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Abstract

This thesis is composed of two parts. Part I contributes to the matching literature
and Part II contributes to the contest literature.

Part I: A set of indivisible objects must be allocated among a group of agents, or
agents from one side of the market must be matched to agents on the other. Each
agent has their own preference over these objects, or over the agents on the other
side. These preferences exhibit an underlying structure, motivated by real-world
examples such as the refugee settlement problem, the job rotation problem and
others. We study design of procedures to match agents to objects/agents, without
resorting to randomization devices or monetary transfers. Three concerns play a
central role in this design: incentive compatibility, efficiency and fairness. For each
setting we consider, we appropriately formalise what we mean by these terms.

Part II: A competitive league coach (team manager) must manage the energy pool
of players in the team over the course of the entire season. High energy usage
increases the chance of winning the current game, but also increases the risk of de-
veloping accumulated fatigue or injuries in later games. We explore this “winning
in the short term” vs “saving energy for the future” dilemma that the coach faces
over a long season.
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Chapter 0

Introduction

The thesis is composed of two parts: Part I consists of three chapters on assignment

and matching problems that are studied from the lens of mechanism design; and

Part II consists of a single chapter that studies a dynamic contest model. The chap-

ters are written as research papers, and are fully self-contained, with an individual

literature review that discusses the relation to existing work.

Part I

Mechanism design has been an active and fruitful sub-field of economics since

the 1970s. Since the seminal contribution of Hurwicz (1973) who introduced the

key notion of incentive compatibility1, this literature has shed light on and offered

solutions to a wide range of real-world problems such as the design of radio spec-

trum auctions, the design of college admissions, kidney exchange programs, the

national resident matching program, and many more.

Combining the points of view of social choice theory and game theory, the the-

ory of mechanism design aims to design games (or, mechanisms) such that when-

ever rational and strategic players interact within the rules of the game, their inter-

action yields an outcome that is desirable to the mechanism designer. The mecha-

nism designer (or, central planner) sets out with an objective in mind: for instance,
1A mechanism is incentive compatible if participants can achieve the best outcome for themselves just by acting

according to their true preferences.
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0. Introduction

the objective can be utilitarian (maximization of the total utility of agents), Rawl-

sian (maximization of utility of the least well-off agent), etc. The designed mech-

anism induces a game-form whose equilibrium outcome is precisely the objective

that the designer has set.

The primitives in a mechanism design problem are the set of possible outcomes

or alternatives, and the preferences of agents over this set. These preferences are

not known to the designer. Mechanism design problems can broadly be classified

based on whether or not monetary transfers are allowed. Transfers serve as a means

to redistribute utility among agents.

1. Mechanism design without money. In many important environments, money

cannot be used to redistribute utility among the agents. This constraint typ-

ically arises from ethical and/or institutional considerations. Examples here

are: political elections (Gibbard, 1973; Satterthwaite, 1975), kidney exchange

programs (Roth et al., 2004), the stable matching problem (Gale and Shapley,

1962).

2. Mechanism design with money. A very well studied domain is the quasi-

linear environment: here the utility function of agents takes a quasi-linear

form (apart from a possibly non-linear component, there is a separable and

linear dependence on money). Classical examples include: the auction of

an item (Vickrey, 1961; Myerson, 1981), building a public project (Clarke,

1971; Green and Laffont, 1977), the bilateral trade problem (Myerson and

Satterthwaite, 1983).

While there are many papers that study very general preference domains, an

extensive body of literature has investigated various restrictions of such domains

that are motivated by real-world observations. Many general results typically do

not remain applicable in restricted domains. For instance, in the context of mech-

anism design without money, two seminal papers by Gibbard (1973) and Satterth-

waite (1975) introduce a very general model (with at least three alternatives) and

prove that it is impossible to find a non-dictatorial mechanism that is incentive-

2



Part I

compatible. But this impossibility vanishes when the preference domain is re-

stricted to simpler contexts such as (i) model with one-dimensional policy space

over which agents have single-peaked preferences (Moulin, 1980), where the pol-

icy space can represent, e.g., the political spectrum in the case of elections, or a

line in the case of facility location problems; (ii) allocation and exchange of indi-

visible goods such as transplant organs, public housing, etc. for which agents have

single-unit demand (Roth, 1982; Svensson, 1999; Pápai, 2000).

When one shrinks a preference domain, the class of incentive-compatible mech-

anisms expands. Therefore, even if the larger domain admits "nice" mechanisms, it

becomes important to devise ways to select between already existing mechanisms

and new mechanisms that become available in the smaller domain. As an example,

consider the problem of allocating indivisible goods to agents so that each agent

receives at most one good. In this model, Ma (1994) proved that the top trad-

ing cycle mechanism (see, Shapley and Scarf, 1974 for a description) is the only

mechanism that is strategy-proof, efficient, and individually rational when the do-

main consists of all linear preferences. However, when the domain is restricted to

single-peaked preferences, this result is no longer true: in fact, Bade (2019) dis-

cusses another mechanism that satisfies an even stronger incentive property called

obvious strategy-proofness (for a definition, see Li, 2017) without sacrificing the

other two. Furthermore, in smaller domains existing/known mechanisms can sat-

isfy additional desirable properties, and it becomes important to point those out.

In the spirit of the above discussion, Part I of this thesis investigates particular

domain restrictions in the context of different matching models. The study con-

tributes to the literature on mechanism design without money. Specifically, we will

be interested in problems where (i) a set of heterogeneous indivisible objects must

be allocated among a group of agents (one-sided matching); or (ii) agents from one

side of the market must be matched to agents on the other (two-sided matching).

While these models have been previously studied allowing for very general pref-

3



0. Introduction

erences, the focus here will be to restrict attention to smaller preference domains

that are motivated by important and frequently arising real-world applications. We

elaborate on the specifics of each restricted domain below in the context of the

chapters. Three concerns play a central role in designing the mechanisms: incen-

tive compatibility2, efficiency, and fairness. We discuss important trade-offs that

come to light. While some of our results are reminiscent of previous observations

in the literature, we also present results where we show that some traditional facts

do not hold anymore, instead, we observe new phenomena that arise. We discuss

them in substantial detail in the individual chapters.

The three chapters in this part focus on purely deterministic settings. The first

two chapters study models that are static, while the third chapter studies a dynamic

matching framework. The chapters share the following features:

* There are two sides of the market: a set of agents on one side; and either a set

of indivisible objects, or another set of agents on the other.

* Every agent is endowed with a preference list over the set of available object-

s/agents on the other side.

* Preferences of agents on one side of the market are restricted to have a well-

behaved structure. This is guided by motivating examples which are dis-

cussed below in the context of every chapter.

* The objects are sometimes endowed with a priority order over agents, that

must be respected in the following sense: if an agent i has priority over an-

other agent j for some object o, then agent j should not receive object o if

agent i receives an object inferior to object o.

There are several matchings possible for any given instance of the problem. Is

there one among them that is better than others in some objective sense? If there

is one, how do we find it? Is it better than others in one criterion but not as good
2Typically in the form of stability or strategy-proofness.

4



Part I

in another but equally important one? Is there one that is better than others in a

number of ways?

To answer questions of this kind, we study the problem of a central agency (or,

designer) who is tasked with designing a mechanism that will systematically match

agents to objects/agents; by meeting a set of desirable goals (defined formally as

mathematical axioms). We think of this central agency to not have any selfish

interests, but instead, to work solely to improve social welfare in some way.

A brief description of the chapters in Part I as well as the examples that motivate

them are outlined next.

Chapter 1

Consider a scenario where there are several large-scale governmental projects

that must be undertaken, and there are firms/organizations that would like to take

up such projects. Oftentimes, these projects can be ranked in terms of desirabil-

ity. Nevertheless, firm-specific capacity constraints (stemming from technological

limitations, deadlines requirements, etc.) might prevent the firm from competing

for the best-ranked projects. Next, consider another scenario where users want

a slot at a bottleneck facility: researchers waiting to use a supercomputer, ships

waiting to load/unload cargo at a port, airlines waiting to use the runway for take-

off/landing, electric vehicles waiting to be re-charged at a power station, and so

on. Users arrive at different times but wish to be served as early as possible once

they arrive.

In these examples, one side of the market consists of agents (firms/users) while

the other side consists of objects (projects/slots), and agents have preferences that

are structured in the following sense: all agents agree with the exogenous rank-

ing of objects, but all objects in the rank order above a certain threshold (specific

to an agent) are not feasible to the corresponding agent. Chapter 1 lays down a

framework incorporating these ingredients.

The primary welfare determining factor in this setting is the delay faced by an

agent, which captures the amount of disutility the agent suffers by not receiving

5



0. Introduction

his/her best object. Accordingly, an important goal for the designer might be to

minimize the aggregate delay faced by all agents. Minimizing aggregate delay

might come at the expense of some agents. Therefore, in light of fairness, one

might instead wish to minimize the maximum delay faced by any agent; or better

yet, minimize lexicographically the vector of delays. In conjunction with these

goals, we study other design objectives that have to do with ensuring Pareto ef-

ficiency and achieving various incentive properties that deter participating agents

from being dishonest and trying to game the system to their advantage, either on

their own accord or in collaboration with other agents. In particular, we explore the

compatibility of different combinations of these goals. We also propose different

mechanisms and evaluate each of them with respect to these goals.

Chapter 2

This chapter extends the model in Chapter 1 in two ways — first, by endowing

each project with a preference list; and second, by allowing several projects to have

the same rank. Since we endow projects with preferences, we now refer to projects

also as agents instead of objects. Projects are once again exogenously ranked, but

this time multiple projects can have the same rank. Firms have preferences that

have a nested structure just as in Chapter 1, but this time around, their preferences

can naturally have indifferences. This is because multiple projects can now have

the same rank. On the other hand, preferences of projects are allowed to be very

general. To summarize, in Chapter 2 we study what is called a two-sided one-to-

one matching model with indifferences.

The leading example here is the refugee matching problem: the projects’ side

of the market is comprised of refugee families of various sizes, and the firms’ side

consists of benevolent hosts who are willing to shelter refugees in their homes

in exchange for a monetary reward (which is increasing in family size) from the

government. Thus, in essence, there is an exogenous ranking over refugee families

based on family size and hosts prefer larger families, but can only accommodate

families of size up to the number of beds they have to offer. Refugee families

6



Part I

can have arbitrary preferences (owing to economic prospects, cultural or religious

concerns, location factors, etc.) over hosts.

The designer’s problem is to choose a matching that would guarantee that agents

would accept the proposed matching, and would not try to individually renegotiate

it. We follow the traditional approach in the literature and insist on stability as the

important selection criterion. A stable matching sustains itself: no pair of agents in

a stable matching have incentives to break away from it. The notion of a blocking

pair makes precise the conditions for agents to have the aforementioned “incen-

tives”. Since the preference domain allow indifferences, based on three natural

definitions of a blocking pair (see, Irving (1994)), there are three natural ways to

define stability: weak stability, strong stability, and super stability. We study the

first two notions only since they are widely regarded as the most appropriate crite-

rion for a practical matching scheme when there are indifferences in the preference

lists. Apart from stability, we also impose that the proposed matching be Pareto

efficient. Any attempt to improve the welfare of an agent in an efficient matching

always comes at the expense of another.

Chapter 2 explores the implication of these properties on the structure of the

resulting matching. In particular, we show that stable and efficient matchings in

this framework are hierarchical by nature: they can be thought of as an outcome of

projects being arranged in a queue order, with each project receiving one of their

best firm in turn, from the set of remaining firms.

Chapter 3

The motivation of this chapter comes from the organization of job rotation: the

well-known practice of moving employees through a range of different tasks/jobs,

in order to promote their interest, experience, and motivation. The use of such

a strategy is widespread across both private and public sectors (Osterman, 1994;

Ostrom, 1990; Berkes, 1992). Contrary to the static models studied in previous

chapters, Chapter 3 adopts a dynamic matching framework to study the rotation

7



0. Introduction

problem and contributes to the literature on — dynamic priority-based allocation

of indivisible objects.

The different tasks (or, job functions) have priorities over employees, which can

be thought to have been derived from observable employee characteristics such as

their skill-set, work experience, etc. The employer would like to respect these

priorities, i.e., he/she would like to give the employee who has higher priority over

another for a given job, greater access to that job. But, the employer would also

like to encourage job rotation. To achieve this dual goal, the employer can use the

temporal dimension: as long as both employees are inexperienced in some given

job, the employee with the higher priority gets more access to the job; but if the

agent with the higher priority already has previous experience in the job, the other

agent gets a chance instead to garner some experience in the job despite having a

lower priority for it to begin with. This requirement is encoded as a job-rotation-

priority structure that becomes a design goal to satisfy.

Since the model is dynamic, we define appropriate dynamic counterparts of very

standard and well-studied goals/axioms concerning efficiency, stability, and incen-

tive properties of the mechanism. We prove a negative result here: it is impossible

to satisfy the job-rotation requirement while being as efficient as possible, and also

at the same time ensuring that the mechanism is immune to strategic manipulations

by the employees.

Part II

This part of the thesis contributes to the literature on Contest Theory. Contests

and tournaments are ubiquitous in social and economic landscapes. In a traditional

contest model, economic agents expend costly nonrefundable resources to vie for a

limited number of prizes, and they are rewarded for “getting ahead” of their oppo-

nents instead of their absolute performance metrics. Such competitive interactions

are common in a diverse range of contexts — promotion competitions between

8
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firms to increase market share, R&D races, sports, rent-seeking activities, political

campaigns, college admissions, and so on.

Since the seminal contribution of Tullock (1967), a large literature has analyzed

strategic aspects of contest-like activities. The basic contest model has been en-

riched by introducing different modelling variations such as information asymme-

try between competitors, dynamic structure, multi-battle confrontations, etc. An

important modelling dimension concerns the choice of winner-selection rule: the

rule that takes as input an effort (resource) profile3 and selects one or more win-

ners. Such a rule can be deterministic, as in all-pay auction models (Baye et al.,

1996); or stochastic, e.g., (i) ratio-form contest success functions (Tullock, 1967),

(ii) rank-order tournaments with noise (Lazear and Rosen, 1981). The rich liter-

ature (with many variations like the ones stated above) makes use of these basic

rules in some form (tailored to each specific setting) in order to ascertain the contest

winner(s). The main focus in the literature has therefore been to compare final per-

formances (effort choices) of the participants in a contest. In contrast, our model

(described below) makes an attempt to study the effort dynamics during an ongoing

contest, with the focus being to look at the impact of (observable) progress at an

interim point in the contest on the effort choice thereafter. The motivation comes

from team sports such as basketball, netball, rugby, or handball leagues; where

the score-difference (which is observable) between competing teams can change

by large margins very rapidly and frequently. A summary of the model is briefly

outlined next.

Chapter 4

In this chapter, we are interested in the decision problem of a competitive league

coach, who wishes to maximize the success of the team over the course of the entire

season. The resource at the coach’s disposal that the coach has to carefully expend

is the pool of players in the team; more specifically, the cumulative energy levels
3A profile of efforts is a list consisting of the effort choices of all participants in the contest.
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of these players. During any game, players are exposed to frequent high-intensity

movements like sprinting, jumping, acceleration, deceleration, abrupt change of

direction, etc. This can lead to acute and accumulated fatigue, and therefore calls

for effective management of the team energy level. Resting or limiting minutes

of players, especially the “star” players in the team, is indeed something coaches

frequently consider. On the other hand, if the players do not exert sufficient effort

in any given game, it may jeopardize the team’s success in the short run.

The rest of star players resulting from coaches’ optimal strategies is also of

considerable interest to team owners, investors in the league, etc. Fans are more

willing to pay for quality competition that features the star players, and hence

revenue maximization considerations require designing the season’s structure so

that coaches optimizing will lead to more opportunities for the fans to see the best

players. Hence it is important for those with a vested interest in the revenue from

the sport’s fans to know how the incentives set for the teams will affect the time

the best players spend on the courts and pitches.

The model in Chapter 4 explores the trade-off between the two above-mentioned

competing forces in a long season: “winning in the short term” vs “saving energy

for the future”. Specifically, the model looks at energy dynamics “late” in a game

and the impact of score-difference between the competing teams up to that point

in the game on the energy-savings choice of the coach thereafter. The evolution of

the aggregate energy level of the team and the winner of any given game are both

determined stochastically. We model coaching decisions as a Markov Decision

Process and find that, indeed, saving energy is optimal for the coach throughout

most of the season. This conclusion is robust to different model extensions, in

particular, against a field of teams whose coaches also employ similar strategies.

10
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Chapter 1

Allocating agents on a line with birth dates

Abstract

In this chapter, we consider the problem of assigning agents to slots arranged on a

line. Agents have birth dates on the line and want a slot as soon as possible once

they are born. We carry out an axiomatic study of this problem. Of particular

interest in this setting are axioms concerning the delay faced by an agent, which

captures the waiting time between being born and getting a slot allocated. We pro-

pose three natural rules in this setting and discuss their strengths and weaknesses

with respect to delay, incentives and efficiency.

1.1 Introduction

This chapter studies the assignment of agents to slots that are arranged on a line.

Imagine a technology that gives out a “slot” per time period, every period, poten-

tially forever. Agents are “born” at some period and want a slot as soon as possible

once they are born. Owing to its geometric interpretation, we refer to the problem

as the assignment of agents on a line. Slots, before an agent is born, are useless to

her. There are waiting costs incurred once the agent is born, and as a result, slots

get progressively worse for an agent as one moves further to the right from that

agent’s birth date. We study this problem in a static deterministic setting, with-

out allowing for transfers or side payments. Agents in our model are completely

characterized by their birth dates.

13



1. Allocating agents on a line with birth dates

The existing literature studying similar problems usually considers richer pref-

erence domains allowing for monetary transfers or randomization, where an agent

is not identified by her birth date. Agents differ with respect to waiting costs and/or

risk attitudes (or, preferences over fractional assignments). The deterministic set-

ting considerably simplifies the analysis but is still important to study in light of

several examples (presented below), where monetary transfers or randomization

may not always be appropriate. Our work is also related to the existing literature

(with deterministic setting) on the allocation of indivisible objects to agents with

unit-demand. These previous works allow for very general preferences, while the

focus here is to restrict attention to a smaller preference domain, which neverthe-

less can be used to model a wide range of situations as described below. The study

of such smaller (yet new) domains is important in its own right for the follow-

ing reason: when one shrinks a preference domain, the class of desirable (e.g.,

incentive-compatible) mechanisms expands. Therefore, even if the larger domain

admits "nice" mechanisms, it becomes important to devise ways to select between

already existing mechanisms and new mechanisms that become available in the

smaller domain.

The model, albeit quite simple, has applications within a wide range of real-

world problems. Consider the scenario where there are a number of large-scale

governmental projects to be undertaken. Usually, there is a consensus as to which

projects are more desirable, and therefore, we can think of them as being arranged

on a line, starting with the biggest or the most desirable project. Firm-specific ca-

pacity constraints (stemming from technological, deadline/budget-related, or other

relevant considerations) might prevent it from competing for the very top projects.

Therefore, capacity constraints determine the birth dates for every firm.

Another important class of examples that fit our framework is the task of as-

signing users to bottleneck facilities: researchers waiting to use a supercomputer,

ships waiting to load/unload cargo at a port, airlines waiting to use the runway

for take-off/landing, electric vehicles waiting to be re-charged at a power station,
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consumers waiting to be picked up by a ride-hailing service, patients waiting for

hospital beds and so on.

Another cluster of situations arise in the context of quality line examples where

all objects are ordered by quality. Agents prefer better quality, but may feel re-

luctant to aim above a certain quality level. This is reasonable to assume in many

scenarios where agents might be constrained by a budget, or they may feel intim-

idated aiming too high, or they may feel it is too serious or strong above a certain

level. Situations like these arise, for instance, when students consider applying

to schools or universities; or, individuals decide to join a sports club or music

class; or, parents contemplate putting their children to the best nursery that they

can afford; or, citizens make purchasing decisions like buying the largest or best

affordable house; firms wish to hire the most skilled worker but are constrained by

a hiring budget, and so on.

Clearly, agents in all these scenarios may have different birth dates, and being

allocated a slot before an agent is born is not only useless to her but also bad in

terms of efficiency. It is not hard to imagine why waiting for a slot after an agent

is born is costly in all the above cases.

In these examples, a mechanism design approach is usually called for: a central

agency is tasked with designing a mechanism that will systematically assign agents

to slots, by meeting a set of desirable goals or axioms; taking into account that

agents act in a strategic manner.

1.1.1 Informal discussion of design goals

The most essential welfare determining factor in our model is the delay faced by

an agent. Delay captures the waiting time between the agent’s birth and the slot al-

located to the agent. Accordingly, an important goal for the designer is to minimize

the aggregate delay faced by all agents. Minimizing aggregate delay might come

at the expense of a select few agents. Therefore, in light of fairness, an alternative

approach might be to minimize the maximum delay faced by any agent; or better
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1. Allocating agents on a line with birth dates

yet, to minimize lexicographically the vector of delays. A good allocation should

also be efficient in the sense of Pareto, i.e., it should not be possible to increase

welfare (reduce delay) of an agent without hurting (increasing delay) of another.

The mechanism must take as input the reports of individual birth dates from the

agents to be able to propose a "good" allocation. This gives rise to the possibility

of agents lying about their birth date to game the system in their favour. There-

fore, an important goal for the designer is to construct a mechanism that is immune

to manipulations of various kinds. A common starting point is requiring that the

mechanism satisfies strategy-proofness1. It ensures that no individual can get a

better slot by lying compared to the one they are assigned by being truthful, irre-

spective of the reports made by all other agents. Strategy-proofness plays a central

role in mechanism design and is frequently imposed as a design requirement in

theoretical analyses, across a broad range of assignment, auction, and matching

problems.

A strengthening of this notion is group strategy-proofness which ensures that

no group of the individuals can gain (i.e., each member gets a weakly better slot

and at least one member gets a strictly better slot) by jointly lying. Group strategy-

proof mechanisms have been analyzed in various settings in the literature: public

good provision (Moulin, 1994); house allocation ( Pycia and Ünver, 2017; Ehlers,

2002; Pápai, 2000); allocation of a perfectly divisible commodity (Klaus, 2001);

matching with contracts (Hatfield and Kojima, 2009).

Group strategy-proofness, although quite strong, still allows for another form of

manipulation where: two individuals, by jointly lying, change the outcome of the

mechanism, and thereafter, strictly gain (i.e., both agents get strictly better slots)

by swapping their allocations ex-post2. Pairwise reallocation-proofness rules out

such forms of manipulations and has been studied in the context of allocation of

1For general introduction to the axiom, see Moulin (2014) and Barbera (2001). For various applications of the
axiom, see Abdulkadiroğlu and Sönmez (1999), Moulin (1980), Sönmez (1999), Jackson and Nicolo (2004), Klaus
et al. (1998), Moulin (2017), Maniquet and Sprumont (1999).

2See Moulin (2014) for a discussion of manipulation via swapping objects ex post in the context of the housing
market model.
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indivisible objects (Pápai, 2000; Mandal and Roy, 2021). A strengthening of this

notion to strongly pairwise reallocation-proofness ensures that such manipulations

do not occur even when the deviating pair of agents only weakly gain, i.e., one

agent gets a strictly better slot while the other gets the same slot when they swap

their allocated slots (received after jointly lying) ex-post.

Another criterion frequently used in the context of strategy-proof assignment,

is the notion of non-bossiness which is due to Satterthwaite and Sonnenschein

(1981). It ensures that individuals cannot be bossy, that is, change the allocation of

others by misreporting without affecting their own. Also, if an allocation violates

non-bossiness, then it may invite strategic manipulation: an agent affected by an-

other might pay a small transfer to the latter in return of a false report that results

in a preferable allocation to him. As the latter agent is not affected by changing

her own report, she may well agree to engage in such manipulations. Normatively,

the concept also evokes a form of fairness: it is arguably unfair for an agent to be

affected by a change of report made by someone else, even though the change has

no consequence on the allocation of the latter.

A designer may also wish to prevent agents from engaging in malicious be-

haviour. For instance, suppose an agent is assigned a preferred slot of another

agent. Now, if the latter, by misreporting, can harm the former, then this agent

may wish to do so out of spite. An envy-proof 3 mechanism prevents such be-

haviour: an agent who is envious of another agent’s allocated slot, cannot harm the

latter by misreporting when the implemented mechanism is envy-proof.

1.1.2 Three Assignment Rules

We propose three assignment rules (or, mechanisms) that naturally arise in our

context. We will evaluate their performance with respect to the desirable desiderata

discussed in the previous sub-section. In particular, we will see that none of these

rules are perfect. They each have their own strengths and weaknesses. This is the
3A weaker version of envy-proofness called top-envy-proofness has been studied in the context of allocation of

indivisible objects in Mandal and Roy (2021).
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1. Allocating agents on a line with birth dates

subject of discussion in the next sub-section.

1. Fixed priority rule: Agents pick a slot in turn following a given priority order

(set by the designer) from the set of remaining slots (Definition 1.3.1).

2. First come first served rule: A priority order is initially set by the designer after

which all agents born in the first period are first assigned (their best available

slot) according to that order; next, all agents born in the second period are

assigned (their best available slot) according to the priority order; and so on

(Definition 1.3.2).

3. Slot-based priority rule: This rule is a generalization of the fixed priority rule

where every slot is endowed with a priority order (possibly different) over

agents. Among all agents born in the first period, the agent with the highest

priority for the slot gets it; next among all agents who are either born in the

second period or born earlier but are still unassigned, the one with the highest

priority for the second slot gets it; and so on (Definition 1.3.3).

1.1.3 Brief summary of results

We examine the compatibility of the different goals with each other in our model.

In particular, we report which combinations of these properties are feasible con-

currently as well as those that are not.

In our model, Pareto efficiency happens to be equivalent to minimizing ag-

gregate delay (Proposition 1.4.1). We also show that group strategy-proofness is

equivalent to the combination of individual strategy-proofness and nonbossiness

(Proposition 1.4.2).

The attractive incentive compatibility property of strategy-proofness is in di-

rect conflict with the two main delay concerns: minimizing maximum delay and

leximax minimizing the vector of delays (Proposition 1.4.3). If one drops these

two properties and only insists on mechanisms that minimize aggregate delay, the

question remains whether it is possible to avert manipulations of different kinds as

discussed earlier. We prove a negative result: the impossibility of Pareto efficient,
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group strategy-proof, strongly pairwise reallocation-proof and envy-proof mech-

anisms when there are at least three agents (Theorem 1.4.1). This impossibility

result uses the stronger counterpart of every property wherever applicable. Weak-

ening strongly pairwise reallocation-proofness to pairwise reallocation-proofness

yields a positive result. Indeed, the fixed priority rule satisfy all of them (Proposi-

tion 1.4.4).

Since the fixed priority rule is strategy-proof, we know for sure that it does not

minimize max delay. But it is worthwhile to quantify in some way how poorly

it fares in minimizing max delay. We take the worse case approach to determine

this (see, Definition 1.4.2). The worst-case analysis reveals that any Pareto effi-

cient, strategy-proof, and nonbossy assignment rule is the worst rule with respect

to minimizing max delay in our domain (Proposition 1.4.5). As a corollary, we

then obtain that the fixed priority rule is therefore one of the worst assignment

rules with respect to minimizing max delay (Corollary 1.4.2).

The first come first served rule fares much better in this regard: it leximax

minimizes delays (Proposition 1.4.6), but is not immune to strategic manipulations

of any kind (Proposition 1.4.7).

The slot-based priority rule is also Pareto efficient and group strategy-proof,

and offers a little more flexibility over the fixed priority rule when the designer has

to respect exogenously given slot priorities (Proposition 1.4.8). However, it fails

to be pairwise reallocation proof and envy-proof (Proposition 1.4.10).

1.1.4 Related literature

Our work contributes to the recent literature on slot allocation problems: a group

of agents must be assigned to a slot located along a line. The closest to our model

is the paper by Hougaard et al. (2014). They study a problem where each agent has

a preferred slot which is called the target, and wants to be served as close as possi-

ble to it. Preferences are single-peaked and symmetric (to both sides of the peak).

Each slot can serve only one agent. They first consider a deterministic assignment

of agents to slots and provide a direct method for testing if a given deterministic
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assignment is aggregate gap-minimizing. Next, they consider probabilistic assign-

ment of agents to slots and propose an aggregate gap minimizing modification of

the random priority method to solve the problem. Our domain in a sub-domain of

their domain.

Chun and Park (2017) studies a cardinal version of the above problem. They

consider a setting where agents differ in their most preferred slot position, which

they call the peak. Agents have quasi-linear preferences over slots and money:

each agent’s utility from her assignment is equal to the amount of monetary transfer

minus the distance between the peak and her assigned slot. They propose two

assignment rules as a solution to their problem: the leximin and the leximax rules.

While we also assume that the (per period) waiting cost is identical across agents

like these papers, our setting has an important difference: both these papers allow

agents to be assigned a slot either before or after their peak (or, target), while in

our model, agents have birth dates and can only be assigned a slot after they are

born.

Crès and Moulin (2001) and Bogomolnaia and Moulin (2002) study scheduling

problems with deadlines, using randomization as a tool to restore (ex ante) fairness.

Agents in their model arrive in batches and therefore have the same birth date but

are heterogeneous in their “deadline”, i.e., the number of time periods they can

afford to wait for service.

Ghosh et al. (2020) study a model similar in flavour to ours in a cardinal en-

vironment. Agents from a finite population arrive at various discrete times and

exit after they use a server for one period each. Each agent has a per-period cost

of queuing, which constitutes his private information. Agents in their model are

strategic about their waiting cost but not their date of arrival. On the other hand,

birth date report is a strategic variable in our setting.

Assignment of heterogeneous indivisible goods with general single-peaked pref-

erences where each individual can receive at most one good have been studied by

Bade (2019) and more recently by Mandal and Roy (2021).
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1.1.5 Outline of the chapter

Section 1.2 presents the model and discusses the properties and structure of alloca-

tions in our setting. Section 1.3 presents formal definitions of the three assignment

rules along with definitions of the desirable goals (informally discussed in the in-

troduction) the designer seeks to achieve. Section 1.4 presents the results and some

discussion. We end with concluding remarks highlighting the implications of our

results. We also discuss some potential new avenues to explore for further research.

1.2 Model

Slots are arranged on a line and therefore the set of slots can be identified by the

set of integers. Agents have a most preferred slot (birthdate) on this line and want

a slot sooner rather than later once they are born. Henceforth, we refer to the most

preferred slot of an agent as her target.

A problem is represented by a triple ⟨N, S, tN ⟩ consisting of:

* A set of agents N = {1,2,3, · · · , |N|}.

* A set of slots S = {1,2,3, ...}.

* A profile of targets tN = (ti)i∈N , where ti ∈ S is the target slot of agent i∈N.

The set of agents N is fixed for the rest of the paper.

We use the phrases “profile” and “profile of targets” interchangeably. For any

group of agents T ⊆N, the list of targets of agents in T is denoted as tT = (ti)i∈T ∈
S|T |. Following the standard practise in the literature, we sometimes denote a pro-

file as tN = (ti, t−i) or, as tN = (tT , t−T ) where t−T = (ti)i∈N\T ∈ S|N\T |.

Allocations

Allocations specify the slot that every agent receives. Formally, an allocation is a

map α : N → S such that i ̸= j =⇒ α(i) ̸= α( j); i.e., no two agents are assigned

to the same slot. α(i) is called the allocation of agent i at α . For notational
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1. Allocating agents on a line with birth dates

simplicity, we sometimes denote α(i) by αi if there is no risk of confusion. All

possible allocations are collected in the set A .

Delay experienced by agents

Delay is the primary welfare determining factor in our model. Delay captures the

waiting time between the agent’s birth and the slot allocated to the agent, i.e., the

distance between the agent’s allocated slot and her target.

For any allocation α ∈ A , the delay suffered by any agent i with target ti in

allocation α , denoted by δi(α, ti), is defined as,

δi(α, ti) := α(i) − ti

Preferences of agents

Preference of agents reflect the fact that an earlier slot is better all else being

constant. For each agent i ∈ N, her target slot ti ∈ S induces a weak preference

relation R ti
i (with strict and indifference parts P ti

i and I ti
i respectively) over the set

of allocations A as follows. For all allocations α,α ′ ∈ A :

• if δi(α, ti)≥ 0 and δi(α
′, ti)≥ 0, then:

* αi < α ′
i =⇒ α P ti

i α ′

* αi = α ′
i =⇒ α I ti

i α ′

• if δi(α, ti)≥ 0 and δi(α
′, ti)< 0, then α P ti

i α ′

• if δi(α, ti)< 0 and δi(α
′, ti)< 0, then α I ti

i α ′

A profile of targets tN = (ti)i∈N , therefore, induces a profile of preference relations

RtN = (Rti
i )i∈N.

1.2.1 Desirable properties of allocations

In this subsection, we define and discuss several properties that we would like

allocations to satisfy.
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The first one is called individual rationality. It says that no individual should

be allocated a slot earlier than her target since she has no use for it.

Definition 1.2.1. Given a profile of targets tN = (ti)i∈N , an allocation α ∈ A is

individually rational if for every agent i ∈ N we have δi(α, ti)≥ 0

Since delays faced by individuals are costly, a good allocation should seek to

allocate slots in a manner so that, the delay that agents face is as little as possible.

There are several different ways of thinking about doing so. The designer may

want to minimize the total delay faced by all individuals cumulatively. Alterna-

tively, he may instead pursue a goal of minimizing the maximum delay that any

single agent faces. Yet another goal and a stronger one, might be to lexicographi-

cally minimize the vector of delays. These are formally presented in the following

four definitions.

Definition 1.2.2. Given a profile of targets tN = (ti)i∈N , an allocation α ∈ A is

said to minimize aggregate delay if it is individually rational and for any other

individually rational allocation α ′ ∈ A we have,

∑
i∈N

δi(α, ti) ≤ ∑
i∈N

δi(α
′, ti)

Definition 1.2.3. Given a profile of targets tN =(ti)i∈N , an allocation α ∈A is said

to minimize max delay if it is individually rational and for any other individually

rational allocation α ′ ∈ A we have,

max
{

δi(α, ti) | i ∈ N
}

≤ max
{

δi(α
′, ti) | i ∈ N

}

Definition 1.2.4. The leximax order ≺ leximax on Rn is defined as follows. For

any x = (x1,x2, · · · ,xn) ∈ Rn, let x↓ = (x↓1,x
↓
2, · · · ,x

↓
n) ∈ Rn be a permutation of
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the coordinates of x in non-increasing order: x↓1 ≥ x↓2 ≥ ·· · ≥ x↓n. We say that the

vector x ≺ leximax y if there is a j ∈ {1,2, · · · ,n} such that x↓j < y↓j , while x↓i = y↓i
for all i < j.

Definition 1.2.5. Given a profile of targets tN = (ti)i∈N and an allocation α ∈ A ,

we denote by δ α(tN) =
(
δi(α, ti)

)
i∈N the vector of delays.

Then, an allocation α ∈ A is said to leximax minimize delays if it is individually

rational and for any other individually rational allocation α ′ ∈ A we have,

δ
α(tN) ≺ leximax δ

α ′
(tN)

Pareto Efficiency of an allocation ensures that it cannot be improved upon in

the sense of Pareto (that is, every agent is made weakly better off and at least one

agent is made strictly better off).

Definition 1.2.6. An allocation α ∈ A is Pareto dominated by another allocation

α ′ ∈ A at a profile of targets tN , if α ′R ti
i α ∀i ∈ N, and α ′P t j

j α for at least

one agent j ∈ N. An allocation α ∈ A is said to be Pareto efficient at a profile tN
if it is not Pareto dominated by any other allocation at that profile.

We now record a few lemmas that will be useful in the ensuing analysis. They

are proved in Appendix A.

Lemma 1.2.1. An allocation α is Pareto efficient at the profile of targets tN if and

only if there does not exist an unassigned slot s ∈ S and an agent i with target ti ≤ s

such that α(i)> s.

An immediate consequence of Lemma 1.2.1 is the simple structure of Pareto

efficient allocations. All Pareto efficient allocations are a split between “intervals”

of slots: (1) there is at least one agent who desires the first slot of the interval,
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(2) all slots in the interval are assigned, (3) all agents with targets slots within the

interval are assigned a slot on the interval. We formalize this in the next lemma.

Lemma 1.2.2. For any profile of targets tN = (ti)i∈N , the set of slots S can be

uniquely partitioned into {S0,S1,S2, · · ·} such that for any Pareto efficient alloca-

tion α we have:

• S0 = /0 ⇐⇒ there is at least one agent i with target ti = 1.

• If s ∈ Sk and s′ ∈ Sk+1 then we have s < s′ .

• A slot s belongs to Sk for k even if and only if it is unassigned:

α−1(s) = /0 ⇐⇒ s ∈ S2k for some k ∈ {0,1,2, · · ·}.

• A slot s belongs to Sk for k odd if and only if it is assigned:

α−1(s) ̸= /0 ⇐⇒ s ∈ S2k+1 for some k ∈ {0,1,2, · · ·}.

• For every k odd, there is an agent i∗k such that her target ti∗k = min Sk.

• The target slot of agent i belongs to Sk if and only if agent i is assigned a slot

in Sk, i.e., ti ∈ Sk ⇐⇒ αi ∈ Sk

In our environment, Pareto efficiency is equivalent to minimizing aggregate de-

lay.

Lemma 1.2.3. An allocation is Pareto efficient if and only if it minimizes aggregate

delay.

Lemma 1.2.4. Let α , α ′ ∈ A be Pareto efficient allocations at profile tN . Then,

∑
i∈N

δi(α, ti) = ∑
i∈N

δi(α
′, ti)

Proof. Follows immediately from Lemma 1.2.3 ■

Lemma 1.2.5. Let α be a Pareto efficient allocation at the profile of targets tN such

that assigned slots are ordered like targets (i.e., ti < t j implies αi < α j for each

pair of agents i, j). Then, α leximax minimizes delays at tN .
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1. Allocating agents on a line with birth dates

1.3 Assignment Rules

Recall, the set of all possible allocations is denoted by A .

An assignment rule (or, mechanism) is a function Ψ : S|N| −→ A that

systematically chooses an allocation Ψ(tN) ∈ A for each profile of reported

targets tN ∈ S|N|. For every agent i∈N, let Ψi(tN) denote the allocation (allocated

slot) of agent i at the reported target profile tN according to the allocation rule Ψ.

1.3.1 Natural assignment rules in the context

In this subsection, we propose examples of assignment rules that naturally arise in

the environment that we study in this article.

Let the best slot among a set of slots Y ⊆ S given a target slot ti be denoted as,

B
(

ti, Y
)

:= min {s′ ∈ Y | s′ ≥ ti}

Definition 1.3.1. The fixed priority rule is parameterized by an arbitrary priority

order over the set of agents N, which is fixed a priori. A priority is a bijection

σ : N → N, i.e., an ordering over the set of agents. For any fixed priority σ ,

the fixed priority rule ψFP
σ is defined inductively. For a given profile of targets

tN = (ti)i∈N , construct an allocation α as follows:

α(σ(1)) = B
(

tσ(1), S
)

α(σ(2)) = B
(

tσ(2), S \
{

α(σ(1))
})

α(σ(3)) = B
(

tσ(3), S \
{

α(σ(1)), α(σ(2))
})

...

α(σ(|N|)) = B
(

tσ(|N|), S \
{

α(σ(1)), α(σ(2)), · · · , α(σ(|N|−1))
})

The fixed priority rule assigns ψFP
σ ( tN ) = α .

Definition 1.3.2. The first come first served rule is parameterized by an arbitrary

priority order over the set of agents N, which is fixed a priori. A priority is a
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1.3. Assignment Rules

bijection σ : N → N, i.e., an ordering over the set of agents. For any fixed priority

σ , the first come first served rule ψFCFS
σ computes an allocation in two steps. For

any given profile of targets tN = (ti)i∈N ,

(i) Derive the first come first priority σFF : N → N from σ as follows:

For any two agents i and j,

* if ti < t j then σ
−1
FF (i) < σ

−1
FF ( j)

* if ti = t j then σ
−1
FF (i) < σ

−1
FF ( j) ⇐⇒ σ−1(i) < σ−1( j)

(ii) Then, the first come first served rule assigns ψFCFS
σ ( tN ) = ψFP

σFF
( tN ).

Definition 1.3.3. The slot-based priority rule is parameterized by an arbitrary

profile of priority orders over the set of agents N, which is fixed a priori. For any

slot s ∈ S, a priority order for slot s, is simply a linear order ≫s over N. A profile
of priority orders is a list ≫= (≫s)s∈S.

Fixing a profile of priority orders ≫= (≫s)s∈S , the slot-based priority rule

with respect to ≫ associates with every profile of targets tN = (ti)i∈N an alloca-

tion α which is constructed as follows:

• Step 0 : For all k ∈ S, define Ik = { i ∈ N | ti ≤ k}

• Step 1 : If I1 ̸= /0, then select the agent i1 ∈ I1 who has the highest priority

according to ≫1. Assign α(i1) = 1. Else, slot 1 remains unassigned and

i1 = /0.

• Step k = 2, 3, ... : If Ik \
k−1⋃
j=1

i j ̸= /0, select the agent ik ∈ Ik \
k−1⋃
j=1

i j who

has the highest priority according to ≫k. Assign α(ik) = k. Else, slot k is

unassigned and ik = /0. Continue this procedure until all agents are allocated.

Then, the slot-based priority rule assigns ψ SBP
≫ ( tN ) = α

Remark 1.3.1. It is easy to see that the slot-based priority rule is output equivalent

to the celebrated agent proposing DA algorithm of Gale and Shapley (1962). We
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1. Allocating agents on a line with birth dates

present it in the manner above because it seems to be the most natural way to do it

in our restricted domain.

Remark 1.3.2. When the priority order of every slot is identical, then the slot-

based priority rule outputs the same allocation as the fixed priority rule.

1.3.2 Desirable properties of Assignment Rules

In this subsection, we define and discuss several desirable properties with respect

to which an assignment rule may be evaluated.

The first three properties are specific to the context under study in this article.

They focus on the delay faced by agents in the allocation proposed by the assign-

ment rule, at every profile of targets reported by the agents.

Definition 1.3.4. An assignment rule Ψ minimizes aggregate delay if, for every

profile tN ∈ S|N|, the allocation Ψ( tN) miminizes aggregate delay.

Definition 1.3.5. An assignment rule Ψ minimizes max delay if, for every profile

tN ∈ S|N|, the allocation Ψ( tN) miminizes max delay.

Definition 1.3.6. An assignment rule Ψ leximax minimizes delays if, for every

profile tN ∈ S|N|, the allocation Ψ( tN) leximax minimize delays.

The following properties are more universal in nature and apply to more general

environments than the ones studied in this article.

An assignment rule is Pareto efficient if it always outputs a Pareto efficient

allocation at every reported profile of targets.

Definition 1.3.7. An assignment rule Ψ is Pareto efficient if, for every profile

tN ∈ S|N|, the allocation Ψ( tN) is Pareto efficient.
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Next, we define three non-cooperative properties of assignment rules. They are

non-cooperative in the sense that they relate an assignment rule’s outcome under

two scenarios, when a single agent makes unilateral target (preference) revelation

deviations.

The first such property is called strategy-proofness. It ensures that no individual

can gain by reporting false targets (preferences).

Definition 1.3.8. An agent i manipulates an assignment rule Ψ at a profile of

targets tN = (ti, t−i) ∈ S|N| by reporting t ′i ∈ S if

Ψ
(

t ′i , t−i
)

P ti
i Ψ

(
ti, t−i

)
i.e., ti ≤ Ψi

(
t ′i , t−i

)
< Ψi

(
ti, t−i

)
An assignment rule Ψ is strategy-proof if it is never manipulated by any indi-

vidual agent.

A strategy-proof assignment rule is appealing because it gives straightforward

incentives to each individual participant, whether or not this particular agent knows

anything more than her own targets (preferences): any information about other

participants’ targets (preferences) is useless to her, as long as she cannot coordinate

his actions with that of any other agent.

The following axiom is called non-bossiness and is due to Satterthwaite and

Sonnenschein (1981). It ensures that individuals cannot be bossy, that is, change

the allocation for others, by reporting different targets, without changing their own.

Definition 1.3.9. An assignment rule Ψ is non-bossy if for all profile tN ∈ S|N| and

for all agent i ∈ N and for all t ′i ∈ S,

Ψi
(

ti, t−i
)
= Ψi

(
t ′i , t−i

)
=⇒ Ψ

(
ti, t−i

)
= Ψ

(
t ′i , t−i

)
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1. Allocating agents on a line with birth dates

Next, we define the notion of envy-proofness4 of an assignment rule. This prop-

erty requires that if an individual j is assigned a preferred slot of another agent i,

then no matter how agent i misreports her target, agent j cannot be worse-off. In

other words, an agent who is envious of another agent’s allocated slot, cannot harm

her by misreporting.

Definition 1.3.10. An assignment rule Ψ is envy-proof if for all profiles of targets

tN = (ti)i∈N and all distinct agents i, j ∈ N,[
ti ≤ Ψ j(tN) < Ψi(tN)

]
=⇒

[
t j ≤ Ψ j(t ′i , t−i) ≤ Ψ j(tN)

]
∀ t ′i ∈ S

The following properties are co-operative in nature: they relate an assignment

rule’s outcomes under two scenarios when a group or coalition of agents jointly

make target (preference) revelation deviations.

The first such notion that is defined below is called group strategy-proofness of

an assignment rule. It is a stricter requirement than strategy-proofness. It ensures

that no subset or group of individuals can gain by reporting false targets. More

precisely, by colluding and jointly misreporting targets, no individual among the

deviators can be made better off without hurting at least one other deviator.

Definition 1.3.11. A group of agents T ⊆ N jointly manipulates an assignment

rule Ψ at profile tN = (tT , t−T ) ∈ S|N| by jointly reporting t ′T ∈ S|T | if,

ti ≤ Ψi
(

t ′T , t−T
)
≤ Ψi

(
tT , t−T

)
∀i ∈ T

t j ≤ Ψ j
(

t ′T , t−T
)
< Ψ j

(
tT , t−T

)
for at least one agent j ∈ T

An assignment rule Ψ is group strategy-proof if it is never jointly manipulated

by any group of agents.

4A weaker version of envy-proofness called top-envy-proofness has been studied in the context of allocation of
indivisible objects in Mandal and Roy (2021).
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Next, we present the notion of strongly pairwise reallocation-proof assignment

rules. It requires that no pair of agents can misreport their targets and be jointly

better-off redistributing their allocations ex-post. The pair of agents is said to be

jointly better-off if each member is weakly better-off and at least one member is

strictly better-off.

Definition 1.3.12. An assignment rule Ψ is weakly manipulable through pairwise
reallocation if there exists a profile of targets tN = (ti, t j, t−{i, j}) ∈ S|N|, distinct

agents i, j ∈ N, and t ′i , t ′j ∈ S such that

(a) ti ≤ Ψ j(t ′i , t ′j, t−{i, j}) ≤ Ψi(tN)

(b) t j ≤ Ψi(t ′i , t ′j, t−{i, j}) < Ψ j(tN)

An assignment rule Ψ is strongly pairwise reallocation-proof if it is not weakly

manipulable through pairwise reallocation.

The next property is a weakening of the notion of strongly pairwise reallocation-

proofness to pairwise reallocation-proofness. This property requires that no pair

of agents can misreport their targets and be strictly better-off redistributing their

allocations ex-post. Unlike in the stronger counterpart, a pair of agents now ma-

nipulates only if it leads to a strictly better outcome for both agents after trading

allocations ex-post.

Definition 1.3.13. An assignment rule Ψ is strongly manipulable through pair-
wise reallocation if there exists a profile of targets tN = (ti, t j, t−{i, j}) ∈ S|N|, dis-

tinct agents i, j ∈ N, and t ′i , t ′j ∈ S such that

(a) ti ≤ Ψ j(t ′i , t ′j, t−{i, j}) < Ψi(tN)

(b) t j ≤ Ψi(t ′i , t ′j, t−{i, j}) < Ψ j(tN)

An assignment rule Ψ is pairwise reallocation-proof if it is not strongly ma-

nipulable through pairwise reallocation.
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1. Allocating agents on a line with birth dates

Remark 1.3.3. Note that, if an agent is allocated her target at some profile, then

she does not wish to manipulate with another agent through pairwise reallocation.

1.4 Results

In this section, we present results having two flavours. The first type tries to address

the (in)compatibility of the different axioms with each other. The other kind has

to do with evaluating the proposed assignment rules with respect to the desirable

desiderata presented in the previous section.

An immediate observation that follows from Lemma 1.2.3 gives us the follow-

ing proposition.

Proposition 1.4.1. An assignment rule is Pareto efficient if and only if it minimizes

aggregate delay.

In the current environment, it turns out that group strategy-proofness is equiv-

alent to the conjunction of two non-cooperative properties: strategy-proofness and

non-bossiness.

Proposition 1.4.2. An assignment rule is group strategy-proof if and only if it is

strategy-proof and nonbossy.

Proof. (If part) Suppose Ψ is strategy-proof and nonbossy. Assume for con-

tradiction that Ψ is not group strategy-proof. Since Ψ is not group strategy-proof,

there exists a profile tN ∈ S|N|, a group of agents T ⊆ N and t ′T ∈ S|T | such that

ti ≤ Ψi
(

t ′T , t−T
)
≤ Ψi

(
tT , t−T

)
∀i ∈ T

t j ≤ Ψ j
(

t ′T , t−T
)
< Ψ j

(
tT , t−T

)
for at least one agent j ∈ T

Let T = {1,2, · · · p}. For all i ∈ T , let s∗i = Ψi
(

t ′T , t−T
)
. Now, s∗i ≤ Ψi

(
tN
)
∀i ∈ T .

Next consider another target t̃i of agent i ∈ T such that t̃i = s∗i . Strategy-proofness
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of Ψ then implies Ψ1
(

t̃1, t−1
)

= Ψ1
(

tN
)
. Next by non-bossiness, Ψ

(
t̃1, t−1

)
=

Ψ
(

tN
)
. Repeating the same argument for agents 2,3, · · · p, we get

Ψ
(

t̃T , t−T
)
= Ψ

(
tN
)

Next, consider the profile (t ′T , t−T ). Fix agent j ∈ T and consider deviation t̃ j at

this profile. Since t̃ j = s∗j =Ψ j
(

t ′T , t−T
)
, by strategy-proofness Ψ j

(
t̃ j, t ′T\{ j}, t−T

)
= Ψ j

(
t ′T , t−T

)
. Non-bossiness then implies Ψ

(
t̃ j, t ′T\{ j}, t−T

)
= Ψ
(

t ′T , t−T
)
. Con-

tinuing in this manner, we can move targets of all agents j ∈ T from t ′j to t̃ j one by

one and obtain,

Ψ
(

t̃T , t−T
)
= Ψ

(
t ′T , t−T

)
,which then implies Ψ

(
t ′T , t−T

)
= Ψ

(
tN
)
, a contradiction to the fact that t j ≤

Ψ j
(

t ′T , t−T
)
< Ψ j

(
tT , t−T

)
for at least one agent j ∈ T .

(Only-if part) It is straight forward to see that group strategy-proofness implies

strategy-proofness and non-bossiness. ■

The next proposition highlights the conflict between strategy-proofness and in-

dividual delay concerns.

Proposition 1.4.3. There does not exist a strategy-proof assignment rule that al-

ways

(a) minimizes max delay.

(b) leximax minimizes delay.

Proof. Consider a problem with three agents N = {1,2,3} with target ti = 1

for all i ∈ N. Without loss of generality, suppose a rule assigns allocation α at this

profile t where α(1) = 1, α(2) = 2 and α(3) = 3. By strategy-proofness, when

agent 2 reports t ′2 = 2 while other reports are unchanged, the rule must assign agent

2 again to slot 2, and either agent 1 or agent 3 must be assigned slot 3. Without

loss of generality, say at profile t ′ = (t1, t ′2, t3) the rule outputs allocation α ′ such

that α ′(1) = 1, α ′(2) = 2 and α ′(3) = 3. The vector of delays for allocation α ′ is

(0,0,2). But allocation α ′′ such that α ′′(1) = 1, α ′′(2) = 3 and α ′′(3) = 2 with
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1. Allocating agents on a line with birth dates

vector of delay (0,1,1) ≺ leximax (0,0,2) and also minimize max delay. ■

If we omit minimizing max delay concerns, but insist on all the other properties

(the stronger counterparts wherever applicable), it turns out that, this is not possible

in our domain, as is shown in the next impossibility result.

Theorem 1.4.1. Suppose |N| ≥ 3. Then, there does not exist a Pareto efficient,

group strategy-proof, strongly pairwise reallocation-proof and envy-proof assign-

ment rule.

Proof. Suppose N = {1,2,3} be the set of agents and S = {a,b,c,d,e} be

the set of slots where a is the earliest slot followed by b being the next and so

on. Assume for contradiction that Ψ is a Pareto efficient, group strategy-proof,

strongly pairwise reallocation-proof, and envy-proof assignment rule. We adopt

the following simplified notation for the rest of the proof. A profile tN =(t1, t2, t3) is

denoted simply as t1t2t3 and an allocation Ψ(tN) at profile tN where Ψ1(tN) = a,

Ψ2(tN) = b and Ψ3(tN) = c is denoted as Ψ(tN) = abc.

Next, consider the target profile aaa. Without loss of generality, let us assume

Ψ(aaa) = abc. Group strategy-proofness then implies,

Ψ(tN) = abc ∀ tN ∈ {aab,aac,aba,abb} (1.1)

Then by strongly pairwise reallocation-proofness of Ψ, agent 1 and 2 must get

slots a and b between them. Therefore, we must then have

Ψ(baa) = bac (1.2)

Group strategy-proofness then implies,

Ψ(bab) = bac (1.3)

Next by Pareto efficiency, Ψ(bba) ∈ {bca,cba}. Suppose Ψ(bba) = cba. Then

at profile baa, agent 2 can misreport to b and swap allocations with agent 3 ex-post

and together do weakly better (agent 3 does strictly better). This is a contradiction
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to strongly pairwise reallocation-proofness of Ψ. Consequently,

Ψ(bba) = bca (1.4)

Envy-proofness of Ψ together with (1.1), (1.3) and (1.4) then implies neither

agent 2 nor agent 3 can get slot b and as a result, by Pareto efficiency we must

have,

Ψ(bbb) ∈ {bcd,bdc} (1.5)

Case:1 Suppose, Ψ(bbb) = bcd.

Then by group strategy-proofness of Ψ we get,

Ψ(tN) = bcd ∀ tN ∈ {bbc,bcb,bcc} (1.6)

Strongly pairwise reallocation proofness implies agent 1 and 2 must get be-

tween them slots b and c. Thus, Ψ(cbb) = cbd. Next again by strongly pairwise

reallocation proofness, this time between agent 2 and 3 we have,

Ψ(ccb) = cdb (1.7)

Again, by strongly pairwise reallocation proofness and the fact that Ψ(cbb) = cbd

we have,

Ψ(cbc) = cbd (1.8)

Envy-proofness of Ψ together with (1.6), (1.8) and (1.7) then implies that agent 1

must get the slot c at the profile ccc. Thus,

Ψ(ccc) ∈ {cde,ced} (1.9)

Then by envy-proofness and Pareto efficiency we get,

Ψ(cac) = cad (1.10)

Ψ(cca) = cda (1.11)

Now, strongly pairwise reallocation-proofness together with (1.10) and (1.11) im-
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plies that

Ψ(acc) /∈ {acd,adc} (1.12)

This is a contradiction to the fact that Ψ is Pareto efficient.

The other case when Ψ(bbb) = bdc can be similarly shown to lead to a contra-

diction. ■

Weakening strongly pairwise reallocation-proofness to pairwise reallocation-

proofness yields a positive result, as outlined in the next proposition.

Proposition 1.4.4. Every fixed priority rule is group strategy-proof, Pareto effi-

cient, envy-proof and pairwise reallocation-proof.

Proposition 1.4.4 is proved in Appendix A.

Although the fixed priority rule satisfies a number of important properties, it

has a notable drawback when it comes to max delay concerns. The next remark

highlights this with an example.

Remark 1.4.1. The fixed priority rule can perform very poorly with respect to

minimizing max delay.

To see this, consider the following example with N = {1,2, · · · ,n}. Fix priority

σ with σ(i) = i for all i. Consider the profile tN where, t1 = tn = 1 and t j = j for

all j ∈ {2,3, · · · ,n−1}. Then ψFP
σ (tN) = α where α(n) = n and her delay is n−1.

Consider instead the allocation α ′ where α ′(1) = 1, α ′(n) = 2 and α ′( j) = j+ 1

for all j ∈ {2,3, · · · ,n−1}. The max delay suffered by an agent in α ′ is 1.

The unattractive feature highlighted in the above remark is not unique to the

fixed priority rule. It is unfortunately true for any Pareto efficient, strategy-proof,

and non-bossy assignment rule in a sense that we make precise below.

We measure how bad an assignment rule performs with respect to minimizing

max delay by the worst-case scenario. We will need the notion of regret of an

assignment rule. To formally define it we will need additional notations.
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Recall that, for any profile tN = (ti)i∈N , we denote by δ α(tN) :=
(
δi(α, ti)

)
i∈N

the vector of delays at that profile corresponding to any allocation α .

For any profile tN and any allocation α , let

max
i∈N

δ
α(tN) := max

{
δ1(α, t1), · · · ,δn(α, tn)

}
.

Let A IR(tN) denote the set of all individually rational allocations at profile tN .

Definition 1.4.1. The regret corresponding to the assignment rule Ψ at any profile

of targets tN = (ti)i∈N is given by

Regret
(

Ψ, tN
)

:=
max
i∈N

δ Ψ(tN)(tN)

min
α∈A IR(tN)

max
i∈N

δ α(tN)
(1.13)

The regret of an assignment rule Ψ at a profile of targets tN is defined as:

the ratio between the max delay corresponding to the allocation Ψ(tN) and the

minimum max delay that is feasible at profile tN .

Next, let S∗ = { tN ∈ S|N| | i ̸= j ⇐⇒ ti ̸= t j } denote the set of target profiles

such that no two agents have the same target. Note that, for all tN ∈ S∗ it is always

possible to allocate all agents their targets. Moreover, these are the only profiles

where this is true. Thus we have, tN ∈ S∗ ⇐⇒ min
α∈A IR(tN)

max
i∈N

δ α(tN) = 0.

The performance of an assignment rule Ψ is then evaluated in the worst case, by

computing the largest regret of Ψ overall target profiles such that the denominator

in (1.13) is not 0.

Definition 1.4.2. The worst case regret of an assignment rule Ψ is given by

MR
(

Ψ
)

:= max
tN ∈ S |N| \S∗

Regret
(

Ψ, tN
)
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Lemma 1.4.1. If an assignment rule Ψ is Pareto efficient then,

MR
(

Ψ
)
≤ |N|−1

1

The proof appears in Appendix A.

Remark 1.4.2. The worst faring efficient rule with respect to minimizing max delay

is one that delivers an allocation with max delay of |N| − 1 at some profile of

targets, where it is in fact feasible to construct an allocation that has a max delay

of 1.

Proposition 1.4.5. If an assignment rule Ψ is Pareto efficient, strategy-proof and

non-bossy, then MR(Ψ) = |N|−1, i.e., it is the worst rule with respect to mini-

mizing max delay.

Proof. Fix a Pareto efficient, strategy-proof and non-bossy rule Ψ. Consider

the profile tN = (ti)i∈N where ti = 1 ∀i ∈ N. Let |N| = n. Without loss of gen-

erality, suppose Ψi(tN) = i ∀i ∈ N. Next, consider profile t2
N = (t ′2, t−2) which

differs from tN in that agent 2 now reports t ′2 = 2. Strategy-proofness implies

Ψ2(t2
N) = 2 = Ψ2(tN). Then by non-bossiness Ψ(t2

N) = Ψ(tN). Next, consider pro-

file t3
N = (t ′2, t

′
3, t−{2,3}) which differs from t2

N in that agent 3 now reports t ′3 = 3.

Again by strategy-proofness and non-bossiness we have, Ψ(t3
N) = Ψ(t2

N) = Ψ(tN).

Proceeding in the same manner by moving targets of agents, one at a time (target of

agent i is moved from slot 1 to slot i every time), finally, we get Ψ(tn−1
N ) = Ψ(tN).

Max delay of Ψ at this profile tn−1
N is clearly n−1. However the allocation α such

that α(1) = 1, α(n) = 2 and α(i) = i+1 ∀i ∈ {2,3, · · · ,n−1} has a max delay of

1. ■

Proposition 1.4.5 in tandem with Proposition 1.4.2 and Proposition 1.4.4 re-

spectively gives us the following corollaries.

Corollary 1.4.1. If an assignment rule Ψ is Pareto efficient and group strategy-

proof, then we have MR(Ψ) = |N|−1.

38



1.4. Results

Corollary 1.4.2. The fixed priority rule is one of the worst rule with respect to

minimizing max delay. For any fixed priority σ over agents, MR(ψFP
σ ) = |N|−1.

The first come first served rule fares much better when it comes to max delay

concerns (Proposition 1.4.6). However, it is not immune to manipulations of any

kind (Proposition 1.4.7). This is not surprising given the tension between the two

concerns which we have earlier highlighted in Proposition 1.4.3.

Proposition 1.4.6. Every first come first served rule is Pareto efficient and more-

over leximax minimizes delays.

Proposition 1.4.6 is proved in Appendix A.

Proposition 1.4.7. The first come first served rule fails to be

(i) Strategy-proof

(ii) Pairwise reallocation proof

(iii) Envy-proof

Proposition 1.4.7 is proved in Appendix A.

The slot-based priority rule also has appealing incentive properties and is a little

more adaptable to scenarios when the designer must respect exogenously given

priority orders for every slot (see, Proposition 1.4.8 and Proposition 1.4.9 below).

However, it suffers from the same drawback as the fixed priority rule when it comes

to max delay concerns (Proposition 1.4.10).

Proposition 1.4.8. Every slot-based priority rule is

(i) Pareto efficient

(ii) Group strategy-proof
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1. Allocating agents on a line with birth dates

Proposition 1.4.8 is proved in Appendix A.

Proposition 1.4.8 along with Corollary 1.4.1 then gives us the following corol-

lary.

Corollary 1.4.3. The slot-based priority rule is one of the worst rules with respect

to minimizing max delay, i.e., for any profile of priority orders ≫, MR(ψSBP
≫ ) =

|N|−1.

In applications, where the profile of priority orders ≫= (≫s)s∈S for slots is

exogenously given rather than it being a design element, one can talk about the

notion of justified envy-freeness, which is defined below.

Fix any profile of priority orders ≫= (≫s)s∈S. An allocation α ∈ A is said

to eliminate justified envy at the profile of targets tN given ≫ if:

• α is individually rational at tN

• There do not exist agents i, j and slot s such that:

α( j) = s, ti ≤ s < α(i), and i ≫s j

Definition 1.4.3. Fix any profile of priority orders ≫= (≫s)s∈S. An assignment

rule Ψ is justified envy-free at ≫ if, at every profile of targets tN , the allocation

Ψ(tN) eliminates justified envy at tN given ≫.

In words, an agent i is said to have justified envy towards agent j if the latter is

allocated a slot for which the former has a higher priority. An assignment rule is

justified envy-free if such a scenario never arises in its proposed allocation.

Remark 1.4.3. Note that, when priority orders for slots are exogenously given, the

appropriate definition of a mechanism or an assignment rule should then addition-

ally include the space of priority orders in its domain. We have chosen to not do so

here in order to keep things coherent, and therefore in the above definition we say

an assignment rule is “justified envy-free at ≫” instead of “justified envy-free”.
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It is a well known fact that the DA algorithm is stable Gale and Shapley (1962).

This in turn implies, the agent proposing DA (taking the priority structure as pref-

erences of the non-proposing side) is justified envy-free (see, Ergin 2002 for a

discussion5). Invoking Remark 1.3.1 then gives us the following proposition.

Proposition 1.4.9. Given any exogenous profile of priority orders ≫= (≫s)s∈S,

the slot-based priority rule ψ SBP
≫ is justified envy-free at ≫.

Proposition 1.4.10. The slot-based priority rule fails to be

(i) Pairwise reallocation proof

(ii) Envy-proof

Proposition 1.4.10 is proved in Appendix A.

1.5 Concluding remarks

In this chapter, we have studied the problem of assigning agents to slots that are

arranged on a line. Agents are born at different points on the line and want a

slot as soon as possible, once they are born. Important considerations in this con-

text like minimizing in various ways the delay faced by an agent, elicitation of

truthful reports by participating agents, and efficiency of the overall system have

been studied from an axiomatic standpoint. Our results indicate that the attractive

incentive compatibility property of strategy-proofness is incompatible with indi-

vidual delay concerns such as minimizing maximum delay or leximax minimizing

the vector of delays. If individual delay concerns are of greater importance, we

propose the implementation of the first come first served rule; while if the designer

deems incentive compatibility as being more important, the fixed priority rule and

the slot-based priority rule are the better choices. The slot based priority rule is a

5In their paper, they use the terminology: α adapts to ≫ to mean α is justified envy-free at ≫ given a profile tN .
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1. Allocating agents on a line with birth dates

little more flexible when the designer must respect exogenous slot specific prior-

ities over agents. The main results from our model readily extend to the scenario

where slots have multiple (possibly different) capacities.

Future work can consider an interesting extension where agents don’t just have

different birth dates, but also have different deadlines after which they have no use

of a slot; i.e., they are only interested in a particular segment of the line, and within

that segment they want a slot as early as possible. Another fruitful direction might

be to study probabilistic mechanisms on the same domain.
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1.6. Appendix A - Proofs

1.6 Appendix A - Proofs

Proof of Lemma 1.2.1
Let α be a Pareto efficient allocation at profile tN . Next, assume for con-

tradiction that there exists an unassigned slot s ∈ S and an agent i with target

ti ≤ s such that α(i) > s. Then, the new allocation α ′ such that α ′(i) = s and

α ′( j) = α( j) ∀ j ̸= i Pareto dominates the allocation α , a contradiction.

To show the other direction, let α be an allocation at profile tN and suppose

there does not exist an unassigned slot s ∈ S and an agent i with target ti ≤ s such

that α(i) > s. Assume for contradiction that α is not Pareto efficient. Suppose

allocation α ′ Pareto dominates α . Let i1 be that agent who is made strictly better

and suppose α ′(i1) = si1. This implies, ti1 ≤ si1 < α(i1). Moreover, this slot si1

was originally assigned to some agent at allocation α by assumption. Suppose that

agent is i2, i.e., α(i2) = si1. This means i2 must be made weakly better under α ′

as well. But since slot si1 is now allocated to i1 at α ′, agent i2 must get an even

better slot in α ′. Thus we have, ti2 ≤ si2 < α(i2). Combining the above relations

we get, ti2 ≤ si2 < α(i2) < α(i1). Proceeding in this manner leads to one of the

two following cases: (1) an agent who is allocated her target slot in α must be

allocated a better slot, which is impossible by definition; or, (2) we reach the first

slot in the line in which case the scenario in (1) is necessarily true. Both these

cases, therefore, leads to a contradiction that α ′ Pareto dominates α . ■

Proof of Lemma 1.2.3
Fix a profile of targets tN = (ti)i∈N . Let α ∈ A be a Pareto efficient allocation

at t. There is a partition of S satisfying the conditions stated in Lemma 1.2.2. Let

it be {S0,S1,S2, · · ·}. Next consider all slots that are assigned, i.e., slots in Sk such

that k ∈ {1,3,5, · · ·}. The target slot of every agent at profile tN belongs to one

such Sk, i.e., for all i, ti ∈ Sk for some k ∈ {1,3,5, · · ·}. Now, consider any such

Sk. Let α−1(Sk) be the set of individuals who are assigned to a slot in Sk under

α . Since α is Pareto efficient, this implies that for every agent i ∈ α−1(Sk) her

43



1. Allocating agents on a line with birth dates

target ti ∈ Sk (By Lemma 1.2.2, αi ∈ Sk ⇐⇒ ti ∈ Sk). Now, since every slot in Sk

is assigned, we have precisely |Sk| such agents: |α−1(Sk)| = |Sk|. Next, suppose

α̃ is an allocation that minimizes aggregate delay. Since Sk contains consecutive

slots, and all slots in Sk are needed to accommodate agents in α−1(Sk), allocation

α̃ must therefore also have assigned agents in α−1(Sk) to some slot in Sk (these are

the closest slots to α−1(Sk) collectively speaking). As a result, allocation α can

be obtained from α̃ by performing a sequence of pairwise swaps between agents

belonging to the same set α−1(Sk). Each such pairwise swap reduces the delay

of one agent in the pair at the expense of the other agent. As a result, there is

no change in aggregate delay after each such swap. Since α̃ minimizes aggregate

delay, therefore so must α .

Next let α ′ be an allocation that minimizes aggregate delay at profile of targets

tN . Assume for contradiction that it is not Pareto efficient. This implies that there

is an allocation α ′′ such that 0 ≤ δi(α
′′, ti) ≤ δi(α

′, ti) for every agent i, with

at least one strict (second) inequality. This implies ∑
i∈N

δi(α
′′, ti) < ∑

i∈N
δi(α

′, ti),

the desired contradiction. ■

Proof of Lemma 1.2.5
Fix a profile tN = (ti)i∈N . Let α ∈ A be a Pareto efficient allocation at tN .

There is a partition of S satisfying the conditions stated in Lemma 1.2.2. Let it

be {S0,S1,S2, · · ·}. Consider any set Sk such that k ∈ {1,3,5, · · ·}. Let α−1(Sk)

be the set of individuals who are assigned to a slot in Sk under α . Since α is

Pareto efficient, this implies that for every agent i ∈ α−1(Sk) her target ti ∈ Sk (By

Lemma 1.2.2, αi ∈ Sk ⇐⇒ ti ∈ Sk). Now, since every slot in Sk is assigned, we

have precisely |Sk| such agents: |α−1(Sk)| = |Sk|. Next, suppose α̃ is an allo-

cation that leximax minimizes delay. Since Sk contains consecutive slots, and all

slots in Sk are needed to accommodate agents in α−1(Sk), allocation α̃ must there-

fore also have assigned agents in α−1(Sk) to some slot in Sk (these are the closest

slots to α−1(Sk) collectively speaking). As a result, allocation α̃ can be obtained

from α by performing a sequence of pairwise swaps between agents belonging to
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the same set α−1(Sk). Since, assigned slots are ordered like targets in α , when

performing the pairwise swaps just described, there is no change in the vector of

delays corresponding to the two allocations α and α ′. This implies that α also

leximax minimizes delays. ■

Proof of Proposition 1.4.4
Fix a priority σ , and consider ψFP

σ - the associated fixed priority rule. Recall,

the best slot among a set of slots Y ⊆ S given a target slot ti is denoted as

B
(

ti, Y
)
= min {s′ ∈ Y | s′ ≥ ti}

Next we show that ψFP
σ is strategy-proof. The strategy of any agent i is the target

ti that she reports. Suppose agent i wants to deviate. When agent i is truthful, let

S−i be the set of slots allocated to agents who have higher priority than i
(
an agent

j has higher priority than agent i if and only if σ−1( j) < σ−1(i)
)
. So, by being

truthful, agent i gets B( ti, S \ S−i ). When agent i deviates, any agent j who has a

higher priority than agent i continues to get the same slot that he was getting when

agent i was truthful. So, agent i still gets a slot in S \ S−i. Hence, the deviation

cannot be better.

To see that ψFP
σ is non-bossy, fix a profile of targets tN = (ti, t−i) and an agent i.

Again, let S−i be the set of slots allocated to agents who have higher priority than

i. Then allocation of agent i at profile tN = (ti, t−i) is Ψi(tN) = B( ti, S\S−i ). Note

that, agent i by deviating to t ′i can never change the allocation of agents who gets

a slot in S−i. Now, if by deviating to t ′i , agent i gets the same slot, i.e., Ψi(t ′i , t−i) =

Ψi(tN), then the set of slots available to agents who has a lower priority than agent

i is invariant in both profiles tN and (t ′i , t−i). Since the reports of other agents are

fixed, we have that if agent i’s allocation does not change there is no change in the

allocations of other agents.

Since, ψFP
σ is both strategy-proof and non-bossy, by Proposition 1.4.2, ψFP

σ is

group strategy-proof.
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To show Pareto efficiency, assume for contradiction that ψFP
σ is not Pareto effi-

cient. Consider a profile tN such that ψFP
σ (tN) = α . Then, there is another alloca-

tion α ′ satisfying 0 ≤ δi(α
′, ti) ≤ δi(α, ti) for every agent i, with at least one

strict inequality (for the second inequality). Now, consider the first agent j in the

priority σ such that 0 ≤ δ j(α
′, t j) < δ j(α, t j). This implies, t j ≤α ′( j)<α( j).

Since agents before j in the priority σ have the same delay in both α and α ′ (i.e.,

they are assigned the same slot in both α and α ′), the slot α ′( j) was still available

to be assigned to agent j. This is a contradiction since α( j) was the best available

slot for agent j but t j ≤ α ′( j)< α( j).

Assume for contradiction that ψFP
σ is not pairwise reallocation proof. Then,

ψFP
σ is strongly manipulable through pairwise reallocation. This implies, there

exists a profile of targets tN = (ti, t j, t−{i, j}) ∈ S|N|, distinct agents i, j ∈ N, and

t ′i , t ′j ∈ S such that

(i) ti ≤ Ψ j(t ′i , t ′j, t−{i, j}) < Ψi(tN)

(ii) t j ≤ Ψi(t ′i , t ′j, t−{i, j}) < Ψ j(tN)

Next, without loss of generality, let us assume that σ−1(i) < σ−1( j). When

agent i is truthful (i.e., she reports ti), let S−i be the set of slots allocated to

agents who have higher priority than agent i. Now, since σ−1(i) < σ−1( j) and

we have the other agents’ reports held fixed, agents i and j therefore can only

get slots from the set S \ S−i. That is to say, for all t ′i , t ′j ∈ S it must be the case

that Ψ j(t ′i , t ′j, t−{i, j}) ∈ S \ S−i. Now, by being truthful, agent i gets Ψi(tN) =

B( ti, S \ S−i ), which is the best available slot for agent i in S \ S−i. But, from

condition (i), we have ti ≤ Ψ j(t ′i , t ′j, t−{i, j}) < Ψi(tN), which is a contradiction.

Next show that ψFP
σ is envy-proof. Fix a profile of targets tN = (ti)i∈N and an

agent i. When agent i reports ti, S−i is the set of slots allocated to agents who have

higher priority than agent i. Then, agent i at profile tN gets Ψi(tN) = B( ti, S\S−i ),

the best available slot. This means agent i does not envy any agent who gets a slot

in S\S−i. Equivalently stating, if agent i envies agent j, then agent j was allocated
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a slot in S−i, i.e., Ψ j(tN)∈ S−i. But, Ψ j(tN)∈ S−i implies σ−1( j)< σ−1(i). This

in turn implies Ψ j(tN) = Ψ j(t ′i , t−i) for all t ′i ∈ S, since the allocation of an agent

higher in the priority order is not affected by the reports of agents lower down the

order. Thus, agent i can never harm an agent she envies. Since we can repeat

the same argument for any profile of targets and any agent, we conclude that Ψ is

envy-proof. ■

Proof of Lemma 1.4.1
Recall that MR

(
Ψ
)

= max
tN ∈ S |N| \S∗

Regret
(

Ψ, tN
)

where, Regret
(

Ψ, tN
)
=

max
i∈N

δ Ψ(tN )(tN)

min
α∈A IR

max
i∈N

δ α(tN)
.

Since the assignment rule Ψ is Pareto efficient, by Lemma 1.2.1 there must not

be any used slots in the allocation output by Ψ. The greatest value of the numerator

in Regret
(

Ψ, ·
)

occurs at the profiles where all agents have the same target slot.

This is because, at these profiles, only one agent can be made fully happy, leading

to a max delay of |N| − 1 necessarily, if there are |N| agents. In other profiles,

more than one agent can be given their best slot thereby reducing max delay to

be strictly less than |N|−1, as there is an arbitrary number of slots. Furthermore,

the minimum value for the denominator of the regret expression is 1 since only

profiles tN /∈ S∗ are considered. ■

Proof of Proposition 1.4.6
Fix a priority σ , and consider ψFCFS

σ - the associated first come first served

rule. Next consider a profile tN and the associated first come first priority σFF .

Now, ψFCFS
σ ( tN ) = ψFP

σFF
( tN ) = α (say). By Proposition 1.4.4 we have that α

is Pareto efficient. Next, recall that ti < t j =⇒ σ
−1
FF (i) < σ

−1
FF ( j). Also, for every

Y ⊆ S we have ti < t j =⇒ B
(

ti, Y
)
≤ B

(
t j, Y

)6. Together this then implies,

αi < α j. Finally, applying Lemma 1.2.5 the result follows. ■

6B
(

ti, Y
)
= min {s′ ∈ Y | s′ ≥ ti }, denotes the best slot among a set of slots Y ⊆ S given a target slot ti.
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Proof of Proposition 1.4.7
Consider a problem with three agents N = {1,2,3} and three slots S = {a,b,c}

where a and c are the first and last slot respectively. A profile tN = (t1, t2, t3) is

denoted simply as t1t2t3 and an allocation Ψ(tN) at profile tN where Ψ1(tN) = a,

Ψ2(tN) = b and Ψ3(tN) = c is denoted as Ψ(tN) = abc.

Let us fix an order σ such that: σ(i) = i for all i. Now, consider ψFCFS
σ - the

associated first come first served rule.

To see that ψFCFS
σ is not strategy-proof, consider the profile tN = aba. The

rule at this profile outputs ψFCFS
σ (tN) = acb, where agent 2 has a delay of 1. At

profile t ′N = aaa, we have ψFCFS
σ (t ′N) = abc. Therefore, agent 2 deviates at tN by

misreporting t ′2 = a to get a delay of 0.

To see ψFCFS
σ is not envy-proof, consider profile the profile of targets t ′′N = baa.

We have ψFCFS
σ (t ′′N) = cab and thus agent 1 envies agent 3’s slot. By misreporting

t ′1 = a, agent 1 can hurt agent 3, since ψFCFS
σ (t ′N) = abc. Thus, ψFCFS

σ is not

envy-proof.

Next, suppose there are two more agents and slots: N = {1,2,3,4,5} and

S = {a,b,c,d,e}. Priority order σ is such that: σ(i) = i for all i. To see that

ψFCFS
σ is not pairwise reallocation proof, consider profile tN = abbbb. We have,

ψFCFS
σ (tN) = abcde. Now, if both agents 4 and 5 deviate to t ′4 = t ′5 = a, they get

slot b and c respectively, which they already prefer to their slots at profile tN . But

even if they swap these new allocations ex-post, they both still strictly prefer their

new allocations to their initial allocation by being truthful. Hence, ψFCFS
σ is not

pairwise reallocation proof. ■

Proof of Proposition 1.4.8
Fix a profile of priority orders (≫s)s∈S and a profile of targets tN = (ti)i∈N . Let

α denote the allocation produced by the slot-based priority rule.

Now, any slot k ∈ {1,2,3, ...} is unassigned at this profile only if, in Step k
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of the algorithm we have Ik \
k−1⋃
j=1

i j = /0 7 where, Ik = { i ∈ N | ti ≤ k} and

i1, i2, · · · , ik−1 are (if i j ̸= /0) agents with targets strictly less than k who are al-

ready assigned an earlier slot. Therefore, if slot k is unassigned then for every

agent i with target ti ≤ k we have that αi ≤ k. Then, from Lemma 1.2.1 we have

that α is Pareto efficient.

Since every slot-based priority rule is Pareto efficient, using Remark 1.3.1 and

invoking Theorem 1 in Ergin (2002) it is also group strategy-proof. ■

Proof of Proposition 1.4.10
Consider a problem with three agents N = {1,2,3} and three slots S ={a, b, c}

where a and c are the first and last slot respectively.

Suppose slots a and b have the following priorities:

1 ≫a 3 ≫a 2

2 ≫b 1 ≫b 3

Then, at profile tN = aba, we have the allocation ψ SBP
≫ ( tN ) = abc.

At profile t ′N = baa, we have ψ SBP
≫ ( t ′N ) = cba.

Agents 1 and 2 jointly misreport at profile t ′N = baa to profile tN = aba and

swap allocations ex-post, which they both strictly prefer to what they get by being

truthful.

To see that the rule is not envy-proof, suppose next that slots a and b have the

following priorities:

1 ≫a 2 ≫a 3

2 ≫b 3 ≫b 1

Now at profile t ′′N = aaa we have ψ SBP
≫ ( t ′′N ) = abc. At profile t ′N = baa we have

ψ SBP
≫ ( t ′N ) = cab where agent 1 envies agent 3. Thus, by misreporting to t ′′1 = a,

agent 1 can hurt agent 3. ■

7i0 = /0

49



Chapter 2

Stable matchings with indifferences and the
priority rule

Abstract

In this chapter, we study a two-sided one-to-one market setting where one side

of the market is objectively ranked. Constraints prevent agents on the other side

from matching with agents who are ranked higher than an agent-specific thresh-

old. The preference domain allows for indifferences, with preferences of one side

being derived from a master preference list, while agents on the other side have

general preferences. We analyze matchings with respect to two standard proper-

ties: stability and Pareto efficiency. Having met these standard goals, the designer

facing this problem may additionally be interested in a third criterion: the size of

the matching. We show that for the proposed domain all stable matchings have the

same size. We propose an assignment rule that always produces a stable and Pareto

efficient matching. Furthermore, we show that every matching that is both stable

and Pareto efficient is hierarchical by nature in a precise sense. The domain has a

variety of practical applications including the refugee matching market, which has

recently received a lot of attention in the literature.

2.1 Introduction

Let us consider a two-sided one to one market setting, where agents on one side

of the market (say “Projects”) are grouped into indifference classes that are ex-

ogenously ranked, and agents on the other side (say “Firms”) prefer higher-ranked
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projects. However, each firm face internal feasibility constraints that prevent her

from matching with projects ranked above an individual threshold. Examples in-

clude — (1) the refugee matching problem: where benevolent hosts (firms) with a

limited beds to spare, are willing to shelter refugee families (projects) of various

sizes in their homes, in exchange for a monetary reward (which is increasing in

family size) from the government; (2) firms competing for governmental projects

over which there is generally a consensus as to which ones are more desirable, but

firm-specific capacity constraints (technological, deadline, budget etc.) prevent it

from going after very top projects; (3) the slot allocation problem: where slots

(projects) are arranged on a line with earlier slots ranked higher, users (firms) ar-

rive over time and wish to be served as early as possible once they do, for instance,

researchers wishing to use a supercomputer, ships wanting to load/unload cargo at

a port, etc. Being indifferent between different options is a ubiquitous phenomenon

in our society, and the above examples are no exception.

These observations collectively inform our assumptions on the preference do-

main. We assume that projects are exogenously ranked (but several projects can

have the same rank, thus giving rise to indifference classes), and each firm f faces

a threshold t f . This firm f prefers projects of higher rank, but projects of rank

above t f are not acceptable to her. Preferences of firms thereby have a nested

structure (formally presented in Section 2.2.1). Each project j can have arbitrary

(non-strict) preferences over firms but prefers any firm over remaining unmatched.

Taking preferences of both sides into account, firms must be matched to projects

in a one-to-one fashion.

We adopt a mechanism design approach to solve the problem. We will pursue

two important design goals. The first is stability, which ensures that agents would

accept the matching proposed by the designer and would not try to individually

renegotiate it. To define it, we rely on the notion of strong blocking: two agents

form a pair and block a matching if each agent in the pair strictly prefers the other
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over their current match1. The second is Pareto efficiency, i.e., the matching cannot

be Pareto improved upon at any preference profile. Having met these two goals,

in the above examples, the designer may additionally wish to improve welfare by

maximizing as much as possible the size (i.e., the total number of matched pairs)

of the proposed matching.

In our domain with indifferences, all stable matchings have the same size (Propo-

sition 2.2.1). To the best of our knowledge, it is the first non-trivial non-strict pref-

erence domain in the literature for which this fact holds. Thus, in the space of

stable and Pareto efficient matchings, the designer is not constrained by welfare

considerations regarding the matching size. This is not just a nice to have result

but is rather quite significant due to its practical implications. This is because, in

the presence of indifferences (or, ties), finding a stable matching that maximizes

size is a computationally hard problem even under restrictions on the number and

length of ties (Manlove et al., 2002), or preferences of both sides being limited to a

master list (Irving et al., 2008). For our proposed domain that admits a wide range

of applications, the designer does not face this challenge since there are efficient

algorithms for finding a stable matching.

Our mechanism design problem involves matching agents to each other with-

out the possibility of resorting to money or lotteries (or, fractional assignments).

As a consequence, most fairness requirements are immediately out of reach. Any

matching will therefore favour some agents and leave others largely unsatisfied. In

such settings, it is widely observed that resulting mechanisms tend to have a hier-

archical structure. Formally proving, or even formalizing this statement is however

elusive. Under strict preferences some results are obtained: see, for instance, pure

assignment models without transfers and exchange models in Svensson (1999),

Pápai (2000) and Pycia and Ünver (2017). Under non-strict preferences, we are

only aware of Svensson (1994) and Bogomolnaia et al. (2005). Most of these pa-
1This notion is called weak stability in the literature, but we refer to it simply as stability. Irving (1994) proposes

two other natural definitions of stability in the presence of indifferences: strong stability and super stability. These are
stronger notions, but contrary to weak stability, they are not guaranteed to exist.
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pers attempt to characterize the set of incentive compatible (in a strong sense of

strategy-proofness) and efficient mechanisms and demonstrate that they have a hi-

erarchical structure. In our more general setup, we are not able to obtain such a

clean characterization result, however, we show that stable and efficient matchings

are still arguably hierarchical by nature.

Hierarchical nature of stable and efficient matchings

We propose an assignment rule (mechanism), which we call the decreasing refined

priority rule (Definition 2.3.5), that always generates a stable and Pareto efficient

matching for any given problem (Proposition 2.3.2). The rule is in the spirit of

the classical serial dictatorship rule where an ordering of projects (in the queue)

is used to determine the allocation of firms: the first project in the queue picks

his best firm and leaves with that firm, from what remains the second project in

the queue picks, from what remains the third project in the queue picks and so on.

Thus, the serial dictatorship rule starts with the set of all firms, and at every step

eliminates a firm based on preferences of projects. The decreasing refined priority

rule adds two additional tweaks to this procedure:

* Firstly, the priority (queue) order over projects used by the rule is always

aligned with the exogenous ranking over the indifference classes of projects:

the projects in the top indifference class appear first in the queue order, fol-

lowed next by projects in the second-from-top indifference class, and so on

(see, Definition 2.3.2). This ensures stability.

* Secondly, the rule starts with the set of matchings instead of the set of firms.

Following the queue order, at every step, the rule eliminates all2 matchings

where the project being assigned does not get his best firm (one of his best

firms if there are many), from the set of matchings available at that step. This

refinement ensures that the resulting matching is Pareto efficient, given that

preferences exhibit indifferences. This point is elaborated further in Example

2.3.1 and the discussion thereafter.
2As opposed to eliminating only one firm from the set of available firms.
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2. Stable matchings with indifferences and the priority rule

Stability and Pareto efficiency do not however characterize the decreasing re-

fined priority rule (Proposition 2.3.3). Nevertheless, we show that every matching

that is both stable and Pareto efficient can be generated by a decreasing (non-

refined) priority rule. Therefore, in our proposed domain, stable and Pareto effi-

cient matchings are hierarchical by nature: they can be thought of as an outcome of

projects being arranged in a queue order, with each project receiving one of their

best firms in turn, from the set of remaining firms (Proposition 2.3.5).

In Section 2.4, we discuss a strengthening of the stability notion to strong sta-

bility. We show that strongly stable matchings (those matchings where there are

not even weak blocking pairs, where only one member of the pair strictly benefits)

exist very rarely, and imply a very specific structure of both preferences and the

strongly-stable matchings themselves. If they do exist at some preference profile,

then the set of all strongly stable matchings at that profile is exactly equal to the

set of all matchings that can be generated by a decreasing refined priority rule at

that profile (Proposition 2.4.1).

2.1.1 Relation to the existing literature

It is well known that, in a bilateral matching problem, when every agent has a

strict (but arbitrary) preference over agents on the other side, the size of all stable

matchings are identical, a consequence of the Lone Wolf Theorem3 (McVitie and

Wilson, 1970; Gale and Sotomayor, 1985). This result breaks down if we allow

for general preferences (Roth and Sotomayor, 1990). However, in our domain with

indifferences, the equivalence of stable matchings with respect to size remains true

(Proposition 2.2.1).

This paper contributes to the literature on matching with indifferences. In par-

ticular, it is closely related to the Stable Marriage problem with Ties and Incom-

plete Lists with a Master List (Irving et al., 2008). The term “Ties” simply means

indifferences in our context; “Incomplete Lists” refer to the fact that each agent’s
3The theorem illustrates that the set of unmatched agents does not depend on the choice of stable matching.
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preference list may consist of only a subset of the members of the other side (the

acceptable partners of this agent); and an agent’s preference list contains her ac-

ceptable partners ranked precisely according to the “Master List”. In the above

problem, Irving et al. notes that even when preferences of both sides are derived

from a master list4, weakly stable matchings need not have the same size, and

subsequently discusses the algorithmics of finding weakly stable matchings that

maximizes size. In our model, where preferences of only one side are derived

from a master list, while preferences of the other side are not incomplete5; weakly

stable matchings necessarily have the same size (Proposition 2.2.1). This result is

of practical significance since, in the presence of incomplete lists and ties (indif-

ferences), finding a weakly stable matching that maximizes size is a hard problem;

even under restrictions on the number and length of ties (Manlove et al., 2002), or

preferences of both sides being limited to a master list (Irving et al., 2008). For

a comprehensive survey on algorithmic results related to matching with indiffer-

ences we refer the reader to Manlove (2013).

On structural results, Manlove (2002) proves the lattice structure of the set of

strongly stable matchings with ties (without allowing for incomplete lists) and

notes the absence of such a structure for the set of weakly stable matchings. Our

structural results, therefore, do not concern the set of weakly stable matchings. We

argue instead that, every matching that is both (weakly) stable and efficient admits

a hierarchical structure in a precise sense (Proposition 2.3.5).

Other matching applications with indifferences include: the school choice prob-

lem (Erdil and Ergin 2008, 2017); the housing market where agents are initially

endowed with a house (Aziz and De Keijzer, 2012); kidney exchange models (Roth

et al., 2005; Andersson and Kratz, 2020).

Our setting can be considered as an extension of the “house allocation” model.

Here the role of “houses” is played by “firms”, but contrary to that model, firms

4Note that, there are two master lists, one for each side of the market.
5We assume that each project prefers any firm over remaining unmatched.
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now have preferences, albeit rather homogeneous ones (see, Section 2.2.1). Our

model is reduced to the “house allocation” model with arbitrary (non-strict) pref-

erences when all projects have the same rank. In this reduced model, Bogomolnaia

et al. (2005) showed that the set of all stable and efficient assignments is equal to

the set of all assignments obtained by some refined priority rule6. In our more gen-

eral case, we do not obtain such a crisp equivalence result, though our results have

a similar flavour. A decreasing refined priority rule always outputs a stable and

efficient matching (Proposition 2.3.2). Every matching that is both stable and ef-

ficient is a result of a decreasing (non-refined) priority rule (Proposition 2.3.5). If

a preference profile admits a strongly stable matching7, then the set of all strongly

stable matchings is equal to the set of all matchings that can be generated by some

decreasing refined priority rule (Proposition 2.4.1).

Finally, the preference domain studied in this paper is also related to that of the

Refugee Matching problem discussed by Andersson and Ehlers (2019). In their

model, refugee families (projects) are also ordered according to family size giving

rise to blocks containing projects of the same size. Hosts (firms) have limited beds

and therefore their preferences have a nested structure8 over these blocks similar

to ours. The differences are as follows.

Firstly, in our domain, hosts are necessarily indifferent between all refugee fam-

ilies in the same block (as a result we have indifference classes); while in their

model, hosts can have general preferences over refugee families within the same

block while respecting the nested structure between blocks.

Secondly, contrary to our domain, their model does not elicit any preferences

from refugee families whatsoever. It is important to take into account their pref-

erences: there is growing evidence that the initial placement of refugee families

greatly affects outcomes like education, job prospects, and earnings — which in

turn profoundly alters their lifetime welfare, as most refugees do not move from

6Since all projects have the same rank, the decreasing priority order plays no role.
7The existence of a strongly stable matching is however a rare event. For a detailed discussion, see Section 2.4.
8Hosts prefer refugee families of greater size subject to the condition that the host has sufficient number of beds.
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the localities to which they are resettled for many years (Åslund and Rooth (2007),

Damm (2014), Jones and Teytelboym (2017), Åslund et al. (2010), Martén et al.

(2019)). As described in Jones and Teytelboym (2018), ignoring families’ individ-

ual preferences has even caused families seeking shelter in Finland to cancel their

asylum applications.

2.1.2 Outline of the chapter

In Section 2.2 we present the formal model and the result that stable matchings

have the same size. Section 2.3 presents the formal definitions for candidate as-

signment rules and evaluates them with respect to stability and efficiency. Section

2.4 discusses the strengthening of stability to strong stability. A concluding dis-

cussion follows. Some proofs are relegated to the appendix.

2.2 Model

Throughout the rest of this chapter, we use the project-firm terminology for con-

venience. We take the liberty to personify projects and firms, and refer to them

using pronouns “he” and “she” respectively. There is a finite set J = {1,2, ..., |J|}
of projects indexed by j and a finite set F of firms indexed by f . Furthermore, J

is partitioned into a set of indifference classes {J1,J2, ...,Jp}, and there is an ex-

ogenously given (strict) order ≻ over these classes: say it is Jp ≻ Jp−1 ≻ ... ≻ J1,

without loss of generality. All the above ingredients are fixed for the rest of the

chapter.

2.2.1 The Preference Structure

The preference relation of every firm f ∈ F is completely identified by a threshold

t f ∈ {1,2, ..., p} that she reports. Let R∗
k be a weak order (complete and transitive

relation) over J∪{ f}
(

f ∈ F
)

defined as below:

Jk P∗
k Jk−1 P∗

k ... J1 P∗
k f P∗

k Jp I∗k Jp−1 ... I∗k Jk+1
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2. Stable matchings with indifferences and the priority rule

where, P∗
k and I∗k denotes the strict and indifference part of R∗

k respectively and

k ∈ {1,2, ..., p}. Then, the preference relation of a firm f ∈ F with threshold t f ,

denoted by R f is given by R∗
t f

, i.e., R f ≡ R∗
t f

where t f ∈ {1,2, ..., p} and the f in

the definition of R∗
t f

is to be interpreted simply as the corresponding firm f . The

preferences of firms have a nested structure in the sense that if for two firms f and

f ′ we have R f ≡ R∗
k and R f ′ ≡ R∗

k′ with k > k′, then over the indifference classes

Jk′,Jk′−1, ...,J1, both R f and R f ′ are identical.

Preference of a project j ∈ J, denoted by R j, is a weak order over the set F∪{ j}.

Let Pj and I j denote the antisymmetric and symmetric parts of R j, respectively.

Let R = (Ri)i∈J∪F denote a profile of preferences. Given a profile R, we will

say that a firm f
(
resp., project j

)
is acceptable to a project j

(
resp., firm f

)
if

f Pj j
(
resp., jPf f

)
. We will say that a project j and a firm f are compatible if they

find each other mutually acceptable. We assume throughout that all projects find

every firm acceptable, i.e., for any project j ∈ J, we assume that f Pj j ∀ f ∈ F .

Finally, let R denote the set of all such preference profiles.

2.2.2 Notations and definitions

A matching is a function µ : J∪F → J∪F such that:

• µ( j) ∈ F ∪{ j} ∀ j ∈ J

• µ( f ) ∈ J∪{ f} ∀ f ∈ F

• µ( f ) = j ⇐⇒ µ( j) = f , ∀ j ∈ J, f ∈ F

Let M be the set of all possible matchings.

A matching µ ∈ M is individually rational at profile R ∈ R if every agent is

acceptable to his or her mate, i.e., ∄ i ∈ J∪F such that iPiµ(i).

A matching µ ∈M is strongly blocked at profile R∈ R by a pair ( j, f )∈ J×F ,

if jPf µ( f ) and f Pjµ( j). A matching µ ∈ M is weakly blocked at profile R ∈ R

by a pair ( j, f )∈ J×F , if jR f µ( f ) and f R jµ( j) (with at least one of the relations

being strict). A matching µ ∈ M is stable at profile R ∈ R, if it is individually

rational and is not strongly blocked by any pair of agents. A matching µ ∈ M
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is strongly stable at profile R ∈ R, if it is individually rational and is not even

weakly blocked by any pair of agents.

A matching µ ∈ M is Pareto efficient (henceforth, efficient) at profile R ∈ R,

if there is no other matching µ ′, such that µ ′(i)Ri µ(i) ∀ i ∈ J∪F and µ ′(i)Pi µ(i)

for at least one agent i ∈ J∪F .

The size of a matching µ ∈ M is defined as the number of matched pairs,

i.e., the number of pairs ( j, f ) ∈ J×F such that µ( j) = f .

Let us recall that J is partitioned into a set of indifference classes. Suppose we

consider one such class Jk, k ∈ {1,2, ..., p}. Now consider a project j ∈ Jk and a

firm f with R f ≡ R∗
s where s < k. Then, given the way the preference R∗

s is defined,

project j is unacceptable to her. Then, although project j considers firm f as an

acceptable match, individual rationality dictates that they are not matched to each

other. Therefore, it will be useful to keep track of all firms that consider the class

Jk as acceptable.

Given a preference profile R and some k ∈ {1,2, ..., p}, let C(Jk,R) denote the

set of firms that find projects in Jk as acceptable, i.e., for every firm f ∈ C(Jk,R)

we have R f ≡ R∗
s where s ≥ k (therefore, Jk Pf f ). Given the nested structure of

preferences, for k > k′, every firm that considers Jk acceptable also finds Jk′ ac-

ceptable but not necessarily the other way round. As a result, we have an inclusion

C(Jk,R) ⊂ C(Jk′,R) for k > k′. In particular, C(Jp,R) ⊂ C(Jp−1,R)... ⊂ C(J1,R).

Let J<k be a shorthand to denote Jx with x < k. J≤k, J≥k and J>k are similarly

defined. Finally note that, every firm f ∈C(Jk,R) strictly prefers Jk over J<k, i.e.,

we have Jk Pf J<k for every f ∈C(Jk,R).

Given a matching µ , for every indifference class Jk, k ∈ {1,2, ..., p}, the set of

projects in Jk who are matched under µ are collected in the set below:

Jµ

k = { j ∈ Jk | µ( j) ̸= j}

The next proposition brings out the relationship between the size of all stable

matchings at any given preference profile.
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2. Stable matchings with indifferences and the priority rule

Proposition 2.2.1. Given any profile of preferences R ∈ R, any two stable match-

ings µ and µ ′ must have the same size. In particular, for every k ∈ {1,2, ..., p},

|Jµ

k |= |Jµ ′

k |

Proof. Consider first the top indifference class of projects Jp. Let µ and µ ′

denote two stable matchings such that |Jµ
p |> |Jµ ′

p |, i.e., fewer projects from Jp are

matched under µ ′ compared to µ . Since a project in Jp can only be matched to

some firm in C(Jp,R), this means that there are at least |Jµ
p | firms in C(Jp,R). But

only |Jµ ′
p | of them are matched under µ ′. This implies that there exists at least

one firm f ∈ C(Jp,R) who was matched to a project in Jp under µ but is either

unmatched or is matched to a project in J<p under µ ′. But |Jµ
p | > |Jµ ′

p | implies

there is a project j ∈ Jp who is matched under µ but not under µ ′. Pair ( j, f )

would then block µ ′, a contradiction to the stability of µ ′.

Next, let k < p be the largest integer such that there are two stable matchings

µ and µ ′ such that |Jµ

k |> |Jµ ′

k |, i.e. fewer projects from Jk are matched in µ ′ than

in µ . Therefore, both µ and µ ′ matches the same number of projects from classes,

Jk+1,Jk+2, ...,Jp, i.e. we have |Jµ
q | = |Jµ ′

q | = Xq ∀q ∈ {k+ 1,k+ 2, .., p}. Let the

total number of such projects be X . Thus,

X = Xk+1 +Xk+2 + ...+Xp

This means that there are at least X firms in C(Jk+1,R). Now, since |Jµ

k | projects

are matched under µ , it must be the case that there are at least X + |Jµ

k | firms in

C(Jk,R). However, only X + |Jµ ′

k | < X + |Jµ

k | firms from C(Jk,R) are matched to

projects from J≥k under µ ′. Therefore, there is a firm f ∈ C(Jk,R) who is either

unmatched or is matched to a project in J<k (less preferred to Jk) under µ ′. Also,

|Jµ

k | > |Jµ ′

k | implies there is at least one project j ∈ Jk which is unmatched under

µ ′. Then pair ( j, f ) blocks µ ′, a contradiction. ■

This result yields an important insight into the refugee matching problem. Since

Jk denotes the set of refugee families of a given size k, the above proposition es-
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sentially implies that when the designer insists that the matching satisfy a basic

incentive compatibility criterion like stability, there is no room for further increas-

ing the sum total of all refugees who are settled.

2.3 Stable and efficient matchings

In the previous section, we have seen that stable matchings have the same size.

This implies that, in the space of stable and Pareto efficient matchings, the designer

is not constrained by welfare considerations regarding the matching size. In this

section, stability and efficiency are therefore the focus of the study. We propose

and discuss various candidate assignment rules to solve any instance of the given

problem.

Let us recall that the exogenously given order over the indifference classes of

projects {J1,J2, ...,Jp} is given by: Jp ≻ Jp−1 ≻ ...≻ J1.

The assignment rules we discuss are parameterized by a priority order over

projects. A priority order (or, queue order) over the set of projects J is a bijection

mapping σ : J → J. To refer to positions in a queue order, we will use the phrase

queue slots.

Since preferences of one side (firms) are aligned (see, Section 2.2.1), a natural

starting point is the priority rule (or, the serial dictator rule), where the other side

(projects) is ordered in a queue and allowed to choose a firm in turn. Next, we

define this rule formally. Recall that C(Jk,R) denotes the set of firms that are

compatible with projects in Jk at preference profile R.

For any given subset of firms F̄ ⊂ F , a preference profile R, and a project j such

that j ∈ Jk, let

B j(F̄ |R)=

{ f ∈ F̄ ∩C(Jk,R) | f R j f ′ ∀ f ′ ∈ F̄ ∩C(Jk,R)} , if F̄ ∩C(Jk,R) ̸= /0

{ j} , otherwise
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denote, the subset of F̄ consisting of best compatible firms for project j among

all compatible firms in F̄ ; if every firm in F̄ is incompatible with project j, it is

just the set containing project j. Note that the cardinality of B j(F̄) can be strictly

greater than one.

Definition 2.3.1. The priority rule is parameterized by an arbitrary priority or-

der σ over projects. For any fixed priority order σ , the priority rule is a cor-

respondence ψP
σ : R ↠ M such that, for any preference profile R we have that

ψP
σ (R) = M, with M denoting a set of matchings, where every matching µ ∈ M is

constructed iteratively such that:

µ(σ(1)) ∈ Bσ(1)
(
F
∣∣ R
)

µ(σ(2)) ∈ Bσ(2)
(
F \

{
µ(σ(1))

} ∣∣ R
)

µ(σ(3)) ∈ Bσ(3)
(
F \

{
µ(σ(1)), µ(σ(2))

} ∣∣ R
)

...

µ(σ(|J|)) ∈ Bσ(|J|)
(
F \

{
µ(σ(1)), µ(σ(2)), ..., µ(σ(|J|−1))

} ∣∣ R
)

In words, the priority rule sequentially (according to priority order σ ) assigns

every project to one of his best compatible firms at every iteration, from the set

of remaining compatible firms at that iteration. If no compatible firm is available,

then the project remains unmatched. Since preferences exhibit indifferences, based

on the choice made at each iteration, several different matchings may be reached

by this rule for any fixed profile of preferences.

Given any profile R, an outcome of the priority rule, i.e., a matching µ ∈ ψP
σ (R)

for some priority order σ , is not necessarily stable. This is because the priority

order σ is not necessarily aligned with the exogenous order ≻ over the indifference

classes of projects. That is to say, for two projects j ∈ Jk and j′ ∈ J<k
9, it may be

the case that σ( j′) < σ( j), i.e., project j′ is assigned earlier. Therefore, if project
9Recall that, J<k is a shorthand to denote Jx for some x < k.
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j′ is assigned to some firm f ∈ C(Jk,R) that project j strictly prefers to his own

partner, then ( j, f ) forms a strong blocking pair since firm f is also compatible

with project j and hence prefers project j over j′.

The above observation necessitates that the priority order be aligned with the

exogenous order Jp ≻ Jp−1 ≻ ...≻ J1. Accordingly, we define next the notion of a

decreasing priority order and correspondingly, the decreasing priority rule. Indeed,

it turns out that this new rule solves the above-mentioned issue and always outputs

a stable matching (see Proposition 2.3.1).

Definition 2.3.2. For any priority order σ , the associated decreasing priority or-

der, denoted by σD, is evaluated in the following way.

For any two projects i and j, let i ∈ Jx and j ∈ Jy. Then σD is derived from σ

such that:

* if x > y, then σD(i) < σD( j)

* if x = y, then σD(i) < σD( j) ⇐⇒ σ(i) < σ( j)

A priority order σ is called a decreasing priority order if σ = σD.

In words, for any given priority order σ , the associated decreasing priority order

σD aligns the priority of projects according to the exogenous order ≻ over the

indifference classes of projects: any project j ∈ Jk gets a better priority in σD over

all projects j′ ∈ J<k; while, if two projects j, j′ ∈ Jk, i.e., they belong to the same

indifference class, then their relative priority in σD remains the same as in the

original priority order σ .

Definition 2.3.3. The decreasing priority rule ψDP
σ with respect to any fixed pri-

ority order σ , is simply the priority rule with respect to the associated decreasing

priority order σD. That is, for any preference profile R, we have,

ψ
DP
σ (R) = ψ

P
σD(R)

63



2. Stable matchings with indifferences and the priority rule

Proposition 2.3.1. Consider a preference profile R ∈ R and let µ ∈ ψDP
σ (R), then

µ is stable but not necessarily efficient.

The proof of stability appears in Appendix B. Here we state the intuition: since

the priority order over projects is aligned according to ≻, whenever a firm f

strictly prefers a project j over her own partner, it must be the case that this firm

f was available to be assigned to project j, which in turn implies project j either

prefers his current partner over firm f or is indifferent between them. As a result,

the blocking pair of the kind discussed above in the context of the priority rule

never forms.

Although always stable, the output (matching) produced by the decreasing pri-

ority rule is not necessarily efficient. This inefficiency stems from the combination

of two facts: at any given iteration; firstly, the rule does not take into account

the preferences of projects that are to be matched in subsequent iterations; and

secondly, preferences of projects exhibit indifferences. The following example

illustrates this inefficiency.

Example 2.3.1. Consider a single indifference class J = {1,2} of projects and two

firms A and B, both of which are compatible with this class.

Suppose preferences of projects are as below:

R1 R2

A , B A

B

Then,

ψDP
σ (R) =

{(
1 2

A B

)
,

(
1 2

B A

)}
for the priority order σ : σ(1) = 1,σ(2) = 2.

It is easy to check that both these matchings are stable, while only the second is

also efficient.

In the above example, project 1 is indifferent between firm A and B, and project

1 has the higher priority. Just ensuring that this project gets one of his best com-

patible firms without considering that project 2 strictly prefers firm A may lead
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to inefficiency. Additional refinements or adjustments are therefore necessary to

guarantee efficiency. Specifically, in any iteration, if one encounters the scenario

that there are multiple best compatible firms for the project in question, one must

find a way to not outright eliminate any possibility that does not hurt this concerned

project. Doing so allows for utility gains to be had in future iterations.

Accordingly, unlike in the case of the priority rule, where we start from the set

of all firms and remove a firm at every iteration; we instead modify the procedure

and start from the set of all matchings. At any iteration, it is then possible to

keep every option (matching) where the currently assigned project receives one of

his best compatible firms (even if there are multiple such firms), allowing for full

utility gains to be had in future iterations. We call this modified procedure the

refined priority rule.

To formally define it, we will use the notation B∗(· |R), which is the counterpart

of B(· |R) presented earlier in the context of the priority rule. The difference is

that, B operates on a set of firms while B∗ operates on a set of matchings. We will

additionally require the following notation. Given a set of matchings M ⊂ M , a

preference profile R, and a project j such that j ∈ Jk, let us denote by C∗
j (M,R) :=

{µ ∈ M | µ( j) ∈C(Jk,R)}, the subset of M where project j is matched to a firm

which is compatible with project j at preference profile R.

For any given set of matchings M ⊂ M , a preference profile R and a project j

such that j ∈ Jk, let

B∗
j(M |R)=

{µ ∈C∗
j (M,R) | µ( j)R j µ ′( j) ∀µ ′ ∈C∗

j (M,R)} , if C∗
j (M,R) ̸= /0

{µ ∈ M | µ( j) = j} , otherwise

denote, the subset of M consisting of the best compatible matchings for project

j in the sense that project j is matched to one of his best-ranked compatible firms

among all matchings in M. If there are no matchings where project j is matched to

a compatible firm, B∗
j(R,M) is simply the subset of M consisting of all matchings

65



2. Stable matchings with indifferences and the priority rule

where project j is unmatched.

Definition 2.3.4. A refined priority rule with respect to any fixed priority order σ ,

is a correspondence ψRP
σ : R ↠ M such that, for any preference profile R, we

have that ψRP
σ (R) = M|J|, where M|J| is defined as follows. Let M0 = M (the set of

all possible matchings),

M1 = B∗
σ(1)
(
M0 |R

)
M2 = B∗

σ(2)
(
M1 |R

)
...

M|J| = B∗
σ(|J|)

(
M|J|−1 |R

)
Clearly, the above rule can be multi-valued, but note that a direct consequence

of its definition is that all projects are indifferent between all elements (matchings)

in M|J|.

Definition 2.3.5. The decreasing refined priority rule ψDRP
σ with respect to any

fixed priority order σ , is simply the refined priority rule with respect to the as-

sociated decreasing priority order σD. That is, for any preference profile R, we

have,

ψ
DRP
σ (R) = ψ

RP
σD(R)

Proposition 2.3.2. Consider a preference profile R ∈R and let µ ∈ ψDRP
σ (R), then

µ is both stable and efficient at R.

The formal proof of the proposition appears in Appendix B. Here we present

an informal discussion. The decreasing refined priority rule always uses a priority

order that is aligned with the exogenous order Jp ≻ Jp−1 ≻ ... ≻ J1. This ensures

that any selection (matching) from the set ψDRP
σ (R) is stable10 at profile R . Since

this rule is also refined11, any selection from ψDRP
σ (R) also happens to be efficient

10See discussion preceding Definition 2.3.2.
11Refer to the section following Example 2.3.1 for an elaborate discussion.
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2.3. Stable and efficient matchings

at profile R. Intuitively, since at every iteration, the rule only eliminates those

matchings in which, the project assigned at that iteration does not get one of his

best firm conditional on every project in all previous iterations receiving one of

their best firm; it leaves no room for increasing welfare further. Any attempt at

increasing an agent’s welfare must come at the expense of another.

Next, we discuss the structure of matchings that are both stable and efficient.

For any given preference profile, we ask, whether or not every stable and efficient

matching at that profile always results from one of the earlier defined rules.

Proposition 2.3.3. There exists a preference profile R, and a matching µ that is

stable and efficient at R such that µ /∈ ψDRP
σ (R).

Proof. Consider the following example.

Suppose we have indifference classes J2 = {1,2} and J1 = {3} of projects and three

firms F = {A,B,C} compatible with all projects. Let preferences be as follows:

(a) Projects

R1 R2 R3

A , B A B
C C A, C

B

(b) Firms

RA RB RC

1, 2 1, 2 1, 2
3 3 3

The matching µ =

(
1 2 3

A C B

)
is stable and efficient at R.

The two decreasing priority orders are:

σ : σ(1) = 1,σ(2) = 2,σ(3) = 3

σ̄ : σ̄(1) = 2, σ̄(2) = 1, σ̄(3) = 3

It is easy to verify that µ /∈ ψDRP
σ (R) and µ /∈ ψDRP

σ̄
(R). ■

Proposition 2.3.3 implies that stability and efficiency do not characterize the

decreasing refined priority rule.

Proposition 2.3.4. There exists a preference profile R, and a matching µ that is

stable and efficient at R such that µ /∈ ψRP
σ (R).
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2. Stable matchings with indifferences and the priority rule

Proof. Consider the following example with two projects J = {1,2} and two

firms F = {A,B}. Preferences are as under:

(a) Projects

R1 R2

A , B A
B

(b) Firms

RA RB

1 1
2 2

The matching µ =

(
1 2

A B

)
is stable and efficient at this profile.

But the refined priority rule with both possible priority orders produces the

matching µ ′ =

(
1 2

B A

)
. ■

For the example in the preceding proof, µ and µ ′ are the two stable and efficient

matchings at profile R. For priority order σ with σ(1) = 1 and σ(2) = 2, we have,

ψDP
σ (R) = {µ,µ ′}, while ψRP

σ (R) = {µ ′}. This difference is driven by the fact that

the latter operates on the set of matchings while the former on the set of firms.

Project 2 strictly prefers µ ′ to µ while project 1 is indifferent between them. Using

the refined priority rule, both µ and µ ′ survive after the first iteration and µ is

thereafter eliminated by project 2. But if project 1 is assigned to A = µ ′(2) in

the first iteration, it is no longer available for project 2. Therefore, µ can still be

generated by a decreasing priority rule.

Proposition 2.3.5 below shows that every stable and efficient matching can be

generated by a decreasing priority rule. This demonstrates that matchings that are

both stable and efficient are hierarchical by nature: they can be thought of as a

result of projects being arranged in a queue order, with each project receiving one

of their best firm in turn, from the set of remaining firms. Efficiency is necessary

for this result to hold. Stable but not efficient matchings do not necessarily admit

this structure (Example 2.3.2).

Example 2.3.2. One indifference class J = {1,2} of projects. Two firms A and B,

both of which are compatible with this class. Preferences of projects are as under:
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2.3. Stable and efficient matchings

R1 R2

A B

B A

The matching µ =

(
1 2

B A

)
is stable but not efficient. It is easy to check that there

is no priority order σ such that µ ∈ ψP
σ (R).

Proposition 2.3.5. Consider a preference profile R ∈ R and let µ be a stable and

efficient matching at R. Then, there is a priority order σ over projects such that

µ ∈ ψDP
σ (R).

The formal proof of this proposition appears in Appendix B. We briefly outline

the proof steps next. Fix any indifference class of projects Jr. Since µ is stable

at R, a firm f ∈ C(Jr,R) is matched to some project in J<r under µ only in the

event that all projects in Jr are already matched to some firm in C(Jr,R) that they

weakly prefer over this firm f . Thus, in a stable matching, the demand of projects

in Jr is catered to before projects in J<r; and accordingly projects in Jr receive

an earlier queue slot compared to projects in J<r. This means the priority order

is decreasing. We still need the individual queue slots for projects within every

indifference class. Fix the top class Jp. By efficiency, we must have that at least one

project in Jp is matched to his best firm under µ . This fact identifies precisely the

project(s)12 which receive the earliest queue slot within projects in Jp. Removing

the corresponding matched firms from the set of firms and repeatedly applying the

same arguments until we exhaust Jp gives the individual queue slots for all projects

within Jp. Finally, repeating the process for Jp−1, Jp−2, · · · , J1 in turn, completes

the proof.

Note that, even though one can always find a priority order σ such that µ ∈
ψDP

σ (R) for any matching µ that is stable and efficient at R; every selection (match-

ing) from the set ψDP
σ (R), despite always being stable, is not guaranteed to be

12If there are multiple such projects, any order between them works.
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2. Stable matchings with indifferences and the priority rule

efficient (see, Proposition 2.3.1 or Remark 2.3.1). Therefore, from a practical im-

plementation standpoint, letting a project choose in turn according to a queue order

may not always lead to a desirable outcome. The designer is better off using the

decreasing refined priority rule.

Let Σ denote the set of all possible decreasing priority orders over the set of

projects. For any profile R, denote by MSE(R) the set of all stable and efficient

matchings at R. Next denote by MDP(R) :=∪σ∈Σ ψDP
σ (R), the set of all matchings

that can be obtained using some decreasing priority rule. Similarly, let MDRP(R)

denote the set of all matchings that can be obtained using some decreasing refined

priority rule.

The main findings in the preceding results can be summarised as follows:

Remark 2.3.1. For any preference profile R ∈ R,

MDRP(R)⊆ MSE(R)⊆ MDP(R)

Furthermore, there are profiles where one or both of these inclusions above are

strict.

2.4 Strongly stable matchings: existence and structure

Strongly stable matchings (those where there are not even weak blocking pairs,

where only one member of the pair strictly benefits) are not guaranteed to exist

in our preference domain (see, for instance, the example used in Proposition 2.3.4

which does not admit any strongly stable matching). In fact, the existence of a

strongly stable matching is a rare event and implies a very specific structure of

both preferences and the strongly stable matchings themselves. We outline this

phenomenon using the lemmas presented below.

In what follows we assume that the preference profile admits at least one strongly

stable matching (henceforth, SSM).
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2.4. Strongly stable matchings

Lemma 2.4.1. Every SSM is efficient.

Proof. Let µ be a SSM that can be Pareto improved by matching µ ′. There is

an agent x (firm or project) who strictly prefers µ ′ to µ . Hence, x is matched at µ ′,

say to some agent y. Since µ ′ is Pareto superior to µ , y is at least as well at µ ′ as

at µ . Hence, the pair (x,y) weakly blocks µ , a contradiction to µ being a SSM.

■

Lemma 2.4.2. In any SSM, for every k ∈ {1,2, · · · , p}, the set of projects Jk is

either fully matched or fully unmatched.

Proof. Fix a SSM µ . Suppose there are two project i, j ∈ Jk, such that i is

matched with firm f at µ while j is unmatched. Since firm f is indifferent between

projects i and j, the pair ( j, f ) weakly blocks µ , a contradiction. ■

For any matching µ and a set of projects Ĵ, let µ(Ĵ) denote the set of firms

matched with some project in Ĵ.

Lemma 2.4.3. Fix a preference profile and a SSM µ . For any k ∈ {1,2, · · · , p},

let Fk denote the set of firms that are not matched with some project in ∪p
x=k+1 Jx

at µ . Then,

(a) For any matched project j ∈ Jk, firm µ( j) belongs to the top indifference class

of this project j among all compatible firms of project j in the set Fk.

(b) A firm f ∈ Fk \µ(Jk) does not belong to the top indifference class (within com-

patible firms in Fk) of any project j ∈ Jk.

(c) µ(Jk) = Tk, where Tk ⊂ Fk is the set of firms that are in the top indifference

class (within compatible firms in Fk) for at least one project j ∈ Jk.

Proof. Part (a): If project j would strictly prefer some firm f ∈ Fk to µ( j),

then ( j, f ) would weakly block µ (firm f cannot strictly prefer its current match

to j, since it is not matched to a project of better rank).

Part (b): Any firm f ∈ Fk \ µ(Jk) compatible with projects in Jk, prefers any

project j ∈ Jk to its match in µ . If this firm f is in the top (within compatible firms
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2. Stable matchings with indifferences and the priority rule

in Fk) indifference class of any one such project j ∈ Jk, then project j is indifferent

between firms f and µ( j). Hence ( j, f ) weakly blocks µ , a contradiction.

Part (c): Take any firm f ∈ µ(Jk). Then, by Part (a), we have f ∈ Tk and so,

µ(Jk)⊂ Tk. Next, assume for contradiction that f ∈ Tk but f /∈ µ(Jk). This means

f ∈ Fk \µ(Jk). Then by Part (b) we have, f /∈ Tk, a contradiction. Thus, f ∈ µ(Jk)

and so, Tk ⊂ µ(Jk). Hence, µ(Jk) = Tk. ■

Lemma 2.4.4. Let µ be a SSM at preference profile R. Suppose k∗ ∈ {1,2, · · · , p}
is the largest integer such that there is a project j ∈ Jk∗ which is matched at µ .

Then,

(a) There does not exist a firm f which is compatible with projects in J>k∗ at pref-

erence profile R.

(b) Jk∗ is always fully matched at every SSM at R.

Proof. (a): If such a firm would exist, then that firm would form a weak

blocking pair with a project of rank better than k∗.

(b): Since there is a project j ∈ Jk∗ which is matched at µ , the firm µ( j) finds

projects in Jk∗ compatible. By Lemma 2.4.3(a), this firm µ( j) belongs to the top

indifference class of project j among all his compatible firms. Therefore, this firm

µ( j) must be matched to a project in Jk∗ (possibly different from j) in every other

SSM. This implies at least one project in Jk∗ must be matched at every SSM at R.

By Lemma 2.4.2, Jk∗ must then be fully matched in every SSM at R. ■

Lemma 2.4.5. Let µ and µ ′ be two SSMs for a given preference profile R. Then

the set of firms matched to every indifference class of projects Jk remains the same

across these two SSMs, i.e.,

µ(Jk) = µ
′(Jk) ∀k ∈ {1,2, · · · , p}.

Proof. Let k∗ ∈ {1,2, · · · , p} be the largest threshold such that projects in

Jk∗ are compatible for some firm in F at preference profile R. Then by indi-

vidual rationality, all projects in J>k∗ are unmatched in both µ ′ and µ . Thus,
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2.4. Strongly stable matchings

µ(Jk) = µ ′(Jk) ∀k ∈ {k∗+1,k∗+2, · · · , p}. Moreover, Lemma 2.4.4 implies that

both µ ′ and µ must fully match all projects in Jk∗. By Lemma 2.4.3(c) we have

that, µ(Jk∗) = Tk∗ = µ ′(Jk∗), where Tk∗ is the set of all firms which are in the top

indifference class for at least one project in Jk∗.

Next let k∗∗ ∈{1,2, · · · ,k∗−1} be the largest threshold such that projects in Jk∗∗

are compatible for some firm in F \Tk∗ at preference profile R. If k∗∗ < k∗− 1,

then projects in Jk∗∗+1, Jk∗∗+2,... , Jk∗−1 are unmatched in both µ and µ ′, since

there are no compatible firms for these projects at preference profile R who are not

already matched to some better-ranked project in both µ and µ ′. Furthermore, by

Lemma 2.4.4 and Lemma 2.4.3(c) we have µ(Jk∗∗) = Tk∗∗ = µ ′(Jk∗∗).

Proceeding in this fashion completes the proof. ■

Lemma 2.4.6. If a preference profile admits more than one SSM, all projects are

indifferent between them.

Proof. Follows from Lemma 2.4.3(a) and Lemma 2.4.5. ■

The implications from the preceding lemmas can be summarized as follows. If

a preference profile admits at least one SSM, then in every such SSM, any set of

projects Jk of a given rank is either fully matched or fully unmatched. Moreover,

in every such SSM, projects in Jk are matched to the same set of firms (and those

matches (firms) are the best for these projects among all compatible firms who are

not matched with a better-ranked project). These observations drive the equiva-

lence result in Proposition 2.4.1: if a preference profile admits at least one strongly

stable matching, then the set of all strongly stable matchings at that profile, is ex-

actly equal to the set of all matchings that can be generated by a decreasing refined

priority rule at that profile.

For any preference profile R, let MSS(R) denote the set of all matchings that

are strongly stable at profile R. Also recall that MDRP(R) denote the set of all

matchings which can be obtained using some decreasing refined priority rule, i.e.,

MDRP(R) = ∪σ∈Σ ψDRP
σ (R), where Σ denotes the set of all possible decreasing
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2. Stable matchings with indifferences and the priority rule

priority order. The following proposition establishes the relationship between these

two sets.

Proposition 2.4.1. Assume that preference profile R admits a SSM. Then we have,

MSS(R) = MDRP(R)

The proof appears in Appendix B.

2.5 Discussion and concluding remarks

This chapter proposes a domain where the preferences of one side of the market are

derived from a master preference list, while agents on the other side have general

preferences. The domain permits indifferences. It is shown that stable matchings

have the same size. An assignment rule (the decreasing refined priority rule) is

proposed that always generates a stable and efficient outcome. In particular, our

discussion on the assignment rules demonstrates the hierarchical nature of stable

and efficient matchings for the problem. We have also briefly discussed the exis-

tence and structure of strongly stable matchings. Here we make some additional

remarks about our results.

Firstly, we have not analyzed the strategic aspects of our assignment rules. It

is easy to check that the decreasing refined (and, non-refined) priority rule is not

manipulable by an individual project. This is not surprising given that the serial

dictatorship rule is well known to be strategy-proof.

Secondly, note that the decreasing refined priority rule is quite expensive in

terms of the information it must elicit about every project’s preference over the

entire set of firms. This may become a major concern as the number of agents gets

very large. It is in regard to this observation that Proposition 2.3.5 has an important

implication which we discuss next.

We know from Proposition 2.3.5 that, for any matching µ that is both stable

and efficient at a preference profile R, there is a (decreasing) priority order σ over
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projects and a (weakly) decreasing sequence {Γ j}
|J|
j=1 of choice sets consisting of

firms, such that µ(σ( j))∈Bσ( j)(Γ j |R) for all j ∈ J. We conjecture the existence of

a sophisticated procedure whereby a stable and efficient matching may be obtained

by a recursively defined procedure, where at each step and given the data from

previous steps, a choice set for every “project” is defined. The “project” then

only needs to report the maximal elements from the choice set. The advantage

of such a procedure would be that the projects will no longer need to report the

entire preference over the complete list of firms. This can reduce the information

elicitation burden greatly and hence can be of particular relevance from a practical

point of view where the number of agents becomes significantly large. We leave

the study of the existence of such a rule open for future investigation.
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2. Stable matchings with indifferences and the priority rule

2.6 Appendix B - Proofs

Proof Proposition 2.3.1

Fix a preference profile, R∈R and let µ ∈ψDP
σ (R) for some decreasing priority

order σ . Suppose µ is not stable: some project j and some firm f block. This

implies project j and firm f form a compatible pair. Let project j ∈ Jk : then firm

f ∈C(Jk,R). Note that, it cannot be the case that both j and f are unmatched at µ

as the rule requires that a project is always assigned a firm if a compatible firm is

available. There are three possible remaining cases:

1. µ( j) = j, µ( f ) = j′ : only firm f is matched.

2. µ( j) = f ′, µ( f ) = f : only project j is matched.

3. µ( j) = f ′, µ( f ) = j′ : both project j and firm f are matched.

Case:1 – Since ( j, f ) block we have: jPf j′ which implies j′ ∈ J<k. Since ordering

is decreasing, this means σ( j) < σ( j′). Since project j comes ahead of project j′

in the ordering and remains unmatched, it must be the case that all firms compat-

ible with j were already matched to some project which was ahead in the queue

compared to j. This means, every firm in C(Jk,R) which is matched under µ , is

matched to some project in J≥k. In particular also firm f . But then µ( f ) = j′ ∈ J<k,

a contradiction.

Case:2 – Since a firm once matched never gets unmatched, firm f was available

to project j when it was assigned f ′. This implies µ( j) = f ′R j f . But since ( j, f )

block we have: f Pj f ′, which is not possible.

Case:3 – Since ( j, f ) block we have: jPf j′ which implies j′ ∈ J<k, which implies

σ( j) < σ( j′). Now, since project j comes ahead in the queue but µ( f ) = j′, it

means that firm f was available when project j was assigned firm f ′. This means

that f ′R j f . But since ( j, f ) block we have: f Pj f ′, which is not possible. ■
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Proof of Proposition 2.3.2

Fix a preference profile R ∈ R and let µ ∈ ψDRP
σ (R). Stability of µ follows

from arguments in the same vein as in the proof of Proposition 2.3.1 with very

minor modifications. We omit it here for the sake of brevity. We proceed to show

that µ is efficient. The only way to increase the utility of a project j is to expand

the set Mσ( j)−1 of feasible matchings to choose from. This is not possible without

decreasing the utility for some project j′ such that σ( j′)< σ( j). This is because, if

all projects ahead of j in the queue were utility invariant when this welfare improv-

ing matching (after carrying out the reshuffling steps) was added, they would not

have removed it in the first place. In particular, all (un)matched projects in µ must

remain (un)matched after any reshuffling of agents to improve the welfare of any

firm. Consequently, such a firm (whose welfare is possibly improved) must have

been matched at µ . Also, any such reshuffling attempts requires that the matched

projects remain indifferent between partners, before and after the swaps take place.

Suppose next that firm f can be made better without hurting any other agent.

Let k∗ be the largest integer such that f ∈ C(Jk∗,R), that is: firm f ’s best ranked

acceptable projects are Jk∗. Since firm f gets a utility kick, it must mean that

f was matched to a project j ∈ J<k∗. Let µ( f ) = j ∈ Jk j . Suppose in the new

matching, f gets project j′ ∈ Jk j′
. Then, k∗ ≥ k j′ > k j : j′ has a better exogenous

rank compared to j. Then firm µ( j′) who becomes partner-less as a result must

be assigned a project in J≥k j′
. But this project was also matched in µ . Therefore,

the firm that then becomes partner-less must also be assigned a project in J≥k j′

and so on. Thus, the Pareto improvement swaps to begin with, must sequentially

involve projects in J≥k j′
and firms in C(Jk j′

,R). Now, let X be the total number of

projects in J≥k j′
that were matched in µ . This implies that X firms in C(Jk j′

,R)

were matched to projects with a rank strictly better than project j. Firm f was not

one such firm. But since no more than X projects in J≥k j′
can be matched after

the reshuffling, there must be a firm in C(Jk j′
,R) who now is either unmatched or
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matched to some project in J<k j′
, a contradiction. ■

Proof of Proposition 2.3.5

Fix a preference profile R ∈ R and let µ be a stable and efficient matching.

We have to show that there is a (decreasing) priority order σ over projects and a

(weakly) decreasing sequence {Γ j}
|J|
j=1 of choice sets consisting of firms, such that

µ(σ( j)) ∈ Bσ( j)(Γ j) for all j ∈ J.

Consider first the top set of projects Jp. If one such project is not matched, but

some firm compatible with it (i.e. firm in C(Jp,R)) is matched with a project in

J<p, it violates stability. Thus, either all these projects are matched or all firms

compatible with them are matched to a project in Jp, depending on whether |Jp| ⋚
|C(Jp,R)|. Now, since µ is efficient, there must exist at least one project in Jp who

gets his best firm (one of his best firms if there are many) in C(Jp,R). To see why,

suppose not. Next let an arrow go from each project in Jp to all his top choice

of firms. Let another set of arrows go from all firms in C(Jp,R) who are matched

to some project in Jp, to their corresponding matches. Since the set of agents is

finite, there always exists a cycle following arrows. Exchanging along this cycle

leads to a Pareto improvement, a contradiction. Collect all such projects who gets

one of their best firm under µ in the set X1
p . Next choose a bijection σ1

p : X1
p −→

{1,2, ..., |X1
p |}. For any Y ⊂ J, let µ(Y ) denote the set (possibly empty) of firms

matched to some project in Y . Next, consider the set Jp \X1
p of projects and the

set C(Jp,R)\µ(X1
p) of firms. Since µ is efficient we again get a set X2

p of projects

who get their top choice in C(Jp,R)\µ(X1
p). Again choose a bijection σ2

p : X2
p −→

{|X1
p |+1, |X1

p |+2, ..., |X1
p |+ |X2

p |}. Remove the set of matched agents and proceed

in the same fashion until we exhaust Jp. We will have a collection of np sets

X1
p ,X

2
p , ...,X

np
p and corresponding orderings σ1

p ,σ
2
p , ...,σ

np
p . If |Jp| > |C(Jp,R)|,

i.e. there are not enough firms (compatible with Jp), then Xnp
p contains all projects

in Jp which are unmatched (in the absence of compatible firms, we slightly abuse

the notion of top choice to also mean unmatched). If |Jp|< |C(Jp,R)|, all projects

are matched, and by stability we have, every project in Jp weakly prefers their
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matched firm over all compatible firms that are unmatched or matched to projects

in J<p. This fact, together with the way X i
p’s are defined, we see that every project

in Jp is matched to one of their best available compatible firms when they allowed

to choose (following the order).

Next, consider the second-best set of projects and carry out the same procedure,

followed by the third best and so on. To elaborate, proceeding in decreasing or-

der, for each k ∈ {p− 1, p− 2, ...,1}, let us consider projects in Jk and firms in

C(Jk,R)\
p⋃

i=k+1
µ(Ji). Then carrying out the same steps outlined earlier we will get

a collection of nk sets {X i
k}

nk
i=1 and corresponding orderings {σ i

k}
nk
i=1. Once we do

this for every k, we finally have a collection {X i
k} k=1(1)p

i =1(1)nk

and {σ i
k} k=1(1)p

i =1(1)nk

.

Next, define the priority order σ such that σ( j) = σ i
k( j), if j ∈ X i

k. Note that

σ is by construction aligned with the exogenous order over projects: Jp ≻ Jp−1 ≻
...≻ J1.

Finally, defining the collection {Γ j}
|J|
j=1 of choice sets consisting of firms such

that; Γ1 = F , and for j = {2,3, ..., |J|}, Γ j = F \
j−1⋃
i=1

µ(σ(i)), we have the desired

proof. ■

Proof of Proposition 2.4.1

We use the lemmas in Section 2.4 including the notations therein. Suppose R is

such a preference profile that admits a SSM.

Let k∗ ∈ {1,2, · · · , p} be the largest threshold such that projects in Jk∗ are com-

patible for some firm in F at preference profile R. Then by individual rationality,

all projects in Jk∗+1∪Jk∗+2∪·· ·∪Jp remain unmatched at every SSM at preference

profile R. Moreover, all projects in Jk∗+1 ∪ Jk∗+2 ∪ ·· · ∪ Jp are also unmatched at

every matching that is output by any decreasing refined priority rule by definition.

Since there is a compatible firm for projects Jk∗ at profile R, at least one such

project can be and must be matched. Moreover, since preference profile R admits

a SSM, by Lemma 2.4.2,

• All projects in Jk∗ can be matched.
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• All projects in Jk∗ can be matched to Tk∗ such that each project is matched to a

best compatible firm for that project from within the set F .

• Firms in the set F \Tk∗ are not in the top indifference class (within compatible

firms in F) for any project in Jk∗.

This implies that, no matter what ordering of projects within Jk∗ is used by the

decreasing refined priority rule, the rule always outputs a set of matchings that

matches Jk∗ to Tk∗ (and never to a firm in F \Tk∗), with every project in Jk∗ getting

one of their best compatible firm in F . Since every SSM at profile R satisfy the

above bullet points, the result is true for projects in Jk∗.

Note that, the set of matchings from which projects of rank lower than k∗ gets

to pick from in the decreasing refined priority rule, never contains a matching

where this lower-ranked project is matched to a firm in Tk∗. Moreover, firms in

Tk∗ never prefer these lower-ranked projects to their SSM match. Next, let k∗∗ ∈
{1,2, · · · ,k∗−1} be the largest threshold such that projects in Jk∗∗ are compatible

for some firm in F \Tk∗ at preference profile R. If k∗∗ < k∗−1, then all projects in

Jk∗∗+1 ∪ Jk∗∗+2 ∪ ·· · ∪ Jk∗−1 remain unmatched at every SSM at preference profile

R; as well as at every matching that is output by any decreasing refined priority

rule (by definition) at profile R. By the same arguments as above, every SSM and

every decreasing refined priority rule at preference profile R, matches projects in

Jk∗∗ to Tk∗∗
(
and never to a firm in (F \Tk∗)\Tk∗∗

)
, with every project in Jk∗∗ getting

one of their best compatible firm in F \Tk∗. Continuing in this manner we have the

desired result. ■
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Chapter 3

Dynamic job rotation: an impossibility
result

Abstract

Job rotation is the practice of moving employees between jobs in an enterprise.

In this chapter, we model the organization of job rotation in a dynamic matching

framework. Agents have strict preferences over jobs and jobs have strict priorities

over agents. To facilitate job rotation, we construct a job rotation priority structure

which entails: if an agent is matched to a job at a given period, then this agent

must give it up in the next period should another agent desire it. Our model is the

exact opposite of the dynamic school choice problem. We show that constrained

efficiency and strategy-proofness, the two most important properties in priority-

based allocation problems, are incompatible in the most natural setting of dynamic

job rotation.

3.1 Introduction

Job rotation is a well-known organizational development technique, used by em-

ployers to move their employees through a range of job functions, in order to boost

interest and motivation. The use of such a strategy is widespread across both pri-

vate and public sectors (Osterman, 1994; Ostrom, 1990; Berkes, 1992).

We model this organization of job rotation in a dynamic matching framework.

In particular, this chapter contributes to the literature on dynamic priority-based
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3. Dynamic job rotation: an impossibility result

allocation of indivisible objects such as: allocating teachers to public schools

(Pereyra, 2013), or children to daycare facilities (Kennes et al., 2014).

One common theme in the above papers is that, when an agent is allocated an

object at some period, owing to individual rationality concerns, this agent enjoys

a higher priority for that object in future periods over all other agents. On the

contrary, in the present context, it is the exact opposite. To facilitate job rotation,

employers require that if an agent is matched to an object (job) at a given period,

then this agent must give it up in the next period should another agent desire it.

Stability is a central concept in matching theory. In priority-based allocation

problems, which is the subject of this chapter, it embodies a notion of fairness

and is often referred to as justified envy-freeness: an agent is said to have justified

envy towards another agent if the latter is assigned an object for which the former

has higher priority, and a stable matching eliminates the occurrence of such envy.

Our use of stability throughout this chapter is going to strictly adhere to the spirit

of justified envy-freeness. In dynamic matching environments, the approach in

the literature, therefore, has been to appropriately adapt the above concept to the

notion of dynamic stability. Respecting these priorities makes the set of feasible

matchings smaller, oftentimes conflicting with efficiency concerns. Accordingly, a

constrained efficient matching is one that is dynamically stable (therefore, respects

priorities) and cannot be Pareto improved without necessarily violating priorities.

In the context of priority-based allocation of objects, strategy-proofness of a

mechanism is another desirable property that is frequently studied in conjunction

with dynamic stability. It ensures that no individual can gain by reporting false

preferences. A strategy-proof mechanism is appealing because it gives straightfor-

ward incentives to each individual participant, whether or not this agent has any

information regarding the preferences of other agents.

We show that these two important and appealing properties are incompatible

in the most natural dynamic job rotation framework: there does not exist a con-

strained efficient and strategy-proof mechanism.

82



3.2. Model

Our framework consists of a simple two-period model with a fixed set of em-

ployees and jobs. All employees and all jobs are present in both periods. For every

job, there is an exogenously given strict priority ordering over agents. One can

think of these priorities to reflect the suitability of agents (based on skill-set, qual-

ification, past experiences, etc.) for each job function that the employer wants as

part of the rotation scheme. Employees have strict preferences over jobs. Employ-

ees report time-invariant preferences at the start of the process. These preferences

are then extended to time-separable preferences over job allocation tuples. To

achieve job rotation, if an employee is matched to a job in the first period, then this

agent is artificially moved to the lowest spot in the priority for that job in the second

period. This is encoded in what we call the job rotation priority structure. We then

show that, if one desires to find a mechanism that rotates employees through jobs

as efficiently as possible while respecting the job rotation priority structure (i.e.,

ensuring that there is no justified envy), then one must sacrifice on its incentive

property.

Game theoretic study of the job rotation problem is very recent. In a market

design framework, Yu and Zhang (2020) analyzes the static version of the problem.

They impose that every agent initially occupies a position (job). Job rotation is

encoded by weak priorities: all agents not initially matched to the job have equal

highest priority for it while the agent who initially occupies the job has the least.

They propose an algorithm that always finds a constrained efficient and weakly

group strategy-proof matching. Korpela et al. (2021) study the static job rotation

problem in the more general setting of implementation theory.

3.2 Model

Time is discrete: starts at t = 1 and ends at t = 2. The two periods are enough to

capture the main forces at play that drive the result.

An instance of a job rotation problem consists of:

• A set of agents (or, employees) I = {1,2,3, ...}.
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3. Dynamic job rotation: an impossibility result

• A set of objects (or, job functions) O = {a,b,c, ...}.

• A preference profile R = (Ri)i∈I, where Ri is a time-invariant strict preference

relation of agent i over jobs in O.

• A priority list ≻ = (≻o)o∈O, where every job o has a strict priority ≻o over

agents in I. The priority ≻o reflects the suitability of agents (based on skill-set,

qualification, past experiences, etc.) for the job function o.

We will interchangeably use the terms "agent" and "employee" in this chapter.

We assume throughout that |I| = |O|. Let R denote the set of all strict preference

relations on O. Let P denote the set of all strict priorities over agents in I. For any

given I and O, the job rotation problem is denoted by ⟨ I, O, P |O|, R|I| ⟩.

Agents have to be assigned to jobs over these two periods. Agents cannot re-

main unmatched in any period. The tuple (a,b) ∈ O×O denotes a job allocation
plan over two periods. When confusion is unlikely, we write ab for (a,b).

Preferences of agents over jobs are extended to time-separable preferences over

job allocation plans. This is described next.

3.2.1 Preferences over job allocation plans

Preference Ri ∈P over O is extended to preference Ri over O×O in the following

way. Let Pi denote the asymmetric part of Ri. For any two job allocation plans

(a,b), (a′,b′) ∈ O×O,

• if aRi a′ and bRi b′, then (a,b) Ri (a′,b′)

• if aRi a′ and bRi b′ are such that at least one of these statements holds strictly,

then (a,b) Pi (a′,b′)

Let R denote the set of all such possible preferences over O×O. It is to be noted

that the preference domain R is incomplete.
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3.2. Model

3.2.2 Matchings

A period−t matching µ t is a function µ t : I∪ O → I∪O mapping agents to jobs

in period t such that:

• µ t(i) ∈ O for all i ∈ I,

• µ t(o) ∈ I for all o ∈ O, and

• µ t(i) = o ⇐⇒ µ t(o) = i for all i ∈ I.

A matching µ is a tuple of period matchings, µ = (µ1, µ2) where µ1 and

µ2 are period−1 and period−2 matchings. The set of all possible matchings is

denoted by M .

3.2.3 Job rotation priority structure

Recall that every job (job function) o is endowed with an exogenously given (strict)

priority ≻o∈ P over I. These priorities can be thought to have been derived from

observable employee characteristics such as their skill-set, work experience, etc.

For any given job o, and for two employees i and j, suppose we have that i ≻o j.

While the employer would like to give employee i preferential access to job o, the

employer would also like to encourage rotation. In order to achieve a reasonable

compromise, the employer may make use of the temporal dimension: as long as

neither employee is assigned to job o, employee i gets priority over j; but if i is

assigned to job o in a previous period (and therefore gets experience in the job),

then employee j gets a chance (over i) instead to garner some experience in job o,

in spite of the fact that j has a lower priority than i for this job to begin with.

Therefore, in order to facilitate rotation, the discussion above calls for the job

priorities to be artificially modified based on first-period job assignments. This is

encoded in the job rotation priority structure, which is defined below. In words,

the structure encodes the following: if an agent i is assigned to a job o in the first

period, then this agent i necessarily has the least priority for that job o in the second
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period, while the priorities of all other agents for that job o obey the exogenous

order ≻o. Accordingly, the job priorities in the second period therefore depend on

the job assignments in effect during the first.

Definition 3.2.1. Given a matching µ = (µ1, µ2) ∈ M and a priority list ≻ ∈
P |O|, the associated job rotation priority structure is a list ≻(µ,≻) :=(≻1

o, ≻
2
o
)

o∈O

where, ≻ t
o denotes priority of job o at period t, and is derived as follows:

• ≻1
o = ≻o for all o ∈ O.

• For all o ∈ O, if we have o = µ1(i) i.e., employee i is assigned to job o at

t = 1, then ≻2
o is defined as follows:

– for all j ̸= i we have j ≻2
o i.

– for all j, k ̸= i we have j ≻2
o k if and only if j ≻o k.

3.2.4 The criteria for matchings

Definition 3.2.2. Given a preference profile R ∈R|I| and a priority list ≻∈P |O|,

consider a matching µ = (µ1, µ2) ∈ M and its associated job rotation priority

structure ≻(µ,≻) = (≻1
o, ≻

2
o)o∈O . We say that µ is dynamically stable at (R,≻),

if there does not exist an employee-job pair (i,o) ∈ I ×O such that one of the

following two conditions hold:

• (o, µ2(i)) Pi µ(i) and i ≻1
o µ1(o)

• (µ1(i), o) Pi µ(i) and i ≻2
o µ2(o)

The interpretation of dynamic stability in this chapter is strictly in the spirit of

justified envy-freeness. Before expanding on it, an important fact to point out first

is that the job matching that is to be implemented over the two periods is known to

all employees at the start of the job rotation process1, i.e., every employee knows

her two-period job allocation at the start of the process. Now, given a matching, it

is inevitable that some employees will envy the job assignment of another. Among
1This is because the employer commits to a mechanism at the start of the rotation process. For further details see

the discussion on mechanisms in the next sub-section.
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such cases of envy, the ones in which the employee who envies another has a

higher priority for the job in question (and this employee has not been assigned

to this job in the previous period), are arguably justified. A dynamically stable

matching eliminates any occurrence of such justified envy. Therefore, in the event

some employees were to express dissatisfaction/objection regarding a proposed

job matching that is dynamically stable, all such objections are guaranteed to be

objectively2 unjustified.

Remark 3.2.1. Note that dynamic stability does not imply that an agent cannot be

assigned to the same job in consecutive periods. This is permitted so long as every

other agent is happy with their own assignment.

Next, we define Pareto efficiency, a very standard notion in economics.

Definition 3.2.3. Consider a preference profile R ∈ P |I|. A matching µ̄ ∈ M

Pareto dominates another matching µ ∈ M at R if,

µ̄(i) Ri µ(i) for all i ∈ I and µ̄( j) P j µ( j) for some j ∈ I

A matching µ ∈ M is Pareto efficient at preference profile R if it is not Pareto

dominated by any other matching at R.

It is easy to come up with examples (with two jobs, and two employees) to

show that: (i) a dynamically stable matching may be inefficient; (ii) an efficient

matching need not be dynamically stable.

Since job rotation is the primary concern for the employer, we seek to first

ensure that the matching is dynamically stable. Having met this primary goal, we

would like the matching to be as efficient as possible. This motivates the following

definition.

Definition 3.2.4. Given a preference profile R ∈R|I| and a priority list ≻∈P |O|,

a matching µ ∈ M is constrained efficient at (R,≻) if it is dynamically stable at

(R,≻) and is not Pareto dominated by any other dynamically stable matching.

2See the discussion on job rotation priority structure in the previous sub-section for the basis of this objectivity.
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3.2.5 Mechanisms

At the outset, the employer collects preference reports from the employees and

possesses a list of job priorities. Based on these reports and the priority list, a

matching needs to be selected. A mechanism provides a systematic way to select a

matching at all possible contingencies, i.e., at every preference and priority profile.

Recall, the set of all possible matchings is denoted by M .

A mechanism is a function Ψ : R|I|×P |O| −→ M that chooses a match-

ing Ψ(R, ≻) ∈ M for every R ∈ R|I|, and any given ≻ ∈ P |O|. For every

i ∈ I, let Ψi(R, ≻) ∈ O×O denote the allocation plan of agent i at (R, ≻).

The employer commits to a mechanism at the start of the job rotation process.

Therefore, once the employees report their preferences, the job matching to take

effect over the two periods becomes known to everybody. The pertinent question

then is: which mechanism should be chosen? We pursue two appealing properties

that the employer would like the mechanism to satisfy.

An agent i manipulates a mechanism Ψ at (R, ≻) by reporting R′
i ∈ R if,

Ψi((R′
i, R−i), ≻) Pi Ψi(R, ≻)

A mechanism Ψ is strategy-proof if it is never manipulated by any agent. A

strategy-proof mechanism induces truth-telling: as long as an employee has no

information about what the other employees’ reports are, she fares best or at least

not worse by being truthful in her own report. A mechanism Ψ is Pareto efficient
if it always outputs a Pareto efficient matching at every profile. A mechanism Ψ

is constrained efficient if, for all R ∈ R|I| and for all ≻ ∈ P |O|, the matching

Ψ(R, ≻) is constrained efficient at (R,≻).
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3.3 The impossibility result

Theorem 3.3.1. Consider any job rotation problem ⟨I, O, P |O|, R|I|⟩ with |I| ≥ 5.

Then, there does not exist a constrained efficient and strategy-proof mechanism.

Proof. Consider a problem where there are five agents and five jobs as below:

I = {1,2,3,4,5} and O = {a,b,c,d,e}.

Next, consider two preference profiles R = (R1, R2, R3, R4, R5) and R′ = (R′
1,

R2, R3, R4, R5), and a priority list ≻ as presented in Table 3.1.

R1 R2 R3 R4 R5
c a b d d
e b a a e

e c c

(a) R

R′
1 R2 R3 R4 R5

a a b d d
c b a a e
e e c c

(b) R′

≻a ≻b ≻c ≻d ≻e
4 2 1 4 5
3 3 5 2
1 1
2
5

(c) ≻

Table 3.1: Preference profiles and priority structure for the proof of Theorem 3.3.1.

We first show that there is a unique constrained efficient matching µ at R given

by:

µ| R=(R1, R2, R3, R4, R5) =



1 : ce

2 : ab

3 : bc

4 : da

5 : ed


where, the notation 1 : ce is read as “agent 1 is matched to job c and e in the first

and second period respectively”, and so on.

To see this, note that given any period-2 matching µ2:

• stability requires that 4 gets d in the first period as it is the best job for 4 and

also has the highest priority for it.

• Similarly, by stability 1 must get c.
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• Given 4 gets d, stability then requires 5 gets job e since 5 has the highest priority

for e.

• Now, agents 2 and 3 are yet to be assigned. The remaining jobs are a and b.

Note that, both the possible matchings involving 2 and 3 are stable. However,

the matching where 2 gets a and 3 gets b Pareto dominates the other matching.

Therefore, irrespective of the second-period matching produced, any constrained

efficient mechanism must have the following first period matching µ1 at preference

profile R = (R1, R2, R3, R4, R5)

µ
1(1,2,3,4,5) = (c,a,b,d,e)

Next, we show that any constrained efficient mechanism must produce the

matching µ2(1,2,3,4,5) = (e,b,c,a,d) in the second period.

To see this, note that given period-1 matching µ1:

• Agent 4 now has the least priority for job d while agent 5 now has the highest.

Since d is the best job for 5, stability implies that 5 gets d.

• Given that, stability implies 4 gets a as she has the highest priority for a.

• If 4 gets a, then stability implies 2 must get b since agent 2 has the highest

priority for b in the second period.

• After a and b have been allocated, job c is the best available job for agent 3.

Since agent 1 has the least priority for c in the second period, agent 3 must get

c.

• Lastly, agent 1 therefore gets e.

In the same spirit, we can show that there is a unique stable, and thereby con-

strained efficient matching µ also at R′
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µ| R′=(R′
1, R2, R3, R4, R5) =



1 : cc

2 : be

3 : ab

4 : da

5 : ed


Therefore, any constrained efficient mechanism must produce the above match-

ings at profiles R and R′ for the given priority structure. But this means, agent

1 at R1 can manipulate by reporting R′
1 and do strictly better. Consequently, the

mechanism fails to be strategy-proof. ■

Since dynamic-stability and Pareto efficiency implies constrained efficiency, we

have the corollary below.

A mechanism Ψ is said to be dynamically stable if, for all R ∈ R|I| and for

all ≻ ∈ P |O|, the matching Ψ(R, ≻) is dynamically stable at (R,≻).

Corollary 3.3.1. Consider any job rotation problem ⟨I, O, P |O|, R|I|⟩ with |I| ≥
5. Then, there does not exist a dynamically stable, Pareto efficient, and strategy-

proof mechanism.

The main driving force behind the impossibility result is discussed next. It is

well known for the static problem that the DA mechanism is strategy-proof for the

proposing side (Dubins and Freedman, 1981). Therefore, if one were to run DA

for allocating jobs in the first period, no agents could improve their first-period

assignment. However, the counterexample in the above proof shows that it is pos-

sible for an agent to change the first-period assignment of another agent without

changing her own. But, since first-period assignments influence the job priority

structure (specifically, the job priorities next period), there are situations (as high-

lighted by the example), where this manipulation may be profitable in improving

her second-period allocation.
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3.4 Conclusion and further direction

In this chapter, we have studied the organization of job rotation in the most natural

dynamic matching framework. In a very simple two-period setup, we have shown

that it is not possible to find a mechanism that is strategy-proof and constrained

efficient: the two most important and well-studied properties in the context of

priority-based assignment of indivisible objects.

The preference domain used to model employees’ time-invariant preferences

is incomplete. Since we prove a negative result, our result remains true for any

arbitrary resolution of this incompleteness. To elaborate, consider an agent i and

job allocation plans (a,b) and (b,a). Suppose agent i strictly prefers a to b. In our

preference domain, the plans (a,b) and (b,a) are incomparable. But irrespective

of how this is resolved, the impossibility holds. Furthermore, the result remains

true in two other preference domains3:

1. Domain where agents evaluate two job allocation plans by comparing the worse

job in one plan against that of the other.

2. Domain where agents evaluate two job allocation plans by comparing the total

utility obtained from each plan, where the total utility from any given plan

is derived as follows. Consider an agent i, and fix any time-invariant strict

preference Ri over jobs. Assign a score of |O| to the best-ranked job according

to Ri, a score of |O|− 1 to the second-best ranked job, and so on4. Then, the

utility from a job allocation plan (a,b) is simply the sum of scores of a and b

according to Ri.

These two preference domains along with ours, we believe, are the most nat-

ural ways to think about extending preferences over jobs to preferences over job

allocation plans. The properties of mechanisms that we have studied are the most

desirable ones as well. Given this, the message of this chapter then is that the
3The same example used in the proof of the impossibility theorem work for these two domains.
4Recall that O denotes the set of jobs.
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"first best" solution to the dynamic rotation problem is not possible. It is therefore

worthwhile for future work to investigate ways of escaping this impossibility: one

direction where we conjecture a positive result is by relaxing the assumption of

strict job priorities, and allowing instead that all employees not already matched

to a given job in a previous period, have equal access to that job. Such an assump-

tion is reasonable when (i) the jobs in question don’t require a high level of skill

and prior experience; or (ii) the pool of employees is homogeneous with respect

to skill-set and experience. One other way to escape the impossibility might per-

haps be to weaken the strategy-proofness notion in a clever way. We leave these

directions for further research.
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Part II

Contest Theory
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Chapter 4

Effort dynamics in a competitive league

Abstract

In this chapter, we study the problem of a team manager in a competitive league,

where the manager is required to make decisions about the overall effort (energy)

level that the team exerts in each game, across the whole season. In particular,

we focus on effort dynamics “late” in the game and the impact of score-difference

up to that point in the game, on the effort choice. Central to the analysis is the

tension between “saving energy for future games” and “winning the current game”

in a long season. We model decisions as a Markov Decision Process, and solve

the model computationally to find that, indeed, saving energy is optimal for the

team manager throughout most of the season. This conclusion is robust to several

variations of the base model we consider, including against a field of teams whose

coaches employ similar strategies.

4.1 Introduction

The final minutes of a basketball game are when legends are made or hearts are

broken. It is what Michael Jordan passionately deemed “Winning Time”. Coach-

ing decisions made during this period are critical to a team’s chances of success.

It is also the most heated topic of discussion among fans. In the course of sports

leagues, usually lasting several months, it is expected that the abilities of teams

taking part in the season (or, tournament) will change over time. Therefore, it is

not hard to fathom why a coach would be inclined to hold back or rest his play-
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ers in a particular game in consideration of a farsighted objective — maximiz-

ing the success rate of the team in the whole season. Several considerations may

play at the back of his mind — take for example: the current fatigue level of the

team, strength of opponent, current score in the game, energy level of star players,

schedule of upcoming games, etc. Economics research on relative performance

evaluation has mainly focused on the comparison of final performances between

competitors. In this article, we instead look at effort dynamics “late” in a game

and the impact of information feedback (score-difference) up to that point in the

game, on the effort choice thereafter. We ask: when is it optimal, if at all, for the

coach to save energy for late in the current game in consideration of long-term

team success?

To this end, we consider the problem of a coach (or, team manager; or, even the

players) in a competitive league, where they are required to make decisions about

the overall effort level that the team exerts in each game, across the whole season.

The sports we have in mind are ones such as basketball, volleyball, handball, etc.,

where the score-difference between competing teams can change by large mar-

gins very rapidly and frequently. We will use the basketball terminology in the

remainder of the article. The sequence of opponents that the team manager (or,

coach) faces over the season, is collectively called the field, as is common, e.g., in

evolutionary game theory.

During a game, players are exposed to frequent high-intensity movements like

sprinting, jumping, acceleration, deceleration, and abrupt changes of direction;

which can lead to acute and accumulated fatigue. Fatigue may affect the ability

of the players to perform over the course of a lengthy season. Oftentimes, several

games are played on consecutive days. These factors render the need for not only

monitoring fatigue level (see, for example, Thorpe et al. (2017), Stojanović et al.

(2018)); but more generally warrants an effective management of the team energy

level. This is particularly more relevant for the case of star players. Resting or

limiting minutes of star players is indeed something coaches frequently consider.
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Therefore, it is no surprise that the coach may want to hold back the intensity of

the team (or limit the minutes of his star players) early in the game, and make

an informed scientific decision based on the scores at a later point in the game.

However, not exerting sufficient effort may prove to be costly when it comes to

winning the game. Our model explores this “saving energy for future games”

versus “winning the current game” dilemma in a long season.

The model is formally presented in Section 4.2. The setting, in a nutshell, is as

follows: at the start of each game, effort (energy) reserves are realized for both the

team and the field. Score-difference at the end of the third quarter (advantage) is

probabilistically determined as a function of effort exerted by both teams during

those quarters. At the beginning of the fourth quarter (Q4), the coach has to decide

between how much more effort (energy) to have their players exert in the current

game; and how much to save for future games; as a function of the advantage at

the beginning of Q4. Effort reserves for the team and the field are replenished

(stochastically) before the start of the next game. The coach’s goal is to maximize

the expected sum of winning in the whole season.

We solve the above model (henceforth, base model) computationally making

specific choices for the probability distributions governing the process. In the

base model, the field is assumed to split its energy equally in all quarters of ev-

ery game, i.e., it does not act as a strategic agent, therefore making the base model

a single-player decision problem. As one would expect, we show that initial con-

ditions are inconsequential in a long season (Proposition 4.2.2). The Expected Win

Rate (EWR), which is defined as “the average expected value (winning probabil-

ity) in games remaining”, and the optimal strategies are presented in Section 4.3.

The EWR at different stages of the season is consistent with the predictions from

Proposition 4.2.2 (Figure 4.1). The results also show that, indeed, the manager

finds it optimal to save energy throughout most of the season (Figure 4.2). This

conclusion from the base model is robust to several extensions that we consider

which are outlined below.
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As a first extension, we consider the case where the managers of the field of

teams employ similar strategies (see, Section 4.4.1). Very similar conclusions hold

here. Furthermore, we show in Section 4.4.1 that the optimal strategy (evaluated

when the field plays strategically), if played by both the team and the field, consti-

tutes an approximate equilibrium of the game.

The second extension challenges the assumption made in the base model that

an exogenously given constant fraction α of the effort reserve is used up by the

team, throughout the first three quarters combined. In Section 4.4.2, we relax this

assumption and allow the manager to act strategically during the first three quarters

(Q1 through to Q3 combined) as well. We find interestingly that the energy used

in the first three quarters peaks at about 75%. This is not obvious to begin with —

one might think perhaps to put in a greater effort in the first three quarters to get

a large lead. However, this is not the case as we see from the optimal strategies

(Figure 4.10b). Allowing the coach to have greater control can indeed be helpful

(we see the EWR is higher than in the base model; see, Section 4.4.4) because it

allows the manager to decide when facing a team that has high energy, if it may

wish to “not bother” and save its energy instead.

The final extension in Section 4.4.3 is motivated by the observation that partic-

ipating teams can usually be broadly classified into two types: strong and weak;

and that the schedule of upcoming games is usually known to coaches in advance.

The above classification may be based on factors such as the overall team strength;

or team ranking as published by a recognized sporting association or governing

authority (e.g., FIBA for basketball, World Rugby for rugby union); or record of

recent team performances, etc. The coach, therefore, has finer information regard-

ing what type of opponent to expect in the upcoming game, however, the exact

energy reserve that the opponent comes with on match day is still unknown to the

coach today, i.e., at the time they are contemplating the crucial saving decision that

must be made in the ongoing game.

Finally, in Section 4.4.4 we summarize and present a detailed comparison of

EWR and optimal strategies in each of the extensions with respect to the base
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model.

4.1.1 Related literature

Individuals, groups, and teams who are behind their opponents in competition tend

to be more likely to lose. Berger and Pope (2011) in contrast show that through

increasing motivation, being slightly behind can actually increase success. They

study whether a team losing at halftime is more likely to win than expected using a

logit model. They find that usually the higher the score difference the more likely

the team is to win. But if the halftime score difference is small they observe a

discontinuity - being behind with a small difference (e.g. down by 1 point) can

lead to, an increase in effort, and a win in the game. Thus they provide evidence

that being behind might lead to winning.

Several papers study situational variables (such as location, opposition strength,

or game status ) that might influence performance (Gómez et al. (2013), Sam-

paio et al. (2010) , O’Donoghue (2009)). The quality of opponents is particularly

important and is usually addressed by categorizing teams as “strong” or “weak”

(Sampaio et al. (2013), Lago (2009), Taylor et al. (2008)). Several applied statis-

tics papers have considered dynamic developments of abilities (see, for example,

Cattelan et al. (2013), Rue and Salvesen (2000), Crowder et al. (2002)).

Other observations in competitive leagues have been made in the literature:

Arkes and Martinez (2011) develop an econometric model to determine if there is

a momentum effect (an effect of success in the past few games, over and above the

effect of team quality) in the NBA by examining how success over the past few

games leads to a higher probability of winning the next game. They find strong

evidence for a positive momentum effect. Neiman and Loewenstein (2011) study

reinforcement learning in professional basketball. They show that players substan-

tially change their behaviour, manifested as their rate of 3pt shots, in response to

the outcome of a single 3pt. Moreover, this change is associated with decreased

performance, as measured by 3pt percentage and 3pt return. Their results indicate

that despite years of experience and high motivation, professional players over-
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generalize from the outcomes of their most recent shots, which leads to decreased

performance.

The trade-off between “saving energy” and “winning current game” is central

in our model. Thus it is related to the literature on the optimal consumption-

investment problem facing a utility-maximizing agent (an individual or a house-

hold) that is subject to bankruptcy, the utility being associated with consumption

and with bankruptcy (classical models include: Samuelson (1969), Merton (1971);

other extensions and applications: Kraft and Munk (2011), Geyer et al. (2009), Za-

riphopoulou (1994)).

Dynamic contest models with budget constraints bear resemblance to the stage

game in our model. In particular, models of dynamic Colonel Blotto games. Play-

ers start with some resource budget which must be split into a series of contests.

At each stage (contest), they must decide how much of their remaining budgets to

invest in trying to win the current battle (“quarter” in our model), and how much

to save for possible later battles. Different winning objectives like “winning ma-

jority of the contests” or “maximizing number of wins” have been studied in the

literature (see, for instance, Friedman (1958), Sela and Erez (2013), Klumpp et al.

(2019)).

4.1.2 Outline of the chapter

The rest of the article is organized as follows: Section 4.2 introduces the formal

base model (the single-agent decision problem). Section 4.3 presents the optimal

strategies and expected payoffs for the base model. Section 4.4 discusses the ex-

tensions to the base model along with their corresponding results. Section 4.4.4

presents a detailed comparison of EWR and optimal strategies in each of the ex-

tensions with respect to the base model. A conclusion follows.
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4.2 Base model

Recall that we are interested in the problem of a coach in a competitive basketball

league, who is required to make decisions about the overall effort level that the

team exerts in each game, across the whole season. Let T denote the number of

games that the team is scheduled to play in the season. The sequence of opponents

that the coach faces over the entire season is collectively modelled as the field. At

the start of each game, effort-reserves are realized for both the team and the field,

denoted respectively by eP and eF . Score-difference at the end of the third quarter

(henceforth advantage, denoted by A) is probabilistically determined as a function

of effort exerted by the teams throughout the first three quarters combined.

What happens “late” in the game is salient in our model, and we assume that an

exogenously given constant fraction α of the effort reserve is used up by the team

throughout the first three quarters combined. In a similar way, the field is assumed

to expend β fraction of its energy reserve throughout the first three quarters com-

bined. Moreover, the field does not behave strategically in Q4 and therefore uses

the remaining (1−β ) fraction in Q4. We relax this assumption in Section 4.4.1.

At the beginning of the fourth quarter (Q4), the coach has to decide between

how much more effort to have his players exert in the current game; and how much

to save for future games; as a function of the advantage at the beginning of Q4

and the effort reserve of the field. Effort reserves are replenished (stochastically)

before the start of the next game. If there are no savings made in the current

game, effort-reserve in the next game is continuously distributed with density g.

If a saving of r is made in the current game, the effort reserve in the next game

is drawn from a distribution with density µ(.|r), with more savings leading to the

effort reserve in the next game being drawn from a better distribution, in a first

order stochastic dominance sense. The coach’s goal is to maximize the sum of

stage rewards (winning probabilities in every game) across the whole season.

We model decisions as a discrete-time finite-horizon Markov Decision Process

consisting of the following components. T denotes the number of games to be
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played by the team in the season and is indexed by t. Throughout the article,

we will use the terms game(s) and period(s) to mean the same thing. Also, note

that period is often used to refer to a quarter in basketball, but we always use it

in the context of dynamic programming. The state variable in every game t is a

triple st = (eF
t ,e

P
t , At) where effort reserves eF

t , eP
t ∈ [0,1]; advantage at the start

of Q4, At ∈ {−3p, ...,0, ...,3p} where, p > 0 denotes the maximum possible point

(score) difference between teams in a quarter. The assumption of maximum score

difference p is made for simplicity — while there is no such score difference, in

practice there would be — it is rare for an NBA team to outscore the other by

more than 20 more points in a quarter. Positive value of At means the team is

ahead at the start of Q4. The set of all possible states is denoted by S = [0,1]×
[0,1]×{−3p, · · · ,3p}. The effort spent by the team throughout the first three

quarters combined is αeP, where α is an exogenous parameter. We relax this

assumption in Section 4.4.2 and let the team act strategically also during the first

three quarters. The control variable xt ≤ (1−α)eP
t denotes the effort exerted by

the team in the fourth quarter (Q4) in game t. Finally, rt(xt) = (1−α)eP
t − xt

denotes the effort saved in game t. The season starts with energy reserves eP
1 and

eF
1 , and an advantage A1 (distributed on {−3p, ...,0, ...,3p} with mass function

η( . | βeF
1 , αeP

1 )) which is realized before the coach takes an action. We impose

assumptions on the mass function which are discussed below (see Assumption

4.2.3).

Stage Reward

The team wins game t if the cumulative score difference after Q4 is positive.

The score difference in Q4 is stochastically determined as a function of effort

choices by the team and the field in Q4. Formally, the stage reward for the team

is simply the probability of winning the game as a function of the state and the

control:
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Notation Definition
T The total number of games in the season.
eP Effort reserve of the team.
eF Effort reserve of the field.
A Advantage (score-difference) at the start of Q4. Positive

value indicates that the team is ahead.
p A feasible maximum possible point (score) difference be-

tween the teams in a quarter.
s A triple denoting the state, s = (eF ,eP, A).
S State space, S = [0,1]× [0,1]×{−3p, · · · ,3p}.
α Fraction of effort reserve spent by the team throughout the

first three quarters combined.
β Fraction of effort reserve spent by the field throughout the

first three quarters combined.
η( · |βeF ,αeP ) Mass with which advantage (A) at the start of Q4 dis-

tributes, if effort reserves at the start of the game for the
field and the team are eF and eP respectively.

x Effort exerted by the team in Q4.
r Effort saved by the team in Q4.

g(·) Density with which effort reserve in the next game dis-
tributes, if no saving is made in current game.

µ( · |r ) Density with which effort reserve in the next game dis-
tributes, if a saving of r is made in current game.

ρ( · |(1−β )eF , x) Mass with which score-difference (X4) in Q4 is distributed.

Table 4.1: Summary of notations.

R(st ,xt) =


P[ X4 +At > 0 ]+ 1

2 P[ X4 +At = 0 ] , At ∈ {−p,−p+1, ..., p}

1 , At ∈ {p+1, p+2, ...,3p}

0 , At ∈ {−3p,−3p+1, ...,−(p+1)}

(4.1)

where, X4 denotes the score difference in Q4 and is discretely distributed on

{−p, ...,0, ..., p} having probability mass function ρ( . | xt ,(1−β )eF
t ).

Note, the way the field uses its remaining energy in Q4 is embedded in ρ . Also

note that, if the cumulative scores are tied at the end of Q4, there is a probability of

half for the team to win. The tie-breaker can be a result of, for instance, the game

going into overtime, with the teams evenly matched. We summarize the notations

described thus far in Table 4.1.
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The state of the system at period t + 1 depends on action xt and a random shock

unknown at period t as under:

• eF
t+1 is continuously distributed on [0,1] with density g

• eP
t+1 is continuously distributed on [0,1] with density µ( . | rt(xt))

• At+1 is distributed on {−3p, ...,0, ...,3p} with mass η( . | βeF
t+1, αeP

t+1)

Note that, the field’s action is embedded in η . Recall that α and β are exogenously

given. Next, we make the following assumptions on ρ , µ and η :

Assumption 4.2.1. For r > r′ ≥ 0, µ( . | r) first-order stochastically dominates

(F.O.S.D) µ( . | r′).

Assumption 4.2.2. For x > x̃, ρ( . | x , (1−β )eF) F.O.S.D ρ( . | x̃ , (1−β )eF)

for any fixed eF ∈ [0,1]. For eF < ẽF , ρ( . | x , (1−β )eF) F.O.S.D ρ( . | x , (1−
β )ẽF) when x is held fixed.

Assumption 4.2.3. For eP > ẽP, η( . | αeP, βeF) F.O.S.D η( . | α ẽP, βeF) for

any fixed eF ∈ [0,1]. For eF < ẽF , η( . | αeP, βeF) F.O.S.D η( . | αeP, β ẽF) for

any fixed eP ∈ [0,1].

The first assumption captures the idea that higher energy saved in the current

game leads to the effort reserve of the team in the next game being drawn from

a better distribution, in a first order stochastic dominance sense. The second as-

sumption guarantees that, when the effort of the field (resp., team) is held fixed,

greater effort exertion by the team (resp., field) leads to better a score-difference

(in Q4) in its favour, again in a first order stochastic dominance sense. The third

assumption captures the same idea as the second, except that the score-difference

in question is for the first three quarters combined.

Let Vt(s) denote the value function capturing the maximum attainable sum of

current and expected future rewards given that the system is in state s = (eF ,eP, A)
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in game t. Recall that, S = [0,1]× [0,1]×{−3p, · · · ,3p} denotes the state space.

Then, the principle of optimality implies that the value functions Vt : S → R must

satisfy the Bellman equations :

Vt(s)=max
x

[
R(s,x)+

∫ ∫ {
∑
a

Vt+1(eP,eF ,a)η( a |αeP,βeF)
}

g(deF)µ(deP|r(x))
]

for all s ∈ S and t = 1,2, ...,T.

The tournament ends after game T , therefore we have:

VT+1(s) = 0 ∀ s ∈ S

The next proposition states that indeed higher effort levels are more valuable for

the team for every fixed effort level of the field, advantage, and time in the season.

Thus, the model is consistent with our most basic intuition.

Proposition 4.2.1. Fix any α , β ∈ [0,1]. Then, Vt(eP,eF ,a) is increasing in eP for

all t, eF , and a.

Proposition 4.2.1 is proved in Appendix C.

Next we prove a proposition for a more general Markov Decision Process than

the one used in our model.

Proposition 4.2.2. Consider a Markov Decision Process with T periods, state

space S̄ and a stage reward function f such that | f | ≤ 1.

If for initial states s′,s′′ ∈ S̄, and for any strategy σ1, there exists strategy σ2 such

that in the processes beginning with s′0 = s′ and s′′0 = s′′ there is N, ε > 0 such that

Pσ1,σ2

[
∃ k ≤ N | V (s′′k)≥V (s′k)

]
> 1− ε then,

V (s′′0)
T

≥
V (s′0)

T
− error(ε,T,N)
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where, error(ε , T, N) =
[

T +3N +4
]
· ε

T + 4N
T

Proposition 4.2.2 is proved in Appendix C. The intuition is as follow: no matter

which strategy σ1, the decision-maker can follow σ2 to drive the game to a state

which is very likely close to the value of states the strategy σ1 reaches.

Corollary 4.2.1. The error term above, error(ε , T, N) → 0 as ε → 0, T → ∞

Therefore, for any two states s′0 and s′′0,∣∣∣∣V (s′0)
T − V (s′′0)

T

∣∣∣∣→ 0

Next, we show that the conditions of Proposition 4.2.2 are satisfied in our setup.

In our model, the stage reward is just the probability of winning the current game

and therefore cannot exceed one. Recall that the state variable sk in game k is a

triple (eF
k ,e

P
k , Ak). Also note that, the choice of strategy only affects the evolution

of the process {eP
k } and consequently the process {Ak}, but not the process {eF

k }.

To simplify notation, for the remainder of this section, we drop the superscript P

and denote the process {eP
k } more simply as {ek}. In the base model, since the

team necessarily uses up fraction α of its energy reserves in the first three quarters

combined, the maximum energy savings possible at Q4 in any game is 1−α , i.e.,

rk ≤ 1−α ∀k. Therefore, in any game k, and for strategies σ1 and σ2, even if

one strategy saves nothing while the other saves as much as possible, denoting P

instead of Pσ1,σ2 we have for any s′k−1, s′′k−1,

P[e′k > e′′k | s′k−1,s
′′
k−1] ≤

∫ 1

0

∫ e′

0
µ(de′′ |r = 0) µ(de′ |r = 1−α) =: q < 1 (4.2)

Let us define strategy σ2 to be such that the coach saves all remaining energy at

Q4. Now, given s′k−1, s′′k−1, if team energy level in process ′′ is higher as one enters

Q4 of game k, then to begin game k+1, the following holds:

* σ2 has more energy than σ1 with probability ≥ 1
2 , by Assumption 4.2.1.
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* with probability 1
2 , σ2 faces a lower energy rival than σ1, as field’s energy in each

process is chosen independently according to density g.

* conditional on the above, with probability ≥ 1
2 , Q4 of game k+1 starts with σ2’s

score-difference better than that of σ1, by Assumption 4.2.3.

From the above three points, we have:

P
[
V (s′′k+1)≥V (s′k+1) | e′′k ≥ e′k, s′k−1,s

′′
k−1
]

≥ 1
8

(4.3)

Using (4.2) and the above we get,

P
[
V (s′′k+1)≥V (s′k+1) | s′k−1,s

′′
k−1
]
≥ P

[
e′′k ≥ e′k, V (s′′k+1)≥V (s′k+1) | s′k−1,s

′′
k−1
]

≥ 1
8
(1−q)

=: q̂ > 0 (4.4)

Therefore we have,

P
[
∃ k ≤ N | V (s′′k+1)≥V (s′k+1)

]
= 1−P

[
∀ k ≤ N | V (s′k+1)>V (s′′k+1)

]
≥ 1− (1− q̂)N (follows inductively using (4.4))

Thus, since q̂ > 0, for any ε > 0, choosing N large enough such that (1− q̂)N <

ε we have, P
[
∃ k ≤ N | V (s′′k)≥V (s′k)

]
> 1− ε .

Thus, the above-stated Corollary 4.2.1 highlights the insensitivity of initial con-

ditions in a long season. Towards the beginning of a long season, for any two states,

the difference between the average value in remaining games (i.e. the expected win

rate in games remaining), becomes negligible.

4.3 Analysis and Results

We solve the optimization problem computationally. We make specific choices for

the previously described probability distributions governing the process. These,
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along with the particular choice of all parameters of the model are presented below:

Distributions and Parameters

• Total number of games, T = 80

• Effort of Field, eF ∼ Uniform (0,1)

• Effort of Team, eP ∼ Uniform (r,1) when saving in previous game is r

• Maximum absolute score difference in each quarter, p = 10.

• Fraction of total effort that the team uses in the first three quarters, α = 0.7

• Field divides available effort reserve equally across all four quarters in every

game. Therefore, β = 0.75.

• Advantage (A, with support {−30,−29, · · · ,0, · · · ,29,30}) to team at the start of

Q4,

A ∼ Binomial
(

60, αeP

αeP+βeF

)
− 30

• Score difference in the fourth quarter (X4, with support {−10, · · · ,0, · · · ,10}),

given the effort exerted by the team in Q4 is x,

X4 ∼ Binomial
(

20, x
x + (1−β )eF

)
− 10

The maximization problem in (Section 4.2) is solved by backward recursion.

In order to facilitate computation, we discretize the state space. The domain of

effort reserves [0,1] for both the team and the field is discretized to 100 equispaced

points. The third state component advantage is already discrete to begin with,

ranging between (3× 2p)+ 1 = 61 distinct values. Together this makes up the

required 100×100×61 grid points.

The recursion algorithm is structured as a series of three nested loops. The outer

loop involves the backward recursion over games; the middle loop involves visits
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to each state (grid point); and the inner loop involves visits to each possible action

(effort saved in the current game) to eventually evaluate the best action.

4.3.1 Expected Win Rate

For every state s ∈ S, the Expected Win Rate (EWR) in games remaining at period

t is given by the expression Vt(s)
T−t+1 . Figure 4.1 below shows the EWR during dif-

ferent stages of the season, under three scenarios of advantage (“ahead”, “even”,

or “behind” ) that the team might face at the start of Q4.

(a) Ahead (b) Even (c) Behind

Figure 4.1: Expected Win Rate at different stages of the season. Different shades denote different
game (t), with the following colour codes: t = 10 , 40 , 50 , 60 , 70

Remarks:

• The range of EWR shrinks as we go earlier in the season. This is consistent

with Proposition 4.2.2, which highlights the insensitivity of initial conditions in

a long season.

• When the team is well ahead or behind at the start of Q4, EWR does not change

significantly with respect to the strength difference between the teams; except in

the case when, either the team or the field starts with a very low reserve (close

to zero). It is rather the time in the season that matters more. The value of being

ahead (resp., behind) at the start of Q4, increases (resp., decreases) when there

are fewer games remaining (see, Figure 4.1a & 4.1c ).

• If scores are even at the start of Q4, the strength difference between the teams

plays a role in determining EWR. Starting the game as the relatively stronger
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team is more valuable when there are fewer games remaining. On the other

hand, the value of starting as the relatively weaker team gets increasingly worse

as one proceeds through the season (Figure 4.1b).

4.3.2 Optimal Strategy

Figure 4.2 below shows the optimal strategy for the team as a function of its own

effort level and the field’s effort level, at different stages of the season, for three

advantage scenarios that the team might face at the start of Q4. Note that the range

of the z−axis is up to 0.30. This is because the team has spent αeP (α = 0.70) in

the first three quarters.

(a) Ahead (b) Even (c) Behind

Figure 4.2: Optimal Strategy at different stages of the season. Different shades denote different
game (t), with the following colour codes: t = 10 , 40 , 50 , 60 , 70

Remarks:

• Firstly, one can observe from Figure 4.2 that the optimal strategy is highly in-

sensitive to the stage in the season.

• If the advantage at the start of Q4 is well in favour of the team, but the team

starts with a very low initial energy reserve, it is optimal to use up the remaining

energy against a relatively stronger opponent. However, starting the game with

moderate energy reserves, good advantage always calls for saving energy in Q4

(Figure 4.2a).

• When the relative strength is strongly in favour of the team, and the scores are

level at the start of Q4, we can see from Figure 4.2b that it is indeed optimal to
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save energy for the future. If the team starts the game very low on energy, it is

again optimal to save when scores are level after Q3.

• If the score-difference is largely in favour of the field after Q3, unless it is the

case that the opponent is very weak compared to the team, Figure 4.2c shows

that it is optimal to save energy in Q4 (there is a sharp drop to zero).

4.3.3 End Season

In this subsection, we focus attention to the last five games in the season in which,

future games must be taken into consideration (t = 75,76,77,78,79). Recall that

the game ends when t = T = 80, and thus the team does not need to save for future

games and uses up all the remaining energy (1−α)eP
80 in Q4 of game 80. By last

five games, we will henceforth refer to the following games (t) — 75,76,77,78

and 79.

Expected Win Rate

• There is a very large variation in the values of EWR across states when compared

to games earlier in the season (Figure 4.3).

• If the team is well ahead or behind at the start of Q4, the strength difference

between the teams does not lead to a significant change in EWR; except in the

case when, either the team or the field starts with a very low reserve (close to

zero). The value of being ahead (resp., behind) at the start of Q4 is quite high

(resp., low); and increases (resp., decreases) further as one proceeds to the very

end of the season (see, Figure 4.3a & 4.3c ).

• If scores are even at the start of Q4, the strength difference between the teams

plays a key role in determining EWR. Starting the game as the relatively stronger

team is more valuable when there are fewer games remaining. On the other hand,

the value of starting as the relatively weaker team is increasingly worse, as one

heads to the very end of the season (Figure 4.3b).
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(a) Ahead (b) Even (c) Behind

Figure 4.3: Expected Win Rate in the last five games (t). Colour codes: t = 75 , 76 , 77 , 78 , 79

Optimal Strategy

• The optimal strategy is quite insensitive to which game we consider even towards

the very end of the season (Figure 4.4).

• Saving energy in Q4 is indeed optimal in a variety of situations, similar to what

we observed for games earlier in the season as shown in Figure 4.2.

(a) Ahead (b) Even (c) Behind

Figure 4.4: Optimal Strategy at the end of the season. Colour codes: t = 75 , 76 , 77 , 78 , 79

4.4 Extensions

4.4.1 Extension I : Field plays strategically

In this section, we analyze the case where the field plays the optimal strategy eval-

uated in the base model (see, Section 4.3.2). This optimal strategy used by the

field in every game, is appropriately embedded in η and ρ , which dictates the
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outcome of random variables A (advantage) and X4 (score difference in the last

quarter). Given this use of field’s strategy, we re-evaluate the team’s best response.

The maximization problem in (Section 4.2) is again solved by backward induction

over a discretized state space as before. Next, we discuss its implications on the

Expected Win Rate and the Optimal Strategies.

Expected Win Rate

• The range of EWR shrinks as we go earlier in the season, highlighting the insen-

sitivity of initial conditions in a long season (Figure 4.5).

• If the team is well ahead or behind at the start of Q4, the strength difference

between the teams does not lead to a drastic change in EWR; except in the case

when, either the team or the field starts with a very low reserve (close to zero).

It is rather the time in the season that matters more. The value of being ahead

(resp., behind) at the start of Q4, increases (resp., decreases) when there are

fewer games remaining (see, Figure 4.5a & 4.5c ).

• If scores are even at the start of Q4, the strength difference between the teams

plays a role in determining EWR. Starting the game as the relatively stronger

team is more valuable when there are fewer games remaining. On the other

hand, the value of starting as the relatively weaker team gets increasingly worse

as one proceeds through the season (Figure 4.5b).

(a) Ahead (b) Even (c) Behind

Figure 4.5: Expected Win Rate at different stages of the season. Different shades denote different
game (t), with the following colour codes: t = 10 , 40 , 50 , 60 , 70
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Optimal Strategy

• Firstly, one can observe from Figure 4.6 that the optimal strategy is highly in-

sensitive to the stage in the season.

• When the advantage at the start of Q4 is well in favour of the team, but the team

starts with a very low initial energy reserve, it optimal to use up the remaining

energy against a relatively very strong opponent. However, for all other starting

energy scenarios, good advantage always calls for saving energy in Q4 (there is

a sharp drop to zero, see Figure 4.6a).

• If the scores are level at the start of Q4 and the relative strength is strongly in

favour of the team (i.e., field starts with energy reserve close to zero); we see

from Figure 4.6b that it is indeed then optimal to save energy for future games.

If the team starts the game very low on energy, there are occasional spikes of

energy utilization in Q4, even when the team faces a relatively strong opponent

(see, Figure 4.6b).

• If the score-difference is largely in favour of the opponent after Q3, unless the

opponent starts the game very weak (energy close to zero) compared to the team,

it is always optimal to save all remaining energy in Q4 (there is a sharp drop to

zero, see Figure 4.6c).

(a) Ahead (b) Even (c) Behind

Figure 4.6: Optimal Strategy at different stages of the season. Different shades denote different
game (t), with the following colour codes: t = 10 , 40 , 50 , 60 , 70
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End Season

Expected Win Rate

• There is a very large variation in the values of EWR when compared to games

earlier in the season (Figure 4.7).

• If the team is well ahead or well behind at the start of Q4, the strength difference

between the teams does not affect EWR; except when, either the team or the

field starts with a very low reserve (close to zero). The value of being ahead

(resp., behind) at the start of Q4 is quite high (resp., low); and increases (resp.,

decreases) further as one proceeds to the very end of the season (see, Figure 4.7a

& 4.7c ).

• If scores are even at the start of Q4, the strength difference between the teams

plays a key role in determining EWR. Starting the game as the relatively stronger

team is more valuable when there are fewer games remaining. However, the

value of starting as the relatively weaker team gets increasingly worse as we

head to the very end of the season (Figure 4.7b).

(a) Ahead (b) Even (c) Behind

Figure 4.7: Expected Win Rate at different stages of the season. Different shades denote different
game (t), with the following colour codes: t = 75 , 76 , 77 , 78 , 79
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Optimal Strategy

• The optimal strategy is quite insensitive to which game we consider even towards

the very end of the season (Figure 4.8).

• Saving energy in Q4 is indeed optimal in a variety of situations, similar to what

we observed for games earlier in the season as shown in Figure 4.6.

(a) Ahead (b) Even (c) Behind

Figure 4.8: Optimal Strategy at different stages of the season. Different shades denote different
game (t), with the following colour codes: t = 75 , 76 , 77 , 78 , 79

Iterated evaluation of Optimal Strategies

In this subsection, we show that the optimal strategies when the field plays strategi-

cally (as presented in the Section 4.4.1); if played by both the team and the field, in

fact, constitutes an approximate equilibrium of the game. In order to show this, we

iteratively solve the maximization problem of the team by letting the field play the

optimal strategy calculated in the previous iteration. That is to say, at every itera-

tion, the optimal strategy in the previous iteration is plugged into the maximization

problem as the field’s strategy, and a new optimal strategy is then evaluated. We

show that there is no significant change in the optimal strategies across three iter-

ations ( Iteration 2, Iteration 3 & Iteration 4 ), suggesting that we have indeed

reached an approximate equilibrium. Figure 4.9 shows the comparison of opti-

mal strategies across the different iterations, for three advantage scenarios: ahead,

even, behind. Note that, Iteration 2 constitutes the simulation in which the optimal

strategy presented previously in Figure 4.6 is employed by the field (for further
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details, see Section 4.4.1). This is presented alongside the optimal strategies from

the next two consecutive iterations to make the comparison easier to visualize. In-

deed, as can be seen in Figure 4.9, when the team is ahead or behind at the start of

Q4 there is almost no variation in optimal action across the three iterations what-

soever. When scores are even, there is a slight discrepancy in the optimal actions,

however, they seem to still be fairly close to each other overall.

(a) Advantage: Ahead

(b) Advantage: Even

(c) Advantage: Behind

Figure 4.9: Optimal strategies in three iterations. Going from left to right, optimal strategies in
Iteration 2 appears in the left most column, followed by Iteration 3, and finally Iteration 4.
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4.4.2 Extension II : Strategic play by the team in all quarters

In this section, we relax the assumption on α , which recall was the fraction of

energy used by the team during the first three quarters and was taken to be exoge-

nously given. We instead allow for the coach to act strategically during the first

three quarters (considered together) as well. Recall that T denotes the total num-

ber of games to be played by the team in the season and is indexed by t. Effort

(energy) reserves of the team and the field, are denoted respectively by eP and eF .

Score-difference (advantage) at the end of the third quarter (denoted by A) is prob-

abilistically determined as a function of effort exerted by the teams throughout the

first three quarters combined.

The field is assumed to split energy equally over all quarters. At the start of each

game, energy reserves are realized. For each game t, there are now two decision

making points — (1) at the beginning of the game, when the coach decides how

much energy (denoted by x) to have his team spend in the first three quarters (Q1 to

Q3 combined), as a function of eF and eP and; (2) at the start of Q4 after observing

the advantage, the coach decides, out of the remaining energy eP− x in the game,

how much to save (denoted by r) in consideration of future games versus how

much to use in Q4 to win the current game. Let Q<4 and Q4 denote the above two

decision making points (henceforth, rounds) in every game.

The above-described problem can again be modelled as a Markov Decision

Process, but this time with 2×T rounds, two rounds (one each for Q<4 and Q4)

for every game t ∈ T . The state variable at the start of round Q<4 of game t is

a pair sQ<4

t = (eF
t ,e

P
t ) where, energy reserves eP

t , eF
t ∈ [0,1]. The action variable

in round Q<4 of game t is xt ≤ eP
t , which denotes the energy used in quarter Q1

to Q3. Given action xt , the state (available energy and advantage) at the start of

round Q4 of game t then transitions to sQ4

t = (
eF

t
4 ,e

P
t − xt , At) where, advantage

At is distributed on {−3p, ...,0, ...,3p} 1 with mass function η( . | 0.75eF
t , xt)

1 p > 0 denotes the maximum possible point (score) difference between teams in a quarter. Positive advantage
denotes the team is ahead at the start of Q4.
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2. Let SQ<4
= [0,1]× [0,1] and SQ4

= [0, 1
4]× [0,1]×{−3p, · · · ,3p} respectively

denote, the set of all possible Q<4 and Q4 states. S = SQ<4 × SQ4
denotes the state

space. The assumption on the mass function η remains the same as earlier (see

Assumption 4.2.3). The action variable rt ≤ eP
t −xt in round Q4 of game t, denotes

the energy saved in Q4 of game t. The reward function at Q4 of game t is as below:

Reward function

The team wins game t, if the cumulative score difference at the end of Q4 is

positive. The score difference in Q4 is stochastically determined as a function of

effort choices by the team and the field in Q4. Formally, the stage reward for the

team is simply the probability of winning the game as a function of the state and

the control

R
(eF

t

4
,eP

t − xt , At , rt

)
=


P[ X4 +At > 0 ]+ 1

2 P[ X4 +At = 0 ] , At ∈ {−p,−p+1, ..., p}

1 , At ∈ {p+1, p+2, ...,3p}

0 , At ∈ {−3p,−3p+1, ...,−(p+1)}
(4.5)

where, X4 denotes the score difference in Q4 and is discretely distributed on

{−p, ...,0, ..., p} having probability mass function ρ( . | eP
t − xt − rt ,

eF
t
4 ).

Note, the way the field uses its remaining energy in Q4 is embedded in ρ . Also

note that, if the cumulative scores are tied at the end of Q4, there is a probability

half of the team winning. The tie-breaker can be a result of, for instance, the game

going into overtime, with the teams evenly matched.

Energy reserves in game t + 1 depend on action rt in Q4 and a random shock

unknown at period t as below:

• eF
t+1 is continuously distributed on [0,1] with density g

• eP
t+1 is continuously distributed on [0,1] with density µ( . | rt)

2Recall that the field divides energy equally across all quarters, and hence 75% in first three quarters
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Let V Q4

t (s) denote the value function capturing the maximum attainable sum of

current and expected future rewards given that the system is in state s in round Q4

of game t.

Similarly, V Q<4

t (s) denotes the value function in state s at the start of round Q<4

of game t. Then the principle of optimality implies that the value functions must

satisfy the Bellman equations :

V Q4

t

(eF
t
4
,eP

t − xt ,At

)
= max

r ≤ eP
t −xt

[
R
(

eF
t
4
,eP

t − xt − r,At

)
+E

(
V Q<4

t+1
(
eF

t+1,e
P
t+1
) ∣∣ r

)]

V Q<4

t
(
eF

t ,e
P
t
)

= max
x ≤ eP

t
∑
a

V Q4

t

(eF
t
4
,eP

t − x, a
)

η

(
a
∣∣∣ x,

3eF
t

4

)
for all eF

t , eP
t , At and t = 1,2, ...,T

The tournament ends after game T , therefore we have:

V q
T+1(s) = 0 ∀ s ∈ Sq ∀ q ∈ {Q<4,Q4}

We once again solve the above optimization problem computationally by back-

ward induction. We make specific choices for the previously described probability

distributions governing the process. Assumptions about these distributions remain

same as in earlier sections (for details see, Distributions and Parameters in Sec-

tion 4.3). Next we present the results.
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Expected Win Rate at the start of the game

• The range of EWR shrinks as we go earlier in the season (Figure 4.10a), similar

to what was observed in the base model.

• Relative strengths between the teams play a role in determining EWR. Starting

the game as the relatively stronger team is more valuable when there are fewer

games remaining. However, the value of starting as the relatively weaker team

gets increasingly worse as one proceeds through the season (Figure 4.10a).

(a) Expected Win Rate (b) Energy Used in Q1-Q3

Figure 4.10: Expected Win Rate and Optimal Action in Q1-Q3 at different stages of the season.
Different shades denote different game (t), with colour codes: t = 10 , 20 , 40 , 60 , 70.

Optimal Action in Q1-Q3

• The optimal action (energy used in Q1-Q3) is highly insensitive to the stage in

the season (Figure 4.10b).

• If the relative strength between the teams is tilted in favour of the coach, the op-

timal action weakly increases with field’s starting strength. Also it is interesting

to note, the optimal energy used in the first three quarters never exceeds 0.75

no matter how strong the team starts the game (see, Figure 4.10b). This is not

an obvious deduction at the beginning as one might think that it could perhaps
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be optimal to exert higher effort during the first three quarters and gain a strong

lead. However, we see that it is not the case.

• If the opponent is relatively stronger, it is optimal to save up entirely for the last

quarter (there is a sharp drop to zero, see Figure 4.10b). Note that, an interpre-

tation of “effort” in our model is from the point of view of resting or limiting

minutes of star players, which is indeed something coaches consider frequently.

So “putting zero effort” need not really mean the players on the field do not try,

but rather that the coach decides to rest his stars.

Expected Win Rate at the start of Q4

• Figure 4.11 show EWR at different advantage scenarios that the team might face

at the start of Q4. Note the asymmetry in the possible remaining energy levels

of the teams.

• If the team is well ahead at the start of Q4, the difference between the teams in

terms of energy available at Q4 do not affect EWR; except when, the team starts

Q4 with very low energy (close to zero). As long as the team does not start Q4

with energy close to zero, the value of being ahead at the start of Q4 increases

as one proceeds through the season (see, Figure 4.11a).

• If the team is well behind at the start of Q4, the available-energy difference

between the teams does not affect EWR; except if the field starts Q4 with a very

low reserve (close to zero). If field’s energy level at Q4 is not very low, the EWR

decreases as one proceeds through the season. If field’s energy level at Q4 is very

low, EWR of starting Q4 very high in energy reserve increases as we progress

into the season (see, Figure 4.11c ).

• If scores are even at the start of Q4, available-energy difference between the

teams plays a role in determining EWR. The EWR of starting Q4 as the rela-

tively weaker team is increasingly worse, as one heads to the end of the season.

The EWR of starting Q4 as the relatively stronger team increases as we proceed
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through the season. Once the team’s available energy at Q4 exceeds 0.25 (the

highest energy level that the field can start Q4 with); the energy-difference does

affect EWR any longer, only the time in the season matters (Figure 4.11b).

(a) Ahead (b) Even (c) Behind

Figure 4.11: Expected Win Rate at different stages of the season. Different shades denote different
game (t), with the following colour codes: t = 10 , 40 , 50 , 60 , 70

Optimal Action in Q4

• We can observe from Figure 4.12 that the optimal strategy is highly insensitive

to the stage in the season.

• If the advantage at the start of Q4 is well in favour of the team, but the team

starts with low energy in Q4, it optimal to use up the energy against a relatively

strong opponent. However, for every fixed energy of the field, starting Q4 with

energy approximately about 0.20 and higher, the optimal action levels out and

saving energy becomes optimal (see, Figure 4.12a).

• If the advantage is even at the start of Q4, and the team starts Q4 low on energy,

it is optimal to save all of it. If the team starts Q4 with moderate energy and

higher, for every fixed energy of the field, the optimal action weakly increases

with available energy at Q4 and eventually levels out beyond a threshold (de-

pending on the field’s energy, see 4.12b).

• If the advantage is behind at the start of Q4, it is optimal to still use up energy

in Q4 if the relative strength between the teams at Q4 is very very strongly in
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favour of the team. Otherwise, it is optimal to save all the available energy (there

is a sharp drop to zero see, Figure 4.12c) .

(a) Ahead (b) Even (c) Behind

Figure 4.12: Optimal Energy usage in Q4 at different stages of the season. Colour codes: t = 10 ,
40 , 50 , 60 , 70

End Season

Next, we focus attention to the last five games in the season in which, future games

must be taken into consideration (t = 75,76,77,78,79).

Expected Win Rate at the start of the game

• Figure 4.13a shows EWR at the start of the game, for games towards the end

of the season. The variation of EWR across states is much larger compared to

games earlier in the season.

• Starting the game as the relatively stronger team is more valuable as we head to

the very end the season. On the other hand, the EWR of starting as the relatively

weaker team also gets increasingly worse towards the very end (Figure 4.13a).

Optimal Action in Q1-Q3

• The optimal action (energy used in Q1-Q3) remains very similar across games

towards the end of the season (Figure 4.13b).

• So long as the relative strength between the teams is tilted in favour of the coach,

the optimal action weakly increases with field’s starting strength, similar to ear-

lier games in the season.
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(a) Expected Win Rate (b) Energy Used in Q1-Q3

Figure 4.13: Expected Win Rate and Optimal Action in Q1-Q3 towards the end of the season.
Different shades denote different game (t), with colour codes: t = 75 , 76 , 77 , 78 , 79.

• If the opponent is relatively stronger, it is then optimal to save up entirely for

the last quarter (there is a sharp drop to zero, see Figure 4.13b). Again note,

interpreting “effort” from the point of view of resting or limiting minutes of star

players, “putting zero effort” need not really mean the players on the field do not

try, but rather that the coach decides to rest his stars.

Expected Win Rate at the start of Q4

• There is a larger variation in the values of EWR across states compared to games

earlier in the season (Figure 4.14).

• The EWR varies with advantage, number of games remaining in the season, and

the relative strength between the teams at the start of Q4; in the same way as in

earlier games in the season. The effect (rise or fall of EWR) is however amplified

compared to earlier games.
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(a) Ahead (b) Even (c) Behind

Figure 4.14: Expected Win Rate in the last five games (t). Colour codes: t = 75 , 76 , 77 , 78 , 79

Optimal Action in Q4

• We can observe from Figure 4.15 that the optimal action is highly insensitive to

which game we consider even towards the end of the season.

• Moreover, the optimal action resembles closely with the optimal action at Q4 for

earlier games in the season.

(a) Ahead (b) Even (c) Behind

Figure 4.15: Optimal Strategy at the end of the season. Colour codes: t = 75 , 76 , 77 , 78 , 79

Optimal Strategies: Few specific scenarios

In this section, we dive deeper into the optimal strategies for three different ini-

tial energy levels of the team: strong, average and weak (eP = 0.8,0.5 and 0.2

respectively). We fix the game (t = 40) for the rest of this subsection.3

3Since the optimal action in Q1−Q3 is highly insensitive to which game in the season the team is in (see Figure
4.10b); the optimal action in Q4 therefore also remains highly insensitive to the game number.
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Team starts strong

Figure 4.16: Optimal energy usage in the first three
quarters combined when the team starts strong.

Figure 4.16 shows the optimal en-

ergy usage by the team during

Q1-Q3. The optimal action ini-

tially increases linearly with starting

strength of the opponent, and then

flattens out before sharply dropping

to zero, against a very strong oppo-

nent (eF ≈ 0.9 and higher). Surpris-

ingly, against a very strong oppo-

nent, strategically saving up big for

the end is profitable even if the team

starts the game quite strong (eP = 0.8). Allowing the team to be strategic about

how much effort to use in the first three quarters can be helpful (indeed, the EWR

is higher than in the base model (see, Section 4.4.4)).

Figure 4.17 shows the optimal action in Q4, for different advantage scenarios

that the team might face; against a strong, average and weak opponent. If the

score-difference is not terribly bad, the coach can then try to overpower the strong

opponent in the last quarter Figure (4.17a).

(a) Strong Opponent (b) Average Opponent (c) Weak Opponent

Figure 4.17: Optimal Action in Q4 when the team starts strong (eP = 0.8).

Note, since the maximum possible score difference in a quarter was assumed to

be 10, advantage below −10 and above 10 always calls for saving energy and is
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omitted from the presentation in Figure 4.17 and similar figures later. We observe

that it is indeed optimal to save for future games in a range of scenarios.

Team starts average

Figure 4.18: Optimal energy usage in the first three
quarters combined when the team starts with average
energy.

Figure 4.18 shows the optimal en-

ergy usage by the team during

Q1-Q3 when the team starts the

game with average strength (eP =

0.5). The optimal action initially

increases linearly with strength of

the opponent, and then flattens out

before discontinuously dropping to

zero, against a stronger opponent

(eF ≈ 0.6 and above). Again we see,

it is optimal for the coach when fac-

ing a team that has high energy to simply “not bother” and save its energy in the

first three quarters. Depending on the score difference at the start of Q4, the coach

then decides where it is worth investing or save for later games.

Figure 4.19 shows the optimal action in Q4, for different advantage scenarios

that the team might face, at the start of the last quarter; against a strong, average

and weak opponent.

(a) Strong Opponent (b) Average Opponent (c) Weak Opponent

Figure 4.19: Optimal Action in Q4 when the team starts average (eP = 0.5).
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Team starts weak

Figure 4.20: Optimal energy usage in the first three
quarters combined when the team starts with average
energy.

Figure 4.20 shows the optimal en-

ergy usage by the team during Q1-

Q3 when the team starts the game

with average strength (eP = 0.2).

Like in the previous case, the opti-

mal action again initially increases

linearly with strength of the oppo-

nent, and then flattens out before

discontinuously dropping to zero,

against a stronger opponent (eF ≈
0.3 and above).

Figure 4.21 shows the optimal action in Q4, for different advantage scenarios

that the team might face, at the start of the last quarter; against a strong, average

and weak opponent.

(a) Strong Opponent (b) Average Opponent (c) Weak Opponent

Figure 4.21: Optimal Action in Q4 when the team starts weak (eP = 0.2).

4.4.3 Extension III: Strong and weak opponents

Fixtures in competitions are usually known in advance. In this section therefore,

we consider the case, where all opponents in the league are categorized into two

types (“strong” and “weak”) based on strength. The sequence of opponent strength

is known to the team manager. We assume that the team faces roughly an equal
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number of strong and weak opponents in the season. The departure from the base

model in Section 4.3 involves new assumptions about the domain of the field’s

energy reserves. Energy reserves (eF) for “strong” opponents are assumed to be

distributed uniformly with support [0.5,1] while reserves for “weak” types also

distributes uniformly, but with support [0,0.5]. The assumptions about other dis-

tributions and parameters remain unchanged (for details see, Distributions and
Parameters in Section 4.3). The expected value at t+1 in the maximization prob-

lem in (Section 4.2) is now evaluated over one of the truncated support, depending

on the strength of the opponent at t + 1 which is known to the team. We anal-

yse EWR and optimal strategy of the team, during different stages of the season

(t = 5,15,40,65,75), under three advantage scenarios as before. The sequence

of opponent strength satisfying the conditions stated earlier is fixed. Table 4.2

presents the number of strong opponents remaining at different stages that we an-

alyze. One can note that, at each stage, roughly an equal number of each type of

opponent remain. Among the games presented, only at game (t) 15 there are fewer

“strong” compared to “weak” opponents, that the team has yet to face.

Current Game # Games Remaining # Strong Opponents Remaining
5 75 38

15 65 31
40 40 21
65 15 9
75 5 3

Table 4.2: Number of Strong Opponents remaining at different stages of the season.

Expected Win Rate

• During the first half of the season, EWR remains fairly constant across states, the

exception being when either the team or the field starts with a very low reserve

(close to zero); even in that case the change is not drastic (Figure 4.22).

• In the later half of the season, if the advantage at the start of Q4 is well ahead or

behind, the strength difference between the teams does not affect EWR; except
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when, either the team or the field starts with a very low reserve (close to zero).

The combined effect of: (1) time in the season and (2) the number of strong

opponents remaining is less obvious. (see, Figure 4.22a & 4.22c ).

• If scores are even at the start of Q4, the strength difference between the teams

plays a role in determining EWR. There is a large variation in the values of

EWR depending on whether the team is relatively stronger or weaker than the

field when there are fewer games remaining. Relative differences between EWR

at different times of the season based on the current state is again less obvious

(Figure 4.22b).

(a) Ahead (b) Even (c) Behind

Figure 4.22: Expected Win Rate at different stages of the season. Different shades denote different
game (t), with the following colour codes: t = 5 , 15 , 40 , 60 , 75.

Optimal Strategy

• Firstly, one can observe from Figure 4.23 that the optimal strategy is highly

insensitive to the stage in the season.

• If the advantage at the start of Q4 is well in favour of the team, but the team

starts with a very low initial energy reserve, it optimal to use up the remaining

energy against a relatively stronger opponent. However, starting the game with

moderate energy reserves, good advantage always calls for saving energy in Q4

(Figure 4.23a).

• When the relative strength is strongly in favour of the team, and the scores are

level at the start of Q4, we can see from Figure 4.23b that it is indeed optimal to
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save energy for future. If the team starts the game very low on energy, it is again

optimal to save when scores are level after Q3.

• If the score-difference is largely in favour of the field after Q3, unless it is the

case that the opponent is very weak compared to the team, it is optimal to save

energy in Q4 (there is a sharp drop to zero, see Figure 4.23c).

(a) Ahead (b) Even (c) Behind

Figure 4.23: Optimal strategy at different stages of the season. Colour codes: t = 5 , 15 , 40 , 60 ,
75.

End Season

Similar to the base model, we once again focus attention to the last five games

in the season in which, future games must be taken into consideration. Table 4.3

presents the number of strong opponents the team has yet to face, at the start of

games in the last stages of the season.

Current Game # Strong Opponents Remaining
75 3
76 3
77 2
78 1
79 0

Table 4.3: Number of Strong Opponents to face in remaining games
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Expected Win Rate

• Figure 4.24 shows EWR at the start of the game, for games towards the end of the

season. The variation of EWR across states is much larger compared to games

earlier in the season.

• The combined effect of: (1) time in the season and (2) the number of strong

opponents remaining is less obvious.

(a) Ahead (b) Even (c) Behind

Figure 4.24: Expected Win Rate. Colour codes: t = 75 , 76 , 77 , 78 , 79

Optimal Action in Q4

• We can observe from Figure 4.25 that the optimal action is highly insensitive to

which game we consider even towards the end of the season.

• Moreover, the optimal strategy resembles closely with the optimal action at Q4

for earlier games in the season.

4.4.4 Comparison with Base Model

In this section, we discuss the similarities and differences in EWR and optimal

strategies in each extension with respect to the base model. We adopt the following

shorthand to refer to the different models: BM for “Base Model”, FS for “Field

Plays Optimal Strategy”, WS for “Weak and Strong types of opponent” and finally

AQ for “Team plays strategically in All Quarters”.
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(a) Ahead (b) Even (c) Behind

Figure 4.25: Optimal Strategy at the end of the season. Different shades denote different game (t),
with the following colour codes: t = 75 , 76 , 77 , 78 , 79

Expected Win Rate (EWR)

• In all cases, variability in EWR across states shrinks for games at the beginning

of the season: initial conditions are inconsequential in a long season.

• Table 4.4 presents a detailed comparison of descriptive statistics for EWR at

different stages of the season, across the four different models.

Model min max mean variance
BM 0.4950 0.6007 0.5494 0.0003
FS 0.5086 0.6147 0.5649 0.0003
AQ 0.5558 0.6910 0.6215 0.0003
WS 0.4473 0.6128 0.5559 0.0006

(a) Games 10 to 70

min max mean variance
0.2486 0.8224 0.5408 0.0229
0.2500 0.8242 0.5470 0.0235
0.2499 0.9588 0.5836 0.0218
0.1263 0.6804 0.4570 0.0275

(b) Games 75 to 79

Table 4.4: Comparison of EWR across the different models.

• The additional flexibility that the coach enjoys under AQ in terms of being able

to act strategically during the first three quarters, allows the coach, when facing a

team that has high energy, to decide to simply save all the energy. This flexibility

translates into better EWR, as can be seen from the above table.

• The interplay between advantage and relative strength plays a key role in deter-

mining EWR in a similar fashion across the models. The effect (degree of rise

or fall in EWR) is however different in each case.
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Optimal Strategies

• The optimal strategies in Q4 remain highly insensitive to the time in the season,

for all the different models.

• Table 4.5 compares the optimal strategies in different extensions with respect to

the base model (BM), for the three advantage scenarios that the team might face

at the start of Q4. Note that, the state space when the team plays strategically in

all quarters (AQ) is higher-dimensional when compared to the other models.

Model Advantage: Ahead Advantage: Even Advantage: Behind
BM If the team starts with

a very low initial en-
ergy reserve, it is op-
timal to use up the re-
maining energy against
a relatively stronger op-
ponent. However, if
starting with moderate
reserves, it is always al-
ways optimal save en-
ergy in Q4.

If the relative strength
is strongly in favour of
the team, it is optimal
to save energy at Q4.
However, if the team
starts very low on en-
ergy, it is optimal to
save in Q4.

Unless it is the case that
the opponent starts with
very low energy levels
compared to the team,
it is optimal to save en-
ergy in Q4 (there is a
sharp drop to zero).

FS No noticeable differ-
ence compared to BM.

If the relative strength
is highly in favour of
the field, the optimal
action in BM is to just
save energy, while in
FS there are occasional
spikes of energy usage.

No noticeable differ-
ence compared to BM.

AQ Restriction to states
representing final quar-
ter decisions display no
noticeable difference
compared to BM.

Restriction to states
representing final quar-
ter decisions display no
noticeable difference
compared to BM.

Restriction to states
representing final quar-
ter decisions display no
noticeable difference
compared to BM.

WS No noticeable differ-
ence compared to BM.

No noticeable differ-
ence compared to BM.

No noticeable differ-
ence compared to BM.

Table 4.5: Comparison of optimal strategies across the different models.
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4.5 Concluding remarks

In this chapter, we have examined an interesting decision problem of a coach, who

wishes to optimally manage the energy level of a pool of players in a competi-

tive league. Given how players are exposed to frequent high-intensity movements

during a game which can lead to acute and accumulated fatigue, coaches often

consider holding back the intensity of play at the beginning of games and make

an informed decision at a later stage based on the score-difference. In particular,

something that coaches are known to frequently consider is how much to rest or

limit minutes of star players in the team. However, not having the players put

sufficient effort in a game could also prove to be costly. We have explored this

trade-off between “saving energy for future games” and “winning current game”

and the optimal energy dynamics late in the game, in a long season. We have

shown that, indeed, saving energy is optimal throughout most of the season. The

conclusion is checked for robustness under different extensions of the base model.

Indeed, when a field of teams whose coaches employ similar strategies, it remains

optimal to save energy in games throughout most of the season.

Since our focus was on effort dynamics late in the game, we resorted to allowing

the coach to take a strategic decision once during every game. In future work, it

would be interesting to study the problem where there are multiple decision making

points in every game; and the coach needs to make a decision at every such point as

a function of the score-difference at that point, the likelihood of winning the current

game, and consideration for future games. Another interesting direction to explore

is when every round of play of the game is a battle, making every individual game

a multi-battle contest; and the winner of any given game is the one who wins (lets

say) the majority of the battles. Since all the battles need not take place in every

round (for example, if we consider a best of three battles contest, if a team wins the

first two battles, it is declared the winner and the third battle is not fought at all), it

might be interesting to study the energy dynamics in competitions with a series of

such multi-battle contests.
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4.6 Appendix C

4.6.1 Proofs

Proof of Proposition 4.2.1
Since, VT+1(s) = 0 ∀s ∈ S, we have for all eF , eP and a:

VT (eP,eF ,a) = max
x

R(eP,eF ,a,x)

Since, there is no value of saving in game T :

xT = argmax
x

R(eP,eF ,a,x) = (1−α)eP

This implies, for all eF , a and for all eP > êP:

VT (eP,eF ,a) ≥ VT (êP,eF ,a) (By Assumption 4.2.2) (4.6)

Now, applying backward induction, suppose it is true that for some t ≤ T ; for all

eF , a and for all eP > êP,

Vt(eP,eF ,a) ≥ Vt(êP,eF ,a) (4.7)

Next note that, R(eP,eF ,a,x) is increasing in a by definition when all other argu-

ments are held fixed. This implies Vt(eP,eF ,a) is weakly increasing in a for fixed

eF and eP. Then, by Assumption 4.2.3 we get,

∑
a

Vt(eP,eF ,a)η(a| αeP,βeF) ≥ ∑
a

Vt(êP,eF ,a)η(a| α êP,βeF) (4.8)

Integrating out eF yields,

∫ {
∑
a

Vt(eP,eF ,a)η(a| αeP,βeF)
}

g(deF) ≥
∫ {

∑
a

Vt(êP,eF ,a)η(a| α êP,βeF)
}

g(deF) (4.9)

Inequality (4.9) together with Assumption 4.2.1 then implies that for r > r′,
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∫ ∫ {
∑
a

Vt(eP,eF ,a)η(a| αeP,βeF)
}

g(deF)µ(deP|r)

≥ (4.10)∫ ∫ {
∑
a

Vt(eP,eF ,a)η(a| αeP,βeF)
}

g(deF)µ(deP|r′)

Recall that s = (ep,eF ,a). The value function at period t −1 is:

Vt−1(s) = max
x≤(1−α)eP

[
R(s,x)+

∫ ∫ {
∑
a

Vt(eP,eF ,a)η( a | αeP,βeF)
}

g(deF)µ(deP|r(x))
]

(4.11)

Recall that for any given eP, any maximiser (x∗) of the expression inside the max

operator in (4.11) must satisfy: x∗+ r(x∗) = (1−α)eP. For any fixed s, we know

that R(s,x) is (weakly) increasing in x. Since for fixed eF ,a and eP > êP, the

argument that maximises the expression in (4.11) when the state is êP, is also

available at state eP, we have for fixed eF ,a:

Vt−1(eP,eF ,a) ≥ Vt−1(êP,eF ,a) if, eP > êP (4.12)

Thus by the Principle of Induction the proof follows. ■

Proof of Proposition 4.2.2
For initial states s′,s′′ ∈ S̄ and any strategy σ1, consider a strategy σ2 to be as

guaranteed by the statement in the proposition. Let us now define Xk := V (s′′k)−
V (s′k)−4k. Since the reward accumulated at each period is at most 1, the following

inequalities are satisfied for strategies σ1 and σ2 :∣∣Eσ1

[
V (s′k+1 | s′k)

]
− V (s′k)

∣∣ ≤ 2∣∣Eσ2

[
V (s′′k+1 | s′′k)

]
− V (s′′k)

∣∣ ≤ 2

which implies Eσ1,σ2

[
Xk+1 | s′k,s

′′
k
]
≤ Xk.

Next, let τ be a random variable denoting the earliest k ≤ N such that V (s′′k) ≥
V (s′k), if there is no such k, then let τ = N + 1. Invoking the optimal stopping
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theorem, we have:

Eσ1,σ2[Xτ ] ≤ Eσ1,σ2[Xo] =V (s′′0)−V (s′0) (4.13)

Now,

Eσ1,σ2

[
Xτ

]
=

N

∑
k=1

Eσ1,σ2

[
V (s′′k )−V (s′k) − 4k | τ = k

]
·P
[
τ = k

]
+

Eσ1,σ2

[
V (s′′N+1)−V (s′N+1)−4(N +1) | τ = N +1

]
·P
[
τ = N +1

]
or,

Eσ1,σ2

[
Xτ

]
≥

N

∑
k=1

(0−4N) ·P
[
τ = k

]
+

[
−
(
T − (N +1−1)

)
−4(N +1)

]
· ε

=−4N +
[
− (T −N)−4N −4

]
· ε

=−[T + 3N + 4 ] · ε − 4N (4.14)

Using (4.14) in (4.13) and dividing both sides of the inequality by T the result

follows. ■
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4.6.2 Code used for Python simulations

#======= Python Packages used ========#
i m p o r t numpy as np
from s c i p y . s t a t s i m p o r t binom
i m p o r t math
i m p o r t m a t p l o t l i b . p y p l o t a s p l t
i m p o r t t ime
#=====================================#

#======== P r e l i m i n a r y HELPER FUNCTIONS t h a t w i l l be used i n t h e Bel lman o p t i m i z a t i o n ==========#

## De f in e G = A + 30 where ’A’ i s a d v a n t a g e a t t h e s t a r t o f Q4 .
## A r a n g e s from −30 t o 30 => G r a n g e s from 0 t o 6 0 .
## S i n c e I am going t o use ’ binom ’ from s c i p y . s t a t s , t h i s
## t r a n s f o r m a t i o n w i l l be u s e f u l . One c o u l d a l t e r n a t i v e l y make
## t h e n e c e s s a r y t r a n s f o r m a t i o n d i r e c t l y a t a p p r o p r i a t e p l a c e s
## w i t h o u t d e f i n g t h i s new v a r i a b l e . I had begun co d i ng i t
## t h i s way and t h e r e f o r e s t u c k t o i t .

#============================#
# STAGE REWARD #
#============================#

d e f reward (G, y , x ) :
N = 20
i f x == 0 . 0 and y == 0 . 0 :

x = 1 . 0
y = 1 . 0

i f G == −10:
r e t u r n binom . pmf ( 2 0 , N, x / ( x+y ) ) / 2 . 0

e l i f G == 1 0 :
### P ( X_4 > 0) + 1 /2* P [ X_4 = 0]
r e t u r n ( 1 . 0 − binom . pmf ( 0 , N, x / ( x+y ) ) / 2 . 0 )

e l i f np . i s i n (G, np . l i n s p a c e ( −9 , 9 , 1 9 ) ) :
r e t u r n ( 1 . 0 − binom . c d f (10 − G, N, x / ( x+y ) ) + binom . pmf (10 − G, N, x / ( x+y ) ) / 2 . 0 )

e l i f np . i s i n (G, np . l i n s p a c e ( −30 , − 1 1 , 2 0 ) ) :
r e t u r n 0 . 0

e l s e :
r e t u r n 1 . 0

#====================================================================================================#
# The f o l l o w i n g f u n c t i o n makes E v a l u a t i o n o f Expec ted Value a t t +1 c l e a n e r and f a s t e r . #
# Takes as i n p u t P [ : , : , : ] and V[ t +1 , : , : , : ] : t h e v a l u e a r r a y f o r p e r i o d t + 1 . ( used i n t h e Bel lman )#
# OUTPUTS a 2D a r r a y . Dimens ions c o r r e s p o n d i n g t o E_f and E_p . #
# The ( i , j ) t h c e l l v a l u e i s t h e e x p e c t e d v a l u e where t h e e x p e c t a t i o n i s t a k e n ove r G. #
#====================================================================================================#

d e f e x p e c t e d _ v a l u e _ g i v e n _ E f _ a n d _ E p ( x , p ) :
( g , e_f , e_p ) = x . shape
o u t p u t = np . z e r o s ( ( e_f , e_p ) )
f o r i i n r a n g e ( 0 , e_p ) :

f o r j i n r a n g e ( 0 , e _ f ) :
o u t p u t [ j , i ] = sum ( x [ : , j , i ] * p [ : , j , i ] )

r e t u r n ( o u t p u t )

### E f f o r t − usage f u n t i o n s

d e f team ( x , a l p h a ) :
r e t u r n ( a l p h a *x )
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d e f f i e l d ( x , b e t a ) :
r e t u r n ( b e t a *x )

d e f e f f o r t ( x , y ) :
i f y == 0 :

r e t u r n ( 0 )
e l s e :

r e t u r n ( x / y )

#==========================================================================================================#
# Value Mat r i x and o t h e r a r r a y I n i t i a l i z a t i o n #
#==========================================================================================================#

T = 80
G = 61
n u m _ o f _ s t a t e s _ E _ f = 100 ## number o f e f f o r t _ g r i d _ p o i n t s f o r t h e f i e l d
nu m_o f_s t a t e s_ E_p = 100 ## number o f e f f o r t _ g r i d _ p o i n t s f o r t h e team

## V = np . z e r o s ( ( T , G, E_f , E_p ) )
V = np . z e r o s ( ( T+2 ,G, n u m _ o f _ s t a t e s _ E _ f , n um_ of _s t a t e s_E _p ) )
V_new = np . z e r o s ( ( T+2 ,G, n u m _ o f _ s t a t e s _ E _ f , nu m_o f_s t a t e s_ E_p ) ) ## w i l l be used i n E x t e n s i o n − I
s t r a t e g y = np . z e r o s ( ( T+2 ,G, n u m _ o f _ s t a t e s _ E _ f , nu m_o f_s t a t e s_ E_p ) )
s t r a t e g y _ p r o p = np . z e r o s ( ( T+2 ,G, n u m _ o f _ s t a t e s _ E _ f , n um_ of_ s t a t e s _E_ p ) )
s t r a t e g y _ n e w = np . z e r o s ( ( T+2 ,G, n u m _ o f _ s t a t e s _ E _ f , nu m_o f_s t a t e s_ E_p ) )
s t r a t e g y _ n e w _ p r o p = np . z e r o s ( ( T+2 ,G, n u m _ o f _ s t a t e s _ E _ f , nu m_o f_s t a t e s_ E_p ) )
o p t _ s t r a t e g y _ e f f o r t _ i n d e x = np . z e r o s ( ( T+2 ,G, n u m _ o f _ s t a t e s _ E _ f , n um_ of_ s t a t e s _E_ p ) )
o p t _ s t r a t e g y _ e f f o r t _ i n d e x _ n e w = np . z e r o s ( ( T+2 ,G, n u m _ o f _ s t a t e s _ E _ f , nu m_o f_ s t a t e s _E_ p ) )

#===========================================================================================================#
# D i s t r i b u t i o n o f G as a f u n c t i o n o f ( E_f , E_p ) : G f o l l o w s Bin ( 6 0 , f ( E_p ) / f ( E_p )+ g ( E_f ) ) − 30 #
#===========================================================================================================#

# e f f o r t l i e s be tween [ 0 , 1 ]
s_0 = 0 . 0
s_n = 1 . 0

a l p h a = 0 . 7 / 3 . 0 ## team spe nd s 0 . 7 * E_p i n t h e f i r s t 3 q u a r t e r s
b e t a = 1 / 4 . 0 ## f i e l d sp end s 0 .25 * E_f e v e r y q u a r t e r
beta_new = 0 . 7 / 3 . 0 ## w i l l be used when f i e l d p l a y s s t r a t e g i c a l l y

### E f f o r t l e v e l i n i t i a l i z a t i o n
E_f = np . l i n s p a c e ( s_0 , s_n , num = n u m _ o f _ s t a t e s _ E _ f )
E_p = np . l i n s p a c e ( s_0 , s_n , num = n um_ of_ s t a t e s _E_ p )

#===========================================================================================================#
# =: P r o b a b i l i t y cube := #
# g i v e n e _ f and e_p , P [ : , e_f , e_p ] g i v e s t h e mass on each v a l u e o f G. #
# Th i s i s go ing t o be h e a v i l y used e v e r y t i m e w h i l e comput ing t h e e x p e c t a t i o n te rm i n t h e Bel lman #
#===========================================================================================================#

P = np . z e r o s ( ( G, n u m _ o f _ s t a t e s _ E _ f , n um_ of _s t a t e s_E _p ) )

f o r i i n r a n g e ( l e n ( E_p ) ) :
i _ u s e d = i n t ( np . a round ( 3 . 0 * a l p h a * i ) )
f o r j i n r a n g e ( l e n ( E_f ) ) :

i f i == 0 :
i f j == 0 :

p = 0 . 5
e l s e :

p = 0 . 0
e l s e :

p = E_p [ i _ u s e d ] / ( E_p [ i _ u s e d ]+ f i e l d ( E_f [ j ] , 3 . 0 * b e t a ) )

f o r g i n r a n g e ( 0 , 6 1 ) :
P [ g , j , i ] = binom . pmf ( g , 60 , p )

142



Simulation codes: Chapter 4

#===================================================================#
# E v a l u a t i o n o f Value a t t ime T #
#===================================================================#
## f i e l d sp end s 0 .25 * E_f e v e r y q u a r t e r .
## Team sp end s e v e r y t h i n g i n t h e l a s t q u a r t e r s i n c e V_T+1 = 0 .

f o r i i n r a n g e ( l e n ( E_p ) ) :
f o r j i n r a n g e ( l e n ( E_f ) ) :

f o r g i n r a n g e ( 0 , 6 1 ) :
V[ T , g , j , i ] = reward ( ( g − 3 0 ) , ( b e t a )* E_f [ j ] , ( 1 . 0 − 3 . 0 * a l p h a )* E_p [ i ] )

######################################################################################################
#================================= BASE MODEL ========================================#
######################################################################################################

#====================================================================#
# Backward I n d u c t i o n ( Bel lman ) #
#====================================================================#

f o r t i n r a n g e ( T− 1 , 0 , − 1 ) :
p r i n t ( t ime . c t i m e ( ) , " t = " , t )
## E x p e c t a t i o n ove r G : t h e f u n c t i o n r e t u r n s a 2D a r r a y . c e l l ( j , i ) d e n o t e s e x p e c t e d v a l u e g i v e n E_f [ j ] , E_p [ i ]
e x p e c t e d _ v a l u e _ o v e r _ G = e x p e c t e d _ v a l u e _ g i v e n _ E f _ a n d _ E p ( V[ t + 1 , : , : , : ] , P )
f o r i i n r a n g e ( 0 , l e n ( E_p ) ) :
#### E_p [ loc_Q4 ] = e f f o r t a v a i l a b l e i n Q4 ( t o use now VS save f o r l a t e r p e r i o d s )

l o c _ a v a i l a b l e _ Q 4 = i n t ( i − np . a round ( 3 . 0 * a l p h a * i ) )
f o r j i n r a n g e ( 0 , l e n ( E_f ) ) :

f o r g i n r a n g e ( 0 , 6 1 ) :
Y = np . z e r o s ( l o c _ a v a i l a b l e _ Q 4 + 1)
f o r i _ h a t i n r a n g e ( 0 , l o c _ a v a i l a b l e _ Q 4 + 1 ) : # i _ h a t l o o p s ove r a v a i l a b l e e f f o r t g r i d

Y[ i _ h a t ] = reward ( g −30 , f i e l d ( E_f [ j ] , b e t a ) , E_p [ i _ h a t ] ) +
[~ code c o n t d . ] ( e x p e c t e d _ v a l u e _ o v e r _ G [ : , ( l o c _ a v a i l a b l e _ Q 4 − i _ h a t ) : ] . sum ( ) ) *
[~ code c o n t d . ] ( 1 / l e n ( E_f ) ) * ( 1 / l e n ( E_p [ ( l o c _ a v a i l a b l e _ Q 4 − i _ h a t ) : ] ) )

V[ t , g , j , i ] = np . max (Y)
o p t _ s t r a t e g y _ e f f o r t _ i n d e x [ t , g , j , i ] = np . argmax (Y)
s t r a t e g y [ t , g , j , i ] = E_p [ np . argmax (Y) ]
s t r a t e g y _ p r o p [ t , g , j , i ] = e f f o r t ( E_p [ np . argmax (Y) ] , E_p [ l o c _ a v a i l a b l e _ Q 4 ] )

p r i n t ( ’ \ n V o i l a ! ’ )

######################################################################################################
#========================== E x t e n s i o n I : F i e l d P l a y s Opt imal S t r a t e g y ===============================#
######################################################################################################

### Base Model He lp e r F u n c t i o n s R e q u i r e d . The Base Model must be s o l v e d b e f o r e r u n n i n g t h i s codes f o r
### t h i s e x t e n s i o n , a s t h e o p t i m a l s t r a t e g i e s e v a l u a t e d t h e r e w i l l be used h e r e .

#===============================================================================================#
# =: New P r o b a b i l i t y cube := #
#===============================================================================================#

P_new = np . z e r o s ( ( G, n u m _ o f _ s t a t e s _ E _ f , n um_ of_ s t a t e s _E_ p ) ) ## P = np . z e r o s ( ( G, E_f , E_p ) )

f o r i i n r a n g e ( 0 , l e n ( E_p ) ) :
i _ u s e d = i n t ( np . a round ( 3 . 0 * a l p h a * i ) )
f o r j i n r a n g e ( 0 , l e n ( E_f ) ) :

j _ u s e d = i n t ( np . a round ( 3 . 0 * beta_new * j ) )
i f i == 0 :

i f j == 0 :
p = 0 . 5

e l s e :
p = 0 . 0

e l s e :
p = f l o a t ( E_p [ i _ u s e d ] / ( E_p [ i _ u s e d ]+ E_f [ j _ u s e d ] ) )

f o r g i n r a n g e ( 0 , 6 1 ) :
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P_new [ g , j , i ] = binom . pmf ( g , 60 , p )

#=============================================================================================#
# E v a l u a t i o n o f New Value a t t ime T #
#=============================================================================================#

f o r i i n r a n g e ( 0 , l e n ( E_p ) ) :
f o r j i n r a n g e ( 0 , l e n ( E_f ) ) :

f o r g i n r a n g e ( 0 , 6 1 ) :
V_new [ T , g , j , i ] = reward ( ( g − 3 0 ) , ( 1 . 0 − 3 . 0 * beta_new )* E_f [ j ] , ( 1 . 0 − 3 . 0 * a l p h a )* E_p [ i ] )

##### F i e l d s pen ds 0 . 7 * E_f i n f i r s t t h r e e q u a r t e r s and 0 . 3 * E_f i n t h e Q4 . ( s i n c e f i e l d p l a y s t h e o p t i m a l s t r a t e g y )
##### Team s pen ds e v e r y t h i n g i n t h e l a s t q u a r t e r s i n c e V_T+1 = 0 .

#====================================================================#
# Backward I n d u c t i o n ( Bel lman ) #
#====================================================================#

f o r t i n r a n g e ( T− 1 , 0 , − 1 ) :
p r i n t ( t ime . c t i m e ( ) , " t = " , t )
## E x p e c t a t i o n ove r G : t h e f u n c t i o n r e t u r n s a 2D a r r a y . c e l l ( j , i ) d e n o t e s e x p e c t e d v a l u e g i v e n E_f [ j ] , E_p [ i ]
e x p e c t e d _ v a l u e _ o v e r _ G = e x p e c t e d _ v a l u e _ g i v e n _ E f _ a n d _ E p ( V_new [ t + 1 , : , : , : ] , P_new )
f o r i i n r a n g e ( 0 , l e n ( E_p ) ) :
#### E_p [ loc_Q4 ] = e f f o r t a v a i l a b l e i n Q4 ( t o use now VS save f o r l a t e r p e r i o d s )

l o c _ a v a i l a b l e _ Q 4 = i n t ( i − np . a round ( 3 . 0 * a l p h a * i ) )
f o r j i n r a n g e ( 0 , l e n ( E_f ) ) :

l o c _ a v a i l a b l e _ Q 4 _ f i e l d = i n t ( j − np . a round ( 3 . 0 * beta_new * j ) )
f o r g i n r a n g e ( 0 , 6 1 ) :

#### o p t _ s t r a t e g y _ e f f o r t _ i n d e x comes from e a r l i e r o p t i m i z a t i o n problem .
f i e l d _ s t r a t e g y _ e f f o r t _ i n d e x = i n t ( o p t _ s t r a t e g y _ e f f o r t _ i n d e x [ t ,60 − g , i , j ] )
Y = np . z e r o s ( l o c _ a v a i l a b l e _ Q 4 + 1)
f o r i _ h a t i n r a n g e ( 0 , l o c _ a v a i l a b l e _ Q 4 + 1 ) : # i _ h a t l o o p s ove r a v a i l a b l e e f f o r t g r i d

Y[ i _ h a t ] = reward ( g −30 , E_f [ f i e l d _ s t r a t e g y _ e f f o r t _ i n d e x ] , E_p [ i _ h a t ] ) +
[~ code c o n t d . ] ( e x p e c t e d _ v a l u e _ o v e r _ G [ : , ( l o c _ a v a i l a b l e _ Q 4 − i _ h a t ) : ] . sum ( ) ) *
[~ code c o n t d . ] ( 1 / l e n ( E_f ) ) * ( 1 / l e n ( E_p [ ( l o c _ a v a i l a b l e _ Q 4 − i _ h a t ) : ] ) )

V_new [ t , g , j , i ] = np . max (Y)
o p t _ s t r a t e g y _ e f f o r t _ i n d e x _ n e w [ t , g , j , i ] = np . argmax (Y)
s t r a t e g y _ n e w [ t , g , j , i ] = E_p [ np . argmax (Y) ]
s t r a t e g y _ n e w _ p r o p [ t , g , j , i ] = e f f o r t ( E_p [ np . argmax (Y) ] , E_p [ l o c _ a v a i l a b l e _ Q 4 ] )

p r i n t ( ’ \ n V o i l a ! ’ )

######################################################################################################
#========================== E x t e n s i o n I I : S t r a t e g i c A l l Q u a r t e r s ===============================#
######################################################################################################

#======== A d d i t i o n a l HELPER FUNCTIONS t h a t w i l l be used i n t h e Bel lman o p t i m i z a t i o n ==========#

# j : f i e l d e f f o r t i n d e x ( 1 / 4 t h o f i t used i n Q4 , embedded i n t h e reward f u n c t i o n )
# i : team e f f o r t i n d e x ( e f f o r t a v a i l a b l e i n Q4 ( s t a t e v a r i a b l e ) )
# a : a d v a n t a g e ( s t a t e v a r i a b l e )
# en e r gy : E_f and E_p a l r e a d y d e f i n e d e a r l i e r i n t h e code which i s b e i n g used h e r e .
# value_Q3 : i n p u t g i v i n g v a l u e a t Q3 ( numbers come from c a l c u l a t i o n s done i n t +1 )

d e f max_bellman_Q4 ( j , i , adv , value_Q3 ) :
v a l = np . z e r o s ( i + 1 )
f o r r i n r a n g e ( 0 , i + 1 ) :

v a l [ r ] = reward ( adv , ( 1 / 4 . 0 ) * E_f [ j ] , E_p [ i − r ] ) + ( value_Q3 [ : , r : ] . sum ( ) ) * ( 1 / l e n ( E_f ) * ( 1 / l e n ( E_p [ r : ] ) ) )
( va lue , o p t _ s a v i n g _ i n d e x ) = ( np . max ( v a l ) , np . argmax ( v a l ) )
r e t u r n ( ( va lue , o p t _ s a v i n g _ i n d e x ) )
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d e f max_bellman_Q3 ( j , i , value_Q4 ) :
v a l = np . z e r o s ( i + 1 )
f o r x i n r a n g e ( 0 , i + 1 ) :

v a l [ x ] = sum ( value_Q4 [ i −x , : ] * P [ : , j , x ] )
( value_Q3 , o p t _ e f f o r t _ i n d e x ) = ( np . max ( v a l ) , np . argmax ( v a l ) )
r e t u r n ( ( value_Q3 , o p t _ e f f o r t _ i n d e x ) )

#==========================================================================================================#
# Value Mat r i x and o t h e r a r r a y I n i t i a l i z a t i o n #
#==========================================================================================================#

T = 80
G = 61
n u m _ o f _ s t a t e s _ E _ f = 100 ### number o f e f f o r t _ g r i d _ p o i n t s
nu m_o f_s t a t e s_ E_p = 100 ### number o f e f f o r t _ g r i d _ p o i n t s

V_Q3 = np . z e r o s ( ( T+2 , n u m _ o f _ s t a t e s _ E _ f , n um_ of_ s t a t e s _E_ p ) )
Opt_Q3 = np . z e r o s ( ( T+2 , n u m _ o f _ s t a t e s _ E _ f , num _of _s t a t e s_E _p ) )

V_Q4_inter im = np . z e r o s ( ( T+2 , n u m _ o f _ s t a t e s _ E _ f , num_of_s ta t e s_E_p , G) )
Opt_Q4_in te r im = np . z e r o s ( ( T+2 , n u m _ o f _ s t a t e s _ E _ f , num_of_s ta t e s_E_p , G) )

## I n i t i a l i z i n g E f f o r t v a r i a b l e s .
s_0 = 0 . 0
s_n = 1 . 0

b e t a = 3 / 4 . 0 #### f i e l d sp end s b e t a * E_f i n f i r s t t h r e e q u a r t e r s

E_f = np . l i n s p a c e ( s_0 , s_n , num = n u m _ o f _ s t a t e s _ E _ f )
E_p = np . l i n s p a c e ( s_0 , s_n , num = n um_ of_ s t a t e s _E_ p )

#=========================================================================================================#
# S t a t e (ADVANTAGE) t r a n s i t i o n P r o b a b i l i t i e s a t t h e end of Q3 #
# P [ : , j , i ] g i v e s c o n d i t i o n a l d i s t r i b u t i o n o f ADV g i v e n e f f o r t l e v e l s . #
# where , P [ a , j , i ] = P [ a | 3 /4* E_f [ j ] , E_p [ i ] ] #
#=========================================================================================================#

P = np . z e r o s ( ( G, n u m _ o f _ s t a t e s _ E _ f , n um _of _s t a t e s_E _p ) ) ## P = np . z e r o s ( ( G, E_f , E_p ) )

f o r i i n r a n g e ( 0 , l e n ( E_p ) ) :
f o r j i n r a n g e ( 0 , l e n ( E_f ) ) :

i f i == 0 :
i f j == 0 :

p = 0 . 5
e l s e :

p = 0 . 0
e l s e :

p = E_p [ i ] / ( E_p [ i ] + ( b e t a * E_f [ j ] ) ) ######## FIELD u s e s 3 / 4 t h o f i t ’ s e f f o r t i n f i r s t t h r e e q u a r t e r s ####

f o r g i n r a n g e ( 0 , 6 1 ) :
P [ g , j , i ] = binom . pmf ( g , 60 , p )
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#==========================================================================================#
# Backward I n d u c t i o n ( Bel lman ) #
#==========================================================================================#

f o r t i n r a n g e ( T , 0 , − 1 ) :
p r i n t ( t ime . c t i m e ( ) , " t = " , t )
### Loop ove r FIELD e f f o r t l e v e l s
f o r j i n r a n g e ( 0 , l e n ( E_f ) ) :

### n e x t two l o o p s − v i s i t s t o ALL p o s s i b l e Q4 s t a t e s
f o r k i n r a n g e ( 0 , l e n ( E_p ) ) :

f o r a i n r a n g e ( 0 , 6 1 ) :
### M a x i m i s a t i o n a t Q4 f o r each p o s s i b l e s t a t e ( e_P , a ) f o r f i x e d e_F ( j )
( v a l _ Q 4 _ i n t e r i m , o p t _ s a v i n g _ Q 4 _ i n d e x ) = max_bellman_Q4 ( j , k , a −30 , V_Q3[ t + 1 , : , : ] )
V_Q4_inter im [ t , j , k , a ] = v a l _ Q 4 _ i n t e r i m
Opt_Q4_in te r im [ t , j , k , a ] = E_p [ o p t _ s a v i n g _ Q 4 _ i n d e x ] ### remember i t i s o p t i m a l SAVING ( n o t en e rg y used i n Q4 )

### Loop ove r TEAM e f f o r t l e v e l s
f o r i i n r a n g e ( 0 , l e n ( E_p ) ) :

( val_Q3 , op t_used_Q3_index ) = max_bellman_Q3 ( j , i , V_Q4_inter im [ t , j , : ( i + 1 ) , : ] )
V_Q3[ t , j , i ] = val_Q3
Opt_Q3 [ t , j , i ] = E_p [ op t_used_Q3_index ]

p r i n t ( ’ \ n V o i l a ! ’ )

######################################################################################################
#========================== E x t e n s i o n I I I : S t r o n g and Weak o p p o n e n t s ============================#
######################################################################################################

### Base Model He lp e r F u n c t i o n s R e q u i r e d .

T = 80
G = 61
n u m _ o f _ s t a t e s _ E _ f = 100 ###### number o f e f f o r t _ g r i d _ p o i n t s
nu m_o f_s t a t e s_ E_p = 100 ###### number o f e f f o r t _ g r i d _ p o i n t s
random . seed ( 1 2 3 4 )
o p p o n e n t _ s t r e n g t h _ i n _ g a m e = np . random . r a n d i n t ( 2 , s i z e =T+2) ### 0 : LOW and 1 : HIGH

V = np . z e r o s ( ( T+2 ,G, n u m _ o f _ s t a t e s _ E _ f , num _of _s t a t e s_E _p ) )
V_new = np . z e r o s ( ( T+2 ,G, n u m _ o f _ s t a t e s _ E _ f , nu m_o f_s t a t e s_ E_p ) )
s t r a t e g y = np . z e r o s ( ( T+2 ,G, n u m _ o f _ s t a t e s _ E _ f , nu m_o f_s t a t e s_ E_p ) )
s t r a t e g y _ p r o p = np . z e r o s ( ( T+2 ,G, n u m _ o f _ s t a t e s _ E _ f , n um_ of_ s t a t e s _E_ p ) )
s t r a t e g y _ n e w = np . z e r o s ( ( T+2 ,G, n u m _ o f _ s t a t e s _ E _ f , nu m_o f_s t a t e s_ E_p ) )
s t r a t e g y _ n e w _ p r o p = np . z e r o s ( ( T+2 ,G, n u m _ o f _ s t a t e s _ E _ f , num _o f_s t a t e s_ E_p ) )
o p t _ s t r a t e g y _ e f f o r t _ i n d e x = np . z e r o s ( ( T+2 ,G, n u m _ o f _ s t a t e s _ E _ f , n um_ of_ s t a t e s _E_ p ) )
o p t _ s t r a t e g y _ e f f o r t _ i n d e x _ n e w = np . z e r o s ( ( T+2 ,G, n u m _ o f _ s t a t e s _ E _ f , nu m_o f_ s t a t e s _E_ p ) )

P = np . z e r o s ( ( G, n u m _ o f _ s t a t e s _ E _ f , n um_ of _s t a t e s_E _p ) ) ## P = np . z e r o s ( ( G, E_f , E_p ) )

f o r i i n r a n g e ( 0 , l e n ( E_p ) ) :
f o r j i n r a n g e ( 0 , l e n ( E_f ) ) :

i f i == 0 :
i f j == 0 :

p = 0 . 5
e l s e :

p = 0 . 0
e l s e :

p = f l o a t ( team ( E_p [ i ] , a l p h a ) / ( team ( E_p [ i ] , a l p h a )+ f i e l d ( E_f [ j ] , b e t a ) ) )

f o r g i n r a n g e ( 0 , 6 1 ) :
P [ g , j , i ] = binom . pmf ( g , 60 , p )

f o r i i n r a n g e ( 0 , l e n ( E_p ) ) :
f o r j i n r a n g e ( 0 , l e n ( E_f ) ) :

f o r g i n r a n g e ( 0 , 6 1 ) :
V[ T , g , j , i ] = reward ( ( g − 3 0 ) , ( b e t a )* E_f [ j ] , ( 1 . 0 − 3 . 0 * a l p h a )* E_p [ i ] )
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#==========================================================================================#
# Backward I n d u c t i o n ( Bel lman ) #
#==========================================================================================#

f o r t i n r a n g e ( T− 1 , 0 , − 1 ) :
p r i n t ( t ime . c t i m e ( ) , " t = " , t )
## E x p e c t a t i o n ove r G : t h e f u n c t i o n r e t u r n s a 2D a r r a y . c e l l ( j , i ) d e n o t e s e x p e c t e d v a l u e g i v e n E_f [ j ] , E_p [ i ]
e x p e c t e d _ v a l u e _ o v e r _ G = e x p e c t e d _ v a l u e _ g i v e n _ E f _ a n d _ E p ( V[ t + 1 , : , : , : ] , P )
f o r i i n r a n g e ( 0 , l e n ( E_p ) ) :

#### E_p [ loc_Q4 ] = e f f o r t a v a i l a b l e i n Q4 ( t o use now VS save f o r l a t e r p e r i o d s )
l o c _ a v a i l a b l e _ Q 4 = i n t ( i − np . a round ( 3 . 0 * a l p h a * i ) )
f o r j i n r a n g e ( 0 , l e n ( E_f ) ) :

f o r g i n r a n g e ( 0 , 6 1 ) :
Y = np . z e r o s ( l o c _ a v a i l a b l e _ Q 4 + 1)
i f o p p o n e n t _ s t r e n g t h _ i n _ g a m e [ t +1] == 0 : ### WEAK Type TOMORROW ###

f o r i _ h a t i n r a n g e ( 0 , l o c _ a v a i l a b l e _ Q 4 + 1 ) : # i _ h a t l o o p s ove r a v a i l a b l e e f f o r t g r i d
Y[ i _ h a t ] = reward ( g −30 , f i e l d ( E_f [ j ] , b e t a ) , E_p [ i _ h a t ] ) +
[~ code c o n t d . ] ( e x p e c t e d _ v a l u e _ o v e r _ G [ : i n t ( l e n ( E_f ) / 2 ) , ( l o c _ a v a i l a b l e _ Q 4 − i _ h a t ) : ] . sum ( ) ) *
[~ code c o n t d . ] ( 2 . 0 / l e n ( E_f ) ) * ( 1 / l e n ( E_p [ ( l o c _ a v a i l a b l e _ Q 4 − i _ h a t ) : ] ) )

e l s e : ### STRONG Type TOMORROW ###
f o r i _ h a t i n r a n g e ( 0 , l o c _ a v a i l a b l e _ Q 4 + 1 ) : # i _ h a t l o o p s ove r a v a i l a b l e e f f o r t g r i d

Y[ i _ h a t ] = reward ( g −30 , f i e l d ( E_f [ j ] , b e t a ) , E_p [ i _ h a t ] ) +
[~ code c o n t d . ] ( e x p e c t e d _ v a l u e _ o v e r _ G [ i n t ( l e n ( E_f ) / 2 ) : , ( l o c _ a v a i l a b l e _ Q 4 − i _ h a t ) : ] . sum ( ) ) *
[~ code c o n t d . ] ( 2 . 0 / l e n ( E_f ) ) * ( 1 / l e n ( E_p [ ( l o c _ a v a i l a b l e _ Q 4 − i _ h a t ) : ] ) )

V[ t , g , j , i ] = np . max (Y)
o p t _ s t r a t e g y _ e f f o r t _ i n d e x [ t , g , j , i ] = np . argmax (Y)
s t r a t e g y [ t , g , j , i ] = E_p [ np . argmax (Y) ]
s t r a t e g y _ p r o p [ t , g , j , i ] = e f f o r t ( E_p [ np . argmax (Y) ] , E_p [ l o c _ a v a i l a b l e _ Q 4 ] )

p r i n t ( ’ \ n V o i l a ! ’ )

##================================================##
## Example Code For The Graphs ##
##================================================##

## f o l l o w i n g i m p o r t s n e c e s s a r y
from numpy i m p o r t *
%m a t p l o t l i b no tebook
i m p o r t m a t p l o t l i b . p y p l o t a s p l t
from m p l _ t o o l k i t s . mplot3d i m p o r t Axes3D

## The same code s t r u c t u r e works f o r g e n e r a t i n g a l l g r a p h s
## s imp ly by r e p l a c i n g t h e Value a r r a y as w e l l a s o t h e r p a r a m e t e r s a p p r o p r i a t e l y .
## I t h e r e f o r e do n o t i n c l u d e i t h e r e .

t 1 = 10
t 2 = 40
t 3 = 50
t 4 = 60
t 5 = 70

g_h igh = 37
g_mid = 30
g_low = 23

x , y = mgrid [ 0 : l e n ( E_p ) , 0 : l e n ( E_p ) ]

f _ m i d_ t 1 = V[ t1 , g_mid , x , y ] / ( T − t 1 +1)
f _ m i d_ t 2 = V[ t2 , g_mid , x , y ] / ( T − t 2 +1)
f _ m i d_ t 3 = V[ t3 , g_mid , x , y ] / ( T − t 3 +1)
f _ m i d_ t 4 = V[ t4 , g_mid , x , y ] / ( T − t 4 +1)
f _ m i d_ t 5 = V[ t5 , g_mid , x , y ] / ( T − t 5 +1)

f i g = p l t . f i g u r e ( )
ax_mid = f i g . a d d _ s u b p l o t ( 1 1 1 , p r o j e c t i o n = ’3d ’ )
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ax_mid . p l o t _ s u r f a c e ( E_f [ x ] , E_p [ y ] , f_mid_t1 , r s t r i d e =1 , c s t r i d e =1)
ax_mid . p l o t _ s u r f a c e ( E_f [ x ] , E_p [ y ] , f_mid_t2 , r s t r i d e =1 , c s t r i d e =1)
ax_mid . p l o t _ s u r f a c e ( E_f [ x ] , E_p [ y ] , f_mid_t3 , r s t r i d e =1 , c s t r i d e =1)
ax_mid . p l o t _ s u r f a c e ( E_f [ x ] , E_p [ y ] , f_mid_t4 , r s t r i d e =1 , c s t r i d e =1)
ax_mid . p l o t _ s u r f a c e ( E_f [ x ] , E_p [ y ] , f_mid_t5 , r s t r i d e =1 , c s t r i d e =1)

ax_mid . s e t _ x l a b e l ( ’ \ n F i e l d E f f o r t ’ )
ax_mid . s e t _ y l a b e l ( ’ \ nTeam E f f o r t ’ )

###################################################################################################################
###################################################################################################################
###################################################################################################################
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