
 
 

 

 

 

 

 

 

Hird, Niall (2022) The representation theory of Hc(Sn~Z/lZ). PhD thesis. 
 
 
 

https://theses.gla.ac.uk/82740/ 
 

 

Copyright and moral rights for this work are retained by the author 

A copy can be downloaded for personal non-commercial research or study, 

without prior permission or charge 

This work cannot be reproduced or quoted extensively from without first 

obtaining permission in writing from the author 

The content must not be changed in any way or sold commercially in any 

format or medium without the formal permission of the author 

When referring to this work, full bibliographic details including the author, 

title, awarding institution and date of the thesis must be given 

 

 

 

 

 

 

 
 

Enlighten: Theses 

https://theses.gla.ac.uk/ 

research-enlighten@glasgow.ac.uk 

https://theses.gla.ac.uk/82740/
https://theses.gla.ac.uk/
mailto:research-enlighten@glasgow.ac.uk


The representation theory of Hc(Sn o Z/`Z)

by
Niall Hird

A thesis submitted in fulfilment of the requirements
for the degree of

Doctor of Philosophy

at the

School of Mathematics & Statistics
College of Science & Engineering

University of Glasgow

October 2021





Abstract
In this thesis we examine various aspects of the representation theory of the restricted
rational Cherednik algebra Hc(Sn oZ/`Z). We prove several multiplicity results for graded
modules, in particular for modules over an algebra that admits a triangular decompo-
sition. This includes the algebra Hc(Sn o Z/`Z). Furthermore, if the projective covers
admit a radical preserving filtration, we show that we can calculate the multiplicities of
the simple modules inside the radical layers of the projective covers.

We give an explicit presentation of the centre of the restricted rational Cherednik
algebra Hc(Sn oZ/`Z) for suitably generic c. This is done by first deriving a presentation
of the centre of Hc(Sn) using Schubert cells, then extending this to the more general
wreath product group using the action of the cyclic group Z/`Z. This presentation is
given for each block of the centre. Using the bijection between irreducible representations
of Sn o Z/`Z and `-multipartitions of n, we prove that this explicit presentation can be
read directly from the `-multipartition of n.
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Chapter 1

Introduction

This thesis has two themes, one being the structure of the radical filtration of projective
covers and the other the geometry of Calogero-Moser spaces. They are linked through
the representation theory and geometry of the restricted rational Cherednik algebra. In
Chapter 3 we derive multiplicity formulae that allow us to (partially) describe the radical
series of projective covers. In Chapters 5 and 6, we give an explicit presentation of the
centre of the restricted rational Cherednik algebra for the wreath product Sn oZ/`Z. This
allows us to apply the multiplicity results from the first part to the projective covers of
this family of restricted rational Cherednik algebras.

§ 1.1 | Multiplicity formulas
Throughout this section assume that all algebras and modules are finite dimensional un-
less otherwise stated. Given an algebra A, and an A-module M of finite length, the
multiplicity [M : N ] of a simple module N inside M is the number of times N appears as
a composition factor of M . In a sense, we can think of these multiplicities as describing
the building blocks of the module M . They do not, however, tell us how to put these
blocks together. Nevertheless this is still important information, allowing us to deduce
many properties of a module. The cases of particular interest for us are: when A is
graded, and when A admits a triangular decomposition. We will give the precise defini-
tion of the second of these in the preliminaries. It is sufficient, for now, to say that the
algebra A is graded in such a way that the multiplication map A− ⊗ T ⊗ A+ → A is
an isomorphism, where A−, T and A+ are graded subalgebras. More importantly, many
of the significant examples in representation theory, such as the restricted enveloping
algebra of a semisimple Lie algebra, admit a triangular decomposition. At this point we
should also note that for graded modules there is a refined notion of multiplicity. This is
the graded multiplicity (see definition 2.2.29) and for a graded simple module N inside a
graded module M is denoted [M : N ]gr.
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A natural concept is that of the radical series. The radical of a module is the smallest
submodule such that the quotient is semisimple. This definition is easily iterated to define
radical powers: radiM = rad(radi−1M). The radical layers are the semisimple quotients
radsM = radsM/rads+1M . For any module M , there is a filtration

0 ⊂ rad`−1M ⊂ · · · ⊂ radM ⊂M,

where the radical layers are the associated subquotients.

Much harder, but correspondingly more important, than knowing the composition
factors of M , is to ask the question: what are the multiplicities of a simple module inside
the radical layers of M? By answering this we are obtaining not only the multiplicities
of the simple modules inside M , but also their relative position inside the radical layers.

Calculating the multiplicities of simple modules inside an arbitrary module is, in
general, a hard question. By placing suitable restrictions on the classes of modules we
consider, or on the algebra the module is over, we are able to derive powerful results. One
such condition is that of a graded strong duality. If we denote by G(A) the category of
graded left A-modules, then a graded strong duality δ of A is a contravariant equivalence
of categories δ : G(A) → G(A) such that δ(M) ∼= M , for M ∈ IrrG(A). With the
existence of a graded strong duality we can prove the following.

Theorem 1.1.1. (3.1.3) If A is a graded finite dimensional algebra over a splitting field
k, equipped with a graded strong duality then, for all M , N ∈ IrrG(A),

[rads P (M) : N ]gr = [rads P (N) : M ]gr.

In the above P (M) and P (N) denote the projective covers of M and N respectively.
This is a generalisation of a well known result [10, Corollary I.33], which is the ungraded
version. It is known that in the ungraded case the strong duality condition is unnecessary
in the special case of cellular and BGG algebras [14, Theorem 6].

There are two classes of modules that play a significant role in both the multiplicity
results and in our understanding of the centre of the restricted rational Cherednik algebra.
These are the standard and costandard modules. They are defined for algebras that admit
a triangular decomposition. Given a simple T -module M we can construct an A-module
called the standard module for M defined by

∆(M) := A⊗TA+ M.
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Similarly for any simple T -module M we define the costandard module

∇(M) := (M∗ ⊗A−T A)∗.

Here M∗ denotes the dual of M as an A-module. A key property of standard modules
is that they each have a unique simple head. Denote the unique simple head of ∆(M)
by L(M). Our second major result allows us to obtain information about the projective
cover of a simple module by calculating the multiplicity of the associated simple module
inside the radical layers of the standard modules. However, this result only holds if we
have an anti-triangular duality. This is a graded strong duality D of the category of
graded A-modules such that D(∆(M)) = ∇(M) and D(L(M)) = L(M). In most cases
of interest, such a duality is known to exist.

It is straight forward to write down the standard and costandard modules if the sim-
ple modules are known. The projective covers, however, are difficult to find from the
simple modules. Our next formulae (partially) solves this problem. If each radical layer
of a given projective cover admits a filtration by standard modules then we define a set
Ks(P (M), N). The precise definition of Ks(P (M), N) is given at the start of Section
3.3. It essentially counts the number of composition factors, in the filtration by standard
modules of radsP (M), that are isomorphic to ∆(N). With this roughly explained, we
present the following.

Theorem 1.1.2. (3.3.5) Let P (M) be the projective cover of L(M). If the category
A-mod admits an anti-triangular duality then the following formula holds

|Ks(P (M), N)| = [rads ∆(N) : L(M)].

This formula is important as the right hand side is computable, but the left hand side
is information about an object that is almost impossible to explicitly describe. Let us
also note that this is similar to a result by Holmes and Nakano [36, Theorem 4.5]. How-
ever, the reciprocity relation of Holmes and Nakano says nothing about the radical layers.

It is also known that the set Ks(P (M), N) can be replaced with [radsP (M) : L(N)]
in the specific case of a BGG algebra [14, Corollary 7]. Unfortunately, the algebras that
we consider are far from being BGG.

If we require that the filtration by standard modules of the projective covers is radical
respecting, in the sense of [35] then more can be said. With this condition imposed, we
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prove the following.

Corollary 1.1.3. (3.4.4) If P (λ) admits a radical respecting ∆-filtration then

[rads P (λ) : L(µ)] =
∑̀
i=1

[rads−n(i) ∆(λi) : L(µ)]. (1.1.1)

This is the final multiplicity result. The above corollary does have a drawback how-
ever, that requiring a projective cover admits a radical respecting filtration by standard
modules is very strong. Indeed, it is hard to prove this is the case without explicitly
knowing the projective cover. Chapter 3 concludes with an example demonstrating how
to use formula (1.1.1) to calculate the radical layers of the projective covers for a block
in the centre of a restricted rational Cherednik algebra.

§ 1.2 | The centre of Hc(Sn o Z/`Z)
The second theme of this thesis is understanding the Calogero-Moser space for generic
c and t = 0. The Calogero-Moser space is the spectrum of the centre of the rational
Cherednik algebra. In general this space is singular of high dimension, and not much
can be said. There is however, a zero-dimensional (highly non-reduced) subscheme for
which much more can be ascertained. This is the spectrum of the centre of the restricted
rational Cherednik algebra. It is this centre that we give an explicit presentation of in
terms of generators and relations for the wreath product Sn oZ/`Z. This is arguably the
most important class of complex reflection groups. We outline in this introduction how
we intend to do this, beginning by introducing the rational Cherednik algebra.

Rational Cherednik algebras are infinite dimensional algebras that were first defined
in [24], where they were introduced as a special class of symplectic reflection algebras.
For the formal definitions see the preliminary sections 2.5 and 2.6. Rational Cherednik
algebras are defined for any complex reflection group (W, h), and pair of parameters (t, c).
They are denoted Ht,c(W ). They are, in general, highly non-commutative objects; when
t 6= 0 the centre is simply the field C [7, Theorem 1.7.1]. However, when t = 0 the centre
has a rich structure and the rational Cherednik algebra is a finite module over its centre.
As a consequence, much of the representation theory of H0,c(W ) can be understood via
its centre.

In [30, Proposition 3.6] Gordon showed that the W -invariant ring C[h]W ⊗ C[h∗]W is
completely contained in the centre. The ideal generated by all elements with no constant
term in C[h]W ⊗ C[h∗]W is a particularly important ideal of H0,c(W ). The restricted
rational Cherednik algebra is the quotient by this ideal and denoted Hc(W ). Let us now
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describe how to find the explicit presentation of its centre. Write the restricted rational
Cherednik algebra as the sum of its indecomposable blocks:

Hc(W ) = ⊕i∈IBi.

Finding the centre of Hc(W ) is then equivalent to finding the centre of these blocks. By
Proposition 4.1.2, there is a bijection between the blocks and the irreducible representa-
tions of W . Therefore, we can associate to any irreducible representation λ ∈ IrrW , the
centre of the corresponding block, denoted A(λ).

The standard modules for Hc(W ) are called the baby Verma modules. They have a
major role to play in describing A(λ) due to Theorem 4.1.6, which states

A(λ) ∼= A(λ)+ ⊗ A(λ)−,

where A(λ)+ := EndHc(W )∆(λ) and A(λ)− := EndHc(W )∆∗(λ). The module ∆(λ)∗ is the
costandard module for the restricted rational Cherednik algebra, for a precise definition
see page 75. The question then becomes: how do we write either A(λ)+ or A(λ)− explicitly
in terms of generators and relations? Our aim then, is to understand the endomorphism
rings of the baby Verma modules. It turns out that in the case of the wreath product we
need only study one of these rings due to the following theorem. It states that A(λ)− is
isomorphic to A(λ)+ with the opposite grading but for a different value of c. To be clear
we write A(λ)+

c = EndHc(W )∆(λ) and A(λ)−c = EndHc(W )∆∗(λ). In the below theorem
λ∗ and λ denote different irreducible representations of Sn o Z/`Z.

Theorem 1.2.1. (5.4.9) In the case of the wreath product of the symmetric group with
the cyclic group there is an anti-graded isomorphism

Ac(λ∗)− ∼= Ac(λ)+

where both c and c are generic.

In light of the above we describe how A(λ)+ can be found explicitly in terms of its
generators and relations. We do this by first studying the endomorphism rings of the
large Verma modules (the standard modules of H0,c(W )), which we denote ∆(λ). This is
because of two key facts stated in Theorem 4.1.8. The first fact is that there is a surjection
from the centre of the rational Cherednik algebra onto the endomorphism rings of the
Verma modules. By composing this surjection with the inclusion map we get the following

C[h]W ↪→ Zc(W )� EndHc(W )(∆(λ)).
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Hence, there is a map of spectrums

π : Spec EndHc(W )(∆(λ))→ SpecC[h]W = h/W. (1.2.1)

This is where we use our second important fact, that the baby Verma modules are a
quotient of the Verma modules. Furthermore, we prove that the endomorphism ring of
the baby Verma module is a quotient of the endomorphism ring of the Verma module.

Theorem 1.2.2. (4.1.15) We have the following isomorphism

EndHc(W )(∆(λ)) ∼= EndHc(W )(∆(λ))/C[h]W+ EndHc(W )(∆(λ)).

This theorem combined with the map (1.2.1) leads to the important corollary.

Corollary 1.2.3. (4.1.16) There is an isomorphism of algebras C[π−1(0)] ∼= A(λ)+.

This is where we split the problem into two cases, that of W = Sn and then W =
Sn o Z/`Z.

§ 1.2.1 | Symmetric group Sn

Let us start by noting that irreducible representations of the symmetric group Sn are
in bijection with the partitions of n [29, Lemma 4.25]. Therefore, we have a bijection
between the partitions of n and the centres of the blocks.

The symmetric group case will be solved by using the Wronski map, this is closely re-
lated to the Wronskian. The exact definitions of these maps are given in Definitions 2.7.5
and 2.7.8. For now treat the Wronskian Wr as a determinant of a set of n polynomials
and their derivatives. On the preimage of 0 (the case we are interested in) the Wronski
map is given by the coefficients of the Wronskian. The Wronski map Wrλ has domain
Ωqe
λ , this is the Schubert cell associated to λ. It was shown by Bellamy [6, Proposition

6.4] in the specific case of the symmetric group that

π−1(0) ∼= Wr−1
λ (0) (1.2.2)

This isomorphism provides the connection to the Wronskian. We use the two isomor-
phisms

π−1(0) ∼= Wr−1
λ (0) and C[π−1(0)] ∼= A(λ)+

to conclude the following.

Theorem 1.2.4. (4.1.18) There is an isomorphism of algebras

A(λ)+ ∼= C[Wr−1
λ (0)].
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This theorem is all we need to explicitly present the centre of the restricted rational
Cherednik algebra for the symmetric group. In [47] Mukhin, Tarasov and Varachenko
describe how to realise explicitly the scheme-theoretic preimage of 0 under the Wronski
map. We will give an explanation of how to do this in Section 5.1 following their work.
Eventually we show that this intermediate step is unnecessary and the algebra A(λ)+ can
be determined directly from the partition λ. This can be extended to allow us to find
an explicit presentation for the wreath product of the symmetric group with the cyclic
group of order `.

§ 1.2.2 | Wreath product Sn o Z/`Z

In the case of the wreath product we do not have the isomorphism (1.2.2) nor any similar
map to the map Wrλ. This means we cannot naively extend our result by using the
Wronskian. Let Xc(W ) := SpecZc(W ) be the Calogero-Moser space. A recent result
by Bonnafe and Maksimau [12, Theorem 4.21] says that Xc(Sn o Z/`Z) is isomorphic to
an irreducible component of Xc(Sn`)Z/`Z. The strategy then becomes clearer. First we
realise the spectrums of the endomorphism rings of the Verma modules as subvarieties of
Xc(Sn o Z/`Z). Then, using the identification of Xc(Sn o Z/`Z) with an irreducible com-
ponent of Xc(Sn`)Z/`Z we embed the spectrum of the endomorphism ring of the Verma
module into Xc(Sn`)Z/`Z. The results of the previous section will then be applicable and
we can explicitly compute the endomorphism rings in terms of generators and relations.

In the wreath product case we have two versions of (1.2.1),

πn` : Spec EndHc(Sn`)(∆(λ))Z/`Z → (Cn`/Sn`)Z/`Z,

and
πn,` : Spec EndHc(SnoZ/`Z)∆(quo`(λ))→ Cn/(Sn o Z/`Z).

where quo`(λ) is the `-quotient of λ ` n. We prove the following key result.

Theorem 1.2.5. (4.2.24) There is an isomorphism Xc(Sn oZ/`Z)→ Y onto a connected
component of Xc(Sn`)Z/`Z such that the following diagram commutes

Xc(Sn o Z/`Z) Xc(Sn`)Z/`Z

Cn/(Sn o Z/`Z) (Cnl/Sn`)Z/`Z

πn,` πn`

∼=

.
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We use the isomorphism C[π−1(0)] ∼= A(λ)+ from Corollary 1.2.2, to conclude

A(quo`(λ))+ ∼= C[π−1
n` (0)] ∼= C[π−1

n` (0)]Z/`Z ∼= A(λ)+
Z/`Z.

Here A(λ)+
Z/`Z := C[π−1

n` (0)]/〈f − s · f |s ∈ Z/`Z, f ∈ C[π−1
n` (0)]〉 is the ring of functions

on the scheme-theoretic fixed points of Z/`Z acting on π−1
n` (0).

Thus, we conclude Section 4 with the following theorem.

Theorem 1.2.6. (4.2.25) There is an isomorphism of algebras

A(quo`(λ))+ ∼= A(λ)+
Z/`Z. (1.2.3)

Isomorphism (1.2.3) is all we need to write the algebra A(quo`(λ))+ explicitly in terms
of generators and relations.

§ 1.2.3 | An explicit presentation

Chapter 5 explores the consequences of isomorphism (1.2.3). It has a more combinatorial
flavour due to the aforementioned bijection between the `-multipartitions of n and the
algebras A(quo`(λ))+. Preliminary 2.4 will provide all the background needed to under-
stand the results. For now we briefly mention two of the most important concepts, Young
diagrams and hook lengths. Given a partition λ ` n, the Young diagram Dλ is a way to
represent λ. If λ = (λ1, · · · , λn), the Young diagram is given by having λi cells on the ith

row. As an example the Young diagram of (6, 3, 2, 1) is

The hook length of a cell in the ith row and jth column is denoted h(i, j) and is given
by counting the cells directly below and to the right (like a p shape). For instance, using
the same partition as above the hook lengths are

9 7 5 3 2 1
5 3 1
3 1
1

The first result of this section is a formula for calculating the graded dimensions of
A(λ)+, inspired by a similar result found in [49, p. 364]. The latter formula is derived in
a completely different setting however, calculated using Schur functions.
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Theorem 1.2.7. For any λ ` n, we have

∑
i≥0

(dimA(λ)+
i )qi =

∏n
i=1(1− qi)∏

(i,j)∈Dλ(1− qh(i,j)) .

This formula is not only useful, it is astonishingly easy to use. For example, to
calculate the graded dimension of A(2, 2)+ we first find the hook lengths

3 2
2 1

and so
∑
i≥0

(dimA(λ)+
i )qi = (1− q)(1− q2)(1− q3)(1− q4)

(1− q)(1− q2)(1− q2)(1− q3) = 1− q4

1− q2 = 1 + q2.

Therefore, A(2, 2)+ has two one dimensional graded pieces, one of degree 0 and one in
degree 2.

The next two theorems show how to explicitly write the centre of the restricted rational
Cherednik algebra in terms of generators and relations. It is important to note that these
theorems make no mention of the Wronskian. Let us denote each cell (i, j) ∈ Dλ by �i,j.
We begin with the symmetric group case.

Theorem 1.2.8. (5.2.15) Let λ ` n be a partition. The algebra A(λ)+ is the quotient

A(λ)+ ∼= C[Dλ]/I

by the ideal I that is generated by n homogeneous elements r1, . . . , rn. The rs are ordered
so that deg(rs) = s. The monomials in ri are products of cells which share neither a
row or column in Dλ. In other words if �i,j�k,` is a factor of some monomial in the rs
we must have that i 6= k and j 6= `. The coefficients of the monomials appearing in the
generators of I are given by Proposition 5.2.13.

This theorem is easily extended to cover the wreath product case using isomorphism
1.2.3 and the following lemma.

Lemma 1.2.9. (5.3.2) The ideal 〈f − s · f | s ∈ Z/`Z, f ∈ C[π−1
n` (0)]〉 consists of all

polynomials with degree not divisible by `.

Combining these two facts we have perhaps the most important theorem.

Theorem 1.2.10. (5.3.4) Let λ ` n` be a partition with trivial `-core. The algebra
A(quo`(λ))+ is the quotient

A(quo`(λ))+ ∼= C[D`
λ]/I
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where D`
λ is the subdiagram of Dλ (the Younger diagram) excluding the cells (i, j) such

that h(i, j) is not divisible by `. The ideal I is generated by n homogeneous elements
r`, r2`, . . . , rn`. The rs` are ordered so that deg(rs`) = s`. The monomials in rs` are
products of cells which share neither a row or column in D`

λ. In other words if �i,j�k,m
is a factor of some monomial appearing in the rs`, we must have that i 6= k and j 6=
m. The coefficients of the monomials appearing in the generators of I are given by
Proposition 5.2.13.

With a theorem now allowing us to explicitly describe the algebras A(λ)+ we can give
a theorem describing the entire centre. In the case of the symmetric group we have the
following.

Theorem 1.2.11. (5.4.10) There is an isomorphism of the centre of Hc(Sn) for c 6= 0

Z(Hc(Sn)) ∼=
⊕

λ∈IrrSn
A(λ)− ⊗ A(λ)+.

The algebra A(λ)+ is given by Theorem 5.2.15 and A(λ)− is isomorphic to A(λ)+ with
the opposite grading.

For the wreath product case we must recall the notation of λ and λ∗ for irreducible
representations of Sn o Z/`Z.

Theorem 1.2.12. (5.4.11) There is an isomorphism of the centre of Hc(Sn o Z/`Z) for
generic c

Z(Hc(Sn o Z/`Z)) ∼=
⊕

λ∈IrrSnoZ/`Z
Ac(λ∗)− ⊗ Ac(λ)+.

The algebra Ac(λ)+ is given by Theorem 5.3.4 and Ac(λ∗)− is isomorphic to Ac(λ)+ with
the opposite grading.

§ 1.3 | Final results
There are other significant results contained in Chapter 5. For instance, we provide a
proof that A(λ)+ ∼= A(λT )+ for any λ ` n and λT the transpose of λ. From a practical
perspective, this roughly halves the number of A(λ)+ that need to be computed for a given
n. Furthermore, we provide MAGMA code that computes the dimensions of the radical
layers of A(λ)+. We prove that Gröbner basis can be used to calculate the dimension
of the radical layers. This is to take advantage of the fact that MAGMA has efficient
algorithms for calculating the Gröbner basis. This is desirable because calculating the
radical layers of A(λ)+ through a brute force method is extremely slow. Finally, we
provide a proof of an upper bound for the Lowey length of any A(λ)+, and present a
conjecture for the lower bound.



Chapter 2

Preliminaries

This chapter covers the necessary background material to enable the reader to understand
the main results of this thesis. The subsections have been organised in a way that loosely
corresponds to the order in which the concepts are required.

The scope of the background is quite wide, however it all pertains to representation
theory. Some of the sections such as the first one regarding graded rings, modules and
algebras contain elementary definitions and results. Other sections such as the one con-
cerning standard and costandard modules contain more technical results that we will
require in later chapters.

§ 2.1 | Graded Rings, Modules and Algebras.
Algebraic objects can often be endowed with an additional structure called a grading. Due
to the greater generality and utility of graded objects, almost all the algebraic structures
we consider in this thesis will admit a grading. The goal of this preliminary section is
to introduce the basic definitions and concepts needed to understand common graded
objects. Unless otherwise stated, all rings are assumed to be unital.

Definition 2.1.1. Let R be a ring and G any abelian group. Then R is graded if
R = ⊕

i∈GRi for abelian groups Ri such that RiRj ⊂ Ri+j.

We have defined the grading to be over any abelian group, however for our purposes
we will only be dealing with Z-graded objects. The definitions for graded modules and
graded algebras are similar.

Definition 2.1.2. Let R be a Z-graded ring, and M be a left R-module. We say that
M is a Z-graded left module if M = ⊕

i∈ZMi, where the Mi are abelian subgroups of M
and RiMj ⊂Mi+j.

Definition 2.1.3. Let k be a field. A Z-graded k-algebra is a k-algebra such that
A = ⊕

i∈ZAi, where Ai are vector subspaces and AiAj ⊂ Ai+j.
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Remark 2.1.4. Any ring, module or k-algebra can be given a grading. For rings and
k-algebras, simply let all elements have degree 0. This is the trivial grading. Care must
be taken when considering modules, as the grading must respect the grading of the ring
acting on the module. In this case we can give both the ring the trivial grading and the
module the trivial grading.

By definition, graded objects admit a decomposition into a direct sum of subgroups
of elements with the same degree. Clearly these components will play a pivotal role so
we naturally have the following definition.

Definition 2.1.5. For a graded object A = ⊕
i∈ZAi, the homogeneous components of

A are the subgroups Ai for i ∈ Z. The homogeneous elements of A are precisely those
that belong to a homogeneous component, that is a ∈ Ai for some i ∈ Z. The element a
is said to have degree i.

A familiar example of a graded ring, with non-trivial grading, is the polynomial ring
in one variable.

Example 2.1.6. Let C[x] denote the polynomial ring in one variable over C. If we set
deg(x) = 1 then we have a graded ring. The homogeneous components are C[x]i =
Span{xi}.

The definition of a graded object naturally leads to the definition of a graded mor-
phism, which is a map preserving the graded structure.

Definition 2.1.7. Given two graded modules M and N , a graded morphism is a mor-
phism f : M → N such that f(Mi) ⊂ Ni for all i ∈ Z.

When defining ideals we also take into account the grading.

Definition 2.1.8. Let R be a graded ring. An ideal I ⊂ R is a homogeneous ideal if for
each a ∈ I the homogeneous components of a also belong to I.

It is possible to account for the grading when defining the dual of a module. Recall
the ungraded definition of the dual.

Definition 2.1.9. Let k be a field and A a unital finite dimensional k-algebra. The dual
of a left finite dimensional A-module M is defined to be

M∗ := Homk(M,k).

It is a right A-module with (φ · a)(m) := φ(a ·m), φ ∈M∗, a ∈ A and m ∈M .
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There are many possible ways to equip the dual with a grading. An important con-
sideration for us is that if we take the graded dual of the graded dual we should recover
the original graded module. One way to do this is the following.

Definition 2.1.10. Let R be a finite dimensional Z-graded k-algebra. If M is a left
graded R-module we define the graded dual M◦∗ = ⊕iM◦∗i by

M◦∗i = {f : M → k | f(Mj) = 0 for all j 6= −i}

with right action (f · r)(m) = f(r ·m).

This definition is essentially chosen so that the following holds. Let Gl(A) be the
category of graded left finite dimensional A-modules and Gr(A) the category of graded
right finite dimensional A-modules.

Lemma 2.1.11. Graded duality is a contravariant equivalence of categories

(−)◦∗ : Gl(A)→ Gr(A).

Proof. The graded duality is a contravariant functor

(−)◦∗ : Gl(A)→ Gr(A).

that is adjoint to itself. We have that (M◦∗)◦∗ ∼= M via the standard argument that the
double dual of a vector space is isomorphic to itself.

Two modules that will be of importance throughout this thesis are the injective hull
and projective cover. We define them here.

Definition 2.1.12. Let M be an A-module. The projective cover P (M) of M , if it
exists, is a projective module with an epimorphism e : P (M)� M such that the kernel
of e is a superfluous submodule. In other words, if Ker e+H = P (M) for some submodule
H ⊂ P (M) then H = P (M).

Definition 2.1.13. LetM be an A-module. The injective hull I(M) ofM is an injective
module with a monomorphism m : M ↪→ I(M) so that the kernel of m is an essential
submodule. In other words, if Kerm ∩H = {0} then H = {0}.

Remark 2.1.14. Projective covers and injective hulls exist for finite dimensional alge-
bras.

Lemma 2.1.15. Let A be a finite dimensional graded algebra. Let λ ∈ IrrA and P (λ) be
its projective cover and I(λ) its injective envelope. Then P (λ◦∗) = I(λ)◦∗.
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Proof. The injective hull I(λ) can be equivalently defined by the following diagram

λ I(λ) N

M

m

∃f

g

h

where m is the essential monomorphism and M , N ∈ A-mod. Lemma 2.1.11 states that
functor ◦∗ is exact. Applying the duality to the diagram we have following

λ◦∗ I(λ)◦∗ N◦∗

M◦∗

m◦∗

∃f◦∗

g◦∗

h◦∗

.

This is precisely the diagram that defines the projective cover of λ◦∗, hence I(λ)◦∗ =
P (λ◦∗).

§ 2.2 | Radicals and Socles
For any deeper study of the structure of modules, the concepts of radical and socle are
necessary. Here we define both of these terms and prove elementary, but important re-
sults. Of particular significance is that both the radical and the socle of a graded module
are graded submodules. This section finishes by proving several technical lemmata that
will be necessary for our later proofs of the multiplicity results.

Throughout this section let k be a field and A a finite dimensional k-algebra. Denote
by A-mod the category of all finite dimensional left A-modules.

Definition 2.2.1. The radical of an A-module M is defined as the intersection of all
maximal submodules and denoted radM .

Definition 2.2.2. The socle of an A-module M is the sum of all irreducible submodules
and denoted socM .

The radical and socle have different equivalent definitions which vary in their prac-
ticality depending on the situation. For this reason we give these alternative definitions
and prove their equivalence.

Lemma 2.2.3. LetM be a finite dimensional A-module. The radical ofM is the smallest
submodule of M such that the quotient is semisimple. The socle of M is the largest
semisimple submodule.
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Proof. LetM ′ = M1⊕· · ·⊕Mn be a semisimple quotient ofM , whereMi is simple for all
i. The kernel ofM →M ′ is the intersection of the kernelsM →Mi, which are each max-
imal. In particular, it contains radM . Conversely, since M is finite dimensional, there
exists finitely many maximal submodulesN1, . . . , Nr inM such that radM = N1∩· · ·∩Nr.
Then M/ radM embeds in M/N1 ⊕ · · · ⊕M/Nr, which is semisimple. Hence M/ radM
is semisimple.

For the second statement we show that the socle is indeed semisimple and that it is
the largest such submodule. Given an A-module M we denote the simple submodules by
Si for i ∈ I some indexing set. By definition socM = ∑n

i=1 Si. Consider the maximal
sum M ′ = ∑`

i=k Si of the Si such that M ′ is their direct sum. If we take an arbitrary
Si ⊂ socM and consider Si ∩M ′ then the intersection is either {0} or Si. Hence M ′

either does not contain Si and so is not maximal or it already contains it. Therefore
socM = M ′.

Definition 2.2.4. Given a ring R the Jacobson radical J(R) is the intersection of all
maximal left ideals of R.

Remark 2.2.5. The Jacobson radical can alternatively be defined as the intersection of
all maximal right ideals [1, Lemma 1.3].

The following result, known as Nakayama’s lemma, is used in Proposition 2.2.8 to
show that the radical and socle can be expressed in terms of the Jacobson radical.

Lemma 2.2.6. (Nakayama’s Lemma) Let R be a ring. Let M be a finitely generated
module over R and let J(R) denote the Jacobson radical of R. If J(R)M = M then
M = 0.

Proof. See [48, Theorem 2] for the original proof.

Corollary 2.2.7. If M is a simple R-module then J(R)M = 0.

Proof. Since M is simple J(R)M is either 0 or M , but then Nakayama’s lemma implies
that M = 0.

Proposition 2.2.8. Let M be a finite dimensional A-module and let J denote the Ja-
cobson radical. Then radM = JM and soc M = {m ∈M | J ·m = 0}.

Proof. Nakayama’s Lemma says, in this context, that if JM = M then M = 0. Let
M ′ be a maximal submodule of M . Then J(M/M ′) = 0 by Corollary 2.2.7. Hence
JM ⊂ M ′. This implies that JM ⊂ radM as radM is the intersection of all maximal
submodules.. Recall Lemma 2.2.3, which states that radM is the smallest submodule
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of M such that M/ radM is semisimple. Hence, if we show that M/JM is semisimple
then we must have radM ⊂ JM . Note that M/JM is an A/J-module and since A/J is
semisimple all A/J-modules are semisimple [1, Theorem 3.4].

Since socM is semisimple by Lemma 2.2.3, we have J · socM = 0. Conversely, let
m ∈M such that J ·m = 0 and set L = A ·m. Recall by Remark 2.2.5 that the Jacobson
radical is also a right ideal. Then JL = J ·m = 0, similarly to before this implies that L
is an A/J-module and therefore semisimple. Thus L ⊂ socM and hence m ∈ socM .

The benefit of describing the radical and socle in terms of the Jacobson radical is that
it allows for easier computations.

Remark 2.2.9. The first two definitions of the radical hold for any abelian category,
while the Jacobson version is only valid when considering modules.

The following lemma demonstrates that the radical is a categorical property.

Lemma 2.2.10. Let F : A−mod → mod−B be an equivalence of categories. Then
F (radM) = radFM .

Proof. Form the exact sequence

0→ radM →M → S → 0,

where S is semisimple. Since equivalences preserve exact sequences the following is also
exact

0→ F (radM)→ FM → FS → 0.

Now FS is semisimple and so radFM ⊂ F (radM). Since F is an equivalence we can
consider its inverse functor F−1 and apply it to the following

0→ radFM → FM → FS → 0

to get
0→ F−1 radFM → F−1FM → F−1S → 0.

It is now clear that radM ⊂ F−1(radFM) and so applying F to both sides we get
F (radM) ⊂ radFM .

It is possible to define powers of both the radical and socle of a module. Let M be
a module, set rad0M = M and define radiM = rad(radi−1M). Define soc iM to be the
largest submodule of M such that soc iM/soc i−1M is semisimple and set soc 0M = 0.
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Definition 2.2.11. The nth radical layer of M is radnM := radnM/ radn+1M . The nth

socle layer of M is defined soc nM := soc nM/soc n−1M .

The following lemma shows that radical and socle powers can also be expressed in
terms of the Jacobson radical.

Lemma 2.2.12. Let M be a finite dimensional A-module. Then radsM = Js ·M and
soc sM = {m ∈M | Js ·m = 0}.

Proof. This follows by induction from Proposition 2.2.8. We have that radM = J ·M .
Assume the lemma holds for all i ≤ ` for some ` ∈ Z+ then rad`+1M = rad(J ` ·M) =
J(J ` ·M) = J `+1 ·M .

By definition soc i+1M/soc iM = soc (M/soc iM), so assume the lemma holds for i ≤ `

for ` ∈ Z+. Then

soc (M/soc iM) = {m+ soc iM ∈M/soc iM |J ·m ∈ soc iM},

which by the inductive hypothesis is equal to {m + soc iM ∈ M/soc iM |J i+1 ·m = 0}.
Hence

soc i+1M/soc iM = {m+ soc iM ∈M/soc iM |J i+1 ·m = 0},

therefore soc i+1M = {m ∈M |J i+1 ·m = 0}

An immediate consequence of the definition of the radical is that each higher power
is strictly smaller than the one that preceded it, that is radiM ⊂ radi−1M . It is then
natural to ask the question: when does this process terminate? In general this is a hard
question. In Section 5.5 we state a conjecture for this problem in the case of restricted
rational Cherednik algebra of Sn. For now let us provide the basic definitions.

Definition 2.2.13. The Lowey length of a module M is defined to be the smallest
positive integer ` such that rad`M = 0. It is denoted ``(M). Similarly, the socle length
of M is the smallest ` such that soc `M = M .

Lemma 2.2.14. The Lowey length and socle length of M agree.

Proof. By Lemma 2.2.12, they are both equal to the smallest positive integer ` such that
J ` ·M = 0.

In light of Lemma 2.2.14 we only use the term Lowey length from now on. Let us
now assume that A is a Z-graded finite dimensional k-algebra.
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Definition 2.2.15. If I ⊂ A is an ideal then the initial ideal in(I) of I is defined to
be the set {dt(d) | d ∈ I}, where dt(d) is the homogeneous part of d of highest degree (the
“top”).

Lemma 2.2.16. If in(I) ⊂ I then I = in(I) is a graded ideal.

Proof. Let d ∈ I and write d = dn + dn−1 + · · · + dn−j. Then dn ∈ in(I) implies that
d− dn = dn−1 + · · ·+ dn−j ∈ I. Repeating, we deduce all di belong to I.

The next three lemmata will prove that the radical of a graded module is indeed a
graded submodule.

Lemma 2.2.17. The Jacobson radical of A is a graded ideal.

Proof. Let J be the Jacobson radical of A. Let I = in(J). We claim that I is a nilpotent
ideal. Indeed, if x1, . . . , x` ∈ I then there exist d1, . . . , d` ∈ J such that (di)t(di) = xi.
Now, J is nilpotent. Thus, for `� 0, d1 · · · d` = 0. But the homogeneous part of d1 · · · d`
of highest degree is x1 · · · x`. This implies that I is nilpotent. Since J is the largest
nilpotent ideal in A [34, Theorem 4.8], we deduce that I ⊂ J . Then Lemma 2.2.16
implies that I = J .

Lemma 2.2.18. Let M be a graded A-module and I a graded ideal of A. Then IM is a
graded submodule of M .

Proof. We must show that IM = ⊕i∈Z(IM)i where (IM)i = IM ∩ Mi. Consider an
arbitrary element im in IM . Then

im =
∑
j,`

ijm`

where ij ∈ Ij and m` ∈M`. Now, ijm` ∈Mj+`∩IM and thus IM is a graded submodule.

Lemma 2.2.19. Let M be a graded A-module. Then radM is a graded submodule.

Proof. By Proposition 2.2.8, radM = JM , where J is the Jacobson radical of A. By
Lemma 2.2.17, the Jacobson radical is a graded ideal and hence by Lemma 2.2.18 JM is
graded.

Similarly to the radical being graded we have the following result for simple modules.
Unfortunately it does not have quite the same generality as the previous lemma as we
require our algebra to be Artinian. This is not too restrictive a constraint however as
the class of Artinian algebras is large. In particular, all finite dimensional k-algebras are
Artinian.
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Lemma 2.2.20. Let A be an Artinian graded algebra and S a simple A-module then S

can be endowed with a grading.

Proof. See [33, Proposition 3.5].

Next let us show that the radical and socle powers are also graded submodules.

Lemma 2.2.21. Let M be a finite dimensional graded A-module. Then radsM = Js ·M
is a graded submodule.

Proof. The statement follows easily by induction from Lemma 2.2.19 and Lemma 2.2.18.

Lemma 2.2.22. Let M be a finite dimensional graded A-module. If A is Artinian then
socsM = {m ∈M | Js ·m = 0} is a graded submodule.

Proof. Since M is graded we can represent any element m ∈ soc sM by a unique sum
of homogeneous components m = mn + · · · + mi. By the definition of soc sM we have
that Js ·m = Js · (mn + · · · + mi) = Js ·mn + · · · + Js ·mi = 0. Since the components
are homogeneous we see that the terms j · m` will be in different degrees if j ∈ Js is
homogeneous, hence j · m` = 0 for i ≤ ` ≤ n. Since Js is generated by homogeneous
elements this implies that Js ·m` = 0 and m` ∈ soc sM for i ≤ ` ≤ n.

Recall that we denote the category of graded A-modules by G(A) where A is a finite
dimensional graded k-algebra. The objects in G(A) are graded A-modules and the mor-
phisms are graded homomorphisms of degree zero. From now on we will often just write
G if the algebra being considered is clear from context.

Lemma 2.2.23. Let M , N be two finite dimensional graded A-modules.

(a) If socsM = M then HomG(M,N) = HomG(M, socsN).

(b) If radsN = 0 then HomG(M/ radsM,N) = HomG(M,N).

Proof. Note that radsM = Js ·M and socsM = {m ∈M | Js ·m = 0}.

Let us prove (a). Let φ ∈ HomG(M,N). Then

0 = φ(0) = φ(Js ·M) = Js · φ(m).

This implies Js · imφ = 0, hence imφ ⊂ socsN . Therefore, φ ∈ HomG(M, socsN). The
opposite inclusion is obvious.
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For part (b) note

HomG(M/radsM,N) = {φ ∈ HomG(M,N) |φ(Js ·M) = 0}

= {φ ∈ HomG(M,N) | Js · φ(M) = 0}.

Since Js · N = 0 as radsN = 0, we have Jsφ(M) = 0 for all φ ∈ HomG(M,N). Hence
HomG(M/radsM,N) = HomG(M,N).

Lemma 2.2.24. For any finite dimensional graded A-moduleM , we have (M/ radsM)◦∗ =
socsM◦∗.

Proof. First note that by Lemma 2.2.21 radsM = Js ·M and soc sM◦∗ = {m ∈M◦∗ |m ·
Js = 0}. Therefore,

soc sM◦∗ = ⊕i{f : M → k | f(Mj) = 0 for all j 6= −i and f(Js ·m) = 0 for all m ∈M}.

We also have by definition

(M/ radsM)◦∗ = ⊕i{f : M/radsM → k | f((M/radsM)j) = 0 for all j 6= −i}.

By Lemma 2.2.21, we know that radsM = Js ·M so the homogeneous components of
(M/ radsM)◦∗ are precisely the sets {f : M → k | f(Mj) = 0 for all j 6= −i} such that
f(Js ·m) = 0 for all m ∈M . Hence (M/ radsM)◦∗ = socsM◦∗

The next lemma shows that Lowey length behaves well with respect to the graded
structure.

Lemma 2.2.25. If N andM are finite dimensional A-modules and N ⊂M then ``(N) ≤
``(M).

Proof. Given a morphism between two modules φ : N → M , then it follows from
Lemma 2.2.21 that φ(radsN) ⊂ radsM . Hence there is an induced morphism φs :
radsN → radsM . Taking φ to be the inclusion morphism, the result follows.

Lemma 2.2.26. For any finite dimensional A-module M we have that

(a) rads soc sM = 0; and

(b) soc s(M/ radsM) = M/ radsM .

Proof. Both statements follow directly from Lemma 2.2.21 and Lemma 2.2.22.

We can now prove the following lemma which will be of use later.
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Lemma 2.2.27. For any finite dimensional graded k-algebra A and finite dimensional
A-modules M and N we have

HomA(M/ radsM,N) = HomA(M, soc sN).

Proof. Using Lemma 2.2.26 (b) we see that soc s(M/ radsM) = M/ radsM and by
Lemma 2.2.23 (a)

HomA(M/ radsM,N) ∼= HomA(M/ radsM, soc sN).

From Lemma 2.2.26 (a) rads soc sN = 0 and by Lemma 2.2.23 we see that

HomA(M/ radsM, soc sN) ∼= HomA(M, soc sN)

and so
HomA(M/ radsM,N) = HomA(M, soc sN).

The concept of a module multiplicity is fundamental to this thesis so we now define
both graded and ungraded multiplicity.

Definition 2.2.28. Let A be a finite dimensional k-algebra, M a finite dimensional A-
module and N a simple A-module. Then the multiplicity of N in M , denoted [M : N ],
is defined to be the number of times N appears as a composition factor in a composition
series of M .

Definition 2.2.29. Let A be a finite dimensional graded k-algebra andM , N both finite
dimensional graded A-modules with N simple. The graded multiplicity of N inside M is
denoted [M : N ]gr, and is the number of times N appears as a graded composition factor
in a graded composition series of M .

Remark 2.2.30. The quotient of a graded module by a graded submodule inherits a
natural grading and so Definition 2.2.29 makes sense.

The final lemma of this section is simply a technical result that we will require for the
proofs of later theorems. It is necessary to define what it means to say A is split over the
field k. We follow the definition given in [10, Remark 2].

Definition 2.2.31. Let A be a finite dimensional k-algebra. We say that A is split over
k or k is a splitting field for A if EndA(λ) ∼= k for all λ ∈ IrrA.
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Lemma 2.2.32. Let A be a graded k-algebra, split over k. If M is a graded A-module of
finite length and λ is a simple graded A-module then

[M : λ]gr = dimk HomG(P (λ),M) = dimk HomG(M, I(λ)).

Proof. Proceed by induction on the length, `(M), of M . If the length of M is 1 then
M ∼= µ for some simple A-module µ. We have

dimk HomG(P (λ), µ) =

1 if λ ∼= µ

0 else,

and hence the result holds.

We now assume that the length of M is greater than one and the result holds for all
modules of length less than the length of M . There exists a graded submodule N ⊂ M

such that M/N is simple. This implies that `(N) = `(M)− 1. The following being exact

0→ N →M →M/N → 0

together with the fact that P (λ) is projective implies

0→ HomG(P (λ), N)→ HomG(P (λ),M)→ HomG(P (λ),M/N)→ 0 (2.2.1)

is also exact.

There are two cases to consider. First if M/N ∼= λ then [M : λ]gr = [N : λ]gr + 1 and
the sequence (2.2.1) implies that dimk HomG(P (λ),M) = dimk HomG(P (λ), N) + 1. We
conclude that [M : λ]gr = dimk HomG(P (λ),M). In the second case we have M/N 6∼= λ

hence [M : λ]gr = [N : λ]gr. We also have HomG(P (λ),M/N) = 0. From (2.2.1) we see
that HomG(P (λ), N) ∼= HomG(P (λ),M). Therefore [M : λ]gr = dimk HomG(P (λ),M).
The proof of the second equality is similar.
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§ 2.3 | Standard and Costandard Modules
In this section we introduce an important class of finite dimensional graded algebras.
These are the graded algebras with a triangular decomposition. Many important algebras
in representation theory such as restricted rational Cherednik algebras and restricted
universal enveloping algebras admit a triangular decomposition. For the class of graded
algebras with triangular decomposition there are two modules of special importance,
these are the standard and costandard modules. Let A be a finite dimensional graded
k-algebra, the following definition can be found in [36, Definition 2.1].

Definition 2.3.1. A triangular decomposition of A is a triple T = (A−, T, A+) of graded
subalgebras of A such that

1. The multiplication map A− ⊗ T ⊗ A+ → A is an isomorphism

2. Supp A+ ⊂ Z≥0 and Supp A− ⊂ Z≤0

3. A−0 = k = A+
0

4. A+T = TA+ and A−T = TA− as subspaces of A

5. T = T0 is a split k-algebra.

Here SuppM = {i ∈ Z |Mi 6= 0} for a graded object M .

An important example of an algebra with a triangular decomposition is the restricted
universal enveloping algebra of a semisimple Lie algebra.

Example 2.3.2. Let k be a field of characteristic p ≥ 0. Let g be a Lie algebra. The
universal enveloping algebra U(g) is the quotient algebra

T (g)/(a⊗ b− b⊗ a = [a, b] | a, b ∈ g).

If g is a Lie subalgebra of gln(k) then for any element x ∈ g we can take xp in gln(k), we
denote this x[p]. This is to differentiate it from the pth power of x in U(g).

The restricted universal enveloping algebra U(g) is the quotient [41, p. 5]

U(g)/(xp − x[p]).

Note the element xp − x[p] is central in U(g).

The next lemma records an important observation about algebras with a triangular
decomposition.



CHAPTER 2. PRELIMINARIES 24.

Lemma 2.3.3. For any algebra A that admits a triangular decomposition denote the
subalgebra B− = A− ⊗ T = A−T . Then A is free as a B−-module.

Proof. By property (1) of Definition 2.3.1 we have an isomorphism A− ⊗ T ⊗ A+ → A.
Given a basis of A+ written {a1, . . . , an} we can explicitly write a basis for A as a B−-
module as {1⊗ a1, . . . , 1⊗ an}.

Similarly to the above denote B+ = T ⊗ A+. Note that there exists an obvious
surjection B+ � T and so every T -module can be viewed as a B+-module by inflation
(pullback along the quotient map). Let IrrG(T ) denote the set of irreducible graded
T -modules. To each simple T -module λ ∈ IrrG(T ) we can construct an associated A-
module, the standard module ∆(λ).

Definition 2.3.4. Let A be a finite dimensional algebra with a triangular decomposition.
Given a left T -module M we can define the standard module of M ,

∆(M) = A⊗B+ M

which is a left A-module.

The costandard is defined in a dual manner.

Definition 2.3.5. Let A be a finite dimensional algebra with a triangular decomposition.
Then we can define the costandard module of a graded left T -module M as follows

∇(M) := (M◦∗ ⊗B− A)◦∗.

Note that the costandard module is a left A-module. Indeed M◦∗ is a right B-module,
hence (M◦∗⊗B−A) is a right A-module and so (M◦∗⊗B−A)◦∗ has a left A-module structure.

Later multiplicity results will require us to calculate the multiplicity of standard mod-
ules inside the projective covers. For this to make sense we define ∆-filtrations.

Definition 2.3.6. Let A be an algebra with triangular decomposition. Let M be a
graded A-module. We say M has a ∆-filtration if there is a filtration by submodules

0 = M0 ⊂M1 ⊂ · · · ⊂Mk = M

with Mi/Mi−1 ∼= ∆(λi) for λi ∈ IrrT .

The next lemmata prove fundamental properties of standard and costandard modules
that will be used repeatedly throughout this thesis.
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Remark 2.3.7. By the unique maximal quotient of a module M we mean a quotient
that surjects onto any other quotient of M .

Lemma 2.3.8. Let A be a finite dimensional algebra and M an A module. Then the
following are equivalent.

(a) M has a unique simple submodule.

(b) M has a unique maximal quotient.

(c) M has a simple socle.

Proof. We start with (a) =⇒ (b). Denote the unique simple submodule of M by S.
Given any other submodule N of M we have that S ⊂ N and so

(M/S)/(N/S) ∼= M/N.

ClearlyM/S surjects onto (M/S)/(N/S), hence it surjects ontoM/N . That (b) =⇒ (c)
is clear. To see that (c) =⇒ (a) recall that socM is the sum of all irreducible submodules.
Since there is a unique simple S we must have that socM = S.

Lemma 2.3.9. For any λ ∈ IrrG(T ) the standard module ∆(λ) has a unique simple
graded quotient called the head and is denoted L(λ).

Proof. Let M ⊂ ∆(λ) be any proper graded submodule. We claim that

M ∩ (1⊗ λ) = M0 = 0.

We argue by contradiction. If there exists a non-zero element m ∈ M ∩ (1 ⊗ λ) then
A ·m = A ⊗ λ = ∆(λ) which contradicts M being a proper graded submodule. Given
any two proper submodules M1 and M2 their sum M1 +M2 is also a proper submodule.
This can be seen by noticing that the degree 0 part of M1 + M2 is 0. Therefore, we can
construct a unique maximal submodule by defining it to be the sum of all other proper
submodules. Hence, ∆(λ) has a unique simple graded quotient.

Lemma 2.3.10. For any λ ∈ IrrG(T ) the costandard module ∇(λ) has a simple socle.

Proof. Recall the definition of the costandard module ∇(λ) = (λ◦∗⊗B−A)◦∗. Consider the
dual ∇(λ)◦∗ = (λ◦∗ ⊗B− A). Then by an argument similar to the proof of Lemma 2.3.9 we
see that this has a unique simple quotient S. Let Q ↪→ ∇(λ) be the inclusion of a simple
module. Then ∇(λ)◦∗ � Q◦∗ and since S is the unique simple quotient we must have that
Q◦∗ = S. Hence Q must be the unique simple submodule of ∇(λ) and by Lemma 2.3.8
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we see that Q = soc∇(λ).

Lemma 2.3.11. The head of ∆(λ) is isomorphic to the socle of ∇(λ).

Proof. We note that L(λ) is uniquely defined by L(λ)0 = λ and L(λ)i = 0 for all i > 0.
If there was another graded simple A-module, say L, such that L0 = λ and Li = 0 for all
i > 0, then L ∼= L(λ). To see this note that, by adjunction,

HomA(∆(λ), L) = HomB+(λ, L|B+) ∼= HomB+(λ, λ) ∼= k.

Hence L(λ) ∼= L. By a dual argument we find that the unique simple quotient of ∇(λ)◦∗ =
(λ◦∗ ⊗B+ A), denoted S, is uniquely defined by S0 = λ◦∗ and Si = 0 for all i < 0. By the
argument in Lemma 2.3.10, we have that S◦∗ = soc ∇(λ) and S◦∗ is the simple submodule
of ∇(λ) uniquely defined by S◦∗0 = λ and Si = 0 for all i > 0. Hence soc ∇(λ) ∼= L(λ).

A necessary condition for the graded multiplicity results in Chapter 3 is that the
algebras have an anti-triangular duality.

Definition 2.3.12. Let A be a finite dimensional algebra, with triangular decomposition
and let A-mod denote the category of A-modules. A duality D : A−mod→ A−mod is a
contravariant equivalence of categories. An anti-triangular duality is a duality with the
following additional conditions:

1. D(∆(λ)) = ∇(λ).

2. D(L(λ)) = L(λ).

This section finishes by stating and proving two technical lemmata.

Lemma 2.3.13. Let M and N be objects in A−mod and let D be an anti-triangular
duality. Then

D(M/ radsM) ∼= soc sD(M)

Proof. Consider the following short exact sequence

0→ soc sD(M)→ D(M)→ D(M)/soc sD(M)→ 0.

Applying D to the above gives a new exact sequence

0→ D(D(M)/soc sD(M))→M → D(soc sD(M))→ 0.

From the above we see that D(soc sD(M)) is a quotient ofM . Since ``(D(soc sD(M))) ≤
s, this quotient must factor through M/ radsM . Hence,

M/ radsM � D(soc sD(M))
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and so
soc sD(M) ↪→ D(M/ radSM).

Since D(M/ radsM) is a submodule of D(M) and ``(D(M/ radsM)) ≤ s, we must
similarly have D(M/ radsM) ⊂ soc sD(M). Hence D(M/ radsM) ∼= soc sD(M).

Lemma 2.3.14. If we have an anti-triangular duality D and µ ∈ IrrG(T ) then

soc s∇(µ) = D(rads ∆(µ))

Proof. From Lemma 2.3.13 we have that soc sD(∆(µ)) ∼= D(∆(µ)/ rads ∆(µ)). Therefore

soc sD(∆(µ)) = (soc sD(∆(µ))/soc s−1D(∆(µ))) ∼= D(∆(µ)/ rads ∆(µ))/D(∆(µ)/ rads−1 ∆(µ)).

By definition D(∆(µ)) = ∇(µ) therefore soc s∇(µ) = soc sD(∆(µ)) and

soc s∇(µ) ∼= D(∆(µ)/ rads ∆(µ))/D(∆(µ)/ rads−1 ∆(µ)).

If we consider an exact sequence of A-modules

0→ S → R→ R/S → 0

and apply the anti-triangular duality D, we get another exact sequence

0→ D(R/S)→ D(R)→ D(S)→ 0.

Therefore, D(S) ∼= D(R)/D(R/S). If we let R = ∆(µ)/ rads ∆(µ) and S = rads ∆(µ)
then we have that

D(rads ∆(µ)) = D(∆(µ)/ rads ∆(µ))/D(∆(µ)/ rads−1 ∆(µ)).

Therefore soc s∇(µ) = D(rads ∆(µ)).

§ 2.4 | Partitions
Partitions of integers are necessary for the description of the center of the restricted ra-
tional Cherednik algebras Hc(Sn) and Hc(Sn o Z/`Z) given in Chapter 5. This is for
the simple reason that the partitions of n are in bijection with the irreducible represen-
tations of the symmetric group Sn [29, Lemma 4.25]. Furthermore, there is a bijection
between the `-multipartitions of n and the irreducible representations of the wreath prod-
uct Sn o Z/`Z [44, p. 221].

Definition 2.4.1. Let n be a positive integer. A partition of n is a tuple (λ1, · · · , λn)
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of non-negative integers such that λi ≥ λi+1 for all 1 ≤ i ≤ n− 1, and

|λ| :=
n∑
i=1

λi = n.

The length of λ is the positive integer t such that λt 6= 0 and λt+1 = 0.

Partitions are often represented by Young diagrams. The Young diagram for a given
partition (λ1, · · · , λn) ` n consists of rows and columns, the ith row has λi cells and
always starts from the leftmost position. Let us fix the conventions on the coordinates
of the cells. We count the columns from left to right and the rows top to bottom. This
means that the cell (2, 3) is the second row down and the third column along to the
right. Below are the Young diagrams of the partitions (4, 0, 0, 0), (3, 1, 0, 0), (2, 2, 0, 0),
(2, 1, 1, 0) and (1, 1, 1, 1), in that order.

We can assign to each cell in the Young diagram an integer, by calculating the hook
length. The hook length is calculated for each cell by summing the cells to the right and
the cells directly below, then adding one, for the cell itself. The hook length can be easily
read from the Young diagram. Here are the partitions of 4 with the hook lengths of each
cell written inside.

4 3 2 1 4 2 1
1

3 2
2 1

4 1
2
1

4
3
2
1

Let us now give a formula for the hook length of a cell. For a given cell (i, j), let L
denote the number of cells in the jth column, this is called the leg. This is a non-standard
use of the term leg, however this version is better suited for use in the proofs contained
in this section. The hook length h(i, j) of the cell (i, j) is then

h(i, j) = λi − j + L− i+ 1. (2.4.1)

The following two lemmata will be used later in the thesis.

Lemma 2.4.2. Let λ ` n and consider the set P = {d1, · · · , dn}, where di = λi + n− i.
Then

|{j | di − j 6∈ P for 1 ≤ j ≤ di}| = λi.
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Proof. Fix i. There are n − i dk’s such that dk ≤ di. Hence there are di − (n + i) =
λi + n − i − n + i = λi many numbers such that di − j 6∈ P . Therefore |{j | di − j 6∈
P for 1 ≤ j ≤ di}| = λi.

If we let P and di be the same as in Lemma 2.4.2 we can prove the following.

Lemma 2.4.3. The set of hook lengths of the row i equals the set {j | di − j 6∈ P}.

Proof. Let us show that the set of hook lengths of row i is contained in the set {j | di−j 6∈
P}. The result will then follow from Lemma 2.4.2. Fix i ∈ {1, 2, · · · , n}. If there exists
dm such that di − h(i, j) = dm for some j then

h(i, j) = di − dm.

Hence
λi − j + L− i+ 1 = λi + n− i− λm + n−m,

which simplifies to
L− j + 1 = m− λm. (2.4.2)

We now have three cases to consider L > m, L = m and L < m.

First let L > m. Then L = m+ k for some positive integer k and so equation (2.4.2)
becomes j = k + λm + 1. Therefore j > λm. Since L > m we have that λm > λL, hence
j > λL. But this contradicts the definition of L.

For the second case, let m = L. Then (2.4.2) becomes j = λm + 1 = λL + 1 which is
clearly a contradiction as λL ≥ j.

The final case is when L < m. Then L = m − k ≥ i for some positive integer k.
Equation (2.4.2) λm + 1 = j + k now since k is a positive integer we have j ≤ λm. But
since m > L we have that j > λm and so we have a contradiction. Therefore there is no
dm such that di − h(i, j) = dm and so h(i, j) ∈ {j | di − j 6∈ P}

Lemma 2.4.4. Given a partition λ ` n, we have di − h(i, j) = dk − h(k, j).

Proof. Using formula (2.4.1) the following calculations gives the result.

di − h(i, j) = λi + n− i− λi + j − L+ i− 1 = n+ j − L− 1

and
dk − h(k, j) = λk + n− k − λk + j − L+ k − 1 = n+ j − L− 1.
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We mentioned at the beginning of this section that the irreducible representations
of the wreath product are in bijection with certain multipartitions. Let us make this
statement precise by defining the `-core and `-quotient of a partition λ.

Definition 2.4.5. An `-multipartition of n is a `-tuple (λ1, · · · , λ`) such that each λi is
a partition and ∑`

i=1 |λi| = n.

Let us introduce some more notation. Given an `-multipartition λ = (λ1, · · · , λ`) we
denote by λ[ := (λ`, · · · , λ1). To define `-cores and `-quotients we need two things, firstly
we must define β-numbers (which are a generalisation of hook lengths) and secondly bead
diagrams.

The first column hook lengths of a partition is the set of hook lengths of the cells
on the leftmost column of the Young diagram for a partition. For example the partition
(3, 2, 1, 1) has Young diagram

6 3 1
4 1
2
1

and the first column hook lengths are {6, 4, 2, 1}. The first column hook lengths are
important, because the original partition can always be recovered from the first column
hook lengths. To see this, recall the formula for hook length given above,

h(i, j) = λi − j + L− i+ 1.

The first column hook lengths are given by fixing j = 1. Hence

h(i, 1) = λi − 1 + L− i+ 1 = λi + L− i,

and thus λi = h(i, 1) − L + i. If we instead replace L by some other positive integer in
the formula for hook length do we still get a set of numbers defining a partition? Yes.
This generalisation is precisely the definition of β-numbers.

Definition 2.4.6. Let λ ` n and let p ≥ n. Define

βpi = λi + p− i

for 1 ≤ i ≤ p. The βpi are called β-numbers. Note that the β-numbers are pairwise
distinct, hence |{βpi | 1 ≤ i ≤ p}| = p.

Next we introduce bead diagrams.
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Definition 2.4.7. We refer to elements of the set Z≤−1 × {0, · · · , ` − 1} as points. A
bead diagram is a function f : Z≤−1×{0, · · · , `−1} → {0, 1} which takes the value 1 for
only finitely many points. If f(i, j) = 1 then the point is said to be occupied by a bead.
If f(i, j) = 0, then the point (i, j) is empty.

Let us fix some common terminology for bead diagrams. The point (i, j) is said to lie
to the left of (a, b) if j < b, similarly (i, j) is said to lie above (a, b) if a < i.

Bead diagrams and β-numbers have a strong connection. Given a set of beta numbers
we can construct a bead diagram via the following rule. Let f(i, j) = 1 if and only if
−(i + 1) · ` + j ∈ {βpi | 1 ≤ i ≤ p}. In the case where p is the smallest multiple of `
such that p is greater than the number of terms in the partition of λ we denote the bead
diagram by B(λ).

We can now define `-cores, `-quotients and bead diagrams following the definitions in
[39, Chapter 2.7].

Definition 2.4.8. Let λ ` n and fix a positive integer ` ≤ n. Consider the bead diagram
B(λ) of λ with ` columns. If we slide the beads upwards as much as possible we obtain a
new bead diagram. The partition corresponding to this new bead diagram is called the
`-core of λ.

Let us explain how to read the partition from the bead diagram. Given a bead
diagram begin counting the beads from left to right, ignoring all beads before the first
empty bead. The position of the beads will give a set of positive integers. If we let this set
of integers correspond to the set of first column hook lengths then we retrieve a partition.
This means that each bead diagram gives a partition and each partition defines a bead
diagram, up to an arbitrary number of beads before the first empty bead.

Definition 2.4.9. Consider the bead diagram B(λ). The columns can be considered as
bead diagrams for ` = 1. Denote the partition defined by the first column by λ1, the
second by λ2 and so on. We define the `-quotient to be the `-multipartition (λ1, · · · , λ`).

Let us introduce one last piece of notation. Denote by P(n) the set of all partitions
of n, and P(n, `) the set of all `-multipartitions of n. Also, denote by Pλ(n) the set of all
partitions of n with `-core λ.

A partition is uniquely determined by its `-core and its `-quotient. By restricting our
focus to partitions of n` with trivial `-core we get the following important result.
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Theorem 2.4.10. There is a bijection between the set of partitions of n` with trivial
`-core and the `-multipartitions of n

P∅(n`)→ P(n, `),

given by λ→ quo(λ).

Proof. See [39, Theorem 2.7.30].

Let us do an example to show how to calculate the `-cores and `-quotients of a given
partition.

Example 2.4.11. Lets take the partition (4, 3, 2) and find the 3-core and 3-quotient.
The first column hook lengths are {6, 4, 2}. This corresponds to the bead diagram

.

The `-quotient is found by taking the three columns and reading the first column hook
lengths from these, each of which define a partition. For the first column of the bead
diagram we have first column hook length {2}. This is the partition (2). The second
bead diagram column has first column hook length {1}. This defines the partition (1).
The last bead diagram column has first column hook length {0}, which corresponds to
the empty partition ∅. Therefore the 3-quotient of (4, 3, 2) is ((2), (1), ∅). To find the
3-core we shift all the beads up to the top of their respective columns, then we read of
the first column hook lengths ignoring all beads before the first empty position. Running
the beads to the top we get the bead diagram

.
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Since we ignore all beads before the first empty bead, we see that the above diagram has
first column hook lengths {0} and so the 3-core of (6, 4, 2) is the empty partition ∅.

§ 2.5 | Symplectic Reflection Algebras
Symplectic reflection algebras are a large class of non-commutative algebras arising as de-
formations of certain skew group rings. We are interested in rational Cherednik algebras,
which are arguably the most important examples of symplectic reflection algebras. There
are multiple sources to read further about symplectic reflection algebras, for instance [15],
[32] or [7].

Definition 2.5.1. Let R be a ring and G a group that acts on R. Then the skew group

ring RoG is defined to be the ring of formal sums {∑I rigi | ri ∈ R and gi ∈ G}, where
multiplication is given by the rule (r1g1)(r2g2) = r1g1(r2)g1g2.

Remark 2.5.2. The skew group algebra is often denoted R#G, and sometimes called
the smash product in various papers, such as in [22] and [25].

Definition 2.5.3. Let V be a vector space. The symmetric algebra associated to V
is the quotient algebra S(V ) := T (V )/I, where T (V ) is the tensor algebra of V and
I := 〈u⊗ v − v ⊗ u| for all u, v ∈ V 〉.

As we will shortly see, the symplectic reflection algebra is a deformation of the skew
group ring S(V ) oG given by perturbing the commutation relations.

Definition 2.5.4. A symplectic vector space (V, ω) is a pair consisting of a vector space
V and a non-degenerate, skew symmetric bilinear form ω : V × V → C. We call ω the
symplectic form on V .

Given a symplectic vector space it is natural to consider group actions on this space.
The obvious one is the group of all automorphisms preserving the symplectic form

Sp(V ) := {g ∈ GL(V ) |ω(g(u), g(v)) = ω(u, v) for all u, v ∈ V }.

This is called the symplectic group of (V, ω).

Definition 2.5.5. Let V be a vector space, then a symplectic reflection is an element
of finite order s ∈ Sp(V ) such that dim(Im(s− Id)) = 2.

Definition 2.5.6. A symplectic reflection group is a triple (V, ω,G), where (V, ω) is
a symplectic vector space and G ⊂ Sp(V ) is a finite group generated by symplectic
reflections.
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We can ask: what are the smallest subspaces that are preserved by a group which
respects the symplectic form? This question leads to the definition of an indecomposable
symplectic vector space.

Definition 2.5.7. A symplectic reflection group (V, ω,G) is called indecomposable if
there is no decomposition V = U ⊕W into G-invariant symplectic subspaces.

The following important example is a prerequisite to understanding the symplectic
reflection algebra.

Example 2.5.8. Let (V, ω,G) be a symplectic reflection group. If we have an additional
skew symmetric bilinear map κ : V × V → CG then we can define the following algebra

Hκ := T (V ) oCG/ < xy − yx− κ(x, y)|x, y ∈ V > . (2.5.1)

Lets briefly discuss the Poincaré–Birkhoff–Witt property mentioned in Theorem 2.5.9
and its importance. Consider the algebra Hκ defined in (2.5.1). The algebra Hκ can
be equipped with a filtration by setting CG to be in degree zero and V to be in degree
one. We can then consider the associated graded algebra gr(Hκ). Note that xy− yx = 0
as xy − yx = κ(x, y) from the defining relations of Hκ but the degree of xy − yx is 2
and the degree of κ(x, y) is 0. Hence there is a well-defined map S(V ) o CG→ gr(Hκ).
The Poincaré–Birkhoff–Witt property is said to be satisfied if this map is an isomorphism.

Given the symplectic reflection group (V, ω,G) and a reflection s ∈ G, consider the
decomposition

V = Im(1− s)⊕Ker(1− s)

into symplectic subspaces. We denote the symplectic 2-form that is equal to ω on Im(1−s)
and 0 on Ker(1− s) by ωs.

The definition of symplectic reflection algebras seems unnatural without the following
theorem due to Etingof and Ginzburg [24, Theorem 1.3] that motivates it.

Theorem 2.5.9. (PBW Theorem) Let (V, ω,G) be an indecomposable triple. The
Poincaré–Birkhoff–Witt property holds for Hκ if and only if there exists a constant t ∈ C
and a class function c : S → C, where S is the set of symplectic reflections in G, such
that the map κ has the form

κ(x, y) = t · ω(x, y) · 1 +
∑
s∈S

c(s) · ωs(x, y) · s.
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Definition 2.5.10. Let t ∈ C and c : S → C a class function. The corresponding
symplectic reflection algebra is the quotient algebra

Hκ := T (V ) oG/ < xy − yx− κ(x, y)|x, y ∈ V >,

where (V, ω,G) is an indecomposable triple and κ is of the form in Theorem 2.5.9.

A consequence of the PBW Theorem is that it allows us to have an explicit basis for a
symplectic reflection algebra. This is because it implies an isomorphism of vector spaces
Hκ
∼= S(V ) oCG.

§ 2.6 | Cherednik Algebras
Double affine Hecke algebras, often shortened to DAHA, were first introduced by Chered-
nik in the solution to Macdonald’s constant term conjecture [19, Definition 1.1]. Rational
Cherednik algebras are a degeneration of DAHAs. Since their introduction they have be-
come pervasive throughout representation theory, and in the study of Calogero-Moser
integrable systems. The aim of this section is to define rational Cherednik algebras and
provide motivation for why one should want to study them.

Rational Cherednik algebras are generated from complex reflection groups and so we
start with the following.

Definition 2.6.1. Let h be a complex vector space. A complex reflection is an invertible
linear map of finite order r : h→ h that fixes a hyperplane. That is,

dim Im(r − Idh) = 1.

Definition 2.6.2. A complex reflection group W is a finite group generated by complex
reflections on a complex vector space h. The group W is called irreducible if h is an
irreducible representation.

Let W ⊂ GL(h) be a complex reflection group and let V = h⊕ h∗. There is a natural
pairing (−,−) : h× h∗ → C given by (y, x) := x(y). Then the standard symplectic form
ω on V is given by

ω(y1 ⊕ x1, y2 ⊕ x2) = (y1, x2)− (y2, x1).

The triple (V, ω,W ) is a symplectic reflection group.

We are now in a position to define the rational Cherednik algebra. Recall the bilinear
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form in Theorem 2.5.9,

κ(x, y) = t · ω(x, y) · 1 +
∑
s∈S

c(s) · ωs(x, y) · s.

Definition 2.6.3. Given a complex reflection group (W, h), t ∈ C and a class function
c : S → C, where S is the set of reflections in W . We define the rational Cherednik
algebra

Ht,c := T (V ) oW/〈x⊗ y − y ⊗ x− κ(x, y) | ∀x, y ∈ V 〉

where
κ(x, y) = t · ω(x, y) · 1 +

∑
s∈S

c(s) · ωs(x, y) · s

and V = h⊕ h∗.

Let us unpack the definition and rewrite this algebra in a different form. For s ∈ S,
fix αs ∈ h∗ to be a basis of the one-dimensional vector space Im(s− IdV )|h∗ and α∨s ∈ h

to be a basis of the one-dimensional vector space Im(s − IdV )|h, such that αs(α∨s ) = 2.
Then Ht,c(W ) is the quotient of T (V ) oW by the relations:

[x1, x2] = 0, [y1, y2] = 0, [y, x] = t(y, x)− 2
∑
s∈S

c(s)(y, αs)(α∨s , x)
(α∨s , αs)

s

for all x1, x2, x ∈ h∗ y1, y2, y ∈ h.

There are two complex reflection groups that will be of special importance. These are
the symmetric group Sn and the wreath product of the symmetric group with the cyclic
group Sn o Z/`Z. Therefore let us write the rational Cherednik algebra for these groups
more explicitly.

Example 2.6.4. Let us first consider the case W = Sn. Then we have the basis
{x1, · · · , xn} of h∗ and {y1, · · · , yn} of h with multiplication

σxi = σ(xi)σ = xσ(i)σ, σyi = σ(yi)σ = yσ(i)σ for all σ ∈ Sn.

The above actions are inherited from the skew group ring. There is only one conjugacy
class of reflections in Sn, so the class function c : S → C is just a scalar. We say c ∈ C.
We know that

[x1, x2] = 0, [y1, y2] = 0,

and it remains to find our αs and α∨s for a given reflection. The complex reflections are
the transpositions σij that permute i and j. Then

(σij − 1)(λ1, λ2, · · · , λn) = (0, · · · , λj − λi, · · · , λi − λj, · · · , 0)
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so the image of σij − 1 is the subspace spanned by xi − xj. If we set αij = xi − xj and,
by an identical calculation, α∨ij = yi − yj then ασij(α∨σij) = 2. Thus

[yi, xj] = t(yi, xj)− 2c
∑
σkl

(yi, xk − xl)(yk − yl, xj)
(xi − xj, yi − yj)

σkl.

This expression simplifies. We split it into two cases: i = j and i 6= j. If i = j then
(yi, xi) = xi(yi) = 1 and (xi − xj, yi − yj) = 2, for any i and j, implying that

[yi, xi] = t− c
∑
i 6=j

σij.

Similarly, when i 6= j,
[yi, xj] = cσi,j.

Hence the rational Cherednik algebraHt,c(Sn) is the algebra generated by {x1, · · · , xn, y1, · · · , yn}
and Sn, satisfying the relations

[x1, x2] = 0, [y1, y2] = 0

and
[yi, xi] = t− c

∑
i 6=j

σij and [yi, xj] = cσij for i 6= j.

We have so far mentioned the wreath product only briefly. Let us now define it so
that we may calculate its associated Cherednik algebra.

Definition 2.6.5. Let A and B be groups. Assume that there is an action of A on
a set X. We set G = ∏

x∈X Bx where Bx is a copy of B. Note that A acts on G by
a · (bx) = ba−1(x). The wreath product of A and B, denoted A oB, is the group AnG.

The particular wreath product we are interested in is Sn o Z/`Z. In this case the set
X from Definition 2.6.5 is taken to be {1, · · · , n} with the obvious action by Sn.

Example 2.6.6. The case of Sn o Z/`Z is more complicated than Example 2.6.4. Let us
clarify some notation: fix a generator γ ∈ Z/`Z, let γi ∈ Sn o Z/`Z denote the element
γ in the ith component. Then γiσij = σijγj. The space h has basis {x1, · · · , xn} with
action γixi = ωxi and γixj = xj for j 6= i where ω is a primitive `th root of unity. The
permutations act as follows σxi = xσ(i).

There are ` conjugacy classes of reflections in Sn o Z/`Z, there are ` − 1 of the form
{γi | 0 ≤ i ≤ n}. The set

{σij · γki · γ−kj | 1 ≤ i, j ≤ n, and 1 ≤ k ≤ `}
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is the remaining conjugacy class. Let us now calculate the α and α∨ for each reflection.
Let us begin with the easier case of γki

(γki − 1)(x1, · · · , xn) = (0, · · · , ωkxi − xi, · · · , 0)

hence α∨
γki

=
√

2yi. The argument is identical for αγki =
√

2xi. Therefore

(ys, αγki )(α∨γki , xr) =

2 if i = s = r

0 else .

Now we consider

(σijγki γ−kj − 1)(x1, · · · , xn) = (0, · · · , ωkxj − xi, · · · , ω−kxi − xj, · · · , 0)

and so ασijγki γ−kj = xi−ω−kxj, likewise α∨σijγki γ−kj = yi−ωkyj. Then ασijγki γ−kj (α∨
σijγki γ

−k
j

) = 2
and

(ys, ασijγki γ−kj )(α∨
σijγki γ

−k
j
, xr) = (xi(ys)− ω−kxj(ys))(xr(yi)− ωkxr(yj)).

First note that i 6= j. Let us split this into two cases, s = r and s 6= r. When s = r we
see that the above is zero unless at least one of r or s is equal to either i or j

(ys, ασijγki γ−kj )(α∨
σijγki γ

−k
j
, xr) =


1 if s = r = i

1 if s = r = j

0 else .

Hence
[ys, xs] = c(σ12γ

k
1γ
−k
2 )

∑
s 6=j

∑̀
k=0

σsjγ
k
s γ
−k
j +

`−1∑
k=1

c(γks )γks .

Now we consider the case where r 6= s. Recall

(ys, ασijγki γ−kj )(α∨
σijγki γ

−k
j
, xr) = (xi(ys)− ω−kxj(ys))(xr(yi)− ωkxr(yj))

so if r = i and s 6= j this is zero, the only non-zero case is when s = i and r = j. Hence

(yi, ασijγki γ−kj )(α∨
σijγki γ

−k
j
, xj) = −ωk

therefore
[yi, xj] = c(σijγki γ−kj )

∑̀
k=1
−ωkσijγki γ−kj .

While much is know about the rational Cherednik algebra for large classes of complex
reflection groups, there are still many difficult problems that remain unsolved. Much
of the difficulty is due to the rational Cherednik algebra being very non-commutative.
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Indeed, in the case where t = 1 the centre is C [7, Theorem 1.7.1]. In the case where t = 0
the centre has a rich structure. More specifically, the rational Cherednik algebra is a finite
module over its centre. In this case much of the representation theory can be reduced to
the finite dimensional quotient called the restricted rational Cherednik algebra. We now
describe how to construct this quotient. If we denote the centre of H0,c(W ) by Zc(W )
then when t = 0 a short argument [30, Proposition 3.6] shows that

R = C[h]W ⊗ C[h∗]W ⊂ Zc(W ). (2.6.1)

In particular R is a central subalgebra. Of particular importance is the maximal ideal

R+ = C[h]W+ ⊗ C[h∗]W + C[h]W ⊗ C[h∗]W+ ⊂ R.

Definition 2.6.7. The restricted rational Cherednik algebra is the quotient algebra

Hc(W ) := H0,c(W )/R+H0,c(W ).

The Verma and baby Verma modules are the standard modules for the rational
Cherednik algebra and the restricted rational Cherednik algebra respectively. Both types
of Verma modules are instrumental in proving the main results of Chapter 4. Much of
Section 4.1 focuses on the intimate connection between the Verma, the baby Verma mod-
ules and the structure of the centre. LetH0,c(W ) be the corresponding rational Cherednik
algebra for a class function c : S → C and t = 0.

Definition 2.6.8. Let λ ∈ IrrW . The V erma module associated to λ is

∆c(λ) = Hc(W )⊗C[h∗]oW λ,

where h ⊂ C[h∗] acts by 0 on λ.

Let us briefly mention the ring of coinvariants. Let (W, h) be a complex reflection
group. The ring of coinvariants is the quotient

C[h]coW = C[h]/〈C[h]W+ 〉,

where C[h]W+ is the ideal of W invariants that have no constant term. The ring of
coinvariants for the dual space h∗ is defined similarly.

Definition 2.6.9. Let λ ∈ IrrW . The baby V erma module associated to λ is

∆c(λ) = Hc(W )⊗C[h∗]coWoW λ,

where h ⊂ C[h∗]coW acts by 0 on λ.
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It has also been shown that the restricted rational Cherednik algebra has a useful
decomposition into its coinvariant rings.

Theorem 2.6.10. There is an isomorphism

Hc
∼= C[h]coW ⊗ CW ⊗ C[h∗]coW .

Proof. See [30, p. 4].

§ 2.7 | Schubert Cells and the Wronski map
Using the Wronski map is the only known way to provide an explicit presentation of the
blocks of the centre of the restricted rational Cherednik algebra. The Wronski map is
derived from the well known Wronskian coming from the theory of ordinary differential
equations and is defined on Schubert cells. We shall define and discuss both of these in
this section.

Schubert cells are subvarieties of Grassmanians, a classical object in the field of alge-
braic geometry. The Grassmanian is the space parametrising all the vector subspaces of
a fixed dimension.

Definition 2.7.1. For a fixed complex vector space V and positive integer n ≤ dimV ,
we define the Grassmanian as

Gr(n, V ) = {W ⊂ V | dim W = n}.

For any V and n the Grassmanian Gr(n, V ) can be considered as a projective variety
via the Plucker embedding [28, Lemma 9.1]. The definition of a Schubert cell depends
upon the Grassmanian it lives in. The Schubert cells we consider belong to the following
Grassmanian

Gr(n,C[x]2n),

where C[x]2n denotes the vector space of all polynomials in x with degree less than 2n.
Therefore, dimC[x]2n = 2n.

Definition 2.7.2. Given a complete flag

F = {0 ⊂ F1 ⊂ · · · ⊂ F2n = C[x]2n}

of C[x]2n, and a partition λ ` n, the Schubert cell is the locally closed subvariety of
Gr(n,C[x]2n) given by

Ωλ(F) := {V ∈ Gr(n,C[x]2n) | dim(V ∩Fk) = i for n+i−λi−1 ≤ k ≤ n+i−λi and 0 ≤ i ≤ n}.
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Remark 2.7.3. The above definition does not depend, up to isomorphism, on the choice
of full flag.

We choose a complete flag that makes things as simple as possible,

F(∞) := {0 ⊂ C[x]1 ⊂ · · · ⊂ C[x]i ⊂ C[x]i+1 ⊂ · · · ⊂ C[x]2n}

where C[x]i is the vector space of polynomials in x of degree ≤ i. For a given partition
λ ` n define a new partition λ ` n2 − n by λi = n − λn−i. Denote the Schubert cell
associated to F(∞) and λ by

Ωqe
λ := Ωλ(F(∞)).

Proposition 2.7.4. The Schubert cell Ωqe
λ ⊂ Gr(n,C2n[x]) consists of n-dimensional

subspaces X which have a basis {f1(x), f2(x), · · · , fn(x)} where

fi = xdi +
di∑

j=1, di−j 6∈P
fi,jx

di−j,

di = λi+n− i and P := {d1, · · · , dn}. Furthermore, for a given X such a basis is unique.

Proof. See [47, p. 918].

The stated aim of this section was to define the Wronski map. Since its definition
depends on the Wronskian, we recall the latter.

Definition 2.7.5. Given a collection of n− 1 times differentiable functions {f1, . . . , fn},
the Wronskian is the determinant

Wr(f1, f2, · · · , fn) = det


f1 f2 f3 . . . fn

f
(1)
1 f

(1)
2 f

(1)
3 . . . f (1)

n
... ... ... . . . ...

f
(n−1)
1 f

(n−1)
2 f

(n−1)
3 . . . f (n−1)

n

 .

Remark 2.7.6. The degree of the Wronskian depends upon on the degrees of the poly-
nomials f1, · · · , fn. Indeed, by Lemma 5.1.2 if the polynomials are homogeneous then
degWr(f1, · · · , fn) = ∑n

i (deg(fi))− (n−1)(n)
2 . In fact, the homogeneous condition can be

removed and the proof of Lemma 5.1.2 still holds and implies that

degWr(f1, · · · , fn) =
n∑
i

(deg(fi))−
(n− 1)(n)

2

is true for any family of polynomials f1, · · · , fn.

Remark 2.7.7. Note that the Wronskian of a basis does not depend on the choice of
basis up to a scalar.
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By calculating the Wronskian of a basis of subspaces X ∈ Gr(n,C2n[x]) we obtain a
map Wr : Gr(n,C2n[x])→ C[x]. Let WrX denote the Wronskian of a basis of a space X.
We can now define the Wronski map.

Definition 2.7.8. The Wronski map is the function Wrλ : Ωqe
λ → Cn defined by

Wrλ(X) = (a1, · · · , an),

where
WrX = xn +

n∑
i=1

(−1)iaixn−i.

Let us now consider the functions C[Ωqe
λ ] on the Schubert cell Ωqe

λ . Note that this
is an affine space and, by Proposition 2.7.4, each X ∈ Ωqe

λ has a unique basis in terms
of the fij. Hence the Schubert cells have coordinate functions fij. Lemma 2.4.2 states
|{j | di − j 6∈ P}| = λi, and summing over 1 ≤ i ≤ n, we see that the Schubert cell Ωqe

λ

has dimension n. Combining these facts we arrive at the following.

Proposition 2.7.9. The algebra C[Ωqe
λ ] is a free polynomial algebra generated by the fij

C[Ωqe
λ ] = C[fij, i = 1, . . . , n j = 1, . . . di, di − j 6∈ P ].

Remark 2.7.10. We can equip the algebra of functions on the Schubert cell with a
grading by defining the degree of fij to be j.

§ 2.8 | Quivers, Quiver varieties
Quivers are diagrams that consist of vertices and arrows between pairs of vertices. The
formalisation of these diagrams allows for us to describe and understand more complex
mathematical situations. Concepts of particular importance to us are quiver varieties,
quiver representations, and the preprojective algebra.

Definition 2.8.1. A quiver Q consists of two sets Q0 and Q1 and a pair of maps h :
Q1 → Q0 and t : Q1 → Q0. Elements of Q0 are called vertices and elements of Q1 are
called arrows. The map h is called the head and the map t is the tail.

Definition 2.8.2. A path in a quiver Q is a sequence of arrows a1, a2, · · · , ak such that
t(ai+1) = h(ai). In diagram form this can be represented as

1 2 3 · · · k + 1
a1 a2 a3 ak

.

There is a natural construction of an algebra for any given quiver called the path
algebra. Let k be a field.
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Definition 2.8.3. The path algebra of a quiver Q is denoted kQ and is a k-algebra with
basis the paths in Q. The product of two paths x and y is

xy =

xy if h(x) = t(y)

0 else.

The trivial path at vertex i is denoted ei.

Definition 2.8.4. A representation of a quiver Q is an assignment of a vector space Vi
to each vertex i ∈ Q0 and a linear map Va to each arrow a ∈ Q1. The linear maps are
assigned in such a way, that if t(a) = i and h(a) = j then Va : Vi → Vj.

Since a representation of a quiver consists of vector spaces it is natural to define the
dimension of a quiver representation.

Definition 2.8.5. The dimension vector of a representation V of a quiver with n vertices
is α = (dimV1, · · · , dim Vn).

Later in this thesis we will be concerned with the Calogero-Moser space. This is
closely related to a certain quotient of a path algebra called the deformed preprojective
algebra. Let Q be a quiver. We denote by Q the double quiver of Q. The double quiver
has the same set of vertices, but to every arrow a ∈ Q1 we have a new arrow a∗ ∈ Q1

such that h(a) = t(a∗) and t(a) = h(a∗).

Definition 2.8.6. Let λ ∈ CQ0 . The deformed preprojective algebra ∏λ(Q) of a quiver
Q, is the quotient of the path algebra CQ, by the relation

∑
a∈Q1

aa∗ − a∗a =
∑
i∈Q0

λiei.

The proof of Theorem 4.2.25 relies upon understanding an isomorphism between the
Calogero-Moser space and a certain quiver variety. For this reason they are of interest to
us. More broadly, quiver varieties allow for the techniques of algebraic geometry to be
applied to the study of deformed preprojective algebras. However this is not the main
focus of the thesis, rather a tool to help understand rational Cherednik algebras.

Definition 2.8.7. Let Q be a quiver and fix a dimension vector α. Then the set of all
representations of Q of dimension α forms a variety called the quiver moduli space and
is denoted Rep(Q,α).

Note that Rep(∏λ(Q), α) ⊂ Rep(Q,α). There is a natural action on Rep(Q,α) of the
group

GL(α) =
∏
i∈I
GL(αi,C)
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which acts by conjugation. If ∆ : C× → GL(α) is the the diagonal embedding then we
define

PGL(α) := GL(α)/∆(C×).

The conjugation action of GL(α) factors through PGL(α).

Quiver varieties parametrise isomorphism classes of semisimple ∏λ(Q)-modules. We
do not define them in general, but describe the construction of a particular quiver variety.
Let Q` be a cyclic quiver with ` vertices, and let α be a dimension vector for Q`. The
following map

µα : Rep(Q`, α)→ ⊕i∈Z/`Z Matαi(C)

given by µα(Xi, Yi)i∈Z/`Z = (XiX
∗
i − X∗i−1Xi−1)i is called the moment map. Let θ ∈ C`

be a family of complex numbers and denote the sum of matrices ⊕i∈Z/`ZθiIαi by Iθ(α).
Let Oθ be the closed subvariety of Matα0(C) of matrices of rank ≤ 1 and with trace
−∑i∈Z/`Z θiαi.

Note that the matrices belonging to Iθ(α) +Oθ have zero trace. The two key varieties
for our purposes are

Yθ(α) = µ−1
α (Iθ(α) +Oθ)

and the quiver variety
Xθ(α) = Y(α)//PGL(α).

In the above // means the categorical quotient, but since our varieties will be smooth
this is equivalent to the usual geometric quotient.

§ 2.9 | Calogero-Moser space
The aim of this section is to define the Calogero-Moser space and recall that it is isomor-
phic to the spectrum of the centre of a particular rational Cherednik algebra as well as
to the above special quiver variety. The following content can be found in [23, Section
11]. Throughout this section let Γn = Sn o Z/`Z be the wreath product. Then Z/`Z acts
naturally on the space Cn⊗CZ/`Z. Let O be the set of n×n matrices of the form P −Id
where P is a rank 1 matrix and tr(P ) = tr(Id). Note the similarity between O and Oθ
defined in the last section. Let eZ/lZ ∈ End(CZ/`Z) be the projector onto the trivial
representation eZ/`Z(g) = 1

|Z/`Z|
∑
γ∈Z/`Z γ · g. Now let c : Z/`Z → C be a class function

and let c′ = ∑
γ∈Z/`Z γ · c(γ). For each pair (k, c) where k ∈ C and c a class function we

have the following variety

MZ/`Z,n,c = {∇1,∇2 ∈ End(Cn⊗CZ/`Z) | [∇1,∇2] = k`·o⊗eZ/`Z+IdCn⊗c′ for some o ∈ O}.
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There is a natural action on MZ/`Z,n,c by the group

GLZ/`Z,n = AutZ/`Z(Cn ⊗ CZ/`Z) =
`−1∏
i=0

GL(n,C)

by conjugation. The group PGLZ/`Z,n = GLZ/`Z,n/∆(C×) also acts on MZ/`Z,n,c by con-
jugation.

Definition 2.9.1. The Caloger-Moser space is the quotient variety

MZ/`Z,n,c = MZ/`Z,n,c/PGLZ/`Z,n,c.

An equivalent definition of the Calogero-Moser space takes advantage of a special
element in O. Consider the matrix

p =


0 1 . . . 1
1 0 . . . 1
... ... . . . ...
1 1 . . . 0

 .

This is the matrix with 0 on the main diagonal and 1 everywhere else. Then we can
define

MZ/`Z,n,c(p) = {∇1,∇2 ∈ End(Cn ⊗ CZ/`Z)| [∇1,∇2] = k` · p⊗ eZ/`Z + IdCn ⊗ c′}.

and let PGLZ/`Z(p) be the isotropy group of k` · p⊗ eZ/`Z + IdCn ⊗ c′ ∈ End(Cn ⊗ CΓ).
Then we can alternatively write the Calogero-Moser space as

MZ/`Z,n,c(p)/PGLZ/`Z(p). (2.9.1)

In [23, Theorem 11.16] the following isomorphism is proven

SpecZc(Sn o Z/`Z) ∼=MZ/`Z,n,c. (2.9.2)

The proof Theorem 4.2.22 relies on an explicit understanding of the above isomorphism.
The first step to doing so is to rewrite the Calogero-Moser space using the following in-
terpretation.

Let E be a simple Hc(Sn oZ/`Z)-module. Let Sn−1 ⊂ Sn be the set of permutations of
{2, · · · , n} and write Γn−1 = Sn−1 oZ/`Z. Consider the subspace EΓn−1 of E fixed by Γn−1.
The elements x1 and y1 commute with Γn−1, hence they define maps x1, y1 ∈ End(EΓn−1).
Furthermore E ∼= C(Sn oZ/`Z) as a C(Sn oZ/`Z)-module by [23, Theorem 1.7]. Therefore
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dimEΓn−1 = n`. An explicit isomorphism [23, Lemma 11.14] Cn ⊗ CZ/`Z ∼= EΓn−1 is
given by

ei ⊗ γ → γ1 · s1,i.

Then [23, Lemma 11.15] states that under the isomorphism given above the endomor-
phism [x1, y1] ∈ End(EΓn−1) corresponds to the endomorphism of Cn ⊗ CΓ given by

[x1, y1] = k · |Γ| · p⊗ eΓ + IdCn ⊗ c′.

Hence if we compare with our second definition (2.9.1) of the Calogero-Moser space, we
see it is equivalent to pairs of maps x1|EΓn−1 and y1|EΓn−1 on the irreducible Hc(Sn oZ/`Z)-
modules E. Under the assumption that SpecZc(Sn o Z/`Z) is smooth, the annihilator in
Zc(Sn o Z/`Z) of the simple module Hc(Sn o Z/`Z)-module E is a maximal ideal m i.e.
a closed part of SpecZc(Sn o Z/`Z). The isomorphism (2.9.2) is constructed so that the
ideal m is sent to (x1|EΓn−1 , y1|EΓn−1 ).

We also claimed at the start of this section that the Calogero-Moser space has an
interpretation as a quiver variety. Let us now describe this interpretation.

For precise details on this section see [45, Section 6]. Recall that Q` is the cyclic quiver
with ` vertices. We have a representation of Q` corresponding to the group Z/`Z, where
the vector spaces at the vertices are the irreducible representations of Z/`Z. In this case
the irreducible representations are all 1-dimensional. We use the following notation: Vi
is the representation at the node i and s ·Vi = ωiVi for the generator s ∈ Z/`Z. Consider
representations of the quiver Q` where the vertex i is assigned the vector space V ⊕ni . The
operator k · |Γ| ·p⊗eΓ + IdCn⊗ c′ acting on EΓn−1 ∼= V0⊕· · ·⊕V`−1 belongs to Iθ(α)+Oθ.
Hence we get a mapMZ/`Z,n,c → Xθ(nδ). This map is an isomorphism [23, Proposition
11.10].



Chapter 3

Multiplicity results

This chapter contains an eclectic collection of multiplicity results. We consider modules
over a variety of graded algebras, for instance in the first section we require an algebra
admitting a graded strong duality. In the following sections we make the assumption that
we have an algebra with a triangular decomposition. What connects these results is that
they all calculate the radical layers, either of a projective cover, a standard or costandard
module or an arbitrary module that admits a radical respecting filtration.

§ 3.1 | Graded Brauer Reciprocity
Given a ring, group or algebra it is generally the goal of representation theory to un-
derstand the associated irreducible modules. This is incredibly difficult to do in any
generality, but if one narrows the scope slightly there is often much that can be deduced.
The projective cover of a simple module, when these exist, are unique up to isomorphism
and for a certain class of algebras (those with a triangular decomposition) understand-
ing the projective covers allows one to deduce finer information about the module. For
instance, one can compute their dimension. It would therefore be useful to know the
precise structure of the projective covers. They are rarely semisimple, however, and so
we could ask for the next best thing, the radical series and knowledge of the multiplicity
of each simple in the layers of the radical series. Unfortunately this too is not easy, but
the result that we will conclude this section with, is a step in this direction.

The type of results equating the multiplicity of two pairs of related modules are known
as Brauer-type reciprocities. More precisely, let G be a finite group and F an algebraically
closed field of characteristic p > 0. Furthermore, let S be a simple FG-module, P (S)
its projective cover and PF (S) a characteristic zero lift of P (S). The classical Brauer
reciprocity is the equality

[PF (S) : L] = [Lp : S]

where L is a simple G-module of characteristic 0 and Lp a modulo p reduction. There have
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since been many similar results equating the multiplicities of two pairs of objects, such as
in the modular representation theory of Lie algebras [37, Theorem 4.5]. In our results the
role of L will often be played by the radical layers of the standard and costandard modules.

In this section we present a graded version of a Brauer-type reciprocity result found
in [10], thus generalising the aforementioned result. The approach in [10] is broadly ap-
plicable here, however we require graded versions of the results and we consider graded
multiplicity in place of the regular multiplicity. This leads to subtle differences in the
arguments.

Landrock’s Lemma is essential for proving the ungraded case; we require a graded
version of this result. The proof is similar to the standard one but one must be careful
to account for the grading.

Lemma 3.1.1. (Graded Landrock’s Lemma) Assume that k is a splitting field for a graded
finite dimensional algebra A. Let λ, µ ∈ IrrG(A). Then

[rads P (λ) : µ]gr = [soc sI(µ) : λ]gr = [rads P (µ◦∗) : λ◦∗]gr.

Proof. By Lemma 2.2.26 (b) we have soc s(P (λ)/radsP (λ)) = P (λ)/radsP (λ). Then by
Lemma 2.2.23 we see

HomG(A)(P (λ)/radsP (λ), I(µ)) = HomG(A)(P (λ)/radsP (λ), socsI(µ)).

Using Lemma 2.2.26 (a), we have radssocsI(µ) = 0 and using Lemma 2.2.23 again we
obtain the equation

HomG(A)(P (λ)/radsP (λ), socsI(µ)) = HomG(A)(P (λ), socsI(µ)).

Hence
HomG(A)(P (λ)/radsP (λ), I(µ)) = HomG(A)(P (λ), socsI(µ)).

Since we assumed k was a splitting field for A we can use Lemma 2.2.32. Since the
Hom sets in the formula above are equal they have equal dimension. Lemma 2.2.32 then
implies

[P (λ)/radsP (λ) : µ]gr = [socsI(µ) : λ]gr.

By induction on s we see that this proves the first equality. The second follows from
Lemma 2.2.24 and Lemma 2.1.15 which states P (λ◦∗) = I(λ)◦∗.

To present our final result in this section, we need to place one more requirement on
our graded algebra A. The algebra A must possess a duality at a categorical level that
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fixes the simple modules. We make this idea precise in the following definition.

Definition 3.1.2. A graded strong duality is a contravariant equivalence of categories
δgr : G(A)→ G(A) that preserves the grading of the simple modules. That is, δgr(λ) ∼= λ

for λ ∈ IrrG(A).

Before stating the reciprocity result we remark that many important algebras admit
a graded strong duality. Let Gl(A) denote the category of graded left modules (denoted
G(A) previously) and Gr(A) the category of graded right A-modules.

Let us describe the form that a graded strong duality δgr is likely to take. Let τ : A→
A be a degree reversing anti-involution. That is, a bijective map such that deg(τ(a)) =
−deg(a) and τ(ab) = τ(b)τ(a). Then we define a functor

(−)τ : Gr(A)→ Gl(A)

which leaves the maps unchanged. On modules M τ = M as vectors spaces and we have
M τ

i = M−i and M τ has action a ·m := m · τ(a). Recall the graded dual ◦∗, if we compose
τ with ◦∗ we have a functor satisfying the criteria to be a graded strong duality as long
as (λ)τ◦◦∗ ∼= λ, for each simple graded A-module λ.

Theorem 3.1.3. Let A be a graded finite dimensional algebra over a splitting field k,
equipped with a graded strong duality δgr. Then, for all λ, µ ∈ IrrG(A),

[rads P (λ) : µ]gr = [rads P (µ) : λ]gr.

Proof. Define δ′gr = δgr ◦ (−)◦∗ : Gr(A) → Gl(A). This is a covariant exact functor that
maps λ◦∗ to λ. Consider a graded composition series

0 = M0 ⊂M1 ⊂ · · · ⊂Mn = M

for M ∈ Gr(A). The multiplicity [M : η◦∗]gr for η ∈ IrrGl(A) is equal to the number of i
such that there is a short exact sequence

0→Mi →Mi+1 → η◦∗ → 0.

Since δ′gr is exact the following is also a short exact sequence

0→ δ′gr(Mi)→ δ′gr(Mi+1)→ δ′gr(η)→ 0.

Hence [M : η◦∗]gr = [δ′gr(M) : δ′gr(η◦∗)]gr = [δ′gr(M) : η]gr. Let M = rads P (µ◦∗) and
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µ ∈ IrrGl(A). Then we see that

[rads P (µ◦∗) : η◦∗]gr = [δ′gr(rads P (µ◦∗)) : δ′gr(η◦∗)]gr = [δ′gr(rads P (µ◦∗)) : η]gr.

Note that δ′gr(µ◦∗) = µ. Since projective covers are preserved under equivalences, and
δ′gr(rads(−)) = radsδ′gr(−) we have that δ′gr(rads P (µ◦∗)) = radsP (µ). Therefore,

[rads P (µ◦∗) : η◦∗]gr = [δ′gr(rads P (µ◦∗)) : η]gr = [rads P (µ) : η]gr

Now applying the graded version of Landrocks lemma, Lemma 3.1.1, we see that

[rads P (η) : µ]gr = [rads P (µ◦∗) : η◦∗]gr = [rads P (µ) : η]gr.

§ 3.2 | Radical Layers of Standard and Costandard
Modules

In studying the relationship between simple modules and their projective covers for al-
gebras with a triangular decomposition, it was quickly realised that another two classes
of modules where intimately linked with both. These classes are the standard and co-
standard modules. There are multiple Brauer-type reciprocity results (some of which are
mentioned in this section) that equate the multiplicities of simple modules inside stan-
dard modules, with the multiplicity of a standard in the projective cover. The goal is to
refine these results further so that they count the multiplicities of the radical layers as well.

With the above in mind, Theorem 3.3.5 computes certain multiplicities in the radical
layers of the projective covers in terms of the multiplicities of standard modules. This
section will provide the necessary background so that we can prove this. There are
other original results of interest presented in this section. Throughout, let G(A) denote
the category of graded finite dimensional left A-modules for a graded finite dimensional
algebra A.

Lemma 3.2.1. Let A be a finite dimensional graded algebra and B ⊂ A a graded subal-
gebra. Then the functor Res AB : G(A)→ G(B) has left adjoint A⊗B − : G(B)→ G(A).

Proof. If it can be shown there is a natural bijection

φ : HomG(A)(A⊗B M,N) ∼= HomG(B)(M,Res ABN)

then the result is proven. Define φ : HomG(A)(A ⊗B M,N) → HomG(B)(M,Res ABN)
as follows, if f ∈ HomG(A)(A ⊗B M,N) then the map φ(f) ∈ HomG(B)(M,Res ABN) on



CHAPTER 3. MULTIPLICITY RESULTS 51.

elements is φ(f)(m) = f(1 ⊗ m). To see that this is injective assume φ(f) = 0. Then
f(1 ⊗ m) = 0 for all m ∈ M and so f = 0. To see that φ is surjective consider
g : M → Res ABN and define f so that f(1 ⊗m) = g(m), then φ(f) = g. It remains to
show that this bijection is natural, this is done by checking the following two diagrams
commute

HomG(A)(A⊗B M,N) HomG(B)(M,Res ABN)

HomG(A)(A⊗B M,N ′) HomG(B)(M,Res ABN ′)

φ

g ResABg

φ

HomG(A)(A⊗B M,N) HomG(B)(M,Res ABN)

HomG(A)(A⊗B M ′, N) HomG(B)(M ′,Res ABN)

φ

A⊗B f f

φ .

Using a standard diagram chase argument we see that the above isomorphism is indeed
natural.

Lemma 3.2.2. Let A be a finite dimensional algebra and B ⊂ A a subalgebra of A.
Assume that A is free over B. If M is a projective A-module Res ABM is a projective
B-module.

Proof. A module P is projective if there exists another module Q such that the direct
sum of P and Q is free. Hence P ⊕Q = A⊕n. Since A is free over B, Res ABA = B⊕k for
some k. Hence restricting P and Q to B we see that Res AB(P ⊕Q) ∼= B⊕nk.

The following result is widely known and will be essential in what follows.

Theorem 3.2.3. Assume that B ⊂ A is a subalgebra of A and that A is flat as both a
graded and ungraded B-module. Let L,M ∈ G(A) and N ∈ G(B), then for any positive
integer n the following three isomorphisms hold:

1. ExtnGl(A)(L,M) ∼= ExtnGr(A)(M◦∗, L◦∗),

2. ExtnG(A)(A⊗B N,M) ∼= ExtnG(B)(N,M),

3. ExtnG(A)(M, (N◦∗ ⊗B A)◦∗) ∼= ExtnG(B)(M,N).

Proof. See [36, Theorem 1.1].

From now on A is a finite dimensional graded k-algebra with a triangular decompo-
sition. In the following lemma it is important to note that the statements hold because
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A ∈ G(B−) is free by Lemma 2.3.3. We also introduce the notation that G∆(A) denotes
the category of graded A-modules that admit a ∆-filtration. We assume T is semisimple
throughout the rest of this section.

The following lemma mentions the inflation of a module. Let us briefly recall what
is meant by this. Let M be a T -module and assume there is a surjective morphism
φ : B � T . The inflation Inf BTM of M is the B-module which has the same elements as
M and action

b ·m = φ(b) ·m.

Lemma 3.2.4. For any finite dimensional graded k-algebra A with a triangular decom-
position the following holds:

(a) Let λ, µ ∈ IrrG(T ). Then the restriction Res AB−∆(λ) is the projective cover of the
inflation Inf B−T λ in G(B−).

(b) If M ∈ G∆(A), then Res AB−M is projective in G(B−).

(c) For any λ, µ ∈ IrrG(T ) we have

ExtnG(A)(∆(λ),∇(µ)) =

 k if λ = µ and n = 0,
0 else.

(d) Let M ∈ G(A) then Res AB−M is projective in G(B−) if and only if M ∈ G∆(A).

Proof. (a) We proceed by showing that Res AB−∆(λ) is projective and then check it is
a projective cover. Note that Res AB−∆(λ) ∼= B− ⊗T λ. By Lemma 3.2.1 we have for
arbitrary modules M ∈ G(T ) and N ∈ G(B−)

HomG(B−)(B− ⊗T M,N) ∼= HomG(T )(M,Res B−T N).

Since T is semisimple all modules in G(T ) are both projective and injective. We see that
HomG(T )(M,−) is exact and so fixing λ we see that HomG(B−)(B−⊗T λ,−) is also exact.
Hence Res AB−∆(λ) is projective. Furthermore, we have

HomG(B−)(Res AB−∆(λ), Inf B−T µ) ∼= HomG(B−)(B− ⊗T λ, Inf B−T µ)

and

HomG(B−)(B− ⊗T λ, Inf B−T µ) ∼= HomG(T )(λ,Res B−T Inf B−T µ) ∼= HomG(T )(λ, µ).
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Therefore

HomG(B−)(Res AB−∆(λ), Inf B−T µ) =

 k if λ = µ

0 else.

Hence Res AB−∆(λ) is the projective cover of InfB−T λ.

(b) Proceed by induction on the length of a ∆-filtration. The case where ` = 1 is
proven in part (a). Assume the lemma holds for some ` = k and consider M , a mod-
ule with ∆-filtration of length k + 1. Then we note two elementary facts, first that
Res AB−(M/N) ∼= Res AB−M/Res AB−N and secondly that if we have a module X with a
projective submodule Y with X/Y also projective then X is projective.

Let 0 ⊂M1 ⊂ · · · ⊂Mk ⊂M be a ∆-filtration of M . Then we have that

Res AB−M/Res AB−Mk
∼= Res AB−(M/Mk) ∼= Res AB−∆(λk).

Since Res AB−∆(λk) is projective and Res AB−Mk is projective by the inductive hypothesis,
we must have that Res AB−M is also projective.

(c) From Theorem 3.2.3 we have that ExtnG(A)(∆(λ),∇(µ)) ∼= ExtnG(B−)(∆(λ), µ). Since
Res AB−∆(λ) is projective by part (a) it follows ExtnG(B−)(∆(λ), µ) = 0 for n > 0. If
n = 0 then by the adjunction in part (a), ExtnG(B−)(∆(λ), µ) = HomG(B−)(∆(λ), µ) and
HomG(B−)(∆(λ), µ) ∼= HomG(T )(λ, µ).

(d) From part (b) we see that if M ∈ G∆(A) then Res AB−M is projective. Hence if
M ∈ G∆(A) then Res AB−M is projective and clearly M ∈ G(A). The reverse implication
is proven in [36, Theorem 4.4].

The above lemma has three important corollaries.

Corollary 3.2.5. For any λ, µ ∈ IrrG(T ),

HomG(A)(∆(λ),∇(µ)) = HomG(A)(∆(λ), soc∇(µ)).

Proof. Since soc∇(µ) is a (graded) submodule of ∇(µ), HomG(A)(∆(λ), soc∇(µ)) is con-
tained in HomG(A)(∆(λ),∇(µ)). On the other hand, Lemma 3.2.4 (b) says that the space
HomG(A)(∆(λ),∇(µ)) is at most one-dimensional, and is one-dimensional precisely when
λ = µ. Therefore, it suffices to note that when λ = µ, soc∇(µ) = L(λ) by Lemma 2.3.10.
Hence,

dimk HomG(A)(∆(λ), soc∇(µ)) =

 1, if λ = µ

0, else
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by Lemma 2.3.11.

Corollary 3.2.6. For any M ∈ G∆(A) we have that Ext1
G(A)(M,∇(µ)) = 0.

Proof. Proceed by induction on the length ` of a ∆-filtration, the case ` = 1 being given
by Lemma 3.2.4. Assume the statement is true for all modules M with ∆-filtration of
length at most k. Then consider an A-module N with length of ∆-filtration ` = k + 1.
There is a short exact sequence

0→ ∆(λ)→ N →M → 0

and so there is an exact sequence

0→ HomG(A)(M,∇(µ))→ HomG(A)(N,∇(µ))→ HomG(A)(∆(λ),∇(µ))→ Ext1
G(A)(M,∇(µ))

which continues

Ext1
G(A)(M,∇(µ))→ Ext1

G(A)(N,∇(µ))→ Ext1
G(A)(∆(λ),∇(µ)).

By the inductive hypothesis we know Ext1
G(A)(M,∇(µ)) = 0 and Ext1

G(A)(∆(λ),∇(µ)) = 0.
Therefore Ext1

G(A)(N,∇(µ)) = 0.

Corollary 3.2.7. All projective objects in G(A) admit a standard filtration.

Proof. This follows directly from Lemma 3.2.4 (d).

Lemma 3.2.8. The functor HomG(A)(−,∇(µ)) is exact on G∆(A).

Proof. Consider a short exact sequence

0→M1 →M2 →M2 → 0.

Apply HomG(A)(−,∇(µ)) to get the exact sequence

HomG(A)(M3,∇(µ))→ HomG(A)(M2,∇(µ))→ HomG(A)(M1,∇(µ))→ 0.

Since HomG(A)(−,∇(µ)) is right exact we can make a long exact sequence using Ext
groups

· · · → Ext1
G∆(A)(M1,∇(µ))→ HomG(A)(M3,∇(µ))→ HomG(A)(M2,∇(µ))→ HomG(A)(M1,∇(µ))→ 0.

Using Corollary 3.2.6 we see that all the extension groups are 0 hence the following is
exact

0→ HomG(A)(M3,∇(µ))→ HomG(A)(M2,∇(µ))→ HomG(A)(M1,∇(µ))→ 0.
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Hence, HomG(A)(−,∇(µ)) is an exact functor.

We wish to state an important result due to Bass, but first we must define perfect
rings, and the global and projective dimension of a ring.

Definition 3.2.9. A ring R is a (left) perfect ring if and only if all (left) R-modules
have a projective cover.

Note there are many important examples of perfect rings. In particular Artinian rings
are perfect [3, Theorem P] and hence finite dimensional algebras are perfect.

Definition 3.2.10. Let M be an A-module that admits a finite projective resolution.
The length of a minimal projective resolution of M is the projective dimension of M . If
M admits no finite projective resolution its projective dimension is said to be infinite.

Definition 3.2.11. Let A be a ring. The global dimension of A is the supremum of the
set of projective dimensions of all A-modules.

Definition 3.2.12. The finistic global dimension of A is the restriction of the supre-
mum of the set of projective dimensions of modules with finite projective dimension.

Remark 3.2.13. Confusingly the finistic global dimension of a ring can be infinite.

With the above defined we can now present the following theorem due to Bass.

Theorem 3.2.14. Let R be a ring, then the following are equivalent:

(a) The ring R has finistic global dimension 0.

(b) The ring R is left perfect and the finitely generated R-modules have finistic global
dimension 0.

(c) R is left perfect and every finitely generated proper right ideal has non-zero left
annihilator.

(d) R is left perfect and every simple left R-module is a homomorphic image of an
injective module.

Proof. See [3, Theorem 6.3].

Theorem 3.2.14 allows us to prove the following remarkable lemma.

Lemma 3.2.15. Let A be a finite dimensional k-algebra. If socA contains a copy of
every irreducible A-module then A has finistic global dimension zero.
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Proof. Assume that socA contains a copy of each simple module. Let S be a simple A-
module. Then we have an embedding S → A. Clearly A is free as an A-module and hence
is projective. Therefore A∗ is an injective module and we have a surjection A∗ → S∗. By
Theorem 3.2.14 (d), this is equivalent to having finistic global dimension 0.

If A is positively graded, with the degree zero part equal to the field then we can say
even more.

Lemma 3.2.16. Let A be a positively graded finite dimensional k-algebra with A0 = k.
If A 6= k then every finitely generated A-module that is not free has infinite projective
dimension.

Proof. Note that J := A>0 is a nilpotent ideal in A. Since it is clearly the largest such
ideal it equals the Jacobson radical of A [34, Theorem 4.8]. In particular, A is a local
ring with unique irreducible module S := A/J . Also, if P is a projective A-module then
it is free [46, Theorem 2.5]. Finally, we must show that A has finistic global dimension
zero. But this follows from Lemma 3.2.15 since there is only one irreducible module S up
to isomorphism, so S must occur in the socle of A. Therefore the simple module is either
projective or has infinite projective dimension. If the unique simple module is projective
then A is semisimple, but as it has non-zero Jacobson radical this is not possible.

This allows us to prove the next proposition which has two novel corollaries.

Proposition 3.2.17. The following are equivalent:

(a) The Borel subalgebra B− has finite global dimension.

(b) A− = k.

(c) B− is semisimple.

Moreover, B− always has finistic global dimension zero.

Proof. Statements (a) and (b) are equivalent because the Jacobson radical of B− equals
B−<0, and the latter is zero if and only if A−<0 = 0. Since B−<0 = A−<0T .

Assume that A−<0 6= 0 and assume we are given a finite projective resolution P q → λ

of the irreducible B−-module λ. Since B− is free over A−, the restriction of P q to A− is
a finite projective resolution of λ|A− ∼= k⊕dimλ. This implies that k has finite projective
dimension as an A−-module. This contradicts Lemma 3.2.16. Therefore B− always has
finistic projective dimension zero.

The equivalence of (a) and (c) follows by a similar argument to the proof of Lemma 3.2.16.
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This leads to two key corollaries. These statements are new in the theory of finite
dimensional algebras with a triangular decomposition.

Corollary 3.2.18. Let M,N ∈ G∆(A) with N ⊂ M , the following two statements are
true:

(a) M/N ∈ G∆(A).

(b) Any given ∆-filtration N q of N can be extended to a ∆-filtration on M .

Proof. There are two separate cases to consider here: by Proposition 3.2.17, either
A− = k, in which case G∆(A) = G(A), and the corollary is vacuous, or B− has infi-
nite global dimension but has finistic global dimension zero.

For part (a), we must show that M/N is also in G∆(A). Noting that restriction to
B− is an exact functor, by Lemma 3.2.4 (d), it suffices to note that if

0→M ′ →M →M ′′ → 0

is a short exact sequence of B−-modules with M ′ and M projective, then M ′′ is also
projective. If this were not the case thenM ′′ would be a finite dimensional B−-module of
projective dimension one. This contradicts the fact that B− has finistic global dimension
zero.

Let N ⊂M be as in part (b). By part (a),M/N is also in G∆(A) then any ∆-filtration
of M/N can be pulled back to a ∆-filtration on M extending N q.
Corollary 3.2.19. The category G∆(A) is closed under direct summands in G(A).

Proof. Let M ∈ G∆(A) and let M ′ be a direct summand of M in G(A). Then Res AB−M
is projective in G(B−) by Lemma 3.2.4 (b). Hence, the direct summand Res AB−M ′ of
Res AB−M is projective, thus M ′ ∈ G∆(A) by Lemma 3.2.4.

From the Ext-vanishing property in Lemma 3.2.4 (c) one deduces easily by induction
that

[M : ∆(λ)] = #{Mi/Mi−1 ∼= ∆(λ)} = dimk HomG(A)(M,∇(λ)) (3.2.1)

for λ ∈ IrrG(T ) and M ∈ G∆(A). Hence, this number is independent of the chosen
filtration. In [36, Theorem 4.5] it is proven that Brauer reciprocity holds in G(A), i.e.:

Proposition 3.2.20. The relation

[P (λ) : ∆(µ)] = [∇(µ) : L(λ)] (3.2.2)
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holds for any λ ∈ IrrG(T ).

Proof. Using formula (3.2.1) we see [M : ∆(λ)] = dimk HomG(A)(M,∇(λ)). It remains to
show [∇(µ) : L(λ)] = dimk HomG(A)(P (λ),∇(µ)). Assume that [∇(µ) : L(λ)] = n then
we have a composition series

0 ⊂M1 ⊂M2 ⊂ · · · ⊂Mk = ∇(µ)

where we have n different integers i such that Mi/Mi−1 ∼= L(λ). This gives n surjective
maps Mi → L(λ). Since P (λ) is projective we have n maps P (λ) → Mi and composing
with inclusion these give us n maps P (λ)→ ∇(µ). These maps are linearly independent,
we argue by induction to prove this. Let M be a module with [M : L(λ)] = 1 then
dimk HomG(A)(P (λ),M) = 1. Now assume the statement for all integers less than j say.
Given M such that [M : L(λ)] = j + 1 then we get an exact sequence

0→ N →M → L(λ)→ 0.

Since Hom(P (λ),−) is exact we get an exact sequence

0→ HomG(A)(P (λ), N)→ HomG(A)(P (λ),M)→ HomG(A)(P (λ), L(λ))→ 0

and so

dimk HomG(A)(P (λ),M) = dimk HomG(A)(P (λ), N) + dimk HomG(A)(P (λ), L(λ)).

This simplifies to

dimk HomG(A)(P (λ),M) = dimk HomG(A)(P (λ), N) + 1.

In Section 3.3 a formula for calculating the multiplicities of simple modules in the
radical layers of the standard modules is proven. This formula depends on a special set
that we will define at the beginning of the next section. The definition of this special set
relies on a particular composition series, the following lemma is required for this to make
sense.

Lemma 3.2.21. Assume that 0 = M0 ⊂ · · · ⊂Mk = M is a composition series for M .

(a) If N ⊂M is a submodule, then {Mi ∩N |Mi ∩N 6⊂Mi−1} is a composition series
for N .

(b) If K ⊂ M is a submodule, and M i the image of Mi in M/K, then M/K has a
composition series {M i |Mi ∩K ⊂Mi−1}.
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Proof. For part (a) note that Mi−1 ∩ N ⊆ Mi ∩ N and we need only show that (Mi ∩
N)/(Mi−1 ∩ N) is simple. We have that Mi/Mi−1 ∼= Si for Si simple, hence there is
a surjective map φi : Mi → Si with Kerφi = Mi−1. The map φi induces a map
φi : Mi ∩ N → Mi−1 ∩ N where φi(a) = φi(a). It is clear that Kerφi = Mi−1 ∩ N
and so Mi−1 ∩N/Mi ∩N = Si if imφi = Si which is the case as long as Mi ∩N 6⊆Mi−1.

Part (b) can be proven in a similar manner or by simply noting that

Mi/M i−1 = (Mi/K)/(Mi−1/K) ∼= Mi/Mi−1.

therefore the composition factors are simple so long as K ⊂Mi−1. Note that if K ⊂Mi−1

then Mi ∩K ⊂Mi−1.

We will apply the previous lemma to the radical powers ofM . In this case Lemma 3.2.21
(a) says that if M is a module with composition series 0 = M0 ⊂ · · · ⊂ Mk = M then
rads−1M has a composition series {Mi∩rads−1M |Mi∩rads−1M 6⊂Mi−1}. Furthermore,
using Lemma 3.2.21 (b) we obtain a composition series for radsM ,

{Mi ∩ rads−1M |Mi ∩ radsM ⊂Mi−1 ∩ rads−1M and Mi ∩ rads−1M 6⊂Mi−1}.

We see that [radsM : L(µ)] can be interpreted as the number of indices i such that
Mi/Mi−1 ∼= L(µ), Mi ∩ radsM ⊂Mi−1 ∩ rads−1M and Mi ∩ rads−1M 6⊂Mi−1.

§ 3.3 | Projective covers of algebras which admit an
anti-triangular duality

The main result of this section is Theorem 3.3.5 which allows us to (partially) understand
the structure of the radical layers of the projective covers. More specifically it will allow
us to calculate the multiplicity of the standard modules inside the projective covers (with
certain conditions). This is done by proving a reciprocity result that calculates the mul-
tiplicity of the simple modules inside the radical layers of the standard modules. This is
straightforward once the simple modules are known.

Key to our statement will be the setKs(M,λ), which we now define. Fix a ∆-filtration
0 = M0 ⊂ M1 ⊂ · · · ⊂ M`∆(M) = M on M ∈ G∆(A). If Mi/Mi−1 ∼= ∆(λi) then, by
Lemma 3.2.4 (c), there is a unique (up to scalar) non-zero morphism Mi → Mi/Mi−1 →
∇(λi). Then i ∈ Ks(M,λ) if λi = λ and there is a morphism φ : M → ∇(λ) extend-
ing the map Mi → ∇(λ) such that radsM ⊂ kerφ. Restriction to Mi/Mi−1 defines a



CHAPTER 3. MULTIPLICITY RESULTS 60.

map HomG(M/Mi−1,∇(λ))→ HomG(∆(λi),∇(λ)). Since M/Mi−1 admits a ∆-filtration,
Lemma 3.2.4 (c) says that this map is surjective. In other words, we can always find a
morphism φ : M → ∇(λ) extending the map Mi → ∇(λ); however it need not be the
case that radsM ⊂ Kerφ in general.

Note that Ks−1(M,λ) ⊂ Ks(M,λ) and Ks(M,λ) = {1, 2, . . . , `∆(M)} if s ≥ ``(M).
We set Ks(M,λ) = Ks(M,λ) r Ks−1(M,λ). Our definition is (essentially) dual to the
definition of [rads P (λ) : Head ∆(µ)] given in [14, Remark 1]; see also [35, Section 4.1].
Since the head of ∆(λ) equals L(λ), we have [M/ radsM : L(λ)] ≥ |Ks(M,λ)|. Thus,
knowing the sets Ks(M,λ) gives partial information on the radical layers of M .

The content of this section is more technical, the following results are united by their
necessity to prove Theorem 3.3.5.

Lemma 3.3.1. Let M , M ′ and N be A-modules. Let q : M → M ′ be a surjection such
that q∗ : HomA(M ′, N)→ HomA(M,N) is an isomorphism. Then, for all s ≥ 1,

q∗ : HomA(M ′/ radsM ′, N)→ HomA(M/ radsM,N)

is also an isomorphism.

Proof. First we check that q∗ : HomA(M ′/ radsM ′, N) → HomA(M/ radsM,N) is well-
defined. Since q(radsM) = q(JsM) = Jsq(M) = radsM ′, the map q descends to a
morphism M/ radsM → M ′/ radsM ′. Thus, q∗ is well-defined. Note that this re-
ally says that HomA(M ′/ radsM ′, N) is a subspace of HomA(M ′, N) that is mapped
into HomA(M/ radsM,N) ⊂ HomA(M,N). In particular, q∗ is injective on the space
HomA(M ′/ radsM ′, N). Let ψ ∈ HomA(M/ radsM,N). Then, by assumption, there
exists φ ∈ HomA(M ′, N) such that q∗(φ) = ψ. By definition, ψ(radsM) = 0 but
ψ(radsM) = φ ◦ q(radsM) = φ(radsM ′). Thus, φ vanishes on radsM ′. Therefore
φ ∈ HomA(M ′/ radsM ′, N), as required.

The following technical result is key to the proof of Theorem 3.3.3.

Proposition 3.3.2. For all s ≥ 1,

|Ks(M,µ)| = dimk HomA(M, soc s∇(µ)).

Proof. Fix s ≥ 1. The equality is proven by induction on n = `∆(M) the length of a
∆-filtration on M . If n = 1 then M = ∆(λ) for some λ. If λ 6= µ then Ks(M,µ) = ∅ by
Corollary 3.2.5. If λ = µ then we need only check that there exists a map φ : ∆(λ)→ ∇(λ)
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such that rads ∆(λ) ⊂ Kerφ. Since soc∇(λ) = L(λ), Corollary 3.2.5 implies that there
exists a map φ : ∆(λ) → ∇(λ) such that Kerφ = rad ∆(λ) and Imφ = soc∇(λ). As
rads ∆(λ) ⊂ rad ∆(λ) for all s ≥ 1 we have that Ks(M,µ) = {1}. Note that soc∇(µ) is
a graded submodule of soc s∇(µ) and soc s∇(µ) is a graded submodule of ∇(µ), hence

HomA(∆(λ), soc∇(µ)) ⊂ HomA(∆(λ), soc s∇(µ)) ⊂ HomA(∆(λ),∇(µ)).

Corollary 3.2.5 then implies that

HomA(∆(λ), soc∇(µ)) = HomA(∆(λ), soc s∇(µ)) = HomA(∆(λ),∇(µ)).

Therefore, HomA(∆(λ), soc s∇(λ)) is one-dimensional and

HomA(∆(λ),∇(µ)) = HomA(∆(λ), soc s∇(µ)) = 0

otherwise.

Therefore we may assume that n > 1 and the result holds by induction for all mod-
ules with ∆-filtrations of length less than n. Given a module M of length n we choose
∆(λ) ⊂ M and let M ′ denote the quotient. By Corollary 3.2.18, M ′ belongs to G∆(A).
Therefore, we may assume that there exists a ∆-filtrationM q ofM such thatM1 = ∆(λ),
and if we define M ′

i := Mi+1/∆(λ), then M ′q is a ∆-filtration of M ′; such a filtration is
by definition constructed by choosing a ∆-filtration on M ′.

Applying HomA(−,∇(µ)) to the short exact sequence 0 → ∆(λ) → M → M ′ → 0
gives, by Lemma 3.2.8 a short exact sequence

0→ HomA(M ′,∇(µ))→ HomA(M,∇(µ)) Φ−→ HomA(∆(λ),∇(µ))→ 0. (†)

This induces an exact sequence

0→ HomA(M ′, soc s∇(µ))→ HomA(M, soc s∇(µ)) Φs−→ HomA(∆(λ), soc s∇(µ))→ · · · (‡)

We claim that there is a bijectionKs(M,µ)r{1} ∼→ Ks(M ′, µ). First, we show that there
is an injection Ks(M,µ) r {1} → Ks(M ′, µ) given by i→ i− 1. Let i ∈ Ks(M,µ) r {1}
and observe that

M ′
i−1/M

′
i−2
∼=

Mi/∆(λ)
Mi−1/∆(λ)

∼= ∆(µ).

If φ : M → ∇(µ) is a morphism extending Mi/Mi−1 → ∇(µ) then ∆(λ) = M1 is in the
kernel of φ so it factors as a morphism φ : M ′ → ∇(µ). Moreover, radsM ′ = (radsM +
∆(λ))/∆(λ) and radsM + ∆(λ) ⊂ Kerφ. Thus, radsM ′ ⊂ Kerφ and i− 1 ∈ Ks(M ′, µ).
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We claim that an injection the opposite way Ks(M ′, µ) → Ks(M,µ) r {1} is given by
the inverse map j → j + 1. Since j ∈ Ks(M ′, µ),

Mj+1/Mj
∼=
Mj+1/∆(λ)
Mj/∆(λ)

∼= M ′
j/M

′
j−1
∼= ∆(µ)

and we may consider φ : M ′ → ∇(µ) as a map φ : M → ∇(µ) with ∆(λ) in the ker-
nel. Again, since radsM ′ = (radsM + ∆(λ))/∆(λ) and φ(radsM ′) = 0, it follows that
φ(radsM) = 0 and hence j + 1 ∈ Ks(M,µ) r {1}.

To derive the equality of the proposition, there are two separate cases to consider: (a)
λ 6= µ; and (b) λ = µ.

In case (a), 1 /∈ Ks(M,µ). Therefore, the above argument shows that |Ks(M,µ)| =
|Ks(M ′, µ)|. Comparing Hom sets in (†) we see that HomA(M ′,∇(µ))→ HomA(M,∇(µ))
is an isomorphism. By Lemma 3.3.1, this implies that the map HomA(M ′/ radsM ′,∇(µ))→
HomA(M/ radsM,∇(µ)) is also an isomorphism. By Lemma 2.2.27, we deduce that

HomA(M ′, soc s∇(µ))→ HomA(M, soc s∇(µ))

is an isomorphism thus completing the proof for case (a).

Case (b) decomposes into two further cases to consider. Either (1) 1 ∈ Ks(M,µ)
or (2) 1 /∈ Ks(M,µ). In case (1), we must have Φs 6= 0 since Φs(φ) 6= 0. Since
HomA(∆(λ), soc s∇(µ)) is one dimensional this implies that Φs is a surjection. As (‡) is
exact, Φs has kernel HomA(M ′, soc s∇(µ)). This gives rise to a short exact sequence

0→ HomA(M ′, soc s∇(µ))→ HomA(M, soc s∇(µ)) Φs−→ HomA(∆(λ), soc s∇(µ))→ 0.

Hence,
dimk HomA(M, soc s∇(µ)) = dimk HomA(M ′, soc s∇(µ)) + 1,

as required.
In case (2), we claim that Φs = 0. If this was not the case then we can find

φ : M/ radsM → ∇(µ) such that Φs(φ) 6= 0. But, by definition of Φs this means that φ is
a morphism M → ∇(µ) with radsM ∈ Kerφ and whose restriction to ∆(λ) is a non-zero
morphism ∆(λ) → ∇(µ). In other words, 1 ∈ Ks(M,µ); a contradiction. Since Φs = 0,
(‡) above implies that

dimk HomA(M, soc s∇(µ)) = dimk HomA(M ′, soc s∇(µ)).
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We note that Proposition 3.3.2 shows that the numbers |Ks(M,µ)| and |Ks(M,µ)|
are independent of the choice of ∆-filtration. The next three theorems make up the core
of this section.

Theorem 3.3.3. Let P (λ) be the projective cover of L(λ). Then

|Ks(P (λ), µ)| = dimk HomA(P (λ), soc s∇(µ)).

Proof. We begin by observing that |Ks(M,µ)| = |Ks(M,µ)| − |Ks−1(M,µ)| for all A-
modules M and simple modules µ. By Proposition 3.3.2 we see that

|Ks(M,µ)| − |Ks−1(M,µ)| = dimk HomA(M, soc s∇(µ))− dimk HomA(M, soc s−1∇(µ)).

Set M = P (λ), then

|Ks(P (λ), µ)|−|Ks−1(P (λ), µ)| = dimk HomA(P (λ), soc s∇(µ))−dimk HomA(P (λ), soc s−1∇(µ)).

Consider the following exact sequence

0→ soc s−1∇(µ)→ soc s∇(µ)→ soc s∇(µ)→ 0,

applying the exact functor HomA(P (λ),−) we see that

dimk HomA(P (λ), soc s∇(µ)) = dimk HomA(P (λ), soc s∇(µ))−dimk HomA(P (λ), soc s−1∇(µ)).

Therefore
|Ks(P (λ), µ)| = dimk HomA(P (λ), soc s∇(µ))

and the result is proven.

We now arrive at the following important theorem. It is similar in appearance to [14,
Corollary 7], however our proof is necessarily completely different because our hypothesis
are different.

Theorem 3.3.4. Let P (λ) be the projective cover of L(λ). Then

|Ks(P (λ), µ)| = [soc s∇(µ) : L(λ)].

Proof. Follows from Theorem 3.3.3 and Lemma 2.2.32.

If the algebra A admits an anti-triangular duality then we can calculate the set
|Ks(P (λ), µ)| using the radical layers of the standard modules. This brings us closer
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to our goal of understanding the projective covers in terms of the standard and costan-
dard modules.

Theorem 3.3.5. Let P (λ) be the projective cover of L(λ). If the category A-mod admits
an anti-triangular duality then the following formula holds

|Ks(P (λ), µ)| = [rads ∆(µ) : L(λ)].

Proof. From Theorem 3.3.4 and Lemma 2.3.14 we have

|Ks(P (λ), µ)| = [soc s∇(µ) : L(λ)] = [D(rads ∆(µ)) : D(L(λ))] = [rads ∆(µ) : L(λ)].

In the next section we will see that with a further condition on the radical series
of the projective covers we will be able to refine our results. Ultimately this gives a
formula for calculating the multiplicity of the simple modules inside the radical layers
of the projective covers using only the standard and simple modules. For now let us
demonstrate just a few of the uses of Theorem 3.3.4 and Theorem 3.3.5. We do this by
providing some examples, beginning with the cases A+ = k and A− = k.

Example 3.3.6. Let A be a finite dimensional graded k-algebra admitting a triangular
decomposition, where A+ = k. Let λ denote a simple T -module. Then, by definition,
∇(λ) = (λ∗ ⊗B− A)∗ ∼= λ. Therefore,

[socs∇(λ) : L(µ)] =

 1, if λ = µ and s = 1
0, else.

Therefore Theorem 3.3.4 says that |K1(P (λ), λ)| = 1 and Ks(P (λ), µ) = ∅ otherwise.
By definition ∆(λ) = A ⊗B+ λ = A− ⊗B+ λ, and A− is an arbitrary negatively graded
algebra. This means that Theorem 3.3.5 cannot hold in general. In this case A cannot
admit an anti-triangular duality since dimA− 6= dimA+.

Example 3.3.7. Let A be a finite dimensional graded algebra with a triangular de-
composition with A− = k and let λ denote a simple T -module. Then, by definition,
∆(λ) = A ⊗B+ λ = B+ ⊗B+ λ hence ∆(λ) = λ as a vector space. Therefore it must be
simple, so ∆(λ) = L(λ). Therefore,

[rads ∆(λ) : L(µ)] =

 1, if λ = µ and s = 0
0, else.

Since ∇(λ) = (λ∗ ⊗B− A)∗ ∼= (λ∗ ⊗B− A+)∗ and A+ is any positivley graded algebra, we
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do not have

[socs∇(λ) : L(µ)] =

 1, if λ = µ and s = 0
0, else.

in general. Therefore Theorem 3.3.5 does not hold, again because A does not have an
anti-triangular duality.

These examples demonstrate that by using Theorem 3.3.4 and Theorem 3.3.5 we can
easily deduce whether an algebra admits an anti-triangular duality.

As we have remarked, many important classes of algebras admit a triangular de-
composition, and further an anti-triangular duality. One such class are the restricted
enveloping algebras. We now show how our formula can be applied to better understand
the projective covers of U0(sl2) over a field of prime characteristic.

Example 3.3.8. Let k be an algebraically closed field of characteristic p ≥ 5. The Lie
algebra sl2 has basis {e, f, h} and relations [e, f ] = h, [h, e] = 2e and [h, f ] = −2f .
Recall from Example 2.3.2 that the restricted universal enveloping algebra [40] U(sl2) of
sl2, admits the following grading. Let deg(e) = −1, deg(f) = 1 and deg(h) = 0. Then,
not only is this algebra graded, but it admits a triangular decomposition with A+ = k[f ],
T = k[h] and A− = k[e].

Next we find the simple T -modules and hence standard modules. By definition of the
restricted universal enveloping algebra, we impose the relation xp − x[p] for each x ∈ sl2.
Here h[p] = h and hence T = k[h]/(hp − h). In other words, we have T ∼= k[Fp].

Since T ∼= k[Fp], the simple modules of T are all one dimensional over k. Since k is
algebraically closed, h has an eigenvector v and eigenvalue λ in any finite dimensional
moduleM . Hence Span{v} is a one-dimensional subspace. From the equation hp−1 ·v = v

we see that there are p choices for λ, hence p different simple T -modules. Denote by S(n)
the simple T -module where h acts by multiplication by the integer 0 ≤ n ≤ p− 1.

Recall from the definition of the standard modules that ∆(S(n)) = U(sl2)⊗k[e,h]S(n).
We now calculate the corresponding simple U(sl2)-modules, L(S(n)). Letting v ∈ S(n)
we can write an explicit basis for ∆(S(n)) = U(sl2)⊗k[e,h] S(n), as

{1⊗ v, f ⊗ v, . . . , fp−1 ⊗ v}.

We write vj = f j ⊗ v. The defining relations of U(sl2) can be used recursively to obtain
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the following
h · vj = (n− 2)vj,

e · vj =

 0 if j = 0
j(n− j + 1)vj−1 if j 6= 0

and

f · vj =

 vj+1 if j < p− 1
0 if j = p− 1.

If an irreducible submodule contains the element vj then it also contains the elements
vj+1, . . . vp−1, obtained from repeated application of f . However it may not necessarily
contain vj−1 and terms of lower degree as the action of e includes multiplication by a
scalar. Therefore, if j = n + 1 then e · vj = 0. We have p non-isomorphic irreducible
submodules, of dimension 1, . . . , p, determined by the action of h. We are now in posi-
tion to describe the composition series for ∆(S(n)). The simplest case is ∆(S(p − 1))
which is irreducible and hence equals L(p− 1). Each ∆(S(n)) has a simple submodule of
dimension p− n− 1. These are the only simple submodules of the standards. Therefore
the simple L(S(n)) associated to ∆(S(n)) has dimension n+ 1.

We use a result found in [41, p. 10] to see that U(sl2) has p simple modules, with one
of each dimension from 1 to p, and that these are the only simple modules. We can now
construct a composition series for ∆(S(n)),

{0} ⊂ L(S(p− n− 2)) ⊂ ∆(S(n)).

The above is also a radical series for the standard modules because the inclusion L(S(p−
n− 2)) ↪→ ∆(S(n)) is not split. We are now able to calculate [rads ∆(S(i)) : L(S(j))].

[rads ∆(S(i)) : L(S(j))] =


1 if s = 1 and i = j

1 if s = 2 and j = p− i− 2
0 else.

Since U(sl2) admits an anti-triangular duality, we can apply Theorem 3.3.5. Using the
formula |Ks(P (λ), µ)| = [rads ∆(µ) : L(λ)], we must have that

|Ks(P (S(j)), S(i))| =


1 if s = 1 and i = j

1 if s = 2 and j = p− i− 2
0 else.

Without explicitly knowing what the projective covers of the simple modules are we can
deduce some of their properties, in particular the components of a ∆-filtration for P (Sj).
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From the above we see that

[P (Sj)/radP (Sj) : L(Sj)] ≥ 1 and [P (Sj)/rad2P (Sj) : L(Sp−j−2)] ≥ 1.

Theorem 3.3.5 makes clear that it is important to know [rads ∆(µ) : L(λ)] as this
gives information on the projective cover P (λ). We now demonstrate how to find the
multiplicities of these radical layers for the restricted rational Cherednik algebra of the
dihedral group of order 8.

Example 3.3.9. In this example we consider the restricted rational Cherednik algebra for
the dihedral group of order 8. We fix c = 0. Denote by h the underlying two dimensional
vector space with basis {y1, y2} where y1 lies on the x-axis and y2 lies along the y-axis.
Recall that the dihedral group has presentationD8 = 〈a, b | a4 = 1, b2 = 1 and bab = a−1〉.
Theorem 2.6.10 states that the restricted rational Cherednik algebra has a vector space
decomposition H0(W ) = C[h]coW ⊗W ⊗ C[h∗]coW . Letting x1 = y∗1, x2 = y∗2 denote the
dual basis in h∗ we have

C[h∗]coW = C[x1, x2]
(x2

1 + x2
2, x

4
1 + x4

2) ,

and
C[h]coW = C[y1, y2]

(y2
1 + y2

2, y
4
1 + y4

2) .

The algebra is graded by deg(x1) = deg(x2) = −1, deg(y1) = deg(y2) = 1 and deg(w) = 0
where w ∈ W . It admits a triangular decomposition A+ = C[h]coW , T = W and
A− = C[h∗]coW . The group W has five simple modules, four are one-dimensional and
there is one two-dimensional module. We now describe these.

Let us begin with the one-dimensional simple modules. From the defining rela-
tions of D8 we have a4λ = λ and b2λ = λ hence b = 1 or b = −1. If b = 1 then
a−1λ = babλ = b(aλ) = aλ hence a = 1 or a = −1. If b = −1 then we again find that
a = 1 or a = −1 giving us four irreducible representations.

Let us now fix notation, V0, V1, V2, and V3 are the one dimensional representations.
The trivial representation is V0. The representation V1 has relations a·v = v and b·v = −v.
The representation V2 has relations a · v = −v and b · v = v. The representation V3 has
relations a · v = −v and b · v = −v.

The final irreducible representation is V4 = h already defined.

A radical filtration for the standard modules ∆(Vi) is straightforward, the radical series
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is the same as the graded pieces of ∆(Vi). By direct calculation we find the following

[∆(λ) : L(µ)] =



1, for dim(λ) = 1, dim(µ) = 1
2, for dim(λ) = 1, dim(µ) = 2
2, for dim(λ) = 2, dim(µ) = 1
4, for dim(λ) = 2, dim(µ) = 2

and hence

[rads(∆(λ)) : L(µ)] =



1, if λ = µ and s = 0
0, if λ 6= µ and s = 0
1, if λ = µ, and s = 1
0, if λ 6= µ, and s = 1
0, if dim λ = 1, dimµ = 1 and s = 2
1, if dim λ = 1, dimµ = 2 and s = 2
1, if dim λ = 2, dimµ = 1 and s = 2
0, if dim λ = 2, dimµ = 2 and s = 2
0, if dim λ = 1, dimµ = 1 and s = 3
1, if dim λ = 1, dimµ = 2 and s = 3
1, if dim λ = 2, dimµ = 1 and s = 3
0, if dim λ = 2, dimµ = 2 and s = 3
0, if dim λ = 1, dimµ = 1 and s = 4
1, if dim λ = 1, dimµ = 2 and s = 4
1, if dim λ = 2, dimµ = 1 and s = 4
0, if dim λ = 2, dimµ = 2 and s = 4
1, if µ = V1 ⊗ λ and s = 5
0, if µ 6= V1 ⊗ λ and s = 5.

Thus we can use Theorem 3.3.5 and the above calculations to determine properties of the
structure of P (λ).

§ 3.4 | Radical preserving filtrations
Here we seek to refine the results of the last section, giving a formula for calculating
the multiplicity of the simple modules inside radical layers of the projective cover. To
achieve such a strong result we require a strong condition, the notion of radical respecting
filtrations. We follow the definition given in [35, Definition 4.2], changing this slightly to
make it more general. Specifically in the cited paper it is defined for ∆-filtrations but
here we let the filtration be arbitrary.
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Definition 3.4.1. Let 0 = M0 ⊂M1 ⊂ · · · ⊂M` = M be a filtration ofM by submodules
(where Mi/Mi−1 is not necessarily irreducible). We say that M q is a radical respecting
filtration if there exists n : {1, . . . , `} → N such that the canonical map

(radn(i)+tM) ∩Mi

(radn(i)+tM) ∩Mi−1
→Mi/Mi−1

induces an isomorphism

(radn(i)+tM) ∩Mi

(radn(i)+tM) ∩Mi−1

∼−→ radt(Mi/Mi−1)

for all t ≥ 0.

In the above definition it is not required that the map n is injective or increasing only
that it satisfies the condition on the radical powers.

In what follows, we introduce the convention that rad−j N := N for j ≥ 0.

Lemma 3.4.2. If M q is a radical respecting filtration, then

(radsM) ∩Mi

(radsM) ∩Mi−1
= Mi/Mi−1

for all s ≤ n(i).

Proof. The submodules

0 ⊂ · · · ⊂ radkM ∩Mi ⊂ radk−1M ∩Mi ⊂ · · · ⊂Mi

define a filtration of Mi. Hence, the quotients

(radkM ∩Mi) +Mi−1

Mi−1
∼=

(radkM) ∩Mi

(radkM) ∩Mi−1

define a filtration of Mi/Mi−1. In particular,

(radn(i) M) ∩Mi

(radn(i) M) ∩Mi−1
⊂ (radsM) ∩Mi

(radsM) ∩Mi−1

for s ≤ n(i). But, being a radical respecting filtration means that the LHS of the above
inclusion equalsMi/Mi−1. Therefore, ((radsM)∩Mi)/((radsM)∩Mi−1) equalsMi/Mi−1,
as required.

We now arrive at the first formula for calculating multiplicities in this section.
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Proposition 3.4.3. If M q is a radical respecting filtration, then for each irreducible A-
module L,

[radsM : L] =
∑̀
i=1

[rads−n(i)(Mi/Mi−1) : L]

for all s ≥ 0.

Proof. Since ∑
t≥s

[radtM : L] = [radsM : L],

and ∑
t≥s

∑̀
i=1

[radt−n(i)(Mi/Mi−1) : L] =
∑̀
i=1

[rads−n(i)(Mi/Mi−1) : L]

it suffices by downward induction on s to prove that

[radsM : L] =
∑̀
i=1

[rads−n(i)(Mi/Mi−1) : L].

The radsM ∩Mi define a filtration of radsM . Therefore,

[radsM : L] =
∑̀
i=1

[(radsM ∩Mi)/(radsM ∩Mi−1) : L].

For s ≤ n(i), Lemma 3.4.2 says that

[(radsM ∩Mi)/(radsM ∩Mi−1) : L] = [Mi/Mi−1 : L] = [rads−n(i)(Mi/Mi−1) : L],

and for s ≥ n(i), the definition of radical respecting filtration implies that

[(radsM ∩Mi)/(radsM ∩Mi−1) : L] = [rads−n(i)(Mi/Mi−1) : L].

Thus,

[radsM : L] =
∑̀
i=1

[(radsM ∩Mi)/(radsM ∩Mi−1) : L] =
∑̀
i=1

[rads−n(i)(Mi/Mi−1) : L]

as required.

Corollary 3.4.4. If P (λ) admits a radical respecting ∆-filtration then

[rads P (λ) : L(µ)] =
∑̀
i=1

[rads−n(i) ∆(λi) : L(µ)].

While the above formulae is a useful result it does have a certain drawback. The
condition that the projective covers have a radical respecting filtration can be difficult
to prove without knowledge of the projective covers themselves. Later we will show how



CHAPTER 3. MULTIPLICITY RESULTS 71.

to calculate the center of the blocks of the restricted rational Cherednik algebra for the
wreath product. In this next example we apply Corollary 3.4.4 to calculate the radical
layers of the projective cover for the block A(3, 2) corresponding to the partition (3, 2) of
5.

Example 3.4.5. As we will show in Example 5.1.1, the algebra A(3, 2) is isomorphic to
C[x, y]/(x5, y5). This is a graded algebra with deg(x) = 1 and deg(y) = −1. There is
only one simple module λ, this is the one-dimensional module where both x and y act by
0. The standard module is then constructed as before

∆(λ) = C[x, y]/(x5, y5)⊗C[x]/(x5) λ ∼= C[y]/(y5).

The radical series for this is simple to find

0 ⊂ (y4)/(y5) ⊂ (y3)/(y5) ⊂ (y2)/(y5) ⊂ (y)/(y5) ⊂ C[y]/(y5).

Therefore

[rads∆(λ) : λ] =

 1, if 1 ≤ s ≤ 5
0, else.

In this case P (λ) = A(3, 2) and

0 ⊂ x4P (λ) ⊂ x3P (λ) ⊂ x2P (λ) ⊂ xP (λ) ⊂ P (λ)

is a ∆-filtration. We need only check that the filtration is radical respecting. This follows
as

radi+t P (λ) ∩ xiP (λ) = 〈xi+t, xi+t−1y, · · · , xiyt〉

and so
radi+t P (λ) ∩ xiP (λ)

radi+t P (λ) ∩ xi+1P (λ)
∼= yt∆(λ) = radt ∆(λ).

In particular we have n(i) = i, then Corollary 3.4.4 implies that

[rads P (λ) : L(λ)] =
5∑
i=1

[rads−i ∆(λ) : L(λ)] =


s− 1, if 1 ≤ s ≤ 6
11− s, if 7 ≤ s ≤ 10
0, else.



Chapter 4

The centre of Hc(W )

Recall from Section 2.6 the restricted rational Cherednik algebra Hc(W ), which is defined
for any complex reflection group (W, h). While much is known about the centre of Hc(W )
abstractly, it is very difficult to give an explicit presentation in terms of generators and
relations. That is precisely the goal of the final two chapters, for two particular infinite
families of complex reflections groups, the symmetric groups Sn and the wreath products
Sn oZ/`Z. In this chapter we prove the theory we require to give this explicit presentation.
In Chapter 5 we describe how to actually present this centre.

Our argument is roughly as follows: we write the centre of Hc(W ) as the sum of its
indecomposable blocks and then seek to write the centre of each block explicitly in terms
of generators and relations. This is done by exploiting the link between the spectrum of
the centre, Schubert cells and the Wronskian map. The first section concludes with Theo-
rem 4.1.18, which tells us how to do this for the case of the symmetric group. The second
section takes advantage of a recent result by Bonnafe and Maksimau, Theorem 4.2.19, to
extend this result to the case of the wreath product.

§ 4.1 | The symmetric group case
Let us begin by fixing some notation. Since we are considering the case where t = 0
we omit t and write Hc(W ) or Hc(W ) for the rational Cherednik algebra and restricted
rational Cherednik algebra respectively. By Zc(W ) we mean the centre of Hc(W ). We
denote the center of Hc(W ) by Zc(Hc(W )).

There is an important map on spectrums. Recall from (2.6.1) the injection

i : C[h]W ⊗ C[h∗]W ↪→ Zc(W ).
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The dual map on spectra is denoted

γ : Spec (Zc(W ))� Spec (C[h]W ⊗ C[h∗]W ) = h/W × h∗/W.

The map γ will allow us to identify the blocks of Hc(W ) with the baby Verma modules.
Eventually this will give a bijection with the partitions of n when W = Sn. From now on
we write Xc(W ) := SpecZc(W ). Almost all of the results in this section will depend on
the smoothness of Xc(Sn o Z/`Z). The following lemma guarantees that we can choose c
so that this is the case.

Lemma 4.1.1. For a suitably generic class function c (one which is a complement to
finitely many hyperplanes on the set of conjugacy classes of reflections in Sn o Z/`Z) the
variety Xc(Sn o Z/`Z) is smooth.

Proof. See [24, Corollary 1.14].

From this point on we shall assume c is suitably generic so that Xc(Sn o Z/`Z) is
smooth, unless otherwise stated.

By a result of Brown and Gordon [17, Corollary 2.7] the blocks of Hc(W ) are in
bijection with the points of γ−1(0). The decomposition of Hc(W ) can therefore be written
as

Hc(W ) =
⊕

j∈γ−1(0)
Bj. (4.1.1)

The block Bp is a matrix algebra over the ring of functions at the points p ∈ γ−1(0) by
[30, p. 7],

Bp = Mat|W |(Op). (4.1.2)

Here Op = (Zc(W )/R+Zc(W ))p is the scheme theoretic fibre of γ at 0 localised at the
point p.

The first observation we make is that the blocks of Hc(W ) are in bijection with the
baby Verma modules and hence, the irreducible representations of W .

Proposition 4.1.2. The blocks of Hc(W ) are in bijection with the irreducible represen-
tations of W .

Proof. Write
Hc(W ) =

⊕
i∈γ−1(0)

Bi,
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a sum of indecomposable submodules. Since ∆(λ) is a Hc(W )-module,

∆(λ) = Hc(W ) ·∆(λ) =
⊕

i∈γ−1(0)
Bi ·∆(λ).

Since ∆(λ) is indecomposable we must have Bi ·∆(λ) = 0 for all i 6= j for some (unique) j.

Since Op is a local ring it has a unique simple module. Equation (4.1.2) then implies
that Bp also has a unique simple module. If ∆(λ) = Bp · ∆(λ) and ∆(µ) = Bp · ∆(µ)
then the simple module of Bp equals both L(λ) and L(µ). By Lemma 2.3.9, this forces
λ = µ.

Combining Proposition 4.1.2 with (4.1.1) we conclude that there is a bijection between
the points of γ−1(0) and the irreducible representations of W . We will use this bijection
to label points in γ−1(0) by irreducible representations of W and vice versa.

Using the bijection from Proposition 4.1.2, let Bλ correspond to the block Bp. Con-
sider the following maps, the inclusion map i : Zc(W ) → Hc(W ), the quotient map q :
Hc(W )→ Hc(W ) defined by q(z) = z+R+Hc(W ) and the projection φp : Hc(W )→ Bp.
Denote by A(λ) the image of Zc(W ) under the composition of these maps

Zc(W ) ↪→ Hc(W )� Hc(W )� Bλ. (4.1.3)

We will show that A(λ) = Op.

Lemma 4.1.3. The image of the centre Zc(W ) under the composition of the inclusion
and quotient map is equal to the centre of Hc(W ). That is,

q ◦ i(Zc(W )) = Zc(Hc(W )).

Proof. A proof of this can be found in [31, Lemma 2.8] with the condition that the ideal
R+Zc(W ) is contained in a maximal ideal corresponding to an Azumaya point. By [23,
Theorem 1.7] the Azumaya points of Hc(W ) are precisely the points in the smooth locus
of Xc(W ), but we have assumed that Xc(W ) is smooth.

Theorem 4.1.4. The image of Zc(W ) under the composition of maps (4.1.3) is equal to
Op. In particular Op = A(λ).

Proof. By Lemma 4.1.3 the image of Zc(W ) is Zc(Hc(W )). By [4, Lemma 4.5] the kernel
is R+Zc(W ) therefore, Zc(W )/R+Zc(W ) = Zc(Hc(W )). Write the block decomposition

Zc(W )/R+Zc(W ) = Zc(Hc(W )) =
⊕

i∈γ−1(0)
Ai ⊂

⊕
i∈γ−1(0)

Bi.
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Hence Ai = Z(Bi). The image of Zc(W )/R+Zc(W ) under the map φp is then Ap.

To localise at the point p we do the following. There is a unique maximal idealmp ⊂ Ap

that corresponds to the point p and so a maximal ideal A1 ⊕ A2 · · · ⊕ mp ⊕ · · · ⊕ Ar

in Zc(W )/R+Zc(W ). We make every element not contained in this ideal invertible.
Since we had the block decomposition of Zc(W )/R+Zc(W ) there is a set of orthogonal
idempotents which we shall label e1, · · · , en so that Ai = Aei. Therefore the maximal
ideal A1⊕A2 · · · ⊕mp⊕ · · ·⊕Ar contains every ej 6= ep. By localising at p we have made
ep invertible and so for any other ei we have ei = eiepe

−1
p = 0. Therefore,

(Zc(W )/R+Zc(W ))p = Ap = φp ◦ q ◦ i(Z).

Corollary 4.1.5. The centre of the block Bλ is A(λ).

Proof. Equation (4.1.2) implies that Oλ is the centre of Bλ. Therefore, Theorem 4.1.4
implies that A(λ) is the center of the block.

In light of the above, our aim is to find an explicit description of A(λ) for λ ∈ IrrW .
The next theorem is our first step towards this. It shows that A(λ) is a tensor product
of two algebras which we will describe. Let us fix some notation

A(λ)+ := EndHc(W )∆(λ) and A(λ)− := EndHc(W )∆∗(λ),

where ∆∗(λ) = H ⊗C[h]coWoW λ.

Theorem 4.1.6. Multiplication induces the following isomorphism

A(λ)− ⊗C A(λ)+ ∼= A(λ)

Proof. See [8, Theorem 8.14].

Since A(λ) is the centre of the block Bλ, Theorem 4.1.6 allows us to restate our
problem. Giving an explicit presentation of A(λ) is now equivalent to giving an explicit
presentation of the endomorphism rings of the baby Verma modules. Now we make an
important remark, which will be proven later in Theorem 5.4.9

Remark 4.1.7. In the case of the wreath product the algebra Ac(λ)+ is isomorphic to
Ac(λ∗)− but for a different generic parameter c and simple λ∗.

Due to the above remark it suffices to find an explicit presentation of A(λ)+. This
will allow us to describe the entire centre.
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To describe the endomorphism rings of the baby Verma modules we must first under-
stand the connection to the endomorphism rings of the Verma modules. The following
theorem tells us two important things. First, that the baby Verma modules are a quotient
of the Verma modules. Secondly, it also states that the centre of the rational Cherednik
algebra surjects onto the endomorphism rings of the Verma modules.

Theorem 4.1.8. For all λ ∈ IrrW ,

1. ∆(λ) = ∆(λ)/R+∆(λ).

2. The map defined by multiplication by elements of Zc(W ) on ∆(λ) as a Hc(W )-
module is a surjection Zc(W )� EndHc(W )(∆(λ)).

Proof. Statement 1. follows from Theorem 2.5.9. For a proof of 2. see [5, Theorem
1.2].

Let us consider the implications of Theorem 4.1.8. The second fact allows us to
compose the maps given by inclusion and the surjection

C[h]W ↪→ Zc(W )� EndHc(W )(∆(λ)).

This gives a map of spectra

π : Spec EndHc(W )(∆(λ))→ SpecC[h]W = h/W. (4.1.4)

We will return to this map later, as it will play a pivotal role in realising A(λ)+ explicitly.

For now we wish to use the first fact from Theorem 4.1.8 to show that the endo-
morphism ring of the baby Verma module is a quotient of the endomorphism ring of the
Verma module. This is done in Theorem 4.1.15 the next results are required for the proof.
Let

e = 1
|W |

∑
σ∈W

σ

be the trivial idempotent in CW ⊂ Hc(W ).

Theorem 4.1.9. (Satake Isomorphism) There is an isomorphism of algebras Zc(W ) ∼=
eHc(W )e given by the map

z → z · e.

Proof. See [23, Theorem 3.1].

Lemma 4.1.10. Let A be a finitely generated algebra and e be an idempotent of A. For
any A-module M we have the following isomorphism

eA⊗AM ∼= eM.
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Proof. Define a homomorphism φ : eA ⊗A M → eM as follows φ(ea ⊗m) = eam. We
shall prove this is an isomorphism. It is clearly surjective and a morphism so we need
only prove that it is injective. We prove that the kernel of φ is 0. If φ(ea⊗m) = 0 then
eam = 0, but note that ea⊗m = e2a⊗m = e⊗ eam = e⊗ 0 = 0.

The proof of Theorem 4.1.12 requires the following well known fact.

Theorem 4.1.11. Let R and S be rings, and P be a (R, S)-bimodule and a progenitor
for R. Set Q = HomS(P, S), which is a (S,R)-bimodule. If S ∼= EndR(P ) then there are
the following equivalence of categories

1. P ⊗S − : S−mod→ R−mod.

2. Q⊗R − : R−mod→ S−mod.

Proof. See [50, Theorem 46.4].

Theorem 4.1.12. The functor

e : Hc(W )−mod→ eHc(W )e−mod

is an equivalence of categories if and only if e · M = 0 implies that M = 0 for all
M ∈ Hc(W )−mod.

Proof. Theorem 4.1.11 (2) implies that if Hc(W )e is a progenitor then

HomeHc(W )e(Hc(W )e, eHc(W )e)⊗Hc(W ) − : Hc(W )−mod→ eHc(W )e−mod

is an equivalence. It is known [7, Theorem 1.6.1] that

HomeHc(W )e(Hc(W )e, eHc(W )e) ∼= eHc(W ).

Therefore ifHc(W )e is a progenitor then eHc(W )⊗Hc(W )− : Hc(W )−mod→ eHc(W )e−mod
is an equivalence. By Lemma 4.1.10 this implies that

e : Hc(W )−mod→ eHc(W )e−mod

is an equivalence if Hc(W )e is a progenitor. Now all we need to do is prove that Hc(W )e
is a progenitor if and only if e ·M = 0 implies thatM = 0 for allM ∈ Hc(W )-mod. Since
e is an idempotent, Hc(W )e is a direct summand of Hc(W ) and hence always projective.
We need only show that it is a generator, which is equivalent to

Hc(W )e⊗eHc(W )e eM ∼= M
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for all M ∈ Hc(W )-mod. If Hc(W )e is a generator and e ·M = 0 then

0 = Hc(W )e⊗eHc(W )e eM ∼= M

hence,M = 0. Let us now prove the converse. There is always a map φ : Hc(W )e⊗eHc(W )e

eM →M given by multiplication. Hence for any module M we have an exact sequence

0→ Kerφ→ Hc(W )e⊗eHc(W )e eM →M → CoKerφ→ 0.

The functor e is exact and so we have an exact sequence

0→ eKerφ→ eHc(W )e⊗eHc(W )e eM → eM → eCoKerφ→ 0,

clearly eHc(W )e ⊗eHc(W )e eM ∼= eM and so eKerφ = 0 and eCoKerφ = 0. But then
by assumption Kerφ = 0 and CoKerφ = 0. Therefore Hc(W )e ⊗eHc(W )e eM ∼= M and
Hc(W )e is a generator.

Theorem 4.1.13. The spherical Cherednik algebra eHc(W )e is Morita equivalent to the
rational Cherednik algebra Hc(W ) if and only if e ·M = 0 implies that M = 0 for all
M ∈ Hc(W )-mod.

Proof. Follows from Theorem 4.1.12.

Lemma 4.1.14. The Zc(W )-module e∆(λ) is cyclic.

Proof. In [5, Theorem 4.1] it is shown that e∆(λ) is a cyclic EndHc(W )(∆(λ))-module. We
also know from Theorem 4.1.8 that Zc(W ) surjects onto EndHc(W )(∆(λ)), hence e∆(λ)
is a cyclic Zc(W )-module.

We are now in position to prove one of the major theorems of this section.

Theorem 4.1.15. We have the following isomorphism

EndHc(W )(∆(λ)) ∼= EndHc(W )(∆(λ))/C[h]W+ EndHc(W )(∆(λ)).

Proof. For brevity, write H = Hc(W ). We make use of Theorem 4.1.13, that the spherical
Cherednik algebra eHe is Morita equivalent to H, hence eHe−mod ∼= H−mod. Given
an endomorphism f ∈ EndH(∆(λ)) we have an endomorphism

f ∈ EndH(∆(λ)/C[h]W+ ∆(λ))

where f(m+ C[h]W+ ) = f(m) + C[h]W+ ∆(λ). In this way we have a map

φ : EndH(∆(λ))→ EndH(∆(λ)/C[h]W+ ∆(λ)).
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We wish to show that Kerφ = R+EndH(∆(λ)). Since eHe is Morita equivalent to H we
have the following commutative diagram

EndH(∆(λ)) EndH(∆(λ)/C[h]W+ ∆(λ))

EndeHe(e∆(λ)) EndeHe(e∆(λ)/eC[h]W+ e∆(λ))

φ

∼= ∼=

By Lemma 4.1.14, e∆(λ) is a cyclic eHe-module. Hence e∆(λ) ∼= eHe/I, where I is the
annihilator of the generator. Therefore,

EndeHe(e∆(λ)) ∼= EndeHe(eHe/I) ∼= eHe/I.

Similarly,

EndeHe(e∆(λ)/eC[h]W+ e∆(λ)) ∼= EndeHe((eHe/I)/(eC[h]W+ eHe/I)),

and
EndeHe((eHe/I)/(eC[h]W+ eHe/I)) ∼= eHe/C[h]W+ eHe+ I.

Hence we have a new commutative diagram

EndH(∆(λ)) EndH(∆(λ)/C[h]W+ ∆(λ))

EndeHe(e∆(λ)) EndeHe(e∆(λ)/eC[h]W+ e∆(λ))

eHe/I eHe/C[h]W+ eHe+ I

∼= ∼=

∼=∼=

.

It is easy to see from the diagram that the kernel of the bottom map is C[h]W+ eHe + I.
Then, via a simple diagram chasing argument, we see that

Kerφ = C[h]W+ EndH(∆(λ)).

Hence
EndH(∆(λ)/C[h]W+ ∆(λ)) ∼= EndH(∆(λ))/C[h]W+ EndH∆(λ)),

and by Theorem 4.1.8,

EndH(∆(λ)) ∼= EndH(∆(λ)/C[h]W+ ∆(λ)).
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Therefore
EndH(∆(λ)) ∼= EndH(∆(λ))/C[h]W+ EndH∆(λ)).

Recall the map (4.1.4)

π : Spec EndHc(W )(∆(λ))→ SpecC[h]W = h/W.

Applying Theorem 4.1.15 proves the following important corollary.

Corollary 4.1.16. There is an isomorphism of algebras C[π−1(0)] ∼= A(λ)+.

Proof. From the (4.1.4) we see that

C[π−1(0)] = EndHc(W )(∆(λ))/C[h]W+ EndHc(W )(∆(λ)).

Hence, by Theorem 4.1.15,

C[π−1(0)] ∼= EndHc(W )(∆(λ)) = A(λ)+.

So far everything we have done holds for any complex reflection group W , as long
as Xc(W ) is smooth. To progress further it is now necessary to use facts that only hold
in the case W = Sn. Corollary 4.1.16 reduces the problem of understanding the blocks
of Hc(W ) to understanding the scheme theoretic fiber of the map π. This can be done
using Theorem 4.1.17. Recall the definition of the Wronski map from Section 2.7.

Theorem 4.1.17. There is an isomorphism of varieties

π−1(0) ∼= Wr−1
λ (0).

where π is the map on spectra π : Spec End∆(λ) → h/W induced by the inclusion map
C[h]W ↪→ End∆(λ).

Proof. See [6, Proposition 6.4].

Theorem 4.1.17 and Corollary 4.1.16 leads us to conclude with the final result of this
section.

Theorem 4.1.18. There is an isomorphism of algebras

A(λ)+ ∼= C[Wr−1
λ (0)].
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Proof. Theorem 4.1.17 states π−1(0) ∼= Wr−1
λ (0) hence

C[π−1(0)] = C[Wr−1
λ (0)].

By Corollary 4.1.16 we have that

A(λ)+ ∼= C[π−1(0)],

hence
A(λ)+ = C[Wr−1

λ (0)].

Theorem 4.1.18 allows us to explicitly calculate the algebras A(λ)+ using the Wronski
map. We will explain exactly how this is done in Section 5.1. This is all we required
for the symmetric group case, and so we now move on to the more challenging wreath
product groups.

§ 4.2 | Wreath Products
In the last section we proved that the algebras A(λ)+ are isomorphic to the functions
on the scheme-theoretic fibre of the Wronskian at 0. As we shall see, this will allow us
to explicitly describe A(λ)+ in terms of generators and relations. We wish to extend
this so that we can give an explicit presentation of A(λ)+ when W = Sn o Z/`Z. The
difficulty in proving the wreath product case is that we lack an appropriate version of
Theorem 4.1.17 and so we have no direct link to the Wronskian. We do, however, have
the following isomorphism [12, Theorem 4.21] due to Bonnafe and Maksimau. Recall that
Xc(W ) := SpecZc(W ).

Theorem 4.2.1. Let σ ∈ Z/`Z ⊂ C× be a root of unity and let Xc(W ) be smooth. Then
Xc(W )σ, the subscheme of Xc(W ) fixed by the action of σ, is smooth. For each irreducible
component X0 ⊂ Xc(W )σ there exists a reflection subquotient W ′ ⊂ W and conjugacy
function c such that there is a C×-equivariant isomorphism of varieties

X0 ∼= Xc(W ′). (4.2.1)

Since the parameters c, c etc will always be generic and our results independent of
the previous result, we write c for c in the remainder of this section.

Let us briefly say something about the irreducible representations of Sn oZ/`Z. There
is a bijection between the `-multipartitions of n and the irreducible representations of
Sn o Z/`Z [44, p. 221]. Then, by Theorem 2.4.10, it makes sense to denote an irreducible
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representation of Sn oZ/`Z as quo`(λ), for a partition λ ` n` with trivial `-core. The rea-
son why we choose to label the irreducible representations by the `-quotients will become
clearer later in the section, particularly in light of Lemma 4.2.20. Note that when ` = 1
we have quo`(λ) = λ.

While we may lack a direct link to the Wronskian we do gain an extra map via (4.1.4).
The two maps

πn,` : Spec EndHc(SnoZ/`Z)∆(quo`(λ))→ Cn/Sn o Z/`Z,

and
πn` : (Spec EndHc(Sn`)(∆(λ)))Z/`Z → (Cn`/Sn`)Z/`Z

are significant as we can still use Corollary 4.1.16. We will embed Spec End∆(quo`(λ))
into Xc(Sn oZ/`Z) then, using (4.2.1), realise it as a subvariety of Xc(Sn`)Z/`Z and apply
Theorem 4.1.18. Note that throughout this section when we prove statements for the
wreath product it implies the symmetric group case as well if we let ` = 1. From this
point on we will write EndHc(SnoZ/`Z)∆(quo`(λ)) as End∆(quo`(λ)) for brevity.

We will show Spec End∆(quo`(λ)) is a subvariety of Xc(Sn o Z/`Z) by showing it is
equal to a specific attracting set, which we now define.

Definition 4.2.2. Let X be an affine scheme over C with a C×-action and assume
that XC× is finite. An attracting set for the C×-action is defined to be Ωp := {x ∈
X | limt→∞ t · x = xp} where xp is a fixed point.

We will show that Spec End∆(quo`(λ)) can be identified with an attracting set in
Xc(Sn o Z/`Z) in two steps. First we prove that

Spec End∆(quo`(λ)) = SuppZc(SnoZ/`Z)(∆(quo`(λ)). (4.2.2)

Then we show that
SuppZc(SnoZ/`Z)(∆(quo`(λ)) = Ωquo`(λ). (4.2.3)

The second equality requires significantly more work and we will need to examine Xc(Sn o
Z/`Z) in more detail. Once again we will shorten Zc(Sn o Z/`Z) to Zc for brevity.

The following two lemmata are needed to prove the first equality.

Lemma 4.2.3. We have the following equality of supports

SuppZc∆(quo`(λ)) = SuppZce∆(quo`(λ)).
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Proof. Since e∆(quo`(λ)) ⊂ ∆(quo`(λ)) we have annZc∆(quo`(λ)) ⊂ annZce∆(quo`(λ)).
Hence

SuppZce∆(quo`(λ)) ⊂ SuppZc∆(quo`(λ)).

So we need only show the reverse inclusion. Consider p ∈ SuppZc∆(quo`(λ)). Then

∆(quo`(λ))⊗Zc (Zc)p 6= 0.

Therefore, to prove the reverse inclusion all we need show is that e∆(quo`(λ))⊗Zc (Zc)p 6=
0. By Theorem 4.1.12, the functor

e · − : Hc(Sn o Z/`Z))−mod→ eHc(Sn o Z/`Z))e−mod

is an equivalence and hence maps the non-zero objects in Hc(Sn oZ/`Z))−mod to non-zero
objects in eHc(Sn o Z/`Z))e−mod. Therefore

∆(quo`(λ))⊗Zc (Zc)p 6= 0

if and only if
e∆(quo`(λ))⊗Zc (Zc)p 6= 0.

Lemma 4.2.4. Let R be a commutative ring. Given an ideal I ⊂ R, Supp(R/I) =
Spec (R/I).

Proof. First we note that there is a bijection between prime ideals of R/I and prime
ideals of R that contain I. It is also known that the support of R/I consists of all prime
ideals that contain the annihilator of R/I. But clearly the annihilator is just I.

We can now prove the first equality.

Theorem 4.2.5. We have the following equality of varieties

Spec End∆(quo`(λ)) = SuppZc ∆(quo`(λ)).

Proof. First we note that e∆(quo`(λ)) is a cyclic module Zc-module by Lemma 4.1.14.
Therefore

Zc/I ∼= e∆(quo`(λ))

as left Zc-modules for some ideal I. Since Hc(Sn oZ/`Z) is Morita equivalent to eHc(Sn o
Z/`Z)e and eHc(Sn o Z/`Z)e ∼= Zc we have

EndHc(SnoZ/`Z)(∆(quo`(λ))) ∼= EndeHc(SnoZ/`Z)ee∆(quo`(λ)) ∼= EndZcZc/I ∼= Zc/I.
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Therefore
Spec EndHc(SnoZ/`Z)(∆(quo`(λ))) ∼= SpecZc/I

and using Lemma 4.2.4 we see that SpecZc/I ∼= SuppZc(e∆(quo`(λ))). Lemma 4.2.3 says
SuppZc(e∆(quo`(λ))) ∼= SuppZc(∆(quo`(λ))). Hence

Spec EndHc(SnoZ/`Z)(∆(quo`(λ))) = SuppZc(∆(quo`(λ))).

The equality (4.2.3) is significantly harder to prove and we require several technical
results. We note the following.

Theorem 4.2.6. Let R be a Noetherian local ring with maximal ideal m. Let S be the
associated graded of R with respect to the m-adic filtration. Then R is regular if and only
if S is a polynomial ring.

Proof. See [42, Theorem 13.4].

Consider the following situation. Let X be an affine algebraic variety over C that
admits a C×-action. This induces a grading on C[X]. Also note that Z/`Z ⊂ C× by
identifying the cyclic group of order ` with the `th roots of unity. Recall that the fixed
point locus is defined as

XZ/`Z = {x ∈ X | g · x = x ∀g ∈ Z/`Z}

which can be equivalently defined as

Spec
(

C[X]
〈f − g · f | g ∈ Z/`Z and f ∈ C[X]〉

)
.

Proposition 4.2.7. Fix a Z/`Z-stable subspace V ⊂ C[X] such that C[X] is generated by
V . The subspace V decomposes into V Z/`Z⊕VZ/`Z, where V Z/`Z is the invariant subspace
under the action of Z/`Z and VZ/`Z is its Z/`Z-stable complement. Then

XZ/`Z = Spec
(

C[X]
〈VZ/`Z〉

)
.

Proof. We wish to show that 〈VZ/`Z〉 = 〈{f − g · f | g ∈ Z/`Z, f ∈ C[X]}〉. We first show
that 〈VZ/`Z〉 ⊂ 〈{f − g · f | g ∈ Z/`Z, f ∈ C[X]}〉. Fix a basis of VZ/`Z, {x1, x2, · · · , xk}
and generator s ∈ Z/`Z such that s · xi = waixi where w is a primitive `th root of unity
and ai is an integer. Since xi is not a fixed point there is a g ∈ Z/`Z such that g ·xi = µxi

for some scalar µ 6= 1. Then consider the function (1− µ)−1(xi − g · xi). We have

(1− µ)−1(xi − g · xi) = (1− µ)−1(xi − µxi) = (1− µ)−1(1− µ)xi = xi.
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Hence xi ∈ 〈{f − g · f | g ∈ Z/`Z, f ∈ C[X]}〉.

Now we show {f − g · f | g ∈ Z/`Z, f ∈ C[X]} ⊂ 〈VZ/`Z〉. If f − g · f 6= 0 then without
loss of generality f is a monomial and there exists 1 ≤ i ≤ k such that xi divides f . Then
xi must also divide g · f as g simply scales xi therefore f − g · f ∈ 〈VZ/`Z〉.

Let
C[X](0) := C[X]

〈C[X] 6=0〉
.

The next lemma improves the observations of Proposition 4.2.7, stating that the fixed
point subscheme can be written as follows

XZ/`Z = SpecC[X](0).

Lemma 4.2.8. Assume that X is smooth. Then XZ/`Z = SpecC[X](0) is smooth. In
particular, C[X](0) is reduced.

Proof. We first show equality of sets

XZ/`Z = SpecC[X](0).

Let f ∈ C[X] be homogeneous of degree d, g ∈ Z/`Z and p ∈ XZ/`Z then we have

f(p) = f(g−1 · p) = (g · f)(p) = gdf(p)

hence f(p) = 0 if d 6= 0 mod `. Therefore 〈C[X]6=0〉 is contained in the maximal ideal
defining p and XZ/`Z ⊂ SpecC[X](0).

Conversely Z/`Z acts trivially on C[X](0) and so every point in SpecC[X](0) is fixed
by Z/`Z. Hence SpecC[X](0) ⊂ XZ/`Z.

It remains to show that SpecC[X](0) is reduced. We must show that the localisation
of C[X](0) at each point is regular. By Theorem 4.2.6 it is enough to show that the
tangent cone of SpecC[X](0) at a fixed point p ∈ XZ/`Z is a polynomial ring. Since X is
regular at p the tangent cone at p of X is equal to V := Tp(X) as a Z/`Z-module. By
[27, Theorem 5.2] the tangent cone of XZ/`Z at a point p is equal to V Z/`Z. It is then
clear that

V Z/`Z = SpecC[V ](0)

is affine space and C[V ](0) is a polynomial ring.

We need two powerful theorems, Theorem 4.2.12 and Theorem 4.2.13. These theorems



CHAPTER 4. THE CENTRE OF HC(W ) 86.

require the following definitions.

Definition 4.2.9. Let x ∈ X be a point in a scheme X over C, and let mx be the
maximal ideal of the local ring Ox. The tangent space at x, denoted Tx(X), is the dual
of the complex vector space mx/m

2
x

Definition 4.2.10. Let G be an algebraic torus, then G ∼= C× × · · · × C× = (C×)n for
some positive integer n. Any G-module can be written as a direct sum of one dimensional
G-modules. If V is a G-module, then we can find a basis {vi} of V such that

(g1 · · · gn) · vi = gsi11 · · · gsinn vi for (g1 · · · gn) ∈ G.

The module V is positive (respectively negative) if

(a) sij ≥ 0 (respectively sij ≤ 0) for all i, j.

(b) For every i ∈ I there exists j such that sij 6= 0.

The module is non-negative (respectively non-positive) if (a) is satisfied. The module is
fully definite (respectively definite) if there exists an isomorphism G ∼= C× × · · · × C×

such that the module is positive (respectively non-negative).

Definition 4.2.11. Let η : G×X → X be an action of a torus on X and let a ∈ XG be a
closed point. The action of η on a is fully definite (respectively definite) if the G-module
Ta(X) is fully definite (respectively definite).

Theorem 4.2.12. Let X be irreducible and reduced. Let G be an algebraic torus. If the
action of G on X is definite at a ∈ XG then XG is irreducible

Proof. See [11, Theorem 2.3].

Theorem 4.2.13. Let G be an algebraic torus. Let the action of G on X be definite at a.
If X is irreducible then there exists an open G-invariant neighbourhood U of a which is
G-isomorphic to (U ∩XG)×V , where V is a finite-dimensional (fully definite) G-module
and the action of G on (U ∩ XG) × V is induced by the trivial action of G on U ∩ XG

and the linear action on V (determined by the given structure of a G-module).

Proof. See [11, Theorem 2.5].

More specifically, in the proof of Theorem 4.2.13 the vector space V is defined to be
the G-module complement of Ta(XG) in Ta(X). In our case XG is a finite set and so
Ta(XG) is zero and V = Ta(X).
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The following lemma not only tells us that the irreducible components are the at-
tracting sets but also that the attracting sets are equal to their own tangent space at the
fixed point. We take G = C×.

Lemma 4.2.14. Assume XC× is finite and non-empty and that limt→∞ t · x exists for
all x ∈ X. If the action of C× is definite at each fixed point then

1.
X =

⊔
p∈XC×

Ωp,

where Ωp is the attracting set of p. The sets Ωp are the irreducible components of
the space X.

2. Ωp
∼= Tp(Ωp) as varieties.

Proof. 1.) Since limt→∞ t ·x exists for each x ∈ X and limits are unique it follows that X
is a disjoint union of the sets Ωp. To see that the sets Ωp are the irreducible components
note that for an arbitrary irreducible component L we must have that LC× contains a sin-
gle point. This is because of Theorem 4.2.12, which states that if L is irreducible then so
is LC× , but this is clearly not the case if it consists of more than one fixed point. Further-
more it must contain at least one point, as if L is an irreducible component it equals its
closure and the closure of any non-empty C×-stable subset ofX contains some fixed point.

If LC× = {p} then the fact that L is closed implies that limt→∞ t ·x = p for all x ∈ L.
Hence L ⊂ Ωp. Conversely if x ∈ Ωp then C× · x is an irreducible subvariety containing
x. Since X is smooth, L is a connected component of X. So p ∈ C× · x ∩ L 6= ∅ implies
C× · x ⊂ L and hence Ωp ⊂ L.

2.) Since p is a unique fixed point of Ωp we apply Theorem 4.2.13 to Ωp to conclude that
there exists an open neighbourhood U ⊂ Ωp containing p such that U ∼= (U ∩XC×)× V .
By the hypothesis we have ΩC×

p = p and the discussion above states that V = Tp(Ωp),
hence U ∼= {p} × Tp(Ωp) ∼= Tp(Ωp). Now we show that Ωp ⊂ U . Let x ∈ Ωp. Then
limt→∞ t · x = p. Since U is an open neighbourhood of p we must have that t · x ∈ U

for some t. Recall that U is C×-invariant and so if t · x ∈ U then we must have x ∈ U .
Hence U = Ωp and Ωp

∼= Tp(Ωp).

The following is a technical lemma we will require later.

Lemma 4.2.15. Let (A,m) be a regular local ring of dimension n and I an ideal in
A. If, for each positive integer q, there exists a (regular) system of parameters t1, . . . , tn
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such that I is generated by t1, . . . , ts modulo mq then there exists a (regular) system of
parameters v1, . . . , vn such that I is generated by v1, . . . , vs.

Proof. See [38, Lemma 2.1].

Proposition 4.2.16. Assume that Y is a smooth, affine scheme over C with Y C× finite.
Let C[Y ] = A and

Y + =
{
y ∈ Y

∣∣∣ lim
t→∞

t · y exists
}
.

Then:

(a) Y + is a closed subset of Y , defined by the vanishing of the (reduced) ideal 〈A<0〉.

(b) Y + = ⊔
p∈Y C× Ωp, where Ωp

∼= (TpY )>0 as C×-varieties.

(c) If IA0(p) = {a ∈ A0 | a(p) = 0} then Ωp is the closed subset of Y defined by the
reduced ideal 〈A<0, IA0(p)〉.

Proof. (a) Similarly to the proof of Lemma 4.2.8 we have that 〈A<0〉 vanishes on Y +.
Indeed if f ∈ A<0 is homogeneous of degree r < 0, y ∈ Y + and t ∈ C× then

f(t · y) = t−rf(y)

and
lim
t→∞

f(t · y) = lim
t→∞

t−rf(y).

If f(y) 6= 0 then the limit of f(t · y) does not exist. This is a contradiction. Therefore
〈A<0〉 vanishes on Y +. Clearly Spec (A/〈A<0〉) ⊂ Y hence Spec (A/〈A<0〉)C

× ⊂ Y C× is fi-
nite. The ring A/〈A<0〉 is non-negatively graded, so Spec (A/〈A<0〉)+ = Spec (A/〈A<0〉).
By Lemma 4.2.14 we see that Spec (A/〈A<0〉) is a disjoint union of attracting sets, in
particular all of its limits exist and so it is the the vanishing ideal defining Y +.

Now we must check that the ideal 〈A<0〉 is reduced. Since it is homogeneous, the
radical of A/〈A<0〉 is homogeneous. Hence, if it is not zero there exists a fixed point that
is not reduced. Therefore, it suffices to show that for every p ∈ (SpecA/〈A<0〉)C

× , the
local ring (A/〈A<0〉)p is reduced.

Let m denote the maximal ideal corresponding to p, so m is stable under C×. We show
that Am/A<0Am is a regular local ring. Let (T ∗p Y )<0 ⊂ m/m2 be the subspace spanned
by all negative weight vectors and choose N ⊂ m a homogeneous vector space lift of
(T ∗p Y )<0. We fix another homogeneous vector space lift V ⊂ m of m/m2 that contains N .
A basis of V is a regular system of parameters for Am. If n is the augmentation ideal of
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SymV then the map SymV → A induces graded isomorphisms φq : SymV/nq → A/mq

and A/mq = Am/(mAm)q for all q ≥ 1 as A is regular at m. Since C× acts semisimply on
A, the quotient A� A/mq induces surjections Ai � (A/mq)i for all i. Hence (A/mq)<0 =
(A<0 + mq)/mq. Therefore φq restricts to

SymV<0 + nq

nq
= (SymV/nq)<0 ∼= (A/mq)<0 = A<0 + mq

mq
.

Since N is a subspace of V defined by being the lift of the space of negative weightvectors
we have NSymV ⊂ (SymV )<0SymV . Since the action of C× on V is linear, NSymV =
(SymV<0)SymV as any negativley graded vector in SymV can be broken into a sum of
monomials, which in particular are negativley graded weightvectors. Now we argue that
(A<0A + mq)/mq = (NA + mq)/mq. Clearly NA + mq/mq ⊂ A<0A + mq/mq so we show
the opposite inclusion. First note

A<0 + mq

mq
= φq

(
SymV<0 + nq

nq

)
⊂ φq

(
NSymV + nq

nq

)
= NA+ mq

mq
.

Now note NA+mq

mq
is an ideal hence A<0A+mq

mq
⊂ NA+mq

mq
. Since A<0A+mq

mq
= A<0Am+mq

mq
,

Lemma 4.2.15 implies that A<0Am is generated by the regular sequence N . Since Am

is regular this implies that Am/A<0Am is a regular local ring.

(b) This is simply an application of Lemma 4.2.14 as Y + is smooth and the action of
C× is definite at each fixed point.

(c) Let a ∈ A0 and y ∈ Ωp, then by Lemma 4.2.8 this is reduced.

a(y) = t0a(y) = (t · a)(y) = a(t−1y)

hence a(y) is a constant. Therefore IA0(p) vanishes on Ωp and the zero set of 〈IA0(p)〉 is
equal to Ωp as sets.

As explained in [5, p. 5] the fixed points set Xc(Sn o Z/`Z)C× is precisely γ−1(0).
Therefore, by Proposition 4.1.2 and the discussion following it, we can identify IrrSn o
Z/`Z ∼−→ Xc(Sn oZ/`Z)C× by quo`(λ) 7→ xquo`(λ). We have all we need to prove the second
equality.

Lemma 4.2.17. Assume that Xc(Sn o Z/`Z) is smooth. Then there is an equality of
varieties

SuppZc∆(quo`(λ)) = Ωquo`(λ).

Proof. Throughout this proof denoteXc(SnoZ/`Z) byX. Note that the big Verma module
is positively graded with the degree zero part equal to 1⊗quo`(λ). Let z ∈ Zc(Sn oZ/`Z)
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be a negatively graded element. Then

z · x⊗ quo`(λ) = zx⊗ quo`(λ) = x(z ⊗ quo`(λ)) = 0,

as z ⊗ quo`(λ) has negative degree and ∆(quo`(λ)) is positively graded. Therefore the
annihilator of ∆(quo`(λ)) contains all the negatively graded elements of Zc(Sn o Z/`Z).
If we denote the ideal generated by the negatively graded elements by I− then I− ⊂
annZc∆(quo`(λ)). Hence SuppZc∆(quo`(λ)) ⊂ V (I−). By Proposition 4.2.16 (a) and (b)
we see that SuppZc∆(quo`(λ)) is contained in one of the connected components of X+.
Since xquo`(λ) ∈ SuppZc(∆(quo`(λ))) we have SuppZc∆(quo`(λ)) ⊂ Ωquo`(λ). We argue
that this containment is actually an equality by proving that dim SuppZc∆(quo`(λ)) =
dim Ωquo`(λ). This suffices since Ωquo`(λ) is an irreducible variety and SuppZc∆(quo`(λ)) a
closed subset of Ωquo`(λ).

By Theorem 4.2.5 we have the equality SuppZc∆(quo`(λ)) = Spec End∆(quo`(λ))
so dim SuppZc∆(quo`(λ)) = dim Spec End∆(quo`(λ)). But dim Spec End∆(quo`(λ)) is
equal to the Krull dimension of End∆(quo`(λ)). Since End∆(quo`(λ)) is a finite free
module over C[h]SnoZ/`Z it has Krull dimension equal to dim h by [9, Corollary 1.4.5].
From Lemma 4.2.14, we see that Ωquo`(λ) ∼= Tquo`(λ)(Ωquo`(λ)), so we need show that
dimTquo`(λ)(Ωquo`(λ)) ≤ dim h.

Since xquo`(λ) is a fixed point we have the following inclusions of C×-submodules
Tquo`(λ)(xquo`(λ)) ⊂ Tquo`(λ)(Ωquo`(λ)) ⊂ Tquo`(λ)(X). We can decompose Tquo`(λ)(X) =
T− ⊕ T0 ⊕ T+ into the negatively graded part, the degree zero part and the positively
graded part. From [27, Theorem 5.2] we have that Tquo`(λ)(xquo`(λ)) = Tquo`(λ)(XC×) =
T0. Now Lemma 4.2.8 says that XC× is smooth hence Tquo`(λ)(xquo`(λ)) = {0} and so
T0 = {0}. The fixed point xquo`(λ) is in the smooth locus and [16, Theorem 7.8] implies
that Tquo`(λ)(X) is a symplectic vector space. The symplectic form on Tquo`(λ)(X) is
C×-invariant hence its non-degeneracy forces dimT− = dimT+. Since X is smooth we
have dimX = dimTquo`(λ)(X). Since Zc(Sn o Z/`Z) = C[X] is a finite free module over
C[h]SnoZ/`Z ⊗ C[h∗]SnoZ/`Z we have

dimZc(Sn o Z/`Z) = dimC[h]SnoZ/`Z ⊗ C[h∗]SnoZ/`Z = 2 dim h.

This means that dimX = 2 dim h. Therefore dimT+ = dim h. Since Tquo`(λ)(Ωquo`(λ)) is
positively graded we have Tquo`(λ)(Ωquo`(λ)) ⊂ T+ hence dimTquo`(λ)(Ωquo`(λ)) ≤ dim h.

Combining the two equalities proven so far we can conclude the following.
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Theorem 4.2.18. For any quo`(λ) ∈ IrrSn o Z/`Z we have an isomorphism of varieties

Spec End∆(quo`(λ)) = Ωquo`(λ).

Proof. Theorem 4.2.5 states Spec End∆(quo`(λ)) = SuppZc∆(quo`(λ)) for any quo`(λ) ∈
IrrSn oZ/`Z and, by Lemma 4.2.17, SuppZc∆(quo`(λ)) = Ωquo`(λ). The claim follows.

We now bring our attention back to the result by Bonnafe and Maksimau already
mentioned. Before proceeding we introduce some notation. Let C`[n] denote the set of
`-cores such that

|γ| ≤ n and |γ| = nmod `.

The following theorem is [12, Theorem 4.21], applied to the particular case of W = Sn`.
Recall that Xc(Sn`) admits a C×-action. We can therefore consider the group Z/`Z acting
on Xc(Sn`) by identifying Z/`Z with the `th roots of unity.

Theorem 4.2.19. Assume that Xc(Sn`) is smooth. Then Xc(Sn`)Z/`Z is smooth and:

1 There is a bijection γ → I(γ) between C`[n`] and the irreducible components of
Xc(Sn`)Z/`Z such that xλ ∈ I(γ) if and only if core`(λ) = γ for λ ∈ P [n`].

2 Let γ ∈ C`[n`] and r = (n− |γ|)/`. There is an isomorphism of varieties

iγ : Xc(Sr o Z/`Z)→ I(γ).

This satisfies iγ(xlµ) = x(quo[
`
)−1(µ) for all µ ∈ P`[r] with `-core γ.

We apply the above theorem to the case when γ = ∅. We see that the fixed points xλ
with λ having trivial `-core all lie in the irreducible component I(∅). Furthermore, there
is an isomorphism

Xc(Sn o Z/`Z) ∼= I(∅).

Theorem 4.2.19 also describes where the fixed points are mapped under the isomorphism.
Since, in our case, the quotient map quo` : P [n`] → P`[n] is a bijection by [12, Lemma
4.7], we have i∅(xquo`(λ)) = xλ. This fact will be of upmost importance to us and so we
record it as a lemma.

Lemma 4.2.20. There is a C×-equivariant isomorphism i∅ : Xc(Sn oZ/`Z)→ I(∅) such
that under the labeling of the fixed points we have i∅(xquo`(λ)) = xλ for λ ∈ P [n`].

The above lemma lets us prove the following.

Proposition 4.2.21. The map i∅ restricts to a C×-equivariant isomorphism of attracting
sets

i∅ : Ωquo`(λ) ∼= ΩZ/`Z
λ = Ωλ ∩Xc(Sn`)Z/`Z.
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Proof. Since the map i∅ is C×-equivariant it maps attracting sets to attracting sets hence

i∅(Ωquo`(λ)) ⊂ ΩZ/`Z
λ

and
i−1
∅ (ΩZ/`Z

λ ) ⊂ Ωquo`(λ)

hence i∅ : Ωquo`(λ) → ΩZ/`Z
λ is a bijective morphism. Since a bijective morphism between

smooth varieties is an isomorphism, the result follows.

To recap we have an equality of varieties

Spec End∆(quo`(λ)) = Ωquo`(λ),

and now an isomorphism
Ωquo`(λ) ∼= ΩZ/`Z

λ .

This gives us a way to relate the endomorphism rings of the Verma modules for the sym-
metric and wreath product groups. Unfortunately, this is not enough to arrive at our
desired explicit presentation. To do that we must understand a particular isomorphism
explicitly. In [23, Theorem 11.16] Etingof and Ginzburg construct an isomorphism be-
tween Zc(Sn o Z/`Z) and a suitable Calogero-Moser space. We now focus on describing
this map and showing it has the properties we desire.

Recall the Calogero-Moser space Definition 2.9.1, it is the quotient variety

MZ/`Z,n,c = MZ/`Z,n,c/PGLZ/`Z,n,c

where

MZ/`Z,n,c = {∇1,∇2 ∈ End(Cn⊗CZ/`Z)| [∇1,∇2] = k`·o⊗eZ/`Z+IdCn⊗c′ for some o ∈ O}.

We require an explicit understanding of the isomorphism i∅ by Bonnafe and Maksimau.
In their paper this map is given by the inclusion map between the Calogero-Moser spaces
associated to Xc(Sn o Z/`Z) and Xc(Sn`).

By [23, Theorem 1.7] there is an identification of SpecZc(Sn o Z/`Z) with IrrHc(Sn o
Z/`Z) given by the assignment

p→ Hc(Sn o Z/`Z)e⊗Z p, ∀p ∈ MaxSpecZc(Sn o Z/`Z) (4.2.4)

where p is viewed as a homomorphism Zc(Sn o Z/`Z) → C. Consider an irreducible
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Hc(Sn o Z/`Z)-module E. Let Γn−1 denote the subgroup of Γ = Sn o Z/`Z that sta-
bilises the first basis vector x1 in h. Let EΓn−1 denote the subspace of E fixed by Γn−1.
Clearly x1 and y1 commute with the action of Γn−1. Therefore we can define operators
X, Y ∈ EndC(EΓn−1) via the action of x1 and y1 on E respectively. The isomorphism
φ : IrrHc(Sn o Z/`Z)→MZ/`Z,n,c [23, Theorem 11.16] is given by φ(E) = (X, Y ).

Consider the open set U in IrrHc(Sn oZ/`Z) where the action of the elements xi−ωkxj
are invertible; U is an open set. Let (λ, µ) ∈ C2n with λ`i 6= λ`j for all i 6= j. Let O(λ,µ)

denote the orbit of (λ, µ) under the group Sn oZ/`Z. This is a free orbit, so |O(λ,µ)| = n!`n.
Up to isomorphism, each representation E in U is of the form E(λ,µ) = C[Oλ,µ]. A basis
of E(λ,µ) is given by the characteristic equations

χs(a, b) =

1 if s · (a, b) = (λ, µ)

0 else

for s ∈ Sn o Z/`Z. The subspace EΓn−1 is then `n-dimensional with basis χs1,iγr1 for
1 ≤ i ≤ a and 0 ≤ r ≤ `− 1. The action of Hc(Sn o Z/`Z) on E(λ,µ) is given by

xi·F (a, b) = aiF (a, b), yi·F (a, b) = bi·F (a, b)+c0
∑
j 6=i

`−1∑
k=0

si,jγ
k
i γ
−k
j F (a, b)

ω−kaj − ai
+
`−1∑
k=1

ckγ
k
i F (a, b)

aiωk − ai
.

and
(w · F )(a, b) = F (w−1 · a, w−1 · b),

for w ∈ Sn oZ/`Z and ω a primitive `th root of unity. We must check that these equations
satisfy the defining relations of the rational Cherednik algebra at t = 0. These relations
can be written [18, p. 22] as

[xi, xj] = 0, [yi, yj] = 0

[yi, xi] = c0
∑
i 6=j

`−1∑
k=0

sijs
k
i s
−k
j +

`−1∑
k=1

cks
−k
j

[yi, xj] = −c0

`−1∑
k=0

sijω
kski s

−k
j .

The check is just a straight forward computation which we include for completeness

[yi, xt] · F (a, b) = yi · xt · F (a, b)− xt · yi · F (a, b)

= xt

bi · F (a, b) + c0
∑
j 6=i

`−1∑
k=0

si,jγ
k
i γ
−k
j F (a, b)

ω−kaj − ai
+

`−1∑
k=1

ckγ
k
i F (a, b)

aiωk − ai

− yi · atF (a, b)
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= atbiF (a, b) + c0
∑

j 6=i,j 6=t

`−1∑
k=0

si,jγ
k
i γ
−k
j atF (a, b)

ω−kaj − ai
+ c0

`−1∑
k=0

si,tγ
k
i γ
−k
t ωkaiF (a, b)

ω−kat − ai

+
`−1∑
k=1

atckγ
k
i atF (a, b)

aiωk − ai

−

atbi · F (a, b) + c0
∑
j 6=i

`−1∑
k=0

atsi,jγ
k
i γ
−k
j F (a, b)

ω−kaj − ai
+

`−1∑
k=1

atckγ
k
i F (a, b)

aiωk − ai



= c0

`−1∑
k=0

(ωkai − at)si,tγki γ−kt ωkaiF (a, b)
ω−kat − ai

= c0

`−1∑
k=0

ωksi,tγ
k
i γ
−k
t F (a, b).

Now we check the relation

[yi, xi] = c0
∑
i 6=j

`−1∑
k=0

sijs
k
i s
−k
j +

`−1∑
k=1

cks
−k
j .

So
[yi, xi] · F (a, b) = yi · xi · F (a, b)− xi · yi · F (a, b)

= xi ·

bi · F (a, b) + c0
∑
j 6=i

`−1∑
k=0

si,jγ
k
i γ
−k
j F (a, b)

ω−kaj − ai
+

`−1∑
k=1

ckγ
k
i F (a, b)

aiωk − ai

− yi · aiF (a, b)

= aibiF (a, b) + c0
∑
j 6=i

`−1∑
k=0

si,jγ
k
i γ
−k
j ω−kajF (a, b)
ω−kaj − ai

+
`−1∑
k=1

ckγ
k
i ω

kaiF (a, b)
aiωk − ai

)

−ai

bi · F (a, b) + c0
∑
j 6=i

`−1∑
k=0

si,jγ
k
i γ
−k
j F (a, b)

ω−kaj − ai
+

`−1∑
k=1

ckγ
k
i F (a, b)

aiωk − ai


= c0

∑
j 6=i

`−1∑
k=0

(ω−kaj − ai)si,jγki γ−kj F (a, b)
ω−kaj − ai

+
`−1∑
k=1

(ωkai − ai)ckγki F (a, b)
aiωk − ai

= c0
∑
j 6=i

`−1∑
k=0

si,jγ
k
i γ
−k
j F (a, b) +

`−1∑
k=1

ckγ
k
i F (a, b)

as required.

Theorem 4.2.22. Let φ : SpecZc(Sn o Z/`Z) → MZ/`Z,n,c be the map defined above.
Then we have the following equality

φ∗(tr(X)k) =

`(x
k
1 + ...+ xkn) if `|k

0 else

Proof. We begin by noting that Zc(Sn oZ/`Z) is reduced since [16, Proposition 7.2] states
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that eHc(Sn oZ/`Z)e ∼= Zc(Sn oZ/`Z) is a domain. Hence for f, g ∈ Zc(Sn oZ/`Z), f = g if
and only if f(p) = g(p) for all p ∈ maxSpecZc(Sn oZ/`Z). Furthermore SpecZc(Sn oZ/`Z)
is irreducible, therefore f = g if and only if f(p) = g(p) for all p ∈ U ⊂ SpecZc(Sn oZ/`Z),
where U is the open set defined above. We also use the identification of SpecZc(Sn oZ/`Z)
with IrrHc(Sn o Z/`Z) as in equation (4.2.4) above. Fix an irreducible module E(λ,µ) ∈
U . We shall first calculate φ∗(tr(X))k(E(λ,µ)). As described in Section 2.9, EΓn−1

(λ,µ) is
isomorphic as a C(Z/`Z)-modules to n copies of C(Z/`Z). Therefore, EΓn−1

(λ,µ) can be
viewed a sum of vector spaces V0 ⊕ · · · ⊕ V`−1 where Vi is n copies of the irreducible
representation of Z/`Z where the generator s acts by ωi. If we denote the action of x1

on Vi by Xi then note that Xi : Vi → Vi+1 as

s ·Xi(v) = s · x1v = ωx1s · v = ωi+1x1v = ωi+1Xi(v) if v ∈ Vi.

Recall that φ(E) = (X, Y ), where X = x1 acting on EΓn−1 . Then we see that as a matrix,

X =


0 0 . . . X`−1

X0 0 . . . 0
0 . . . 0 0
0 . . . X`−2 0

 . (4.2.5)

Hence φ∗(tr(X)k)(E(λ,µ)) = tr(Xk) and if ` 6 |k then tr(Xk) = 0 as Xk has every entry
on the main diagonal equal to 0. However if `|k then write k = m` and tr(Xk) =
`tr((X0 · · ·X`−1)m). For each Xi, we have Xi = diag(λ1, · · · , λn), hence

tr((X0 · · ·X`−1)m) = λm`1 + · · ·+ λm`n = λk1 + · · ·+ λkn.

Substituting back in we find

tr(Xk) = `(λk1 + · · ·+ λkn).

Now we must check that `(xk1 + · · ·+xkn)(u) = `(λk1 + · · ·+λkn)(u) for all u ∈ E. For each
F ∈ E(λ,µ), (xk1 + · · · + xkn · F )(a, b) = (λk1 + · · · + λkn)F (a, b) hence xk1 + · · · + xkn acts by
scalar multiplication on E(λ,µ) by λk1 + · · ·+ λkn.

Another map we must explicitly understand is the following.

Lemma 4.2.23. There is an isomorphism

α : Cn/(Sn o Z/`Z) ∼−→ (Cn`/Sn`)Z/`Z

given by
α(a1, a2, · · · , an) = (a1, ωa1, ω

2a1, · · · , ω`−1an)
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Recall the map i∅ introduced in Lemma 4.2.20, we must break this into a composition
of three maps. Consider the inclusion map on quiver varieties

i∅ :MZ/`Z,n,c →MZ/Z,n`,c

given by sending (X0, . . . X`−1) to the matrix X of equation (4.2.5) and (Y0, . . . , Y`−1) to
0 0 . . . Y`−1

Y0 0 . . . 0
0 . . . 0 0
0 . . . Y`−2 0

 .

Then the map i∅ of Lemma 4.2.20 is given by φ−1
Sn`
◦ i∅ ◦φSnoZ/`Z. With all the appropriate

maps introduced we can perform the following diagram chase.

Theorem 4.2.24. There is an isomorphism Xc(SnoZ/`Z)→ Y to a connected component
of Xc(Sn`)Z/`Z such that the following diagram commutes

Xc(Sn o Z/`Z) Xc(Sn`)Z/`Z

Cn/(Sn o Z/`Z) (Cn`/Sn`)Z/`Z

φ−1
Sn`
◦ i∅ ◦ φSnoZ/`Z

πn,` πn`

α

Proof. The first step is to unpack the diagram by introducing the Calogero-Moser spaces

Xc(Sn o Z/`Z) Xc(Sn`)

Cn/(Sn o Z/`Z) (Cn`/Sn`)Z/`Z

MZ/`Z,n,c MZ/Z,n`,c
φSnoZ/`Z i∅ φ−1

Sn`

πn,` πn`

α .

It is easier understand the duals of the maps in the diagram above and since a diagram
commutes if and only if its dual does we shall prove this instead. We must therefore
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prove the commutivity of the following diagram

Zc(Sn o Z/`Z) Zc(Sn`)

C[Cn/(Sn o Z/`Z)] C[(Cn`/Sn`)Z/`Z]

C[MZ/`Z,n,c] C[MZ/Z,n`,c]
φ∗
SnoZ/`Z i

∗
∅ (φ∗)−1

Sn`

in,` in`

α∗ .

First note that C[(Cn`/Sn`)Z/`Z] are the symmetric polynomials fixed under the action of
the `th roots of unity. Hence it is generated by elements of the form

xk`1 + · · ·+ xk`n` where k ∈ Z≥0.

Now α∗(f)(p) = f(α(p)), where p ∈ Cn/Sn o Z/`Z. Consider an arbitrary generator
xk`1 + · · ·+ xk`n`, then

α∗(xk`1 + · · ·+ xk`n`)(a1, a2, · · · , an) = (xk`1 + · · ·+ xk`n`)(a1, ωa1, · · · , ω`−1an)

= ak`1 + (ωa1)k` + (ω2a1)k` + · · ·+ (ω`−1an)k`

= (1 + ωk` + (ω2)k` · · ·+ (ω`−1)k`)(ak`1 + ak`2 + · · ·+ xk`n ) = `(ak`1 + · · ·+ ak`n ).

Hence
α∗(xk`1 + · · ·+ xk`n`) = `(xk`1 + · · ·+ xk`n ).

Recall the map π is the dual of the inclusion map so

in,`(`(xk`1 + · · ·+ xk`n )) = `(xk`1 + · · ·+ xk`n ).

Now we must chase the diagram the other way. The first map in` is also the inclusion
map hence

in`(xk`1 + · · ·+ xk`n`) = xk`1 + · · ·+ xk`n`.

By Theorem 4.2.22, we have that φ∗Sn`(tr(X)k) = xk1 + · · ·+ xkn`, therefore (φ∗Sn`)
−1(xk`1 +

· · ·+ xk`n`) = tr(X)k`. Then we have by definition

(i∗∅)−1(tr(X)k`) = tr(i∅(X)k`).

Therefore we complete the proof by showing φ∗SnoZ/`Z(tr(i∅(X)k`) = `(xk`1 + · · · + xk`n ).
This is precisely the statement of Theorem 4.2.22.

Before presenting the main theorem of this section we fix some notation. Recall by
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Corollary 4.1.16 that A(λ)+ ∼= C[π−1(0)] and, as in the introduction,

A(λ)+
Z/`Z := C[π−1

n` (0)]/〈f − s · f | s ∈ Z/`Z, f ∈ C[π−1
n` (0)]〉.

Theorem 4.2.25. There is an isomorphism of algebras

A(quo`(λ))+ ∼= A(λ)+
Z/`Z.

Proof. By definition, A(quo`(λ))+ := End∆(quo`(λ)) = C[Spec End∆(quo`(λ))]. By
Proposition 4.2.21 there is an isomorphism

i∅ : Ωquo`(λ) ∼= Ωλ ∩Xc(Sn`)Z/`Z.

Therefore Theorem 4.2.24 implies that there is a commutative diagram

Ωquo`(λ) ΩZ/`Z
λ

Cn/(Sn o Z/`Z) (Cn`/Sn`)Z/`Z

φ−1
Sn`
◦ i∅ ◦ φSnoZ/`Z

πn,` πn`

α .

By Theorem 4.2.18,
Spec End∆(quo`(λ)) = Ωquo`(λ)

and
Spec End∆(λ) = Ωλ.

Hence the diagram becomes

Spec End∆(quo`(λ)) = Ωquo`(λ) ΩZ/`Z
λ = (Spec End∆(λ))Z/`Z

Cn/(Sn o Z/`Z) (Cn`/Sn`)Z/`Z

i∅

πn,` πn`

α .

Since α and i∅ are both isomorphisms we have π−1
n,`(0) ∼= (π−1

n` (0))Z/`Z. Therefore there is
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an algebra isomorphism C[π−1
n,`(0)] ∼= C[π−1

n` (0)Z/`Z]. Finally, Corollary 4.1.16 implies that

A(quo`(λ))+ ∼=C[π−1
n,`(0)]

∼=C[π−1
n` (0)Z/`Z]

∼=C[π−1
n` (0)]/〈f − s · f | s ∈ Z/`Z, f ∈ C[π−1

n` (0)]〉

hence
A(quo`(λ))+ = A(λ)+

Z/`Z.

Combining this with the main result of the previous section we have the main theorem
of this thesis.

Theorem 4.2.26. There is an isomorphism

A(quo`(λ))+ ∼= C[Wr−1
λ (0)]/〈f − s · f | s ∈ Z/`Z, f ∈ C[Wr−1

λ (0)]〉.

Proof. This follows from Theorem 4.1.18 and Theorem 4.2.25.

The above theorem is presented in a rather abstract fashion. At the beginning of this
section we promised to give an explicit description of A(quo`(λ))+. In the next section we
will explain how the Wronski map gives an explicit presentation of A(λ)+ as a quotient
of a polynomial algebra by n relations.



Chapter 5

Explicit presentation of A(λ)+

In this chapter we present a number of results concerning the algebras A(λ)+. Perhaps
most importantly we give the explicit presentation of A(λ)+ for both the symmetric and
wreath product groups. This is done by using Theorem 4.1.18 and Theorem 4.2.26. In
particular, Theorem 4.1.18 says that the algebra A(λ)+ is isomorphic to the scheme-
theoretic fibre of the preimage of the Wronskian at 0. This algebra is described in [47],
and we initially follow their approach. We improve on this by providing an explicit pre-
sentation (in terms of generators and relations) of the algebra A(λ)+ that avoids any
mention of the Wronskian. This will be done initially for the symmetric group, then
extended to the wreath product case.

Aside from the explicit presentations this chapter contains several other significant
results. In the first section we derive a formula for calculating the graded dimension of
A(λ)+. We go on to prove that there is an isomorphism A(λ)+ ∼= A(λT )+. This greatly
decreases the computations required if one wishes to find all A(λ)+ for a given n. The
chapter concludes by giving code that can be used to calculate the dimensions of the
radical layers of A(λ)+. This is done by taking advantage of the desirable qualities of
Gröbner basis, namely that computers can easily calculate them. Experimental results
via computations leads to the final section, which is a conjecture about the Lowey length
of A(λ)+.

§ 5.1 | Explicit presentation and a formula for the graded
dimension

In this section we show how to use Theorem 4.1.18 to give an explicit presentation of
A(λ)+ for the symmetric group. Then we prove a formula for calculating the graded
dimensions. Recall that Theorem 4.1.18 states there is an isomorphism

A(λ)+ ∼= C[Wr−1
λ (0)].
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Therefore, we must explain how to write the algebra of functions on the preimage of 0
under the Wronski map. Our approach broadly follows that of [47]. By Proposition 2.7.9,
C[Ωqe

λ ] is a free polynomial algebra with generators fij i.e.

C[Ωqe
λ ] = C[fij, i = 1, . . . , n, j = 1, . . . di, di − j 6∈ P ].

It is important to note that this is a graded algebra. Indeed, recall Remark 2.7.10 that
says deg(fij) = j.

Also recall by Proposition 2.7.4 that the Schubert cell consists of subspaces X with
basis

fi = udi +
di∑

j=1, di−j 6∈P
fi,ju

di−j. (5.1.1)

The Wronskian of a basis of X is a polynomial of degree n. We write

Wr(f1, · · · , fn) = un + r1u
n−1 + · · ·+ rn.

This form will allow for an easier discussion.

The Wronski map Definition 2.7.8 is defined on elements by

Wrλ(X) = (a1, · · · , an) if Wr(X) = un +
n∑
i=1

(−1)iaiun−i.

Therefore the scheme theoretic fibre of the Wronski map is

C[Wr−1
λ (a)] ∼= C[Ωqe

λ ]/Iλ,a,

where Iλ,a is the ideal generated by the rs − (−1)sas. In the case a = 0, this states
that A(λ)+ is the quotient of C[Ωqe

λ ] by the ideal generated by the coefficients rs of the
polynomial Wr(f1, · · · , fn).

To summarise, the process for calculating A(λ)+ for a given λ ` n is as follows. Define
positive integers di = λi + n− i and denote the set of these by P = {d1, · · · , dn}. Then
calculate the Wronskian

Wr(f1, f2, · · · , fn) = det


f1 f2 f3 . . . fn

f
(1)
1 f

(1)
2 f

(1)
3 . . . f (1)

n
... ... ... . . . ...

f
(n−1)
1 f

(n−1)
2 f

(n−1)
3 . . . f (n−1)

n

 = un + r1u
n−1 + · · ·+ rn
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of the polynomials

fi = udi +
di∑

j=1, di−j 6∈P
fiju

di−j.

The algebra A(λ)+ is given by taking the polynomial algebra generated by the fij and
quotienting by the coefficients rs of the Wronskian. Below is an example to help the
illustrate this process.

Example 5.1.1. For the partition λ = (3, 2) we have d1 = 7, d2 = 5, d3 = 2, d4 = 1
and d5 = 0. Therefore f1(u) = u7 + f11u

6 + f13u
4 + f14u

3, f2(u) = u5 + f21u
4 + f22u

3,
f3(u) = u2, f4(u) = u and f5(u) = 1. Let us calculate the Wronskian, which is

det



u7 + f11u
6 + f13u

4 + f14u
3 u5 + f21u

4 + f22u
3 u2 u 1

7u6 + 6f11u
5 + 4f13u

3 + 3f14u
2 5u4 + 4f21u

3 + 3f22u
2 2u 1 0

42u5 + 30f11u
4 + 12f13u

2 + 6f14u 20u3 + 12f21u
2 + 6f22u 2 0 0

210u4 + 120f11u
3 + 24f13u+ 6f14 60u2 + 24f21u+ 6f22 0 0 0

840u3 + 360f11u
2 + 24f13 120u+ 24f21 0 0 0


.

Hence

Wr(f1(u), f2(u), f3(u), f4(u), f5(u)) = 25200u5 + (14400f11 + 30240f21)u4

+(11520f11f21+10080f22)u3+(−2880f13+4320f11f22)u2−1440f14u+(−288f14f21+288f13f22).

Then A(3, 2)+ is the quotient by the ideal generated by the coefficients, with a little
simplification this is

A(3, 2)+ = C[f11, f13, f14, f21, f22]/(10f11−21f21, 8f11f21+7f22, 2f13−3f11f22, f14, f14f21−f13f22).

It is then easy enough to see

A(3, 2)+ ∼= C[f11]/(f 5
11).

We are now in position to prove the formula for calculating the graded dimension of
A(λ)+. Our results are inspired by the formula

sλ(1, q, · · · , qn) =
∏n
i=1(1− qi)∏

(i,j)∈Dλ(1− qh(i,j)) .

This can be found in [49, p. 364]. The term sλ denotes the Schur function associated to
the partition λ ` n, Dλ denotes the Young diagram of λ and h(i, j) is the hook length
of the box (i, j). We will find that a similar formula allows us to calculate the graded
dimension of A(λ)+.
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We now record two general lemmata about the Wronskian and certain homogeneous
polynomials.

Lemma 5.1.2. If f1, · · · , fn is a family of homogeneous polynomials and Wr(f1, · · · , fn) 6=
0 then the Wronskian is homogeneous and deg(Wr(f1, · · · , fn)) = ∑

i(deg(fi))− (n−1)(n)
2 .

Proof. We proceed by induction on n, the case n = 1 being trivial. Suppose the lemma
holds for all positive integers less than n. Then

det


f1 f2 f3 . . . fn

f
(1)
1 f

(1)
2 f

(1)
3 . . . f (1)

n
... ... ... . . . ...

f
(n−1)
1 f

(n−1)
2 f

(n−1)
3 . . . f (n−1)

n

 =
n∑
i=1

(−1)i+1fi


f

(1)
1 f̂

(1)
i . . . f (1)

n

f
(2)
1 f̂

(2)
i . . . f (2)

n
... ... . . . ...

f
(n−1)
1 f̂

(n−1)
i . . . f (n−1)

n


where theˆsymbol denotes an omitted column. By the inductive hypothesis, each of the
components of the sum is a homogeneous polynomial of degree

deg(fi)+
n∑

j,j 6=i
deg(f (1)

j )− (n− 2)(n− 1)
2 = deg(fi)+

n∑
j,j 6=i

deg(fj)−(n−1)− (n− 2)(n− 1)
2 .

This then simplifies to
n∑
i=1

deg(fi)− (n− 1)− (n− 2)(n− 1)
2 =

n∑
i=1

deg(fi)−
(n− 1)n

2 .

In the following lemma it is important to recall that when considering the polynomials
defined in 5.1.1 the generators fij have a degree. For instance the polynomial

u3 + f12u

is homogeneous as both u3 and f12u have degree 3.

Lemma 5.1.3. Let λ ` n be a partition of n, and {f1, · · · , fn} the family of polynomials
as defined in (5.1.1). The Wronskian Wr(f1, · · · , fn) is a homogeneous polynomial of
degree n.

Proof. By Lemma 5.1.2 if the Wronskian is non-zero then it is a homogeneous polynomial
of degree ∑i(deg(fi))− (n−1)(n)

2 . We have deg(fi) = di = λi + n− i. Hence

n∑
i

(deg(fi))−
(n− 1)(n)

2 =
n∑
i

λi+n−i−
(n− 1)(n)

2 =
n∑
i

λi+
n∑
i

n+
n∑
i

−i− (n− 1)(n)
2 ,
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and
n∑
i

λi +
n∑
i

n+
n∑
i

−i− (n− 1)(n)
2 = n+ n2 − n(n+ 1)

2 − (n− 1)(n)
2 = n.

Later results will rely on knowing the dimension of A(λ)+. In order to do this we
must introduce the notion of complete intersections.

Definition 5.1.4. A commutative (finitely generated) C-algebra A is a complete inter-
section if it can be presented as

A = C[x1, . . . , xm]/(g1, . . . , gt),

with dimK A = m− t, where dimK denotes the Krull dimension.

To prove that A(λ)+ is a complete intersection we need to use the following fact.

Lemma 5.1.5. The algebra A(λ)+ is finite dimensional.

Proof. See [47, Lemma 3.11].

Lemma 5.1.6. For any λ ` n, the algebra A(λ)+ is a complete intersection.

Proof. The algebra A(λ)+ has n generators and n relations. Therefore, it is a complete
intersection if and only if its Krull dimension is zero. Since A(λ)+ is finite dimensional as
a vector space it is Artinian and therefore every prime ideal is maximal [2, Proposition
8.1]. Hence it has Krull dimension zero.

We return now to the setting of Definition 5.1.4. Assume that C[x1, . . . , xm] is graded
with deg(xi) = ai > 0, so that each gj is homogeneous, of degree bj say. The Hilbert-
Poincaré polynomial of A is defined to be

P (A, q) :=
∑
i≥0

(dimAi)qi.

Lemma 5.1.7. If A is a graded complete intersection then

P (A, q) =
∏t
i=1(1− qbi)∏n
j=1(1− qaj) .

Proof. Recall by Definition 5.1.4 that we can write

A = C[x1, . . . , xm]/(g1, . . . , gt).
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Let S = C[x1, . . . , xm]. The Koszul resolution [20, Chapter 17] can be used to resolve A
as a graded S-module. Let V = SpanC{g1, . . . , gt}, a graded vector space. Then

0→ ∧tV ⊗C S → ∧t−1V ⊗C S → · · · → ∧0V ⊗ S → A→ 0

is an exact sequence of graded S-modules. The maps in the Kozul resolution are
dk : ∧tV ⊗C S → ∧t−1V ⊗C S and defined on elements

dk(v1 ∧ · · · ∧ vt ⊗ f) =
t∑
i=1

(−1)i+1v1 ∧ · · · ∧ v̂i ∧ · · · ∧ vt ⊗ vif,

here v̂i means the term vi is omitted. This implies (by the “Euler-Poincaré principle”)
that

P (A, q) =
t∑

j=0
(−1)j+1P (∧jV ⊗C S, q)

=
 t∑
j=0

(−1)j+1P (∧jV, q)
P (S, q).

We have

P (S, q) =
 n∏
j=1

(1− qaj)
−1

and
t∑

j=0
(−1)j+1P (∧jV, q) =

t∏
i=1

(1− qbi).

We can now present the formula for calculating the graded dimension of A(λ)+. Recall
that Dλ denotes the Young diagram for a partition λ and h(i, j) is the hook length of the
cell (i, j).

Theorem 5.1.8. For any A(λ)+, we have

∑
i≥0

(dimA(λ)+
i )qi =

∏n
i=1(1− qi)∏

(i,j)∈Dλ(1− qh(i,j)) .

Proof. Since A(λ)+ is a complete intersection by Lemma 5.1.6, Lemma 5.1.7 implies that

∑
i≥0

(dimA(λ)+
i )qi = P (A(λ)+, q) =

∏t
i=1(1− qbi)∏n
j=1(1− qaj) .

Lemma 2.4.3 says that ∏n
j=1(1− qaj) = ∏

(i,j)∈Dλ(1− qh(i,j)). By definition of A(λ)+,

t∏
i=1

(1− qbi) =
n∏
i=1

(1− qi).
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Hence, ∑
i≥0

(dimA(λ)+
i )qi =

∏n
i=1(1− qi)∏

(i,j)∈Dλ(1− qh(i,j)) .

We now include an example to show how useful and simple this formula is to use.

Example 5.1.9. The Young diagram for the partition λ = (3, 1, 0, 0) is

4 2 1
1

and therefore
∑
i≥0

(dimA(λ)+
i )qi = (1− q)(1− q2)(1− q3)(1− q4)

(1− q4)(1− q2)(1− q)(1− q) = 1− q3

1− q = 1 + q + q2.

Hence A(λ)+ consists of a one dimensional space in degrees 0, 1 and 2.

The formula for the graded dimensions allows us to calculate the dimension of the
entire algebra A(λ)+.

Theorem 5.1.10. The dimension of A(λ)+ is given by the hook length formula

dimA(λ)+ = n!∏
(i,j)∈Dλ h(i, j) .

Proof. We have the formula

∑
i≥0

(dimAi)qi =
∏n
i=1(1− qi)∏

(i,j)∈Dλ(1− qh(i,j)) .

We can use L’Hopitals rule to evaluate the formula when q = 1. Clearly the left hand
side gives the dimension of A. Repeated applications of L’Hoptials rule to the right hand
side gives

n!∏
(i,j)∈Dλ h(i, j) .

§ 5.2 | Calculating A(λ)+ directly from the partition
To provide an explicit presentation of A(λ)+ directly from a partition λ ` n we must
understand how the coefficients of the terms appear in the Wronskian. We shall split the
problem of understanding the coefficients into two distinct cases. We say that terms of
the form fi,j are linear and terms of the form fi1,j1fi2,j2 · · · fim,jm for m > 1 are non-linear.
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We begin with the simpler task of understanding the linear terms.

The first question we want to answer is how often do linear terms appear in the
coefficients of the Wronskian for a given partition of n. It is fairly straight forward to see
that each linear term can appear in only one coefficient. Recall that algebra A(λ)+ can
be written as

C[fij, i = 1, . . . , n, j = 1, . . . di, di − j 6∈ P ]/(r1, . . . , rn)

where the rs are homogeneous elements and deg(rs) = s. Abusing terminology we say
that “a monomial m in the fi,j appears in rs” if the coefficient of m in rs is non-zero.

Lemma 5.2.1. If the linear term fi,j appears as a monomial in one of the elements rs,
then j = s.

Proof. By Lemma 5.1.3 the Wronskian is a homogeneous polynomial of degree n. Also
A(λ)+ is a complete intersection and therefore the coefficient of ui is non-zero for all
0 ≤ i ≤ n. In other words, ri 6= 0 for all i. Therefore, a linear coefficient of ui has degree
n−i. Since the linear term fi,j has degree j we conclude that it can only appear in rj.

The following is a partial converse to Lemma 5.2.1.

Lemma 5.2.2. Consider a finite dimensional commutative ring

A = C[x1, . . . , xn]
(r1, . . . , rn) ,

where the relations ri are homogeneous and do not contain any constant terms. For each
1 ≤ j ≤ n, there exist k ≥ 1 and i such that ri contains the monomial xkj .

Proof. Argue by contradiction. Assume that xk1 does not appear in any ri for k ≥ 1.
Since the algebra is finite dimensional and positively graded, we must have xm1 = 0 for
some m and hence

xm1 =
∑
l

clrl

for cl ∈ C. Since every monomial with non-zero coefficient in rj is divisible by some xi
with i 6= 0, there is a well defined evaluation morphism evc : A → C that sends x1 to
some constant c 6= 0 and xi to 0 for i > 1. Then

cm = evc(xm1 ) = evc

(∑
l

clrl

)
=
∑
l

clevc(rl) = 0,

which is a contradiction.
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Lemma 5.2.3. Let f1, · · · , fn be the set of pairwise distinct polynomials as in (5.1.1).
All terms in the Wronskian Wr(f1, · · · , fn) of the form fk1

i,j · · · fkzu,v have ks ≤ 1 for all
1 ≤ s ≤ z.

Proof. By writing the Wronskian

Wr(f1, · · · , fn) = det


f1 f2 f3 . . . fn

f
(1)
1 f

(1)
2 f

(1)
3 . . . f (1)

n
... ... ... . . . ...

f
(n−1)
1 f

(n−1)
2 f

(n−1)
3 . . . f (n−1)

n


the statement becomes clearer. Each term in the determinant is some product of terms
which do not share a row or column. Fix an fi,j, then we see that it only appears in the
ith column. Since the product of the terms in the Wronskian cannot share a column we
see that if fki,j appears then k = 1.

Lemma 5.2.3 states that in the case of the Wronskian our coefficients can not contain
terms of a higher power than 1, for instance we cannot have f 2

11 appearing in the relations.
It is also clear that the coefficients of the Wronskian contain no constant terms, since they
are homogeneous of positive degree. These observations give us the following lemma.

Lemma 5.2.4. Given a partition λ ` n, each fi,j appears as a linear term of a coefficient
in the Wronskian.

Proof. Follows from Lemma 5.2.3 and Lemma 5.2.2.

Now that we have proven that each linear term must appear we can strengthen
Lemma 5.2.1. Using the same notation as before we have the following.

Proposition 5.2.5. Each linear term fi,j appears in rj and with non-zero coefficient.

Proof. Follows from Lemma 5.2.1 and Lemma 5.2.4.

Proposition 5.2.5 completely solves the problem of understanding the position of the
linear terms. The next step is to prove an analogous statement for the non-linear terms.
We show that each non-linear term does appear in the coefficients, except for a specific
few. We will need the following results first.

Lemma 5.2.6. Let {f1, · · · , fn} be the set of polynomials defined as in (5.1.1). Assume
there are polynomials fi and fj such that fi contains a term of the form fi,su

k and fj
contains a term fj,tu

k. Then the Wronskian Wr(f1, · · · fn) contains no monomial divisible
by fi,sfj,t.
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Proof. The determinant is a sum of multiples of elements of different columns and dif-
ferent rows in the matrix. The terms fi,s and fj,t only appear in the columns i and j

respectively. Hence, all the terms with form fi,sfj,t appearing in the determinant come
from an expression of the form F (f (a)

i f
(b)
j − f

(b)
i f

(a)
j ). Here F is some multiple of entries

from different rows and columns excluding columns i and j. An easy calculation gives
fi,su

(a)fj,tu
(b) − fi,su(b)fj,tu

(a) = 0.

There is a useful recursive formula for the Wronskian.

Proposition 5.2.7. The recursive formula for the Wronskian is given by

Wr(f1, · · · , fn) = fn1 Wr
((

f2

f1

)′
, · · · ,

(
fn
f1

)′)

where deg(fi) < deg(fj) for i < j.

Proof. See [43, Proposition 1].

We will use this formula to prove two lemmata that will be crucial in showing that
most non-linear terms are non-zero.

Lemma 5.2.8. Let {f1, · · · , fn} be a set of monomials in one variable such that deg(fi) >
deg(fj) for i < j, and fi 6= 0 for all i. The Wronskian Wr(f1, · · · , fn) is non-zero.

Proof. Proceed by induction on n. The case where n = 1 is obvious. Assume the
statement is true for all m < n, then use the recursive formula given in Proposition 5.2.7

Wr(f1, · · · , fn) = fn1 Wr
((

f2

f1

)′
, · · · ,

(
fn
f1

)′)
.

Clearly Wr((f2
f1

)′, · · · , (fn
f1

)′) satisfies the assumptions of the lemma. Therefore the poly-
nomial Wr((f2

f1
)′, · · · , (fn

f1
)′) is non-zero. Since fn1 6= 0,

Wr(f1, · · · , fn) = fn1 Wr
((

f2

f1

)′
, · · · ,

(
fn
f1

)′)
6= 0.

Lemma 5.2.9. Let {f1, · · · fn} be a set of monomials in one variable, such that deg fi 6=
deg fj for all i 6= j and fi 6= 0 for all i. The Wronskian Wr(f1, · · · , fn) is non-zero.

Proof. We see from Lemma 5.2.8 above that if deg(fi) > deg(fj) for i < j then the
Wronskian is non-zero. Since the monomials all have pairwise different degrees there is a
matrix A that permutes the columns of the matrix such that the monomials are in order of
ascending degree in the first row. Then det Wr(f1, . . . , fn) = det(A) det(Wr(f ′1, . . . , f ′n))
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where f ′i > f ′j for i < j. Since A is an invertible matrix its determinant is non-zero and
so det Wr(f1, . . . , fn) 6= 0.

Before we present the main theorem of this section let us establish a convention.
Recall Lemma 2.4.3, which stated that the set

{j | di − j 6∈ P for 1 ≤ j ≤ di}

is equal to the set of hook lengths in the ith row of length λi. Also recall that

fi = udi +
di∑

j=1, di−j 6∈P
fi,ju

di−j.

Lemma 2.4.3 implies there is a bijection between the polynomials fi,j for a fixed i and
the cells in the ith row of λ. This bijection sends the cell (i, j) to fi,h(i,j). To demonstrate
this bijection let us consider an example.

Example 5.2.10. Take the partition (3, 2). The Young diagram is

4 3 1
2 1

.

The cells of the first row, read left to right, are mapped to f1,4, f1,3 and f1,1 respectively.
The cells of the second row are similarly mapped to the generators f2,2 and f2,1.

We say that two generators fi,j and fs,t share a row or column if they share a row or
column in the Young diagram under this mapping.

Theorem 5.2.11. Fix a partition λ ` n and let f1, · · · , fn be as in (5.1.1). The non-
linear coefficients of Wr(f1, · · · , fn) are all non-zero except for monomials divisible by
fi,jfs,t where i = j or h(i, j) = h(s, t). In other words, they have no factors that share a
row or column in the partition diagram.

Proof. The first thing to note is that if two generators fi,j and fs,t share the same row
in the partition then i = s and they must appear in the same column in the Wronskian.
Hence, they cannot appear in the determinant. Assume now that fi,j and fs,t appear in
the same column of Dλ. Lemma 2.4.4 says that

da − h(a, b) = dc − h(c, b)

holds for all a, b and c. In particular if fi,j and fs,t share the same column in the Young
diagram then di − j = ds − t. From the definition of the fi in (5.1.1), we see that in fi
the monomial fi,j is the coefficient of udi−j. Likewise fs,t is the coefficient of uds−t in fs.
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Lemma 5.2.6 then implies that there is no monomial in the Wronskian that is divisible
by fi,jfs,t. We need only prove that the other nonlinear terms are non-zero.

We prove this for products of two monomials, the general case follows from a similar
argument using the coefficients in Proposition 5.2.12. Assume that fi,j and fs,t share
neither a row nor a column in the Young diagram. In the determinant fi,jfs,t will be
the coefficient of the un−j−t term. This observation lets us see that when deciding if this
is nonzero we need only consider entries in the Wronskian that are scalars or powers of
u. That is we exclude all fy,z where fy,z 6= fi,j or fs,t. Hence we need only check that
Wr(ud1 , · · · , fi,judi−j, · · · , fs,tuds−t, · · · , udn) is non-zero. This simplifies

Wr(ud1 , · · · , fi,judi−j, · · · , fs,tuds−t, · · · , udn) = fi,jfs,tWr(ud1 , · · · , udi−j, · · · , uds−t, · · · , udn).

Since fi,j and fs,t do not share a column in Dλ, Lemma 2.4.4 implies that di− j 6= ds− t.
Therefore, the degrees of all the monomials are pairwise different and non-zero. In this
case Lemma 5.2.9 implies that the determinant is non-zero.

These results can be improved upon by giving a formula for calculating the scalar
coefficients of the linear and non-linear terms in the Wronskian. Let us explain some
necessary notation. Recall that the recursive formula in Proposition 5.2.7 is given for a
particular order of entries, namely that they are increasing in degree. This is often not
the case, and so we must permute the columns of the Wronskian first. Let A be the
matrix that permutes in the desired order. Note that det(A) = σ(A), where σ is the sign
function.

Proposition 5.2.12. The scalar coefficient of a given term fi1j1 . . . fimjm is

σ(A)
∏

i<j,i 6=ik,
j 6=jk

di − dj
∏

dik−jk>dj and 1≤k≤m
(dik − jk − dl)

∏
di−ik>dj−jl

(di − ik − dj − jl).

Proof. The proof is by induction, on the size of Wronskian, the case m = 1 is clear.
Assume the statement holds for all m up to n− 1. Consider the case m = n. We have

Wr(ud1 , . . . , fi1j1u
di1−j1 , . . . , udn) = det(A)Wr(udn, . . . , fi1j1udi1−j1 , . . . , ud1)

= udnWr((udn−1/udn)′, . . . , fi1j1(udi1−j1/udn)′, . . . , (ud1/udn)′)

= udnWr((dn−1− dn)udn−1−dn−1, . . . , fi1j1(di1 − j1− dn)udi1−j1−dn−1 , . . . , (d1− dn)ud1−dn−1)

=
∏

1≤i<n
(di−dn)

∏
dik−jk>dn

(dik−jk−dn)fi1j1 . . . fimjmWr(udn−1−dn−1, . . . , udi1−j1−dn−1 , . . . , ud1−dn−1).
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and therefore

= σ(A)
∏

i<j,i 6=ik,
j 6=jk

di − dj
∏

dik−jk>dj and 1≤k≤m
(dik − jk − dl)

∏
di−ik>dj−jl

(di − ik − dj − jl).

By defining a new term e we can greatly simplify this expression.

Proposition 5.2.13. Consider the nonlinear term fi1j1 . . . fimjm ordered so that ia < ia+1.
Define

eik =

 dik − jk if 1 ≤ k ≤ m

dik else.

Then the scalar coefficient of the term of fi1j1 . . . fimjm in the Wronskian is
∏

1≤i<j≤n
ei − ej.

Proof. From Proposition 5.2.12 we see that

σ(A)
∏

i<j,i 6=ik,
j 6=jk

di − dj
∏

dik−jk>dj and 1≤k≤m
(dik − jk − dl)

∏
di−ik>dj−jl

(di − ik − dj − jl) (5.2.1)

is the coefficient of fi1j1 . . . fimjm . By definition of the ei, the term
∏

1≤i<j≤n
ei − ej. (5.2.2)

is either equal to (5.2.1) or its negative. Now note that (5.2.1) is negative or positive
precisely when σ(A) is negative or positive. If σ(A) is negative then there is an odd
number of terms ei − ej such that ei − ej < 0. In this case (5.2.2) is also negative. By a
similar argument (5.2.1) is positive precisely when (5.2.2) is.

By collecting our results so far we can explicitly describe A(λ)+ with no mention of
the Wronskian.

Theorem 5.2.14. Let λ ` n be a partition of length t. The algebra A(λ)+ is the quotient

A(λ)+ ∼= C[fi1,h(i1,j1), · · · , fit,h(it,jt)]/I

by the ideal I that is generated by n homogeneous elements r1, . . . , rn. The ri are ordered
so that deg(ri) = i. The monomials in ri are all products of the form fik,h(ik,jk) · · · fi`,h(i`,j`)

such that u 6= v and w 6= x for any two factors fu,h(u,w) and fv,h(v,x). The coefficients of
the monomials inside the ri are given by Proposition 5.2.13.
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Proof. Follows from Proposition 5.2.5, Theorem 5.2.11 and Proposition 5.2.13.

We can rewrite Theorem 5.2.14 using a bijection between the generators fi,h(i,j) and
the Young diagram of the partitions. Assign the generator fi,h(i,j) to the cell (i, j) in Dλ.

Theorem 5.2.15. Let λ ` n be a partition. The algebra A(λ)+ is the quotient

A(λ)+ ∼= C[Dλ]/I

by the ideal I that is generated by n homogeneous elements r1, . . . , rn. The rs are ordered
so that deg(rs) = s. The monomials in ri are products of cells which share neither a row
or column in Dλ. In other words if �i,j�k,` is a factor of some monomial in the rs we
must have that i 6= k and j 6= `. The coefficients of the generators of I are given by
Proposition 5.2.13.

Proof. Follows from Theorem 5.2.14 using the described bijection.

Theorem 5.2.15 allows us to directly derive a presentation of A(λ)+ from the Young di-
agram. This is much simpler than the previously described method using the Wronskian.
To demonstrate this point we will calculate A(3, 2)+ using Theorem 5.2.15, compare this
with Example 5.1.1.

Example 5.2.16. Let λ = (3, 2). First lets write out the Young diagram with the hook
lengths of the cells included

4 3 1
2 1

.

Therefore our generators are f1,4, f1,3, f1,1, f2,2 and f2,1. Hence,

A(λ)+ ∼= C[f1,4, f1,3, f1,1, f2,2, f2,1]/(r1, r2, r3, r4, r5).

The relations ri contain the all the linear terms. The relations ri also contain each non-
linear term except those that have factors sharing a row or column. From the Young
diagram we see that the non-zero nonlinear terms are then f1,1f2,1, f1,1f2,2, f1,3f2,2 and
f1,4f2,1. Furthermore, we know that the terms appear in the relations according to their
degree. So we need only compute the coefficients, which can be done using Proposi-
tion 5.2.13. Recall that d1 = 7, d2 = 5, d3 = 2, d4 = 1 and d5 = 0, hence e1 = 6, e2 = 4,
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e3 = 2, e4 = 1, e5 = 0. Let us calculate the coefficient of f1,1f2,1. This is the product
∏

1≤i<j≤n
ei − ej = (6− 4)(6− 2)(6− 1)(6− 0)(4− 2)(4− 1)(4− 0)(2− 1)(2− 0)(1− 0).

which is equal to 11520. The other coefficients are similarly calculated. The relations are

14400f11 + 30240f21

11520f11f21 + 10080f22

−2880f13 + 4320f11f22

−1440f14

−288f14f21 + 288f13f22.

Therefore, A(3, 2)+ ∼= C[f11]/(f 5
11).

§ 5.3 | The wreath product
Let us now describe how to write the blocks of the centre of the restricted rational
Cherednik algebra for the wreath product directly from a given `-multipartition. The
key is Theorem 4.2.25, that there is an isomorphism

A(quo`(λ))+ ∼= A(λ)+
Z/`Z.

This will allow us to take advantage of the theory we have developed in Section 5.2.
We first explain how to obtain λ given quo`(λ), then we will prove that A(λ)+

Z/`Z is the
quotient of A(λ)+ given by killing all terms that have a degree not divisible by `. By
combining these facts we are able to write A(quo`(λ))+ explicitly in terms of generators
and relations.

Recall Theorem 2.4.10 which states there is a bijection between the set of partitions
of n` with trivial `-core and the `-multipartitions of n. This bijection is given by taking
a partition to its `-quotient. We now wish to do the opposite. Given an `-multipartition
of n we would like to recover the corresponding partition of n` with trivial `-core. There
is no particularly deep theory here, all we must do is reverse the process. We include an
example demonstrating how this is done.

Example 5.3.1. Let us find the partition of 27 with trivial 3-core and 3-quotient ((3, 2),
(1, 1), (2)). We first need to construct the columns in the bead diagram. For a set of β-
numbers we use the first column hook lengths of these partitions. The set of first column
hook lengths for (3, 2), (1, 1) and (2) are {4, 2}, {2, 1} and {2} respectively. Since the



CHAPTER 5. EXPLICIT PRESENTATION OF A(λ)+ 115.

first column hook lengths are {4, 2} our first column should have beads in the second and
fourth position. Doing the same for the other two columns we obtain the bead diagram
below

.

Note that this diagram already has trivial 3-core. We then read the first column hook
lengths {4, 6, 7, 8, 12} from the above diagram. Then using formula (2.4.1) we get

λi = h(i, 1) + i− L,

where L = 5 because |{4, 6, 7, 8, 12}| = 5. It is then easy to calculate λ = (8, 5, 5, 5, 4).

Let us now prove the claim that A(λ)+
Z/`Z contains only the polynomials of degree

divisible by `. Recall that

A(λ)+
Z/`Z := C[π−1

n` (0)]/〈f − s · f | s ∈ Z/`Z, f ∈ C[π−1
n` (0)]〉.

Lemma 5.3.2. The ideal 〈f − s · f |s ∈ Z/`Z, f ∈ C[π−1
n` (0)]〉 is generated by all homo-

geneous elements in A(λ)+ with degree not divisible by `.

Proof. Let f ∈ A(λ) be a homogeneous element with degree not divisible by `. Then

f − s · f = (1− α)f, where 1 6= α ∈ C.

Therefore (1 − α)−1f − s · (1 − α)−1f = f and f ∈ 〈h − s · h|s ∈ Z/`Z, h ∈ C[π−1
n` (0)]〉.

If f is of degree ` then f − s · f = 0. Any other polynomial is a sum of homogeneous
polynomials and hence f − s · f is a sum of homogeneous elements of degree not divisible
by `.
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This lemma allows us to present a version of Theorem 5.2.14 for the wreath product.

Theorem 5.3.3. Let λ ` n` have trivial `-core and write quo`(λ) for its `-quotient.
Assume λ has length t. The algebra A(quo`(λ))+ is the quotient

A(quo`(λ))+ ∼= C[fi1,h(i1,j1), · · · , fis,h(is,js)]/I

of the polynomial ring generated by all fik,h(ik,jk) for 1 ≤ k ≤ t such that h(ik, jk) is
divisible by ` for all 1 ≤ k ≤ t. The ideal I is generated by n homogeneous elements
r`, r2` . . . , rn`. The ri are ordered so that deg(ri) = i. The monomials in ri are all
products of the form fik,h(ik,jk) · · · fim,h(im,jm) such that u 6= v and w 6= x for any two
factors fu,h(u,w) and fv,h(v,x). The coefficients of the monomials inside the ri are given by
Proposition 5.2.13.

Proof. By Theorem 4.2.25
A(quo`(λ))+ ∼= A(λ)+

Z/`Z.

The theorem then follows from Theorem 5.2.14 and Lemma 5.3.2.

Recall that we used the bijection assigning fi,h(i,j) to the cell (i, j) ∈ Dλ to present a
neater version of Theorem 5.2.14. We can do the same here.

Theorem 5.3.4. Let quo`(λ) be the `-quotient of λ ` n`. The algebra A(quo`(λ))+ is
the quotient

A(quo`(λ))+ ∼= C[D`
λ]/I

where D`
λ is the subdiagram of Dλ (the younger diagram) excluding the cells (i, j) such

that h(i, j) is not divisible by `. The ideal I is generated by n homogeneous elements
r`, r2`, . . . , rn`. The rs` are ordered so that deg(rs`) = s`. The monomials in rs` are
products of cells which share neither a row or column in D`

λ. In other words if �i,j�k,m
is a factor of some monomial appearing in the rs`, we must have that i 6= k and j 6= m.
The coefficients of the generators of I are given by Proposition 5.2.13.

Proof. Follows from Theorem 5.3.3 and the bijection between the terms fi,h(i,j) and the
cell (i, j) ∈ Dλ.

Let us now show how to use this theorem to directly calculate A(quo`(λ))+ from
quo`(λ).

Example 5.3.5. We take the 3-partition ((1, 1), ∅, (1)) and find the corresponding par-
tition of 9 with trivial 3-core. The first column hook lengths, are respectively, {1, 2}, {0}
and {1} hence we have the bead diagram
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.

There is a problem however as this does not have trivial 3-core. Recalling that we only
begin counting position from the first empty bead we can rewrite our columns so that
they still correspond to the hook lengths {1, 2}, {0} and {1} while having trivial 3-core.
We simply add beads before the first empty position until this is achieved and so

.

We now read the first column hook lengths for the partition of 9 from this diagram,
remembering to start counting at the first empty position. Therefore, the set of first
column hook lengths are {1, 3, 4, 5, 6}, which is the partition (2, 2, 2, 2, 1). Let us write
the Young diagram with hook lengths inside their respective cells

6 4
5 3
4 2
3 1
1

Before we begin to write down the generators and relations we remark that by Lemma 5.3.2
we can ignore all generators that have a degree not divisible by 3. Hence A((1, 1), ∅, (1))+

is a quotient of the algebra
C[f16, f23, f43].

The relations are now found in the same way as before, noting that we can discard any
that have a degree not divisible by 3. Recall that we find the relations by noting that
they are homogeneous and the linear terms always appear, the non-linear terms are those
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that do not share either a row or column in the Young diagram. In this case we have the
relations

c23f23 + c43f43, c16f16 + c23,43f23f43, c16,23f16f23

where the ci can be calculated using the formula in Proposition 5.2.12. Simplifying we
see that

A((1, 1), ∅, (1))+ ∼= C[f23]/(f 3
23).

Lets consider a slightly more complicated example.

Example 5.3.6. We take the 3-partition ((1, 1), (1), (1, 1, 1)) and find the corresponding
partition of 18 with trivial 3-core. The first column hook lengths, are respectively, {1, 2},
{1} and {1, 2, 3} hence we have the bead diagram

.

There is a problem however as this does not have trivial 3-core. Recalling that we only
begin counting position from the first empty bead we can rewrite our columns so that
they still correspond to the hook lengths {1, 2}, {1} and {1, 2, 3} while having trivial
3-core. We simply add beads before the first empty position until this is achieved and so

.
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We now read the first column hook lengths for the partition of 18 from this diagram,
remembering to start counting at the first empty position. Therefore, the set of first
column hook lengths are {2, 3, 4, 6, 7, 8, 9} which is the partition (3, 3, 3, 3, 2, 2, 2, ). Let
us write the Young diagram with hook lengths inside their respective cells

9 8 4
8 7 3
7 6 2
6 5 1
4 3
3 2
2 1

.

Theorem 5.3.4 states we can ignore all generators that have a degree not divisible by 3.
Hence A((1, 1), (1), (1, 1, 1)) is a quotient of the algebra

C[f19, f23, f36, f46, f53, f63].

Likewise, when deriving the relations we can ignore all cells that have a hook length not
divisible by 3. This simplifies things somewhat but there are still 6 relations one of each
degree 3, 6, 9, 12, 15 and 18. We leave out the coefficients when writing this, but these
can be calculated using Proposition 5.2.12. The defining relations are

f23 + f53 + f63

f36 + f46 + f23f53 + f23f63 + f53f63

f19 + f36f23 + f36f63 + f46f23 + f46f53 + f23f53f63

f19f23 + f19f53 + f36f46 + f36f63f23 + f46f23f53

f19f36 + f46f36f23

f19f36f23.

§ 5.4 | Isomorphism of block centres
In this section we prove two significant isomorphisms. The first an isomorphism between
two A(λ)+ for different λ. This is useful from a computational point of view, roughly
halving the amount of algebras that must be calculated to find the centre. The second is
the previously mentioned isomorphism between A(λ)− and A(λ)+. This allows us to use
our previous results to give a presentation of the entire centre.
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Theorem 5.2.15 allows us to easily calculate A(λ)+ for small λ ` n. Doing so we
realise there is a useful isomorphism that approximately halves the amount of work we
must do to calculate all the A(λ)+ for a chosen n. Let λT denote the transpose of λ. We
prove

A(λ)+ ∼= A(λT )+.

Given an isomorphism δ : Hc(W )→ Hc(W ) and a Hc(W )-module M , we can make a
Hc(W )-module M δ that as a set equals M , but with the action given by

h ·m = δ(h)m,

for h ∈ Hc(W ) and m ∈M . In particular, define an isomorphism σ : Hc(Sn)→ H−c(Sn)
by

σ(x) = x, σ(y) = y and σ(w) = (−1)sgn(w)w for all x ∈ h, y ∈ h and w ∈ Sn.

We can now state our first theorem.

Theorem 5.4.1. Let λ ` n be a partition and λT its transpose. There is an isomorphism
of Hc(Sn)-modules ∆−c(λ)σ ∼= ∆c(λT ).

Proof. Let S = C · s be the sign representation. There is an isomorphism of irreducible
representations λT ∼= λ⊗ S see [39, p. 36]. We claim there is an isomorphism of Hc(W )-
modules φ : ∆c(λ⊗ S)→ ∆−c(λ)σ given by

φ(h⊗ v ⊗ s) = σ(h)⊗ v,

and extended linearly. We must check that φ is well-defined. Since the module ∆(λ⊗S)
is uniquely defined by the following conditions

1. y · 1⊗ v ⊗ s = 0 for all y ∈ h

2. w · 1⊗ v ⊗ s = 1⊗ w · (v ⊗ s) = 1⊗ wv ⊗ ws = 1⊗ wv ⊗ sgn(w)s

we check that φ preserves these conditions.

φ(y · 1⊗ v ⊗ s) = φ(y ⊗ v) = σ(y)⊗ v = y ⊗ v = 0

and
φ(w · 1⊗ v ⊗ s) = φ(w ⊗ v) = σ(w)⊗ v = sgn(w)w ⊗ v = sgn(w)⊗ wv

and
sgn(w)⊗ wv = φ(sgn(w)⊗ wv ⊗ s) = φ(1⊗ wv ⊗ sgn(w)s).
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This map is surjective since ∆−c(λ)σ is generated by 1 ⊗ λ. It is injective because both
∆c(λ⊗S) and ∆−c(λ)σ are free C[h]-modules of rank dim λ. It is a morphism of Hc(Sn)-
modules because

a · φ(h⊗ v ⊗ s) = a · (σ(h)⊗ v)

= σ(a)σ(h)⊗ v

= σ(ah)⊗ v

= φ(ah⊗ v ⊗ s)

= φ(a · h⊗ v ⊗ s).

(5.4.1)

Therefore φ is an isomorphism.

Now define another isomorphism η : Hc(Sn)→ H−c(Sn) by

η(x) = −x, η(y) = −y and η(s) = s for all x ∈ h, y ∈ h and s ∈ Sn.

Theorem 5.4.2. Let λ ` n be a partition. We have an isomorphism of Hc(Sn)-modules
∆c(λ)η ∼= ∆−c(λ).

Proof. The proof is similar to the proof of Theorem 5.4.1.

Corollary 5.4.3. There is an isomorphism ∆c(λ)η◦σ ∼= ∆c(λT ).

Proof. This follows from Theorem 5.4.1 and Theorem 5.4.2.

Lemma 5.4.4. The isomorphism η ◦ σ induces an isomorphism of baby Verma modules

η ◦ σ : ∆(λ)η◦σ ∼= ∆(λT ).

Proof. By Theorem 4.1.8 ∆(λ) = ∆(λ)/R+∆(λ) and so we need to show that

η ◦ σ(R+∆(λ)) = R+∆(λT ).

Since η ◦ σ is an isomorphism of Hc(W )-modules we know that

η ◦ σ(R+∆(λ)) = (η ◦ σ)(R+)(η ◦ σ)(∆(λ)).

Since η◦σ(∆(λ)) = ∆(λT ) we need show that η◦σ(R+) = R+. Note that by the definition
of R+ it contains no group elements and so σ is simply the identity on R+. Hence we
show that η(R+) = R+. By linearity it suffices to check on homogeneous elements in R+.
Again this is clear since applying η to an element of R+ we find

η(p(x)+ ⊗ q(y) + r(x)⊗ s(y)+) = (−1)mp(x)+ ⊗ q(y) + (−1)nr(x)⊗ s(y)+
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where m = | deg(p)|| deg(q)| and n = | deg(r)|| deg(s)|. Therefore η(R+) = R+ and the
proof is complete.

Lemma 5.4.5. Let H be an algebra, Z its centre and a : H → H an automorphism. For
any H-module M , a induces an isomorphism

a : Z/annZM → Z/annZMa.

Proof. We show that a(annZM) = annZ(W )M
a. This can be seen by noting that z ∈

annZM if and only if a−1(z) ∈ annZMa as

a−1(z) ·m = a(a−1(z))m = zm.

Therefore if zm = 0 then a−1(z) ·m = 0 and vice versa.

Lemma 5.4.6. There is an isomorphism of algebras

EndHc(W )∆(λ) ∼= Zc(W )/annZc(W )∆(λ).

Proof. By Theorem 4.1.8 the map given by multiplication by elements of Zc(W ), m :
Zc(W )→ EndHc(W )∆(λ) is a surjection. The kernel of m is annZc(W )∆(λ).

Theorem 5.4.7. Let λ ` n be a partition and λT its transpose. Then

EndHc(W )(∆(λ)) ∼= EndHc(W )(∆(λT )).

Proof. By Corollary 5.4.3 there is an isomorphism of Hc(Sn)-modules ∆(λT ) ∼= ∆(λ)η◦σ

and so we can rewrite the desired result as

EndHc(W )(∆(λ)) ∼= EndHc(W )(∆(λ)η◦σ).

Consider the composition of automorphisms a = σ ◦ η : Hc(W ) → Hc(W ). Since a
is an automorphism of Hc(W ) it is also an automorphism of the centre Zc(W ). By
Lemma 5.4.6,

EndHc(W )∆(λ) ∼= Zc(W )/annZc(W )∆(λ)

and
EndHc(W )∆(λ)a ∼= Zc(W )/annZc(W )(∆(λ)a).

By Lemma 5.4.5, a restricts to an isomorphism

a : Zc(W )/annZc(W )∆(λ)→ Zc(W )/annZc(W )∆(λ)a.
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Therefore

EndHc(W )∆(λ) ∼= Zc(W )/annZc(W )∆(λ) ∼= Zc(W )/annZc(W )(∆(λ)a) ∼= EndHc(W )∆(λ)a.

We can now prove the following important isomorphism.

Theorem 5.4.8. Let λ ` n be a partition and λT its transpose. Then

A(λ)+ ∼= A(λT )+.

Proof. Recall the definitionsA(λ)+ := EndHc(W )(∆(λ)) andA(λT )+ := EndHc(W )(∆(λT )).
By Theorem 4.1.15 we have

EndHc(W )(∆(λ)) ∼= EndHc(W )(∆(λ))/C[h]W+ EndHc(W )(∆(λ))

and
EndHc(W )(∆(λT )) ∼= EndHc(W )(∆(λT ))/C[h]W+ EndHc(W )(∆(λT )).

Then Theorem 5.4.7 implies that

EndHc(W )(∆(λ))/C[h]W+ EndHc(W )∆(λ)) ∼= EndHc(W )(∆(λT ))/C[h]W+ EndHc(W )(∆(λT ))

and so
A(λ)+ = EndHc(W )(∆(λ)) ∼= EndHc(W )(∆(λT )) = A(λT )+.

With the techniques introduced in this section we are now in a position to prove
the final result of this section. The following theorem proves the algebra Ac(λ∗)− :=
EndHc(W )(∆∗(λ∗)) is isomorphic to Ac(λ)+ := EndHc(W )(∆(λ)), but for different generic
c and simple modules λ, λ∗. Recall the notation from Example 2.6.6. The defining
relations for Hc(Sn o Z/`Z) are given by

[xi, xj] = 0, [yi, yj] = 0,

[yi, xi] = c(σijγki γ−kj )
∑
i 6=j

∑̀
k=0

σijγ
k
i γ
−k
j +

`−1∑
k=1

c(γki )γki

and
[yi, xj] = −c(σijγki γ−kj )

∑̀
k=1

ωkσijγ
k
i γ
−k
j .
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Then define a new parameter c by

c(σijγki γ−kj ) = c(σijγki γ−kj ) and c(γki ) = c(γ−ki ).

The irreducible modules of Sn o Z/`Z are labeled by `-multipartitions of n. If λ =
(λ1, · · · , λ`) then define λ∗ := (λ1, λ`, · · · , λ2). We say that c is generic if the algebra
Z(Hc(Sn o Z/`Z)) is regular.

Theorem 5.4.9. In the case of the wreath product of the symmetric group with the cyclic
group there is an anti-graded isomorphism

Ac(λ∗)− ∼= Ac(λ)+.

Moreover c is generic if and only if c is generic.

Proof. The map φ : Hc(Sn o Z/`Z)→ Hc(Sn o Z/`Z) given by

φ(xi) = yi, φ(yi) = −xi, φ(σ) = σ and φ(γi) = γ−1
i

for all i and for all σ ∈ Sn is an anti-graded isomorphism of algebras. Recall the baby
Verma module from Definition 2.6.9

∆c(λ) := Hc ⊗C[h]coWoW λ

and the module
∆∗c(λ) := Hc ⊗C[h∗]coWoW λ.

In an abuse of notation let φ denote its restriction to CSn o Z/`Z, then λφ = λ∗; this
follows from the construction of irreducible CSn o Z/`Z-modules as in [44, Section 5.3].
Since φ(C[h]W+ ) = C[h∗]W+ , this then implies that

∆c(λ)φ = ∆∗c(λ∗).

Now M →Mφ is a functor Hc-mod→ Hc-mod which is an equivalence. This means that
the map

EndHc(∆c(λ))→ EndHc(∆c(λ)φ) = EndHc(∆
∗
c(λ∗))

is an isomorphism. This implies that

Ac(λ∗)− = EndHc∆
∗
c(λ∗) ∼= EndHc∆c(λ) = Ac(λ)+.

Since φ is an isomorphism, Z(Hc(Sn o Z/`Z)) is regular if and only if Z(Hc(Sn o Z/`Z))
is regular. Thus c is generic if and only if c is generic. Therefore, if we know A(λ)+ for
generic c and for all λ then we know A(λ∗)− for generic c and for all λ∗.
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As a result of the above theorem we see that the algebras A(λ)− can be understood in
terms of A(λ)+. With this knowledge we can achieve the goal of writing the centre of the
restricted rational Cherednik algebra explicitly. This theorem has an especially pleasing
form for the symmetric group as λ∗ = λ for all λ ` n.

Theorem 5.4.10. There is an isomorphism of the centre of Hc(Sn) for c 6= 0

Z(Hc(Sn)) ∼=
⊕

λ∈IrrSn
A(λ)− ⊗ A(λ)+.

The algebra A(λ)+ is given by Theorem 5.2.15 and A(λ)− is isomorphic to A(λ)+ with
the opposite grading.

Proof. This follows from Proposition 4.1.2, Corollary 4.1.5, Theorem 4.1.6, Theorem 5.2.15
and Theorem 5.4.9.

A similar theorem holds for the wreath product.

Theorem 5.4.11. There is an isomorphism of the centre of Hc(Sn oZ/`Z) for generic c

Z(Hc(Sn o Z/`Z)) ∼=
⊕

λ∈IrrSnoZ/`Z
Ac(λ∗)− ⊗ Ac(λ)+.

The algebra Ac(λ)+ is given by Theorem 5.3.4 and Ac(λ∗)− is isomorphic to Ac(λ)+ with
the opposite grading.

Proof. This follows from Proposition 4.1.2, Corollary 4.1.5, Theorem 4.1.6, Theorem 5.3.4
and Theorem 5.4.9.

A final point to note is that the description of the centre is only an isomorphism. It is
not at all clear how we can embed the generators fi,j of A(λ)+ into the restricted rational
Cherednik algebra.
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§ 5.5 | Computations and a conjecture
Throughout this thesis we have been concerned with calculating the radical layers of
various modules, in particular projective covers. Naturally, we should use the explicit
description of A(λ)+ to better understand its radical layers. However, calculating the
radical layers of A(λ)+ turns out to be very difficult for large n. For a given partition
of n, the algebra A(λ)+ is a quotient of a polynomial ring of dimension n, by an ideal
generated by n homogeneous equations and so the complexity scales with n. With the
use of a computer it is possible to calculate more radical layers of A(λ)+ than would be
possible by hand.

Through the use of Magma [13] we calculated the radical series, and hence layers,
of A(λ)+ for all partitions up to n = 10. The algebras A(λ)+ are often complicated
and hence calculating their radical layers demands a lot of computing power. We reduce
the burden on the computer by using the technique of Gröbner basis. These are well
understood objects and programs such as Magma have very efficient Gröbner basis algo-
rithms that are easier for computers to calculate [26]. The first subsection explains how
these are used. In particular, the initial ideal (which is generated by the Gröbner ba-
sis) allows us to find the dimensions of the radical layers and calculate the Lowey lengths.

Even using the Gröbner basis, the computations take too long for n > 10 to be in
anyway practical. While the algebras A(λ)+ increased in complexity, it should also be
noted that the number of partitions of n increases rapidly as n increases. This was per-
haps the main reason the calculation times ballooned after n = 10.

Even for the (relatively) small n examples that we computed, a pattern emerged for
the radical series. While the specific radical layers might be very complicated, it appeared
that the Lowey length of A(λ)+ was predictable. We will shortly present a conjecture
of what this Lowey length is. Let us begin this section by explaining how we computed
these examples by taking advantage of the Gröbner basis. The second section will provide
the theoretical justification for the conjecture.

§ 5.5.1 | Computer calculations and Gröbner basis

In this section we prove several statements concerning Gröbner basis, concluding with a
statement on the dimension of the radical layers. We prove that the initial ideal allows
us to compute the Lowey length of A(λ)+. The code used is a modified version of a code
originally provided by Gwyn Bellamy. It can be found in the appendix.
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Let us quickly define the Gröbner basis, for an in-depth introduction see [21]. Set
R = C[x1, · · · , xn]. To define the Gröbner basis we need to first define monomial orderings
and initial ideals.

Definition 5.5.1. A monomial order ≤ on R is a total order on the set of monomials
in R such that

1. 1 ≤ x for all monomials x ∈ R

2. if x < y and w is any other monomial then wx < wy.

Definition 5.5.2. Let < be a monomial ordering, and let p ∈ R be a polynomial. Denote
by Lt(p) the greatest monomial in p under the ordering <. If I ⊂ R is an ideal we define
the initial ideal of I to be

in(I) = (Lt(p) | p ∈ I).

Definition 5.5.3. Let I ⊂ R be an ideal and < a monomial ordering on R. A sequence
of elements {g1, · · · , gn} ⊂ I is a Gröbner basis of I with respect to < if in(I) =
(Lt(g1), · · · , Lt(gn)).

The following is a well known and important theorem.

Theorem 5.5.4. (Macaulay’s Theorem) Let < be a monomial order on R. If I ⊂ R is
an ideal then the monomials that do not belong to in(I) form a basis for R/I over C.

Proof. See [21, Theorem 2.6].

As a consequence of Macaulay’s theorem we have the following important corollary.

Corollary 5.5.5. For any ideal I ⊂ R of finite codimension we have

dimR/I = dimR/in(I).

Recall that A(λ)+ is a quotient of a polynomial algebra by an ideal I and that I is
generated by n homogeneous equations. The next two lemmata we prove will show that
any Gröbner basis of I has at least n elements.

Lemma 5.5.6. Let J be a monomial ideal in R. Then dimR/J < ∞ if and only if
xaii ∈ J for some ai and every 1 ≤ i ≤ n.

Proof. (⇒) We argue by contradiction. Assume that dimR/J is finite and there exists
some i such that xai 6∈ J for any a. Then {xai | a ≥ 0} is a linearly independent subset of
R/J and so R/J is not finite dimensional. This is a contradiction.

(⇐) If xaii ∈ J for some ai and every 1 ≤ i ≤ n then {xk1
1 · · ·xknn | 0 ≤ ki ≤ ai} is a

spanning set of R/J . Hence dimR/J <∞.
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Lemma 5.5.7. If I ⊂ R is an ideal such that dimR/I <∞ then for any Gröbner basis
G = {g1, . . . , gk} there exists {gi1 , . . . , gin} such that Lt(gir) = xarr . In particular k ≥ n.

Proof. Since in(I) is a monomial ideal and Corollary 5.5.5 implies that dimR/in(I) <∞,
Lemma 5.5.6 implies xaii ∈ in(I) for some ai and every 1 ≤ i ≤ n. Now we also know
that in(I) = (Lt(g1), . . . Lt(gk)). Since the leading terms are monomials we must have
that Lt(gir) = xarr .

In other words the above lemma says that the number of elements in a Gröbner basis is
at least n. We now include an example showing that sometimes this is a strict inequality.

Example 5.5.8. Consider the partition λ = (3, 2, 1), and A(λ)+ = R/I. We will ar-
gue by contradiction that there is no Gröbner basis of just 6 elements. Assume that
{g1, . . . , g6} is a Gröbner basis of I. Let us show that there is no monomial ordering on
R such that dimR/(Lt(g1), . . . , Lt(g6)) <∞. This will contradict Proposition 5.5.13.

The linear terms all appear once in the generating elements ri of I and some linear
terms must appear in the same element, such as f11, f21 and f31. If we choose a monomial
ordering so that one of these is the leading term in the relation then the powers of the
other two terms will appear infinitely many times in any basis of R/(Lt(g1), . . . , Lt(g6)).

This observation is easily extended to other cases. The core of the argument is that
having two fi,j of the same degree means that any monomial ordering fails to “see” one
of them. This will happen for any partition not of the form (n, 0, · · · , 0) or (1, 1, · · · , 1).
The next lemma will give us important facts about the latter case.

Lemma 5.5.9. If A = A(λ)+ = R/(g1, . . . , gn) then the following are equivalent:

1. {g1, ..., gn} is a Gröbner basis of I = (g1, . . . , gn).

2. A = C.

3. Each gi = cfrs for some constant c ∈ C \ {0} and integers r and s.

4. λ = (n) or (1, 1, 1, . . . , 1).

5. dimR/(Lt(g1), . . . , Lt(gn)) <∞.

Proof. (3) ⇒ (1) If each gi = cfrs then we have that Lt(gi) = cfrs = gi and so clearly
in(I) = I and I = (g1, . . . , gn) = (Lt(g1), . . . , Lt(gn)). Hence the set {g1, . . . , gn} is a
Gröbner basis.
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(3)⇔ (5) This can be seen by the previous observation that in(I) = I and Lemma 5.5.6.

(4) ⇒ (3) If λ = (n) or (1, . . . 1) then we know that the linear terms all occur once
and have pairwise different degree. So gi = cfrs for each i.

(3)⇒ (2) This is clear.

(2) ⇒ (4) This can be seen by an easy argument by contradiction. If λ is not (n) or
(1, 1, . . . , 1) then we must have at least one relation with two linear terms in it. Then
we make a choice for which term to eliminate and the other will not be killed. Hence
dimR/in(I) > 1 and thus A 6= C.

(1)⇒ (5) We have that in(I) = (Lt(g1), . . . , Lt(gn)) and so

dimR/(Lt(g1), . . . , Lt(gn)) = dimR/in(I) = dimR/I <∞.

We have so far said very little about monomial orderings. Often there is a superior
choice of order depending on the structure of the algebra being studied. We will define a
monomial ordering on A(λ)+ that will allow us to prove an important result concerning
the radical layers.

Recall that R is a polynomial ring on n generators. Denote the maximal ideal contain-
ing all these generators as m, this is the augmentation ideal. Consider the ideal in(mk+I).
Then, as a set, this is (Lt(m + i) |m ∈ mk, i ∈ I). This contains both in(mk) = mk and
in(I) and so mk + in(I) ⊂ in(mk + I). We would like the following equality to hold

mk + in(I) = in(mk + I).

In general this might not be possible under any monomial ordering, but for the class of
algebras A(λ)+ = R/I we can construct such an ordering.

Let us consider an element a ∈ in(mk + I) such that a 6∈ mk + in(I). We may assume
a = Lt(m + i) for some m ∈ mk and i ∈ I. Also, a 6= Lt(m) and a 6= Lt(i). The only
way this can occur is if Lt(m) = −Lt(i). So we must choose a monomial orderings so
that this cannot occur. In the case of A(λ)+ this ordering is given by choosing the lead
term of a fixed degree to be the one with the least number of factors. If there is equality
of the number of factors then choosing either lexicographic or reverse lexicographic will
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satisfy the conditions.

Definition 5.5.10. Define a monomial ordering on the fi,j’s as follows. Let F and G be
monomials.

1. F > G if deg(F ) > deg(G).

2. If deg(F ) = deg(G) then F > G if F has a smaller number of factors than G.

3. If the number of factors of F and G are equal and their degrees too, then use any
monomial ordering, such as graded lexicographic.

Let us now summarise and formalise what we have discussed.

Lemma 5.5.11. Given a partition λ of n and associated algebra A(λ)+ = C[fi1,j1,...fin,jn ]/I,
with the monomial ordering from Definition 5.5.10 we have the following equation

mk + in(I) = in(mk + I).

Proof. We have seen that mk + in(I) ⊂ in(mk + I). It remains to show the reverse inclu-
sion. Let a ∈ in(mk + I). Then a = Lt(m+ i) for m ∈ mk and i ∈ I. There are two cases
to consider, either Lt(m) and Lt(i) are the same monomial but with possibly different
coefficients or they are not. If they are different monomials, then Lt(m + i) = Lt(m) or
Lt(m+ i) = Lt(i). In either case, a ∈ mk + in(I).

The second case we must consider is if Lt(m) and Lt(i) are the same monomial with
possibly different coefficients. If Lt(m) 6= −Lt(i) then a = Lt(m+ i) = Lt(m)+Lt(i) and
hence a ∈ mk + in(I). So we need only consider the case Lt(m) = −Lt(i). Note that in
this case Lt(i) must have at least k factors because Lt(m) ∈ mk. Write m = Lt(m) +m′

and i = Lt(i)+i′. Then a = Lt(m+i) = Lt(m′+i′). If deg(i′) = deg(i) then i′ ∈ mk due to
our monomial ordering, as we stated that Lt(i) had k factors. Hence m+i = m′+i′ ∈ mk,
which implies that a = Lt(m + i) ∈ mk. If deg(i′) < deg(i) then i′ ∈ I as I is generated
by homogeneous elements. In this case we repeat our argument until either it is shown
that i(j) ∈ mk or m = −i. In either case we are done.

Lemma 5.5.12. If I ⊂ R is a homogeneous ideal of finite codimension then

radi(R/I) = mi + I

I
.

Proof. Since I is homogeneous it must be contained in m. Therefore, since R/I is finite
dimensional, R/I has the unique maximal idealm/I and the result follows inductively.
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Let us now show that we can use the initial ideal to calculate the Lowey length.

Proposition 5.5.13. With the same monomial ordering as in Definition 5.5.10 we have
for all i

dim mi + I

I
= dim mi + in(I)

in(I) .

Proof. By Lemma 5.5.12,

dimR/I = dim mi + I

I
+ dim R

mi + I

and
dimR/in(I) = dim mi + in(I)

in(I) + dim R

mi + in(I) .

By Corollary 5.5.5 we have that dimR/I = dimR/in(I), hence

dim mi + I

I
+ dim R

mi + I
= dim mi + in(I)

in(I) + dim R

mi + in(I) .

With our chosen ordering, we have in(mi + I) = mi + in(I) by Lemma 5.5.11. Therefore

R

mi + in(I) = R

in(mi + I) .

Hence
dim R

mi + in(I) = dim R

in(mi + I) = dim R

mi + I
,

and thus
dim mi + I

I
= dim mi + in(I)

in(I) .

The following proposition confirms that we can understand the dimension of the radi-
cal layers of A(λ)+ by finding a Gröbner basis of I. This greatly shortens the computation
time for calculating the dimension of the radical layers.

Proposition 5.5.14. For any algebra of the form A(λ)+ we have

dim radi(R/I) = dim radi(R/in(I)).

Proof. By Proposition 5.5.13,

dim mi + I

I
= dim mi + in(I)

in(I) .
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By Lemma 5.5.12

dim radi(R/I) = dim
(

(mi−1 + I)/I
(mi + I)/I

)
(5.5.1)

= dim(mi−1 + I)/I − dim(mi + I)/I (5.5.2)

= dim(mi−1 + in(I))/in(I)− dim(mi + in(I))/in(I) (5.5.3)

and
dim(mi−1 + in(I))/in(I)− dim(mi + in(I))/in(I)

= dim
(

(mi−1 + in(I))/in(I)
(mi + in(I))/in(I)

)
= dim radi(R/in(I)).

§ 5.5.2 | Theoretical basis for the conjecture

The examples computed hint at a formulae for calculating the Lowey length of A(λ)+.
In this section we show that this estimate is an upper bound for the true value.

Definition 5.5.15. Let A be a finite dimensional positively graded ring with A0 = C.
We define the degree of the socle of A to be the largest i such that Ai 6= 0.

This definition is motivated by the fact Ai ⊂ socA. Recall by Proposition 2.2.8 that
the socle is the set of elements killed by the radical. From our explicit presentation of
A(λ)+ we see that the radical of A(λ)+ is generated by the fij. Since all elements of the
radical have at least degree 1 they all kill elements of the highest graded piece in A(λ)+.
We use the formula from Theorem 5.1.8 to calculate the degree of the socle of A(λ)+.

Lemma 5.5.16. For a given partition λ ` n the following holds

deg(soc(A(λ)+)) = n(n+ 1)
2 −

∑
(i,j)∈Dλ

h(i, j),

where Dλ denotes the Young diagram of λ.

Proof. We calculate the highest graded piece of A(λ)+. From the formula

∑
i≥0

(dimAi)qi =
∏n
i=1(1− qi)∏

(i,j)∈Dλ(1− qh(i,j)) ,

we see that this must be
n∑
i=1

i−
∑

(i,j)∈Dλ

h(i, j).
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The next lemma states that we have an upper bound for the radical series.

Lemma 5.5.17. For any partition λ ` n we have that deg(soc(A(λ)+)) ≥ ``(A(λ)+).

Proof. First note that the minimum degree of elements in radk A(λ)+ is k. Also note
that, by definition, the degree of the socle of A(λ)+ is equal to the degree of the high-
est non-zero piece in A(λ)+. If deg soc(A(λ)+) = d then radd+1A(λ)+ = 0 and hence
deg(soc(A(λ)+)) ≥ ``(A(λ)+.

The difficulty is in finding a lower bound for the Lowey length. With the aid of
computer calculations we arrived at a conjecture as to when equality holds. First let
us quickly say what we mean by a rectangular partition. A rectangular partition is one
which has the shape of a rectangle. As a consequence it has only one cell with hook
length 1. Any non-rectangular partition has at least two cells with hook length 1. This
is a key observation and leads to the following conjecture.

Conjecture 5.5.18. For any non-rectangular partition λ we have

``(A(λ)+) = deg socA(λ)+.

If λ is a rectangular partition then ``(A(λ)+) = (deg socA(λ)+)/2.



Appendix A

Computing the radical layers of A(λ)+

The Magma code below can be used to compute the radical layers of the algebras A(λ)+

for λ ` n. Further it can calculate a Gröbner basis for the defining ideal of A(λ)+.
1 > //Note that t is the grading and q is the radical layer.
2 >
3 >
4 > n := 6; // This is the size of the partition .
5 >
6 > lam := [3,1,1,1]; // This is our partition .
7 >
8 > if &+lam ne n then //We check that the size of lambda is indeed n.
9 if> Error(n);

10 if> end if;
11 >
12 > if #lam lt n then //We add zeros to the end of

lambda so that its length is n.
13 if> zeros := [0 : i in [1..n-#lam ]];
14 if> lam := lam cat zeros;
15 if> end if;
16 >
17 > P := [lam[i] -i + n : i in [1..n]];
18 >
19 > var := [];
20 >
21 > for i in [1..n] do
22 for > if P[i] ne 0 then
23 for|if> for j in [1..P[i]] do
24 for|if|for > if (P[i] - j) notin P then
25 for|if|for|if> varname := "f" cat

IntegerToString (i) cat "," cat IntegerToString (j);
26 for|if|for|if> Append (~var ,<varname ,i,j>);
27 for|if|for|if> end if;
28 for|if|for > end for;
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29 for|if> end if;
30 for > end for;
31 >
32 > names := [var[i][1] : i in [1..n]]; //This is the set of labels for

the variables in our polynomial ring.
33 > Grad := [var[i][3] : i in [1..n]]; //This lists the degrees of the

variables .
34 >
35 >
36 > QT<q,t> := PolynomialRing ( Rationals (),2);
37 >
38 > R := PolynomialRing ( Rationals (), Grad , " weight ", [1,2,6,3,2,1, 0,1,5,

2,1,0, 1,1,1,1,0,0, 1,1,1,0,0,0, 1,1,0,0,0,0, 1,0,0,0,0,0]);
39 >
40 > AssignNames (~R,names); //This gives the variables of the polynomial

ring their name.
41 >
42 > //The variables in the ring R have a total order. It is given as

follows fi ,j > fk ,l if j > l or if j = l and i < k.
43 >
44 > S<u> := PolynomialRing (R,1);
45 >
46 > phi := hom < S -> R | 1>;
47 >
48 > Polys := [];
49 >
50 > for i in [1..n] do
51 for > if P[i] ne 0 then
52 for|if> p := u^(P[i]);
53 for|if> for j in [1..P[i]] do
54 for|if|for > if (P[i] - j) notin P then
55 for|if|for|if> Pos := [k : k in [1..n] | (var[

k][2] eq i) and (var[k][3] eq j)];
56 for|if|for|if> p := p + Name(R,Pos[1])*(u^(P[i

] - j));
57 for|if|for|if> end if;
58 for|if|for > end for;
59 for|if> Append (~ Polys ,p);
60 for|if> else
61 for|if> Append (~ Polys ,S!1);
62 for|if> end if;
63 for > end for;
64 >
65 > mat := [];
66 >
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67 > for i in [1..n] do
68 for > row := [];
69 for > for j in [1..n] do
70 for|for > Append (~row , Derivative (Polys[i],j-1,u));
71 for|for > end for;
72 for > mat := mat cat row;
73 for > end for;
74 >
75 > M := Matrix (n,n,mat);
76 > det := Determinant (M);
77 > coe := &*[P[i] - P[j] : i,j in [1..n] | i lt j];
78 >
79 > // M is the matrix whose determinant is the Wronskian .
80 > //det is the Wronskian
81 >
82 > print coe;
83 9676800
84 > // det := det*(coe ^(-1));
85 >
86 > print det;
87 -9676800*u^6 + (-2903040*f1,1 - 11612160*f4,1)*u^5 + (-518400*f1,2 + 72

57600*f3,2 - 3628800*f1,1*f4,1)*u^4 + (-1935360*f2,3 + 2419200*f1,1*
f3,2 - 691200*f1,2*f4,1)*u^3 + (-725760*f1,1*f2,3 +

88 518400*f1,2*f3,2)*u^2 - 207360*f1,2*f2,3*u + 34560*f1,6
89 >
90 > gen := Coefficients (det ,u);
91 > gen := Prune(gen);
92 > gen := [phi(f) : f in gen ];
93 >
94 > Aug := Ideal ([ Name(R,i) : i in [1..n]]); //This is the maximal ideal

in the quotient ring.
95 >
96 > SmallInit := Ideal ([ LeadingMonomial (f) : f in gen ]); //This shows

that the ideal generated by the initial monomials does not have a
finite -dimensional quotient .

97 >
98 > //////////////
99 >

100 > I := Ideal(gen);
101 >
102 > Grob := GroebnerBasis (I);
103 > Init := Ideal ([ LeadingMonomial (f) : f in Grob ]);
104 >
105 > HilbertSeries (Init);
106 t^6 + t^5 + 2*t^4 + 2*t^3 + 2*t^2 + t + 1
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107 >
108 > grobqt := QT!0;
109 > Soc := Degree ( Numerator ( HilbertSeries (Init)));
110 > print Soc;
111 6
112 >
113 > for i in [1..Soc+1] do
114 for > J := Aug^i + Init;
115 for > Jmin := Aug ^(i-1) + Init;
116 for > f := HilbertSeries (J) - HilbertSeries (Jmin);
117 for > print f;
118 for > a := Coefficients ( Numerator (f));
119 for > print a;
120 for > deg := #a;
121 for > term := &+[a[j]*t^(j-1) : j in [1..deg ]];
122 for > grobqt := grobqt + term*q^(i-1);
123 for > print grobqt ;
124 for > end for;
125 1
126 [ 1 ]
127 1
128 t^2 + t
129 [ 0, 1, 1 ]
130 q*t^2 + q*t + 1
131 t^3 + t^2
132 [ 0, 0, 1, 1 ]
133 q^2*t^3 + q^2*t^2 + q*t^2 + q*t + 1
134 t^4 + t^3
135 [ 0, 0, 0, 1, 1 ]
136 q^3*t^4 + q^3*t^3 + q^2*t^3 + q^2*t^2 + q*t^2 + q*t + 1
137 t^4
138 [ 0, 0, 0, 0, 1 ]
139 q^4*t^4 + q^3*t^4 + q^3*t^3 + q^2*t^3 + q^2*t^2 + q*t^2 + q*t + 1
140 t^5
141 [ 0, 0, 0, 0, 0, 1 ]
142 q^5*t^5 + q^4*t^4 + q^3*t^4 + q^3*t^3 + q^2*t^3 + q^2*t^2 + q*t^2 + q*t

+ 1
143 t^6
144 [ 0, 0, 0, 0, 0, 0, 1 ]
145 q^6*t^6 + q^5*t^5 + q^4*t^4 + q^3*t^4 + q^3*t^3 + q^2*t^3 + q^2*t^2 + q

*t^2 + q*t + 1
146 >
147 > grobqt ;
148 q^6*t^6 + q^5*t^5 + q^4*t^4 + q^3*t^4 + q^3*t^3 + q^2*t^3 + q^2*t^2 + q

*t^2 + q*t + 1
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149 >
150 > ////////////////////////
151 >
152 >
153 > HilbertSeries (I);
154 t^6 + t^5 + 2*t^4 + 2*t^3 + 2*t^2 + t + 1
155 >
156 > pqt := QT!0;
157 > Soc := Degree ( Numerator ( HilbertSeries (I)));
158 > print Soc;
159 6
160 >
161 > for i in [1..Soc+1] do
162 for > J := Aug^i + I;
163 for > Jmin := Aug ^(i-1) + I;
164 for > f := HilbertSeries (J) - HilbertSeries (Jmin);
165 for > a := Coefficients ( Numerator (f));
166 for > deg := #a;
167 for > term := &+[a[j]*t^(j-1) : j in [1..deg ]];
168 for > pqt := pqt + term*q^(i-1);
169 for > print pqt;
170 for > end for;
171 1
172 q*t^2 + q*t + 1
173 q^2*t^3 + q^2*t^2 + q*t^2 + q*t + 1
174 q^3*t^4 + q^3*t^3 + q^2*t^3 + q^2*t^2 + q*t^2 + q*t + 1
175 q^4*t^4 + q^3*t^4 + q^3*t^3 + q^2*t^3 + q^2*t^2 + q*t^2 + q*t + 1
176 q^5*t^5 + q^4*t^4 + q^3*t^4 + q^3*t^3 + q^2*t^3 + q^2*t^2 + q*t^2 + q*t

+ 1
177 q^6*t^6 + q^5*t^5 + q^4*t^4 + q^3*t^4 + q^3*t^3 + q^2*t^3 + q^2*t^2 + q

*t^2 + q*t + 1
178 >
179 > pqt;
180 q^6*t^6 + q^5*t^5 + q^4*t^4 + q^3*t^4 + q^3*t^3 + q^2*t^3 + q^2*t^2 + q

*t^2 + q*t + 1
181 >
182 > grobqt - pqt;
183 0
184 >
185 > Grob;
186 [
187 f4,1^7,
188 f1,6,
189 f3,2*f4,1^3 + 6/5*f4,1^5,
190 f3,2^2 - 2*f3,2*f4,1^2 - 4*f4,1^4,
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191 f2,3 + 10*f3,2*f4,1 + 10*f4,1^3,
192 f1,2 - 14*f3,2 - 28*f4,1^2,
193 f1,1 + 4*f4,1
194 ]
195 >
196 > Init;
197 Ideal of Graded Polynomial ring of rank 6 over Rational Field
198 Order: Weight [full]
199 Variables : f1,1, f1,2, f1,6, f2,3, f3,2, f4,1
200 Variable weights : [1, 2, 6, 3, 2, 1]
201 Homogeneous , Dimension 0
202 Basis:
203 [
204 f4,1^7,
205 f1,6,
206 f3,2*f4,1^3,
207 f3,2^2,
208 f2,3,
209 f1,2,
210 f1,1
211 ]
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