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Abstract

Air pollution is one of the leading world problems. Across the world, many organizations

are in charge of researching safe levels of air pollution, which do not affect people’s

health. This research has resulted in regulations, which in Scotland are set by the

Scottish government. However, monitoring air pollution is very expensive which leads

to sparsity in the data. This thesis aims to address this issue by investigating the

miniature automated sensor (MAS) networks and the emulation of air quality models

data. MAS are a cheaper alternative to the current air quality monitoring stations.

Therefore, the quality of the measurements from MAS (in a realistic for citizen science

application) are assessed using Bland-Altman analysis and compared to the air quality

monitoring stations’ recordings using linear regression models. It is found that the MAS

do not have the required level of accuracy, although their recordings are significantly

capturing the pollutants’ concentrations’ fluctuations.

Alternatively, in order to assess the effect of unobserved meteorological conditions on pol-

lutants’ concentrations, simulated data from ADMS-Urban for Scotland is used. Based

on single station and multiple station Gaussian Process (GP) models, emulators for the

NO2 annual average are produced and used to identify the meteorological conditions

for which the regulations will be breached. Therefore, a variety of measures can be

set in motion when such conditions occur to prevent a breach of the regulation. A

quasi-Poisson generalised linear model (GLM) is used to emulate the number of NO2

hourly exceedances in a year over the regulatory limit of 200 µg m−3, thus identifying

the meteorological conditions for which the regulations will be breached and for mea-

sures preventing the breaches to be placed. To emulate the yearly time series for NO2

hourly concentrations, a hyperspatial-temporal emulator with a block-design matrix is

proposed. In order to improve the computational speed, the emulator is produced for

overlapping blocks of data for periods of interest. The results from the emulator identi-

fied periods of possible high NO2 hourly pollutant concentrations and allowed to identify

the emissions levels and meteorological conditions, which lead to high hourly NO2 con-

centrations. Overall, all proposed emulators have very good out-of-sample performance

in predicting the simulated data.
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Chapter 1

Introduction

1.1 Motivation and current legislation

Air pollution is one of the most tangible world problems. Global organizations like

the World Health Organization (WHO), through continental organizations such as the

European Union (EU) and national agencies like the Scottish Environment Protection

Agency (SEPA) are all researching air pollution, its effects on people and their health,

and ways to reduce pollutant concentrations. Depending on their level of influence, each

of the aforementioned organizations has advised or even imposed legislation in order

to ensure that air pollution is within certain boundaries which are chosen to protect

people’s health. According to the WHO, every year around 4.2 million people die from

diseases related to exposure to air pollution. The 2016 WHO report [208] presents

stricter guideline values for what constitutes air pollution because WHO research has

found that lower air pollution than was previously believed has a lasting effect on people’s

health. Furthermore, the report states that over 90% of the world population breathe

air that does not comply with the WHO guidelines. In 2016, the 194 WHO Member

States issued a roadmap “for an enhanced global response to the adverse health effects

of air pollution” [208]. Based on this, the United Nations (UN) has set up targets for

the expected world air pollution by 2030 [195].

In 2008, the EU Parliament combined most of its air quality laws into a single directive

- Directive 2008/50/EC [76]. According to the Clean Air Handbook, “EU citizens have

a legal right to clean air” [11]. By the structure of the EU, each individual state has

an obligation to provide clean air (as per EU standards) to its citizens or the citizens

of that country have the right to sue the country. Although the EU has set up many

regulations on air pollution in order to provide its citizens with clean air, “up to one-third

of the EU urban populations are exposed to air pollution which exceeds EU limit values”

1
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[11]. In April 2015, ClientEarth, an environmental lawyers group, won a Supreme Court

case against the United Kingdom (UK) for breaching the EU limits for nitrogen dioxide

(NO2) [160]. As a response the UK government proposed a plan to comply with the EU

regulations but in November 2016, the plan was ruled as “inadequate” by the High Court

in London [161]. According to the 2016 report of the Royal College of Physicians [166],

every year there are 40,000 deaths that are attributed to ambient (outdoor) air pollution

and a lot more people are affected by illnesses due to air pollution. Furthermore, the

report claims that improving the air quality could also result in economic benefits of

e3.9 billion per year.

The UK has worked on improving the quality of air in the country for more than fifty

years. In December 1952, about 4,000 people died as a direct result of the Great Smog

in London [23]. To circumvent the repetition of events with such disastrous impact,

Parliament passed the Clean Air Act of 1956 and 1968 which “banned emissions of black

smoke and decreed residents of urban areas and operators of factories must convert to

smokeless fuels” [129]. The Clean Air Act from 1993 banned all black smoke [147].

Furthermore, the Clean Air Act from 1993 imposed regulations on motor fuels, the

sulphur content of oil fuels, established smoke control areas, etc [147]. However, in 2018,

in a report by the Royal College of Physicians [167], it was stated that 65% of the British

public would support a new Clean Air Act.

Similar legislation with regards to air pollution has been developed by many other coun-

tries. The most current findings for the air in Europe are presented in the 2020 report

“Air quality in Europe” by the European Environment Agency (EEA) [75]. However,

countries outside Europe are also regulating their air pollution. For instance, the United

States of America (USA) has regulated air pollution through a Clean Air Act (CAA)

which is a “comprehensive federal law that regulates air emissions from stationary and

mobile sources” [198]. The US Environmental Protection Agency (EPA) supervises both

the regulations and research on air pollution in the USA. The UK’s equivalent to the

EPA is the Department for Environment, Food and Rural Affairs (DEFRA), which is

responsible for the UK strategy on air quality. DEFRA has created the Air Quality

Strategy for England, Scotland, Wales and Northern Island in 2007 [58], which has been

most recently updated in 2020 [62]. The strategy sets up objectives for applying the EU

and international regulations on air quality. DEFRA coordinates the work between the

devolved administrations of the UK - England, Scotland, Wales and Northern Island.

In Scotland, the Scottish Government are responsible for developing the “domestic poli-

cies and initiatives to improve air quality and reduce risks to human health” [188]. The

Scottish Government’s propositions are summarised in the “Cleaner Air for Scotland

(CAFS) - The Road to a Healthier Future” [187]. SEPA is one of the organizations
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which monitor compliance with the regulations and report back to CAFS by suggesting

management decisions. As Glasgow is the city with the poorest air quality in Scotland

[21], specific attention is paid to this city and its transport system.

1.2 Pollutants

Technical advancement, energy consumption and transport systems have been increas-

ing exponentially over the last few centuries and have become the main reasons for air

pollution [154]. This is why the focus of most air pollution research is on the anthro-

pogenically (man-made) emitted pollutants. There are two types of pollutants: primary

and secondary. Primary pollutants are emitted directly from a source, whereas sec-

ondary pollutants are formed in reactions in the atmosphere. For instance, nitrogen

oxides (NOx) are primary pollutants since they are emitted during combustion pro-

cesses. A reaction between NOx and carbon monoxide (CO) produces ozone (O3), a

secondary pollutant. As a result of this, research relating air pollution and its effects

examines both the overall effect of all pollutants on people’s health (such as [48]) and

the specific effect that individual pollutants have on people’s health (such as [153]). In

the following subsections, a summary of the main pollutants monitored is presented as

well as the regulations for these pollutants in Scotland.

1.2.1 Nitrogen oxides

Nitrogen oxides are one of the most examined pollutants and specifically, nitrogen dioxide

(NO2). In general, NOx is a result of the combustion process of oxidation of nitrogen

in fuel and air. The most common source of this emission are engines. These types

of emissions are close to the ground and often distributed in densely populated areas

[73]. Figure 1.1 shows that in the EU, almost 40% of the nitrogen oxides are attributed

to road transport and 16% are attributed to energy production and distribution. NOx

pollution has been linked to causing or worsening both respiratory and heart diseases

[154].

1.2.2 Ozone

Particular attention must be paid to ozone. The gas is most famously known as being

part of the atmosphere and forming the ozone layer which protects humans from ultravi-

olet (UV) radiation from the sun. However, ground level ozone is dangerous to people’s

health as it increases the risk of respiratory diseases [186]. As a secondary pollutant,
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NOx

Figure 1.1: NOx emissions in the 28 country members of the EU: share by sector
group [74].

ozone’s concentration is directly related to the concentration of NOx and CO, hence,

traffic and industrial emissions are considered major contributors to the formation of

O3 [73]. O3 is formed when oxygen (O2), carbon compounds known as volatile organic

compounds (VOC) and NOx react in the presence of sunlight [166]. Hence, O3 levels

are highest in the summer when there is more sunlight. The process of forming O3 may

take up to a few days. In this time, the wind tends to carry the compounds away from

the urban areas, in which they originated, to the rural areas. Hence, rural areas tend to

have higher O3 concentrations than urban areas [166].

1.2.3 Regulation

Scotland has to comply with the EU and UK wide standards for concentrations of the

pollutants. However, Scotland has imposed regulations that are not always the same as

the UK ones as can be seen in Table 1.1 where the levels allowed in Scotland and the UK

of different pollutants are stipulated. Table 1.1 is a shorter version of the table on the

Air Quality in Scotland website [7]. From Table 1.1, it can be seen that Scotland uses

the UK wide restrictions for NO2. On the other hand, the UK has a regulation about

O3 which is not assessed by Scottish local authorities [7]. The differences between the

UK and Scotland are a result of the fact that the environmental issues in Scotland are a

devolved matter to the Scottish Parliament (and hence the Scottish government) [189].

1.3 Policies to reduce pollutants

The 2018 EU clean air policy [71] outlines examples for measures for reduction of differ-

ent air pollutants by focusing on reducing the power and heat emissions, the industry
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Pollutant Applies to Concentration Measured as
To be

achieved by

NO2
UK

200 µg m−3 not
to be exceeded more
than 18 times a year

1-hour mean
31 December

2005

UK 40 µg m−3 Annual mean
31 December

2005

O3
UK excluding

Scotland

100 µg m−3 not to
be exceeded more

than 10 times a year

Running 8-hour
mean

31 December
2005

Table 1.1: National Air Quality Objectives for NO2 and O3 [7].

emissions, the agricultural emissions and the transport sector emissions. The EU sug-

gests investments in renewable sources of energy (for instance, solar and wind energy)

as well as replacement of many appliances (such as boilers) with newer energy effective

devices. The EU provides aid to the Member States to help these changes. Industry

emissions are responsible for NO2 so large industrial installations (for example, power

plants) are required to make technical improvements further outlined in the EU In-

dustrial Emissions Directive [77]. In order to reduce the pollution due to agricultural

activity, the use of nitrogen fertilisers is limited, new methods for storing manure are

implemented, and energy consumption is reduced by using photovoltaic installations or

reducing fuel consumption. For both the agricultural and industrial emissions, there are

already measures which are proven to reduce the pollution.

However, the EU clean air policy identifies the transport system as the one requiring the

largest number of reforms. Transport is credited as a significant contributor for NOx.

The main measures are aimed at technical improvements (promoting cleaner types of

transport), behaviour change (car-sharing options) and demand management (urban

planning). These changes are key for the implementation of the three Mobility pack-

ages of the European Commission [72]. The first package focuses on establishing CO2

monitoring, reporting of heavy duty vehicles and promoting taxations which are propor-

tional to a distance-based road charging, differentiated according to the environmental

performance of all vehicles. The second package establishes a clean vehicles directive

(low- and zero-emission vehicles) by introducing new CO2 emission standards for cars

and vans. Such regulations are a step in the right direction but there is evidence that

although vehicles pass the standards, there is “considerable error” in the CO2 emissions

[209]. Therefore, alternative engine types should be considered. The most popular alter-

natives are hydrogen, plug-in hybrids and electrical vehicles. The third mobility package

focuses on reducing the CO2 emissions from heavy duty vehicles as well as the promotion

of electric transport. However, all these regulations are non-binding as regulations are

dependent on the specifics of the location, where they are implemented.
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1.3.1 UK policies

According to an EEA report [73] from 2019, NO2 is identified as the main pollutant for

which monitoring stations indicate that the regulations have been breached in the UK.

DEFRA has been addressing this issue and has introduced a UK-wide air quality plan

for NO2 [60]. The plan has identified tackling roadside NO2 concentrations as key. The

government has committed to invest into ultra low emissions vehicles and their support

systems, reduction of emissions of public transport (buses and taxis), air quality grants

for local authorities, cycling and walking strategies, and improvements in the national

railroad network. The aim of the strategy is to make the UK a global leader in air

quality and specifies that after leaving the EU, the UK will continue to regulate emis-

sions to deliver improved air quality and healthier environment by supporting cleaner

technologies. The rest of this subsection will provide examples of the application of such

policies in the UK.

One way of transforming the transport system is the introduction of Low Emission Zones

(LEZ). A LEZ was first applied in London in 2008 with further restrictions applied over

time. The LEZ covers most of the Greater London Area and it operates 24 hours a

day, all year long, without any exceptions. The main idea of the LEZ is to help reduce

the pollution caused by older diesel vehicles, i.e. lorries, buses, coaches, large vans and

minibuses. Hence, the vehicles that are allowed within the LEZ have to adhere to

specific Euro standards [185]. All vehicles have to be registered and pay to enter the

LEZ. A fine is applied to vehicles that do not meet the requirements [20]. More recently,

in April 2019, an Ultra-LEZ (ULEZ) was introduced in central London. ULEZ has

stricter restrictions than LEZ. The ULEZ will be expanded in 2021 which is expected

to result in a 30% reduction in NOx concentrations as well as particle matter (PM)

concentrations [200]. A LEZ was introduced in Glasgow in 2018 for local buses only

but the zone will be expanded to include all vehicles from 1 June 2023 [91]. Similarly,

the Clean Air Zones (CAZ) is a DEFRA initiative which aims at improving the air

quality by introducing zones in the city with no emissions. CAZ are similar to ULEZ

in terms of their restrictions [1]. The main aim when introducing CAZ is to lower the

concentrations of all pollutants, with specific attention being paid to NO2 and PM.

Five cities (Birmingham, Derby, Leeds, Nottingham and Southampton) were expected

to start testing the programme in 2020 but were delayed by COVID-19 measures [1].

Another alternative is using different engines from petrol and diesel. Electric vehicles

(EV) of transport are most common as they have zero or low emissions [192]. In terms

of public transport, York has invested in fully electric public transport which has lead

to the UK’s first “Clean Air Zone” in 2018 [45]. Furthermore, there are plug-in taxi

grant schemes provided by the UK government [94].In terms of private car owners,
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EVs are being incentivised by the government using the Plug-in Car Grant as well

as help with EV homecharge scheme [93]. Additionally, from 2022, all new homes

are required to have charging stations [16]. Another such type of engine are hydrogen

engines, which in a sense are very similar to the current petrol and diesel engines as they

are all types of internal combustion engines. The main environmental advantage of the

hydrogen engines is the fact that their only emission is water [202]. This makes hydrogen

vehicles a zero emissions transport. However, there are challenges in producing “eco-

friendly” hydrogen with a possible solution described in [202]. A few pilot projects using

hydrogen transport have been introduced around the world. For example, Aberdeen has

the largest hydrogen bus fleet in Europe [2]. Furthermore, plug-in hybrids (with one

internal combustion engine and a battery powered motor [123]) use the electrical engine

for short trips within city bounds and the combustion engine for long trips outside of

the city bounds. This makes such engines quite suitable for public transport as shown

by the 1,700 diesel-electric hybrid buses fleet in London [193].

1.3.2 Scottish policies

As previously stated, the Scottish government can impose different regulation on envi-

ronmental issues than the rest of the UK [189], thus allowing for the strategies to be

adjusted for the different emission sources in Scotland. The Scottish government has

stricter regulation than the UK (as seen in Table 1.1). However, the aim is that Scotland

will become the first country to introduce in the recommended by WHO standards [208].

The Scottish government started a Clean Air for Scotland (CAFS) initiative in 2015 [68].

CAFS provides a framework for the Scottish government and its partner organizations

on how to reduce air pollution. The framework sets transport reforms as the main goal

as combustion processes are deemed to be responsible for the largest portion of the air

pollution in Scotland. This will be done by “supporting the uptake of low and zero

emission fuels and technologies, promoting a modal shift away from the car, through

active travel (walking and cycling) and reducing the need to travel” [68]. The strategy

was reviewed in 2019 [69] and it was found that for some key pollutants Scotland is

complying with both the EU regulation and the stricter WHO regulation but for NOx,

there are still breaches. However, the strategy has a complex structure and has not yet

been fully implemented as it requires the co-operation between many governmental and

local agencies.

For instance, similarly to the rest of the UK, Scotland has started introducing LEZs into

the four major cities (Glasgow, Edinburgh, Aberdeen and Dundee). Glasgow is the first

one to introduce the LEZ in 2018 [4]. In Glasgow, the LEZ is implemented gradually
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and, currently, is only applicable to local service buses, which are of category Euro 6

[91]. By the end of 2023, the LEZ will be fully implemented with all vehicles having to

meet Euro 4 (petrol cars) or Euro 6 (diesel vehicles). It is believed that the LEZ will

help to reduce the NO2 concentrations as well as other combustion related pollutants.

Furthermore, there is an added benefit that any public transport used to connect the

zones outside the LEZ with the LEZ will comply with the Euro 6 standard ensuring a

larger cleaner air benefit even outside the LEZ [91].

Additionally to the LEZ introduction, Glasgow City Council has also began the AV-

ENUES project, which focuses on increasing the pedestrian and cycling space and re-

ducing the street clutter by introducing Intelligent street lighting [90]. Meanwhile, Ed-

inburgh City Council has began organising events as part of the Open Streets movement

[22], which limits the vehicle traffic in the city centre but instead offers free cycle hire.

Aberdeen City Council has also taken actions to reduce the vehicle traffic in the city

centre by improving walking and cycling facilities as well as organising events which

are promoting cycling [3]. Furthermore, the city has encouraged clean vehicles using

multiple initiatives and created a Grasshopper multi-operator bus ticket to make public

transport more attractive.

Although many of the projects undertaken by the City Councils (like the introduction

of LEZs) are outlined in the CAFS initiative of the Scottish government, their actual

implementation lies with the local City Councils. Therefore, there is a need for agencies

to coordinate between the government and the local authorities. One such agency is the

aforementioned SEPA, whose main role is to regulate and monitor emissions for specific

industrial activities [174]. However, SEPA are also responsible for providing policy and

operational advice to the government, the industry and the public, thus working to

ensure that the Scottish, UK and EU regulations are observed.

1.4 Air quality measurement and monitoring

In order to establish the level of pollutants in the air, air pollution must be measured.

This allows areas with air quality issues to be identified as well as to evaluate the effect

of the proposed policies such as the ones presented in Section 1.3. There are different

ways of monitoring, and hence, measuring air quality depending on a different number

of factors. The following subsections will outline the most common ways to measure

and monitor air quality.
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1.4.1 Monitoring networks

It is necessary to monitor the air quality on a global scale, given that air pollution is

identified as one of the most widespread problems by the WHO [208]. However, there

is no global air quality monitoring network and different regions in the world collect

data differently. In the USA, the Air Quality System (AQS) was created by the EPA to

collect and provide information about the air quality in the USA on different scales [70].

Across the EU, each Member States has their own network for monitoring air quality.

In the UK, monitoring started in the 1950s and 1960s (after the Great Smog, as part of

the Clean Air Acts) when the focus was on black smoke and sulphur dioxide (SO2). In

the 1970s, the Automatic Urban and Rural Network (AURN) was developed. The UK

air quality data are available online on the National Air Quality Information Archive

website www.airquality.co.uk. Additionally, Scotland’s air quality data can also be

accessed from www.scottishairquality.co.uk. The AURN network consists of a num-

ber of monitors at different locations in both cities and the countryside. Each monitor

collects information not only on the concentrations of multiple pollutants but also some

meteorological conditions (for instance, ambient temperature, barometric pressure, rel-

ative humidity, etc) which are useful for analysis the pollutants’ concentrations. The

AURN monitoring network consists of different monitors depending on their location.

For full details on all types of stations refer to [8] but in this thesis the focus falls on the

following types of monitoring stations:

• Roadside - the monitoring station is located between 1m of the kerbside of a busy

road and the back of the pavement. Typically, this will be within 5m of the road,

but could be up to 15m. The main source of pollution at this type of station is

local traffic. The air pollution measurements at these stations are used in order to

assess the worst case population exposure, evaluate the impacts of vehicle emission

controls and determine the impacts of traffic planning/calming schemes.

• Kerbside - the monitoring station is located within 1m of the kerbside of a busy

road. As with roadside stations, the main source of pollution is local traffic.

Besides the three objectives of the roadside station, the kerbside station is also

used for identifying vehicle pollution blackspots.

• Urban Background - the monitoring station is distanced from sources and, there-

fore, broadly representative of city-wide background conditions (for instance, urban

residential areas). The main source of pollution at this type of station comes from

vehicle, commercial and space heating sources. The air pollution measurements at

this station are used for trend analysis, urban planning, and traffic and land-use

planning.

www.airquality.co.uk
www.scottishairquality.co.uk
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• Rural - the monitoring station is at an open countryside location, in an area

of low population density distanced as far as possible from roads, populated and

industrial areas. The main source of pollution at this type of station comes from

regional long-range transport and urban plume. The air pollution measurements

are used for ecosystem impact studies, assessing compliance with critical loads and

levels for crops and vegetation, investigating regional and long-range transport and

identification of ozone hot spots.

The measurements from the AURN monitoring stations are taken at regular time inter-

vals, usually hourly, for multiple pollutants at a single location. The main advantage

of the AURN monitors is that the air pollution measurements taken by them are very

accurate. However, the monitors are very expensive to operate. Therefore, not many

monitors could be placed. Additionally, it is important to note that not all types of

pollutants are recorded at every station but rather pollutants are measured based on

the type of monitoring station as described previously. In 2020, there were 150 active

monitors in the UK [59] of which 23 were in Scotland. Hence, the AURN network is

quite sparse and does not cover in terms of measurements of all pollutants the area

of the country. In Scotland, there are additional monitoring stations (identical to the

AURN monitors) which together with the AURN ones form a network of 100 stations as

shown in Figure 1.2 with the island monitors removed to help with the visibility of the

monitors. It is clear that most of the stations are in Central Scotland as the majority

of the Scottish population lives in the region. Furthermore, the distance between some

of the stations are so small that the stations appear on top of each other. For instance,

in Aberdeen, there were 6 active monitors but only 2 are visible on the map. The mon-

itoring stations in Aberdeen and Glasgow will be discussed in further detail in Chapter

4 as the subsequent chapters focus on data from these two locations.

One way to expand the monitoring network is to use lower cost monitors with which

members of the public will be able to make air quality observations without any learning

time. Lower cost sensors aim at being able to “trace gas measurements to a usable degree

of accuracy and precision, and with a stability over time” [116]. For different pollutants

the sensors perform differently. Sensors seem to estimate the concentrations for NO

and O3 relatively well but struggle with NO2 [116]. However, lower cost sensors have

not yet reached the level of needed accuracy as it will be demonstrated in Chapter

3. Additionally, the lower cost sensors do not offer such a variety of pollutants to be

recorded by a single sensor.

A cheaper alternative to measure the spatial and temporal NO2 concentrations are

diffusion tubes. Diffusion tubes were first introduced in 1976 but since then many im-

provements have been made. A description on the current way diffusion tubes work is
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Map of AURN monitoring stations in Scotland

Figure 1.2: Map of the AURN monitoring stations across Scotland in 2020 [8]. The
numbers on the pinpoints refer to the air pollution levels on a scale 1-10 based on the

Daily Air Quality Index (DAQI) [6].

provided in [31]. A major advantage of diffusion tubes is that they are relatively cheap,

simple and have relatively small number of errors when collecting data which makes

them “sufficiently accurate for assessing exposure and compliance with Air Quality cri-

teria” [31]. The diffusion tubes’ measurements are easily biased by the proximity to the

source of NO, and therefore the measurements provide an upper limit for the real NO2

concentrations. Furthermore, there is no standard way of building the tubes. DEFRA

uses Palmes-type tubes for outdoor NO2 measurements and the production of the tubes

is described in [184]. An alternative are the Ogawa passive samplers, which can be used

to monitor NO2 in forested areas [54]. Another drawback to using diffusion tubes is that

there is variation between the measurements. The diffusion tubes results are impacted

by temperature, humidity and wind speed [31], which means that diffusion tubes can

give very different readings even though they might be placed close to each other. Hence,

DEFRA has produced a manual on the use of diffusion tubes to ensure the readings used

in their network are consistent [184].
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Another way to measure air pollution is by using satellite data. One such method is

aerosol optical depth (AOD). It measures the pollutants concentrations by calculating

“the extinction of the solar beam by dust and haze” [197]. However, AOD is more

accurate over water rather than land areas [135], thus making it less useful for modelling

the air pollution in cities. For more details on AOD refer to [136].

1.4.2 Simulated data from air quality models

Observational data are not always available due to costs even for lower cost sensors.

Furthermore, the locations of monitors are not chosen on a grid but rather based on

locations of interest such as urban areas. There is a need for a better gridded system

and, hence, simulated data from air pollution models are often used. EU Directive

(2008/50/EC) [76] stipulates that “where possible modelling techniques should be ap-

plied to enable point data to be interpreted in terms of geographical distribution of

concentration. This could serve as a basis for calculating the collective exposure of the

population living in the area.” Hence, the main advantage of this type of simulated data

are that simulations under different meteorological conditions (different wind speed,

temperatures, etc) or emissions or traffic scenarios can be produced, thus allowing for a

better understanding of the underlying processes of air pollution.

The Dutch government developed a number of models under the general name Standard

Calculation Method (in Dutch Standaard Reken Methode (SRM)). There are three dif-

ferent versions of SRM. SRM-1, or alternatively referred to as CAR II-model, is used to

calculate air quality in urban areas [131]. SRM-2 is developed to calculate the effects

along roads and motorways in urban areas [204]. SRM-3 is used to calculate shipping

emissions [134].

However, in the UK, DEFRA uses several different models to assess a range of pollutants

at different spatial scales, from local to hemispheric in order to comply with different

regulations. The models are listed and described in [62] but below a short summary

of the most used models is provided. The Pollution Climate Mapping (PCM) model is

used for reporting the concentrations of particular pollutants (such as NOx, NO2) in the

atmosphere based on individual models for each of the pollutants. The Pollution Climate

Mapping Model produces background maps of 1×1 km grids of pollutant concentrations

in the UK. The Community Multi-scale Air Quality Modelling System (CMAQ) is used

to calculate daily air quality forecasts. The Ozone Source Receptor Model (OSRM)

is used to advise on the effects of planned or proposed policy on O3 concentrations to

changes in precursor emissions (particularly involving changes in NOx emissions). The
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UK integrated assessment model (UKIAM) is used to investigate cost effective strategies

for reducing UK emissions.

Specifically for cities in Scotland, SEPA uses the Atmospheric Dispersion Modelling Sys-

tem (ADMS) developed by the Cambridge Environmental Research Consultants (CERC)

[43]. There are several versions of ADMS aimed at different issues. All models take into

account the impacts of buildings, complex terrain, coastlines and variations in surface

roughness; dry and wet deposition; NOx chemistry schemes; short term releases (puffs);

calculation of fluctuations of concentration on short timescales, odours and condensed

plume visibility; and allowance for radioactive decay including γ-ray dose. ADMS 5

[38] focuses on the emissions from existing and proposed industrial installations. The

model is used for assessment of simulated air pollution concentrations against air qual-

ity regulations, which allows for environmental impact assessments as well as safety

and emergency planning. ADMS-Roads [40] focuses on the air pollution problems due

to networks of roads that may be in combination with industrial sites. The model is

used by local authorities in the UK to review, assess, and develop air pollution action

plans and remedial strategies. ADMS-Airport [39] is used for air quality management

of airports. ADMS-Screen [41], which models dispersion from a single stack to calculate

ground-level concentrations, provides rapid assessments of stack height. The model is

used by both governmental and private organisations for quick assessment of the impact

of point source emissions. ADMS-Urban [42] is used for modelling air quality in large

urban areas, cities and towns. The model is used for assessment of simulated air quality

against air quality regulations, developing and testing policy and action plans for air

quality improvement such as Clean Air Zones or Low Emission Zones, investigation of

air quality management options for the full range of source types including transport

sources, provision of detailed street-level air quality forecasts and others. Simulations

from ADMS-Urban will be used in Chapters 4, 5, 6, 7 and 8. Therefore, a more detailed

review of the model will be provided in Subsection 4.1.3.

1.5 Approaches to modelling air quality measurements

When modelling air quality measurements over a network of stations, the approaches

vary. The data can be looked at as a time series at a single location, or the spa-

tial dependencies between measurements at different locations can be compared as well

as a spatio-temporal approach which allows the comparison of the times series for air

pollutants at multiple locations as well as interpolation across unmonitored locations.
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Additionally, the approaches can be applied to single or multiple pollutants. In the fol-

lowing subsections, different modelling approaches for the two types of data (monitoring

or simulated) will be discussed both in the frequentist and Bayesian paradigms.

1.5.1 Modelling of monitoring network data

Data from monitoring networks are sparse in design due to the high price of the mon-

itors as previously discussed. Often, the time series from a single station are modelled

using ARIMA time series analysis as in [172], [107] and [24]. This allows one to check

for periods of high pollution and the autocorrelation between the time steps. These

time series data are often regressed against health data to assess the effect of exposures

to high pollution levels as in [114], [203], and [210]. However, modelling a single time

series does not allow for one to account for the differences between emissions at different

locations. Therefore, it is of use to perform spatial analysis using measurements from

multiple monitoring stations. Kriging is a common approach to do so as seen in [12]

and [151]. In [114] a Bayesian spatial regression model is used to compare the pollu-

tion concentrations across four cities (Glasgow, Edinburgh, Aberdeen and Dundee) in

Scotland. Alternatively, [115] proposed a Bayesian geostatistical approach allowing for

the preferential sampling (placing air quality monitors at locations, where the highest

air pollutions concentrations are expected, for more information see [64]) applied to

monitoring data from London, UK. Temporal and spatial analysis can be combined in

different spatio-temporal approaches to estimate pollutant concentrations over time and

space. Similarly, [32] presented a spatio-temporal model for the hourly O3 concentra-

tions in Harris County, Texas, USA. An alternative frequentist space-time data modelling

using hierarchical space-time models is the linear coregionalization model (LCM) first

introduced in [164]. The model utilises the spatial relations between the covariates at

different locations when missing data are present. One such model within the frequentist

paradigm estimated using the Expectation-maximization (EM) algorithm is proposed in

[80] and expanded in [81] and applied to NO2 monitoring data from Northern Italy. A

Bayesian approach was presented in [207], which was then adopted for air pollution data

independently by [191] and [176], variations of which continue to be applied in [108].

Alternatively, it is of great interest to model data from networks of lower cost moni-

tors. The modelling of lower cost sensors data is usually split into two types - one is

assessing the quality of the lower cost measurements, and one is fusing of the lower

cost sensors data with measurements from the official monitoring networks. The fu-

sion approaches will be discussed in a subsection below. Assessing the quality of lower

cost measurements is often done in comparison to a higher cost monitor as higher cost

monitors are assumed to take measurements of the pollutants’ concentrations without
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error. The monitors have to be compared in both laboratory and outdoor conditions.

Reproducibility under field conditions is investigated in [128] using least squares regres-

sion and adjusting for correlation in the observations. Agreement between lower cost

sensors for multiple pollutants under laboratory conditions is analysed using numerical

summaries in [117]. A multiple linear regression is used to compare the measurements

from the lower cost monitors to a reference AURN monitor for NO2, O3 and PM2.5 in

[118]. A low cost monitor for O3 is compared in both laboratory and field conditions in

[145] using numerical summaries.

1.5.2 Modelling of simulated data from air quality models

Similarly to the lower cost sensors data, the simulated data compliment the monitored

data by lowering the cost of measuring air pollution and allowing for different environ-

mental scenarios to be tested. However, the simulation models need to be compared

to the monitoring networks to ensure that the simulations are realistic. The predicted

simulated values for O3 and PM2.5 from the CMAQ model are compared to Pacific 2001

measurement data in [181]. Air pollution diffusion simulation was compared to the gen-

eral air pollution in Taiwan (winter and spring) in [119] using spatial risk analysis and

it was found that the simulated data are consistent with the observed data. The re-

sults from ADMS-Urban simulation for CO are compared to the air quality monitoring

network in [159]. Pearson’s product correlation coefficient, normalised mean squared

error and fractional bias were used to compare the two types of measurements. It was

found that the simulations match “to a greater extent” the observed values, although

ADMS-Urban is found to have a tendency to underestimate the CO concentrations,

therefore, the simulations require a correction. However, simulated data are more com-

monly used as a source of additional information in fusion models, which are presented

in the following subsection.

1.5.3 Data fusion

Data fusion has been increasingly used for air pollution prediction as it allows combining

data from multiple monitoring networks with each other as well as combining monitoring

and simulated data. Wald noted in [201] that there is a lack of unified definitions in

the field of data fusion. However, in this thesis, data fusion is as defined in [205] as “a

process dealing with association, correlation and combination of data and information

from single and multiple sources to achieve refined position and identity estimates, and

complete and timely assessments of situations and threats as well as their significance”.

Using fusion data for global assessment of air pollution is very practical given that there
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is no unified world air quality monitoring network. However, in recent years, the fusion

data technology has been used to create gridded ambient air pollution estimates that

allow for estimating even personal exposure. For instance, [83] fuses ground monitoring

data with location data from smartphone applications.

Ground monitoring data of high quality are sparse, but it is often fused with other types

of monitoring or simulated data for more information. In [175], ground monitoring data

are fused with remote sensing satellite data and chemical transport models to provide

global estimation of exposures to ambient air pollution using a data integration model.

A geostatistical fusion model is proposed in [146] for the fusing of monitors and diffusion

tubes data on NO2. [152] proposes a Bayesian hierarchical spatio-temporal model for

fusing PM10 data with ADMS-Urban simulations to assess the short-term exposure

to PM10 pollution in London. An innovative approach is taken in [155], where data

from hourly and annual output of ADMS-Airport are combined with NO2 pollution

measurements from lower cost monitors at London Heathrow Airport to investigate the

effects of adding a third runaway. In [100], multiple sensors data are fused with simulated

data from Weather Research and Forecasting chemistry and CO2 models to investigate

the effects on CO2 and PM2.5 concentrations of a cold front in Eastern China.

However, often fusing two types of air pollution data is challenging as it requires combin-

ing data on different spatial scales. For instance, ground monitoring network (whether

or not lower cost) are point referenced, whereas satellite data (such AOD) are areal

data. The proposed frequentist spatio-temporal model in [81] can also be used for fu-

sion data, where ground monitoring data for PM2.5 is merged with remote sensing data

from a satellite. High-frequency hourly AOD data were evaluated against the temporal

and spatial variations of simulated AOD data in [211]. Using a Bayesian space-time

downscaler approach, [170] fuses O3 monitoring data with simulation data from CMAQ,

whereas [127] applies Bayesian space-time modelling by combing PM2.5 monitoring data

with CMAQ results. In [25] a Bayesian spatio-temporal downscaler model is used for

the fusing of O3 monitoring data with simulations from CMAQ grid cells.

1.6 Emulation

In Subsection 1.4.2, simulated data were introduced as an alternative to monitoring

data as simulated data are easier and cheaper to gather from more locations. However,

producing simulated data is time-consuming due to the costly computations that need

to be performed. One solution to the problem is to create an emulator. This approach

requires a number of key runs of the simulation model based on which a surrogate

statistical model is built [169]. This model is called an emulator and is used to predict
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the simulation output at untried inputs [141]. The following subsections introduce the

general theory of emulation followed by some applications of emulators on different types

of computer simulations in both the frequentist and Bayesian paradigms. Air pollution

emulators will be specifically reviewed.

1.6.1 Background

In order to create an emulator, there are two key features which need to be chosen. The

first one is to select a sampling design to choose the simulation scenarios to be run using

the simulator model. In [125], Latin Hypercube sampling is proposed as it selects values

for inputs. Furthermore, [102] compared several sampling techniques and recommends

the use of Latin Hypercube sampling as it is easy to use, it is flexible for multiple settings

and has “reliable results”. The approach was extended in [132] by allowing for maximin

distance designs [109], which ensures that points are not clustered together, and then

again in [180], where a partial stratified scheme is introduced. Alternatively, a Sobol

sequence sampling scheme [182], which generates uniform quasi-random sequences for

multiple parameters in the hyperspace [173], can be used as in [168].

The second feature of building an emulator is predicting the simulator model’s output

at untried inputs. All emulators (both frequentist and Bayesian) treat the response

as a stochastic process and, therefore, assume a Gaussian Process distribution for the

response. This allows for “an analytically very tractable form of stochastic process”

[140]. The use of Gaussian Processes is discussed in more detail in [158]. A review of

the most recent advances and challenges in emulation is presented in [17].

One of the first univariate emulators is proposed in [169], where a statistical model based

on kriging is used. Although the proposed model is frequentist, the paper discusses how

the model can be adapted to the Bayesian paradigm. Another frequentist univariate

emulator based on universal kriging with a choice of different covariance and mean func-

tions is presented in [165], whereas [19] suggests a mixture of frequentists and Bayesian

techniques to account for the uncertainty in the inputs. [52] presents a fully Bayesian

emulator for computer code output. This model is then extended to handle calibration

using a small number of real observations in addition to the simulation model runs in

[111], which is continued in [112] and [139]. An emulator that takes both qualitative

and quantitative factors is proposed in [156]. The emulator in [156] can be applied in

both the frequentists and Bayesian paradigms. The diagnostics for emulator models are

discussed in [18]. In [85], an R Shiny application to visualise simple cases of Bayesian

emulators is presented.
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However, as a simulator can be used to produce multivariate dynamic output such as

functional data or multiple time series, there is a need for multivariate emulators. [86]

proposed a Bayesian multivariate emulator, which models a small number of responses

at the same time. [82] extends this to a frequentist multivariate emulator estimated

using the EM algorithm to handle missing data. [143] proposes a Bayesian lightweight

multivariate emulator based on the Bayesian lightweight emulator proposed in [163].

However, the lightweight multivariate emulator in [143] is not as accurate as the GP

emulator.

Both univariate and multivariate emulators have correlated errors within the design

space. Therefore, it is crucial to choose a correlation function for the errors. In the uni-

variate cases, only the distances in the input space are explored. For example, [169] uses

products of one-dimensional correlations, whereas [52] suggests either a non-negative lin-

ear or cubic correlation function. Moreoever, [138] uses a diagonal matrix of smoothing

parameters based on [169]. Alternatively, [19] proposes the use of the product of expo-

nential correlation functions and this method is also applied in [82]. Different correlation

structures for univariate models with qualitative covariates are presented and compared

in [156]. In the multivariate cases, there is not only correlation to be modelled between

the inputs but between the outputs as well. Hence, two correlation structures have to

be estimated. There is a choice between separable and non-separable functions to be

made, though separable functions are preferred because they are “easier to implement

and interpret” [143] as seen in [49], [19] and [143]. A comparison between separable and

non-separable functions is presented in [86].

1.6.2 Examples of application fields

Computer simulations are used in almost every field and therefore, emulators are used

in many fields. For instance, [26] applies a univariate frequentist emulator on global

gridded crop simulations for maize, rice, soybean and wheat yields and assesses the

performance of the emulators using in- and out-of-sample validation. [139] test their

proposed Bayesian emulator on both tailored simulated data and the results from an

oil-field simulator. A volcanic hazard simulator is emulated in [19] by applying their

proposed mixed frequentist-Bayesian emulator.

Similarly, multivariate emulators are applied in various settings. In [86], a multivariate

Bayesian model is applied to a climate model, whereas [49] apply their multivariate

Bayesian model to simulated output for ecosystem carbon. A Bayesian emulator is

used in [99] for mimicking binary, multivariate and correlated within individual data

from an ecological simulation for COVID-19, whereas [144] compare their lightweight
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multivariate Bayesian emulator to a GP emulator using a humanitarian relief simulator.

A comparison of different emulation approaches is given in [28] using an urban dispersion

model.

In air pollution modelling, simulators are often used because they allow one to explore

the effect of unobserved meteorological conditions on pollutants’ behaviour. Hence, [82]

is useful in providing conditions for which the NO2 annual averages will be breached

for the monitoring stations in Aberdeen. Smaller studies similar to this one but for

small areas or road intersections are presented in [183] and [29]. A Bayesian approach is

applied to create an emulator for the ADMS-Urban model using dimensionality reduction

is presented in [120]. A Bayesian approach is also applied to the Computational Fluid

Dynamics modelling of urban flows in [97], which explores the wind effects in cities.

Emulators were used for a short-term study in Beijing to assess the sensitivity of PM2.5

concentrations to different types of emissions [13].

1.7 Thesis overview

The main aim of this thesis is to address the issues in the sparsity of air pollution data

by exploring the use of miniature automated sensor networks and emulation of physical

models. The performance of miniature automated sensors will be appraised to assess

whether more sensors can be placed at multiple locations and extend the monitoring net-

work. In order to evaluate what effect unobserved emissions levels and meteorological

conditions will have on pollution concentrations, new ADMS-Urban simulations (cho-

sen using Latin Hypercube sampling) will be used to create emulators (a combination

of already established techniques and developing new data driven methods) for both

the NO2 annual average and hourly concentrations. This will allow SEPA and other

governmental agencies to examine conditions which lead to potential breaches of the

regulations.

The remainder of the thesis is organised as follows. Chapter 2 offers an overview of

the existing statistical methodologies with specific reference to their application in this

thesis. Chapter 3 presents a new data comparative study on the consistency of lower cost

miniature automated sensors with each other and with a reference sensor in measuring

NO2 and O3 concentrations in Edinburgh. Chapter 4 details the exploratory analysis

for the AURN recordings for NO2 in 2012 in Aberdeen and NO2 in 2015 in Glasgow.

Those two years are taken as the baseline conditions, and 98 and 100 ADMS-Urban

scenarios (based on a Latin Hypercube design) are produced for Aberdeen and Glasgow

respectively. Exploratory analysis for the ADMS-Urban simulations are also included.

Chapter 5 presents a frequentist univariate emulator (from the DiceKriging package
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in R) for the NO2 annual average based on the ADMS-Urban simulation scenarios

for each of the monitoring stations in both Aberdeen and Glasgow with hyperspatial

correlation structure between the scenarios in the Latin Hypercube space. Chapter

6 provides a novel extension of the work to a Bayesian multivariate emulator which

models the NO2 annual average based on the ADMS-Urban simulation scenarios for all

the monitoring stations in Aberdeen and Glasgow by using a hyperspatial correlation

between the scenarios in the Latin Hypercube space and free-form scaling matrix for

the locations of the monitoring stations. A simulation study comparing the frequentist

emulator from Chapter 5 with the Bayesian emulator from Chapter 6 is also included.

Chapter 7 models and emulates the number of hourly breaches for the simulated NO2

hourly concentrations for a year at a single monitoring station using Poisson generalised

linear models. Chapter 8 proposes a new hyperspatial-temporal emulator (within the

Latin Hypercube design space) for the simulated hourly NO2 time series for a year at a

single monitoring station. Due to a lack of sufficient data, the emulators in Chapters 7

and 8 are only applied to the ADMS-Urban simulations for Central Station in Glasgow.

Chapter 9 provides an overall concluding discussion and possible future work.



Chapter 2

Statistical methods for modelling

air pollution

Chapter 2 presents the main statistical methods used for analysing temporal, spatial

and spatio-temporal data, and emulation of air quality models in this thesis. Section 2.1

presents the general background for time series modelling. Section 2.2 reviews different

types of regression modelling. Section 2.3 gives the background on spatial and spatial-

temporal data modelling. Lastly, Section 2.4 introduces the general background for the

emulation of computer models.

2.1 Time series

A time series is a data set where the observations are ordered in time, such as second

by second, minute by minute, hourly, daily, weekly or yearly measurements of the same

quantity. In this thesis, a time series is defined as the set {Y1, . . . , YT }, where each

Yt (t ∈ T ) is a random variable with T time steps in total. The observations of the

time series are defined as the set {y1, . . . , yT }. The different air pollution data analysed

in Chapters 3, 4 and 8 are a time series of observations, and thus here are outlined

key quantities and concepts related to time series that will be used in the following

chapters. Some main concepts of time series are outlined below from [44], which can

also be referred to for further details.

2.1.1 Stationarity

Stationarity is one of the most important features of a time series as it determines

future modelling choices. There are two types of stationarity. A time series process

21
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{Yt|t ∈ T} is strictly stationary if the joint distribution f(Yt1 , . . . , Ytk) is identical

to the joint distribution f(Yt1+τ , . . . , Ytk+τ ) for all sets {t1, . . . , tk} and lags (separation

values) τ . However, strict stationarity is very restrictive, so more often, weak stationarity

is assessed. A time series process is weakly stationary if:

• the mean function is constant and finite: µt = E[Yt] = µ <∞;

• the variance function is constant and finite: σ2
t = Var[Yt] = σ2 <∞; and

• the autocovariance and autocorrelation functions only depend on the lag:

γt,t+τ = Cov[Yt, Yt+τ ] = γτ ; (2.1)

ρt,t+τ = Corr[Yt, Yt+τ ] = ρτ . (2.2)

It is important to determine whether a time series is stationary, because typically one

would first remove any non-stationarity from the data, for example via a temporally

varying mean model, and then model the remaining variation with a stationary process.

This remaining variation is typically correlated in time, and a common class of models

for representing this correlation are autoregressive processes. These are defined below,

but first details on how to assess whether a time series contains correlation are presented.

2.1.2 Identifying correlation

Correlation

Correlation measures the strength of the linear relationship between two random vari-

ables. Consider first random variables X and Y , then their covariance is defined to

be:

γX,Y = E[(X − µX)(Y − µY)] = E[XY ]− µXµY , (2.3)

where E[·] is the expectation operator, and µX = E[X] and µY = E[Y ]. However, the

covariance is not bounded and so the correlation ρX,Y is given by:

ρX,Y =
E[(X − µX)(Y − µY)]

σXσY
, (2.4)

and ranges between [−1, 1]. Here a correlation of 0 corresponds to no linear relationship,

while a correlation close to 1 or -1 represents a strong linear relationship. In the above

equation σX and σY are the standard deviations of X and Y . Then given two data
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sets each with n observations (xi, yi) for i = 1, . . . , n, Pearson’s correlation coefficient is

given by:

ρ̂X,Y =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
∑n

i=1(yi − ȳ)2
, (2.5)

where (x̄, ȳ) are the sample means of the two variables. For further details see [47].

Autocorrelation function

Following the definitions of the covariance and correlation between random variables

(X,Y ), the autocovariance function (ACVF) between random variables (Ys, Yt) is defined

for all s, t ∈ T as:

γs,t = Cov[Ys, Yt] = E[YsYt]− E[Ys]E[Yt] , (2.6)

where γt,t = Cov[Yt, Yt] = Var[Yt] = σ2
t denotes the variance. From here, the autocorre-

lation function (ACF) is defined as:

ρs,t = Corr[Ys, Yt] =
Cov[Ys, Yt]√
Var[Ys]Var[Yt]

=
γs,t
σsσt

, (2.7)

with ρt,t = Corr[Yt, Yt] = 1. In order to estimate the ACVF and ACF for a real data

set, it is assumed that the dependence structure in the data does not change over time.

Hence, it is assumed that for any time points (s, t), temporal shift r and an increment

vector τ :

γs,t = Cov[Ys, Yt] = Cov[Ys+r, Yt+r] = γs+r,t+r . (2.8)

Under this assumption, the only factor affecting the covariance is the lag or distance

τ = ||s− t|| between the observations. Therefore, the only set of autocovariances to be

estimated are:

γτ = Corr[Yt, Yt+τ ] , τ = 0, 1, 2, . . . . (2.9)

Given an observed time series (y1, . . . , yn), the sample ACVF is:

γ̂τ =
1

n

n−τ∑
t=1

(yt − ȳ)(yt+τ − ȳ) , τ = 0, 1, . . . , (2.10)

where ȳ = 1
n

∑n
t=1 yt. Hence, the sample ACF is:

ρ̂τ =

∑n−τ
t=1 (yt − ȳ)(yt+τ − ȳ)∑n

t=1(yt − ȳ)2
=
γ̂τ
γ̂0
. (2.11)
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The ACF is a key function to assess the extent to which a time series is correlated in

time. This is usually done by producing a correlogram, which is a plot of lag τ against

correlation ρ̂τ . If a time series is independent then the ρ̂τ values for all τ > 0 will be close

to zero, where as correlation will be present if the values of ρ̂τ for small τ are not close

to zero. To assess the significance of the correlation, one can produce 95% confidence

intervals for the correlation at each lag τ under the assumption of independence, which

are estimated as ±1.96/
√
n. Hence, any ρ̂τ values that lie inside the confidence interval

are not statistically different from zero.

Partial autocorrelation function

The partial autocorrelation function (PACF) is denoted by πτ and represents the excess

correlation in the time series that has not been accounted for by the τ − 1 smaller lags.

The sample PACF at lag τ is equal to the estimated lag τ coefficient α̂τ , obtained when

an Autoregressive process of order τ (AR(τ), see below) model is fitted to the data set.

The sample PACF is definite iteratively as follows:

π1 = Corr(yt+1, yt) = ρ(1), (2.12)

πτ = Corr(yt+τ − ŷt+τ , yt − ŷt) for τ ≤ 2. (2.13)

The PACF could be plotted against the lags to determine an appropriate AR(p) process

for the given data set. As with the ACF, a 95% confidence interval of ±1.96/
√
n is

defined for no correlation, and for an AR(p), then the order p is chosen to be equal to

the lag τ at which the last significantly different from zero value is present.

It has to be noted that for the ACF and PACF plots, the more lags that are plotted,

some of the lags will appear significant by chance. As the significance level is set to

95%, it is expected on a plot with 20 lags, one of the lags to be significant by chance.

Multiple testing (such as Bonferroni [66] or Tukey’s honest significant difference [194])

could be applied but as the ACF and PACF plots in this thesis are used only for initial

impressions, this has not be done.

2.1.3 Autoregressive and Moving average processes

An Autoregressive process of order p, AR(p) is defined as:

Yt = ζ1Yt−1 + · · ·+ ζpYt−p + Zt , (2.14)
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where Yt (t ∈ T ) is regressed on its past values Yt−1, ..., Yt−p, the parameters ζ1, ..., ζp are

the autoregressive coefficients and Zt is a normally distributed purely random process

with mean 0 and variance σ2
z . In order to choose the order, the partial autocorrelations on

the PACF plot lose significance after p lags, whereas on the ACF plot the autocorrelation

decreases exponentially over time.

The Moving Average process of order q, MA(q) is defined as:

Yt = λ0Zt + λ1Zt−1 + · · ·+ λqZt−q , (2.15)

where each Zt−i is an independent purely random process with mean 0 and variance

σ2
z and λ0, ..., λq are the lag coefficients with λ0 = 1. In order to choose the order

q, the autocorrelations on the ACF plot lose significance after q lags and the partial

autocorrelations on the PACF plot decrease exponentially over time.

The two processes can be combined into an Autoregressive Moving Average process of

order (p, q) (ARMA(p, q)) defined as:

Yt = ζ1Yt−1 + · · ·+ ζpYt−p + Zt + λ1Zt−1 + · · ·+ λqZt−q

=

p∑
y=1

ζjYt−j +

q∑
y=1

λjZt−j + Zt ,
(2.16)

which combines the AR and MA processes.

2.1.4 Adjusted confidence intervals

The time series data examined in this thesis are taken at regular time intervals. In this

subsection, an explanation of how to adjust for autocorrelation in confidence intervals

for the means and medians of time series, respectively, is presented.

Confidence intervals for the mean

Given data y = (y1, ..., yn), a confidence interval is useful as it provides an interval of

plausible values for a specific parameter. For instance, for the population mean µ, the

standard confidence interval has the form:

µ̂ ± t
(

1− α

2
, n− 1

)
× σ̂√

n
, (2.17)

where, if the data are normally distributed:
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• µ̂ is the estimated sample mean, calculated as µ̂ = 1
n

∑n
i=1 yi;

• α is the significance level and in this thesis, confidence intervals with α = 0.05 will

be produced;

• n is the sample size;

• t
(
1− α

2 , n− 1
)

is the critical value for the Student t-distribution with n−1 degrees

of freedom at 1− α
2 significance level; and

• σ̂ is the estimated standard deviation of the sample estimated as

σ̂ =
√

1
n

∑n
i=1(yi − µ̂)2.

However, the standard confidence interval assumes that the observations are independent

of each other, but as previously discussed, this is not the case when time series data are

used. Therefore, the confidence intervals have to be adjusted to allow for autocorrelation

(refer to Subsection 2.1.2). One option is to use bootstrapping. This technique does not

make any distributional assumptions. To produce a 95% bootstrap confidence interval,

the following steps are taken:

1. Resample (with replacement) the data set 1000 times.

2. The mean is computed for each new sample.

3. The resampled means form the empirical distribution of the mean. Therefore, the

2.5th and 97.5th quantiles from this distribution form the 95% bootstrap confidence

interval.

Another alternative is to adjust the standard error σ̂ to account for the autocorrelation

using the following variance result [44]:

Var(µ̂) =
σ̂2

n

[
1 + 2

n−1∑
τ=1

(
1− τ

n

)
ρ̂(τ)

]
, (2.18)

where:

• σ̂2 is the estimated variance of the time series defined earlier;

• n is the sample size;

• τ is the separation value (lag); and

• ρ̂(τ) is the estimated autocorrelation (see Subsection 2.1.2) at lag τ .
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Then the confidence interval is estimated as:

µ̂ ± t
(

1− α

2
, n− 1

)
×
√

Var(µ̂) . (2.19)

In the specific case of modelling data with an Autoregressive process of order 1 (AR(1),

for more information see Subsection 2.1.3) with AR(1) parameter ζ, the formula for the

estimated variance above simplifies to Var(µ̂) = σ2

n
1+ζ
1−ζ [44].

Confidence intervals for the median

The median is useful in the cases of skewed data because the mean is adversely affected

by outliers. For example, in the case of right-skewed data (which is often the case

with air pollution data), the mean is no longer at the centre of the data and is less

representative for the average value of the distribution. In that sense, the median offers

a more robust estimate than the mean. One way is to provide a crude 95% interval for

the median using the 2.5th and the 97.5th quantiles of the sample as suggested by [87].

A confidence interval for the median can be computed by bootstrapping as follows:

1. Resample (with replacement) the data set 1000 times.

2. The median is computed for each new sample.

3. The resampled medians form the empirical distribution of the median. There-

fore, the 2.5th and 97.5th quantiles from this distribution form the 95% bootstrap

confidence interval.

Another alternative is to calculate the 100(1−α)% confidence interval, presented in [30].

The confidence interval is calculated by first calculating the pair of numbers (r, s):

r =
n

2
−
(

N1−α
2
×
√
n

2

)
, (2.20)

s = 1 +
n

2
+

(
N1−α

2
×
√
n

2

)
, (2.21)

where r and s are rounded to the nearest integers and N is the normal cumulative

distribution probability for a confidence level 1− α
2 . Then order the n observations from

smallest to largest, and the rth and sth values in the ordered sample form the 100(1−α)%

confidence interval for the median.
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2.2 Regression modelling

This section presents different types of regression modelling which is applied in a variety

of scenarios in Chapters 3 through 8. In this thesis, regression modelling is used for both

exploratory analysis modelling and de-trending time series data. This section presents

linear regression and its extension, generalised linear models, including estimating the

model’s parameters, assessing the fit and model comparison.

2.2.1 Linear regression

Linear regression is used for exploratory analysis and modelling in Chapters 3 through

8 as well as for de-trending time series data. Linear regression is described as in [79].

Ordinary Least Squares

Linear regression is a model fitting technique which aims to minimise the sum of squared

errors as presented in [79]. Let y = (y1, ..., yn) be the response vector with n entries and

X = (x1, ...,xn) be the n×p matrix of covariates with xi = (xi1, ..., xip), for i = 1, . . . , n.

Then the regression model has the general form:

y = Xβ + ε , (2.22)

where:

• β = (β1, ..., βp) is the parameter vector with length p; and

• ε = (ε1, ..., εn) ∼ N(0, σ2I) is the error vector (n× 1) with E(ε) = 0, Var(ε) = σ2I
where I denotes the identity matrix so that εi and εj are independent for all i 6= j.

The coefficients are calculated by minimising the sum of squares using ordinary least

squares (OLS), that is minimising:

C−1
OLS = (Y−Xβ)>(Y−Xβ) , (2.23)

which leads to:

β̂ = (X>X)
−1

X>y . (2.24)

The variance-covariance matrix of β̂ is estimated as:
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Var(β̂) = σ2(X>X)
−1
. (2.25)

Four assumptions are considered when fitting a linear regression:

1. The observations are independent of each other.

2. The errors are normally distributed.

3. All non-random structure of the data is captured by the deterministic part of the

model.

4. The errors have constant variance, σ2.

To check these assumptions, two plots will be used. A residuals vs. fitted values plot

will be used to check whether the errors have constant variance, as well as checking for

patterns (due to the model not capturing all the non-random structures of the data) and

outliers. Additionally, a normal quantile-quantile (qq) plot of the residuals will be used

to assess the normality by checking that the points lie on an approximately straight line.

A further check for the normality of the residuals is performed using a Shapiro-Wilk test

[177]. For the set of the residuals ε1, . . . , εn from a linear model, the test statistic W is:

W =
(
∑n

i=1 aixi)
2∑n

i=1(xi − x̄)2
, (2.26)

where ai is a constant generated from the means, covariances and variances (of the

residuals set) from a normally distributed sample. A hypothesis test is performed where

the null hypothesis is that the residuals are normally distributed. If the p-value is smaller

than a significance level α (in this thesis α = 0.05), the null hypothesis is rejected and

there is evidence that the residuals are not normally distributed.

Generalised Least Squares

When the assumption that the errors are independent is broken (which is the case in

time series modelling where the observations are correlated), a generalised least squares

(GLS) fit can be applied. The description of GLS is taken from [79]. In the OLS

case, it is assumed that Var(ε) = σ2I, whereas in the GLS case, it is assumed that

Var(ε) = σ2Σ where σ2 is unknown but Σ is the known correlation matrix. Applying a

Choleski decomposition for Σ = TT>, where T is a n× n triangular matrix, the linear

model can be rewritten as:
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T−1y = T−1Xβ + T−1ε . (2.27)

Therefore, the sum of squares objective function is now:

C−1
GLS = (T−1y−T−1Xβ)>(T−1y−T−1Xβ)

= (y−Xβ)>T−>T−1(y−Xβ)

= (y−Xβ)>Σ−1(y−Xβ) ,

(2.28)

and is minimised by:

β̂ = (X>Σ−1X)
−1

X>Σ−1y . (2.29)

The variance-covariance matrix of β̂ is estimated as:

Var(β̂) = σ2(X>Σ−1X)
−1
, (2.30)

which results in larger variances in comparison to the OLS fit.

For time series data, the autocorrelation function (ACF) and the partial autocorrelation

function (PACF) plots of the residuals from the OLS fit can be used to assess Σ. For

more information on the ACF and PACF plots, refer to Subsection 2.1.2. The plots are

examined to determine whether an autoregressive (AR) or moving average (MA) error

structure (see Subsection 2.1.3) is more appropriate and of what order, or a combination

of the two. It has to be noted that the ACF and PACF plots of the GLS models do not

reflect the change in the correlation structure of the residuals as only the variances of β̂

are changed.

2.2.2 Smooth functions

Locally weighted regression smoother

When plotting a time series, there are often considerable fluctuations, which make the

general trend in the time series hard to establish. Therefore, a smoothing technique

can be applied. One such common exploratory approach is locally weighted regression

smoother (lowess), first proposed in [46]. For y = [y1, . . . , yn]>,

yi = f(xi) + εi , (2.31)
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where:

• f(xi) is a regression function based on the data (xi, yi); i = 1, . . . , n; and

• εi is the error term.

For each observation xi, a window (neighbourhood) surrounding the observation is ob-

tained by identifying the k nearest neighbouring observations to this point. This area

is written as N(xi). The distance between xi and the furthest away point within the

neighbourhood is defined as:

∆(xi) = maxN(xi)|xj − xi| , (2.32)

where j = 1, . . . , k. Within a neighbourhood, weights are then assigned to each obser-

vation using a tri-cube weight function:

w(xj − xi,∆(xi)) = W

(
|xj − xi|

∆(xi)

)
, (2.33)

where:

W (u) =

(1− u3)3 for 0 ≤ u < 1 ,

0 otherwise .
(2.34)

The weights are used to produce the locally weighted regression smoother. The smooth-

ing parameter (called span) determines the quantity of the data which contributes to

the estimate at each point. The span specifies the number of k nearest neighbours to

the target point xi and is usually set to 2
3 of the data as recommended by [206]. This

means that 2
3 of the data are used for the fit at each target point.

B-spline

In time series modelling, some covariates exhibit complex non-linear relationships with

the response and therefore, a b-spline approach can be implemented to estimate this

non-linear relationship. The work here is based on the material in [56]. B-splines are a

special case of basis functions. Consider the simple non-linear relationship f(·):

yi = f(xi) + εi , (2.35)
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where xi is the ith observed covariate x = [x1, . . . , xn]>. A curve estimate is produced

by fitting the regression:

yi = β0B0(xi) + β1B1(xi) + β1B1(xi) + · · ·+ βpBp(xi) + εi , (2.36)

where the Bjs (j = 0, 1, . . . , p) are called basis functions and the βjs are called basis

coefficients. Hence,

f(x) =

p∑
j=0

βjBj(x) . (2.37)

In the b-spline case, each basis function is only non-zero in the interval between a small

number of adjacent knots (knots are the points at which joins of the spline occur),

thus resulting in a sparse design matrix, i.e. making the b-splines more computationally

efficient. Let t = (t0, t1, . . . , tp+d+1) be the knot vector for t0 ≤ t1 ≤ · · · ≤ tp+d+1, where

d is the degree of the polynomial, then b-splines are defined recursively as:

Bj,d(x) =
x− tj
tj+d − tj

Bj,d−1(x) +
tj+d+1 − x
tj+d+1 − tj+1

Bj+1,d−1(x) , (2.38)

and

Bj,0(x) =

1 tj ≤ x < tj+1 ,

0 otherwise.
(2.39)

2.2.3 Likelihood estimation

In every type of statistical modelling used in this thesis, there is a vector of n random

variables Y = (Y1, . . . , Yn) which follows a probability density function p(Y,θ) where θ

is a vector containing parameters of interest. The likelihood function allows the esti-

mation of plausible values for θ based on the observed data y = (y1, . . . , yn). Assuming

that all observations are independent, the likelihood function is:

L(y;θ) =
n∏
i=1

p(yi;θ) = p(y1;θ)p(y2;θ) · · · p(yn;θ) . (2.40)

Generally, the likelihood function is the probability or probability density of obtaining

the observed data with particular values for θ, hence, L(y;θ) should be regarded as a

function of θ.
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The most popular strategy for using the likelihood function to provide appropriate esti-

mates is using a maximum likelihood estimator (MLE). The MLE is defined as the

values of θ, which maximise the likelihood function. These values are denoted as θ̂. The

easiest way of estimating θ̂, in simple situations, is to use the log-likelihood function

l(θ) = log(L(y;θ)). Taking the first derivative and setting it equal to zero will identify θ̂

in a simple situation. To make sure that this value is the maximum, the second deriva-

tive must be negative. In a multivariate case, a Hessian matrix (matrix of the second

derivatives with respect to all the parameters) must be positive definite. However, there

are cases where there is no explicit solution to the MLE. Therefore, a numerical method

should be used, for instance, the Newton-Raphson method. Nevertheless, the Newton-

Raphson method is complicated to use when the data set is incomplete (has missing

values) [126]. In Subsection 2.2.4, a quasi-Newtonian approach (the BFGS algorithm)

is presented for numerical optimisation.

2.2.4 Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm

In Chapters 5, 6 and 8, the parameters are estimated using the Broyden–Fletcher–

Goldfarb–Shanno (BFGS) algorithm [137]. BFGS is a quasi-Newton algorithm, where

x0 is a starting point with convergence tolerance ε > 0, inverse Hessian approximation

H0 (a square matrix of the second-order derivates of a function is called the Hessian, for

more details see [95]), α0 is a step length from a line search in order to ensure sufficient

decrease in the likelihood, likelihood value f0 and gradient ∇f0.

For step k:

1. Set the search direction pk = −Hk∇fk.

2. Define xk+1 = xk + αkpk.

3. Compute sk = xk+1 − xk and yk = ∇fk+1 −∇fk.

4. Calculate Hk+1 =
(
In − 1

y>k sk
sky
>
k

)
Hk

(
In − 1

y>k sk
yks
>
k

)
+ 1

y>k sk
sks
>
k .

5. Repeat the steps until ||∇fk||< ε.

The L-BFGS-B is an extension of the BFGS algorithm, which is applied with a limited-

memory version for large number of variables and there are constraints on the parameters

used for estimating the likelihood [137].
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2.2.5 Model comparison

When multiple linear models are fitted using the same response but different combina-

tions of explanatory variables, the models in this thesis are compared using the coefficient

of determination R2
adj., the Akaike Information Criterion (AIC) and the Bayesian Infor-

mation Criterion (BIC) as recommended by [79]. The coefficient of determination R2
adj.

is defined as:

R2
adj. = 1−

∑n
i=1(yi − ŷi)2∑n
i=1(yi − ȳ)2

, (2.41)

where ŷi is the fitted value for the ith response yi and ȳ is the mean value for the

responses. The model with the highest R2
adj. is the preferred one. Linear models under

the OLS fit can be compared using the R2
adj.. However, information criteria can be

used to compare different types of correlated and uncorrelated error models. The two

information criterion penalise the likelihood in different ways. They are defined as

follows:

AIC = 2p− 2ln(L(y; θ̂)) , and BIC = ln(n)p− 2ln(L(y; θ̂)) , (2.42)

where p is the number of parameters in the model, L(y; θ̂) is the maximised likelihood

and n is the number of observations. The model with the smallest AIC/BIC is considered

to be the best one. Overall, BIC tends to choose models with less covariates than AIC

because the penalty term for BIC is larger. Therefore, it is beneficial whether the two

criteria would agree on the same model but in case when different models are chosen as

best, BIC would be the preferred criterion as it selects the model with less covariates.

Degrees of freedom will also be provided to ease the comparison of models.

2.2.6 K-fold cross validation

Alternatively, different models can be compared based on their prediction power using

the Root Mean Squared Prediction Error (RMSPE) based on a k-fold cross validation

as described in [105]. A k-fold cross validation requires that the data are split in to k

groups (folds). The tested model is fitted on k-1 folds, while the remaining fold is used

as a validation set and the model predicts its values. The RMSPE is calculated as:

RMSPE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 , (2.43)

where in fold k:
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• yi is the true value of the ith observation (i = 1, . . . , n); and

• ŷi is the predicted value for yi.

The RMSPE estimates the prediction error, on average, of an observation. Hence, when

comparing models, the model with the smallest RMSPE has better prediction power than

the other models. Furthermore, [87] states that a 95% bootstrap confidence interval for

RMSPE can be produced as it makes no distributional assumptions. This is done in the

following way:

1. Resample (with replacement) the set of paired actual and predicted points 1000

times.

2. The RMSPE is computed for each new sample.

3. The resampled RMSPE form the empirical distribution of the RMSPE. There-

fore, the 2.5th and 97.5th quantiles from this distribution form the 95% bootstrap

confidence interval.

2.2.7 Generalised linear models

This subsection introduces generalised linear models (GLMs) as an extension of regres-

sion modelling. In Chapter 7, the number of occurrences of NO2 hourly concentrations

above 200 µg m−3 are modelled using a GLM approach. This subsection is based on the

material in [65], [78] and [122].

A generalised linear model is an extension of the linear regression model (Subsection

2.2.1) for a response vector y = [y1, . . . , yn]>. For i = 1, . . . , n, it is defined as:

yi ∼ f(yi; θi, φ) , (2.44)

with E(y) = θ = [θ1, . . . , θn]> and φ is a dispersion parameter, if required. Then a link

function g(·) is defined as:

g(θi) = xiβ = ηi , (2.45)

where:

• X = (x1, . . . ,xn) is the design matrix (n× p) with xi = (xi1, . . . , xip) being its ith

row; and
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• β = (β1, . . . , βp) is the vector of parameters to be estimated.

The difference from linear regression is that y does not have to follow a normal distribu-

tion but any distribution f(·) that belongs to the exponential family. Let the probability

density function (pdf) of a random variable y depend on the canonical parameter θ and

the dispersion parameter φ. Then, the pdf belongs to the exponential family if it can

be written as:

f(y; θ, φ) = exp [a(y)b(θ) + c(θ) + d(y, φ)] . (2.46)

The log-likelihood for exponential family distributions is then:

l(y; θ, φ) = a(y)b(θ) + c(θ) + d(y, φ) , (2.47)

where a(y) is called the canonical form. The mean of a(y) is estimated by solving∫
y∈Ry

df(y;θ,φ)
dθ dy = 0, from where:

E(a(y)) = −c
′(θ)

b′(θ)
. (2.48)

Similarly, the variance of a(y) is estimated as
∫
y∈Ry

d2f(y;θ,φ)
dθ2

dy = 0 from where:

Var(a(y)) =
b′′(θ)c′(θ)− c′′(θ)b′(θ)

[b′(θ)]3
. (2.49)

The score function U is defined as the first derivate of the log-likelihood with respect to

θ:

U(y; θ) =
dl(y; θ)

dθ
= a(y)b′(θ) + c′(θ) . (2.50)

From E(a(y)), E(U) = 0 and from Var(a(y)), Var(U) = b′′(θ)c′(θ)
b′(θ) − c′′(θ), which is also

known as the information I (p× p).

Using the score statistics results, the parameters β (in model 2.44 - 2.45) can be es-

timated using an iteratively reweighted least squares (IRWLS) algorithm. Let I =

X>WX, where W is n × n diagonal matrix with elements wii = 1
Var(yi)(g′(µi))2

and

U(θ) = X>Wz where zi = (yi − µi)g′(µi). Then, the IRWLS algorithm is as follows:
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1. Set an initial value for β̂
(0)

.

2. For iterationm = 1, 2, . . .: η(m−1) = Xβ̂
(m−1)

and z
(m−1)
i = (yi−µ(m−1)

i )g′(µ
(m−1)
i ).

3. Calculate β̂
(m)

= [X>W(m−1)X]−1X>W(m−1)(η(m−1) + z(m−1)).

4. Repeat steps 2 and 3 until the difference of β̂
(m)
− β̂

(m−1)
is below a threshold

and hence, convergence has been reached.

It has to be noted that the dispersion parameter φ has no effect on the estimates of β̂.

However, if φ is required, it affects the estimate of the variance-covariance matrix of β̂:

Var(β̂) = (X>WX)−1φ̂ . (2.51)

Model testing for a GLM can be based on the deviance statistic, where H0 is the simpler

model (with less covariates) and the alternative, H1, is the more complex model (with

more covariates). The deviance is defined by:

D = 2
[
l (β̂max; y)− l (β̂; y)

]
, (2.52)

where l (β̂max; y) is the maximised log-likelihood for the full model with all covariates

and l (β̂ is the maximised log-likelihood for the model of interest. The deviance between

a few models can be compared to a χ2(p−q), where p is the number of parameters under

H1 and q is the number of parameters under H0 (with q < p < n). Alternatively, GLMs

can also be compared based on AIC or BIC as described in Subsection 2.2.1.

For the diagnostic plots of GLMs, deviance residuals must be calculated depending on

the distribution of the response vector y. The ith deviance residual is defined as:

di = sign(yi − ŷi)

√
2

(
yilog

(
yi
ŷi

)
− (yi − ŷi)

)
, (2.53)

where sign(·) is an indicator variable for the sign of the expression. Standard plots for

all GLMs are the qq-plot of the deviance residuals to check whether they are normally

distributed. The deviance residuals are plotted against the fitted values as well as

the covariates to check for any patterns indicating unexplained variability in the data.

Lastly, the observed vs. fitted values are plotted to check whether the fitted values from

the models are similar to the observed values.
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2.3 Spatial and spatial-temporal modelling

In Chapters 4 through 8, the time series data are collected at multiple locations. There-

fore, it is of interest to model spatio-temporal data. This section first introduces the key

features of spatial modelling, which is then extended to spatio-temporal modelling.

2.3.1 Geostatistics

Geostatistics is a branch of spatial statistics which is used to analyse data collected at

a set of n point locations. The air pollution data presented in Chapters 4 through 8 are

gathered at n different locations across Aberdeen and Glasgow, or within the Latin Hy-

percube design space. Therefore, in this subsection key quantities and concepts related

to geostatistics which will be used in the aforementioned chapters are presented based

on the description in [63], which can be referred to for further details on geostatistics.

In general, univariate geostatistical data are defined as (si, yi) for i = 1, . . . , n with si

specifying the spatial location (usually in two dimensions) and yi being the the measure-

ment for some response variable. A geostatistical process, on the other hand, is defined

as:

Y = {Y (s1), . . . , Y (sn)} , (2.54)

where Y is the random variable at location si. Naturally, geostatistical data will have

positive correlation, because the nearer two observations are in space typically, the more

similar are the observations at these locations. The covariance function between two

locations s and p is:

CY (s,p) = Cov[Y (s), Y (p)] = E [(Y (s)− µY (s))(Y (p)− µY (p))] , (2.55)

where µY (s) = E [Y (s)] is the mean function. For a covariance function to be valid, it

has to be non-negative definite.

Stationarity and isotropy

By definition, a geostatistical process Y is stationary if it has the same characteristics

at any location in space, for instance, constant mean, constant variance, etc. As with

time series, there are two types of stationarity - strict and weak. A geostatistical process

Y(s) is defined as strictly stationary if:

f(Y (s1), . . . , Y (sn)) =d f(Y (s1 + τ ), . . . , Y (sn + τ )) , (2.56)
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for any displacement vector τ and any set of locations {s1, . . . , sn}, and =d meaning

equal in distribution. If Y is strictly stationary, then Y has the same distribution for all

locations s, from which it follows that the mean is constant E(Y (s)) = µY (s) = µY as well

as the variance Var(Y (s)) = σ2
Y (s) = σ2

Y . The bivariate distribution does not depend on

spatial location, that is f(Y (s), Y (s + h)) =d f(Y (0), Y (h)) from which it follows that

the covariance function between two points depends only on the distance and direction

between them, but not the two locations Cov[Y (s), Y (s + h)] = CY (s, s + h) = CY (h).

On the other hand, a geostatistical process Y is defined as weakly stationary if the mean

is constant without depending on locations, E[Y (s)] = µY (s) = µY , and the covariance

function only depends on the lag, Cov[Y (s), Y (s + h)] = CY (s, s + h) = CY (h), with

both of these being finite. This in turn means that Var(Y (s)) = σ2(s) = σ2.

A further simplification of stationary geostatistical processes is isotropy. If a geostatis-

tical process is isotropic, the covariance function is directionally invariant and therefore,

not the direction but only the size of the distance (lag) between two points determines

the covariance. The covariance is simplified to CY (h) = CY (||h||) = CY (h), where

||h||= h is the Euclidean distance (for details on Euclidean distance refer to [14]) of the

lag h.

Variogram

In geostatistics, variograms are commonly used instead of covariance functions to repre-

sent correlation. A semi-variogram of a geostatistical process Y(s) is a function γY (s,p),

which measures the variance of the difference in the process at two spatial locations s

and p:

γY (s,p) =
1

2
Var[Y (s)− Y (p)] . (2.57)

Since γY (s,p) is called the semi-variogram, 2γY (s,p) is called the variogram. A vari-

ogram is related to intrinsic stationarity. A geostatistical process Y is intrinsically sta-

tionary when the difference of the geostatistical processes is weakly stationary. Hence,

the mean E[Y (s) − Y (s + h)] = 0 for all locations s and lag vectors h, and the semi-

variogram γY (s, s + h) = 1
2Var[Y (s)− Y (s + h)] = γY (h) depends only on the displace-

ment vector h for all locations s. If the intrinsically stationary process is also isotropic,

there is a further simplification to the semi-variogram:

γY (s, s + h) =
1

2
Var[Y (s)− Y (s + h)] = γY (h) , (2.58)
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where h = ||h|| and, hence, only the distance between the two points is important. The

semi-variogram for a weakly stationary and isotropic process can be plotted (see below

for the estimator) to check for the presence of spatial correlation in the data as seen in

Figure 2.1, which shows the expected shape under positive spatial correlation.

Semi-variogram plot

Figure 2.1: A general semi-variogram plot [113].

The semi-variogram is discontinuous at zero, where the horizontal axis reflects the in-

crease in the Euclidian distance between two points. The sill (total variation) of the

semi-variogram is the limiting value of the semi-variogram as the Euclidian distance

increases, and measures the total variation in the data. The range is the minimal Eu-

clidian distance at which the observations are uncorrelated (independent). However,

as the points are in hyperspace, the Euclidian distance between is not measured in a

specific unit. It also has to be noted that the range could go to infinity. The nugget

is the limiting value of the semi-variogram as the distance tends to zero. In essence the

nugget is the measurement error, hence the non-spatial variation in the data. Lastly,

the partial sill is the amount of spatial variation, which is the difference between the

sill and the nugget.

In order to check for the presence of spatial autocorrelation in a data set

Y = {y(s1), . . . , y(sn)}, one has to estimate the empirical semi-variogram. Let N(h) =

{(si, sj) : ||si − sj ||= h} be the set of pairs of spatial locations at a distance h, and let

|Nh| denote the number of points in this set. Then, the empirical semi-variogram at a

distance h, γ̂Y (h) is:

γ̂Y (h) =
1

2|Nh|
∑

(si,sj)∈N(h)

[y(si)− y(sj)]
2 . (2.59)

In some cases, however, there may not be enough points to average in order to calculate

a “good” estimate of the true semi-variogram. Instead, a binned estimator can be used.
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Let, the space of distances be partitioned into K bins, IK = (hk−1, hK ] for k = 1, . . . ,K

where 0 = h0 < h1 < . . . < hK . The midpoint of each interval is defined to be

hmk = (hk−1 + hk)/2. Then the pairs of the distances in each interval are calculated as

N(hk) = {(si, sj) : ||si−sj ||∈ IK}. Therefore, the binned empirical semi-variogram

is defined as:

γ̂Y (hmk ) =
1

2|N(hk)|
∑

(si,sj)∈N(hk)

[y(si)− y(sj)]
2 . (2.60)

To ensure that there is statistically significant spatial correlation present, a Monte Carlo

envelop is added to the binned empirical semi-variogram by adding the lower and upper

limits for the set of semi-variograms likely under independence. The Monte Carlo en-

velop is calculated by repeating two steps for a large number, j = 1, . . . , J , of iterations.

Firstly, a pseudo data set y(j) = {y(j)(s1), . . . , y(j)(sn)} is created by randomly permut-

ing the n data points to the spatial locations s = {s1, . . . , sn}. Then the semi-variogram

for each distance is computed (γ̂
(j)
Y (hn1 ), . . . , γ̂

(j)
Y (hnK)). For each distance, hni , a 95%

envelope is computed from the 2.5th and the 97.5th percentiles of the set {γ̂(j)
Y (hni )}Jj=1.

The envelope presents the range of plausible semi-variograms that could be produced

if there was no spatial correlation in the data. Hence, if the semi-variogram from the

real data lies outside the envelope at some point, there is evidence of spatial correlation.

Finally, it is important to note that the assessment of the spatial dependence assumes

isotropy.

Covariance models

For the semi-variogram and the covariance functions, there are many parametric models

in geostatistics. Here, a few models are presented with the assumption that the geosta-

tistical process Y is stationary and isotropic. In these models, distance will be written

as ||h||= h, the nugget will be λ2 > 0, the partial sill will be σ2 > 0 and the range

will be φ > 0. One of the most common ways to model spatial correlation is using a

stationary and isotropic Matérn covariance function. The Matérn function is defined for

two locations Y (si) and Y (sj), where h = ||si − sj ||, as:

CY (h) =


σ2 + λ2 h = 0 ,

σ2

(
h
φ

)ν
2νΓ(ν)Kν

(
h
φ

)
h > 0 ,

(2.61)

where:

• ν > 0 is a smoothness parameter;
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• Γ(·) is the gamma function; and

• Kν(·) is a modified Bessel function of the second kind.

The semi-variogram for the Matérn function is, therefore:

γY (h) =


0 h = 0 ,

λ2 + σ2

1−

(
h
φ

)ν
2νΓ(ν)

 h > 0 .
(2.62)

There are two common simplified models depending on the smoothness parameter, which

will be discussed in further detail here. Firstly, if ν = 1
2 , the function is known as the

exponential covariance function:

CY (h) =

σ
2 + λ2 h = 0 ,

σ2exp
(
−h
φ

)
h > 0 ,

(2.63)

and the respective semi-variogram is:

γY (h) =

0 h = 0 ,

λ2 + σ2
(

1− exp
(
−h
φ

))
h > 0 .

(2.64)

However, the exponential covariance function is quite rough so the second common

version of the Matérn function is very smooth, the Gaussian covariance function, where

ν →∞:

CY (h) =


σ2 + λ2 h = 0 ,

σ2exp

(
−
(

h
φ

)2
)

h > 0 ,
(2.65)

and the respective semi-variogram is:

γY (h) =


0 h = 0 ,

λ2 + σ2

(
1− exp

(
−
(

h
φ

)2
))

h > 0 .
(2.66)

The choice of the smoothness parameter ν adds estimation burden so to achieve a sensible

level of smoothness, ν = 3
2 is recommended by [63].
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Kriging

Commonly, the main goal in geostatistics is to predict the measurements of a process

at a new location s0. The most famous method for predicting geostatistical process is

Kriging [121]. To perform Kriging for a random two-dimensional vector X =

X1

X2

,

a property of the multivariate Gaussian distribution is used. Therefore, in this thesis,

kriging and Gaussian Processes (GP) are used interchangeably. Suppose that:

X =

X1

X2

 ∼ N

µ =

µ1

µ2

, Σ =

Σ11 Σ12

Σ21 Σ22

 ,

then the conditional distribution of X1|X2 is:

X1|X2 ∼ N(µ1 + Σ12Σ22
−1(X2 − µ2),Σ11 −Σ12Σ22

−1Σ21) . (2.67)

The joint geostatistical process at n data locations Y is a stationary process with mean

µY and a covariance matrix Σ(θ). The matrix Σ(θ) is defined by a stationary and

isotropic covariance function CovY (h,θ), where θ = {σ2, λ2, φ} is the set of parameters

to be estimated based on a function of one’s choice from Subsection 2.3.1. For the joint

geostatistical process Y and a prediction location Y (s0), the property is re-written as:

Y∗ =

Y (s0)

Y

 ∼ N

 µY

µY 1

 ,

CovY (0,θ) CY (s0,θ)>

CY (s0,θ) Σ(θ)

 , (2.68)

where:

• CovY (0,θ) = Var(Y (s0)) is a scalar for the variance at the new point Y (s0); and

• CY (s0,θ) = (CovY (Y (s0), Y (s1)), . . . ,CovY (Y (s0), Y (sn))) is a vector (n×1) con-

taining the covariances between the new point Y (s0) with each of the locations in

the set Y(s).

Then using the property of the multivariate Gaussian distribution gives a predictor:

E[Y (s0)|Y] = µY + CY (s0,θ)>Σ(θ)−1(Y− µY 1) , (2.69)

with variance:
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Var[Y(s0)|Y] = CovY (0,θ)−CY (s0,θ)>Σ(θ)−1CY (s0,θ) . (2.70)

However, (µY ,θ) are unknown, hence, the predictor is:

Y(s0)|Y ∼ N
(
E[Ŷ(s0)|Y],Var[Ŷ(s0)|Y]

)
, (2.71)

where the universal Kriging predictor is:

• E[Ŷ(s0)|Y] = µ̂Y + CY (s0, θ̂)>Σ(θ̂)−1(Y− µ̂Y 1); and

• Var[Ŷ(s0)|Y] = CovY (0, θ̂)−CY (s0, θ̂)>Σ(θ̂)−1CY (s0, θ̂).

This yields a 100α% prediction interval of the form:

E[Ŷ(s0)|Y]± Φ−1
(

1− α

2

)√
Var[Ŷ(s0)|Y] , (2.72)

where Φ−1
(
1− α

2

)
is the inverse cumulative distribution function of the normal distri-

bution for a chosen significance level α.

θ̂ = (σ2, λ2, φ) is estimated using MLE. Let Y ∼ N(Xβ,Σ(θ)), where X (n × p where

p is the number of covariates) is the matrix of covariates and β (p × 1) is a vector of

parameters. The parameters λ2 and φ do not have a closed form solution for λ̂2 and

φ̂, and numerical optimisation methods should be used to estimate them. For more

information on the estimation, refer to [63] and [50]. However, assuming an exponential

autocovariance model Σ(θ) = σ2exp
(
−D

φ

)
+ λ2I with D (n × n) being a distance

matrix between the spatial locations in the set, β̂ and σ̂2 have closed form solutions as

follows:

β̂(ν2, φ) = (X>V(ν̂2, φ̂)−1X)−1X>V(ν̂2, φ̂)−1Y , (2.73)

σ̂2(β̂, ν2, φ) =
1

n− p
(Y−Xβ̂)>V(ν̂2, φ̂)−1(Y−Xβ̂) , (2.74)

where V(ν̂2, φ̂) = exp
(
−D

φ

)
+ν2I is a variance matrix (n×n) and ν2 = λ2

σ2 is the noise

to signal ratio.
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2.3.2 Spatio-Temporal data modelling

The air pollution data presented in Chapter 8 are not just spatial data, as the obser-

vations were taken at exact locations over T regular time intervals. Therefore, spatio-

temporal modelling is required. In this subsection, main quantities and concepts related

to spatio-temporal data are presented as described in [51] and [179], which can be re-

ferred to for further information.

A spatio-temporal process is defined by extending a geostatistical process Y(s) to Y(s, t)

where t ∈ N is equally spaced (discretised) time steps. In general, the observed data are

Yn×T = {Y (si, tj)} (where i = 1, . . . , n and j = 1, . . . , T ) for the set of spatial locations

s = {s1, . . . , sn} and time points t = 1, 2, . . . , T . As in the previous subsections, spatial

and temporal lags will be denoted as h and τ respectively. The mean of a spatio-temporal

process Y(s, t) is:

µY (s, t) = E[Y(s, t)] . (2.75)

The covariance function for two locations s and p and two time points t and v is:

CY (s,p, t, v) = Cov(Y (s, t), Y (p, v)) = E[(Y (s, t)− µY (s, t))(Y (p, v)− µY (p, v))] .

(2.76)

Naturally, the variance of a spatio-temporal process Y(s, t) is defined as a special case

of the covariance when s = p and t = v:

Var(Y (s, t)) = CY (Y (s, t), Y (s, t))

= Cov[Y (s, t), Y (s, t)]

= E[(Y (s, t)− µY (s, t))2]

= σ2
Y (s, t) .

(2.77)

Stationarity/isotropy

Second-order stationarity of a spatio-temporal process Y(s, t) is defined for any locations

s and p, and times t and v as occurring if:

• E[Y(s, t)] = µY (s, t) = µY ; and

• CY (s,p, t, v) = Cov[Y(s, t),Y(p, v)] = Cov[Y(s−p, t−v),Y(0, 0)] = C(s−p, t−v).
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From the covariance function, the variogram function is defined for the spatial distance

lag h and time lag τ as:

γ(h, τ) = Var[Y (s + h, t+ τ)− Y (s, t)] . (2.78)

For a spatio-temporal process Y(s, t) with second order stationarity, it holds that:

γ(h, τ) = C(0, 0)− C(h, τ) . (2.79)

Empirically, the variogram for the spatio-temporal process Y(s, t) is estimated by using

pairs of points at distances h from each other and time lag τ :

γ̂(h, τ) =
1

2|N(h, τ)|
∑
N(h,τ)

{[Y (si, ti)− Y (sj , tj)]
2} , (2.80)

where N(h, τ) = {[(si, ti), (sj , tj)]2 : ||si − sj ||= h and |ti − tj |= τ}.

Separability

In the spatial setting, for the process Y, the covariance function is defined to be sym-

metric when CY (s− p) = CY (p− s). However, for the covariance function of a spatio-

temporal process Y, the symmetry does not hold by definition. The full symmetry

requires that:

• CY (s− p, t− v) = CY (p− s, t− v); and

• CY (s− p, t− v) = CY (s− p, v − t).

From the set of fully symmetric covariance functions, there is a simplification called

separable when:

CY (s− p, t− v) = C∗Y (s− p)C̃Y (t− v) . (2.81)

From here, it can be seen that the spatio-temporal covariance can be separated into two

parts - spatial (C∗Y ) and temporal (C̃Y ). These two parts could be taken to be any model

described in Subsections 2.3.1 and 2.1.2, respectively. For instance, a combination of a

spatial Gaussian covariance function with an AR(1) process:

CY (s− p, t− v) = {C∗Y (||s− p||= h)}
{

C̃Y (t− v = τ)
}

=

{
σ2exp

(
−
(

h

φ

)2
)}{

σ2
Z

ζτ

1− ζ2

}
.

(2.82)
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Prediction

In spatio-temporal modelling, in a similar way to spatial modelling, it is of key interest

to be able to predict the measurements of a spatio-temporal process at a new space-time

location. Kriging can be used again as described in Subsection 2.3.1. The method only

requires a covariance function to be defined. Therefore, for the spatio-temporal process

Y with a set of n locations si and T time intervals tj , for the unknown location s0 and

a new time point t0, the universal Kriging predictor for the measurement Y (s0, t0) is

again:

• E[ ̂Y (s0, t0)|Y] = µ̂Y + CY (s0, t0, θ̂)>Σ(θ)−1(Y− µ̂Y 1); and

• Var[ ̂Y (s0, t0)|Y] = Cov(0, 0, θ̂)−CY (s0, t0, θ̂)>Σ(θ)−1CY (s0, t0, θ̂);

where:

• CovY (s0, t0, θ̂) = Var(Y (s0, t0, θ̂)) is a scalar for the variance at the new point

Y (s0, t0); and

• CY (s0, t0, θ̂) = [CovY (Y (s0, t0, Y (s1, t1))), . . . ,CovY (Y (s0, t0, Y (sn, tT )))] is a vec-

tor ((n× T )× 1) of the covariances between the new point Y (s0, t0) and the data

set Y.

A 100− α% prediction interval could be estimated as:

E[Ŷ(s0, t0)|Y]± Φ−1
(

1− α

2

)√
Var[Ŷ(s0, t0)|Y] . (2.83)

2.4 Emulation of computer simulations

This section focuses on the key features of emulation of computer models. As discussed

in Section 1.6, an emulator is a statistical model which predicts the output of computer

models for untried inputs based on a set of runs of the computer model. Therefore, it

is crucial to choose on which inputs the computer models will be run. In the literature

review, Latin Hypercube sampling is one of the most common ways of selecting the inputs

for which the computer model will be used. This section introduces Latin Hypercube

sampling and the general form of emulation.
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2.4.1 Latin Hypercube

A Latin Hypercube (LHC) design is used to choose the inputs for the ADMS-Urban

simulation scenarios modelled in Chapters 4 through 8. In this section, background on

Latin Hypercube sampling is provided. The Latin Hypercube design was first introduced

in [125] as a type of stratified sampling for the inputs of simulation models. The sampling

is done in a way which guarantees that the ranges of each of the inputs is fully explored.

Therefore, the set of inputs to be run from the simulation model provide a very close

approximation to the real variability in the simulation scenarios. Let X = (x1, . . . ,xp)

be the input space for p inputs to be explored. Then, the range of each xi (i = 1, . . . , p)

is divided into N strata each with equal marginal probability 1
N and one sample is

taken per stratum. Hence, a sample xij for j = 1, . . . , N is obtained. The components

of the samples for each xi are matched at random. Therefore, the set of input values

for which the simulation model is to be run is chosen. A computationally inexpensive

extension to LHC was proposed in [132], where a distancing criterion (maximin) is

applied to ensure the design points are spaced out by calculating the distances between

the possible scenarios in the LHC design space and choosing the largest distances.

2.4.2 Emulation

In Chapters 5 through 8, different emulators are built for the different outputs of

the ADMS-Urban runs. This subsection provides a general background to emulators,

whereas each of Chapters 5, 6, 7 and 8 will provide specific information to the emulator

applied in them based on the type of output modelled in the specific chapter.

As previously discussed, a frequentist emulator based on kriging was proposed in [169]

and this description is summarised below. Let y be a vector (n× 1) of the deterministic

output from a simulation model. Then:

y = Xβ + z , (2.84)

where:

• X is a design matrix (n × p) with an intercept term and p − 1 inputs for the

simulation model. Each row of X contains the input values for one run of the

simulation model as chosen using the LHC design;

• β is a vector (p× 1) of the fixed parameters to be estimated; and
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• z is an error vector (n×1), which follows a normal distribution z ∼ N(0,Σ) where

Σ is a n× n variance-covariance matrix.

Let xi and xj be the ith and jth input scenarios (i.e. the ith and jth rows of X), then

the covariance is estimated as:

Σij = σ2Corr(xi,xj) , (2.85)

where σ2 is the overall variance and Corr(xi,xj) is a correlation function. Different

correlation functions are discussed in further detail in Chapters 5 through 8 depending

on the data being modelled. The correlation parameters are estimated using the BFGS

algorithm described in Subsection 2.2.4.

Let R be the correlation matrix (n×n) for LHC input space such that Σ = σ2R. Then,

the fixed effect parameters are estimated using the GLS fit for β:

β̂ =
(
X>R−1X

)−1
X>R−1y , (2.86)

and

σ̂2 =
1

n

(
y−Xβ̂

)>
R−1

(
y−Xβ̂

)
. (2.87)

Predictions are calculated using a multivariate normal distribution in a similar fashion

as described for universal kriging in Subsection 2.3.1. Let y0 be the output from the

simulation model for a set of untested inputs x0. Then:

ŷ0 = x0β̂ + r>R−1(y−Xβ̂) , (2.88)

where r is the vector (n × 1) with the estimated correlations Corr(x0,xi) between x0

and each row of X. The variance of the new observation y0 is:

Var(y0) = σ̂2 − r>R−1r. (2.89)

However, in more recent years, a wider definition for emulation has been used. Every

statistical model used for prediction of untested output from a computer code has been

referred to as an emulator as seen in [162]. This wider definition is applied to the model

in Chapter 7.



Chapter 3

Using miniature automated

sensors to measure air pollution

In this chapter, a sensor package containing electrochemical sensors (ALPHASENSE

B2) for NO2 and O3, as well as for temperature and humidity with low-energy wireless

communication, hardware and battery energy supply “AirSpeck” [15] is assessed with

no prior assumptions, which reflects a realistic setting for citizen science applications

without any training on how to use the sensor. Therefore, it is investigated how well

sensors of lower cost such as the ALPHASENSE B2 can be used to supplement high

quality sensors. In order to directly compare the miniature automated sensor (MAS)

package with reference monitor observations under ambient conditions, three replicated

AirSpeck sensor packages were placed next to the reference sensor at the Edinburgh

St. Leonards AURN site for two weeks. The aim of the experiment is to evaluate

the accuracy of the AirSpecs in two respects (i) how consistent are the three MAS

outputs with each other (i.e. how reproducible are the results); and (ii) how well do

the MAS outputs correlate with the reference sensor and, hence, robustly measure air

pollution. The rest of this chapter is organised as follows: Section 3.1 presents the study

data. Section 3.2 presents a comparison of the performance of the three MAS to each

other, whereas Section 3.3 compares the performance of the MAS to the AURN sensor.

Concluding remarks and areas for future work are given in Section 3.4. The work

in this chapter is part of a pilot project from the EPSRC funded SECURE network

EP/M008347/1 (http://www.gla.ac.uk/research/az/secure/).
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3.1 Data and study design

3.1.1 Data collection and study region

Three ‘AirSpeck’ MAS packages [15] were installed by the AirSpeck developers on the

fence at the Edinburgh St. Leonards AURN monitoring stations. A picture of two of the

sensors at the station is provided in Figure 3.1. St. Leonards is an urban background

location within a small park area on the south side of the city. The nearest main road,

Pleasance, is approximately 35 metres away and is a busy main road running into the city

centre [5]. A map of Edinburgh with the station marked is provided in Figure 3.2. The

site is classified for air quality monitoring purposes as an urban background site, which

should be representative of general ambient concentrations in the urban environment.

The site provided mains power and a secure location for setting up the sensor packages

in close proximity to a reference monitor.

‘AirSpeck’ MAS packages

Figure 3.1: Two of the ‘AirSpeck’ MAS packages at St. Leonards AURN monitoring
station.

The reference monitor for NO2 at this site is a Teledyne API200A chemiluminescence

analyser and for O3, it is a Thermo 49i UV absorbance analyser. Operation and data

ratification of the reference instruments is covered by specified procedures that ensure

compliance to measurements and metadata objectives specified in the EU Air Quality

Directive 2008/50/EC [76]. The reference analyser data are reported as hourly averaged

concentrations in µg m−3. Therefore, hourly data are aggregated before being provided

from minute MAS measurements to be comparable to the AURN monitor measurements

using the method described in [15]. The MAS measurements used in this chapter capture

the period from 15:00 on 18/07/2017 to 12:00 on 07/08/2017. In the AirSpeck, each

electrochemical sensor measured two voltages (in millivolts (mV)) to represent NO2 and

O3 pollutant concentrations at two electrodes: the auxiliary electrode (AE) and the

working electrode (WE). For the rest of the chapter, the MAS voltages are used but

will be referred to as ‘NO2’ and ‘O3’. Application notes from the sensor manufacturer
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St. Leonards AURN monitoring station
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Figure 3.2: Map of Edinburgh with a red dot to signify the location of the St. Leonards
AURN monitoring station [92].

states that as gas concentrations for both NO2 and O3 are typically 20 to 200 parts per

billion (ppb) at the roadside, so good design of the sensor, housing and electronics plus

intelligent data analysis are all required for air quality measurements [10].

The three AirSpecks are referred to as Sensor 1 (or S1), Sensor 2 (or S2) and Sensor 3

(or S3) for the rest of the chapter. All sensors recorded values for either ‘NO2’ or ‘O3’

from both WE and AE, respectively. Additionally, the difference for ‘O3 - NO2’ is also

modelled as the ALPHASENSE website states that “the difference (in voltage) between

the two sensors gives the O3 concentration” [10]. Furthermore, the three AirSpecks

recorded the temperature (◦C) and the relative humidity (RH, %), which were used as

covariates when modelling concentrations. Due to the noise in the temperature and RH,

the averaged values across the three MAS units are used when modelling.

3.1.2 MAS data

The time series plots of the AE and WE values and for NO2, O3 and O3 - NO2 MAS are

displayed in Figure 3.3. The raw hourly measurements show considerable fluctuations,
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therefore, lowess (locally weighted smoothing, see Subsection 2.2.2) curves are added to

each plot to check the general trends in the data, e.g. long term drift in the voltage.

Sensor 3 has failed to record continuously as there are 150/478 data points missing

(31.4%) which result in visible gaps in the time series (Figure 3.3 a)). Sensor 1 failed

to record 14/478 (2.9%) observations, while Sensor 2 had the highest data capture

with only 2/478 (0.4%) missing observations. Although there are missing data, the

data were not interpolated as interpolation would interfere with the clarity of the data

(i.e. focus solely on the recorded measurements). The smoothed curves show an almost

constant concentration throughout the period, with Sensor 3 measuring a slight decrease

at the end of the period on all plots, which may indicate degradation of the sensors or

components of that AirSpeck unit.

Additionally, the histograms of the AE and WE are examined in Figure 3.4. The AE

voltages for NO2 show a clear overlap between Sensors 1 and 2, whilst Sensor 3 is mostly

separate, whereas the NO2 WE voltages seem to overlap for all three sensors. For both

the AE and WE voltages of O3, it appears that sensors 1 and 3 overlap each other quite

well with Sensor 2 being mostly separate from the other two. The biggest difference

between the AE and WE voltages is for O3-NO2, where the distributions for each sensor

are mostly separate, whilst for the WE voltage there is a very good overlap between the

three measurements.

Pollutant Sensor Mean Difference Correlation

Voltage AE WE AE WE

NO2

S1 vs. S2 15.13 137.47
0.11

(0.03, 0.19)
0.89

(0.87, 0.90)

S1 vs. S3 170.15 12.71
-0.04

(-0.15, 0.07)
0.49

(0.40, 0.57)

S2 vs. S3 167.43 161.62
-0.14

(-0.24, -0.03)
0.51

(0.42, 0.58)

O3

S1 vs. S2 112.09 -180.57
0.06

(-0.03, 0.14)
0.60

(0.54, 0.65)

S1 vs. S3 38.91 55.54
0.22

(0.11, 0.32)
0.50

(0.41, 0.58)

S2 vs. S3 40.58 282.94
-0.07

(-0.18, 0.04)
0.36

(0.26, 0.45)

O3 - NO2

S1 vs. S2 80.27 –70.10
0.23

(0.14, 0.31)
0.78

(0.74, 0.81)

S1 vs. S3 -131.25 42.84
0.81

(0.77, 0.85)
0.87

(0.83, 0.89)

S2 vs. S3 -208.01 121.32
0.20

(0.09, 0.30)
0.75

(0.70, 0.80)

Table 3.1: Mean differences and Pearson’s correlation coefficients (and their corre-
sponding 95% confidence intervals) between the hourly measurements (in mV) from the

three MAS.

Overall, there is no pattern about the mean differences between the sensors regardless

of whether AE or WE voltages are examined as it can be seen in Table 3.1. However,

looking at the correlations, a pattern emerges. The WE hourly measurements have much
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Time Series for the MAS voltages

Figure 3.3: Time series of all hourly measurements (in mV) taken by the MAS at
hourly intervals with a lowess smoothing line.

stronger positive linear relationships between the sensors’ measurements, whereas the

AE hourly measurements seem to have weak relationships between each other with only

the O3 - NO2 measurements between Sensors 1 and 3 but even in this case, the WE

correlation is stronger. Similarly, in Figure 3.4, it appears that there is more overlap of

the hourly voltage measurements for WE than for AE.

Figure 3.3 a) shows that the NO2 AE voltages recorded by Sensors 1 and 2 are very

similar to each other and follow approximately (to the eye) the same high resolution

variation and the same underlying trend. The units operated consistently with each
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Histograms for the MAS voltages

Figure 3.4: Histograms of all hourly measurements (in mV) taken by the MAS at
hourly intervals.

other with an average difference of 15.13 millivolts (mV) as shown in Table 3.1. However,

in Table 3.1, the Pearson’s correlation coefficient (referred to as correlation or r for the

rest of the chapter) between the hourly data is 0.11, which indicates a weak agreement

between the two NO2 AE voltages. Sensor 3 consistently has lower AE voltages with

the average difference ∼ 170 mV to both Sensor 1 and Sensor 2. From Table 3.1, the

correlation of Sensor 3 to Sensor 1 is -0.04 and its 95% confidence interval contains

zero, and to Sensor 2 is -0.14, both of which are close to zero and indicate again poor

association. The histogram in Figure 3.4 a) shows that the hourly measurements from

Sensors 1 and 2 almost perfectly overlap each other, whereas Sensor 3 has taken lower

hourly measurements.
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The three AirSpeck units have recorded very different values of O3 AE voltage as shown

in Figure 3.3 b), with the sensors variability overlapping or diverging from each other

over the measurement period. This issue is further highlighted by the smoothed curves.

In the beginning of the period, Sensor 2 has measured lower values than the other two

sensors. In Table 3.1, it is seen that on average, Sensor 1 and Sensor 2 differ by 112.09

mV and the correlation is 0.06 with zero in the 95% confidence interval, which shows

that there is no association between the hourly measurements from the two sensors.

The hourly measurements from Sensor 1 and Sensor 3 differ by 38.91 mV and have a

correlation of 0.22, which again indicates a very weak relationship between the hourly

measurements as seen in Table 3.1. Finally, in Table 3.1, on average, Sensor 2 and Sensor

3 differ by 40.58 mV and have a correlation coefficient of -0.07 with zero in the 95%

confidence interval again indicating no relationship between the hourly measurements.

The histograms of the O3 AE voltages in Figure 3.4 b) shows that there is quite a large

spread in the hourly measurements for all sensors with Sensors 1 and 2 being almost

separate from each other, while Sensor 3 spans across the bins for the other two sensors.

In Figure 3.3 c), the hourly measurements of O3 - NO2 AE voltage are quite different

from each other and there is no overlap of the points. The lowess smooth lines are almost

straight for each sensor creating the impression of almost parallel lines. This is further

highlighted by histograms in Figure 3.4 c), where the hourly measurements from all the

Sensors are quite different from each other. From Table 3.1, Sensor 1 and Sensor 2 differ

on average by 80.27 mV and have a correlation of 0.23. Interestingly, Sensor 1 and

Sensor 3 have an average difference of 131.25 mV but have strong correlation of 0.81.

Finally, Sensor 2 and Sensor 3 on average differ by 208 mV and have weak correlation

of 0.20.

The NO2 WE hourly measurements Sensor 1 and Sensor 3 in Figure 3.3 d) are well-

calibrated to each other (as opposed to AE hourly measurements for Sensor 1 and Sensor

2) with an average difference of 12.71 mV (Table 3.1). The smoothed curves for the two

sensors track each other well and for Sensor 1 and Sensor 3 the correlation is r=0.49 as

shown in Table 3.1, which is similar to the correlation between Sensor 2 and Sensor 3

(r=0.51). Sensor 1 and Sensor 2 have similar fluctuations and correlation of 0.89 - the

highest correlation between any two sensors. The offset between Sensor 1 and Sensor 3

to Sensor 2 was 137.47 mV and 161.62 mV respectively. These differences are noticed

in Figure 3.4 d), where the Sensors 1 and 3 almost overlap each other but Sensor 2 has

taken higher hourly measurements.

The O3 WE time series in Figure 3.3 e) show that the hourly measurements from all

three sensors appear well-calibrated with each other, with just Sensor 3 measuring a

small decrease in the end of the period. In Table 3.1, Sensor 1 and Sensor 2 differ from
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each other by 180.57 mV on average and have a correlation of 0.60, while Sensor 1 and

Sensor 3 differ on average by 55.54 mV and have a correlation of 0.50. Finally, Sensor

2 and Sensor 3 differ on average by 282.94 mV and have a correlation of 0.36. This is

all confirmed by the histograms of the hourly measurements in Figure 3.4 e), where the

hourly measurements by Sensor 1 and 3 are almost overlapping each other, whereas the

hourly measurements from Sensor 3 are higher.

On the other hand, in Figure 3.3 f), the O3 - NO2 WE voltage measurements from

the three sensors appear well-calibrated to each other and track each other quite well.

Furthermore, the histograms of the hourly measurements in Figure 3.4 f) overlap each

other quite well. All sensors have strong correlations between each other varying from

0.75 to 0.87 as shown in Table 3.1. On average, Sensor 1 and Sensor 2 differ by 70.10

mV, Sensor 1 and Sensor 3 differ by 42.84 and Sensor 2 and Sensor 3 differ by 121.32

mV (Table 3.1).

Overall, based on the initial comparisons for all NO2, O3 and NO2 - O3, it appears that

the AE voltages are not as reliable as the WE voltages. The WE voltages appear more

in agreement with each other. This is likely the results of different ways the voltages are

produced as described in [10].

3.1.3 Reference data

The hourly interval reference data were obtained from the AURN reference monitor

(ratified data downloaded on 29/01/2018 from the Scottish Air Quality website from

https://uk-air.defra.gov.uk/). The NO2 and O3 data are concentrations in µg

m−3, and, therefore, on a different scale compared to the changes in voltage which form

the raw output of the MAS.
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Figure 3.5: Time series of the NO2 and O3 concentrations (in µg m−3) recorded by
the reference AURN monitor at hourly intervals with a lowess smoothing line.

https://uk-air.defra.gov.uk/
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Overall, the hourly measurements from the reference sensor in Figure 3.5 are also noisy

as were the MAS measurements. There are no visible gaps in the plots in Figure 3.5

and that is because there are only 6 missing observations (1.26%) for each pollutant,

occurring at the same hours. However, the smoothed curves do not show much trend

in the data as the lines are almost horizontal. For O3, there appears to be a slight

decreasing trend.

The histogram for the reference NO2 shows the hourly measurements are slightly right

skewed as seen in Figure 3.6 a). This is quite different to the histograms of all MAS

measurements in Figure 3.4, where the measurements appeared symmetric. However,

the histogram for reference O3 is more symmetrical and the data look normally dis-

tributed as seen in Figure 3.6 b) and, hence, more similar to the histograms for the

MAS measurements for O3.
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Figure 3.6: Histograms of the NO2 and O3 concentrations (in µg m−3) recorded by
the reference AURN monitor at hourly intervals.

To visualise the relationships between the reference sensor measurements and the MAS’

measurements Figure 3.7 provides a scatterplot comparing the MAS measurements to

the AURN ones. No filtering was performed on the MAS measurements to keep the

clarity of the data. It is clear that there is little or no correlation between the reference

sensor hourly measurements with all AE hourly measurements from the MAS for both

pollutants in Figure 3.7 a), b), c), d), e), f), g), h) and i), with correlations ranging from

-0.35 to 0.14. However, there are moderate linear relationships between the reference

sensors and the NO2 WE hourly measurements in Figure 3.7 j), k) and l) with correla-

tions ranging from 0.38 to 0.63. There is weak to moderate linear relationships between

the reference sensor and the MAS measurements for O3 WE in Figure 3.7 m), n) and o)

as indicated by the correlation coefficients ranging from 0.02 to 0.37. There are weak to

moderate linear relationships between the reference sensor and the MAS measurements

for O3 - NO2 WE in Figure 3.7 p), q) and r) with correlation coefficient ranging from

0.28 to 0.56. Overall, it appears that the WE MAS measurements are in agreement with
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themselves and the reference sensor measurements, whereas the AE MAS measurements

are not.
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Figure 3.7: Scatterplots comparing the NO2 and O3 concentrations (in µg m−3)
recorded by the AURN monitor at hourly intervals with the MAS AE and WE hourly

measurements (in mV). The correlations for each pairing are also provided in red.
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3.2 Bland-Altman analysis to compare MAS to each other

This section presents comparisons of the MAS outputs with each other using Bland-

Altman plots. A scatterplot of the hourly measurements will also be presented with the

correlation coefficient from Table 3.1 referred to again. The section is split into three

parts: Subsection 3.2.1 introduces Bland-Altman plots as a method for comparing the

agreement between two data sets. Subsection 3.2.2 applies Bland-Altman analysis to

the AE voltages for both pollutants, whereas Subsection 3.2.3 applies Bland-Altman

analysis to the WE voltages again for both pollutants.

3.2.1 Bland-Altman analysis

In 1986, Bland and Altman argued that using correlation coefficients to compare two

measurements on the same variable from different methods is misleading. They sug-

gested “an alternative approach, based on graphical techniques and simple calculations”

[27]. Bland and Altman suggest a plot where the mean values for the two experiments

are plotted against the difference in the measurements. For two sets of measurements

x = (x1, . . . , xn) and y = (y1, . . . , yn), and i = 1, . . . , n,

Meani =
xi + yi

2
, and Differencei = xi − yi , (3.1)

are estimated and plotted against each other. On the Bland-Altman plot, the limits of

agreement are also plotted. For the limits of agreement the 2.5th and 97.5th percentiles

of the differences were used to create an interval, without relying on any distributional

assumptions, within which 95% of the observed differences lie.

3.2.2 AE voltages

NO2

From Figure 3.8 a), it is clear that the hourly measurements from Sensors 1 and 2 are

in agreement with each other as zero lies between the 2.5th and 97.5th percentiles. The

majority of the points form a cloud close to the zero difference line. Furthermore, both

the mean and median values are quite close to zero. The scatterplot in Figure 3.8 b)

highlights that the NO2 AE hourly measurements from Sensors and 1 and 2 are quite

similar as the majority of the points lie on or close to the equivalence line. However, the

correlation coefficient would only indicate a weak linear relationship.
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Comparing the NO2 AE voltages

Figure 3.8: On the left, there are Bland-Altman plots to assess the existence of agree-
ment between hourly measurements of the NO2 AE voltage hourly measurements (mV)
from the MAS. The dashed/dotted green line is the mean difference, the dashed red
line is the median difference and the blue solid lines are the 2.5th and 97.5th percentiles.
On the right, there are scatterplots between the NO2 AE voltages with the equivalence
line in red and the correlation between the hourly measurements. The correlations for
each pairing are also provided.

The plots in Figure 3.8 c) and e) look analogous to each other and they indicate that the

NO2 AE hourly measurements from Sensor 3 are not in agreement with the other two

sensors. In both cases, the values between the 2.5th and 97.5th percentiles are positive.

The mean and median values are close to each other, in both cases, slightly lower than

200 mV. The scatterplots in Figure 3.8 d) and f) are also similar to each other as on

both the points lie below the equivalence line. Both correlations indicate a weak negative

linear relationship. Overall, the Bland-Altman analysis confirms the expectations from

the exploratory analysis from Figures 3.3 a) and 3.4 a).

O3

Figure 3.9 a) shows that the O3 AE hourly measurements from Sensors 1 and 2 are not

in agreement with each other as the values between the 2.5th and 97.5th percentiles are

entirely positive. The mean and median values are close to each other around 100 mV.

Furthermore, the correlation coefficient (r = 0.06) suggests that there is a very weak

positive linear relationship and all but one point are below the equivalence line, which

suggests that Sensor 1 has taken larger measurements than Sensor 2.
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Figure 3.9: On the left, there are Bland-Altman plots to assess the existence of
agreement between hourly measurements of the O3 AE voltage hourly measurements
(mV) from the MAS. The solid dashed/dotted line is the mean difference, the dashed red
line is the median difference and the blue solid lines are the 2.5th and 97.5th percentiles.
On the right, there are scatterplots between the O3 AE voltages with the equivalence
line in red and the correlation between the hourly measurements. The correlations for
each pairing are also provided.

Sensor 3 appears to be agreement with the other two sensors as seen in the Bland-Altman

plots in Figure 3.9 c) and e), where zero lies between the 2.5th and 97.5th percentiles.

The mean and median values are close to each other. On the scatterplots in Figure

3.9 d) and f), some of the points are lying on the equivalence line. Sensors 1 and 3

appear to be weakly positive linearly correlated with r = 0.22, whereas Sensors 2 and

3 are weakly negatively linearly correlated with r = −0.07. Overall, the Bland-Altman

analysis confirms the conclusions from the exploratory analysis from Figures 3.3 b) and

3.4 b).

O3 - NO2

None of the sensors are in agreement with each other as seen from the Bland-Altman

plots in Figure 3.10 a), c) and e), where the 2.5th and 97.5th percentiles are either entirely

positive or negative. The mean and median values for all measurements are close to each

other. In the scatterplots in Figure 3.10 b), d) and f), the points either lie below or

above the equivalence line. It is interesting to note that there is a strong positive linear

relationship between the measurements for Sensors 1 and 3 with r = 0.81. Overall, the
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Figure 3.10: On the left, there are Bland-Altman plots to assess the existence of
agreement between hourly measurements of the O3 - NO2 AE voltage hourly measure-
ments (mV) from the MAS. The dashed/dotted green line is the mean difference, the
dashed red line is the median difference and the blue solid lines are the 2.5th and 97.5th

percentiles. On the right, there are scatterplots between the O3 - NO2 AE voltages
with the equivalence line in red and the correlation between the hourly measurements.
The correlations for each pairing are also provided.

results from Bland-Altman analysis are in agreement with the expectations based on

the exploratory analysis in Figures 3.3 c) and 3.4 c).

3.2.3 WE voltages

NO2

The NO2 WE hourly measurements from Sensor 2 are not in agreement with the other

two MAS as seen from the Bland-Altman plots in Figure 3.11 a) and e). The values

between the 2.5th and 97.5th percentiles for the differences between Sensors 1 and 2

are entirely negative, whereas the values between the 2.5th and 97.5th percentiles for

the differences between Sensors 2 and 3 are entirely positive. In both cases, the mean

and median values are close to each other. The scatterplots in Figure 3.11 b) and f)

show that the points respectively lie above or below the equivalence line. The correlation

coefficients (r = 0.89 and r = 0.51) show that there is respectively a strong and moderate

positive linear relationship between the measurements.



Chapter 3. Using miniature automated sensors to measure air pollution 64

−200

−100

0

4800 4900 5000 5100 5200
Mean (Sensor 1 + Sensor 2)

D
iff

er
en

ce
 (

S
en

so
r 

1 
−

 S
en

so
r 

2) a) Bland−Altman S1 vs. S2

r=0.89

4600

4800

5000

5200

4600 4800 5000
Sensor 1

S
en

so
r 

2

b) Scatterplot S1 vs. S2

−250

0

250

500

4600 4800 5000 5200
Mean (Sensor 1 + Sensor 3)

D
iff

er
en

ce
 (

S
en

so
r 

1 
−

 S
en

so
r 

3) c) Bland−Altman S1 vs. S3

r=0.49

4500

4750

5000

5250

4600 4800 5000
Sensor 1

S
en

so
r 

3

d) Scatterplot S1 vs. S3

0

200

400

600

800

4600 4800 5000 5200
Mean (Sensor 2 + Sensor 3)

D
iff

er
en

ce
 (

S
en

so
r 

2 
−

 S
en

so
r 

3) e) Bland−Altman S2 vs. S3

r=0.51

4500

4750

5000

5250

4600 4800 5000 5200
Sensor 2

S
en

so
r 

3

f) Scatterplot S2 vs. S3

Comparing the NO2 WE voltages

Figure 3.11: On the left, there are Bland-Altman plots to assess the existence of
agreement between hourly measurements of the NO2 WE voltage hourly measurements
(mV) from the MAS. The dashed/dotted green line is the mean difference, the dashed
red line is the median difference and the blue solid lines are the 2.5th and 97.5th per-
centiles. On the right, there are scatterplots between the NO2 WE voltages with the
equivalence line in red and the correlation between the hourly measurements. The
correlations for each pairing are also provided.

However, the NO2 WE hourly measurements between Sensors 1 and 3 are in agreement

with each other as zero lies between the 2.5th and 97.5th percentiles as seen in the

Bland-Altman plot in Figure 3.11 c). Furthermore, the mean and median values in

Figure 3.11 c) are both very close to zero. However, the correlation coefficient for the

NO2 measurements from Sensors 1 and 3 is the lowest of the three NO2 WE correlations

with r = 0.49. This only indicates a moderate positive linear relationship between the

measurements (Figure 3.11 d)). The Bland-Altman analysis confirms the expectations

based on the exploratory analysis in Figures 3.3 d) and 3.4 d).

O3

From the Bland-Altman plots in Figure 3.12 a) and c), it follows that the O3 WE hourly

measurements from Sensor 1 are in agreement with the other two MAS. For both plots,

zero lies between the 2.5th and 97.5th percentiles. The mean and median values for the

differences between Sensors 1 and 2 are quite far from zero, whereas the mean and median

values for the differences between Sensors 1 and 3 are almost zero but in both cases the

mean and median values appear to agree with each other. The scatterplots in Figure 3.12
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Figure 3.12: On the left, there are Bland-Altman plots to assess the existence of
agreement between hourly measurements of the O3 WE voltage hourly measurements
(mV) from the MAS. The dashed/dotted green line is the mean difference, the dashed
red line is the median difference and the blue solid lines are the 2.5th and 97.5th per-
centiles. On the right, there are scatterplots between the O3 WE voltages with the
equivalence line in red and the correlation between the hourly measurements. The
correlations for each pairing are also provided.

b) and d) show that there is a moderately strong linear positive relationship between

the MAS hourly measurements with r = 0.60 and r = 0.50, respectively. The agreement

between the measurements from Sensors 1 and 2 is surprising given the exploratory

analysis in Figures 3.3 e) and 3.4 e).

The Bland-Altman plot in Figure 3.12 e) shows that O3 WE hourly measurements from

Sensors 2 and 3 are not in agreement with each other as the values between the 2.5th

and 97.5th percentiles are entirely positive. The mean and median values are almost

identical with values slightly higher than 250 mV. On the scatterplot in Figure 3.12

f), the points lie below the equivalence line and the correlation coefficient is r = 0.36

indicating a low to moderate positive linear relationship.

O3 - NO2

All the Bland-Altman plots in Figure 3.13 a), c) and e) show that there is agreement

between all the O3 - NO2 WE hourly measurements from all three of the sensors as

zero lies between the 2.5th and 97.5th percentiles in all the plots. In all cases, the mean
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Figure 3.13: On the left, there are Bland-Altman plots to assess the existence of
agreement between hourly measurements of the O3 - NO2 WE voltage hourly measure-
ments (mV) from the MAS. The dashed/dotted green line is the mean difference, the
dashed red line is the median difference and the blue solid lines are the 2.5th and 97.5th

percentiles. On the right, there are scatterplots between the O3 - NO2 WE voltages
with the equivalence line in red and the correlation between the hourly measurements.
The correlations for each pairing are also provided.

and median values are close to each other. The correlation plots in Figure 3.13 b),

d) and f) show that there appears to be strong linear positive correlation between the

measurements with r varying from 0.75 to 0.87. These conclusions are expected given

the exploratory analysis in Figures 3.3 f) and 3.4 f).

3.2.4 Findings

Overall, the conclusions from the Bland-Altman plots are in agreement with the ex-

ploratory analysis in Figures 3.3 and 3.4 with the exception of the O3 WE MAS hourly

measurements from Sensors 1 and 2. For the AE hourly measurements, only 3 out of the

9 Bland-Altman plots in Figures 3.8, 3.9 and 3.10 show consistency which indicates the

AE voltages are not reliable. Therefore, the AE MAS hourly measurements will not be

further modelled in this chapter. On the other hand, the WE MAS hourly measurements

are more often than not consistent with each other (6 out of the 9 Bland-Altman plots in

Figures 3.11, 3.12 and 3.13 show consistency). However, as this is not the case for all WE

voltages from the sensors, this indicates that the sensors require further improvements

in terms of providing reliable hourly measurements.
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3.3 Relating the MAS to the reference monitor data

The consistency of the hourly measurements taken by the MAS is crucial but it is even

more important to check the relationship between the MAS voltages and the true pol-

lutant concentrations as measured by the reference monitor. To test the quality of the

hourly measurements taken by the MAS in comparison to the reference monitor, linear

regression models were fitted using the MAS voltage as a response and the respective

reference pollution levels (NO2 and O3) as covariates. Due to the inconsistency in the

AE voltages with each other, only the WE voltages of the MAS were modelled. Ad-

ditionally, the models were fitted with the average voltage across the three sensors as

response because averaging across the three MAS hourly measurements would provide

less fluctuating air pollution measurements. However, the models did not perform well,

and additional covariates, temperature and relative humidity, were also included in the

regression. Due to the specifications of the AirSpecks package for the O3 hourly mea-

surements [10], there are two models for the O3 MAS hourly measurements - one of the

models will have as an additional covariate, to the four previously mentioned, the NO2

WE hourly measurements. The reference levels for the NO2 and O3 pollutants were

included in all the models as the basic assumption was that the MAS are measuring

a mixture of the two pollutants. Additional models (with the averaged NO2 and O3

WE voltages from each sensor as well as the O3 - NO2 WE voltages for each sensors)

were fitted based on the aforementioned dependencies between the MAS hourly mea-

surements [10]. To avoid repetitiveness, the full case for the Sensor 1 measurements

will be presented, whereas the other cases will contain a short table summarising the

final models fitted as well as parameter estimates and their 95% CIs for the best model

based on AIC and BIC values and the full model with all explanatory variables. When

AIC and BIC disagree, the final model is chosen based on the BIC value as BIC favours

models with a smaller number of covariates than AIC [79].

3.3.1 NO2 WE voltage

Sensor 1

The first step in modelling the NO2 WE hourly measurements taken by Sensor 1 was

to fit a standard OLS model (see Subsection 2.2.1) with just one covariate - the refer-

ence monitor hourly measurements for NO2. The model has an R2
adj. = 26.1% which

means that only 26.1% of the variability in the data is explained by the reference NO2

measurements. The diagnostic plots for the model are presented in Figure 3.14.
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Figure 3.14: Diagnostic plots for the OLS fit for the model with NO2 WE Sensor 1
hourly measurements (in mV) as a response and the reference NO2 concentration (in
µg m−3) as a covariate.

The diagnostic plots in Figure 3.14 show that there are problems with the fit. On the

residuals vs. fitted values plot (Figure 3.14 a)), the points are fanning out to the left,

which indicates heteroscedascity problems. The points on the qq-plot (Figure 3.14 b))

are mostly following the normality line but there is curvature in the tails. The histograms

of the residuals (Figure 3.14 c)) shows that the residuals are symmetric and normally

distributed around zero. However, a Shapiro-Wilk test was performed and p-value of

0.03 was estimated indicating that there is some non-normality. Due to all these issues,

more covariates (reference O3, temperature and relative humidity) are added in different

combinations to try and explain the variation in the data as well as fix the fit problems.

The comparative summary of these models is provided in Table 3.2.

Model R2
adj. DF AIC BIC

RefNO2 26.06% 3 3,578.66 3,589.89

Temperature 8.57% 3 3,645.13 3,656.37

Rel.Humidity 5.18% 3 3,656.53 3,667.77

RefNO2+Temperature 37.31% 4 3,528.03 3,543.01

RefNO2+Rel.Humidity 35.14% 4 3,538.64 3,553.62

RefNO2+RefO3 34.87% 4 3,539.94 3,554.93

Temperature+Rel.Humidity 8.33% 4 3,646.94 3,661.92

RefNO2+Temperature+Rel.Humidity 37.29% 5 3,529.11 3,547.84

RefNO2+Temperature+Rel.Humidity+RefO3 40.86% 6 3,511.75 3,534.23

Table 3.2: Comparing the different linear models fitted with NO2 WE voltage (in
mV) from Sensor 1 as a response.

From Table 3.2, R2
adj., AIC and BIC agree that the best model is the one with all

four covariates. The model fit suggests that the sensor has also been measuring the

fluctuations in the meteorological conditions in addition to the pollutant concentrations.

The diagnostic plots for the final model are examined in Figure 3.15.

The residuals vs. fitted values plot in Figure 3.15 a) does not indicate that any assump-

tions are broken - the points are randomly scattered around zero. There is no more
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Figure 3.15: Diagnostic plots for the OLS fit for the model with NO2 WE Sensor 1
hourly measurements (in mV) as a response and all four covariates (reference NO2 (in
µg m−3), reference O3 (in µg m−3), temperature (in ◦C) and relative humidity (in %)).

fanning out which indicates the heteroscedasticity problem has been solved by adding

more covariates. The qq-plot in Figure 3.15 b) shows an improvement compared to

Figure 3.14 b) as the points on the bottom tail are now lying on the equivalence line.

The histogram in Figure 3.15 c) shows that the residuals are symmetric and normally

distributed. A Shapiro-Wilk test was again performed but the p-value was again 0.03

suggesting that the residuals are not normally distributed. However, as this is due to

just a few outliers and there is an improvement from the single covariate model in Figure

3.14, this is reasonable in real world data and is not a reason for concern. Additionally,

the ACF and PACF plots of the residuals are examined in Figure 3.16. The plots indi-

cate that there is autocorrelation present in the residuals. This suggests that the linear

model is not appropriate. For interpretability reasons, AR(1) and AR(2) correlation

structures were applied and compared. Therefore, all models were fitted as GLS ones

with the correlation structure and compared using the information criteria summarised

in Table 3.3.
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Figure 3.16: ACF (a) and PACF (b) of the residuals for the final linear model with
Sensor 1 NO2 WE voltage (in mV) as response and all four covariates.

According to Table 3.3, both the AIC and BIC values show that AR(2) is the preferred

correlation structure although there is almost no difference between the two correlation

structures. The AIC values show that the best model is the full model with all four

covariates, whereas the BIC values suggest that the best model only has the two reference

pollutant concentrations. Therefore, Table 3.4 summaries the coefficients and their 95%
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Model Corr. Structure DF AIC BIC

RefNO2 AR(1) 4 3,440.42 3,455.38

RefNO2 AR(2) 5 3,435.50 3,454.20

Temperature AR(1) 4 3,442.42 3,457.38

Temperature AR(2) 5 3,437.26 3,455.96

Rel.Humidity AR(1) 4 3,445.75 3,460.71

Rel.Humidity AR(2) 5 3,440.20 3,458.90

RefNO2+Temperature AR(1) 5 3,437.28 3,455.96

RefNO2+Temperature AR(2) 6 3,432.46 3,454.87

RefNO2+Rel.Humidity AR(1) 5 3,441.25 3,459.93

RefNO2+Rel.Humidity AR(2) 6 3,436.37 3,458.80

RefNO2+RefO3 AR(1) 5 3,419.50 3,438.18

RefNO2+RefO3 AR(2) 6 3,415.54 3,437.96

Temperature+Rel.Humidity AR(1) 5 3,441.28 3,459.97

Temperature+Rel.Humidity AR(2) 6 3,436.42 3,458.84

RefNO2+Temperature+Rel.Humidity AR(1) 6 3,437.06 3,459.46

RefNO2+Temperature+Rel.Humidity AR(2) 7 3,432.53 3,458.66

RefNO2+Temperature+Rel.Humidity+RefO3 AR(1) 7 3,417.75 3,443.86

RefNO2+Temperature+Rel.Humidity+RefO3 AR(2) 8 3,414.06 3,443.90

Table 3.3: Comparing the different GLS correlation structures for the various models
fitted with NO2 WE voltage from Sensor 1 (in mV) as a response.

confidence intervals from the model with the two reference pollutants (referred to as the

two covariates model) and the model with all explanatory variables (referred to as the

full model) is examined. The intercept terms are not included as the main interest is

the effect of the covariates on the MAS hourly measurements.

Model Ref NO2 Temp Rel. Humidity Ref O3

Two covariates

5.32
(3.33, 7.31)

0 0
3.16

(1.82, 4.49)

Four covariates

5.09
(2.95, 7.22)

-0.43
(-8.59, 7.73)

0.32
(-1.70, 2.35)

3.40
(1.92, 4.88)

Table 3.4: Summary of the parameter estimates and their 95% confidence intervals
for the two final models with NO2 WE voltage (in mV) from Sensor 1 as a response.

From Table 3.4, it is clear that both the reference level pollutions are significant for

both models as the 95% CIs are entirely positive. This suggests that as the pollution

levels increase so does the NO2 WE voltage. In the four covariates model, temperature

and relative humidity are not significant as their 95% CIs contain zero and are almost

symmetric around it. This implies that temperature and relative humidity do not have

a significant effect on the NO2 WE hourly measurements from Sensor 1. Hence, the

diagnostic plots for the two covariates model are examined below in Figure 3.17.

The diagnostic plots in Figure 3.17 are very similar to those in Figure 3.15 as expected.

Figure 3.17 a) shows that the points are randomly scattered and normally distributed

around zero. The qq-plot in Figure 3.17 b) shows that there is still problems with the
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Figure 3.17: Diagnostic plots for the OLS fit for the model with NO2 WE Sensor 1
hourly measurements (in mV) as a response and the reference NO2 and reference O3

pollutant concentrations (in µg m−3) as covariates.

top tail. Additionally, the Shapiro-Wilk test indicated non-normality with a p-value of

0.03. However, the histogram in Figure 3.17 c) shows that the residuals are normally

distributed around zero and the non-normality is the result of a few outliers which is

reasonable when working with real world data. The ACF and PACF plots of the residuals

are not re-examined as they do not reflect the change in the correlation structure of the

residuals (see Subsection 2.2.1).

Sensor 2

Similarly to the modelling of the NO2 WE voltage from Sensor 1, the OLS models

with NO2 WE voltage from Sensor 2 as a response with any variation of the covariates

have autocorrelation present in their residuals. Hence, GLS models were fitted and two

possible correlation structures were compared - AR(1) and AR(2). The comparison of

different models is omitted for brevity. Both AIC and BIC values suggested that the

AR(1) correlation structure is preferred. However, as with Sensor 1, AIC favours the

full model, whereas BIC favours the model with the two reference concentrations.

Sensor 3

As with the NO2 WE voltages from Sensors 1 and 2, the OLS models with NO2 WE

voltage from Sensor 3 as a response with any combination of the covariates have auto-

correlation present in their residuals. Hence, GLS models were fitted and two possible

correlation structures were compared - AR(1) and AR(2) but the comparison is omitted

to avoid repetition. Both AIC and BIC values suggested that the AR(2) correlation

structure is preferred. AIC once again favoured the full model with all four covariates,

whereas BIC favoured a model with just two of the covariates - temperature and relative

humidity.
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Average NO2 WE voltage

There is a lot of variability among the hourly measurements from the three sensors in

Figure 3.3 and the Bland-Altman analysis in Figure 3.11 showed that the measurements

from all the sensors are not consistent with each other except for Sensors 1 and 3.

Hence, it is of interest to find out whether an averaged value across the sensors captures

the fluctuations of the pollutants. However, an OLS fit of the models suffers from the

same issue as the models for each of the sensors individually - there is autocorrelation

present in the residuals. Model comparison for different sets of covariates and correlation

structures is omitted for brevity. Both AIC and BIC agreed that the best model has

four covariates (the two reference pollutant levels, temperature and relative humidity)

and an AR(2) is the preferred correlation structure.

3.3.2 O3 WE voltage

Overall, the O3 WE voltage modelling was quite similar to the NO2 WE one. There

is autocorrelation present in the residuals when an OLS fit is applied. Therefore, the

models with a GLS fit with AR(1) and AR(2) correlation structures are applied. When

modelling O3 WE voltage, besides the standard combination of covariates, a fifth covari-

ate is added - NO2 WE voltage from the corresponding sensor. This accounts for the

aforementioned relationship between the O3 WE and NO2 WE voltages [10]. Similarly

to the NO2 WE voltages modelling, the full case for the first sensor is presented in full,

whereas summaries are provided for hourly measurements from Sensors 2 and 3, and

the averaged voltage across all three sensors.

Sensor 1

The OLS model with O3 WE voltage from Sensor 1 as a response and the reference

O3 as an exploratory variable was fitted first. The reference O3 is significant and the

model has an R2
adj. of 19.04%, which indicates that the model only explains 19% of the

variability in the data. Furthermore, the diagnostic plots in Figure 3.18 also highlight

that the model is not a good fit to the data.

The residuals vs. fitted values plot in Figure 3.18 a) shows that the points are evenly

spread around zero and randomly scattered. However, on the qq-plot in Figure 3.18 b),

the points lie mostly off the normality line which also indicates problems with the fit.

A Shapiro-Wilk test was performed and a p-value = 1.556e-05 was estimated indicating

non-normality of the residuals. The issues are further highlighted by the histogram in

Figure 3.18 c), which shows that the residuals are right-skewed rather than symmetric. In
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Figure 3.18: Diagnostic plots for the OLS fit for the model with O3 WE Sensor 1
hourly measurements (in mV) as a response and the reference O3 (in µg m−3) as a
covariate.

order to solve the issues from the plots and increase the percentage variability explained

by the models, more covariates were added. A summary table with the R2
adj., AIC and

BIC values of all the models is presented in Table 3.5.

Model R2
adj. DF AIC BIC

RefO3 19.04% 3 3,835.55 3,846.79

Temperature 36.99% 3 3,757.08 3,768.31

Rel.Humidity 51.48% 3 3,675.26 3,686.50

NO2 WE S1 28.79% 3 3,794.37 3,805.61

RefO3 + NO2 S1 WE 51.20% 4 3,677.05 3,692.03

RefO3+Temperature 41.72% 4 3,732.67 3,747.65

RefO3+Rel.Humidity 58.22% 4 3,628.48 3,643.46

RefO3+RefNO2 26.49% 4 3,805.32 3,820.30

Temperature+Rel.Humidity 51.22% 4 3,676.95 3,691.94

RefO3+Temperature+Rel.Humidity 58.47% 5 3,627.59 3,646.32

NO2 WE S1 +Temperature+Rel.Humidity 65.96% 5 3,565.30 3,584.03

RefO3+Temperature+Rel.Humidity+RefNO2 67.47% 6 3,552.09 3,574.57

RefO3+NO2 WE S1+Temperature+Rel.Humidity+RefNO2 79.04% 7 3,415.58 3,441.80

Table 3.5: Comparing the different linear models fitted with O3 WE voltage (in mV)
from Sensor 1 as a response.

All comparison methods’ results from Table 3.5 agree that the best model has all five

covariates as it explains 79% of the variability in the data. Furthermore, all the results

from the models seem to suggest that using the NO2 WE voltage from Sensor 1 helps

explain the variability in the data. Therefore, the diagnostic plots for that model are

examined in Figure 3.19 and the ACF and PACF plots for the residuals are presented

in Figure 3.20.

The diagnostic plots in Figure 3.19 show that the model is actually a good fit to the data.

The residuals vs. fitted values plot in Figure 3.19 a) are randomly scattered around zero

and the points on the qq-plot, Figure 3.19 b), lie mostly on the equivalence line. The

histogram of the residuals, Figure 3.19 c), shows that they are symmetric and normally
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Figure 3.19: Diagnostic plots for the OLS fit for the model with O3 WE Sensor 1
voltage (in mV) as a response and the five covariates (the reference O3 (in µg m−3),
reference NO2 (in µg m−3), temperature (in ◦C), relative humidity (in %) and NO2

WE Sensor 1 voltage).
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Figure 3.20: ACF (a) and PACF (b) of the residuals for the final linear model with
Sensor 1 O3 WE voltage (in mV) as response and all five covariates.

distributed around zero. Furthermore, a Shapiro-Wilk test was performed and p-value of

0.1 was estimated suggesting that there is no evidence of non-normality of the residuals.

However, the ACF and PACF plots in Figure 3.20 a) and b) show that there is strong

autocorrelation present, which means that the OLS fit is not appropriate. Therefore,

all models were refitted with a GLS fit with AR(1) and AR(2) correlation structures,

which were chosen for interpretability reasons. A comparison table for these models is

presented in Table 3.6.

From Table 3.6, it is clear that for the models without NO2 WE as a covariate, the best

model is the one with four covariates (reference O3 and NO2, temperature and relative

humidity) with an AR(1) structure as both AIC and BIC values show. However, for the

model with all five covariates both AIC and BIC favour the AR(2) correlation structure.

The estimated parameters for the models with four and five covariates are compared in

Table 3.7. The intercept terms are not included as the main interest is in the effects the

covariates have on the response.

From Table 3.7 it follows that adding NO2 WE hourly measurements from Sensor 1 to

the model causes the reference NO2 to lose its significance but all other covariates remain

significant for the model as their 95% CIs do not contain zero. It is interesting to note
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Model Corr. Structure DF AIC BIC

RefO3 AR(1) 4 3,551.27 3,566.23

RefO3 AR(2) 5 3,553.16 3,571.86

Temperature AR(1) 4 3,593.09 3,608.05

Temperature AR(2) 5 3,594.36 3,613.06

Rel.Humidity AR(1) 4 3,545.66 3,560.62

Rel.Humidity AR(2) 5 3,547.59 3,566.29

NO2WE S1 AR(1) 4 3,502.61 3,517.57

NO2WE S1 AR(2) 5 3,492.21 3,510.91

RefO3+NO2WE S1 AR(1) 5 3,426.55 3,445.23

RefO3+NO2WE S1 AR(2) 6 3,428.54 3,450.96

RefO3+Temperature AR(1) 5 3,535.85 3,554.54

RefO3+Temperature AR(2) 6 3,536.02 3,558.44

RefO3+Rel.Humidity AR(1) 5 3,496.34 3,515.02

RefO3+Rel.Humidity AR(2) 6 3,496.17 3,518.59

RefO3+RefNO2 AR(1) 5 3,540.08 3,558.76

RefO3+RefNO2 AR(2) 6 3,541.49 3,563.89

Temperature+Rel.Humidity AR(1) 5 3,533.14 3,551.82

Temperature+Rel.Humidity AR(2) 6 3,535.12 3,557.54

RefO3+Temperature+Rel.Humidity AR(1) 6 3,473.68 3,496.08

RefO3+Temperature+Rel.Humidity AR(2) 7 3,473.46 3,499.59

NO2WE S1+Temperature+Rel.Humidity AR(1) 6 3,339.11 3,361.51

NO2WE S1+Temperature+Rel.Humidity AR(2) 7 3,341.10 3,367.24

RefO3+Temperature+Rel.Humidity+RefNO2 AR(1) 7 3,457.04 3,483.15

RefO3+Temperature+Rel.Humidity+RefNO2 AR(2) 8 3,457.84 3,487.68

RefO3+Temperature+Rel.Humidity+RefNO2+NO2WE S1 AR(1) 8 3,270.57 3,300.39

RefO3+Temperature+Rel.Humidity+RefNO2+NO2WE S1 AR(2) 9 3,266.81 3,300.35

Table 3.6: Comparing the different GLS models fitted with O3 WE voltage (in mV)
from Sensor 1 as a response.

Model Ref O3 Temp Rel. Humidity Ref NO2 NO2 WE S1

Four Covariates

6.93
(5.46, 8.40)

-21.37
(-29.30, -13.43)

-9.72
(-11.70, -7.75)

5.05
(2.87, 7.22)

0

Five Covariates

4.64
(3.47, 5.81)

-24.30
(-30.38, -18.21)

-10.55
(-12.12, -8.99)

0.37
(-1.37, 2.10)

0.72
(0.63, 0.80)

Table 3.7: Summary of the parameter estimates and their 95% confidence intervals
for the two final models with O3 WE voltage (in mV) from Sensor 1 as a response.

that the parameter estimates and their respective 95% CIs between the two models are

different to each other, although they remain either entirely positive or negative. Hence,

it could be concluded that in both models, the effect of the covariates are similar. As

both AIC and BIC agree, the best model is the one with five covariates and therefore,

the diagnostic plots for it are examined in Figure 3.21.

The diagnostic plots in Figure 3.21 show that the model is a good fit. The residuals

vs. fitted values in Figure 3.21 a) are randomly scattered and evenly distributed around

zero. The points on the qq-plot in Figure 3.21 b) lie in a straight line. A Shapiro-Wilk

test was performed with an estimated p-value of 0.06 indicating that there is no evidence
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Figure 3.21: Diagnostic plots for the GLS fit with AR(1) correlation structure for the
model with O3 WE Sensor 1 voltage (in mV) as a response and all five covariates.

that the residuals are not normally distributed. Lastly, the histogram of the residuals

in Figure 3.21 c) are symmetric around zero. The ACF and PACF plots of the residuals

are not presented as they cannot show the change of adding a correlation structure (see

Subsection 2.2.1).

Sensor 2

The OLS models with O3 WE voltage from Sensor 2 as a response have the same

problem as the models with O3 WE voltage from Sensor 1 as a response - there is

autocorrelation present in the residuals. Therefore, the models were refitted with AR(1)

and AR(2) correlation structures but their comparison is omitted for brevity. The best

model was the one with all five covariates and with an AR(2) correlation structure as

both AIC and BIC values confirmed this. However, when the models without NO2 WE

hourly measurements are examined, it appears that the best model is the one with four

covariates (reference O3 and NO2, temperature and relative humidity) and an AR(2)

correlation structure. It is expected that similar models are chosen for the O3 WE hourly

measurements from Sensors 1 and 2 given that the Bland-Altman analysis (Figure 3.12)

showed the measurements from the two sensors are consistent with each other.

Sensor 3

The OLS models with O3 WE voltage from Sensor 3 have autocorrelation present in the

residuals. Therefore, two correlation structures, AR(1) and AR(2), were compared using

AIC and BIC values but to avoid repetition the comparison is omitted. It appeared that

the models with NO2 WE voltage from Sensor 3 in them as a covariate are performing

better than the others. For most models, AIC and BIC favour the AR(1) correlation

structure but the best model appears to be the one with all five covariates in it with
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an AR(2) correlation structure. However, when the models without NO2 WE voltage

are examined, according to the AIC, the best model appears to be the one with four

covariates (reference O3 and NO2 as well as temperature and relative humidity) with

an AR(1) correlation structure, whereas according to BIC, the best model has reference

O3, temperature and relative humidity with an AR(1) correlation structure (referred to

as the three covariates model).

Average O3 WE voltage

The OLS models with the averaged O3 WE as a response contain autocorrelation in

the residuals so they were refitted as GLS fits with two different correlation structures

(AR(1) and AR(2)), which are omitted for brevity. Both AIC and BIC favoured the

AR(1) correlation structure except for the largest model with five covariates, where

according to AIC the more complex AR(2) correlation structure is favoured. Overall,

the best model is the one with all five covariates. However, when the models with

the NO2 WE hourly measurements averaged across the three sensors are ignored, the

best model is the one with all four covariates (reference O3 and NO2, temperature and

relative humidity) with both AIC and BIC favouring the AR(1) correlation structure.

3.3.3 O3 - NO2 WE voltage

An alternative to modelling the O3 WE voltage using the NO2 WE voltage as a covariate

is to model the difference between the two voltages. Therefore, for each of the sensors,

the difference between the O3 and NO2 WE voltages will be modelled using the reference

NO2 and O3 pollution concentrations as well as the temperature and relative humidity

measurements. As with the NO2 WE and O3 WE modelling, the full case for Sensor

1 will be presented, whereas only the summary of the final models is presented for the

other two sensors and the averaged values to avoid repeatability.

Sensor 1

The OLS model with O3 - NO2 WE voltage from Sensor 1 as a response with the

reference O3 pollutant concentration as a covariate has a R2
adj. = 31.89%, indicating

that almost 32% of the variability in the response has been explained by the covariate.

The diagnostic plots in Figure 3.22 show that the model is a good fit to the data as

the points on the residuals vs. fitted values plot (Figure 3.22 a)) are randomly scattered

around zero, almost all the points on the qq-plot (Figure 3.22 b)) lie perfectly on the

equivalence line and the histogram of the residuals (Figure 3.22 c)) shows the residuals



Chapter 3. Using miniature automated sensors to measure air pollution 78

are symmetric around zero. Furthermore, a Shapiro-Wilk test was performed with a

p-value of 0.97 which suggests the residuals are normally distributed. However, more

covariates are added in order to increase the percentage of explained variability. The

models are summarised in Table 3.8.
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Figure 3.22: Diagnostic plots for the OLS fit for the model with O3 - NO2 WE Sensor
1 voltage (in mV) as a response and the reference O3 (in µg m−3) as a covariate.

Model R2
adj. DF AIC BIC

RefO3 31.89% 3 3,684.79 3,696.03

Temperature 21.92% 3 3,727.57 3,738.81

Rel.Humidity 41.90% 3 3,635.04 3,646.28

RefO3+Temperature 39.21% 4 3,649.21 3,664.19

RefO3+Rel.Humidity 58.90% 4 3,526.67 3,541.66

RefO3+RefNO2 33.73% 4 3,676.22 3,691.21

Temperature+Rel.Humidity 43.10% 4 3,628.52 3,643.50

RefO3+Temperature+Rel.Humidity 65.82% 5 3,470.00 3,488.73

RefO3+Temperature+Rel.Humidity+RefNO2 66.44% 6 3,465.26 3,487.74

Table 3.8: Comparing the different linear models fitted with O3 - NO2 WE voltage
(in mV) from Sensor 1 as a response.

All methods of comparison in Table 3.8 agree that the best model is the one with all four

covariates. Therefore, the diagnostic plots for the model, in Figure 3.23, are examined.

The residuals vs. fitted values plot (Figure 3.23 a)) shows the model is a good fit to the

data as the points are randomly scattered around zero and the histogram of the residuals

(Figure 3.23 c)) shows that the residuals are normally distributed around zero. However,

the qq-plot (Figure 3.23 b)) suggests that there are problems with the fit as many of the

points at both tails are off the normality line. Overall, the diagnostic plots in Figure 3.23

are not as good as those in Figure 3.22. Furthermore, there is autocorrelation present

in the residuals as seen from the ACF and PACF plots in Figure 3.24 for both the only

reference O3 covariate model and the full model with all four covariates. In order to

account for the autocorrelation, the models were refitted using a GLS fit with different

correlation structures (for interpretability reasons once again AR(1) and AR(2) ). The

models are compared using AIC and BIC values in Table 3.9.
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Figure 3.23: Diagnostic plots for the OLS fit for the model with O3 - NO2 WE from
Sensor 1 voltage (in mV) as a response and all four covariates (reference NO2 (in µg
m−3), reference O3 (in µg m−3), temperature (in ◦C) and relative humidity (in %)).
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Figure 3.24: ACF and PACF plots of the residuals for the reference O3 covariate
model a) and b) and the full (all four covariates) linear model c) and d) with O3 - NO2

WE voltage (in mV) from Sensor 1 as response.

According to the AIC and BIC values from Table 3.9, AR(1) is the more commonly

preferred correlation structure. However, AIC and BIC disagree which is the best model

- AIC favours the full model with all four covariates, whereas BIC favours the model with

only three covariates (reference O3 pollution concentration, temperature and relative

humidity). To further compare the two models, the estimates and their respective 95%

CIs are compared in Table 3.10. The intercepts are not included as the effects of the

covariates on the response are only of interest.

In Table 3.10, it is clear that the estimate for the reference NO2 pollutant concentration

is not significant in the model with four covariates, therefore, the model with three

covariates (all of them are significant as the 95% CIs do not contain zero) is the better

fit to the data. The estimate for the reference O3 pollutant concentration is positive

which means that as the true concentration of O3 was rising, so was the O3 - NO2
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Model Corr. Structure DF AIC BIC

RefO3 AR(1) 4 3,448.14 3,463.10

RefO3 AR(2) 5 3,449.27 3,467.96

Temperature AR(1) 4 3,474.84 3,489.79

Temperature AR(2) 5 3,469.95 3,488.65

Rel.Humidity AR(1) 4 3,402.18 3,417.14

Rel.Humidity AR(2) 5 3,402.01 3,420.71

RefO3+Temperature AR(1) 5 3,425.33 3,444.02

RefO3+Temperature AR(2) 6 3,427.24 3,449.66

RefO3+Rel.Humidity AR(1) 5 3,355.77 3,374.45

RefO3+Rel.Humidity AR(2) 6 3,357.73 3,380.15

RefO3+RefNO2 AR(1) 5 3,447.99 3,466.67

RefO3+RefNO2 AR(2) 6 3,449.12 3,471.54

Temperature+Rel.Humidity AR(1) 5 3,347.43 3,366.11

Temperature+Rel.Humidity AR(2) 6 3,348.63 3,371.05

RefO3+Temperature+Rel.Humidity AR(1) 6 3,298.80 3,321.20

RefO3+Temperature+Rel.Humidity AR(2) 7 3,299.80 3,325.93

RefO3+Temperature+Rel.Humidity+RefNO2 AR(1) 7 3,298.36 3,324.47

RefO3+Temperature+Rel.Humidity+RefNO2 AR(2) 8 3,298.96 3,328.80

Table 3.9: Comparing the different GLS models fitted with the O3 - NO2 WE voltage
(in mV) from Sensor 1 as a response.

Model Ref O3 Temp Rel. Humidity Ref NO2

Three covariates

3.93
(3.00, 4.86)

-26.51
(-33.21, -19.82)

-10.98
(-12.71, -9.25)

0

Four covariates

3.56
(2.31, 4.81)

-25.90
(-32.73, -19.07)

-10.91
(-12.64, -9.18)

-0.80
(-2.62, 1.02)

Table 3.10: Summary of the parameter estimates and their 95% confidence intervals
for the two final models with O3 - NO2 WE voltage (in mV) from Sensor 1 as a response.

WE voltage from Sensor 1. The reference NO2 pollutant concentration estimate is

negative, although not significant, but this suggests that as the NO2 concentration has

increased, the difference between the O3 and NO2 WE voltage has decreased, which is

to be expected. Relative humidity and temperature have negative estimates. Hence,

as relative humidity and temperature increase, the difference between O3 - NO2 WE

voltage from Sensor 1 decreases. Lastly, the diagnostic plots for the model with three

covariates are examined.

The diagnostic plots for the final model in Figure 3.25 indicate the model is a good fit to

the data. The residuals vs. fitted values plot in Figure 3.25 a) shows that the points are

randomly scattered around zero. The qq-plot in Figure 3.25 b) is an improvement on

the previous diagnostic plots for the linear model in Figure 3.23 b) but there are a few

points on the bottom tail that are off the normality line. However, the histogram of the

residuals, Figure 3.25 c), shows that they are symmetric around zero. The p-value from

a Shapiro-Wilk test was estimated to be 0.07 indicating there is no evidence to suggest

that the residuals are not normally distributed. The ACF/PACF plots of the residuals
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Figure 3.25: Diagnostic plots for the GLS fit for the model with O3 - NO2 WE from
Sensor 1 voltage (in mV) as a response and reference O3 (in µg m−3), temperature (in
◦C) and relative humidity (in %) as covariates.

for the GLS fit are not presented as they do not reflect the change in the correlation

structure (see Subsection 2.2.1).

Sensor 2

The OLS fit for the O3 - NO2 WE voltage from Sensor 2 contains autocorrelation in

the residuals. The models, therefore, have to be refitted as a GLS fit with AR(1) and

AR(2) correlation structures but the comparison is omitted for brevity. For the simpler

models with less covariates, both AIC and BIC preffered the AR(1) correlation structure.

However, for the models with three and four covariates, the AR(2) correlation structure

is chosen. Once again, AIC favours the full model with all four covariates, whereas BIC

prefers the model with three (reference O3 pollution concentration, temperature and

relative humidity) covariates.

Sensor 3

The ACF and PACF plots for all OLS models for the O3 - NO2 WE voltage from Sensor

3 as a response contain autocorrelation. Hence, the models were refitted using a GLS

fit with both AR(1) and AR(2) correlation structures but the comparison is omitted to

avoid repetition. Both AIC and BIC favoured the simple AR(1) correlation structure.

Furthermore, both the information criteria agreed that the best model is the one with

all four covariates.

Averaged O3 - NO2 WE voltage

The averaged difference between the O3 and NO2 WE voltages were averaged across the

three sensors and OLS fits were used to model them. However, there was autocorrelation
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present in the residuals of all models. Therefore, the models were refitted as GLS fits with

two different correlation structures - AR(1) and AR(2) but the comparison is omitted for

brevity. AIC seems to struggle picking between the two correlation structures, whereas

BIC mostly favours AR(1). This is not surprising as the BIC favours simpler models.

However, both information criteria picked an AR(1) model as the best. AIC favoured

the full model with all four covariates, whereas BIC favoured the model with three

covariates (reference O3 pollutant concentration, temperature and relative humidity).

3.3.4 Findings

After models were fitted to the different covariates, the parameter estimates, their 95%

CI, p- and t-values from the full models (GLS fit with the respective correlation struc-

ture) were examined and compared to look for common trends in Tables 3.11 and 3.12.

This is done in order to establish and explain the contribution of all the different covari-

ates to the response.

Pollutant Sensor Ref NO2 Ref O3 Temp. Rel. Humidity NO2 WE

NO2

S1
5.09

(2.95, 7.22)
3.40

(1.92, 4.88)
-0.43

(-8.59, 7.73)
0.32

(-1.70, 2.35)

S2
3.90

(1.94, 5.85)
2.52

(1.16, 3.88)
-4.97

(-12.47, 2.53)
-0.24

(-2.17, 1.68)

S3
2.55

(-0.14, 5.24)
1.36

(-0.61, 3.34)
-5.46

(-17.04, 6.13)
6.22

(3.27, 9.16)

Avg.
2.98

(1.01, 4.96)
2.78

(1.35, 4.22)
-4.67

(-13.00, 3.66)
2.34

(0.24, 4.44)

O3

S1
5.05

(2.87, 7.22)
6.93

(5.46, 8.40)
-21.37

(-29.30, -13.43)
-9.72

(-11.70, -7.52)

S2
3.10

(0.89, 5.32)
5.72

(4.21, 7.24)
-36.98

(-45.16, -28.08)
-14.70

(-16.86, -12.54)

S3
1.31

(-0.98, 3.60)
3.27

(1.66, 4.89)
-17.37

(-26.38, -8.36)
-3.89

(-6.23, -1.56)

Avg.
3.01

(1.08, 4.93)
5.13

(3.80, 6.46)
-27.25

(-34.53, -19.97)
-9.80

(-11.66, -7.94)

O3

S1
0.37

(-1.37, 2.10)
4.64

(3.47, 5.81)
-24.30

(-30.38, -18.21)
-10.55

(-12.12, -8.99)
0.72

(0.63, 0.80)

S2
0.04

(-1.82, 1.90)
3.84

(2.58, 5.11)
-35.74

(-42.34, -29.14)
-15.00

(-16.75, -13.25)
0.64

(0.54, 0.74)

S3
-0.98

(-2.63, 0.67)
2.69

(1.58, 3.80)
-14.42

(-20.39, -8.45)
-6.48

(-8.06, -4.91)
0.54

(0.47, 0.60)

Avg.
0.16

(-1.33, 1.66)
3.81

(2.80, 4.82)
-25.36

(-30.71, -20.01)
-10.78

(-12.17, -9.39)
0.60

(0.52, 0.68)

O3 - NO2

S1
-0.80

(-2.62, 1.02)
3.56

(2.31, 4.81)
-25.90

(-32.73, -19.07)
-10.91

(-12.64, -9.18)

S2
-1.22

(-3.19, 0.74)
2.88

(1.53, 4.23)
-35.57

(-42.86, -28.28)
-15.16

(-17.07, -13.25)

S3
-2.66

(-4.67, -0.66)
2.09

(0.72, 3.46)
-11.37

(-18.78, -3.95)
-7.28

(-9.14, -5.42)

Avg.
-1.07

(-2.75, 0.62)
2.79

(1.62, 3.96)
-26.06

(-32.50, -19.62)
-11.63

(-13.28, -9.98)

Table 3.11: Summary of the parameter estimates and their 95% confidence intervals
for all models. All significant values are bolded.
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Pollutant Sensor Ref NO2 Reference O3 Temp. Rel. Humidity NO2 WE

NO2

S1
4.69
(0)

4.52
(0)

-0.10
(0.92)

0.32
(0.75)

S2
3.92
(0)

3.65
(0)

-1.30
(0.19)

-0.25
(0.80)

S3
1.87

(0.06)
1.35

(0.18)
-0.93
(0.35)

4.15
(0)

Avg.
2.97
(0)

3.81
(0)

-1.10
(0.27)

2.19
(0.03)

O3

S1
4.56
(0)

9.26
(0)

-5.30
(0)

-9.70
(0)

S2
2.76
(0)

7.42
(0)

-8.90
(0)

-13.37
(0)

S3
1.12

(0.26)
3.99
(0)

-3.79
(0)

-3.28
(0)

Avg.
3.08
(0)

7.60
(0)

-7.36
(0)

-10.39
(0)

O3

S1
0.41

(0.68)
7.82
(0)

-7.85
(0)

-13.27
(0)

16.76
(0)

S2
0.04

(0.97)
6.00
(0)

-10.65
(0)

-16.90
(0)

12.41
(0)

S3
-1.17
(0.24)

4.77
(0)

-4.75
(0)

-8.12
(0)

15.96
(0)

Avg.
0.22

(0.83)
7.44
(0)

-9.33
(0)

-15.24
(0)

14.96
(0)

O3 - NO2

S1
-0.87
(0.38)

5.61
(0)

-7.46
(0)

-12.39
(0)

S2
-1.22
(0.22)

4.21
(0)

-9.60
(0)

-15.62
(0)

S3
-2.61

(0.01)
3.01
(0)

-3.02
(0)

-7.69
(0)

Avg.
-1.24
(0.21)

4.70
(0)

-7.96
(0)

-13.88
(0)

Table 3.12: Summary of the t- and p-values for all models. The t-values are on the
top row, whereas the p-values are in parenthesis in the bottom row and the significant
p-values are bolded.

In all models, the main pollutant from the reference monitor is significant (the 95%

confidence interval does not contain zero) but there is always at least one other significant

covariate as seen in Table 3.11. The only exception is the model for the NO2 WE voltage

from Sensor 3, for which the only significant covariate is relative humidity. This is also

confirmed by the p-values presented in Table 3.12. However, both reference pollutants

are significant for all models (except for Sensor 3), which suggests that the MAS are

in fact measuring a combination of both pollutants. The parameters in Table 3.11 are

positive, which means that as both reference pollutant levels increase, so do the MAS’

voltages for both pollutants. It is clear that the main pollutant has a bigger t-value in

all cases except for Sensor 3 and averaged NO2 WE voltage, indicating that the main

pollutant has a bigger influence on the response as shown in Table 3.12. It also has to

be noted that most non-significant parameters have 95% confidence intervals which are

not symmetric around zero suggesting that there might be a weak relationship, which

the models are unable to capture.
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From Table 3.11, it is clear that for most NO2 WE voltage models, temperature and

relative humidity are not significant as their 95% confidence intervals contain zero. Fur-

thermore, the p-values presented in Table 3.12 are larger than 0.05 suggesting that the

weather did not have a significant effect on the NO2 WE voltage MAS’ hourly mea-

surements. Additionally, the t-values for temperature and relative humidity for the

NO2 WE voltage models are close to zero as shown in Table 3.12. However, for the

O3 WE voltage models, the t-values for temperature and relative humidity have really

high values and appear to be the most influential variables in the models, suggesting

that the MAS hourly measurements’ for the O3 WE voltage were heavily influenced by

the weather. It is interesting to note that when modelling the difference O3 - NO2 WE

voltage, the results are very similar to those for the standard O3 WE voltage model as

temperature is the most influential variable followed by relative humidity and only then

comes the reference O3 level (Table 3.12). Due to the effect of NO2 on the MAS’ hourly

measurements for the O3 WE voltage in [10], an additional variable was added to the

model - the NO2 WE voltage for the respective sensor as there were reasons to believe

that the O3 WE voltage reflects the variation in the NO2 WE voltage as well. As a

result of this, the reference NO2 loses its significance for all of the models for the O3 WE

voltage. From Table 3.11, it can be seen that in those models, the NO2 WE voltage is

always significant and has a positive estimate suggesting that as the NO2 WE voltage

increases so does the O3 WE voltage. Furthermore, for Sensors 1 and 3, the NO2 WE

voltage has the biggest influence based on its t-values in Table 3.12, and for Sensor 2 and

the averaged values, it is the second most influential covariate after relative humidity in

contrast to the results for the model without the NO2 WE voltage as a covariate.

3.4 Conclusion

In this chapter, the ability of deploying MAS (in this case, ALPHASENSE B2 electro-

chemical sensors unit) as implemented in the AirSpeck systems “out of the box” (i.e.

without prior laboratory calibration) was evaluated by comparing the hourly measure-

ments of three such sensors for NO2 and O3 with each other as well as their respective

reference monitors. The MAS voltage (AE and WE) outputs for two pollutants, NO2

and O3 showed clear correlations with reference observations based on a deployment

without prior calibration or validation, as it would typically be applied in the context

of citizen science applications utilising sensor packages with limited prior expert knowl-

edge. While this is promising and indicates that the electrochemical sensors on the

market produce relevant data for environmental observation, the strength of the rela-

tionship and the indication of several covariates suggest that while the cost of the sensor
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hardware is low, substantial time and expertise is required to derive robust, reliable and

quality controlled data from such sensor packages.

During the preliminary analysis in Section 3.1 and the Bland-Altman analysis in Section

3.2, it was found that the AE voltages for both pollutants were inconsistent with each

other (Figures 3.3, 3.4, 3.8, 3.9 and 3.10) and, therefore, they were not used for further

modelling. Two thirds of the measurements from the MAS’ WE voltage were found

to be in agreement with each other, although there were moderate to high correlations

between the measurements (Figures 3.11, 3.12 and 3.13). There appeared to be a linear

relationship between the MAS’ and the AURN reference sensor’s hourly measurements

(Figure 3.7) and, therefore, linear regression was used to check how well the MAS mea-

surements are associated with the AURN reference sensor and measure air pollution.

However, all models have problems with non-independent errors, which requires a GLS

fit. To improve the quality of the models, temperature and relative humidity were used

as covariates besides the AURN reference sensor measurements. Correlation structures

were chosen based on minimising the AIC and BIC with preference to BIC as it favours

models with a smaller number of covariates. In all models, the main pollutant from the

reference monitor was always significant. However, both pollutant concentrations are

significant in all models except for those for Sensor 3, indicating that a combination of

the two pollutants was measured by the MAS. For the NO2 models, the reference NO2

hourly measurements have the highest t-value (Table 3.12) in almost all cases, hence, it

has the biggest influence on the MAS’ hourly measurements. However, it is interesting

to note that although the Bland-Altman analysis had shown that the NO2 WE voltages

from Sensors 1 and 3 are consistent with each other, but not with the hourly measure-

ments from Sensor 2, the models show that the NO2 WE voltages from Sensors 1 and 2

are influenced by the changes in the reference NO2 hourly measurements, whereas the

NO2 WE voltages from Sensor 3 are reflecting the changes in relative humidity. For the

O3 models, temperature followed by relative humidity have the highest t-values (Table

3.12) which means that the weather was heavily influencing the O3 hourly measure-

ments by the MAS. Two statistical approaches were used to investigate the influence

of the NO2 WE voltage on the O3 WE voltage - one was using the NO2 WE voltage

as a covariate when modelling O3 WE voltage and the other was taking the differences

between the two voltages. It is interesting to note that the model for O3 WE voltage,

which includes NO2 WE voltage as a covariate, the response is mostly influenced by

NO2 WE voltage and relative humidity (Table 3.12). In contrast, the models for O3 -

NO2 WE voltage support the conclusions from the models for O3 WE voltage with four

covariates with the only difference being that the reference NO2 hourly measurements

are no longer significant.
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In general, it appears that the MAS hourly measurements are not always in agreement

with each other, but the MAS WE voltages have managed to capture the changes in

the pollutants’ concentrations. However, the MAS are performing better for measuring

NO2 than for O3. The MAS’ voltages, especially for O3, seem to have been heavily

influenced by the meteorological conditions. Based on this, it has to be concluded that

when operating MAS packages “out of the box”, caution needs to be applied depending

on the pollutants measured. Overall, the MAS measurements are not yet of the quality

to supplement high quality sensors such as the AURN ones.



Chapter 4

Exploratory analysis of the

Aberdeen and Glasgow NO2 data

Chapter 4 presents the exploratory analysis of the NO2 monitoring and ADMS-Urban

simulated data in Aberdeen and Glasgow data sets used further on in this thesis. Section

4.1 presents the NO2 data for Aberdeen outlining the monitoring system, checks for

breaches in the regulation based on the monitoring data and explores the simulated

data. Section 4.2 mirrors the organisation of Section 4.1 but focuses on the 2015 NO2

monitoring data for Glasgow. Section 4.3 provides a concluding discussion.

4.1 Aberdeen

4.1.1 Monitoring system

Aberdeen is the third largest city in Scotland known for its economic importance as

centre of the oil industry in the country. This results in traffic in the city and it is of

interest to identify if there are locations of air pollution levels above the regulatory limit.

As part of the UK wide AURN network, the Aberdeen monitoring system consists of

six active monitoring stations in the city. Using [8], a short review of the stations is

presented below with a map with the locations of the stations in Figure 4.1. Further

details and pictures of the stations are available at the Scottish Air Quality website [8].

• Anderson Drive - the station is located four metres away from the kerbside.

Anderson Drive is a roadside station. The station takes hourly measurements of

NO2 and PM10.

87
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• Errol Place - the station is located thirty metres away from the nearest road. Er-

rol Place is an urban background station. The station takes hourly measurements

of NO2, O3, PM10, PM2.5 and SO2 (sulphur dioxide).

• King Street - the station is located two metres away from a major road with

heavy traffic from heavy goods vehicles (HGVs). The station is a roadside station.

The station takes hourly measurements of NO2, PM10 and PM2.5.

• Market Street 2 - the station is located on the pavement near Aberdeen Harbour.

Market Street 2 is a roadside station. The station takes hourly measurements of

NO2, PM10 and PM2.5.

• Union Street - the station is located two metres from the kerbside with many

buses passing nearby. Union Street is a roadside station. The station takes hourly

measurements of NO2 and PM10.

• Wellington Road - the station is located four metres from a major road, close

to the roundabout at Queen Elizabeth II Bridge with heavy traffic, mostly con-

sisting of HGVs. Wellington Road is a roadside station. The station takes hourly

measurements of NO2, PM10 and PM2.5.

Figure 4.1: Map for the six AURN monitoring stations across Aberdeen in 2012 [92].

It has to be noted that the pollutant concentrations for all the stations are reported as

rounded to the nearest whole number (in µg m−3) in Aberdeen. Therefore, although

the pollutant concentrations are continuous, the data are actually discretised.
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4.1.2 NO2 monitoring in 2012

DEFRA have identified NO2 as the most difficult to tackle pollutant in the whole of the

UK, requiring its own separate strategy [61]. Aberdeen is heavily influenced by road

traffic due to the oil industry making the modelling of N2 concentrations in the city of

key interest. Hence, a variety of graphical and numerical summaries of the 2012 data

are provided. Based on this initial analysis, it is aimed to answer two questions about

the compliance with the EU legislation [76]:

(i) Has the hourly NO2 concentration limit of 200 µg m−3 been breached more than

18 times (with consecutive breaches counted individually) in 2012?

(ii) Is the average annual mean for NO2 concentration above the limit of 40 µg m−3?

To answer question (i), Table 4.1 provides a count of the breaches of the hourly limit

of 200 µg m−3 over the six Aberdeen monitoring stations as well as displaying the

number of missing observations and the total number of observations each station has

taken through the year. The maximum number of hourly concentrations in a leap year

is 8784. In Table 4.1, it is clear that the number of breeches does not exceed the

regulation, although observations above 200 µg m−3 are present - 1 at Union Street and

10 at Wellington Road. It has to be noted that the monitor at King Street is missing over

one thousand observations due to the monitor not working for a month in the autumn.

Station Breaches Missing Total

Anderson Drive 0 518 8689

Errol Place 0 581 8538

King Street 0 1068 8666

Market Street 2 0 381 8514

Union Street 1 228 8674

Wellington Road 10 391 6591

Table 4.1: A count of the number of breaches of the hourly concentration limit of 200
µg m−3 in Aberdeen in 2012. The missing values and total number of observations per
station for the year are also provided.

Next, to help visualise the data and check for any abnormalities, time series plots for the

hourly concentrations of each of the stations are presented in Figure 4.2. It is clear that

high NO2 hourly concentration at Union Street occured mid-May and does not coincide

with an occurrence at Wellington Road. The occurrences at Wellington Road appear in

February and April. It also has to be noted that the concentrations at Market Street 2

are close to the 200 µg m−3 limit, although the limit is never breached. The data appear

consistent with the assumption that these stations are located close to roads with heavy
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 NO2 hourly concentration in Aberdeen 2012

Figure 4.2: Time series plot for the hourly NO2 concentrations (µg m−3) for each of
the six AURN monitoring stations in Aberdeen in 2012. The hourly NO2 limit of 200

µg m−3 is represented by a solid red line.

traffic with many HGVs required for the oil industry. Unsurprisingly, the Errol Place

concentrations are lowest, given that the station is an urban background station.

To check for skewness in the data, the histograms for the measurements at each station

are examined in Figure 4.3. The histograms for all six stations show right-skew so log and

square root transformations were applied and the log-transformation was chosen based

on the histograms in Figure 4.4. Overall, the histograms appear more symmetrical.

Since the hourly concentrations do not indicate a non-compliance issue, the annual means

were examined in order to answer question (ii) and are presented in Table 4.2, where the

values above the regulation are highlighted in red. Since there are missing observations

for each of the stations, confidence intervals for the mean are also provided to give

a range of plausible values for the true mean. A standard 95% confidence interval is

provided. However, the standard confidence interval does not account for the correlation

between the observations of time series data. Therefore, a 95% bootstrap interval and

an adjusted for the correlation interval are also provided (estimated as described in

Subsection 2.1.4),

However, before calculating the 95% correlation adjusted confidence intervals, the PACF

plots (calculated as described in Subsection 2.1.2) for the time series of each of the
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Figure 4.3: Histograms for the hourly NO2 concentrations (µg m−3) for each of the
six AURN monitoring stations in Aberdeen in 2012. The hourly NO2 limit of 200 µg

m−3 is represented by a solid red line.
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Figure 4.4: Histograms for the hourly log NO2 concentrations (µg m−3) for each of
the six AURN monitoring stations in Aberdeen in 2012. The hourly log NO2 limit of

log(200) µg m−3 is represented by a solid red line.

stations must be examined to check the type of AR process of the data in Figure 4.5.

For all stations, for the first lag the observations have strong positive autocorrelation,

which is expected for hourly measurements of pollution concentrations. There is a

possible diurnal seasonality which is expected as during the day concentrations are

more influenced by the emissions whereas during the night the hourly concentrations

are more dependant on the previous hour’s concentrations. Overall, there is significant

autocorrelation for two or three lags, i.e. the correlation is above the standard error bars
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and then similarly for the last few hours of the day. However, the standard error bars

are calculated based on the size of the time series (8784). As the size of the time series

gets larger, the standard errors get closer to zero. This results in very narrow error

bands, which should in turn be examined as relative rather than exact error bands. As

a result of the narrow error bands, more lags are likely to appear marginally significant

although this is just by chance since the error bands do not depend on the structure of

the data but only its size. It is interesting to note that the second lag for all stations is

negative which is expected when observing an AR process with a very strong positive

autocorrelation at the first lag. Therefore, an AR(1) process is chosen as a reasonable

simplification for the estimation of the 95% correlation adjusted confidence intervals.
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PACF plots of NO2 hourly concentration in Aberdeen 2012

Figure 4.5: PACF plots for the time series of the hourly NO2 concentrations (in µg
m−3) for each of the six AURN monitoring stations in Aberdeen in 2012 up to lag 50.

Station Annual Mean St. interval Bootstrap Corr. adjusted

Anderson Drive 30.38 (29.90, 30.86) (29.91, 30.88) (20.59, 32.18)

Errol Place 21.00 (20.63, 21.36) (20.62, 21.39) (19.60, 22.40)

King Street 29.17 (28.77, 29.56) (28.76, 29.60) (27.84, 30.49)

Market Street 2 44.04 (43.42, 44.65) (43.42, 44.68) (41.64, 46.43)

Union Street 52.84 (52.23, 53.46) (52.23, 53.48) (50.45, 55.24)

Wellington Road 59.02 (58.20, 59.85) (58.20, 59.85) (55.64, 62.40)

Table 4.2: Comparing the annual mean and the three different types of 95% inter-
vals (standard confidence interval, bootstrap and correlation adjusted confidence) for
the hourly NO2 concentrations (µg m−3) across the six AURN monitoring stations in
Aberdeen in 2012.

Three types of intervals are presented in Table 4.2. Expectedly, the standard confidence

interval is too narrow because it does not adjust for the correlation in the data. The
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bootstrap intervals are almost identical to the standard confidence interval. The boot-

strapping was not performed using blocks of data to avoid the potential influence of the

repetition of periods of high concentrations. The adjusted for correlation 95% confidence

interval is wider than the others which makes it the most realistic interval of the three

given. From Table 4.2, it is clear that for three of the stations (Market Street 2, Union

Street and Wellington Road), the annual average is above the limit. Market Street 2

has breached the limit by 10% of the regulation, whereas Union Street has breached by

32% and Wellington Road by almost by 50%. Furthermore, the intervals for the annual

means at these stations do not contain the limit of 40 µg m−3 indicating that these

three stations are located at places, where the air pollution does not comply with the

regulation. The other three stations (Anderson Drive, Errol Place and King Street) do

not breach the 40 µg m−3 and their respective confidence intervals do not contain the

limit either indicating that the air pollution regulations are not likely to be breached

there.

However, the data from the monitoring stations are right-skewed (as seen in the his-

tograms in Figure 4.3). Therefore, the mean values could easily be misleading as they

are affected by the skewness in the data. Hence, the median values for the concentrations

at each station are examined as the median is a quantile measure and is estimated based

on the ordered pollutant concentrations. In a similar way to the mean estimation, dif-

ferent types of intervals for the median values of the six Aberdeen stations are provided

as shown in Subsection 2.1.4. The simplest approach is to produce a quantile interval

for the data by ordering the observations from smallest to largest and noting the 2.5th

and 97.5th quantiles as described in [87]. There are also bootstrap and 95% confidence

interval alternatives. These three types of intervals for the medians are presented in

Table 4.3.

Station Annual Median Quantile Bootstrap Corr. adjusted

Anderson Drive 23.00 (4.00, 88.00) (23.00, 25.00) (23.00, 25.00)

Errol Place 15.00 (2.00, 67.00) (15.00, 15.00) (15.00, 15.00)

King Street 25.00 (4.00, 75.00) (25.00, 27.00) (25.00, 27.00)

Market Street 2 38.00 (6.00, 117.00) (36.00, 38.00) (36.00, 38.00)

Union Street 50.00 (8.00, 117.00) (48.00, 50.00) (48.00, 50.00)

Wellington Road 52.00 (8.00, 151.00) (50.00, 52.00) (50.00, 52.00)

Table 4.3: Comparing the annual median and the three different types of 95% in-
tervals (quantile, bootstrap and correlation adjusted confidence) for the hourly NO2

concentrations (µg m−3) across the six AURN monitoring stations in Aberdeen in
2012.

In Table 4.3, three different intervals for the median are presented. The quantile interval

is too wide and provides limited information about the median in comparison to the

other two intervals. The bootstrap and the confidence intervals are in agreement with
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each other producing identical results. Furthermore, for both the bootstrap and the

adjusted confidence intervals, in most cases, the median value is the same as the end of

the interval. This is because all measurements are rounded to the nearest integer and,

hence, there is a lot of repetition in the observed values for each station.

The median values for all the stations (Table 4.3) are always lower than the means

(Table 4.2). The biggest change is for Market Street 2, where the median as well as the

bootstrap and correlation adjusted intervals are within the regulatory limit, whereas for

the mean the regulation was breached. In terms of the two main compliance questions,

it appears that the recorded hourly observations comply with the EU regulations but

the annual means for three monitoring stations (Market Street 2, Union Street and

Wellington Road) are identified as “at risk”.

4.1.3 ADMS-Urban simulations

ADMS-Urban simulation model

The monitoring stations provide information about the pollutant concentrations around

the city. However, that information is insufficient to model the varying NO2 concen-

tration across the city. This issue is addressed by Directive 2008/50/EC [76], which

sets the use of air quality models in addition to the monitoring data. The Cambridge

Environmental Research Consultants (CERC) [37] have developed a series of air quality

models called Atmospheric Dispersion Modelling Systems (ADMS). ADMS-Urban is the

most comprehensive one as it models the pollutant concentrations in urban areas [36].

ADMS-Urban is a computer simulation model, which can be used to estimate the hourly

pollutant concentrations at different city locations even at locations where there are no

monitoring stations present. The ADMS-Urban model is often used for “developing and

testing policy on air quality; the development of air quality action plans; investigation of

air quality management and planning options for a wide range of sources including trans-

port sources; source apportionment studies; air quality and health impact assessments

of proposed developments and use of the model for the provision of detailed street-level

air quality forecast”[36]. For a set of inputs, the ADMS-Urban simulation model pro-

vides an hourly forecast for one or multiple pollutant concentrations for a year. The

simulation model takes the following as inputs:

• City Outline - The road network in the city; the width of each road in the

road network, which is important for the dispersion of the pollutants; heights of

buildings as they form the city’s terrain in terms of street canyons;
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• Traffic - Observations of traffic flows at key junctions across the city between

07:00 and 19:00. The observations are collected on only one day of the year based

on which an average flow of vehicles is determined for each road section as well as

a diurnal (daytime) cycle;

• Road and Background Emissions - Emission rates are calculated using back-

ground emissions (such as commercial and domestic sources) and the average

flow for each road section (calculated based on the traffic data) using the EMIT

tool developed by CERC. The diurnal cycle is also used by EMIT to create a

multiplying emission rate by an hour factor to adjust for the varying emissions

throughout the day. For more information on EMIT, visit http://www.cerc.co.

uk/environmental-software/EMIT-tool.html. EMIT produces hourly emission

readings for a year. However, it has to be stressed that the emissions are created

based on a diurnal cycle where the 24 hours are multiples of a certain baseline;

• Meteorological Data - Hourly measurements of temperature, wind speed and

wind direction for a year. The meteorological data come from the MET office

Bishopton station. Hence, the meteorological data are the same for the whole city.

However, modelling techniques are used to provide variation in the meteorological

data based on geographical locations; and

• Chemistry - Information about the interactions between different pollutants in

the air.

ADMS-Urban is a deterministic air quality simulation model. Therefore, for the same set

of inputs, the simulation will always produce the same NO2 hourly concentrations and

annual averages, which are comparable to EU regulation [124]. However, ADMS-Urban

has some uncertainty in terms of predicting the exact observed NO2 concentrations built

into it because of the inputs. A major uncertainty in the inputs comes from the fact

that the average flow of emissions is determined based on observations from one day

in the year. Therefore, it has to be stressed that the emissions are created based on a

diurnal cycle where the 24 hours are multiples of a certain baseline. Nonetheless, the

EMIT tool has some built-in uncertainties to add naturalism. Overall, the uncertainty is

most visible when running the ADMS-Urban model under the actual conditions through

a set period of time. Hence, it has to be noted that although ADMS-Urban is a de-

terministic simulation model, there are inherited uncertainties from some of the inputs.

While these inputs are not changed in the runs used in this thesis, it is important to

establish a framework with which these inputs can later be investigated. However, there

is a discrepancy between the simulated hourly predictions for NO2 in ADMS-Urban

and the observed hourly concentrations for NO2. Even though there are discrepancies

http://www.cerc.co.uk/environmental-software/EMIT-tool.html
http://www.cerc.co.uk/environmental-software/EMIT-tool.html
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between the simulated and actual NO2 hourly concentrations, the ADMS-Urban simu-

lations track well the cycle of the NO2 concentrations and that results in very similar

annual mean concentrations for the simulation and the actual data. More information on

these comparisons is available in [33]. Nevertheless, the ADMS-Urban model is popular

for studies of different pollutants: [159] investigates CO concentrations in the city of

Ravenna, Italy, [152] investigates PM10 concentrations in London and [57] investigates

NO2 concentrations in Kaunas city, Lithuania.

SEPA uses the current version of the ADMS-Urban 4.1 model as an addition to the

monitoring stations as the EU directive [76] prescribes. The ADMS-Urban model could

be used to predict the NO2 hourly concentration for a year for given “point, line, area,

volume and grid source models” [36]. However, the ADMS-Urban model has two major

drawbacks. One is that to use the ADMS-Urban model, it is highly advisable that the

user undergoes training. The second drawback of the ADMS-Urban model is that it

takes a long time to run if all points across a city are to be evaluated. There are many

inputs to be considered as seen above, but the key interest lies in understanding how

the changes in the meteorological data and the information about the road network

including the emission rate for each road section (which for brevity will be referred to

as emissions) affect the NO2 pollutant concentration. Instead of having to re-run the

whole ADMS-Urban simulation model for a change in at most three inputs, it would

be computationally much easier to use an emulator, a general description for which has

been provided in Section 2.4.

In order to create an emulator, a number of ADMS-Urban simulation runs are required.

The emulation of deterministic computer models (such as ADMS-Urban) is discussed in

[169]. The main issue when emulating deterministic models is that for the same inputs,

the same outputs are produced resulting in a lack of random noise. However, [169]

points out that “modelling of a computer code as if it was a realization of a stochastic

process, ..., gives basis for the quantification of uncertainty [around the predictions

from the fitted model] and a statistical framework for design and analysis”. Therefore,

[169] recommends modelling using Gaussian Processes to establish the framework for

modelling non-deterministic (stochastic) computer simulations.

In order to perform emulations, simulations are chosen based on a Latin Hypercube

design as discussed in Subsection 2.4.1 and applied in [82]. The simulated data was

produced by SEPA before being provided. For SEPA, it is important to investigate

the changes in hourly NO2 pollutant concentrations, as well as the NO2 annual average

concentrations, across the city while the meteorological conditions such as temperature,

wind speed and wind direction are changing. However, SEPA believed that wind speed

and temperature have a weak positive correlation. Therefore, it was decided that only



Chapter 4. Exploratory analysis for Aberdeen and Glasgow 97

one of the two variables is going to be used to create the emulator. Wind speed was

preferred to include in the emulator over temperature because it has a more immediate

effect on the pollutant dispersion. Wind direction is crucial to keep because changing the

wind direction will change the terrain in which the pollutants are diffused. Therefore,

wind direction is also included in the emulator. Finally, the emissions themselves are

included in the emulator as the emulator has to be able to account for changes in the

pollutant concentrations as well as the meteorological conditions. It is crucial to note

that due to licensing issues, there is no actual meteorological data available for Aberdeen

presented in this thesis.

ADMS-Urban annual simulations for Aberdeen

In 2012, SEPA used ADMS-Urban to simulate 98 scenarios for each of the six monitoring

stations in Aberdeen. The 98 scenarios were chosen using a Latin Hypercube (LHC)

design as described in [82]. The LHC design is created by varying emissions (from -50%

to +30%), wind speed (from -20% to +20%) and wind direction (from -15◦ to +15◦) in

comparison to the baseline set by the observed data in 2012. The ranges of the plausible

values on which the inputs are varied were chosen by SEPA based on prior knowledge.

The new inputs are generated such that all hourly values are multiplied by the percentage

change for emissions or wind speed, or for wind direction, the degree change has been

added to all hourly observations. The LHC design is presented in Figure 4.6.
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Figure 4.6: Input space for the ninety-eight simulations of the annual NO2 average
concentrations (µg m−3) in Aberdeen. The point (0, 0, 0) representing the true values
for emissions (% change), wind speed (% change) and wind direction (◦ change) is in

red.

The actual NO2 annual average concentrations (as blue triangles) are compared to the

boxplots for the NO2 annual averages from simulations in Figure 4.7. It is expected that

the actual annual average will be slightly higher than the majority of the simulated ones
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as the point (0, 0, 0) is not the centre of the design sample space. The two stations for

which there are no simulations breaching the 40 µg m−3 annual regulation are Anderson

Drive and Errol Place. While the true NO2 concentration for Anderson Drive is lower

than 52% of simulated values, all the simulated values for Errol Place are higher than

the observed one. Hence, these two stations are not “at risk”. Previously, there has

been no evidence to label King Street as an “at risk” monitoring station but there are

several simulations that breach the 40 µg m−3 annual regulation. However, the true

concentration is lower than 99% of the simulated values suggesting that ADMS-Urban

tends to over-predict the NO2 annual concentrations at King Street. For the Market

Street 2 monitoring station, the true NO2 annual average is higher than 42% of the

simulated ones. The majority of the simulations are above the 40 µg m−3 limit which

is consistent with the station being identified as “at risk”. The simulations for Union

Street are also predominantly higher than the 40 µg m−3 limit, although only 21% are

higher than the true NO2 annual average. At Wellington Road, although the majority of

the simulated values are above the regulatory limit of 40 µg m−3, the true concentration

is higher than any of the simulated values suggesting that the ADMS-Urban model

is under-predicting the NO2 annual average at the location. Overall, the simulated

NO2 averages by the ADMS-Urban model are reasonable for three monitoring stations

(Anderson Drive, Market Street 2 and Union Street), higher for two monitoring stations

(Errol Place and King Street), and lower for one monitoring station (Wellington Road).
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Figure 4.7: Boxplots for the NO2 annual averages (µg m−3) from ninety-eight simula-
tions of ADMS-Urban for each of the six monitoring stations in Aberdeen. The yearly
NO2 limit of 40 µg m−3 is represented by a solid red line. The true annual average in

2012 for each station is signified by a blue triangle.

4.1.4 Variograms

As previously stated, the ADMS-Urban simulation scenarios for Aberdeen are chosen

using a 3-dimensional LHC design using variations of emissions (from -50% to +30%),

wind speed (from -20% to +20%) and wind direction (from -15◦ to +15◦) to the
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baseline observations in 2015. There is a need to investigate whether there is evidence

of correlation between the points (defining the simulation scenarios) in the input space

using a variogram. An exploratory tool with which the presence of spatial correlation

in the LHC locations, which define the simulation scenarios, can be assessed is a vari-

ogram plot, where the semivariance is plotted against the distances between points. In

Subsection 2.3.1, it was established that the sill provides information about the limiting

value of the variogram as the distance between points goes to infinity, the range is the

distance for which the variogram reaches the sill and the nugget is the limiting value of

the variogram at distances close to zero. All variograms in this subsection are computed

using the gstat [149] package in R [157]. These variograms will be used to provide

an initial impression of likely estimates for each of the hyperspatial range parameters

for the three inputs forming the LHC space. The three variables will be referred to as

the hyperspatial range parameters for the rest of the thesis. The variograms of the

simulated NO2 annual average concentration for each of the stations in Aberdeen for the

three inputs are examined in Figures 4.8, 4.9 and 4.10. It has to be noted that Monte

Carlo envelops were not added to the variograms as the points of the variograms do not

reach a peak and plateau afterwards.

Firstly, the simulated NO2 annual average residuals (from an intercept only model)

variograms for each of the stations in Aberdeen based only on the emissions input are

examined in Figure 4.8. Although it is expected that the points will reach a peak and

plateau afterwards, on all the variograms the points are constantly increasing. Since the

LHC space was designed to have spatial correlation between the scenarios, this result is

not surprising but it means that the sill and the range parameters appear to be going

to infinity within the observed space. The variograms do not have a nugget effect which

means there is no measurement error. For the stations with overall higher NO2 annual

concentrations (Market Street 2, Union Street and Wellington Road), the semivariance

has much larger values in comparison with the other three stations (Anderson Drive,

Errol Place and King Street).

Next, the simulated NO2 annual average residuals (from an intercept only model) var-

iograms for each of the monitoring stations in Aberdeen based only on the wind speed

input are examined in Figure 4.9. Although the variograms in Figure 4.9 also indicate

the presence of spatial correlation, there are quite a few differences between the var-

iograms in Figure 4.9 and those in Figure 4.8. Most obviously, the points on all the

variograms in Figure 4.9 appear to plateau at a range of 30 but instead of plateauing

afterwards, the points are decreasing. This indicates that the hyperspatial range param-

eter for wind speed will be easier to calculate than the one for emissions. Furthermore,

there appears to be a nugget effect present for four stations (King Street, Market Street
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Figure 4.8: Emission variograms for the six monitoring stations in Aberdeen.

2, Union Street and Wellington Road) suggesting a small measurement error in the wind

speed.
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Figure 4.9: Wind speed variograms for the six monitoring stations in Aberdeen.

Lastly, the simulated NO2 annual average residuals (from an intercept only model)

variograms for each of the monitoring stations in Aberdeen based only on the wind

direction input are examined in Figure 4.10. The wind direction variograms appear

to plateau at about a value of 20. However, there seems to be an increase in the

semivariance values just before a distance of 30 and since that is outside the scope of the

LHC, it is possible that the hyperspatial range parameter based on the wind direction

would go to infinity in a similar fashion to the range parameter for emissions. Therefore,

it would be difficult to estimate the wind direction hyperspatial range parameter. As
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with the wind speed variograms in Figure 4.9, there is a nugget effect suggesting there

is a small measurement error in the wind direction.
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Figure 4.10: Wind Direction variograms for the six monitoring stations in Aberdeen.

Since the hyperspatial range parameters are modelled together in the following chapters,

it would be beneficial to examine the joint effect of the three inputs for each station. To

do this, 3D variograms can be used for all the stations. A 3D variogram is an extension

of the standard 2D variogram [148] in the gstat package in R. In order to estimate a

variogram, it is necessary to calculate the distances between the coordinates for each

location. In the 2D variogram case, the distances for each location are estimated based

on two coordinates (x, y), whereas in the 3D case, the distance for each location is

estimated based on three coordinates (x, y, z). Referring back to the semi-variogram

estimation for two spatial locations si and sj ,

γ̂Y (hmk ) =
1

2|N(hk)|
∑

(si,sj)∈N(hk)

[y(si)− y(sj)]
2 , (2.60)

the spatial locations are now defined to have coordinates (asi , bsi , csi) and (asj , bsj , csj ),

respectively. The variogram is intrinsically stationary and it is isotropic so only the dis-

tance between two points is important, i.e. h = ||(asi , bsi , csi)−(asj , bsj , csj )||. Therefore,

the interpretation of the 3D variogram is the same as for a 2D variogram. Hence, 3D

variograms for each of the monitoring stations in Aberdeen based on the coordinates in

the LHC design (Figure 4.6) are presented in Figure 4.11.

The 3D variograms for the simulated NO2 annual average residuals (from an intercept

only model) for each of the monitoring stations in Aberdeen in Figure 4.11 are almost

identical to the emissions variograms based only on the emissions input in Figure 4.8.

The constantly raising semivariance is an indicator that there is high correlation between
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Figure 4.11: 3D variograms for the six monitoring stations in Aberdeen.

the different ADMS-Urban scenarios which would aid predictions in the LHC sample

space. It is interesting to note that even though some of the individual variograms

had nugget effects (Figures 4.9 and 4.10), there is no nugget present on any of the 3D

variograms for any of the stations. Similarly to the previous variograms, the semivariance

seems to increase for monitoring stations with higher NO2 annual average concentrations.

Overall, it appears that there is hyperspatial correlation between the scenarios with the

main driving factor being emissions.

4.1.5 Findings

There are six monitoring stations in Aberdeen measuring the NO2 concentrations. Three

of them (Market Street 2, Union Street and Wellington Road) are labelled as “at risk”

as their true NO2 annual recordings in 2012 are above the 40 µg m−3 regulation limit as

seen in Table 4.2. Using the ADMS-Urban simulation model, 98 scenarios for different

emissions, wind speed and wind direction were created to explore how these factors

affect the NO2 annual concentrations. The simulations appear to be reasonable for

three monitoring stations (Anderson Drive, Market Street 2 and Union Street), whereas

for Errol Place and King Street the predictions are higher than the true recordings,

and for Wellington Road lower than the true recording. Lastly, variograms were used

to assess the presence of spatial correlation with the LHC input space. It was found

that there is evidence for hyperspatial correlation which is predominantly affected by

the emissions.
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4.2 Glasgow

4.2.1 Monitoring system

Glasgow is the most populous city in Scotland. However, the city faces one of the highest

pollution levels in the whole of the UK [21]. To protect the health of its citizens, there

is a need to monitor more closely the air pollution around Glasgow in order to be able

to reduce the current concentrations. The air pollution monitoring system in Glasgow

is part of the UK wide AURN network. The system has seven road active monitoring

stations in the city and one station outside the city. A quick review of the stations is

presented below based on the descriptions in [8], which is followed by a map with the

locations of the stations in Figure 4.12. Further information and pictures of the stations

are available at the Scottish Air Quality website [8].

• Burgher Street - the station is located four metres away from a major road in

the east end of the city. Burgher Street is a roadside station. The station takes

hourly measurements of NO2 and PM10.

• Byres Road - the station is located five metres away from a major road in the

west end of the city. Byres Road is a roadside station. The station takes hourly

measurements of NO2, PM10 and PM2.5.

• Central Station - the station is located half a meter away from a major road

in the city centre, next to Glasgow Central train station. The monitor is at a

transport hub and there are high buildings which create prerequisites for high air

pollution. The station is a kerbside type. The station takes hourly measurements

of NO2.

• Dumbarton Road - the station is located 1.5 metres away from a major road in

the west end of the city. Dumbarton Road is a roadside station. The station takes

hourly measurements of NO2, PM10 and PM2.5.

• Great Western Road - the station is located close to a major road in the west

end of the city, close to a subway station. Great Western Road is a roadside

station. The station takes hourly measurements of NO2.

• High Street - the station is located five and a half metre from a major road, next

to the biggest hospital in the city. High Street is a roadside station. The station

takes hourly measurements of NO2.
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• Townhead - the station can be accessed through a residual access road but the

closest road is approximately 122 metres away. Townhead is an urban background

station. The station takes hourly measurements of NO2 and O3.

• Waulkmillglen Reservoir - the station is 700 metres to the North West of

the M77. Waulkmillglen Reservoir is a rural station. The station takes hourly

measurements of NO2, O3, PM10 and PM2.5
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Figure 4.12: Map of the eight AURN monitor stations across the City of Glasgow in
2015 [92].

The pollutant concentrations for all stations are reported as rounded to the nearest whole

number except for Waulkmillglen Reservoir. This specific station is used for background

monitoring and, therefore, the pollutant concentrations at Waulkmillglen Reservoir are

reported to a higher precision, namely one decimal point. Therefore, although the

pollutant concentrations are continuous, the data are actually discretised in a similar

way to the Aberdeen data.

4.2.2 NO2 monitoring in 2015

One of the biggest problems SEPA faces when tackling the air pollution in Glasgow is

the NO2 concentrations as stated in [61]. Therefore, a variety of graphical and numerical

summaries of the 2015 data are provided. Using this preliminary analysis, two major

questions concerning the compliance with the EU legislation [76] are addressed:
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(i) Has the hourly NO2 concentration limit of 200 µg m−3 been breached more than

18 times in 2015?

(ii) Is the average annual mean for NO2 concentration above the limit of 40 µg m−3?

In order to answer question (i), Table 4.4 provides a count of the breaches of the hourly

limit of 200 µg m−3 for the eight monitoring stations, as well as displaying the number

of missing observations and the total number of observations each station has taken

through 2015 in Glasgow. The maximum number of hourly observations in a non-leap

year is 8760. From Table 4.4, it is clear that the hourly regulation has not been breached

but at Central Station four hourly concentrations have been above 200 µg m−3. A key

thing to notice is that the High Street and Waulkmillglen Reservoir stations have more

than 1500 missing values, which are due to long periods of time (over a month), during

which the monitors were not working. To visualise the data and check for any other

abnormalities, time series plots for the hourly concentrations of each of the stations are

presented in Figure 4.13.

Station Breaches Missing Total

Burgher Street 0 71 8689

Byres Road 0 222 8538

Central Station 4 94 8666

Dumbarton Road 0 246 8514

Great Western Road 0 86 8674

High Street 0 2169 6591

Townhead 0 396 8364

Waulkmillglen Reservoir 0 1688 7072

Table 4.4: A count of the number of breaches of the hourly concentration limit of 200
µg m−3 in Glasgow in 2015. The missing values and total number of observations per
station for the year are also provided.

From Figure 4.13, the breaches of the 200 µg m−3 hourly limit are easy to see. All four

events have happened at the Central Station monitor. Central Station is the station

where the highest concentrations have been recorded through the year. Waulkmillglen

Reservoir has recorded lower concentrations than all other stations, followed by Town-

head. This is expected given that these two stations are rural and urban background

locations, respectively. Furthermore, the plots for Byres Road and Dumbarton Road

show visible gaps: for Byres Road (starting around 1/12) and for Dumbarton Road

(starting around 1/9). Possible reasons for these visible gaps of missing data are that

the monitors were under repair or the data were not transmitted. Overall, all the times

series in Figure 4.13 show similar characteristics - increased pollution concentration in

the winter months and a decrease in the summer months, which is expected based on

the previously discussed characteristics of NO2 in Subsection 1.2.1. In mid-January (be-

tween 15/01 and 24/01), all monitors have recorded increased pollution concentrations.
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Figure 4.13: Time series plot for the hourly NO2 concentrations (µg m−3) for each
of the eight AURN monitoring stations in Glasgow in 2015. The hourly NO2 limit of

200 µg m−3 is represented by a solid red line.

A similar trend occurs in the beginning of February. These time periods need further

investigation.

Another point of discussion is the fact that the hourly pollutant concentrations are

skewed. The skew in the data is best seen by examining the histograms for the measure-

ments for each of the stations in Figure 4.14. The histograms show that the distributions

for the NO2 measurements for all the stations are right skewed. Log and square root

transformations were compared and the log-transformation was chosen based on the

histograms presented in Figure 4.15. The distributions for all histograms appear more

symmetrical. Waulkmillglen Reservoir is the only exception where the distribution con-

tinues to be right skewed which is not surprising given the small values recorded at the

location.

Because there were no non-compliance issues with the hourly concentrations of NO2,

the annual means were checked in order to answer question (ii). They are presented in
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Figure 4.14: Histograms for the hourly NO2 concentrations (µg m−3) for each of the
eight AURN monitoring stations in Glasgow in 2015. The hourly NO2 limit of 200 µg

m−3 is represented by a solid red line.

Table 4.5. The values above the regulation have been highlighted in red. The whole

data set is not available as there are missing observations for all the stations. Therefore,

confidence intervals for the mean would be useful to provide a range of possible values for

the true mean. A standard 95% confidence interval is provided. However, that standard

confidence interval does not take into account the correlation between the observations,

so a 95% bootstrap interval and an adjusted for correlation are also provided (estimated

as described in Subsection 2.1.4).

Before calculating the 95% correlation adjusted confidence interval, the PACF plots for

the time series of each of the stations must be examined to determine the type of AR

process of the data. The PACF plots (calculated as described in Subsection 2.1.2) for all

stations are presented in Figure 4.16. The PACF plots, similarly to Aberdeen, show that

at all stations, for the first lag the observations have very strong positive autocorrelation.

Overall, the autocorrelations for three or four lags are significant (above the standard

error bars). Similarly to Aberdeen, there is a possible diurnal seasonality present as the

concentrations around the 20th hour appear significant. An interesting feature is that

around the 500th lag for Waulkmillglen Reservoir appears highly significant but this is

the result of the fact that this station measures background emissions, there is much less



Chapter 4. Exploratory analysis for Aberdeen and Glasgow 108

0

400

800

1200

−3 0 3 6

Log NO2 concentrations(µ g m−3)

Log NO2 concentrations Burgher Street 2015

0
500

1000
1500
2000

−3 0 3 6

Log NO2 concentrations(µ g m−3)

Log NO2 concentrations Byres Road 2015

0
500

1000
1500
2000

−3 0 3 6

Log NO2 concentrations(µ g m−3)

Log NO2 concentrations Kerbside 2015

0
500

1000
1500
2000

−3 0 3 6

Log NO2 concentrations(µ g m−3)

Log NO2 concentrations Dumbarton Road 2015

0

500

1000

1500

−3 0 3 6

Log NO2 concentrations(µ g m−3)

Log NO2 concentrations Great Western Road 2015

0

500

1000

−3 0 3 6

Log NO2 concentrations(µ g m−3)

Log NO2 concentrations High Street 2015

0

500

1000

1500

−3 0 3 6

Log NO2 concentrations(µ g m−3)

Log NO2 concentrations Townhead 2015

0
500

1000
1500
2000
2500

−3 0 3 6

Log NO2 concentrations(µ g m−3)

Log NO2 concentrations Waulkmillglen Reservoir 2015

Histograms of the log NO2 hourly concentration in Glasgow 2015

Figure 4.15: Histograms for the hourly log NO2 concentrations (µg m−3) for each of
the eight AURN monitoring stations in Glasgow in 2015. The hourly log NO2 limit of

log(200) µg m−3 is represented by a solid red line.

variability in the observed concentrations. For all stations, except for Central Station,

the second lag is negative as in the Aberdeen case which is expected when there is a very

strong positive autocorrelation at the first lag. However, due to the relative nature of

interpretation of the error bands for large time series, an AR(1) process is a reasonable

simplification for the estimation of the 95% correlation adjusted confidence intervals.

Station Annual Mean St. interval Bootstrap Corr. adjusted

Burgher Street 26.67 (26.19, 27.15) (26.19, 27.17) (24.49, 28.84)

Byres Road 37.82 (37.40, 38.23) (37.41, 38.23) (36.07, 39.57)

Central Station 60.39 (59.71, 61.07) (59.73, 61.06) (58.13, 62.66)

Dumbarton Road 41.43 (40.96, 41.90) (40.99, 41.88) (39.34, 43.53)

Great Western Road 31.15 (30.72, 31.58) (30.75, 31.57) (29.39, 32.91)

High Street 32.39 (31.96, 32.82) (31.95, 32.88) (30.45, 34.33)

Townhead 26.21 (25.85, 26.56) (25.84, 26.55) (24.56, 27.85)

Waulkmillglen
Reservoir

8.62 (8.34, 8.90) (8.32, 8.96) (7.22, 10.02)

Table 4.5: Comparing the annual mean and the three different types of 95% intervals
(standard confidence interval, bootstrap and correlation adjusted confidence) for the
hourly NO2 concentrations (µg m−3) across the eight AURN monitoring stations in

Glasgow in 2015.

Table 4.5 presents three different types of intervals for the annual mean. The standard
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Figure 4.16: PACF plots for the time series of the hourly NO2 concentrations (µg
m−3) for each of the eight monitoring stations in Glasgow in 2015 up to lag 50.

confidence interval is too narrow because it does not adjust for the correlation in the

data. The bootstrap intervals are almost identical to the standard confidence interval.

However, the adjusted for correlation 95% confidence interval is wider than the other

two which makes it the most realistic interval of the three presented. These findings

are in agreement with the Aberdeen calculations in Table 4.2. From Table 4.5, it is

obvious that in 2015 two stations (Central Station and Dumbarton Road) have failed

to comply with the EU regulation. For both stations, the recorded NO2 annual average

concentration is above the limit of 40 µg m−3. Central Station has an annual average

which is 50% higher than the regulation. For Dumbarton Road, the mean is just above

the regulation. However, the correlation adjusted 95% confidence interval suggests that

it is possible for the true mean to be below 40 µg m−3 as the interval includes values

under 40. As the data from the monitoring stations are right-skewed (as seen in Figure

4.14), which could result in misleading mean values, the median values for concentrations

at each station are also calculated in Table 4.6.

Table 4.6 presents the three different intervals. The quantile interval is too wide and
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Station Median Quantile Bootstrap Conf. interval

Burgher Street 19.00 (2.00, 86.00) (17.00, 19.00) (17.00, 19.00)

Byres Road 36.00 (8.00, 82.00) (34.00, 36.00) (34.00, 36.00)

Central Station 55.00 (12.00, 136.00) (54.00, 56.00) 54.00, 56.00)

Dumbarton Road 38.00 (8.00, 94.00) (38.00, 40.00) (38.00, 40.00)

Great Western Road 27.00 (4.00, 82.00) (28.00, 29.00) (28.00, 29.00)

High Street 28.00 (5.00, 84.00) (28.00, 29.00) (28.00, 29.00)

Townhead 22.00 (5.00, 69.00) (21.00, 22.00) (21.00, 22.00)

Waulkmillglen
Reservoir

3.80 (0.00, 51.60) 3.80, 3.80) (3.80, 3.80)

Table 4.6: Comparing the annual median and the three different types of 95% intervals
(quantile, bootstrap and confidence interval) for the hourly NO2 concentrations (µg
m−3) across the eight monitoring stations in Glasgow in 2015.

provides limited information about the median. The bootstrap and the confidence in-

tervals are in agreement with each other. Furthermore, for both the bootstrap and the

confidence intervals, in most cases, the median is the same as one end of the intervals.

This is because all measurements were rounded to the nearest integer and, hence, there

is a lot of repetition in the observed values for each station. These results are also in

agreement with what was observed for the Aberdeen data in Table 4.3.

Overall, the median values for all stations (Table 4.6) are always lower than the means

(Table 4.5) but not very different from the mean values except for the Waulkmillglen

Reservoir where the median value is 2.25 times lower than the mean. For Central Station,

the median is lower than the mean but 55 µg m−3 is still 38% larger compared to the

regulation. It is important to note that the median value for Dumbarton Road is below

the 40 µg m−3 regulation, whereas the mean value was above the regulation. Based on

the results from Tables 4.5 and 4.6, two stations (Central Station and Dumbarton Road)

are identified as “at risk”.

4.2.3 ADMS-Urban simulations

For a better understanding of the NO2 hourly concentrations across Glasgow, the ADMS-

Urban simulation model (introduced in Subsection 4.1.3) was used to produce 100 sim-

ulation scenarios for each one of the eight monitoring stations. The scenarios were

produced by varying only three inputs in the model - wind speed, wind direction and

emissions. As with Aberdeen, a LHC design was used to vary these three inputs. For

the emissions, the values were varied from −100% to +20%, wind speed was varied

from −20% to +20%, and wind direction was varied from −15◦ to 15◦ in comparison

to the observed baseline values in 2015. The input boundaries were chosen by SEPA

experts as values outside these regions are highly unlikely to occur. The variations for
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the three inputs were chosen using the LHC, making them an optimal random sample

of combinations across the sampled space given in Figure 4.17.

Input Space Glasgow
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Figure 4.17: Input space for the one hundred simulations of the year long time series
of the hourly NO2 concentrations (µg m−3) in Glasgow. The point (0, 0, 0) representing
the true values for emissions (% change), wind speed (% change) and wind direction (◦

change) is in red.

The main difference between the ADMS-Urban simulations for Aberdeen and Glasgow

is that for Glasgow, the hourly concentrations for a full year are available so both the

annual average and hourly regulations will be examined. It is important to note that

once the simulation scenarios were produced, for each of them there were 35 missing

hourly NO2 concentrations at the same place for each of the scenarios and each of the

stations. The missing data in the simulation scenarios were a result of missing input

data, which is not available to examine in this thesis. 35 missing values are only 0.4% of

the whole simulation, which is almost a negligible amount of missing data so the missing

data were imputed without having a visible impact on the exploratory analysis. When

there is only one NO2 hourly concentration missing, the average of the neighbouring

NO2 hourly observations was taken and assigned to the missing observation. When a

series of missing NO2 hourly concentration was present, the average of the hourly NO2

concentrations for the same hour of two neighbouring days was taken and assigned to

the missing observation.

Firstly, the NO2 hourly concentrations at each station are examined by plotting the

boxplot for every 50th hour in the time series for each station in Figures 4.18 and 4.19.

The 50th hours were chosen as they show the largest variability in hourly concentrations.

In colour, the actual hourly NO2 concentration for this specific station is superimposed.

It is expected that the actual hourly NO2 concentrations will lie within the boxplots.

Given that the design is not centred around the (0, 0, 0) point as seen in Figures 4.18 and

4.19, the actual concentrations are expected to lie above the hourly respective median.

However, in Figures 4.18 and 4.19 it appears that the ADMS-Urban hourly simulated

NO2 concentrations are not similar to the actual NO2 concentrations as the points for the



Chapter 4. Exploratory analysis for Aberdeen and Glasgow 112

actual concentrations are not lying within the range of the boxplot or even the outliers

but rather above or below all simulated values for 42% of the plotted hours across all

stations. Additionally, the actual concentration points do not differ by a constant offset

to the median of the simulated values. For all stations except for Burgher Street, the

highest simulated values are higher than the observed ones. Overall, it appears that the

ADMS-Urban model has struggled with accurately simulating the hourly concentrations.

Looking at the plots for each individual station in Figures 4.18 and 4.19, there are a

few points of interest. The plot for Burgher Street is the one where the majority of

points (60%) are outside each of the boxes for the simulations for each specific hour

highlighting the fact that the ADMS-Urban model has struggled most with the predic-

tions for Burgher Street in comparison with the other stations. Furthermore, the highest

actually recorded hourly NO2 concentration is higher than the highest simulated values.

For Central Station, the majority of the actual concentrations are within the boxplots

for the simulated values (68%) which is likely an effect from the fact that the boxplot

spreads are larger than the spreads for any other station. As Central Station was identi-

fied as a “at risk” location, it is good that the ADMS-Urban simulations show scenarios

where the hourly 200 µg m−3 regulation is breached. The simulations for Dumbarton

Road are in contrast to those at Burgher Street - the actual NO2 concentrations are not

as high in comparison to Burgher Street, but the simulations are. The ADMS-Urban

simulations for Dumbarton Road indicate the station is an “at risk” location where the

hourly 200 µg m−3 regulation could be breached with simulations above 200 µg m−3.

Great Western Road is the only station where the actual highest NO2 concentration

is the same hour where the simulations have the highest values. For High Street and

Waulkmillglen Reservoir, there are a lot of missing values from the actual hourly NO2

concentrations to compare the performance of the simulations to the actual values. Even

though the highest High Street simulation is higher than the actual recorded values, the

actual recordings appear above the boxplots in 31% of the cases, whereas for Waulk-

millglen Reservoir half the points are outside the boxplots. Overall, for all stations the

actual points are more often above (38%) than below (5%) the boxplots.

After comparing the hourly NO2 ADMS-Urban simulations to the actual hourly NO2

concentrations for each of the eight monitoring stations in Glasgow, the annual averages

are also compared to the boxplots for the annual average simulations in Figure 4.20. As

with the hourly concentrations, it is expected that the actual annual average is higher

than the majority of the simulated ones due to the design of the sample space where the

baseline conditions point (0, 0, 0) is not the centre.

In Figure 4.20, for all stations except for Burgher Street, there is at least one simulation

model where the NO2 annual average is higher than the observed one. For Burgher
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Boxplots for the ADMS−Urban hourly NO2 concentrations for Glasgow 2015 A

Figure 4.18: Boxplots for the NO2 hourly concentration (µg m−3) for every 50th hour
from ADMS-Urban for Burgher Street, Byres Road, Central Station and Dumbarton
Road. The true NO2 concentrations for the corresponding hour for each station are
the coloured points on top of the boxplots. The hourly NO2 limit of 200 µg m−3 is

represented by a red line.

Street, all the ADMS-Urban simulations are smaller than the actually observed annual

average. For Byres Road, the majority of the annual averages (97%) from the simulations

are lower than the actual annual average, indicating that ADMS-Urban is struggling

with simulating the annual averages for Byres Road. Central Station has been previously

identified as an “at risk” location where the regulations are very likely to be broken with
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Waulkmillglen Reservoir

Boxplots for the ADMS−Urban hourly NO2 concentrations for Glasgow 2015 B

Figure 4.19: Boxplots for the NO2 hourly concentration (µg m−3) for every 48th hour
from ADMS-Urban for Great Western Road, High Street, Townhead and Waulkmillglen
Reservoir. The true NO2 concentrations for the corresponding hour for each station
are the coloured points on top of the boxplots. The hourly NO2 limit of 200 µg m−3 is

represented by a red line.

the majority of the interquartile range is above the 40 µg m−3 line. The large spread of

the Central Station box indicates that for some scenarios it is possible for compliance

with the regulation. For Dumbarton Road, there are several simulations above the 40 µg

m−3 regulation (8%). For Great Western Road, the actual annual average is below the

limit and so are the simulated annual averages, whereas for High Street, there are a few
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 NO2 Annual Average Boxplots for Glasgow 2015

Figure 4.20: Boxplots for the NO2 annual averages (µg m−3) from one hundred
simulations of ADMS-Urban for each of the eight monitoring stations in Glasgow. The
yearly NO2 limit of 40 µg m−3 is represented by a red line. The true annual average

for 2015 for each station is the blue triangle.

simulations (3%) above the 40 µg m−3 limit. For Townhead, the annual averages from

both the actual values and the simulations are visibly below the 40 µg m−3 limit. The

annual averages for Waulkmillglen Reservoir appear quite similar and the actual annual

average is in the middle of the simulated values. Overall, Figure 4.20 suggests that the

simulated annual concentrations of the ADMS-Urban model appear more accurate than

the hourly time series for every monitoring station in Glasgow, which is expected given

that there is more variation at the hourly level. Overall, all boxplots for the simulated

NO2 annual averages are approximately symmetrical and there are no outliers suggesting

that the NO2 simulated annual average for each station are normally distributed.

4.2.4 Variograms

The ADMS-Urban simulation scenarios for Glasgow are chosen based on a 3-dimensional

LHC created by varying emissions (from −100% to +20%), wind speed (from −20%

to +20%) and wind direction (from −15◦ to +15◦) to the baseline observed values

in 2015. As with Aberdeen, variogram plots are used to explore the presence of spatial

correlation between the LHC points used to simulate the NO2 annual averages for each

of the monitoring stations in Glasgow.

To begin, the simulated NO2 annual average variograms residuals (from an intercept

only model) for each of the monitoring stations in Glasgow based on emissions only

are examined in Figure 4.21. Similarly to the Aberdeen variograms for emissions only

in Figure 4.8, although it is expected that the points will reach a peak and plateau

afterwards, the points on all variograms are constantly increasing due to the design of

the LHC space to have spatial correlation between all scenarios. The sill and the range

parameters appear to be going to infinity in the observed space. None of the variograms
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have a nugget effect indicating the lack of measurement error. As Central Station is

the monitoring station with the largest recorded NO2 concentrations, it has the largest

semivariance in comparison to all other stations.
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Figure 4.21: Emission variograms for the eight monitoring stations in Glasgow.

Following, the simulated NO2 annual average residuals (from an intercept only model)

variograms for each of the monitoring stations in Glasgow based only on the wind speed

input are produced in Figure 4.22. The variograms show that there is spatial correlation

present with almost all points plateauing quite evenly until the distance of 30, when

the points have a spike followed by a drop. This suggests that the hyperspatial range

parameter for wind speed might be easier to estimate than the emissions one. However,

as opposed to the emissions variogram in Figure 4.21, there is a nugget effect for all

stations except for Burgher Street and Waulkmillglen Reservoir indicating that there

might be measurement error in the wind speed. Overall, the results for Glasgow are

similar to the wind speed Aberdeen variograms in Figure 4.9.

Next, the simulated NO2 annual average residuals (from an intercept only model) vari-

ograms for each of the monitoring stations in Glasgow based only on the wind direction

input are presented in Figure 4.23. For all stations, the points appear constant through-

out. This indicates that the wind direction hyperspatial range parameter will not be

easy to estimate. As with the wind speed variograms in Figure 4.22, there is a nugget

effect for all stations except for Burgher Street and Waulkmillglen Reservoir indicating
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Figure 4.22: Wind speed variograms for the eight monitoring stations in Glasgow.

that there might be a small measurement error in the wind direction. It is interest-

ing to note that the results are not similar to those from the wind direction Aberdeen

variograms in Figure 4.10 indicating a difference between the two designs.
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Figure 4.23: Wind direction variograms for the eight monitoring stations in Glasgow.
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Lastly, 3D variograms for the simulated NO2 annual average residuals (from an inter-

cept only model) for each of the monitoring stations in Glasgow are shown in Figure

4.24. The variograms are very similar to the emissions variograms in Figure 4.21 sug-

gesting that the emissions input has the largest impact on the correlation between the

ADMS-Urban scenarios. Overall, it appears that there is spatial correlation between the

scenarios which would assist the predictions in the LHC space. As with the Aberdeen

3D variograms in Figure 4.11, although the wind speed and wind direction variograms

showed nugget effects, the 3D variograms for Glasgow do not contain any nuggets.
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Figure 4.24: 3D variograms for the eight monitoring stations in Glasgow.

Additionally, variograms for each hour in the year were examined to check whether there

is spatial correlation between the hourly concentrations from the ADMS-Urban scenar-

ios. The variograms are very similar to the ones for the annual averages and therefore,

omitted to prevent repetition. Overall, it appears that the NO2 hourly concentration

variograms have spatial correlation which would aid forecasting of hourly time series for

the NO2 concentrations.

4.2.5 Findings

Eight monitoring stations were used to measure NO2 concentrations in Glasgow in 2015.

Only Central Station and Dumbarton was labelled as “at risk” monitoring stations their

its true NO2 annual recording in 2015 is above the 40 µg m−3 as shown in Table 4.5. The

ADMS-Urban model was used to create 100 simulation scenarios for different emissions,
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wind speed and wind direction in order to explore how these factors influence the NO2

annual concentrations. For all stations except for Waulkmillglen Reservoir, the true

annual averages are larger than the majority of the simulated values. In terms of NO2

hourly concentrations, the highest simulated values tend to be higher than those actually

observed but overall, 43% of the simulated hourly values are either larger or smaller than

the true NO2 recordings in 2015. These results are expected given the ranges chosen for

the varying the inputs of the LHC design. Using variograms, it was assessed that there

is spatial correlation within the LHC input space and it was found that the hyperspatial

correlation is mostly affected by the emissions.

4.3 Conclusion

In this chapter, the exploratory analysis for the Aberdeen and Glasgow data sets used in

the rest of the thesis was performed. For Aberdeen, three monitoring stations (Market

Street 2, Union Street and Wellington Road) were identified as “at risk” based on breach-

ing the NO2 annual regulation limit of 40 µg m−3, whereas for Glasgow there are two

such station (Central Station and Dumbarton Road). In order to explore the effects of

emissions, wind speed and wind direction, the ADMS-Urban simulation model was used

to create 98 and 100 simulation scenarios for Aberdeen and Glasgow, respectively. It

was found that there is evidence of spatial correlation between the scenarios which would

aid prediction in the LHC sample space. Based on the hourly regulations, although at

some stations in both Aberdeen and Glasgow, there were hourly concentrations above

200 µg m−3, no breaches were observed in either city.



Chapter 5

Univariate modelling of the NO2

annual average using Gaussian

Processes

In this chapter, the main focus is on creating a statistical model for the ADMS-Urban

model for predicting the NO2 annual average concentrations across the monitoring sta-

tions in Aberdeen and Glasgow based on the simulation runs from ADMS-Urban pre-

sented in Chapter 4. By fitting a variety of statistical models, it is aimed to find the

best prediction model for the simulations and thus allow quicker evaluation of ADMS-

Urban under different emissions and meteorological scenarios. The prediction power of

the models will be measured using in- and out-of-sample Root Mean Squared Prediction

Error (RMSPE). The out-of-sample RMSPE is calculated using a 10-fold Cross Valida-

tion (CV) procedure which splits the data into training and test sets as described in

Chapter 2. This chapter will be organised as follows: Section 5.1 provides the theo-

retical background on Gaussian Processes (GP) which have been fitted in R using the

DiceKriging package, then Section 5.2 presents a motivation study of modelling the

NO2 annual average concentrations in Aberdeen for six monitoring stations. The work

in this section is based on [82], but here a short comparative study for an alternative

way of fitting GP models is presented. Section 5.3 presents a new study using linear

regression and GP models fitted for the annual averages for the 100 simulations for each

station in Glasgow individually. Section 5.4 provides a concluding discussion.

120
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5.1 Theoretical background on the modelling

In this chapter, the linear regression modelling will be done using the method described

in Subsection 2.2.1. Then, correlated errors will be introduced in the modelling using GP

models as suggested in the case of deterministic computer codes by [169]. The GP models

are fitted to model the simulated ADMS-Urban NO2 annual average concentrations for

each station individually using the DiceKriging package [165] in R [157]. GP are used

because they take into account the fact that there is correlation between the points in

the Latin Hypercube (LHC) space. Furthermore, GP processes fit a zero variance for the

points at which simulations are run as they are points for which the estimate is known.

The general model for each station is:

y = Xβ + z , (5.1)

where:

• y = [y1, . . . , yn]> is a vector (n× 1) containing the response values, i.e. the simu-

lated NO2 annual average for one station with n being the number of simulations;

• X is a matrix (n × p) which is the design matrix for an intercept and p − 1

fixed effect parameters. X contains the three input (emissions, wind speed, wind

direction) variables as well as combinations of the inputs such as squared terms,

interactions, etc. For i = 1, . . . , 100, each row of X is xi = (xi0, xi1, . . . , xip−1)

which contains an intercept term xi0 = 1, and specific values for each variable xij

where j = 1, . . . , p− 1;

• β = [β0, β1, . . . , βp−1]> is a vector (p×1) which contains the fixed effect parameter

estimates; and

• z ∼ N(0,Σ) is a vector (n×1), which has mean zero (n×1) and variance-covariance

matrix Σ (n×n). Σ is built using different covariance models (which will be used

interchangeably with kernels for the rest of this chapter).

Σ is built on stationary kernels, which only depend on the distance (h) between two

points xi and xj . For higher than 1-dimensional (1-d) input space, the tensor products

of 1-d kernels are used. For this example, the covariance has general form:

Σ(h) = σ2
d∏

k=1

g(hk,θk) + λ2 , (5.2)

where
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• σ2 is the partial sill;

• g(·) is a function of distance; and

• λ2 is the nugget effect.

From the DiceKriging package, four simplified versions of the Matérn function (Sub-

section 2.3.1) will be compared as recommended by [63] - the Matérn with parameter

ν = 1
2 called the exponential, the Matérn with parameter ν = 3

2 , the Matérn with

parameter ν = 5
2 and the Matérn with parameter ν = ∞, commonly referred to as the

Gaussian. The four kernels are presented below for the 1-d case:

• Matérn with ν=
1

2
is g(h, θ) = exp

(
− |h|θ

)
, which gives:

Cov(zi, zj) = σ2
∏p
k=1

[
exp

(
− ||xik−xjk||θk

)]
+ λ2;

• Matérn with ν=
3

2
is g(h, θ) =

(
1 +

√
3|h|
θ

)
exp

(
−
√

3|h|
θ

)
, from where:

Cov(zi, zj) = σ2
∏p
k=1

[(
1 +

√
3||xik−xjk||

θk

)
exp

(
−
√

3||xik−xjk||
θk

)]
+ λ2;

• Matérn with ν=
5

2
is g(h, θ) =

(
1 +

√
5|h|
θ + 5h2

3θ2

)
exp

(
−
√

5|h|
θ

)
. Hence:

Cov(zi, zj) = σ2
∏p
k=1

[(
1 +

√
5||xik−xjk||

θk
+

5||xik−xjk||2
3θ2k

)
exp

(
−
√

5||xik−xjk||
θk

)]
+λ2;

and

• Matérn with ν=∞ is g(h, θ) = exp
(
− h2

2θ2

)
and therefore:

Cov(zi, zj) = σ2
∏p
k=1

[
exp

(
− ||xik−xjk||

2

2θ2k

)]
+ λ2.

In the multidimensional case, the hyperspatial range parameter has the form θ =

[θ1, . . . , θd]
> where d is the number of dimensions. The response vector y is assumed

to be normally distributed with mean X>β and covariance matrix Σ. The model is

estimated by evaluating the likelihood:

L(β, σ2,θ, λ2; y) =
1

(2π)
n
2 |Σ|

1
2

exp

(
−1

2
(y−Xβ)>Σ−1 (y−Xβ)

)
. (5.3)

In this case, the covariance matrix Σ is redefined through the correlation matrix R

(n×n) such that Σ = σ2R+λ2In. Let v = σ2 +λ2 be the total variance in the data and

α = σ2

σ2+λ2
is the proportion of variance explained in z. Hence, Rα = αR+(1−α)In can

be used to redefine the covariance matrix Σ = vRα. Therefore, closed form solutions

for β and v are expressed using θ and λ2:
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β̂ = (X>R−1
α X)−1X>R−1

α y , (5.4)

v̂ =
1

n
(y−Xβ̂)>R−1

α (y−Xβ̂) . (5.5)

However, θ and λ2 cannot be found explicitly and a numerical method should be applied.

In the DiceKriging pacage, the BFGS algorithm is used (Subsection 2.2.4). Using this

method of fitting GP models, the four different kernels will be compared using the in- and

out-of-sample RMSPE by creating a model for every station individually. Since DiceK-

riging does not provide a standard error estimate for the parameters, the GLS estimate

for the parameters’ standard error is used such that se(β̂) = diag

(√
σ2
(
X>R−1

α X
)−1
)

[78].

5.2 Modelling the individual stations in Aberdeen

In this section, different modelling techniques for the 2012 Aberdeen NO2 annual average

as simulated with ADMS-Urban are presented. The Anderson Drive monitoring station

was chosen to be presented in full due to its location being further away from the other

five stations, the models for which are summarised to avoid repetition.

5.2.1 Linear regression modelling of the Aberdeen data

The simplest model used is a linear regression (Subsection 2.2.1) with three covariates

- the three inputs (emissions, wind speed and wind direction) used to create the LHC

design. The distributions of the annual NO2 averages for each station were checked using

the boxplots in Figure 4.7 and it was found that for each station, the boxplot appears

symmetric and therefore, normality can be assumed. Therefore, a linear regression

model is fitted for each of the six monitoring stations individually. The aim is to find

the simplest model explaining the relationship between the covariates and the NO2

annual average at every station. For the modelling of all station, the wind direction

change is only 30◦, which is a small segment of a circle and can be treated as linear.

Anderson Drive

Before modelling is performed, a pairs plot (Figure 5.1) is used to check the relationships

between the response (the NO2 annual average as simulated by ADMS-Urban for An-

derson Drive) and the covariates (the percentage change in emissions and wind speed,



Chapter 5. Univariate modelling of the NO2 annual average using GP 124

and the degree change in wind direction for the different ADMS-Urban scenarios) as

well as between the covariates themselves. The top row of the pairs plot in Figure 5.1

shows that there appears to be a strong positive relationship between the simulated NO2

annual averages and emissions, whereas there appears to be a weak negative relationship

between the simulated values and wind speed. Furthermore, there is evidence for a very

weak positive linear relationship with wind direction. These conclusions are supported

by the Pearson correlation coefficients (see Subsection 2.1.2) with the response (and

their respective 95% CIs), which are 0.94 (0.90, 0.96) for emissions, -0.43 (-0.58, -0.25)

for wind speed, and 0.18 (-0.02, 0.36) for wind direction, which indicates there is no

significant relationship but the interval is almost entirely positive suggesting that the

relationship might be very weak and hard to capture.
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Figure 5.1: Pairs plot for the LHC inputs (emissions (% change), wind speed (%
change) and wind direction (◦ change)) and the NO2 annual average (µg m−3) from
the ninety-eight simulations from ADMS-Urban for the Anderson Drive station in Ab-

erdeen.

From the second and third rows of Figure 5.1, it is clear that there is no evidence of

relationships between any of the covariates as the points on all three plots appear to

be randomly scattered. This is further confirmed by the Pearson correlation coefficients
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(and their respective 95% CIs), which are -0.11 (-0.30, 0.09) for emissions and wind

speed, 0.13 (-0.07, 0.32) for emissions and wind direction and 0.11 (-0.09, 0.30) between

wind speed and wind direction. Zero lies in all three intervals, hence, there is no evidence

for multicollinearity. Hence, a model with the three covariates was fitted and Table 5.1

provides its summary. All three covariates are highly significant as all the p-values

are < 2e-16. The emissions estimate is positive, which indicates that the higher the

emissions for the year, the higher NO2 annual average concentration for the year. The

wind speed estimate is negative, which is expected based on the pairs plot in Figure

5.1, which indicates that the higher the wind speed in a year, the lower the NO2 annual

average concentration which is logical as the wind speed increases the dispersion of the

pollutants. The wind direction estimate is positive, which again is expected based on

the initial impressions from the pairs plots in Figure 5.1 and the Pearson correlation

coefficients. The positive coefficient is most likely due to the city outline around the

monitoring location.

Coefficient Estimate Stand. Error p-value

Intercept 31.36 0.02 < 2e-16

Emissions 0.08 0.0008 < 2e-16

Wind Speed -0.06 0.002 < 2e-16

Wind Direction 0.02 0.002 < 2e-16

Table 5.1: Summary of the linear regression for the NO2 annual averages (µg m−3)
from ADMS-Urban for Anderson Drive with emissions (% change), wind speed (%
change) and wind direction (◦ change) as covariates.

Lastly, the diagnostic plots for the model are presented in Figure 5.2. The diagnostic

plots indicate that the model is a good fit. The residuals vs. fitted values in plot a)

are randomly scattered and there is very small variation in the points as the residuals

range between -0.30 to 0.30. Furthermore, the points on the actual vs. fitted values plot

in b) are lying on the equivalence line y=x. The residuals on the qq-plot are lying on

the normality line indicating a good fit. The residuals are roughly symmetric as seen

in plot d). A Shapiro-Wilk test was performed and a p-value of 0.66 was estimated

indicating that normality is reasonable. Lastly, the plots with the residuals vs. each of

the covariates (emissions, wind speed and wind direction) in plots e), f) and g) show

random scatter of the points, evenly distributed around the zero line. The model has

R2
adj. = 99.28%, which also indicates very good fit. This result is not surprising given the

deterministic nature of ADMS-Urban and therefore, no further modelling is conducted

and this is the final model.
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Figure 5.2: Diagnostic plots for the linear regression for the NO2 annual averages (µg
m−3) from ADMS-Urban for Anderson Drive with emissions (% change), wind speed

(% change) and wind direction (◦ change) as covariates.

Errol Place

The model for the simulated NO2 annual average at Errol Place with the three covariates

is a good fit to the data based on the diagnostic plots (similar to the ones for the Anderson

Drive station in Figure 5.2) and R2
adj. = 99.10%. Hence, the final linear model only has

three covariates - the three inputs from the LHC. In a similar fashion to Anderson Drive,

the parameter estimates for the emissions and wind direction are positive, whereas the

parameter estimate for wind speed is negative.

King Street

In a similar way to the previous other two stations, at the King Street station, the

model with just three covariates is a good fit to the data (based on the diagnostics

plots similar to the ones in Figure 5.2) and has R2
adj. = 99.24%. Therefore, no further

covariates were added to the model. Once again, the parameter estimates for emissions

and wind direction are positive, whereas the wind speed parameter estimate is negative.

Market Street 2

The model for the Market Street 2 station with just three covariates is a good fit to the

data as indicated by the diagnostic plots (alike to the plots presented in Figure 5.2) and
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R2
adj. = 99.44%. No further covariates were used to model the response. The parameter

estimates are positive for emissions and wind direction and negative for the wind speed.

Union Street

The model with just the three inputs as covariates for Union Street has diagnostic plots

similar to those in Figure 5.2 and R2
adj. = 99.50% which indicate the model is a good fit

for the data. The parameter estimates are positive for emissions and wind direction but

negative for the wind speed.

Wellington Road

The Wellington Road model is the same as the model for the other five monitoring

stations in Aberdeen - the three inputs are significant and the diagnostic plots (similar

to the ones in Figure 5.2) indicate a good fit and R2
adj. = 99.27%. Again, similarly, to the

models for the other stations, the parameter estimates for emissions and wind direction

are positive, whereas the parameter estimate for wind speed in negative.

Overall Comparison

In Table 5.2, the in- and out-of sample RMSPE based on 10-fold CV are presented

for each of the six stations. The stations with lower NO2 annual average (Anderson

Drive, Errol Place and King Street) have smaller in- and out-of-sample performances.

The models for the other three stations (Market Street 2, Union Street and Wellington

Road) above the annual regulation of 40 µg m−3 have very similar performance which is

expected based on the boxplots. Similarly, as the RMSPE value increases, the 95% boot-

strap confidence intervals get wider. For all models, the RMSPE is very low indicating

almost perfect predictions.

Table 5.3 provides a summary of the parameter estimates and their respective standard

deviations for all six monitoring stations. From the table, it is clear that all parameters

are highly significant with very small p-values indicating that all parameters are statisti-

cally significant. For all models, the emissions parameter is positive which is logical - as

emissions increase so does the NO2 annual average. On the other hand, all wind speed

parameters are negative which is also logical - as wind speed increases, the dispersion of

the pollutants is faster and the NO2 annual average is reduced. The wind direction terms

are all positive, therefore as the winds become more western prevailing, the NO2 annual

average is increased, which is logical given Aberdeen’s geographical location. Overall,
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Station In Out

Anderson Drive
0.17

(0.15, 0.19)
0.18

(0.16, 0.21)

Errol Place
0.12

(0.11, 0.14)
0.13

(0.11, 0.15)

King Street
0.28

(0.25, 0.32)
0.30

(0.26, 0.34)

Market Street 2
0.43

(0.38, 0.48)
0.45

(0.40, 0.51)

Union Street
0.43

(0.37, 0.50)
0.46

(0.39, 0.52)

Wellington Road
0.44

(0.39, 0.49)
0.46

(0.41, 0.52)

Table 5.2: Comparing the predictive performance of the preferred linear regressions
(with the three inputs as covariates) for predicting the ADMS-Urban simulations runs
for the NO2 annual average (µg m−3) for all monitoring stations in Aberdeen. The
95% bootstrapping intervals are provided in brackets.

all models indicate a very good fit with R2
adj. values of about 99% and no issues on the

diagnostic plots.

Station Coefficient Estimate Stand. Error p-value

Anderson Drive

Intercept 31.36 0.02 < 2e-16

Emissions 0.08 0.0008 < 2e-16

Wind Speed -0.06 0.002 < 2e-16

Wind Direction 0.02 0.002 < 2e-16

Errol Place

Intercept 28.12 0.01 < 2e-16

Emissions 0.05 0.0005 < 2e-16

Wind Speed -0.05 0.001 < 2e-16

Wind Direction 0.01 0.001 9e-15

King Street

Intercept 36.04 0.03 < 2e-16

Emissions 0.12 0.001 < 2e-16

Wind Speed -0.10 0.002 < 2e-16

Wind Direction 0.05 0.003 < 2e-16

Market Street 2

Intercept 47.48 0.05 < 2e-16

Emissions 0.22 0.002 < 2e-16

Wind Speed -0.17 0.004 < 2e-16

Wind Direction 0.06 0.005 < 2e-16

Union Street

Intercept 49.07 0.05 < 2e-16

Emissions 0.23 0.002 < 2e-16

Wind Speed -0.19 0.004 < 2e-16

Wind Direction 0.02 0.005 0.0002

Wellington Road

Intercept 43.95 0.05 < 2e-16

Emissions 0.19 0.002 < 2e-16

Wind Speed -0.16 0.004 < 2e-16

Wind Direction 0.07 0.005 < 2e-16

Table 5.3: Summary of the linear regressions for the NO2 annual averages (µg m−3)
from ADMS-Urban for the six monitoring stations in Aberdeen with emissions (%
change), wind speed (% change) and wind direction (◦ change) as covariates.
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5.2.2 GP modelling of the Aberdeen data

In order to improve the quality of the predictions in terms of RMSPE and establish a

framework for handling non-deterministic simulation models, the GP models (as recom-

mended by [169]) for the simulated by ADMS-Urban NO2 annual average concentration

for each station individually are fitted using the DiceKriging package [165] in R [157].

GP are used to check whether estimating the correlation between the points in the LHC

space would improve the predictions. Four different kernels will be compared using the

in- and out-of-sample RMSPE on a 10-fold CV. Since the 3D variograms plots in Figure

4.11 did not show evidence of a nugget effect, the nugget effect for these GP models

is set to zero. As with the linear regression models, the Anderson Drive case will be

presented in full, whereas short summaries about the other stations will be provided in

order to avoid repetition.

Anderson Drive

Firstly, the exponential kernel is used for modelling the data. The model with just the

three inputs as covariates is presented in Table 5.4. The fixed effect parameter estimates

are very similar to those for the linear model shown in Table 5.1 but as expected the

standard error estimates are larger than those for the linear model in Table 5.1. The

estimated random effects are presented in Table 5.5. The hyperspatial range parameter

θ̂ estimates are quite high values (based on the observed span of the covariates) as

expected based on the individual variograms for Aberdeen in Figures 4.8, 4.9 and 4.10.

The variance is quite small at just 0.07. Lastly, the diagnostic plots for the model were

examined to assess the fit of the model to the data. The plots in Figure 5.3 indicate that

the model is a good fit. The residuals vs. fitted values plot in a) are randomly scattered.

Furthermore, the residuals vs. each variable plots in e), f) and g) are also randomly

scattered. The actual vs. fitted values plot in b) lie on the equivalence line indicating

the model predicts quite well. The normal qq-plot in plot c) indicates there are a few

outliers (also visible in the residuals plots in a), e), f) and g)) and hence, the tail points

are off the normality line. However, looking at the histogram of the residual values in

d), it appears that the residuals are normally distributed with just a few outliers above

0.25, which is also confirmed by a Shapiro-Wilk test with a p-value of 0.65. It has to be

noted that the overall variance in the residuals is reduced as the main cloud of residuals

lies in the interval -0.10 to 0.10 in comparison to the linear regression in Figure 5.2,

where the main cloud of the residuals are in the interval -0.25 to 0.25. Therefore, the

range of the residuals is too small to indicate a problem with the fit.
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Coefficient Estimate Stand. Error

Intercept 31.31 0.17

Emissions 0.08 0.003

Wind Speed -0.06 0.006

Wind Direction 0.02 0.006

Table 5.4: Summary of the fixed effect parameters from the GP model for the NO2

annual averages (µg m−3) from ADMS-Urban for Anderson Drive with emissions (%
change), wind speed (% change) and wind direction (◦ change) as covariates and an
exponential kernel.

θ̂Emissions θ̂Wind Speed θ̂Wind Direction σ̂2

98.16 46.16 59.55 0.07

Table 5.5: Summary of the hyperspatial range parameters and variance from the
GP regression for the NO2 annual averages (µg m−3) from ADMS-Urban for Anderson
Drive with emissions (% change), wind speed (% change) and wind direction (◦ change)
as covariates and an exponential kernel.
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Diagnostic plots for Anderson Drive exponential GP

Figure 5.3: Diagnostic plots for the GP model with an exponential kernel for the
NO2 annual averages (µg m−3) from ADMS-Urban for Anderson Drive with emissions

(% change), wind speed (% change) and wind direction (◦ change) as covariates.

Next, the Matérn 3
2 , the Matérn 5

2 and Gaussian kernels were also fitted and the in-

and out-of-sample predictive performance of the models is compared to the exponential

kernel predictive performance in Table 5.6. The in-sample prediction performance is

calculated using a leave-one-out validation, i.e. 98-fold CV. Overall, the four models

have very similar performance both in- and out-of-sample. The in-sample and out-of-

sample performance as well as the confidence intervals sometimes appear the same due

to rounding. The exponential kernel does provide the lowest out-of-sample performance,

with almost twice the reduction in comparison to the Matérn 5
2 which has the highest

out-of-sample prediction error. Based on the 95% bootstrap confidence intervals, the

difference between the exponential and the Matérn 3
2 kernels, and the Matérn 5

2 and
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Gaussian kernels are significant but within the pairs there is no statistically significant

difference. However, as the exponential kernel has slightly lower RMSPE, it is chosen

as the final model.

Model E+WS+WD

Kernel In Out

Exponential
0.08

(0.06, 0.11)
0.09

(0.06, 0.11)

Matérn 3
2

0.09
(0.06, 0.11)

0.10
(0.07, 0.12)

Matérn 5
2

0.17
(0.15, 0.19)

0.17
(0.15, 20)

Gaussian
0.16

(0.14, 0.18)
0.16

(0.14, 0.18)

Table 5.6: Comparing the predictive performance of the GP models under different
kernels for the ADMS-Urban simulations for the NO2 annual concentrations (µg m−3)
for the Anderson Drive station with emissions (% change), wind speed (% change) and
wind direction (◦ change) as covariates.

Errol Place

The predictive performance of the four kernels were compared for Errol Place. It was

found that the exponential kernel provides the lowest out-of-sample performance. The

hyperspatial range parameters are estimated to be θ̂ = [θ̂E = 92.64, θ̂WS = 36.39, θ̂WD =

73.05]> which indicates high correlation between the inputs as expected. Furthermore,

the variance estimate σ̂2 = 0.03. The estimates are higher than the ones for Anderson

Drive but still indicate that the measurement and random errors in the data are quite

small.

King Street

At the King Street station, the four different kernels again performed very similarly in-

and out-of-sample but the exponential kernel performed best. The correlation measured

between the inputs is measured as the hyperspatial range parameter is estimated as

θ̂ = [θ̂E = 82.25, θ̂WS = 29.79, θ̂WD = 83.43]> which indicates high correlation between

the inputs, although not as high as for the other stations. The variance estimate is

σ̂2 = 0.14 which suggests that the measurement and random errors left after modelling

the data are quite small.

Market Street 2

The best kernel for the Market Street 2 station was found to be the exponential kernel

based on the out-of-sample prediction power. The model estimates high correlation
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between the inputs with the hyperspatial range parameter θ̂ = [θ̂E = 89.65, θ̂WS =

38.48, θ̂WD = 66.12]>. The estimated variance is σ̂2 = 0.40 which is higher than the

models for the other stations and it suggests that the model does not perform as well as

the other models.

Union Street

For modelling the NO2 annual average from the ADMS-Urban simulations for the Union

Street station, the exponential kernel performed best in terms of prediction. The model

estimates high correlation between the inputs with hyperspatial range parameter θ̂ =

[θ̂E = 49.40, θ̂WS = 7.99, θ̂WD = 2934.23]>. The variance estimate is σ̂2 = 0.23.

Wellington Road

Lastly, the different kernels were compared on their predictive performance at Wellington

Road and the exponential kernel was found to perform best. The model estimates high

correlation between the inputs with hyperspatial range parameter estimates θ̂ = [θ̂E =

89.90, θ̂WS = 39.62, θ̂WD = 67.35]>. The variance estimate for the model is σ̂2 = 0.39.

5.2.3 Findings

In Table 5.7, the best models (both linear regression and GP) in terms of prediction

power are presented for each station. For all stations, the same three covariates were

used - the three inputs, i.e. emissions, wind speed and wind direction. These models are

very simplistic but parsimonious and the diagnostic plots suggests the models are a good

fit to the data. For all stations, both the in- and out-of-sample prediction performance

is better for the GP cases by about two times which indicates that the estimation of

the hyperspatial range parameters improves the predictive performance. The stations

with higher NO2 annual averages have larger in- and out-of-sample RMSPEs. It is

interesting to note that all GP models choose the exponential kernel. Therefore, it has

to be concluded that the different stations require the same level of smoothing. As

the exponential kernel is chosen, this suggests that the rougher surfaces seem to work

better for the Aberdeen data. Overall, both models have very small RMSPEs indicating

almost perfect predictions but the GP models RMSPEs are twice as small as the linear

regression ones. Furthermore, there is a clear statistical significant difference between

the linear models and the GP models performance based on the 95% RMSPE bootstrap

intervals. Therefore, the GP models are preferred.
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Station Model Covariates In Out

Anderson Drive LR E+WS+WD
0.17

(0.15, 0.19)
0.18

(0.16, 0.21)

GP Exponential E+WS+WD
0.08

(0.06, 0.11)
0.09

(0.06, 0.11)

Errol Place LR E+WS+WD
0.12

(0.11, 0.14)
0.13

(0.11, 0.15)

GP Exponential E+WS+WD
0.06

(0.04, 0.08)
0.06

(0.04, 0.08)

King Street LR E+WS+WD
0.28

(0.25, 0.32)
0.30

(0.26, 0.34)

GP Exponential E+WS+WD
0.13

(0.09, 0.18)
0.14

(0.10, 0.18)

Market Street 2 LR E+WS+WD
0.43

(0.38, 0.48)
0.45

(0.40, 0.51)

GP Exponential E+WS+WD
0.22

(0.15, 0.29)
0.23

(0.16, 0.30)

Union Street LR E+WS+WD
0.43

(0.37, 0.50)
0.46

(0.39, 0.52)

GP Exponential E+WS+WD
0.26

(0.18, 0.35)
0.28

(0.19, 0.37)

Wellington Road LR E+WS+WD
0.44

(0.39, 0.49)
0.46

(0.41, 0.52)

GP Exponential E+WS+WD
0.21

(0.14, 0.27)
0.21

(0.15, 0.28)

Table 5.7: Comparing the predictive performance of the linear regression and the
preferred GP model for predicting the ADMS-Urban simulations runs for the NO2

annual average (µg m−3) for all monitoring stations in Aberdeen with emissions (%
change), wind speed (% change) and wind direction (◦ change) as covariates.

Table 5.8 compares the fixed effect parameter estimates and their respective standard

errors from the linear regression and GP models. Overall, the parameter estimates for

all models are almost identical. The standard errors are larger for the GP exponential

models than the linear regressions as it is expected. This confirms that the fixed effects

parts of the two models are very similar and the differences in the prediction powers are

due to the additional information for the locations of the simulation scenarios within the

LHC sample space. The emissions for all models have positive estimates suggesting that

the higher the emissions, the higher the simulated NO2 annual averages. On the other

hand, the wind speed estimates are negative, which is logical as the higher the wind

speed, the faster the dispersion of pollutants resulting in lower simulated NO2 annual

averages. Lastly, the wind direction parameters are all positive indicating that more

western prevailing winds results in higher simulated NO2 annual averages.

5.3 Modelling the individual stations in Glasgow

In this section, different models for the 2015 Glasgow NO2 annual average as simu-

lated with ADMS-Urban are presented based on the example presented for Aberdeen in

Section 5.2.
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Station Coefficient
Estim.

LM
St. Error

LM
Estim.

GP
St. Error

GP

Anderson Drive

Intercept 31.36 0.02 31.31 0.17

Emissions 0.08 0.0008 0.08 0.003

Wind Speed -0.06 0.002 -0.06 0.006

Wind Direction 0.02 0.002 0.02 0.006

Errol Place

Intercept 28.12 0.01 28.07 0.11

Emissions 0.05 0.0005 0.05 0.002

Wind Speed -0.05 0.001 -0.05 0.004

Wind Direction 0.01 0.001 0.01 0.004

King Street

Intercept 36.04 0.03 36.01 0.23

Emissions 0.12 0.001 0.12 0.004

Wind Speed -0.10 0.002 -0.11 0.009

Wind Direction 0.05 0.003 0.05 0.007

Market Street 2

Intercept 47.48 0.05 47.33 0.40

Emissions 0.22 0.002 0.22 0.007

Wind Speed -0.17 0.004 -0.17 0.01

Wind Direction 0.06 0.005 0.06 0.01

Union Street

Intercept 49.07 0.05 49.45 0.20

Emissions 0.23 0.002 0.24 0.005

Wind Speed -0.19 0.004 -0.20 0.01

Wind Direction 0.02 0.005 0.02 0.002

Wellington Road

Intercept 43.95 0.05 43.84 0.40

Emissions 0.19 0.002 0.19 0.007

Wind Speed -0.16 0.004 -0.17 0.01

Wind Direction 0.07 0.005 0.07 0.01

Table 5.8: Summary of the linear regressions and GP exponential parameters for the
NO2 annual averages (µg m−3) from ADMS-Urban for the six monitoring stations in
Aberdeen with emissions (% change), wind speed (% change) and wind direction (◦

change) as covariates.

5.3.1 Linear regression modelling of the Glasgow data

The simplest model that is applied is a linear regression as presented in Subsection 2.2.1.

As seen in the boxplots in Figure 4.20, normality can be assumed for the distribution of

the NO2 annual averages for each station and a linear regression was fitted for each. In

its simplest version, each model takes the three inputs (emissions, wind speed and wind

direction) on the percentage variation scale from ADMS-Urban as covariates, and the

response is the NO2 annual average for each station. The modelling for Burgher Street

will be presented in full due to the different geographical location of the station. To

avoid repetition other stations modelling will be only be summarised.
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Burgher Street

Firstly, the inputs were checked for multicollinearity using a pairs plot in Figure 5.4 and

Pearson’s correlation coefficient (see Section 2.1.2). Looking at the top row of the pairs

plot, the NO2 annual averages from the ADMS-Urban simulations for Burgher Street

appear only correlated with emissions in which the points appear linearly correlated

but at closer inspection there is slight curvature. The points on the plots between the

response and wind speed and wind direction are randomly scattered. These conclusions

are supported by the Pearson correlation coefficient with the response (and their respec-

tive 95% CIs), which are 0.98 (0.96, 0.98) for emissions, -0.14 (-0.33, 0.05) for wind speed

and 0.03 (-0.17, 0.22) for wind direction. The correlation coefficients for wind speed and

wind direction are close to zero and their 95% CIs include zero, so there is no evidence

of correlation between the NO2 annual averages from the ADMS-Urban simulations for

Burgher Street and the wind speed and wind direction.
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Figure 5.4: Pairs plot for the LHC inputs (emissions (% change), wind speed (%
change) and wind direction (◦ change)) and the NO2 annual average (µg m−3) from
the one hundred simulations of ADMS-Urban for the Burgher Street monitoring station

in Glasgow.
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From the second and third rows of Figure 5.4, it is clear that there is no correlation

between the three covariates as the points are randomly scattered. This is further

confirmed by the Pearson correlation coefficients (and their respective 95% CIs) which

are: 0.03 (-0.17, 0.23) between emissions and wind speed, 0.00 (-0.19, 0.20) between

emissions and wind direction, and 0.19 (0.00, 0.37) for wind speed and wind direction.

The wind speed and wind direction correlation interval suggests there might be a weak

positive relationship as the lower end of the interval is zero which is hard to capture with

only one hundred observations, whereas the other two estimated correlation coefficients

are close to zero, which is almost the centre of their respective 95% CIs.

Since there is no evidence for multicollinearity, the model with all three covariates is

summarised in Table 5.9. All the covariates are significant as their p-values are smaller

than 0.05. As is expected, the emissions estimate is positive as the more emissions there

are, the higher the NO2 concentration is in the air. Similarly, the wind speed estimate

is expected to be negative as the wind speed increases, the emissions disperse faster and

the NO2 concentration is reduced. It is interesting that as the wind direction increases

so does the annual concentration. This is most likely related to the city outline near the

Burgher Street station. Lastly, the model has R2
adj. = 98.49% which suggests a good fit.

Coefficient Estimate Stand. Error p-value

Intercept 18.80 0.07 < 2e-16

Emissions 0.10 0.001 < 2e-16

Wind Speed -0.06 0.004 < 2e-16

Wind Direction 0.02 0.005 4.27e-06

Table 5.9: Summary of the linear regression for the NO2 annual averages (µg m−3)
from ADMS-Urban for Burgher Street with emissions (% change), wind speed (%
change) and wind direction (◦ change) as covariates.

Lastly, the diagnostic plots for the model are presented in Figure 5.5. The residual vs.

fitted values in plot a) form a concave parabola. A similar concave shape is seen in

the residual values vs. emissions in plot e), which suggests that a new model should be

refitted with a square term of the emissions. Moreover, the diagnostic plots for the other

seven stations exhibit similar characteristics of bad fit suggesting that a squared term

for emissions should be added to all models.

The refitted model with squared emissions for Burgher Street is summarised in Table

5.10. Once again, all the covariates are highly significant as the p-values are much

smaller than 0.05. The estimate for emissions is slightly smaller in comparison to the

model with just three covariates presented in Table 5.9 but this is expected given that a

square term has been added. The squared emissions term has a negative estimate which

is to be expected given the concave shape of the parabola in Figure 5.5 plots a) and

e). The estimates for wind speed and wind direction have not changed. However, the
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Diagnostic plots for Burgher Street LM

Figure 5.5: Diagnostic plots for the linear regression for the NO2 annual averages (µg
m−3) from ADMS-Urban for Burgher Street with emissions (% change), wind speed

(% change) and wind direction (◦ change) as covariates.

standard error for both has been reduced in comparison to the ones for the model with

three covariates in Table 5.9. The model has R2
adj. = 99.20%, which is higher than the

baseline model.

Coefficient Estimate Stand. Error p-value

Intercept 18.69 0.05 < 2e-16

Emissions 0.08 0.003 < 2e-16

Emissions2 -0.0003 0.00003 6.22e-15

Wind Speed -0.06 0.003 < 2e-16

Wind Direction 0.02 0.003 1.10e-07

Table 5.10: Summary of the linear regression for the NO2 annual averages (µg m−3)
from ADMS-Urban for Burgher Street with emissions (% change), emissions squared,
wind speed (% change) and wind direction (◦ change) as covariates.

Next, the diagnostic plots for the linear regression with emissions, emissions squared,

wind speed and wind direction for covariates are presented in Figure 5.6. The residual

vs. fitted values in plot a) exhibit a butterfly pattern which can also be seen in plots e)

and f). Since there are issues with both plots e) and f), adding an interaction term is

one possible solution.

Hence, a model with the squared term for emissions and an interaction for emissions and

wind speed for Burgher Street was fitted. The model has R2
adj. = 99.80%. A summary

for that model is provided in Table 5.11. All variables are highly statistically significant.

The standard errors for all estimates are smaller in comparison to those in Table 5.10.

Additionally, the estimate for wind direction has not changed in comparison to the

model presented in Table 5.10. The diagnostic plots for the model with five covariates

are examined in Figure 5.7. The plots show the model is a good fit for the data in
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Figure 5.6: Diagnostic plots for the linear regression for the NO2 annual averages
(µg m−3) from ADMS-Urban for Burgher Street with emissions (% change), emissions

squared, wind speed (% change) and wind direction (◦ change) as covariates.

comparison to the previous plots. The residual vs. fitted values in plot a), as well as the

residual values vs. the three input variables (emissions, wind speed, wind direction) in

plots e), f) and g) respectively, show that the points are randomly scattered indicating

that there is no issues with the fit. The actual vs. fitted values in plot b) has all points

lying on the equivalence line which indicates the model is a good fit to the data. The

normal qq-plot has the points lying on the normality line also suggesting a good fit.

Lastly, the histogram of the residual values in plot d) is relatively symmetric. This is

further confirmed with a Shapiro-Wilk test, where the p-value is 0.83 and thus, failing

to reject the null hypothesis that the residuals are normally distributed.

Coefficient Estimate Stand. Error p-value

Intercept 18.72 0.03 < 2e-16

Emissions 0.08 0.001 < 2e-16

Emissions2 -0.0002 0.00001 < 2e-16

Wind Speed -0.08 0.002 < 2e-16

Emissions*Wind Speed -0.0007 0.00004 < 2e-16

Wind Direction 0.02 0.002 < 2e-16

Table 5.11: Summary of the linear regression for the NO2 annual averages (µg m−3)
from ADMS-Urban for Burgher Street with emissions (% change), emissions squared,
wind speed (% change), an interaction between emissions and wind speed, and wind
direction (◦ change) as covariates.

The three models with different numbers of covariates for the ADMS-Urban simulations

for Burgher Street are compared in terms of predictive performance in- and out-of-sample

based on RMSPE. The results are summarised in Table 5.12. Both in- and out-of-sample

agree that the model with five covariates is the best model as the RMSPE values for
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Figure 5.7: Diagnostic plots for the linear regression for the NO2 annual averages
(µg m−3) from ADMS-Urban for Burgher Street with emissions (% change), emissions
squared, wind speed (% change), an interaction between emissions and wind speed, and

wind direction (◦ change) as covariates.

both are the lowest. The agreement between the in- and out-of-sample RMSPE indicates

that the models do not overfit. Furthermore, the 95% bootstrap intervals indicate that

differences between the models are significant as there is no overlap between the inter-

vals. Therefore, the best linear regression for the NO2 annual average concentration for

Burgher Street in terms of prediction performance is the model with the three inputs,

emissions squared and the interaction between emissions and wind speed.

Model In Out

Three covariates
0.42

(0.37, 0.48)
0.44

(0.38, 0.50)

Four covariates
0.31

(0.26, 0.36)
0.32

(0.27, 0.38)

Five covariates
0.15

(0.13, 0.17)
0.16

(0.14, 0.18)

Table 5.12: Comparing the predictive performance of the different linear regressions
for ADMS-Urban simulations runs for the NO2 annual concentrations (µg m−3) for the
Burgher Street station. The 95% bootstrap intervals for the RMSPE are also included.

Byres Road

For all models for the simulated NO2 annual average at Byres Road, wind direction is

not a significant term and was removed from all models. However, the squared emissions

and the interaction between emissions and wind speed are significant and improve the

model fit. The in- and out-of-sample RMSPE show that adding these additional terms

improves the predictions and the best model for predictions has the two additional terms.
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The final model has R2
adj. = 99.96%. The final diagnostic plots are very similar to those

in Figure 5.7 and hence, omitted to avoid repetition.

Central Station

The Central Station case is quite similar to the Byres Road one as for all models of the

simulated NO2 annual average for Central Station, wind direction is never a statistically

significant term. Hence, wind direction is not used for modelling. However, the squared

emissions term and the interaction between emissions and wind speed are significant

and improve the diagnostic plots. The in- and out-of-sample RMSPE agreed that the

best prediction model has emissions squared and an interaction between emissions and

wind speed in addition to just emissions and wind speed. The final model has R2
adj. =

99.91%. Again, the final diagnostic plots are very similar to those in Figure 5.7 and

hence, omitted to avoid repetition.

Dumbarton Road

When modelling the NO2 annual average for Dumbarton Road, all inputs are significant.

Furthermore, the diagnostic plots suggest that a squared emissions term and an inter-

action between emissions and wind speed should be added to the model. The in- and

out-of-sample RMSPE indicated that the model with the squared term and interaction

is the best out of the three models in terms of prediction powers. The final model has

R2
adj. = 99.92% and the its diagnostic plots are very similar to those in Figure 5.7 and

hence, omitted to avoid repetition.

Great Western Road

Initially, when modelling the NO2 annual averages for Great Western Road, wind di-

rection is not significant until the squared term for emissions is added. The in- and

out-of-sample RMSPE for the NO2 annual concentration at Great Western Road showed

that the model with five covariates has the best prediction powers in comparison to the

others. The final model has R2
adj. = 99.95% and the diagnostic plots are very similar to

those in Figure 5.7 and therefore, omitted to avoid repetition.

High Street

In the models for the NO2 annual average concentration for High Street, wind direc-

tion only becomes significant after the squared emissions and the interaction between
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emissions and wind speed are added to improve the fit based on the diagnostic plots.

Both the in- and out-of-sample RMSPE agree that the best model has both the squared

emissions term and the interaction between emissions and wind speed. The final model

has R2
adj. = 99.95% and its diagnostic plots are very similar to those in Figure 5.7 and

as before are omitted to avoid repetition.

Townhead

Similarly to High Street, wind direction is only significant after the squared emissions

term and the interaction between emissions and wind speed are added to the models for

the simulated NO2 annual average for the Townhead monitoring station. The models

were compared on their in- and out-of-sample predictive power, which indicated that

the model with five covariates is the best one in terms of predictive power. The final

model has R2
adj. = 99.94%. The diagnostic plots of the final model are very similar to

those in Figure 5.7 and hence, omitted to avoid repetition.

Waulkmillglen Reservoir

In the case for the Waulkmillglen Reservoir, all of the three ADMS-Urban inputs are

significant. As with all other models, a squared emissions and an interaction between

emissions and wind speed terms are added to improve the fit. Lastly, the in- and out-

of-sample predictive error for the models fitted were compared and the model with five

covariates was chosen as the best prediction model as it has the most accurate predictions

in comparison to the other models. The final model has R2
adj. = 98.94%. Its diagnostic

plots are very similar to those in Figure 5.7 and therefore, omitted to avoid repetition.

Overall Comparison

In Table 5.13, the in- and out-of-sample RMSPE for the final model for every station are

presented. All models have five covariates - emissions, emissions squared, wind speed,

an interaction between wind speed, and wind direction. There are two stations (Byres

Road and Central Station) for which wind direction is not significant and has not been

included in the final model. The models for which wind direction is not significant are

marked by an asterisk in Table 5.13. Both the in- and out-of-sample measurements are

lowest for Waulkmillglen Reservoir but it has to be noted that simulated NO2 annual

averages for this station are smaller than the simulated values for the other stations as

seen in Section 4.2. This is further confirmed by the fact that both the in- and out-

of-sample predictive errors are highest for Central Station, where the highest simulated
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NO2 annual concentrations are observed. Furthermore, the 95% bootstrap intervals are

much wider for Central Station in comparison to the other stations. The RMSPE for

all other stations are all similar as expected. Overall, both the in- and out-of-sample

RMSPE values are very close to zero indicating an almost perfect prediction.

Station In Out

Burgher Street
0.15

(0.13, 0.17)
0.16

(0.14, 0.18)

Byres Road *
0.16

(0.14, 0.18)
0.17

(0.15, 0.19)

Central Station *
0.50

(0.43, 0.59)
0.53

(0.45, 0.62)

Dumbarton Road
0.27

(0.23, 0.31)
0.29

(0.24, 0.33)

Great Western Road
0.19

(0.16, 0.21)
0.20

(0.17, 0.20)

High Street
0.19

(0.16, 0.21)
0.20

(0.17, 0.23)

Townhead
0.16

(0.14, 0.18)
0.17

(0.14, 0.19)

Waulkmillglen Reservoir
0.05

(0.04, 0.06)
0.05

(0.04, 0.06)

Table 5.13: Comparing the predictive performance of the preferred linear regressions
(with all five covariates) for predicting the ADMS-Urban simulations for the NO2 annual
average (µg m−3) for all monitoring stations in Glasgow. An asterisk indicates that
wind direction was not included in the model. The 95% bootstrap intervals for RMSPE
are also included.

Tables 5.14 and 5.15 summarise the parameter estimates and their respective standard

deviations for the eight monitoring stations in Glasgow. All parameters are highly

significant as seen from the p-values. For all models, the emissions parameter is positive

as expected since the more emissions, the larger the pollutant concentrations. On the

other hand, the emissions squared terms are all negative. The wind speed parameters

are negative for all monitoring stations which follows the logic that the higher the wind

speed, the faster dispersion of pollutants in the air. The interaction between emissions

and wind speed has also negative parameter estimates. The wind direction parameter

is where there are differences between the stations. For five of the stations (Dumbarton

Road, Great Western Road, High Street, Townhead and Waulkmillglen Reservoir), wind

direction has negative estimates which means eastern prevailing winds result in the

lowering of pollutant concentrations, whereas for Burgher Street the estimate is positive

and for Byres Road and Central Station, wind direction was found not be statistically

significant. Overall, the models appear to be a very good fit for the data with R2
adj.

values of about 99% and no issues on the diagnostic plots.
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Station Coefficient Estimate Stand. Error p-value

Burgher Street

Intercept 18.72 0.03 < 2e-16

Emissions 0.08 0.001 < 2e-16

Em2 -0.0002 0.00001 < 2e-16

Wind Speed -0.08 0.002 < 2e-16

Em*WS -0.0007 0.00004 < 2e-16

Wind Direction 0.02 0.002 < 2e-16

Byres Road

Intercept 34.06 0.03 < 2e-16

Emissions 0.20 0.001 < 2e-16

Em2 -0.001 0.00002 < 2e-16

Wind Speed -0.20 0.002 < 2e-16

Em*WS -0.002 0.00004 < 2e-16

Wind Direction

Central Station

Intercept 63.19 0.08 < 2e-16

Emissions 0.35 0.004 < 2e-16

Em2 -0.002 0.00005 < 2e-16

Wind Speed -0.33 0.007 < 2e-16

Em*WS -0.003 0.0001 < 2e-16

Wind Direction

Dumbarton Road

Intercept 37.65 0.04 < 2e-16

Emissions 0.23 0.002 < 2e-16

Em2 0.0006 0.00003 < 2e-16

Wind Speed -0.23 0.004 < 2e-16

Em*WS -0.002 0.00007 < 2e-16

Wind Direction -0.05 0.003 < 2e-16

Table 5.14: Summary of the linear regressions for the NO2 annual averages (µg
m−3) from ADMS-Urban for four monitoring stations (Burgher Street, Byres Road,
Central Station and Dumbarton Road) in Glasgow with emissions (% change), emissions
squared, wind speed (% change), an interaction for emissions and wind speed, and wind
direction (◦ change) as covariates.

5.3.2 GP modelling of the Glasgow data

Applying the DiceKriging package [165] in R [157], GP models were fitted (as rec-

ommended by [169]) for the simulated by ADMS-Urban NO2 annual average for each

of the eight monitoring stations in Glasgow to check whether estimating the correla-

tions between the points in the LHC improves the predictions in terms of RMSPE. Four

different kernels are applied to account for the correlations between the scenarios and

are compared using in- and out-of-sample prediction errors. As the 3D variograms in

Figure 4.24 show no evidence of a nugget effect, the nugget is set to zero. Based on

the Aberdeen models, an upper boundary limit of 1000 is set for the hyperspatial range

parameters. The value of the boundary limit is chosen as it is much larger than observed

ranges. As with all other subsections, the modelling for one monitoring station, Burgher

Street, will be presented in full to avoid repetition.
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Station Coefficient Estimate Stand. Error p-value

Great Western Road

Intercept 33.73 0.03 < 2e-16

Emissions 0.19 0.002 < 2e-16

Em2 -0.0006 0.00002 < 2e-16

Wind Speed -0.19 0.003 < 2e-16

Em*WS -0.002 0.00005 < 2e-16

Wind Direction -0.02 0.002 5.82e-14

High Street

Intercept 35.42 0.03 < 2e-16

Emissions 0.19 0.002 < 2e-16

Em2 -0.0008 0.00002 < 2e-16

Wind Speed -0.20 0.003 < 2e-16

Em*WS -0.002 0.00005 < 2e-16

Wind Direction -0.006 0.002 < 2e-16

Townhead

Intercept 29.37 0.03 < 2e-16

Emissions 0.14 0.001 < 2e-16

Em2 -0.0007 0.00002 < 2e-16

Wind Speed -0.16 0.002 < 2e-16

Em*WS -0.001 0.00004 < 2e-16

Wind Direction -0.006 0.002 0.005

Waulkmillglen Reservoir

Intercept 9.75 0.08 < 2e-16

Emissions 0.01 0.0004 < 2e-16

Em2 -0.00003 0.000005 1.74e-07

Wind Speed -0.01 0.0007 < 2e-16

Em*WS -0.0002 0.00001 < 2e-16

Wind Direction -0.007 0.0006 < 2e-16

Table 5.15: Summary of the linear regressions for the NO2 annual averages (µg m−3)
from ADMS-Urban for four monitoring stations (Great Western Road, High Street,
Townhead and Waulkmillglen Reservoir) in Glasgow with emissions (% change), emis-
sions squared, wind speed (% change), an interaction for emissions and wind speed,
and wind direction (◦ change) as covariates.

Burgher Street

Firstly, the exponential kernel is tested. The first model only takes the three inputs,

which are summarised in Table 5.16. The parameter estimates are almost identical to

the ones for the linear regression with three inputs as presented in Table 5.9 but the

standard error estimates are increased as expected due to the GLS fit. The estimates for

the three hyperspatial range parameters are presented in Table 5.17. The high values

suggests that the random effects are highly correlated in the input space. Lastly, the

diagnostic plots for the model were examined from Figure 5.8. Overall, all plots indicate

a good fit except for the histogram and qq-plot of the residuals in plots c) and d),

dominated by the deterministic nature of ADMS-Urban. The tails are quite heavy on

both ends, although the points only span from -0.25 to 0.3. Additionally, a Shapiro-Wilk

test was performed and a p-value of 0.06 indicating that there is no evidence for non-

normality of the residuals. However, to check if the fit could be improved, the squared
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emissions term is added based on the prior knowledge from the linear regressions.

Coefficient Estimate Stand. Error

Intercept 18.59 0.30

Emissions 0.10 0.003

Wind Speed -0.05 0.009

Wind Direction 0.02 0.004

Table 5.16: Summary of the fixed effect parameters from the GP model for the NO2

annual averages (µg m−3) from ADMS-Urban for Burgher Street with emissions (%
change), wind speed (% change) and wind direction (◦ change) as covariates and an
exponential kernel.

θ̂Emissions θ̂Wind Speed θ̂Wind Direction σ̂2

104.86 50.12 312.01 0.16

Table 5.17: Summary of the hyperspatial range parameters and variance from the GP
model for the NO2 annual averages (µg m−3) from ADMS-Urban for Burgher Street
with emissions (% change), wind speed (% change) and wind direction (◦ change) as
covariates and an exponential kernel.
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Figure 5.8: Diagnostic plots for the GP model for the NO2 annual averages (µg
m−3) from ADMS-Urban for Burgher Street with emissions (% change), wind speed

(% change) and wind direction (◦ change) as covariates and an exponential kernel.

The model with four covariates (the three inputs from the LHC and the emissions terms

squared) has all terms significant as seen in Table 5.18. Interestingly, due to adding the

emissions squared term, the range parameters in θ̂ have changed as seen in Table 5.19 -

the value for emissions has remained the same, whereas those for wind speed and wind

direction have decreased. The variance estimate σ̂2 has been reduced. The diagnostic

plots for the model, in Figure 5.9, are quite similar to the ones for the model with just

three covariates in Figure 5.8. Taking into account that in the linear regression case, the

diagnostic plots improved the most after adding an interaction term between emissions

and wind speed so that term will be added to check if this would improve the fit.
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Coefficient Estimate Stand. Error

Intercept 18.75 0.23

Emissions 0.08 0.005

Emissions2 -0.0002 0.00005

Wind Speed -0.05 0.008

Wind Direction 0.02 0.004

Table 5.18: Summary of the fixed effect parameters for the GP model for the NO2

annual averages (µg m−3) from ADMS-Urban for Burgher Street with emissions (%
change), emissions squared, wind speed (% change) and wind direction (◦ change) as
covariates and an exponential kernel.

θ̂Emissions θ̂Wind Speed θ̂Wind Direction σ̂2

104.88 32.33 203.64 0.10

Table 5.19: Summary of the hyperspatial range parameters and variance from the
GP model for the NO2 annual averages (µg m−3) from ADMS-Urban for Burgher
Street with emissions (% change), emissions squared, wind speed (% change) and wind
direction (◦ change) as covariates and an exponential kernel.
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Figure 5.9: Diagnostic plots for the GP model for the NO2 annual averages (µg m−3)
from ADMS-Urban for Burgher Street with emissions (% change), emissions squared,
wind speed (% change) and wind direction (◦ change) as covariates and an exponential

kernel.

The model with five covariates (the three LHC inputs with emissions squared and an

interaction between emissions and wind speed) has all covariates significant as seen

in Table 5.20. The estimates are very similar to the ones from the linear regression

presented in Table 5.11. The values for the hyperspatial range parameters are presented

in Table 5.21. In this case, the emissions range parameter has increased in value, the

wind speed one has remained the same, and the wind direction range parameter has

decreased. The variance is reduced in comparison to the model with four covariates.

The diagnostic plots in Figure 5.10 show an improvement as the residuals are now
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within the range -0.2 to 0.2 and although the qq-plot in part c) looks like the points are

off the tails, the range is too small to indicate a problem with the fit. A Shapiro-Wilk

test was performed and it was found that the residuals follow the normal distribution.

Coefficient Estimate Stand. Error

Intercept 18.80 0.23

Emissions 0.08 0.005

Emissions2 -0.0002 0.00005

Wind Speed -0.08 0.0001

Emissions*Wind Speed -0.0008 0.00002

Wind Direction 0.02 0.004

Table 5.20: Summary of the fixed effect parameters of the GP model for the NO2

annual averages (µg m−3) from ADMS-Urban for Burgher Street with emissions (%
change), emissions squared, wind speed (% change), an interaction between emissions
and wind speed, and wind direction (◦ change) as covariates and an exponential kernel.

θ̂Emissions θ̂Wind Speed θ̂Wind Direction σ̂2

154.01 38.13 72.94 0.04

Table 5.21: Summary of the hyperspatial range parameters and variance from the GP
model for the NO2 annual averages (µg m−3) from ADMS-Urban for Burgher Street
with emissions (% change), emissions squared, wind speed (% change), an interaction
between emissions and wind speed, and wind direction (◦ change) as covariates and an
exponential kernel.
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Diagnostic plots for Burgher Street exponential GP Em2 + Em*WS

Figure 5.10: Diagnostic plots for the GP model for the NO2 annual averages (µg m−3)
from ADMS-Urban for Burgher Street with emissions (% change), emissions squared,
wind speed (% change), an interaction between emissions and wind speed, and wind

direction (◦ change) as covariates and an exponential kernel.

Lastly, the models were compared based on their prediction power as measured by both

in- and out-of-sample RMSPE. In Table 5.22, it appears that the models with three

and four covariates have almost the same prediction error estimates both in- and out-

of-sample. Based on the 95% bootstrap intervals for the RMSPE, there is a statistically
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significant difference between the 3 and 5 covariates models. Therefore, the five covariate

model is performing better as the RMSPE values are the smallest. It has to be noted

that both the in- and out-of-sample prediction errors for all three GP models are much

smaller than the ones from the linear regression in Table 5.12 indicating that the GP

models are performing better as accounting for the correlation between the inputs is

improving the prediction power of the models.

Model In Out

Three covariates
0.07

(0.06, 0.09)
0.09

(0.07, 0.10)

Four covariates
0.07

(0.05, 0.09)
0.08

(0.06, 0.09)

Five covariates
0.05

(0.04, 0.06)
0.06

(0.04, 0.07)

Table 5.22: Comparing the predictive performance of the different GP models for
ADMS-Urban simulations runs for the NO2 annual concentrations (µg m−3) for the
Burgher Street station under the exponential kernel. 95% bootstrap confidence intervals
for the RMSPEs are also provided.

The models under different kernels are very similar so they are omitted for brevity. For

all kernels, the in- and out-of-sample RMSPE for all models are presented in Table

5.23. For short, the 3 covariate model has emissions, wind speed and wind direction;

the 4 covariate model has emissions, emissions squared, wind speed and wind direction;

and the 5 covariate model has emissions, emissions squared, wind speed, an interaction

between emissions and wind speed, and wind direction as covariates. The overall best

kernel is the exponential one with almost identical performance irrelevant of the number

of covariates. Furthermore, the differences between the different kernels in terms of RM-

SPE are small and not statistically significant based on the overlapping 95% bootstrap

confidence intervals. Hence, it appears that the model is invariant to kernel choice. It is

interesting that for the Matérn 5
2 kernels, the model with 4 covariates performs better

than the model with 5 covariates suggesting that having 5 covariates might be an overfit.

The diagnostic plots for all the models with different kernels are similar to those of the

exponential ones in Figures 5.8, 5.9 and 5.10 and therefore, these plots are omitted to

avoid repetition. However, the exponential kernel is the most numerically stable as there

are singularity issues with the LHC input space for the three other kernels when esti-

mating the hyperspatial range parameters. Therefore, although the exponential kernel

does not provide the lowest RMSPE, it is chosen as the final model.

Byres Road

In the Byres Road case, the best kernel in terms of in- and out-of-sample predictive

power was again the exponential. Although in the linear model for Byres Road the
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3 covariates 4 covariates 5 covariates

Kernel In Out In Out In Out

Exponential
0.07

(0.06, 0.09)
0.09

(0.07, 0.10)
0.07

(0.05, 0.09)
0.08

(0.06, 0.09)
0.05

(0.04, 0.06)
0.06

(0.04, 0.07)

Matérn 3
2

0.08
(0.07, 0.09)

0.10
(0.08, 0.12)

0.08
(0.06, 0.10)

0.09
(0.07, 0.11)

0.07
(0.06, 0.09)

0.08
(0.06, 0.10)

Matérn 5
2

0.06
(0.04, 0.08)

0.07
(0.06, 0.08)

0.06
(0.05, 0.07)

0.07
(0.06, 0.09)

0.07
(0.06, 0.09)

0.15
(0.11, 0.20)

Gaussian
0.10

(0.07, 0.13)
0.12

(0.09, 0.15)
0.09

(0.07, 0.10)
0.11

(0.09, 0.13)
0.08

(0.06, 0.09)
0.09

(0.08, 0.10)

Table 5.23: Comparing the predictive performance of the GP models under different
kernels for the ADMS-Urban simulations for the NO2 annual concentrations (µg m−3)
for the Burgher Street station. 95% bootstrap confidence intervals for the RMSPEs are
also provided.

wind direction was not significant, it was included in these models as wind direction

is important to identify the location of the scenario in the LHC space. It was found

that wind direction improves the prediction power of the models. This indicates that

the linear regression model has failed to capture the importance of wind direction for

the station at Byres Road. The diagnostic plots are very similar to Figure 5.10 and

are omitted for brevity. The final model has hyperspatial range parameter estimates

θ̂ = [θ̂E = 111.39, θ̂WS = 27.50, θ̂WD = 1000.00]> which indicates high correlation

between the input variables. It has to be noted that the wind direction hyperspatial

range parameter is very large and reaches a boundary value which highlights the problem

with estimating the effect of wind direction at this monitoring station. Nevertheless, the

variance estimate is σ̂2 = 0.03 which is quite low and indicates a good fit.

Central Station

For the Central Station case, wind direction was again included in the models as it

is important to identify the LHC location of the different scenarios, even though the

parameter was not significant in the linear model. Different kernels were compared

based on the predictive performance and the best model has exponential kernel. The

diagnostic plots are very similar to Figure 5.10 and hence, omitted. The final model has

hyperspatial range parameter estimates θ̂ = [θ̂E = 60.96, θ̂WS = 69.30, θ̂WD = 1000.00]>

which indicates high correlation between the input variables. As with Byres Road, the

hyperspatial range parameter for wind speed reaches a boundary value highlighting the

problems with estimating the effect of wind direction at this station. The variance

estimate is σ̂2 = 0.25 which is higher than the previous monitoring station but not

surprising given the much larger simulated NO2 annual averages by ADMS-Urban for

Central Station.
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Dumbarton Road

For the Dumbarton Road monitoring station, the different kernels for GP models were

compared and the exponential kernel provided the best prediction. The best model has

five covariates as all other models for the other stations. The diagnostic plots for the

final models are very similar to those in Figure 5.10 and therefore, omitted to avoid

repetition. The hyperspatial range parameter estimates are θ̂ = [θ̂E = 88.19, θ̂WS =

76.76, θ̂WD = 60.04]> indicating high correlation between the inputs and the variance

estimate is σ̂2 = 0.11.

Great Western Road

From the predictive performance of the different kernels at Great Western Road, it

was clear that the models are very similar and invariant to the choice of kernel but

the exponential kernel has the lowest RMSPE and is chosen as the final model. The

diagnostic plots are very similar to those in Figure 5.10 and are omitted for brevity. The

model has measured high correlation between the inputs as indicated by the hyperspatial

range parameter estimates θ̂ = [θ̂E = 92.72, θ̂WS = 42.70, θ̂WD = 107.66]>. The variance

estimate is σ̂2 = 0.05.

High Street

From the predictive performance of the GP models with different kernels at High Street,

the best model was found to be the one with all five covariates and the exponential

kernel. The diagnostic plots for the model are similar to those in Figure 5.10 and hence,

omitted. The correlation between the inputs is quite high as the hyperspatial range

parameter estimates are θ̂ = [θ̂E = 85.98, θ̂WS = 32.14, θ̂WD = 290.09]>. The variance

estimate is σ̂2 = 0.04 which is quite low and indicates a good fit.

Townhead

The predictive performance of the GP models with various kernels were compared and

the best prediction model for Townhead is the model with the five covariates and the

exponential kernel. The diagnostic plots are similar to those in Figure 5.10 and hence,

omitted. The parameter estimates for the hyperspatial range parameter estimates are

θ̂ = [θ̂E = 99.39, θ̂WS = 28.91, θ̂WD = 271.92]>. The variance estimate is σ̂2 = 0.03

which is quite low and indicates a good fit.
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Waulkmillglen Reservoir

Lastly, the predictive performance of the different kernels for GP models were compared

for the Waulkmillglen Reservoir station and it was found that the exponential kernel is

best with only 3 covariates. However, all covariates are important in terms of model fit

so the model with 5 covariates is preferred. The diagnostic plots are similar to those

in Figure 5.10 and are omitted for brevity. The hyperspatial range parameter estimates

are θ̂ = [θ̂E = 170.53, θ̂WS = 57.05, θ̂WD = 33.68]>. The variance estimate is σ̂2 = 0.004

which is lower than for any other station but reasonable given that the ADMS-Urban

simulated NO2 annual averages are the lowest for Waulkmillglen Reservoir.

5.3.3 Findings

In Table 5.24, the best models (both linear regression and GP) based on the prediction

power are presented for each station. For all models five covariates are used (emissions,

emissions squared, wind speed, an interaction between emissions and wind speed, and

wind direction) except for the linear regressions for Byres Road and Central Station

where wind direction is not significant and not included in the models. All GP models

perform better than the linear regression models with RMSPEs that are between 3 and 5

times smaller. Furthermore, the 95% bootstrap confidence intervals do not overlap each

other. All stations have quite similar in- and out-of-sample RMSPE except for Central

Station, where the ADMS-Urban simulated NO2 annual averages are larger than the

other stations, and Waulkmillglen Reservoir, where the ADMS-Urban simulated NO2

annual averages are smaller than the other stations. The GP models with exponential

models are preferred to the simple linear regression indicating that the prediction power

improves by taking into account the location of the scenarios within the LHC space.

Tables 5.25 and 5.26 compare the fixed effect parameter estimates and their respective

standard errors from the linear and GP models for the eight monitoring stations in Glas-

gow. Overall, the parameter estimates are almost identical. This further confirms that

the fixed effects parameters for the two models are very similar and the main difference

in their prediction powers come from the additional information of the locations of the

ADMS-Urban scenarios within the LHC space. The standard errors for the GP expo-

nential models are larger which is consistent with applying a GLS fit. The parameter

estimates for emissions are always positive indicating that the higher the emissions, the

higher the simulated NO2 annual averages. On the other hand, the parameter estimates

for emissions squared are always negative. The wind speed parameter estimates are also

always negative suggesting that the higher the wind speed, the lower the simulated NO2

annual averages. The interaction between emissions and wind speed is always negative
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Station Model Covariates In Out

Burgher Street LR E+E2+WS+E*WS+WD
0.15

(0.13, 0.17)
0.16

(0.14, 0.18)

GP Exponential E+E2+WS+E*WS+WD
0.05

(0.04, 0.06)
0.06

(0.04, 0.07)

Byres Road LR E+E2+WS+E*WS
0.16

(0.14, 0.18)
0.17

(0.15, 0.19)

GP Exponential E+E2+WS+E*WS+WD
0.03

(0.03, 0.04)
0.04

(0.03, 0.04)

Central Station LR E+E2+WS+E*WS
0.50

(0.43, 0.59)
0.53

(0.45, 0.62)

GP Exponential E+E2+WS+E*WS+WD
0.09

(0.07, 0.12)
0.10

(0.07, 0.13)

Dumbarton Road LR E+E2+WS+E*WS+WD
0.27

(0.23, 0.31)
0.29

(0.24, 0.33)

GP Exponential E+E2+WS+E*WS+WD
0.08

(0.06, 0.09)
0.08

(0.07, 0.10)

Great Western Road LR E+E2+WS+E*WS+WD
0.19

(0.16, 0.21)
0.20

(0.17, 0.20)

GP Exponential E+E2+WS+E*WS+WD
0.05

(0.04, 0.06)
0.06

(0.05, 0.07)

High Street LR E+E2+WS+E*WS+WD
0.19

(0.16, 0.21)
0.20

(0.17, 0.23)

GP Exponential E+E2+WS+E*WS+WD
0.05

(0.04, 0.05)
0.05

(0.04, 0.05)

Townhead LR E+E2+WS+E*WS+WD
0.16

(0.14, 0.18)
0.17

(0.14, 0.19)

GP Exponential E+E2+WS+E*WS+WD
0.04

(0.03, 0.05)
0.04

(0.04, 0.05)

Waulkmillglen Reservoir LR E+E2+WS+E*WS+WD
0.05

(0.04, 0.06)
0.05

(0.04, 0.06)

GP Exponential E+E2+WS+E*WS+WD
0.02

(0.01, 0.02)
0.02

(0.01, 0.03)

Table 5.24: Comparing the predictive performance of the linear regression and the
preferred GP model for predicting the ADMS-Urban simulation runs for the NO2 annual
average (µg m−3) for all monitoring stations in Glasgow.

as the dispersion of emissions is dependant on the wind speed. The differences between

the models come when looking at the wind direction parameter estimates. For all sta-

tions, except for Burgher Street, the estimate is negative. The difference comes from

the fact that Burgher Street is the most eastern station in Glasgow. As the wind speed

estimate is positive for seven of the monitoring stations, it suggests that the more west-

ern prevailing wind, the higher the simulated NO2 annual average concentrations. For

Burgher Street, the more western prevailing wind, the lower the simulated NO2 annual

average concentrations.

5.4 Discussion

Section 5.1 provided a theoretical background for fitting GP models in R using the

DiceKriging package. The theory was then applied to the Aberdeen case study in
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Station Coef. Estim. LR St. Error LR Estim. GP St. Error GP

Burgher
Street

Intercept 18.72 0.03 18.80 0.23

Em 0.08 0.001 0.08 0.005

Em2 -0.0002 0.00001 -0.0002 0.00005

WS -0.08 0.002 -0.08 0.0001

Em*WS -0.0007 0.00004 -0.0008 0.00002

WD 0.02 0.002 0.02 0.004

Byres
Road

Intercept 34.06 0.03 34.27 0.19

Em 0.20 0.001 0.20 0.002

Em2 -0.001 0.00002 -0.0006 0.00002

WS -0.20 0.002 -0.20 0.005

Em*WS -0.002 0.00004 -0.002 0.00006

WD -0.0007 0.001

Central
Station

Intercept 63.19 0.08 64.04 0.38

Em 0.35 0.004 0.36 0.01

Em2 -0.002 0.00005 -0.002 0.0001

WS -0.33 0.007 -0.33 0.01

Em*WS -0.003 0.0001 -0.003 0.0002

WD -0.002 0.003

Dumbarton
Road

Intercept 37.65 0.04 37.82 0.24

Em 0.23 0.002 0.23 0.005

Em2 -0.0006 0.00003 -0.0006 0.00005

WS -0.23 0.004 -0.22 0.007

Em*WS -0.002 0.00007 -0.002 0.00009

WD -0.05 0.003 -0.05 0.007

Table 5.25: Summary of the linear regression and the GP exponential parameters
for the NO2 annual averages (µg m−3) from ADMS-Urban for four monitoring stations
(Burgher Street, Byres Road, Central Station and Dumbarton Road) in Glasgow with
emissions (% change), emissions squared, wind speed (% change), an interaction for
emissions and wind speed, and wind direction (◦ change) as covariates.

Section 5.2. The pairs plots for each of the six monitoring stations in Aberdeen suggested

a simple linear regression with just the three ADMS-Urban inputs (emissions, wind speed

and wind direction) is sufficient as the diagnostic plots did not indicate any issues with

the fit. When the linear regression models with just the three covariates were fitted,

the models were parsimonious with R2
adj. values for all the models really high (∼ 99%)

and the diagnostic plots indicating a good fit. Furthermore, the GP models with just

the three inputs were also identified as good fit for the data. The in-sample and 10-fold

out-of-sample CV RMSPE (Table 5.7) indicated that the GP exponential kernel models

are better than the linear regression ones as there is high correlation between the three

covariates.

Based on the study in Section 5.2, the same modelling was applied to the eight monitor-

ing stations in Glasgow in Section 5.3. It was found that the relationship between the

simulated NO2 annual average relationship with emissions is quadratic. Furthermore,

all models required an interaction between emissions and wind speed to improve the fit
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Station Coef. Estim. LR St. Error LR Estim. GP St. Error GP

Great Western
Road

Intercept 33.73 0.03 33.95 0.16

Em 0.19 0.002 0.20 0.003

Em2 -0.0006 0.00002 -0.0006 0.00004

WS -0.19 0.003 -0.19 0.006

Em*WS -0.002 0.00005 -0.002 0.00007

WD -0.02 0.002 -0.02 0.004

High
Street

Intercept 35.42 0.03 35.63 0.14

Em 0.19 0.002 0.20 0.003

Em2 -0.0008 0.00002 -0.0008 0.00003

WS -0.20 0.003 -0.20 0.006

Em*WS -0.002 0.00005 -0.002 0.00007

WD -0.006 0.002 -0.01 0.002

Townhead

Intercept 29.37 0.03 29.50 0.12

Em 0.14 0.001 0.15 0.003

Em2 -0.0007 0.00002 -0.0007 0.00003

WS -0.16 0.002 -0.16 0.005

Em*WS -0.001 0.00004 -0.002 0.00007

WD -0.006 0.002 -0.008 0.002

Waulkmillglen
Reservoir

Intercept 9.75 0.08 9.81 0.04

Em 0.01 0.0004 0.01 0.0007

Em2 -0.00003 0.000005 -0.00003 0.000007

WS -0.01 0.0007 -0.01 0.001

Em*WS -0.0002 0.00001 -0.0001 0.00001

WD -0.007 0.0006 -0.007 0.002

Table 5.26: Summary of the linear regression and the GP exponential parameters
for the NO2 annual averages (µg m−3) from ADMS-Urban for four monitoring stations
(Great Western Road, High Street, Townhead and Waulkmillglen Reservoir) in Glasgow
with emissions (% change), emissions squared, wind speed (% change), an interaction
for emissions and wind speed, and wind direction (◦ change) as covariates.

of the models based on the diagnostic plots. However, it was found that for the Byres

Road and Central Station monitoring stations, wind direction is not significant. When

the GP models were fitted, all stations retained the model with five covariates based on

their predictive power. Additionally, an exponential kernel was chosen as best in terms

of prediction power. The models for the Glasgow monitoring network were compared

in terms of their predictive performance in Table 5.24 and it was found that the GP

exponential kernel models are performing much better than the linear regression ones.

Overall, the models for Aberdeen are much simpler and suggest that the modelling is

more straightforward in comparison to the Glasgow case. The prediction errors in the

Aberdeen case study reduce about two times by applying the GP models, whereas the

Glasgow models have more covariates which is the reason for the bigger predictive im-

provement (more than three times) for the GP models. The difference in the number

of covariates for the two models could reflect the combination of two factors. Firstly,
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Aberdeen and Glasgow have different geographical locations - eastern and western Scot-

land, respectively. Secondly, Glasgow has a much larger population and a more complex

city outline. However, a relatively simple emulator for each of the monitoring station in

Aberdeen and Glasgow was produced which produces predictions which are very precise.

However, in order to examine the air pollution movement across each city, a multivariate

model for all stations is necessary.



Chapter 6

Multivariate modelling and

emulation of NO2 annual average

concentrations using Gaussian

Processes

Chapter 5 presented the modelling of the ADMS-Urban simulated NO2 annual average

concentrations across the AURN monitoring stations in Aberdeen and Glasgow. It was

found that the univariate (single response) Gaussian Process (GP) models have better

prediction power based on in- and out-of-sample Root Mean Squared Prediction Error

(RMSPE) in comparison to the linear regression models. In this chapter, the work from

Chapter 5 is extended by introducing a multivariate (multiple responses) GP model in

order to account for the correlation between the measurements at the different stations

in one city. The aim is to investigate whether the prediction performance will be im-

proved by utilising these correlations and whether using a multivariate model will result

in time reduction for model fitting (in terms of a smaller number of models fitted). The

rest of this chapter is organised as follows: Section 6.1 introduces the methodology of

fitting a Bayesian multivariate GP model. A simulation study is conducted in Section

6.2 to check the performance of the multivariate emulator and also compare its ability

to estimate the hyperspatial range parameters to the performance of the univariate fre-

quentist emulator implemented via the DiceKriging software. Following the simulation

study, an application of the proposed Bayesian multivariate GP model to the Aberdeen

ADMS-Urban simulations is presented in Section 6.3. Section 6.4 presents the applica-

tion of the proposed Bayesian multivariate GP emulator to the Glasgow ADMS-Urban

simulations. Section 6.5 provides a concluding discussion.

156
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6.1 Multivariate GP process

Chapter 5 presented univariate GP models using frequentist inference, specifically the

BFGS algorithm, a quasi-Newton algorithm introduced in Subsection 2.2.4. However,

more commonly a Bayesian approach to inference in this context is chosen as it provides

a more “comprehensive and natural structure to represent and deal with uncertainty”

[199], different information sources can be used, and it is possible to estimate probability

distributions on the parameters of interest [140]. A study presented in [89] shows that

the Bayesian paradigm provides more accurate prediction results in comparison to a

frequentist approach in a limited simulation setting. Therefore, to perform multivariate

modelling in this chapter, a multivariate GP emulator will be used with inference in

the Bayesian paradigm. A multivariate Bayesian emulator was developed by Conti

and O’Hagan in [49], which was then extended by Overstall and Woods in [143]. In

this chapter, the work in [143] will be altered by applying the exponential correlation

function based on the univariate models from Chapter 5.

6.1.1 Model definition and estimation

The model from Section 5.1 is extended to a multivariate response as follows. The data

likelihood model is given by:

Y = XB + Z , (6.1)

where:

• Y is the response matrix (n × q) containing the results from n scenarios for q

locations (in this case stations) with each row yi (i = 1, . . . , n) the output for a

set of inputs at all stations;

• X is the design matrix (n× p) containing the intercept and the covariates, where

each row xi contains the intercept and inputs for a single scenario and is the same

for all stations;

• B is the parameter matrix (p× q) containing the fixed effect parameters (different

fixed effect parameters for each of the monitoring stations), which need to be

estimated; and

• Z is the error matrix (n× q) that has a matrix normal distribution (presented in

Appendix A) Z ∼MN(0,Σ,R(θ)).

Thus, the response matrix also follows a matrix normal distribution:
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Y|B ,Σ,R(θ) ∼MN(XB ,Σ,R(θ)) , (6.2)

where Σ is a positive definite column scaling matrix (q×q) which models the correlation

between the q different stations. Σ is a matrix of free form because ADMS-Urban uses

a factor to vary the predictions at different locations in the city, not the actual spatial

positions of the stations. R(θ) is a positive definite row scaling matrix (n×n), modelling

the spatial correlation in the input space. Since it is assumed that the output yi for all i =

1, . . . , n have the same uncertainty around them, R(θ) is specified as a correlation matrix

in [143] and in this work, R(θ) is modelled using the exponential function because as

seen in Chapter 5, all univariate frequentist models for both the Aberdeen and Glasgow

monitoring stations use the exponential function for best forecasting results. Therefore,

R(θ) has a structure dependency on the hyperspatial range parameters vector θ (d×1),

where d is the dimension of the input space. As previously shown in Chapter 4, the

Latin Hypercube (LHC) space for both Aberdeen and Glasgow is based on varying three

inputs (emissions (E), wind speed (WS) and wind direction (WD)). Hence, the parameter

vector θ = [θE, θWS, θWD]> has dimension d = 3. The exponential correlation function

between two rows of the input space (designed by the LHC) ui = [uiE, uiWS, uiWD]> and

uj = [ujE, ujWS, ujWD]> is:

Rij(θ) = exp

(
−
{(
|uiE − ujE|

θE

)
+

(
|uiWS − ujWS|

θWS

)
+

(
|uiWD − ujWD|

θWD

)})
.

(6.3)

The distribution of the response matrix can be re-written for a vector of the stacked (by

column) responses as:

vec(Y)|B ,Σ,R(θ) ∼ N(vec(XB),Σ⊗R(θ)) , (6.4)

where vec(·) denotes the column stacking of a matrix into a vector and ⊗ denotes the

Kronecker product (an element by matrix multiplication), hence the covariance matrix

Σ⊗R(θ) is of size qn× qn. The set of parameters (B ,Σ,θ) are assigned a joint prior

distribution, where the pair (B , Σ) and θ are assumed to be independent:

f(B ,Σ,θ) = f(B ,Σ)f(θ) = f(B |Σ)f(Σ)f(θ) . (6.5)

The prior for (B , Σ) is specified by a Matrix-Normal distribution and an inverse-Wishart

prior distribution [143] respectively, which are given below:

B |Σ,θ ∼MN(M,Σ,Ω) , (6.6)

Σ|θ ∼ IW(S−1, δ) , (6.7)
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where M,Ω,S and δ are hyperparameters with non-informative specifications defined

as follows:

• for M, the prior is a p× q matrix of zeros;

• for Ω, the prior is a diagonal matrix (p×p) with entries of 100 000 on the diagonal;

• for S, the prior is an identity matrix Iq (q × q) in order to have an uninformative

prior as recommended in [171]; and

• for δ, the prior is set to the constant q.

The prior for the hyperspatial range parameter θ is decomposed as:

f(θ) = f(θE)f(θWS)f(θWD) , (6.8)

where f(θE) ∝ 1, f(θWS) ∝ 1, and f(θWD) ∝ 1 are non-informative improper flat priors

on the positive real line. A plug-in numerical approximation (the BFGS algorithm as

described in Subsection 2.2.4 and applied in Chapter 5) is used for the estimation of

θ as an MCMC approach is “computationally cumbersome” since it requires inverting

R(θ) and calculating its derivative at each step of the MCMC algorithm. This approach

is recommended in both [49] and [143]. The BFGS algorithm is used to maximise the

unnormalised marginal posterior density (derived in [144]):

f(θ|Y) ∝ |R(θ)|−
q
2 |D|

q
2 |Y>R(θ)−1Y−E>D−1E|−

(δ+n+q−1)
2 , (6.9)

where:

• D = (X>R(θ)−1X)−1; and

• E = D(X>R(θ)−1Y).

After θ is estimated by θ̂, the posterior distributions of (B , Σ) have the following closed

form solutions:

B |Y,Σ, θ̂ ∼MN(MB ,Σ,Ψ) , (6.10)

Σ|Y, θ̂ ∼ IW(Ξ−1, υ) . (6.11)

The updated parameters have closed form expressions as follows:

• MB =
(
X>R(θ̂)−1X

)−1
X>R(θ̂)−1Y + Ω−1M;
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• Ψ =
(
X>R(θ̂)−1X + Ω−1

)−1
;

• Ξ = Y>R(θ̂)−1Y + M>Ω−1M + S−M>
BΨ−1MB ; and

• υ = δ + n.

There are closed form solutions for posterior means of the pair (B , Σ), which are:

B̂ = MB , (6.12)

Σ̂ =
1

υ − q − 1
Ξ . (6.13)

6.1.2 Prediction of new observations

The main aim in this chapter is prediction of the NO2 annual average concentrations at

unobserved (untested) sets of inputs for the ADMS-Urban simulator. Therefore, how to

predict using the multivariate model is described. Let Y0 (n0 × q) be a matrix of new

outputs at the same q stations. Then Y0 has the following joint distribution with Y:

Y0

Y

 ∼MN

X0

X

B , Σ̂,

R0(θ̂) T(θ̂)>

T(θ̂) R(θ̂)

 , (6.14)

where X0 is the design matrix (n0 × p) for the untested sets of inputs (i.e. X0 contains

the new set of covariates, which are based on the locations of interest defined by the

untested sets of inputs within the LHC space), R0(θ̂) is the correlation matrix (n0×n0)

between the new sets of inputs, and T(θ̂) is the correlation matrix (n × n0) between

the observed and unobserved sets of simulation inputs. Σ̂ and θ̂ are the estimates to

which Σ and θ are respectively fixed. Therefore, the conditional distribution of a matrix

of new observations follows the matrix t-distribution (described in Appendix A) as the

matrix Σ̂ is estimated. Therefore, the mean and variance of the new observations are

estimated in a similar fashion to kriging (Subsection 2.3.1):

Y0|Y,θ ∼MT(Q, Σ̂,A(θ̂), υ) , (6.15)

where:

• Q is called the location matrix (n0 × q) and contains the predicted values of the

new observations, which are estimated as:

Q = X0B + T(θ̂)>R(θ̂)−1(Y−XB) ; and (6.16)
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• A(θ̂) is a row scale matrix (n0 × n0), and contains the variance at the new obser-

vations:

A(θ̂) = R0(θ̂)−T(θ̂)>R(θ̂)−1T(θ̂)+

+ (X0 −T(θ̂)>R(θ̂)−1X)Ψ(X0 −T(θ̂)>R(θ̂)−1X)> .
(6.17)

In general, the matrix t-distribution of Y0 given Y,Σ and θ can be re-written in vector

form as follows:

vec(Y0)|Y,Σ,θ ∼ t(vec(Q),Σ⊗A(θ)) . (6.18)

Therefore, the estimated variance-covariance matrix of vec(Y0) is the Kronecker product

of Σ̂ and A(θ̂).

6.2 Simulation studies

In Chapter 5, each univariate frequentist model produced for both Aberdeen and Glas-

gow estimates a set of the hyperspatial range parameters θ associated with the input

space designed using a LHC for each of the monitoring stations. However, there was

a large variation between the hyperspatial range parameters estimates for each of the

stations in Chapter 5. Most notably, the univariate model for Union Street in Aberdeen

provided the hyperspatial range parameter estimates as θ̂ = [49.40, 7.99, 2934.23]>. This

suggests that the univariate models struggled with estimating at least one (the wind di-

rection) of the hyperspatial range parameters. Since the multivariate emulator imposes

the same hyperspatial range parameters for all monitoring stations, it is beneficial to fur-

ther investigate this issue before applying the multivariate emulator to the Aberdeen and

Glasgow ADMS-Urban simulations. Cressie states that hyperspatial range parameters

are difficult to estimate but a “sensible” estimate would allow for relatively unaffected

forecasting [50]. This is confirmed by Zhang [212], who showed that the hyperspatial

range parameters cannot be estimated consistently for input spaces with dimensions

d ≥ 3. In order to test the effect of estimating the hyperspatial range parameters in

a similar setting to the data previously presented, two simulation studies will be per-

formed. The data for studies will be closely based on the Aberdeen case study. The

simulation studies will:

(i) compare the ability of the models to correctly identify the hyperspatial range pa-

rameters in a setting very close to the real-life data.

(ii) assess the loss of predictive power to mis-estimating the hyperspatial range param-

eters.
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6.2.1 Simulation study 1: Estimating the hyperspatial range parame-

ters

Initialising the simulation

The first simulation study is a multiple response example based on two of the monitoring

stations in Aberdeen (Market Street 2 and Wellington Road) as the two stations have

very similar parameter estimates for the univariate case as seen in Subsection 5.2.3. The

simulations are generated using the following parameters:

• the response matrix Y = [Y1,Y2]> (98 × 2) is the simulated responses for two

monitoring stations with the vector Y1 (98 × 1) being based on Market Street 2

and the vector Y2 (98× 1) being based on Wellington Road;

• the input matrix X (98× 3) is the LHC design used for the Aberdeen case study

and described in Subsection 4.1.3;

• there are three fixed effect parameters to resemble the models in Chapter 5. The

parameters and the intercept are chosen to be the values estimated by applying the

model from the DiceKriging software. Hence, the fixed effect parameter matrix

B (4× 2) is


47.33 43.84

0.22 0.19

−0.17 −0.17

0.06 0.07


;

• the variance-covariance matrix between the outputs mimics the real-life situation

and is set to be Σ =

0.40 0.35

0.35 0.39

. The variances are also set to the values esti-

mated by applying the model from the DiceKriging software, whereas the covari-

ances were chosen to ensure high correlation between the two responses (Market

Street 2 and Wellington Road). In order to assess the effects of larger variances on

the estimates, a second variance-covariance matrix Σhigh is used, where the values

are ten times larger than the ones in Σ, Σhigh =

4.00 3.50

3.50 3.90

;

• the correlation matrix R(θ) is estimated based on θ being set to be a vector

θ = [θ1, θ2, θ3]>. The values for θ were chosen based on the individual variograms

for each of the inputs in Figures 4.8, 4.9 and 4.10. Since some of the variograms

never plateau and hence, never suggest range values, for baseline values of the

hyperspatial range parameters is chosen the set θ = [30, 15, 10]>. In order to assess

how well estimated the different spans of the hyperspatial range parameters are,
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four additional sets for the hyperspatial range parameters are examined. Hence,

there are five sets of parameter vectors in total:

θ1 = [10, 5, 3.3]> ,

θ2 = [15, 7.5, 5]> ,

θ3 = [30, 15, 10]> ,

θ4 = [60, 30, 20]> ,

θ5 = [90, 45, 30]> ; and

• the error matrix Z (98× 2) is randomly drawn from a multivariate normal distri-

bution with mean 0 and variance-covariance matrix Σ⊗R(θ).

Therefore, under 10 different sets of parameters (five sets of hyperspatial range parame-

ters θ and two variance-covariances matrices Σ), one hundred simulations are generated

under each set of parameters resulting in 1000 simulated data sets in total.

Results

For each set of 100 simulations under a given set of hyperspatial range parameters,

three different emulator models will be fitted and used to estimate the hyperspatial

range parameters. The three models which will be used are: the frequentist univariate

model fitted using the DiceKriging software in R, which was previously presented in

Section 5.1; a univariate simplification of the multivariate Bayesian emulator proposed

in this chapter; and the full multivariate Bayesian emulator. The Bayesian models are

coded in R based on the description in Section 6.1. Boxplots of the parameter estimates

will be presented. This would allow the comparison not only between the single and

multiple response models but also between the frequentist and Bayesian paradigms. The

estimated hyperspatial range parameters vary from 0 to 1000. Hence, when necessary,

granulated (zoomed in) plots are also provided. The estimates from the frequentist

model are point estimates of the hyperspatial range parameters, whereas the estimates

from the Bayesian models are the posterior means. This is based on a similar approach

comparing frequentist and Bayesian emulators applied in [89]. The estimates from the

different models will be abbreviated as follows:

• dk1 for the estimates from the emulator in the DiceKriging software when ap-

plied to the Y1 data;

• dk2 for the estimates from the emulator in the DiceKriging software when ap-

plied to the Y2 data;
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• mult for the estimates from the Multivariate Bayesian method when applied to

the Y data;

• uni1 for the estimates from the Univariate Bayesian method when applied to

the Y1 data; and

• uni2 for the estimates from the Univariate Bayesian method when applied to

the Y2 data.

Firstly, the estimates for the different hyperspatial range parameters under the variance-

covariance matrix Σ are presented. For the first set of hyperspatial range parameters

θ1 = [10, 5, 3.3]>, the boxplots for each hyperspatial range parameters’ estimates are

presented in Figures 6.1, 6.2 and 6.3 respectively. The medians for the parameter esti-

mates are only close to the true values for the Bayesian models. When the frequentist

paradigm is applied, the true values of the first and third hyperspatial range parameters

(Figures 6.1 and 6.3) are contained within the interquartile ranges. The boxes for these

two hyperspatial range parameters as estimated by the Bayesian models have smaller

interquartile ranges than the frequentist model from the DiceKriging software which

indicates that there is less variability in their estimates. However, for the second hyper-

spatial range parameter (Figure 6.2), it appears that the parameter is estimated in the

frequentist paradigm as zero almost every time. Granulated versions of the boxplots are

required for all three hyperspatial range parameters as both univariate models struggle

more with the estimation of the hyperspatial range parameters as there are very large

outliers present in their estimates. Additionally, the multivariate Bayesian model has

smaller interquartile ranges than the univariate Bayesian models. It is important to note

that the Bayesian models do not estimate any of the hyperspatial range parameters as

zero, although the parameters in this set are very small.

The boxplots for the estimates for the second set of hyperspatial range parameters θ2 =

[15, 7.5, 5]> are very similar to those for the first set of hyperspatial range parameters in

Figures 6.1, 6.2 and 6.3. Therefore, these plots are omitted in order to avoid repetition.

The boxplots for the estimates for the third set of hyperspatial range parameters θ3 =

[30, 15, 10]> are presented in Figures 6.4, 6.5 and 6.6 respectively. The medians for the

parameter estimates for all the models are only close to the true values for the first

hyperspatial range parameter (Figure 6.4), whereas the second (Figure 6.5) and third

(Figure 6.6) hyperspatial range parameters are larger than the median estimates for

all the models and barely contained within the interquartile ranges. From the fact that

granulated versions are required for all the boxplots, it is clear that the univariate models

continue to struggle with the estimation of the hyperspatial range parameters as there

are very large outliers. The boxes for the Bayesian models have smaller interquartile
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Figure 6.1: Boxplots for the first hyperspatial range parameter in the first set of
simulations under Σ as estimated by the different modelling techniques. The red line

is the true parameter value.
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Figure 6.2: Boxplots for the second hyperspatial range parameter in the first set of
simulations under Σ as estimated by the different modelling techniques. The red line

is the true parameter value.
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Figure 6.3: Boxplots for the third hyperspatial range parameter in the first set of
simulations under Σ as estimated by the different modelling techniques. The red line

is the true parameter value.

ranges than the frequentist models from the DiceKriging software which indicates

that there is less variability in their estimates. Furthermore, the multivariate model has

smaller interquartile ranges than the univariate Bayesian models. It is important to note

that the multivariate model is the only one that has never estimated the hyperspatial

range parameters as zero, although the second and third hyperspatial range parameters

are close to zero.

The boxplots for the estimates for the fourth set of hyperspatial range parameters θ4 =

[60, 30, 20]> and the fifth set of hyperspatial range parameters θ5 = [90, 45, 30]> are also

very similar to each other. Therefore, to avoid repetition, only the boxplots for the fifth

set of hyperspatial range parameter estimates in Figures 6.7, 6.8 and 6.9 respectively

are provided. None of the boxplots requires granulation as the values of the estimated

hyperspatial range parameters are larger. For the first hyperspatial range parameter

in Figure 6.7, all models appear to underestimate the hyperspatial range parameter as

all the medians are below the true value line (in red). The multivariate model is the

only one that has no outliers but seems to be struggling most by underestimating the

hyperspatial range parameter as the true value is almost as large as the maximum value

estimated by the model. It is interesting to note that for both the univariate frequentist

and Bayesian approaches, the models for Y1 are the only ones to include the true value

in their interquartile ranges. The situation for the second (Figure 6.8) and third (Figure
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Figure 6.4: Boxplots for the first hyperspatial range parameter in the third set of
simulations under Σ as estimated by the different modelling techniques. The red line

is the true parameter value.
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Figure 6.5: Boxplots for the second hyperspatial range parameter in the third set of
simulations under Σ as estimated by the different modelling techniques. The red line

is the true parameter value.
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Figure 6.6: Boxplots for the third hyperspatial range parameter in the third set of
simulations under Σ as estimated by the different modelling techniques. The red line

is the true parameter value.

6.9) hyperspatial range parameters is very similar to the one for the first hyperspatial

range parameter with all the models underestimating the true value of the parameter.

However, it is apparent that the only model that does not estimate extreme values for

the hyperspatial range parameters is the multivariate Bayesian one.

The results from the high variance-covariance matrix Σhigh simulations are very similar

to the ones from Σ and as the size of the hyperspatial range parameter is increased,

all models tend to underestimate the true values of the hyperspatial range parameters

but the multivariate model remains the only one that does not estimate extreme values.

Therefore, the results from the Σhigh simulations are omitted for brevity.

Findings

Simulation Study 1 compared the estimated hyperspatial range parameters for three dif-

ferent models (univariate frequentist, univariate Bayesian and multivariate Bayesian).

It was found that all models struggle similarly with estimating the hyperspatial range

parameters θ for both variance-covariance matrices Σ and Σhigh. As the values of the

hyperspatial range parameters increase, all models tend to underestimate the hyperspa-

tial range parameters as demonstrated by the fact that the median values of estimated

hyperspatial range parameters are lower than the true values of the hyperspatial range
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Figure 6.7: Boxplots for the first hyperspatial range parameter in the fifth set of
simulations under Σ as estimated by the different modelling techniques. The red line

is the true parameter value.
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Figure 6.8: Boxplots for the second hyperspatial range parameter in the fifth set of
simulations under Σ as estimated by the different modelling techniques. The red line

is the true parameter value.
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Figure 6.9: Boxplots for the third hyperspatial range parameter in the fifth set of
simulations under Σ as estimated by the different modelling techniques. The red line

is the true parameter value.

parameters. The two univariate models have very similar performances with the esti-

mates from the frequentist model having a slightly larger spread than those from the

Bayesian one. Although the multivariate Bayesian model has the smallest spread for its

estimates of the hyperspatial range parameters, the multivariate model underestimates

the true values of the hyperspatial range parameters in comparison to the univariate

models.

6.2.2 Simulation study 2: Effect of mis-estimating the hyperspatial

range parameters on the prediction quality

Initialising the simulation

The data for the second study were simulated in the same manner as the data for

Simulation Study 1 in Subsection 6.2.1. To avoid repetition, the simulation set-up will

not be repeated here.
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Results

In order to compare the forecasting capabilities of the different models under differ-

ent sets of hyperspatial range parameter, RMSPE will be computed from a 10-fold

cross-validation (CV) analysis in the same way as was done in Chapter 5. As with

the hyperspatial range parameters, the results from the three models (the univariate

frequentist model from DiceKriging software, Univariate Bayesian model and Mul-

tivariate Bayesian model) for each of the responses Y1 and Y2 will be compared for

the two different variance-covariance matrices in Tables 6.1 and 6.2, respectively. The

one hundred simulated data sets generated for five different sets of hyperspatial range

parameters will be used again. For clarity, these sets will be referred to as:

• Sim 1 for the simulations with parameter vector θ1;

• Sim 2 for the simulations with parameter vector θ2;

• Sim 3 for the simulations with parameter vector θ3;

• Sim 4 for the simulations with parameter vector θ4; and

• Sim 5 for the simulations with parameter vector θ5.

In order to signify the different models for the two responses, the following abbreviations

are also used:

• dk1 for the RMSPE estimated by the emulator from the DiceKriging software

when applied to the Y1 data;

• dk2 for the RMSPE estimated by the emulator from the DiceKriging software

when applied to the Y2 data;

• mult1 for the RMSPE estimated by the Multivariate Bayesian method when

applied to the Y1 data;

• mult2 for the RMSPE estimated by the Multivariate Bayesian method when

applied to the Y2 data;

• uni1 for the RMSPE estimated by the Univariate Bayesian method when applied

to the Y1 data; and

• uni2 for the RMSPE estimated by the Univariate Bayesian method when applied

to the Y2 data.
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Four values for the hyperspatial range parameters are chosen to quantify changes in the

prediction quality. The RMSPE when the hyperspatial range parameters are set to their

true values are used for a benchmark to compare to the predictions for mis-estimating

the hyperspatial range parameters at half and double their true values. In order to

assess the prediction performance of the three models, the RMSPE for the models when

the hyperspatial range parameters are estimated are also provided. For lucidity, these

estimations will be referred to as:

• true when the hyperspatial range parameters are not estimated by maximising

the likelihood but are set to the true values from the simulation;

• double when the hyperspatial range parameters are not estimated by maximising

the likelihood but are set to double the true values from the simulation;

• half when the hyperspatial range parameters are not estimated by maximising the

likelihood but are set to half the true values from the simulation; and

• estim when the hyperspatial range parameters are estimated by maximising the

likelihood.

The mean RMSPE results under the two variance-covariance matrices Σ and Σhigh are

presented in Tables 6.1 and 6.2, respectively. There is one major difference between the

two tables. In Table 6.1, presenting the Σ case, the values are more than three times

smaller than those in Table 6.2, presenting the Σhigh case. This is to be expected given

the increased variance. Otherwise, both tables show very similar trends, which will be

discussed in further detail below.

Whenever the three models have been set to the same value of the hyperspatial range

parameters, the RMSPEs estimated by the three models are absolutely identical. The

largest difference between using the true values of the hyperspatial range parameters and

either halving or doubling that value is only 5% for any of the scenarios. This indicates

that mis-specification of the hyperspatial range parameters to either double or half their

true value has a very small effect on the quality of the predictions.

It is interesting to note that in both Tables 6.1 and 6.2, as the true values of the

hyperspatial range parameters increase, the RMSPE decreases and hence, so do the

differences between the RMSPE from the different models. This suggests that the larger

the hyperspatial range parameters, the less impact they have on the predictions.

The only differences between the RMSPE values from the three different models are

observed when the three models have to estimate the hyperspatial range parameters.
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At most, the difference between the RMSPE estimated using the true hyperspatial

range parameters is 14% smaller than the largest RMSPE from the estimated cases

for each scenario. This indicates that the RMSPE is still relatively unaffected by the

mis-estimation of the hyperspatial range parameters.

On the basis of the differences between the RMSPE values for the estimated hyperspatial

range parameters, the predictive performance of the three models can be compared with

each other. For all cases, the multivariate Bayesian model has the lowest RMSPE, and

in some cases the RMSPE for the multivariate Bayesian model is lower than the RMSPE

when setting the hyperspatial range parameters to double or half their values. All of

this means that the multivariate model performs best in terms of prediction. In all

cases, the second best model in terms of prediction is the univariate Bayesian model.

For some cases, the two univariate models have almost identical prediction performance.

The differences between the models are not significantly different as the 95% bootstrap

confidence intervals for the estimated RMSPE are overlapping.

Simulation θ DK Y1 Uni Y1 Mult Y1 DK Y2 Uni Y2 Mult Y2

Sim 1

true 0.61 0.61 0.61 0.61 0.61 0.61

double 0.63 0.63 0.63 0.62 0.62 0.62

half 0.62 0.62 0.62 0.61 0.61 0.61

estim
0.64

(0.55, 0.76)
0.63

(0.55, 0.73)
0.63

(0.54, 0.73)
0.63

(0.54, 0.72)
0.62

(0.52, 0.75)
0.61

(0.51, 0.72)

Sim 2

true 0.57 0.57 0.57 0.56 0.56 0.56

double 0.59 0.59 0.59 0.57 0.57 0.57

half 0.59 0.59 0.59 0.58 0.58 0.58

estim
0.62

(0.55, 0.73)
0.59

(0.50, 0.70)
0.58

(0.49, 0.69)
0.63

(0.52, 0.70)
0.58

(0.49, 0.67)
0.57

(0.49, 0.66)

Sim 3

true 0.45 0.45 0.45 0.44 0.44 0.44

double 0.46 0.46 0.46 0.45 0.45 0.45

half 0.46 0.46 0.46 0.46 0.46 0.46

estim
0.51

(0.40, 0.62)
0.46

(0.38, 0.55)
0.45

(0.38,0.55)
0.50

(0.40, 0.62)
0.46

(0.38, 0.54)
0.45

(0.38,0.53)

Sim 4

true 0.31 0.31 0.31 0.31 0.31 0.31

double 0.31 0.31 0.31 0.31 0.31 0.31

half 0.32 0.32 0.32 0.32 0.32 0.32

estim
0.33

(0.27, 0.40)
0.32

(0.27, 0.38)
0.32

(0.27, 0.37)
0.33

(0.27, 0.40)
0.32

(0.26, 0.38)
0.32

(0.26, 0.37)

Sim 5

true 0.24 0.24 0.24 0.24 0.24 0.24

double 0.25 0.25 0.25 0.25 0.25 0.25

half 0.25 0.25 0.25 0.25 0.25 0.25

estim
0.26

(0.21, 0.31)
0.25

(0.21, 0.31)
0.25

(0.21, 0.30)
0.25

(0.21, 0.31)
0.25

(0.21, 0.31)
0.25

(0.21, 0.29)

Table 6.1: Table containing the mean RMSPE for Y1 and Y2 under Σ using three
different methodologies (the univariate frequentist model from DiceKriging, the pro-
posed Bayesian emulator for the univariate case and the multivariate emulator) for
the four different possible values for the hyperspatial range parameters (true, double,
half and estimated). For the estimated RMSPE, there is a 95% bootstrap confidence

interval included.
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Simulation θ DK Y1 Uni Y1 Mult Y1 DK Y2 Uni Y2 Mult Y2

Sim 1

true 1.94 1.94 1.94 1.91 1.91 1.91

double 1.98 1.98 1.98 1.95 1.95 1.95

half 1.98 1.98 1.98 1.94 1.94 1.94

estim
2.01

(1.76, 2.33)
2.01

(1.75, 2.31)
1.98

(1.72, 2.32)
1.98

(1.68, 2.28)
1.98

(1.65, 2.34)
1.95

(1.61, 2.27)

Sim 2

true 1.79 1.79 1.79 1.78 1.78 1.78

double 1.83 1.83 1.83 1.83 1.83 1.83

half 1.85 1.85 1.85 1.84 1.84 1.84

estim
1.95

(1.74, 2.33)
1.86

(1.59, 2.22)
1.84

(1.57, 2.21)
1.94

(1.62, 2.24)
1.85

(1.53, 2.17)
1.82

(1.53, 2.12)

Sim 3

true 1.42 1.42 1.42 1.39 1.39 1.39

double 1.45 1.45 1.45 1.43 1.43 1.43

half 1.46 1.46 1.46 1.44 1.44 1.44

estim
1.62

(1.28, 2.00)
1.46

(1.23, 1.76)
1.44

(1.20, 1.74)
1.59

(1.25, 1.96)
1.43

(1.21, 1.73)
1.42

(1.20, 1.68)

Sim 4

true 0.98 0.98 0.98 0.97 0.97 0.97

double 0.99 0.99 0.99 0.99 0.99 0.99

half 1.00 1.00 1.00 1.00 1.00 1.00

estim
1.04

(0.84, 1.30)
1.00

(0.84, 1.22)
0.99

(0.84, 1.16)
1.03

(0.81, 1.25)
1.00

(0.81, 1.16)
0.99

(0.82, 1.13)

Sim 5

true 0.76 0.76 0.76 0.77 0.77 0.77

double 0.78 0.78 0.78 0.78 0.78 0.78

half 0.78 0.78 0.78 0.78 0.78 0.78

estim
0.80

(0.65, 1.02)
0.79

(0.64, 0.99)
0.79

(0.64, 0.98)
0.80

(0.66, 0.95)
0.79

(0.66, 0.95)
0.78

(0.67, 0.92)

Table 6.2: Table containing the mean RMSPE for Y1 and Y2 under Σhigh using
three different methodologies (the univariate frequentist model from DiceKriging, the
proposed Bayesian emulator for the univariate case and the multivariate emulator)
for the four different possible values for the hyperspatial range parameters (true, double,
half and estimated). For the estimated RMSPE, there is a 95% bootstrap confidence

interval included.

Next, in order to understand better the difference in the RMSPE estimates, two rows

from Tables 6.1 and 6.2 will be examined more closely in Table 6.3. Only the RMSPEs

for the estimated hyperspatial range parameters will be included in Table 6.3 as it is

the only way to assess the prediction power of the three different models when the

hyperspatial range parameters have to be estimated. In addition to Table 6.3, in order

to provide information on the spread of the RMSPE across the one hundred simulation

scenarios, the boxplots for the RMSPEs are examined. Figures 6.10 and 6.11 present the

boxplots under Σ for Y1 and Y2 respectively, whereas Figures 6.12 and 6.13 present the

boxplots under Σhigh for Y1 and Y2, respectively. Firstly, the clear difference between

the Σ and Σhigh cases is observed with the Σhigh RMSPEs being more than three times

as large as the Σ RMSPEs. This affects the spreads of the boxplots in the two scenarios.

The boxplots for Σ in Figures 6.10 and 6.11 go between 0.49 to 0.82 (spread of 0.33)

and 0.49 to 0.78 (spread of 0.29), respectively, whereas the boxplots for the Σhigh case

in Figures 6.12 and 6.13 go from 1.60 to 2.60 (spread of 1.00) and 1.54 to 2.48 (spread
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of 0.94), respectively. It is clear that in the high variance case, the RMSPEs are higher

and more varying.

Most importantly, from looking at the RMSPEs for Sim 1 in Table 6.3, it is easiest to

order the three models by their performance. In all four cases, the lowest RMSPE is

estimated for the multivariate Bayesian model, although this difference is not statistically

significant as the 95% bootstrap intervals overlap each other. For the high variance case

of Y1 and Y2, the univariate frequentist model and the Bayesian univariate model

have the same RMSPE values. This is further confirmed by the boxplots in Figure

6.13, where the univariate Bayesian model has the largest spread of RMSPE. In fact,

for 36 out of the one hundred simulated data sets, the frequentist univariate model

has lower RMSPE than the multivariate Bayesian model and the lowest RMSPE based

on estimated hyperspatial range parameters is estimated by the univariate frequentist

model. This indicates that in some scenarios, it is possible that the univariate frequentist

model will perform better than the multivariate Bayesian one even though the data are

simulated as multivariate.

Variance DK Y1 Uni Y1 Mult Y1 DK Y2 Uni Y2 Mult Y2

Σ
0.64

(0.55, 0.76)
0.63

(0.55, 0.73)
0.63

(0.54, 0.73)
0.63

(0.54, 0.72)
0.62

(0.52, 0.75)
0.61

(0.51, 0.72)

Σhigh
2.01

(1.76, 2.33)
2.01

(1.75, 2.31)
1.98

(1.72, 2.32)
1.98

(1.68, 2.28)
1.98

(1.65, 2.34)
1.95

(1.61, 2.27)

Table 6.3: Table containing the mean RMSPE for Y1 and Y2 under Sim 1 for
the estimated hyperspatial range parameters using three different methodologies (the
univariate frequentist model from DiceKriging, the proposed Bayesian emulator for

the univariate case and the multivariate emulator).
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Figure 6.10: Boxplots of the RMSPE for Y1 under Σ using three different method-
ologies (the univariate frequentist model from DiceKriging, the proposed Bayesian
emulator for the univariate case and the multivariate emulator) for the four dif-
ferent possible values for the hyperspatial range parameters (true, double, half and

estimated) for Simulation 1.
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Figure 6.11: Boxplots of the RMSPE for Y2 under Σ using three different method-
ologies (the univariate frequentist model from DiceKriging, the proposed emulator
for the univariate case and the multivariate emulator) for the four different possi-
ble values for the hyperspatial range parameters (true, double, half and estimated) for

Simulation 1.
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Figure 6.12: Boxplots of the RMSPE for Y1 under Σhigh using three different method-
ologies (the univariate frequentist model from DiceKriging, the proposed emulator
for the univariate case and the multivariate emulator) for the four different possi-
ble values for the hyperspatial range parameters (true, double, half and estimated) for

Simulation 1.
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Figure 6.13: Boxplots of the RMSPE for Y2 under Σhigh using three different method-
ologies (the univariate frequentist model from DiceKriging, the proposed emulator
for the univariate case and the multivariate emulator) for the four different possi-
ble values for the hyperspatial range parameters (true, double, half and estimated) for

Simulation 1.

Findings

Simulation Study 2 assessed the loss of predictive power due to mis-estimation of the

hyperspatial range parameters by the three different models (univariate frequentist,
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univariate Bayesian and multivariate Bayesian). The RMSPEs from both variance-

covariance matrices Σ and Σhigh in the two tables (Tables 6.1 and 6.2 respectively)

differ as the Σhigh estimates are three times as large as the Σ ones. However, it was

found that the RMSPE values within each table are very similar to each other regardless

of the incorrectly specified values of the hyperspatial range parameters for both vari-

ances. For both variance cases, the multivariate Bayesian model outperforms both the

univariate Bayesian and the univariate frequentist models. However, it has to be noted

that as the true values of the hyperspatial range parameters increased, the RMSPE

values decrease and get closer to each other and the effect of mis-estimating the hyper-

spatial range parameters is reduced. Hence, the difference between the three models is

also reduced.

6.2.3 Conclusions

In this section, two simulation studies were performed in order to (i) compare the ability

of the three tested models (the univariate frequentist model from the DiceKriging

software, and the univariate and multivariate versions of the proposed Bayesian model)

to correctly identify the hyperspatial range parameters in a setting which mimics the

real-life data and (ii) asses the loss of predictive power to mis-estimating the hyperspatial

range parameters. The data for both studies were simulated identically. The results for

both studies exhibit similar trends for both variance cases.

Simulation Study 1 addressed question (i) and found that all models struggle with cor-

rectly identifying the hyperspatial range parameters θ. As the hyperspatial range pa-

rameter values were increased, the models tend to underestimate the hyperspatial range

parameters. It appeared that the multivariate Bayesian model struggles with estimat-

ing the hyperspatial range parameters but it was the only model that did not calculate

extreme values for the hyperspatial range parameters.

Simulation Study 2 addressed question (ii) and found that the largest difference by mis-

estimating the hyperspatial range parameters from estimating them correctly is 14%.

Hence, mis-estimating the hyperspatial range parameters results in relatively unaffected

predictions as Cressie suggests in [50]. It was found that the three emulators produce

very similar RMSPE with the multivariate Bayesian model slightly outperforming the

two univariate models, although the difference is not statistically significant.

The two simulation studies showed that hyperspatial range parameters are hard to

estimate correctly, but even with “sensible” [50] estimates for the hyperspatial range

parameters the RMSPE is relatively unaffected. For a multivariate setting when the

hyperspatial range parameters have similar values, using one set of hyperspatial range
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parameter estimates by the multivariate Bayesian model results in lower RMSPE and

hence, better prediction performance. In order to test whether using one set of hyper-

spatial range parameters for all the monitoring stations in Aberdeen and Glasgow would

result in an improved prediction in comparison to the univariate models from Chapter

5, the multivariate Bayesian model is applied to the ADMS-Urban simulations for the

NO2 annual averages in Aberdeen and Glasgow.

6.3 Aberdeen case study

In this section, the multivariate Bayesian model proposed in Section 6.1 will be applied

to the ADMS-Urban simulations for the six monitoring stations in Aberdeen and its

performance will be compared to the univariate frequentist models in Section 5.2 in order

to establish whether fitting a multivariate model results in smaller RMSPE and faster

modelling. The univariate version of the proposed Bayesian model will not be fitted as it

always performed worse than the multivariate Bayesian model in the simulation studies

in Section 6.2. As previously stated in Section 6.1, there is no prior information about

any of the parameters and therefore, uninformative priors are used for the multivariate

Bayesian model. Furthermore, since in Chapter 5, the univariate frequentist models for

all the monitoring stations in Aberdeen have just the three LHC inputs (emissions, wind

speed and wind direction) as covariates, the model in this section will also only use the

three inputs as covariates. As in Chapter 5, in order to avoid repetition, only the results

for the Anderson Drive monitoring station will be presented in full, whereas the results

for the other stations will be summarised. Once a final model is chosen based on a

10-fold CV RMSPE, the emulator will be applied to explore the different meteorological

conditions under which the annual average regulation for NO2 will be broken. Lastly, it

has to be noted that the work in this section is an alternative model fitting to the one

presented in [82] but uses the same data.

6.3.1 Modelling

Anderson Drive

The Anderson Drive fixed effects parameters estimated by the multivariate model are

summarised in Table 6.4. The fixed parameters estimated by the multivariate model are

almost identical to the estimates from the univariate frequentist model from the DiceK-

riging software presented in the fourth column of the table. The standard errors from

the multivariate model (third column) are very similar than those from the univariate

model (fifth column) suggesting that there is no difference between the two models. This
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indicates that there is a loss of information in the multivariate model in comparison to

the univariate one. The variance and hyperspatial range parameter estimates from the

two models are compared in Table 6.5. Both models estimate the variance σ2 to be

0.07, which is quite small. However, the hyperspatial range parameter estimates for the

two models are different to each other. The emissions hyperspatial range parameters

are quite similar and in both cases the largest. But the multivariate Bayesian model

estimates the wind speed to be the second largest, whereas the univariate frequentist

model suggests that the wind direction hyperspatial range parameter should be the sec-

ond largest. Nonetheless, the hyperspatial range parameter estimates for both models

indicate high correlation between the inputs in both cases as the large hyperspatial range

parameter estimates from both models suggest a residual correlation at high distances.

Coefficient Estim. Mult
St. Error

Mult.
Estim. DK

St. Error
DK

Intercept 31.33 0.16 31.31 0.17

Emissions 0.08 0.003 0.08 0.003

Wind Speed -0.06 0.005 -0.06 0.006

Wind Direction 0.02 0.008 0.02 0.006

Table 6.4: Summary of fixed effect parameters from the multivariate Bayesian and
univariate frequentist GP models for the NO2 annual averages (µg m−3) from ADMS-
Urban for Anderson Drive with emissions (% change), wind speed (% change) and wind
direction (◦ change) as covariates and an exponential kernel.

Model θ̂Emissions θ̂Wind Speed θ̂Wind Direction σ̂2

Multivariate Bayesian 90.43 61.60 24.61 0.07

Univariate frequentist 98.16 46.16 59.55 0.07

Table 6.5: Summary of the hyperspatial range parameters and variance from the
multivariate Bayesian and univariate frequentist models for the NO2 annual averages
(µg m−3) from ADMS-Urban for Anderson Drive with emissions (% change), wind speed
(% change) and wind direction (◦ change) as covariates and an exponential kernel.

Then, the diagnostic plots for the multivariate fit at Anderson Drive are examined in

Figure 6.14. Overall, the residual plots do not indicate any problems with the fit and

are very similar to the diagnostic plots for the univariate frequentist model in Figure

5.3. The residuals vs. fitted values plot in a) shows random scatter, which is further

confirmed by the residuals vs. each of the covariates in plots e), f) and g). Although the

qq-plot in plot c) appears to have heavy tails, in fact the highest outlier is at 0.40 and

the range of the residuals is too small to indicate an issue. Furthermore, the histogram

of the residuals in plot d) has a well defined bell-shaped curve indicating no issues. A

Shapiro-Wilk test was performed on the residuals and the p-value was found to be 0.05

suggesting that there is no evidence for non-normality of the residuals. Most importantly,

the actual vs. fitted values in plot b) shows the points are lying on the equivalence line

suggesting an almost perfect fit.
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Figure 6.14: Diagnostic plots for the multivariate Bayesian GP model with an expo-
nential kernel for the NO2 annual averages (µg m−3) from ADMS-Urban for Anderson
Drive with emissions (% change), wind speed (% change) and wind direction (◦ change)

as covariates.

Lastly, the multivariate Bayesian RMSPE is compared to the one from the univariate

frequentist model in Table 6.6. It appears that the two models have identical prediction

performance. It is interesting to note that although the two models have different

hyperspatial temporal parameters, the RMSPEs are identical, when rounding is applied.

Furthermore, the 95% bootstrap confidence intervals indicate that there is no statistically

significant difference between the predictive performance of the two models.

Model RMSPE

Multivariate
0.09

(0.06, 0.11)

Univariate
0.09

(0.06, 0.11)

Table 6.6: Comparing the predictive performance of the multivariate Bayesian and
univariate frequentist models for the NO2 annual averages (µg m−3) from ADMS-
Urban for Anderson Drive with emissions (% change), wind speed (% change) and
wind direction (◦ change) as covariates and an exponential kernel.

Other stations

Similarly to Anderson Drive, fixed effect estimates by the multivariate Bayesian and the

univariate frequentist models are very similar to each other as seen in Table 6.7. For all

stations the estimates for the fixed effect parameters are almost identical. The standard

errors estimated by the model appear almost identical.

The main differences between the multivariate Bayesian and the univariate frequentist

models come from the distinctly estimated hyperspatial range parameters. In order to
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Station Coefficient
Estim.
Mult.

St. Error
Mult.

Estim.
DK

St. Error
DK

Anderson
Drive

Intercept 31.33 0.16 31.31 0.17

Emissions 0.08 0.003 0.08 0.003

Wind Speed -0.06 0.005 -0.06 0.006

Wind Direction 0.02 0.008 0.02 0.006

Errol
Place

Intercept 28.09 0.12 28.07 0.11

Emissions 0.05 0.002 0.05 0.002

Wind Speed -0.05 0.004 -0.05 0.004

Wind Direction 0.01 0.006 0.01 0.004

King
Street

Intercept 36.04 0.25 36.01 0.23

Emissions 0.12 0.004 0.12 0.004

Wind Speed -0.11 0.008 -0.11 0.009

Wind Direction 0.04 0.01 0.05 0.007

Market
Street 2

Intercept 47.37 0.39 47.33 0.40

Emissions 0.22 0.007 0.22 0.007

Wind Speed -0.17 0.01 -0.17 0.01

Wind Direction 0.06 0.02 0.06 0.01

Union
Street

Intercept 49.52 0.45 49.45 0.20

Emissions 0.24 0.008 0.24 0.005

Wind Speed -0.19 0.01 -0.20 0.01

Wind Direction 0.02 0.02 0.02 0.002

Wellington
Road

Intercept 43.88 0.38 43.84 0.40

Emissions 0.19 0.007 0.19 0.007

Wind Speed -0.16 0.01 -0.17 0.01

Wind Direction 0.07 0.02 0.07 0.01

Table 6.7: Summary of fixed effect parameters from the multivariate Bayesian GP
and the univariate frequentist emulator from the DiceKriging package for the NO2

annual averages (µg m−3) from ADMS-Urban for all Aberdeen monitoring stations
with emissions (% change), wind speed (% change) and wind direction (◦ change) as
covariates and an exponential kernel.

compare the hyperspatial range parameter estimates from the different models, they are

summarised in Table 6.8. In terms of the estimates for the hyperspatial range parameter

for emissions, the multivariate model and the univariate ones have very similar estimates

except for Union Street. The multivariate hyperspatial range parameter estimate for

wind speed is higher than the one from all the univariate models. However, the most

clear difference comes from the wind direction estimates, where the multivariate Bayesian

model estimates a value much smaller than any of the univariate frequentist models.

The differences from the hyperspatial range parameter estimates result in differences in

the variance σ2 and the RMSPE estimates for the multivariate and univariate models.

These differences are summarised in Table 6.9. It is clear that the univariate models

perform slightly better than the multivariate one in terms of RMSPE for stations with

higher NO2 annual averages, although the difference is not statistically significant as

the 95% bootstrap intervals perfectly overlap each other. Furthermore, the variances
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Model θ̂EM θ̂WS θ̂WD

Multivariate Bayesian 90.43 61.60 24.61

Anderson Drive Univariate Frequentist 98.16 46.16 59.55

Errol Place Univariate Frequentist 92.64 36.39 73.05

King Street Univariate Frequentist 82.25 29.79 83.43

Market Street 2 Univariate Frenquentist 89.65 38.48 66.12

Union Street Univariate Frenquentist 49.40 7.99 2934.23

Wellington Road Univariate Frenquentist 89.90 39.62 67.35

Table 6.8: Summary of the hyperspatial range parameter estimates from the multi-
variate Bayesian and univariate frequentist models for NO2 annual average (µg m−3)
from ADMS-Urban for the Aberdeen monitoring stations with emissions (% change),
wind speed (% change) and wind direction (◦ change) as covariates and an exponential
kernel.

are almost identical. Therefore, it appears that the Aberdeen monitoring stations have

very different hyperspatial range parameter estimates and using one set of hyperspatial

range parameters for all stations results in a slight loss of information.

Station Model σ̂2 RMSPE

Anderson Drive
Multivariate Bayesian 0.07

0.09
(0.06, 0.11)

Univariate Frequentist 0.07
0.09

(0.06, 0.11)

Errol Place
Multivariate Bayesian 0.04

0.06
(0.04, 0.08)

Univariate Frequentist 0.03
0.06

(0.04, 0.08)

King Street
Multivariate Bayesian 0.16

0.14
(0.10, 0.18)

Univariate Frequentist 0.14
0.14

(0.10, 0.18)

Market Street 2
Multivariate Bayesian 0.38

0.23
(0.16, 0.29)

Univariate Frequentist 0.40
0.23

(0.16, 0.30)

Union Street
Multivariate Bayesian 0.52

0.28
(0.19, 0.38)

Univariate Frequentist 0.23
0.28

(0.19, 0.37)

Wellington Road
Multivariate Bayesian 0.37

0.22
(0.15, 0.28)

Univariate Frequentist 0.39
0.21

(0.15, 0.28)

Table 6.9: Summary of the variance and RMSPE from the multivariate Bayesian and
univariate frequentist models for NO2 annual average (µg m−3) from ADMS-Urban for
the Aberdeen monitoring stations with emissions (% change), wind speed (% change)
and wind direction (◦ change) as covariates and an exponential kernel.
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Findings

From Table 6.7 is is clear that both models explain the variation due to the fixed effect

terms very similarly. However, applying the same hyperspatial range parameters to all

stations results in a negligible loss of information. Both models perform almost perfectly

in predicting the NO2 annual average. This is in accordance with a previous analysis

of the ADMS-Urban simulations in [82], where a suboptimal multivariate GP model

was applied and it was found that the suboptimal multivariate model is very similar in

performance to the univariate linear models for each of the monitoring stations. As the

multivariate model requires only fitting one model for all stations, it is chosen as the

preferred model.

6.3.2 Emulation

In this subsection, the results from emulating the ADMS-Urban simulations for the

multivariate frequentist models for the Aberdeen monitoring stations are examined.

The emulated NO2 annual average concentrations are obtained over a discretised grid

of the input space from the LHC. The grid to be evaluated is based on increments

of 0.5 along the dimensions for each of the three inputs (emissions, wind speed and

wind direction). In addition to calculating the NO2 annual average and the respective

uncertainty around that estimate, the probability of breaking the 40 µg m−3 regulation

will be provided. The probability of exceedance for each station for the annual average

regulation is defined for an observation y0 with a set of inputs (x0
EM, x0

WS, x0
WD). y0

follows a normal distribution:

y0 ∼ N(µ0, σ2,0) , (6.19)

where µ0 is the predicted value for the NO2 annual average and σ2,0 is the variance for

the predicted value, from where P (y0 > 40) is estimated using the Normal probabil-

ity density function (pdf). Contour plots for the emulated NO2 annual average under

three variations for wind direction will be provided (similar to the contour plots in [82])

alongside the respective variance for the annual average as well as contour plots for the

probability of exceeding the regulation limit of 40 µg m−3. The three variations for wind

direction to be examined are:

• -15◦ variation from the baseline value for 2012, resulting in a more eastern prevail-

ing wind;

• 0◦ variation from the baseline value for 2012; and
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• 15◦ variation from the baseline value for 2012, resulting in a more western prevail-

ing wind.

On the left of Figure 6.15 presents contour plots for the emulated NO2 annual averages

for each of the stations when the wind direction is set to have a -15◦ change from the 2012

observed baseline value, whereas on the right are the corresponding standard deviations

associated with the observations. From the fact that the standard deviations for each

observation are at most 0.40, it has to be concluded that the emulated values have a

very small uncertainty bound around them. It is clear that for the stations Anderson

Drive and Errol Place there are no combinations of emissions and wind speed for which

the annual limit of 40 µg m−3 will be exceeded. For King Street, it appears that if

the emissions increase and wind speed decreases, the regulation could be breached. For

Market Street 2, Union Street and Wellington Road, it is obvious that only a combination

of reduction in emissions and increase in wind speed will result in an annual average

within the regulations. On the standard deviation plots, it can be seen that the stations

with higher NO2 averages have higher standard deviations associated with them which

is expected. Furthermore, there is a trend of increased standard deviations going from

left to right on the plots which is associated with the higher NO2 concentrations as

emissions are increased. Also, there are higher standard deviations at the corners of

each of the standard deviation plots because these are the edges of the LHC design.

These conclusions are further confirmed by the plots for the probabilities of exceedance

in Figure 6.16. The plots for all stations show a sharp transition from not breaching

the regulation to breaching the regulation. This is due to the deterministic nature of

ADMS-Urban combined with the specific cutoff point from the regulation at 40 µg m−3,

which is also confirmed by the results in [82]. For the plots, where there is a high chance

of exceedance, the change from probability of zero to probability of one is rapid due to

the accuracy of the predictions from the emulator as seen by the low standard deviations

for the emulated NO2 annual average in Figure 6.15. The plots for Anderson Drive and

Errol Place show that the probability of exceeding the 40 µg m−3 limit is zero for all

combinations of emissions and wind speed. For King Street, there is a small region,

where exceedances can occur if emissions increase by at least 20%, whereas wind speed

decreases by at least 10%. The stations at Market Street 2 and Union Street are the

ones that have the highest NO2 annual averages and the probability plots show that

even with reductions in emissions larger than 40% if the wind speed is low, it is very

likely that the annual average will not comply with the regulation. The Wellington

Street monitoring station probability plot shows that with an emissions reduction by

30%, regardless of wind speed variation, the station will comply with the regulations.
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Figure 6.15: Contour plots for emulated NO2 annual average (µg m−3) when wind
direction is set to -15◦ change from the 2012 baseline for the ADMS-Urban simulations
for the six monitoring stations in Aberdeen based on the multivariate model with emis-
sions (% change), wind speed (% change) and wind direction (◦ change) as covariates
and an exponential kernel are presented on the left side. Contour plots for the standard
deviation of the emulated NO2 annual averages are provided on the right. In each plot,

the black circle depicts the baseline realisation.

Next, the contour plots for the emulated NO2 annual average when wind direction is set

to a 0◦ change from the 2012 observed baseline and its respective standard deviations

are presented in Figure 6.17. The plots are very similar to those when wind direction

is set to -15◦ change from the baseline in Figure 6.15. For the monitoring stations at

Anderson Drive and Errol Place there does not appear to be any annual averages going

above 40 µg m−3. However, for the King Street Station it appears that there is more

area covered in red. This means that under the baseline wind direction, King Street
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Figure 6.16: Contour plots for the probabilities for exceeding the 40 µg m−3 for the
emulated NO2 annual average (µg m−3) when wind direction is set to -15◦ change from
the 2012 baseline for the ADMS-Urban simulations for the six monitoring stations in
Aberdeen based on the multivariate model with emissions (% change), wind speed (%
change) and wind direction (◦ change) as covariates and an exponential kernel. In each

plot, the black circle depicts the baseline realisation.

has to be considered as an “at-risk” station. Furthermore, Market Street 2, Union

Street and Wellington Road are expected to have NO2 annual average which breaks

the regulation. The standard deviations for emulated values for all stations are quite

low, at most 0.40. Similar trends to those observed in the standard deviation plots in

Figure 6.16 are observed here - stations with higher NO2 averages have higher standard

deviations, standard deviations increase from left to right on the plots and there are

higher standard deviations at the corners of each of the standard deviation plots.

The contour plots for the probability of exceedance of 40 µg m−3 regulation of the

emulated NO2 annual average when wind direction is set to 0◦ change from the 2012

observed baseline are presented in Figure 6.18. The change from probability of zero to

probability of one is very rapid again because the accuracy of the emulator as demon-

strated by the low standard deviation of the emulated values. The probability plots

for Anderson Drive, Errol Place and King Street monitoring stations are very similar
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to the contour plots for wind direction being set to -15◦ and that it is very unlikely

that the annual average regulation will be broken. However, for the Market Street 2

and Union Street stations, there is high probability that the annual average regulation

will be broken regardless of the reduction in emissions, unless wind speed is higher than

the baseline value. For the Wellington Road station, it is only certain that the annual

average regulation will not be broken only if the emissions are reduced by 40%.

−20

−10

0

10

20

−40 −20 0 20
Emissions (% change)

W
in

d 
S

pe
ed

 (
%

 c
ha

ng
e)

0

20

40

60

80
NO2

Anderson Drive 

−20

−10

0

10

20

−40 −20 0 20
Emissions (% change)

W
in

d 
S

pe
ed

 (
%

 c
ha

ng
e)

0.0

0.1

0.2

0.3

0.4
SD

Anderson Drive St. Deviation

−20

−10

0

10

20

−40 −20 0 20
Emissions (% change)

W
in

d 
S

pe
ed

 (
%

 c
ha

ng
e)

0

20

40

60

80
NO2

Errol Place 

−20

−10

0

10

20

−40 −20 0 20
Emissions (% change)

W
in

d 
S

pe
ed

 (
%

 c
ha

ng
e)

0.0

0.1

0.2

0.3

0.4
SD

Errol Place St. Deviation

−20

−10

0

10

20

−40 −20 0 20
Emissions (% change)W

in
d 

S
pe

ed
 (

%
 c

ha
ng

e)

0

20

40

60

80
NO2

King Street 

−20

−10

0

10

20

−40 −20 0 20
Emissions (% change)W

in
d 

S
pe

ed
 (

%
 c

ha
ng

e)

0.0

0.1

0.2

0.3

0.4
SD

King Street St. Deviation

−20

−10

0

10

20

−40 −20 0 20
Emissions (% change)

W
in

d 
S

pe
ed

 (
%

 c
ha

ng
e)

0

20

40

60

80
NO2

Market Street 2

−20

−10

0

10

20

−40 −20 0 20
Emissions (% change)

W
in

d 
S

pe
ed

 (
%

 c
ha

ng
e)

0.0

0.1

0.2

0.3

0.4
SD

Market Street 2 St. Deviation

−20

−10

0

10

20

−40 −20 0 20
Emissions (% change)

W
in

d 
S

pe
ed

 (
%

 c
ha

ng
e)

0

20

40

60

80
NO2

Union Street 

−20

−10

0

10

20

−40 −20 0 20
Emissions (% change)

W
in

d 
S

pe
ed

 (
%

 c
ha

ng
e)

0.0

0.1

0.2

0.3

0.4
SD

Union Street St. Deviation

−20

−10

0

10

20

−40 −20 0 20
Emissions (% change)W

in
d 

S
pe

ed
 (

%
 c

ha
ng

e)

0

20

40

60

80
NO2

Wellington Road 

−20

−10

0

10

20

−40 −20 0 20
Emissions (% change)W

in
d 

S
pe

ed
 (

%
 c

ha
ng

e)

0.0

0.1

0.2

0.3

0.4
SD

Wellington Road St. Deviation

WD = 0o

Figure 6.17: Contour plots for emulated NO2 annual average (µg m−3) when wind
direction is set to 0◦ change from the 2012 baseline for the ADMS-Urban simulations for
the six monitoring stations in Aberdeen based on the multivariate model with emissions
(% change), wind speed (% change) and wind direction (◦ change) as covariates and
an exponential kernel are presented on the left side. Contour plots for the standard
deviations of the emulated NO2 annual averages are provided on the right. In each

plot, the black circle depicts the baseline realisation.
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Figure 6.18: Contour plots for the probabilities for exceeding the 40 µg m−3 for the
emulated NO2 annual average (µg m−3) when wind direction is set to 0◦ change from
the 2012 baseline for the ADMS-Urban simulations for the six monitoring stations in
Aberdeen based on the multivariate model with emissions (% change), wind speed (%
change) and wind direction (◦ change) as covariates and an exponential kernel. In each

plot, the black circle depicts the baseline realisation.

In Figure 6.19 the contour plots for the emulated NO2 annual average are examined

when the wind direction is increased by 15◦ from the 2012 observed baseline value. The

trend from Figures 6.15 and 6.17 that as the prevailing wind direction becomes more

western, the NO2 annual average increases is confirmed by this plot. The plot for the

Anderson Drive monitoring station has a little hint of reddish hue at the bottom right

corner of the plot suggesting an increase in the annual average, although the increase

will not result in breaking the regulation. For the Errol Place monitoring station there

does not appear to be any evidence of NO2 annual average values which will break the

regulation. For King Street the values are getting higher which is worrisome for a station

which has been assigned as “at-risk”. For the monitoring stations at Market Street 2,

Union Street and Wellington Road it appears that most annual averages will be above

the 40 µg m−3 regulation. The standard deviations contour plots on the right of Figure

6.19 are very similar to those from both Figures 6.15 and 6.17 and the same trends as
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before are observed. Once again, the standard deviations are at most 0.40.

The contour plots for the probability of exceedance of 40 µg m−3 regulation of the

emulated NO2 annual average when wind direction is set to 15◦ change from the 2012

observed baseline are presented in Figure 6.20. The change from probability of zero to

probability of one is very rapid again because the accuracy of the emulator. The plots

confirm what was already seen in Figure 6.19. The Anderson Drive and Errol Place

monitoring stations will comply with the regulation regardless of the emissions and

wind speed levels. The King Street monitoring station can break the limit in the event

of increased emissions and lower wind speed in comparison to the baseline. However, for

the monitoring stations at Market Street 2 and Union Street, even if the emissions are

reduced by 40%, it is still very likely to break the regulation if the wind speed is lower

than the baseline. The Wellington Road monitoring station will only comply with the

regulation for any wind speed if the emissions are reduced by 40%.

Findings

The three scenarios for wind direction being set to its low extreme variation from the

baseline at -15◦, the baseline 0◦ and high extreme variation from the baseline at 15◦, it is

seen that wind direction has a small but significant effect on the NO2 annual average for

the six different stations in Aberdeen. It was seen that as the prevailing wind direction

is going from eastern to western, the NO2 annual average concentration increases. This

is in accordance with the fixed effect modelling for wind direction, where the parameter

estimates are very close to zero but significant. The contour plots for the probabilities

for exceeding the 40 µg m−3 for the emulated NO2 annual average showed that for

two of the monitoring stations (Market Street 2 and Union Street) regardless of the

percentage of the reduced emissions, it is still very likely that the regulation will be

broken if there is lower than the baseline wind speed. The Wellington Road station

can comply with the regulations for all meteorological conditions if the emissions at the

monitoring station are lowered by at least 40%. The King Street monitoring station

will comply with the regulation as long as the emissions are not increased, whereas the

Anderson Drive and Errol Place monitoring stations will never exceed the 40 µg m−3

for any set of meteorological conditions.

6.3.3 Conclusion

The multivariate Bayesian model was applied to the ADMS-Urban NO2 annual aver-

age simulations and its performance was compared to the univariate frequentist model

from the DiceKriging software. It was found that both models estimate very similar
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Figure 6.19: Contour plots for emulated NO2 annual average (µg m−3) when wind
direction is set to 15◦ change from the 2012 baseline for the ADMS-Urban simulations
for the six monitoring stations in Aberdeen based on the multivariate model with emis-
sions (% change), wind speed (% change) and wind direction (◦ change) as covariates
and an exponential kernel are presented on the left side. Contour plots for the standard
deviations of the emulated NO2 annual averages are provided on the right. In each plot,

the black circle depicts the baseline realisation.

fixed range effects but the univariate frequentist model estimates have smaller standard

error. However, the smoothed set of hyperspatial range parameters estimated by the

multivariate Bayesian model is very different from the hyperspatial range parameter

values estimated at each station by the univariate frequentist models. Regardless, the

multivariate Bayesian and the univariate frequentist models have almost identical per-

formance in terms of prediction for untested values. The multivariate Bayesian model

is chosen because it requires running only one model instead of six for each monitoring
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Figure 6.20: Contour plots for the probabilities for exceeding the 40 µg m−3 for the
emulated NO2 annual average (µg m−3) when wind direction is set to 15◦ change from
the 2012 baseline for the ADMS-Urban simulations for the six monitoring stations in
Aberdeen based on the multivariate model with emissions (% change), wind speed (%
change) and wind direction (◦ change) as covariates and an exponential kernel. In each

plot, the black circle depicts the baseline realisation.

station.

Hence, the multivariate Bayesian models were used to create emulators for each of the

monitoring stations. It was found that as the prevailing wind direction changes to more

western, this results in higher NO2 annual pollutions. This makes sense as Aberdeen is

on the North Sea. Overall, it was concluded that for none of the examined scenarios,

the NO2 annual average at Anderson Drive and Errol Place will go above the 40 µg

m−3, whereas for King Street some combinations of higher from the baseline emissions

and lower from the baseline wind speed will result in breaking the limit. For Market

Street 2, Union Street and Wellington Road, emissions reductions (of at least 40%) are

required in order to ensure that for some wind speeds (even below the baseline), the

regulation limit will not be broken.
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6.4 Glasgow case study

In this section, the multivariate Bayesian model proposed in Section 6.1 will be fitted

to the ADMS-Urban simulations for the eight monitoring stations in Glasgow and its

performance will be compared to the univariate models for Glasgow in Section 5.3. The

univariate version of the proposed Bayesian model will not be fitted as it always per-

formed worse than the multivariate Bayesian model in the simulation studies in Section

6.2. Once again, there is no prior information about any of the parameters and there-

fore, uninformative priors are set as stated in Section 6.1. Based on the linear models for

each of the monitoring stations in Glasgow, the univariate modelling for Glasgow tested

and compared three different sets of inputs - a model with 3 covariates (emissions, wind

speed and wind direction), a model with 4 covariates (emissions, emissions squared, wind

speed and wind direction) and a model with 5 covariates (emissions, emissions squared,

wind speed, an interaction between emissions and wind speed and wind direction). In

order to avoid repetition, only the results for the Burgher Street monitoring station will

be presented in full, whereas the results for the other stations will be summarised. Simi-

larly to the univariate GP models for Glasgow in Section 5.3, an upper boundary limit of

1000 is set for the hyperspatial range parameters. Once a final model is chosen based on

10-fold CV RMSPE, the emulator will be applied to explore the different meteorological

conditions under which the NO2 annual average regulation will be broken.

6.4.1 Modelling

Burgher Street

The Burgher Street fixed effect parameters estimated by the multivariate model with

three inputs are summarised in Table 6.10 alongside the parameters from the three

covariate univariate model from the DiceKriging package. Similarly to the Aberdeen

case study, the fixed parameter estimates and their standard errors are very similar.

The variances and hyperspatial range parameters from the two models are compared in

Table 6.11. The variance estimates are very similar with the multivariate model having a

slightly smaller variance. However, the hyperspatial range parameters are very different

to each other. For the multivariate model, the three inputs have very similar estimates

suggesting they contribute quite evenly, whereas the univariate model places the biggest

impact on wind direction, followed by emissions and wind speed is last.

The diagnostic plots for the multivariate fit at Burgher Street are then examined in

Figure 6.21. The diagnostic plots do not indicate any issues with the fit. The points

on the residuals vs. fitted values plot in a) are randomly scattered. The plots in e), f)
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Coefficient Estim. Mult
St. Error

Mult.
Estim. DK

St. Error
DK

Intercept 18.63 0.26 18.59 0.30

Emissions 0.10 0.003 0.10 0.003

Wind Speed -0.05 0.006 -0.05 0.009

Wind Direction 0.02 0.008 0.02 0.004

Table 6.10: Summary of the multivariate Bayesian and univariate frequentist GP
model for the NO2 annual averages (µg m−3) from ADMS-Urban for Burgher Street
with emissions (% change), wind speed (% change) and wind direction (◦ change) as
covariates and an exponential kernel.

Model θ̂Emissions θ̂Wind Speed θ̂Wind Direction σ̂2

Multivariate Bayesian 65.47 75.86 57.67 0.14

Univariate Frequentist 104.86 50.12 312.01 0.16

Table 6.11: Summary of the hyperspatial range parameters and variance from the
multivariate Bayesian and univariate frequentist models for the NO2 annual averages
(µg m−3) from ADMS-Urban for Burgher Street with emissions (% change), wind speed
(% change) and wind direction (◦ change) as covariates and an exponential kernel.

and g) of the residuals vs. each of the inputs also show random scatter. Similarly to

the univariate model, the qq-plot in c) has heavy tails but a symmetric histogram in d)

suggests that there is no issue with the fit, especially given that the residuals go from

-0.25 to 0.25, which is a very small span and suggest an almost perfect fit. Additionally,

a Shapiro-Wilk test was performed and the p-value was estimated to be 0.05 indicating

that there is no evidence of non-normality of the residuals. This is further confirmed by

the fact that the actual vs. fitted points in plot b) are all lying on the equivalence line.

Lastly, the multivariate Bayesian 10-fold CV RMSPE is compared to the one from the

univariate model from the DiceKriging package in Table 6.12. The two models have

almost identical prediction performance suggesting that although very different set of

hyperspatial parameters were used, the models have very similar prediction estimates.

This is further confirmed by the fact the 95% bootstrap confidence intervals overlap each

other.

Model RMSPE

Multivariate Bayesian
0.10

(0.08, 0.12)

Univariate Frequentist
0.09

(0.07, 0.10)

Table 6.12: RMSPE from a 10-fold CV of the multivariate Bayesian and univari-
ate frequentist models for the NO2 annual averages (µg m−3) from ADMS-Urban for
Burgher Street with emissions (% change), wind speed (% change) and wind direction
(◦ change) as covariates and an exponential kernel.

However, in the univariate modelling case, the fit was improved by adding additional

terms to the model. Hence, the multivariate model was refitted by adding a fourth
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Diagnostic plots for Burgher Street multivariate exponential GP

Figure 6.21: Diagnostic plots for the multivariate Bayesian GP model with an expo-
nential kernel for the NO2 annual averages (µg m−3) from ADMS-Urban for Burgher
Street with emissions (% change), wind speed (% change) and wind direction (◦ change)

as covariates.

term - the emissions squared. The fixed effect parameters are summarised in Table 6.13.

Similarly, to the model with three covariates, the parameter estimates and their standard

errors are almost identical. The variances and the hyperspatial range parameters from

the two models are compared in Table 6.14. The variance estimates are identical but the

hyperspatial range parameters continue to be very different to each other in a similar way

to the models with just three covariates. The multivariate Bayesian model estimates that

emissions has the strongest effect and wind speed and wind direction are very similar to

each other, whereas the univariate frequentist model puts the biggest emphasis on wind

direction, followed by emissions and a very small contribution from wind speed.

Coefficient Estim. Mult
St. Error

Mult.
Estim. DK

St. Error
DK

Intercept 18.76 0.20 18.74 0.23

Emissions 0.08 0.005 0.08 0.005

Emissions2 -0.0002 0.00006 -0.0002 0.00005

Wind Speed -0.05 0.006 -0.05 0.008

Wind Direction 0.02 0.007 0.02 0.004

Table 6.13: Summary of the GP model for the NO2 annual averages (µg m−3) from
ADMS-Urban for Burgher Street with emissions (% change), emissions squared, wind
speed (% change) and wind direction (◦ change) as covariates and an exponential kernel.

The diagnostic plots for the multivariate Bayesian model with four covariates for Burgher

Street are examined in Figure 6.22. Overall, the plots indicate a good fit. The problems

with heavy tails on the qq-plot in plot c) is continued from the three inputs model and
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Model θ̂Emissions θ̂Wind Speed θ̂Wind Direction σ̂2

Multivariate Bayesian 61.42 48.44 44.05 0.10

Univariate Frequentist 104.88 32.33 203.64 0.10

Table 6.14: Summary of the hyperspatial range parameters and variance from the
multivariate Bayesian and univariate frequentist models for the NO2 annual averages
(µg m−3) from ADMS-Urban for Burgher Street with emissions (% change), emissions
squared, wind speed (% change) and wind direction (◦ change) as covariates and an
exponential kernel.

the Shapiro-Wilk test has a p-value of 0.04 indicating the residuals are not normally

distributed, but the histogram of the residuals in plot d) is symmetric and the range of

the residuals (-0.25 to 0.30) is very small to indicate a problem with the fit. Furthermore,

the actual vs. fitted points in plot b) are lying just as closely to the equivalence line as

for the model with three inputs.
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Diagnostic plots for Burgher Street multivariate exponential GP Em2

Figure 6.22: Diagnostic plots for the multivariate Bayesian GP model with an expo-
nential kernel for the NO2 annual averages (µg m−3) from ADMS-Urban for Burgher
Street with emissions (% change), emissions squared, wind speed (% change) and wind

direction (◦ change) as covariates.

Then, the multivariate Bayesian and the univariate frequentist models with four covari-

ates are compared on the prediction performance using the RMSPE based on a 10-fold

CV. Once again, the univariate frequentist model performs better, although not signifi-

cantly different as the 95% bootstrap confidence intervals are overlapping. However, it

is interesting to note that in comparison with the three covariates models (Table 6.12),

the multivariate Bayesian model has a slightly lower RMSPE, whereas the frequentist

model has the same RMSPE.
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Model RMSPE

Multivariate Bayesian
0.10

(0.07, 0.12)

Univariate Frequentist
0.08

(0.06, 0.09)

Table 6.15: RMSPE from a 10-fold CV of the multivariate Bayesian and univari-
ate frequentist models for the NO2 annual averages (µg m−3) from ADMS-Urban for
Burgher Street with emissions (% change), emissions squared, wind speed (% change)
and wind direction (◦ change) as covariates and an exponential kernel.

Lastly, the multivariate Bayesian and univariate frequentist models are refitted by adding

an additional fifth covariate - the interaction between emissions and wind speed. The

fixed effect estimates and their respective standard errors from the two models are com-

pared in Table 6.16. The parameter estimates and their standard errors from the two

models are very similar to each other as with the other models. However, it has to be

noted that the standard errors for both models are lower than those for the models with

three and four covariates. Furthermore, the variances and hyperspatial range parame-

ters were examined in Table 6.17. The two models have identical variances, which are

the lowest variances in comparison to the models with three and four covariates. While

the hyperspatial range parameters estimated by the multivariate Bayesian model have

not changed much with the addition of an extra covariate, the hyperspatial range pa-

rameters estimated by the univariate frequentist model are very different. The emissions

hyperspatial range parameter is now the largest for both models but the models disagree

whether wind speed (multivariate Bayesian) or wind direction (univariate frequentist)

has the second largest impact.

Coefficient Estim. Mult
St. Error

Mult.
Estim. DK

St. Error
DK

Intercept 18.81 0.13 18.80 0.23

Emissions 0.08 0.003 0.08 0.005

Emissions2 -0.0002 0.00004 -0.0002 0.00005

Wind Speed -0.09 0.005 -0.08 0.0001

Emissions*Wind Speed -0.0008 0.00007 -0.0008 0.00002

Wind Direction 0.02 0.005 0.02 0.004

Table 6.16: Summary of the multivariate Bayesian and univariate frequentist GP
model for the NO2 annual averages (µg m−3) from ADMS-Urban for Burgher Street
with emissions (% change), emissions squared, wind speed (% change), an interaction
between emissions and wind speed, and wind direction (◦ change) as covariates and an
exponential kernel.

The diagnostic plots for the multivariate Bayesian model with five covariates for Burgher

Street were examined in Figure 6.23. The points for residuals vs. fitted values plot in

a) are fanning out to the right suggesting a heteroscedasticity issue. However, the

points only fan out from -0.25 to 0.25, which is a very small span. The residuals vs.

emissions plot in e) and residuals vs. wind speed in f) shown fanning to the right and
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Model θ̂Emissions θ̂Wind Speed θ̂Wind Direction σ̂2

Multivariate Bayesian 64.51 46.97 37.50 0.04

Univariate Frequentist 154.01 38.13 72.94 0.04

Table 6.17: Summary of the hyperspatial range parameters and variance from the
multivariate Bayesian and univariate frequentist models for the NO2 annual averages
(µg m−3) from ADMS-Urban for Burgher Street with emissions (% change), emissions
squared, wind speed (% change), an interaction between emissions and wind speed, and
wind direction (◦ change) as covariates and an exponential kernel.

left, respectively. This suggests that adding the interaction term between emissions and

wind speed might be the cause for the fanning out. The qq-plot in c) shows heavy

tails similarly to the models with three and four terms but the Shapiro-Wilk test has a

p-value of 0.05 indicating that there is no evidence that the residuals are not normally

distributed. However, the residuals histogram in d) is symmetric suggesting there is no

issue. Lastly, the actual vs. fitted values plot in b) has the points lying perfectly on the

equivalence line indicating the model’s predictions are very accurate.
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Figure 6.23: Diagnostic plots for the multivariate Bayesian GP model with an expo-
nential kernel for the NO2 annual averages (µg m−3) from ADMS-Urban for Burgher
Street with emissions (% change), emissions squared, wind speed (% change), an inter-
action between emissions and wind speed and wind direction (◦ change) as covariates.

To compare the predictive performance of the multivariate Bayesian model to the uni-

variate frequentist model, the 10-fold CV RMSPEs from the two models are compared

in Table 6.18. The RMSPEs from both models are lower in comparison to the models

with fewer covariates proving near perfect predictions and not statistically significantly

different as the 95% bootstrap confidence intervals overlap each other. Nevertheless, the
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univariate frequentist model has lower RMSPE and therefore, it is better in terms of

predicting power.

Model RMSPE

Multivariate Bayesian
0.07

(0.05, 0.08)

Univariate Frequentist
0.06

(0.04, 0.07)

Table 6.18: RMSPE from a 10-fold CV of the multivariate Bayesian and univari-
ate frequentist models for the NO2 annual averages (µg m−3) from ADMS-Urban for
Burgher Street with emissions (% change), emissions squared, wind speed (% change),
an interaction between emissions and wind speed, and wind direction (◦ change) as
covariates and an exponential kernel.

Other stations

Similarly to Burgher Street, the models with five covariates had the best RMSPEs and

diagnostic plots. Therefore, the fixed effects parameter estimates for the five covariates

multivariate Bayesian and univariate frequentist models are compared in Tables 6.19 and

6.20. For all stations, the parameter estimates and their standard errors are the same.

The only exception is the parameter estimates for wind direction for the Byres Road and

Central Station monitoring stations. The multivariate Bayesian model estimates them as

positive, whereas the univariate frequentist model estimates them as negative. However,

this is a result from the fact that the univariate modelling of the stations suggested that

wind direction is not significant and is not needed for the modelling of these stations.

However, wind direction is retained in the models due to the high hyperspatial range

parameters estimated for it, which indicates wind direction is important for predictions.

The estimated hyperspatial range parameters by multivariate Bayesian and univariate

frequentist models are compared in Table 6.21. For the emissions hyperspatial range

parameter, the multivariate model estimates a much lower value than the univariate

models with the exception of the Central Station model. The wind speed hyperspatial

range parameter from the multivariate model appears to be an average value from those

estimated by the univariate models. On the other side, there is a lot of variation in the

wind direction estimates from the univariate models, yet the multivariate Bayesian model

estimates a value close to the smallest one from the univariate models (for Waulkmillglen

Reservoir).

Then the models are compared based on their overall variance σ2 and the RMSPE

based on a 10-fold CV in Table 6.22. The variance estimates are very similar. For

Central Station and Dumbarton Road the multivariate Bayesian model has slightly lower

variances, whereas the univariate frequentist model performs better for Byres Road, High
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Station Coefficient
Estim.
Mult.

St. Error
Mult.

Estim.
DK

St. Error
DK

Burgher
Street

Intercept 18.81 0.13 18.80 0.23

Emissions 0.08 0.003 0.08 0.005

Emissions2 -0.0002 0.00004 -0.0002 0.00005

Wind Speed -0.09 0.005 -0.08 0.0001

Emissions*Wind Speed -0.0008 0.00007 -0.0008 0.00002

Wind Direction 0.02 0.005 0.02 0.004

Byres
Road

Intercept 34.25 0.13 34.27 0.19

Emissions 0.20 0.003 0.20 0.002

Emissions2 -0.0006 0.00003 -0.0006 0.00002

Wind Speed -0.20 0.005 -0.20 0.005

Emissions*Wind Speed -0.002 0.00006 -0.002 0.00006

Wind Direction 0.0002 0.005 -0.0007 0.001

Central
Station

Intercept 63.88 0.30 64.04 0.38

Emissions 0.36 0.008 0.36 0.01

Emissions2 -0.002 0.00008 -0.002 0.0001

Wind Speed -0.33 0.01 -0.33 0.01

Emissions*Wind Speed -0.003 0.0002 -0.003 0.0002

Wind Direction 0.001 0.01 -0.002 0.003

Dumbarton
Road

Intercept 37.78 0.18 37.82 0.24

Emissions 0.23 0.005 0.23 0.005

Emissions2 -0.0006 0.00005 -0.0006 0.00005

Wind Speed -0.23 0.007 -0.22 0.007

Emissions*Wind Speed -0.002 0.0001 -0.002 0.00009

Wind Direction -0.05 0.007 -0.05 0.007

Table 6.19: Summary of fixed effect parameters from the multivariate GP and the
univariate frequentist emulator from the DiceKriging package for the NO2 annual
averages (µg m−3) from ADMS-Urban for the Glasgow monitoring stations Burgher
Street, Byres Road, Central Station and Dumbarton Road with emissions (% change),
emissions squared, wind speed (% change), an interaction between emissions and wind
speed, and wind direction (◦ change) as covariates and an exponential kernel.

Street, Townhead and Wellington Road. However, the RMSPEs are always lower for

the univariate frequentist models, although not statistically significantly different as the

95% bootstrap confidence intervals are overlapping each other. This implies that using

different hyperspatial range parameters for the different stations is better than using

one smoothed set of hyperspatial range parameters for all stations. Nevertheless, the

differences are very small and both models have almost perfect prediction.

Findings

Overall, the multivariate Bayesian emulator with five covariates performs better than

the emulator with less covariates when modelling the NO2 annual average from the

ADMS-Urban simulator. The multivariate Bayesian model performs almost as well as

the univariate frequentist model with five covariates. Applying the same hyperspatial
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Station Coefficient
Estim.
Mult.

St. Error
Mult.

Estim.
DK

St. Error
DK

Great
Western

Road

Intercept 33.92 0.14 33.95 0.16

Emissions 0.19 0.004 0.20 0.003

Emissions2 -0.0006 0.00004 -0.0006 0.00004

Wind Speed -0.19 0.005 -0.19 0.006

Emissions*Wind Speed -0.002 0.00007 -0.002 0.00007

Wind Direction -0.02 0.005 -0.02 0.004

High
Street

Intercept 35.60 0.14 35.63 0.14

Emissions 0.19 0.004 0.20 0.003

Emissions2 -0.0008 0.00004 -0.0008 0.00003

Wind Speed -0.20 0.005 -0.20 0.006

Emissions*Wind Speed -0.002 0.00007 -0.002 0.00007

Wind Direction -0.002 0.00007 -0.002 0.002

Townhead

Intercept 29.49 0.13 29.50 0.12

Emissions 0.15 0.003 0.15 0.003

Emissions2 -0.0007 0.00003 -0.0007 0.00003

Wind Speed -0.16 0.005 -0.16 0.005

Emissions*Wind Speed -0.001 0.00007 -0.002 0.00007

Wind Direction -0.01 0.005 -0.01 0.002

Waulkmillglen
Reservoir

Intercept 9.81 0.07 9.81 0.04

Emissions 0.01 0.002 0.01 0.0007

Emissions2 -0.00003 0.00002 -0.00004 0.000007

Wind Speed -0.01 0.003 -0.01 0.001

Emissions*Wind Speed -0.0001 0.00004 -0.0001 0.00001

Wind Direction -0.01 0.003 -0.01 0.002

Table 6.20: Summary of fixed effect parameters from the multivariate GP and the
univariate frequentist emulator from the DiceKriging package for the NO2 annual av-
erages (µg m−3) from ADMS-Urban for the Glasgow monitoring stations Great Western
Road, High Street, Townhead and Waulkmillglen Reservoir with emissions (% change),
emissions squared, wind speed (% change), an interaction between emissions and wind
speed, and wind direction (◦ change) as covariates and an exponential kernel.

Model θ̂EM θ̂WS θ̂WD

Multivariate Bayesian 64.51 46.97 37.50

Burgher Street Univariate Frequentist 154.01 38.13 72.94

Byres Road Univariate Frequentist 111.39 27.50 1000.00

Central Station Univariate Frequentist 60.96 69.30 1000.00

Dumbarton Road Univariate Frequentist 88.19 76.76 60.04

Great Western Road Univariate Frequentist 92.72 42.70 107.66

High Street Univariate Frequentist 85.98 32.14 290.09

Townhead Univariate Frequentist 99.39 28.91 271.92

Waulkmillglen Reservoir Univariate Frequentist 170.53 57.05 33.68

Table 6.21: Summary of the hyperspatial range parameter estimates from the multi-
variate Bayesian and univariate frequentist models for NO2 annual average (µg m−3)
from ADMS-Urban for the Glasgow monitoring stations with emissions (% change),
emissions squared wind speed (% change), an interaction between emissions and wind
speed, and wind direction (◦ change) as covariates and an exponential kernel.
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Station Model σ̂2 RMSPE

Burgher Street
Multivariate Bayesian 0.04

0.07
(0.05, 0.08)

Univariate Frequentist 0.04
0.06

(0.04, 0.07)

Byres Road
Multivariate Bayesian 0.04

0.05
(0.04, 0.06)

Univariate Frequentist 0.03
0.04

(0.03, 0.04)

Central Station
Multivariate Bayesian 0.22

0.14
(0.10, 0.17)

Univariate Frequentist 0.25
0.10

(0.07, 0.13)

Dumbarton Road
Multivariate Bayesian 0.08

0.09
(0.07, 0.11)

Univariate Frequentist 0.11
0.08

(0.07, 0.10)

Great Western Road
Multivariate Bayesian 0.05

0.06
(0.05, 0.08)

Univariate Frequentist 0.05
0.06

(0.05, 0.07)

High Street
Multivariate Bayesian 0.05

0.06
(0.05, 0.07)

Univariate Frequentist 0.04
0.05

(0.04, 0.05)

Townhead
Multivariate Bayesian 0.04

0.06
(0.05, 0.06)

Univariate Frequentist 0.03
0.04

(0.04, 0.05)

Wellington Road
Multivariate Bayesian 0.01

0.02
(0.01, 0.03)

Univariate Frequentist 0.004
0.02

(0.01, 0.03)

Table 6.22: Summary of the variance and RMSPE from the multivariate Bayesian and
univariate frequentist models for NO2 annual average (µg m−3) from ADMS-Urban for
the Glasgow monitoring stations with emissions (% change), emissions squared, wind
speed (% change), an interaction between emissions and wind speed, and wind direction
(◦ change) as covariates and an exponential kernel.

range parameters to all stations causes a loss of information and therefore, the multi-

variate Bayesian model is out-performed in terms of predictive power by the univariate

frequentist model. The univariate models have better (but not statistically significant)

performance in comparison to the multivariate model due to the rapid fluctuation of

pollution concentration even for small distances (less than 10 metres). However, using

the multivariate Bayesian model is preferred as only one model is fitted for all monitor-

ing stations rather than individual ones. Additionally, although the analysis shows that

wind direction is not always significant for some of the monitoring stations in Glasgow

(Byres Road and Central Station), it will be retained in the models due to the high

hyperspatial range parameter estimated for wind direction and the experts’ recommen-

dation.
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6.4.2 Emulation

In this subsection, the results from emulating the ADMS-Urban simulations for the

multivariate Bayesian models for the Glasgow monitoring stations are examined. The

emulated NO2 annual average concentrations are obtained over a discretised grid of the

input space from the LHC. The grid to be evaluated is based on increments of 0.5 along

the dimensions for each of the three inputs. In addition to calculating the NO2 annual

average and the respective uncertainty around that estimate, the probability of breaking

the 40 µg m−3 regulation will be provided in a similar way to the Aberdeen case. Contour

plots for the emulated NO2 annual average under three variations for wind direction will

be provided alongside the respective standard deviations for the annual average as well

as contour plots for the probability of exceeding the regulation limit of 40 µg m−3. The

three variations for wind direction to be examined are:

• -15◦ variation from the baseline value for 2015, resulting in a more eastern prevail-

ing wind;

• 0◦ variation from the baseline value for 2015; and

• 15◦ variation from the baseline value for 2015, resulting in a more western prevail-

ing wind.

Firstly, the contour plots for the emulated NO2 annual average and the respective stan-

dard deviations when the wind direction is set to have -15◦ change from the 2015 observed

baseline values are in Figure 6.24. Three of the stations (Burgher Street, Townhead and

Waulkmillglen Reservoir) have values indicating that the simulated annual averages will

both breach the annual average regulation of 40 µg m−3. The Byres Road, Dumbarton

Road, Great Western Road and High Street stations have a bit of red hue in their plots

suggesting that under increased emissions and low wind speed, the annual average will

be close to exceeding the regulation. For Central Station, the majority of the NO2 an-

nual averages are above the regulation. This implies that the station records really high

emission values and regardless of the meteorological conditions, the annual regulation

will be broken in the majority of the simulated conditions. Furthermore, for Central

Station the highest emulated NO2 annual average is 80 µg m−3 which is higher than

any other station in both Aberdeen and Glasgow. The variation values for all stations,

however, are quite low, indicating good emulation of the simulation scenarios. The over-

all standard deviation values for Glasgow are much smaller than those for Aberdeen

which is due to the more complex fixed effects model, i.e. the larger number of covari-

ates. Central Station and Dumbarton Road have the highest standard deviation values

in Glasgow which is in accordance with the fact that those are the two stations with
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the highest recorded concentrations. Overall, similar trends as in the Aberdeen plots

are seen in the standard deviation plots for Glasgow. Firstly, the stations with higher

NO2 annual averages have higher standard deviations associated with them. Secondly,

there is an increase in the standard deviations towards the bottom right corner which

are associated with higher emissions and lower wind speeds. Lastly, the corners of each

of the plots have higher standard deviations than the mid-points as these are the edges

of the LHC, i.e. the standard deviations corresponds to the density of the simulation

points.

The contour plots for the probabilities of breaking the 40 µg m−3 annual average regula-

tion limit when the wind direction is set to -15◦ change from the 2015 observed baseline

values are in Figure 6.25. As in the Aberdeen case, the change from probability of ex-

ceedance of zero to probability of exceedance of one is quite rapid due to the accuracy

of the predictions. For Glasgow, there are three stations for which under no conditions

the regulation limit is likely to be broken and they are Burgher Street, Townhead and

Waulkmillglen Reservoir, which is consistent with the annual averages observed at Fig-

ure 6.24. For the Byres Road and Great Western Road stations, increases of emissions

over 10% and lower than the baseline wind speed are likely to result in exceedance of the

regulation, whereas for High Street any increase of emissions and lower than the baseline

wind speed are likely to result in exceedances. For Dumbarton Road, it appears that

an increase in emissions, even for higher than the baseline wind speed could result in

exceedances. For Central Station the plot suggests that a decrease of almost 60% in

emissions will result in high probability of non-exceedance for any meteorological con-

ditions. This is further supported by the almost horizontal line between the probability

of zero and probability of one at the contour plot.

Next, the contour plots for the emulated NO2 annual average and the respective standard

deviations when the wind direction is set to 0◦ change from the 2015 baseline are in

Figure 6.26. As in the case when wind direction was set at -15◦ change from the baseline

in Figure 6.24, there are three stations for which values of 40 µg m−3 are never observed

- Burgher Street, Townhead and Waulkmillglen Reservoir. For Byres Road, Dumbarton

Road, Great Western Road, High Street and Townhead it appears that for a number

of combinations of emissions and wind speed, there are a few annual averages which

are exceeding the regulation limit. For Central Station, the majority of the values are

above the regulatory limit and reach values of 80 µg m−3, which is twice the limit. The

standard deviations are again quite small with the highest standard deviations at Central

Station and Dumbarton Road, where the highest NO2 concentrations are recorded.

The contour plots for the probabilities of breaking the 40 µg m−3 annual average reg-

ulation limit when the wind direction is set to 0◦ change from the 2015 baseline are in
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Figure 6.24: Contour plots for emulated NO2 annual average (µg m−3) when wind
direction is set to -15◦ change from the 2015 baseline for the ADMS-Urban simula-
tions for the eight monitoring stations in Glasgow based on the multivariate model
with emissions (% change), emissions squared, wind speed (% change), an interaction
between emissions and wind speed, and wind direction (◦ change) as covariates and
an exponential kernel are presented on the left side. Contour plots for the standard
deviations of the emulated NO2 annual averages are provided on the right. In each

plot, the black circle depicts the baseline realisation.

Figure 6.27. Similarly to the contour plots for the probabilities of exceedance when the

wind direction is set to -15◦ change from the baseline, the change from probability of
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Figure 6.25: Contour plots for the probabilities for exceeding the 40 µg m−3 for the
emulated NO2 annual average (µg m−3) when wind direction is set to -15◦ change from
the 2015 baseline for the ADMS-Urban simulations for the eight monitoring stations in
Glasgow based on the multivariate model with emissions (% change), emissions squared,
wind speed (% change), an interaction between emissions and wind speed, and wind
direction (◦ change) as covariates and an exponential kernel. In each plot, the black

circle depicts the baseline realisation.

exceedance of zero to probability of exceedance of one is quite rapid due to the accuracy

of the predictions. Once again, it is unlikely that the regulations will be broken at the

Burgher Street, Townhead and Waulkmillglen Reservoir monitoring stations. For Byres

Road, Great Western Road, and High Street as long as the emissions are not increased,

the annual average regulation will not be exceeded. For Dumbarton Road, it appears

that if the emissions are higher than the baseline and the wind speed is lower, it is very

likely that the regulation will be exceeded. For Central Station, the only way to ensure

that the regulation will not be broken is to reduce the emissions by 60% as seen by the
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almost horizontal line between the probability of zero to probability of one. Overall,

the prediction plots are very similar to those in Figure 6.25 suggesting that the change

in wind direction does not appear to have an effect on the probability that the annual

average would exceed the regulatory limit.

Lastly, the contour plots for the emulated NO2 annual average and the respective stan-

dard deviations when the wind direction is set to 15◦ change from the 2015 baseline are

in Figure 6.28. The plot is very similar to those for the wind direction being set to -15◦

change from the baseline in Figure 6.24 and to 0◦ change from the baseline in Figure

6.26. As in the previous plots, Burgher Street, Townhead and Waulkmillglen Reservoir

do not have annual averages above 40 µg m−3, whereas for Byres Road, Dumbarton

Road, Great Western Road and High Street, there are values above the the annual aver-

age limit for NO2. For Central Station, the majority of the plot is red suggesting that the

annual average limit is likely to be exceeded under most simulation conditions. Overall,

the standard deviations are quite small with the highest standard deviations at Central

Station and Dumbarton Road, where the highest NO2 concentrations are recorded.

The contour plots for the probabilities of breaking the 40 µg m−3 annual average regu-

lation limit when the wind direction is set to 15◦ change from the baseline are in Figure

6.29. Similarly to the previous contour plots for the probabilities of exceedance, the

change from probability of exceedance of zero to probability of exceedance of one is

quite rapid due to the accuracy of the predictions. For these contour plots, it appears

that it is unlikely that the regulations will be broken at the Burgher Street, Townhead

and Waulkmillglen Reservoir monitoring stations. For Byres Road, Great Western Road,

and High Street as long as the emissions are not higher than the baseline values, the

annual average regulation will not be exceeded. For Dumbarton Road, it appears that if

the emissions are higher than the baseline and the wind speed is lower than the baseline

values, it is very likely that the regulation will be exceeded. For Central Station, the

only way to ensure that the regulation will not be broken is to reduce the emissions by

more than 60% as demonstrated by the almost horizontal line of separation between the

probability of zero and probability of one for breaking the regulation limit. Overall, the

prediction plots are very similar to those in Figure 6.25 and Figure 6.27 suggesting that

the change in wind direction does not appear to have an effect on the probability that

the annual average would exceed the regulatory limit.

Findings

The plots from the three sets of variation of wind direction (-15◦, 0◦ and 15◦) are

very similar to each other suggesting that wind direction does not have a visible effect
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Figure 6.26: Contour plots for emulated NO2 annual average (µg m−3) when wind
direction is set to 0◦ change from the 2015 baseline for the ADMS-Urban simulations
for the eight monitoring stations in Glasgow based on the multivariate model with emis-
sions (% change), emissions squared, wind speed (% change), an interaction between
emissions and wind speed, and wind direction (◦ change) as covariates and an expo-
nential kernel are presented on the left side. Contour plots for the standard deviations
of the emulated NO2 annual averages are provided on the right. In each plot, the black

circle depicts the baseline realisation.

on the NO2 annual average concentrations. The plots help identify Burgher Street,

Townhead and Waulkmillglen Reservoir as the three stations at which under no set of
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Figure 6.27: Contour plots for the probabilities for exceeding the 40 µg m−3 for the
emulated NO2 annual average (µg m−3) when wind direction is set to 0◦ change from
the 2015 baseline for the ADMS-Urban simulations for the eight monitoring stations in
Glasgow based on the multivariate model with emissions (% change), emissions squared,
wind speed (% change), an interaction between emissions and wind speed, and wind
direction (◦ change) as covariates and an exponential kernel. In each plot, the black

circle depicts the baseline realisation.

different emission levels and meteorological conditions, the annual average regulation of

40 µg m−3 will be broken. For the Byres Road, Great Western Road and High Street

monitoring stations it was shown that as long as the emission levels do not exceed

the baseline values, the NO2 annual average regulation limit will not be broken. For

Dumbarton Road, a small reduction of about 5% in emissions will ensure that the

regulation is never exceeded. However, Central Station is the monitoring station where

the meteorological conditions appear not to have as much of an effect and only a large

reduction (of above 60%) in emissions will ensure that monitoring station will comply
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Figure 6.28: Contour plots for emulated NO2 annual average (µg m−3) when wind
direction is set to 15◦ change from the 2015 baseline for the ADMS-Urban simulations
for the eight monitoring stations in Glasgow based on the multivariate model with emis-
sions (% change), emissions squared, wind speed (% change), an interaction between
emissions and wind speed, and wind direction (◦ change) as covariates and an expo-
nential kernel are presented on the left side. Contour plots for the standard deviations
of the emulated NO2 annual averages are provided on the right. In each plot, the black

circle depicts the baseline realisation.

with the regulation.
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Figure 6.29: Contour plots for the probabilities for exceeding the 40 µg m−3 for the
emulated NO2 annual average (µg m−3) when wind direction is set to 15◦ change from
the 2015 baseline for the ADMS-Urban simulations for the eight monitoring stations in
Glasgow based on the multivariate model with emissions (% change), emissions squared,
wind speed (% change), an interaction between emissions and wind speed, and wind
direction (◦ change) as covariates and an exponential kernel. In each plot, the black

circle depicts the baseline realisation.

6.4.3 Conclusion

The multivariate Bayesian model was applied to the ADMS-Urban NO2 annual average

simulations and its performance was compared to the univariate frequentist model from

the DiceKriging software. It was found that a model with five covariates (more com-

plex than Aberdeen) provides the most accurate predictions. The multivariate and the

univariate models estimate the parameters for the fixed effects as well as their standard
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errors almost identically. The major difference comes from the hyperspatial range pa-

rameter estimates. The univariate frequentist models for the eight monitoring stations

estimate very different hyperspatial range parameters for each stations and applying one

set of parameters as estimated by the Bayesian multivariate model causes a slight loss

of information but both models have almost identical and very close to zero RMSPEs.

Hence, the multivariate Bayesian model was used for the emulation of the NO2 annual

average for the eight monitoring stations in Glasgow as it requires fitting only one model

instead of eight for each monitoring station. It was found that a change in the prevailing

wind direction does not have an effect on the annual average concentrations. For three of

the stations (Burgher Street, Townhead and Waulkmillglen Reservoir), the NO2 annual

average will never go above 40 µg m−3. For another three of the stations (Byres Road,

Great Western Road and High Street), as long as the emissions do not increase above the

baseline, the regulatory limit will also not be broken. For Dumbarton Road, a reduction

of 5% from the baseline emissions will result in complying with the regulation limit for

all meteorological conditions. For Central Station, the biggest impact for complying

with the regulation will be from reducing emissions by 60%.

6.5 Conclusion

In this chapter, a multivariate Bayesian emulator was introduced in Section 6.1 in order

to create a multivariate model for the NO2 annual averages as simulated by ADMS-

Urban for Aberdeen and Glasgow, which accounts for the correlation between the ob-

servations. The multivariate Bayesian emulator models the responses using a matrix

normal distribution, where the correlation matrix was built using an exponential corre-

lation function. The same hyperspatial range parameters are imposed for all the stations

in a city. Since there is no prior information available, non-informative priors are set.

In Section 6.2, simulation studies were performed in order to: (i) compare the ability of

the multivariate Bayesian model and the univariate frequentist model from Chapter 5 to

correctly identify the hyperspatial range parameters in settings close to real life data; and

(ii) assess the predictive power of mis-estimating the hyperspatial range parameters by

the multivariate Bayesian and univariate frequentist models. Additionally, the univari-

ate simplified version of the multivariate Bayesian model was also applied to the data.

The data for both studies were simulated in the same way. It was found that for (i),

as the hyperspatial range parameters values increase, all models underestimate the hy-

perspatial range parameters with the multivariate Bayesian model underestimating the

most. For (ii), it was found that RMSPE for setting the hyperspatial range parameters

to their true values in comparison to setting them to half, double or letting the models
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estimate the hyperspatial range parameters, there is at most 14% difference in the RM-

SPE. The multivariate Bayesian model appears to perform best although the difference

between the models was not statistically significant. Furthermore, as the hyperspatial

range parameter values are increased, the difference between the RMSPEs from the

different models get smaller. It was found that in a setting with similar hyperspatial

range parameters, the multivariate Bayesian model provides the lowest RMSPE. The

simulation studies in Section 6.2 proved that hyperspatial range parameters are hard to

estimate correctly by all models, but all models provide “sensible” [50] estimates which

provide a relatively unaffected RMSPE.

In Section 6.3, the multivariate Bayesian model was applied to ADMS-Urban simulations

for Aberdeen and its performance was compared to the univariate frequentist models

for each of the monitoring stations from Chapter 5, where the three inputs (emissions,

wind speed and wind direction) forming the LHC were used as covariates. The fixed

effect parameter estimates and the diagnostic plots for the two models are very similar,

and although the hyperspatial parameter estimates were different, the two models have

RMSPEs very close to zero and almost identical. Therefore, the multivariate Bayesian

model was chosen as the preferred ones and use to emulate over a discretised grid in

order to assess the changes in the NO2 annual average concentration and estimate the

probability of exceeding the 40 µg m−3 regulation. The results from varying the pre-

vailing wind direction from eastern to western, there is a larger set of combinations of

emissions and wind speed for which the regulation will be broken.

In Section 6.4, the multivariate Bayesian model was applied to ADMS-Urban simulations

for Glasgow and its performance was compared to the univariate models from Chapter

5, where the final model had five covariates - the three inputs (emissions, wind speed

and wind direction) forming the LHC, as well as an emissions squared term and an

interaction between emissions and wind speed. As in the Aberdeen case, the fixed effect

parameter estimates and the diagnostic plots for the two models are very similar, but

the univariate frequentist models have lower (but not statistically significant) RMSPE

values than the multivariate Bayesian model. However, the RMSPEs for both models

were very close to zero and similar to each other. Therefore, the multivariate Bayesian

model was chosen as it requires fitting only one model. It was used to create an emulator

for the ADMS-Urban NO2 annual average predictions by varying the prevailing wind

direction. It was found that changing the wind direction does not have a visible effect as

there was with Aberdeen. The probability of breaking the regulation is highly dependant

on a decrease in emissions in comparison to the baseline value but in the majority of the

cases this is also dependent on wind speed being at least the baseline value for 2015.
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Overall, applying the multivariate Bayesian model to both Aberdeen and Glasgow proved

to be more beneficial than univariate modelling each station as different hyperspatial

range parameters are required for each of the monitoring stations as it requires fitting

multiple models. The fixed effect model for Glasgow was more complex than the one for

Aberdeen, which resulted in lower standard deviations for the emulated Glasgow NO2

annual averages - with 0.40 and 0.30 respectively for Aberdeen and Glasgow. However,

the predictions for the annual average concentrations for both cities come with high

accuracy as the largest standard deviation was 0.40. The multivariate Bayesian model

provides an almost perfect emulator for the ADMS-Urban NO2 annual average which is

consistent with the fact that ADMS-Urban is a deterministic model. However, the NO2

regulation is also applied to the hourly concentrations as seen in the following chapters.



Chapter 7

Modelling and emulation of the

number of NO2 hourly

exceedances in Glasgow

In Scotland, there are regulations (as stipulated in European Directive 2008/50/EC

[76]) on both the NO2 annual average concentration and the NO2 hourly concentration

limits. In Table 1.1, it was stated that the annual average concentration cannot exceed

40 µg m−3, whereas the hourly concentration could not go over 200 µg m−3 more than

18 times a year. In 2019, SEPA (in coordination with other governmental agencies)

began a phased introduction of a Low Emission Zone (LEZ) in Glasgow City Centre

to try and reduce the NO2 concentrations. As a result of this, it is crucial to quantify

the change in NO2 hourly concentrations based on reduced emissions for the different

monitoring stations in Glasgow. In Chapter 4 (more specifically, Table 4.4), it was

shown that for 2015 there were four breaches of the 200 µg m−3 regulation limit, all of

which occurred at the Central Station monitor. Therefore, it is of interest to examine

the changes in the number of exceedances of the hourly limit of 200 µg m−3 for varying

emissions, wind speed and wind direction using ADMS-Urban simulations. The chapter

is organised as follows: Section 7.1 explores the number of NO2 hourly concentrations

exceeding the 200 µg m−3 for one hundred ADMS-Urban simulations for each of the

eight monitoring stations in Glasgow. Section 7.2 presents the methodology of applying

a Poisson generalised linear model (GLM) and quasi-Poisson GLM. Section 7.3 models

the number of hourly concentrations above 200 µg m−3 for Central Station in Glasgow.

Section 7.4 presents an emulator for the number of hourly concentrations above 200 µg

m−3 for Central Station in Glasgow. Lastly, Section 7.5 provides a concluding discussion.

214
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7.1 Site choice

The ADMS-Urban simulations can be used to examine under which scenarios the EU

hourly regulation have been met and when the EU hourly regulation have been broken.

Hence, the simulation scenarios for each of the monitoring stations based on the LHC

design (varying emissions, wind speed and wind direction) can be used again but this

time to model the number of exceedances of the hourly regulation. The number of

exceedances above 200 µg m−3 for every scenario for every station are visualised in

Figure 7.1. From the plots, it is clear that for only three monitoring stations (Central

Station, Dumbarton Road and Great Western Road), there are simulations for which

the hourly limit of 200 µg m−3 has been breached. For Central Station, there are 66

scenarios where at least one hourly observation is above 200 µg m−3, for Dumbarton

Road there are 42 such scenarios and 11 for Great Western Road. However, it is only

at Central Station that the limit of 18 occurrences above 200 µg m−3 has been broken

for 11 of the simulations.
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Figure 7.1: A barchart of the number of exceedances of the hourly 200 µg m−3

regulation in each scenario for each of the eight monitoring stations in Glasgow. A red
line indicates the limit of 18 exceedances a year.
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Since Central Station is the only monitoring station for which some of the simulation

scenarios breach the hourly regulation (200 µg m−3 is exceeded more than 18 times), it

is identified as the only station of interest. The following sections aim to answer what

is the expected number of hourly concentrations above 200 µg m−3 given the input

emissions, wind speed and wind direction by modelling the Central Station ADMS-

Urban simulations.

7.2 Poisson generalised linear model

A common approach for modelling count data (such as the number of hourly concentra-

tions above 200 µg m−3) is a Poisson GLM. In Subsection 2.2.7, GLMs were introduced.

This section presents the specific cases of Poisson and quasi-Poisson GLMs as described

in [78]. A Poisson GLM assumes that the response yi is a count of the number of events

occurring in a fixed amount of space or time, and depends on a given xi. The link

function g(·) is set to the log function. Hence, the model is:

yi ∼ Po(µi) , (7.1)

log(µi) = xiβ . (7.2)

Therefore, the Poisson log-likelihood is:

l(y;β) =
n∑
i=1

yi(xiβ)− exiβ − log
n∏
i=1

yi! , (7.3)

where β is estimated by minimising the likelihood using an iteratively reweighed least

squares (IRWLS) algorithm. In terms of the parametrisation of the exponential family

(Equation 2.46), the Poisson distribution has a(y) = yi, b(µ) = log(µi), c(µ) = −µi and

d(y, φ) = −log(yi! )φ, where the dispersion parameter is assumed to be φ ≡ 1. Hence,

the score function for the Poisson model is:

U(y;µ) =
n∑
i=1

(
yi
µi
− 1

)
. (7.4)

The deviance residuals (Equation 2.53) are used in two specific diagnostic plots for

Poisson GLMs. The first plot is the halfnorm quantile plot, where the absolute values

of the deviance residuals are plotted against the normal quantiles to check for outliers.

The points are expected to lie in a straight line.
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Additionally, the variances of the fitted values (approximated by (y − µ̂)2) are plotted

against the squared difference between the observed and fitted values (as an approxima-

tion to the variance of a given value). The points are expected to lie close to the equality

line. If this is not the case, this indicates that the Poisson mean-variance assumption

Var(yi) = E(yi) is not appropriate. If the points lie above the equivalence line, that

indicates an overdispersion issue (Var(yi) > E(yi)), whereas if the points lie below the

equivalence line, that indicates an underdispersion issue (Var(yi) < E(yi)).

Thus, the model can be extended to a quasi-likelihood Poisson log-linear model which

assumes:

E(yi) = exp(xiβ) , (7.5)

Var(yi) = φE(yi) , (7.6)

where φ is an estimated dispersion parameter. In the case of underdispersion φ < 1 and

in the case of overdispersion φ > 1. Since the reason causing the dispersion is unknown,

the dispersion parameter is estimated as:

φ̂ =
1

n− p
∑
i

(yi − ŷi)2

ŷi
. (7.7)

Then the quasi-Poisson model has a score function:

U(y,µ) =
n∑
i=1

(
yi − µi
φ̂Var(µi)

)
. (7.8)

Furthermore, φ̂ is used to adjust the standard errors for the parameters for the quasi-

Poisson model fit as Var(β̂) = diag
(

(X>WX)−1φ̂
)

.

7.3 Regression modelling of the number of exceedances

over 200 µg m−3

In order to estimate the number of NO2 hourly concentrations above 200 µg m−3 in

a year, the number of exceedances at Central Station per ADMS-Urban scenario are

plotted against each of the inputs in the LHC (emissions, wind speed and wind direction)

in Figure 7.2. For emissions and wind speed, the percentage change is used, whereas for

wind direction the degree change in direction is noted. Both the wind speed and wind

direction plots (plots b) and c) in Figure 7.2) indicate random scatter, suggesting there
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is no clear trend on how hourly NO2 exceedances above 200 µg m−3 occur based on the

percentage changes in wind speed and direction. However, from plot a) in Figure 7.2, it

is clear that as emissions are increased, the number of exceedances above 200 µg m−3

increases. There is a clear pattern that for emissions variability below -60%, there are

no occurrences of hourly NO2 concentrations above 200 µg m−3, whereas for emissions

variability above -60%, there appears to be a quadratic trend. This suggests that there

might be a breakpoint in the relationship.
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Figure 7.2: Scatterplots for the number of exceedances of the NO2 hourly concentra-
tions above 200 µg m−3 in a year per ADMS-Urban scenario against the LHC inputs

(emissions (% change), wind speed (% change), and wind direction (◦ change)).

Additionally, in order to examine any interactions between the three LHC inputs, each

input was plotted against the other two and the diameters of the points in the plot are

proportional to the number of hourly NO2 exceedances above 200 µg m−3 in Figure 7.3.

Plots a) and b) in Figure 7.3 indicate a clear pattern that as the percentage change in

emissions is increased, the number of exceedances above 200 µg m−3 are also increased.

However, in the last plot c), the points are randomly scattered by size indicating no clear

pattern. The proportional points plots further highlight that the increase in emissions

is the main reason for increased number of NO2 hourly concentrations exceeding 200 µg

m−3. Overall, the plots in Figure 7.3 suggest that there is no need for interaction terms

between the three inputs.

Based on this exploratory analysis, there are two possible models that can be fitted

- a Poisson generalised linear model (Subsection 7.2) or a segmented (broken-stick)

Poisson generalised linear model. Firstly, the Poisson generalised linear model (GLM)

is fitted with emissions, emissions squared, wind speed and wind direction as covariates.

Although there does not appear to be a relationship between the number of exceedances

and wind speed and wind direction, the two covariates are included in the model to
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Figure 7.3: Scatterplots for the LHC inputs (emissions (% change), wind speed (%
change) and wind direction (◦ change)) at Central Station against each other. The
points are proportional to the number of NO2 hourly concentrations above 200 µg m−3

in a year per ADMS-Urban scenario.

formally assess their effect on the number of exceedances. Additionally, it is important

when presenting the results from the modelling in front of legislative bodies (e.g. Scottish

government) to include wind speed and wind direction to demonstrate their impact or

lack of such impact. Let yi (i = 1, . . . , 100) be the number of NO2 hourly exceedances

above 200 µg m−3, then yi ∼ Po(µi). Then, the fitted log-link Poisson GLM (Subsection

7.2) is:

log(µi) = β0 + β1xEM i + β2x2
EM i + β3xWS i + β4xWD i , (7.9)

where β = [β0, β1, β2, β3, β4]> is the set of parameters to be estimated, xEM i and xWS i

are the percentage changes in emissions and wind speed respectively, and xWD i is the

degree change in wind direction for scenario i. The model was fitted using the glm

function in R.

The diagnostic plots for the model are presented in Figure 7.4. The deviance residuals

against wind speed (plot f)) suggest a quadratic curve. Therefore, the model is refitted



Chapter 7. Modelling and emulation of the number of the NO2 hourly exceedances 220

to check whether a squared term for wind speed should also be included. The new model

fitted is:

log(µi) = β0 + β1xEM i + β2x2
EM i + β3xWS i + β4x2

WS i + β5xWD i . (7.10)
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Figure 7.4: Diagnostic plots for the Poisson GLM for the number of NO2 hourly
concentrations above 200 µg m−3 in a year (as simulated by ADMS-Urban for Central
Station) with emissions (% change), emissions squared, wind speed (% change) and

wind direction (◦ change) as covariates.

The diagnostic plots for the model with emissions squared term are presented in Fig-

ure 7.5. The half-normal quantiles (plot a), see Subsection 7.2) shows no outliers and

indicates that the structural form of the model is explaining the variation well. Fur-

thermore, the proportional deviance explained by the model is 97.68%. The points on

the qq-plot (plot c)) lie on the equivalence line suggesting linearity can be assumed and

the structural form of the model is appropriate. The deviance residuals vs. the fitted

values are randomly scattered and there does not appear to be a problem with the fit.

The deviance residuals vs. emissions (plot e)) has a number of points in a curved line

for emissions values between -100 and -60. This is not surprising given that the ob-

served exceedances for these emissions are all zero. However, given the small spread of

the deviance residuals (between -1.0 and 1.5), there is no indication of an issue with

the model fit. The deviance residuals against wind speed (plot f)) no longer exhibit

a quadratic curve, although the wind speed squared term is not significant. Similarly,

the deviance residuals against wind direction (plot g)) show no patterns. The actual

vs. fitted values points (plot h)) lie on the equivalence line, thus indicating the model

predictions are similar to the actual values. The only plot indicating an issue is the

mean vs. variance (plot b)), where a strong underdispersion is observed as the majority
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of the points lie below the equivalence line, which suggests that the assumption for equal

mean and variance is broken. As a result of that, the model has to be refitted with a

dispersion parameter different from 1 in order to produce realistic standard errors (see

Subsection 7.2).
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Figure 7.5: Diagnostic plots for the Poisson GLM for the number of NO2 hourly
concentrations above 200 µg m−3 in a year (as simulated by ADMS-Urban for Central
Station) with emissions (% change), emissions squared, wind speed (% change), wind

speed squared and wind direction (◦ change) as covariates.

Table 7.1 presents the summary for the quasi-Poisson GLM where the dispersion pa-

rameter is estimated to be 0.20. The parameter estimates for all the covariates are

quite small. The emissions term is positive meaning that the number of NO2 hourly

concentrations above 200 µg m−3 increases as emissions increase, which is logical. The

emissions squared term is significant with a negative estimate. It is interesting to note

that after the dispersion parameter was adjusted, the wind direction term became sig-

nificant. The estimate is positive indicating that the more western prevailing the wind,

the higher the NO2 concentrations, which is consistent with the findings in Chapters

5 and 6. The best estimate for wind speed is negative, which is expected due to the

fact that the higher the wind speed, the quicker the pollution disperses. Similarly to

the wind direction estimate, the wind speed squared term becomes significant after the

dispersion parameter adjustment.

Alternatively, a segmented (broken-stick) quasi-Poisson GLM was also fitted to the data

set with the segmentation occurring at emissions = − 60% as suggested by Figure 7.2.

This is done in order to check if a segmented model would explain better the variability

in the data than the non-segmented model. Let yi (i = 1, . . . , 100) be the number of

NO2 hourly exceedances above 200 µg m−3, then yi ∼ Po(µi). Then, the fitted log-link

Poisson GLM for the segmented regression is:
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Covariate Estimate 95% CI p-value

Intercept 2.77 ( 2.71, 2.83) < 2.00× 10−16

Emissions 0.031 ( 0.028, 0.033) < 2.00× 10−16

Emissions sq. -0.00045 (-0.00053, -0.00037) < 2.00× 10−16

Wind Speed -0.0025 (-0.0058, 0.0008) 0.1431

Wind Speed sq. 0.0005 ( 0.0001, 0.0008) 0.0055

Wind Direction 0.0070 ( 0.0030, 0.0113) 0.0007

Table 7.1: Summary of the quasi-Poisson GLM for the number of NO2 hourly con-
centrations above 200 µg m−3 for the ADMS-Urban scenarios at Central Station. The
corresponding estimate, 95% CI and p-value for each of the covariates (emissions (%
change), emission squared, wind speed (% change), wind speed squared and wind di-

rection (◦ change)) are presented.

log(µi) = β0 + β1(xEM i + 60)+ + β2(xEM i + 60)2
+

+ β3xWS i + β4x2
WS i + β5xWD i ,

(7.11)

where:

•

(xEM i + 60)+ =

xEM i + 60 if xEM i + 60 > 0 ,

0 otherwise ; and
(7.12)

•

(xEM i + 60)2
+ =

(xEM i + 60)2 if xEM i + 60 > 0 ,

0 otherwise .
(7.13)

The diagnostic plots for the segmented quasi-Poisson GLM are presented in Figure 7.6.

In comparison to the non-segmented quadratic model diagnostic plots in Figure 7.4, the

half-normal quantiles plot (plot a)) and the qq-plot (c)) indicate that there are problems

with the outliers and indicate the structural form of the model is not explaining the

variation well. However, based on the plot e), the issues might be caused by the many

zeros in the response. The proportion of deviance explained by the segmented model

is 95.47% which is two percent lower than the non-segmented model. Furthermore, the

mean vs. variance plot (plot b)) indicates strong underdispersion. Hence, the model was

refitted as a segmented quasi-Poisson GLM.

The summary for the segmented quasi-Poisson GLM with an estimated dispersion pa-

rameter of 0.39 is presented in Table 7.2. Similarly to the non-segmented model, after

estimating the dispersion parameter, the wind direction term becomes significant. The

wind speed squared term is significant with p-value of 0.05 and the 95% CI is entirely

positive. Overall, the parameter estimates from the two models are very similar except
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Figure 7.6: Diagnostic plots for the segmented quasi-Poisson GLM for the number
of NO2 hourly concentrations above 200 µg m−3 in a year (as simulated by ADMS-
Urban for Central Station) with emissions (% change), emissions squared, wind speed

(% change), wind speed squared and wind direction (◦ change) as covariates.

for the intercept which the segmented model estimates as negative whereas the non-

segmented model estimates as positive. The other difference is that the 95% CIs for the

the segmented model are wider than the ones for the non-segmented model.

Covariate Estimate 95% CI p-value

Intercept -1.13 (-1.40, -0.86) 1.43× 10−12

(xEM + 60)+ 0.10 ( 0.09, 0.11) < 2.00× 10−16

(xEM + 60)2
+ -0.0006 (-0.0007, -0.0005) < 2.00× 10−16

Wind Speed -0.003 (-0.008, 0.002) 0.21

Wind Speed sq. 0.000456 ( 0.000005, 0.000908) 0.05

Wind Direction 0.008 ( 0.003, 0.014) 0.005

Table 7.2: Summary of the segmented quasi-Poisson GLM for the number of NO2

hourly concentrations above 200 µg m−3 for the ADMS-Urban scenarios at Central
Station. The corresponding estimate, 95% CI and p-value for each of the covariates
(emissions (% change), emission squared, wind speed (% change) and wind direction (◦

change)) are presented.

The diagnostic plots for both the quadratic quasi-Poisson GLM and the segmented quasi-

Poisson GLM show issues with the fit. Negative-Binomial GLMs were also fitted but

they were found to be unstable because of the many zeros in the data and therefore,

these models are not presented. However, the main aim of these models is to be used

for out-of-sample prediction. Therefore, the two models are compared using Deviance

(see Subsection 2.2.7) and the Root Mean Squared Prediction Error (RMSPE) results

from 10-fold cross-validation (CV) (see Subsection 2.2.6) in Table 7.3. Additionally, the

deviance degrees of freedom (abridged to Dev. df) are also provided. The Dev. df are

estimated as the difference between the total number of observations, n, and the number
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of parameters p. Both the deviance and the CV indicate that the preferred model is

the non-segmented one. The residual deviance for the non-segmented model is almost

twice as small indicating that the non-segmented model captures better the variability

in the data but both deviances are really small indicating a good fit. The 10-fold CV is

also lower for the non-segmented model, which indicates that the non-segmented model

is better at predicting the number of NO2 hourly concentrations above 200 µg m−3 in

a year as simulated by ADMS-Urban for Central Station. However, this difference is

not statistically significant as the 95% bootstrap intervals for the RMSPEs from the two

models are overlapping.

Model Dev. df Res. deviance RMSPE

Non-segmented 94 22.63
1.22

(0.93, 1.48)

Segmented 94 44.25
1.50

(1.14, 1.81)

Table 7.3: Comparing the non-segmented and segmented quasi-Poisson models for
the number of NO2 hourly concentrations above 200 µg m−3 in a year (as simulated
by ADMS-Urban for Central Station) with emissions (% change), emissions squared,
wind speed (% change), wind speed squared and wind direction (◦ change) as covariates
based on residual deviance (the corresponding degrees of freedom) and RMSPE (and

its 95% bootstrap confidence intervals) based on 10-fold CV.

Based on the diagnostic plots (Figure 7.4 for the non-segmented model and Figure 7.6

for the segmented model) and the comparative statistics in Table 7.3, the non-segmented

quasi-Poisson GLM is then used to create an emulator for the number of exceedances

for untested scenarios of the ADMS-Urban simulator. The 10-fold CV RMSPE score

of 1.22 (Table 7.3) indicates that for a year, the quasi-Poisson non-segmented model

on average will mispredict the NO2 hourly concentrations above 200 µg m−3 by only 1

occurrence. Hence, the model performs well in mimicking the ADMS-Urban simulation.

Therefore, in Section 7.4 the non-segmented quasi-Poisson model will be used to predict

the number of NO2 hourly concentrations above 200 µg m−3 alongside the standard

deviations and the probability that the hourly regulation (18 occurrences above 200 µg

m−3) will be broken.

7.4 Emulation of the number of exceedances over 200 µg

m−3

Contour plots with one of the three LHC inputs set to be fixed will be presented to

visualise the changes in the number of NO2 hourly concentrations above 200 µg m−3

under different sets of untested inputs of the ADMS-Urban simulator. The emulated

number of NO2 hourly concentrations above 200 µg m−3 is obtained over a discretised
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grid of the input space from the LHC. The grid to be evaluated is based on increments

of 0.5 along the dimensions for each of the three inputs (emissions, wind speed and

wind direction) similar to the grid set-up in Chapter 6. For a new set of inputs xnew =

[xnew EM, xnew WS, xnew WD]>, the output ynew is estimated as:

E(ynew) = exp(xnewβ̂) , (7.14)

with standard deviation estimated as:

SD(ynew) =
√

Var(ynew) =
√
φE(ynew) . (7.15)

The probability of more than 18 NO2 hourly concentrations above 200 µg m−3 can be

estimated as P (ynew > 18) using the Poisson probability mass function (pmf). Contour

plots for the emulated number of NO2 hourly concentrations above 200 µg m−3 under

three variations for wind direction (as in Chapter 6) will be provided alongside the

respective standard deviation for the number of hourly concentrations above 200 µg

m−3 as well as contour plots for the probability of exceeding the regulation limit of 18

concentrations. The three variations for wind direction to be examined are:

• -15◦ variation from the baseline value for 2015, resulting in a more eastern prevail-

ing wind;

• 0◦ variation from the baseline value for 2015; and

• 15◦ variation from the baseline value for 2015, resulting in a more western prevail-

ing wind.

As the expected count is estimated by taking an exponent of the link function, an

approximate 95% CI is estimated for ynew by:

(
exp

(
xnewβ̂ − 1.96SD(xnewβ̂)

)
, exp

(
xnewβ̂ + 1.96SD(xnewβ̂)

))
. (7.16)

Firstly, the predictions for the number of exceedances for each of three possible wind

direction values are examined in Figure 7.7. The plots are almost identical to each

other which is expected given that wind speed is not a significant predictor. In all the

scenarios, the (0, 0) coordinate for emissions and wind speed is in the red zone, which

means that for any wind speed variation it is expected that there will be NO2 hourly

concentration over 200 µg m−3 close to or above the 18 exceedances regulation. For WD
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= -15◦, the expected number of occurrences is 15 with a 95% CI of (14, 17), for WD =

0◦, there are expected to be 17 occurrences with a 95% CI of (16, 18), and for WD =

+15◦, there are expected to be 19 occurrences with a 95% CI of (17, 20). The plots look

very similar to each other but there is a clear increase in the number of exceedances as

the wind becomes more western prevailing which is in agreement with the conclusions

for the NO2 annual averages in Chapter 6. There is also a clear trend indicating that

as emissions increase, so do the number of exceedances. There is a slight vertical curve

as to when the predictions become red as a result of the squared wind speed term. The

curve is more pronounced at the bottom of each plot which is to be expected - for lower

wind speed, there is a larger number of NO2 hourly concentration over 200 µg m−3.

The curvature in wind speed is caused by the fact that high wind speed is more likely

to occur during the winter when there are lower temperatures which would slow down

the chemical reactions between pollutants and hence, the dispersion of the pollutants.
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Figure 7.7: Contour plots for the emulated number of exceedances of the hourly NO2

concentrations above 200 µg m−3 over a year when wind speed is set to -15◦ variation
from the baseline (a)), 0◦ variation from the baseline (b)) and +15◦ from the baseline
(c)) for the ADMS-Urban simulations for Central Station based on the quasi-Poisson
GLM. In each plot, the black circle depicts (0, 0) coordinate for emissions (% change)

and wind speed (% change).

To further investigate the differences between the three examined fixed values of wind

direction, the standard deviations plots are presented in Figure 7.8. The standard
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deviations increase as the emissions increase to the right of the plots. As expected, the

standard deviations also increase as the wind direction becomes more positive, i.e. the

wind gets more western prevailing. It is interesting to note that there is curvature in the

standard deviation plots similar to the one in the number of exceedances contour plots.

The curvature is a result of the squared wind speed term.

−20

−10

0

10

20

−100 −75 −50 −25 0 25
Emissions (% change)

W
in

d 
S

pe
ed

 (
%

 c
ha

ng
e)

0.00

0.50

1.00

1.50

2.00

2.65
St. Deviation

a) WD = −15°

−20

−10

0

10

20

−100 −75 −50 −25 0 25
Emissions (% change)

W
in

d 
S

pe
ed

 (
%

 c
ha

ng
e)

0.00

0.50

1.00

1.50

2.00

2.65
St. Deviation

b) WD = 0°

−20

−10

0

10

20

−100 −75 −50 −25 0 25
Emissions (% change)

W
in

d 
S

pe
ed

 (
%

 c
ha

ng
e)

0.00

0.50

1.00

1.50

2.00

2.65
St. Deviation

c) WD = +15°

Central Station Standard Deviations

Figure 7.8: Contour plots for the standard error of emulated number of exceedances
of the hourly NO2 concentrations above 200 µg m−3 over a year when wind direction
is set to -15◦ variation from the baseline (a)), 0◦ variation from the baseline (b)) and
+15◦ from the baseline (c)) for the ADMS-Urban simulations for Central Station based
on the quasi-Poisson GLM. In each plot, the black circle depicts (0, 0) coordinate for

emissions (% change) and wind speed (% change).

Lastly, the contour plots for the probability of breaching the 18 occurrences over 200

µg m−3 regulation over a year for the three examined fixed values of wind direction

are presented in Figure 7.9. As with the previous plots in Figures 7.7 and 7.8, there is

clear curvature due to the wind speed squared term. As with the contour plots for the

expected numbers of exceedances in Figure 7.7, in Figure 7.9 there is a difference between

the three plots. The size of the dark red area increases as the wind direction degrees

change from east to west. Examining the (0, 0) for the three plots, the probabilities of

exceedances are 13.76%, 25.70% and 42.25%, respectively. It is interesting to compare

the result from plot b) as that reflects baseline value for what has occurred in 2015.

Although the emulator for ADMS-Urban estimates 17 occurrences (with a 95% CI of
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(16, 18)), the probability for that happening is quite low which is logical as there were

only four hourly breaches observed in 2015.
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Figure 7.9: Contour plots for the probabilities for exceeding the 18 occurrences over
200 µg m−3 regulation over a year when wind direction is set to -15◦ variation from the
baseline (a)), 0◦ variation from the baseline (b)) and +15◦ from the baseline (c)) for
the ADMS-Urban simulations for Central Station based on the quasi-Poisson GLM. In
each plot, the black circle depicts (0, 0) coordinate for emissions (% change) and wind

speed (% change).

7.5 Conclusion

In this chapter, it was aimed to address the NO2 hourly concentrations regulation from

the European Directive 2008/50/EC [76], where more than 18 occurrences over 200 µg

m−3 constitute a breach. In order to explore how changes in emissions, wind speed and

wind direction affect the hourly regulation, the one hundred ADMS-Urban simulations

were used. From Figure 7.1, it became clear that Central Station is the only monitoring

station in Glasgow, where the hourly regulation was breached. Therefore, the rest of

the chapter focuses only on this specific station.

In Figure 7.2, it was observed that there will be at least one exceedance if the percentage

change in emissions is higher than -60% regardless of the wind speed and wind direction
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values. This exploratory plot suggested that either a Poisson GLM or a segmented

Poisson GLM can be used to model the number of occurrences over 200 µg m−3. Both

models struggled with underdispersion, which required refitting them as quasi-Poissons.

The final quasi-Poisson GLM was fitted with emissions (% change), emission squared,

wind speed (% change), wind speed squared and wind direction (◦ change) as covariates,

whereas the segmented quasi-Poisson GLM had an emissions term (% change), for which

xEM i + 60 = 1 if xEM i + 60 > 0 or 0 otherwise, similar emissions squared term, wind

speed (% change), wind speed squared and wind direction (◦ change) as covariates.

The diagnostic plots for both models (Figures 7.5 and 7.6) showed issues with the fit.

However, the main aim of the models was prediction and they were compared using 10-

fold CV RMSPE and the non-segmented quasi-Poisson model was chosen as the preferred

model for prediction as on average it will mispredict the NO2 hourly concentrations

above 200 µg m−3 by only 1 occurrence and performs well in mimicking the ADMS-

Urban simulation results.

The quasi-Poisson GLM was then used to create an emulator for the number of ex-

ceedances of the NO2 hourly concentrations above 200 µg m−3. For scenarios with

emissions percentage change smaller than or equal to -60% of variation, there are zero

expected exceedances. However, in cases where the change in emissions percentage are

larger than -60% of the baseline, all three inputs (emissions, wind speed and wind di-

rection) have a significant effect. The emulator was then used to explore the expected

number of exceedances for three set values of wind direction: -15◦ from the baseline, 0◦

from the baseline and +15◦ from the baseline. It was found that the more western pre-

vailing the wind, the more hourly NO2 exceedances above 200 µg m−3 were estimated.

It is interesting to note that the emulator results are estimating unrealistically high

number of occurrences of hourly concentrations above 200 µg m−3 (Figure 7.9) for the

baseline emissions, wind speed and wind direction of 2015, although the probabilities

for the occurrence of a high number of occurrences of hourly concentrations above 200

µg m−3 are lower than 50%. This suggests that ADMS-Urban tends to overpredict the

number of NO2 hourly concentrations above 200 µg m−3.
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In Chapter 7, the numbers of NO2 hourly concentrations over 200 µg m−3 were modelled

as the Scottish regulation for hourly NO2 concentrations allows for 18 occurrences over

200 µg m−3 a year as seen in Table 1.1. However, it is also of interest to be able to

examine the time series for the NO2 hourly concentrations from ADMS-Urban under

varying emissions, wind speed and wind direction and assess how well the time series of

NO2 hourly concentrations can be emulated for new sets of inputs in terms of emissions,

wind speed and wind direction. This will allow SEPA and other governmental agencies to

be able to identify the specific conditions, which lead to periods of hourly concentrations

of 200 µg m−3 or higher, and thus, enable them to focus their efforts on preventing the

occurrence of such high concentrations. As Central Station in Glasgow is the only

location where there are concentrations over 200 µg m−3, the ADMS-Urban simulation

scenarios for this station are modelled. The aim of this chapter is to create an emulator

for the NO2 hourly concentration time series which is more computationally efficient

than producing the time series via ADMS-Urban. The chapter is organised as follows:

Section 8.1 provides an exploratory analysis of the time series at Central Station across

different simulation scenarios in order to establish a mean trend. In Section 8.2, a

computationally efficient spatio-temporal emulator is introduced for producing the yearly

time series for the ADMS-Urban hourly NO2 concentrations under different conditions.

The model introduced in Section 8.2 is then applied to a subset (of the number of time

steps) of the time series simulation scenarios at Central Station in Section 8.3 due to the

substantial size of the complete data set, and a more computationally efficient approach

is implemented. Following that, emulation of the subsetted time series is performed and

230
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compared to the observed hourly NO2 concentrations in 2015. Section 8.4 provides a

concluding discussion.

8.1 Exploratory analysis of ADMS-Urban time series

This section focuses on the exploratory modelling of one of the one hundred simulations

from ADMS-Urban in order to establish the overall mean trend required for modelling

the time series. Simulation scenario 16 was chosen as in terms of Euclidean distance (for

the estimation of Euclidean distance, see [14]) it is the scenario closest to the (0, 0, 0)

coordinate point, which signifies the baseline conditions recorded in 2015 (i.e. no changes

in emissions, wind speed and wind direction). Simulation 16 has emissions that are

higher by 3.20% than the observed emissions for every hour, wind speed that is lower

by 4.80% from the hourly wind speed in 2015, and wind direction that is changed by

adding 1.49◦ to the hourly wind direction in 2015 (see Subsection 4.2.3). The simulation

scenario has 15 hourly concentrations above 200 µg m−3, hence although there are

observations above the 200 µg m−3 hourly limit, the hourly regulation has not been

breached. The exploratory modelling is based on the exploratory analysis of year long

time series for emissions, temperature, wind speed and wind direction with the monitored

NO2 hourly concentrations presented in Appendix B. The log NO2 concentrations will be

used for modelling because the diurnal cycle for the emissions is based on a multiplication

factor for each of the twenty-four hours in a day (see Appendix B), hence the log scale

reduces this to an additive model. Other simulation scenarios have similar trends as

each simulation follows the same overall trend but differs in the absolute value of the

NO2 concentrations, however the exploratory analysis of these additional simulations is

not shown for brevity.

8.1.1 Data visualisation for simulation scenario 16

Firstly, the relationships between the simulated yearly time series for Scenario 16 for the

log hourly NO2 concentrations at Central Station and the corresponding meteorological

conditions are explored. A time series plot comparing the time series of the hourly

temperatures and the log hourly NO2 concentrations in order to explore the seasonal

trends is presented in Figure 8.1. From the time series plot, it can be observed that

in periods of low temperatures, the log NO2 concentration spikes. This trend is most

visible when focusing on the temperature inversion in the second half of January, when

the temperatures are at their lowest and the log NO2 concentrations are highest with

some of the concentrations going over the 200 µg m−3 regulation. This is logical given

that higher temperatures act as a catalyst in chemical reactions, therefore resulting in
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faster reactions between NO2 and the other pollutants (for instance, the forming of

ozone).
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Figure 8.1: The time series for log NO2 concentrations (µg m−3) from Simulation 16
of the ADMS-Urban simulator (in light blue) imposed on the time series plot for the
hourly temperatures (◦C) (in dark green) for 2015 for Central Station. A red line at

5.30 is added for the log of the 200 µg m−3 regulation.

Additionally, a scatterplot for the hourly log NO2 concentrations and hourly tempera-

tures is presented in Figure 8.2. From the plot, there is a weak negative linear trend.

The Pearson’s correlation coefficient (see Subsection 2.1.2) is -0.10 with a 95% CI (-0.12,

-0.07), indicating that although the relationship is weak, it is significant. This confirms

the conclusions from Figure 8.1 that there is a negative relationship between the log

NO2 concentrations and the temperature.
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Figure 8.2: Scatterplot for the hourly temperatures (◦C) against the log NO2 con-
centrations (µg m−3) from Simulation 16 of the ADMS-Urban simulator. A red line
at 5.30 is added for the log of the 200 µg m−3 regulation. The correlation between

temperature and log NO2 concentrations is also provided.

Next, the seasonal relationship between simulated yearly time series for the log hourly

NO2 concentrations at Central Station from Simulation 16 with the hourly time series

for wind speed in 2015 (adjusted for the LHC design by lowering the 2015 time series

for wind speed by 4.80%) is investigated in Figure 8.3. From the plot, it is clear that
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in moments when wind speed is 0 (for instance, the second half of January, beginning

of February), there are spikes in the log NO2 concentrations as the lower wind speed

results in slower dispersion of NO2.
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Figure 8.3: The time series for log NO2 concentrations (µg m−3) from Simulation 16
of the ADMS-Urban simulator (in light blue) imposed on the time series plot for the
hourly wind speed (m/s) (in dark blue) for 2015 for Central Station. A red line at 5.30

is added for the log of the 200 µg m−3 regulation.

A scatterplot for the hourly log NO2 concentrations and the hourly wind speed (lowered

by 4.80% from the 2015 recordings) is presented in Figure 8.4. The Pearson’s correlation

coefficient is -0.44 with a 95% CI (-0.46, -0.42) suggesting a moderately strong negative

correlation between the two variables. This confirms the conclusions from Figure 8.3

that higher wind speeds result in faster dispersion of the pollutants, and hence, lower

log NO2 hourly concentration.
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Figure 8.4: Scatterplot for the hourly wind speed (m/s) against the log NO2 concen-
trations (µg m−3) from Simulation 16 of the ADMS-Urban simulator. A red line at
5.30 is added for the log of the 200 µg m−3 regulation. The correlation between wind

speed and log NO2 concentrations is also provided.

Lastly, the relationship between simulated yearly time series for the log hourly NO2

concentrations at Central Station from Simulation 16 with the hourly time series for

wind direction in 2015 (adjusted for the LHC design by adding -1.47◦ to the 2015 time
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series for wind direction) is investigated in Figure 8.5 using a pollution rose [34]. A wind

rose is a type of plot, which shows how wind speed and wind direction conditions vary

by year. The data are summarised by direction and by different wind speed categories

represented by different width paddles. The plots show the proportion (in percentage)

of time that the wind is from a certain angle and wind speed range. If the wind speed

information is replaced by pollutant concentrations, a wind rose can be extended into a

pollution rose. Hence, the pollutant concentrations by wind direction and the percentage

time the concentration is in a particular range is visualised. Pollution roses can be

created using the openair package [35] in R [157]. From the pollution rose in Figure

8.5, it is clear that the concentrations below 4.4 on the log scale (equivalent to 80

µg m−3) are predominant for the western winds, whereas for all other directions the

different segments appear relatively even. The orange segments are disproportionally

larger for the eastern prevailing wind in comparison to the other directions. Hence, as

the wind becomes more eastern prevailing, the hourly log NO2 concentrations increase.

Therefore, wind direction should be used as a circular variable when modelling the NO2

hourly concentrations.

Pollution Rose Central Station Simulation 16
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Figure 8.5: Pollution rose for the monitoring station at Central Station for Simulation
16 of the ADMS-Urban simulator. The corresponding log NO2 concentration (µg m−3)
in 2015 are proportionally ordered to the modelled wind direction angle (◦) at which

the concentrations are recorded.

Besides temperature, wind speed and wind direction terms, an interaction between tem-

perature and wind speed will be included in the modelling. This is done to account for

the difference between summer and winter. In the summer, the hourly temperatures are
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expected to be above 20◦C and even though the wind speed will be close to 0 m/s, there

will be lower NO2 concentrations. On the other hand, in the winter, for hours with high

wind speed (above 10 m/s), even though the temperatures are low (below 5◦C), it is

expected that the NO2 concentrations will be lower.

In order to examine the log hourly NO2 concentrations for each of the emissions (mea-

sured in g m−2 h) in the 24-hour pattern (emissions in ADMS-Urban follow a 24-hour

pattern repeated for each of the days of the year as discussed in Subsection 4.1.3), box-

plots are presented in Figures 8.6. There is only one boxplot for the emissions at 04:00

and 05:00 as the emissions are identical for the two hours. The emissions are ordered

from smallest to largest going left to right to check for a factor effect in the covariate.

There is a moderate linear trend suggesting that the higher the emissions, the higher

log hourly NO2 concentrations. The Pearson’s correlation between the emissions and

the log hourly NO2 concentrations is 0.44 (with a 95% CI (0.42, 0.46)) confirming a

moderate correlation between the two variables. Therefore, emissions will be included

in the model.
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Figure 8.6: Boxplots for the ordered (by emissions’ size ordered from smallest to
largest) log NO2 concentrations (µg m−3) over a 24-hour cycle at Central Station for
Simulation 16 of the ADMS-Urban simulator. A red line at 5.30 is added for the log of
the 200 µg m−3 regulation. The correlation between emissions (g m−2 h) and log NO2

concentrations is also provided.

Additionally, it is of interest to account for the temporal trends. The hourly variation

in a day is examined in Figure 8.7, which presents the boxplots of the variation in the

hourly log NO2 concentrations in a day. The boxplots clearly indicate that there is a

variation in concentrations between the hours during the day. The trend in the boxplots

is similar to the magenta line, which signifies the daily emissions cycle for 24-hours,

although the two trends are not identical. Hence, a factor term for the 24-hour cycle

will be needed for modelling in addition to the emissions covariate. It also has to be

noted that the boxes for 01:00 and 24:00 appear almost identical which suggests there
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might be an identifiability issue between those two hours, regardless of the fact that

there are different emissions for those two hours.
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Figure 8.7: Boxplot for the log NO2 concentrations (µg m−3) over a 24-hour cycle
at Central Station for Simulation 16 of the ADMS-Urban simulator. The emissions (g
m−2 h) for each hour are superimposed in magenta. A red line at 5.30 is added for the

log of the 200 µg m−3 regulation.

Next, the days in the week variation in the log NO2 concentrations is examined in Figure

8.8. The boxes for the different days of the week are very similar to each other but not

identical. This is a result of the fact that the simulations were produced without ad-

justing for the change of people’s activities between workdays and weekends. Therefore,

a day of the week variable is not included in the model due to the lack of day-to-day

variation as illustrated in Figure 8.8. Furthermore, the lack of day-to-day variation is

expected to result in over-estimation of the NO2 hourly concentrations when comparing

the simulated (and emulated) values to the actual observations.
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Figure 8.8: Boxplot for the log NO2 concentrations (µg m−3) over a week cycle for
Simulation 16 of ADMS-Urban at Central Station. A red line at 5.30 is added for the

log of the 200 µg m−3 regulation.

It is also of interest to also explore the daily and weekly variation in a year. This is

visualised by plotting the daily and weekly averages (means) of the log hourly NO2

concentrations in Figure 8.9. As expected there is a lot of variability in the daily means
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which would suggest using a spline to smooth the curve. There is a peak around the be-

ginning of the year (February), a trough in the summer (June) and another peak around

the autumn (October). The weekly means further highlight the differences between the

seasons. As the shape of the weekly variation has less fluctuations in comparison to the

daily means suggesting that a weekly means b-spline (see Subsection 2.2.2) would be

sufficient in modelling the time series movement.
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Figure 8.9: Daily and weekly means for log NO2 concentrations (µg m−3) for Simu-
lation 16 of ADMS-Urban at Central Station.

8.1.2 Modelling of simulation scenario 16

Exploratory modelling is applied to Simulation 16 from the ADMS-Urban simulator for

Central Station. This is done to help establish the main trend in the time series. The

baseline model is fitted as a linear regression model (see Subsection 2.2.1). This baseline

model includes only the meteorological conditions to explore how much of the variation

in the data can be explained by them alone. Hence, for hour t = 1, . . . , 8760:

log (NO2)t = β0 + β1 (Tempt) + β2 (WSt) + β3 sin

(
2πWDt

360

)
+ β4cos

(
2πWDt

360

)
+ β5 (Tempt ∗WSt) + εt .

(8.1)

The model has R2
adj. = 20.89% which indicates that the meteorological conditions explain

about 21% of the variability in the log hourly NO2 concentrations. The diagnostic plots

in Figure 8.10 a) through d) indicate that the linear model assumptions hold and the

model is a good fit to the data. However, the ACF and PACF plots of the residuals

(plots e) and f)) indicate strong autocorrelation in the residuals with a clear seasonal

pattern.

To address the seasonal pattern in the ACF and PACF plots in Figure 8.10, different

variables will be added. To avoid repetition by presenting each of the models in full,
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Figure 8.10: Diagnostic plots for the model for the log hourly NO2 measurements
(µg m−3) for Simulation 16 of ADMS-Urban at Central Station with temperature (◦C)
, wind speed (m/s), an interaction between temperature and wind speed and wind

direction (◦) terms.

the models will be compared to each other using R2
adj. and AIC in Table 8.1. Each

subsequent model given in Table 8.1 has an additional covariate (as specified in the

name of the model) over the one preceding it unless otherwise specified. Additionally,

the ACF and PACF plots for the residuals of the models are presented in Figure 8.11.

Firstly, to the baseline model was added the emissions (referred to as Em) covariate.

There is a clear improvement from the baseline model after the emissions variable is

included in terms of the diagnostic criteria in Table 8.1. The ACF and PACF plots for

the two models (in the first two rows) in Figure 8.11 also show an improvement but there

is still temporal trend present which could be further reduced by adding more covariates

to the model.

Therefore, a factor for the hour of the day is added to the model in order to remove the

temporal trend in the ACF and PACF plots. However, the hours 01:00 and 24:00 are

combined together (due to their similarity) as a condition to help estimate all factors.

The diagnostics criteria in Table 8.1 indicate an improvement. The ACF and PACF plots

(plots e) and f), respectively) in Figure 8.11 also show an improvement. The temporal

trend on the ACF plot has been reduced and the PACF plot shows only one significant

correlation at lag 1. Instead of using factors for the hours of the day, a circular variable

for the hours of the day was added to the model but the temporal trend reduction was

smaller than when using a factor variable. For brevity, this comparison is omitted.
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Lastly, the week numbers (as continuous numbers) are also included as a b-spline in the

model to reduce the variability in the ACF plots. Weekly variation is important not

only in terms of weather but also because it accounts for variation in people’s behaviour

such as school holidays. The b-spline basis has degree 3. Initially, 10 knots were fitted

and some coefficients were removed until all coefficients for the spline are significant.

Therefore, for the final model the spline has 3 coefficients. From Table 8.1, the model

including the week numbers as a b-spline has the largest R2
adj. value in comparison with

the other models as well as the smallest AIC value. The ACF and PACF plots (plots g)

and h), respectively) in Figure 8.11 show further reduced variability in the ACF plot and

the PACF plot has only lag 1 as significant (same as plot f)). Although the ACF plots

show some variability, it has to be noted that the plots are produced for a large dataset

and hence, the error bars are very small. Furthermore, the reduction in the variability

as more covariates were added to the model is clear. Therefore, it appears that only a

temporal random effects structure is left and this model is chosen to be the final model.

Model df AIC R2
adj.

Baseline 7 13 162.85 20.89%

Em 8 9 001.32 50.81%

24-Hour factor 30 5 230.91 68.10%

Week Number Spline 34 5 078.15 68.66%

Table 8.1: Comparing models with different temporal covariates to account for the
autocorrelation in the residuals when modelling the log hourly NO2 measurements (µg

m−3) for Simulation 16 of ADMS-Urban at Central Station.

The AIC and R2
adj. values from Table 8.1 and the ACF and PACF plots from Figure

8.11 indicate that the most appropriate model for the log NO2 hourly concentrations

from Simulation 16 of ADMS-Urban at Central Station contains the meteorological data

(hourly temperatures, hourly wind speed and hourly wind direction for the year as well

as an interaction between temperatures and wind speed) with a continuous covariate for

emissions, a factor covariate for hour of the day, and a b-spline for the week of the year.

Hence, for hour t = 1, . . . , 8760:

log (NO2) = β0 + β1(Tempt) + β2(WSt) + β3sin

(
2πWDt

360

)
+ β4cos

(
2πWDt

360

)
+ β5(Tempt ∗WSt)

+ β6(EMt) +
23∑
j=2

βHj I[t is the jth hour of the day]

+ f(Week Numberst) + εt ,

(8.2)

where:
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Figure 8.11: ACF and PACF plots for the residuals for the different models for the
log hourly NO2 measurements (µg m−3) for Simulation 16 of ADMS-Urban at Central

Station.

•
∑23

j=2 β
H
j I[t is the jth hour of the day] is an indicator variable for the factor for

the hour j of the day for the tth hour in the year. The baseline for the factor is

set for 01:00 and 24:00 (due to an identifiability issue) and hence, the parameter

for those two hours is 0. The parameter βHj is the difference between the other

observed hours (j = 02:00, . . . , 23:00) and the baseline hour; and

• f(Week Numberst) = β8B1,d(Week Numberst) + β9B2,d(Week Numberst)

+ β10B3,d(Week Numberst) + β11B4,d(Week Numberst) is the b-spline with d = 3

degrees of freedom and 3 basis functions for the week of the year variable.

The diagnostic plots for this model are presented in Figure 8.12. The residuals vs. fitted

values points on plot a) are randomly scattered around zero and there is no fanning out.

Hence, the residuals appear normally distributed with mean zero and constant variance.
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In plot b), the residuals on the qq-plot are lying on the normality line indicating the

residuals are normally distributed. This is further confirmed by the histogram of the

residuals in plot c) which is symmetric and centred around zero. The actual vs. fitted

points in plot d) are lying around the equivalence line indicating the model performs

well in predicting the observed data. However, the ACF in plot e) and the PACF in plot

f) indicate that there is strong autocorrelation in the residuals. In order to account for

the autocorrelation, the model was refitted as an AR(1) model (using the gls function

in the nlme [150] package in R) as the PACF plot has only lag 1 significant, whereas

the significant lags on the ACF plot are slowly decaying.
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Figure 8.12: Diagnostic plots for the model for the log hourly NO2 measurements (µg
m−3) for Simulation 16 of ADMS-Urban at Central Station with temperature (◦C) ,
wind speed (m/s), an interaction between temperature and wind speed, wind direction
(◦), emissions (g m−2 h), factor for the hour of the day and b-spline for the week number

as covariates.

The ACF and PACF plots for the AR(1) model are presented in Figure 8.13. Lag 0 is

not displayed on the ACF plots to allow the examination of subsequent lags in more

detail. The plots show that the autocorrelation in the residuals has been accounted for

with the AR(1) structure as almost all the bars in the plots are within the error bands.

However, it has to be noted that for every 24 lags, there is still a significant lag which is

caused due to the condition of setting the factor for the 24th hour of the day to be equal

to the 1st hour of the day. The AR(1) parameter is estimated to be 0.75 (with standard

error of 0.01) indicating a strong correlation between two consecutive hours.
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Figure 8.13: ACF and PACF plots for the residuals of the log hourly NO2 measure-
ments (µg m−3) for Simulation 16 of ADMS-Urban at Central Station with temperature
(◦C), wind speed (m/s), an interaction between temperature and wind speed, wind di-
rection (◦) , emissions (g m−2 h), factor for the hour of the day and b-spline for the
week number as covariates and AR(1) model to account for the autocorrelation in the

residuals.

8.1.3 Findings

In this section, simulation scenario 16 was chosen (due to its proximity to the (0, 0, 0)

baseline based on Euclidean distance) in order to examine the effects of different variables

on the hourly NO2 concentrations. However, as the emissions used for the ADMS-Urban

simulation come from a multiplicative factor, log NO2 concentrations were used for mod-

elling. Based on the exploratory modelling of Simulation 16, several key observations

were made. Firstly, the meteorological covariates (temperature, wind speed, an inter-

action between temperature and wind speed, and wind direction) explain about 20% of

the variation in the data. Secondly, the factor for hour of the day helps smooth out

the seasonality trend in the ACF and PACF plots in the residuals. However, due to

an identifiability issue, the factor for 01:00 and 24:00 is the same. Thirdly, b-spline is

used for the Week Number covariate which is also used to smooth the seasonality trend

in the ACF and PACF plots of the residuals. Furthermore, an AR(1) model appears

sufficient to explain the residual autocorrelation. Lastly, due to conditioning the factor

for 01:00 and 24:00 to be equal, in the final ACF and PACF plots, there are still signif-

icant lags every 24th hour. Other simulation scenarios were also examined but omitted

in order to avoid repetition. It was found that the models for other simulation scenarios

are broadly similar to the one of scenario 16 and that the larger the NO2 simulated

concentrations, the more variability in the data is explained. Overall, the modelling

suggests that using temperature, wind speed, an interaction between temperature and

wind speed, wind direction, emissions, a factor variable for the hours of the day and a

b-spline with degree 3 is sufficient modelling which should be adjusted with an AR(1)

correlation structure for the autocorrelation in the residuals. Based on these findings, a
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hyperspatial-temporal model is developed in the next section to model all one hundred

simulations from ADMS-Urban for Central Station in Glasgow together.

8.2 Hyperspatial-temporal model

This section introduces a hyperspatial-temporal model for emulation of the hourly NO2

time series across the LHC space as simulated by ADMS-Urban. This emulator is created

to create framework for stochastic simulation models as recommended by [169]. As in

previous chapters, the term hyperspatial is used as a reference to the locations within

the LHC space rather than physical locations in Glasgow. The proposed model is for a

single station only. The section is organised as follows: Subsection 8.2.1 introduces the

theoretical background for the hyperspatial-temporal model. Subsection 8.2.2 discusses

the prediction of time series at new locations in the LHC space using the hyperspatial-

temporal model.

8.2.1 Theoretical background

In Section 6.1, the methodology for fitting a spatial multivariate Bayesian GP model was

presented. In this subsection, the work is extended to a hyperspatial-temporal model to

allow the modelling of the time series (with length T ) for all the scenarios (n in total)

in the LHC design at a single monitoring station. Part of this change is that the design

matrix has to be adjusted to allow for the different time series of emissions, wind speed,

and wind direction at each of the LHC design points. The proposed model is expressed

in a vector-matrix form as:

y = Sβ + z , (8.3)

where:

• y is a response vector (Tn× 1), where the hourly NO2 time series (in this specific

case, T = 1, . . . , 8760) for each scenario n in the LHC design are stacked on each

other. Hence, for the one hundred ADMS-Urban simulations in this example, y is

given as:
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y =



y1,1

...

y1,8760

y2,1

...

y2,8760

...

y100,1

...

y100,8760



; (8.4)

• S is a block-diagonal design matrix (Tn×pn), where each block Bi (T×p) contains

the time series of the p covariates for scenario i (i = 1, . . . , n). Therefore, different

scenarios can have different time series for some or all of their covariates. Therefore,

for the one hundred ADMS-Urban simulation scenarios in the LHC space:

S =



B1 0 0 . . . 0

0 B2 0 . . . 0
...

...
. . .

...

0 0 0 . . . B100


, (8.5)

where each Bi has the form:

Bi =


1 x1i,1 x2i,1 . . . x(p−1)i,1

...
...

... . . .
...

1 x1i,8760 x2i,8760 . . . x(p−1)i,8760

 ; (8.6)

• β is a vector (pn× 1) of the fixed parameters to be estimated. In terms of the one

hundred ADMS-Urban scenarios, β has the form:
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β =



β0,1

βx1,1
...

βxp−1,1

β0,2

βx1,2
...

βxp−1,2

...

β0,100

βx1,100

...

βxp−1,100



, (8.7)

where each β0,i is the intercept term for the ith simulation scenario and each βxq ,i

is the fixed effect term for the qth (q = 1, . . . , (p − 1)) covariate under the ith

simulation scenario; and

• z is an error vector (Tn × 1), which has a normal distribution z ∼ N(0,Λ). For

the one hundred ADMS-Urban simulation scenarios, z has the form:

z =



z1,1

...

z1,8760

z2,1

...

z2,8760

...

z100,1

...

z100,8760



. (8.8)

Hence, the response follows a normal distribution:

y|β,Λ ∼ N(Sβ,Λ) . (8.9)
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The variance-covariance matrix Λ (Tn × Tn) is assumed to be separable in terms of

hyperspatial correlation (between simulation scenario correlation within the LHC space

in a similar fashion as the model in Section 6.1) and time series correlation. It is defined

as:

Λ = σ2 R(θ)⊗Σ(ρ) , (8.10)

where:

• σ2 is the overall variance parameter to be estimated;

• R(θ) is the hyperspatial (i.e. between simulation scenarios) correlation matrix

(n × n) based on the LHC design as described in Section 6.1. Here, an ex-

ponential correlation function between two rows ui = [uiE, uiWS, uiWD]> and

uj = [ujE, ujWS, ujWD]> of the input space (designed by the LHC) is specified

as:

Rij(θ) = exp

(
−
{(
|uiE − ujE|

θE

)
+

(
|uiWS − ujWS|

θWS

)
+

(
|uiWD − ujWD|

θWD

)})
,

(8.11)

with the set of hyperspatial range parameters θ = [θE, θWS, θWD]> to be estimated;

and

• Σ(ρ) is the temporal correlation matrix (T × T ) with an AR(1) structure (based

on the preliminary analysis in Section 8.1) of the form:

Σ(ρ) =



1 ρ ρ2 . . . ρT−1

ρ 1 ρ . . . ρT−2

...
...

. . .
...

ρT−1 ρT−2 ρT−3 . . . 1


, (8.12)

where ρ is the temporal correlation parameter to be estimated. It is assumed that

Σ(ρ) is the same for all scenarios.

The set of parameters (β, σ2, θ, ρ) are assigned a joint prior distribution, where the

parameters are assumed to be independent:

f(β, σ2,θ, ρ) = f(β)f(σ2)f(θ)f(ρ) . (8.13)

The prior for the set of fixed effect parameters β is decomposed as:

f(β) = f(β0,1)f(βx1,1) · · · f(βxp−1,100) , (8.14)

where each f(βl) ∝ 1 for l = 1, . . . , pn is a non-informative improper flat prior on the

positive real line so that the “data speak for themselves”.
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A weakly informative univariate flat prior (as suggested in [88]) is chosen for the overall

variance parameter σ2:

f(σ2) ∝ Un(0.01, 10000) . (8.15)

A uniform prior is chosen for the autocorrelation coefficient ρ as it is expected that the

temporal correlation between successive hours is positive:

f(ρ) ∼ Un(0, 1) . (8.16)

The prior for the set of hyperspatial range parameters θ is decomposed as:

f(θ) = f(θE)f(θWS)f(θWD) , (8.17)

where f(θE) ∝ 1, f(θWS) ∝ 1 and f(θWD) ∝ 1 are non-informative improper flat priors

on the positive real line. Hence, the parameters are estimated by using the posterior

distribution:

f(β, σ2,θ, ρ|y) ∝ f(β)f(σ2)f(θ)f(ρ)

× exp

[
−1

2
log
(
|Λ
(
σ2,θ, ρ

)
|
)
− 1

2
(y− Sβ)>Λ

(
σ2,θ, ρ

)−1
(y− Sβ)

]
.

(8.18)

The log of this posterior distribution can be simplified and is given by:

log
(
f(β, σ2,θ, ρ|y)

)
∝ −Tn

2
log
(
σ2
)
− 1

2
log (|R(θ)⊗Σ(ρ)|)

− 1

2σ2
(y− Sβ)> [R(θ)⊗Σ(ρ)]−1 (y− Sβ) .

(8.19)

It is possible to obtain closed-form solutions for (β, σ2) using differentiation. Differen-

tiating the log-likelihood with respect to β gives:

∂l(y)

∂β
=

S> [R(θ)⊗Σ(ρ)]−1 y

σ2
− S> [R(θ)⊗Σ(ρ)]−1 Sβ

σ2
. (8.20)

Setting this partial derivative to zero and solving for β produces:

β̂ =
(
S>(R (θ)⊗Σ (ρ))−1S

)−1
S> (R (θ)⊗Σ (ρ))−1 y , (8.21)

which is equivalent to the GLS closed form solution (see Subsection 2.2.1). Hence, the

variance-covariance matrix of the parameters is estimated as:

Var(β̂) = σ2
(
S> (R (θ)⊗Σ (ρ))−1 S

)−1
. (8.22)
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In a similar way, the log-likelihood is differentiated with respect to σ2:

∂l(y)

∂σ2
= − Tn

2σ2
+

(y− Sβ)> [R(θ)⊗Σ(ρ)]−1 (y− Sβ)

2σ4
. (8.23)

Setting this partial derivative to zero and solving for σ2 yields:

σ̂2 =
1

(Tn)

(
y− Sβ̂

)>
(R (θ)⊗Σ (ρ))−1

(
y− Sβ̂

)
. (8.24)

Nonetheless, this estimate is biased [98]. Therefore, an alternative is used:

σ̂2 =
1

(Tn− pn)

(
y− Sβ̂

)>
(R (θ)⊗Σ (ρ))−1

(
y− Sβ̂

)
. (8.25)

However, the log-likelihood cannot be differentiated with respect to θ or ρ and closed

form solutions cannot be obtained. A natural approach would be to perform a Markov

Chain Monte Carlo (MCMC) method to sample from the posterior distributions for

θ and ρ. However, the approach is “computationally cumbersome” [143] as it would

require inverting and taking derivatives of R(θ) and Σ(ρ) at each step of the MCMC

process. Hence, a plug-in numerical approximation is recommended by both [49] and

[143]. Therefore, the BFGS algorithm as described in Subsection 2.2.4 and applied in

Chapters 5 and 6 is instead applied via the optim function in R [157]. The BFGS

algorithm is used to maximise the log-posterior expression over the set of parameters

(θ, ρ). The estimates of β̂ and σ̂2 are plugged into the log-posterior and, thus a profile

log-posterior expression is produced. The profile log-posterior is then optimised over (θ,

ρ):

f(θ, ρ|y) ∝ −Tn
2

log
(
σ̂2
)
− 1

2
log (|R (θ)⊗Σ (ρ) |) . (8.26)

Hence, point estimates are obtained for θ and ρ and closed form solutions for β̂ and

σ̂2. Since the variance-covariance matrix Λ (σ2, θ, ρ) has dimensions Tn× Tn, there is

a need for computational efficiency. Some properties of Kronecker products and AR(1)

correlation matrices are used as described in Appendix C.

8.2.2 Prediction

The main reason to develop the hyperspatial-temporal emulator is to be able to predict

the yearly time series of the (log) hourly NO2 concentrations for a new location in the

hyperspace. This will be done using the principles of kriging, which were introduced in

Subsection 2.3.1. Let y0 be a vector (Tn0 × 1) of stacked time series for untried sets

of inputs of ADMS-Urban, with S0 being a block-diagonal design matrix (Tn0 × n0p)
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containing the observed covariates at these n0 new locations in the LHC space. Then,

it is assumed that y0 and y follow a joint multivariate normal distribution:

y0

y

 ∼ N

µ0

µ

,
Λ0 Λ12

Λ21 Λ

 , (8.27)

where:

• µ0 = S0β0 is the mean for y0, where β0 are the fixed effect parameters for the

new set of covariates observed at the new locations n0;

• µ = Sβ is the mean for y;

• Λ0 = σ2 R0(θ) ⊗ Σ(ρ) is the hyperspatial-temporal variance-covariance matrix

(Tn0 × Tn0) for y0. R0(θ) is the hyperspatial correlation matrix (n0 × n0) for

the new hyperspatial scenarios based on the estimated θ. Σ(ρ) is the temporal

correlation matrix for y as it is assumed that the time series at the new hyperspatial

scenarios also have length T ;

• Λ = σ2 R(θ) ⊗ Σ(ρ) is the hyperspatial-temporal variance-covariance matrix for

y; and

• Λ21 = Λ12
> = σ2 T(θ)⊗Σ(ρ) is the cross hyperspatial-covariance matrix (Tn×

Tn0) between y0 and y. Therefore, T(θ)ij is the hyperspatial correlation between

the ith scenario from y0 with the jth scenario from y.

Using a property of the multivariate normal distribution, the conditional distribution of

y0 is:

y0|y ∼ N(µ0 + Λ12Λ−1(y− µ),Λ0 −Λ12Λ−1Λ21) . (8.28)

In this case, the variance of y0 can also be written as:

Var(y0) = Λ0 −Λ21
>Λ−1Λ21 . (8.29)

In order to estimate the predicted values for y0 and their respective variances, the hyper-

spatial correlation matrix R0(θ) needs to be estimated based on the already calculated

hyperspatial range parameters θ̂ from the model for y:

R̂0(θ) = R0(θ̂) . (8.30)

Similarly, the temporal correlation matrix Σ(ρ) is calculated using the AR(1) parameter

estimate ρ̂ from the model for y:
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Σ̂(ρ) = Σ(ρ̂) . (8.31)

By definition, in the hyperspatial-temporal model for y, each time series i (i = 1, . . . , 100)

has a different set of fixed effect parameters βi = [β0,i, βx1,i, . . . , βxp−1,1]>, which reflect

the change in the covariates within the LHC space from varying the three inputs (emis-

sions, wind speed and wind direction). Hence, the full set of fixed effect parameters β̂

are calculated using the estimated hyperspatial range parameters θ̂ and the estimated

AR(1) temporal parameter ρ̂. Therefore, the fixed effect parameters for the new set of

time series β0 need to be estimated to reflect the changed emissions, wind speed and

wind direction based on the new scenario locations in the LHC space. To do this, uni-

variate hyperspatial models (such as the ones used in Chapter 5) are used. Firstly, β̂

is split into subsets based on the type of entry (intercept, temperature, etc.). In this

specific case, β̂intercept = [β0,1, . . . , β0,100]> is a vector of size 100× 1, which contains the

one hundred intercepts estimated for each of the one hundred ADMS-Urban simulation

scenarios. Then, β̂intercept is taken to be the response and the three inputs (emissions

and wind speed as % change, and wind direction as ◦ change) are used as covariates.

Based on that univariate hyperspatial model, β0,intercept can be estimated for untried

sets of inputs for ADMS-Urban. The process is then repeated to estimate each of the

sets β0,x1 , . . . ,β0,xp−1
. Details of this model are given in Section 5.1.

Using σ̂2, the Λ0 and Λ21 (and respectively, Λ12) elements of the variance-covariance

matrix between y and y0 can be calculated as follows:

Λ̂0 = σ̂2 R0(θ̂)⊗Σ(ρ̂) , (8.32)

and

Λ̂21 = σ̂2 T(θ̂)⊗Σ(ρ̂) . (8.33)

8.3 Application of the hyperspatial-temporal model

In Appendix D, it is shown that the hyperspatial-temporal model provides parameter

estimates for the hyperspatial range and temporal parameters that are very close to the

true values for much smaller data sets than the one hundred simulation scenarios each

with 8760 hourly concentrations time series. However, using the hyperspatial-temporal

model on the full data set is not possible. The main problem is the size of the matrices,

which are needed for the estimates. For instance, the kronecker product of R(θ) and

Σ(ρ), required to estimate the fixed effect parameters β and the overall variance σ2,

would have a size of around 6TB (this estimate is based on the fact that as the time
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steps are doubled, the size of the kronecker product matrix is quadrupled). Furthermore,

it is estimated that one iteration of the BFGS algorithm would take 16 days (based on

the fact that as time steps are doubled, the time to estimate one iteration of the BFGS

algorithm triples). Hence, at a rate of 15 iterations (the lowest number of iterations

in the model testing in Appendix D), running the full model would take 240 days, i.e.

almost 9 months. These estimates are based on a 2016 MacBook Pro with 16GB memory

and 2.9 GHz Quad-Core Intel Core i7 processor. Therefore, applying the hyperspatial-

temporal model to the full data set available is not practical as the emulator would

not be computationally faster than ADMS-Urban. Hence, an alternative approach is

adopted in this section. Instead of applying the hyperspatial-temporal model to the full

data set, the model would be applied to overlapping blocks of time and the blocks will

then be put back together to get the larger time frame. In this specific application, the

hyperspatial-temporal model will be applied to blocks of time periods, where breaches

of the 200 µg m−3 regulation are observed, and it will be assessed how well the blocks

of time periods match onto each other. Additionally, when splitting the data set into

blocks, multiple models can be run simultaneously on different cores of the computer

resulting in further time reduction.

8.3.1 Subsetting the data

In order to decide on a period of interest, the time series for simulation 16 is re-examined

in Figure 8.14. As previously discussed, each simulation scenario is created based on

varying emissions (in % change), wind speed (in % change) and wind direction (in ◦

change) to an observed baseline. Therefore, the one hundred ADMS-Urban simulations

have different absolute NO2 hourly concentrations but the time series have similar trend.

Looking at Figure 8.14, the highest peak is in the beginning of February (5/02). However,

that peak has been preceded by another peak around mid-January (18/01). Although

there are other periods (7/07 and 7/11) when the hourly NO2 concentration is close

to the regulation of 200 µg m−3, there are no further clear breaches. Therefore, it is

concluded that in terms of exploring the conditions which result in breaches, it is of

interest to focus on the period between 17/01 to 7/02. In order to be able to assess

how well the proposed segmenting into overlapping time blocks of interest performs, the

period is split into two parts: 17/01 - 29/01, which will be referred to as the January

data, and 28/01 - 7/02, which will be referred to as the February data.



Chapter 8. Modelling and emulation of the NO2 hourly concentrations in Glasgow 252

1

2

3

4

5

1/1 1/2 4/3 4/4 5/5 6/6 7/7 7/8 7/9 9/10 9/11 10/12
Date

lo
g 

N
O

2 
co

nc
en

tr
at

io
n 

(µ
 g

 m
−3

)

ADMS−Urban simulated log NO2 hourly concentrations Simulation 16

Figure 8.14: Time series for the ADMS-Urban simulation scenario 16 for the log NO2

hourly concentrations. A red line signifies the log 200 µg m−3 regulation.

8.3.2 Hyperspatial-temporal modelling

Firstly, the hyperspatial-temporal model was fitted for the January data set (17/01 -

29/01). The model has the same covariates as in Equation 8.2 but as the subset has

a relatively small time frame, the factor variable for hour of the day and the b-spline

for Week Number covariates are not used. The estimated random effect parameters are

ρ̂ = 0.67 and θ̂ = [θEM = 243.07, θWS = 931.85, θWD = 1000.00]>. 1 The hyperspatial-

temporal parameter estimates indicate high temporal correlation within each of the time

series and high hyperspatial correlation between the time series in the LHC space. As

in previous chapters, the out-of-sample predictive performance of the model was then

assessed by using a 10-fold CV. Diagnostic plots were produced based on the out-of-

sample 10-fold CV predictions and are presented in Figure 8.15. From the diagnostic

plots in Figure 8.15, there is a clear issue with the tails in the qq-plot (plot c)). However,

the histogram of the residuals (plot d)) shows that almost all residuals are very close to

zero. After further investigation, it was found that the points, which cause the heavy

tails on the qq-plot, come from a simulation scenario at the edge of the LHC space and

removing it as part of the CV results in predictions for that scenario being extrapolated.

However, the scenario has very low log NO2 hourly concentrations, which also result in

outliers on all other diagnostic plots and therefore, the heavy tails are not an indication

of an overall issue with the fit. Furthermore, there are no indicators that there is need

for more covariates. The points for simulation 16 in blue indicate the model performs

very well especially for scenarios where breaches were observed.

1As the hyperspatial range parameter for wind direction is at the upper limit boundary, an alternative
was adapted where sin (wind direction) and cos (wind direction) were also tested in order to define the
hyperspace but both the sin and cos (wind direction) hyperspatial range parameters were also estimated
as reaching the upper limit boundary and therefore, the sin and cos (wind direction) were discarded as
hyperspatial range parameters and wind direction was used as it requires estimating a smaller number
of hyperspatial range parameters which is consistent with the findings in [212].
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Diagnostic plots for January dataset hyperspatial−temporal model

Figure 8.15: Diagnostic plots for the model for the January subset log hourly NO2

measurements (µg m−3) of ADMS-Urban at Central Station with temperature (◦C),
wind speed (m/s), an interaction between temperature and wind speed, sin and cos
wind direction (◦), and emissions (g m−2 h). The points for simulation scenario 16 are

highlighted in blue.

Next, the hyperspatial-temporal model was fitted on the February data set (28/01 -

7/02). Similarly to the January modelling, the February model has the same covari-

ates as in Equation 8.2 but as the subset has a relatively small time frame, the factor

variable for hour of the day and the b-spline for Week Number covariates are not used.

The random effect parameter estimates are ρ̂ = 0.51 and θ̂ = [θEM = 224.50, θWS =

726.58, θWD = 1000.00]>. It is interesting to note that the temporal parameter and the

emissions and wind speed hyperspatial range parameters for the February data set are

lower than the ones for the January data set but for both data sets the hyperspatial

range parameter for wind direction remains at the upper boundary. A 10-fold CV was

performed to assess the out-of-sample predictive performance of the model. Based on

the 10-fold CV results, diagnostic plots are produced and are presented in Figure 8.16.

Similarly to the January model, the tails of the qq-plot (plot c)) are quite heavy but

the histogram of the residuals (plot d)) show that in fact almost all residuals are very

close to zero. Furthermore, the points, which cause the heavy tails on the qq-plot, are

from the same scenario as in the January modelling and these points are a result of

extrapolation. An interesting difference to the January modelling is that the outlier
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points for the February modelling are over-predicted as opposed to under-predicted as

in January. It has to be noted that the over-predicted values are for different simulation

scenarios than in the January modelling. There are no indications that more covariates

are needed for the modelling. Moreover, the points from simulation 16, highlighted in

blue, show that the model performs well especially for scenarios with breaches.
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Figure 8.16: Diagnostic plots for the model for the February subset log hourly NO2

measurements (µg m−3) of ADMS-Urban at Central Station with temperature (◦C),
wind speed (m/s), an interaction between temperature and wind speed, sin and cos
wind direction (◦), and emissions (g m−2 h). The points for simulation scenario 16 are

highlighted in blue.

Lastly, the predicted estimates for the log hourly NO2 measurements from 28/01 to

29/01 (i.e. 48 hours) from both data sets are compared in order to establish whether

there is a smooth transition between the two models. This is done in the scatterplot in

Figure 8.17. The majority of the points lie on the equivalence line. Simulation scenario

16 (in blue triangles) lies perfectly on the equivalence line suggesting that there is a good

overlap between the predictions from the two models. The plot shows that applying the

model to overlapping blocks of time provides estimates of almost perfect absolute values

for the log NO2 concentrations. There a few points under the equivalence line but they

are the result of the aforementioned extrapolation of a single scenario (with the January

model predicting higher values than the February model) and hence, are not considered
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an issue. Therefore, the two models for the January and February data will be used to

predict time series for the NO2 hourly concentrations within the time period of interest.
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Figure 8.17: Scatterplot comparing the predictions for log hourly NO2 measurements
(µg m−3) of ADMS-Urban at Central Station from 28/01 to 29/01 for both the January
and February data sets. The points for simulation scenario 16 are highlighted in blue.

8.3.3 Hyperspatial-temporal emulation

To assess the quality of the January and February models, they were used to emulate

three simulation scenarios. Simulation scenario 16 was emulated as it is the scenario

closest to the (0, 0, 0) coordinate point and hence, was used in the exploratory analysis.

Simulation 16 has emissions that are higher by 3.20% than the observed emissions, wind

speed that is lower by 4.80% from the wind speed in 2015, and wind direction that is

changed by adding 1.49◦ to the hourly wind direction in 2015. Additionally, simulation

84 and 24 were chosen. Scenario 84 was chosen as it is closest to the centre of the

LHC in terms of Euclidian distance with coordinates (−42.42, 9.51, 2.07), which means

that the emissions were 42.42% lower than the observed emissions in 2015, the wind

speed was 9.51% higher than the observed in 2015 and the wind direction is changed

by adding 2.07◦ to each hourly observation in 2015. Simulation 24 was chosen as it

is the furthest away from the centre of the LHC in terms of Euclidian distance with

coordinates (−99.75,−2.61,−5.89). Therefore, simulation 24 has emissions which are

99.75% lower than the observed ones in 2015, wind speed lower by 2.61% than the 2015

recordings and 5.89◦ has been taken away from the observed hourly wind direction 2015.

The 10-fold CV results from the modelling diagnostics from Subsection 8.3.2 are used

in this subsection again. As the regulation is for the actual hourly NO2 concentrations,

these are presented in the plots rather than the log scale predictions.

Firstly, for simulation 16, the true simulation values were plotted against the emulated

values for the January and February subsets in Figure 8.18. From the figure, it is

clear that the emulated values are almost perfectly superimposed on top of the NO2

hourly concentrations for scenario 16. Furthermore, the emulated values from the two

models appear to overlap each other almost perfectly as well. The standard deviation
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estimate for the January model is 0.03, whereas for the February model the standard

error estimate is 0.02. For both models this results in very small prediction intervals for

the NO2 hourly measurements and hence, not included in the plot.
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Figure 8.18: Time series comparing the emulated against the true simulation scenario
16 NO2 hourly concentrations (µg m−3) for the period 17/01-7/02. Simulation 16 is
a blue solid line, the January emulated data is a pink dashed line and the February

emulation is a purple dotted line. A red line signifies the 200 µg m−3 regulation.

Secondly, for simulation 84, the true simulation values were plotted against the emulated

values for the January and February subsets in Figure 8.19. As with the plot for Sim-

ulation scenario 16, the lines from the January and February plots are almost perfectly

superimposed on the true NO2 concentrations for scenario 84. Again, the overlap be-

tween the emulated values from the two models is complete. Furthermore, the standard

deviation estimate for the January model is 0.03, whereas for the February model the

standard error estimate is 0.02. Again, this results in very small prediction intervals for

the NO2 hourly measurements and hence, not included in the plot.
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Figure 8.19: Time series comparing the emulated against the true simulation scenario
84 NO2 hourly concentrations (µg m−3) for the period 17/01-7/02. Simulation 84 is
a blue solid line, the January emulated data is a pink dashed line and the February

emulation is a purple dotted line. A red line signifies the 200 µg m−3 regulation.
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Thirdly, the true simulation values for scenario 24 were plotted against the emulated

values for the January and February subsets in Figure 8.20. As previously discussed,

the emulation of scenario 24 is in fact an extrapolation and therefore, it is expected

that there will be more clear differences between the lines on the plot in comparison

to the previous two scenarios. From Figure 8.20, it is clear that both the January

and February models have under-emulated the values of the scenario 24 NO2 hourly

concentrations in comparison with the actual simulated values. It appears that the

February model produces lower values than the January model as for the 48 hour overlap

period between the two models, the February model values are lower than the January

ones. This is consistent with the observations in Figure 8.17. However, although in

terms of absolute values, both models have under-predicted the magnitude of the NO2

hourly concentrations, both models have identified the underlying general trend and

correctly identified periods with spikes in the NO2 hourly concentrations. Additionally,

the standard deviations for both the January and February models are 0.03 (due to

rounding). The resulting prediction intervals are not included in the plot due to their

small size.
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Figure 8.20: Time series comparing the emulated against the true simulation scenario
24 NO2 hourly concentrations (µg m−3) for the period 17/01-7/02. Simulation 24 is
a blue solid line, the January emulated data is a pink dashed line and the February

emulation is a purple dotted line. A red line signifies the 200 µg m−3 regulation.

Based on the good performance of the out-of-sample emulation on the overlapping Jan-

uary and February data sets for simulation scenarios 16, 84 and 24, the two models

from Subsection 8.3.2 are used to emulate the ADMS-Urban time series for the baseline

scenario, i.e. 0% change in emissions and wind speed, and 0◦ degrees change in wind

direction. This will allow the comparison of the emulated simulated scenario to the real

data, which is important for the reliability of using the hourly ADMS-Urban simulations

for creating and justification of governmental policies. From Figure 8.21, it is clear that

the January model has predicted that there will be a period of four days (between 19/1

and 23/1), when the hourly regulation of 200 µg m−3 will be breached for almost every
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hour (74 occurrences above 200 µg m−3). In reality, there were no breaches above 200

µg m−3. The fact that the model has over-predicted the number of exceedances is not

surprising given that in Chapter 7, it was emulated that there are expected 17 occur-

rences over 200 µg m−3 when only 4 are observed in reality. However, the number of

exceedances is more than 4 times larger than expected, which indicates a period, where

breaches are very likely to occur. Furthermore, the January model predicts another

exceedance on 30/01. However, this is part of the overlap between the two models and

interestingly, the February model has almost perfectly predicted the true hourly NO2

concentrations for that time. As opposed to the January model, the February model

follows very closely the true concentrations. The only exception is the exceedance on

5/2, where the model under-predicts the value of the breach over 200 µg m−3. The

February model appears to follow more closely the true concentrations. The January

model has estimated the standard deviation at 0.03 and the February model estimate

is 0.02, which are similar to those observed for scenarios 16 and 84. Once again, the

prediction interval values were not included in the plot as they are too similar to the

mean values.
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Figure 8.21: Time series comparing the emulated ADMS-Urban scenario against the
true NO2 hourly concentrations (µg m−3) for the period 17/01-7/02. A red line signifies

the 200 µg m−3 regulation.

8.3.4 Findings

The hyperspatial-temporal model was applied to two overlapping blocks of the ADMS-

Urban data set. The models had fixed effect terms as in Equation 8.2 but as the

subsets have a relatively small time frame, the factor variable for hour of the day and

the b-spline for Week Number covariates are not used. The estimates for the temporal

parameters indicated moderate autocorrelation within scenarios and the estimates for

the hyperspatial range parameters indicated high between scenario correlation within the

LHC space. Both models performed well in mimicking the ADMS-Urban simulations
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based on their out-of-sample predictions. However, both models had different issues

with extrapolating a single scenario during the 10-fold CV - the January model struggled

by slightly under-predicting low log NO2 hourly concentrations, whereas the February

model struggled by over-predicting log NO2 hourly concentrations. Nevertheless, the

overlapping log hourly NO2 measurements from both models matched each other well

and the overlapping blocks method provides a good alternative to not being able to run

the hyperspatial-temporal model over the full time steps simulated by ADMS-Urban.

These issues were further highlighted when the plots comparing the ADMS-Urban NO2

hourly concentrations time series for simulation scenarios 16, 84 and 24 were compared

to the emulated time series from the January and February models. For scenarios 16 and

84, the overlap between the two models is perfect and the emulated values are almost

perfectly imposed on top of the ADMS-Urban values. For Scenario 24, the absolute

NO2 hourly concentrations are lower than the true ADMS-Urban ones. Furthermore,

for the overlapping period between the two models, the February model has emulated

lower values than the January model. However, both models have very small standard

deviation estimates and have managed to capture the overall underlying trend in the

data. Overall, there appears to be good agreement in the overlapping times in two of

the scenarios and the emulated values follow the underlying trend in the data.

Therefore, the two models were used to emulate what ADMS-Urban would simulate for

the observed conditions in 2015. It was found that the January model over-predicts

breaches over 200 µg m−3, whereas the February model identifies correctly a breach,

but under-predicts its magnitude by about 40 µg m−3. These results are in line with the

out-of-sample 10-fold CV prediction results. According to the emulated simulation, the

hourly regulation for NO2 concentrations would have been broken in Glasgow by 23/1

but in reality that is not the case. Therefore, the period between 19/1 and 23/1 could

be classified of high interest to governmental agencies to investigate the discrepancy

between the emulated simulation and the true concentrations in order to identify how

breaches of the regulation were avoided. This discrepancy is likely to be coming from

the fact that there is a lack of day-to-day variation in these ADMS-Urban simulations.

8.4 Conclusion

In this chapter, the hourly NO2 concentrations for a year as simulated by ADMS-Urban

for varying emissions, wind speed and wind direction were examined in order to cre-

ate a modelling technique with which to examine how these varying conditions affect

the hourly NO2 concentrations and hence, enable governmental agencies to identify the

conditions which lead to high pollutant concentrations. Firstly, an exploratory analysis
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of the simulated by ADMS-Urban time series under one hundred different sets of emis-

sions, wind speed and wind direction was performed in Section 8.1. The exploratory

analysis of simulation scenario 16 (chosen due to its proximity to (0, 0, 0)) was presented

in full detail. Other scenarios were also examined and it was found that they required

broadly similar modelling. Therefore, it was concluded that temperature, wind speed,

an interaction between temperature and wind speed, wind direction, emissions, a factor

variable for the hours of the day and a b-spline with degree 3 are sufficient covariates

with an AR(1) correlation structure adjusting for the autocorrelation in the residuals.

Based on the findings from the exploratory analysis, a hyperspatial-temporal model was

proposed in Section 8.2. The model proposes using a block-diagonal design matrix,

which allows for different covariate values to be used for the modelling of different

simulation scenarios. Properties of Kronecker products and AR(1) correlation matrices

are used for computational efficiency. As in Chapters 5 and 6, the proposed models

struggled with correctly estimating the hyperspatial parameters, a short model testing

was performed (see Appendix D) and it was found that even for a much smaller subset of

the full ADMS-Urban scenarios (reduced number of time steps, but the same number of

scenarios), the proposed hyperspatial-temporal model estimates the hyperspatial range

parameters with almost no bias (less than 1%) and the temporal parameter with a slight

negative bias of 10%.

As the hyperspatial-temporal model provides reasonable estimates for the random ef-

fects, the model was then applied to the ADMS-Urban simulations in Section 8.3. Ap-

plying the hyperspatial-temporal model to the full data set was deemed impractical.

An alternative approach of identifying overlapping blocks of data for periods of inter-

est was adopted. The January period from 17/01 to 29/01 and the February period

from 28/01 to 7/02 were chosen based on the fact that simulation scenario 16 contains

breaches over 200 µg m−3. The periods were chosen to overlap in order to assess how

well the predictions from the two models would match onto each other. The January

model seemed to perform really well but slightly under-predicting the simulated hourly

NO2 concentrations for one of the scenarios as a result of extrapolation. On the other

hand, the February model over-predicted the simulated hourly NO2 concentrations for

several scenarios. The results from the 10-fold CV were used to emulate three scenarios

and compare and assess the performance of the overlapping technique across the LHC

space. For two of the three scenarios (the one closest to the (0, 0, 0) baseline point and

the one closest to the centre of the LHC), the emulated NO2 hourly concentrations from

the January and February model overlapped each other perfectly. Furthermore, the

emulated NO2 hourly concentrations are almost perfectly superimposed on top the true

ADMS-Urban simulated values. However, for the third scenario (furthest away from the

centre of the LHC space), the emulated NO2 hourly concentrations did not overlap each
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other well with the February values being lower than the January ones, and both the

January and February model under-predicted the true ADMS-Urban simulated values.

Although the emulated NO2 hourly concentrations from both the January and Febru-

ary models were lower than the true ADMS-Urban simulated values, both models had

identified the underlying general trend in the time series. The issues with the quality

of the emulated NO2 hourly concentrations in the third scenario were caused due to

extrapolation. Nevertheless, the standard deviation estimates for all models were very

low (0.02 to 0.03). Overall, the two models mimicked very closely out-of-sample the

ADMS-Urban simulated hourly NO2 concentrations.

Therefore, the two models were then used to emulate the simulated hourly NO2 concen-

trations based on the conditions for 2015. The January model over-predicted the hourly

NO2 concentrations for a period of almost 4 days by forecasting hourly concentrations

of above 200 µg m−3 but in fact there were no breaches in reality. This overestima-

tion is likely the result of the lack of variability in terms of day of the week. On the

other hand, the February model followed very closely the true NO2 concentrations and

correctly identified a breach, although under-predicted its magnitude. The overlapped

values between the two models and true NO2 concentration were almost identical with

the exception of the January model predicting a single breach above 200 µg m−3 on

30/01 which the February model did not predict and in fact such a breach did not occur

in reality. The overlapping method gives good results and identifies a period (19/01

to 23/01) which is expected to have high hourly NO2 concentrations which do not oc-

cur. Hence, it would be of interest to governmental agencies to further investigate the

conditions at that time to identify the discrepancy. Overall, the hyperspatial-temporal

model does well in mimicking ADMS-Urban but struggles with identifying when the

true hourly NO2 concentrations would be above 200 µg m−3 and the magnitude of the

breaches.

The emulation by using overlapping blocks of time provides a computational efficiency

without comprising the quality of the emulated NO2 hourly concentrations. However,

the method would still require fitting 35 models to be able to emulate a full year ADMS-

Urban run, which would take over 3 months on a 2016 MacBook Pro with 16GB memory

and 2.9 GHz Quad-Core Intel Core i7 processor. The running time can be further

reduced if multiple models are fitted simultaneously. Therefore, the overlapping blocks

of time approach provides certain computational efficiency as opposed to running the

ADMS-Urban model.



Chapter 9

Discussion and conclusions

Air pollution is one of most serious environmental problems faced by modern society.

Multiple international organisations (WHO, EU, SEPA) are investigating air pollution

and developing strategies to reduce air pollution due to its effect on people’s health. In

this thesis, the main focus is on the statistical modelling of both measured (monitored)

and simulated from an air quality model (ADMS-Urban) data in Scotland. The air

pollution regulations in Scotland are based on EU Directive 2008/50/EC [76], although

the Scottish government aims to become the first country in the world to introduce

much stricter regulations outlined by WHO in [208]. Air pollution regulations define the

monitoring of multiple pollutants as different pollutants have different effects on people’s

health. In Scotland, monitoring NO2 is specifically crucial as NO2 breaches the Scottish

regulation at multiple locations. The regulation is split into two parts - annual average

mean regulation, which cannot exceed 40 µg m−3; and hourly mean regulation, which

cannot exceed 200 µg m−3 more than 18 times a year.

However, air pollution data are expensive to acquire as the monitoring systems used (for

instance, AURN monitors) are very expensive to operate. This results in a very sparse

monitoring network. There are two possible solutions to this problem discussed in the

thesis. The first option is using miniature automated sensors, which are lower cost than

the AURN monitors. The second option is to use data from process models such ADMS-

Urban. The advantage of data from ADMS-Urban is that it provides estimates for the air

pollution for meteorological conditions (such as wind speed and wind direction), which

have not been observed, and for locations, which have not been monitored. Nevertheless,

model runs can be computationally time consuming. Emulation can be used to model

the simulation results and hence, attempt to reduce the time required for simulating

data. Details on these air pollution modelling investigations are presented below.

262
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9.1 Assessing the quality of miniature automated sensors

In Chapter 3, a study is performed to assess the quality of NO2 and O3 hourly concentra-

tions from the miniature automated sensor ALPHASENSE B2 in a realistic setting for

citizen science application. The sensors produce two types of measurements from its two

electrodes - the auxiliary and the working electrodes. Three sensors were deployed next

to an AURN sensor at St. Leonards monitoring station in Edinburgh. Bland-Altman

analysis was used in order to establish the consistency between the hourly measurements

taken by the three sensors. It was found that the auxiliary electrode measurements taken

by the sensors are not consistent with each other but the working electrode measure-

ments were mostly consistent with each other. Following that, linear regression was

applied to examine the relationship between the measurements from the sensors and the

AURN monitor in order to assess how well air pollution is measured by the miniature

automated sensors. Although for all models the main pollutant from the reference mon-

itor was significant and captured the changes in the hourly pollutants’ concentrations, it

was found that the miniature automated sensors’ hourly measurements are also heavily

influenced by changes in hourly temperature and relative humidity. From the analy-

sis it can be concluded that while these lower cost sensors are useful, this experiment

indicated that the technology is not yet fully foolproof when used by non-specialists.

Looking forward there will be interesting statistical questions concerning how a network

of monitoring stations could be designed, combining both the high and low quality air

pollution sensors.

9.2 Models and emulation of the ADMS-Urban simulation

scenarios

The rest of the thesis focused on the idea of emulating simulated data generated from

ADMS-Urban model, which has been used in many Scottish cities, to further explore

the conditions, which cause increased NO2 pollutant concentrations, than just using the

observed monitoring data. The main aim of the work is to emulate a deterministic com-

puter simulation model ADMS-Urban and establish a framework to work with similar

stochastic simulation models as suggested in [169]. Doing so allows to better understand

under what conditions both the annual and hourly exceedance regulations are breached.

In Chapter 4, two data sets were introduced. Firstly, the ADMS-Urban simulated data

set for the city of Aberdeen, which SEPA has previously used to investigate the NO2

concentrations for six monitoring stations in the city, was presented. ADMS-Urban

was also used to create a similar data set for the NO2 concentrations across the city
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of Glasgow with specific attention being paid to the eight monitoring stations’ loca-

tions. Both simulated data sets were created using a Latin Hypercube (LHC) design

and the locations in the hyperspace were chosen by varying the percentage change in

emissions and wind speed, and the degree change in wind direction. The main difference

between the two data sets is that for Glasgow there are more data available in terms of

hourly measurements for emissions, temperature, wind speed and wind direction. Based

on various numerical and graphical summaries, three monitoring stations in Aberdeen

(Market Street 2, Union Street and Wellington Road) and one monitoring station in

Glasgow (Central Station) were identified as “at risk” as both their actual NO2 annual

average concentration and the median for the simulation data is above 40 µg m−3.

Exploratory analysis of the LHC space for both Aberdeen and Glasgow was done using

variograms in order to establish whether there is hyperspatial correlations between sce-

narios present. From the variograms it was noted that some of the hyperspatial range

parameters would not converge within the LHC space explored. This suggested that

some of the hyperspatial parameters would be difficult to estimate due to the design

of the LHC space, but confirms that there is correlation between the points within the

LHC. Therefore, an emulation approach is reasonable to undertake.

9.2.1 Univariate hyperspatial modelling

Chapter 5 presented models for the NO2 annual averages from the ADMS-Urban sce-

narios for each of the monitoring stations in both Aberdeen and Glasgow. Two types

of modelling approaches were compared - linear regression and Gaussian Process (GP)

models. The difference between the two approaches comes from the fact that the GP

models were used to also account for the hyperspatial correlation between scenarios in

the LHC using the DiceKriging package in R. Different kernels were tested to assess

the level of smoothness required for the hyperspatial correlation. All models were com-

pared in terms of out-of-sample prediction power based on a 10-fold cross validation

(CV) and for both Aberdeen and Glasgow the GP models with exponential kernel were

chosen as the best. The exponential kernel was the roughest hyperspatial correlation

structure suggesting that the changes between different sets of inputs are very abrupt.

It is interesting to note that for Glasgow, both the linear regression and GP models

required more covariates than the models for Aberdeen, which is consistent with the

larger size of Glasgow and hence, larger variety of pollution contributors. As expected

from the exploratory analysis in Chapter 4, the GP models struggled with estimating

the three hyperspatial range parameters in the models by estimating very large values

for some of the monitoring stations. Therefore, an upper boundary limit of 1000 was

set for all hyperspatial range parameters as it is a value much larger than the span of
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any of the hyperspatial variables (emissions, wind speed and wind direction). In this

chapter, a relatively simple model for each individual station was developed allowing the

exploration of the risks of exceeding the annual average regulation value.

9.2.2 Multivariate hyperspatial modelling and emulation

The simulated data from ADMS-Urban are estimated not by using the actual spatial

distances between locations but by a factor (combining information about the city out-

line, traffic, road and background emissions, meteorological data and chemistry) to vary

the predictions at different locations at the city. Therefore, Chapter 6 extends the work

from Chapter 5 by proposing a multivariate Bayesian GP model with an exponential

kernel for the between scenario correlation and free form covariance matrix between

stations. Hence, it is assessed whether modelling all monitoring stations in a city to-

gether would improve the prediction quality and reduce the number of models fitted. In

order to assess the quality of the proposed multivariate Bayesian GP model to estimate

the hyperspatial range parameters, a validation study was performed and it was found

that the multivariate Bayesian model underestimates the hyperspatial range parameters

as their values increase. However, a second validation study showed that even with

“sensible” [50] estimates for the hyperspatial range parameters, the RMSPE remains

relatively unaffected. Hence, the multivariate Bayesian GP model for the NO2 annual

average across multiple stations was applied to both Aberdeen and Glasgow but it was

found that the NO2 annual average individual station models from Chapter 5 perform

very slightly better in terms of out-of-sample prediction error (based on a 10-fold CV).

The results from the comparison of the multivariate Bayesian GP model to the single

station frequentists GP models suggest that estimating a different set of hyperspatial

parameters for each monitoring station slightly improves the prediction quality. How-

ever, a more detailed assessment with non-deterministic data is required to confirm these

conclusions.

As using the multivariate model requires less models to fit, the multivariate GP models

from Chapter 6 were used to emulate the ADMS-Urban NO2 annual averages for untested

scenarios (new sets of inputs for emissions, wind speed and wind direction) in order

to identify emissions values and meteorological conditions for which compliance with

the annual average regulation is achieved. In Aberdeen, it was found that for two of

the monitoring stations (Anderson Drive and Errol Place), the NO2 regulation will be

breached under no conditions. Anderson Drive is away from the city centre, whereas

Errol Place is an urban background station so it was expected that no breaches of the

regulation will occur there. For one of the stations (King Street), some combinations of

higher than the observed emissions in 2012 will result in breaches of the NO2 regulation.
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This result is logical given that the King Street monitoring station is away from the

city centre but there is some heavy goods vehicles traffic nearby it. For three of the

monitoring stations (Market Street 2, Union Street and Wellington Road), a reduction

of at least 40% of the emissions from 2012 is required to ensure compliance. As the

three monitoring stations are close to the harbour, they are directly affected by the

traffic associated with the oil industry. Overall, the emulated NO2 annual averages

results were in agreement with the actual observed value in 2012 in Aberdeen.

In Glasgow, for three monitoring stations (Burgher Street, Townhead and Waulkmillglen

Reservoir), the NO2 regulation will never be breached, which is logical by the distance

from the city centre and the background character of Townhead and Waulkmillglen

Reservoir. For three other monitoring stations (Byres Road, Great Western Road and

High Street) emissions must not be larger than the observed emissions in 2015 to ensure

compliance. The grouping of these three stations is logical as they are close to the city

centre and the west end of the city. For one of the monitoring stations (Dumbarton

Road) in the west end but close to heavy goods vehicles traffic, a 5% reduction in the

emissions from 2015 will result in no breaches of the NO2 regulation. Lastly, for one

of the monitoring stations (Central Station) a 60% reduction in the baseline emission

will result in compliance for all meteorological conditions. The result is expected given

that the monitoring station is located at a transport hub in the city centre. As with

Aberdeen, the emulated simulated NO2 annual averages results are in agreement with

the actual observed values in 2015 in Glasgow.

9.2.3 Modelling and emulation of the NO2 hourly exceedances over

200 µg m−3

There is an hourly regulation for the NO2 concentrations - no more than 18 breaches

over 200 µg m−3. Therefore, there is a need to create a model and use it to emulate

the number of hourly NO2 exceedances over 200 µg m−3 as simulated by ADMS-Urban.

Given that count data are the response in this case, a Poisson generalised linear model

(GLM) was used in Chapter 7. As hourly data are only available for Glasgow, where

Central Station is the only location where any breaches above 200 µg m−3 are observed,

that is the only monitoring station examined in that chapter. The exploratory plots

showed that exceedances only occur for emissions larger than -60% from the baseline.

Therefore, a Poisson GLM and a segmented Poisson GLM were compared based on their

out-of-sample predictive performance (based on a 10-fold CV). However, the diagnostic

plots for both models indicated under-dispersion issues and had to be refitted as quasi-

Poisson models. The quasi-Poisson GLM had better out-of-sample performance and its

diagnostic plots indicated a better fit.
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Hence, the quasi-Poisson GLM was used to emulate the number of NO2 exceedances for

untested scenarios (new sets of inputs for emissions, wind speed and wind direction).

It was found that for all conditions when the emissions are 60% less than the baseline

recorded in 2015, there will be no occurrences over 200 µg m−3, which is consistent

with the findings from the NO2 annual average emulation in Chapter 6. Additionally,

it was found that the more western prevailing the wind, the more exceedances over 200

µg m−3 will occur. When the baseline conditions were emulated, it was estimated that

there were 17 exceedances expected to occur. However, in reality only 4 have occurred.

Based on these results, it can be concluded that the emulator predicts quite well the

Central Station Glasgow ADMS-Urban scenarios results but the scenarios over-predict

in comparison with what has actually occurred in reality.

9.2.4 Hyperspatial-temporal modelling and emulation

Chapter 8 presented the biggest statistical challenge in terms of modelling and predic-

tion of high resolution air pollution data - the modelling and prediction of the yearly

time series of NO2 hourly concentrations as simulated by ADMS-Urban. The chapter

builds on the models from Chapters 5 and 6 by including a temporal random effect

in addition to the hyperspatial random effects. Continuing from Chapter 7, only the

Central Station monitoring station in Glasgow was modelled. In the chapter, a new

hyperspatial-temporal model with a block-diagonal design matrix is proposed to allow

for different covariates to be used to model the different scenarios at a single monitoring

location. The model uses a separable (in terms of hyperspace for the between scenarios

correlation and within scenario time correlation) variance-covariance matrix. The sepa-

rability allowed for some computational efficiency techniques to be used. However, due

to the size of the variance-covariance matrix (6TB), the model was not applied to the

full data set of yearly time series of NO2 hourly concentrations as it is expected that

it would take almost nine months to run the model. This is contrary to the idea of

using an emulator to provide a faster alternative to running the actual simulated model.

Instead, an alternative approach of modelling overlapping blocks of data for periods of

interest is adopted. After examining the full time series over a year from the simulation

scenarios, it was identified that the period from 17/01 to 7/02 is of most interest as all

NO2 hourly exceedances above 200 µg m−3 occurred in the period in 2015.

In order to test the idea of overlapping blocks of data, two models were fit - a January

model (17/01 to 29/01) and a February model (28/01 to 7/02). In that way, in both

periods of the simulation scenarios breaches over 200 µg m−3 are observed. Both models

had hourly temperature, hourly wind speed, hourly wind direction (as a circular vari-

able), an interaction between temperature and wind speed, and emissions as covariates.



Chapter 9. Discussion and conclusions 268

Based on out-of-sample predictive power using 10-fold CV, the two models were found

to perform well when emulating the ADMS-Urban scenarios out-of-sample.

It has to be noted, that when performing the 10-fold CV, one of the scenarios is in effect

outside of the LHC space defined the 90 scenarios used to fit the model. This results in

an extrapolation and affects some of the diagnostic plots. The January model slightly

over-predicted the close-to-zero NO2 hourly concentrations for one of the scenarios,

whereas the February model under-predicted some NO2 hourly concentrations for a few

of the scenarios. Three scenarios were chosen based on their locations in the LHC

and emulated. It was found that for two of the scenarios, the overlapping periods

match perfectly onto each other and almost all emulated NO2 hourly concentrations

are superimposed on the true ADMS-Urban simulated NO2 hourly concentrations. The

third scenario is the extrapolated one and although both models under-predicted the

absolute values of the NO2 hourly concentrations, both models have captured the overall

underlying trend. Hence, the January and February models mimicked very closely the

ADMS-Urban simulations for the NO2 hourly concentrations out-of-sample.

Hence, the January and February models were used to emulate the NO2 hourly con-

centrations at the baseline. The emulated values were then compared to the true NO2

concentrations from 2015. The January model estimated that there will be a period

of almost four days, where the hourly occurrences will be over 200 µg m−3 and up to

almost 600 µg m−3. This would have resulted in a breach of the hourly regulation but

in fact no breaches actually occurred. The overestimation of reality by ADMS-Urban

and its emulated values are heavily impacted by the fact that all days of the week are

treated as equal instead of adjusting for weekday vs. weekend activities. The February

model performed better than the January model and correctly estimated one breach

at the same time as it had actually occurred, but under-estimated the magnitude of

the breach by 40 µg m−3. A 48-hour overlap between the two models was estimated

and the hourly concentrations between the two models were almost identical with the

exception of the final hourly concentration from January being a breach, which does not

occur in either real-life or the emulation based on the February model. Overall, it was

found that the hyperspatial-temporal model does well in emulating the Central Station

Glasgow ADMS-Urban concentrations. The comparison to the actually observed NO2

hourly data found that for Central Station Glasgow, the ADMS-Urban is expected to

fail to identify the moments when most breaches over 200 µg m−3 are actually observed,

and their magnitudes, but overall the underlying trend is captured.
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9.3 Discussion and future work

In this thesis, the issues in the sparsity of air pollution data were studied by examining

the quality of MA sensors and emulating ADMS-Urban. Different modelling techniques

were developed (such as the hyperspatial-temporal model in Chapter 8) and applied.

However, there are some limitations to the work presented in this thesis. This last section

of the conclusion aims to discuss these limitations and ways they can be overcome with

future work.

The main limitation in Chapter 3 was the quality and amount of the data. Firstly,

only one location was used to place the MAS, which does not provide a sufficient spa-

tial representativity for locations with more urban (e.g. kerbside) or rural background

characteristics. As the objective of this study was to evaluate an exemplary applica-

tion within a citizen science scenario, this lack of spatial representation is acceptable.

However, to derive more general findings, a wider application in a more diverse pol-

lution context is advised. Furthermore, the experiment only lasted 20 days. Running

the experiment for a longer period would allow exposure to more diverse meteorologi-

cal conditions and to draw more robust conclusions with regard to the covariates. The

MAS’ data contained some unusual observations which require further analysis as well

as investigating whether there are specific conditions in which the sensors struggle to

operate reliably. Last but not least, temperature and relative humidity were not ratified

against reference instruments for this deployment but previous field tests with the same

packages indicate robust performance with regard to the trends. The values used were

averaged from the MAS’ measurements for temperature and relative humidity. Once

more robust results from the MAS are available as well as ratified data for relative hu-

midity and temperature, it would be beneficial to use an inverse regression model and

produce estimates for the true pollutant concentration based on the measurements from

the sensors.

A challenge in the modelling and emulation in Chapters 5, 6 and 8 was that hyperspatial

range parameters are hard to estimate. The issue was first noted in Chapter 4, when

variograms were used for initial impression for the correlation in the LHC space for

both Aberdeen and Glasgow. The issue continued through Chapters 5 and 6. The issue

can be overcome with larger sets of data as seen in the model testing in Appendix D.

Additionally, in Chapters 6 and 8, the hyperspatial range parameters are estimated using

the exponential function based on the analysis from Chapter 5, where it was found that

the surface of the area of interest is very rough. However, it would be of value in future

works to test the predictive performance of other hyperspatial correlation functions when

applying the proposed models from Chapters 6 and 8.
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Another important point is the choice of the LHC design for choosing the ADMS-Urban

simulation scenario runs. One possible alternative is to use grid ensemble design for

multivariate emulation as proposed in [133]. Alternatively, a design combining LHC and

Sobol indices can be applied as suggested in [53]. It would also be of interest to assess

how much effect does the choice of simulation runs have on quality of the emulated

results.

Furthermore, the variance-covariance matrices used for both models in Chapters 6 and

8 are defined as separable as there was no reason to believe there is a trade-off between

two parts of the variance-covariance matrices. The separability also allowed for compu-

tational efficiency in the estimation of the hyperspatial-temporal model from Chapter

8. Nevertheless, it would be of interest to explore whether there is in fact a trade-off

between two parts of the variance-covariance matrices, especially between the hyperspa-

tial and temporal correlations in Chapter 8. This could lead to an improvement in the

predictions.

Additionally, the multivariate Bayesian GP emulator in Chapter 6 uses a free form

correlation matrix to model the between stations correlation. However, it would be

beneficial to explore more complex correlation structures which would take into account

the geographical locations although they are not explicitly specified in ADMS-Urban.

This would allow the emulation to be applied to a more regularised grid across a city

which in turn would result in better understanding of the air pollution and its movement

across a city.

The modelling and emulation in Chapter 7 could be further explored by using a spatial

Poisson model, which would allow for more accurate prediction of the number of NO2

hourly concentrations which breach the 200 µg m−3 in a year. For instance, [130] pro-

poses a spatial Poisson regression for modelling spatial autocorrelation of geographical

observations which can be extended to work in hyperspace, while [101] introduces a mul-

tivariate spatial Poisson model which would allow modelling the number of exceedances

for all stations within a city.

A future work of interest would be to improve the emulation of hourly concentrations by

using the results from the Chapter 7 quasi-Poisson GLM for the number of breaches over

200 µg m−3 in a year to calibrate the number of breaches when using the hyperspatial-

temporal model from Chapter 8. Alternatively, exceedances over thresholds analysis can

be applied to the ADMS-Urban simulations for more robust modelling of the high NO2

hourly concentrations above 200 µg m−3.

The emulator presented in Chapter 8 requires further improvements to make it com-

putationally faster. It would be of interest to explore block-design computation using
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cloud sharing as discussed in [178]. One way to try and overcome the issue would be to

use an alternative language such as C++ through the R package Rccp [67] or Python

[196] as suggested in [103] and [9] respectively. Furthermore, sparse GPs can be used by

inducing variables and thus, reducing the time complexity as suggested in [190]. Alter-

natively, local GPs can be applied as suggested in [96] and compared in performance to

the sparse GPs.

Overall, the thesis aimed to address the sparsity of air pollution data by assessing lower

cost alternatives to the AURN sensors and emulating simulated data to provide further

information about air pollution to the observed data. Although the results from the

linear regression on the MAS’ data showed that the sensors record fluctuations in tem-

perature and relative humidity, the main driving force was the pollutant concentrations

indicating that the measurements from lower cost sensors have their merits. The emula-

tion of the ADMS-Urban data showed that the NO2 annual averages are almost perfectly

emulated. The emulated results from using ADMS-Urban simulation data showed that

when NO2 annual averages are being emulated, they are not only close to mimicking the

simulation values but also the true observed values in both the single station hyperspa-

tial and multi-station hyperspatial modelling. Moreover, the modelling of count data

in terms of the number of hourly concentrations above a regulatory limit using a quasi-

Poisson GLM had an very accurate emulation for the ADMS-Urban scenarios. When

the hyperspatial-temporal emulator was applied to the NO2 hourly data, the emulated

values were almost perfectly superimposed with those produced by the ADMS-Urban

simulations. Generally, the emulators created in this thesis have performance very close

to the simulated data, with very small standard deviation estimates and allow for more

air pollution data for unobserved emissions levels and meteorological conditions to be

produced.



Appendix A

Matrix distributions

In Chapter 6, a Bayesian multivariate emulator is applied to the ADMS-Urban sim-

ulation runs for Aberdeen and Glasgow to model the NO2 annual average across all

monitoring stations in both cities. The emulator is built using the matrix Normal dis-

tribution and a matrix t-distribution, which are described below.

A.1 Matrix Normal Distribution

The matrix Normal Distribution was introduced in [55]. Let the matrix A (m×n) follow

the matrix Normal distribution, then:

A ∼MN(M,Ω,Σ) , (A.1)

where:

• M is the mean matrix (m× n);

• Σ is a row-scaling positive definite matrix (m×m); and

• Ω is a column-scaling positive definite matrix (n× n).

The probability density function for A is:

p(A|M,Ω,Σ) =
exp

(
−1

2tr
[
Ω−1 (A−M)>Σ−1 (A−M)

])
(2π)

nm
2 |Ω|

m
2 |Σ|

n
2

, (A.2)

where tr(·) denotes the trace of a matrix.

It is important to note that a Matrix Normal distribution can be re-written as a n-

variate-Normal distribution by stacking the columns of A in a vector as:

272
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vec(A) ∼ N(vec(M),Ω⊗Σ) . (A.3)

A.2 Matrix t-Distribution

The matrix t-Distribution was introduced in [106]. Let the matrix A (m×n) follow the

matrix t-distribution, then:

A ∼MT(M,Ω,Σ, ν) , (A.4)

where:

• M is the mean matrix (m× n);

• Σ is a row-scaling positive definite matrix (m×m);

• Ω is a column-scaling positive definite matrix (n× n); and

• ν are the degrees of freedom.

Then, the probability density function for A is:

p(A|M,Ω,Σ, ν) =
Γn
(
ν+m+n−1

2

)(
π
mn
2

)
Γn
(
ν+n−1

2

) |Ω|−m2 |Σ|−n2 |Im−Σ−1 (A−M) Ω−1 (A−M)> |
ν+m+n−1

2 ,

(A.5)

where Γn(·) is a multivariate gamma function defined in [104] as:

Γn(α) = π
1
4
n(n−1)

n∑
i=1

Γ

(
α− 1

2
(i− 1)

)
. (A.6)

Similarly to the matrix Normal distribution, the matrix t-distribution can be re-written

as a multivariate t-distribution by stacking the columns of A into a vector:

vec(A) ∼ T(vec(M),Σ⊗Ω, ν) . (A.7)



Appendix B

Exploring the emissions and

meteorological effect on the NO2

hourly concentrations in Glasgow

in 2015

Modelled hourly emissions and meteorological data for each of the eight monitoring

stations in Glasgow for 2015 is available. The emissions data is a 24-hour cycle of

emissions (in g m−2 h). The meteorological data set used consists of the hourly mea-

surements for temperature (in degrees ◦C), wind speed (in m/s) and wind direction

(in degrees ◦). The data were downloaded from the Air Quality in Scotland website

(http://www.scottishairquality.co.uk/) on 16/11/2016. Exploratory analysis of

each of these meteorological conditions and emissions will be presented in this subsec-

tion as well as checks for any trends in the hourly observations of the meteorological

data themselves as well as with the NO2 hourly concentrations. The log NO2 hourly

concentrations will be used as they appear normally distributed as seen in Figure 4.15.

B.1 Temperature

Since there is modelled hourly data for the temperatures (will be referred to simply

as temperature onwards) at each of the stations. The time series for the temperatures

at each of the stations are presented in Figure B.1. Overall, the temperatures for all

stations appear identical in shape - with low concentrations on both ends of the time

series (winter) and a peak in the middle (summer). It is interesting to note that all

274
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stations except for High Street are missing 192 hours, which is equal to 8 days. The

missing days are 12/02, 11/03, 27-30/03, 8/4, 1/12. When the hourly observations from

a single day were missing, the data were imputed by averaging the neighbouring days

temperatures for the same hour, and assigning it to the missing observation. When the

hourly observations from multiple days were missing, the data were imputed by averaging

the neighbouring weeks temperatures for the same day and hour, and assigning it to the

missing observation.
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Hourly temperatures for Glasgow in 2015

Figure B.1: Time series plot for the hourly temperatures (◦C) for each of the eight
monitoring stations in Glasgow in 2015.

However, when comparing the magnitudes, the stations can be split into three groups.

Byres Road, Central Station, Dumbarton Road, Great Western Road, High Street and

Townhead have identical temperature values, whereas Burgher Street has slightly lower

temperatures than this group of six stations and Waulkmillglen Reservoir has even lower

temperatures than Burgher Street. This is not surprising given the fact that the group

of six monitoring stations are located within the city centre, whereas Burgher Street is

in the east end of the city and Waulkmillglen Reservoir is outside the city as previously

seen in Figure 4.12. As High Street has identical values as five other stations (Byres

Road, Central Station, Dumbarton Road, Great Western Road and Townhead), the
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missing values for the first four months of the year were imputed as the same values

recorded at the other five stations. It is interesting to note that the missing values for

temperatures are not the same as the ones missing in Figure 4.13 but the station with

the most missing values in both cases is High Street.

In Figure B.2, time plots comparing the log NO2 hourly concentrations and the hourly

temperatures for all the monitoring stations in Glasgow in 2015 are presented. It appears

that when there are low temperatures, the log NO2 hourly concentrations increase. This

trend is most visible when focusing on the temperature inversion in late January, when

the temperatures are at their lowest values, whereas the log NO2 concentrations are the

highest. Similarly, in the the beginning of July, the temperatures are the highest and

this results in the lowest log NO2 concentrations. These conclusions are expected as high

temperatures is a catalyst in chemical reactions and causes faster reactions between the

NO2 and other pollutants.
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Figure B.2: Joint time series plot of the hourly NO2 concentrations (µg m−3) and
the hourly temperatures (◦C) for each of the eight monitoring stations in Glasgow in

2015. The hourly limit of log 200 µg m−3 is represented by the red line.

Lastly, scatterplots for the log NO2 hourly concentrations and the hourly temperatures

for each of the eight monitoring stations in Glasgow in 2015 are examined in Figure B.3.
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Station
Pearson’s correlation

(95% CI)

Burgher Street
-0.27

(-0.29, -0.25)

Byres Road
-0.06

(-0.09, -0.04)

Central Station
-0.05

(-0.07, -0.03)

Dumbarton Road
-0.15

(-0.17, -0.13)

Great Western Road
-0.18

(-0.20, -0.16)

High Street
-0.09

(-0.12, -0.06)

Townhead
-0.38

(-0.40, -0.36)

Waulkmillglen
Reservoir

-0.19
(-0.21, -0.16)

Table B.1: The Pearson’s correlation coefficients and their corresponding 95% inter-
vals for the log hourly NO2 concentrations (µg m−3) and temperatures (◦C) across the
eight monitoring stations in Glasgow in 2015.

For all stations, there is a weak linear negative correlation. This is further investigated

in Table B.1 where the 95% CIs for the Pearson’s correlation are presented. The table

confirms that there is a significant negative correlation between the log NO2 concentra-

tions and the temperatures at all eight monitoring stations in Glasgow in 2015 as all

the 95% CIs are entirely negative and do not contain zero. It has to be noted that the

scatterplots contain a cloud containing the majority of the points and below the cloud

for almost all stations, there appear to be lines of points. These lines are due to the

aforementioned rounding to whole numbers of the NO2 hourly observations.

B.2 Wind speed

There is modelled hourly data for the wind speed (will be referred to as wind speed

onwards) for each of the stations. Firstly the time series for the wind speeds at each of

the stations are presented in Figure B.4. Overall, the wind speeds for all stations appear

very similar in shape. There is no clear trend when low or high wind speeds appear as

opposed to temperatures. Similarly to the temperatures, for all stations except for High

Street there are 192 hours missing, which is equal to 8 days. The missing days are the

same as for temperature. Therefore, the imputations were performed in the same way

as for temperature.

As opposed to the temperatures, the plots in Figure B.4 clearly show the three groups by

which the stations can be grouped when taking into account the actual magnitudes for

the wind speeds. The stations can be split into the same three groups as by temperatures.



Appendix B. Exploratory analysis of the Glasgow 2015 NO2 hourly concentrations 278

r=−0.27

−2

0

2

4

0 10 20
Temperature (°C)

lo
g 

N
O

2 
(µ

 g
 m

−3
)

Burgher Street

r=−0.06

0

2

4

0 10 20
Temperature (°C)

lo
g 

N
O

2 
(µ

 g
 m

−3
)

Byres Road

r=−0.05

−2

0

2

4

0 10 20
Temperature (°C)

lo
g 

N
O

2 
(µ

 g
 m

−3
)

Central Station

r=−0.15

−2

0

2

4

0 10 20
Temperature (°C)

lo
g 

N
O

2 
(µ

 g
 m

−3
)

Dumbarton Road

r=−0.18

−2

0

2

4

0 10 20
Temperature (°C)

lo
g 

N
O

2 
(µ

 g
 m

−3
)

Great Western Road

r=−0.09

−2

0

2

4

0 10 20
Temperature (°C)

lo
g 

N
O

2 
(µ

 g
 m

−3
)

High Street

r=−0.38

−2

0

2

4

0 10 20
Temperature (°C)

lo
g 

N
O

2 
(µ

 g
 m

−3
)

Townhead

r=−0.19

−2

0

2

4

0 10 20
Temperature (°C)

lo
g 

N
O

2 
(µ

 g
 m

−3
)

Waulkmillglen Reservoir

Log NO2 vs. Temperature Glasgow 2015

Figure B.3: Scatterplot of the hourly NO2 concentrations (µg m−3) and the hourly
temperatures (◦C) for each of the eight monitoring stations in Glasgow in 2015. The
hourly limit of log 200 µg m−3 is represented by the red line. The correlations for each

pairing are also provided.

Byres Road, Central Station, Dumbarton Road, Great Western Road, High Street and

Townhead have identical wind speed values, whereas Burgher Street has slightly higher

wind speed than this group of six stations and Waulkmillglen Reservoir has higher wind

speed than Burgher Street. This is not surprising given the geographical location of the

monitoring stations as seen in Figure 4.12. As High Street has identical values as five

other stations (Byres Road, Central Station, Dumbarton Road, Great Western Road

and Townhead), the missing values for the first four months of the year were imputed

as the same values recorded at the other five stations.

Next, time plots comparing the time series of the log NO2 hourly concentrations and the

hourly wind speeds for all the monitoring stations in Glasgow in 2015 are compared in

Figure B.5. Initially, it appears that when there are low wind speeds, the log NO2 hourly

concentrations increase. This trend is most visible when focusing on the temperature

inversion in late January, when the temperatures and wind speed are at their lowest val-

ues, whereas the log NO2 concentrations are the highest. However, in the the beginning
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Figure B.4: Time series plot for the time series of the hourly wind speed (m/s) for
each of the eight monitoring stations in Glasgow in 2015.

of July, the wind speeds are also low but this does not cause the log NO2 concentrations

to increase. These implies that wind speed’s effect on the NO2 concentrations has a

seasonal effect.

Finally, the scatterplots for the log NO2 hourly concentrations and the hourly wind

speeds for each of the eight monitoring stations in Glasgow in 2015 are presented in

Figure B.6. For all stations, there is a moderate linear negative relationship. This

is further examined in Table B.2 where the 95% CIs for the Pearson’s correlation are

shown. As all the 95% CIs are entirely negative and do not contain zero, it is concluded

that there is a significant negative correlation between the log NO2 concentrations and

the wind speeds at all eight monitoring stations in Glasgow in 2015.
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Figure B.5: Joint time series plot of the hourly NO2 concentrations (µg m−3) and
the hourly wind speed (m/s) for each of the eight monitoring stations in Glasgow in

2015. The hourly limit of log 200 µg m−3 is represented by the red line.

Station
Pearson’s correlation

(95% CI)

Burgher Street
-0.43

(-0.44, -0.41)

Byres Road
-0.30

(-0.32, -0.28)

Central Station
-0.32

(-0.34, -0.30)

Dumbarton Road
-0.39

(-0.41, -0.37)

Great Western Road
-0.45

(-0.47, -0.43)

High Street
-0.39

(-0.41, -0.36)

Townhead
-0.46

(-0.47, -0.44)

Waulkmillglen
Reservoir

-0.22
(-0.24, -0.20)

Table B.2: The Pearson’s correlation coefficients and their corresponding 95% inter-
vals for the log hourly NO2 concentrations (µg m−3) and wind speeds (m/s) across the
eight monitoring stations in Glasgow in 2015.
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Figure B.6: Scatterplot of the hourly NO2 concentrations (µg m−3) and the hourly
wind speeds (m/s) for each of the eight monitoring stations in Glasgow in 2015. The
hourly limit of log 200 µg m−3 is represented by the red line. The correlations for each

pairing are also provided.

B.3 Wind direction

Lastly, the modelled hourly data for wind direction (will be referred to as wind direction

onwards) at each of the stations in Glasgow in 2015 are examined using histograms in

Figure B.7. The histograms for all stations appear identical in shape with the exception

of Burgher Street and Waulkmillglen Reservoir. However, for all stations, the majority of

recorded wind directions have angles of about 250◦ making the predominant wind south-

western. There is a second smaller peak around 100◦ indicating an east-southeastern

wind. As with temperature and wind speed, there are 8 days of missing data for all

stations except for High Street. Imputations were performed in a similar way to the

ones for temperature and wind speed.

The differences in shape and occurrence frequencies for Burgher Street and Waulk-

millglen Reservoir are due to the different geographical location of the two stations in

comparison to the others and is expected. For Burgher Street, the difference comes
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Figure B.7: Histograms for the modelled wind direction (◦) for 2015 for eight of the
monitoring stations in Glasgow in 2015.

from the wind directions for less than 200◦, where there is more variation in the ob-

served degrees of freedom. The wind direction at Burgher Street is very similar to the

six stations with identical observations with a predominant southwestern wind direction

and a small peak at east-southeastern direction. At Waulkmillglen Reservoir, the whole

histogram has a different shape with the larger peak at about 250◦ having higher occur-

rence frequency (of almost 1000), whereas the bars for the second peak at about 100◦

are shorter in comparison to the second peak for the other stations. This suggests that

at Waulkmillglen Reservoir, the wind has mostly been in the southwestern direction. It

is not surprising that the wind direction at Waulkmillglen Reservoir is most different

given that the monitoring station is outside the city.

To visualise the relationship between the hourly NO2 concentrations and the wind di-

rection, pollution roses (as described in Subsection 8.1.1) are used. The pollution roses

for the eight monitoring stations in Glasgow are presented in Figures B.8 and B.9.
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Figure B.8: Pollution roses for the monitoring stations at Burgher Street, Byres Road,
Central Station and Dumbarton Road. The corresponding log NO2 concentration (µg
m−3) in 2015 are proportionally ordered to the wind direction angle (◦) at which the

concentrations are recorded.

For all stations, there is a clear trend for western to southern prevailing winds, low NO2

concentrations (below 4.1, which is equivalent to 60 µg m−3) are predominant, whereas

for all other directions, the values up to 4.6 (100 µg m−3) appear almost equally. The

only exception is Waulkmillglen Reservoir, which as the background monitoring station

has almost all recordings below 3 (20 µg m−3). Overall, there is an impression that

during the predominant southeastern winds, the log NO2 concentrations are quite low

but as the wind becomes more eastern, the log NO2 concentrations are increased and

yellow and orange colours are present.
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Figure B.9: Pollution roses for the monitoring stations at Great Western Road, High
Street, Townhead and Waulkmillglen Reservoir. The corresponding log NO2 concen-
tration (µg m−3) are ordered in proportion to the wind direction angle (◦) at which the

concentrations are recorded.

B.4 Emissions

As previously mentioned, there is an 24-hour emissions cycle based on the data collected

of one day of the year based on background emissions and an average flow of the vehicles.

The emissions are visualised in Figure B.10. In order to explore the relationship between

24:00 and 01:00, 01:00 is plotted twice. On the plot, there is a clear distinction between

the night and day hours with the day hours having emissions that are more than 3 times

higher. The highest emissions are at 19:00, although there is a smaller peak at 10:00.

These two peaks are at the end of the rush hour when people get to and from work.
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There is almost a plateau of high emissions between 10:00 and 19:00 indicating that

throughout the day the emissions are high. The lowest emissions are at 04:00 and 05:00

in the morning.
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Figure B.10: Scatterplot for the emissions (g m−2 h) in Glasgow in 2015.

Next, boxplots for the log NO2 concentrations for each hour are shown in Figure B.11.

The boxplots are ordered by emissions going from smallest to largest from left to right.

Since for 04:00 and 05:00 the same emissions are estiated, the two hours have been

combined in one box. There is a weak to moderate positive linear correlation for all eight

monitoring stations which indicates that the larger emissions, the higher the log NO2

concentrations. This is further confirmed by Table B.3 where the Pearson’ correlation

coefficients (see Subsection 2.1.2) and their respective 95% CIs are entirely positive. The

boxplots in Figure B.11 highlight that the monitoring station at Waulkmillglen Reservoir

does not record the log NO2 concentrations at 02:00. This is due to the nature of the

station as a background monitoring location and requires daily calibration.

Station
Pearson’s correlation

(95% CI)

Burgher Street
0.22

(0.20, 0.24)

Byres Road
0.48

(0.46, 0.49)

Central Station
0.46

(0.44, 0.48)

Dumbarton Road
0.48

(0.46, 0.50)

Great Western Road
0.35

(0.33, 0.37)

High Street
0.33

(0.30, 0.35)

Townhead
0.17

(0.15, 0.19)

Waulkmillglen
Reservoir

0.08
(0.06, 0.10)

Table B.3: The Pearson’s correlation coefficients and their corresponding 95% confi-
dence intervals for the log hourly NO2 concentrations (µg m−3) and emissions (g m−2

h) across the eight monitoring stations in Glasgow in 2015.
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Hourly Boxplots for log NO2 concentration by emissions' size for Glasgow in 2015

Figure B.11: Boxplots for the ordered (by emissions’ size ordered from smallest to
largest) log NO2 concentrations (µg m−3) over a 24-hour cycle at the eight monitoring
stations in Glasgow in 2015. A red line at 5.30 is added for the log of the 200 µg m−3

regulation. The correlations for each pairing are also provided

Lastly, the emissions cycle is superimposed (in magenta) over the boxplots for the log

NO2 concentrations for the eight monitoring stations in Figure B.12. The boxplots show

that there is a hour-to-hour variation in concentrations during the day for all stations.

The trend for the boxplots is similar to the emissions line, though not identical. Central

Station is the only monitoring station where the hourly limit of 200 µg m−3 has been

breached and it is interesting to note that the breaches have occurred at 05:00 and

17:00, which is before the peak emissions. This could be explained by the fact that

traffic around Central Station is always heavy and the high buildings do not allow for

pollutants to escape, while for the other locations the higher pollutant concentrations

are quicker to disperse.
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Hourly Boxplots for log NO2 concentration ( µ g m−3 ) for Glasgow in 2015

Figure B.12: Boxplots for the log NO2 concentrations (µg m−3) over a 24-hour
emissions (g m−2 h) cycle at the eight monitoring stations in Glasgow in 2015. The
emissions (g m−2 h) for each hour are superimposed in magenta. A red line at 5.30 is

added for the log of the 200 µg m−3 regulation.

B.5 Findings

Overall, it was found that the true NO2 hourly concentrations taken in Glasgow in 2015

are negatively correlated with temperature and wind speed, whereas the concentrations

are positively correlated with emissions. For wind direction, a circular variable has to be

used as winds get more eastern prevailing, the NO2 concentrations appear to increase.



Appendix C

Matrix properties

In Section 8.2, a hyperspatial-temporal model is proposed for the modelling and emula-

tion of the hourly NO2 time series across the LHC space as simulated by ADMS-Urban.

Here, some properties of matrices used to provide computational efficiency are discussed.

Firstly, properties of Kronecker products are applied to simplify the computation. Let

A be an m ×m matrix and B be an n × n matrix. The Kronecker product of the two

matrices is A⊗B = C, where C has dimensions mn×mn. Then:

• the inverse of a Kronecker product [142] is:

C−1 = (A⊗B)−1 = A−1 ⊗B−1 ; and (C.1)

• the determinant of a Kronecker product [142] is:

|C|= |A⊗B|= |A|n|B|m . (C.2)

Secondly, simplifications can be applied to the estimation of the inverse and determinant

of the temporal correlation matrix, given that it has an AR(1) correlation structure. Let

D (T × T ) be an AR(1) correlation matrix with correlation coefficient ρ, then:

• the determinant of D [84] is:

|D|= (1− ρ2)T−1 . (C.3)

Hence, the logarithm of the determinant is:

log|D|= (T − 1)log(1− ρ2) ; and (C.4)
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• the inverse of D [110] is a tri-diagonal matrix of the form:

D−1 =
1

1− ρ2



1 −ρ . . . 0 0

−ρ 1 + ρ2 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 + ρ2 −ρ

0 0 . . . −ρ 1


. (C.5)



Appendix D

Model testing for the

hyperspatial-temporal model

D.1 Background

In both Chapters 5 and 6, it was found that the hyperspatial range parameters are

difficult to estimate correctly. In Section 6.2, a simulation study on estimating the hy-

perspatial range parameters was performed and it was found that all of the tested models

struggled with estimating the hyperspatial range parameters. This is in agreement with

Cressie who has stated hyperspatial range parameters are hard to estimate correctly

[50]. However, it was shown that even with “sensible” [50] estimates for the hyperspa-

tial range parameters the RMSPE is relatively unaffected. In a similar way to the first

simulation study in Section 6.2, a short study is performed to assess the ability of the

hyperspatial-temporal model to correctly identify the hyperspatial range and temporal

parameters in a setting very close to the real-life data.

The study will be based on the simulated NO2 concentrations for the first one hundred

hours (January 1st to 5th) for all 100 locations in the LHC space. Such a small size

dataset was chosen as it takes between 9-12 hours to run the model on a 2016 MacBook

Pro with 16GB memory and 2.9 GHz Quad-Core Intel Core i7 processor. In Figure D.1, a

boxplot for the log hourly NO2 concentrations as simulated by ADMS-Urban is presented

with the corresponding actual concentrations for 2015 superimposed in blue points. The

simulations capture the pattern of the true concentrations quite well and 85% of the

blue points lie within the ADMS-Urban simulation corresponding interquartile range

on Figure D.1. The subset is chosen as a good representation of the real data by the

simulated concentrations. The subset of the simulated data provides values both close
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to zero and to the breach limit of 200 µg m−3 (or the equivalent log limit of 5.30 µg

m−3).
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Figure D.1: Boxplots for the log NO2 hourly concentrations (µg m−3) for the first
one hundred hours from the ADMS-Urban simulations. The true log NO2 hourly con-
centrations for the corresponding hour are the coloured points in blue on top of the

boxplots. The log NO2 hourly limit of 5.30 µg m−3 is represented by a red line.

Since the first one hundred hours subset only contains the hourly times series for just

over 5 days, the model from Equation 8.2 will be used with the factor variable for hour

of the day and the b-spline for Week Number covariates removed. To check that the

reduced model remains appropriate, an AR(1) model was applied to the univariate time

series models for simulation scenario 16 to check whether the model does account for

the temporal correlation. The corresponding ACF and PACF plots are shown in Figure

D.2 and show that there is no residual temporal correlation after an AR(1) structure is

applied.
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Figure D.2: ACF and PACF plots for ARIMA models with AR(1) correlation struc-
ture for the log NO2 concentrations (µg m−3) with temperature (◦C), wind speed (m/s),
an interaction between temperature and wind speed, wind direction (◦) and emissions
(g m−2 h) as covariates from the first 100 hours for simulation scenario 16 at Central

Station.

In order to get an initial assessment of the possible values of the hyperspatial range

parameters across the different hours, the variograms for the residuals for an intercept

model with log NO2 concentrations as response for each hour across the 100 locations

in the LHC space were examined in a similar way as in Subsection 4.2.4. An intercept

only model is used to estimate the largest possible values for the hyperspatial parameters

even when no fixed effects are accounted for. The variograms for log NO2 concentrations
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residuals for the 1st hour (1/01 at 01:00) are presented in Figure D.3. The variograms

for the other hours are similar and hence, omitted to avoid repetition. The variogram

shows that the individual variograms for emissions, wind speed and wind direction do

not plateau and the ranges of the hyperspatial range parameters will be hard to estimate.

The 3D variogram mimics the emissions variogram but given that the emissions have

the widest span of values (from -100% to +20%), the 3D variogram could be reflecting

that rather than emissions being the most dominant hyperspatial variable. Overall,

the annual average variograms in Figure 4.24 and the log NO2 hourly concentration

residuals variograms in Figure D.3 are very similar in shape with only the values of the

semivariance being different. Therefore, the issues with estimating the parameters at

extreme values are likely to be repeat themselves.
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Figure D.3: Variograms for the log NO2 concentrations (µg m−3) for the 1st hour at
Central Station in Glasgow.

D.2 Initialising the study

In order to asses the quality of the hyperspatial range and temporal parameters esti-

mates, fifty datasets are simulated using the following parameters:

• the response vector y = [y1,1, . . . , y1,100, . . . , y100,1, . . . , y100,100]> (10000× 1) is the

simulated responses for one hundred time steps at one hundred locations in the

LHC for Central Station;

• the block-diagonal matrix S (10000×700) will have block Bi with seven covariates

(intercept, temperature, wind speed, sin (wind direction), cos (wind direction), an

interaction between temperature and wind speed, and emissions). The covariates

used are the temperature, wind speed, wind direction and emissions time series as

presented in Section 8.1;
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• the fixed effect parameter β is estimated by applying the gls model from the nlme

package in R to each of the first one hundred hours of ADMS-Urban with an

AR(1) correlation structure;

• the overall variance parameter σ2 is set to 0.4 in a similar way to the simulation

studies in Section 6.2;

• the hyperspatial correlation matrix R(θ) (100 × 100) is estimated based on θ

being set to be a vector θ = [θ1, θ2, θ3]>. The values for θ were chosen based on

the variograms for each of the inputs in Figure D.3. Since the variograms do not

plateau and never suggest range values, the set θ = [75, 20, 15]> was chosen;

• the temporal correlation matrix Σ(ρ) (100 × 100) is an AR(1) structure with

ρ = 0.82 (based on the average estimate for ρ from the univariate time series

models with which the values of β were chosen); and

• the error vector z (10000 × 1) is randomly drawn from a multivariate normal

distribution with mean 0 and variance-covariance matrix Λ = σ2 R(θ)⊗Σ(ρ).

D.3 Results

The bias for the estimates for the hyperspatial range and temporal parameters are

presented in Table D.1. For the temporal parameter, the bias is negative, whereas for the

hyperspatial range parameters the bias is positive. The largest bias is for the temporal

parameter and it equates to 10% of the true value, whereas for the hyperspatial range

parameters the bias is less than 1%. The hyperspatial-range and temporal parameter

estimates are relatively well estimated by the proposed hyperspatial-temporal model (in

general in Equation 8.3 and with the same covariates as in Equation 8.2).

Parameter True Mean Bias

ρ̂ 0.82 0.75 -0.07

θ̂1 75 75.42 0.42

θ̂2 20 20.21 0.12

θ̂3 15 15.13 0.13

Table D.1: Comparing the hyperspatial range and temporal parameter estimates
and their bias from the hyperspatial-temporal model testing for simulated log NO2

concentrations (µg m−3) with temperature (◦C), wind speed (m/s), an interaction
between temperature and wind speed, sin/cos (wind direction) (◦) and emissions (g
m−2 h) as covariates for the first 100 hours for the hundred simulation scenarios based

on the ADMS-Urban NO2 concentrations at Central Station.
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D.4 Findings

A simulation study (over one hundred hours for all 100 locations in the LHC space) was

performed to assess how well the hyperspatial-temporal model estimates the hyperspatial

range and temporal parameters. It was found that the model estimates almost perfectly

(less than 1% bias) the hyperspatial-range parameters and there is a slight negative bias

(10%) in estimates the temporal parameter. Therefore, the model appears to provide

more accurate parameter estimates in comparison to the multivariate GP model in

Section 6.2. Even for a small dataset with high variability in the observations, the

hyperspatial range and temporal parameters are well estimated and there is no need to

assess the effect of mis-estimating these parameters on the RMSPE (as it was shown in

Section 6.2 that even for larger mis-estimates, the RMSPE remains relatively unaffected).

Hence, the hyperspatial-temporal model is appropriate and will be applied to the ADMS-

Urban simulated dataset for Central Station.
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