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Abstract 

Prostate cancer (PCa) is the second most common tumor diagnosed in man, for 

which robust prognostic markers and novel targets for therapy are lacking.  

Major challenges in PCa therapeutical management arise from the marked intra- 

and inter-tumors heterogeneity, hampering the discernment of molecular 

subtypes that can be used to guide treatment decisions.  For this reason, 

virtually all patients undergoing standard of care androgen deprivation therapy 

for locally advanced or metastatic cancer, will eventually progress into the more 

aggressive and currently incurable form of PCa, referred to as castration 

resistant prostate cancer (CRPC). 

 

By exploiting the richness of information stored in gene-gene interactions, I 

tested the hypothesis that a gene regulatory network derived from 

transcriptomic profiles of PCa orthografts can reveal transcriptional regulators to 

be subsequently adopted as robust biomarkers or as target for novel therapies.  

Among the 1308 regulons identified from the preclinical models, Cox regression 

analysis coherently associated JMJD6 regulon activity with disease-free survival 

in three clinical cohorts, outperforming three published prognostic gene 

signatures (TMCC11, BROMO-10 and HYPOXIA-28).  Given its potential role in a 

number of cancers, in-depth investigations of JMJD6 mediated function in PCa is 

warranted to test if it has a driver role in tumor progression. 

 

Encouraged by the predictive abilities of the gene regulatory network inferred 

from transcriptomics data, I explored the possibility of integrating the regulons 

structure with data from the proteomes of the same preclinical orthografts 

studied by RNA sequencing.  This approach leverages the complementarity 

between gene and protein expression, to increase the robustness of the 

statistical analysis.  Similar to gene-gene co-expression profiles, protein-protein 

co-expression data can provide a distinct representation of the molecular 

alterations underlying a biological phenotype.  By implementing a pipeline to 
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integrate modules derived from transcriptomic based regulons and protein-

protein interactions respectively from matched RNA-seq and quantitative 

proteomic data, I obtained 516 joint modules entailing a median of four protein 

complexes (range 1-41) per individual transcription factor regulon, providing 

new insight into its regulatory mechanisms.  In the final step of the analysis, a 

permutation-based enrichment of the genes/proteins integrative modules 

implicated MID1 (an E3 ubiquitin ligase belonging to the family of tripartite 

motif containing protein) to be a driver transcriptional regulator in CRPC. In 

fact, MID1 module was the only candidate for which gene-gene and protein-

protein interactions were supported (p-value < 0.05) by both differentially 

expressed genes and proteins obtained from the CRPC vs PC contrast. 

 

Finally, I wished to test the usefulness of a network based investigation as a tool 

to identify predictors of treatment response. To this end, I obtained 

transcriptomics data from an in vivo subcutaneous xenograft treatment 

experiment (namely mychophenolic acid or abiraterone/ARN-509 as stand alone 

treatment or in combination) and determined which regulons were inferred to 

be active in the tumours following treatment. The androgen receptor positive 

human LNCaP C4-2b prostate cancer cells were injected into mice. The effects 

of treatment were assessed by collecting serial tumor sizes and by performing 

RNAseq at the designed endpoint of the study  

Noteworthy, the gene graph enrichment analysis provided novel hypothesis 

behind the anti-proliferative effect of mychophenolic acid (MPA), suggesting the 

SET proto-oncogene to be a target for MPA mediated suppression of 

proliferation. Of note, standard gene-set enrichment analysis, without input on 

specific gene-gene interactions, was not effective in prioritising the SET proto-

oncogene, demonstrating the usefulness of the network based investigation. 

 

Collectively, data presented in this thesis provides an alternative perspective for 

the analysis of multi-omics profiles from PCa and highlights the importance of 

gene-gene and protein-protein interactions in prostate cancer growth and 

progression.   
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Chapter 1 – Introduction 

    1.1 Prostate cancer 

      1.1.1 Epidemiology 

Prostate cancer (PCa) is the second most frequent cancer diagnosed in males. 

Both its incidence and mortality rate are influenced by age (in particular if 

higher than 65 years) and ethnicity, with African-American men being the most 

affected by the disease1. Other relevant factors associated with PCa include 

family history, diet and inflammation.  

Seven genomic regions were predicted as susceptibility loci for PCa: HPC1 and 

ELAC2 genes, involved in the innate immune defense and TGF-beta signaling 

pathway, respectively; the macrophage scavenger receptor 1 (MSR1) gene; 

BRCA1, BRCA2 and PALB2 genes associated with the aggressive form of the 

disease; small deletions in Xq26.3-q27.3 region noted in both sporadic and 

hereditary forms of the disease1.  

Concerning diet and metabolism, high intake of omega-6 fats, frequent 

consumption of red meat, high intake of calcium and low intake of vegetables 

were associated with a greater risk of PCa. Obesity is associated with more 

aggressive forms of the disease, probably due to the altered levels of metabolic 

and steroid hormones in circulation. On the contrary, the usage of metformin, a 

common hypoglycemic drug prescribed in the management of type II diabetes, 

was shown to reduce the risk of PCa diagnoses2.  

Lastly, inflammation, independently of its source, seems to be associated with 

increased risk of PCa, putatively by causing proliferative inflammatory atrophy. 

This can, in turn, develop into prostatic intraepithelial neoplasia, a known 

precursor of PCa1. 
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       1.1.2 Diagnosis 

The main methodologies used for PCa diagnosis are digital rectal examination 

(DRE) and prostate-specific antigen (PSA) blood test, followed by transrectal 

ultrasound guided biopsy (TRUS). 

In particular, total PSA (tPSA) is the most frequently used measurement for risk 

assessment in PCa, despite its specificity for the detection of prostate cancer 

being undermined by comparable levels of tPSA resulting from benign 

pathologies of the prostate including BPH (or benign prostatic hyperplasia) and 

prostatitis3. For this reason, the biomarker research is focusing on PSA test 

alternatives, by taking advantage, above all, of the advancements in genomics 

and proteomics technologies, with the aim to develop and implement 

personalised medicine strategies.    

In the event of a positive result from the DRE or PSA test, 10 to 12 tissue 

samples are obtained by TRUS. Subsequently, a pathologist defines a primary 

and a secondary Gleason grade from the main patterns observed in the 

microscopical investigation of the cells. The Gleason scores is determined from 

the two most dominant morphologies, as ranging from three to five, according to 

the degree of abnormality of the tissue, and the sum of the two grades 

producing the overall Gleason sum score of the tumour. Combining Gleason 

scores, the clinical tumour stage and the PSA levels, individual tumours can be 

categorised according to a five-tiers (very low risk, low risk, intermediate risk, 

high risk, very high risk) based classification scheme4. 

Noteworthy, despite the accurate profiling of the tissue biopsies, PCa tumours 

are characterised by marked heterogeneity, namely distinct morphological and 

phenotypical profiles observable in different tumour cells, and multifocality, 

that is the presence of more than one independent cluster of tumour cells5. An 

additional limitation in the current diagnosis procedures relies in the inability to 

detect high-grade prostatic intraepithelial neoplasia (HGPIN), the most likely 

precursor of Pca. In fact, HGPIN does not induce a relevant increase in PSA 

concentration and leads to the development of adenocarcinomas, the most 

common type of Pca, within 10 years6.   
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       1.1.3 Primary treatment  

Pca treatment strategies are typically guided by the extent of local and/or 

distant metastatic invasion within the body. Localised tumours, in other words 

tumours confined within the prostate gland and lacking an identifiable lymph 

node or distant metastasis on staging investigations (typically including isotopic 

bone scan, magnetic resonance imaging and/or computerised tomography), are 

suitable for radical local therapies. These mostly consist of radical surgery or 

radiation based therapies4. 

Radical prostatectomy (RP) entails the removal of both the prostate gland and 

the surrounding tissue for a thorough elimination of the tumour, with the intent 

of preserving continence and potency, if possible7. 

Radiotherapy (RT), either in the form of external radioactive beams (EBRT) or 

irradiation from within the patient’s body (brachytherapy), hampers cancer cell 

division and offers similar cure rates to RP, although with reduced side effects. 

In the event comorbidity risk factors make patients less suitable for surgery, a 

combination of EBRT, brachytherapy and other non-surgical treatment options 

can be considered8. 

Expectant management consists either of watchful waiting, during which 

symptoms are only treated with palliation, or active surveillance, which involves 

PSA testing, MRIs, and biopsies to detect the earliest sign of cancer progression. 

These latter will trigger a change of management plan from active surveillance 

to curative intervention with radical surgery or radiation, in fact delaying 

intervention and thus avoiding potential side effects4. 

For metastatic prostate cancer, the first-line treatment is androgen deprivation 

therapy (ADT)4, also known as hormonal therapy. Luteinising Hormone-Releasing 

Hormone (LHRH) agonists are currently the standard of care in hormonal 

therapy, replacing surgical castration after acknowledging better performances 

in terms of reversibility, physical and psychological discomfort.  

Moreover, recent clinical trials suggest the adoption of the combined use of 

docetaxel, a chemotherapeutic inhibiting cell division, together with ADT as the 

new standard treatment for men showing metastasis at the time of the first 

investigation9.  
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Lastly, several randomised controlled clinical trials have evaluated the 

application of both therapeutic methodologies for particular PCa cases. These 

studies led to new targeted recommendations, such as: ADT combined with 

radiotherapy for intermediate and high risk patients8; local therapy (without 

ADT) for lymph-node positive disease and for men with a limited number of 

metastasis4; EBRT supplemented with long-term ADT for local tumours with 

invasiveness abilities10. 

Despite the growing body of knowledge, it is still challenging to distinguish 

between patients who would benefit from active surveillance, definitive primary 

treatment or those who require treatment escalation11. 

 

        1.1.4 Progression and second-line therapy 

Despite the advancements in the management of PCa and initial control of the 

disease, none of  the patients undergoing local therapy are cured12 

, given that the tumour can progress either biochemically, when experiencing 

two consecutives rises of PSA within the castrate environment9, or clinically, 

when a worsening of the patient’s conditions occurs with or without any increase 

in PSA secretion13. 

The average time of PCa progression is five years after both RP and RT in 

clinically localised diseases13, and two to three years in patients receiving ADT, 

leading to the development of the castration-resistant prostate cancer (CRPC)14. 

CRPC is an incurable and aggressive form of prostate cancer, as demonstrated by 

the average time to death of 22 months after the tumours develop resistance to 

chemical castration12. Several mechanisms of resistance development have been 

elucidated and, above all, the constitutive activation of the androgen receptor 

(AR) signaling, through either AR amplification/mutations/variants, activation 

via alternative pathways or intra-tumoral production of the androgens, remains 

a crucial driver of disease progression15. 
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In order to counteract castration-induced compensatory mechanisms in CRPCs, 

second line therapies involving androgen-pathway targeting agents have been 

validated in clinical trials as either standalone or adjuvant treatment in 

combination with ADT in hormone-independent tumours16. Despite able to 

increase patient survival by months, these drugs are still not leading to a 

complete remission of the disease17. 

Among this drugs category we find nonsteroidal antiandrogens (NSAA) such as: 

enzalutamide and apalutamide, acting as competitive binders of androgens to 

the AR, prevent AR translocation into the nucleus and inhibit AR binding to 

chromosomal DNA18,19; abiraterone acetate, which hampers androgen synthesis 

by inhibiting the cytochrome P450 Family 17 Subfamily A (CYP17)20. 

  

 1.1.5 Molecular characterisation of PCa 

Multi-omics analyses have revealed both the key drivers of PCa development and 

the molecular subtypes guiding the selection of therapeutic interventions. 

The TMPRSS2-ERG fusion is the most common genomic alteration in PCa, it is 

observed in 40% to 50% of tumour foci21. The fusion events were found via the 

cancer outlier profile analysis that detected the overexpression of ERG, located 

in the same chromosome as TMPRSS222.  ERG overexpression in prostate tumors 

activates C-MYC and inhibits prostate epithelial differentiation23. 

Further, aggressive primary and metastatic tumours showed high levels of copy 

number alterations across the whole genome. Lastly, despite not being 

characterised by high frequency mutational hotspots in the genomic DNA, the 

most mutated genes in PCa are SPOP, TP53, FOXA1 and PTEN. As a result of the 

multi-omic analysis, major subtypes could be defined according to fusions 

involving members of the ETS family (ERG, ETV, ETV4 and FLI1) and mutations of 

SPOP, FOXA1 and IDH124.  

For metastatic CRPC, a specific enrichment of alterations in TP53 and the AR, 

together with PIK3CA/B, R-Spondin, BRAF/RAF1, APC, β-catenin and 

ZBTB16/PLZF, was identified. Moreover, within the mCRPC cohort, the full 
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inactivation of BRCA2, BRCA1 or ATM genes was observed in 20% of the 

samples25. 

The mitochondrial DNA was also the object of multi-omics studies, revealing 

both recurrent mutational hotspots and a strong association with the nuclear 

mutation profiles, suggesting a role for mtSNVs in PCa development26. 

Subsequently, with the intent to obtain more information from genomics 

analysis, integrative studies have been performed. A tumour methylation 

quantitative trait loci (meQTL) analysis revealed 1178 SNPs associated with 

altered methylation in tumour tissue, including known driver genes such as 

TCERG1L and AKT127. A comprehensive proteomic analysis of localised prostate 

cancers highlighted the convergence of the above mentioned genomic subtypes 

of PCa into five proteomic groups with distinct clinical manifestations28. Further, 

by integrating transcriptomics and proteomics data, changes in citric acid cycle 

(TCA) and MDH2 activities were observed during progression into CRPC, 

corroborating the importance of mitochondrial alterations in PCa29.  

 

    1.2 Cancer biomarkers research 

A biomarker is defined as “a biological molecule that is fairly evaluated as an 

indicator of normal physiological, pathological processes or pharmacological 

responses to a therapeutic intervention”30. 

The typical pipeline for biomarker research foresees five phases. Initially, a 

preclinical study is performed to identify potential biomarkers. Prioritised 

models are subsequently validated in phase 2 by performing a clinical assay. At 

this stage, either retrospective studies, in which participants present with the 

condition, or prospective studies, where participants have not yet developed the 

disease or outcome in question, are performed in phase 3 and 4, respectively. 

Lastly, control studies are performed in phase 5 through population screening30. 

Currently, cancer biomarkers research is placed in the context of personalised 

medicine, a patient management procedure driven by the accurate molecular 

and morphological classification of each tumour. The switch from the “one-size-

fits-all” paradigm was made possible by the development of both high 
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throughput technologies for the study of different biological layers, such as 

genetic mutations, mRNA and protein expression levels, and suitable statistical 

analysis applied on the accumulated data31. 

In fact, as the technology advances, providing the researchers with higher 

accuracy in the measurements and larger lists of identifiable molecules from the 

experiment, newer data analysis strategies allow clearer recognitions of patterns 

in the data. 

In particular, the integration of multiple layers of biological information in the 

same pipeline, leads to more robust results than single layer analysis, boosting 

our understanding of complex diseases such as cancer. In greater detail, the 

work illustrates the usefulness of multi-omics approach in improving functional 

annotation of genomic alterations, discovery of new therapeutic opportunities, 

uncovering interactions across layers of organization, extending tumour 

molecular profiling and assisting early cancer diagnosis32. 

 

        1.2.1 Biomarker types 

According to the aim for which they are developed, biomarkers fall into three 

categories: prognostic, if informative about the patient overall cancer outcome, 

regardless of the therapy; predictive, when providing information about the 

effect of a therapeutic intervention; diagnostic, if identifying the presence of a 

specific condition33. 

Biomarkers can be extracted from gas, i.e. volatile substances in the breath34, 

liquid, such as PSA withdrawn from blood, or tissue samples, directly biopsied 

from the tumour11. Biomarker’s sensitivity and specificity, together with the 

invasiveness and risk of the test, are crucial parameters in the selection of the 

best measurement for populational screening.  

Lastly, biomarkers measurements can entail single or multiple features at the 

same time, in either an isolated or connected way. In case of isolated 

measurements, the status of one or more features is assessed independently and 

eventually combined into a univocal prediction. For example, the same protein 

could be tested in both the unmodified and phosphorylated forms to leverage 
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the ratio as a biomarker, while a set of genes can be assessed for the 

presence/absence of mutations to calculate a summary score that will function 

as the effective biomarker. Every summary statistic will follow a specific 

distribution. Similarly, each marker used will influence the output statistics in 

an independent way. For these reasons, it’s important to validate both the 

members of the biomarker set and the summary score. 

 

This dissertation is focused on network-driven biomarkers research, in which 

mechanistic interactions among molecules are considered to derive more 

realistic models. In fact, the robustness of the biomarker is provided by 

leveraging the causal relationships existing among the studied features and, at 

the same time, by lowering the chances to base a model on spurious 

associations.  

For example, the analysis of concomitant inhibitory and activating relationships 

among genes can identify transcriptional regulators that act as biomarkers35, 

while protein-protein co-expression patterns can reveal structures and 

stoichiometries that can be used for the development of a biomarker36.  

 

        1.2.2 Prostate cancer approved biomarkers 

PSA was introduced as a biomarker of prostate tissue in 1980s, and its usage for 

PCa detection was approved by the Food and Drug Administration (FDA) in 1994. 

As mentioned before, the low specificity of the blood-based test, directly 

resulted in high risk of over-treatment for men with indolent disease. To solve 

the problem, derivatives of the tPSA measurements have been developed to 

incorporate different forms of both serum and serum-free PSA in the same 

scoring formula. The prostate health index (PHI) and the 4Kscore tests are 

examples of more complex liquid biopsies-based biomarkers. Moreover, a 

number of non-PSA liquid biomarkers have been approved by the FDA with the 

aim of increasing diagnostic accuracy for PCa, such as: a urine-based assay for 

the gene product of prostate cancer antigen 3 (PCA3), which encodes a long 

noncoding RNA suggested to be specific for the malignant prostate, being 
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overexpressed in 95% of PCa; the Select MDx formula combining both clinical 

factors and a urine-based assay for RNA levels of HOXC6 and DLX1; ExoDx 

Prostate Intelliscores (EPI), which is a pre-biopsy RNA-based assay leveraging the 

expression of PCA3 and ERG isolated from urinary exosomes11. 

Despite the advancements in PCa liquid biomarkers research, tissue biopsy based 

assay remains the gold standard to accurately represent the tumour 

environment11. These tests were mostly derived from the analysis of high-

throughput data, for example: Confirm MDx is an epigenetic assay using a 

multiplex methylation specific PCR to detect the DNA methylation levels of 

three tumour suppressor genes (GSTP1, APC and RASSF1); Decipher is a 22-gene 

panel based assay, developed from RNA microarray technology for the prediction 

of metastasis; Oncotype Dx, based on the assessment of the expression levels of 

12 tumour-specific and five reference genes from a needle biopsy; the 

automated immunofluorescence-based assay Promark, which measures the 

expression of eight proteins11. 

 

There is, however, an urgent need to identify biomarkers that would allow 

clinicians to define more accurate risk groups. In fact, at the moment, true 

personalised medicine workflows are absent in the clinical management of the 

disease37.  

The pre-analytical and analytical validations of the new biomarkers are 

heterogeneous. Only the PHI and the 4Kscore were shown to be able to 

discriminate aggressive and indolent prostate tumors, and ready for clinical use 

since they add value to the classical parameters38. 

Moreover, the clinical implementation of several newly discovered biomarkers 

has often been hindered by the erroneous design of preclinical trials, 

inappropriate statistical analyses etc39. Lastly, PSA remains an inexpensive and 

sensitive biomarker for disease detection and monitoring progression and 

recurrence following curative therapy of local disease40.  
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       1.2.3 Biomarker research in PCa – the state of the art 

In addition to the FDA approved omics signatures for PCa risk stratification, a 

plethora of biomarkers have and are still being developed to define new 

predictive models with higher clinical utility. 

The new signatures were discovered through the detailed study of specific 

alterations of the prostate tumours, showing promising preliminary results. For 

example, a transcriptomics study revealed that bromodomain-containing 

proteins (BRDs) are the mediators of the increased chromatin accessibility 

observed in CRPC. From this analysis, the BROMO-10 signature emerged, with 

validated prognostic abilities for biochemical recurrence41.  

Another prognostic signature derived from gene expression profiles is based on 

transcriptional targets of the tumour suppressor TMEFF2 which, in turn, 

regulates the cell cycle. This signature was also validated using biochemical 

recurrence as the clinical outcome42. Lastly, starting from genes differentially 

regulated by hypoxia in PCa cell line, Yang et al. applied a network-based 

approach to derive a signature prognostic of both biochemical recurrence and 

metastatic outcome in PCa cohorts receiving primary treatment43. In particular, 

in Yang et al, the co-expression modules were not used to identify regulons but 

to shortlist hypoxia related genes. Their final signature doesn’t exploit gene-

gene interaction strength but only the expression of the selected genes. 

 

Despite the predominant abundance of transcriptomic analysis, PCa biomarkers 

research from proteomics data has increased over time. Noteworthy, a first 

study of 4274 protein complexes activity in tissue samples revealed a distinctive 

pattern of enrichment, discriminating low-grade and high-grade tumours from 

normal prostate. In particular, 13 integrin complexes involved in cell adhesion 

were found downregulated in the tumours compared to the normal prostate. 

Moreover, four Prothymosin alpha complexes and four subcomplexes of the 

mictochondrial complex I were enriched in high-grade PCa while six protein 

complexes involved in RNA splicing were enriched in low-grade PCa44. All these 

studies highlighted the utility of protein complexes for PCa stratification. 
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Nevertheless, the necessity to integrate the information provided by multiple 

omics became evident after comparing the results of several studies. It was 

shown that different omics datasets, generated within the same biological 

context (or even sample), are characterised by a poor correlation of the 

measurements. For example, mRNAs expression levels are normally not reflected 

by the expression levels of the corresponding proteins due to processing 

mechanisms such as folding, posttranslational modifications and cellular 

localization45. Therefore, rather than risking biases associated with a single 

layer, it is logical to take advantage of the complementarity of the information 

provided by different omics datasets, to obtain an holistic  perspective on the 

disease46. 

 

   1.3 Network-based modelling  

Biological mechanisms are the result of complex interactions among several 

molecules, such as protein-protein, protein-DNA or mRNA-mRNA causal 

networks. Graph theory is the mathematical discipline that studies complex 

networks. Therefore, its principles find application in biological systems as well, 

given the non-random structure of the interaction networks characterising 

them47. 

A biological graph [i.e. Figure 4.6 A] presents distinct topologies, namely 

arrangements of the relationships (referred as edges) among the features 

(referred as nodes), such as “scale-free” or “small-world” configurations. 

Moreover, the study of the interaction patterns can reveal additional 

characteristics such as: modules, which are portions of the network with higher 

than average connectivity; key nodes, whose importance can be due to the 

centrality of their position in the network or from the number of edges linked to 

them; motifs, in other words sub-topologies that occur significantly more 

frequently than expected by chance48. 

 

For these reasons, biomarker discovery can benefit from the network-based 

modelling of a disease through the accumulation of evidence derived from the 
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assessment of the graph topology. In particular, the identification of a putative 

biomarker can be performed by measuring the consistencies between the 

observed molecular phenotype and the set of relationships described by the 

network.  

For example, gene sets enrichment analysis entails several statistical methods to 

assess the non-random over-representation of disease-specific features (i.e., 

differentially expressed genes or proteins) within pre-determined sets of 

functionally related molecules. Graph-based analysis instead, consider the 

mechanistic interactions among the members of these sets to filter out logically 

inconsistent relationships. Of note, the latter were shown to perform better 

than interactions-unaware strategies because more supporting evidences can be 

extracted from the data49.   

This thesis focusses on both the exploitation of network-driven modelling of 

genes and proteins in PCa for biomarker discovery as well as on the development 

of a novel graph-based enrichment analysis procedure.  

  

 1.3.1 Gene regulatory network 

A gene regulatory network (GRN) is a graph representation of the interactions of 

transcriptional regulators and their target genes. The nodes of the network are 

the genes involved in the regulation mechanisms while the edges represent 

either inductive or inhibitory regulations which increase or reduce the 

expression of the targets, respectively. 

 

GRNs can be constructed directly from high-throughput expression data through 

a procedure called reverse engineering, resulting in different class of models: 

logical models for qualitative networks (list of causal rules of regulation); 

continuous models, that relate the change in expression of each target with the 

expression level of the possible regulators; single molecule level models, to 

accurately describe the sequence and hierarchy of regulations among a small 

number of molecules; hybrid models, harboring both continuous and discrete 

aspects50. A classical GRN continuous model called ‘ARACNE foresees the 
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following steps: first, gene pairs that exhibit correlated transcriptional responses 

are identified by measuring the mutual information (MI) between their mRNA 

expression profiles. Indirect interactions are eliminated by applying a property 

of MI called the data processing inequality (DPI). Given a TF, application of the 

DPI, will generate predictions about which other genes might be its direct 

transcriptional targets or its upstream transcriptional regulators51. 

Although, it’s worth noticing that despite the application of the DPI filter, the 

predicted TF-target relationships are mainly correlative but likely to give hints 

about the underlying biological mechanisms. In fact, a study comparing 

statistical methods to construct a GRN showed that GeneNet, WGCNA and 

ARACNE, perform well in constructing the global network structure52. 

 

For this analysis, data obtained from an RNAseq experiment, a next generation 

sequencing technique used to unbiasedly measure the mRNA expression53 of 

individual genes or transcripts, was adopted to infer a continuous GRN.  

 

1.3.2 Protein co-expression network 

In parallel with the explosion of the number of large-scale transcriptomics 

analysis, the latest improvements in liquid chromatography and mass 

spectrometry enhanced the generation of high-throughput proteomics datasets 

as well. Furthermore, strengthened by extensive studies on transcriptomics 

datasets, some of the validated methods to reconstruct GRNs are being 

repurposed for the identification of protein co-expression modules from the 

more recently generated proteomics data. In fact, protein co-expression 

networks can be built via the same strategy as weighted gene co-expression 

network analysis54. 

 

It was shown that the analysis of both the topology and the modules of these 

graphs provide high sensitivity in the recognition of disease phenotypes55. In 

particular, their topology was found to be in partial agreement with the “scale-

free” configuration and to contain non-random modules56. 
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Noteworthy, protein co-expression networks, when compared to GRN, were 

shown to be even more predictive of the functional similarities among features 

since mRNA coexpression pattern was driven not only by cofunction but also by 

the colocalization of the genes, while protein coexpression was mainly driven by 

functional similarity, to the extent they can be used to predict protein 

complexes membership32. These latter are groups of functionally related and 

physically bound proteins that carry out major processes in a cell, such as gene 

transcription and splicing or protein synthesis and degradation.  

 

The  investigation of protein complexes can hence reveal particular 

characteristics of the tumour biology57. For example, in a breast cancer study, 

protein complexes reconstruction from proteomics data identified complexes 

that are consistently under- or over-expressed in specific tumour subtypes36. 

Similarly, in glioblastoma multiforme, using the weighted gene co-expression 

network analysis method, three main modules associated with three different 

membrane associated groups (mitochondrial, endoplasmic reticulum and vesicle 

fraction) were identified58.  

 

Inspired by these studies, I decided to exploit the complementary information 

provided by protein co-expression modules to improve the RNAseq derived GRN. 

 

1.3.3 Integrated analysis of transcriptomics and 
proteomics data 

To overcome the limitations inherent to each -omics layer, novel bioinformatics 

approaches have been developed to obtain a comprehensive perspective of 

biological systems. 

In greater detail, single-level omics approaches lack the resolving power to 

establish causal relationships between molecular alterations and phenotypic 

manifestations. The joint analysis of different biological layers provides instead 

a clearer representation of the mechanisms underlying complex diseases as 

cancer32. 
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As an example, mRNA profiling cannot capture post-transcriptional modifications 

influencing the amount of active protein, while proteomics profiling cannot 

detect low abundant proteins or novel proteoforms generated via alternative 

splicing59. Given the notable difficulties in directly correlating transcriptomics 

and proteomics profiles, several types of approaches have been proposed to 

jointly analyse the two sources of data, for example by: creating a reference set 

from the union of the two layers into a single framework; extracting common 

functional contexts, typically in terms of enriched signaling pathways; through 

topological and network analysis to find, for example, common regulators 

driving both expression profiles; by applying clustering approaches, aiming to 

find similarities between the groups identified in each individual dataset; 

dynamic modeling to describe temporal regulation of gene expression by 

leveraging the information provided by the proteomic profile60. 

 

 

Given the proven efficacy of the joint methods in cancer research, in Chapter 4 I 

propose a novel network-based joint enrichment analysis approach. The model is 

based on the construction of integrative modules generated by merging GRN 

regulons with associated protein complexes. 

 

1.4 Summary of research hypothesis and aims of the 
PhD project 

This PhD project aimed to evaluate and develop network-based methods for the 

analysis of PCa omics data. The final goal of the in silico approach was the 

identification of potential prognostic and diagnostic biomarkers that can then be 

mechanistically investigated through in vitro or in vivo experiments. 

In Chapter 3, by exploiting the richness of information stored in gene-gene 

interactions, I tested the hypothesis that a gene regulatory network derived 

from transcriptomics profiles of PCa orthografts can reveal candidate 

transcriptional regulators with potential prognostic value. 
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In Chapter 4, I explored the possibility of integrating the regulon structure 

inferred from transcriptomics profiles in Chapter 3 with proteomic data 

generated from the same preclinical orthografts. The objective of the study was 

to assess the complementarity of the two omics layer and provide more robust 

insights into the regulatory mechanisms underlying CRPC.   

In Chapter 5, I assessed the utility of the network-based investigation as a tool 

to identify changes associated with tumoral treatment responses. To this end, I 

leveraged transcriptomics data from in vivo subcutaneous xenografts, treated 

with either single or combination of drugs. 
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Chapter 2 – Materials and Methods 

    2.1 Preclinical models 

      2.1.1 Nude mice orthografts – experiment from Dr. 
Mark Salji 

Experiments involving prostate orthografts derived from human prostate cancer 

cell lines were carried by Dr Mark Salji as part of his PhD project12,61, including 

the subsequent transcriptomic and proteomic analyses. Hormone naïve human 

prostate cancer cell lines (CWR, LNCaP and VCaP) were implanted in androgen 

proficient nude mice to generate androgen dependent prostate orthografts 

(three biological triplicates for each cell line). Castration resistant (or androgen 

independent) prostate orthografts were generated from the respective isogenic 

derivatives (22Rv1, LNCaPAI and VCaP cells (with three biological triplicates for 

each cell line) by orthotopic implantation in castrated nude mice. All available 

samples (n=18) were used for the analyses.  

 

    2.2 Transcriptomics analysis 

        2.2.1 Next generation sequencing based RNA analysis 
– experiment from Dr. Mark Salji 

RNA was extracted from samples using RNeasy Mini Kit (Qiagen, 74104) after 

homogenisation with QIAshredder homogeniser columns (Qiagen, 79654). DNA 

was degraded with RNase-Free DNase Set (Qiagen, 79254). Quality of the 

purified RNA was then measured on a 2200 Tapestation (Agilent) using RNA 

screentape. Preparation of libraries for cluster generation and cDNA sequencing 

was done using Illumina TruSeq Stranded mRNA LT Kit (Illumina, 20020594). 

Quality and quantity of the DNA libraries was assessed using a 2200 Tapestation 

(D1000 screentape) and Qubit (Thermo Fisher Scientific, Q32851) respectively. 

The libraries were run on the Illumina Next Seq 500 using the High Output 75 
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cycles kit (2 x 36 cycles, 150bp paired end reads, single index). Fastq files were 

generated from the sequencer output using Illumina’s bcl2fastq. 

The data is published by Dr. Mark Salji62. 

 

        2.2.2 Pre-processing 

Raw fastq files underwent the following steps: adapter trimming using 

‘ILLUMINACLIP’ step from ‘Trimmomatic’63 version 0.36; alignment to 

GRCh37.p13 human reference (and GRCm38.p4 mouse reference for orthografts) 

with TopHat64 v2.0.14; ; human/mouse reads disambiguation using 

Disambiguate65 v1.0. 

 

        2.2.3 Quality control 

Both unaligned and mapped underwent quality control. FastQC66 v0.11.9 was 

used to check sequence quality, base content, GC content, N content and 

duplication levels. Rseqc67 v2.6.4 has been adopted to check mapped gene body 

coverage, inner distance, and read duplications.  

 

       2.2.4 Gene counts profiles 

Gene level raw counts were calculated using ‘HTSeq’68 version 0.9.1 and 

GRCh37.p13 (and GRCm38.p4 for orthografts) annotation files (.gtf) for human 

and mouse reads respectively. Gene level FPKM quantification was performed 

using ‘cufflinks’69 v2.2.1 and GRCh37.p13 (and GRCm38.p4 for orthografts) gtfs 

for human and mouse reads respectively. 
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        2.2.5 Group and single sample differential gene 
expression 

The R package ‘Deseq2’70 v1.26 was used to calculate differentially expressed 

genes (DEG) among the treatments/phenotypical groups, using default 

parameters and gene-level raw counts as input. 

For single sample analysis, differentially expressed genes were calculated by 

subtracting the Deseq2 normalised counts of each tumoral samples with the 

average of the panel made of all normal samples within each dataset under 

investigation. The significance of the difference was calculated through the 

interpolation on the standardized gaussian distribution, after dividing each 

difference for the standard deviation of the gene expression in the panel of 

normals. 

 

       2.2.6 Regulons enrichment 

The full DEG lists for groups of samples were mapped onto the gene regulatory 

network identified from the preclinical orthografts. The inferred set of positive 

and negative gene-gene interactions, as well as each list of DEG, was given as 

input to the function ‘nbea’ from the package ‘EnrichmentBrowser’71 version 

v2.12.1, applying the ‘GGEA’49 (gene graph enrichment analysis) method with 

default parameters. A threshold of FDR ≤0.05 has been adopted to identify the 

enriched regulons (Appendix 1-3).  

 

       2.2.7 Pathway and statistical analysis 

The R package ‘clusterProfiler’72 v2.1.0 was used to perform overrepresentation 

analysis of the lists of prioritized genes. In particular, the .gmt files obtained 

from the ‘Molecular Signature Database (MSigDB)73 v6.2 of C3 collection of 

transcription factors targets, H collection of experimentally validated Hallmarks 

of cancer and C5 collections of biological processes from gene ontologies, were 
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given as input to the ‘enricher’ function of ‘clusterProfiler’. All statistical 

analysis of the preprocessed data were performed using R v4.03 (Appendix 3). 

 

2.3 Gene regulatory network analysis 

       2.3.1 Datasets – obtained from Transpot consortium 

Hormone naïve human prostate cancer cell lines (CWR, LNCaP and VCaP) were 

implanted into the prostates of androgen proficient (6 weeks old) nude male 

mice to generate androgen dependent prostate orthografts. Castration resistant 

(or androgen independent) prostate orthografts were generated from the 22Rv1, 

LNCaPAI and VCaP human PCa cell lines by orthotopic implantation into the 

prostates of castrated nude (6 weeks old) male mice. RNA-seq data were 

obtained from 18 orthografts derived from the six human PCa cell lines studied 

(n = 3 mice per cell line)12, referred to as the UGLA dataset. All data were 

included for the inference of the gene regulatory network. 

 

RNA-seq data from three clinical PCa cohorts were included in this study 

(Appendix 1): The University of Tampere (UTA-EGAD00001000609), the Erasmus 

Medical Center in Rotterdam (EMC-EGAD00001004215), and the International 

Cancer Genome Consortium (ICGC-EGAD00001004791). A summary of the 

clinicopathological characteristics of the cohorts is provided in Table 2-1. 

 

The cohorts were chosen, and preferred to bigger dataset such as TCGA, for the 

standardized definition of biochemical recurrence.  

 

https://www.ebi.ac.uk/ega/datasets/EGAD00001000609
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Table 2-2. Clinicopathological characteristics of patient cohorts (NA, data not available). 

 

       2.3.2 Regulons Identification and Filtering 

The PCa gene-regulatory network was generated using the R package ‘RTN’74 

version v2.4.6 (which reimplements the ARACNe/MRA pipelines), based on FPKM 

values (Fragments Per Kilobase of transcript per Million mapped reads) of the 

UGLA orthograft dataset and a list of 2065 transcription factors that were given 

as input (manually curated from MsigDb73).  

Transcription factors significantly associated with one or more target genes were 

identified as regulators. The normalised counts matrix was then filtered by 

genes with FPKM equal or higher than one in at least one sample and 

standardised within the zero-to-one range. The function ‘tna.shadow’ from the R 

package ‘Viper’75 version 1.14.0 has been used to account for the ‘shadow’ 

Clinical cohorts UTA  EMC  ICGC  

Number (n) n = 27 % n = 37 % n = 85 % 

age at diagnosis       

range 47–71  NA  32–52  

mean 60  NA  47  

median 61  NA  48  

na 0      

psa at diagnosis (ng/ml)       

range 3.5–48.1  0.3–36.2  3.1–743  

mean 10.4  11.8  30.48  

median 8.3  9.4  8.21  

na 0  0  0  

tumour stage       

t1 10 37.0 1 2.7 0 0.0 

t2 16 59.3 15 40.5 61 71.8 

t3 1 3.7 13 35.1 23 27.1 

t4 0 0.0 8 21.6 1 1.2 

na 0 0.0 0 0.0 0 0.0 

gleason score       

<7 7 25.9 6 16.2 12 14.1 

7 13 48.2 19 51.4 65 76.5 

>7 7 25.9 0 0.0 8 9.4 

na 0 0.0 12 32.4 0 0.0 

therapy       

Radical prostatectomy 27 100 37 100 85 100 

 



32 
 

effect (the chance of obtaining false positive result) during the enrichment of a 

GRN, if a non-active regulator (in other words not causing the alterations in the 

expression levels) shares a significant proportion of its targets with a bona fide 

active transcription factor (Appendix 1). In greater details, the correlation data 

is permutated to generate a null model. The strength of the predicted intra 

regulons’ relationships is then compared to the null model by taking into 

account regulons’ sizes. Finally, a pvalue cutoff is used to discern more or less 

likely TF-target associations.  

 

       2.3.3 Gene Regulatory Network Metrics 

The graph structure was analysed using the R package ‘igraph’ v1.2.5, exploiting 

the functions ‘degree’, ‘betweenness’, ‘constraint’ and ‘closeness’ to retrieve 

metrics at the ‘nodes’ level, providing complementary information about the 

importance of individual nodes within the network: (1) The ‘degree’ (or ‘in-

degree’) of a node in a GRN is the number of transcriptional regulators involved 

in the control of the expression of a specific target gene. For different GRNs, the 

number of regulatory genes implicated for individual target genes varies, 

depending on complexity of the network; (2) ‘Betweenness’ is defined as the 

number of shortest paths passing through the node and can be interpreted as a 

measure of the influence of the node of interest over the global flow of 

information; (3) Burt’s ‘constraint’ is a measure of the redundancy of the 

information received by the node and can be interpreted as its ability to 

converge different signals; (4) ‘Closeness’ quantifies the node’s participation 

within a network. Finally, the Jaccard Index, a statistical measure defined as the 

ratio of the intersection and the union of two sets, was applied to highlight 

network nodes sharing a meaningful proportion of targets. The threshold of 0.1 

was chosen to prioritise the nodes in this study. A threshold of Jaccard 

Index/Co-efficient set at 0.1 highlights pairs of regulons with intersection 

(sharing) of ≥10% of the target genes when considered across the full set of 

target genes for the respective regulons (Appendix 1). 
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      2.3.4 Statistical analyses related to gene regulatory 
network analysis in clinical cohorts 

Biochemical recurrence was defined as serum prostate-specific antigen (PSA) 

levels ≥ 2 ng/mL above nadir PSA (the lowest PSA level after treatment) and 

signifies clinical evidence of relapsed cancer. Relapse free survival (defined by 

absence of biochemical recurrence) was used to evaluate the prognostic utility 

of regulon signatures of interest in the UTA, EMC and ICGC clinical cohorts. The 

performance of our candidate JMJD6 regulon signature as a prognostic marker 

was compared to three published signatures (using the formulas described in the 

original publications41–43: (1) For the TMCC11 signature, the per-sample average 

of the normalised counts of the genes belonging to the signature was used to 

stratify the patient cohort into two groups according to values above or below 

the 67th percentile. (2) For the HYPOXIA-28 signature, the normalised counts 

were multiplied by the coefficient associated to each gene of the signature and 

all the products were added together to generate a sample-specific overall 

score, and the patient cohort was stratified into two groups according to the 

median of its distribution. (3) For the BROMO-10 signature, the function ‘gsva’ 

from GSVA v1.38.2 was used to analyse data from the normalised counts to 

calculate a signature enrichment score per sample.  

 

Patients were labelled according to the enrichment status of JMJD6, as 

predicted by GGEA, into active or inactive status groups. Hazard ratios (HR) for 

all the analysis were obtained by Cox proportional-hazard model regressions, 

using the ‘coxph’ function from the R package ‘survival’ version 3.1-8. 

Noteworthy, the small number of samples in the cohort was not enough to assess 

the assumptions for the CoxPH model. 

 Moreover, for multivariate analysis, Gleason score and the TNM 

(Tumour/Node/Metastasis) classification were added to the model formula in 

the form: ‘Endpoint ~ JMJD6regulon_activity + second_variable’. Kaplan–Meier 

curves were obtained using the ‘ggsurvplot’ function from the R package 

‘survminer’ v0.4.8 (Appendix 1).  
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2.3.5 Human prostate cell lines used in in vitro studies – 
experiment from Drs. Linda Rushworth 

CWR22 (hormone naïve) cell lines were obtained from Case Western Reserve 

University, Cleveland, Ohio, and cultured in either RPMI medium (Gibco, Thermo 

Fisher Scientific, Waltham, MA, USA), supplemented with 10% foetal bovine 

serum (FBS, Gibco, Thermo Fisher Scientific, Waltham, MA, USA) and 2 mM 

glutamine (‘CWR_FBS’ label in Figures), or androgen-deprived medium consisting 

of phenol-free RPMI (Gibco, Thermo Fisher Scientific, Waltham, MA, USA) 

supplemented with 10% charcoal stripped serum (CSS, Gibco, Thermo Fisher 

Scientific, Waltham, MA, USA) and 2 mM glutamine (‘CWR_CSS’ label in Figures).  

Their matching castration-resistant cell lines 22Rv1 were obtained from ATCC 

and cultured in androgen-deprived medium only, as described before 

(‘22Rv1_CSS’ label in Figures). All cells were kept in incubators set at 37°C and 

5% CO2. 

 

2.3.6 Western blot analysis 

Protein extraction were performed by Dr Linda Rushworth. In brief, media was 

removed and cells were washed twice with PBS. Llysis buffer (1% SDS with 

protease and phosphatase inhibitors) was added and the cells were scraped into 

tubes. The samples were sonicated 3 times x 10 seconds, spinned for 10 minutes 

at maximum speed to pellet cell debris. The supernatant was then moved into 

fresh tube. LDS (Lithium dodecyl sulfate) sample buffer was added 1:3 to the 

volume of lysate and boiled for ~5 minutes before loading the gel. 

 

20 micrograms of proteins were loaded on an SDS-PAGE gel (Invitrogen, Thermo 

Fisher Scientific, Waltham, MA, USA) and transferred to a PVDF membrane (GE 

Healthcare, Chicago, IL, USA). Membranes were then blocked in 5% milk in TBS-

Tween (TBST) and subsequently probed overnight, on a roller at 4 °C, with  
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primary JMJD6 antibodies (#60602, Cell Signaling Technology, Danvers, MA, USA) 

diluted 1:1000 in 5% milk TBST. 

The following day the membranes were washed with TBST three times, 10 

minutes each, and incubated with secondary antibody, diluted 1:10000 in 5% 

milk in TBST. Revelation was obtained by scanning the membrane with the LI-

COR Odyssey CLx Imaging system (LI-COR Biosciences, Lincoln, NE, USA). 

 

2.3.7 si-RNA mediated knock-down 

For the knock-down experiment, CWR and 22Rv1 cell lines were transfected 

using the Lipofectamine RNAiMAX76 Reagent (Invitrogen, Thermo Fisher 

Scientific, Waltham, MA, USA) and JMJD6 specific siRNA (ON-TARGETplus siRNA 

Reagents, Catalog ID:J-010363, Dharmacon, Horizon inspired cell solutions, 

Cambridge, UK).  

Baseline cellular response to siRNAs was assessed using a control pool of four 

non-targeting siRNA (ON-TARGETplus Non-targeting Control Pool, Catalog ID:D-

001810-10-05, Dharmacon, Horizon inspired cell solutions, Cambridge, UK). RNA 

or protein extraction was performed 72 hours after transfection. 

 

2.3.8 In vitro growth assay 

Evaluation of cell growth was performed using the Incucyte® Live-Cell Analysis 

system, following the ‘Adherent cell line’ protocol. 

20000 CWR and 25000 22Rv1 cells were plated in a 96-well plate to evaluate the 

six conditions (‘CWR_FBS_ControlsiRNAs’, ‘CWR_FBS_JMJD6siRNAs’, 

‘CWR_CSS_ControlsiRNAs’, ‘CWR_CSS_JMJD6siRNAs’, ‘22Rv1_CSS_ControlsiRNAs’, 

‘22Rv1_CSS_JMJD6siRNAs’) with 10 technical replicates; phase-contrast images 

were captured every two hours and analysed using the integrated confluence 

algorithm, part of the Incucyte® Live-Cell Analysis suite.   
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2.4 Integrating transcriptomic and proteomic analysis 

Transcriptomic analysis is based on methodology described in Section 2.2. 

Samples for proteomic analysis were carried out by Dr Mark Salji previously in 

the host laboratory. 

 

        2.4.1 SILAC based control using in vitro cultures of 

selected prostate cancer cells – experiment from Dr. 
Mark Salji 

CWR, LNCAP, LNCAPAI and VCAP cell lines were grown and labelled with Arg-10 

and Lys-8 using 100% dialysed FBS (dFBS) conditions to perform the SILAC 

experiment. For the heavy labelling, the RPMI SILAC media was used: Arg-10 and 

Lys-8 were introduced at the same concentration of the Standard RPMI 1640 

conditions, namely 200mg/L and 40 mg/L, respectively. The SILAC standard was 

generated by seeding 1x106 cells of each cell line in 6 cm dishes and by 

transferring them to their respective full or Charcoal Stripped serum Media to 

maintain approximately 50% confluence. Subsequently, the samples underwent 

the following steps: trypsinisation of the cells and centrifugation to remove 

excess trypsin; Centrifugation at 14,000 RCF for 15 minutes to remove DNA 

contamination; protein quantification via Bradford’s assay with BSA standard 

curve; expansion of labeled cell lines in SILAC media to maintain incorporation; 

mixing at a 1:1:1:1 ratio to generate the super SILAC standard. 

 

        2.4.2 Processing of prostate orthografts for 
quantitative proteomic analysis – experiment from Dr. 
Mark Salji 

Frozen tumours from the orthografts models reflecting hormone naïve (CWR, 

LNCAP, VCAP grown in intact mice) and correspondent CRPC tumours (22Rv1, 

LNCAPAI and VCAP grown in castrated mice) were split in four pieces and a 

quarter was processed for the proteomics experiment through grinding. Precellys 

homogenization at room temperature, involved ~20 mg of grinded tumour 
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together with 200 μl of 4% SDS lysis buffer. Subsequently, the lysate was boiled 

at 95 oC for 5 minutes and sonicated to fragments, to remove DNA by 

centrifugation. 20 mg of tumour lysates in 200 µl of 4% SDS buffer were 

quantified in triplicates using Bradford’s assay. To reduce DDT concentration, 

samples were first diluted 1:5 in HPLC water. The filters applied for the 

selection of the samples were the following: standard deviation (SD) of <0.001 

between triplicate values of 595 nm absorbance by spectrophotometry 

Bradford’s assay and R2 value with standard curve >0.99. Each of the 18-tumour 

sample (three biological replicates for each of the six models) was mixed at 1:1 

ratio with the super SILAC standard for normalization purposes. 

 

        2.4.3 Protein quantification to determine 
differentially expressed proteins – experiment from Dr. 
Mark Salji 

The raw data obtained from the mass spectrometer was processed with 

MaxQuant version 1.5.2.8 and searched with Andromeda search engine querying 

two different SwissProt databases: Homo sapiens (09/07/2016 92939 entries) and 

Mus musculus (20/06/2016; 57,258 entries). Protein hits coming from individual 

database were separated using “Split protein groups by taxonomy ID” option in 

MaxQuant. The “Re-quantify” and “Match Between Runs” options were also 

used. For quantification, multiplicity was set to 2 (doublets) and Arg0/Arg10, 

Lys0/Lys8 were used for ratio calculation of SILAC labelled peptides. Only unique 

peptides were used for protein group quantification. Digestion mode was set to 

“Specific” using the digestion enzyme trypsin and allowing for two miscleavages. 

Iodoacetamide derivative of cysteine was specified as a fixed modification, 

whereas: oxidation of methionine and acetylation of proteins N-terminus were 

specified as variable modifications. Peptides with less than seven amino acid 

residues were excluded from processing. Only protein groups identified with at 

least one unique peptide were used for quantification. The protein groups 

output file was then loaded into the Perseus platform version 1.5.2.4. Perseus 

was used to filter the data for confident identifications based on at least 1 

unique peptide match and identified in at least 2 of 3 biological replicates in at 

least one group. A further median normalisation was performed on all samples 
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prior to Welch’s t-test with permutation-based FDR set at 0.01 used to identify 

significantly changing proteins. Median normalisation of all samples was used to 

correct the data prior to applying FDR adjusted statistical testing. The pipeline 

generated four matrices for downstream analysis: LFQ of samples harbouring 

light isotopes (orthograft tumours), LFQ of heavy labelled samples (CWR, 22Rv1, 

LNCAP, LNCAPAI cell lines super SILAC standard), SILAC ratio of light versus 

heavy isotopes intensities, ratios of LFQ light and heavy intensities.  

 

        2.4.5 Protein network generation and modules 
splitting 

 

The R package ‘ProCoNa’ v1.0.2 was used to build the protein co-expression 

network and the associated modules of co-expression from the light-labelled 

intensities matrix (orthograft data) and default parameters, except for the 

number of permutations increased from 100 to 1000 to achieve higher 

robustness. 

Original modules obtained from the protein co-expression network were split 

using a two-steps procedure: the R package ‘biclust’ v2.0.2 was used to reveal 

influences from the orthografts’ cell type of origin or CRPC status; the R package 

‘conclust’ v1.1 was, subsequently, used to rearrange the predicted interactions 

by taking into account experimentally validated protein-protein interactions 

(Hippie and CORUM repositories). 

The degree of overlap within the inferred protein modules and within the 

CORUM sets was calculated through the pairwise Jaccard index, namely the ratio 

of the intersection and the union set of the content of two lists. Only non-zero 

Jaccard indexes were retained for the generation of Figure 4-4 (Appendix 2). 
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        2.4.6 Pathway analysis and integrative modules 
analysis (generation and enrichment) 

The R package ‘ROTS’ v1.18 was used, with default parameters, to calculate 

differentially expressed proteins between PC and CRPC samples after log10 

transforming the intensity values from the four normalized matrices generated 

by the SILAC quantification.  

 

The R package ‘clusterProfiler’ v2.1.0 was used to perform overrepresentation 

analysis upon the lists of differentially expressed genes and proteins. In 

particular, the H collection (‘.gmt’ file) of experimentally validated Hallmarks of 

cancer was obtained from the MSigDB v6.2 and given as input to the ‘enricher’ 

function, applying default parameters.   

 

RNA-seq derived regulons and CORUM protein complexes were integrated by 

means of at least one shared feature. The CORUM protein-protein interactions 

were weighted according to the adjacency values resulted from the protein co-

expression analysis. To each regulon, one or more complexes were linked to and 

labelled either ‘posComplex’, when expected to be coherently expressed with 

the transcription factor positive target, and ‘negComplex’ when expected to be 

coherently repressed together with the transcription factor negative target. See 

Figure 4.6 for an example of integrative module. 

 

The enrichment of the integrative modules consisted of the calculation of 

separate scores for regulons (TF score) and protein complexes (PC score) 

respectively. The R package ‘pracma’ v2.2.9 was used to calculate the cubic 

root among three weights for both TF and PC scores: edge weight obtained from 

the gene regulatory network and protein network; p-value associated to the 

CRPCvsPC comparison; log2fold change of the CRPCvsPC comparison. The scoring 

was repeated by reshuffling the differentially expressed genes and proteins 

tables using the R package ‘boot’ v1.3-24. 10,000 permutations allowed the 

calculation of a p-value for both the TF and PC scores for each integrative 
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modules. The threshold for significant results was defined at FDR= 0.05 

(Appendix 2).  

 

2.5 Transcriptomics analysis from in-vivo treated 
samples 

2.5.1 In-vivo mouse models – Experiment from Prof. Ian 
Mills 

In total, 87 mice were sacrificed for this experiment, split in the following 

groups: Treatment arm 1 (15 mice) – Mycophenolate mofetil (100 mg/kg) – 

delivered daily by oral gavage in a 0.9% saline solution; Treatment arm 2 (15 

mice) – Abiraterone at 0.5 mmol/kg/d in vehicle delivered by intraperitoneal 

injection in 5% benzyl alcohol, 95% safflower oil together with prednisolone 

phosphate (water soluble) at 20 mg/kg delivered by intravenous injection – 

both with daily dosing; Treatment arm 3 (15 mice) – ARN-509 at 30 mg/kg 

administered daily by oral gavage in a formulation solution consisting of 15% 

alpha-tocopherol (Vitamin E)-TPGS and 65% of a 0.5% w/v 

Carboxymethylcellulose solution in 20 mM citrate buffer (pH 4.0); Treatment 

arm 4 (15 mice) – Mycophenolate mofetil (100 mg/kg) and ARN-509 (30mg/kg); 

Treatment arm 5 (15 mice) – Mycophenolate mofetil (100 mg/kg), Abiraterone 

(0.5 mmol/kg/d in vehicle) and prednisolone phosphate (20 mg/kg); Untreated 

(2 mice); Vehicle (10 mice) – 0.1 ml 5% benzyl alcohol and 95% safflower oil 

solution via intraperitoneal injection every day. 

 

2.5.2 Growth assays – Experiment from Prof. Ian Mills 

The LNCaP C4-2b derivative stably transduced with luciferase and expressing 

exogenous androgen receptor was selected and used as previously described 

77,78. This line was implanted subcutaneously at single flank sites at 106 cells 

(100 μL in 50% Matrigel (BD Biosciences) and 50% growth media) into the flanks 

of male SCID mice. Drug dosing, administration and formulations are outlined 

above for each treatment arm. Tumour size was measured twice weekly in 
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three dimensions (l x w x d) using calipers. In addition, in vivo luciferase 

imaging was used through the intraperitoneal injection of d-luciferin substrate 

(100 μl at a concentration of 15mg/ml, Xenogen). For this procedure the mice 

were anaesthetised 5 minutes post-injection using isfluorane (Baxter) and then 

imaged using a cooled charged-couple device IVIS camera. Downstream 

analysis of the imaging data was undertaken using Living Image 2.30 software. 

In all cases treatment commenced once tumours were established and had 

reached a volume of 300 mm3. Animals were euthanised once tumours 

reached a terminal volume of 1000 mm3 or at three weeks post-treatment, 

whichever occurred earlier. 

 

2.5.3 RNA-seq – Experiment from Prof. Ian Mills 

RNA was extracted from the cells and collected utilizing the column-based 

method through the RNeasy MinElute Clean-up Kit (QIAGEN, Hilden, Germany), 

at a concentration of 25 ng/μL in 20 μL, according to the manufacturer’s 

instructions. The RNA library preparations were performed with the KAPA RNA 

HyperPrep Kit (KAPA Biosystems, Roche Holding AG) according to the 

manufacturer’s instructions. Sequencing was performed on Illumina Next Seq 

500, obtaining 25M 75 base pairs paired-end reads per sample. This was 

performed by the Genomic Core Technology Unit, CCRCB, Queen’s University 

Belfast.  

 

2.5.4 Fastq pre-processing 

RNA-seq fastq files received from Queen’s University Belfast were processed 

through the following pipeline to obtain gene-level normalized counts for each 

sample: adapter trimming using ‘ILLUMINACLIP’ step from ‘Trimmomatic’ 

version 0.36; alignment to GRCh37.p13 human reference and GRCm38.p4 

mouse reference with TopHat v2.0.14; human/mouse reads disambiguation 

using Disambiguate 1.0; gene level raw counts calculation using ‘HTSeq’ 

version 0.9.1 and GRCh37.p13 and GRCm38.p4 annotation files (.gtf) for 
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human and mouse reads respectively; gene and transcripts level FPKM 

quantification using cufflinks-2.2.1 and GRCh37.p13 and GRCm38.p4 gtfs for 

human and mouse reads respectively.  

 

2.5.5 Principal component analysis and heatmaps 

Principal component analysis was performed using the R package ‘stats’ v4.0.3  

and Deseq2 normalised counts, to visualise the overall effect of experimental 

covariates and batch effects within the data (Appendix 3). 

The heatmpas were generated using the ‘heatmap3’ R package, with the 

following parameters: distance metric = as.dist(1 - cor(t(x), use = "pa")); 

hclustfun = hclust, method = "complete", scale = ‘none’. 

 

2.5.6 Differentially expressed genes 

The R package ‘Deseq2’ v1.26 was used to calculate DEG among the 

treatment's groups, using default parameters and gene-level raw counts as 

input.  

Given the little number of untreated samples, both the no-treatment and the 

vehichles have been used as controls. The rationale was to have the most robust 

results possible with this experiment design. 

 

 

2.5.7 Pathway analysis 

The R package ‘clusterProfiler’ v2.1.0 was used to perform overrepresentation 

analysis of the lists of prioritized genes. In particular, the gmt files obtained 

from the MSigDB v6.2 of C3 collection of transcription factors targets, H 

collection of experimentally validated Hallmarks of cancer and C5 collections 

of biological processes from gene ontologies, were given as input to the 
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‘enricher’ function, together with the DEG lists.  Only the over-representation 

analysis of the c5 collection provided statistically significant results at the q-

value level (Appendix 3). 
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Chapter 3 – Gene Regulation Network Analysis 

    3.1 Introduction 

Prostate cancer (PCa) is the second most common cancer among men and the 

fifth leading cause of death worldwide79. Tumour heterogeneity in PCa (between 

patients and among different tumour foci within individual patients) creates a 

major obstacle to the identification of clinically relevant molecular subtypes80. 

As a result, PCa treatment decisions are not based on tumour biology. Disease 

recurrence following treatment remains a significant problem, even following 

radical treatment such as radical prostatectomy or radical radiotherapy9. 

Despite the use of docetaxel chemotherapy or second generation androgen 

receptor pathway inhibitors along with androgen deprivation therapy (ADT), 

patients presenting with advanced and/or metastatic disease are at high risk of 

recurrent disease, which tend to be aggressive and incurable as either castration 

resistant (CRPC) or neuroendocrine PCa variants4,5. Therefore, there is an unmet 

need to improve our understanding of progressive PCa in order to identify new 

targets for therapy as well as prognostic biomarkers. 

 

Inter-patient tumoral heterogeneity and intra-tumour heterogeneity among 

different tumour foci are well reported, making it unlikely that a single gene will 

be a representative biomarker of PCa progression83. Investigating a gene set-

related network may leverage the correlations of the expression of multiple 

interacting genes84. Moreover, the study of gene-gene interactions can reveal 

commonalities that can be observed only at the functional level, when the 

alterations in different genes are associated with the same biological 

mechanism. 

 Several gene set-based panels are offered as prognostic tests for PCa patients. 

Commercial assays85–87 including Decipher™, Oncotype DX® and Prolaris, together 

with scoring methods published in the literature, have been developed using 

microarray, Illumina or Nanostring transcriptome profiles9–11 to apply mRNA 

expression data to predict the risk of cancer recurrence and/or progression. 
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While gene expression-based models have resulted in promising data for 

predicting cancer behaviour in vitro88, significant improvements are required 

before a stratification/prognostic tool in PCa patients can be considered for 

routine clinical practice, including the prediction of the risk of cancer 

recurrence following treatment4. The limitations of existing commercial 

molecular PCa diagnostic tests may stem from potential biases introduced during 

the signature identification step (including factors related to patient ethnicity89, 

immune90 and stromal91 components of the tumours) that may influence the 

gene expression profiles. Moreover, gene set-based methods typically focus on 

the expression of individual genes or gene sets, without the ability to 

incorporate biologically important information associated with gene-gene 

interactions84. 

 

Alterations in transcriptional programmes are frequently implicated in PCa 

progression92. Genes that co-operate within the same biological pathways are 

often under the regulatory control of shared (one or more) transcription factors. 

Conveniently, interacting genes tend to be associated at the expression levels93, 

providing the chance to infer their relationships from transcriptomics data. Gene 

regulatory networks (GRNs) are graphs describing transcriptional regulators and 

their target genes as nodes, while the relationships (level of correlation) among 

the regulators and target genes are presented as the edges. Statistical and/or 

machine learning approaches have been applied to gene expression data94 to 

predict the topology of GRNs, namely the arrangement of transcriptional 

regulators and their target genes as well as the direction of each transcription 

factor-target interaction (i.e., positive or negative regulation). Within GRNs, 

data on the agreement between the predicted regulations and differential gene 

expression analysis can be applied to explore the underlying biological 

mechanisms to explain specific phenotypes (such as cancers with lower or higher 

chances of recurrence/progression). 

 

Preclinical models of human PCa cells grown as orthotopic xenografts in mice 

(orthografts) represent a useful tool to mimic progressive clinical disease. 

However, the use of preclinical PCa as a tool to identify potential GRNs involved 
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in progressive disease has not been tested.Despite the presence of intrinsic 

biases, our hypothesis is that a better overview of the underlying biology is 

provided by the regulons. 

 

Here, to generate a robust scoring method, I derived GRNs from a collection of 

preclinical hormone naïve (dependent on androgens for growth) and castration 

resistant (growth despite androgen deprivation therapy) human PCa orthografts 

to capture the heterogeneous nature of clinical disease, leveraging the strength 

of correlations in the expression patterns of genes transcribed by tumour cells 

only. Filtering the GRNs for statistically significant associations led to the 

identification of putative regulons, signifying the network of target genes and 

shared transcription factor (or transcriptional regulator) involved. Integrating 

data from preclinical orthografts and clinical PCa cohorts, I modelled regulon 

signatures to identify patients at risk of cancer recurrence, and identified the 

JMJD6 (Jumonji Domain Containing 6, arginine demethylase and lysine 

hydroxylase, a protein hydroxylase or histone demethylase) regulon as a 

prognostic marker in PCa (Figure 3-1). Lastly, preliminary knock-down 

experiments were performed on hormone naïve and hormone resistant prostate 

cancer cell lines to further test the involvement of JMJD6 in prostate 

carcinogenesis.  
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Figure 3-2. Workflow of the gene regulatory network analysis. 

 

 

    3.2 Results 

3.2.1 Clinical cohorts used to integrate with 
transcriptomic data from preclinical orthografts  

Summary of the three clinical PCa cohorts (namely UTA, EMC and ICGC) included 

in this study can be found in Section 2.3. The focus of the study was the 

identification of biomarkers able to predict the progression of PCa into CRPC. 

The CRPC orthograft data (9 samples) was used, together with the HN orthograts 

data (9 samples), only to infer the gene regulatory network. 

 

Dataset from the UTA cohort95 were obtained from 46 prostate tumour samples, 

including 28 untreated PCa samples from radical prostatectomy and 12 benign 

prostate hyperplasia control samples (obtained by radical prostatectomy, 

cystoprostatectomy or transurethral resection). RNA-seq data from treatment 
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naive PCa samples that passed mapping quality control, provided with 

information on progression free time (n = 27), were used in this study, along 

with the 12 benign samples. 

The EMC dataset was obtained from 92 radical prostatectomy specimens (51 PCa 

with 41 adjacent benign prostate tissue)21,22. The tumour content was confirmed 

histologically. Only prostate tumour samples with the information on progression 

free time (n = 37) and all the benign control samples were used in the present 

study.  

The ICGC dataset consists of 125 PCa specimens (and 8 matched benign control 

tissue) from 100 radical prostatectomy specimens98. Six tumour samples from the 

same prostatectomy specimens were sampled multiple times (from 3 to 6 

biological replicates per patient) and were averaged at gene count level per 

patient, given the similarity in expression profiles. Samples from patients that 

did not receive neo-adjuvant therapy (n = 85) and all the benign samples (n = 8) 

were used in the present study. 

 

 3.2.2 Regulons Identification and Gene Regulatory 
Network from Preclinical Prostate Orthograft Models 

The PCa gene-regulatory network was generated as described in Section 2.3.2. 

The expression profiles of 2065 manually curated transcription factors and co-

factors73 (Appendix 4 - Table S1) were correlated with the differentially 

expressed genes in 18 prostate orthografts derived from human PCa cells, 

namely CWR22Res, 22Rv1, LNCaP, LNCaP-AI and VCaP (n = 3, except for VCaP). 

VCaP derived orthografts were grown in both hormone proficient and castrated 

mice (n = 3 each). Out of the 2065 transcription factors, statistically significant 

associations with one or more target genes were found for 1643 regulators. 

Further removal of the ‘shadow’ effect (the chance of obtaining false positive 

result) during the enrichment of a GRN, if a non-active regulator shares a 

significant proportion of its targets with a bona fide active transcription factor, 

produced a final set of 1308 regulons, with a median of 20 genes per regulon 

(range 2–121) identified (Appendix 4 - Table S2). Interestingly, a large fraction of 
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transcription factors (n = 607; 46.4%), shared at least one target gene (Figure 3-

2A).  

 

Based on gene regulatory network metrics described in Section 2.3.3, the 

Jaccard Index, a statistical measure defined as the ratio of the intersection and 

the union of two sets, was applied to highlight network nodes sharing a 

meaningful proportion of targets. The threshold of 0.1 was chosen to prioritise 

the nodes to be shown in Figure 3-2A. A threshold of Jaccard Index/Co-efficient 

set at 0.1 highlights pairs of regulons with intersection (sharing) of ≥10% of the 

target genes when considered across the full set of target genes for the 

respective regulons. By decreasing the threshold, a higher number of genes 

would be present in the figure. 

 

 



50 
 

 

Figure 3-2. (A) Gene regulatory networks identified in preclinical human prostate cancer 
orthografts. The regulatory network of regulons (nodes of all colours) is presented with the 
edges linking pair of regulons sharing part of their targets. The commonality between pairs 
of regulons was calculated through the Jaccard index.  Pairs with Jaccard Index ≥0.1 are 
shown. The colour of the nodes refers to the colour scale (range 1–0) represents the p-value 
of the enriched regulons associated with relapse free survival in the clinical (UTA and EMC) 
cohorts by cox regression analysis.  Regulons in grey represent insignificant networks and 
therefore not included in further analysis. (B) The gene regulatory network topology 
cantered on the JMJD6 regulon. Red edges represent positive regulations while blue edges 
inhibitory relationships. (A,B) The names of regulators are annotated with HUGO gene 
symbol in black. The colour scale (range 1–0) represents the p-value of the enriched regulons 
associated with disease free survival. 

 

Genes controlled by multiple transcription factors at the transcriptional level 

may suggest a functional requirement in controlling the expression of these 

target genes, thus signifying the likelihood of their biological importance. We 

searched for genes (as part of individual GRNs) predicted to be regulated by the 

highest number of transcriptional factors (Appendix 4 - Table S3). Up to 10 

transcription factors per target gene were observed within the networks 

identified. Four target genes were associated with the highest number of 

transcription factors (n = 10), and interestingly all of these four genes have 

previously been implicated in PCa: BUD31 encodes for a bona-fide AR-

coactivator that enhances AR transactivation in prostate cells99; PLOD3 is 

involved in tissue remodelling and plays a role in multiple tumour types including 

PCa100; SDR42E1 is implicated in early prostate organogenesis as well as 



51 
 

carcinogenesis101 and XAGE1A belongs to the cancer testis antigens family and its 

expression profile is linked to the aggressiveness of PCa102. Hence, a GRN-based 

analysis of prostate orthografts generated a network of candidate transcriptional 

regulators and their target genes that can be evaluated in clinical tumours.  

  

3.2.3 Analysis of Differentially Expressed Genes (DEG) in 
Clinical PCa Patient Cohorts 

Through comparison of each clinical tumour with the combined benign controls 

within the respective clinical cohorts, lists of differentially expressed genes (on 

a per sample basis) were generated on a per-sample basis initially in the UTA 

clinical cohort as part of a discovery analysis. The list of PCa associated genes 

(log2 fold changes and p-values) was then be used to identify the GRNs of 

interest, highlighting potential active regulons in individual tumours. In the UTA 

cohort (n = 27 PCa), we found a median of 2406 upregulated (range 1098–6419) 

and 282 downregulated (range 44–1173) genes per sample. In the EMC cohort as 

a validation dataset (n = 37 PCa), we observed a median of 2439 upregulated 

(range 827–7395) and 126 downregulated (range 1–925) genes for individual 

tumour samples.  

We ranked the differentially expressed genes by the average frequency of 

alteration (up- or down- regulation) within the respective patient cohorts 

(Appendix 4 - Figure S1). Of note, many of the frequently altered genes (altered 

in > than 60% of the patients in the UTA and EMC cohorts) have been implicated 

in PCa, including HPN103, CLDN8 (an androgen regulated gene that promotes PCa 

cell proliferation and migration)104, and ONECUT2 (a known master regulator in 

PCa that suppresses the androgen axis)105. Hence, analysis of differentially 

expressed genes in the UTA and EMC cohorts highlighted candidate genes 

associated with PCa.  
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3.3.4 Gene Graph Enrichment Analysis  

Data from transcription factor associated GRN identified in the preclinical 

prostate orthografts and individual gene sets from differentially expressed gene 

analysis on a per sample basis were integrated in a gene graph enrichment 

analysis (GGEA) to determine the activity status of the regulons (transcriptional 

regulators and their respective target genes) in the clinical tumours. The 

concordance of the positive and negative ‘transcription factor-target gene’ 

relationships was calculated for each sample within the UTA and EMC patient 

cohorts. GGEA49 applies an enrichment approach to study the interactome 

surrounding the coregulators of interest to find supporting evidence of 

transcription factor activity. 

In greater details, GGEA first maps the individual regulon under the investigation 

onto the full GRN to extract a subnetwork. Second, each edge of the subnetwork 

is scored for consistency with the expression data. Finally, the edge 

consistencies are summed up, normalized and statistically assessed via a 

permutation analysis. 

 

Differentially expressed genes in individual tumours within the two cohorts were 

mapped onto the candidate GRNs highlighted in the orthograft models. 

To corroborate enriched gene networks shared among independent cohorts, we 

ranked the regulons by the respective frequency of activation in the UTA and 

EMC patient datasets (Appendix 4 - Figure S2). Consistently, among the ten most 

frequently active transcription factors (regulators) in these two datasets, we 

found three known genes implicated in PCa progression: BACH1 promotes 

invasion and migration of PCa cells by altering metastasis related genes106; 

CITED2 (Cbp/P300 Interacting Transactivator With Glu/Asp Rich Carboxy-

Terminal Domain 2) has recently been proposed as a therapeutic target to tackle 

PCa metastasis107; and DNMT1 promotes PCa metastasis through the regulation of 

epithelial-mesenchymal transition and cancer stem cells108. Collectively, 

regulatory patterns identified in our preclinical orthograft PCa models 

successfully highlighted genes of potential clinical relevance.  
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3.2.5 Prognostic Utility of Regulon Activity Status in 
Radical Prostatectomy Clinical Cohorts 

To evaluate the prognostic utility of the inferred regulons, we investigated the 

potential association between the enriched/not enriched status of regulons and 

the time to cancer relapse (signified by biochemical recurrence) following 

radical prostatectomy. We performed univariate CoxPH regression analysis in the 

UTA dataset in the first instance to identify enriched regulons associated with 

cancer recurrence (Appendix 4 - Table S4). Eleven statistically significant 

candidate regulons highlighted, with JMJD6 as the top-ranking enriched regulon 

(p = 0.002; Table 3-1A, Figure 3-2B, Appendix 4 - Table S5). Analysing the EMC 

cohort as a validation dataset, fourteen enriched regulons were identified. 

Consistent with findings from the UTA cohort, JMJD6 was also identified as the 

top-ranking enriched regulon (p = 0.003; Table 3-1B, Figure 3-2B, Appendix 4 - 

Table S5). Besides JMJD6, the SUFU regulon was enriched in both UTA and EMC 

cohorts. Analysing all available prostate cancer datasets in the cBio-portal (n = 

22), altered JMJD6 gene was detected in multiple cohorts, with the highest 

incidence of genetic abnormalities (up to 8%) detected in metastatic tumours 

(Appendix 4 - Figure S3). We reasoned that analysis of the JMJD6 regulon as a 

network, rather than at a single gene level, would provide additional insight into 

its functional impact. Univariate regression analysis further revealed that the 

active JMJD6 regulon was associated with early biochemical recurrence also in 

the EMC cohort (Table 3-2A). We further examined the status of the JMJD6 

regulon as a prognostic signature in the ICGC cohort for additional independent 

validation. Enrichment of the JMJD6 regulon significantly correlated with time 

to biochemical recurrence in the ICGC cohort in univariate analysis (p = 

0.00648). Kaplan-Meier analysis for biochemical free survival further confirmed 

reduced biochemical free survival in the presence of active status for the JMJD6 

regulon in patients within the UTA, EMC and ICGC cohorts (Figure 3-3). 
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Figure 3-3. Disease free survival analysis of the JMJD6 regulon signature in clinical 
prostatectomy patient cohorts. The survival probability curves for patients in the UTA (A), 

A 

B 

C 
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EMC (B) and IGCG (C) cohorts were prepared with patients stratified according to the 
presence or absence of the enriched JMJD6 regulon in red and turquoise, respectively. 

 

Table 3-1. Univariate cox regression analysis for regulons enrichment. Top ten genes are 
listed for the (A) UTA and (B) EMC cohorts. 

 

 

To benchmark the JMJD6 regulon as a prognostic marker for 

progressive/recurrent PCa, three reported independent signatures were selected 

for comparison: two androgen receptor related signatures (namely TMEFF2 

regulated cell cycle related gene signature11 and the bromodomain related 10-

genes signature12) as well as a 28-gene hypoxia signature13. The three signatures 

are referred to as TMCC11, BROMO-10 and HYPOXIA-28 respectively hereafter. 

Compared to JMJD6 being prognostic in all three cohorts, TMCC11 was 

prognostic in the UTA and ICGC cohorts but not the EMC cohort, while BROMO-10 

and HYPOXIA-28 significantly predicted recurrence in only one of the three 

cohorts, UTA and ICGC, respectively (Table 3-2A). Multivariate analyses of the 

three signatures (and of the JMJD6 regulon status) were performed if the 

(A) 

ENSEMBL ID HUGO SYMBOL p VALUE 

ENSG00000070495 JMJD6 0.002 

ENSG00000196132 MYT1 0.006 

ENSG00000100410 PHF5A 0.02 

ENSG00000065057 NTHL1 0.02 

ENSG00000159210 SNF8 0.02 

ENSG00000171222 SCAND1 0.02 

ENSG00000123091 RNF11 0.02 

ENSG00000120798 NR2C1 0.02 

ENSG00000107882 SUFU 0.03 

ENSG00000146083 RNF44 0.04 

(B) 

ENSEMBL ID HUGO SYMBOL p VALUE 

ENSG00000070495 JMJD6 0.003 

ENSG00000095002 MSH2 0.006 

ENSG00000107882 SUFU 0.007 

ENSG00000136826 KLF4 0.01 

ENSG00000119969 HELLS 0.01 

ENSG00000151929 BAG3 0.02 

ENSG00000105607 GCDH 0.02 

ENSG00000092607 TBX15 0.02 

ENSG00000188486 H2AFX 0.02 

ENSG00000180596 HIST1H2BC 0.03 
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respective univariate analysis were significant. In multivariate analysis, the 

JMJD6 regulon status significantly predicted disease recurrence in UTA and EMC, 

but not ICGC (Table 3-2B). Among the three published signatures, none 

significantly prognosticate for cancer recurrence in multivariate analysis.  

 

Collectively, our analysis highlights the feasibility of integrating data from 

preclinical human orthograft models of PCa with multiple clinical cohorts to 

generate information on the regulon landscape in identifying potential 

prognostic signatures. For the first time, our data identified the active status of 

the JMJD6 regulon in patients at risk of PCa recurrence. 
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Table 3-2. Cox regression univariate (A) and multivariate (B) survival analysis. p-values (P), 
Hazard ratios (HR) and 95% Confidence intervals (CI) are showed for each univariate 
regression. Multivariate analysis results, using Gleason score and/or tumour stage as 
covariates, are shown only for the variables whose association with biochemical recurrence 
was significant (p < 0.05) at univariate level. All significant p-values are highlighted in bold. 

 

3.2.6 In vitro validation of JMJD6 

Three experiments were performed to further assess the functional contribution 

of JMJD6 in prostate cancer.  

(A) Univariate analysis 

Clinical  

cohorts 
UTA EMC ICGC 

Statistics HR 95% CI p HR 95% CI p HR 95% CI p 

Clinicopathological variables 

Gleason 

score 
2.7 1.6–4.7 0.0004 1.9 0.2–16 0.5 2 1.4–3 0.0004 

Tumor 

stage 
1.7 1–2.96 0.05 1.3 1–1.6 0.02 2.5 1.7–3.8 <0.0001 

Signatures 

active 

JMJD6 

regulon 

6 1.9–18 0.002 5.8 1.8–18.6 0.003 4.2 1.5–12 0.006 

TMCC11 4.5 1.1–17.8 0.03 1 0.3–3.7 1.0 4 1.6–10.5 0.004 

BROMO-10 0.06 0.0069–0.52 0.01 1.2 0.3–4.2 0.8 2.6 0.7–9.3 0.2 

HYPOXIA-

28 
2.1 0.7–6.24 0.2 1.1 0.4–3.5 0.8 3.4 1.3–9.2 0.01 

(B) Multivariate analysis 
 UTA  EMC ICGC 
 HR 95% CI P HR 95% CI P HR 95% CI P 

JMJD6 

regulon 
6.5 1.3–32 0.02 4.4 1.3–14.6 0.01 1.2 0.3–4.8 0.7 

Gleason 

score 
1.6 0.8–3.1 0.2      1.2 0.6–2.4 0.6 

Tumor 

stage 
2.3 1.1–4.9 0.03 1.2 1–1.5 0.05 2.6 1.3–4.9 0.004 

TMCC11 3.4 0.8–14.4 0.1       1.8 0.6–5.6 0.3 

Gleason 

score 
2.5 1.4–4.4 0.002      1.3 0.7–2.4 0.5 

Tumor 

stage 
1.58 0.8–3.2 0.2      2.2 1.1–4.4 0.02 

BROMO-

10 
0.3 0.03–4.2 0.4             

Gleason 

score 
2.15 1.08–4.27 0.03          

Tumor 

stage 
1.5 0.8–2.8 0.2          

HYPOXIA-

28 
            2.1 0.7–6.1 0.2 

Gleason 

score 
         1.3 0.7–2.4 0.4 

Tumor 

stage 
            2.2 1.13–4.24 0.02 
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I compared the level of JMJD6 expression in a panel of human prostate cancer 

cell lines along with the RWPE benign prostate epithelial cell line: LNCAP, 

LNCAPAI, C4-2, CWR22, 22Rv1, VCAP, DU145, PC3, PC3M. JMJD6 protein 

expression was higher in the prostate cancer cell lines when compared to the 

normal RWPE cell line (Figure 3-4), suggesting a potential role for JMJD6 in 

prostate cancer carcinogenesi.  

 

To formally investigate JMJD6 mediated functions, I employed small interfering 

RNA (siRNA)-mediated knockdown (silencing) of JMJD6 mRNA expression. 

Experiments were performed with cells cultured in either androgen proficient or 

androgen depleted conditions, with supplement using either full bovine serum or 

charcoal stripped serum (CSS, signifying steroid depletion) respectively. JMJD6 

protein expression was strongly reduced following transfection with JMJD6 

targeting siRNA (Figure 3-5), demonstrating the efficacy and specificity of the 

methodology. 

 

Once JMJD6 expression was convincingly suppressed following siRNA 

transfection, I carried out in vitro proliferation assay using the Incucyte systems 

for live-cell Imaging and analysis platform. The growth of both hormone naïve 

CWR22 and its derived isogenic 22Rv1 cells was studied, culturing CWR22 cells in 

both androgen proficient and deprived conditions and 22Rv1 in androgen 

deprived condition. In this way, three sets of comparisons were possible to 

assess the impact of silencing JMJD6 in cellular proliferation, namely CWR22 

cells cultured with and without androgens and 22Rv1 cells in ‘castrated’ 

condition. I observed marked suppression of growth in each control-treatment 

pair in the five days of incubation. Noteworthy, in the pair of cell lines tested, 

JMJD6 loss affected both hormone naïve and castration resistant cells (Figure 3-

6). Interestingly, the difference observed in growth due to JMJD6 loss appears to 

be higher for cells cultured in androgen deprived condition. This is particularly 

evident at t=80 hours (Figure 3-7), when the CWR cell lines grown in the 

androgen proficient serum showed the largest difference in growth following 

JMJD6 knock down: 2.94 times the number of cells at time 0 for CWR_FBS_C 
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versus 1.87 times for CWR_FBS_J, with a relative reduction of viability of 36%; 

31% reduction for CWR cultured in CSS; 25% reduction for the 22Rv1 pairs.  

 

In summary, these preliminary data is consistent with the idea that the JMJD6 

gene and its associated regulon may play a role in prostate carcinogenesis as 

suggested by my in-silico gene regulatory network analysis.  

 

 

Figure 3-4. Western blot of prostate cell lines lysates (n= 2 biological replicates). RWPE cells 
are represent a benign prostate epithelial cell line while all other cell lines are models of 
prostate cancer (including hormone naive, hormone resistant, metastatic status). 
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Figure 3-5. Western blot of siRNA mediated knockdown of JMJD6 expression in CWR and 
22Rv1 cell lines, cultured in FBS or CSS serum (n=1) respectively. Control samples, namely 
treated with untargeted siRNAs, are labeled with 'C', while JMJD6 targeted samples are 
labeled with 'J'. 

 

 

 

Figure 3-6. Normalised cell counts at different timepoints of incubation following siRNA 
mediated JMJD6 knock down with non-silencing control siRNA (n=10 technical replicates for 
each timepoint, n=1 experiment). X-axis refers to hours of incubation and Y-axis to the ratio 
of cell conflunce at time t versus t0. The norm value of the cell counts was obtained by 
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dividing the mean of the 10 replicates, for each condition and each timepoint, with the 
values mean at time 0, respectively to the each condtion. The error bars represent the 
standard error associated to the 10 replicatesfor each condition.. 

 

 

 

Figure 3-7. Boxplot of normalised cell counts at 80 hours of incubation (n=10 technical 
replicates for each timepoint, n=1 experiment). Cell counts were normalised by dividing the 
mean of the 10 replicates at t=80 with their mean at t=0, respectively to the each condtion. 
The error bars were obtained by diving the standard deviation of the 10 replicates at t=80 
with the mean cell count at the same t, respectively to each condition. 

 

    3.3 Discussion 

We hypothesised that the study of genes positively and negatively regulated by 

one or more transcription factors (collectively referred to as regulons) is a 

suitable approach to capture the general mechanisms driving tumour progression 

in PCa109. For the first time, we integrated datasets from preclinical human 

prostate orthografts and clinical cohorts to investigate if specific regulons were 

associated with the outcome of patients with PCa. By mapping transcriptomic 

gene graph enrichment-based signatures on to a network of interacting gene 

regulators, we identify the JMJD6 regulon as a candidate prognostic signature 

for biochemical recurrent PCa. Our analysis is consistent with a recent report on 

GRN-based investigation in breast cancer35 while our data on JMJD6 in PCa is 
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consistent with involvement of JMJD6 in oral110, breast111, neuroblastomas112, 

melanoma113 and ovarian114 cancers.  

 

The JMJD6 regulon consists of 27 positive and 3 negative putative target genes 

(Appendix 4 - Table S5), including RAD51, EZH2 and SORL1. RAD51 is predicted 

to be upregulated by JMJD6 (Figure 3-2B). RAD51, a critical gene for the DNA 

repair process, is upregulated in aggressive PCa115, and is included as part of the 

panel in the U.S. Food and Drug Administration approved Prolaris gene 

expression assay116. Similarly, EZH2 (Enhancer of zeste homolog 2) is associated 

with PCa progression117, and predicted to be upregulated by JMJD6 (Appendix 4 -

Table S5). Lastly, the expression of SORL1, a known hypoxia regulated gene43, 

negatively correlates with JMJD6 expression. 

 

We successfully identified regulons of interest from preclinical prostate 

orthografts and then investigated the prognostic value of our top candidate 

JMJD6 regulon. Given the small number of preclinical samples available as a 

starting point to infer the GRNs in PCa, we were not able to robustly compare 

between hormone naïve and castration resistant orthografts. Instead, we 

combined the available orthografts to model tumour heterogeneity of clinical 

PCa. Importantly, some transcription factor-target genes relationships may not 

be revealed because of the limited sample number, thus creating potential 

biases with a subset of regulons appearing transcriptionally more important. 

Nonetheless, even with this limitation, the JMJD6 regulon was identified as a 

key regulon enriched in two independent clinical cohorts, namely UTA and EMC, 

as well as the published independent ICGC clinical cohort. The ICGC cohort 

consists of relatively young patients (mean: 47, range: 35–52 years), compared 

to UTA (mean: 60, range: 47–71 years); such case selection bias may create 

confounding factors that contribute to the negative multivariate analysis for the 

JMJD6 regulon in the ICGC cohort. 

 

Although androgen receptor (AR) is essential for both prostate organogenesis and 

carcinogenesis, to our surprise, AR was not identified as an enriched regulon in 
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our analysis. AR may be functionally important in both benign and malignant 

prostatic epithelium, with distinct transcriptional profiles arising from functional 

re-programming. Even in CRPC, AR remains activated through by-pass 

mechanisms despite suppressed canonical (classical) androgen receptor pathway 

activities118. In addition, changes due to reprogramming of the AR as a 

transcription factor may not be fully highlighted by analysis of regulons as fixed 

transcription factor-target genes ‘units’. Furthermore, AR splice variants 

(including AR-V7) are strongly implicated in CRPC. During the preparation of this 

chapter, a highly relevant publication highlighted the relationship between 

catalytic function of JMJD6 and the generation of AR-V7 mRNA in advanced 

prostate cancer119. Silencing of JMJD6 expression suppressed growth of LNCaP95 

and 22Rv1 human CRPC cells, while combined JMJD6 knockdown and anti-

androgen treatment with enzalutamide produced substantially more anti-

proliferative effects than each of the two treatments alone. Collectively, their 

data implicates JMJD6 to be important in PCa cell viability and proliferation, 

thus further supporting our GRN-based findings. Noteworthy, our single (due to  

time limitations and Covid traveling restrictions) gene knock-down experiment 

on CWR and 22Rv1 cell lines supported the idea that JMJD6 may contribute to 

prostate cancer growth, suggesting further detailed evaluations of JMJD6 

function in prostate cancer including CRPC will provide more mechanistic 

information. 

 

The strategy of standardising the analysis, by adopting a panel of benign controls 

within each dataset (benign prostatic hyperplasia for the UTA and ICGC cohorts; 

benign tissue adjacent to the tumour for EMC cohort), allowed the reduction of 

biases arising from different protocols for sample handling, sequencing and data 

processing. Indeed, by leveraging a panel of control samples within each cohort, 

it was possible to show commonalities among the independent data sets without 

resorting to batch correction.  

 

JMJD6 belongs to the Jumonji C (JMJC) domain-containing family of proteins, 

thought to function mainly as a lysyl 5-hydroxylase and not as a demethylase120, 

although enzymatically it has been shown to possess both catalytic activities. Its 
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ability to regulate the transcriptional activity of p53 through hydroxylation of a 

lysine in the p53 C-terminus is highly relevant in cancer biology. Upregulated 

JMJD6 expression is related to tumour growth, tumour metastasis and high 

tumour pathological classification121–123. To build on our findings, the classical 

Waddington epigenetic landscape124 model can be applied to describe in more 

detail the mechanism of regulation for the target genes within the JMJD6 

regulon. Given its potential role in a number of tumour types, a novel JMJD6 

specific inhibitor SKLB325 has recently been developed114. Should future 

research confirm JMJD6 as a driver gene for progressive PCa, formal evaluation 

of JMJD6 targeted therapy will be warranted.  
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Chapter 4 - Integrative proteomics and 
transcriptomics analysis to identify functional 
modules in castration resistant prostate cancer 

    4.1 Background 

      4.1.1 Unbiased proteomic analysis 

Unbiased proteomics profiling refers to the quantification of all detectable 

proteins in a biological sample without resorting to a priori information about 

the molecules. The opposite protein quantification paradigm is referred to as 

targeted proteomics analysis, testing specific hypothesis for a pre-selected 

subset of amino acid chains (or peptides)125. In both cases, mass spectrometry126 

(MS) is the most common analytical technique used to measure proteins 

abundance. A mass spectrometer determines the mass-to-charge (m/z) ratio of 

gas-phase ions derived from peptides generated by proteolytic digestion. The 

peaks observed in the resulting spectra are then searched within a database of 

predicted peptides mass values, generated by an in-silico digestion of each 

protein. Statistical analysis and significance thresholds are then applied to 

detect proteins from high scoring peptides matches. Relative or absolute protein 

quantification is finally obtained by either comparing peaks abundances of 

differentially labeled peptides or by using a known amount of labeled peptides 

as a reference, respectively127. 

 

The first unbiased method applied in proteomics was the two-dimensional gel 

electrophoresis in which proteins are electrically separated according to 

molecular weight and charge. Despite the development of newer techniques, the 

2D gel arrays offers a convenient method for the recognition of protein isoforms 

of interest. Subsequently, metabolic labeling introduced the practice of 

incorporating known markers into biological samples to provide relative 

quantification of peptides based on the ratios of mass spectrometry generated 

peaks for respective isotopes pairs. A typical example of such techniques is the 

stable isotope labeling by amino acids in cell culture (SILAC). Other 

methodologies supporting unbiased proteomic quantification include:  
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(1) Proteolytic labeling of proteins labelled with Oxygen-18 (O-18) within the 

carboxylic acid group allows quantitation based on the ratio of the mass 

spectrometry derived peaks which signify the respective isotopes for 

peptides containing O-18 and O-16.   

(2) Isobaric tags for relative and absolute quantification (iTRAQ) employs 

covalent labeling of tags of varying mass at the N-terminus and side chain 

amines of peptides generated from protein digestions. iTRAQ is 

particularly useful to compare the abundance of proteins from different 

sources in a single experiment. 

(3) Addition of synthetic internal standards to the protein sample being 

analysed, to provide absolute quantification of multiple peptides, and 

then proteins, that share chemico-physical properties with the 

standard128.  

 

Building on data from transcriptomic analysis presented in Chapter 3 of this 

thesis, I wish to incorporate data from the proteomes of the same preclinical 

prostate tumour samples studied by RNA sequencing.  The analysis discussed in 

this chapter is based on proteomics quantification of hormone naïve and 

hormone resistant prostate cancer orthografts using a SILAC based approach, in 

which arginine and lysine heavy isotopes were incorporated into the respective 

in vitro cultured human prostate cancer cells and combined to provide a SILAC 

standard for adding to the lysates (light isotopes, or without labelling) from 

different prostate cancer orthografts being examined. In this way, data from 

orthografts derived from different cancer cell lines and different mice (with and 

without castration, mimicking clinical androgen deprivation therapy) can be 

confidently compared, minimising risk of biases and maintaining reliability and 

robustness of the quantitation129. 

Similar to the regulon-based analysis on transcriptomic data, the proteomes of 

18 orthografts from three sets of hormone naïve and castration resistant 

prostate orthografts were available for analysis, with cell line represented as 

triplicate orthorgrafts130.  
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        4.1.2 Consideration of a SILAC based approach to 
support quantitative proteomic analysis of prostate 
orthografts 

Heavy labeled Arginine (Arg-10) and Lysine (Lys-8) isotopes were incorporated 

into four PCa cell lines (CWR, LNCAP, LNCAPAI and VCAP) lysates that, in turn, 

were mixed at 1:1:1:1 ratio to generate a super SILAC standard. The pooled cell 

lines standard can be leveraged to control for batch effects or sample specific 

biases. Each tumor sample, from a set of 18 mice PCa orthografts obtained from 

biological triplicates of three hormone naïve (CWR, LNCAP and VCAP) and 

matched CRPC (22Rv1, LNCAPAI and VCAPR) cell lines, were mixed at 1:1 ratio 

to the SILAC standard before undergoing digestion into peptides and liquid 

chromatography–mass spectrometry (LC-MS) online analysis. 

The output of the mass spectrometer consists of the spectra containing peptide 

mass and intensity information. After processing of the raw data through 

software toolkits such as MaxQuant131, the identity of the peptides can be 

deduced by searching for their characteristic spectra in a protein database such 

as the ones hosted in Swissprot132. The analysis can be performed adopting 

different proteomics search engines such as Andromeda133 or Mascot134. 

Moreover, orthografts derived spectra can be used to query both human and 

murine databases to use the resulting hits as input for different downstream 

analysis. 

Equal mixing (1:1 ratio) of light (from in vivo orthografts) and heavy (from in 

vitro cultured cell controls) isotopes-labelled lysates ensures robust comparison 

of the two quantifications and allows the ‘heavy’ intensities to function as a 

sample-specific normalisation factor. In addition to the use of SILAC intensities 

derived ratios, label-free quantification of individual proteins (peptides) can be 

obtained directly from each mass spectrometry based proteomic profiles. The 

Label Free Quantification (LFQ) algorithm introduced the concept of ‘delayed 

normalisation’, which exploits a different normalisation factor for each peptide 

fractionation step to increase quantification accuracy. This label-free procedure 

brings the additional advantage of directly evaluating the differences in protein 

abundance between different conditions135.  
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In SILAC based analysis, data on a specific protein are considered informative if 

the respective SILAC ratios of heavy to light isotopes of relevant peptides in the 

experimental conditions being tested are different, i.e., ratio not equal to 1.  In 

contrast, when label free quantitative analysis of the actual spectrometric peaks 

is studied, individual proteins are considered informative if their absolute values 

are greater than zero, i.e., detected with confidence. Of note, within a breast 

cancer study, SILAC intensities-based analysis showed a slightly lower coefficient 

of variation for protein quantification when compared to label free based 

analysis (median coefficient of variation of 13.7% against 16.3%, respectively). 

Nevertheless, the label free approach provided ∼60% more informative proteins 

(1624 over the 1036 from SILAC) and higher reproducibility (∼20% more proteins 

were quantified in all replicate samples)136. Proteomic data from both SILAC and 

LFQ based quantifications can then be used as inputs to carry out statistical 

analysis for multiple purposes, including the identification of differentially 

expressed proteins, the determination of protein production (as translational 

output) and their turnover rates, as well as inference of protein-protein 

interactions.   

 

       4.1.3 Relationship of gene expression at the RNA and 
protein levels 

As the biology central dogma would suggest, protein expression should show a 

direct correspondence with mRNA expression levels, as the first are translated 

from the latter. Nevertheless, different factors regulate mRNAs and proteins life 

cycle60, resulting in poorly correlated mRNA and proteins quantifications profiles 

from the same sample when high-throughput or omics methodologies are applied 

for correlative analysis, such as next generation based RNA sequencing and SILAC 

based protein analysis.   

Therefore, an integrated transcriptomics and proteomics analysis may provide 

broader overall picture of molecular alterations that may explain the observed 

biological phenotypes. Different approaches can be implemented to take 

advantage of both data sources within the same analysis workflow. For example, 

the matched data on mRNA and protein expression levels can be combined into 
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single values for each sample, and subsequent merging of data from biological 

replicates for each sample type may more reliably represent different 

phenotypes, in other words hormone naïve versus castration resistant prostate 

cancer. Data at mRNA and protein levels can further support global analysis to 

consider the extent of enrichment for common functional pathways or biological 

processes ontologies. Similarly, topological network can be inferred and 

investigated by focusing on known or predicted mechanistic interactions among 

measured genes and proteins. Lastly, clustering approaches can be implemented 

to explore the possibility of a consensus subgroups within the studied samples, 

based on data common to both sources of biological information (namely mRNA 

and proteins)60,59. 

To my knowledge, despite previous attempts in correlative analysis between 

mRNA and protein quantifications32, no methods have been developed to 

formally exploit the complementary nature of the transcriptome and the 

proteome of prostate cancer by merging data on co-expression modules. As 

discussed in Chapter 3 of this thesis, gene-gene co-expression can reveal 

relationships among transcriptional regulators and their targets137. In addition, 

coherent expression of proteins may directly implicate functional protein 

complexes138–140, also illustrated in the CORUM repository141, a comprehensive 

resource of mammalian protein complexes. Integrating transcriptomic and 

proteomic datasets can potentially help nominate master regulator(s) that play a 

key role in the underlying biology, which may otherwise not be identified. In this 

way, data obtained from an integrated mRNA-protein analysis will generate new 

hypothesis to explain the intersection between transcriptional and translational 

regulatory mechanism in driving castration resistant prostate cancer. 

In this chapter, I explore the possibility of developing a novel integrative 

network analysis pipeline by coupling the regulons from the gene regulatory 

network generated from RNAseq data with established protein complexes listed 

in the CORUM repository141. The integration was achieved leveraging shared 

features between each regulons’ target gene set and the protein complexes that 

contain at least one of the transcriptional targets from the regulons of interest. 

The generated integrative graph structure represents both the regulatory 

relationships and functional protein groups associated to a singular 

transcriptional regulator (Figure 4-1). In greater detail, networks of protein-
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protein interactions were derived by mapping the data from SILAC analysis onto 

known protein complexes. In particular, the strength of known protein-protein 

relationships was calculated directly from the prostate cancer orthografts 

proteomics profiles. I was then able to perform a combined enrichment analysis, 

coupling differentially expressed genes and proteins to highlight differences 

between hormone naïve and castration resistant prostate orthografts.  

 

 

Figure 4-1. Analysis workflow HN vs CR PC. 
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    4.2 Results 

        4.2.1 Evaluating the proteomics profiles of hormone 
naïve and castration resistant prostate orthografts 

I wish to develop a robust methodology to carry out proteomic based analysis on 

data from the hormone naïve and castration resistant prostate orthografts. 

Different approaches to analyse data on the proteome were considered with a 

main objective to maximise the number of proteins (or the proportion of the 

proteome) yielding informative data. As described earlier in section 4.1.2, in 

SILAC based analysis, data on a specific protein are considered informative if the 

respective SILAC ratios of heavy to light isotopes on individual peptides between 

the experimental and control conditions (namely castration resistant and 

hormone naïve prostate orthografts) being tested are not equal to 1, signifying 

that the protein of interest is differentially expressed.  In contrast, for label free 

quantitative analysis, individual proteins (represented by specific peptides) are 

considered informative if their absolute (and normalised) values are greater than 

zero, i.e. detected with confidence. 

Mass spectrometry derived proteomic data can be presented in three ways based 

on different normalisation approaches:  

(1) The abundance of individual proteins is measured by the spectrometric 

peaks generated by specific lytic peptides. Data from tumor tissues will 

contain light isotopes (Arg0 and Lys0) while the SILAC standard containing 

heavy isotopes (Arg10 and Lys8) were generated from selected human 

prostate cancer cell cultures with in vitro supplement of heavy isotopes in 

the medium. Normalisation of each protein detected was performed by 

generating the ratio for protein expression (peptides with light isotope) in 

the tumour to the respective peptide peaks for the heavy isotopes within 

the SILAC standard generated from cultured cells. 

(2)  Label free quantifications (LFQ) of the tumours can be analysed to 

provide quantitation of the respective peptides generated from individual 

proteins. (Data from murine proteins are included in the mass 

spectrometry data and can be included or excluded from analysis as 

appropriate.) 
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(3) Data from label free quantification of proteins in the orthografts can also 

be normalised to the respective label free data from in vitro cultured cell 

standard. (SILAC based data as a result of heavy isotope labelling are not 

utilised here.)  

 

In summary, to compare the amount of data provided by the above analytical 

approaches, different criteria are considered.  For data presented as a ratio, 

proteins with a ratio > or < not equal to 1 are differentially expressed between 

the in vivo and the in vitro experiments.  In contrast, for label free quantitative 

analysis, peptides with absolute values >0 are detected with confidence and 

hence utilised in downstream analysis. Figure 4-2 presents the profile of data 

based on different approaches of data analysis as discussed above. Density plot 

from label free data generated from orthografts are referred to as LFQ light 

label, represented as Figure 4-2A.  Mass spectrometry generated data from the 

in vitro cell lines with SILAC labelling are referred to as LFG heavy label, 

represented as Figure 4-2B. Panels C and D of Figure 4-2 represent analysis of 

the data as ratios, based on light isotope (orthografts) compared to heavy 

isotope data (standard generated from cell lines) for panel C, and label free 

value for peptides observed in orthografts compared to label free value for the 

same peptides observed in the standard from cultured cells for panel D. All 

panels are represented after log10 transforming the original data as described in 

the materials and methods section. No outliers among the 18 orthografts were 

observed in for all four profiles (Figure 4-2), confirming the robustness of the 

overall experiment. Label free quantification derived peptide profiles revealed a 

significant proportion of non-zero values (Figure 4-2A-B), signifying informative 

proteins. In contrast, peptide distributions based on ratios derived from SILAC 

and LFQ analysis revealed majority of the peptide with a value of zero in the 

logarithmic scale, signifying that the peptides are at the same abundance 

(Figure 4-2C-D).  

 

I then calculated the pairwise Pearson’s correlation coefficients within each 

dataset (as described in Figure 4-3) to assess if the different analytical 

approaches may show association with origin of individual cell lines and whether 
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they are hormone naïve and castration resistant (Figure 4-3). I reason that, given 

the known phenotypical differences of the cell lines used in this study, the 

patterns of clustering represent a proxy for the reliability of the overall 

proteomics profiles.  

The heatmap generated from orthografts derived label free data (LFQ light, L) 

showed good correlation based on the origin of the cell lines, with minimum 

correlation value of 0.49 (Figure 4-3A), which contrasts to the heatmap from LFQ 

data from heavy isotope labeled cells showing a strong overall similarity with a 

min coefficient of 0.9 (Figure 4-3B), which was not surprising given the nature of 

pooling to generate the in vitro standard from cultured cells. Samples from 

SILAC and LFQ derived ratios (Figure 4-3C, D respectively) did not show strong 

similarity to each, with large range of the correlation value from 0.2 to 1.0.  

Dendrograms in panels A and C of Figure 4-3 highlight the evidence of clustering 

among different cell lines, which was not observed in panels B and D. Of note, 

LFQ ratios-based analysis of the orthografts (Figure 4-3D) revealed the presence 

of two macro-clusters, more likely reflecting the separation of individual cell 

lines within different sets of hormone naïve and castration resistant prostate 

cancer models. This creates the opportunity for meaningful analysis to compare 

between hormone naïve and castration resistant prostate cancer.  

Based on these observations, I reason that analysis of normalised LFQ values 

from orthografts (light labeled data, with higher proportion of non-zero values 

and moderate overall correlation within the set) can be applied to generate a 

protein-protein interaction network.  
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Figure 4-2. Density plot of the four available prostate cancer models proteomics profiles 
(namely LFQ light, LFQ heavy, SILAC ratio and LFQ ratio, see text for detail description). The 
x axis shows the logarithmic value of the normalised intensity (added to 1) (A and B) or ratio 
of intensities between light and heavy labeled samples (C and D). N refers to the number of 
data points used. Bandwith refers to the automatically calculated smoothing parameter from 
the R ‘density()’ function. 
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Figure 4-3. Heatmaps of raw Pearson’s correlations values among the samples of each 
independent proteomics quantification set: LFQ L (light), LFQ H (heavy), SILAC Ratio and LFQ 
Ratio as explained in text. Colour bars below dendrograms highlight the cell line identity and 
their status as hormone naïve (HN) or castration resistant (CR) (bottom and top respectively 
of the bars) Blue and Red shades reflect low and high levels of correlations, respectively, 
according to the colour scale at the top left of each heatmap.   

 

Besides clustering among different samples, differentially expressed proteins 

were also identified using the different analytic approaches. As described earlier 

that heatmap on LFQ ratio revealed the largest range of variation, i.e., data 

from different samples appear to be highly different. Hence, evaluating the 

intra-dataset variability in terms of detected differentially expressed proteins 

between hormone naïve and hormone resistant orthografts, I observed highest 

number of differentially expressed proteins following analysis based on LFQ 

ratios (Appendix 5): LFQ Light, 12 proteins; LFQ heavy, 9 proteins; SILAC ratio, 5 

proteins and LFQ ratio, 227 proteins. Hence, data from LFQ ratios were applied 

for subsequent downstream enrichment analysis.  

  



77 
 

   4.2.2 Protein co-expression analysis 

The proteins quantifications of all the 18 orthografts (LFQ values normalised 

data from tumours) was given as input to the R package ‘ProCoNa’54 to calculate 

a co-expression adjacency matrix in the prostate orthografts. ‘ProConNa’ based 

analysis generated an initial list of 18 broad co-expression modules (or sets of 

proteins with correlated expression levels) containing a median of 401 proteins 

(range 73 – 2066). In contrast, within the the CORUM repository, the 

characterised modules have a median of three members (proteins) per set (range 

1 -143), suggested that to meaningfully apply clustering methodologies it is 

necessary to identify smaller sets of protein groups.  

I therefore considered a two-steps approach entailing a biclustering algorithm to 

investigate the influence of the three cell lines of origin of the orthografts 

samples, followed by a constrained clustering algorithm to resize each protein 

group by leveraging literature information. Biclustering (or two mode 

clustering)142 consists in the simultaneous clustering of rows (peptides/proteints) 

and columns (18 samples analysed) of a matrix, in which data on prostate 

cancer, hormone naïve versus castration resistance, or cell-line specific data are 

incorporated. Constrained clustering143 (a form of semi-supervised learning 

algorithms) takes advantage of known validated and/or non-viable protein-

protein interactions to logically constrain the modules. The first step of the 

pipeline with biclustering, separated the original 18 co-expression modules from 

ProCoNa analysis into 189 subgroups, with a median of 9 members/proteins per 

group (range 2 – 792). At least one subgroup was found within each original 

module with a median of 9 subgroups identified per module. 

For constrained clustering, we applied data from two repositories to define a list 

of confident interacting proteins preserved within individual clusters, namely 

the CORUM141 and the HIPPIE144 (Human Integrated Protein-Protein Interaction 

rEference) repositories, incorporating data on validated interacting protein-

protein complexes as well as information on unfeasible relationships. Following 

constrained clustering, a final set of 579 submodules of proteins was identified, 

with a median of 4 proteins per complex (range 2 – 682). In greater detail, 93 

out of the original 189 modules obtained from the biclustering analysis were 

further split, with a median of 7 subgroups identified per module. 
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The clustering procedure allowed the generation of submodules of comparable 

size to that observed in the CORUM set, which allows me to carry out a 

comparison between clustering informed analysis of the ProCoNa data with the 

gold standard dataset on protein-protein interactions presented in the CORUM 

set. The distribution of pairwise non-zero Jaccard indexes among the inferred 

submodules from the CORUM and ProCoNa based pipeline respectively are 

presented in Figure 4-4. For the CORUM data, there was a good distribution of 

the Jaccard indexes which signifies the ability of the dataset on protein-protein 

interaction to provide useful information for downstream analysis. In contrast, 

data from the orthografts following ProCoNa based analysis did not demonstrate 

the range of Jaccard indexes expected from the experimentally validated set of 

protein complexes, likely because the clustering algorithms used were promoting 

the formation of subgroups independent from each other (i.e. not sharing any 

member with between each others). These results suggest that the protein 

complexes are highly dissimilar from each other, and unlikely to yield 

meaningful information.  

 

Since the complexes generated by Procona didn’t reflect the characteristics of 

the gold standard,  I choose to adopt the CORUM sets as the ‘backbone’ for the 

rest of the pipeline, while retaining the adjacency matrix obtained from LFQ L 

data to ‘re-weight’ protein-protein interactions within each protein complex. 

The underlying rationale is that the nature of protein-protein interactions can 

change in prostate carcinogenesis such as the transition from hormone naïve to 

castration resistant disease145, thus data generated may provide insight into 

molecular classification of castration resistant prostate cancer36. 
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Figure 4-4. Boxplots of pairwise, non-zero Jaccard indexes distributions of CORUM sets 
(CORUM_CORUM) and modules inferred from orthografts data (PROCONA_PROCONA). The 
number of non-zero Jaccard indexes was ~7 times higher for the intra-CORUM calculations 
than ProCoNa based analysis (n= 1761 versus 260 among our modules respectively). 
 

        4.2.3 Integrative modules 

By integrating data from the gene regulatory network in the previous chapter 

(Chapter 3) with protein complexes represented in the CORUM data, 516 

integrative modules (i.e., regulon linking to protein complex(es), Appendix 6) 

from the 1308 regulons based on RNAseq data that have identifiable protein 

linkage as a potential transcriptional target. Within each highlighted module, at 

least one member of the protein complex is required to be a target gene (or 

genes) within the regulon. I observed a median of 4 protein complexes (range 1-

41) per module, thus highlighting the complementary relationship between co-

expressed genes (within regulons) and functional protein groups (within protein-

protein interacting complexes). 
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To assess the usefulness of the assembled modules, I searched for known 

connections between protein complexes and transcriptional regulators previously 

implicated in prostate cancer. Germline mutations of BRCA2 have been 

associated with poor prognosis for patients with prostate cancer146,147⁠. In 

agreement with a previous observation associating BRCA2 mutations with the 

dysregulation of the MED12L/MED12 axis ⁠147, we found the BRCA2-module to 

contain the ‘HOMER3-IP3R-TRPC1_complex’, which is constituted by mediator 

complex proteins and cyclin dependent kinases. Furthermore, TP53 is a tumour 

suppressor gene involved in virtually every cancer type. Our analysis (Appendix 

6) predicted the association of its regulon with the ‘TFIIH transcription factor’ 

complex, which is known to  physically interact148 with TP53, supporting the 

validity of the inference pipeline I have developed. Lastly, GATA2, a key 

transcription factor involved in prostate cancer adaptation to the castrate 

environment149⁠, has been integrated with the URI complex. Consistent with my 

findings, a study based on the integration of genome-wide Chip-Seq data⁠150 also 

support URI1 as a direct target of GATA2. Collectively, these data indicate the 

integration method to be a valid approach to leverage functional interactions 

between co-expressed genes and proteins. 

 

       4.2.4 Differentially expressed genes and proteins 

To refine the list of highlighted integrative modules, I compared data at mRNA 

and protein levels from hormone naïve (HN) and castration resistant (CR) 

prostate orthografts (n=9 for each group), generating a list of differentially 

expressed genes (DEGs) and differentially expressed proteins (DEPs). 

A 
 

 

B 
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Figure 4-5. A: Euler plot of the sets of measured genes and proteins from the matched 
transcriptomics/proteomics analysis on 18 orthografts. B: Euler plot of the sets of identified 
significantly differentially expressed genes (DEG) and proteins (DEP) when hormone naïve 
and castration resistant orthografts were compared. 
 

Deseq2 pipeline, applied to RNAseq data, provided an higher number of 

differential features when compared to the ROTS (An R package for 

reproducibility-optimized statistical testing) algorithm, applied to proteomic 

quantification based on the LFQ ratio (Figure 4-5), which is in agreement with 

other studies151. Among the 880 mRNA and 211 proteins found to be statistically 

differentially expressed between hormone naïve and castration resistant 

orthografts, I observed 16 gene products differentially expressed at both 

transcript and protein levels (Figure 4-5B, Table 4-1). Interestingly, all the 16 

features showed coherent directionality in the fold change. Moreover, among 

these genes, both known and novel genes in prostate cancer are highlighted. For 

instance, consistent with my findings, IGFBP2 and SIGIRR were overexpressed in 

progressive prostate cancer152,153⁠, while downregulated SEPP1 expression was 

associated with shorter patient survival154. 

 

Enrichment analysis was then performed using 50 genesets based on the 

‘Hallmarks of cancer’ curated genesets155, a stringent set of experimentally 

validated and cancer-specific biological mechanisms ⁠. In this way, I was able to 

consider the proteomic and transcriptomic data from a functional perspective 

and to facilitate hypothesis generating in the context of the underlying the 

biology in CRPC (Table 4-2 and 4-3). Of note, the androgen receptor pathway 

was most significantly upregulated based on analysis of transcriptomic analysis.  

Interestingly, the pathway containing MYC target genes is found most enriched in 

CRPC following differentially expressed protein-based analysis.  

 

Gene/Protein 
Hugo symbol 

Transcript  Peptides  

 log2FoldChange qvalue log2FoldChange qvalue 

TRAM1 0.496 0.009 0.405 0.000 

DSP 1.071 0.038 0.313 0.018 

IMPAD1 0.234 0.031 0.176 0.023 

IGFBP2 1.528 0.001 0.527 0.000 

SDC1 2.042 0.000 0.614 0.018 
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UAP1 -1.490 0.001 -0.439 0.023 

ACSL3 -2.496 0.000 -0.761 0.000 

STEAP4 -7.450 0.000 -4.838 0.018 

HRSP12 0.899 0.009 0.480 0.000 

EPHX1 2.234 0.012 0.508 0.044 

ALAD 0.908 0.000 0.256 0.018 

ACSL1 1.450 0.038 0.360 0.026 

MINA 0.336 0.050 0.272 0.013 

SIGIRR 1.115 0.006 0.246 0.018 

CD47 1.240 0.002 0.383 0.026 

SEPP1 -1.381 0.012 -4.129 0.033 

Table 4-1. Common differentially expressed genes and proteins shared between CR vs HN 
orthografts. 

 

Geneset name Gene Ratio pvalue qvalue 

HALLMARK_ANDROGEN_RESPONSE 18/213 9.880E-07 4.370E-05 

HALLMARK_UV_RESPONSE_DN 17/213 5.240E-04 1.157E-02 

HALLMARK_ESTROGEN_RESPONSE_EARLY 18/213 7.762E-03 1.144E-01 

HALLMARK_HYPOXIA 17/213 1.634E-02 1.416E-01 

HALLMARK_NOTCH_SIGNALING 5/213 1.781E-02 1.416E-01 

HALLMARK_BILE_ACID_METABOLISM 11/213 1.921E-02 1.416E-01 

HALLMARK_FATTY_ACID_METABOLISM 13/213 4.218E-02 2.664E-01 

Table 4-2. List of significantly over-representated pathways based on differentially 
expressed genes comparing CR vs HN prostate orthografts. Pathways with p values <0.05 are 
shown.  

 

Geneset name GeneRatio pvalue Qvalue 

HALLMARK_MYC_TARGETS_V1 9/61 0.002 0.031 

HALLMARK_OXIDATIVE_PHOSPHORYLATION 9/61 0.002 0.031 

HALLMARK_FATTY_ACID_METABOLISM 6/61 0.022 0.280 

HALLMARK_MYC_TARGETS_V2 3/61 0.046 0.438 

Table 4-3.Over-representation analysis using differentially expressed proteins from the CR vs 
HN contrast. Pathways with p values <0.05 are shown. 

 

From the DEG, among the seven ‘Hallmarks of cancer’ pathways with significant 

p-values, two pathways, (namely Androgen Response and Ultraviolet Response) 

were found to have significant q values at 0.00004 and 0.01 respectively. On the 

other hand, pathway analysis of DEP revealed two pathways to be significantly 

enriched, signifying upregulation of the MYC and oxidative phosphorylation 

pathways, both with q values at 0.03. 
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Despite the relatively small number of common features found, these results 

support the feasibility of a joint enrichment analysis of transcriptomics/ 

proteomics integrative modules, leveraging at the same time both DEG and DEP. 

 

      4.2.5 Modules enrichment 

To obtain a broader understanding of the information stored in the 

transcriptomics/proteomics integrative modules, I ranked the integrative 

modules based on the percentage of differentially expressed genes (DEG) and 

proteins (DEP) represented within individual enriched pathways, in relationship 

to either the regulon’s target genes or the proteins belonging to the complexes 

linked to the regulon, respectively (Tables 4-4 and 4-5). With the large variation 

of size of modules and percentage of genes/proteins affected, there were, 

respectively, nine and five modules presenting at least 50 percent of the target 

genes or proteins differentially expressed. Despite that, no common modules 

observed between Tables 4-4 and 4-5. 

 

Integrative module number 

of 

genes 

number 

of degs 

number of 

degs/number of 

genes 

ENSG00000118217_ATF6_1:161736083-161933860 2 2 1 

ENSG00000005810_MYCBP2_13:77618791-77901185 25 20 0.8 

ENSG00000174576_NPAS4_11:66188474-66194178 8 6 0.75 

ENSG00000077092_RARB_3:25215822-25639423 39 28 0.718 

ENSG00000176165_FOXG1_14:29235049-29238870 17 11 0.647 

ENSG00000163848_ZNF148_3:124944404-125094198 8 5 0.625 

ENSG00000056972_TRAF3IP2_6:111877656-111927481 12 7 0.583 

ENSG00000164061_BSN_3:49591921-49708978 28 15 0.536 

ENSG00000110171_TRIM3_11:6469842-6495689 6 3 0.5 

Table 4-4. Integrative modules ranking according to the percentage of differentially 
expressed genes (degs) within individual modules. Modules with 0.5 or more of the network 
genes showing differential expression are included. 
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Integrative module number 

of 

proteins 

number 

of deps 

number of 

deps/number of 

proteins 

ENSG00000007866_TEAD3_6:35441373-35464853 1 1 1 

ENSG00000125107_CNOT1_16:58553854-58663790 2 1 0.5 

ENSG00000048052_HDAC9_7:18126571-19042039 2 1 0.5 

ENSG00000162775_RBM15_1:110881127-110889299 2 1 0.5 

ENSG00000173258_ZNF483_9:114287438-114340124 2 1 0.5 

ENSG00000104907_TRMT1_19:13215715-13228381 75 27 0.36 

ENSG00000075975_MKRN2_3:12598512-12625212 75 27 0.36 

ENSG00000129535_NRL_14:24549315-24584223 76 27 0.355 

ENSG00000072310_SREBF1_17:17713712-17740325 78 27 0.346 

ENSG00000159461_AMFR_16:56395363-56459450 79 27 0.342 

ENSG00000153879_CEBPG_19:33864235-33873592 80 27 0.338 

ENSG00000066135_KDM4A_1:44115828-44171186 3 1 0.333 

ENSG00000171148_TADA3_3:9821543-9834695 3 1 0.333 

ENSG00000186153_WWOX_16:78133309-79246564 81 27 0.333 

ENSG00000162227_TAF6L_11:62538774-62554814 83 27 0.325 

ENSG00000130382_MLLT1_19:6212965-6279959 84 27 0.321 

ENSG00000166200_COPS2_15:49398267-49447858 85 27 0.318 

ENSG00000132773_TOE1_1:45805341-45809647 92 28 0.304 

ENSG00000084072_PPIE_1:40157853-40229586 89 27 0.303 

ENSG00000168495_POLR3D_8:22102616-22112113 93 28 0.301 

ENSG00000163812_ZDHHC3_3:44956748-45017677 90 27 0.3 

ENSG00000093010_COMT_22:19929129-19957498 91 27 0.297 

ENSG00000112130_RNF8_6:37321747-37362514 98 28 0.286 

ENSG00000166197_NOLC1_10:103911932-103923627 97 27 0.278 

ENSG00000169131_ZNF354A_5:178138592-178157703 101 28 0.277 

ENSG00000089234_BRAP_12:112079949-112123790 102 27 0.265 

ENSG00000140694_PARN_16:14529557-14726585 106 27 0.255 

ENSG00000104976_SNAPC2_19:7985200-7988135 108 27 0.25 

ENSG00000174405_LIG4_13:108859786-108870716 4 1 0.25 

ENSG00000204977_TRIM13_13:50570023-50594617 4 1 0.25 

Table 4-5. Integrative modules ranking according to the percentage of differentially 
expressed proteins (deps) within individual modules. Modules with 0.25 or more of the 
network proteins showing differential expression are included. 

 

To support statistical analysis of the modules, I developed a bespoke analysis by 

randomly reshuffling the fold changes and the respective p-values of 
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differentially expressed genes and protein to unbiasedly assess if any of the 

modules were enriched in CRPC. Using this approach, I wish to study the 

concordance between transcription factors and mRNA levels of gene targets on 

one hand, and protein-protein interaction and DEP on the other hand. 

 

My permutation-based enrichment analysis provided separated results for 

regulons and protein complexes concordances (Appendix 7). For each integrative 

graph, the enrichment p-values were calculated as the fraction of times the 

scores generated by randomly reshuffling the inputs were higher (if positive) or 

lower (when negative) than the real score. 

 

The analysis highlighted the only integrative module (with regulons and protein 

complexes bootstrapping p-values of 0) significant at both regulons and protein 

complexes level, namely the MID1 (Midline 1, Midline 1 RING Finger Protein) 

regulatory module (Figure 4-6A) to be implicated in CRPC. The MID1 integrative 

module is composed of a regulon of 21 putative target genes and 177 proteins 

from five CORUM complexes, namely Ribosome, _cytoplasmic306, 

60S_ribosomal_subunit_cytoplasmic308, 28S_ribosomal_subunit_mitochond-

rial315, 55S_ribosome_mitochondrial320 and Nop56p-associated_pre-

rRNA_complex3055. Within the MID1 regulon, I found non-random co-

upregulated mRNA expression for ACSL1, LRFN2, NAALADL2 and NUDT11 genes as 

transcriptional targets within the MID1 regulon) (Figure 4-6A).  

 

Given the overlapping nature of the CORUM sets, 82 proteins from the 

integrative module belong to multiple complexes (Figure 4-6B). I then 

investigated the protein complexes associated with the MID1 regulon (Figure 4-

6B). I observed upregulated expression of both large and small mitochondrial 

ribosomal subunits complexes (including MRPS14, DAP3, MRPS22, MRPS25, 

MRPS5, MRPS21, MRPS34, MRPS6, MRPS26, MRPS18A, MRPS33, MRPS17, MRPS7, 

MRPS2. MRPS18B, MRPL3, MRPL19, MRPL49, MRPL14, MRPL50, MRPL32, MRPL20, 

MRPL9, MRPL4, MRPL18, MRPL15, MRPL27, HNRNPU). Of note, within the 
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prioritised regulon, ACSL1 is the only gene upregulated at both mRNA and 

protein levels.  

 

MID1 is a regulatory protein within a microtubule-associated complex that binds 

mRNA to promote translation. It is interesting to note that one of its validated 

targets is androgen receptor, a well-established driver in prostate carcinogenesis 

including treatment resistance156,157. Similarly, mitochondria activity is known to 

play a key role in cancer progression158 and, in particular, mitochondrial 

ribosomal subunits have been associated with tumor progression in prostate 

cancer159 and proposed as therapeutical target in many other tumor types160. 

Hence, it will be interesting to test if there was a mechanistic link between the 

functional status of the MID1 regulon and increased tumoral mitochondrial 

activity in CRPC. 

 

A           
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 B 

 

 

 

Figure 4-6. MID1 integrative module enrichment.   
(A) A MID1 regulon portion of the integrative module. Genes are showed as nodes and type of 
regulation is represented by edges color (red= upregulation). Hugo symbol of each node is 
reported. The size of each node is proportional to the strength of the correlations between 
MID1 and the target. Node colors reflect CRPC vs PC differential expression (grey = not 
significant, red = significant over-expression).  

C 
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(B) Associated protein complexes of the MID1 regulon. Nodes represent proteins and edges 
represents relationships with one or more protein complex. Node colour reflect the number 
of CORUM complexes each protein belongs to. 
(C) View of the full MID1 integrative module. Nodes represent both target genes and proteins 
belonging to the CORUM complexes. Node color reflects differential expression information 
(grey= not significant, red = gene upregulation, green = protein upregulation, purple= both 
gene and protein upregulation). Relevant nodes have been highlighted by showing the 
correspondent hugo names.  
 

   4.3 Discussion 

      4.3.1 MID1 function in tumorigenic pathways  

MID1 (Midline 1) is an E3 ubiquitin ligase belonging to the family of tripartite 

motif (TRIM) containing proteins. It was primarily discovered as the causative 

gene for the Optiz BBB/G syndrome through its function as a scaffold for the 

assembly of a large microtubule-associated ribonucleoprotein complex aimed to 

the regulation of the protein phosphatase 2A (PP2A)161. This interaction leads to 

the upregulation of the mTORC1 signaling, which has a marked effect on cell 

proliferation and tumorigenesis162. Translational Regulatory functions of MID1 

were subsequently reported, involving its ability to bind mRNAs at a purine-rich 

sequence motif called MIDAS (MID1 association sequence), leading to an increase 

of production of the proteins encoded by the target RNAs up to 20-fold157. 

Importantly, in cancer cells, MID1 controls both the subcellular localisation and 

transcriptional activity of GLI3 (GLI Family Zinc Finger 3), a key transcription 

factor of the tumorigenic sonic hedgehog signaling pathway. In addition, highly 

relevant in prostate cancer, MID1 also binds to transcripts of androgen receptor 

to induce translation of AR protein163. Interestingly, there appears to be a 

functional feedback-loop between AR and MID1 function. Withdrawal of 

androgens resulted in upregulated MID1 expression which in turn increased the 

expression of AR protein164. In addition, treatment with metformin, an approved 

medicine for type II diabetes, on both AR positive (LNCaP, VCaP, DuCaP, LNCaP-

abl) and AR negative (PC-3 and Du-145) human prostate cancer cells, resulted in 

suppressed cell growth via the disruption of the association between AR mRNA 

and MID1 complex156.   

This data supports our findings and suggest the investigation of the physical 

binding of MID1 and the mRNAs of the identified DEGs, as well as the putative 
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protein-protein interactions with the enriched CORUM complexes. Functional 

validations experiments are recommended, to evaluate the effect of 

overexpressing versus knocking-down MID1, on the growth in androgen 

dependent and independent conditions.   

 

       4.3.2 Differentially expressed genes implication in 
CRPC 

The differentially expressed genes matching the predicted MID1 transcriptional 

regulations are known players in PCa.  

The long-chain fatty acyl-CoA synthetases 1 (ACSL1) is part of the MID1 module 

(Figure 4-6A,C). ACSL1 is a key element in lipid metabolism and has been 

implicated to promote prostate cancer progression through increased fatty acid 

beta-oxidation, mitochondrial respiration, and ATP production. The NUDT11 

phospho-hydrolases, also part of the MID1 module (Figure 4-6A), may have a 

signaling role in prostate cancer, with two single nucleotide variants identified 

in a genome wide expression quantitative trait loci analysis165. LRFN2 has been 

implemented in a prognostic gene expression signature for recurrence and 

metastatic-lethal progression of prostate cancer, with upregulated expression in 

high grade cancer166. Lastly, N-acetyl-L-aspartyl-L-glutamate peptidase-like 2 

(NAALADL2) overexpression was associated with poor patient survival outcome 

following radical prostatectomy, with putative effects in promoting cancer 

motility and metastasis167. Moreover, a recent integrated transcriptomic, 

proteomic and metabolomics analysis of CRPC from our group highlighted 

potential impact of NAALADL2 expression in upregulating sphingolipid 

metabolism and nucleotide synthesis required for CRPC tumors growth61. 

   

       4.3.3 Enriched complexes involvement in CRPC 

The identified differentially expressed proteins highlighting the enrichment of 

the MID1 module is associated with co-upregulation of proteins mainly belonging 
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to the CORUM complexes ‘28S_ribosomal_subunit,_mitochondrial’ and 

‘55S_ribosome,_mitochondrial’. 

Many of the associated protein complexes of the MID1 regulon are related to 

translation (Figure 4-6B). This can be functionally linked to the activity of ACSL1 

(also found overexpressed at the gene level), and is in agreement with 

previously published results from a proteomic study, similarly relying on the 

CORUM sets141. Consistent with my findings here, mitochondrial ribosomes were 

found to be the most over-expressed complexes in high grade clinical prostate 

cancer tumours, along with sets of proteins involved In ribosome biogenesis, RNA 

splicing and cytoplasmic ribosomes57. Additional investigations supported the key 

role of mitochondria in prostate cancer progression with upregulated MTCO2 

expression, a marker for mitochondrial content158 and the frequent mutations in 

the mitochondrial genome26. Noteworthy, the protein levels of MRPS18-B 

correlates with disease progression due to the promotion of epithelial to 

mesenchymal cell transition159. Moreover, it is known to be part of a cytoplasmic 

complex together with the Ring finger protein 2 (RNF2) (another E3 ubiquitine 

ligase) that maintains cell stemness168. It is therefore important for future 

research to characterise cytoplasmatic interactions between MRPS18-B and other 

mitochondrial ribosome subunits within the MID1 module. 

 

Lastly, among the subset of differentially expressed proteins relevant to MID1 

integrative module enrichment, we found Heterogeneous Nuclear 

Ribonucleoprotein U (HNRNPU) (Figure 4-6B). We believe this detection provides 

additional evidence to a previous identification of HNRNPU mRNA upregulation in 

CRPC tissues, correlated to an increase of AR-v7 expression169. Moreover, given 

its involvement in the formation of ribonucleoprotein complexes, HNRNPU may 

play a crucial role in the formation of the cytoplasmic MID1 complex. 

 

My approach introduced a novel hypothesis about the involvement of MID1 in the 

lipid metabolism alterations observed in PCa, as well as the association with the 

upregulation of mitochondrial ribosomes activity. 
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Chapter 5 – Analysis of implicated regulon following 
treatment in a preclinical in vivo model 

After studying the usefulness of regulons for predictive (Chapter 3) and  

diagnostic (Chapter 4) biomarker discovery in PCa, I evaluated the ability of the 

regulons to explain the molecular effects of different drug treatments. 

 5.1 Introduction 

As highlighted previously in this thesis, the androgen receptor (AR) remains an 

important therapeutic target in locally advanced and metastatic prostate 

cancer170. Novel androgen receptor pathway inhibitors include highly potent and 

specific antagonists of the AR such as enzalutamide171 and apalutamide172 (ARN-

509) as well as abiraterone which functions as an inhibitor of adrenal and 

testicular bio-synthesis of androgens. 

 

Recent research in the Mills’ laboratory, a collaborating partner within the 

TransPot consortium, showed that de novo purine biosynthesis and the 

conversion of inosine monophasphasate to xanthosine monophosphate (a key 

intermediate in purine metabolism) is tightly regulated by the MYC oncogene. 

Their findings highlighted that IMPDH2 (Inosine Monophosphate Dehydrogenase 2) 

gene product functions as an enzyme to support nucleotide synthesis required 

for carcinogenesis.  IMPDH2 expression was found to be upregulated following 

androgen deprivation therapy in vitro as well as upregulated in clinical prostate 

tumours. Of interest, combining anti-androgen treatment with mycophenolic 

acid (MPA, a clinically approved IMPDH inhibitor) resulted in enhanced treatment 

efficacy173. Consistent with their findings, suppression of guanine nucleotide 

synthesis was found to sensitise prostate cancer cells to AR inhibitors such as 

Abiraterone and Enzalutamide174.  
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To further explore the functional effects of combining suppression of AR function 

and de novo nucleotide synthesis in prostate carcinogenesis, members of the 

Mills’ laboratory applied the androgen receptor positive human LNCaP C4-2b 

prostate cancer cells in an in vivo subcutaneous xenograft experiment and 

tested for potential synergistic interaction between suppression of androgen 

receptor function and the use of mycophenolic acid. Serial tumour sizes were 

obtained to assess the effects of treatments. Transcriptomic analysis was 

performed to support comparative analysis in different treatment groups. After 

receiving the raw RNAseq data,in this chapter, I seek to leverage regulon-based 

analysis to identify candidate master regulators associated with different 

treatment combinations. 

 

5.2 Results 

5.2.1 Assessment of tumour size following treatment 

In total 23 xenograft samples were randomly obtained from the in vivo efficacy 

experiment and included for transcriptomic analysis (Table 5-1): n=4 for 

mycophenolate mofetil (clinical formulation of mycophenolic acid, MPA, Arm 1) 

treatment alone, n=4 for abiraterone treatment alone (Arm 2), n=3 for 

apalutamide (ARN-509) alone (Arm 3), n=3 for combined mycophenolate mofetil 

and apalutamide treatment (Arm 4), n=4 for combined mycophenolate mofetil 

and abiraterone treatment (Arm 5), and control samples including no treatment 

(n=2) or vehicle control treatment (benzyl alcohol and safflower oil, n=3). 

 

All treatment arms (Arms 1-5) achieved a significant reduction in tumour 

growth rate when compared to the controls, with no tumours following 

treatment achieving terminal volume within the 3-week time-course. Of note, 

terminal volume was achieved at around 16 days post-treatment in the control 

arm (Figure 5-1, orange line). Whilst there were no statistically significant 

differences in the growth kinetics among various treatment arms, there was a 

qualitatively lower growth rate in the MPA/abiraterone combination (Arm 5, 

Figure 5-1, light blue line) relative to abiraterone alone (Figure 5-1, light blue 
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line (Arm 5) versus red line (Arm 2)), with mean tumour weights at 0.5 g for 

MPA/Abiraterone (Arm 5) compared to 1 gm for abiraterone-only (Arm 2) and 

0.72 g for MPA alone (Arm 1).  

 

 

GROUP TREATMENT 

ARM1_A Mycophenolate_mofetil 

ARM1_B Mycophenolate_mofetil 

ARM1_C Mycophenolate_mofetil 

ARM1_D Mycophenolate_mofetil 

ARM2_A Abiraterone 

ARM2_B Abiraterone 

ARM2_C Abiraterone 

ARM2_D Abiraterone 

ARM3_A ARN-509 

ARM3_B ARN-509 

ARM3_C ARN-509 

ARM4_A Mycophenolate_mofetil_and_ARN_509 

ARM4_C Mycophenolate_mofetil_and_ARN_509 

ARM4_D Mycophenolate_mofetil_and_ARN_509 

ARM5_A Mycophenolate_mofetil_and_Abiraterone 

ARM5_B Mycophenolate_mofetil_and_Abiraterone 

ARM5_C Mycophenolate_mofetil_and_Abiraterone 

ARM5_D Mycophenolate_mofetil_and_Abiraterone 

Untr_A Untreated 

Untr_B Untreated 

Vehicle_A benzyl_alcohol_and_safflower_oil 

Vehicle_B benzyl_alcohol_and_safflower_oil 

Vehicle_C benzyl_alcohol_and_safflower_oil 

Table 5-1. Samples sheet 
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Figure 5-1. Graph showing tumour volumes following different treatments over a 21 day 
study period. (Myc, Mycoph = Mycophenolate_mofetil, Abir = Abiraterone, ARN = ARN-509) 
(data prepared and provided by Ian Mills). 

 

5.2.2 Reads disambiguation 

Reads disambiguation analysis was performed to evaluate biases in the number 

of human reads from the xenografts as a quality control measure to ‘qualify’ 

data for further downstream analysis.  The range of human reads obtained 

from the sequencing experiment was 6.7 million (M) to 16.1 M (Figure 5-2), 

with varying reads for human (and murine) gene sequences observed in 

samples within individual treatment groups (Arms 1-5 and control samples), 

probably reflecting different composition between tumour (from LNCaP cells) 

and stromal (from murine host) compartments. Moreover, the generally low 

amount of sequencing reads can reflect a lower Initial amount of RNA or  

quality. 
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Figure 5-2. Barplot of sequenced human (green) and mouse (red) unambiguous reads for 
each sample. Treatment groups are identified by name of Arms (1-5), and within each 
treatment arm samples are labelled as alphabets.  

 

5.2.3 Visual examination of expression profiles 

To evaluate the level of heterogeneity of the transcriptome among the 

samples at the molecular level, Pearson’s linear correlations were calculated 

among fragments per kilobase per millions (FPKM), gene-level normalised 

counts profiles (Figure 5-3).  Regardless of the efficacy of treatment under 

investigation, samples from the same treatment grouping should be 

consistently similar to support robust analysis between different treatment 

regimes. However, samples within the same treatment groups did not cluster 

together. The median Pearson’s correlation among all the samples was 

disappointingly found to be 0.8, suggesting no evidence of ‘clusters’ at the 

molecular level and that all samples were transcriptomically similar. Given the 

substantial overlap of the samples profiles, irrespective of the experimental 

groups, the overall quality of the data received was compromised. Hence, we 

could not comment on the pathology. 
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These results could be in part explained by a large variation within the 

xenograft tumour micro-environment resulting in overlapping transcriptomes. 

 

 

Figure 5-3. Symmetric heatmap of analysis of sample-to-sample gene expression profiles by 
Pearson’s linear correlation. Colour red signifies higher correlations while colour blue low 
correlation values. The annotation contains labeling for both treatment group and 
single/combinatorial treatment type. 

 

The heatmap generated from Pearson analysis suggested substantial overlap of 

samples irrespective of the treatment grouping. I reasoned that the two anti-

androgen treated groups are biologically similar and can therefore be 

combined to increase the size of the treatment group to improve the 

statistical power of the analysis.  Applying Principal Component Analysis of the 

combined groups (Figure 5-4), once again, I did not observe any evidence of 

clustering based on the treatment types (control, single agent, or combined 

treatment).  
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Figure 5-4. Principal component analysis (PCA) for different treatment groups categorised as 
controls (untreated/vehicle treated), single treatment (MPA, Abiraterone, ARN-509) alone, 
or combined treatment (MPA + either Abiraterone or ARN-509). 
 

5.2.4 Differentially expressed genes 

Accepting the low correlation among samples within individual treatment 

groups, I assessed the number of differentially expressed genes following 

different treatments when compared to control treatment (untreated or 

vehicle treatment, Table 5-1).  Abiraterone is increasingly prescribed as the 

choice of second line androgen deprivation therapy following clinical evidence 

of CRPC. In addition, recent clinical trials have confirmed its dramatic efficacy 

when combined with standard of care hormonal therapy to achieve combined 

androgen blockage, typically with combining LHRH antagonist and abiraterone 

as first line treatment for metastatic prostate cancer. I was therefore 

interested to investigate the effects of adding mycophenolate mofetil (clinical 

formulation for mycophenolic acid, MPA) to abiraterone.   

 

A three-way comparison of differentially expressed genes following treatment 

with abiraterone or mycophenolic acid alone as well as combined treatment 

was carried out and presented as a Venn diagram in Figure 5-5.  As a results of 

the variation between samples within individual treatment groups, the number 
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of differentially expressed genes was relatively low. Of note, treatment with 

MPA alone (Arm 1) showed the least number of differentially expressed genes 

when compared to an androgen receptor pathway inhibitor such as abiraterone 

alone (Arm 2).  This may reflect the mode of action of the treatment, with 

androgen receptor being a transcription factor and thus abiraterone treatment 

affecting more genes that MPA.  

 

 

Figure 5-5. Venn diagram illustrating number of differentially expressed genes among 
treatment groups with MPA (Arm 1), abiraterone (Arm 2) and MPA + abiraterone (Arm 5) 
when compared to control samples (untreated or vehicle treated).  For this figure, only 
significant (adjusted p-value < 0.05) differentially expressed genes were used. 

 

I observe that while MPA alone (Arm 1) did not have a strong impact on gene 

expression, the addition of MPA to abiraterone treatment (Arm 5) altered the 

profile of significantly differentially expressed genes when compared to 

abiraterone treatment alone (Arm 2). I therefore probed the molecular 

consequence of combined MPA/abiraterone treatment (Arm 5) when compared 

to abiraterone alone (Arm 2). Relative to Arm 2, 64 genes were significantly 

(adjusted p-value < 0.05) differentially expressed in Arm 5 (Table 5-2).   

 

 



100 
 
Ensembl gene ID Log2 fold 

change 
Adjusted p-value Hugo 

symbol 

ENSG00000003056 0.892 0.023 M6PR 

ENSG00000014257 2.845 0.015 ACPP 

ENSG00000050426 1.020 0.009 LETMD1 

ENSG00000060971 -1.057 0.018 ACAA1 

ENSG00000063854 -0.882 0.005 HAGH 

ENSG00000076351 1.503 0.019 SLC46A1 

ENSG00000103064 1.414 0.005 SLC7A6 

ENSG00000104267 7.170 0.008 CA2 

ENSG00000108924 2.072 0.009 HLF 

ENSG00000120875 3.943 0.005 DUSP4 

ENSG00000121039 2.204 0.030 RDH10 

ENSG00000122176 7.794 0.008 FMOD 

ENSG00000123643 1.457 0.047 SLC36A1 

ENSG00000124788 3.519 0.047 ATXN1 

ENSG00000130589 -2.063 0.011 HELZ2 

ENSG00000131711 -2.406 0.004 MAP1B 

ENSG00000132003 -1.480 0.039 ZSWIM4 

ENSG00000136848 2.661 0.035 DAB2IP 

ENSG00000139514 1.229 0.004 SLC7A1 

ENSG00000141959 -1.360 0.011 PFKL 

ENSG00000142515 2.681 0.005 KLK3 

ENSG00000144339 5.275 0.043 TMEFF2 

ENSG00000151640 -2.670 0.045 DPYSL4 

ENSG00000154124 1.093 0.031 FAM105B 

ENSG00000155850 2.452 0.047 SLC26A2 

ENSG00000156269 6.661 0.005 NAA11 

ENSG00000162032 -1.646 0.043 SPSB3 

ENSG00000162545 4.742 0.043 CAMK2N1 

ENSG00000164181 1.956 0.037 ELOVL7 

ENSG00000164300 1.441 0.023 SERINC5 

ENSG00000165731 5.060 0.018 RET 

ENSG00000166831 3.178 0.049 RBPMS2 

ENSG00000167393 -2.541 0.007 PPP2R3B 

ENSG00000167657 -1.536 0.039 DAPK3 

ENSG00000167751 1.499 0.048 KLK2 

ENSG00000169016 1.317 0.047 E2F6 

ENSG00000169567 2.865 0.033 HINT1 

ENSG00000169884 2.608 0.015 WNT10B 

ENSG00000171448 1.361 0.015 ZBTB26 

ENSG00000171885 5.490 0.005 AQP4 

ENSG00000172987 8.021 0.004 HPSE2 

ENSG00000173214 1.399 0.032 KIAA1919 

ENSG00000174684 1.381 0.031 B3GNT1 

ENSG00000178385 2.170 0.039 PLEKHM3 

ENSG00000181800 6.059 0.005 CELF2-AS1 
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ENSG00000185236 -0.656 0.032 RAB11B 

ENSG00000185567 -3.920 0.005 AHNAK2 

ENSG00000187210 2.007 0.031 GCNT1 

ENSG00000187792 1.572 0.033 ZNF70 

ENSG00000188257 4.590 0.030 PLA2G2A 

ENSG00000197635 1.281 0.039 DPP4 

ENSG00000197961 1.000 0.047 Than 

ENSG00000204314 2.297 0.049 PRRT1 

ENSG00000207389 -28.527 0.000 RNU1-4 

ENSG00000214717 -1.084 0.005 ZBED1 

ENSG00000215568 8.394 0.004 GAB4 

ENSG00000242284 5.751 0.005 CT45A5 

ENSG00000244567 3.315 0.015 AC096772.6 

ENSG00000248118 5.009 0.015 LINC01019 

ENSG00000255310 2.640 0.032 AF131215.2 

ENSG00000260778 -3.283 0.008 MIR940 

ENSG00000262885 5.870 0.032 CTD-
2144E22.11 

ENSG00000265369 5.741 0.035 U3 

ENSG00000269640 4.776 0.048 CTD-
2521M24.9 

Table 5-2. Significant differentially expressed genes from the ARM5vsARM2 comparison 

 

5.2.5 Regulons enrichment  

Next, I interrogated the list of differentially expressed genes for transcription 

factors as potential regulons as inferred from a previous analysis (see Chapter 3) 

in the Arm 5 vs Arm 2 comparison. 

The Gene Graph Enrichment Analysis (GGEA) was inputted with the full list of 

genes from the differential analysis between Arm 5 vs Arm 2, revealing the 

SET proto-oncogene as the only significantly enriched regulon (adjusted p-

value 0.000999, Table 5-3).   

 

Ensembl gene id Hugo symbol Genomic coordinates Regulation 

ENSG00000002330 BAD 11:64037301-64052176 Positive 

ENSG00000062370 ZNF112 19:44830707-44871377 Positive 

ENSG00000063046 EIF4B 12:53399941-53435993 Positive 

ENSG00000070061 IKBKAP 9:111629796-111696396 Positive 

ENSG00000100129 EIF3L 22:38244874-38285414 Positive 

ENSG00000105373 GLTSCR2 19:48248778-48260315 Positive 
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ENSG00000108848 LUC7L3 17:48796904-48833574 Positive 

ENSG00000110066 SUV420H1 11:67922329-67981295 Positive 

ENSG00000110583 NAA40 11:63706430-63724800 Positive 

ENSG00000116251 RPL22 1:6241328-6269449 Positive 

ENSG00000119396 RAB14 9:123940414-123985292 Positive 

ENSG00000131115 ZNF227 19:44711699-44741421 Positive 

ENSG00000138439 FAM117B 2:203499900-203634480 Positive 

ENSG00000142534 RPS11 19:49999621-50002946 Positive 

ENSG00000142676 RPL11 1:24018268-24022915 Positive 

ENSG00000147403 RPL10 X:153618314-153637504 Positive 

ENSG00000148154 UGCG 9:114659045-114697649 Positive 

ENSG00000159128 IFNGR2 21:34775201-34851655 Positive 

ENSG00000159131 GART 21:34876237-34915797 Positive 

ENSG00000160208 RRP1B 21:45079428-45115958 Positive 

ENSG00000167770 OTUB1 11:63753324-63769283 Positive 

ENSG00000172113 NME6 3:48334753-48343175 Positive 

ENSG00000175061 FAM211A-AS1 17:16342135-16381992 Positive 

ENSG00000175893 ZDHHC21 9:14611068-14693469 Positive 

ENSG00000177410 ZFAS1 20:47894714-47905797 Positive 

ENSG00000177733 HNRNPA0 5:137087074-137090039 Positive 

ENSG00000178464 CTD-2192J16.15 19:12754088-12754733 Positive 

ENSG00000179698 KIAA1875 8:145162628-145173218 Positive 

ENSG00000185658 BRWD1 21:40556101-40693485 Positive 

ENSG00000197258 EIF4BP6 7:104308195-104310023 Positive 

ENSG00000197756 RPL37A 2:217362911-217443903 Positive 

ENSG00000199753 SNORD104 17:62223442-62223512 Positive 

ENSG00000200237 SNORA70 19:9930629-9930770 Positive 

ENSG00000204178 TMEM57 1:25757387-25826700 Positive 

ENSG00000204713 TRIM27 6:28870778-28891766 Positive 

ENSG00000205581 HMGN1 21:40714240-40721573 Positive 

ENSG00000207165 SNORA70 X:153628621-153628756 Positive 

ENSG00000207166 SNORA68 19:17973396-17973529 Positive 

ENSG00000213280 RP11-212P7.1 7:128210294-128210742 Positive 

ENSG00000224078 SNHG14 15:25295778-25492435 Positive 

ENSG00000224546 EIF4BP3 9:98908288-98910138 Positive 

ENSG00000225031 EIF4BP7 X:110862904-110864717 Positive 

ENSG00000227034 RP11-234N17.1 1:99473773-99474030 Positive 

ENSG00000228223 HCG11 6:26522075-26526807 Positive 

ENSG00000233913 CTC-575D19.1 5:168043316-168044059 Positive 

ENSG00000235720 RP11-340I6.6 7:63353663-63355019 Positive 

ENSG00000241399 CD302 2:160625363-160654753 Positive 

ENSG00000260521 CTD-2576F9.1 15:95398702-95400143 Positive 

ENSG00000272888 AC013394.2 15:93425936-93441975 Positive 

 

Table 5-3. SET regulon composition. 
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Interestingly, SET, also known as inhibitor 2 of protein phosphatase 2A 

(I2PP2A), is implicated to upregulate c-Myc and downregulate histone 

acetylation in prostate cancer cells175. Moreover, several genes previously 

linked to PCa were upregulated within the SET regulon, including BAD, a pro-

apoptotic protein, with BAD upregulated expression promoting prostate cancer 

proliferation176; EIF4B, a translational initiator protein implicated in prostate 

carcinogenesis177; OTUB1 mediates prostate cancer invasion in vivo through 

RhoA178; and the LUC7L3 splicing factor is associated with both relapse free 

and overall survival in TCGA data179.   

 

To better understand the function of the enriched regulon, I performed an 

over-representation analysis of the Gene Ontologies using predicted SET 

targets. The analysis disclosed significantly enriched ontologies (q value < 

0.05) (Table 5-4 and Figure 5-6) including ribonuclear protein complex, 

ribosome biogenesis and translational initiation.   

 

Gene ontology id p-
value 

q-
value 

go_ribonucleoprotein_complex_biogenesis 
1.6e-09 

5.8e-
07 

go_translational_initiation 
4.2e-09 

7.5e-
07 

go_multi_organism_metabolic_process 
1.1e-07 

1.3e-
05 

go_establishment_of_protein_localization_to_endoplasmic_reticulum 
8.6e-07 

6.9e-
05 

go_ribonucleoprotein_complex_subunit_organization 
9.5e-07 

6.9e-
05 

go_nuclear_transcribed_mrna_catabolic_process_nonsense_mediated_d
ecay 

1.6e-06 
9.2e-
05 

go_protein_localization_to_endoplasmic_reticulum 
2.0e-06 

9.2e-
05 

go_rna_catabolic_process 
2.1e-06 

9.2e-
05 

go_rrna_metabolic_process 
4.0e-06 

1.6e-
04 

go_establishment_of_protein_localization_to_membrane 
4.9e-06 

1.8e-
04 

go_protein_targeting_to_membrane 
6.6e-06 

2.2e-
04 

go_viral_life_cycle 
8.4e-06 

2.5e
-04 

go_ribosome_biogenesis 
1.2e-05 

3.3e-
04 
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go_establishment_of_protein_localization_to_organelle 

2.9e-05 
7.5e-
04 

go_protein_localization_to_membrane 
3.7e-05 

8.8e-
04 

go_ncrna_processing 
4.2e-05 

9.5e-
04 

go_organic_cyclic_compound_catabolic_process 
7.4e-05 

1.6e-
03 

go_protein_targeting 
5.9e-04 

1.2e-
02 

go_formation_of_translation_preinitiation_complex 
6.5e-04 

1.2e-
02 

go_ribosomal_large_subunit_assembly 
7.2e-04 

1.3e-
02 

go_cytoplasmic_translation 
2.3E-03 

3.9E-
02 

Table 5-4. Significantly enriched Gene Ontologies utilising SET predicted targets. 

 

The identification of the SET regulon from comparing the transcriptome of 

tumours following MPA + abiraterone versus abiraterone alone treatment 

raises the possibility of SET as a master regulator following combined 

MPA/Abiraterone treatment, supporting the consideration of new hypothesis 

to link genes and potential biological processes in driving prostate cancer 

progression. 

 

 

Figure 5-6. Cnet plot of the results of the overrepresentation analysis, mapping SET regulons 
genes to gene ontologies biological processes. Yellow nodes represent gene ontologies while 
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grey nodes single genes. The size of the yellow dots reflects the number of genes within 
each gene ontology. 

 

5.3 Discussion 

In this chapter, I explored the value of regulon analysis in a preclinical 

treatment model and tested the usefulness of the regulon analysis as described 

in previous chapters. There was substantial overlap for the transcriptome from 

tumours following different treatment arms. These variations may arise from 

different sources including varying compositions of malignant epithelium and 

host stromal tissue, variation between individual mice, bias introduced due to 

random selection of representative tumours from each of the treatment arms for 

next generation sequencing, and varying bioavailability of treatment agents due 

to differences in how the animals metabolised the drugs of interest. Despite 

these limitations, analysis of differentially expressed genes revealed interesting 

insights into the effects of adding MPA to an androgen receptor pathway 

inhibitor. Data from differentially expressed genes and pathway analysis 

presented in this chapter provide new and complementary information to be 

correlated to active biological processes. 

 

Firstly, our differential gene expression analysis confirmed the previous 

observation of a reactivation of the androgen receptor by MPA, highlighted by 

the overexpression of AR-target genes180 like KLK2 and KLK3. More importantly, 

the regulons-based analysis pointed to a novel transcriptional regulation induced 

by MPA, unrelated to the androgen receptor signalling. Of note, The AR regulon 

was not highlighted by the regulons enrichment. This is likely due to the fact 

that the hormone naive and hormone resistant ortografts used for the inference 

of the gene regulatory network may have shown different TF-target 

relationships, which can hamper the identification of consensus putative target 

genes. 

 

Further, a previous work from Ian Mill’s group revealed that MPA treatment 

could upregulate TP53 expression and promote the inhibition of c-Myc expression 
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and activity by perturbing nucleolar biogenesis. The root cause of these effects 

was attributed to the inhibition of de novo guanine nucleotide biosynthesis174. 

Guanine nucleotides are required to sustain the assembly of nucleoli, an 

organelle that supports RNA processing (ribosomal RNAs in particular) as well as 

the interaction between TP53 and MDM2 that results in concomitant 

ubiquitination and degradation of TP53 as an important tumour suppressor181,182.  

Based on the finding that the ribonucleoprotein complex and ribosome 

biogenesis ontologies are significantly overrepresented among the SET positive 

target genes, I hypothesise that inhibition of the SET proto-oncogene may be 

mechanistically involved in producing the anti-proliferative effect of MPA on the 

PCa xenografts. For future research, it will be interesting to investigate the 

impact of C-6 ceramide, a bioactive tumour suppressor lipid, in MPA/Abiraterone 

mediated effects on tumour growth as C-6 ceramide was reported to target and 

inhibit SET function175. This analysis could lead to the development of a more 

efficient drug combination for further preclinical studies and ultimately clinical 

trials. Moreover, functional validation experiments are still warranted, namely 

overexpression and knock-out of SET proto-oncogene in both in-vivo and in-vitro 

CRPC models. 

 

Once functionally validated, SET could be both studied as a biomarker to 

validate the cellular response to MPA, as well as an alterantive therapeutic 

target. 
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Chapter 6 – General discussion 

6.1 Verification of the research hypothesis 

The aim of this dissertation was the evaluation of network-based methods for 

the analysis of PCa omics data. Three different applications were tested: in 

Chapter 3, the regulons of a gene regulatory network, derived from 

transcriptomics profiles of pre-clinical models, were used as statistical units for 

a survival analysis of patients samples; in Chapter 4, both regulons and protein 

complexes information was combined to generate multi-layer integrative 

modules for the investigation of differences between CRPC and PC status; in 

Chapter 5, the same gene regulatory network was appraised by the ability to 

detect regulational changes induced by different treatments combinations. 

 

Noteworthy, the GNR proved to be useful for the prioritisation of transcriptional 

regulators with prognostic ability for biochemical recurrence of PCa. In fact, to 

the authors knowledge, the analytical method applied in Chapter 3 was the first 

to reveal the JMJD6 regulon as a candidate biomarker for PCa progression. The 

relevance of the JMJD6 protein in PCa biology was furtherly supported by our 

pilot knock-down experiment as well as studies performed by other groups119,183.     

Nevertheless, two major issues have still to be addressed to gain the most out of 

network-based analysis.  

First, a consolidated approach to validate the results of any network modelling is 

currently lacking. Ad-hoc experiments to indirectly confirm the predicted gene-

gene relationships by artificially rewiring the network are recommended184, 

since the isolated analysis of a single gene may not provide an exhaustive 

explanation of the cause-effect mechanisms underlying the phenotype of 

interest.  

 



108 
 

Secondly, the activity of the transcriptional regulators may change over time 

according to the chromatin accessibility of the target genes185. This finding 

suggests considering multiple omics layers to infer gene-gene relationships.  

For example, chip-seq data and methylation measurements  can be used to 

assess the availability of the promoter or enhancer region of the target gene to 

further support the predicted relationships. 

 

The joint analysis of regulons and protein complexes was effective in 

highlighting and exploiting the complementarity of the information provided by 

differentially expressed genes and proteins, identified from the CRPC vs PC 

contrast. Interestingly, the over-representation analysis performed using the 

individual sets of differentially expressed features revealed two different 

aspects of the same tumour biology, and our joint enrichment analysis 

highlighted a transcriptional regulator that had not been prioritised by neither of 

the isolated lists.  

However, our workflow showed some limitations: the known difference in the 

number of identifiable differentially expressed genes and proteins from the 

same contrast151 may have biased the enrichment by giving higher importance to 

the regulons than to the protein complexes. Moreover, the conjunction of 

regulons and protein complexes by means of shared features only, did not 

consider the full spectrum of possible gene-proteins interactions, such as those 

involving proteins with RNA-binding capacity. Lastly, given the limited number of 

significant results obtained applying the permutations-based method developed 

here, a rigorous benchmarking is required to find a suitable balance between the 

number of true and false positive results.  

 

The assessment of treatment response of in-vivo PCa xenografts to single or 

combination of drugs proved the usefulness of the inferred GRN in a different 

experimental context. In fact, the prioritised transcriptional regulations of SET 

proto-oncogene represent a plausible link with the known effects of the drug 

under investigation (MPA).  
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Despite these results, the interpretation of the enrichment of regulons 

containing a large number of genes is complicated by the fact that most 

transcription factors regulate genes in multiple biological processes186. In order 

to facilitate the generation of cause-effect hypothesis and eventually increase 

the robustness of the analysis, gene ontologies memberships could be taken into 

consideration within the enrichment step of the analysis. Finally, functional 

validations are required to assess the robustness of the single findings and,  one-

to-one comparisons with PSA and other standards of care, are needed to fully 

demonstrate the clinical utility of the newly putative biomarkers. 

 

6.2 GRN application in cancer research 

Regulatory networks are systems biology approaches effective in capturing 

cooperative or mutual interactions among genes, especially in contexts in which 

the phenotype is due to a rewiring of the gene expression35. 

GRNs play an important role in cancer research and have been applied to study 

several tumour types, for example: master regulators were identified from a 

GRN derived from microarray gene expression experiment to understand the 

upstream events leading to the development of breast cancer187; co-activated 

transcription factors were similarly studied from an oesophageal squamous cell 

carcinoma GRN to gain insights into the carcinogenesis mechanisms188; a network 

comprising transcription factors, mRNA and lncRNAs expression, revealed 15 core 

modules associated with lung adenocarcinoma as putative targets for 

therapeutic strategies189. 

 

Similar examples can be found in PCa literature as well, given the key role that 

transcription factors, like the androgen receptor, play in the disease. Several 

studies of PCa biology have been based on GRNs developed from either 

microarray or RNAseq expression profiles.  

Initially, sub-networks of the genes SREBFI, STAT6 and PBXI have been 

associated with the development of prostate cancer, while SLC22A3 regulon 

explained the differentiation between high and low grade cancers190.  
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In a subsequent study, gene expression, miRNAs expression and clinical data 

have been jointly used to generate a GRN from PCa patients samples to find 

modules linked to clinical parameters such as the aggressiveness of the 

disease191.  

Similarly, an independent study exploited gene and miRNA expression profiles to 

reveal HOXD10, BCL2 and PGR regulons as the most influent factors of primary 

PCa, as well as STAT3, JUN and JUNB as key players in the metastatic disease. 

These results were validated through a survival analysis based on the high/low 

expression levels of the prioritized transcription factors192.  

 

The studies cited above, while sharing part of the methodologies for the 

inference and analysis of the GRN with the work described in this thesis, lacked 

the utilisation of the regulon enrichment as a predictive biomarker. 

In greater detail, our network-based analysis was motivated by the consideration 

of the concordance among the full set of regulatory relationships, rather than 

the expression levels of the individual transcriptional regulators, as the 

biomarker for the observed phenotypes.  

With this view in mind, rather than looking for isolated biomarkers, the author 

suggests shifting the research focus on the rewiring of molecular interactions 

occurring during the development of complex diseases such as cancer.   

 

6.3 Future studies  

With the experience obtained from my research activity, I envision future 

network-based studies of cancer omics data, to improve the analysis workflow by 

finding solutions to the encountered issues. 

 

To increase the accuracy of the inferred relationships and hence the 

interpretability of the regulational modules, it would be recommended to 

introduce additional omics layers in the analysis, starting from epigenetics data. 

The information obtained from histone modifications and chromatin accessibility 
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experiments can reveal a more comprehensive map of the phenotype specific 

regulations, including those involving distal enhancer regions and transcription 

factors cooperation193.  

 

Similarly, single-cell derived data can reveal the extent of heterogeneity 

confounding the omics profile, so to discern stochastic associations from 

mechanistic regulatory relationships194. Such strategy could lead to more robust 

and interpretable regulons to be used as prognostic/diagnostic markers. 

 

An additional aspect worth investigating is the influence of proteins post-

translational modifications (PTMs) over the network of protein-protein 

interactions. In fact, human proteins undergoing PTMs were found associated 

with specific protein interaction network properties195. By taking into account 

the modification status of the proteins, it is possible to increase accuracy in the 

reconstruction of phenotype specific interaction networks, in order to replace 

less suitable external databases.  

 

Lastly, in order to ensure the robustness, reproducibility, and comparability 

across -omics studies, it is needed to further investigate both wet and dry lab 

protocols to account for the lack of gold-standard unified sample processing 

workflows, and post-processing data analysis methods such as normalization, 

transformation, and scaling32. This, together with standardization in the 

annotation of clinical data, would minimize the barrier for the translation omics 

derived biomarkers into clinical practice. 
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