
 
 
 
 
 
 
 
 

 

Turchet, Damiano (2022) Advantageous monopolies in general equilibrium: a 

noncooperative approach. PhD thesis. 

 

 

https://theses.gla.ac.uk/82799/  

 

 

 

Copyright and moral rights for this work are retained by the author  

A copy can be downloaded for personal non-commercial research or study, 

without prior permission or charge  

This work cannot be reproduced or quoted extensively from without first 

obtaining permission in writing from the author  

The content must not be changed in any way or sold commercially in any 

format or medium without the formal permission of the author  

When referring to this work, full bibliographic details including the author, 

title, awarding institution and date of the thesis must be given 

 
 
 
 

 
 
 
 
 
 
 

Enlighten: Theses  

https://theses.gla.ac.uk/ 

research-enlighten@glasgow.ac.uk 
 

https://theses.gla.ac.uk/82799/
https://theses.gla.ac.uk/
mailto:research-enlighten@glasgow.ac.uk


Advantageous Monopolies in General
Equilibrium:

A Noncooperative Approach

by

Damiano Turchet

Submitted in fulfilment of the requirements for the

Degree of

Doctor of Philosophy in Economics

to

The Adam Smith Business School

College of Social Sciences

December, 2021



2



Abstract

The aim of this dissertation is to provide a comprehensive and novel approach to the
study of monopoly in general equilibrium.
First, a foundational paper is provided, in which we define a concept of monopoly
equilibrium within a bilateral exchange market a la Shitovitz, in which an atomic mo-
nopolist, that owns the totality of one commodity, faces an ocean of small traders (also
called the atomless part of the economy), that owns another commodity. A monopoly
equilibrium is defined as a quantity offered by the monopolist that maximizes her util-
ity, given a price selection induces by her offers. After defining the notion of equi-
librium, we provide parallels with the standard notions in partial equilibrium, under
further assumptions on the structure of the demand function of the atomless sector for
the good owned by the monopolist, namely its invertibility and differentiability. In
particular, under the differentiability assumptions, we show that an interior monopoly
equilibrium lies at the tangency point between the monopolists’ indifference curve and
the small traders’ offer curve.
Once the notion of a monopoly equilibrium is established, the first follow up for the
analysis is a game theoretic foundation for such an equilibrium. Following the work
of Busetto et al. (2011), and recognizing the two stage flavour of the definition of a
monopoly equilibrium, we provide a theorem that states the equivalence between the
set of monopoly equilibrium and set of subgame perfect equilibria.
Next, to show the concept of monopoly equilibrium holds non vacuously, I proceed to
study the existence properties of such equilibrium. Non existence examples in which
small traders have CES utility functions are provided and a link between the existence
of an equilibrium and the degree of substitutability of the goods is explored. Therefore,
the existence result is proved by introducing a sufficient assumption on the utilities of
the small traders, stressing that they need to be locally equivalent to CES utility func-
tions whose elasticity is larger than unity.
Finally, an analysis of the optimality of such equilibrium is explored. In particular,
drawing from Aumann seminal’s paper on advantageous monopolies, we show how
our model (under mild assumptions) is able to rule out the unintuitive situation of a
monopolist being better off by being competitive. In particular, we show that a monop-
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olist can be walrasian, i.e. the monoply equilibrium might coincide with a competitive
equilibrium, and we characterize this equivalence proving that this only occurs when-
ever the monopolist optimal bid coincided with her endowment. However, whenever
the set of monopoly equilibria and the set of competitive equilibria are disjoint, then
the monopolist is always better off at a monopoly equilibrium and the small traders
are exploited, i.e. their utility is always lower at a monopoly equilibrium with respect
to a competitive equilibrium.
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Chapter 1

Introduction

Any microeconomics undergraduate textbook will provide an indepth analysis of com-
petitive markets, usually followed by a chapter on monopoly, studied through the lens
of partial equilibrium.
This seems the first and most natural market framework in which we can take into ac-
count the concept of market power. Such a feature should have a direct counterpart in
the general equilibrium setup, in which a more comprehensive market structure is con-
sidered to take into account different markets interacting. Since the pioneering work of
Walras in the late 19th century, economists have focused on the competitive equilibria
features within the general equilibrium analysis.
However, up until the second half of the last century, the concept of market power
went mostly overlooked within this framework. Aumann (1966), in his seminal work
introducing the concept of continuum of traders, paved the way to the study of general
equilibrium models by indicating how it would be natural to consider markets that en-
compass a series of large traders along an ocean of small traders. Specifically, in this
type of markets, it can be shown that the metric structure imposed on the economy
will lead to an endogenous non competitive behaviour for large traders.
Following Aumann’s suggestion, Shitovitz (1973) first studied such markets to show
how specific market structure will preserve the competitive outcomes, expressed as the
equivalence of the core and the set of competitive equilibria. Gabszewicz and Mertens
(1971), in a parallel paper, provide a similar result considering a slightly different set of
markets. However, both of them focused on oligopolistic markets, implicitly describ-
ing monopolistic markets as a particular case of an oligopoly. In another milestone
paper, Aumann (1973) gave rise to a famous paradox regarding monopolistic markets,
where he showed how there might be situations in which a monopolist might be dis-
advataged by exploiting his market power. This apparently counterintutive result is
one of the main motivations for this whole thesis. It is important to notice that this
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12 CHAPTER 1. INTRODUCTION

stream of literature looked at market power from the lens of cooperative game theory,
specifically looking at the relations between the core and the set of competitive equi-
libria.
This cooperative game approach was critiqued in a seminal paper by Okuno et al.
(1980), in which they provide a similar exchange framework in which, by considering
a non cooperative solution, namely a Cournot-Nash equilibrium, traders are shown
to be better off by exploiting their market power, contradicting in particular the re-
sult of Shitovitz (Theorem B in Shitovitz, 1973). This intuition seemed to reconcile the
cournotian analysis in partial equilibrium to a general equilibrium framework. Katz
(1974), following this approach, tried to lay the grounds for an analysis of monopoly
in general equilibrium, but didn’t provide a clear trading mechanism that would lead
to a solution for monopolistic markets.
Another strand of literature, initiated by Gabszewicz and Mertens (1972), introduced
the notion of Cournot-Walras equilibrium, in which few large cournotian traders (i.e.
agents with market power competing á la Cournot) face a number of competitive
traders. The equilibrium notion here is derived from a non cooperative game in which
the two set of traders are assumed to behave in a price-taking and in a price-making
way accordingly. This model portrays a different way to look at market power, but
comes with some limitations, in particular the fact that in the original model agents are
assumed ex-ante to behave in a particular way. In a later paper, Codognato and Gab-
szewicz (1991) redefined the equilibrium notion in an exchange framework, solving an
issue regarding the dependance on the normalisation chosen, which rose in production
economies.
The last stream of literature which provided a different way to look at market power,
is the one on strategic market games, initiated by the seminal works by Shapley and
Shubik (1977) (for a more comprehensive literature review, see Giraud (2003)). In the
original models of exchange, each agent’s strategy entails bids for how much they in-
tend to invest in purchasing other goods and how much they will offer to the market,
generating a non cooperative game in strategic form. In this framework, for example,
we can construct prices as ratios of total bids versus total offers. Clearly, in any discrete
market, each agent has market power, in the sense that each deviation in their strategy
will have a non negligible impact on prices.

Modelling imperfect competition has always posed challenges, and the main streams
of literature mentioned previously are not exhaustive, reflecting the fact that many dif-
ficulties might arise by abandoning the simple and clear set of assumptions that found
the competitive analysis framework (see d’Aspremont et al.(1992) for a clear exposi-
tion of these problems). The following paragraphs describes some of the modelling
problems that would arise in discussing monopoly and how the main model used
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throughout the thesis tackles those problems.
First, one would not want to impose arbitrarily the behaviour of an agent, but rather
obtain it as a consequence of the structure of the economy. To this end, we will model
the economy as a mixed market á la Shitovitz, in which one large trader (the monop-
olist) faces a continuum of traders. Within this setting, the competitive behaviour of
the small traders is a consequence of the sheer number of small traders (following the
argument introduced by Aumann (1966)), opposed to the strategic behaviour of the
monopolist, which is due to her ”bigness”.
One second difficulty, when studying imperfect competition, is the necessity to estab-
lish the variables that will define the strategies of the players. Clearly, one can think of
the duality of the Cournot and Bertrand analysis to show how quantity and price com-
petition might hugely differ. In this thesis, the approach chosen follows the Cournot
setting, mainly to avoid the well known problem that might arise when agents are set-
ting prices. Again, it is also problematic to impose why certain agents (e.g. firms) are
setting the prices while other agents (e.g. consumers) adjust their quantities based on
the observed prices. It is worth noticing, that this problem is actually mitigated in a
monopolistic setting, as the two problems will coincide when the demand function for
the small traders is downward sloping and invertible (i.e. one to one).
Finally, one final problem arises when defining the solution concept to be used within
the Cournot framework, namely the Cournot-Nash or the Cournot-Walras. In other
words, we need to specify whether the strategic agents also have an advantage in mov-
ing first. It will be shown that the proposed solution concept for a monopolistic market
should belong to the Cournot-Walras literature stream, simply because allowing the
game to be simultaneously generates no optimal and non trivial equilibrium (this will
be explained in detail in chapter 3).
One additional remark regards the endowments and the set of goods present in the
economy. Throughout the thesis, we will consider an economy with two goods and
corner endowment, meaning that the monopolist owns one good while small traders
will own the second good. On one hand, the structure of this economy echoes the
notion of bilateral oligopoly (see Gabszewicz and Michel (1997)), even if within a se-
quential setting (for the reason listed above). Moreover, it seems ”neater” to model a
monopolistic market giving the monopolist a corner in a good. On the other hand, the
simplification of assuming the presence of only two goods has one intuitive advantage
and a technical one. Clearly, assuming two goods can be thought as having a case in
which the monopolist offers a consumption good while the small traders own a nu-
meraire good, but it is not limited to the case of quasi linear utilities. There is also a
technical reason that makes the two good preferable, which have to do with the appro-
priate trading model. For example, in this thesis we will refer to the Shapley window
model (studied in Sahi and Yao (1989)), in which trade is completely centralized, but



14 CHAPTER 1. INTRODUCTION

one can claim a better fitting model would be one in which separate trading post are
allowed (e.g. Amir et al. (1990)). In the case of an economy with two goods, these
two models coincide as there can only be one trading post. Extending the model to an
economy with many goods, even assuming a specific trading mechanism, might create
technical complications which risk to disperse the main takeaways obtained through-
out this thesis, but are worth exploring.

The aim of this thesis is to introduce a comprehensive analysis of monopolistic markets
in general equilibrium, drawing the most interesting features from the aforementioned
literature streams. The motivation stems from the fact that most of the literature in gen-
eral equilibrium never focused exclusively on monopoly. This seems an important gap
to be filled, as the study of monopolistic market in isolation may provide deeper and
interesting insights with respect to considering monopoly ”only” a special case of an
oligopoly.
The thesis it structured as follows, chapter 2 establishes the notion of a monopoly equi-
librium in bilateral exchange markets, chapter 3 studies the game theoretic features of
the previously introduced solution concept, chapter 4 deals with the problem of the ex-
istence of the equilibrium and chapter 5 analyses the efficiency and optimality proper-
ties of the equilibrium. Even if this dissertation is intended to be a unique corpus from
the collection of all the chapters, each chapter will be written as a self contained paper,
with his own literature review and bibliography. For this reason, the same model will
be repeated throughout the chapters 1.

In Chapter 2, we propose an equilibrium definition for monopolistic markets. We con-
sider a bilateral exchange model, in which the monopolist holds one good and she
trades it with a continuum of small traders, who hold a second good. We won’t inves-
tigate here the case of production. We define an explicit trade mechanism, such that
each traders chooses quantities to send to the market in exchange for the good they
don’t own, and prices are set in such a way that they clear the market. The structure of
the traders set will imply that the monopolist has market power. The monopoly equi-
librium will be then the (positive) optimal supply of the monopolist that maximizes
her utility after trade. On the other hand, small traders will behave competitively and
will be allocated their walrasian demand at the emerging prices. We will also assume
that traders will eventually coordinate correctly in the case more than one price might
be compatible with the optimal action of the monopolist.
Once the solution concept is clearly defined, we compare it with the partial equilibrium
analysis by showing that under assumptions that guarantee that the demand curve for
the small traders is well behaved (i.e. invertible), we can define the optimal point ge-

1to avoid redundancy, some proofs will be omitted and referred to a different chapter
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ometrically as the one in which the indifference curve of the monopolist is tangent to
the offer curve.
Finally, we compare our solution concept to the ones present in the literature, namely
the initial idea of Pareto, who considered a monopolistc market similiar to ours, but in
which the monopolist gets no utility from the goods she owns, and the work of Katz,
who introduced the intuition about the equilibrium point in monopolies, but without
providing a trading mechanism.

The third chapter provide an explicit game theoretic foundation of the monopoly equi-
librium proposed. In particular, we show how a monopoly equilibrium can never be
reconciliated with a one stage game, namely a Cournot-Nash equilibrium. It is easy to
show that generally the sets of monopoly equilibria and the set of Cournot-Nash don’t
coincide. However, in the spirit of Busetto et al.(2008), we recognize the 2 stage flavour
of the setting, and we show how our equilibrium can be considered a special case of
a Cournot-Walras equilibrium in monopolistic markets. Therefore, we can proof that
the set of monopoly equilibria coincides with the set of subgame perfect equilibria of
a two stage game in which the monopolist moves first and the small traders move
second. This provides an interesting insight about the notion of market power in our
monopolistic market, that is the first mover advantage, which in this situation can
alone account for the market power the monopolist expresses.

The fourth chapter aims at providing a set of conditions that would guarantee the
equilibrium to exist, i.e. to guarantee that there is trade in equilibrium. The previous
literature of existence in market games either relies on assumptions on the set of traders
(e.g. at least two large traders with indifference curves that doesn’t touch the axis) or
on the endowments (strictly positive for both goods, either for large traders or in the
aggregate for small traders). We recognize that none of the previous assumptions hold
in the monopolistic market we analyze, and therefore a new set of conditions should
be provided. In particular, we decide to focus on the shape of the aggregate demand
function. We explore the relations between the degree of substitutability of the two
goods and the existence of the equilibrium. We consider simple models in which the
atomless sector is homogeneous, i.e. all traders have the same tastes, represented by
a constant elasticity of scale (CES) utility function. In this case, we show that if the
elasticity parameter is low, the monopolist can manipulate indefinetely the price in her
favour, leading to a non existence of the equilibrium. It is worth noticing here that the
non existence stems from an impossibility of defining an optimal bid, rather than from
an autharchic situation in which there is no trade. On the other hand, we know that if
all small traders have utilities represented by linear tastes, i.e. perfect substitutes, then
the monopoly equilibrium will coincide with the competitive equilibrium. Indeed, we
know that this situation takes away all the price-making power from the monopolist,
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who will then act as a price-taker, generating in the equilibrium a walrasian result.
By considering these two ”forces”, we recognize that the aggregate demand function
should be enough elastic, at least for high prices, such that the monopolist can act com-
petitively and therefore make sure that her offer is actually strictly positive. We provide
a technical result in which we provide an existence theorem taking into account this
feature.

The fifth chapters’ motivation lies in the previously introduced Aumann paradox, i.e.
the possibility for the monopolist to be better off by acting competitively. To address
this problem within our model, we first provide conditions under which a monopoly
equilibrium is efficient and we prove that the only way a monopolistic outcome can
be Pareto efficient is when the outcome itself is competitive. Strangely enough, we are
also able to show that this happens non vacuously and characterize those situations in
which a monopolist acts as a price taker, which is when the monopolist offers all of her
endowment. It is indeed noticing that there might be situations in which the outcome
of a monopolistic market might be competitive.
We then move to analyzing the case in which the two sets, monopoly equilibria and
competitive equilibria, are disjoint. First, given our definition of equilibrium, it can
never happen that the monopolist is better off at any competitive equilibria, therefore
we can exclude Aumann paradox within our framework. This can be shown by a sim-
ple revealed preference argument.
Moreover, we confirm the intuition from the partial equilibrium analysis, stating that
the price (here specified as a price ratio of the good owned by the monopolist ver-
sus the other good, owned by the small traders) is higher at a monopoly equilibrium
with respect to the competitive case. In the same way, under the assumption of the
invertibility of the demand function, that the monopolist will restrict her supply to the
market at a monopoly equilibrium (with respect to the competitive counterpart).
Focusing on the price finding, we can generally show that this implies that small
traders are exploited at the monopoly equilibrium, meaning that their utility is lower at
the monopoly equilibrium with respect to the competitive equilibrium. This provides
a clear impact on welfare, as we can interpret the atomless sector as the ”consumers”
side in the classical framework. Therefore, important implications can be derived from
these results, also in an antitrust context.
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Chapter 2

On the Foundation of Monopoly
Equilibrium in Bilateral Exchange

1

Abstract

We address the problem of monopoly in general equilibrium in a mixed version of a
monopolistic two-commodity exchange economy where the monopolist, represented
as an atom, is endowed with one commodity and “small traders,” represented by an
atomless part, are endowed only with the other. We provide a theoretical founda-
tion of the monopoly solution in this bilateral framework through a formalization of
an explicit trading process inspired by Pareto (1896) for an exchange economy with
a finite number of commodities. Finally, we give the conditions under which our
monopoly solution coincides with that defined by Kats (1974) and those, more restric-
tive, under which it has the geometric characterization proposed by Schydlowsky and
Siamwalla (1966). Moreover, we establish the formal relationships between our con-
cept of a monopoly equilibrium and that proposed by Pareto (1896), by redefining the
latter in terms of our bilateral exchange setting.

2.1 Introduction

To the best of our knowledge, Vilfredo Pareto was the first who gave a formalized
treatment of the problem of monopoly for a general pure exchange economy with any

1Part of the material of this chapter can be found in the working paper Busetto F., Codognato G.,
Ghosal S. and Turchet D.(2020), On the Foundation of Monopoly Equilibrium in Bilateral Exchange
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20 CHAPTER 2.

finite number of commodities, in the first volume of his Cours d’économie politique, pub-
lished in 1896, pp. 62-68 (henceforth just Pareto (1896)). His monopoly quantity-setting
solution rests on the assumption that the monopolist gets no utility from the only com-
modity he is endowed with, but only cares about the revenue he can obtain by selling
it.

Seventy years later, Schydlowsky and Siamwalla (1966) proposed a formulation of the
problem of monopoly without any mention to the previous work by Pareto (1896).
In the context of a pure exchange economy, they considered a bilateral framework
where one commodity is held by one trader behaving as a monopolist while the other
is held by a “competitors’ community.” In contrast to Pareto’s analysis, the monopo-
list desires both commodities. The authors provided a geometrical representation of
the monopoly solution as the point of tangency between the monopolist’s indifference
curve and the offer curve of the competitors’ community. They did not mention ei-
ther the geometrical treatment of the monopoly problem previously given, at a very
embryo stage, by Edgeworth (1881).

A few years later, Kats (1974), again without mentioning Pareto (1896), analyzed a pure
exchange economy where one trader behaves as a monopolist, “calling the game” and
maximizing his utility, whereas all the other traders in the economy behave competi-
tively. He claimed that the monopoly quantity-setting solution must correspond to the
monopolist’s most preferred commodity bundle compatible with the aggregate initial
endowments and with the offer curve of the competitive traders.

In this paper, we provide a theoretical foundation of the monopoly solution by formal-
izing an explicit trading process inspired to that first sketched by Pareto (1896).

We consider the mixed version of a monopolistic two-commodity exchange economy
introduced by Shitovitz (1973) in his Example 1, in which one commodity is held only
by the monopolist, represented as an atom, and the other is held only by small traders,
represented by an atomless part. This framework can also be used to represent a finite
exchange economy if the atomless part is split into a finite number of types with traders
of the same type having the same endowments and preferences.

In our setup, the monopolist acts strategically, making a bid of the commodity he holds
in exchange for the other commodity, while the atomless part behaves à la Walras.
Given the monopolist’s bid, prices adjust to equate the monopolist’s bid to the aggre-
gate net demand of the atomless part. Each trader belonging to the atomless part then
obtains his Walrasian demand whereas monopolist’s final holding is determined as
the difference between his endowment and his bid, for the commodity he holds, and
as the value of his bid in terms of relative prices, for the other commodity. We define a
monopoly equilibrium as a strategy played by the monopolist, corresponding to a pos-
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itive bid of the commodity he holds, which guarantees him to obtain, via the trading
process described above, a most preferred final holding among those he can achieve
through his bids.

The theoretical framework proposed in this paper to define and analyse monopoly
equilibrium in bilateral exchange can be simplified, under the assumption that the ag-
gregate demand of the atomless part for the commodity held by the monopolist is
invertible, and compared with the standard partial equilibrium analysis of monopoly.
Indeed, we show that, if this assumption holds, at an allocation corresponding to a
monopoly equilibrium, the utility of the monopolist is maximal in the feasible (with
respect to aggregate initial endowments) complement of the offer curve of the atom-
less part, thereby providing a foundation of the monopoly solution proposed by Kats
(1974). Moreover, we show that, if the aggregate demand of the atomless part for
the commodity held by the monopolist is not only invertible but also differentiable, a
monopoly equilibrium has the geometric characterization proposed by Schydlowsky
and Siamwalla (1966). This result rests on a notion which has a well-known counter-
part in partial equilibrium analysis and was also used by Pareto (1896) to formulate
his solution to the monopoly problem in exchange economies: the marginal revenue of
the monopolist.

Finally, we go deeper into the relationship between our analysis and that proposed by
Pareto (1896), by redefining and studying this author’s concept of a monopoly equi-
librium within our framework of bilateral exchange, under the assumption that the
aggregate demand of the atomless part for the commodity held by the monopolist is
invertible.

The paper is organized as follows. In Section 2, we introduce the mathematical model
and we define the notion of a monopoly equilibrium. In Section 3, we compare the
monopoly equilibrium and the Cournot-Nash equilibrium. In Section 4, we provide a
game theoretical foundation of the monopoly solution in a two-stage framework. In
Section 5, we discuss the model. In Section 6, we characterize the monopoly equilib-
rium under the assumption that the aggregate demand of the atomless part for the
commodity held by the monopolist is invertible and we discuss the literature related
to our monopoly solution. In Section 7, we draw some conclusions and we suggest
some further lines of research.

2.2 Mathematical model

We consider a pure exchange economy with large traders, represented as atoms, and
small traders, represented by an atomless part. The space of traders is denoted by
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the measure space (T, T , µ), where T is the set of traders, T is the σ-algebra of all
µ-measurable subsets of T, and µ is a real valued, non-negative, countably additive
measure defined on T . We assume that (T, T , µ) is finite, i.e., µ(T) < ∞. Let T0 denote
the atomless part of T. We assume that µ(T0) > 0.2 Moreover, we assume that T \ T0 =

{m}, i.e., the measure space (T, T , µ) contains only one atom, the “monopolist.” A
null set of traders is a set of measure 0. Null sets of traders are systematically ignored
throughout the paper. Thus, a statement asserted for “each” trader in a certain set is to
be understood to hold for all such traders except possibly for a null set of traders. The
word “integrable” is to be understood in the sense of Lebesgue.

In the exchange economy, there are two different commodities. A commodity bundle
is a point in R2

+. An assignment (of commodity bundles to traders) is an integrable
function x: T → R2

+. There is a fixed initial assignment w, satisfying the following
assumption.

Assumption 1. wi(m) > 0, wj(m) = 0 and wi(t) = 0, wj(t) > 0, for each t ∈ T0,
i = 1 or 2, j = 1 or 2, i 6= j.

An allocation is an assignment x such that
∫

T x(t) dµ =
∫

T w(t) dµ. The preferences
of each trader t ∈ T are described by a utility function ut : R2

+ → R, satisfying the
following assumptions.

Assumption 2. ut : R2
+ → R is continuous, strongly monotone, and strictly quasi-concave,

for each t ∈ T.

Let B denote the Borel σ-algebra of R2
+. Moreover, let T ⊗B denote the σ-algebra

generated by the sets D× F such that D ∈ T and F ∈ B.

Assumption 3. u : T × R2
+ → R, given by u(t, x) = ut(x), for each t ∈ T and for each

x ∈ R2
+, is T ⊗B-measurable.

A price vector is a nonnull vector p ∈ R2
+. Let X0 : T0× R2

++ → P(R2
+) be a correspon-

dence such that, for each t ∈ T0 and for each p ∈ R2
++, X0(t, p) = argmax{u(x) : x ∈

R2
+ and px ≤ pw(t)}. For each p ∈ R2

++, let
∫

T0
X0(t, p) dµ = {

∫
T0

x(t, p) dµ : x(·, p)
is integrable and x(t, p) ∈ X0(t, p), for each t ∈ T0}. Since the correspondence X0(t, ·)
is nonempty and single-valued, by Assumption 2, it is possible to define the Walrasian
demand of traders in the atomless part as the function x0 : T0 × R2

++ → R2
+ such that

X0(t, p) = {x0(t, p)}, for each t ∈ T0 and for each p ∈ R2
++.

We can now state and show the following proposition.

Proposition 1. Under Assumptions 1, 2, and 3, the function x0(·, p) is integrable and
∫

T0
X0(t, p) dµ =∫

T0
x0(t, p) dµ for each p ∈ R2

++.

2The symbol 0 denotes the origin of R2
+ as well as the real number zero: no confusion will result.
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Proof. . Let p ∈ Rl
++. Then, the graph of the correspondence X(·, p), {(t, x) : x ∈

X(·, p)}, is a subset of T ⊗B, by the same argument as that used by Busetto et al.
(2011) (see the proof of their Proposition). But then, by the measurable choice theorem
in Aumann (1969), there exists a measurable function x̄(·, p) such that, x̄(t, p) ∈ X(t, p),

for each t ∈ T0, which is also integrable as x̄j(t, p) ≤ ∑l
i=1 piwi(t)

pj , j = 1, 2, for each

t ∈ T0. We must have that x0(·, p) = x̄(·, p) as X0(t, p) = {x0(t, p)}, for each t ∈ T0.
Hence, the function x0(·, p) is integrable and

∫
T0

X0(t, p) dµ =
∫

T0
x0(t, p) dµ, for each

p ∈ R2
++. �

Let E(m) = {(eij) ∈ R4
+ : ∑2

j=1 eij ≤ wi(m), i = 1, 2} denote the strategy set of atom
m. We denote by e ∈ E(m) a strategy of atom m, where eij, i, j = 1, 2, represents the
amount of commodity i that atom m offers in exchange for commodity j. Moreover, we
denote by E the matrix corresponding to a strategy e ∈ E(m).

We then provide the following definition.

Definition 1. Given a strategy e ∈ E(m), a price vector p is said to be market clearing if

p ∈ R2
++,

∫
T0

x0j(t, p) dµ +
2

∑
i=1

eijµ(m)
pi

pj =
∫

T0

wj(t) dµ +
2

∑
i=1

ejiµ(m), (1)

j = 1, 2.

The following proposition shows that market clearing price vectors can be normalized.

Proposition 2. Under Assumptions 1, 2, and 3, if p is a market clearing price vector, then αp,
with α > 0, is also a market clearing price vector.

Proof. . It straightforwardly follows from homogeneity of degree zero of the function
x0(t, ·), for each t ∈ T0, and from (1). �

Henceforth, we say that a price vector p is normalized if p ∈ ∆ where ∆ = {p ∈ R2
+ :

∑2
i=1 pi = 1}. Moreover, we denote by ∂∆ the boundary of the unit simplex ∆.

The next proposition shows that the two equations in (1) are not independent.

Proposition 3. Under Assumptions 1, 2, and 3, given a strategy e ∈ E(m), a price vector
p ∈ ∆ \ ∂∆ is market clearing for j = 1 if and only if it is market clearing for j = 2.

Proof. Let a strategy e ∈ E(m) be given. Suppose, without loss of generality, that
w1(m) > 0. Let p ∈ ∆ \ ∂∆ be a price vector. Suppose that p is market clearing for
j = 1. Then, (1) reduces to ∫

T0

x01(t, p) dµ = e12µ(m).
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We have that

p1
∫

T0

x01(t, p) dµ + p2
∫

T0

x02 dµ(t, p) = p2
∫

T0

w2(t) dµ,

as p1x01(t, p) + p2x02(t, p) = p2w2(t), by Assumption 2, for each t ∈ T0. Then, we have
that ∫

T0

x02 dµ(t, p) + e12µ(m)
p1

p2 =
∫

T0

w2(t) dµ.

Therefore, p is market clearing for j = 2. Suppose now that (1) is satisfied for j = 2.
Then, (1) reduces to

∫
T0

x02 dµ(t, p) + e12µ(m)
p1

p2 =
∫

T0

w2(t) dµ.

But then, we have that

p2
∫

T0

x02 dµ(t, p) + p1e12µ(m) = p2
∫

T0

w2(t) dµ.

On the other hand, we know from the previous argument that

p1
∫

T0

x01(t, p) dµ + p2
∫

T0

x02 dµ(t, p) = p2
∫

T0

w2(t) dµ.

Then, we obtain that ∫
T0

x01(t, p) = e12µ(m).

Therefore, p is market clearing for j = 1. Hence, p ∈ ∆ \ ∂∆ is market clearing for j = 1
if and only if it is market clearing for j = 2. �

The next proposition is based on Property (iv) of the aggregate demand of an atomless
set of traders established by Debreu (1982, p. 728).

Proposition 4. Under Assumptions 1, 2, and 3, let {pn} be a sequence of normalized price
vectors such that pn ∈ ∆ \ ∂∆, for each n = 1, 2, . . ., and which converges to a normalized
price vector p̄. If p̄i = 0 and wi(m) > 0, then the sequence {

∫
T0

x0i(t, pn) dµ} diverges to
+∞.

Proof. According to Debreu (1982), we let |x| = ∑2
i=1 |xi|, for each x ∈ R2

+, and d[0, V] =

infx∈V |x|, for each V ⊂ R2
+. Let {pn} be a sequence of normalized price vectors such

that pn ∈ ∆ \ ∂∆, for each n = 1, 2, . . ., which converges to a normalized price vector
p̄. Suppose, without loss of generality, that p̄1 = 0 and w1(m) > 0. Then, we have
that p̄2 = 1. But then, the sequence {d[0, X0(t, pn)]} diverges to +∞ as p̄2w2(t) > 0,
for each t ∈ T0, by Lemma 4 in Debreu (1982, p. 721). Therefore, the sequence
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{d[0,
∫

T0
X0(t, pn) dµ]} diverges to +∞, by the argument used in the proof of Prop-

erty (iv) in Debreu (1982, p. 728). This implies that the sequence ∑2
i=1{

∫
T0

x0i(t, pn) dµ}
diverges to +∞ as

∫
T0

X0(t, p) dµ =
∫

T0
x0(t, p) dµ, for each p ∈ ∆ \ ∂∆, by Proposition

1. Suppose that the sequence {
∫

T0
x02(t, pn) dµ} diverges to +∞. Then, there exists

an n0 such that
∫

T0
x02(t, pn) dµ >

∫
T0

w2(t) dµ, for each n ≥ n0. But we have that
x02(t, p) ≤ w2(t), for each t ∈ T0 and for each p ∈ ∆ \ ∂∆, a contradiction. Then, the
sequence {

∫
T0

x01(t, pn) dµ} diverges to +∞. Hence, the sequence {
∫

T0
x0i(t, pn) dµ}

diverges to +∞ whenever p̄i = 0 and wi(m) > 0. �

The following proposition provides a necessary and sufficient condition for the exis-
tence of a market clearing price vector. In order to state and prove it, we provide the
following preliminary definitions.

Definition 2. A square matrix C is said to be triangular if cij = 0 whenever i > j or cij = 0
whenever i < j.

Definition 3. We say that commodities i, j stand in relation Q if wi(t) > 0, for each t ∈ T0,
and there is a nonnull subset Ti of T0 such that ut(·) is differentiable, additively separable, i.e.,

ut(x) = vi
t(xi) + vj

t(xj), for each x ∈ R2
+, and dvj

t(0)
dxj = +∞, for each t ∈ Ti.3

Moreover, we introduce the following assumption.

Assumption 4. Commodities i, j stand in relation Q.

Proposition 5. Under Assumptions 1, 2, 3, and 4, given a strategy e ∈ E(m), there exists a
market clearing price vector p ∈ ∆ \ ∂∆ if and only if the matrix E is triangular.

Proof. Suppose, without loss of generality, that w1(m) > 0 and let e ∈ E(m) be a
strategy. Suppose that there exists a market clearing price vector p ∈ ∆ \ ∂∆ and
that the matrix E is not triangular. Then, it must be that e12 = 0. But then, we
have that

∫
T2 x01(t, p) dµ = 0 as µ(T2) > 0, by (1). Consider a trader τ ∈ T2. We

have that ∂uτ(x0(τ,p))
∂x1 = +∞ as 2 and 1 stand in the relation Q, by Assumption 4, and

∂uτ(x0(τ,p))
∂x1 ≤ λp1, by the necessary conditions of the Kuhn-Tucker theorem. More-

over, it must be that x02(τ, p) = w2(τ) > 0 as uτ(·) is strongly monotone, by As-
sumption 2, and pw(τ) > 0. Then, ∂uτ(x0(τ,p))

∂x2 = λp2, by the necessary conditions

of the Kuhn-Tucker theorem. But then, it must be that ∂uτ(x̂(τ))
∂x2 = +∞ as λ = +∞,

contradicting the assumption that uτ(·) is continuously differentiable. Therefore, the
matrix E must be triangular. Suppose now that E is triangular. Then, it must be that
e12 > 0. Let {pn} be a sequence of normalized price vectors such that pn ∈ ∆ \ ∂∆, for

3In this definition, differentiability is to be understood as continuous differentiability and includes
the case of infinite partial derivatives along the boundary of the consumption set (for a discussion of
this case, see, for instance, Kreps (2012, p. 58)).
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each n = 1, 2, . . ., which converges to a normalized price vector p̄ such that p̄1 = 0.
Then, the sequence {

∫
T0

x01(t, pn) dµ} diverges to +∞, by Proposition 4. But then,
there exists an n0 such that

∫
T0

x01(t, pn) dµ > e12µ(m), for each n ≥ n0. There-
fore, we have that

∫
T0

x01(t, pn0) dµ > e12µ(m). Let q ∈ ∆ \ ∂∆ be a price vector

such that
q2 ∫

T0
w2(t) dµ

q1 = e12µ(m). Consider first the case where
∫

T0
x01(t, q) dµ =

e12µ(m). Then, q is market clearing as it is market clearing for j = 1, by Proposi-
tion 3. Consider now the case where

∫
T0

x01(t, q) dµ 6= e12µ(m). Then, it must be

that
∫

T0
x01(t, q) dµ < e12µ(m) as x01(t, q) ≤ q2w2(t)

q1 , for each t ∈ T0. But then, we

have that
∫

T0
x01(t, q) dµ < e12µ(m) <

∫
T0

x01(t, pn0) dµ. Let O ⊂ ∆ \ ∂∆ be a com-
pact and convex set which contains pn0 and q. Then, the correspondence

∫
T0

X0(t, ·) dµ

is upper hemicontinuous on O, by the argument used in the proof of Property (ii) in
Debreu (1982, p. 727). But then, the function {

∫
T0

x01(t, ·) dµ} is continuous on O as∫
T0

X0(t, p) dµ =
∫

T0
x0(t, p) dµ, for each p ∈ ∆ \ ∂∆, by Proposition 1. Therefore, there

is a price vector p̌ ∈ ∆ \ ∂∆ such that
∫

T0
x01(t, p̌) dµ = e12µ(m), by the intermediate

value theorem. Then, p̌ is market clearing as it is market clearing for j = 1, by Propo-
sition 3. Hence, given a strategy e ∈ E(m), there exists a market clearing price vector
p ∈ ∆ \ ∂∆ if and only if the matrix E is triangular. � �

We denote by π(·) a correspondence which associates, with each strategy e ∈ E(m),
the set of price vectors p satisfying (1), if E is triangular, and is equal to {0}, otherwise.
A price selection p(·) is a function which associates, with each strategy selection e ∈
E(m), a price vector p ∈ π(e).

Given a strategy e ∈ E(m) and a price vector p, consider the assignment determined
as follows:

xj(m, e, p) = wj(m)−
2

∑
i=1

eji +
2

∑
i=1

eij
pi

pj , if p ∈ ∆ \ ∂∆,

xj(m, e, p) = wj(m), otherwise,

j = 1, 2,

xj(t, p) = x0j(t, p), if p ∈ ∆ \ ∂∆,

xj(t, p) = wj(t), otherwise,

j = 1, 2, for each t ∈ T0.

Given a strategy e ∈ E(m) and a price selection p(·), traders’ final holdings are deter-
mined according to this rule and consequently expressed by the assignment

x(m) = x(m, e, p(e)),
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x(t) = x(t, p(e)),

for each t ∈ T0.

The next proposition shows that traders’ final holdings constitute an allocation.

Proposition 6. Under Assumptions 1, 2, 3, and 4, given a strategy e ∈ E(m) and a price
selection p(·), the assignment x(m) = x(m, e, p(e)), x(t) = x(t, p(e)), for each t ∈ T0, is an
allocation.

Proof. Let a price selection p(·) and a strategy e ∈ E(m) be given. Suppose that E is not
triangular. Then, we have that x(m) = x(m, e, p(e)) = w(m) and x(t) = x(t, p(e)) =

w(t), for each t ∈ T0 as p(e) = 0. Suppose that E is triangular. Then, we have that

∫
T

xj(t) dµ = (wj(m)−
2

∑
i=1

eji +
2

∑
i=1

eij
pi

pj )µ(m) +
∫

T0

x0j(t, p) dµ

=
∫

T
wj(t) dµ,

j = 1, 2, as p(e) is market clearing. Hence, given a price selection p(·) and a strategy
e ∈ E(m), the assignment x(m) = x(m, e, p(e)), x(t) = x(t, p(e)), for each t ∈ T0, is an
allocation. �

We can now provide the definition of a monopoly equilibrium.

Definition 4. A strategy ẽ ∈ E(m) such that Ẽ is triangular is a monopoly equilibrium, with
respect to a price selection p(·), if

um(x(m, ẽ, p(ẽ)) ≥ um(x(m, e, p(e)),

for each e ∈ E(m).

A monopoly allocation is an allocation x̃ such that x̃(m) = x(m, ẽ, p(ẽ)) and x̃(t) =

x0(t, p(ẽ)), for each t ∈ T0, where ẽ is a monopoly equilibrium, with respect to a price
selection p(·).

We introduce here a first example in which a monopoly equilibrium is computed.

Example 1. Consider the following specification of an exchange economy satisfying Assump-
tions 1, 2, 3, and 4. T0 = [0, 1], T \ T0 = {m}, µ(m) = 1, w(m) = (1, 0), um(x) =
1
2 x1 +

√
x2, T0 is taken with Lebesgue measure, w(t) = (0, 1), ut(x) =

√
x1 + x2, for each

t ∈ T0. Then, there is a unique monopoly equilbrium.

Proof. To obtain the pure monopoly solution, we can think of the whole process as
follows:
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• The monopolist makes a bid e12 ∈ [0, w1];

• The monopolist anticipates that her bid induces a (relative) price p(e12), obtained
via the (unique) price selection, which therefore clears the market, that is X1(p) =
e12, where X1 represents the aggregate inverse demand function for the atomless
part;

• Finally, the monopolist will choose the optimal bid maximizing his utility u(x1(e12), x2(e12))

.

First, we find the inverse demand function for good 1, for a generic trader t ∈ T0.
We proceed by maximizing her utility a follows:

max
x1(t),x2(t)

ut(x1, x2) =
√

x1(t) + x2(t)

s.t. px1(t) + x2(t) = 1

and we obtain
x1(t, p) =

1
4p2

Then, we compute the aggregate inverse demand function (X) for the atomless part:

X1(p) =
∫

T0

x1(t, p)dµ(t) =
∫

T0

1
4p2 dµ(t) =

1
4p2 µ(T0)

=
1

4p2

But then, we have

X1(p) = e12 =
1

4p2

by the market clearing equation for good 1. Therefore, we obtain

p(e12) =
1

2
√

e12
.

Now, the maximization problem for the monopolist is:
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max
x1(m),x2(m)

um(x1(m), x2(m)) =
1
2

x1(m) +
√

x2(m)

s.t. px1(m) + x2(m) = 1

Since x1(m) = 1− e12, the problem becomes

max
e12

um(e12, x2(m)) =
1
2
(1− e12) +

√
x2(m)

s.t. x2 = p(e12)e12

and finally

max
e12

u(x1(e12), x2(e12)) =
1
2
(1− e12) +

√
p(e12)e12 =

1
2
(1− e12) +

4

√
e12

4
(2.1)

The solution for ẽ12 is ẽ12 = 1
4 . Then x̃(m) = (3

4 ; 1
4), x̃(t) = (1

4 ; 3
4) for each t ∈ T0, and

p = 1.

�

2.3 Discussion of the model

The analysis of the monopoly problem in bilateral exchange proposed in the previ-
ous sections can be simplified by introducing the assumption that the aggregate de-
mand of the atomless part for the commodity held by the monopolist is invertible
and compared, under this restriction, with the standard partial equilibrium analysis of
monopoly.

The following proposition states a necessary and sufficient condition for the atomless
part’s aggregate demand to be invertible.

Proposition 7. Under Assumptions 1, 2, 3, and 4, let wi(m) > 0. Then, the function∫
T0

x0i(t, ·) dµ is invertible if and only if, for each x ∈ R++, there is a unique p ∈ ∆ \ ∂∆
such that x =

∫
T0

x0i(t, p) dµ.

Proof. Let wi(m) > 0. Suppose that
∫

T0
x0i(t, p) dµ = 0, for some p ∈ ∆ \ ∂∆. Then, we

have that
∫

Ti x0i(t, p) dµ = 0 as µ(Ti) > 0 and the necessary Kuhn-Tucker conditions
lead, mutatis mutandis, to the same contradiction as in the proof of Proposition 5. But
then, we have that

∫
T0

x0i(t, p) dµ > 0, for each p ∈ ∆ \ ∂∆. Therefore, the function
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T0

x0i(t, ·) dµ is restricted to the codomain R++. For each x ∈ R++, there exists at least
one p ∈ ∆ \ ∂∆ such that x =

∫
T0

x0i(t, p) dµ, by the same argument used in the proof
of Proposition 5. Then, the function

∫
T0

x0i(t, ·) dµ is onto as its range coincides with its
codomain. Therefore, the function

∫
T0

x0i(t, ·) dµ is invertible if and only if it is one-to-
one. Hence, the function

∫
T0

x0i(t, ·) dµ is invertible if and only, for each x ∈ R++, there
is a unique p ∈ ∆ \ ∂∆ such that x =

∫
T0

x0i(t, p) dµ. �

Let p0i(·) denote the inverse of the function
∫

T0
x0i(t, ·) dµ. The following proposition

shows that, when the aggregate demand of the atomless part for the commodity held
by the monopolist is invertible, there exists a unique price selection.

Proposition 8. Under Assumptions 1, 2, 3, and 4, if wi(m) > 0 and the function
∫

T0
x0i(t, ·) dµ

is invertible, then there exists a unique price selection p̊(·).

Proof. Suppose that wi(m) > 0 and that the function
∫

T0
x0i(t, ·) dµ is invertible. Let

p̊(e) be a function which associates, with each strategy e ∈ E(m), the price vector
p = p0i(eijµ(m)), if E is triangular, and is equal to {0}, otherwise. Then, p̊(·) is the
unique price selection as π(e) = { p̊(e)}, for each e ∈ E(m). �

By analogy with partial equilibrium analysis, p̊(·) can be called the inverse demand
function of the monopolist. When the aggregate demand of the atomless part for the
commodity held by the monopolist is invertible, the monopoly equilibrium can be
reformulated as in Definition 3, with respect to monopolist’s inverse demand function
p̊(·).

2.4 Discussion of the literature

We now show that, when the aggregate demand of the atomless part for the commod-
ity held by the monopolist is invertible, our model can provide an economic theoretical
foundation of the solutions proposed by Schydlowsky and Siamwalla (1966) and Kats
(1974).

Under this assumption, the monopoly equilibrium can be characterized by means of
the notion of offer curve of the atomelss part, defined as the set {x ∈ R2

+ : x =∫
T0

x0(t, p) dµ for some p ∈ ∆ \ ∂∆}, and that of the notion of feasible complement of
the offer curve of the atomless part, defined as the set {x ∈ R2

+ : xµ(m)+
∫

T0
x0(t, p) dµ =∫

T w(t) dµ for some p ∈ ∆ \ ∂∆}.

The following proposition shows that, when the aggregate demand of the atomless
part for the commodity held by the monopolist is invertible, the feasible complement
of the atomless part’s offer curve is a subset of the set of the monopolist’s final holdings.
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Proposition 9. Under Assumptions 1, 2, 3, and 4, if wi(m) > 0 and the function
∫

T0
x0i(t, ·) dµ

is invertible, then the feasible complement of the offer curve of the atomless part, the set {x ∈
R2
+ : xµ(m) +

∫
T0

x0(t, p) dµ =
∫

T w(t) dµ for some p ∈ ∆ \ ∂∆}, is a subset of the set
{x ∈ R2

+ : x = x(m, e, p̊(e)) for some e ∈ E(m)}, the set of the final holdings of the monopo-
list.

Proof. Suppose, without loss of generality, that w1(m) > 0 and that
∫

T0
x01(t, ·) dµ is in-

vertible. Suppose that x̄ ∈ {x ∈ R2
+ : xµ(m)+

∫
T0

x0(t, p) dµ =
∫

T w(t) dµ for some p ∈
∆ \ ∂∆}. Moreover, suppose that x̄1 = w1(m). Then, we have that

∫
T0

x01(t, p) dµ = 0,
for some p ∈ ∆ \ ∂∆. But then, we have that

∫
T2 x01(t, p) dµ = 0 as µ(T2) > 0 and the

necessary Kuhn-Tucker conditions lead, mutatis mutandis, to the same contradiction as
in the proof of Proposition 5. Therefore, we must have that 0 ≤ x̄1 < w1(m). Let
ē ∈ E(m) be such that ē12 = w1(m)− x̄1 and let p̄ = p̊(ē). Then, we have that

x̄1µ(m) +
∫

T0

x01(t, p̄) dµ

= (w1(m)− ē12)µ(m) +
∫

T0

x01(t, p̄) dµ = w1(m)µ(m),

as p̄ = p̊(ē). Moreover, p̄ is the unique price vector such that

(w1(m)− x̄1)µ(m) =
∫

T0

x01(t, p̄) dµ,

as the function
∫

T0
x01(t, ·) dµ is invertible. Then, it must be that

x̄2µ(m) +
∫

T0

x02(t, p̄) dµ =
∫

T0

w2(t) dµ,

by Proposition 3. But then, we have that

x̄2 = e12
p̄1

p̄2 ,

as p̄ is market clearing. Therefore, we conclude that

x̄ = x(m, ē, p̄) = x(m, ē, p̊(ē)).

Hence, the feasible complement of the offer curve of the atomless part, the set {x ∈
R2
+ : xµ(m) +

∫
T0

x0(t, p) dµ =
∫

T w(t) dµ for some p ∈ ∆ \ ∂∆}, is a subset of the set
{x ∈ R2

+ : x = x(m, e, p̊(e)) for some e ∈ E(m)}, the set of the final holdings of the
monopolist. �

Kats (1974) considered both the cases of a quantity setting and a price setting monopoly
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in a pure exchange economy where one trader behaves as a monopolist, “calling the
game” and maximizing his utility, whereas all the other traders in the economy be-
have competitively. He claimed that the monopoly quantity setting solution must cor-
respond to the monopolist’s most preferred commodity bundle compatible with the
aggregate initial endowments and the offer curve of the competitive traders. However,
he did not propose any explicit trading process which could lead to the monopoly so-
lution. The following proposition, which follows from Proposition 11, establishes that,
at a monopoly allocation, the utility of the monopolist is maximal in the feasible com-
plement of the atomless part’s offer curve. This way, it provides an explicit economic
theoretical foundation of the monopoly solution proposed by Kats (1974).

Proposition 10. Under Assumptions 1, 2, 3, and 4, if wi(m) > 0, the function
∫

T0
x0i(t, ·) dµ

is invertible, and ẽ ∈ E(m) is a monopoly equilibrium, then um(x(m, ẽ, p̊(ẽ))) is maximal in
the set {x ∈ R2

+ : xµ(m) +
∫

T0
x0(t, p) dµ =

∫
T w(t) dµ for some p ∈ ∆ \ ∂∆}.

Proof. Suppose, without loss of generality, that w1(m) > 0 and that the function
∫

T0
x01(t, ·) dµ

is invertible. Let ẽ ∈ E(m) be a monopoly equilibrium. Let p̃ = p̊(ẽ). We have that

x1(m, ẽ, p̃)µ(m) +
∫

T0

x01(t, p̃) dµ

= (w1(m)− ẽ12)µ(m) +
∫

T0

x01(t, p̃) dµ = w1(m)µ(m),

and

x2(m, ẽ, p̃)µ(m) +
∫

T0

x02(t, p̃) dµ

= ẽ12µ(m)
p̃1

p̃2 +
∫

T0

x02(t, p̃) dµ =
∫

T0

w2(t) dµ,

as p̃ is market clearing. Then, we have shown that x(m, ẽ, p̊(ẽ)) ∈ {x ∈ R2
+ : xµ(m) +∫

T0
x0(t, p) dµ =

∫
T w(t) dµ for some p ∈ ∆ \ ∂∆}. But then, we have that um(x(m, ẽ, p̊(ẽ)))

is maximal in the set {x ∈ R2
+ : xµ(m) +

∫
T0

x0(t, p) dµ =
∫

T w(t) dµ for some p ∈ ∆ \
∂∆} as um(x(m, ẽ, p̊(ẽ)) ≥ um(x(m, e, p̊(e)), for each e ∈ E(m), and {x ∈ R2

+ : xµ(m) +∫
T0

x0(t, p) dµ =
∫

T w(t) dµ for some p ∈ ∆ \ ∂∆} ⊂ {x ∈ R2
+ : x = x(a, e, p̊(e)) for some e ∈

E(m)}, by Proposition 9. �

In order to provide the characterization of a monopoly equilibrium proposed by Schyd-
lowsky and Siamwalla (1966), we need to introduce also the following assumption.

Assumption 5. um : R2
+ → R is differentiable.

We show that, under the assumption that the aggregate demand of the atomless part
for the commodity held by the monopolist is not only invertible but also differentiable,
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the monopoly equilibrium introduced in Definition 3 has also the geometric character-
ization previously proposed by Schydlowsky and Siamwalla (1966): at a strictly pos-
itive monopoly allocation, the monopolist’s indifference curve is tangent to the atom-
less part’s offer curve.4

The following proposition shows that the function h(·), defined on R++ and such that

pixi + pjxj = pi
∫

T0

wi(t) dµ + pj
∫

T0

wj(t) dµ,

where p = p0i(xi) and xj = h(xi), represents the offer curve of the atomless part in the
sense that its graph coincides with the atomless part’s offer curve.

Proposition 11. Under Assumptions 1, 2, 3, and 4, if wi(m) > 0 and the function
∫

T0
x0i(t, ·) dµ

is invertible, then the graph of the function h(·), the set {x ∈ R2
+ : xj = h(xi)}, coincides with

the set {x ∈ R2
+ : x =

∫
T0

x0(t, p) dµ for some p ∈ ∆ \ ∂∆}, the offer curve of the atomless
part.

Proof. Suppose that wi(m) > 0 and that the function
∫

T0
x0i(t, ·) dµ is invertible. Sup-

pose that x̄ ∈ {x ∈ R2
+ : xj = h(xi)}. Then, there is a unique price vector p̄ = p0i(x̄i)

such that x̄i =
∫

T0
x0i(t, p̄) dµ, as the function

∫
T0

x0i(t, ·) dµ is invertible. We have that

p̄i
∫

T0

x0i(t, p̄) dµ + p̄j
∫

T0

x0j(t, p̄) dµ = pi
∫

T0

wi(t) dµ + pj
∫

T0

wj(t) dµ,

by Walras’ law. Then, it must be that x̄j =
∫

T0
x0j(t, p̄) dµ, where x̄j = h(x̄i). But then,

x̄ ∈ {x ∈ R2 : x =
∫

T0
x0(t, p) dµ for some p ∈ ∆ \ ∂∆}. Therefore, {x ∈ R2

+ : xj =

h(xi)} ⊂ {x ∈ R2
+ : x =

∫
T0

x0(t, p) dµ for some
p ∈ ∆ \ ∂∆}. Suppose now that x̄ ∈ {x ∈ R2 : x =

∫
T0

x0(t, p) dµ for some p ∈ ∆ \ ∂∆}.
Let p̄ be such that x̄ =

∫
T0

x0(t, p̄) dµ. Then, we have that p̄ = p0i(x̄i) as the function∫
T0

x0i(t, ·) dµ is invertible. We have that

p̄i x̄i + p̄j x̄j = p̄i
∫

T0

wi(t) + pj
∫

T0

wj(t),

by Walras’ law. Then, we have that x̄j = h(x̄i). But then, x̄ ∈ {x ∈ R2
+ : xj = h(xi)}.

Therefore, {x ∈ R2
+ : x =

∫
T0

x0(t, p) dµ for some p ∈ ∆ \ ∂∆} ⊂ {x ∈ R2
+ : xj =

h(xi)}. Hence, the graph of the function h(·), the set {x ∈ R2
+ : xj = h(xi)}, coincides

with the set {x ∈ R2
+ : x =

∫
T0

x0(t, p) dµ for some p ∈ ∆ \ ∂∆}, the offer curve of the
atomless part. �

4This characterization of the monopoly equilibrium has been diffusely reproposed in standard text-
books in microeconomics (see, for instance, Varian (2014, p. 619), among others).
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Borrowing from Pareto (1896), we now introduce in our general framework a notion
which has a counterpart in partial equilibrium analysis: the marginal revenue of the
monopolist.

In the rest of this section, with a slight abuse of notation, given a price vector (pi, pj) ∈
∆ \ ∂∆, we denote by p the scalar p = pi

pj , whenever wi(m) > 0. Suppose that wi(m) >

0, that the function
∫

T0
x0i(t, ·) dµ is invertible, and that the function p0i(·) is differen-

tiable. Then, p̊(·), the inverse demand function of the monopolist, is differentiable and

we have that dp̊(e)
deij

=
dp0i(eijµ(m))

dxi µ(m), at each e ∈ E(m) such that E is triangular, by
Proposition 9. In this context, the revenue of the monopolist can be defined as p̊(e)eij

and his marginal revenue as dp̊(e)
deij

eij + p̊(e), for each e ∈ E(m) such that E is triangular.

Then, in the next proposition, we can provide a formal foundation of the geometric
characterization of the monopoly equilibrium proposed by Schydlowsky and Siamwalla
(1966). Indeed, our proposition establishes that, at an interior monopoly solution, the
slope of the monopolist’s indifference curve and the slope of the atomless part’s offer
curve are both equal to the opposite of the monopolist’s marginal revenue. Therefore,
the tangency characterization of a monopoly equilibrium is demonstrated.

Proposition 12. Under Assumptions 1, 2, 3, 4, and 5, if wi(m) > 0, the function
∫

T0
x0i(t, ·) dµ

is invertible, the function p0i(·) is differentiable, and ẽ ∈ E(m) is a monopoly equilibrium such
that ẽ < wi(m), then

−
∂um(x̃(m)

∂xi

∂um(x̃(m))
∂xj

= −
(

dp̊(ẽ)
deij

ẽij + p̊(ẽ)

)
=

dh(
∫

T0
x̃i(t) dµ)

dxi ,

where x̃ is the monopoly allocation corresponding to ẽ.

Proof. Suppose that wi(m) > 0, that the function
∫

T0
x0i(t, ·) dµ is invertible and that

the function p0i(·) is differentiable. Let ẽ ∈ E(m) be a monopoly equilibrium such that
ẽ < wi(m) and let x̃ be the corresponding monopoly allocation. Then, p̊(·), the inverse
demand function of the monopolist, is differentiable and the necessary Kuhn-Tucker
conditions imply that

−∂um(x̃(m))

∂xi +
∂um(x̃(m))

∂xj

(
dp̊(ẽ)
deij

ẽij + p̊(ẽ)

)
= 0.

Then, we have that

−
∂um(x̃(m)

∂xi

∂um(x̃(m))
∂xj

= −
(

dp̊(ẽ)
deij

ẽij + p̊(ẽ)

)
.
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Moreover, we have that

h(xi) = −p0i(xi)xi +
∫

T0

wj(t) dµ.

Differentiating the function h(·), we obtain

dh(xi)

xi = −
(

dp0i(xi)

dxi xi + p0i(xi)

)
.

At the monopoly allocation x̃, we have that

dp̊(ẽ)
deij

ẽij + p̊(ẽ) =
dp0i(

∫
T0

x̃i(t) dµ)

dxi

∫
T0

x̃i(t) dµ + p0i(
∫

T0

x̃i(t) dµ),

as dp̊(ẽ)
deij

=
dp0i(ẽijµ(m))

dxi µ(m) and ẽ12µ(m) =
∫

T0
x0i(t, p(ẽ)) dµ. Hence, we have that

−
∂um(x̃(m)

∂xi

∂um(x̃(m))
∂xj

= −
(

dp̊(ẽ)
deij

ẽij + p̊(ẽ)

)
=

dh(
∫

T0
x̃i(t) dµ)

dxi .

�

Pareto (1986) was the first author who gave a formalized treatment of the problem of
monopoly for a general pure exchange economy. To better understand the relationship
between the analysis developed in the previous sections and that proposed by Pareto
(1896), we reformulate now this author’s monopoly solution within our framework of
bilateral exchange.

Pareto (1896) assumed that, for the monopolist, the commodity he is endowed with is
“neutral,” i.e., it is a commodity from which he does not get any utility.5 To incorporate
this assumption in our model, we amend Assumption 2 as follows.

Assumption 6. um(x) = xj, whenever wi(m) > 0, i 6= j, and ut : R2
+ → R is continuous,

strongly monotone, strictly quasi-concave, for each t ∈ T0.

It is straightforward to verify that Assumption 6 implies that the utility function of the
monopolist is continuous, monotone, and quasi-concave.

Hereafter, we assume that the function
∫

T0
x0i(t, ·) dµ is invertible, whenever wi(m) >

0. Therefore, the revenue of the monopolist can be defined again as p̊(e)eij.

According to Pareto (1896), the goal of the monopolist is to maximize his revenue.
Therefore, we can provide the following definition of a Pareto monopoly equilibrium.

5For a discussion of the properties of neutral commodities, see, for instance, Varian (2014).
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Definition 5. Let wi(m) > 0. A strategy ê ∈ E(m) such that Ê is triangular is a Pareto
monopoly equilibrium, with respect to the price selection p̊(·), if

p̊(ê)êij ≥ p̊(e)eij,

for each e ∈ E(m).

A Pareto monopoly allocation is an allocation x̂ such that x̂(m) = x(m, ê, p̊(ê)) and
x̂(t) = x0(t, p̊(ê)), for each t ∈ T0, where ê is a Pareto monopoly equilibrium.

The following proposition shows that, when Assumption 2 is replaced with Assump-
tion 6, a strategy of the monopolist is a Pareto monopoly equilibrium if and only if it is
a monopoly equilibrium. Moreover, it shows that, if p0i(·) is differentiable whenever
wi(m) > 0, then at a Pareto monopoly solution the monopolist’s marginal revenue
must be nonnegative.

Proposition 13. Under Assumptions 1, 6, 3, and 4, let wi(m) > 0. Then, a strategy ê ∈ E(m)

is a Pareto monopoly equilibrium, with respect to the unique price selection p̊(·), if and only if
it is a monopoly equilibrium, with respect to the same price selection. Moreover, if the function
p0i(·) is differentiable, and ê ∈ E(m) is a Pareto monopoly equilibrium, then

dp̊(ê)
deij

êij + p̊(ê) ≥ 0.

Proof. Let wi(m) > 0. Suppose that the strategy ê ∈ E(m) is a Pareto monopoly equi-
librium, with respect to the price selection p̊(·). Then, we have that

p̊(ê)êij ≥ p̊(e)eij,

for each e ∈ E(m). But then, we must have that

um(x(m, ê, p̊(ê)) ≥ um(x(m, e, p̊(e)),

for each e ∈ E(m), as
um(x(m, e, p̊(e)) = p̊(e)eij,

by Assumption 6, for each e ∈ E(m). Therefore, the strategy ê ∈ E(m) is a monopoly
equilibrium, with respect to the price selection p̊(·). The converse can be straight-
forwardly proved by the same argument. Hence, a strategy ê ∈ E(m) is a Pareto
monopoly equilibrium, with respect to the price selection p̊(·), if and only if it is a
monopoly equilibrium, with respect to the same price selection. Suppose that the func-
tion p0i(·) is differentiable. Let ê ∈ E(m) be a Pareto monopoly equilibrium. Then,
p̊(·), the inverse demand function of the monopolist, is differentiable and the neces-
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sary Kuhn-Tucker conditions imply that

dp̊(ê)
deij

êij + p̊(ê) ≥ 0.

�

We now provide an example of a Pareto monopoly equilibrium.

Example 2. Consider the following specification of an exchange economy satisfying Assump-
tions 1, 6, 3, 4. T0 = [0, 1], T \ T0 = {m}, µ(m) = 1, w(m) = (1, 0), um(x) = x2, T0 is
taken with Lebesgue measure, w(t) = (0, 1), ut(x) =

√
x1 + x2, for each t ∈ T0. Then, there

is a unique Pareto monopoly equilibrium ê ∈ E(m) such that

dp̊(ê)
deij

êij + p̊(ê) > 0.

Proof. . The unique Pareto monopoly equilibrium is the strategy ê such that ê12 = 1,
p̊(ê) = 1

2 , x̂(m) = (0, 1
2), x̂(t) = (1, 1

2), for each t ∈ T0. Moreover, we have that

dp̊(ê)
deij

êij + p̊(ê) =
1
4

.

�

Comparing the monopoly solution of Example 1 with the Pareto monopoly solution of
Example 3, we can observe that the atomless part is better off at the Pareto monopoly
solution than at the monopoly solution as

ut(x̂)(t) =
3
2
>

5
4
= ut(x̃)(t),

for each t ∈ T0. Moreover, Example 3 shows that when the utility function of the
monopolist is continuous, monotone, and quasi-concave a monopoly equilibrium may
exist whereas Example 2 showed that this is not the case when those weaker assump-
tions than those imposed by Assumption 2 hold for the atomless part.

2.5 Examples

Before stating the concluding remarks, we show a series of examples that encompass
different equilibria possibilities and provide a clean computational exercise to find
monopoly equilibria.
We consider two similar examples: the first is a continuation Example 1, showing
that the geometrical condition is satisfied, while the latter considers an heterogeneous
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atomless sector. In both cases, we obtain the monopoly result and the tangency be-
tween the monopolist’s indifferent curve and the small traders’ offer curve.

Example 3. Consider a pure exchange economy in which T = [0, 1] ∪ {2}, where T0 = [0, 1]
and there is one atom T1 = {2} with µ(2) = 1. There are 2 commodities traded in the
market. For each t ∈ T0 the initial assignment is w(t) = (0, 1) and the utility function is
ut(x1, x2) =

√
x1 + x2. For the monopolist the initial assignment is w(2) = (1, 0) and the

utility function is u2(x1, x2) = 1
2 x1 +

√
x2 Then, there is a unique interior solution to the

pure monopoly problem. Moreover, we will show that there is tangency between the monopolist
indifference curves and the supply function at the optimal point.

Proof. We have that the unique monopoly equilibrium is the strategy ẽ ∈ E(m) such
that ẽ12 = 1

4 , p̊(ẽ) = 1, x̃(m) = (3
4 , 1

4), and x̃(t) = (1
4 , 3

4), for each t ∈ T0.

To prove tangency, we first calculate the slope of the monopolist’s indifference curve
in x1(m) = x̃1(m).

MRS(x(m)) = −
δu(x1,x2)

δx1
δu(x1,x2)

δx1

= −
√

x2

Then,

MRS(x̃(m)) = −1
2

.

To derive the supply curve, we proceed in this way: first we calculate the inverse
demand function for a generic t ∈ T0, then we express the supply function as x̂2(x̂1) =

−p(x̂1)x̂1, where x̂2 = x2 + w2 and x̂1 = x1 + w1; finally, we derive the aggregate
supply function. But then,

x̂2(x̂1) = −
√

x̂1

2
and so

X̂2(x̂21) =
∫

T0

x̂2(x̂21)dµ(t) =
∫

T0

−
√

x̂1

2
dµ(t) = −

√
x̂1

2
.

Now we calculate the slope of this function in correspondence of the optimal point
x̂∗1 = x∗1 + w1 = 1

4 .
δX̂2

δx̂1
= − 1

4
√

x̂1
= −1

2
.

Hence, the price-taker supply function is tangent to the monopolist indifference curve
at the optimal point. �

Example 4. Consider a pure exchange economy in which T = [0, 1] ∪ {2}, where T0 = [0, 1]
and there is one atom T1 = {2} with µ(2) = 1. There are 2 commodities traded in the market.
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For each t ∈ A = [0; 1
2 ] the initial assignment is w(t) = (0, 1) and the utility function is

ut(x1, x2) =
√

x1 +
8

11 x2; for each t ∈ B = (1
2 ; 1] the initial assignment is w(t) = (0, 1)

and the utility function is ut(x1, x2) =
√

x1 + 4x2 . For the monopolist the initial assignment
is w(2) = (1, 0) and the utility function is u2(x1, x2) =

1
4 x1 +

√
x2 Then, there is a unique

interior solution to the pure monopoly problem. Moreover, we will show that there is tangency
between the monopolist indifference curves and the supply function at the optimal point.

Proof. We proceed as the previous example. First, we need to derive the aggregate
demand function for the price-takers.
Let now derive the demand functions for the two types of price-takers. Consider a
trader t ∈ [0; 1

2 ]. By maximizing his utility, we obtain

p =

1
2
√

x1(t)
8

11
=

11
16
√

x1(t)

and so
x1(t, p) =

121
256p2 . (2.2)

Consider now a trader t ∈ (1
2 ; 1]. By maximazing his utility, we obtain

p =

1
2
√

x1(t)

4
=

1
8
√

x1(t)

and so
x1(t, p) =

1
64p2 . (2.3)

Now we are able to derive the aggregate demand function for good 1 for the price-
takers:

X1(p) =
∫

T0

x1(t, p)dµ(t) =
∫

A
x1(t, p)dµ(t) +

∫
B

x1(t, p)dµ(t) =

=
∫

A

121
256p2 dµ(t) +

∫
B

1
64p2 dµ(t) =

121
256p2 µ(A) +

1
64p2 µ(B)

=
1
2

121
256p2 +

1
2

1
64p2 =

125
512p2

But then, we have

X1(p) = e12 =
125

512p2 ,
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by the market clearing condition. Therefore,

p(e12) =

√
125

512e12
.

Given this unique price selection, we can write the monopolist maximization problem
as

max
x1,x2

um(x1, x2) =
1
4

x1 +
√

x2

s.t. x2 = p(e12)e12

But then, we have

max
e12

u(x1(e12), x2(e12)) =
1
4
(1− e12) +

4
√

p(e12)e12

since x1(m) = 1− e12, that is

max
e12

1
4
(1− e12) +

4

√
125e12

512
.

The solution is ẽ∗12 = 5
8 . Then, p = p(ẽ12) =

5
8 , and so x̃(t)(m) = (3

8 , 25
64). From 2.2 and

2.3 and the budget constraint of the price takers we obtain that x̃(t) = (121
100 ; 39

160) for
each t ∈ A, and x̃(t) = ( 1

25 ; 39
40) for each t ∈ B.

We show now that, at the final allocation, there is tangency between the offer curve
and the monopolist indifference curve. We derive now the slope of the indifference
curve of the monopolist, given by his marginal rate of substitution, that is

MRS(x(m)) = −
δum(x1,x2)

δx1
δum(x1,x2)

δx1

= −
√

x2

2

Then,

MRS(x̃(m)) = − 5
16

.

To derive the (aggregate) offer curve, we calculate X̂2(X̂1) = −p(X̂1)X̂1, which this
turns out to be equal to

X̂2(X̂1) = −

√
125X̂1

512
.
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We calculate the derivative of this function and calcuate it in X̂1 = X1 = 5
8 (as w1(t) = 0

for each t ∈ T0), obtaining
δX̂2

δX̂1
= − 125

512X̂1
= − 5

16
.

Hence, the price-taker supply function is tangent to the monopolist indifference curve
at the optimal point.

�

2.6 Conclusion

In this paper, we have provided a general economic foundation of the quantity-setting
monopoly solution in bilateral exchange which, to the best of our knowledge, was a
gap in the literature on monopoly in general equilibrium. Then, we have shown that
the ad hoc monopoly solutions proposed by Schydlowsky and Siamwalla (1966) and
Kats (1974) fit well in suitable specifications of our general model, as well as the ante
litteram solution proposed by Pareto (1986).

We leave for future research addressing the problem of a price-setting monopolist,
in the same bilateral framework as used in this paper. This goal could be pursued
by drawing inspiration from another pioneering work by Vilfredo Pareto (see Pareto
(1909)) and could lead to a game theoretical foundation of a monopoly solution of this
type in a two-stage setup, as suggested by Sadanand (1988).

Kats (1974), in his final remarks (see p. 31), raised the question of the relationship be-
tween monopoly equilibrium and cooperative game theory. He formalized a monop-
olistic market game based on the notion of a monopolistic quasi-core. He mentioned
Shitovitz (1973) as the only other work offering a contribution on this issue. Shitovitz
(1973), in his Example 1, actually showed that, in the mixed version of a monopolistic
two-commodity exchange economy, the set of allocations in the core does not coincide
with the set of Walrasian allocations. This example raised the question whether the
core solution to monopolistic market games is “advantageous” or “disadvantageous”
for the monopolist (see Aumann (1973), Drèze et al. (1977), Greenberg and Shitovitz
(1977), among others). The same issue could be analysed using our monopoly equilib-
rium solution.
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[16] Pareto V. (1909), Manuel d’économie politique, V. Giard & E. Brière, Paris.

[17] Reid G.C. (1979), “Forchheimer on partial monopoly,” History of Political Economy
11, 303-308.

[18] Sadanand V. (1988), “Endogenously determined price-setting monopoly in an ex-
change economy,” Journal of Economic Theory 46, 172-178.

[19] Sahi S., Yao S. (1989), “The noncooperative equilibria of a trading economy with
complete markets and consistent prices,” Journal of Mathematical Economics 18, 325-
346.

[20] Schydlowsky D.M., Siamwalla A. (1966), “Monopoly under general equilibrium:
a geometric exercise,” Quarterly Journal of Economics 80, 147-153.

[21] Shitovitz B. (1973), “Oligopoly in markets with a continuum of traders,” Econo-
metrica 41, 467-501.

[22] Varian H.R. (2014), Intermediate microeconomics with calculus, Norton, New York.



Chapter 3

Monopoly Equilibrium as a Subgame
Perfect Equilibrium

Abstract

We reconsider the monopoly model in bilateral exchange and we provide a game the-
oretic characterization for the set of monopoly equilibria. We formulate a two stage
game version of the monopolistic market and we prove that the set of the subgame
equilibria of this game coincides with the set of monopoly equilibria.

3.1 Introduction

We adapt to the monopoly bilateral exchange context the version of the Shapley win-
dow model used by Busetto et al. (2020) and we assume that the atomless part behaves
à la Cournot making bids of the commodity it holds. We show that there is no Cournot-
Nash equilibrium in the market game generated by the strategic interaction between
the monopolist and the atomless part through the Shapley window trading process,
thereby confirming an analogous negative result obtained by Okuno et al. (1980, p. 24)
for the monopolistic version of their bilateral strategic market game. Moreover, we pro-
vide an example exhibiting a bilateral exchange economy which admits a monopoly
equilibrium but no Cournot-Nash equilibrium. Our example shows that it is not pos-
sible to provide a game theoretical foundation of our monopoly solution in terms of
an equivalence between the set of the allocations corresponding to a monopoly equi-
librium and the set of the allocations corresponding to a Cournot-Nash equilbrium, in
a one-stage setting.

Sadanand (1988, p. 174) started from the negative result about the existence of a

45
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Cournot-Nash equilibrium in a one-shot monopolistic bilateral strategic market game
obtained by Okuno et al. (1980) and this lead him to introduce a monopoly price-
setting solution in a two-stage version of the strategic market game analyzed by those
authors.

Following Sadanand (1988), we provide a sequential reformulation of the mixed ver-
sion of the Shapley window model in terms of a two-stage game with observed actions
where the quantity-setting monopolist moves first and the atomless part moves in the
second stage, after observing the moves of the monopolist in the first stage. This two-
stage reformulation of our model allows us to provide a game theoretical foundation of
the quantity-setting monopoly solution: we prove that the set of the allocations corre-
sponding to a monopoly equilibrium and the set of those corresponding to a subgame
perfect equilibrium of the two-stage game coincide.

Once we rule out the possibility for the monopoly equilibria to coincide with Cournot-
Nash equilibria, we move to the analysis of the possible relation between our solution
concept and the Cournot-Walras approach, introduced by Gabszewicz and Vial (1972).
The main result of this paper is indeed to show that the the set of monopoly equilibria
coincide with the set of subgame perfect equilibrium of a two stage game in which the
monopolist moves first and the atomless sector moves later.

Our approach is similar to the one in Busetto et al. (2008), with one important twist. In
their paper, the set of Cournot- Walras equilibria is shown to coincide with the set of
Markov perfect equilibrium. In our setting, which is based on different assumptions
on the set of traders, this results extends theirs in the sense that we prove that the set
of monopoly equilibria coincides with the set of subgame perfect equilibria.

The paper is organized as follows. In section 2, the mathematical model is introduced
followed by a reminder of the notion of a monopoly equilibrium, in section 3. In Sec-
tion 4, we compare the monopoly equilibrium and the Cournot-Nash equilibrium. In
Section 5, we provide a game theoretical foundation of the monopoly solution in a two-
stage framework. Section 6 gives some concluding remarks and gives future areas of
research.

3.2 Mathematical model

We consider a pure exchange economy with large traders, represented as atoms, and
small traders, represented by an atomless part. The space of traders is denoted by
the measure space (T, T , µ), where T is the set of traders, T is the σ-algebra of all
µ-measurable subsets of T, and µ is a real valued, non-negative, countably additive
measure defined on T . We assume that (T, T , µ) is finite, i.e., µ(T) < ∞. Let T0 denote



3.2. MATHEMATICAL MODEL 47

the atomless part of T. We assume that µ(T0) > 0 and T \ T0 = {a}, i.e., the measure
space (T, T , µ) contains only one atom, the “monopolist.” A null set of traders is a
set of measure 0. Null sets of traders are systematically ignored throughout the paper.
Thus, a statement asserted for “each” trader in a certain set is to be understood to hold
for all such traders except possibly for a null set of traders. The word “integrable” is to
be understood in the sense of Lebesgue.
A commodity bundle is a point in R2

+. An assignment (of commodity bundles to
traders) is an integrable function x: T → R2

+. We are considering a bilateral ex-
change economy, therefore with two commodities. We assume that the monopolist
holds, without loss of generality good one, while small traders hold the second good,
i.e.

Assumption 7. w1(m) > 0 , w2(m) = 0 and w1(t) = 0, w2(t) > 0, for each t ∈ T0.

An allocation is an assignment x such that
∫

T x(t) dµ =
∫

T w(t) dµ. The preferences
of each trader t ∈ T are described by a utility function ut : R2

+ → R, satisfying the
following assumptions.

Assumption 8. ut : R2
+ → R is continuous, strongly monotone, and strictly quasi-concave,

for each t ∈ T.

Let B denote the Borel σ-algebra of R2
+. Moreover, let T ⊗B denote the σ-algebra gen-

erated by the sets E× F such that E ∈ T and F ∈ B.

Assumption 9. u : T ×R2
+ → R, given by u(t, x) = ut(x), for each t ∈ T and for each

x ∈ R2
+, is T ⊗B-measurable.

In order to state our last assumption, we need a preliminary definition. We say that
commodities i, j stand in relation Q if there is a nonnull subset Ti of T0, such that ut(·)
is differentiable, additively separable, i.e., ut(x) = vi

t(xi) + vj
t(xj), for each x ∈ R2

+,

and dvj
t(0)

dxj
= +∞, for each t ∈ Ti.1 We can now introduce the last assumption.

Assumption 10. Commodities 1 and 2 stand in relation Q.

A price vector is a nonnull vector p ∈ R2
+. Moreover, we will denote by ∆ the unit sim-

plex, i.e. ∆ = {pR2
+ : p1 + p2 = 1}, and ∆ \ ∂∆ will denote the interior of ∆. Finally,

we will write P ∈ R+ to intend the corresponding relative price for each p ∈ ∆ \ ∂∆,

1In this definition, differentiability means continuous differentiability and is to be understood to in-
clude the case of infinite partial derivatives along the boundary of the consumption set (for a discussion
of this case, see, for instance, Kreps (2012), p. 58).
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i.e. P = p1

p2 , for some (p1, p2) ∈ ∆ \ ∂∆.

Let X0 : T0 × R2
++ → P(R2

+) be a correspondence such that, for each t ∈ T0 and
for each p ∈ R2

++, X0(t, p) = argmax{u(x) : x ∈ R2
+ and px ≤ pw(t)}. For each

p ∈ R2
++, let

∫
T0

X0(t, p) dµ = {
∫

T0
x(t, p) dµ : x(·, p) is integrable and x(t, p) ∈

X0(t, p), for each t ∈ T0}. Since the correspondence X0(t, ·) is nonempty and single-
valued, by Assumption 2, let x0 : T0 ×R2

++ → R2
+ be the function such that X0(t, p) =

{x0(t, p)}, for each t ∈ T0 and for each p ∈ R2
++. A Walras equilibrium is a pair

(p, x), consisting of a price vector p and an allocation x, such that px(t) = pw(t) and
ut(x(t)) ≥ ut(y), for all y ∈ {x ∈ R2

+ : px = pw(t)}, for each t ∈ T. A Walras alloca-
tion is an allocation x for which there exists a price vector p such that the pair (p, x) is
a Walras equilibrium.

3.3 Monopoly equilibrium

We introducing the monopoly equilibrium concept.
Let E(m) = {(eij) ∈ R4

+ : ∑2
j=1 eij ≤ wi(m), i = 1, 2} denote the strategy set of atom a.

We denote by e ∈ E(m) a strategy of atom a, where eij, i, j = 1, 2, represents the amount
of commodity i that atom a offers in exchange for commodity j. Moreover, we denote
by E the matrix corresponding to a strategy e ∈ E(m).

We then provide the following definitions.

Definition 6. A square matrix A is said to be triangular if aij = 0 whenever i > j or aij = 0
whenever i < j.

Definition 7. Given a strategy e ∈ E(a), a price vector p is said to be market clearing if

p ∈ R2
++,

∫
T0

x0j(t, p) dµ +
2

∑
i=1

eijµ(m)
pi

pj =
∫

T0

wj(t) dµ +
2

∑
i=1

ejiµ(m) (3.1)

, j = 1, 2.

We recall here a proposition from the previous chapter, that provides a necessary and
sufficient condition for the existence of a market clearing price vector.

Proposition 14. Under Assumptions 7, 8, 9, and 10, given a strategy e ∈ E(m), there exists
a market clearing price vector p ∈ ∆ \ ∂∆ if and only if the matrix E is triangular.

Proof. See Chapter 2. �

We denote by π(e) a correspondence which associates, with each strategy e ∈ E(m),
the set of price vectors p satisfying (1), if E is triangular, and is equal to {0}, otherwise.
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A price selection p(e) is a function which associates, with each strategy selection e ∈
E(m), a price vector p ∈ π(e).

Given a strategy e ∈ E(m) and a price vector p, consider the assignment determined
as follows:

xj(m, e, p) = wj(m)−
2

∑
i=1

eji +
2

∑
i=1

eij
pi

pj , if p ∈ R2
++,

xj(m, e, p) = wj(m), otherwise,

j = 1, 2,

xj(t, p) = x0j(t, p), if p ∈ R2
++,

xj(t, p) = wj(t), otherwise,

j = 1, 2, for each t ∈ T0.

Given a price selection p(·) and a strategy e ∈ E(m), traders’ final holdings are ex-
pressed by the assignment x(m) = x(m, e, p(e)) and x(t) = x(t, p(e)), for each t ∈ T0.

The following proposition, replicated from the previous chapter, shows that traders’
final holdings are an allocation.

Proposition 15. Under Assumptions 7, 8, 9 and 10, given a price selection p(·) and a strategy
e ∈ E(m), the assignment x(m) = x(m, e, p(e)) and x(t) = x0(t, p(e)), for each t ∈ T0, is
an allocation.

Proof. See Chapter 2. �

We can now provide the definition of a monopoly equilibrium.

Definition 8. A strategy ẽ ∈ E(m) such that Ẽ is triangular is a monopoly equilibrium, with
respect to a price selection p(·), if

ua(x(m, ẽ, p(ẽ)) ≥ ua(x(m, e, p(e)),

for each e ∈ E(m).

3.4 Monopoly equilibrium and Cournot-Nash equilibrium

We now provide the definition of a Cournot-Nash equilibrium in the bilateral exchange
model introduced previously, adapting to this framework the version of the Shapley
window model used by Busetto et al. (2020).
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A strategy correspondence is a correspondence B : T → P(R4
+) such that, for each

t ∈ T, B(t) = {(bij) ∈ R4
+ : ∑2

j=1 bij ≤ wi(t), i = 1, 2}. We denote by b(t) ∈ B(t)
a strategy of trader t, where bij(t), i, j = 1, 2, represents the amount of commodity i
that trader t offers in exchange for commodity j. A strategy selection is an integrable
function b : T → R4

+, such that, for each t ∈ T, b(t) ∈ B(t). Given a strategy selection
b, we denote by B̄ the matrix such that b̄ij = (

∫
T bij(t) dµ), i, j = 1, 2. Moreover,

we denote by b \ b(t) the strategy selection obtained from b by replacing b(t) with
b(t) ∈ B(t).

We need to provide now the following two definitions (see Sahi and Yao (1989)).

Definition 9. A nonnegative square matrix C is said to be irreducible if, for every pair (i, j),
with i 6= j, there is a positive integer k such that c(k)ij > 0, where c(k)ij denotes the ij-th entry of
the k-th power Ck of C.

Definition 10. Given a strategy selection b, a price vector p is said to be market clearing if

p ∈ R2
++,

2

∑
i=1

pib̄ij = pj(
2

∑
i=1

b̄ji), j = 1, 2. (2)

By Lemma 1 in Sahi and Yao (1989), there is a unique, up to a scalar multiple, price
vector p satisfying (2) if and only if B̄ is irreducible. Then, we denote by p(b) a func-
tion which associates with each strategy selection b the unique, up to a scalar multiple,
price vector p satisfying (1), if B̄ is irreducible, and is equal to 0, otherwise. For each
strategy selection b such that p(b) � 0, we assume that the price vector p(b) is nor-
malized.

Given a strategy selection b and a price vector p, consider the assignment determined
as follows:

xj(t, b(t), p) = wj(t)−
2

∑
i=1

bji(t) +
2

∑
i=1

bij(t)
pi

pj , if p ∈ ∆ \ ∂∆,

xj(t, b(t), p) = wj(t), otherwise,

j = 1, 2, for each t ∈ T.

Given a strategy selection b and the function p(b), traders’ final holdings are deter-
mined according to this rule and consequently expressed by the assignment

x(t) = x(t, b(t), p(b)),

for each t ∈ T. It is straightforward to show that this assignment is an allocation.

We are now able to define a notion of Cournot-Nash equilibrium for this reformulation
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of the Shapley window model.

Definition 11. A strategy selection b̂ such that ¯̂B is irreducible is a Cournot-Nash equilibrium
if

ut(x(t, b̂(t), p(b̂))) ≥ ut(x(t, b(t), p(b̂ \ b(t)))),

for each b(t) ∈ B(t) and for each t ∈ T.

A Cournot-Nash allocation is an allocation x̂ such that x̂(t) = x(t, b̂(t), p(b̂)), for each t ∈ T,
where b̂ is a Cournot-Nash equilibrium.

The next proposition provides, for our framework, the same negative result about the
existence of a Cournot-Nash equilibrium obtained by Okuno et al. (1980 p. 24) and by
Sadanand (1988, p. 174).

Proposition 16. Under Assumptions 7, 8, 9, and 10, there exists no Cournot-Nash equil-
brium.

Proof. Suppose that b̂ is a Cournot-Nash equilibrium. Then, we have that x(m, b̂(m),
p(b̂)) = (w1(m)− b̂12(m), ¯̂b21). Let b′(m) be a strategy such that 0 < b′12(m) < b̂12(m).
Then, we have that

um(x(m, b̂ \ b′(m), p(b̂ \ b′(m)))) > um(x(m, b̂(m), p(b̂))),

as x(m, b̂ \ b′(m), p(b̂ \ b′(m))) = (wi(m)− b′12(m)), ¯̂b21) and um(·) is strongly mono-
tone, by Assumption 8, a contradiction. Hence, there is no Cournot-Nash equilib-
rium. �

Proposition 16 has the relevant consequence that the set of monopoly allocations can-
not coincide with the set of Cournot-Nash allocations in a one-stage setting, as con-
firmed by the following example2.

Example 5. Consider the following specification of an exchange economy satisfying Assump-
tions 7, 8, 9, and 10. T0 = [0, 1], T \ T0 = {m}, µ(m) = 1, w(m) = (1, 0), um(x) =
1
2 x1 +

√
x2, T0 is taken with Lebesgue measure, w(t) = (0, 1), ut(x) =

√
x1 + x2, for each

t ∈ T0. Then, there is a unique monopoly allocation and no Cournot-Nash allocation.

Proof. The unique monopoly equilibrium is the strategy ẽ ∈ E(m) such that ẽ12 = 1
4

and the unique monopoly allocation is x̃(m) = (3
4 , 1

4) and x̃(t) = (1
4 , 3

4), for each t ∈ T0.
However, there is no Cournot-Nash allocation, by Proposition 16. �

2Compare with Example 1 in Chapter 2
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3.5 Monopoly equilibrium as a subgame perfect equilib-

rium

Example 5 shows the nonequivalence between the set of monopoly and Cournot-Nash
allocations in a one-stage game. The analogous negative result reached by Okuno et al.
(1980) lead these authors to conclude that “[...] we are unable to model pure monopoly
without a competitive fringe in a useful way in this setup” (see Footnote 1, p. 24). In
his pathbreaking analysis of monopoly in mixed exchange economies, Sadanand (1988)
already recognized the two stage-flavor of monopoly equilibrium. Taking inspiration
from his work, we now introduce a two-stage game where the monopolist moves first
and the atomless part moves in the second stage, after observing the moves of the mo-
nopolist in the first stage. Therefore, borrowing from Busetto et al. (2008), we provide
a sequential reformulation of the mixed version of the Shapley window model intro-
duced in the previous section, in terms of a two-stage game with observed actions,
following Fudenberg and Tirole (1991, p. 70).

The game is played in two stages, labelled as 0 and 1. An action correspondence in
stage 0 is a correspondence A0 : T → P(R4

+) such that A0(m) = {(aij) ∈ R4
+ :

∑2
j=1 aij ≤ wi(m), i = 1, 2} and A0(t) is the singleton {“do nothing”}, for each t ∈ T0.

An action correspondence in stage 1 is a correspondence A1 : T → P(R4
+) such that

A1(m) is the singleton {“do nothing”} and A1(t) = {(aij) ∈ R4
+ : ∑2

j=1 aij ≤ wi(t), i =
1, 2}, for each t ∈ T0. We denote by a0(t) ∈ A0(t) an action of trader t in stage 0,
where a0

ij(m), i, j = 1, 2, represents the amount of commodity i that atom m offers in
exchange for commodity j. An action selection in stage 0 is a function a0 : T → R4

+,
such that a0(t) ∈ A0(t), for each t ∈ T. We denote by a1(t) ∈ A1(t) an action of trader
t in stage 1, where a1

ij(t), i, j = 1, 2, represents the amount of commodity i that a trader
t ∈ T0 offers in exchange for commodity j. An action selection in stage 1 is a function
a1 : T → R4

+, whose restriction on T0 is integrable, such that a1(t) ∈ A1(t), for each
t ∈ T. Let S0 and S1 denote the sets of all action selections in stage 0 and in stage
1, respectively. Any action selection at the end of a stage determines a history at the
beginning of the next stage.

We denote by h0 = ∅ the history at the beginning of stage 0 and by h1 a history at
the beginning of stage 1 where h1 = a0, for some a0 ∈ S0. Let H0 and H1 denote
the sets of all stage 0 and stage 1 histories, respectively, where H0 = ∅ and H1 = S0

Let H2 = S0 × S1 denote the set of all terminal histories. Given a terminal history
h2 = (a0, a1), we denote by Ā the matrix such that āij = a0

ij(m)+
∫

T0
a1

ij(t) dµ, i, j = 1, 2.

We now provide the following definition (see Sahi and Yao (1989)).

Definition 12. Given a terminal history h2 = (a0, a1), a price vector p is said to be market
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clearing if

p ∈ R2
++,

2

∑
i=1

piāij = pj(
2

∑
i=1

āji), j = 1, 2. (3)

By Lemma 1 in Sahi and Yao (1989), there is a unique, up to a scalar multiple, price
vector p satisfying (3) if and only if Ā is irreducible. Then, we denote by p(h2) a
function which associates with each final history h2 = (a0, a1) the unique, up to a scalar
multiple, price vector p satisfying (3), if Ā is irreducible, and is equal to 0, otherwise.
For each final history h2 = (a0, a1) such that p(h2) � 0, we assume that the price
vector p(h2) is normalized.

Given a terminal history h2 = (a0, a1) and a price vector p, consider the assignment
determined as follows:

xj(m, h2(m), p) = wj(m)−
2

∑
i=1

a0
ji(m) +

2

∑
i=1

a0
ij(m)

pi

pj , if p ∈ ∆ \ ∂∆,

xj(m, h2(m), p) = wj(m), otherwise,

j = 1, 2,

xj(t, h2(t), p) = wj(t)−
2

∑
i=1

a1
ji(t) +

2

∑
i=1

a1
ij(t)

pi

pj , if p ∈ ∆ \ ∂∆,

xj(t, b(t), p) = wj(t), otherwise,

j = 1, 2, for each t ∈ T0.

Given a terminal history h2 = (a0, a1) and the function p(h2), traders’ final holdings
are determined according to this rule and consequently expressed by the assignment

x(t) = x(t, h2(t), p(h2)),

for each t ∈ T. It is straightforward to show that this assignment is an allocation.

We denote by s(t) a strategy of trader t, where s(t) denotes the sequence of functions
{s0(t, ·), s1(t, ·)} such that s0(t, ·) : H0 → A0(t) and s1(t, ·) : H1 → A1(t). A strategy
profile s is a map which associates with each t ∈ T a sequence of functions {s0, s1}
such that s0(t, ·) : H0 → A0(t), s1(t, ·) : H1 → A1(t), s0(·, h0) ∈ S0, and s1(·, h1) ∈ S1,
for each h1 ∈ H1. Given a strategy profile s, the functions s0(·, h0) and s1(·, h1), for
each h1 ∈ H1, are called strategy selections. We denote by s \ s(t) = {s0 \ s(t, ·), s1 \
s1(t, ·)} the strategy profile obtained from s0 and s1 by replacing, respectively, s0(t, ·)
with s0(t, ·) and s1(t, ·) with s1(t, ·). Finally, we denote by h2(s) the function which
associates with each strategy profile s the terminal history which corresponds to the
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action selections {a0(s), a1(s)} such that a0(s) = s0(·, h0) and a1(s) = s1(·, h1), with
h1 = s0(·, h0), and by Ā(s) the corresponding aggregate matrix.

We now proceed to consider the subgame represented by the stage 1 of the game out-
lined above, given the history h1 ∈ H1. Given a strategy s(t) of trader t and a history
h1 ∈ H1, we denote by s|h1(t) the action such that s|h1(t) = s1(t, h1). Given a strat-
egy profile s and a history h1 ∈ H1, we denote by s|h1 the strategy selection such that
s|h1(t) = s1(t, h1), for each t ∈ T. Given a history h1 ∈ H1, we denote by s|h1 \ s|h1(t)
the strategy selection obtained from s|h1 by replacing s|h1(t) with s|h1(t). Finally, we
denote by h2(s|h1) the function which associates with each strategy selection s|h1 the
terminal history which corresponds to the action selections {a0(s|h1), a1(s|h1)} such
that a0(s|h1) = h1 and a1(s|h1) = s|h1, and by Ā(s|h1) the corresponding aggregate
matrix.

We are now able to define the notion of subgame perfect equilibrium for the two-stage
game described above.

Definition 13. A strategy profile s∗ such that Ā(s∗) is irreducible is a subgame perfect equi-
librium if

ut(x(t, h2(s∗)(t), p(h2(s∗)))) ≥ ut(x(t, h2(s∗ \ s(t))(t), p(h2(s∗ \ s(t))))),

for each s(t) and for each t ∈ T, Ā(s∗|h1)) is irreducible, for each h1 ∈ H1 such that h1(m) >

0, and

ut(x(t, h2(s∗|h1)(t), p(h2(s∗|h1))))

≥ ut(x(t, h2(s∗|h1 \ s|h1)(t))(t), p(h2(s∗|h1 \ s|h1)(t))))),

for each h1 ∈ H1, for each s|h1(t), and for each t ∈ T.

A subgame perfect allocation is an allocation x∗ such that x(t, h2(s∗)(t),
p(h2(s∗))), for each t ∈ T, where s∗ is a subgame perfect equilibrium.

The following proposition shows the equivalence between the set of monopoly alloca-
tions and the set of subgame perfect allocations for our two-stage game.

Proposition 17. Under Assumptions 7,8,9 and 10, the set of monopoly allocations coincides
with the set of subgame perfect allocations.

Proof. Suppose, without loss of generality, that w1(m) > 0. Let x̃ be a monopoly allo-
cation. Then, we have that x̃(m) = x(m, ẽ, p(ẽ)) and x̃(t) = x0(t, p(ẽ)), for each t ∈ T0,
where ẽ is a monopoly equilibrium, with respect to a price selection p(·). Consider,
first, stage 1 of the game. Let e ∈ E(m) be a strategy selection and let h1 be a history at
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the beginning of stage 1 of the game such that h1(m) = e. Suppose that E is triangu-
lar. Then, we have that p(e) � 0 and p(e)x0(t, p(e)) = p(e)w2(t), for each t ∈ T0, by
Assumption 8. But then, there exist λj(t) ≥ 0, j = 1, 2, ∑2

j=1 λj(t) = 1, such that

x0(t, p(e)) = λj(t)
p2(e)w2(t)

pj(e)
,

j = 1, 2, for each t ∈ T0, by Lemma 5 in Codognato and Ghosal (2000). Let ˘ : T0 → R2
+

be a function such that ˘j(t) = λj(t), j = 1, 2, for each t ∈ T0. It is straightforward to
show that the function wi(t)λj(t), i, j = 1, 2, for each t ∈ T0, is integrable on T0. Let
s̃|h1 denote a strategy selection of the subgame represented by the stage 1 of the game
such that a1(s̃|h1)(m) = {“do nothing”} and a1

ij(s̃|h1)(t) = wi(t)λj(t), i, j = 1, 2, for
each t ∈ T0. It is immediate to verify that (s̃|h1)(t) ∈ A1(t), for each t ∈ T. Consider
the matrix Ā(s̃|h1). We have that

ā12(s̃|h1) = a0
12(s̃|h1)(m)µ(m) +

∫
t∈T0

a1
12(s̃|h1)(t) dµ = e12µ(m) > 0.

By the same argument used in the proof of Proposition 5 in chapter 2, Assumption 10
implies that x01(t, p(e)) > 0, for each t ∈ T2. Then, we have that λ1(t) > 0, for each
t ∈ T2. But then, we have that

ā21(s̃|h1) = a0
21(s̃|h1)(m)µ(m) +

∫
t∈T0

a1
21(s̃|h1)(t) dµ

=
∫

t∈T0

w2(t)λ1(t) dµ > 0.

Therefore, the matrix Ā(s̃|h1) is irreducible. Then, from (1), we obtain that

∫
T0

x1(t, p(e)) dµ =
∫

T0

λ1(t)
p2(e)w2(t)

p1(e)
dµ

=
∫

T0

a1
21(s̃|h1)(t)

p2(e)
p1(e)

dµ = e12µ(m).

But then, it must be that p(e) = p(h2(s̃|h1)) as p(e) satisfies (3) and the matrix Ā(s̃|h1)

is irreducible. Therefore, it is straightforward to verify that

x(m, h2(s̃|h1)(m), p(h2(s̃|h1))) = x(m, e, p(e))

and
x(t, h2(s̃|h1)(t), p(h2(s̃|h1))) = x(t, p(e)),

for each t ∈ T0. It remains now to show that no trader t ∈ T, in stage 1 of the game, has
an advantageous deviation from s̃|h1. This is trivially true for m. Suppose that there
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exist a trader τ ∈ T0 and a strategy s(τ) such that

uτ(x(τ, h2(s̃|h1 \ s|h1(τ))(τ), p(h2(s∗|h1 \ s|h1(τ)))))

> uτ(x(τ, h2(s̃|h1)(τ), p(h2(s̃|h1)))).

It is straightforward to verify that Definition 8 implies that p(h2(s̃|h1 \ s|h1)(τ))) =

p(h2(s̃|h1)). Then, we have that

uτ(x(τ, h2(s̃|h1 \ s|h1(τ))(τ), p(h2(s̃|h1))))

> uτ(x(τ, h2(s̃|h1)(τ), p(h2(s̃|h1)))) = uτ(x(τ, p(e))).

It is also immediate to verify that

p(h2(s̃|h1))x(τ, h2(s̃|h1 \ s|h1(τ))(τ), p(h2(s̃|h1))) = p(h2(s̃|h1))w(τ).

Then, we have that

uτ(x(τ, p(e))) > uτ(x(τ, h2(s̃|h1 \ s|h1(τ))(τ), p(h2(s̃|h1)))),

a contradiction. Therefore, it must be that

ut(x(t, h2(s̃|h1)(t), p(h2(s̃|h1))))

≥ ut(x(t, h2(s̃|h1 \ s|h1(t))(t), p(h2(s̃|h1 \ s|h1(t))))),

for each t ∈ T0.

Suppose that E is not triangular. Then, we have that p(e) = 0. Let s̃|h1 denote a
strategy selection of the subgame represented by the stage 1 of the game such that
a1(s̃|h1)(m) = {“do nothing”} and a1

ij(s̃|h1)(t) = 0, i, j = 1, 2, for each t ∈ T0. It is
immediate to verify that (s̃|h1)(t) ∈ A1(t), for each t ∈ T and that the matrix Ā(s̃|h1)

is not irreducible. Then, it must be that p(e) = p(h2(s̃|h1). Therefore, we have that

x(m, h2(s̃|h1)(m), p(s̃|h1)) = w1(m) = x(m, e, p(e))

and
x(t, h2(s̃|h1)(t), p((s̃|h1))) = w2(t) = x(t, p(e)),

for each t ∈ T0. It remains now to show that no trader t ∈ T, in stage 1 of the game, has
an advantageous deviation from s̃|h1. This is trivially true for m. Suppose that there
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exist a trader τ ∈ T0 and an strategy s(τ) such that

uτ(x(τ, h2(s̃|h1 \ s|h1(τ))(τ), p(h2(s̃|h1 \ s|h1(τ)))))

> uτ(x(τ, h2(s̃|h1)(τ), p(h2(s̃|h1)))).

Then, we have that

w2(τ) = uτ(x(τ, h2(s̃|h1 \ s|h1(τ))(τ), p(h2(s̃|h1))))

> uτ(x(τ, h2(s̃|h1)(τ), p(h2(s̃|h1)))) = w2(τ),

as p(h2(s̃|h1 \ s|h1(τ))) = p(h2(s̃|h1)) = 0, a contradiction. Therefore, we conclude
that Ā(s∗|h1) is irreducible, for each h1 ∈ H1 such that h1(m) > 0, and

ut(x(t, h2(s̃|h1)(t), p(h2(s̃|h1))))

≥ ut(x(t, h2(s̃|h1 \ s|h1(t))(t), p(h2(s̃|h1 \ s|h1(t))))),

for each h1 ∈ H1, for each s|h1(t), and for each t ∈ T. Consider now stages 0 and
1 of the game. Let s̃ be a strategy profile such that s̃(m, h0) = ẽ and s̃(t, h0) =

{“do nothing”}, for each t ∈ T0, and s̃(t, h1) = (s̃|h1)(t), for each h1 ∈ H1, and
for each t ∈ T. Let h̃1 be such that h̃1(m) = ẽ. We have that h2(s̃) = h2(s̃|h̃1) as
a0(s̃) = s̃0(·, h0) = h̃1 = a0(s̃|h̃1) and a1(s̃) = s̃1(·, h̃1) = s̃|h̃1 = a1(s̃|h̃1). Then, it
must be that p(ẽ) = p(h2(s̃|h̃1)) = p(h2(s̃)). But then, it is straightforward to verify
that

x(m, h2(s̃)(m), p(h2(s̃))) = x(m, ẽ, p(ẽ))

and
x(t, h2(s̃(t)), p(h2(s̃))) = x(t, p(ẽ)),

for each t ∈ T0. Suppose that there exists a strategy s(m) of the monopolist such that

um(x(m, h2(s̃ \ s(m))(m), p(h2(s̃ \ s(m))))) > um(x(m, h2(s̃)(m), p(h2(s̃)))).

Let e = s̃0 \ s(m, h0)(m). Then, we have that p(e) = p(h2(s̃ \ s(m))) by the same
argument used before. But then, we have that

x(m, h2(s̃ \ s(m))(m), p(h2(s̃ \ s(m)))) = x(m, e, p(e)).

Therefore, it must be that

umx(m, e, p(e)) = um(x(m, h2(s̃ \ s(m))(m), p(h2(s̃ \ s(m)))))

> um(x(m, h2(s̃)(m), p(h2(s̃)))) = x(m, ẽ, p(ẽ)),
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a contradiction. Suppose that there exist a trader τ ∈ T0 and a strategy s(τ) such that

uτ(x(τ, h2(s̃ \ s(τ))(τ), p(h2(s̃ \ s(τ)))))

> uτ(x(τ, h2(s̃(τ), p(h2(s̃)))).

It is straightforward to verify that Definition 8 implies that p(h2(s̃ \ s(τ))) = p(h2(s̃)).
Then, we have that

uτ(x(τ, h2(s̃|h1 \ s|h̃1(τ))(τ), p(h2(s̃|h̃1 \ s|h̃1(τ)))))

= uτ(x(τ, h2(s̃ \ s(τ))(τ), p(h2(s̃ \ s(τ)))))

> uτ(x(τ, h2(s̃(τ), p(h2(s̃))))

= uτ(x(τ, h2(s̃|h̃1)(τ), p(h2(s̃|h̃1)))),

a contradiction. Thus the set of monopoly allocations is a subset of the set of subgame
perfect allocations. Let x∗ be a subgame perfect allocation. Then, we have that x∗ =

x(t, h2(s∗)(t), p(h2(s∗))), for each t ∈ T, where s∗ is a subgame perfect equilibrium.
Let p(e) be a function which associates, with each strategy selection e ∈ E(m), the
price vector p(h2(s∗|h1)) corresponding to the history h1 such that h1(m) = e. Let
e ∈ E(m) be a strategy selection. Suppose that E is triangular. Then, it must that
p(e) = p(h2(s∗|h1)) � 0 as the matrix Ā(s∗|h1)) is irreducible. Suppose that E is not
triangular. Then, it must be that p(e) = p(h2(s∗|h1)) = 0 as the matrix Ā(s∗|h1)) is
not irreducible. It is straightforward to verify that

x(m, e, p(e)) = x(m, h2(s̃|h1)(m), p(h2(s∗|h1))),

for each strategy selection e ∈ E(m) and for each history h1 such that h1(m) = e. It is
also straightforward to show that

ut(x(t, h2(s∗|h1)(t), p(h2(s∗|h1)))) > ut(y),

for all y ∈ {x ∈ R2
+ : p(h2(s∗|h1))x = p(h2(s∗|h1))w2(t)}, for each h1 ∈ H1 such that

h1(m) > 0 and for each t ∈ T0, by the same argument used by Codognato and Ghosal
(2000) in the proof of their Theorem 2 p. 49. Then, we have that

x(t, p(e)) = x(t, h2(s∗|h1)(t), p(h2(s∗|h1))),

for each strategy e ∈ E(m), for each history h1 such that h1(m) = e, and for each t ∈ T0.
Let e ∈ E(m) be a strategy selection such that E is triangular and let h1 be a history such
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that h1(m) = e. Then, we have that∫
T0

x1(t, p(e)) dµ + x1(m, e, p(e)) =
∫

T0

x1(t, p(e)) dµ + e12

=
∫

T0

x1(t, h2(s∗|h1)(t), p(h2(s∗|h1))) dµ

+x1(m, h2(s̃|h1)(m), p(h2(s∗|h1))) = w1(m)

as the assignment x(t, h2(s∗|h1)(t), p(h2(s∗|h1))), for each t ∈ T, is an allocation. But
then, p(e) satisfies (1) by Proposition 3. Therefore, p(e) is a price selection. Let e∗ be
a strategy selection such that e∗ = s∗(m, h0) and let h1∗ be such that h1∗(m) = e∗.
We have that h2(s∗) = h2(s∗|h1∗) as a0(s∗) = s0∗(·, h0) = h1∗ = a0(s∗|h1∗) and
a1(s∗) = s1∗(·, h1∗) = s∗|h1∗ = a1(s∗|h1∗). Then, it must be that e∗ > 0 as Ā(s∗) is
irreducible and p(e∗) = p(h2(s∗|h1∗) = p(h2(s∗)). But then, it is straightforward to
verify that

x(m, e∗, p(e∗)) = x(m, h2(s∗)(m), p(h2(s∗))).

Suppose that there exists a strategy e ∈ E(m) such that

um(x(m, e, p(e))) > um(x(m, e∗, p(e∗))).

Let s(m) be a strategy of the monopolist such that s0∗ \ s(m, h0)(m) = e. Then, we
have that p(e) = p(h2(s∗ \ s(m))) by the same argument used before. But then, we
have that

x(m, e, p(e)) = x(m, h2(s∗ \ s(m))(m), p(h2(s∗ \ s(m)))).

Therefore, it must be that

um(x(m, h2(s∗ \ s(m))(m), p(h2(s∗ \ s(m))))) = umx(m, e, p(e))

> x(m, e∗, p(e∗)) = um(x(m, h2(s∗)(m), p(h2(s∗)))),

a contradiction. Thus the set of subgame perfect allocations is a subset of the set of
monopoly allocations. Hence, the set of monopoly allocations coincides with the set of
subgame perfect allocations. �

3.6 Conclusions

We provide a game theoretic characaterization of the set of monopoly equilibrium,
recognizing its 2 stage flavour and proving its equivalence with the set of subgame
perfect equilibria of a game in which the atom moves first and the atomless sector
moves second.
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Besides the mixed two-stage game framework, our analysis of monopoly equilibrium
as a subgame perfect equilibrium differs from the one proposed by Sadanand (1988)
in that it considers a quantity setting monopolist whereas Sadanand (1988) deals with
an endogenously determined price-setting monopoly. We leave for further research a
reformulation of our model in terms of a price-setting monopolist and a comparison
between the two monopoly configurations.

As reminded above, Busetto et al (2008) proposed a respecification à la Cournot-Walras
of the mixed version of the Shapley window model for an exchange economy with a
finite number of commodities. Since they obtained the negative result that the set of
the Cournot-Walras equilibrium allocations of this respecification does not coincide
with the set of the Cournot-Nash allocations of the mixed version of the original Shap-
ley model in a one-stage setting, they provided a further reformulation of the Shapley
model as a two-stage game. They showed that the set of the Cournot-Walras equilib-
rium allocations coincides with the set of the Markov perfect equilibrium allocations
of the two-stage reformulation of the Shapley model.

The monopoly model studied in this paper cannot be considered as a two-commodity
monopoly version of the Cournot-Walras model proposed by Busetto et al. (2008): this
would require in fact that the atomless part, in the aggregate, held both commodities.

In this regard, it is worth noticing that a model of partial monopoly, where a monopo-
list shares a market with a competitive fringe, was proposed in a pioneering work by
Forchheimer (1908) (see also Reid (1979) for a detailed analysis of this work). A two-
commodity monopoly version of the Cournot-Walras framework proposed by Busetto
et al. (2008), where one commodity is held by the monopolist and a fringe of the atom-
less part whereas the other commodity is only held by the atomless part, could be in-
terpreted indeed as a bilateral exchange generalization of the partial monopoly model
introduced by Forchhemeir (1908). An analysis of the relationship between these two
approaches deserves to be developed in the detail and we leave it for further research.
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Chapter 4

Monopoly equilibrium and elasticity of
substitution: a note on the existence of
the equilibrium

Abstract

We study the existence of a monopoly equilibrium in the bilateral mixed exchange
framework. Non existence examples in which small traders have CES utility functions
are provided and a link between the existence of an equilibrium and the degree of
substitutability of the goods is explored. Therefore, the existence result is proved by
introducing a sufficient assumption on the utilities of the small traders, stressing that
we need them to be locally equivalent to a constant elasticity of scale utility function,
whose elasticity parameter is greater than unity.

4.1 Introduction

In the literature of strategic market games, initiated by Shapley and Shubik (1977), a lot
of attention has been put on this topic. Busetto et al.(2011) initiated a line of research
about existence in mixed models extending, in a way, Sahi and Yao (1989) existence
result for finite economies in a Shapley windows model.
The problem with the existence in oligopoly models, specially models following the
approach by Gabszewicz and Vial (1972), is that a discontinuity in the Walrasian price
correspondence may arise, leading to non-existence of equilibria. In order to solve this
problem, Busetto et al.(2011) used their assumption 4, that states that at least two large
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traders have interior endowments and the indifference curves passing through these
points don’t touch the axis (the assumption replicates the one in Sahi and Yao (1989).
Later on, they provided a refined version of the existence result in which they required
a strongly connected set of commodities (Busetto et al., 2017), but assuming that small
traders hold, in the aggregate, all the commodities present in the market. In the con-
text of bilateral markets, Bloch and Ghosal (1997) provided an existence result in their
model by assuming complementarity in the two goods for each agent.
However, the monopoly model we introduce fails to meet the assumptions stated in
Busetto et al.(2011,2017), which were needed to prove an existence result. Therefore, it
seems that additional assumptions are required in order to guarantee the existence of
a monopoly equilibrium . Borrowing from the well known partial equilibrium stud-
ies on monopoly, we introduce a sufficient condition for the existence of a monopoly
equilibrium based on the elasticity notion, closer to the approach of Bloch and Ghosal
(1997) and Bloch and Ferrer (2001). In the latter, they consider a bilateral oligopoly in
which every trader has a CES utility function, showing in their Lemma 1 that ”the of-
fers of traders on the two sides of the market are strategic complements(substitutes) if
and only if the goods are substitutes (complements)” (p.85). We will initially consider
that all small traders have an identical CES function, showing how the monopoly equi-
librium behaves in the three limit cases for CES utility functions. We show that for a
generic utility function form for the monopolist, the monopoly equilibrium fails to
exist when small traders have Cobb-Douglas or Leontief utility function. In particu-
lar, the non-existence result for Cobb-Douglas utilities stresses how the assumption of
small traders holding in the aggregate every good is crucial for some existence results,
such as the one in Codognato and Julien (2013).
As Bartra states, ”we may conclude that a necessary condition for the monopoly equi-
librium to exist is that both price elasticities of demand are greater than unity” (Bartra,
1972, p.358). We extend this result to our setting by providing a sufficient condition
on the atomless sector utility functions which reflects, even if only locally, the previous
statement.
The outline of the existence proof follows the classical results in strategic market games.
However, this is one of the first existence results in which a specific price selection is
defined and for which an ε-equilibrium is proven to exist.
The model will follow from the previous chapter, i.e. a mixed version of a monopolistic
two-commodity exchange economy introduced by Shitovitz (1973) in his Example 1,
in which one commodity is held only by the monopolist, represented as an atom, and
the other is held only by small traders, represented by an atomless part.
The paper is organized as follows. In section 2, the mathematical model is introduced
followed by a reminder of the notion of a monopoly equilibrium, in section 3. In sec-
tions 4 and 5, we compute the monopoly equilibrium when small traders have an iden-
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tical CES utility function: we first consider the limit situations for CES utilities (i.e.
Cobb-Douglas, Leontief and linear), followed by the general form, where we attempt
to retrieve the limit situation results from the general case. In section 6 the existence
theorem is proven, after introducing our sufficient condition. We then provide, in sec-
tion 7, a few example to test the scope of our additional assumption for the existence
of a monopoly equilibrium. Finally, in section 8 we draw some conclusions and we
suggest some further lines of research.

4.2 Mathematical model

We consider a pure exchange economy with large traders, represented as atoms, and
small traders, represented by an atomless part. The space of traders is denoted by
the measure space (T, T , µ), where T is the set of traders, T is the σ-algebra of all
µ-measurable subsets of T, and µ is a real valued, non-negative, countably additive
measure defined on T . We assume that (T, T , µ) is finite, i.e., µ(T) < ∞. Let T0 denote
the atomless part of T. We assume that µ(T0) > 0 and T \ T0 = {a}, i.e., the measure
space (T, T , µ) contains only one atom, the “monopolist.” A null set of traders is a
set of measure 0. Null sets of traders are systematically ignored throughout the paper.
Thus, a statement asserted for “each” trader in a certain set is to be understood to hold
for all such traders except possibly for a null set of traders. The word “integrable” is to
be understood in the sense of Lebesgue.
A commodity bundle is a point in R2

+. An assignment (of commodity bundles to
traders) is an integrable function x: T → R2

+. We are considering a bilateral ex-
change economy, therefore with two commodities. We assume that the monopolist
holds, without loss of generality good one, while small traders hold the second good,
i.e.

Assumption 11. w1(m) > 0 , w2(m) = 0 and w1(t) = 0, w2(t) > 0, for each t ∈ T0.

An allocation is an assignment x such that
∫

T x(t) dµ =
∫

T w(t) dµ. The preferences
of each trader t ∈ T are described by a utility function ut : R2

+ → R, satisfying the
following assumptions.

Assumption 12. ut : R2
+ → R is continuous, strongly monotone, and strictly quasi-concave,

for each t ∈ T.

Let B denote the Borel σ-algebra of R2
+. Moreover, let T ⊗B denote the σ-algebra gen-

erated by the sets E× F such that E ∈ T and F ∈ B.
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Assumption 13. u : T ×R2
+ → R, given by u(t, x) = ut(x), for each t ∈ T and for each

x ∈ R2
+, is T ⊗B-measurable.

In order to state our last assumption, we need a preliminary definition. We say that
commodities i, j stand in relation Q if there is a nonnull subset Ti of T0, such that ut(·)
is differentiable, additively separable, i.e., ut(x) = vi

t(xi) + vj
t(xj), for each x ∈ R2

+,

and dvj
t(0)

dxj
= +∞, for each t ∈ Ti.1 We can now introduce the last assumption.

Assumption 14. Commodities 1 and 2 stand in relation Q.

A price vector is a nonnull vector p ∈ R2
+. Moreover, we will denote by ∆ the unit sim-

plex, i.e. ∆ = {pR2
+ : p1 + p2 = 1}, and ∆ \ ∂∆ will denote the interior of ∆. Finally,

we will write P ∈ R+ to intend the corresponding relative price for each p ∈ ∆ \ ∂∆,
i.e. P = p1

p2 , for some (p1, p2) ∈ ∆ \ ∂∆.

Let X0 : T0 × R2
++ → P(R2

+) be a correspondence such that, for each t ∈ T0 and
for each p ∈ R2

++, X0(t, p) = argmax{u(x) : x ∈ R2
+ and px ≤ pw(t)}. For each

p ∈ R2
++, let

∫
T0

X0(t, p) dµ = {
∫

T0
x(t, p) dµ : x(·, p) is integrable and x(t, p) ∈

X0(t, p), for each t ∈ T0}. Since the correspondence X0(t, ·) is nonempty and single-
valued, by Assumption 2, let x0 : T0 ×R2

++ → R2
+ be the function such that X0(t, p) =

{x0(t, p)}, for each t ∈ T0 and for each p ∈ R2
++. A Walras equilibrium is a pair

(p, x), consisting of a price vector p and an allocation x, such that px(t) = pw(t) and
ut(x(t)) ≥ ut(y), for all y ∈ {x ∈ R2

+ : px = pw(t)}, for each t ∈ T. A Walras alloca-
tion is an allocation x for which there exists a price vector p such that the pair (p, x) is
a Walras equilibrium.

4.3 Monopoly equilibrium

We introducing the monopoly equilibrium concept.
Let E(m) = {(eij) ∈ R4

+ : ∑2
j=1 eij ≤ wi(m), i = 1, 2} denote the strategy set of atom a.

We denote by e ∈ E(m) a strategy of atom a, where eij, i, j = 1, 2, represents the amount
of commodity i that atom a offers in exchange for commodity j. Moreover, we denote
by E the matrix corresponding to a strategy e ∈ E(m).

We then provide the following definitions.

Definition 14. A square matrix A is said to be triangular if aij = 0 whenever i > j or aij = 0
whenever i < j.

1In this definition, differentiability means continuous differentiability and is to be understood to in-
clude the case of infinite partial derivatives along the boundary of the consumption set (for a discussion
of this case, see, for instance, Kreps (2012), p. 58).
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Definition 15. Given a strategy e ∈ E(a), a price vector p is said to be market clearing if

p ∈ R2
++,

∫
T0

x0j(t, p) dµ +
2

∑
i=1

eijµ(m)
pi

pj =
∫

T0

wj(t) dµ +
2

∑
i=1

ejiµ(m) (4.1)

, j = 1, 2.

We recall here a proposition from the previous chapter, that provides a necessary and
sufficient condition for the existence of a market clearing price vector.

Proposition 18. Under Assumption 11, 12, 13 and 14, given a strategy e ∈ E(m), there exists
a market clearing price vector p ∈ ∆ \ ∂∆ if and only if the matrix E is triangular.

Proof. See Chapter 2. �

We denote by π(e) a correspondence which associates, with each strategy e ∈ E(m),
the set of price vectors p satisfying (1), if E is triangular, and is equal to {0}, otherwise.
A price selection p(e) is a function which associates, with each strategy selection e ∈
E(m), a price vector p ∈ π(e).

Given a strategy e ∈ E(m) and a price vector p, consider the assignment determined
as follows:

xj(m, e, p) = wj(m)−
2

∑
i=1

eji +
2

∑
i=1

eij
pi

pj , if p ∈ R2
++,

xj(m, e, p) = wj(m), otherwise,

j = 1, 2,

xj(t, p) = x0j(t, p), if p ∈ R2
++,

xj(t, p) = wj(t), otherwise,

j = 1, 2, for each t ∈ T0.

Given a price selection p(·) and a strategy e ∈ E(m), traders’ final holdings are ex-
pressed by the assignment x(m) = x(m, e, p(e)) and x(t) = x(t, p(e)), for each t ∈ T0.

The following proposition, replicated from the previous chapter, shows that traders’
final holdings are an allocation.

Proposition 19. Under Assumptions 11, 12, 13, and 14, given a price selection p(·) and a
strategy e ∈ E(m), the assignment x(m) = x(m, e, p(e)) and x(t) = x0(t, p(e)), for each
t ∈ T0, is an allocation.

Proof. See Chapter 2. �
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We can now provide the definition of a monopoly equilibrium.

Definition 16. A strategy ẽ ∈ E(m) such that Ẽ is triangular is a monopoly equilibrium, with
respect to a price selection p(·), if

ua(x(m, ẽ, p(ẽ)) ≥ ua(x(m, e, p(e)),

for each e ∈ E(m).

4.3.1 Monopoly equilibrium under invertible demand

We now show how the monopoly equilibrium can be computed when the demand
function

∫
T0

x01(t, p)dµ is invertible. This doesn’t change the theoretical background
of the definition just provided, it just aims to give support to the way in which the
problem will be tackled in the following sections.
In this situation, we want to show that finding the optimal bid for the monopolist is
equivalent to obtaining the equilibrium bid as the demand computed at an optimal
price.
We recall two more propositions from the previous chapter.

Proposition 20. Under Assumption 11, 12, 13 and 14, the function
∫

T0
x01(t, ·) dµ is invert-

ible if and only, for each x ∈ R++, there is a unique p ∈ ∆ \ ∂∆ such that x =
∫

T0
x0i(t, p) dµ.

Proposition 21. Under Assumption 11, 12, 13 and 14, if the function
∫

T0
x01(t, ·) dµ is in-

vertible, then there exists a unique price selection p̊(·).

Let p̊(·) denote the inverse of the function of
∫

T0
x01(t, p)dµ. We prove the following

proposition.

Proposition 22. Under Assumption 11, 12, 13 and 14, if the function
∫

T0
x01(t, ·) dµ is in-

vertible, then a strategy ẽ ∈ E(a) such that Ẽ is triangular is a monopoly equilibrium if and
only if there exists a price p̃ ∈ ∆ \ ∂∆ such that ua(x(m, e( p̃), p̃) ≥ ua(x(m, e(p), p), for each
p ∈ ∆ \ ∂∆. Moreover, p̃ = p̊(ẽ).

Proof. Suppose that ẽ is a monopoly equilibrium. Let p̃ = p̊(ẽ). Clearly, p̃ is uniquely
defined, by Propositions 20 and 21, as

∫
T0

x01(t, ·) dµ is invertible. Suppose that there
exists p′ such that ua(x(m, e(p′), p′) ≥ ua(x(m, e( p̃), p̃). But then, letting e′ be the
unique strategy such that p′ = p̊(e′), ua(x(m, e′, p(e′)) ≥ ua(x(m, ẽ, ˚̃e), a contradic-
tion as ẽ is a monopoly equilibrium. But then, ua(x(m, e( p̄), ( p̄)) ≥ ua(x(m, e(p), p), for
each p ∈ ∆ \ ∂∆.
Suppose now there exists a price p̃ ∈ ∆ \ ∂∆ such that ua(x(m, e( p̃), p̃)) ≥ ua(x(m, e(p), p)),
for each p ∈ ∆ \ ∂∆. Let ẽ = e( p̃). Suppose that there exists ē such that ua(x(m, ē, p̊(ē)) ≥
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ua(x(m, ẽ, p(ẽ)). But then, letting p̄ = p̊(ē) we have ua(x(m, e( p̄), p̄)) ≥ ua(x(m, e( p̃), p̃)),
a contradiction. Therefore ẽ = e( p̃) is a monopoly equilibrium. �

The previous proposition shows we can compute the monopoly equilibrium as the bid
resulting from the optimal price. Alternatively, proposition 22 states that if there is no
optimal interior price, then there is no equilibrium.

4.4 Existence: Limit results

We will try now to give an existence result when the atomless part of the economy has
an identical utility function, represented by a CES function in the form 2

u(x, t) = (axρ
1 + (1− a)xρ

2)
1
ρ .

The elasticity coefficient ρ plays a fundamental role in the analysis, so we will try and
distinguish different situations depending on where the parameter lies.
First, we study what happens at the limit situations, i.e. when ρ → 0, ρ → −∞ and
ρ = 1.

4.4.1 Cobb-Douglas (ρ→ 0)

When the elasticity factor tends to 0, the utility function becomes a Cobb-Douglas, i.e.
u(x, t) = xa

1x1−a
2 .

In this situation, the demand function for good 1 becomes

x1(P) =
a
P

Then, the monopolist revenue in terms of good 2 is P(e)e = a. Therefore, a monopolist
equilibrium doesn’t exists as the induced utility function, i.e.

u(m, e, P(e)) =

(w1(m)− e, P(e)e) i f e ∈ (0, w1(m)]

w(m) i f e = 0
(4.2)

is not continuous at e = 0, as lime→0 P(e)e 6= 0.

2In the following, since we are using powers, the commodity index will be subscript to simplify the
notation. This shouldn’t create confusion with the previous notation.
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4.4.2 Linear utility(ρ = 1)

If ρ = 1 (or tends to 1), then we approach the linear utility case, i.e. u(x, t) = ax1 +

(1− a)x2.
In this case, given the corner endowments, the first order conditions of the utility max-
imization problem directly give the value for the relative price, i.e. P = a

1−a . Therefore,
the monopolist becomes price taker as well, and the monopolist equilibrium coincides
with competitive equilibrium. As a consequence, the monopoly equilibrium exists.

4.4.3 Leontief (ρ→ −∞)

The final limit case is the one in which ρ → −∞. In this situation, the utility becomes
u(x, t) = min{ x1

a , x2
1−a}. The demand for good one becomes then

P(x1) =
a + ax1 − x1

ax1

In the same way as the Cobb Douglas, the induced utility function for the monopolist is
not continuous, as lime→0 P(e)e = 1 6= 0. Therefore, the monopoly equilibrium doesn’t
exist.

4.5 The general case for CES utilities

We can now consider a more general case. To simplify the analysis, without loss of
generality, we will assume here that w(m) = (1, 0) and w(t) = (0, 1), for each t ∈ T0.
Every small trader solves the maximization problem

max u(x, t) = (axρ
1 + (1− a)xρ

2)
1
ρ s.t.Px1 + x2 = 1

which, for non degenerate cases, leads to the following demand function:

x1(t, P) =
1

P + (1−a
a P)

1
1−ρ

(4.3)

First, we can check under which values of ρ this demand function satisfies relation Q,
i.e. limx1→0

∂u(x,t)
∂x1

= +∞.

∂u(x, t)
∂x1

=
1
ρ

axρ−1
1 (axρ

1 + (1− a)xρ
2)

1
ρ

We can clearly see that the limit of the partial utility goes to infinity as x1 goes to 0
when ρ < 1.
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Now, since the demand function can’t be generically inverted to obtain a demand func-
tion in the form P(x1), we will consider the monopolist problem from a price setting
perspective. We can observe that when limP→+∞ x1(t, P) = 0.

Remind that the CES utility function have the property that the elasticity is constant,

i.e. −
∂

dx1
dx2
dp

P
x1
x2

= 1
1−ρ = φ. So we can rewrite all of these relations in terms of φ.

The monopolist observe the small traders demand function and solves the following
problem:

max
P

u(x, m)

s.t. Px1(m) + x2(m) = P

1− x1(m) = x1(t, P)

First, we can rewrite the first constraint as x2 = (1− x1(m))P = x1(t, P)P.
It may be worth noticing that prices are bounded below. This is implicitly stated in the
second constraint, as prices must be such that x1(t, P) ≤ 1, and therefore

1
P + (1−a

a P)φ
≤ 1.

Now, we can plug the constraints into the utility function, and the problem reduces to

max
P

u(x1(m, P), x2(m, P)) = u(1− x1(t, P), Px1(t, P)) (4.4)

4.5.1 Inelastic demand and non existence of monopoly equilibrium

Before going into the analysis of the first order conditions for this problem, it is worth
noticing that Px1(t, P) may not go to 0 when the relative price diverge, i.e. when the
bid of the monopolist goes to 0. In particular, when 0 < φ < 1, limP→0 x1(t, P) = 1.
This created the discontinuity we encountered in the previous examples. We can there-
fore state the following proposition.

Proposition 23. If u(x, t) is a CES utility function with elasticity parameter with 0 < φ < 1,
for each T ∈ T0, then there is no monopoly equilibrium.

Proof. Monopolist final allocation will be in the form x(m, e, P(e)) = (1− e(P), Pe(P)).
Moreover, Pe(P) = Px1(t, P) = P

P+( 1−a
a P)φ . This expression goes to 1 when P → +∞,

as we are assuming 0 < φ < 1. But then, limP→+∞ x(m, e, P(e)) = (1, 1), as e(P) =
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x1(t, P) and x1(t, P) → 0 when P → +∞. Moreover, (1, 1) �m x(m, e, P(e)), for each
P ∈ R+ (i.e. p ∈ ∆ \ ∂∆). However, at the limit, i.e. when e = 0, x(m, e, P(e)) =

w(m) = (1, 0). Therefore, there is no optimal strategy for the monopolist, in the sense
that the it is always optimal to increase the price (reduce the bid). Hence, there is no
monopoly equilibrium �

4.5.2 Elastic demand

We can now focus on the general solution of the maximization problem stated in 4.4.
The first order condition is

∂u
∂P

= −∂um(x(m, P)
∂x1(m, P)

∂x1(t, p)
∂P

+
∂um(x(m, P)

∂x2(m, P)
(x1(t, P) + P

dx1

dP
)

Expanding the constant elasticity relation, we can write

dx1

dP
= −φx1(1− Px1)

P
− x2

1

Therefore, rearranging the terms, we obtain

∂u
∂P

= −∂um(x(m, P)
∂x1(m, P)

(
dx1(t, P)

dP
) +

∂um(x(m, P)
∂x2(m, P)

d[Px1(t, P)]
dP

= −∂um(x(m, P)
∂x1(m, P)

(−φx1(1− Px1)

P
− x2

1) +
∂um(x(m, P)

∂x2(m, P)
[x1(t, P)2(1− φ)(

1− a
a

P)φ]

= x1(t, P)2[
∂um(x(m, P)

∂x1(m, P)
(

φ

P
(

1− a
a

P)φ + 1) +
∂um(x(m, P)

∂x2(m, P)
(1− φ)(

1− a
a

P)φ]

(4.5)

Analyzing this expression, we can already find an interesting result, that is that the
marginal change utility for the monopolist for a price change is decreasing in the elas-
ticity parameter. We prove this result in the following proposition.

Proposition 24. If φ1 ≥ φ2 > 1, then ∂u
∂P (φ1) ≤ ∂u

∂P (φ2)
3.

Proof. Suppose φ1 ≥ φ2 > 1. Then, it is immediate to see that x1(φ1, P, t) ≤ x1(φ2, P, t),
for each P, from the expression of the demand function (see 4.3). But then, x1(m, P, φ1) ≥
x1(m, P, φ2) and x2(m, P, φ1) ≤ x1(m, P, φ2), for each P, as x(a, P) = (1− x(t, P); Px1(t, P)).

3With a little abuse of notation, we denote by ∂u
∂P (φ1) the derivative of the induced utility function for

the monopolist when she faces an homogeneous atomless sector in which all traders have a CES utility
function with elasticity parameter φ1
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Therefore, ∂um(x(m,P)
∂x1(m,P) |x1(m,P)=x1(m,P,φ1)

≤ ∂um(x(m,P)
∂x1(m,P) |x1(m,P)=x1(m,P,φ2) and

∂um(x(m, P)
∂x2(m, P)

|x2(m,P)=x2(m,P,φ1)
≥ ∂um(x(m, P)

∂x2(m, P)
|x2(m,P)=x2(m,P,φ2)

, as u is strictly concave, by Assumption 17. Hence, by incorporating the previous
inequalities into equation 4.5, if φ1 ≥ φ2 > 1, then ∂u

∂P (φ1) ≤ ∂u
∂P (φ2). �

To derive the result for linear utilities, we will show in the following proposition that
when the elasticity parameter φ goes to infinity, then the optimal monopoly price will
equate the walrasian/paretian price.

Proposition 25. Consider a pure exchange economy such that each trader t ∈ T0 has a CES
utility function with parameter φ, then when φ→ +∞ the monopoly equilibrium will coincide
with the walrasian equilibrium.

Proof. We consider again the first order condition, expressed in 4.5, and we will put it
to be greater or equal to 0, i.e.

x1(t, P)2[
∂um(x(m, P)

∂x1(m, P)
(

φ

P
(

1− a
a

P)φ + 1) +
∂um(x(m, P)

∂x2(m, P)
(1− φ)(

1− a
a

P)φ] ≥ 0

Rearranging the terms, we get that

−
∂um(x(m,P)

∂x1(m,P)
∂um(x(m,P)

∂x2(m,P)

≤ P
(1− φ)(1−a

a P)φ

φ(1−a
a P)φ + P

(4.6)

In particular, we may notice that the right hand side of the previous disequation goes
to P as φ→ +∞. If we rewrite the previous expression as an equation, then we obtain

the well known relation for a walrasian economy, i.e.
∂um(x(m,P)

∂x1(m,P)
∂um(x(m,P)

∂x2(m,P)

= P; therefore proving

the fact that when the elasticity goes to infinity, i.e. when the CES utilities tend to linear
form utility, the monopoly equilibrium will converge to the walrasian equilibrium. �

4.5.3 Example with heterogeneous atomless sector

We end this section with an instructive example that extends Proposition 23. We show
that even when only a subset of the small traders has an inelastic CES utility function,
we end up with a negative result.

Example 6. Consider the following specification of the exchange economy satisfying Assump-
tions 1, 2, 3 and 4. T0 = [0, 1], T1 = 2, T0 is taken with Lebesgue measure and µ(2) = 1,
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wt = (0, 1) for each t ∈ T0, ut(x) = x1x2 for each t ∈ [0, 1
10 ], ut(x1, x2) =

√
x1 + x2 for

each t ∈ [ 1
10 , 1], w2 = (1, 0), u2 = 20x1 +

1
10 lnx2. Then, there is no monopoly equilibrium.

Proof. The demand function for good 1 for each t ∈ [0, 1
10) is given by x1(t, P) = 1

2P ,
while the the demand function for good 1 for each t ∈ [ 1

10 , 1] is given by x1(t, P) = 1
4P2 .

Therefore, the aggregate demand function for good 1 is given by

∫
T0

x1(t, p)dµ =
∫ 1

10

0
x1(t, P)dµ +

∫ 1

1
10

x1(t, P)dµ =
1
10

1
2P

+
9
10

1
4P2 =

2P + 9
40P2 .

Then, p(e) = p(
∫

T0
x1(t, p)dµ) = 1+

√
1+360e
40e . But then, the induced utility for the mo-

nopolist u2(x1(e, P), x2(e, P) = (1− e, p(e)e) = 20(1− e) + 1
10 ln 1+

√
1+360e
40 . Therefore,

the first order condition for the maximization of the utility of the monopolist are

du2(e))
de

= −20 +
18

360e + 1 +
√

1 + 360e
.

This expression is clearly negative for each value of e ∈ (0, 1]. Moreover, lime→0(x1(e), x2(e)) 6=
w2 as lime→0 x2(e) = lime→0 P(e)e = 1

20 . Hence, there is no monopoly equilibrium. �

4.6 Discussion

In the previous sections, we tried to link results about existence of a monopoly equi-
librium with the elasticity of substitution between the two goods for the small traders.
In order to do that, we consider a pure exchange economy in which all traders in the
atomless part has an identical CES function, that guarantees that the aggregate demand
function will preserve the constant elasticity property.
The first proposition is a counterpart in our framework of the result in monopoly the-
ory, stating that ”[...] the profit maximizing monopolist produces an output where the
marginal revenue equals positive marginal cost, and the former is positive only if the
elasticity of demand exceeds unity” (Batra 1971, pag.358). In our context, we state that
the elasticity of substitution must exceed unity in order for the monopoly equilibrium
to exist. In particular, the non existence is derived from the fact that when the elastic-
ity of substitution is sufficiently low, the monopolist can exploit indefinitely the small
traders, but at the limit he’s left with her own endowment, which is strictly worse that
what she could have got if she kept on decreasing her offer (increasing the price).

In the two limit situations, i.e. Cobb-Douglas and Leontief utility functions, the in-
terpretation appears even ”cleaner”. For Leontief utility function, the two goods are
perfect complements, therefore the monopolist can attain his maximum market power
as small traders will always be incentivized to send to the market almost their whole
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stock of good in order to exchange it for a small quantity from the good the monopolist
owns.
In the Cobb-Douglas case, we can see that the small traders demand for the good they
own is completely inelastic. This means that the monopolist will always get in return a
fixed amount of the good the small traders own, no matter what his bid is. Therefore,
the monopolist here is always incentivized to reduce his bid.

To conclude our analysis of the first proposition, we will add two details to it. First, the
result states the non existence of a monopoly equilibrium in the sense that there doesn’t
exist an optimal strategy for the monopolist, not that the only possible equilibrium is
autarchy. This is mostly due to the fact that the low elasticity of substitution makes the
induced payoff of the monopoly discontinuous, and therefore we can’t have a solution
to the maximization problem. The important feature that drives the discontinuity is
the model setup, in particular the fact that we have identical corner endowment for
each small traders, where none of them holds any amount of the good owned by the
monopolist.
The second important fact is that this proposition doesn’t require any additional as-
sumption for the behaviour of monopolist utility, as it holds for a generic utility func-
tion for the monopolist.

The second proposition can also be considered as a generalization for the standard
result in partial equilibrium, that is the well known mark-up formula

MR(1 +
1
φ
) = MC.

Clearly, if the elasticity of the demand goes to infinity, than we get the standard com-
petitive result. Our proposition states the same result in a context of bilateral exchange.
Here the interpretation is that the closer the goods to the situation of perfect substitutes,
formally linear utility form, the lesser market power the monopolist has. In the limit,
when goods are perfect substitutes, the relative price of the goods is fixed by the small
traders via their demand (as it is infinitely elastic) and therefore the monopolist has no
market power in manipulation the price, which in turn brings the equilibrium to be
equal to the walrasian one.
Finally, it is worth noticing that in this situation the existence of a non autarchic equi-
librium is established as we know from standard results in general equilibrium theory
that guarantees the existence of a walrasian equilibrium in this framework.
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4.7 Existence of a monopoly equilibrium

The previous section showed that the monopoly equilibrium may fail to exist in the
context of an inelastic demand. Therefore, we’ll provide a proof for the existence of a
monopoly equilibrium which takes into account this feature.
Before introducing our new assumption, we need to introduce the following definition.

Definition 17. Let u1 and u2 be two utility function satisfying Assumption 2. We say that
the two utilities are locally equivalent at x̄ ∈ R2

+ if there exists a sequence of prices Pn ∈ R+

for which the corresponding demands x1(Pn) coincide and both converge to x̄.

Finally, in order to take into account the elasticity constraint, we introduce the follow-
ing assumption.

Assumption 15. There exist α ∈ (0, 1) and elasticity parameter φ = 1
1−ρ > 1 such that ut is

locally equivalent to a CES utility function, i.e. u(x, t) = (axρ
1 + (1− a)xρ

2)
1
ρ . at wt = (0, 1),

for each t ∈ T0.

This assumption requires the utility functions of each small traders to be locally equiv-
alent to a linear utility function.

However, the first part of the proof will be given from a general perspective, as it holds
for a more general framework4.

Theorem 1. Under Assumptions 16, 17, 18, 15 there exists a monopoly equilibrium.

Proof. From now on, since the demand functions are homogeneous of degree 0, in-
stead of considering non negative price vectors, we will consider price vectors pε ∈
∆ = {p ∈ R2

+ : p1 + p2 = 1}. We will denote the set of strictly positive prices as ∆ \ ∂∆.
We show now a proposition about the aggregate demand function

∫
T x01(t, pε)dµ(t) :

∆ \ ∂∆→ R+.

Lemma 1. The aggregate demand function
∫

T x01(t, pε)dµ(t) : ∆ \ ∂∆ → R+ is an onto
continuous function.

Proof. The correspondence
∫

T0
X0(t, ·) dµ is upper hemicontinuous, by the argument

used in the proof of Property (ii) in Debreu (1982), p. 728. But then, the function
{
∫

T0
x01(t, ·) dµ} is continuous as

∫
T0

X0(t, pε) dµ =
∫

T0
x0(t, pε) dµ, for each pε ∈ ∆ \

∂∆, by the argument used previously.

4For example, the first part of the proof would hold even replacing Assumption 15 back with As-
sumption 19
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To prove that
∫

T x01(t, pε)dµ(t) : ∆ \ ∂∆ → R+ is onto, we need to show that for each
e ∈ E(a) there exists a market clearing price pε ∈ ∆ \ ∂∆. First, let ε > 0. Then, let e ≥ 0.
Let {pn} be a sequence of normalized price vectors such that pn ∈ ∆ \ ∂∆, for each
n = 1, 2, . . ., which converges to a normalized price vector p̄ such that p̄1 = 0. Then,
the sequence {

∫
T0

x01(t, pn) dµ} diverges to +∞, by Proposition 4 in chapter 2. But
then, there exists an n0 such that

∫
T0

x01(t, pn) dµ > e + ε, for each n ≥ n0. Therefore,
we have that

∫
T0

x01(t, pn0) dµ > e + ε. Let q ∈ ∆ \ ∂∆ be a price vector such that
q2 ∫

T0
w2(t) dµ

q1 = e + ε. Consider first the case where
∫

T0
x01(t, q) dµ = e + ε. Then, q is

market clearing as it is market clearing as it satisfies 5.1. Consider now the case where∫
T0

x01(t, q) dµ 6= e+ ε. Then, it must be that
∫

T0
x01(t, q) dµ < e+ ε as x01(t, q) ≤ q2w(t)

q1 ,

for each t ∈ T0. But then, we have that
∫

T0
x01(t, q) dµ < e + ε <

∫
T0

x01(t, pn0
ε ) dµ. Let

O ⊂ ∆ \ ∂∆ be a compact and convex set which contains pn0
ε and q. . Therefore, there is

a price vector p∗ε ∈ ∆ \ ∂∆ such that
∫

T0
x01(t, p∗) dµ = e + ε, by the intermediate value

theorem. . Hence, given a strategy e ∈ E(a), there exists a market clearing price vector
p ∈ ∆ \ ∂∆. �

We can now start giving the existence result in the perturbed game we just defined.
Given ε > 0, define a map from market clearing price vectors into monopolist actions,
which is a restriction of the aggregate demand function, namely e̊ : Aε ⊆ ∆ \ ∂∆ →
(0, w1(a)], with Aε = {pε ∈ ∆ \ ∂∆ : ε ≤

∫
T0

x01(t, pε)dµ(t) ≤ w1(a) + ε}.

Lemma 2. The mapping e̊(pε) : Aε ⊆ ∆ \ ∂∆ → (0, w1(a)] is a continuous function and a
closed mapping.

Proof. e̊(pε) is a function as it is a restriction of the aggregate demand function
∫

T0
x01(t, pε)dµ(t) :

∆ \ ∂∆ → R+. The function is also continuous as restrictions preserves continuity.
Moreover, the set Aε is closed as it is a preimage of a closed set via a continuous func-
tion. Moreover, Aε is bounded as Aε ⊂ ∆, which is a compact set. Therefore, Aε is
compact, as it is closed and bounded. Hence, e̊ε(p) is a closed map, by Theorem 4.95
in Lee (2011) �

We can give an initial characterization of the (restricted) inverse correspondence πε(e) :
(0, w1(a)] � B ⊆ Aε.

Lemma 3. The correspondence πε(e) is non-empty, compact valued and upper hemicontinu-
ous.
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Proof. e̊ε(p) has a closed graph, by Lemma 2. Then, πε(e) is an upper hemicontin-
uous correspondence, by Theorem 17.7 in Aliprantis and Border (2006). Moreover,
πε(e) is non-empty, by Lemma 1. Following the previous arguments, πε(e) is bounded
as πε(e) ∈ Aε ⊆ ∆, and it is closed as it is the preimage of {e + ε} via the aggre-
gate demand function (which is continuous). Hence, πε(e) is a compact valued, upper
hemicontinuous correspondence. �

Let now p̃ε(e) = argmaxpε∈πε(e) p1
ε(e). This is a well defined selection as πε(e) is com-

pact valued, by Lemma 3.

We now give a lemma that states an additional property for this selection.

Lemma 4. The price selection p(e) = maxpπ(e), expressed in terms of relative prices, i.e.
P(e), is decreasing for each e > 0.

Proof. Let e′ > e′′ and suppose P(e′) ≥ P(e′′). Consider a restriction of the aggregate
demand function

∫
T0

x01(t, p)dµ(t) by restrincting the domain of this function to the
set [P(e′),+∞). Moreover, we know that the aggregate function (and therefore the
restriction) is continuous and limP→+∞

∫
T0

x01(t, p)dµ(t) = 0. But then, there exists a
P′ ≥ P(e′′) such that

∫
T0

x01(t, p′)dµ(t) = e′′, by the Intermediate Value Theorem. But

then, there exists p′ ∈ π(e′′) with P′ = p
′1

p′2
and P′ > P(e′′), a contraddiction. Therefore,

P(e′′) > P(e′).
Hence, the price selection p(e) = maxpπ(e) is decreasing in e. �

We can now define, in a similar way, ua(x(m, e, p̃ε(e)) = maxp∈πε(e) ua(x(m, e, pε(e)).
We can now provide a characterization for this induced payoff function.

Lemma 5. The induced payoff function, given by ua(x(m, e, p̃ε(e)) is upper semicontinuous.

Proof. The correspondence πε(e) is compact valued and upper hemicontinuous, by
Lemma 3. The utility function ua(x(m, e, p)) is continuous by Assumption 2. Hence,
ua(x(m, e, p̃ε(e)) is upper semicontinuous by Lemma 17.30 in Aliprantis and Border
(2006). �

Finally, we apply Luenberger’s version of Weierstrass theorem to finally obtain the ex-
istence result for the perturbed version of the economy.

Lemma 6. An ε-monopoly equilibrium exists.
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Proof. From the definition of monopoly equilibrium, we can see that a monopoly equi-
librium action ẽε is such that ẽε ∈ argmaxe∈Eu(x(e, pε(e), a), with respect to a price
selection pε(·). Let this price selection be p̃ε(e) = argmaxpε∈πε(e) p1

ε(e). But then,
ua(x(m, e, p̃ε(e)) is upper semicontinuous, by Lemma 5. Therefore, this function achieves
a maximum in its domain, i.e. [0, w1(a)], by Theorem 1 in Luenberger (1970). Hence,
an ε-monopoly equilibrium exists. �

Consider a sequence {εn} with limn→∞ εn = 0. For each {εn}, there exists an optimal
P̃n

ε , by Lemma 6.
P̃n

ε is bounded above for each ε, as the set of feasible prices is bounded above by
Pn

ε (0) = {P ∈ R+ :
∫

T0
x1(t, P)dµ = ε}.

Suppose that the sequence {P̃n
ε } diverges. Then, the final allocation for the small

traders, x1({P̃n
ε }, t) = (x({P̃n

ε }, t), x2({P̃n
ε }, t)), will converge to x(t) = (0, 1), as {P̃n

ε } →
∞. But then, there exists a subsequence {Pnk

ε } for which the demand x1(Pnk
ε , t) will co-

incide with the demand function of a CES function with elasticity parameter phi, by
Assumption 15. But then, there exists a n̄k such that

∂u
∂P

= x1(t, P)2[
∂um(x(m, P)

∂x1(m, P)
(

φ

P
(

1− a
a

P)φ + 1) +
∂um(x(m, P)

∂x2(m, P)
(1− φ)(

1− a
a

P)φ] < 0

for each P > {P̃n̄k
ε }, a contraddiction to the fact that the sequence of the optimal prices

diverges. Therefore, the sequence {P̃n
ε } is bounded above by some price P̄. But then,

the sequence {ẽn
ε} will be bounded below by e(P) > 0, as the price selection is a de-

creasing function, by Lemma 4. But then, there exists a subsubsequence ẽnk that con-
verges to a point ẽ ∈ [e(P), w1(a)]. This completes the proof.
Hence, a monopoly equilibrium exists.

�

4.8 Discussion: Local equivalence with CES

We devote this section to provide two examples in which we check the consistence of
Assumption 15 with the prevision of the existence of the monopoly equilibrium.

In the first example, we show an existence result and shows that the atomless sec-
tor utility function satisfies the critical assumption. We want to remark how it can be
checked that the second part of the atomless sector in our examples satisfies Assump-
tion 15.

Example 7. Consider the following specification of an exchange economy satisfying Assump-
tions 11, 12, 13, and 14. T0 = [0, 1], T \ T0 = {m}, µ(m) = 1, w(m) = (1, 0), um(x) =
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1
2 x1 +

√
x2, T0 is taken with Lebesgue measure, w(t) = (0, 1), ut(x) =

√
x1 + x2, for each

t ∈ T0. Then, there exists a monopoly equilibrium.
Moreover, ut(x) =

√
x1 + x2 satisfies Assumption 15.

Proof. We have that the unique monopoly equilibrium is the strategy ẽ ∈ E(m) such
that ẽ12 = 1

4 , p̊(ẽ) = 1, x̃(m) = (3
4 , 1

4), and x̃(t) = (1
4 , 3

4), for each t ∈ T0.
A sufficient condition to check if a utility function satisfies Assumption 15 is to check
if there is a CES utility function that would equal the MRS of ut(x) in a neighborhood
of (0, 1).
The MRS for ut(x) is given by

∂u
∂x1
∂u
∂x2

=
1

2
√

x1
.

The generic MRS for a CES utility function is given by

∂u
∂x1
∂u
∂x2

=
α(x1)

(ρ−1)

(1− α)(x2)(ρ−1)
.

It’s immediate to see that for α = 1
3 and ρ = 1

2 > 0, when x2 = 1, the two MRS
coincide. Therefore, ut(x) =

√
x1 + x2 satisfies Assumption 15, as this implies also that

φ = 1
1−ρ = 2 > 1. �

In the second example, we portray a situation in which there is no monopoly equilib-
rium and we show that the atomless sector utility function does not satisfy indeed our
assumption.

Example 8. Consider the following specification of an exchange economy satisfying Assump-
tions 11, 12, 13, and 14. T0 = [0, 1], T \ T0 = {m}, µ(m) = 1, w(m) = (1, 0), um(x) =
1
2 x1 +

√
x2, T0 is taken with Lebesgue measure, w(t) = (0, 1), ut(x) = 1

2 ln(x1) + x2, for
each t ∈ T0. Then, there exists no monopoly equilibrium.
Moreover, u(x, t) = ln(x1) + x2 does not satisfy Assumption 15.

Proof. The non existence argument stems from the fact that the monopolist revenue in
terms of good 2 is P(e)e = 1

2 . Therefore, the monopolist induced utility is therefore
discontinuous at e = 0, leading to a non existence of the monopoly equilibrium.
We move now to show that the utility for small traders does not satisfy Assumption
15. We follow the same approach as the previous case. In this example, the MRS for a
generic small traders is

∂u
∂x1
∂u
∂x2

=
1

2x1
.

We can see that this coincides with the MRS of a Cobb-Douglas, namely u(x) = x1/3
1 x2/3

2 ,



4.9. CONCLUSION 81

when x2 → 1. Therefore, it doesn’t satisfy Assumption 15, as we know Cobb-Douglas
can be interpreted as CES utility functions with elasticity parameter approaching 0. �

4.9 Conclusion

In this paper, we studied the problem of the existence of a monopoly equilibrium, link-
ing it with the elasticity of substitution of small traders utilities.
We gave an existence result for the framework introduced in the previous chapter, in-
troducing a sufficient local condition for the utilities in the small trader sector that
guarantees the existence of such an equilibrium. We showed that there is a link be-
tween the elasticity of substitution for small traders and the existence of an equilib-
rium by considering a situation in which the small traders have a generic CES utility
function. Therefore, we introduced a sufficient condition that guarantees the existence
of equilibrium, taking into account this feature.
We extend the well known result in partial equilibrium that monopolist will produce
in the inelastic portion of the demand curve, by requiring that all small traders have
preference which are locally equivalent to a CES utility function whose elasticity is
greater than the unity. This last assumption is very specific and quite demanding, but
it also arises naturally after we considered the previous examples.
A more general consideration of the existence problem of a monopoly equilibrium and
its relation to strategoc substitutability/complementarity notions, expanding on the
arguments by Bloch and Ferrer (2001) and Bloch and Ghosal (1997), is left for further
work. Relaxing Assumption 15 by allowing each small traders’ utilities to be locally
equivalent to potentially heterogeneous CES utility functions would seem the most
direct extension to our result.
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Chapter 5

Disadvantageous Monopolies: a
reconsideration through monopoly
equilibria

Abstract

We study the optimality properties of the monopoly equilibrium. Similar to Codognato
et al. (2015), we show that a monopolist can be competitive when she supplies all of her
endowment to the market. We further show that this is the only possible situation in
which a monopoly equilibrium is Pareto efficient. In the light of the Aumann notion of
disadvantageous monopolies, we show that within our framework, there cannot exist
scenarios in which a monopolist is better off by ”dissolving”, i.e. being a price taker.
We finally provide an important implication on consumer welfare under advantageous
monopoly.

5.1 Introduction

In his seminal paper, Aumann (1973) posited a famous conjecture about ”disadvanta-
geous monopolies”, claiming that, in a cooperative framework, there exists situations
in which a monopolist may be better off by acting competitively. This non intuitive
result laid the seeds for a stream in literature dealing with this problem, trying to rec-
oncile the conjecture with the real life intuition that suggest that a monopolist will be
better off by exploiting his position of market power.
In fact, Aumann himself found that the solution concept used in his paper, i.e. the core,
was not suited for explaining this phenomenon, as ”monopoly power is probably not

85
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based on this at all, but rather on what the monopolist can prevent other coalitions
from getting. His strength lies in his threat possibilities, in the bargaining power en-
gendered by the harm he can cause by refusing to trade” (Aumann, 1973).
Guesnerie (1977) and Legros (1987) attempted to tackle the problem using two natu-
ral alternative solution concepts within the cooperative approach: the Shapley value
and the nucleolus. Guesnerie confirmed the negative results regarding stability, while
Legros could provide some sufficient conditions on when a monopolist can be actually
advantageous. Looking at these overall negative results, it seemed natural to look at
the problem from a different perspective and using different solution concepts. Okuno
et al. (1980) studied oligopolies through the lens of a non cooperative game, using the
Cournot-Nash solution concept. However, even within a one stage non cooperative
framework, they couldn’t exclude the possibility of disadvantageous monopolies, in
Aumann sense. We investigate whether we can exclude the possibility of disadvanta-
geous monopolies arising within our version of a monopolistic market.
The aim of this paper is to study this problem within the bilateral exchange monopolis-
tic market framework introduced in the previous chapters. We will study the problem
of the optimality of the solution concept provided earlier. Similar to the approach in
Busetto et al. (2020), we begin by characterizing optimality through the concept of
(Pareto) efficiency.
Similarly to the result in Codognato et al. (2015), we show that a monopolist can be
walrasian if the optimal bid is equal to the endowment. This is already a quite interest-
ing result, showing that in a simple two commodity scenario, even a monopolist can
have incentives to act competitively.
We then move to analyze the possibility for disadvantageous monopolies to emerge in
our framework. The result is negative, in fact we show that when the set of monopoly
equilibria and the set of walrasian equilibria are disjoint, then the monopolist will al-
ways be better off at a monopoly equilibrium rather than at a competitive equilibrium.
In other words, the monopolist will always exploit her market power and will never
generally have an incentive to behave competitively. Therefore, within this model
specification, we are able to rule out the presence of disadvantageous monopolies and
reconcile Aumann’s ”paradoxical” conjecture with the common sense understanding
of monopoly power.
Shitovitz (1973), in his Theorem A, shows that large traders tend to monetarily exploit
small traders, in the sense that in then core small traders will consume a bundle whose
value is not larger than the value of their endowment. Within our framework, we want
to disentangle the two sides of the previous proposition: on one hand, the monopolist
has an incentive to increase the price, i.e. induce a higher price at a monopoly equi-
librium with respect to the competitive one; on the other hand, we want to highlight
whether the small traders sector is disadvantaged by the presence of a monopolist as
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the only large traders owning a good they desire.
The paper is structured as follows: in Section 2, we introduce the mathematical model;
in section 3, we specify the solution concept, the monopoly equilibrium, in particular
under demand invertibility condition; section 4 is devoted to establishing the nexus
between optimality, efficiency and the monopoly equilibrium; section 5 and 6 study
inefficient monopoly equilibria and makes the case for advantageous monopolies and
its consequences on consumer welfare; section 7 gives some conclusions and provides
some further area of research.

5.2 Mathematical model

We consider a pure exchange economy with large traders, represented as atoms, and
small traders, represented by an atomless part. The space of traders is denoted by
the measure space (T, T , µ), where T is the set of traders, T is the σ-algebra of all
µ-measurable subsets of T, and µ is a real valued, non-negative, countably additive
measure defined on T . We assume that (T, T , µ) is finite, i.e., µ(T) < ∞. Let T0 denote
the atomless part of T. We assume that µ(T0) > 0 and T \ T0 = {a}, i.e., the measure
space (T, T , µ) contains only one atom, the “monopolist.” A null set of traders is a
set of measure 0. Null sets of traders are systematically ignored throughout the paper.
Thus, a statement asserted for “each” trader in a certain set is to be understood to hold
for all such traders except possibly for a null set of traders. The word “integrable” is to
be understood in the sense of Lebesgue.
A commodity bundle is a point in R2

+. An assignment (of commodity bundles to
traders) is an integrable function x: T → R2

+. We are considering a bilateral ex-
change economy, therefore with two commodities. We assume that the monopolist
holds, without loss of generality good one, while small traders hold the second good,
i.e.

Assumption 16. w1(m) > 0 , w2(m) = 0 and w1(t) = 0, w2(t) > 0, for each t ∈ T0.

An allocation is an assignment x such that
∫

T x(t) dµ =
∫

T w(t) dµ. The preferences
of each trader t ∈ T are described by a utility function ut : R2

+ → R, satisfying the
following assumptions.

Assumption 17. ut : R2
+ → R is continuous, strongly monotone, and strictly quasi-concave,

for each t ∈ T.

Let B denote the Borel σ-algebra of R2
+. Moreover, let T ⊗B denote the σ-algebra gen-

erated by the sets E× F such that E ∈ T and F ∈ B.
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Assumption 18. u : T ×R2
+ → R, given by u(t, x) = ut(x), for each t ∈ T and for each

x ∈ R2
+, is T ⊗B-measurable.

In order to state our last assumption, we need a preliminary definition. We say that
commodities i, j stand in relation Q if there is a nonnull subset Ti of T0, such that ut(·)
is differentiable, additively separable, i.e., ut(x) = vi

t(xi) + vj
t(xj), for each x ∈ R2

+,

and dvj
t(0)

dxj
= +∞, for each t ∈ Ti.1 We can now introduce the last assumption.

Assumption 19. Commodities 1 and 2 stand in relation Q.

A price vector is a nonnull vector p ∈ R2
+. Moreover, we will denote by ∆ the unit sim-

plex, i.e. ∆ = {pR2
+ : p1 + p2 = 1}, and ∆ \ ∂∆ will denote the interior of ∆. Finally,

we will write P ∈ R+ to intend the corresponding relative price for each p ∈ ∆ \ ∂∆,
i.e. P = p1

p2 , for some (p1, p2) ∈ ∆ \ ∂∆.

Let X0 : T0 × R2
++ → P(R2

+) be a correspondence such that, for each t ∈ T0 and
for each p ∈ R2

++, X0(t, p) = argmax{u(x) : x ∈ R2
+ and px ≤ pw(t)}. For each

p ∈ R2
++, let

∫
T0

X0(t, p) dµ = {
∫

T0
x(t, p) dµ : x(·, p) is integrable and x(t, p) ∈

X0(t, p), for each t ∈ T0}. Since the correspondence X0(t, ·) is nonempty and single-
valued, by Assumption 2, let x0 : T0 ×R2

++ → R2
+ be the function such that X0(t, p) =

{x0(t, p)}, for each t ∈ T0 and for each p ∈ R2
++. A Walras equilibrium is a pair

(p, x), consisting of a price vector p and an allocation x, such that px(t) = pw(t) and
ut(x(t)) ≥ ut(y), for all y ∈ {x ∈ R2

+ : px = pw(t)}, for each t ∈ T. A Walras alloca-
tion is an allocation x for which there exists a price vector p such that the pair (p, x) is
a Walras equilibrium.

5.3 Monopoly equilibrium

We introducing the monopoly equilibrium concept.
Let E(m) = {(eij) ∈ R4

+ : ∑2
j=1 eij ≤ wi(m), i = 1, 2} denote the strategy set of atom a.

We denote by e ∈ E(m) a strategy of atom a, where eij, i, j = 1, 2, represents the amount
of commodity i that atom a offers in exchange for commodity j. Moreover, we denote
by E the matrix corresponding to a strategy e ∈ E(m).

We then provide the following definitions.

Definition 18. A square matrix A is said to be triangular if aij = 0 whenever i > j or aij = 0

1In this definition, differentiability means continuous differentiability and is to be understood to in-
clude the case of infinite partial derivatives along the boundary of the consumption set (for a discussion
of this case, see, for instance, Kreps (2012), p. 58).
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whenever i < j.

Definition 19. Given a strategy e ∈ E(a), a price vector p is said to be market clearing if

p ∈ R2
++,

∫
T0

x0j(t, p) dµ +
2

∑
i=1

eijµ(m)
pi

pj =
∫

T0

wj(t) dµ +
2

∑
i=1

ejiµ(m) (5.1)

, j = 1, 2.

We recall here a proposition from the previous chapter, that provides a necessary and
sufficient condition for the existence of a market clearing price vector.

Proposition 26. Under Assumptions 16, 17, 18 and 19, given a strategy e ∈ E(m), there
exists a market clearing price vector p ∈ ∆ \ ∂∆ if and only if the matrix E is triangular.

Proof. See Chapter 2. �

We denote by π(e) a correspondence which associates, with each strategy e ∈ E(m),
the set of price vectors p satisfying (1), if E is triangular, and is equal to {0}, otherwise.
A price selection p(e) is a function which associates, with each strategy selection e ∈
E(m), a price vector p ∈ π(e).

Given a strategy e ∈ E(m) and a price vector p, consider the assignment determined
as follows:

xj(m, e, p) = wj(m)−
2

∑
i=1

eji +
2

∑
i=1

eij
pi

pj , if p ∈ R2
++,

xj(m, e, p) = wj(m), otherwise,

j = 1, 2,

xj(t, p) = x0j(t, p), if p ∈ R2
++,

xj(t, p) = wj(t), otherwise,

j = 1, 2, for each t ∈ T0.

Given a price selection p(·) and a strategy e ∈ E(m), traders’ final holdings are ex-
pressed by the assignment x(a) = x(m, e, p(e)) and x(t) = x(t, p(e)), for each t ∈ T0.

The following proposition, replicated from the previous chapter, shows that traders’
final holdings are an allocation.

Proposition 27. Under Assumptions 16, 17, 18, and 19, given a price selection p(·) and a
strategy e ∈ E(m), the assignment x(m) = x(m, e, p(e)) and x(t) = x0(t, p(e)), for each
t ∈ T0, is an allocation.
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Proof. See Chapter 2. �

We can now provide the definition of a monopoly equilibrium.

Definition 20. A strategy ẽ ∈ E(m) such that Ẽ is triangular is a monopoly equilibrium, with
respect to a price selection p(·), if

ua(x(m, ẽ, p(ẽ)) ≥ ua(x(m, e, p(e)),

for each e ∈ E(m).

5.4 Efficiency, Pareto optimality, and core: non-disadvantageous

monopoly

We analyse now the optimality properties of the monopoly equilibrium introduced in
the previous section. To this end, we need to introduce the following further defini-
tions. An allocation x is said to be individually rational if ut(x(t)) ≥ ut(w(t)), for
each t ∈ T. An allocation x is said to be Pareto optimal if there is no allocation y such
that ut(y(t)) ≥ ut(x(t)), for each t ∈ T, and ut(y(t)) > ut(x(t)), for a non-null set of
traders t in T. An efficiency equilibrium is a pair ( p̂, x̂), consisting of a price vector p̂
and an allocation x̂, such that ut(x̂(t)) ≥ ut(y), for all y ∈ {x ∈ R2

+ : p̂x = p̂x(t)},
for each t ∈ T. An efficiency allocation is an allocation x̂ for which there exists a price
vector p̂ ∈ R2++ such that the pair ( p̂, x̂) is an efficiency equilibrium.

We can now state and prove a proposition which provides a rationale for Pareto opti-
mality as a criterion for efficiency by means of the first and second fundamental the-
orems of welfare economics. Borrowing from the corollary to Lemma 1 in Shitovitz
(1973), in the next proposition, we show that a monopoly allocation is Pareto optimal
if and only if it is an efficiency allocation.

Proposition 28. Under assumptions 16, 17,18 and 19, let x̃ be monopoly allocation. Then, the
monopoly allocation x̃ is Pareto optimal if and only if it is an efficiency allocation.

Proof. . Let x̃ be a monopoly allocation. Suppose that the monopoly allocation x̃ is
Pareto optimal. We adapt to our framework the argument used by Shitovitz (1973) to
prove the corollary to his Lemma 1. It is straightforward to verify that x̃ is individu-
ally rational. Let G̃ → P(R2) be a correspondence such that G̃(t) = {x − x̃(t) : x ∈
R2
+ and ut(x) > ut(x̃(t))}, for each t ∈ T. Moreover, let

∫
T G̃(t) dµ = {

∫
T g̃(t) dµ :

g̃(t) is integrable and g̃(t) ∈ Ĝ(t), for each t ∈ T}. The set {x ∈ R2
+ : ut(x) ≥ ut(x̃)}

is convex as um(·) is strictly quasi-concave, by Assumption 17. Then, it is straightfor-
ward to verify that the set G̃(m) is convex. But then,

∫
T G̃(t) dµ is convex, by Theorem
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1 in Shitovitz (1973). We now prove that 0 /∈
∫

T G̃(t) dµ. Suppose that 0 ∈
∫

T G̃(t) dµ.
Then, there is an assignment y such that ut(y(t)) > ut(x̃(t)), for each t ∈ T, which is
an allocation as

∫
T y(t) dµ =

∫
T x̃(t) dµ =

∫
T w(t) dµ. But then, x̃ is not Pareto optimal,

a contradiction. Therefore, it must be that 0 /∈
∫

T G̃(t) dµ. Then, there exists a vector
q ∈ R2 such that (q 6= 0) and q

∫
T G̃(t) dµ ≥ 0, by the supporting hyperplane theorem.

We know that q ∈ R2
++, by the proof of Lemma 1 in Shitovitz (1973). Let p̂ = qi

qj . Then,
the pair ( p̂, x̃) is an efficiency equilibrium, by Lemma 1 in Shitovitz (1973). Therefore,
the allocation x̃ is an efficiency allocation. Conversely, suppose that the allocation x̃ is
an efficiency allocation. Then, the allocation x̃ is Pareto optimal, by the first fundamen-
tal theorem of welfare economics. Hence, the monopoly allocation x̃ is Pareto optimal
if and only if it is an efficiency allocation. �

The previous proposition exhibited the nexus between Pareto optimality and efficiency.
The next proposition shows that, when the aggregate demand of the atomless part
for the commodity held by the monopolist is invertible and the Walrasian demand of
traders in the atomless part is differentiable, it is possible to exhibit a nexus between
Pareto optimality of a monopoly allocation and perfect competition, i.e., Walras equi-
librium, as it establishes an equivalence between the set of Pareto optimal monopoly
allocations and the set of monopoly allocations, whenever the latter are also Walrasian.

Proposition 29. Under assumptions 16, 17,18 and 19, let the function
∫

T0
x01(t, ·) dµ be

invertible and the function x0(t, ·) be differentiable on R++, for each t ∈ T0. Moreover, let
ẽ ∈ E(m) be a monopoly equilibrium, with respect to the unique price selection p̊(·), and let
p̃ = p̊(ẽ), x̃(m) = x(m, ẽ, p̊(ẽ)), and x̃(t) = x0(t, p̊(ẽ)), for each t ∈ T0. Then, the monopoly
allocation x̃ is Pareto optimal if and only if the pair ( p̃, x̃) is a Walras equilibrium.

Proof. . Let ẽ ∈ E(m) be a monopoly equilibrium, with respect to the unique price
selection p̊(·). Suppose that the monopoly allocation x̃ is Pareto optimal. Moreover,
suppose that x̃2(t) = 0, for each t ∈ T0. Then, we have that

x̃(m) = (w1(m)−
∫

T0

x01(t, p̊(ẽ)) dµ,
∫

T0

w2(t) dµ).

But then, we have that

dum(x̃(m))

de
= −

d
∫

T0
x01(t, p̊(ẽ))

dp
dp̊(e)
de12

< 0,

by Proposition 29, a contradiction. Therefore, there must be a set T̄ ⊆ T0 such that
µ/T̄) > 0 and x̃(t) � 0, for each t ∈ T̄. There exists a vector p̂ ∈ R2

++ such that the
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pair ( p̂, x̃) is an efficiency equilibrium, by Proposition 30. We have that

∂ut(x̃(t))
∂x1

∂ut(x̃(t))
∂x2

= p̃,

as x̃(t) = x0(t, p(ẽ))� 0, for each t ∈ T̄. It must also be that

∂ut(x̃(t))
∂x1

∂ut(x̃(t))
∂x2

= p̂,

as the pair ( p̂, x̂) is an efficiency equilibrium, for each t ∈ T̄. Then, there exists a
real number θ > 0 such that p̃ = θ p̂. But then, x̃ is such that p̃x̃(t) = p̃w(t) and
ut(x̃(t)) ≥ ut(y), for all y ∈ {x ∈ R2

+ : p̃x = p̃w(t)}, for each t ∈ T. Therefore, the
pair ( p̃, x̃) is a Walras equilibrium. Conversely, suppose that the pair ( p̃, x̃) is a Walras
equilibrium. Then, it is straightforward to show that it is also an efficiency equilibrium.
But then, the allocation x̃ is Pareto optimal by the first fundamental theorem of welfare
economics. Hence, the monopoly allocation x̃ is Pareto optimal if and only if the pair
( p̃, x̃) is a Walras equilibrium. �

The next proposition provides a necessary and sufficient condition for a monopoly
allocation to be a Walras allocation.

Proposition 30. Under assumptions 16, 17,18 and 19, let the function
∫

T0
x0i(t, ·) dµ be in-

vertible and the function x0(t, ·) be differentiable on R++, for each t ∈ T0. Moreover, let
ẽ ∈ E(m) be a monopoly equilibrium, with respect to the unique price selection p̊(·), and let
p̃ = p̊(ẽ), x̃(m) = x(m, ẽ, p̊(ẽ)), and x̃(t) = x0(t, p̊(ẽ)), for each t ∈ T0. Then, the pair
( p̃, x̃) is a Walras equilibrium if and only if ẽij = wi(m).

Proof. . Let ẽ ∈ E(m) be a monopoly equilibrium, with respect to the unique price
selection p̊(·). Suppose that the pair ( p̃, x̃) is a Walras equilibrium. Moreover, suppose
that x̃(m)� 0. It must be that

∂um(x̃(m))
∂x1

∂um(x̃(m))
∂x2

= p̃,

as the pair ( p̃, x̃) is a Walras equilibrium. Moreover, we have that

−∂um(x̃(m))

∂x1 +
∂um(x̃(m))

∂x2 ( p̃ +
dp̊(ẽ)
de12

ẽ12) = 0,
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as ẽ is a monopoly equilibrium. Then, we obtain that

∂um(x̃(m))
∂x1

∂um(x̃(m))
∂x2

6= p̃,

as dp̊(ẽ)
deij

< 0, by Proposition 29, a contradiction. Therefore, it must be that ẽij = wi(m).

Conversely, suppose that ẽij = wi(m). We have that x̃(m) = (0, w1(m) p̃). Let x̃2(x1)

be a function such that um(x1, x2(x1)) = um(x̃(m)), for each 0 ≤ x1 ≤ w1(m). We have
that

−∂um(x̃(m))

∂x1 +
∂um(x̃(m))

∂x2 ( p̃ +
dp̊(ẽ)
de12

ẽ12) ≥ 0,

as ẽ12 = w1(m). Then, it must be that

−∂um(x̃(m))

∂x1 +
∂um(x̃(m))

∂x2 p̃ > 0,

as dp̊(ẽ)
deij

< 0, by Proposition 29. But then, we have that dx̃2

dx1 > − p̃, for each 0 ≤ x1 ≤
w1(m), as um(·) is strictly quasi-concave, by Assumption 17. Suppose that there exists
a commodity bundle x̄ ∈ {x ∈ R2

+ : p̃x = p̃w(m)} such that um(x̄) > um(x̃(m)). Then,
it must be that x̄2 > x̃2(x̄1) as um(·) is strongly monotone, by Assumption 17. But then,
by the mean value theorem, there exists some x′ such that 0 < x′ < x̄1 and such that

dx̃2(x′1)
dx1 =

x̃2(0)− x̃2(x̃1)

0− x̃1 < − p̃,

a contradiction. Therefore, we have that um(x̃(m) ≥ um(y), for all y ∈ {x ∈ R2
+ : p̃x =

p̃w(m)}. Hence, the pair ( p̃, x̃) is a Walras equilibrium if and only if ẽij = wi(m). �

The next proposition is an immediate consequence of Proposition 32 and it provides,
under the same assumptions of that proposition, a characterization of Pareto optimal
monopoly allocations.

Proposition 31. Under assumptions 16, 17,18 and 19, let wi(m) > 0 and let the function∫
T0

x0i(t, ·) dµ be invertible and the function x0(t, ·) be differentiable on R++, for each t ∈ T0.
Moreover, let ẽ ∈ E(m) be a monopoly equilibrium, with respect to the unique price selection
p̊(·), and let p̃ = p̊(ẽ), x̃(m) = x(m, ẽ, p̊(ẽ)), x̃(t) = x0(t, p̊(ẽ)), for each t ∈ T0. Then, x̃ is
Pareto optimal if and only if ẽij = wi(m).

Proof. . Let wi(m) > 0 and let ẽ ∈ E(m) be a monopoly equilibrium, with respect to
the unique price selection p̊(·). Suppose that x̃ is Pareto optimal. Then, the pair ( p̃, x̃)
is a Walras equilibrium, by Proposition 31. But then, we have that ẽij = wi(m), by
Proposition 32. Conversely, suppose that ẽij = wi(m). Then, the pair ( p̃, x̃) is a Walras
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equilibrium, by Proposition 32. But then, x̃ is Pareto optimal, by Proposition 31. Hence,
x̃ is Pareto optimal if and only if ẽij = wi(m). �

The following example shows that Propositions 29, 30 and 31 hold non-vacuously.

Example 9. Consider the following specification of an exchange economy satisfying Assump-
tions 16, 17, 18 and 19. T0 = [0, 1], T \ T0 = {m}, µ(m) = 1, w(m) = (1, 0), um(x) =
1
8 x1 +

√
x2, T0 is taken with Lebesgue measure, w(t) = (0, 1), ut(x) =

√
x1 + x2, for each

t ∈ T0. Then, there is a unique monopoly allocation x̃ which coincides with the unique Walras
allocation x∗.

Proof. . The unique monopoly equilibrium is the strategy ẽ ∈ E(m), where ẽ12 = 1, and
the allocation x̃ such that (x̃1(m), x̃2(m)) = (0, 1

2) and (x̃1(t),
x̃2(t)) = (1, 1

2), for each t ∈ T0, is the unique monopoly allocation. The unique Wal-
ras equilibrium is the pair (p∗, x∗), where p∗ = 1

2 , and the allocation x∗ is such that
(x∗1(m), x∗2(m)) = (0, 1

2), and (x∗1(t), x∗2(t)) = (1, 1
2), for each t ∈ T0. Hence, there

is a unique monopoly allocation x̃ which coincides with the unique Walras allocation
x∗. �

We consider now the relationship between the set of monopoly allocations and the
core. The latter can be seen as a stricter notion of allocative efficiency than Pareto
optimality as is well known that any allocation in the core is Pareto optimal whereas
the converse does not necessarily hold.

We say that an allocation y dominates an allocation x via a coalition S if ut(y(t)) ≥
ut(x(t)), for each t ∈ S, ut(y(t)) > ut(x(t)) for a non-null subset of traders t in S, and∫

S y(t) dµ =
∫

S w(t) dµ. The core is the set of all allocations which are not dominated
via any coalition.

The following proposition is a straightforward consequence of Proposition 31 and it
establishes, under the same assumptions of that proposition, an equivalence between
the core coincides and the set of monopoly allocations, whenever the latter are also
Walrasian.

Proposition 32. Under assumptions 16, 17,18 and 19, let wi(m) > 0 and let the function∫
T0

x0i(t, ·) dµ be invertible and the function x0(t, ·) be differentiable on R++, for each t ∈ T0.
Moreover, let ẽ ∈ E(m) be a monopoly equilibrium, with respect to the unique price selection
p̊(·), and let p̃ = p̊(ẽ), x̃(m) = x(m, ẽ, p̊(ẽ)), and x̃(t) = x0(t, p̊(ẽ)), for each t ∈ T0. Then,
the monopoly allocation x̃ is in the core if and only if the pair ( p̃, x̃) is a Walras equilibrium.

Proof. . Let ẽ ∈ E(m) be a monopoly equilibrium, with respect to a price selection p(·).
Suppose that the monopoly allocation x̃ is in the core. Then, x̃ is Pareto optimal. But
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then, the pair ( p̃, x̃) is a Walras equilibrium, by Proposition 31. Conversely, suppose
that the pair ( p̃, x̃) is a Walras equilibrium. Then, the allocation x̃ is in the core, by the
same argument used by Aumann (1964) in the proof of his main theorem. Hence, the
allocation x̃ is in the core if and only if the pair ( p̃, x̃) is a Walras equilibrium. �

The next proposition is an immediate consequence of Proposition 30 and it provides,
under the same assumptions of that proposition, a characterization of monopoly allo-
cations which are in the core.

Proposition 33. Under assumptions 16, 17,18 and 19, let wi(m) > 0 and let the function∫
T0

x0i(t, ·) dµ be invertible and the function x0(t, ·) be differentiable on R++, for each t ∈ T0.
Moreover, let ẽ ∈ E(m) be a monopoly equilibrium, with respect to the unique price selection
p̊(·), and let p̃ = p̊(ẽ), x̃(m) = x(m, ẽ, p̊(ẽ)), and x̃(t) = x0(t, p̊(ẽ)), for each t ∈ T0. Then,
x̃ is in the core if and only if ẽij = wi(m).

Proof. . Let ẽ ∈ E(m) be a monopoly equilibrium, with respect to the price selection
p̊(·). Suppose that x̃ is in the core. Then, x̃ is Pareto optimal. But then, we have that
ẽij = wi(m), by Proposition 30. Conversely, suppose that ẽij = wi(m). Then, the pair
( p̃, x̃) is a Walras equilibrium, by Proposition 32. But then, x̃ is in the core, by the same
argument used by Aumann (1964) in the proof of his main theorem. Hence, x̃ is in the
core if and only if ẽij = wi(m). �

Example 9 shows that Propositions 9 and 10 hold non-vacuously. Moreover, for the
same exchange economy, we can now show that the core does not coincide with the set
of Walras equilibria.

Example 10. Consider the exchange economy specified in Example 9. Then, the core does not
coincide with the set of Walras equilibria.

Proof. . The unique Walras equilibrium is the pair (p∗, x∗), where p∗ = 1
2 and the allo-

cation x∗ is such that (x∗1(m), x∗2(m)) = (0, 1
2), and (x∗1(t), x∗2(t))

= (1, 1
2), for each t ∈ T0. The core consists of all the allocations x of the form (x∗1(m), x∗2(m)) =

(0, 1− α) and (x∗1(t), x∗2(t)) = (1, α), for each t ∈ T0, where 0 ≤ α ≤ 1
2 , as for such

allocations the pair (p∗, x) is an efficiency equilibrium and p∗x(t) ≤ p∗w(t), for each
t ∈ T0, by Theorem A∗ in Shitovitz (1973). Hence, the core does not coincide with the
set of Walras equilibria. �

In our Example 10, as in Example 1 in Shitovitz, the unique Walras allocation is worse,
in terms of the monopolist utility, than any other allocation in the core. Shitovitz (1973),
at the end of a discussion of his Example 1, formulated an open problem which was, in
turn, reformulated by Aumann (1973) as follows: “In a monopolistic market, for each
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core allocation x there is a competitive allocation y whose utility to the monopolist
is ≤ that of x” (see p. 1). Aumann (1973) invalidated this conjecture through three
examples, in the bilateral monopolistic framework of Shitovitz’s Example 1, which
show that monopoly may be, according to his terminology, “disadvantageous.” He
then observed that “This kind of phenomenon illustrated for the core in this note is of
course impossible in classical theory. If the monopolist sets prices, he cannot end up
worse off that at the competitive equilibrium, since he always has the option of setting
the prices equal to competitive prices” (see p. 9). However, Aumann (1973) did not
develop a full theory of a price-setting monopolist in bilateral exchange.

We now use our model of price-setting monopolist to confirm Aumann’s argument
about the “classical theory,” through the following two propositions, which show, re-
spectively, that the monopolist is non-disadvantageous and that the price at a monopoly
equilibrium is greater than the price at a Walras equilibrium.

Proposition 34. Under assumptions 16, 17,18 and 19, let wi(m) > 0 and the function∫
T0

x0i(t, ·) dµ be invertible. If x̃ is a monopoly allocation and x∗ is a Walras allocation, then
um(x̃(m)) ≥ um(x∗(m)).

Proof. . Suppose that the function
∫

T0
x01(t, ·) dµ is invertible. Let x̃ be a monopoly

allocation and let x∗ be a Walras allocation. Then, there exists a strategy ẽ ∈ E(m)

which is a monopoly equilibrium, with respect to the unique price selection p̊(·), and
a relative price p∗ such that the pair (p∗, x∗) is a Walras equilibrium. Suppose that
um(x̃(m)) < um(x∗(m)). We have that∫

T0

x01(t, p∗) dµ =
∫

T0

x∗1(t) dµ = w1(m)− x∗1(m),

as x∗ is a Walras allocation. Suppose that x∗1(m) = w1(m). Then, we have that∫
T2 x01(t, p∗) dµ = 0 as µ(T2) > 0. Consider a trader τ ∈ T2. We have that ∂uτ(x0(τ,p∗))

∂x1 =

+∞ as 2 and 1 stand in the relation Q, by Assumption 19, and ∂uτ(x0(τ,p∗))
∂x1 ≤ λp∗,

by the necessary conditions of the Kuhn-Tucker theorem. Moreover, it must be that
x02(τ, p∗) = w2(τ) > 0 as uτ(·) is strongly monotone, by Assumption 17, and w(τ) >

0. Then, ∂uτ(x0(τ,p∗))
∂x2 = λ, by the necessary conditions of the Kuhn-Tucker theorem. But

then, it must be that ∂uτ(x̂(τ))
∂x2 = +∞ as λ = +∞, contradicting the assumption that

uτ(·) is continuously differentiable. Therefore, it must be that x∗1(m) < w1(m). Let e∗

be a strategy such that e∗12 = w1(m)− x∗1(m). We have that∫
T0

x01(t, p∗) dµ =
∫

T0

x∗1(t) dµ = w1(m)− x∗1(m) = e∗12 =
∫

T0

x01(t, p̊(e∗)),

as the pair (p∗, x∗) is a Walras equilibrium and the function p̊(·) is the unique price
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selection. Then, it must be that p∗ = p̊(e∗). We have that

x∗1(m) = w1(m)− e∗12 = x1(m, e∗, p̊(e∗))

and
x∗2(m) = p∗w1(m)− p∗x∗1(m) = p∗e∗12 = x2(m, e∗, p̊(e∗)).

Then, we have that

um(x(m, ẽ, p̊(ẽ))) = um(x̃(m)) < um(x∗(m)) = um(x(m, e∗, p̊(e∗)),

a contradiction. Hence, if x̃ is a monopoly allocation and x∗ is a Walras allocation, then
um(x̃(m)) ≥ um(x∗(m)). �

Proposition 35. Under assumptions 16, 17,18 and 19, let wi(m) > 0 and the function∫
T0

x0i(t, ·) dµ be invertible. If ẽ ∈ E(m) is a monopoly equilibrium, with respect to the
unique price selection p̊(·), and the pair (p∗, x∗) is a Walras equilibrium, then p̃ ≥ p∗, where
p̃ = p̊(ẽ).

Proof. . Suppose that the function
∫

T0
x01(t, ·) dµ is invertible. Let p̃ = p̊(ẽ), x̃(m) =

x(m, ẽ, p̊(ẽ)), and x̃(t) = x0(t, p̊(ẽ)), for each t ∈ T0. Suppose that p̃ < p∗. Consider
a trader τ ∈ T0. Suppose that x∗(τ) = (0, w2(τ)). Then, it must be that x̃(τ) =

(0, w2(τ)) as p̃ < p∗. But then, we have that uτ(x̃(τ) = uτ(x∗(τ). Suppose that
x∗(τ) 6= (0, w2(τ)). Then, it must be that p̃x∗(τ) < w2(τ)). But then, there exists
a commodity bundle x′ such that p̃x′ = w2(τ)) and uτ(x′) > uτ(x∗(τ) as uτ(·) is
strongly monotone, by Assumption 17. Thus, we have that uτ(x̃(τ)) > uτ(x∗(τ)) as
uτ(x̃(τ)) ≥ uτ(x′). Therefore, we have that ut(x̃(t)) ≥ ut(x∗(t)), for each t ∈ T0.
Moreover, we have that um(x̃(m)) ≥ um(x∗(m)), by Proposition 36. Consider a trader
τ ∈ T2. It must be that

∫
T2 x01(t, p∗) dµ > 0 by the same argument used in the proof

of Proposition 36. Then, we have that x∗(τ) 6= (0, w2(τ)). But then, it must be that
uτ(x̃(τ)) > uτ(x∗(τ)), by the previous argument. Therefore, the Walras allocation x∗

is not Pareto optimal as that ut(x̃(t)) > ut(x∗(t)), for each t ∈ T2, a contradiction.
Hence, we have that p̃ ≥ p∗. �

5.5 Consumer welfare and atomless part welfare: advan-

tageous monopoly

The previous analysis relied only on the concept of efficiency, identified as Pareto Effi-
ciency, as the main concept to determine whether a monopolistic market can be opti-
mal. Another way to look at the problem can be that of studying the welfare properties
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of a monopoly equilibrium by focusing on the welfare of the atomless sector, which can
be interpreted as the consumer welfare, given the strucutre we imposed to our econ-
omy.

Example 9 exhibits the case of a non-disadvantageous monopoly as the unique monopoly
allocation coincides with the unique Walras allocation. The next example exhibits the
case of an advantageous monopoly as the unique monopolist strictly prefers his as-
signment at the unique monopoly allocation to that at the unique Walras allocation.

Example 11. Consider the following specification of an exchange economy satisfying As-
sumptions 16,17,18 and 19. T0 = [0, 1], T \ T0 = {m}, µ(m) = 1, w(m) = (1, 0),
um(x) = 1

2 x1 +
√

x2, T0 is taken with Lebesgue measure, w(t) = (0, 1), ut(x) =
√

x1 + x2,
for each t ∈ T0. Then, there is a unique monopoly allocation x̃ and a unique Walras allocation
x∗ such that um(x̃(m)) > um(x∗(m)).

Proof. . The unique monopoly equilibrium is the strategy ẽ ∈ E(m), where ẽ12 = 1
4 ,

and the allocation x̃ such that x̃(m) = (3
4 , 1

4) and x̃(t) = (1
4 , 3

4), for each t ∈ T0, is
the unique monopoly allocation. The unique Walras equilibrium is the pair (p∗, x∗),
where (p∗1, p∗2) = ((1

4)
1
3 , 1), and the allocation x∗ such that (x∗1(m), x∗2(m)) = (1−

(1
4)

1
3 , (1

4)
2
3 ), and (x∗1(t), x∗2(t)) = ((1

4)
1
3 , 1− (1

4)
2
3 ), for each t ∈ T0, is the unique Walras

allocation. Moreover, we have that

um(x̃(m)) = um

(
3
4

,
1
4

)
=

7
8
>

1
2
+

1
2
(

1
4
)

1
3 = um

(
1− (

1
4
)

1
3 , (

1
4
)

2
3

)
= um(x∗).

Hence, there is a unique monopoly allocation x̃ and a unique Walras allocation x∗ such
that um(x̃(m)) > um(x∗(m)). �

As a counter part to Proposition 36, we show in the following propositions that each
trader in the atomless sector cannot be better off at a monopoly equilibrium with re-
spect to a competitive equilibrium. In particular, we show in the following proposition
that a small trader will be indifferent only when the competitive equilibrium is itself a
monopoly equilibrium.

Proposition 36. Under assumptions 16, 17,18 and 19, let the function
∫

T0
x01(t, ·) dµ be in-

vertible. If x̃ is a monopoly allocation and x∗ is a Walras allocation, then ut(x̃(t)) ≤ ut(x∗(t)),
for each t ∈ T0.

Proof. Suppose that the function
∫

T0
x01(t, ·) dµ is invertible. Let x̃ be a monopoly allo-

cation and let x∗ be a Walras allocation. Then, there exists a strategy ẽ ∈ E(m) which is
a monopoly equilibrium, with respect to the unique price selection p̊(·), and a relative
price p∗ such that the pair (p∗, x∗) is a Walras equilibrium. Let p̃ = p̊(ẽ). We have
that p̃ ≥ p∗, by Proposition 9. Consider a trader τ ∈ T0. Consider the case where
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p̃ = p∗. Then, it must be that uτ(x̃(τ)) = uτ(x∗(τ)). Consider the case where p̃ > p∗.
Suppose that x̃(τ) = (0, w2(τ)). Then, it must be that x∗(τ) = (0, w2(τ)) as p̃ > p∗.
But then, we have that uτ(x̃(τ) = uτ(x∗(τ). Suppose that x̃(τ) 6= (0, w2(τ)). Then, it
must be that p∗x̃(τ) ≤ w2(τ)). But then, there exists a commodity bundle x′ such that
p∗x′ = w2(τ) and uτ(x′) > uτ(x̃(τ) as uτ(·) is strongly monotone, by Assumption 17.
Thus, we have that uτ(x̃(τ)) < uτ(x∗(τ)) as uτ(x∗(τ)) ≥ uτ(x′). Hence, we have that
ut(x̃(t)) ≤ ut(x∗(t)), for each t ∈ T0. �

Proposition 37. Under assumptions 16, 17,18 and 19, let wi(m) > 0 and the function∫
T0

x0i(t, ·) dµ be invertible. If x̃ is a monopoly allocation, x∗ is a Walras allocation, x̃ 6= x∗,
and um(x̃(m)) = um(x∗(m)), then x∗ is a monopoly allocation.

Proof. . Suppose, without loss of generality, that w1(m) > 0 and that the function∫
T0

x01(t, ·) dµ is invertible. Let x̃ be a monopoly allocation and let x∗ be a Walras allo-
cation such that x̃ 6= x∗. Then, there exists a strategy ẽ ∈ E(m) which is a monopoly
equilibrium, with respect to the unique price selection p̊(·), and a relative price p∗

such that the pair (p∗, x∗) is a Walras equilibrium. Let e∗ be a strategy such that
e∗12 = w1(m)− x∗1(m). We have that∫

T0

x01(t, p∗) dµ =
∫

T0

x∗1(t) dµ = w1(m)− x∗1(m) = e∗12 =
∫

T0

x01(t, p̊(e∗)),

as the pair (p∗, x∗) is a Walras equilibrium and the function p̊(·) is the unique price
selection. Then, it must be that p∗ = p̊(e∗). We have that

x1(m, e∗, p̊(e∗)) = w1(m)− e∗12 = x∗1(m)

and
x2(m, e∗, p̊(e∗)) = p∗e∗12 = p∗w1(m)− p∗x∗1(m) = x∗2(m).

�

5.6 Conclusion

This chapter analyses the welfare properties of a monopoly equilibrium, defined in a
pure exchange bilateral market. We can summarize the results of this paper into two
sets. First, we characterize efficiency monopoly equilibrium as situations in which the
monopolist is walrasian. We also show that this holds non vacuously and we provide
a necessary and sufficient condition for this to happen, namely the case in which the
monopolist offers her own endowment to the market.
We then move to study inefficient monopoly equilibrium. We ruled out the Aumann
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paradox within our model, i.e. we prove that we can not have disadvantageous mo-
nopolist. The result follows the standard intuition that a monopolist will generally
force a higher price with respect to competition and generate a higher profit with re-
spect to the walrasian counterpart. At the same time, we show that small traders are
”exploited” at a monopoly equilibrium with respect to the competitive equilibrium.
We therefore extend in a way Shitovitz (1973) theorem A for small traders. Overall, we
make a case for our solution concept to be better suited in analyzing monopolistic mar-
kets, as it is able to avoid situations in which a monopolist would have an incentive to
dissolve.
Another interesting parallel, which is left for further research, is a comparison with the
core solution, and in particular with the works of Greenberg and Shitovitz (1977) and
Shitovitz (1997), in which a monopolist faces an homogeneous atomless sector.
Finally, this work also paves the way for a reconsideration of antitrust policies in pres-
ence of monopolies, and can be investigated further in this direction.
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