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Abstract 

Coronary heart disease (CHD) is the most common cause of death in Western societies. This 

disease affects both men and women and accounts for approximately 500,000 deaths annually 

in the U.S.A. alone. 

For a number of years, plasma concentration of HDL cholesterol (HDL-C) was found to correlate 

inversely with the incidence of coronary heart disease and atherosclerosis. In addition, other 

studies in humans showed that higher plasma HDL-C levels correlates with slower progression 

of atherosclerotic lesions and possible stabilization of unstable atherosclerotic plaque.  These 

findings have led to the suggestion that raising HDL-C will protect from the disease. One of the 

first trials demonstrating the potential benefit of raising HDL-C levels was the Helsinki Heart 

Study. In this randomized trial, 4081 men with dyslipidemia received gemfibrozil or placebo and 

five years later it was seen that the drug reduced CHD risk. Gemfibrozil treatment increased 

HDL-C levels by 11% but also reduced total plasma cholesterol levels by 10%, LDL-C cholesterol 

levels by 11% and triglyceride levels by 35%.  Although all fibrates have been revealed to raise 

HDL-C significantly, their overall effect on all-cause mortality and cardiac mortality remains 

debatable.  

More recent studies have suggested that the relationship between HDL and cardiovascular risk 

is more complex than first thought and extends beyond consideration of levels of total HDL-C in 

plasma. In particular, Mendelian randomization studies challenged the existing view on HDL-C 

and cardiovascular risk and prompted a discussion as to whether low HDL-C is a causal risk 

factor for the development of heart disease. 

In parallel, research interest has intensified in studies aimed at better understanding the many 

biological functions of HDL and the partner proteins and receptors with which it interacts. 

There have been a number of studies over recent years indicating that HDL can fail to function 

effectively in subjects at risk for coronary diseases. It is important therefore to attempt to 

understand if abnormalities in HDL function are associated with variation in CVD risk. This is 
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especially true in light of the failure of recent trials that raise total HDL to reduce risk of 

myocardial infarction and CVD.  

A feature that appears to be related to the atheroprotective functions of HDL is the relative 

level and distribution of HDL subpopulations in different individuals. Although HDL is unusually 

regarded as a single entity in clinical settings, studies using non- denaturing two-dimensional 

electrophoresis have revealed a number of HDL particles with distinct shape, size and 

composition. Along the same lines, administration of statins - a medication proven to reduce 

CHD risk - to patients increases specific subpopulation of HDL suggesting that some of the 

atheroprotective properties of statins may be mediated by increasing selected HDL 

subpopulations.  

The overall objective of the present work was to examine in details the relationship of HDL 

oxidation potential, the ability of HDL to protect LDL from oxidation, and the abundance of the 

major antioxidant enzyme, PON1, to atherosclerosis in a cross section of subjects recruited 

from across the social economic spectrum in the West of Scotland (the pSoBid study). PSoBid is 

valuable as a means of testing these properties of HDL because of its mix of males and females, 

wide age range, and the fact that it focused in recruiting people at extremes of social 

deprivation with widely varying lifestyles. 

The population has been well characterized in terms of classical risk factors and this thesis takes 

the investigation to a new level of detail with respect to HDL. 

The major questions addressed were:  

1. Is HDL oxidation (measured by three factors; time at half maximum (T1/2max), 

maximum velocity of oxidation (Vmax), or maximum amount of oxidized HDL measured 

by optical density) related to a commonly used index of atherosclerosis? 

2. Is HDL antioxidant potency to protect LDL from oxidation related to its protective effect 

in atherosclerosis risk? 

3. Is HDL PON1 activity related to atherosclerotic marker? 

4.  If some HDL subclasses, rather than HDL-C, are particularly related to atherosclerosis? 
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Our major findings revealed that: 

1.  HDL is more readily oxidized in those subgroups associated with less atherosclerosis. 

2. The susceptibility of HDL to oxidation was also related to lifestyle factors associated with 

less atherosclerotic disease such as moderate alcohol intake, not smoking, active 

exercise habit and high intake of fruits and vegetables. 

3. For HDL structure, %HDL2b was inversely associated with atherosclerosis while %HDL3b 

was directly associated with atherosclerosis. 

4. Comparing the two factors which were inversely associated with atherosclerosis, HDL 

oxidation and the distribution of HDL subpopulations, our results revealed that HDL 

oxidation potential was more important than the percentage HDL subfraction 

distribution in relation to atherosclerosis. 

5. HDL mediated inhibition of LDL oxidation was not found to be associated with carotid 

atherosclerosis nor did it appear to be related to major risk factors. 

Our interpretation for atherosclerosis  is that HDL particles, which are very abundant in the 

circulation, might play a sacrificial role in that they are oxidized first and therefore have the 

capacity to prevent LDL oxidation in vivo.  
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1   Introduction and Literature Review 

1.1 General Lipoprotein Physiology  

1.1.1 Lipoprotein Composition and Classes 

Lipids are an important component of living cells. Lipids are defined chemically as organic 

substances that are insoluble in water and soluble in alcohol, ether, and chloroform (Akoh & 

Min, 2008). They include fat, waxes, sterols, fat-soluble vitamins (such as vitamins A, D, E, 

and K), monoglycerides, diglycerides, triglycerides (TGs), phospholipids (PLs), and others 

(Ekuni, Battino, Tomofuji & Putnins, 2014). Lipids are considered as one of the 

macronutrients alongside carbohydrate and protein (Akoh & Min, 2008). The vast majority of 

dietary lipids consist of triglycerides (> 95%) (Alters & Schiff, 2013), and the remaining are 

PLs, free fatty acids (F.F.As) cholesterol and fat-soluble vitamins. Biologically and clinically, 

the most important plasma lipids are cholesterol and triglycerides. Cholesterol and TG are 

almost insoluble in the aqueous bloodstream; therefore they are transported via their 

attachment to circulating lipoproteins to enable the organism to transport them to the 

peripheral tissues for storage or metabolism (Gurr, Harwood & Frayn, 2002 ; Hegele, 2009). 

Lipoproteins are spherical particles (Figure1.1) consisting of a core of hydrophobic lipids, 

which are mainly cholesterol ester and triglycerides, surrounded by an amphipathic shell of 

free cholesterol, PLs  and one or more specific proteins called apolipoproteins which 

function both to stabilize the lipoprotein and to promote its further metabolism (Ginsberg H. 

N, Zhang Y. L & A., 2005).  

Plasma lipoproteins are classified into four major classes based on their hydrated density or 

Svedberg floatation rate (Sf); chylomicrons (CM), very low-density lipoproteins (VLDL), low 

density lipoproteins (LDL) and high density lipoproteins (HDL) (Gurr, Harwood & Frayn, 

2002 ). Table 1.1 summarizes the major lipoproteins along with their features. Chylomicron 

remnants (CMRs) and intermediate density lipoproteins (IDL) are also included in this 

classification. They are formed by the degradation of CM and VLDL particles respectively. 

Each lipoprotein class comprises a family of particles that vary slightly in density, size, 

migration, during electrophoresis, and protein composition. The density of a lipoprotein is 

determined by the relative concentrations of lipids and proteins and by the diameters of the 

broadly spherical particles. Although preparative/ analytical ultracentrifugation remains a 
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frequent and valuable technique for isolating all serum lipoproteins (Brousseau T, Clavey V, 

Brad & Fruchart, 1993; Ginsberg H. N, Zhang Y. L & A., 2005), lipoproteins can also be 

separated according to their behavior on column chromatography, high-performance liquid 

chromatography (HPLC) and electrophoresis. Apolipoproteins (apo) or apoproteins are 

important regulators of lipoprotein metabolism through their influence on the transport and 

redistribution of lipid among various cells and tissues (Table 1.2). This is achieved either by 

their role as a cofactor for enzymes of lipid metabolism or through their role in lipoprotein 

particle assembly (Mahley, Innerarity, Rall & Weisgraber, 1984).    
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Figure 1.1 The lipoprotein particle. The external monolayer of the particle contains free 
cholesterol, phospholipids, and apolipoproteins. The very hydrophobic cholesterol esters and 
Triglycerides concentrate within the particle core. Lipoproteins also carry fat-soluble vitamins. 
Apoprotein, apolipoprotein. [From: (Baynes, 2005)].  

 



1. Introduction and Literature Review  

© Faridah Alkandari (2017)          4 

 

Table 1.1 Characteristics and percentage content of the various lipoprotein particles relative to total weight. [Source: (Ginsberg H. N, Zhang Y. L & A., 2005; Gurr, Harwood & Frayn, 

2002 ; Packard & Shepherd, 1997; Wills 2014) . 

       Composition (%)  

Lipoprotein 
particle 

Diameter 

(Angstroms) 

Density 
g.mL

-1
 

Flotation 
rate (Sf) 

Site of 
Synthesis 

*Major apolipo-
proteins 

Mobility by 
electrophoresis 

Protein Cholesterol TG PL Function 

CM 80–1000 <0.95 >400 Gut 
A-I, A-II, A-IV, B-48, C-I, 

C-II, C-III, E 
Remains at origin 2 2-7 80-95 3-9 

Transport 
dietary fat 

 
VLDL 

30-80 0.95–1.006 20-400 Liver B-100, C-I, C-II, C-III,  E Pre-beta 8 5-15 55-80 10-20 
Transport 

endogenous 
fat 

LDL 18-25 
1.019–
1.063 

0-12 
Peripheral 

tissue 
capillaries 

B-100 Beta 22 40-50 5-15 20-25 
Transport 

cholesterol to 
periphery 

HDL 5-12 1.063–1.21 - Gut/ Liver 
*A-I, A-ll, A-IV,  C-I, C-II, 

C-III, D, E 

Alpha & Pre-beta 
(for some nascent 

HDLs) 
40 15-25 5-10 20-30 

Reverse 
transport of 
cholesterol 

* Only major apolipoproteins are mentioned. TG, Triglyceride; PL, phospholipids 
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Table 1.2  Characteristics of major apolipoproteins [Source: (Ramasamy, 2014)]. 

Apo M.Wt Lipoproteins Metabolic functions Synthesis 

ApoA-I 28,016 HDL, CM Structural component of HDL, LCAT activator Liver, intestine 

ApoA-II 17,414 HDL, CM  liver 

ApoA-IV 46,465 HDL, CM Involved in chylomicron assembly and secretion Intestine in humans 

ApoA-V  HDL, CM, VLDL Effects on plasma TG concentrations are complex and variable. 
Activator of intravascular hydrolysis by LPL. 

Modulates hepatic TG metabolism 

Predominantly in the liver 

ApoB-48 264,000 CM Necessary for assembly and secretion of chylomicrons from the small intestine intestine 

ApoB-
100 

540,000 VLDL, IDL, LDL Necessary for assembly and secretion of VLDL from liver. 
Structural protein of VLDL, IDL and LDL. 

Ligand for LDL receptor 

Liver 

ApoC-I 6630 CM, VLDL, IDL, 
HDL 

ApoC-I inhibits lipoprotein binding to its receptors. 
Potent inhibitor of cholesteryl ester transfer protein. 

liver 

ApoC-II 8900 CM, VLDL, IDL, 
HDL 

Activator of lipoprotein lipase  

ApoC-III 8800 CM, VLDL, IDL, 
HDL 

Inhibits lipoprotein lipase; increase VLDL secretion. 
ApoC-III can also stimulate several processes involved in atherogenesis and vascular 

inflammation. 
Interferes with remnant lipoprotein clearance. 

Synthesized in the Liver and to a lesser extent 

in the intestine 

ApoE 34,145 CM, VLDL, IDL, 
HDL 

LDL receptor ligand for LDL and chylomicron remnants. 
Ligand for LRP. 

Role in reverse cholesterol transport 

Predominantly in the liver 

TG, triglyceride; Apo, Apolipoprotein; M.Wt, Molecular weight in Daltons.
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1.2 Lipoprotein Metabolism 

1.2.1 Exogenous Pathway: Transport of Dietary Lipids 

In the small intestine, dietary TGs are hydrolyzed by the action of pancreatic lipases to form 

monoacylglycerols and fatty acids. These are then emulsified by bile acids along with dietary 

cholesterol to form micelles which are absorbed by the enterocytes of the intestine. Dietary 

lipids once absorbed are largely re-esterified. Dietary cholesterol is esterified in the 

enterocyte to form cholesterol esters (Rader & Hobbs, 2012). After absorption, fatty acids 

are converted to their acyl-coenzyme A (acyl-CoA) derivatives.  Acyl-CoA then reacts with 2-

monoacylglycerol to form TGs (Puri D, 2011). In the endoplasmic reticulum, the new TGs are 

incorporated with apolipoprotein B (ApoB), isoform B-48, cholesteryl esters (CEs), PLs, and 

cholesterol to form chylomicrons (CMs). The newly synthesized chylomicrons consist of a 

core of CE and TGs, with a surface of unesterified cholesterol and PL, and apolipoproteins B-

48 (Rader & Hobbs, 2012). Nascent CMs (Figure 1.2) are then transferred to the left 

brachiocephalic vein of blood circulation via the intestinal lymphatic system. In the blood 

circulation, chylomicrons acquire apoC-II, apoC-III and apoE apolipoproteins (Ginsberg H. N, 

Zhang Y. L & A., 2005) and before they reach the liver, they are lipolysed by lipoprotein 

lipase (LPL) which is attached to heparan sulfate proteoglycans on the endothelial capillaries 

surrounding the adipose tissues, heart, and skeletal muscles.  LPL hydrolyses TGs of the 

chylomicrons, in a process where ApoC-II acts as a cofactor, releasing FFAs and 2-

monoacylglycerol. FFAs are then taken up by adjacent myocytes or adipocytes and either 

oxidized for energy usage or re-esterified and stored as TGs. In addition, some TGs are 

transferred to HDL and LDL in exchange for cholesterol ester. This exchange is catalyzed by 

CE transfer protein enzyme (CETP).  On the other hand, cholesterol, PL and ApoC-II of the 

outer surface of the chylomicron particles are also dissociated and transferred to other 

particles such as HDL (Rader & Hobbs, 2012).  
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Figure 1.2 Exogenous pathway of lipoprotein metabolism. Hydrolysed TGs and cholesterol enter the 

enterocytes (intestinal cells) where cholesterol is esterified and new TGs are formed. CM formed from the 

incorporation of TGs, cholesterol ester, apoB-48, PL and cholesterol. Nascent CM enters the blood stream 

via the lymphatic system. CMs then acquire apoC-II, apoC-III and apoE then processed by LPL attached to 

the endothelial capillaries. LPL hydrolyses TG to form FFAs and 2-monoacylglycerol. FFAs are taken up by 

adipocytes or myocytes for energy expenditure or stored as TGs. Some TGs is also exchanged with 

cholesterol esters with other lipoproteins, like HDL, with the aid of CETP. PLs, cholesterol and apoC-II also 

detached for CM and transferred to other particles such as HDL. CM remnant (CMr) is taken up by the 

hepatic receptor LDLR. TG, triglyceride;  CM , chylomicron ; CM REM, chylomicron remnant ; LPL, 

Lipoprotein lipase ;FFAs, free fatty acids ; CETP, cholesteryl ester transfer protein enzyme; PL, 

phospholipids[Source:(Aswar, http://www.slideshare.net/silky1/lipid-metabolism-and-hypolipedemic-

drugs)]. 
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These two processes produce smaller chylomicron remnants (CMRs) which retain both apoB-

48 and apo-E from the chylomicron. CMRs are rapidly removed from the circulation and 

taken up by hepatic LDL receptor (LDLR) and LDL receptor-related protein (LRP) in a process 

that requires Apo-E (Redgrave, 2004). TGs from the CMRs are stored in the liver or 

repackaged with cholesterol and the Apo-B, isoform B-100, into VLDL. In normal individuals, 

postprandial TGs levels return to baseline within 8-10 hours after an intake of dietary fat 

(Meyer et al., 2008). 

1.2.2 Endogenous Pathway: Transport of Hepatic Lipids 

In the endogenous pathway of lipoprotein metabolism, TGs are distributed from the liver to 

other tissues. The liver assembles and secretes TG-rich VLDL (Figure 1.3) particles which 

transport TGs from the liver to peripheral tissues. VLDL is synthesized and secreted from the 

liver in a process that is apoB-100 dependent. VLDL particles are very similar to chylomicrons 

in protein composition with apoB-100, isoform of apoB, rather than apoB-48. In normal 

individuals, TG appear to be nearly the sole lipid in the core of nascent  LDL  (there is    1 mg 

of cholesterol for every 5 mg of TG) (Rader & Hobbs, 2012; Vega & Grundy, 2012). The 

packaging of hepatic TGs with apoB-100, cholesterol esters, PLs, and vitamin E to form 

nascent VLDL requires the action of the enzyme microsomal triglyceride transfer protein 

(MTP) (Sundaram & Yao, 2010). In the plasma, VLDL acquires multiple copies of apoE and 

apolipoproteins of the C series. TGs of VLDL are like CMs lipolysed into F.F.As and glycerol by 

LPL and its cofactor apoC-II. As VLDL shrink in size they are ultimately converted into VLDL 

remnants or intermediate density lipoproteins (IDL) which contains similar amounts of 

cholesterol ester  and a smaller amount of  TGs (Vega & Grundy, 2012). IDL TGs are in turn 

hydrolyzed by hepatic lipase (HL) to produce low density lipoprotein (LDL) or they are 

removed by the interaction of apolipoprotein E with the LDLR on the surface of the liver.  

LDL transports cholesterol primarily to hepatocytes but also to peripheral tissues. ApoB-100 

is responsible for the recognition and uptake of LDL by the LDL receptor, which clears 

approximately 60-80% of LDL in normal individuals.  However, if LDL is oxidized, it can enter 

the macrophage through the scavenger receptors, CD36 and SR-A, on the surface of the 

macrophage or be taken up by vascular smooth muscle cells. When these macrophages 

become burdened with CEs, they transform into foam cells, which is a major step in the 

development of atherosclerosis. As LDL becomes lipid depleted, small dense LDL (sdLDL) is 
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produced. sdLDL has lower affinity for LDLR but is highly susceptible to oxidative 

modification. Thus sdLDL are believed to be more atherogenic than larger LDL particles 

(Soares & Costa, 2009). 
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Figure 1.3 Endogenous pathway of lipoprotein metabolism. VLDL is secreted from the liver.  In the plasma, 

VLDL acquires multiple copies of apoE and apolipoproteins of the C series. TGs of VLDL are lipolysed into 

free fatty acids and glycerol by LPL and its cofactor apoC-II. VLDL shrink in size converted into VLDL 

remnant or IDL . IDL TGs are hydrolysed by HL to produce LDL or they are removed by the interaction of 

apolipoprotein E with the LDL receptor on the liver surface. ApoB-100 is responsible for the recognition 

and uptake of LDL by the LDL receptor, which clears approximately 60-80% of LDL in normal individuals. 

TGs, triglycerides; LPL, lipoprotein lipase; HL, hepatic lipase. [Source: (Aswar, 

http://www.slideshare.net/silky1/lipid-metabolism-and-hypolipedemic-drugs)]. 
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1.2.3 HDL Metabolism  

HDLs are the smallest and most dense of the lipoproteins and the metabolism of these 

particles is somewhat more complex than that of the other major lipoprotein classes. HDL is 

thought to play a key role in reverse cholesterol transport (RCT), an important step that 

relieves peripheral cells from a cholesterol load. 

HDL Production 

Although most of the HDLs arise as discoidal particles, the majority of the HDL particles 

circulating in human plasma are spherical particles that contain a core of neutral lipids (CEs 

and a small amount of TG) surrounded by a surface monolayer that consist of PLs, 

apolipoproteins, and limited amount of unesterified cholesterol  (Rye & Barter, 2014). 

The discoidal particles are either generated in the liver before secretion into the extracellular 

space (Hamilton, Williams, Fielding & Havel, 1976) or assembled in the circulation from 

individual lipid and apolipoproteins constituents (Hara & Yokoyama, 1991). Discoidal HDLs 

consist of a PL bilayer surrounded by ≥2 apolipoprotein A-I molecules. These particles obtain 

unesterified cholesterol from cell membranes and other plasma lipoproteins. The 

unesterified cholesterol in discoidal HDL particles partitions between the PL acyl chains 

(Lund-Katz & Phillips, 1984). 

Biogenesis of discoidal HDL 

There are 4 main apolipoproteins in human HDLs, in order of decreasing abundance, are 

apolipoproteins A-I (apoA-I), apolipoproteins A-II (apoA-II), apolipoprotein A-IV (apoA-IV), 

and apolipoprotein E (apoE) (Rye & Barter, 2014). ApoA-I is produced in the liver and 

intestine. Hepatic apoA-I is first synthesized as a preprotein that is cleaved intercellularly by 

a single peptidase (Rye & Barter, 2014) (Figure 1.4A). The resulting propeptide is secreted 

before cleavage by bone morphogenic protein-1 in a process that is facilitated by 

procollagen C-proteinase enhancer-2 (Chau, Fielding & Fielding, 2007)  (Zhu, Gardner, 

Pullinger, Kane, Thompson & Francone, 2009). It has been established, by in vitro studies 
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that ≤45% of apoA-I is lipidated before it is secreted from hepatocytes (Ji, Wroblewski, Cai, 

de Beer, Webb & van der Westhuyzen, 2012). The initial lipidation of apoA-I occur in the 

endoplasmic reticulum and is independent of the ATP-binding cassette transporter AI 

(ABCA1). Further lipidation of apoA-1 takes place in the Golgi and at the plasma membrane 

in processes that are dependent on a dimeric form of ABCA1 (Maric, Kiss, Franklin & Marcel, 

2005). 

ApoA-I is also secreted from the liver into the extracellular space in a lipid-free or lipid-poor 

form. After secretion from the liver, the C-terminal domain of lipid–free apoA-I combine 

with an extracellular loop of ABCA1 in a process that commence the biogenesis of discoidal 

HDLs (Vedhachalam et al., 2004). It has been determined by recent studies that the ABCA1-

dependent export of lipids from adipocytes and the intestine to apoA-I also makes a 

significant contribution to HDL biogenesis (Chung, Sawyer, Gebre, Maeda & Parks, 2011).  

ABCA1 exports PLs from cell membranes to lipid-free/lipid-poor apoA-1 in the extracellular 

space, forming a discoidal PL/apoA-I complex that further accept cholesterol from cell 

membranes in a process that is  dependent on ABCA1 as well (Figure 1.4B) (Wang, Silver, 

Thiele & Tall, 2001). Lipid-free/lipid-poor apoA-I can also form discoidal complexes with the 

PLs and cholesterol that dissociate from the surface of triglyceride-rich lipoproteins that are 

undergoing lipoplysis by LPL  (Patsch, Gotto, Olivercrona & Eisenberg, 1978). 

ApoA-II, the second most abundant HDL apolipoproteins, is also synthesized in the liver, 

where it attains PLs and cholesterol to form discoidal HDLs (Forte, Bielicki, Goth-Goldstein, 

Selmek & McCall, 1995). As apoA-II has high affinity for lipid and does not circulate in a lipid-

free form, discoidal (A-II) HDLs are mostly assembled in the liver (Gillard, Lin, Massey & 

Pownall, 2009). It has been shown , from in vitro studies,  that apoA-II accept the cholesterol 

and PLs that are released from cell membranes through ABCA1 as effectively as apoA-I 

(Remaley et al., 2001). 

ApoA-IV is the third most abundant HDL apolipoproteins and has a much lower affinity for 

lipid than either apoA-I or apoA-II (Rye & Barter, 2014). ApoA-IV is synthesized mainly in the 

intestine and enters the circulation as a component of chylomicrons (Karathanasis, Yunis & 

Zannis, 1986) .Hydrolysis of chylomicron triglycerides by LPL depletes the particles of the 

core lipids which will generate redundant surface constituents, including apoA-IV, that 
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dissociates from chylomicrons and are subsequently incorporated into the HDL fraction (Rye 

& Barter, 2014). 

Like apoA-I and apoA-II, apoE is synthesized predominantly in the liver, where it associates 

with VLDLs before it is secreted to the extracellular space (Gillard, Lin, Massey & Pownall, 

2009). Once in the circulation, apoE is incorporated into the HDL fraction subsequent to the 

hydrolysis of VLDL triglycerides by LPL. Several reports indicated that the lipidation of apoE is 

also dependent on ABCA1, with in vivo and in vitro studies indicating that the N-terminal 

domain of the apolipoproteins is important for this interaction (Petropoulou, Gantz, Wang, 

Rensen & Kypreos, 2011). 

It is important to mention that loss-of-function mutations in the ABCA1 gene, which reduce 

the export of cellular cholesterol and PLs to apolipoproteins, inhibit HDL biogenesis. This is 

exemplified by the low levels or complete absence of HDLs in people with Tangier disease 

(TD) (Rye & Barter, 2014). ABCA1 gene transcription and cholesterol efflux to apoA-I are 

both markedly enhanced when the nuclear liver X receptor (LXR) complex is activated by 

oxysterols and peroxisome proliferator- activated receptor α/ɣ ligands (Chawla et al., 2001).  

More recently, activation of the VLDL receptor and the apoE receptor 2 have also been 

shown to increase ABCA1 mRNA levels and protein expression, as well as cholesterol efflux 

to apoA-I (Chen et al., 2012). On the other hand, macrophage ABCA1 gene expression and 

the efflux of cholesterol to apoA-I are suppressed by members of the oxysterol-binding 

protein-related protein family (Yan et al., 2008). 
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Figure 1.4 Biogenesis of apolipoprotein A-I (apoA-I)–containing discoidal high-density lipoproteins (HDLs). 

A, ApoA-I is synthesized mainly in the liver. A proportion of the apoA-I in hepatocytes interacts with 

ABCA1 to acquire PLs and unesterified cholesterol, generating discoidal HDLs that are secreted into the 

extracellular space. B, ApoA-I is secreted from the liver into the extracellular space in a lipid-free or lipid-

poor form. This apoA-I accepts PLs and unesterified cholesterol from cell membranes that express ABCA1, 

forming discoidal HDLs. Discoidal HDLs are also generated when lipid-free apoA-I in the plasma acquires 

PLs and unesterified cholesterol that are shed from the surface of triglyceride-rich lipoproteins that are 

being hydrolyzed by lipoprotein lipase. ABCA1, ATP-binding cassette transporter A1; apoA-I, 

apolipoproteinA-I; PL, phospholipid [Source: (Rye & Barter, 2014)] 
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Biogenesis of Spherical HDLs  

As mentioned, ABCA1 plays a critical role in the biogenesis of discoidal HDLs. Nonetheless, 

this represents only the first step in the formation of mature, spherical HDLs (Rye & Barter, 

2014).  

The discoidal HDL particles that are either secreted from the liver or assembled in the 

plasma are rapidly converted into mature spherical HDLs by Lecithin: cholesterol 

acyltransferase (LCAT). LCAT is an HDL associated enzyme which generates almost all of the 

CEs in plasma. Evidence of the importance of LCAT in the formation of mature, spherical 

HDLs comes from studies of people with LCAT deficiency, in which HDLs are predominantly 

discoidal (Asztalos et al., 2007). Results from in vitro studies have indicated that lipid-free (or 

lipid-poor) apoA-I can also be incorporated directly into preexisting spherical HDLs that are 

increasing in size as a consequence of their interaction with LCAT (Liang, Rye & Barter, 1996).  

LCAT enzyme mediates the formation of cholesterol esters in human plasma by the transfer 

of the sn-2 acyl chain of the phosphotidylcholine in discoidal HDLs (Figure 1.5). This produces 

fatty acid groups that are transferred by LCAT to the 3-hydroxyl group of cholesterol in a 

reaction that generates CEs and lysophosphotidylcholine. Since CEs are extremely 

hydrophobic, they partition into the inner core of the discoidal HDLs, which are thereby 

converted into spherical particles. The lysophosphotidylcholine that is generated by the 

LCAT reaction associates with albumin. The LCAT reaction depletes discoidal HDLs of 

unesterified cholesterol. This creates a concentration gradient whereby additional 

cholesterol is transferred from other lipoproteins and cell membranes to the HDL surface, 

resulting in persisting cholesterol esterification and the continuing generation of HDL CEs  

(Rye & Barter, 2014). 
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Figure 1.5 Biogenesis of spherical high-density lipoproteins (HDLs). Lecithin: cholesterol acyltransferase 

(LCAT) hydrolyses PLs in discoidal HDLs, generating fatty acyl groups and lysophosphatidylcholine. The 

fatty acyl groups are transferred to unesterified cholesterol, generating cholesteryl esters that partition 

into the particle core. The lysophosphatidylcholine associates with albumin. The LCAT reaction depletes 

discoidal HDLs of unesterified cholesterol, establishing a concentration gradient whereby additional 

cholesterol is transferred from very-low-density lipoprotein (VLDLs), low-density lipoprotein (LDLs), and 

cell membranes to the HDL surface for subsequent esterification by LCAT. LCAT, lecithin: cholesterol 

acyltransferase; PLs, phospholipids. [Source: (Rye & Barter, 2014)] 
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Studies of human plasma have confirmed that the acyl ester hydrolase and cholesterol 

transesterification activities of LCAT are controlled by apolipoprotein cofactors. ApoA-1 is 

the main activator of LCAT (Fielding, Shore & Fielding, 1972), with the N-terminal domain of 

the apolipoprotein being responsible for this action in vitro and in vivo (Scott et al., 2001). In 

vitro studies of discoidal reconstituted HDLs (rHDLs) consisting of apoA-IV and apoE 

complexed with phosphatidylcholine have proven that these apolipoproteins also stimulate 

LCAT, but with much lower catalytic efficiencies than apoA-I (Rye, Bright, Psaltis & Barter, 

2006). The indication regarding whether LCAT generates spherical apoE-containing HDLs that 

also contain apoA-I is paradoxical  (Rye & Barter, 2014). A study showing that HDLs that 

contain apo-IV are also deficient in apoA-I is consistent with LCAT interacting specifically 

with apoA-IV- comprising discoidal HDLs (Ehnholm et al., 1998). 

The HDLs in normal plasma have been classified on the basis of their apolipoprotein content 

into those that contain apoA-I, but not apoA-II, and those that contain apoA-I as well as 

apoA-II (Cheung & Albers, 1984). In vitro studies of reconstituted HDL (rHDL) have proven 

that apoA-II is not a cofactor for LCAT (Durbin & Jonas, 1999). 

The PL composition of discoidal HDLs regulated their ability to act as substrates for the LCAT 

reaction. For example, the presence of sphingomyelin in discoidal HDLs prevents cholesterol 

esterification by LCAT (Subbaiah, Horvath & Achar, 2006). This is because of a strong 

interaction between unesterified cholesterol and sphingomyelin in the discoidal HDLs, which 

decreases the amount of cholesterol available for esterification by LCAT (Rye & Barter, 

2014). The kinetics of LCAT reaction is also controlled by the length and unsaturation of the 

PL acyl chains in discoidal HDLs (Jonas, Zorich, Kezdy & Trick, 1987). 

Regulation of HDL Subpopulation Distribution 

The HDL fraction in human plasma consists of various subpopulations of particles that are 

continually being remodeled and interconverted by plasma factors. 

HDLs circulating in human plasma have been classified on the basis of hydrated density into 

2 main subfractions: HDL2 and HDL3. HDL that contain apoA-I, but not apoA-II, are mainly 

found in the HDL2 fraction, whereas HDLs that contain apoA-I as well as apoA-II are generally 

associated with smaller and denser particles in the HDL3 subfraction. An association of HDL2 

and HDL3 levels with a decreased risk of myocardial infraction has been reported in the 
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Physicians’ Study (Stampfer, Sacks, Salvini, Willett & Hennekens, 1991). This association was 

different in other studies which has revealed that the inverse relationship between HDL2 

subfraction and the progress of ischemic heart disease in participants in the Quebec 

Cardiovascular Study is greater than that of HDL3 (Lamarche, Moorjani, Cantin, Dagenais, 

Lupien & Despres, 1997). 

Non-denaturing gradient gel electrophoresis is frequently used to separate HDLs on the basis 

of size into 5 different subpopulations of particles. In order of decreasing size, these are 

HDL2b, HDL2a, HDL3a, HDL3b, and HDL3c (Blanche, Gong, Forte & Nichols, 1981). HDL can 

also be resolved on the basis of surface charge into particles that migrate to a pre-β-position 

or α-position through agarose gel electrophoresis. Lipid-free apoA-I, lipid-poor apoA-I, and 

most discoidal HDLs migrate to a pre-β-position, whereas spherical HDLs exhibit α-migration 

(Castro & Fielding, 1988).  

The subpopulation distribution of HDLs is extensively regulated by multiple plasma factors, 

including 2 members of the bactericidal permeability-increasing protein and 

lipopolysaccharide-binding protein family: CETP and phospholipid transfer protein (PLTP), 2 

members of the TG lipase gene family, HL and endothelial lipase (EL), and the group IIA 

secretory phospholipase A2 (sPLA2)  (Rye & Barter, 2014). 

CETP  promotes the transfers of CEs out of HDLs and the transfer of TG out from VLDLs 

which generate HDLs that are enriched in TG. Because a TG molecule is significantly larger 

than a CE molecule, the substitution of CEs with TG increases HDL size (Rye, Hime & Barter, 

1995).  

Activity of CETP decreases plasma HDL cholesterol levels and reduces HDL particle size (Rye 

& Barter, 2014). The rate of CETP-mediated transfers of core lipids between HDLs and TG-

rich lipoproteins appears to be independent of HDL apolipoprotein composition (Rye & 

Barter, 1994).  

CETP-mediated remodeling of HDLs into large and small particles is also altered by PL 

composition. HDL particles that contain PLs with long, polyunsaturated sn-2 phospholipid 

acyl chains are remodeled more comprehensively by CETP than those with shorter, more 

saturated sn-2 acyl chains (Rye et al., 2002). This could be because of the long, 
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polyunsaturated phospholipid acyl chains destabilizing the particle structure and excluding 

apoA-I from the surface (Rye et al., 2002).  

In vitro studies have established that PLTP transfers PLs between HDLs and VLDLs, as well as 

between particles within the HDL fraction. PLTP also remodels HDLs into large and small 

particles by processes that are accompanied by the dissociation of lipid-free or lipid-poor 

apoA-I (Tu, Nishida & Nishida, 1993).  The PLTP-mediated dissociation of apoA-I from HDLs 

has been reported to stimulate HDL biogenesis by enhancing cholesterol and PL efflux from 

cells that express ABCA1. It is also confirmed that PLTP is incapable of remodeling HDLs 

when its PL transfer activity is repressed, indicating that there is a great interdependence 

between the lipid transfer and HDL remodeling function of PLTP (Huuskonen, Olkkonen, 

Ehnholm, Metso, Julkunen & Jauhiainen, 2000). 

Studies with spherical apoA-I-containing rHDLs have clarified the mechanism by which PLTP 

remodels HDLs into large and small particles. The process involves an initial particle fusion, 

with following rearrangement of the unstable fusion product via 2 distinct pathways (Figure 

1.6). The first pathway (pathway 1) produces small HDL particles without dissociation of 

lipid-free or lipid-poor apoA-I (Settasatian et al., 2001). The second pathway (pathway 2) 

involves the dissociation of lipid-free/lipid-poor apoA-I from the fusion product and the 

formation of large spherical HDLs (Settasatian et al., 2001). 

PLTP also remodels spherical apoE-containing rHDLs into large and small particles by a 

mechanism that involves sequential particle fusions and rearrangements of the fusion 

products in processes that do not involve the dissociation of apoE (Figure 1.7) (Settasatian et 

al., 2001). 

The remodeling of HDLs by PLTP is regulated by both the apolipoprotein and the core lipid 

composition of the particles  (Rye & Barter, 2014). The incorporation of apoA-II into apoA-I-

containing HDL particles isolated from human plasma prevents both the PLTP-mediated 

remodeling of HDLs into large and small particles and the detachment of apoA-I (Pussinen, 

Jauhiainen & Ehnholm, 1997). 
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Figure 1.6 Remodeling of apolipoprotein A-I (apoA-I)–containing high-density lipoproteins (HDLs) by PLTP. 
PLTP interacts with apoA-I–containing HDLs to generate a large, unstable fusion product. A proportion of 
the fusion products is remodeled into small HDL particles in a process that does not cause the dissociation 
of apoA-I (pathway 1). The fusion product is also remodeled into a more stable large particle in a process 
that involves the dissociation of lipid-free/lipid-poor apoA-I (pathway 2).PLTP, phospholipid transfer 
protein. [Source: (Rye & Barter, 2014)] 
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Figure 1.7 Remodeling of apolipoprotein E (apoE)–containing high-density lipoproteins (HDLs) by 
PLTP. PLTP remodels spherical apoE-containing HDLs into large and small particles. A, The remodeling 
is initiated by particle fusion, followed by rearrangement of the fusion product into a small HDL 
particle and an unstable intermediate particle. B, PLTP promotes the fusion of the intermediate 
particle with an original HDL particle to generate another fusion product that rearranges into a small 
HDL particle and a second intermediate particle. C, In the final step, PLTP promotes the fusion of the 
second intermediate particle with an original HDL particle to generate another fusion product that 
rearranges into large and small HDL particles. PLTP, phospholipid transfer protein. [Source: (Rye & 
Barter, 2014)] 
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Although HL has a significant phospholipase activity, it preferentially hydrolyses HDL 

triglycerides. HDL particles that become TG-enriched after interaction with CETP and VLDLs 

are excellent substrates of HL (Rye & Barter, 2014). The hydrolysis of HDL TGs by HL 

produces small core lipid-depleted particles and promotes the dissociation of lipid-free/lipid-

poor apoA-I (Figure 1.8) (Barrans et al., 1994). This is also aligned with the results of human 

genetic studies showing that polymorphisms in the HL gene that decrease its activity are 

associated with increased HDL2 levels (Carr, Ayyobi, Murdoch, Deeb & Brunzell, 2002),  and 

results of animal studies in which transgenic overexpression of human HL in rabbits and mice 

decreases HDL levels (Fan et al., 1994). 

The apolipoprotein and PL composition of HDLs both influence on the reactivity with HL. For 

example, the presence of apoA-II in HDLs inhibits the HL-mediated hydrolysis of both PLs and 

TG in vitro (Hime, Barter & Rye, 1998) and in vivo (Zhong, Goldberg, Bruce, Rubin, Breslow & 

Tall, 1994). On the other hand, apoA-I, irrespective of whether it is present in HDLs that also 

contain apoA-II, enhances the HL-mediated hydrolysis of HDL PLs and TGs (Hime, Barter & 

Rye, 2001). Moreover, the rate at which HL hydrolyses PLs and TGs in rHDLs is considerably 

greater in particles that contain apoE compared with particles that contain apoA-I (Hime, 

Drew, Hahn, Barter & Rye, 2004).  

Although endothelial lipase (EL) and HL belong to the same gene family, EL has a very 

different substrate specificity from that of HL. HL favorably hydrolyses HDL TGs, whereas EL 

has a preference for HDL phospholipids and low TG lipase activity (Jaye et al., 1999). EL also 

differs from HL in its ability to remodel HDLs. The phospholipase activity of EL modestly 

decreases rHDL size in vitro in a process that is not accompanied by the dissociation of lipid-

free or lipid-poor apoA-I (Jahangiri, Rader, Marchadier, Curtiss, Bonnet & Rye, 2005). This 

reflects the inability of EL to hydrolyze TG and reduce the core lipid content of the particles  

(Rye & Barter, 2014). 
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Figure 1.8 Remodeling of high-density lipoproteins (HDLs) by cholesteryl ester transfer protein (CETP) 
and hepatic lipase. HDL particles that have become TG-enriched by interacting with CETP and very-
low-density lipoproteins are substrates for hepatic lipase. Hepatic lipase hydrolyses the TGs in TG-
enriched HDLs, generating small core lipid–depleted HDL particles from which lipid-free/lipid-poor 
apolipoprotein A-I dissociates. TG, Trigyceride; CE, cholesterol ester. [ Source:  (Rye & Barter, 2014)]. 
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In vitro studies have established that the phospholipase activity of EL is regulated by both 

the apolipoprotein and PL composition of HDLs, with spherical apoA-II-containing rHDLs 

being weak substrates for EL in vitro (Caiazza, Jahangiri, Rader, Marchadier & Rye, 2004). 

This was also confirmed in mice transgenic for human apoA-I and human A-II  (Broedl, Jin, 

Fuki, Millar & Rader, 2006).  

The specificity of EL for HDL phospholipids is also distinct from that of HL, with EL 

preferentially hydrolyzing PLs with long polyunsaturated sn-2 acyl chains as opposed to HL, 

which has a preference for PLs with short saturated acyl chains (Duong, Psaltis, Rader, 

Marchadier, Barter & Rye, 2003). 

The group IIA sPLA2 is an acute phase protein that associates with HDLs under inflammatory 

conditions and hydrolyses HDL phospholipid sn-2 acyl ester bonds. Transgenic 

overexpression of sPLA2 in mice increases the fractional catabolic rate of HDLs (Tietge et al., 

2000). It also reduces HDL cholesterol levels (Tietge et al., 2000) and particle size. sPLA2 

deficiency in mice, by contrast, does not affect plasma HDL levels (Burton et al., 2002). 

HDL Catabolism 

There is compelling evidence to suggest that the clearance of intact HDL particles from the 

circulation is minimal and that most HDL components are catabolized individually  (Rye & 

Barter, 2014). The major sites of catabolism of the protein components of HDL particles are 

the liver and kidney (Sriram et al., 2011).  

CEs are selectively removed from HDLs when they bind to hepatic scavenger receptor B1 

(SR-B1).  In addition, CEs are also selectively removed from HDLs by CETP, which transfers 

them to other lipoprotein particles. On the other hand, the lipid-free and lipid-poor apoA-I 

that dissociates from HDL particles as a consequence of CETP-mediated core lipid transfers 

to other lipoproteins may be cleared from the circulation by the endocytic receptors, 

megalin and cubulin, which are expressed in the kidney (Rye & Barter, 2014). 

SR-B1 promotes the selective uptake of CEs from HDLs into the liver and steriodegenic 

tissues (Brundert et al., 2005). In vitro studies have indicated that HL facilitates this process 

by a process that involves the binding of HDLs to the cell surface (Lambert, Chase, Dugi, 
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Bensadoun, Brewer & Santamarina-Fojo, 1999). The significance of SR-B1 in regulating 

plasma HDL cholesterol levels is confirmed from reports of mice in which hepatic 

overexpression of SR-B1 is associated with decreased levels of HDL cholesterol (Kozarsky, 

Donahee, Rigotti, Iqbal, Edelman & Krieger, 1997) and of SR-B1-null mice that have increased 

HDL cholesterol levels (Rigotti, Trigatti, Penman, Rayburn, Herz & Krieger, 1997). In vitro 

studies have indicated that the apolipoprotein composition of HDLs regulate the selective 

uptake of CEs by SR-B1, although the results are conflicting  (Rye & Barter, 2014).  

Moreover, HDL particles can be removed from the circulation by holoparticle HDL receptor, 

HDLR, Indeed, hepatic cells rapidly take up holo-HDL particles which are accumulated in 

endosomal components and can be subsequently transferred to mutivesicular bodies and, to 

a minor degree, to alysosomes for degradation (Rohrl et al., 2010).  

The overall HDL metabolism is shown in Figure 1.9 
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Figure 1.9 HDL metabolism. Lipid free apoA-I are synthesized by the intestine and hepatocytes. Once in the circulation, this lipid poor HDL triggers free cholesterol 
efflux and PL release from cellular membranes via membrane protein (ABCA1). Lipid poor, discoid HDLs undergo remodeling under the action of LCAT which mediates 
esterification of unesterified cholesterol and produce large spherical HDL particles with a neutral lipid core of cholesteryl ester and TG. HDL particles gain access surface 
material including unesterified cholesterol released during the lipolysis of the TG-rich lipoproteins via PLTP resulting in HDL2. CETP facilitates the exchange of 
cholesteryl esters from HDL2 for TGs in apoB containing lipoproteins results cholesterol ester-depleted and TG-enriched HDL particles. These TG-enriched particles are 
subject to hydrolysis of their TG and PL content by the action of HL. Those two actions on HDL2, from CETP and from HL, result in the formation of small, dense HDL3 
particles and lipid-free or lipid-poor apoA-1 which can interact in further lipidation cycles with ABCA1. In addition to SRB1- mediated uptake of cholesterol and 
cholesterol esters from HDL by hepatocytes, HDL can be catabolized in the liver through its uptake as holoparticles by an HDL receptor (HDLR) which is still unidentified. 
APOA1, apolipoprotein A-I; PL, phospholipid; LCAT, lecithin: cholesterol acyltransferase;   PLTP, phospholipid transfer protein, CETP, cholesterol ester transfer protein; 
[From: Kingwell et al 2014 (Kingwell, Chapman, Kontush & Miller, 2014)]. 
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1.3 High Density Lipoprotein Composition  

HDLs are the smallest and densest of the plasma lipoproteins (Barter & Rye, 1996). They 

comprise a heterogeneous group of lipoprotein particles with density ranging from 1.063 to 

1.21 g.mL-1 and small size, 8-10 nm. Like other plasma lipoproteins, they are composed of a 

core of CE and triglycerides surrounded by an amphipathic layer of free cholesterol, PLs and 

proteins  (Barter & Rye, 1996). 

1.3.1 Proteomes 

As HDL is highly rich in proteins compared to other lipoprotein species, HDL apoproteins are 

considered the major building blocks of the HDL particle. The many proteins found on HDL 

have been divided into several major subgroups; apolipoproteins, enzymes, lipid transfer 

proteins, acute-phase response proteins, complement components, proteinase inhibitors 

and other protein components (Table 1.3 and Table 1.4) (Kontush, Lindahl, Lhomme, 

Calabresi, Chapman & Davidson, 2015). The discovery of minor proteins involved in 

complement regulation and protection from infection and acute-phase response , like serum 

amyloid A (SAA) which is a major positive acute phase reactant, has abolished the traditional 

view that only apolipoproteins and enzymes have a biological importance in HDL (Benditt, 

Eriksen  & Hanson, 1979). Recently, almost 200 proteins have been identified within the HDL 

proteome and about half of them have been independently confirmed in three separate 

studies (Shah, Tan, Long & Davidson, 2013).  

Essentially, all HDL particles are believed to contain apoA-I (Asztalos & Schaefer, 2003a; 

Schaefer, Santos & Asztalos, 2010). Apolipoprotein A-I (apoA-I: Mr 28 kDa) is the major  

protein moiety of HDL which accounts for about 70% of total HDL protein mass with 

apolipoprotein A-II being the second most abundant protein, accounting for 15-20% 

(Kontush & Chapman, 2011). Other proteins include the enzyme LCAT (Glomset, 1968), 

(Calabresi & Franceschini, 2010) and CETP (Brousseau et al., 2005; Brousseau et al., 2009).   

Moreover, other diverse proteins has been revealed by mass spectrometry, like proteins 

involved in heme metabolism, platelet regulation, vitamin binding, or immunity (Shah, Tan, 

Long & Davidson, 2013) which suggest that the vast range of HDL proteins collaborate to 

form subspecies of particles with possible  range of individual functions.  
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Table 1.3 Major Component of HDL Proteome ( part 1) [Source:(Kontush, Lindahl, Lhomme, Calabresi, Chapman & Davidson, 2015)]. 

 
Protein Mr, kDa Major Function 

Number of proteomic studies in which 

the protein was detected* 

Apolipoproteins 

ApoA-I 28 Major structural and functional apolipoprotein, LCAT activator 14 

ApoA-II 17 Structural and functional apolipoprotein 13 

ApoA-IV 46 Structural and functional apolipoprotein 14 

ApoC-I 6.6 Modulator of CETP activity, LCAT activator 12 

ApoC-II 8.8 Activator of LPL 12 

ApoC-III 8.8 Inhibitor of LPL 14 

ApoC-IV 11 Regulates TG metabolism 6 

ApoD 19 Binding of small hydrophobic molecules 11 

ApoE 34 Structural and functional apolipoprotein, ligand for LDLR and LRP 13 

ApoF 29 Inhibitor of CETP 8 

ApoH 38 Binding of negatively charged molecules 8 

ApoJ 70 Binding of hydrophobic molecules, interaction with cell receptors 11 

ApoL-I 44/46 Trypanolytic factor of human serum 14 

ApoM 25 Binding of small hydrophobic molecules 12 

Enzymes 

LCAT 63 Esterification of cholesterol to cholesterol esters 4 

PON1 43 Calcium-dependent lactonase 12 

PAF-AH (LpPLA2) 53 Hydrolysis of short-chain oxidized phospholipids  

GSPx-3 22 Reduction of hydroperoxides by glutathione  

*Only proteins detected in more than 50 % of 14 proteomic studies  (Shah, Tan, Long & Davidson, 2013) are listed together with seven others previously known to be associated with 
HDL (apoC-IV, apoH, LCAT, PAF-AH, GSPx-3, PLTP, CETP). 
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Table 1.4 Major Component of HDL Proteome (part 2). [Source:(Kontush, Lindahl, Lhomme, Calabresi, Chapman & Davidson, 2015)]. 

 

Protein Mr, kDa Major Function 

Number of proteomic studies in 

which the protein was 

detected
*
 

Lipid transfer proteins 

PLTP 78 Conversion of HDL into larger and smaller particles, transport of LPS 5 

CETP 74 
Heteroexchange of CE and TG and homoexchange of PL between HDL and 

apoB-containing lipoproteins 
3 

Acute-phase proteins 

SAA1 12 Major acute-phase reactant 10 

SAA4 15 Minor acute-phase reactant 10 

Alpha-2-HS-glycoprotein 39 Negative acute-phase reactant 9 

Fibrinogen alpha chain 95 Precursor of fibrin, cofactor in platelet aggregation 10 

Complement components C3 187 Complement activation 9 

Proteinase inhibitors 
Alpha-1-antitrypsin 52 Inhibitor of serine proteinases 11 

Hrp 39 Decoy substrate to prevent proteolysis 10 

Other proteins 

Transthyretin 55 Thyroid hormone binding and transport 12 

Serotransferrin 75 Iron binding and transport 10 

Vitamin D-binding protein 58 Vitamin D binding and transport 10 

Alpha-1B-glycoprotein 54 Unknown 9 

Hemopexin 52 Heme binding and transport 8 

* Only proteins detected in more than 50 % of 14 proteomic studies  (Shah, Tan, Long & Davidson, 2013) are listed together with seven others previously known to be associated with 
HDL (apoC-IV, apoH, LCAT, PAF-AH, GSPx-3, PLTP, CETP). 
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Apolipoprotiens 

ApoA-I is the chief structural and functional HDL protein which accounts for approximately 

70% of total HDL protein. Almost all HDL particles are believed to contain apoA-I (Kontush, 

Lindahl, Lhomme, Calabresi, Chapman & Davidson, 2015). Major functions of apoA-I involve 

interaction with cellular receptors, stimulation of LCAT and providing HDL with multiple anti-

atherogenic activities. Circulating apoA-I represents a typical amphipathic protein that lacks 

glycosylation or disulfide linkages and contains 8 alpha-helical amphipathic domains of 22 

amino acids and two repeats of 11 amino acids (Figure 1.10). As a consequence, apoA-I binds 

avidly to lipids and possesses potent detergent-like properties. ApoA-I readily moves 

between lipoprotein particles and is also found in chylomicrons and VLDL. As for many 

plasma apolipoproteins, the main sites for apoA-I synthesis and secretion are the liver and 

small intestine (Kontush, Lindahl, Lhomme, Calabresi, Chapman & Davidson, 2015). 

ApoA-II is the second most abundant HDL apolipoprotein which represents approximately 

15–20 % of total HDL protein. Approximately half of HDL particles in human serum contain 

apoA-II (Duriez & Fruchart, 1999). ApoA-II is more hydrophobic than apoA-I and more 

strongly associated with HDL (Kalopissis, Pastier & Chambaz, 2003) and circulates as a 

homodimer composed of two identical polypeptide chains (Puppione et al., 2009; Shimano, 

2009) connected by a disulphide bridge at position 6 (Brewer, Lux, Ronan & John, 1972). 

ApoA-II equally forms heterodimers with other cysteine-containing apolipoproteins 

(Hennessy et al., 1997) and is predominantly synthesised in the liver but also in the intestine 

(Gordon, Budelier, Sims, Edelstein, Scanu & Strauss, 1983).  
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Figure 1.10 Overall stereoview of apoA-1 structure. Mature apoA-1 represent a typical 

amphipathic structure of 8 alpha-helical amphipathic domains  of 22 amino acids and two 

replications of 11 amino acids which makes apoA-1 a potent detergent and form stable micellar 

complexes with PL, cholesterol, TGs, and cholesteryl esters. [Source: (Ajees, Anantharamaiah, 

Mishra, Hussain & Murthy, 2006)]. 
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Enzymes 

LCAT catalyses the esterification of cholesterol to cholesterol esters in plasma lipoprotein, 

primarily in HDL but also in apoB-containing particles. About 75% of plasma LCAT activity is 

associated with HDL. In plasma, LCAT is closely associated with apoD, which frequently co-

purify (Holmquist, 2002).  

Human paraxonases (PON) are calcium-dependent lactonases PON1, PON2 and PON3 

(Goswami, Tayal, Gupta & Mallika, 2009). PON1 is a widely studied enzyme because of its 

protective role against poisoning by metabolites of specific organophosphate insecticides 

and its potential role in vascular disease (Ceron, Tecles & Tvarijonaviciute, 2014). In the 

circulation, PON1 is almost exclusively associated with HDL. Human PON1 is mainly 

synthesized in the liver and to a lesser extent in the kidney and colon (Mackness, Beltran-

Debon, Aragones, Joven, Camps & Mackness, 2010). Originally, interest in this enzyme came 

from its function in detoxification, but more recent research has focused on other clinical 

aspects such as a defensive role in vascular disease as well as its use as a biomarker of 

disease processes such as: (a) oxidative stress, since PON1 protects against oxidation (James, 

2006); (b) inflammation, being considered PON1 as a negative acute phase protein (Novak, 

Vavrova, Kodydkova, Hynkova, Zak & Novakova, 2010) and (c) liver diseases, because PON1 

is synthesized in this organ (Mogarekar & Talekar, 2013). 

PON1 is a 6-bladed β-propeller with a unique active-site lid, which is also involved in HDL 

biding (Figure 1.11). PON1’s 3D- structure has been solved and thereby affords a model for 

HDL-binding having a catalytic calcium ion (Aharoni & Tawfik, 2004).  

 

Platelet- activating factor acetyl hydrolase (PAF-AH) equally termed lipoprotein-associated 

phospholipase A2 (LpPLA2) is a calcium-independent, N-glycosylated enzyme, which 

degrades PAF by hydrolysing the sn-2 ester bond to yield biologically inactive lyso-PAF  

(Mallat, Lambeau & Tedgui, 2010). The enzyme cleaves PL substrates with a short residue at 

the sn-2 position and thus can hydrolyse proinflammatory oxidised short-chain PLs; 

however, it is inactive against long-chain non-oxidised PLs. PAF-AH is synthesized throughout 

the brain, white adipose tissue and placenta. Macrophages represent the central source of 
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the circulating enzyme (McIntyre, Prescott & Stafforini, 2009). Plasma PAF-AH circulates in 

association with LDL and HDL particles, with the majority of the enzyme bound to small, 

dense LDL and to lipoprotein (a) (Tselepis, Dentan, Karabina, Chapman & Ninio, 1995).  

Plasma glutathione selenoperoxidase 3 (GSPx-3), also called glutathione peroxidase 3, is 

distinct from two other members of the GSPx family termed GSPx-1 and GSPx-2 which 

represent erythrocyte and liver cytosolic enzymes. All GSPx enzymes protect biomolecules 

from oxidative damage by catalysing the reduction of hydrogen peroxide, lipid peroxides and 

organic hydroperoxide, in a reaction involving glutathione. Human GSPx-3 is a 

homotetrameric protein containing selenium as selenocysteine residue at position 73. 

Human GSPx-3 is synthesised in the liver, kidney, heart, lung, breast and placenta. In plasma, 

GSPX-3 is exclusively associated with HDL (Chen, Liu, Greiner & Holtzman, 2000). 
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Figure 1.11 The overall structure of paraxonase 1 (PON1). (A) A view of the 6-bladed β-propeller 

from its top. Shown are the N-termini, the six blades (labelled 1-6) each of which is comprised of 4 

β-strands (labelled A-D), and the two calcium atoms in the central tunnel of the propeller (green 

and red spheres). (B) A side view of the propeller, including the three helices at the top of the 

propeller (H1-H3). The top calcium ion (green sphere) is a key part of PON1’s active site, and the 

three helices comprise an active-site lid. Helixes H1 (the N-termini of PON1) and H2 are also 

thought to participate in the binding to PON1 to HDL. [Source: (Aharoni & Tawfik, 2004)]. 

 



1. Introduction and Literature Review  

© Faridah Alkandari (2017)   35 

 

Lipid Transfer Proteins 

PLTP belongs to the bactericidal permeability- increasing protein (BPI)/lipopolysaccharide 

(LPS)-binding protein (LBP)/Plunc superfamily of proteins. PLTP is produced in the placenta, 

pancreas, lung, kidney, heart, liver, skeletal muscle and brain. In the circulation, PLTP is 

primarily associated with HDL and converts it into larger and smaller particles. PLTP also 

plays a role in extracellular PL transport and can bind LPS. PLTP is a positive acute-phase 

reactant with a potential role in the innate immune system (Kontush, Lindahl, Lhomme, 

Calabresi, Chapman & Davidson, 2015). 
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CETP equally belongs to the BPI/LBP/Plunc superfamily and contains multiple N-glycosylation 

sites. It is primarily expressed by the liver and adipose tissue. In the circulation, CETP shuttles 

between HDL and apoB-containing lipoproteins and facilitates the bidirectional transfer of 

CEs and TG between them (Kontush, Lindahl, Lhomme, Calabresi, Chapman & Davidson, 

2015).  

 

Acute-Phase Response Proteins 

Positive acute-phase response proteins, whose plasma concentrations are markedly 

elevated by acute inflammation, form a large family of HDL-associated proteins (Heinecke, 

2009; Vaisar et al., 2007). Under normal conditions, the content of such proteins in HDL is 

however much lower as compared to apolipoproteins. On the other hand, plasma levels of 

several HDL apolipoproteins, such as apoA-I and apoA-IV, are reduced during the acute-

phase response (Navab et al., 2004); such proteins can therefore be deliberated as negative 

acute-phase response proteins.  

Serum amyloid A (SAA) proteins, major acute-phase reactants, are secreted during the 

acute phase of the inflammatory response. In humans, three SAA isoforms, SAA1, SAA2 and 

SAA4, are produced predominantly by the liver. SAA1, the chief member of this family, is 

predominantly carried by HDL in human, rabbit and murine plasma  (Cabana, Lukens, Rice, 

Hawkins & Getz, 1996). In the circulation, SAA1 does not exist in a free form and associates 

with non-HDL lipoproteins in the absence of HDL (Cabana et al., 2004).  

LBP is an acute-phase glycoprotein capable of binding the lipid A moiety of LPS of Gram-

negative bacteria and facilitating LPS diffusion (Wurfel, Kunitake, Lichenstein, Kane & 

Wright, 1994). LBP/LPS complexes appear to interact with the CD14 receptor to enhance 

cellular responses to LPS. LBP also binds PLs, thereby acting as a lipid exchange protein (Yu, 

Hailman & Wright, 1997), and belongs to the same BPI/LBP/Plunc protein superfamily as 

PLTP and CETP (Kontush, Lindahl, Lhomme, Calabresi, Chapman & Davidson, 2015). 
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1.3.2 Lipidomes 

Besides proteins, HDL contains multiple molecular species of lipids (Table 1.5) (Kontush, 

Lindahl, Lhomme, Calabresi, Chapman & Davidson, 2015).  

Phospholipids 

Phosphotidylcholine (PC) is the principal plasma PL that accounts for 32-35 mol% of total 

lipids in HDL (wiesner, Leidl, Boettcher, Schmitz & Liebisch, 2009). PC is a structural lipid, 

consistent with its even distribution across HDL subpopulations (Kontush, Lindahl, Lhomme, 

Calabresi, Chapman & Davidson, 2015).  

LysoPC  is an essential PL subclass in HDL (1.4-8.1 mol% of total lipids). It is derived from the 

regulated degradation of PC by phospholipases, including LCAT, consistent with the 

preferential association of the latter with HDL particles (Kontush et al., 2007). More 

specifically, LCAT was described earlier to associate mainly with small, dense HDL particles, 

which are also enriched in lysoPC by nearly twofold as compared to large, light HDL (Camont 

et al., 2013). LysoPC is also formed by the hydrolytic action of LpPLA2 on oxidized PC or by 

secreted PLA2 under pro-atherogenic conditions, such as oxidative stress and inflammation, 

and hence constitutes a potential biomarker of inflammation (Kontush, Lindahl, Lhomme, 

Calabresi, Chapman & Davidson, 2015).  

Phosphotidylethanolamine (PE) is moderately abundant in HDL (0.7- 0.9 mol% of total 

lipids), and its content tends to increase with increasing HDL hydrated density (Camont et 

al., 2013; wiesner, Leidl, Boettcher, Schmitz & Liebisch, 2009).   

Plasmalogens contain a vinyl ether-linked fatty acid essential for their specific antioxidative 

properties  (Maeba & Ueta, 2003). PC-plasmalogens are the most abundant species in HDL 

(2.2-3.5 mol%) but represent less than 10% of total PC (Ståhlman et al., 2013).  

Phosphotidylinositol (PI), phosphotidylserine (PS), phosphotidylglycerol (PG), phosphatidic 

acid (PA) and cardiolipin are negatively charged PLs present in HDL  which may significantly 

control its net surface charge .  The content of these lipids can therefore modulate 

lipoprotein interactions with lipases, membrane proteins, extracellular matrix and other 

protein components. Such interactions are largely charge-dependent (Rosenson et al., 2011). 
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PI, similarly to PE, is moderately abundant in HDL (0.5-0.8 mol %) and tends to be enriched in 

small, dense HDL.  

PS is a minor negatively charged PL component of HDL (0.016-0.030 mol %). This PL was very 

recently reported to be highly enriched (34-fold) in the small, dense HDL3c subpopulation 

relative to large, light HDL2 (Camont et al., 2013) as well as in small discoid preβ HDL  and 

small nascent HDL formed by ABCA1 (up to 2.5 mol % total lipids). Interestingly, small dense 

HDL also displayed potent biological activities which correlated positively with PS content in 

HDL (Camont et al., 2013). This lipid could consequently, in part, account for enhanced 

functionality of HDL3c (Kontush, Lindahl, Lhomme, Calabresi, Chapman & Davidson, 2015). 

PA, a second messenger, is both a common metabolic precursor and an enzymatic product 

of PL metabolism. This negatively charged lipid is present in very low abundance in HDL 

(0.006-0.009 mol%) but, similarly to PS, is enriched in small, dense HDL (by more than 

threefold (Camont et al., 2013). This observation might reflect favored association of PA with 

apoL-I which is equally enriched in small, dense HDL (Kontush & Chapman, 2011). 

PG is a metabolic precursor of cardiolipin present in HDL in very low amounts (0.004-0.006 

mol %). PG tends to be enriched in small, dense particles (Camont et al., 2013). 

Cardiolipin is a minor anionic PL present in trace amounts in HDL (0.08-0.2 mol%) This lipid 

with potent anticoagulant properties may contribute to the effects of lipoproteins on 

coagulation and platelet aggregation (Deguchi, Fernandez, Hackeng, Banka & Griffin, 2000). 

Together, these data indicate that although negatively charged lipids represent minor HDL 

constituents (0.8 mol % of total lipids), they are highly enriched in small, dense HDL, 

consistent with the elevated surface electronegativity of this subpopulation (Rosenson et al., 

2011). 

Isoprostanes are well established as biomarkers of oxidative stress and are predominantly 

associated with HDL (Kontush & Chapman, 2011).  

Sphingolipids 

Sphingomyelin, a structural lipid which enhances surface lipid rigidity (Rye , Hime & Barter  

,1996) , is the major sphingolipid in circulating HDL (5.6-6.6 mol % of total lipids) (Camont et 
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al., 2013; Ståhlman et al., 2013) (Table 1.5), which largely originates from triglyceride-rich 

lipoproteins and only to a minor extent from nascent HDL (Nilsson & Duan, 2006). 

Among lysosphingolipids, shingosine-1-phosphate (SIP) is principally interesting as this 

bioactive lipid plays key roles in vascular biology (Lucke & Levkau, 2010). More than 90% of 

circulating sphingoid base phosphates are found in HDL and albumin-containing fractions 

(Table 1.5) (Kontush & Chapman, 2011). Interestingly, SIP associate preferentially with small, 

dense HDL particles (up to tenfold enrichment compared to large, light HDL) (Kontush et al., 

2007).  

Ceramide is a sphingolipid intermediate involved in cell signaling, apoptosis, inflammatory 

responses, mitochondrial function and insulin sensitivity  (Lipina & Hundal, 2011). This lipid is 

poorly transported by HDL, which carries only 25 mol% of total plasma ceramide (wiesner, 

Leidl, Boettcher, Schmitz & Liebisch, 2009), and constituents only between 0.02 and 0.097 

mol% of total HDL (Camont et al., 2013; Ståhlman et al., 2013) (Table 1.5). Similarly to 

sphingomyelin, this product of shingomyelin hydrolysis is enriched in large, light HDL.  

Neutral Lipids 

Unesterified (free) sterols are located in the surface lipid monolayer of HDL particles and 

control its fluidity. HDL sterols are dominated by cholesterol, reflecting the key role of 

lipoproteins in cholesterol transport through the body. Other sterols are present in 

lipoproteins at much lower levels are exemplified by minor amounts of lathosterol, 

ergosterol, phytospherols (β-sitosterol, campesterol), oxysterols and estrogens (largely 

circulating as esters) (Kontush & Chapman, 2011). Free cholesterol, whose affinity for 

sphingomyelin is now well established, tends to preferentially associate with large, light HDL 

(Kontush, Lindahl, Lhomme, Calabresi, Chapman & Davidson, 2015).  

CEs are largely (up to 80%) formed in plasma HDL, through transesterification of PL and 

cholesterol catalyzed by LCAT. These highly hydrophobic lipids from the lipid core of HDL and 

contribute up to 36 mol% of total HDL lipid (Camont et al., 2013; Ståhlman et al., 2013) 

(Table 1.5). Most of HDL CE is accounted for by cholesteryl linoleate (Kontush, Lindahl, 

Lhomme, Calabresi, Chapman & Davidson, 2015).  Studying the CE molecular species 

distribution through HDL subpopulations, using gas chromatography, displayed very similar 

profiles between HDL2 and HDL3 particles (Vieu et al., 1996).  
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HDL-associated TG are dominated by species containing oleic, palmitic and linoleic acid 

moieties (Kontush, Lindahl, Lhomme, Calabresi, Chapman & Davidson, 2015)  and represent 

around 3 mol% of total HDL lipids (Camont et al., 2013; Ståhlman et al., 2013) (Table 1.5). 

Similarly to CE, TAG species profile is conserved between HDL2 and HDL3 (Vieu et al., 1996).  

These data illustrate the power of lipidomics to deliver essential information on the 

metabolism and function of lipoproteins relevant for the development of cardiovascular 

disease, which can in turn provide novel biomarkers of cardiovascular risk (Kontush, Lindahl, 

Lhomme, Calabresi, Chapman & Davidson, 2015). 
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Table 1.5 Major Components of the HDL lipidome 

Lipid Class HDL content in mol % of total lipids 

Phospholipids 37.4–49.3 

Phosphatidylcholine 32–35 

PC-plasmalogen 2.2–3.5 

LysoPC 1.4–8.1 

Phosphatidylethanolamine 0.70–0.87 

PE-plasmalogen 0.54–0.87 

Phosphatidylinositol 0.47–0.76 

Cardiolipin 0.077–0.201 

Phosphatidylserine 0.016–0.030 

Phosphatidylglycerol 0.004–0.006 

Phosphatidic acid 0.006–0.009 

Sphingolipids 5.7–6.9 

Sphingomyelin 5.6–6.6 

Ceramide 0.022–0.097 

Hexosyl Cer 0.075–0.123 

Lactosyl Cer 0.037–0.060 

S1P d18:1 0.015–0.046 

S1P d18:0 0.007 

SPC d18:1 0.001 

Neutral lipids 46.7–54.0 

Cholesteryl esters 35–37 

Free cholesterol 8.7–13.5 

Triacylglycerides 2.8–3.2 

Diacylglycerides 0.17–0.28 

Minor lipids   

Free fatty acids 16:0, 18:0, 18:1
a
 

Isoprostane-containing PC ND (IPGE2/D2-PC (36:4))
a
 

Data are shown for HDL obtained from normolipidemic healthy subjects according to (Deguchi, Fernandez, 

Hackeng, Banka & Griffin, 2000; Kontush et al., 2007), (wiesner, Leidl, Boettcher, Schmitz & Liebisch, 2009),  

(Camont et al., 2013) , (Ståhlman et al., 2013), (Pruzanski, Stefanski, de Beer, de Beer, Ravandi & Kuksis, 2000), 

(Sattler et al., 2010), (Argraves et al., 2011). SPC sphingosylphosphorylcholine; S1P sphingosine-1-phosphate; 

IPGE2 isoprostaglandin E2. 
a
 no quantitative data available, major molecular species identified.[ Source: 

(Kontush, Lindahl, Lhomme, Calabresi, Chapman & Davidson, 2015)] 
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1.4 HDL Subclasses 

HDL is a complex macromolecule comprised of lipids and proteins. It is the most abundant 

lipoprotein per unit volume of plasma and exists at the highest (micromolar) levels 

compared with other lipoproteins (Jeyarajah, Cromwell & Otvos, 2006; Kontush & Chapman, 

2006) . On the other hand, HDL particles are a vastly heterogeneous lipoprotein family 

consisting of several subclasses differing in their physiochemical properties, composition, 

shape, density, size, charge, intravascular metabolism and biologic actions (Figure 1.12 and 

Table 1.6) (Kontush & Chapman, 2011). The outstanding heterogeneity of HDL particles 

predominantly results from the extremely dynamic structure of apoA-1, which permits 

different conformations as a function of the amount of bound lipid and particle dimension 

(Davidson & Thompson, 2007). Another key role of HDL heterogeneity is HDL capacity to 

bind and carry distinct proteins as some HDL proteins possess a high alpha helical content 

which allows it to interact with surface lipids while other HDL particles may tend to form 

specific protein-protein complexes (Vaisar, 2009). 

The classic method for separation of lipoprotein subfractions is by density. In 1954, Gofman 

and colleagues has described the difference in HDL subclass using flotation rate in high salt 

solutions in analytical ultracentrifugation (Delalla & Gofman, 1954). Two major HDL 

subclasses were identified: HDL2 which is a less dense (1.063–1.125 g.mL-1), relatively lipid 

rich form and HDL3 which is more dense (1.125–1.21 g.mL-1), relatively protein-rich form. 

Those two classes could also be separated by rate-zonal ultracentrifugation (Franceschini, 

Tosi, Moreno & Sirtori, 1985), single vertical spin ultracentrifugation (Kulkarni, Marcovina, 

Krauss, Garber, Glasscock & Segrest, 1997) or a precipitation method (Gidez, Miller, 

Burstein, Slagle & Eder, 1982). Although density gradient ultracentrifugation methods are 

time consuming and require expensive instruments, they remain the most precise 

techniques and are considered as the gold standard for lipoprotein separation even after 50 

years.  

According to size, three distinct subclasses for HDL3 and two for HDL2 could also be revealed 

by non-denaturing polyacrylamide gradient gel electrophoresis (GGE): HDL3c, 7.2-7.8 nm 

diameter; HDL3b 7.8-8.2 nm; HDL3a, 8.2-8.8 nm; HDl2a, 8.8-9.7 nm; and HDL2b, 9.7-12.0 nm 

(Nichols, Krauss & Musliner, 1986). Equally, those subclasses could also be isolated by 
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isopycnic density gradient ultracentrifugation (Chapman, Goldstein, Lagrange & Laplaud, 

1981; Kontush, Chantepie & Chapman, 2003). 

Surface charge and shape is another important property that has been used to separate HDL 

subclasses. Agarose gel electrophoresis, which has been used for decades as a standard 

laboratory technique to separate lipoproteins, has allowed the analytical separation of HDL 

into α-migrating particles (which have the same mobility as alpha-globulin and represent the 

majority of circulating HDL) and preβ-migrating particles (which migrate similarly to pre-beta 

globulin) comprised of nascent discoidal and poorly lipidated HDL. If agarose gel is stained 

with Coomassie blue or with anti-apolipoprotein A-I antibodies, the relative protein content 

of the two HDL subclasses can be determined (Favari et al., 2004 ). 

Maximum resolving power was achieved by a 2-dimentional (2D) electrophoretic method. 

This method allowed the identification of 12 distinct apoA-1 containing HDL subclasses; Preβ 

subclasses (preβ1 and preβ2), α (α1, α2, α3, and α4) and preα (preα1, preα2, preα3). This 

method splits HDL according to charge in the first run and according to size in the second run 

(conducted at right angles to the first run). Gels are then stained with apolipoprotein-specific 

antibodies, typically with anti-apoA-I antibodies, allowing the recognition of distinct HDL 

subclasses (Asztalos & Schaefer, 2003a; Asztalos & Schaefer, 2003b).     

Electroimmunodiffusion technique in agarose gels allows the separation HDL into two major 

subclasses according to their major apolipoprotein composition, those containing only apoA-

I (LPA-I) and those containing both apoA-I and apoA-II (LpA-I: A-II) (Fruchart & Ailhaud, 1992; 

Warden, Hedrick, Qiao, Castellani & Lusis, 1993). 

The plasma preβ-HDL concentration can be also measured using a sandwich enzyme 

immunoassay (Miida et al., 2003). The assay employs a monoclonal antibody which 

unambiguously recognizes apoA-I bound to preβ-HDL.  

Nuclear magnetic resonance (NMR) spectroscopy separates HDL into subfractions of three 

different sizes: small, medium, and large (Otvos, 2002). It measures the particle 

concentrations of these subfractions after differentiating them by their unique magnetic 

resonance properties. These properties are distinguished by the terminal lipid methyl group 

protons, which are independent of chemical compositional differences related to fatty acid, 

CE, or triglyceride content. Although characterization of HDL subpopulations by NMR is now 

common, the technique requires broader validation (Martin, Jones & Toth, 2014).  
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Increasing awareness of HDL heterogeneity in the last decade has led to the exploration of 

the relationship between HDL subclasses and cardiovascular risk, as well as 

acknowledgement of a need to consider the clinical effects of HDL modifying drugs. 

Although HDL subclasses have been identified/ isolated by different techniques, the number 

and nomenclature of HDL subclasses are not uniform among the different techniques. 

Moreover, some techniques measure HDL subclass concentrations, others define the 

percentage distribution of HDL subclass relative to the total or characterize the HDL 

distribution by average particle diameter. It has been suggested a classification of HDL by 

physical properties, which incorporates terminology from several methods and outlines five 

HDL subclasses, termed very large, large, medium, small and very small HDL (Rosenson et al., 

2011). The proposed nomenclature by physical properties could help in defining the 

relationship between HDL subclasses and cardiovascular risk. 
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Figure 1.12  Heterogeneity of high-density lipoprotein (HDL) particles. Major subpopulations of HDL 

particles differing in shape (a), density and size (b), apolipoprotein composition (c) and electrophoretic 

mobility (d) are shown as revealed by gel electrophoresis (a, d), ultracentrifugation (b) and 

immunoaffinity chromatography (c). Using two-dimensional gel electrophoresis, particles are separated 

by size in the vertical dimension and by charge in the horizontal dimension into particles of pre-β, α and 

pre-α mobility. [Adapted from Rye et al. (Rye, Bursill, Lambert, Tabet & Barter, 2009) and Schaefer et 

al.(Schaefer, Santos & Asztalos, 2010)]. 
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Table 1.6 Major HDL subclasses according to different isolation/ separation techniques [Source: (Kontush, 

Lindahl, Lhomme, Calabresi, Chapman & Davidson, 2015)]. 

 

Density (ultracentrifugation) 

HDL2 (1.063–1.125 g.mL
-1

) 

HDL3 (1.125–1.21 g.mL
-1

) 

Size (GGE) 

HDL2b (9.7–12.0 nm) 

HDL2a (8.8–9.7 nm) 

HDL3a (8.2–8.8 nm) 

HDL3b (7.8–8.2 nm) 

HDL3c (7.2–7.8 nm) 

Size (NMR) 

Large HDL (8.8–13.0 nm) 

Medium HDL (8.2–8.8 nm) 

Small HDL (7.3–8.2 nm) 

Shape and charge (agarose gel) 

α-HDL (spherical) 

Preβ-HDL (discoidal) 

Charge and size (2D electrophoresis) 

Preβ-HDL (preβ1 and preβ2) 

α-HDL (α1, α2, α3 and α4) 

Preα-HDL (preα1, preα2, preα3 

Protein composition 

(electroimmunodiffusion) 

LpA-I 

LpA-I:A-II 
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1.5 Structure of HDL 

Many laboratories have worked to reveal the structure (assembly) of HDL specially when it 

became clear that plasma levels of HDL were inversely correlated with cardiovascular 

disease (Edelstein, Lim & Scanu, 1972), (Laggner, Muller, Kratky, Kostner & Holasek, 1973), 

(Atkinson, Davis & Leslie, 1974) (Schonfeld, Bradshaw & Chen, 1976), (Tardieu, Mateu, 

Sardet, Weiss & Luzzati, 1976). After the sequences of the major HDL proteins, apoA-I and 

apoA-II, were reported in 1970s (Brewer, Lux, Ronan & John, 1972), many researchers noted 

periodically repeating units that, when mapped on a helical wheel plot, indicated the 

presence of amphipathic alpha helices. With hydrophobic faces mediating lipid interactions 

and polar faces interacting with water, these structures turned out to be responsible for the 

detergent-like ability of these proteins to solubilize lipids into stabile lipoprotein particles 

(McLachlan, 1977; Segrest, Jackson, Morrisett & Gotto, 1974).  

Jonas and colleagues combined purified apolipoproteins with lipids under control of 

detergents to produce recombinant forms of HDL (Matz & Jonas, 1982) and by electron 

microscopy work, it was revealed that they have a discoidal shape (Forte & Nordhausen, 

1986), and these particles were referred as reconstituted (r)HDL discs (Forte & Nordhausen, 

1986). 

Kontush and his team has succeeded, by mass spectrometry, careful measurements of the 

protein/lipid components indicated a range 3-5 apoA-I molecules per particle, depending on 

the size. Figure 1.13 shows one proposal for how 4 and 5 apoA-Is can be accommodated by 

changing the hinge bend angles of the trefoil while maintaining the same intermolecular 

interactions, and hence cross-linking pattern. Furthermore, it was proposed that HDL 

particle size is modulated via a twisting motion of the residence apoA-Is (Kontush, Lindahl, 

Lhomme, Calabresi, Chapman & Davidson, 2015).  
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Figure 1.13 Models of apoA-I in human plasma HDL particles of various size and 

number of apoA-I molecules. (a) LpA-I2b contains 5 apoA-I molecules, but shows a 

similar cross-linking patters to reconstituted particles that have only 2 and 3 

molecules of apoA-I. This figure shows that more apoA-I molecules can be added 

to the trefoil framework by increasing the hinge bend angle and adding more 

apoA-I molecules. (c) A possible model for LpA-I2a that has four apoA-I molecules 

on average. (d) Further reductions in HDL particle size may be accomplished by a 

twisting action of resident apoA-I molecules.[Source: (Kontush, Lindahl, Lhomme, 

Calabresi, Chapman & Davidson, 2015)]  
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1.6 Functions of HDL   

High density lipoprotein (HDL) continually undergoes remodelling throughout its life-span 

and carries out various functions (Murphy, 2013). In addition to its role in reverse 

cholesterol transport, HDL interacts with various cell types that influence cardiovascular and 

metabolic health (Figure 1.14). HDL also inhibits lipid oxidation, restores endothelial 

function, exerts anti-inflammatory, cytoprotective, vasodilatory, anti-infectious, 

antithrombotic and antiapoptotic activities. Such properties could contribute considerably to 

the capacity of HDL to inhibit atherosclerosis.  

1.6.1 Role of HDL in Cholesterol Homeostasis  

On the one hand, cholesterol is considered as an essential substance for maintaining cell 

membranes, manufacturing vitamin D on the surface of the skin, producing hormones and 

possibly aiding cell connections in the brain, while on the other hand, high cholesterol levels 

in the blood increase risk of coronary disease (Daniels, Killinger, Michal, Wright & Jiang, 

2009; Von Eckardstein, Nofer & Assmann, 2001). Control of cholesterol homeostasis in the 

body is important since cholesterol accumulation in arteries serving the heart muscle causes 

more death and disability than all types of cancer combined (Lloyd-Jones, 2009). The uptake 

of modified lipoproteins by macrophages of the vascular wall plays an important role in the 

pathogenesis of atherosclerosis since accumulation of lipids turns them into activated foam 

cells, which produce various growth factors, cytokines, and proteases and thereby influence 

the course of atherosclerosis (Von Eckardstein, Nofer & Assmann, 2001). 
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Figure 1.14 Major biologic activities of HDL. (1) Cholesterol efflux capacity (through cholesterol and PL efflux from macrophages). 

(2) Anti-inflammatory activity (via inhibition of VCAM-1 expression in endothelial cells induced by oxidized LDL). (3) Antioxidant 

potency (through inhibition of LDL oxidation by cell-derived one-electron oxidants and removal of oxidized lipids from oxidized 

LDL). (4) Cytoprotective activity (by inhibiting endothelial cell apoptosis induced by oxidized LDL). (5) Vasodilatory activity (as 

stimulation of cellular NO production and inhibition of cellular superoxide release). (6) Anti-infectious activity (via LPS-binding). (7) 

Antithrombotic action (via inhibiting platelet aggregation).  1e oxidants, one-electron oxidants; FC, free cholesterol; PL, 

phospholipid; oxLDL, oxidized LDL.[ Source: Kontush and Chapman (Kontush & Chapman, 2011)]  
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Reverse Cholesterol Transport 

In 1968, Glomset introduced the concept of reverse cholesterol transport (RCT) in which he 

described the pathway by which peripheral cholesterol is returned to liver by HDL for 

secretion into bile and excretion through the feces (Glomset, 1968). This route is thought to 

represent the main basis for the anti-atherogenic properties of HDL (Kontush & Chapman, 

2006; Von Eckardstein, Nofer & Assmann, 2001). RCT maintains neutral cholesterol balance 

in the body by removing the 9 mg of cholesterol per kilogram of body weight that is 

synthesized by peripheral tissues every day (Von Eckardstein, Nofer & Assmann, 2001).  

The efflux of cholesterol from a variety of cell types, including macrophages, to HDLs in the 

extracellular space is mediated by two distinct processes. One is the efflux of cholesterol 

induced by a specific cellular transporter (Dikkers, Freak de Boer, Annema, Groen & Tietge, 

2013), and the other is passive aqueous diffusion of cholesterol from cell membranes to 

HDLs . Then, excess cholesterol from peripheral tissues will be transported back to the liver 

for excretion in the bile and ultimately the feces. Multiple steps are present in the RCT 

pathway as described in the following four parts (Figure 1.15) (Joy & Hegele, 2009).   

 

Part One: The Formation of Nascent HDL 

 

Lipid-free or lipid-poor apoA-I produced in the liver can mediate cellular efflux of both 

cholesterol and PLs from macrophages through the ABCA1 and congregate them on the 

surface of pre-β HDL, creating a rapid lipidation of apoA-I to generate mature α HDL, which is 

called nascent HDL particles (Curtiss, Valenta, Hime & Rye, 2006). The mature HDL particles 

can then serve as acceptors of cholesterol delivered by ABCG1 (Jiang et al., 2001) or SR-B1 

(Song, Kim, Park, Kim, Choi & Cho, 2015). ABCG1 is another member of the ATP-binding 

cassette family that plays a critical role in the efflux of cellular PL and free cholesterol (FC) to 

mature HDL, but not pre-β HDL. Numerous studies have demonstrated the significance of 

ABCA1 and ABCG1 in several aspects of cholesterol efflux from macrophages (Freeman et al., 

2014; Westerterp et al., 2013). 
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Figure 1.15 HDL in reverse cholesterol transport pathway. Lipid-poor apoA-I also promotes the efflux 

of free cholesterol from macrophages via ABCA1. LCAT esterifies free cholesterol to cholesteryl esters 

to form mature HDL, which promotes cholesterol efflux from macrophages via the ABCG1 

transporter, as well as from other peripheral tissues by processes not fully defined. In macrophages, 

both ABCA1 and ABCG1 are regulated by Liver X receptors (LXR). Mature HDL can transfer its 

cholesterol to the liver directly via SR-B1 or indirectly via CETP-mediated transfer to ApoB-containing 

lipoproteins, with subsequent uptake by the liver via the LDLr. Hepatic cholesterol can be excreted 

directly into the bile as cholesterol or after conversion to bile acids and, unless reabsorbed by the 

intestine, is ultimately excreted in the feces. HL, EL, and PLTP, play an indispensable role in 

remodeling HDL, thus, the RCT pathway is dependent on interaction with them. EL, endothelial 

lipase; HL, hepatic lipase; SR-B1, scavenger receptor class B type 1; LDLr, low density lipoprotein 

receptor; LXR; Liver X receptors LXR.  [Source:(Marsche, Saemann, Heinemann & Holzer, 2013)]. 
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LXR, the members of the steroid nuclear receptor superfamily, are oxysterol-activated 

transcription factors that, after heterodimerization with the 9-cis-retinoic acid receptor 

(RXR), bind to specific LXR response element (LXRE), thus regulating the expression of target 

genes involved in intra-and extracellular lipid metabolism  (Bultel et al., 2008). To a certain 

extent by modulating cholesterol efflux from macrophages to apoA-I and HDL, LXRs induce 

the direct target genes ABCA1 and ABCG1/ABCG4 to promote reverse cholesterol transport 

(Cao, Pan, Xiao, Zhou, Guo & Su, 2015). The oxidation of steroids from free cholesterol can 

trigger LXR and regulate gene expression of ABCA1 and ABCG1 to stimulate peripheral tissue 

cholesterol secretion. Meanwhile, the LXRs are also easily oxidized by PPARα. PPARα 

controls lipid and glucose metabolism in several tissues and cell types including liver, heart, 

kidneys, adipose tissue and macrophages. PPARα-activation suppresses chylomicron and 

increases HDL production by enterocytes (Colin et al., 2013; Hanf et al., 2014). In addition, its 

agonists promote secretion of macrophage cholesterol via stimulating expression of ABCA1 

and LXR to increase reverse cholesterol transport (Sahebkar, Chew & Watts, 2014). 
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Part Two: The Process of Cholesterol Esterification by LCAT 

LCAT is a key player in the RCT pathway. LCAT has two different catalytic activities that 

account for its ability to esterify cholesterol. One is phospholipase A2 activity, and the other 

is its transesterification activity. It requires apoA-I and, to a lesser extent, other 

apolipoproteins, which most likely stimulate LCAT by modifying the presentation of its 

substrates, namely, PLs and cholesterol, on the surface of lipoproteins (Rousset, Shamburek, 

Vaisman, Amar & Remaley, 2011). Once free cholesterol efflux to pre-β HDL (the nascent, 

discoidal-shaped HDL), cholesterol in HDLs may be esterified by the enzymatic activity of 

LCAT. The LCAT reaction occurs in two steps. After binding to a lipoprotein, LCAT splits the 

fatty acid in the sn-2 position of phosphotidylcholine and transfers it onto a serine residue. 

Next, the fatty acid is transesterified to the 3-β-hydroxyl group on the A-ring of cholesterol 

to form cholesterol ester. Cholesterol esters formed by LCAT, which are more hydrophobic 

than free cholesterol, are transferred from the surface of lipoproteins to the hydrophobic 

core. This route converts pre-β HDL to HDL2 and HDL3 particles, which are the main HDL 

species found in plasma and which represent larger, spherical-shaped α-migrating forms of 

HDL. LCAT is essential in the process of RCT by generating a gradient of free cholesterol from 

cells to HDL (Soran, Hama, Yadav & Durrington, 2012). This effect of LCAT prevents the back 

exchange of cholesterol by passive diffusion from HDL to peripheral cells and thus is believed 

to promote net removal of cholesterol from peripheral cells to HDL. Without ongoing 

esterification of cholesterol, the capacity of HDL to remove and bind additional cholesterol 

would eventually be diminished. Two lipases, endothelial lipase (EL) and HL, are the 

complete opposite of LCAT in HDL metabolism. HL and EL are members of the triglyceride 

lipase family, which also includes LPL (Chatterjee & Sparks, 2011; Olivecrona & Olivecrona, 

2010). EL has high phospholipase A1 activity and remodels HDL into small particles, whereas 

HL is more effective in hydrolyzing TG (Yasuda, Ishida & Rader, 2010). Although HL causes a 

remodeling of HDL into smaller particles, it also promotes the release of lipid-poor apoA-I 

(Annema & Tietge, 2011). The combined function of HL and EL have a significant effect on 

plasma high density lipoprotein cholesterol (HDL-C) levels (Jaye et al., 1999; Ruel, Couture, 

Cohn, Bensadoun, Marcil & Lamarche, 2004).  
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Part Three: The Exchange of cholesterol Esters Mediated by CETP 

CETP is a hydrophobic glycoprotein that is synthesized in several tissues but mainly in the 

liver. It facilitates the exchange of CEs and TGs between HDL and apoB-containing particles 

(LDL, IDL, VLDL) and represent a major branching point for RCT (Barter et al., 2007). Most 

CEs derived from LCAT do not return to the liver via the HDL SR-B1 pathway but, through 

more atherogenic pathways. CETP mediates the transfer of most CE from HDL to VLDL or to 

other more atherogenic intermediate-density lipoproteins and remnants, and the transfer of 

triglycerides from VLDL-1 to HDL results in larger, relatively TG-enriched HDL species 

(Chapman, Le Goff, Guerin & Kontush, 2010). Transfer of CE from HDL directly to LDL by 

CETP could also be antiatherogenic if the LDL is cleared by the liver LDL receptor. Another 

transfer protein in this part of RCT, PLTP, transfers PLs between VLDL and HDL (Rao, Albers, 

Wolfbauer & Pownall, 1997). PLTP is one of the main modulators of plasma HDL size, 

composition and function (Yu et al., 2014) and one of the major modulators of HDL 

metabolism in plasma (Albers, Vuletic & Cheung, 2012).  

Part Four: Catabolism of HDL Cholesterol in Biliary Pathway 

After efflux, cholesterol in HDLs may be esterified by the enzymatic activity of LCAT at which 

HDLs can deliver the excess cholesterol from peripheral cells back to the liver in distinct 

ways: HDL cholesterol esters, but not the protein components of HDLs, are selectively taken 

up into the liver via SR-B1. Ultimately, cholesterol is excreted from the liver into the bile, 

either directly as free cholesterol or after conversion into bile acids, and eliminated from the 

body via the feces. In humans, HDL-C can be metabolized by the liver via another pathway: 

CETP exchanges of HDL CE for TGs in apoB-containing lipoproteins, followed by hepatic 

uptake mediated by LDLR (Cao, Pan, Xiao, Zhou, Guo & Su, 2015).  
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By means of the classic RCT pathway, excessive cholesterol collected from peripheral tissues, 

which is delivered back to the liver, is followed by biliary secretion and elimination via the 

feces. In addition to the traditional RCT-mediated biliary pathway, in the last few years, 

direct trans-intestinal excretion of plasma-derived cholesterol (TICE) was shown to 

contribute substantially to fecal neutral sterol (FNS) excretion in mice, decreasing the 

transport of cholesterol from blood to the intestinal lumen directly via enterocytes. The TICE 

pathway was called a non-hepatobiliary-related route, which has been shown to have a high 

degree of correlation with the main contribution Niemann-Pick disease, type C1/2 (NPC1/2), 

ABCG5/G8, LDLR, and LXR (Blanchard, Moreau, Cariou & Le May, 2014). The application of 

PPAR δ agonist and LXR agonists, have been shown to stimulate the process of TICE 

(Blanchard, Moreau, Cariou & Le May, 2014). In the RCT pathway, HDL plays an important 

role. In contrast, there is evidence from animal experiments that HDL plays an essential role 

in TICE (Vrins et al., 2012). 
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1.6.2 Role of HDL in Vascular Physiology 

Preservation of Endothelial Function and Survival 

Vascular endothelial cells constitute a structurally modest but functionally important organ 

that regulates diverse biological processes like hemostasis, fibrinolysis, inflammation, blood 

pressure, lipoprotein metabolism, and angiogenesis (O'Connell & Genest, 2001). 

Experimental and translational studies have revealed several potential antiatherogenic 

effects of HDL which involve endothelium, including protective properties on endothelial cell 

functions. HDL has been proposed to support endothelial cell functions by inhibition of LDL 

oxidation   and by opposing the effects of this lipoprotein on endothelium. Furthermore, HDL 

from healthy subjects is believed to trigger endothelial cell production of nitric oxide and 

anti-inflammatory, anti-apoptotic, and anti-thrombotic effects in addition to endothelial 

repair process (Riwanto & Landmesser, 2013). On the other hand, latest clinical trials using 

HDL cholesterol-raising agents, such as torcetrapib, dalcetrapib, and niacin were 

controversial in that no benefit relative to cardiovascular disease was found (Ali, Wonnerth, 

Huber & Wojta, 2012). This unexpected result is explained possibly by emerging evidence 

that suggests that the vascular functions of HDL can be highly diverse and vasoprotective 

properties of HDL are modified in patients with coronary disease (Riwanto & Landmesser, 

2013). The drug trials may not induce the appropriate changes in HDL function. 

Inhibition of Platelet Aggregation and Thrombosis 

Platelets are deeply involved in the initiation and progression of atherosclerotic lesions 

(Lindemann, Krämer, Daub, Stellos & Gawaz, 2007; Weber, 2005) (Siegel-Axel, Daub, Seizer, 

Lindemann & Gawaz, 2008). Arterial thrombus development is determined by the 

equilibrium between prothrombotic mediators, such as tissue factor (TF) and PAI-1, and 

antithrombotic factors, such as tissue factor pathway inhibitor (TFPI) and tissue plasminogen 

activator (tPA) (Furie & Furie, 2008). Platelets produces proinflammatory cytokines, 

chemokines and growth regulatory molecules which will promote endothelial dysfunction 

and alter smooth muscle cells function. Furthermore, platelets direct leukocyte integration 

into plaque through-mediated leukocytes adhesion which results in narrowing or complete 

occlusion of coronary arteries (Gawaz, Neumann, Ott, Schiessler & Schömig, 1996; Ott, 

Neumann, Gawaz, Schmitt & Schömig, 1996). 
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Numerous studies support the concept that HDL particles are powerful inhibitors of platelet 

activation and aggregation. The antithrombotic potency of HDL is detected as inhibitory 

actions on platelet aggregation and activation (Nofer, Brodde & Kehrel, 2010) as well as on 

factors that promote blood coagulation, including tissue factor, and factors X, Va, and VIIIa  

(Calabresi, Gomaraschi & Franceschini, 2003; Nofer, Brodde & Kehrel, 2010; Nofer, Kehrel, 

Fobker, Levkau, Assmann & von Eckardstein, 2002). Moreover, in a study on mice lacking SR-

B1 receptor, it was revealed that their platelets aggregate poorly which suggests that lack of 

ability to efflux cholesterol via SR-B1 may impact function possibly due to formation of a 

cholesterol laden membrane (Dole et al., 2008). In further work Nofer and colleagues 

revealed that HDL3 exerts a progressive regulatory effects on the Na+/H+ counter-

transporter system in human platelets by attachment to glycoprotein IIb/IIIa with activation 

of protein kinase C and phospholipase C (Nofer et al., 1998). 

1.6.3 Role of HDL in LDL Oxidation 

HDL also has well-acknowledged antioxidative properties. The antioxidant property of HDL is 

believed to be critical in potential antiatherogenic effects. Oxidized low-density lipoprotein 

(oxLDL) is believed to be the main offender in endothelial dysfunction; oxLDL induces 

endothelial damage, monocyte adhesion, and platelet aggregation and inhibits apoptosis 

and endothelial nitric oxide synthase (eNOS) expression and (or) activity, all of which 

contribute to atherosclerotic process (Li & Mehta, 2003).  HDL has been shown to prevent 

oxidative modification of LDL, thus reducing the production of macrophage foam cells in the 

vessel wall (Barter, Nicholls, Rye, Anantharamaiah, Navab & Fogelman, 2004).  

The antioxidant activity of HDL is predominantly related to various types of associated 

apolipoproteins and antioxidant enzymes that serve to hydrolyze and/or remove oxidized 

lipids  (Navab et al., 2004). For example, HDL-associated apoA-I, apoA-II, apoA-IV, apoE, 

apoJ, and apoM are known to contribute to antioxidant activity (Elsoe et al., 2012). The 

antioxidant activity of both apoA-I and apoM is thought to be attributable to their ability to 

remove oxidized PLs from both LDL and peripheral cells-including those in the arterial wall 

which may then be eliminated from the body through the liver (Elsoe et al., 2012). 

The mechanism by which HDL performs antioxidant activity is complex and multifactorial. 

The lipid hydroperoxides formed on LDL will migrate to its surface as a result of their greater 

hydrophilicity. Consequently, this will facilitate their transfer to HDL. HDL might therefore 
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provide a pathway for the passage of lipid peroxides and lysophospholipids to the liver via 

hepatic scavenger receptors. HDL , in point of fact, actually metabolizes lipid hydroperoxides 

preventing their accumulation and hence impeding the atherogenic structural modification 

of LDL (Soran, Schofield & Durrington, 2015). Moreover, Kunitake and colleagues has 

demonstrated that HDL  exhibit chelation properties due to the presence of proteins such as 

ceruloplasmin on the surface of the lipoprotein, although the clinical relevance is 

controversial (Kunitake, Jarvis, Hamilton & Kane, 1992).   

HDL is also known to associate with enzymes possessing antioxidant activity, including 

paraxonase 1 (PON1), and LCAT (Navab et al., 2004). These enzymes provide antioxidant 

activity to HDL by hydrolysing LDL-derived oxidized PL species, thereby inhibiting the 

formation of oxLDL (Kontush & Chapman, 2006). HDL has also been shown to bind 

glutathione selenoperoxidase (GSPx), which further serves to protect against oxidative stress 

by reducing lipid hydroperoxidase (Chen, Liu, Greiner & Holtzman, 2000). 

In addition to the antioxidant activity conferred from associated apolipoproteins and 

enzymes, HDL can prevent oxLDL formation by sequestering oxidizing transition metal ions 

(Kunitake, Jarvis, Hamilton & Kane, 1992).  HDL is also a known carrier of antioxidant 

micronutrients, including vitamin E and carotenoids. However, the extent by which these 

micronutrients contribute to the antioxidant activity of HDL remains unclear (Andersen & 

Fernandez, 2013). 

HDL with defective antioxidant activities have been identified in metabolic syndrome (Hansel 

et al., 2004), type 2 diabetes (Nobecourt et al., 2005), and healthy postmenopausal women 

(Zago et al., 2004) when compared to healthy and premenopausal women, respectively. 

 

1.6.4 Role of HDL in Inflammation 

In addition to antioxidant activity, functional HDL is known to possess anti-inflammatory 

properties. Anti-inflammatory activity of HDL typically refers to the ability of HDL to inhibit 

endothelial cell expression of adhesion molecules in response to cytokines, thereby reducing 

monocyte adhesion to the arterial wall in the initial stages of atherosclerosis development 

(Kontush & Chapman, 2006). Arterial inflammatory pathways and adhesion molecules 
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expression can be activated by the same accumulation of oxidized lipids that cause oxidative 

stress (Andersen & Fernandez, 2013).  

The anti-inflammatory activity of HDL is mostly attributed to the same enzymes that exert 

antioxidant activity, including HDL-associated apolipoproteins (i.e. apoA-I, apoA-II, apoA-IV, 

apoM) and oxidized lipid-hydrolyzing enzymes (PON1, PAF-AH, and LCAT) (Elsoe et al., 2012). 

Bioactive PL species carried by HDL such as SIP- which binds to apoM- may also play a role in 

HDL’s anti-inflammatory activity, in addition to antiapoptotic and immunoregulatory 

functions (Christoffersen et al., 2011).  

Inflammation is a major element in the pathogenesis of atherosclerosis   that develops in 

response to LDL-derived cholesterol deposition in arteries. In general, HDL has potent anti-

inflammatory properties by inhibiting pro-inflammatory adhesion molecules expression and 

by stimulating TGFβ2 expression in endothelial cells (Barter, Nicholls, Rye, Anantharamaiah, 

Navab & Fogelman, 2004; Cockerill et al., 2001; Norata, Callegari, Marchesi, Chiesa, Eriksson 

& Catapano, 2005) . HDL also reduce the effect the pro-inflammatory activity of  C-reactive 

protein (CRP) (Wadham et al., 2004) , inhibits pro-inflammatory prostaglandins production 

by monocytes (Jambou et al., 1993) and inhibit, or neutralizes ,the effects of oxidized LDL PLs 

on endothelium (Navab et al., 2001).   

1.6.5 Role of HDL in Diabetes Mellitus  

Type 2 diabetes mellitus (T2DM) is a pandemic of major public health whose importance 

cannot be disputed.  From 1990 to 2010, T2DM has become the worldwide ninth most 

prevalent cause of death (von Eckardstein & Widmann, 2014). Cardiovascular disease, 

chronic kidney disease and cancer are the major reasons for premature mortality of diabetic 

patients. HDL appears to have a protective role by improving β cell secretory function and 

antagonizing the apoptosis of these cells (Roehrich et al., 2003). 

Promotion of β-cell Survival 

The main pathophysiological event in diabetes mellitus is the deterioration of pancreatic β 

cell function following persistent insulin resistance. At the time of T2DM diagnosis, the 

secretory function of β cells has dropped by approximately 50% of normal (U.K, 1995).In 

vitro, HDL enhanced beta-cell survival and protected them from apoptosis (Pétremand et al., 
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2009; Rutti et al., 2009).  HDL halts β cell death caused by a variety of stimuli including 

inflammatory cytokines, F.F.As like palmitate, thapsigargin, tunicamycin, protein 

overexpression, etc. Some of these stimuli induce endoplasmic reticulum (ER) stress which 

drives beta-cell dysfunction and death in the course of diabetes mellitus development 

(Eizirik, Cardozo & Cnop, 2008; Oyadomari, Araki & Mori, 2002; Volchuk & Ron, 2010) 

Promotion of Insulin Secretion 

In addition to protecting beta cells from death, HDL may also support their survival and 

function by expanding their proliferation or their insulin secretory capacity (Drew, Rye, 

Duffy, Barter & Kingwell, 2012). In UK prospective diabetes study (UKPDS), log(TG)/HDL-C 

ratio, as a surrogate marker of atherogenic dyslipidemia, was associated with declined 

insulin sensitivity and impaired β cell function in 585 male patients with T2DM (Hermans, 

Ahn & Rousseau, 2010). In a study for Drew and his team, infusion of reconstituted high 

density lipoprotein (rHDL), 80 mg.kg-1 over 4 hours, declined plasma glucose, raised plasma 

insulin and improved the HOMA index compared with placebo in patients with type 2 

diabetes (Drew et al., 2009). In addition, Verger and colleagues underlined the role of ABCA1 

in glucose metabolism by demonstrating impaired insulin secretion in carriers of loss-of-

function mutations in ABCA1, which demonstrate that ABCA1 is  essential for normal beta-

cell function in humans (Vergeer et al., 2010). This finding suggests that the removal of 

excess cholesterol from beta- cells through ABCA1 may play a role in the HDL-mediated 

modulation of the insulin secretory pathway and in the maintenance of cholesterol 

homeostasis in pancreatic beta-cells.  

 

1.7 Genetics of HDL 

In spite of the fact that HDL-C levels are inversely correlated to cardiovascular disease risk 

and that HDL particles possess a range of anti-atherosclerotic properties, several recent 

clinical trials using various strategies aimed at raising HDL-C levels have failed to yield the 

expected improvement in clinical outcomes. This has highlighted the need for a better 

understanding of HDL particle function and metabolism (Barter et al., 2007; Boden et al., 

2011; Group, 2013; Keene, Price, Shun-Shin & Francis, 2014; Landray et al., 2014; Schwartz 

et al., 2012). The study of human genetics of HDL has provided an outstanding view of 
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lipoprotein biology, identifying rare genetic disorders, as well as a number of key players of 

HDL metabolism. Based on twin studies, heritability estimates for HDL-C suggested that 62-

77% of the variance in HDL-C is due to genetic factors (Beekman et al., 2002; Goode, Cherny, 

Christian, Jarvik & de Andrade, 2007; Souren et al., 2007; Sung, Lee & Song, 2009). 

ApoA-I 

ApoA-1 is the principal protein constituent of HDL which is synthesized and secreted by the 

liver and intestine. Modification of apoA-1 leading to its functional impairment appears to be 

a critical step in the pathogenesis of atherosclerosis.  Norum and colleagues was the first to 

describe genetic deficiency of ApoA-I in two sisters with remarkably low HDL-C levels and 

premature CVD whereas the concentrations of other lipoproteins like low density lipoprotein 

cholesterol (LDL-C) were not significantly altered. This has established that apoA-1 is 

essential for the biogenesis of HDL particles but not for other lipoproteins (Norum et al., 

1982). Individuals who are homozygous or compound heterozygous for apoA-I gene 

mutation have almost a complete absence of apoA-I and HDL-C in plasma. Those individuals 

are reported to have increased risk for premature CVD and may develop corneal opacities or 

xanthomas. To-date, forty-three mutations have been reported in the APOA1 gene that 

cause low HDL-C or low plasma apoA-I levels (Stenson et al., 2009) . Some mutations have 

been related with increased CVD risk (Hovingh et al., 2004).  Individuals of ApoA-IMilano , 

carriers of one variant (P.R197C), have considerably reduced HDL-C levels but not related 

with CVD which gives increase to the theory that it could be a beneficial variant (Sirtori et al., 

2001).  

Certain mutations in apoA-I, many of which are in the amino terminus of the encoded 

protein, also cause hereditary amyloidosis that is inherited in an autosomal dominant 

manner. In contrast to loss-of-function mutations in apoA1 that lead to low HDL-C, it has 

been suggested that amyloidogenic mutations in apoA-I are gain-of-function variants (Obici 

et al., 2006). Plasma lipoproteins levels in these individuals are normal or can be reduced 

(Joy, Wang, Hahn & Hegele, 2003) implying that these mutations do not universally impede 

the assembly of HDL  (Brunham & Hayden, 2015).  
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ABCA1 

The first step in the reverse cholesterol transport pathway is the efflux of PLs and 

unesterified cholesterol from cell membranes to lipid-poor form of apolipoprotein A-I in a 

process promoted by ABCA1. In 1961, Fredrickson recognized an autosomal recessive 

disorder in which a mutation in the ABCA1 gene results in TD (Bodzioch et al., 1999; Brooks-

Wilson et al., 1999; Lawn et al., 1999; Rust et al., 1999; Saku, Jimi, Ohta & Arakawa, 1994).  

Patients with TD have almost no HDL-C, reduced LDL-C, and yellow lipid-swollen tonsils 

(Bale, Clifton-Bligh, Benjamin & Whyte, 1971; Ferrans & Fredrickson, 1975), manifest 

splenomegaly and consumptive thrombocytopenia too (Brunham & Hayden, 2015). Plasma 

from patients with TD contains only small amounts of pre-β HDL, with no α-migrating 

particles (Asztalos, Brousseau, McNamara, Horvath, Roheim & Schaefer, 2001). Most reports 

suggest that patients with TD have increased CVD risk, although not as great as would be 

expected based on the extremely low levels of HDL-C (Serfaty-Lacrosniere et al., 1994) but 

whether heterozygous mutations in ABCA1 increase the susceptibility to atherosclerosis in 

humans remains the subject of debate (Clee et al., 2000). 

One-hundred and seventy-seven ABCA1 variants are catalogued in the Human Gene 

Mutation Database (Stenson et al., 2009) and these are associated with a broad range of 

biochemical and clinical phenotypes (Singaraja, Brunham, Visscher, Kastelein & Hayden, 

2003). Only some of these variants are pathogenic mutations. The effect of mutations in 

ABCA1 appears to be dominant to mutations in other HDL-related gene. For example, in 

patients with mutations in SCARB1 or HL who are expected to have high HDL-C, the presence 

of a mutation in ABCA1 results in low HDL-C (Brunham et al., 2011). This could be related to 

the fact that ABCA1 acts in a very proximal step in HDL biogenesis and the corresponding 

effect in genes that act downstream of ABCA1 will generally be masked by mutations in 

ABCA1 (Brunham & Hayden, 2015).  

While both TD and apoA-I deficiency have near absence of plasma HDL-C and inability to 

generate HDL particles, there are notable clinical differences between these two disorders. 

For instance, the systemic manifestations of TD, including hepatosplenomegaly, peripheral 

neuropathy and abnormal glucose metabolism are notably absent in patients with apoA-I 

deficiency. This indicates that the lack of ABCA1-mediated cholesterol efflux activity is the 
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one responsible for the multi-organ system involvement in TD rather than the absence of 

HDL itself.  

LCAT 

LCAT is secreted principally in the liver and circulates in plasma bound to HDL and LDL, 

where it catalyzes the esterification of free cholesterol to cholesterol ester in HDL (Kwan, 

Kronenberg, Beddhu & Cheung, 2007). Two human genetic diseases are caused by mutations 

in LCAT; familial LCAT deficiency (FLD) in which a severe mutation in LCAT leading to 

complete loss of enzymatic action (Norum & Gjone, 1967) and Fish Eye Disease (FED), so-

called because of the appearance of the eyes of those patients, where milder mutations in 

LCAT mean that enzyme activity on HDL is lost but is preserved in other lipoprotein particles 

(Carlson, 1982). FLD patients present with corneal opacities, lipemia, anemia, proteinuria 

and renal failure that can progress to end-stage renal disease (Stoekenbroek, van den Bergh 

Weerman, Hovingh, Potter van Loon, Siegert & Holleboom, 2013).  

Both FLD and FED are rare autosomal recessive disorders, but mutations in LCAT occur 

frequently in patients with low HDL-C in the general population (Brunham & Hayden, 2015). 

While the functional significance of many of these mutations uncertain, the data indicate 

that, in addition to being the cause of the rare Mendelian disorders, FLD and FED, LCAT 

mutations are a common cause of low HDL-C in the general population, particularly in 

certain ethnic populations (Brunham & Hayden, 2015).   

CETP 

Cholesterol in HDL can be returned to the liver through two pathways, the direct reverse 

cholesterol transport pathway in which HDL-containing cholesterol is taken by the liver by 

HDL receptor, and the indirect reverse cholesterol transport pathway, in which cholesterol is 

first transferred to an apoB- containing lipoproteins for hepatic uptake via LDL receptor. 

CETP mediates the equimolar transfer of cholesterol ester from HDL for triglycerides from 

LDL, VLDL or chylomicrons. The first deficiency in human CETP was discovered in five 

Japanese families with a common splice mutation in intron 14 (Brown et al., 1989; Inazu et 

al., 1990). Patients with homozygous CETP mutations have significantly high HDL-C and 

apoA-I levels. The catabolism of HDL apolipoproteins is reduced in these patients while their 

production rate is unchanged (Ikewaki et al., 1993). Patients with CETP deficiency also have 
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~35% reductions in LDL-C (Inazu et al., 1990) with rapid LDL-C catabolism (Ikewaki et al., 

1995). Those changes in LDL-C are also observed in patients receiving potent pharmacologic 

CETP inhibitors (Cannon et al., 2010). 

Lipases: LPL, LIPC and LIPG 

HDL CE depletion and TG enrichment by CETP primes HDL particles for hydrolysis by lipase 

enzymes. Three enzymes are known to play roles in remodeling of HDL in humans, LPLs 

(encoded by LPL gene), HL (encoded by LIPC) and endothelial lipase (encoded by LIPG) 

(Brunham & Hayden, 2015). 

Patients with milky lipemic plasma were recognized as early as the late 18th century and 

familial chylomicronemia (Frederickson hyperlipoproteinemia type 1) was first reported in 

the early 20th century (Brunham & Hayden, 2015). This disorder, which manifests as severe 

hypertriglyceridemia, eruptive xanthomas and recurrent pancreatitis, was subsequently 

shown to be due to an absence of LPL activity (Havel & Gordon, 1960). The first mutations in 

the LPL gene in familial chylomicronemia were reported in 1989 (Langlois, Deeb, Brunzell, 

Kastelein & Hayden, 1989). Patients with LPL deficiency also display significantly reduced 

plasma LDL-C and HDL-C, in particular a near absence of HDL2 and reduced HDL3. 

Accordingly, these observations indicate that plasma HDL-C, and in particularly cholesterol 

transported by HDL2, are dependent on the activity of LPL, possibly by LPL releasing 

apolipoproteins from chylomicrons and VLDL particles necessary for the generation and 

maturation of HDL. These findings also provide a molecular underpinning for the known 

inverse relationship between plasma TG and HDL levels. Recently, a gene therapy product 

for LPL deficiency consisting of delivery of the beneficial LPL S447X gene variant (Ross et al., 

2005) obtained regulatory approval, becoming the first approved gene therapy product in 

humans (Yla-Herttuala, 2012). 

HL, encoded by the LIPC gene, is synthesized in the liver and secreted into plasma where it 

acts primarily to hydrolyze triglycerides in HDL and to a lesser extent PLs. Patients with 

deficiency of HL have increased levels of total plasma cholesterol, TG and HDL-C 

(Breckenridge et al., 1982). In particular, HDL-TGs tend to be increased in these patients. 

Genetic deficiency of LIPC is a very rare condition, with only 12 pathogenic mutations 

reported in this gene (Stenson et al., 2009). Patients with LIPC deficiency are generally 

considered to have increased CVD risk despite their elevated HDL-C (Connelly, Maguire, Lee 
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& Little, 1990). This finding accentuates the point that not all mechanisms leading to 

increased HDL-C are associated with protection from CVD. 

Endothelial lipase is the most recently identified member of the lipase family and acts 

primarily as a phospholipase. Studies in mice have shown that overexpression of LIPG results 

in reduced HDL-C and apoA-1 (Jaye et al., 1999). Inhibition of LIPG activity in mice using an 

inhibitory antibody results in increased HDL-C and retard catabolism of HDL-PLs. Carriers of 

rare, loss-of function mutations in LIPG have increased HDL-C, and HDL from these patients 

has enhanced ability to elicit cholesterol efflux from cells (Singaraja et al., 2013). Some 

studies have suggested that carriers of LIPG loss-of-function mutations have reduced CVD 

(Singaraja et al., 2013). In contrast, a large Mendelian randomization study reported that a 

variant in LIPG was not associated with a decrease in incident myocardial infraction (Voight 

et al., 2012).   

SCARB1 

Scavenger receptor class B member 1 (SR-B1), encoded by the SCARB1 gene, is a critical 

component for the mechanism by which HDL-C is taken up by the liver for removal into bile 

(Brunham & Hayden, 2015). Mice that have depleted SCARB1 (SR-B1 knockout mice) have 

markedly elevated HDL-C levels but, paradoxically, increased atherosclerosis. The impact of 

SR-B1 on HDL metabolism and CHD risk in humans remains unclear (Zanoni et al., 2016). 

Through targeted sequencing of coding regions of lipid-modifying genes in 328 individuals 

with extremely high plasma HDL-C levels, Zanoni and colleagues has identified a homozygote 

for a loss of-function variant, in which leucine replaces proline 376 (P376L), in SCARB1. The 

P376L variant impairs posttranslational processing of SR-B1 and abrogates selective HDL 

cholesterol uptake in transfected cells, in hepatocyte-like cells derived from induced 

pluripotent stem cells from the homozygous subjects, and in mice. Large population-based 

studies revealed that subjects who are heterozygous carriers of the P376L variant have 

significantly increased levels of plasma HDL-C. P376 carriers have a profound HDL-related 

phenotype and an increased of CHD (Zanoni et al., 2016).    
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PLTP  

PLTP is involved in the transfer of PLs from apoB-containing lipoproteins to HDL in a process 

that is essential for HDL maturation and maintenance. Jiang and co-workers has found that 

mice lacking PLTP display markedly reduced HDL-C and PLs levels and reduced plasma apoA-

1 concentrations (Jiang et al., 1999). In humans, however, genetic variants in PLTP has been 

identified that are associated with both high and low HDL-C and some of these variants lead 

to reduced PLTP action (Aouizerat et al., 2006; Engler et al., 2008; Kiss et al., 2007). In 

genome wide association studies (GWAS), a new role for PLTP, in influencing HDL-C levels in 

humans, has been highlighted through the identification of PLTP as a locus for both TG and 

HDL-C (Willer et al., 2013). To-date, no rare loss-of-function mutations in PLTP have been 

established in humans that lead to highly pointing abnormalities of plasma HDL-C (Brunham 

& Hayden, 2015). 

1.8 Epidemiology of Cardiovascular Disease.  

Thrombosis and atherosclerosis of the arterial vessel wall are the main underlying causes of 

cardiovascular disease (CVD). CVD causes premature death as well as mass disability.  

Although CVD mortality has fallen considerably over recent decades in many European 

countries, it is still a major global problem since it is estimated that > 80% of all CVD 

mortality now occurs in developing countries (Perk et al., 2013). 

Types of Cardiovascular Diseases 

Cardiovascular diseases (CVDs) are a collective term for a wide range of conditions that 

involve narrowed or blocked blood vessels that can lead to a heart attack, chest pain 

(angina) or stroke. The term "heart disease” (CHD) is often used interchangeably with the 

term cardiovascular disease (CVD). The main clinical types of CVD are coronary artery 

disease (CAD), ischemic stroke, and peripheral arterial disease (PAD) (Catapano et al., 2011). 

1.9 Cardiovascular Risk Markers 

 A large number of risk factors have been identified as associated with CVD. These can be 

divided into lifestyle factors (such as smoking, diet, exercise and alcohol intake), metabolic 

factors (such as diabetes) and inflammatory factors. The factors multiply together to 
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increase the risk of CVD as shown in Figure 1.16 and have been used in international 

guidelines to develop risk prediction algorithm such as Score (Perk et al., 2013). 
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Figure 1.16 Relationship between total cholesterol and 10-year fatal CVD events in men and women aged 60 years with 

and without risk factors, based on a risk function derived from the SCORE project. [Source: (Perk et al., 2013)]. 
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1.9.1 Lipid Markers of CVDs 

Dyslipidaemias include a wide spectrum of lipid abnormalities, some of which are of great 

significance in CVD prevention. Genetic and pathological studies, as well as observational 

and interventional studies, have established the crucial role of dyslipidemia, especially 

hypercholesterolemia, in the development of CVD. 

Total Cholesterol  

In screening programs, total cholesterol (TC) is suggested to be used to estimate total CVD 

risk. In specific cases, however, TC may be misleading. This is particularly so in women who 

regularly have high HDL-C levels and in individuals with diabetes or metabolic syndrome who 

often have low- HDL-C levels (Catapano et al., 2011).   

Low-Density Lipoprotein Cholesterol 

Most of the cholesterol in blood plasma is generally carried in LDLs (Crowley, 2004) and, 

over a wide range of cholesterol concentrations, there is a strong and positive association 

between TC as well as LDL-C and the risk of CVD (Neaton et al., 1992) . This association 

applies for both women as well as men without CVD and patients with established disease 

(Perk et al., 2013). Meta-analysis of many trials revealed a clear dose-dependent relative 

reduction in CVD risk with LDL-C lowering. A 1.0 mmol.L-1 reduction in LDL cholesterol is 

associated with a 20-25% reduction in CVD mortality and non-fatal myocardial infraction. In 

more recent trials, it was confirmed that for high-risk individuals, the target LDL-C level 

should be < 1.8 mmol.L-1 (~70 mg.dL-1) and / or a reduction of  ≥ 50% from baseline LDL-C 

(Baigent et al., 2010). 

High-Density Lipoprotein Cholesterol 

Observational studies have revealed that low concentrations of HDL-C are an independent 

risk factor for CVD. Therefore, HDL-C is also included in new Score chart (Chapman et al., 

2011). Reduced concentrations of HDL-C may even compete with LDL-C as the most evident 

risk factor for CHD in some people (Fruchart et al., 2008). On the other hand, the current 
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state of evidence is not enough for any HDL-C value to be considered as a goal of therapy, 

even though, it is considered that HDL-C < 1.0 mmol.L-1 (~40 mg.dL-1) in men and < 1.2 

mmol.L-1 (~45 mg.dL-1) in women may be a marker of increased risk (Graham et al., 2007). 

Triglycerides 

Hypertriglyceridemia is a significant independent CVD risk factor. However, the relationship 

is not as strong as for hypercholesterolemia (Sarwar et al., 2007). At this time, fasting TGs  > 

1.7 mmol.L-1 (~150 mg.dL-1) is considered as a marker of increased risk, but concentrations ≤ 

1.7 mmol.L-1 are not evidence-based target levels for therapy (Perk et al., 2013). 

Apolipoprotein B/Apolipoprotein A-I Ratio 

 Apolipoprotein A-I is the major protein component of HDL.  The apoB/A-I ratio reflects the 

relative number of apoB-containing atherogenic particles compared with the number of 

‘protective’ apoA-I containing particles. This ratio is superior to the standard LDL-C/HDL-C 

ratio in predicting myocardial infraction (MI) risk (Sniderman & Marcovina, 2006) but it is not 

generally recommended as a treatment goal. Moreover, because it involves protein 

determinations, it is considered to be more complicated technologically and more expensive 

than currently used markers of cholesterol (Perk et al., 2013). 

1.9.2 Non Lipid Markers of CVDs 

Genetics and Family History  

CVD encompasses a broad range of disorders, including diseases of the vasculature, diseases 

of the myocardium, diseases of the heart's electrical circuit, and congenital heart disease 

(Roger et al., 2012). For nearly all of these disorders, inherited DNA sequence variants play a 

role in determining risk (Kathiresan & Srivastava, 2012). A number of genetic polymorphisms 

seem to have significant effects on CVD risk at the population level. On the other hand, the 

influence of these polymorphisms remains rather moderate.  Genetic testing can identify 

variants associated with increased risk to individual CVD risk factor, CHD, or stroke. 

Alternatively, commercial testing has not yet been proved to be useful (Botkin et al., 2010). 
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In some cases like hypercholesterolemia, family screening can be used to identify patients at 

risk and allows timely treatment of affected relatives (Huijgen et al., 2010; Paynter et al., 

2010). 

Age and Gender 

Advancing age and male sex   increase CVD risk and are considered as fixed characteristics 

used to stratify risk assessments (Conroy et al., 2003). Age is positively related to known 

(and unknown possibly) CHD risk factors. Women have lower incidence of CHD in Europe 

(European Heart Network, 2008). This lower rate may result from the protective effect of 

endogenous oestrogens. CVD mortality dramatically increases in women following the 

menopause, indicating that women are postponing their risk rather than avoiding it 

altogether.  

Physical Inactivity 

 A lack of physical activity and sedentary lifestyle is one of the major risk factors for CVD 

(Warren, Barry, Hooker, Sui, Church & Blair, 2010). There is substantial evidence from 

epidemiological studies to support an inverse relationship between regular physical activity 

(particularly aerobic exercise) and  fatal and non-fatal coronary events in initially healthy 

individuals (Graham et al., 2007; Löllgen, Böckenhoff & Knapp, 2009; Nocon, Hiemann, 

Müller-Riemenschneider, Thalau, Roll & Willich, 2008; Talbot, Morrell, Fleg & Metter, 2007; 

U.S Department of Health and Human Services, 2008) as well as individuals with coronary 

risk factors (Richardson, Kriska, Lantz & Hayward, 2004) and cardiac patients (Piepoli, Davos, 

Francis, Coats & Collaborative, 2004; Taylor et al., 2004). The benefit may be due to the fact 

that aerobic exercise results in reduced myocardial oxygen needs for matching level of work 

done. Physical activity has a positive influence on various recognized risk factors of CVD, 

reducing blood pressure in hypertensive patients, preventing or delaying the development of 

hypertension in normotensive individuals, increasing HDL-C levels, helping to control body 

weight, and lowering the risk of developing non-insulin-dependent diabetes mellitus 

(Graham et al., 2007).   
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Unhealthy Diet 

Cardiovascular risk is known to be influenced by dietary habits. Diet is believed to influence 

risk either by affecting major factors such as cholesterol, blood pressure, body weight and 

diabetes or through effects independently of these risk factors. Measurement of the 

‘unhealthiness’ of diet is complex and an imprecise estimate of diet quality is likely to reduce 

the strength of the observed relationship. 

Fruits and Vegetables: Observational studies have revealed that the consumption of fruit 

and vegetables has a protective role on CVD. Moreover, it is also known that individuals who 

consume a lot of fruits and vegetables differ in many other lifestyle aspects from those who 

eat little fruit and vegetables, for example with respect to levels of physical activity, smoking 

status or other dietary habits all of which might confound the association. Although 

individual studies have shown weak or non-significant effects of changing fruit and vegetable 

intake on CVD risk, results in large cohort studies have been relatively homogeneous, and 

several meta-analyses have revealed a statistically significant effect. Dauchet L et al. 

reported a 5% reduction in risk of stroke for each additional serving of fruit and vegetables in 

a meta-analysis of seven large prospective cohort studies (Dauchet, Amouyel, Hercberg & 

Dallongeville, 2006).  This study was updated by He et al by  two additional cohorts, and a 

pooled relative risk of stroke for those eating 3-5 servings of fruits and vegetables daily and 

for those eating >5 servings was 0.89 (95% CI 0.83 - 0.97) and 0.74 (95% CI 0.69 - 0.79) 

respectively (He, Nowson & MacGregor, 2006). It was also reported a decrease in CHD risk of 

4% (Relative Risk 0.96, 95% CI 0.93-0.99) for each additional serving of fruits and vegetables 

per day (Dauchet, Amouyel, Hercberg & Dallongeville, 2006). One serving is equivalent to ~80 

g. 

Fish: Stone et al reviewed three prospective epidemiological studies within population and 

reported a lower coronary heart disease mortality rate for men who eat at least some fish 

weekly compared to those who eat none (Kris-Etherton, Harris & Appel, 2002).  The 

protective effect of fish on CVD may relate to the omega-3 (or n-3) fatty acid content. He et 

al has also showed that eating fish at least once a week results in a 15% reduction in risk of 

CHD (Relative risk of 0.85, 95% CI 0.76-0.96) (He et al., 2004). Therefore, the public health 

impact of a small increase in fish consumption in the general population is potentially large. 
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A modest increase in fish consumption of 1-2 servings a week would reduce CHD mortality 

by 36% and all-cause mortality by 17% (He et al., 2004). 

Alcoholic Beverages 

While the harmful effects of alcohol on conditions such as liver cirrhosis, injuries, and 

cancers of the liver, colorectum, breast, and upper aerodigestive tract have been firmly 

established, uncertainity remains concerning the potential protective effects of light to 

moderate alcohol consumption on risk of coronary heart disease and stroke. Observational 

studies have consistently reported that compared with non-drinkers, light to moderate 

drinking exhibits a reduced cardiovascular risk, with the lower risk found at approximately 

12-25 British units per week, while heavier and more hazardous drinking is associated with 

an increased risk, resulting in the well-established U shaped association (Holmes et al., 

2014).  This possibly causal link was evident in analysis of over 60 ecological, case control, 

and cohort studies. Moreover, it was concluded from previous reviews that both men and 

women who drink one to two drinks a day have lower risk of coronary heart disease (Klatsky, 

Armstrong & Friedman, 1992; Maclure, 1993; Moore & Pearson, 1986). The most widely 

proposed mechanism for this purported cardioprotective effect of alcohol is an increase in 

HDL-C (Brien, Ronksley, Turner, Mukamal & Ghali, 2011). 

 In 2014, Mendelian randomization analysis based on individual participant data has, 

however, abolished this association and suggested that reduction of alcohol consumption, 

even for light to moderate drinkers, is beneficial for cardiovascular health (Holmes et al., 

2014). 

Smoking 

Smoking has been recognized to account for 14% of deaths from CVD (Health and Social Care 

Information Centre (HSCIC, 2012). The risk is significantly reduced within two years of 

smoking cessation (Salonen, 1980). Unlike non-smokers, smokers have a 2 to 4 times 

increased risk of heart disease and of stroke (U.S. Department of Health and Human 

Services, 2004) and in fact smoking is associated with increased risk of all types of CVD-CHD, 

ischemic stroke, peripheral artery disease, and abdominal aortic aneurysm (Perk et al., 

2013).  
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The exact mechanisms by which smoking increases the risk of atherosclerosis are not fully 

understood. It is proven that smoking boosts both the progress of atherosclerosis and the 

incidence of thrombotic phenomena. Reactive oxygen species-free radicals- present in 

inhaled smoke may cause oxidation of plasma LDL and oxidized LDL activates the 

inflammatory process in the intima of the arteries by stimulation of monocyte adhesion to 

the vessel wall, resulting in increased atherosclerosis (Weber, Erl, Weber & Weber, 1996; 

Yamaguchi, Haginaka, Morimoto, Fujioka & Kunitomo, 2005; Yamaguchi, Matsuno, Kagota, 

Haginaka & Kunitomo, 2001).   

Overweight and Obesity 

Obesity is an excess of body fat and is most often estimated by the ratio of weight over 

height. Body mass index (BMI) [weight (kg)/length (m)2] is the most commonly used 

anthropometric index to define categories of body weight. Adults whom their BMI ranges 

from 25 to 29.9 kg/m2 are considered overweight, and those where BMI ≥ 30 kg/m2, are 

considered obese.  Increasing BMI is highly associated with risk of CVD. However, regional 

distribution of adipose tissue – abdominal versus gluteal - was hypothesized to be more 

important in determining cardiovascular risk than total body weight. This has led to 

increased interest in waist to hip ratio as a measure of rather than total body fat (Perk et al., 

2013). 

Blood Pressure  

High blood pressure is well established as a major risk factor for CHD, heart failure, 

cerebrovascular disease, PAD, renal failure, and more recently, arterial fibrillation (AF) 

(MacMahon et al., 1990; Wattigney, Mensah & Croft, 2003). Observational data involving > 1 

million individuals have indicated that death from both CHD and stroke increases 

progressively and linearly from blood pressure levels as low as 115 mmHg systolic and 75 

mmHg diastolic upwards (Lewington, Clarke, Qizilbash, Peto, Collins & Collaboration, 2002).  
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Raised Blood Glucose (Diabetes and Pre-Diabetes Mellitus)  

There is conclusive evidence that improving glycemic control significantly reduces the risk of 

developing diabetic microvascular complications (retinopathy, nephropathy, and 

neuropathy). Despite existing data indicate a relationship between increased levels of 

glycemic and cardiovascular events, there has been little suggestion that specifically 

targeting glycemic control can reduce the frequency of cardiovascular endpoints (Perk et al., 

2013). 

Socio-Economic Background 

Low socio-economic status, lack of social support, stress at work and in family life, 

depression, anxiety, hostility, and personality type have all been reported to contribute both 

to the risk of developing CVD and the worsening of clinical course and prognosis of CVD. 

These factors act as barriers to treatment adherence and efforts to improve lifestyle, as well 

as to promoting health and wellbeing in patients and populations. In addition, distinct 

psychobiological mechanisms have been identified, which are directly involved in the 

pathogenesis of CVD. Multiple prospective studies have shown that men and women with 

low socio-economic status, defined as low educational level, low income, holding a low-

status job, or living in a poor residential area, have an increased all-cause as well as CVD 

mortality risk [relative risk (RR) ~ 1.3 - 2.0] (Stringhini et al., 2010; Tonne, Schwartz, 

Mittleman, Melly, Suh & Goldberg, 2005; Woodward, Brindle, Tunstall-Pedoe & estimation, 

2007).  

1.9.3 Other Biomarkers of CVD Risk  

Despite the fact that the number of potential novel risk markers is growing yearly, in reality 

the number of important factors is constantly scaled once the possible candidates have 

passed through the grading of clinical evidence.  

Inflammatory Markers  

A role for inflammation in atherosclerosis has become well established over the previous 

decades (Ross, 1999; Tracy, 1998). From a pathology perspective, the stages of 
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atherosclerotic plaque formation including initiation, growth, and complication might be 

considered to be an inflammatory response to injury (Libby & Ridker, 1999; Plutzky, 2001). 

The conventional injurious factors which stimulate atherogenesis like hypertension, 

atherogenic lipoproteins, cigarette smoking and hyperglycemia give rise to a variety of 

noxious stimuli that prompt secretion of both leukocyte soluble adhesion molecules which 

will consequently facilitate the attachment of monocytes to endothelial cells, and 

chemotactic factors, which encourage the monocytes migration into the subintimal space. 

Fatty streak formation is then commenced by the transformation of monocytes into 

macrophages and by the accumulation of cholesterol from lipoproteins. Within the growing 

lesion, additional stimuli may continue the attraction and accumulation of macrophages, 

mast cells, and activated T cells inside the developing atherosclerotic lesion. One of the 

several factors which lead to weakening of the atherosclerotic cap is oxidized LDL as this will 

contribute to the loss of smooth muscle cells through apoptosis and through the secretion of 

metalloproteinases and other connective tissue enzymes by activated macrophages. 

Consequently, disrupted atherosclerotic plaque exposes the atherosclerotic core to arterial 

blood, which prompts thrombosis. Therefore, almost every step in atherogenesis involves 

cytokines, other bioactive molecules, and cells that are components of the inflammation 

process (Pearson et al., 2003).   

Systematic biomarkers of both inflammation have been proposed as potentially useful for 

the early detection of the risk of cardiovascular incidents in both apparently healthy 

individuals and patients with CVD (Ridker, Buring, Rifai & Cook, 2007; Vidula et al., 2008). 

However, controversial results have been obtained using such biomarkers. An example is 

CRP, where some reports indicated predictable risks while other authors have obtained little 

information through CRP determination (Folsom et al., 2006; Melander et al., 2009).  

1.9.4 Other Markers  

Homocysteine: An elevated plasma level of homocysteine has long been known as an 

independent predictor of CVD (Refsum, Ueland, Nygard & Vollset, 1998; Wilcken & Wilcken, 

1976). However, risk associated with this marker is modest, and regularly lacks consistency. 

This inconsistency might be due to nutritional, metabolic, like renal disease, and lifestyle 

confounders. Furthermore, altering homocysteine has shown to be ineffective in reducing 
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CVD risk in intervention studies in which vitamin B has been used to reduce plasma 

homocysteine. Homocysteine remains a second-line marker for CVD risk assessment (Clarke 

et al., 2010).  

Lipoprotein-associated phospholipase A2: Lipoprotein-associated phospholipaseA2 

(LpPLA2) is a 50-kd calcium-independent enzyme highly expressed by macrophages in 

atherosclerotic lesions (Häkkinen et al., 1999; Kolodgie et al., 2006). LpPLA2 has lately been 

suggested as an independent risk factor for plaque rupture and atherothrombotic events. 

Nevertheless, at the level of the general population, the extent of effect on risk remains 

moderate; study limitations or bias are present.  LpPLA2 remains a second line marker for 

CVD risk estimation (Garza, Montori, McConnell, Somers, Kullo & Lopez-Jimenez, 2007).  

1.10 CIMT and Plaque Presence 

Some guidelines advocate the measurement of subclinical atherosclerosis as a risk marker 

since it is likely to be a precursor of clinically evident disease. A suitable candidate to assess 

early atherosclerosis noninvasively is the measurement of cIMT using ultrasound. 

Carotid intima-media thickness (cIMT) is a well-established surrogate marker for 

cardiovascular disease where increased cIMT has been related to prevalent and incident 

CHD and stroke (Chambless et al., 1997; O'Leary et al., 1999). CIMT corresponds to the 

intima-media complex, which comprises endothelial cells, connective tissue, and smooth 

muscle and is the site of lipid deposition in plaque formation (Belcaro et al., 1996; Veller et 

al., 1993).   In healthy adults, IMT ranges from 0.25 to 1.5 mm (Veller et al., 1993) and values 

of > 0.9 mm are considered to indicate high risk. Individuals without recognized CVD but 

with increased IMT are at bigger risk for cardiac events and stroke. This risk remains high 

even after correction for the presence of traditional risk factors (O'Leary et al., 1999). 

Plaque is a term used for the central structure of the inner vessel wall at least ≥ 0.5 mm. 

Plaques can be characterized by their number, size, abnormality, and echodensity 

(echolucent vs. calcified). Plaques are correlated to both coronary obstructive disease and 

the risk of cerebrovascular events. Echolucent plaques imply an increased risk of 

cerebrovascular events as compared with calcified plaques. Patients with echolucent 
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stenotic plaques had a much greater hazard of cerebrovascular events than subjects with 

other means of assessing subclinical atherosclerosis. 

 The extent of cIMT is an independent predictor of cerebral and coronary events, but seems 

to be more prognostic in women than in men. Accordingly, carotid ultrasound can 

complement information beyond assessment of traditional risk factors that may help to sort 

decisions about the necessity to introduce medical treatment for primary prevention (Perk 

et al., 2013).  

1.11 Therapeutic Effects of Elevating HDL 

Worldwide, coronary artery disease (CAD) is one of the major causes of death (Yusuf, Reddy, 

Ounpuu & Anand, 2001) accounting for 17.3 million deaths per year, a number that is 

expected to grow to more than 23.6 million by 2030 (American Heart Association, 2014). 

One of the leading risk factors for development and progression of atherosclerosis in CAD is 

dyslipidemia which is characterized by change in lipoprotein spectrum particularly elevated  

LDL-C and decreased HDL-C (Arca et al., 2007). Therapeutic strategies are directed to 

lowering LDL-C, mostly by the use of statin. Despite the fact that aggressive strategies are 

now used to reduce LDL-C, the risk of cardiovascular events in patients with coronary artery 

disease remains significant. In recent years, however, there has been an inclination towards 

raising HDL-C as an additional target. The interest in raising HDL-C arose initially from the 

Framingham study which was the first large-scale study giving the evidence that a low level 

of HDL-C is a major risk factor for CAD.  

The incidence of CAD with HDL-C levels revealed a stronger association than that with  LDL 

levels (Gordon, Castelli, Hjortland, Kannel & Dawber, 1977).  Wilson and his colleagues have 

re-evaluated the same study and found that low HDL-C levels were even associated with 

increased mortality (Wilson, Abbott & Castelli, 1988). Jenkins and colleagues have also found 

a significant association between HDL-C levels and the severity of atherosclerosis (Jenkins, 

Harper & Nestel, 1978). In 1989, Gordon et al remarked a decrease of 2-3% in CAD risk with 

each increase by 10 mg.L-1 in HDL-C (Gordon et al., 1989). Moreover, a new meta-analysis for 

302,430 individuals from 68 long-term prospective studies supported the importance of 

HDL-C measurement in the risk assessment for CAD (Di Angelantonio et al., 2009). 
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1.11.1 Established Treatments for Raising HDL-C  

Statins: Statin, 3-hydroxymethyl-3-methylglutaryl coenzyme A (HMG-CoA) reductase 

inhibitors, belong to a category of drugs that can inhibit a key enzyme in the pathway of 

cholesterol synthesis (Corsini et al., 1998; Vaughan, Gotto & Basson, 2000).  Statins are used 

to lower LDL in primary (i.e., those without known CHD) and secondary cardiovascular 

disease prevention. A meta-analysis of all major statin trials has revealed that for each 1.0 

mmoI.L-1 fall in LDL there is a 22% decrease in CVD risk.  

In recent times, a meta-analysis of 37 randomized studies, comprising   32,258 dyslipidemic 

patients revealed that all statins significantly raise HDL-C levels. Some studies revealed data 

in favor of HDL-C and its role in atherosclerosis. For example, the ASTEROID study with 

rosuvastatin therapy had an increase of 14.7% in HDL-C, a decrease of 53.2% in LDL-C and 

showed regression in atherosclerosis. However, there was no evidence whether LDL-C or 

HDL-C had an independent effect (Nissen et al., 2006) . Contrariwise, the JUPITER study 

revealed no prognostic influence of HDL-C for the end points of first non-fatal myocardial 

infarction (MI) and stroke in patients already on a high-dose statin treatment (Ridker et al., 

2010) . However, the observation made in JUPITER could lead to false conclusion since HDL-C 

levels was high at baseline (Barter, Brandrup-Wognsen, Palmer & Nicholls, 2010).  

Niacin: Niacin (nicotinic acid) is the oldest agent used to increase HDL-C (Altschul, Hoffer & 

D., 1955). Niacin has multiple beneficial effects on serum lipids and lipoproteins (Kamanna & 

Kashyap, 2008). It reduces TGs and LDL-C and increases HDL-C and apoA-1 by its action on 

apo B and apoA-containing protein respectively (Catapano et al., 2011). Numerous clinical 

trials have assessed the benefit of niacin on atherosclerotic disease, in monotherapy or in 

combination with other drugs. In monotherapy, niacin decreased the occurrence of 

myocardial infraction (MI) at six years along with reducing mortality at 15 years significantly 

(Canner et al., 1986). In combination with colestipol, a bile-acid sequestrant, the drug gave a 

37% increase in HDL-C levels, a 43% reduction in LDL-C and a 26% reduction in TC. A 

significant difference in atherosclerosis regression was revealed as it was higher in drug 

treated individuals compared to placebo treated individuals (Blankenhorn, Nessim, Johnson, 

Sanmarco, Azen & Cashin-Hemphill, 1987). The combination of niacin with statin therapy 

was evaluated in two other studies; HATS and ARBITER. In both studies there was an 

increase in HDL-C (26% and 21% respectively) as well as evidence of regression in coronary 
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stenosis; for the HATS study, CIMT in niacin treated individuals was not changed while it was 

decreased significantly in ARBITER study (Ali, Wonnerth, Huber & Wojta, 2012). The largest 

trial conducted to date of niacin therapy was the HPS2-THRIVE study. Here, addition of 

niacin to statin therapy did not show any extra benefit over statin therapy alone and indeed 

there were significant side-effects (Kent et al., 2016). Accordingly, use of niacin as a lipid-

regulating drug has largely ceased. 

Fibrates: Fibrates (fibric acid derivatives), such as bezafibrate, ciprofibrate, fenofibrate and 

gemfibrozil are peroxisome proliferator-activated receptor alpha (PPAR-α). Fibrate therapy 

has been proven to reduce plasma TGs levels by 30-50% along with modest increase of HDL-

C levels by 5-15% (Goldenberg, Benderly & Goldbourt, 2008). The clinical benefits of fibrates 

in monotherapy are mainly illustrated by four prospective, randomized, placebo-controlled, 

clinical trials: Helsinki Heart Study (HHS), Veterans Affairs High-density lipoprotein 

Intervention Trial (VA-HIT), Bezafibrate Infarction Prevention study (BIP), and FIELD (Frick et 

al., 1987; Keech et al., 2005; Rubins et al., 1999; study, 2000). Although all fibrates have 

been revealed to rise HDL-C significantly, their effect on all-cause mortality and cardiac 

mortality remains debatable (Saha, Kizhakepunnur, Bahekar & Arora, 2007). 

1.11.2 Future Lipid Lowering Therapeutic Options 

In almost 30 years since the introduction of HMG-CoA reductase inhibitors (statins), no other 

class of lipid modulators have entered the market. Raising HDL-C through inhibiting CETP is a 

novel approach for potentially reducing the risk of cardiovascular events (Mohammadpour & 

Akhlaghi, 2013).  

To date, a number of CETP inhibitors have been tested in clinical trials. These are 

torcetrapib, dalcetrapib, anacetrapib and evacetrapib. The first CETP inhibitor to be tested in 

human was torcetrapib. Torcetrapib is an irreversible and potent inhibitor of CETP and it was 

revealed to raise HDL-C value by 70-85% (Brousseau et al., 2004; McKenney, Davidson, Shear 

& Revkin, 2006). Despite hopeful results in phase I and II studies, in the large-scale phase III 

study, ILLUMINATE, torcetrapib treatment led to an increase in all-cause mortality and 

cardiovascular events (Barter et al., 2007). Dalcetrapib was the second CETP inhibitor to be 

assessed in phase III randomized clinical trials. Despite the increase of 30-35% in HDL-C in 

early phase II studies, the current data with this class of CETP inhibitors do not suggest any 
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benefit from HDL-C modulation (Wright, 2013). Anacetrapib is a strong inhibitor that 

increases HDL-C and lowers LDL-C. It is the third CETP inhibitor to go through evaluation in 

randomized clinical trials. In DEFINE trial, anacetrapib reduced LDL-C by nearly 40% and 

raised HDL-C by 138% (P < 0.001) but there was no confirmation of safety issues or changes 

in blood pressure (Cannon et al., 2010). Anacetrapib is currently being evaluated in a large, 

phase III outcomes trials, the REVEAL study, which includes about 30,000 patients with a 

history of CVD. The outcome data may be available by second quarter of 2017 (Wright, 

2013). The fourth CETP inhibitor to be evaluated in Phase II and Phase III clinical trials is 

evacetrapib. Evacetrapib raises HDL-C by 79-89% (P < 0.05) and lowered LDL-C by 10-15% (P 

< 0.05). The ACCELERATE trial with this drug was stopped recently for reasons of futility. 

Thus, CETP inhibition so far has been a disappointment as a therapeutic target.  

Currently, the newest drug class is PCSK9 inhibitors. These agents mainly lower LDL and are  

under assessment in large trials in subject with elevated risk, such as the FOURIER study 

(Rallidis & Lekakis, 2016).  
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 1.12 Aims and Objectives of Current Work  

As explained above, the role of HDL in CVD is complex. It has potentially many roles in 

cholesterol transport and the maintenance of healthy vascular wall. There have been a 

number of studies over recent years indicating that HDL can fail to function effectively in 

subjects at risk for coronary diseases (Esteve, Ricart & Fernández-Real, 2005; Khovidhunkit 

et al., 2004). 

It is important therefore to attempt to understand if abnormalities in HDL structure, function 

and metabolism are associated with variation in CVD risk. This is especially true in light of the 

failure of trials that raise total HDL-C to reduce risk of MI and CVD.  

The overall objective of the present work was to examine in detail the relationship of HDL 

oxidation, the ability of HDL to protect LDL oxidation and the abundance of the major HDL-

associated antioxidant enzyme, PON1, to atherosclerosis in a cohort of subjects recruited 

across the social economic spectrum in the West of Scotland (the pSoBid study). PSoBid is 

valuable as a means of testing these properties of HDL because of its mix of males and 

females, wide age range, and the fact that it focused in recruiting people at extremes of 

social deprivation. 

The population has been well characterized in terms of conventional risk factors and this 

thesis takes the investigation to a new level of details with respect to HDL. 

The major questions that were addressed: 

1. If HDL oxidation, measured by three factors; time at half maximum (T1/2max), 

maximum velocity of oxidation (Vmax), or maximum amount of oxidized HDL 

measured by optical density is related to atherosclerotic marker? 

2. If HDL antioxidant potency to protect LDL from oxidation is related to its protective 

effect in atherosclerosis risk? 

3. If HDL PON1 activity is related to atherosclerotic marker? 

4. If some HDL subclasses, rather than HDL-C, are particularly related to 

atherosclerosis? 
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2  General Methods 

2.1 Introduction 

This chapter describes the equipment and general methods implemented in this thesis. All of 

the analyses were carried out in the laboratory facilities of the Institute of Cardiovascular 

and Medical Sciences at University of Glasgow by the researcher unless otherwise 

acknowledged. 

2.2 PSoBid Study 

A total of 616 lithium heparin (Li-Hep) blood samples from the pSoBid study (which had 666 

participants), stored at -80 °C, were available for this project. The clinical study was done by 

Dr. Kevin Deans (Department of Vascular Biochemistry, Institute of Cardiovascular and 

Medical Sciences, University of Glasgow) (Velupillai et al., 2008). Based on Scottish Index of 

Multiple Deprivation (SIMD), participants were recruited at random from areas known to be 

at the extremes of the socioeconomic range in Glasgow (approximately half from the bottom 

5% of the SIMD (most deprived) and half from the top 20% (least deprived) of the SIMD 

distribution). Within the categories of least deprived and most deprived, recruitment was 

stratified by sex and age to achieve an overall sample containing approximately equal 

numbers of males and females and an even distribution across the age categories 35-44, 45-

54 and 55-64 years. Due to the nature of the psychological questionnaires and cognitive 

assessmement, only those who understood and spoke English were invited to participate in 

the pSoBid study. Participants were invited to come for the first visit at their General 

Practice’s clinic. The first visit involved completion of lifestyle and psychology questionnaires 

as shown in appendix 1 , assessment of health status and measurement of blood pressure, 

pulse rate and indexes of obesity (height, weight, hip, waist and mid-thigh circumferences). 

At the second visit, at Glasgow Royal Infirmary, a fasting blood sample was taken to measure 

total plasma cholesterol, TGs, the cholesterol in very low density lipoprotein (VLDL-C), LDL-C 

and HDL-C and a range of other biomarkers for diabetes, inflammation and clotting. In 

addition, participants underwent ultrasound assessment of carotid intima media thickness 

(cIMT). Furthermore, participants completed lifestyle questionnaire which had 13 sections 

including basic demographic data, past and present health status, current medications, oral 

health, smoking history, alcohol intake, diet, physical activity level, childhood situation, birth 
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weight and place of birth, their parent’s age and father’s occupation, education levels, 

employment history and income levels. 

2.3 PSoBid Samples 

There was almost a full set of Li-Hep plasma samples available from pSoBid. The samples had 

been immediately stored in -80°C freezers and kept for about 5 years. These samples had 

not been previously thawed and were considered the best material available for the work of 

the present thesis. 

2.4 Plasma Pool for LDL Controls used in Oxidation Assay 

About 5 X 9 mL K3EDTA fasting blood was collected from 8 donors. All plasma donors were 

non-smokers with no personal history of heart disease, high cholesterol, high TGs, high 

blood pressure, diabetes or other diseases and were not taking any medications. Bloods 

were spun at 2060g for 15 minutes at 4°C in a Beckman centrifuge (GS-6KR Beckman 

Instruments, Inc., California, US) and plasma was separated and immediately pooled in a 

bottle, mixed by gentle inversion and then used for LDL separation (Section 2.6.1). All 

density solution contained EDTA (1 g.L-1). 

2.5 Plasma Pool for Plasma QC used in PON1 Assay and for 
HDL Separation for HDL QC used in PON1 and Oxidation 
Assays 

About 5 X 6 mL Li-Hep fasting blood samples were collected from 9 donors. All plasma 

donors were non-smokers with no personal history of heart disease, high cholesterol, high 

TGs, high blood pressure, diabetes or other diseases and were not taking any medications. 

Bloods were spun at 2060g for 15 minutes at 4°C in Beckman centrifuge (GS-6KR Beckman 

Instruments, Inc., California, US) and plasma was separated. 250 µL from each sample was 

taken for cholesterol (Chol), TGs,  HDL-C and LDL-C  and immediately pooled in a bottle, 

gently mixed by inversion and then divided into two parts; One used for the plasma quality 

control, 0.5 mL aliquots, nitrogen purged and stored directly at -80°C. The other part was 

used for HDL QC separation (Section 2.6.2). All density solutions used for lipoprotein 

preparation were EDTA free and were checked with densitometers. 
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2.6 Lipoprotein Preparation for Oxidation and PON1 Assays 

The high content of lipid in lipoprotein particles, especially TG, and CE, gives them the 

property of having a density substantially less than that of most of the other constituents in 

plasma (Caslake & Packard, 1997). Therefore, they can be prepared virtually pure by 

ultracentrifugation where lipoproteins float by spinning the serum in solutions of increasing 

solvent density. This process is known as sequential ultracentrifugation in which lipoproteins 

are separated using a modification of the method described by Havel (Havel, Eder & 

Bragdon, 1955). Different starting volumes of the plasma were used according to the 

lipoprotein fraction needed.  

2.6.1 LDL Preparation for LDL Quality Control used in Oxidation 

Assay  

VLDL/IDL (d<1.019 g.mL-1)  

The density of 20 mL EDTA plasma was adjusted to 1.019 g.mL-1 by the addition of 1.6 mL of 

1.182 g.mL-1 density solution in polycarbonate centrifuge bottles (Beckman 355654, 

Beckman Coulter, Inc. USA) overlayered with 3.4 mL of 1.019 g.mL-1 density solution using a 

peristaltic pump and centrifuged at 4°C for 24 hours at 1400 g in a Beckman OPTIMAxL-100K 

ultracentrifuge in a 50.4 rotor (Beckman instruments Inc., UK). The top 10 mL was carefully 

removed from each tube by using a drawn out glass pipette and discarded.  

LDL (1.019-1.063 g.mL-1)  

The density of 15 mL of the infranatant, from the previous step, was adjusted to 1.063 g.mL-1 

by the addition of 5.5 mL of 1.182 g.mL-1 density solution, overlayered with 4.5 mL of 1.063 

g.mL-1 density solution and centrifuged at 4°C for 24 hours at 1400 g in a Beckman 

OPTIMAxL-100 K ultracentrifuge in 50.2 rotors (Beckman 337901, Beckman coulter, Inc. 

USA). The top 10 mL containing LDL was carefully harvested, pooled, gently mixed and 

divided into 1.2 mL aliquots, nitrogen purged and stored at -80°C until needed for oxidation 

(Section 2.13). 
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LDL Dialysis 

In order to prepare LDL for oxidation, EDTA must be removed and this was done by dialysis. 

1mL of LDL, prepared from the previous step  was defrosted at room temperature for about 

30 minutes and added to about 10 cm of MWCO: 12-14 kD dialysis membrane 

(Spectra/Por®2 132676, Spectrum Laboratories, Inc. CA, USA). Membrane containing the 

sample was put in a beaker with approximately 666 mL of freshly prepared cold phosphate 

buffer saline (PBS) (Sigma Aldrich) and stirred for 24 hours, changing the buffer twice, at 4°C. 

Dialysed LDL was then taken and stored at 4°C and was immediately used for oxidation. 

2.6.2 HDL Separation for HDL Quality Controls used in PON1 and       

Oxidation Assays 

VLDL/LDL (d< 1.063  g.mL-1) Preparation 

The density of 15 mL Li-Hep plasma was adjusted to 1.063 g.mL-1 by the addition of 7.5 mL of 

1.182 g.mL-1 density solution in polycarbonate centrifuge bottles (Beckman 355654, 

Beckman coulter, Inc. USA), overlayered with 2.5 mL of 1.063 g.mL-1 density solution and 

centrifuged at 15°C for 18 hours at 1400 g in a Beckman OPTIMAxL-100 K ultracentrifuge in 

50.2 rotors (Beckman 337901, Beckman coulter, Inc. USA). The top 10 mL of the supernatant 

was removed carefully and discarded.  

HDL (d 1.063-1.21 g.mL-1) 

The density of 15 mL of the infranatant from the previous step was adjusted to 1.21 g.mL-1 

by the addition of 7.5 mL of 1.478 g.mL-1 density solution, overlayered with 2.5 mL of 1.21 21 

g.mL-1 density solution and centrifuged at 4°C for 60 hours at 15000 g in a Beckman 

OPTIMAxL-100K ultracentrifuge in a 50.2 rotors (Beckman 337901, Beckman coulter, Inc. 

USA). The top 7.5 mL containing HDL was carefully removed, pooled, gently mixed, aliquoted 

into 0.5mL amounts, nitrogen purged and stored immediately at -80°C until needed. 
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2.6.3 HDL Separation for PON1 and Oxidation Assays (The Rapid 

Method) 

VLDL/LDL (d< 1.063 g.mL-1) Preparation 

To remove VLDL to LDL in one spin, the plasma had to be adjusted to density 1.063 g.mL-1. 

Plasma (Li-Hep) samples were thawed at room temperature for approximately 30 minutes. 

400µL of the plasma were then transferred to 11 X 34 mm thick wall polycarbonate 

centrifuge tubes (Beckman 343778 Beckman coulter, Inc. USA). Adjusted to 500 µL with 

1.006 g.mL-1 density solution then mixed again with 250 µL of 1.182 g.mL-1 density solution 

and finally overlayered with 250 µL of 1.063 g.mL-1 density solution. Tubes were then 

transferred to TLA100.2 rotor (Beckman coulter, Inc. USA), and centrifuged in a TLA100 

Table-Top Ultracentrifuge (Beckman coulter, Inc. USA) at 27400 g and 23°C for 2.5 hours. The 

supernatant (500 µL) was carefully isolated and discarded; the infranatant of the samples 

was used to isolate HDL. 

HDL (d 1.063-1.21 g.mL-1) Preparation 

Two hundred fifty µL of 1.478 g.mL-1 density solution was mixed with the infranatant, from 

the previous step, and then another 250 µL of 1.21 g.mL-1 density solution was carefully 

overlayered. The samples were then centrifuged for 18 hours at 13800 g and 15°C in a 

TLA100.2 rotor in a TLA100 Table-Top Ultracentrifuge (Beckman coulter, Inc. USA) .The 

supernatant containing HDL (400 µl) was isolated carefully and adjusted to 500 µL by 100 µL 

PBS (Sigma Aldrich)  containing 1mM CaCl2 (Sigma Aldrich). 

HDL Desalting for Oxidation and PON1 Assays 

In order to remove the salts used in HDL isolation, columns containing Sephadex G-25 were 

used for this step in which PD Minitrap G-25 (Healthcare Bio-Sciences, 751 84 Uppsala 

Sweden) was put into a 15 mL polystyrene clear tube (Evergreen Scientific 214-2415-01K, 

California, USA) by using the column adaptor and equilibrated with 3x volume 

(approximately 8 mL) of PBS (Sigma Aldrich) contacting 1 mM CaCl2.  The columns were then 

put, along with the polystyrene tubes, in 50.4 rotors (Beckman 337901, Beckman coulter, 

Inc. USA),  spun down at 112 g at 15°C for 5 minutes in a Beckman OPTIMAxL-100K 
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ultracentrifuge. 400 µL of HDL + 100 µL of PBS (Sigma Aldrich) containing 1mM CaCl2 were 

then added slowly in the middle of the packed bed. PD Minitrap G-25 was then placed into 

new 15 mL polystyrene clear tubes. Samples were then eluted by centrifugation at 112 g at 

15°C for 5 minutes in the same rotor. The eluate of HDL was then adjusted to 500 µL with 

PBS (Sigma Aldrich) +1 mM CaCl2. 

2.6.4 HDL Preparation for One Dimensional Gel Electrophoresis 

(1DGE) 

VLDL/LDL (d< 1.063 g.mL-1) Preparation 

In order to isolate HDL fractions, VLDL/LDL was firstly prepared. Plasma (Li-Hep) samples 

were thawed at room temperature for approximately 30 minutes. 160µL of the plasma were 

then transferred to 7x20 mm cellulose propionate centrifuge tube (Beckman 342303; 

Beckman coulter, Inc. USA), mixed with 80 µL of 1.182 g.mL-1 density solution to adjust 

density to 1.063 g.mL-1. Tubes were then transferred to Ti 42.2 rotor (Beckman 337901, 

Beckman coulter, Inc. USA) and centrifuged in a Beckman OPTIMAxL-100K ultracentrifuge at 

20500 g and 10°C for 18 hours. The supernatant of (80 µL) was carefully removed and 

discarded. The infranatant of the samples was used to isolate HDL. 

HDL (d 1.063-1.21 g.mL-1) preparation 

Eighty µL of 1.478 g.mL-1 density solution was mixed with the infranatant, from the previous 

step, to adjust density to 1.21 g.mL-1. The samples were centrifuged at 20500 g and 10°C in a 

Ti 42.2 rotor in a Beckman OptimaXL-100K ultracentrifuge. The supernatant containing HDL 

was stored at 4°C, for less than 24 hours, until used for gradient gel electrophoresis analysis 

(Section 2.11). 

2.7 Assays on Clinical Chemistry Analyser 

All analyses, HDL-cholesterol, cholesterol, total TGs, apolipoprotein A-I, apolipoprotein B and 

albumin, described in this section were carried out using commercially available enzymatic 

colorimetric kits, calibrators, and controls (as outlined in the relevant sections below). The 

degree of turbidity or absorbance was measured optically using a clinically validated 

autoanalyser (ILabTM 600, Clinical Chemistry System, Instrumentation Laboratory, USA). 
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2.7.1 HDL-Cholesterol (HDL-C) Measurement 

The cholesterol concentration of HDL is determined enzymatically by a kit based on 

cholesteryl ester esterase (HDL-C plus 3rd generation, Roche Diagnostics, Burgess Hill, UK) 

and cholesterol oxidase coupled to polyethylene glycol (PEG) to the amino groups 

(approximately 40%). 

                                                   PEG-cholesteryl ester esterase 
 HDL-cholesteryl esters + H2O                                                   HDL-cholesterol +RCOOH 

 

Cholesteryl esters are broken down quantitatively into free cholesterol and fatty acids by 

cholesteryl ester esterase. 

                                                                     PEG-cholesterol oxidase 
HDL-cholesterol + O2                                                                Δ4-cholestenone + H2O2 

 

In the presence of oxygen, cholesterol is oxidized by cholesterol oxidase to Δ4-cholesenone 

and hydrogen peroxide. 

                                                                                      Peroxidase 

2H2O2 + 4-Amino-antipyrine +HSDA + H+ + H2O                             purple-blue pigment + 5 H2O 

HSDA=Sodium N-(2-hydroxy-3-sulfopropyl)-3, 5-dimethoxyaniline 

In the presence of peroxidase, the hydrogen peroxide generated reacts with 4-amino-

antipyrine and HSDA to form a purple-blue dye. The colour intensity of this dye is directly 

proportional to the cholesterol concentration and is measured photometrically. Coefficients 

of variance (CV) for higher and for lower level quality controls was 6.28% and 6.52% 

respectively.  

2.7.2 Cholesterol Measurement  

Cholesterol was determined after enzymatic hydrolysis and oxidation with enzymatic 

colorimetric kits (Randox CH 200, Randox Laboratories Limited, Crumlin, County Antrim, UK). 

The indicator quinoneimine is formed from hydrogen peroxide and 4-aminoantipyrine in the 

presence of phenol and peroxidase. CV for higher and lower level quality control was 2.88% 

and 3.09% respectively. 

                                                                            Cholesteryl ester esterase 
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Cholesteryl ester + H2O                                                  Cholesterol + Fatty acids   

                                                  

                                                                     Cholesterol oxidase 
Cholesterol + O2                                                             Cholesterol-3-one + H2O 2  

 
                                                                                                 

 

                                                                                                       Peroxidase  

2H2O 2 + Phenol + 4-Aminoantipyrine                                           Quinoneimine + 4H2O 

 

2.7.3 Total Triglycerides (TGs) Measurement 

Triglycerides were determined after enzymatic hydrolysis with lipases (Randox TR 210, 

Randox Laboratories Limited, Crumlin, County Antrim, UK). The indicator, quinoneimine 

formed from hydrogen-peroxide, 4-aminophenazone and 4-chlorophenol under the catalytic 

influence of peroxidase. CV for higher and lower quality control was 4.30% and 5.40% 

respectively. 

                                                                Lipases  
Triglycerides + H2O                                         Glycerol + Fatty acids 

                                            GK 

Glycerol + ATP                                                Glycerol-3-phosphate + ADP 

                                                                                                  GPO 

Glycerol-3-phosphate + O2                                                              Dihydroxyacetone phosphate +H2O2 

                                                                                                                                           POD 

2H2O + 4-Aminophenazone + 4-Cholrophenol                                Quinoneimine + HCL + 4H2O 

   

2.7.4 Apolipoprotein A-I (ApoA-I) Measurement 

The kit (Randox LP 3838, Randox Laboratories Limited, Crumlin, County Antrim, UK) is based 

on the reaction of a sample containing human apoA-1 and specific antiserum to form an 

insoluble complex which can be measured turbidimetrically at 340 nm. By constructing a 

standard curve from the absorbances of standards the concentration of apo A-1 can be 

determined. CV for higher and lower level quality controls were 4.62% and 4.42% 

respectively. 
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2.7.5 ApoB Measurement  

The kit (Randox LP 3839, Randox Laboratories Limited, Crumlin, County Antrim, UK) is based 

on samples containing human apo B and a specific antiserum form an insoluble complex 

which can be measured turbidmetrically at 340 nm. By constructing a standard curve from 

the absorbances of standards concentration of apo B can be determined. CV for higher and 

lower levels quality control was 2.74% and 4.98% respectively. 

2.7.6 Albumin Measurement 

The measurement of albumin is based on its quantitative binding to the indicator 3,3  ,5,5  -

tetrabromo-m cresol sulphonephthalein (bromocresol green, BCG). The albumin-BCG-

complex absorbs maximally at 578 nm, the absorbance being directly proportional to the 

concentration of albumin in the sample. CV for the quality control was 4.25%. 

2.8 Total LDL- Protein Measurement by Lowry Method 

Total protein content in LDL fractions was measured using a modified Lowry method (Lowry, 

Rosebrough, Farr & Randall, 1951) which involved the addition of 2 mL of Biuret reagent 

(100 mL of a solution containing 2% Na2CO3 in 0.1 M NaOH)+ (1 mL of solution containing 2% 

NaK Tartrate) + (1 mL of solution containing 1% CuSO4) to 400 mL containing  samples, 

standards and quality controls of known concentrations. After 10 minutes, 200 µL of freshly 

diluted Folin and Ciocalteu’s phenol reagent (Sigma Aldrich F9252, Sigma-Aldrich Company 

Ltd. Gillingham, Dorset, UK) (1:1 with deionized water) was then added and mixed 

immediately. After 30 minutes, the optical density was read at 750nm within 2 hours using 

Beckman DU 640 Spectrophotometer (Beckman Coulter Ltd, CA, USA). Protein concentration 

was calculated from the standard curve of known concentrations. Two levels of human and 

bovine quality control (150 µg.mL-1 and 300 µg.mL-1) were used to check the inter-assay 

precision. The CV for low quality control was (human: 7.5%, bovine: 4.8%) and 2.6% for 

bovine high quality control. 

2.9 Total Protein Measurement by Bradford Method 

Protein measurement was performed by Bradford (Bradford, 1976) method which involves 

the binding of Coomassie Brilliant Blue G-250 dye to proteins. 10 µl of the sample, standard 

or quality control was pipetted into a 96 flat bottom well microplate (Fisher 10288521, 
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Fisher Scientific Ireland Ltd, Ballycoolin, Dublin 15, Ireland). 250 µL of the dye reagent Quick 

start  BradfordTM 1X Dye Reagent (Bio-Rad 500-0205, California 94547, USA) was then added 

and mixed for 30 seconds on plate shaker (Labline Instrument) set at 600 rpm. After 10 

minutes, the optical density at 595 nm was then read at room temperature. Two levels of 

human and bovine quality control (150 µg.mL-1and 300 µg.mL-1) were used to check the 

inter-assay precision. The CV for low quality controls was (human: 11.97%, bovine: 11.44%) 

and (human: 7.89%, bovine: 10.50%) for the high quality control. 

2.10 Preβeta-1 HDL ELISA 

Preβeta-1 HDL was measured in 540 Li-Hep samples. Stabilizer was added immediately after 

the samples were thawed. 1:20 diluted plasma with ELISA stabilizer was done using 

commercially available ELISA kits (Pre-β1-HDL ELISA 289194, American Diagnosta GmbH, 

Pfungstadt, Germany). The method is a quantitative enzyme-linked immunosorbent assay. 

The Inter-assay CV was 14.2% and intra-assay CV was 9.2%.  

2.11 One Dimensional Gel Electrophoresis 

Percentage distribution of HDL subfractions was determined by gel electrophoresis as 

described by Nichols (Nichols A.V. et al 1986). The method was carried out on 4-30% 

polyacrylamide gels (C.B.S. Scientific Company. Inc., California, USA) in Tris buffer (90 mM 

Tris Base (Sigma Life Science T1503, MO, USA), 92.8 mM Orthoboric acid (VWR International 

100583R, Leuven, Belgium) and 2.5 mM Na2EDTA (VWR International 100935V, Leuven, 

Belgium) in distilled H2O, adjusted to PH 8.3) and prechilled at 5°C. Gel tank (Bio-Rad Mini 

Gel Apparatus, Hertfordshire, UK) was partly filled with Tris buffer. Gels were removed from 

their packaging, dried and well spacer was carefully placed. The gels were then pre-

equilibrated for 20 minutes at 70 V (Bio-Rad power pack). Prior to gel loading, 40µL of each 

experimental sample (obtained from Section 2.6.5) was mixed with 20 µL Bromophenol Blue 

dye solution (0.149 mM Bromophenol Blue (VWR international 443053A, Leuven, Belgium), 

and 1.168 M sucrose (VWR international 102745C, Leuven, Belgium) in Tris Buffer). HDL 

standards, high molecular weight (HMW) (thyroglobulin 669KD, ferritin 440 KD, catalase 232 

KD, lactase dehydrogenase 140 KD and bovine serum albumin 67KD) (AmershamTM, GE 

Healthcare UK Limited Little Chalfont, Buckinghamshire UK) were mixed. After equilibration, 

15µL of dyed sample and 8µL of HMW standard was loaded onto the gels. Electrophoresis 

was performed at 20 volts for 20 minutes, 70 volts for 30 minutes and 120 volts for 24 hours.  
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Gels were then fixed with 10% sulphosalicylic acid  for 30 minutes, stained with coomassie 

blue (1.168 mM Coomassie Blue (Bio-Rad R250, Bio-Rad Laboratories, Inc. UK) in 4:1:5 

methanol: acetic acid: H2O). After one hour, they were destained with acetic acid: methanol: 

water (1.5:1:2) until the bands were visible. Gels were scanned using G750 scanning 

densitometer (Bio-Rad) and analysed by software Bio-Rad’s Image Analysis System (Bio-Rad) 

to give relative concentrations of HDL2b, HDL2a, HDL3a, HDL3b and HDL3c. 

2.12 Paraxonase-1 (PON1) Assay 

PON1 activity was measured in an arylesterase assay using phenyl acetate as a substrate in a 

method adapted from Richter R.J. 2008 (Richter, Jarvik & Furlong, 2008) in which 

measurement of arylesterase activity relies on the ability of PON1 arylesterase to hydrolyse 

phenyl1 acetate into acetic acid and phenol. The production of phenol is measured at a 

wavelength of 270nm (wavelength of phenol). 

 

The initial rate of hydrolysis (first 2 minutes) was recorded at 270 nm on Spectra-Max 190 

plate reader (Molecular Devices. CA, USA). Briefly, plasma QC (Section 2.5), plasma samples, 

HDL QC (Section 2.6.2) and HDL samples (Section 2.6.3) were diluted (1:20) with PON1 assay 

buffer containing 20 mM Tris base, 0.1 mM CaCl2. H2O at PH 8.0 20 µL of diluted samples 

were then mixed and pipetted into each well and the reaction is initiated by adding 200 µL 

of freshly prepared 1 g.mL-1 phenyl acetate (25 mL buffer + 11 µL Phenyl acetate).  

2.13 Antioxidant Potency of HDL 

LDL (Section 2.6.1) was standardized to 50 µg.mL-1 of protein (with PBS), desalted HDLs from 

the pSoBid samples (Section 2.6.3) and HDL QC (Section 2.6.2) were standardized to 100 

µg.mL-1 of protein with PBS, and a stock of 5 µM of CuCl2 (Sigma-Aldrich Company Ltd. 

Gillingham, Dorset, UK) was freshly prepared for each run. Wells were pipetted with PBS 
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(Sigma Aldrich), depending on the quantity needed for each well, then HDLs (80 µL), 

followed by LDL (100 µL), and finally CuCl2 solution (20 µL) was added. Oxidation was 

monitored at 234 nm in a Spectra max 190 plate reader (Molecular Devices,  CA, USA) and 

U  Microplate corning (Fisher 3635 10288521) at 37˚C, Automix 60 seconds, for 13 hours 

and 2 minutes interval. Note that CuCl2 solution was added within 1 hour of taking LDL- from 

dialysis to initiate oxidation.  

2.14 Statistics 

Statistical analyses were carried out using IBM SPSS Statistics Data Editor (version 22) 

software. As a first step, all parameters were tested for normality using the Shapiro-Wilk 

test.  Variables with normal distributions were described as mean (± standard deviation), 

while median (with inter-quartile range) was used to describe non-normally distributed 

variables, and number (%) to describe categorical variables. Data were log-transformed 

when they did not approximate normality. Independent- two tailed T-test was used to 

compare means of different groups , like genders and areas, using data on a normal scale, or 

log transformed, or square root transformed depending on the test for normality. One-Way 

ANOVA was used to compare variable means between age groups.  Associations between 

variables were determined using Pearson correlation. Significance was accepted at P <0.05 

level.  
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3 Method Development to Assess the 

Antioxidant Function of HDL and Measure HDL-

PON1 Enzyme Activity 

3.1 Introduction 

3.1.1 Assessing the Oxidation Status of LDL 

Considerable attention over the last decades has been focused on the oxidative modification 

of LDL and its potential role in the formation of atherosclerotic lesions (Steinberg, 1997).  A 

variety of indirect assays have been developed in the past few years to assess LDL oxidation 

in vitro. One simple and widely used method is to measure lipid peroxides formed during 

LDL oxidation by spectrophotometric assessment of the conversion of iodide to iodine (el-

Saadani, Esterbauer, el-Sayed, Goher, Nassar & Jürgens, 1989). Although it is considered 

easy to carry out, that assay lacks sensitivity as it measures other peroxides as well. 

Improving the iodometric assay by determining lipid peroxides after hydrolysing esterified 

lipids and extracting them with acetate (el-Saadani, Esterbauer, el-Sayed, Goher, Nassar & 

Jürgens, 1989; Gorog, Kotak & Kovacs, 1991)  or by replacing iodide with ferrous ion in the 

presence of xylenol orange (Jiang, Hunt & Wolff, 1992) still limits specificity in measuring 

lipid peroxides. The most accurate way for measuring lipid peroxides in plasma is by HPLC 

which detects isoluminol chemiluminescence (Frei, Yamamoto, Niclas & Ames, 1988) but this 

method is prolonged and not suitable for clinical laboratory settings. Another commonly 

used assay for LDL oxidation is the thiobarbituric acid - reactive substances (TBAR) assay 

which measures the change in TBARS  spectrophotometrically at 532 nm (Janero, 1990). The 

main disadvantage for the TBAR assay is that it is non-specific and reaction conditions have a 

significant effect on colour development (Antolovich, Prenzler, Patsalides, McDonald & 

Robards, 2002). In addition, other compounds such as sugars, amino acids, aldehydes, 

bilirubin, DNA, prostaglandins and thromboxanes may also interfere in the assay (Jialal & 

Devaraj, 1996). Measuring the electrophoretic mobility of LDL was also applied to quantify 

LDL oxidation in vitro but this assay is overwhelmed by other aldehydic modification which 

will also alter electrophoretic mobility of LDL. Other assays such as using apoB fluorescence 

are also a potential route to evaluate the modifications arising during lipoprotein oxidation 
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(Cominacini et al., 1991). Monitoring the disappearance of the three main fatty acids in 

polyunsaturated fatty acids (PUFA) found in LDL by gas chromatography (GC), after 

extraction and methylation, could also be a good indication of the oxidative susceptibility of 

LDL particles (Lepage & Roy, 1988) but it is time consuming and not all laboratories are 

equipped with GC. Other techniques for  measuring LDL oxidation are by measuring 

aldehydic lipid peroxidation products where aldehydes , such as malondialdehyde and 

hydroxynonenal, developed during lipid peroxidation from polyunsaturated fatty acids 

modify  lysine residues of apoB and these can be extracted with thin layer chromatography 

(TLC) then scanned by  HPLC with ODS columns (Esterbauer, Jurgens, Quehenberger & 

Koller, 1987). Although HPLC is considered as a specific and sensitive technique for LDL 

oxidation, using HPLC after TLC is hard to adapt to the routine laboratory or large numbers 

of samples. Oxysterols, which are a product of cholesterol oxidation, can be measured by GC 

(Jialal, Freeman & Grundy, 1991), and used as a marker of LDL oxidation but this method is 

not widely used.  The characterization of specific hydroperoxy and hydroxyl fatty acids was 

also measured by gas chromatography- mass spectrophotometry (GC-MS) but is also too 

hard to undertake for large scale work. Measuring F2-Isoprostanes was also used as an 

indication  or LDL oxidation by solid phase extraction followed by GC-MS (Gopaul, Nourooz-

Zadeh, Mallet & Anggård, 1994) but it should be noted that this parameter reflects whole 

body oxidation rather than just that occurring in LDL.  

A more objective and easy method for LDL oxidation was developed originally by Esterbauer 

et al (Esterbauer, Striegl, Puhl & Rotheneder, 1989) by continuously measuring the in vitro 

oxidation of LDL. The method is based on monitoring the change of the conjugated dienes 

absorbance at 234 nm where the typical time course starts with a lag phase, in which diene 

absorption shows only a slight increase followed by a propagation phase in which absorption 

rapidly increases and then decreases (Figure 3.1). Consequently, the typical oxidation curve 

is demonstrated by S-shaped graph and the lag phase is lengthened by preventive or chain 

breaking antioxidants, which scavenge the initiation reaction. Hence the lag phase reflects 

the antioxidant status of lipoproteins and their resistance to oxidation (Cadenas & Sies, 

1998). 

 The simplicity and reproducibility of the copper induced oxidation assay make it attractive 

for both routine and research assays(Ahmed, Ozbak & Hemeg, 2015), (Jin et al., 2014), 
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(Guermouche, Soulimane-Mokhtari, Bouanane, Merzouk, Merzouk & Narce, 2014),(Lee, Kim 

& Min, 2013) (Aoki, Abe, Yamada, Matsuto & Okada, 2012).  
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Figure 3.1 Determination of lag time and propagation rate in LDL oxidation. [Source:  (Kgomotso, Chiu & 

Ng, 2008)]. 
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3.1.2 Assessing the Antioxidant Potency of HDL 

Despite the fact that HDL can themselves undergo oxidative changes, it has been shown that 

HDL provides an antioxidant effect that reduces the extent of LDL oxidation (Kontush et al., 

2004). Integrated cell-free assays of HDL antioxidant capacity have been developed in  a 

number of laboratories. The use of reverse oxidation of LDL by HDL was developed by Navab 

and co-workers (Navab, Hama, Hough, Subbanagounder, Reddy & Fogelman, 2001). In this 

assay, 2, 7, 7- dichlorofluorescein diacetate and oxidized PLs preparation produces 

dichlorofluorescein, which is an indication of lipid oxidation, is measured before and after 

incubation with HDL. But this assay still needs calibration and validation. Other assays assess 

HDL antioxidant effect by the gradient of lipid hydroperoxides concentration after 3h of 

copper-catalysed oxidation of LDL in the absence and the presence of HDL or HDL subclass 

(Boemi, Leviev, Sirolla, Pieri, Marra & James, 2001; Mackness, Arrol, Abbott & Durrington, 

1993; Sampaio et al., 2013) but this method lacks specificity as it measures other peroxides 

as well. Measuring the absorbance increase at 234 nm due to conjugated diene formation in 

LDL (control) and study of the effect of adding HDL has been used by many researchers. 

Initiation of oxidation is usually with copper (de Juan-Franco et al., 2009; McEneny et al., 

2013; Morena, Cristol, Dantoine, Carbonneau, Descomps & Canaud, 2000) or with azo-

initiator 2, 2’-azobis-(2-amidinopropane) (AAPH) (Hansel et al., 2004; Pankhurst et al., 2003) 

. This method has the advantage in that lipoprotein fraction(s), whether it is LDL, HDL or 

HDL+LDL dissolve completely in buffer and there is no need to extract the lipoprotein 

fraction before the assay. The main disadvantage is that after the decrease phase of 234 nm 

absorption will increase again in the decomposition phase because aldehydess formed also 

absorb in the 210-240-nm region. 

3.1.3 Paraxonase as an HDL- Associated Antioxidant Enzyme 

PON1 enzyme circulates in blood associated with the surface of HDL (Kotani K., Yamada T. et 

al 2013 and (Macharia, Hassan, Blackhurst, Erasmus & Matsha, 2012). Several studies have 

demonstrated its protective role against vascular disease (Draganov & La Du, 2004; Movva & 

Rader, 2009). Two techniques are primarily used for measuring PON1; direct quantifying the 

enzyme by immunological methods using specific antibodies; or measuring its activity by 

spectrophotometric assays. Using antibodies is time consuming and costly compared to 

spectrophotometric assays (Costa, Cole, Vitalone & Furlong, 2005). In addition, HDL is 
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required to be isolated by fixed angle rotors which limits throughput to a maximum of 10 

samples per day and hence is not suitable for 96-well ELISA kits and storing HDL samples 

after isolation might affect the PON1 enzyme stability. Many assays involve 

spectrophotometric methods to measure the rates of hydrolysis of specific PON1 substrates 

such as paraxon, phenyl acetate, 4- nitrophenyl acetate, 5-thiobutil butyrolactone (TBBL) 

and dihydrocoumarin (Ceron, Tecles & Tvarijonaviciute, 2014). 

3.1.4 Aim 

The aim of the work described in this chapter was to set up a suitable protocol for isolating 

HDL from pSoBid samples (Chapter 2, Section 2.2 and 2.3), measuring the inherent 

antioxidant potency of each HDL to protect a standard LDL preparation from oxidation, and 

to measure PON1 enzyme activity of the same isolated HDLs with a workload of 10 samples 

per day. 

3.2 Samples for Lipoprotein Isolation 

As our project aimed to test the antioxidant functional quality of pSoBids’ HDLs and as there 

was almost a full set of Li-Hep plasma samples, stored at -80°C, left from the study, we 

decided to use these samples to isolate HDL for antioxidant and PON1 assays. On the other 

hand, in the oxidation assay, it was important to measure each HDL’s antioxidant potency 

against the same LDL preparation. Since EDTA protects from oxidation and because LDL 

takes about 3 days to be isolated, it was important to use EDTA plasma for as the source of 

LDL and to remove EDTA just before the oxidation assay. So, for method development, 

depending on the lipoprotein needed, plasma was obtained from healthy donors in either 

K3EDTA (Fisher Scientific UK Ltd, Loughborough, UK) or Li-Hep (Fisher Scientific UK Ltd, 

Loughborough, UK). Plasma samples, K3EDTA or Li-Hep, were isolated immediately after 

spinning at 2060 g and 4°C for 10 minutes.  

3.3 Lipoprotein Preparation- LDL 

Lipoproteins were separated using a modification of the method described by Havel (Havel, 

Eder & Bragdon, 1955) Different starting volumes of the plasma were used according to the 

lipoprotein fraction needed. LDL was isolated as described in Chapter 2 (Section 2.6.1). 
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3.3.1 LDL Protein Measurement 

It was important to add a consistent amount of LDL particles to each oxidation assay and it 

was decided to base this on the protein concentration in LDL. To measure LDL-protein 

content, we initially followed the Bradford method since the Lowry method was excluded in 

our pilot studies. The Bradford method had been used successfully for LDL by McEneny 

(McEneny et al., 2013), and in addition, it is very quick, takes less than 15 minutes, and 

needs only 10 µL of LDL fraction.  (On the other hand, the Lowry method takes about 50 

minutes which was not suitable as the oxidation run should be started within 1 hour after 

taking LDL from dialysis). However, our first pilot measurement of LDL protein using the 

Bradford assay were not reproducible. In addition, it is known that predicted value from LDL 

cholesterol measurements protein/cholesterol ratio is about 0.7 to 0.8 (Vega, F. & Grundy, 

1985) and this was not our finding in the results from the Bradford assay.  

As an alternative, we considered that the best approach to assess the LDL particle 

concentration was to measure LDL cholesterol which could be done rapidly (10 minutes) and 

accurately using a commercial kit and convert it to protein equivalent concentration using a 

fixed ratio. 

To estimate the best ratio to use we isolated LDL and measured its cholesterol content and 

protein in different ways. 45 mL of EDTA blood was taken from 5 healthy donors. Samples 

were centrifuged for 10 minutes at 4°C and 2060g. Plasma was isolated, pooled and mixed, 

gently by inversion, then LDL was isolated from the plasma pool by ultracentrifugation as 

described in Chapter 2 (Section 2.6.1). LDL fractions were pooled and mixed gently by 

inversion, and protein was measured by Lowry method as described in Chapter 2 (Section  

2.8), Apo-B was measured immunoturbidimetrically as described in Chapter 2 (Section  

2.7.5) and LDL-Cholesterol was measured using kits as described in Chapter 2 (Section 

2.7.2). Results for cholesterol (mmol.L-1) were multiplied by 38.6 to convert to mg.dl-1, then 

converted to µg.mL-1 by multiplying by 10 and finally converted to protein concentration 

(µg.mL-1) by multiplying with 0.8 as shown in the following equation: 

 

 

Cholesterol (mmol.L-1) X 10 X 38.6 X 0.8= Protein (µg.mL-1) 
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The factor of 0.8 was used in calculations of LDL protein concentration since it gave the 

closest results to the apoB concentrations. 

The average LDL-protein for the plasma pool measured by 3 methods was 1358 µg.ml-1 

(±210), %CV 15.47 from Lowry, 1083µg.mL-1 (±188), %CV 17.3 from Apo-B and 1186 µg.mL-1 

(±180), %CV 15.2 from cholesterol (n= 14 for all methods).  

3.3.2 LDL Desalting and Removal of EDTA  

As EDTA protects LDL from oxidation, it was important to remove EDTA from LDL to make it 

usable in the in vitro oxidation test. Three methods for removing EDTA from LDL were 

assessed; desalting once, or desalting twice by gel filtration chromatography, or dialysis. 

Forty-five mL of EDTA blood was taken from one healthy donor. Tubes were centrifuged for 

10 minutes at 4°C and 2060 g. Plasma was isolated and mixed. LDL was isolated from plasma 

by ultracentrifugation (Section 2.6.1). For LDL desalted one time, PD Minitrap G-25 Columns 

containing Sephadex G-25 Medium (GE Healthcare Bio-Sciences AB, Uppsala Sweden) was 

prepared by washing with PBS, the collector tube of the column was replaced with a new 

one, 0.5 ml of LDL fraction was mixed and loaded on the columns, column(s) were then 

transferred to 50.4 rotor (Beckman Coulter Ltd, High Wycombe, UK), spun in Optima XL-100K 

Beckman Ultracentrifuge (Beckman Coulter Ltd, High Wycombe, UK), Zonal centrifugation  at 

2060 g for 5 minutes at 15°C. LDL was collected after the spin stopped. For LDL desalted 

twice, a new 0.5 mL of LDL fraction was desalted in the same way as in desalting once then 

PBS was added again to the desalted fraction to make the volume up to 500 µL. The fraction 

was desalted again using a new washed desalting column (PD Minitrap G-25 columns). For 

dialysis; a fresh 0.5 mL of LDL fraction was put in Spectral/Por2 dialysis membrane (Spectrum 

Laboratories, Inc., Ca, USA). The tube was then put in a beaker containing 333 ml of PBS 

(Sigma Aldrich). Dialysis was carried out for 24 hours at 4C, in the cold room, changing the 

buffer two more times. All LDL preparations were standardized to 50 µg. mL-1 protein after 

protein measurement (Section 3.3.1) and tested for oxidation using 5 and 10 µM CuCl2.2H2O 

(Sigma Aldrich) and with 1, 2 mM 2,2’-Azobis (2-methylpropionamidine) dihydrochloride 

(AAPH) (Sigma Aldrich) as described in Chapter 2 (Section  2.13).  
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Results 

Neither LDL desalted for one time nor LDL desalted for two times showed any response to 

oxidation with either 5µM or 10 µM CuCl2 but they responded to oxidation with 1 and 2 mM 

AAPH. On the other hand, dialysed LDL showed an S-shaped graph with 5 and 10 µM of 

CuCl2.  This means that dialysis is capable of eliminating more EDTA than desalting columns, 

and hence was the method of choice for the assay. 
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3.3.3 Optimizing Conditions for LDL Oxidation Assay 

Copper Chloride Concentration 

Previous publications have demonstrated that the influence of HDL on LDL oxidation 

depends on the concentration of copper; at high copper concentrations, addition of HDL to 

LDL promotes LDL oxidation (Raveh, Pinchuk, Fainaru & Lichtenberg, 2001) .  

We aimed to find out whether CuCl2 with concentration lower than 5 µM would oxidize 50 

µg.mL-1 dialysed LDL protein.   

The same procedure was done as in previous trial for isolating and dialysing LDL (Section 

3.3.2). LDL was standardized to 50 µg.ml-1 proteins with PBS and oxidation was initiated with 

0.5, 1 and 5 µM CuCl2. 

Conclusion 

As shown in Figure 3.5-A, 0.5 µM Cu was capable of initiating oxidation on 50 µg.mL-1 

dialysed LDL protein and the T1/2max was inversely proportional to the copper chloride 

concentration.  Therefore, we have decided to precede our oxidation trials with 0.5 µM 

CuCl2 for oxidation assays. 

3.3.4 LDL-Protein Concentration (LDL Standardisation) 

Since we have studied the effect of different copper concentration on LDL oxidation, it was 

also important to understand the impact of using different LDL protein concentrations. 

To find out the best LDL concentration to use in oxidation assays with 0.5 µM CuCl2, the 

same procedure was done as in previous trial for isolating and dialysing LDL (Section 3.3.2). 

LDL was standardized as 50, 100 and 150 µg.mL-1 protein and oxidation was initiated with 0.5 

µM CuCl2. 

  

+ 1mM AAPH 

+ 2mM AAPH 
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Conclusion 

While oxidation  showed a clear S-shaped graph for 50 µg.mL-1 LDL protein, mean of 143.9 

(±3.33) min for T1/2max, CV% of 2.31 (n=3),  oxidation did not show the typical time course 

for oxidation , with  lag phase, propagation phase and steady phase, for 100 µg.mL-1 LDL 

protein (n=3). Finally no oxidation was detected for any of the wells for LDL 150 µg.mL-1 LDL 

protein (Figure 3.5-B). 
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3.3.5 Formation of LDL Pool for Oxidation Assay 

To measure HDL antioxidant potency, a standard LDL pool was needed that would be 

constant in each assay. And because we only could prepare 10 HDL per day, and because 

storing isolated LDL in the dark at 4°C, even with nitrogen purging, was not giving consisting 

results for oxidation kinetics, It was important to review multiple ways of preparing and 

storing LDL pools to find out the most stable preparation for use in the oxidation inhibition 

assay. 

To compare the consistency of oxidation kinetics for four different LDL pools; (a) LDL which 

was freshly isolated from frozen plasma pool (LDL1), (b) LDL that has been prepared by 

ultracentrifugation, aliquoted and stored, at -80°C without dialysis and when required, (c) 

LDL was defrosted and dialysed against PBS rapidly for 4 hours (LDL2i),  or dialysed against 

PBS at 4°C for 24 hours  (LDL2ii) and (d) LDL that was prepared by ultracentrifugation and 

dialysed against PBS at 4°C for 24 hours space, aliquoted, and stored (LDL3). For oxidation, 

each LDL concentration was adjusted to 50 µg.ml-1 protein as described previously in Section 

3.3.1 and oxidation was run within one hour with 0.5 µM CuCl2. 

Thirty-five mL of EDTA blood was drawn from 3 healthy donors. Samples were then 

centrifuged for 10 minutes, at 4°C and 2060 g. Plasma was isolated, pooled and mixed gently 

by inversion. About 20 ml of the pool was aliquoted as 1.2 mL portions in 1.5 mL tubes, 

stored at -80°C, after purging with nitrogen and labelled as plasma pool for LDL1. When 

required for oxidation, aliquots were defrosted, spun for LDL isolation as described in 

Chapter2 (Section  2.6.1), dialyzed against PBS in the dark at 4°C for 24 hours, changing the 

buffer system 2 more times. The rest of plasma was used to isolate LDL as described in 

Chapter 2 (Section 2.6.1) for LDL2i, LDL2ii and LDL3. When the spin stopped, LDL was 

isolated carefully, pooled and mixed gently by inversion. About 9 mL of LDL was aliquoted, 

1.2 mL each, labelled as LDL2i, and another 9 mL of LDL was labelled as LDL2ii. Both LDL2i 

and LDL2ii aliquots were nitrogen purged and stored at -80°C. When required, they were 

defrosted and dialyzed against PBS at 4°C for 24 hours, changing the buffer system 3 times. 

Another portion of LDL, about 5 mL, was dialysed with PBS rapidly for 4 hours in the dark, 

changing the buffer +-system 7 more times. LDL was standardized to 50 µg.ml-1 proteins and 

oxidation was run within one hour with 0.5 µM CuCl2 as described in Chapter 2 (Section 

2.13). 
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Conclusion 

While LDL2 (i) did not show any response to oxidation, LDL2(ii)  was the most stable LDL for 

oxidation with mean of t1/2 max 127.55 (±11.56) minutes & maximum amount of 

conjugated dienes formed was 0.32 (±0.02) units. CVs. were 9.07 & 5.04 for t1/2 max and 

maximum conjugated dienes formed respectively. LDL3 was the second best as the mean for 

t1/2 max was 139.85 (±14.03) minutes and for maximum conjugated dienes formed was 

0.32 (±0.04) units with CVs. of 10.03 & 11.47 for T1/2 max and maximum conjugated dienes 

formed respectively. LDL1 mean for T1/2 max was 151.88 (±35.39) minutes and maximum 

conjugated dienes was 0.33 (±0.03) units and CVs were 23.30 & 8.59 for T1/2 max and OD 

respectively. Therefore, we have decided to prepare our LDL pool as we did for LDL2 (ii):  

collecting blood then mixing and isolate plasma. LDL is then isolated as described in Chapter 

2 (Section  2.6.1), then stored, after aliquoting, at -80°C freezers (without dialysis) and when 

required, LDL is defrosted and dialysed against PBS at 4°C for 24 hours.   

      

  



3. Method Development to Assess the Antioxidant Function of HDL  

© Faridah Alkandari (2017)  113 

 

 

 

Table 3.1 %CV for T1/2max and maximum conjugated dienes formed   for 4 different LDL pools 

LDL Number LDL preparation Dialysis 
%CV 

T1/2max Max. C.D. 

LDL1 

(n=5) 
 

LDL freshly isolated 

from frozen plasma 

pool  

Dialyzed against PBS at 

4°C for 24 hours 

(changing the buffer 

system 3 times) 

 

 

23.30 

 

 

8.59 

LDL2(i) 

(n=2) 
 

LDL prepared by 

ultracentrifugation and 

stored at -80°C after N2 

purging without 

dialysis. , LDL was 

defrosted when 

required 

Dialyzed against PBS 

rapidly for 4 hours 

(changing the buffer 

system 8 times) 

No 

Oxidation 

No 

Oxidation 

LDL2(ii) 

(n=5) 
 

Dialyzed against PBS at 

4°C for 24 hours 

(changing the buffer 

system 3 times) 

9.07 5.04 

LDL3 

(n=7) 
 

LDL isolated by ultracentrifugation and dialyzed 

against PBS at 4°C for 24 hours, N2 purged   and 

stored at -80°C 

10.03 11.47 

LDL, low density lipoprotein; T1/2max, time at half maximum; Max. C.D.; maximum conjugated dienes formed; 

N2, nitrogen.  
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Figure 3.6  T1/2max for 3 different  LDL pools +0.5 µM CuCl2;  freshly isolated from frozen plasma and 

directly used for oxidation  (LDL1) (Blue); freshly isolated LDL from plasma then stored at -80° C without 

dialysis and when needed, defrosted and dialysed against PBS for 24 hours (LDL2(ii)) (green); LDL prepared 

by ultracentrifugation then directly dialysed against PBS at 4°C for 24 hours space, aliquoted, stored at -80°C 

and defrosted when needed (LDL3) (red). St, stored; wk, week; T1/2, time at half maximum 
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3.4 Lipoprotein Preparation-HDL  

3.4.1 HDL Isolation 

As limited volumes of Li-Hep samples were left from pSoBid, and because the classical HDL 

isolation method takes about 60 hours which was considered unlikely to keep the 

antioxidant potency of HDL fractions or to retain the activity of Paraxonase 1 (PON1) 

enzyme, a new method for HDL isolation which took one working day using a small volume 

of sample was necessary to be developed for the project. 

A number of possible techniques were explored in an attempt to invent a quick method 

starting with 400-500 µL of plasma. All density solutions used were made up of NaCl/KBr 

(EDTA free).  All analysis were made by automated clinical chemistry analyser (ILabTm 600, 

Instrumentation Laboratory, USA). 

Comparison of the traditional method using 50.4 rotor and a new 

methods using TLA100.2 

Since we were intending to design a new method for isolating HDL , it was important to 

prepare HDL sample using the current method used in the laboratory to gain insight into the 

expected numerical outcomes and also to become aware of the problems that such a 

lengthy spin causes and to compare with the new method. 

Twelve mL of K3EDTA blood was drawn from 12 donors. Samples were then centrifuged for 

10 minutes, at 4°C and 2060 g. Plasma was removed and transferred into 5 mL bottles and 

mixed gently. 250 µL was taken from each sample to analyse. For the traditional method, 2 

mL from 8 different plasma were transferred into 6.4 ml centrifuge tubes (344088 Beckman 

Coulter Ltd, High Wycombe, UK). 1 mL of 1.182 g.mL-1 density solution was added and mixed, 

to adjust the density to 1.063, resulting in a 2:1 ratio of plasma to density solution 

respectively. A further 3 mL of 1.063 g.mL-1 density solution was over layered using 

automated pump. Samples were transferred into Beckman 50.4 rotors (Beckman Coulter 

Ltd, High Wycombe, UK) and centrifuged in Beckman Optima XL-100 K ultracentrifuge 

(Beckman Coulter Ltd, High Wycombe, UK) at 11000 g and 15°C for 20 hours. Once the spin 

stopped, the top 2 mL was carefully isolated. To the remaining 4 mL, 2 mL of 1.478 g.mL-1 
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density solution was added and mixed, to adjust the density to 1.21 g.mL-1, and a further 

1.21 g.mL-1 density solution was over layered using automated pump. Samples were then 

centrifuged again in Beckman 50.4 rotors in Beckman centrifuge for 36 hours at 11000 g and 

15°C in Optima XL-100 K ultracentrifuge (Beckman Coulter Ltd, High Wycombe, UK). When 

the spin stopped, HDL was then isolated at 1 mL and stored for analysis. 

For the new method, 400 µL of 4 different plasma were transferred into 11X34 mm thickwall 

polycarbonate centrifuge tubes (343778 Beckman Coulter Ltd, High Wycombe, UK) and 100 

µL of 1.006 g.mL-1 density solution was added and mixed to complete to 500 µL then 250 µL 

of 1.182 g.mL-1 was added and mixed, to adjust the density to 1.063 g.mL-1, then over 

layered with 250 µL of 1.063 g.mL-1 density solution. Tubes were then transferred to 

TLA100.2 rotor (Beckman Coulter Ltd, High Wycombe, UK) and centrifuged for 16 hours at 

4300 g and 23°C in a TL-100 Table-Top Ultracentrifuge (Beckman coulter, Inc. USA). Once the 

spin stopped, the top 500 µL, containing VLDL/LDL was removed. For the remaining 500 µL 

plasma, 250 µL of density solution 1.478 g.mL-1 was added and mixed, to adjust the density 

to 1.21 g.mL-1, and then 250 µL of 1.21 g.mL-1 density solution was over layered. Samples 

were then placed again in TLA100.2 rotor (Beckman coulter, Inc. USA) and centrifuged for 5 

hours at 27400 g and 23°C in and centrifuged in a TLA100 Table-Top Ultracentrifuge 

(Beckman coulter, Inc. USA). When the spin stopped, 250 µL of the top fraction containing 

HDL was removed and analysed.  

Analysis was done for plasma, HDL fractions from each the old and the new spin for HDL-

cholesterol, cholesterol, ApoA-1, Apo-B and Albumin as described in Chapter 2 (Section 2.7). 

Conclusion 

Albumin amounts in HDL fractions resulted from both spin were negligible. Recoveries for 

HDL-C and ApoA-1 using the traditional method (long spin times) was 39.35% and 32.88% 

respectively while these were 59.11% and 57.39% respectively from the new method. On 

the other hand, the apo-B amount contaminant in the new method was 0.31 mg.dL-1 

compared to the traditional method which was 1.41 mg.dL-1. This means that the new 

method, using TLA 100.2 rotor, is promising in producing HDL samples with substantially 

better recoveries for HDL-C and Apo-A1.  
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 3.4.2 HDL Protein Measurement  

To find out the quickest and most reliable way for measuring HDL protein concentration, 12 

ml of EDTA blood was drawn from 7 healthy donors. Samples were then centrifuged for 10 

minutes, at 4°C and 2060 g. HDL was isolated from each of the 9 samples by 

ultracentrifugation as described in the new method, using TLA100.2 rotor (Section 3.4.1). 

Each HDL fraction was desalted by loading 250 µL HDL + 250 µL PBS as described in Chapter 

2 (Section 2.6.3). HDL protein for each sample was measured by two ways; Lowry method as 

described in Chapter 2 (Section  2.8) and Bradford method as described in Chapter 2 

(Section  2.9) and ApoA-1 as described in Chapter 2 (Section  2.7.4). 

Conclusion 

Average percentage of HDL-Apo-A1, measured by the analyser, to HDL-total protein, 

measured by Bradford was 57.87 (±5.41), %CV= 9.35 while  average percentage of HDL-

ApoA-1, measured by the analyser, to HDL- total protein measured by Lowry method was 

47.61(±4.12), %CV= 8.65. Comparing Bradford: Lowry measures of total proteins, it was 

found that they gave a constant difference (83.17% (±2.76), %CV= 3.32) and because 

Bradford was more rapid and more convenient for adaptation to a plate reader, we have 

decided to use the Bradford method for HDL-total protein measurement for oxidation and 

PON1 assays.  

3.4.3 Selecting Buffer for Desalting HDL samples 

Some publications indicate that calcium inclusion in density solutions used for HDL isolation 

or during HDL dialysis protects paraxonase enzyme (PON1) (Kontush et al., 2004; Lynch, 

Lorenz & Klotz, 2014). This has been applied because PON1 activity is known to be calcium 

dependent (Kuo & La Du, 1998).  Accordingly, we set about trying to detect if 1 mM of 

calcium inclusion in PBS used in HDL desalting would make any significant difference in HDL 

antioxidant potency or in measuring PON1 assay. 

One EDTA blood sample was taken from 1 healthy donor and 5 Lithium Heparin, blood 

samples were taken from 5 other healthy donors. Samples were then centrifuged for 10 

minutes, at 4°C and 2060 g. Plasma was removed and transferred into 1.5 mL bottles for 
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EDTA samples and 5 mL bottles for Li-Hep samples.  1 EDTA aliquot was used to prepare LDL 

fraction by 50.4 rotors as described in Chapter 2  (Section  2.6.1) then dialysed as described 

in Chapter 2  (Section  2.6.1) and protein measured as described previously (Section  3.3.1). 

Four Li-Hep aliquots, two for each donor, were used to isolate HDL as explained the new 

method in Section 3.4.1 using TLA100.2 rotor. For HDL desalting, two HDL fractions, one for 

each donor, was desalted as explained in Chapter 2 (Section  2.6.3) with PBS and the other 

two were desalted with PBS+ 1 mM CaCl2. All HDL samples had protein measured by the 

Bradford method as described in Chapter 2 (Section  2.9) and concentrations were 

standardized to 50 µg.ml-1 of HDL-protein, for 1:1 LDL: HDL wells, or 100 µg.mL-1 of HDL-

protein for 2:1 HDL: LDL wells. LDL was standardized to 50 µg.mL-1 of LDL-protein and 

oxidation was run as described in Chapter 2 (Section 2.13). PON1 assay was also run for 

measuring HDL PON1 activity as described in Chapter 2 (Section 2.12).  

Conclusion  

It was found that adding 1 mM CaCl2 to the PBS used for HDL desalting resulted in a longer 

T1/2max (Figure 3.7). This observation is consistent with preservation of the antioxidant 

capability of HDL. 

Although the benefits of adding CaCl2 were borderline significant, (P=0.051), there was a 

clear trend, as shown in Figure 3.8, of higher PON1 activity results and that PON1 enzyme 

activity appeared to be better preserved with CaCl2. 

Hence, the decision was made to use PBS + 1mMCaCl2 rather than PBS alone in desalting 

HDL samples. 
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Figure 3.7 Oxidation graph of 50 µg.mL
-1 

 LDL protein, 1: 1 HDL: LDL or 1:1 HDL (+1 mM CaCl2): LDL 

oxidation graphs + 0.5 µM CuCl2. 

Figure 3.8  PON1 assay activity for five HDLs samples desalted with or without CaCl2.  PON1, paraxonase1 

enzyme; Ca, CaCl2; PBS, phosphate buffer saline. 
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3.4.4 Selection of Optimal Centrifugation conditions 

One Day Spin Versus Two Separate Days Spin  

To see the outcome for HDL recoveries, HDL antioxidant potency as well as PON1 assay 

result after isolating HDL in 2.5/5 hours in either 1 day or in 2 separate days.  

Thirty-five ml of Li-Hep samples were collected from 5 healthy donors. Samples were then 

centrifuged for 10 minutes, at 4°C and 2060 g. Plasma was removed and transferred into 5ml 

bottle. One aliquot for each of the donor was stored, at 4°C for next day spin. Another 

aliquot was transferred as 400 µL into five 11 X 34 mm thickwall polycarbonate centrifuge 

tubes (343778 Beckman Coulter Ltd, High Wycombe, UK), and 100 µL of 1.006 g.ml-1 density 

solution was added on the top of each sample, to make the volume up to 500µL, followed by 

250 µL of 1.182 g.mL-1 density solution and mixed, to adjust the density to 1.063 g.mL-1, then 

over layered with 250 µL of 1.063 g.mL-1 density solution. Tubes were then transferred to 

TLA100.2 rotor (Beckman Coulter Ltd, High Wycombe, UK) and centrifuged for 2.5 hours at 

(27400 g) and 23°C in a TL-100 Table-Top Ultracentrifuge (Beckman coulter, Inc. USA). Once 

the spin has stopped, the top 500 µL, containing VLDL/LDL was removed from all tubes. The 

infranatant was stored overnight at 4°C in the dark. Next day, stored plasma aliquots, from 

previous day, were taken from the fridge, prepared and spun for VLDL/LDL in the same way 

as for the samples in the previous day. When the spin stopped, VLDL/LDL was isolated as 500 

µL. Tubes containing the infranatant from previous day spin was taken and completed, along 

with the same day samples for HDL spin; 250 µL of 1.487 g.mL-1 density solution was added 

on the top of all samples and mixed, to adjust the density to 1.21 g.mL-1, then overlayered 

with 250 µL of 1.21 g.mL-1 density solution and transferred again to TLA 100.2 rotor and spun 

for 5 hours 27400 g on the same ultracentrifuge. When the spin stopped, the top fraction, 

500 µL, containing HDL was isolated, analysed for recoveries, protein measured by Bradford 

as described in Chapter 2 (Section  2.9) and run for oxidation as described in Chapter 2 

(Section  2.13) with 0.5 µM CuCl2 and PON1 assay as described in Chapter 2 (Section  2.12). 
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Conclusion 

The one day spin showed a better HDL recoveries than the two separate days spin; an 

average of 59.94% (±9.85), %CV= 16.44 and 56.06% (±3.49), %CV= 6.22 versus 49.85% 

(±4.80), and 52.68% (±3.09), % CV=5.87 for HDL-C and Apo-A1, respectively (n=5). Albumin 

was more unfavourable as it was less than 1 g.dL-1 in the one day spin and more than 2 g.dL-1 

in the two separate days’ spin. On the other hand, Bradford measurement for HDL protein 

for those samples prepared in 2 days were very high compared to the same samples 

prepared in one day (an average difference of 48.51 ± 5.55, %CV = 11.4) which indicates 

possibly that the 2 day spin is contaminated with albumin or even Apo-B proteins and that 

was not expected as the change in spin length would not alter LDL separation from HDL. 

For oxidation, HDL prepared over two separate days showed a very weak oxidation activity 

while for HDL isolated within a day showed a clear oxidation results (Figure 3.9). 
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Figure 3.9 Oxidation graph for HDL (isolated in one day) and HDL (isolated in over days) + 0.5 µM CuCl2. 

Sec, seconds; OD, optical density. 
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Studying 2.5/18 hours Spin with a Comparison for 250 and 500 µL 

Isolation Volume of HDL 

As the one day spin results were better for HDL recoveries as well as oxidation results than 

the two separate days’ spin and as it was not practical to do the one day spin every day. We 

wanted to find a more convenient way of HDL isolation with 2.5/18 hours spin times. 

To study HDL, isolated in 2.5/18 hours, recovery and to compare the results of isolating HDL 

in either 250 µL or 500 µL. 35 mL of Li-Hep blood was drawn from 2 healthy donors. Samples 

were then centrifuged for 10 minutes, at 4°C and 2060 g. Plasma was removed and 

transferred into 5mL bottle. 400 µL of plasma sample, 2 for each donor, were transferred 

into 11X34 mm thickwall polycarbonate centrifuge tubes (343778 Beckman Coulter Ltd, High 

Wycombe, UK). 100 µL of 1.006 g.mL-1 density solution was added, to complete to 500 µL, 

followed by 250 µL of 1.182 g.mL-1 density solution and mixed, to adjust the density to 1.063 

g.mL-1, then over layered with 250 µL of 1.063 g.mL-1 density solution. Tubes were then 

transferred to TLA100.2 rotor (Beckman Coulter Ltd, High Wycombe, UK) and centrifuged for 

2.5 hours at 27400 g and 23°C in a TL-100 Table-Top Ultracentrifuge (Beckman coulter, Inc. 

USA). Once the spin has stopped, the top 500 µL, containing VLDL/LDL was removed for all 

the tubes. 250 µL of 1.487 g.mL-1 density solution was added on the top of each tube, to 

adjust the density to 1.21 g.mL-1, then overlayered with 250 µL of 1. g.mL-1 density solution 

and transferred again to the same rotor and spun for 18 hours at 13800 g and 15° C On the 

same ultracentrifuge. When the spin stopped, the top 250 µL was isolated carefully from 

each of the two donors’ samples and 500 µL was isolated from the other two tubes. Each 

HDL fraction was desalted with PBS+ 1 mM CaCl2 as explained in Chapter 2 (Section  2.6.3) 

and measured for recoveries of ApoA-1, HDL-C and  Albumin by the  chemical chemistry 

analyser as explained in Chapter 2 (Section  2.7) and protein by Bradford (Section  2.9). 

Conclusion 

Although the recoveries for HDL-C and Apo-A1 for the 500 µL fractions was higher; 63.31% 

(±2.30), %CV= 3.63 and  79.61% (±2.10), %CV= 2.64  for the 500 µL HDL fractions versus 

32.45% (±7.99), %CV= 24.62  and 48.70% (±12.59), %CV= 25.84  respectively for the 250 µL 

HDLs fractions, it was noticed that HDL protein measurement by Bradford was abnormal; 
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very high > 4000 µg.mL-1 for all fractions, 250 µL and 500 µL HDLs, We can also conclude that 

isolating HDL in 250 µL is not reproducible (%CV > 24). 

Studying 2.5 /18 hours and Isolating HDL in 400 µL and Completing 

to 500 µL with PBS+CaCl2 and Completing again with PBS+CaCl2 after 

Desalting. 

As the previous trial has shown an inconsistency for isolating HDLs in 250 µL and as all HDL 

fractions, 250 µL or 500 µL HDL fractions, were highly contaminated with protein, we tried 

isolating HDL between the two volumes; 400 µL and to make up the volume of the fraction 

up to 500 µL with PBS before and after desalting and study the outcomes. 

To repeat the previous trial (2.5/18 hour spin ) in isolating HDL with the same  spin 

conditions and only with one change; isolate HDL in  400 µL and to complete to 500 µL with 

PBS+1mM CaCl2 before and after desalting. 

Thirty-five mL of Li-Hep blood was drawn from 2 healthy donors. Samples were then 

centrifuged for 10 minutes, at 4°C and 2060 g. Plasma was removed and transferred into 5 

mL bottle. 400 µL of plasma sample, 2 for each donor, were transferred into 11 X 34 mm 

thickwall polycarbonate centrifuge tubes (343778 Beckman Coulter Ltd, High Wycombe, UK). 

100 µL of 1.006 g.mL-1 density solution was added, to complete to 500 µL, followed by 250 

µL of 1.182 g.mL-1 density solution and mixed, to adjust the density to 1.063 g.mL-1, then 

over layered with 250 µL of 1.063 g.mL-1  density solution. Tubes were then transferred to 

TLA100.2 rotor (Beckman Coulter Ltd, High Wycombe, UK) and centrifuged for 2.5 hours at 

27400 g and 23°C in a TL-100 Table-Top Ultracentrifuge (Beckman coulter, Inc. USA). Once 

the spin has stopped, the top 500 µL, containing VLDL/LDL was removed from all the tubes. 

250 µL of 1.487 g.mL-1 density solution was added on the top of each tube, to adjust the 

density to 1.21 g.mL-1, then over layered with 250 µL of 1.21 g.mL-1 density solution and 

transferred again to the same rotor and spun for 18 hours 13800 g and 15°C on the same 

ultracentrifuge. When the spin stopped, the top 400 µL containing HDL fractions were 

isolated carefully from each sample. Each HDL fraction was completed to 500 µL by 100 PBS 

+1 mMCaCl2, desalted (as described in Section  2.6.3) then  the amount of the sample 

coming out from the desalting columns was checked again and if it was less than 500 µL , it 
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was completed again to 500 µL by adding PBS + 1 mM CaCl2. Recoveries for HDL-C and APoA-

1 and albumin contamination was studied. Estimate proteins By Bradford method and run 

oxidation trial for HDL samples with 0.5 µM CuCl2 as described in Chapter 2 (Section 2.13). 

Conclusion 

Using 400 μL of plasma, and completing to 500 μL with PBS+CaCl2 , as a starting volume for 

HDL separation was giving reasonable measurement for HDL-protein by Bradford method; 

918.0 (±125.9) mg.mL-1, %CV= 13.71, Recoveries for HDL-C was 60.94% (±11.05), %CV= 18.14 

(n=2) and Apo-A1 was 62.7% (±4.88), %C = 7.79 (n=2). Albumin was ≤1.95 g.dl-1. This means 

that the above method is superior in isolating HDL.  

3.5 Optimizing Conditions for Oxidation Assay  

The assay conditions had to meet two other criteria; HDL: LDL ratio and CuCl2 concentration. 

Trials were done to find the best HDL: LDL ratios which show the clearest HDL antioxidant 

potency along with the most suitable CuCl2 concentration. The trial was run with 0.5 and 5 

µM CuCl2 along with 1:1 and 2:1 HDL: LDL ratios. 

Conclusion 

0.5 µM Cu was the best concentration to use in oxidation run as it was enough to initiate LDL 

oxidation for both HDL: LDL ratios. 5 µ M Cu is not suitable for the oxidation runs as it 

showed a negative effect of HDL. For HDL: LDL ratios, it is better to use 2:1 than 1:1 HDL: LDL 

as 2:1 ratio showed a clearer inhibitory effect of HDL antioxidant potency on LDL. 
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-1 

 LDL protein, 1: 1 HDL: LDL & 2:1 HDL (+0.5 µm CuCl2 ) (A). 

Oxidation graph of 50 µg.mL
-1 

 LDL protein, 1: 1 HDL: LDL & 2:1 HDL (+0.5 & + 5 µm CuCl2 ) (B). 

A 

B 



3. Method Development to Assess the Antioxidant Function of HDL  

© Faridah Alkandari (2017)  127 

3.6 Final Oxidation Assay Protocol 

The final oxidation assay was applied by collecting EDTA blood samples from healthy donors 

for LDL pool and Li-Hep samples from healthy donors for HDL pool for quality control (QC.). 

LDL was isolated by 50.4 rotor using density solutions containing EDTA as explained in 

Chapter 2 (Section 2.6.1), then aliquoted and stored in -80°C. HDL (QC.) was isolated by 50.2 

rotor using density solutions free of EDTA, then aliquoted and stored at -80°C. One night 

before oxidation assay, LDL aliquot was defrosted and taken for dialysis.  10 Li-Hep samples 

from pSoBid (stored in freezers) was also defrosted and 400 µL of plasma was used for HDL 

spin, for 2.5 hours and then for 18 hours, in TLA100.2 rotor using EDTA free density 

solutions. Next day, after 24 hours of dialysis, LDL fraction is taken and cholesterol was 

measured by the clinical analyser and then converted to protein amount as explained in 

Section 3.3.1. When HDL spin stopped, HDL was isolated by 400 µL. HDL QC was also 

defrosted (400 µL) and all HDL was made up to 500 µL with PBS + (1 mM) CaCl2,  desalted by 

NAP-5 columns as explained in Chapter 2 (Section  2.6.3)  and made up again to 500 µL with  

PBS + (1 mM) CaCl2. All HDL samples protein was measured by Bradford method and then 

standardized to 100 µg.mL-1 protein with PBS. LDL protein was also standardized to 50 

µg.mL-1 with PBS. Oxidation was run for LDL, HDL QC and pSoBid HDLs in triplicate within 1 

hour of taking LDL from dialysis and of HDL desalting. Oxidation was monitored for 13 hours 

at 37°C. 

Calculations of LDL oxidation Inhibition were as follows;  

The percentage of HDL inhibition for LDL oxidation was calculated using an equation 

proposed by Hillstrom and co-workers (Hillstrom, Yacapin-Ammons & Lynch, 2003); 

For maximum propagation rate (Vmax): 

 

             
                                        

                         
  X 100 

 

 

For maximum conjugated dienes produced (max-min OD):  
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  X 100 

 

For Time at half maximum (T1/2max), however, another equation was used:  

 

               
                    

                 
  -1] X 100 

Those results were further corrected to the reading of the LDLQC, HDLQC and HDLQC+LDLQC 

on the same run as follows: 

%inhibition for LDLQC (from HDLQC) X %Inhibition of LDLQC (from pSoBid HDL) 

 

                 
                                   

                                                  
                                           

 

The above equation was used to correct the calculated inhibition for all T1/2max, maximum 

propagation rate and maximum conjugated dienes formed. 

3.6.1 HDL Oxidation Potential Assay 

HDL samples themselves, from the pSoBid study, were assessed for their oxidation potential 

using the same assay conditions as for the LDL oxidation assay. The measures derived were 

T1/2max, Vmax  and maximum diene formation.  

3.7 Final Paraxonase Assay 

PON1 assay for pSoBid’s HDLs was completed as explained in Chapter 2: Section 2.5 for 

preparing plasma pool and HDL pool for plasma QCs and HDLQCs; Section 2.6.2 for HDL 

separation for HDL QCs; Section 2.6.3 for HDL separation from pSoBids; Section 2.9 for HDL-

protein measurement by Bradford method; and Section  2.12 for paraxonase assay.  
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Calculations for plasma and HDL PON1 activity (Units.mL-1): 

 

PON1 activity (Units.mL-1)  
                                                                 

                                                                
 

 

PON1 activity for each HDL sample were standardized to HDL protein  

 

HDL PON1 standardised activity (Units.mL-1)  
                 

                  
 x Av. protein for all HDL samples 
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3.8 Discussion 

The purpose of the work described in this chapter was to establish the best methods for 

measuring HDL antioxidant potency and HDL PON1 enzyme activity in relatively small 

volumes of Li-Hep samples stored at -80°C from 2008 (stored for about 7 years). Although 

most studies have used EDTA-plasma for isolating HDL like Kontush and his colleagues 

(Kontush et al., 2004), some studies have either used ‘’cleaned’’ tubes for collecting blood 

like Brite and colleagues (Brites, Zago, Verona, Muzzio, Wikinski & Schreier, 2006) or Na-

Heparin tubes like Hillstrom and colleagues (Hillstrom, Yacapin-Ammons & Lynch, 2003). 

EDTA-LDL removal was one of the main obstacles where oxidation was not detected unless 

using high CuCl2 concentrations (≥ 25 µM).  arious publications reported using desalting 

columns for EDTA removal from LDL solutions, (Halevy et al., 1997; López-Alarcón, Speisky & 

Lissi, 2007; Seccia, Albano & Bellomo, 1997). Furthermore, G-25 beads fractionation range is 

> 5000 Mr which is higher than EDTA molar mass (292.24 g.mol-1) and this made us initially 

favour this technique in eliminating EDTA.  However, in our own studies we did not find 

desalting columns useful and turned to dialysis as the method of choice.  

Using AAPH as an oxidizing agent to promote our oxidation assay was initially considered a 

good option especially since AAPH gave promising results with different oxidation 

conditions. However, there is a paucity of literature using AAPH which made CuCl2 a better 

choice for LDL oxidation assays and it is a well-established agent in LDL oxidation studies 

(Esterbauer, Striegl, Puhl & Rotheneder, 1989; Lynch, Lorenz & Klotz, 2014; Morena, Cristol, 

Dantoine, Carbonneau, Descomps & Canaud, 2000).  

Although HDL is known to undergo oxidation by itself, some previous studies have not 

considered the amount of HDL’s own oxidation in combined oxidation assay of HDL and LDL 

like Brite and his team (Brites, Zago, Verona, Muzzio, Wikinski & Schreier, 2006).  The 

Hillstrom equation is a simple proportion calculation based on two assumptions; first, if HDL 

had no effect on LDL oxidation, when incubated together, then both lipoproteins would 

become fully oxidized and the absorbance measured would be equal to the total amount of 

conjugated dienes formed (absorbance) when LDL and HDL are incubated separately. 

Second, when both LDL and HDL are incubated together, if the final absorbance is less than 

LDL alone, then this would be due to HDL action in reducing the amount of lipid oxidation in 
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LDL. The result of the calculation is therefore by definition is a positive number between 0 

and 100%. On the other hand, this is not likely be the case for T1/2max measurements which 

may not be additive for HDL and LDL. For example, when incubating HDL alone may give a 

T1/2max of 10 minutes (slow oxidation) and LDL alone may give a T1/2 max of 5 minutes 

(more rapid oxidation) but when incubated together the T1/2max will not be 15 minutes 

(the sum of the two) but another value e.g. 7 minutes which is the weighted mean of the 

two. Therefore, for the percentage of inhibition of HDL to LDL calculated by T1/2max, we 

invented a new parameter to describe the decrease or delay in oxidation as a result of HDL 

inhibition.  

Our assay, for HDL antioxidant potency on LDL, might be the first to include HDL samples 

isolated from stored frozen samples (at -80°C) for about 5 years. Those samples are for 

individuals from different deprivation areas in the city of Glasgow, males, and females from 

different age bands. For each participant, there is a record of lipid measurements along with 

carotid intima media thickness which is a surrogate marker of CVD. Furthermore, many 

details are also available for lifestyle which includes basic demographic data, smoking 

history, alcohol intake and physical activity level. That information could also be used to 

interpret the lifestyle factors interfering with HDL oxidation/antioxidant state.  We selected 

stored samples from the  freezer in a random fashion, so any one assay run would include 

people with high or low HDL’s oxidation potential or different individuals from most or least 

deprived areas, so day to day assay variation did not influence interfere any associations 

seen. Moreover, HDL isolated samples will also be measured for PON1 activity for each of 

the pSoBid. And because of many measurements had to be conducted on freshly isolated 

materials, it was important to schedule carefully the sequence of preparations and assay 

steps during the working day. A typical example is shown in appendix 7.
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4 HDL Functional Assays 

4.1 Introduction 

4.1.1 HDL Antioxidative Activity 

Over the last 25 years, oxidative modification of low density lipoproteins (LDLs) has emerged 

as a potentially critical pathway in atherogenesis (Quinn, Parthasarathy, Fong & Steinberg, 

1987; Steinberg, Parthasarathy, Carew, Khoo & Witztum, 1989; Steinbrecher, Parthasarathy, 

Leake, Witztum & Steinberg, 1984). LDL trapped in the arterial intima is oxidized by free 

radicals generated by surrounding cells, leading to the formation of oxLDL. LDL oxidation is a 

complex process during which both the protein and the lipids undergo oxidative changes and 

form complex products which promote inflammatory process and lead to atherosclerotic 

lesions (Parthasarathy, Raghavamenon, Garelnabi & Santanam, 2010). A less well recognised 

process is that high density lipoprotein (HDL) is also subject to oxidative modification, and is 

actually oxidized more rapidly than LDL during in vitro oxidation (Hurtado, Fiol, Gracia & 

Caldú, 1996; Nakajima et al., 1995; Ohmura et al., 1999). This may be viewed as one of the 

protective or buffering factors against LDL oxidation. Evidence for this is based on the 

observations that oxidative changes occur more slowly in LDL-HDL mixtures than LDL alone 

(Kunitake, Jarvis, Hamilton & Kane, 1992; Mackness, Arrol, Abbott & Durrington, 1993; 

Mackness, Abbott, Arrol & Durrington, 1993; Ohta, Takata, Horiuchi, Morino & Matsuda, 

1989; Parthasarathy, Barnett & Fong, 1990). HDL antioxidant potency could be related to 

HDL chemical composition; apolipoproteins (especially apo-A1), the content of liposoluble 

antioxidants (primarily, tocopherols), and the presence of associated enzymes like 

paraxonase 1 (PON1) enzyme, platelet-activating factor acetylhydrolase (PAF-AH) and LCAT 

(Kontush & Chapman, 2010). Other physiochemical characteristics of HDL, such as lipid 

composition, size and density, could also be involved in HDL antioxidant capacity.  
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4.1.2 Paraxonase Enzyme 

Paraxonase1 (PON1) plays a protective role against poisoning by organophosphate 

derivatives such as insecticide paraxon (Litvinov, Mahini & Garelnabi, 2012) . PON1 has 

recently emerged as the component of HDL most likely to explain its ability to metabolize 

lipid peroxides and to protect against their accumulation on LDL (Durrington, Mackness & 

Mackness, 2001). It has also been postulated as a member of the plasma antioxidant system. 

Decreased PON1 activity has been associated with atherosclerosis in persons with diabetes 

mellitus, familial hypercholesterolemia, and renal disease (Mackness, Durrington & 

Mackness, 2004; Mackness & Mackness, 2004). PON1 can be measured based on its activity 

by spectrophotometric assays and also can be directly quantified by immunological 

techniques using specific antibodies (Costa, Cole, Vitalone & Furlong, 2005). The 

spectrophotometric assays based on the ability of PON1 to hydrolyse substrates are 

currently more commonly used, most likely due to their low cost and availability (Ceron, 

Tecles & Tvarijonaviciute, 2014). In addition to PON1 enzyme ability to hydrolyse paraxon, 

the toxic oxon metabolite of parathion, hydrolyses many other substrates such as other 

organophosphorous compounds, non-phosphorous arylesters as well as lactones, which 

have been considered as its primary substrates. Measurement of arylesterase activity relies 

on the ability of PON1 to hydrolyse phenyl1 acetate into acetic acid and phenol and is not 

affected by PON1 genotype (Cao, Girard-Globa, Berthezene & Moulin, 1999; La Du, Piko, 

Eckerson, Vincent-Viry & Siest, 1986). 

 

4.1.3 pSoBid Study  

PSoBid is a cross sectional study carried out in 2007 in Glasgow. 666 Participants aged 35-66, 

equal number of males & females from the most and least deprived areas (Deans et al., 

2009). Deprivation was associated with increased carotid plaque score and carotid intima-

media thickness (cIMT) which is a surrogate measure of atherosclerosis. Systolic blood 

pressure (SBP) was associated with cIMT (p<0.001). HDL cholesterol had a negative 

association with cIMT (p<0.001) but the association of LDL cholesterol with cIMT was of 

borderline significance (p=0.055). 
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4.2 Aim  

The first aim of this part of the project was to investigate the relationships of the 

physiochemical properties of HDL with the antioxidant capacity of the lipoprotein in vitro 

using stored plasma samples from the pSoBid study.  The hypothesis was to see, if new 

factors: HDL oxidation potential and or HDL inhibition to LDL oxidation related to cIMT. 

The second aim of this part of the project was to explore if PON1 activity, which is an HDL 

associated enzyme, is associated with cIMT. 

4.3 Participants 

308 Lithium- Heparin samples left from pSoBid study were used in this part of the project as 

explained in Chapter 2 (Section 2.2 and 2.3). The subject’s ’ demographic details and lipid 

risk factors used are shown in Table 4.1.  and subject’s risk factors and socioeconomic status 

are shown in appendix 2 

4.4 Materials and Method 

All materials and methods are explained in Chapter 2 (Section 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 

2.12 and 2.13).  

4.5 Blood Collection for Controls 

Blood samples collected for LDL controls is explained in Chapter 2 (Section 2.4) and for and 

HDL controls for oxidation and for PON1 assays is explained in Chapter 2 (Section 2.5 and 

2.6.2). Plasma for plasma controls used in PON1 assay is collected from the same pool which 

has been used for HDL control (Section 2.5). 

4.6 HDL Antioxidant Assay 

The assay is explained in Chapter 2 (Section 2.13). Results are expressed either as time 

(minutes) at half maximum (T1/2max) which is  an equivalent of lag time; Vmax (milli.U.min-

1) or by the maximum amount of conjugated diene produced which is measured by the 

difference in optical density  (max-min OD) (units). 
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4.7 HDL Paraxonase Activity Assay 

The assay is explained in Chapter 2 (Section 2.12). Results are expressed in unit.mL-1, 1 unit 

of arylesterase hydrolyses 1 mmol of phenyl acetate (substrate) per minute. PON1 

measurement was done for plasma samples and HDL of the same samples. Further 

calculations were made for ratio of plasma PON1 activity to HDL PON1 activity, PON1 for   

proteins standardized HDL and ratio of plasma PON1 activity to PON1 of protein 

standardized HDL. 

4.8 Calculations and Statistical Analysis 

Calculations for percentages of HDL protection to LDL oxidation were done as explained in 

Chapter 3 (Section 3.6) and for PON1 activity as explained in Chapter 3 (Section 3.7). 

Statistical analyses were performed using IBM SPSS Statistics Data Editor (version 22). 

Normality was checked for all the data using the Shapiro-Wilk test. Data were log-

transformed when they did not approximate normality. Specifically, TGs, very low density 

lipoprotein cholesterol (VLDL-C) and  %Inhibition of LDL Oxidation by HDL (max-min). For 

genders and areas, independent sample two-tailed T Test was used to compare means of 

different groups using data on a normal scale, or log transformed, depending on normality. 

One-Way ANOVA was used to compare variable means between age groups.  Association 

between variables were determined using Pearson correlation. Significance was accepted at 

P <0.05 level. Data are presented as means (±standard deviation) unless otherwise stated. 
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 Table 4.1 Subjects’ demographic details and lipid risk factors used in present chapter 

Variable 

Total  

Cohort  

(n=308 ) 

Gender Area Age band P Value 

Male 

n=146 

Female 

n=161 

L.D 

n=167 

M.D 

n=140 

35-44 

n=80 

45-54 

n=111 

55-64 

n=116 

Gender 

 

Area 

 

Age  

Cholesterol 

(mmol.L
-1

) 

5.08 

(1.03) 

4.93 

(1.01) 

5.22 

(1.03) 

5.21 

(1.00) 

4.93 

(1.05) 

4.94 

(0.85) 

5.09 

(0.96) 

5.18 

(1.20) 
0.012 0.017 0.301 

LDL-C 

(mmol.L
-1

) 

3.01 

(0.87) 

2.95 

(0.86) 

3.06 

(0.87) 

3.14 

(0.84) 

2.85 

(0.87) 

2.94 

(0.72) 

3.02 

(0.81) 

3.04 

(1.00) 
0.288 0.004 0.739 

TGs 

(mmol.L
-1

) 

1.25 

(0.95-1.70) 

1.30 

(1.00-1.71) 

1.15 

(0.88-1.73) 

1.15 

(0.85-1.45) 

1.45 

 (1.00-2.14) 

1.05 

(0.75-1.59) 

1.30 

(0.95-1.80) 

1.30 

(1.00-1.89) 
0.108 <0.001 0.002 

VLDL-C 

(mmol.L
-1

) 

0.65 

(0.5-0.85) 

0.65 

(0.54-0.90) 

0.65 

(0.45-0.85) 

0.60 

(0.45-0.80) 

7.00 

(0.55-1.03) 

0.60 

(0.40-0.75) 

0.65 

(0.55-0.90) 

0.70 

(0.50-0.90) 
0.403 0.001 0.207 

HDL-C  

(mmol.L
-1

) 

1.35 

(0.37) 

1.22 

(0.32) 

1.47 

(0.37) 

1.43 

(0.36) 

1.26 

(0.36) 

1.35 

(0.37) 

1.32 

(0.30) 

1.39 

(0.42) 
<0.001 <0.001 0.418 

ApoA-I 

(g.L
-1

) 

1.41 

(0.28) 

1.33 

(0.27) 

1.49 

(0.27) 

1.45 

(0.27) 

1.37 

(0.28) 

1.39 

(0.29) 

1.39 

(0.26) 

1.45 

(0.29) 
<0.001 0.012 0.197 

Apo-B 

 (g.L
-1

) 

0.91 

(0.23) 

0.92 

(0.22) 

0.91 

(0.23) 

0.92 

(0.22) 

0.91 

(0.23) 

0.88 

(0.21) 

0.93 

(0.21) 

0.93 

(0.24) 
0.721 0.508 0.237 

ApoB/ApoA-I 

(mol:mol) 

0.67 

(0.20) 

0.71 

(0.21) 

0.63 

(0.18) 

0.65 

(0.19) 

0.68 

(0.22) 

0.65 

(0.20) 

0.68 

(0.19) 

0.66 

(0.21) 
<0.001 0.239 0.527 

cIMT- (mm) 
0.70 

(0.15) 

0.72 

(0.17) 

0.68 

(0.13) 

0.68 

(0.12) 

0.72 

(0.17) 

0.62 

(0.09) 

0.70 

(0.13) 

0.76 

(0.17) 
0.047 0.023 <0.001 

Descriptive statistics are presented as mean (standard deviation) for normally distributed variables and median (inter-quartile range) for not normal distributed variables.  LDL-C, low 
density lipoprotein cholesterol; TGs, Triglyceride; VLDL-C, very low density lipoprotein cholesterol; HDL-C, high density lipoprotein cholesterol; Apo-A, Apolipoprotein A-I; ApoB, 
apolipoprotein B; cIMT, Carotid intima media thickness; mm, millimetre; L.D, least deprived; M.D, most deprived 
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4.9 Results 

4.9.1 HDL Oxidation and % Inhibition of LDL Oxidation by HDL 

HDL samples underwent oxidation with a wide range of responses in the oxidation assay. 

The mean T1/2max was 82.4 minutes and the range was 58 to 122 minutes. Likewise, mean 

for Vmax was 1.43 milli U.min-1 with a range from 0.42 to 3.66 milli.U.min-1 and the mean of 

maximum diene produced was 0.15 units and varied from 0.07 to 0.21 units (Figure 4.1).  

From Table 4.2, it can be clearly seen that the extent of HDL oxidation varied by sex and by 

deprivation area but not by age. Females had generally higher HDL oxidation potential 

(measured by the three factors: T1/2max , maximum propagation rate and maximum 

conjugated dienes produced) than males (P≤ 0.02) and those who lived in more affluent 

areas, had higher HDL oxidation potential than those who lived in deprived areas (P≤ 0.015) 

for the three oxidation factors.  

From Figure 4.2, adding HDL of pSoBid participants to the LDL oxidation assay inhibited LDL 

oxidation, although for a few HDL samples an increase in LDL oxidation was noted measured 

by T1/2max, most of the time. The T1/2max was extended by an average of 25.95% with a 

range of -11.47 to 126.70% (Table 4.2 and Figure 4.2-A). Maximum propagation rate was 

inhibited by an average of 39.5% with a range of   0.00 to 95.53% (Table 4.2 and Figure 4.2-

B)and the maximum amount of conjugated diene produced was reduced by 11.97% with a 

range of 0.00 to 59.0% (Table 4.2 and Figure 4.2-C).   In Table 4.2, it can be seen that the 

percentage of inhibition as measured by the increase in T1/2max differed significantly by the 

two genders as it was higher in males than in females (95% CI, 2.30 to 15.0; P= 0.008) and 

between the two areas as it was higher in most deprived than least deprived areas (95% CI, 

16.05 to 3.34; P= 0.003) but the other two measures of LDL inhibition, showed no significant 

difference by gender (P= 0.366) when measured by maximum propagation rate and (P= 

0.454) when calculated by the maximum amount of conjugated diene produced. 

Furthermore, HDL inhibition was not different between the two deprivation areas when 

measured by maximum propagation rate (P= 0.506) or maximum dienes produced (P= 

0.932). 
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Figure 4.1 Oxidation results for pSoBid HDLs measured by: time at half maximum (minutes) (A); Maximum 
Propagation rate (milli U.min

-1
) (B); maximum diene produced (units) (C). T1/2max, Time at half maximum; 

Max. Prop. Rate HDL Ox. , maximum propagation rate of HDL oxidation; Max. Diene Prod. HDL Ox., maximum 
conjugated diene produced. milli. U. min

-1
, milli units. minutes 

-1 
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Figure 4.2 Percentage of inhibition of LDL oxidation revealed by pSoBid HDLs on one LDL control measured by: 
T1/2max (A) ; maximum propagation rate (B); maximum conjugated diene produced (C). T1/2max, time at half 
maximum; Inh. LDL Ox. By HDL Calc. by T1/2max, Inhibition of LDL oxidation by HDL calculated by T1/2max; Inh. 
LDL Ox. By HDL calc. by Max. Prop. Rate, Inhibition of LDL oxidation by HDL calculated by maximum propagation 
rate; Inh. LDL Ox. By HDL Calc. by Max. Diene, Inhibition of LDL oxidation by HDL calculated by maximum 
conjugated dienes produced; T1/2, time at half maximum. 
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    Table 4.2  Oxidation results. Total cohort was little different for some factors; n= 257 for T1/2max HDL oxidation; n= 258 HDL oxidation (Max-Min OD), n=227 for %inhibition by 
HDL (T1/2max); n=213 %inhibition of oxidation by HDL (Vmax); n=226 %inhibition of oxidation by HDL (max-min). 

Variable 

Total Cohort 

(n=259) 
Gender Area Age band P Value 

Mean 

or Median 

Male 

n=123 

Female 

n=136 

L.D 

n=144 

M.D 

n=115 

35-44 

n=63 

45-54 

n=95 

55-64 

n=101 

Sex 

 

Area 

 

Age 

 

HDL 

Oxidation 

 (T1/2max) 

(min) 

82.44 

(10.71) 

84.03 

(11.07) 

80.98 

(10.19) 

81.00 

(10.33) 

84.24 

(10.95) 

80.91 

(9.84) 

83.57 

(10.28) 

82.35 

(11.55) 
0.021 0.015 0.317 

*Max. Prop. R. 

(milli.U.min
-1

) 

1.43 

(0.32) 

1.34 

(0.32) 

1.51 

(0.30) 

1.49 

(0.33) 

1.35 

(0.28) 

1.47 

(0.29) 

1.42 

(0.35) 

1.41 

(0.30) 
<0.001 <0.001 0.442 

Max.  Diene 

Prod. (Units) 

0.151 

(0.02) 

0.144 

(0.02) 

0.157 

(0.02) 

0.156 

(0.02) 

0.144 

(0.02) 

0.152 

(0.02) 

0.15 

(0.02) 

0.15 

(0.02) 
<0.001 <0.001 0.917 

% Inhibition 

of LDL 

Oxidation by 

HDL 

  T1/2max 

25.95 

(24.40) 

30.41 

(27.10) 

21.90 

(21.02) 

21.78 

(20.30) 

31.34 

(28.06) 

23.00 

(20.89) 

28.78 

(26.19) 

25.08 

(24.62) 0.008 0.003 0.370 

 Max. Prop. R.  
39.50 

(15.08) 

38.43 

(13.91) 

40.44 

(16.04) 

38.95 

(15.60) 

40.19 

(14.43) 

39.42 

(15.69) 

41.01 

(14.46) 

38.11 

(15.32) 
0.366 0.506 0.508 

 Max. Diene 

Prod.  

11.97 

(8.51-21.29) 

12.36 

(9.00-21.87) 

10.90 

(8.10-20.72) 

11.79 

(8.23-21.87) 

12.09 

(8.51-20.52) 

11.50 

(7.58-28.50) 

11.97 

(8.86-21.75) 

12.16 

(8.13-18.09) 0.454 0.923 0.949 

Descriptive statistics are presented as mean (standard deviation) for normal median (inter-quartile range) for not normal distributed variables. L.D, least deprived; M.D, most 
deprived; T1/2max, Time at half maximum; Max. Prop. R. Maximum propagation rate ; Max. Diene Prod., maximum conjugated dienes produced.
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4.9.2 Relationship between HDL Oxidation and Carotid Intima 

Media Thickness 

In the pSoBid population, cIMT varied from 0.4-1.5 mm. Figure 4.3 relates IMT in the 

common carotid artery to the parameters of HDL oxidation. No evidence of a linear 

correlation was observed with HDL measured by T1/2max but a significant inverse 

relationship was seen between cIMT and maximum propagation rate of HDL oxidation (r= - 

0.15, P= 0.021). A trend of 0.071 mm reduction in cIMT was revealed for each increase of 1 

milli.U.min-1 (95% CI, - 0.013 to - 0.01) in propagation rate of HDL oxidation.  Maximum 

amount of conjugated diene produced for HDL oxidation also showed a correlation of r = 

0.12 but this was only borderline of significance (P= 0.06). On the other hand, the mean 

intermediate thickness in the common carotid artery showed  no evidence of a linear 

correlation   to any of the parameters of %inhibition of LDL oxidation by HDL calculated by 

any of the three factors: (r = 0.08, P= 0.242) by T1/2max, (r = -0.056, P= 0.431) calculated by 

maximum propagation rate and (r = -0.061, P= 0.379) by maximum conjugated diene 

produced (Figure 4.4 –A, B and C). 

 4.9.3 Relationship between HDL Oxidation and % Inhibition of LDL 

Oxidation by HDL 

As seen in Figure 4.5, HDL oxidation potential measured by T1/2max was significantly 

correlated with its inhibition of LDL oxidation (r = 0.43, P< 0.001). There was a trend of 

0.981% of increase of % inhibition of LDL oxidation by HDL for each 1% increase of HDL  

oxidation potential (95% CI, 0.71 to 1.26) calculated by T1/2max. On the other hand, no 

evidence of a linear correlation  was revealed between HDL oxidation potential and % 

inhibition of LDL oxidation by HDL measured by the other two factors, maximum 

propagation rate or maximum conjugated dienes produced (r = 0.034, P= 0.62) and (r = - 

0.21, P= 0.75) respectively.      
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Figure 4.3 Scatter plot (with linear regression line of best-fit) illustrating the relationship between cIMT 
(mm) of pSoBid participants versus HDL oxidation results calculated by : T1/2max, Time at half maximum 
(A); Max. Prop. Rate HDL Ox. (milli. U.min

-1
), Maximum conjugated diene produced (milli Units.mL

-1
) (B); 

Max. Conj. Diene. , Maximum Conjugated Diene produced (C),  cIMT, carotid intima media thickness; mm, 
millimetre. 

A r = 0.11 

P = 0.103 

r = -0.15 

= -0.071 (-0.13, -0.01) 

P = 0.021 

B 

r = -0.12 

P = 0.06 

C 
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r = - 0.056 

P = 0.431 

r = 0.08 

P = 0.242 

r = -0.061 

P= 0.379 

C 

A 

B 

Figure 4.4 Scatter plot (with linear regression line of best-fit) illustrating the relationship between % of inhibition of 
HDL to LDL oxidation results versus cIMT-ccmean of pSoBid participants calculated by  T1/2max (A); by Vmax (B); by 
Max. Dienes formed (C). Inh. LDL Ox. By HDL Calc. , Inhibition of LDL oxidation by HDL calculated ;T1/2max, time at 
half maximum; Max. prop. Rate, maximum propagation rate; Max. Conj. Diene,  maximum conjugated dienes 
formed;  cIMT, carotid intima media thickness; mm, millimetre. 
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Figure 4.5 Scatter plot (with linear regression line of best-fit) illustrating the relationship between HDL 
oxidation versus % inhibition of LDL oxidation by HDL of pSoBid individuals calculated by T1/2max (A), 
Maximum propagation rate (B); Maximum conjugated diene produced (C). Inh. LDL Ox. by HDL Calc. by 
T1/2max, Inhibition of LDL oxidation by HLD calculated by time at half maximum; Max. Prop. Rate, maximum 
propagation rate, Max. Dienes Prod., maximum production of conjugated dienes produced.  

 

r = 0.43 

= 0.981(0.71, 1.26) 

P<0.001 

r  = 0.034 

P = 0.627 

r  = - 0.021 

P = 0.748 

C 

A B 
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4.9.4 Paraxonase1 (PON1) Assay 

As shown from Figure 4.6, pSoBid samples showed a range of PON1 activity from 31-196 

units.mL-1 with a mean of 94.6 units.mL-1. On the other hand, HDL fractions from the same 

plasma samples showed a mean of 30.1 units.mL-1 with a range of 7.8-73.1 units.mL-1. 

Standardized HDL (to protein) PON1 activity showed a mean of 29.6 units.mL-1 and ranged 

from 12.9 to 57.9 units.mL-1.  Ratio of plasma PON1 activity to HDL PON1 activity ranged 

from 1.6 to 6.5 with a mean of 3.3. Ratio of plasma PON1 activity to PON1 activity of HDL 

standardized to protein ranged from 1.6 to 6.2   with a mean of 3.29. 

Table 4.3,  shows that there  was a significant difference between  gender groups in HDL 

PON1 activity as it was higher in females than in males  (95% CI, -5.7 to -1.1; P= 0.003). On 

the hand, plasma PON1/HDL PON1 activity was significantly higher in males than in females 

(95% CI, 0.12 to 0.43; P<0.001). Those same parameters did not show any significant 

difference between most deprived and affluent areas or between age bands. Other factors 

of PON1 activity did not reveal any significant difference between genders, area levels or age 

groups: plasma PON1 (P= 0.196), (P= 0.08) and (P= 0.913) respectively, HDL standardized to 

protein PON1 activity (P= 0.980), (P= 0.072)  and  (P= 0.644) respectively and plasma PON1/ 

HDL standardized to protein PON1 activity ratio (P= 0.185), (P= 0.654) and (P= 0.357) 

respectively.    

4.9.5 Relationship between PON1 Activity and cIMT 

As seen from Figure 4.7, PON1 activity was not associated with cIMT; nor plasma PON1 (r = -

0.08, P= 0.16), HDL PON1 (r = -0.07, P= 0.22), plasma PON1/HDL PON1 ratio (r = 0.02, P= 

0.68) or PON1 for standardized HDL (r = 0.01, P= 0.86). Only the ratio of plasma PON1/ 

Standardized HDL PON1 was borderline negatively correlated (r= - 0.12, P= 0.06).      
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Figure 4.6 PON1 assay results (units.mL
-1

) for pSoBid samples: plasma PON1 (A); HDLs PON1 (B); Plasma PON1/ 
HDLs PON1 (C); protein standardized HDLs PON1 (D); plasma PON1/Standardized HDL PON1 (E). PON1, 
paraxonase1 enzyme. 
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Table 4.3 Paraxonase results. Total cohort was little different for some factors; n= 305 for plasma Pon1 activity; n= 306 plasma/HDL pon1 activity (units), n=289 for HDL pon1 

standardized to protein (units); n=287 for plasma PON1/standardised HDL PON1 activity (units). 

Variable 

Total Cohort 

(n=308) 
Gender Area Age band P Value 

Mean or 

Median 

Male 

n=146 

Female 

n=162 

L.D 

n=168 

M.D 

n=140 

35-44 

n=80 

45-54 

n=111 

55-64 

n=117 

Gender 

 

Area 

 

Age band 

 

Plasma PON1 activity 

(unit.mL
-1

) 

94.64 

(25.85) 

92.63 

(24.70) 

96.47 

(26.80) 

97.03 

(26.77) 

91.83 

(24.51) 

95.71 

(27.75) 

94.30 

(24.32) 

94.24 

(26.13) 
0.196 0.08 0.913 

*HDL PON1 activity 

(unit.mL
-1

) 

30.08 

(10.21) 

28.29 

(10.02) 

31.69 

(10.14) 

30.90 

(10.27) 

29.09 

(10.09) 

29.95 

(10.83) 

29.42 

(9.67) 

30.79 

(10.32) 
0.003 0.120 0.596 

Plasma PON1/HDL PON1 

Activity 

3.29 

(0.69) 

3.43 

(0.71) 

3.16 

(0.65) 

3.28 

(0.71) 

3.29 

(0.68) 

3.33 

(0.62) 

3.34 

(0.73) 

3.21 

(0.7) 
<0.001 0.890 0.276 

HDL standardized to 

protein PON1 (units.mL
-1

) 

29.55 

(8.21) 

29.54 

(8.43) 

29.56 

(8.03) 

30.34 

(8.83) 

28.60 

(7.31) 

29.42 

(8.60) 

29.07 

(7.95) 

30.10 

(8.23) 
0.980 0.072 0.644 

Plasma PON1/Stand. HDL 

PON1 activity (ratio) 

3.29 

(0.80) 

3.23 

(0.77) 

3.35 

(0.82) 

3.31 

(0.83) 

3.27 

(0.76) 

3.35 

(0.80) 

3.34 

(0.81) 

3.21 

(0.78) 
0.185 0.654 0.357 

            Descriptive statistics are presented as mean (standard deviation) for normal distributed variables and median (inter-quartile range) for not normal distributed          
variables.PON1, paraxonase1 enzyme; L.D, least deprived; M.D, most deprived; Stand. , standardized. 
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R=0.12 

P=0.06 

C 

A r  = - 0.08 

P= 0.159 

A r = - 0.072 

P= 0.224 

B 

r = 0.01 

P= 0.859 

D r = 0.024 

P= 0.684 

C 

E r = - 0.12 

P= 0.062 

Figure 4.7 Scatter plot (with linear regression line of best-fit) illustrating the relationship between PON1 

activities versus cIMT (mm) of pSoBid samples; PON1 plasma activity (A); PON1 HDL activity (B); plasma PON1 

activity/ HDL PON1 activity (C); standardized HDL PON1 activity (D); Plasma PON1 activity/standardized 

HDLPON1 activity (E). cIMT, carotid intima media thickness; (mm), millimetre; PON1, paraxonase enzyme1. 
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4.9.6 Inter Correlation of HDL Oxidation and HDL Inhibition to LDL 

Oxidation with PON1 Assay Results 

Although HDL PON1 activity did not display a significant correlation with HDL oxidation 

potential as measured by T1/2max (r = - 0.01, P= 0.830), a significant positive correlation was 

revealed between HDL PON1 activity and HDL oxidation measured by maximum propagation 

rate (r = 0.15, P= 0.016) (Figure 4.8-B). There was a trend of increase of 0.005 milli.U.min-1 in 

maximum propagation rate of HDL oxidation for each 1 unit.min-1 increase of HDL PON1 

activity (95% CI, 0.001 to 0.01).   HDL PON1 activity was also significantly correlated with HDL 

oxidation potential measured by maximum conjugated dienes produced (r = 0.23, P<0.001) 

(Figure 4.8-C). Conversely, HDL PON1 activity did not show any correlations with any other 

measurement factors for HDL inhibition to LDL oxidation measured by the three factors; r = 

0.06, P= 0.370 for T1/2max, r = - 0.01, P= 0.903 for maximum propagation rate and r = 0.02, 

P= 0.77 for maximum conjugated dienes produced (Figure 4.9-A, B, C). 

  

A 
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Figure 4.8 Scatter plot (with linear regression line of best-fit) illustrating the relationship between HDL PON1 

activities versus HDL oxidation factors; T1/2max HDL oxidation (A); Max. Prop. rate HDL oxidation(B); Max. co. 

Diene HDL Ox. (C). PON1, paraxonase1 enzyme; T1/2max, time at half maximum; Max. prop. Rate HDL ox., 

maximum propagation rate of HDL oxidation; Max. Co. Diene HDL Ox., maximum conjugated dienes produced 

for HDL oxidation ; min, minutes. 

r = 0.15 

= 0.005 (0.001, 0.01) 

P= 0.016 

B r = - 0.01 

      P= 0.830 
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r = 0.23 

=0.00 (0.00, 0.001) 

P<0.001 
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Figure 4.9 Scatter plot (with linear regression line of best-fit) illustrating the relationship between HDL PON1 

activities versus % inhibition of HDL to LDL oxidation measured by the 3 factors;T1/2max (A); Vmax (B); Max-Min OD, 

(C). T1/2max, Time at half maximum; Vmax, Maximum velocity; Max-Min OD (Maximum-Minimum optical density). 
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4.10 Discussion 

In this chapter, it was found that HDL oxidation potential varied over a wide range. It was 

also found to be higher in females than in males as well as higher in affluent areas compared 

to more deprived areas. This appears to suggest that in subjects where propensity for 

atherogenesis is decreased, the susceptibility of HDL to undergo oxidation in the in vitro 

assay is higher.  The three oxidation parameters; T1/2max, maximum propagation rate and 

maximum conjugated dienes formed indicate that in females and subjects from affluent 

areas, HDL was not only more extensively oxidized but was more rapidly oxidized as well. 

This could be because of difference in HDL size and subclasses, or composition especially in 

the amount of oxidizable lipids that the HDL carries. For example, if females had more 

polyunsaturated fatty acids in their HDL than in men, this will lead to a greater oxidation. 

The link between HDL potency for oxidation with higher economic status could be accounted 

for by a difference in diet. PSoBid study showed that participants from more affluent areas 

consumed fatty acids and vitamins which are known to increase HDL-C which could also 

increase their HDL susceptibility for oxidation.   

It was of interest to see in Figure 4.3-B that the velocity of HDL oxidation was inversely 

associated with cIMT. This observation again indicates that subjects with less risk 

atherosclerosis have an HDL that is more susceptible to oxidation. One potential explanation 

for this association is that in individuals, in whom HDL in the blood is more easily oxidized, 

there is less oxidation attack on LDL.  

In this chapter, the relationship between pSoBid individuals’ cIMT and the extent to which 

their HDL protected LDL against oxidation was also explored. Our hypothesis was that in 

subjects where HDL had a strong protection to LDL oxidation there will protect against 

atherosclerosis. That is, we expected to see a negative association of cIMT with the 

percentage of inhibition of LDL oxidation. However, this was not observed as Figure 4.4 

showed no association between any of the three factors of inhibition of LDL oxidation by 

HDL and cIMT calculated by  T1/2max (r = 0.08; P= 0.24),  by Vmax (r = -0.056; P= 0.43) or  by 

difference in optical density (r= -0.06; P= 0.379). This lack of association may have been 

because in the assay, the amount of HDL added was determined by the HDL-cholesterol 

content and possibly the number of HDL particle would have been a better way of 

standardizing the assay. However, measuring HDL particle counts was not undertaken in the 
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present investigation. Overall, if there are no technical issues, then our findings indicate that 

the antioxidative potency of HDL to protect LDL form oxidation is not a predictor of extent of 

atherosclerosis.  In the literature, there are mixed reports of the extent to which LDL 

oxidation itself is related to atherosclerosis (Toshima et al., 2000; Verhoye, Langlois & 

Investigators, 2009). 

Investigating whether HDL oxidation potency was related to its antioxidant potency to 

protect LDL from oxidation (Figure 4.5) revealed that HDL T1/2 max was asscoiated with the 

antioxidative effect of this lipoprotein on LDL oxidation. There was a trend of 0.98 rise in % 

inhibition of LDL oxidation for each 1 minute increase in T1/2max of HDL oxidation 

(P<0.001). But this was not confirmed by the other two parameters, Vmax (r= 0.03, P= 0.63) 

and maximum optical density (r= -0.21, P= 0.75) and may be a chance finding. 

It was noted that for T1/2max of LDL oxidation in the presence of HDL, a number of the 

values were negative (23 values out of 227 subjects examined). This implies that the addition 

of HDL from these subjects slightly accelerated LDL oxidation. This is a theoretical possibility 

since these HDL may have carried components that cause LDL to become more susceptible 

to copper mediated oxidation. We did not have time to examine this observation further.  

Table 4.3 showed that HDL PON1 activity is significantly higher in females than in males 

(P<0.003) which is consistent with the total amount of HDL-C present. This could be related 

to one of the antiatherogenic functions of HDL. On the contrary, plasma PON1/ HDL PON1 

ratio displayed a significant difference between the two genders with higher mean for males 

than females. Two reasons could explain this finding. Firstly, plasma PON1 could be higher in 

males than in females compared to HDL PON1. Secondly, spinning the samples in 

ultracentrifugation could split PON1 enzyme from the HDL molecules (Cheung & Wolf, 1988; 

Kunitake, Jarvis, Hamilton & Kane, 1992) as our samples were spun at 27400 g for 2.5 hours 

followed by another spin of 13800 g for 18 hours. Accepting the second reason will influence 

the first finding that HDL PON1 is higher in females compared to males. Other expressions of 

PON1 results did not show any significant difference between the two genders, area 

deprivation states or age groups which was not expected.  

PON1 results (Figure 4.7) revealed no significant correlations between measured plasma 

PON1 or HDL PON1 with cIMT (r= -0.08, P= 0.16) and (r= -0.07, P= 0.22) respectively. Other 
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expressions of PON1 results , ratio of plasma PON1 to HDL PON1, standardized HDL PON1 or 

ratio of plasma PON1 to standardised HDL PON1, did not show any significant results with 

cIMT either (r= 0.02, P= 0.68), (r= 0.01, P= 0.86) and (r= -0.12, P =0.06) respectively. 

Regarding the relationship between HDL PON1 activity and HDL oxidation (Figure 4.8), there 

was a positive correlation for HDL PON1 activity and the amount of oxidised HDL measured 

by Vmax   (r= 0.15, P= 0.02)  as well as with HDL oxidation measured in maximum dienes 

produced (r= 0.23, P<0.001). This finding confirms that HDL could be protective to LDL 

oxidation by its content of PON1 enzyme as well as of being more susceptible itself to 

oxidation. This finding, on the other hand, was not confirmed with HDL T1/2max as it was 

not found to be significantly correlated to HDL PON1 activity (r= -0.01, P= 0.83)  

The outcome displayed in Figure 4.9 indicated no significant correlation of HDL PON1 with 

any of the % protection of HDL to LDL oxidation, measured by the 3 factors; T1/2max, Vmax 

or maximum dienes formed. This was not what was predicted since PON1 was expected to 

protect LDL from oxidation. 

Multivariate analysis was not undertaken in this exploratory analysis since many of the 

possible confounders were interrelated and interpretation would be difficult.  

 In summary, this study demonstrated that, HDL oxidation potency could be a better marker 

for HDL functionality in relation to atherosclerosis than its capacity to protect LDL from 

oxidation. For PON1 results, it was not found to be related to cIMT. Finally, PON1 does not 

appear to protect HDL from oxidation. The findings on HDL oxidation potential will be 

further investigated in relation with HDL structure and subclasses in Chapter 5 and to 

explore if it was affected by lifestyle habits in Chapter 6. 
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5   HDL Subclasses and Preβ1-HDL in the pSoBid 

Cohort 

5.1 Introduction 

5.1.1 HDL Subclasses  

Although the association of HDL with CVD risk is well established, and interpretation of levels 

have been formally integrated into UK public health guidelines for CVD prevention (NCEP, 

2001). ; (NICE guidelines, 2014), there are also reports that the plasma HDL-C level does not 

always reflect the extent of its anti-atherosclerotic influence, and this issue remains the 

subject of debate (von Eckardstein & Assmann, 2000). In recent years, Mendelian 

randomization studies, which are supposed to be valuable observational studies for inferring 

causal pathways, have cast doubt on the casual association between HDL-C and MI (Voight 

et al., 2012). Currently, clinical assessment of HDL focuses exclusively on total HDL-

cholesterol, i.e., the combined cholesterol content of all HDL particles  

(NCEP, 2001). However, HDL particles are not homogenous but rather consist of multiple 

subclasses that differ by density, migration characteristics on electrophoresis, apolipoprotein 

content, and perhaps by their relationship to disease. Consequently, it is essential to 

consider that HDL subpopulations may not all have the same role in preventing 

cardiovascular disease. It has been assumed that the various physiological functions of HDL 

are a consequence of heterogeneity of HDL complexes. For this reason, it is important to 

consider whether different HDL characteristics might mediate propensity for cardiovascular 

protection in different population groups. 

In the present work, a well-established, reproducible non-denaturing method for 

determination of HDL subspecies was used. This technique, gradient gel electrophoresis 

(GGE), separates HDL particles on the basis of their differing size and the results are usually 

described as relative  percent distribution.   
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5.1.2  Preβeta1-HDL 

Cholesterol efflux from peripheral tissues is an important function of HDL particles in which 

cholesterol in peripheral tissues is transferred via the plasma compartment to the liver, 

where it is either reprocessed back into plasma as a constituent of newly formed 

lipoproteins or it is excreted from the body via bile. Cholesterol efflux capacity is inversely 

associated with common atherosclerotic cardiovascular diseases (Khera et al., 2011; Li et al., 

2013). 

Preβ1-HDL is a lipid poor discoid-shaped HDL of approximately 67 kDa mass which contains 

apoA-1, PLs, and unesterified cholesterol (Miyazaki et al., 2009). Preβ1-HDL was not 

documented until 1985 (Kunitake, La Sala & Kane, 1985). Because of its high modal density, 

it was not included in HDL recovered from serum by ultracentrifugation in the conventional 

density interval of 1.063-1.21 g/ml. Furthermore, its rapid conversion to a larger alpha HDL 

species, ex vivo, by LCAT hindered its recognition by other techniques (O'Connor et al., 

1998). Preβ1-HDL particles migrate to the Preβ position on agarose gel electrophoresis. They 

are believed to be one of the primary acceptors of cholesterol efflux from macrophages 

mediated by several transporters mainly adenosine triphosphate-binding cassette 

transporter A1 (ABCA1) (de la Llera-Moya, Drazul-Schrader, Asztalos, Cuchel, Rader & 

Rothblat, 2010; Khera et al., 2011; Tall, Yvan-Charvet, Terasaka, Pagler & Wang, 2008). Thus, 

preβ1-HDL is proposed to be a key component of reverse cholesterol transport, and high 

circulating levels might be hypothesised to be protective of C D. Preβ1-HDL, while originally 

identified on gel electrophoresis, can be conveniently measured in a commercially available 

assay that has been used in a range of studies (Kempen et al., 2014; Orsoni et al., 2012; 

Tashiroa et al., 2009; Vazquez et al., 2012).  

 

5.1.3 pSoBid Study 

PSoBid is a cross sectional study carried out in 2007 in Glasgow. 666 Participants aged 35-64, 

equal number of males & females were recruited from the most and least deprived areas 

(Deans et al., 2009). Deprivation was associated with increased carotid plaque score and 

carotid intima-media thickness (cIMT) which is a surrogate measure of atherosclerosis. SBP 
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was associated with cIMT (p<0.001). HDL cholesterol had a negative association with cIMT 

(P<0.001) but LDL cholesterol was not correlated with cIMT (P= 0.055). 

 

5.1.4 Aim 

In this chapter, we will isolate HDL of pSoBid samples and run gradient gel electrophoresis to 

detect HDL subclasses percentage and study its relation to CVD markers. We will also 

estimate preβ1-HDL subclass for each of the pSoBid samples by using a specialist commercial 

ELISA. It was anticipated that these analyses would be of help in understanding further if 

specific structure(s) or subclasses of HDL are related to population demographics and extent 

of atherosclerosis. 

 

5.2 Materials and Methods 

5.2.1 Gradient Gel Electrophoresis 

A total of 616 Li-Hep samples stored frozen as part of the pSoBid study were used for 

gradient gel electrophoresis and measurement of Pre-β1-HDL.  

The lab work on GGE was undertaken by Mr. Xiaofeng Han, a Master student in our 

department. Incorporation of these data into the overall analyses was undertaken by myself. 

All materials and methods are explained in Chapter 2 (Section 2.6.4 and 2.11).  

 

5.2.2 Preβeta1-HDL 

Pilot Study 

As the pSoBid samples were not stored as recommended in the instructions for the Pre-β1-

HDL ELISA kit (Pre-β1-HDL ELISA 289194, American Diagnosta GmbH, Pfungstadt, Germany), 

a pilot study was undertaken to see how essential it was to use a stabilizing buffer  

(recommended to be added to the samples before storing). In addition, the type of the 

sample recommended in the ELISA technical sheet was EDTA plasma with stabilizer while in 
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the pSoBid study, the available EDTA samples were low in volume and or had been 

previously thawed and frozen several times. Because we have almost a full set of Li-Hep 

samples that were taken into ice and frozen  immediately with ~ 5 ml aliquots, we ran a pilot 

study on volunteers to test the differences between fresh EDTA blood samples, EDTA with a 

stabilizer and Li-Hep samples outcomes.  

 

Five volunteers participated in this pilot study. From each participant, two blood samples 

were taken - one EDTA sample and one Li-Hep sample. All samples were directly put on ice 

and were centrifuged at 2060 g for 10 minutes at 4°C. Plasma was then isolated. Li-Hep 

samples were stored directly in -80°C freezer. For EDTA plasma, the first 20 μl was diluted 

with 400 μl of stabilizer from the Pre-β1-HDL ELISA kit and then stored in -80°C freezer. The 

rest of EDTA samples were stored directly in -80°C freezer. After 6 days, all the trial samples 

were transferred to -20°C freezers and kept for about 16 hours. Before starting the ELISA 

protocol, all the trial samples were taken out from the freezer and allowed to come to room 

temperature for about 30 minutes. Li-Hep samples and EDTA samples were diluted (1:20) 

with the stabilization buffer (20 μl of sample + 400 μl of stabilization buffer). Just prior to the 

assay, all the 21-fold diluted samples were diluted additionally a further 100-fold with the 

dilution buffer of the kit by using a dilutor (Hamilton microlab 500 series) i.e. 5 μl of (1:20) 

plasma + 495 μl of stabilizer (the total dilution was therefore 2,100-fold). The diluted 

samples were placed into transfer ELISA plate according to the specified layout.  

 

pSoBid Samples 

Li-Hep samples left from pSoBid study were stored in -80°C freezers for about 5 years. Since 

it was impractical to undertake simultaneous extraction and analysis of all, 20 samples each 

day were taken and had stabilizer (supplied in the assay kit) added immediately after 

thawing. Diluted samples with stabilizer are stable for 5 days, stored at 4°C, as stated in the 

kit’s technical information sheet. So 79 samples were thawed and run each week for each 

assay in random order.  

 A total of 545 Li-Hep samples were used for Preβ1-HDL ELISA in singlicate as explained in 

Chapter 2 (Section 2.10). The inter-assay CV was 14.2% and intra-assay CV was 9.2%. A plot 
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of Levey-Jennings for quality control values across 8 plates (1 plate per day) was also 

generated and did not detect any increase in random error (Figure 5.1). Results were 

accepted for each plate measurements within the range of ± 3X standard deviation.  
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Figure 5.1 Levey-Jennings  type plate-to plate plots of quality control  values across 8 ELISA plate (one plate 

per day) showing the mean (CL), upper control limit and lower control limit. CL, control limit; UCL, upper 

control limit; LCL, lower control limit. 
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5.3 Calculations and Statistical Analysis 

Statistical analyses were performed using IBM SPSS Statistics Data Editor (version 22). 

Normality was checked for all the data using normality plots and the Shapiro-Wilk test. Data 

were log-transformed when they did not approximate normality. Specifically, Preβeta1-HDL 

for this chapter was log transformed. 

 For gender and deprivation, independent-samples T-Test was used to compare means (± 

standard deviation) for normally distributed or log transformed variables. One-Way ANOVA 

was used to compare variable means between age groups.  Association between variables 

were determined using Pearson correlation. Data are presented as means (± standard 

deviation) for normally distributed variables and as median (inter-quartile range) for non-

normally distributed ones. Statistical significance was accepted at P< 0.05.  

 

5.4 Results      

5.4.1 Pilot Study Results 

Measurements of Preβeta1-HDL on donors’ samples for Li-Hep, EDTA or EDTA+ stabilizer (n= 

5 for each) were 18.72, 15.72 and 15.32 mg/L respectively. Since these results were not 

significantly different (P= 0.067), we were content to proceed with Li-Hep samples from the 

pSoBid study for measurement of Preβeta1-HDL levels.   

 

5.4.2 pSoBid Results 

Subject’s characteristics along with gradient gel electrophoresis and preβeta1-HDL results 

are presented in Table 5.1.  %HDL2a did not reveal any significant difference between the 

two genders, different areas (deprivation) or between the age groups. cIMT displayed a 

significant difference between the two genders as it was higher in men  (p< 0.001) as well as 

between the age groups (P< 0.001). This was parallel with the difference in %HDL3c which 

has revealed a significant difference between the two genders as it was higher in males (95% 

CI, 0.50 to 1.2%; P< 0.001) and between the age groups (P= 0.017). Other HDL subclasses 
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displayed a significant difference between the genders and area levels along with HDL-C and 

ApoA-I. For gender the following showed significant differences : HDL-C was higher in 

females (95% CI, 0.31 to 0.19 mmol/L; P< 0.001); ApoA-I was higher  in females (95% CI, -

0.20 to 0.12 mmol/L; P<0.001); %HDL2 higher in females (95% CI, 5.39 to -3.00%; P< 0.001); 

%HDL2b higher in females than in males (95% CI, 4.98 to 2.76%; P< 0.001); %HDL3 was 

higher in males (95% CI, 3.00 to 5.39%; P< 0.001); %HDL3a higher in males (95% CI, 0.99 to 

2.680%; P< 0.001); %HDL3b higher in males (95% CI, 1.06 to 1.93%; P< 0.001). 

For the deprivation area levels, HDL2 was higher in least deprived areas (95% CI, 1.08 to 

3.56%; P< 0.001); %HDL2b higher in least deprived areas (95% CI, 1.45 to 3.73%; P< 0.001); 

%HDL3 was higher in most deprived areas (95% CI, 3.56 to 1.08%; P< 0.001); %HDL3a  was 

higher in most deprived areas (95% CI, -2.13 to -0.42%; P= 0.003); %HDL3b was higher in 

most deprived areas  (95% CI, -1.32 to - 0.43%; P< 0.001) and  were all significantly different. 

An additional significant difference was also displayed by %HDL3b across age groups (P= 

0.021). Finally, Preβeta1-HDL has revealed a significant difference only between the age 

bands (P= 0.012). 
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Table 5.1 Subjects’ demographic details used in present chapter including percentage of HDL subclasses measured by gradient gel electrophoresis and Preβ1-HDL (mg/L) 
measured by ELISA. Total cohort for Preβeta1-HDL was less than gradient gel electrophoresis; n= 545 ; 264 males & 281 females; 284 from least deprived areas & 261 from most 
deprived areas; 161 from age group (35-44), 186 from age group (45-54) & 195 from age group (55-65). 

Variable 
Total Cohort 

(n=616 ) 

Gender Area Age band P Value 

Male 
n=301 

Female 
n=315 

L.D 
n=316 

M.D 
n=300 

35-44 
n=195 

45-54 
n=201 

55-64 
n=220 

Sex 
 

Area 
 

Age 

HDL-C (mmol/L) 
1.36 

(0.38) 
1.23 

(0.37) 
1.48 

(0.36) 
1.42 

(0.37) 
1.30 

(0.39) 
1.35 

(0.38) 
1.37 

(0.35) 
1.36 

(0.41) 
<0.001 <0.001 0.813 

ApoA-I (mmol/L) 
1.43 

(0.29) 
1.35 

(0.29) 
1.51 

(0.27) 
1.46 

(0.27) 
1.40 

(0.30) 
1.42 

(0.30) 
1.44 

(0.28) 
1.43 

(0.29) 
<0.001 0.007 0.757 

cIMT- (mm) 
0.69 

(0.14) 
0.71 

(0.15) 
0.67 

(0.12) 
0.68 

(0.12) 
0.70 

(0.15) 
0.62 

(0.10) 
0.69 

(0.12) 
0.75 

(0.15) 
<0.001 0.054 <0.001 

Preβeta1-HDL (mg/L) 
54.19 

(40.61-69.88) 
51.41 

(39.31- 68.14) 
56.62 

(41.17-72.13) 
54.74 

(41.07-0.54) 
53.81 

(40.32-68.89) 
49.19 

(36.81-63.10) 
54.71 

(40.24-72.08) 
58.62 

(43.64-74.26) 
0.261 0.898 0.012 

%HDL2 
56.55 
(7.90) 

54.41 
(7.51) 

58.59 
(7.73) 

57.68 
(8.05) 

55.36 
(7.56) 

56.57 
(7.96) 

56.93 
(8.16) 

56.19 
(7.61) 

<0.001 <0.001 0.633 

%HDL2a 
30.20 
(3.84) 

30.04 
(3.84) 

30.35 
(3.83) 

30.07 
(3.91) 

30.34 
(3.76) 

30.03 
(3.80) 

30.53 
(3.86) 

30.05 
(3.86) 

0.312 0.386 0.331 

%HDL2b 
26.35 
(7.29) 

24.37 
(6.45) 

28.24 
(7.56) 

27.61 
(7.74) 

25.02 
(6.54) 

26.54 
(7.54) 

26.40 
(7.08) 

26.14 
(7.28) 

<0.001 <0.001 0.852 

%HDL3 
43.45 
(7.90) 

45.59 
(7.50) 

41.41 
(7.73) 

42.32 
(8.05) 

44.64 
(7.56) 

43.43 
(7.96) 

43.07 
(8.16) 

43.81 
(7.61) 

<0.001 <0.001 0.633 

%HDL3a 
27.12 
(5.41) 

28.06 
(5.27) 

26.23 
(5.40) 

26.50 
(5.47) 

27.77 
(5.28) 

27.16 
(5.49) 

27.41 
(5.68) 

26.82 
(5.09) 

<0.001 0.003 0.533 

%HDL3b 
10.64 
(2.85) 

11.41 
(2.73) 

9.92 
(2.77) 

10.22 
(2.86) 

11.09 
(2.77) 

10.51 
(2.83) 

10.32 
(2.82) 

11.06 
(2.86) 

<0.001 <0.001 0.021 

%HDL3c 
5.68 

(2.22) 
6.11 

(2.22) 
5.26 

(2.15) 
5.59 

(2.28) 
5.77 

(2.17) 
5.75 

(2.17) 
5.33 

(2.08) 
5.93 

(2.37) 
<0.001 0.295 0.017 

Descriptive statistics are presented as mean (±standard deviation) for normal distributed variables and median (inter-quartile range) for not normal distributed variables. HDL-C, 
high density lipoprotein cholesterol;HDL2, high density lipoprotein 2; HDL3, high density lipoprotein 3; HDL2a, high density lipoprotein 2a; HDL2b, high density lipoprotein 2b, 
HDL3a, high density lipoprotein 3a, HDL3b, high density lipoprotein 3b; HDL3c, high density lipoprotein 3c;  Apo-A, Apolipoprotein A-I; cIMT, Carotid intima media thickness; L.D, 
least deprived; M.D, most deprived.
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5.4.3 Relationship cIMT and Preβeta-1HDL, HDL Subclasses and 

Subpopulations   

As seen from Figure 5.2, cIMT was negatively correlated with HDL-C (r= -0.158, P<0.001). 

There was a trend of reduction of 0.57 mm in cIMT for each 1 mmol/L increase in HDL-C 

(95% CI, 0.086 to 0.027 mm) (Figure 5.2-A). On the other hand, cIMT was not correlated with 

Preβeta1-HDL levels (r= 0.073, P= 0.107) (Figure 5.2-B). Likewise, cIMT did not display any 

correlation with HDL major subclasses: %HDL2 (r= -0.07, P= 0.096); %HDL3 (r= 0.07, P= 

0.096) respectively (Figure 5.2-C, D). 

Exploring if any of the HDL subpopulation was related to cIMT, a significant negative 

correlation was revealed with %HDL2b (r= -0.095, P= 0.023). A trend of reduction of 0.002 

was displayed for each 1% rise of %HDL2b (95% CI, 0.003 to 0.00 nm) (Figure 5.3-A). On the 

other hand, there was a positive correlation for cIMT with %HDL3b (r= 0.107, P= 0.011) with 

a trend of increase of 0.005 mm in cIMT for each 1% increase of %HDL3b (95% CI, 0.001 to 

0.009 nm) (Figure 5.3-D). Other subpopulations did not display any significant correlation 

with cIMT; %HDL2a (r= 0.037, P= 0.375); %HDL3a (r=0.039, P= 0.357); %HDL3c (r= 0.018, P= 

0.672) (Figure 5.3-B, C, E).  
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Figure 5.2 Scatter plot (with linear regression line of best-fit) illustrating the relationship between cIMT and; 

HDL-C (A); Preβeta1-HDL levels (B); %HDL2 (C); %HDL3 (D). cIMT, carotid intima media thickness; mm, 

millimetre; HDL-C, high density lipoprotein cholesterol; HDL2, high density lipoprotein 2; HDL3, high density 

lipoprotein 3.  
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Figure 5.3 Scatter plot (with linear regression line of best-fit) illustrating the relationship between cIMT and; 

%HDL subpopulations: %HDL2b (A); %HDL2a (B); %HDL3a (C); %HDL3b (D); %HDL3c (E). HDL, high density 

lipoprotein; cIMT, carotid intima media thickness; mm, millimetre. 
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5.4.4 Inter Correlation between HDL Subpopulations with HDL 

Oxidation Factors and PON1 Enzyme Activity 

Studying the major HDL subclasses and their relation to HDL oxidation potential measures, 

%HDL2 displayed an entirely opposite effect to %HDL3. %HDL2 was positively correlated 

with HDLs’ susceptibility to oxidation assessed by the three variables, T1/2max, maximum 

propagation rate and maximum production of conjugated dienes, (r= -0.16, P= 0.009), (r= 

0.42, P<0.001) and (r= 0.45, P<0.001) respectively. There was a trend of a decrease of 0.21 

minutes in HDL  T1/2max for each 1% increase in HDL2 (95% CI, 0.365 to 0.053) (Figure 5.4-

A),  a trend of increase of  0.016 milli.Units.min-1 in HDL oxidation propagation rate for each 

1%  increase in %HDL2 (95%, 0.012 to 0.02) (Figure 5.4-C) and a trend of increase of 0.001 

units of conjugated diene produced for each 1% increase  in %HDL2 (95% CI, 0.001 to 0.001) 

(Figure 5.4-E). %HDL3 displayed totally opposite correlations with HDL oxidation potential as 

assessed by the same oxidation measures, (r= 0.16, P= 0.009), (r= -0.42, P<0.001) and (r= -

0.45, P<0.001) respectively. The trend of regression was completely the opposite of that of 

HDL2 (Figure 5.4-B, D & F). 

Reviewing if any of HDL major classes displayed a correlation with PON1 activity, %HDL2 and 

%HDL3 displayed another opposed correlations. %HDL2 revealed a positive significant 

correlation with HDL PON1 activity (r= 0.19, P= 0.001). There was a trend of increase of 

0.225 (Units.mL-1) in HDL PON1 activity for each 1% increase in %HDL2 (95% CI, 0.091 to 

0.358) (Figure 5.5-A). The correlation of %HDL2 with the ratio of plasma PON1 to HDL PON1 

activity was significant and negative (r=-0.15, P= 0.009). A trend of decrease of 0.012 in the 

plasma PON1 to HDL PON1 ratio for each 1% increase in %HDL2 (95% CI, 0.021 to 0.003) 

(Figure 5.5-C). %HDL3 has displayed the opposite correlations with PON1 measurements 

compared to %HDL2. The percentage of HDL3 particles displayed a negative correlation with 

HDL PON1 activity (r= -0.19, P= 0.001). There was a trend of 0.225 units.mL-1 decrease in HDL 

PON1 activity for each 1% increase in %HDL3 (95% CI, 0.358 to 0.091 units.mL-1) (Figure 5.5-

B). Conversely, there was a significant positive correlation between the %HDL3 and the ratio 

of plasma PON1 to HDL PON1 activity (r= 0.15, P= 0.009). A trend of 0.012 increase in the 

ratio of plasma to HDL PON1 activity for each 1% increase in %HDL3 (95% CI, 0.003 to 0.21) 

(Figure 5.5-D).   
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In further exploration, it was observed that %HDL2b or %HDL3b subpopulations were 

related to HDL oxidation factors As seen in Figure 5.6-A %HDL2b was significantly positively 

correlated with maximum propagation rate of HDL oxidation (R= 0.427, P< 0.001). A trend of 

increase of 0.017 m.U.min-1 in HDL maximum propagation rate for each 1% increase in 

%HDL2b (95% CI, 0.012 to 0.021 m.U.min-1). %HDL2b was also positively significantly 

correlated with the maximum conjugated diene produced (Figure 5.6-B) (r= 0.48, P<0.001). 

There was a trend of increase of 0.001 units of conjugated diene production for each 1% 

increase in %HDL2b (95% CI, 0.001 to 0.001 units). Contrariwise, %HDL2b did not display any 

correlation with the percentage of inhibition of LDL oxidation by HDL calculated by T1/2max 

(R= -0.02, P= 0.724) (Figure 5.6-C). Relating %HDL2b with PON1 activity revealed a significant 

positive correlation with HDL PON1 activity (R= 0.18, P= 0.002).There was a trend of increase 

of 0.23 units/mL for 1% rise in %HDL2b (95% CI, 0.09  to 0.37 units.mL-1) (Figure 5.6-D). 

Conversely, ratio of plasma PON1 to HDL PON1 displayed a significant negative correlation 

with %HDL2b (r= -0.187, P= 0.001). A trend of reduction of 0.016 of the ratio of plasma PON1 

to HDL PON1 was revealed for each 1% increase of HDL2b (95% CI, 0.026  to 0.007) (Figure 

5.6-E). 

Studying if there was a correlation between %HDL3b with any of the oxidation measures or 

with PON1 levels, It can be clearly seen from Figure 5.7-A, that %HDL3b was significantly 

negatively correlated with maximum propagation rate of HDL oxidation (R= -0.31, P<0.001). 

There was a trend of reduction of 0.035 m.U.min-1 in HDL maximum propagation rate for 

each 1% increase in %HDL3b (95% CI, 0.048 to 0.022 m.U.min-1). %HDL3b was also negatively 

significantly correlated with the maximum conjugated diene produced (Figure 5.7-B) (r= 

0.37, P<0.001). There was a trend of decrease of 0.003 units of conjugated diene production 

for each 1% increase in %HDL3b (95% CI, 0.004 to 0.002 units). Contrariwise, %HDL3b did 

not display any correlation with the percentage of inhibition of LDL oxidation by HDL 

calculated by T1/2max (r= 0.028, P= 0.672) (Figure 5.7-C). Studying %HDL3b correlation with 

PON1 activity results displayed a significant negative correlation with HDL PON1 activity (r= -

0.12, P= 0.035). There was a trend of decrease of 0.416 units.mL-1 for each 1% rise in 

%HDL3b (95% CI, 0.803 to 0.029 units.mL-1) (Figure 5.7-D). On the contrary, ratio of plasma 

PON1 to HDL PON1 did not display any significant correlation with %HDL3b (r= 0.044, P= 

0.439) (Figure 5.7-E). 
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Figure 5.4 Scatter plot (with linear regression line of best-fit) illustrating the relationship between Oxidation factors 

and HDL major subclasses; HDL2, high density lipoprotein 2; HDL3, high density lipoprotrotein 3; Max. Prop. Rate HDL 

Ox., maximum propagation rate of HDL oxidation; m.U.min-1, milli units per minutes; Max. Conj. Dien. Prod. HDL Ox., 

maximum conjugated Diene produced from HDL oxidation; U.Min-1, Units per minutes; PON1, paraxonase1 enzyme. 
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r= -0.19 
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Figure 5.5 Scatter plot (with linear regression line of best-fit) illustrating PON1 activity measurements with 

%HDL2 (A), with  and %HDL3 (B) ;plasma PON1/HDL PON1 with %HDL2 (C), with %HDL3 (D). HDL2, high density 

lipoprotein 2; HDL3, high density lipoprotein 3;  PON1, paraxonase1 enzyme. 
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Figure 5.6 Scatter plot (with linear regression line of best-fit) illustrating the relationship between Oxidation 

factors and PON1 results with %HDL2b subpopulations; HDL2b, high density lipoprotein 2b; Max. Prop. Rate HDL 

Ox., maximum propagation rate of HDL oxidation; m.U.min-1, milli units per minutes ; Max. Conj. Dien. Prod. HDL 

Ox., maximum conjugated Diene produced from HDL oxidation; U.Min-1, Units per minutes; % Inh. Of LDL Ox. By 

HDL Calc. by T1/2max, %Inhibition of LDL oxidation by HDL calculated by time at half maximum; PON1, 

paraxonase1 enzyme.  
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Figure 5.7 Scatter plot (with linear regression line of best-fit) illustrating the relationship between Oxidation factors 

and PON1 results with %HDL3b subpopulations; HDL3b, high density lipoprotein 2b; Max. Prop. Rate HDL Ox., 

maximum propagation rate of HDL oxidation; m.U.min-1, milli units per minutes; Max. Conj. Dien. Prod. HDL Ox., 

maximum conjugated Diene produced from HDL oxidation; U.Min-1, Units per minutes;% Inh. Of LDL Ox. By HDL 

Calc. by T1/2max, %Inhibition of LDL oxidation by HDL calculated by time at half maximum; PON1, paraxonase1 

enzyme. 
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5.5 Discussion 

This chapter explores HDL subfraction distribution and its relationship to carotid 

atherosclerosis and to HDL oxidation potential and antioxidant potency. We found a number 

of well-known associations in addition to observations which are novel or less well reported. 

HDL size and density varied between the two genders as expected with %HDL2 being higher 

and %HDL3 lower in females than in males. The major findings were that cIMT is inversely 

correlated with HDL-C but not with total %HDL2 or total %HDL3. %HDL2b and %HDL3b 

subpopulations, on the other hand, were like HDL-C associated with cIMT. In terms of risk, 

%HDL3b had a positive association with atherosclerosis but in terms of protection of 

atherosclerosis, %HDL2b was negatively correlated with atherosclerosis. Why these specific 

fractions showed up as the strongest links with atherosclerosis is not very clear but previous 

publication have also reported similar findings. Watanabe and colleagues reported that B-

mode ultrasound measurements of IMT correlated more strongly with %HDL2b in Finnish 

families (Watanabe et al., 2006). Drexel et al 1992 has also found that %HDL2, in particular 

the %HDL2b subfraction, was lower in patients with CAD compared to healthy subjects 

(Drexel et al., 1992).  The Johansson et al study of sequential angiographies in premature 

myocardial infraction survivors showed that a greater percentage of HDL3b predicted more 

rapid development of coronary atherosclerosis (r= 0.37, P= 0.05), particularly among 

patients with raised TGs (r= 0.48, P< 0.01). When hypercholesterolemic patients were 

considered separately, %HDL3b was the only lipoprotein measurement to predict 

progression rates, accounting for 21% of the variation (Johansson, Carlson, Landou & 

Hamsten, 1991).   

It has been suggested that the cardioprotective properties of HDL2b and atherogenic 

associations of HDL3b are related to their relationships to the fractional rate of cholesterol 

esterification (FER-HDL) in VLDL- and LDL-depleted plasma. The FER-HDL is a parameter that 

defines the capability of the HDL pool to esterify free cholesterol. The FER-HDL is greater in 

CHD versus healthy controls (Frohlich & Dobiásová, 2003) . There is a strong correlation 

between FER-HDL and HDL3 (specifically HDL3b, r = 0.89) and an inverse correlation 

between FER-HDL and HDL2 (specifically HDL2b, r = −0.61, P <0.001) (Dobiasova, Stribrna, 

Pritchard & Frohlich, 1992).  However, there are a number of possible alternative 
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explanations based on apoA-I/apoA-II content and other compositional and functional 

features (Pussinen, Jauhiainen & Ehnholm, 1997).  

Preβeta1-HDL did not reveal any significant correlation with cIMT. Previous literature has 

revealed a higher levels preβ1-HDL particles compared to healthy subjects  (Guey et al., 

2011), due to defective activity of enzyme involved in the HDL maturation cycle or to 

enhanced enzymatic remodelling of α-HDL induced by high plasma TG levels (Tian, Xu, Fu, 

Peng, Liu & Long, 2011)   . Other literatures, revealed an increased levels of Pre-β-HDL in 

patients with CAD or ischemic heart disease even when excluding dyslipidemic conditions 

(Sethi et al., 2010). Although this fraction did not display any significant difference between 

the two genders or the two deprivation areas, there was a significant increase of about 20% 

in older ages.  The implication of this finding is that the amount of circulating Preβeta1-HDL, 

the putative initiator of reverse cholesterol transport, does not seem to be a factor in CVD 

risk as measured by cIMT. It should be noted that the Preβeta1-HDL assay measures a family 

of particles which are PL complexes with apoA-I where the Preβeta1-HDL epitope is 

expressed. They may not all be the classical discs of ‘nascent HDL’ and this may have 

influenced the findings in this work.  

In parallel with their correlation to cIMT and in relation to the findings in Chapter 4, HDL2 

and specifically %HDL2b displayed a positive correlation with HDL oxidation potential, 

measured by the maximum propagation rate and by the maximum amount of produced 

conjugated diene. Likewise, %HDL3 and particularly %HDL3b revealed a negative correlation 

with HDL oxidizability measured by the same two factors. This finding is in comparable with 

the study of Stojanovic N. and colleagues who have found that HDL2 was more susceptible 

to copper-induced oxidation than HDL3 (Stojanovid, Krilov & Herak, 2006)  and to the study 

of Shuhei N. et al  who has demonstrated that the resistance of HDL3 particles to oxidation is 

higher than that of total pool of HDL particles and they concluded that  small, dense HDL3 

particles are less prone to oxidation than large, light HDL2 in vitro (Shuhei, Söderlund, 

Jauhiainen & Taskinen, 2010). 

The resistance of HDL particles to oxidation is affected probably by HDL lipid/apolipoprotein 

composition, HDL- associated proteins other than apolipoproteins, subclass distribution, and 

systemic inflammation. The significance of HDL oxidation in terms of atherosclerosis is still 
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unknown partly because it is not been a property that has been studied in depth. The fact 

that in  this thesis, HDL oxidation  was found to be correlated with ur study suggests that this 

property needs more detailed examination in future experiments. HDL PON1 level was not 

significantly correlated with atherosclerosis, as seen in Chapter 4, but, in this chapter, PON1 

activity (Figure 5.6-D) was positively and significantly associated with the %HDL2b and 

negatively with %HDL3b (Figure 5.7-D). Additionally, because %HDL2b was negatively 

associated with the ratio of plasma PON1 to HDL PON1 while %HDL3b was not, this could 

mean that the HDL2b sub-species has a higher PON1 content compared to HDL3b. This 

finding , however, is not in agreement with the finding of Bergmeier et al who has revealed 

that HDL3 fraction carries the highest PON1 activity than HDL2 (Bergmeier, Siekmeier & 

Gross, 2004). The interrelations of HDL subfractions, HDL oxidation and atherosclerosis are 

explored further in the following chapters. 
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6 Alcohol, Smoking, Physical Activity and Diet 

Association with HDL in the pSoBid Cohort 

6.1 Introduction 

Low HDL-cholesterol (HDL-C) is well recognized as a major risk factor for coronary heart 

disease (Gordon et al., 1989). The levels of this lipoprotein are regulated by genetic and 

lifestyle factors (see Chapter 1). Recognition that certain habits such as alcohol 

consumption, cigarette smoking, exercise and diet can influence HDL has led to advice to 

alter these to reduce risk.   

Alcohol is the fifth leading risk factor for death and overall burden of disease accounting for 

4% of life years lost due to disease (Lim et al., 2012). Although the adverse effect of alcohol 

include liver cirrhosis and malignancy, accidental injuries, malignancies  of other organs 

including colorectum, breast, and upper aerodigestive tract have been firmly established, 

uncertainity remains concerning the potential protective effects of light to moderate alcohol 

consumption on risk of coronary heart disease and stroke. Observational studies have 

consistently reported that compared with non-drinkers, light to moderate drinking exhibits a 

reduced cardiovascular risk, with the lower risk found at approximately 12-25 British units 

per week, while heavier and more hazardous drinking is associated with an increased risk, 

resulting in the well-established U shaped association.  This possibly causal link was evident 

in analysis of over 60 ecological, case control, and cohort studies. Moreover, it was 

concluded from previous reviews that both men and women who drink one to two drinks a 

day have lower risk of coronary heart disease (Klatsky, Armstrong & Friedman, 1992; 

Maclure, 1993; Moore & Pearson, 1986). The most widely proposed mechanism for this 

purported cardioprotective effect of alcohol is an increase in HDL-C (Brien, Ronksley, Turner, 

Mukamal & Ghali, 2011) 

In 2014, Mendelian randomization analysis based on individual participant data has, 

however, abolished this association and suggested that reduction of alcohol consumption, 
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even for light to moderate drinkers, is beneficial for cardiovascular health (Holmes et al., 

2014) 

Based on the risk associations seen in other chapters and giving the previous studies 

mentioned in the literature review, one of the hypotheses that we decided to test if  alcohol 

consumption would alter the properties of HDL in the pSoBid study. Muth and colleagues 

has found that regular alcohol consumers had a higher number and percentage of large HDL 

particles than non-drinkers (Muth, Laughlin, von Mühlen, Smith & Barrett-Connor, 2010). 

Moderate alcohol consumption has also been reported to raise circulating levels of small, 

lipid poor, preβeta HDL (Beulens et al., 2004). Alcohol drinking also affects various anti-

atherogenic activities of HDL such as elevating the capacity to efflux cholesterol from cells 

which was revealed commonly (Beulens et al., 2004; Mäkelä et al., 2008), but not always 

(Rao, Liu, Marmillot, Seeff, Strader & Lakshman, 2000) after alcohol ingestion. Cholesterol 

efflux may also be influenced from the compositional modifications in HDL like elevating the 

content of PL and enhancing particle surface fluidity as a consequence of elevating content 

of PUFA (Perret et al., 2002). Those changes could also account for improving antioxidative 

and anti-inflammatory activities of HDL particles, suggesting the existence of a common 

pathway of enhanced HDL function (Kontush & Chapman, 2010; Schäfer et al., 2007). Lastly, 

Brinton et al and Costa et al found that a rise in the activity of the HDL-associated anti-

atherogenic enzyme PON1 is prompted by alcohol intake (Brinton, 2010; Costa, Giordano & 

Furlong, 2011) which might affect HDL antioxidative properties. These findings was not 

consistent with the finding of Schwedhelm et al. which did not find a strong correlation 

between alcohol consumption and enzymatic activities of PON1 and arylesterase 

(Schwedhelm, Nimptsch, Bub, Pischon & Linseisen, 2016).   

Participation in regular physical activity is highly recommended for the prevention of CVD in 

national guidelines (Nice, 2010). One of the main mechanisms by which regular physical 

exercise is thought to attenuate coronary artery disease is by its impact on HDL metabolism. 

Kesaniemi et al. reviewed 51 papers describing physical activity intervention, and reported a 

mean rise in HDL cholesterol of 4.6% (Kesaniemi, Danforth, Jensen, Kopelman, Lefebvre & 

Reeder, 2001). In contrast, the effects on LDL-C and TGs were reported as being inconsistent 

(Mann, Beedie & Jimenez, 2014). As a consequence, lack of exercise is accompanied by low 

HDL-C concentrations, as documented in the NHANES cohort (Healy, Matthews, Dunstan, 
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Winkler & Owen, 2011). Likewise, the AVENA cross- sectional study found that a sedentary 

lifestyle involving excessive television viewing is associated with low HDL-C in adolescence 

(Martinez-Gomez et al., 2010). Regarding HDL profile, physical exercise was found to 

increase large HDL2-C and decrease HDL3-C (Brown et al., 2009; Nye, Carlson, Kirstein & 

Rössner, 1981). Exploring the effect of exercise on preβeta-HDL level, some studies has 

found that aerobic exercise raised plasma levels (Jafari et al., 2003; Khabazian, Ghanbari-

Niaki, Safarzadeh-Golpordesari, Ebrahimi, Rahbarizadeh & Abednazari, 2009; Olchawa et al., 

2004) while Jafari et al. found no difference of Prebeta1-HDL level between trained athletes 

and sedentary subjects (Kontush & Chapman, 2011). The effect of exercise on HDL 

antioxidant activity was also studied and it was found to be higher in athletes compared to 

controls. This was also demonstrated in a study for Ribeiro et al.  in patients with Type 2 

diabetes (Ribeiro et al., 2008)  and in another study for Casella-Fihlo et al. in patients with 

metabolic syndrome (Casella-Filho et al., 2011).  Such functional enhancement for HDL 

antioxidative effect, which is characterized for both HDL2 and HDL3 subclasses, could be due 

to elevated HDL content of apoA-I and increased content and activities of LCAT and PON1 

(Kontush & Chapman, 2011).  

Diet is thought be an important factor in the maintenance of optimal cardiovascular health, 

although a lack of data from randomised controlled trials is problematic. To date, 

confirmation that fruit and vegetable intake reduces the risk of cardiovascular disease 

remains limited (Dauchet, Amouyel & Dallongeville, 2009). Numerous constituents of fruits 

and vegetables have cholesterol-depressing properties. Observational studies suggest 

dietary fibre modifies biliary physiology and the enterohepatic cholesterol cycle which 

promotes exclusion of cholesterol through the feces (Lampe, 1999). Numerous studies have 

reported effects of fruit and vegetable consumption on lipid profiles (Smith-Warner et al., 

2000; Zino, Skeaff, Williams & Mann, 1997). Most have revealed slight or no effect. 

Nevertheless, not all were precisely intended to examine the effects of fruits and vegetable 

consumption in patients with hypercholesterolemia (Dauchet, Amouyel & Dallongeville, 

2009). In cancer prevention trials, interventions aimed at increasing fruit and vegetable 

consumption and reducing lipid intake decreased levels of both LDL cholesterol and HDL 

cholesterol (Howard et al., 2006; Lanza et al., 2001; Pierce et al., 2004; Rock et al., 2004).  
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Several components of fruits and vegetables could have a role in HDL modification. 

Polyphenols, which are abundant micronutrients found in plants, possess HDL-raising 

properties and can increase HDL activities (Kontush & Chapman, 2011). Mechanisms 

responsible for the HDL-raising action of polyphenols may involve CETP inhibition (Lam, 

Zhang, Yu, Tsang, Huang & Chen, 2008; Qin et al., 2009), improving the antiatherogenic 

activities of HDL like increasing cellular cholesterol efflux (Qin et al., 2009) and increasing 

PON1 action (Gugliucci & Bastos, 2009). On the other hand, Anti-oxidant vitamins, which are 

found in vegetables and fruits too, did not show any significant influence on HDL-C levels in 

humans (Abdollahzad, Eghtesadi, Nourmohammadi, Khadem-Ansari, Nejad-Gashti & 

Esmaillzadeh, 2009; Maki, Rubin, Wong, McManus, Jensen & Lawless, 2011; McRae, 2008; 

Rajpathak et al., 2010; Sutken, Inal & Ozdemir, 2006).  

Smoking has been recognized to account for 14% of deaths from CVD (Health and Social Care 

Information Centre (HSCIC), 2012). The risk is significantly reduced within two years of 

smoking cessation (Salonen, 1980). Smokers have a 2 to 4 times increased risk of heart 

disease and of stroke (U.S. Department of Health and Human Services, 2004) and in fact 

smoking is associated with increased risk of all types of CVD-CHD, ischemic stroke, peripheral 

artery disease, and abdominal aortic aneurysm (Perk et al., 2013). The exact mechanisms by 

which smoking increases the risk of atherosclerosis are not fully understood. It is proven that 

smoking boosts both the progress of atherosclerosis and the incidence of thrombotic 

phenomena. Reactive oxygen species-free radicals- present in inhaled smoke may cause 

oxidation of plasma LDL and oxidized LDL activates the inflammatory process in the intima of 

the arteries by stimulation of monocyte adhesion to the vessel wall, resulting in increased 

atherosclerosis (Yamaguchi, Matsuno, Kagota, Haginaka & Kunitomo, 2001) (Weber, Erl, 

Weber & Weber, 1996; Yamaguchi, Haginaka, Morimoto, Fujioka & Kunitomo, 2005).   

In Chapter 4   and Chapter 5, we described HDL properties: HDL oxidation potential, HDL 

potency to protect LDL from oxidation, HDL PON1 activity and HDL subclass distribution 

along with preβ1-HDL content. These were explored in detail and related to cIMT. As 

explained above, there is a large body of literature that suggests that alcohol, exercise and 

diet affect the total amount of HDL but there is less information on the extent to which 

these life factors influence the detailed properties of HDL. 
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Aim  

In this chapter, we will examine the determinants of these HDL properties in pSoBid 

population. So our questions are: to what extent does alcohol intake, smoking, exercise, and 

diet influence these properties of HDL. The hypothesis is that these lifestyle factors will be 

associated with recognised changes in HDL properties that have consequences for risk. 

6.2 Participants 

Data for 666 individuals were available from the pSoBid study. PSoBid is a cross sectional 

study carried out in 2007 in Glasgow. 666 Participants aged 35-64, equal number of males & 

females were recruited from the most and least deprived areas (Deans et al., 2009). 

Participants were invited to come for the first visit at their General practice’s clinic. The first 

visit involved completion of lifestyle and psychology questionnaires as shown in appendix 1 , 

assessment of health status and measurement of blood pressure, pulse rate and indexes of 

obesity. At the second visit, a fasting blood sample was taken to measure total plasma 

cholesterol, TGs, the cholesterol in VLDL-C, LDL-C and HDL-C. In addition, participants 

underwent ultrasound assessment of carotid intima media thickness (cIMT). Furthermore, 

participants completed lifestyle questionnaire which had 13 sections including basic 

demographic data, past and present health status, current medications, smoking history, 

alcohol intake, diet, physical activity. 

Diet: A score for the consumption of fruit and vegetables was calculated from self-reported 

food frequency questionnaire participant responses (Appendix 1). Participants were asked 

on average how often they consumed of a range of food categories (21 food categories 

listed). Responses for each question ranged from daily consumption (number of portions per 

day) to weekly and monthly consumption. Participants selected one response per food 

category. For the purposes of the present analysis responses to four questions from the food 

frequency questionnaire relating to fruit and vegetable intake were aggregated to give an 

overall indicative diet score (i.e. frequency of intake of fresh fruit, cooked green vegetables 

(fresh or frozen), cooked root vegetables (fresh or frozen) and raw vegetables or salad 

(including tomatoes). Monthly diet scores were calculated on the basis of a 28 day month. 
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The maximum possible total diet score was 672 (6 portions per day X 28 days per month X 4 

food category questions). 

Exercise: Participants’ physical activity was assessed over questions on habitual physical 

activity at work  and in recreation were included in the lifestyle questionnaire (Appendix 1), 

allowing participants to be classified as inactive, moderately inactive, moderately active, or 

active using a previously validated protocol  (Khaw et al., 2006). In our project, the physical 

activity level was a combination of activity at work and recreational exercise. The ‘’active 

group’’ included those who had non sedentary work and those who undertook active or very 

active recreational exercise (> 0.25 h/day). All other subjects were included in the ‘’inactive 

group’’. 

Smoking: Participants’ smoking behaviours were also assessed. As part of the participant 

lifestyle questionnaire, as shown in appendix 1,  participants were asked whether they ever 

smoked regularly (at least one cigarette a day for 12 months or more), what they smoked, 

on what age they started and stopped smoking. 

Alcohol: based on the participants’ lifestyle questionnaire (appendix 1), alcohol 

consumption was divided into non-alcohol consumer if the individual reported consuming 0 

units of alcohol per week, moderate alcohol consumer if the individual reported consuming 

less than 14 units per week (as recommended by UK Department of Health)  (Department of 

Health, 2016) or excess alcohol consumer if the individual was  consuming >14 units per 

week. Those consuming excess alcohol were excluded from some analyses. 

6.3 Statistics 

Statistical analyses were performed using IBM SPSS Statistics Data Editor (version 22). 

Normality was checked for all the data using normality plots and the Shapiro-Wilk test. Data 

were log-transformed or square rooted when they did not approximate normality. For 

alcohol and physical activity, independent-samples T-Test was used to compare means (± 

standard deviation) for normally distributed or medians for log transformed variables. One-

Way ANOVA was used to compare variable means between smoking status and diet score 

groups.  Association between variables were determined using Pearson correlation. 

Statistical significance was accepted at P< 0.05. The relationship between variables was 

explored further in bivariate regression models. These included the independent variable 
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and a series of adjustment variables to test the extent to which the association was 

attenuated by inclusion of the second factor. The regression modelling was conducting using 

the linear regression module within SPSS.   

6.4 Results  

From Table 6.1, it can be seen that alcohol was associated with significantly altered HDL 

oxidation potential, as it was higher in moderate alcohol drinkers than non-drinkers (P= 

0.003) (excess alcohol drinkers were excluded from this comparison). The effect was seen in 

maximum propagation rate and by conjugated dienes formed (P<0.001) while this was not 

the case when measured by T1/2max (P= 0.398). On the other hand, no significant 

difference was revealed looking at the effects of alcohol intake on the %inhibition of LDL 

oxidation by HDL (P= 0.413, P= 0.984, and P=0.986 for T1/2max, maximum propagation rate 

and maximum dienes formed respectively). 

Smoking altered HDL’s susceptibility to oxidation as it was higher in non-smokers than in 

smokers when measured by the two factors, maximum propagation rate and conjugated 

dienes formation, (all P <0.001). But this effect was the opposite when measured by T1/2 

max as it was significantly higher in  smokers than in non- smokers  (P= 0.014). 

Exercise, as shown in Table 6.2, had a significant effect on HDL oxidation as it was 

significantly higher in active individuals than inactive; P= 0.006 for maximum propagation 

rate and P= 0.013 for conjugated dienes formed. T1/2 max did not show any effect of 

exercise (P= 0.475).  The percentage of inhibition of HDL to LDL oxidation, once again, was 

not significantly affected by exercise (P= 0.394) when measured by T1/2max, (P= 0.359) by 

maximum propagation rate and (P= 0.499) by conjugated dienes formed.  

HDL oxidation potential was significantly higher in people eating more vegetables and fruits, 

when measured by maximum dienes formed (P= 0.011) while it was not significantly 

affected when measured by maximum propagation rate (P= 0.082) or T1/2max (P= 0.463).         
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 Table 6.1  The effect of alcohol and smoking on HDL oxidation properties. Total cohort was little different for some factors; n= 257 for T1/2max HDL oxidation; n= 258 HDL oxidation    
(Max-Min OD), n=227 for %inhibition by HDL (T1/2max); n=213 %inhibition of oxidation by HDL (Vmax); n=226 %inhibition of oxidation by HDL (max-min) 

 

Descriptive statistics are presented as mean (standard deviation) for normal distributed variables and median (inter quartile range) for not normal distributed variables. Mod. Alcohol, 
moderate alcohol consumers; Exc. Alcohol, Excessive alcohol consumers; Curr. Smokers, current  smoker;  T1/2max, Time at half maximum; Max. Rate, Maximum propagation rate; Max. 
Diene, maximum dienes formed; HDL-C, high density lipoproteins- cholesterol, ApoA-1, apolipoprotein A-I; cIMT, carotid intima media thickness. * P value was calculated only between 
non-alcohol consumers and moderate alcohol consumers. 

Variable Total cohort 
(n=259) 

Alcohol Consumption Smoking Status P Value 

No Alcohol 
n=71 

Mod. Alcohol 
n=128 

Exc. Alcohol 
n= 59 

Non Smokers 
n= 117 

Ex-Smokers 
n= 67 

Curr. Smokers  
n= 75 

Alcohol* 
 

Smoking 

HDL 

Oxidation 

T1/2max  (min) 
82.39 

(10.70) 

83.07 

(11.11) 

81.71 

(10.63) 

83.18 

(10.49) 

80.76 

(9.57) 

81.89 

(11.87) 

85.34 

(10.80) 
0.398 0.014 

*Max. Rate 

 (milli. U.min-1) 

1.43 

(0.32) 

1.36 

(0.30) 

1.51 

(0.34) 

1.35 

(0.26) 

1.51 

(0.35) 

1.40 

(0.26) 

1.33 

(0.28) 
0.003 <0.001 

Max.  Diene 

(units) 

0.152 

(0.02) 

0.145 

(0.02) 

 

0.157 

(0.02) 

0.147 

(0.016) 

0.157 

(0.02) 

0.150 

(0.02) 

0.145 

(0.018) <0.001 <0.001 

% Inhibition of 

LDL Oxidation by 

HDL 

 T1/2max 
26.05 

(24.41) 

27.27 

(24.73) 

24.16 

(23.31) 

28.05 

(26.40) 

23.49 

(21.60) 

24.74 

(21.48) 

31.22 

(29.90) 
0.413 0.118 

 Max. Rate 
39.50 

(15.08) 

40.26 

(14.89) 

40.32 

(15.81) 

36.98 

(13.89) 

38.95 

(14.66) 

37.88 

(15.39) 

41.71 

(15.43) 
0.984 0.352 

Max. Diene 
11.96 

(8.50-21.18) 

12.95 

(8.34-22.59) 

11.77 

(8.65-23.37) 

10.53 

(7.92-15.46) 

11.27 

(8.00-20.96) 

11.96 

(8.51-21.33) 

13.33 

(8.66-20.80) 
0.986 0.658 

HDL-C 

(mMol/L) 

1.35 

(0.38) 

1.18 

(0.30) 

1.42 

(0.39) 

1.41 

(0.360) 

1.38 

(0.39) 

1.34 

(0.31) 

1.32 

(0.40) 
<0.001 0.540 

ApoA-1 

(mg/dL) 

1.40 

(0.28) 

1.25 

(0.27) 

1.44 

(0.27) 

1.50 

(0.26) 

1.41 

(0.26) 

1.43 

(0.21) 

1.36 

(0.31) 
<0.001 0.335 

cIMT 

(mm) 

0.70 

(0.15) 

0.71 

(0.13) 

0.71 

(0.16) 

0.69 

(0.16) 

0.67 

(0.13) 

0.74 

(0.18) 

0.72 

(0.15) 
0.881 0.004 
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Table 6.2 The effect of diet and exercise on HDL oxidation properties. Total cohort was little different for some factors; n= 257 for T1/2max HDL oxidation; n= 258 HDL oxidation (Max-
Min OD), n=227 for %inhibition by HDL (T1/2max); n=213 %inhibition of oxidation by HDL (Vmax); n=226 %inhibition of oxidation by HDL (max-min) 

Descriptive statistics are presented as mean (standard deviation) for normal distributed variables and median (inter quartile range) for not normal distributed variables. T1/2max, Time at 
half maximum; Max. Rate, Maximum propagation rate; Max. Diene, maximum dienes formed; HDL-C, high density lipoproteins- cholesterol, ApoA-1, apolipoprotein A-; cIMT, carotid 
intima media thickness.  

 

Variable 

Total cohort  
n=259 

 

Exercise Diet P Value 

Inactive 
n=138 

 

Active 
n= 121 

Q1 
n=61 

Q2 
n=72 

Q3 
n=60 

Q4 
n=66 

Exercise 
 

Diet 
 

HDL 

Oxidation 

T1/2max  (min) 
82.39 

(10.71) 

82.84 

(10.99) 

81.88 

(10.39) 

83.71 

(11.15) 

81.53 

(10.70) 

83.36 

(82.70) 

81.26 

(9.94) 
0.475 0.463 

*Max. Prop. R. 

(milli. U.min-1) 

1.43 

(0.32) 

1.38 

(0.28) 

1.48 

(0.35) 

1.36 

(0.28) 

1.44 

(0.41) 

1.41 

(0.29) 

1.50 

(0.25) 
0.006 0.082 

Max.  Diene 

(units) 

0.152 

(0.02) 

0.149 

(0.02) 

0.155 

(0.019) 

0.15 

(0.018) 

0.15 

(0.02) 

0.152 

(0.02) 

0.16 

(0.02) 
0.013 0.011 

% Inhibition of LDL 

Oxidation by HDL 

T1/2max 
26.05 

(24.41) 

27.40 

(24.51) 

24.62 

(24.34) 

24.56 

(24.53) 

29.68 

(27.04) 

28.33 

(21.64) 

21.56 

(23.34) 
0.394 0.250 

Max. Rate 
39.50 

(15.08) 

38.60 

(15.06) 

40.50 

(15.11) 

39.90 

(16.46) 

38.98 

(12.30) 

39.02 

(12.36) 

40.12 

(18.52) 
0.359 0.969 

Max. Diene 
11.96 

(8.50-21.18) 

11.39 

(7.91-20.52) 

12.01 

(8.78-21.35) 

12.05 

(8.36-27.44) 

11.96 

(8.56-16.88) 

11.98 

(7.25-21.39) 

11.73 

(8.68-21.96) 
0.499 0.709 

HDL-C 

(mMol/L) 

1.35 

(0.37) 

1.33 

(0.38) 

1.38 

(0.37) 

1.28 

(0.37) 

1.34 

(0.40) 

1.34 

(0.38) 

1.44 

(0.33) 
0.264 0.114 

ApoA-1 

(mg/dL) 

1.40 

(0.28) 

1.38 

(0.30) 

1.43 

(0.26) 

1.35 

(0.31) 

1.40 

(0.27) 

1.38 

(0.26) 

1.47 

(0.28) 
0.145 0.138 

cIMT 

(mm) 

0.70 

(0.15) 

0.72 

(0.17) 

0.69 

(0.13) 

0.73 

(0.18) 

0.70 

(0.14) 

0.69 

(0.15) 

0.70 

(0.14) 
0.200 0.577 
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As displayed in Table 6.3, none of the parameters reflecting PON1 activity was related to 

alcohol consumption or smoking status. The effect of exercise and diet was also not 

significant on any of the parameters of PON1 assay (Table 6.4). Only exercise revealed an 

effect on the ratio of plasma PON1 activity to standardized HDL PON1 activity as it was 

higher in active individuals than in non-active ones (95% CI,  - 0.50  to - 0.13 ; P= 0.001). 

Except for %HDL2a, all %HDL’s major subclasses and their subpopulations were 

significantly affected by alcohol consumption and smoking status (Table 6.5). Total 

%HDL2 subclass and %HDL2b subpopulation went up with alcohol intake significantly 

(P<0.001) and (P<0.001) respectively and went down with smoking (P=0.002) and (P= 

0.005) respectively. On the other hand, total %HDL3 along with its subpopulations, 

%HDL3a, %HDL3b and %HDL3c went down with alcohol (P< 0.001, P= 0.006,  P= 0.001 

and   P= 0.007 respectively)  and up with smoking  (P= 0.002, P= 0.036),  P=  0.002 and   

P=  0.041 respectively).   Preβ1-HDL was not effected by alcohol intake or by smoking 

status (P= 0.069 and P= 0.432 respectively). 

The effect of exercise on % HDL subclasses and subpopulations was significant for %HDL2 

subclasses. Active people displayed a higher %HDL2 than inactive individuals (P= 0.004) 

and that was the same for %HDL2b subpopulation (P= 0.003) but that was not seen for 

%HDL2a (P= 0.744). An opposite effect was revealed by exercise on %HDL3 subclass 

along with its subpopulations, %HDL3a and  %HDL3b  as it was lower in active individuals; 

(P= 0.004, P= 0.029 and  P= 0.004 respectively). Nonetheless, exercise did not display a 

significant effect on %HDL3c or preβ1-HDL (P= 0.165 and P= 0.372 respectively).  

Investigating  the effect of consuming vegetables and fruits, diet score had a significant 

association with %HDL3b subpopulation as it was lowest in people with highest fruit and 

vegetables intake (P= 0.002). Total %HDL2 along with their subpopulations, HDL2a and 

HDL2b, did not reveal any effect from consuming fruit and vegetables: (P= 0.101), (P= 

0.495), (P= 0.118). That was the same for total %HDL3 subclass along with %HDL3a and 

%HDL3c subpopulations; (P= 0.101, P= 0.229 and P= 0.062 respectively). Diet habit had a 

significant effect on %HDL3b as it was higher in people who are less likely to consume 

vegetables and fruits in their diets (P= 0.002). Finally, there was a trend to lower preβ1-

HDL level with higher diet score but it was only border line significant (P= 0.042).  
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Table 6.3 The effect of alcohol and smoking on Paraxonase results. Total cohort was little different for some factors; n= 305 for plasma Pon1 activity; n= 306 

plasma/HDL pon1 activity (units), n=289 for HDL pon1 standardized to protein (units); n=287 for plasma PON1/standardised HDL PON1 activity (units) 

Descriptive statistics are presented as mean (standard deviation) for normal distributed variables and median (inter quartile range) for not normal distributed 
variables. Mod. Alcohol, moderate alcohol consumers; Exc. Alcohol, Excessive alcohol consumers; Curr. Smokers, current   smoker; PON1, paraxonase 1 enzyme; HDL-C, 
high density lipoproteins- cholesterol, ApoA-1, apolipoprotein A-I; cIMT, carotid intima media thickness. * P value was calculated only between Non alcohol consumers 
and moderate alcohol consumers. 

Variable Total cohort 
n=308 

 

Alcohol Consumption Smoking Status P Value 

No Alcohol 
n=86 

Mod. 
Alcohol 
n=151 

Exc. Alcohol 
n= 70 

Non Smoker 
n=137 

Ex-Smoker 
n=84 

Curr. Smoker 
n=87 

Alcohol* 
 

Smoking 

Plasma PON1 activity 

(unit.ml-1) 

94.64 

(25.85) 

88.83 

(21.24) 

93.72 

(25.2) 

104.19 

(29.73) 

96.31 

(26.12) 

96.55 

(25.78) 

90.16 

(25.23) 
0.132 0.165 

*HDL PON1 activity 

(unit.ml-1) 

30.08 

(10.21) 

27.41 

(8.84) 

29.64 

(9.52) 

34.46 

(11.83) 

30.21 

(9.34) 

30.70 

(9.63) 

29.26 

(11.99) 
0.076 0.641 

Plasma PON1/HDL PON1 

Activity 

3.29 

(0.69) 

3.38 

(0.75) 

3.31 

(0.72) 

3.12 

(0.51) 

3.29 

(0.64) 

3.26 

(0.73) 

3.30 

(0.74) 
0.456 0.931 

HDL stand. to protein 

PON1 (units.ml-1) 

29.55 

(8.21) 

28.16 

(7.16) 

29.17 

(7.70) 

32.45 

(9.69) 

29.83 

(8.49) 

30.40 

(8.43) 

28.34 

(7.48) 
0.342 0.253 

Plasma PON1/Stand. HDL 

PON1 activity (ratio) 

3.29 

(0.80) 

3.25 

(0.87) 

3.31 

(0.83) 

3.29 

(0.63) 

3.32 

(0.77) 

3.35 

(0.95) 

3.20 

(0.67) 

0.618 
0.472 

HDL-C 
1.35 

(0.37) 

1.19 

(0.30) 

1.42 

(0.38) 

1.40 

(0.34) 

1.38 

(0.38) 

1.35 

(0.31) 

1.31 

(0.40) 
<0.001 0.425 

ApoA-1 
1.41 

(0.28) 

1.27 

(0.27) 

1.45 

(0.27) 

1.50 

(0.24) 

1.42 

(0.26) 

1.44 

(0.27) 

1.37 

(0.31) 
<0.001 0.265 

cIMT 
0.70 

(0.15) 

0.69 

(0.13) 

0.71 

(0.15) 

0.68 

(0.15) 

0.67 

(0.12) 

0.73 

(0.17) 

0.71 

(0.15) 

0.465 0.010 
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Table 6.4 The effect of diet and exercise on Paraxonase. Total cohort was little different for some factors; n= 305 for plasma Pon1 activity; n= 306 plasma/HDL 

pon1 activity (units), n=289 for HDL pon1 standardized to protein (units); n=287 for plasma PON1/standardised HDL PON1 activity (units) 

  

 

 

 

 

 

 

 

 

 

 

 

 

Descriptive statistics are presented as mean (standard deviation) for normal distributed variables and median (inter quartile range) for not normal distributed 
variables. Mod. Alcohol, moderate alcohol consumers; Exc. Alcohol, Excessive alcohol consumers; Curr. Smokers, current   smokers; PON1, paraxonase 1 
enzyme; HDL-C, high density lipoproteins- cholesterol, ApoA-1, apolipoprotein A-I; cIMT, carotid intima media thickness. * P value was calculated only between 
Non alcohol consumers and moderate alcohol consumers. 

Variable 
Total 

cohort 
n=308 

Physical Activity Diet  P Value 

Not Active 
n=159 

Active 
n=149 

Q1 
n=77 

Q2 
n=83 

Q3 
n=71 

Q4 
n=77 

Exercise 
 

Diet 
 

Plasma PON1 activity (unit.ml-1) 
94.64 

(25.85) 

93.00 

(26.25) 

96.40 

(25.38) 

92.70 

(25.39) 

96.42 

(27.45) 

93.14 

(24.75) 

96.07 

(25.81) 
0.252 0.734 

*HDL PON1 activity (unit.ml-1) 
30.08 

(10.21) 

30.06 

(10.75) 

30.09 

(9.64) 

29.38 

(9.97) 

30.71 

(11.90) 

28.65 

(9.23) 

31.41 

(9.26) 
0.979 0.339 

Plasma PON1/HDL PON1 

Activity 

3.29 

(0.69) 

3.24 

(0.71) 

3.33 

(0.61) 

3.30 

(0.73) 

3.32 

(0.72) 

3.40 

(0.67) 

3.14 

(0.62) 
0.258 0.140 

HDL stand. to protein PON1 

(units.ml-1) 

29.55 

(8.21) 

30.34 

(8.09) 

28.75 

(8.28) 

28.75 

(8.08) 

29.50 

(8.95) 

29.51 

(7.55) 

30.46 

(8.20) 
0.098 0.669 

Plasma PON1/Stand. HDL PON1 

activity (ratio) 

3.29 

(0.80) 

3.14 

(0.72) 

3.45 

(0.84) 

3.31 

(0.89) 

3.34 

(0.70) 

3.23 

(0.71) 

3.29 

(0.88) 
0.001 0.844 

HDL-C 
1.35 

(0.37) 

1.32 

(0.37) 

1.38 

(0.36) 

1.31 

(0.39) 

1.32 

(0.39) 

1.36 

(0.36) 

1.42 

(0.33) 
0.147 0.295 

ApoA-1 
1.41 

(0.28) 

1.38 

(0.30) 

1.44 

(0.25) 

1.39 

(0.31) 

1.40 

(0.26) 

1.40 

(0.26) 

1.45 

(0.27) 
0.053 0.504 

cIMT 
0.70 

(0.15) 

0.71 

(0.16) 

0.69 

(0.13) 

0.72 

(0.17) 

0.70 

(0.14) 

0.69 

(0.14) 

0.69 

(0.14) 
0.128 0.612 
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 Table 6.5 The effect of alcohol and smoking on HDL subclasses percentages 

Descriptive statistics are presented as mean (standard deviation) for normal distributed variables and median (inter quartile range) for not normal distributed 
variables. Mod. Alcohol, moderate alcohol consumers; Curr. Smoker, current smokers; HDL-C, high density lipoproteins- cholesterol, ApoA-1, apolipoprotein A-I; cIMT, 
carotid intima media thickness.  

 

Variable 
Total cohort 

n=616 

Alcohol Consumption Smoking P Value 

No Alcohol 
n=190 

Mod. Alcohol 
n=278 

Exc. Alcohol 
n= 144 

Non Smoker 
n= 287 

Ex-Smoker 
n= 160 

Curr. Smoker 
n= 169 

Alcohol 
 

Smoking 
 

%HDL2 
56.55 
(7.90) 

54.93 
(7.31) 

57.81 
(8.22) 

56.25 
(7.46) 

57.71 
(7.65) 

55.83 
(8.18) 

55.57 
(7.80) <0.001 0.002 

%HDL2a 

30.20 
(3.83) 

30.36 
(3.57) 

29.97 
(3.97) 

30.46 
(3.85) 

30.46 
(3.89) 

29.60 
(3.51) 

30.32 
(4.00) 0.269 0.066 

%HDL2b 
26.35 
(7.29) 

24.57 
(6.41) 

27.84 
(7.77) 

25.79 
(6.79) 

27.24 
(7.48) 

26.23 
(7.14) 

24.96 
(6.92) <0.001 0.005 

%HDL3 
43.45 
(7.90) 

45.07 
(7.31) 

42.19 
(8.22) 

43.75 
(7.46) 

42.29 
(7.65) 

44.17 
(8.18) 

44.73 
(7.80) <0.001 0.002 

%HDL3a 
27.12 
(5.41) 

27.98 
(4.91) 

26.55 
(5.86) 

27.07 
(4.90) 

26.61 
(5.17) 

27.14 
(5.58) 

27.96 
(5.57) 0.006 0.036 

%HDL3b 
10.64 
(2.85) 

11.07 
(2.88) 

10.17 
(2.73) 

11.00 
(2.88) 

10.22 
(2.80) 

11.06 
(2.88) 

10.98 
(2.80) 0.001 0.002 

%HDL3c 
5.68 

(2.22) 
6.03 

(2.39) 
5.46 

(2.14) 
5.68 

(2.11) 
5.45 

(2.19) 
5.97 

(2.25) 
5.79 

(2.22) 0.007 0.041 

Preβeta1-HDL 
(mg/L) 

54.19 
 (40.62-69.88) 

48.97 
(36.42-63.06) 

56.28 
(40.72-68.68) 

56.53 
(44.92-80.96) 

53.62 
(40.43-68.26) 

56.74 
(41.03-76.47) 

53.19 
(40.24-71.15) 0.069 0.432 

HDL-C 
1.36 

(0.38) 
1.20 

(0.32) 
1.44 

(0.39) 
1.40 

(0.39) 
1.38 

(0.37) 
1.35 

(0.36) 
1.34 

(0.43) <0.001 0.543 

ApoA-1 
1.43 

(0.29) 
1.29 

(0.27) 
1.48 

(0.28) 
1.51 

(0.27) 
1.44 

(0.27) 
1.45 

(0.28) 
1.40 

(0.33) <0.1 0.291 

cIMT 
0.69 

(0.14) 
0.69 

(0.13) 
0.69 

(0.14) 
0.69 

(0.14) 
0.67 

(0.12) 
0.70 

(0.15) 
0.71 

(0.14) 0.695 0.013 
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Table 6.6 The effect of exercise and diet on HDL subclasses percentages 

Variable 

Total cohort 

(n=616) 

 

Physical activity  Diet  P Value 

Not Active 
n= 330 

Active 
n= 286 

Q1 
n=156 

Q2 
n=162 

Q3 
n=145 

Q4 
n=153 

Exer. 
 

Diet 
 

%HDL2 
56.55 

(7.90) 

55.70 

(7.70) 

57.54 

(8.02) 

55.38 

(8.20) 

56.32 

(8.24) 

57.45 

(7.72) 

57.13 

(7.27) 
0.004 0.101 

%HDL2a 
30.20 

(3.83) 

30.15 

(3.71) 

30.25 

(3.98) 

30.04 

(3.80) 

30.23 

(3.94) 

30.59 

(3.67) 

29.95 

(3.92) 
0.744 0.495 

%HDL2b 
26.35 

(7.29) 

25.54 

(7.08) 

27.28 

(7.43) 

25.34 

(7.10) 

26.09 

(7.27) 

26.86 

(7.65) 

27.17 

(7.09) 
0.003 0.118 

%HDL3 
43.45 

(7.90) 

44.31 

(7.70) 

42.46 

(8.02) 

44.61 

(8.20) 

43.68 

(8.24) 

42.55 

(7.72) 

42.87 

(7.27) 
0.004 0.101 

%HDL3a 
27.12 

(5.41) 

27.56 

(5.46) 

26.61 

(5.31) 

27.71 

(5.80) 

26.89 

(5.26) 

27.37 

(5.82) 

26.53 

(4.68) 
0.029 0.229 

%HDL3b 
10.64 

(2.85) 

10.94 

(2.81) 

10.29 

(2.85) 

10.98 

(2.73) 

11.03 

(3.14) 

9.93 

(2.51) 

10.58 

(2.82) 
0.004 0.002 

%HDL3c 
5.68 

(2.22) 

5.79 

(2.28) 

5.54 

(2.15) 

5.90 

(2.32) 

5.75 

(2.33) 

5.25 

(1.94) 

5.77 

(2.22) 
0.165 0.062 

Preβeta1-HDL 

(mg/L) 

54.19 

(40.62-69.88) 

55.25 

(38.83-(71.15) 

53.50 

(42.56-69.56) 

56.61 

(43.52-76.25) 

53.53 

(40.76-67.76) 

49.27 

(38.29-62.74) 

56.10 

(42.12-72.67) 
0.372 0.042 

HDL-C 
1.36 

(0.38) 

1.33 

(0.39) 

1.40 

(0.37) 

1.34 

(0.42) 

1.33 

(0.40) 

1.38 

(0.36) 

1.39 

(0.34) 
0.019 0.477 

ApoA-1 
1.43 

(0.29) 

1.40 

(0.31) 

1.46 

(0.26) 

1.42 

(0.33) 

1.42 

(0.28) 

1.43 

(0.27) 

1.44 

(0.27) 
0.006 0.915 

cIMT 
0.69 

(0.14) 

0.70 

(0.15) 

0.68 

(0.13) 

0.70 

(0.15) 

0.70 

(0.14) 

0.68 

(0.13) 

0.68 

(0.13) 
0.147 0.168 

Descriptive statistics are presented as mean (standard deviation) for normal distributed variables and median (inter quartile range) for not normal distributed variables. ; HDL-C,  high 
density lipoproteins- cholesterol, ApoA-1, apolipoprotein A-I; cIMT, carotid intima media thickness 
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The data in Table 6.1- 6.6 were explored in further detail by looking at the effect of 

alcohol and exercise according to two major demographic divisions (i.e. men versus 

women and least deprived versus most deprived (by pSoBid study design approximately 

equal number of individuals were in these divisions). Figure 6.1 shows that HDL oxidation 

was affected by alcohol intake for both sexes (P= 0.072) for males and (P= 0.001) for 

females but no effect was seen in either of the areas. Figure 6.2 shows that physical 

activity had an effect on the maximum propagation rate of HDL oxidation in men and 

people who lived in affluent areas but not in women or people who lived in most 

deprived areas. 

Reviewing the effect of alcohol consumption on %HDL2b according to the same 

demographic division, revealed a significant difference (Figure 6.3) in %HDL2b in males 

(P= 0.006) and females (P< 0.001) as well in people who lived in most deprived areas (P= 

0.007) and people who lived in affluent areas (P= 0.023). The effect of physical activity, 

on the other hand, on %HDL2b was revealed to be significantly different in females (P= 

0.028) and least deprived areas (P= 0.028) while it was not significant in most deprived 

areas (P= 0.220) and was border line for females (P= 0.053) (Figure 6.4).
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P = 0.072                                                   P = 0.001                                      P = 0.124                                             P = 0.192 

Figure 6.1 Association of alcohol intake with HDL oxidation (measured by maximum propagation rate) by sex and deprivation. Max. Prop. Rate HDl Ox. , maximum 

propagation rate of HDL oxidation; milli.U.min
-1

, milli units.minutes
-1

; M, males; F, Females. L.D, least deprive; M.D., most deprived
 
 

 



6. Alcohol, Smoking, Physical Activity and Diet Association with HDL in the pSoBid Cohort 

© Faridah Alkandari (2017)         192 

               P= 0.013                                                   P= 0.115                                          P= 0.011                                                  P= 0.701 

Figure 6.2 Association of physical activity with HDL oxidation (measured by maximum propagation rate) by sex and deprivation. Max. Prop. Rate HDl Ox. , maximum 

propagation rate of HDL oxidation; milli.U.min
-1

, milli units.minutes
-1

; M, males; F, Females. L.D, least deprive; M.D., most deprived
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Figure 6.3  Association of alcohol intake with %HDL2b by sex and deprivation. M, males; F, Females. L.D, least deprive; M.D., most 

deprived
 
 

 

    P = 0.006                                                 P < 0.001                                          P = 0.023                                             P = 0.007 
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P = 0.013 
P = 0.115 P = 0.011 P = 0.701 

P = 0.028 P = 0.053 P = 0.028 P = 0.220 

Figure 6.4   Association of physical activity  with  %HDL2b by sex and deprivation. M, males; F, Females. L.D, least deprive; M.D., most deprived
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Regression Models 

In Chapter 5, it was seen that %HDL2b was negatively correlated to atherosclerosis, as 

measured by cIMT. There was a trend of decrease of 0.002 mm in cIMT for each 1% increase 

in HDL2b (95% CI, -0.003 to 0.000; P= 0.023). We therefore investigated whether the lifestyle 

markers discussed in this chapter might explain the association of %HDL2b and %HDL3b with 

cIMT in a bivariate regression models. 

As displayed in Table 6.7,  %HDL2b effect was still significant after adjustment in a series of 

two-variable models for : age (β= -0.002)  (95% CI, -0.003 to 0.000; P= 0.01), smoking status  

(β= -0.002 ) (95% CI, -0.003 to 0.000; P= 0.047), alcohol consumption (95% CI, -0.003 to -

0.001: P= 0.011), diet  (95% CI, -0.003 to -0.001: P= 0.036) and physical activity (95% CI, -

0.003 to -0.001: P= 0.032). On the other hand, the effect of %HDL2b was attenuated when 

adjusted for sex (P= 0.187) and by HDL oxidation potential, measured by maximum 

propagation rate (P= 0.441).  

In contrast, %HDL3b was positively associated to atherosclerosis. A trend of   0.005 mm 

increase in cIMT was displayed in each 1% increase in %HDL3b (95% CI, 0.001 to 0.009; P= 

0.011) (Chapter 5). As revealed from bivariate regression models (Table 6.8) , this trend was 

almost the same when adjusted for smoking habit (β= 0.005) (95% CI, 0.001 to 0.009; P= 

0.022), alcohol consumption (β= 0.006) (95% CI, 0.001 to 0.010; P= 0.014), diet score (β= 

0.005) (95% CI, 0.001 to 0.009; P= 0.016) or with physical activity (β= 0.005) (95% CI, 0.001 to 

0.009; P= 0.016). In contrast, the association was attenuated when adjusted for sex (P= 

0.109), age (P= 0.053) and HDL oxidation potential (P= 0.231). 

In similar way, we investigated the effect of HDL susceptibility to oxidation, as measured by 

maximum propagation rate on atherosclerosis. HDL oxidation potential was negatively 

correlated to cIMT. There was a trend of decrease of 0.07 mm in cIMT (95% CI, -0.130 to -

0.011; P= 0.021) for each 1 milli.unit.minutes-1 increase in HDL oxidation rate (Chapter 4). 

This effect was still significant when adjusted for age  (β= -0.06) (95% CI, -0.115 to -0.004; P= 

0.035), alcohol consumption (β= -0.069) (95% CI, -0.135 to -0.002; P= 0.028), , diet (β= -

0.067) (95% CI, -0.127 to -0.007; P=  0.028),    and physical activity (β= -0.066) (95% CI  -0.126 
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to -0.006; P= 0.032). In contrast, the effect was attenuated when adjusted for sex (P= 0.092), 

smoking status (P= 0.068) (Table 6.9), %HDL2b (P= 0.070) and %HDL3b (P= 0.061). 
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Table 6.7 Bivariate regression model of carotid atherosclerosis (cIMT) with %HDL2b and exposure assessment 

with other related variables 

Independent variable Adjustment variable n βeta (95% CI) P-value 

%HDL2b None 567 -0.002 (-0.003, 0.000) 0.023 

 HDL Vmax 239 -0.001 (-0.004,0.002) 0.441 

 Sex 567 -0.001 (-0.003, 0.001) 0.187 

 Age 567 -0.002 (-0.003, 0.000) 0.01 

 Cigarette smoking 567 -0.002 (-0.003, 0.000) 0.047 

 *Alcohol 429 -0.002 (-0.004, -0.001) 0.011 

 Diet 567 -0.002 (-0.003, 0.000) 0.036 

 Physical Activity 567 -0.002 (-0.003, 0.000) 0.032 

*Comparison for alcohol intake was considered between non-alcohol consumers and moderate alcohol 

consumers only. Excess alcohol consumers were neglected 

 

 

Table 6.8 Bivariate regression model of carotid atherosclerosis (cIMT) with %HDL3b and exposure assessment 

with other related variables 

Independent variable Adjustment variable n βeta (95% CI) P-value 

%HDL3b None 566 0.005 (0.001, 0.009) 0.011 

 HDL Vmax 239 0.004 (-0.003, 0.011) 0.231 

 Sex 566 0.003 (-0.001, 0.007) 0.109 

 Age 566 0.004 (0.000, 0.007) 0.053 

 Cigarette smoking 566 0.005 (0.001, 0.009) 0.022 

 *Alcohol 428 0.006 (0.001, 0.010) 0.014 

 Diet 566 0.005 (0.001, 0.009) 0.016 

 Physical Activity 566 0.005 (0.001, 0.009) 0.016 

* Comparison for alcohol intake was considered between non-alcohol consumers and moderate alcohol 

consumers only. Excess alcohol consumers were neglected  
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Table 6.9  Bivariate regression model of carotid atherosclerosis (cIMT) with HDL oxidation potential (maximum 

propagation rate) and exposure assessment with other related variables 

Independent variable Adjustment variable n βeta (95% CI) P-value 

HDL Vmax None 240 -0.07 (-0.130, -0.011) 0.021 

 %HDL2b 239 -0.06 (-0.126, 0.005) 0.070 

 %HDL3b 239 -0.059 (-0.122, 0.003) 0.061 

 Sex 240 -0.055 (-0.117, 0.008) 0.085 

 Age 240 -0.060 (-0.115, -0.004) 0.035 

 Cigarette smoking 240 -0.056 (-0.117, 0.004) 0.068 

 *Alcohol 183 -0.069 (-0.135, -0.002) 0.044 

 Diet 240 -0.067 (--0.127, -0.007) 0.028 

 Physical Activity 240 -0.066 (-0.126, -0.006) 0.032 

*Comparison for alcohol intake was considered between non-alcohol consumers and moderate alcohol 

consumers only. Excess alcohol consumers were neglected 
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In Chapter 5 it was seen that %HDL2b was related significantly to HDL oxidation potential. A 

trend of increase of 0.017 milli.Units.minutes-1 was displayed for each 1% increase in 

%HDL2b (95% CI, 0.012 to 0.021; P< 0.001).  This effect was not affected when adjusted for 

sex (β= 0.015) (95% CI, 0.011 to 0.019; P< 0.001), deprivation state (β= 0.015) (95% CI, 0.011 

to 0.020; P< 0.001), age band (β= 0.017) (95% CI, 0.012 to 0.021; P< 0.001), smoking status 

(β= 0.015) (95% CI, 0.011 to 0.020; P< 0.001), alcohol consumption (β= 0.015) (95% CI, 0.010 

to  0.021; P< 0.001), diet habit (β= 0.016) (95% CI, 0.012 to  0.021; P< 0.001) or physical 

activity (β= 0.016) (95% CI, 0.012  to  0.021; P< 0.001) (Table 6.10).  
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Table 6.10 Bivariate regression model of the association of %HDL2b with HDL oxidation potential (maximum 

propagation rate) and exposure assessment with other related variables 

Independent 

variable 

Adjustment variable n βeta (95% CI) P-value 

%HDL2b None 258 0.017 (0.012, 0.021) <0.001 

 Sex 258 0.015 (0.011, 0.019) <0.001 

 Deprivation 258 0.015 (0.011, 0.020) <0.001 

 Age 258 0.017 (0.012, 0.021) <0.001 

 Cigarette smoking 258 0.015 (0.011, 0.020) <0.001 

 *Alcohol 198 0.015 (0.010, 0.021) <0.001 

 Diet 258 0.016 (0.012, 0.021) <0.001 

 Physical Activity 258 0.016 (0.012,0.021) <0.001 

*Comparison for alcohol intake was considered between non-alcohol consumers and moderate alcohol 

consumers only. Excess alcohol consumers were neglected 
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6.5 Discussion 

The focus of this chapter as set out in the aim was to explore further the findings in Chapter 

4 and Chapter 5 that the HDL properties of oxidation potential and subfraction distribution 

were significantly associated with carotid atherosclerosis. 

The pSoBid population by design was broad ranging in the lifestyle factors including alcohol 

intake, smoking, amount of exercise and type of diet. The study also included equal numbers 

of men and women and people from areas of different derivation levels.  So this chapter 

explored the interaction between these variables and the extent to which they predicted 

cIMT and HDL oxidation potential. The impact of lifestyle on HDL subfractions themselves 

has been well reported in the literature (Diehl, Fuller, Mattock, Salter, el-Gohari & Keen, 

1988; Gardner, Tribble, Young, Ahn & Fortmann, 2000).  

It is important to note that adjustment for other risk factors like inflammatory markers, 

medical status, obesity or BMI was not included in this analysis. Incorporation of these 

potential confounders in complex multivariate models would made interpretation difficult. 

Rather it was decided to address key factors known to affect HDL that had the potential to 

interact with the oxidation potential. 

Alcohol and Cigarette Smoking: 

In this chapter, a decision was made to examine the effect of alcohol intake on HDL 

properties. Individuals who consume > 14 units per week of alcohol were excluded in 

studying the difference in all factors as well and they were not incorporated in regression 

models. Consuming alcohol higher that of recommended guidelines will include people who 

have medical consequence of alcohol excess.  

In the pSoBid population, alcohol had a well reported effect of raising total HDL-C and apoA-

I. These results were compatible with the findings of Gaziano and Monson (Gaziano & 

Manson, 1996), Stamfer et al. (Stampfer, Colditz, Willett, Speizer & Hennekens, 1988) and 

Rimm et al. (Rimm et al., 1991) but smoking did not appear to affect either of these 

measures. Alcohol and cigarette smoking as lifestyle choices had opposite effects on HDL 

susceptibility to oxidation and on HDL subfraction distribution. HDL oxidation potential, as 

measured by maximum propagation rate or maximum dienes formed, went up (comparing 
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no alcohol to moderate alcohol consumers) whereas current smokers had lower HDL 

oxidation potentials than non- smokers and ex-smokers were intermediate. 

These associations have not been reported previously for HDL oxidation potential and 

possibly need to be taken into account when trying to understand the relationship between 

lifestyle and atherosclerosis.  

We noted that alcohol and smoking had no significant effect on the ability of HDL to inhibit 

LDL oxidation. This could be seen in the regression models in Table 6.4 and 6.8 where  

%HDL2b and %HDL3b were related to cIMT. Including cigarette smoking and that alcohol 

intake in the model did not affect the association of these subfractions with carotid 

atherosclerosis. 

On the other hand, when the association of HDL oxidation potential with atherosclerosis was 

examined, alcohol did not appear to affect this relationship but cigarette smoking appear to 

weaken it, so that it became borderline non-significant (P= 0.068).  

Previous publication that examined the relationship between alcohol (Rao et al., 2003), 

smoking (Kumar & Biswas, 2011) and PON1 activity have reported. In the present study 

(Table 6.3), no association between these lifestyle factors and PON1 activity in HDL or 

plasma was detected. 

 

Exercise and Diet  

In the pSoBid population, undertaking active exercise compared to no exercise was 

associated with increase in HDL-C and apoA-I (as shown in Table 6.6). The diet score, 

measuring fruits and vegetable intake, had no influence. Both diet and exercise appeared to 

affect HDL oxidation (Table 6.2). The better choices, that is to be active and eat more fruit 

and vegetables, were associated with higher HDL susceptibility to oxidation measured by 

maximum propagation rate of oxidation and maximum conjugated dienes formed.  

Neither lifestyle choice had an effect on the potency of HDL to inhibit LDL oxidation 

measured by any of the 3 parameters. Diet and exercise had variable effects on HDL 

subfractions (Table 6.6). %HDL2b was higher in active people and %HDL3b was lower but 
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diet had no effect on %HDL2b but did influence %HDL3b. Exercise had a number of 

significant effects on preβeta1-HDL levels whereas diet had a borderline influence.  

Previous publications showed an effect of physical activity  (Sviridov, Kingwell, Hoang, Dart & 

Nestel, 2003) but no significant difference between vegan and omnivore groups (Kuchta et 

al., 2016) on levels of Prebeta1-HDL as well as HDL subfractions. 

Regarding PON1, there was no significant association with diet and exercise apart from 

finding that active individuals had a higher ratio of plasma PON1: standardized HDL PON1 

activity. It is hard to give a reason for this. Nevertheless, the relationship between PON1 

activity and cardiovascular risk has been described to be controversial at present  (Kontush & 

Chapman, 2011). Furthermore, Soran et al. have explained that if PON1 were dissociated 

from HDL and other components like apoA-I and apoM, which is likely to take place once the 

sample is spun, will not  retain their properties (Soran, Hama, Yadav & Durrington, 2012). 

HDL properties and atherosclerosis: 

Bivariate regression models were used to look at the interaction between lifestyle factors 

and the association of %HDL subfractions and HDL oxidation potential to cIMT (Table 6.7-

6.9). Or in another word, we explored to find out to what extent are %HDL2b, %HDL3b and 

HDL oxidation potentialstatistically independent determinants of atherosclerosis. It 

appeared that the association between %HDL2b, %HDL3b and HDL oxidation with cIMT was 

attenuated by gender, which is not a modifiable risk factor, and those associations were  not 

affected by lifestyle factors . Age also explained some of the increase in %HDL3b in the 

model displayed in Table 6.8 but it was only borderline significant. Cigarette smoking was a 

predictor affected the association between HDL oxidation with cIMT in the model displayed 

in Table 6.9. The fact that men and women have different levels of atherosclerosis is well-

known and HDL may be a factor in this in addition to other factors such as oestrogen 

hormones.  

The new finding in this study was that HDL oxidation potential was related to cIMT (Table 

6.9). Inclusion of lifestyle factors in the model did not lead to marked attenuation to the 

association of HDL maximum propagation rate with cIMT although the P-value became 

attenuated for gender and smoking. This distinguished HDL oxidation potential from HDL 

subfraction distribution in relationship to the association to cIMT. However, in the same 
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model, Table 6.9, when %HDL2b or %HDL3b was included, the association of HDL oxidation 

potential with cIMT was attenuated. In the same way, including HDL oxidation in the model 

in Tables 6.7 and 6.8 led to attenuation of the association of HDL subfractions with cIMT.  

This suggested that at least some of the association of HDL oxidation potential with 

atherosclerosis is explained by its relationship to the HDL subfraction distribution. 

Finally, in Chapter 5, it was shown that there was a significant association between %HDL2b 

and HDL oxidation. In Table 6.10, it can be seen that this relationship is not affected by 

lifestyle factors we examined. In Table 6.5 and 6.6, a number of lifestyle factors were 

determinants of both %HDL2b (including alcohol intake, smoking status and physical activity) 

and also of HDL oxidizability (including alcohol intake and smoking) (Table 6.1). The 

regression models showed that the association of %HDL2b with HDL oxidation was not 

affected by adjustment with alcohol, smoking, diet or physical activity. However, the 

association was explained by sex.  
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7 General Discussion  

HDL in epidemiological studies shows a strong inverse relationship with risk of CVD that 

seems to be independent and consistent across populations. Some of the early trials where 

HDL raising drugs were used against placebo like the VA-HIT study (Rubins et al., 1999) 

revealed that, those on the fibrate, which raised HDL, had a 22% reduction in risk of CVD 

compared to those on placebo. However, later trials where fibrate was added to statin 

therapy did not show a risk reduction (e.g. The FIELD study) (Tonkin et al., 2012). Trials of 

other molecules like niacin in the THRIVE trial and CETP inhibition as in the DAL-outcomes 

failed to show any further risk reduction (Hassan, 2014). So the question is, are we failing to 

understand HDL sufficiently, so that we are not using the right intervention? Or alternatively, 

is HDL raising is a waste of time in people taking statin therapy? 

As explained in the introduction, the idea that we needed to know more about structure, 

function and properties of HDL was the reason why this work was undertaken. The focus of 

the study was to look at four aspects of HDL: first, its role in oxidation processes, particularly 

its ability to inhibit LDL oxidation, the second aspect was looking at variations in preβeta1-

HDL levels, the third was to examine PON1 activity which is a potential antioxidative agent, 

and the fourth was to investigate HDL subclass distribution.  

7.1 Study population 

The advantage of using the pSoBid population was that it was a cross sectional study which 

included individuals across a wide range of age, both men and women, and people who 

were likely to have very wide range of lifestyle because they came from extremes of the 

socioeconomic gradient.  The clinical aspects of the study were already performed and so we 

were able to use stored samples which appeared to work well in the validation assays that 

we undertook.  
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7.2 Major findings  

In this study, it was hypothesised that HDL antioxidative effects on LDL oxidation would be 

an important determinant of atherosclerosis. While the assay appeared to work well in that 

HDL from pSoBid samples inhibited the oxidation of a standardized LDL preparation in a 

consistent manner, there was no evidence that this inhibitory effect was related to the 

extent of atherosclerosis of coronary arteries of pSoBid population. However, it was 

surprising that oxidation of HDL itself was related to carotid atherosclerosis and as far as we 

can tell, this was a novel observation.  

The findings in Chapter 4, 5 and 6 show strangely, HDL is more readily oxidized in those 

subgroups associated with less atherosclerosis.  Also increased HDL oxidation susceptibility 

appeared to be related to lifestyle factors associated with less atherosclerosis disease such 

as moderate alcohol intake, not smoking, active exercise habit and higher intake of fruits and 

vegetables. HDL oxidation potential was importantly related to HDL subfractions, particularly 

the %HDL2b. A key observation in understanding the relationship of HDL oxidation potential 

to atherosclerosis is that in a model looking at the association of %HDL2b or %HDL3b with 

cIMT, inclusion of HDL Vmax attenuated strongly the relationship (Table 6.7 and Table 6.8). 

On the other hand, in model relating HDL Vmax to cIMT, the attenuation upon addition of 

%HDL2b or %HDL3b was less marked (Table 6.9). These data suggest, at least in statistical 

terms, that the oxidative potential of HDL was more important than the percentage of HDL 

subfraction distribution in relationship to cIMT. This is a major finding of this thesis and it 

was a surprise since examining HDL oxidation was initially a secondary objective relative to 

the main focus which was on the HDL inhibition to LDL oxidation. The data on ability of HDL 

to inhibit LDL oxidation did not show any association with atherosclerosis. 

7.3 HDL Oxidation Potential  

There are a very limited number of papers on this topic in the literature. Some researchers 

have described that HDL oxidation may contribute to the formation of dysfunctional HDL 

(Navab, Anantharamaiah, Reddy, Van Lenten, Ansell & Fogelman, 2006; Navab et al., 2004). 

In our findings, however, HDL with more susceptibility to oxidation was a better protector 



7. General Discussion  

© Faridah Alkandari (2017)  207 

from atherosclerosis.  Why should HDL oxidation be higher in groups protected from CVD 

risk is not clear? It is important to note that the property we tested was not the amount of 

HDL oxidized in the circulation, but rather the oxidation susceptibility in standardized 

oxidation assays particularly the maximum dienes formation or maximum propagation rate.  

Lipoprotein oxidation studies, showed that maximum diene formation is related to the 

amount of polyunsaturated fat that are present (Parthasarathy, Khoo, Miller, Barnett, 

Witztum & Steinberg, 1990) or the presence of lipid- soluble antioxidant vitamins (Gilligan et 

al., 1994) so one explanation for our finding is that HDL that is more lipid rich, like HDL2b, 

and from people eating more fruits and vegetables have a higher oxidation potential. 

Regarding atherosclerosis, it may be that HDL particles, which are very abundant in the 

circulation, play a sacrificial role in that they are oxidized first and therefore have the 

capacity to prevent LDL oxidation in vivo.  

7.4 Limitation of the Study 

There are a number of limitation concerning the design and conduct of the experimental 

work: 

The validity of the preβ1-HDL assay - ideally that would require further validation e. by 

testing the specificity of the ELISA with other subclasses of HDL. 

1. The studies of the PON1 enzyme may be compromised by the centrifugation step 

used in HDL population as described by Soran et al as when PON1 are dissociated from the 

lipid phase and other components of HDL, such as apoA-I and apoM, all of which may be 

required for HDL (through its PON1 component) to hydrolyse more lipophilic substrates 

(Soran, Hama, Yadav & Durrington, 2012). 

2. In the pSoBid study, we did not study LDL oxidation itself as a predictor of 

atherosclerosis. 

3. Due to resource constraints, we could only study about half of the pSoBid population 

in the HDL oxidation study. This limited the statistical power of the study.  
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4. pSoBid is a cross-sectional sectional study, and as such exposure and outcome 

variables are measured at the same time. We cannot rule out the possibility that 

atherosclerosis itself and its associated consequences, such as inflammation, may directly 

influence HDL oxidation susceptibility (reverse causality). 

7.5 Future experiments and conclusion   

From the work presented in this thesis, it is possible that it is worthwhile exploring in more 

detail what are the determinants of HDL susceptibility to oxidation; is it regulated by the size 

of particles, or the lipid composition or the protein or enzyme content. One way to get 

better insight would be to perform experiments where HDL subclasses are isolated and 

tested individually for oxidation potential. Other in vivo experiments would be to alter the 

diet or to get people to stop smoking as only change and then test HDL- susceptibility to 

oxidation. Repeating these experiments in a prospective large cohort study, although a large 

undertaking, would improve statistical power, and allow us to investigate whether changes 

in HDL oxidation susceptibility precede future development in atherosclerosis. 

In conclusion, this work has added a further potentially important property to the whole 

range of HDL functions that have been already described in the literature. It needs to be 

tested in other subject groups but given the association with atherosclerosis, it is a 

potentially important finding. 
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Appendix 2: pSoBid’s characteristics of study participants 

  

 
 

Least deprived 
(n=342) 

Most deprived 
(n=324) 

Least minus most deprived (adjusted 
for age and sex 

(95% CI)) 
P value 

Classic risk factors (behavioural) 

Smoking 
    

 Ever smoked regularly 121 (35.4%) 241 (74.4%) 12.07 (7.33 to 19.88)† <0.0001 

 Current cigarette smoker 21 (6.1%) 131 (40.4%) 
  

 Data missing 0 (0) 0 (0) 
  

Physical activity 
   

<0.0001 

 Inactive 82 (24%) 160 (49%) 
  

 Moderately inactive 84 (25%) 37 (11%) 
  

 Moderately active 87 (25%) 71 (22%) 
  

 Active 89 (26%) 56 (17%) 
  

 Data missing 0 (0) 0 (0) 
  

Classic risk factors (physiological) 

Cholesterol (mmol/l) 5.29 (1.03) 4.95 (1.05) 0.35 (0.19 to 0.51) <0.0001 

 Data missing 7 (0) 14 (0) 
  

Triglycerides (mmol/l) 1.19 1.44 −0.20 (−0.27 to −0.12)‡ <0.0001 

 Data missing 7 (0) 14 (0) 
  

Low density lipoprotein cholesterol (mmol/l) 3.16 (0.87) 2.86 (0.88) 0.31 (0.17 to 0.44) <0.0001 

 Data missing 7 (0) 18 (0) 
  

High density lipoprotein cholesterol (mmol/l) 1.43 (0.38) 1.30 (0.39) 0.13 (0.08 to 0.19) <0.0001 

 Data missing 7 (0) 14 (0) 
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Least deprived 
(n=342) 

Most deprived 
(n=324) 

Least minus most deprived (adjusted for 
age and sex 

(95% CI)) 
P value 

Glucose (mmol/l) 5.15 (0.69) 5.42 (1.90) -0.41 (-0.69 to -0.14) 0.0088 

 Data missing 19 (7) 35 (16) 
  

Weight (kg) 78.7 (15.3) 78.2 (18.4) 0.34 (−2.06 to 2.74) 0.78 

   Data missing 1 (0) 1 (0)   

Waist/hip ratio 0.88(0.08) 0.92(0.09) -0.04 (-0.05 to -0.03) <0.0001 

   Data missing 3 (1) 4 (2)   

BMI 26.9 (4.49) 28.7 (6.34) −1.81 (−2.64 to −0.98) <0.0001 

 Data missing 2 (0) 2 (0) 
  

Blood pressure (mm Hg) 135 (17.8)/81.4 (10.3) 136 (20.0)/81.1 (11.6) −0.75 (−3.44 to 1.93)/0.27 (−1.32 to 1.87) 0.58/0.74 

 Data missing 2 (0) 2 (0) 
  

Emerging risk factors: insulin resistance/fat mass 

Insulin (mU/l) 6.62 (4.91) 7.72 (5.97) −1.81 (−3.29 to −0.34)     0.011 

 Data missing 18 (8) 41 (26) 
  

Homeostasis model of assessment-insulin 
resistance (HOMA-IR) 

1.52 (1.22) 1.81 (1.60) −0.80 (−1.15 to −0.44)     0.015 

 Data missing 24 (10) 49 (31) 
  

Leptin (ng/ml) 18.7 (16.8) 23.7 (24.0) −4.46 (−7.24 to −1.67)       0.0017 

 Data missing 14 (0) 20 (0) 
  

Emerging risk factors: inflammation/endothelial dysfunction 

C reactive protein (mg/l) 1.16        2.07            −0.57 (−0.74 to −0.41)‡ <0.0001                            
<0.0001 

 Data missing 11 (4)        19 (5) 
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Least 
deprived 
(n=342) 

Most 
deprived 
(n=324) 

Least minus most deprived (adjusted for 
age and sex 

(95% CI)) 
P value 

 

  

Interleukin 6 (pg/ml)                                                      1.36                              2.08                                    -0.43(-0.53 to -0.33)‡                             <0.0001 

Data missing                           13 (3)           24 (8)  

Intercellular adhesion molecule 1 (ng/ml) 235.8           302.4                 −0.25 (−0.29 to −0.21)‡
       

            <0.0001 
 

Data missing 10 (0)           20 (4)    

Emerging risk factors: haemostasis     

von Willebrand factor (IU/dl) 129 (39) 155 (47)            −26 (−33 to −20)  <0.0001 

 Data missing 8 (0) 23 (0) 
  

Fibrinogen (g/l) 3.23 (0.60) 3.50 (0.80)       −0.26 (−0.36 to −0.15) <0.0001 

 Data missing 10 (0) 23 (0) 
  

D-dimer (ng/ml) 130 (97) 155 (102)           −24 (−39 to −8.9) 0.0018 

 Data missing 8 (0) 23 (0) 
 

 
Markers of individual socioeconomic status 

Height (cm) 171.0 (9.4) 165.0 (8.7)      5.72 (4.77 to 6.66) <0.0001 

 Data missing 2 (0) 1 (0) 
  

Leg length (cm) 81.9 (6.0) 78.7 (5.4)    3.07 (2.31 to 3.83) <0.0001 

 Data missing 41 (0) 21 (0) 
  

People per room at age 11 years 1.2 (0.5) 1.8 (0.9) −0.67 (−0.78 to −0.56) <0.0001 

   Data missing 0 (0) 2 (0)   
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Least 
deprived 
(n=342) 

Most 
deprived 
(n=324) 

Least minus most deprived (adjusted for 
age and sex 

(95% CI)) 
P value 

Father’s Register General  Social class    <0.0001 

0 Data not classifiable 15 (4%) 17 (5%) 
  

 I Professional 30 (9%) 1 (0.3%) 
  

 II Managerial & technical 130 (38%) 27 (8%) 
  

 IIIN Skilled non-manual 30 (9%) 13 (4%) 
  

 IIIM Skilled manual 98 (29%) 155 (48%) 
  

 IV Partly skilled 22 (7%) 43 (13%) 
  

 V Unskilled 10 (3%) 42 (13%) 
  

Unknown to participant 4(1%) 16 (5%)   

 Unemployed 1 (0.3%) 10 (3%) 
  

 Data missing 2 (0) 0 (0) 
  

Participant’s Registrar General social class 
   

<0.0001 

 0 Data not classifiable 1 (0.3%) 16 (5%) 
  

 I Professional 58 (17%) 5 (2%) 
  

 II Managerial & technical 193 (57%) 57 (18%) 
  

 IIIN Skilled non-manual 59 (17%) 52 (16%) 
  

 IIIM Skilled manual 16 (5%) 87 (27%) 
  

 IV Partly skilled 10 (3%) 70 (22%) 
  

 V Unskilled 2 (0.6%) 35 (11%) 
  

 Unemployed 1 (0.3%) 2 (0.6%) 
  

 Data missing 2 (0) 0 (0) 
  

 
 

Least 
deprived 
(n=342) 

Most 
deprived 
(n=324) 

Least minus most deprived (adjusted for 
age and sex 

(95% CI)) 
P value 
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Descriptive statistics are presented as mean (standard deviation) for continuous variables and count (%) for categorical outcomes. Geometric means are shown for 
trigycerids, C reactive protein, interleukin 6 , and intercellular adhesion molecule 1. 
In ‘’Data missing’’ fields, figures in brackets indicate the number of values that were removed on the basis of known pre-analytical factors or biological implausibility. 

 

 

 

 

  

 
 

Least 
deprived 
(n=342) 

Most 
deprived 
(n=324) 

Least minus most deprived (adjusted for 
age and sex 

(95% CI)) 
P value 

Annual household income  
 

  <0.0001 

<£15 000                                                                                                                                                            12 (4%)  186 (57%)   

 £16-25 000          29 (9%) 78 (24%) 
  

 £26-35 000 40 (12%) 21 (7%) 
  

 £36-45 000 44 (13%) 13 (4%) 
  

>£45 000 187 (55%) 10 (3%) 
  

 Data missing 30 (0) 16 (0) 
  

Total education (years) 16.1 (3.6) 11.8 (2.5) 4.32 (3.85 to 4.79) <0.0001 

 Data missing 0 (0) 0 (0) 
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Appendix 3: Informed Consent and Health Questionnaire 
Sheet oxidation trials and plasma/ LDL/ & HDL Pools- 
(Chapter 2, 3 & 4) 

 

INFORMED CONSENT FOR QUALITY CONTROL PUROSES 
 

 

 

You are being invited to donate a small amount of blood which will be used in the Vascular 

Biochemistry Laboratory, 2
nd

 floor, McGregor Building for method development or quality 

control purposes. 

 

No significant risks are associated with taking blood samples.  However, it can cause minor 

bruising and only in rare cases may cause inflammation and possible infection.  The sample 

will be taken by a member of staff who has qualifications in phlebotomy. 

 

Please sign below if you are willing to participate. 

 

 

 

 

 

I agree to donate blood for the above purpose. 

 

 

 

Sign …………………………………………… Date ………………………….. 

 

 

Print Name ……………………………………. 

 

 

 

 

Researcher: 

 

 

Sign ……………………………………………. Date ……………………………. 

 

 

Print Name …………………………. 
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Appendix 4: Health Questionnaire – Chapter 2,3 & 4 

Title of Project: Structure and Function of HDL 

Participant  number [           ]    age:___________  M [   ]  F [    ] 

 

Please complete this brief questionnaire to confirm fitness to participate: 

Have you been diagnosed with or currently taking medication for: 

          Diagnosis         Medication 

(a) High cholesterol    [      ]   [      ] 

(b) High triglycerides   [      ]   [      ] 

(c) Hypertension    [      ]   [      ] 

(d) Diabetes    [      ]   [      ] 

(e) Heart Disease    [      ]   [      ] 

(f) Other diseases       [      ]   [      ] 

 

Please mention the other diseases if any: 

________________________________________________________________ 

 

Do you currently smoke?    Yes [     ]  No [     ] 

Have you ever smoked?    Yes [     ]  No [     ] 

Are you fasting for 12 hours    Yes [     ]  No [     ] 

Do you take any vitamins or minerals   Yes [     ]  No [     ] 

Do you take any type of supplement?  Yes [     ]  No [     ] 

If yes, please mention their names?         _________________________________ 

   

  ____________________                    ____________                   ________________ 

  Name of the Participant                            Date                                     Signature 

 ____________________                    ____________                   ________________ 

 Name of the researcher                              Date                                    Signature 
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Appendix 5: Abstract. Preβ1-HDL as Part of the Lipoprotein 
Spectrum and CVD. - Chapter 5.  
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Appendix 6: Poster- Preβ-HDL and pSoBid study. Heart UK   
28th Annual Conference 2014- Chapter 5
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Appendix 7: Lab work plan to run samples for Oxidation and PON1 assay- Chapter 4 

 

DAY TIME TASK 

Sat 11:00 Save oxidation data on Soft max pro files in J & M drive 

Sun 11:00  Take 10 new samples of PSOBIDs from freezers to defrost 

 11:00 Take 1 LDL control from Freezer to defrost 

 11:30-12:00 Prepare 2 L PBS & Tube for Dialysis 

 12:00-12:30 Prepare 10  PSOBIDS for HDL fist spin/ Store the rest for PON assay & Analyse 

 11:30 put LDL control for dialysis 

 12:30 Change dialysis buffer 

 3:00-3:30 Isolate VLDL/LDL form PSOBIDS and start second spin 

   

Mon/Tues/Wed/ Thurs./Fri 8:00-8:15 Save Oxidation data/ Prep HDL & LDL dil sheets 

(Grey bits not on Fridays) 8:15-8:30 Get d.d.H2O & ice 

 08:30   Change LDL dialysis Buffer 

 8:30-9:00 prepare 2 liters of PBS/ Prepare boats/ bottles& reagents (Cu/ PON1& Brad)/Prep PON & Ox. sheets & programs (PBS +Ca) 

 9:00-9:30 prepare desalting columns with PBS+Ca/ Taking Plasma and HDL controls from Freezers to defrost 

 9:30-10:30  Isolate  HDLs of 10 PSOBIDS & Desalt along 1 HDL control/ put HDLs on ice 

 10:30-11:00 Running PON1 assay for 10 HDLs + 10 Li-Hep Plasma of PSOBIDS+ 1 plasma & 1 HDL controls 

 11:00-11:30  Measuring HDL-Protein by Bradford for 10 HDLs of PSOBIDS +1 Plasma &  HDL controls 

 11:30 Taking LDL from Dialysis/  Give aliquot for measuring LDL-C/Put new LDL control for Dialysis 

 11:30 Take out 10 new samples of PSOBIDS from freezers to defrost 

 11:30-12:00 Dilute PSOBIDS HDLs&  HDL control to (250Ug/ml) along with  LDL control (100Ug/ml)   

 12:00-12:30 Prepare soft Max pro for Oxidation/ 5 UM Cucl2 sol. / Start oxidation /re store left HDLs 

 12:30 Change dialysis buffer 

 12:30-1:00 Prepare HDLs first spin/ defrost a new LDL control/ Prepare Dialysis tube 

 3:30-4:00 Isolate VLDL/LDL form PSOBIDS and start second spin 
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