   0.42 (± 0.06 ) 

60 ms  
78 (± 2.09 ) 

 
3 (± 0.69 ) 

 
0.54 (± 0.05 ) 

70 ms   79 (± 2.75 )   7 (± 1.57 )   0.37 (± 0.06 ) 

80 ms  
83 (± 2.55 ) 

 
8 (± 1.8 ) 

 
0.25 (± 0.05 ) 

90 ms   81 (± 2.24 )   8 (± 1.86 )   0.3 (± 0.04 ) 

100 ms  
79 (± 2.37 ) 

 
9 (± 1.61 ) 

 
0.28 (± 0.05 ) 

110 ms   80 (± 2.32 )   7 (± 1.58 )   0.31 (± 0.04 ) 

120 ms  
78 (± 2.23 ) 

 
9 (± 1.73 ) 

 
0.32 (± 0.05 ) 

130 ms   80 (± 2.43 )   6 (± 0.98 )   0.38 (± 0.04 ) 

140 ms  
82 (± 2.04 ) 

 
3 (± 0.66 ) 

 
0.45 (± 0.04 ) 

150 ms   79 (± 2.33 )   4 (± 0.85 )   0.49 (± 0.06 ) 

160 ms  
80 (± 2.38 ) 

 
5 (± 0.97 ) 

 
0.41 (± 0.06 ) 

170 ms   79 (± 2.86 )   3 (± 0.91 )   0.48 (± 0.07 ) 

180 ms  
79 (± 2.03 ) 

 
4 (± 0.95 ) 

 
0.47 (± 0.05 ) 

              
Cells contain the mean and standard error of the mean (S.E.M.) averaged across 
participants. Trials time-locked to tone onset.  

Table 1. 5-Frames descriptive statistics. Hit rates (HIT), false alarm 
rates (FA) and bias criterion (c) 
                     

SOA  HIT % (S.E.M.)  FA % (S.E.M.)  c  (S.E.M.) 
                  
10 ms   73 (±2.44)   6 (± 1.18 )   0.51 (± 0.05 ) 

20 ms  
76 (±2.15) 

 
3 (± 0.78 ) 

 
0.58 (± 0.05 ) 

30 ms   71 (±2.32)   5 (± 1.09 )   0.59 (± 0.05 ) 

40 ms  
75 (±2.10) 

 
5 (± 1.15 ) 

 
0.53 (± 0.06 ) 

50 ms   72 (±2.50)   5 (± 0.93 )   0.54 (± 0.05 ) 

60 ms  
72 (±2.01) 

 
5 (± 0.85 ) 

 
0.55 (± 0.05 ) 

70 ms   73 (±2.11)   9 (± 1.63 )   0.4 (± 0.04 ) 

80 ms  
75 (±2.69) 

 
9 (± 1.94 ) 

 
0.38 (± 0.04 ) 

90 ms   76 (±2.28)   10 (± 2.04 )   0.36 (± 0.05 ) 

100 ms  
75 (±2.47) 

 
11 (± 1.92 ) 

 
0.34 (± 0.04 ) 

110 ms   75 (±2.39)   11 (± 1.86 )   0.31 (± 0.04 ) 

120 ms  
74 (±2.08) 

 
9 (± 1.61 ) 

 
0.4 (± 0.05 ) 

130 ms   74 (±2.16)   4 (± 0.85 )   0.57 (± 0.05 ) 

140 ms  
73 (±2.85) 

 
5 (± 1.34 ) 

 
0.56 (± 0.05 ) 

150 ms   72 (±2.51)   6 (± 1.19 )   0.5 (± 0.05 ) 

160 ms  
72 (±2.14) 

 
5 (± 0.91 ) 

 
0.55 (± 0.05 ) 

170 ms   75 (±2.43)   3 (± 0.72 )   0.57 (± 0.05 ) 

180 ms  
76 (±2.48) 

 
4 (± 0.92 ) 

 
0.51 (± 0.05 ) 

              Cells contain the mean and standard error of the mean (S.E.M.) averaged 
across participants. Trials time-locked to tone onset.  
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Table 3. 25-Frames descriptive statistics. Hit rates (HIT), false alarm 
rates (FA) and bias criterion (c) 
                     

SOA  HIT % (S.E.M.)  FA % (S.E.M.)  c  (S.E.M.) 
                  
10 ms   76 (± 2.56 )   5 (± 1.18 )   0.54 (± 0.06 ) 

20 ms  
76 (± 3.42 ) 

 
3 (± 0.71 ) 

 
0.53 (± 0.07 ) 

30 ms   77 (± 2.77 )   4 (± 0.82 )   0.52 (± 0.07 ) 

40 ms  
71 (± 3.02 ) 

 
6 (± 1.07 ) 

 
0.53 (± 0.07 ) 

50 ms   74 (± 2.9 )   6 (± 1.21 )   0.52 (± 0.06 ) 

60 ms  
76 (± 2.55 ) 

 
6 (± 1.29 ) 

 
0.5 (± 0.07 ) 

70 ms   72 (± 2.76 )   10 (± 2.34 )   0.42 (± 0.06 ) 

80 ms  
71 (± 3.25 ) 

 
9 (± 1.85 ) 

 
0.44 (± 0.06 ) 

90 ms   75 (± 2.66 )   8 (± 2.09 )   0.47 (± 0.07 ) 

100 ms  
72 (± 2.57 ) 

 
10 (± 1.94 ) 

 
0.42 (± 0.06 ) 

110 ms   77 (± 3.09 )   8 (± 2.06 )   0.42 (± 0.07 ) 

120 ms  
75 (± 2.85 ) 

 
10 (± 1.84 ) 

 
0.36 (± 0.06 ) 

130 ms   73 (± 2.82 )   7 (± 1.15 )   0.46 (± 0.06 ) 

140 ms  
76 (± 2.27 ) 

 
4 (± 0.95 ) 

 
0.5 (± 0.05 ) 

150 ms   75 (± 2.46 )   5 (± 1.19 )   0.52 (± 0.05 ) 

160 ms  
73 (± 2.84 ) 

 
6 (± 1.12 ) 

 
0.52 (± 0.06 ) 

170 ms   76 (± 2.75 )   4 (± 1.06 )   0.52 (± 0.06 ) 

180 ms  
73 (± 2.46 ) 

 
6 (± 1.14 ) 

 
0.51 (± 0.05 ) 

                     
Cells contain the mean and standard error of the mean (S.E.M.) averaged across 
participants. Trials time-locked to tone onset.  

  

 

Table 4 shows the results of average apparent motion discrimination accuracy (hit rate and d 

prime) for each experimental condition. These data indicate that all subjects, including those with high 

false alarm rates, were nonetheless able to differentiate apparent motion in the three forced choice 

task. In all three experimental conditions a repeated-measures analyses of variance (RM-ANOVA) was 

implemented to assess the variability of apparent motion discrimination accuracy (d’) across the 18 

SOAs as a function over time relative to tone onset. Three RM-ANOVA were run for the three 

experimental conditions on apparent motion discrimination accuracy with factors SOA (18-factors) 

across subjects (23) there were significant main effects of SOA for the 5-frames (𝐹17,391 =  2.51,

𝑝 ˂ 0.001, 𝜂𝑝
2 = 0.1) the 10-frames condition (𝐹17,391 =  2.10, 𝑝 ˂ 0.05, 𝜂𝑝

2 = 0.08), and for the 25-

frames condition 𝐹17,391 =  3.58, 𝑝 ˂ 0.001, 𝜂𝑝
2 = 0.14),.  An overall RM-ANOVA across all the 

experimental conditions (SOA [18] x Condition [3]) revealed a significant main effect of 

condition 𝐹2,46 =  3.31, 𝑝 =  0.043, 𝜂𝑝
2 = 0.13), a significant main effect of SOA (𝐹17,391 =

 5.01, ˂ 0.001, 𝜂𝑝
2 = 0.18, and no significant (marginally significant) interaction (SOA*Condition) 

(𝐹34,782 =  1.40, 𝑝 =  0.07, 𝜂𝑝
2 = 0.06).   
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Table 4. Grand average. Hit rates (HIT, percentage correct), false alarm rates (FA, percentage) 
and d' (c, bias response) for each SOA  

                          

    HIT % (S.E.M.)  d' (c)  FA % (S.E.M.)     
  

 
  

 
             

  5-Frames   78.72(1.25)   2.29(0.33)   8.26(0.98)   

 10-Frames  81.02(1.11)  1.90(0.05)  16.45(1.11) 
 

  25-Frames   54.33(1.18)   2.15(0.92)   2.56(0.38)   

                           
Cells contain the mean and standard error of the mean (S.E.M.) averaged across participants for Hit and 
FA. Trials time-locked to tone onset.  

 

a 

c 

b 

Figure 2.2. Descriptive Statistics.  Box plots illustrating the individual subject performance data. 
Left panel represents the d’ detection accuracy. Right panel represents reaction time (RT) data. a) 5-
Frames, b) 10-Frames, c) 25-Frames. Lines in boxes represent medians, the box ends at the 25th and 
75th percentiles, whiskers 10th/90th percentiles. Individual SOA data are superimposed dots for 
each subject. Outliers (>1.5 times the interquartile distance) are plotted with crosses. 
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P e r i o d i c i t y  i n  p e r c e p t u a l  d i s c r i m i n a t i o n  p e r f o r m a n c e  

To investigate the effects of the varying onset of the target stimulus presentation (coherent motion) 

over the 18 SOAs time-locked to tone-onset (180 ms post-tone window) a curve fitting function 

(cosinusoidal curve) was applied to data. This test determined if there are periodic fluctuations evident 

in d’ discrimination accuracy as a function over time relative to tone onset. To assess the significance 

of the model fit and the presence of periodicity, a bootstrapping statistical approach were combined 

with the cosinusoidal model fitting procedures (see Methods). Critically, this procedure tests the 

existence of a significant cyclic modulation in sensory perceptual performance, where the periodic 

fluctuations observed in the data could be attributed to stimulus-locked (tone-onset) oscillatory 

activity. This would provide support for CMPR. The results of this analyses revealed a significant 

modelled cosine function for all three conditions at the group and single subject levels. Figure 2.4 

illustrates the time-course of visual task performance timelocked to tone onset for all three conditions 

(after linear detrending), with best-fitting cosine models superimposed in red. 

Statistics.  Using boostrapping procedures revealed that in the 5-frames condition the best fitting 

cosine model was 6 Hz (r2 = 0.6) with a range of significant frequencies between 4-8 Hz (95% CI). In 

the 10-frames condition the best fitting cosine model was 9 Hz (r2 = 0.5) with a range of significant 

frequencies between 6-10 Hz (95% CI). Finally, for the 25-frames condition, the best significant model 

fit was 7 Hz (r2 = 0.4) with a range of significant frequencies between 4-8 Hz (95% CI). These data 

statistically confirm the presence of a cyclic modulation in visual task performance at group level. 

Single subject data not shown here, yield similar results. Figure 2.4 (left hand column) shows the 

results of the bootstrapping with all conditions superimposed. On visual inspection, we can see that 

there are very slight differences between the conditions. It appears that the 5-Frames and 25-Frames 

yielded similar best fitting models at 6-7 Hz, while the 25-frames condition revealed a slightly higher 

Figure 2.3. Estimated marginal means. Line plots illustrating estimated marginal means at the 
group-level across SOAs. a1) accuracy expressed as detrended d’ scores and b) reaction times 
Solid lines show the data where shading demarcates standard error. For d’ scores a) SEM = 0.002, 
SEM = 0.001, SEM = 0.003, respectively. Standard error for detrended reaction times b) SEM = 
0.039, SEM = 0.035, SEM = 0.039, respectively. 

a b 
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best cosine model fit at 9 Hz. These conditions have in common significant range of frequencies 

between 4-10 Hz. In order to test any significant difference between conditions individual subjects 

peak model fitting frequencies were obtained by means of a Jackknife procedure (see methods). This 

results in a peak frequency for each individual subject for each condition. These data were then 

analysed for significant differences using a RM-ANOVA two-sided. The results show no significant main 

effect of condition (𝐹2,46 =  .49, 𝑝 >  0.05, 𝑛𝑠, 𝜂𝑝
2 = 0.02). This would indicate that there is no 

significant difference in best fitting frequency for different number of displacement frames at target 

coherent motion in the RDK stimulus. 

 

Figure 2.4. Group Avg. Cosine Functions. Left panel shows cosine model fits (red sloid line) 
superimposed on d’ data (dotted line). Right panel shows the bootstrapping significance r-square 
model fits. a) 5-frames, b) 10-frames condition, c) 25-frames conditions respectively. Group average 
d’ accuracy (linearly detrended) for apparent motion discrimination for all conditions over 2 cycles 
post-tone onset. The best fitting cosine model superimposed in red. a) 5 Hz (r2 = 0.5), b) 8 Hz (r2 = 
0.5), c) 6 Hz (r2 = 0.4), show the optimal significant cosine functions. Shaded area represent standard 
error of the mean (SEM) after the removal of baseline between subject variance (within-subject error 
bars (Cousineau, 2005).  

a 

c 

b 
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P o w e r  S p e c t r a l  D e n s i t y  e s t i m a t e  

In order to further assess the existence of periodicity in sensory perceptual performance as 

evidence of CMPR, we transformed the d’ data into their frequency-domain representations (see 

Methods). Figure 2.5b illustrates the power spectrum density (PSD) computed on average d’ time 

courses within the range 1-50 Hz (for visualisation and comparison purposes we plot only frequencies 

from 1-25 Hz), all three conditions superimposed. All conditions show similar results in lower 

frequencies (6-9 Hz) compared to the r-square values obtained from bootstrapping. The 5-Frames and 

25-Frames conditions show peaks at 6 Hz. The 10-Frames conditions there is a peak at 23 Hz, with a 

second smaller peak at 9 Hz.  

 

O s c i l l a t o r y  p h a s e  c o n c e n t r a t i o n  

Phase concentration was computed across participants averaged d’ and calculated for each 

condition. Importantly, in contrast to conventional methods for measuring phase over single trials 

figure 2.6 shows the phase of average performance for each participant depicted on as a single data 

point on the circumference of the unit circle (right panel). This gives an indirect measure of oscillatory 

phase concentration following the auditory accessory stimulus. The results confirmed a statistically 

significant non-uniformity (p < 0.05) in the phase distribution for each condition. In the 5- and 25-

frames conditions there is significant phase concentration between 1-6 Hz frequency (z-score range = 

3.1 -7.2, with a peak at 4 Hz). Whereas the 10-frames conditions a 10-11 Hz phase concentration (z-

score range = 3.3 -3.4, with a peak at 11 Hz). Across all conditions there was high PLV of .4 to .6, which 

indicate the direction (preferred phase) and magnitude of directionality (length) of the given 

distribution. These data reveal tentative evidence for cross-modal phase resetting. 

Figure 2.5. Power spectral density and R-square fit. a) R² values for cosine model fitting across 
frequencies. Three conditions superimposed. Peak fitting frequencies at 5-10 Hz. Solid lines indicate 
the 95% confidence interval bootstrapped permutation. b) Using standard short-time Fourier 
transform, power spectrum of d-prime temporal profile. All the conditions show similar peaks at 6-
9 Hz frequency; 5-Frames peak = 6 Hz, 10-Frames peak = 23 Hz, 25-Frames peak 6 Hz. The 10-Frames 
conditions does show a second peak at 9 Hz, closer to the other peaks. 

a b 
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a 

c 

b 

Figure 2.6. Phase concentration. Left panel; Rayleigh’s Z-scores across subjects on d’ cosinusoidal 
model fits as a function of frequency. Red squares indicate the highest phase concentration. 
Horizontal red dotted line indicated the 95% confidence interval cut-off (Z score = 3.8) Right panel; 
Circular plot representing the highest phase concentration frequency, with individual participants’ 
phase angle values on the circumference of the unit circle (theta phase in degrees). Red dot and line 
represents the mean and resultant vector length respectively for the phase coherence of d’ across 
participants. The vector length here measures the consistency of phase locking around the mean 
angle (M), with 0 being random and 1 being zero variance. The vector direction indicates the 
preferred phase of visual task performance (d’), and length indicates magnitude of phase resetting, 
the mean resultant (PLV). a) 5-frames, Z score = 4 Hz, PLV = .6 (M = .78), b) 10-frames, Z-score = 11 
Hz, PLV = .4 (M = .2), c) 25-frames, Z score = 4 Hz, PLV = .5 (M = .09).  
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2.4 Discussion 

Research suggests that an event in one modality can phase align oscillations in another modality 

through the mechanism of CMPR of ongoing oscillations. However, most previous studies have focused 

on using a single briefly flashed stimulus, and focus on the spatial domain. These paradigms make it 

problematic to discern phase resetting due to transient evoked responses or through internally driven 

oscillatory modulations (Makeig, Westerfield, Jung, & Enghoff, 2002b; Sauseng, Klimesch, Gruber, & 

Hanslmayr, 2007). Far less understood, is the interaction of the auditory modality and visual motion. 

Furthermore, behavioural evidence for an auditory induced enhancement of visual motion perception 

as investigated within the context of cross-modal phase resetting is sparse. In the present study, using 

a continuous dynamic stimulus, we contribute new evidence. The first aim of the experiment was to 

investigate an auditory-driven modulation of visual perceptual performance. Next, within the 

framework of the perceptual cycles theory (VanRullen, 2016b), we investigated the sensory perceptual 

consequences of increasing the duration of coherent motion in the RDK. We aimed to explore the 

effects of a “frequency tagging” type effect that may be reflect as quasi-sinusoidal behavioural 

responses. The temporal profile of visual perceptual performance was analysed over varying delays, 

time-locked to a transient auditory stimulus. We predicted that evidence for a systematic phase 

reorganisation in underlying visual oscillations, would manifest itself behaviourally as a cyclic 

modulation in perceptual performance phase-locked to the tone-onset. Our data revealed that this was 

indeed the case.  

 

The present data offer a behavioural marker for an auditory induced facilitation of visual cortical 

excitability. Our findings are consistent with data described in the animal literature (e.g., Lakatos et al., 

2009, 2007; Kayser et al., 2008; Kayser & Logothetis, 2007 Magri et al., 2009) and human 

neurophysiological research (e.g. Fiebelkorn, Foxe, Butler, & Molholm, 2011; McDonald, Störmer, 

Martinez, Feng, & Hillyard, 2013; Naue et al., 2011; Romei et al., 2012; Thorne & Debener, 2014). 

Although we attribute our findings as sensory consequence of CMPR as the most parsimonious 

explanation, using purely psychophysical measures, it is not possible to provide unambiguous 

evidence for CMPR. To this end, it is also possible then that the existence of auditory-timelocked 

periodicity is a product of an additional oscillatory component superimposed on the instantaneous 

visual oscillations rather than from phase reset of pre-existing oscillations (Fiebelkorn, Foxe, & Butler, 

2011; VanRullen & Dubois, 2011).  

  

The manifestations of oscillations in behavioural performance have only recently been investigated 

(Diederich et al., 2012; Diederich et al., 2014; Fiebelkorn et al., 2011; Graaf, Gross, Paterson, Rusch, et 

al., 2013; Landau & Fries, 2012). These findings suggest that the underlying neuronal oscillatory 

systems have direct consequences on behaviour. However, there is sparse behavioural evidence for 
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the CMPR mechanism using a continuous visual stimulation that is spatiotemporally informative. First, 

we demonstrate that perception of a near threshold visual motion is modulated by oscillatory phase 

induced by a task irrelevant tone. Here we provide analogous interpretations to those provided by 

neurophysiological research. Second, our findings suggest that visual oscillatory systems are not 

modulated by increasing the length of sequential frame displacement in the RDK stimulus.  

C r o s s - m o d a l  p h a s e  m o d u l a t i o n  o f  v i s u a l  m o t i o n  p e r c e p t i o n   

The periodicity observed in the behavioural response profile provides an indication for an auditory 

induced phase resetting of visual behavioural performance. Using a continuously dynamic RDK, 

presented prior to an exogenous tone, it was possible to preclude any transient effects that could be 

induced by the presentation of a sudden visual stimulus. Moreover, the low-level visual features in the 

stimulus remained constant for the duration of the epoch. Without having any direct 

electrophysiological evidence, we speculate here that the periodicity observed in behaviour could be 

attributed to CMPR mechanism. If there were no inter-regional phase modulation, then visual accuracy 

and detection performance would not reveal any systematic fluctuations, such that visual performance 

would be at chance level at each SOA.   

 

The temporal integration of continuous sensory information into a temporally extended perception 

becomes evident when using tasks with spontaneous near-threshold apparent coherent motion in RDK 

stimuli. Apparent motion in RDKs, are created by displacing a display of randomly presented dots by a 

certain amount in a given direction. Consequently, there must be spatial and temporal integration of 

dots displacement over an extended area of the visual field in order to signal the veridical direction of 

the pattern. If the displacement is relatively small and all dots shift in the same direction (100 % 

coherence), the motion percept is smooth and continuous. As the displacement approaches the 

maximum displacement value (Dmax), direction discrimination of the apparent motion is still possible 

but less coherent. As the displacement exceeds Dmax, motion direction is not reliably determined 

because the perceived motion appears to be incoherent, even though the dots are still moving with 

100% coherence. Short-range motion perception is involved in complex patterns, small displacements, 

and temporal interval processes (Braddick, 1974). Experiments using psychophysics have proposed 

that Dmax increases with a decrease in dot probability (Ramachandran & Anstis, 1986) and an 

decrease in motion coherence (Todd & Norman, 1991, 1995). Consequently, direction discrimination 

of motion coherence in RDKs benefit from spatial summation (Movshon & Thompson, 1978). 

Therefore, the observer must identify the direction of the signal dots in the relative proportion of signal 

to noise in the stimulus.  

 

 Our data revealed behavioural oscillations that waxed and waned in periods of optimal and 

nonoptimal windows of performance, supporting the perceptual cycles theory for the discretisation of 
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perception through neural oscillations. The results of which provide a highly plausible link between 

perception and the neural oscillatory substrate (Lakatos, Shah, & Knuth, 2005;  Schroeder & Lakatos, 

2009; VanRullen & Dubois, 2011). The interpretations of the data are focused on the results obtained 

from the fitting procedures, rather than that of the PSD (see, results and limitations below). The data 

revealed a rhythmicity in behavioural performance that appeared to cycle at wavelengths 

corresponding to 4-10 Hz frequency. Specifically, the 5- and 10-frames conditions revealed similar best 

fitting frequencies at 6 Hz and 7 Hz respectively. Whereas the 25-frames condition the best fitting, 

model was slightly higher at 9 Hz frequency. Interestingly, when statistically comparing the differences 

between peak fitting frequencies across conditions, there was no significant difference.  

 

These findings highlight the role that low frequency oscillations play in the sensory integration of 

information over time. Interestingly, we find that there is no significantly different perceptual 

consequences on task performance from varying the lengths of coherent motion stimulation. 

According to previous research, we might have predicted the 5-frames condition to yield the most 

optimal behavioural performance. In this condition the target coherent motion lasted for a period of 

50 ms, which coincides with the widely reported resonant sampling frequency of the visual system 

denoted as the alpha rhythms (Basar & Schurmann, 1997; Ergenoglu et al., 2004; Foxe & Snyder, 2011; 

Graaf et al., 2013; Romei et al., 2012; Spaak, Lange, & Jensen, 2014). Therefore, the 5-frames condition 

is apt to probe visual alpha at the highest sampling resolution as compared to the other spatiotemporal 

window lengths. The rational here is that a 50 ms spatiotemporal integration window falls neatly 

within the bounds of half the wavelength of a 10 Hz oscillation, where processing is at its optimum 

(Jensen & Mazaheri, 2010; Romei et al., 2012; Schroeder et al., 2008).  

 

Our data reveals low frequency (4-10 Hz) modulations in behavioural performance. Until recently, 

the majority of research has reported  oscillations in the alpha as critical in visual perception (Wolfgang 

Klimesch, Fellinger, & Freunberger, 2011; Lange, Oostenveld, & Fries, 2013; Mathewson & Lleras, 

2011; Romei et al., 2008; Vincenzo Romei, Driver, Schyns, & Thut, 2011). Although the alpha (8-12 Hz) 

rhythm remains widely implicated in visual perception, progressively more research is demonstrating 

functional associations of perception involving other frequency bands, as reported here in 4-8 Hz theta 

frequency range (Diederich et al., 2014; Dugué et al., 2015; Vanrullen, 2013; VanRullen & Dubois, 2011; 

Mathewson & Lleras, 2011). For example, VanRullen and colleagues have demonstrated the relative 

contribution that ongoing pre-stimulus EEG oscillations have on perceptual consequences. In one of 

their studies (Busch et al., 2009), they presented brief flashes of light at near-threshold detection, 

where the luminance of the flashes were calibrated so that the exact same stimulus would be perceived 

on approximately half of the trials, but go undetected on the other half. They found significant pre-

stimulus phase concentration at ~7 Hz (theta range) on those trials where flashes were accurately 

detected. Using the data from prefrontal EEG electrodes, they were able to predict the subsequent 
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responses of each subject above chance. Specifically up to 16% of the trial-by-trial variants in 

perception were accounted for by estimating those trial which had am optimal phase angle with those 

in the opposite phase. Using EEG, Thorne and colleagues (2011) similarly show that much like delta, 

theta- low-alpha band oscillatory activity can also influence behavioural performance. Numerous EEG 

studies and neurophysiological recordings reveal that theta-band (3-8 Hz) rhythms have been 

implicated in the mediation of perception and attention (e.g., Landau & Fries, 2012; Luo, Liu, & Poeppel, 

2010). 

 

Experimental data concerning the theta-band oscillations indicate a role in cognitive processing 

and in the cortico-hippocampal interaction (for a review see,  Miller, 1991). Theta rhythms constitute 

the cycles of selection, where the process of selection is made and then desynchronising gamma-band 

oscillations for selecting one item at a time within a cycle, in return this enables sampling for successive 

relevant items and resulting in a rhythmic sampling (Fries, 2009). Furthermore, theta (~ 7Hz) rhythms 

may contribute to higher-level attentional cycles (Dugué et al., 2015; Vanrullen, 2013; Voloh & 

Womelsdorf, 2016). This is consistent with EEG recordings positing a role for low frequency rhythms 

associated with spatiotemporal integration (Von Stein & Sarnthein, 2000; Varela, Lachaux, Rodriguez, 

& Martinerie, 2001). Evidence from animal research has already suggested at a supramodal 

coordination of theta-band oscillatory activity (Lakatos et al., 2009). Taken together these studies 

support our data for a role that pre-stimulus theta brain oscillations have in spatiotemporal integration 

and cross-modal modulations thereof. 

 

Phase locking value results show that the 5-frames and 25-frames were consistent with the results 

obtained from the curve fitting models. Our data revealed significant phase coherence across 

participants within the 1-9 Hz frequency range. In contrast to conventional methods for measuring 

phase concentration, in the current study phase-locking value was computed on the d-prime cosine 

models, which was an average of all trials for an individual participant, rather than at the single trial 

level (Canavier, 2015; Fisher, 1995). Measurement limitations imposed on behavioural paradigms 

necessitate the averaging over trials to reveal oscillatory components, which constitutes the data. 

Nonetheless, we observed consistent phase coherence across participants; this might give some 

indication of consistent phase coherence across individual trials, albeit indirect. This is compatible 

with the notion of CMPR, although our interpretations here are speculative at this point. Finding that 

there is alpha phase reset may not be surprising as it is consistent with the proposal that alpha 

represents a pulsed inhibition of ongoing cortical activity where alpha phase reflect states of high and 

low excitability leading to a modulation in perception (Hanslmayr, Gross, Klimesch, & Shapiro, 2011; 

Jensen & Mazaheri, 2010; Klimesch, Sauseng, & Hanslmayr, 2007b). One possible explanation for the 

10-frames exhibiting different results could be attributed to individual participant variability within 

the data, contributing a driving factor in the phase analyses that are sensitive to these differences when 
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analysed. Taken together, our findings are in line with those reported previously by Romei et al. (2010, 

2012). Here they which showed a preferential phase for optimal perception, phase modulated by a task 

irrelevant auditory stimulus. In contrast, they report alpha-band (11 Hz) modulations at delays of 75-

130 ms and 180-225 ms post tone-onset. 

S p a t i o t e m p o r a l  i n t e g r a t i o n    

The second aim of the experiment was to probe the effects of visual perceptual performance by 

varying the number of successive frames in the coherent motion sequence. In order to perceive a single 

percept of coherent motion in the stimulus, participants must integrate the spatiotemporal 

information over time for each successive frame. Within the context of our paradigm, we define 

spatiotemporal integration as the accumulation of information gain from consecutive frame 

displacements in the kinematogram, which are sequentially integrated to form a unitary percept of 

coherent visual motion (Cleary & Braddick, 1990; Morand et al., 2015; Ramachandran & Anstis, 1983b; 

Ramachandran & Anstis, 1986). In principle, according to the discrete perceptual cycles theory we 

could expect that performance accuracy in detecting or discriminating the direction of the visual 

motion is contingent of the phase of the underlying visual system sampling frequency. Visual neural 

ensembles enable the integration of inputs over a range of intervals that correspond to half cycles of 

oscillatory activity at various frequencies  (Schroeder et al., 2008). Within this framework then, 

performance accuracy would be at its highest if the complete coherent motion sequence falls within 

the period when the underlying cortical excitability is at its most optimal phase for information 

processing. For example in the current paradigm, the 5-frames condition corresponds to a coherent 

motion sequence of 50 ms; this coincidently this is proportionate to half the wavelength of an alpha 

(10 Hz) oscillation, the ideal half of the full wavelength, indicating that the full sequence can fit neatly 

into the period where sensory information processing is most optimal. However, this is assuming the 

visual sampling frequency is within the alpha frequency range. Interestingly, this would suggest that 

by increasing the number of displacement frames in the RDK, whereby essentially extending the length 

of apparent motion, would result in a motion sequence that is greater in length than the period of 

highest cortical excitability where signal processing is most optimal (see figure 2.7.b1 and 2.7. c1). If 

this were the case, we would expect that performance accuracy would decline with increasing coherent 

motion frames. 

 

An alternative prediction is that visual system will adapt to the varying lengths of the coherent 

motion. This could be reflected by a ‘frequency tagging’ type response in the behavioural data. In other 

words, by manipulating the time window of coherent motion integration, each condition is optimal at 

different sampling frequencies of visual cortical substrate. This then, could manifest as a modulation 

in discrimination accuracy at those particular frequencies. We might speculate then, that the visual 

systems sampling frequency systematically adapts in order to optimally process the increase in the 



Chapter 2.    55 

  

number of displacing frames. Referred to as Model 2 as illustrated in Figure 2.7. (Right panel). This idea 

can be likened to the “oscillatory selection” hypothesis (Schroeder & Lakatos, 2009) that proposes that 

the phase of cortical excitability represents a fundamental mechanism for tuning the brain to the 

temporal dynamics of task-relevant event patterns. It is noteworthy that these studies manipulate 

attention whereby entraining neocortical oscillations over longer periods of time then the RDK 

displacement frames used in the current paradigm (Besle et al., 2011). Alternatively, Model 1, (Left 

panel), if alpha frequency band is indeed the visual systems resonant sampling frequency, then 

behavioural periodicity should remain stable across all experimental conditions. Our data show that 

this is the case. There appears to be very little effect on increasing the length of the spatiotemporal 

integration window on behavioural performance. This suggests that while each condition covers 

increasing cycle lengths of the visual systems perceptual sampling frequency, behavioural 

performance cycles as measured by curve fitting procedures, revealed a consistent results across 

conditions at 4-10 Hz (theta-alpha) frequency irrespective of temporal integration window.  

 

 

 

Figure 2.7. Modelling visual alpha sampling frequency. Schematic demonstrating the 
sampling of visual oscillations in two models, over the three experimental conditions. a) 5-
frames, b) 10-frames condition, c) 25-frames condition. The left panel, model 1, shows a model 
where alpha-band (10 Hz) oscillations are the resonant sample frequency for visual perception. 
Whereas, the right panel, model 2 demonstrates the length of sampling frequency if visual 
oscillations adapted to the length of sequential processing stream. Shaded area demarcates the 
three experimental lengths of the coherent motion sequences. The blue sine waves represent the 
relative length of the visual oscillations sampled.  
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The notion that sensory evidence is integrated linearly and continuously is impacted by the 

capacity limits of perceptual information processing (Marois & Ivanoff, 2005), this bottleneck feature 

accounts for the refractory period in perception at a few hundreds of milliseconds during which 

relevant sensory information can be missed (Raymond, Shapiro, & Arnell, 1992). One prominent 

theory providing an explanation for this refractory period is that visual perception is constrained to 

sample incoming stimuli discretely in rhythmic frames (VanRullen & Koch, 2003). Whereby incoming 

sensory information is processed optimally at specifics phases within the sampling cycle of sensory 

visual oscillations (Busch & VanRullen, 2010). This rhythmic sampling framework proposes that slow 

cortical oscillations in theta-alpha can sub serve attentional selection by modulating rhythmically the 

gain of information processing, and often reported in primary sensory cortices (Lakatos, Karmos, 

Mehta, Ulbert, & Schroeder, 2008; Schroeder & Lakatos, 2009). The current findings show that not only 

are these slow frequencies reflected in the behavioural data, but also these seem to be independent on 

the length of the time windows of integration across the three experimental conditions. This suggests 

that evidence accumulation rate during decision-making exhibits a slow rhythmic fluctuations are 

critically dependent on the high excitability phase.  

 

In this study it is important to note that individual subjects’ threshold was keep constant across all 

conditions. In other words, the task would not be any easier with additional frames being presented in 

the 10- and 25-frames conditions, as each block was titrated accordingly. Performance accuracy was 

kept constant at approximately at 75% chance level. This meant that performance in each condition is 

attributed rather to the phase angle of visual reset oscillations and, if it were shown in these data, the 

number of frames in the RDK stimulus and not that of level of difficultly or ease across the conditions. 

This experiment therefore presents evidence consistent with the idea of periodic fluctuations in 

processing and perception. Although possible, it is not at present clear whether these periodic 

fluctuations necessarily form the limit of temporal resolution or represent a dedicated quantization of 

sensory input over time, as has been previously suggested (Varela et al., 1981). 

L i m i t a t i o n s  a n d  c a v e a t s   

Several psychophysical studies using time-resolved behavioural measurements reveal rhythmic 

fluctuations (de Graaf et al., 2013; Diederich, Schomburg, & Colonius, 2012; Fiebelkorn, Foxe, & Butler, 

2011; Landau & Fries, 2012; Song, Meng, Chen, Zhou, & Luo, 2014; VanRullen & Busch, 2011) directly 

in behavioural performances (behavioural oscillations). Here they reason that the underlying neural 

oscillations have direct consequences in behaviour. It is important to note, however, that due to the 

inherent temporal limitations of conventional psychophysical methods, the majority of studies assess 

fluctuations in perception at a much coarser temporal scale and therefore are limited in their capacity 

to use spectral analyses to measure oscillations in behavioural data (Theunissen & Doupe, 1998; 

Vanrullen & Dubois, 2011b). For example, cross-modal stimuli are typically presented using only a few 
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SOAs with temporal spacings of only a few increments (e.g. 30, 50, 65, 100 ms), or large intervals 50 – 

100 ms (Fiebelkorn, Saalmann, & Kastner, 2013; Kayser, Petkov, & Logothetis, 2008; Mercier et al., 

2013b; Romei et al., 2012; Thorne, Vos, & Viola, 2011). Consequently, predicted curve models are 

based on inter- or extrapolation (Thorne et al., 2011). Therefore, in principle, most psychophysical 

methods are somewhat restricted to the lower end of the frequency spectrum.  

 

Inferences are often made on few repeating cycles of behavioural rhythms. However, it is not 

always possible to increase the sampling points in these paradigms. Increase the number of SOAs 

would require more trials, which would substantially increase the length of the experiment. By 

contrast, if more SOAs are added, but sampled with fewer trials, this would result in increased signal-

to-noise ratio (SNR). Measuring neurophysiological reverent spectrotemporal dynamics in 

behavioural outcomes is gaining prominence. For example, Song et al. (2014) provided evidence for a 

rhythmic component in visual attention, which was cued to one of two possible locations. Using a 

reaction time (RT) task, participants had to detect a target stimulus as fast as possible following the 

spatial cue. Critically, the time between cue and target onset (SOA) was variable as in our study. Here 

the cue reset attentional sampling where the difficulty of target detection was not constant with 

respect to time, but was dependent or covaried with respect to SOA. They were able to characterise 

finer changes in the rhythmicity of attention using time-frequency analyses due to having a higher 

sampling rate. Further, they found that RT distribution oscillated in theta phase-locked to cue onset. 

These finding further corroborated those in a similar study by Landau and Fries (2012) that show an 

attentional sampling in the theta-band (3-4 Hz) that coupled changes in alpha-power (5-25 Hz), in-line 

with phase-amplitude coupling of neural oscillations.    

 

In our data the temporal profile of behavioural performance does not capture repeating cycles of 

slow oscillations. Each condition captures approximately either one and a half cycles of theta-band and 

two cycles of alpha-band, the frequencies associated with posterior visual perception as discussed 

earlier. Commensurate with other psychophysical studies it is a known limitation that exists within the 

literature where inferences are made on few repeating behavioural rhythms. The current data were 

fitted using cosinusoidal models, it could be argued though that non-periodic model may also fit the 

data, one example being a quadratic function. Therefore, it could be argued that in the current 

paradigm we would need more repeating cycles in the d-prime data in order to confidently infer an 

accurate reflection of the underlying oscillations. Future experiments would address this limitation 

and capture longer rhythmic behavioural oscillations.  

 

We consider it likely that the broadband cosinusoidal model fit to the d-prime data represent a 

variety of cognitive processes that are captured in the psychophysical signal. These fluctuations in 

performance are nested not only with primary sensory processing but encapsulate higher order 
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processing including, perceptual decision making, spatiotemporal integration of information over time 

and attention. In the current data set this can be seen as two frequency bands that constitute the d-

prime data, which exemplifies a common caveat in behavioural paradigms, the difficulty discerning 

multiple frequencies which constitute a perceptual task. Perception is a multisensory process, where 

inputs are modulated by motor sampling strategies and routines (Schroeder & Wilson, 2010). 

Moreover, motor output is modulated by motor cortical oscillatory rhythms in delta (1-3 Hz), theta (5-

7 Hz), alpha (8-12 Hz), and beta bands (13-30 Hz), the motor system’s imposition on these rhythms on 

sensory inflow and outflow possibly contributes towards the behavioural data profile. For this reason, 

it is common practise in studies to carry out post hoc analyses to assess the correlates between 

recorded brain oscillations and behavioural data in order to support the notion for oscillations playing 

a key role in the gating of perception processing. 

2.5 Conclusion  

Our findings show manifestations of oscillations in behavioural performance at physiologically 

relevant rhythms as demonstrated in neurophysiological recordings. We suggest low frequency 

oscillations have a role in the spatiotemporal integration of information over time. We further add to 

the growing literature in support for the CMPR model. Taken together our findings demonstrate a 

behavioural proxy of the neuronal substrate. These results are consistent with the hypothesis that low-

frequency band oscillations reflect fluctuations in cortical excitability in neural ensembles that 

periodically modulate perceptual processes.
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Chapter 3 

 

Auditory driven cross-modal phase reset of visual 
oscillations predicts visual motion perception 
 

3.1 Introduction 

Conventional investigations into the mechanisms of sensory perceptual processing have focused 

on activity within the primary sensory cortices as a function of their respective inputs. Multisensory 

stimulation paradigms have demonstrated that in addition to the preferred modality, extended cortical 

regions are modulated via cross-modal inputs related to nonpreferred modalities at the level of 

primary cortical areas (Kayser, Petkov, & Logothetis, 2008; Lakatos et al., 2009; Lakatos, Karmos, 

Mehta, Ulbert, & Schroeder, 2008) often referred to as cross-modal phase resetting (CMPR). Several 

lines of research suggest that transient auditory stimulation can modulate visual responses in the 

visual cortex, in doing so influencing early sensory-perceptual processing (Fort, Delpuech, Pernier, & 

Giard, 2002; Giard & Peronnet, 1999; Mercier et al., 2013b; Mishra & Martinez, 2007; Molholm, Ritter, 

& Murray, 2002; Naue et al., 2011; Raij et al., 2010; Romei, Gross, & Thut, 2012).  

 

The first experiment sort to explored the behavioural signatures of multisensory interactions 

within the framework of cross-modal phase resetting. The data provide evidence which supports the 

mechanism for an auditory driven modulation of visual motion perception. This study investigated the 

sensory perceptual consequences from varying the lengths of apparent coherent motion sequence. The 

results revealed behavioural performance was modulated in low-frequency oscillations, and suggests 

a possible role for these neural rhythms in the integration of sensory information over time. 

Additionally, it was found that increasing the length of temporal integration windows did not 

significantly affect perception performance. This suggest that participants are able to integrate 

spatiotemporal information over windows with varying lengths of stimulation between 2 Hz and 10 

Hz. Specifically, participants were able to perform the task consistently irrespective of condition, 

suggesting that evidence accumulation reaches an optimal level within only a few frames (at least 50 

ms) of the coherent motion sequence. To this end, the current experiment explored the neural 

mechanisms that constitute the CMPR mechanism using an adaption of the previous experimental 

paradigm. In this study, we expand on the previous findings using MEG to further explore the 

underlying neural oscillatory systems involved. As discovered in the previous chapter, there was no 

effect elicited by manipulating the length of coherent motion, therefore, in the present study we used 

five frames integration window, as this would be sufficiently optimal to perform the task. 



Chapter 3 
  60 
 

  

T h e  c u r r e n t  s t u d y  

Several lines of research from animal and human EEG studies have provided complimentary 

evidence in support for the CMPR mechanism (e.g. Lakatos et al., 2007; Romei et al., 2012). Some with 

direct evidence, extending from animal studies, while others provide indirect measure using 

psychophysical measures. For example, there is an emerging body of research that shows behavioural 

oscillations in purely psychophysical data which are taken to represent the underlying neural systems 

involved in sensory perceptual processing (Benedetto & Spinelli, 2016; Diederich et al., 2012; 

Diederich et al., 2014; Fiebelkorn, Foxe, & Butler, 2011; Song, Meng, Chen, Zhou, & Luo, 2014). Most 

electrophysiological studies investigating the CMPR use brief, momentary stimuli, and focus either on 

the spatial domain (Eimer & Driver, 2000; Landau & Fries, 2012a) or detection of a single transient 

near-threshold stimulus (Fiebelkorn et al., 2011; Kayser et al., 2008; Naue, Rach, Strüber, & Huster, 

2011; Romei, Gross, & Thut, 2012). While purely psychophysical studies probe the rhythmicity in 

perception at a much courser temporal scale and are restricted to measurements in the lower 

frequency spectrum. Moreover, contributing research using MEG neurophysiological recordings is 

sparse. To address this, we aimed to contribute new MEG neurophysiological and psychophysical 

evidence in support of cross-sensory interactions. To achieve this we used continuous dynamic visual 

stimulation that is spatio-temporally informative prior to target stimulation onset.  

 

Instantaneous pre-stimulus oscillatory phase will be different on each successive repetition of trials 

of an experiment, where averaged performance across these trials will reveal no perceptual 

modulation (Vanrullen et al., 2011).  In the present experiment, we circumvent this problem by 

consistently presenting a salient auditory stimulus at the start of each trial as a method used to avoid 

the unpredictability of in visual perceptual responses. To this end, a brief single tone can cause a 

transient phase reorganisation of visual oscillations and eliminate the uniform random distribution of 

oscillatory phase in the visual cortex. This in principle would lead to responses that are more 

predictable. The current experiment used the same paradigm as in the previous chapter. Although, in 

the present study we used five frames of apparent coherent motion only.  

H y p o t h e s e s  

We predict a replication of the behavioural performance as previously reported. Next, we 

hypothesised that if there were evidence for a cyclic modulation in sensory perceptual performance, 

this would be indexed by a cyclic modulation in ERF amplitudes time-locked to tone-onset. Further 

offering support for the notion of a cyclic modulation in cortical excitability that impacts on sensory 

perceptual performance. Finally, we predict a brain-behaviour correlation that suggest a neural 

correlate for the behavioural oscillations. 

 



Chapter 3 
  61 
 

  

3.2 Methods 

P a r t i c i p a n t s   

Twenty right-handed volunteers participated in the study (11 male, mean age 24.4 ± 5.3 years). All 

participants provided informed written consent and received a monetary compensation for their 

participation. Two participants were excluded for further analysis due to technical issues concerning 

behavioural threshold performance. None had been diagnosed with a hearing disability or had a 

history of significant neurological or psychiatric illness. Participants had normal to corrected-to-

normal vision. Handedness was defined by the Annett Hand Preference Questionnaire (Annett, 1970). 

Experiments were approved by the local ethical committee (University of Glasgow, The College of 

Science and Engineering) and conducted in conformity with the declaration of Helsinki. 

D e s i g n  a n d  p r o c e d u r e  

Participants performed an apparent motion discrimination task. Using a three-alternative forced 

choice design procedure, participants were required to indicate the direction of apparent coherent 

motion (henceforth, motion) in a dot kinematogram stimulus. The target onset of motion was 

presented at near-threshold. The three possible motion conditions were; coherent clockwise-, 

coherent anticlockwise- and/or no coherent-motion (control) condition. For the purposes of 

simplicity, both coherent motion directions will henceforth be referred to as the motion condition 

(MC), since data from these were concatenated to form one condition, and the no-coherent motion 

condition (control) will be referred to the as no-motion condition (NMC). Responses were made with 

the right hand using a nonmagnetic response pad (Lumitouch). They were instructed to respond either 

by pressing with their right index finger (placed on right most key), middle finger (placed on middle 

key) and ring finger (placed on left most key) for coherent anticlockwise motion, no-coherent motion, 

and coherent clockwise motion responses respectively.  

 

The experimental paradigm is illustrated in Figure 3.1. Each trial started with the presentation of a 

circular random dot kinematogram (RDK) around a central fixation point. Dots appeared as ‘noise’ 

flashing “on and off” with no coherent motion for a fixed jittered period (300-700 ms, intervals of 16.67 

ms), after which a binaural tone was presented. The dots would then remain as no-coherent motion 

until one of 18 possible stimulus-onset-asynchrony (SOAs) time points (700-1033.34 ms, intervals of 

16.67 ms), where a titrated percentage of dots either rotated in a clockwise- or anticlockwise manner 

for four monitor refresh frames or remained as no coherent motion (control). The experiment 

consisted of 8 blocks of approximately 6- 7 mins in length. The design was constructed in such a way 

that trials were continuous, where the next trial started immediately after the response. A block 

comprised 60 trials of each of the three apparent motion conditions: no motion, leftward motion, and 
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rightward motion (180 trials in total) presented in pseudorandomised order. For each apparent 

coherent motion condition all 18 SOAs were repeated three times. In the remaining 6 trials (a total of 

18 across the conditions, i.e. 10%) a no-tone catch trial was presented. These catch trials were used as 

a control condition. 

S t i m u l i  

Stimuli were presented through a DLP projector (PT-D7700e-K, Panasonic®) placed outside the 

shielded room onto a screen situated 1.90 m away from the participant via an in-room mirror. Stimuli 

were generated off-line using Matlab 2013.b (The MathWorks®) and controlled using routines from 

Psychophysics toolbox (Brainard, 1997). Sound stimuli were delivered binaurally via a sound pressure 

transducer through two 5 m long plastic tubes terminating in plastic insert earpieces. Sound stimuli 

levels were calibrated using a condenser using microphone and sound level meter. Sounds were 

presented at a self-adjusted comfortable level of approximately 65 dB SPL. 

For detailed description of the RDK stimulus see Chapter 2 (see Chapter 2, Methods Section, Stimuli).  

 

 

Figure 3.1. Experimental design. Random dots will be presented on the screen for a minimum of 
300ms, after which will remain for a jittered period until the binaural presentation of a tone. The 
jitter period between 300 to 700 ms to tone onset. Following the tone-onset the random dots will 
rotate either clockwise anticlockwise or remain as random dots (no move condition) and this will 
take place at one of 18 SOAs time-locked to the auditory stimulus. The SOAs are at intervals of 16.67 
ms according to the 60 Hz refresh rate.  
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3.2.1 Behavioural Data  

The behavioural analyses pipeline is identical to that in Chapter 2 (see Chapter 2 Methods Section).  

3.2.2 MEG Analyses 

D a t a  a c q u i s i t i o n  

Neural activity was recorded continuously during each block from participants in a comfortable 

sitting position using a 4D Neuroimaging Magnes® 3600 WH system (Neuroimaging Inc., San Diego) 

with 248 magnetometers in a magnetically shielded room. The acquisition sample rate was 1017 Hz. 

The MEG signal was high pass filtered at 0.1 Hz and digitised at 508 Hz. Data from three bad channels 

were excluded from the data. Participants were asked to remain as still as possible and were 

continuously monitored by video camera. They were also instructed to minimize blinking during the 

presentation of visual stimuli, and instead to synchronize their blinks with the simultaneous button 

press for selecting responses. Eye movements were monitored using a SR-research remote Eyelink 

system (FL-890, SR Research Ltd.). Calibration of eye fixation was performed at the beginning of each 

run using a 9-point fixation procedure. 

 

Data analysis of the MEG signal was performed using the FieldTrip software package (Oostenveld 

& Fries, 2010); see http://fieldtrip.fcdonders.nl/) and in-house Matlab code.  

P r e p r o c e s s i n g  

The preprocessing of the MEG signal was performed using the following procedures. First, the 

signal was epoched in trials of 3.5 s in length time-locked to the tone onset (1 s pre-stimulus). Each 

trial was assign to a different condition based on SOA delay time points (forming 18 conditions). Trials 

were further split into tone trials and no-tone trails including coherent motion and no-coherent 

motion.  Secondly, before visually inspecting MEG traces for artefacts, the DC offset and linear trends 

were removed to facilitate visualisation. Four excessively noisy sensors were discarded from all 

subjects’ analysis. Additionally, trials contaminated with physiological (eye blinks, eye movements) or 

non-physiological (squid jumps) were discarded. Thirdly, signals recorded from by the MEG reference 

channels were used to linearly remove electromagnetic interference from outside the scanner, 

implemented using the “ft_denoise_pca” function in FieldTrip (Johnson, Hirschkoff, & Buchanan, 2003)  

and post-acquisition, data were DC offset to ensure a zero mean signal on all sensors. Finally, trials 

containing large signal variance which corresponded to cardiac artefacts were projected out of the 

MEG signal using Independent Component Analyses (“fastica” algorithm implemented in FieldTrip). 
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S e n s o r - l e v e l  a n a l y s i s   

Before calculating the event-related averaging, preprocessed data were bandpass filtered in the 

range of 1–30 Hz. Event-related fields (ERFs) were baseline corrected to the 500 ms period 

immediately preceding the stimulus onset for each condition (tone and no-tone). Subsequently, the 

ERFs were realigned in time according either to tone onset or to coherent apparent motion onset while 

retaining the baseline intervals time-locked to the stimulus onset for each condition (Figure 3.2). To 

avoid differences in the noise when comparing unequal number of trials from different conditions, 

these were matched by randomly selecting a subsample of trials from the more numerous condition to 

equate trial numbers across them. 

 

 

From the fields measured by the magnetometers, the approximation of the MEG planar gradient 

was computed using Fieldtrip’s ft_megplanar function. Considering planar gradient data simplifies the 

interpretation of the sensor-level results, as the maximal signals are located above neural sources 

(Bastiaansen & Knösche, 2000; Hari, Salmelin, & Makela, 1997). For the ERFs, the combined resulting 

horizontal and vertical planar gradients were calculated by singular value decomposition per channel 

location using the fields from the sensors and both first- and second-order neighbouring sensors 

(maximum distance of 7.4 cm) and using the “sincos” approach implemented in Fieldtrip. This 

projected the data along the largest magnitude direction above a given source (Hämäläinen, Hari, & 

Ilmoniemi, 1993). For the spectral analyses, we computed metrics separately for the horizontal and 

vertical planar gradients, and combined the two by computing the sum. 

E R F  a n a l y s i s   

All non-rejected trials were sorted according to the respective conditions; coherent-motion 

(coherent clockwise-, coherent anticlockwise-motion) and no coherent-motion conditions; tone and 

Figure 3.2. Schematic of realigned ERFs. Data were analysed in time according to either, A) 
timelocked to tone-onset or, B) timelocked to coherent movement-onset. For illustrative purposes, 
only eight simulated ERFs are shown to represent the 18 different SOAs. 
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no-tone conditions, and finally data were further divided into correct and incorrect trials based on 

behavioural response classification. The ERFs elicited for each stimulus category were then computed 

separately for each participant and averaged in the time range between -300 ms and 300ms, and 

subsequently, the grand-average across all participants.  

 I d e n t i f i c a t i o n  o f  a u d i t o r y  a n d  v i s u a l  a c t i v a t i o n   

Loci of auditory and visual evoked activation were defined statistically by comparing the difference 

of between coherent-motion and no-coherent-motion conditions using nonparametric cluster-based 

permutation t-tests (Maris & Oostenveld, 2007). This randomisation testing uses a cluster-based 

threshold correction method to control for the type I error rate in the context of multiple comparisons. 

This achieved by identifying clustering neighbours that show significant differences over sensors, time, 

and/or frequency rather than performing separate tests on each sensor, sample frequency pair. Here, 

data was selected where the difference between the two conditions whose sensor- time-pairs t-

statistics exceeded the critical p-value of 0.025% for two-sided testing.   

 

The selected sensor- time-pairs were then grouped into clusters wherein each cluster, the sensor- 

time-pairs form an arrangement that is connected spatially and temporally. Such that, if the sensor- 

time-pair t-statistics exceeded the statistical threshold were neighbouring spatially and temporally, 

then these sensor- time-pairs were grouped together as a cluster. Next, each cluster was assigned a 

cluster-level statistic, calculated by the sum of the sensor- time-specific statistics. That is, the cluster-

level statistic is contingent on the size of the cluster and the magnitude of the sensor- time-specific t-

statistics with in that cluster. To control for the Type-I error rate across all spatiotemporal data, the 

cluster-level statistics were evaluated under the randomisation null distribution of the maximum 

cluster-statistic. Therefore, using only the maximum cluster-level statistic as the test statistic, allows 

the control of the Type-I error rate rather than multiple tests for every sensor- time-pair.  The 

permutation distribution was approximated by randomising the order of the coherent-motion and no-

coherent-motion conditions within every participant. Finally, by creating a reference distribution from 

1000 random draws, the p-values were estimated by the proportion from this randomisation null 

distribution in which maximum cluster-level test statistic exceeded the observed maximum cluster-

level test statistic. This proportion of estimation is statistically known as the Monte Carlo p-value. Here, 

the Monte Carlo p-value provides an accurate estimation of the true p-value where a one-sided 

randomisation test was performed. The results of these statistics would allow the demarcation of 

significant sensor-clusters to be used as regions of interest (ROI) for further analyses.  
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C y c l i c  m o d u l a t i o n  i n  E R F  c o m p o n e n t s  

To assess evidence for a cyclic modulation in the ERF components as a function of SOA,  spectral 

analysis was performed. This test determined if there are periodic fluctuations evident in the ERF 

amplitude values across each stimulus delay phase-locked to apparent motion onset. Figure 10b shows 

the critical time-window demarcated in red, this marks the period of spectral-decomposition 

computed across the 18 SOAs. These were carried out in Matlab using custom programming code 

established on standard mathematical and signal analysis functions. It is important to note that for this 

analysis spectra were computed not across time but across SOA – so across the 18 evoked responses 

and for each participant independently. At each latency relative to the motion onset the 18 data points 

(from the 18 SOA conditions) were multiplied with a Hamming window and padded with zeros to a 

total length of 64 data points. FFT was applied and the power spectrum was computed as the square 

of absolute values of the complex spectrum. The frequencies of interest were integer values between 

1 and 33 Hz. The time steps of interest were from -500 ms to 500 ms in 1 ms steps (for illustrative 

purposes only 200 ms to 400 ms and frequencies between 1 and 20 Hz are shown). The power 

spectrum at each latency expresses how much periodicity is visible in the SOAs. To quantify statistical 

significance, the time-frequency results of the power spectra between the motion conditions was 

subjected to nonparametric cluster-based permutation test procedure, as described in more detail in 

the previous section Pre-stimulus phase difference 

P r e - s t i m u l u s  p h a s e  

Phase-locking value was measured separately for each condition grouped into correct and incorrect 

trials. Because trial numbers are known to influence phase measures crucially (Hanslmayr et al., 2013), 

trial numbers were equated across the two conditions with the lowest number of trials per SOA and 

randomly selecting the same number of trials from the remaining condition. To exclude potential 

effects due to a specific trial selection, we performed trial selection by means of random subsampling 

2000 times. We compute spectro-temporal decompositions of single trials by a applying a multi-taper 

convolution method with a Hanning window of half the wavelength of the frequency investigated. The 

frequencies of interest were integer values between 1 and 20 Hz. The time steps of interest were from 

-0.5 to 0.5 s in 0.1 ms steps. For each participants’, trial r, frequency f, and time point t, we normalized 

the complex Fourier spectrum 𝐹𝑠,𝑟,𝑓,𝑡   of the DFT by dividing it by its absolute (abs) value, thus 

normalizing the signal by its amplitude: 

𝐹𝑠,𝑟,𝑓,𝑡
𝑛𝑟𝑜𝑚 =  

𝐹𝑠,𝑟,𝑓,𝑡

𝑎𝑏𝑠(𝐹𝑠,𝑟,𝑓,𝑡)
 

 

From these normalised values, the normalised phase was calculated for each participant s, trial r, 

frequency f, and time point t: 
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ɸ𝑠,𝑟,𝑓,𝑡
𝑛𝑜𝑟𝑚 = 𝑎 tan (

𝐼𝑚 (𝐹𝑠,𝑟,𝑓,𝑡
𝑛𝑜𝑟𝑚)

𝑅𝑒 (𝐹𝑠,𝑟,𝑓,𝑡
𝑛𝑜𝑟𝑚)

) 

 

Where 𝐼𝑚 and 𝑅𝑒 are the imaginary and real part, respectively, of the DFT.  

 

To analyse statistically whether the prestimulus phase angles differed between correct and 

incorrect trials, the phase of these two sets of trial groups for each time-frequency element at the 

within-subject level by means of the circular Watson-Williams test. The Watson-Williams two- or 

multi-sample test is a circular analogue of the two-sample t-test or the one-factor analysis of variance 

(ANOVA) in the linear scale (Fisher, 1995). This test defines whether the mean direction of two or more 

groups are identical or not. The Watson-Williams test assumes the von Mises distribution, which 

ranges from −𝜋 to +𝜋 on the unit circle. The concentration parameter 𝑘 of the von Mises distribution 

(circular analogue of the normal distribution) describes the spread of the data, Such that, a higher value 

of 𝑘 corresponds to a narrower concentration about the circular mean. Circular statistics were 

computed using MATLAB 2013a  (MathWorks, Natick, MA) and CircStat Version 2012a (Berens, 2009). 

The concentration parameter has been proven to be robust against deviations from these assumptions 

(Berens, 2009). Results are reported as circular mean ± circular SD. This function implements the 

procedure  described by Zar (1999). 

 

To assess the consistency of phase angle differences over subjects, we performed a nonparametric 

randomization test identifying clusters in time-frequency space demonstrating a similarly directed 

phase angle difference relative to a null distribution (see methods above). The null hypothesis is that 

the phases are randomly distributed and uniformly distributed, showing no difference between the 

correct and incorrect trials. That is, for each participant, we assigned to each trial group random phases 

(equating the number of trials for each participant) and then repeated the above-mentioned statistical 

analysis. Next, a comparison (random) of phase angles between both trial groups for each time-

frequency element at the within-subject level was analysed by applying the Watson–Williams test. This 

procedure was repeated 2000 times (each time with new, randomly chosen phases), resulting in 

2000 F-values for each time-frequency element. Subsequently, we used the median of all 2000 F-values 

for each time-frequency element, resulting in a time-channel map of F-values for each participant, 

which constitutes the null distribution. We then statistically compared the F-values of the test 

distribution with the F-values of the null distribution for each time-frequency element by means of a 

dependent-samples t-test, resulting in a time-frequency map of t-values. Positive t-values for a specific 

time-frequency element demonstrate a larger phase angle difference compared with randomly 

distributed phase angles, and vice versa for negative t-values. To investigate whether the phase angle 
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differences between perceptual conditions were significantly different from randomly distributed 

phases, we applied a cluster-based randomization approach (described in detail above). 

C o r r e l a t i o n  a n a l y s e s  

To establish the relationship between the spectral profile of the behavioural performance data (d’ 

fitting) and the evoked response profile of MEG fluctuations in ERF amplitude values as a function of 

SOA, we performed a Spearman’s correlation. First, in the behavioural data, single subject detection d’ 

(DP-DT-1) temporal profile were subjected to a Jackknife resampling method to accurately estimate 

the optimal fitting cosine models at each frequency. The details of the Jacknife procedure are described 

in Chapter 2. A Spearman’s rank correlation was performed on both behavioural and MEG spectrums.  

To correct for multiple comparisons the false discovery rate (FDR) procedure was applied (Matlab 

function fdr_bh.m) (Benjamini & Hochberg, 1995; Benjamini & Yekutieli, 2001). Significance level of 

correlation coefficients were set at 0.01. A further clustering threshold was set of a minimum of five 

consecutive data points that were required to survive clustering threshold for final significance. This 

was computed, as FDR correction does not consider spurious clustering of data points.  

3.3 Results 

B e h a v i o u r a l  p e r f o r m a n c e  

The aim of the experiment was to investigate the effect of cross-modal phase resetting (CMPR) on 

sensory perceptual performance. To investigate the temporal profile of visual perceptual performance 

over varying delays, a curve fitting procedure was applied to d’ accuracy scores. This was used to test 

for a cyclic modulation in behavioural performance. We tested three different d-prime measures based 

on different signal detection criteria for those trials considered to be Hits Rates (HR) and False Alarms 

(FA). The first, d-prime detection 1 (DP-DT-1), HRs were based on correctly detecting the direction of 

coherent motion and no-coherent motion, where FAs were based simply on those trials where 

participants did not accurately detect the direction of motion and did not incorporate performance 

accuracy on the no-coherent motion trials.  Second, d-prime detection 2 (DP-DT-2), the same criteria 

as above, but FAs considers performance on no-coherent motion trials. Finally, d-prime discrimination 

(DP-DS) is based only on those trials where there was coherent motion. HR criteria are based on trials 

where the correct discrimination in the direction of coherent motion was selected, where FAs 

consisted of the opposite, not accurately discriminating direction. It is important to note when 

considering discrimination, this measure is based on fewer trials, and therefore this inherently suffers 

from higher signal-to-noise (SNR) ratio.   
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Table 1. DP-DT-1 descriptive statistics. Hit rates (HIT), false alarm rates (FA) 
and bias criterion (c)  
                     

SOA  HIT % (S.E.M.)  FA % (S.E.M.)  c  (S.E.M.) 
              

16.67 ms 
 

77 (± 1.03 ) 
 

7 (± 0.84 ) 
 

0.35 (± 0.03 ) 

33.34 ms 
 

78 (± 1.02 ) 
 

7 (± 0.87 ) 
 

0.37 (± 0.03 ) 

50.01 ms 
 

80 (± 1.01 ) 
 

7 (± 0.85 ) 
 

0.32 (± 0.03 ) 

66.68 ms 
 

79 (± 0.89 ) 
 

8 (± 0.87 ) 
 

0.31 (± 0.03 ) 

83.35 ms 
 

81 (± 0.99 ) 
 

6 (± 0.75 ) 
 

0.33 (± 0.03 ) 

100.02 ms 
 

80 (± 0.91 ) 
 

7 (± 0.78 ) 
 

0.32 (± 0.03 ) 

116.69 ms 
 

80 (± 1.26 ) 
 

9 (± 1.13 ) 
 

0.23 (± 0.03 ) 

133.36 ms 
 

78 (± 1.02 ) 
 

10 (± 1.16 ) 
 

0.26 (± 0.03 ) 

150.03 ms 
 

79 (± 1.36 ) 
 

9 (± 1.15 ) 
 

0.26 (± 0.03 ) 

166.70 ms 
 

79 (± 1.24 ) 
 

9 (± 1.15 ) 
 

0.26 (± 0.02 ) 

183.37 ms 
 

79 (± 1.28 ) 
 

9 (± 1.09 ) 
 

0.27 (± 0.03 ) 

200.04 ms 
 

76 (± 1.72 ) 
 

11 (± 1.37 ) 
 

0.26 (± 0.02 ) 

216.71 ms 
 

80 (± 1.4 ) 
 

7 (± 0.74 ) 
 

0.31 (± 0.02 ) 

233.38 ms 
 

80 (± 1.46 ) 
 

6 (± 0.89 ) 
 

0.35 (± 0.03 ) 

250.05 ms 
 

78 (± 1.57 ) 
 

7 (± 0.95 ) 
 

0.35 (± 0.03 ) 

266.72 ms 
 

77 (± 1.64 ) 
 

7 (± 1.1 ) 
 

0.39 (± 0.03 ) 

283.39 ms 
 

73 (± 1.32 ) 
 

7 (± 1.03 ) 
 

0.44 (± 0.04 ) 

300.06 ms 
 

74 (± 1.26 ) 
 

7 (± 0.78 ) 
 

0.43 (± 0.04 ) 

              
Cells contain the mean and standard error of the mean (S.E.M.) averaged across participants. Trials time-
locked to tone onset.  

 

Table 2. DP-DT-2 descriptive statistics. Hit rates (HIT), false alarm rates (FA) 
and bias criterion (c)  

                     

SOA  HIT % (S.E.M.)  FA % (S.E.M.)  c  (S.E.M.) 

  
 

  
 

  
 

  
       

16.67 ms  79 (± 0.95 )  17 (± 1.11 )  0.07 (± 0.01 ) 

33.34 ms  80 (± 0.89 )  15 (± 1.08 )  0.08 (± 0.02 ) 

50.01 ms  82 (± 0.91 )  15 (± 0.92 )  0.05 (± 0.01 ) 

66.68 ms  81 (± 0.87 )  16 (± 0.89 )  0.06 (± 0.01 ) 

83.35 ms  84 (± 0.77 )  13 (± 0.85 )  0.05 (± 0.01 ) 

100.02 ms  83 (± 0.68 )  14 (± 0.87 )  0.04 (± 0.01 ) 

116.69 ms  82 (± 1.07 )  15 (± 1.19 )  0.07 (± 0.02 ) 

133.36 ms  80 (± 1.05 )  16 (± 1.08 )  0.05 (± 0.01 ) 

150.03 ms  81 (± 1.19 )  15 (± 1.18 )  0.05 (± 0.01 ) 

166.70 ms  81 (± 1.21 )  16 (± 1.19 )  0.04 (± 0.01 ) 

183.37 ms  82 (± 1.13 )  15 (± 0.92 )  0.03 (± 0 ) 

200.04 ms  78 (± 1.49 )  18 (± 1.4 )  0.04 (± 0.01 ) 

216.71 ms  82 (± 1.19 )  14 (± 0.96 )  0.05 (± 0.01 ) 

233.38 ms  82 (± 1.24 )  14 (± 1.18 )  0.05 (± 0.01 ) 

250.05 ms  81 (± 1.47 )  16 (± 1.33 )  0.04 (± 0.01 ) 

266.72 ms  80 (± 1.47 )  17 (± 1.37 )  0.03 (± 0.01 ) 

283.39 ms  76 (± 1.24 )  21 (± 1.24 )  0.04 (± 0.01 ) 

300.06 ms  77 (± 1.11 )  20 (± 1.12 )  0.03 (± 0 ) 

              
Cells contain the mean and standard error of the mean (S.E.M.) averaged across participants. Trials time-
locked to tone onset.  
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Table 3. DP-DS descriptive statistics. Hit rates (HIT), false alarm rates (FA) and 
bias criterion (c)  

                     

SOA  HIT % (S.E.M.)  FA % (S.E.M.)  c  (S.E.M.) 

  
 

  
 

  
 

  
       

16.67 ms  56 (± 1.01 )  1 (± 0.23 )  0.99 (± 0.02 ) 

33.34 ms  56 (± 1.23 )  2 (± 0.31 )  0.93 (± 0.02 ) 

50.01 ms  58 (± 1.11 )  2 (± 0.22 )  0.94 (± 0.02 ) 

66.68 ms  57 (± 0.96 )  2 (± 0.32 )  0.93 (± 0.02 ) 

83.35 ms  59 (± 1.17 )  2 (± 0.42 )  0.87 (± 0.02 ) 

100.02 ms  58 (± 0.9 )  2 (± 0.39 )  0.88 (± 0.02 ) 

116.69 ms  51 (± 1.14 )  1 (± 0.33 )  1.05 (± 0.02 ) 

133.36 ms  50 (± 0.88 )  2 (± 0.47 )  1.03 (± 0.03 ) 

150.03 ms  50 (± 1.03 )  2 (± 0.39 )  1.01 (± 0.02 ) 

166.70 ms  50 (± 0.9 )  2 (± 0.35 )  1.04 (± 0.02 ) 

183.37 ms  49 (± 1.12 )  2 (± 0.58 )  1.01 (± 0.03 ) 

200.04 ms  48 (± 1.14 )  2 (± 0.38 )  1.07 (± 0.02 ) 

216.71 ms  58 (± 1.28 )  2 (± 0.43 )  0.9 (± 0.03 ) 

233.38 ms  57 (± 1.44 )  3 (± 0.4 )  0.88 (± 0.02 ) 

250.05 ms  57 (± 1.46 )  2 (± 0.3 )  0.89 (± 0.02 ) 

266.72 ms  55 (± 1.41 )  2 (± 0.43 )  0.92 (± 0.03 ) 

283.39 ms  51 (± 1.44 )  3 (± 0.43 )  0.95 (± 0.03 ) 

300.06 ms  52 (± 1.46 )  2 (± 0.38 )  0.95 (± 0.02 ) 

              
Cells contain the mean and standard error of the mean (S.E.M.) averaged across participants. Trials time-
locked to tone onset.  

 

Table 4. Grand average. Hit rates (HIT, percentage correct), false alarm rates (FA, 
percentage) and d' (c, bias response) for each SOA  
                           
    HIT % (S.E.M.)  d' (c)  FA % (S.E.M.)     

  
 

  
 

             

  5-Frames   73.3(2.28)   2.39(0.5)   7.05(1.28)   

 10-Frames  
79.76(2.5)  2.71(0.41)  6.0(1.18) 

 

  25-Frames   74.83(2.78)   2.44(0.49)   6.91(1.39)   

                           

Cells contain the mean and standard error of the mean (S.E.M.) averaged across participants for 
Hit and FA. Trials time-locked to tone onset.  

 

Table 1-3 displays the Hit Rate, False Alarm, and Response Bias(c) for each SOA across the 

conditions. A non-parametric contrast (Wilcoxon signed ranks test) between the mean values of c 

against zero (no response bias) revealed that these were significantly greater than zero for all 

conditions (DP-DT-1:  𝑍 = −3.725, 𝑝 < 0.05; DP-DT-1:  𝑍 = −3.724, 𝑝 < 0.05; and DP-DS: 𝑍 =

−3.724, 𝑝 < 0.05). This indicates that participants were biased to respond that there was coherent 

motion; however, this bias was the same direction across all conditions indicating that d’ scores were 

not confounded by a difference in response bias. Table 4 shows the results of average apparent motion 

discrimination accuracy (hit rate and d prime) for each experimental condition. These data indicate 

that all subjects, including those with high false alarm rates, were nonetheless able to differentiate 

apparent motion in the three forced choice task. 
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Table 1 shows the results of average apparent motion discrimination accuracy (hit rate and d-

prime) for each d-prime condition. These data indicate that all subjects, including those with high false 

alarm rates, were nonetheless able to differentiate apparent motion in the three-alternative forced 

choice. In all three experimental conditions a repeated-measures analyses of variance (RM-ANOVA) 

was implemented to assess the variability of apparent motion discrimination accuracy (d’) across the 

18 SOAs as a function over time phase locked to tone onset. Three RM-ANOVA were performed for the 

three d-primes with factors SOA (18-factors) across subjects (19) there was a significant main effects 

of SOA for the DP-DT-1 (𝐹17,306 =  2.80, 𝑝 ˂ 0.001, 𝜂𝑝
2 = 0.13), and DP-DT-2 (𝐹17,306 =  4.06,

𝑝 ˂ 0.001, 𝜂𝑝
2 = 0.18), but there was no significant main effect for the DP-DS (𝐹17,306 =  1.35, 𝑝 >

 0.05, 𝑛𝑠, 𝜂𝑝
2 = 0.07). 

 

Figure 3.4 shows box plots of the d’ performance and reaction times (RT) for each subject across 

the conditions. This enabled visual inspection of the data to identify outliers and determine which data 

sets to exclude for further analyses. Participants were excluded if the average d’ performance was 

consistently below or above the peri-threshold level set between 65% and 80% accuracy. Based on 

these criteria subject eighteen was excluded for having consistently low accuracy scores and slow RTs. 

Individual trials with reaction times outside the specified criterion of 200 and 1400 ms were excluded.  

 

a b 

Figure 3.3. Average d’ as a function of SOA. Line plots illustrating estimated marginal means at the 
group-level performance across SOAs. a) Accuracy expressed as d’ scores SEM = 0.002, SEM = 0.001, 
SEM = 0.003, respectively and b) reaction times. Solid lines show the data where shading demarcates 
standard error. Standard error for reaction times SEM = 0.039, SEM = 0.035, SEM = 0.039, 
respectively. 
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P e r i o d i c i t y  i n  p e r c e p t u a l  p e r f o r m a n c e  

To investigate the effects of the varying onset of the target stimulus presentation (coherent motion) 

over the 18 SOAs time-locked to tone-onset, a curve fitting function was applied to data. This test 

determined if there are periodic fluctuations evident in d’ discrimination accuracy as a function over 

time relative to tone onset. To assess significance of the model fit and the presence of periodicity, a 

bootstrapping statistical approach were combined with the cosinusoidal model fitting procedures. 

Critically, this procedure tests the existence of a significant cyclic modulation in sensory perceptual 

performance, where the periodic fluctuations observed in the data could be attributed to stimulus-

locked oscillatory activity. The results revealed a significantly modelled cosine function for all three 

conditions. Figure 3.5 illustrates the time-course of visual task performance timelocked to tone onset 

for all three conditions (after linear detrending), with best-fitting cosine models superimposed in red. 

a 

b 

c 

Figure 3.4. Descriptive Statistics. Box plots illustrating the individual subject performance data. 
Left panel represents the d’ accuracy discrimination and detection. Right panel represents ration 
time (RT) data. a) DP-DT-1, b) DP-DT-2, c) DP-DS. Lines in boxes represent medians, the box ends at 
the 25th and 75th percentiles, whiskers 10th/90th percentiles. Individual SOA data are 
superimposed dots for each subject. Outliers (>1.5 times the interquartile distance) are plotted with 
crosses. 
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a 

c 

b 

Figure 3.5. Group Avg. Cosine Functions. Left panel shows cosine model fits (red sloid line) 
superimposed on d’ data (dotted line). Right panel shows the bootstrapping significance r-square 
model fits. a) DP-DT-1, b) DP-DT-2, c) DP-DS conditions respectively. Group average d’ accuracy 
(linearly detrended) for apparent motion discrimination for all conditions over 2 cycles post-tone 
onset. The best fitting cosine model superimposed in red. a) 6 Hz (r2 = 0.45), b) 7 Hz (r2 = 0.46), c) 
6 Hz (r2 = 0.48), show the optimal significant cosine functions. Shaded area represent standard error 
of the mean (SEM) after the removal of baseline between subject variance (within-subject error bars 
(Cousineau, 2005).   
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statistics. The DP-DT-1 revealed a best fitting cosine model at 6 Hz (r2 = 0.45) with a range of significant 

frequencies between 6-7 Hz (95% CI). DP-DT-2 revealed a best fitting cosine model was 7 Hz (r2 = 0.46) 

with a range of significant frequencies between 7-8 Hz (95% CI). Finally, the DP-DS, the best significant 

model fit was 6 Hz (r2 = 0.48) with a range of significant frequencies between 5-7 Hz (95% CI). These 

data statistically confirm the presence of a cyclic modulation in visual task performance at group level. 

Single subject data not shown here, yield similar results. 

P o w e r  S p e c t r a l  D e n s i t y  e s t i m a t e  

In order to further assess the existence of periodicity in sensory perceptual performance as 

evidence of CMPR, the d’ data were transformed into their frequency-domain representations (see 

Methods). The short-time FFT method (MATLAB, spectrum.welch method) was used to compare the 

frequency content in the data. Figure 3.6.b illustrates the power spectrum density (PSD) computed on 

the group average spectrum and ranges from 1-33 Hz. This method uses a standard Fourier transform 

of the data. For all three d-primes the power peaks around the 7-12 Hz frequency band for the grand 

averaged group data. There is a clear peak in the DP-DT-1 at 8 Hz, whereas for DP-DT-2 there is a peak 

at 9 Hz and DP-DS a peak at 9 Hz. All three d-primes show peaks at higher frequencies between 23-25 

Hz, although with lower power than the first peak. Here the frequency spectrum of noise in the data is 

uniform, where any significant peaks would provide evidence for a consistent periodic component.  

 

 

 

 

 

Figure 3.6.  Power spectral density and R-square fit. a) R² values for cosine model fitting across 
frequencies. Three conditions superimposed. Peak fitting frequencies at 5-10 Hz. Solid lines indicate 
the 95% confidence interval bootstrapped permutation. b) Using standard short-time Fourier 
transform, power spectrum of d-prime temporal profile. All the conditions show clear peaks at 6-8 
Hz frequency. The 10- and 25-frame conditions show peaks at 24 Hz where the 5-frames conditions 
shows a strong peak at a 15 Hz frequency.  

a b 
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a 

c 

b 

Figure 3.7. Phase concentration. Left panel; Rayleigh’s Z-scores across subjects on d’ cosinusoidal 
model fits as a function of frequency. Red squares indicate the highest phase concentration. 
Horizontal red dotted line indicated the 95% confidence interval cut-off (z-score = 3.8) Right panel; 
Circular plot representing the highest phase concentration frequency, with individual participants’ 
phase angle values on the circumference of the unit circle (theta phase in degrees). Red dot and line 
represents the mean and resultant vector length respectively for the phase coherence of d’ across 
participants. The vector length here measures the consistency of phase locking around the mean 
angle (M), with 0 being random and 1 being zero variance. The vector direction indicates the 
preferred phase of visual task performance (d’), and length indicates magnitude of phase resetting, 
the mean resultant (PLV). Peak PLVs reported here; a) DP-DT-1, z-score = 6 Hz, PLV = .6 (M = -2.7), 
b) DP-DT-1, Z-score = 7 Hz, PLV = .7 (M = .3), c) DP-DS, z-score = 6 Hz, PLV = .5 (M = -2.6).  
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O s c i l l a t o r y  p h a s e  c o n c e n t r a t i o n  

Across all d-primes, there is significant evidence for a phase modulation in visual perceptual 

performance following tone-onset. The magnitude of phase locking was measured using the mean 

resultant vector length (MRVL) on a unit circle (figure 3.7, right panel), a measure of circular phase 

concentration derived from the Rayleigh’s test for circular uniformity. By this measure, CMPR was 

determined using phase-locking analyses of the d-prime data, time-locked to tone onset as a function 

over time across SOAs. Here, the data show that ongoing low frequency visual oscillations are reset in 

all the conditions. A Rayleigh’s Z-statistic were assigned to each frequency band (1-33 Hz). This test 

confirmed statistically significant nonuniformity (p < 0.05) in the phase distribution in across all three 

d-primes. The optimal phase concentration DP-DT-1 was 6 Hz with a MRVL = .63 (z-score range = .46 

– 7.69), DP-DT-2 with 7 Hz, MRVL = .68 (z-score range = .26 – 8.76). In the discrimination d-prime the 

optimal phase was 6 Hz with a MRVL = .48 (z-score range = .36 – 4.71). Phase locking analyses revealed 

similar results between both detection d-primes, whereas with discrimination, phase locking was 

weaker and at 6 Hz.  These data provide consistent supporting evidence for CMPR across all three d-

primes.   

3.4 MEG sensor-level results 

In order to investigate the effects of CMPR in the visual cortex, data were realigned to movement 

onset. The allowed us the test for modulation effects across the evoked response to the percept of 

apparent coherent motion in the RDK stimulus. Figure 3.8 shows the alignment of the data time-

courses for further analyses. Figure 3.9 shows a summary of the grand average event-related response 

to auditory and visual stimuli. Event-related fields (ERFs) at putative auditory (superior temporal 

gyrus) and occipital sensors are shown compared with coherent- and no-coherent motion conditions.   

R O I  a n a l y s e s  a t  s e n s o r  s p a c e  

Using non-parametric permutation tests the loci of auditory and visual evoked activation were 

defined statistically by comparing the difference of the correct trials between coherent-motion and no-

coherent-motion conditions. Topographical maps of the planar gradiometer data show the results of 

the cluster-based statistics. These revealed two significant clusters, one spanning the visual cortex and 

one over the auditory cortex, a selection of these sensors were chosen to construct the ROIs which 

were used for further analyses (figures 3.10, and 3.11). The ERF data show that the auditory time-

locked data, main significant difference between conditions at approximately 100 – 150 ms in putative 

auditory sensors. In visual time-locked data (i.e. coherent motion conditions) the main significant 

difference in the visual sensors appears at 250 – 300 ms, these were later used as time-windows of 

interest for further analyses.  
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C y c l i c  m o d u l a t i o n  o f  E R F  c o m p o n e n t  

To assess an auditory induced modulation of visual oscillations we used a time-frequency 

decomposition across the SOAs. It was possible then to establish spectral properties across the SOAs 

as a function over time. Data time-locked to coherent motion onset revealed, in the visual ROI, a cyclic 

modulation in ERF components at 300 ms in the 10 Hz frequency, clusters significant at p<0.05. For 

the temporal parietal ROI, there is a significant cluster at 240 – 300 ms around 4 Hz, similarly for the 

auditory ROI but with a longer window of 240 – 350 ms (figure 3.12.a, and 3.12.b). This data shows 

that ERF amplitudes are modulated at alpha frequency in the visual cortex. 

a 

c 

b 

d 

Spectral-decomposition window (200 ms to 400 ms) 

Coherent motion time-locked data 

Tone time-locked  

Figure 3.8. Time-course realignment. Power spectrum plots showing the ERFs over time points 
for each SOA delay point. Each row on the Y-axis represents an SOA. All eighteen SOAs are shown 
here stacked. The X-axis shows the power over all time points for which each particular SOA occured 
indexed on the Y-axis a-b) Data in the coherent apparent motion condition c-d) Data in the coherent 
apparent motion condition. a. c.) Data time-locked tone-onset, b. d.) data time-locked to apparent 
coherent motion.  All plots show clear ERFs to tone-onset and in the coherent-motion conditions 
there are clear ERFs at 300 ms time-locked to tone-onset. SOA 19 on all plots shows the data for the 
no-tone (baseline) condition. Data from SOA 19 were not included for further analyses, but are shown 
here for reference.  
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P r e - s t i m u l u s  o s c i l l a t o r y  p h a s e  d i f f e r e n c e  

We would predict that the underlying neural correlates of the observed cyclic modulation in d’ 

performance should reveal evidence for both phase reset, and a pre-stimulus phase difference between 

hits and misses in the neurophysiological recordings. Across our participants and trials, we 

investigated if pre-stimulus phase modulates visual sensory performance. Phase analyses was 

computed by taking the circular average between phase courses of sensors in the visual ROI cluster. 

Data were separated into correct (hits) and incorrect (misses) trials. By contrasting the phase angle 

distributions of correct and incorrect trials, using the Watson-Williams test across time-points for each 

subject in the frequency bands between 1-20 Hz, the effects of pre-stimulus activity on post-stimulus 

period can be tested. The visual ROI revealed a significant phase distribution between the groups of 

trials (figure 3.13). The data showed that ~200 ms prior to visual stimulus onset, there was a 

significant difference in phase concentration in theta (6-8 Hz) frequency bands, and significant 

broadband clusters at higher frequencies (16-20 Hz) at ~ 100 ms prior to visual target onset which 

extends into the post stimulus period. 

 

C o r r e l a t i o n  o f  b e h a v i o u r a l  a n d  M E G  s p r e c t r a l  p r o f i l e s  

We computed the correlation between the behavioural spectral profiles of DP-DT-1 performance 

with the MEG spectrum. Figure 3.14 show the results. Analyses with Spearman rho show very strong 

positive correlations in the time range .29 s to .33 s (𝑟𝑠 =  .83  𝑝 <  0.001 ∶ 𝑟𝑠 =  .96  𝑝 <  0.001), a 

strong negative correlation at .23 s (𝑟𝑠 =  −.65  𝑝 <  0.001) and becomes positive at .25 s (𝑟𝑠 =

 .65  𝑝 <  0.001), and a negative correlation between .36 s to .38 s (𝑟𝑠 =  − .4  𝑝 <  0.001 ∶ 𝑟𝑠 =

 − .45  𝑝 <  0.001). We can see a clear positive significant correlation at the critical time window of 

300 ms post tone onset. This indicated that the ERF components which represent cortical excitability 

correlate with the cyclic modulation in behavioural perceptual performance. All results were subjected 

to multiple comparisons test using the FDR correction.  
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Figure 3.9. Localisation of auditory and visual activation. Topographical representation of 
average MEG channel activation for localisation for auditory and visual activation. ERF plots show 
average auditory and visual evoked fields from the highlighted sensors. a) Data time-locked to tone 
onset, b) Data from the control condition, no-tone trials c) data time-locked to visual target onset.  
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Figure 3.10.  Localisation of visual evoked activation. Data time-locked to coherent movement 
onset. Activation reveals the difference between coherent motion and no-coherent motion 
conditions. a) Topographical cluster plots in a time window from 1-550 ms shifting in windows of 50 
ms. b) Evoked field component of coherent motion onset. Grey bars demarcate a significant 
difference between conditions. c) Topographical plot showing sensors selected for ROI analyses in 
black. Nonparametric cluster based statistics show significant cluster channels, shown in yellow 
circles.   

a 

 

a 

 

a 

 

a 

c 

 

Fi

g

ur

e 

3.

1

0.  

L

oc

al

is

at

io

n 

of 

vi

su

al 

e

v

o

k

e

d 

ac

ti

v

at

io

n. 

D

at

a 

b 

 

a 

 

a 

 

a 



Chapter 3 
  81 
 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11.  Localisation of auditory evoked activation. Data time-locked to tone onset. 
Activation reveals the statistical difference between coherent motion and no-coherent motion 
conditions. a) Topographical cluster plots spanning a time window from 0-555 ms shifting in 50 ms 
increments . b) Evoked field component of coherent motion onset. Grey bars demarcate a significant 
difference between conditions. c) Topographical plot showing sensors selected for ROI analyses in 
black. Nonparametric cluster based statistics show significant cluster channels, shown in yellow 
circles  
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Figure 3.14. Correlation of MEG and behavioural spectral data. Behavioural temporal profile of 
d-prime accuracy values was correlated with the cyclic modulation observed in the ERF values time-
locked to movement onset. A non-parametric Spearman’s correlations revealed a significant positive 
correlation around 300 ms while negatively correlated around 200 ms and 350 ms. Significance is at 
p  < 0.01. 

Figure 3.12.  Cyclic modulation in ERF component. Time-frequency resolved power changes 
analyses in visual ROI data. a) Schematic of coherent motion time-locked to movement onset. Red 
box indicated the window of interest which represents the ERF response following auditory stimulus 
in the visual cortex, b) TFR statistics of the visual ERF components timelocked to moment onset, 
black contours demarcate significant clusters with p < 0.05 threshold, using non-parametric cluster 
based permutation tests.    

Figure 3.13. Pre-stimulus phase difference. Clusters reveal time-frequency resolved analyses for 
phase opposition sum statistics (Watson Williams Test) for the visual ROI. Black contours demarcate 
significant clusters with p < 0.05 threshold, using non-parametric cluster based permutation tests. 
Black dotted line indicates the onset of apparent coherent motion.   
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3.5 Discussion 

Our aim was to investigate an auditory induced modulation of visual cortical excitability to 

influence early visual sensory-perceptual processing. Using both MEG and psychophysiological 

methods, it was possible to demonstrate evidence that may support the CMPR mechanism and its 

perceptual consequences. We assessed the temporal profile of performance over varying delays (SOA), 

time-locked to a salient auditory stimulus. We predicted that if there were evidence of a transient 

phase reorganisation in the underlying visual oscillations, this would manifest itself as a cyclic 

modulation in perceptual performance. Using signal detection theory, we estimated performance 

accuracy using d’ scores, which indexed the sensitivity and discriminability criterion of the target ACM. 

The results show that this was indeed the case. The behavioural data revealed a clear cyclic modulation 

in visual motion perception at specific low frequencies in the theta-alpha range.  

 

MEG recordings enable us to probe neural oscillatory phase directly. The data revealed a rhythmic 

modulation of cortical excitability in theta (1-4) Hz and alpha (8-12 Hz) frequency bands as indexed 

by ERF amplitude values as a function over time. These findings are in line with the perceptual cycle 

theory, that the visual system samples incoming stimuli in discrete cycles in the theta (150-200 ms) 

and in alpha (80-100 ms) frequency ranges (Busch et al., 2009; Lakatos et al., 2005; Vanrullen et al., 

2011). We observed pre-stimulus alpha phase differences, which has specific consequences on 

perceptual outcomes. Here we found that there was significant difference in phase distributions 

between hits and misses, suggesting that there is a preferred phase for optimal performance. At these 

preferred phases, there was a higher probability of detecting or discriminating the near-threshold 

target coherent motion onset. Finally we found brain behaviour correlation between the spectral 

profiles of d’ and ERF as a function of SOA. Our data support findings shown in both animal (e.g., 

Lakatos et al., 2009, 2007; Magri et al., 2009) and human neurophysiological research (e.g., Busch et 

al., 2009; Mathewson & Gratton, 2009; Monto & Palva, 2008).   

 

Our data contribute to the existing sparse evidence suggesting that a transient task irrelevant 

auditory stimulus can modulate visual motion perception. In contrast to previous investigations, here 

we provide evidence from both electrophysiological and behavioural evidence. The interaction 

between auditory and visual domains may be achieved through the mechanism of cross-modal phase 

resetting. This is because, visual motion detection and discrimination accuracy was modulated as a 

function of SOA time-locked to tone onset further supporting the notion of the perceptual cycles theory. 

In the majority of cross-modal interaction studies, the visual modality has been shown to predominate 

(Easton & Moran, 1978; Gibson, 1933; Hay & Keller, 1965). For example, there are numerous studies 

suggesting a strong visual influence on auditory perception (K. Calvert, Bhattacharjee, & Zegura, 1998; 
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Driver & Spence, 1998). What is less investigated are studies demonstrating a strong auditory 

influence on visual perception, or even more so visual motion perception.  

B e h a v i o u r a l  p e r f o r m a n c e  

By varying the onset of the target coherent motion relative to the tone-onset, it is possible to align 

and systematically sample the time course of performance in order to find signs of behavioural 

oscillations. Perceptual performance expressed in d’ scores were analysed as a sample of discrete time-

series indexed by SOA values. To this end, curve-fitting procedures revealed a clear rhythmic 

modulation in visual perception. Importantly, we implemented titration procedures at the start of each 

block to control for extreme subject variability in discrimination and detection performance. This 

ensured that performance was kept at individual subjects near-threshold. To this end, if the target 

near-threshold ACM occurred at SOAs which corresponding to the optimal phase in the visual systems 

sampling rhythm, this signal will be amplified and increase the probability of accurately detecting or 

discrimination the true direction of motion. The data revealed significant cosine models in the 5-6 Hz 

(theta) frequency range across all d’ conditions. Significance was assessed by comparing the observed 

results with those obtained from random shuffling of the time points using permutation procedures. 

Spectral analyses of the detrended temporal profile of d’, performed across subjects, revealed 

oscillations in the frequency range between 5-12 Hz. Subsequent PLV analyses computed on the 

average d’ for each subject, indicated that across subjects performance was phase-locked to the tone-

onset in the theta frequency band with a clear peak at 6 Hz in all three d’ conditions. In both detection 

d’ conditions there were similar peaks at higher frequencies, around 12-14 Hz and 23 Hz, with an 

additional phase reset at 2 Hz in the DP-DT-2 condition. We speculate in detail below that these higher 

frequencies reflect higher-order cognitive processes (Smith & Ratcliff, 2004). Whereas, the lower 

frequencies (delta, 2 Hz), have been implicated in a role for anticipatory processes (Schroeder & 

Lakatos, 2009), which can be interpreted here as the period between tone-onset and target delay. We 

attribute this periodicity to reflect the underlying state of neural activity and accept this as evidence in 

support for the CMPR mechanism. 

 

 The input from the visual system is constantly changing and our perceptual representation must 

continuously be updated. Given that the external changes in our sensory environment are continuous, 

we might predict that conscious updating is continuous as well. Alternatively, this gain of information 

could be periodic, if at the neuronal level this mechanism is employed through oscillatory activity. 

Using a dynamic RDK stimulus, we were able to investigate the discrete nature of perception under 

continuous stimulation. In our paradigm in order to perceive global apparent coherent motion in the 

RDK stimulus participants are required to integrate spatio-temporally information over-time (Casco, 

Morgan, & Ward, 1988; Fredericksen, Verstraten, & Grind, 1994; Lappin & Bell, 1976; Ramachandran 

& Anstis, 1983). Specifically, there is a gain of information with each successive frame displacement 
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that are retrospectively perceived as continuous. Each spatiotemporal frame displacement involves 

feedforward and re-entrant processing. In natural viewing the world is sampled via eye movements 

(Wutz, Muschter, van Koningsbruggen, & Melcher, 2014) or shift of attention with an overt sampling 

of the visual field at a rate of 3-5 times per second (Fiebelkorn et al., 2013; Landau & Fries, 2012; Song 

et al., 2014). Using a tone to phase-align visual oscillations experimentally is one mechanism whereby 

we are able to uncover these inherent fluctuations likely tied to perceptual sampling. The cosinusoidal 

curve-fitting models show that detection and discrimination rate (d’) systematically fluctuates at 

specific low frequencies between theta and low alpha range (5 and 8 Hz).  Suggesting that performance 

was modulated by the delay between tone-onset and SOA, supported by previous findings (e.g., 

Fiebelkorn et al., 2011; Landau & Fries, 2012).  

C y c l i c  m o d u l a t i o n  o f  c o r t i c a l  e x c i t a b i l i t y  

We predicted that if there were evidence for CMPR, there would be a response consistent with a 

reorganisation of ongoing baseline activity that would emerge as an oscillatory pattern. This would be 

characterised as a modulation in the ERF amplitudes indexed by SOA, where the magnitude and latency 

would contrast responses evoked by visual stimulation alone. The neurophysiological data revealed 

that this was indeed the case. Here spectral analyses revealed that ERF amplitudes across the 18 SOAs 

were modulated phasically at 300 ms following coherent motion onset in two posterior regions, visual 

alpha and parieto-temporal theta. Interestingly, there is a reciprocal relationship between the 

rhythmicity observed in ongoing visual oscillations phase-reset by the tone and the modulation seen 

across ERF amplitude values as a function of SOA. In the former, spectral decomposition analyses is 

performed on the MEG times-series data which reveals specific oscillations that constitutes the data 

(Gross et al., 2013). Whereas, performing spectral analysis across the time-locked ERF components as 

a function of SOA and analysed as a sample of discrete time-series reveals commensurate rhythmicity. 

Our results show an audio-visual modulation of parieto-occipital low frequency (1-4 Hz) and alpha 

band (8-12 Hz) power in the occipital regions that is predictive of perceptual multisensory modulation. 

Previous work has suggested that low-level sensory interactions including the build-up of the decision 

process can contribute to audio-visual motion perception (Kim et al., 2012; Sekuler, Sekuler, & Lau, 

1997; Shams, Kamitani, & Shimojo, 2002; Stein, London, & Wilkinson, 1996; Vroomen & Gelder, 2000; 

Watkins et al., 2006). 

 

 The periodicity in ERF amplitude values are taken as a proxy of underlying cortical excitability, a 

concept which has previously been supported (Dijk, Werf, & Mazaheri, 2010; Gross et al., 2002; 

Mazaheri & Jensen, 2008, 2010). These studies show that the amplitude of event related response 

components vary depending on the performance. For example, Busch et al. (2009) found an increase 

in ERP amplitude values for hit rates in the detection of brief near-threshold visual stimuli as compared 

to misses. Specifically, perception was dependent on the stimulus-onset time relative to the phase of 
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ongoing 5-10 Hz (theta-alpha) oscillations in the frontal cortex (Busch et al., 2009a) or parietal cortex 

(Mathewson et al., 2009). Taken together, the probability of detecting near-threshold stimuli depends 

on the neural excitability, which covaried with EEG fluctuations on a fine temporal scale and varies 

with the phase of theta/alpha band oscillations (Busch et al., 2009a; Dijk et al., 2008; Ergenoglu et al., 

2004; Mathewson et al., 2009; Wyart & Sergent, 2009). We correlated the spectral profile across ERFs 

and d’ temporal profile. The data revealed a strong positive correlation at the critical 300 ms time-

window post movement onset. 

 

Electrophysiological recordings show that alpha power over posterior cortical regions predict 

cortical excitability, since it modulates the probability that a TMS pulse will elicit the perception of 

phosphenes (Romei, Rihs, Brodbeck, & Thut, 2008). These findings demonstrate that ongoing activity 

is not only characterised by its amplitude, but by its instantaneous phase and is related to the 

probability of neural firing (Fries, Nikolić, & Singer, 2007; Lakatos, Shah, Knuth, et al., 2005; Lakatos, 

Shah, & Knuth, 2005; VanRullen, Reddy, & Koch, 2005; Whittingstall & Logothetis, 2009). Research 

shows the phase of these local field potentials, specifically alpha/theta oscillations are related to the 

probability of perceiving a near-threshold stimulus (Busch et al., 2009a; Mathewson & Gratton, 2009). 

Evidence of endogenous neural phase resetting following an exogenous stimulation has been 

demonstrated using TMS stimulation at the alpha frequency range, has been shown to affect oscillatory 

activity as measured by EEG (Thut, Schyns, & Gross, 2011), and perception (Romei, Driver, Schyns, & 

Thut, 2011).  

P r e - s t i m u l u s  p h a s e  m o d u l a t e s  p e r c e p t i o n  

An increasing number of studies show that stimulus detection is influenced by both oscillatory 

power and the precise temporal dynamics of an oscillation (i.e., its phase) before the onset of the target 

stimulus (Busch et al., 2009; Mathewson et al., 2009; Romei et al., 2012). In our study, we use a brief 

tone to gain systemic control over the instantaneous state of the visual oscillations prior to ACM onset. 

Our data revealed pre-stimulus phase difference between hits and misses for ACM detection and 

discrimination in the theta-alpha frequency range. These data support previous findings that occipital 

alpha oscillations are affected by the auditory input (Mathewson et al., 2009; Mathewson & Lleras, 

2011; Romei, Gross, & Thut, 2010). This follows the idea that visual perception operates 

mechanistically in successive cycles, alternating between phases of optimal and non-optimal 

excitability, which is associated with stronger or weaker inhibition, where the same stimuli wither 

more, likely to be perceived or go undetected.  

 

Varela et al (1981) have provided support for this idea; they reported that perception of two flashes 

separated by approximately 60-80 ms changed as a function of alpha phase (7-13 Hz). Here they found 

that at one phase the flashes were perceived as simultaneous and at the opposite phase as sequential, 
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even though the temporal asynchrony of the stimuli were consistent. More recent evidence has 

demonstrated that posterior pre-stimulus alpha amplitude modulates the perception of visual stimuli 

(Han & VanRullen, 2016), and there is a relationship between pre-stimulus alpha power and early 

evoked potentials (Ploner et al., 2006). Furthermore, alpha power has been implicated in the 

modulation in the precision of predictions about upcoming stimuli (Bauer, Stenner, & Friston, 2014). 

Our data support the principle that alpha activity operates in a phasic manner (VanRullen & Koch, 

2003; Varela, Lachaux, & Rodriguez, 2001) where alpha phase cycles in periods of increased 

probability of visual detection of near-threshold stimuli, whereas perception is lower at other phases. 

Furthermore, although not measured in the current paradigm, we could speculate that pre-stimulus 

alpha/theta phase modulates post-stimulus ERF amplitudes. Taken together, alpha-band oscillations 

modulate incoming sensory information, whereby a phase correlated inhibitory influence gates 

neuronal firing in a cyclic manner as a function of time (Busch, Dubois, & VanRullen, 2009; Jensen & 

Mazaheri, 2010; Klimesch & Schack, 2004; Mathewson & Gratton, 2009; Sauseng, Klimesch, & Gruber, 

2007; Sauseng, 2012; Gregor Thut et al., 2006).  

 

In our study, we extend the literature to suggest a role for pre-stimulus theta frequency in the 

spatiotemporal integration of sensory information, as was required in the RDK paradigm. Other 

studies have also associated a role for pre-stimulus theta in the modulation of sensory perception. For 

example, Chakravarthi & Vanrullen (2012) examined the ‘flash-lag’ effect, a visual illusion whereby a 

steady moving object is incorrectly perceived ahead of its true location at the moment of flash. This 

perceptual lag is taken as indirect evidence for updating the conscious representation of the sensory 

input after the ‘flash’ signal. Pre-stimulus EEG theta phase determined whether an earlier or later part 

of the ongoing motion sequence would be temporarily grouped, or ‘framed’ with the flash. These 

findings verify the idea that ongoing theta oscillations produce perceptual cycles in which visual inputs 

are processed periodically. Furthermore, VanRullen et al. suggest that 5-10 Hz oscillations contribute 

to “top-down” control (Jensen, Bonnefond, & VanRullen, 2012; Vanrullen, 2013), which was motivated 

by findings based on attentional phase effects on perception (Busch & VanRullen, 2010; Busch et al., 

2009a). This is in line with data showing a relationship between pre-stimulus oscillations and a 

predictive feedback-induced effect, where frontal pre-stimulus theta oscillations and occipital beta-

frequency oscillations together determine post-stimulus judgements (Han & VanRullen, 2016). In our 

data, we see some prestimulus beta activity which extends in the post stimulus period. This could be 

attributed to higher order cognitive processes as discussed previously or rather a motor preparatory 

response. 

 

It is noteworthy that our study did not explicitly manipulate attention, whereas this manipulation 

has been shown to be important for showing pre-stimulus effects occurring in the alpha frequency 

range (e.g., Busch & VanRullen, 2010; Lakatos et al., 2008; Stefanics & Hangya, 2010). It is possible that 
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different brain regions and different experimental conditions utilise oscillations occurring at different 

frequencies. Within this framework, it is possible that alpha oscillations are predominantly influential 

for modulating early sensory processing and therefore critical for simple detection tasks, whereas 

other frequency bands may be important in the same or other areas in different tasks.   

S p a t i o t e m p o r a l  i n t e g r a t i o n   

Participants were required to extract a global coherent motion signal embedded in noise in a 

continuous RDK stimulus. Random dots were displaced from their position in the first pattern for four 

successive frame rates. In order to perceive a single percept of coherent motion at the target rotation 

onset, participants must integrate the spatiotemporal information with each successive frame 

displacement. Spatiotemporal integration defined within this context refers to the accumulation of 

dynamic information of successive frame displacements in the kinematogram that is integrated across 

time to form a single coherent perception of motion. Motion perception is an essential aspect of visual 

perception. The visual systems must detect coherent patterns of stimulation that remain invariant 

under displacement on the retina. It is widely reported that brief visual stimulation is characterised as 

a primary visual evoked potential (VEP) as seen around 90-125 ms latency post stimulus onset, with a 

typical P1 and N1 peak latencies (e.g. Kremláček, Kuba, & Kubova, 2004; Makeig, Westerfield, & Jung, 

2002; Schlykowa, Dijk, & Ehrenstein, 1993 ). These component peaks are likely to reflect crucial 

junctures in early cortical processing and may be particularly susceptible to differences in pre-stimulus 

neural excitability indexed by alpha phase. However, in our data we observed late evoked responses 

at 300 ms (M3 and P3, its electromagnetic counterpart) post ACM-onset. Our data would suggest that 

much like these early components, late responses are modulated by pre-stimulus activity. However, 

here we observe this modulation in theta frequency range.  

 

These latencies effects have been reported previously in motion perception (Lappin & Bell, 1976; 

Mitchell, Sundberg, & Reynolds, 2009), where late components are suggested to reflect higher order 

cognitive processes rather than a primary evoked response to the onset of a stimulus presentation. We 

speculate that our data reflects the percept of ACM embedded within the noise rather than any changes 

in the stimulus properties itself. In the latter, we would expect to see a typical N1 response, which is 

not the case here. The M300 has primarily been implicated in endogenous cognitive processes (Devrim, 

Demiralp, Ademoglu, & Kurt, 1999). Devrim et al. further argued that the M3 component constitutes 

the major component of near-threshold visual ERPs including occipital responses. Similarly, previous 

findings report a high correlation between the M3 amplitude and the detection and discrimination of 

near-threshold stimulus (Hillyard, Squires, Bauer, & Lindsay, 1971; Parasuraman & Beatty, 1980; Paul 

& Sutton, 1972; Schürmann et al., 2001). For example, Haig & Gordon (1998) showed a cyclic 

modulation of the amplitude of the M3 evoked component that was phase-locked to alpha oscillatory 
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phase. Their findings show that late ERP components (P3) are influenced by the phase of ongoing 

oscillations. 

 

Analyses from event-related oscillations (ERO), an alternative theoretical and methodological 

approach to the analyses of event-related M/EEG responses (W Klimesch, Sauseng, & Hanslmayr, 

2007b; W Klimesch et al., 2004; Sauseng, Klimesch, Gruber, et al., 2007), argue that the M3 is elicited 

through the superposition of delta and theta frequency band oscillatory responses. Intracranial 

recording methods have identified the temporal-parietal regions are essential generators of the M3 

(Jones et al., 2004). Furthermore, Başar et al. (1992) showed an association between delta and theta 

response with signal detection and decision making process of near-threshold stimuli. They suggested 

that low frequencies are associated in the M3 response, their findings were based on ERP analyses 

performed in the frequency domain, and consistently revealed that the primary contribution of the P3 

component is concentrated in the theta frequency range (Başar-Eroglu, Başar, & Demiralp, 1992; 

Demiralp, Ademoglu, & Istefanopulos, 1998; Kolev, Demiralp, Yordanova, & Ademoglu, 1997). 

Although finding that late components constitute frequencies in the lower spectrum, are not very 

surprising. ERF events occurring prior to the M3, such as the N1, are typically related early sensory 

processing, whereas later components are associated with higher-order cognitive processes. This 

includes, motor planning, decision making, recognition and discrimination, content updating and 

executive control (Devrim et al., 1999; Donchin & Coles, 1988; Geffen, Wright, Green, & Gillespie, 1997; 

Nieuwenhuis, Aston-Jones, & Cohen, 2005; Polich, 2007). Studies using apparent motion stimuli have 

suggested that detection and discrimination of these types of stimuli fall within the remit of higher 

cognitive processes (Donner, Siegel, Fries, & Engel, 2009; Horwitz & Newsome, 1999; Roitman & 

Shadlen, 2002; Siegel, Engel, & Donner, 2011).  

 

Our results show that the spatiotemporal integration of information occurred in the visual and 

parietal ROIs. Most human studies report that motion perception is restricted to V5/MT, with some 

paradigms using constant random-dot stimulation show responses to correlate with firing in V5 

neurons (e.g. Britten, Newsome, & Shadlen, 1996). However, our data is in sensor space and we may 

only speculate a specific neural substrate for the data recorded at the sensors. Future studies would 

need to replicate these findings at source space. Here we show neural activity in response to the 

apparent coherent motion perception of a continuous RDK stimulus in parietal and visual ROIs. This is 

consistent with findings from Williams et al. (2003) who reported parietal activity for the perception 

and detection of apparent coherent motion in a random dot pattern. Therefore, we speculate that a 

neural correlate of the percept of apparent motion need not be restricted to V5 areas. There is a lack 

of a clear distinction between ‘processing’ versus ‘perceptual’ areas of the brain, but recent findings 

suggest that the areas involved in apparent motion perception is a part of a neural network which is 
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collectively responsible for its perceptual representation (Moutoussis, Keliris, Kourtzi, & Logothetis, 

2005).  

L i m i t a t i o n s  a n d  c a v e a t s   

As previously noted in Chapter 2, there are some inherent limitation when performing spectral 

analyses on behavioural data, but this will not be discussion here again. Next methodological 

consideration concerns measuring phase resetting. In non-invasive human M/EEG recordings it is 

theoretically impossible to demonstrate that evoked activity results from phase-resetting of ongoing 

neural oscillators (Telenczuk & Nikulin, 2010). Nonetheless, with sensible inferences on the origins of 

the signal with adept paradigms and the use of mathematical informed approaches, can provide useful 

criteria for interpretation (Canavier, 2015). There are two opposing theories that attempt to elucidate 

the genesis of the ERF. The oscillatory model posits that evoked responses are a consequence of a phase 

reset of ongoing oscillations (Hanslmayr et al., 2007; Klimesch et al., 2007a; Makeig et al., 2004; 

Mäkinen et al., 2005; Sayers et al., 1974). Whereas according to the evoked model, evoked responses 

arise as a fixed-polarity and fixed-latency in each trial which is superimposed on the intrinsic neural 

oscillations where the averaging of these evoked responses produces the ERF/P (Hillyard & Kutas, 

1983; Jervis et al., 1983; Mäkinen et al., 2005; Mazaheri & Jensen, 2006). Unlike previous studies 

investigating phase resetting, we used a dynamic visual stimulus presented continuously for the 

duration of a trial and prior to a temporarily informative tone. To this end, we were able to control for 

sudden changes in the properties of visual stimulus. Effectively we were able to discern the observed 

responses being a neural signature delineating the percept of coherent motion perception and not a 

direct consequence of phase resetting induced by transient stimulation. Evoked responses occurring 

at these ensuing latencies are attributed to higher order cognitive process, such as decision making 

and visual discrimination (Gold & Shadlen, 2007; Hanslmayr et al., 2005; Hillyard & Kutas, 1983). 

3.6 Conclusion 

In the present study, we sort to provide both psychophysical and neurophysiological evidence, 

which may support the CMPR mechanism. Our findings show manifestations of oscillations in 

behavioural performance at physiologically relevant rhythms. Where low frequency oscillations have 

a role in the spatiotemporal integration of information. These findings were supported by the MEG 

data showing a cyclic modulation of ERF amplitude values as a function of SOA following tone-onset, 

suggesting that an auditory stimulus can modulate cortical excitability in the visual cortex. In addition, 

the phase of pre-stimulus oscillations predicts perceptual response function. Taken together we 

extend the literature on CMPR by showing a correlation between the cyclic modulation in behavioural 

performance and cortical excitability as indexed by late evoked responses in a continuous apparent 

motion task.
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Chapter 4 

 

Cross-modal enhancement for multisensory 
predictions of self-generated stimuli.  
 

4.1 Introduction 

Our sensory systems must continually adapt to receiving varying information from the 

environment. Sensory input rarely influences a single sensory modality. Therefore, the representation 

of sensory information requires the integration of responses across distributed sensory systems. This 

is largely because even rudimentary object features are processed in different specialised modalities 

in parallel. Cross-modal integration is a candidate mechanism that enables the binding of signals across 

functionally interconnected cortical regions, including multisensory cortices (Kayser & Logothetis, 

2007; Lakatos, Shah, Knuth, & Ulbert, 2005). This is essential, as sensory information comprises a 

diverse combination of auditory, visual, haptic, and olfactory properties.  Across the hierarchy of 

sensory processing, neural activity is influenced by top-down attentional mechanisms that 

dynamically interact in the binding and selection of signals through a context-dependent way as a 

function of predictions and a prior of knowledge (Engel & Singer, 2001; Fries, Neuenschwander, Engel, 

& Goebel, 2001).  

 

In the first two experiments, I have explored the behavioural and electrophysiological signatures 

of cross-modal interactions particularly in the context of cross-modal phase resetting (see Chapters 3 

and 4). As discussed in the previous chapters, CMPR is a versatile, flexible and efficient mechanism for 

sensory gain control. The process of selective attention is an attribute of the biased completion model 

(Fries, Reynolds, Rorie, & Desimone, 2001; Mitchell, Sundberg, & Reynolds, 2009) that assumes that 

attention influences visual processing by enhancing the input gain for the group of low-level neurons 

associated with an attended behaviourally relevant stimulus over those groups of neurons related to 

the unattended stimulus. The mechanism of gain control is not specified in the model but may very 

well be implemented through an enhancement of synchronous neural oscillations among the group of 

low-level neurons driven by the attended stimulus and a functional connection between them and 

higher-order neurons (Fries, Neuenschwander, et al., 2001; Fries, 2005; Fries, Womelsdorf, & 

Oostenveld, 2008). Various oscillations in multiple frequency bands have been attributed to the 

enhancement of attention (Lakatos et al., 2005; Lakatos et al., 2009; Lakatos, Karmos, Mehta, Ulbert, & 

Schroeder, 2008). Interestingly, sensory gain control is an essential requirement for almost any 
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behavioural task and is therefore one of the fundamental operations in the human brain (Friston, 

2005). 

 

Another well-studied model case for this fundamental operation (besides the interactions of two 

sensory modalities) is the interaction between motor and sensory areas. This dynamic coordination of 

oscillations across sensory modalities and motor areas is described in the terms of predictive coding. 

Motor action leads to predictable sensory consequences. This predictive coding is associated with 

attentional neuromodulatory gain control in sensory processing, which reflects a (Bayes-optimal) 

encoding of precision accuracy in detection via the excitability of neural populations that report 

prediction errors. The very fact that the sensory consequences are predictable, changes the way they 

are processed in the brain and the associated percept. Specifically, self-induced sensory stimuli lead to 

reduced activation in sensory cortex. The exact mechanisms are yet unclear. However, inter-areal 

phase resetting is a potential mechanism,  which may index the forward model account of motor-to-

somatosensory prediction (Blakemore, Frith, & Wolpert, 2001; Wolpert et al., 1995) to different 

sensory modalities (e.g. somatosensory and auditory modalities; Lakatos et al., 2007).  

 

In fact, it has been suggested that two distinct mechanisms might be at play in this motor-sensory 

interaction. First, during motor preparation the overall excitability of sensory areas could be reduced. 

This could represent a general unspecific mechanism that is independent of a prediction regarding the 

exact identify of the expected stimulus. Indeed, increases in the power of alpha oscillations before 

movement onset have been reported in sensory areas (Müller, Leske, Hartmann, & Szebényi, 2014; 

Stenner, Bauer, Haggard, & Heinze, 2014). Since alpha power is negatively correlated with cortical 

excitability this corresponds to an overall increased suppression (Lakatos, Shah, Knuth, et al., 2005; 

Lange et al., 2013; Vincenzo Romei et al., 2010). Second, more precise predictions regarding stimulus 

identity could be represented in a temporally more precise control of excitability via phase resetting. 

Again, there are reports of differences in phase locking following self-induced versus passively 

perceived sensory stimuli (Liyu Cao, Thut, & Gross, 2016b) 

 

Here, we have studied the interplay of motor and (one or two) sensory areas using the same 

methodologies (time-frequency analysis of power and phase) as in the previous studies using a well-

established paradigm from the sensory attenuation literature (for a review, see: Hughes, Desantis, & 

Waszak, 2013). However, here we contribute to the existing literate in several ways: First, most of the 

previous electrophysiological studies investigate motor-sensory interactions by looking only at 

evoked data. We perform spectral analysis with power and phase. Second, most previous studies use 

EEG. Here, with MEG we avoid the referencing problem (Davidson, 1988; Nunez, 2006; Pascual-Marqui 

et al., 2011), have denser sensor placement and (by computing planar gradient representation) can get 

relatively focal estimates of activation from small sensor groups (although we acknowledge that source 
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localisation would be preferable). Third, for the first time, to our knowledge, we study the motor-

sensory interactions simultaneously in up to two sensory modalities. The paradigm therefore 

represents a novel combination of standard paradigms in two fields, the sensory attenuation field and 

the multi-sensory field.  

I n t e r a c t i o n s  b e t w e e n  m o t o r  a n d  s e n s o r y  s y s t e m s  

Our sensory systems have limited processing capacity and our brains must therefore adapt to deal 

with the surfeit of information arriving at our senses. One method used to manage this information is 

to predictively amplify sensory inputs carrying relevant information while supressing those which do 

not (Friston, 2012; Schroeder, Lakatos, Kajikawa, Partan, & Puce, 2008; Schroeder & Wilson, 2010). In 

principle, stimuli produced by our own self-initiated actions are generally regarded as trivial, as their 

consequences are largely predictable (Bays, Wolpert, & Flanagan, 2005; Blakemore, Rees, & Frith, 

1998; Blakemore, Wolpert, & Frith, 2000). Reducing redundancy associated with self-initiated actions, 

enables us to focus resources on extracting novel information from stimuli that correspond to 

biologically significant changes in our surroundings. This ability is important as it enables us to 

maintain perceptual stability. Conventional views propose that information about motor commands 

are used to distinguish the sensory consequences of our own actions from externally produced 

sensations.  Predicting the sensory consequences of self-generated movements is an essential 

component of motor control (Wolpert & Flanagan, 2001).  

 

Von Holst (1954) introduced the notion whereby the brains sensory motor areas send in parallel 

an efference copy of the same motor commands that are sent to move the eyes, to the visual system. 

This predicts the sensory consequences as indexed by corollary discharge of the movement, where this 

prediction allows the visual system to compensate for retinal displacement during voluntary eye 

movement  (Sperry, 1950). In order to determine the location of an object relative to our heads, for 

example, its retinal location and gaze direction must be determined. Helmholtz (1967) proposed that 

since the eye muscles are thought not to contain any sensory receptors, gaze direction is determined 

rather by predicting the eye location based on the efference copy of the motor command going to the 

extraocular muscles (Bridgeman & Stark, 1991). Consequently, the object’s veridical position in space 

can be determined by both the estimation of the eyes position together with the object’s retinal 

location. Predictions can work in an integrated way by assimilating input from other sensory 

modalities to filter information, attenuating components produced via our own self-initiated actions 

(re-afference) from those produced externally. Conceptually, in order to produce predictions, the 

central nervous system (CNS) must comprise a central monitor (Frith., 1992) or internal “forward 

model” (Blakemore, Wolpert, & Frith, 1998; Ito & Speer, 2008).  
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The reduced sensory processing of self-generated stimuli is typically explained by the CNS forward 

models of motor control (Miall & Wolpert, 1996). This forward model, variously referred to as 

corollary discharge (Sperry, 1950) or efference copy (von Holst, 1954), of the motor command are 

used to generate continuously predictions of the sensory consequences of self-initiated movement and 

the causal relationship between their outcomes (Ito & Speer, 2008; Weiskrantz, Elliott, & Darlington, 

1971; Wolpert et al., 1995). These predictions are then compared with the actual sensory feedback (re-

afference) from the movement.  Subsequently, self-generated actions are reliably predicted on the 

basis of motor commands, and as a result there is little if any sensory discrepancy between the 

comparisons of the predictions and the results of the actual sensory feedback. This accurate prediction 

can be used to attenuate the sensory effects of self-generated movement (P. Bays, Flanagan, & Wolpert, 

2006; SJ Blakemore et al., 1998).  

 

In contrast, externally driven sensations are not associated with an efference copy, and therefore 

the forward model is not able to predict these events. The model attenuates or removes sensory 

feedback components associated with self-generated movement in order to accentuate more relevant 

and unpredicted feedback generated through external events. This mechanism acts as a processing 

filter discerning perhaps those more relevant components of external incoming sensory information. 

This mechanism of predictive attenuation offers an explanation as to why self-generated tactile 

stimulation we perceived is weaker than the same stimulus externally imposed (Bays et al., 2006, 

2005; Blakemore et al., 1998; Shergill, Bays, Frith, & Wolpert, 2003). The transmission of an efference 

copy to the appropriate sensory modality may be an emergent property of a self-organising system. 

Specifically, corollary discharge is related to synchronous neural oscillations. Accomplished through 

the synchronisation of oscillatory activity among distributed neural assemblies (Singer, 1999). Neural 

populations could be identified as being a part of the same functional network if their spatiotemporally 

distributed neural ensembles oscillate in the same synchronous frequencies. The brain optimises 

efficient processing of limited resources by aligning the internal neurophysiology to the external 

context of germane stimuli. This mechanism is an index of the active predictive sensing, which can 

guide the temporal structure of motor-initiated rhythmic events, an example par excellence is audition 

where continuous speech is sampled at a frequency of about 4-7 Hz (Park, Ince, Schyns, Thut, & Gross, 

2015; Schroeder & Wilson, 2010).  

 

Under the assumption that the forward model mechanism involves self-coordinated 

communication between motor and sensory systems, enhancement of neural synchrony should be 

evident before execution of motion actions. Consistent evidence has been demonstrated in local field 

potential recordings from somatosensory cells in rats, which showed neural synchrony that preceded 

exploratory whisking in both 7-12 Hz (Nicolelis, Baccala, Lin, & Chapin, 1995) and 30-35 Hz (Hamada, 

Miyashita, & Tanaka, 1999) bands. Hamada et al.  (Hamada, Miyashita, & Tanaka, 1999) proposed that 
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transfer of an efference copy of motor preparation to the somatosensory cortex, taking place within 

hundreds of milliseconds before the action and observed as oscillations phase-locked to it, might 

trigger neural oscillations. This is described in much more detail elsewhere (Friston, 2005). Here a 

conceptual explanation can be derived from the predictive coding theory. The tenant of this model is 

founded on the idea that sensory cortices receive information about internal predictions, the 

generative model, about the possible sensory consequences of forthcoming stimuli and these are 

systematically compared with the actual incoming information.  

 

Within this framework, the evoked response component is an index of prediction error, which is an 

expression of the discrepancy between predicted sensory outcomes and the actual sensory input. To 

this end, reduced prediction errors are expressed as a suppression in the magnitude of evoked 

responses. The difference between top-down expectation and incoming sensory inputs propagate 

forward throughout the cortical hierarchy in distinct frequency bands. Specifically, sensory predictions 

are communicated via anatomical feedback connections in the alpha to beta frequency range, whereas 

prediction errors are communicated along feedforward connections in the gamma frequency range 

(Arnal & Giraud, 2012; Arnal, Wyart, & Giraud, 2011; Bastos, Litvak, Moran, Bosman, & Fries, 2015). 

 

The sensory attenuation (SA) effect has been reported as a perceptual phenomenon using 

subjective report (Blakemore, Frith, & Wolpert, 1999). For example, Bays et al. (Bays et al., 2005) 

demonstrated that the perceived intensity of self-applied tactile stimuli are reduced when compared 

with identical, externally generated stimuli. Similarly, the SA effect has been shown using signal 

detection theory methodology. Here it has been shown that there is a reduction of  perceived loudness 

and visual contrast following self-generated auditory stimuli (Weiss, Herwig, & Schütz-Bosbach, 2011) 

and visual (Cardoso-Leite & Mamassian, 2010) stimuli respectively. Neurophysiological recordings 

have equally demonstrated the SA effect with ERP/Fs (Aliu, Houde, & Nagarajan, 2009; Baess, 

Widmann, & Roye, 2009) and neuroimaging methods (Blakemore et al., 1999, 1998).  

 

Studies using EEG and MEG have shown that the auditory cortex response to self-generated 

auditory tones is supressed relative to the response while passively listening to the same tones. For 

example, Schafer & Marcus demonstrated that the EEG response was attenuated for self-generated 

auditory stimuli when compared to externally generated stimuli (Schafer & Marcus, 1973). More 

recent evidence found similar findings, where the MEG response arising from the auditory cortex were 

attenuated for self-triggered tones (Martikainen, Kaneko, & Hari, 2005). Evidence for SA has 

prominently been demonstrated using auditory stimuli (Baess et al., 2009; Knolle, Schröger, Baess, & 

Kotz, 2012). Taken together these experiments typically observe a significantly reduced N1 (M100, its 

electromagnetic counterpart) response amplitude for self-generated auditory stimuli around 100 ms 

after tone onset. Fewer experiments have been conducted in the visual domain, with these experiments 
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showing a somewhat less reliable modulation over the vertex (Gentsch & Schütz-Bosbach, 2011), or 

late modulations over frontal and posterior sensors (Hughes & Waszak, 2011).  

 

Auditory SA has been shown repeatedly (Aliu et al., 2009; Baess et al., 2009; L Cao, Thut, & Gross, 

2016; Martikainen et al., 2005). The majority of EEG studies reporting a suppression of the N1 response 

have shown amplitude reductions only at Cz or a subset of frontocentral electrodes and attribute these 

effects the classical SA effect in the auditory cortex following self-generated tones, arbitrated by 

corollary discharge. However, contrary evidence from recording at mastoid regions have reported no 

SA effect (Timm et al., 2013) or an enhancement (Horváth, Maess, Baess, & Tóth, 2012). Few MEG 

studies have demonstrated attenuation of the M1 response that explain the suppression in the 

magnitude of equivalent current dipole sources in the auditory cortex (Aliu et al., 2009; Horváth et al., 

2012; Martikainen et al., 2005).  

 

A very recent study by Cao, Thut, & Gross (2016) using MEG spectral analyses demonstrated that 

self-initiated tones were associated with an increase in pre-stimulus alpha power, decrease in gamma 

power and an alpha/beta phase locking in the auditory cortex. These oscillatory signatures correlated 

with SA in evoked ERFs. They discussed this as evidence for a close relationship between neural 

oscillatory events and SA. Moreover, pre- and post-oscillatory changes correlated, a finding, which 

further supports the notion for the role of distinct frequencies in neural information processing within 

the context of predictive coding. Specifically, their data contribute to previous literature, which 

implicates the role of alpha oscillations reflecting feedback and gamma oscillations feedforward. 

Interestingly, they suggest that pre-stimulus alpha power represents prediction and post-stimulus 

gamma power represents prediction error. These mechanisms are modulated by post-stimulus 

alpha/beta phase resetting. These findings offer new insights into the underlying neural oscillatory 

mechanism involved in SA.  

 

SA effect have been demonstrated across a variety of modalities (Blakemore et al., 2000; Gentsch & 

Schütz-Bosbach, 2011; Voss, Bays, Rothwell, & Wolpert, 2007; Weiskrantz et al., 1971). However, 

imaging studies are sparse that would confirm an auditory suppression induced by self-generated 

stimuli. Furthermore, to our knowledge to date there has been no evidence for the SA effect for self-

generated multisensory stimulations, nor with any imaging evidence. Although research has examined 

tasks that combine the observation of biological actions with auditory consequences. These paradigms 

demonstrate that watching visual lip movements combined with auditory speech sounds results in 

suppression of early components of auditory ERP/F (Stekelenburg & Vroomen, 2007; Wassenhove & 

Grant, 2005). This evidence suggests that N1(m) suppression in these paradigms are a result of internal 

predictions about the temporal consequences of biological motion (Arnal, Morillon, & Kell, 2009). 
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T h e  c u r r e n t  s t u d y  

Here we aimed to extend the literature and use the SA effect with both unisensory and multisensory 

stimulation in an MEG study to perform power and phase analysis and investigate oscillatory phase in 

sensory-motor interactions. We aimed to replicate the widely reported SA effect in the auditory cortex 

(Hughes & Waszak, 2011) and extend our investigation into the visual modality. Within this framework 

when a tone is self-triggered, its timing is largely predictable. Research has demonstrated that the N1 

attenuation associated with self-generated tones reflects their predictability. To investigate this 

possibility, the present study compared the M100 response to self-generated and externally generated 

stimuli that were produced at a rate of once every three seconds. 

 

First, we expected that the forward-modal mechanisms would result in sensory prediction and in 

subsequent motor-to-auditory inhibition indexed as a suppression in the auditory cortex to self-

generated tones, effectively replicating the classical SA effect.  Next, we sought to investigate the effects 

of multisensory stimulation within the SA framework. Synchronised neural activity prompt temporal 

windows of communication between task related modalities (Pascal Fries, 2005; Varela, Lachaux, 

Rodriguez, et al., 2001). We assessed the effects of CMPR of early multisensory integration, for self and 

externally generated stimulation. Including the effects of visual-alone stimulation in visual cortex and 

the mechanisms involved for opposite simulation. In the previous two chapters, we demonstrated that 

a tone could modulate visual oscillations; here we extend our investigations to include a phase-reset 

of neural oscillations in primary auditory cortex by visual input. These seem to be an important 

mechanism in sensory perceptual processing (Mercier et al., 2015; Perrodin & Kayser, 2015; Thorne, 

Vos, & Viola, 2011). To our knowledge, for the first time, we aimed to investigate the motor-sensory 

interactions simultaneously in up to two sensory modalities. The paradigm therefore represents a 

novel combination of standard paradigms in two fields, the sensory attenuation field and the multi-

sensory field. Furthermore, in the current study we were able to assess the effects of nonlinear 

multisensory integration. To this end, neural activity evoked by both auditory-alone and visual-alone 

was compared with that of audiovisual stimulation using the linear additive criterion model (Kayser, 

Petkov, & Logothetis, 2008; Mercier et al., 2013; Stein, 1998).  

 

Most M/EEG studies investigating SA have restricted their analyses to specific stimulus-evoked 

responses (Baess et al., 2009; Gentsch & Schütz-Bosbach, 2011; Hesse, Nishitani, Fink, & Jousmäki, 

2010; Hughes & Waszak, 2011; Martikainen et al., 2005). Here we focus on neural oscillations in time-

frequency domain, motivated by previous findings that induced responses convey a corollary 

discharge signal. Alpha oscillations in the visual cortex has been attributed as representing a pulsed 

inhibition by feedback projections that prioritise sensory processing of task relevant (Jensen & 

Mazaheri, 2010) and salient stimuli (Jensen, Bonnefond, & VanRullen, 2012). It has been previously 
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suggested that related functions are attributes of sensory attenuation, specifically the prevention of 

self-initiated desensitisation and prioritising of externally generated stimuli (Lally, Frendo, & 

Diedrichsen, 2011; Poulet & Hedwig, 2007). To this end, we expect that prediction of self-initiated 

stimuli would reflect an increase in alpha-amplitude in the visual cortex and predict sensory 

attenuation at the perceptual level. We further, extend this prediction to the auditory cortex.  

 

Finally, deficits in sensory-predictive processes have been identified as specific symptoms of 

psychopathology, most notably delusions of control in schizophrenia (ScZ) patients (Frith & Wolpert, 

2000; Lindner, Thier, Kircher, Haarmeier, & Leube, 2005; Shergill, Samson, & Bays, 2005; Synofzik, 

Thier, Leube, & Schlotterbeck, 2010). ScZ patients who express such delusions report their own actions 

as being made for them by an external agent rather than by their own will. Paradoxically, the actions 

that are perceived to be forced upon them are in fact in accord with the patient’s own intentions. 

Therefore, these deficits underlying delusions of control are not related to an inability to initiate action 

but rather the perception of these actions being registered as internally triggered. In principle, a failure 

to predict self-generated actions leads to prediction-error resulting in sensory feedback that is 

surprising and the feeling that action was not internally initiated (Fletcher & Frith, 2009). Persistence 

of prediction-error would lead to a reduced sense of agency. Evidently the majority of first-rank 

symptoms of ScZ appear to reflect external attributions of internal generated phenomena (Fletcher & 

Frith, 2009). 

 

Although there is evidence that ScZ patients show deficits in predicting the sensory consequences 

of self-generated actions, which are often exhibited by subnormal levels of auditory M100 suppression 

to self-initiated auditory sensations (Ford et al., 2001; Lindner, Thier, Kircher, Haarmeier, & Leube, 

2005; Shergill et al., 2005; Synofzik et al., 2010), such case-control studies can be problematic due to 

medication effects. Here we investigate evidence which may support observing these deficits using a 

complimentary approach which involves assessing schizotypal characteristics in healthy people, 

considering ScZ as an extreme expression of a continuous phenotype normally distributed in the 

population (Chapman, Chapman, & Kwapil, 1994; Claridge, 1994; Peters, Joseph, Day, & Garety, 2004; 

Peters, Joseph, & Garety, 1999). Measuring such individual differences offers a unique approach to 

validating models of symptoms in the absence of medication. Given the deficits in sensory prediction 

observed in ScZ patients, we predicted a negative correlation between levels of sensory prediction (SA 

effect) and a tendency towards delusion ideation. This subnormal sensory attenuation effect has been 

similarly taken as evidence for the self-monitoring abnormalities proposed to underlie most 

characteristic clinical features of disorders  (Blakemore et al., 1999; Frith & Wolpert, 2000; Chris Frith, 

2005). In addition we administered the systemising quotient (SQ), designed to measure the tendency 

to use a systematic rule-based approach to understanding experiences. 
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H y p o t h e s e s  

The novel combination of concepts from multisensory integration and sensory attenuation in this 

study led us to derive the following hypothesis: 1) First, we predicted that multi-sensory effects would 

be evident also in the active condition in measures of power and phase locking. 2) We expect to 

replicate the effect of reduced M100 component in the active versus passive condition. 3) We 

hypothesise that sensory attenuation extends to the multisensory condition. 4) Finally, we predicted 

that self-report questionnaire data would correlate with sensory attenuation. 

4.2 Methods 

P a r t i c i p a n t s   

Twenty-two right-handed volunteers participated in the study (13 male, mean age 24.8 ± 5.3 years). 

All participants provided informed written consent and received a monetary compensation for their 

participation. Two participants were excluded for further analysis due to technical issues concerning 

behavioural threshold performance. None had been diagnosed with a hearing disability or had a 

history of significant neurological or psychiatric illness. Participants had normal to corrected-to-

normal vision. Handedness was defined by the Edinburgh Handedness Test (Oldfield, 1971) were 

approved by the local ethical committee (University of Glasgow, The College of Science and 

Engineering) and conducted in conformity with the declaration of Helsinki. 

Q u e s t i o n n a i r e s  

We administered the Peters Delusion Inventory (PDI-21) to assess Delusional ideation (Peters et al., 

2004). Total scores range from 0–336, with higher scores reflecting higher delusional ideation. In 

addition, we administered the systemising quotient (SQ-R); higher scores indicate an advanced ability 

for analysing and exploring a system, with a score range 0-80 (Wheelwright, Baron-Cohen, & 

Goldenfeld, 2006).  

D e s i g n  a n d  p r o c e d u r e  

Figure 4.1 shows a schematic of the stimuli and paradigm. The experiment consisted of six 

experimental condition blocks with ninety trials in each, presented in a randomised order with breaks 

in between each. In the active-auditory (A-Aud) condition, participants were required to make a self-

paced finger abduction at a rate of approximately once every three seconds. This movement triggered 

the onset of a pure auditory tone. Participants fixated a dark grey cross at the centre on a uniform grey 

background for the duration of the block. In contrast, finger abductions in the active-visual (A-Vis) 

condition, triggered a high contrast black-and-white checkerboard. Whereas a combination of both the 
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auditory and visual stimuli were presented simultaneously after making finger abductions in the 

active-multisensory (A-Vis) condition, participants were instructed to attend both stimuli. In all the 

active (self-generated) conditions, participants were required to make the finger abductions at about 

three second interludes, were to avoid counting intervals, and attend the stimuli. The next three 

conditions were identical to the self-generated blocks but here stimuli were externally generated 

(passive). In these conditions, participants were instructed to attend to the stimuli passively, which 

were present at once every 3 s. The three passive condition were passive-auditory (P-Aud), passive-

visual (P-Vis), and passive-multisensory (P-Vis). 

S t i m u l i  

Finger abductions triggered the visual and auditory stimuli. Visual stimuli were presented through 

a DLP projector (PT-D7700e-K, Panasonic®) placed outside the magnetically shielded room (MSR) 

onto a screen situated 1.90 m away from the participant via an in-room mirror. Stimuli were generated 

off-line using Matlab 2013.b (The MathWorks®) and controlled using routines from Psychophysics 

toolbox (Brainard, 1997). In the auditory alone conditions participants were instructed to fixate a dark 

grey cross (0.9° x 0.9°) which was presented at the centre on a uniform grey background (3 cd/m² 

background luminance) for the duration of the block. In the visual and audiovisual conditions, a high 

contrast 5x5 black-and-white checkerboard was presented at the centre of the screen on the uniform 

grey background. The mean luminance was 50 cd m−2 (40-60 cd m−2 ) and contrast between black and 

white squares at 80% defined by the Michelson contrast (Odom, Bach, Barber, & Brigell, 2004). The 

finger abduction triggered the onset on the checkerboard for a duration of 50 ms (checkerboard: 4.7° 

x 4.7 of total visual angle; °24° x 18°). Sound stimuli (pure auditory tone, 1000 Hz, 50 ms in duration, 

70-85 dB sound pressure level (SPL)), were delivered binaurally via a sound pressure transducer 

through two 5 m long plastic tubes terminating in plastic insert earpieces. Sound stimuli levels were 

calibrated using a condenser microphone and sound level meter.  

 

All responses were made with the right index finger which was placed in front and flush of a fibre-

optic laser mounted on a table in the scanner. The fibre-optic laser was an in-house built optoelectronic 

device.  Finger abductions created a break in the laser beam, which sent a trigger to initiate the onset 

of the stimuli.  The timing between finger abduction triggering the onset of the stimuli; either the 

soundwaves reaching both ears of the participant, and/or the visual checkerboard appearing on 

screen, was simultaneous within a 350 μs accuracy time difference. We elected to use a fibre-optic laser 

as a trigger response rather than a button box (Lumitouch), to eliminate the known noise associated 

with making button box responses. This ensured no contamination of noise in any of the conditions. A 

training block (50 trials) was used at the start of each session to acquaint participants with executing 

accurate finger abductions that would trigger a response once every three seconds and to calibrate the 

sensitivity of the fibre-optic sensor adapted to each participant’s performance. During the training 
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session participants received visual feedback on the timing performance after each trial to ensure 

responses were made at least once every three seconds. No feedback was giving during the actual 

experiment.  

 

 

N e u r o i m a g i n g  a c q u i s i t i o n  

Neural activity was recorded continuously during each block from participants in a comfortable 

sitting position using a 4D Neuroimaging Magnes® 3600 WH system (Neuroimaging Inc., San Diego) 

with 248 magnetometers in a magnetically shielded room. The acquisition sample rate was 1017 Hz, 

and data were acquired. The MEG signal was high pass filtered at 0.1 Hz and digitised at 508 Hz. Data 

from three bad channels were excluded from the data. Participants were asked to remain as still as 

possible and were continuously monitored by video camera. They were also instructed to minimize 

blinking during the presentation of visual stimuli, and instead to synchronize their blinks with the 

simultaneous button press for selecting responses. Eye movements were monitored using a SR-

research remote Eyelink 1000 system (SR Research Ltd., Ontario Canada), signals were sampled 

synchronously at 1017.25 Hz, with online 0.1 Hz High-pass filtering. Calibration of eye fixation was 

performed at the beginning of each run using a 9-point fixation procedure. 

Figure 4.1. Experimental design. Schematic of task and stimuli. For illustrative purposes, only the 
self-generated (active) conditions are presented. Visual stimuli were a 5x5 high contrast 
checkerboard and auditory stimuli were brief 1000 Hz tone. All stimuli were presented for 50 ms at 
onset finger abduction in the self-generated conditions. Participants’ right index finger was placed 
flush with a laser mounted on a table in MEG. To begin the trial, participants made self-paced figure 
abductions approximately once every 3 s. There were three condition, auditory-alone, visual-alone, 
and audiovisual. Each condition was presented once in a block of 90 trials. The externally generated 
condition was identical, expect participants passively viewed all stimuli, which were presented at a 
rate of approximately once every 3 s.   
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M E G - M R I  C o - r e g i s t r a t i o n  

Prior to data acquisition, participants head shape was 3D-digitized using a Polhemus stylus 

(FASTRAK®, Polhemus Inc., VT, USA digitisation system). This was utilized for accurate co-registration 

for source space analyses with the landmark locations matched on the individual participants’ 

anatomical magnetic resonance (MR) T1 –weighted structural scan with 1 mm isotropic resolution. 

This was implemented using a surface-matching technique adapted from Capilla, Schoffelen, Paterson, 

Thut, & Gross (2014). This semiautomatic procedure provides the best fit between subjects scalp 

surface extracted from the anatomical MRI image and the head shape digitised in MEG. Five spatially 

distributed head coils (placed on the right and left pre-auricular locations, Cz, nasion, and inion) 

provided landmark positions with reference to the MEG sensors and allowed monitoring of head 

movement. Head movements values were < 0.5 cm in all participants. 

The MR structural images were acquired with a 3.0-T Trim Trio Scanner (Siemens, Erlangen, 

Germany) using a 12-channel head coil. High-resolution T1-weighted structural images were collected 

in 192 axial slices and isotropic voxels (1 mmᵌ; field of view: 256 × 256 mm² matrix, TR = 1900ms, TE 

= 2. 92ms, time to inversion = 900ms, FA = 9°). This was subsequently transformed into a standard 

Montreal Neurological Institute standardised brain (MNI152) (5mm) (Jenkinson & Smith, 2001) to 

allow for group level analyses. 

4.3 MEG Analysis 

Data analysis of the MEG signal was performed using the FieldTrip software package (Oostenveld 

& Fries, 2010); see http://fieldtrip.fcdonders.nl/), in-house Matlab code in accord with current MEG 

guidelines (Joachim Gross et al., 2013), and CircStat: a Matlab Toolbox for Circular Statistics (Berens, 

2009). 

P r e p r o c e s s i n g  

The preprocessing of the MEG signal was performed using the following procedures. First, trials 

with inter-trial intervals less than 1500 ms were discarded (mean of 4.4 % of trials removed from each 

condition). The signal was epoched in trials of 2 s in length time-locked to stimulus onset (1 s pre-

stimulus). Secondly, before visually inspecting MEG traces for artefacts, the DC offset and linear trends 

were removed to facilitate visualisation. Four excessively noisy sensors were discarded from all 

subjects’ analysis. Additionally, trials contaminated with physiological (eye blinks, eye movements) or 

non-physiological (squid jumps) were discarded. Thirdly, signals recorded from by the MEG reference 

channels were used to linearly remove electromagnetic interference from outside the scanner, 

implemented using the “ft_denoise_pca” function in FieldTrip (Johnson et al., 2003)  and post-

acquisition, data were DC offset to ensure a zero mean signal on all sensors. Finally, trials containing 
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large signal variance that corresponded to cardiac artefacts were projected out of the MEG signal using 

Independent Component Analyses (“fastica” algorithm implemented in FieldTrip). After all pre-

proceeding stages, because trial numbers are known to influence analyses methods crucially 

(Hanslmayr et al., 2013), trial numbers were equated across the  all conditions with the lowest number 

of trials in any one condition and randomly selecting the same number of trials from the remaining 

conditions.  

S e n s o r - l e v e l  a n a l y s i s   

Before calculating the event-related averaging at sensor space, the artefact-free neuromagnetic 

time series data were bandpass filtered in the range of 1–30 Hz on the preprocessed data. Event-

related fields (ERFs) were baseline corrected to the 500 ms period immediately preceding the stimulus 

onset for each condition. From the fields measured by the magnetometers, the approximation of the 

MEG planar gradient was computed using Fieldtrip’s ft_megplanar function. Considering planar 

gradient data simplifies the interpretation of the sensor-level results, as the maximal signals are 

located above neural sources (Bastiaansen & Knösche, 2000; Hari et al., 1997). For the ERFs, the 

combined resulting horizontal and vertical planar gradients were calculated by singular value 

decomposition per channel location using the fields from the sensors and both first- and second-order 

neighbouring sensors (maximum distance of 7.4 cm) and using the “sincos” approach implemented in 

Fieldtrip. This projected the data along the largest magnitude direction above a given source (M 

Hämäläinen et al., 1993). For the spectral analyses, we computed metrics separately for the horizontal 

and vertical planar gradients, and combined the two by computing the sum.  

E v o k e d  r e s p o n s e  a n a l y s i s   

All non-rejected trials were sorted according to the respective conditions. The ERFs elicited for each 

stimulus category were aligned to stimuli onset, then these were computed separately for each 

participant and averaged in the time range between 700 and 700ms, and subsequently, the grand-

average across all participants was computed. Evoked responses were baseline corrected between -

700 and 700 ms. Loci of auditory and visual evoked activation were defined statistically by comparing 

the group-level differences difference between baseline (pre-stimulus) and post-stimulus activity in 

the passive conditions (as these conditions are hypothesised to produce the largest evoked responses). 

This was achieved by using nonparametric cluster-based Monte Carlo permutation t-tests (Maris & 

Oostenveld, 2007). To correct for multiple comparisons, the sensors that show the same effect and 

were exceeding the critical threshold value and neighbouring in the sensor array (separated by <5 cm) 

were grouped together. This approach is validated due to the principle that a physiological source 

produces the maximal planar gradient field signals in a contiguous group of sensors that are located 
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directly above the neural sources (Bastiaansen & Knösche, 2000; Matti Hämäläinen et al., 1993; Hari, 

1993).  

 

Sensors were selected for which the 𝑡 statistics of the difference between conditions exceeded an a 

priori threshold (corrected 𝑝 < 0.05, two-sided). Next, the selected samples were based on spatial 

adjacency, and the sum of the 𝑡 statistics within the cluster was used as the cluster level statistic. 

Subsequently the cluster with the maximum statistic was used as a cluster level statistic 

(nonparametric statistics). By randomising the data across the two conditions and repeating the test 

statistic 2,000 times, we obtained a reference distribution to evaluate the statistic of the actual data.  

The 𝑝 value was estimated according to the proportion of randomisations of the reference distribution 

exceeding the observed maximum cluster-level statistic (the Monte Carlo 𝑝 value).  The results of these 

statistics would allow the demarcation of significant sensor-clusters to be used as regions of interest 

(ROI) from which four sensors were chosen to be selected for further analyses. The ROIs were, left- 

and right- auditory cortex and one in the visual cortex. The sensors were chosen based on their 

maximal responses at the M100 component latency (95-120 ms post-stimulus). Across subjects, we 

used data from the MEG sensors with the largest ERF (characterised by the N1m-P2m complex) over 

the three ROIs.  

 

To test for significant differences between Active and Passive condition in the ERF data, the mean 

amplitudes of the ERF responses were then computed with a two-way repeated-measures analyses of 

variance (RM-ANOVA). To this end, a 2 (stimuli generation (GEN) type: Active, Passive) x 3 (stimulation 

(STIM) type: Auditory, Visual, and Audiovisual) factors design was used. A general alpha criterion of 

𝑝 < 0.05 was used for statistical comparisons. 𝑝-values we corrected for multiple comparisons using 

the Bonferroni-Dunn criterion. 

S p e c t r a l  a n a l y s e s  

To measure the time-frequency representation (TFR) of power and linear phase-locking value  

(LPLV) or linear inter-trial coherence (LITC) (Lachaux & Rodriguez, 2000; Makeig, Westerfield, Jung, 

et al., 2002b; Tallon-Baudry & Bertrand, 1996) metric, we used a sliding time window fast Fourier 

transform (FFT) approach. The frequencies of interest ranged from 2 to 30 Hz in steps of 1 Hz. The 

time window was always such that it fit exactly four cycles of the frequency of interest, and it slid over 

the time axis in steps of 50 ms. Each instance of the sliding window was multiplied by a Hanning taper 

and Fourier-transformed, whereby yielding a time-resolved complex Fourier spectrum. Power 

values 𝑝𝑜𝑤𝑛(𝑓, 𝑡) for trial 𝑛, frequency 𝑓, and time point 𝑡 were computed by squaring the absolute 

value of the Fourier coefficients 𝑐𝑛 (𝑓, 𝑡), i.e., 𝑝𝑜𝑤𝑛(𝑓, 𝑡) =  |𝑐𝑛 (𝑓, 𝑡)|² and were averaged over trials. 

The Fourier analyses revealed the instantaneous phase and amplitude estimates for each single trial. 

Next, the PLV was calculated (Tallon-Baudry & Bertrand, 1996)(an index that represents the degree of 
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phase synchrony that is bounded between zero and one). This allows for the distinction between 

phase-locked (evoked) and non-phase-locked (induced) neural responses. This measures, at a given 

time point, the variability across trials of the phase difference either within a cortical area or between 

two sensors across cortical regions.  ITLC was computed by taking the absolute value of the mean of 

the complex Fourier phase ɸ values across 𝑁 trials, after complex normalising, and taking the absolute 

value represented by || , as follows; 
 

𝑙𝐼𝑇𝐶 = | 
∑ 𝑐𝑛 (𝑓, 𝑡)𝑛

𝑖=1

√𝑛 ∑ |𝑐𝑛 (𝑓, 𝑡)2|𝑛
𝑖=1

 | 

(1) 

The TFR show power as a function of time and frequency averaged over trials within each condition 

and a logarithmic transform was applied to reduce inter-subject variability in the power estimates. The 

difference between two conditions (i.e., active vs. passive) was calculated as a ratio of log-transformed 

power (log-ratio). Since ratio data are inherently non-normal because of lower bounding, a log 

transform was used for analysis. A log ratio of less than zero indicates suppression whereas a value of 

zero indicates no suppression and values greater than zero indicate enhancement. 

S p e c t r a l  s t a t i s t i c s  

In order to test for significant differences between TFRs of PLVs and log-power between 

poststimulus and prestimulus (i.e., baseline) activity windows, each were subjected to permutation 

statistics described above. To this end, the 19 prestimulus windows (-750 ms to 0 ms) and the 19 

poststimulus windows (0 ms to 750 ms) of the TFRs from the 19 different subjects were randomly 

permuted 2,000 times. For each iteration of the test the maximum differences was taken as the 

threshold for the TFRs. Using the maximum statistics take into consideration multiple comparisons 

issue (Nichols & Holmes, 2002). The poststimulus outcome for both the ERF and log-power analyses 

can be either positive or negative relative to baseline. To this end, a two-tailed threshold was used to 

determine the statistical significance (all 𝑝-values were reported as significant if  𝑝 ≤ 0.05 or 𝑝 ≥

0.95). For the analyses of phase alignment, a one tailed method was used to determine statistical 

significance (all 𝑝-values were reported as significant if 𝑝 ≤ 0.05) as this would enable the 

identification of increases in poststimulus phase consistency. A similar method was carried out to 

assess significant differences in the TFRs of PLV and log-power between Active and Passive conditions. 

Here the 19 Active windows (-750 ms to 750 ms) and the 19 Passive windows (0 ms to 750 ms) of the 

TFRs from the 19 different subjects were randomly permuted 2,000 times. 

N o n l i n e a r  m u l t i s e n s o r y  e f f e c t s  

In order to assess whether any unisensory driven modulations interacted non-linearly with 

multisensory stimulation we applied a variant model of the linear additive criterion model 
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[𝐴𝑉 𝑣𝑠. (𝐴 + 𝑉)] described in Mercier et al., (2015) and discussed in detail in previous studies (Kayser, 

Petkov, & Logothetis, 2008; Mercier et al., 2013; Stein, 1998). Using the model we could assess if the 

activity evoked in the multisensory conditions differed from the summation of the activity evoked by 

the two unisensory stimuli (auditory and visual). It was then possible to measure if these nonlinear 

multisensory effects were supra additive or subadditive - if the multisensory conditions were larger or 

smaller, respectively, than the sum of the unisensory conditions. To establish whether the differences 

between the multisensory conditions and the summation of the two unisensory conditions were 

statistically significant, a cluster-based nonparametric randomisation procedure described in detail 

above was used. However, data in the TFR domain were averaged over ROI sensors, and the frequency 

boundaries of the theta, alpha, and beta bands were based on those widely accepted and published 

EEG/MEG methodology (Niedermeyer & Silva, 2005). Clusters were selected for which the 𝑡 statistics 

of the difference between conditions exceeded an a priori threshold (corrected 𝑝 < 0.05, two-sided).  

B r a i n - b e h a v i o u r  r e g r e s i o n  a n a l y s i s  

We conducted regression analyses to test the interactions between modulations in SA effect (i.e., 

oscillatory power difference between Active vs, Passive) and the questionnaire data scores, and the 

possibility that the SA effect is mediated by frequency as a function of time. Data from the questionnaire 

scores and TFRs of SA effect were analysed using procedures in Fieldtrip using the ft_freqstatistics 

function. The procedure regresses the TFR of SA effect on the predictor, which is the participants’ 

questionnaire scores, at each corresponding temporal-point in the subject-wise activation time course 

using the independent samples regression coefficient 𝑡-statistics. Significance was assessed using non-

parametric permutations procedures (2000 Monte Carlo random iterations, α = 0.05) described 

earlier.  Group-level analyses resulted in β weights for each time-frequency (1 to 30 Hz) clusters in a 

selected ROI.     

Robust correlation and SA effect on ERFs 

All correlation coefficients and corresponding p-values were computed using Spearman 

correlation. Correlations resulting in significant p-values were quantified using Robust Correlation 

(Rousselet & Pernet, 2012). This stringently assesses for false positive correlations using bootstrap 

resampling including six additional validation tests (see, Rousselet & Pernet, 2012). Only significant 

correlations are shown, where significance were corrected for multiple comparisons using a family-

wise error rate using maximum statisitcs through permutation tests (Groppe, Urbach, & Kutas, 2011). 
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4.4 Results 

S e n s o r y  a t t e n u a t i o n  o f  e v o k e d  r e p o n s e s  

The auditory evoked fields data replicated the characteristic attenuation effect (SA) in response to 

both multisensory (MS, audiovisual stimulation) and unisensory auditory stimuli. Figure 4.2 shows the 

ERFs across conditions, and figure 4.3 shows the RM-ANOVA interactions. 

 

Results for the left auditory ROI (LAC): 

The results for the left ROI showed a significant main effect of stimuli generation type (GEN) 

(𝐹1,19 =  6.35 𝑝 ˂ 0.05, 𝜂𝑝
2 = 0.25), this revealed that Passive (P) GEN-type was significantly higher 

than Active (A). There was a significant main effect of stimulus-type (STIM; 𝐹2,38 =

 26.86, 𝑝 ˂ 0.001, 𝜂𝑝
2 = 0.59). Contrasts revealed that MS had higher amplitude values compared with 

Aud (𝐹1,19 =  33.38, 𝑝 ˂ 0.01, 𝜂𝑝
2 = 0.38) whereas Aud (𝐹1,19 =  29.28, 𝑝 ˂ 0.001, 𝜂𝑝

2 = 0.61) had 

significantly higher amplitude than Vis, and MS contrasted with Vis showed higher amplitude 

difference (𝐹1,19 =  28.26, 𝑝 ˂ 0.001, 𝜂𝑝
2 = 0.60). Finally, there was a significant two-way interaction 

between the two factors for GEN˟ STIM type (𝐹2,38 =  20.55, 𝑝 ˂ 0.001, 𝜂𝑝
2 = 0.52). This indicates that 

Gen-type had different effects on evoked amplitudes depending on the STIM-type. To break down the 

interaction, post hoc contrasts were performed, this revealed that P-MS had significantly higher 

amplitude than A-MS (𝐹1,19 =  12.01 𝑝 ˂ 0.001, 𝜂𝑝
2 = 0.39) this demented that the SA effect in 

multisensory stimuli conditions, and similarly P-Aud contrasted with A-Aud (𝐹1,19 =

 11.92 𝑝 ˂ 0.01, 𝜂𝑝
2 = 0.39) showing the SA effect. Whereas there was only a trend towards significance, 

interestingly showing the opposite facilitation effect, with higher amplitude in A-Vis compared with P-

Vis (𝐹1,19 =  3.26 𝑝 =  0.09, 𝜂𝑝
2 = 0.15, 𝑛𝑠).  

 

Next, we tested if there were differences between multisensory responses and unisensory 

responses; first there was significantly higher amplitude in A-MS contrasted with A-Aud (𝐹1,19 =

 7.59 𝑝 ˂ 0.05, 𝜂𝑝
2 = 0.29), and P-MS with P-Aud (𝐹1,19 =  8.83 𝑝 ˂ 0.01, 𝜂𝑝

2 = 0.32). We did not 

investigate the contrast of MS responses to visual stimuli in the auditory ROI. Finally, we tested if the 

magnitude of the SA effect was significantly different in multisensory stimuli compared to unisensory 

auditory stimuli, the results show that there is no difference (𝐹1,19 =  1.84 𝑝 =  0.19, 𝜂𝑝
2 = 0.09, 𝑛𝑠). 
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Figure 4.2. Grand average event-related fields. Grand averaged ERF planar gradient 
waveforms associated with the different conditions superimposed. A) LAC, B) RAC, C) Vis ROIs 
showing the unisensory Active (solid lines) vs. Passive (dotted lines) conditions left panel and in 
the right panel but with the multisensory conditions included. ERFs are time-locked to stimulus 
onset (t = 0). Time t = 0 ms represents stimulus onset. The Passive conditions evoked larger N100 
(here, 150 ms) compared to Active conditions, replicating the characteristic SA effect in both LAC 
and RAC, but not Vis ROI. Grey shaded area demarcates significance at p < 0.05 (FDR corrected). 
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Figure 4.3. RM ANOVA of grand average ERFs. Right panel showing grand averaged ERF planar 
gradient waveforms associated with the different conditions superimposed. A) LAC, B) RAC, C) 
Vis ROIs showing the unisensory Active (solid lines) vs. Passive (dotted lines) conditions. ERFs 
are time-locked to stimulus onset (t = 0). Left panel shows scatter plots with individual 
participants ERF amplitude values averaged over the N1 component (t = 80-150 ms). Time t = 0 
ms represents stimulus onset. Solid lines, blue and green show the results of the RM-ANOVA 
interaction for Active and Passive conditions respectively. A) LAC, B) RAC, show significant 
difference interaction between MS and Aud conditions. Error bars show represent group 
averages ± SEM. Significant differences in between Active and Passive MS and Aud conditions 
replicate classical SA effect.  
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Results for the right auditory ROI (RAC): 

In the right ROI there was a significant main effect for GEN (𝐹1,19 =  16.68 𝑝 ˂ 0.001, 𝜂𝑝
2 = 0.47). 

There was a significant main effect of STIM ( 𝐹2,38 =  67.76, 𝑝 ˂ 0.001, 𝜂𝑝
2 = 0.78). Further contrasts 

revealed similar results to the left ROI, with higher amplitude in MS compared to Aud (𝐹1,19 =

 98.43, 𝑝 ˂ 0.001, 𝜂𝑝
2 = 0.84) and Aud contrasted with Vis (𝐹1,19 =  54.35, 𝑝 ˂ 0.001, 𝜂𝑝

2 = 0.74). There 

was a significant two-way interaction between GEN˟STIM (𝐹2,38 =  7.96, 𝑝 ˂ 0.01, 𝜂𝑝
2 = 0.30). To 

unpack this interaction as before, post hoc contrasts were performed, this revealed that P-MS had 

significantly higher amplitude than A-MS (𝐹1,19 =  12.43 𝑝 ˂ 0.01, 𝜂𝑝
2 = 0.40), and P-Aud contrasted 

with A-Aud (𝐹1,19 =  15.38 𝑝 ˂ 0.01, 𝜂𝑝
2 = 0.45), both these results showing the SA effect. The evoked 

responses to visual stimuli show the same facilitation effect seen with higher amplitude in A-Vis 

compared with P-Vis but not significant (𝐹1,19 =  0.01 𝑝 =  0.92, 𝜂𝑝
2 = 0.01, 𝑛𝑠). As before, next we 

tested if there were differences between multisensory responses and unisensory responses; first there 

was significantly higher amplitude in A-MS contrasted with A-Aud (𝐹1,19 =  30.00 𝑝 ˂ 0.001, 𝜂𝑝
2 =

0.61), and P-MS with P-Aud (𝐹1,19 =  6.89 𝑝 ˂ 0.05, 𝜂𝑝
2 = 0.27). Finally, we tested if the magnitude of 

the SA effect was significantly different in multisensory stimuli compared to unisensory auditory 

stimuli, the results show that there is no difference (𝐹1,19 =  0.91 𝑝 =  0.35, 𝜂𝑝
2 = 0.05, 𝑛𝑠). 

 

Results for the visual ROI (Vis): 

There was no significant main effect for GEN (𝐹1,19 =  0.03 𝑝 =  0.87, 𝜂𝑝
2 = 0.02, 𝑛𝑠) but there was 

a significant main effect for STIM ( 𝐹2,38 =  45.96, 𝑝 ˂ 0.001, 𝜂𝑝
2 = 0.71). Contrasts revealed that MS was 

not significantly different from Vis (𝐹1,19 =  0.25 𝑝 =  0.63, 𝜂𝑝
2 = 0.01, 𝑛𝑠), but Aud was significantly 

different from Vis ( 𝐹1,19 =  49.42, 𝑝 ˂ 0.001, 𝜂𝑝
2 = 0.72). Finally, there was no significant interaction 

GEN ˟ STIM (𝐹2,38 =  0.34, 𝑝 =  0.72, 𝜂𝑝
2 = 0.02). Next we tested if there were differences between 

multisensory responses and unisensory responses; first there was no significantly higher amplitude in 

A-MS contrasted with A-Aud (𝐹1,19 =  0.12 𝑝 =  0.73, 𝜂𝑝
2 = 0.01), and P-MS with P-Aud (𝐹1,19 =

 0.18 𝑝 =  0.68, 𝜂𝑝
2 = 0.01). With these results showing no difference between multisensory and 

unisensory responses in the visual ROI, we did not investigate further any difference in SA magnitude 

differences. Across all three ROIs there is higher ERF magnitude responses to both self and externally 

generated stimuli for the multisensory conditions as compared to the unisensory conditions. 

S e n s o r y  a t t e n u a t i o n  o f  s p e c t r a l  d a t a  

To assess the SA effects in the spectral analyses, the differences between Active and Passive 

conditions (SA effect) across the three stimulation types (MS, Aud, and Vis) were computed for both 

linear PLV TFRs and log-power TFRs, and ROI (see Methods for details). All 𝑝-values for cluster 

permutation distribution reported as significant at 𝑝 < 0.05, maximum 𝑡-statistics at specific time 
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points and frequency are reported in brackets, this give some indication where the main effect occur 

in the cluster. Positive 𝑡-statistics indicates that the Active condition had significantly higher activation 

(event-related oscillations) compared to the Passive condition, whereas negative t-values indicate 

lower activation in active compared to passive condition. 

 

 

 

Linear Phase-locking 

Figure 4.4 shows the results show significant clusters representing a difference between Active vs. 

Passive linear PLV. Figure 4.4.A shows that all active versus passive contrasts in left auditory cortex 

are dominated by significantly higher phase locking at the time of movement onset in the active 

condition. Notably, this effect is absent in the right auditory cortex ROI. This effect can be clearly 

attributed to the movement related evoked component in left motor cortex (contralateral to the 

moving finger). No significant and systematic pattern can be observed in visual sensors. 
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Figure 4.4. Linear PLV- Active vs. Passive. Grand average time-frequency representations (TFR) of 
non-parametric t-statistics (N=19) for the linear PLV contrast between Active (A-) and Passive (P-) 
conditions. Data averaged over planar gradient channels in each A) LAC, B) RAC, and C) Vis ROIs. TFR 
statistics show black contours which demarcate significant clusters with a threshold of p < 0.05 
threshold (cluster corrected), using non-parametric cluster permutation tests. Positive t-values 
(shown in yellow) indicate significantly higher phase concentration between conditions (Active > 
Passive). Time t = 0 ms represents the position of the onset of stimulus presentation relative to the -
500 to 1000 ms analyses window. 
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Log ratio power 

Figure 4.5 shows the results for the contrast of power between Active and Passive conditions reveal 

generally similar clusters patterns in the LAC and RAC. There is a negative cluster between about 0-

500 ms in broad frequency band. In addition, the LAC shows a beta rebound from making finger 

abductions. This is seen as a positive cluster between 500-1000 ms at 15-30 Hz. This is due to the fact 

that LAC channel cluster is close to the left motor cortex. In visual sensors, there was only a significant 

cluster in the A-Aud vs. P-Aud comparison at about 400-1000 ms between 10-30 Hz. These results 

show that there is consistently lower power in the Active condition compared to the Passive in the 

auditory ROIs in the post stimulus period (A-MS, A-Aud, A-Vis < P-MS, P-Aud, P-Vis).  
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Figure 4.5. Log ratio power - Active vs. Passive. Grand average time-frequency representations 
(TFR) of non-parametric t-statistics (N=19) for the linear PLV contrast between Active (A-) and 
Passive (P-) conditions. Data averaged over planar gradient channels in each A) LAC, B) RAC, and C) 
Vis ROIs. TFR statistics show black contours which demarcate significant clusters with a threshold of 
p < 0.05 threshold (cluster corrected), using non-parametric cluster permutation tests. Positive t-
values (shown in yellow) indicate significantly higher power between conditions (Passive > Active). 
Time t = 0 ms represents the position of the onset of stimulus presentation relative to the -500 to 
1000 ms window analyses window.  
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Multisensory vs. Unisensory 

 To assess the SA effects in the spectral analyses, the differences between Active and Passive 

conditions (SA effect) across the three stimulation types (MS, Aud, and Vis), both linear PLV and log-

power TFRs, across ROIs were analysed (see Methods for details). All 𝑝-values for cluster permutation 

distribution reported as significant at 𝑝 < 0.05, maximum 𝑡-statistics at specific time points and 

frequency are reported in brackets, this give some indication where the main effect occur in the cluster. 

Positive 𝑡-statistics indicates that the Active condition had significantly higher activation (event-

related oscillations) compared to the Passive condition. 

 

Linear Phase-locking 

In figure 4.6 we observed a statistically significant difference in linear PLV between both the A-MS 

and P-MS vs. the unisensory conditions across the majority of ROIs. The results show that in the 

comparison between multisensory and auditory-alone conditions across both LAC and RAC, there are 

similar clusters. This is observed for both active and passive conditions. Specifically, there is a peak in 

the clusters around alpha (8-12 Hz) around 300 ms to 500 ms time window. Whereas the same 

comparison of multisensory with visual-alone conditions in both auditory ROIs, we see two peaks in 

the cluster. One that is in the theta range (7 Hz) appearing after stimulus onset. The other peak appears 

around 600 ms in the low-theta (4 Hz) frequency range. In the visual sensors, we observed only 

significant clusters in the multisensory conditions compared to the auditory unisensory conditions. 

Both showing broad activity differences between 0-1000 ms with broadband low-frequency range 

between 1-30 Hz. 

 

Log ratio power 

Figure 4.7 shows the results for log ration power. Here we observe a consistent pattern of lower 

power at around 10-30 Hz in the multisensory compared to the auditory unisensory conditions; but 

higher power just after stimulus onset at around 5 Hz. In the LAC, the comparisons between A-MS vs. 

A-Aud show a significant cluster around 300-600 ms between 7-30 Hz. In the A-MS vs. A-Vis, there was 

a positive cluster around 0-300ms between 1-15 Hz. In the passive conditions, P-MS vs. P-Vis there 

was a significant positive cluster from 0-600 ms around 4 Hz, and a negative cluster around 300-500ms 

at 7-30 Hz, similar to the active comparison, for the P-MS vs. P-Vis there was a significant positive 

cluster around 0-600 ms from 1-30 Hz but had a low frequency peak. In the visual sensors, the results 

reveal similar patterns to that seen in the auditory sensors. However, cluster statistics were not able 

to detect any significant differences between P-MS and P-Vis conditions.  
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Figure 4.6. Multisensory indices in LPLV. Grand average time-frequency representations 
(TFR) of non-parametric t-statistics (N=19) for the LPLV contrast between multisensory Active 
(A-) and Passive (P-) conditions. Data averaged over planar gradient channels in each A) LAC, B) 
RAC, and C) Vis ROIs. TFR statistics show black contours which demarcate significant clusters 
with a threshold of p < 0.05 threshold (cluster corrected), using non-parametric cluster 
permutation tests. Positive t-values (shown in yellow) indicate significantly higher phase 
concentration between conditions (Multisensory > Unisensory). Time t = 0 ms represents the 
position of the onset of stimulus presentation relative to the -500 to 1000 ms analyses window. 
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Figure 4.7. Multisensory indices in power. Grand average time-frequency representations (TFR) 
of non-parametric t-statistics (N=19) for the log power contrast between multisensory Active (A-) 
and Passive (P-) conditions. Data averaged over planar gradient channels in each A) LAC, B) RAC, and 
C) Vis ROIs. TFR statistics show black contours which demarcate significant clusters with a threshold 
of p < 0.05 threshold (cluster corrected), using non-parametric cluster permutation tests. Positive t-
values (shown in yellow) indicate significantly higher power between conditions (Multisensory > 
Unisensory). Negative t-values (shown in blue) represent the opposite. Time t= 0 ms represents the 
position of the onset of stimulus presentation relative to the -500 to 1000 ms window analyses 
window. 
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L i n e a r  a d d i t i v e  m o d e l  

In order to assess whether any unisensory driven modulations interacted non-linearly with 

multisensory stimulation we applied a linear additive criterion model [𝐴𝑉 𝑣𝑠. (𝐴 + 𝑉)]. Using this 

model, we are able to detect if the relative contribution of multisensory stimulation is significantly 

higher than the addition of the two-unisensory stimulation conditions.  

Linear Phase-locking 

Figure 4.8., shows the linear PLV results show that this was indeed the case. We observed similar 

results across all three ROIs, significant positive clusters span broadband low frequency around two 

windows. One at approximately 100-300 ms and another at 600-800 ms window. In the LAC the active 

conditions reveal a negative cluster between -100-100 ms around 4 Hz and a large positive cluster, 

which approximately spans the frequency range between 4-25 Hz at approximately 300ms and 600 

ms. In the passive conditions there is a broadband low-frequency positive cluster between 0-700 ms, 

with highest values around 500 ms at 3 Hz. The results in the RAC yield similar cluster patterns. In 

both these auditory sensors there is a clear peak around alpha at approximately 300 ms. In visual 

sensors there is a slightly higher peak at 14 Hz around 300 ms, in the passive conditions there is three 

peaks mainly around the 300 ms region around 2 Hz, 10 Hz, and 16 Hz. These cluster peaks seem to be 

representing the evoked component in the comparison. 

Log ratio power 

Figure 4.9., shows the power results reveal similar patterns across the ROIs that reflect the 

characteristic signatures of oscillatory evoked responses. These patterns generally consist of a positive 

cluster around theta to low-alpha frequency followed by a power decrease in slightly higher 

frequencies around alpha that spans into beta frequency. These results there show that difference of 

evoked responses in the linear model. 

C r o s s - m o d a l  p h a s e  r e s e t t i n g  

In order to estimate the effects of CMPR across the three ROIs and conditions, we measured if there 

was significant increase in phase locking from baseline in a non-primary processing modality following 

stimulation. We sought to quantify if there was significant increase in phase locking in the visual cortex 

following an auditory-alone stimulation and vice versa. To this end, we estimated the auditory 

response in the visual ROI and measured the response to visual stimulation in the LAC and RAC. This 

was done by measuring PLV, which indexes the phase concentration over a set of sensors (Lachaux & 

Rodriguez, 1999). Therefore, we may then infer possible functional connectivity between two ROIs as 

indexed by the CMPR model. This was calculated across all conditions and ROIs. Next, we sought to 

investigate the mechanisms underlying the ERF response components. Using time-frequency data we 
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could estimate whether increases in phase concentration were accompanied by increases in power. As 

discussed previously we computed the PLV across trials to reveal whether ongoing oscillations are 

reset via CMPR in non-primary processing ROIs after stimulation. Next we then assessed concomitant 

power to investigate whether phase resetting of ongoing oscillations was related to the characteristic 

ERF response, or occurred in the absence of power increases and reflected rather a modulatory 

mechanism.  

PLV in cross-modal regions 

 Figures 4.10 - 4.13 show the PLV and power for cross-modal effects. For Active and Passive 

unisensory conditions (figures 4.10 – 4.11), analyses of PLV, time-locked to stimulus onset, revealed 

similar significantly strong positive clusters of phase synchrony across the three ROIs. Following 

visual–alone stimulation in both the Active and Passive conditions, we observed in the auditory ROIs 

strong phase synchrony in broadband low frequency band (1-30 Hz) across two time windows (~0-

350 ms, ~500-800 ms), with the strongest phase-locking occurring around approximately 3-7 Hz. For 

the auditory response in the visual ROI, there was strong phase locking around 200-400 ms at 

approximately 4 Hz. The multisensory response in both auditory ROIs had similar pattern in the 

unisensory conditions. There was strong phase synchrony in broadband low frequency (1-30 Hz) 

across two time windows (~0-350 ms, ~500-800 ms), with the strongest phase-locking occurring 

around approximately 3-7 Hz.  

Power in cross-modal regions 

 Power in the LAC and RAC for the active conditions for both multi- and unisensory conditions there 

is a clear positive cluster following stimulus onset that lasts for about 200ms and is in the range of 1-7 

Hz and continues until 1000 ms but is confined to the mu rhythm. A negative cluster folds over the 

positive regions, revealing a significant decrease in power in all other time ranges and frequencies 

where there is no power increase. The one exception between the activation patterns between the ROIs 

is a second positive cluster between 300-1000 ms in the frequency range of 15-30 Hz, with strongest 

power at 15 Hz that is present only in the LAC. These power results show similar patterns in the Passive 

conditions for both multisensory and unisensory conditions. Here there is a small positive cluster 

following stimulus onset that is largest between 0-300 ms in the range of 1-6 Hz (but extends to 30 Hz 

in the multisensory condition), the cluster then continues until 1000 ms in the mu rhythm. The data 

revealed a negative cluster, which was largest between 400-600 ms in broadband low-frequency range 

(5-30 Hz), which then continued until 1000 ms in the frequency range between 5-15 Hz.  These 

patterns of clusters were similar in the visual ROIs. 
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Figure 4.8. Nonlinear multisensory indices in LPLV. Additivity index of multisensory (MSI) 
effects on unisensory (US) LPLV assessed using the additive model [AV vs. (A+V)]. Grand average 
TFR of non-parametric t-statistics (N=19). Data averaged over planar gradient channels in each 
A) LAC, B) RAC, and C) Vis ROIs. TFR statistics show black contours which demarcate significant 
clusters with a threshold of p < 0.05 threshold (cluster corrected), using non-parametric cluster 
permutation tests. Positive t-values (shown in yellow) indicate significantly higher MSI indices 
between UN conditions combined. (MSI > US-Aud + US-Vis). Negative t-values (shown in blue). 
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Figure 4.9. Nonlinear multisensory indices in power. Additivity index of multisensory (MSI) 
effects on unisensory (US) power assessed using the additive model [AV vs. (A+V)]. Grand 
average TFR of non-parametric t-statistics (N=19). Data averaged over planar gradient channels 
in each A) LAC, B) RAC, and C) Vis ROIs. TFR statistics show black contours which demarcate 
significant clusters with a threshold of p < 0.05 threshold (cluster corrected), using non-
parametric cluster permutation tests. Positive t-values (shown in yellow) indicate significantly 
higher MSI indices between UN conditions combined. (MSI > US-Aud + US-Vis). Negative t-values 
(shown in blue). 
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Figure 4.10. Cross modal indices of active unisensory condition. TFR plots show cross-modal 
phase concentration, with auditory responses in the visual ROI and contrariwise responses. Grand 
average time-frequency representations (TFR) of non-parametric t-statistics (N=19) for the LPLV 
contrast with baseline (t =-500 – 100 ms). Data averaged over planar gradient channels in each A) 
LAC, B) RAC, and C) Vis ROIs. Only significant clusters are shown in colour with a threshold of p < 0.05 
threshold (cluster corrected), using non-parametric cluster permutation tests. Positive t-values 
(shown in yellow) indicate significantly higher phase concentration compared to baseline. Time t= 0 
ms represents the position of the onset of stimulus presentation relative to the -500 to 1000 ms 
window analyses window. 
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Figure 4.12. Cross modal indices of active multisensory condition. TFR plots show cross-
modal phase concentration, with auditory responses in the visual ROI and contrariwise 
responses. Grand average time-frequency representations (TFR) of non-parametric t-
statistics (N=19) for the LPLV contrast with baseline (t =-500 – 100 ms). Data averaged over 
planar gradient channels in each A) LAC, B) RAC, and C) Vis ROIs. Only significant clusters are 
shown in colour with a threshold of p < 0.05 threshold (cluster corrected), using non-
parametric cluster permutation tests. Positive t-values (shown in yellow) indicate 
significantly higher phase concentration compared to baseline. Time t= 0 ms represents the 
position of the onset of stimulus presentation relative to the -500 to 1000 ms window analyses 
window. 
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Figure 4.13. Cross modal indices of passive multisensory condition. TFR plots show cross-

modal phase concentration, with auditory responses in the visual ROI and contrariwise 

responses. Grand average time-frequency representations (TFR) of non-parametric t-statistics 

(N=19) for the LPLV contrast with baseline (t =-500 – 100 ms). Data averaged over planar 

gradient channels in each A) LAC, B) RAC, and C) Vis ROIs. Only significant clusters are shown in 

colour with a threshold of p < 0.05 threshold (cluster corrected), using non-parametric cluster 

permutation tests. Positive t-values (shown in yellow) indicate significantly higher phase 

concentration compared to baseline. Time t= 0 ms represents the position of the onset of stimulus 

presentation relative to the -500 to 1000 ms window analyses window. 
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B r a i n - b e h a v i o u r  r e g r e s s i o n  a n a l y s i s  

Finally, we regressed the data scores from two questionnaires, the PDI and SQ, with the SA effect in 

the LAC and RAC. Figure 4.14 shows the results from the correlation between the ERF log power 

differences (SA effect) over the time-window of the M1 component (80 – 150 ms) with the PDI and SQ 

scores. The data correlated for the PDI scores reveals a significant negative correlation in both ROIs. 

This is in line with previous findings that report a negative correlation between PDI scores and SA 

effect. 

The correlation for, LAC (𝑟𝑠 = −.45, 𝑝 < 0.05, 95% 𝐶𝐼 [−0.91 0.19]) and RAC (𝑟𝑠 = −.46, 𝑝 <

0.05, 95% 𝐶𝐼 [−0.88 0.19]). Correlation for the SQ reveal a negative correlation in both the LAC (𝑟𝑠 =

−.42, 𝑝 < 0.05, 95% 𝐶𝐼 [−0.88 0.21]) and RAC (𝑟𝑠 = −.47, 𝑝 < 0.05, 95% 𝐶𝐼 [−0.82 0.13]). We did 

not compute correlations for the VIS ROI conditions, as the SA effect was not significant in this area. 

 

 

Figure 4.14. Correlation of SA effect and Questionnaires. Scatter plots (rank data) for Spearman’s 
correlation between power SA effect and questionnaires scores (PDI and SQ). A) SA power data 
calculated as the difference between A-Aud and P-Aud conditions, averaged over sensors in the RAC, 
and LAC ROIs, for the time window covering the N1 component time window demarcated here as 
light blue shading in A (80-140 ms). Dark blue lines indicate significant difference between Active 
and Passive conditions using a paired samples t-test (p < 0.05).  B) PDI scores, C) SQ scores. 
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4.5 Discussion 

Here, we investigated the interplay of motor and multiple sensory areas using a well-established 

paradigm from the sensory attenuation literature (for a review, see: Hughes, Desantis, & Waszak, 2013). 

We contribute to the existing literate by performing spectral analysis with power and phase. Most 

previous studies use EEG. Here, with MEG we avoid the referencing problem (Davidson, 1988; Nunez, 

2006; Pascual-Marqui et al., 2011), have denser sensor placement and (by computing planar gradient 

representation) can get relatively focal estimates of activation from small sensor groups. For the first 

time, to our knowledge, we study the motor-sensory interactions simultaneously in up to two sensory 

modalities. The paradigm therefore represents a novel combination of standard paradigms in two 

fields, the sensory attenuation field and the multi-sensory field.  

E v o k e d  c o m p o n e n t  a n a l y s e s   

Our first hypothesis was confirmed. We were able to replicate the widely reported SA effect by 

comparing the magnitude differences in N1(m) ERF responses elicited by self-generated and externally 

generated unisensory stimuli. Interestingly, our second hypothesis was confirmed as well. To the best 

of our knowledge, we contribute novel findings for SA of motor-sensory interactions in two modalities 

simultaneously with multisensory stimulation. In both the unisensory and multisensory conditions, 

there is clear evidence for attenuation of the M1 response in both the LAC and RAC. However, there is 

no significant difference between, self- versus externally generated responses in the visual cortex.  

 

The magnitude of the M100 component is only indirectly related to inter-areal phase resetting. 

Therefore, the modulation of M100 amplitude does not provide unambiguous evidence for cross modal 

(or motor-sensory) phase resetting. However, these suppression effects can be interpreted as being 

sensitive to cortical excitability and are likely to be at least partially induced by phase resetting. Our 

data revealed that the magnitude of the ERF amplitude values were significantly greater in the 

multisensory conditions compared to the unisensory across all three ROIs. Within the framework 

where the M100 component is an index of phase resetting, we may propose that the greater 

magnitudes observed in the multisensory conditions are a consequence of CMPR (Mercier et al., 2015; 

Moore, Bartoli, & Karunakaran, 2015; Schroeder et al., 2008). Interestingly, there is an opposing effect 

from motor regions, which leads to a reduction in the M100 component also seen in the multisensory 

condition. The motor-sensory modulation effectively diminishes the multisensory benefit. We 

speculate that this is a consequence of opposing modulatory effects on oscillatory phase in sensor 

areas. These concepts are discussed further in detail below.  

 

Sensory attenuation is ubiquitous in the auditory domain. However, our data contribute to the 

sparse paradigms which investigate the SA effect in the visual domain (Cardoso-Leite & Mamassian, 
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2010; Gentsch & Schütz-Bosbach, 2011; Stenner et al., 2014). With only four studies to date (to our 

knowledge) investigating the effect in the visual domain using electrophysiology (Gentsch & Schütz-

Bosbach, 2011; Hughes & Waszak, 2011; N. G. Mifsud et al., 2016; Schafer & Marcus, 1973). These 

studies provide mixed findings and use different experimental protocols. For example, Hughes and 

Waszal (2011), investigated visual evoked potential (VEP) responses to self-initiated visual 

checkerboards and reported increased P2 visual evoked amplitudes over an occipital region in 

contrast the attenuation effect reported in the auditory domain. Gentsch and Schutz-Bosbach (2011) 

measuring VEPs produced by arrow stimuli of self- and externally generated actions showed evidence 

for SA. However, the stimuli were embedded in a visual forced-choice response task where stimuli 

were subliminally primed. Interestingly, both these studies report no evidence for SA effect on N1 in 

classical visual responses over occipital regions but rather, self-generated visual stimuli resulted in 

attenuation of responses anterior regions.  

 

In contrast, Benazet et al. (2016) using EEG, argued that they found evidence for attenuation of 

VEPs following visual feedback of real and delayed hand movements, creating a mismatch between 

predicted and actual visual consequences. However, this task does not follow the standard protocols 

of the classical SA paradigms, and this effect could be attributed rather to prediction error than to a 

difference between active and passive comparison. Interestingly, Mifsud et al. (N. G. Mifsud et al., 2016) 

found a facilitation of the N145 visual component for self- versus externally generated stimuli. This 

provides some of the first evidence to support a facilitation effect in VEP using standard protocols. 

 

 These inconsistent findings for electrophysiological SA effect in visual regions is in contrast to the 

large and consistent body of evidence in support for an N1 attenuation in the auditory domain. One 

possible explanation for not observing an M100 attenuation in the visual domain is the possibility that 

in contrast to the auditory and somatosensory domains SA may either be a weak response that is 

spatiotemporally dependent on the specific protocol of a particular paradigm or effectively the 

mechanism may not occur in the visual domain at all.  

T i m e - f r e q u e n c y  a n a l y s e s  

We computed the linear phase coherence between self- and externally generated stimuli. The data 

clearly shows a pre-to-post stimuli motor effect around stimulus onset around theta frequency range. 

This is consistent with what would be expected when analysing the phase of evoked potentials (M. 

Cohen, 2014; Lachaux & Rodriguez, 1999; Makeig et al., 2004). Cluster-based statistics done at sensory 

space may not be sensitive enough to discern specific localised phase effects related to the M100  

evoked components in the these particular comparisons between conditions (Maris & Oostenveld, 

2007). However, analyses of power spectrum reveals a clear structure in the data. Moreover, the 

stimulus phase-locked power responses directly evoked either due to CMPR or to stimulus evoked 
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effects gives some idea which frequency band could relate to phase resetting (Makeig et al., 2004). In 

contrast to passive conditions where stimuli are externally generated, in the active self-generated 

conditions participants were required to make finger abductions. Thus, any differences when 

comparing activation between active and passive conditions might be contaminated by motor 

processing. However, we are able to focus on the RAC, as these sensors are spatially distant enough not 

to avoid any signal leakage from motor activated areas. The RAC reveals a broadband power decrease 

at 100 ms and strongest T values at approximately 5 Hz, which corresponds to the M100 component. 

The MS condition show an additional peak around 10 Hz. This might be related to the visual stimulation 

projecting into auditory areas. 

 

Interestingly, when comparing phase locking differences between multisensory and unisensory 

conditions we are able to discern the relative contribution of cross-modal effects within a specific 

sensory modality. As with phase effects discussed previously, we make the distinction here that phase 

locking differences observed between conditions can be related to phase resetting. The effects in 

auditory regions in general are quite consistent. While comparing the MS with the Vis condition, this 

reveals a clear significant difference peaking early at a frequency of 5Hz. This is the typical frequency 

in which evoked components are expressed. This difference is due to the presence of auditory 

stimulation from the MS condition that activates the auditory cortex. This pattern is mutually 

consistent for active and passive conditions across both LAC and RAC. Equally, there are consistent 

patterns seen for the comparisons between MS and Aud conditions, however, this pattern is dissimilar 

to the MS versus Vis comparisons. Here the strongest difference is at a higher frequency around 10 Hz 

and peaks later (300 ms). This is a likely signature of the cross-modal effect. In other words, the visual 

stimulus is modulating the phase in auditory areas. An effect that has been consistently demonstrated 

previously (Kayser & Logothetis, 2007; Lakatos et al., 2005; Luo, Liu, & Poeppel, 2010; Thorne & 

Debener, 2014). Interestingly, as previously seen, this signature is relatively similar in both LAC and 

RAC for the active and passive conditions. 

 

 Cluster statistics (using standard settings) leads to extended clusters in time and frequency that 

already starts shortly after stimulus onset. Given the inherent temporal smoothing in Hanning tapering 

in time-frequency analyses (Gröchenig, 2001), it is difficult to specify the exact onset of the cross-modal 

effect. However, it appears that the effect does begin shortly after stimulus onset and increases in 

strength until about 300ms. It is noteworthy, that the frequency is higher (10 Hz) compared to 

previous contrasts (5 Hz). This would suggest a modulatory component. We reason, that an auditory 

stimulus would indeed elicit a characteristic evoked component in the auditory cortex, that is 

represented in the time-frequency domain as a low frequency power and phase locking increase with 

strongest effects significantly below 10 Hz. Here, we observe a different effect of cross-modal 

integration, which originates from visual stimulation modulating phase locking in the auditory cortex. 
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This is interesting, because due to the segregation in the frequency domain both effects can be present 

at the same time, while modulating stimulus processing simultaneously in different ways. These 

findings are consistent with recent findings from EEG that show visually driven modulatory effects 

within low-frequency oscillations source localised to the auditory cortex (Thorne, Vos, & Viola, 2011). 

 

Considering that the same signature is evident for both the active conditions suggests that the 

visual-auditory interaction is preserved. In addition, the motor cortex is activated at the same time, 

and conjointly modulates auditory evoked components. Could the motor regions modulate the 

auditory cortex at yet another frequency? Our data provided tentative evidence for this. It appears that 

in most of the active contrasts in the LAC and RAC, there is stronger phase-locking in the beta band (~ 

25 Hz). The beta rhythm is indeed a prominent oscillation in motor areas (Engel & Fries, 2010; 

Pfurtscheller, Silva, & Lopes da Silva, 1999). However, the effects are seen in the contrast between two 

active conditions (e.g. active MS versus active Aud) and the evidence here is not fully conclusive. When 

considering the data from contrasts in the visual areas, it is clear that with the current data analyses 

methods, we were unable to reveal effects that could provide evidence for cross-modal phase resetting.  

 

Although the cluster statistics did not reveal significant difference effects in visual regions, this does 

not necessarily dictate there is no evidence for CMPR from auditory-visual interactions. This could be 

a result of standard cluster statistics not being sensitive enough to reveal these effects at sensor space. 

Previous research would suggested that auditory responses in the visual cortex may be quantitatively 

different than visual-auditory interactions (Mercier et al., 2015; Perrodin & Kayser, 2015). Several EEG 

and MEG studies have reported early latency multisensory interactions that localise best to auditory 

cortex (Foxe, Morocz, & Murray, 2000; Mishra & Martinez, 2007; Raij et al., 2010; Thorne, Vos, & Viola, 

2011), consistent with studies from human neuroimaging (Foxe & Wylie, 2002) and 

electrophysiological recordings in nonhuman primates (Schroeder & Foxe, 2002). Future, research 

would explore this further at sensor space. 

 

A phase-reset of neural oscillations in primary auditory cortex by visual input is important 

underlying mechanism (Mercier et al., 2015; Perrodin & Kayser, 2015; Thorne & Debener, 2014).  

Recent research suggests that not only the visual, but also the motor system plays a critical role for an 

efficient adjustment to excitability fluctuation in the auditory cortex to expected upcoming events, 

which is in line with the forward model account (Doelling, Arnal, Ghitza, & Poeppel, 2014; Fujioka, 

Trainor, & Large, 2012; Morillon, Hackett, & Kajikawa, 2015). For example, Park et al. (2015), using 

MEG and transfer entropy measures (Schreiber, 2000) were able to show that frontal and motor area 

can modulate the phase of delta/theta oscillations in the auditory cortex. Specifically, they identified 

the left precentral gyrus as a source of top-down control for speech production. These findings support 

previous studies that show the involvement of motor areas in speech production and perception 
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(Pickering & Garrod, 2007; Sohoglu, Peelle, & Carlyon, 2012). Wilson et al. (2004) demonstrated that 

listening to natural speech activates motor areas involved in speech production. Here they proposed 

that the motor system possesses an efference copy of the expected auditory events and therefore can 

prepare the auditory cortex in such a way that oscillations arriving in the auditory cortex are at their 

high excitability phase exactly when relevant upcoming stimuli is expected to be processed (Arnal & 

Giraud, 2012).  

 

Mercier et al. (2015) using simple detection task were able to provide supporting evidence found 

in speech perception and production studies. Here they demonstrated oscillatory phase resetting 

between motor and auditory cortices increased during the time interval between stimulus 

presentation and self-generated responses. They suggested their data is evidence for active 

communication between two central nodes of the sensorimotor network, which are recruited to 

perform the task. Moreover, they found super-additive multisensory effects on phase synchrony 

between motor and auditory cortices that were a consequence of faster synchronisation in the 

multisensory condition. This was supported by analysing correlation between phase reset in the 

auditory cortex and subsequent phase reset between motor and auditory cortices. This would suggest 

that there is stinger multisensory-driven phase alignment between motor and auditory cortices.  

 

Our present data contribute further yet to reveal the presence of nonlinear multisensory effects in 

low frequencies. We investigated supra-additive multisensory effects across the conditions. We found 

consistent findings in both the active and passive conditions. Over the auditory ROIs, there was 

stronger PLV for the multisensory than the sum of unisensory conditions, which peaked around theta/ 

alpha and later peak at beta. In the visual cortex, this peak was higher around the beta frequency band. 

Additionally, in the passive conditions we see another peak around theta frequency at 500 ms time-

window. Taken together these findings provide even further evidence to support that CMPR from the 

motor to sensory areas is a potential mechanism. The phase alignment at these lower frequencies 

found here in our ROIs may not only be linked with motor cortices as suggested but consist of other 

beta band networks such as the superior parietal lobule, known to be involved in multisensory 

integration (Molholm, Sehatpour, & Mehta, 2006). 

 

Our data further revealed supra-additive effects peaking cluster of alpha and some signatures of 

beta peaking (Figure 4.8, but see Figures 4.10.C, 4.11.C) that were not seen when looking at the 

statistically significant cross-modal phase reset in both the active (Figure 4.10) and passive (Figure 

4.11) visual conditions, which in contrast revealed lower mu/theta frequencies. This observation 

highlights the possible role that different frequency band have in neural integration. Several studies 

have now suggested the existence of a parallel between functional hierarchy and distinct frequency 
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bands using varying cognitive tasks (Bastos et al., 2015; Buschman & Miller, 2007; Lakatos et al., 2005; 

Rohe & Noppeney, 2016; Schroeder & Foxe, 2005).  

C o r r e l a t i o n  a n a l y s e s  

Finally, we correlated SA with PDI scores. Deficits in sensory-predictive processes have been 

identified as specific symptoms of psychopathology, most notably delusions of control in ScZ patients 

(Frith & Wolpert, 2000; Lindner, Thier, Kircher, Haarmeier, & Leube, 2005; Shergill, Samson, & Bays, 

2005; Synofzik, Thier, Leube, & Schlotterbeck, 2010). Our data were able to replicate previous studies 

showing a negative correlation between SA and PDI score (Blakemore, Wolpert, & Frith, 2002; Lindner 

et al., 2005; Shergill et al., 2005; Teufel, Kingdon, Ingram, Wolpert, & Fletcher, 2010). This suggests 

that individuals with higher level in delusion ideation showed a small SA effect supporting previous 

evidence that this delusion-like thinking is associated with a reduced tendency to predict and attenuate 

the sensory consequences of self-generated actions. Our data although preliminary give some 

indication that deficits in sensory prediction in ScZ patients may not simply be the consequence of the 

deluded state or related to the effects of neuroleptic medication. Rather, these appear to be stable trait-

like characteristics in individuals score high in self-report measures of schizotypal characteristics. We 

further provide similar evidence in self-report measure using the Systemising Quotient, which until 

recently have been investigated together in a cross-cultural study (Cao & Gross, 2015)  

L i m i t a t i o n s  a n d  c a v e a t s  

As with all studies using MEG at sensory space, data are contaminated by signal leakage from 

surrounding regions. Furthermore, when assessing the effect of CMPR, which is a measure of functional 

connectivity between two regions, these are subjected to spurious contributions due to signal leakage 

between the two regions. Beamformer methods are able to remove signal leakage, which has zero-lag 

by orthogonalse the time series data (Brookes, Woolrich, & Barnes, 2012; Hipp, Hawellek, Corbetta, & 

Siegel, 2012). Any subsequent measure cannot be due to signal leakage. Furthermore, here we used 

standard protocols for time-frequency analyses resulting in large clusters of activity. Future work will 

address this issue and analyse data using more sophisticated methods. 

 

Next, it is important to clarify that we make assumptions about CMPR here using a simple basic 

stimuli in a SA task analysed with standard protocols on MEG sensor space, here we provide indirect 

evidence for this functional connectivity measure. Moreover, the effects seen here may not exclusively 

be ascribed to phase reset within in a modality or across sensory modalities. Neuroimaging has 

demonstrated the extensive networks implicated in multisensory processing, even for basic task tasks 

with simple stimuli (Martuzzi, Murray, Michel, & Thiran, 2007; Molholm et al., 2002; Schroeder & Foxe, 

2005). 
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 Future research would benefit from using directed functional connectivity measures at source 

space to provide stronger supporting evidence for cross-modal effects. Such measure may include 

Granger causality (e.g., Bressler & Seth, 2011), transfer entropy and mutual information measures (e.g., 

Lobier, Siebenhühner, Palva, & Palva, 2014), or phase-lag index (e.g., Stam, Nolte, & Daffertshofer, 

2007). It is noteworthy, that as discuss in previous chapter it is inherently difficult to provide direct 

evidence for phase resetting in electrophysiological studies.  

4.6 Conclusion 

Our data contributes to the theoretical framework of the temporal coding hypothesis, specifically 

the phase reset mechanism, which predicts that information is encoded in the precise phases at which 

neuron are active (Canavier, 2015; Makeig, Westerfield, & Jung, 2002; Thorne et al., 2011). Our results 

support a recent study by Mercier et al. (2015), who demonstrated that temporal alignment of 

responses to multisensory events would be evident as an increase in oscillatory phase synchrony 

between unisensory brain regions. Moreover, they propose that phase coherence between motor and 

auditory cortices is linked to faster behavioural performance. A mechanism, which may be controlled 

via CMPR and is in line with our interpretations here. Although, their evidence may be confounded by 

recordings from electrocorticographic (ECoG) recording from epilepsy patients. Here we provide 

similar arguments in healthy subjects using MEG.  

 

The forward model as described by the corollary discharge, describes a mechanism which 

supresses sensations that match anticipatory consequences of self-generated motor actions 

(Helmholtz, 1924; Helmholtz, 1867; von Holst & E., 1954). CMPR may be a candidate mechanism, which 

may index the forward model account of motor-to-somatosensory prediction account (Blakemore, 

Frith, & Wolpert, 2001; Wolpert et al., 1995) to another sensory modalities. This mechanism provides 

an interpretation for the integration of cortical information processing between primary and 

associative cortical areas (e.g. primary visual and middle temporal cortical regions; Chen, Lakatos, 

Shah, & Mehta, 2007) and different sensory modalities (e.g. somatosensory and auditory modalities; 

Lakatos et al., 2007). As suggested in the previous chapters, simple detected and discrimination tasks 

involve recurrent interactions between multiple cortical and subcortical regions. This is most likely 

achieved through the coordination of fluctuations in neural oscillatory activity. Oscillatory phase is 

able to mediate such interactions by inducing a mechanism of optimal temporal windows of 

communication between distant neural ensembles involved in a task (Engel & Singer, 2001; Pascal 

Fries, 2005; Varela et al., 2001). This is even shown to involve regions thought to be unrelated to the 

task modality (Kayser & Logothetis, 2007; Romei, Gross, & Thut, 2012; Schroeder & Lakatos, 2009; 

Thorne & Debener, 2014).
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5.1 General discussion 

The coordination of oscillations across anatomical and temporal scales has gained prominence as 

a fundamental principle in functional connectivity underlying cognition and behaviour  (Buzsaki, 2006; 

Fries, 2005; Siegel, Donner, & Engel, 2012; Thut et al., 2012a; Voloh & Womelsdorf, 2016). Oscillatory 

phase resetting is a measurable marker of the changing dynamics that underlie such coordination, and 

is a fundamental transition from the notion of static snapshots of brain activity and towards 

dynamically evolving neural circuits (Kopell, Ermentrout, Whittington, & Traub, 2000). Oscillatory 

phase provides the neural architecture for encoding and transmission of stimulus information across 

diverse brain systems. Specifically, this thesis investigates the modulation of neural oscillatory phase 

across sensory modalities as well as motor-sensory domains, within the framework of cross-modal 

phase resetting.  

 

The phase reset hypothesis for multisensory integration details that cross-modal interactions are 

evoked by the occurrence of a sensory event on one modality realigning or shifting the phase of 

ongoing oscillations in another modality to a specific value; such that the processing of a subsequent 

event in that modality is either supressed or facilitated, depending on the exact relation between the 

phase of the neural activity and the occurrence of the second stimulus. However, the majority of studies 

investigating this mechanism within the framework multisensory integration use brief, momentary 

stimuli, and focus either on the spatial domain or detection of a single transient near-threshold 

stimulus. What is far less investigated is the interaction of the auditory modality and dynamic visual 

motion perception. Although prior studies have demonstrated that different presentations of sounds 

can affect the precision or quality of a visual motion percept, similarly when the sound is not task 

relevant (Kim, Peters, & Shams, 2012; Sekuler, Sekuler, & Lau, 1997). These studies have not provided 

evidence for this interaction between modalities being a consequence of CMPR. Moreover, behavioural 

studies have failed to find conclusive evidence for sensory interaction between the two modalities 

within the framework of auditory to visual motion perception. Taken together, the data presented in 

this thesis offer new insights into the role that neural oscillations play in visual motion perception and 

how this can be modulated via CMPR. These data are in line with prior investigations supporting the 

CMPR hypothesis and the sensory perceptual consequences following multisensory integration. 

Specifically an auditory induced modulation of ongoing visual oscillations (Diederich et al., 2012; 

Diederich et al., 2014; Fiebelkorn, Foxe, & Butler, 2011; Lakatos et al., 2009; Mercier et al., 2013; Naue 

et al., 2011; Romei et al., 2012b). 
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Periodicities between modalities, at least in the visual domain, appear to be synchronised not only 

with sensory events in other sensory modalities but also with motor-events. In addition to 

investigation the interaction between sensory modalities, this thesis explored the possibility that the 

interaction between the motor cortex and sensory modalities can be operated via CMPR. In addition, 

for the first time to our knowledge, we investigate sensory-motor interaction in up to two sensory 

modalities. Our data contributes to the theoretical framework of the temporal coding hypothesis, 

specifically the phase reset mechanism, which predicts that information is encoded in the phases at 

which neuron are active (Canavier, 2015; Makeig, Westerfield, & Jung, 2002; Thorne et al., 2011). 

 

Varying information from the environment is continually bombarding our senses, our brain needs 

to select, filter and prioritise these inputs. Additionally, these processes may be modulated through 

feedback connections which further necessitate inter-regional communication. There is a large body 

of research suggesting that neural oscillations, which are an index of the fluctuation in cortical 

excitability of neural populations, are the brain’s principle mechanism to achieve this information 

processing and transmission. To this end, events that coincide with a high excitability state of an 

oscillation will be amplified whereas events occurring during a low excitability phase are supressed 

(Schroeder & Lakatos, 2009a). This was observed in Chapter 2 and Chapter 3, where the detection 

and discrimination of near-threshold visual motion had a higher probability of being accurate at 

certain SOAs and not others. The ability of the brain to drive or control these oscillations, phase 

aligning high and low excitability states with relevant and irrelevant events, respectively, makes this a 

powerful mechanism for sensory gain control for the gating and filtering of inputs (Fries, 

Neuenschwander, et al., 2001; Fries, 2005; Fries, Womelsdorf, & Oostenveld, 2008). These chapters 

demonstrated that CMPR is a versatile mechanism for sensory gain control, where selective sustained 

attention can influence visual processing in a rhythmic way. In addition,  prior investigations have 

shown that attention can achieve such dynamic routing of sensory information in the cortex through 

both the enhancement of spike rates of neurons and also the enhancement of precise synchronisation 

of neuronal groups activated by the attended stimulus (Fries, Reynolds, et al., 2001; Womelsdorf & 

Fries, 2006). 

A u d i t o r y  m o d u l a t i o n  o f  t h e  v i s u a l  c o r t e x  

The existing literature demonstrates a variety of methodologies that have elucidated evidence for 

a modulatory role of cross-sensory interactions on ongoing cortical oscillations and its impact on 

neural response (Canavier, 2015). These are described in primary auditory cortex of nonhuman 

primates (Kayser, 2009; Lakatos et al., 2009) and in visual and auditory cortices in humans  

(Fiebelkorn, Foxe, & Butler, 2011; Fiebelkorn et al., 2013; Perrodin & Kayser, 2015; Romei et al., 

2012b), including somatosensory (Foxe et al., 2000; Lakatos et al., 2007). Specifically, a number of 

investigations suggest that auditory stimulation can modulate visual response in the visual cortex to 
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influence early sensory-perceptual processing (Fiebelkorn et al., 2011; Fort et al., 2002; Giard & 

Peronnet, 1999; Mishra & Martinez, 2007; Molholm et al., 2002; Naue et al., 2011; Romei et al., 2012b). 

The majority of studies investigating these cross sensory interactions have focused on using brief, 

momentary stimuli, and focus either on the spatial domain (Eimer & Driver, 2000; Landau & Fries, 

2012a) or detection of a single transient near-threshold stimulus (Fiebelkorn et al., 2011; Kayser et al., 

2008; Naue, Rach, Strüber, & Huster, 2011; Romei, Gross, & Thut, 2012). To date, however, there has 

been sparse evidence suggesting that an axillary (task irrelevant) tone can modulate visual motion 

perception. To this end, Chapter 2 and Chapter 3, sought to investigate these cross-sensory 

interactions using multisensory stimulation. Here the results provide novel findings from both 

electrophysiological evidence form MEG recording and psychophysical measures demonstrating that 

theta-alpha frequency oscillations play a key role in the integration of information over time in a visual 

motion discrimination and detection task.  Prior studies have similarly suggested that low-frequency 

(theta-alpha) oscillations play a key role in the phase resetting mechanisms to align cortical excitability 

to important events in the stimulus stream (Ng, Schroeder, & Kayser, 2012; Schroeder et al., 2008; 

Thorne et al., 2011; Weise, Hartmann, Schröger, Weisz, & Ruhnau, 2016).  

 

Recent evidence suggests that sustained attention in one location is not static, but rather appears 

to happen rhythmically. For example, Busch and VanRullen (2010) using EEG demonstrated that the 

detection of a visual target presented at threshold was systematically related to the phase of ongoing 

theta oscillation (~7 Hz).  This phase behaviour relationship was contingent on the allocation of 

attentional resources following a cue and was absent at other location in the visual field. To this end, 

the cue served not only to guide the deployment of attention but also cause the timing of the high- and 

low-excitability states of the oscillation to phase reset across trials (see also Lakatos et al., 2009). 

Therefore, it appears that the selection mechanism periodically samples the attended location, with 

the degree of selective fluctuating with the phase of the neural rhythms. These findings would suggest 

that visual selective attention is a rhythmic behaviour that is dynamic and flexible. The neural basis of 

these rhythmic properties of selective attention is unclear but taken together with the findings from 

Chapter 2 and Chapter 3 suggest that selective attentional resources modulate sensory gain control 

via cross-modal interactions. In other words, phase resetting may be a mechanism for supramodal 

attentional control (Kayser, 2009; Lakatos et al., 2009).  Specifically, a task irrelevant tone can 

modulate the sustained attention of continuous stimulation in a visual motion detection and 

discrimination task.  

F r e q u e n c y  o f  s e n s o r y  p r o c e s s i n g  

Research that investigates the role of different oscillatory frequency bands in sensory information 

processing suggests that different functional roles for higher and lower frequencies. Due to their cycles 

length, slower oscillations support better functional coupling of networks over much larger distances 
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due to conduction delay properties (Kopell et al., 2000). This concept is evident in the data presented 

in this thesis, specifically theta-alpha frequency bands appear to be involved in auditory modulation of 

visual cortical activity, which requires long distance communication.  

 

The vast majority of established research has attributed alpha frequency band (7-12 Hz) as the 

principle frequency range of visual stimulus processing. From the early foundations of EEG recordings, 

Hans Berger in 1929 (Berger, 1929) reported the dependence of alpha power on visual input. Here 

Berger found that alpha power in EEG increased when participants closed their eyes. Ever since these 

findings, both theoretical and empirical approaches have provided convincing evidence that alpha 

band is related to an inhibition (disengagement) of brain regions (Foxe & Snyder, 2011; Jensen & 

Mazaheri, 2010; Klimesch, Sauseng, Hanslmayr, et al., 2007; Klimesch et al., 2011). For example, alpha 

is implicated in visual perception, both for the detection of visual target and the likelihood of the 

perception of TMS induced phosphenes, that depends of EEG alpha phase (Busch et al., 2009; 

Mathewson et al., 2009; Romei et al., 2010), and power (Hanslmayr et al., 2007; Romei, Brodbeck, et 

al., 2008). Similar results are found following rhythmic visual stimulation, with a neural resonance of 

alpha, indicating that the intrinsic frequency of neurons (Hutcheon & Yarom, 2000) in the visual 

system is indeed located predominantly in the alpha frequency band. Furthermore, alpha is implicated 

in the probability of detecting a visual target after a cue and observed in behavioural oscillations 

following reaction times which fluctuate periodically (Landau & Fries, 2012a; Song et al., 2014). It is 

noteworthy to mention that these have been reported at a frequency of 4 Hz per visual hemifields, 

indicating an overall rhythmicity of 8 Hz, thus lying within the alpha range. 

 

In Chapter 3, the data revealed that visual motion detection and discrimination varies strongly as 

a function of prestimulus phase on multiple temporal scales, from low delta in the temporal parietal, 

and alpha in the visual regions. The MEG electrophysiological data significantly correlate with the 

behavioural spectral profile of d’ across subjects. These data therefore extend previous findings that 

describe a relationship between phase, within defined frequency bands and either behavioural and 

neurophysiological outcomes (Busch et al., 2009; Dugué et al., 2011; Haig & Gordon, 1998; Jansen & 

Brandt, 1991; Kayser et al., 2008; Kruglikov & Schiff, 2003; Lakatos et al., 2007, 2009; Makeig, 

Westerfield, & Jung, 2002; Mathewson et al., 2009; Monto & Palva, 2008; Scheeringa, Mazaheri, & 

Bojak, 2011). The majority of these studies emphasis the role of theta/alpha oscillations. The data 

presented here confirm the importance of this frequency bands, but together with the behavioural 

findings from Chapter 2, suggest also a role for delta oscillations as predictive indicators of visual target 

detection.  

 

A wealth of research that demonstrates that top-down processes can modulate the phase and 

consequently cognitive processing (Fiebelkorn, Foxe, & Butler, 2011; Lakatos et al., 2009, 2008) and 
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cortical excitability (Fries, 2005; Fries, Reynolds, et al., 2001; Friston, 2005b; Snyder & Foxe, 2010). 

Our data further revealed a cyclic modulation in ERF amplitudes as a function of SOA in theta and alpha, 

over the temporal parietal and visual regions respectively These modulations occurred at 300 ms post 

motion onset, indicating that the evoked responses where a reflection of the decision-making process. 

Components at these latencies represent high-order cognitive processes rather than low level visual 

processing that are influence by top-down regions. These results suggest that theta-alpha power, an 

index of cortical excitability, has an influence on visual motion perception. Taken together, these data 

are in line with prior studies that demonstrated a negative relationship between instantaneous alpha 

oscillations and perceptual performance (Ergenoglu et al., 2004; Hanslmayr et al., 2005b; Thut et al., 

2006), indicating that low prestimulus alpha promotes good visual perception performance.  

Furthermore, prior investigation demonstrate that brain rhythms operate interactively on multiple 

temporal and spatial scales (Canolty & Knight, 2010; Jensen & Colgin, 2007). A large number of these 

studies show that the phase of theta oscillations modulate the amplitude of gamma (> 30 Hz) 

oscillations (Canolty et al., 2006; Lakatos, Shah, Knuth, et al., 2005a; Whittingstall & Logothetis, 2009). 

Our investigations were focused on frequencies below 25 Hz; future work would investigate the phase-

detection relationships at higher frequencies and the dependence on the phases of lower frequencies 

that affect the perception of visual motion. 

 

Although the alpha (8-12 Hz) rhythm remains widely implicated in visual perception, progressively 

more research is demonstrating functional associations of perception involving other frequency bands, 

as reported here in 4-8 Hz theta frequency range (Diederich et al., 2014; Dugué et al., 2015; Vanrullen, 

2013; VanRullen & Dubois, 2011; Mathewson & Lleras, 2011). For example, VanRullen and colleagues 

have demonstrated the relative contribution that ongoing pre-stimulus EEG oscillations have on 

perceptual consequences. In one of their studies (Busch et al., 2009), they presented brief flashes of 

light at near-threshold detection, where the luminance of the flashes were calibrated so that the exact 

same stimulus would be perceived on approximately half of the trials, but go undetected on the other 

half. They found significant pre-stimulus phase concentration at ~7 Hz (theta range) on those trials 

where flashes were accurately detected. In Chapter 2, it was investigated if the visual systems 

sampling frequency would adapt to the length of coherent visual motion as a mechanism to achieve 

optimal sensory perceptual performance. The data would suggest that the visual system seems to 

reveal a constant sampling frequency around theta-alpha range (with optimal fitting around 6-9 Hz). 

 

The results from both Chapter 2 and Chapter 3, demonstrate that the discrete sampling of the 

visual environment is not disruptive to stimulus processing even when it is operationally independent 

of the visual input. In other words, the systems subsamples “blindly” or irrespectively of the content of 

the visual input (i.e., “snapshots” ate taken independently of the content of the visual input). This is 

evident in our task where the visual system maintains its rhythm of stimulus processing even when it 
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cannot be adjusted in such a way during continuous stimulation (coherent visual motion) of events 

that have an unpredictable sequence (direction of coherent motion or no motion). Our data provides a 

novel contribution to the literature suggesting that theta-alpha frequency range seems to be dominant 

for stimulus processing, more specifically the integration of information over time in visual motion 

perception. Taken together, auditory-driven modulations in phase concentration over visual cortices 

observed in theta-alpha frequency range strongly suggest a central role for this frequency range in 

mediating communication between auditory and visual cortices. The pattern of results in sensory 

cortex through cross-modal phase resetting are analogous to the findings reported for non-human 

primates (Kayser et al., 2008; Lakatos et al., 2007).  

 

Evidence for an involvement of alpha activity in information processing has been provided by 

numerous studies using a variety of methods (Mazaheri, Schouwenburg, & Dimitrijevic, 2014). 

Furthermore, there is evidence for a relationship between long-range coherence in the alpha frequency 

band and perceptual and cross-modal binding (Thorne et al., 2011). Prior studies reporting oscillations 

occurring in the alpha band have been reported to adjust when the onset of a spatial location of 

expected upcoming events in known. For example, alpha lateralisation was observed to be influenced 

by the predictability of the spatial location of a visual target , indicating an active adjustment of alpha 

power base on anticipatory spatial attention (Bonnefond & Jensen, 2012; Haegens, Nácher, & Luna, 

2011). Furthermore, the processing of the uncertainty about when events are likely to occur is 

facilitated by phase resetting in theta activity before the event occurs to enhance their processing and 

detection (Lakatos et al., 2008; Stefanics & Hangya, 2010). The role of alpha in sensory predication 

have also been observed in research investigating the theories of sensorimotor control (Miall & 

Wolpert, 1996; Wolpert & Flanagan, 2001). The prominent “forward modal” theory proses that the 

underlying mechanisms of action prediction send an efference copy of the motor command to generate 

prediction about the sensory consequences of those self-generated actions (Chapter 4). Within this 

framework, research suggests that predictions are communicated along anatomical feedback 

connection via alpha oscillations (Bastos et al., 2015; Wang, 2010). Recent evidence shows that prior 

to stimulus onset, alpha power controls the gain control of local neural populations reflecting precision 

of the predication about the incoming events (Cao et al., 2016a). These mechanisms may be 

implemented by modulating local neural excitability levels, known to be indexed by alpha (Romei, 

Brodbeck, et al., 2008).  

 

Taken together, these and other findings suggest that there may not be a single common sampling 

rhythms affecting all our perceptions, but rather many simultaneous rhythms that periodically 

modulate various cognitive and perceptual functions in distinct modalities at independent rates 

(VanRullen, 2016b; VanRullen & Dubois, 2011). A review of the literature highlights that the frequency 
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of these periodicities are very diverse, but reveal clear peaks at alpha (10 Hz) and theta (7 Hz), which 

are tentatively attributed to sensory and attentional sampling rhythms respectively.  

M o t o r - s e n s o y  i n t e r a c t i o n s  

Another established model case for this fundamental operation is the interaction between motor 

and sensory areas. The coordination of oscillation across sensory modalities and motor domains are 

described in terms of the predictive coding theory. Motor action leads to predictable sensory 

consequences. Within this framework, predictive encoding is associated with attentional 

neuromodulatory gain control in sensory processing, which reflects the modulation of neural 

excitability changes, which may be an index of reporting prediction error (Logothetis, 2008). The exact 

mechanisms between motor and sensory modalities are yet unclear, but in Chapter 4, we propose that 

inter-areal phase resetting is be a potential mechanism that may index the forward model account of 

motor-somatosensory perdition account (Blakemore, Frith, & Wolpert, 2001; Wolpert et al., 1995) to 

different sensory modalities (e.g. somatosensory and auditory modalities; Lakatos et al., 2007). To this 

effect, a predictive influence can be exerted if one event resets the phase of ongoing excitability 

fluctuations and thereby influence the processing of upcoming events in the same or different 

modalities. There the phase resetting mechanism is not specific to multisensory interactions, but 

rather represents a more general mechanism through which different sensory, motor, and top-down 

attentional control can modulate the ongoing processing across domains. Taken together, cross-modal 

phase resetting provides a canonical operation enabling the flexible integration of multiple sensory, 

motor and top-down modulations. 

 

Within this framework, we investigated the prediction context of multisensory consequences 

following self-generated actions using both unimodal and bimodal visual and auditory stimuli. The 

data here suggests that an internal model generates temporal predictions for at least two modalities. 

This sensorimotor synchronisation can be indexed by theta frequency range (3-7 Hz). Another 

attribute of this operation is that of oscillatory power, which may impact the overall responsiveness of 

a given brain region, a process that has been associated with the modulation of neural firing (Haegens, 

Nácher, & Luna, 2011; Jensen et al., 2012). These novel findings are in line with previous reports in 

unisensory paradigms showing evidence for temporal predictions in visual (Gentsch & Schütz-

Bosbach, 2011; Hughes & Waszak, 2011; Knolle et al., 2012), auditory (Cao et al., 2016a; Ford et al., 

2001;Ford, Roach, & Faustman, 2007; Hughes et al., 2013; Shergill et al., 2005), and somatosensory 

(Bays, Wolpert, & Flanagan, 2005; Hesse et al., 2010; Weiskrantz et al., 1971) system, although 

investigated separately. Although there is a large body of research that focused on the role of the 

forward model in predicting visual consequences of actions, several studies have also demonstrated 

the importance in tactile predictions (Blakemore et al., 1998). Taken together, this suggests that 



Chapter 5 
  138 
 

  

sensory consequences of forward model predictions in different modalities are based on similar 

mechanisms. What is less clear, however, is the mechanisms involved in multisensory predictions. 

 

Importantly, in contrast to previous studies which manipulate temporal prediction when 

investigating sensory attenuation here, in self-generated (active trials) conditions, participants have a 

better temporal prediction about upcoming stimuli, since these actions are decided voluntarily. 

Whereas, in the externally generated (passive trials) conditions, there is an uncertainty about the onset 

of the stimulus as these are jittered, and therefore are unpredictable. Consequently, due to this 

unpredictability difference, these paradigms are unable to discern whether the effects are due solely 

to an efference copy mechanism, differences in predictability, or both. In the Chapter 4 however, we 

avoid this potential confound by presenting the passive stimuli at the same rate on every trial. To this 

end, not only was it possible to suggest the results are a consequence of an efference copy mechanism 

but it was also possible to investigate the difference in processing unimodal versus multimodal action 

consequences generated either actively or passively.  

N e u r a l  c o r r e l a t e s  o f  c r o s s m o d a l  m o d u l a t i o n  

Although the current methods of this thesis do not allow us to determine the pathway though which 

auditory-driven influences occurred, there are several highly plausible possibilities to consider. These 

include a direct cortico-cortical auditory to visual pathway (Cappe & Barone, 2005; Clavagnier, 

Falchier, & Kennedy, 2004; Falchier, Clavanier, & Barone, 2002), subcortical thalamic influence (C. 

Schroeder & Lakatos, 2009a; Sherman & Guillery, 2002; Sherman, 2007), or mediating higher-order 

multisensory region such as posterior superior temporal gyrus (Tyll, Bonath, Schoenfeld, Heinze, & 

Ohl, 2013; Werner & Noppeney, 2010), or the intra-parietal sulcus (Leitão, Thielscher, Werner, & 

Pohmann, 2013). 

 

The neural circuity implicated in the effective transmission of the efference copy signal is largely 

under dispute, including but not exclusive to the motor cortex (Ford, Palzes, Roach, & Mathalon, 2013; 

Reznik, Henkin, Levy, & Mukamel, 2015), prefrontal cortex (Müller et al., 2014), and inferior frontal 

gyrus (Wang, Mathalon, Roach, Reilly, & Keedy, 2014), that have been proposed as advocates in the 

generation of the efference copy signal. It seems irrefutable to suggest the involvement of the motor 

cortex in generating the efference copy signal as it is originally proposed as a copy of the motor 

command (Holst & Mittelstaedt, 1950). Evidence from in vivo intracellular recordings demonstrated a 

particular neural circuit that connects the motor and auditory domains, providing a potential neural 

basis for the efference copy (Schneider, Nelson, & Mooney, 2014). Future studies are needed with a 

focus on disentangling the anatomical origins of phase-aligned activation, microcircuits that can be 

preferentially targeted to adjust phase, the effect of noise either in the stimulus or in endogenous 
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oscillatory activity, and methods of manipulating neural populations in order to affect computation 

and behaviour.  

 

Evidence for sensory attenuation in the visual cortex is sparse, with one study reporting rather an 

enhancement over occipital sensors (Mifsud, Oestreich, Jack, & Ford, 2016). A similar effect is observed 

in our data (Chapter 4), although the effects are not significant. These differences between the effects 

observed in different modalities poses an interesting question. Are there different neural systems 

specialised for the transmission of different efference copies, which are independent? Misfud et al were 

unable to find a correlation between auditory sensory attenuation and visual facilitation effects, which 

tentatively suggests the existence of two independent systems, one for motor-auditory and another 

motor-visual. Interestingly, Williamson, et al. (2015) reported differential modulatory effects in the 

auditory and visual regions of the thalamus in mice. While, Zhang et al. (2016) found that both auditory 

and somatosensory cortices of mice are connected to motor cortex, whereas visual cortex is 

predominantly connected to anterior cingulate cortex. Taken together these offer some new insight 

into the possibility that there are different neural circuitry implicated in processing what seems to be 

qualitatively different efference copies with the same motor origin but with differing connections to 

different modalities.  

5 . 2  L i m i t a t i o n s ,  c a v e a t s  a n d  f u t u r e  d i r e c t i o n s  

Psychophysics of behavioural oscillations 

In recent years, there has been an increase in measuring behavioural oscillations and making 

inferences about these periodicities to those of the underlying cortex. To this end, several 

psychophysical studies using time-resolved behavioural measurements reveal rhythmic fluctuations 

(de Graaf et al., 2013; Diederich, Schomburg, & Colonius, 2012; Fiebelkorn, Foxe, & Butler, 2011; 

Landau & Fries, 2012; Song, Meng, Chen, Zhou, & Luo, 2014; VanRullen & Busch, 2011). It is important 

to note, the inherent temporal limitations of conventional spectral methods that can be applied to 

behavioural data (for a technical note see; Forrest & Suter, 1994). The one major concern is the 

limitations imposed due to sampling (aliasing) and truncation (leakage). However, these limitations 

can be minimised if applied with due care. Perpetual cycles appear to be limited to lower frequencies, 

especially when considering findings reported in behavioural studies (Song et al., 2014). This bias is 

partly a consequences of the technical constraints imposed on the methods for investigating 

oscillations. For example, behavioural oscillations are often reported below 20 Hz by the limited 

number of trials or as previously mention a limited number of sampling points. While these limitations 

are inherent in behavioural paradigms, limitation are imposed in studies using M/EEG, her the signal-

to-noise declines rapidly with frequency. Prior knowledge of the frequency of interest of the to-be-

observed behavioural oscillation will not ensure that that spectral decomposition will not produce 
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aliasing (frequencies sampled above the Nyquist frequency). The majority of studies assess 

fluctuations in perception at a much coarser temporal scale and therefore are limited in their capacity 

to use spectral analyses to measure oscillations in behavioural data (Theunissen & Doupe, 1998; 

Vanrullen & Dubois, 2011b). It is important to note, that in our paradigm inferences are made on few 

repeating cycles of behavioural rhythms. Potentially this could be avoided by increasing the number 

of observations (SOAs). However, in the current paradigm this was not possible, because increasing 

the number of SOA would substantially increase the number of trails needed, resulting in an increase 

in the total recording time.  

 

The problems with leakage are inherent in spectral decomposition analyses, since most 

behavioural oscillations will probably not fit the harmonic requirements of the measurement. Usually 

the main aim of the analyses is to discern a particular peak to be different from that expected in a 

spectrum derived from random data, windows should increase the detection of peaks for components 

that are not harmonics in the spectrum. Hamming windows (as used in in the current data) are 

particularly effective in these instances as they distort harmonic and non-harmonic components less 

than other commonly used windows (Cohen, 2014; Forrest & Suter, 1994). Considering these 

limitations, however, the current methods do minimise potential confounds. In addition, the finding 

reported in the behavioural analyses correlate with those found with direct measures recorded in MEG.  

Task affects d-prime values 

In Chapter 3, d’ measures where used to quantify the sensitivity accuracy of detection and 

discrimination. The observed d’ responses in the data are slightly higher than standard reports, 

including those reported in Chapter 2. However, higher values have been associated with tasks that 

introduce a wait time before responding (Reuss, Kiesel, Kunde, & Hommel, 2011; Vorberg, Mattler, & 

Heinecke, 2003), as were the case in the MEG task. In this task once participants made a response 

experiment would move onto the next trial. As a way to minimise artefacts caused by eye movements 

at the start of each trial, participants were requested to use the time interval before responding to 

make eye blinks. By introducing a delay the response in the d’ are not only influenced by the conscious 

processes, but also by unconscious information (Kiesel, Wagener, Kunde, & Hoffmann, 2006; Reuss et 

al., 2011; Schlaghecken & Eimer, 2004). These studies suggest that unconscious processes exert their 

influence over a very short time window, the delay would diminish the influence of these unconscious 

processes and lead to smaller d’ values. Our data is in line with these assumptions. 

Measuring phase resetting 

The question of how to accuracy measure phase resetting. Phase resetting is a measure of the 

concentration of phase after a reference point across trials. One of the most commonly used methods 

to quantify the phase consistency across trials is the inter-trial coherence (ITC; Makeig, Westerfield, & 
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Jung, 2002) also commonly reference to as phase-locking value (PLV; (Tallon-Baudry & Bertrand, 

1996). The term ‘inter-trial coherence’ refers to its interpretation as the event-related phase 

concentration (ITPC) or event-related linear coherence (ITLC) between the recorded MEG activity and 

the event-phase indicator. The ITC is calculated by taking, for each time point, the modulus of the 

circular phase average across trials. Statistical significance can be measured via permutation testing, 

or via Rayleigh’s test for circular uniformity.  

 

One advantage that MEG has over EEG, is circumventing the reference electrode problem (Cohen, 

2014). However, in either case, a signal recorded from a sensor may have multiple components 

contributing to the activation of the waveform. This could include oscillatory activity in multiple 

frequency bands, as well as evoked activity. As introduced in the Main Introduction (see section, 

conceptual issues); there has been a long withstanding debate in the M/EEG literature on whether 

the evoked potential observed in relation to variable task contexts is primary a result of oscillatory 

phase reset or evoked activity and methods have been proposed to differentiate the two (Makeig et al., 

2004b; Sauseng, Klimesch, Gruber, et al., 2007; Shah, Bressler, & Knuth, 2004). One primary method 

used to determine if phase resetting has occurred is by analysing both power and phase concurrently, 

averaged across trials, then if the power remain constant in the response to a stimulus, but the phase 

becomes more consistent (across trials), then there is a higher probability that an oscillations been 

reset (Sauseng, Klimesch, Gruber, et al., 2007). However, recently it was shown that the “total power” 

(power calculated on each trial, then averaged) is statistically relatively weaker than phase consistency 

at detecting changes in a stimulus synchronised activity (Ding & Simon, 2013). Whereas, “evoked 

power” (waveforms averaged over trials, then power calculated) was to a similar degree as good as 

phase consistency measure at detecting such activity. In other words, the power signature averaged 

over trials does not show a stimulus-driven change, and a new phase (consistent over trials) is 

established that is locked to a stimulus, then this would constitute strong evidence that a phase reset 

has occurred (Voloh & Womelsdorf, 2016). 

 

When analysing neural oscillatory signatures, considering both the phase and power together may 

provide evidence to suggest a phase reset, however it remains important to consider the 

electrophysiological modality used to make such recordings. The vast majority of studies on neural 

oscillations, recorded signals represent spatially synchronised activity (LFP, M/EEG). When 

considering measurements recorded with these neuroimaging tools, it is important to consider some 

potential mechanism that could lead to the observed phase reset: First, a single oscillator that is reset 

by a stimulus, secondly, many individual oscillation generators that becomes spatially synchronised, 

or finally the recruitment of newly generated oscillations. Taken together it is possible for power to 

change, even in the presence of phase reset. For example, amplitude may increase following a phase 

reset of a single oscillator, while the latter two mechanisms, spatial synchronisation raises the signal-
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to-noise-ratio for a particular frequency band, which will manifest as a concurrent increase in power 

(Telenczuk & Nikulin, 2010). This highlights a major point to consider when measuring 

neurophysiological circuits, is that our knowledge is limited, which fundamentally restricts the ability 

to make strong inferences about the presence of oscillations (Cohen, 2014). Although, neural 

recordings from single cell studies can help to discern the spatial component of phase reset. In non-

invasive human M/EEG recordings it is theoretically impossible to demonstrate that evoked activity 

results from phase-resetting of ongoing neural oscillators (Telenczuk & Nikulin, 2010). Nonetheless, 

with sensible inferences on the origins of the signal with adept paradigms and the use of mathematical 

informed approaches, can provide useful criteria for interpretation (Canavier, 2015).  

 

Next, another point to consider is the interpretation of the functional connectivity between 

modalities. In all three experimental chapters, our interpretations are not founded on direct evidence 

of one modality driving or modulating another but rather these are based on indirect measures. For 

example, many empirical studies support the view that the motor cortex is principally involved in the 

generation of the efference copy (Ford et al., 2013; Voss et al., 2007), however, our methods do not 

allow us to reveal the directed functional connectivity between the motor cortex and other sensory 

modalities. Similarly, our interpretation of the data are based on the assumption that the auditory 

cortex aligns visual oscillations through the mechanism of cross-modal phase resetting. Future, 

research would investigate the mechanism further using more direct and sophisticated measures of 

functional connectivity. These may include but not restricted to, granger causality or mutual 

information measures.     

 

Interestingly, future research would benefit from investigating the possibility that perceptual 

cycles may have spatial specificity. Considering the existing literature, it would seem that the cyclic 

modulation of perceptual performance is not necessarily uniform over different sensory modalities. 

One possibility is that the sampling phase propagates efficiently across space, as in traveling waves 

(see, Ermentrout & Kleinfeld, 2001). The majority of experiments aim to investigate the temporal 

dynamics of perception, future studies would benefit from additionally investigating the spatial 

dimension.   

MEG signal leakage  

Many previous studies introduced earlier have provided support for an auditory induced 

modulation in visual perception, including others that support the view that the motor cortex is 

involved in generating an efference copy signal that may interact with other sensory modalities (e.g. 

auditory cortices). However, with the current methods used it would not be possible to measure true 

functional connectivity between these modalities. Furthermore, the activation observed in each region 

of interest may be a combination of signals from other regions, a consequences of field spread. As with 
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all studies using MEG in sensory space, data are contaminated by signal leakage from surrounding 

regions. Furthermore, when assessing the effect of CMPR, which is a measure of functional connectivity 

between two regions, these are subjected to spurious contributions due to signal leakage between the 

two regions. Beamformer methods are able to reduce the influence signal leakage, which has zero-lag 

by orthogonalse the time series data (Brookes et al., 2012; Hipp et al., 2012). Any subsequent measure 

cannot be due to signal leakage. Furthermore, here we used standard protocols for time-frequency 

analyses resulting in large clusters of activity. Future work will address this issue and analyse data 

using more sophisticated methods. Another point to consider is that of anatomical differences in 

cortical folding which lead to considerable variability in the signals recorded at the sensor-level.    

Nonlinear multisensory interactions  

One particular challenge when conducting human multisensory research, within the context of 

cross-modal interactions, it determining the appropriate statistical quantification for identifying these 

interactions within primary sensory cortices, including higher order regions in the brain (Calvert, 

2001; Laurienti, Perrault, Stanford, Wallace, & Stein, 2005). One fundamental problem is the inherent 

difficulty in transposing established principles of cross-sensory interactions, founded on the basis of 

single-unit recording in animals (Stein & Meredith, 1993), to that of the macroscopic level recording of 

neural population responses and behavioural responses in humans. Chapter 4 highlights another 

point to consider, the ability to differentiate between understanding the nature of super-additive and 

sub-additive nonlinear responses. In other words, multisensory responses that are greater than or less 

than the summed unisensory responses, respectively (see Laurienti et al., 2005) 

5 . 3  C o n c l u s i o n  

Oscillations provide the neural architecture that may support the effective communication within 

and between cortices. Oscillatory activity has be linked to a variety of phenomena, and the phase of 

these oscillations are fundamentally linked to perception. The exact underlying dynamics of neural 

transmission and perceptual processing are yet fully understood. However, cross-modal phase 

resetting may be a candidate mechanism that may explain the interaction between different 

modalities. Investigating the spatial and temporal dynamics of this process will further our 

understanding of the neural mechanisms that govern not only sensory perceptual processing but also 

other processes that are involved predictive code framework. This thesis provides novel evidence that 

supports this theory. 
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