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Abstract 

Bashir A. Mohamed, Beatson Institute for Cancer Research, University of Glasgow, G61 1BD  

Sustaining proliferative signalling and loss of translational control is arguably the most 

fundamental trait of cancer cells, enabling tumour growth and metastatic dissemination. 

Transfer RNAs (tRNAs) have long been considered abundant “housekeeping” RNAs, 

functioning to decipher the universal genetic code. However, exhaustive analyses have 

implicated tRNA participation in a host of regulatory networks including the cellular stress 

response and protein synthesis. Recent findings suggest that the expression of tRNAs for 

synonymous codon usage is dependent on the differentiation/proliferation status of the cell 

and are coordinated with changes in translation. Although the molecular mechanisms that 

govern these changes are yet to be elucidated, cellular tRNA composition potentially 

introduces an additional layer of translational control. tRNAs are the most post-

transcriptionally modified RNA species, with well over 50 unique modifications identified in 

eukaryotes. Consequently, isoacceptor identification and the measuring of the tRNA pool 

using next generation sequencing has long been an area of interest, with many attempts 

being made in literature. Using the Escherichia coli dealkylating enzyme AlkB and the novel 

tRNA high throughput sequencing methodology ALICE-tRNA-seq, we have developed a 

methodology that can accurately measure relative tRNA pools in vitro and in vivo. We show 

how other published tRNA sequencing protocols show bias towards tRNA sub populations, 

with our method showing a more realistic distribution across all tRNAs. We also show 

relative distribution changes in cellular and genetically modified mouse models of cancer, 

opening up a high resolution approach to establish the role of tRNAs in translational control 

and cell fate decisions.   
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Chapter 1: Introduction 

1.1 The central dogma of molecular biology 

The central dogma, namely, the transcription of DNA to RNA in the nucleus and its 

translocation to the cytoplasm to be translated into protein has been a central theme in the 

field of molecular biology for over 50 years. Over the years, the complexity of this theme 

has given rise to topics such as epigenetics, transcriptional control, post-transcriptional 

regulation, translational control and post-translational control. The development of the field 

from its inauguration to now has seen it move from the understanding that gene expression 

is only controlled at the level of transcription, to the idea that protein output can be 

regulated at all levels. This complexity is further exemplified by the host of technologically 

advanced high-throughput sequencing methodologies that exist today. These include but 

are not limited to; whole-genome sequencing (a method used to analyse the entire 

genome), ChiP-sequencing (chromatin immunoprecipitation; a method used to identify 

genome wide protein-DNA binding sites), methylation sequencing (a method used to 

identify cytosine methylation sites genome-wide), RNA-sequencing (a method used to 

measure RNA abundance), ribosome profiling (a method used to profile ribosome binding), 

iCLIP (individual-nucleotide resolution Cross-Linking and immunoprecipitation; a method 

used to identify RNA-protein interactions). It is clear today that the dynamic and complex 

nature of transcriptional and translational control to regulate cellular homeostasis and cell 

fate decisions allows for the fine-tuning of protein synthesis, to meet the differing demands 

of every type of cell and tissue. 
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1.2 The need to study translational control 
 

The final step of the gene expression pathway is the translation of mRNAs to proteins and 

represents the synthesis of the proteome from genomic information. Failure to regulate this 

step is the hallmark of many diseases, ranging from neurological disorders (Buffington et al., 

2014), metabolic disorders (Morita et al., 2014), immunodeficiency (Lucas et al., 2016; 

Piccirillo et al., 2014) and cancer (Bhat et al., 2015; Truitt and Ruggero 2016; Robichaud et 

al., 2019). 

Uncontrolled and sustained proliferation is a well-established hallmark of cancer (Hanahan 

and Weinberg, 2011). With 20% of cellular energy being dedicated to a host of cationic 

pumps, 15% to DNA replication and transcription and 20% to protein synthesis, a 

considerable amount of resources is dedicated to protein output (Buttgereit and Brand, 

1995). Moreover, further cellular energy is dedicated to the translation of mRNAs, since the 

majority of transcription is targeted towards the synthesis of mRNAs encoding ribosomal 

proteins and ribosomal RNAs (rRNAs) (Rolfe and Brown, 1997). Therefore, highly malignant 

cancers further increase protein synthesis mediated energy consumption due to their 

requirement of increased ribosomal content and translation, in order to maintain 

continuous and rapid proliferation (Silvera et al., 2010). Since most tumour cells suffer from 

conditions such as nutritional deprivation and hypoxia (conditions that normally result in the 

downregulation of mRNA translation), they manage to find a way to bypass traditional 

homeostasis and uncouple translational regulation during the transformation of the tumour 

(Robichaud et al., 2019). The proliferation, survival and metastasis of cancer cells, as well as 

their ability to hijack and change the translational landscape of the cell, makes the study of 
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translational control an important factor in the identification and development of effective 

therapeutics.  
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1.3 An overview of eukaryotic translation 

 

During the process of mRNA transcription, RNA triphosphatase catalyses the removal of the 

γ-phosphate from the 5’ triphosphate, after approximately 30 nucleotides are transcribed 

(Ramanathan et al., 2016). This results in the transfer of guanosine monophosphate (GMP) 

on to the transcribing transcript from guanosine triphosphate (GTP). The methylation of the 

N7 amine of the newly formed cap then results in m7G-capped mRNA (Ramanathan et al., 

2016). Once the newly transcribed mRNA successfully undergoes post transcriptional 

modifications such as splicing and polyadenylation, the mRNA translocates to the cytoplasm, 

where it can be translated by the ribosome (Bentley, 2014). 

Translation of the mRNA is generally categorised into four steps; translation initiation, 

elongation, termination and ribosome recycling (Bhat et al., 2015). During translation 

initiation, ribosomal components involved in protein synthesis recognise the start codon 

and assemble (Sonenberg et al., 2009). The translation initiation step predominantly 

regulates protein synthesis (Richter and Sonenberg, 2005). Aminoacyl transfer RNAs 

(charged tRNAs; i.e. tRNAs bound to their designated amino acids), with the correct 

anticodon decoding the nucleotide sequence of the mRNA, then shuttle the required amino 

acid to the ribosomal complex (Agris, 2004). The first required aminoacyl-tRNA is initiator 

methionine (iMet-tRNA), which binds to GTP-bound eukaryotic initiation factor 2 (eIF2), via 

the methylated adenosine at position 58 of iMet-tRNA. eIF2-bound iMet-tRNA then proceed 

to assemble with the 40S ribosome subunit (with iMet-tRNA in the P-site), eIF1, eIF1A, eIF3, 

and eIF5, resulting in the formation of the 43S pre-initiation complex (Agris, 2004). 
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The aforementioned m7G-cap on the 5’ end of the mRNA proceeds to recruit the eIF4F 

complex, which consists of the DEAD-box helicase eIF4A, the cap binding protein eIF4E and 

eIF4G which enables cap-binding (Ramanathan et al., 2016). The eIF4G protein can bind 

polyA binding protein (PABP), causing the mRNA to circularise (Walsh et al., 2008). The eIF4F 

complex then recruits the 43S pre-initiation complex, through its interaction with eIF3, and 

proceeds to scan the 5’ untranslated region (5’ UTR) of the mRNA until is identifies an AUG 

codon (start codon). Upon recognition of the AUG start codon, eIF2 and other initiation 

factors are released from the mRNA, resulting in the recruitment of the 60S ribosomal 

subunit (Hinnebusch et al., 2016). The fully assembled ribosome then proceeds to translate 

the coding sequence of the mRNA, recruiting tRNAs that can decode the coding sequence, 

bringing with it the correct amino acid. Individual amino acids are covalently bound 

sequentially, forming the resultant polypeptide chain (Jackson et al., 2018) (Figure 1.1).         

Translation initiation is considered to be the rate limiting step of translation for most mRNAs 

(Hinnebusch et al., 2016). Therefore, cell fate determination, cancer development and 

progression are often associated with the altered expression (due to these proteins being 

downstream of oncogenic signalling) or mutations in the genes of the initiation factors 

involved in this process (Jackson et al., 2018).  

  



eIF3

eIF4F complex 43S pre initiation complex

A B

C

D

E



Figure 1.1 Overview of eukaryotic translation. (A) Schematic of the eIF4F complex which 
consists of the DEAD-box helicase eIF4A1, the cap binding protein eIF4E and eIF4G which 
enables cap-binding. (B) Schematic of the 43S pre-initiation complex. The first required 
aminoacyl-tRNA is initiator methionine (iMet-tRNA), which binds to GTP-bound eukaryotic 
initiation factor 2 (eIF2), via the methylated adenosine at position 58 of iMet-tRNA. eIF2-
bound iMet-tRNA then proceed to assemble with eIF3, and eIF5, resulting in the formation 
of the 43S pre-initiation complex (C) eIF4F recruits the 43S pre-initiation complex (D) 
Scanning of the mRNA until recognition of the AUG start codon. (E) Recruitment of the 60S 
subunit and the decoding of the coding sequence.    
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1.4 tRNA biology and its significance in translational control    
 

Upon the discovery of the universal genetic code, tRNAs were understood to decode their 

cognate base pairs on the mRNA sequence and deliver the required amino acids to the A-

site of the ribosomes, enabling polypeptide synthesis. After comprehensive studies on the 

structure of tRNAs and their complexes, it was thought that the understanding of tRNA 

biology was complete (Schimmel, 2017). However, advances in technologies such as high-

throughput sequencing (in particular, RNA-seq and proteomics), led to the discovery of the 

role of tRNAs in adaptive protein synthesis (Li et al., 2011; Javid et al., 2014) and their ability 

to function as non-coding RNAs in a multitude of regulatory networks (Pekarsky et al., 

2016). Furthermore, numerous disease states have been found to coincide with abnormality 

in aspects of tRNA biology, including tRNA mutations and mutations to the auxiliary proteins 

that are pertinent to tRNA biogenesis and modifications (Abbott et al., 2014; Blanco and 

Frye, 2014; Schon et al., 2012; Suzuki et al., 2011). This has resulted in the increased 

attention into tRNA biology to try and establish the emerging roles of tRNAs in adaptive 

translation, signalling dynamics and disease.    
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1.4.1 tRNA biogenesis 

 

The biogenesis of tRNAs consists of many steps including transcription, 5’ leader removal, 3’ 

trailer trimming, the splicing of introns, the addition of 3’ CCA residues and the covalent 

modification of a host of nucleoside residues (Phizicky and Hopper, 2010). 

In the nucleoplasm, the transcription factor TFIIIC binds to the intragenic A-box and B-box of 

tRNA genes (which encodes the D-stem and T-stem of the tRNA), resulting in the 

recruitment of the transcription factor TFIIIB to the upstream region of the tRNA gene 

(Kirchner and Ignatova, 2015). TFIIIB consists of three subunits; TBP (TATA-binding protein), 

BDP1 (B-related factor 1) and BRF1 (B double prime 1) and directs the recruitment of RNA 

polymerase III (pol III), resulting in the transcription of the tRNA (Kirchner and Ignatova, 

2015).  

Pol III is negatively regulated by the protein Maf1, which was shown to be involved in tRNA-

mediated nonsense suppression in yeast (Murawski et al., 1994; Moir et al., 2006). Maf1 has 

been shown to be conserved throughout eukaryotes, however, Maf1 has been observed to 

negatively regulate Pol I and Pol II transcription in mammalian cells (Pluta et al., 2001; Reina 

et al., 2006). Maf1 binds directly to the TFIIIB transcription factor (Desai et al., 2005; Rollins 

et al., 2007) and Pol III (Gavin et al., 2006; Oficjalska-Pham et al., 2006). Maf1 is regulated 

via the mTOR and PKA pathways via phosphorylation by the PKA kinase or the mTOR-

dependent kinase Sch9 (Huber et al., 2009; Lee et al., 2009; Wei et al., 2009). 

Pre-tRNAs that are abnormally transcribed, (i.e. missing 5’ leaders and/or 3’ trailers), are 

eliminated during the nuclear surveillance pathway via the degradation of their 3’ end by 

RNase Z in the nucleus (Vogel et al., 2005). Furthermore, tRNAs that lack the required 
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modifications in the cytosol are degraded via their 5’ end by the endonuclease RNase P 

(Walker and Engelke 2006).        

After transcription of the required tRNAs, 5’ end processing follows to remove the 5’ leader 

sequence. This is achieved by the endonuclease RNase P, a ribonucleoprotein (RNP) 

consisting of 10 protein subunits in addition to its RNA component (Walker and Engelke 

2006). 

tRNA 3’ end processing follows, where the 3’ trailer sequence is removed from the original 

transcript in order to facilitate the addition of the CCA sequence to the 3’ end. This is 

achieved by the enzyme RNase Z (also known as tRNase Z), which recognises the N73 

discriminator base at the 3’ end of tRNAs and cleaves prior to the addition of the CCA bases 

(Vogel et al., 2005). Interestingly, RNase Z has been shown to have an inability to cleave 

tRNAs with a mature CCA end, giving the CCA end an anti-determinant characteristic (i.e. an 

inability to bind its cognate amino acid) (Mohan et al., 1999; Li de la Sierra-Gallay et al. 

2006). This is still an area of tRNA biology yet to be fully elucidated. Although the function of 

RNase Z in tRNA 3’ maturation is well documented (as well as its association with γ-tubulin), 

the link between the RNase Z gene and the increased risk of prostate cancer is still unclear 

(Tavtigian et al., 2001). 

tRNA introns exist on a minority of tRNA genes and are typically found between nucleotides 

37 and 38 of the tRNA (Phizicky and Hopper, 2010). Genomic sequencing has revealed that 

introns exist on at least one family of tRNA genes in all organisms and is a conserved feature 

(more information on this can be found at the Genomic tRNA Database, 

http://gtrnadb.ucsc.edu; Chan and Lowe, 2009). Splicing is catalysed by the tRNA splicing 

endonuclease (TSEN) and the process is inherently simpler than that of spliceosome-
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mediated mRNA splicing. This is in part due to the fewer number of proteins involved in the 

process (Popow et al., 2012). TSEN cleaves intron sites resulting in a 3’ tRNA half with a 5’ 

hydroxyl group (5’-OH) and a 5’ tRNA half with a 3’ 2’–3’ cyclic phosphate. tRNA ligase then 

ligates the two ends, and the tRNA is ready for CCA addition (Popow et al., 2012).  

tRNA nucleotidyltransferase (CCA-adding enzyme) is responsible for the addition of CCA 

residues to the 3’ end of tRNAs (Lizano et al., 2007). tRNA nucleotidyltransferase is a unique 

RNA polymerase due to its ability to synthesize the CCA sequence, without the need of a 

nucleic acid template (Lizano et al., 2007). The CCA sequence on the 3’ end serves two 

functions. Firstly, it is the site where aminoacyl tRNA synthetases (aaRSs) covalently bind the 

cognate amino acid to allow shuttling to the translating ribosome (Ibba and Söll, 2000). 

Secondly, it is only after charging the tRNA that it is allowed to enter the A-site of the 

ribosome, therefore fine-tuning its interactions with other structural elements, constraining 

its structural features (Giegé et al., 2008).    
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Figure 1.2 Overview of tRNA biogenesis. In the nucleolus, the transcription factor TFIIIC 
binds to the intragenic A-box and B-box of tRNA genes (which encodes the D-stem and T-
stem of the tRNA), resulting in the recruitment of the transcription factor TFIIIB to the 
upstream region of the tRNA gene. TFIIIB consists of three subunits; TBP (TATA-binding 
protein), BDP1 (B-related factor 1) and BRF1 (B double prime 1) and directs the 
recruitment of RNA polymerase III (pol III), resulting in the transcription of the tRNA gene. 
Pre-tRNAs are then processed (addition of the 3’ CCA), spliced and modifications are 
added (green circles). tRNAs then proceed to be aminoacylated (blue circle is amino acid) 
before being exported into the cytoplasm (Adopted from Kirchner and Ignatova, 2015). 
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1.4.2 tRNA structure 

 

The canonical tRNA has 76 nucleotides (Rich and Raj-Bhandary, 1976). It is characterized by 

its classical clover-leaf like secondary structure that can range from 76-93 nucleotides in 

length, with the 3’ end having the newly added CCA sequence. Starting from the tRNAs 3’ 

end, the four arms of the clover-leaf structure are called the acceptor loop, the TΨC loop (Ψ 

represents pseudouridine – often referred to as the T loop), the anticodon loop and the 

dihydrouridine loop (D loop) (Holley et al., 1965). When the tRNA folds into its tertiary 

structure, it forms a 12 base pair TΨC helix, resulting from when the TΨC loop stacks onto 

the acceptor loop, forming an L-shaped structure (Cramer et al., 1969). Furthermore, the 

anticodon loop stacks onto the D loop, forming a 10 base pair stem, resulting in the 

formation of the anticodon/D-loop dumbbell (Crothers et al., 1972). 

The newly formed tertiary structure now has two domains, which are joined together via 

non-canonical pairing of conserved nucleotides from the D-loop and TΨC loop and are 

joined at right angles (Schimmel, 2017). These conserved nucleotides are essential since 

they are involved in this intricate tertiary structure formation, resulting in the stabilization 

of the final L-shaped tertiary structure that is recognised by the ribosome (Schimmel, 2017). 

tRNAs that have a length greater than 76 are often due to the variable region of the tRNA. 

However, these excess bases do not interfere with the L-shapped tertiary structure 

interactions, since they bulge out the back of the tertiary structure (Sigler, 1975). 

Interestingly, the acceptor stem that attaches the amino acid and the anticodon (which 

decodes the mRNA codons) are segregated, allowing for the decoding of the mRNA on one 

end of the tRNA and polypeptide synthesis on the other within the ribosome (Schimmel, 

2017). 



Figure 1.3 tRNA structure. (A) Canonical secondary structure of the tRNA (tRNA-alanine-
AGC used as an example). It is characterized by its classical clover-leaf like secondary 
structure. Starting from the tRNAs 3’ end, the four arms of the clover-leaf structure are 
called the acceptor loop, the TΨC loop, the anticodon loop and the dihydrouridine loop 
(D-stem loop). 3’ terminal CCA is coloured yellow and the anticodon is coloured orange. 
(B) Tertiary structure of the tRNA. The tertiary structure has two domains, which are 
joined together via non-canonical pairing of conserved nucleotides from the D-loop and 
TΨC loop and are joined at right angles. Adopted from Schimmel, 2017   

B
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1.4.3 tRNA complexity: isoacceptors, isodecoders, degeneracy and near-cognate binding 

 

Of all RNAs expressed, tRNAs are by far the most abundant (Cantara et al., 2011). Although 

the reason why individuals vary in the number of tRNA genes is yet to be elucidated (Iben et 

al., 2014). In the human genome, there are approximately 500 tRNA and tRNA gene-like 

sequences (Parisien et al., 2013; Abe et al., 2014). With over half of these expressed genes 

being validated (and more will likely be validated in the future), these expressed genes 

categorise into 300 different cytoplasmic tRNA sequences and 22 mitochondrial tRNA 

sequences, which make up the cytoplasmic and mitochondrial tRNA pools respectively 

(Schimmel, 2017). This therefore results in there being at least 1 tRNA species for every 

amino acid (see Table 4.1).  

tRNAs are generally referred to in two ways; tRNAs that decode the same amino acid but 

only differ in the anticodon sequence (isoacceptors), and tRNAs that share the same 

anticodon sequence, but have different body sequences (isodecoders). 

During translation, the function of the tRNA is to deliver amino acids to the ribosome so 

they can be added to the growing polypeptide chain. This is achieved by tRNAs decoding the 

coding sequence of the mRNA and forming a correct mRNA codon-tRNA anticodon 

interaction. Due to the degeneracy of the genetic code, more than one codon can code for 

the same amino acid (with the exception of methionine and tryptophan) (Cantara et al., 

2011). Isoacceptors are defined as tRNAs that differ in (but not exclusive to) the anticodon 

sequence, but deliver the same amino acid (Goodenbour and Pan, 2006). In higher 

eukaryotes, there is also the presence of isodecoders – tRNAs that have the same anticodon 

sequence but differ in body sequence (Geslain and Pan, 2010).     
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The complexity of tRNAs is multiplied further by the existence of the tRNA’s own 

degeneracy rules. The adenosine to inosine modification that exists at position 34 of tRNAs 

(wobble position) that encode alanine, arginine, isoleucine, leucine, proline, serine, 

threonine and valine all utilise non-cognate base pairing to decode codons (Maria and 

Arimbasseri, 2017). This is due to the fact that all of these amino acids can be encode by a 

codon, whose cognate anticodon containing isoacceptor is not expressed in the genome. 

For example, the mRNA codon GCC can only be decoded by an A34I edited tRNA-Ala-AGC, as 

no tRNA with the anticodon GGC is expressed in humans. Inosine has the ability to base pair 

with adenosines, cytosines and uridines and so an IGC anticodon would be able to decode 

either GCC, GCU or GCA mRNA codons. The second degeneracy rule that tRNAs employ is 

G:U base pairing (between the tRNA wobble position and the 3rd position of the mRNA 

codon) (Stadler and Fire, 2011). For example, CAU codons, which code for histidine, have to 

be decoded by tRNA-His-GUG as there is no tRNA expressed in the human genome that 

contains the anticodon AUG . Therefore, CAU codons would be decoded by tRNA-His-GUG 

by employing G:U base pairing at the wobble position. More examples of these can be 

found in Table 4.1. 

Another form of near-cognate binding comes in the form of tRNA selection at the ribosomes 

(Tarrant and Von der Haar, 2014). tRNAs are translocated to the ribosome via the 

phosphorylation of eIF1A, selecting tRNAs carrying the correct amino acids to the A-site of 

the translating ribosome (Rodnina and Wintermeyer, 2009). However, there are instances 

when incorrect amino acids are delivered due to near-cognate complementarity between 

the tRNA anticodon and the mRNA codons (usually when the second nucleotide is not 

completely complementary), resulting in increased dwell time in relation to the translating 

ribosome (Tarrant and Von der Haar, 2014). Near-cognate binding at the ribosome A-site 
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has been shown to decrease translational efficiency (Pape et al., 1999). Furthermore, the 

ratio between cognate and near-cognate tRNA abundances have been an area of immense 

interest in the tRNA community, as they could play a significant role in the determination of 

codon decoding times (Tarrant and Von der Haar, 2014). The relationship between 

cognate/near-cognate ratios in relation to tRNA abundance and translational efficiency 

could yield a regulatory function within the cell, and has therefore become a significant area 

of interest.    
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1.4.4 tRNA modifications  

 

With the majority of discovered, modified human nucleosides being attributed to tRNAs 

(over 90), the complexity of their participation in a host of regulatory networks comes as no 

surprise (Cantara et al., 2011; Saikia et al., 2010). These modifications can range from those 

that are present in every tRNA, such as dihydrouridine (D) or pseudouridine (Ψ), to others 

that are restricted to a particular family or group of tRNAs (Schimmel, 2017). Studies 

conducted on human HEK293T cells and using mathematical models estimated that the 

average human tRNA consists of approximately 11-13 modified bases (Saikia et al., 2010). 

Furthermore, others have shown that these modifications are not “all or nothing” with 

variations in modifications shown to range from 10%-80% depending on the location of the 

base and the type of modification being observed (Clark et al., 2016). These modifications 

often determine whether a tRNA molecule is able to participate in translation or any of its 

additional functions (such as translocation and tRNA regulation) (Schimmel, 2017). 

Therefore, a tRNA base being modified is a binary event – the base can either be modified or 

not. This results in the potential for a host of microspecies existing within a single cell. For 

example, if the 13 reported modifications that, if absent, result in a certain disease 

(reported by Torres et al., 2014, Frohlich et al., 2016) were to be considered, the 

computation of the number of possible tRNA modification combinations is 8192 (213). 

Given that there are approximately 60 million tRNA species in a single cell (Lodish and 

Darnell, 1995), then it would seem at first glance that the large collection of microspecies 

calculated could be accommodated for many times over. However, if the same calculation 

was to be performed for every isodecoder, then the complexity would build rapidly 

(Schimmel, 2017). 
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If the statistical distribution of all possible combinations of modified bases across all tRNAs 

were to be considered, the number of hypothetical possibilities would be incalculable, and 

would not be able to be sustained in an entire organism, let alone a single cell. If one was to 

consider that there were 213 combinations of modified microspecies for a single amino 

acid-specific tRNA (i.e. considering all possible isodecoders per amino acid), then the total 

number of combined modifications would easily surpass 10100 (213 x 212 x 211 …). This 

highlights some of the immense complexities that exist in tRNAs and it is no surprise that 

they are the source of a lot of unanticipated biology (Schimmel, 2017). 

The biggest challenge in the tRNA modification field is the inability to accurately measure 

modifications at a single nucleotide resolution. tRNA modifications have been identified 

through two dimensional thin layer chromatography (2D-TLC) (Keith, 1995). Here, a 

combination of P1 nuclease, venom phosphodiesterase and RNase T2 is used to digest the 

tRNAs into their individual nucleosides. Then, the digested nucleosides are placed on a 2D 

chromatogram and all nucleosides separate according to their chemical characteristics, 

depending on the separating solvents used. The limitation to this technique is that you 

would either have to know what chemical modifications you are intending to find, or would 

have to use trial and error to elucidate an observed chemical position on the 

chromatogram. Although you could in theory, calculate the relative modification differences 

between two biological conditions using input concentration and absorption, you would 

never be able to work out which tRNA harboured the modification and at what position.  

More modern techniques in elucidating tRNA modifications would be the use of high 

performance liquid chromatography-coupled mass spectrometry (HPLC-MS) (Su et al., 

2014). This group used yeast (Saccharomyces cerevisiae) that was stress induced using 
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hydrogen peroxide to quantitatively measure the modification profile of tRNAs in wild-type 

and stress conditions. Briefly, total RNA was extracted from yeast cells and the tRNAs were 

purified using reverse phase HPLC (due to tRNA’s unique chromatographic signature). Once 

tRNAs were purified, they were hydrolysed into their individual nucleosides using a 

combination of benzonase, phosphodiesterase and alkaline phosphatase before being 

loaded onto a tandem triple quadruple mass spectrometer (QQQ-MS). Here, nucleosides 

were ionised and run through a series of quadrupoles to separate the nucleosides according 

to their chemical characteristics, before being detected and analysed using the high 

sensitivity dynamic multiple reaction monitoring (DMRM). Relative proportions of modified 

nucleosides can then be calculated, to give you relative quantitative differentials between 

biological conditions. Su et al identified 25 tRNA ribonucleoside modifications in S. 

cerevisiae, and claimed a direct link between the translation of stress related proteins and 

stress induction. Although HPLC-MS is far more advanced and offers high sensitivity 

quantification in comparison to 2D-TLC, it can only output global modification differentials 

between biological conditions and does not have the resolution to tell you the type of tRNA 

that is modified and at what position.  

Zheng et al attempted to use a next generation sequencing approach to solve the limitation 

of tRNA resolution in identifying modified tRNA bases using DM-tRNA-seq (Zheng et al., 

2015). For humans, only a select number of modifications and their positions on the tRNA 

are known (Saikia et al., 2010). tRNAs have traditionally been difficult to sequence due to 

modifications on the Watson-Crick face of tRNAs (i.e. modifications that exist on the region 

where complementary base pairing occurs - such as methyl-guanosine, methyl-adenosine 

and more) (Motorin et al., 2007). This poses a problem because the concept behind next 

generation sequencing is the production of a cDNA library, which is then amplified using PCR 
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and subsequently sequenced. Due to modifications present on the Watson-Crick face of 

tRNAs, traditional reverse transcriptases like SuperScript III would stall when they reach said 

modifications. To overcome this, Zheng et al utilized a modified library preparation in order 

to identify the positions of modified bases and to which tRNA group they belonged to. 

Firstly, they used the Escherichia coli enzyme AlkB to demethylate the methyl groups of 

modifications that existed on the Watson-Crick face of tRNAs, an enzyme originally known 

to facilitate in DNA and RNA repair (Trewick et al., 2002; Falnes et al., 2002). They also 

utilized a mutant form of AlkB (D135S), where an aspartic acid was mutated to serine at 

position 135 (coinciding with the active site of the protein). The shorter side chain of serine 

was thought to accommodate bigger modifications like the dimethyl-guanosine, a common 

modification found in tRNA sequences (Zheng et al., 2015). Then, tRNAs were prepared for 

sequencing by ligating a 3’ adapter to tRNAs, using a DNA-RNA dimer. Once the DNA strand 

was ligated to the tRNA, it was reverse transcribed using a high fidelity thermostable group 

II intron reverse transcriptase (TGIRT). TGIRT attaches to the DNA-RNA dimer and uses a 

process known as template switching, to read the tRNA bases and transcribe them. When 

TGIRT reaches a modified base, it places a random nucleotide in its place instead of stalling 

like other traditional reverse transcriptases. When the cDNAs are generated, they are PCR 

amplified and sequenced. When the tRNAs are mapped, the positions where modifications 

exist would be identified as mismatches. The advantage of using a methodology like DM-

tRNA-seq is the fact that you could identify both the exact position of a modification and the 

type of tRNA it exists on, while being highly quantitative. However, its limitation is that you 

would not know what the modification is and the methodology is only as powerful as the 

known modification profiles that exist (Saikia et al., 2010).  
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In theory, the best approach to studying tRNA modifications would be the use of the Oxford 

Nanopore PromethION sequencing technology (Deamer et al., 2016). The Oxford Nanopore 

sequencing technology works by binding a motor protein to the DNA or RNA samples, which 

in turn binds to one of the thousands of nanopores in the flow cell. Once bound, the 

DNA/RNA sequence passes through an electrically resistant membrane via the nanopore 

which disrupts the current across the membrane when a voltage is applied. This disruption 

is measured and every base would have its own chemically unique signature, allowing the 

identification of the traditional bases (A/T/C/G/U) as well as modified bases (Deamer et al., 

2016). The unique aspect of the Oxford Nanopore sequencing technology is that it would 

not require any hydrolysis/digestion reaction to occur on tRNAs prior to sequencing, as it 

can sequence RNA directly. Therefore, one could determine both a potential modification, 

as well as knowing the position it occurs at and the type of tRNA it exists on. The current 

limitation with the Oxford Nanopore sequencing technology however, is the reported error 

rates in the final sequences outputted (Lu et al., 2016; Johnson et al., 2020). With a median 

error rate ranging from 5% - 20% per read, in comparison to traditional next generation 

sequencing (such as Illumina) which has a median error rate of approximately 0.5% (Manley 

et al., 2016; Johnson et al., 2020), the error rate is far too high. Perhaps as technology 

advances over the next decade, the Oxford Nanopore sequencing technology could be a real 

solution in identifying and quantifying differential tRNA modification profiles between 

biological conditions.  

  



Figure 1.4 tRNA modifications. Some of the tRNA modifications identified by Su et al., 
2014. tRNAs were identified using high performance liquid chromatography-coupled mass 
spectrometry (HPLC-MS).
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1.4.5 tRNA supply vs demand 

 

The ready to translate tRNA population has to stay dynamic for several reasons. Firstly, the 

necessity for tRNAs needs to correspond with codon usage of actively translating mRNAs 

(Dittmar et al., 2006). Secondly, the gene expression signature of the cell is dependent on 

physiological and environmental conditions, and varies from tissue to tissue. Therefore, the 

tRNA pool has to be able to dramatically change in order to meet the demands of the 

transcriptome (Rak et al., 2018). Furthermore, the codon usage in mRNAs can depend on 

the gene sets required to be translated, depending on cellular activity (Botzman & Margalit 

2011). Gingold et al highlighted this when they showed a difference in codon usage in gene 

sets associated with vertebrate cell differentiation, in comparison to proliferation associated 

genes (Gingold et al., 2014). 

The supply-to-demand ratio, i.e. the balance between tRNA availability and actively 

translating codons, seems to depend on translational efficiency and cellular wellbeing (Rak 

et al., 2018). In unicellular organisms, the choice of codons in the genome (codon demand) 

correlates highly with tRNA gene copy numbers and measurements in tRNA levels (Dong et 

al., 1996, Percudani et al., 1997). Similar correlations were observed in tissues with varying 

cellular states in higher eukaryotes (Gingold et al., 2014; Dittmar et al., 2006). Furthermore, 

others have shown that the codon usage of highly expressed genes does bias towards 

codons that match the most abundantly expressed tRNAs (Sharp & Li 1987; Kanaya et al., 

1999).    

These correlations could be explained in various ways. Firstly, the use of efficiently 

translated and optimal codons result in certain proteins being highly expressed due to 



41 
 

higher translational speeds (Sorensen et al., 1989; Gardin et al., 2014). Also, codon 

optimization may be evolutionarily driven, resulting in highly expressed genes exhibiting 

favourable codons and non-optimal codons being selected against (Frumkin et al., 2018). 

Because the efficient expression of genes is paramount to the functionality of the cell, the 

balance between tRNA availability and its coordination with transcriptomic demand also 

becomes paramount, even though the exact mechanism of how this is achieved is yet to be 

elucidated (Rak et al., 2018). Depending on the phenotypic diversion of organisms or 

lifestyle, it is possible that evolution may have optimized gene expression at the level of 

translational efficiency to match organism demand (Zaborske et al., 2014; Botzman & 

Margalit 2011; Man & Pilpel 2007; Jiang et al., 2008).     
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1.4.6 Methodologies to quantitatively measure tRNA abundance and charging  

Given the importance of tRNA availability in meeting the transcriptomic demand, a 

methodology to accurately measure the tRNA-ome has long been an area of interest. 

However, the reason for trying to measure the tRNA-ome is just as important since the 

methodologies in literature attempt to answer different questions. In general, tRNAs can be 

surveyed to investigate either abundance, modifications or charging (Figure 1.5) (Pan, 2018). 

Methodologies for measuring tRNA modifications were discussed in Section 1.4.4. To date, 

there is no accurate and unifying methodology that can be used to determine all three of 

these factors.  

Before the emergence of next generation sequencing methodologies, the traditional way of 

quantitatively measuring tRNA abundance was via the use of hybridization-based 

microarrays (Dittmar et al., 2006; Gingold et al., 2014). For the microarray approaches, 

plates with fluorescently labelled sequence probes designed against tRNA sequences (70-

80nt in length) are generated. When samples are loaded, tRNAs bind to their 

complementary sequences. Upon binding, the fluorescently labelled probe emits photons 

which can be measured and the absorption can be used to quantify relative tRNA levels 

(Dittmar et al., 2006). The limitations in using hybridization-based approaches are twofold. 

Firstly, tRNA modifications that exist on the Watson-Crick face of tRNAs can hinder 

hybridization, therefore biasing quantitation towards tRNAs that are less modified. 

Secondly, hybridization probes would not be able to distinguish tRNAs that are very similar 

in sequence. For example, the human genome has 22 genes and 15 sequences for tRNA-

alanine-AGC (Pan, 2018). Some of tRNA-alanine-AGC’s isodecoders (tRNAs with the same 

anticodon but different body sequences), only differ by 1 nucleotide. Hybridization probes 

would therefore not be able to distinguish between many isodecoders and isoacceptors 
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(Zheng et al., 2015; Cozen et al., 2015; Gogakos et al., 2017; Pinkard et al., 2020). Next 

generation sequencing methodologies were therefore developed to try and overcome the 

limitations observed in microarrays.  

As mentioned previously, tRNAs have traditionally been difficult to sequence due to 

modifications on the Watson-Crick face of tRNAs (such as methyl-guanosine, methyl-

adenosine and others) (Motorin et al., 2007). This poses a problem because the concept 

behind next generation sequencing is the production of a cDNA library, which is then 

amplified using PCR and subsequently sequenced. 

Two very similar tRNA-sequencing methodologies reported in literature are ARM-seq (Cozen 

et al., 2015) and Hydro-seq (Gogakos et al., 2017).  

In ARM-seq, Cozen et al utilized the Escherichia coli enzyme AlkB to demethylate the methyl 

groups of modifications that existed on the Watson-Crick face of tRNAs. Once tRNAs were 

demethylated, 3’ and 5’ adapters were ligated to the tRNAs and SuperScript III was used to 

facilitate reverse transcription. Once the cDNA library was generated, it was PCR amplified 

and sequenced.  

In Hydro-seq, Gogakos et al opted against using AlkB to demethylate modified bases on the 

Watson-Crick face of tRNAs. Instead, they opted to fragment the tRNAs into 20-30 

nucleotide fragments (similar to what is done in traditional RNA-seq). The rationale was that 

fragmentation would decrease the likelihood of stalling events in the reverse transcription 

stage and like traditional RNA-seq, the fragments could be used to determine which tRNAs 

were captured bioinformatically, through multiple iterations of mapping (Gogakos et al., 

2017).  
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Although ARM-seq was developed to sequence tRNA fragments, it is not a suitable 

methodology to measure global tRNA abundance due to the bias introduced by using 3’ and 

5’ adapter ligation steps (discussed in further detail in Section 3.5.3 and 3.6). Due to the 5’ 

end of the tRNA being involved in the hairpin secondary structure, access to the 5’ end of 

the tRNA becomes challenging. This has also been reported for other small RNAs with 

secondary structure based problems at their 5’ ends due to hairpins affecting library 

preparation (Liu et al., 2014; Burke et al., 2014; Lama et al., 2019). The Hydro-seq 

methodology suffers from a similar limitation to that seen in the hybridization-based 

approaches. Because the tRNAs are being fragmented (and the fragmentation process 

cannot be controlled since it uses alkaline hydrolysis), isodecoder determination becomes a 

problem since some isodecoders only differ by 1-2 nucleotides. Furthermore, if the 

fragmentation results in there being a modification halfway along the fragment, the RT step 

will still stall and those reads would automatically be discarded. Upon further examination 

of both the ARM-seq and Hydro-seq sequencing results (discussed in further detail in 

Section 3.5.3 and 3.6), it was clear that almost 60% of their reads mapped to tRNAs 

encoding three amino acids.  

QuantM-seq attempted to solve this 5’ adapter ligation bias by using an annealed adapter 

where the 5’ adapter had an overhang that would be complementary to the CCA of the 3’ 

end of the tRNA, aiding 3’ adapter ligation (Pinkard et al., 2020). Once tRNAs were 

deacylated and demethylated (using a commercial version of wild-type AlkB), the 3’ end of 

the annealed adapter was designed to have both the reverse transcriptase primer binding 

sites and divergent PCR primer binding sites. Upon ligation, the tRNAs would be reverse 

transcribed, followed by circularization, and then PCR amplifying the circular cDNA to 

generate the final library. Truncation events due to the reverse transcriptase stalling would 
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still result in those fragments being amplified during PCR, since the 3’ adapter already 

contained the RT and PCR primer binding sites, as opposed to ARM-seq and Hydro-seq, 

which requires reads to reach the 5’ end of the tRNA in order for the cDNA to be PCR 

amplified (Pinkard et al., 2020). 

The limitation with the QuantM-seq methodology is the lack of use of the D135S AlkB 

demethylase enzyme. The mutant AlkB is modified so that an aspartic acid is mutated to 

serine at position 135 (coinciding with the active site of the protein). The shorter side chain 

of serine was thought to accommodate bigger modifications like the dimethyl-guanosine, a 

common modification found in tRNA sequences (Zheng et al., 2015). The importance of 

using the D135S AlkB in combination with the wild-type ALKB is discussed in further detail in 

Section 3.5.3 and 3.6. Furthermore, the other limitation is that QuantM-seq does not 

distinguish between mature tRNAs and genuine 3’ halves and 3’ fragments. Furthermore, an 

extra CCA is added to the 3’ end of tRNAs when they are targeted for degradation (Wellner 

et al., 2018). Although these reads could easily be discarded bioinformatically, there is no 

mention of this in their paper. QuantM-seq lacks an ability to distinguish the actual tRNA 

pool that is participating in translation, as opposed to non-functional tRNAs. 

  



Figure 1.5 A true representation of the tRNA-ome. A true representation of the tRNA-
ome would have to take into consideration the abundance of available tRNAs, a 
measurement of which tRNAs are charged (if one wants to identify ready to translate 
tRNAs) and the modification profile of said tRNA. In conjunction, the true tRNA landscape 
can be surveyed.  

tRNA-ome

Abundance
Charging 

Modifications

vs



Arm-seq

Hydro-seq

Fragmented tRNA Fragmented tRNA Fragmented tRNA

QuantM-seq

Figure 1.6 Published tRNA-sequencing methodologies. (A) Schematic representing the 
tRNA library preparation for ARM-seq utilized by Cozen et al., 2015 (B) Schematic 
representing the tRNA library preparation for Hydro-seq utilized by Gogakos et al., 2017. 
(C) Schematic representing the tRNA library preparation for QuantM-seq utilized by 
Pinkard et al., 2019 (also adopted from the same paper). Truncation events (*) due to the 
reverse transcriptase stalling would not be a problem since the 3’ adapter already 
contained the RT and PCR primer binding sites, as opposed to ARM-seq and Hydro-seq, 
which requires reads to reach the 5’ end of the tRNA in order for the cDNA to be PCR 
amplified   
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1.5 Codon optimality  

 

Codon optimality is often used to describe how a cohort of codons on an mRNA sequence 

contribute to mRNA stability and rates in translation elongation. As discussed in Section 

1.4.5, the nuance between tRNA availability, highly expressed genes and the mechanism 

behind their regulation in humans is an area of immense interest.    

mRNA stability may play a vital role in the regulation of codon optimality. Studies into the 

DEAD-Box helicase DDX6 in mammalian cells showed that mRNAs enriched in A/U ending 

codons localised to p-bodies where they are kept translationally repressed, which was and 

dependent on DDX6. Furthermore, through mRNA stability, DDX6 was shown to regulate 

G/C-rich mRNAs (Courel et al., 2019). Courel et al therefore suggested that codon optimality 

may be linked with mRNA storage and translational repression, as well as mRNA stability 

(Courel et al., 2019). Since the optimality of codons is dependent on the translational 

environment of a cell, the codons that might be directing mRNA turnover has been shown 

to vary across studies (Presnyak et al., 2015; Courel et al., 2019; Wu et al., 2019; Forrest et 

al., 2020). The codon composition and distribution of the coding sequence of mRNAs has 

been shown to influence mRNA stability and translation rates in a host of organisms 

including Escherichia coli (Frumkin et al., 2018; Boël et al., 2016), yeast (Radhakrishnan et 

al., 2016; Presnyak et al., 2015), zebrafish (Bazzini et al., 2016; Mishima et al., 2016), mouse 

(Guimaraes et al., 2020) and human cells (Bornelöv et al., 2019; Hia et al., 2019; Wu et al., 

2019; Forrest et al., 2020). 

Quantifying the effect of codon optimality and its impact on mRNA stability and translation 

has been difficult to define. Quantitative metrics include the Codon Adaptive Index (CAI), 
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the tRNA Adaptive index (tAI) and the Codon Stabilization Coefficient (CSC) (Presnyak et al., 

2015). The Codon Adaptive Index uses highly expressed genes to calculate metrics based on 

the assumption that elevated tRNA expression is proportional to elevated levels in gene 

expression (Sharp et al., 1986). The tRNA Adaptive index metric modified CAI and assumed 

that tRNA abundance correlates with tRNA gene copy number, and takes the efficiency of 

interactions between mRNA codons and the tRNA wobble position into account (dos Reis et 

al., 2004; Rocha et al., 2004). Since CAI and tAI both represent static codon optimality 

measures, the Codon Stabilization Coefficient metric improves on these by calculating the 

Pearson correlation coefficient between global mRNA half-lifes and codon frequencies 

within a cellular condition (Presnyak et al., 2015; Carneiro et al., 2019). Because the CSCs 

are calculated for every condition, they are directly dependent on the mRNA half-lives 

within that cellular condition, which therefore gives a more cell type specific metric of 

codon optimality. However, in order to obtain a more accurate representation of tRNA 

demand, mRNA abundance must be taken into consideration, since expression levels can 

vary across a large range.    
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1.6 tRNAs and their role in cell fate decisions 

 

There has been a large focus on the role of tRNAs in cell fate decisions, particularly revolved 

around proliferation and the translation of proliferation-promoting proteins. The tRNA-ome 

and mRNA-ome varies between tissues (Hernandez-Alias et al., 2020; Dittmar et al., 2006; 

Pinkard et al., 2020). The codon usage of the mRNA-ome has been shown to differ between 

tissues and is conserved between humans and mice and reported to often match with the 

tRNA-ome (Plotkin et al., 2004). Furthermore, translational efficiency for tissue-specific 

mRNAs have been shown to be impacted by their codon optimality (the codon usage of the 

most highly expressed mRNAs coincides with the most abundant tRNAs) (Waldman et al., 

2010). Non-optimal codons on the other hand, have also been shown to have a greater 

prevalence in certain biological processes such as the circadian clock (Xu et al., 2013; Zhou 

et al., 2013) and cell cycle genes, which display distinct codon usage patterns in different 

cycle phases (Guimaraes et al., 2020; Frenkel-Morgenstern et al., 2012). The working 

hypothesis is that these distinct codon usage signatures that exist, depending on the tissue 

and cellular events, could be means for the temporal regulation of gene expression via 

translational upregulation or repression.  

The investigations into proliferation-associated protein expression has shown some 

correlation with the expressed tRNA population. As mentioned previously, Gingold et al 

observed that tRNA availability coincided with the upregulation of proliferative mRNAs as 

well as histone modification changes around tRNA genes and elucidated towards a potential 

transcriptional programme in the regulation of tRNA and mRNA expression (Gingold et al., 

2014). They also observed that proliferative mRNAs were enriched for A/U ending codons in 

both cancerous and non-cancerous proliferative samples and hence introduced 
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“proliferative tRNAs” (with proteins associated with pattern specification enriching for G/C 

ending codons). However, when they clustered the transcriptomes of their samples, it was 

clear that the samples clustered according to cell/tissue type rather than the proliferative 

status of the sample. Furthermore, the group utilized hybridization-based tRNA assays to 

measure tRNA availability (the limitation of which are described in Section 1.4.6). 

Guimaraes et al conducted investigations into the effects of serum-deprivation in mouse 

embryonic fibroblasts and also reported the enrichment of A/U ending mRNA codons but 

found no differential tRNA expression. This led to them proposing an alternate model; 

rather than “proliferative tRNAs” being upregulated to meet the transcriptomic demand, 

there is a global tRNA expression increase to meet the translational boost required in 

proliferative cells. This could therefore overcome a potential bottleneck in the translation of 

proliferative mRNAs that are enriched in A/U ending codons (Guimaraes et al., 2020).  

Bornelov et al conducted investigations into self-renewing and differentiating stem cells and 

suggested that the increased translational rates of proliferative mRNAs were down to 

increases in adenosine to inosine modifications at the wobble position of tRNAs. Since 

inosine can facilitate in the decoding of non-cognate mRNA codons (potentially 

compensating for lowly expressed cognate tRNAs), this may be allowing for the increased 

translation rates of the proliferative mRNAs in self-renewing cells in comparison to 

differentiating stem cells (Bornelov et al., 2019).       

Although the mentioned studies may have revealed potential pathways that result in the 

translation of non-optimal mRNAs in normal conditions, there is still no distinct mechanism 

observed in the regulatory dynamic between tRNA availability and mRNA codon usage. This 
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may in part be due to the lack of a precise methodology to quantitatively measure the tRNA-

ome and therefore important information about key tRNAs may be overlooked.  

Another gap in the literature is the focus on codon signatures and tRNA availability in the 

two other major cell states, namely, quiescence and senescence. Cellular quiescence is 

often defined as cells in the G0 phase of the cell cycle and are characterised by their ability 

to reverse cell cycle arrest (Luo et al., 2020). Cellular senescence is characterised by 

permanent proliferative arrest that is often triggered by stimuli such as organelle stress, 

oncogene activation, telomere dysfunction and DNA damage (Hayflick and Moorhead, 1961; 

Di Micco et al., 2021). To get a better perspective into how codon optimality and tRNA 

availability are coordinated, it may be beneficial to identify the tRNA and mRNA signatures 

in all three major cell states (quiescence, proliferation and senescence). Furthermore, there 

is a lack of studies using in vivo models. Although in vitro investigations are easier and 

cheaper to conduct, most codon usage investigations in higher eukaryotes hypothesise that 

mRNA and tRNA signatures may be tissue specific (Botzman & Margalit 2011). Although 

Gingold et al looked into the sequencing data of patient tumour samples, there was no real 

controls into patient gender and age, both of which could output different genetic 

signatures. Overall, in vivo investigations using mouse models may provide a more global 

account into the tRNA and mRNA signatures of cells/tissues which may be closer to reality.         
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1.7 Project aims 

 

As discussed in this chapter, the need to accurately measure the tRNA pool and categorise 

both the tRNA and mRNA signatures in quiescence, proliferation and senescence (in vitro 

and in vivo) would aid in trying to decipher the molecular mechanisms coordinating 

regulation between tRNA availability and codon usage.   

This thesis aims to answer the following questions: 

 Can a tRNA-sequencing methodology that avoids the limitations and biases 

recognised in literature be developed to accurately quantify the tRNA pool? 

 Can such a tRNA-sequencing methodology be used successfully both in vitro and in 

vivo? 

 Can such a tRNA-sequencing methodology claim to be more effective then published 

tRNA-seq methodologies? 

 Through tRNA-seq and RNA-seq, can the tRNA and codon signatures of in vitro and in 

vivo samples be categorised in proliferation, quiescence and senescence 

 Can this data be used to identify patterns in tRNA and mRNA signatures in the three 

major cell states 
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Chapter 2: Methods and Materials 

2.1 Cell culture 

2.1.1 HEK293 

Passage 14 Human embryonic kidney (HEK293) cells were grown in Dulbecco’s Modified 

Eagle Medium (DMEM, ThermoFisher) and supplemented with 10% Fetal Bovine Serum 

(FBS, Sigma) and 10% L-glutamine (L-Glut, Sigma). All cells used in the in vitro experiments 

were grown to a confluency of 70%, confirmed by light microscopy, before being processed. 

When the cells were grown to required need, media is removed and cells treated with 4ml 

trypsin and incubated at 37°C for 5mins to remove the cells from the plate. 6ml media was 

added to deactivate trypsin. Cells were spun at 4000rpm for 5min and the pellets washed 

with PBS. The same process is repeated and the pellets were stored at -80°C until 

processing. 

2.1.2 IMR90s 

IMR90 primary human fibroblasts were kindly provided by the Norman Lab, Beatson 

Institute for Cancer research. Viral supernatant was produced by seeding 70-80% confluent 

HEK293 cells in 10cm dishes and transducing with either the control vector (pLXSN-control, 

Clonetech) or the ER:RAS oncogene-induced senescence vector (pLNC-ER:RAS, Addgene). 

The transfection mixture used consisted of 800μl DMEM, 75μg PEI (polyethylenimine), 2μg 

VSVg envelope protein plasmid (Clonetech), 8μg Gag.pol packaging plasmid and 20μg of 

either control or ER:RAS virus. The transfection mixture was briefly vortexed and incubated 

at room temperature. HEK293s had their media changed and the transfection mix added, 

incubating for 16 hours. New media was added and incubated further until 24 hours. Then 

the media was changed again but only 6ml fresh media was added to concentrate the viral 
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supplement (This is repeated three times in tandem with IMR90 media change). After 48 

hours, the 6ml media is collected and filtered through a 0.45μm cellulose acetate 

membrane. IMR90 cells are seeded 24 hours prior the last media change to coordinate the 

viral supplement collection and IMR90 media change. The 6ml media collected from the 

HEK293s are supplemented with 4μg/ml polybrene. When IMR90 media is changed, the 6ml 

media with viral supplement is added the IMR90 media. This is repeated three times every 3 

hours. After the third repeat and IMR90s have been infected, they were grown for 72 hours 

before being passaged and seeded for antibiotic selection. 400μg/ml neomycin is added to a 

1:4 dilution of both IMR90 sets (control and ER:RAS virus), and not allowing the ER:RAS 

IMR90s to reach confluence. Both sets are then seeded to generate stock cells.  

Induction of oncogene induced senescence is achieved by treating both control and ER:RAS 

cells with 100nM 4-OHT (tamoxifen) and are grown for 10 days, with media changes every 

two days. After the 10th day, media is removed and cells treated with 4ml trypsin and 

incubated at 37°C for 5mins to remove the cells from the plate. 6ml media was added to 

deactivate trypsin. Cells were spun at 4000rpm for 5min and the pellets washed with PBS. 

The same process is repeated and the pellets were stored at -80°C until processing.  
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2.2 Genetically modified mouse models  

All mouse models used were kindly provided by the Bird Lab, Beatson Institute for Cancer 

Research. All genetically modified mouse models used were male, between the ages of 8-10 

weeks and had similar weights at the time of being celled. All replicates were done together 

for each experiment to reduce technical variability.  

2.2.1 βcatenin/c-MYC model  

C57BL/6 mice were generated using wild-type AAV-Cre (2x1011GC/mouse) or Ctnnb1ex3 

heterozygous R26LSL-myc homozygous with AAV-Cre (2x1011GC/mouse). This introduced LoxP 

sites around exon 3 of βcatenin and the insertion of the humanised R26LSL-myc. All mice were 

monitored three times per week up until induction. Cre-recombinase activity was induced 

using the adenovirus AAV8.TBG.PI.Cre.rBG (Addgene, Catalog number: 107787-AAV8; a gift 

from James M. Wilson, Addgene viral prep # 107787-AAV8; RRID:Addgene_107787), 

specifically targeting hepatocytes. 2x1011GC/mouse high dose virus in 100μl PBS was treated 

to each mouse via tail vein injection. After 4 days, the mice were culled using CO2 with 

subsequent cervical dislocation. The caudate lobe of the liver was dissected and snap frozen 

immediately in liquid nitrogen. The tail sample was taken for retrospective genotyping 

(which all mice had passed). The caudate lobes were stored at -80°C until processed. 

2.2.2 MDM2 model 

C57BL/6 AhCreWT mice were crossed with both C57BL/6 MDM2fl/fl and MDM2fl/+ to generate 

AhCre+ MDM2fl/fl (introducing LoxP sites around exons 5 and 6 of the MDM2 gene).  AhCreWT 

mice were used as the control and AhCre+ MDM2fl/fl for the MDM2 induced senescence 

experiments. Cre recombinase activity was induced by treatment with the hepatocyte 

specific AAV8-TBG-Cre adenovirus; 2x1011GC/mouse high dose virus in 100μl PBS via tail 
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vein injection. After 4 days, the mice were culled using CO2 with subsequent cervical 

dislocation. The caudate lobe of the liver was dissected and snap frozen immediately in 

liquid nitrogen. The tail sample was taken for retrospective genotyping (which all mice had 

passed). The caudate lobes were stored at -80°C until processed. 
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2.3 RNA methods 

All RNA extractions for sequencing was performed using the mirVana™ miRNA Isolation Kit 

(ThermoFisher). Total RNAs were extracted according to manufacturer’s instructions.  

2.3.1 Harvested cells 

Harvested cells were placed on ice and had 600μl of Lysis Binding Buffer (from the mirVana 

miRNA Isolation Kit) added. Samples were vortexed rigorously until a homogenous lysate 

was obtained. Organic extraction then starts at Step E of the mirVana miRNA Isolation Kit 

and both Total RNA and small enriched RNAs (RNAs < 200nt) protocols were performed. All 

samples were eluted in 100μl water and concentration was measured using a Nanodrop.  

2.3.2 Snap frozen tissue homogenisation      

Before extraction of RNAs from snap frozen tissues, all work surfaces and equipment were 

cleaned with 70% ethanol and RNaseZAP (ThermoFisher) to avoid any contamination. The 

only exception was equipment that was already sterile.  

Snap frozen tissues were placed on dry ice when removed from -80°C storage. A SterallinTM 

square petri dish (sterilized, Fisher Scientific) was placed onto the dry ice and the 

temperature was allowed to drop. Sterile forceps were used to transfer the tissue from the 

Eppendorf to the plate and a sterile disposable scalpel was used to cut off approximately 30-

40mg of liver. Dissected liver was placed into a 2ml Precellys CK14 tube with ceramic beads 

(Bertin Instruments) for homogenisation. 

A Precellys Evolution homogeniser (Bertin Instruments) was used to homogenise the tissue. 

15-20mins prior to homogenisation, the Cryolys Machine was filled with dry ice and turned 

on to option 3 (maximum air flow). Compressed air was passed through the Cryolys Machine 

and into the Precellys Evolution homogeniser lowing its temperature to approximately 4°C. 
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Just prior to homogenisation, 600μl of Lysis Binding Buffer (from the mirVana miRNA 

Isolation Kit) was added to the samples. Homogenisation was done at 5500rpm in two 

cycles, with a 30s pause between cycles. Samples then proceed to organic extraction (Step 

E) of the mirVana miRNA Isolation Kit and both Total RNA and small enriched RNA (RNAs < 

200nt) protocols were performed. All samples were eluted in 100μl water and concentration 

was measured using a Nanodrop. 

2.3.3 tRNA aminoacylation   

Once small RNAs were extracted from samples, tRNAs had to be deacylated to remove any 

bound amino acids to their 3’ end prior to size selection. 10X Tris-HCl pH 9.0 was added to 

small RNA samples and incubated at 37°C for 45mins. RNAs were then column purified using 

RNA Clean and Concentrator 25 (Zymo) according to manufacturer’s instructions.  

2.3.4 tRNA demethylation 

The CDS for the wild-type AlkB was cloned into the pET-SUMO vector, provided by Tobias 

Schmidt (Beatson Institute for Cancer Research). The D135S-AlkB variant was produced by 

site directed mutagenesis (PCR) and expressed in the same system. AlkB was produced in 

Escherichia coli BL21 (DE3). Pre-cultured cells were grown at 37°C overnight in 50μM 

kanamycin and 40μg/ml chloramphenicol for inoculation. Colonies were chosen for main 

culture and were grown in the absence of antibiotics. 1mM IPTG was added to induce AlkB 

overexpression and grown for 4 hours to an OD600 of 1. The cells were collected, pelleted 

and resuspended in lysis buffer (20mM Tris-HCl pH 7.5, 30mM Imidazol, 1M NaCl, and 50% 

glycerol), 1mM PMSF, 1mg/ml lysozyme and cOmplete EDTA-free (Roche) to inhibit 

protease activity. The cells were lysed by sonication and centrifuged at 75000g at 10°C for 

30mins. The resultant N-terminal tagged 6x-His-SUMO-AlkB protein was passed through a 
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Ni-charged HisTrap column using the AKTA fast protein liquid chromatography (GE 

Healthcare) system. Bound protein was eluted using a linear gradient of up to 500mM 

Imadazol. Pooled protein was treated with ~500nM Ubiquitin-like Protease 1 (ULP1) at room 

temperature for 1 hour to cleave the SUMO tag. Protein was further purified by ion-

exchange (HiTrap Heparin HP affinity column, GE Healthcare) and gel filtration (Superdex-

200).  Pooled protein was stored in AlkB buffer (20mM Tris-HCl pH 8.0, 50% glycerol, 0.2M 

NaCl and 2mM DTT) at -80°C.  

AlkB demethylation was carried out in a 100μl reaction; 1μg small RNAs, 120pmol WT AlkB, 

240pmol D135S AlkB, 50mM MES pH 5.0, 2mM L-Ascorbic Acid, 300μM α-ketogluterate, 

50μM Ferrous Ammonium Sulphate heptahydrate, 50μg/ml Bovine Serum Albumin and 

nuclease free water to volume. Samples were incubated at room temperature for 2hrs and 

purified using RNA Clean and Concentrator-5 (Zymo) as per manufacturer’s instructions. 

2.3.5 Primer extension assay 

Designed oligonucleotides are labelled using Adenosine 5'-triphosphate (γ-32P-ATP, 10mM 

tricine pH 7.6, Perkin Elmer) in a 10μl reaction. The reaction consists of 5 units T4 

polynucleotide kinase (PNK, New England Biolabs), 10X polynucleotide kinase buffer, 

20pmol primer and nuclease free water to volume. Samples are incubated at 37°C for 

30mins. Once labelling is complete, the PNK enzyme is inactivated by incubating at 95°C for 

5mins. A further 15μl of nuclease free water is added to take the volume to 25μl. The 

samples are then purified using G25 microspin columns (Sigma) according to manufacturer’s 

instructions.  

100ng tRNAs are used as input into the primer extension assay. Prior to the assay, 100ng 

RNA, 1μl of the labelled primer and nuclease free water to 6μl and incubated at 95°C for 
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2mins and then is placed on ice immediately. The reverse transcription mixture is then 

prepared on ice which consists of 200U SuperScript III, 10X first strand buffer (Thermo 

Scientific), 0.5mM free nucleotides (dNTPS), 5mM DTT and nuclease free water to 6μl. The 

two 6μl volumes are combined and incubated at 55°C for 1 hour.  

Once the reverse transcriptase reaction is completed, samples are run on a 10% TBE-urea 

gel (see 2.4.2) for 50mins at 180V (or when the blue formamide dye reaches the bottom of 

the gel). Once the gel is completed, the gel is fixed in 10% acetic acid/methanol solution for 

5mins. The gels are dried for 2 hours at 80°C on a gel dryer dock and is exposed on a 

phosphor cassette (can vary from 2hr to 16hrs). The phosphor screen is then scanned after 

exposure using a Typhoon scanning machine.        
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2.4 RNA and DNA quantification and integrity 

2.4.1 Agarose gels 

All total RNAs extracted for RNA-seq were first run on a 1% agarose gel to check for RNA 

integrity. The gels were made by adding 1g agarose (Melford Laboratories Ltd) to 100ml 1x 

TAE (Tris-acetate-EDTA) and microwaved for 1min and 30sec. When the mixture cools, 10μl 

of Syber Safe (Thermofisher) was added to visualise the bands before casting. 1x TAE (Tris-

acetate-EDTA) was used as the running buffer. 1μg of RNA was added to 2x formamide dye 

(95% formamide, 20mM Tris HCl pH 7.5, 20mM EDTA and 0.025% bromophenol blue) in a 

15μl volume. Samples were loaded onto the gel and ran at 200V for 30mins. HyperLadder™ 

1kb (Bioline) was run alongside samples as per manufacturer’s instructions. Gels were 

visualised using a Chemidoc (Bio-Rad). 

2.4.2 TBE gels 

TBE-urea gels used for small RNA visualization and gel extraction steps were made up from a 

stock 40% UreaGel system Concentrate (National Diagnostics) and diluted down to the 

required percentage using the UreaGel system Diluent and 10X TBE (Tris-Boric Acid-EDTA) 

buffer in a 50ml volume (National Diagnostics). 200μl 25% APS (Ammoniumpersulfate) and 

20μl TEMED (Tetramethylethylenediamine) were added to initiate polymerisation. All gels 

were pre-run at 200V for no less than 1 hour prior to use. All small RNA samples had 2x 

formamide dye added and heated at 90°C for 2mins prior to loading. A Low Molecular 

Weight Ladder DNA ladder was run alongside all samples (New England Biolabs).    

TBE-gels used for the extraction of DNA libraries were prepared from a 40% 19:1 

Acrylamide/Bisacrylamide solution (National Diagnostics) and diluted down to the 

percentage required. Gels were prepared in a 20ml volume and contained 5X TBE and 
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nuclease free water. 200μl 10% APS and 12μl TEMED were added to initiate polymerisation. 

All gels were pre-run at 200V for no less than 30mins prior to use. All samples had 2x 

formamide dye added and heated at 90°C for 2mins prior to loading. A Low Molecular 

Weight Ladder DNA ladder was run alongside all samples.  

2.4.3 Qubit 

The concentration of completed DNA libraries are measured using a Qubit double stranded 

DNA high sensitivity assay kit (Thermofisher Q32854), as per manufacturer’s instructions. 

2μl of the final library is used as input. 

2.4.4 Library Size Determination  

The average size of the final libraries are measured using a D1000 High Sensitivity screen 

tape (Agilent), as per manufacturer’s instructions. 2μl of the final library is used as input. 

Samples were vortexed for 2000rpm for 1min prior to measurements.      
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2.5 Next Generation Sequencing  

2.5.1 ALICE-tRNA-sequencing  

The first step in the ALICE-tRNA-seq methodology is 3’ adapter ligation (3’ adapter = 

5’pCAGATCGGAAGAGCACACGTCT-R-NH2). The reaction is prepared in the following way:    

 
Final Concentration / Volume 

tRNAs 10pmol 

3' Adapter 30pmol 

T4 RNA Ligase 2 Reaction Buffer (NEB) 1X 

T4 RNA Ligase 2 (1-249) K227Q (NEB) 200U 

RNaseIn (Promega) 40U 

PEG8000 (NEB) 20% 

DMSO (NEB) 20% 

Nuclease Free Water to 50μl 

 

The reaction is incubated at 16°C for 16 hours and the samples are purified using the RNA 

Clean and Concentrate 5 as per manufacturer’s instructions and eluted in 13.5μl nuclease 

free water.  

Excess 3’ adapter depletion follows: 
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Final Concentration / Volume  

3' Adapter Ligated Product 12.5μl 

NEB 5' Deadenylase (NEB) 25U 

RecJ Buffer (NEB Buffer 2) 1X 

RecJf (NEB) 15U 

PEG8000 (NEB) 10% 

RNaseIn  20U 

Nuclease Free Water  to 20μl 

 

The reaction is incubated in a thermocycler at 30°C for 1hr and then 37°C for 30mins and 

1100rpm. Samples are purified using the RNA Clean and Concentrate 5 as per 

manufacturer’s instructions and eluted in 12.1μl nuclease free water.  

Reverse transcription follows. First, the following is assembled on ice and incubated at 95°C 

for 2mins and then place on ice immediately for at least 3mins (RT primer = 

5’pGATCGTCGGACTGTAGAACTCTGAArCAGACGTGTGCTCTTCCGATCT ).  

 
Final Concentration / Volume  

3' Adapter Depleted Product 11.1μl 

RT Primer  0.5μM 

Nuclease Free Water  to 12μl 
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Then the following mix is added to the pre-heated samples:  

 
Final Concentration / Volume 

First Strand Buffer 1X 

dNTPs 0.5mM 

DTT 5mM 

RNaseIn 40U 

SuperScript III 200U 

 

The reactions are incubated at 55°C for 1hr. RT products are then ran on a 6% TBE-Urea 

denaturing Gel and are size selected between 75-150nt. Gel slices are crushed and 300μl 1x 

TE pH 8.0 is added and placed on a thermomixer overnight at 16°C, 550rpm. Spin-X column 

Centrifuge tubes (Sigma) are used to separate the gel pieces from the eluate and are spun at 

14000rpm for 2mins. 50μl AMPure XP magnetic beads, and then immediately 350μl 

isopropanol are added to the eluate and incubated in a thermomixer at 25°C for 10mins, 

550rpm. Then the solution is magnetized for 2mins and the supernatant is discarded. Then, 

950μl of freshly prepared 80% ethanol slowly added and incubated for 30sec and the 

supernatant removed. This step is repeated for a total of 2 ethanol washes, making sure the 

beads are not incubated in ethanol for an extended period of time. The samples are then 

dried for 3mins with residual ethanol being removed after 1min. The plate is then removed 

from the magnetic stand and the bead pellet resuspended in 7.5μl of 1S TE pH 8.0, pipetting 
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up and down, ensuring the beads are completely resuspended. This is then incubated for 

2mins and then magnetized for 3mins until the solution is completely clear. 7μl of 

supernatant in transferred into a new well and this is the cDNA input for circularization.  

The circularization reaction is prepared using the following: 

 
Final Concentration / Volume  

Denatured cDNA 7μl 

CircLigase Buffer (Cambio Ltd)  1X 

ATP (Cambio Ltd) 200μM 

MnCl2 (Cambio Ltd) 2.5mM 

Betaine (Thermo) 1M 

CircLigase Enzyme (Cambio Ltd) 10U 

 

The reaction is incubated at 60°C for 5hrs. after the reaction is complete, a further 30μl of 

nuclease free water is added to the samples and purified using a Phenol Chloroform 

Isoamyl-alcohol (25:24:1 saturated with 10mM Tris pH 8.0, 1mM EDTA, Sigma) and 

Chloroform (Sigma) clean up and ethanol precipitated in 3X volume of 100% ethanol, 1/10th 

volume 3M sodium acetate and 1.5μl glycogen (30μg, Promega) and incubate at -20°C 

overnight. Then, samples are spun at 13000rpm for 30mins at 4°C, supernatant removed 

and washed with 70% ethanol before being spun again at 13000rpm for 15mins at 4°C and 

resuspended in 9μl nuclease free water.  

The next step is relinearization and is set up: 
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Final Concentration / Volume  

Circularized product 9μl 

RNaseA (Sigma) 10μg 

 

Samples are incubated at 37°C for 1hour and then placed on ice immediately. This is then 

proceeded by the PCR amplification reaction and is assembled on ice: 

 
Final Concentration / Volume  

Relinearized product 10μl 

HF Phsuion Pol Buffer (NEB) 1X 

dNTPs 200μM 

Fw Primer  0.5μM 

Rv Primer  0.5μM 

DMSO (NEB) 3% 

HF Phsuion DNA Polymerase (NEB)   0.4U 

Nuclease Free Water  to 20μl 

 

Fw Primer = 5'AATGATACGGCGACCACCGAGATCTACACGTTCAGAGTTCTACAGTCCGA 

Samples were placed in the thermocycler when at 80°C, under the following conditions: 
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95°C for 3mins (denaturation), 94°C for 15sec, 62°C for 30sec, 70°C for 30sec (for 8 cycles) 

and 70°C for 5mins (final extension). DNA loading dye is added to each of the samples and 

gel extracted in a 5% TBE gel. The exact same steps for the RT gel extractions are repeated 

for both extraction and clean up except the final resuspension volume is 12μl. Samples had 

their concentrations measured using the Qubit and average size measured by Tapestation. 

Samples were then pooled to 1nM and sequenced on a NextSeq500 sequencer as per 

manufacturer’s instructions. 

2.5.2 RNA-seq 

RNA-seq preparations were done in-house by William Clarke, Beatson Institute for Cancer 

Research. Samples were checked on an agarose gel prior to library preparation to check for 

RNA integrity. Libraries were prepared used the TruSeq Stranded mRNA library preparation 

kit (Illumina) and polyA selected, according to manufacturer’s instructions. 1μg RNA was 

used as input for all samples. Final libraries had their concentrations measured using the 

Qubit and average size measured by Tapestation. Samples were then pooled to 1nM and 

sequenced on a NextSeq500 sequencer as per manufacturer’s instructions.  
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2.6 Bioinformatics Analysis 

All scripts used in this section can be found at 

https://github.com/BashMo1/BashirMohamed_PhD 

Since next generation sequencing technically sequences the cDNA generated in library 

preparations, all uracils will be called as thymines in the upcoming results chapters. 

2.6.1 Demultiplexing 

Before analysis, samples had to be demultiplexed to separate reads according to their 

samples. This was done using the Bcl2fastq package using the following code: 

$ bcl2fastq -p 20 --no-lane-splitting --runfolder-dir . --output-dir fastq_files 

-p referring the number of threads used  

--no-lane-splitting stops the separation of samples into the 4 technical replicates as the 

sequencing uses 4 lanes  

--runfolder-dir .  The . allows for the data within the directory to be demultiplexed. 

--output-dir specifies the output directory 

2.6.2 ALICE-tRNA-seq adapter trimming 

Adapter_trimming.sh 

Adapters were trimmed using the cutadapt package. The adapter removed was 

CAGATCGGAAGAGCACACGTCT. A representative example can be found on the github page.  

2.6.3 ALICE-tRNA-seq mapping and fragment determination 

processsamples.py 
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The mapping of the tRNAs was adapted from the tRNA Analysis of eXpression (TRAX) 

programme (Holmes et al., 2020). Prior to mapping, a tRNA database is generated from the 

original genome in a programme called tRNAscan-SE (Lowe and Chan, 2016). The newly 

formed mature tRNA sequences are then padded with 20 N bases on both the 5’ and 3’ ends 

of the tRNA to allow for tRNAs containing 5’ leader and/or 3’ trailer sequences to map. The 

tRNA sequences are then mapped using bowtie2 to both the database of mature tRNA 

sequences and to the genome with one mismatch (either mapped to hg38 or mm10 

genomes, Encode; processsamples.py). This ensures that tRNAs containing introns can be 

discarded from the final analysis. If reads map to the genome then they are called as pre-

tRNAs. If reads map to the mature tRNA database then they are called as tRNA transcripts. If 

reads map to both the genome and the mature tRNA database, then they are called as tRNA 

transcripts. 

The tRNAs are then classified into four fragment classes. tRNAs are considered to be full 

length if they are within 5 nucleotides of both the 5’ and 3’ end. 3’ fragments are those 

sequences that are within 5 nucleotides of the 3’ end but not the 5’ end. 5’ fragments are 

those within 5 nucleotides of the 5’ end but not the 3’ end. If sequences are not within 10 

nucleotides of either end, then they are categorised as other tRNAs.  

Once the tRNAs have been counted, tRNAs of interest can be filtered out and others 

discarded. The final tRNA counts can then be used as input to carry out quality control, 

differential expression analysis and statistical analysis. 

2.6.4 ALICE-tRNA-seq differential expression  

FedvsStarved_isoacceptor_analysis.R; IMR90_isoacceptor_analysis.R; 

MDM2_isoacceptor_analysis.R; bcat_myc_isoacceptor_analysis.R  
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After counting and combining full length and 3’ tRNA fragments (here refers to tRNAs that 

had truncated due to modifications on the Watson-Crick face as opposed to genuine 3’ tRNA 

fragments), the counts are checked on a PCA and unfavourable replicates removed. Samples 

are filtered so every replicate has at least 10 reads, prior to being used as input into DESeq2. 

Apeglm was used for log fold shrinkage and tRNA isoacceptors were considered statistically 

significant if the false discovery rate was less than or equal to 0.05. All results after this 

point were plotted and presented.  

2.6.5 A34I mutation analysis 

A34I_mutation_analysis.R 

Frequency of mutations were calculated at position 34 of tRNAs (output from 

processsamples.py). If a mismatch occurred at this position (supposed to be read as an A 

base but instead read as a G base), then its frequency is calculated. This was done for all 

ALICE-tRNA-seq experiments.  

2.6.6 RNA-seq analysis 

Transcriptome_editing.py; FedvsStarved_mRNA_analysis.R; IMR90_mRNA_analysis.R; 

MDM2_mRNA_analysis.R; bcat_myc_mRNA_analysis.R 

Human and mouse protein coding sequences were taken from GENCODE (hg38 and mm10 

respectively). Prior to mapping, the protein coding sequences fasta file was filtered so that 

all transcripts had a 3’ UTR, 5’ UTR, a coding sequence that began with AUG and ended with 

any of the three stop codons and the coding sequence was divisible by three 

(transcriptome_editing.py). Reads were then mapped to the filtered transcriptome using 

salmon. Outputted counts were then ran on a PCA and unfavourable replicates removed. 

Counts were then used as input into DESeq2 for differential expression using apeglm for log 
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fold shrinkage. Transcripts were considered to be statistically significant if the false 

discovery rate was less than or equal to 0.05. 

The synonymous codon usage was performed on differential genes that were statistically 

significant and had a log fold change of ±2. The coding sequences of said transcripts were 

pulled from the filtered transcriptome fasta file to generate new fasta files for each 

conditions. Synonymous codon usage was calculated using the SeqinR package and was 

normalised to the mean TPM for each transcript in each condition to weight for transcript 

abundance. The newly generated frequencies for each condition were then combined and 

plotted.  

For the relative synonymous codon usage of all transcripts, the same process was followed 

without the log fold change of ±2 cut off. For the relative synonymous codon usage of the 

most abundant transcript per gene, the transcript with the highest mean TPM was selected 

and the rest filtered out.  

Amino acid frequencies were calculated by taking the generated fasta files for statistically 

significant transcripts that had a log fold change of ±2 and the frequency was calculated 

using the Biostrings programme.      
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Chapter 3: Development of the ALICE-tRNA-sequencing methodology and its comparison 

to other tRNA-sequencing methodologies 

3.1 Chapter Introduction 

The development of a tRNA sequencing methodology to measure the cell’s tRNAome has 

long been a research interest in the field. Many have resorted to using microarrays to 

investigate the effects on the tRNA pool in differing cell conditions and disease states 

(Gingold et al., 2014, Grelet et al., 2017), where others have used methods like thin layer 

chromatography (TLC) and High performance liquid chromatography (HPLC)-coupled mass 

spectrometry to study tRNA aminoacylation and modifications across various species 

(Grosjean et al., 2004, Cathopoulis et al., 2007, Su et al., 2014).  

The shortfall to using these techniques in an attempt to study the tRNA pool is that they all 

rely on the successful hybridisation of probes to the tRNAs (utilising oligonucleotides or 

otherwise). Since all of these methods were born out of studies done on other types of 

RNAs, such techniques do not translate to tRNAs because of the vast number of 

modifications they possess. In the case of hybridisation, the most problematic modifications 

are those that reside on the Watson-Crick face of the tRNAs (Table 3.1). Mass spectrometry 

methodologies on the other hand, are limited in the sense that observed modifications that 

are detected cannot be accurately traced back to their isoacceptor/isodecoder, as well as its 

nucleoside position.  

The second limitation is the problem of resolution. tRNAs are generally referred to in two 

ways; tRNAs that decode the same amino acid but only differ in the anticodon sequence 

(isoacceptors), and tRNAs that share the same anticodon sequence, but have different body 

sequences (isodecoders). Hybridisation-based techniques will generally give you information 
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with regards to isoacceptors, resulting in inferences being made at the amino acid level. 

Studies utilising such methodologies tend to give you generic information that cannot be 

mapped back to the genome. This is because modifications on the Watson-Crick face of 

tRNAs will hinder efforts to hybridise probes, even if they are designed with specificity 

towards isodecoders. Other methods such as chromatography and mass spectrometry 

based methodologies, typically used to study tRNA modifications, will accurately display 

global modification changes, but will typically lack specificity with regards to which tRNAs 

harbour such modifications and the positions at which they exist. This is due to these 

methodologies requiring tRNA fractionation in their protocols.       

In order to make inferences at the nucleotide/genome level, a high resolution technique, 

such as high throughput sequencing is required. However, the same limitation of 

hybridisation still exists; high throughput sequencing of RNAs relies on the production of 

cDNAs, which is subsequently amplified using PCR before being sequenced. Cozen et al 

(ARM-seq) and Zheng et al (DM-seq) both attempted to solve this problem by using the 

Escherichia coli enzyme Alpha-ketoglutarate-dependent dioxygenase (AlkB), an enzyme 

known for its dealklylating properties in DNA damage protection (Trewick et al., 2002). AlkB 

has the ability to remove methyl groups from the Watson-crick face of modified tRNA 

nucleotides, aiding in the production of either full length or close to full length cDNAs post 

reverse transcription. 

In the ARM-seq methodology, Cozen et al used the wild-type version of the enzyme 

(hereafter referred to as WT AlkB) in a demethylation reaction prior to library preparation 

(Cozen et al., 2015). However, the DM-seq methodology utilised the WT AlkB, in addition to 

a mutant AlkB, which had an aspartic acid to serine mutation at position 135 (hereafter 
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referred to as D135S AlkB) (Zheng et al., 2015). The intention behind the aspartic acid to 

serine mutation was the fact that serine has a shorter amino acid side chain in comparison 

to aspartic acid, while retaining the characteristics of being both a polar and non-charged 

amino acid. Also, position 135 in the amino acid sequence of the protein corresponds to the 

active site of the enzyme. Therefore, it was thought that this mutation would better 

accommodate larger tRNA modifications like the N2,N2-dimethylguanosine (m2
2g), a 

common tRNA modification typically found at position 51 on tRNAs (Zheng et al., 2015, Su et 

al., 2014).   

Another point of discussion is the motivation behind the development of both ARM-seq and 

DM-seq. Although both of these tRNA-sequencing methodologies were the pioneers in the 

field, they both attempted to ask different questions. ARM-seq was originally developed to 

identify tRNA fragments and tRNA halves. Therefore, their methodology required the 

ligation of 3’ and 5’ adapters to demethylated tRNAs, before being reverse transcribed and 

PCR amplified in their library preparations. The advantage of doing this was that only 

sequences with both adapters bound would ultimately be sequenced. However, DM-seq 

was a methodology developed to try and identify positions at which modifications were 

occurring. They did this by using the enzyme TGRIT (Thermostable group II intron reverse 

transcriptases) in their reverse transcription reactions. TGRIT worked so that whenever it 

came across a modified base in the tRNA during cDNA production, it would place a random 

nucleotide at its position as opposed to stalling. Therefore, when the sequencing data is 

analysed, mismatches that are identified when the sequences are mapped back to tRNA 

sequences would highlight modified bases. Consequently, neither technique was developed 

with the intention of measuring or profiling the tRNA pool between two conditions.       
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To address these points of concern, this chapter will aim to demonstrate how we optimized 

AlkB demethylation, address the limitations in using ARM-seq and DM-seq to measure the 

tRNA pool, and how we ultimately generated our own tRNA sequencing methodology, 

namely, Adapter Ligation Circilarization Relinearization tRNA sequencing (ALICE-tRNA-seq). 

  



Table 3.1: A table of known modifications that exist on the Watson-Crick face of tRNAs. In 
the symbol column, modifications with an asterisk (*) can have their modification removed 
via AlkB demethylation. In the structure column, molecules highlighted in red are the 
modifications present on the Watson-Crick face. The black dots represent nucleoside binding 
in the RNA sequence. 

Modification Symbol Structure

N1-methyladenosine* m1A  

N1-methylguanosine* m1G 

3-methylcytosine* m3C 

N2, N2-dimethylguanosine* m2
2G 

Inosine I

N1-methyl-inosine m1I 

2-methylthio- N6-threonylcarbamoyl-adenosine ms2t6A 

3-(3-amino-3-carboxypropyl) uridine acp3U 
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3.2 Optimizing AlkB demethylation 

The first point of contention to be addressed was the AlkB oxidative demethylation reaction. 

This was important because different AlkB conditions were utilized in literature. AlkB 

demethylates modified nucleotides in a two-step, α-ketoglutarate-dependent manner. AlkB 

first oxidises the methyl group on modified methyl- adenosines, guanosines or cytosines, 

utilising the conversion of α-ketoglutarate to succinate and then removes the newly formed 

formaldehyde from the base, resulting in the demethylated nucleotide (see Figure 3.1A for a 

representative example). To address how successful AlkB demethylation was, primer 

extension assays were performed. Oligonucleotides were designed to be complementary to 

the 3’ end of selected tRNAs, were subsequently labelled with radioactive 32Phosphorus 

(32P) and were used as primers in a reverse transcription reaction (Figure 3.1B). 

Oligonucleotides were designed so they could target particular tRNAs that had unique 

sequences at their 3’ end. Furthermore, all oligonucleotides were purposely designed to be 

18 or19 bases long. This was because the vast majority of tRNAs have a m1A modification at 

position 20 on the tRNA sequence. Therefore, if a tRNA does not undergo an AlkB 

treatment, then the reverse transcription would automatically stall, serving as a negative 

control.  

In our pilot primer extension assays, HEK293 cells were grown to 70% confluency, and small 

enriched RNA (RNAs < 200nt) were extracted from the cells. Primers were designed against 

tRNAs Histidine GTG, Methionine CAT and Tyrosine AUG. Preliminary primer extension 

assays showed very little cDNA production. The AlkB reaction originally consisted of 1μg 

RNA, 120pmol WT AlkB, 240pmol D135S AlkB, 50mM MES pH 5.0, 2mM L-Ascorbic Acid, 

300μM α-ketogluterate, 50μM Ferrous Ammonium Sulphate heptahydrate, 50μg/ml Bovine 

Serum Albumin, 300mM NaCl and 2mM MgCl2 in a 100μl reaction (Zheng et al., 2015). It was 
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clear that the α-ketogluterate, Ferrous Ammonium Sulphate heptahydrate and L-Ascorbic 

Acid were required for the preliminary oxidation of the methylated bases since they are all 

co-factors in the reaction. Bovine Serum Albumin increases the general protein 

concentration by reducing the binding of AlkB to the plastic of the tubes and MES pH 5.0 

was used as a buffer to stabilise the pH of the reaction. However, the use of high 

concentration NaCl and MgCl2 was unclear. As a result, the 300mM NaCl and 2mM MgCl2 

were removed from the AlkB reaction buffer since high concentrations of salts may increase 

the secondary structure of the tRNAs, making it more difficult for the AlkB enzymes to 

access the modified bases and demethylate them. Enzymatic reactions were set up with +/- 

salt to test this and resulted in an increased production of full length and close to full length 

cDNAs in the absence of salts (Figure 3.2).   

  



Figure 3.1: A representative schematic of AlkB oxidative demethylation and the primer 
extension assay. (A) The oxidative demethylation of m1A, resulting in adenosine. (B) In the 
absence of AlkB, the methylated groups on the Watson-Crick face of the tRNAs block 
reverse transcription, resulting in truncated cDNAs. Post demethylation, the reverse 
transcription reaction reaches the 5’ end of the tRNAs, resulting in full length cDNA 
production.

A

B



Figure 3.2: Primer Extension Assays of tRNA Histidine GTG, tRNA Methionine CAT and 
tRNA Tyrosine AUG show increased cDNA production in the absence of salts. The 
300mM NaCl and 2mM MgCl2 show to be hindering the production of full length or close 
to full length cDNAs post reverse transcription. The red arrows indicate the largest 
produced cDNAs from the assay.  
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3.3 HEK293 tRNA-sequencing pilot run using the ARM-seq strategy 

3.3.1 Library generation and sequencing 

After optimizing the AlkB demethylation reaction, a pilot tRNA-seq run was done on HEK293 

tRNAs, to determine if the sequencing run was viable to measure and identify the tRNA 

pool. As this was a pilot, an n=1 was used. Also, a control reaction where no demethylation 

of the tRNAs was run alongside as a control.  

Small RNAs (<200nt) were extracted from HEK293 cells grown to a confluence of 70%. The 

RNAs were then deacylated, to ensure the removal of bound amino acids to the 3’ of the 

tRNAs. The tRNAs were then size selected on a gel between 50-100nt to ensure the removal 

of small rRNAs which have the potential to hijack the sequencing run due to their high 

concentration. The tRNAs were then demethylated using WT and D135S AlkB to remove any 

modified bases, serving as the input for the library generation (Figure 3.3 A). The tRNAs 

would then undergo 3’ and 5’ adapter ligation, before they were reverse transcribed, 

generating cDNA. The cDNAs were subsequently PCR amplified (12 cycles), generating the 

library for sequencing (Figure 3.3 B). The libraries were then ran on a 5% TBE gel and 

libraries between 176-246bp were excised (Figure 3.4 A-B). The average size of the library 

was calculated using a tapestation and the concentration of the library was determined by 

Qubit. The concentration and average size was then used to pool the libraries to a 1nM 

concentration, and was run on a NextSeq5000.       

The rationale behind using the ARM-seq methodology for the pilot study was due to the fact 

that it involves both 3’ and 5’ tRNA adapter ligation. Both of these adapters would 

subsequently serve as PCR primer binding sites for the PCR amplification step later in the 

library protocol. Firstly, this meant that in the analysis of the sequencing data, a clear 
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distinction could be made with regards to whether a sequence was a mature tRNA, tRNA 

half or tRNA fragment. This was the main reason for not using DM-seq because a DM-seq 

library only has a 3’ adapter ligation step. This means that it is impossible to distinguish 

between a tRNA that has been truncated due to the presence of a modification, or whether 

the sequence was a bona fide tRNA fragment or tRNA half. This lack of clarity would result in 

the inability to accurately measure the tRNA pool. However, use of the ARM-seq 

methodology also presented its disadvantage since binding of the 3’ and 5’ adapter prior to 

the reverse transcription step would mean that only full length tRNAs would be sequenced. 

This is because the 5’ adapter contains a PCR binding site. Therefore, if the Superscript III 

enzyme truncates due to a modification that the AlkB enzymes were unable to remove 

(namely m1I, ms2t6A and acp3U modifications, see Table 3.1), then these sequences would 

not be PCR amplified and consequently not detected in the sequencing data.   

  



A

B

Figure 3.3 Schematic of the pilot tRNA sequencing library preparation and generation. 
(A) Small enriched RNAs (<200nt) were extracted from HEK293 cells. the RNAs were 
deacylated to remove any bound amino acids from their 3’ end, before being gel extracted 
and demethylated using WT and D135S AlkB. The resulting tRNAs were then used as the 
library input. (B) Demethylated tRNAs (red) undergo 3’ and 5’ adapter ligation (green and 
blue respectively), followed by reverse transcription (light green) and PCR amplification 
(dark green). The DNA library is then gel extracted and then sequenced. P1 and P2 
represent the PCR primer binding sites for amplification.



75bp

100bp

150bp

250bp
225bp
200bp

Post-excision

75bp

100bp

150bp

250bp
225bp
200bp

Pre-excision

A

B
Extraction Ranges

RNA Size (nt) Final Library Size (bp) 

50 176

120 246

Figure 3.4 Pilot tRNA-seq library gel extraction and extraction ranges. (A) TBE gel 
representing the small RNA libraries pre- and post-excision. (B) Libraries were cut between 
176-246bp, corresponding to the 50-100nt input 
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3.3.2 Analysis workflow of the pilot tRNA-seq dataset 

The pipeline development for the tRNA sequencing data analysis varies significantly to that 

of common RNA-seq analyses, and it is predicated on some important prerequisites. Firstly, 

due to the post-transcriptional modifications that occur during tRNA-biogenesis and tRNA 

maturation, the tRNA sequences cannot be mapped directly onto the genome. This is 

because tRNAs are transcribed with introns that span the anticodon loop, resulting in 

splicing events post-transcription (Paushkin et al., 2004). Also, 5’ leader and 3’ trailer 

sequences are cleaved during tRNA maturation (Ziehler et al., 2000), as well as 3’ CCA 

sequences being added which is absent from the genomic sequence. Similarly, a single 

guanine nucleotide is added to the 5’ end of histidine tRNAs (Cooley et al., 1982). Therefore, 

the tRNA sequences would not successfully map back to the genome and the reads would 

not be identified.  

To overcome this, a database of mature tRNAs is formed from the original genome in a 

programme called tRNAscan-SE (Lowe and Chan, 2016). In brief, the programme works in 

conjunction with the Infernal software (Nawrocki and Eddy, 2013) and scans the genome for 

tRNA-like sequences. Once identified, the programme implements profile stochastic 

grammars called covariance models (i.e it structurally aligns stretches of sequences within 

the genomic tRNA to estimate the positions where the tRNA would fold to produce the 

classical hairpin structures). The program then continues to employ this covariance model in 

iteration, maximising sensitivity and accuracy in isodecoder classification. The tRNAs are 

then named according to where they are found in the genome. The newly formed mature 

tRNA sequences are then padded with 20 N bases on both the 5’ and 3’ ends of the tRNA to 

allow for tRNAs containing 5’ leader and/or 3’ trailer sequences to map. The tRNA 

sequences are then mapped to both the database of mature tRNA sequences and to the 
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genome. This ensures that tRNAs containing introns can be discarded from the final analysis. 

If reads map to the genome then they are called as pre-tRNAs. If reads map to the mature 

tRNA database then they are called as tRNA transcripts. If reads map to both the genome 

and the mature tRNA database, then they are called as tRNA transcripts.    

The tRNAs are then classified into four fragment classes. tRNAs are considered to be full 

length if they are within 5 nucleotides of both the 5’ and 3’ end. 3’ fragments are those 

sequences that are within 5 nucleotides of the 3’ end but not the 5’ end. 5’ fragments are 

those within 5 nucleotides of the 5’ end but not the 3’ end. If sequences are not within 10 

nucleotides of either end, then they are categorised as other tRNAs.  

Once the tRNAs have been counted, tRNAs of interest can be filtered out and others 

discarded. The final tRNA counts can then be used as input to carry out quality control, 

differential expression analysis and statistical analysis.           
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3.3.3 HEK293 tRNA-sequencing pilot run quality control 

To analyse the effectiveness of the ARM-seq methodology in measuring the tRNA pool, it is 

important to establish the types of tRNAs being detected and their distribution with regards 

to the amino acids they code for. In the absence of AlkB treatment, 37.33% of the total 

mapped reads mapped to tRNAs, 6.75% mapped to pre-tRNAs and 55.93% mapped to other 

RNAs (including snoRNAs, rRNAs and non-coding RNAs). In the condition where RNAs were 

demethylated with WT and D135S AlkB, 49.43% of the reads mapped to tRNAs, 11.25% 

mapped to pre-tRNAs and 39.32% mapped to other RNAs (Figure 3.5 A). Although half of the 

reads seem to be mapping to tRNAs after AlkB demethylation, ~ 50% of reads being lost to 

other RNAs and pre-tRNAs are too high. However, Cozen et al lose ~ 80% of their reads to 

other RNAs (~60% of them being rRNAs). The stark increase in the percentage of reads 

mapping to tRNAs is most likely because of the inclusion of a tRNA gel extraction step 

increasing specificity, which was not done in Cozen et al.   

Next, we wished to compare the distribution of isoacceptors +/- demethylation. WT and 

D135S treatment prior to sequencing dramatically increases the isoacceptor abundance. 

When the RNAs were not demethylated (- AlkB), 41.06% of the total mapped reads mapped 

to tRNA-Glycine and 35.07% of the total reads mapped to tRNA-glutamate. In comparison, 

after WT and D135S treatment, the same isoacceptors took up 10.29% and 14.25% of the 

total mapped reads (Figure 3.5 B). Furthermore, tRNA-glycine and tRNA-glutamate are the 

least modified tRNAs across the 20 isoacceptors, which is why the reads bias so heavily 

towards these two isoacceptors and further highlights the importance of effective 

demethylation prior to library preparation. 
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The tRNA reads were then examined and categorised into Full length tRNAs, 3’ tRNAs, 

5’tRNAs and other tRNAs (i.e. did not fit into any of the previous categories). In the absence 

of AlkB treatment, only 2.05% of the tRNA reads were mapped as full length tRNAs. This 

increased in the demethylated sample which had 5.11% of its tRNA reads being full length 

tRNAs. The vast majority of the reads were categorised as either 3’ tRNA fragments (36.24% 

and 60.98% respectively) or 5’ tRNA fragments (56.58% and 29.23% respectively). This is 

further highlighted in the coverage plot (Figure 3.6 B), where the majority of reads were 

expected to be highest at the tail end of the tRNAs.  

This bias towards 3’ and 5’ tRNAs therefore indicated steps that needed to be considered in 

future tRNA sequencing experiments. Firstly, because the tRNAs were size selected prior to 

library preparation, many 3’ and 5’ fragments were identified even though these fragments 

will typically be approximately 35 nucleotides in size. This suggests that there may be 

degradation of the RNAs occurring either during the RNA extraction step or during the 

library preparation. A quality control step that could be added is the running of total RNA on 

an agarose gel and checking for 28S and 18S integrity before any extractions or library 

preparations take place. Secondly, the low percentage of full length tRNA reads could be 

due to the inefficiency of 5’ adapter ligation to the tRNAs. Due to the 5’ end of the tRNA 

being involved in a hairpin, it is possible that adapter ligation at the 5’ end could be 

inefficient due to this increased structure and the inability for the ligation enzyme to 

sufficiently ligate the 5’ adapter. Therefore, it is possible that the 3’ adapter ligated to the 

full length tRNAs, but because the 5’ adapter didn’t ligate, they would not be detected in 

the final sequencing data.  
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Similar problems were reported in Liu et al and Lama et al, who were investigating the 

inefficiency of 5’ adapter ligation in the library preparation of pre-microRNAs. Like tRNAs, 

the 5’ end of pre-microRNAs are involved in a hairpin structure and so found inefficiency 

when performing 5’ adapter ligations (Liu et al., 2014, Lama et al., 2019).     

  



A

B



Figure 3.5 AlkB treatment results in higher tRNA reads and a better distribution of reads 
across the tRNA pool. (A) Total mapped reads categorised into tRNAs (37.33% and 
49.43%), pre-tRNAs (6.75% and 11.25%) and other types of RNA (55.93 and 39.32%) for –
AlkB and WT + D135S AlkB samples respectively. (B) Isoacceptor distribution across total 
mapped reads for – AlkB and WT + D135S AlkB samples



A tRNA Reads

- AlkB WT + D135S

Full Length tRNAs 2.05% 5.11%

3' tRNA Fragments 36.24% 60.98%

5' tRNA Fragments 56.58% 29.23%

Other 5.14% 4.68%

Total Reads 6,257,870 13,708,113

B

- AlkB WT + D135S

Figure 3.6 ARM-seq tRNA library methodology shows bias towards tRNA halves and 
tRNA fragments. (A) categorisation of the mapped tRNAs into full length, 3’, 5’  and other 
tRNAs. (B) Read coverage of the tRNA fragments, showing the increase of 3’ tRNAs after 
demethylation. 
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3.4 Optimization of ALICE-tRNA-seq to circumvent the issues found in the pilot study 

3.4.1 Experimental design 

The limitations in 5’ adapter ligation and the heavy bias towards the sequencing of 3’ and 5’ 

tRNAs in the previous pilot study resulted in the development of ALICE-tRNA-seq (Adapter 

Ligation Circularization Relinearization tRNA sequencing). Prior to library preparation, total 

and small enriched (<200nt) RNAs were extracted from HEK293 cells. The total RNAs were 

run on a 1% agarose gel in order to determine 28S and 18S integrity as a quality control step 

to avoid degraded RNAs being sequenced. The total RNAs were also poly(A) selected and 

prepared for sequencing. The rationale here is that the mRNAs from the same source 

material is sequenced alongside tRNAs for codon optimality studies and comparison 

between the two sequencing methodologies. The small enriched RNAs go through the same 

steps as before, namely deacylation, size selection and demethylation before being used as 

input in the ALICE-tRNA-seq library generation (Figure 3.7 A). 

The ALICE-tRNA-seq library generation begins with 3’ adapter ligation, depletion of excess 3’ 

adapter, reverse transcription, circularization, relinearization and PCR amplification (Figure 

3.7 B). The rationale for each step and their optimization will be shown.    

  



A

B

Figure 3.7 Experimental design of ALICE-tRNA-seq. (A) Total and small enriched (<200nt) 
will be extracted from HEK293 cells for Total RNA and tRNA-seq respectively. The small 
enriched RNAs will be Deacylated, size selected and demethylated before being used as 
input into the ALICE-tRNA-seq library preparation. The Total RNAs will be poly(A) selected 
and sequenced for codon optimality studies. (B) The ALICE-tRNA-seq library preparation 
will consist of 3’ adapter ligation, excess 3’ adapter depletion, reverse transcription, 
circularization, Relinearization and PCR amplification before being sequenced.
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3.4.2 RNA extraction quality control and 3’ adapter ligation optimization 

Before beginning any library preparation, total RNA is run on a 1% agarose gel to check for 

28S and 18S integrity (Figure 3.8 A). Degraded RNA will typically show as a smeared band 

and cannot be used downstream. Another quality control step is the size selection of tRNAs 

and the presence of highly saturated mature tRNAs should be seen (Figure 3.8 B). Low 

quality tRNA will typically present as equal saturation to the rRNA band at approximately 

120nt. Furthermore, small RNAs are loaded across multiple lanes to reduce size selection 

inefficiency since overloaded lanes will result in low quality size separation.    

The 3’ adapter ligation step involves the binding of a DNA 3’ adapter with a 5’ pre-

adenylated end and a 3’ dideoxy-C end, using T4 RNA Ligase 2 (1-249) K227Q (Figure 3.9 A). 

The significance of the 5’ pre-adenylated end of the adapter is that it would only ligate with 

an RNA that has a monophosphate with a free hydroxyl group. This is only found in mature 

tRNAs, since the hydroxyl group is needed to bind to amino acids (and is also introduced 

during CCA addition to the acceptor stem in tRNA maturation (Ziehler et al., 2000)). 

Therefore, specificity is introduced, ruling out the binding of 3’ and 5’ tRNA fragments. The 

significance of the 3’ dideoxy-C modification is that it will block any potential binding to 

another adapter since it lacks the ability to bind to another pre-adenylated end, ruling out 

the possibility of multiple adapters binding to each other.  

The percentage PEG8000 was then optimized. PEG8000 acts as a molecular crowding agent, 

increasing the rate of the enzymatic reaction. 20% PEG8000 was found to be most optimal 

(Figure 3.9 B). However, it was also observed that using higher concentrations than 20% was 

detrimental to the production of 3’ adapter ligated tRNAs (Figure 3.9 C).  
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The percentage DMSO was also optimized. The DMSO acts as a molecular chaperone in the 

ligation reaction, also increasing the enzymatic rate of the reaction. 20% DMSO was found 

to be most optimal (Figure 3.9 C).  

The time and temperature for which the 3’ adapter ligation reaction took place was also 

optimized, with 25°C for 16hrs producing the greatest yield (Figure 3.10).       

  



A

28S

18S

5S

B

Figure 3.8 RNA extraction quality control. (A) Total RNA run on a 1% agarose gel to check 
for degradation. This is  done by checking the 28S and 18S bands and their ratio. Degraded 
RNA would generally show smearing and the presence of multiple bands. (B) Size selection 
of the tRNAs between 50-100nt, with a complementary gel post excision. The red arrow 
highlights the mature tRNAs. Red lines indicate excised region. Red arrow indicates tRNA 
population.



Figure 3.9 Optimization of the 3’ adapter ligation step. (A) Schematic of the 3’ adapter 
ligation step. (B) Optimization of the percentage PEG8000 used in the 3’ adapter ligation 
reaction. 20% PEG800 results in the highest concentration of bound 3’ adapter (C) 
Optimization of the percentage DMSO used in the 3’ adapter ligation reaction. The 
combination of 20% PEG8000 and 20% DMSO proves most optimal (D) size distribution 
pre and post 3’ adapter ligation. Red arrow indicates tRNA library.

B

D

A

Adapter Ligation Ranges

RNA Size (nt) Post 3' Adapter Ligation (+ 22nt)

50 72

75 97

100 122

C



Figure 3.10 Optimization of the 3’ adapter ligation reaction temperature and time. 25°C 
for 16hrs was found to be the most optimal time and temperature for the 3’ adapter 
ligation reaction. Red arrow indicates tRNA library.
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3.4.3 Excess 3’ adapter is depleted in a two-step reaction 

It is important to remove excess 3’ adapter because it harbours the binding site for the RT 

primer for reverse transcription in the next step. Failure to remove any excess 3’ adapter 

would hinder reverse transcription and decrease the yield of cDNA produced. To address 

this, excess 3’ adapter is depleted in a two-step reaction (Figure 3.11 A). First, deadenylase 

is used to remove the pre-adenylated group from the 5’ end of the adapter, followed by its 

digestion by the 5’-3’ exonuclease RecJ. Since RecJ digests the DNA adapter into single 

nucleotides, they pass through the column when the reaction is cleaned using the RNA-

clean and concentrate 5 kit (minimum length of DNA/RNA retained by the column is 17nt). 

Futhermore, we show that the 3’ adapter ligated tRNAs remain unaffected. This is because 

the RecJ enzyme only digests DNA. The reaction was carried out at 37°C for 1hr, followed by 

30°C for 30mins. Two RecJ endonucleases were used from different suppliers (New England 

Biolabs and Lucigen) and both successfully depleted excess 3’ adapter (Figure 3.11 B). 

Deadenylase and RecJ (NEB) were used in all library preparations (due to NEB RecJ being 

cheaper).       

  



B

A

Figure 3.11 Deadenylation and RecJ treatment successfully depletes excess 3’ adapter. 
(A) Schematic of the deadenylation and RecJ reaction to deplete excess 3’ adapter. This 
two step reaction works by removing the pre-adenylated group from the 5’ end of the 
adapter by deadenylase, followed by its digestion by the 5’-3’ exonuclease RecJ. (B) 8% 
TBE gel highlighting the use of two different RecJ enzymes from two suppliers. Both 
resulted in the successful depletion of excess 3’ adapter.
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3.4.4 Reverse transcription and the need for a gel extraction step post-RT 

The newly generated 3’ adapter ligated tRNAs now have a RT primer binding site, allowing 

for cDNA generation without the need for doing a 5’ adapter ligation step (Figure 3.12 A). 

This is circumvented by the upcoming circularization and relinearization steps. The 3’ 

adapter ligated tRNAs and RT primer were first heated to 95°C for 5mins and cooled on ice, 

prior to the addition of the SuperScriptIII (SSIII) reaction mixture, allowing for the 

complementary binding of the 3’ adapter ligated tRNAs and the RT primer. The RT was then 

performed at 55°C for 1hr, followed by an RNaseH treatment (37°C for 20mins, as per 

manufacturer’s instructions), to digest any excess RNAs bound within a RNA/DNA hybrid. 

Since the RT primer has a 3’ phosphate group (which acts as a substrate in the 

circularization reaction), removal of any excess RT primer is significant because the primers 

also circularize. This would then result in adapter contamination post-PCR, taking up reads 

whne the samples are sequenced. To address this, an attempt to remove excess RT primer 

was made using AmPure XP magnetic beads. AmPure XP work by binding to the negatively 

charged DNA phosphate backbone and by altering the concentration of isopropanol used in 

the reaction buffer, the size of the DNA purified can be adjusted for. Using 1.16X (of the 

total volume) isopropanol and using the Zymo Clean and Concentrate-5 columns as a 

positive control (column can retain sequences >17nt), the AmPure XP magnetic bead clean-

up was capable of removing much of the excess RT primer, but not all of it (Figure 3.12 B). 

Therefore, the decision was made to gel extract the cDNAs (excising sequences between 97-

147nt, Figure 3.12 C) and then performing an AmPure XP magnetic bead clean up using 

116.7% isopropanol.    

  



Reverse Transcription Ranges

3’ adapter ligated tRNA Post RT (+ 47nt)

72 97

97 122

122 147

C

A

B

Figure 3.12 Gel extraction is required to remove excess RT primer. (A) Schematic of the 
reverse transcription step. The RT primer is complementary to the 3’ adapter ligated tRNA 
and primes for cDNA production. The RT primer has a 3’ free phosphate utilized in the 
circularization step. The RT primer has divergent PCR primer sites (P1 and P2) (B) 8% TBE 
gel showing all steps prior to reverse transcription and the need for gel extraction. Both 
column and bead clean up attempts fail to remove excess RT primer (red arrow). (C) Size 
distribution expected after reverse transcription. Truncated cDNAs are due to AlkB being 
unable to remove all Watson-Crick face modifications  
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3.4.5 Optimizing circularization and relinearization 

Once the newly generated cDNAs are purified, they needed to be circularized and 

subsequently relinearized in order to allow for the divergent PCR primer binding sites to be 

on opposite ends of the cDNA. The circularization is done by utilizing the 3’ free phosphate 

group and Circ Ligase II, allowing the sequence to be circularized to its 5’ end. The RT primer 

inherently has a RiboC base (a cytosine ribonucleic acid) embedded within its sequence 

(Figure 3.13 A, purple base), which acts as the digestion site for RNaseA in the 

relinearization reaction. This results in the aforementioned divergent PCR primer binding 

sites (Figure 3.13 A, P1 and P2), to be on the 5’ and 3’ ends of the cDNA and can be 

successfully PCR amplified. These two steps therefore circumvent the need for a 5’ adapter 

ligation step and similar strategies have been used in the sequencing of other highly 

structured RNAs in literature (Liu et al., 2014, Burke et al., 2014).    

Because small circularized products are difficult to visualise on gels (in this case, sequences 

range from 97-147nt after reverse transcription) and to avoid the use of radioactive labelled 

libraries, a simple test based on PCR was used to confirm successful circularization (Figure 

3.13 A). If the generated cDNAs are circularized and then relinearized, this would result in 

the PCR primer binding sites being on opposite ends of the cDNA and hence successful PCR 

amplification. However, if the circularization step is skipped (positive control), RNaseA 

treatment on the cDNAs would cleave the RT primer end of the cDNA in two and can 

therefore not be PCR amplified.  

This test was carried out on purified cDNA products and as expected, none of the controls 

were amplified after PCR, suggesting circularization was successful (Figure 3.13 B). The 

optimal conditions for circularization were 200μM ATP, 2.5mM MnCl2, 1M betaine and 10U 
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Circ Ligase II in a 20μl reaction, incubated at 60°C for 5hrs. It was also found that heating the 

samples (95°C for 5mins) prior to adding the circularization reaction buffer was an effective 

means to decrease any secondary structure that could hinder circularization. The 

circularized DNA was then purified using phenol chloroform isoamyl alcohol (25:24:1) and a 

subsequent ethanol precipitation over night at -20°C. The relinearization reaction was 

carried out in a 10μl reaction using 10μg RNaseA.  

The number of PCR cycles was also optimized (Figure 3.13 B). The significance of having as 

few PCR cycles as possible is that the PCR reaction can bias against tRNA sequences with a 

higher concentration of guanine and cytosine bases, resulting in duplication bias. However, 

this must be balanced with regards to the concentration of library generated post PCR-

amplification, since all libraries are size selected (169-219bp are excised, Figure 3.13 C) by 

gel extraction. Although the number of PCR cycles can be as few as 6, 8 PCR cycles was 

found to be optimum with regards to the concentration of purified library after gel 

extraction.  

High fusion DNA polymerase was found to be the most effective polymerase for PCR 

amplification. The reactions were carried out in 20μl (as per manufacturer’s instructions). 

The PCR primers were designed to be applicable with the NextSeq5000 sequencer, with the 

reverse primers having a unique 6-base barcode index sequence. This results in the ability of 

demultiplexing pooled libraries from multiple experimental conditions. The library from the 

8 PCR-cycles (Figure 3.13 B) was used in an ALICE-tRNA-seq pilot run. The library was gel 

extracted and purified using AmPure XP magnetic beads. Like section 3.31, the libraries’ 

concentration and size was calculated using a Qubit and Tapestation respectively and the 

library was diluted to 1nM and run on a NextSeq5000 sequencer. 



A

B

PCR Amplification Ranges

RNA Size (nt) Post PCR (+119bp)

50 169

75 194

100 219

C

Figure 3.13 ALICE-tRNA-seq can go as low as 6 PCR cycles. (A) Schematic depicting how to 
measure successful circularization. If samples are circularized and then relinearized 
(utilizing the RiboC base embedded in the sequence, purple block), the PCR primer binding 
sites (P1 and P2) would be on opposite ends of the cDNA and can therefore be PCR 
amplified. If the circularization step is skipped, then the cDNA is cleaved and cannot be 
PCR amplified. (B) 6% TBE gel confirming successful circularization and showing that PCR 
amplification be reduced to as little as 6 cycles. (C) PCR amplicon range for gel extraction 
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3.4.6 Pilot ALICE-tRNA-sequencing run on HEK293 tRNAs 

The pilot run of the 8 PCR-cycles library (n=1) vastly improved on the results reported in the 

ARM-seq methodology pilot run. 93.46% of total mapped reads mapped back to tRNAs 

(from 25,911,798 reads), with only 1.69% of reads mapping to pre-tRNAs and 2.51% 

mapping to mitochondria tRNAs (Figure 3.14 A-B). Furthermore, examination of the 

isoacceptor distribution across the 22 amino acids improved (Figure 3.14 C), with transcripts 

such as tRNA-Phenylalanine (2.39%), tRNA-threonine (8.45%) and tRNA-isoleucine (2.23%) 

being detected at higher levels, which were previously very low in abundance (0.58%, 0.56% 

and 0.2% respectively, Figure 3.5 B) in the ARM-seq pilot run. Also, the bias for tRNA-glycine 

(41.06%) tRNA-glutamate (35.07%) from the ARM-seq pilot run was reversed, with the 

isoacceptor proportions in ALICE-tRNA-seq accounting for 5.34% and 1.71% of total reads, 

respectively (See Table 3.2). This proportionate distribution across all the isoacceptors 

highlights the significant improvements made using the ALICE-tRNA-seq methodology.  

Because the ALICE-tRNA-seq library preparation requires a free hydroxyl group on the 3’ end 

of tRNAs for successful 3’ adapter ligation, the methodology naturally corrects the 5’ tRNA 

fragment bias observed in the ARM-seq methodology pilot run. This is further confirmed 

when only 0.11% of reads (from a total of 25,143,543 reads) mapped back to 5’ tRNA 

fragments after fragment determination in the ALICE-tRNA-seq library preparation (Figure 

3.15 A-B) in comparison to the 29.23% detected in the ARM-seq methodology. Furthermore, 

the read coverage plot (Figure 3.15 A) confirms that all the sequences start from the 3’ end 

and so, truncated tRNAs can be taken into consideration since the removal of a 5’ adapter 

ligation step allows for the identification of tRNAs that may have had cDNA production 

hampered by modifications that the AlkB enzyme could not remove during demethylation 

(modifications such as m1I, ms2t6A and acp3U modifications, see Table 3.1). Furthermore, 
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the coverage plot shows that more that 60% of the reads pass the anticodon loop, allowing 

for confidence in their identification. However, most variance in isodecoder sequences 

occur between the acceptor stem and anticodon loop of the tRNA. The percentage of 

“other” tRNAs (tRNAs that fail to be within 5 nucleotides of the 3’ and 5’ end) also 

decreased from 4.68% (ARM-seq) to 1.84% (ALICE-tRNA-seq).       

Improvement in mapping to tRNAs and the more even distribution across all the tRNA 

isodecoders led to the conclusion of a more robust and technically sound methodology to 

measure the relative tRNA pool in cells.  

  



RNA Type % Reads 

tRNA 93.46%

pretRNA 1.69%

havana 0.00%

snRNA 0.63%

mirbase 0.01%

rRNA_pseudogene 0.15%

ribozyme 0.00%

sRNA 0.00%

rRNA 0.90%

misc_RNA 0.26%

snoRNA 0.38%

scaRNA 0.00%

other 2.51%

A B

C



Figure 3.14 ALICE tRNA-seq gives preference to tRNAs over other types of small RNAs.
(A-B) Mapping of the sequencing reads to their RNA type. (C) Isodecoder distribution 
across the 22 amino acids (percentages shown in Table 3.2)  

Isodecoder % of Total Read (ALICE-tRNA-seq) % of Total Read (ARM-seq, WT+D135S)

Ala 5.03% 0.43%

Arg 10.70% 12.52%

Asn 3.07% 0.34%

Asp 6.54% 6.36%

Cys 5.69% 3.13%

Gln 2.55% 4.98%

Glu 1.71% 14.25%

Gly 5.34% 10.29%

His 2.74% 13.11%

Ile 2.23% 0.20%

iMet 2.43% 3.23%

Leu 8.10% 9.86%

Lys 6.95% 5.60%

Met 1.24% 1.01%

Phe 2.39% 0.58%

Pro 3.36% 1.48%

SeC 0.11% 1.12%

Ser 9.69% 4.27%

Thr 8.45% 0.56%

Trp 0.75% 0.82%

Tyr 8.71% 3.01%

Val 2.24% 2.84%

Table 3.2 Comparison of the isoacceptor distributions in the ALICE-tRNA-seq pilot run vs 
ARM-seq (WT+D135S) pilot run. A more equal distribution is seen in the pilot run 
prepared using the ALICE-tRNA-seq methodology in comparison to the ARM-seq 
methodology. Isodecoders that are biased for in the ARM-seq methodology is reversed in 
ALICE-tRNA-seq and Isodecoders of very low detection in ARM-seq is improved in ALICE-
tRNA-seq. 



HEK293 ALICE-tRNA-seq 
Pilot Run

Full Length 6.02%

3' tRNA Fragments 92.03%

5' tRNA Fragments 0.11%

Other 1.84%

Total 25,143,543

A

B

Figure 3.15 ALICE-tRNA-seq rectifies bias to 5’ tRNA fragments and halves found in the 
ARM-seq methodology pilot run. (A) Read coverage plot of the HEK293 (n=1) tRNAs 
prepared using ALICE-tRNA-seq. All reads start from the 3’ of the tRNAs with over 60% of 
reads passing the anticodon loop. (B) Breakdown of fragment determination from the 
ALICE-tRNA-seq pilot run. 5’ tRNA fragments are almost eliminated using the ALICE-tRNA-
seq library preparation. 

HEK293 ALICE-tRNA-seq Pilot
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3.5 ALICE-tRNA-sequencing in HEK293 cells and its comparison to published tRNA 

methodologies 

3.5.1 ALICE-tRNA-seq library generation and quality control 

As aforementioned, HEK293 cells were grown to 70% confluency and the extracted RNAs 

went through the same steps as the pilot ALICE-tRNA-seq run (see Figure 3.7 A-B), except 4 

replicates were prepared in order to compare to published tRNA-seq methodologies. Figure 

3.16 highlights the quality control points from extraction to sequencing. Total RNAs were 

run on a 1% agarose gel to check for integrity and degradation (Figure 3.16 A). The 28S and 

18S bands appeared intact, demonstrating suitability for use in the mRNA-seq and ALICE-

tRNA-seq library preparations. The tRNAs were deacylated and size selected on a 6% TEB-

Urea gel (Figure 3.16B) with good saturation of the mature tRNAs except for replicate 2. The 

tRNAs then underwent the ALICE-tRNA-seq library preparation with cDNAs being get 

extracted after reverse transcription (Figure 3.16 C). As expected, the concentration of 

replicate 2 was lower than the rest of the replicates. The tRNAs were then circularized, 

relinearized, PCR amplified and then gel extracted on a 5% TBE gel (Figure 3.16 D). The 

concentrations and average size were determined by Qubit and Tapestation respectively, 

before being pooled to 1nM and sequenced on a NextSeq5000. Total RNAs from the same 

HEK293 cells were poly(A) selected (mRNA selection) and prepared for sequencing using the 

TruSeq RNA Library Preparation Kit v2.  

  



A B

C

D

Figure 3.16 HEK293 ALICE tRNA-seq library preparation to be compared to published 
tRNA-seq methodologies. (A) 1% agarose gel of HEK 293 Total RNA. 28S and 18S bands 
(and their ratio) confirm no degradation has occurred during extraction. (B) 6% TBE-urea 
gel for tRNA size selection. Mature tRNAs appear saturated except for rep2. (C) 6%TBE-
Urea gel of Post RT gel extraction (red box highlighting excised bands). (D) 5% TBE gel of 
final libraries to be sequenced. Rep2 was low in concentration and had adapter 
contamination.
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3.5.2 ALICE-tRNA-seq analysis and quality control 

The first quality control check to be made on the HEK293 ALICE-tRNA-seq preparation was 

checking the unmapped percentage and its comparison to single and multimapping events 

(i.e. tRNAs that map to their associate gene vs unmapped) (Figure 3.17 A). As expected, 

replicate 2 had to be removed from downstream analyses, with 25.08% of its reads not 

being mapped to the tRNAs or the genome. This confirmed the adapter contamination seen 

in the Tapestation when determining the average library size. Replicates 1,3 and 4 all had 

less than 9% unmapped reads and over 85% multimapping (Figure 3.17 A). The 

multimapping is a good indication as to the presence of mature tRNAs and therefore a good 

initial quality control. This is because tRNAs generally have multiple copies across the 

genome and so many of the tRNAs in the mature tRNA database (see section 3.3.2) 

generated have multiple copy numbers. The RNA types that the reads map to were also 

over 90% for tRNAs across the four replicates (Figure 3.17 B-C).  

The other quality control step checked before further analysis was the read distribution 

(Figure 3.18 A) and fragment determination (Figure 3.18 B). As expected, tRNAs starting 

from the 3’ position were plotted, normalized across replicates 1, 3 and 4 (Figure 3.18 A). 

Over 60% of reads pass the anticodon loop with good distribution across the isodecoders. 

However, the percentage of full length tRNAs drastically improved in this run, with 26.91%, 

31.38% and 20.59% of all mapped reads being full length tRNAs across replicates 1, 3 and 4 

(in comparison to 6.02% in the pilot ALICE-tRNA-seq run). From this point onwards, replicate 

2 was removed from all downstream analyses.     

  



HEK1 HEK2 HEK3 HEK4

tRNA 94.14% 96.57% 92.34% 91.22%

pretRNA 4.07% 2.78% 3.90% 3.76%

havana 0.00% 0.00% 0.00% 0.00%

snRNA 0.00% 0.00% 0.00% 0.00%

mirbase 0.00% 0.00% 0.00% 0.00%

RNA_pseudogene 0.00% 0.00% 0.00% 0.00%

ribozyme 0.00% 0.00% 0.00% 0.00%

sRNA 0.00% 0.00% 0.00% 0.00%

rRNA 0.00% 0.00% 0.00% 0.00%

misc_RNA 0.00% 0.00% 0.00% 0.00%

snoRNA 0.00% 0.00% 0.00% 0.00%

scaRNA 0.00% 0.00% 0.00% 0.00%

other 1.79% 0.66% 3.76% 5.03%

Figure 3.17 Quality control of HEK293 ALICE-tRNA-sequencing results in mapping. (A) 
Plot showing percentage mapping of reads that underwent multimapping, a single 
mapping event and unmapped reads. Due to the adapter contamination seen on the 
replicate 2 Tapestation, the unmapped reads were higher compared to the rest of the 
replicates, as expected. Replicate 2 was taken out from all downstream analyses. (B) 
Mapping of reads back to RNA type. As expected, more than 90% of all reads mapped to 
tRNAs with less than 4.1% of reads mapping to pre-tRNAs. (C) Breakdown of mapping to 
different RNA types across the 4 replicates.   

A

CB

rep1 rep2 rep3 rep4

Unmapped 6.13% 25.08% 6.04% 8.74%

single 3.79% 1.77% 4.42% 5.56%

multi 90.08% 73.15% 89.54% 85.70%



HEK1 HEK2 HEK3 HEK4

Full Length 26.91% 17.28% 31.38% 20.59%

3' tRNA Fragments 66.74% 78.32% 62.34% 72.58%

5' tRNA Fragments 0.00% 0.00% 0.01% 0.01%

Other 6.35% 4.39% 6.27% 6.82%

Total 13,818,791 8,907,264 10,541,343 9,128,165

A

B

Figure 3.18 Quality control of HEK293 ALICE-tRNA-sequencing results in fragment 
determination and coverage. (A) Read coverage plot of tRNA sequences normalized 
across 3 replicates (replicate 2 removed). As expected, reads start from the 3’ with over 
60% of all reads passing the anticodon loop. (B) Breakdown of fragment determination 
across the 4 replicates. Percentage of full length tRNAs vastly improve in comparison to 
the pilot ALICE-tRNA-seq run. Replicate 2 is removed from all downstream analyses.  
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3.5.3 Comparison of ALICE-tRNA-seq to published tRNA-seq methodologies 

The ALICE-tRNA-seq analysis done for the HEK293 cells are compared to other tRNA-seq 

methodologies published in literature, conducted on RNA from HEK293 cells. These span a 

large range of different methods using different approaches to tRNA-seq, summarised 

below.  

The ARM-seq (Cozen et al., 2015) methodology was developed following similarly, to that of 

standard small RNA-seq methodologies. Namely, adapters are bound to both the 5’ and 3’ 

ends of the tRNAs and then undergo reverse transcription and PCR amplification before 

being sequenced. Hydro-tRNA-seq followed in similar fashion (Gogakos et al., 2017), except 

they opted to fragment the tRNAs to lengths of approximately 20-30nt (similar to that done 

in classical RNA-seq except the lengths of the fragments are much shorter). These then have 

3’ and 5’ adapters ligated to the fragmented tRNAs. The difference between these two 

methodologies is that ARM-seq utilized AlkB to demethylate modified bases prior to library 

generation, whereas Gogakos et al used fragmentation as a means of avoiding truncation 

during reverse transcription, by reducing the number of modifications on each fragment. 

They then used iterative mapping to try and map the sequencing reads to a curated list of 

mature tRNAs.   

The DM-seq methodology (Zheng et al., 2015), like ALICE-tRNA-seq, used WT and D135S 

AlkB to remove as many methylated bases from the Watson-Crick face of modified tRNAs, 

prior to library preparation. They avoided 5’ adapter ligation by binding a DNA adapter to 

the 3’ of tRNAs and then reverse transcribed their tRNAs using TGRIT (Thermostable group II 

intron reverse transcriptase). Whenever TGRIT comes across a modified base, it places a 

random nucleotide in its place as opposed to the stalling of cDNA production. 
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QuantM-seq (Pinkard et al., 2020) is a circularization based tRNA-seq methodology that uses 

a commercially available AlkB (which is equivalent to the WT AlkB used in ARM-seq, DM-seq 

and ALICE-tRNA-seq) to demethylate modified bases. It also utilises a double stranded DNA 

adapter, where one strand anneals to the 5’ of the tRNA and the other strand anneals to the 

3’ end of the tRNA. Like ALICE-tRNA-seq, the 3’ end of the adapter has divergent PCR primer 

binding sites facing opposite directions. Therefore, after 3’/5’ adapter ligation/annealing, 

the sequences are reverse transcribed and circularized. Since the PCR primer binding sites 

are facing opposite directions, they PCR directly off of the circularized product, as done in 

ribosome profiling methodologies (Ingolia et al., 2012), to generate their libraries. 

When comparing ALICE-tRNA-seq to the other methodologies, the first aspect that was 

considered was the tRNA counts distributions across all of the methodologies (Figure 3.19 

A). To calculate this, log2(raw counts + 1) were taken and plotted as a boxplot, with the 

median counts taken across all of the methodologies. This was because the total number of 

reads varied from approximately 900,000 reads in ARM-seq to 24,000,000 reads in DM-seq. 

As expected, there was no normal distribution across the methodologies. However, the 

distributions seemed to be similar with each methodologies’ replicates.  

Next, a principal component analysis (PCA) was done to see which methodologies clustered 

together (Figure 3.19 B). Since a PCA is a measure of variance across multiple components, it 

was expected that methodologies that cluster together would be similar in either their 

library preparation or their read counts. As expected, Hydro-seq and ARM-seq, two 

methodologies that take the classical RNA-seq route ligating 3’ and 5’ adaptors to their 

tRNAs, cluster closely together. ALICE-tRNA-seq and QuantM-seq, two circularization based 

methodologies cluster closely along the first principal component (representing 59.54% of 
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variance across all the methodologies), along with DM-seq. However, all three 

methodologies split across the 2nd principal component (representing 19.96% of variance 

across all the methodologies), with ALICE-tRNA-seq clustering inbetween QuantM-seq and 

DM-seq.  

Next, the correlation coefficients for each replicate from within each of the methodologies 

was calculated in order to show correlations across the methodologies and to add statistical 

power to the principal component plots (Figure 3.19 C-D). These were calculated using 

spearman’s rank analysis and the statistical significance for the correlation coefficients were 

also calculated, with p<0.05 set as significant. As expected from the PCA plot, each of the 

replicates from within each of the experiments correlated with R2 values greater than 0.99, 

confirming good reproducibility within all of the methodologies. ARM-seq and Hydro-seq 

correlate really strongly with each other (with their correlations being statistically 

significant) with an R2>0.8. ALICE-tRNA-seq and the QuantM-seq were the only other 

methodologies that strongly correlated, with correlations being statistically significant (p < 

0.05) and an R2>0.83. This was also expected since the two methodologies are 

circularization-based with regards to their library preparations. DM-tRNA-seq did not 

correlate strongly with any of the sequencing methodologies (with it strongest correlation 

being with ALICE-tRNA-seq with an R2=0.38) but were not statistically significant.      

The isodecoder distribution was then compared across the methodologies to elucidate 

potential bias towards particular isodecoders (Figure 3.20). ARM-seq and Hydro-seq 

presented the weakest distributions with almost 50% of all reads in ARM-seq mapping to 

tRNA-Glu (23.02%), tRNA-Gly (13.89%) and tRNA-Lys (14.28%). Similar biases exist in Hydro-

seq, with more than 50% of all reads mapping to tRNA-Glu (39.55%), tRNA-Lys (9.36%) and 
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tRNA-Val (11.15%). The use of just WT AlkB during demethylation prior to library 

preparation, using high salt concentrations in the demethylation reactions and attempting 

to ligate 3’ and 5’ adapters to the tRNAs could be the cause behind these biases. ALICE-

tRNA-seq, DM-tRNA-seq and QuantM-seq all provided a much more proportionate 

distribution across all 22 isodecoders, with each individual technique showing bias towards 

select isodecoders. This was the case for tRNA-Arg (19.44% and 15.27%) for ALICE-tRNA-seq 

and QuantM-tRNA-seq respectively and tRNA-Val (18.2%) for DM-tRNA-seq.  

Lastly, the isodecoder distributions in all of the tRNA-seq methodologies were compared to 

the amino acid abundance calculated from HEK293s (Figure 3.21). Briefly, the codons coding 

each of the amino acids were counted for every transcript in the RNA-seq dataset and 

normalized to the abundance (transcripts per million, TPM) of each transcript and then were 

normalized again across its 4 replicates. That ensures that high abundance messages such as 

house-keeping genes do not skew the percentage read share for each codon. These were 

then compared to the tRNA-seq isodecoder distributions in the tRNA-seq methodologies. 

Since the RNA-seq and tRNA-seq came from the same RNA samples for the ALICE-tRNA-seq 

methodology, their comparison is the fairest. Firstly, what seemed like a bias in the ALICE-

tRNA-seq for tRNA-Arg (19.44% read share in tRNAs), is not a bias since the most popular 

encoded amino acid from the codon read share from the RNA-seq was Arg (10.69%). This 

will also be true for the QuantM-tRNA-seq with a tRNA-Arg read share of 15.27%. The RNA-

seq data also confirms the excess tRNA-Glu in ARM-seq and Hydro-seq (23.02% and 39.55% 

tRNA read share respectively), with the codons from the RNA-seq having a read share of 

only 5.34%. 

  



Figure 3.19 ALICE-tRNA-seq isoacceptor distribution comparison to  other published 
tRNA-seq methodologies. (A) Read count distribution of each replicate across the 
different methodologies. The blue line represents the median counts across of the 
methodologies. (B) principal component analysis of the five methodologies. All individual 
replicates cluster together for each methodology with small RNA-seq based methods 
(Hydro and Arm-seq) clustering and circularization based methods clustering (ALICE and 
QuantM-seq). PC1 = 59.54% and PC2 = 19.96%. Replicates will overlap if similar in tRNA-
counts, like in the case of ALICE-tRNA-seq. (C) Correlation plot with R2 values represented 
in the colour map. Statistically significant correlations have no cross (p < 0.05), where non-
significant correlations are illustrated with a cross (X) within the comparison quadrant. (D) 
Correlation plot with R2 values represented in the colour map. Numbers within the 
comparison quadrants are the R2 values of each comparison.
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Figure 3.20 ALICE-tRNA-seq isoacceptor distribution comparison to  other published 
tRNA-seq methodologies. Isodecoder counts were normalized within each of the 
experiments using counts per million (CPM) and the isodecoder read share was 
subsequently calculated for all 22 amino acids. 
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Figure 3.21 Comparison of Isodecoder distribution in ALICE-tRNA-seq and other 
published tRNA-seq methodologies to HEK293 RNA-seq data. The amino acid distribution 
from RNA-seq of HEK293’s were calculated, normalized to gene abundance and compared 
to the isodecoder distribution in ALICE-tRNA-seq and other published tRNA-seq 
methodologies. 
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3.6 Chapter discussion 

In this chapter, we have shown the importance of using both WT and D135S AlkB in an 

effort to remove as much methylated modifications on the Watson-Crick face of tRNAs prior 

to library preparations and was shown through primer extension assays and tRNA-

sequencing. We also showed the importance of optimizing salt concentrations in the AlkB 

buffer, something not done by any of the published tRNA-seq methodologies and could 

enhance the variety of tRNA isodecoders and isoacceptors identified.  

We also showed the problems with using an approach that aims to ligate a 5’ adapter to 

tRNA-sequencing libraries and should be avoided. This could be due to the high level of 

structure at the 5’ end of tRNAs and the techniques that circumvent 5’ adapter ligation 

(namely ALICE-tRNA-seq, QuantM-seq and DM-seq), all had proportionate distributions with 

regards to their isodecoder read shares. We also showed this via sequencing of tRNAs using 

both ARM-seq and ALICE-tRNA-seq. 

With regards to correlation between all the tRNA-seq methodologies, we showed that the 

ARM-seq and Hydro-seq methodologies (in their current state) were the worst techniques 

that can be used to measure relative isodecoder abundance. Both techniques presented 

huge biases towards select tRNAs and would not be suitable for studies relating to codon 

optimality and their comparison to the tRNAome. However, ARM-seq had always been 

advertised as a technique especially suitable for the study of 3’ and 5’ tRNA fragments and 

tRNA halves. Hydro-seq on the other hand, claimed to be a methodology that can be used to 

quantify the tRNAome, which we have shown not be accurate.  

It was also clear that ALICE-tRNA-seq, QuantM-seq and DM-seq all had favourable 

isodecoder read share distributions. All three methodologies also circumvent 5’ adapter 
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ligation to their tRNAs in their library preparations. Interestingly, ALICE-tRNA-seq correlates 

strongest to DM-seq of all the methodologies (even through the correlations were not 

statistically significant), and the isodecoder distributions for ALICE-tRNA-seq seemed to lie 

between DM-seq and QuantM-seq which were at opposing extremes (this can also be 

confirmed in the PCA plot (Figure 3.19 B)).  

ALICE-tRNA-seq and QuantM-seq were the two sequencing methodologies that best 

matched up to the HEK293 RNA-seq dataset. The conclusion to which methodology is 

stronger to measure the tRNA pool would therefore lie in their library preparations. ALICE-

tRNA-seq is the superior methodology because of the use of a 3’ pre-adenylated adapter 

that requires a free monophosphate hydroxyl group (found in mature tRNAs and not found 

in tRNAs that have not gone through maturation and CCA addition). QuantM-seq on the 

other hand, utilises a double stranded DNA adapter, where one strand anneals to the 5’ end 

of the tRNA and the other strand anneals to the 3’ end of the tRNA (which would have the 

ability to bind all tRNAs, whether they be mature tRNAs or precursor tRNAs). This targeting 

in ALICE-tRNA-seq allows us to be confident that the “3’ tRNA fragments” we sequence are 

genuine mature tRNAs that were truncated at the reverse transcription step and not bona 

fide 3’ fragments. The same cannot be said for QuantM-seq, with its biggest limitation being 

(like DM-seq) that there is no way to distinguish which tRNA reads are genuine, bona fide 3’ 

tRNA fragments and 3’ tRNA halves, in comparison to reads that are mature tRNAs but the 

reverse transcriptase stalled due to a modification in the tRNA sequence.  
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Chapter 4: Using ALICE-tRNA-seq to investigate changes in the tRNA pool in in vitro cell 

models of quiescence and senescence 

4.1 Chapter Introduction 

tRNA availability and its link to the translation of the mRNA population has long been an 

area of interest and has harboured conflicting reports. Links have been made between the 

decoding accuracy of mRNAs, mRNA stability, translational efficiency and protein folding 

with tRNA availability (O’Brien et al., 2014; Drummond and Wilke 2008; Man and Pipel 

2007). However, the lack of a high resolution technique to accurately measure the tRNA-

ome at a single tRNA level to study these links has been a major limitation in the field.  

Many diseases, such as cancer, rely heavily upon the alteration of a cell’s gene expression 

signature, with cancers in particular, increasing proliferative capacity by both transcriptional 

and translational mechanisms (Weinstein et al., 2013; Schwanhüusser et al., 2011). As 

different tissues vary in both their tRNA-ome and mRNA-ome (Dittmar et al., 2006; 

Hernandez-Alias et al., 2020), it is important to be able to measure these to try to elucidate 

the interconnection between them and the molecular mechanisms that govern this. 

Guimaraes et al conducted investigations into the effects of serum-deprivation in mouse 

embryonic fibroblasts and also reported the enrichment of A/T ending mRNA codons but 

found no differential tRNA expression. This led to them proposing that rather than 

“proliferative tRNAs” being upregulated to meet the transcriptomic demand, there is a 

global tRNA expression increase to meet the translational boost required in proliferative 

cells. This could therefore overcome a potential bottleneck in the translation of proliferative 

mRNAs that are enriched in A/T ending codons (Guimaraes et al., 2020). However, the tRNA 
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pools in these investigations were quantified using northern blotting, a technique that relies 

on oligonucleotides hybridization (the limitations of which are discussed in section 3.1). 

In response to stresses and oncogene signalling, healthy cells utilize senescence, a stable cell 

cycle arrest event as a failsafe mechanism to prevent tumour progression, making escape 

from senescence a well-established hallmark of cancer (Innes and Gil, 2019; Kuilman et al., 

2010; Hanahan and Weinberg, 2000). Although in vivo models of stress-induced and 

oncogene-induced senescence have powerfully established the significance of this 

protective mechanism (Michaloglou et al., 2005; Kang et al., 2011), the establishment of 

tumour evasion mechanisms and the evolution of malignant transformation can be better 

understood by utilizing inducible models of stress-induced and oncogene-induced 

senescence (Innes and Gil, 2019).  

In this chapter, we utilize two in vitro models of quiescence and senescence to try and 

elucidate their tRNA and mRNA profiles to examine how they vary upon changes in cell 

state, in an attempt to add to previous understandings. The first model discussed is the well-

established BJ5TA fibroblasts (from the BJ/hTERT cell line), which are driven from 

proliferation to quiescence via fetal bovine serum (FBS) starvation. tRNA sequencing 

confirms the downregulation of tRNAs with A/T wobble anticodons and the upregulation of 

tRNAS with G/C wobble anticodons (position 34) post starvation. This has previously been 

established at the mRNA level, where the existence of distinct codon usage signatures in 

genes encoding for multicellular and cell autonomous processes has been reported (Gingold 

et al., 2014). mRNA-sequencing showed the preference for A/T ending codons in 

proliferation, and the preference for G/C ending codons in senescence.                
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The second model utilised in this chapter uses IMR90 primary human fibroblasts, which 

undergo oncogene induced senescence via the induction of an estrogen receptor and RAS 

fusion (Dajee et al., 2002). Briefly, a mutant estrogen receptor (ER) has an H-RASG12V fused 

to its ligand binding domain, allowing for the activation of RAS via 4-hydroxy-tamoxifen (4-

OHT) treatment, resulting in growth arrest and induction of senescence associated 

phenotypes (Innes and Gil, 2019). This results in the non-treated fibroblasts remaining in 

proliferation whereas 4-OHT treated fibroblasts are driven into senescence. In this model, 

the tRNA sequencing shows that tRNAs with A/T wobble anticodons are upregulated, 

whereas tRNAs with G/C wobble anticodons are downregulated, following oncogene-

induced senescence, which is opposite to that observed in the BJ5TA starved fibroblasts 

which have entered quiescence. However, we do confirm from the mRNA-sequencing the 

preference for A/T ending codons in proliferation, and the preference for G/C ending 

codons in senescence.          
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4.2 Experimental design  

As discussed in Chapter 3, the ALICE-tRNA-seq methodology proves to be an effective means 

of measuring the tRNA pool in vitro. Standard RNA-seq (utilizing polyA selection to capture 

mRNAs), is used in parallel so that both the tRNA-ome and the mRNA-ome can be examined 

from the same samples. From the tRNA sequencing, the relative pools between conditions 

are measured, giving an account to isoacceptors/isodecoders being expressed. mRNA-

sequencing measures steady state mRNA levels, meaning that differential expression of 

genes between conditions can be determined. Weighting codon frequencies by mRNA 

abundance can be used to allow for more accurate determination of the cellular demand for 

specific tRNAs and the establishment of codon usage preferences of expressed transcripts. 

The BJ5TA fibroblasts were driven from proliferation to quiescence via fetal bovine serum 

(FBS) starvation (hereafter referred to as Fed vs Starved) (Figure 4.1). Fed cells were the 

wild-type and have no cell state changes occurring (10% FBS in growth medium), whereas 

the starved cells had no FBS added to their medium, resulting in growth factor deprivation. 

Both conditions were grown in tandem for 72h to a confluency of 70%. Both the total RNA 

and small enriched RNAs (<200nt) are extracted from the same harvested cells allowing for 

mRNAs and tRNAs to be obtained from the same populations of cells.  

The primary human fibroblasts IMR90s were driven from proliferation to senescence via the 

induction of oncogenic RAS (oncogene induced senescence) (Figure 4.1). To achieve this, 

IMR90s were infected with retrovirus encoding the mutated estrogen receptor with H-

RASG12V fused to its ligand binding domain (hereafter referred to as Ras). Wildtype IMR90s 

were infected with an empty retrovirus (hereafter referred to as Empty). Senescence was 

induced via activation of RAS using 4-hydroxy-tamoxifen (4-OHT) treatment. Empty IMR90s 
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were treated with an empty retrovirus and are therefore unaffected by 4-OHT and remain in 

proliferation. Both conditions were grown for 10 days post 4-OHT treatment. The cells were 

then harvested, lysed and total RNA and small enriched RNAs (<200nt) extracted. 5 

replicates were generated for both experimental sets.  

  



Figure 4.1 Experimental design in trying to establish the tRNA pool in vitro. The BJ5TA 
fibroblasts are driven from proliferation to quiescence via growth factor deprivation (Fed 
vs Starved). IMR90s (primary human fibroblasts) are driven from proliferation to 
senescence via oncogene induced senescence. This is achieved by the ectopic expression 
of the oncogene H-RASG12V fused to an estrogen receptor (ER:Ras) and induced via 4-
hydroxy-tamoxifen (4-OHT) treatment.
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4.3 Quality control steps post-extraction and pre-library preparation 

4.3.1 Pre-library preparations quality control  

Quality control steps were carried out prior to library preparations of the Fed vs Starved 

samples. Firstly, total RNAs extracted from the replicates were run on a 1% agarose gel to 

check for RNA integrity (Figure 4.2 A). The gel revealed significant degradation of total RNA 

from the Fed3 replicate, illustrated by the smearing occurring along the lane. This resulted 

in both the Fed3 and Starved3 samples being discarded. Starved3 was removed due to the 

fact that the experimental samples are paired.  

New BJ5TA fibroblast replicates were grown, +/- FBS treated and harvested, with extracted 

total RNAs being run on a 1% agarose gel to check for RNA integrity (Figure 4.2 B). Samples 

had passed the first quality control steps and were used as input for RNA-seq library 

preparation. 

Small enriched RNAs (<200nt) were deacylated and then size selected for RNAs between 50-

100nt on an 8% TBE-Urea gel (Figure 4.2 C). tRNA saturation was clearly visible and rRNAs 

running at approximately 120nt were avoided (so as to avoid library contamination). tRNAs 

were then purified and demethylated, prior to being used as input into the ALICE-tRNA-seq 

library preparation. 

The same quality control assessments were carried out for the IMR90 Empty vs Ras 

experiments. The total RNAs were not degraded (Figure 4.3 A). tRNA saturation was clearly 

visible for the first 3 replicates for each condition. Empty4, Empty5, Ras4 and Ras5 were size 

selected on a different day and were oversaturated (hence the darkness observed in the 

gels). However, inspection of the sample post extraction revealed successful tRNA 

purification. 



A B

C

Figure 4.2 Fed vs Starved Total RNA integrity check and tRNA size selection. (A) Total 
RNAs were run on a 1% agarose gel to check for RNA integrity. Fed3 (red asterisk) was 
clearly degraded and therefore Fed3 and Starved3 were not used. (B) Fed5 and Starved5 
were used as a replacement for the degraded sample in (A). (C) tRNA size selection pre 
and post excision on a 8% TBE Urea. tRNAs were size selected between 50-100nts



Figure 4.3 IMR90 Total RNA integrity check and tRNA size selection. (A) Total RNAs were 
run on a 1% agarose gel to check for RNA integrity. (B) tRNA size selection pre-excision on 
a 8% TBE Urea. The darkness in replicates 4 and five is due to oversaturation. Empty4 does 
have tRNAs but are too oversaturated. tRNAs were size selected between 50-100nts (red 
lines)
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4.3.2 Library preparations quality control 

Quality control steps were carried out post-RT and post-PCR. After reverse transcription, 

cDNAs between 97-147nt (corresponding to the 50-100nt RNA input length) were gel 

extracted on a 6% TBE-Urea gel to avoid contamination of excess RT-primer (Figure 4.4 A 

and Figure 4.6 A) and purified prior to circularization. The gels clearly showed the tRNAs 

were successfully reverse transcribed, with a good proportion of full length products 

(~147nt) in addition to the multiple bands, presumably representing truncation events 

occurring due to modifications on the Watson-Crick face of tRNAs, which the AlkB 

demethylase enzyme was unable to remove (refer to Table 3.1).  

The final libraries were gel extracted after PCR amplification. The final libraries were run on 

a 5% TBE gel and extracted between 169-219nt (corresponding to the 50-100nt RNA input 

length), before being purified and pooled for sequencing (Figure 4.4 B and Figure 4.6 B).  

In the Fed vs Starved experiment, the concentration of purified library from FBS deprivation 

replicate2 was too low to pool and therefore, 50% more of the PCR reaction (6μl of PCR 

reaction loaded instead of 4μl) were loaded onto a 5% TBE-gel to account for the low 

concentration purified post-excision (Figure 4.5). This was done for both Fed2 and Starved2 

since the samples in this experiment were paired.       

  



A

B

Figure 4.4 Fed vs Starved ALICE-tRNA-seq library preparation post RT and post PCR. (A) 
tRNA libraries are prepared using ALICE-tRNA-seq with cDNAs being gel extracted between 
97-147nt. Gels highlight pre- and post-excision on a 6% TBE-UREA gel. (B) cDNAs were PCR 
amplified and gel extracted after 8 PCR cycles. DNA libraries were extracted between 169-
219nt. Gels highlight pre- and post-excision on a 5% TBE-UREA gel.   



Figure 4.5 50% more Fed2 and Starved2 samples were loaded to increase the 
concentration of DNA library extracted. Concentration of Fed2 and Starved2 extracted 
from Figure 4.3 was too low. 50% more of the library was loaded onto a 5% TBE gel to 
account for the low concentrations initially extracted. 



A

B



Figure 4.6 IMR90 ALICE-tRNA-seq library preparation post RT and post PCR. (A) tRNA 
libraries are prepared using ALICE-tRNA-seq with cDNAs being gel extracted between 97-
147nt. Gels highlight pre-excision on a 6% TBE-UREA gel. (B) cDNAs were PCR amplified 
and gel extracted after 8 PCR cycles. DNA libraries were extracted between 169-219nt. 
Gels highlight pre-excision on a 5% TBE-UREA gel
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4.4 Quality control steps post-sequencing 

4.4.1 Quality control checks on RNA type mapping and isoacceptor distribution 

Sequenced reads had adapters trimmed and were mapped to the genome and the curated 

database of mature tRNAs. The first quality control step was to elucidate the percentage of 

reads mapping to tRNAs.  

In Fed vs Starved, more than 95% of the mapped reads, mapped successfully to tRNAs 

(Figure 4.7 A). The distribution of reads to their decoded amino acids were also measured 

(Figure 4.7 B). There were no clear biases towards any tRNA (as seen in the pilot 

experiments carried out in Section 3.3).  

In the IMR90 Empty vs Ras, more than 79% of the mapped reads, mapped successfully to 

tRNAs. There were more reads mapping to “other RNAs”, 11.22% and 13.27% for the Empty 

and Ras conditions respectively (Figure 4.8 A). Upon further examinations, these RNAs 

mapped to mitochondrial tRNAs (which are removed from the analysis, data not shown). 

There was also no observed bias in the distribution of reads encoding amino acids (Figure 

4.8 B). 

  



Figure 4.7 Fed vs Starved quality control check on RNA types sequenced and the 
isoacceptor distributions across the two conditions. (A) Percentage of total reads 
mapping to their respected RNA types. More than 95% of reads mapped to tRNAs. (B) 
Breakdown of RNA types mapped to (C) Isoacceptor distribution for both conditions. No 
clear biases towards any particular isoacceptor were found.
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Fed Starved

tRNA 96.47% 95.85%

pretRNA 1.24% 1.55%

havana 0.00% 0.00%

snRNA 0.13% 0.20%

mirbase 0.01% 0.01%

rRNA_pseudogene 0.08% 0.07%

ribozyme 0.00% 0.00%

sRNA 0.00% 0.00%

rRNA 0.54% 0.49%

misc_RNA 0.10% 0.20%

snoRNA 0.16% 0.20%

scaRNA 0.00% 0.00%

other 1.27% 1.42%

C



Figure 4.8 IMR90 quality control check on RNA types sequenced and the isoacceptor 
distributions across the two conditions. (A) Percentage of total reads mapping to their 
respected RNA types. More than 78% of reads mapped to tRNAs. (B) Breakdown of RNA 
types mapped to (C) Isoacceptor distribution for both conditions. No clear biases towards 
any particular isoacceptor were found.
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pretRNA 1.63% 0.67%
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sRNA 0.00% 0.00%
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other 11.22% 13.27%
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4.4.2 tRNA read coverage and fragment determination 

The read coverage for the two experiments was also analysed (Figure 4.9 A and Figure 4.10 

A). The reads for each of the replicates were normalized and the tRNA sequences were 

plotted with respect to where the sequences started. More than 95% of the sequencing 

reads ended at the 3’ end as expected, meaning that the reverse transcription started at this 

position, which rules out the possibility that these fragments derived from cleaved tRNAs. In 

Fed vs Starved, more than 60% of the reads overlapped the anticodon loop of the tRNA and 

more than 55% in Empty vs Ras.  

tRNA fragments were also quantified (Figure 4.9 B and Figure 4.10 B). For both experiments, 

more than 95% of the reads were determined to be either full length tRNAs or sequences 

that had truncated at the reverse transcription step. No significant 5’ fragments were 

sequenced, as expected. 

  



tRNAs

Fed1 Fed2 Fed5 Starved1 Starved2 Starved5

Full Length 13.62% 21.14% 10.11% 20.02% 19.01% 20.94%

3' tRNA Fragments 83.52% 76.76% 87.78% 77.80% 77.51% 76.62%

5' tRNA Fragments 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Other 2.85% 2.10% 2.11% 2.17% 3.48% 2.44%

Total Reads 5,830,146 9,547,677 8,201,345 7,697,790 8,441,381 8,014,203

B

A

Figure 4.9 Fed vs Starved quality control check on fragment determination and coverage. 
(A) Read coverage plot of tRNA sequences normalized across 3 replicates. As expected, 
reads start from the 3’ end with over 60% of all reads passing the anticodon loop. (B) 
Breakdown of fragment determination across the 3 replicates for each condition. More 
than 95% of the reads were either sequenced full length tRNAs or sequences that had 
truncated at the reverse transcription step. No significant 5’ fragments were sequenced as 
expected. 



Figure 4.10 IMR90 quality control check on fragment determination and coverage. (A) 
Read coverage plot of tRNA sequences normalized across 3 replicates. As expected, reads 
start from the 3’ end with over 55% of all reads passing the anticodon loop. (B) Breakdown 
of fragment determination across the 5 and 4 replicates for each condition respectively. 
More than 98% of the reads were either sequenced full length tRNAs or sequences that 
had truncated at the reverse transcription step. No significant 5’ fragments were 
sequenced as expected. 

Empty ER:Ras

Empty1 Empty2 Empty3 Empty4 Empty5 Ras1 Ras2 Ras3 Ras4

Full Length 33.85% 28.69% 31.35% 10.25% 21.09% 28.40% 32.17% 18.31% 21.43%

3' tRNA Fragments 66.15% 71.31% 68.64% 89.74% 78.90% 71.59% 67.82% 81.68% 78.55%

5' tRNA Fragments 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.01%

Other 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.01% 0.01%

A

B
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4.4.3 tRNA counts distribution and principal component analysis 

The count distribution across the replicates for the Fed and Starved conditions were also 

calculated (Figure 4.11 A and Figure 4.12 B). Log2(tRNA counts + 1) were taken to evaluate 

the distribution of the counts across the replicates and compared to the median across 

conditions. The median number of counts for each replicate coincided with the condition-

wide median, ruling out bias for both experiments.  

A principal component analysis was also carried out on the samples (Figure 4.11 B and 

Figure 4.12A).  

In Fed vs Starved, since each replicate for the two conditions were originally harvested from 

the same cell batch prior to treatment, a batch correction was performed on the samples 

prior to the PCA being plotted (using Lima batch correct). This allowed for the removal of 

any technical variance that may have occurred during cell culture, since the experiments 

were carried out on separate days. The principal component analysis of the tRNA counts 

showed good separation across the two conditions on PC1 (accounting for 77% of the 

variance within the experiment).  

In Empty vs Ras, Ras1, Ras2, Empty4 and Empty5 were removed from the analysis due to 

their clustering in the PCA (Figure 4.12 A). The principal component analysis was re-run 

showing the Empty and RAS replicates separating across PC1, accounting for 92% of the 

variance. 

  



Figure 4.11 Fed vs Starved counts distribution and principle component analysis. (A) 
Counts distribution of the mapped tRNAs were checked. Log2(counts + 1) were taken 
across all of the replicates illustrated on a boxplot. All mean counts were close to the 
median of all counts across the conditions (blue line). (B) Principle component analysis of 
the tRNA counts to determine where samples clustered. Good separation across the two 
conditions on PC1 (accounting for 77% of the variance). Lima batch correct was used since 
the cells were harvested as pairs to remove any technical variation across the replicates. 

A

B



Figure 4.12 IMR90 principle component analysis and counts distribution . (A) Principle 
component analysis of the tRNA counts to determine where samples clustered. Ras1, 
Ras2, Empty4 and Empty5 were all removed from the analysis and the PCA rerun. Lima 
batch correct was used since the cells were harvested as pairs to remove any technical 
variation across the replicates. (B) Counts distribution of the mapped tRNAs were checked. 
Log2(counts + 1) were taken across all of the replicates illustrated on a boxplot. All mean 
counts were close to the median of all counts across the conditions (blue line).

A

B
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4.4.5 tRNA mismatch frequency at the wobble position to check for adenosine to inosine  

modification (A34I) 

Another quality control step incorporated prior to differential expression was checking for 

the mismatch frequency at position 34 (tRNA wobble position).  

Since there are fewer tRNA anticodons with respect to mRNA codons, tRNAs utilise an 

adenosine to inosine modification at the tRNA wobble position of select isoacceptors, to 

accommodate non-cognate base pairing and recognition (Figure 4.13 A). tRNAs also utilize 

G:T base pairing for select tRNA isoacceptors (Table 4.1).   

In next generation sequencing, inosine bases are recognised as guanosines instead of 

adenosines. Therefore, when reads are mapped back to the mature tRNA database 

(allowing for only 1 mismatch), reads with the mismatch at position 34 are due to this 

adenosine to inosine modification (A34I). The tRNA mismatch frequency analysis 

determined that the inosine modifications only occurred on A bases and not seen in tRNAs 

with a G/C/T at the wobble position for both experiments (Figure 4.13 B and C). 

  



Amino Acid 
mRNA Codon 

(5' to 3')
tRNA Isoacceptor 

(5' to 3')
Cognate Base

Pairing
A34I Base

Pairing
G:T Base
Pairing tRNA Box Type

Arg 

CGT ACG CGT:ACG CGT:ICG -

6-box tRNA

CGC Not Expressed - CGC:ICG -
CGG CCG CGG:CCG - -
AGG CCT AGG:CCT - -
CGA TCG CGA:TCG CGA:ICG -
AGA TCT AGA:TCT - -

Leu

CTT AAG CTT:AAG CTT:IAG -

6-box tRNA

CTC Not Expressed - CTC:IAG -
TTG CAA TTG:CAA - -
CTG CAG CTG:CAG - -
TTA TAA TTA:TAA - -
CTA TAG CTA:TAG CTA:IAG -

Ser

TCT AGA TCT:AGA TCT:IGA -

6-box tRNA

TCC Not Expressed - TCC:IGA -
TCG CGA TCG:CGA - -
AGC GCT AGC:GCT - -
AGT Not Expressed - - AGT:GCT
TCA TGA TCA:TGA TCA:IGA -

Ala

GCT AGC GCT:AGC GCT:IGC -

4-box tRNA
GCC Not Expressed - GCC:IGC -
GCG CGC GCG:CGC - -
GCA TGC GCA:TGC GCA:IGC -

Pro

CCT AGG CCT:AGG CCT:IGG -

4-box tRNA
CCC Not Expressed - CCC:IGG -
CCG CGG CCG:CGG - -
CCA TGG CCA:TGG CCA:IGA -

Val

GTT AAC GTT:AAC GTT:IAC -

4-box tRNA
GTC Not Expressed - GTC:IAC -
GTG CAC GTG:CAC - -
GTA TAC GTA:TAC GTA:IAC -

Gly

GGG CCC GGG:CCC - -

4-box tRNA
GGC GCC GGC:GCC - -
GGT Not Expressed - - GGT:GCC
GGA TCC GGA:TCC - -

Thr

ACT AGT ACT:AGT ACT:IGT -

4-box tRNA
ACC Not Expressed - ACC:IGT -
ACG CGT ACG:CGT - -
ACA TGT ACA:TGT ACA:IGT -

Glu
GAG CTC GAG:CTC - -

2-box tRNA
GAA TTC GAA:TTC - -

Gln
CAG CTG CAG:CTG - -

2-box tRNA
CAA TTG CAA:TTG - -

Lys
AAG CTT AAG:CTT - -

2-box tRNA
AAA TTT AAA:TTT - -

Ile*

ATT AAT ATT:AAT - -

2-box tRNA (special case)ATC GAT ATC:GAT ATC:IAT -
ATA TAT ATA:TAT ATA:IAT -

Asn
AAC GTT AAC:GTT - - 2-box tRNA (only 1 tRNA 

expressed)AAT Not Expressed - - AAT:GTT

His
CAC GTG CAC:GTG - - 2-box tRNA (only 1 tRNA 

expressed)CAT Not Expressed - - CAT:GTG

Phe
TTC GAA TTC:GAA - - 2-box tRNA (only 1 tRNA 

expressed)TTT Not Expressed - - TTT:GAA

Asp
GAC GTC GAC:GTC - - 2-box tRNA (only 1 tRNA 

expressed)GAT Not Expressed - - GAT:GTC

Cys
TGC GCA TGC:GCA - - 2-box tRNA (only 1 tRNA 

expressed)TGT Not Expressed - - TGT:GCA

Tyr
TAC GTA TAC:GTA - - 2-box tRNA (only 1 tRNA 

expressed)TAT Not Expressed - - TAT:GTA
iMet/Met ATG CAT ATG:CAT - - 1-box tRNA

Trp TGG CCA TGG:CCA - - 1-box tRNA



Table 4.1 A breakdown of the human mRNA:tRNA base pairing that occurs at the 
ribosome during translation and tRNA degeneracy. All mRNA codons are highlighted in 
blue (written 5’ to 3’) and tRNA anticodons are highlighted in black (written 3’ to 5’). 
Cognate binding represents decoding events that take place due to classical Watson-Crick 
base pairing. Codons that are decoded as a result of the A34I modification at the tRNA 
wobble position are highlighted in purple. Codons that are decoded as a result of G:T 
binding are highlighted in green. Not expressed refers to the fact that the tRNA anticodon 
is not expressed in the human genome and is therefore decoded via A34I modification or 
G:U non-cognate binding.     
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Figure 4.13 tRNA mismatch frequency at position 34 (wobble position) to check for 
inosine modification (A34I). (A) Schematic of adenosine and inosine base pairing to 
mRNA codons at the wobble position. Adenosine base pairs with T bases. The inosine 
modification allows for non-cognate base pairing and recognition of T/C/A bases (bold 
blue line). Inosine does not pair effectively to G bases (dashed red line). (B - C) Mismatch 
frequency for tRNAs with A at the wobble position vs G/C/T for both experiments. tRNAs 
were mapped allowing for 1 mismatch in order to determine the inosine modification at 
position 34 (wobble position). As expected, inosine modifications should only occur on A 
bases and not seen in tRNAs with a G/C/T at the wobble position. (B) BJ5TA Fed vs Starved 
fibroblasts and (C) IMR90 Empty vs Ras. 

A34I modification rate: Fed vs Starved A34I modification rate: IMR90 empty vs RAS
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4.5 Differential tRNA expression changes at the tRNA isoacceptor level 

4.5.1 Global tRNA isodecoder changes 

Differential expression analysis was performed on filtered tRNA reads (removing tRNAs with 

counts < 10 in all replicates) using DESeq2 (Love et al., 2014). A minimum count of 10 reads 

per replicate was used as a cut off point for all isoacceptors. Apeglm log fold change 

shrinkage (Zhu et al., 2018) was performed in the differential expression analysis. In Fed vs 

Starved, the Fed condition was set as the wild-type condition, with positive log fold changes 

referring to upregulation in quiescence and negative log fold changes referring to 

downregulation in quiescence. In Empty vs Ras, the Empty condition was set as the wild-

type condition, with positive log fold changes referring to upregulation in senescence and 

negative log fold changes referring to downregulation in senescence. 

It was previously mentioned in the literature that codons with an A/T at the 3rd position of 

mRNA codons were preferred for proliferation associated genes and G/C ending codons 

preferred in senescence associated genes (Gingold et al., 2014). In Fed vs Starved, where 

cells are being driven from proliferation to quiescence, differential tRNA expression 

matched these previous findings reported in literature. All statistically significant tRNA 

isoacceptors with an A or T base at the wobble position were downregulated in quiescence 

with the exception of tRNA-Leu-TAA (Figure 4.14 A).  All statistically significant tRNA 

isoacceptors with a G or C base at the wobble position were upregulated in senescence, 

with the exception of tRNA-Ala-CGC (Figure 4.14 B). This suggests that the tRNA availability 

is regulated to coincide with changes at the mRNA level when cells are driven from 

proliferation to quiescence. However, this analysis does not make clear what is driving said 

regulation.    
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In Empty vs Ras, where cells are driven from proliferation to senescence, global changes at 

the isoacceptor level were less clear. Only 3 isoacceptors with an A at the wobble position 

were statistically significant (Figure 4.15 A) with Leu-AAG and Pro-AGG being downregulated 

as expected and Thr-AGT being upregulated. All statistically significant isoacceptors with a T 

at the wobble position were all upregulated with the exception of Pro-TGG (going against 

previously reported findings in literature). Only 3 isoacceptors with a G at the wobble 

position were statistically significant (Figure 4.15 B) with Asn-GTT and Phe-GAA being 

upregulated as expected and Gly-CCC being downregulated. All statistically significant 

isoacceptors with a C at the wobble position were all downregulated with the exception of 

Ser-CGA. It was clear in this experiment that tRNAs with a purine (A/G) at the wobble 

position followed the findings reported in literature but pyrimidines (T/C) did not, 

suggesting that when cells are driven from proliferation to senescence, complementary base 

pairing of tRNAs and mRNAs was not strictly the limiting factor in meeting the demands of 

the transcriptome. Furthermore, since isoacceptors that coded for the same amino acids 

were observed to be moving in both directions in the differential expression analysis, this 

led to tRNAs being broken down into their box-types and being compared directly to the 

observed relative synonymous codon usage of the mRNAs. This would allow for the 

identification of any potential non-cognate binding effects (inosine or G:T base pairing, see 

Table 4.1), and the role of tRNA degeneracy in decoding the transcriptome.     

  



A

B

Figure 4.14 Log fold changes at the isoacceptor level match mRNA preferences reported 
in literature for Fed vs Starved. (A) Log fold changes for tRNA isoacceptors with an A or T 
at the wobble position. All of the statistically significant isoacceptors are downregulated in 
quiescence with the exception of tRNA-Leu-TAA. (B) Log fold changes for tRNA 
isoacceptors with a G or C at the wobble position. All of the statistically significant 
isoacceptors are upregulated in proliferation with the exception of tRNA-Ala-CGC. * p < 
0.05. ns = not significant, Log2(Starved/Fed). 



A

B

Figure 4.15 Isoacceptors with a purine base at the wobble position confer to mRNA 
codon preferences observed in literature. (A) Isoacceptors with an A or T at their wobble 
position. 3 isoacceptors with an A at the wobble position were statistically significant with 
Leu-AAG and Pro-AGG being downregulated as expected and Thr-AGT being upregulated. 
All statistically significant isoacceptors with a T at the wobble position were all 
upregulated with the exception of Pro-TGG. (B) Isoacceptors with an A or T at their wobble 
position. 3 isoacceptors with a G at the wobble position were statistically significant with 
Asn-GTT and Phe-GAA being upregulated as expected and Gly-CCC being downregulated. 
All statistically significant isoacceptors with a C at the wobble position were all 
downregulated with the exception of Ser-CGA. * p < 0.05. ns = not significant, 
Log2(Ras/Empty).
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4.5.2 Comparison of 6-box tRNAs to the relative synonymous codon usage in mRNA 

tRNA box-types is a breakdown of tRNAs according to the number of codons they can 

decode (see Table 4.1). 6-box tRNAs can decode 6 mRNA codons, although not all 

complementary anticodons are expressed. Therefore, an inosine modification at position 34 

of tRNAs or G:T base pairing is utilised to decode all codons. 4-box tRNAs follows the same 

reasoning and can decode 4 codons, but only 3 anticodons are expressed. There are two 

types of 2-box tRNAs, those that express two anticodons and those that express one 

anticodon. Lastly, 1-box tRNAs are those that decode 1 codon.      

The tRNA differential expression analysis was broken down into their box-types and the 

amino acids they decode. The RNA sequencing that was done in parallel was used to 

determine the relative synonymous codon usage of the transcriptome. Briefly, RNA reads 

were mapped to the protein coding transcriptome using salmon allowing for quantification 

at the transcript level (Patro et al., 2017) and differentially expressed transcripts determined 

using DESeq2 (Love et al., 2014). Differentially expressed transcripts that were statistically 

significant were filtered for a ± Log2 fold change of 2 (4 fold) and the relative synonymous 

codon usage (RSCU) was calculated, normalizing to transcript abundance. RSCU was plotted 

for each amino acid to highlight preference according to cell condition. 

6-box isoacceptors include tRNA-Arg, tRNA-Leu and tRNA-Ser (Figure 4.16 A-C and Figure 

4.17 A-C). All three isoacceptors have an A34I modification (for Arg-ACG, Leu-AAG and Ser-

AGA). Also, tRNA-Ser-GCT allows for G:T base pairing with codon AGT. 

In Fed vs Starved, tRNA-Leu- TTA (which decodes codon TTA) was the only isoacceptor with 

an A at the wobble position to be upregulated in quiescence, even though the 

transcriptomic RSCU shows no preference for it in quiescence compared to proliferation 
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(Figure 4.16 B). tRNA-Leu-TAG (which decodes codon CTA) on the other hand is down 

regulated in quiescence and again, the transcriptomic RSCU shows no preference for it in 

quiescence over proliferation.  

In Empty vs Ras, AGA is the most preferred codon from the RSCU data in both conditions 

and is preferred in proliferation but tRNA-Arg-TCT shows no statically significant change 

(Figure 4.17 A). tRNA-Leu-CAA is downregulated in senescence but the codon CTT is slightly 

preferred in proliferation which would explain why it does not follow G/C anticodons being 

upregulated (Figure 4.17 B). tRNA-Ser-TGA is upregulated in senescence but the codon TCA 

is slightly preferred in proliferation. However, the ICT modification would decode this codon 

in both conditions (Figure 4.17 C).   

tRNA degeneracy could explain why certain isoacceptor log fold changes do not match up to 

preferences at the RSCU level, especially in the Empty vs Ras experiment. Since the A34I 

modification can decode codons ending with an A/C/T (Table 4.1), this degeneracy in tRNAs 

could be aiding in the decoding of mRNA codons in both experiments, even though the 

logfold changes of cognate tRNA isoacceptors are not statistically significant or are changing 

in the opposite direction to the RSCU preference.      
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Figure 4.16 6-box tRNA differential expression analysis and relative synonymous codon 
usage in Fed vs Starved. tRNA differential expression analysis was broken down into 
amino acid and box-type. Transcriptome differential expression analysis was filtered for 
transcripts that were statistically significant and had a Log2 fold change of 2. RSCU was 
calculated and normalized to transcript abundance. Both differential isoacceptor changes 
and RSCU was plotted for (A) Arginine, (B) Leucine and (C) Serine. All statistically 
significant logfold changes are highlighted with an asterisk (*) and all non-significant 
changes have their adjusted p-vales printed. mRNA codons encoded by the isoacceptor 
are printed below with complementary base pairing highlighted in blue, non-cognate base 
pairing due to inosine modification highlighted in purple and G:T base pairing highlighted 
in green. * p < 0.05
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Figure 4.17 6-box tRNA differential expression and relative synonymous codon usage 
analysis in IMR90 Empty vs Ras. tRNA differential expression analysis was broken down 
into amino acid and box-type. Transcriptome differential expression analysis was filtered 
for transcripts that were statistically significant and had a Log2 fold change of 2. RSCU was 
calculated and normalized to transcript abundance. Both differential isoacceptor changes 
and RSCU was plotted for (A) Arginine, (B) Leucine and (C) Serine. All statistically 
significant logfold changes are highlighted with an asterisk (*) and all non-significant 
changes have their adjusted p-vales printed. mRNA codons encoded by the isoacceptor 
are printed below with complementary base pairing highlighted in blue, non-cognate base 
pairing due to inosine modification highlighted in purple and G:T base pairing highlighted 
in green. * p < 0.05
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4.5.3 Comparison of 4-box tRNAs to the relative synonymous codon usage in mRNA 

The same phenomenon of tRNA degeneracy seen in the 6-box tRNAs is also true for the 4-

box tRNAs (Figure 4.18 A-E and 4.19 A-E). 4-box isoacceptors include tRNA-Ala, tRNA-Pro, 

tRNA-Val, tRNA-Gly and tRNA-Thr.  

In Fed vs Starved, tRNA-Ala-CGC (which decodes the GCG codon) was the only isoacceptor 

to be downregulated in quiescence. The GCG codon is the least preferred synonymous 

codon and is preferred more in quiescence than in proliferation. However, the GCG codon 

can also be decoded by IGC (due to A34I) and so could accommodate its decoding in 

quiescence (Figure 4.18A).  

In Empty vs Ras, tRNA-Pro-CGG (which decodes CCG) is downregulated in senescence but 

the CGC codon is preferred in senescence (Figure 4.19 B). However, the CCG codon is the 

least preferred synonymous codon. tRNA-Val-TAC (which decodes GTA) is upregulated in 

senescence even though the GTA codon is preferred in proliferation (Figure 4.19 C). 

However, the GTA codon can be decoded by IAC, resulting in tRNA degeneracy aiding in 

meeting transcriptomic demands.    
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Figure 4.18 4-box tRNA differential expression analysis and relative synonymous codon 
usage in Fed vs Starved. tRNA differential expression analysis was broken down into 
amino acid and box-type. Transcriptome differential expression analysis was filtered for 
transcripts that were statistically significant and had a Log2 fold change of 2. RSCU was 
calculated and normalized to transcript abundance. Both differential isoacceptor changes 
and RSCU was plotted for (A) Alanine, (B) Proline, (C) Valine, (D) Glycine and (E) Threonine. 
All statistically significant logfold changes are highlighted with an asterisk (*) and all non-
significant changes have their adjusted p-vales printed. mRNA codons encoded by the 
isoacceptor are printed below with complementary base pairing highlighted in blue, non-
cognate base pairing due to inosine modification highlighted in purple and G:T base 
pairing highlighted in green. * p < 0.05
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4-box tRNAs – Empty vs Ras
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Figure 4.19 4-box tRNA differential expression analysis and relative synonymous codon 
usage in IMR90 Empty vs Ras. tRNA differential expression analysis was broken down into 
amino acid and box-type. Transcriptome differential expression analysis was filtered for 
transcripts that were statistically significant and had a Log2 fold change of 2. RSCU was 
calculated and normalized to transcript abundance. Both differential isoacceptor changes 
and RSCU was plotted for (A) Alanine, (B) Proline, (C) Valine, (D) Glycine and (E) Threonine. 
All statistically significant logfold changes are highlighted with an asterisk (*) and all non-
significant changes have their adjusted p-vales printed. mRNA codons encoded by the 
isoacceptor are printed below with complementary base pairing highlighted in blue, non-
cognate base pairing due to inosine modification highlighted in purple and G:T base 
pairing highlighted in green. * p < 0.05
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4.5.4 Comparison of 2-box tRNAs to the relative synonymous codon usage in mRNA 

2-box isoacceptors include tRNA-Glu, tRNA-Gln, tRNA-Lys and tRNA-Ile.  

In Fed vs Starved, all the isoacceptors that were differentially expressed and were 

statistically significant, matched up to the RSCU preferences (Figure 4.20 A-D). Interestingly, 

tRNA-Ile-GAT showed a very low read count, which could be due to modifications present 

on the Watson-crick face (as isoleucine is a heavily modified tRNA), preventing it from being 

sequences as efficiently as the other isoleucine isoacceptors.   

In Empty vs Ras, all statistically significant isoacceptors with an A/T at the wobble position 

were upregulated in senescence even though codons with an A/T at the wobble position 

were preferred in proliferation. The opposite effect was observed for isoacceptors and 

codons with a G/C at the wobble position (Figure 4.21 A-C). tRNA-Glu and tRNA-Lys are 

generally the highest expressed tRNAs from the tRNA-seq data and so its high read count 

could suffice in meeting the transcriptomic demand, but this would require further 

investigation. tRNA-Ile-GAT was not identified in the tRNA-sequencing at all (Figure 4.21 D). 

Due to the low read count observed in Fed vs Starved, it is likely that this isoacceptor was 

filtered out during analysis.     
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ATT ATC ATA

Isoacceptor

mRNA codon

D

Proliferation

Quiescence

Figure 4.20 2-box tRNA differential expression analysis and relative synonymous codon 
usage in Fed vs Starved. tRNA differential expression analysis was broken down into 
amino acid and box-type. Transcriptome differential expression analysis was filtered for 
transcripts that were statistically significant and had a Log2 fold change of 2. RSCU was 
calculated and normalized to transcript abundance. Both differential isoacceptor changes 
and RSCU was plotted for (A) Glutamic Acid, (B) Glutamine, (C) Lysine and (D) Isoleucine. 
All statistically significant logfold changes are highlighted with an asterisk (*) and all non-
significant changes have their adjusted p-vales printed. mRNA codons encoded by the 
isoacceptor are printed below with complementary base pairing highlighted in blue, non-
cognate base pairing due to inosine modification highlighted in purple and G:T base 
pairing highlighted in green. * p < 0.05
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2-box tRNAs – IMR90 Empty vs Ras
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Figure 4.21 2-box tRNA differential expression analysis and relative synonymous codon 
usage in IMR90 Empty vs Ras. tRNA differential expression analysis was broken down into 
amino acid and box-type. Transcriptome differential expression analysis was filtered for 
transcripts that were statistically significant and had a Log2 fold change of 2. RSCU was 
calculated and normalized to transcript abundance. Both differential isoacceptor changes 
and RSCU was plotted for (A) Glutamic Acid, (B) Glutamine, (C) Lysine and (D) Isoleucine. 
All statistically significant logfold changes are highlighted with an asterisk (*) and all non-
significant changes have their adjusted p-vales printed. mRNA codons encoded by the 
isoacceptor are printed below with complementary base pairing highlighted in blue, non-
cognate base pairing due to inosine modification highlighted in purple and G:T base 
pairing highlighted in green. * p < 0.05
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4.5.5 Comparison of 2-box tRNAs (only 1 tRNA expressed) to the relative synonymous codon 

usage in mRNA 

2-box isoacceptors that express only one anticodon are tRNA-Asn, tRNA-His, tRNA-Phe, 

tRNA-Asp, tRNA-Cys and tRNA-Tyr. All of these isoacceptors utilise G:T base pairing to 

decode the non-cognate codon.   

In Fed vs Starved, all of the 2-box tRNAs that express one anticodon have a G/C at the 

anticodon are all upregulated in quiescence, where the preferred codon has a G/C codon at 

its wobble position (Figure 4.22 A-E). tRNA-Tyr-GTA was the only exception but was not 

statistically significant (Figure 4.22 F). The same was observed in Empty vs Ras (Figure 4.23 

A-F).  
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Figure 4.22 2-box tRNA (only 1 tRNA expressed) differential expression analysis in Fed vs 
Starved. tRNA differential expression analysis was broken down into amino acid and box-
type. Transcriptome differential expression analysis was filtered for transcripts that were 
statistically significant and had a Log2 fold change of 2. RSCU was calculated and 
normalized to transcript abundance. Both differential isoacceptor changes and RSCU was 
plotted for (A) Asparagine, (B) Histidine, (C) Phenylalanine, (D) Aspartate, (E) Cysteine and 
(F) Tyrosine. All statistically significant logfold changes are highlighted with an asterisk (*) 
and all non-significant changes have their adjusted p-vales printed. mRNA codons encoded 
by the isoacceptor are printed below with complementary base pairing highlighted in blue, 
non-cognate base pairing due to inosine modification highlighted in purple and G:T base 
pairing highlighted in green. * p < 0.05
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Figure 4.23 2-box tRNA (only 1 tRNA expressed) differential expression analysis in 
IMR90 Empty vs Ras. tRNA differential expression analysis was broken down into amino 
acid and box-type. Transcriptome differential expression analysis was filtered for 
transcripts that were statistically significant and had a Log2 fold change of 2. RSCU was 
calculated and normalized to transcript abundance. Both differential isoacceptor changes 
and RSCU was plotted for (A) Asparagine, (B) Histidine, (C) Phenylalanine, (D) Aspartate, 
(E) Cysteine and (F) Tyrosine. All statistically significant logfold changes are highlighted 
with an asterisk (*) and all non-significant changes have their adjusted p-vales printed. 
mRNA codons encoded by the isoacceptor are printed below with complementary base 
pairing highlighted in blue, non-cognate base pairing due to inosine modification 
highlighted in purple and G:T base pairing highlighted in green. * p < 0.05
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4.6 Global relative synonymous codon usage analysis  

The relative synonymous codon usage for all statistically significant (p < 0.05), differentially 

expressed genes with a log2 fold change of ±2 were calculated (Figure 4.24 A-C). This was 

done to highlight the codon preference at the wobble position for the transcriptome, 

depending on the cell state.  

In Fed vs Starved, there was a preference for A/T codons at the wobble position of the 

mRNAs in the Fed condition (proliferation) and G/C codons at the wobble position of the 

mRNAs in the Starved condition (quiescence) (Figure 4.24 A). This matched up with the tRNA 

isoacceptor profiles observed in the tRNA sequencing. 

In Empty vs Starved, the split between A/T and G/C ending codons was observed (Figure 

4.24 B). However, when the codons were split into their single nucleotides at the wobble 

position, it was clear that A ending codons were the preferred codon in proliferation (empty 

condition) (Figure 4.24 C). This suggests that it could be the A-ending codons driving 

synonymous codon usage changes in oncogene-induced senescence. Interestingly, T codons 

at the wobble position of the mRNAs generally stayed neutral with negligible preferences in 

both directions. This would suggest the importance of tRNA degeneracy in mRNA decoding 

since T codons on mRNAs can be decoded either via the A34I modification or G:T base 

pairing (see Table 4.1). G/C codons at the wobble position of the mRNAs were preferred in 

senescence, as confirmed in the Fed vs Starved. 

Interestingly, when the relative synonymous codon usage was calculated for all transcripts 

and the most abundant transcript per gene, there was no preference in Fed vs Starved 

(Figure 4.25 A) and negligible preference in Empty vs Ras (Figure 4.25 B). When these 

calculations were made, the relative synonymous codon usage for each transcript was 



183 
 

weighted to its abundance to prevent bias. Since these codon preferences are seen in 

differential genes, this would suggest a regulatory mechanism that drives synonymous 

codon usage, depending on the cell state. However, it is still unclear whether this 

preference is driven by the tRNA pool or if the tRNA pool adapts to changes in relative 

synonymous codon usage.      
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Figure 4.24 Relative synonymous codon usage for statistically significant transcripts with 
a ±Log2 fold change of 2. (A) Fed vs Starved shows a preference for A/T in proliferation 
and G/C in quiescence at the mRNA wobble position. (B) Empty vs Ras oncogene-induced 
senescence shows a preference for G/C codons in senescence. (C) Empty vs Ras oncogene-
induced senescence when split by individual codon at the mRNA wobble position shows a 
preference for A bases in proliferation but T is split between the two conditions at the 
mRNA wobble position. 
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Figure 4.25 Relative synonymous codon usage for all transcripts and the most 
abundance transcript per gene. (A) Fed vs Starved shows no RSCU preference in any 
direction when calculated for all transcripts and the most abundant transcript per gene. 
(B) Empty vs Ras shows negligible RSCU preference in any direction when calculated for all 
transcripts and the most abundant transcript per gene. 
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4.7 Investigation into potential A34I modifications at the isodecoder level  

The tRNA sequencing results showed the importance of tRNA degeneracy in decoding mRNA 

sequences that vary in relative synonymous codon usage. The most important modification 

observed was the adenosine to inosine modification on position 34 of the tRNA wobble 

position. Since this modification allows for the decoding of A/T/C ending codons, enhancing 

the flexibility of the isoacceptor pool, it was important to ask how the modification rates 

changed for the isoacceptors they existed on between conditions.   

The mismatch frequency at position 34 was calculated by allowing for 1 mismatch when the 

tRNAs were mapped back to the mature tRNA database. If the mismatch occurred at 

position 34 for isoacceptors Ala, Arg, Ile, Leu, Pro, Ser, Thr and Val, and the base was read as 

a G base, then this would signal an A34I mutation (Section 4.4.5). The mutation frequency 

was then calculated for all tRNAs in that isoacceptor group and compared between 

conditions.  

For both Fed vs Starved (Figure 4.26 A) and Empty vs Ras (Figure 4.26 B), there were no 

statistically significant differences within isoacceptors between the two conditions. The 

mutation rate calculations showed that A34I modifications at these isodecoders were very 

high in both conditions, suggesting that tRNA degeneracy is not regulated by changes in 

synonymous codon usage, rather it is a mechanism that appears to be constitutively active.  

  



B

A

Figure 4.26 A34I modification changes at the isoacceptor level. (A) A34I modification 
rates were calculated in Fed vs Starved but there was no statistically significant difference 
between proliferation and quiescence. (B) A34I modification rates were calculated in 
Empty vs Ras but there was no statistically significant difference between proliferation and 
senescence. 

A34I modification rate: Fed vs Starved

A34I modification rate: IMR90 empty vs RAS
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4.8 Investigating if amino acid frequencies change in differentially expressed transcripts  

Since some of the 2-box tRNAs all had log fold changes in the same direction in both Fed vs 

Starved and Empty vs Ras, it was important to check how amino acid frequency varied 

depending on the cell state. All statistically significant, differentially expressed genes with a 

log2 fold change of ±2 were used to calculate the amino acid frequency, normalized against 

the abundance of each gene.  

In Fed vs Starved, where cells are driven from proliferation to quiescence, there were clear 

differences in amino acid frequency between the two conditions (Figure 4.27 A). Glutamine, 

isoleucine, lysine, glutamic acid and leucine were all prevalent in the Fed (proliferation) 

condition. In the starved condition (quiescence), glycine, proline, cysteine and alanine were 

the prevalent amino acids. This suggests that the amino acid frequencies in the transcripts 

could be driving some of the tRNA profiles observed, instead of the relative synonymous 

codon usage.  

In Empty vs Ras on the other hand, the difference in amino acid frequencies in the 

transcripts between proliferation and senescence was even between the two conditions, 

suggesting the importance of relative synonymous codon usage in the observed tRNA 

profiles.  

  



B

A

Figure 4.27 Amino acid frequencies in proliferation vs quiescence and proliferation vs 
senescence. All statically significant, differentially expressed genes with a log2 fold change 
of ±2 were used to calculate the amino acid frequency, normalized against the abundance 
of each gene. (A) In Fed vs Starved, quiescence showed prevalence for glutamine, 
isoleucine, lysine, glutamic acid and leucine and in proliferation, glycine, proline, cysteine 
and alanine were the prevalent amino acids. (B) Empty vs Ras showed no prevalence for 
any particular amino acid in their measured transcriptome  
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4.9 tRNA amino acid frequency vs mRNA amino acid frequency 

Lastly, the tRNA amino acid frequencies were correlated with the mRNA amino acid 

frequencies after being calculated for both experiments (Figure 4.28 and Figure 4.29) to see 

how tRNA availability matched with the transcriptomic demand. mRNA codons used were 

calculated from all transcripts per gene and were normalized to their corresponding TPM 

(transcript per million) to weight for abundance and then summarised by amino acid. The 

tRNA isoacceptor frequencies were counted after mapping and were normalized to their 

corresponding CPM (counts per million) and then summarised by amino acid.  

Fed tRNA amino acid frequency was plotted against Fed mRNA amino acid frequency, 

showing moderate correlation (R2 = 0.689), suggesting tRNA availability matched with the 

mRNA codons that needed to be translated (Figure 4.28 A). Interestingly, when the same 

was done for the Starved condition, a very strong correlation was observed (R2 = 0.999), 

suggesting tRNA availability matched almost perfectly with the mRNA codons that needed 

to be translated (Figure 4.28 B). This suggests that when cells are in quiescence, the tRNA 

pool may suffice in meeting the transcriptomic demands of the cell, but may rely more on 

tRNA degeneracy in proliferation. 

Empty tRNA amino acid frequency was plotted against Empty mRNA amino acid frequency, 

showing a weak positive correlation (R2 = 0.4217) (Figure 4.29 A). When the same was done 

for the Ras condition, a weak positive correlation was also observed (R2 = 0.3386) (Figure 

4.29 B). Again, this may suggest that cells in proliferation (as observed in the starved 

condition) and cells in senescence may rely heavily on tRNA degeneracy to meet the 

demands of the transcriptome. 

  



Figure 4.28 Strong correlation observed for tRNA vs mRNA amino acid frequency in Fed 
vs Starved. (A) Fed mRNA codon frequency of the most abundant transcript for each gene 
plotted against Fed tRNA isoacceptor frequency. (B) Starved mRNA codon frequency of the 
most abundant transcript for each gene plotted against Starved tRNA isoacceptor 
frequency.
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Figure 4.29 Weak positive correlation observed for tRNA vs mRNA amino acid frequency 
in Empty vs ER:RAS. (A) Empty mRNA codon frequency of the most abundant transcript 
for each gene plotted against Empty tRNA isoacceptor frequency. (B) ER:RAS mRNA codon 
frequency of the most abundant transcript for each gene plotted against ER:RAS tRNA 
isoacceptor frequency.  
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4.10 Chapter discussion 

In this chapter, we utilized two in vitro models of quiescence and senescence to try and 

elucidate their tRNA and mRNA profiles, by sequencing the mRNAs and tRNAs and examine 

how they vary upon changes in cell state. The Fed vs Starved experiment in BJ5TA 

fibroblasts was a stress-induced senescence model and had generally followed the trends 

reported in literature. It was previously mentioned that A/T codons at the 3rd position of 

mRNA sequences were preferred for proliferation associated genes and G/C codons 

preferred in senescence associated genes (Gingold et al., 2014). The tRNA sequencing for 

the Fed vs Starved experiment confirmed this at the isoacceptor level, with almost all tRNA 

isoacceptors with an A or T base at their wobble position being downregulated in 

quiescence. When tRNAs did not match the demands highlighted from the relative 

synonymous codon usage analysis, it was clear that tRNA degeneracy may have been able to 

meet the demands, either through A34I modifications or by utilising G:T base pairing.   

The second model discussed was the oncogene induced senescence model Empty vs Ras in 

IMR90 primary human fibroblasts. Briefly, a mutant estrogen receptor (ER) has an H-RASG12V 

fused to its ligand binding domain, allowing for the activation of RAS via 4-hydroxy-

tamoxifen (4-OHT) treatment, resulting in growth arrest and induction of senescence 

associated phenotypes (Innes and Gil, 2019). This results in the non-treated fibroblasts 

remaining in proliferation whereas 4-OHT treated fibroblasts are driven into senescence. 

We were able to establish the tRNA and mRNA profile for this model system. Unlike the Fed 

vs Starved experiment, the A/T and G/C changes at the tRNA wobble position in 

proliferation and senescence were not distinctive, but tRNA degeneracy (either through 

A34I or G:T base pairing) seemed to aid in meeting the transcriptomic demand. Also, at the 

mRNA level, it was clear that there was a clear preference for A codons at the wobble 
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position of mRNAs in proliferation and a preference for G/C ending codons in senescence. 

However T codons are generally balanced across the two conditions, with negligible 

preferences in both directions. 

When the A34I modifications in both experiments were examined, it was clear that the A34I 

remained high, regardless of the cell state (proliferation/quiescence/senescence), or the 

type of induction leading to changes in cell state (stress-induced or oncogene-induced). This 

suggests that the A34I modification is constitutively active and can help in meeting the 

demand of the transcriptome.  

Interestingly, when the amino acid frequencies for both experiments were examined, there 

was prevalence for particular amino acids in the quiescence (Starved) conditions and the 

proliferation (Fed) conditions. This suggests that it may not be relative synonymous codon 

usage alone driving the transcriptomic demand. Although the amino acids were broken 

down according to their properties, there wasn’t a clear property-dependent difference 

between the two conditions. Interestingly, when proliferation and senescence amino acid 

frequencies were compared (Empty vs Ras), there was no prevalence for particular amino 

acids. 

Although we managed to build both tRNA and mRNA profiles for the two in vitro models, it 

is still unclear as to whether the transcriptomic demand drives changes in tRNA expression 

or vice versa. However, the importance of tRNA degeneracy does give some indication that 

the tRNAs are able to stay adaptive, regardless of the transcriptomic demand. 
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Chapter 5: Using ALICE-tRNA-seq to investigate changes in the tRNA pool in in vivo models 

of proliferation and senescence 

5.1 Chapter Introduction 

The study of cancer in vivo allows for the observation of phenotypic endpoints as well as the 

real time monitoring of human diseases. Measuring the tRNA pool in vivo therefore allows 

the study of the tRNA-ome in primary tissue, which could provide unique information about 

the translational landscape during disease development. 

Hepatocellular carcinomas (HCC), a type of liver cancer that is a leading, worldwide 

candidate for cancer-related mortality is both an area of interest and a disease that requires 

improved therapeutic solutions (Zucman-Rossi et al., 2015). Although previous genomic-

sequencing investigations have revealed heterogeneity in HCC genomic alterations, the 

clarification of the molecular mechanisms driving HCC is still an area requiring further 

elucidation (Schulze et al., 2015). 

The WNT/βcatenin signalling pathway, also known as “canonical” WNT signalling, remains 

one of HCC’s most regularly altered pathways (Ally et al., 2017). When WNT ligands bind to 

their receptors on the cell surface, it results in the stabilization of its transcriptional co-

activator βcatenin, which then translocates to the nucleus and activates the transcription of 

gene targets associated with the TCF (T cell factor/lymphoid enhancer factor family) DNA-

binding factors (Nusse and Clevers, 2017). The regulation of βcatenin occurs via kinases and 

ubiquitin ligases which include (but are not limited to) GSK3α/β, CK1α/δ, the ubiquitin ligase 

β-TrCP, APC and Axin1, which work to phosphorylate several sites of the βcatenin protein, 

resulting in its ability to bind β-TrCP, leading to βcatenin being ubiquitinated and targeted 

for proteasome-mediated degradation (Nusse and Clevers, 2017). In cancer, the activation 
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of this pathway normally occurs due to mutations in the βcatenin gene CTNNB1 (regularly 

observed in HCC), the loss of the kinase APC (regularly observed in colorectal cancer) or 

heightened exposure to WNT ligands (Schulze et al., 2015; Zucman-Rossi et al., 2015; Nusse 

and Clevers, 2017). 

The proto-oncogene MYC is a downstream effector of WNT signalling and βcatenin/TCF 

mediated transcription in many tissues including the lungs, T-cells and small intestines (De 

La Coste., 1998; Sansom et al., 2007). However, this interaction between WNT signalling and 

MYC may not hold true in the liver. MYC expression is not induced in the loss of APC and the 

subsequent activation of βcatenin (Colnot et al., 2004). Hepatocyte proliferation has been 

shown to be unaffected by the loss of APC and the deletion MYC (Reed et al., 2008). 

Furthermore, experimental mouse models of MYC-driven hepatocellular carcinoma often 

requires the activation of mutations in the CTNNB1 gene (Yim et al., 2018). Although both 

the WNT/βcatenin and MYC pathways appear to act independently, their functional cross-

talk has been shown to result in tumorgenesis in the liver (Bisso et al., 2020).  

Another major driver often observed in hepatocellular carcinomas is the dysfunction of the 

MDM2-p53 axis (Meng et al., 2014). MDM2 is an E3 ubiquitin ligase and a negative regulator 

of p53. When p53 is in excess, MDM2 binds p53, resulting in its ubiquitination and 

subsequent targeting for proteasome-mediated degradation (Gannon et al., 2011). Both p53 

and MDM2 have been shown to be abnormally expressed in HCC (Jablkowski et al., 2005). 

When MDM2 regulation fails, the activation of p53 via hypoxia, ribosomal stress, oncogenic 

activation or genotoxic stress may result in the expression of genes related to cancer 

initiation and development (Sullivan et al., 2018). However, widespread hepatocyte 

senescence has been observed in both advanced human liver disease and HCC through p21 
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and p16 positivity (senescence markers), often driven by p53-mediated senescence or p53-

mediated cell death (Gouw et al., 2011, Lu et al., 2015).  

In this chapter, we utilize two in vivo models; the βcatenin/c-Myc model which drives 

hepatocytes from quiescence to proliferation and an MDM2 model which drives 

hepatocytes from quiescence to senescence. The aim of this chapter is to understand if 

ALICE-tRNA-seq can be used to measure the tRNA-ome in vivo. Together, with traditional 

RNA-seq, we attempt to build both a tRNA profile and a profile for relative synonymous 

codon usage to try and observe the translational landscape of these hepatocytes, when they 

transition to either proliferation or senescence.    
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5.2 Experimental design  

After showing that ALICE-tRNA-seq was an effective means of measuring the tRNA pool in 

vitro, the next step was to see if the same could be achieved in vivo. RNA-seq and ALICE-

tRNA-seq was performed on genetically modified mouse models (Mus musculus) to try and 

capture the tRNA-ome and mRNA-ome. To reduce variability, all sequencing experiments 

were performed on male mice that were between 8-12 weeks in age and were of similar 

weight before being culled. All experiments were carried out on the caudate lobe of the 

liver and liver tissue was collected at the same time. Furthermore, all treatments were 

carried out at the same time for all replicates.  

In the βcatenin/c-Myc model, mice were bred to introduce two loxP sequences around 

exon3 of βcatenin and introduce a humanised c-MYC (R26-lslMYC) and Cre recombinase (to 

allow for conditional expression). Upon Cre recombinase activation via AAV8-TBG-PI-Cre-

rBG treatment, exon 3 of the βcatenin is cleaved, resulting in the in-frame connection of 

exons 2 and 4, and the deletion of 76 amino acids in the βcatenin protein, rendering all 

expressed βcatenin degradation resistant, as well as the expression of the humanised form 

of c-MYC. Previous studies on mice that had utilized degradation resistant βcatenin alone 

hypothesised that many of the hepatocytes get stuck in the G0 phase of the cell cycle 

(Harada et al., 1999, Barker et al., 2009). Therefore, c-Myc is used in this system and is 

hypothesised to overcome this repression and drive the tissues into proliferation, via MYC-

driven carcinogenesis (Bisso et al., 2020). All sequencing experiments were carried out 4 

days post-tamoxifen treatment. Mice that expressed βcatenin/c-Myc had visibly larger livers 

(due to the hyper proliferation) and βcatenin/c-Myc expression was confirmed histologically 

via H&E staining (data not shown). All mice in this model were either treated with an empty 

adenovirus, hereafter referred to as Null (control mice), or the βcatenin/c-Myc/Cre-
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recombinase adenovirus, hereafter referred to as Cre (βcatenin/c-Myc induced 

proliferation).     

In the MDM2 model, normal mice were crossed with mice that had exons 5 and 6 floxed 

(introduction of loxP sequences around said exons) in the MDM2 gene (Grier et al., 2006, 

Bird et al., 2018). Excision of exons 5 and 6 was induced via treatment with the hepatocyte-

specific adenovirus AAV8-TBG-Cre, which activates the TBG (thyroxine binding globulin) 

promoter, resulting in the expression of Cre recombinase. MDM2 is an E3 ubiquitin ligase 

and a negative regulator of the tumour suppressor p53 (Gannon et al., 2011). Exons 5 and 6 

code for the p53 binding domain of MDM2 and upon their excision, MDM2 is unable to bind 

p53, resulting in p53 overexpression and therefore the tissues being driven into senescence 

(Bird et al., 2018). All sequencing experiments were conducted 4 days after adenovirus 

treatment. Control mice were treated with an empty adenovirus (hereafter referred to as 

Null) and the floxed MDM2 mice are referred to as Cre (MDM2-induced senescence). 

Senescence was confirmed via p21 staining (a positive marker of senescence, data not 

shown) after mice were culled. 

In the βcatenin/c-Myc model, hepatocytes were driven from quiescence to proliferation and 

in the MDM2 model, hepatocytes were driven from quiescence to senescence (Figure 5.1). 

Both these models were utilised to investigate how the tRNA-ome and mRNA-omes change 

upon oncogene-induced proliferation and senescence.      

  



Figure 5.1 Experimental design in trying to establish the tRNA pool in vivo. tRNA and 
RNA-seq was carried out on the MDM2 model, which drives liver tissue from quiescence 
to senescence and the βcatenin/c-Myc model which drives liver tissue from quiescence to 
proliferation. 
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5.3 Confirming AlkB demethylation in vivo 

Before any tRNA-seq library preparations were conducted, it was essential to check if AlkB 

(the enzyme used to remove methyl groups from the Watson-Crick face of tRNAs) could 

demethylate modified nucleotides in vivo. To test this, primer extension assays (refer to 

Figure 3.1) were carried out on tRNA-Gln-CTG, tRNA-iMet-CAT and tRNA-Val-CAC. Primers 

were designed against the 3’ end of these tRNAs. These tRNAs were chosen due to their 

variation in modifications (tRNA-Gln-CTG being the most modified and tRNA-Val-CAC being 

the least modified). All primer extension assays were carried out on healthy male and 

female hepatocytes extracted from primary tissue and the assays were carried out on total 

RNA and small enriched RNAs (RNAs < 200nt).    

Ctrl samples are the RNA samples that had no AlkB treatment and WT + D135S referred to 

assays that were demethylated using the WT AlkB and the mutant form D135S AlkB. AlkB 

was able to successfully demethylate modified tRNA bases in both male and female mice 

hepatocytes for all three chosen tRNAs, as evident from the large increase in full length 

products following AlkB treatment (Figure 5.2 A-C). For tRNA-Gln-CTG (Figure 5.2 A) and 

tRNA-iMet-CAT (Figure 5.2 B), almost no full length tRNAs were detected when the RNAs 

were not treated with AlkB (Ctrl). However, when the same demethylation conditions that 

were used in the in vitro experiments were used, full length tRNA was detected (+ WT + 

D135S). In the tRNA-Val-CAC assay (Figure 5.2 C), full length tRNAs were observed even in 

the absence of AlkB but this was expected since tRNA-Val-CAC is one of the least modified 

mouse tRNAs. However, after demethylation, a clear increase in full length tRNAs were 

observed. 

  



Figure 5.2 AlkB successfully demethylates modified tRNA bases in mouse liver. AlkB 
demethylation was assessed on the caudate lobe of normal, healthy, male and female 
mouse liver. The assay was done on both total RNA and small enriched RNAs (RNA<200nt) 
Primer extension assays were carried out to determine demethylation effectiveness, 
probing for (A) tRNA-Gln-CUG, (B) tRNA-iMet-CAT and (C) tRNA-Val-CAC. Ctrl in these gels 
refer to the – AlkB condition and WT + D135S refers to the reaction containing both WT 
AlkB and the mutant D135S AlkB. Red arrows refer to predicted modifications that may 
have caused truncation.
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5.4 Library and Sequencing quality controls  

5.4.1 Library quality controls 

The same pre and post library quality control steps done in Chapters 3 and 4 were also 

conducted on the βcatenin/c-Myc and MDM2 models. All extracted total RNAs from the 

liver samples were run on a 1% agarose gel to check for RNA integrity. All 5 replicates for 

both experiments passed the initial RNA integrity check, and were used as input for the 

RNA-seq library.  

tRNAs were extracted from the small enriched RNAs and were size selected between 50-

100nt. All 5 replicates for both experiments showed tRNA saturation and were successfully 

extracted and used as input for the ALICE-tRNA-seq library protocol. All 5 replicates for both 

experiments underwent successful post-RT and post-PCR gel extraction, before being 

pooled for sequencing.  
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5.4.2 Post sequencing quality controls 

RNA mapping, amino acid distribution, fragment determination and read coverage was 

checked for both the βcatenin/c-Myc and MDM2 models prior to analysis. For both models, 

more than 85% of mapped reads were mapped to tRNAs. tRNA amino acid frequency was 

also determined and no bias was observed. Furthermore, more than 95% of reads were 

either full length tRNAs or 3’ fragments (tRNAs that were truncated in the reverse 

transcription step of the ALICE-tRNA-seq due to modifications AlkB could not remove, refer 

to Table 3.1). More than 60% of reads in the βcatenin/c-Myc model and 55% of reads in the 

MDM2 model passed the anticodon loop. All tRNA counts were normalized using DESeq2 

Size Factors (normalization by CPM).  

A principal component analysis was also performed on both models to check how replicates 

clustered and to determine which replicates would be used in downstream analysis. In the 

βcatenin/c-Myc model, replicates Null3, Null5 and bcat_myc1 were removed from all 

downstream analysis (Figure 5.3 A). The principal component analysis was performed on 

filtered replicates (and renamed to avoid confusion) and good separation was observed 

along PC1 (accounting for 73% variance) between the quiescence and proliferation samples 

(Figure 5.3 B).  

In the MDM2 model, replicates Cre1 and Cre2 were removed from all downstream analysis 

(Figure 5.4 A). The principal component analysis was performed on filtered replicates (and 

renamed to avoid confusion) and good separation was observed along PC1 (accounting for 

80% variance) between the quiescence and senescence samples (Figure 5.4 B).  

For both models, separation was observed along PC2, which accounted for 13% and 10% 

variance for the βcatenin/c-Myc and MDM2 experiments respectively. However, since 
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sequencing was performed on 10 different mice for both experiments, some variability was 

expected and so was ignored. Importantly, separation between quiescence and proliferation 

and quiescence and senescence was observed for the βcatenin/c-Myc and MDM2 models 

respectively. 

 Another quality control step incorporated prior to differential expression was checking for 

the mismatch frequency at position 34 (tRNA wobble position). Since there are less tRNA 

anticodons with respect to mRNA codons, tRNAs utilise an adenosine to inosine 

modification at the tRNA wobble position of select isoacceptors, to accommodate non-

cognate base pairing and recognition. As inosines prefer to base-pair with cytosines, inosine 

bases are recognised as guanosines in next generation sequencing data. As the reference 

genome contains an adenosine at this position, when reads are mapped back to the mature 

tRNA database (allowing for only 1 mismatch), reads with the mismatch at position 34 are 

likely due to this adenosine to inosine modification (A34I). The tRNA mismatch frequency 

analysis determined that the inosine modifications only occurred on A bases and not seen in 

tRNAs with a G/C/T at the wobble position for both experiments (Figure 5.5 A-B). 
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Figure 5.3 Principal component analysis on the βcatenin/c-Myc model. principal 
component analysis of the tRNA counts to determine where samples clustered. (A) PCA 
was carried out on all sequenced replicates. Replicates Null3, Null5 and bcat_myc1 were 
removed from downstream analysis. (B) After the removal of replicates, all remaining 
replicates where re-named to avoid confusion. Good separation across the two conditions 
on PC1 (accounting for 73% of the variance). 



Principal Component Analysis – MDM2 Model Null vs Cre

Principal Component Analysis – MDM2 Model Null vs Cre

Figure 5.4 Principal component analysis on the MDM2 model. principal component 
analysis of the tRNA counts to determine where samples clustered. (A) PCA was carried 
out on all sequenced replicates. Replicates Cre1 and Cre2 were removed from 
downstream analysis. (B) After the removal of replicates, all remaining replicates where 
re-named to avoid confusion. Good separation across the two conditions on PC1 
(accounting for 73% of the variance). 
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B



A34I Modification Analysis – MDM2 Model Null vs Cre

A34I Modification Analysis – βcatenin/c-Myc Model Null vs CreA

B

Figure 5.5 tRNA mismatch frequency at position 34 (wobble position) to check for 
inosine modification (A34I). (A-B) Mismatch frequency for tRNAs with A at the wobble 
position vs G/C/T for both the βcatenin/c-Myc and MDM2 models respectively. tRNAs 
were mapped allowing for 1 mismatch in order to determine the inosine modification at 
position 34 (wobble position). As expected, inosine modifications should only occur on A 
bases and not seen in tRNAs with a G/C/T at the wobble position. (A) βcatenin/c-Myc
model (B) MDM2 model. 
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5.5 Differential tRNA expression at the isoacceptor level vs mRNA relative synonymous 

codon usage 

tRNA box-types is a breakdown of tRNAs according to the number of codons they can 

decode (see Table 4.1). 6-box tRNA sets can decode 6 mRNA codons, although not all 

complementary anticodons are expressed. Therefore, an inosine modification at position 34 

of tRNAs or G:T base pairing is utilised to decode all codons. 4-box tRNA sets follow the 

same reasoning and can decode 4 codons, but only 3 anticodons are expressed. There are 

two types of 2-box tRNA sets, those that express two anticodons and those that express one 

anticodon. Lastly, 1-box tRNA sets are those that decode 1 codon.      

As explained in Chapter 4, the tRNA differential expression analysis was broken down into 

their box-types by amino acid. The RNA sequencing that was done in parallel was used to 

determine the relative synonymous codon usage of the transcriptome. 
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5.5.1 Comparison of 6-box tRNAs to the relative synonymous codon usage in mRNA 

6-box isoacceptors include tRNAs that code for arginine, leucine and serine (Figure 5.6 A-C 

and Figure 5.7 A-C). Each set contains one isoacceptor that has the potential for A34I 

modification (Arg-ACG, Leu-AAG and Ser-AGA). Also, tRNA-Ser-GCT allows for G:T base 

pairing with the codon AGT. 

In the βcatenin/c-Myc model, where hepatocytes are being driven from quiescence to 

proliferation, statistically significant tRNAs with a G/C at the tRNA wobble position are 

downregulated in proliferation.  

tRNA-Arg-CCT is downregulated in proliferation and its cognate codon AGG is slightly 

preferred in quiescence in comparison to proliferation. Although the mRNA codon AGA is 

the most preferred codon, changes in its cognate tRNA-Arg-TCT is not statistically 

significant. Interestingly, tRNA-Arg-ACG (which can undergo A34I modification and can 

decode its cognate CGT codon as well as codons CGC and CGA, refer to Table 4.1) is the 

highest expressed tRNA. This may suggest a role for tRNA degeneracy in compensating for 

lowly expressed tRNAs in the arginine family (Figure 5.6 A).  

tRNA-Leu-CAG is downregulated in proliferation and its cognate codon CTG is slightly 

preferred in quiescence in comparison to proliferation. However, tRNA-Leu-TAG was also 

down regulated in proliferation despite its cognate codon CTA being preferred in 

proliferation. However Leu-TAG also decodes CTG codons through wobble base-pairing, 

which as mentioned above is preferred in quiescence. tRNA-Leu-AAG (which can decode its 

cognate CTT codon as well as CTC and CTA) was also downregulated in proliferation (Figure 

5.6 B).  
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tRNA-Ser-AGA (which can decode its cognate TCT codon as well as TCC and TCA) was up 

regulated in proliferation, however, tRNA-Ser-TGA (which encodes TCA) was downregulated 

in proliferation. Again, tRNA-Ser-AGA through its A34I modification may compensate for 

losses in tRNA-Ser-TGA expression. mRNA codon AGC was the most preferred codon in both 

conditions but changes in tRNA-Ser-GCT which decodes it were not statistically significant 

(Figure 5.6 A). 

In the MDM2 model where hepatocytes are driven from quiescence to senescence, there 

was no correlation between cell state and the base at the tRNA wobble position. 

tRNA-Arg-CCG (which decodes codon CGG, which is slightly preferred in senescence), was 

the only tRNA with a statistically significant log fold change within the arginine family and 

was upregulated in senescence. tRNA-Arg-ACG (which has the A34I modification) had one of 

the highest read counts like in the βcatenin/c-Myc model, again suggesting a role for tRNA 

degeneracy in compensating for lowly expressed tRNAs in the arginine family, but wasn’t 

differentially expressed between the two conditions. The codon AGA was the most 

preferred codon in both conditions but changes in its cognate tRNA-Arg-TCT were not 

statistically significant (Figure 5.7 A) 

tRNA-Leu-AAG was upregulated in senescence (which decodes its cognate CTT as well as 

CTC and CTA through the A34I modification). Furthermore, the two most preferred codons 

were CTA (preferred in quiescence) and CTG (preferred in proliferation), both of which can 

be decoded by the tRNA-Leu-AAG, suggesting a role for tRNA degeneracy in senescence 

(Figure 5.7 B).  

For tRNA-Ser-GGA, the codon AGC was the most preferred codon in both conditions, but 

there were no statistically significant changes within the tRNA-Ser isoacceptor family. 
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However, its cognate tRNA-Ser-GCT was the most highly expressed tRNA within the family 

(figure 5.7 C).  
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Figure 5.6 6-box tRNA differential expression analysis and relative synonymous codon 
usage in the βcatenin/c-Myc model. tRNA differential expression analysis was broken 
down into amino acid and box-type. Transcriptome differential expression analysis was 
filtered for transcripts that were statistically significant and had a Log2 fold change of 2. 
RSCU was calculated and normalized to transcript abundance. Both differential 
isoacceptor changes and RSCU was plotted for (A) Arginine, (B) Leucine and (C) Serine. All 
statistically significant log fold changes are highlighted with an asterisk (*) and all non-
significant changes have their adjusted p-vales printed. mRNA codons encoded by the 
isoacceptor are printed below with complementary base pairing highlighted in blue, non-
cognate base pairing due to inosine modification highlighted in purple and G:T base 
pairing highlighted in green. * p < 0.05
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Figure 5.7 6-box tRNA differential expression analysis and relative synonymous codon 
usage in the MDM2 model. tRNA differential expression analysis was broken down into 
amino acid and box-type. Transcriptome differential expression analysis was filtered for 
transcripts that were statistically significant and had a Log2 fold change of 2. RSCU was 
calculated and normalized to transcript abundance. Both differential isoacceptor changes 
and RSCU was plotted for (A) Arginine, (B) Leucine and (C) Serine. All statistically 
significant logfold changes are highlighted with an asterisk (*) and all non-significant 
changes have their adjusted p-vales printed. mRNA codons encoded by the isoacceptor 
are printed below with complementary base pairing highlighted in blue, non-cognate base 
pairing due to inosine modification highlighted in purple and G:T base pairing highlighted 
in green. * p < 0.05
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5.5.2 Comparison of 4-box tRNAs to the relative synonymous codon usage in mRNA         

4-box isoacceptors include tRNA-Ala, tRNA-Pro, tRNA-Val, tRNA-Gly and tRNA-Thr. 

In the βcatenin/c-Myc model, where hepatocytes are being driven from quiescence to 

proliferation, all statistically significant tRNAs with an A/T at the wobble position were 

upregulated in proliferation (albeit being only 4 tRNAs). Also, their corresponding mRNA 

codons with an A/T at its wobble position were preferred in proliferation (Figure 5.8 A-E). 

The tRNA-Ala and tRNA-Pro isoacceptor families had no statistically significant tRNA log fold 

changes. However the most preferred mRNA codon for alanine was GCA, decoded by both 

its cognate tRNA-Ala-TGC and tRNA-Ala-AGC via its A34I modification which was the most 

expressed tRNA-Ala isoacceptor (Figure 5.8 A).  

For the proline mRNA codon CCA, its cognate tRNA-Pro-TGG was the most expressed tRNA 

in its isoacceptor family (Figure 5.8 B). 

tRNA-Val-AAC was upregulated in in proliferation (which can decode its cognate GTT codon 

as well as GTC and GTA codons via its A34I modification). The mRNA codon GTA was 

preferred in proliferation and the GTC codon was preferred in quiescence. Both their 

cognate tRNAs (tRNA-Val-TAC and tRNA-Val-CAC respectively), were the highest expressed 

tRNAs in that isoacceptor family (Figure 5.8 C). 

tRNA-Thr-AGT was upregulated in proliferation and can decode its cognate codon ACT as 

well as ACC and ACA via its A34I modification. The most preferred mRNA codon for 

threonine in both conditions was ACA. Although its cognate tRNA-Thr-TGT was upregulated, 

due to the low number of reads, it was ignored. However, the ACA codon could still be 

decoded by tRNA-Thr-AGT (Figure 5.8 E). 
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In the MDM2 model where hepatocytes were driven from quiescence to senescence, A/T 

ending mRNA codons were preferred in senescence, showing the opposite of that seen in 

the βcatenin/c-Myc model (Figure 5.9 A-E). 

Both tRNA-Ala and tRNA-Pro had no statistically significant tRNA changes. However, in both 

isoacceptor families, the most abundant tRNA (tRNA-Ala-AGC and tRNA-Pro-TGG), coincided 

with the most preferred mRNA codons, GCA (Ala) and CCA (Pro) (Figure 5.9 A and Figure 5.9 

B).  

Valine codons GTA (preferred in quiescence, encoded by tRNA-Val-TAC) and GTG (preferred 

in senescence, encoded by tRNA-Val-CAC) were the most preferred mRNA codons for valine 

and their cognate tRNAs were the most abundant (Figure 5.9 C). 

tRNA-Gly-GCC (which encodes its cognate GGC codon and GGT via G:T base pairing) was 

upregulated in senescence. The most preferred mRNA codon was GGA but changes in its 

cognate tRNA-Gly-TCC was not statistically significant but was abundant (Figure 5.9 E). 

As observed in the βcatenin/c-Myc model, tRNA-Thr-TGT was upregulated (this time in 

senescence as opposed to proliferation). However, it holds no significance due to its low 

read counts.  
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Figure 5.8 4-box tRNA differential expression analysis and relative synonymous codon 
usage in the βcatenin/c-Myc model. tRNA differential expression analysis was broken 
down into amino acid and box-type. Transcriptome differential expression analysis was 
filtered for transcripts that were statistically significant and had a Log2 fold change of 2. 
RSCU was calculated and normalized to transcript abundance. Both differential 
isoacceptor changes and RSCU was plotted for (A) Alanine, (B) Proline, (C) Valine, (D) 
Glycine and (E) Threonine. All statistically significant logfold changes are highlighted with 
an asterisk (*) and all non-significant changes have their adjusted p-vales printed. mRNA 
codons encoded by the isoacceptor are printed below with complementary base pairing 
highlighted in blue, non-cognate base pairing due to inosine modification highlighted in 
purple and G:T base pairing highlighted in green. * p < 0.05
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Figure 5.9 4-box tRNA differential expression analysis and relative synonymous codon 
usage in the MDM2 model. tRNA differential expression analysis was broken down into 
amino acid and box-type. Transcriptome differential expression analysis was filtered for 
transcripts that were statistically significant and had a Log2 fold change of 2. RSCU was 
calculated and normalized to transcript abundance. Both differential isoacceptor changes 
and RSCU was plotted for (A) Alanine, (B) Proline, (C) Valine, (D) Glycine and (E) Threonine. 
All statistically significant logfold changes are highlighted with an asterisk (*) and all non-
significant changes have their adjusted p-vales printed. mRNA codons encoded by the 
isoacceptor are printed below with complementary base pairing highlighted in blue, non-
cognate base pairing due to inosine modification highlighted in purple and G:T base 
pairing highlighted in green. * p < 0.05
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5.5.3 Comparison of 2-box tRNAs to the relative synonymous codon usage in mRNA 

2-box isoacceptors include tRNA-Glu, tRNA-Gln, tRNA-Lys and tRNA-Ile. 

For all the 2-box tRNAs in the βcatenin/c-Myc model, all mRNAs with an A at the wobble 

position were the most preferred codon (except in the case for tRNA-Ile) (Figure 5.10 A-D).  

tRNA-Glu-TTC was down regulated in proliferation even though its cognate mRNA codon 

GAA was the most preferred glutamic acid codon (Figure 5.10 A).  

tRNA-Lys-TTT was upregulated in proliferation and its cognate mRNA codon AAA was the 

most preferred lysine codon (Figure 5.10 C).  

tRNA-Ile-GAT is not expressed in mice. However, tRNA-Ile-AAT via its A34I modification is 

able to decode mRNA codon ATC, as well as its cognate ATT (which are also the most 

preferred codons) (Figure 5.10 D). 

In the MDM2 model, as in the βcatenin/c-Myc model, all mRNAs with an A at the wobble 

position were the most preferred codon. However, A ending codons were preferred in 

quiescence and G/C codons were preferred in senescence (Figure 5.11 A-D).   
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Figure 5.10 2-box tRNA differential expression analysis and relative synonymous codon 
usage in the βcatenin/c-Myc model. tRNA differential expression analysis was broken 
down into amino acid and box-type. Transcriptome differential expression analysis was 
filtered for transcripts that were statistically significant and had a Log2 fold change of 2. 
RSCU was calculated and normalized to transcript abundance. Both differential 
isoacceptor changes and RSCU was plotted for (A) Glutamic Acid, (B) Glutamine, (C) Lysine 
and (D) Isoleucine. All statistically significant log fold changes are highlighted with an 
asterisk (*) and all non-significant changes have their adjusted p-vales printed. mRNA 
codons encoded by the isoacceptor are printed below with complementary base pairing 
highlighted in blue, non-cognate base pairing due to inosine modification highlighted in 
purple and G:T base pairing highlighted in green. * p < 0.05
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Figure 5.11 2-box tRNA differential expression analysis and relative synonymous codon 
usage in the MDM2 model. tRNA differential expression analysis was broken down into 
amino acid and box-type. Transcriptome differential expression analysis was filtered for 
transcripts that were statistically significant and had a Log2 fold change of 2. RSCU was 
calculated and normalized to transcript abundance. Both differential isoacceptor changes 
and RSCU was plotted for (A) Glutamic Acid, (B) Glutamine, (C) Lysine and (D) Isoleucine. 
All statistically significant log fold changes are highlighted with an asterisk (*) and all non-
significant changes have their adjusted p-vales printed. mRNA codons encoded by the 
isoacceptor are printed below with complementary base pairing highlighted in blue, non-
cognate base pairing due to inosine modification highlighted in purple and G:T base 
pairing highlighted in green. * p < 0.05
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5.5.4 Comparison of 2-box tRNAs (only 1 tRNA expressed) to the relative synonymous codon 

usage in mRNA 

2-box isoacceptors that express only one anticodon are tRNA-Asn, tRNA-His, tRNA-Phe, 

tRNA-Asp, tRNA-Cys and tRNA-Tyr. All of these isoacceptors utilise G:T base pairing to 

decode the non-cognate codon. 

Interestingly, in the βcatenin/c-Myc model, all the mRNA codons decoded by this category 

of 2-box tRNAs either had a C or T codon at the mRNA wobble position. However, all C 

ending mRNAs were the preferred codon for each of their amino acids in comparison to the 

T ending mRNAs. Furthermore, the C ending codons were preferred in proliferation over 

quiescence. This suggests that although G:T base pairing can be utilised to decode all T 

ending mRNA codons in this category, the translational machinery prefers cognate base 

pairing (Figure 5.12 A-F).  

In the MDM2 model, the same phenomenon was observed, except all C ending mRNA 

codons were preferred in quiescence than in senescence. Therefore, where the A34I 

modification seen in previous sections may be compensating for downregulations in other 

tRNAs, here the data suggests that G:T base pairing is not the preferred mechanism for 

decoding mRNA codons.    
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Figure 5.12 2-box tRNA (only 1 tRNA expressed) differential expression analysis in the 
βcatenin/c-Myc model. tRNA differential expression analysis was broken down into amino 
acid and box-type. Transcriptome differential expression analysis was filtered for 
transcripts that were statistically significant and had a Log2 fold change of 2. RSCU was 
calculated and normalized to transcript abundance. Both differential isoacceptor changes 
and RSCU was plotted for (A) Asparagine, (B) Histidine, (C) Phenylalanine, (D) Aspartate, 
(E) Cysteine and (F) Tyrosine. All statistically significant log fold changes are highlighted 
with an asterisk (*) and all non-significant changes have their adjusted p-vales printed. 
mRNA codons encoded by the isoacceptor are printed below with complementary base 
pairing highlighted in blue, non-cognate base pairing due to inosine modification 
highlighted in purple and G:T base pairing highlighted in green. * p < 0.05
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Figure 5.13 2-box tRNA (only 1 tRNA expressed) differential expression analysis in the 
MDM2 model. tRNA differential expression analysis was broken down into amino acid and 
box-type. Transcriptome differential expression analysis was filtered for transcripts that 
were statistically significant and had a Log2 fold change of 2. RSCU was calculated and 
normalized to transcript abundance. Both differential isoacceptor changes and RSCU was 
plotted for (A) Asparagine, (B) Histidine, (C) Phenylalanine, (D) Aspartate, (E) Cysteine and 
(F) Tyrosine. All statistically significant log fold changes are highlighted with an asterisk (*) 
and all non-significant changes have their adjusted p-vales printed. mRNA codons encoded 
by the isoacceptor are printed below with complementary base pairing highlighted in blue, 
non-cognate base pairing due to inosine modification highlighted in purple and G:T base 
pairing highlighted in green. * p < 0.05
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5.5.5 Global tRNA isodecoder changes 

Overall, for both the βcatenin/c-Myc and MDM2 models, no correlations between the 

nucleotide at the tRNA wobble position and the cell state was found. However, it was clear 

in many of the tRNAs in the differential expression analysis that the most preferred mRNA 

codon generally coincided with the most abundant tRNA.  

In the βcatenin/c-Myc model, the majority of mRNA codons with an A at the wobble 

position were preferred in proliferation. However, tRNA anticodons with a T at the wobble 

position were mostly downregulated (Figure 5.14 A). However, it was clear from the 

differential expression analysis that many tRNAs with the A34I modification could be 

working to compensate these downregulations. All tRNAs with a C at the anticodon wobble 

position we all downregulated (Figure 5.14 B). 

In the MDM2 model, there was also no clear correlation between the nucleotide at the 

tRNA wobble position and cell state (Figure 5.15 A-B).    

  



Figure 5.14 Global isoacceptor log fold changes in the βcatenin/c-myc model. (A) Log 
fold changes for tRNA isoacceptors with an A or T at the wobble position. (B) Log fold 
changes for tRNA isoacceptors with a G or C at the wobble position. * p < 0.05. ns = not 
significant, Log2(Cre/Null). 
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Figure 5.15 Global isoacceptor log fold changes in the MDM2 model. (A) Log fold 
changes for tRNA isoacceptors with an A or T at the wobble position. (B) Log fold changes 
for tRNA isoacceptors with a G or C at the wobble position. * p < 0.05. ns = not significant, 
Log2(Cre/Null). 
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5.6 Global relative synonymous codon usage analysis 

The relative synonymous codon usage for all statistically significant, differentially expressed 

transcripts with a log2 fold change of ±2 were calculated (all of the individual plots 

combined) (Figure 5.16 A-B). This was done to highlight the global codon preference at the 

wobble position for the transcriptome, depending on the cell state. 

In the βcatenin/c-Myc model, mRNA codons with either an A or C base at the wobble 

position were preferred in proliferation and mRNA codons with either a G or T bases were 

preferred in quiescence (Figure 5.16 A). It was clear from the tRNA differential expression 

analysis that all of the C ending mRNA codons were decoded by 2-box tRNAs that only 

express 1 tRNA.  

In the MDM2 model, mRNA codons with either an A or C base at the wobble position were 

preferred in quiescence and mRNA codons with either a G or T base being preferred in 

senescence (Figure 5.16 B).  

When the relative synonymous codon usage was calculated for all transcripts and the most 

abundant transcript per gene (weighted by transcript abundance, TPM), slight preferences 

could be observed. In the βcatenin/c-Myc model, there was a slight preference for A/C 

ending mRNA codons in proliferation and G/T ending mRNA codons in quiescence for all 

transcripts and the most abundant transcript per gene (Figure 5.17 A).  

Interestingly, in the MDM2 model, for all transcripts and the most abundant transcript per 

gene, there was a distinct preference for A/C ending mRNA codons in senescence and G/T 

ending mRNA codons in quiescence, opposite of that observed for the differential 

transcripts (Figure 5.17 B).   
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This might suggest that in the oncogene induced proliferation model (βcatenin/c-Myc), cells 

would prefer A ending mRNA codons in order to utilise the A34I modification, and therefore 

tRNA degeneracy, to try and possibly increase translational efficiency, since the volume of 

translational events would be much larger in comparison to quiescence. In the oncogene 

induced senescence model (MDM2), there may be a mechanism regulating the relative 

synonymous codon usage of differential genes since the difference between them and the 

transcriptome is so extreme.   
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Figure 5.16 Relative synonymous codon usage for statistically significant transcripts with 
a ±Log2 fold change of 2 in the βcatenin/c-myc and MDM2 models. (A) The βcatenin/c-
myc shows a preference for A and C in proliferation and G/C/T in quiescence at the mRNA 
wobble position. (B) The MDM2 model shows a preference for A and C codons in 
quiescence and G/C/T in senescence at the mRNA wobble position. 



Quiescence

Proliferation

Quiescence

Proliferation

Quiescence

Senescence

Quiescence

Senescence

A

B

Figure 5.17 Relative synonymous codon usage for all transcripts and the most 
abundance transcript per gene in the βcatenin/c-myc and MDM2 models. (A) In the 
βcatenin/c-myc, there is a slight preference for A and C bases at the wobble position 
proliferation for calculations done for all transcripts and the most abundant transcript per 
gene. (B) In the MDM2 model, there is a is a preference for A and C bases at the wobble 
position in senescence for calculations done for all transcripts and the most abundant 
transcript per gene.
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5.7 Investigation into potential A34I modifications at the isodecoder level 

The tRNA sequencing results showed the importance of tRNA degeneracy in decoding mRNA 

sequences that vary in relative synonymous codon usage. The most important modification 

observed was the adenosine to inosine modification on position 34 of the tRNA wobble 

position. Since this modification allows for the decoding of A/T/C ending mRNA codons, 

enhancing the flexibility of the isoacceptor pool, it was important to ask how the 

modification rates changed for the isoacceptors they existed on between conditions.   

The mutation frequency at position 34 was calculated by allowing for 1 mismatch when the 

tRNAs were mapped back to the mature tRNA database. If the mismatch occurred at 

position 34 for isoacceptors of Ala, Arg, Ile, Leu, Pro, Ser, Thr and Val, which have an A at the 

wobble position and the base was read as a G base, then this would signal an A34I mutation. 

The mutation frequency was then calculated for all tRNAs in that isoacceptor group and 

compared between conditions.  

For both the βcatenin/c-Myc model (Figure 5.18 A) and the MDM2 model (Figure 5.18 B), 

there were no statistically significant differences within isoacceptors between the two 

conditions. The mutation rate calculations showed that A34I modifications at these 

isodecoders were very high in both conditions in both experiments, suggesting that tRNA 

degeneracy is not regulated by changes in synonymous codon usage, but rather it is a 

mechanism that appears to be constitutively active. 

  



Figure 5.18 A34I modification changes at the isoacceptor level in the βcatenin/c-myc and 
MDM2 models. (A) A34I modification rates were calculated in the βcatenin/c-myc model 
but there was no statistically significant difference between quiescence and proliferation. 
(B) A34I modification rates were calculated in the MDM2 model but there was no 
statistically significant difference between quiescence and senescence. 

A

B

A34I modification rates at known isoacceptors

A34I modification rates at known isoacceptors
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5.8 Investigating if amino acid frequencies change in differentially expressed transcripts 

It was important to check how amino acid frequency varied depending on the cell state. All 

statistically significant, differentially expressed genes with a log2 fold change of ±2 were 

used to calculate the amino acid frequency, normalized against the abundance of each 

gene. 

In the βcatenin/c-Myc model, amino acids proline and serine were the most enriched amino 

acids encoded by mRNAs the quiescence condition and arginine, glutamic acid and alanine 

were the most frequent amino acids in proliferation (Figure 5.19 A).  

Greater divergence in amino acid frequency was observed in the senescence condition of 

the MDM2 model, with arginine, proline and glycine being the most overrepresented amino 

acids in senescence. Isoleucine, phenylalanine and lysine were also overrepresented in the 

quiescence condition (Figure 5.19 B).  

Although the amino acids were illustrated according to their properties, there was no clear 

correlation between amino acid property and cell state, suggesting that the changes in 

amino acid frequency may just be due to the types of transcripts upregulated in each cell 

condition, and is possibly not driving relative synonymous codon usage. 

  



Figure 5.19 Amino acid frequencies in quiescence vs proliferation and quiescence vs 
senescence. All statically significant, differentially expressed genes with a log2 fold change 
of ±2 were used to calculate the amino acid frequency, normalized against the abundance 
of each gene. (A) Amino acid frequencies in the βcatenin/c-Myc model, where cells are 
driven from quiescence to proliferation. (B) Amino acid frequencies in the MDM2 model, 
where cells are driven from quiescence to senescence. 

A
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Quiescence

Proliferation

Quiescence

Senescence
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5.9 Comparison between the βcatenin/c-Myc and MDM2 models 

A principal component analysis was performed on filtered tRNA replicates to see how the 

βcatenin/c-Myc and MDM2 models clustered. Separation was observed on both the PC1 

and PC2 (which accounted for 46% and 33% variance respectively) for the βcatenin/c-Myc 

induced proliferation tRNAs (green) and the MDM2 induced senescence tRNAs (blue) 

(Figure 5.20). However, the two control conditions (treated with empty vectors, red and 

purple) also separated along PC1, but less so on PC2. Since the two control conditions were 

in quiescence, it was expected that they cluster together. However, given the two 

experiments utilized two different viral vectors (AAV8-TBG-PI-Cre-rBG for the model and 

AAV8-TBG-Cre for the MDM2 model), the two induction viruses may be resulting in different 

downstream effects in the two models. 

  



Figure 5.20 principal component analysis on the βcatenin/c-Myc vs MDM2 model. 
principal component analysis of the tRNA counts to determine where samples clustered. 
The two cancer models (Cre_MDM2 and Cre_bcat_myc) separated on both axis. The two 
quiescence conditions (Null_MDM2 and Null_bcat_myc) separated on mainly PC1   
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5.10 Chapter discussion 

In this chapter, we have shown that ALICE-tRNA-seq is a suitable tRNA-sequencing 

methodology to measure the tRNA pool in vivo. After confirming AlkB can demethylate 

modified tRNA nucleotides in vivo, the tRNA-sequencing showed that we can measure the 

differential expression of tRNAs in genetically modified mice, without biasing the output of 

the tRNAs captured. As we did in vitro, we have shown that ALICE-tRNA-seq can identify all 

48 isoacceptors, with tRNA mappings accounting for more than 85% of reads.  

As shown in chapter 4, we also highlighted the importance of the A34I modification on the 

tRNA wobble position, as an effective means for potentially compensating for lowly 

expressed tRNA isoacceptors. This was especially prevalent in the 6-box and 4-box tRNAs, 

where preferred mRNAs codons coincided with either the most abundantly expressed 

cognate tRNAs or tRNAs that can bind via the A34I modification.  

From the relative synonymous codon usage analysis, we established two major trends. 

Firstly, in the βcatenin/c-Myc model where hepatocytes are being driven from quiescence to 

senescence, we find that mRNA codons with an A or C at the wobble position are preferred 

in proliferation (with G and T ending codons being preferred in quiescence). This is reversed 

in the MDM2 model, where hepatocytes are being driven from quiescence to senescence, 

we find that mRNA codons with an A or C at the wobble position are preferred in quiescence 

(with G and T ending codons being preferred in senescence). We also found that the 

preferred C ending mRNA codons are decoded by the 2-box tRNAs that only express 1 tRNA 

(G:T base pairing is used to decode non-cognate bases). We find that mRNAs show the 

highest preference for cognate base pairing in this class of tRNAs (i.e C ending mRNA codons 

account for more than 75% of all synonymous codons in Asn, His, Phe, Asp, Cys and Tyr in 
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comparison to T ending codons) in both proliferation and senescence. This may suggest the 

cell’s hesitancy in using G:T base pairing as a non-cognate means of decoding the 

transcriptome.  

Interestingly in the MDM2 model, when relative synonymous codon usage was calculated 

for all transcripts and the most abundant transcript per gene, we observed a preference for 

A and C ending codons in senescence, but was completely reversed for the differential 

transcripts, where A and C ending codons were preferred in quiescence. This suggests that 

there may be a mechanism governing relative synonymous codon usage at play for the 

differentials.      
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Chapter 6: Discussion  

The experiments, analysis and results presented in this thesis aimed to answer the following 

questions: 

 Can a tRNA-sequencing methodology that avoids the limitations and biases 

recognised in literature be developed to accurately quantify the tRNA pool? 

 Can such a tRNA-sequencing methodology claim to be more effective then published 

tRNA-seq methodologies?  

 Can such a tRNA-sequencing methodology be used successfully both in vitro and in 

vivo? 

 Through tRNA-seq and RNA-seq, can the tRNA and codon signatures of in vitro and in 

vivo samples be categorised in proliferation, quiescence and senescence 

 Can this data be used to identify patterns in tRNA and mRNA signatures in the three 

major cell states 
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6.1 ALICE-tRNA-sequencing resolves limitations in current tRNA-sequencing 

methodologies 

Given the importance of tRNA availability in meeting the transcriptomic demand, a 

methodology to accurately measure the tRNA-ome has long been an area of interest. In 

general, tRNAs can be surveyed to investigate either abundance, modifications or charging 

(Pan, 2018). To date, there is no accurate and unifying methodology that can be used to 

determine all three of these factors. Before the emergence of next generation sequencing 

methodologies, the traditional way of quantitatively measuring tRNA abundance was via the 

use of hybridization-based microarrays (Dittmar et al., 2006; Gingold et al., 2014), which 

have major limitations. 

The sequencing of small RNAs requires the following key steps: adapter ligation to the RNA, 

reverse transcription to generate a cDNA library and the PCR amplification of the cDNA 

which is ultimately sequenced. Adapter ligation and reverse transcription are both major 

obstacles in the development of a tRNA sequencing methodology.  

The canonical tRNA is characterized by its classical clover-leaf like secondary structure (Rich 

and Raj-Bhandary, 1976). Traditionally, the sequencing of RNAs begins with the ligation of 5’ 

and 3’ adapters, with the latter containing an RT primer binding site for the reverse 

transcription step. The 5’ end of tRNAs are involved in a hairpin secondary structure, making 

access to the 5’ end of the tRNA challenging. This has also been reported for other small 

RNAs with secondary structure based problems at their 5’ ends due to hairpins affecting 

library preparation (Liu et al., 2014; Burke et al., 2014; Lama et al., 2019). 3’ and 5’ adapter 

ligation was a library preparation strategy employed by both ARM-seq (Cozen et al., 2015) 

and Hydro-seq (Gogakos et al., 2017). The main difference in library preparation between 



252 
 

the two methodologies was that Hydro-seq fragments tRNAs prior to adapter ligation by 

alkaline hydrolysis (similar to traditional RNA-sequencing). 

In our pilot tRNA-seq studies on HEK293 cells, the ARM-seq methodology was used for 

library preparation (Figure 3.3). The rationale behind this was that in the analysis of the 

sequencing data, a clear distinction could be made with regards to whether a sequence was 

a mature tRNA, tRNA half or tRNA fragment. This is because the ligation of both a 3’ and 5’ 

adapter means that during the reverse transcription step, the reverse transcriptase would 

have to reach the 5’ end, in order for the cDNA to incorporate both PCR primer binding sites 

(and subsequently be amplified). However, the sequencing results using this methodology 

showed that the majority of tRNAs sequenced were 3’ tRNA fragments (60.98%) and 5’ tRNA 

fragments (29.23%), with bona fide full length tRNAs only accounting for 5.11% of the 

mapped reads (Figure 3.6). When the sequencing data for both ARM-seq and Hydro-seq 

were analysed, the tRNA-coding amino acid distributions showed that almost 50% of all 

reads in ARM-seq mapped to tRNA-Glu (23.02%), tRNA-Gly (13.89%) and tRNA-Lys (14.28%). 

Similar biases were also observed in Hydro-seq, with more than 50% of all reads mapping to 

tRNA-Glu (39.55%), tRNA-Lys (9.36%) and tRNA-Val (11.15%) (Figure 3.20). These biases 

were not a surprise since tRNA glutamic acid, glycine, lysine and valine happen to be the 

least modified tRNAs. In the development of ALICE-tRNA-seq (Adapter Ligation 

Circularization Relinearization tRNA sequencing), we chose to avoid 5’ adapter ligation 

(Figure 3.7).   

The other obstacle in the development of a tRNA sequencing methodology is modifications. 

Unlike other RNAs, over 90 modified human nucleosides have been attributed to tRNAs 

(Cantara et al., 2011; Saikia et al., 2010). For tRNA sequencing, the modifications that pose 
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the biggest problem are those that exist on the Watson-Crick face of tRNAs (Table 3.1). This 

is because traditional reverse transcriptases like SuperScript III would stall when they reach 

said modifications. This could also explain why ARM-seq and Hydro-seq show huge biases in 

tRNA-coding amino acid distributions for tRNAs known to be lightly modified. The 

Escherichia coli enzyme Alpha-ketoglutarate-dependent dioxygenase (AlkB), an enzyme 

known for its dealklylating properties in DNA damage protection (Trewick et al., 2002) has 

the ability to remove certain methyl groups from modified nucleotides such as methyl-

guanosine, methyl-adenosine and more (Table 3.1). There are two versions of AlkB often 

used in tRNA-sequencing; its wild-type form (WT) and the mutant D135S (coinciding with 

the active site of the protein). The shorter side chain of serine is thought to accommodate 

bigger modifications like the dimethyl-guanosine, a common modification found in tRNA 

sequences (Zheng et al., 2015).  

Because Hydro-seq fragments all tRNA sequences prior to library preparations in an attempt 

to avoid RT stalling due to modifications, they do not use any AlkB. ARM-seq and QuantM-

seq (Pinkard et al., 2020) only use the wild-type AlkB in their preparations and DM-seq 

(Zheng et al., 2015) and ALICE-tRNA-seq utilize both the WT and D135S forms in library 

preparations. We showed that the use of AlkB was paramount in tRNA-sequencing. When 

tRNAs were sequenced in the pilot study, tRNA-coding amino acid distributions drastically 

improved with WT and D135S demethylation prior to library preparation in contrast to no 

demethylation (Figure 3.5 B). We also showed that WT and D135S was effective in reducing 

RT stalling in our primer extension assays both in vitro (Figure 3.1 B and Figure 3.2) and in 

vivo (Figure 5.2).  
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DM-seq, QuantM-seq and ALICE-tRNA-seq all incorporate circularization as a means of 

avoiding 5’ adapter ligation and capturing tRNAs that may have truncated cDNAs due to 

modifications AlkB could not remove. Furthermore, all three methodologies resembled 

similar anticodon frequencies which correlated well when compared to codon usage of 

HEK293 cells based on RNA-seq data (Figure 3.21). DM-seq would not be an effective means 

for measuring the translating tRNA pool, as it does not specifically measure charged tRNAs, 

but is an excellent methodology for the identification of modified tRNA nucleotides 

(discussed in Introduction – tRNA modifications). This is because their 3’ adapter ligation is 

non-specific, meaning that it is impossible to distinguish between a tRNA that has been 

truncated due to the presence of a modification, or whether the sequence was a bona fide 

tRNA fragment or tRNA half. QuantM-seq tries to overcome this by using an annealed 

adapter where the 5’ adapter had an overhang that would be complementary to the CCA of 

the 3’ end of the tRNA, aiding 3’ adapter ligation (Figure 1.6 C). ALICE-tRNA-seq utilizes a 3’ 

adapter with an adenylated 5’ end, meaning that the adapter would only bind to adenosines 

that have a 3’ hydroxyl group, which can only be a consequence of deacylation (removal of 

the amino acid from the 3’ end of tRNAs) (Figure 3.7 B). Although QuantM-seq does improve 

on mature tRNA specificity in comparison to DM-seq, there are limitations in that non-

functional tRNAs and 3’ tRNA fragments have been shown to still harbour a 3’ CCA 

(Anderson and Ivanov, 2014), and so these would still be sequenced. Therefore, during 

analysis, a distinction would not be able to be made between mature tRNAs that may have 

truncated due to a modification and genuine 3’ tRNA fragments. Furthermore, tRNAs 

targeted for degradation have an additional CCA added to their 3’ end (Wellner et al., 2018) 

which would be sequenced in QuantM-seq (although these could be removed 

bioinformatically but was not mentioned in the paper). Ultimately, the correlation between 
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QuantM-seq and ALICE-tRNA-seq tRNA sequencing counts had R2 values greater than or 

equal to 0.83 and were statistically significant (Figure 3.19 C and D).   

However, we believe that ALICE-tRNA-seq provides the best means for measuring the tRNA 

pool. The 3’ adapter ligation provides more specificity to mature tRNAs than the 

aforementioned methodologies, due to the adapter’s adenylated 5’ end. Furthermore, the 

existence of quality control steps such as gel extractions post reverse transcription and post 

PCR, allows visualisation of the library at each step, allowing the user to be sure that the 

library preparation is working correctly.            
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6.2 tRNA availability and synonymous codon usage measured in vitro and in vivo does not 

entirely agree with published data 

Investigations into the role of tRNAs in the increased rate of translation of proliferative 

mRNAs has led to three working hypotheses; The expression of proliferative mRNAs results 

in the upregulation of “proliferative” tRNAs (Gingold et al., 2014), the expression of  

proliferative mRNAs results in the upregulation of all tRNAs and is not a specific event 

(Guimaraes et al., 2020); and the expression of  proliferative mRNAs results in the 

upregulation of tRNA modifications, namely A34I (Bornelov et al., 2019).    

In vitro, two models were used, in which cells were driven from proliferation to either 

quiescence or senescence, to try and elucidate their tRNA and mRNA profiles, by sequencing 

the mRNAs and tRNAs and examining how they vary upon changes in cell state. The first 

model was serum deprivation in BJ5TA human fibroblasts where cells were driven from 

proliferation to quiescence. The second model used IMR90 primary human fibroblasts, 

where cells were driven from proliferation to senescence via the activation of Ras, leading 

to oncogene induced senescence.  

In the serum deprivation experiments (proliferation to quiescence), tRNA sequencing 

revealed that there was a general downregulation of tRNA isoacceptors with an A/T at the 

wobble position and an upregulation of tRNA isoacceptors with a G/C (Figure 4.14). This 

could be to try and accommodate the changes seen at the mRNA level. The relative 

synonymous codon usage calculated for differential genes from the RNA-sequencing data 

revealed that mRNA codons with an A/T at the 3rd nucleotide position were preferred in 

proliferation and codons with a G/C at the 3rd nucleotide position were preferred in 

quiescence, therefore fitting with tRNA expression changes (Figure 4.24 A). However, when 
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the synonymous codon usage was calculated for all transcripts and the most abundant 

transcript per gene, there was no preference for any synonymous codons, suggesting that 

the differential genes are driving RSCU changes (Figure 4.25 A).  

The serum deprivation experiment coincides with Gingold’s et al hypothesis that the 

expression of proliferative mRNAs results in the upregulation of “proliferative” tRNAs. 

Gingold et al observed that “proliferative” tRNAs coincided with the upregulation of 

proliferative mRNAs as well as histone modification changes around tRNA genes and 

elucidated towards a potential transcriptional programme that regulates both tRNA and 

mRNA expression (Gingold et al., 2014). They also observed that proliferative mRNAs were 

enriched for A/T ending codons in both cancerous and non-cancerous proliferative samples, 

while genes associated with pattern specification were enriched for G/C ending codons and 

hence coined the terms “proliferative tRNAs” and “differentiation tRNAs”. Furthermore, 

Guimaraes et al conducted investigations into the effects of serum-deprivation in mouse 

embryonic fibroblasts and also reported the enrichment of A/T ending mRNA codons in 

proliferation but found no differential tRNA expression (Guimaraes et al., 2020). Although 

our model was a measure of stress-induced quiescence, whereas these reports from 

literature are comparing proliferation- and pattern specification- associated genes, the data 

observed in the proliferative state of our BJ5TA human fibroblasts matches. Furthermore, 

since ALICE-tRNA-seq is a more sensitive means of measuring the tRNA pool (in comparison 

to northern blots) we can confirm in this model that tRNA availability matches with the 

transcriptomic demand by upregulating select tRNAs.   

However, in the IMR90s, where cells were driven from proliferation to senescence, the tRNA 

availability did not match with the mRNA demands. From the tRNA-sequencing, the 
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isoacceptors did not show any pattern with regards to the up/downregulation of A/T vs G/C 

at the wobble position. In fact, the majority of T ending isoacceptors were upregulated and 

C ending isoacceptors were downregulated in senescence (Figure 4.15), completely 

contradicting all three hypotheses. However, when we examined the relative synonymous 

codon usage of differential genes, we observed A ending mRNA codons being preferred in 

proliferation and G/C ending mRNA codons being preferred in senescence (which does 

coincide with published reports) (Figure 4.24 B-C). Interestingly, mRNAs with a T at the 3rd 

nucleotide position stayed neutral in terms of preference between the two conditions. 

When the RSCU was calculated for all transcripts and the most abundant transcript per 

gene, there was almost no preference observed (Figure 4.25 B), suggesting that preference 

is driven by the differential genes. The fact that tRNA expression is not changing may be to 

do with downstream effects of RAS signalling. 

Similar results to the oncogene induced senescence experiments were also observed in the 

in vivo models. We used two genetically modified mouse models; the βcatenin/c-Myc model 

which drives hepatocytes from quiescence to proliferation and an MDM2 model which 

drives hepatocytes from quiescence to senescence. Interestingly, for both experiments, the 

tRNA sequencing did not match with the calculated relative synonymous codon usage for 

differential genes. This suggests that there may be a mechanism that cancer models utilize 

to bypass tRNA expression. An interesting aspect to investigate would be charging rates of 

the tRNAs. If the tRNAs are being charged with their cognate amino acids more efficiently, 

the tRNAs would be able to meet transcriptomic demands without having to upregulate 

tRNA expression. This could also be driven by specific tRNA modifications, but would require 

further investigation.  
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In the βcatenin/c-Myc model (quiescence to proliferation), the relative synonymous codon 

usage of differential genes showed a preference for mRNA codons with an A at the wobble 

position in proliferation (matching with the IMR90 data). Interestingly, mRNA codons with a 

C at the wobble position were also preferred in proliferation, contradicting published data 

(Figure 5.16 A). However, when the C ending mRNAs preferred in proliferation were 

examined, we found that they were all decoded by the 2-box tRNAs that only express one 

tRNA (i.e. G:T base pairing is utilized to decode the non-cognate codon, Figure 5.12 A-F). 

When it came to preferred codon usage for this category, we find that the cognate: non-

cognate split was approximately 75%:25% in preference (Figure 5.12 A-F). This led us to 

conclude that proliferative hepatocytes try to avoid G:T base pairing when decoding 

proliferative differential genes.  

In the MDM2 model (quiescence to senescence), relative synonymous codon usage of 

differential genes showed a preference for mRNA codons with an A or C at the wobble 

position in quiescence (Figure 5.16 B). Like observed in the βcatenin/c-Myc model, the C 

ending mRNAs preferred in proliferation were examined, we found that they were all 

decoded by the 2-box tRNAs that only express one tRNA (Figure 5.13 A-F), again suggesting 

that quiescent hepatocytes prefer cognate base pairing over G:T base pairing. Interestingly, 

in the MDM2 model, when the RSCU was calculated for all transcripts and the most 

abundant transcript per gene, we observed A-ending and C-ending codons being preferred 

in senescence (Figure 5.17 B), the mirror effect of what was observed for the RSCU of 

differential genes. This will require further investigation.  

Another form of near-cognate binding comes in the form of tRNA selection at the ribosomes 

(Tarrant and Von der Haar, 2014). tRNAs are translocated to the ribosome via the 
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phosphorylation of eIF1A, selecting tRNAs carrying the correct amino acids to the A-site of 

the translating ribosome (Rodnina and Wintermeyer, 2009). However, there are instances 

when incorrect amino acids are delivered due to near-cognate complementarity between 

the tRNA anticodon and the mRNA codons (usually when the second nucleotide is not 

completely complementary), resulting in increased dwell time in relation to the translating 

ribosome (Tarrant and Von der Haar, 2014). Near-cognate binding at the ribosome A-site 

has been shown to decrease translational efficiency (Pape et al., 1999). Furthermore, the 

ratio between cognate and near-cognate tRNA abundances have been an area of immense 

interest in the tRNA community, as they could play a significant role in the determination of 

codon decoding times (Tarrant and Von der Haar, 2014). The relationship between 

cognate/near-cognate ratios in relation to tRNA abundance and translational efficiency 

could yield a regulatory function within the cell, and has therefore become a significant area 

of interest. The redundancies seen (especially in the cancer models) between tRNA 

availability and synonymous codon usage could be explained by the existence of non-

cognate binding occurring at ribosomal A-sites. Although speculation, this could be a 

significant regulatory process used by the cancer cells to regulate mRNA translational rates, 

but is an area yet to be elucidated.     

The overall observation we found from our studies was that the stress-induced proliferation 

to quiescence transition matched up with the Gingold’s hypothesis. However, all our cancer 

models showed that the tRNA expression did not match up with the RSCU of differential 

genes. This suggests that cancers may be able to find a way to meet transcriptomic demand, 

without the need for instituting global tRNA expression changes (possibly through more 

efficient tRNA charging).  
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Interestingly, we found that in all our models, A34I (adenosine to inosine modification at the 

wobble position of tRNAs) may have been constitutively active in all our models and in some 

cases, may have been compensating for lowly expressed tRNAs. However, all our data 

disagrees with the Bornelov model, namely the A34I modifications drives increased 

translational rates of proliferative mRNAs.  

Although the findings reported allows us to classify the mRNAome and tRNAome of popular 

cancer models, more investigations would have to be conducted to elucidate the 

mechanism that regulated tRNA availability with translational demands. To potentially 

answer these questions, it may be useful to couple tRNA-sequencing with ribosome 

profiling, since the latter would give an indication to the codons being actively translated 

and indications towards the cell’s translation rate. Furthermore, mass spectrometry coupled 

with DM-tRNA-seq may allow us to categorize global tRNA modification changes with DM-

seq allowing us to postulate the tRNAs that have differential modification changes.    

In conclusion, we have successfully optimized a tRNA-sequencing methodology that can 

accurately measure the tRNA pool in vivo and in vitro, which aids our understanding into 

how tRNA dynamics changes with transcriptomic demand. 
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Appendix  

Below are the sequenced for ALICE-tRNA-seq library preparations: 

 
 

tRNA sequencing adapters (ALICE-tRNA-seq Library Preparation) 

3' Adapter 5’pCAGATCGGAAGAGCACACGTCT-R-NH2 

RT primer 5’pGATCGTCGGACTGTAGAACTCTGAArCAGACGTGTGCTCTTCCGATCT 

PCR Forward Primer  5'AATGATACGGCGACCACCGAGATCTACACGTTCAGAGTTCTACAGTCCGA 

 

 

Below are the PCR reverse primers. Each primer has a designed unique 6nt barcode used for 

demultiplexing pooled samples. Each primer can only be used once for every sequencing 

run: 

PCR Reverse 

Primer  

Full Sequence Unique 

barcode  

Rv_primer_1 CAAGCAGAAGACGGCATACGAGATCGTGATGTGACTGGAGTTCA

GACGTGTGCTCTTCCGATCT 

CGTGAT 

Rv_primer_2 CAAGCAGAAGACGGCATACGAGATACATCGGTGACTGGAGTTCA

GACGTGTGCTCTTCCGATCT 

ACATCG 

Rv_primer_3 CAAGCAGAAGACGGCATACGAGATGCCTAAGTGACTGGAGTTCA

GACGTGTGCTCTTCCGATCT 

GCCTAA 

Rv_primer_4 CAAGCAGAAGACGGCATACGAGATTGGTCAGTGACTGGAGTTCA

GACGTGTGCTCTTCCGATCT 

TGGTCA 

Rv_primer_5 CAAGCAGAAGACGGCATACGAGATCACTGTGTGACTGGAGTTCA

GACGTGTGCTCTTCCGATCT 

CACTGT 
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Rv_primer_6 CAAGCAGAAGACGGCATACGAGATATTGGCGTGACTGGAGTTCA

GACGTGTGCTCTTCCGATCT 

ATTGGC 

Rv_primer_7 CAAGCAGAAGACGGCATACGAGATGATCTGGTGACTGGAGTTCA

GACGTGTGCTCTTCCGATCT 

GATCTG 

Rv_primer_8 CAAGCAGAAGACGGCATACGAGATTCAAGTGTGACTGGAGTTCA

GACGTGTGCTCTTCCGATCT 

TCAAGT 

Rv_primer_9 CAAGCAGAAGACGGCATACGAGATCTGATCGTGACTGGAGTTCA

GACGTGTGCTCTTCCGATCT 

CTGATC 

Rv_primer_1

0 

CAAGCAGAAGACGGCATACGAGATAAGCTAGTGACTGGAGTTCA

GACGTGTGCTCTTCCGATCT 

AAGCTA 

Rv_primer_1

1 

CAAGCAGAAGACGGCATACGAGATGTAGCCGTGACTGGAGTTCA

GACGTGTGCTCTTCCGATCT 

GTAGCC 

Rv_primer_1

2 

CAAGCAGAAGACGGCATACGAGATTACAAGGTGACTGGAGTTCA

GACGTGTGCTCTTCCGATCT 

TACAAG 

Rv_primer_1

3 

CAAGCAGAAGACGGCATACGAGATTTGACTGTGACTGGAGTTCA

GACGTGTGCTCTTCCGATCT 

TTGACT 

Rv_primer_1

4 

CAAGCAGAAGACGGCATACGAGATGGAACTGTGACTGGAGTTCA

GACGTGTGCTCTTCCGATCT 

GGAACT 

Rv_primer_1

5 

CAAGCAGAAGACGGCATACGAGATTGACATGTGACTGGAGTTCA

GACGTGTGCTCTTCCGATCT 

TGACAT 

Rv_primer_1

6 

CAAGCAGAAGACGGCATACGAGATGGACGGGTGACTGGAGTTCA

GACGTGTGCTCTTCCGATCT 

GGACGG 
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Rv_primer_1

7 

CAAGCAGAAGACGGCATACGAGATCTCTACGTGACTGGAGTTCA

GACGTGTGCTCTTCCGATCT 

CTCTAC 

Rv_primer_1

8 

CAAGCAGAAGACGGCATACGAGATGCGGACGTGACTGGAGTTCA

GACGTGTGCTCTTCCGATCT 

GCGGAC 

Rv_primer_1

9 

CAAGCAGAAGACGGCATACGAGATTTTCACGTGACTGGAGTTCA

GACGTGTGCTCTTCCGATCT 

TTTCAC 

Rv_primer_2

0 

CAAGCAGAAGACGGCATACGAGATGGCCACGTGACTGGAGTTCA

GACGTGTGCTCTTCCGATCT 

GGCCAC 

Rv_primer_2

1 

CAAGCAGAAGACGGCATACGAGATCGAAACGTGACTGGAGTTCA

GACGTGTGCTCTTCCGATCT 

CGAAAC 

Rv_primer_2

2 

CAAGCAGAAGACGGCATACGAGATCGTACGGTGACTGGAGTTCA

GACGTGTGCTCTTCCGATCT 

CGTACG 

Rv_primer_2

3 

CAAGCAGAAGACGGCATACGAGATCCACTCGTGACTGGAGTTCA

GACGTGTGCTCTTCCGATCT 

CCACTC 

Rv_primer_2

4 

CAAGCAGAAGACGGCATACGAGATGCTACCGTGACTGGAGTTCA

GACGTGTGCTCTTCCGATCT 

GCTACC 

Rv_primer_2

5 

CAAGCAGAAGACGGCATACGAGATATCAGTGTGACTGGAGTTCA

GACGTGTGCTCTTCCGATCT 

ATCAGT 

Rv_primer_2

6 

CAAGCAGAAGACGGCATACGAGATGCTCATGTGACTGGAGTTCA

GACGTGTGCTCTTCCGATCT 

GCTCAT 

Rv_primer_2

7 

CAAGCAGAAGACGGCATACGAGATAGGAATGTGACTGGAGTTCA

GACGTGTGCTCTTCCGATCT 

AGGAAT 
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Rv_primer_2

8 

CAAGCAGAAGACGGCATACGAGATCTTTTGGTGACTGGAGTTCA

GACGTGTGCTCTTCCGATCT 

CTTTTG 

Rv_primer_2

9 

CAAGCAGAAGACGGCATACGAGATTAGTTGGTGACTGGAGTTCA

GACGTGTGCTCTTCCGATCT 

TAGTTG 

Rv_primer_3

0 

CAAGCAGAAGACGGCATACGAGATCCGGTGGTGACTGGAGTTCA

GACGTGTGCTCTTCCGATCT 

CCGGTG 

Rv_primer_3

1 

CAAGCAGAAGACGGCATACGAGATATCGTGGTGACTGGAGTTCA

GACGTGTGCTCTTCCGATCT 

ATCGTG 

Rv_primer_3

2 

CAAGCAGAAGACGGCATACGAGATTGAGTGGTGACTGGAGTTCA

GACGTGTGCTCTTCCGATCT 

TGAGTG 

Rv_primer_3

3 

CAAGCAGAAGACGGCATACGAGATCGCCTGGTGACTGGAGTTCA

GACGTGTGCTCTTCCGATCT 

CGCCTG 

Rv_primer_3

4 

CAAGCAGAAGACGGCATACGAGATGCCATGGTGACTGGAGTTCA

GACGTGTGCTCTTCCGATCT 

GCCATG 

Rv_primer_3

5 

CAAGCAGAAGACGGCATACGAGATAAAATGGTGACTGGAGTTCA

GACGTGTGCTCTTCCGATCT 

AAAATG 

Rv_primer_3

6 

CAAGCAGAAGACGGCATACGAGATTGTTGGGTGACTGGAGTTCA

GACGTGTGCTCTTCCGATCT 

TGTTGG 

Rv_primer_3

7 

CAAGCAGAAGACGGCATACGAGATATTCCGGTGACTGGAGTTCA

GACGTGTGCTCTTCCGATCT 

ATTCCG 

Rv_primer_3

8 

CAAGCAGAAGACGGCATACGAGATAGCTAGGTGACTGGAGTTCA

GACGTGTGCTCTTCCGATCT 

AGCTAG 
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Rv_primer_3

9 

CAAGCAGAAGACGGCATACGAGATGTATAGGTGACTGGAGTTCA

GACGTGTGCTCTTCCGATCT 

GTATAG 

Rv_primer_4

0 

CAAGCAGAAGACGGCATACGAGATTCTGAGGTGACTGGAGTTCA

GACGTGTGCTCTTCCGATCT 

TCTGAG 

Rv_primer_4

1 

CAAGCAGAAGACGGCATACGAGATGTCGTCGTGACTGGAGTTCA

GACGTGTGCTCTTCCGATCT 

GTCGTC 

Rv_primer_4

2 

CAAGCAGAAGACGGCATACGAGATCGATTAGTGACTGGAGTTCA

GACGTGTGCTCTTCCGATCT 

CGATTA 

Rv_primer_4

3 

CAAGCAGAAGACGGCATACGAGATGCTGTAGTGACTGGAGTTCA

GACGTGTGCTCTTCCGATCT 

GCTGTA 

Rv_primer_4

4 

CAAGCAGAAGACGGCATACGAGATATTATAGTGACTGGAGTTCA

GACGTGTGCTCTTCCGATCT 

ATTATA 

Rv_primer_4

5 

CAAGCAGAAGACGGCATACGAGATGAATGAGTGACTGGAGTTCA

GACGTGTGCTCTTCCGATCT 

GAATGA 

Rv_primer_4

6 

CAAGCAGAAGACGGCATACGAGATTCGGGAGTGACTGGAGTTCA

GACGTGTGCTCTTCCGATCT 

TCGGGA 

Rv_primer_4

7 

CAAGCAGAAGACGGCATACGAGATCTTCGAGTGACTGGAGTTCA

GACGTGTGCTCTTCCGATCT 

CTTCGA 

Rv_primer_4

8 

CAAGCAGAAGACGGCATACGAGATTGCCGAGTGACTGGAGTTCA

GACGTGTGCTCTTCCGATCT 

TGCCGA 
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