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Abstract

This thesis in applied microeconomics theory looks at three situations where

economic agents have to make a decision under constraints that present a

major burden. The burden can manifest itself in different ways. The first

chapter presents a model of the market for top-level football players. The

second chapter presents a new perspective on exploding offers and how agents

can deal with them. The third and last chapter deals with how agents can

overcome choice overload by using products’ characteristics. In each case,

I will put forward a theoretical model to represent each burden faced by

economic agents, attempt to solve the model and show the properties of the

equilibrium solution in terms of welfare. The research aims at showing that

the impact of choice overload on agents’ welfare can be mitigated, provided

the correct conditions are met.

Football teams recruiting football players can avoid going into deficit if the

market is sufficiently homogeneous compared to the cost of players. Explod-

ing offers will be as efficient as open offers provided the lifetime of exploding

offers is above a critical value. Finally, agents can use a choice among ac-

ceptable utility heuristic to perform efficient choices that satisfy WARP over

a subset of the menu.
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Introduction

Since the beginnings of economics, the act of choosing, from the arbitrages an

agent has to make when shopping groceries to the ranking lists of high schools

a student wants to apply to, is at the heart of the discipline. In addition, when

strategic interactions start to intervene, the problems agents are facing are

becoming increasingly complicated. This thesis in applied microeconomics

theory looks at three cases where agents face a choice burden. The burden can

come from a menu overloaded with alternatives or the multiple ramifications

a choice can have, most of those not being under the agent’s control. In each

case, I will put forward a theoretical model to represent the specific burden

of choice faced by economic agents, attempt to solve the model and show

the properties of the equilibrium solution in terms of welfare. The research

aims at showing that the impact of choice overload on agents’ welfare can be

mitigated, provided the correct conditions be met. Each chapter functions

independently as they all cover different choice burdens and cover different

gaps in the literature.

The first chapter presents a model that captures why football teams, espe-

cially the small ones, go through the process of choosing which players to

hire become indebted and how to prevent this undesirable outcome from

happening. The market for top-level football players is complex because of

the abundance of players with many different characteristics on-field and off
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the playing field. Because of this high heterogeneity, high-level athletes are

only partial substitutes. Teams not only have to make arbitrage between

players of different qualities but also have to consider whether to compete

or not to sign in the very best players, adding a second layer of complexity

to the burden of choice. The model presented in chapter 1 unifies two sides

of the theoretical literature on sports economics thought incompatible. The

first family of models pictures North American sports leagues and feature

a limited pool of players that teams have to share. The second family of

models is more recent and caters to European sports leagues where the pool

of players is assumed to be unlimited. The model of chapter 1 combines

these two assumptions into a one-time simultaneous game. Teams now have

the option to compete to hire high-quality players from a limited pool or to

rely on an unlimited pool of lower quality players. I solve for the unique

Nash equilibrium in pure strategies of this game and derive the equilibrium

spending of both teams as well as the team composition and earnings. The

model presented can predict the behaviour of teams in real life. The model

predicts competitive unravelling without relying on multiple period setups:

a small team that behaves as a profit maximizer can reduce its spending on

superstar players when facing a utility-maximizing team even when super-

star players’ quality increases. Moreover, analysis of the teams’ profit reveals

the existence of non-trivial equilibrium where teams managed prudently can

end up indebted while an opposing team owned by a sugar daddy with risky

management can keep profiting. This undesirable situation arises when the

cost of low-quality players is too high while the high quality/superstar play-

ers are too dominant on the field. Finally, the model shows that policies

aiming at reducing the dominance of superstar players can help us avoid this

undesirable equilibrium and allow both teams to make a positive profit.

The second chapter presents another type of difficult choice an agent has
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to make: dealing with exploding offers. Most of the literature on exploding

offers features models with imperfect information regarding the applicants’

quality but no capacity constraint problems. The main interaction explored

by the literature is the arbitrage between hiring an applicant early with

imperfect information, or waiting to get a perfect signal with the risk of a rival

moving early and poaching an applicant. The model presented in chapter

two on the other hand presents a model with no asymmetry of information

regarding applicants’ quality but instead presents a capacity constraint. It

plugs a hole in the literature because many institutions use exploding offers

when recruiting yet do not acquire extra information on applicants when

waiting. Unlike the rest of the literature, the burden of choice rests solely on

the applicants’ shoulders. The model presented is a two-sided many-to-one

matching market involving two recruiters (firms, universities etc.) who hire

applicants (students, vacancies etc.) using exploding offers to streamline the

overall recruitment process. Applicants can be of two types: high quality and

low quality. Their preferences over the recruiters are identical and without

loss of generality, recruiter one is preferred over recruiter two. Recruiter 1

does not have enough capacity to host all the applicants of high type and both

recruiters have a combined capacity that is inferior to the overall applicant

capacity. The Nash equilibrium of the game is unique and involves a cut-

off period. The cut off period depends on the exogenous parameters of the

model: the applicants’ relative preferences between the two recruiters as well

as the capacity constraint of both recruiters. At the equilibrium, before the

cut off period, high-quality applicants let offers from the undesirable recruiter

(recruiter 2) explode. After the cut off period, high-quality applicants always

accept the exploding offer from recruiter 2 right before it expires and give

up their chance at being hired by the high-quality recruiter. Low-quality

applicants always accept an offer from the low-quality recruiter right before
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it expires. The model shows that exploding offers will not cause a loss of

utility for anyone compared to a benchmark equilibrium with open offers,

provided the exploding offer has a lifetime strictly longer than the cut off

period. Where past literature has shown that the use of exploding offers

yields to sub-optimal matching because they enable the matching market

to unravel, I show that exploding offers can be used to smooth applicant

processing and not lead to a loss of welfare.

The last chapter deals with how agents can overcome choice overload by using

products’ characteristics. It is a summary of recent theory about rational se-

quential choices and other multi-step models combined with some literature

surveys from other disciplines like marketing and psychology. The goal is to

overcome a problem facing the theoretical literature on revealed preferences.

The chapter presents a new model that blends the sequential nature of the

choice procedure with empirical findings showing that agents are unhappy

with choice overload and try to filter a large menu, using the product’s ob-

servable characteristics. In this model, an agent has to choose one alternative

among a menu of varying sizes. The choice procedure is sequential with mul-

tiple steps and introduces an acceptability constraint instead of a simple filter

like in the rational sequential choice models. Acceptability is an alternative

to filtering. It states that the agents will discard an alternative based on its

observable characteristics rather than the presence or absence of some other

alternative in the menu. While the model presented in chapter three is not

fully characterized, the chapter concludes with a lab experiment protocol to

assess the empirical validity of the insights contained in the model.
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Chapter 1

What kind of player to hire? The

burden of European football teams

Following the football financial crisis in the late 2000s and the empirical

studies on that phenomenon, economists of sports tried to model European

sports leagues with clubs that act as utility-maximizer. This was a significant

departure from earlier literature. In early theoretical sports economics, clubs

were considered either as pure profit maximizers, like in Northern America as

per El-Hodiri and Quirk (1971) [11], Fort and Quirk (1995) [13], Grossmann

and Dietl (2009) [20] and Szymanski and Késenne (2004) [41]) or as pure

win maximisers like Késenne (2006) [22] or Vrooman (2007) [44]. In this

new generation of league models, the utility function of clubs was a weighted

sum of profits and percentage of games won. Each team had one strategic

variable: a total amount of talent (i.e players) to recruit from an infinite and

non-competitive pool. They have been used to explain why teams backed

by sugar daddies overspend (Lang et al. 2010) [24], the impact of revenue

sharing on competitive balance and affinity for winning (Dietl et al. 2011) [8]

or the impact of UEFA’s financial fair play (Sass 2016) [35] on the long term
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competitive balance of a league.

However, the past literature featured some hidden hypotheses that are in-

compatible with empirical observations. The first one is the linearity of the

wage structure of the players which contradicts Lucifora et al. (2003) [25].

This landmark paper has empirically shown in the data that players’ wage

at the right tail of the income distribution is not a linear function of their

performance metrics. So far, no league model has managed to integrate this

empirical fact. The second and most important hypothesis is the lack of

an upper bound on the total talent a team can acquire. This is a legacy

hypothesis from past literature. Talent used to be bounded in models like

El-Hodiri and Quirk (1971) [11] and this assumption was relaxed in later

models like Lang et al. 2010 [24] to account for the unlimited talent pool of

European sports leagues. In the current league models, wealthy team owners

can simply buy as much talent as they want to outperform their opponents.

However, while the supply of people willing to play football for a living is

infinite, one cannot create top-level players out of thin air nor field an infinite

number of low rated players during a game.

This chapter presents a way to overcome these limitations while keeping

some properties of the previous literature. It features two teams that act

as utility-maximizer with limited squad capacity. Both teams can recruit

two different types of players: superstar players whose supply is limited and

regular players whose supply is infinite. The market for superstars resembles

an all-pay auction or contest (e.g, Tullock (1983) [5]).

The model presented is similar to Arbatskaya and Mialon(2010) [3] multi-

armed contest but differs critically: their model of a multi-arm contest is

a combination of Tullock contests, one for each arm. Consequently putting

no effort in one "arm" drives one’s probability of success to zero. In the
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present model, only one "arm" is a Tullock contest while the other "arm"

is non-competitive. Moreover, in this chapter, a squad capacity for each

team dictates the participation in the non-competitive "arm". This means

that putting zero effort in the competitive arm does not equate to a zero

probability of success. This has major consequences on the equilibrium of

the model and the profitability of teams. Overall, it is more consistent with

how the football industry operates.

We show the heterogeneity between superstars and regular players has a ma-

jor influence on the equilibrium. A change of this heterogeneity can have a

strong effect on competitive balance, the spending of each team on players

and can cause money-maximizing teams to stop competing for the champi-

onship. We also study the profitability of both teams at the equilibrium and

identify some key cases. One of these cases is a mutually profitable coexis-

tence between a money maximising team and a utility maximising team. The

existence of such a cohabitation does not depend on the affinity for winning.

The model can be of interest to sports policymakers as it reveals the impor-

tant role of labour market heterogeneity as a determinant of team spending

and competitive balance. It explains the convexity of the wages of players

observed and the observations of Schubert (2014) [37] on accounting qual-

ity of football clubs following the implementation of the Financial Fair Play.

The framework can be applied to situations outside sports. For example, the

model can describe the market for economics university professors, where

superstars are academics with top journal publications.

The rest of the chapter is organized as follows. Section 1.1 presents the

model. Section 1.2 develops the equilibrium solution. The team profitability

is analysed in section 1.3. The conclusion summarises the main results and

presents some possible extensions to this framework.
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1.1 The model

Teams i={1, 2} complete for a share of the market of a sport league valued

at 1∗. Each team receives a share of equal to the percentage of games won

during the season†. Firstly, each team recruits a mass of players, normalised

to 1. These players may be superstars, available from an infinitely divisible

mass of 1, or regular players, available in unlimited mass. To hire superstars,

each team bids xi ∈ R++. Team 1 after bidding x1 will acquire a mass

q1 = x1

x1+x2
of superstars while team 2 will receive its complement q2 such

that q1 + q2 = 1. Regular players are available at a constant cost of c < 1

fill the remaining roster mass of team i (1− qi). Because the league market

value is normalised to 1, the cost parameter c shall be interpreted as a relative

cost of filling a team with only regular players, compared to the maximum

revenues that can be obtained from the league market. The upper bound on

c is a sanity check. Filling a full team with regular player should not cost

more money than one is capable to earn through the championship.

Secondly, teams compete to sell merchandise to fans of the league as well

as winning games during the league. Sales are increased by the quantity of

superstars in the team and the market size of the superstar’s reach m > 1.

mq1 is the money raised at the end of the season by selling merchandising

to football fans. w1(q1; q2) is the money earned at the end of the season by

winning games. We designate the function w1(q1; q2) as the Contest Success

Function (C.S.F). Team 2 will receive the complements mq2 and w2(q1; q2)

such that w1(q1; q2) + w2(q1; q2) = 1. Team 1’s payoff U1(x1;x2) depends

on its share of superstars hired, proportion of games won and spending on

∗The normalisation can be relaxed but does change the prediction and results of the
chapter.

†This is a general assumption that could be relaxed by splitting a fraction of the
common pot equally between league members and allocating the remaining fraction pro-
portionally to the number of games won. However, relaxing this assumption does not yield
any new research results.
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superstar and regular players.

U1(x1, x2) = mq1 + (γ1 + 1)w1(q1; q2)− x1 − c(1− q1)

where γi ≥ 0‡ represents the relative weight the team places on winning. The

utility gained by winning matches can be split in two parts: the monetary

part the depends on the size of the league audience (normalised to 1) and

the "joy" of winning reflected in the payoff function by γ. In this chapter

we use a linear C.S.F. We show in annex A.1 that this linear C.S.F under

the parametric restrictions of the model is equivalent to using a logit C.S.F.

with a variable change§ The C.S.F of both teams is given below:

w1(q1, q2) =
1

2
+

d

2
(q1 − q2)

w2(q1, q2) =
1

2
+

d

2
(q2 − q1)

where d ∈ [0; 1] measures the dominance of the superstars players on the

field compared to the regular players. When d = 0, superstar players and

regular players are perfect substitutes on the field. When d = 1, only

superstar players can influence the outcome of a game.

To facilitate interpretation, let x1,2 = x1 + x2 and ∆W = w1 − w2. x1,2 is

the total spending on superstars, the unit cost of superstar players. ∆W =

w1−w2 measures the competitive balance in the league. Perfect competitive
‡The number 1 in γ1 + 1 comes from the league market size which is normalised
§Using a logit function as a C.S.F is a standard assumption as in Andreff (2009) [1],

Dietl et al. (2011) [8], Lang et al. (2010) [24] or Rottenberg (1956) [34]. Thus this
approach is equivalent to the one used in past literature.
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balance is achieved when ∆W = 0. This measure of competitive balance is

retained because it is the simplest one to compute for this model intead of

w1/w2.

A Nash equilibrium of this model consists of a pair (x1;x2) such that both

team are best responding to each other’s spending on superstars.

In reduced form the utility functions become:

U1(x1;x2) =
x1

x1 + x2

(m+ c+ (γ1 + 1)d)− x1 +
(γ1 + 1)(1− d)

2
− c

U2(x1;x2) =
x2

x1 + x2

(m+ c+ (γ2 + 1)d)− x2 +
(γ2 + 1)(1− d)

2
− c

Proposition 1. The game has a unique Nash equilibrium in pure strategies.

At the equilibrium both teams will spend a positive amount of money to

recruit superstars. At equilibrium,

x∗
1 =

(m+ c+ (γ1 + 1)d)2(m+ c+ (γ2 + 1)d)

(2m+ 2c+ (γ1 + γ2 + 2)d)2

x∗
2 =

(m+ c+ (γ1 + 1)d)(m+ c+ (γ2 + 1)d)2

(2m+ 2c+ (γ1 + γ2 + 2)d)2

x∗
1,2 = x∗

1 + x∗
2 =

(m+ c+ (γ1 + 1)d)(m+ c+ (γ2 + 1)d)

(2m+ 2c+ (γ1 + γ2 + 2)d)

∆W = d× d(γ1 − γ2)

d(γ1 + γ2 + 2) + 2(1 + c)

The total spending on regular players are constant at c. The money spent

by each team on regular players is given by:

xR
1 = (1− x∗

1)c

xR
2 = (1− x∗

2)c

Proof : see annex annex A.2 for algebra and A.3 for uniqueness
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This proposition shows that the market for superstars is stable. Every team

no matter how small will place a bid to acquire superstar talent. This is

consistent with the literature on investment in local talent by small teams

(e.g Brandes et al. (2008) [4]). Although local superstars may not qualify as

global superstars they drive teams’ gate revenues by mere popularity (repre-

sented by the parameter m in the model) thus still quality as superstarsin the

framework. The non linear wage structures stems from the contest structure.

Tullock contests are known for the non-linear best responses of the contes-

tants¶. Finding a contest model that keeps the predictions of the current

literature while generating linear best response is not the aim of this chapter

but such a research is not ruled out in the future.

1.2 Properties of the solution

The first property of the equilibrium of the model is a plausible conclusion.

It is an inequality result between the price of superstars x1,2 and the price of

regular players c.

Proposition 2. For any value of γi i ∈ {1; 2} and dominance factor

d, x∗
1,2 > c.

Proof : See annex A.4.

The intuition behind this result is straightforward : superstars are at least as

good as the regular players on the field and they also help selling merchan-

dising. It is logical that their unit price is higher than the regular players.

The comparative statics of the solution are presented next.

Proposition 3. Comparative statics summary Throughout this section we will

assume that γ1 < γ2 without loss of generality.

¶A phenomenon that is also observed empirically. Wärneryd (2018) [45] is an example
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Parameter \ variables ∂x∗
1

···
∂x∗

2

···
∂x∗

1,2

··· Competitive balance

···
∂γ1

>0 <0 >0 Shifts in favour of team 1

···
∂c

>0 >0 >0 Improves

···
∂d

variable >0 >0 Deteriorates

···
∂m

>0 >0 >0 Improves

Figure 1.1: Summary of comparative statics of the solution

• x∗
1,2 is increased in each parameter γ because it makes the superstar

players more attractive for at least one team.

• The impact of c on competitive balance may look surprising. Making

regular players more costly lowers the available budget of both teams to

spend on superstars, thus increasing lowering the absolute value of the

competitive balance indicator, making the league overall more balanced

(∆W = 0 indicates a perfectly balanced league). Moreover, making

the regular players more expensive makes the superstars comparatively

more attractive. This is an incentive to increase spending on superstars.

• The behaviour of x∗
1, x∗

2 and x∗
1,2 w.r.t c confirms the intuition of an

increased competition on the superstar market.

• The behaviour of competitive balance ∆W is more nuanced.

• The behaviour of ∆W w.r.t either γ is expected : increasing the affinity

of team 1 for winning shifts the competitive balance in favour of team

1. The same holds for team 2.

• The market reach of superstars m behaves the same way as the reser-

vation cost of regular players c

• Increasing the field dominance d of superstars always worsen the com-
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petitive balance as the absolute value of ∆W increases. An increase

of the dominance of the superstars has a more more ambiguous when

it comes to individual team spending. As said before, in compara-

tive statics, it is assumed that team 1 is the underdog without loss of

generality. There are two possible scenarii:

– In the first case, both teams may increase spending on superstars.

Although competitive balance deteriorates, the underdog still tries

to keep up with the dominant team.

– In the second case, the dominant team increases its spending but

the underdog decreases its spending. Both changes, will deterio-

rate the competitive balance even more than in case 1.

Effects of increasing the field dominance on individual spending and com-

petitive balance The first main result of the chapter is presented below.

It is about the existence of counter intuitive behaviour regarding superstar

players:

Theorem 1. There exist a critical value γ̄1 such that ∂x1/∂d < 0 iff

0 ≤ γ1 <
m+ c

d
− 1

γ1 < γ̄1 < γ2

The exact value of γ̄1 can be computed. The exact value is given in annex

A.6.

Proof : see annex A.6.

Theorem 1 shows the existence of non trivial cases where making the
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superstars more attractive for everyone by increasing their field dominance

d causes one of the team to lower its spending on superstars. The economic

intuition behind this result is detailed below:

The first inequality in theorem 1 ensures that team 1 is is not too "win

oriented". If team 1 is money maximising (i.e γ1 = 0), it will always satisfy

the first inequality. It is assumed without loss of generality that team 2 is

strictly more "win oriented" than team 1. If the dominance parameter d

increases then team 2 will systematically increase its spending on superstars,

reflecting their increased importance when it comes to securing victory on

the field.

The increased spending of team 2 on superstar players is creating an exter-

nality for team 1. If d increases, then team 1 now has to spend more money

than before to secure the same share of superstar players. This makes regular

players more attractive in comparison to superstars. While regular players

are getting less efficient on the field compared to superstars, their cost re-

main constant at c. If γ2 is sufficiently high (i.e it is above the threshold

γ̄1), then the marginal utility that team 1 is getting from its superstar dips

below the marginal cost of hiring this fraction of superstars. Consequently,

team 1 will reduce its spending on superstars and will substitute them with

regular players. This explains why when the two inequalities of theorem 1

hold, ∂x1/∂d < 0.

1.3 Analysis of the profit of the teams

This section aims at determining the domain of the exogenous parameters

where both team end up making money by participating in the league. For

the entire section, the parameter d is assumed to be strictly positive. d = 0
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is a trivial case not worth covering here. For each team we define a profit

function Πi:

Π1 = mq1 + w1(q1; q2)− x1 − c(1− q1)

Π2 = mq2 + w2(q1; q2)− x2 − c(1− q2)

Let e1 = m + c + (1 + γ1)d and e2 = m + c + (1 + γ2)d. The rest of the

analysis will be performed for team 1. The conclusions will hold for team 2.

Substituting the equilibrium values of q1, q2, x1 and x2 we obtain :

Π1 = m
e1

e1 + e2
+ 1/2 +

d

2

e1 − e2
e1 + e2

− e21e2
(e1 + e2)2

− c
e2

e1 + e2

We can analyse the signs of this profit function for different values of γ, c

and d. Solving for Π1 = 0 is equivalent to solve for:

0 = e21

(
1− d

2
− c− dγ2

)
+ e1e2(1 +m− c) + e22

(
1− d

2
− c

)

This equation will not be solved completely for γ, d and c. Instead, let us

focus on specific cases with interesting properties.

Case A: Small leagues becoming non-viable

The first case of interest that the model can describe is the impact of the

Bosman Ruling on the smaller football leagues, like Belgium, Austria and

others. By lifting the limitations on the movement of players, the Bosman

ruling (and the subsequent rulings by the ECJ) has effectively put teams
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from different leagues in competition with each other for all types of players.

This can drive up the price of regular players.

The following analysis presents a set of non trivial cases where a league with

a pair of money maximising teams can both end up losing money. If both

teams are money maximising, γ1 = γ2 = 0 then e1 = e2 = m + c + d. The

equation Π1 = 0 becomes:

0 = (m+ c+ d)2(1− 2c− d+ 1 +m− c)

0 = 1− 2c− d+ 1 +m− c

m = 3c+ d− 2

Using this result we can present the following proposition:

Proposition 4. There exist a class of equilibria where two money maximising

teams are in deficit. This situation arises iff:

γ1 = γ2 = 0 and m < 3c+ d− 2

Figure 1.2: Profitability domain for a league with two symmetric teams

1

1

1

2

d

c

m

γ1 = γ2 = 0 and c < 1− d/3

Domain of non profitability

The map above describes a profitability zone for a league with two money-

maximising teams. The area in red represents a domain where the dominance
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coefficient d and the reservation cost of regular players c is too high compared

to the market reach of superstars for the teams to make profits. While no

team has any interest in overspending, the combination of a reservation cost

that is too high and a market too small prevents both teams from being

profitable. In this area, the league should not be viable and both teams

should drop out of it.

Proposition 4 tells us that a league made of money maximising team is viable

when the incentives to fight for superstars are reduced and hiring regular

players is not too expensive compared to the league market size.

One of the effects of the Bosman ruling can be integrated into the model as

an exogenous increase of the parameter c (cost of regular players) which can

push a small league from a profitable zone to a non-profitable one. The model

being one period cannot represent the exodus of talent from a poorer league

to a richer one between two periods. While we do not see empirically leagues

collapsing we do observe that teams in smaller leagues rely on the selling of

promising players to wealthy teams in larger leagues to stay afloat, indicating

a lack of resources. The Covid19 pandemic has exposed this phenomenon in

bare light.

We remind the reader that c is a relative cost. Thus, c = 1 implies that

filling an entire team with regular players would cost as much as half the

total revenues that can be generated from the league’s market. This is an

extreme assumption.

One can argue that teams could hire players of a lower quality than regulars

(amateurs for example) for a cheaper price. However, because European

leagues are open, a team is required to maintain a minimum investment in

players if it wants to keep its place in the league. Empirical observations

showed that teams prefer to run deficits rather than be downgraded.
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Case B: The superstar price inflation

A very salient effect of the post Bosman era is the inflation of spending on

superstar players by major teams across Europe. An other salient effect is

the exodus of talent from poorer leagues but the present model does not

cover it. Previous papers on the topic have modeled such a phenomenon

with predictable results. The present model makes a similar prediction and

thus ties itself with the existing literature. For Case B we assume the league

has two major teams that are competitive and value victory equally. These

could be two sugar daddies wanting to win at all cost.

In this case γ1 = γ2 = γ thus e1 = e2 = m + c + d(1 + γ). The equation

Π1 = 0 becomes:

0 = (m+ c+ d(1 + γ))2(1− 2c− d+ 2− c− dγ)

0 = 2− 3c− d− dγ +m

γ =
2 +m− 3c

d
− 1

Proposition 5. A league with symmetric teams is profitable iff c ≤ 2+m−d
3

and γ1 = γ2 ≤ 2+m−3c
d

− 1

Proposition 5 tells us the league is viable for a pair of symmetric teams if

gamma is not above a specific threshold. The figure below gives a clearer

view of the domain of profitability.
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d

c

γ

γ1 = γ2 = 0 and c > 1− d/3

γ1 = γ2 = (1− c)3
d
− 1

Figure 1.3: Profitability domain for a league with two symmetric teams
(m=1)

The graph above is an extension of the one in Case A. This case applies to

leagues that include several teams that have a very strong affinity for winning.

The Spanish Liga and the English premier league are good examples. The

plane described by γ = 0 represents case A with m = 1. The red surface

represents the profitability frontier : if the coordinates of the point (d, c, γ)

are above the red surface, both team lose money at the end of the season.

The area marked with a triangle is the part of the surface that coincides with

the plane γ = 0.

The figure shows that in an environment with highly dominant superstars (d

is closer to 1), the parameter γ does not need to be very high to put the teams

into deficit. The impact of the regular players’ cost c is less pronounced than

the impact of d on the teams’ finances.

All the parameter combinations of γ, d, c that are above the red surface make

the league not profitable. Below is the same figure with m = 5:
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d
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γ1 = γ2 =
7−3c
d

− 1

Figure 1.4: Profitability domain for a league with two symmetric teams
(m=5)

For the case where m = 5 the domain of profitability has the same

appearance as the case where m = 1. If superstars have a lot of impact on

the playing field (d is close to one) then the team’s affinity for victory γ

does not need to be very high to put both teams into deficit.

This result is in line with past literature on sugar daddies. A fierce compe-

tition between teams that operate under a soft budget constraint is likely to

result in an unbalanced budget as teams overbid on superstar players.

Case C: Long term stability of competitive imbalance

Case C is the most interesting of the three and the major contribution of

this chapter. It is best suited for leagues with one single dominant team like

the German Bundesliga (Munich) and the French ligue 1 (Paris in the late

2010 or Lyon in the early 2000).

Without loss of generality let team 1 be the utility maximizer (i.e γ1 > 0)

and team 2 be the profit maximizer (i.e γ2 = 0). Thus e1 = (1+γ1)d+m+ c

and e2 = m + d + c. The equations profit equation Π1 = 0 and Π2 = 0
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become:

Π1 = 0 ⇔ 0 = e21

(
1− d

2
− c

)
+ e1e2(1 +m− c) + e22

(
1− d

2
− c

)
Π2 = 0 ⇔ 0 = e22

(
1− d

2
− c− dγ1

)
+ e1e2(1 +m− c) + e21

(
1− d

2
− c

)

With m, d and c fixed we can consider these two equations as polynomials

of γ1. With simple constraints we can ensure both of these are positive.

The family of equilibrium presented below can be interpreted as mutually

profitable bullying.

Theorem 2. If γ1 = 0 and c < 1−d
2

then the league is profitable for both teams

for any value of m, γ1 and d.

Proof: See annex A.7.

Theorem 2 shows that a league containing one money maximising team

and one non money maximising team can be sustainable for everyone

as long as the regular players are neither too expensive nor too lagging

behind the superstars. The parameters m and Γ1 have little impact on the

overall profitability of the team. What matters is the relation between how

important the superstars are compared to the regular players on the field

and the cost of the regular players.

The intuition behind this result is rather simple. On one hand, the money

maximising team is unlikely to win many championships it can win enough

games to secure enough funding to finance the purchase of regular players.

On the other hand, the utility maximising team on the other hand will not

spend too much on superstar players because the money maximising team is

21



not willing to overbid.

Concluding remarks

Our model sheds a new light on why sport teams (football teams in partic-

ular) can end up in deficit despite acting as a profit maximizer. Previous

literature showed that sugar daddies and weak budget constraint could lead

to unprofitable overbidding over players. Yet real life showed that any team

in a football league, not just the ones owned by sugar daddies, can end up

being in debt. The model keeps the predictions of past literature and adds

a way to explain the generalised tendency of football teams to lose money.

While a profit maximising team can choose not invest a lot of effort on the

market for superstars, it still has to spend money to fill up its roster with

regular players (eleven and some spares in the case of football). If these

regular players cannot compete properly with superstars, thus not securing

the necessary funds to cover the expanses, my model predicts that such a

profit maximising team can end up in deficit.

These predictions can be considered bleak, yet they contain a silver lining:

While the model focuses on the heterogeneity of the player market to explain

team profitability, the dominance parameter d measuring said heterogeneity

could be impacted by the structure of the competition. While superstar

players may have a marginally better performance on the field compared to

regular player this small difference can be compounded into a large advantage

by the format of a league or a tournament. A single elimination tournament

like the FA cup/Coupe de France/Copa del Rey will see many more up-

sets than a tournament with a group phase like the European Champions

League. This reinforced dominance could be translated as an increase of the

d parameter in the model. Consequently, any policy aiming at preserving
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the competitive balance must account for the labour market otherwise, such

policies may exacerbate the disparity among teams or worse put their budget

in the red.

Finally, the present model could be extended by introducing home market

heterogeneity for both teams. An other possible extension is to change the

C.S.F or the mechanism to allocate superstars by applying the results of

Ron Siegel (2010) [40]. Alternatively, the model could be applied to other

fields where economic agents compete but face a capacity constraint that has

to be met. The market for university teachers could be such an example.

Universities have to recruit a minimum number of researchers to ensure the

education of the enrolled students. In this example, the superstars would

be researchers who have published on a top academic journal and the other

researchers would be the regular players.

This chapters provided a concrete example of a choice burden: the hiring of

players by football teams. Because of the sheer volume of players to choose

from and the strategic interactions between teams with different objectives,

choosing how to hire is a non trivial matter. As proved in this chapter, this

burden can result in highly sub-optimal equilibrium as observed in the post

Bosman era of football. Yet there is still hope. A shrewd policy maker can

ensure mutual profitability in the long run. Let us move on to an other type

of choice burden: exploding offers.
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Chapter 2

To accept or to gamble? The burden of

exploding offers

Matching markets are widespread and the literature associated with them

is quite broad. However, most of the literature focused on algorithmic

resolution of the matching problem. Deferred acceptance Gale and Shapley

(1962) and top trading cycles Shapley, Lloyd; Scarf, Herbert (1974) [39]

being some of the most well-known algorithms. In the majority of the

papers, economists assumed that either the market or some planner acquires

the relevant information from the players in the matching game and then

provides an allocation for everyone at the same time. Players receive an

unconditional offer or they do not receive anything at all.

Yet, in the real world there are many decentralised matching markets (con-

sulting firms filling multiple vacancies, universities recruiting master and

PhD students for example) that operate using exploding offers. Exploding

offers are offers with a time limit. A player in a multi-period matching

market has only a limited number of period to formally accept an exploding
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offer and exit the game. If a player does not accept an offer after a set

number of period, the offer expires and becomes no longer valid. The

exploding offers introduce a new problem for economists: they may unravel

the market and force the players to issue sub-optimal offers early in the

game instead of waiting for the last period to achieve the most efficient

matching.

Niederle and Roth (2009) [31] have identified some markets at risk of

unravelling that use exploding offers. A well know example is the market

for Gastroenterology fellowship [30] in the US. Most of these market involve

applicants whose quality in uncertain but can be discovered if given time.

Pan (2018) [32] focused on two-period matching games with imperfect

information where the quality of players of at least one side is unknown.

Moreover, one side of the market (firms for example) can make strategic

decision on whether to issue exploding offers earlier or later.

Yet these are not the only type of markets that feature exploding offers. The

German DoSV (Grenet et al. 2019) [18] for matching high school graduates

to universities is a multi-period process that is partially decentralised and

has exploding offers. Large consulting corporations (Accenture, BCG, PwC

etc.) use exploding offers as a way to streamline their recruitment. In these

cases, the quality of the applicant is easy to assess but logistical constraints

still make the use of exploding offers a necessity to prevent congestion and

the formation of long waiting queues. How do exploding offers affect the

quality of the matching market and who is impacted? Does the length of an

exploding offer has an impact as well?

In this second chapter, I will present a model to study the impact of
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exploding offers where all players know in advance their qualities and the

firm/university side of the market is bottlenecked by the capacity of the

latter. Unlike previous literature, that uses a noisy signal to generate

uncertainty, the present model uses a time-consuming process coupled with

capacity constraints to generate uncertainty. Firm/universities will not

be able to issue early exploding offers strategically because of serialised

treatment of applicants similar to Roth and Xing (1997) [33]. It is a

many-to-one matching model where there are two types of students to

allocate to two universities. Unlike previous literature, the model can have

any number of periods and accommodates the use of exploding offers of

any length. I show that the use of exploding offers with long duration can

help streamline the recruitment process without leading to a loss of utility

compared to an equilibrium with an open offer.

I find that, assuming students know their quality perfectly; exploding

offers length has little to no impact on the composition of the top quality

form/university. Moreover, long lasting exploding offers benefit high quality

applicants and lower quality firm/university while harming lower quality

applicants, leading to a more positive associating matching.

The rest of the chapter will be organised as follows. Section 2.1 will

present the model. Section 2.2 is a benchmark case where the universities

can only send open offers. Section 2.3 presents the equilibrium solution

with exploding offers of any length while section 2.4 analyses the welfare

of applicants and firms/universities. Finally, section 2.5 extends the base

model by introducing heterogeneous preferences for the high quality students.
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Throughout the chapter, I will use a student/university terminology but one

could apply the model to an applicant/firm setup as well.

2.1 The model

A population of students is to be matched to three universities A (very

desirable), B (less desirable) and C (undesirable) through a multi-period

procedure. There are two types of students called α (high quality) and β

(low quality).

There are Nα students of type α and Nβ students of type β in total where

Nα, Nβ ∈ N and Nα ≤ Nβ. Let f = Nα

Nα+Nβ
be the ratio of students of type

α inside the total student population. By construction f ≤ 1/2. Students

are assumed to know their type. The value of the fraction f is common

knowledge.

Universities A and B have limited capacities (respectively cA and cB) but

university C is considered so large it can accommodate all the students re-

gardless of their type.

Matching procedure in detail : All students send their dossiers to apply

to all universities. In period 0 university C presents all students with an

unconditional offer that never expires. C should be considered an outside

option that is always available as a last resort.

To streamline their recruitment process, both universities A and B will

spread the processing of all the students’ dossiers they receive over multiple

periods. Let T ≥ 2 be the number of periods needed by the universities to

process all the received dossiers. It is assumed that one period in this model

corresponds to at least one day and at most one week.
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Because the procedure is done in a finite number of periods and universities

A and B process dossiers independently we can divide the population of type

α and β students into T 2 different states (i, j) ∈ {1; . . . ;T}2. i is the period

when the student will be contacted by university A and j is the period when

the student will be contacted by university B. For example, a student of type

α in state (3; 1) will have his dossier processed by university A in period 3

and processed from university B in period 1. There are exactly nα = Nα/T
2

(resp. nβ = Nβ/T
2) students of type α (resp. β) in a single state (i, j).∗

Students have no way before the game starts to determinate the state they

will find themselves in. Throughout the procedure, students will discover the

state they are in by receiving answers from both universities.

At the beginning of each period t university A processes all the dossiers

of α students in the states (t;x) ∀x ∈ {1; . . . ;T}, and then processes all

the dossiers of the β students in the same states once it has received the

answers of the α students whose dossiers has been processed. A university

always knows the type (α or β) of each student it interacts with but cannot

discriminate between the different states (t;x) ∀x ∈ {1; . . . ;T}. In other

words you always know the quality of every single applicant but you do not

know how an individual applicant interacted with the competing university.

At the beginning of each period t, university B processes all the dossiers

in states (y; t) ∀y ∈ {1; . . . ;T} in a similar fashion (α first then β). Like

university A, university B always knows the type of each student it interacts

with but cannot discriminate between the states (y; t) ∀y ∈ {1; . . . ;T}.

∗Removing this divisibility assumption would bring technical complications without
improving the chapter’s message
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In the benchmark model, universities will only issue open offers. Later models

where universities will only be able to issue exploding offers of a varying

lifetime, will be compared to the benchmark.

Players’ payoff The utility function of all universities is the same and is

common knowledge. It depends on the type of student they are matched

with at the end of the procedure:

UA = UB = UC =
∑

Students of type β + Vα

∑
Students of type α

Where Vα > 1 is the premium utility universities get by hiring α students.

The utility function Us of all the students is the same. It depends on the

university the student is matched with at the end of the procedure:

Us =


0 if matched with C

1 if matched with B

VA > 1 if matched with A

Type of students and capacity constraints : To avoid trivial cases, restric-

tions on the capacity of both universities A and B will be placed and link

these capacity constraints to the number of students of both types. The

capacity of university A is such that (T − 1)Tnα < cA < Nα. The upper

bound on the capacity implies that not all students of type α will be able

to enroll in university A (the desirable one). The capacity of university B

is such that T (T − 1)nβ + Tnα ≤ cB ≤ Nβ. The lower bound ensures the

matching procedures detailed below will not be interrupted early and the

upper bound eliminate trivial equilibria where each student of type α and
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β has a guaranteed place in either A or B. The capacity constraint of both

universities are common knowledge.†

Actions of the universities. After processing the dossier of a student the

university learns its type and can choose to either:

• Present the student with an unconditional but exploding offer of dura-

tion d ≥ 0. The notation for playing this strategy is OA
t for university

A (resp. OB
t for university B) and t ∈ {1; . . . ;T} (resp. t ∈ {1; . . . ;T})

is the time period when the offer is issued.

• Reject the student. The notation for playing this strategy is NA
t for

university A (resp. NB
t for university B) and t ∈ {1; . . . ;T} (resp.

t ∈ {1; . . . ;T}) is the time period when the student is notified of his/her

rejection.

The parameter d ≥ 0 is exogenous and common knowledge. If d ≥ T − 1

the offers will be called "opened" as they cannot expire before the end of the

procedure.

Actions of the students. At each period a student can thus receive a response

from either university A or B or both of them or none of them. As soon as

a student receives one offer or more, the student can:

• Accept one of the offers (s)he received, "enroll" in the corresponding

university and exit the procedure. The notation for playing this strat-

egy is EX
t where X ∈ {A;B} is the university whose offer has been

accepted and t ∈ {1; . . . ;T} is the time period when the offer is issued.

• Wait an extra period to see if a better offer comes up later. The notation

for playing this strategy is Wt where 1 ≤ t ≤ T is the time period when

†The inequality itself always holds since nα ≤ nβ
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the student decides to wait. A student can play W as long as an offer

is still valid.

At the end of period T, all offers that have not been accepted automatically

expire. Students with no offer from A or B automatically enrolls in C at

the end of period T. The students cannot observe the interactions between

universities and other students throughout the matching procedure, nor can

they observe the number of available spots left in any university during the

procedure. Universities always know the type (α or β) of students they are

interacting with. However, each university has no way of knowing the inter-

actions of a given student with the competing university. When a student

exits the procedure, all universities are informed.

Strategic restrictions A few guiding principles restrict the strategies of the

players of this game.

• Students of the same type cannot be distinguished from one another.

If a university at a given period has more dossiers of the same type to

process than it has available capacity, then the university must sends

offers randomly to the students of said type‡.

• No backtracking : A university cannot renege an offer made to a student

nor transform a rejection into an admission. Students who reject an

offer or let an exploding offer go cannot re-apply nor enroll in the

university they rejected.

• All offers have to be honored : A university cannot send offers to more

students than it has available capacity.

‡Example : University A has 4 seats available in period T-1 but has 7 dossiers of type
α and 8 dossiers of type β processed. University A will send an offer to 4 α students
randomly chosen among the 7. All dossiers processed in the following period will be
automatically rejected.
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Extensive representation : To give the reader a visual representation of the

game played by students, an extensive representation of a case where T = 3,

Nα = 4 and Nβ = 5 is shown below . In this specific case, there are 9

different states, thus each student will play one game out of nine possible

different games. Three of these games are represented below. To help the

reader get a better grasp of the timing when the actions are played. Payoff

notation:

• The cell at the end of each branch is a payoff and is noted as (x; y; z).

• The first number x ∈ {0; 1;VA} is the student’s payoff. The value

depends on the university the student enrols in.

• The second number y ∈ {0; 1;Vα} is the extra payoff university A get

from the specific student. If the student enrols in university B or C

then y = 0. If the student enrols in A and is of type α, y = Vα. Finally

if the student enrols in A and is of type β then y = 1.

• The third number z ∈ {0; 1;Vα} is the extra payoff university B get

from the specific student. If the student enrols in university A or C

then z = 0. If the student enrols in B and is of type α, z = Vα. Finally

if the student enrols in B and is of type β then z = 1.

In period 1, university A will play the game (1; 1) 4 times with a different

α student each time and 5 times with a different β student each time. The

same will happen with games (1; 2) and (1; 3). A is not able to to differentiate

between the games (1; 1), (1; 2) and (1; 3) (A does not know the interactions

between a specific student and university B) but can perfectly discriminate

games played with an α from games played with a β.

Respectively, university B will play the game (1; 1) 4 times with an α student

and 5 times with a β student. The same will happen with games (2; 1) and
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(3; 1). B is not able to to differentiate between the games (1; 1), (2; 1) and

(3; 1) but can perfectly discriminate games played with an α from games

played with a β.

In period 2, university A will play the game (2; 1) 4 times with an α student

and 5 times with a β student. The same will happen with games (2; 2)

and (2; 3). A is not able to to differentiate between the games (2; 1), (2; 2)

and (2; 3) but still can perfectly discriminate games played with an α from

games played with a β. Moreover, A will automatically know if a student

in game (2; 1) has enrolled in B and exited the matching procedure. Extend

the reasoning to other periods and universities.

In the trees below, blue cells are played in period 1, orange cells in period 2,

green cells in period 3. Cells with a hatching patters may be rendered un-

available (i.e replaced by a payoff of (0; 0; 0)) if the duration of the exploding

offer is short enough.
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(a) The game played by a β student in state (1;1)

(b) The game played by an α student in state (3;1)

(c) The game played by an α student in state (1;2)

Figure 2.1: The game played by students depending on their state and type

34



Specific notations

Receiving an offer from A at the last period. Because this specific event

will come up very often when solving for an equilibrium it deserves a special

notation. Let ΩA be the event "A student of type α receives an offer from

university A in period 3".

Letting an exploding offers expire. Some students may have an incentive to

let an exploding offer expire and remain in the matching procedure, hoping to

receive an offer from a better university. Given the students’ utility function,

only an exploding offer from B can be realistically let go. The event "letting

an exploding offer from B expire at time t" will be noted W ∗
t .

Welfare The aggregated utility of the whole student population will be

noted Ws. The aggregated utility of universities A and B will be noted

Wu.

Unraveling In the past literature on exploding offers, unraveling happens

when firms issue exploding offers early instead of waiting to get the complete

information about applicants. In this model, universities cannot strategically

time their offers. However, α students can choose to enroll in the less desirable

university B early instead of waiting for an answer from A. The matching

procedure will "unravel at period t" if such an outcome happens at period t.

Equilibrium concept

Throughout the chapter we will be looking for the behaviour of α students in

a sub-game perfect Nash equilibrium. The equilibrium exists since the game

has a finite number of players each having a finite number of strategies.
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2.2 Equilibrium solution and properties

Before comparing the impact of exploding offers duration let us start with a

very general result that will be used as a bedrock for the following ones:

Property 1. If the students know their type perfectly, then university A will

never in any equilibrium play OA
t when encountering the dossier of a student

of type β unless the number of dossier of α students left to process is lower

than the available capacity of university A.

Proof : See annex B.1.1.

This result ensures that University A will not send an offer to a student of

type β unless it has no other choice. This will not only restrict the set of

equilibria but also allow us to write down the expected payoff of α students

in a way that is easy to manipulate.

The equilibrium with d ≥ T − 1 (open offers): In the case where d is large

enough such that the offers can be considered opened, the equilibrium of the

game is very straightforward.

• Every period i ∈ {1; . . . ;T}, when processing the dossier of a type α

student, university A will play OA
i as long as it is not at full capacity.

Once A is full, A only plays NA
i . As long as A has not treated all the

dossiers of type α students, it will play NA
i when processing the dossier

of a type β student, and play OA once all the α students are treated.

• Each period, University B plays OB
i for all students regardless of type

if not already full. Afterwards, B plays NB
i .

• When receiving offers from B in period i, students of type α play Wt

t ≥ i until they have the opportunity to play OA
i . At the last period,

the students play EB
3 if they have not received an offer from A.
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• Students of type β play EB.

Proof : see annex B.1.2.

Property 2. The only equilibrium that maximises Ws and Wu for all values

of VA and cA is the one where universities issue open offers.

Proof : see annex B.1.3.

This simple result allows the use of the equilibrium with open offers as a

welfare benchmark. Open offers allows the market to correctly allocate the

maximum number of type α students to the best university (A) and give the

second best option to the α students who could not fit into A.

2.3 Exploding offers and student behaviour

In this section, universities will only issue exploding offers with duration

d < T − 1 (a.k.a true exploding offers). The equilibrium of the model will be

presented by the following three statements. The first one presents the equi-

librium’s structure, the second one shows the uniqueness of one key descriptor

of the equilibrium and the third one deals with equilibrium uniqueness.

Theorem 3. For all equilibrium strategy profiles S there exist a unique T ∗ ∈

{1; . . . ;T} such that :

• If t < T ∗ then all α students who face the choice between playing EB
t

and W ∗
t will play W ∗

t .

• If t > T ∗ then all α students who face the choice between playing EB
t

and W ∗
t will play EB

t .

• α students may only mix between EB
t and W ∗

t if and only if t = T ∗

Moreover at the equilibrium all students play EA
t as soon as they have the

opportunity to do so. All β students that received an offer from university B
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will play Wt unless they are facing the choice between W ∗
t and EB

t . In this

case they play EB
t .

University A plays OA
t whenever it encounters an α student or if it encounters

a β student and has more capacity left than there are dossiers of α students

left to process. University B plays OB
t all the time.

Proof : see annex B.2.1.

Proposition 6. Let S and S ′ be two equilibrium strategy profiles. Then

T ∗ = T ∗′

Proof : see annex B.2.2.

This simple result is a key step in proving the equilibrium uniqueness. If the

game had two equilibria or more, the critical period of all of these would be

the same.

Theorem 4. The equilibrium of the game is unique. Moreover, if VA ≥ 2,

then T ∗ = T or T ∗ = T − 1

Proof : see annex B.2.3.

This theorem wraps up section 2.3 by showing that the game presented in

this chapter has only one equilibrium that will follow the structure presented

by theorem 3. The proof of uniqueness relies on proposition 6. The equilib-

rium uniqueness allows comparative statics on both students and universities

welfare.

2.3.1 Properties of the solution

Property 3. If VA > T 2nα−CA

Tnα
then T ∗ = T

Proof: P(ΩA) is bounded from below by the lowest probability for an α

student to get an offer from A. The lowest probability is reached when the

number of open seat for A is minimized and the number of applicants for these
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seats is maximised. This probability is equal to T 2nα−CA

Tnα
. If VA < T 2nα−CA

Tnα

then U(EB
T−1) = 1 > E(W ∗

T−1) so there is an incentive to at least randomise

between enrolling in B or gambling for a seat in A.

This property sets a lower bound above which the market will not unravel

as students will never accept an early exploding offer before the last period

of the game.

Property 4. If T > 6 then T ∗ > 1.

Proof : see annex B.2.4

This property shows that once the game has a sufficiently high number of

periods, students will never accept an exploding offer in the first period of

the game (a.k.a the market will never fully unravel).

Property 5. Let ∆CA = T 2nα − CA be the difference between the capacity

of A and the total number of α students. Let T be the number of period of

the matching game. The difference between the critical period T ∗ and T is

constrained by:

(T − T ∗) ≤
1 +

√
1 + 8∆CA/nα

2

Proof : see annex B.2.5.

Theorem 5 is a complement to property 4 that acts as an empirical check to

see if the initial hypothesis holds. Given the capacity constraint of university

A one can find a maximum difference between the critical period T ∗ and the

maximum number of period T . If an α students plays EB
t when t < T ∗ then

either the student is acting irrationally or the student does not know his/her

type.
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2.4 Student and university welfare

Since the equilibrium of the game is unique and follows a specific structure

we can analyse the ex-ante welfare of both universities and both groups of

students.

Theorem 5. The ex-post utility of university B is bounded from below by

CB. The ex-post utility of university A is bounded from below by 2CA −

(T − T ∗)nα. Both universities are always filled to capacity.

This result is quite straightforward and shows there is always a modicum

of positive assortative matching even with exploding offers. The worst

case scenario for B happens when all the α students who let their offer

from B expire fail to get an offer from A. In this case A is filled to capac-

ity with alpha students thus B can recruit from the entire pool of β students.

The worst case scenario for A is an extreme event where all the α students

who could randomise end up enrolling in B. The welfare of B is maximised.

A still has access to the pool of β students to fill its remaining seats.

Theorem 6. Let S be the equilibrium of a game with parameters T , cA, cB,

VA, nα, nβ and an exploding offer of duration d = 0. Let T ∗ be the critical

period associated with equilibrium S.

Let S ′ be the equilibrium of the game with parameters T , cA, cB, VA, nα,

nβ and an exploding offer of duration d′ ≥ 1. Let T ′∗ be the critical period

associated with the equilibrium S ′.

If d′ ≤ T ∗ − 1 then T ∗ = T ′∗ and if there is a randomisation, p = p′.
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If d′ > T ∗ − 1 then T ′∗ = d and the equilibrium must be played in pure

strategies.

The proof can be found in B.3.1. Below is a graphical illustration for the

case when T = 7. We will assume w.l.o.g that T ∗ = 4

Figure 2.2: Base equilibrium S with d = 0

In the graph above, the α students in the green cell (state (7; 7)) will compete

for a seat in A for sure as their offer from B has not expired. α students

in the yellow cells enroll in B just before the offer expires. Students in the

blue cell may randomise with probability p in period 4. If the length of the

exploding offer increases to 1, the illustration changes to the one below:

Figure 2.3: New equilibrium S ′ with d = 1

In this case the critical period is the same but students in a different state

will randomise. Graphically, one row of students in red (let their offer from

B expire to compete for a seat in A) became a row of green (compete for a

seat in A while the offer from B is still up). Below is an other illustration
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when d = 3 = T ∗ − 1:

Figure 2.4: Base equilibrium S ′′ with d = 3

If the duration of the exploding offers exceeds the critical period, the row of

students who could randomise is converted into a row of students who still

benefit from an offer from B. The rest of the students who will still have a

choice to make between W ∗ and EB will systematically pick the latter: the

competition for the remaining seats in A is too fierce.

Figure 2.5: Base equilibrium S ′′′ with d = 4

Theorem 6 demonstrate how small of an impact long lasting exploding offers

have on the welfare of both students and universities. The only significant

change in terms of welfare happens when d goes from 3 to 4: the welfare of

A, B and α students is maximised and the welfare of β is now minimised.
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2.5 Exploding offers with heterogeneous preferences

Now that we understand the behaviour of a model featuring students with

homogeneous preferences let us see what happens when heterogeneous pref-

erences are introduced. In this section we will modify the base model by

splitting up the α students into q subgroups α1 to αq. There is a total of

T 2nαq students of type αq for all q such that
∑q

i=1 nαi
≤ nβ. The students of

type αi ∀i are identical to each other in every way except their preferences.

The utility of αi students is the following :

∀ i Uαi
=


0 if matched with C

1 if matched with B

Vαi
> 1 if matched with A

The utility of being unmatched is -∞ like everyone else. The valuations Vαi

are such that 1 < Vα1 < Vα2 < . . . < Vαq . The β students have a valuation

Vβ = Vα1

Universities cannot distinguish between any of the subgroups of α stu-

dents before, during or after the recruitment process and receive the

same utility from enrolling any of them. The capacity constraint of

university A is now (T − 1)T (
∑q

i=1 nαi
) < cA < T 2(

∑q
i=1 nαi

) while the

capacity constraint of university B§ is T (T −1)nβ+T (nα+nγ) ≤ cB ≤ T 2nβ.

The matching procedure is mostly unchanged. At the beginning of each

period university A processes T (
∑q

i=1 nαi
+ nβ) dossiers and university B

processes T (
∑q

i=1 nαi
+ nβ) dossiers of students of type αi and β.

Theorem 7. If a strategy profile S is an equilibrium of the model with ex-

§These constraints will always hold since nα + nγ ≤ nβ
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ploding offers then there exist q critical periods T ∗
1 ≤ T ∗

2 ≤ . . . ≤ Tq such

that ∀i ∈ {1; . . . ; q} :

• T ∗
i ∈ {1; . . . ;T}

• If t < T ∗
i then all αi students who face the choice between playing EB

t

and W ∗
t will play W ∗

t .

• If t > T ∗
i then all αi students who face the choice between playing EB

t

and W ∗
t will play EB

t .

• αi students may only mix between EB
t and W ∗

t if and only if t = T ∗
i .

If they don’t mix they play W ∗
t

Only one subgroup αi of students may play mixed strategies in S.

The proof can be found in B.4.1

Corollary: Eliciting relative preferences of students If one sees two α stu-

dents and one plays EB
t while the other plays W ∗

t+i i > 0 then they belong

to two different subgroups and the former has a lower valuation Vα than the

latter.

This result enables a researcher to partially extract the relative valuation

of α students by looking at their behaviour when facing the choice between

letting an exploding offer go or taking it. It can be crossed referenced with

a survey before or after the game has occurred to assess if the student has a

rational behaviour.

Concluding remarks

In this chapter I have presented a multi-period model to assess the impact

of exploding offers of different length on the welfare of the players in a two
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sided matching market with complete information about the quality of the

players.

I conclude that there provided the students do not value the high quality

university too much compared to the low quality one, using exploding offers

with sufficiently long duration will result in the same outcome as open offers

while still allowing universities to spread the workload. If the exploding offers

are too short, the low quality universities may not be able to hire all the high-

quality applicants that failed to get a place in the high quality institution.

The equilibrium of such a model has a precise structure that makes it easy to

identify. The incentives driving the equilibrium are similar to a Stackelberg

oligopoly where the players who tie their hands early are able to keep some of

the competition at bay. Applicants can use this strategy as they are perfectly

aware of their own type.

Finally, introducing heterogeneous preferences to the model can enable

economists to partially elicit the relative preferences of the high quality ap-

plicants based on the period at which they decide to go with the low quality

firm/university.
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Chapter 3

What should I choose? Choice

overload, an overview and a suggestion

Literature review

The canonical model of consumers’ rational choice behaviour; stating that

economic agents choose among alternatives using a (1) complete, (2) tran-

sitive and (3) acyclic preference ranking is widely taught and used, thanks

to its simplicity and applicability. This set of assumptions has lead to the

utility representation theorem and the formulation of the weak axiom of re-

vealed preferences (WARP). Yet, despite its easy applicability, the model

of rational choice is violated on multiple occasions (e.g Gross (1995) [19] or

Echenique et al. (2011) [10]). Decoy and attraction effects are commonly

observed violations of rational choice theory. The causes of these anomalies

has been widely studied and include decoy effect and choice overload among

others. The model presented here features an extremely simplified heuristic

that does not involve decision thresholds. Instead, alternatives are classified

as desirable or undesirable for a given menus sizes limiting drastically the
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number of cases to consider.

Anchor and decoy effect It is now solidly established that decisions makers

are influenced by past choices and the first information available to them.

Contrary to what the rational choice theory suggests, the irrelevant alterna-

tives may have an impact on the end choice by consumers. Anchoring is a

term used in psychology to cover a large number of effects induced by stimuli

on decision-makers. Early offers and raw pieces of opinion heard first can

create a bias in the decision-maker’s response. Although given enough time,

a decision-maker will progressively adjust his/her response toward the opti-

mal point. Kahneman and Tversky 1974 [42] popularised the concept and

insisted on the importance of framing in the formation of preferences in their

1986 [43] paper. An exhaustive review by Furnham and Boo in 2011 [14] un-

derlines the ambiguous nature of anchoring. While Kahneman and Tversky

have empirically shown the detrimental effect of anchors on choice efficiency,

others like Goldstein and Gigerenzer (2003 and 2009) [16] have demonstrated

the beneficial uses of such heuristics. In the right environment, these heuris-

tics allow decision makers to make an accurate decision with minimal effort.

McElroy and Dowd (2007) [28] conducted experiments showing that anchor-

ing happens in all domains of knowledge. There is no reason to believe these

effects are not present when a consumer chooses a product from any given

menu.

Choice overload Choice overload is often put forward as an explanation as

to why consumers rely on imperfect heuristics to make their choice. The

topic of choice overload is one that has been extensively studied by both

economists, marketing specialists and psychologists.

Mogilner et al. (2008) [29] noted that the participation rate of workers in

retirement plans in the US decreases when the number of options to choose
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from is ten or more. Iyengar and Lepper (2000) [21] set up a jam tasting

experiment and concluded that consumers’ satisfaction was higher when the

number of jams available for testing was lower (6) rather than higher (24)

even though more were inclined to participate in the test when the sample

was larger. Schwartz 2004 [38] described this situation as a choice paradox.

Consumers are attracted to large menus but end up dissatisfied with their

final choice. Meta-analyses conducted by Scheibehenne et al. (2010) [36] and

Chernev et al. (2015) [6] reach similar conclusions.

While these studies identify a perverse effect of large menus on consumer sat-

isfaction, others offered opposite conclusions such as Greenleaf and Lehman

(1995) [17] who argue that consumers have a tendency to delay their pur-

chasing if they are not certain that the menu they face is representative of

the entire range of options available. It appears that some consumers (or

decision markers, we will use both terms interchangeably) can be attracted

by a varied menu that is more likely to include a utility maximising alterna-

tive, many others may be less likely to commit to a choice or even completely

discouraged by the volume of alternatives to choose from.

This apparent contradiction was resolved by Mogilner et al. 2008 [29] Their

studies show that consumers who had a good heuristic to sort the items on

the menu and choose rapidly are the ones preferring large menus, while those

with little prior information and/or no choice heuristic, suffered from choice

overload. The concept of screening categories is central to their work.

One must remember that choice overload is a mental state and thus cannot

be directly observed by an economist. All the previous studies relied on

proxies and external indicators such as satisfaction indexes, confidence level

and ex-post regret.
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Theoretical representation of choice heuristic The empirical research on

choice overload and other choice-bias motivated theorists to model choice

heuristics. This implied giving up the classical Weak Axiom of Revealed

Preferences (WARP) for an even weaker property. Recent literature on the

matter features many different choice models. All rely on either a weakening

of the warp or a modification of the choice procedure itself. Instead of apply-

ing a simple preference relation on a given menu, recent choice models either

involve the usage of more than one preference relation or use a multiple steps

choice procedure. An application of multiple preference relations is found in

Yildiz and Dogan [9] who use a set of pros and cons preference relations to

describe how agents make choices.

An alternative approach in the literature is to use a two-stage choice proce-

dure. In the first stage, the agent will filter alternatives from the initial menu.

In the second stage, the agent will apply a complete, transitive and acyclic

preference relation to the filtered menu obtained in stage one. An exam-

ple of such a procedure is found in Mariotti and Manzini (2012) [27]. They

present a procedure where agents eliminate in a menu all the alternatives

that possess inferior categories then apply a single preference ranking on the

filtered menu. However, the characterisation of choice functions is heavily

based on the filtering procedure itself. Nonetheless, it is possible to make a

characterisation of some two steps choice procedure, by using a weakening

of the WARP (WWARP) formulated by Mariotti and Manzini or using the

concept of route consistency as in Apesteguia and Ballester (2013) [2].

Another weakening of the WARP was introduced by Eliaz and Ok (2006) [12].

The Weak Axiom of Non-Revealed Inferiority states rationalises the choices

made by agents who do not have a complete transitive and reflexive preference

relation. WARNI allows incompleteness and rationality to coexist.
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Finally, Xavier Gabaix (2014) [15] introduced the concept of sparsity in

choice. His concept of a choice procedure leans on the hypothesis that agents

simplify reality by willingly omitting information. In his work, there is a

trade-off because the information will help make better choices but acquiring

such information is costly for the decision-maker.

Although modelling non-rational choices has been an ordeal for economists,

psychologists and marketing researchers, it is still possible to conduct wel-

fare analysis and identify utility functions. In particular, Dalton and Ghosal

(2018) [7] managed to fully characterise data of behavioural agents and sug-

gest welfare benchmarks for public policies.

All of the mentioned papers bring critically important insight into how agents

formulate their choice among menus. However, the procedures put forward

feature one key element that binds most if not all of this literature. It is

the presence of an underlying preference order that is exogenous and fixed

throughout the procedure. This underlying preference order has sometimes

been associated with one or multiple partial orderings (Mariotti and Manzini

(2012) [27]) yet these orders exist independently. Such an implicit hypothesis

is highly unlikely since agents filter products and formulate their preferences

using the same information they have at their disposal. Moreover, any model

using menu-based filtering runs into a problem of over-identification. When

a menu grows its set of subsets grows exponentially faster, leading to an over-

abundance of special cases to manage for both the agent and the economist.

This chapter aims to present a new multiple steps choice procedure that can

incorporate both the anchor effect, the impact of a good heuristic and ratio-

nality in one unified model. The procedure models the behaviour of agents

that have to choose one alternative among many without the possibility of

trying any. The agents are expected to face a choice overload and thus may
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not have the possibility of fully analysing every alternative in the menu. This

will lead to a violation of the WARP and the Weak WARP mentioned above.

It should be considered as a variant of the Choice through Attribute Filters

(CAF) model of Kimya (2018) [23]. Kimya also uses the attributes of the

alternatives but does not consider menu sizes or anchors. While his model

includes constraints on how the filtering evolves as the menu changes, it still

runs into a problem of excess variants of filters. Moreover, unlike previous

work, the agent only takes into account the menu size and not the content

of the menu when performing the filtering. Thus the number of special cases

to manage grows linearly instead of exponentially. A problem the presented

model aims to solve.

The rest of the chapter is organised as follows. Section 3.1 will present a

simple example to illustrate the motivations and intuitions behind the choice

procedure. It is entirely optional and readers familiar with the topic may

want to skip directly to the next section. Section 3.2 presents the model

formally. Section 3.3 some interesting properties found. Section 3.4 presents

a protocol of a lab experiment to empirically verify the existence of the

procedure as well as some concluding remarks.

3.1 A simple example

Let us assume Alice needs to replace her old car that is now broken. Alice

will have to choose one car over an enormous menu. She can buy a new car

or a used one. The price of cars can vary by a factor of one hundred if not

more. Cars come in many shapes, sizes and colours. Some cars are better

to use mostly in urban areas while others are suitable to travel over long

distances etc. Because Alice faces such an overload of alternatives, she will

want to create a shortlist of alternatives that are suitable to her needs. To
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do such filtering, she can look at the characteristics of the cars and sort them

into different categories (similarly to Categorise then Choose). For example,

a car can be in the categories "Colour: blue", "maximum passengers: 7" and

"Price ≤ 50000 $" among others.

Yet because the menu of cars is so large, she cannot filter over all the cat-

egories at once. With a very large menu, she will look first at a very small

number of categories. When looking at a hundred cars, before looking at the

material of the passenger seats, Alice will first look at the price of the car,

its colour and maybe the maximum number of passengers. She will eliminate

some alternatives in the initial menu based on these categories only before

looking at any other categories.

Moreover, to avoid eliminating a car Alice would have liked to buy, she will

not discard immediately all the cars that belong to an inferior category. Just

because Alice prefers to purchase a blue car does not mean she will never

choose a grey one as long as any blue one is present in the menu. She

will immediately discard red cars from the menu for she loathes this colour.

In other words, Alice has a preference ranking of the different car colours.

She has a favourite colour, colours that she finds acceptable and colours she

dislikes so much that she considers a car with such a colour "unacceptable"

and discards it from the menu. One can apply the same reasoning to any

category. Alice prefers cheap cars to expensive ones (all other things equal)

yet some cars are so expensive that they are out of her budget and will be

discarded immediately.

When choosing her new car, Alice will start with a large menu. She will look

at a limited number of categories of each car in the menu and discard any

alternative that has at least one "unacceptable" criteria. Alice will eliminate

all the red cars, even the cheap ones and all the over-expensive ones, even if
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they are blue.

Alice now dealing with a smaller menu will have the opportunity to look at

more categories. She will eliminate any car that is too large to fit in her

garage etc. As the menu shrinks further at each step Alice will be able to

analyse in detail the remaining items until she cannot eliminate anything

anymore. At this stage, she will apply a preference ranking to the remaining

alternatives. We can make simple assumptions regarding Alice’s preferences

regarding individual categories. Cheap is preferred over expensive, blue is

preferred over grey. Alice can rank each category individually. However,

when Alice will make a final decision she will look at multiple categories.

Because we assume that any menu Alice will deal with is finite (although

possibly large), continuous variables like price and size can be mapped into

discrete categories.

However, while Alice prefers blue cars to grey cars and cheap cars to ex-

pensive ones, she may prefer cheap grey cars to expensive blue ones or the

opposite. We do not know the impact of aggregating categories. We can

assume that the ranking Alice will use when making a decision will depend

on what categories she is looking at. If the elimination process is efficient and

Alice ends up with a very small-curated menu, she can make almost perfect

comparisons between the cars by looking at almost all the descriptive char-

acteristics of the items in the menu. If the elimination process does not allow

her to eliminate many alternatives, she will have to ignore some categories

and this can change her ranking.

This process of eliminating unacceptable alternatives will be designated in

this chapter as Choice Among Acceptable Alternatives (CAAA).
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3.2 A choice heuristic based on menu size

Let us consider one consumer who has to make a choice from a set of alter-

natives A = {a1; . . . ; an}. Any subset m ⊆ A is a menu.

Let U|A| ⊆ U|A|−1 ⊆ . . . ⊆ U1 ⊆ A a sequence of nested sets included in A.

Alternatives aj in Ui are called "unacceptable". The whole sequence of Ui is

designated as U .

Let us define the ∆ operator between two sets A and B. A∆B is a subset of

A where all of the elements in set A that are also in set B are removed. In

mathematical terms :

A∆B = A− A ∩B

Let f(U) be a filter function such that:

f :2A × U → 2A × U

(m;U) 7→ (m∆U|m|;U)

Where m∆U|m| = m−m ∩ U|m|.

We define f∞ the infinite recursive application of f . The recursion stops as

soon as any f∞ returns image identical to its pre-image.

For i ∈ {2; . . . ;n} let ≻i a sequence of preference relations defined over the set

A that are complete, transitive and acyclic. The set of these n-1 preferences

relations is ≻. Let ci be the choice function defined using ≻i. Naturally ∀i ci
satisfies WARP.

Let 0 be a special alternative called the "outside option". The outside option

0 is defined such that ∀i; 0 ≻i a ⇔ a ∈ Ui, 0 ≺i a ⇔ a /∈ Ui and ci(∅) = 0.

We define a Choice Among Acceptable Alternatives function C(U,≻, A) as
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a composition of two sub-functions such that:

C(U,≻, A)(m) = c|f∞(U)(m)| ◦ f∞(U)(m)

Note that the consumer does not have the opportunity to test the alternatives

before choosing and never owned any of them. The latter condition is to get

rid of any status-quo bias. No learning takes place. To be able to make an

informed decision it is assumed that the consumer looks at the descriptive

characteristics of each alternative in m.

However, the consumer has limited rationality. When dealing with a large

menu the consumer cannot look at all the descriptive characteristics of every

alternatives and only focus on a subset of these. The smaller the menu, the

higher number of characteristic the consumer can scrutinize. This is the

reason we are using nested sets of unacceptable alternatives. the smaller the

menu the more opportunity the consumer has to find out that an alternative

is unacceptable.

The set of multiple preference relations used in the CAAA function models

the propensity of the consumer to change its ranking of alternatives as new

information is acquired. For very large menus, a limited number of criteria is

used to compare alternatives. With a smaller menu, new criteria come into

play potentially leading to preference reversals.

The inclusion of the outside option stems from a sanity check requirement. If

the agent faces a menu with only unacceptable it cannot chose any of them.

The outside option represents this ability of not choosing anything.
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Example of a choice function that is CAAA

Let us consider a choice function C that satisfies Independence from

Irrelevant Alternative Swapping. Meaning, the following property holds :

C({a0; a1; ...; am}) = a0 and C({a0; am+1; ...; a2m}) = a0

⇒ ∀b1; ...; bm ∈ {a1; ...; a2m}, C({a0; b1; ...; bm}) = a0

IIAS is a simple weakening of the well know independence from irrelevant

alternatives that only holds when the reshuffling of irrelevant alternatives

preserves the cardinality of the initial menu. Any choice function C

satisfying this property is also a CAAA.

Proof: Assume ∀n, Un = ∅, then the filtering function becomes the identity

function and we are left with a simple choice function which is driven by a

preference relation dependant on the initial menu cardinality.

A choice function satisfying IIAS (and by extension CAAA) can violate the

Weak Warp defined by Mariotti and Manzini (2007) [26].

3.3 Properties of CAAA functions

Reconstructing CTC with CAAA

Property 6. Let C(U,≻, A) be a CAAA function such that all the preference

relations ≻i∈≻ are identical. C satisfies weak warp and expansion.

Proof: See Annex C.1

This property presents CAAA choice functions as an alternative way to for-

malize the Categorise and Choose choice functions as in Mariotti and Manzini

(2012). The contrapositive of this property is suggesting that a violation of

the weak warp can be attributed to a preference reversal happening some-

where.
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CAAA and revealed preference

In this subsection we discuss about how the consumer’s preferences and elim-

ination procedure are. Unlike standard theory, in a CAAA function one can

get changing preference rankings on top of alternative becoming unaccept-

able along the filtration process. Let us start with examples demonstrating

the difficulty of this:

Example 1: Let A = {a1, a2, a3, a4} ; U4 = ∅;U3 = U2 = U1 = {a1; a3; a4}

and C(U,≻, A) a CAAA function such that:

• C(U,≻, A)(A) = a1

• C(U,≻, A)(m) = a2 if m ⊂ A and a2 ∈ m

• C(U,≻, A)(m) = 0 if m ⊂ A and a2 /∈ m

There is a great number of ≻ that can adequately represent C. Both a1 ≻4

a2 ≻4 a3 ≻4 a4 and a1 ≻4 a4 ≻4 a3 ≻4 a2 are valid and non trivial.

Example 2: Let A = {a1, a2} ; a1 ≻2 a2 and C(U,≻, A) a CAAA function

such that:

• C(U,≻, A)(A) = a1

• C(U,≻, A)(a1) = a1

• C(U,≻, A)(a2) = 0

Then the sequences U2 = ∅, U1 = {a2} and U2 = U1 = {a2} can generate the

choice function above.

Property 7. Let C(U,≻, A) be a CAAA function. Let m,m′ ⊂ A such that

a = m∆m′ and a′ = m′∆m. If C(m) ̸= C(m′) and C(m), C(m′) /∈ {a, a′}

then ∃Ui ∈ U such that without loss of generality a ∈ Ui and a′ /∈ Ui
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Proof: See Annex C.2

This property allow to detect (more) undesirable alternatives by simply ob-

serving the choices of the consumer.

Representing a CAAA function

The following section aims at presenting a tool to represent any CAAA func-

tion. this tool may prove useful to elicit properties.

Definition 1. Rational filter graph

Let A = {a1; . . . ; an} be a set of alternatives. Let Un ⊆ Un−1 ⊆ . . . ⊆ U1 ⊆ A.

Let G(V, E) be a graph where m ∈ V = 2A. The graph G is a rational filter iif

E = {{m;m′}| m ̸= m′;m′ = m∆U|m|}

A rational filter graph will be noted as G(A, U) where A is the set of alter-

natives from which the vertices are constructed and U the sequence of sets

from which the edges are constructed.

The vertices of a rational filter graph are the elements of the set of subsets

of A i.e all the possible menus one can generate from A, including the empty

set. The edges of this graph are defined such that if two menus are linked

together it means:

1. One menu/vertex has at least one element that belong to a set of un-

desirable alternatives.

2. The other menu/vertex is the first one deprived of such undesirable

elements.

The graph is the physical representation of the filtering process from any

initial menu to a final menu that contains only alternative the agent finds

acceptable under the information constraint.
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One can notice that the graph has no circle and one vertex can be linked to

at most one vertex of lower cardinality. For more details on why see Annex

C.3.

Lemma 1. Let G(V;E) be a rational filter graph. Let T be the set of canonical

trees of G. Let Tq ∈ T a canonical tree of G, let m ∈ Tq be a menu with the

smallest cardinality of G. m is unique and the root of this tree.

Proof: See Annex C.4

Lemma 1 allows to uniquely define a root of each canonical tree of G. More-

over, one can index each canonical tree of a rational filter graph by using the

cardinality of the root the tree. this indexing will enable us to construct sets

of canonical trees with interesting properties.

Definition 2. A choice function c satisfies the Partial Weak Axiom of Revealed

Preferences (Partial WARP) over a set M if for any pair of alternatives a and

a’, if a is revealed preferred to a’ for any menu in M then a’ cannot be revealed

preferred to a for any menu in M.

When WARP applies to any menu containing a and a′, P.WARP only applies

to the menus in a set M. This weakening of the warp has little value on

its own since any choice function satisfies Partial Warp (use a collection of

singletons). However, it will be useful in property 8

Definition 3. Le G(A, U) be a rational filter graph. Let T be the set of

canonical trees of G. Let Π be a partition of 2A. The elements of Π are

denoted as Πi, i = 1; . . . ; |A|. If ∀m ∈ 2A, m ∈ Πi ⇔ m ∈ Ti ∈ T such that

the root of Ti has a cardinality of i then Π is a indexed partition of 2A.

This definitions introduces a way of grouping multiple trees of a rational filter

graph based on the root of each tree.

Property 8. I choice function C(U,≻, A) satisfies CAAA then it can be rep-
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resented by a rational filter graph G(U,A) such that :

• C is invariant along canonical tree of G

• C satisfies Partial WARP over each elements of the indexed partition

of 2A

Proof: See Annex C.5

3.4 Experimental protocol proposal

While not characterised in this chapter, we believe nonetheless that the

presented framework has an experimental interest. We present the following

experimental protocol.

This is a two steps lab experiment designed to test the validity of the CAAA

framework. The three intuitions bundled in the CAAA model (anchor

effect, choice overload and choice heuristic/two-steps choice) have either

been tested separately before or, in the case of the two steps choice, are fully

characterised.

The experiment is divided in two steps:

• One is a survey about the subjects individual preferences over single

characteristics of a type of mundane object (a watch, a computer mouse

etc.)

• The other is a sequence of timed choices in a large menu of the same

mundane objects. The objective of the timing is to place a time con-

straint upon participants. This paired with sufficiently large menus (10
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or more items) will force them to rely on heuristics to make a decision.

To control for the influence of step one, subjects will be randomly allocated

in two groups. The first group will do the survey first then the timed choice

while the second group will do the timed choice first followed by the survey.

It will be important to check if there is a statistical difference between the

rationality of group one and two. We expect people in group one to have

prepared a more robust heuristic

The first step would aim at discovering for each subject the set of relevant

characteristic that will be used in the heuristic later on. A Likert scale can

be used to infer individual preferences over each descriptive element of the

object. Additional rank ordering question can be added to understand how

a subject weight two different characteristics together.

It is important to design the choice part of the experiment in a way that

removes then anchor. The item chosen by a subject in the first menu should

be removed from the second one and so on. If not done, subjects could

lazily choose the same alternative over and over again to avoid looking for

information.

Concluding remarks

In this chapter we have presented an overview of the various causes of viola-

tions of the classical weak axiom of revealed preferences. The main culprits

being anchoring effect, choice overload, and use of a more or less inadequate

choice heuristic. While a large part of the theoretical literature has dealt

with the choice heuristics and the consideration set, we still believe there
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is a gap to close. When analysing different alternative, agents use filters.

However, the information used when filtering (that can be modeled as a set

of partial orders) should also be used to form the final preference ranking (be

it complete or not). When aggregating the partial orders the agent should

display a consistent behaviour. The proposed CAAA choice function tries to

formalise this main idea. However, because it is not fully characterised, it

needs empirical evidence to justify its existence.

Should the relevance be confirmed empirically the next challenge would be

to figure out how agent aggregate the descriptive characteristics of good

(which can be described as partial orders) and how different types of menus

can influence the aggregation process. There is a branch of literature on

algorithms that is dealing with partial orders aggregation. While there are

results, the algorithms are complex and appear to require a very large number

of operation if the rankings are precise.
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Conclusion

In this thesis, I looked at three applications of the burden of choice. I have

put the first two applications under the lens of applied microeconomics the-

ory: which football player a team should hire and should one accept an early

exploding offer or try his/her luck? I showed that under the right circum-

stances, the negative consequences of the burden of choice in both cases could

be negated. In the last chapter, I have proposed an early theoretical frame-

work to be tested empirically and to be used as the basis for future research

be it applied or theoretical.

Matching football players with teams is a well know and well-documented

challenge. Since the 70s, economists have attempted to model this two-sided

matching market with a relative level of success. While modelling North-

ern American sports leagues has proved straightforward thanks to the fact

they act as monopolies with a limited pool of players to hire, the same can-

not be said of European sports leagues. Unlike Northern American sports

leagues, European sports leagues are opened and the market for players can

be considered as an infinite pool of talent. The post-Bosman-ruling era of

football has seen the rise of various phenomena that have defied standard

economic thinking. The rise of the superstar players’ wages, the takeover

of teams by rich people behaving, as sugar daddies and the failing of small

teams both financially and sportively are puzzling. The model presented in
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chapter 1 improves on existing literature and captures all of these effects by

combining the main features of the two families of sports leagues models.

The model allows the teams to hire two different types of players: the su-

perstars available in limited quantities as in North American league models,

and regular players who are infinitely available as in classic European leagues

models. Depending on the parametric assumptions made, the equilibrium of

the model can explain the various phenomena observed in modern football.

When two sugar daddies compete for victory, the superstars’ wages explode

and lead the teams to run persistent deficits. When a money-maximising

team cohabit in the same league with sugar daddies, the money maximising

team can end up in deficit when the regular players are too costly and the

superstars are too dominant. The intuition behind this equilibrium is simple:

the sugar daddy can spend more money to hire the very dominant superstar

players and choke out the profit maximising team who cannot win enough

games to cover the cost of regular players. The model predicts that a wise

policymaker can alter a league to make it more unpredictable and allow both

teams to be profitable in the end. In future research, the model could be

expanded to a multiple period framework. However, for the solution of such

a model to be tractable, one has to find a new way to model the hiring of

players. The Tullock framework used in the theoretical sports economics lit-

erature since the 2000s features too many non-linear best replies to be easily

used in a multi-period model.

Exploding offers have been used for a long time by many institutions. From

universities to private consulting firms, many institutions rely on these types

of offers to make their recruitment process easier. However, the literature

on exploding offers is scarce. The main concern of economists so far has

been the unravelling of a matching market featuring exploding offers when

the information about the quality of the applicants is uncertain and partially
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revealed over time. The models are two-periods and there is a match between

the number of applicants and the capacities of the institutions that are re-

cruiting. The main dilemma faced by all the players is between hiring early

an applicant whose quality is not well known and waiting to acquire more in-

formation at the risk of being poached or missing a spot. In chapter 2 of this

thesis, I explored a completely new side of exploding offers. I presented a two-

sided matching market with n-periods instead of 2 and where the information

about applicants is perfect but capacities do not match. Two institutions are

recruiting using exploding offers, a high-quality one and a low-quality one.

The many applicants are of two types, high-quality and low-quality. Unlike in

the rest of the literature, the quality of each applicant is common knowledge.

There are more high-quality applicants than the high-quality institution can

hire. And there are more applicants in total than the combined capacities of

the two institutions. In this model, the dilemma is faced only by the high-

quality applicants who have to choose between enrolling in the low-quality

institution before the exploding offer expires or playing "double or nothing"

by letting the offer from the low-quality institution explode and hoping to be

hired by the high-quality institution. The equilibrium of this model predicts

a partial unravelling when the capacity of the high-quality institution is too

limited and the relative preferences for the high-quality institution are too

small. However, provided the exploding offer has a sufficiently long lifetime,

the equilibrium allows all players to achieve the same welfare outcome as the

benchmark equilibrium with open offers. This is a new insight. The future

of the model of chapter two is applied.

Chapter 3 looks at a burden that has been documented by economists and re-

searchers in other disciplines: choice overload. There are many meta-analyses

regarding choice overload and all point out the same conclusions: consumers

are unhappier and less satisfied when having to choose among a very large
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menu of alternatives, especially if these alternatives are very similar to one an-

other. Choice overload is described as a situation where an economic agent’s

cognitive capabilities are not enough to solve a choice problem. Economists

and others usually assume this appears when the agent has to choose one (or

a small number) of alternatives from a very large menu. This inability to fully

assess the value of every single alternative of a menu can lead the agents to

use simplifying routines or "two-step thinking" as described by Tversky and

Kahneman [43]. This two-step thinking is also thought to be behind two of

the most common violations of the Weak Axiom of Revealed Preferences: An-

chor effect and decoy effect. Economists have attempted to model the effects

of choice overload using multiple-step choice models, the first step being a

filtering step, while the second step is the effective application of a preference

relation over a filtered menu leading to a final choice. These models usually

introduce a weaker version of the warp but miss either the anchoring or the

decoy effect or have an identification problem. In chapter 3 I introduced a

model that attempts at solving the identification problem. The model is a

two steps choice model. It introduces the notion of an acceptable alterna-

tive as a replacement for the partial order filter. Initial (large) menus are

purged of alternatives that are deemed "unacceptable" by the agent. Unlike

filters, the set of unacceptable alternatives is not an ordering and increases

in cardinality as the initial menu shrinks. This notion of unacceptability is

much easier to elicit empirically than a partial ordering. While there have

already been some major results in choice theory, this field of research is still

in need of a model that can capture all the violations of classical rational

choice theory while retaining empirical identification properties using the re-

vealed preferences of consumers combined with the available information on

observable characteristics of all the alternatives in a menu. Chapter 3’s model

is not fully characterised and instead, I have put forward an experimental
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protocol proposal for future research.

Freedom is the ability to make meaningful choices and experience the full

consequences of them, good or bad, without externalities on others. This

thesis in applied microeconomic theory has looked at instances where making

a choice is particularly difficult and can lead to perfectly rational yet per-

fectly undesirable outcomes. By modelling these examples of difficult choices

and studying the solutions, I have shown that one can replace undesirable

equilibrium with desirable ones.
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Appendix A

Proofs of chapter 1

A.1 Proof of equivalence between the linear and logit

C.S.F

The superstar players are worth at least as much on the field than regular

players. A team whose roster includes only regular players has a talent

normalised to one on the field, while a team that has only superstar in its

roster is worth t ≥ 1 on the field.

If a team has a mixed composition its talent on the field is worth tq1+(1−q1).

The first term of the sum is the talent coming from superstar players. The

second term is the talent coming from the regular players. Since by design

q1 + q2 = 1 and both teams have a total roster size of 1, when injecting this

formula into the classic logit C.S.F we obtain:

w1(q1; q2) =
tq1 + (1− q1)

tq1 + (1− q1) + tq2 + (1− q2)

w1(q1; q2) =
tq1 + (1− q1)

t+ 1
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Let us perform a variable change. Let d = t−1
t+1

be a remapping of the param-

eter t. Thus t = 1+d
1−d

. Substituting this into the C.S.F yields

w1(q1; q2) =
1+d
1−d

q1 + (1− q1)
1+d
1−d

+ 1

w1(q1; q2) =
(1 + d)q1 + (1− d)q2
(1 + d) + (1− d)

w1(q1; q2) =
d(q1 − q2) + q1 + q2

2

w1(q1; q2) = 1/2 +
d

2
(q1 − q2)

One ends up with a linear expression for the C.S.F. It can be further refined

to completely eliminate the variable q2:

w1(q1; q2) = 1/2 +
d

2
(q1 − q2)

w1(q1; q2) =
1− d

2
+ dq1

A.2 Algebra behind proposition 1

In equilibrium, the teams’ objective function satisfy the two following FOCs:

∂U1

∂x1

= 0

∂U2

∂x2

= 0
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Rewriting

m+ c+ d(γ1 + 1) =
(x1 + x2)

2

x2

(A.1)

m+ c+ d(γ2 + 1) =
(x1 + x2)

2

x1

(A.2)

Dividing (A.1) by (A.2) yields:

x1

x2

=
m+ c+ d(γ1 + 1)

m+ c+ d(γ2 + 1)

Let R = m+c+d(γ1+1)
m+c+d(γ2+1)

. Substituting for x1 the first equation becomes

1 + c+ d(γ1 + 1) =
(x2)

2(1 +R)2

x2

x2 =
(m+ c+ d(γ1 + 1))(m+ c+ d(γ2 + 1))2

(m+ c+ d(γ1 + 1) +m+ c+ d(γ2 + 1))2

Then also x1 = (m+c+d(γ1+1))2(m+c+d(γ2+1))
(m+c+d(γ1+1)+m+c+d(γ2+1))2

and x1 + x2 = x1,2 =

(m+c+d(γ1+1))(m+c+d(γ2+1))
(m+c+d(γ1+1)+m+c+d(γ2+1))

A.3 Proof of uniqueness of equilibrium

Note that :

∂2Ui

∂x2
i

= (1 + c+ (γi + 1)d)xj
−2

(x1 + x2)3
< 0

i ∈ {1; 2}, i ̸= j

The utility functions of both team are concave w.r.t their strategic variable.

The equilibrium exists and is unique. Furthermore there is no equilib-
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rium where one team or more does not recruit superstars: Suppose the

existence of an equilibrium where no team spend anything (xi = xj = 0).

In this case either team has a profitable deviation : increase the spend-

ing by ε and recruit the totality of the superstars instead of only half of them.

Suppose the existence of an equilibrium where one team does not want to

spend anything on superstars (xi = 0 w.l.o.g.). The the opposing team has a

profitable deviation : reduce the spending by ε and keep the totality of the

superstars.

A.4 Proof of proposition 2

In this section we would like to remind the reader that the constraints c < 1

and m > 1 must hold all the time. Let K1 = (γ1 + 1)d + m and K2 =

(γ2+1)d+mFrom Proposition 1, x1,2 =
(K1+c)(K2+c)
K1+K2+2c

. Since 1 ≥ c, K1K2 ≥ c2

and x1,2 ≥ c

(K1 + c)(K2 + c)

K1 +K2 + 2c
≥ c

⇔ K1K2 + c2 + c(K1 +K2) ≥ 2c2 + c(K1 +K2)

⇔ K1K2 ≥ c2

By construction K1 ≥ 1, K2 ≥ 1 and c ≤ 1. Thus x1,2 ≥ c at all times.

For all the remaining proofs, let Γi = 1+ γi, M = m+ c, fi = (M + dΓi) i ∈

{1, 2}
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A.5 Proofs of the signs of the derivatives of x1 w.r.t c

Let f ′
i =

∂fi
∂c

i ∈ {1, 2}:

∂x1

∂c
=

f1
(f1 + f2)3

(
2f 2

2 + f 2
1 − f1f2

)
∂x1

∂c
=

f1
(f1 + f2)3

(
(f1 − f2)

2 + f1f2 + f 2
2

)

Since f1 and f2 are strictly positive quantities, ∂x1

∂c
> 0

A.6 Proof of theorem 1

Let f ′
i =

∂fi
∂d

i ∈ {1, 2}. Computing ∂x∗
1

∂d
:

∂x1

∂d
=

(2f1f
′
1f2 + f 2

1 f
′
2)(f1 + f2)

2 − f 2
1 f2 × 2(f1 + f2)(f

′
1 + f ′

2)

(f1 + f2)4

∂x1

∂d
=

f1
(f1 + f2)3

×
[
2f ′

1f
2
2 + f 2

1 f
′
2 − f1f2f

′
2

]

Now factoring,

[
2f ′

1f
2
2 + f 2

1 f
′
2 − f1f2f

′
2

]
= 2Γ1(M + dΓ2)

2 + (M + dΓ1)
2Γ2 − Γ2(M + dΓ1)(M + dΓ2)

= 2Γ1M
2 + d2Γ1Γ

2
2 + 5MdΓ1Γ2 + d2Γ2

1Γ2 −MdΓ2
2

= Γ2
2d(Γ1d−M) + Γ2Γ1d(f1 + 4M) + 2Γ1M

2

This is a polynomial of Γ2 (and by extension γ2) of degree 2. It is positive if

Γ1d ≥ M or Γ1 ≥ Γ2 but it may be negative if Γ1 < Γ2 and Γ1d < M .

The discriminant is positive because (Γ1d−M) < 0 so the polynomial has real

roots, one positive (designated as Γ̄1) and one negative which violates the as-
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sumptions. The exact expression of the root is γ̄1 = Γ̄1−1 = Γ1d(f1+4M)+
√
∆1

2d(M−(γ1+1)d)
−

1 where ∆1 = (5Md(γ1 + 1) + d(γ1 + 1)2)2 + 8d(M − (γ1 + 1)d)(γ1 + 1)M2.

To see that γ̄1 > γ1:

Γ̄1 =
Γ1d(f1 + 4M) +

√
∆1

2d(M − Γ1d)

A few observations
√
∆1 ≥ Γ1d(f1 + 4M) and M ≥ (M − Γ1d) > 0. We can

use these to get a lower bound for Γ̄2,

Γ̄1 ≥
2(5MdΓ1 + dΓ2

1)

2dΓ1

Γ̄1 ≥
(5MdΓ1 + dΓ2

1)

dΓ1

> Γ1

Conclusion : Γ̄1−1 > Γ1−1 ⇔ γ̄1 > γ1. The solution respects the constraints

set in place.

A.7 Proof of theorem 2

Let us analyse the two following equations separately:

0 = e21

(
1− d

2
− c

)
+ e1e2(1 +m− c) + e22

(
1− d

2
− c

)
0 = e22

(
1− d

2
− c− dγ1

)
+ e1e2(1 +m− c) + e21

(
1− d

2
− c

)

The first polynomial is always positive as long as c ≤ (1 − d)/2 since both

e1 > 0 and e2 > 0. The second polynomial can be developed with respect to

dγ1:
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0 = (dγ1)
2

(
1− d

2
− c

)
+ dγ1

(
e2(1 + c− c)− e22 + 2e2

(
1− d

2
− c

))
+e22

(
2

(
1− d

2
− c

)
+ 1 +m− c

)
0 = (dγ1)

2

(
1− d

2
− c

)
+ dγ1e2

(
4

(
1− d

2
− c

))
+e22

(
2

(
1− d

2
− c

)
+ 1 +m− c

)

Since c ≤ 1 and e2 > 0 the equation above never holds, meaning that as long

as c ≤ (1− d)/2, team 2 is always profitable.
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Appendix B

Proofs of chapter 2

B.1 Proofs for section 2.2

B.1.1 Proof of theorem 1

The proof will be by contradiction. Let us assume without loss of generality

that there exists an equilibrium in which university A plays at least once

OA
t when facing a β student with probability one. We will show that an α

student can profitably deviate to take the place of a β student.

1. University A is certain to get all the α students who are in state (x; y)

such that y ∈ {1; . . . ;T} and x + d ≤ y where d is the duration of

an exploding offer is there is one∗. All the students (α or β) in these

states will be contacted by university A before or at the same time as

university B.

2. The number of students in these specific states is
∑t=T

t=1 Max{(t +

d);T}q > (1 + T ) ∗ T/2 ∗ 2nα > T 2nα > cA. Thus University A is

ensure to be filled to capacity with students. University A will have

∗Recall : d = +∞ is the offer is open

75



spare students to send offers to in the final period T.

3. Because we are in a trembling hand setup, university A weakly prefers

an equilibrium in which the capacity is filled as late as possible to

equilibria in which capacity is filled earlier. This allows to "catch" any

α student deviating and applying to A instead of accepting an offer

from B. As such in no equilibrium will university A be filled before

period T .

4. Type α students know that A will always play OA when encountering

them unless the university is already full. As shown earlier, A is never

full before the last period. Because the game is structured in such a

way that β students are always processed after the α, an α student who

deviates will always receive an offer from A.

5. Thus this is not an equilibrium.

B.1.2 Proof of the equilibrium with open offers.

The proof is very intuitive. Students will never lose the opportunity to

play EB since the offers are opened. As such there is no risk to play W for

students until the last period. However, Nα > CA thus β students are fully

aware they have zero chances to receive an offer from A and thus enroll in

B immediately. As for α students they know they cannot be turned down

by B as B will have enough spare capacity to host all the α who will not

receive an offer from A because of capacity constraints. They can safely

play W and hope a better opportunity shows up without taking any risk.

University A can confidently turn down all the β students, knowing no α

student will bail out and enroll in B before receiving an answer from A

first.
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B.1.3 Proof of theorem 2

The maximum combined utility for the universities A and B with an equi-

librium involving open offers is 2cA + 2(T 2nα − cA) + (cB − ((T 2nα − cA)).

University A is filled to capacity with α students and university B enrolls the

leftover α students then fills the spare capacity up with β students.

The rest of this proof will be by contradiction. Let us assume there exist an

equilibrium with exploding offers that gives the maximum combined utility

presented above.

• The equilibrium cannot involve mixed strategies, as this will cause ex-

post mismatches with non-zero probabilities.

• Assume the existence of an equilibrium with exploding offers the gives

this level of utility. Such an equilibrium require that (T 2nα − cA) α

students play EB
t while the others wait for an offer from A. One can

increase VA to an arbitrarily large number such that the expected payoff

of playing W ∗
t is larger than playing EB

t . At least one α will deviate.

This alpha will have a positive probability to be rejected. University

B will be forced to recruit a β student, lowering its utility.

B.2 Proofs for the model with exploding offers

B.2.1 Proof of theorem 3

The proof has three steps: First we derive the formula of the expected payoff

for α students who decide to let an offer from B expire. Then we show that

this payoff is decreasing as the matching procedure goes on. Lastly, we use

a proof by contradiction to show that the value of T ∗ is unique.
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Expected payoff of students α

Let k ∈ {1; . . . ;T}. At the equilibrium, the expected payoff of α students

who plays W ∗
T−k is equal to :

E(U(W ∗
T−k)) =

k−1∑
i=1

(
1

k
VA

)
+

1

k
P(ΩA)VA

Proof of step B.2.1 An α student will only play W ∗
T−k is (s)he has received

an offer from B at an earlier period (that we will call y). Because the student

is still waiting for a response from A, the student does not know his/her state

perfectly. The student can be in any state (x; y) where T−k = y+d < x ≤ T .

Because of theorem 1, in every potential state except state (T ; y) the student

is assured to receive an offer from A.

α students are uniformly distributed among all possible states thus the prob-

ability to be in a specific state (x; y) where T − k < x ≤ T is 1
k

.

The expected payoff of α students is decreasing

The expected payoff of playing W ∗
t is decreasing in t.

Proof : Let 1 < j < k < T . Both j and k are integers.

E(U(W ∗
T−k)) > E(U(W ∗

T−j))

k−1∑
i=1

(
1

k
VA

)
+

1

k
P(ΩA)VA >

j−1∑
i=1

(
1

j
VA

)
+

1

j
P(ΩA)VA

k − 1

k
+

1

k
P(ΩA) >

j − 1

j
+

1

j
P(ΩA)

1− 1

k
(1− P(ΩA)) > 1− 1

j
(1− P(ΩA))

k > j
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At any equilibrium the probability of the event ΩA is the same for all students.

Thus at any equilibrium whenever a student of type α plays W ∗
t then all the

α students facing a choice between EB
t′ and W ∗

t′ for all t′ < t will play the

later strategy. Following the same logic if EB
t is played by an alpha student

instead of W ∗
t , then it will be played by all α for every future time period.

B.2.2 Proof of proposition 6

Proof by contradiction. Let us assume T ∗ ̸= T ∗′. Without loss of generality

let T ∗ < T ∗′. In equilibrium S ′, all α students who have to choose between

EB
T ∗ and W ∗

T ∗ will play the latter as per Theorem 3. Their expected utility

is greater than 1. In equilibrium S, the α students who have to choose

between EB
T ∗ and W ∗

T ∗ will either mix or only play W ∗
T ∗ . By definition, in

equilibrium S, U(EB
T ∗) = 1 = E(U(W ∗

T ∗)).

However, because the strategy profile S ′ is an equilibrium the payoff of play-

ing W ∗
T ∗ is strictly greater than 1 even when playing the strategy profile

S. Thus in S all α students can deviate and only play W ∗
T ∗ and force the

other players to play equilibrium S ′. Thus the strategy profile S is not an

equilibrium.

B.2.3 Proof of proposition 4

The proof is in three steps :

• The first focuses on the behaviour of α students when students have a

sufficiently high valuation of university A (VA ≥ 2).

• The second step extends the reasoning to the general case.

• The third step focuses on the behaviour of β students.
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Step 1: The simple case when VA ≥ 2

Starting with VA ≥ 2 greatly simplifies the equilibrium structure. Elements

of the proof for the simple case will be re-used for the general case. For the

simple case I will first show that the critical period can only the last period

or the penultimate one.

Lemma: If VA ≥ 2, then T ∗ = T or t∗ = T − 1

Proof: As per lemma B.2.1, the payoff of playing W ∗
T−2 is equal to

E(U(W ∗
T−2)) =

(
1

2
VA +

1

2
P(ΩA)VA

)

Since VA ≥ 2 then 1
2
VA ≥ 1 thus E(U(W ∗

T−2)) > U(EB
T ∗). Because of property

B.2.1, the reasoning can be extended to every period T − k where k ≥ 2.

Thus ∀t ≤ T − 2 : E(U(W ∗
t )) > U(EB

t ). As such the critical period can only

be T or T − 1. .

If the critical period is the last period then all α students will let their of-

fers from B expire. The equilibrium becomes trivial (and unique). As per

theorem 3 at most one group of student will randomise strategies. Moreover

as per lemma B.2.3 if students randomise, they will only do it during period

T − 1. All students play the same randomization between WT ∗ with proba-

bility p and EB
T ∗ with probability (1− p). It goes without saying that if the

equilibrium involves mixed strategies then when p = 0, E(U(W ∗
T ∗)) > 1 and

if p = 1, E(U(W ∗
T ∗)) < 1.

Lemma: E(U(W ∗
T ∗)) is a strictly decreasing function of p

Proof: If randomising happens in period T-1, the number of students still

applying to university A (named AA) at the last period is a random variable

80



follows a binomial distribution B(nα; p)+κ where κ is a constant that includes

the number of students who let offers from B expire in previous periods as

well as the students who have an offer from B that has not expired yet. Let

∆CA
the spare capacity of university A at the beginning of the last period. It

is a fixed number if VA ≥ 2. The probability of a student of type α to receive

an offer from A at the last period given the number of remaining applicants

is:

P(ΩA|AA) = Min
{
∆CA

AA

; 1

}
P(ΩA|AA) is a strictly decreasing function of AA. Because students are mix-

ing, by definition nα + κ > ∆CA
. If all the randomising students decide to

play W ∗
T ∗ the probability of each getting an offer from A cannot be one.

The expected utility of playing W ∗
T ∗ is:

E(U(W ∗
T ∗)|p) = VA

nα∑
k=1

(
nα

k

)
pk(1− p)nα−kP(ΩA|κ+ k) (B.1)

Where
(
nα

k

)
pk(1 − p)nα−k is the probability distribution function of a ran-

dom variable following the binomial distribution B(nα; p). By definition∑nα

k=1

(
nα

k

)
pk(1− p)nα−k = 1 and ∂

∂p

∑nα

k=1

(
nα

k

)
pk(1− p)nα−k = 0.

∀ 0 < p < 1 there exist a constant k∗ such that :

∀k ≤ k∗ ;
∂

∂p

[(
nα

k

)
pk(1− p)nα−k

]
< 0

∀k ≥ k∗ ;
∂

∂p

[(
nα

k

)
pk(1− p)nα−k

]
> 0
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It follows that:

∀k ≤ k∗ ;
∂

∂p

[
k∗∑
k=1

(
nα

k

)
pk(1− p)nα−k

]
< 0

∂

∂p

[
k∗∑
k=1

(
nα

k

)
pk(1− p)nα−kP(OA

T |κ+ k)

]
≤ P(OA

T |κ+ k∗)
∂

∂p

[
k∗∑
k=1

(
nα

k

)
pk(1− p)nα−k

]
< 0

and

∀k ≥ k∗ ;
∂

∂p

[
nα∑

k=k∗

(
nα

k

)
pk(1− p)nα−k

]
> 0

0 <
∂

∂p

[
nα∑

k=k∗

(
nα

k

)
pk(1− p)nα−kP(OA

T |κ+ k)

]
< P(OA

T |κ+ k∗)
∂

∂p

[
nα∑

k=k∗

(
nα

k

)
pk(1− p)nα−k

]

When combining the two parts of the sum of partial derivatives one obtains:

∂

∂p

[
nα∑
k=1

(
nα

k

)
pk(1− p)nα−kP(OA

T |κ+ k)

]
< P(OA

T |κ+ k)
∂

∂p

[
nα∑
k=1

(
nα

k

)
pk(1− p)nα−k

]
∂

∂p

[
nα∑
k=1

(
nα

k

)
pk(1− p)nα−kP(OA

T |κ+ k)

]
< 0

Thus E(U(W ∗
T ∗)) is a strictly decreasing function of p. Thus the equation

E(U(W ∗
T ∗)) = 1 has a unique solution for p. As such there can be only one

equilibrium in which a group of α students mix W ∗ with probability p and

EB
T ∗ with probability (1− p) if VA ≥ 2.

Step 2: The general case with any value of VA

When relaxing the values of VA the critical period T ∗ may be lower than

T − 1. If it is not, the step 1 proof applies. If T ∗ is lower than T − 1 but

the equilibrium is played in pure strategies then it is unique (trivial). If T ∗

is lower than T − 1 and the equilibrium is played in mixed strategies then α

students randomise between W ∗ with probability p and EB
T ∗ with probability
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(1− p). In this case the expected utility of letting an offer from B expire at

time T ∗ becomes:

E(U(W ∗
T ∗)) =

T−T ∗−1∑
i=1

(
1

T − T ∗VA

)
+

1

T − T ∗P(ΩA)VA

Let ∆CA
the spare capacity of university A at the beginning of the last period.

It is not a fixed number anymore as there may be some students who will

randomise in period T ∗ who will receive an offer from A before the last period.

The probability of a student of type α to receive an offer from A at the last

period given the number of remaining applicants and the spare capacity of

A is:

P(ΩA|∆CA
; AA) = Min

{
∆CA

AA

; 1

}
where

∆CA
∼ η − B((T − T ∗ − 1)nα; p)

AA ∼ B(nα; p) + κ

η is a constant and represents the leftover capacity of A at time T ∗ minus

the number of α students who will be contacted by A before the last period

and have either let their offer from B expire before T ∗ or will still have an

offer from B that has not expired yet. κ is a constant that includes the

number of students who will be contacted by A during the last period and

who let offers from B expire in previous periods as well as the students who

have an offer from B that has not expired yet.

Lemma: P(ΩA)(p) is a strictly decreasing function of p Let us write P(ΩA)

as a function of two randomisation parameters p and ρ:
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
P(ΩA)(p; ρ) =

[∑nα

k=1

(
nα

k

)
pk(1− p)nα−kE(P(OA

T |κ+ k))

]

E(P(OA
T |κ+ k)) =

[∑(T−T ∗−1)nα

i=1

(
(T−T ∗−1)nα

i

)
ρi(1− ρ)(T−T ∗−1)nα−iP(OA

T |η − i; κ+ k)

]

Let 0 < p < p′ < 1 and 0 < ρ < ρ′ < 1 without loss of generality. From

lemma B.2.3, E(P(OA
T |κ+k)) is a weakly decreasing function of ρ. Moreover,

E(P(OA
T |κ+ k)) ≥ E(P(OA

T |κ+ k′)) while P(ΩA)(p; ρ) is a strictly decreasing

function of p. It follows that:

P(ΩA)(p; ρ) ≥ P(ΩA)(p; ρ
′) > P(ΩA)(p

′; ρ′)

To conclude all one has to do it to equate p and ρ to get that P(ΩA)(p) is

a strictly decreasing function of p. Thus E(U(W ∗
T ∗)) is a strictly decreasing

function of p and the equation E(U(W ∗
T ∗)) = 1 has a unique solution. and

the equilibrium in mixed strategies is unique.

Step 3: β students never play W ∗

Proving the uniqueness of strategy for β students is much more straightfor-

ward. If α students play using only pure strategies, then the probability of

A being full is 1, thus βs immediately accept the offer from B as they have

a zero probability of ever receiving an offer from A. The same reasoning ap-

plies for equilibrium where α play with mixed strategies but the probability

of A being full is 1.

If there is a non-zero probability of A ending up not full (because CA and

VA are too small), we need to check if β students have a profitable deviation

by playing W ∗ instead of EB
t . The expected utility of a β student of playing
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W ∗
T−1 (the penultimate period).

E(U(W ∗
T−1)) = VA

nα∑
k=1

(
nα

k

)
pk(1− p)nα−kP(OA

T |κ+ k ; β)

Notice that A only send an offer to a β if there is some spare capacity left after

going through all the α applicants. The maximum spare capacity available

for β students in the last period is nα which occurs when all the α students

randomising between W ∗
T−1 and EB

T−1 pick EB
T−1.† Moreover, the β student

who played W ∗
T−1 is in competition with all the β students in state (T ;T ).

As such : ∀k ∈ {0; . . . nα} P(OA
T |κ+ k ; β) < (P(OA

T |κ + k). Thus playing

W ∗
T−1 as a β student at time T − 1 will yield a strictly lower payoff than

playing W ∗
T−1 as an α student i.e P(OA

T |β) < P(ΩA).

Now let us extend to a more general case of playing W ∗
t ∀t

E(U(W ∗
t )) =

T−t−1∑
i=1

(
1

T − t
VAP(OA

T−t+i|β)
)
+

1

T − t
P(OA

T |β)VA

Notice that if T − t + i < T ∗ then P(OA
T−t+i|β) = 0. Before the critical

period T ∗ all the α students play W ∗ and A knows it. As such there is no

reason to send an offer to a β student. The β students can only hope to

receive an offer from A once the critical period T ∗ is reached, and if a higher

than expected number of alpha students randomise in favour of EB
t . Thus

P(OA
t |β) < 1. Knowing that P(OA

T |β) < P(ΩA) we can conclude that playing

W ∗
t ∀t ≥ T ∗ as a β student at time T − 1 will yield a strictly lower payoff

than playing W ∗
t ∀t ≥ T ∗ as an α student.

To conclude, in en equilibrium where α students play mixed strategies in any

†In the event that α students start randomising before time T − 1 any spare capacity
would be immediately filled with β students in earlier periods
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period where α students mix between EB
t and W ∗

t , β students prefer to play

EB
t . In any period where all alpha students play W ∗

t , the expected utility of

playing W ∗
t for βs is even lower than when alpha students start mixing. As

such β students never play W ∗
t ∀t.

B.2.4 Proof of property 4

∀t > T ∗ α student plays W ∗
t and thus will never end up with university A.

The number nmiss of α students who will never apply to A is an algebraic

series:

if : T ∗ < T

nmiss =
T−T ∗∑
i=1

(i− 1)nα

nmiss =
T − T ∗

2
(T − T ∗ − 1)nα

Because in any equilibrium the probability of A being fully filled with α

students cannot be zero, this implies that the number of missing A students

cannot bring the number of A applicants below CA. Since (T − 1)Tnα <

CA < T 2nα, nmiss is bounded from above by Tnα. Notice that if T = 6 and

T ∗ = 2, nmiss = 6nα. So the game with 6 periods does not fully unravel.

Increasing the number of period T by one while keeping T ∗ = 2 violates the

inequality as well. By recurrence, the partial unraveling holds for all values

of T .

B.2.5 Proof of theorem 5

This is a generalization of theorem 4 and parts of its proof (B.2.4). Instead

of using the upper bound for nmiss, the true difference ∆CA between the

86



number of α and the capacity of A is used.

∀t > T ∗ α student plays W ∗
t and thus will never end up with university A.

The number nmiss of α students who will never apply to A is an algebraic

series:

if : T ∗ < T

nmiss =
T−T ∗∑
i=1

(i− 1)nα

nmiss =
T − T ∗

2
(T − T ∗ − 1)nα

Because in any equilibrium the probability of A being fully filled with α

students cannot be zero, this implies that the number of missing A students

cannot bring the number of A applicants below CA. Thus:

nmiss ≤ ∆CA

T − T ∗

2
(T − T ∗ − 1)nα ≤ ∆CA

(T − T ∗)2 − (T − T ∗)− 2∆CA/nα ≤ 0

⇐⇒
1−

√
1 + 8∆CA/nα

2
≤ (T − T ∗) ≤

1 +
√

1 + 8∆CA/nα

2

Since 0 < T ∗ ≤ T we can integrate these constraints back into the inequality

above:

(T − T ∗) ≤ Min
{
1 +

√
1 + 8∆CA/nα

2
;T

}
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B.3 Proofs for the players’ welfare

B.3.1 Proof of theorem 6

The proof is by construction. Let S be the equilibrium of a game with

parameters T , cA, cB, VA, nα, nβ and an exploding offer of duration d = 0.

Let T ∗ be the critical period associated with equilibrium S.

The notations κ and η from the proof of theorem 4 will be reused in this

proof. In equilibrium S the number η of α students who will enroll in B

before the last period is
∑T−T ∗

i=1 (i − 1)nα. In equilibrium S there are κ

students of type α who will be competing for sure for a seat in A in the

last period. These are alpha students in state (T ;T ), all the ones in states

(T ;x) ∀x < T ∗ and either all the α students from state (T ;T ∗) (equilibrium

is played in pure strategies) or a random number of them. If the num-

ber of α students is random this implies a randomisation with probability

p such that U(EB
T−1) = 1 = E(W ∗

T−1) where E(W ∗
T−1) is a function of κ and η.

Let S ′ be an equilibrium candidate for the game with parameters T , cA,

cB, VA, nα, nβ and an exploding offer of duration d′ ≥ 1. If T ′∗ = T ∗, then

there are η′ students of type α who will enroll in B before the last period.

η′ =
∑T−T ∗−d

i=1+d (i− d− 1)nα. Notice that η = η′.

Following the same logic, there are κ′ students of type α who will be com-

peting for sure for a seat in A in the last period. These are all the α students

in state (T ;x) ∀x ≥ T − d, all the ones in states (T ; y) ∀y < T ∗ − d and

either all the α students from state (T ;T ∗−d) (equilibrium is played in pure

strategies) or a random number of them.
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This means that in the equilibrium candidate S ′ in period T ′∗ = T ∗, the α

students face the exact same randomization problem than in S. Thus they

behave identically.

B.4 Proofs of the extended model

B.4.1 Proof of theorem 7

It is a straightforward reuse of the proof of theorem 3. Since P(ΩA) is the

same for all αi students the behaviour of each individual αi subgroup of

students is similarly structured:

• Let the offer from B expire before a critical period

• Enroll in B instead of waiting for an answer from A after the critical

period.

• Either let the offer expire or randomise during the critical period.

Because the utility of each subgroup of αi is different the critical periods may

be different. However, because of lemma B.2.1, the critical periods will be

ordered.

B.4.2 Proof of the corollary

Let there be two α students named i and j. Let us assume without loss of

generality that student i played EB
t while student j played W ∗

t+k with k > 0.

Either:

1. Students i and j have the same sub-type

2. Student i has a higher sub-type than student j
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3. Student j has a higher sub-type than student i

If both students have the same subtype then this is a contradiction as once

at least one student of a give subtype has played EB then all students of the

same subtype in a later period must play EB as well.

If student i has a higher subtype than student j then at every point in the

game E(Uαi
(W ∗

t )) > E(Uαj
(W ∗

t )). Thus if the student i plays EB
t then all

students that have the same subtype as student j will play EB at time t.

As stated above, if at least one student of a given sub-type plays EB all the

students of the same sub-type must play EB in every subsequent period. We

reach a contradiction.

The only option left is student j has a higher sub-type than student i. Which

is possible. You simply need to have a Vαi
sufficiently high such that student

i prefers to enrol while student j prefers to let the offer explode.
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Appendix C

Proofs of chapter 3

C.1 Proof of property 6

The proof is straightforward : Take any menu between the small one and

the big one. It will be filtered to a terminal menu. Either the terminal

menu is between the small and the big menu => The chosen alternative

is still acceptable and is preferred to anything else. Or, the terminal menu

is smaller than the small one and possibly disjoint. Then it means some

alternatives in the small menu were eliminated i.e unacceptable. However,

if they are unacceptable they must have been eliminated from the smaller

menu as well. Thus the chosen alternative is still acceptable at this terminal

menu.

Proof of the expansion : A is chosen in the two menus thus is acceptable. It

will still be acceptable in the union of the two menus. The joined menu will

be filtered to a terminal menu. Apply the same reasoning as above to get

the proof.
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C.2 Proof of property 7

The proof is by contradiction. Let us assume a preference reversal generated

by a swap of two irrelevant alternative that are both identically unacceptable

or both acceptable all the time. Then the terminal root of these two nodes has

the same cardinality and deduct that there cannot be a preference reversal.

C.3 Proof of the graph shape

Let us assume there exist a rational filter graph G(V ;E) that has at least

one circle. This circle either:

• Has two vertices/menus of the same cardinality connected by an edge.

This contradicts the assumption that the graph is a rational filter.

• Does not have two vertices/menus connected by an edge.

In the second case let us select one of the vertex/menu m in the cycle with

the highest cardinality without loss of generality. This vertex has an edge

with an other vertex m′ ⊂ m. Because both m and m’ are in a circle, there

is an other path linking m and m’. Thus ∃m′′ ⊂ m such that {m;m′′} ∈ E.

This vertex does not comply with the definition of the vertices of a rational

filter graph.

Since no rational filter graph can have a circle. therefore, it is a forest.

C.4 Proof of lemma 1

Let us assume the menu with the smallest cardinality is not unique. In this

case ∃m′ ∈ T such that there is a path between m and m′. This path has to

go through a vertex n such that |n| > |m|. n will have a link to at least two

vertices/menus that link to smaller menus in contradiction to the definition
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of a rational filter graph.

C.5 Proof of property 8

⇒ Let A be a set of alternatives. Let C : 2A → A ∪ 0 be a choice function

satisfying CAAA. Thus C = c ◦ f as in section 3.2. Let G be a rational filter

tree constructed using the sets Ui provided by the filter functions associated

with the choice function C. It is possible to construct such a tree since

∀i < j; Uj ⊆ Ui.

Let m;m′ ∈ 2A two different menus in the same tree T of G with m being

the root of this tree. Thus m ⊂ m′. Either {m,m′} ∈ E or there exist

a path between m and m’. In either case f(m) = f(m′) = m. Therefore

C(m) = c(f(m)) = c(m) and C(m′) = c(f(m′)) = c(m). So C satisfy

invariance along a tree.

Let Πi an element of the homogeneous tree partition of G. Either Πi includes

a single tree, in this case the image set of Πi by C is a single element of A and

C trivially satisfies P.WARP over Πi. Or Πi includes more than one tree. In

this case let m and m′ be the root of two trees in Πi. |m| = |m′| since they

are roots of two trees in the same element of an homogeneous tree partition.

Thus C(m) = c|m|(m) and C(m′) = c|m|(m
′). Because ≻|m| is a complete

transitive and acyclic ordering, by extension any menus in the trees of m and

m’ will satisfy WARP since C is constant over a single tree. Thus C satisfies

WRAP over all elements in Πi.
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