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Summary 
The aim of this study was to fully understand the differing immune landscapes within colorectal 

cancer (CRC) patients’ tumours, how these affected histological subtypes and response to 

immunotherapy as well as assessing their underlying genetic backgrounds.  

 

The first part assessed IHC staining for the full patient cohort to obtain baseline results of the 

association between immune cells infiltration and patients’ survival. Then immune landscapes were 

developed from a combination of T-lymphocytes and myeloid cells to mimic different immune 

statuses within the tumour. The results found that high level of T-lymphocytes infiltration was 

associated with improved patients’ survival independent of myeloid cells infiltration within both 

tumour cell nests and tumour stroma. Whereas high level of myeloid cells infiltration was associated 

with decreased patient’s survival only when T-lymphocytes where low.  

 

The association between immune cells infiltration and CRC phenotypic subtyping was then assessed 

to understand if there is a different immune cell composition specific to each phenotypic subtype 

which could be used as prognostic biomarkers or as targets for immunotherapy. This showed that 

each subtype had a separate immune landscape, with the immune subtype being associated with 

lymphoid cells, and the stromal subtype with myeloid cells.  

 

The second part involved genomics and transcriptomics analysis to obtain potentially mutated and 

differentially expressed genes specific to each immune landscape which might be used as 

biomarkers.  The genomics analysis showed that TP53 mutation was the most significantly mutated 

gene which showed a high mutation frequency in patients with high myeloid cells in their tumour 

stroma, especially when combined with high levels of CD80+ M1-like macrophages. In addition, at 

the protein level, p53 protein expression showed significant correlation with TP53 mutations, and 

high TP53 mutations were associated with high p53 expression, which significantly improved 

patients’ survival. As TP53 mutation showed a higher frequency in patients with high levels of 

CD80+ M1-like macrophages infiltration within their tumour stroma, TP53 mutations and its effects 

on p53 expression might be one of the factors to influence myeloid cells infiltration into stroma.  

 

Similarly, transcriptomics analysis found different pattern of gene expressions for each immune 

landscape. The results suggested that expression of significantly differentially expressed genes might 

be influenced by high myeloid cell infiltration independent of which other cell types are present in 

the tumour microenvironment. The most significantly differentially expressed genes were again 

linked to the TP53 network at a protein-protein interaction level, further strengthening the link 

between the TP53 network and immune response in CRC. Interestingly, when assessing the 
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correlation between TP53 mutation and differentially expressed genes, it was found that the REGs 

gene family, REG1A, REG3A, and REG3G, were downregulated in patients with TP53 mutations. 

As REGs genes are proposed to play a role in promoting colon tissues tumorigenesis this would fit 

with previous research. However, one limitation of this study was its small sample size. Therefore, 

validation in a larger cohort is needed to confirm these findings.  

 

The final part was to assess the efficacy of three anti-PD-1/anti-PD-L1 checkpoint inhibitors 

individually and in combination on a 3-D CRC tumour spheroids model co-cultured with different 

immune cell types. This model was designed to co-culture CRC tumour spheroids with non-adherent 

lymphocytes and macrophages, either individually or in combination.  The model was developed by 

assessing the optimum cell density, media, and inhibitor concentrations. However, the result showed 

no difference in tumour spheroid viability for any immune checkpoint inhibitor at either 48 or 96 

hours for any of the co-culture combinations. This suggests that further optimisation of the model is 

needed to be a useful tool for immunotherapy research. 

 

In conclusion, the results show that differing immune landscapes can stratify CRC patient prognosis. 

Furthermore, these immune landscapes vary between histological phenotypic subtypes and are linked 

to mutant p53 expression. With further research, these immune landscapes may be a useful tool to 

assess and stratify patients for treatment with immunotherapy. 
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1.1 Colorectal cancer incidence 

Colorectal cancer (CRC) includes any cancer of the colon or rectum. The Global Cancer Statistics 

(GLOBOCAN) estimated new cancer cases were around 18.1 million in 2018, of which, CRC 

exhibited a 6.1% incidence rate after lung cancer (11.6%), and prostate cancer (7.1%). In terms of 

mortality, CRC caused a 9.2% mortality rate, after lung cancer (18.4%) (Bray et al., 2018). In 2020, 

the GLOBOCAN estimated 19.3 million new cancer cases worldwide, of which CRC represented 

10% of new cases after breast cancer (11.7%), and lung cancer (11.4%). For mortality rate, lung 

cancer was the leading cause of cancer death (18%), followed by CRC (9.4%) (Sung et al., 2021). 

From the estimation for this 2 years period, overall, new cancer cases increased every year 

worldwide. For CRC, the incidence was increased from 6.1% to 10%, and mortality rate from 9.2% 

to 9.4%. Even though CRC deaths were only slightly increased, the high increase in new cases needs 

close monitoring, as the cases were still high even with screening tests implemented worldwide. 

 

1.2 CRC screening  

Generally, most people diagnosed with CRC are aged 60 or above. However, CRC incidence rises 

in individuals from age 50 onwards (Bretthauer (2011). Recently, the incidence of CRC cases in 

patients with age less than 40 years have been rising in Europe and other regions including Asia, 

New Zealand, and United States (Campos et al., 2017; Vuik et al., 2019). A similar trend is also seen 

in developing countries (Zahir et al., 2014). These indicate that CRC has become a substantial burden 

worldwide. However, early detection to remove precancerous lesions could lead to successful 

treatment of CRC and lessen this burden (Cardoso et al., 2021). Therefore, CRC screening in 

individuals with average-risk including young adult is crucial for future management of CRC.  

 

Recently, the American College of Gastroenterology (ACG) clinical guidelines for CRC screening 

has been launched. They strongly recommend CRC screening in individuals with average-risk aged 

between 50 and 75 years to decrease the incidence of advanced adenoma and mortality. In addition, 

the screening in individuals with average-risk aged 40 and 49 years is a conditional recommendation 

(Shaukat et al., 2021). In Europe, a study by Cardoso et. al. from over 3 million patients between 

2000-2016, found that countries which had long-standing screening programme that included faecal 

tests and colonoscopy decreased CRC incidence substantially (Cardoso et al., 2021). Whereas in 

countries that implemented screening during the study period, countries that reported a high 

screening coverage and uptake, showed an initial increased followed by a substantial decreased. 

Conversely, in countries where no large-scale screening programme was implemented, an elevate 

CRC incidence continued. Taken together, this suggests that implementing screening programme in 

individuals from age 40 years could reduce CRC incidence worldwide by allowing earlier stage 
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detection of tumours; however, this still not universally agreed. In Scotland, bowel screening is 

conducted from age 50-74, whereas in England and Northern Ireland screening occurs from 60-74 

years suggesting that implementing screening at 40 years is still a way off in the UK (Hirst et al., 

2018; Koo et al., 2017; Schreuders et al., 2015).  

 

1.3 Stage and grade of CRC 

CRC staging and grading systems are widely used and have consisted of three systems, TNM 

classification, tumour grading, and Dukes staging. As Dukes’ staging used a similar method to TNM 

staging, this system is now no longer in use and has been replaced by TNM stage because of its more 

detailed specification. TNM stage is the most reliable prognostic indicator in patients with CRC and 

treatment decision are based on this classification. Patient’s 5-year survival rates, in England has 

been reported as 90% for stage 1, 80% for stage 2, 70% for stage 3, and 10% for stage 4 (Broggio, 

2019) (Table 1.2). Apart from TNM staging, other histopathological features reported at diagnosis, 

are associated with prognosis and can influence treatment, including venous invasion, tumour 

perforation/serosal involvement, and tumour budding. 

 

1.3.1 TNM classification 
The TNM classification of malignant tumours is the most commonly used staging system 

internationally for CRC. TNM is a system that defines cancer stage to provide a patient’s prognosis. 

T (tumour) describes how deep the tumour has invaded into the bowel lining. N (Lymph node) 

describes the involvement of regional lymph nodes or lymph nodes near the colon and rectum. M 

(Metastasis) describes the spread of cancer into other parts of the body (ASCO.org., 2021a) (Table 

1.1). The stage of cancer is then defined by combining T, N, and M classifications (Table 1.2). TNM 

is now maintained by the Union for International Cancer Control (UICC) for consensus as a global 

standard to classify cancer progression and spread (UICC, 2021).  
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Table 1.1 - TNM stage definition and description for T-, N-, M-stage (table adapted from 
(ASCO.org., 2021a). 
 

TNM staging Description 

T 

(Tumor) 

TX The primary tumour cannot be evaluated. 

T0 (T plus zero) There is no evidence of cancer in the colon or rectum. 

Tis Refers to carcinoma in situ (also called cancer in situ). Cancer cells are 
found only in the epithelium or lamina propria, which are the top layers 
lining the inside of the colon or rectum. 

T1 The tumour has grown into the submucosa, which is the layer of tissue 
underneath the mucosa or lining of the colon. 

T2 The tumour has grown into the muscularis propria, a deeper, thick layer 
of muscle that contracts to force along the contents of the intestines. 

T3 The tumour has grown through the muscularis propria and into the 
subserosa, which is a thin layer of connective tissue beneath the outer 
layer of some parts of the large intestine, or it has grown into tissues 
surrounding the colon or rectum. 

T4a The tumour has grown into the surface of the visceral peritoneum, which 
means it has grown through all layers of the colon. 

T4b The tumour has grown into or has attached to other organs or structures. 

N 

(Node) 

NX The regional lymph nodes cannot be evaluated. 

N0 (N plus zero) There is no spread to regional lymph nodes. 

N1a There are tumour cells found in 1 regional lymph node. 

N1b There are tumour cells found in 2 or 3 regional lymph nodes. 

N1c  There are nodules made up of tumour cells found in the structures near 
the colon that do not appear to be lymph nodes. 

N2a There are tumour cells found in 4 to 6 regional lymph nodes. 

N2b There are tumour cells found in 7 or more regional lymph nodes. 

M 

(Metastasis) 

M0 The disease has not spread to a distant part of the body. 

M1a The cancer has spread to 1 other part of the body beyond the colon or 
rectum. 

M1b The cancer has spread to more than 1 part of the body other than the 
colon or rectum. 

M1c The cancer has spread to the peritoneal surface. 
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Table 1.2 - The description of cancer staging by combining TNM Classifications (table adapted from 
(ASCO.ORG., 2021A; BROGGIO, 2019) 
 

Stage Description TNM 5-year survival rate 

Stage 0 cancer cells are only on mucosa or inner lining 
of colon or rectum (cancer in situ) 

  

Stage I cancer has grown through mucosa and has 
invaded muscular layer of colon or rectum, but 
not spread into nearby tissue or lymph nodes  

-T1 or T2, N0, M0 90% 

Stage IIA cancer has grown through the wall of colon or 
rectum but not spread to nearby tissue or 
lymph nodes  

-T3, N0, M0 

80% 

Stage IIB cancer has grown through the layers of the 
muscle to the lining of the abdomen called the 
visceral peritoneum, but not spread to the 
nearby lymph nodes or elsewhere 

-T4a, N0, M0 

Stage IIC tumour has spread through the wall of colon 
or rectum and has grown into nearby 
structures, but nit spread to nearby lymph 
nodes or elsewhere 

-T4b, N0, M0 

Stage IIIA Cancer has grown through the inner lining or 
into muscular layers of intestine and spread to 
1-3 lymph nodes or to nodule of tumour cells 
in tissue around colon and rectum, but not 
spread to other parts of the body 

-T1 or T2, N1 or N1c, 
M0 

-T1, N2a, M0 

70% 

Stage IIIB Cancer has grown through the bowel wall or 
to surrounding organs and into 1-3 lymph 
nodes or to a nodule of tumour in tissues 
around colon and rectum, but not spread to 
other parts of the body 

-T3 or T4a, N1 or N1c, 
M0 

-T2 or T3, N2a, M0 

-T1 or T2, N2b, M0 

Stage IIIC cancer has spread to 4 or more lymph nodes, 
but not to other distant parts of the body 

-T4a, N2a, M0 

-T3 or T4a, N2b, M0 

-T4b, N1 or N2, M0 

Stage IVA cancer has spread to a single distant part of 
the body, i.e., liver or lung 

-any T, any N, M1a 

10% Stage IVB cancer has spread to more than 1 part of the 
body 

-any T, any N, M1b  

Stage IVC Cancer has spread to the peritoneum; it may 
also spread to other sites or organs 

-any T, any N, M1c 
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1.3.2 Tumour grading  
Grading system is also used to describe how much cancer cells look like normal healthy cells under 

a microscope. If cancerous tissue looks like normal healthy tissue it is termed “well differentiated” 

or a “low-grade tumour”. Whereas if cancerous tissue looks incredibly different from normal healthy 

tissue is termed “poorly differentiated” or a “high-grade tumour” (ASCO.org., 2021a) (Table 1.3).  

 

Table 1.3 - Tumour grading description (table adapted from (ASCO.ORG., 2021A) 
 

Grade Description 

GX The tumour grade cannot be identified. 

G1 The cells are more like healthy cells, termed well differentiated. 

G2 The cells are somewhat like healthy cells, termed moderately differentiated. 

G3 The cells look less like healthy cells, termed poorly differentiated. 

G4 The cells barely look like healthy cells, termed undifferentiated. 

 

1.4 CRC metastasis  

Metastasis is the process of tumour cells that migrate and spread to other distant organs. In CRC, 

metastasis mainly spreads to liver and lung than to other distant organs. Metastatic CRC (mCRC) 

patients that present with metastatic disease at the time of diagnosed is around 20% and metastasis 

develops after surgery in around 30%-50% (Palaghia et al., 2015). Current mCRC treatment cannot 

successfully eliminate all tumour cells, therefore, mCRC patients have only a short period of survival 

once diagnosed.    

 

1.5 Current CRC treatment regimens 

CRC treatment is considered and assessed by a multidisciplinary team and is assessed using the TNM 

stage of cancer (stage 0 – stage IV) and the location of other organs invaded during metastasis. 

Currently, CRC treatment consists of many diverse therapies including surgery, radiotherapy, 

chemotherapy, and targeted therapies (ASCO.org., 2021b; Brenner et al., 2014). 

 

1.5.1 Surgery 
Surgery is the gold standard CRC colon cancer treatment to remove the area containing the tumour 

cells and surrounding environment including lymph nodes. Whereas for rectal cancer, total 

mesorectal excision is the gold standard technique. Surgical decisions are first determined by the 
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tumour’s localisation and the blood vessel supplies. In the past, open surgery was the regular method 

used. However, another alternative method has been developed called laparoscopic resection. It has 

been shown that the laparoscopic approach can achieve the same results as the open surgery but can 

benefit patients in many aspects including decreasing the need for a blood transfusion, faster 

recovery, earlier discharge, reduced postoperative complication and lower infection rate. Therefore, 

this method is now become commonly used in clinical setting. Recently, robotic surgery has also 

been utilized for CRC surgery. Robotic surgery does have advantages for use as a method for CRC 

surgery. However, the disadvantage of this method are the high cost and the lack of extensive 

validation (Park & Baik, 2016).  

 

1.5.2 Neoadjuvant radiotherapy 
Normally, neoadjuvant radiotherapy, is used before surgery to reduce the rate of positive margins, 

especially in patients with margin threatening disease.  

 

1.5.3 Adjuvant chemotherapy 
Adjuvant chemotherapy is routinely used and recommended to treat all patients with stage III colon 

cancer and high-risk stage II colon cancer after surgery. High-risk stage II disease is defined as having 

either T4 tumours, perforation, perineural invasion, lymphovascular invasion, poor differentiation, 

positive margin, or obstruction (Babcock et al., 2018). Oxaliplatin-based treatment for six months 

has been the main choice for many years but can cause neurotoxic side effects. Fluorouracil (5FU) 

regimens such as FOLFOX, which is oxaliplatin combined with 5FU, and CAPOX, which is 

oxaliplatin combined with capecitabine, have been shown to decrease recurrence rates and increase 

survival rates. Recently, the SCOT clinical trial, an international phase III randomised non-inferiority 

trial compared 3 months and 6 months chemotherapy utilising either FOLFOX or CAPOX in Stage 

III/ high risk Stage II CRC patients. The results showed that 3 months treatment was not inferior to 

6 months treatment for patients receiving CAPOX; however, patients receiving FOLFOX responded 

better to 6 months of treatment (Ascopubs.org, 2018). This suggests that 3 months of CAPOX would 

be a suitable choice for CRC patients that may reduce neurotoxic side effects. 

 

1.5.4 Treatment for metastatic CRC 
In metastatic colorectal cancer, adjuvant chemotherapy is commonly used; the main regimens are 5-

FU, capecitabine, oxaliplatin, irinotecan. Leucovorin (LV), which is a biomodulation of 5-FU, has 

been shown to increase the activity with improvement of patient survival rates. Combined 

chemotherapy regimens have also been proposed, such as FOLFOX (oxaliplatin+5-FU+LV) 

followed by FOLFIRI (irinotecan+5-FU+LV). Besides first- and second-line chemotherapy, other 
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kinds of treatment have been developed for metastatic disease. One is novel targeted therapies, for 

example antibodies such as bevacizumab which act against angiogenesis via the VEGF receptor or 

panitumumab and cetuximab which inhibit the endothelial growth factor receptor (EGFR) (Mitchell, 

2013; Palaghia et al., 2015). These targeted therapies can also be used in combination with 

chemotherapy (Palaghia et al., 2015). For example, a combination treatment including the 

chemotherapeutic drug regimen, CAPOX, combined with monoclonal antibodies against VEGF or 

EGFR, has been proposed. (Cartwright, 2012; Edwards et al., 2012; Palaghia et al., 2015).  

 

1.6 Genomic instability and development of CRC 

One of the issues with treating CRC is the heterogeneous nature of the tumours, which is in part due 

to the range of genetic instability found in these tumours. Tumorigenesis is known as a multistep 

process which is initiated and progresses due to underlying molecular events including both genetics 

and epigenetics alterations (Feinberg et al., 2006). CRC is one of the most well characterised cancer 

types in terms of genetic alterations, with the disease developing over time due to the sequential 

accumulation of genetic and epigenetic aberrations in genes that resulting in transformation of  

normal epithelium cells into cancer cells (Fearon & Vogelstein, 1990) (Figure 1.1).  

 

CRC tumorigenesis has been explored at both the genetic and epigenetic level, resulting in it 

becoming an obvious model to utilised for studying cancer development and progression (Fearon & 

Vogelstein, 1990; Wong et al., 2007; Worthley et al., 2007). CRC has been extensively studied for 

tumorigenesis focussing on genetic alterations (Armaghany et al., 2012) and the underlying pathways 

(Chung, 2000). From cumulative finding over time, at least three genomic instability pathways are 

involved in CRC development mechanisms from adenoma to carcinoma includes chromosomal 

instability (CIN), microsatellite instability (MSI) pathways, and CpG Island Methylator Phenotype 

(CIMP) (Colussi et al., 2013).  
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Figure 1.1 - Adenoma-carcinoma sequences model (Fearon & Vogelstein, 1990). In the 
accumulated of sequential genes mutation from multistep process of CRC formation, APC or Beta-catenin 
genes mutations is an early event acquired to transform normal epithelium into early adenoma. Subsequent 
KRAS or BRAF mutations then trigger the progression into intermediate adenoma, following by further DCC 
and SMAD4 genes mutation reaching late adenoma. Mutations in TP53 tumour suppressor gene along with 
increasing genomic instability, CIN finally transform late adenoma to carcinoma and metastasis. 

 
1.6.1 Chromosomal Instability pathway 
Chromosomal instability (CIN) refers to the gain or loss of whole or large portions of chromosomes 

resulting in loss of function of genes. In CRC, CIN is characterized by a major accumulation of 

oncogenes including KRAS (proto-oncogene K-ras), and BRAF (B-raf protooncogene 

serine/threonine kinase). As well as mutations in tumour suppressor genes, APC (Adenomatous 

polyposis coli), tumour protein p53 (TP53, tumour suppressor transcription factor 53), and SMAD4 

genes. CIN is present in 70-85% of CRC tumours (Ewing et al., 2014; Nguyen & Duong, 2018). 

 

Normally in CRC, the top three mutated genes are APC, KRAS, and TP53. APC is the most important 

tumour suppressor gene, around 75% of CRC cases have mutation in this gene. It is also usually the 

first mutation to occur, making it a common driver mutation of CRC (Tariq & Ghias, 2016). KRAS, 

is another important gene, mutated KRAS found around 35-42% of CRC cases. KRAS is also 

important for treatment decisions, as patients with a KRAS mutation are insensitive to EGFR 

monoclonal antibody targeted therapies. Finally, TP53, impairment is present in around 50-75% in 

CRC cases and is usually the mutation that drives the tumour towards full carcinogenesis (Worthley 

& Leggett, 2010).  

 

1.6.2 Microsatellite Instability pathway 
Microsatellite instability (MSI) is another crucial genetic variation in CRC development, which 

occurs in 15% of CRC patients (Armaghany et al., 2012; Park, Powell, et al., 2016; Ryan et al., 

2017). Microsatellites are repetitive DNA sequences consisting of mononucleotide or dinucleotide 
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repeats, usually one to five base pairs, found throughout the entire genome. This repetitive nature 

causes replication errors (Nguyen & Duong, 2018). Tumorigenesis derived from MSI status normally 

results from inactivation of DNA mismatch repair (MMR) genes through somatic mutation or 

aberrant methylation. It is widely reported that MSI is associated with post-replication DNA MMR 

deficiency of MLH1, MSH2, MSH6, and PMS2 (Ewing et al., 2014). In most cases, MMR deficiency 

is due to somatic inactivation of the MLH1 gene via promoter hypermethylation (Singh et al., 2021). 

MMR can be further divided into three types based on MSI status: MSI-High, MSI-Low, and MSI 

Stable (MSS) (Boland & Goel, 2010). However, MSI only occurs in a small proportion of patients, 

whereas MSS tumours usually develop via the CIN pathway making it the more dominant form of 

genomic instability in CRC (de la Chapelle & Hampel, 2010; Gupta et al., 2018; Markowitz & 

Bertagnolli, 2009).  

 

1.6.3 CpG island methylator phenotype pathway 
CpG island methylator phenotype (CIMP) or aberrant DNA methylation is another important 

pathway in CRC, with CIMP+ cancer presenting in 20-30% of CRC patients. DNA hypermethylation 

at CpG islands of tumour suppressor gene promoters lead to gene silencing, which is the main 

mechanism for loss of MMR function (Ewing et al., 2014; Nguyen & Duong, 2018). This pathway 

is characterised by various criteria, for example, Shen et al., subtyped CRC into 3 subgroups, CIMP1, 

CIMP2, and CIMP negative via various genetic correlation with BRAF, KRAS, and TP53. CIMP1 

had high levels of BRAF mutations and was often MSI-High. Whereas, CIMP2 has high KRAS 

mutations and low BRAF or TP53 mutations (Shen & Waterland, 2007; Singh et al., 2021). 

 

1.7 CRC molecular subtyping 

Tumour staging relies on TNM classification; however, it is recognized that patients with same stage 

of disease develop different clinical outcomes. Furthermore, although TNM system is the best and 

most widely used predictor of long-term outcome in CRC; it does not predict patients’ post-operative 

consequences. Therefore, novel prognostic classifications of CRC are needed. Molecular subtyping 

based on gene expression and genomic instability has widely studied in multiple research groups for 

this purpose. However, this resulted in multiple subtyping methods from different groups utilising a 

wide variety of different data processing methods, patient cohorts, samples preparation methods, and 

analysis workflows. This was due to the absence of gold standard analysis for subtyping in CRC. 

Therefore, in 2015, these groups came together to form the CRC Subtyping Consortium (CRCSC), 

with the aim of looking for consensus between the different subtyping methods developed to 

establish a definitive subtyping method for CRC (Guinney, Dienstmann, Wang, de Reynies, 
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Schlicker, Soneson, Marisa, Roepman, Nyamundanda, Angelino, Bot, Morris, Simon, Gerster, 

Fessler, Melo, et al., 2015). 

 

1.7.1 The Consensus Molecular Subtypes  
The CRCSC assessed the core subtype patterns from gene expression data of over 3000 patients from 

six independent research groups to create four robust and internationally validated classification 

called the consensus molecular subtypes (CMSs): CMS1-CMS4 (Guinney, Dienstmann, Wang, de 

Reynies, Schlicker, Soneson, Marisa, Roepman, Nyamundanda, Angelino, Bot, Morris, Simon, 

Gerster, Fessler, De Sousa, et al., 2015). CMS1 (MS1 immune, 14%) was characterised by 

hypermutation, MSI-High, strong immune activation, and showed good prognosis. CMS2 

(canonical, 37%) was marked by WNT and MYC signalling activation. CMS3 (metabolic, 13%) was 

marked by evidence of metabolic dysregulation. CMS4 (mesenchymal, 23%) was marked by high 

level of transforming growth factor (TGF) beta activation, stromal invasion, and high density of 

stromal cells (CAFs), and had the worst prognosis (Table 1.5) (Buikhuisen et al., 2020; Fessler & 

Medema, 2016; Guinney, Dienstmann, Wang, de Reynies, Schlicker, Soneson, Marisa, Roepman, 

Nyamundanda, Angelino, Bot, Morris, Simon, Gerster, Fessler, De Sousa, et al., 2015. This 

classification system is the most robust and internationally utilised CRC classification system used 

for research.  

 

Table 1.4 - The Consensus molecular subtypes of CRC (adapted from Buikhuisen et al., 2020; 
Fessler & Medema, 2016; Guinney, et al., 2015) 
 

 CMS1 

(MSI immune) 

CMS2 

(Canonical) 

CMS3 

(Metabolic) 

CMS4 

(Mesenchymal) 

Percent of total 
cancer 

14% 37% 13% 23% 

Molecular 
characteristics 

BRAF mutations 
Hypermutation  
MSI-High 

TP53 mutation 
CIN-High 

KRAS mutations 
CIN-intermediate 
CIMP-Low 

CIN-High 

Pathways  JAK-STAT High WNT High 
MYC High 
SRC High 

Metabolic 
dysregulation 

EMT High 
TGF-beta High 
 

Microenvironment Strong immune 
infiltration and 
activation 

  Stromal invasion 
High density of 
stromal cells (CAFs) 

Prognosis Good prognosis 
Poor prognosis 
after recurrence 

Intermediate Intermediate Poor prognosis 
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1.7.2 CRC intrinsic subtypes  
Another molecular subtyping system, the cancer-intrinsic subtypes (CRIS) was developed in 2017. 

This system was developed in patient-derived xenografts (PDXs) to assess human-specific 

expression profiling of CRC PDXs to determine cancer-cell intrinsic transcriptional features (Isella 

et al., 2017). The rationale was to specifically look at characteristics of the human cancer cells, to 

remove any dominating features of stromal cells within the tumour. From this method they produced 

five CRIS groups with distinct molecular, functional, and phenotypic characteristics. CRIS-A 

presented as mucinous, glycolytic, MSI enriched or KRAS mutant. CRIS-B was enriched for TGF-

beta activity, high in epithelial-mesenchymal transition and presented with poor prognosis. CRIS-C 

had elevated EGFR signalling and sensitivity to EGFR inhibitors. Whereas CRIS-D had increased 

WNT activation, and overexpression of the IGF2 gene. CRIS-E had a Paneth cell-like phenotype 

with TP53 mutations. Furthermore, CRIS subtypes can categorize primary and metastatic CRCs 

independently (Table 1.6).  

 

Table 1.5 - CRC intrinsic subtypes (CRISs) (table modified from (Buikhuisen et al., 2020; Singh et 
al., 2021) 
 

 CRIS-A CRIS-B CRIS-C CRIS-D CRIS-E 

Phenotype Mucinous 

Glycolytic 

   Paneth cell-like 
phenotype 

Molecular 
features 

MSI-High 

CIMP-High 

BRAFV600E 

 

MSS CIN-Low 

CIMP-Low 

KRASmut 

 CIN-High 

TP53mut 

MYC Amplified 

CIN-High 

-IGF2 gene 
overexpression 
and amplification 

CIN-High 

KRASmut 

TP53mut 

Pathways Glycolysis 

Inflammation 

MSI-like 

Mucinous 

EMT High 

TGF-beta 
High 

EGFR High 

ERBB3 High 

IGFR High 

FGFR High 

WNT High 

Lgr5+-like 

WNT High 

 

 

CMSs and CRISs classification systems utilized transcriptional signatures which could potentially 

be implemented in a clinical setting to better assess patients’ prognosis. However, the ability to 

employ these methods in pre-treatment biopsies, which would be most beneficial, was still 
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unconfirmed. Therefore, Alderdice et al. validated these systems in biopsies in 2018. They performed 

a comprehensive assessment of CRC signatures of CMSs and CRISs utilizing tumour sampling 

methodologies currently implemented in clinical and translational research including laser-capture 

micro-dissected CRC tissue, publicly available rectal cancer biopsy data sets from eight sources, 

serial biopsies from AXEBeam trial, NCT00828672, multi-regional biopsies from colon tumours, 

and pre-treatment biopsies from the COPERNICUS phase II rectal cancer trial (NCT01263171). The 

results were compared to results from CRC resection and found that CRIS classification provided 

significantly better classification than CMS for subtyping CRC primary tumour biopsies (Alderdice 

et al., 2018).  

 

Although these two molecular subtyping methods are successfully validated CRC subtypes and 

widely implemented internationally for research, they both methods utilise transcriptomics 

approaches which have high costs associated and specialist equipment needed to analyse the gene 

expression data sets. Therefore, these have not yet been transferred to clinical practice, suggesting a 

cheaper clinically translatable method is still required.  

 

1.8 Tumour microenvironment (TME) 

One important feature of all these subtyping methods, it’s that they consider the TME as an important 

part of the neoplastic process. Once cancer has developed, not only malignant cells are found within 

the tumour, but also non-transformed cells located around the malignant cells that form the tumour 

microenvironment. Non-malignant cells infiltrate into the tumour area including immune cells and 

stromal cells. Among the infiltrating cells in TME, immune cells play a crucial role either in killing 

the tumour cells or creating a microenvironment filled with chemokine, cytokines, and growth factors 

promoting tumour progression. Therefore, TME can be a tumour promoting environment or tumour 

suppressive environment depending on the role/make-up of the immune cells (Ahmad et al., 2014; 

Church & Galon, 2015; Dougan & Dougan, 2017; Pitt et al., 2016) (Figure 1.2). Other cells found 

in TME include cancer-associated fibroblasts (CAFs), adipocytes, vascular endothelial cells, 

pericytes, and lymphatic endothelial cells. These cells also play an important role in TME and can 

promote or suppress tumour progression. Among these cells, CAFs are well recognized as playing a 

significant role in carcinogenesis. 
 

 



38 

 

 

Figure 1.2 - Immune cells and stromal compartment in tumour microenvironment (TME). TME 
consist of two parts, stromal compartment, and immune cells infiltration. The important cells in stromal 
compartment such as CAFs, adipocytes, endothelial cells. Each cell type can support tumour growth and/or 
inhibit tumour growth. Immune cells infiltration such as T-lymphocytes subsets, TANs, TAMs, MDSCs, and 
other immune cells which can function as pro-tumorigenic and/or anti-tumorigenic. CAFs – cancer-associated 
fibroblasts, TANs – tumour-associated neutrophils, TAMs – tumour-associated macrophages, MDSCs – 
myeloid-derived suppressor cells   

 

1.8.1 Stromal cells in the TME 
As cancer cells grow, develop, and progress they need many factors including oxygen and nutrients, 

from the surrounding TME, tissues, and vessels. Stromal cells within the TME provide many of these 

essential factors. Stromal cells communicate with each other by complex networks (chemokines, 

cytokines, inflammatory enzymes, and growth factors) (Korneev et al., 2017) and can directly 

influence the cancer cells to promote tumour suppression or tumour-progression depending upon the 

overall make-up of the TME (Balkwill et al., 2012; Hanahan & Coussens, 2012). The stromal cells 

present within the TME are mainly CAFs and adipocytes. 

 

In CRC, CAFs are the main component and play various roles in CRC metastasis, prognosis, and 

driven drug resistance. Adipocytes also have a role in CRC progression and survival.  The infiltration 

of stromal cells into the TME could be used to determine the progression of disease and patient 

outcome using the TSP, and high stromal infiltrate was found to be associated with poor patient 

prognosis. This could be because high stroma may inhibit immune infiltration into tumour area due 

to the factors they secrete.  
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1.8.1.1 Cancer-associated fibroblasts (CAFs)  

CAFs are the major type of stromal cells within the TME and are recognized to play an essential role 

in carcinogenesis, tumour progression, and invasion by directly communicating with both the cancer 

cells and other stromal cells through chemokine production. CAFs secrete regulatory factors into the 

TME that support many tumour actions such as tumour growth and metastasis; therefore, CAFs act 

as a support for tumour cells. CAFs are differentiated from various progenitor cells including 

mesenchymal stem cells, epithelial cells, endothelial cells, and pericytes; and further develop into a 

heterogeneous cell population with distinct roles (Shiga et al., 2015). CAFs secrete cytokines, 

epidermal growth factors (EGF) and hepatocyte growth factors (HGF) to induce tumour growth and 

survival. These proteins secrete by CAFs can act as cancer cell enhancers to promote tumour 

migration, invasion, and metastasis (Tao et al., 2017). As well as their role in tumour promotion, 

CAFs can also have a tumour-suppressive role by releasing TGF-b in the early stages of 

carcinogenesis to lower tumour initiation. Their role then switches in later stages to promote tumour 

development (Ishii et al., 2016). Thus, CAFs can act as both tumour promoting and tumour 

suppressive depending on stage, potentially due to the immune cells within the tumour and are 

therefore potential drug targets for cancer therapy in advanced disease; however, CAFs have been 

implicated in promoting cancer cells resistance to therapy (Tao et al., 2017). 

 

In CRC, CAFs have been identified as having a variety of roles and play a major role in promoting 

CRC metastasis as studied by Potdar and Chaudhary et al. They formed primary cultures of CAFs 

from CRC patients with metastasis and performed cellular characterization by histological staining 

and assessed the molecular characterization of the metastasis promoting genes. The result showed 

that CAFs preserve their phenotype and maintain proliferation but also found the expression of genes 

associated with cancer stem cells and genes that play a role in resistance to chemotherapeutic drugs 

(Potdar & Chaudhary, 2017). There is now a rising role for CAFs in driving drug resistance in CRC, 

which may explain their association with poor prognosis (Garvey et al., 2017). 

 

1.8.1.2 Adipocytes 

Previously, adipocytes were recognized as a main source of energy storage and their role in cancer 

was not well understood. Recently, adipocytes have been proposed as the main source of endocrine 

cells that secrete hormones, cytokines, growth factors, and adipokines. Cytokines produced from 

adipocytes include TNF-a, IL-6, CCL2, and IL-1b to recruit inflammatory cells to infiltrate adipose 

tissue and create a low-grade inflammation. This type of chronic inflammation leads to metabolic 

deregulations that end up causing obesity, which is related to cancer development and poor 

prognosis. It is known that chronic inflammation is a risk factor for CRC development and tumour 

progression. Adipose tissue consists not only of adipocytes but also contains other cells including 
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lymphocytes, macrophage, pericytes, endothelial cells, and adipocyte progenitor cells. It works in 

many ways to regulate tumour development, for example, through adipokines, cytokines, or miRNA. 

Recently, miRNA has been proposed as one of the key factors associated with development of many 

diseases including cancer (Correa et al., 2017). 

 

In CRC, adipocytes and other loose connective tissue are parts of mesentery, which is the envelope 

of colon. Adipocyte’s accumulation and distribution in the submucosal compartment has been 

reported, and this is thought to be a cause of inflammatory bowel disease. A molecular pathological 

epidemiology study has shown that obesity associated with molecular alterations promotes CRC 

development. However, the relationship between TME-associated adipocytes and the induction of 

epigenetic modifications has not been reported (Tabuso et al., 2017). Recently, adipocytes isolated 

from CRC patient’s adipose tissue has been studied. The result showed that adipocytes play a role in 

cellular metabolism that could modulate and support both tumour growth and survival. Therefore, 

adipocytes not only provide energy to cells in TME but also have a role in regulating tumour cell 

growth and survival and could be a good target for CRC therapeutics (Wen et al., 2017). 

 
1.8.2 Immune cells in TME 
Generally, tumour tissue is infiltrated with inflammatory cells, which is the normal reaction of the 

host immune response reacting to the foreign tumour cells. The immune cells consist of cells in the 

lymphoid lineage and myeloid lineage. Lymphoid lineage cells are mostly T-lymphocytes, B-

lymphocytes, and natural killer (NK) cells. Myeloid lineage cells are TAMs, MDSCs, TANs, and 

mast cells (Balkwill et al., 2012). 

 

It is now known that many cancer types are preceded by chronic inflammation due to mucosal 

epithelial cells or microorganism colonisation, for example, hepatocellular carcinoma arising from 

hepatitis B and hepatitis C virus, cervical cancer arising from human papilloma virus (HPV), or 

gastric cancer arising from Helicobacter pylori (Moss & Blaser, 2005). The chronic inflammatory 

response in wound healing and in cancer is therefore similar; however, tumours can co-opt this 

wound healing response to promote maintenance and growth (Dvorak, 2015).  

 

In early-stage tumours, immune cells participate in preventing tumour progression by detecting 

tumour cells and destroy them, however, these cells can be hijacked by the tumour to perform another 

role promoting cancer development, by dampening the lymphoid immune response and promoting 

the myeloid immune cells, which have been shown to be crucial for tumour progression (Edmondson 

et al.; Grivennikov & Karin, 2010).   
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1.8.3 Immune cells in CRC 
In CRC carcinogenesis, a major risk of colon cancer development is inflammation occurring in bowel 

or inflammatory bowel disease (IBD), which is responsible for 10% to 15% of colon cancer deaths 

(Dyson & Rutter, 2012; Terzic et al., 2010). IBD is more likely to progress to colon cancer in younger 

patients than sporadic CRC. The higher risk of CRC associated with IBD is potentially due to genetic 

factors (Kim & Chang, 2014). Although a connection between inflammation and cancer is also 

indicated. However, the mechanism behind how IBD can initiate CRC and the role of chronic 

inflammation is still a highly active area of research.  

 

Recently, Mariani et al. examined the crucial inflammatory pathways involved in the initial step of 

CRC developments including tissue injury, chemical agents, and continuing inflammation of large 

bowel (Mariani et al., 2014). These can all lead to chronic inflammation hyper-stimulating cells of 

immune system and their related proteins within the systemic inflammatory response to promote a 

central mechanism for CRC development for example changes in cell proliferation, DNA damage, 

and apoptosis. This systemic inflammatory response is predominantly due to innate immune cells. 

This may be why an increase in the systemic inflammatory response has been shown to associate 

with a poor prognosis for patients.  

 

Systemic inflammatory response could be measured by using C-reactive protein (CRP); which has 

been reported as an independent prognostic value in CRC. McMillan et al. has presented that elevated 

CRP concentrations in the circulation and decreased albumin concentration has the same relationship 

in different tumours and could be used as a prognostic score (McMillan, 2013). This systemic 

inflammation-based prognostic score was termed the Glasgow Prognostic Score (GPS) and the GPS 

was then further modified (mGPS) by removing the score for decreased albumin without elevated 

CRP (Table 1.9). Today, the GPS/mGPS is clearly validated and could be used in a patient’s routine 

risk assessment and as therapeutic target for future research. However, mGPS is not the only score 

to assess the systemic inflammatory response, the neutrophil to lymphocyte ration (NLR) and 

Lymphocytes to macrophage ration (LMR) are among a host of novel scores being developed for 

this purpose. 

 

Table 1.6 - mGPS systemic inflammation score (adapted from McMillan, 2013) 
 

Biochemical characteristics Score  

CRP < 10 mg/L + any albumin 0 
CRP > 10 mg/L + albumin > 3.5 g/dL 1 
CRP > 10 mg/L + albumin < 3.5 g/dL 2 
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In contrast, a local immune response is crucial for preventing tumour progression. The local 

inflammatory response in CRC patients has been evaluated and the result indicated that when there 

is a strong immune cell infiltrate at tumour sites patients live longer (Richards et al., 2014); therefore, 

local inflammation could be the significant indicators of CRC prognosis. Local inflammatory 

response in CRC could be utilised as a prognostic score; for example, the Klintrup-Makinen (KM) 

grade, which uses an H&E slide, looking at general inflammation at the invasive margin; the Galon’s 

Immunoscore, which uses an immunohistochemistry (IHC)-based score grading lymphocytes 

infiltration at both invasive margin and central tumour. Local inflammation in early-stage CRC can 

strongly recruit many T-cell subtypes including CD8+ cytotoxic T-cells, CD45RO+ memory T-cells, 

and FOXP3+ Tregs, which are crucial for a good patient prognosis due to their role in eliminating 

tumour cells. However, in later stages, tumour cells can evade the host immune response and escape 

from immunity, or the system can be hijacked by tumour cells to utilise TAMs and MDSC to promote 

its growth.  

1.8.3.1 Lymphocytes 

One of the most important inflammatory cells found infiltrating cancer cell nests are T-lymphocyte 

known as tumour infiltrating lymphocytes (TILs). Yoshitaka et al., (1998) analysed the localisation 

of CD8+ T-lymphocytes (cytotoxic T-lymphocyte) in CRC patients. The results showed that CD8+ 

T-lymphocytes localised in three different areas: within cancer cell nest, in the stroma, and at the 

invasive margin. The role of CD8+ T-lymphocytes was analysed by performing CD8 and Ki-67 

immunohistochemistry. The result indicated that CD8+ T-lymphocytes were mainly present in highly 

proliferative cancer cells nests, and this associated with increased patient survival. Therefore, CD8+ 

T-lymphocytes has been used as a useful prognostic factor for patient’s better survival. Furthermore, 

the local inflammatory response has been assessed by analysing T-lymphocytes subtypes including 

CD3+, CD8+, CD45RO+, FoxP3+ and their relationship with host characteristics in CRC patients 

(Richards et al., 2014). The result found that a strong lymphocyte infiltration was associated with 

improved cancer-specific survival. Strong CD3+ T-lymphocytes at the invasive margin or CD8+ cells 

within cancer cell nests were the best predictors of improved survival. These two studies both suggest 

that CD8+ T-lymphocytes present in CRC cell nest are a strong predictor of patient survival. 

Interestingly, a study by Hagland et al. about the location and density of CD3+ and CD8+ T-

lymphocytes in pre-surgical blood and at the intra-tumoral site in CRC patients showed that CD3+ 

and CD8+ T-lymphocytes numbers in the circulation significantly correlate with CD3+ and CD8+ 

numbers at invasive margin and centre of the tumour (Hagland et al., 2017). Therefore, circulating 

T-lymphocytes in the blood could be used as liquid biopsy to determine patient’s immune status to 

assist clinical decision making since blood samples collection is easier than tumour tissue biopsy.  
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Regulatory T-lymphocytes (Tregs) play an important role in homeostasis of the immune response by 

inhibiting self-antigens defence mechanisms and non-self-antigens response. Moreover, Tregs are 

also involved in controlling many mechanisms of immune system i.e. inflammation, infection, 

autoimmunity (Sakaguchi et al., 2008). Normally, Tregs, express CD4+CD25+ and were later found 

to also express Forkhead box protein 3 (FoxP3), regulatory transcription factor, which can be used 

as markers to identify the cells (Hori et al., 2003). The clinical impact of Tregs has studied by 

determining the expression of FoxP3 and CD8 cells (Zeestraten et al., 2013). The result showed that 

FoxP3+ cells were present in tumour stroma and tumour epithelium separately; and this result related 

to clinical outcome. They found that high level FoxP3+ cells in tumour epithelium related to down 

regulation of HLA Class I expression, which resulted in low host immune cells recognition leading 

to a decrease in tumour cells elimination. They also showed that the CD8+/Foxp3+ cell ratio 

significantly correlated with improved patient’s survival. These studies suggest that T-cells subsets, 

CD8+, CD45RO+, Foxp3+ could be good prognostic markers for patient survival. 

1.8.3.2 Myeloid-derived suppressor cells (MDSCs) 

MDSCs is the immature myeloid cells present in most cancer patients. Their main role is to inhibit 

innate and adaptive immunity and prevent the immune system from eradicating transformed cells 

including cancer cells. MDSCs and Tregs have been designated as the main negative regulation 

mediators of the immune response within TME, leading to a poor prognosis and increased tumour 

progression. In short, MDSCs are a heterogeneous population of myeloid cells, which have ability 

to suppress T-lymphocytes responses. Commonly, MDSCs express CD33+ and CD11b+ markers, but 

have no expression of mature cell markers. Many studies have indicated that MDSCs are present at 

high levels in peripheral blood and TME and exhibited tumour-specific immunosuppressive effects 

to promote tumour progression. MDSCs has also been shown to be a major factor that can reduce 

the efficacy of current cancer immunotherapy treatment by suppressing the cells activated  (Toor et 

al., 2016). Toor et al., (2016) showed a significant increase of myeloid cells in CRC patient’s 

peripheral blood and tumour tissue compared to healthy donors suggesting these cells are 

contributing to tumour progression and inhibiting MDSCs may be a potential target for 

immunotherapy in CRC in combination with current regimens (Toor et al., 2016). 

1.8.3.3 Tumour-associated macrophages (TAMs) 

In the CRC TME, macrophages are the most abundant immune cell populations (Wang et al., 2021; 

Yahaya et al., 2019).  Many studies have proposed that TAMs engaged pro-tumour functions, and 

that TAMs infiltration correlates with tumour progression, growth, aggression, and prognosis. In 

contrast, some studies suggested that TAMs in CRC express an anti-tumour activity and improve 

patient’s survival. This may be explained as macrophages are divided into two subtypes; M1-like 

macrophages promote response to Th1 lymphocytes, have microbicidal, and tumoricidal effects, and 
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secrete tumour necrosis factor-a (TNF-a), IL-1, and IL-12 to supress tumour growth; whereas M2-

like macrophages stimulate response to Th2 and Tregs, and promote tissue remodelling, immune 

tolerance, and tumour progression.  

1.8.3.4 Tumour-associated neutrophils (TANs) 

It is known that neutrophils are the most abundance granulocytes which play a role in the first line 

of the host defence mechanism to pathogens. In cancer biology, TANs (Liu et al.) play a crucial role 

and make up the significant part of inflammatory cell infiltrate. However, the role of TANs within 

the CRC TME was investigated by Rao et al. by assessing CD66b, which is specific to neutrophil 

granulocytes (CD66b+ cells), and their associations with clinicopathological factors. The results 

showed that TANs increase within the TME, and this independently associated with CRC 

malignancy and low survival rate in CRC patients (Rao et al., 2012). This suggest that, like 

macrophages, TANs can be both anti- and pro-tumorigenic and this may be due to different subtypes 

as seen in macrophages. However, the occurrence and significance of TAN in CRC patients is still 

the subject of controversy. Governa et al. have studied the association of CD8+ T-lymphocytes and 

TANs (Governa et al., 2017). The study proposed that there is interplay between CD8+ T-

lymphocytes and TANs, which can improve CRC survival. Recently, Berry et al. has counted TANs 

levels in CRC patients with stage II disease to determine whether TAN levels could have a role in 

prognosis (Berry et al., 2017). The results showed that patients with high TANs lived three times 

longer than those with low TANs and that woman survived longer than men. However, TANs level 

has no association with stage III/IV patients. In addition, Wikberg et al. has elucidated the prognostic 

role of TANs infiltration in CRC by assessing the relationship to other immune cells including T-

lymphocytes and macrophages (Wikberg et al., 2017). The result found that TANs infiltration, 

whether correlated to other immune cells infiltration or not, had prognostic value itself. The author 

concluded that even low TANs infiltration at the tumour front could represent an independent 

prognostic factor for poor prognosis in CRC early stages. Therefore, CD66b+ TANs within the TME 

can have dual roles and more detailed investigation is needed to unravel this fully. 

 

1.9 Histological classification 

Histological classification is a conventional clinical prediction of tumour in patients normally 

performed by evaluating histopathological characteristics in tissue samples i.e., the size of tumour, 

histological grading, proteins and genetic markers expression, malignant transformation, 

proliferation, venous invasion, tumour perforation/serosal involvement, margin involvement, 

vascularization, and tumour budding (Loughrey, 2020; Loughrey, 2018). It is a cheap method 

currently used in most clinical laboratories, making it highly translatable to clinical practice. 
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Therefore, could histological classification be used to subtype patients by considering the tumour 

and the components of the TME. 

 

1.9.1 Immunoscore  
Most conventional classifications, such as TNM, focus only on tumour cells and do not consider the 

local immune response involved. However, the impact of local immune system has been recognized 

as providing a role in the regulation of tumour progression. Therefore, a classification based on 

immune cells infiltrate into tumour was proposed in 2012 called ‘Immunoscore’ which has been 

validated and widely used to predict patient’s prognosis (Galon et al., 2012).  

 

The Immunoscore is based on the measurement of t-cells populations infiltration in tumour by 

utilizing immunohistochemistry (IHC) techniques. Immunoscore (I) categorizes by lymphocyte 

populations, CD3+/CD45RO+, CD3+/CD8+ or CD45RO+/CD8+, at the centre of the tumour (CT) and 

at the invasive margin (IM) (Figure 1.2). From the two large cohorts evaluated using CD8 and 

CD45RO, the Immunoscore was scored from I0 (if low densities of both cells in both locations) - I4 

(if high densities of both cells at both locations). Of which, only 4.8% of patients were I4 but had 

high survival rate (86.2%), whereas 72% of patients with I0 or I1 and had only a 27.5% survival rate 

(Galon et al., 2012). Later, a standardized consensus found that Immunoscore was a strong prognostic 

factor for DFS, DSS, and OS including in early-stage CRC superior to conventional TNM 

classification (Galon et al., 2014). Therefore, if Immunoscore was introduced into a clinical setting 

it could classify patient prognosis and potentially predict patients likely to respond and benefit from 

immunotherapy (Galon & Lanzi, 2020).  

 

 

Figure 1.3 - Immunoscore classification (Galon et al, 2012). Immunoscore assessing the CD3 and 
CD8 infiltration at center of tumour and at invasive margin based on immunostaining and characterizded into 
I0 - I4 from infiltration level.     
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1.9.2 Glasgow Microenvironment Score  
Glasgow Microenvironment Score (GMS) is another histological subtyping method that has been 

developed for CRC classification. GMS is a tumour microenvironment-based prognostic score based 

on assessment of inflammatory cells infiltrate and tumour stroma in primary operable CRC patients 

(Park et al., 2015). For this method, inflammatory cells infiltrate, and tumour stroma infiltration were 

assessed based on the Klintrup-Makinen (KM) grade and tumour stroma percentage (TSP), 

respectively. The KM grade measures inflammatory cell infiltrate at the invasive front of tumour 

using H&E-stained sections. The sections are subjectively graded into four-point scale (0-3), and 

then classified into low-grade (scale 0-1, no or mild increase of inflammatory cells) or high-grade 

(2-3, inflammatory cells forming a prominent band or florid cup-like infiltrate). TSP measures the 

stromal proportion within an H&E section by assessing the percentage of stromal cells within the 

visible field excluding areas of necrosis and are then graded into low TSP (<=50%) and high TSP 

(>=50%) (Park et al., 2015). 

   

GMS stratified patients into three prognostic groups; strong KM (GMS=0), weak KM/low TSP 

(GMS=1), and weak KM/high TSP (GMS=2) (Table 1.7), which presented a significant difference 

in 5 years survival rate from 89%, 75%, and 51%, respectively (Park et al., 2015). GMS has 

subsequently been validated in two cohorts: TNM I-III CRC validation cohort and TNM II-III CRC 

adjuvant chemotherapy cohort (TransSCOT). Disease-free survival (DFS) and recurrence-free 

survival (RFS) were the primary endpoint for both cohorts and adjuvant chemotherapy interaction 

as exploratory endpoint for the TransSCOT cohort. The result showed that GMS is independently 

associated with DFS and RFS in both cohorts. In addition, GMS0 significantly associated with 

improved DFS in patients receiving FOLFOX when compared to CAPOX chemotherapy (Alexander 

et al., 2021).  

 

Table 1.7 - GMS classification (adapted from Park et al, 2015) 
 

 GMS 0 GMS 1 GMS 2 

Intra-tumor immune infiltrate 

(KM grade; 0-1/2-3) 
High Low Low 

Stromal invasion 

(TSP; ≤50%/>50%) 
Any Low High 
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1.9.3 Phenotypic subtypes 
Recently, Roseweir et al. has proposed histological phenotypic subtypes based on CRC phenotypic 

features related to the CMS subtypes.  They utilised the three features most differentially associated 

with each CMS group; immune infiltrate measured by the KM grade, proliferation rate measured 

using Ki67 immunohistochemistry and stromal invasion measured by TSP, to propose a simple 

phenotypic subtyping method with four groups: immune, canonical, latent, and stromal (Table 1.8). 

The effect of the phenotypic subtypes on DFS and recurrence risk (RR) was assessed as the primary 

outcome in three independent stage I-III CRC cohorts; the result found significant associations with 

both DFS and RR in all three cohorts. Of these, immune presented with a good prognosis, canonical 

and latent having intermediate prognosis, while stromal showed the worst prognosis (Roseweir et 

al., 2020). Similar to GMS, the exploratory outcome within the TranSCOT cohort was associations 

with chemotherapy. The results, showed that immune subtype patients responded better to FOLFOX 

compared to CAPOX chemotherapy, confirming the results of the GMS study. From the results, 

phenotypic subtypes or GMS could be used in routine clinical pathology for CRC patient’s prognosis 

and to predict response to chemotherapy. 

 

Table 1.8 - Phenotypic subtype classification (adapted from Roseweir et al, 2020) 
 

 Immune Canonical Latent Stromal 

Intra-tumor immune infiltrate 

(KM grade; 0-1/2-3) 
High Low Low Low 

Stromal invasion 

(TSP; ≤50%/>50%) 
Any Low Low High 

Proliferation rate 

(Ki67; ≤30%/>30%) 
Any High Low Any 

 

1.10 Targeting immune cells for CRC treatment  

Recently, immunotherapy based on immune system modulation has been proposed as an alternative 

CRC treatment to increase the effect of T-lymphocytes, to increase the immune response. Of this, 

immune system negative regulators, known as immune checkpoints, play a crucial role to limit the 

anti-tumour immune response and are an important immunotherapeutic target (Passardi et al., 2017).  
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1.10.1 Immunotherapy in cancer  
Cancer therapy is mainly focussed on surgery, chemotherapy, radiotherapy, and endocrine therapy 

(Urruticoechea et al., 2010). However, these strategies frequently reach a refractory period leading 

to treatment failure and the patient developing disease recurrence (Housman et al., 2014; Raguz & 

Yague, 2008). One solution may be to focus on enhancing the patient’s own immune system to attack 

the tumour; as once cancer is initiated, it can progress because of tumour cells escaping from the 

immune system. Tumour cells can escape the immune response in variety ways in order to survive 

and further progress without being attacked by immune cells (Ahmad et al., 2004). Additionally, 

tumour cells can prevent immune cell actions, with the support of multiple cell types to create an 

immunosuppressive microenvironment (R J Seager, 2017). Therefore, tumour escape from 

immunologic control is confirmed as one of the hallmarks of cancer (Hanahan & Weinberg, 2011).  

 

The immune responses recognise tumour cells and eradicate them by multiple processes involving 

cooperation of both the innate and adaptive arms (Blair & Cook, 2008; Shanker & Marincola, 2011). 

This process involves both positive and negative regulators. Positive regulators enhance anti-tumour 

activity, whereas negative regulators inhibit this killing process and enhance tumour growth instead. 

Therefore, immunotherapy that targets the immune response negative regulators to enhance the anti-

tumour responses could be a promising alternative treatment strategy and may be a powerful tool to 

treat cancer. 

 

Immunotherapy is now a main focus for many cancer types; it works by restoring the patient’s 

immune responses to eliminate tumour cells  (Farkona S, 2016; Stanley J. Oiseth, 2017a). It can be 

classified as active or passive by assessing the mechanism by which the therapy activates an immune 

response (Galluzzi et al., 2014). Active immunotherapy includes preventive and therapeutic 

vaccines, immunomodulatory monoclonal antibodies, i.e., immune checkpoint inhibitors, and 

immunostimulatory cytokines, that stimulate the host’s adaptive immune response in situ. Passive 

immunotherapy focuses on activating the host’s immune response in vitro and transfers it back to the 

host known as adoptive cell transfer or cell-based therapy, i.e., chimeric antigen receptor (CAR-T) 

cell therapy. Immune checkpoint inhibitors have been a major focus of immunotherapy research. 

 

1.10.2 Immune checkpoints 
Active immunotherapy targets the host’s immune response to induce activation and restore anti-

tumour function. Immune checkpoints are negative regulators of the immune system and play a 

crucial role in limiting anti-tumour immune responses. In the normal anti-cancer immune response, 

antigens on the surface of tumour cells bind to checkpoint proteins on the surface of T-lymphocytes 

leading to decreased T-lymphocytes function. This controls the anti-tumour response and avoids T-
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lymphocytes exhaustion; however, the tumour can hijack this mechanism to suppress anti-tumour 

functions and promotes tumour progression. Therefore, these immune checkpoints are important 

immunotherapeutic targets, with checkpoint blockade inhibiting this immune system modulation 

resulting in increased effector T-lymphocytes that can coordinate an anti-tumour response (Passardi 

et al., 2017). Immune checkpoint inhibitors are the most widely studied active immunotherapy in 

cancer research leading to some having been approved for clinical use (Dine et al., 2017). Two types 

of co-inhibitory proteins that are widely studied are programmed cell death protein 1 (PD-1) and 

cytotoxic T-lymphocyte antigen 4 (CTLA-4) (Figure 1.4). 

 

 

Figure 1.4 - Immune checkpoints and inhibitors ; Showing checkpoint proteins : PD-1, PD-L1, and 
CTLA-4 and their inhibitors ; PD-1 inhibitors : Nivolumab and Pembrolizumab, CTLA-4 inhibitors : 
Ipilimumab, Tremelimumab, PD-L1 inhibitors : Atezolizumab, Durvalumab (RA de Mello, 2016). 
 

1.10.2.1 PD-1 and PD-L1  

PD-1 (program cell death-1), known as CD279, is a type I transmembrane protein, a member of the 

CD28 family which is expressed on activated and exhausted T- and B-lymphocyte. PD-1 is expressed 

during the effector phase in peripheral tissue and is upregulated in many tumours. It binds to specific 

ligands, called PD-L1 (program cell death ligand-1) and PD-L2 (program cell death ligand-2), on 

tumour cells.  

 

PD-L1 is expressed on various types of solid tumours, but is not expressed in normal epithelial tissue, 

where PD-L2 is the dominant form. When PD-1 binds to PD-L1 there is decreased cytokine 

production and inhibition of T-lymphocytes proliferation and function within peripheral tissues and 

tumours. This plays a key role in negative immune cell regulation resulting in tumour immunity 

balancing and attenuation of the T-lymphocyte response within the tumour microenvironment 

(Robert et al., 2015; Singh et al., 2015). 
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1.10.2.2 CTLA-4  

Cytotoxic T-lymphocyte antigen-4 (CTLA-4), also known as CD152, is a CD28 homolog membrane 

glycoprotein on T-lymphocyte, found during the priming phase in lymph nodes. CTLA-4 interacts 

with specific protein (B7) on tumour and antigen presenting cells (APC) to produce co-inhibitory 

signals to decrease T-lymphocyte anti-tumour responses (Buchbinder & Desai, 2016). This was the 

first pathway for immune checkpoint regulation that was proposed in 1996 by Leach et al. (Leach D, 

1996).   

 

1.10.3 Immune checkpoints inhibitors 
Immune checkpoint interactions can be blocked with anti-PD-1/anti-PD-L1/anti-CTLA-4 antibodies 

leading to immune cell re-activation and a coordinated anti-tumour response of T-lymphocytes. 

Currently, three anti-PD-1 immune checkpoint inhibitors, pembrolizumab, nivolumab, and 

cemiplimab are approved for use within the clinical setting. Three anti-PD-L1 antibodies were also 

approved: atezolizumab, durvalumab, and avelumab. Ipilimumab is the only anti-CTLA-4 approved 

for clinical use. 

1.10.3.1 Anti-PD-1 therapy  

Pembrolizumab has been studied in multiple solid tumours and showed anti-tumour activity in 

clinical trials. As a result, in 2014, it was approved to treat advanced melanoma based on a phase III 

studied comparing pembrolizumab and the anti-CTLA-4, ipilimumab; pembrolizumab demonstrated 

prolong overall survival and less toxicity than ipilimumab (Schachter et al., 2017). In 2015, 

pembrolizumab was further approved to treat advanced non-small-cell lung cancer (NSCLC) based 

on the result that it showed anti-tumour activity with manageable side-effects (Garon E, 2015). In 

2016, pembrolizumab was approved for recurrent or metastatic head and neck squamous cell 

carcinoma patients (Seiwert et al., 2015). A study by Seiwert et al. showed that pembrolizumab has 

efficacy over standard therapy by cetuximab. However, the latest phase III trial by Merck and Co., 

showed that this drug did not result in improved overall survival as previously observed (Cohen et 

al., 2015). This finding did not affect the previous approval but does show variability in results for 

this cancer type and suggests that a predictive biomarker is needed to select responsive patients.  

 

Pembrolizumab has been approved for multiple types of cancer including classical Hodgkin 

Lymphoma (cHL), metastatic urothelial carcinoma (mUCC), gastric cancer or gastroesophageal 

junction (GEJ) adenocarcinoma, and CRC. In cHL, pembrolizumab was approved based on the study 

that treated both adults and pediatric patients with resistance to current therapy. The result showed a 

69% overall response rate with 11.1 months (Moskowitz et al., 2016). In advanced mUCC, it was 

approved based on the study the phase II trial that compared pembrolizumab to chemotherapy. 

Pembrolizumab showed a median overall survival of 10.3 months, whereas chemotherapy only 
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showed a median survival of 7.4 months (Bajorin et al., 2015). In the same year, pembrolizumab was 

also approved for non-resectable or MSI-High/mismatch-repair deficient (dMMR) solid tumours 

including CRC (D.T. Le et al., 2015) (Diaz et al., 2017; Le et al., 2016; Seiwert et al., 2015). This 

was the first approval based on the specific biomarkers regardless of the origin of tumour. 

 

In gastric cancer or GEJ adenocarcinoma, pembrolizumab was approved based on the phase II (Fuchs 

et al., 2018). From the 143 patients, the result showed 13.3% objective response rate and response 

duration of 2.8-19.4 months. MSI-H was observed in 7 patients showing a 57% objective response 

rate and response duration from 5.3-14.1 months suggesting MSI status could predict response to 

pembrolizumab as seen in other cancers. Recently, pembrolizumab was further approved for 

treatment of recurrent or metastatic cervical cancer for patients who express PD-L1 on tumour cells 

(Chung et al., 2018). In the same month, it was further approved to treat resistant primary mediating 

large B-cell lymphoma (PMBCL) in adults and pediatrics and showed a 45% response rate (Michot 

et al., 2016). However, 26% of patients did develop serious adverse effects suggesting further work 

is still needed in the cancer type. 

 

Nivolumab, a second PD-1 inhibitor, has also been investigated in several tumours and shown anti-

tumour activity. In 2014, it was approved for metastatic melanoma treatment (Long et al., 2015; 

Raedler, 2015), and in 2015, nivolumab was further approved for metastatic NSCLC after a study 

demonstrated improved overall survival compered to docetaxel therapy (Kazandjian et al., 2016). 

Nivolumab was also approved for use in advanced metastatic renal cell carcinoma (RCC) as it 

showed improved overall survival over everolimus (Afinitor) (Motzer et al., 2015). In 2016, 

nivolumab was approved for recurrent or metastatic head and neck squamous cell carcinoma 

(HNSCC) after a study showed longer overall survival when compared to chemotherapy (Ferris et 

al., 2016).  

 

Recently, in September 2018, cemiplimab (REGN2810) is approved to treat patients with metastatic 

cutaneous squamous cell carcinoma (CSCC) or locally advanced CSCC who are not candidates for 

curative surgery or curative radiation (Papadopoulos et al., 2018). There are also many other anti-

PD-1 antibodies, for example, pidilizumab (a humanized anti-PD-1), AMP-224, MEDI0680, 

PDR001, CT-001, in clinical trials for several tumour types (Alsaab et al., 2017). 

1.10.3.2 Anti-PD-L1 therapy 

PD-L1 inhibitors have also been approved for use in solid tumours. Atezolizumab was approved for 

advanced bladder cancer (Jean H. Hoffman-Censits 2016) and metastatic NSCLC in 2016 

(Fehrenbacher et al., 2016; Rittmeyer et al., 2017). In 2017, avelumab was approved for merkel cell 

cancer, an aggressive skin cancer, and urothelial carcinoma. In merkel cell cancer, avelumab was the 
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first targeted therapy approved for this disease, the phase II trial studied avelumab in stage IV 

chemotherapy refractory disease via an international multicenter trial across North America, Europe, 

Asia, and Australia (Kaufman et al., 2016). The result showed a 31% response rate and 10.4 months 

response duration. In urothelial carcinoma, a study in metastatic urothelial carcinoma patients 

showed 11.4 weeks median response rate. However, almost all patients developed adverse events 

(Patel et al., 2016). Overall, PD-1 and PD-L1 inhibitors have shown good response rates across a 

variety of cancers but further work is needed to enhance their efficacy and decrease toxicity. In 

addition, durvalumab is approved for advanced or metastatic urothelial carcinoma in 2017 and 

NSCLC in 2018 (Scott J. Antonia, 2017; Thomas Powles, 2017). 

 

1.10.3.3 Anti-CTLA-4 therapy 

The main CTLA-4 inhibitor studied to date is ipilimumab, a monoclonal antibody that was the first 

checkpoint inhibitor the FDA-approved for advanced melanoma in 2014. It was shown to increase 

T-lymphocyte proliferation and restore the anti-tumour immune response (Pardoll, 2012). Based on 

the phase III clinical study in unresectable stage III or IV melanoma that divided patients into 3 

treatment groups, ipilimumab plus glycoprotein 100 (gp100) peptide vaccine, ipilimumab alone, and 

gp100 alone. The result showed that ipilimumab significantly improved patients overall survival 

compared to the gp100 alone or the combination (Hodi et al., 2010). Ipilimumab has now also been 

approved for use in renal cell carcinoma in combination with nivolumab (Hammers et al., 2015). 

 

Tremilimumab, an IgG2 monoclonal antibody, is another anti-CTLA-4 that showed satisfactory 

result in phase I/II studies in advance melanoma (Comin-Anduix et al., 2016). However, when test 

in a phase III trial compared with chemotherapy, tremilimumb induced toxicity and showed no 

survival benefit over chemotherapy (Ribas et al., 2013). Therefore, tremilimumab was not approved, 

but further clinical trials are now ongoing to study this drug in combinations with current therapies 

and to assess potential biomarkers to predict treatment response.  

  

1.10.4 Immune checkpoint inhibitors in CRC 
Although checkpoint inhibitors have exhibited successful results in other tumours, in CRC, the 

results for immunotherapy are not as favorable. Initial studies showed some promising results in 

metastatic CRC patients with MSI-High tumours, but not in MSS patients, which only represents a 

small proportion of metastatic patients. Therefore, pembrolizumab and nivolumab are only FDA-

approved for this small group of patients with metastatic MSI-High CRC, suggesting that other 

strategies are required for these inhibitors to be translated to a wider range of CRC tumours. 
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To address this, immune checkpoint inhibitors are now being trialed in combination with 

chemotherapy, radiotherapy, and other agents that might block factors that suppress the immune 

response or agents that directly stimulate the immune response, to prime for immunotherapy use 

(Boland & Ma, 2017). However, there is still a problem with resistance to checkpoint inhibitor due 

to various factors including signaling pathways which inhibit the anti-tumour activity of immune 

cells (Jenkins et al., 2018). Now, monotherapy or combination therapy to enhance the drug efficacy 

and reduce this resistance rate in CRC is being considered in parallel to examining new therapeutic 

targets.  

 

Therefore, a combination of pembrolizumab with azacytidine chemotherapy was performed in MSS 

metastatic CRC. The results observed an enhancement of pembrolizumab anti-tumour activity when 

combined with this chemotherapy in MSS metastatic CRC. The trial is now in phase II with a cohort 

of 31 MSS metastatic CRC patients receiving 200 mg pembrolizumab every 3 weeks and 100 mg 

azacytidine daily. However, the results showed a low response rate (3%), and the median overall 

survival was only 6.2 months. Ten patients did, however, developed rapid stabilization of tumour 

progression but treatment-related adverse events occurred in 63% of patients (Lee et al., 2017). 

Therefore, pembrolizumab plus azacytidine showed a low anti-tumour activity for MSS metastatic 

CRC, however, disease stabilization in some patients may suggest that biomarkers are needed to 

predict those patients that will achieve disease stabilization and those that will develop toxicity.  

 

Similarly, a combination of nivolumab and ipilimumab was preliminary studied and showed 

potential efficacy in the same cohort. The result from 27 patients showed a 41% objective response 

rate with 78% disease control rate. Tumour related adverse events occurred in 37% of patients but 

there was no death due to this therapy (Lonardi et al., 2017). The phase II trial study for 13.4 months 

presented 55% overall response rate (ORR) and 80% for disease control rate (DCR) for >= 12 weeks 

with 76% showed progression-free survival (PFS) rate at 9 months and 71% at 12 months, overall 

survival (OS) rate was 87% and 85% respectively. The adverse events occurred in 32% of patients 

which were manageable (Overman et al., 2018). For long-term follow-up for 25.4 months for 119 

patients which 76% had two or more lines of prior therapy, presented 58% ORR and 81% DCR with 

complete response (CR) rate increased from 3% to 6% within the duration of 13.4 months to 25.4 

months. Progression-free survival at 24 months were 60% and OS were 74% with treatment related 

adverse events grade 3-4 occurred in 31% of patients were manageable (Overman et al., 2019). 

Recently, Nivolumab received US FDA approval for mCRC with MSI-H/dMMR treatment as single 

or in combination with ipilimumab following treatment with fluoropyrimidine, oxaliplatin, and 

irinotecan based on the previous trial, CheckMate 142. The results presented 29.0 months median 

follow-up period, the ORR was 69% and DCR was 84%, with 13% complete response rate. Median 
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progression-free survival at 24 months was 74% and median OS was 79%. The adverse events grade 

3-4 occurred in 22% of patients (Lenz et al., 2021). Therefore, based on the promising results, 

Nivolumab plus low-dose ipilimumab presented a robust and clinical benefit which rewarded as a 

first-line treatment for MSI-High/dMMR metastatic CRC (mCRC). This trial now warranted for 

randomized studies for next step. 

 

As the PD-L1 inhibitor, atezolizumab, has shown only a partial response in CRC Phase I studies, 

currently, studies of atezolizumab combined with the vascular endothelial growth factor (VEGF) 

inhibitor bevacizumab, or atezolizumab plus bevacizumab and FOLFOX in metastatic CRC are 

looking promising (Bendell et al., 2015). Both studies showed significant anti-tumour effects. Many 

other anti-PD-L1 compounds are also in ongoing studies for combination therapy i.e., durvalumab 

and avelumab. Recently, the WNT/b-catenin signaling pathway has been reported to block anti-

tumour activity of tumour-infiltrating lymphocytes and enhance resistance to anti-PD-1/PD-L1. In 

addition, immune evasion was further promoted by STAT3 signaling; BBI608 is an inhibitor that 

blocks STAT3 and down-regulate WNT/b-catenin signaling. Therefore, combination of 

pembrolizumab plus BBI608 is currently undergoing assessment for efficacy and safety in a 

multicenter phase I/II trial (Shinozaki et al., 2018). These results suggest that for CRC the way 

forward for immunotherapy is combination with other drugs to prime the immune landscape. 

Developing predictive biomarkers for treatment response and toxicity may further enhance the 

efficacy of these drugs. 

 

1.10.5 Enhancing the efficacy of current immunotherapy  
Although immunotherapy has shown satisfactory results in multiple types of cancer, many patients 

show no response, for example, in MSS CRC. Therefore, strategies that enhance the efficacy of 

immunotherapy are now the focus of many studies. Some approaches to enhance the efficacy of 

immunotherapy include performing immune checkpoints combination therapy to increase treatment 

yield, evaluating biomarkers for treatment responses to observe treatment effectiveness, assessing 

biomarkers for treatment toxicities to reduce treatment failure, and investigating new potential 

targets. 

 

Immunotherapy may have shown disappointing results in some tumours because of the genetic 

variability or differing strengths of the host immune response within each patient. Therefore, specific 

biomarkers or clinical features that could be used to predict response to treatment are likely to be key 

improving the effectiveness of immunotherapy in these patients. This is already suggested with 

MMR status or MSI being used as a predictive marker for pembrolizumab and nivolumab in a variety 

of cancers. Another potential biomarker candidate for immune checkpoint therapies includes 
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immunological biomarkers, such as intratumoral expressed PD-L1. However, a study from Aguiar 

et al. showed that PD-L1 negative tumours still respond to checkpoint inhibitor drugs (Aguiar et al., 

2016). Suggesting that intratumorally expressed PD-L1 might not be an effective marker for PD-

1/PD-L1 inhibitor. Recently, PD-L2 expression was also found to be an independent prognostic 

factor that may also predict the effectiveness of anti-PD-1 therapy (Hopkins et al., 2017; Yearley et 

al., 2017).  

 

Biomarkers related to clinical responses to anti-PD-1, anti-PD-L1, and anti-CTLA-4 checkpoint 

inhibitors therapies are currently being studied in both patient’s tumour tissue and blood samples 

(Hopkins et al., 2017; Manson et al., 2016). In tumour tissues, many biomarkers have been studied, 

for example, TILs, PD-L1 expression, and mutational load. TILs present in the intratumoral site have 

been shown to be associated with improved clinical benefit for anti-CTLA-4 therapy in advanced 

melanoma (Hamid et al., 2011). Also, PD-L1 expression has been shown to associate with improved 

clinical benefit from anti-PD-1/anti-PD-L1 therapy in multiple cancer types including advanced 

melanoma and breast cancer (Baptista et al., 2016; Kefford et al., 2014). Furthermore, mutational 

load has been performed in both anti-CTLA-4 and anti-PD-1 therapy. In melanoma, it was shown 

that high mutational load related to improved efficacy for anti-CTLA4 therapy (Van Allen et al., 

2015); whereas in NSCLC high mutational load was associated with better efficacy for anti-PD-1 

therapy (Rizvi et al., 2015). From these studies, it suggests that assessing treatment responses using 

various predictive biomarkers may benefit immunotherapy outcomes. 

 

In blood samples, several biomarkers have been studied including circulating leukocytes 

(lymphocytes, neutrophils, eosinophils, and monocytes), MDSCs level, and lactate dehydrogenase 

(LDH) level (Le et al.). For anti-CTLA-4, high lymphocytes level during treatment related to better 

overall survival on this therapy (Delyon et al., 2013). Furthermore, the neutrophil-to-lymphocyte 

ratio (NLR) declined during on-going treatment, and this showed association with a higher survival 

rate (Di Giacomo et al., 2013). In contrast, high serum LDH level prior to treatment with anti-CTLA-

4 therapy was associated with resistance to treatment (Kelderman et al., 2014). Although wide 

varieties of biomarkers have been investigated in multiple cancers, validation is now required before 

translation into clinical setting can be achieved. Therefore, choosing suitable in vitro models may be 

key to unlocking the best biomarker to enhance efficacy prior to use in clinical trials. 
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1.11 Current in vitro models to study the tumour and TME  

In vitro or cell culture models have been utilised in cancer research in multiple aspects such as drug 

discovery, stem cell study, cell-cell interactions, mainly utilising 2D models over the past century 

along with in vivo animal models (Jensen & Teng, 2020). However, 2D models lack the complexity 

of tumour characteristics and the TME, whereas co-culture 3D models mimic several aspects of 

tumour physiology and the TME (Han et al., 2021; Vis et al., 2020). Although animal models can 

mimic the tumour complexity of multicellular components, however, there are limitations including 

the cost of animal models and the difficulties of therapeutic translation to human because of species 

differences (Reidy et al., 2021). 3D multicellular tumour models, tumour spheroids and tumour 

organoids are becoming promising tools as they are a better representative of in vivo solid tumour 

than 2D monolayer models (Fitzgerald et al., 2020). Furthermore, 3D models are thought to be 

superior in terms of monitoring drug effects as they represent an in vivo-like human tissue better and 

should be employed alongside animal models (Goers et al., 2014).  

 

In CRC, there is rising implementation of tumour spheroids from human cell lines as study models 

for potential drug screening by many research groups. However, human cell lines model still lack of 

the complexity of original tumour heterogeneity. Therefore, patient-derived organoid tumour models 

could be the better model. Therefore, 3D spheroid models and, patient-derived tumour organoid 

models, are a promising approach in various types of studies including co-culture of cancer cells with 

other cells in TME such as immune cells, and fibroblast mimicking in vivo status for multiple tumour 

types including CRC (Bauleth-Ramos et al., 2020; Franchi-Mendes et al., 2021; Koh et al., 2019; 

Venter & Niesler, 2018).  

 

Recently, patient-derived xenografts (PDXs) have been reviewed as the most suitable model for CRC 

pre-clinical studies (Rizzo et al., 2021). PDXs based on the implantation of patients’ tumour tissue 

into mouse host with immunodeficiency is now widely reported ranging from primary tumour to 

metastatic tumours. This model has been confirmed by many studies as having high concordance 

with primary tumour in histopathological and molecular features which could maintain genetic 

stability over several passages (Rizzo et al., 2021). However, this model needs high level of 

laboratory facilities and well-trained personnel to perform experiments.  
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1.12 Aims of thesis 
The primary aim of thesis is to investigate the immune landscape of patients with stage I-III CRC by 

assessing the association of individual immune cell types and different immune landscapes on CRC 

prognosis.  

 

The secondary aims are: 

1. to investigate the immune landscape of each phenotypic subtype in stage I-III CRC patients to 

assess the association of individual immune cell types specific to each phenotypic subtype 

 

2. to assess transcriptomics and mutational profiles between differing immune cell landscapes in 

patients with CRC to assess potential novel biomarkers for each and to confirm the most significantly 

dysregulated genes at a protein level with IHC in our patient cohort tissue 

 

3. to assess the effect of immune checkpoint inhibitors (ICIs) targeting PD-1/PD-L1, in CRC cell 

lines co-cultured with different immune cell lines modelling the differing immune landscapes 

developed in the patient sample (adaptive, innate, and mixed populations) to assess if efficacy is 

different between each immune landscape. 
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Chapter 2 Materials & Methods 
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2.1 Tissue Studies 

2.1.1 Patients’ cohort 
2.1.1.1 Scottish Discovery Cohort 

Patients (n=1009) who underwent resection for potentially curable stage I-III CRC at the Glasgow 

Royal infirmary, Western Infirmary and Stobhill Hospitals (Glasgow, UK) between 1997 and 2006 

and were contained within two previously constructed tissue microarrays (TMAs) and full sections 

were utilised. TMAs consisted of four 0.6 mm cores per patient, and full clinical and pathological 

data was available for the cohort. Patients that had died within 30 days of surgery were excluded. 

Ethical approval was obtained from the West of Scotland Research Ethics Committee. 
 

2.1.1.2 Norwegian Validation Cohort 

Patients (n=299) who underwent resection for potentially curable stage II-III CRC at Southern 

Hospital Trust, Norway between 2000 and 2017 with full section tissue available were utilised. Full 

clinical and pathological data was available for the cohort.  Patients who died within 30 days of 

surgery were excluded. Local institutional ethics was obtained for this study. 
 

2.1.2 Clinical characteristics 
Tumours were staged using the fifth edition of the AJCC/UICC-TNM staging system as was 

appropriate at the time of resection for the Discovery cohort. For the validation cohort, the fifth TNM 

edition was used until January 2009, seventh edition until August 2018 and eight edition afterwards 

(James D.B., 2017). The presence of venous invasion was assessed using elastica staining. Following 

surgery, patients with stage III or high-risk stage II disease and without significant co-morbid disease 

precluding adjuvant treatment were considered for 5-fluorouracil-based chemotherapy. Other 

clinical factors were obtained from patient records and pathology reports. Tumour microenvironment 

and systemic inflammatory response measures were already available for both cohorts. Patients were 

followed up for at least 10 years and date and cause of death confirmed using electronic case records. 

Cancer-specific survival (CSS) was measured from date of surgery until date of death from CRC. 

Overall survival (OS) was measured from date of surgery until date of death from any cause.  

 

The presence of tumour necrosis and TSP were assessed as previously described (Richards et al., 

2012a). Briefly, utilising an H&E slide, tumour necrosis assessed tumour cells degradation 

presenting with an amorphous coagulum and mixing with nuclear derbies and was graded on a four-

point scale, which later classified into low and high for this study (Pollheimer et al., 2010; Richards 

et al., 2012b).  Utilising an H&E slide of the deepest point of invasion, TSP measured the stromal 

proportion by assessing the percentage of stromal cells within the visible field excluding areas of 

necrosis and was graded into low TSP (<=50%) and high TSP (>=50%) (Park et al., 2015). MMR 
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status was assessed as previously described (Park et al., 2015). Briefly, TMA slides were stained for 

MLH1, MSH6, MSH2, and PMS2 protein expression by automated immunohistochemical (IHC) 

staining. Analysis of the protein expression was performed using UK NEQAS scoring guidelines. 

The expression was reported as MMR proficient if strong nuclear staining was seen in tumour cells 

along with positive immune cell staining, or MMR deficient if the intensity of staining was 

weak/patchy or negative within tumour cells with positive immune cells staining. Ki67 proliferation 

index was previously established for both cohorts by staining for Ki67 protein expression via IHC, 

and then defining cell staining as low (<30%) or high (>30%) positivity. The general local 

inflammatory cell infiltrate was assessed using the KM grade as previously described (Richards et 

al., 2014). Briefly, utilising an H&E from the deepest point of invasion, immune cells at the invasive 

margin were assessed and a score of 0-1 (no increase or mild/patchy increase in inflammatory cells) 

was graded as weak and a score of 2-3 (prominent inflammatory reaction forming a band at the 

invasive margin, or florid cup-like infiltrate at the invasive edge with destruction of cancer cell 

islands) was graded as strong. Systemic inflammation was assessed using serum CRP and albumin 

that were recorded prospectively and measured within 30 days prior to surgery. The pre-operative 

systemic inflammatory response was defined using the mGPS. The mGPS was calculated as 

previously described (Park, Watt, et al., 2016). Briefly, patients with CRP ≤10mg/L were allocated 

a score of 0, patients with CRP >10mg/L a score of 1, and patients with CRP >10mg/L and albumin 

<35g/L were allocated a score of 2. 

 

2.1.3 Immune cells markers 
Immunohistochemistry of markers for lymphoid and myeloid cells lineages and subpopulations were 

performed on TMAs and full sections slides (Table 2.1).  
 

Table 2.1 - T-lymphocytes subpopulations and myeloid cells markers 
 

Immune cells Markers 
Pan-T-lymphocytes CD3 
Cytotoxic T-lymphocytes CD8 
Regulatory T-lymphocytes FoxP3 
Pan-macrophages CD68 
M1-like macrophages CD80 
M2-like macrophages CD163 
Granulocytes CD66b 
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2.1.4 Antibody specificity 
Specificity for new antibodies was performed to check for positive and negative result by using 

specific tissue types (Table 2.2).  Specificity for anti-CD3, anti-CD8, anti-FoxP3 was previously 

performed (Richards et al., 2014).  

 

Table 2.2 - Antibody specificity testing for positive and negative controls  
 

Antibody Positive control tissue Negative control tissue 

CD68 Liver Breast 
CD80 Liver Breast 
CD163 Liver Breast 
CD66b Colon Prostate 

 
 
2.1.5 Immunohistochemistry (IHC) 
Slides were dewaxed in histoclear, then rehydrated through graded alcohols. Antigen retrieval was 

performed in buffer for each marker; Tris-EDTA buffer or citrate buffer under pressure for 5 mins. 

Peroxidases were blocked in 3% H2O2 for 10 mins then non-specific binding blocked with 1.5% 

horse serum (Vector Laboratories), 5% goat serum, or 10% casein. Primary antibody was added and 

incubated at RT for 60 mins or overnight at 4°C utilising anti-CD3 (1:500, Thermo Fisher), anti-CD8 

(1:100, DAKO), anti-FoxP3 (1:400, Abcam), anti-CD68 (1:100, Abcam), anti-CD80 (1:750, 

Abcam), anti-CD163 (1:1500, Abcam), and anti-CD66b (1:400, Novus Biosciences). Envision 

(DAKO) or ImPRESS (Vector Laboratories) secondary antibody was added for 30 mins then slides 

washed with TBS. Slides were visualised using ImPACT DAB (Vector Laboratories) then 

counterstained with haematoxylin and dehydrated through graded alcohols and histoclear. Coverslips 

were mounted with distrene, plasticizer, xylene (DPX) (Table 2.3). 
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Table 2.3 - Antibodies, IHC conditions and product details 
 

Primary 
antibody 

Code/sources Retrieval Blocking Primary 
antibody 
condition 

Secondary 
antibody 

CD3 RM-9107-S/ Thermo 
Fisher 

EDTA pH8, 
microwave, 8 
mins 

5% goat serum 1/500 @ 4°C, 
O.N. 

Anti-mouse/rabbit, 
@RT, 30 mins 

CD8 Clone C8/144B, 
M7103/DAKO 

EDTA pH8, 
microwave, 8 
mins 

5% goat serum 1/100@4°C, 
O.N. 

Anti-mouse/rabbit, 
@RT, 30 mins 

FoxP3 ab215206/ 
Abcam 

EDTA pH8, 
microwave, 8 
mins 

1.5% horse 
serum 

1/200@RT, 30 
mins 

Anti-mouse/rabbit, 
@RT, 30 mins 

CD68 Ab125212/Abcam EDTA pH8, 
microwave, 8 
mins 

10% casein 1/200@RT, 30 
mins 

Anti-mouse/rabbit, 
@RT, 30 mins 

CD80 ab254579/Abcam EDTA pH9, 
microwave, 8 
mins 

10% casein 1/1500@4°C, 
O.N. 

Anti-mouse/rabbit, 
@RT, 30 mins 

CD163 ab182422/Abcam EDTA pH9, 
microwave, 8 
mins 

10% casein 1/750@4°C, 
O.N. 

Anti-mouse/rabbit, 
@RT, 30 mins 

CD66b G10F5, NB100-
77808/Novus 
Biosciences 

EDTA pH8, 
microwave, 8 
mins 

10% casein 1/400@RT, 30 
mins 

Anti-mouse/rabbit, 
@RT, 30 mins 

 
 
2.1.6 IHC scoring method 
Stained slides were initially scanned onto Slidepath Digital Image Hub, version 4.0.1 (Leica 

Biosystems, UK) using a Hamamatsu NanoZoomer at x20 magnification (Welwyn Garden City, 

UK), they were then transferred over to NDP viewer image analysis software (Hamamatsu 

Photonics). For TMA cores, positive cells were manually counted within the tumour cell nests and 

tumour stromal area within the centre of tumour separately (Figure 2.1). The final score was 

calculated as the average of the four cores for each patient. For full sections, three different areas 

were randomly selected and applied the same size as TMA cores. Positive cells were counted within 

tumour nest and tumour stroma separately as performed on TMA slides. The final score was 

calculated as the average of three areas for each patient. Assessment of all markers was performed 

by myself blinded to clinical data at x20 magnification (total magnification x400). To ensure 

reproducibility, 10% of cores were co-scored by a co-investigator (Antonia Roseweir). 
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Figure 2.1 – Example of low and high infiltration in tumour cell nests and tumour stroma. 
Images showing A. low infiltration, B. high infiltration. Picture B shows representative counting areas, for 
tumour cells (area within red line) and for tumour stroma (area within blue line). The pictures were taken at 
20X magnification.  
 

 

2.1.7 Statistics analysis  
The average scores from the four cores were divided into weak and strong infiltrate using maximal 

rank stats analysis on Bioconductor R Studio version 4.0.5 (2021-03-31) based on CSS from Scottish 

cohort to define the optimal cut-off values displayed as number of positive cells per 0.6 mm2. These 

cut-off values in tumour cells nest were 16.25 for CD3, 7.5 for CD8, 2 for FoxP3, 0.75 for CD68, 

1.67 for CD80, 4.33 for CD163, and 1.67 for CD66b. The cut-off values in tumour stroma were 

166.75 for CD3, 13.67 for CD8, 33.75 for FoxP3, 53 for CD68, 8.67 for CD80, 10.33 for CD163, 

and 0.5 for CD66b. All statistical analysis was performed using SPSS version 27. The relationship 

between immune markers and CSS was examined using Kaplan-Meier log-rank analysis. Hazard 

ratios (HR) and 95% confidence intervals (CI) were evaluated using univariate cox regression 

survival analysis. The relationship between clinicopathological characteristics and immune markers 

was examined using Chi-square analysis. Multivariate cox regression survival analysis utilising a 

backward conditional model was used to evaluate prognostic independence compared to common 

clinical factors. Statistical significance was set at p<0.05 and conformed to the REMARK criteria. 

 

2.1.8 Colocalization of myeloid lineage markers 
Myeloid cells markers for M1-like macrophages and M2-like macrophages were performed to see 

the colocalization between pan-macrophages marker CD68 and CD80 for M1-like macrophages, and 

CD68 and CD163 for M2-like macrophages by dual immunofluorescent assay. Briefly, slides were 

baked at 60°C for 10 mins and cooled down for 10 mins. Rehydration of slides was performed using 

same protocol as IHC, before blocking with 2% FCS in PBS for 20 mins. Dual primary antibodies 

were diluted in 2% FCS, anti-CD68 (1:200) + anti-CD80 (1:1500), anti-CD68 (1:200) + anti-CD163 

Low High 

CD3 

Tumour cells 

Stroma 

A B 
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(1:750), then added to slides and incubated at 4°C, overnight. The following steps were performed 

in the dark; secondary antibodies were prepared using Alexa Fluor 488 goat anti-rabbit IgG in 2% 

FCS at 1:500 for (green colour, Life TechnologiesTM), or Alexa Fluor 568 goat anti-rabbit IgG (red, 

Life TechnologiesTM). Slides were incubated with secondary antibody for 1 hour, RT in the dark. 

Slides were mounted with Vectashield mountant (included DAPI), then coverslip added and sealed 

with nail varnish. Image capture was performed on a confocal microscope (LSM780) and image 

processing was performed using Zeiss ZEN blue software.       

 

2.2 In vitro studies 

2.2.1 Cell lines  
In vitro studies to assess effects of immune checkpoint inhibitors on tumour cell lines co-culture with 

immune cell lines utilised HT29 human colon tumour cell line, Jurkat E6-1 (ATCC®TIB-152TM) 

human lymphocytes cell line, and RAW264.7 (ATCC®TIB71TM) murine macrophages cell line. All 

cell lines were tested for Mycoplasma contamination and stocked before starting experiments.   

 

2.2.2 Raising cells from liquid nitrogen 
Cell lines were removed from liquid nitrogen and defrosted then resuspended in 10 mL medium. 

Cells were then centrifuged at 1200 rpm for 3 mins, then medium removed, and pellet re-suspended 

in 10 mL fresh medium in a T75 flask. Flasks were incubated at 37°C, 5% CO2 for 24 hours, then 

cells checked under a microscope for monolayer forming to assess cell line attachment and clumping 

for suspension cell lines. Medium was changed every 2 days until cells reached 80% confluency.   

 

2.2.3 Passaging cell lines 
Cells were split every 3-4 days when 80% confluent. Briefly, cells were washed with DPBS (Gibco), 

then 0.005% trypsin in DPBS added (1.5 ml for T25 flask and 3 ml for T75 flask). Flasks were 

transferred to incubator, 37°C with 5% CO2, for up to 5 mins for HT29, and up to 20 mins for 

RAW264.7 macrophages. Once detached, media was added to stop reaction (3.5 ml for T25 and 5 

ml for T75 flask). Cells were then centrifuged at 1200 rpm for 3 mins to remove trypsin and 

resuspend in appropriate media in a new flask at a passage ratio of 1:5. For Jurkat E6-1 lymphocytes, 

cells were centrifuged at 1200 g, for 3 mins, wash with DPBS, and resuspend in completed 

RPMI1640, at a passage ratio of 1:5.   

 

2.2.4 Cell lines cryopreservation  
Cell lines were stocked after testing for mycoplasma, and before starting experiments, by following 

normal culture process until cell pellets obtained. Pellets were then re-suspended in 70% media: 20% 
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FBS: 10% DMSO, counted cells, and 1 mL aliquoted into cryopreservation tube. Cells were stored 

at -80°C, and later transfer to liquid nitrogen for long term storage. 

 

2.2.5 HT29 spheroid formation 
HT29 colon cell line spheroid formation was performed in ultralow-attachment (ULA) 96-well U 

bottom plates (Nunclon Sphera, Thermofisher) at seeding density gradient of 103 - 104 cells per well 

(ScepterTM Sensors- 60 µm cell counter) to identify the optimal spheroid size needed for further 

experiments.  

 

2.2.6 Immunoblotting for PD-L1 expression on HT29 cells 

2.2.6.1 Protein extraction  

HT29 colon cell line was seeded in a T75 flask until 80% confluent. Protein extraction was performed 

by washing with ice-cold PBS, then adding lysis buffer (4X Laemlli sample buffer - Tris-HCL 252 

mM, Na2P2O7 8 mM, EDTA 20 mM, glycerol 40%(v/v), SDS 8%, bromophenol blue 0.028%) to a 

final 1X concentration supplemented by 0.08 g DTT. Cells were scraped down and aspirated 4-5 

times with needle to sheer cells. Aspirated sample was transferred to a fresh Eppendorf tube and 

stored at -20C. 

 

2.2.6.2 SDS-PAGE  

Samples were denatured by heating at 95°C for 5 mins. SDS-PAGE was performed using 4-20% 

Mini-Protein® TGXTM Precast Gels (Bio-Rad) and 1x Tris/Glycine/SDS Buffer (Bio-Rad). Precision 

Plus ProteinTM Dual Xtra standard (Bio-Rad) was used as standard protein ladder. Gels were run at 

120V for 90 mins (PowerPacTM Basic, Bio-RAD). 

 

2.2.6.3 Immunoblotting 

Proteins were transferred to nitrocellulose membrane (Immobilon®-P transfer membrane) by 1x 

transfer buffer (Bio-Rad), running at 300mA for 90 mins. For protein visualization, membrane with 

transferred protein were blocked with 4% BSA in TBST for 60 mins. Incubated with primary 

antibody (anti-PD-L1 1:1000 in 0.4% BSA in TBST) in cold room overnight. Membranes were then 

washed with TBST 3x10 mins, and incubated with secondary antibody (anti-rabbit IgG, HRP-linked 

Antibody, Cell Signalling) plus anti-ladder for 60 mins at RT with shaking. Membranes were then 

washed with TBST 3x10 mins and incubated with ECL blotting substrate for 5 mins. Protein 

visualization and image processing were performed by using SynGene GeneSys software.   
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2.2.7 Cell Pellets 
To assess the expression of PD-1 on Jurkat E6-1 cells, cell pellets were prepared from this cell line 

with PD-1 DNA plasmid transfection used as a positive control. To assess PD-L1 and macrophage 

markers on RAW264.7 cells, cell pellets were prepared. 

 

2.2.7.1 PD-1 DNA plasmid transfection 

DNA plasmid transfection was set up by using Lipofectamine 2000 (Invitrogen). According to 

company protocol, in a 6-well plate. Briefly, at day 1, Jurkat cells were seeded at 1x106 cells/well in 

2 mL completed RPMI1640 media, and incubated at 37°C, 5% CO2 for 6-8 hours. Then cells were 

centrifuged at 200g for 5 mins, and resuspend in 2 mL Opti-MEM media, then plated in a 6-well 

plate and incubate at 37°C, 5% CO2 overnight. At day 2, DNA plasmid (2 µg/plate) and 

Lipofectamine 2000 were prepared in Opti-MEM, and incubated for 20-30 mins at RT. These were 

then combined at a 1:1 ratio, mixed gently, and incubated for 20-30 mins at RT.  Then 500 µL was 

added to each well dropwise at various area, and mixed gently by rocking, then incubated for 6-8 

hours at 37°C, 5% CO2. Next media was changed to complete RPMI1640, and plate incubated for 

48 hours at 37°C, 5% CO2. Cells were then harvested for cell pellet formation for further IHC 

staining.  

 

2.2.7.2 Cell pellet preparation 

Cell pellets of Jurkat E6-1 or RAW 264.7 cell lines were prepared from non-transfected or transfected 

cells. Cells were centrifuged at 1200 rpm for 5 mins to form pellets, then supernatant discarded. 

Pellets were resuspended in 1 mL DPBS and transferred to 1.5 mL Eppendorf tube, before 

centrifugation at 2500 rpm for 3 mins. Supernatant was discarded and pellets were resuspended in 1 

mL 4% formaldehyde in PBS for 15 mins. Suspension was centrifuged at 2500 rpm for 3 mins to 

remove excess, and supernatant was discarded. 1 mL PBS was added to wash away formalin, then 

was drained by placing Eppendorf tube upside down on tissue paper. 1% agarose in PBS was then 

added to cell pellets, ensuring agarose gets underneath pellet before setting at 4°C overnight. To 

make blocks for cell pellets, a needle was used to gently remove agarose coated pellet and place 

pellet in specimen cassette with lid. The pellet was dehydrated through a series of alcohols (50%, 

75%, 99%, 99%) for 15 mins each, followed by histoclear, 2x15 mins. Cassette was placed into wax 

and left for 60 mins. The pellet was removed and placed in centre of mould, filled with little wax, 

and placed on cold block for a few seconds. A plastic cassette was then placed on top of the mould 

and filled right up to the top with wax and placed on the cool block until set. The block was then 

removed from mould. Blocks were then cut using a microtome at 0.4um thickness and sections 

placed on glass slides and baked at 50°C for 1 hour before being used for IHC staining. 
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2.2.7.3 IHC for PD-1 on Jurkat E6-1 cell pellets 

Cell pellets slides from non-transfected and transfected positive control Jurkat E6-1 were processed 

for PD-1 staining. Briefly, slides were dewaxed in histoclear, then rehydrated through graded 

alcohols. Antigen retrieval was performed in citrate buffer pH 6.0 under pressure for 5 mins. 

Peroxidases were blocked in 3% H2O2 for 20 mins then non-specific binding blocked with 1.5% 

horse serum. Primary antibody was added and incubate overnight at 4°C utilising anti-CD163 (1:100, 

Thermo Fisher). ImPRESS (Vector Laboratories) secondary antibody was added for 30 mins then 

slides washed with TBS. Slides were visualised using ImPACT DAB (Vector Laboratories) then 

counterstained with haematoxylin and dehydrated through graded alcohols and histoclear. Coverslips 

were mounted with distrene, plasticizer, xylene (DPX) (Table 2.4).  

 

Table 2.4 - IHC conditions of PD-1 antibody and product details 
 

Primary 
antibody 

Code/sources Retrieval Blocking Primary 
antibody 
condition 

Secondary 
antibody 

PD-1 HPA035981, 
Thermo Fisher 

Citrate pH6, 
microwave, 8 
mins 

1.5% horse 
serum 

1:100@4°C, 
O.N. 

Anti-
mouse/rabbit, 
@RT, 30 mins 

 

2.2.7.4 IHC for PD-L1 and macrophage markers on RAW264.7 cell pellets 

RAW264.7 murine macrophages cell pellets were tested for PD-L1 expression and M2-like 

macrophages expression by utilizing CD163 marker. PD-L1 expression was performed by Mr. Colin 

Nixon, histology unit, Beatson Cancer Research Institute. For CD163 expression, slides were 

dewaxed in histoclear, then rehydrated through graded alcohols. Antigen retrieval was performed in 

Tris-EDTA buffer pH 9.0 under pressure for 5 mins. Peroxidases were blocked in 3% H2O2 for 20 

mins then non-specific binding blocked with 10% casein. Primary antibody was added and incubate 

overnight at 4°C utilising anti-CD163 (1:750, Abcam). ImPRESS (Vector Laboratories) secondary 

antibody was added for 30 mins then slides washed with TBS. Slides were visualised using ImPACT 

DAB (Vector Laboratories) then counterstained with haematoxylin and dehydrated through graded 

alcohols and histoclear. Coverslips were mounted with distrene, plasticizer, xylene (DPX) (Table 

2.5). 
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Table 2.5 - IHC condition of CD163 antibody and product details 
 

Primary 
antibody 

Code/sources Retrieval Blocking Primary 
antibody 
condition 

Secondary 
antibody 

CD163 ab182422/Abcam EDTA pH9, 
microwave, 8 
mins 

10% casein 1/750@4°C, 
O.N. 

Anti-
mouse/rabbit, 
@RT, 30 mins 

 

 

2.2.8 Anti-PD1/anti-PD-L1 drugs concentration optimization 
The effect of anti-PD1 (pembrolizumab (SellectChem, A2005), nivolumab (SellectChem, A2002)) 

and anti-PD-L1 (atezolizumab (SellectChem, A2004)) immunotherapies were tested by varying 

inhibitor concentrations from 1-10 µg/mL, and testing on HT29 spheroids, Jurkat E6.1 and 

RAW264.7 cell lines individually using cell viability to identify the optimal concentration which 

does not affect the cell viability of each cell line when cultured alone. 

 

2.2.9 Cell viability  
The current studies were utilized three cell viability assays for different conditions. 

2.2.9.1 WST-1 assay 

Single cell line HT29 and Jurkat E6-1 viability testing after treatment with inhibitors was performed 

by WST-1 assay (Abcam). The assay is based on tetrazolium salt cleavage to formazan by cellular 

mitochondrial dehydrogenase. Viable cells show higher activity by formation of formazan dye. 

Briefly, cells were seeded at 2500 cells/well with 200 µL media in a 96-well plate, and incubated in 

at 37°C, 5% CO2 until 80% confluent, then treated with 1-10ug pembrolizumab, or nivolumab or 

atezolizumab for 24-48 hours. Then 10 µL of WST-1 reagent was added to each well and incubated 

for 2 hours. The plate was analysed using luminescence after shaking for 30 seconds and reading at 

450 nm (TECAN Infinite M200 PRO). 

 

2.2.9.2 CellTiter-Glo® Luminescent cell viability assay 

Assessment of single cell line RAW264.7 murine macrophages treated with inhibitors was performed 

by CellTiter-Glo® Luminescent cell viability assay (Promega, Cat. #G7570). The assay determining 

viable cell numbers based on quantification of ATP presenting in culture, which represent 

metabolically active cells. Briefly, RAW264.7 were seeded at 2500 cells/well in 200 µL DMEM 

media in 96 well plate and incubated in 37°C with 5% CO2 until 80% confluent, then treated with 1-

10ug pembrolizumab, or nivolumab or atezolizumab for 24-48 hours. Reagent buffers were thawed 

and equilibrated at RT before use, then transferred to substrate bottle and mix thoroughly. Cells were 
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also left to equilibrate at RT for 30 minutes. Next 100 µL medium was removed and replacing with 

100 µL buffer per well and mixed vigorously by pipetting 10 times to lyse cells. Lysate was then 

transferred to white opaque plate (Flat bottom, white, CellStar®) and incubated at RT for 10 minutes 

to stabilize luminescent signal. Luminescent signal was then read after activated for 5 minutes before 

detecting luminescence signal (GLOMAX, Multi, Promega). 

 

2.2.9.3 CellTiter-Glo®3D Cell Viability Assay 

HT29 spheroids viability were tested with CellTiter-Glo®3D Cell Viability Assay (Promega, Cat. 

#G9681). The assay determines viable cell numbers in 3D cell culture based on ATP present, which 

represent metabolically active cells. Briefly, HT29 cells were seeded at 2500 cells/well in a 96-well 

plate and treated with 1-10ug pembrolizumab, or nivolumab or atezolizumab for 24-48 hours. 

Reagents were thawed overnight and equilibrated at RT for 20 mins prior to use. Cells were also left 

to equilibrate at RT for 30 minutes. Next 100 µL medium was removed and replacing with 100 µL 

buffer per well and mixed vigorously by pipetting 10 times to lyse cells. Lysates were then transferred 

to white opaque plate (Flat bottom, white, CellStar®)) and incubated at RT for 25 minutes to stabilize 

luminescent signal. Luminescent signal was read after PMT activated for 5 minutes before detecting 

luminescence signal (GLOMAX, Multi, Promega). 

 

2.2.10 Co-cultures 
2.2.10.1 Co-culturing of HT29 and immune cells 

Co-culturing of HT29 spheroids and immune cells, either Jurkat E6-1 lymphocytes and/or 

RAW264.7 macrophages.  The optimal HT29 seeding density for optimal spheroids size was 

identified from section 2.2.5, which was 2500 cells/well were plated on day 0 in ultra-low attachment 

plates and incubated at 37C for 24 hours to allow spheroid formation. After 24 hours, 2500 immune 

cells/well in suspension were then added to the HT-29 spheroids and incubated at 37C for 24 hours 

to allow infiltration. Inhibitors were then added as discussed below.   

 

2.2.10.2 Media preparations for co-culture studies   

For co-culturing of HT29 tumour cells spheroids with immune cells; Jurkat E6-1 lymphocytes, 

RAW264.7 macrophages or both; different media combinations were tested to assess optimal growth. 

The following media was tested: complete McCoy’s 5A (1X) + GlutaMaxTM-I (Modified Medium; 

FBS 10%); complete RPMI1640 (1X) (HEPES 10 mM, Sodium pyruvate 1 mM, FBS 10%), and 

complete DMEM (1X) + GlutaMAXTM-I (FBS 10%, Penicillin/Streptomycin 1%). Complete 

McCoy’s 5A (1X) + GlutaMaxTM-I was chosen as the optimal media for all combinations. 
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2.2.10.3 Immune cells infiltration into HT29 spheroids  

Before testing for effects of immune checkpoint inhibitors on HT29 spheroids co-culture with 

immune cells, the infiltration of immune cells into tumour cell spheroids were checked by labelling 

immune cells, Jurkat E6-1 lymphocytes or RAW264.7 macrophages with Cell TrackerTM Green 

CMFDA Dye (Thermo Fisher, Cat.#C2925) and infiltration observed under confocal microscope. 

Briefly, according to the protocol from manufacturer, reconstitute reagent was reconstituted with 

DMSO, and diluted to working concentration with serum-free media.  Jurkat E6-1 or RAW264.7 

cells from a T75 flask were pelleted then resuspend in serum-free media, and working reagent added 

to reach final concentration of 1-10 µM per well, then incubate for 45 minutes at 37C, 5% CO2. Cells 

were centrifuge to remove cell tracker solution, then resuspend in complete medium (McCoy’s 5A 

+ 10%FBS). Labelled immune cells were added to HT29 spheroids plates and incubate for 24 hours. 

Infiltration was assessed by observing green dye in 96 well plate by confocal microscopy (LSM780). 

 

2.2.10.4 Immune checkpoint inhibitors treatments for co-cultures 

Checkpoint inhibitors were assessed using co-cultures of HT29 spheroids and Jurkat E6-1, HT29 

spheroids and RAW264.7, or triple-culturing of HT29 spheroids with Jurkat E6-1 and RAW264.7 

cells. Briefly, HT29 cells were seeded at 2500 cells/well in ULA 96-well plates. After 24 hours, 2500 

cells/well of Jurkat E6-1, RAW264.7, or a mixed population of Jurkat E6-1 (1250 cells/well) and 

RAW264.7 macrophages (1250 cells/well) were seeded with the HT29 spheroid. Checkpoint 

inhibitors, Pembrolizumab, Nivolumab or Atezolizumab were added 24 hours later at a concentration 

of 1ug.  Cell viability was then assessed at 48 and 96 hours using the CellTiter Glo® 3D Cell Viability 

assay as described above. 

 

2.2.11 Statistical Analysis 
All cell work were performed in triplicate. Multiple comparison of raw data from the three 

experiments were tested for significant difference by ANOVA. Raw data was then converted to fold-

change using 48hrs HT29 spheroid in media alone as the standard factor. Statistical significance 

changes of pairwise data from all conditions of treated and un-treated results were performed by 

Student’s paired t-test. All analysis was performed in Microsoft Excel (version 16.59, Microsoft 

Corporation) and statistical significance was set at p-value < 0.05. The error bars were calculated 

from standard deviations.  
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2.3 Genomics  
Whole genome mutational profiling was performed on a subset of patients from the Scottish cohort 

(n=252). DNA was previously extracted from FFPE sections by NHS molecular diagnostics, Dundee 

and stored at -80oC. DNA quality and concentration were determined using the Qubit assay 

(ThermoFisher, Massachusetts, USA). Samples with a DNA concentration of >10ng/µL were 

included in the study. Sequencing was outsourced and performed by Dr Susie Cooke and the 

Glasgow Precision Oncology Laboratory (GPOL) using a custom in-house designed panel of 151 

cancer-associated genes. Statistical analysis was performed relative to tumour immune landscaping 

groups using Bioconductor: Maftools packages version 2.6.05 within R studio version 4.0.5. The 

data were first summarized to identify variants per sample. Fisher’s exact tests were performed to 

identified any significantly different mutations across groups and results were visualised in forest 

plots and co-bar plots. 

 

2.4 Transcriptomics  
Whole transcriptome RNA-Seq was performed on a subset of patients from the Scottish cohort 

(n=100). To utilise available FFPE full section tissue, novel RNA-Seq technique, TempO-Seq was 

employed (Biospyder Technologies, Carlsbad, CA, USA). This was performed by BioClavis 

Glasgow using the following method. TempO-Seq gene expression profiling was performed 

according to manufacturer’s directions. Briefly, whole sections (~100 mm2 x 0.5 µm) were excised 

from FFPE slides of CRC resection samples and placed into wells of a PCR plate. TempO-Seq Lysis 

Buffer was added, and the sample was overlaid with mineral oil. After deparaffinization by heating, 

the tissue was lysed using TempO-Seq Protease mix. The lysate was then combined with a mixture 

of detector oligonucleotides (DOs), designed as pairs that anneal adjacent to one another on the target 

RNAs. After a hybridization step, unbound DOs were degraded in an enzymatic step, and the bound 

DOs were ligated into a complete probe sequence. The ligated probes were amplified in a PCR step, 

purified, and combined in an indexed multiplex library which was sequencing using an Illumina 

instrument (Illumina, CA, United States) to count the relative amount of each target DO pair 

representing each gene’s expression level. 

 

Data analysis was done using R studio version 4.0.5. RNA-sequencing raw data normalization and 

differential gene expression (DGE) were performed by using DESeq2 packages version 1.30.1 for 

the full 22,000 gene transcriptome. Analysis was performed for each tumour immune landscape 

groups (Both Low, Lymphoid, Myeloid, Both Strong) compared to all other patients. Volcano plots 

and MA plots were generated to visualise DEGs by displaying mean expression levels, log 2-fold 

changes, and adjusted p-value. The significance was set at adjusted p-value < 0.05 with log 2-fold 
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changes > 1 for significant up-regulated genes; while adjusted p-value < 0.05 with log 2-fold changes 

< 1 was set for significant down-regulated genes. PCA plot was performed to explore the sample-to-

sample distance relationship. The hierarchical clustering of gene expressions was presented by 

heatmap clustering. Gene network analysis was plotted by Cluster Profiler package in R-studio. 

Protein-protein interactions (PPIs) was generated by STRING online tool. 

 

2.5 IHC for P53 protein expression 
From mutational analysis, the most significant genes were selected for IHC analysis to assess their 

expression at a protein level. P53 expression was selected for IHC analysis as it is a common tumour 

suppressor in CRC and important for cancer development.  This protein was previously stained 

within the laboratory.  

 

2.5.1 p53 scoring method 
Scoring was performed by a single observer blinded to the clinical data (Charis Fraser). To ensure 

consistency, 10% of each was co-scored by a second observer (Antonia Roseweir). Tumour cell 

expression was assessed using the weighted Histoscore method. p53 expression was scored for 

nuclear staining. The weighted Histoscore was calculated as follows: (% of unstained tumour cells x 

0) + (% of weakly stained tumour cells x 1) + (% of moderately stained tumour cells x 2) + (% of 

strongly stained tumour cells x 3) and given a range from 0 to 300. All cores were scored separately, 

and an average score was taken for each patient. 

 

2.5.2 Statistics Analysis  
Scores were divided into low and high expression using maximal rank stats analysis on R based on 

CSS from Scottish cohort to define the optimal cut-off values. All statistical analysis was performed 

using SPSS version 27. The relationship between P53 expressions and CSS was examined using 

Kaplan-Meier log-rank analysis. Hazard ratios (HR) and 95% confidence intervals (CI) were 

evaluated using univariate cox regression survival analysis. The relationship between 

clinicopathological characteristics and p53 expressions were examined using Chi-square analysis. 

Multivariate cox regression survival analysis utilising a backward conditional model was used to 

evaluate prognostic independence compared to common clinical factors. Statistical significance was 

set at p<0.05 and conformed to the REMARK criteria. 
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clinical outcomes in CRC patients 
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3.1 Background 

CRC is associated with a systemic inflammatory response and a local immune cell infiltration. It is 

thought that patient’s survival depends on an effective immune response within the tumour and its 

microenvironment to fight tumour progression. The tumour microenvironment is infiltrated by a mix 

of lymphoid and myeloid lineage cells which function as anti-tumorigenic or pro-tumorigenic 

depending on the cell types presented. Strong T-lymphocytes (CD3+) infiltration alone has been 

proposed to improve prognosis in multiple cancers (Braha et al., 2016). Cytotoxic T-lymphocytes 

(CD8+) are recognised as a good prognostic factor when present within the primary tumour in several 

cancer types including CRC  (Gao et al., 2007; Ohtani, 2007). Regulatory T-lymphocytes (FoxP3+) 

are well recognised as an inhibitor of cytotoxic T-lymphocytes function that maintains stability of 

the local immune response which showed poor prognosis in other solid tumours such as breast 

cancer, however, in CRC showed positive effects on survival (Hu et al., 2017; Ling et al., 2014; Vlad 

et al., 2015).  

 

TAMs and TANs are the most abundance myeloid cells in tumour microenvironment (Liu et al.), 

which are known as driving pro-tumorigenic effects (Kim & Bae, 2016). However, the role of 

myeloid cells present in the tumour microenvironment is still controversial between enhancing 

tumour progression and improving patient’s survival (Elliott et al., 2017; Powell & Huttenlocher, 

2016). The interplay between lymphoid and myeloid lineage is key to these effects. The interaction 

of regulatory T-lymphocytes and macrophages has been studied and suggested that TAMs could be 

one of the factors that modulate regulatory T-lymphocyte function leading to poorer prognosis in 

CRC (Waniczek et al., 2017). Therefore, the interaction between T-lymphocytes and myeloid cells 

is being recognised as an important factor in cancer progression, which affects treatment outcome 

and patient’s survival.  

 

For that reason, apart from T-lymphocytes, understanding the role of myeloid cells, and the interplay 

between the two is important to distinguish their role in tumour progression which might be able to 

benefit patient’s prognosis and therapeutic targets for immunotherapy. Therefore, this study aimed 

to investigate T-lymphocytes and myeloid cells in patients with stage I-III CRC to assess the effect 

of individual immune cell types and combinations of lymphoid and myeloid lineages on prognosis.  
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3.2 Methods 
Full sections and TMAs slide from stage I-III CRC patient samples of Scottish cohort and stage II-

III CRC patient samples of Norwegian cohort were stained by utilising IHC technique. The positive 

cells were scored in tumour cell nests and tumour stroma. The final score for each marker was the 

average from three randomly selected areas in full sections, and four cores per patient on TMAs. The 

agreement between two independent scorers were assessed by intra-class correlation coefficient 

(ICCC), scatter plot and Bland-Altman plot. Then the cut-off value for each marker were generated 

by Bioconductor R studio using the maximal log-rank method. The analysis was performed in SPSS 

for immune cells markers in terms of the infiltration levels in each stage of disease, survival effects 

utilising CSS, and OS, associations with clinical, tumour microenvironment, and systemic 

characteristics, and lastly univariate, and multivariate survival analysis. The combination of T-

lymphocytes and myeloid lineages were also performed and analysed in the same manner.  

 

3.3 Scottish discovery cohort’s patient’s characteristics 

The current study was performed firstly in a Scottish discovery cohort. The basic patient’s 

characteristics includes age, sex, tumour site, stages, and survival status. From 930 patients with 

stage I-III CRC, patients with a valid score for any marker were included in the analysis (Figure 

3.1). Briefly, 306 (33%) were aged less than 65 years and 493 (53%) were male. 377 (41%) patients 

had right-sided colon cancer, 308 (33%) patients had left-sided colon cancer, and 238 (26%) had 

rectal cancer. 125 (13%) patients had stage I disease, 448 (48%) had stage II disease, with 357 (38%) 

stage III patients. The median follows up for patients was 7.5 years (range 2 months -17 years) with 

279 (30%) cancer-related deaths and 296 (32%) non-cancer related deaths (Table 3.1). 
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Figure 3.1 - Consort diagram of Scottish cohort patients eligible for analysis. Showing patient 
samples were available in the study with excluding criteria by missing survival data, died within 30 days, stage 
IV disease, missing cores, or no tumour tissues.   
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Table 3.1 - CRC patient's characteristics of Scottish discovery cohort (n=930) 
 

Characteristics Scottish discovery cohort 
Number of patients (%) 

Age 
     <65 
     >65    

 
306 (33) 
624 (67) 

Sex 
     Female 
     Male 

 
437 (47) 
493 (53) 

Tumour site  
     Colon – Right 
     Colon - Left 
     Rectum 

 
377 (41) 
308 (33) 
238 (26) 

Stage 
     I 
     II 
     III  

 
125 (13) 
448 (48) 
357 (38) 

Survival 
Alive 
Cancer death 
Non-cancer death 

 
355 (38) 
279 (30) 
296 (32) 

 

3.4 CD68/CD80/CD163 macrophage markers expression 

As this study selected CD68 for pan-macrophages marker, CD80 for M1-like macrophages, and 

CD163 for M2-like macrophages separately for IHC staining and, the markers were never applied in 

the lab before. Therefore, double-immunofluorescence staining for CD68/CD80 M1-like and 

CD68/CD163 M2-like were performed from the same CRC patients to confirm macrophage markers 

expression. The results indicated that positive CD68+/CD80+ for M1-like macrophages (Figure 3.2 

A1-A4) and positive CD68+/CD163+ for M2-like macrophages (Figure 3.2 A2-D2). 
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Figure 3.2 - Expression of CD68+/CD80+ and CD68+/CD163+ macrophage markers in tumour 
cells and tumour stroma by double-immunofluorescence staining. A1. CD68, A2. CD80, A3. DAPI, 
A4. merged CD68+/CD80+, B1. CD68, B2. CD163, B3. DAPI, B4. merged CD68+/CD163+. Green colour 
represented CD68+, Red colour represented CD80+/CD163+. Nuclei was stained by DAPI (blue). The pictures 
were presented at 20x magnification. 
 

3.5 T-lymphocytes and myeloid cells expression 
The expression of T-lymphocytes markers; CD3+, CD8+, FoxP3+, and myeloid cells markers; CD68+, 

CD80+, CD163+, CD66b+ were performed by IHC. Positive cells were assessed from tumour cell 

nests and tumour stroma area separately (Figure 3.3).  
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Figure 3.3 - The expression of T-lymphocytes and myeloid cells markers in tumour cells and 
stromal areas by IHC staining. A. CD3+, B. CD8+, C. FoxP3+, D. CD68+, E. CD80+, F. CD163+, G. 
CD66b+. The pictures were presented at 20x magnification. 
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3.6 ICCC of myeloid cells markers on Scottish discovery cohort 

(full sections) 

For the current study, full sections were staining for myeloid cell markers for part of the cohort 

(CD68, CD80, CD163, and CD66b). The scoring of all markers was performed by J.I. and 10% were 

double scored by Antonia Roseweir. The agreement of co-scoring for all markers were performed by 

using ICCC, Bland-Altman plots, and scatter plots. For Bland-Altman plots, the solid line 

represented mean of scores, and the dash lines represented upper and lower levels of 95% confidence 

intervals (Figure 3.4 – 3.7). 

 

 

3.6.1 CD68 
 

 
 
Figure 3.4 - ICCC, scatter plot, Bland-Altman plot of CD68+ in tumour cell nests and tumour 
stroma in stage I-III CRC Scottish cohort full sections; A, B. tumour cell nests, C, D. tumour stroma 
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3.6.2 CD80 
 

 
 
Figure 3.5 - ICCC, scatter plot, Bland-Altman plot of CD80+ in tumour cell nests and tumour 
stroma in stage I-III CRC Scottish cohort full sections; A, B. tumour cell nests, C, D. tumour stroma 
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3.6.3 CD163 
 

 
 
Figure 3.6 - ICCC, scatter plot, Bland-Altman plot of CD163+ in tumour cell nests and tumour 
stroma in stage I-III CRC Scottish cohort full sections; A, B. tumour cell nests, C, D. tumour stroma 
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3.6.4 CD66b 
 

 
 
Figure 3.7 - ICCC, scatter plot, Bland-Altman plot of CD66b+ in tumour cell nests and tumour 
stroma in stage I-IIICRC Scottish cohort full sections; A, B. tumour cell nests, C, D. tumour stroma 
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3.7 Correlation between full sections and TMA slides 

As immune cells markers were initially performed on full sections which was time consuming, it 

was decided to compare full section scoring to TMA scores to assess if TMAs could be utilised for 

the rest of the cohort and other markers. Therefore, CD68+ scoring was compared between full 

sections and a TMA containing the same patients. These results showed significant positive 

correlation for both in tumour cell nests (r=0.418, p<0.001) and in tumour stroma (r=0.227, p=0.011) 

(Figure 3.7). Therefore, TMAs where utilised for the remainder of the cohort and markers. 

 

 
 

Figure 3.8 - Correlation between CD68+ scoring in full sections and TMA slides in stage I-III 
CRC Scottish cohort (n=131). A. CD68+ in tumour cell nests, B. CD68+ in tumour stroma 
 

3.8 ICCC and cut off values of T-cells and myeloid cells TMAs 
TMA slides were stained for T-lymphocytes and myeloid cells markers. The agreement between the 

two independent scorers was analysed utilising ICCC, Bland-Altman plots, and scatter plots. The cut 

off values of all markers were then generated by using maximally selected rank statistics on R Studio 

based on patient’s CSS categorised into high and low values. For Bland-Altman plots, the solid line 

represented mean of scoring, and the dash lines represented upper and lower levels of 95% 

confidence intervals (Figure 3.9 – 3.22). 
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3.8.1 CD3_tumour 
 

 
Figure 3.9 - ICCC, scatter plot, Bland-Altman plot of CD3+ in tumour cell nests in stage I-III 
CRC Scottish cohort TMA. A. ICCC 0.897 and scatter plot, B. Bland-Altman plot with upper and lower 
95% confidence intervals, C. cut-off value 16.25 
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3.8.2 CD3_stroma 
 

 
Figure 3.10 - ICCC, scatter plot, Bland-Altman plot of CD3+ in tumour stroma of stage I-III 
CRC Scottish cohort TMAs. A. ICCC 0.754 and scatter plot, B. Bland-Altman plot with upper and lower 
95% confidence intervals, C. cut-off value 166.75 
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3.8.3 CD8_tumour 
 

 
Figure 3.11 - ICCC, scatter plot, Bland-Altman plot of CD8+ in tumour cell nests of stage I-III 
CRC Scottish cohort TMAs. A. ICCC 0.884 and scatter plot, B. Bland-Altman plot with upper and lower 
95% confidence intervals, C. cut-off value 7.5 
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3.8.4 CD8_stroma 
 

 
 
Figure 3.12 - ICCC, scatter plot, Bland-Altman plot of CD8+ in tumour stroma of stage I-III 
CRC Scottish cohort TMAs. A. ICCC 0.735 and scatter plot, B. Bland-Altman plot with upper and lower 
95% confidence intervals, C. cut-off value 13.67 
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3.8.5 FoxP3_tumour 
 

 
 
Figure 3.13 - ICCC, scatter plot, Bland-Altman plot of FoxP3+ in tumour cell nests of stage I-
III CRC Scottish cohort TMAs. A. ICCC 0.991 and scatter plot, B. Bland-Altman plot with upper and 
lower 95% confidence intervals, C. cut-off value 2 
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3.8.6 FoxP3_stroma 
 

 
 
Figure 3.14 - ICCC, scatter plot, Bland-Altman plot of FoxP3+ in tumour stroma of stage I-III 
CRC Scottish cohort TMAs. A. ICCC 0.951 and scatter plot, B. Bland-Altman plot with upper and lower 
95% confidence intervals, C. cut-off value 33.75 
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3.8.7 CD68_tumour 
 

 
Figure 3.15 - ICCC, scatter plot, Bland-Altman plot of CD68+ in tumour cell nests of stage I-
III CRC Scottish cohort TMAs. A. ICCC 0.921 and scatter plot, B. Bland-Altman plot with upper and 
lower 95% confidence intervals, C. cut-off value 0.75 
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3.8.8 CD68_stroma 
 

 
Figure 3.16 - ICCC, scatter plot, Bland-Altman plot of CD68+ in tumour stroma of stage I-III 
CRC Scottish cohort TMAs. A. ICCC 0.582 and scatter plot, B. Bland-Altman plot with upper and lower 
95% confidence intervals, C. cut-off value 53 
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3.8.9 CD80_tumour 
 

 
 
Figure 3.17 - ICCC, scatter plot, Bland-Altman plot of CD80+ in tumour cell nests of stage I-
III CRC Scottish cohort TMAs. A. ICCC 0.996 and scatter plot, B. Bland-Altman plot with upper and 
lower 95% confidence intervals, C. cut-off value 1.67 
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3.8.10 CD80_stroma 
 

 
 
Figure 3.18 - ICCC, scatter plot, Bland-Altman plot of CD80+ in tumour stroma of stage I-III 
CRC Scottish cohort TMAs. A. ICCC 0.780 and scatter plot, B. Bland-Altman plot with upper and lower 
95% confidence intervals, C. cut-off value 8.67 
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3.8.11 CD163_tumour 
 

 
Figure 3.19 - ICCC, scatter plot, Bland-Altman plot of CD163+ in tumour cell nests of stage I-
III CRC Scottish cohort TMAs. A. ICCC 0.987 and scatter plot, B. Bland-Altman plot with upper and 
lower 95% confidence intervals, C. cut-off value 4.3 
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3.8.12 CD163_stroma 
 

 
 
Figure 3.20 - ICCC, scatter plot, Bland-Altman plot of CD163+ in tumour stroma of stage I-III 
CRC Scottish cohort TMAs. A. ICCC 0.864 and scatter plot, B. Bland-Altman plot with upper and lower 
95% confidence intervals, C. cut-off value 10.33 
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3.8.13 CD66b_tumour 
 

 
 
Figure 3.21 - ICCC, scatter plot, Bland-Altman plot of CD66b+ in tumour cell nests of stage I-
III CRC Scottish cohort TMAs. A. ICCC 0.967 and scatter plot, B. Bland-Altman plot with upper and 
lower 95% confidence intervals, C. cut-off value 1.67 
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3.8.14 CD66b_stroma 
 

 
 
Figure 3.22 - ICCC, scatter plot, Bland-Altman plot of CD66b+ in tumour stroma of stage I-III 
CRC Scottish cohort TMAs. A. ICCC 0.967 and scatter plot, B. Bland-Altman plot with upper and lower 
95% confidence intervals, C. cut-off value 8 
 

3.9 Immune cells infiltration level in stages I-III CRC patients 

To define the differences of immune cells infiltration at each stage of disease, the levels of T-

lymphocytes and myeloid cells in stage I-III were assessed in tumour cell nests and tumour stroma.  

 

3.9.1 Levels of immune cells in tumour cell nests 
In tumour cell nests, the infiltration of all T-lymphocytes presented highest in stage I and gradually 

decreased when the disease reached stage II and III, respectively. Numbers of CD3+ in stage I was 

A B 

C 

ICCC = 0.967 



99 

 

significantly higher than stage II (p=0.006), and stage III (p=0.026). Similarly, numbers of CD8+ in 

stage I was significantly higher than stage II (p=0.009), and stage III (p<0.001), while in stage II was 

significantly greater than stage III (p=0.012). However, FoxP3+ cells presented no significant 

changes between all stages (Figure 3.23, A-C). As for myeloid cells, macrophages, and 

granulocytes, infiltrations were at much lower levels in all stages. Among them, only CD80+ M1-

like macrophages was statistically significance (p=0.030); however, the numbers of infiltration are 

very small to observe the differences between stages (Figure 3.23, D-G). 

 

 
 
Figure 3.23 - T-lymphocytes and myeloid cells infiltration level in tumour cell nests in stage I-
III CRC Scottish cohort. A. CD3+, B. CD8+, C. FoxP3+, D. CD68+, E. CD80+, F. CD163+, G. CD66b+. 
The colour represented; pink=stage I, yellow=stage II, and blue=stage III, *p<0.05, **p<0.01, ***p<0.001 
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3.9.2 Levels of immune cells in tumour stroma 
As for levels in tumour stroma, in general, the levels of all markers were elevated compared to tumour 

cell nests. However, CD3+ and CD8+ T-lymphocytes levels presented no significant differences 

between stages, which CD3+ reached maximum levels in stage I and gradually decreased in stage II 

and III, whereas CD8+ cytotoxic T-lymphocytes reached maximum in stage II. FoxP3+ was 

significant difference in stage I and II (p=0.009), and stage I and III (p=0.002), which was decreased 

in stage II and III when compared to stage I, and slightly decreased from stage II compared to stage 

III (Figure 3.24, A-C). Myeloid cells, CD68+ macrophage was significantly high in stage I than stage 

III (p=0.006). Similarly, CD80+ M1-like macrophage significantly elevated in stage I than stage III 

(p=0.006), however, no significance was observed for CD163+ M2-like macrophage. Whereas 

CD66b+ granulocytes presented gradually increase from stage I and reach maximum in stage III, 

however, these changes did not reach significance (Figure 3.24, D-G).   
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Figure 3.24 - T-lymphocytes and myeloid cells infiltration level in tumour stroma in stage I-III 
CRC Scottish cohort. A. CD3+, B. CD8+, C. FoxP3+, D. CD68+, E. CD80+, F. CD163+, G. CD66b+. The 
colour represented; pink=stage I, yellow=stage II, and blue=stage III, *p<0.05, **p<0.01, ***p<0.001 
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3.10 Scottish discovery cohort survival analysis 

The Scottish discovery cohort was analysed in tumour cell nest and tumour stroma separately to 

assess the effects of infiltration levels of T-lymphocytes and myeloid cells on patients’ survival, 

focussing on CSS, and OS.  

  

3.10.1 T-lymphocytes infiltration and patient’s survival 
3.10.1.1 T-lymphocytes in tumour cell nests 

In tumour cells nest, high CD3+ was significantly associated with improved CSS (HR 0.55, 95% CI 

0.37-0.80, p=0.002, Figure 3.25, A) with 10-year survival stratified from 79% (high) to 63% (low). 

Similarly, high CD8+ was associated with improved CSS (HR 0.54, 95% CI 0.37-0.80, p=0.002, 

Figure 3.25, C) with 10-year survival stratified from 77% (high) to 63% (low) (Table 3.2). No 

associations were seen with FoxP3 for any survival measure or OS with any marker.  

 
Table 3.2 - Relationship between T-lymphocytes in tumour cell nest, tumour stroma, and CSS and 
OS (% survival at 10 years) in stage I-III CRC Scottish cohort (n=930) 
 

  N (%) 
  

CSS (SE)       P OS (SE)    P 

Tumour cell nest        

CD3+ (n=580) 
         

Low 
      High 

 
398 (69) 
182 (31) 

 
 

 
63 (3) 
79 (3) 

0.002  
30 (3) 
33 (4) 

0.399 
 

CD8+ (n=569) 
      Low 
      High 

 
391 (69) 
178 (31) 

 
 

 
63 (3) 
77 (4) 

0.002  
29 (3) 
34 (4) 

0.143 

FoxP3+ (n=463) 
      Absent 
      Present 

 
407 (88) 
56 (12) 

 
 

 
68 (3) 
77 (9) 

0.153  
32 (3) 
23 (7) 

0.320 

Tumour stroma 
CD3+ (n=581) 
         Low 
      High 

 
482 (83) 
99 (17) 

 
 

 
65 (3) 
81 (5) 

0.002  
31 (2) 
30 (6) 

0.473  

CD8+ (n=568) 
      Low 
      High 

 
316 (56) 
252 (44) 

 
 

 
62 (3) 
74 (3) 

0.010  
29 (3) 
32 (3) 

0.624 

FoxP3+ (n=462) 
      Absent 
      Present 

 
357 (77) 
105 (23) 

 
 

 
64 (3) 
83 (5) 

<0.001  
28 (3) 
39 (5) 

0.020 

CSS = Cancer-specific survival, OS = Overall survival, SE = Standard error 
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Figure 3.25 - KM plots of T-lymphocytes in tumour cell nests and CSS, OS in stage I-III CRC 
Scottish cohort (n=930); A. CD3+ CSS (p=0.002), B. CD3+ OS (p=0.399), C. CD8+ CSS (p=0.002), D. 
CD8+ OS (p=0.143), E. FoxP3+ CSS (p=0.153), F. FoxP3+ OS (p=0.320) 
 

3.10.1.2 T-lymphocytes in tumour stroma 

In tumour stroma, high CD3+ was significantly associated with improved CSS (HR 0.45, 95% CI 

0.26-0.76, p=0.002, Figure 3.26, A) with10-year survival stratified from 81% (high) to 65% (low). 

Similarly, high CD8+ was associated with improved CSS (HR 0.65, 95% CI 0.47-0.90, p=0.010, 

Figure 3.26, C) with 10-year survival stratified from 74% (high) to 56% (low). High FoxP3+ was 

associated with associated with improved CSS (HR 0.35, 95% CI 0.19-0.62, p<0.001, Figure 3.26, 

E) with 10-year survival stratified from 83% (high) to 64% (low); and associated with improved OS 

(HR 0.71, 95% CI 0.53-0.95, p=0.020, Figure 3.26, F) with 10-year survival stratified from 39% 

(present) to 28% (absent). No associations were seen with CD3+ and CD8+ for OS (Table 3.2). 
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Figure 3.26 - KM plots of T-lymphocytes in tumour stroma and CSS, OS in stage I-III CRC 
Scottish cohort (n=930); A. CD3+ CSS (p=0.002), B. CD3+ OS (p=0.473), C. CD8+ CSS (p=0.010), D. 
CD8+ OS (p=0.624), E. FoxP3+ CSS (p<0.001), F. FoxP3+ OS (p=0.020) 
 
 
 

3.10.2 Myeloid cells infiltration and patient’s survival 
3.10.2.1 Myeloid cells in tumour and CSS, OS 

In tumour cell nests, high CD68+ was associated with improved CSS (HR 0.70, 95% CI 0.52-0.94, 

p=0.017, Figure 3.27, A) with 10-year survival stratified from 68% (high) to 54% (low). High CD80+ 

was associated with improved CSS (HR 0.47, 95% CI 0.27-0.83, p=0.007, Figure 3.27, C) with 10-

year survival stratified from 78% (high) to 59% (low). Whereas high CD66b+ was significantly 

associated with decreased CSS (HR 1.58, 95% CI 1.08-2.31, p=0.004, Figure 3.27, G) with 10-year 

survival stratified from 52% (high) to 71% (low). None of them were significant for OS (Table 3.3). 
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Table 3.3 - Relationship between myeloid cells in tumour cell nests, tumour stroma, and CSS, and 
OS (% survival at 10 years) in stage I-III CRC Scottish cohort (n=930) 
 

Tumour cell nest 
  N (%) 

  
CSS (SE)        P OS (SE)     P 

CD68+ (n=568) 
         Low 
      High 

 
248 (44) 
320 (56) 

 
 

 
54 (4) 
68 (3) 

0.017  
26 (3) 
31 (3) 

0.181 
 

CD80+ (n=430) 
      Low 
      High 

 
358 (83) 
72 (17) 

 
 

 
59 (3) 
78 (5) 

0.007  
24 (3) 
35 (7) 

0.077 

CD163+ (n=422) 
      Low 
      High 

 
375 (89) 
47 (11) 

 
 

 
60 (3) 
77 (6) 

0.080  
27 (3) 
39 (9) 

0.121 

CD66b+ (n=410) 
      Low 
      High 

 
315 (77) 
95 (23) 

 
 

 
71 (3) 
52 (7) 

0.004  
30 (3) 
24 (6) 

0.120 

Tumour stroma 
CD68+ (n=309) 
         Low 
      High 

 
107 (35) 
202 (65) 

 
 

 
65 (3) 
57 (4) 

0.024  
31 (3) 
25 (4) 

0.045 
 

CD80+ (n=297) 
      Low 
      High 

 
198 (67) 
99 (33) 

 
 

 
58 (3) 
74 (5) 

0.009  
24 (3) 
33 (6) 

0.118 

CD163+ (n=293) 
      Low 
      High 

 
49 (17) 
244 (83) 

 
 

 
71 (8) 
60 (3) 

0.022  
24 (7) 
30 (3) 

0.404 

CD66b+ (n=278) 
      Low 
      High 

 
236 (85) 
42 (15) 

 
 

 
69 (3) 
57 (7) 

0.054  
30 (3) 
25 (6) 

0.134 

CSS = Cancer-specific survival, OS = Overall survival, SE = Standard error 
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Figure 3.27 - KM plots of myeloid cells in tumour cell nests and CSS, OS in stage I-III CRC 
Scottish cohort (n=930); A. CD68+ CSS (p=0.017), B. CD68+ OS (p=0.181), C. CD80+ CSS (p=0.007), D. 
CD80+ OS (p=0.077), E. CD163+ CSS (p=0.080), F. CD163+ OS (p=0.121), G. CD66b+ CSS (p=0.004), H. 
CD66b+ OS (p=0.120) 
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3.10.2.2 Myeloid cells in tumour stroma and CSS, OS 

In tumour stroma, high CD68+ was significantly associated with decreased CSS (HR 1.39, 95% CI 

1.04-1.86, p=0.024, Figure 3.28, A) with 10-year survival stratified from 57% (high) to 65% (low); 

and was associated with decreased OS (HR 1.23, 95% CI 1.00-1.52, p=0.045, Figure 3.28, B) with 

10-year survival stratified from 25% (high) to 31% (low). High CD80+ was significantly associated 

with improved CSS (HR 0.55, 95% CI 0.35-0.87, p=0.009, Figure 3.28, C) with 10-year survival 

stratified from 74% (high) to 58% (low). High CD163+ was significantly associated with decreased 

CSS (HR 1.84, 95% CI 1.08-3.16, p=0.022, Figure 3.28, E) with 10-year survival stratified from 

60% (high) to 71% (low) (Table 3.3). No associations were seen with CD66b+ for any survival 

measure.   
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Figure 3.28 - KM plots of myeloid cells in tumour stroma and CSS, OS in stage I-III CRC 
Scottish cohort (n=930); A. CD68+ CSS (p=0.024), B. CD68+ OS (p=0.045), C. CD80+ CSS (p=0.009), D. 
CD80+ OS (p=0.118), E. CD163+ CSS (p=0.022), F. CD163+ OS (p=0.404), G. CD66b+ CSS (p=0.054), H. 
CD66b+ OS (p=0.134) 
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3.10.3 Association between T-lymphocytes infiltration and clinical, TME, 
and systemic characteristics  
Next associations with clinicopathological factors were assessed for each marker focussing on factors 

relating to clinical, tumour microenvironment and systemic inflammatory features. Analysis was 

conducted using Chi-squared test. 

 

3.10.3.1 T-lymphocytes in tumour cell nests 

In tumour cell nests, the associations between T-lymphocytes and clinical factors were assessed. 

High CD3+ associated with lower disease stage (p=0.019), low TSP (p=0.008), a strong KM grade 

(p=0.008), and an immune phenotypic subtypes (p=0.007). High CD8+ was associated with right-

sided colon (p=0.017), lower disease stage (p<0.001), poorer differentiation (p=0.014), no peritoneal 

involvement (p=0.021), deficient MMR status (p<0.001), high proliferation (p=0.001), low tumour 

budding (p=0.005), a strong KM grade (p<0.001), and an immune phenotypic subtype (p<0.001). 

Whereas the presence of FoxP3+ associated with right-sided colon (p<0.001), poorer differentiation 

(p<0.001), deficient MMR status (p=0.004), high proliferation (p=0.002), low TSP (p=0.025), a 

strong KM grade (p=0.040), and immune or canonical phenotypic subtypes (p<0.001). There is no 

association with systemic characteristics (Table 3.4).  
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Table 3.4 - Association between T-lymphocytes in tumour cell nest and clinical, TME, and systemic 
characteristics in stage I-III CRC Scottish cohort (N=930) 
 

Tumour cell nests 

 

 CD3+   CD8+   FoxP3+  

Low 
(n=398) 

High 
(n=182) 

P Low 
(n=385) 

High 
(n=175) 

P Absent 
(n=401) 

Present 
(n=56) 

P 

Clinical Characteristics          

Age (n=580) 
     <65 
     >65 

 
121 (30) 
277 (70) 

 
 47 (26) 
135 (74) 

0.256   
118 (30) 
273 (70) 

  
44 (25) 
134 (75) 

0.177  
112 (28) 
295 (72) 

 
13 (23) 
43 (77) 

0.490 
 
 

Sex (n=580) 
     Female 
     Male 

 
194 (49) 
204 (51) 

 
85 (47) 
97 (53) 

0.648   
185 (47) 
206 (53) 

  
91 (51) 
87 (49) 

0.399  
199 (49) 
208 (51) 

 
28 (50) 
28 (50) 

0.877 

Tumour site (n=576) 
     Colon – Right 
     Colon - Left 
     Rectum 

 
154 (39) 
154 (39) 
86 (22) 

 
89 (49) 
54 (30) 
39 (21) 

0.051   
150 (38) 
153 (39) 
85 (22) 

  
89 (50) 
50 (28) 
38 (22) 

0.017  
162 (40) 
165 (41) 
76 (19) 

 
35 (63) 
9 (16) 
12 (21) 

<0.001 

Stage (n=580) 
     I 
     II 
     III 

 
54 (14) 
199 (50) 
145 (36) 

 
42 (23) 
79 (43) 
61 (34) 

0.019   
52 (13) 
182 (47) 
157 (40) 

  
43 (24) 
90 (51) 
45 (25) 

<0.001  
64 (16) 
196 (48) 
147 (36) 

 
16 (29) 
26 (46) 
14 (25) 

0.050 

Differentiation (n=580) 
     Mod/well 
     Poor 

 
364 (92) 
34 (8) 

 
157 (86) 
25 (14) 

0.061   
359 (92) 
32 (8) 

  
151 (85) 
27 (15) 

0.014  
373 (92) 
34 (8) 

 
41 (73) 
15 (27) 

<0.001 

Vascular invasion (n=580) 
     Absent 
     Present 

 
270 (68) 
128 (32) 

 
130 (71) 
52 (29) 

0.384   
261 (67) 
130 (33) 

  
132 (74) 
46 (26) 

0.074  
282 (69) 
125 (31) 

 
41 (73) 
15 (27) 

0.545 

Peritoneal involvement (n=580) 
     No 
     Yes 

 
290 (73) 
108 (27) 

 
136 (75) 
46 (25) 

0.637   
274 (70) 
117 (30) 

  
141 (79) 
37 (21) 

0.021  
295 (73) 
112 (27) 

 
46 (82) 
10 (18) 

0.111 

Mismatch Repair Status (n=578) 
     Competent 
     Deficient 

 
329 (83) 
68 (17) 

 
147 (81) 
34 (19) 

0.630   
341 (87) 
49 (13) 

  
126 (71) 
51 (29) 

<0.001  
344 (85) 
63 (15) 

 
38 (68) 
18 (32) 

0.004 
 

Proliferation (n=579) 
     Low 
     High 

 
156 (39) 
241 (61) 

 
57 (31) 
125 (69) 

0.063   
164 (42) 
227 (58) 

  
49 (28) 
129 (72) 

0.001  
155 (38) 
252 (62) 

 
10 (18) 
46 (82) 

0.002 

Tumour Necrosis (n=567) 
     Low 
     High 

 
252 (65) 
138 (35) 

 
102 (58) 
75 (42) 

0.113   
235 (61) 
149 (39) 

  
115 (67) 
58 (33) 

0.231  
250 (63) 
150 (37) 

 
38 (69) 
17 (31) 

0.336 

Tumour Microenvironment Characteristics 

Tumour budding (n=536) 
     Low 
     High 

 
271 (74) 
96 (26) 

 
134 (79) 
35 (21) 

0.168  
260 (72) 
102 (28) 

 
136 (83) 
28 (17) 

0.005  
280 (75) 
96 (25) 

 
42 (84) 
9 (16) 

0.205 

Tumour stroma percentage (n=579) 
     Low 
     High 

 
290 (73) 
107 (27) 

 
151 (83) 
31 (17) 

0.008   
296 (76) 
95 (24) 

  
141 (79) 
37 (21) 

0.354  
304 (75) 
103 (25) 

 
49 (88) 
7 (12) 

0.025 

Klintrup-Makinen grade (n=567) 
     Weak 
     Strong 

 
280 (72) 
110 (28) 

 
107 (60) 
70 (40) 

0.008   
290 (76) 
94 (24) 

  
91 (53) 
82 (47) 

<0.001  
275 (69) 
125 (31) 

 
30 (55) 
25 (45) 

0.040 

Phenotypic subtypes (n=570) 
    Immune 
    Canonical 
    Latent 
    Stromal 

 
110 (28) 
134 (34) 
69 (18) 
77 (20) 

 
72 (40) 
59 (33) 
30 (17) 
19 (10) 

0.007  
94 (24) 
137 (36) 
82 (21) 
72 (19) 

 
84 (48) 
53 (30) 
18 (10) 
20 (12) 

<0.001  
126 (31) 
128 (32) 
72 (18) 
75 (19) 

 
25 (45) 
26 (46) 
4 (7) 
1 (2) 

<0.001 

Systemic Characteristics          

Serum CRP (n=425) 
     Normal  
     High 

 
162 (56) 
126 (44) 

 
74 (54) 
63 (46) 

0.665   
160 (55) 
132 (45) 

  
68 (54) 
57 (46) 

0.941  
165 (57) 
127 (43) 

 
21 (53) 
19 (47) 

0.633 

Serum Albumin (n=467) 
     Normal 
     Low 

 
242 (76) 
77 (24) 

 
116 (78) 
32 (22) 

0.548   
240 (77) 
73 (23) 

  
109 (76) 
35 (24) 

0.819  
242 (76) 
77 (24) 

 
34 (79) 
9 (21) 

0.638 
 

mGPS (n=429) 
     0 
     1 
     2 

 
163 (56) 
69 (24) 
57 (20) 

 
76 (54) 
37 (26) 
27 (20) 

0.847   
163 (55) 
77 (26) 
54 (18) 

  
68 (53) 
29 (23) 
30 (24) 

0.438  
167 (57) 
71 (24) 
57 (19) 

 
21 (53) 
11 (27) 
8 (20) 

0.869 
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3.10.3.2 T-lymphocytes in tumour stroma 

In stroma, the association between stromal T-lymphocytes and clinical characteristics were assessed. 

High CD3+ was associated with strong KM grade (p<0.001), and an immune subtype (p=0.001). 

High CD8+ was associated with no peritoneal involvement (p=0.004), deficient mismatch repair 

status (p=0.018), strong KM grade (p<0.001), immune subtype (p<0.001), low serum albumin 

(p=0.002), and high mGPS (p=0.006). Whereas the presence of FoxP3+ was associated with lower 

disease stage (p=0.046), moderate/well differentiation (p=0.016), absent vascular invasion 

(p=0.048), no peritoneal involvement (p=0.002), low tumour budding (p=0.018), a strong KM grade 

(p=0.001), an immune subtype (p=0.012), normal serum CRP (p=0.025), normal serum albumin 

(p=0.030), and a low mGPS (p=0.037) (Table 3.5).  
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Table 3.5 - Associations between T-lymphocytes in tumour stroma and clinical, TME, and systemic 
characteristics in stage I-III CRC Scottish cohort (n=930) 
 

Tumour stroma 

 

 CD3+   CD8+   FoxP3+  

Low 
(n=482) 

High 
(n=100) 

P  Low 
(n=317) 

High 
(n=252) 

P Absent 
(n=357) 

Present 
(n=106) 

P 

Clinical Characteristics          

Age (n=582) 
     <65 
     >65 

 
144 (30) 
338 (70) 

 
25 (25) 
75 (75) 

0.323   
92 (29) 
225 (71) 

  
70 (28) 
182 (72) 

0.744  
91 (26) 
266 (74) 

 
34 (32) 
72 (68) 

0.185 
 
 

Sex (n=582) 
     Female 
     Male 

 
231 (48) 
251 (52) 

 
49 (49) 
51 (51) 

0.845   
153 (48) 
164 (52) 

  
123 (49) 
129 (51) 

0.897  
172 (48) 
185 (52) 

 
55 (52) 
51 (48) 

0.503 

Tumour site (n=578) 
     Colon – Right 
     Colon - Left 
     Rectum 

 
199 (42) 
174 (36) 
106 (22) 

 
45 (46) 
34 (34) 
20 (20) 

0.769   
128 (41) 
115 (37) 
71 (23) 

  
111 (44) 
88 (35) 
52 (21) 

0.698  
154 (43) 
137 (39) 
64 (18) 

 
43 (41) 
37 (36) 
24 (23) 

0.523 

Stage (n=582) 
     I 
     II 
     III 

 
74 (15) 
231 (48) 
177 (37) 

 
22 (22) 
49 (49) 
29 (36) 

0.170   
50 (16) 
149 (47) 
118 (37) 

  
45 (18) 
123 (49) 
84 (33) 

0.588  
54 (15) 
171 (48) 
132 (37) 

 
26 (25) 
51 (48) 
29 (27) 

0.046 

Differentiation (n=582) 
     Mod/well 
     Poor 

 
432 (90) 
50 (10) 

 
91 (91) 
9 (9) 

0.675   
283 (89) 
34 (11) 

  
227 (90) 
25 (10) 

0.754  
313 (88) 
44 (12) 

 
101 (95) 
5 (5) 

0.016 

Vascular invasion (n=582) 
     Absent 
     Present 

 
331 (69) 
151 (31) 

 
71 (71) 
29 (29) 

0.645   
213 (67) 
104 (33) 

  
180 (71) 
72 (29) 

0.277  
241 (68) 
116 (32) 

 
82 (77) 
24 (23) 

0.048 

Peritoneal involvement (n=582) 
     No 
     Yes 

 
348 (72) 
134 (28) 

 
79 (79) 
21 (21) 

0.153   
216 (68) 
101 (32) 

  
199 (79) 
53 (21) 

0.004  
251 (70) 
106 (30) 

 
90 (85) 
16 (15) 

0.002 

Mismatch Repair Status (n=580) 
     Competent 
     Deficient 

 
399 (83) 
81 (17) 

 
79 (79) 
21 (21) 

0.333   
271 (86) 
45 (14) 

  
196 (78) 
55 (22) 

0.018  
289 (81) 
68 (19) 

 
93 (88) 
13 (12) 

0.095 
 

Proliferation (n=581) 
     Low 
     High 

 
179 (37) 
302 (63) 

 
35 (35) 
65 (65) 

0.675   
119 (38) 
198 (62) 

  
94 (37) 
158 (63) 

0.954  
135 (38) 
222 (62) 

 
30 (28) 
76 (72) 

0.069 

Tumour Necrosis (n=569) 
     Low 
     High 

 
298 (63) 
173 (37) 

 
56 (57) 
42 (43) 

0.258   
196 (63) 
114 (37) 

  
154 (62) 
93 (38) 

0.831  
224 (64) 
128 (36) 

 
64 (62) 
39 (38) 

0.781 

Tumour Microenvironment Characteristics 

Tumour budding (n=538) 
     Low 
     High 

 
336 (75) 
111 (25) 

 
71 (78) 
20 (22) 

0.559  
213 (73) 
77 (27) 

 
183 (78) 
53 (22) 

0.278  
238 (73) 
89 (27) 

 
84 (84) 
16 (16) 

0.018 

Tumour stroma percentage (n=581) 
     Low 
     High 

 
371 (77) 
110 (23) 

 
72 (72) 
28 (28) 

0.280   
240 (76) 
77 (24) 

  
197 (78) 
55 (22) 

0.488  
270 (76) 
87 (24) 

 
83 (78) 
23 (22) 

0.568 

Klintrup-Makinen grade (n=569) 
     Weak 
     Strong 

 
337 (72) 
134 (28) 

 
50 (51) 
48 (49) 

<0.001   
238 (77) 
72 (23) 

  
143 (58) 
104 (42) 

<0.001  
250 (71) 
102 (29) 

 
55 (53) 
48 (47) 

0.001 

Phenotypic subtypes (n=572) 
    Immune 
    Canonical 
    Latent 
    Stromal 

 
135 (29) 
172 (36) 
84 (18) 
82 (17) 

 
49 (49) 
21 (21) 
15 (15) 
14 (14) 

0.001  
73 (23) 
119 (38) 
59 (19) 
61 (20) 

 
105 (42) 
71 (29) 
41 (17) 
31 (12) 

<0.001  
103 (29) 
127 (36) 
61 (17) 
63 (18) 

 
48 (47) 
27 (26) 
15 (15) 
13 (12) 

0.012 

Systemic Characteristics          

Serum CRP (n=427) 
     Normal  
     High 

 
199 (56) 
157 (44) 

 
37 (52) 
34 (48) 

0.559   
135 (57) 
102 (43) 

  
93 (52) 
87 (48) 

0.282  
135 (53) 
121 (47) 

 
51 (67) 
25 (33) 

0.025 

Serum Albumin (n=469) 
     Normal 
     Low 

 
295 (76) 
93 (24) 

 
64 (79) 
17 (21) 

0.561   
211 (82) 
47 (18) 

  
138 (69) 
61 (31) 

0.002  
204 (74) 
73 (26) 

 
72 (85) 
13 (15) 

0.030 
 

mGPS (n=431) 
     0 
     1 
     2 

 
201 (56) 
86 (24) 
71 (20) 

 
38 (52) 
21 (29) 
14 (19) 

0.695   
135 (57) 
68 (29) 
35 (14) 

  
96 (53) 
38 (20) 
49 (27) 

0.006  
137 (53) 
64 (25) 
57 (22) 

 
51 (66) 
18 (23) 
8 (11) 

0.037 
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3.10.4 Association between myeloid cells infiltration and clinical, TME, 
and systemic characteristics  
 

3.10.4.1 Myeloid cells in tumour cell nests 

In tumour cell nests, the associations between innate immune cells and clinical characteristics were 

assessed. High CD68+ was associated with deficient mismatch repair status (p<0.001), high 

proliferation (p<0.001), and low tumour budding (p=0.006). High CD80+ was associated with stage 

II disease (p=0.017), and high proliferation (p=0.048). High CD163+ was associated with poor 

differentiation (p=0.010), no peritoneal involvement (p=0.030), high proliferation (p=0.009), low 

tumour budding (p=0.045), and an immune or canonical phenotypic subtype (p=0.006). High 

CD66b+ was associated with poor differentiation (p=0.010), vascular invasion (p=0.009), low 

proliferation (p=0.017), and normal serum albumin (p=0.032) (Table 3.6). 
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Table 3.6 - Association between myeloid cells in tumour cell nest and clinical, TME, and systemic 
characteristics in stage I-III CRC Scottish cohort (n=930) 
 

Tumour cell nests 

 
 CD68+   CD80+   CD163+   CD66b+  
Low 
(n=248) 

High 
(n=320) 

P  Low 
(n=358) 

High 
(n=72) 

P Low 
(n=375) 

High 
(n=47) 

P Low 
(n=315) 

High 
(n=95) 

P 

Clinical Characteristics             
Age (n=410) 
     <65 
     >65 

 
88 (36) 
160 (64) 

 
107 (33) 
213 (67) 

0.611   
111 (31) 
247 (69) 

  
21 (29) 
51 (71) 

0.757  
121 (32) 
254 (68) 

 
12 (26) 
35 (74) 

0.341 
 
 

 
90 (29) 
225 (71) 

 
38 (40) 
57 (60) 

0.038 

Sex (n=410) 
     Female 
     Male 

 
110 (44) 
138 (56) 

 
154 (48) 
166 (52) 

0.371   
165 (46) 
193 (54) 

  
34 (47) 
38 (53) 

0.860  
175 (47) 
200 (53) 

 
25 (53) 
22 (47) 

0.399  
147 (47) 
168 (53) 

 
43 (45) 
52 (55) 

0.810 

Tumour site (n=408) 
     Colon – Right 
     Colon - Left 
     Rectum 

 
89 (36) 
86 (35) 
72 (29) 

 
142 (45) 
89 (28) 
86 (27) 

0.088   
137 (38) 
109 (31) 
109 (31) 

  
29 (40) 
27 (38) 
16 (22) 

0.293  
138 (37) 
124 (33) 
110 (30) 

 
26 (56) 
10 (21) 
11 (23) 

0.053  
115 (37) 
111 (36) 
87 (27) 

 
47 (49) 
29 (31) 
19 (20) 

0.075 

Stage (n=410)  
     I 
     II 
     III 

 
29 (12) 
111 (45) 
108 (44) 

 
42 (13) 
160 (50) 
118 (37) 

0.273   
45 (13) 
158 (44) 
155 (43) 

  
9 (13) 
44 (61) 
19 (26) 

0.017  
44 (12) 
177 (47) 
154 (41) 

 
8 (17) 
18 (38) 
21 (45) 

0.418  
47 (15) 
155 (49) 
113 (36) 

 
10 (11) 
41 (43) 
44 (46) 

0.162 

Differentiation (n=410) 
     Mod/well 
     Poor 

 
228 (92) 
20 (8) 

 
278 (87) 
42 (13) 

0.052   
320 (89) 
38 (11) 

  
61 (85) 
11 (15) 

0.272  
339 (90) 
36 (10) 

 
36 (77) 
11 (23) 

0.010  
287 (91) 
28 (9) 

 
77 (81) 
18 (19) 

0.010 

Vascular invasion (n=410) 
     Absent 
     Present 

 
170 (69) 
78 (31) 

 
199 (62) 
121 (38) 

0.114   
219 (61) 
139 (39) 

  
44 (61) 
28 (39) 

0.992  
229 (61) 
146 (39) 

 
30 (64) 
17 (36) 

0.713  
219 (70) 
96 (30) 

 
52 (55) 
43 (45) 

0.009 

Peritoneal involvement (n=410) 
     No 
     Yes 

 
169 (68) 
79 (32) 

 
235 (73) 
85 (27) 

0.168   
260 (73) 
98 (27) 

  
47 (65) 
25 (35) 

0.215  
266 (71) 
109 (29) 

 
40 (85) 
7 (15) 

0.030  
237 (75) 
78 (25) 

 
66 (70) 
29 (30) 

0.268 

Mismatch Repair Status 
(n=402) 
     Competent 
     Deficient 

 
 
211 (90) 
24 (10) 

 
 
244 (78) 
70 (22) 

 
<0.001 

  
 
283 (82) 
63 (18) 

  
 
55 (76) 
17 (24) 

 
0.299 

 
 
301 (83) 
63 (17) 

 
 
36 (80) 
9 (20) 

 
0.659 
 

 
 
256 (83) 
54 (17) 

 
 
70 (76) 
22 (24) 

 
0.171 

Proliferation (n=405) 
     Low 
     High 

 
162 (66) 
82 (34) 

 
160 (51) 
156 (49) 

<0.001   
197 (56) 
156 (44) 

  
31 (43) 
41 (57) 

0.048  
212 (57) 
159 (43) 

 
17 (37) 
29 (63) 

0.009  
144 (46) 
168 (54) 

 
56 (60) 
37 (40) 

0.017 

Tumour Necrosis (n=402) 
     Low 
     High 

 
156 (63) 
91 (37) 

 
190 (61) 
123 (39) 

0.553   
218 (62) 
133 (38) 

  
51 (72) 
20 (28) 

0.114  
239 (65) 
130 (35) 

 
30 (64) 
17 (36) 

0.899  
197 (64) 
112 (36) 

 
58 (62) 
35 (38) 

0.808 

Tumour Microenvironment Characteristics 
Tumour budding (n=382) 
     Low 
     High 

 
146 (63) 
85 (37) 

 
220 (74) 
76 (26) 

0.006  
229 (69) 
104 (31) 

 
52 (78) 
15 (22) 

0.140  
242 (69) 
108 (31) 

 
35 (83) 
7 (17) 

0.045  
216 (74) 
75 (26) 

 
59 (65) 
32 (35) 

0.086 

Tumour stroma percentage 
(n=397)  
     Low 
     High 

 
163 (69) 
74 (31) 

 
226 (73) 
82 (27) 

0.240   
245 (70) 
103 (30) 

  
53 (74) 
19 (26) 

0.582  
258 (71) 
108 (29) 

 
37 (78) 
10 (22) 

0.228  
231 (75) 
75 (25) 

 
63 (72) 
28 (28) 

0.238 

Klintrup-Makinen grade 
(n=402) 
     Weak 
     Strong 

 
177 (71) 
71 (29) 

 
205 (65) 
110 (35) 

0.112   
246 (70) 
106 (30) 

  
45 (63) 
26 (37) 

0.286  
259 (70) 
19 (40) 

 
28 (60) 
19 (40) 

0.154  
216 (70) 
93 (30) 

 
61 (66) 
32 (34) 

0.434 

Phenotypic subtypes (n=392) 
    Immune 
    Canonical 
    Latent 
    Stromal 

 
71 (30) 
45 (19) 
64 (27) 
57 (24) 

 
110 (36) 
76 (25) 
66 (21) 
55 (18) 

0.057  
106 (31) 
78 (22) 
86 (25) 
76 (22) 

 
26 (37) 
22 (31) 
11 (15) 
12 (17) 

0.139  
111 (31) 
78 (21) 
95 (26) 
80 (22) 

 
19 (40) 
17 (36) 
4 (9) 
7 (15) 

0.006  
93 (31) 
90 (30) 
63 (21) 
57 (19) 

 
33 (37) 
21 (24) 
18 (20) 
17 (19) 

0.614 
 

Systemic Characteristics             

Serum CRP (n=329) 
     Normal  
     High 

 
126 (58) 
92 (42) 

 
134 (53) 
117 (47) 

0.337   
154 (56) 
119 (44) 

  
28 (54) 
24 (46) 

0.733  
162 (56) 
129 (44) 

 
20 (59) 
14 (41) 

0.725  
129 (53) 
116 (47) 

 
48 (57) 
36 (43) 

0.476 

Serum Albumin (n=350) 
     Normal 
     Low 

 
179 (80) 
44 (20) 

 
212 (80) 
52 (20) 

0.993   
236 (82) 
51 (18) 

  
41 (71) 
17 (29) 

0.053  
250 (82) 
54 (18) 

 
27 (71) 
11 (29) 

0.114  
203 (77) 
61 (23) 

 
75 (87) 
11 (13) 

0.032 

mGPS (n=332) 
     0 
     1 
     2  

 
127 (58) 
60 (27) 
32 (15) 

 
135 (54) 
74 (30) 
42 (16) 

0.643   
156 (57) 
77 (28) 
41 (15) 

  
28 (54) 
12 (23) 
12 (23) 

0.350  
164 (56) 
85 (29) 
43 (15) 

 
20 (59) 
6 (18) 
8 (23) 

0.224  
130 (52) 
70 (28) 
48 (19) 

 
44 (57) 
27 (32) 
9 (11) 

0.165 
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3.10.4.2 Myeloid cells in tumour stroma 

In tumour stroma, the association between stromal innate immune cells and clinical characteristics 

were assessed. High CD68+ was associated with lower age (p=0.001), lower disease stage (p=0.031), 

high proliferation (p<0.001), low tumour necrosis (p=0.034), low serum albumin (p=0.001), and a 

high mGPS (p<0.001). High CD80+ was associated with lower disease stage (p=0.015).  High 

CD163+ was associated with low serum albumin (p=0.002), and a high mGPS (p=0.003). High 

CD66b+ was associated with low proliferation (p=0.001), high tumour budding (p<0.001), high 

tumour stroma percentage (p=0.013), a strong KM grade (p=0.027), and an immune or stromal 

subtype (p=0.003) (Table 3.7). 
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Table 3.7 - Association between myeloid cells in tumour stroma and clinical, TME, and systemic 
characteristics in stage I-III CRC Scottish cohort (n=930) 
 

Tumour stroma 

 

 CD68+   CD80+   CD163+   CD66b+  

Low 
(n=350) 

High 
(n=218) 

P  Low 
(n=327) 

High 
(n=102) 

P Low 
(n=69) 

High 
(n=246) 

P Low 
(n=319) 

High 
(n=91) 

P 

Clinical Characteristics             
Age (n=410)  
     <65 
     >65 

 
138 (39) 
212 (61) 

 
57 (26) 
161 (74) 

0.001   
98 (30) 
229 (70) 

  
33 (32) 
69 (68) 

0.649  
26 (38) 
43 (62) 

 
107 (30) 
246 (70) 

0.234 
 
 

 
94 (30) 
225 (70) 

 
34 (37) 
57 (63) 

0.156 

Sex (n=410) 
     Female 
     Male 

 
171 (49) 
179 (51) 

 
93 (43) 
125 (57) 

0.149   
149 (46) 
178 (54) 

  
49 (48) 
53 (52) 

0.662  
32 (46) 
37 (54) 

 
168 (48) 
185 (52) 

0.853  
149 (47) 
170 (53) 

 
42 (46) 
49 (54) 

0.925 

Tumour site (n=408) 
     Colon – Right 
     Colon - Left 
     Rectum 

 
139 (40) 
104 (30) 
106 (30) 

 
92 (43) 
71 (3) 
52 (24) 

0.275   
127 (39) 
96 (30) 
101 (31) 

  
39 (38) 
40 (39) 
23 (23) 

0.120  
28 (41) 
26 (38) 
15 (22) 

 
136 (39) 
108 (31) 
106 (30) 

0.299  
125 (39) 
114 (36) 
78 (25) 

 
37 (40) 
27 (30) 
27 (30) 

0.461 

Stage (n=410) 
     I 
     II 
     III 

 
34 (10) 
168 (48) 
148 (42) 

 
37 (17) 
103 (47) 
78 (36) 

0.031   
34 (10) 
151 (46) 
142 (43) 

  
20 (20) 
51 (50) 
31 (30) 

0.015  
4 (6) 
37 (54) 
28 (41) 

 
48 (13) 
158 (45) 
147 (42) 

0.112  
45 (14) 
160 (50) 
114 (36) 

 
12 (13) 
36 (40) 
43 (47) 

0.128 

Differentiation (n=410) 
     Mod/well 
     Poor 

 
312 (89) 
38 (11) 

 
194 (89) 
24 (11) 

0.955   
289 (88) 
38 (12) 

  
91 (89) 
11 (11) 

0.816  
61 (88) 
8 (12) 

 
314 (89) 
39 (11) 

0.896  
283 (89) 
36 (11) 

 
81 (89) 
10 (11) 

0.937 

Vascular invasion (n=410) 
     Absent 
     Present 

 
221 (63) 
129 (37) 

 
148 (68) 
70 (32) 

0.248   
194 (59) 
133 (41) 

  
68 (67) 
34 (33) 

0.181  
38 (55) 
31 (45) 

 
221 (55) 
132 (37) 

0.243  
217 (68) 
102 (32) 

 
55 (60) 
36 (40) 

0.181 

Peritoneal involvement 
(n=410) 
     No 
     Yes 

 
251 (72) 
99 (28) 

 
153 (70) 
65 (30) 

0.696   
234 (72) 
93 (28) 

  
72 (71) 
30 (29) 

0.850  
49 (71) 
20 (29) 

 
257 (73) 
96 (27) 

0.762  
234 (73) 
85 (27) 

 
68 (75) 
23 (25) 

0.793 

Mismatch Repair Status 
(n=402)  
     Competent 
     Deficient 

 
281 (84) 
52 (16) 

 
174 (81) 
42 (19) 

0.247   
258 (82) 
58 (18) 

  
80 (78) 
22 (22) 

0.478  
57 (85) 
10 (15) 

 
280 (82) 
62 (28) 

0.522 
 

 
250 (80) 
62 (20) 

 
76 (84) 
14 (16) 

0.348 

Proliferation (n=405) 
     Low 
     High 

 
221 (64) 
123 (36) 

 
101 (47) 
115 (53) 

<0.001   
179 (55) 
144 (45) 

  
49 (48) 
53 (52) 

0.193  
44 (65) 
24 (35) 

 
185 (53) 
164 (47) 

0.074  
141 (45) 
173 (55) 

 
59 (65) 
32 (35) 

0.001 

Tumour Necrosis (n=402)  
     Low 
     High 

 
202 (58) 
144 (42) 

 
144 (67) 
70 (33) 

0.034   
203 (63) 
119 (37) 

  
66 (66) 
34 (34) 

0.590  
42 (61) 
27 (39) 

 
227 (65) 
120 (35) 

0.473  
199 (63) 
115 (37) 

 
57 (65) 
31 (35) 

0.809 

Tumour Microenvironment Characteristics 
Tumour budding (n=382) 
     Low 
     High 

 
220 (68) 
103 (32) 

 
146 (72) 
58 (28) 

0.400  
207 (68) 
96 (32) 

 
74 (76) 
23 (24) 

0.129  
49 (79) 
13 (21) 

 
228 (69) 
102 (31) 

0.105  
226 (77) 
68 (23) 

 
50 (57) 
38 (43) 

<0.001 

Tumour stroma percentage 
(n=396) 
     Low 
     High 

 
238 (72) 
91 (27) 

 
151 (70) 
65 (30) 

0.539   
224 (70) 
94 (30) 

  
74 (73) 
28 (27) 

0.682  
49 (73) 
18 (27) 

 
246 (71) 
100 (29) 

0.734  
240 (77) 
72 (23) 

 
53 (63) 
31 (37) 

0.013 

Klintrup-Makinen grade 
(n=402) 
     Weak 
     Strong 

 
234 (67) 
115 (33) 

 
148 (69) 
66 (31) 

0.602   
228 (71) 
95 (29) 

  
63 (63) 
37 (37) 

0.157  
49 (71) 
20 (29) 

 
238 (68) 
110 (32) 

0.666  
225 (72) 
89 (28) 

 
52 (59) 
36 (41) 

0.027 

Phenotypic subtypes (n=391) 
    Immune 
    Canonical 
    Latent 
    Stromal 

 
115 (35) 
62 (19) 
87 (26) 
65 (20) 

 
66 (31) 
59 (27) 
43 (20) 
47 (22) 

0.057  
95 (30) 
76 (24) 
76 (24) 
69 (22) 

 
37 (36) 
24 (24) 
21 (21) 
19 (19) 

0.635  
20 (29) 
10 (15) 
24 (35) 
14 (21) 

 
110 (32) 
85 (25) 
75 (22) 
73 (21) 

0.080  
89 (29) 
99 (32) 
65 (21) 
54 (18) 

 
37 (44) 
12 (14) 
15 (18) 
20 (24) 

0.002 
 

Systemic Characteristics             

Serum CRP (n=329) 
     Normal  
     High 

 
174 (55) 
145 (45) 

 
86 (57) 
64 (43) 

0.571   
151 (57) 
114 (43) 

  
30 (51) 
29 (49) 

0.392  
31 (63) 
18 (37) 

 
151 (55) 
125 (45) 

0.263  
135 (54) 
116 (46) 

 
42 (54) 
36 (46) 

0.992 

Serum Albumin (n=350) 
     Normal 
     Low 

 
277 (85) 
51 (15) 

 
114 (72) 
45 (28) 

0.001   
223 (80) 
57 (20) 

  
53 (83) 
11 (17) 

0.560  
51 (94) 
3 (6) 

 
226 (79) 
62 (21) 

0.002  
217 (81) 
52 (19) 

 
61 (75) 
20 (25) 

0.303 

mGPS (n=332) 
     0 
     1 
     2 

 
176 (55) 
107 (33) 
37 (12) 

 
86 (57) 
27 (18) 
37 (15) 

<0.001   
153 (58) 
70 (26) 
43 (16) 

  
30 (51) 
19 (32) 
10 (17) 

0.608  
32 (64) 
17 (34) 
1 (2) 

 
152 (55) 
74 (27) 
50 (18) 

0.003  
136 (54) 
77 (30) 
40 (16) 

 
42 (53) 
20 (25) 
17 (22) 

0.439 
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3.10.5 Immune cells landscapes (CD3/CD68/CD66b) and patient survival 
As myeloid cells have been reported having pro-tumorigenic and anti-tumorigenic effect, to elucidate 

the influences of myeloid cells and T-lymphocytes in CRC patients. T-lymphocytes marker (CD3+) 

and myeloid cell markers (CD68+, CD66b+) were combined and divided into four categories 1) both 

low, 2) myeloid high, 3) T-cell high, and 4) both high, and analysed as grouping in tumour cells 

called tumour immune landscape and in stroma called stromal immune landscape (Table 3.8). When 

assessing effects on patient’s survival, the tumour immune landscape did not significantly associate 

with patient’s survival. Whereas, the stromal immune landscape was significantly associated with 

improved CSS, (HR 0.81, CI 0.64-1.03, p=0.005, Figure 3.29, B) with 10-year survival stratified 

from 44% (T-cell high), 27% (myeloid high), 26% (both high and both low). 

 

 

Table 3.8 - Relationship between tumour and stromal immune landscapes and CSS, and OS (% 
survival at 10 years) in stage I-III CRC Scottish cohort (n=257) 
 

Immune landscapes (CD3/CD68/CD66b) 
  N (%) 

  
CSS (SE)       P OS (SE)    P 

Tumour immune landscape (n=246) 
      Both low 
      Myeloid high 
      T-cell high 
      Both high 

 
31 (13) 
131 (53) 
8 (3) 
76 (31) 

 
 

 
74 (9) 
58 (5) 
58 (19) 
79 (5) 

0.067  
21 (9) 
27 (5) 
38 (17) 
29 (6) 

0.939 

Stromal immune landscape (n=257) 
      Both low 
      Myeloid high 
      T-cell high 
      Both high 

 
35 (14) 
167 (65) 
10 (4) 
45 (17) 

   
72 (9) 
56 (4) 
85 (14) 
81 (7) 

0.005  
26 (9) 
27 (4) 
44 (21) 
26 (8) 

0.311 

CSS = Cancer-specific survival, OS = Overall survival, SE = Standard error 
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Figure 3.29 - KM plots of tumour and stromal immune landscapes and CSS, OS in stage I-III 
CRC Scottish cohort; A. Tumour_IL CSS (p=0.067), B. Stromal_IL CSS (p=0.005), C. Tumour_IL OS 
(p=0.939), D. Stromal_IL OS (p=0.311) 
 

 
3.10.6 Association between immune landscapes and clinical, TME, and 
systemic characteristics  
For tumour immune landscape, the myeloid high group associated with lower age (p=0.031), and an 

increased mGPS (p=0.040). However, the both high group associated with low tumour stroma 

percentage (p=0.002). Whereas for the stromal immune landscape, the myeloid high group associated 

with weak KM grade (p=0.035), however, the both high group associated with an immune 

phenotypic subtype (p=0.046) (Table 3.9.).  

 
  

 

 
 

Tumour_IL 

HR=0.79, 95% CI=0.62-0.99, Log-rank p=0.067 

Myeloids High 
T-cells High  

Both Low 

 Both High  

Stromal_IL 

HR=0.81, 95% CI=0.64-1.03, Log-rank p=0.005 

Myeloids High 
T-cells High  

Both Low 

 Both High  

Tumour_IL 

HR=0.92, 95% CI=0.80-1.07, Log-rank p=0.939 

Myeloids High 
T-cells High  

Both Low 

 Both High  

Stromal_IL 

HR=1.00, 95% CI=0.86-1.17, Log-rank p=0.311 

Myeloids High 
T-cells High  

Both Low 

 Both High  

A B 

C D 
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Table 3.9 - Association between immune landscapes and clinical, TME, and systemic characteristics 
in stage I-III CRC Scottish cohort (n=930) 
 

  
  Tumour immune landscape Stromal immune landscape 

 
Both 
 low 

(n=31) 

Myeloid 
high 

(n=131) 

T-cell 
high 
(n=8) 

Both 
high 

(n=76) 

P Both 
low 

(n=35) 

Myeloid 
high 

(n=164) 

T-cell 
high 

(n=10) 

Both 
high 

(n=45) 

P 

Clinical Characteristics 
Age (n=246) 
     <65  
     >65 

 
7 (23) 
24 (77) 

 
48 (37) 
83 (63) 

 
1 (13) 
7 (87) 

 
15 (20) 
61 (80) 

0.031   
12 (34) 
23 (66) 

  
45 (27) 
122 (73) 

 
2 (20) 
8 (80) 

  
10 (22) 
35 (78) 

0.637 

Sex (n=246) 
     Female 
     Male 

 
13 (42) 
18 (58) 

 
65 (50) 
66 (50) 

 
3 (38) 
5 (62) 

 
37 (49) 
39 (51) 

0.809   
20 (57) 
15 (43) 

  
74 (44) 
93 (56) 

 
6 (60) 
4 (40) 

  
19 (42) 
26 (58) 

0.396 

Tumour site (n=243) 
     Colon – Right 
     Colon - Left 
     Rectum 

 
9 (29) 
13 (42) 
9 (29) 

 
61 (48) 
41 (32) 
26 (20) 

 
4 (50) 
2 (25) 
2 (25) 

 
36 (47) 
21 (28) 
19 (25) 

0.567   
16 (46) 
8 (23) 
11 (31) 

  
70 (42) 
59 (36) 
36 (22) 

 
6 (60) 
4 (40) 
0 (0) 

  
17 (38) 
15 (33) 
13 (29) 

0.178 

Stage (n=246) 
     I 
     II 
     III  

 
5 (16) 
16 (52) 
10 (32) 

 
15 (12) 
66 (50) 
50 (38) 

 
2 (25) 
4 (50) 
2 (25) 

 
19 (25) 
32 (42) 
25 (33) 

0.318   
4 (11) 
19 (54) 
12 (35) 

  
25 (15) 
77 (46) 
65 (39) 

 
1 (10) 
8 (80) 
1 (10) 

  
12 (27) 
15 (33) 
18 (40) 

0.091 
  

Differentiation (n=246) 
     Mod/well 
     Poor 

 
29 (94) 
2 (6) 

 
116 (89) 
15 (11) 

 
7 (88) 
1 (12) 

 
68 (90) 
8 (10) 

0.856   
29 (83) 
6 (17) 

  
149 (89) 
18 (11) 

 
9 (90) 
1 (10) 

  
39 (87) 
6 (13) 

0.767 

Vascular invasion (n=246) 
     Absent 
     Present 

 
19 (61) 
12 (39) 

 
82 (63) 
49 (37) 

 
5 (63) 
3 (37) 

 
54 (71) 
22 (29) 

0.616   
21 (60) 
14 (40) 

  
114 (68) 
53 (32) 

 
6 (60) 
4 (40) 

  
29 (64) 
16 (36) 

0.769 

Peritoneal involvement (n=246) 
     No 
     Yes 

 
23 (74) 
8 (26) 

 
95 (72) 
36 (28) 

 
4 (50) 
4 (50) 

 
59 (78) 
17 (22) 

0.430   
28 (80) 
7 (20) 

  
111 (67) 
56 (33) 

 
5 (50) 
5 (50) 

  
36 (80) 
9 (20) 

0.077 

Mismatch Repair Status (n=246) 
     Competent 
     Deficient 

 
28 (90) 
3 (10) 

 
99 (76) 
32 (24) 

 
7 (88) 
1 (12) 

 
62 (82) 
14 (18) 

0.223   
28 (80) 
7 (20) 

  
141 (84) 
26 (16) 

 
8 (80) 
2 (20) 

  
34 (76) 
11 (24) 

0.577 

Proliferation (n=246) 
     Low 
     High 

 
14 (45) 
17 (55) 

 
59 (45) 
72 (55) 

 
3 (38) 
5 (62) 

 
26 (34) 
50 (66) 

0.459   
10 (29) 
25 (71) 

  
80 (48) 
87 (52) 

 
4 (40) 
6 (60) 

  
17 (38) 
28 (62) 

0.153 

Tumour Necrosis (n=241) 
     Low 
     High 

 
17 (55) 
14 (45) 

 
87 (67) 
42 (33) 

 
7 (88) 
1 (12) 

 
42 (58) 
31 (42) 

0.151   
19 (54) 
16 (46) 

  
112 (69) 
51 (31) 

 
6 (60) 
4 (30) 

  
27 (61) 
17 (39) 

0.382 

Tumour Microenvironment Characteristics 

Tumour budding (n=230) 
     Low 
     High 

 
21 (72) 
8 (28) 

 
88 (71) 
36 (29) 

 
5 (62) 
3 (28) 

 
59 (86) 
10 (14) 

0.097  
27 (82) 
6 (18) 

 
106 (67) 
52 (33) 

 
6 (67) 
3 (33) 

 
34 (81) 
8 (19) 

0.142 

Tumour stroma percentage 
(n=246) 
     Low 
     High 

 
 
20 (65) 
11 (35) 

 
 
84 (64) 
47 (36) 

 
 

5 (62) 
3 (38) 

 
 
66 (87) 
10 (13) 

 
0.002 

  
 
26 (74) 
9 (26) 

  
 
116 (70) 
51 (30) 

 
 

6 (60) 
4 (40) 

  
 
29 (64) 
16 (36) 

 
0.735 

Klintrup-Makinen grade (n=241) 
     Weak 
     Strong 

 
23 (74) 
8 (26) 

 
97 (75) 
32 (25) 

 
5 (63) 
3 (37) 

 
44 (60) 
29 (40) 

0.150   
26 (74) 
9 (26) 

  
122 (75) 
41 (25) 

 
5 (50) 
5 (50) 

  
24 (55) 
20 (45) 

0.035 

Phenotypic subtypes (n=243) 
    Immune 
    Canonical 
    Latent 
    Stromal 

 
8 (26) 
10 (32) 
4 (13) 
9 (29) 

 
32 (25) 
37 (29) 
27 (21) 
33 (25) 

 
3 3 (38) 
2 2 (25) 
1 1 (12) 
2 2 (25) 

 
30 (40) 
23 (31) 
16 (21) 
6 (8) 

0.083  
9 (25) 
16 (46) 
3 (9) 
7 (20) 

 
41 (25) 
47 (29) 
36 (22) 
40 (24) 

 
5 (50) 
1 (10) 
2 (20) 

2 (20) 

 
21 (47) 
12 (27) 
5 (11) 
7 (16) 

0.046 
 

Systemic Characteristics 

Serum CRP (n=161) 
     Normal 
     High 

 
11 (69) 
5 (31) 

 
45 (53) 
40 (47) 

 
2 (29) 
5 (71) 

 
32 (60) 
21 (40) 

0.264   
12 (63) 
7 (37) 

  
62 (54) 
52 (46) 

 
3 (33) 
6 (67) 

  
15 (56) 
12 (44) 

0.526 

Serum Albumin (n=178) 
     Normal 
     Low 

 
16 (80) 
4 (20) 

 
68 (72) 
27 (28) 

 
3 (43) 
4 (57) 

 
47 (84) 
9 (16) 

0.081   
20 (87) 
3 (13) 

  
82 (70) 
36 (30) 

 
8 (80) 
2 (20) 

  
24 (75) 
8 (25) 

0.299 

mGPS (n=162) 
     0 
     1 
     2 

 
12 (71) 
4 (23) 
1 (6) 

 
46 (54) 
16 (19) 
23 (27) 

 
2 (29) 
1 (14) 
4 (27) 

 
32 (60) 
15 (28) 
6 (12) 

0.040   
13 (65) 
5 (25) 
2 (10) 

  
62 (55) 
22 (19) 
30 (26) 

 
3 (33) 
4 (44) 
2 (23) 

  
15 (54) 
7 (25) 
6 (21) 

0.444 
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3.10.7 Multivariate analysis 
As CSS had the most significant impact on patient’s survival, multivariate analysis was performed 

for CSS to evaluate the relationship between t-lymphocyte markers, myeloid cell markers, clinical 

characteristics, and tumour microenvironment characteristics. For CSS, tumour stage (HR 2.84, CI 

1.24-6.48, p=0.013), peritoneal involvement (HR 4.17, CI 1.58-11.02, p=0.004), tumour budding 

(HR 6.35, CI 2.29-17.57, p<0.001), tumour stroma percentage (HR 0.04, CI 0.005-0.42, p=0.007), 

KM grade (HR 32.52, CI 1.57-672.47, p=0.024), phenotypic subtypes (HR 9.65, CI 2.25-41.36, 

p=0.002), CD3+ tumour (HR 0.23, CI 0.06-0.93, p=0.039), and CD163+ stroma (HR 13.47, CI 2.68-

67.56, p=0.002) were independent prognostic factors (Table 3.10). 
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Table 3.10 - Univariate and multivariate analysis of immune cells, clinicopathological and 
inflammatory characteristics, and CSS in stage I-III CRC Scottish cohort (n=279) 
 
 Univariate HR (95% CI) P Multivariate HR (95% CI) P 

Clinical characteristics 

Age (<65/>65) (n=279) 1.04 (0.81-1.34) 0.714 - - 

Sex (female/male) 1.15 (0.90-1.45) 0.243 - - 

Tumour site (left/right/rectum) 1.02 (0.88-1.18) 0.770 - - 

Stage (1/2/3) 2.43 (1.98-2.97) <0.001 2.84 (1.24-6.48) 0.013 

Differentiation (low grade/high grade) 1.97 (1.41-2.73) <0.001 0.48 (0.07-3.17) 0.453 

Vascular Invasion (absent/present) 2.07 (1.63-2.62) <0.001 2.55 (0.77-8.35) 0.122 

Peritoneal Involvement (no/yes) 2.59 (2.04-3.28) <0.001 4.17 (1.58-11.02) 0.004 

Mismatch repair status (Competent/Deficient) 0.77 (0.55-1.09) 0.148 - - 

Proliferation index (low/high) 0.64 (0.50-0.81) <0.001 0.94 (0.23-3.75) 0.931 

Tumour necrosis (Low/High) 1.24 (0.8-1.58) 0.071 - - 

Tumour Microenvironment Characteristics  

Tumour budding (low/high) 6.43 (4.97-8.31) <0.001 6.35 (2.29-17.57) <0.001 

Tumour stroma percentage (low/high) 1.96 (1.53-2.52) <0.001 0.04 (0.005-0.42) 0.007 

Klintrup-Makinen Grade (weak/strong) 0.39 (0.29-0.54) <0.001 32.52 (1.57-672.47) 0.024 

Phenotypic subtypes 
(Immune/Canonical/Latent/Stromal) 

1.50 (1.34-1.67) <0.001 9.65 (2.25-41.36) 0.002 

Immune cell markers  

CD3 tumour (Low/High) 0.55 (0.37-0.80) 0.002 0.23 (0.06-0.93) 0.039 

CD3 stroma (Low/High) 0.45 (0.26-0.76) 0.003 0.90 (0.12-6.67) 0.924 

CD8 tumour (Low/High) 0.54 (0.37-0.80) 0.002 3.12 (0.95-10.22) 0.060 

CD8 stroma (Low/High) 0.65 (0.47-0.90) 0.011 0.46 (0.15-1.34) 0.155 

FoxP3 tumour (Low/High) 0.61 (0.31-1.21) 0.158 - - 

FoxP3 stroma (Low/High) 0.35 (0.19-0.62) <0.001 0.25 (0.06-1.07) 0.062 

CD68 tumour (Low/High) 0.70 (0.52-0.94) 0.018 0.66 (0.27-1.62) 0.375 

CD68 stroma (Low/High) 1.39 (1.04-1.86) 0.025 1.13 (0.27-4.68) 0.859 

CD80 tumour (Low/High) 0.47 (0.27-0.83) 0.009 0.31 (0.08-1.24) 0.100 

CD80 stroma (Low/High) 0.55 (0.35-0.87) 0.010 1.50 (0.49-4.60) 0.472 

CD163 tumour (Low/High) 0.56 (0.29-1.08) 0.084 - - 

CD163 stroma (Low/High) 1.84 (1.08-3.16) 0.025 13.47 (2.68-67.56) 0.002 

CD66b tumour (Low/High) 1.74 (1.18-2.57) 0.005 0.82 (0.21-3.13) 0.779 

CD66b stroma (Low/High) 1.48 (0.99-2.23) 0.056 - - 

HR = Hazard Ratio, CI = Confidence Intervals 
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3.11 Norwegian Validation Cohort  

To validate the findings in the Scottish cohort, a cohort of stage II/III CRC patients from Norwegian 

were utilised. Firstly, IHC for T-lymphocytes (CD3, CD8), and myeloid cells (CD68, CD66b) were 

performed in full sections. Three randomly selected areas of 0.6 mm2 were scored for positive cells 

to be representative of TMA cores in tumour cell nests and tumour stroma separately by two 

independent scorers. All markers were scored by myself and 10% of each marker were scored by 

Antonia Roseweir to check for the consistency. The cut-off values determined from the Scottish 

cohort were applied to the Norwegian cohort; survival and Chi-squared analysis were performed in 

comparison to Scottish findings.  

 

3.11.1 Patient’s characteristics 
294 patients with stage II-III CRC and a valid score for all markers were included in the analysis 

(Figure 3.29). Briefly, 62 (21%) were aged less than 65 years and 155 (53%) were male. 177 (60%) 

patients had right-sided colon cancer, 31 (10%) patients had left-sided colon cancer, and 86 (30%) 

had rectal cancer. 186 (63%) had stage II disease, with 108 (37%) stage III patients. The median 

follows up for patients was 6 years (range 2 months -14.25 years) with 33 (11%) cancer-related 

deaths and 75 (26%) non-cancer related deaths (Table 3.11). The two cohorts were assessed for the 

difference by utilizing Chi-square test, the result presented no significant differences for basic 

patient’s characteristics (Table 3.11). 
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Figure 3.30 - Consort diagram of Norwegian cohort eligible for analysis; Patients available in the 
study were excluded by died within 30 days and no tumour tissues.  
 

 

Table 3.11 - CRC patient's characteristics of Scottish discovery cohort (n=930) and Norwegian 
validation cohort (n=294) 
 

Characteristics Scottish discovery cohort Norwegian validation cohort p-value 
Number of patients (%) Number of patients (%)  

Age 
     <65 
     >65    

 
306 (33) 
624 (67) 

 
62 (21) 
232 (79) 

0.701 

Sex 
     Female 
     Male 

 
437 (47) 
493 (53) 

 
139 (47) 
155 (53) 

0.105 

Tumour site  
     Colon – Right 
     Colon - Left 
     Rectum 

 
377 (41) 
308 (33) 
238 (26) 

  
177 (60) 
31 (10) 
86 (30) 

0.697 

Stage 
     I 
     II 
     III  

 
125 (13) 
448 (48) 
357 (38) 

 
- 

186 (63) 
108 (37) 

0.299 

Survival 
Alive 
Cancer death 
Non-cancer death 

 
355 (38) 
279 (30) 
296 (32) 

 
186 (63) 
33 (11) 
75 (26) 

0.282 

 

 

CD3	

(N=284)	

CD8	

(N=282)	

CD68	

(N=273)	

CD66b	

(N=280)	

Final	cases	for	analysis	

Norwegian	cohort	

(N=294)	

Patients	with	no	tumour	tissues	
(vary	by	each	marker)	

Norwegian	cohort	

(N=299)	

Patients	died	within	30	days								
(N=5)	

Eligibility	cases	 Exclusion	cases	
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3.11.2 ICCC of scoring (full sections)  
Firstly, inter-observer agreement was determined using ICCC, Bland Altman and scatter plots for 

the four markers (Figure 3.31 – 3.34). 

 

3.11.2.1 CD3 
 

 
 

Figure 3.31 - ICCC, scatter plot, Bland-Altman plot of CD3+ in tumour cell nests and tumour 
stroma in stage II-III CRC Norwegian cohort full sections; A, B. tumour cell nests, C, D. tumour 
stroma 
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ICCC = 0.968 

ICCC = 0.795 
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3.11.2.2 CD8  
 

 
 
Figure 3.32 - ICCC, scatter plot, Bland-Altman plot of CD8+ in tumour cell nests and tumour 
stroma in stage II-III CRC Norwegian cohort full sections; A, B. tumour cell nests, C, D. tumour 
stroma 
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3.11.2.3 CD68 
 

 
 
Figure 3.33 - ICCC, scatter plot, Bland-Altman plot of CD68+ in tumour cell nests and tumour 
stroma in stage II-III CRC Norwegian cohort full sections; A, B. tumour cell nests, C, D. tumour 
stroma 
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3.11.2.4 CD66b 
 

 
 
Figure 3.34 - ICCC, scatter plot, Bland-Altman plot of CD66b+ in tumour cell nests and tumour 
stroma in stage II-III CRC Norwegian cohort full sections; A, B. tumour cell nests, C, D. tumour 
stroma 
 

 
3.11.3 Immune cell levels in Scottish and Norwegian cohorts 
The current study aimed to investigate in the influence of T-lymphocytes and myeloid cells in CRC 

patients with stage I-III in Scottish cohort as a discovery cohort and stage II-III in Norwegian as a 

validation cohort. As the two cohorts presented non significance differences in basic patient’s 

characteristics. The levels of T-lymphocytes and myeloid cells infiltrated in tumour cell nest and 

tumour stroma were assessed and compared between them. All T-lymphocytes and myeloid cells in 

Norwegian validation cohort were significantly higher when compared to Scottish discovery cohort 

in both tumour cell nest and tumour stroma (Figure 3.35). 
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C D 

ICCC = 0.987 

ICCC = 0.868 
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Figure 3.35 - Comparison of T-lymphocytes and myeloid cell levels between Scottish discovery 
cohort (n=930) and Norwegian validation cohort (n=284); *p<0.05, **p<0.01, ***p<0.001 
 
 
3.11.4 T-lymphocytes infiltration and patient’s survival 
3.11.4.1 T-lymphocytes in tumour cell nests 

The relationship between T-lymphocytes infiltration in tumour cells nests were high CD3+ was 

associated with improved CSS (HR 0.38, 95% CI 0.18-0.80, p=0.009, Figure 3.36, A) with 10-year 

survival stratified from 92% (high) to 79% (low). Furthermore, high CD8+ was associated with 

improved CSS (HR 0.28, 95% CI 0.13-0.59, p<0.001, Figure 3.36, C) with 10-year survival 

stratified from 92% (high) to 75% (low); and improved OS (HR 0.66, 95% CI 0.45-0.98, p=0.041, 

Figure 3.36, D) with 10-year survival stratified from 92% (high) to 75% (low) was associated with 

improved survival (Table 3.12).  
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Table 3.12 - Relationship between T-lymphocytes and myeloid cells in tumour cell nest and tumour 
stroma CSS, and OS (% survival at 10 years) in stage II-III CRC of Norwegian cohort (n=284) 
 

  N (%) 
  

CSS (SE) P OS (SE) P 
Tumour cell nest        
CD3+ (n=284) 
         Low 
      High 

 
139 (49) 
145 (51) 

 
 

   
79 (5) 
92 (2) 

0.009  
79 (5) 
92 (2) 

0.055 

CD8+ (n=282) 
      Low 
      High 

 
103 (37) 
179 (63) 

 
 

 
 

75 (5) 
92 (2) 

<0.001  
75 (5) 
92 (2) 

0.041 

Tumour stroma 
CD3+ (n=284) 
         Low 
      High 

 
229 (81) 
55 (19) 

 
 

   
83 (3) 
96 (3) 

0.032  
39 (6) 
64 (10) 

0.005 

CD8+ (n=282) 
      Low 
      High 

 
15 (5) 
267 (95) 

 
 

 
70 (19) 
82 (2) 

0.668  
47 (15) 
44 (6) 

0.276 

CSS = Cancer-specific survival, OS = Overall survival, SE = Standard error 

 

 

 
Figure 3.36 - KM plots of T-lymphocytes in tumour cell nests and CSS, OS (% survival at 10 
years) in stage II-III CRC Norwegian cohort (n=284); A. CD3+ CSS (p=0.009), B. CD3+ OS 
(p=0.055), C. CD8+ CSS (p<0.001), D. CD8+ OS (p=0.041) 
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3.11.4.2 T-lymphocytes in tumour stroma 

In tumour stroma, high CD3+ was significantly associated with improved CSS (HR 0.23, 95% CI 

0.05-0.99, p=0.032, Figure 3.37, A) with 10-year CSS stratified from 96% (high) to 83% (low); 

improved OS (HR 0.42, 95% CI 0.22-0.79, p=0.005, Figure 3.37, B) with 10-year CSS stratified 

from 64% (high) to 39% (low) (Table 3.12). 

 

 
 
Figure 3.37 - KM plots of T-lymphocytes in tumour stroma and CSS, OS (% survival at 10 
years) in stage II-III CRC Norwegian cohort (n=284); A. CD3+ CSS (p=0.032), B. CD3+ OS 
(p=0.005), C. CD8+ CSS (p=0.668), D. CD8+ OS (p=0.276) 
 
 
 

3.11.5 Myeloid cells infiltration and patient’s survival 
3.11.5.1 Myeloid cells in tumour cell nests 

The relationship between myeloid cells infiltration in tumour cells nests and CSS, and OS were 

assessed, no significant was observed (Table 3.13, Figure 3.38).  
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Table 3.13 - Relationship between myeloid cells in tumour cell nest and tumour stroma and CSS, 
and OS (% survival at 10 years) in stage II-III CRC of Norwegian cohort (n=284) 
 

  N (%) 
  

CSS (SE) P OS (SE) P 
Tumour cell nest        
CD68+ (n=273) 
         Low 
      High 

 
16 (6) 
257 (94) 

    
80 (10) 
87 (3) 

0.285  
80 (10) 
87 (3) 

0.923 

CD66b+ (n=280) 
      Low 
      High 

 
46 (16) 
234 (84) 

 
 

 
79 (8) 
87 (2) 

0.652  
79 (8) 
87 (2) 

0.932 

Tumour stroma 
CD68+ (n=273) 
         Low 
      High 

 
1 (1) 
272 (99) 

 
 

 
 
- 
87 (2) 

-  
- 
43 (6) 

- 

CD66b+ (n=279) 
      Low 
      High 

 
14 (5) 
265 (95) 

 
 

 
91 (9) 
86 (3) 

0.633  
49 (17) 
42 (6) 

0.987 

CSS = Cancer-specific survival, OS = Overall survival, SE = Standard error 

 

 
Figure 3.38 - KM plots of myeloid cells in tumour cell nests and CSS, OS (% survival at 10 
years) in stage II-III CRC Norwegian cohort (n=284). A. CD68+ CSS (p=0.285), B. CD68+ OS 
(p=0.923), C. CD66b+ CSS (p=0.652), D. CD66b+ OS (p=0.932) 
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3.11.5.2 Myeloid cells in tumour stroma 

In tumour stroma, due to lack of patients with low CD68+, therefore, the statistically significant 

cannot be calculated. For CD66b+, no significant was observed (Figure 3.39, Table 3.13). 

 

 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
Figure 3.39 - KM plots of myeloid cells in tumour stroma and CSS, OS in patients with stage 
II-III CRC Norwegian cohort (n=284); A. CD68+ CSS (p=0.932), B. CD68+ OS (p<0.001), C. CD66b+ 
CSS (p=0.633), D. CD66b+ OS (p=0.987) 
 
 
3.11.6 Associations between T-lymphocytes, myeloid cells and clinical, 
TME, and systemic characteristics 
 

3.11.6.1 T-lymphocytes and myeloid cells in tumour cell nests 

In tumour cell nests, high CD3+ associated with no adjuvant therapy (p=0.003), stage II disease 

(p=0.002), absent vascular invasion (p=0.023), low tumour stroma percentage (p=0.001), a strong 

KM grade (p=0.025), and an immune phenotypic subtype (p=0.003). High CD8+ associated with 

right-sided colon (p=0.007), no adjuvant therapy (p=0.009), stage II disease (p<0.001), and lower 

tumour stroma percentage (p<0.001). High CD68+ associated with male (p=0.022), and right-sided 

colon (p=0.024). There is no significant association with CD66b+ (Table 3.14). 
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Table 3.14 - Association between T-lymphocytes and myeloid cells in tumour cell nest and clinical, 
TME, systemic characteristics in stage II-III CRC Norwegian cohort (n=284) 
 

Tumour cell nest 

 

 CD3+   CD8+   CD68+   CD66b+  

Low 
(n=139) 

High 
(n=145) 

P  Low 
(n=103) 

High 
(n=179) 

P Low 
(n=16) 

High 
(n=257) 

P Low 
(n=235) 

High 
(n=176) 

P 

Clinical Characteristics             

Age (n=284) 
     <65 
     >65 

 
32 (23) 
107 (77) 

 
29 (20) 
116 (80) 

0.535   
25 (24) 
78 (76) 

  
35 (20) 
144 (80) 

0.354  
4 (25) 
12 (75) 

 
54 (21) 
203 (79) 

0.710 
 
 

 
9 (20) 
37 (80) 

 
51 (22) 
183 (78) 

0.734 

Sex (n=284) 
     Female 
     Male 

 
68 (49) 
71 (51) 

 
67 (46) 
78 (54) 

0.647   
51 (50) 
52 (50) 

  
83 (46) 
96 (54) 

0.611  
12 (75) 
4 (25) 

 
118 (46) 
139 (54) 

0.022  
21 (46) 
25 (54) 

 
114 (49) 
120 (51) 

0.703 

Tumour site (n=284) 
     Colon – Right 
     Colon - Left 
     Rectum 

 
74 (53) 
17 (12) 
48 (35) 

 
96 (66) 
14 (10) 
35 (24) 

0.080   
49 (48) 
16 (15) 
38 (37) 

  
119 (67) 
15 (8) 
45 (25) 

0.007  
5 (31) 
5 (31) 
6 (38) 

 
160 (62) 
26 (10) 
71 (28) 

0.024  
23 (50) 
6 (13) 
17 (37) 

 
146 (63) 
24 (10) 
64 (27) 

0.295 

Adjuvant therapy (n=284) 
     No 
     Yes 

 
99 (71) 
40 (29) 

 
124 (86) 
21 (14) 

0.003  
74 (72) 
29 (28) 

  
152 (85) 
27 (15) 

0.009  
13 (81) 
3 (19) 

 
207 (81) 
50 (19) 

0.945  
39 (85) 
7 (15) 

 
184 (79) 
50 (21) 

0.330 

Stage (n=284) 
     II 
     III 

 
75 (54) 
64 (46) 

 
104 (72) 
41 (28) 

0.002   
51 (50) 
52 (50) 

  
128 (72) 
51 (28) 

<0.001  
8 (50) 
8 (50) 

 
169 (66) 
88 (34) 

0.210  
32 (70) 
14 (30) 

 
145 (62) 
89 (38) 

0.323 

Vascular invasion (n=284) 
     Absent 
     Present 

 
111(87) 
17 (13) 

 
117 (94) 
7 (6) 

0.023   
76 (85) 
13 (15) 

  
151 (93) 
11 (7) 

0.083  
15 (94) 
1 (6) 

 
208 (91) 
20 (9) 

0.146  
38 (88) 
5 (12) 

 
187 (92) 
17 (8) 

0.347 

Proliferation (n=55) 
     Low 
     High 

 
1 (4) 
23 (96) 

 
1 (3) 
30 (97) 

0.854  
2 (9) 
20 (91) 

 
1 (3) 
33 (97) 

0.325  
0 (0) 
3 (100) 

 
3 (6) 
49 (94) 

0.556  
0 (0) 
6 (100) 

 
3 (6) 
46 (94) 

0.398 

Tumour Microenvironment Characteristics  
Tumour stroma percentage 
(n=284) 
     Low 
     High 

 
63 (45) 
76 (55) 

 
95 (66) 
50 (34) 

0.001   
43 (42) 
60 (58) 

  
115 (64) 
64 (36) 

<0.001  
6 (38) 
10 (62) 

 
150 (58) 
107 (42) 

0.104  
26 (57) 
20 (43) 

 
132 (56) 
102 (44) 

0.989 

Klintrup-Makinen grade (n=284) 
     Weak 
     Strong 

 
128 (92) 
11 (8) 

 
121 (83) 
24 (17) 

0.025   
93 (90) 
10 (10) 

  
155 (87) 
24 (13) 

0.352  
12 (75) 
4 (25) 

 
228 (89) 
29 (11) 

0.142  
43 (94) 
3 (6) 

 
203 (87) 
31 (13) 

0.172 

Phenotypic subtypes (n=175) 
    Immune 
    Canonical 
    Latent 
    Stromal 

 
11 (12) 
7 (8) 
0 (0) 
70 (80) 

 
24 (28) 
15 (17) 
1 (1) 
47 (54) 

0.003  
10 (14) 
7 (10) 
0 (0) 
55 (76) 

 
24 (24) 
15 (15) 
1 (1) 
60 (60) 

0.114  
4 (33) 
0 (0) 
0 (0) 
8 (67) 

 
29 (19) 
23 (15) 
1 (1) 
100 (65) 

0.204  
3 (12) 
2 (8) 
0 (0) 
20 (80) 

 
31 (21) 
20 (14) 
1 (1) 
94 (64) 

0.439 

Systemic Characteristics             

Serum CRP (n=284) 
     Normal  
     High 

 
103 (74) 
36 (26) 

 
98 (68) 
47 (32) 

0.227   
76 (74) 
27 (26) 

  
125 (70) 
54 (30) 

0.478  
14 (88) 
2 (12) 

 
181 (70) 
76 (30) 

0.114  
33 (72) 
13 (28) 

 
165 (71) 
69 (29) 

0.867 

Serum Albumin (n=263) 
     Normal 
     Low 

 
15 (12) 
113 (88) 

 
19 (14) 
116 (86) 

0.569   
15 (16) 
79 (84) 

  
18 (11) 
151 (89) 

0.219  
1 (7) 
13 (93) 

 
32 (13) 
210 (87) 

0.478  
7 (16) 
37 (84) 

 
27 (12) 
190 (88) 

0.543 

mGPS (n=264) 
     0 
     1 
     2 

 
94 (73) 
28 (22) 
7 (5) 

 
91 (68) 
33 (24) 
11 (8) 

0.544   
68 (73) 
18 (19) 
8 (8) 

  
117 (69) 
43 (25) 
9 (6) 

0.357  
12 (86) 
2 (14) 
0 (0) 

 
170 (70) 
55 (23) 
17 (7) 

0.245  
31 (71) 
9 (20) 
4 (9) 

 
152 (70) 
51 (23) 
14 (7) 

0.780 
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3.11.6.2 T-lymphocytes and myeloid cells in tumour stroma 

In tumour stroma, high CD3+ associated with low tumour stroma percentage (p=0.010), a strong KM 

grade (p=0.008), and immune phenotypic subtype (p=0.002). High CD8+ associated with strong KM 

grade (p=0.046) and normal serum albumin (p=0.042). High CD68+ associated with normal serum 

albumin (p=0.042) (Table 3.15). 

 
Table 3.15 - Association between T-lymphocytes and myeloid cells in tumour stroma and clinical, 
TME, and systemic characteristics in stage II-III CRC Norwegian cohort (n=284) 
 

Tumour stroma 

 

 CD3+   CD8+   CD68+   CD66b+  

Low 
(n=229) 

High 
(n=55) 

P  Low 
(n=15) 

High 
(n=267) 

P Low 
(n=1) 

High 
(n=272) 

P Low 
(n=14) 

High 
(n=265) 

P 

Clinical Characteristics             

Age (n=284) 
     <65 
     >65 

 
49 (21) 
180 (79) 

 
12 (22) 
43 (78) 

0.946   
4 (27) 
11 (73) 

  
56 (21) 
211 (79) 

0.610  
0 (0) 
1 (100) 

 
58 (21) 
214 (79) 

0.489 
 
 

 
3 (21) 
11 (79) 

 
57 (22) 
208 (78) 

0.994 

Sex (n=284) 
     Female 
     Male 

 
109 (48) 
120 (52) 

 
26 (47) 
29 (53) 

0.965   
7 (47) 
8 (53) 

  
127 (47) 
140 (53) 

0.946  
0 (0) 
1 (100) 

 
130 (48) 
142 (52) 

0.255  
6 (43) 
8 (57) 

 
129 (49) 
136 (51) 

0.670 

Tumour site (n=284) 
     Colon – Right 
     Colon - Left 
     Rectum 

 
135 (59) 
25 (11) 
69 (30) 

 
35 (64) 
6 (11) 
14 (25) 

0.777   
9 (60) 
3 (20) 
3 (20) 

  
159 (60) 
28 (10) 
80 (30) 

0.475  
1 (100) 
0 (0) 
0 (0) 

 
164 (60) 
31 (12) 
77 (28) 

0.604  
9 (64) 
1 (7) 
4 (29) 

 
159 (60) 
29 (11) 
77 (29) 

0.886 

Adjuvant therapy (n=284) 
     No 
     Yes 

 
181 (79) 
48 (21) 

 
42 (76) 
13 (24) 

0.667  
11 (73) 
4 (27) 

  
215 (81) 
52 (19) 

0.512  
1 (100) 
0 (0) 

 
219 (81) 
53 (19) 

0.511  
12 (86) 
2 (14) 

 
210 (79) 
55 (21) 

0.542 

Stage (n=284) 
     II 
     III 

 
143 (62) 
86 (38) 

 
36 (66) 
19 (34) 

0.677   
9 (60) 
6 (40) 

  
170 (64) 
97 (36) 

0.775  
0 (0) 
1 (100) 

 
177 (65) 
95 (35) 

0.148  
7 (50) 
7 (50) 

 
169 (64) 
96 (36) 

0.306 

Vascular invasion (n=284) 
     Absent 
     Present 

 
184 (91) 
19 (9) 

 
44 (90) 
5 (10) 

0.980   
11 (79) 
3 (21) 

  
216 (91) 
21 (9) 

0.328  
1 (100) 
0 (0) 

 
222 (91) 
21 (9) 

0.817  
12 (92) 
1 (8) 

 
212 (91) 
21 (9) 

0.827 

Proliferation (n=55) 
     Low 
     High 

 
2 (5) 
39 (95) 

 
0 (0) 
14 (100) 

0.273  
1 (20) 
4 (80) 

 
2 (4) 
49 (96) 

0.218  
- 
- 

 
3 (6) 
52 (94) 

-  
0 (0) 
4 (100) 

 
3 (6) 
48 (94) 

0.495 

Tumour Microenvironment Characteristics 
Tumour stroma percentage (n=284) 
     Low 
     High 

 
119 (52) 
110 (48) 

 
39 (71) 
16 (29) 

0.010   
9 (60) 
6 (40) 

  
149 (56) 
118 (44) 

0.749  
0 (0) 
1 (100) 

 
156 (57) 
116 (43) 

0.192  
8 (57) 
6 (43) 

 
149 (56) 
116 (44) 

0.946 

Klintrup-Makinen grade (n=284) 
     Weak 
     Strong 

 
207 (90) 
22 (10) 

 
42 (76) 
13 (24) 

0.008   
15 (100) 
0 (0) 

  
233 (87) 
34 (13) 

0.046  
1 (100) 
0 (0) 

 
239 (88) 
33 (12) 

0.611  
13 (93) 
1 (7) 

 
233 (88) 
32 (12) 

0.553 

Phenotypic subtypes (n=175) 
    Immune 
    Canonical 
    Latent 
    Stromal 

 
22 (16) 
14 (10) 
1 (1) 
103 (73) 

 
13 (37) 
8 (23) 
0 (0) 
14 (40) 

0.002  
0 (0) 
2 (25) 
0 (0) 
6 (75) 

 
34 (21) 
20 (12) 
1 (1) 
109 (66) 

0.242  
0 (0) 
0 (0) 
0 (0) 
1 (100) 

 
33 (20) 
23 (14) 
1 (1) 
107 (65) 

0.837  
1 (12) 
1 (12) 
0 (0) 
6 (76) 

 
32 (20) 
21 (13) 
1 (1) 
108 (66) 

0.938 

Systemic characteristics             

Serum CRP (n=284) 
     Normal  
     High 

 
158 (69) 
71 (31) 

 
43 (78) 
12 (22) 

0.169   
11 (73) 
4 (27) 

  
190 (71) 
77 (29) 

0.855  
0 (0) 
1 (100) 

 
195 (71) 
77 (29) 

0.113  
10 (71) 
4 (29) 

 
187 (71) 
78 (29) 

0.945 

Serum Albumin (n=263) 
     Normal 
     Low 

 
29 (14) 
183 (86) 

 
5 (10) 
46 (90) 

0.446   
0 (0) 
15 (100) 

  
33 (13) 
215 (87) 

0.042  
1 (100) 
0 (0) 

 
32 (13) 
223 (87) 

0.042  
1 (7) 
13 (93) 

 
33 (13) 
213 (87) 

0.486 

mGPS (n=264) 
     0 
     1 
     2 

 
146 (69) 
51 (24) 
16 (7) 

 
39 (76) 
10 (20) 
2 (4) 

0.450   
11 (73) 
4 (27) 
0 (0) 

  
174 (70) 
57 (23) 
17 (7) 

0.351  
0 (0) 
0 (0) 
1 (100) 

 
182 (71) 
57 (22) 
16 (7) 

0.065  
10 (71) 
4 (29) 
0 (0) 

 
172 (70) 
56 (23) 
18 (7) 

0.337 
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3.11.7 Immune cells landscapes (CD3/CD68/CD66b) and patient’s survival 
The associations of immune landscapes and patient’s survival were assessed next. For tumour 

immune landscape, no associations with any survival measure were noted. Whereas stromal immune 

landscape displayed that the both high group was significantly associated with improved CSS and 

OS. For CSS indicated that both high group had the best survival (HR 0.50, 95% CI 0.24-1.03, 

p=0.043, Figure 3.39, B). For OS, the both high group had the best survival, (HR 0.69, 95% CI 0.51-

0.93, p=0.006, Figure 3.39, D) (Table 3.16). 

 

 
Table 3.16 - Relationship between tumour and stromal immune landscapes and CSS, and OS (% 
survival at 10 years) in stage II-III CRC Norwegian cohort (n=284) 
 

Immune landscapes (CD3/CD68/CD66b) 

  N (%) 
  

CSS (SE)       P OS (SE)     P 
Tumour immune landscape (n=272) 
      Both low 
      Myeloid high 
      T-cells high 
      Both high 

 
1 (0.5) 
129 (47) 
1 (0.5) 
141 (52) 

 
 

 
100 (0) 
79 (5) 
100 (0) 
92 (3) 

0.143  
100 (0) 
79 (5) 
100 (0) 
92 (3) 

0.218 

Stromal immune landscape (n=278) 
      Both low 
      Myeloid high 
      T-cells high 
      Both high 

 
- 
224 (81) 
-  
54 (19) 

  
 

 
- 
83 (3) 
- 
96 (3) 

0.043  
- 
39 (6) 
- 

60 (10) 

0.006 

CSS = Cancer-specific survival, OS = Overall survival, SE = Standard error 
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Figure 3.40 - KM plots of tumour and stromal immune landscapes and CSS, OS (% survival 
at 10 years) in stage II-III CRC Norwegian cohort (n=284); A. Tumour_IL CSS (p=0.137), B. 
Stromal_IL CSS (p=0.043), C. Tumour_IL OS (p=0.200), D. Stromal_IL OS (p=0.006) 
 

 

3.11.8 Associations between immune landscapes and clinical, TME, 
systemic characteristics 
For tumour immune landscape, the myeloid high associated with increased adjuvant therapy 

(p=0.022), lower stage (p=0.004), high tumour stomal percentage (p=0.010), and a stromal 

phenotypic subtype (p=0.025). The both high group associated with stage II disease (p=0.008), low 

tumour stroma percentage (p=0.004) and an immune phenotypic subtype (p=0.025). For stromal 

immune landscape, myeloid high group associated with high tumour stroma percentage (p=0.010), a 

weak KM grade (p=0.008), and a stromal phenotypic subtype (p=0.002) (Table 3.17). Whereas, the 

both high group associated with a low tumour stroma percentage (p=0.010), a strong KM grade 

(p=0.008), and an immune phenotypic subtype (p=0.002) 

 
 
 
 
 

Tumour_IL 

HR=0.66, 95% CI=0.45-0.96, Log-rank p=0.137 

Myeloids High 
T-cells High  

Both Low 

 Both High  

Stromal_IL 

HR=0.50, 95% CI=0.24-1.03, Log-rank p=0.043 

Myeloids High 
 Both High  

Tumour_IL 

HR=0.83, 95% CI=0.68-1.01, Log-rank p=0.200 

Myeloids High 
T-cells High  

Both Low 

 Both High  

Stromal_IL 

HR=0.69, 95% CI=0.51-0.93, Log-rank p=0.006 

Myeloids high 
 Both High  

A B 

C D 
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Table 3.17 - Association between immune cell landscapes in tumour cell nest and stroma and 
clinical, TME, and systemic characteristics in stage II-III CRC Norwegian cohort (n=284) 
 

  
  Tumour immune landscape Stromal immune landscape 

 
Both 
 low 
(n=1) 

Myeloid 
high 

(n=129) 

T-cell 
high 
(n=1) 

Both  
high 

(n=141) 

P Both 
low 

(n=0) 

Myeloid 
high 

(n=224) 

T-cell 
high 
(n=0) 

Both 
high 

(n=54) 

P 

Clinical Characteristics 
Age (n=272) 
     <65  
     >65 

 
0 (0) 
1 (100) 

 
30 (23) 
99 (77) 

 
0 (0) 
1 (100) 

 
28 (20) 
113 (80) 

0.700  
- 
  

  
46 (21) 
178 (79) 

 
- 
 

  
12 (22) 
42 (78) 

0.785 

Sex (n=272) 
     Female 
     Male 

 
1 (100) 
0 (0) 

 
62 (48) 
67 (52) 

 
1 (100) 
0 (0) 

 
65 (46) 
76 (54) 

0.376  
- 
  

  
106 (47) 
118 (53) 

 
- 
 

  
26 (48) 
28 (52) 

0.913 

Tumour site (n=272) 
     Colon – Right 
     Colon - Left 
     Rectum 

 
0 (0) 
1 (100) 
0 (0) 

 
72 (56) 
16 (12) 
41 (32) 

 
0 (0) 
1 (100) 
0 (0) 

 
93 (66) 
13 (9) 
35 (25) 

0.068  
- 
  

  
133 (59) 
25 (11) 
66 (30) 

 
- 
 
 

  
34 (63) 
6 (11) 
14 (26) 

0.867 

Adjuvant therapy (n=272) 
     No 
     Yes 

 
1 (100) 
0 (0) 

 
93 (72) 
36 (28) 

 
1 (100) 
0 (0) 

 
122 (87) 
19 (13) 

0.022  
- 
  

  
181 (81) 
43 (19) 

 
- 
 

  
42 (78) 
12 (22) 

0.620 

Stage (n=272) 
     II 
     III  

 
0 (0) 
1 (100) 

 
71 (55) 
58 (45) 

 
1 (100) 
0 (0) 

 
102 (73) 
39 (27) 

0.008  
- 

  
142 (63) 
82 (37) 

 
- 
 

  
35 (65) 
19 (35) 

0.845 
  

Vascular invasion (n=272) 
     Absent 
     Present 

 
1 (100) 
0 (0) 

 
104 (87) 
16 (13) 

 
1 (100) 
0 (0) 

 
113 (94) 
7 (6) 

0.159  
- 
  

  
181 (91) 
18 (9) 

 
- 
 

  
43 (90) 
5 (10) 

0.959 

Proliferation (n=53) 
     Low 
     High 

 
- 
- 

 
1 (5) 
21 (95) 

 
0 (0) 

1 (100) 

 
1 (3) 
29 (93) 

0.938  
- 

 
3 (7) 
38 (93) 

 
- 

 
0 (0) 
14 (100) 

0.177 

Tumour Microenvironment Characteristics 
Tumour stroma percentage (n=272)  
     Low 
     High 

 
1 (100) 
0 (0) 

 
61 (47) 
68 (53) 

 
0 (0) 
1 (100) 

 
94 (67) 
47 (33) 

0.004  
- 
 

  
119 (53) 
105 (47) 

 
- 
 
 

  
39 (72) 
15 (28) 

0.010 

Klintrup-Makinen grade (n=272) 
     Weak 
     Strong 

 
1 (100) 
0 (0) 

 
119 (92) 
10 (8) 

 
1 (100) 
0 (0) 

 
117 (83) 
24 (17) 

0.114  
- 
 

  
202 (90) 
22 (10) 

 
- 
 
 

  
41 (76) 
13 (24) 

0.008 

Phenotypic subtypes (n=165) 
    Immune 
    Canonical 
    Latent 
    Stromal 

 
- 
- 
- 
- 

 
10 (12) 
7 (9) 
0 (0) 
63 (79) 

 
0 (0) 
0 (0) 
0 (0) 
1 (100) 

 
24 (29) 
15 (18) 
1 (1) 
44 (52) 

0.025  
- 

 
22 (16) 
14 (10) 
1 (1) 
98 (73) 

 
- 

 
13 (38) 
8 (24) 
0 (0) 
13 (38) 

0.002 

Systemic Characteristics 
Serum CRP (n=578) 
     Normal 
     High 

 
1 (100) 
0 (0) 

 
95 (74) 
34 (26) 

 
1 (100) 
0 (0) 

 
95 (67) 
46 (33) 

0.445  
-  

  
154 (69) 
70 (31) 

 
- 
 

  
42 (78) 
12 (22) 

0.182 

Serum Albumin (n=609) 
     Normal 
     Low 

 
0 (0) 
1 (100) 

 
14 (12) 
108 (88) 

 
0 (0) 
1 (100) 

 
19 (15) 
112 (85) 

0.784  
-  

  
29 (14) 
179 (86) 

 
- 
 

  
5 (10) 
45 (90) 

0.446 

mGPS (n=581) 
     0 
     1 
     2 

 
1 (100) 
0 (0) 
0 (0) 

 
89 (73) 
27 (22) 
6 (5) 

 
1 (100) 
0 (0) 
0 (0) 

 
88 (67) 
32 (24) 
11 (9) 

0.806 - 
- 
 
  

  
142 (68) 
50 (24) 
16 (8) 

 
- 
 
 

  
38 (76) 
10 (20) 
2 (4) 

0.465 
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3.11.9 Multivariate analysis 
Multivariate analysed was then performed to evaluate the independence of prognostic factors when 

comparing T-lymphocyte markers, myeloid cell markers, clinical characteristics, and CSS. For 

clinical and tumour microenvironment characteristics, patient’s age (HR 8.01, 95% CI 1.88-34.62, 

p=0.005), tumour stage (HR 3.19, 95% CI 1.50-6.77, p=0.002), and tumour stroma percentage (HR 

2.41, 95% CI 1.11-5.23, p=0.026) were independent prognostic factors. For immune cells, CD8+ 

tumour (HR 0.28, 95% CI 0.11-0.68, p=0.005) was an independent prognostic factor (Table 3.18). 

 
 
Table 3.18 - Univariate and multivariate analysis for clinical, TME, immune cell markers, and CSS 
(% survival at 10 years) in stage II-III CRC of Norwegian cohort (n=284) 
 

 Univariate HR 
(95% CI) 

P Multivariate HR 
(95% CI) 

P 

Clinical Characteristics 

Age (<65/>65) 5.05 (1.20-21.13) 0.026 8.01 (1.88-34.62) 0.005 

Sex (female/male) 1.15 (0.58-2.28) 0.688 - - 

Tumour site (right/left/rectum) 0.71 (0.46-1.09) 0.127 - - 

Adjuvant therapy (no/yes) 1.05 (0.47-2.34) 0.890 - - 

Stage (2/3) 2.58 (1.29-5.15) 0.007 3.19 (1.50-6.77) 0.002 

Vascular invasion (no/yes) 1.71 (0.59-4.93) 0.316 - - 

Proliferation (low/high) 0.39 (0.04-3.17) 0.383 - - 

Tumour Microenvironment Characteristics 

Klintrup-Makinen Grade (weak/strong) 0.97 (0.34-2.76) 0.956 - - 

Tumour stroma percentage (low/high) 3.00 (1.43-6.31) 0.004 2.41 (1.11-5.23) 0.026 

Phenotypic subtypes 
(Immune/Canonical/Latent/Stromal) 

1.28 (0.89-1.84) 0.177 - - 

Immune cell markers 

CD3 tumour (Low/High) 0.38 (0.18-0.80) 0.012 1.30 (0.45-3.74) 0.622 

CD3 stroma (Low/High) 0.23 (0.05-0.99) 0.048 0.34 (0.08-1.47) 0.151 

CD8 tumour (Low/High) 0.28 (0.13-0.59) 0.001 0.39 (0.18-0.85) 0.018 

CD8 stroma (Low/High) 0.73 (0.17-3.06) 0.669 - - 

CD68 tumour (Low/High) 0.52 (0.15-1.74) 0.293 - - 

CD68 stroma (Low/High) 20.19 (0-8.40E+45) 0.954 - - 

CD66b tumour (Low/High) 0.81 (0.33-1.98) 0.653 - - 

CD66b stroma (Low/High) 1.61 (0.22-11.86) 0.636 - - 

Tumour immune score (CD3/CD68/CD66b) 0.66 (0.45-0.96) 0.033 1.23 (0.71-2.10) 0.448 

Stroma immune score (CD3/CD68/CD66b) 0.50 (0.24-1.03) 0.061 - - 

HR=Hazard ration, CI=confidence intervals 
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3.12 Discussion 

This study demonstrated that immune cells, both T-lymphocytes and myeloid cells high levels of 

infiltrate in early stage of disease and gradually decreased at later stages in tumour cell nests and 

tumour stroma. High numbers of cytotoxic T-lymphocytes (CD8+) infiltration in tumour and stroma 

associated with improved CSS. CD3+ infiltration within tumour cells could be independent 

prognostic factor, like results shown in a previous study (Ohtani, 2007). The presence of FoxP3+ 

Tregs in stroma associated with improved CSS only. This agrees with other studies showing FoxP3+ 

Tregs associated with improved prognosis in patients with CRC (Ladoire et al., 2011; Salama et al., 

2009; Shang et al., 2015; Sun et al., 2017; Vlad et al., 2015). However, FoxP3+ Tregs infiltration has 

been shown associated with poor prognosis in other types of tumours (Shang et al., 2015; Zhou et 

al., 2017). Our results are in the line with other studies that T-lymphocytes, cytotoxic T-lymphocytes 

and Tregs are beneficial to patient’s survival in CRC regardless the locations, but high numbers are 

crucial to fight tumour cells. Overall, the data suggests that high levels of T-lymphocytes are 

important predictor of improved survival in patients with stage I-III CRC.  

 

For myeloid cells, the present study showed that, high M1-like macrophages (CD80+) was associated 

with improved CSS in both tumour and stroma, whereas high M2-like macrophages (CD163+) in 

stroma was significantly associated with decreased CSS. Similarly, high granulocytes (CD66b+) in 

tumour and stroma were associated with decreased CSS. M1-like macrophages known as a facilitator 

of cytotoxic T-lymphocytes function, presented high levels in tumour and stroma could benefit 

patient’s survival. Whereas M2-like macrophages, known as could attract Tregs and help to create 

immunosuppressive environment, were presented low infiltration in the stroma in patients with 

improved CSS, however, high level in tumour cells nests were good and had the potential to 

significantly improved CSS. As for granulocytes, neutrophils are the most abundance in TME, which 

has been proposed having pro-tumorigenic and anti-tumorigenic characteristics. This study found 

that high granulocytes infiltration in tumour and stroma were associated with decreased CSS. This 

indicate that high M1 macrophages are needed, and low M2 macrophages, neutrophils individually 

are crucial for improving patient survival. However, the role of these in combination might cause 

distinct outcome. Overall, in multivariate, analysis only CD3+ and CD8+ T-lymphocytes were 

independently prognostic in the tumour cell nest and only CD163+ M2-macrophages were 

independently prognostic in the tumour stroma. 

 

To distinguish different immune landscapes, T-lymphocytes and myeloid cells were combined in 

tumour and stroma separately. The effects on prognosis showed that in tumour cell nests both T-

lymphocytes and myeloid cells high group had a potentially better prognosis for CSS, whereas the 
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T-lymphocytes high only group had the worse prognosis. Whereas in stroma, T-lymphocytes high 

only group significantly had the best prognosis for CSS, while myeloid high only group clearly had 

the worse prognosis. This could indicate that in tumour cell nests both T-lymphocytes and myeloid 

are needed, or myeloid cells might need to enhance T-lymphocytes function when they become 

exhausted. This suggest that myeloid cells might have different role at different locations. In tumour 

cells, if patients present only myeloid cells strong will lead to poorer survival. On the other hand, if 

present with strong T-lymphocytes, it could enhance t-lymphocyte’s function to eliminate tumour 

cells and improved patient’s survival even better than T-lymphocytes strong only. Therefore, in 

tumour cells T-lymphocytes might need the co-operation with particular myeloid cells to reach 

greater effect for tumour cells eradication. 

 

The correlation of T-lymphocytes populations and myeloid cells are in the current matter as they 

could affect patient’s treatment which some studies show that the presence of myeloid cells related 

to poorer treatment outcomes (Awad et al., 2018). In pancreatic cancer showed that, myeloid cells 

could inhibit anti-tumour activity of cytotoxic T-lymphocytes (Guo et al., 2019). In addition, the role 

of myeloid cells, macrophages, in cancer immunotherapy has been proposed that 

monocytes/macrophages expressed PD-L1, which is receptor for PD-1 on T-lymphocytes, while 

tumour cells did not show high PD-L1 (Cantero-Cid et al., 2018). Suggest that 

monocytes/macrophages could interact with T-lymphocytes which trigger T-lymphocytes 

exhaustion, reduce T-lymphocytes proliferation, promote tumour progression, and induce resistance 

to anti PD-1/PD-L1 immunotherapy in CRC. However, the positive effect of innate and adaptive 

interplay has been reported. The association of CD8+ T-lymphocytes and neutrophils has been 

proposed that there is interplay between CD8+ T-lymphocytes and neutrophils, which can improve 

colorectal patient survival (Governa et al., 2017). Therefore, the effect of interplay between innate 

and adaptive immune response could be negative or positive in different cancer types and depends 

on particular cell types presented. 

 

The role of myeloid cells in cancer immunotherapy is now one of the forefronts in research, as shown 

that targeting myeloid cells in immunotherapy in combination with conventional therapy and 

radiotherapy may lead to a better therapeutic outcome (Moynihan & Irvine, 2017). The combination 

between chemotherapy and immunotherapy targeting innate and adaptive immune cells has 

presented in ovarian cancer showed that could promote activated T-lymphocytes and reverse 

immunosuppression mediated by myeloid cells (Hartl et al., 2019). Recently, the dual target of 

immune checkpoint and novel molecule, CD47 has been proposed and now validated for cancer 

immunotherapy. CD47 is a do not eat me signal to protect tumour cells from innate immune system 

and escape from phagocytic cells such as macrophages. CD47 overexpression in multiple cancer 
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types, including CRC, and ovarian cancer. Inhibition results in increasing macrophages phagocytic 

activity leads to impaired tumour growth and limited metastasis (Takimoto et al., 2019). A number 

of studies found that dual blockade of CD47 and PD-L1 could enhance and bridge innate and 

adaptive immune response to cancer (Lian et al., 2019; B. Liu et al., 2018; X. Liu et al., 2018).  

 

To validate the results, Norwegian cohort CRC patients was assessed, as it had similar patient 

characteristics, but the Norwegian cohort showed a low percentage of cancer death than the Scottish 

cohort. In addition, Norwegian patients had significantly elevated immune cells infiltration levels 

compared to the Scottish cohort for all cell types both in tumour and stroma. High levels of cytotoxic 

T-lymphocytes in tumour and stroma associate with improved CSS, while macrophages high 

infiltration in tumour cells nest significant improved CSS, but not in stroma. For multivariate 

analysis, CD8+ T-lymphocytes in the tumour cell nests were independently prognostic validating the 

Scottish cohort results for CD8+. As for immune landscapes, the significance presented in stroma, 

but not in tumour, which both T-lymphocyte high and myeloid cells high group had better survival 

than myeloid high only group. However, by lacking the other two groups the result might not be 

comparable to Scottish cohort. Although the two cohorts have similar results, the interesting point is 

that the high survival rate and high levels of immune cells infiltration, which Norwegian patients had 

both much higher than Scottish cohort. However, one limitation of this study may be the differences 

in prognosis seen between Scottish and Norwegian cohort, which might be due to the different 

immune cells infiltration levels seen between the two cohorts. This might be due to various factors 

between that could cause bias, for example, different diagnostic pathways, undergoing different 

surgery and perioperative care, different oncology treatments, specimens being processed differently, 

different TNM versions used, lifestyles factors, nutrition, or differences in systemic inflammation 

with Scottish patients more likely to be systemically inflamed than Norwegian patients (Park et al., 

2020).  

 

Interestingly, different immune cells associated with different phenotypic subtypes classifications 

that have been proposed to aid both prognosis and treatment. The immune subtype associated with 

higher levels of cytotoxic lymphocytes, whereas the canonical subtype associated with high levels 

of Tregs and macrophages. The latent and stromal subtypes generally associated with low levels of 

all immune cells. As this study developed immune landscapes and observed the relationship with 

patient’s survival, which presented the distinct pattern in intratumorally and stromal areas. Therefore, 

differing immune landscapes within each subtype may contribute to their differing prognosis and 

may identify a subtype more likely to respond to immune-based therapies. 
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In conclusion, the present study confirms that different immune cell subtypes associate with different 

prognosis in stage I-III CRC patients. Elevated lymphoid cells always associate with improved 

prognosis independent of the presence of myeloid cells, whereas patients with only elevated myeloid 

cells have a poorer prognosis. The presence of both lymphoid and myeloid cells could reach better 

survival, however, depends on particular cell types presented and where they located. Besides, 

assessing different immune landscapes utilising broad markers for T-lymphocytes, macrophages, and 

granulocytes could aid clinicians with patient prognosis and help target appropriate patients for 

immunotherapy. However, further validation in a prospective setting across multiple research centres 

is needed to fully assess the prognostic value of the immune landscapes to assess if the cut-offs 

generated are appropriate in multiple populations before moving into clinical use. 
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Chapter 4 Adaptive and innate immune 
cells within CRC patients with different 

phenotypic subtype 
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4.1 Background 

CRC prognosis, clinical classification and treatment strategies still mainly rely on tumour staging 

using the TNM method. However, clinical outcomes and treatment results are highly variable 

between patient with the same stage, which is one of the main problems for patients with CRC. To 

address this, Guiney et al. proposed a transcriptomics approach to classify patients into four 

molecular subtypes; CMS1: MSI Immune, CMS2: Canonical, CMS3: Metabolic, and CMS4: 

Mesenchymal. Another study also proposed an intrinsic subtype by using the pattern of full genome 

expression (Guinney, Dienstmann, Wang, de Reynies, Schlicker, Soneson, Marisa, Roepman, 

Nyamundanda, Angelino, Bot, Morris, Simon, Gerster, Fessler, De Sousa, et al., 2015; Roepman et 

al., 2014). However, due to the technical difficulties of translating transcriptomics into the clinical 

setting in a cost-effective manner, these methods are yet to be integrated into CRC clinical practice. 

Therefore, a CRC classification utilizing phenotypic characteristics could be the alternative way to 

classify CRC patients that accounts for both tumour and the surrounding microenvironment and 

utilises clinically utilised histological methods that could be readily translated to clinical practice. 

Roseweir et al. proposed such a classification called phenotypic subtypes that classify patients into 

four phenotypic subtypes: immune, canonical, latent, and stromal. These subtypes are independently 

prognostic for CRC and can predict patients likely to recur and respond to differing adjuvant 

chemotherapy regimens (Roseweir et al., 2020). However, to improve the predictive value of the 

phenotypic subtypes, they need further characterisation at both a genomic and proteomic level, 

including characterising the immune composition of each subtype.  

 

As immune landscapes of T-lymphocytes and myeloid cells were developed; therefore, integration 

of differing immune landscapes into phenotypic subtypes may contribute to their differing prognosis 

and may identify a subtype more likely to respond to immune-based therapies such as immune 

checkpoint inhibitors (ICIs). This study aimed to explore the compositions and levels of T-

lymphocytes and myeloid cells and the prognosis within CRC patients with stage I-III CRC.  

 

 

4.2 Methods  
Full sections and TMAs slide from stage I-III CRC patient samples of Scottish cohort were stained 

by utilising IHC technique. Positive stained cells were scored in tumour cell nests and tumour stroma. 

The final score for each marker was the average from three randomly selected areas in full sections, 

and four cores per patient for TMA. The agreement between two independent scorers were assessed 

by intra-class correlation coefficient (ICCC), scatter plot and Bland-Altman plot. Then the cut-off 

value for each marker were generated by Bioconductor R studio using the maximal log-rank method 

based on patients CSS and are the same as used in chapter 3. The analysis was performed for immune 
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cells markers in terms of the infiltration levels in each phenotypic subtype, CSS stratified by 

phenotypic subtype, associations with phenotypic subtypes, and multivariate analysis stratified by 

phenotypic subtype. The combination of T-lymphocytes and myeloid cells were also performed and 

analysed within phenotypic subtypes in the same manner.  

 

 

4.3 Results 

4.3.1 Patient characteristics 
The same 930 Scottish patients with stage I-III CRC were included in the analysis used for the 

previous chapter (as shown in Figure 3.1). Patient characteristics for the cohort, briefly, 624 (67%) 

patients were over 65 years and 493 (53%) were male. 685 (73%) patients had colon cancer, and 238 

(27%) had rectal cancer. 125 (13%) patients had stage I disease, 448 (48%) had stage II disease, with 

357 (38%) stage III patients. 162 (18%) patients with MMR deficient. 298 (34%) had an immune 

subtype, 245 (28%) had a canonical subtype, 190 (21%) had a latent subtype and 156 (17%) had a 

stromal subtype. The median follows up for patients with stage I-III was 7.5 years (range 2 months 

-17 years) with 279 (30%) cancer-related deaths and 296 (32%) non-cancer related deaths (Table 

4.1).  
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Table 4.1 - CRC patient's characteristics of stage I-III CRC with phonotypic subtypes in Scottish 
cohort (n=930) 
 

Clinical characteristics Number of patients (%) 
Age 
     <65 
     >65    

 
306 (33) 
624 (67) 

Sex 
     Female 
     Male 

 
437 (47) 
493 (53) 

Tumour site  
     Colon-right 
     Colon-left 
     Rectum 

 
377 (40) 
308 (33) 
238 (27) 

TNM-Stage 
     I 
     II 
     III  

 
125 (13) 
448 (48) 
357 (38) 

  MMR Deficiency 
    Competent 
    Deficient 
    Missing 

 
739 (79) 
162 (18) 
29 (3) 

Phenotypic Subtype 
     Immune 
     Canonical 
     Latent 
     Stromal 
     Missing 

 
298 (32) 
245 (26) 
190 (20) 
156 (17) 
41 (5) 

Survival 
Alive 
Cancer death/recurrence 
Non-cancer death 

 
355 (38) 
279 (30) 
296 (32) 

 

 

4.3.2 Immune compositions in CRC phenotypic subtypes 
4.3.2.1 Tumour cell nests 

The levels of T-lymphocytes and myeloid cells in tumour cell nests and checkpoint proteins were 

assessed. CD3+ T-lymphocytes were significantly elevated in immune subtype (p=0.021, Figure 4.1 

A). CD8+ T-lymphocytes were significantly increased in the immune subtype (p<0.001, Figure 4.1 

B). Whereas FoxP3+ regulatory T-lymphocytes (Tregs) were significantly increased in the canonical 

subtype (p=0.010, Figure 4.1 C). For myeloid cells, CD68+ macrophages were also significantly 

increased in the canonical subtype (p=0.016, Figure 4.1 D). CD80+ M1-like macrophages were 

significantly greater in the canonical subtype than latent subtype (p=0.006, Figure 4.1 E). CD163+ 

M2-like macrophages was significantly elevated in immune and canonical subtypes and depleted in 

the latent subtype (p=0.007, Figure 4.1 F). No significant difference was also observed for CD66b+ 

granulocytes (p=0.164, Figure 4.1 G).  
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Figure 4.1 - T-lymphocytes and myeloid cells infiltration levels in tumour cell nests in CRC 
phenotypic subtypes (immune, canonical, latent, stromal) Scottish cohort (n=930); A. CD3+ T-
lymphocytes, B. CD8+ T-lymphocytes, C. FoxP3+ Tregs, D. CD68+ macrophages, E. CD80+ M1-like 
macrophages, F. CD163+ M2-like macrophages, G. CD66b+granulocytes, *p<0.05, **p<0.01, ***p<0.001 

 

4.3.2.2 Tumour stroma 

The levels of T-lymphocytes and myeloid cells in tumour stroma were also assessed. For T-

lymphocytes, CD3+, CD8+ and FoxP3+ Tregs were all significantly upregulated in immune subtype 

(p=0.002, p<0.001, and p=0.031, respectively, Figure 4.2 A-C). For myeloid cells, CD68+ 

macrophages were significantly upregulated in the canonical subtype (p=0.016, Figure 4.2 D). 

However, CD80+ M1-like macrophages present no significant difference among the four subtypes 

(p=0.296, Figure 4.2 E). Whereas CD163+ M2-like macrophages were significantly depleted in the 

latent subtype (p=0.001, Figure 4.2 F). Similarly, CD66b+ granulocytes were significantly 

downregulated in the canonical subtype (p=0.045, Figure 4.2 G). Overall, in tumour stroma T-

lymphocytes are upregulated in immune subtype; whereas in canonical subtype was predominantly 

macrophages with depleted granulocytes; latent subtype had depleted M2-like macrophages, whereas 

stromal subtype presented intermediate level of all cell types.  
 

P=0.007 
** 

F 

P=0.021 
** 

A P<0.001 
*** 

*** 
*** 

B 
P=0.010 

** 

C 

P=0.016 
** 

** 
** 

D P=0.050 E 

P=0.164 G 

** 

** 
** 

** 
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Figure 4.2 - T-lymphocytes and myeloid cells infiltration levels in tumour stroma in CRC 
phenotypic subtypes (immune, canonical, latent, stromal) Scottish cohort (n=930); A. CD3+ T-
lymphocytes, B. CD8+ T-lymphocytes, C. FoxP3+ Tregs, D. CD68+ macrophages, E. CD80+ M1-like 
macrophages, F. CD163+ M2-like macrophages, G. CD66b+ granulocytes, *p<0.05, **p<0.01, ***p<0.001 

 
 

4.3.3 Relationship between immune cells in tumour cell nests and tumour 
stroma and CSS in CRC phenotypic subtypes 
The prognostic value of T-lymphocytes, myeloid cells, in tumour cell nests and tumour stroma in 

each phenotypic subtype were assessed (Table 4.2-4.4). 

 

4.3.3.1 Immune subtype 

In tumour cell nests, high CD3+ T-lymphocytes significantly associate with improved CSS in the 

immune subtype (HR 0.33, 95% CI 0.12-0.88, p=0.020, Figure 4.3 A) with 10-year CSS stratified 

from 93% (high) to 72% (low). 

P=0.001 

** 

*** 

P<0.001 
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P=0.031 

* 
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** 
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** 
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* 
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G 
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In tumour stroma, the presence of FoxP3+ Tregs significantly improved CSS within the immune 

subtype (HR 0.20, 95% CI 0.04-0.89, p=0.020, Figure 4.3 B) with 10-year CSS stratified from 90% 

(present) to 78% (absent) (Table 4.2). 

 

4.3.3.2 Canonical subtype 

In tumour cell nests, high CD8+ cytotoxic T-lymphocytes associated with significantly improved 

CSS in the canonical subtype (HR 0.48, 95% CI 0.23-0.99, p=0.044, Figure 4.3 C) with 10-year 

CSS stratified from 86% (high) to 76% (low).  

 

In tumour stroma, not significantly associations with CSS were observed for CD3+ T-lymphocytes, 

however, a trend toward significance was seen in the canonical subtype (HR 0.50, 95% CI 0.29-0.86, 

p=0.057) (Table 4.2). For myeloid cells in tumour stroma, CD68+ macrophages trending toward 

significantly improved CSS in the canonical subtype (HR 1.46, 95% CI 1.08-1.97, p=0.080). 

Whereas CD163+ M2-like macrophages trending toward significantly improved CSS in the canonical 

subtype (HR 2.06, 95% CI 1.20-3.55, p=0.065) (Table 4.3). 

 

4.3.3.3 Latent subtype 

In tumour cell nests, high CD66b+ granulocytes were associated with significantly decreased CSS in 

latent subtype (HR 2.63, 95% CI 1.22-5.67, p=0.010, Figure 4.3 D) with 10-year CSS stratified from 

66% (low) to 24% (high) (Table 4.3). As for the immune landscape scores developed in the previous 

chapter, the tumour immune landscape score was significantly associated with better survival in the 

latent subtype with both low group having the best survival (HR 0.88, 95% CI 0.69-1.11, p=0.003). 

No significant was observed in tumour stroma (Table 4.4). 

 

4.3.3.4 Stromal subtype 

In tumour cell nests, for myeloid cells, no significant associations were observed for high CD68+ 

macrophages, however, there is a trend toward significantly improved CSS in the stromal subtype 

(HR 0.75, 95% CI 0.56-1.01, p=0.054). Similarly, no significant associations were observed for high 

CD80+ M1-like macrophages, however, a trend toward significantly improve CSS in the stromal 

subtype (HR 0.53, 95% CI 0.36-0.92, p=0.090) was observed (Table 4.3).  

 

In tumour stroma, the presence of FoxP3+ Tregs significantly improved CSS within the stromal 

subtype (HR 0.21, 95% CI 0.25-0.87, p=0.018, Figure 4.3 E) with 10-year CSS stratified from 83% 

(present) to 43% (absent) (Table 4.2). However, high CD66b+ granulocytes were significantly 
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associated with decreased CSS in the stromal subtype (HR 2.25, 95% CI 1.12-4.51, p=0.018, Figure 

4.3 F) with 10-year CSS stratified from 58% (low) to 31% (high) (Table 4.3). 

 
 
Table 4.2 - Relationship between phenotypic subtypes and T-lymphocytes in tumour cell nests and 
tumour stroma and CSS (% survival at 10 years) in stage I-III CRC Scottish cohort (n=930) 
 
 T-lymphocytes  
 CD3+ (N=570) P CD8+ (N=560) P FoxP3+ (N=457) P 

 Low 
N (%) 

High 
N (%) 

 Low 
N (%) 

High 
N (%) 

 Absent 
N (%) 

Present 
N (%) 

 

Tumour cell nests          

Immune  
CSS (SE) 

110 (60) 
72 (6) 

72 (40) 
93 (3) 

0.020 94 (53) 
76 (6) 

84 (47) 
86 (5) 

0.166 126 (83) 
84 (4) 

25 (17) 
71 (15) 

0.518 

Canonical 
CSS (SE) 

134 (69) 
67 (4) 

59 (31) 
77 (6) 

0.182 137 (72) 
65 (4) 

53 (28) 
79 (6) 

0.044 128 (83) 
69 (4) 

26 (17) 
79 (8) 

0.653 

Latent  
CSS (SE) 

69 (70) 
59 (7) 

30 (30) 
64 (10) 

0.644 82 (82) 
56 (7) 

18 (18) 
66 (11) 

0.744 72 (95) 
56 (8) 

4 (5) 
100 (0) 

0.218 

Stromal  
CSS (SE) 

77 (80) 
46 (7) 

19 (20) 
58 (11) 

0.521 72 (78) 
47 (7) 

20 (22) 
48 (11) 

0.837 75 (99) 
49 (6) 

1 (1) 
100 (0) 

0.405 

Tumour stroma          

Immune  
CSS (SE) 

135 (73) 
78 (5) 

49 (26) 
83 (6) 

0.834 73 (41) 
73 (7) 

105 (59) 
85 (5) 

0.133 103 (68) 
78 (6) 

48 (32) 
90 (8) 

0.020 

Canonical  
CSS (SE) 

172 (89) 
68 (4) 

21 (11) 
87 (9) 

0.057 119 (63)  
67 (5) 

71 (37) 
72 (6) 

0.480 127 (83) 
68 (4) 

27 (18) 
83 (8) 

0.202 

Latent  
CSS (SE) 

84 (85) 
59 (7) 

15 (15) 
72 (15) 

0.201 59 (59) 
58 (8) 
 

41 (41) 
58 (9) 

0.967 61 (80) 
57 (9) 

15 (20) 
64 (13) 

0.710 

Stromal  
CSS (SE) 

82 (85) 
44 (6) 

14 (15) 
76 (12) 

0.091 61 (66) 
43 (8) 

31 (34) 
57 (10) 

0.454 63 (83) 
43 (7) 

13 (17) 
83 (11) 

0.018 

N=number of patients, CSS=Cancer specific survival, SE= standard error 
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Table 4.3 - Association between phenotypic subtypes and myeloid cells in tumour cell nest and 
tumour stroma and CSS (% survival at 10 years) in stage I-III CRC Scottish cohort (n=930) 
 
 Myeloid cells 

 CD68+ (N=544) P CD80+ (N=417) P CD163+ (411) P CD66b+ (N=392) P 

 Low 
N (%) 

High 
N (%) 

 Low 
N (%) 

High 
N (%) 

 Low 
N (%) 

High 
N (%) 

 Low 
N (%) 

High 
N (%) 

 

Tumour cell nests 
Immune  
CSS (SE)  

71 (39) 
71 (9) 
 

110 (61) 
82 (4) 

0.806 106 (80) 
76 (6) 
 

26 (20) 
90 (7) 

0.209 111 (85) 
78 (6) 
 

19 (15) 
89 (8) 

0.553 93 (74) 
80 (6) 

33 (26) 
64 (10) 

0.100 

Canonical  
CSS (SE) 

45 (37) 
69 (7) 
 

76 (63) 
69 (6) 

0.982 78 (78) 
65 (6) 
 

22 (22) 
74 (10) 

0.695 78 (82) 
69 (6) 
 

17 (18) 
75 (11) 

0.712 90 (81) 
75 (5) 

21 (19) 
74 (10) 

0.987 

Latent  
CSS (SE) 

64 (49) 
48 (9) 

66 (51) 
66 (6) 

0.249 88 (89) 
54 (6) 

11 (11) 
67 (16) 

0.257 95 (96) 
52 (6) 

4 (4) 
75 (22) 

0.569 63 (78) 
66 (8) 

18 (22) 
24 (15) 

0.010 

Stromal 
CSS (SE) 

57 (51) 
55 (49) 

55 (7) 
47 (7) 

0.054 76 (86) 
33 (6) 

12 (14) 
67 (14) 

0.090 80 (92) 
36 (6) 

7 (8) 
57 (19) 

0.287 57 (77) 
55 (7) 

17 (23) 
39 (12) 

0.119 

Tumour stroma 

Immune  
CSS (SE) 

115 (64) 
80 (5) 
 

66 (36) 
71 (9) 

0.513 95 (72) 
75 (7) 
 

37 (28) 
89 (6) 

0.167 20 (15) 
89 (7) 

110 (85) 
77 (6) 

0.483 89 (71) 
77 (7) 

37 (29) 
75 (8) 

0.581 

Canonical  
CSS (SE) 

62 (51) 
76 (6) 
 

59 (49) 
62 (7) 

0.080 76 (76) 
63 (6) 
 

24 (24) 
80 (9) 

0.235 10 (11) 
100 (0) 

85 (89) 
67 (5) 

0.065 99 (89) 
74 (5) 

12 (11) 
82 (12) 

0.611 

Latent  
CSS (SE) 

87 (67) 
59 (7) 

43 (33) 
54 (8) 

0.259 76 (78) 
54 (6) 
 

21 (22) 
63 (13) 

0.334 
 

24 (24) 
57 (15) 

75 (76) 
52 (6) 

0.099 65 (81) 
60 (8) 

15 (18) 
47 (21) 

0.825 

Stromal  
CSS (SE) 

65 (58) 
45 (7) 

47 (42) 
32 (7) 

0.159 69 (78) 
34 (6) 

19 (22) 
53 (11) 

0.174 14 (16) 
54 (14) 

73 (84) 
35 (6) 

0.203 54 (73) 
58 (7) 

20 (27) 
31 (11) 

0.018 

N=number of patients, CSS=Cancer specific survival, SE= standard error 

 
Table 4.4 - Association between phenotypic subtypes and immune landscape scores in tumour cell 
nest and tumour stroma and CSS (% survival at 10 years) in stage I-III CRC Scottish cohort (n=930) 
 
 Immune landscape scores 

 Both low 
N (%) 

Myeloid high 
N (%) 

T-cells high 
N (%) 

Both high 
N (%) 

P 

Tumour immune landscape (N=243) 
Immune 
CSS (SE) 

8 (11) 
85 (14) 

32 (44) 
67 (10) 

3 (4) 
100 (0) 

30 (41) 
93 (5) 

0.179 

Canonical 
CSS (SE) 

10 (14) 
89 (10) 

37 (51) 
64 (9) 

2 (3) 
100 (0) 

23 (32) 
77 (9) 

0.407 

Latent  
CSS (SE) 

4 (8) 
67 (27) 

27 (56) 
56 (12) 

1 (2) 
- 

16 (33) 
62 (14) 

0.003 

Stromal 
CSS (SE) 

9 (18) 
53 (17) 

33 (66) 
46 (10) 

2 (4) 
0 (0) 

6 (12) 
67 (19) 

0.256 

Stromal immune landscape (N=243) 
Immune 
CSS (SE) 

9 (12) 
88 (12) 

41 (54) 
65 (14) 

5 (7) 
100 (0) 

21 (27) 
74 (12) 
 

0.724 

Canonical 
CSS (SE) 

16 (21) 
67 (14) 

47 (62) 
62 (7) 

1 (1) 
100 (0) 

12 (16) 
92 (8) 

0.343 

Latent 
CSS (SE) 

3 (7) 
100 (0) 

36 (78) 
44 (9) 

2 (4) 
0 (0) 

5 (11) 
80 (18) 

0.226 

Stromal 
CSS (SE) 

7 (13) 
69 (19) 

40 (71) 
34 (8) 

2 (4) 
50 (35) 

7 (12) 
69 (19) 

0.229 

N=number of patients, CSS=Cancer specific survival, SE= standard error 
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Figure 4.3 - KM plots of significant immune cells infiltration in tumour cell nests and tumour 
stroma to patients’ survival in each phenotypic subtype. A. tumour CD3+ T-lymphocytes in immune 
subtype, B. stromal Foxp3+ Tregs in immune subtype, C. tumour CD8+ T-lymphocytes in canonical subtype, 
D. tumour CD66b+ granulocytes in latent subtype, E. stromal FoxP3+ Tregs in stromal subtype, F. stromal 
CD66b+ granulocytes in stromal subtype 
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Low 
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HR 0.21, 95% CI 0.25-0.87, p=0.018 
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E 
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HR 2.63, 95% CI 1.22-5.67, p=0.010 

Latent subtype D 
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4.3.4 Association between CRC phenotypic subtypes and immune cells 
infiltration in tumour cell nests and tumour stroma 
 

4.3.4.1 Immune subtype 

In tumour cell nests, immune subtype significantly associated with high CD3+ (p=0.007), high CD8+ 

(p<0.001), and present FoxP3+ (p<0.001). In tumour stroma, again, the immune subtype significantly 

associated with high CD3+ (p<0.001), high CD8+ (p<0.001), and present FoxP3+ (p=0.012) (Table 

4.5). 

 

4.3.4.2 Canonical subtype 

In tumour cell nests, canonical subtype significantly associated with high CD163+ M2-like 

macrophages (p=0.006) (Table 4.6). 

 

4.3.4.3 Latent subtype 

No significant associations were observed for T-lymphocytes in tumour cell nests. As for stromal 

immune landscape score, the myeloid high group significantly associated with the latent subtype 

(p=0.046) (Table 4.7). 

 

4.3.4.4 Stromal subtype 

No significant associations were observed for T-lymphocytes in tumour cell nests. In tumour stroma, 

the significant associations were observed for high CD66b+ granulocytes in stromal subtypes 

(p=0.002) (Table 4.6).  
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Table 4.5 - Association between phenotypic subtypes and T-lymphocytes infiltration in tumour cell 
nests and tumour stroma in stage I-III CRC Scottish cohort (n=930) 
 
 T-lymphocytes  
 CD3+ (N=570) P CD8+ (N=560) P FoxP3+ (N=457) P 

 Low 
N (%) 

High 
N (%) 

 Low 
N (%) 

High 
N (%) 

 Absent 
N (%) 

Present 
N (%) 

 

Tumour cell nests          
Immune  110 (28) 72 (40) 

 
0.007 94 (24) 

 
84 (48) 
 

<0.001 126 (31) 
 

25 (45) 
 

<0.001 

Canonical  
 

134 (34) 
 

59 (33)  137 (36) 
 

53 (30) 
 

 128 (32) 
 

26 (46) 
 

 

Latent  
 

69 (18) 
 

30 (16) 
 

 82 (21) 
 

18 (10) 
 

 72 (18) 
 

4 (7) 
 

 

Stromal  
 

77 (20) 
 

19 (11) 
 

 72 (719) 
 

20 (11) 
 

 75 (19) 
 

1 (2) 
 

 

Tumour stroma          

Immune  
 

135 (29) 
 

49 (50) 
 

<0.001 73 (23) 
 

105 (42) 
 

<0.001 103 (29) 
 

48 (46) 
 

0.012 

Canonical  
 

172 (36) 21 (21)  119 (38)  
 

71 (29) 
 

 127 (36) 
 

27 (26) 
 

 

Latent  84 (18) 15 (15)  59 (19) 
 

41 (17) 
 

 61 (17) 
 

15 (15) 
 

 

Stromal  
 

82 (17) 
 

14 (14) 
 

 61 (20) 
 

31 (12) 
 

 63 (18) 
 

13 (13) 
 

 

 
 
 
 
Table 4.6 - Association between phenotypic subtypes and myeloid cells infiltration in tumour cell 
nests and tumour stroma in stage I-III CRC Scottish cohort (n=930) 
 
 Myeloid cells 
 CD68+ (N=544) P CD80+ (N=417) P CD163+ (N=411) P CD66b+ (N=392) P 

 Low 
N (%) 

High 
N (%) 

 Low 
N (%) 

High 
N (%) 

 Low 
N (%) 

High 
N (%) 

 Low 
N (%) 

High 
N (%) 

 

Tumour cell nests 
Immune  71 (30) 

 
110 (36) 0.057 106 (31) 

 
26 (37) 0.139 111 (31) 

 
19 (40) 0.006 93 (31) 33 (37) 0.614 

Canonical  45 (19) 
 

76 (25)  78 (22) 
 

22 (31)  78 (21) 
 

17 (36)  90 (30) 21 (24)  

Latent  64 (27) 66 (22)  86 (25) 11 (15)  95 (26) 4 (9)  63 (20) 18 (20)  

Stromal 57 (24) 55 (17)  76 (22) 12 (17)  80 (22) 7 (15)  57 (19) 17 (19)  

Tumour stroma 

Immune  115 (35) 
 

66 (31) 0.057 95 (30) 
 

37 (36) 0.635 20 (29) 110 (32) 0.080 89 (29) 37 (44) 0.002 

Canonical  62 (19) 
 

59 (27)  76 (24) 
 

24 (24)  10 (15) 85 (25)  99 (32) 12 (14)  

Latent  87 (26) 43 (20)  76 (24) 
 

21 (21)  
 

24 (35) 75 (22)  65 (21) 15 (18)  

Stromal  65 (20) 47 (22)  69 (22) 19 (19)  14 (21) 73 (21)  54 (18) 20 (24)  
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Table 4.7 - Association between phenotypic subtypes and immune landscape scores in tumour cell 
nests and tumour stroma in stage I-III CRC Scottish cohort (n=930) 
 
 Tumour immune landscape scores   Stromal immune landscape scores  

 
Both 
low 
N (%) 

Myeloi
d high 
N (%) 

T-cells 
high 
N (%) 

Both 
high 
N (%) 

P  Both low 
N (%) 

Myeloid 
high 
N (%) 

T-cells 
high 
N (%) 

Both  
high 
N (%) 

P 

Immune 8 (26) 32 (25) 3 (38) 30 (40) 0.083  9 (26) 41 (25) 5 (50) 21 (47) 0.046 

Canonical 10 (32) 37 (29) 2 (25) 23 (31)   16 (46) 47 (29) 1 (10) 12 (27)  

Latent  4 (13) 27 (21) 1 (12) 16 (21)   3 (8) 36 (22) 2 (20) 5 (11)  

Stromal 9 (29) 33 (25) 2 (25) 6 (8)   7 (20) 40 (24) 2 (20) 7 (15)  

 

 

4.3.5 Multivariate analysis  
Univariate analysis was performed to evaluate the relationship between CSS and clinical parameters, 

immune cells, T-lymphocytes and myeloid cells in tumour cell nests and tumour stroma in each 

subtype were analysed separately (Table 4.8). The significant parameters were then analysed for 

multivariate analysis for each phenotypic subtype. For immune subtype, stage (p=0.042) and tumour 

budding (p<0.001) were independent prognostic factors, with stromal FoxP3+ Tregs trending towards 

independence (p=0.064). In canonical subtype, stage (p=0.005) and tumour budding (p<0.001) were 

independently prognostic factors. Whereas in latent subtype, stage (p=0.001) and tumour CD66b+ 

granulocytes (p=0.032) were independent prognostic factors.  However, in stromal subtype only 

tumour budding (p<0.001) were independent prognostic factors. Overall, tumour CD66b+ 

granulocytes within the latent subtype was the only one immune cell with independent prognostic 

value seen.  
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Table 4.8 - Univariate and multivariate analysis of immune cells, clinicopathological characteristics, 
and CSS (% survival at 10 years) of phenotypic subtypes in stage I-III CRC Scottish cohort (n=930) 
 

 CSS 

 Univariate HR  
(95% CI) 

P Multivariate HR  
(95% CI) 

P 

Immune subtype (n=298) 
Age (<65/>65) 1.30 (0.69-2.41) 0.407 - - 

Sex (female/male) 2.20 (1.21-4.00) 0.009 1.73 (0.49-6.07) 0.389 

Tumour site (left/right/rectum) 1.00 (0.72-1.40) 0.963 - - 

Stage (1/2/3) 2.21 (1.45-3.36) <0.001 2.33 (1.03-5.25) 0.042 

Differentiation (no/yes) 3.14 (1.60-6.41) 0.001 0.39 (0.07-2.03) 0.263 

Vascular invasion (no/yes) 1.64 (0.91-2.96) 0.096 - - 

Peritoneal Involvement (no/yes) 2.38 (1.32-4.28) 0.004 1.01 (0.21-4.74) 0.981 

Mismatch Repair Status (competent/deficient) 1.76 (0.97-3.18) 0.062 - - 

Proliferation (low/high) 0.54 (0.30-0.95) 0.034 2.12 (0.36-12.48) 0.404 

Tumour necrosis (low/high) 1.89 (1.08-3.31) 0.026 2.37 (0.83-6.73) 0.105 

Tumour budding (low/high) 6.97 (3.86-12.58) <0.001 37.16 (9.65-143.06) <0.001 

Tumour stroma percentage (low/high) 2.88 (1.62-5.11) <0.001 3.04 (0.99-9.28) 0.050 

KM grade (weak/strong) 0.47 (0.19-1.20) 0.119 - - 

Tumour CD3+ lymphocytes (low/high) 0.33 (0.12-0.88) 0.027 0.50 (0.13-1.93) 0.320 

Stromal CD3+ lymphocytes (low/high) 0.91 (0.38-2.14) 0.834 - - 

Tumour CD8+ lymphocytes (low/high) 0.56 (0.25-1.27) 0.172 - - 

Stromal CD8+ lymphocytes (low/high) 0.55 (0.25-1.20) 0.139 - - 

Tumour FoxP3+ Tregs (absent/present) 1.43 (0.47-4.32) 0.520 - - 

Stromal FoxP3+ Tregs (absent/present) 0.20 (0.04-0.89) 0.035 0.22 (0.04-1.09) 0.064 

Tumour CD68+ macrophages (low/high) 0.91 (0.44-1.88) 0.807 - - 

Stromal CD68+ macrophages (low/high) 1.27 (6.14-2.64) 0.514 - - 

Tumour CD80+ macrophages (low/high) 0.40 (0.09-1.74) 0.225 - - 

Stromal CD80+ macrophages (low/high) 0.43 (0.12-1.47) 0.180 - - 

Tumour CD163+ macrophages (low/high) 0.64 (0.15-2.78) 0.556 - - 

Stromal CD163+ macrophages (low/high) 1.67 (0.38-7.23) 0.489 - - 

Tumour CD66b+ granulocytes (low/high) 1.99 (0.86-4.61) 0.107 - - 

Stromal CD66b+ granulocytes (low/high) 1.27 (0.53-3.00) 0.582 - - 

TIL_score 0.62 (0.35-1.10) 0.104 - - 

SIL_score 0.98 (0.57-1.68) 0.967 - - 

Canonical subtype (n=245) 
Age (<65/>65) 1.31 (0.72-2.36) 0.366 - - 

Sex (female/male) 1.17 (0.72-1.90) 0.505 - - 

Tumour site (left/right/rectum) 0.99 (0.70-1.38) 0.953 - - 

Stages (1/2/3) 3.26 (2.09-5.11) <0.001 2.12 (1.25-3.62) 0.005 

Differentiation (no/yes) 1.59 (0.83-3.03) 0.158 - - 

Vascular Invasion (absent/present) 1.97 (1.22-3.17) 0.005 1.13 (0.62-2.06) 0.679 

Peritoneal Involvement (no/yes) 2.88 (1.78-4.65) <0.001 1.03 (0.55-1.92) 0.914 

Mismatch Repair Status (competent/deficient) 0.49 (0.21-1.13) 0.097 - - 

Proliferation (low/high) 1.26 (0.78-2.03) 0.338 - - 

Tumour necrosis (low/high) 1.60 (0.99-2.58) 0.051 - - 

Tumour budding (low/high) 7.95 (4.68-13.52) <0.001 7.09 (3.72-13.52) <0.001 

Tumour stroma percentage (low/high) 1.02 (0.99-1.04) 0.093 - - 

KM grade (weak/strong) 1.10 (0.60-2.01) 0.751 - - 

Tumour CD3+ lymphocytes (low/high) 0.64 (0.34-1.23) 0.186 - - 

Stromal CD3+ lymphocytes (low/high) 0.27 (0.06-1.14) 0.076 - - 

Tumour CD8+ lymphocytes (low/high) 0.48 (0.23-0.99) 0.049 0.66 (0.32-1.37) 0.268 
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 CSS  CSS  

 Univariate HR  
(95% CI)  Univariate HR  

(95% CI)  

Canonical subtype (n=245) (Cont.)     

Stromal CD8+ lymphocytes (low/high) 0.81 (0.45-1.44) 0.481 - - 

Tumour FoxP3+ Tregs (absent/present) 0.80 (0.31-2.06) 0.654 - - 

Stromal FoxP3+ Tregs (absent/present) 0.51 (0.18-1.45) 0.211 - - 

Tumour CD68+ macrophages (low/high) 1.00 (0.50-2.01) 0.982 - - 

Stromal CD68+ macrophages (low/high) 1.83 (0.92-3.67) 0.085 - - 

Tumour CD80+ macrophages (low/high) 0.82 (0.31-2.16) 0.696 - - 

Stromal CD80+ macrophages (low/high) 0.53 (0.18-1.53) 0.243 - - 

Tumour CD163+ macrophages (low/high) 0.81 (0.28-2.37) 0.713 - - 

Stromal CD163+ macrophages (low/high) 24.27 (0.12-4626.21) 0.234 - - 

Tumour CD66b+ granulocytes (low/high) 1.00 (0.37-2.68) 0.987 - - 

Stromal CD66b+ granulocytes (low/high) 0.68 (0.16-2.92) 0.613 - - 

TIL_score 1.00 (0.65-1.54) 0.974 - - 

SIL_score 0.73 (0.43-1.23) 0.250 - - 

Latent subtype (n=190) 
Age (<65/>65) 1.22 (0.73-2.01) 0.436 - - 

Sex (female/male) 1.00 (0.62-1.60) 0.993 - - 

Tumour site (left/right/rectum) 0.97 (0.72-1.32) 0.880 - - 

Stage (1/2/3) 2.34 (1.53-3.58) <0.001 3.65 (1.74-7.64) 0.001 

Differentiation (no/yes) 2.14 (1.09-4.19) 0.026 2.13 (0.61-7.38) 0.231 

Vascular Invasion (absent/present) 1.73 (1.07-2.81) 0.024 1.44 (0.64-3.24) 0.368 

Peritoneal Involvement (no/yes) 1.99 (1.23-3.22) 0.005 1.99 (0.91-4.31) 0.081 

Mismatch Repair Status (competent/deficient) 0.55 (0.25-1.21) 0.139 - - 

Proliferation (low/high) - - - - 

Tumour necrosis (low/high) 0.93 (0.57-1.51) 0.791 - - 

Tumour budding (low/high) 3.58 (2.19-5.86) <0.001 1.50 (0.65-3.48) 0.335 

Tumour stroma percentage (low/high) 1.00 (0.98-1.02) 0.789 - - 

KM grade (weak/strong) 1.04 (0.61-1.79) 0.866 - - 

Tumour CD3+ lymphocytes (low/high) 0.83 (0.38-1.79) 0.646 - - 

Stromal CD3+ lymphocytes (low/high) 0.47 (0.14-1.54) 0.213 - - 

Tumour CD8+ lymphocytes (low/high) 0.86 (0.36-2.07) 0.745 - - 

Stromal CD8+ lymphocytes (low/high) 0.98 (0.50-1.91) 0.967 - - 

Tumour FoxP3+ Tregs (absent/present) 0.04 (0-81.13) 0.419 - - 

Stromal FoxP3+ Tregs (absent/present) 0.83 (0.31-2.20) 0.711 - - 

Tumour CD68+ macrophages (low/high) 0.71 (0.40-1.26) 0.253 - - 

Stromal CD68+ macrophages (low/high) 1.39 (0.77-2.50) 0.262 - - 

Tumour CD80+ macrophages (low/high) 0.51 (0.15-1.66) 0.267 - - 

Stromal CD80+ macrophages (low/high) 0.65 (0.27-1.56) 0.339 - - 

Tumour CD163+ macrophages (low/high) 0.56 (0.07-4.13) 0.575 - - 

Stromal CD163+ macrophages (low/high) 1.95 (0.86-4.43) 0.106 - - 

Tumour CD66b+ granulocytes (low/high) 2.63 (1.22-5.67) 0.013 2.32 (1.07-5.01) 0.032 

Stromal CD66b+ granulocytes (low/high) 1.11 (0.42-2.95) 0.825 - - 

TIL_score 0.95 (0.59-1.51) 0.828 - - 

SIL_score 0.85 (0.47-1.51) 0.586 - - 

Stromal subtype (n=156) 
Age (<65/>65) 1.14 (0.72-1.79) 0.557 - - 

Sex (female/male) 0.72 (0.45-1.13) 0.157 - - 

Tumour site (left/right/rectum) 1.02 (0.77-1.35) 0.871 - - 

Stage (1/2/3) 1.44 (0.97-2.14) 0.065 - - 

Differentiation (no/yes) 2.04 (1.01-4.11) 0.044 - - 

Vascular Invasion (absent/present) 2.13 (1.34-3.37) 0.001 1.30 (0.44-3.81) 0.628 
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 CSS  CSS  

 Univariate HR  
(95% CI)  Univariate HR  

(95% CI)  

Stromal subtype (n=156) (Cont.)     

Peritoneal Involvement (no/yes) 1.90 (1.21-2.98) 0.005 0.99 (0.32-3.08) 0.995 

Mismatch Repair Status (competent/deficient) 0.90 (0.45-1.81) 0.778 - - 

Proliferation (low/high) 0.72 (0.43-1.18) 0.199 - - 

Tumour necrosis (low/high) 0.97 (0.58-1.61) 0.918 - - 

Tumour budding (low/high) 6.23 (3.53-11.01) <0.001 11.89 (3.16-44.66) <0.001 

Tumour stroma percentage (low/high) 0.97 (0.94-1.00) 0.084 - - 

KM grade (weak/strong) - - - - 

Tumour CD3+ lymphocytes (low/high) 0.77 (0.36-1.67) 0.524 - - 

Stromal CD3+ lymphocytes (low/high) 0.37 (0.11-1.22) 0.105 - - 

Tumour CD8+ lymphocytes (low/high) 1.07 (0.53-2.18) 0.838 - - 

Stromal CD8+ lymphocytes (low/high) 0.77 (0.39-1.51) 0.457 - - 

Tumour FoxP3+ Tregs (absent/present) 0.04 (0-2308.79) 0.581 - - 

Stromal FoxP3+ Tregs (absent/present) 0.21 (0.05-8.78) 0.032 0.20 (0.02-1.64) 0.136 

Tumour CD68+ macrophages (low/high) 0.61 (0.37-1.01) 0.058 - - 

Stromal CD68+ macrophages (low/high) 1.42 (0.86-2.34) 0.164 - - 

Tumour CD80+ macrophages (low/high) 0.42 (0.15-1.18) 0.102 - - 

Stromal CD80+ macrophages (low/high) 0.61 (0.29-1.25) 0.180 - - 

Tumour CD163+ macrophages (low/high) 0.53 (0.16-1.72) 0.297 - - 

Stromal CD163+ macrophages (low/high) 1.72 (0.73-4.04) 0.211 - - 

Tumour CD66b+ granulocytes (low/high) 1.78 (0.85-3.73) 0.125 - - 

Stroma CD66b+ granulocytes (low/high) 2.25 (1.12-4.51) 0.022 0.63 (0.16-2.46) 0.510 

TIL_score 0.90 (0.55-1.47) 0.691 - - 

SIL_score 0.88 (0.57-1.37) 0.596 - - 

HR=Hazard ratio, CI=Confidence intervals 
 

 

4.4 Discussion 
This study examined the relationship between CRC phenotypic subtypes and the prognosis of 

immune cells infiltration in tumour cell nests and tumour stroma. The results revealed that each 

subtype has differing immune cell compositions that impact on patient’s prognosis. Immune subtype 

is mainly composed of T-lymphocytes and obtained highest survival rate. Canonical subtype has 

significantly increased of macrophages giving an intermediate survival rate. Whereas the latent and 

stromal subtypes have decreased levels of all immune cell types in tumour cell nests, but not in 

tumour stroma and possess the poorest survival. The univariate survival analysis suggested cytotoxic 

T-lymphocytes, Tregs, and granulocytes are significantly associated with patient’s survival in each 

subtype. Furthermore, the multivariate analysis designated tumour granulocytes as independently 

prognostic for the latent subtype. Therefore, the immune and latent subtypes may be potential targets 

populations for immune-based therapies.  

 

The CRC consensus molecular subtypes (CMS1-CMS4) and immune classifications are widely 

recognised today. However, due to the problems of adjuvant chemotherapy resistance, and 
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immunotherapy could benefit dMMR or MSI-High patients but still low response rate; therefore, has 

yet to applied to all CRC patients. In addition, due to the difficulties of translating transcriptomics 

into all routine clinical setting; therefore, CRC classification and the role of immune cells are needed 

to categorize patients and benefit their personalized therapy. Thus, the integration of CRC molecular 

classifications, immune cells signatures, and stromal compartment were proposed by many studies.  

 

Becht et al. proposed the correlation between molecular subgroups and tumour microenvironment 

utilized transcriptomics of immune cells, fibroblast, and angiogenic microenvironment. They found 

good prognosis in CMS1, which had overexpression of genes for cytotoxic T-lymphocytes; and poor 

prognosis in CMS4, which expressed lymphocytes and monocytic origin cells, whereas CMS2 and 

CMS3 contained low immune and inflammatory signatures with intermediate prognosis (Becht et 

al., 2016). Soldevilla et al. proposed the immune subtypes by utilized transcriptomics and assessed 

the correlation with the consensus molecular subtypes. The five immune subtypes were observed in 

CRC, C1 77% (wound healing), C2 17% (IFN-gamma dominant), C3 7% (inflammatory), C4 4% 

(lymphocytes depleted), C6 2.3% (TGF-beta dominant). CMS1 found mainly C2, which increased 

CD4, CD8, Tregs, neutrophils, and M1/M2 polarisation; while CMS2 dominant for C1, CMS3 had 

highest C3 and C4, whereas CMS4 contained had C6 representation. From the application of 

complete immune characteristics, they reported this classification better prognosis than CMS system 

(Soldevilla et al., 2019). In addition, Chen et al. performed molecular subtyping to determine immune 

subtypes for immune checkpoint inhibitors treatment. They identified as low-risk and high-risk 

subtypes due to the significantly differ prognosis. The low-risk subtype presented high overall 

survival rate, which contain high PD-L1 mRNA expression, high proportion of TILs and tumour 

mutation burden. Also, the pathway analysis found the association to an activation of immune 

response, and antigen processing and presentation signalling pathways  (Chen et al., 2020). In 

addition, the classifications based on the correlations between CMSs and other characteristics have 

been proposed, i.e., genome-scale DNA methylation (Fennell et al., 2019), gene expression 

microarray of stromal compartment (Shen et al., 2020), gene expression of metabolism-related genes 

(Lin et al., 2021).  

 

Apart from CRC disease classification, the relapse prediction also has been proposed from the 

immune infiltration estimation in tumour utilising gene expression profiles. They compared immune 

cells, innate and adaptive immune cells, performance with molecular subtypes and found that 

immune infiltration superior to predict disease relapse than CMSs or clinical characteristics alone 

(Kamal et al., 2021). From the studies point out to CMS1 and CMS4 into interest as they have clearly 

distinct prognosis, and for therapy which is in line with others (Rodriguez-Salas et al., 2017), 

including our present finding for immune and latent subtypes. From these studies, although CMS 
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classification still being the main CRC subtypes, however, immune signatures are in the rising 

interest for alternative subtyping tools for more details of patient’s immune status which could 

feasibly translate to clinical setting and benefit immune-based therapy. However, clearly, and well-

defined phenotypes is needed for clinical practice. 

 

The relationship between phenotypic subtypes, immune cells and survival were investigated. For the 

immune subtype, strong tumour CD3+ and strong stromal FoxP3+ Tregs were significantly improved 

CSS, suggesting the high survival rate of this subtype may be due to the high T-lymphocytes 

populations. This suggest that apart from cytotoxic T-lymphocytes which is the main effector cells 

in immune subtype, regulatory T-lymphocytes have a role in tumour stroma to cooperate with other 

cell types and benefit patient’s CSS in immune subtype resulting in the best prognosis. Improved 

prognosis due to a strong T-lymphocyte infiltration has been proposed in multiple cancers (Braha et 

al., 2016; Gao et al., 2007). Whereas in canonical subtype presented strong tumour CD8+ cytotoxic 

T-lymphocytes significantly improved CSS. This might suggest that canonical subtype have good 

prognosis due to high cytotoxic T-lymphocytes  (Gao et al., 2007; Ohtani, 2007). As for latent 

subtype, high CD66b+ granulocytes infiltration significantly decreased CSS, and this could be 

independent prognostic factor for this subtype.  

 

The prognostic value of tumour associated neutrophils (Liu et al.) is also controversial with studies 

reporting both good and poor prognosis in CRC. Rao et al. (2012) observed that neutrophils increase 

within the tumour microenvironment and independently associate with CRC malignancy and low 

survival rate in CRC patients (Rao et al., 2012). Stromal subtype presented high stromal Foxp3+ 

Tregs could significantly improve CSS; on the other hand, high stromal CD66b+ granulocytes 

significantly decreased CSS. As Tregs are well recognised as an inhibitor of cytotoxic T-lymphocytes 

function, and maintain stability of the local immune response, conveying a poor prognosis in solid 

tumours such as breast cancer, however, in CRC they have been shown to convey a good prognosis 

(Ling et al., 2014). However, with high numbers of granulocytes might trigger Tregs role turning 

into negative result which cause poor prognosis in stromal subtype. The role of neutrophils to Tregs 

was proposed by Mishalian et al. that neutrophils recruit Tregs to tumour cell nests by secreting 

CCL17, which Tregs then inhibit antitumour immunity and promote tumour growth in mice, and this 

could occur in human as well  (Mishalian et al., 2014). Therefore, this brought stromal subtype into 

interest as it has the worse prognosis subtype. There’s a study proposed that tumour neutrophils could 

suppress tumour infiltrating T-lymphocytes proliferation by expressing genes associated with T-

lymphocytes suppression in mice (Germann et al., 2020). Thus, granulocytes might have a distinct 

role in tumour cell nests and tumour stroma. This might result from myeloid cells present mainly 
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pro-tumour function, but less anti-tumour function or even enhance T-lymphocytes suppression role 

of Tregs in stromal subtype leading to the worse prognosis. 

 

As for tumour-associated macrophages (TAM) within tumour microenvironment, thought to drive 

pro-tumorigenic effects (Kim & Bae, 2016). However, the prognostic role of myeloid cells within 

the tumour microenvironment is controversial with some studies suggested they enhance tumour 

progression and others proposed improved patient’s survival (Elliott et al., 2017; Powell & 

Huttenlocher, 2016). This study found no significant of all macrophage’s markers in patients CSS to 

any phenotypic subtypes. 

 

In conclusion, present finding suggests that subtypes with high T-lymphocyte infiltration in both 

tumour cell nests, and tumour stroma have the best prognosis as seen in the immune subtype, whereas 

the canonical subtype that has high macrophages presented a slightly reduced prognosis. However, 

subtypes that have high granulocytes infiltrates and low lymphocyte infiltrates in cancer cell nests 

lead to a poor prognosis, as seen in the latent and stromal subtypes. Therefore, the immune, latent, 

and stromal subtypes might represent a population of patients for immune-based therapy. However, 

the limitation of this study was a small sample numbers of each phenotypic subtype which can affect 

the results. Therefore, validation in larger cohort with more cases for each subtype is required to 

strengthen the analysis. Overall, this study suggest that phenotypic subtype can be alternative tools 

for CRC classification due to different immune cell compositions for each subtype. Understanding 

the different genetic backgrounds of these immune landscapes, may provide novel biomarkers for 

each subtype.  
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Chapter 5 Mutational profiling of innate 
and adaptive immune cell landscapes in 

CRC patients 
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5.1 Background 

Cancer is recognized as a genetic disease which is an evolutionary process developed as a result of 

accumulated alterations in the DNA sequence of cancer cells genome over the lifetime of patients 

(Stratton et al., 2009).  The accumulation processes can be based on random intrinsic mutations 

which are continuously heritable from genetic variations occurring during cell division (Stratton et 

al., 2009). In general, somatic mutations of  33-66 genes on average would be expected to alter 

proteins in solid tumours such as breast, and colon (Vogelstein et al., 2013). Theses cancer genome 

mutations may comprise of distinct classes of alterations in the DNA sequence of a genes including 

nucleotide substitution (95%), deletions or insertions. Nucleotide substitutions, mainly present as 

missense mutation (90.7%), nonsense mutation (7.6%), and alterations of splice sites or untranslated 

regions adjacent to start and stop codon (1.7%) (Vogelstein et al., 2013). 

  

Today, tumour mutation burden is at the forefront of research to observe the impact of somatic 

mutations in combination with immune cells infiltrate on patient’s prognosis and response to 

immunotherapy in many types of cancer, i.e., advanced gastric cancer (Guo et al., 2021), and CRC 

(Zhou et al., 2021). Therefore, identification of genetic mutations in CRC associated with immune 

cells infiltration that impact patient prognosis could be of benefit as a biomarker or target for 

immune-based therapy.  

 

The objective of this study was to assess mutational profiles, in CRC patients with stage I-III disease, 

utilising the four immune landscape grouping from chapter 3. To identify any significantly 

differentially mutated gene(s) specific to each group, which could be a prognostic marker for that 

specific group and could potentially influence a patient response to immune-based therapy.  
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5.2 Methods 

Whole genome mutational profiling was performed on a subset of patients from the Scottish cohort 

(n=252). DNA was extracted from bulk tumour FFPE sections and mutational profiling performed 

using a 150-cancer specific array by GPOL for a previous study. Data was subsequently available 

for analysis within this thesis. M2aftools packages version 2.6.05 within R-studio version 4.0.5 was 

utilised. For visualization, plotmafSummay was applied to observe the summary of mutational burden 

of each group, and coBarPlot was utilized for the comparison between groups, respectively. As for 

the analysis, mafCompare function was utilized to compare the significant differentially mutated 

genes among two groups (Mayakonda et al., 2018). The data were first analysed for an overview 

mutation of all samples and each immune landscape group. Then the comparison between groups 

was generated to observe the differences of highly mutated genes in each group. Genes which 

presented significance differentially mutated in any group were then compared to the same group in 

tumour stroma to assess the differences mutation frequency between tumour cell nests and tumour 

stroma. Then one of the most significances differentially mutated gene was selected to investigate at 

the protein expression level using IHC staining and the histoscore method. Cut-offs were made 

utilising maximal rank statistics. The protein expression was compared to the mutational results then 

analysed in terms of CSS in the full cohort and stratified for mutational status or immune cell 

infiltrate, and for association with immune cells infiltrations utilising SPSS.  
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5.3 Results 

135 samples were available to analyse for the mutational profiles in tumour cell nests of stage I-III 

CRC patients from the Scottish Cohort.  

   

5.3.1 Summary of somatic mutations in tumour cell nests in a subset of 
Glasgow Cohort CRC patients 
In general, for the randomly selected 135 patients, missense mutations were the most frequent 

classification of mutations (Figure 5.1 A, E). As for types of mutations, single nucleotide 

polymorphisms (SNP) presented at the highest frequency compared to deletions (DEL) and insertions 

(INS) (Figure 5.1 B). Furthermore, C > T was the main type of single nucleotide variant 

classification (SNV) (Figure 5.1 C). The median number of mutations per sample was six (Figure 

5.1 D). The top 10 mutated genes among the samples including APC (51%), TP53 (46%), KRAS 

(31%), AR (22%), RNF43 (17%), ARID1A (15%), FBXW7 (15%), ATM (13%), PIK3CA (13%), and 

ATR (13%) (Figure 5.1 F). 

 

 
 
Figure 5.1- Summary of somatic mutational profiles in tumour cell nests in stage I-III CRC 
Scottish cohort (n=135); A. classification of mutation frequency, B. mutational variant type frequency, C. 
SNV class frequency, D. level of mutational variants per sample, E. summary of variants classification level, 
F. summary of top 10 mutated genes  
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5.3.2 Summary of somatic mutations in tumour immune landscape 
groups 
Next, summaries of mutations for the four immune landscape groups were analysed into four groups, 

T-cells high (N=2), myeloid high (N=85), both high (N=33), and both low (N=15). 

 

5.3.2.1 T-cells high  

For T-cell high, missense mutations were the most frequent classification of mutations (Figure 5.2 

A, E) and single nucleotide polymorphisms (SNP) presented at the highest frequency for mutation 

variant type (Figure 5.2 B). Again, C > T was the main type of single nucleotide variant classification 

(SNV) (Figure 5.2 C). The median number of variants per sample was 14.5 suggesting potential 

hypermutation status (Figure 5.2 D). As for the top 10 mutated genes, these were ASXL1 (100%), 

ERBB4 (100%), CTCF (50%), CREBBP (50%), BRCA2 (50%), BLM (50%), ATM (50%), AR (50%), 

APC (50%), and ALK (50%) (Figure 5.2 F). Sample numbers were low with only two patients in the 

group, therefore more patient samples are needed to make any conclusions from this data. 
 

 

 
 
Figure 5.2 - Summary of somatic mutational profiles in T-cells high group in tumour cell nests 
in stage I-III CRC Scottish cohort (n=2); A. classification of mutation frequency, B. mutational variant 
type frequency, C. SNV class frequency, D. level of mutational variants per sample, E. summary of variants 
classification level, F. summary of top 10 mutated genes.   
 

Splice_Site

Nonsense_Mutation

In_Frame_Del

Frame_Shift_Ins

Frame_Shift_Del

Missense_Mutation

0 5 10 15

Variant Classification

DEL

INS

SNP

0 5 10 15 20

Variant Type

C>A

C>G

C>T

T>C

T>A

T>G

0.
00

0.
25

0.
50

0.
75

1.
00

SNV Class

2

0

8

6

2

5

0

6

12

19

Variants per sample
Median: 14.5

N

0

2

5

8

Variant Classification 
summary

ALK
APC
AR
ATM
BLM

BRCA2
CREBBP
CTCF
ERBB4
ASXL1

0 1 2 4

Top 10
mutated genes

50%

50%

50%

50%

50%

50%

50%

50%

100%

50%

A B C 

D E F 



167 

 

5.3.2.2 Myeloid high  

As for myeloid high group, missense mutations were still the most frequent classification of 

mutations (Figure 5.3 A, E), and single nucleotide polymorphisms (SNP) still presented as the 

highest frequency of mutation variant type (Figure 5.3 B).  C > T was still the main type of single 

nucleotide variant classification (SNV) (Figure 5.3 C). The median number of variants per sample 

was 7 (Figure 5.3 D). The top 10 mutated genes included APC (62%), TP53 (60%), KRAS (40%), 

FBXW7 (24%), ARID1A (24%), AR (24%), ALK (20%), PIK3CA (16%), ASXL1 (18%), and SMAD4 

(18%) (Figure 5.3 F). 

 

 
 
Figure 5.3 - Summary of somatic mutational profiles in myeloid cells high group in tumour cell 
nests in stage I-III CRC Scottish cohort (n=85); A. classification of mutation frequency, B. mutational 
variant type frequency, C. SNV class frequency, D. level of mutational variants per sample, E. summary of 
variants classification level, F. summary of top 10 mutated genes.  
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5.3.2.3 Both high  

As for both high group, missense mutations were also the most frequent classification of mutations 

(Figure 5.4 A, E) and single nucleotide polymorphisms (SNP) presented at the highest frequency of 

mutation type (Figure 5.4 B). Again, C > T was the main type of single nucleotide variant 

classification (SNV) (Figure 5.4 C). The median number of variants per sample was 7 (Figure 5.4 

D). The top 10 mutated genes included APC (64%), TP53 (55%), FBXW7 (30%), ARID1A (27%), 

MSH2 (15%), AR (21%), KRAS (33%), NOTCH1 (15%), ASXL1 (15%), and ATR (18%), respectively 

(Figure 5.4 F). 

 

 
Figure 5.4 - Summary of somatic mutational profiles in both high group in tumour cell nest in 
stage I-III CRC Scottish cohort (n=33); A. classification of mutation frequency, B. mutational variant 
type frequency, C. SNV class frequency, D. level of mutational variants per sample, E. summary of variants 
classification level, F. summary of top 10 mutated genes. 
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5.3.2.4 Both Low  

For the both low group, missense mutations were also the most frequent classification of mutations 

(Figure 5.5 A, E) and single nucleotide polymorphisms (SNP) presented at the highest frequency 

for mutation type (Figure 5.5 B). C > T was the main type of single nucleotide variant classification 

(SNV) (Figure 5.5 C). The median number of variants per sample was 7 (Figure 5.5 D). The top 10 

mutated genes included APC (60%), TP53 (73%), KRAS (53%), ALK (27%), PIK3CA (20%), BRCA2 

(20%), ARID1A (20%), SMAD4 (27%), AR (27%), and ASXL1 (20%), respectively (Figure 5.5 F). 

 

 

 
Figure 5.5 - Summary of somatic mutational profiles in both  low group in tumour cell nests in 
stage I-III CRC Scottish cohort (n=15); A. classification of mutation frequency, B. mutational variant 
type frequency, C. SNV class frequency, D. level of mutational variants per sample, E. summary of variants 
classification level, F. summary of top 10 mutated genes. 
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5.3.3 Differentially mutated genes between tumour immune landscape 
groups 
Next, to identify any differentially mutated genes between tumour immune landscape groups, 

comparisons between each group and all other samples were assessed. Fisher’s exact tests were 

performed, and the results were visualised as co-bar plots to observe if any differentially mutated 

genes reached significance for a specific group.  

 

5.3.3.1 T-cells high vs Others 

Almost all 10 genes presented as highly mutated in T-cells high patients than in the others group 

including ALK, AR, ATM, BLM, BRCA2, CREBBP, CTCF, ERBB4, ASXL1, and APC. Among these, 

ERBB4 was the only significantly differentially mutated gene, which present in 100% in T-cells high 

with only missense mutations, and 7% in other patients with a combinations of variant classes 

(**p<0.01) (Figure 5.6). Again, due to the low numbers of patients within T-cell high group (n=2) 

these results should be validated in a larger cohort. 

 

  
 

Figure 5.6 - Co-bar plot of top 10 mutated genes in T-cells high vs others; Among top 10 mutated 
genes, ERBB4 is a differentially mutated gene 100% in T-lymphocytes high, and 7% in others (**p<0.01). 
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5.3.3.2 Myeloid cells high vs Others 
Among the top 10 mutated genes, six were significantly differentially mutated including SMAD4, 

ALK, ARID1A, FBXW7, TP53, and APC. For all six genes, mutations were lower in the myeloid high 

group than the others group. Among these, TP53 was the most significantly differentially mutated 

gene which presented in 34% of myeloid high patients, whereas 60% of patients in others group had 

a mutation in TP53 (**p<0.01) (Figure 5.7). 

 

 
 
Figure 5.7 - Co-bar plot of top 10 mutated genes in myeloid cells high vs others; Among top 10 
mutated genes, TP53 is the most significance differentially mutated gene which presented in 34% of 
myeloid cells high, and 60% of others (**p<0.01, *p<0.05). 
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5.3.3.3 Both high vs Others 

Among top 14 mutated genes, five were significantly differentially mutated including BRCA1, 

MTOR, ARID1A, B2M, and FBXW7. All five genes presented with more mutations in the both high 

group than the others group. Among these, FBXW7 was the most significance differentially mutated 

gene which present in 30% of patients in both high group, and 9% of patients in others group 

(**p<0.01) (Figure 5.8). 

 

 
 
Figure 5.8 - Co-bar plot of top 10 mutated genes in both high vs others; Among top mutated 
genes, FBXW7 is the most significance differentially mutated gene which presented in 30% of both 
high group, and 9% in others (**p<0.01, *p<0.05). 
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5.3.3.4 Both low vs Others 
All the 10 mutated genes including ASXL1, AR, SMAD4, ARID1A, BRCA2, PIK3CA, ALK, KRAS, 

TP53, and APC, presented with more mutations in the both low group than the others group. Among 

these, TP53 was the only significantly differentially mutated gene which presented in 73% of patients 

in both low group, and in 42% of other patients (*p<0.05) (Figure 5.9). 

 

 
 

Figure 5.9 - Co-bar plot of top 10 mutated genes in both low vs others; Among top 10 mutated 
genes, TP53 is the most significance differentially mutated gene which presented in 73% of both low 
group, and 42% in others (*p<0.05). 
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5.3.4 Comparison of differentially mutated genes between myeloid high 
groups and the other three immune landscape groups  
From the comparison among immune landscape groups, interestingly, the myeloid high group had a 

much lower level of mutations compared to all other patients especially for TP53. To look at this in 

more detail, comparisons between the myeloid high group and the three other individual groups was 

performed to see whether this low mutation rate in myeloid high patients held out when compared 

to the other individual immune landscapes and assess if TP53 was still highly significant.  

 

5.3.4.1 Myeloid high vs T-cells high  

The top 16 mutated genes between myeloid high and T-cells high groups were selected for 

comparison. These included SMAD4, PIK3CA, ARID1A, FBXW7, KRAS, TP53, ALK, APC, AR, 

ATM, BLM, BRCA2, CREBBP, CTCF, ERBB4, and ASXL1. No significantly differentially mutated 

genes were observed, which might be due to small number of T-cells high patients within the 

analysis, therefore, more patient samples are needed to make any conclusions. Overall, mutations 

were more frequent in the T-cells high group when comparison to the myeloid high group (Figure 

5.9). 

 

 
 
Figure 5.10 - Co-bar plot of top mutated genes in myeloid cells high vs T-cells high. Among top 
mutated genes, no significance differentially mutated genes were presented. 
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5.3.4.2 Myeloid high vs Both high 

Next, the top 13 mutated genes from myeloid high and both high groups were selected for 

comparison. Three genes were significantly differentially mutated including ARID1A, FBXW7, and 

APC. All three genes presented at a lower frequency in the myeloid high group than the both high 

group. FBXW7 was the most significantly differentially mutated gene which presented at 30% in the 

both high patients and 8% in the myeloid high patients (**p<0.01) (Figure 5.10).  

 

 
 

Figure 5.11 - Co-bar plot of top mutated genes in myeloid cells high vs both high. Among top 
mutated genes, FBXW7 was the most significance differentially mutated gene which presented in 30% of both 
high patients, and 8% in myeloid cells high group (**p<0.01), followed by APC, and ARID1A (*p<0.05). 
 

 

5.3.4.3 Myeloid cells high vs Both low 

The top 11 mutated genes from the myeloid high and the both low groups were selected for 

comparison. Four genes were significantly differentially mutated including SMAD4, AR, KRAS, and 

TP53. All four genes were presented at a lower frequency in the myeloid high group but enriched in 

both low group. TP53 was the most significantly differentially mutated gene which presented in 34% 

of the myeloid high group and 73% of the both low group (**p<0.01) (Figure 5.11). 
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Figure 5.12 - Co-bar plot of top mutated genes in myeloid cells high vs both low; Among top 
mutated genes, TP53 is the most significance differentially mutated gene which presented in 73% of both low 
patients, and 34% of myeloid cells high patients (**p<0.01). 
 

 

5.3.5 Comparison of differentially mutated genes between myeloid high in 
tumour cell nests and tumour stroma 
From the previous comparison, it was clear that the myeloid high group was harbouring significantly 

less mutations than the other groups. Interestingly, although TP53 was one of the tops differentially 

mutated genes in all comparisons, it only reached significance when compared to the both low group. 

Therefore, the next step was to compare mutations within myeloid high group in tumour cell nests 

and tumour stroma to see whether there is a difference between these cells being present in the two 

locations. The top five significantly differentially mutated genes between the tumour cell nests and 

tumour stroma of patents classified as myeloid high were BRCA2, KRAS, SMAD4, APC, and TP53. 

All five genes were more highly mutated in samples with high myeloid cells in stroma when 

compared to samples with high myeloid cells in the tumour cell nests. Interestingly, TP53 mutations 

was clearly the most significantly differentially mutated gene which presented with low mutations 

in the group with high myeloid cells in tumour cell nests (34%), whereas it was highly enriched 

(65%) in the group with high myeloid cells in tumour stroma (***p<0.001) (Figure 5.12). Therefore, 

TP53 mutations seems to be connected to myeloid cell infiltration into tumour stroma rather than 

tumour cell nests. 
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Figure 5.13 - Co-bar plot of top 5 mutated genes in myeloid cells high in tumour cell nests vs 
tumour stroma; Among top mutated genes, TP53 was the most significance differentially mutated gene 
which presented low mutations in tumour cell nests (34%), but more mutations presented in tumour stroma 
(65%) (***p<0.001). 
 

 

5.3.6 IHC for p53 expression  
Given TP53 mutations was the most significantly differentially mutated gene in myeloid high 
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nuclear tumour expression. IHC for p53 expression was performed to observe the relationship 

between TP53 mutation and its proteins p53 expression in our CRC patient’s cohort with stage I-III 

disease (N=638). Among these patients, 111 (17%) patients carried TP53 mutations, 84 (13%) 

patients presented no TP53 mutations, and 443 (70%) patients with no mutation data available.  

 

5.3.7 ICCC and cut-off point of nuclear p53 IHC in the full cohort 
Correlation between the two nuclear p53 IHC scoring markers was performed. The standard ICCC 

testing exhibited great correlation between the two scorers (ICCC=0.965) (Figure 5.13 A). Bland-

Altmann plot showed no differences out with 50 weighted histoscores (Figure 5.13 B). The cut-off 

point was generated by maximal rank statistical analysis (142.5) based on patients CSS (Figure 5.13 

C). 
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Figure 5.14 - ICCC, scatter plot, Bland-Altman plot of nuclear p53 expression in stage I-III 
CRC Scottish cohort TMAs (n=930); A. ICCC 0.965 and scatter plot, B. Bland-Altman plot, C. cut-off 
value 142.5 
 

 
5.3.8 Correlation between TP53 mutations and p53 protein expression 
A box plot comparing TP53 mutation status and nuclear p53 expression level in the tumour was 

performed. Patients carrying TP53 mutated had significantly increased p53 nuclear expression when 

compared to patients who has wild-type TP53 (***p<0.001) (Figure 5.14). 

 

 
 
Figure 5.15 - Correlation between TP53 mutations and p53 nuclear expression in stage I-III 
CRC Scottish cohort (n=930); Patients who carrying TP53 mutations also presented significant increased 
p53 nuclear expression level when compared to wild type TP53(***p<0.001). 
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5.3.9 Survival analysis of nuclear p53 expression and CSS 
The relationship between p53 nuclear expression and CSS was performed by KM plot and log-rank 

analysis. High p53 nuclear expression was associated with significantly improved CSS (HR 0.54, 

95% CI 0.33-0.87, p=0.010, Figure 5.15) as expected from the role of p53 as a tumour suppressor.  

 
Figure 5.16 - KM plot of p53 nuclear expression and CSS (% survival at 10 years) in stage I-
III CRC Scottish cohort (n=930). High p53 nuclear expression was significantly associated with improved 
CSS (p=0.010).  
 
  

5.3.10 Nuclear p53 expression and CSS in TP53 mutated and TP53 wild 
type  
Next, to observe whether there is a difference in nuclear p53 prognostic value for CSS if patients are 

carrying TP53 mutations or are TP53 wild-type, patients were stratified for mutational status. In 

TP53 mutated patients, high p53 nuclear expression was significant associated with improved CSS 

(HR 0.40, 95% CI 0.18-0.89, p=0.016) (Figure 5.16). No significant difference was seen for wild-

type patients, but this may be due to the low numbers of patients with high expression in this group. 

Therefore, TP53 mutations are significantly correlated with high p53 nuclear expressions which 

associates with increased patient survival. 
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Figure 5.17 - KM plot of p53 nuclear expression and CSS (% survival at 10 years) in wild-type 
and mutated TP53 in stage I-III CRC patients (n=930); A. In TP53 wild type, no significant difference 
CSS observed between p53 high and p53 low (p=0.947). B. In TP53 mutated, high p53 was significantly 
improved CSS (p=0.016).   
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5.3.11 Associations between nuclear p53 expression and immune cell 
infiltration in tumour and stroma 
Next, the association between nuclear p53 expression and immune cells infiltration in tumour cell 

nests and tumour stroma was performed. No significant association were observed in either location. 

However, CD68+ macrophages in tumour cell nests did trend toward significance, with low nuclear 

p53 expression associating with high CD68+ infiltration (p=0.067) (Table 5.1). 

 
 
Table 5.1 - Association between nuclear p53 expression and immune cells infiltration in tumour cell 
nests and tumour stroma in stage I-III CRC Scottish cohort (n=930) 
 
 p53_Low N (%)  p53_High N (%) P 

Tumour cell nests    

CD3+ lymphocytes (n=572) 
     Low 
     High 

 
322 (68) 
149 (32) 

 
69 (68) 
32 (32) 

0.992 
 

CD8+ lymphocytes (n=558) 
     Low               
     High 

 
314 (68) 
147 (32) 

 
69 (71) 
28 (29) 

0.644 
 

FoxP3+ Tregs (n=462) 
     Absent                
     Present 

 
335 (88) 
44 (12) 

 
71 (86) 
12 (14) 

0.480 
 

CD68+ macrophages (n=299) 
     Low                 
     High 

 
85 (34) 

166 (66) 

 
23 (48) 
25 (52) 

0.067 
 

CD80+ M1-like macrophages (n=291) 
     Low                 
     High 

 
185 (76) 
57 (24) 

 
37 (76) 
12 (24) 

0.889 
 

CD163+ M2-like macrophages (n=285) 
     Low                 
     High 

 
205 (86) 
34 (14) 

 
41 (89) 
5 (11) 

0.534 
 

CD66b+ granulocytes (n=272) 
     Low                  
     High 

 
185 (84) 
34 (16) 

 
44 (83) 
9 (17) 

0.796 
 

Tumour stroma    
CD3+ lymphocytes (n=574) 
     Low 
     High 

 
390 (83) 
81 (17) 

 
84 (82) 
19 (18) 

0.763 
 

CD8+ lymphocytes (n=558) 
     Low               
     High 

 
250 (54) 
211 (26) 

 
58 (60) 
39 (40) 

0.315 
 

FoxP3+ Tregs (n=462) 
     Absent                
     Present 

 
297 (78) 
82 (22) 

 
59 (71) 
24 (29) 

0.162 
 

CD68+ macrophages (n=299) 
     Low                 
     High 

 
85 (34) 

166 (66) 

 
19 (40) 
29 (60) 

0.449 
 

CD80+ M1-like macrophages (n=291) 
     Low                 
     High 

 
165 (68) 
77 (32) 

 
30 (61) 
19 (39) 

0.350 
 

CD163+ M2-like macrophages (n=285) 
     Low                 
     High 

 
40 (17) 

199 (83) 

 
9 (20) 

37 (80) 

0.646 
 

CD66b+ granulocytes (n=272) 
     Low                  
     High 

 
186 (85) 
33 (15) 

 
45 (85) 
8 (15) 

0.996 
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5.3.12 Correlation between p53 expression, immune cells infiltration and 
CSS  
Next, the relationship between nuclear p53 expression, immune cells infiltration, and patient survival 

was assessed (Table 5.2). Nuclear p53 prognostic value was assessed in patients stratified for low 

and high levels of individual immune cell types, to assess if the good prognostic value of p53 was 

associated with a specific immune cell infiltration. 

 

5.3.12.1 In tumour cell nests 

For T-lymphocytes, in patients with low CD3+ infiltration, high nuclear p53 level significantly 

improved CSS (HR 0.43, 95% CI 0.25-0.75, p=0.001) with 10 years survival stratified by 58% for 

low p53 to 86% for high p53. This was not seen in patients with high CD3+. No differences in nuclear 

p53 prognosis were noted between low and high CD8+ infiltration with nuclear p53 associating with 

improved survival in both patients with low (HR 0.36, 95% CI 0.20-0.65, p=0.010) and high (HR 

0.36, 95% CI 0.20-0.65, p=0.008) CD8+. However, in the absent of FoxP3+, high p53 expression was 

associated with significantly improved CSS (HR 0.38, 95% CI 0.20-0.74, p=0.004) with 10 years 

survival stratified by 65% at low p53 to 84% for high p53. This was not seen in patients with FoxP3 

present. 

 

For myeloid cells, no associations were noted for CD68+ or CD66b+. However, in patients with low 

infiltration of CD80+ M1-like macrophages, high nuclear p53 was associated with improved CSS 

(HR 0.40, 95% CI 0.17-0.93, p=0.028, Figure 5.17 A) with 10 years survival stratified by 55% for 

low p53 to 82% for high p53. Whereas no associations were observed for CD80+ high (HR 0.72, 

95% CI 0.16-3.29, p=0.678, Figure 5.17 B). Similarly, in patients with low CD163+ M2-like 

macrophages, high nuclear p53 was associated with improved CSS (HR 0.49, 95% CI 0.23-1.02, 

p=0.045) with 10 years survival stratified from 59% for low p53 to 80% for high p53. This was not 

seen in patients with high CD163. 

 

5.3.12.2 In tumour stroma 

For T-lymphocytes, in patients with low CD3+ infiltration, high nuclear p53 was associated with 

improved CSS (HR 0.46, 95% CI 0.27-0.79, p=0.005) with 10 years survival stratified by 62% for 

low p53 to 83% for high p53. This was not seen in patients with high CD3+. Like in tumour cell 

nests, no differences in nuclear p53 prognosis were noted between low and high CD8 infiltration 

with nuclear p53 associating with improved survival in both patients with low (HR 0.36, 95% CI 

0.20-0.65, p=0.032) and high (HR 0.36, 95% CI 0.20-0.65, p=0.002) CD8+. Furthermore, in patients 

with an absence of FoxP3+ Tregs, high nuclear p53 was associated with improved CSS (HR 0.41, 
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95% CI 0.21-0.79, p=0.016) with 10 years survival stratified by 61% for low p53 to 83% for high 

p53. This was not seen in patients with FoxP3 present. 

 

As for myeloid cells, only in patients with low CD80+ M1-like macrophages infiltration did high 

nuclear p53 associate with improved CSS (HR 0.29, 95% CI 0.10-0.79, p=0.011, Figure 5.17 C) 

with 10 years survival stratified by 53% for low p53 to 86% for high p53. Whereas no significance 

was observed for CD80+ high (HR 1.09, 95% CI 0.36-3.30, p=0.868, Figure 5.17 D). 

 
Table 5.2 - Relationship between p53 expression and immune cells infiltration and CSS (% survival 
at 10 years) in stage I-III CRC Scottish cohort (n=930) 
 
 

 p53 low   p53 high  
P 

 N (%) CSS 
(SE) 

 N (%) CSS 
(SE) 

Tumour cell nests       

CD3+ lymphocytes (n=572) 
     Low 
     High 

 
322 (68) 
149 (32) 

 
58 (3) 
79 (4) 

  
69 (68) 
32 (32) 

 
86 (4) 
81 (8) 

 
0.001 
0.653 

CD8+ lymphocytes (n=558) 
     Low               
     High 

 
314 (68) 
147 (32) 

 
59 (3) 
74 (4) 

  
69 (71) 
28 (29) 

 
80 (5) 

100 (0) 

 
0.010 
0.008 

FoxP3+ Tregs (n=462) 
     Absent                
     Present 

 
335 (88) 
44 (12) 

 
65 (3) 

71 (11) 

  
71 (86) 
12 (14) 

 
84 (5) 

100 (0) 

 
0.008 
0.126 

CD68+ macrophages (n=299) 
     Low                 
     High 

 
85 (34) 

166 (66) 

 
53 (7) 
66 (4) 

  
23 (48) 
25 (52) 

 
78 (9) 
79 (9) 

 
0.112 
0.223 

CD80+ M1-like macrophages (n=291) 
     Low                 
     High 

 
185 (76) 
57 (24) 

 
55 (4) 
78 (6) 

  
37 (76) 
12 (24) 

 
82 (7) 

80 (13) 

 
0.028 
0.678 

CD163+ M2-like macrophages (n=285) 
     Low                 
     High 

 
205 (86) 
34 (14) 

 
59 (4) 
74 (8) 

  
41 (89) 
5 (11) 

 
80 (7) 

75 (22) 

 
0.045 
0.982 

CD66b+ granulocytes (n=272) 
     Low                  
     High 

 
185 (84) 
34 (16) 

 
73 (3) 

66 (11) 

  
44 (83) 
9 (17) 

 
86 (6) 

74 (16) 

 
0.076 
0.881 

Tumour stroma       

CD3+ lymphocytes (n=574) 
     Low 
     High 

 
390 (83) 
81 (17) 

 
62 (3) 
80 (5) 

  
84 (82) 
19 (18) 

 
83 (4) 

85 (10) 

 
0.005 
0.496 

CD8+ lymphocytes (n=558) 
     Low               
     High 

 
250 (54) 
211 (26) 

 
59 (4) 
70 (4) 

  
58 (60) 
39 (40) 

 
80 (5) 
95 (5) 

 
0.032 
0.002 

FoxP3+ Tregs (n=462) 
     Absent                
     Present 

 
297 (78) 
82 (22) 

 
61 (3) 
80 (6) 

  
59 (71) 
24 (29) 

 
83 (5) 
93 (7) 

 
0.016 
0.160 

CD68+ macrophages (n=299) 
     Low                 
     High 

 
85 (34) 

166 (66) 

 
75 (5) 
55 (5) 

  
19 (40) 
29 (60) 

 
84 (11) 
73 (9) 

 
0.243 
0.237 

CD80+ M1-like macrophages (n=291) 
     Low                 
     High 

 
165 (68) 
77 (32) 

 
53 (5) 
77 (5) 

  
30 (61) 
19 (39) 

 
86 (6) 

71 (13) 

 
0.011 
0.868 

CD163+ M2-like macrophages (n=285) 
     Low                 
     High 

 
40 (17) 

199 (83) 

 
73 (9) 
59 (4) 

  
9 (20) 

37 (80) 

 
100 (0) 
75 (8) 

 
0.176 
0.147 

CD66b+ granulocytes (n=272) 
     Low                  
     High 

 
186 (85) 
33 (15) 

 
72 (4) 
71 (8) 

  
45 (85) 
8 (15) 

 
87 (6) 

64 (21) 

 
0.071 
0.755 

N=number of patients, CSS=Cancer specific survival, SE=standard error 
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Figure 5.18 - KM plots of p53 nuclear expression and CSS (% survival at 10 years) in high 
CD80 and low CD80 in tumour cell nests and tumour stroma in stage I-III CRC Scottish cohort 
(n=930); A. high p53 was significant associated with improved CSS at low CD80 in tumour cell nests, 
(p=0.028), B. no significant at high CD80 in tumour cell nests, C. high p53 was significant associated with 
improved CSS at low CD80 in tumour stroma, (p=0.011), D. no significant at high CD80 in tumour stroma. 

 

 

5.3.13 Comparison between mutations in low and high CD80+ M1-like 
macrophages in tumour cell nests and tumour stroma 
From the IHC results, CD80+ M1-like macrophages were associated with differences p53 prognosis 

in both the tumour cell nests and stroma. When M1-like macrophages are low, low p53 is bad for the 

patient, however, when M1-like macrophages are high, this poor prognostic effect of low p53 is lost 

and all patients do well. Therefore, mutational profiles for low and high CD80+ M1-like macrophage 

infiltrates were compared to see whether there is a difference between TP53 mutation in these two 

groups in either tumour cell nests or tumour stroma. 

 

 

p53 High 

p53 Low 

HR 0.40, 95% CI 0.17-0.93, log-rank p=0.028 

p53 High 

p53 Low 

HR 0.72, 95% CI 0.16-3.29, log-rank p=0.678 

p53 High 

p53 Low 

HR 0.29, 95% CI 0.10-0.79, log-rank p=0.011 

p53 High 

p53 Low 

HR 1.09, 95% CI 0.36-3.30, log-rank p=0.868 

A B 

C D 



185 

 

5.3.13.1 In tumour cell nests 

For CD80+ M1-like macrophages in tumour cell nests, there were 13 significantly differentially 

mutated genes included CREBBP, MSH2, MARCA4, APC, BLM, TGFBR2, RPL22, MSH6, FBXW7, 

SMAD4, BRCA2, ERBB3, and B2M. All mutated genes presented with more mutations in high CD80+ 

patients than low CD80+ patients (Figure 5.18). However, among 13 significant differentially 

mutated genes TP53 mutation were not included. This suggest that TP53 is not associated with 

CD80+ infiltration within tumour cell nests at the DNA level. 

 

 

Figure 5.19 - Co-bar plot of high mutated genes in high and low CD80 infiltration in tumour 
cell nests; Thirteen significantly differentially mutated genes presented more mutations in high CD80+ than 
low CD80+ patients (**p<0.01, *p<0.05). 
  

5.3.13.2 In tumour stroma 

For CD80+ M1-like macrophages in tumour stroma, of the top 13 mutated genes, four were 

significantly differentially mutated including ALK, ARID1A, TP53, and APC. All 4 genes were 

presented as significantly increase mutated frequency in high CD80+ patients than low CD80+ 

patients (all *p<0.05) (Figure 5.19). TP53 was significantly differentially mutated with 60% of 

CD80+ high patients carrying a mutation compared to 37% of CD80 low patients. This suggests that 

TP53 mutations are associated with CD80+ infiltration into the tumour stroma.  
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Figure 5.20 - Co-bar plot of high mutated genes in high and low CD80+ infiltration in tumour 
stroma. Among top mutated genes, APC, TP53, ARID1A, and ALK mutated were significantly presented in 
high CD80+ greater than low CD80+ patients (*p<0.05). 
 

 
5.3.14 Correlation between p53 expression and phenotypic subtypes 
In terms of phenotypic subtypes, the correlation between p53 expression and CRC phenotypic 

subtypes was evaluated. The result showed p53 expression level was significantly decreased in latent 

subtypes when compared to canonical subtype (**p < 0.01).  
 

 
 

Figure 5.21 - Correlation between p53 expression and CRC phenotypic subtypes; p53 expression 
was significantly decreased in latent subtypes (**p<0.01). 
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5.4 Discussion  
Currently, tumour immunotherapy is at the forefront of research searching for new strategies to reach 

successful treatment outcomes, together with overcome drug resistance in many types of solid 

tumours. Besides, due to the reduction in cost of whole genome sequencing (WGS) (Huang et al., 

2019; Mayakonda et al., 2018; Wu et al., 2012) and a variety of convenient bioinformatic tools 

packages that were developed over the past few decades to analyse high throughput complex dataset 

from large cohort’s studies in minutes, the use of genomic analysis in the clinic is becoming ever 

closer (Branco & Choupina, 2021; Brenner, 2019; Cole et al., 2021; Mayakonda et al., 2018). 

Therefore, today the trend of cancer genomics and genetic alteration studies are an arising approach 

to predict potential tumour neoantigens as new drug targets (Huang et al., 2019), prognostic 

biomarkers (Wang et al., 2020; Zhao et al., 2020), or predictive biomarkers for treatment response 

(Jiang et al., 2012; Koncina et al., 2020) to guide immunotherapy use (Bupathi & Wu, 2016; 

Mukherjee, 2019), all of which is crucial to eliminate tumours and improve patient survival.  

 

As our study is interested in the role of T-lymphocytes and myeloid cells infiltration in CRC patients 

and has developed immune cells landscapes grouping based on their infiltration level in tumour cell 

nests and tumour stroma. The aim of this chapter was to examine whether there are any significantly 

differentially mutated genes in each immune landscapes grouping. The results from whole genome 

sequencing data presented that, in general, the top three mutated genes in our patient’s cohort were 

APC (51%), TP53 (46%), and KRAS (31)%, as expected from their role in CIN pathway in CRC 

tumorigenesis (Tariq & Ghias, 2016).  Normally in colorectal cancer, the top three mutated genes are 

APC, KRAS, and TP53. APC, is the most important tumour suppressor gene, around 75% of CRC 

cases have mutation in this gene (Tariq & Ghias, 2016). KRAS, is another important gene, mutated 

KRAS is found around 35-42% of CRC cases. Whereas, TP53, impairment presents in around 50-

75% in CRC cases (Worthley & Leggett, 2010).  

 

In order to identified specific mutated genes for each landscape groups, the comparison between 

mutational profiles in each immune landscape group was performed. The mutational profiles of the 

most statistically significant differentially mutated genes in each group obtained that, in T-cells high 

group, the most significant differentially mutated gene was ERBB4 (100%) (erb-b2 receptor tyrosine 

kinase 4 or HER4), however, there is only 2 cases in this group, which need more cases to validate 

this result. Whereas, the myeloid high group, presented six significantly differentially mutated genes, 

all of which showed lower mutations in this group compared to the others, of which TP53 was the 

most significant. Whereas the both high group presented five significant differentially mutated genes, 

of which FBXW7 (F-Box And WD Repeat Domain Containing 7), was the most significant 

differentially mutated with higher levels of mutations in this group. Lastly, in both low group, only 
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TP53 was significantly differentially mutated, with high mutation levels in this group. Therefore, as 

the myeloid group appeared to have low levels of mutations and TP53 mutations where one of the 

most significantly differentially mutated between groups these were taken forward for further 

analysis. From this it was found that myeloid high has significantly less TP53 mutations than both 

low group and therefore it could be extrapolated that myeloid low patients have more TP53 

mutations. After observing TP53 mutations in patients with high myeloid cell infiltration into tumour 

cell nests, this was compared to patient with high myeloid cell infiltration into tumour stroma and 

indicated that TP53 mutations in patients with infiltration within the stroma were significantly higher 

than in patients with infiltration within tumour cell nests. However, the effect of TP53 mutations and 

immune cells infiltration for our patient’s cohort was not clear at this point. As TP53 is a most 

significant tumour suppressor gene, therefore, the hypothesis was its enriched mutations might result 

in a negative outcome in tumour stroma compared tumour nests with high myeloid cell infiltration.  

 

The role of TP53 mutations, and immune response has been studied. As TP53 is well-recognized as 

the guardian of genome and more than 50% of cancers cases harbor somatic mutations in this gene, 

mostly missense mutations causing single amino acid alterations leading to expanding the tumour 

cells half-life by accumulating in cell, whereas it would rapidly degrade in normal cells (Olivier et 

al., 2010; Wang & Sun, 2017). High p53 expression has been proposed to be used as a marker for 

TP53 missense mutations in high-grade serious ovarian cancer (Cole et al., 2016). Mostly, the result 

from mutations is altering conformational change in p53 proteins which impair DNA binding 

capacity and finally loss of p53 function and reduce apoptosis (Cui & Guo, 2016). Another effect of 

conformational change is stabilized p53 protein resulting in increased p53 level in tumour that 

triggers cell stress leading negative results. Therefore, p53 mutation could promote tumour 

progression from both loss-of-function (LOF) and gain-of-functions(GOF) mutations (Michel et al., 

2021).  

 

Therefore, we assessed the correlation between TP53 mutations and p53 protein expression level, 

and found that TP53 mutations was significantly correlate with high p53 expression, suggest that in 

our cohort TP53 mutations result in elevated p53 expression, which is in line with other reports that 

elevated p53 proteins could be indicator of TP53 mutations (Menendez et al., 2013). However, a 

limitation of this study was the antibody used in p53 IHC staining bound to both wild type and mutant 

p53, therefore, p53 expression was from a mixed population of wild type and mutant p53, so it was 

not possible to say what percentage of patients had the mutant p53 protein. However, survival 

analysis revealed that high p53 expression was significantly associated with improved patient’s 

survival as expected from its role for tumour suppressor function suggesting the majority of the p53 
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pick up by the antibody was wild type. However, when we stratified for mutated versus wild type 

TP53 mutations, only patients with mutated TP53 had improved survival. 

 

As we want to see the effect of immune cells infiltration on p53 expression, the relationship between 

p53 expression and immune cells infiltration was observed, however, no significant association was 

noted, suggesting there was not a direct linking between the two. However, when the relationship 

between p53 expression and patient’s survival was stratified for immune cell infiltrate, interesting 

associations were observed. With high immune cell infiltrates, there is no significant change in 

survival rate between low and high p53. Interestingly, low levels of CD80+, together with low p53 

could decrease survival when compared to high CD80+ in both tumour cell nests and tumour stroma. 

This suggests that if   CD80+ is low, high levels of p53 are needed to improve patients’ survival, 

however, when CD80+ cells are high, p53 is no longer important and all patients do well.  

 

There is a strong connection between p53 and the innate immune response, through p53 mediating 

innate immune system to orchestrate clearance of DNA damaged cells which eliminates tumour cells  

(Guo & Cui, 2015; Menendez et al., 2013). Recently, the role of p53 in tumour cells and the 

association with myeloid lineage cells has been studied. Cooks et al. reported that human mutant p53 

tumour cells can reprogram macrophages into anti-inflammatory state, M2-macrophages, which 

support tumour progression through intercellular interactions by shedding exosomes with miR-1246-

enriched. Later macrophages which uptake these exosomes then trigger miR-1246-dependent 

reprogram into a tumour promoting state which support anti-inflammatory immunosuppression 

leading to poor survival (Cooks et al., 2018). Therefore, the role of p53 to myeloid cells could result 

in poor survival. 

 

However, in our study, p53 was linked to M1-like macrophages in both tumour cell nests and tumour 

stroma. As discussed above high p53, together with low M1-like macrophages could improve 

survival in both tumour cell nests and tumour stroma, but when M1-macrophages are high, p53 levels 

are no longer important. This suggests that M1-like macrophages may compete with p53 to result in 

improve patient survival. However, when TP53 mutations were assessed in high and low CD80+ M1-

like macrophages, it was found that high CD80+ group was significantly enriched for TP53 mutations 

only in tumour stroma, whereas in tumour cell nests, TP53 mutations did not appear among thirteen 

significantly differentially mutated genes in high CD80+ in tumour cell nests. Therefore, at DNA 

level, enriched TP53 mutation could be detected in patients with high M1-like macrophage in stroma, 

but not in tumour cell nest. Whereas high p53 expression presented similar effect on patients’ 

survival in both locations. This suggests that the prognostic role of TP53 mutations and p53 

expression in patients with stromal infiltration of M1-like macrophages may be of more importance 
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of than in patients with tumour nest infiltration. But as our antibody detected both mutant and wild 

type p53 protein this effect may be hidden in the IHC results and needs validated with a mutant 

specific antibody.  
 

In conclusion, at DNA level, there were differences between TP53 mutations in patients with only 

high levels of myeloid cells, with more mutations were presented in patients when high numbers of 

myeloid cells in the stroma, suggesting TP53 mutations might affect myeloid infiltration into the 

stroma. TP53 mutated was correlated with high p53 expression when compared to wild-type TP53 

at the protein expression level. In addition, low p53 expression was a poor prognostic factor in 

patients with low levels of M1-macrophages, but this was negated when M1-macrophage levels are 

high. However, at DNA level, TP53 mutations were more frequent in patients with high stromal M1-

like macrophages, denoting TP53 mutations could be a prognostic factor in patients with high 

myeloid cells infiltration into tumour stroma.  
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Chapter 6 Differential gene expression 
of innate and adaptive immune cell 

landscapes in stage I-III CRC 
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6.1 Background 

CRC is a heterogeneous disease, the heterogeneity can be linked to various phenotypes and 

clinicopathological features, which are controlled by several factors varying from genetics to 

epigenetics, and tumour microenvironment (Picard et al., 2020; Saleh et al., 2020). The tumour 

microenvironment is complex consisting of stromal cells and several immune cell compositions 

which function as pro-tumorigenic or anti-tumorigenic depends on which cell types presented. 

Therefore, studies of gene expressions are rising focusing on integrating gene expression signatures 

and immune cells, in multiple tumours including CRC to create prognostic and predictive markers, 

i.e., developing immune-related gene expression signatures to predict response to chemotherapy, 

which might improve patient’s prognosis and benefit therapeutic responses, ranging from 

chemotherapy and radiotherapy, to immunotherapy (Chen et al., 2020; Choe et al., 2021; Li et al., 

2020; Tan et al., 2021; Wang et al., 2020; Zhao et al., 2021). In addition, an integration of genomic 

and transcriptome data to identify somatic mutation-driven immune cells has been reported (Jiang et 

al., 2021).  

 

In chapter 5, the immune landscape grouping was integrated into mutational analysis, and found that 

TP53 mutations were significant in the myeloid high group which had more mutations presented in 

patients with high level of myeloid cells in the stroma, suggesting TP53 mutations might impact 

myeloid infiltration into the stroma. Mutations in TP53 were specifically higher in patients with high 

stromal M1-like macrophages.  

 

The aim of this chapter was to examine transcriptomic data, to assess whether there are patterns of 

differentially expressed genes which could be used as potential prognostic or predictive markers for 

each immune landscape grouping.  

 

6.2 Method 
Whole transcriptome RNA-Seq was performed by BioClavis Glasgow by utilising the novel TempO-

Seq technique (Biospyder Technologies, Carlsbad, CA, USA) on a FFPE full section tissue from 

subset of patients from the Glasgow combined cohort (n=100). The pre-processing quality control of 

FastQ files and the Mahalanobis distance outliers’ analysis were performed by BioClavis Glasgow 

and has determined the 9 outliers which were excluded from the final raw gene counts for 

downstream analysis. Data analysis was done using R studio version 4.0.5. RNA-Seq raw counts 

data normalization and differential expressed genes (DEGs) were performed by utilizing DESeq2 

packages (Love et al., 2014) version 1.30.1 for the full ~22,000 gene transcriptome. Differentially 

expressed genes tables were performed for each immune landscape groups (both low, t-cell high, 
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myeloid high, both high) compared to all other patients. PCA plot and samples clustering were 

generated to explore the sample-to-sample distance relationship. The hierarchical clustering of gene 

expressions was constructed by pheatmap package. Box plot was performed to observe gene 

expression level in each group. Volcano plots and MA plots were generated to visualise DEGs by 

displaying mean expression levels, log 2-fold changes, and p-value. Significant DEGs was set if 

adjusted p-value < 0.05 with log 2-fold changes > 1 for significant upregulated genes, while adjusted 

p-value < 0.05 with log 2-fold changes < 1 was set for significant downregulated genes. Venn 

diagram was generated to observe the overlapping of differentially expressed genes between groups. 

Over-representative analysis (ORA) of enriched gene sets were performed by enrichGO function and 

cnet function was utilised for gene-concept networks plots to observe biological processes involves. 

Protein-protein interactions (PPIs) was generated by STRING functional enrichment analysis online 

tool. Boxplots were constructed to assess the correlation between mutations and DEGs expression 

levels.  

 

6.3 Results 

From RNA-Sequencing data of 100 samples available from the Scottish cohort, after potentially 9 

outliers were excluded, raw read counts of 48 samples were available for the subsequent analysis 

after grouping by immune landscape (Figure 6.1).  

 

6.3.1 Transcriptomics analysis of the tumour immune landscape groups  
First, analysis was performed in the 48 patient samples based on the four tumour immune landscape 

groups generated from chapter 3: T-cells high (N=3), myeloid high (N=24), both high (N=14), and 

both low (N=7) (Figure 6.1).  
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Figure 6.1 - Consort diagram of RNA-Sequencing data of Scottish cohort patients; Showing 48 
valid RNA-Sequencing data from patient samples were available in the study with excluding criteria by 
potential outliers, and patients with no immune landscapes data.   
 

 
6.3.2 Correlation between immune cells level and related gene expression 
The correlation between tumour T-lymphocytes and macrophages expression level and genes 

correlated with each cell were observed by boxplots. For T-lymphocytes, high CD3 was associated 

with CD3E_16113 expression (Figure 6.2 A), and high CD8 was associated with CD8A_1152 

expression (Figure 6.2 B). For macrophages markers, CD68 expression was not associated with 

CD68_20756 expression (Figure 6.2 C), whereas high CD80 was significantly associated with 

CD80_88562 expression (Figure 6.2 D). However, CD163 was not associated with CD163_14001 

expression (Figure 6.2 E). Due to low patient numbers, markers did not reach significant.  
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Figure 6.2 - The correlation between immune cells expression level and immune cells related 
genes expression; showing high CD3 and CD8 expression were correlated with high expression of 
CD3E_16113 (A) and CD8A_1152 (B), respectively. CD68 expression level was not correlated with 
CD68_20756 expression (C). High CD80 was significant correlated with CD80_88562 (D). CD163 expression 
was not correlated with CD163_14001 (E).  
 

 
6.3.3 Principal component analysis (PCA) of immune landscape groups 
Principal component analysis and gene clustering was generated by stat_ellipse function on ggplot2 

packages, the result revealed potential gene clusters for myeloid high (green ellipse), both high (blue 

ellipse), and both low (purple ellipse) groups. However, no potential gene clustering for T-cells high 

group (red dots) was observed potentially due to the small sample number (Figure 6.3). 
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Figure 6.3 - PCA plot of 4 immune landscape groups in stage I-III CRC Scottish cohort (n=48); 
PCA presented potential gene clustering for myeloid high (green), both high (blue), and both low (purple). No 
potential clustering for T-cells high group (red) due to small sample numbers.  
 

 
6.3.4 Analysis of candidate top 40 genes expressed in the four tumour 
immune landscape groups 
Next, a heatmap plot was generated to observe the pattern of expression of the top 40 genes across 

the four groups. In general, the heatmap plot showing 3 distinct patterns of sample groups, group A 

showing high expression, group B showing low expression, and group C showing intermediate 

expression. However, sample group B predominantly consisted of patients from the myeloid high 

group, whereas the other two groups consisted of the mixed populations of the other groups (Figure 

6.4). 

 

To observe the expression pattern of top 40 genes among the four groups, box plots were generated. 

The result indicated that in T-cells high group there was low expression from most genes. However, 

due to the small number of samples in this group this would need to be confirmed in a larger cohort. 

Whereas, myeloid high, both high, and both low groups showed similar expression patterns. Some 

genes, i.e., FAM3B_11565, were downregulated in the T-cells high group but upregulated in the 

myeloid high and both high groups, with intermediate expression in the both low group (Figure 6.5). 

This suggests the expression pattern of the both high group might be influenced by myeloid high 

group. However, due to low sample size within the T-cells high group, validation in a larger patient 

cohort is needed to clarify these results. 
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Figure 6.4 - Top 40 genes expression in 4 immune landscape groups; Heatmap showing top 40 gene expression patterns presented 3 distinct patterns 
among sample groups, group A showing high expression, group B showing low expression, and group C showing intermediate expression. The group A, B, 
C represented sample groups. The gene names are listed on the right.  

 

group A group B group C 
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Figure 6.5 - Expression of top 40 genes in each immune landscape group; in T-cells high group 
given low expression from most of genes. Whereas, myeloid high, both high, and both low groups presented 
almost similar expression patterns. 

 
6.3.5 Comparison of differentially expressed genes between T-cells high 

vs others 
Next, to observe differentially expressed genes, the comparison between each immune landscape 

group and others were analysed. In the comparison between T-cells high and others groups, the 

results revealed 17 significantly differentially expressed genes which were downregulated in T-cells 

high group (Table 6.1). Among 17 genes, the top 5 most significant, (REG3A_22026, 

REG3G_88681, PEPD_12569, NXF2_25593, CXCL5_15735) were labelled on Volcano plot and 

MA plot, of which REG3A, REG3G, and NFX2 represented the top 3 highest fold changes in 

expression levels (Figure 6.6 A, B). Again, due to the low sample size within this group, validation 

in a larger cohort is needed. 
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Table 6.1 – Significantly downregulated genes in T-cells high group from DE T-cells high vs others 

 

Gene name Mean 
expression 

Log2FoldChange Pvalue Padj 

REG3A_22026 128.21062 -23.09025171 1.76E-17 3.52E-13 

REG3G_88681 38.15083 -19.71353786 2.23E-11 2.23E-07 

PEPD_12569 31.48458 -7.444128812 3.32E-07 0.001749385 

NXF2_25593 13.50833 -20.43945814 3.50E-07 0.001749385 

CXCL5_15735 141.11583 -9.003716244 5.73E-07 0.002292599 

FAM3B_11565 137.98438 -9.576396834 1.37E-06 0.004314644 

PDE11A_88245 56.65812 -8.292316418 1.51E-06 0.004314644 

SNTB1_11109 32.43854 -7.482625537 2.49E-06 0.00621764 

ANKRD20A8P_34050 28.53229 -7.302170518 3.19E-06 0.007086093 

ZNF416_16733 22.69958 -6.973028879 4.03E-06 0.008067713 

DHRS7B_19227 31.14500 -7.430319462 4.44E-06 0.008077978 

USP28_91295 26.60625 -7.204052087 1.03E-05 0.017138656 

ADM5_20591 33.32042 -7.523706994 1.24E-05 0.019016025 

DCAF4L1_14168 59.59917 -4.41888204 1.68E-05 0.024074749 

PDE11A_90128 68.85354 -5.211721529 1.97E-05 0.026245807 

CCDC122_25724 25.44000 -7.138193392 2.80E-05 0.034966712 

TGOLN2_23562 926.72458 -1.167803131 3.23E-05 0.037994092 
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Figure 6.6 – Volcano and MA plots for significant downregulated genes for DE T-cells high vs 
others; A. Volcano plot showing 17 significant genes in T-cells high group, B. MA plot showing log2 fold 
change and average of expression level of significant genes, top 5 most significant downregulated genes were 
labelled in blue.   
 

 

6.3.5.1 Analysis of expression of 17 significantly downregulated genes  

A box plot was generated to observe the expression level from normalized raw gene counts, the result 

showed that among 17 genes showing low expression in T-cells high group, REG3A_22026 and 

REG3G_88681 were the most significant expressed genes with highest fold changes (Figure 6.7). 

Further analysis is needed to validate these results due to the small sample size. 

 

A 

B 



201 

 

 

Figure 6.7 - Expression level of 17 significant downregulated genes in DE T-cells high vs others; 
From normalized raw gene counts data, REG3A, REG3G, and PEPD were top 3 most significant genes. 

 

6.3.5.2 Analysis of Gene-Concept network for 17 significantly downregulated 

genes 

The gene-concept network by cnet plot for significant differentially expressed genes was analysed, 

the result revealed that 3 out of 17 significant genes, REG3A_22026, REG3G_88681, and 

CXCL5_15735, appear in the network linkage for biological processes related to immune response, 

i.e., humoral immune responses, acute inflammatory response, regulation of wound healing and 

regulation of response to wound healing (Figure 6.8).   

 



202 

 

  

Figure 6.8 - Network plot for enriched 17 significant differentially expressed downregulated 
genes in T-cells high group; Enrichment genes cnet plot showing the network linking of biological 
processes from 3 out of 17 genes, REG3A, REG3G, CXCL5, participated in immune response processes, i.e., 
humoral immune responses, antimicrobial humoral response, acute inflammatory response, regulation of 
wound healing, cell proliferation, cell differentiation, cell development.  
 

 

6.3.6 Comparison of differentially expressed genes between myeloid high 

vs others 
In the comparison between myeloid high and others group, the results revealed only 1 significantly 

differentially expressed gene, IGF2BP1_24044, which was downregulated in myeloid high group 

(Table 6.2). The log2 fold change and average of expression were shown in Volcano plot and MA 

plot (Figure 6.9 A, B). 

 

 

Table 6.2 – Significantly downregulated gene in myeloid high group from DE myeloid high vs others 

 

Gene name Mean 
expression Log2FoldChange Pvalue Padj 

IGF2BP1 9.278125 -6.408081 2.327016e-06 0.0479 
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Figure 6.9 - Significant differentially expressed genes for myeloid high vs others; A. Volcano plot 
showing 1 significant differentially expressed gene, IGF2BP1_24044, downregulated in myeloid high group, 
B. MA plot showing log2 fold change and average of expression level, gene name with blue colour labelled 
represented downregulated expressed gene. 
 

6.3.6.1 Analysis of the expression level of the IGF2BP1 gene 

When observed, the normalized raw gene counts found that IGF2BP1_24044 show very low 

expression in myeloid high group compared to the others group (Figure 6.10).  

 

A 

B 
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Figure 6.10 - Expression level of IGF2BP1_24044 significant downregulated gene in DE 
myeloid high vs others; IGF2BP1_24044 was the only one significant downregulated gene expressed in 
myeloid high group. 
 

6.3.6.2 Analysis of Gene-Concept network for the IGF2BP1 gene 

The gene-concept network cnet plot for IGF2BP1_24044 was analysed, the result indicated that 

IGF2BP1 participating in the biological processes network relating to RNA and mRNA, i.e., the 

regulation of RNA stability, mRNA stabilization and RNA localisation, and transport, i.e., nucleic 

acid transport, RNA transport and mRNA transport. (Figure 6.11).  

 

 

 
Figure 6.11 - Network plot for IGF2BP1 significant differentially expressed downregulated 
gene in myeloid high group; enrichment cnet network plot showing the network linking of IGF2BP1 genes 
participated in many biological processes.  
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6.3.7 Comparison of differentially expressed genes between both high vs 

others  
In the comparison between both high and others groups, the results revealed only 1 significantly 

differentially expressed gene, HLA-DRB5_15922, which was downregulated in the both high group 

(Table 6.3). The log2 fold change and average of expression were shown in Volcano plot and MA 

plot (Figure 6.12 A, B). 

 
 
Table 6.3 - Significantly downregulated gene in both high group from DE both high vs others 

 
Gene name Mean expression Log2FoldChange Pvalue Padj 

HLA-DRB5 947.3431 -1.407805 4.474593e-07 0.00278 

 

 

Figure 6.12 – Volcano and MA plots for significant genes of DE both high vs others; A. Volcano 
plot showing HLA-DRB5, downregulated in myeloid high group, B. MA plot showing log2 fold change and 
average of gene expression, gene name with blue colour labelled represented downregulated expressed gene.  

 

A 
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6.3.7.1 Analysis of the expression level of the HLA-DRB5 gene 
When observed, the normalized raw gene counts found that HLA-DRB5_15922 was downregulated 

in the both high group when compared to the others group (Figure 6.13).  

 

Figure 6.13 - Expression level of HLA-DRB5 significant downregulated genes in DE both high 
vs others; HLA-DRB5_15922 was the only one gene showing downregulated gene in both high group. 

 

6.3.7.2 Analysis of Gene-Concept network for the HLA-DRB5 genes 
The gene-concept network cnet plot for HLA-DRB5 was analysed, the result revealed that HLA-DRB5 

participating in the network of biological processes relating to antigen presentation pathways, i.e., T-cell 

receptor signalling pathway, antigen-receptor mediated signalling pathway and interferon-gamma-mediated 

signalling pathway. (Figure 6.14). 

 

Figure 6.14 - Network plot for HLA-DRB5 significant differentially expressed genes in both 
high group; Enrichment network, cnet, plot showing the network linking of biological processes of HLA-
DRB5 genes participated in immune response signalling pathways.  
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6.3.8 Comparison of differentially expressed genes between both low vs 

others 

For the comparison between both low and others groups, the results revealed 29 significant 

differentially expressed genes, of which 13 genes were upregulated, and 16 genes were 

downregulated in both low group. For upregulated genes, S100A4, CSPG4, HDAC4, SLC19A3, and 

PDK4 were top 5 most significant genes (Table 6.4). Whereas for downregulated genes, REG1A, 

SVOPL, IGLV5-45, IDH2, and ELAVL4 were top 5 most significant genes (Table 6.5). The log2 fold 

change and average of expression were shown in Volcano plot and MA plot (Figure 6.15 A, B).  

 

 

Table 6.4 - Significantly upregulated genes in both low group from DE both low vs others 

 

Gene_names Mean 
expression Log2FoldChange Pvalue Padj 

S100A4_6083 1224.593542 2.67202116 1.02E-08 9.24E-05 

CSPG4_24558 382.8702083 1.322040486 8.32E-08 0.000504668 

HDAC4_25787 348.090625 1.166686461 6.18E-07 0.002250351 

SLC19A3_11343 358.265625 2.47494838 1.00E-06 0.003042794 

PDK4_28868 377.6641667 1.380413525 1.41E-06 0.003668626 

AKAP12_24261 400.0241667 1.339064323 2.42E-06 0.005031098 

TNXA_20709 487.7483333 1.251562614 7.44E-06 0.012320925 

CD109_19701 356.1014583 1.870337732 2.50E-05 0.021635943 

MST1L_22368 1272.423542 1.183543635 2.83E-05 0.022393497 

EPHA4_16068 42.6525 3.407306135 5.50E-05 0.033360297 

MLLT11_4193 103.706875 1.331344772 6.45E-05 0.03354161 

CACNA1H_19299 563.6945833 1.133414548 8.38E-05 0.042279942 

AFAP1L2_26435 602.2014583 1.593498256 0.000101698 0.047479902 
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Table 6.5 - Significantly downregulated genes in both low group from DE both low vs others 

 

Gene_names Mean 
expression Log2FoldChange Pvalue Padj 

REG1A_5790 434.27625 -10.62314472 2.74E-15 4.98E-11 

SVOPL_88522 14.65229167 -6.557299014 5.13E-07 0.002250351 

IGLV5-45_90843 82.073125 -7.798278008 9.14E-06 0.013015936 

IDH2_24565 1917.377917 -1.056529605 9.29E-06 0.013015936 

ELAVL4_88663 10.83645833 -5.706788784 1.11E-05 0.014490601 

TNPO2_14787 6.8525 -5.463564748 1.65E-05 0.019141455 

KCNIP2_18588 8.142708333 -5.709718405 1.95E-05 0.020893062 

IGLV1_28171 1210.710625 -2.565292392 2.29E-05 0.021635943 

CLN6_25567 641.733125 -1.155781054 2.41E-05 0.021635943 

REG3G_88681 38.15083333 -7.938903943 3.26E-05 0.023740522 

BLM_716 608.5389583 -1.141726103 5.07E-05 0.032987381 

TP63_21790 7.642916667 -5.623734004 5.37E-05 0.033360297 

ADGRL1_23280 239.4547917 -1.086636783 6.12E-05 0.03354161 

HSD3B1_90693 11.55583333 -6.214151558 6.23E-05 0.03354161 

KCNJ10_12722 13.62520833 -6.04077744 6.42E-05 0.03354161 

TMPRSS7_17846 10.55791667 -6.081502273 0.000108398 0.049342711 
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Figure 6.15 – Volcano and MA plots of significant genes for DE both low vs others; A. Volcano 
plot showing 13 upregulated gene (gene name with red labelled), and 7 downregulated genes (gene name with 
blue labelled), B. MA plot showing log2 fold change and average of expression level. 
 

6.3.8.1 Analysis of expression levels of the 13 significantly upregulated 

genes  

Among 13 significant upregulated genes, S100A4_6083, CSPG4_24558, and HDAC4_25787 were 

top 3 most significant genes presented high expression in the both low group when compared to 

others group. However, when observing the expression level, MST1L_22368 showed highest 

expression level (Figure 6.16).  

 

A 

B
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Figure 6.16 - Expression level of 13 significant upregulated genes in DE both low vs others; 
Among 13 significant upregulated genes, MST1L, TNXA, CACNA1H, AKAP12, and ODK4 were the top 5 
genes presented high expression. 
 

6.3.8.2 Analysis of Gene-Concept network for the 13 significant upregulated 

genes  

The gene-concept network cnet plot for significant upregulated genes was analysed, the result 

revealed 2 clusters of networks. The first network is CD109 and CACNA1H participated in cell-cell 

fusion, syncytium formation and plasma membrane fusion. Whereas CACNA1H and HDAC4 

participated in positive regulation of multi-organism process. The second network is CSPG4, 

EPHA4, and AFAP1L2 participated in positive regulation of peptidyl-tyrosine phosphorylation. 

Whereas AFAP1L2 and EPHA4 participated in positive regulation of protein tyrosine kinase activity 

(Figure 6.17).  
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Figure 6.17 - Network plot for enriched 13 significant upregulated genes in both low group; 
Enrichment cnet network plot showing 2 networks linking to biological processes from 6 out of 13 genes.  
 

6.3.8.3 Analysis of the expression level of the 16 significantly 

downregulated genes 

For downregulated genes, among 16 significantly downregulated genes, REG1A_5790, 

SVOPL_88522, and IGLV5-45_90843 were top 3 most significant genes. However, IDH2_24565 

showed highest expression level in both low group (Figure 6.18).  

 

 

Figure 6.18 - Expression level of 16 significant downregulated genes in DE both low vs others. 
Showing 16 significant downregulated genes in both low group. 
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6.3.8.4 Analysis of Gene-Concept network for the 16 significantly 

downregulated genes 

The gene-concept network cnet plot for 16 significant genes was analysed, the result revealed that 2 

out of 16 significant genes, TP63 and REG3G appearing in the network linking for negative 

regulation of epidermal cell differentiation, negative regulation of epidermis development, and 

positive regulation of keratinocyte proliferation (Figure 6.19)  

 

Figure 6.19 - Network plot for enriched 16 significant downregulated genes in both low group; 
Enrichment network, cnet, plot showing the network linking of biological processes from 3 of 16 genes 
participated in immune responses.  
 

 

6.3.9 Venn diagram showing overlapping gene expression between 

groups 
Given the heatmap of top 40 genes expression pointed to the clustering of myeloid high group and 

the boxplot of expression pattern indicated a solid pattern of high expression in myeloid high group. 

Therefore, to observe whether there are overlapping of significant genes expressed between myeloid 

group and the other 3 groups, the size proportional Venn diagram was constructed from 3 DE 

comparison between myeloid high and the other groups, DE myeloid high vs T-cells high, DE 

myeloid high vs both high, and DE myeloid high vs both low group. The result designated no 

overlapping genes expression from all significant differentially expressed 44 genes (Figure 6.20). 

Suggesting that in myeloid high group might develops distinct gene expression pattern depends on 

which immune cell compositions presented around them in the microenvironment. However, this 

comparison should be performed for T-cell high with against other groups as well, unfortunately, our 

data contained only 3 samples available for analysis which could not give conclusive results. 
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Figure 6.20 - Venn diagram of overlapping of significant differentially expressed genes for 4 
tumour immune landscape groups; The size proportional Venn diagram showing no overlapping genes 
appeared from all significant differentially expressed genes when compare between groups. 
 

 

6.3.10 Comparison of differentially expressed genes between myeloid 

high vs T-cells high 
Next, DE table was extracted to clarify the significantly differentially expressed genes for myeloid 

high versus T-cells high. The result showed 23 significantly differentially expressed gene, with 

upregulation in myeloid high group. Of which, SLC51A_15250, ORM1_4833, CPA2_18016, 

CFHR3_11110, SLC15A1_16854, MUC6_89994, ST18_6795, TTC29_90764 were the top 

significant genes with elevated fold changes (Table 6.6). The log2 fold change and average of 

expression were shown in Volcano plot and MA plot (Figure 6.21 A, B). 

 
 

 

 

 

 

 

 

 

 

Total = 18199 genes 

Group 1 = DE myeloid.high vs T.high 
Group 2 = DE myeloid.high vs both.high 
Group 3 = DE myeloid.high vs both.low  
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Table 6.6 - Significantly upregulated genes in myeloid high group from DE myeloid high vs T-cells 

high 

 
Gene names Mean expression Log2FoldChange Pvalue Padj 

SLC51A_15250 17.109792 20.37958535 1.48E-21 2.69E-17 
ORM1_4833 103.345833 21.85353622 2.46E-20 2.24E-16 

CPA2_18016 8.859583 19.56959836 2.08E-12 1.26E-08 

CFHR3_11110 11.023125 19.23110008 3.95E-12 1.80E-08 

SLC15A1_16854 7.423542 19.0738721 9.26E-11 3.37E-07 

MUC6_89994 10.200625 18.6325807 1.34E-10 4.07E-07 

ST18_6795 10.524375 18.21218713 2.43E-10 6.32E-07 

TTC29_90764 60.894167 21.14858488 3.71E-10 8.44E-07 

CXCL5_15735 141.115833 9.371800351 1.64E-07 0.00033164 

KRT34_33638 19.037500 19.20393792 3.25E-07 0.000591472 

PEPD_12569 31.484583 7.48393439 4.35E-07 0.000719074 

FAM3B_11565 137.984375 9.6508985 2.12E-06 0.003222498 

SNTB1_11109 32.438542 7.498449263 3.95E-06 0.005534823 

ZNF416_16733 22.699583 7.079290703 4.52E-06 0.00587623 

NKX2-1_18021 10.701875 20.76148117 6.53E-06 0.007919455 

DHRS7B_19227 31.145000 7.336738079 9.62E-06 0.010875819 

ADM5_20591 33.320417 7.751699785 1.05E-05 0.010875819 

USP28_91295 26.606250 7.352923418 1.08E-05 0.010875819 

ANKRD20A8P_34050 28.532292 6.907758987 1.19E-05 0.011372914 

DCAF4L1_14168 56.658125 4.582241376 1.51E-05 0.013113321 

PDE11A_88245 59.599167 7.490958725 1.45E-05 0.013113321 

MAGEA11_3937 26.639375 18.27053149 2.68E-05 0.022153121 

BCL3_668 18.228750 6.986311705 2.89E-05 0.022831886 
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Figure 6.21 - Significant differentially expressed genes for DE myeloid high vs T-cells high; A. 
Volcano plot showing 23 significant differentially expressed upregulated genes in myeloid high group, B. MA 
plot showing log2 fold change and average of expression level. The labelled gene name in red were top 5 most 
significant upregulated genes.  
 

 

6.3.11 Comparison of differentially expressed genes between myeloid 

high vs both high 
Again, DE table was extracted to clarify the significantly differentially expressed genes for myeloid 

high versus both high group. The result showed 1 significantly differentially expressed gene, with 

upregulation in myeloid high group, HLA-DRB5_15922 (Table 6.7). The log2 fold change and 

average of expression were shown in Volcano plot and MA plot (Figure 6.22 A-B). 

 

A 

B
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Table 6.7 - Significantly upregulated genes in myeloid high group from DE myeloid high vs both 

high 

Gene names Mean 
expression 

Log2FoldChange Pvalue Padj 

HLA-DRB5 947.3431 1.441622 1.143194e-06 0.02346062 

 

 

Figure 6.22 - Significant differentially expressed genes for DE myeloid high vs both high; A. 
Volcano plot showing HLA-DRB5 was the one significant differentially expressed upregulated genes in 
myeloid high group, B. MA plot showing log2 fold change and average of expression level.  

 

6.3.12 Comparison of differentially expressed genes between myeloid 

high vs both low 

Next, DE table was extracted to clarify the significantly differentially expressed genes for myeloid 

high versus both low group. The result showed 20 significantly differentially expressed genes, of 

which 16 genes were upregulated, and 7 genes were downregulated in myeloid high group. For 

upregulated genes, ART3_25022, REG1A_5790, and ANKRD30B_10482 were the most top 3 

A 
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significant genes with high log2 fold change (Table 6.8). As for significant downregulated genes, 

S100A4_6083 and PDK4_28868 were the most significant genes (Table 6.9). The log2 fold change 

and average of expression were shown in Volcano plot and MA plot (Figure 6.23 A, B). 

 

 

Table 6.8 - Significantly upregulated genes in myeloid high group from DE myeloid high vs both 

low 

Gene_names Mean expression Log2FoldChange Pvalue Padj 

ART3_25022 7.342708 19.34399499 3.03E-17 6.21E-13 

REG1A_5790 434.276250 10.97843849 1.45E-15 1.49E-11 

ANKRD30B_10482 23.891667 17.17168515 1.51E-10 1.04E-06 

SVOPL_88522 14.652292 6.641055089 1.36E-06 0.003495798 

PES1_92441 244.842292 1.053018334 4.23E-06 0.008680336 

ELAVL4_88663 6.852500 6.059343251 7.13E-06 0.012200781 

TNPO2_14787 10.836458 5.8713582 6.90E-06 0.012200781 

IGLV5-45_90843 82.073125 8.124953543 8.07E-06 0.012732927 

HIST1H2AL_20843 785.046458 1.06275607 1.30E-05 0.016451333 

REG3G_88681 38.150833 8.14847785 3.25E-05 0.035109359 

ADGRL1_23280 239.454792 1.184360139 3.43E-05 0.035223761 

KCNIP2_18588 8.142708 5.720402585 4.44E-05 0.041994388 

MKKS_17700 474.676042 1.010235686 5.16E-05 0.046014596 
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Table 6.9 - List of 7 significantly upregulated genes in myeloid high group from DE myeloid high 

vs both low 

 
Gene_names Mean expression Log2FoldChange Pvalue Padj 

S100A4_6083 1224.5935 -2.725496467 4.56E-08 0.00023379 

PDK4_28868 377.6642 -1.575000194 1.03E-07 0.000422191 

CSPG4_24558 348.0906 -1.25512772 1.24E-06 0.003495798 

HDAC4_25787 382.8702 -1.216699873 1.05E-06 0.003495798 

SLC19A3_11343 358.2656 -2.509902906 3.52E-06 0.008016024 

AKAP12_24261 400.0242 -1.331770018 1.07E-05 0.014600646 

AFAP1L2_26435 602.2015 -1.797176623 2.70E-05 0.030807274 

 

 

Figure 6.23 - Significant differentially expressed genes for DE myeloid high vs both low; A. 
Volcano plot showing 13 significant differentially expressed upregulated genes, and 7 genes downregulated 
genes in myeloid high group, B. MA plot showing log2 fold change and average of expression level. The 
labelled gene name in red were top 5 most significant upregulated genes, and labelled gene name in blue were 
the top 5 most significant downregulated genes. 
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6.3.13 Analysis of Protein-proteins interaction (PPI) networks for 

significant genes across all immune landscapes 
As the aim of this chapter was to identify differentially expressed genes in each immune landscape 

grouping, and the results presented distinct sets of gene expression between groups, especially for 

myeloid high group. Therefore, the PPI networks for significant differentially expressed gene sets 

was constructed with modifying by adding more genes for clarification of networks involve (Figure 

6.24). The interaction network plot showing most of significant genes from study could be linked to 

a TP53 network including IDH2, S100A4, TP63, KRT34, IGF2BP1, ELAVL4, NKX2-1, USP28, 

AKAP12, MUC6, HDAC4, PES1, and SLC19A3. The other network groups consisted of REG3G-

REG3A-REG1A for regenerating islet-derived (REGs) proteins network have been implicated in a 

variety of diseases including diabetes, various types of cancer of the digestive tract, and Alzheimer 

disease; KCNIP2-CACNA1H-KCNJ10 for potassium and calcium channel-interacting proteins; 

NFX2-TNPO2 for nuclear transcription factor and transportin protein; SLC15A1-SLC51A for 

intestinal hydrogen peptide cotransporter localized to the brush border membrane of the intestinal 

epithelium plays an important role in the uptake and digestion of dietary proteins.
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Network stat 

FDR Biological process (Gene ontology) Gene counts 

FDR KEGG Pathways Gene counts 

Figure 6.24 - STRING interaction network plot for all significant differentially expressed genes from all DE comparison groups. STRING 
interaction network for all significant genes with modifying by adding more genes for network clarification showing most of significant genes from study could be 
linked to TP53 network including TP63, IGF2BP1, ELAVL4, NKX2-1, KRT34, USP28, AKAP12, MUC6, HDAC4, PES1, SLC19A3, BLM, IDH2, S100A.  
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6.3.14 Association between TP53 mutation and significant gene 

expressions  
Finally, from PPI network, the most of proteins of interest were predominantly related to TP53 

network. Therefore, the associations between TP53 mutations and normalized raw counts of genes 

of interest from each immune landscape group were assessed. TP53 mutations were available for 

32/48 samples for this analysis, of which 19 were mutants and 13 were wild-type TP53.   

 

Firstly, the correlation between p53 protein levels and TP53 gene expression levels was checked to 

validate the transcriptomics data. 

 

6.3.14.1 TP53 gene expression and nuclear p53 protein expression 
As TP53 mutation chapter 5 found that TP53 mutation was significantly associated with high nuclear 

p53 expression. Therefore, the correlation between TP53_7287 expression and p53 protein 

expression was observed. A boxplot showed high nuclear p53 expression was correlated with high 

TP53_7287 expression level (Figure 6.25).  

 

Figure 6.25 - Association between TP53_7287 gene expression and nuclear p53 expression. High 
TP53_7287 expression was correlated with high nuclear p53 expression. 

 

6.3.14.2 TP53 mutations and upregulated genes in myeloid high - REG1A, 
REG3A, REG3G 
From the myeloid high group, 3 genes were assessed which were upregulated, REG1A_5790 (Figure 

6.26 A), REG3A_22026 (Figure 6.26 B), and REG3G_88681 (Figure 6.26 C). All three genes were 

downregulated in the presence of TP53 mutations when compared to wild-type TP53. However, 

these differences between mutant and wildtype p53 were non-significant which might be due to small 

p=0.157 
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patient numbers in the analysis. Therefore, a larger cohort are needed to validate these results. As 

REGs proteins have a pro-tumorigenic function in gastrointestinal tract, therefore, downregulating 

their expression in p53 mutant tumours might influence the patient’s better prognosis seen in the 

previous chapter. 

 

 

Figure 6.26 - Association between TP53 mutations and REG1A, REG3A, REG3G genes 
expression, significant differentially upregulated in myeloid high group; A. REG1A_5790, B. 
REG3A_22026, and C. REG3G_88681 expressions were downregulated in TP53 mutant when compared to 
wild-type TP53.  
 

6.3.14.3 TP53 mutations and downregulated genes in myeloid high - 
IGF2BP1 
As for a downregulated gene in myeloid high group, IGF2BP1_24044, was found to be upregulated 

in patients with TP53 mutations however, this was not significant (Figure 6.27). Again, a larger 

cohort are needed for further elucidation of these result. 

A 
p=0.129 p=0.186 

B 

p=0.129 
C 
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Figure 6.27 - Association between TP53 mutations and IGF2BP1_24044 significant 
differentially downregulated gene in myeloid high group; TP53 mutations associated with 
upregulation of IGF2BP1 gene in myeloid high group.  
 

6.3.14.4 TP53 mutations and downregulated genes in both-high – HLA-DRB5 
For the downregulated gene in both high group, HLA-DRB5_15922, TP53 mutations did not affect 

the expression level as expression in wild-type and mutant p53 patients was similar. A larger cohort 

is also needed to clarify this result (Figure 6.28).  

 

 

Figure 6.28 - Association between TP53 mutations and HLA-DRB5_15922 significant 
differentially downregulated gene in both high group; TP53 mutations presented no effect to HLA-
DRB5 expression level in both high group. 

 

 

 

 

 

p=0.455 

p=0.367 
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6.4 Discussion  

The results from current study indicated different patterns of gene expression in each tumour immune 

landscape grouping. In general, PCA analysis and gene clustering revealed potential gene clusters 

for myeloid high, both high, and both low groups, but not for T-cells high group due to small sample 

numbers. When observed the heatmap of top 40 genes expression revealed 3 expression patterns, 

from which low expression was potentially predominantly made up of patients from the myeloid 

high group, whereas the other two groups consisted of the mix populations of other groups. When 

observed boxplot for patterns of gene expression, the results presented high expression levels in 

myeloid cells high, whereas low expression in T-cells high group. A similar pattern to myeloid high 

occurred in both high and both low groups, suggesting that the expression pattern of these 2 groups 

might be influenced by myeloid high group. 

 

When assessing the DEGs in T-cells high groups when compared to others group, the results showed 

downregulation of multiple genes which participating in immune response and would healing. This 

might because T-cells high is a good prognosis group. Whereas in myeloid high group showed 

downregulated in a gene IGF2BP1, which participating in RNA manipulation, i.e., stabilization, 

transport, etc. This might account for the pro-tumorigenic effect of myeloid high, disruption of RNA 

transcription. Whereas in both high group presented with downregulation of a gene HLA-DRB5, 

which participating in T-lymphocytes receptor signalling and other antigen presenting signalling 

pathways. This might because with high mixed immune cells infiltration the killing function is intact, 

and antigens can be recognised. Whereas in both low group there was both upregulation and 

downregulation of multiple genes, that need more investigation as the biological processes 

recognised were not easily associated with cancer or the immune system. This suggests that different 

gene expression patterns from each group participated in different biological processes which might 

be specific to each biological condition dependant on which immune cell compositions are being 

orchestrated in the tumour and its microenvironment. 

 

As myeloid high might be an important driver for gene expression pattern among the four groups, it 

was decided to observe more specifically for the DEGs between myeloid high groups and the three 

others was performed. First, when compared myeloid high with T-cells high, found 23 significant 

differentially upregulated genes. Whereas, if compared myeloid high to both high group, only one 

significant upregulated gene, HLA-DRB5, was found. As this gene was downregulated in both high 

group, it suggests this gene may be upregulated in the myeloid high group. Lastly, when compared 

myeloid high to both low group, the results revealed 20 significant differentially expressed genes, of 

which, 13 genes were upregulated, and 7 genes were downregulated in myeloid high. From Venn 
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diagram displayed no overlapping gene expressions from 44 significant DEGs based on myeloid 

high group, therefore, myeloid high might be an important factor influencing different gene 

expression pattern dependant on the other immune cells within the tumour microenvironment.  When 

a mix of immune cells as seen in both high, not many genes are differentially expressed suggesting 

myeloid high is the over-riding factor in this group. Whereas when compared to T-cell high or both 

low, where myeloid high is not involved, many genes are differentially expressed. 

 

Next protein-protein interaction networks from significant genes, with modification by adding more 

genes during generated STRING networks were analysed. The main link was a TP53 network, with 

some genes forming a few other independent linkages. This suggest that most of the significant genes 

found in this study are part of a TP53 network. As we have the results showing TP53 mutations are 

associated with a stromal myeloid landscape from chapter 5, therefore, the correlation between TP53 

mutations and these DEGs expression level were constructed.  

 

When looking at the downregulated gene found in myeloid high group, IGF2BP1_24044, it was 

found that patients with TP53 mutations appeared to have higher expression level, though this did 

not reach significance. IGF2BP1 (Insulin-like growth factor 2 mRNA-binding protein 1) is a crucial 

regulator of tumour and stem cell fate and its elevated expression in a multitude of tumour is 

associated with poor prognosis (Glass et al., 2021). As IGF2BP1 participated in RNA stability, 

downregulation might cause mutations and differential expression at protein level, therefore, 

upregulation in patients with TP53 mutations could stabilise mRNA and contribute to the good 

outcomes seen in these patients.  

 

HLA-DRB5 is a gene encoding for classical major histocompatibility complex (MHC) class II 

molecule and antigen-presenting cells. Again, this gene may be upregulated in the myeloid high, 

however in the both high group, with both T-lymphocytes and myeloid cells high, this gene was 

downregulated, and showed no differential expression between TP53 mutations and wildtype 

patients. Recently, Schaafsma et.al. proposed the comprehensive analysis of HLA gene expression 

from multiple databases in combination with patient’s cohorts receiving immune-checkpoint 

blockade treatment involving in 33 cancer types. They found that elevated HLA gene expression is 

associated with prolong survival in several cancer types, and HLA class II expression during 

treatment is associated with response to immune checkpoint blockade. Therefore, HLA gene 

expression is important for patients prognosis (Schaafsma et al., 2021). Therefore, it is interesting 

that HLA-DRB5 is down-regulated in the both high group which has a good prognosis, suggesting it 

may play a different role in these patients.  
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Interestingly, among DEGs, the REGs genes; REG1A, REG3A, and REG3G presented upregulation 

in wild type TP53 and downregulation in TP53 mutated patients. REGs, Regenerating Islet-Derived, 

genes and proteins have arisen to obtain multifunction include pro-proliferative, anti-apoptotic, 

differentiation-inducing, and anti-bacterial properties. REGs protein family has been shown to have 

affects in multiple organs, and as pro-tumorigenic in colon tissues (Chen et al., 2019; Sun et al., 

2021). Therefore, downregulated causing by TP53 mutation might could turn down the tumorigenic 

state into normal state in colon tissue. However, this was not statistically significant even though the 

high differences expression level was observed, this might be due to small sample numbers. 

Therefore, the large cohort is needed to validate the results.  

 

In conclusion, this study presented the potential gene expression pattern which might be driven by 

myeloid cells in CRC patient’s cohort. The results revealed significant DEGs specific for immune 

landscapes, especially in myeloid high group. REGs genes, REG1A, REG3A, REG3G, were 

significantly upregulated in myeloid high and downregulated in T-cells high groups. HLA-DRB5 was 

upregulated in myeloid high group but downregulated in both high group, whereas IGF2BP1 was 

downregulated in myeloid high group. Most of significant DEGs were connected to TP53 networks. 

TP53 mutation was associated with downregulation of REGs genes, and upregulation of the 

IGF2BP1 gene. Therefore, this might influence the good prognosis of p53 mutations in the tumour 

microenvironment where we see an influx of myeloid cells. However, a larger cohort of patients are 

needed to validate the present results.  
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Chapter 7 Establishment of 3-D co-
culture model using CRC and immune 

cell lines to assess immune checkpoint 
inhibitors (anti-PD-1/anti-PD-L1) 
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7.1 Background 

Immune checkpoints are well recognized as negative regulators of T-lymphocytes function and play 

a crucial role in limiting anti-tumour immune responses. Two types of co-inhibitory proteins that are 

widely studied are programmed cell death protein 1 (PD-1: bind to specific ligand called PD-L1), 

and cytotoxic T-lymphocyte antigen 4 (CTLA-4) (Buchbinder & Desai, 2016). Immune checkpoint 

interactions can be blocked with anti-PD-1/anti-PD-L1/anti-CTLA-4 lead to immune cell re-

activation and a coordinated T-lymphocytes anti-tumour response. Therefore, immunotherapy is now 

a main focus for many cancer types  (Farkona S, 2016; Stanley J. Oiseth, 2017b). Pembrolizumab, 

nivolumab, and cemiplimab are approved anti-PD-1 immune checkpoint inhibitors for use within the 

clinical setting. Atezolizumab, durvalumab, and avelumab are also approved anti-PD-L1. 

Ipilimumab is an approved anti-CTLA-4 for clinical use. 

 

3-dimentional (3D) multicellular tumour models, tumour spheroids and tumour organoids are 

becoming promising tools in cancer research as they are a better representative of in vivo solid tumour 

than 2D monolayer models (Fitzgerald et al., 2020). 2D models lack the complexity of tumour 

characteristics and the microenvironment, whereas co-culture 3D models mimic several aspects of 

tumour physiology and the microenvironment (Han et al., 2021; Vis et al., 2020). Furthermore, 3D 

co-culture models are thought to be superior in terms of monitoring drug effects as they represent an 

in vivo-like human tissue better and should be employed alongside animal models (Goers et al., 

2014). Therefore, tumour 3D models are a promising approach in various types of studies including 

co-culture of cancer cells with other cells in TME such as immune cells, and fibroblast mimicking 

in vivo status for multiple tumour types including CRC (Bauleth-Ramos et al., 2020; Franchi-Mendes 

et al., 2021; Koh et al., 2019; Venter & Niesler, 2018).  This chapter, therefore, aimed to establish a 

3-D co-culture model comprising a CRC tumour cell line and immune cell lines (T-lymphocytes and 

macrophages) in double or triple co-cultures. These 3-D co-culture models were then treated with 

anti-PD-1/anti-PD-L1 individually and in combinations to see the effects of immunotherapy on 

different cell compositions that mimic the immune landscape groups developed in chapter 3.  

 

7.2 Method 

Firstly, PD-L1 expression on HT29, PD-1 expression on Jurkat E6-1 t-cell line, and CD163 

expression on RAW264.7 macrophage cell line was assessed to investigate the suitability of the cell 

lines for co-culture. Next, HT29 spheroid formation was assessed to investigate the optimal spheroid 

size and seeding density. Then, the best media for co-cultures was checked by varying the media 

normally used for each cell line and assessing growth and health of the cells. Immune cell line 
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infiltration into spheroids was then observed to estimate the immune cell seeding density for use in 

both double and triple co-cultures. Next, anti-PD-1 (Pembrolizumab, Nivolumab) and anti-PD-L1 

(Atezolizumab) inhibitors were tested in each cell line to assess the optimal non-toxic concentration 

when tumour (HT29) and immune cells (Jurkat E6-1 human T-lymphocytes, RAW264.7 murine 

macrophage) were grown alone. Double and triple co-cultures of HT29 and Jurkat E6-1 T-

lymphocytes or/and RAW264.7 macrophage were performed to assess the response to each inhibitor 

by observing the effects on proliferation and apoptosis. Effects of combinations of anti-PD-1 and 

anti-PD-L1 treatment on the co-cultures were also assessed.  

 

 

7.3 Results 
7.3.1 Determining immune checkpoint expression on CRC and immune 

cell lines   
7.3.1.1 PD-L1 expression on HT29 cells 
Firstly, PD-L1 expression on HT29 tumour cells was performed by immunoblotting. Protein 

extraction was performed from HT29 cells culturing in T75 flasks. Anti-PD-L1 antibody 

concentration was used at 1:1000. Two other colon tumour cell lines, DLD1 and SW620 were used 

as positive control as stated to express PD-L1 in literature. Molecular weight (Mboowa et al.) for 

PD-L1 is ~40-50kDa. The result showed positive PD-L1 expression for all cell lines, DLD1, SW620, 

and HT29 (Figure 7.5). Tubulin protein was used as the housekeeping control, unfortunately, there 

was a problem with saving of this image making it unavailable for publication in this thesis.   

 
 
Figure 7.1 – PD-L1 expression on HT29 colorectal cancer cell line; PD-L1 expression was 
determined on HT29, with DLD-1 and SW620 run as positive control cell lines. The molecular weight of PD-
L1 is ~40-50kDa, showing positive PD-L1 bands for DLD-1, SW620, and HT29 as shown by arrow. 
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7.3.1.2 PD-1 expression on Jurkat E6-1 human T-lymphocytes cell line 

PD-1 expression was assessed using Jurkat cell pellets. PD-1 DNA plasmid transfection was 

employed as a positive control. Three conditions were used to assess PD-1 expression in Jurkat cell 

pellets: Jurkat cells in control media only (Figure 7.6 A), Jurkat cells with lipofectamine transfection 

reagent control (Figure 7.6 B), and Jurkat cells with PD-1 DNA plasmid transfection (Figure 7.6 

C). Due to the small size of some of the cell pellets, the Observer microscope was utilized at 20x 

magnification to assess PD-1 expression. The results showed positive PD-1 expression for all 

conditions. The slide with Jurkat cells in media control was then scanned (Figure 7.6 D) to allow 

closer magnification, and comparison to a positively stained colon tissue section (Figure 7.6 E). This 

confirmed Jurkat E6-1 T-lymphocytes express PD-1 protein. 

 

 
 
Figure 7.2 - PD-1 expression on normal and transfected Jurkat E6-1 T-lymphocytes; IHC stained 
for PD-1 expression on Jurkat E6-1 cell pellets. Jurkat cells from all conditions showed positive PD-1 
expression, Jurkat in control media (A), reagent control (B), with plasmid DNA transfection (C), when 
observed by Observer microscope at 20x magnification. The Jurkat in control media (D) and positive stained 
from colon tissue (E) were observed from scanner at 20x and 40x (insert) magnification.  
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7.3.2 Determining CD163 expression on RAW264.7 murine macrophage 

cell line 
To check the phenotype of RAW264.7 macrophages, conditioned media collected after 1 day of 

HT29 spheroid culturing was added to RAW264.7 macrophage culture. The cells were then collected 

when they reached confluency and were prepared as cell pellets for IHC staining. CD163 staining 

for M2 macrophage phenotype was performed on RAW264.7 cell pellets and colon tissue control. 

The results were observed by Observer microscope at 10x magnification, showing positive staining 

for both, colon tissue (Figure 7.7 A), and RAW264.7 in conditioned media from HT29 culture 

(Figure 7.7 B). This suggest that RAW264.7 macrophage may polarize into CD163+ M2-like 

macrophages after co-culture with HT29 tumour cells.   

 

 
 
Figure 7.3 – CD163 (M2 phenotype) expression on RAW264.7 murine macrophage cell line; 
IHC for CD163 was performed on RAW264.7 macrophage cultured in conditioned media from HT29 and CRC 
tissue as positive control (A), RAW264.7 macrophages showing positive for CD163 (B). The picture was 
captured from Observer microscope at 10x optical magnification. 

 

 

7.3.3 Spheroids formation from HT29 CRC cell line 
Next formation of HT29 spheroids was assessed after reviewing methods for spheroid formation in 

the literature. An ultralow-attachment 96-well U-plate was selected for all experiments for spheroids 

and co-cultures with immune cell lines. First, HT29 seeding density gradient from 1x103 – 1x104 

cells/well were performed. The spheroid size was measured over 5 days and viability checked at the 

same time points by utilized Cell-titer® Glo 3D Viability Assay. 

7.3.3.1 Spheroid size and viability 
This experiment was performed with 3 replicates as preliminary study. Due to the capacity of 

viability assay kit, an optimal spheroid size for this study was set at ~500 μm in diameter (shown by 

CRC tissue control RAW264.7 in conditioned medium 

A B 

10x 10x 
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red line). The results showed at HT29 seeding density 2.5x103 cells/well was the best density which 

reached ~500 μm in diameter over the 5 days with least necrosis seen (Figure 7.1 A). For viability, 

the best spheroids viability was at day 1 and day 2 (Figure 7.1 B). Therefore, the optimal time 

selected for adding immune cells to the co-culture was after 1 day of spheroid formation.  

 

 
 
 

 
Figure 7.4 - Optimization for optimal spheroid size and viability. HT29 seeding density was varying 
from 1x103 – 1x104 cells/well. Spheroid size and viability were assessed from day 1-5. The optimal spheroid 
size was ~500 μm in diameter (2500 cells/well) (A), and the optimal time for adding immune cells for co-
culture was at day 1 after spheroid formation (B). 
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7.3.4 Determining the medium for co-cultures 
7.3.4.1 Jurkat E6-1 T-lymphocytes viability in RPMI1640 and McCoy’s 5A 
medium 
As the common medium for Jurkat E6-1 is RPMI1640 medium, whereas McCoy’s 5A medium is 

used for HT29, the viability of Jurkat E6-1 in both media was performed to see which one was 

optimal for HT29 and Jurkat cell co-culture. The optimal Jurkat cells seeding density in co-culture 

was observed at the same time. As the seeding density for HT29 spheroid forming was 

2.5x103cells/well with highest viability rate at day 1 and day 2. These experiments were set for 

varying Jurkat seeding density from 2x103-1x104 cells/well added 1 day after HT29 spheroid 

formation and viability was observed for 3 days, over 3 separate experiment repeats. The result 

showed at day 2 of McCoy’s 5A medium, at seeding density 2x103 and 4x103 cells/well giving the 

highest viable rate. Therefore, Jurkat cells at seeding density 2.5x103 cells/well was selected for co-

culturing with HT29 at day 1 in McCoy’s 5A medium to get 1:1 ratio of cell lines (Figure 7.5). 

 

Figure 7.5 - Jurkat E6-1 T-lymphocytes viability from varying seeding density in RPMI and 
McCoy’s 5A; Jurkat cells were cultured at varying seeding density in RPMI1640 and McCoy’s 5A medium 
with HT29 spheroids and viability observed for 3 days. The results show that seeding density 2000-4000 
cells/well in McCoy’s 5A medium had the best viability when co-cultured with HT29 spheroids. 
 

7.3.4.2 Determining medium for RAW264.7 murine macrophage cell line 
As the medium utilized for HT29 and RAW264.7 are different. Therefore, the optimal medium for 

co-culture were tested before experiments. Spheroid characteristics were observed over 6 days in 

varying media conditions as cell viability was unable to be assessed due to supply issues. Similarly, 
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Jurkats, RAW264.7 cells were added after 1 day of HT29 spheroid formation in DMEM only, McCoy 

only, McCoy’s 5A followed by DMEM, and McCoy’s 5A followed by DMEM + McCoy’s 5A. The 

results showed similar growth for all conditions (Figure 7.3). Therefore, McCoy’s 5A was selected 

for further experiments to keep the media the same as used for Jurkat cell co-culture.  

 

 

Figure 7.6 - Optimization for optimal medium for HT29 spheroid with RAW264.7 
macrophages; HT29 spheroids were co-cultured with RAW264.7 macrophages in DMEM and McCoy’s 5A 
medium. The optimal medium selected was McCoy’s 5A. 
 

7.3.4.3 Determining medium for HT29, Jurkat E6-1, and RAW264.7 co-
cultures 
Again, the optimal medium for triple co-culture were tested before experiments. For triple co-

cultures to maintain a 1:1 seeding density of immune cells to CRC cells, 1250 cells/well of each 
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immune cell type were added to maintain the 2500 cells/well total immune cell density. The 

conditions used for adding Jurkat E6-1 (1250 cells/well) and RAW264.7 (1250 cells/well) after 1 

day of HT29 (2500 cells/well) spheroid formation were DMEM only, McCoy only, McCoy’s 5A 

followed by DMEM, and McCoy’s 5A followed by DMEM + McCoy’s 5A. Spheroid’s 

characteristics were again observed over 6 days. The results showed similar growth for all conditions 

(Figure 7.4). Therefore, McCoy’s 5A was selected for further triple co-culture experiments to keep 

the media consistent across all future experiments. 

 

 
Figure 7.7 - Optimization for optimal medium for HT29 spheroid with Jurkat E6-1 and 
RAW264.7 macrophages triple co-cultures; HT29 spheroids were co-cultured with Jurkat E6-1 T-
lymphocytes and RAW264.7 macrophages in DMEM and McCoy’s 5A medium. The optimal medium selected 
was McCoy’s 5A. 
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7.3.5 Immune cells infiltration into HT29 spheroids 
Next, the infiltration of labelled immune cells was assessed to ensure the immune cells where mixing 

with the HT29 cells in the spheroid to replicate in vivo conditions. Jurkat E6-1 or RAW264.7 cells 

labelled with Cell tracker green dye were added into HT29 spheroids wells and incubated for 24 

hours. The experiments were performed in double co-cultures of HT29 spheroids with labelled 

immune cells and in triple co-cultures with HT29 cells, one labelled immune cell line and one 

unlabeled immune cell line. The results showed high infiltration of both immune cell lines into HT29 

spheroids for both double co-cultures with Jurkat E6-1 (Figure 7.8 A), or RAW264.7 (Figure 7.8 

B). Similarly, infiltration of both cells lines was seen within triple co-cultures of all three cell lines 

(Figure 7.8 C, D). 
 

 
Figure 7.8 – Checking for immune cells infiltrated into HT29 spheroids; GFP labelled-Jurkat E6-
1 and labelled- RAW264.7 infiltrated in HT29 spheroids (all seeding density at 2.5x105 cells/well), double and 
triple co-culture. Showing both Jurkat E6-1 T-lymphocytes and RAW264.7 macrophages were well-infiltrated 
into spheroids in double co-culture (A, B), and in triple co-cultures (C, D). Red circle represented spheroid 
size. 
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7.3.6 Effect of anti-PD-1/anti-PD-L1 on HT29 CRC cell line  
First, effect of anti-PD-1 and anti-PD-L1 to HT29 cell line were performed by WST-1 to determine 

an optimal concentration of each inhibitor for further experiments. These experiments were 

performed in 3 different experiments with 6 replicates per condition. The optimal concentration was 

selected as the concentration which showed no effect to tumour cells viability. 

 

HT29 cell line were treated with anti-PD-1/anti-PD-L1 at concentrations varying from 1-100 μg/ml. 

WST-1 cell viability assay was performed at 24h. The optimal concentration for Pembrolizumab 

(Figure 7.9 A), Nivolumab (Figure 7.9 B), and Atezolizumab (Figure 7.9 C) was selected at 1 

μg/mL.  

 

 
Figure 7.9 - Effect of anti-PD-1/anti-PD-L1 on HT29 colorectal cancer cell line; Effect of anti-
PD-1 (Pembrolizumab) (A), (Nivolumab) (B), and anti-PD-L1 (Atezolizumab) (C) to HT29 colon tumour cell 
line at concentrations varying from 1-100 μg/ml with McCoy5A as media control (no inhibitors), and 
McCoy5A+1%PBS as vehicle control (no inhibitors), *p<0.05, **p<0.01, ***p<0.001. 
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7.3.7 Effect of anti-PD-1/anti-PD-L1 on immune cell lines 
Next, effect of anti-PD-1 and anti-PD-L1 on immune cell lines were performed by WST-1 or 

CellTiter Glo® Viability Assay to determine an optimal concentration of each inhibitor. These 

experiments were performed in 3 different experiments with 6 replicates per condition. The optimal 

concentration was selected at a concentration which showing no effect to immune cells viability. 

7.3.7.1 Effect of anti-PD-1/anti-PD-L1 on Jurkat E6-1 human T-lymphocytes 
cell line 
Jurkat E6-1 cells were treated with anti-PD-1/anti-PD-L1 at concentrations varying from 1-100 

μg/ml. WST-1 cell viability assay was performed at 24h. The optimal concentration for 

Pembrolizumab (Figure 7.10 A), Nivolumab (Figure 7.10 B), and Atezolizumab (Figure 7.10 C) 

was selected at 1 μg/mL. 

 

Figure 7.10 - Effect of anti-PD-1/anti-PD-L1 to Jurkat E6-1 cell line. Effect of anti-PD-1 
(Pembrolizumab) (A), (Nivolumab) (B), and anti-PD-L1 (Atezolizumab) (C) to Jurkat E6-1 t-cell line at 
concentrations varying from 1-100 μg/ml with McCoy5A as media control (no inhibitors), and 
McCoy5A+1%PBS as vehicle control (no inhibitors), *p<0.05, **p<0.01, ***p<0.001.  
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7.3.7.2 Effect of anti-PD-1/anti-PD-L1 on RAW264.7 murine macrophages 
As 1 ug/ml had been optimal for both HT29 and Jurkat E6-1, it was decided to first test this 

concentration on RAW264.7 cells to assess if this concentration could be used for all further 

experiments. Therefore, RAW264.7 cells were treated with anti-PD-1/anti-PD-L1 at a concentration 

of 1 μg/ml. CellTiter Glo® Viability Assay was performed at 24h. The result showed no effect of all 

3 inhibitors on RAW264.7 macrophage viability confirming the applicability of this concentration 

to all future experiments (Figure 7.11). 

 

 
Figure 7.11 - Effect of anti-PD-1/anti-PD-L1 to RAW264.7 murine macrophage cell line; Effect 
of anti-PD-1 (Pembrolizumab), (Nivolumab, and anti-PD-L1 (Atezolizumab) to RAW264.7 macrophage cell 
line at concentrations 1 μg/ml in DMEM as media control (no inhibitors), and DMEM+1%PBS as vehicle 
control (no inhibitors).  
 

 

7.3.8 Time scale for co-culture and anti-PD-1/anti-PD-L1 treatment  
After testing for the optimal conditions for co-cultures, the proposed schedule for co-cultures and 

drug testing was as follows: HT29 (2500 cells/well) were plated on day 0, Jurkat E6-1 and/or 

RAW264.7 cells (2500 cells/well) added on day 1, then anti-PD-1/anti-PD-L1 added at a 

concentration of 1 μg/mL on day 2. CellTiter® Glo viability performed at day 4 (48hrs) and day 6 

(96hrs). Media was replaced at the time of adding immune cells (day 1) and inhibitors (day 2), and 

half at day 4 (Figure 7.12). 
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Figure 7.12 - Time scale for co-culture and anti-PD-1/anti-PD-L1 treatment experiments; HT29 
was seeding at 2.5x103 cells/well at Day 0, immune cells were added at Day 1, anti-PD-1/anti-PD-L1 were 
added at Day 2 (0hrs). Cell viability was tested at Day 4 (48hrs), and Day 6 (96hrs).  

 

 

7.3.9 Effect of anti-PD1/anti-PD-L1 on double and triple co-cultures   
Finally, the effect of inhibitors on double and triple co-cultures was assessed over 3 different inter-

experimental repeats with 6 intra-experimental replicates per condition. The conditions were 

spheroid with control media only, spheroid with vehicle control, co-culture with control media, co-

culture with vehicle control, co-culture treated with inhibitors individually, and co-culture treated 

with combinations of inhibitors. The results of treated conditions were normalized to co-culture with 

media control.  

 

In general, for all 3 experiments showed significantly difference between spheroids only and co-

culture, which is expected from higher cell numbers in co-cultures. For double co-culture of HT29 

spheroid and Jurkat E6-1, showed significantly difference between spheroids in vehicle control and 

co-culture in media at 48hrs (p<0.05) and 96hrs (p<0.05). The result of treated conditions showed 

not significant effect of inhibitors on viability at either 48hrs or 96hrs when compared to co-culture 

with media control (Figure 7.13 A). The double co-culture of HT29 and RAW264.7 macrophages, 

showed significant difference between spheroids in vehicle control and co-culture in media at 48hrs 

(p<0.01) and 96hrs (p<0.01). The result showed no significant differences between treated conditions 

at either 48hrs and 96hrs, however, the viability was higher than for the HT29 and Jurkat E6-1 co-

culture (Figure 7.13 B). The triple co-culture of all 3 cell types, showed significantly difference 

between spheroids in vehicle control and co-culture in media at 48hrs (p<0.05) and 96hrs (p<0.01). 

The results of treated conditions showed no significant differences between treated conditions at 
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either 48hrs and 96hrs, however, the viability was slightly decreased when compared to HT29 and 

RAW264.7 co-culture (Figure 7.13 C). 

 

 
 
Figure 7.13 - Effect of anti-PD-1/anti-PD-L1 to HT29 spheroids and immune cells co-cultures; Effect of 
anti-PD-1, Pembrolizumab, and anti-PD-L1, Nivolumab, Atezolizumab to HT29 CRC cell line and Jurkat E6-
1, RAW264.7 macrophage cell line co-cultures at concentrations 1 μg/ml, P=pembrolizumab, N=nivolumab, 
A=atezolizumab, *p<0.05, **p<0.01, ***p<0.001. 
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7.4 Discussion 

As immune landscapes based on the combination of T-lymphocytes and myeloid cells were 

developed, which showed the different survival rate and gene expression pattern for each group. This 

chapter established 3-D multicellular spheroids from a CRC cell line co-cultured with a human t-cell 

line and/or murine macrophages cell line. These co-cultures were then treated with anti-PD-1/anti-

PD-L1 to assess differences in cell viability. The results showed there were no significant differences 

between tumour cells for any inhibitors at 48hrs and 96hrs. This may be due to the optimal conditions 

not being reached within the co-culture development as discussed below. 

 

The first step was checking for PD-L1 protein expression on HT29, PD-1 pression on Jurkat E6-1 T-

lymphocytes, and CD163 expression on RAW264.7 macrophages to confirm immune checkpoint 

proteins were expressed on all cell lines, which all presented positive results. Although, this could 

confirm the expression of proteins of interest, the stimulation of immune cells prior to co-culture 

with tumour cells might be needed. The hypothesis was set that during HT29 tumour culture, the 

tumour might secrete chemokines or cytokines to enabling signalling or released tumour antigens to 

activate or stimulate immune cells as would be present in the human tumour. From the present results, 

immune cell stimulation might be essential for M2-like macrophage differentiation which might 

influence the co-culture. Therefore, replacing media when adding immune cells, may be affecting 

this process and may not be optimal for the co-culture. 

 

The next step was performing spheroid formation in ultra-low attachment well plate and observed 

spheroid sizes and viability for 5 days to get optimal seeding density and spheroid size for the best 

3D tumour viability assay. According to company’s optimization (Promega), spheroid size at ~500-

600 μm in diameter have shown highest luminescence signals, this also confirmed by other study 

(Zanoni et al., 2016) suggesting this step may be optimal. 

 

Then the medium for co-culture system was assessed as all cell line commonly grow in different 

medium, i.e., McCoy’s 5A for HT29, RPMI1640 for Jurkat E6-1, and DMEM for RAW264.7 

macrophages. Therefore, the optimal medium composition for double and triple co-culture were 

tested to assess the influence on cell growth. The impact of media composition, media volume, and 

media exchange to co-culture are crucial as it could change cell fate and affect the results (Vis et al., 

2020). Therefore, this step needs to be taken into consideration when optimizing, the co-culture 

further. A limitation of this study was that for spheroid viability and for Jurkat cell co-cultures cell 

viability was utilised to assess media conditions. However, due to supply issues and time constraints, 

RAW264.7 + HT29 co-cultures and triple co-cultures in different media were mainly observed using 
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microscopy to assess sizes and characteristics of spheroids which might not be enough to get accurate 

results. Therefore, repeating these two experiments utilising cell viability may give more accurate 

results to improve the co-culture protocol. 

 

Next, checking the optimal ratio of seeding density for co-culture experiments, which ratio 1:1 for 

HT29 and each immune cell double co-culture, and 1:0.5:0.5 for HT29 and both immune cells triple 

co-culture to keep a 1:1 ratio. At this point, normally the cell composition should be set to mimic 

normal human condition for optimum cell-cell interactions (Goers et al., 2014). However, as immune 

cells infiltration into HT29 spheroids was suitable at this ratio, the study decided to proceed with 1:1 

ratio for co-culture. However, this might need more optimization to account for patients with low or 

high immune cell infiltration as seen in our three immune landscape groups. It may be best to always 

have all three cell lines in triple culture but to change the immune cell rations to mimic the immune 

landscapes more accurately.  

 

Another point that may affect the results is the concentration of inhibitors selected for treatment, as 

no effect was seen for any inhibitor on combination in this study. This study was tested for optimal 

concentration of each inhibitor by treating tumour cells and immune cells individually with each 

inhibitor. Then the concentration which does not harm tumour cells or immune cells alone at the 

beginning was selected from the hypothesis that once anti-PD-1/anti-PD-L1’s action is to inhibit the 

interactions between co-stimulatory of PD-1 on T-lymphocytes and PD-L1 on tumour cells to inhibit 

their negative regulator of immune response, not to induce tumour cell death directly. Therefore, 

without interaction between tumour and T-lymphocytes, the inhibitors shouldn’t harm the cells, 

therefore, the viability of each cell should remain the same. The decreased cell viability then might 

result from high chemical substance concentration which is toxic to cells. However, maybe choosing 

a concentration with a slight effect on the cells alone, may allow for synergy to be seen when they 

are in co-culture. Furthermore, the experiment may need to perform on other CRC cell lines to assess 

the optimal CRC line for this co-culture model. Also, the time scale for viability test, 48-96hrs, might 

not enough to see the clearly effect of inhibitors.  

 

In conclusion, this study develops a co-culture system model of 3D tumour spheroid from human 

cell line co-culture with different immune cell types from human and murine sources. After checking 

for multiple factors which might affect cell growth, co-culture system, and anti-PD-1/anti-PD-L1 

treatment, the results showed no significant differences on tumour cells viability between 48hrs and 

96hrs time points. As discussed above, co-culture could be affected by several factors from medium 

compositions thorough to time scale of treatment. Therefore, optimization of the process is needed 

to allow further investigation of the inhibitors.  However, it may suggest that this is not the most 
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optimal model for this purpose. This study had planned to also utilise 3D tumour spheroids from 

patient derived cells to test the drugs with and without co-cultures with immune cell lines to compare 

the differences between cell line and patient-derived organoids. Unfortunately, due to Covid 19 

pandemic during the final stage of experiments, this was not able to be performed. Therefore, for 

future work, a co-culture model from patient’s derived tumour tissue and autologous immune cells 

treated with known immune checkpoint inhibitors would be the next step, potentially alongside the 

use of animal models of the immune landscape groups. 
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8.1 General Discussion  

CRC classification currently relies on TNM staging to identify tumour characteristics that inform 

prognosis and is widely used in clinical setting along with tumour grading. In cancer research, 

molecular subtyping based on gene expression is widely used by multiple research groups 

worldwide. However, due to the lack of a gold standard method and the inconsistency of results, the 

CRC subtyping consortium was then formed and combined the various classifications from different 

research groups into four consensus molecular subtypes: CMS1 to CMS4 with distinct characteristics 

(Guinney, Dienstmann, Wang, de Reynies, Schlicker, Soneson, Marisa, Roepman, Nyamundanda, 

Angelino, Bot, Morris, Simon, Gerster, Fessler, De Sousa, et al., 2015). Recently, another molecular 

subtyping was proposed called cancer-intrinsic subtypes (CRIS). This system was developed in 

patient-derived xenografts (PDXs) to assess cancer cell intrinsic transcriptional landscapes and 

classified into five subtypes from CRIS-A to CRIS-E (Isella et al., 2017). Later CMS and CRISs 

systems have been validated in patients biopsies from different sampling methodologies 

implemented in clinical setting and found that CRIS can provided better results than CMS to subtype 

CRC primary tumour tissues (Alderdice et al., 2018). The two molecular subtyping are successfully 

clarified as CRC subtypes and widely implemented internationally in research and have the potential 

to translate to clinical setting especially the CRIS system. However, both methods utilise 

transcriptomics approaches which need high-cost equipment and experienced personnel for data 

analysis. Therefore, a simpler clinically translatable method is still required. 

 

Tumour staging now relies on TNM classification, this method is the most widely used for CRC 

staging as well as for the basis of treatment decision. However, it is now known that patients with 

the same stage of disease can develop different clinical and treatment outcomes. Therefore, another 

classification method is now widely used based on histopathology of the tumour microenvironment 

called Immunoscore. Immunoscore focuses on the local immune response as the impact of immune 

response has been recognized as involved in regulating tumour progression. This method is widely 

used now for assessing patient’s prognosis in research (Galon et al., 2012). Later, the standardized 

consensus found that Immunoscore was a strong prognostic factor for DFS, DSS, and OS including 

in early-stage CRC superior to conventional TNM classification (Galon et al., 2014). From the strength 

of  prognostic, Immunoscore could be introduced into clinical setting and could potentially classify 

and predict patients likely to respond and benefit from immunotherapy (Galon & Lanzi, 2020). 

However, the system requires the user to buy a specific set of reagents and software package to 

analyse this score, which would not be considered cost-effective when compared to conventional 

methods in a routine clinical setting. 
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Glasgow microenvironment score (GMS) is another method for CRC classification. GMS is a tumour 

microenvironment based prognostic score based on assessment of inflammatory cells infiltrate in 

tumour stroma in primary operable CRC patients (Park et al., 2015). GMS has been validated in two 

cohorts: TNM I-III CRC validation cohort and TNM II-III CRC adjuvant chemotherapy cohort 

(TransSCOT) in association with DFS and RFS as primary endpoint assessment and adjuvant 

chemotherapy interaction as exploratory endpoint. The result showed that GMS is independently 

associated with DFS and RFS significantly. In addition, GMS0 significantly associated with 

improved DFS in patients receiving FOLFOX when compared to CAPOX chemotherapy (Alexander 

et al., 2021).  

 

Recently, CRC phenotypic features related to CMS subtypes which associated with each molecular 

subtype and are associated with patient outcome was proposed by Roseweir et al. They utilised three 

of these features; immune infiltrate, proliferation rate and stromal invasion to propose a simple 

phenotypic subtyping method with four groups: immune, canonical, latent, and stromal. The effect 

of the phenotypic subtypes on DFS and recurrence risk (RR) was assessed and observed; the result 

found strong association. Of these, immune presented a good prognosis, canonical and latent having 

intermediate prognosis, while stromal showed the worst prognosis (Roseweir et al., 2020). 

Furthermore, the immune subtype could stratify response to chemotherapy, with the immune subtype 

patients responding better to FOLFOX than CAPOX, similar to GMS0. From the results, phenotypic 

subtypes could be used in routine clinical pathology for CRC patient’s prognosis and response to 

chemotherapy.  

 

One common factor between all these histological scores is the use of the local immune response. 

Generally, tumour tissue is infiltrated with inflammatory cells, which is the normal reaction of the 

host immune response reacting to the foreign tumour cells. The immune cells consist of cells in the 

lymphoid lineage and myeloid lineage. Lymphoid lineage cells are mostly T-lymphocytes, B-

lymphocytes, and NK cells. Myeloid lineage cells are TAMs, MDSCs, TANs, and mast cells 

(Balkwill et al., 2012). In early-stage tumours, immune cells participate in preventing tumour 

progression by detecting tumour cells and destroy them, however, these cells can be hijacked by the 

tumour to perform another role promoting cancer development, by dampening the lymphoid immune 

response and promoting the myeloid immune cells, which have been shown to be crucial for tumour 

progression (Edmondson et al.; Grivennikov & Karin, 2010).   

 

The local immune response has been recognized as being involved in regulating tumour progression 

and classification by using immune status is now widely accepted. In addition, it is crucial to 

investigating the CRC classification method which can easily translating to clinical setting.  
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Therefore, this thesis aims consist of two parts, part one is to investigate immune landscape of stage 

I-III CRC patients from the association of individual immune cell types and patient’s prognosis. Then 

part two consist of three objectives; 1) to investigate the immune landscapes and their prognosis in 

each phenotypic subtype, 2) to assess transcriptomics and mutational profiles between immune 

landscapes to investigate potential biomarkers for each landscape and to examine the most 

significantly dysregulated genes at a protein level, and 3) to assess the effect of immune checkpoint 

inhibitors targeting PD-1/PD-L1 in CRC cell lines co-cultures with different immune cell lines which 

model immune landscapes to mimic patients normal status to examine if there is a difference efficacy 

between each immune landscape. 

 

From part one of the aims, to investigate immune landscape of stage I-III CRC patients from the 

association of individual immune cell types and patient’s prognosis. IHC staining of immune cells 

markers from T-lymphocytes populations (CD3, CD8, FoxP3) and myeloid cells populations (CD68, 

CD80, CD163, CD66b) were performed and analysed in association with patients’ cancer specific 

survival (CSS), and overall survival (OS). The results found both T-lymphocytes and myeloid cells 

showed high infiltration in both tumour cell nests and tumour stroma at early stage of disease and 

gradually declined at advanced stages.  

 

For T-lymphocyte populations, high CD8+ cytotoxic T-lymphocytes infiltration in both tumour and 

stroma associated with improved CSS, with CD3+ T-lymphocytes infiltration within tumour cells 

being an independent prognostic factor. FoxP3+ Tregs in tumour stroma associated with improved 

CSS, which is in line with other studies on the role of Tregs in in CRC (Vlad et al., 2015), whereas 

it can cause poor prognosis in other cancer types (Shang et al., 2015; Zhou et al., 2017). The current 

study results are in the line with other studies that cytotoxic T-lymphocytes and Tregs can benefit 

CRC patient’s survival regardless of the locations, but high level of infiltration is crucial. Overall, 

the data suggests that high levels of T-lymphocytes are important to predict if CRC patient’s survival 

will be improved. 

 

As for myeloid cells, high M1-like macrophages are associated with improved CSS in both tumour 

cell nests and tumour stroma. As M1-like macrophages known as a facilitator of cytotoxic T-

lymphocytes function, presented high levels in tumour and stroma could benefit patient’s survival. 

Whereas high M2-like macrophages in stroma significantly decreased CSS. As M2-like 

macrophages could attract Tregs and help to create immunosuppressive environment, presented high 

infiltration in the stroma in patients resulting in decreased CSS. However, the current study showed 

that presence of FoxP3+ Tregs was significantly associated with improved CSS, and OS in tumour 

stroma. This might be due to the ratio of infiltration of Tregs to M2-like macrophages, as Tregs were 
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had significantly different infiltration levels at each stage of disease. Whereas CD163+ M2-like 

macrophages had a similar infiltration level at each stage, suggesting the ration between the two 

would differ over time effecting the interaction between the two cell types.  While high granulocytes 

in tumour cell nest and tumour stroma are associated with decreased CSS. For granulocytes, 

neutrophils are the most abundant cells in TME, and has been proposed having both pro-tumorigenic 

and anti-tumorigenic characteristics.  

 

From the results, indicated that high T-lymphocytes, high M1 macrophages, low M2 macrophages, 

and low granulocytes or neutrophils individually are crucial to improve patient’s survival. However, 

the role of these cells in combination might cause distinct outcome depends on other factors in TME. 

Therefore, the combination of T-lymphocytes and myeloid cells were generated from CD3+ 

combined with CD68+ and CD66b+ and produced four immune landscapes which are T-lymphocytes 

high only (T-cells high), myeloid cells high only (myeloid high), both T-lymphocytes and myeloid 

cells high (both high), and both T-lymphocytes and myeloid cells low (both low) in tumour cell nests 

and tumour stroma separately.   

 

The prognostic analysis showed that in tumour cell nests, the both high present potentials to reach 

better prognosis for CSS, whereas T-cells high had the worse prognosis, however, this was not 

significant. In tumour stroma, T-cells high significantly had the best prognosis for CSS, whereas 

myeloid high had the worse prognosis significantly. This suggest that myeloid cells might have 

different role at different locations and dependent on the other immune cells present. In tumour cells, 

if patients present with only myeloid cells strong will lead to poorer survival. On the other hand, if 

present with strong T-lymphocytes, it could enhance T-lymphocyte’s function to eliminate tumour 

cells and improved patient’s survival even better than T-lymphocytes strong only. Therefore, in 

tumour cells if T-lymphocytes co-operated with particular myeloid cells they might could reach 

greater effect for tumour cells eradication. Therefore, the role of myeloid cells is now one of the 

forefronts of research into cancer immunotherapy.  

 

The results from Scottish discovery cohort have been validated in Norwegian validation cohort 

because of the similar patient’s characteristics. However, Norwegian cohort presented decreased 

death cases when compared to Scottish cohort. Furthermore, Norwegian cohort had significantly 

increased immune cells infiltration for all cell types evaluated in both tumour cell nests and tumour 

stroma. For T-lymphocytes, high cytotoxic T-lymphocytes infiltrated in tumour cell nests and tumour 

stroma were associated with improved CSS as shown in Scottish cohort. Whereas myeloid cells, 

macrophages high infiltrated in tumour cell nests was significantly improved CSS, but not seen in 

tumour stroma. The immune landscape prognosis was significant in tumour stroma only with both-
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high group having better survival than myeloid high group, but this cannot compare to Scottish cohort 

from small samples due to lack of the other two groups. Even though the two cohorts had similar 

results, however, Norwegian cohort had higher immune cells infiltration and higher survival rate 

than Scottish cohort. Therefore, this brought into interest about the other different factors underlying 

between two cohorts which resulting in differences in immune cells infiltration and survival rate.  

 

From the results of both cohorts showed different immune cell types and different immune 

landscapes were associated with different prognosis in CRC patients with stage I-III disease. High 

T-lymphocytes are always associate with improved patient’s prognosis independent of myeloid cells 

attending, whereas elevated myeloid cells only have poorer prognosis. The presence of both T-

lymphocytes and myeloid cells together can result in better survival depending on cell types 

presented and their locations.  

 

The next objective was to investigate the prognostic value of immune landscapes to phenotypic 

subtypes which were developed by Roseweir et al. and termed immune, canonical, latent, and stromal 

subtypes. The current study investigated the association between CRC phenotypic subtypes and the 

prognostic value of immune cells infiltration and immune landscapes in tumour cell nests and tumour 

stroma. The results showed each subtype was infiltrated by differing immune cell types. Immune 

subtype is predominantly composed of T-lymphocytes and showed the best survival rate. Canonical 

subtype has elevated macrophages and provided intermediate survival rate. Latent and stromal 

subtype have declined levels of all immune cell types, especially in tumour cell nests, and obtained 

poor prognosis. In addition, the univariate analysis revealed that cytotoxic T-lymphocytes, Tregs, 

and granulocytes are significantly associated with patient’s survival in each phenotypic subtype. The 

multivariate analysis designated granulocytes infiltration in tumour cell nests is an independent 

prognostic factor for the latent subtype.  

 

The present finding suggests that subtypes with high T-lymphocyte infiltration in both tumour cell 

nests, and tumour stroma have the best prognosis as seen in the immune subtype, whereas the 

canonical subtype that has high macrophages presented a slightly reduced prognosis. However, 

subtypes that have high granulocytes infiltrates and low lymphocyte infiltrates in cancer cell nests 

lead to a poor prognosis, as seen in the latent and stromal subtypes. Therefore, the immune, latent, 

and stromal subtypes might represent a population of patients for immune-based therapy. Overall, 

this study suggest that phenotypic subtype can be alternative tools for CRC classification due to 

significant immune cell compositions for each subtype which are easily assessed using a simple, 

clinically utilised method, and benefit patient’s therapy. 
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As the study found significant survival differences between the four immune landscapes and different 

infiltration in the four phenotypic subtypes, it was decided to look for underlying difference between 

these immune landscapes. Therefore, the next objective is to assess mutational profiles in CRC 

patients with stage I-III disease based on four immune landscape grouping from chapter 3 to 

investigate any potential underlying differences that could be used as biomarkers for each immune 

landscape and then to examine the most significantly dysregulated genes at a protein level. From 

whole genome sequencing of stage I-III CRC patients cohort, it was found that top three mutated 

genes were APC (51%), TP53 (46%), and KRAS (31%) as commonly present in CRC tumorigenesis 

(Tariq & Ghias, 2016) (Worthley & Leggett, 2010). This could be used to confirm the further analysis 

as the initial results showed as expected sequential genes mutations in CIN pathway of CRC 

tumorigenesis. Therefore, the identification of genes mutation was analysed for each immune 

landscape. In T-cells high group, ERBB4 (100%) was the most significant mutated gene. However, 

due to only two samples available in this group, more cases are needed to validate the result. In 

myeloid high group, a low mutation frequency of TP53 was found among six significantly mutated 

genes. In both high group, high mutation frequency of FBXW7 was the most significant seen among 

five significantly differentially mutated genes. Whereas in both low group showed high mutation 

frequency only for TP53.  

 

Interestingly, TP53 was less differentially mutated in myeloid high group patients and had increased 

mutations in the both low group patients. Further analysis by comparing TP53 mutations in both 

groups found that myeloid high patients had less TP53 mutations than both low patients, suggesting 

TP53 mutations have a higher frequency in patients with low myeloid cells. The next question was 

whether there was a difference in TP53 mutation frequency between patients with high level of 

myeloid cells infiltration in tumour cell nest and those with infiltration into tumour stroma. Further 

analysis found that TP53 mutations where more frequent in patients with high myeloid cell 

infiltration into tumour stroma than in patients with high myeloid cell infiltration into tumour cell 

nests. By the fact that TP53 is a significant tumour suppressor gene, high mutations along with high 

myeloid cells infiltrations into tumour stroma might lead to negative outcome. To address this, 

therefore, the correlation between TP53 mutations and the expression at protein level was performed 

by p53 performing p53 IHC in our patient’s cohort. The results found that TP53 mutations was 

significantly correlate with high level of p53 expression. This in line with others that p53 

overexpression is an indicator for TP53 mutations (Menendez et al., 2013). This study cannot 

characterize wild type and mutant p53 due to antibody limitation which could bind both wild type 

and mutant p53. However, survival analysis showed high p53 expression was significantly associated 

with improved patient’s survival and only patients with mutated TP53 had improved survival. 

Therefore, TP53 mutations in this study provide positive outcome to patient’s survival.  
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In terms of p53 expression and immune cells infiltration no significant correlation was seen, 

suggesting that it might not a direct interaction between them. However, when assessing the 

relationship between p53 expression and patient’s survival with immune cells infiltrate stratification. 

It was found that in patients with high immune cells infiltration, no significant change in patient’s 

survival was observed between low and high p53 expression. However, in patients with low CD80+ 

M1-like macrophages and low p53 expression a decreased survival in tumour cell nests and tumour 

stroma was observed when compared to high CD80+. This suggests that if CD80+ M1-like 

macrophages are low, high levels of p53 are needed to improve patients’ survival, however, when 

CD80+ cells are high, p53 is no longer important and as all patients are doing well. As M1-like 

macrophages is known for anti-tumour function, therefore, at high level they can function effectively 

and do not need p53 action. Whereas it is the opposite in case of low M1-like macrophage levels, 

they need p53 function to maintain anti-tumour effects as proposed in another study showing a strong 

connection between them (Guo & Cui, 2015; Menendez et al., 2013). This suggest that p53 

expression was linked to M1-like macrophages resulting in a positive outcome in our study. 

However, there is a report that the combined role of p53 and myeloid cells can have negative 

outcomes leading to poor survival (Cooks et al., 2018).  

 

When assessing the correlation between CD80+ M1-like macrophages infiltration level and TP53 

mutations it was found that high CD80+ was significantly enriched for TP53 mutations when 

infiltrating into tumor stroma only, whereas it did not appear amongst the 13 significant genes for 

patients with high CD80+ infiltration into tumour cell nests. Therefore, enriched TP53 mutations can 

be detected at DNA level only in patients with high levels of CD80+ M1-like macrophages infiltration 

into the tumour stroma. Whereas at protein expression level, high p53 expression showed same effect 

on patient’s survival in patients with CD80+ infiltration into both tumour cell nests and tumour 

stroma. Therefore, this suggested that TP53 mutations and p53 expression had distinct prognostic 

value in tumour microenvironment, which might be more important and predictive in patients with 

high CD80+ M1 macrophage infiltration into tumour stroma. This suggest that TP53 mutations might 

affect myeloid cells infiltration into tumour stroma including M1 macrophages and could be a 

prognostic factor for high myeloid cells in tumour stroma.   

  

To further assess biomarkers for each immune landscape, the next objective was to investigate gene 

expression profiles between immune landscapes to identify differentially expressed genes for each 

landscape which could be used as potential prognostic or predictive biomarker for specific immune 

landscape grouping. The result from our patient cohort revealed diverse gene expression patterns for 

each immune landscape as shown in gene clustering in PCA plot for myeloid high, both high, and 
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both low, but none for T-cells high due to small sample number. Of which, myeloid high group 

presented high gene expression level, whereas T-cells high presented low gene expression level, 

whereas other two groups, both high and both low showed similar pattern as myeloid high. This 

suggest that myeloid high might influenced the expression of both high and both low groups 

independent of T-lymphocytes presented. 

 

As for differentially expressed genes in each immune landscape group when compared to others, in 

T-cells high group showed downregulated genes for immune response and wound healing. Whereas 

in myeloid high there was a downregulation in a gene involved in RNA manipulation. The both high 

group showed downregulation of a gene involved in T-lymphocytes receptor signaling and other 

antigen presenting signaling pathways. Whereas the both low group showed both upregulation and 

downregulation genes, however, the biological processes of these genes were not associated with 

cancer or immune system, therefore, more investigations are needed. These results suggest that each 

immune landscape group had different gene expression pattern which might due to the differences 

of biological condition result from the composition of immune cells infiltration in tumour 

microenvironment in order to maintain anti-tumour activity.   

 

As myeloid cells high might influence gene expression pattern among the four groups, therefore, the 

comparison of gene expression patterns between myeloid high and other three groups were 

performed. For myeloid high and T-cells high, showed 23 significant differentially upregulated 

genes, whereas when compared to both high group found only 1 upregulated gene presented. For the 

comparison between myeloid high and both low group, found that 20 genes were significantly 

expressed, which 13 genes were upregulated, and 7 genes were downregulated in myeloid high 

group. From all 44 significant differentially expressed genes from 4 immune landscapes, no 

overlapping expression was observed. Therefore, this could confirm that myeloid cells high can 

influence gene expression pattern depend on other immune cell composition in tumour 

microenvironment. Interestingly, in a mixed of immune cells in both high group, not many genes are 

differentially expressed. Whereas when in T-cell high or both low, where myeloid high is not 

elaborated, many genes are differentially expressed. Suggesting myeloid cells high is the over-riding 

factor in both high group, but not T-cells high. However, this result needs more validation as small 

sample number for T-lymphocytes high group might affect the analysis. 

 

To observe the biological processes of differentially expressed genes, the protein-protein interaction 

network was generated and found that the centre of network was TP53. Suggesting most of 

differentially expressed genes in our study were linked to TP53 network with a few independent 

linkages out with TP53 network. As chapter 5 indicated that TP53 mutation was associated with 
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stromal myeloid cells high landscape, therefore, the correlation between TP53 mutations and all 

differentially expressed genes expression level were observed. Interestingly, among all DEGs, the 

REG genes family; REG1A, REG3A, and REG3G presented upregulated in wild type TP53 and 

downregulated in mutated TP53. As REGs genes and proteins have been reported having 

multifunction as pro-tumorigenic in colon tissues as well as affects in multiple organs (Chen et al., 

2019; Sun et al., 2021). Therefore, downregulated of these genes in mutated TP53 condition, which 

associated with high p53 expression, might alter colon tissues from tumorigenic status into normal 

status and improved patient’s survival. Overall, this study presented potential gene expression pattern 

might be influenced by myeloid cells high group and most of significant genes were link to TP53 

network. As TP53 mutation was associated with REGs genes downregulation. Therefore, the 

prognostic role of p53 in tumour microenvironment might be good due to the influx of myeloid cells.  

 

As missense mutations can induce loss of p53 function by inactivation of p53 binding property, this 

can lead to cell transformation and negative outcomes (Lopez et al., 2012). In normal cell condition, 

the expression of p53 is very low, and not generally detected by IHC. Whereas mutations can cause 

a shift to elevated p53 accumulation making it detectable. The current study assessed p53 nuclear 

expression by IHC and divided expression into low and high. However, the results showed that high 

TP53 mutations were correlated with high p53 expression as expected but associated with improved 

patients CSS. This potentially suggests that splitting p53 expression into low or high levels by IHC 

in this study might not the appropriate as it may miss some of the lower level expression and these 

results need to be validated utilising another method to classify p53 expression levels.  

 

The final objective of this thesis is to assess the effect of immune checkpoint inhibitors targeting PD-

1/PD-L1 in CRC cell lines co-culture with different immune cell lines (T-lymphocytes cell line and 

macrophages cell line) to model the immune landscapes developed in chapter 3 and mimicking 

patient’s normal state to examine if there is a difference efficacy between each immune landscape. 

3- D multicellular spheroids from a CRC cell line were developed and co-cultured with T-

lymphocytes cell line or macrophages cell line and combination of the three cell lines. These co-

cultures were then treated with anti-PD-1/anti-PD-L1 or a combination of them. The results showed 

there were no significant differences between tumour cells viability for any inhibitors at 48hrs and 

96hrs. This may be due to the optimal conditions not being reached within the co-culture 

development. Therefore, by varying factors within the co-cultures further to obtain an optimal 

research model could allow observation of better treatment results. 
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8.2 Future work 

From the studies, except common IHC for each immune cell marker, the immune landscapes from 

T-lymphocytes and myeloid cells combination were covered small sample numbers which might 

affect the subsequence analysis for phenotypic subtypes, genomics, and transcriptomics analysis. 

Therefore, in future work, more cases are needed for each immune landscape to clarify and confirm 

the results.  

 

For genomics analysis, the study at protein level of significantly mutated genes was performed for 

TP53. However, for transcriptomics analysis, due to time limitations with COVID-19 pandemic, the 

confirmation at protein expression level was unable to perform. Therefore, IHC staining for REG1A, 

REG3A, REG3G, and/or IGF2BP1 are needed to confirm the correlation with gene expression level 

and to assess the association with patients’ survival. However, as REGs genes are associated with 

colon tissues, therefore, IHC results performing in normal tissues and compare with CRC disease 

tissues might clarify the role of these genes in CRC patients’ survival. In addition, genomics and 

transcriptomics analysis for each immune cell marker might identify the most significant genes 

specific to each immune cells. However, this might not correlate with normal state as human body 

contain a mixed population of immune cells and they are co-operating in normal function of immune 

response. Therefore, the analysis for these results in other patient cohort is needed which might 

confirm the results.  

 

For cell culture part, there are many aspects need future work to complete the experiments. First, cell 

lines used for spheroid formation, this study was performed in only HT29 CRC cell line which not 

enough to confirm the results because of different cell line has different characteristics. Therefore, 

3-D spheroids formation should be performed from other CRC cell lines to compare the 

characteristics which might affect immune checkpoint inhibitors treatment. In addition, IHC for PD-

1 and PD-L1 in co-cultures cell pellets or patients’ TMAs might be the other way to check if 

checkpoints are active within the model and available for intervention with checkpoint inhibitors.  At 

first, apart from 3-D tumour spheroids model from CRC cell line, the study in patient-derived 

organoid was planned to compare ICI treatment in cell lines and patient’s cells, due to coronavirus 

pandemic, this part was cancelled. Another level of cell work is patient-derived xenografts (PDXs) 

which is the most suitable model for CRC study today to assess ICI treatment which will be the most 

model closely mimic CRC primary tumour. For ICIs treatment, the study was performed to assess 

tumour viability for 48hrs and 96hrs which might not enough for the action and changing of cell 

viability to observe. Therefore, the longer period for treatment might needed. Therefore, this needs 
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more validation for 3-D spheroid forming and spheroid viability checking to maintain tumour cell 

viability at all treatment time period. Followed by translation into the other models mentioned above.  
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Appendix - R codes 
 

1. R-codes for IHC cut off value 
#CD3_cutoff = surv_cutpoint(CD3_2021, time = "Survival_Months", event = 

"Other0_CD1",variables = c("Tumour_CD3")) 

plot(CD3_cutoff, "Tumour_CD3") 

 

2. R-codes for Mutational analysis 
2.1 Plot summary 

#plotmafSummary(maf = all.four.groups.tumour, rmOutlier = TRUE, addStat = 'median', 

dashboard = TRUE, titvRaw = FALSE) 

 

2.2 Co-bar plot 

#coBarplot(m1 = all.four.groups.tumour, m2 = all.four.groups.stroma, m1Name = "All groups 

tumour", m2Name = "All groups stroma", genes = genes) 

 

3. R-codes for Transcriptomics analysis 
 3.1 DESEq2 normalisation 

#dds = DESeqDataSetFromMatrix(countData = counts.t, colData = sample_data, design = 

~sample_group_all) 

#dds = DESeq(dds) 

#norm_counts.t = counts(dds, normalized = TRUE) 

#DE = results(dds, c("sample_group.all", "myeloid.high", "t.high")) 

 

3.2 Volcano plot 

#ggp1 = ggplot(master_bind, aes(x=log2FoldChange, y=mlog10pvalue, colour = direction)) + 

geom_point() + geom_point(data=master_non_sig, colour = "gray") + 

geom_point(data=master_sig_up, colour = "red") + geom_text(data = master_sig_up_top5, 

aes(label=Gene_names), colour = "red", hjust=-0.1, vjust=0.1, size = 3) + 

scale_colour_manual(values = c("gray","red")) + geom_vline(xintercept = -1, linetype="dashed") + 

geom_vline(xintercept = 1, linetype="dashed") + geom_hline(yintercept = -log10(0.05), 

linetype="dashed") + labs(title = "Volcano (myeloid.high vs t.high)", x="Log2 fold change", 

y="log10 (p-value)") + xlim(c(-20,40)) + ylim(c(-0,25))  
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3.3 MA plot 

#ggp2 = ggplot(master_bind, aes(x=log10(mean_expression), y=log2FoldChange, colour = 

direction)) + geom_point() + geom_point(data=master_non_sig, colour = "gray") + 

geom_point(data=master_sig_up, colour = "red") + geom_text(data = master_sig_up_top5, 

aes(label=Gene_names), colour = "red", hjust=-0.1, vjust=0.1, size = 3) + 

scale_colour_manual(values = c("gray","red")) + geom_hline(yintercept=1,linetype="dashed") + 

geom_hline(yintercept=-1,linetype="dashed") + xlim(c(-2,10)) + ylim(c(-10,25)) + labs(title = 

"MA (myeloid.high_vs_t.high)", x= "Mean expression (log10)", y= "Log2 fold change") 

 

3.4 PCA plot 

#ggp3 = ggplot(pca_coordinates, aes(x=PC1, y= PC2, colour = ss_all_four_t$tumour_group)) +  

geom_point() + labs(title = "PCA 4 groups", x= x_axis_label, y= y_axis_label) + stat_ellipse(geom 

= "polygon", aes(fill = ss_all_four_t$tumour_group), alpha = 0.1) 

 

3.5 Multi-boxplot 

#ggp4 = ggplot(gene_data.candidate_gene.1.melt, aes(x = variable, y = value, fill = 

sample_group)) + geom_boxplot() + labs(title = "23 Significant genes (myelod.high vs t.high)", x = 

"Significant genes", y = "Expression") + theme(axis.text.x = element_text(angle = 45, hjust = 1)) + 

ylim(c(0,300)) + facet_wrap(~sample_group, nrow = 2)  

 

3.6 Heatmap plot 

#cat_df = data.frame("immune_status" = c(rep("t.high", 3), rep("myeloid.high", 24), 

rep("both.high", 14), rep("both.low", 7))) 

#row.names(cat_df) = colnames(em_scaled.11) 

#pheatmap(em_scaled.11.top20, scale = "row", main = "pheatmap row scaling", annotation_col = 

cat_df) 

 

3.7 Venn diagram plot 

#grid.newpage() 

#draw.triple.venn(area1 = 23, area2 = 1, area3 = 20,  

                 n12 = 0, n13 = 0, n23 = 0, n123 = 0,  

                 fill = c("pink", "green", "orange"),  

                 lty = "blank", category = c("Group 1", "Group 2", "Group 3")) 

 

 

 



287 

 

3.8 Pathway analysis 

#geneSymbols.mt = c("SLC51A","ORM1", "CPA2", "CFHR3", "SCL15A1", "MUC6", "ST18", 

"TTC29", "CXCL5", "KRT34", "PEPD", "FAM3B", "SNTB1", "ZNF416", "NKX2-1", 

"DHRS7B", "ADM5", "USP28", "ANKRD20A8P", "PDE11A", "DCAF4L1", "MAGEA11", 

"BCL3") 

#geneIDs2.mt = ensembldb::select(EnsDb.Hsapiens.v79, keys= geneSymbols.44, keytype = 

"SYMBOL", columns = c("SYMBOL","GENEID")) 

#geneIDs2.mt 

#master_sig.a$ENSEMBL = c("ENSMUSG00000035699", "ENSG00000229314", 

"ENSMUSG00000071553", "ENSG00000116785", "ENSMUSG00000035699", 

"ENSG00000184956", "ENSMUSG00000033740", "ENSG00000137473", "ENSG00000163735", 

"ENSG00000083817", "ENSG00000109016", "ENSG00000048028", "ENSG00000224420", 

"ENSG00000182308", "ENSG00000128655", "ENSG00000151773", "ENSG00000152291") 

#sig_genes_entrez.44 = bitr(sig_genes.44, fromType = "ENSEMBL", toType = c("ENTREZID"), 

#OrgDb = org.Hs.eg.db) 

#go_enrich.44 = enrichGO(gene = sig_genes_entrez.44$ENTREZID, OrgDb = org.Hs.eg.db, 

readable = T, ont = "BP", pvalueCutoff = 0.05, qvalueCutoff = 0.10) 

#ggp = cnetplot(go_enrich.44, showCategory = 15, categorySize = "padj") 
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