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Abstract 

Rover exploration is a contributing factor to driving the relevant research forward 

on guidance, navigation, and control (GNC). Yet, there is a need for incorporating 

the dynamic model into the controller for increased accuracy. Methods that use 

the model are limited by issues such as linearity, systems affine in the control, 

number of inputs and outputs. Inverse Simulation is a more general approach that 

uses a mathematical model and a numerical scheme to calculate the control inputs 

necessary to produce a desired response defined using the output variables.  

This thesis develops the Inverse Simulation algorithm for a general state space 

model and utilises a numerical Newton-Raphson scheme to converge to the inputs 

using two approaches: The Differentiation method converges based on the state 

and output equations. The Integration method converges based on whether the 

output matches the desired and is suitable for grey or black-box models. The thesis 

offers extensive insights into the requirements and application of Inverse 

Simulation and the performance parameters. Attention is given to how the inputs 

and outputs affect the Jacobian formulation and ensure an efficient solution. The 

linear case and the relationship with feedback linearisation are examined. 

Examples are given using simple mechanical systems and an example is also given 

as to how Inverse Simulation can be used for determining system input 

disturbances. 

Inverse Simulation is applied for the first time for guidance and control of a four-

wheeled, differentially driven rover. The desired output is the time history of the 

desired trajectory and is used to produce the required control inputs. The control 

inputs are nominal and are applied to the rover without additional correction. 

Using insights from the system’s physics and actuation, the Differentiation and 

Integration schemes are developed based on the general method presented in this 

thesis. The novel Differentiation scheme employs a non-square Jacobian. The 

method provides very accurate position and orientation control of the rover while 

considering the limitations of the model used. Finally, the application of Inverse 

Simulation to the rover is supported by a review of current designs that resulted 

in a rover taxonomy.  
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Chapter 1 Introduction 

1.1 Motivation 

Current research on guidance, navigation, and control (GNC) for wheeled, mobile 

robots is a vast, constantly evolving field. A search at IEEEXplore using the 

keywords “motion”, “control” and “mobile” returns 16,508 results published in 

conferences, journals, magazines, and books indexed by IEEE between 1980 and 

2020, of which 14,637 were published between 2000 – 2020. A similar search at 

ScienceDirect using the keywords “motion”, “control” and “mobile” returns 

62,904 results between 2010 and 2020; adding the term “ground” (e.g., to exclude 

mobile manipulators) returns 17,785 results. A review article published in 2018 

outlining the ten great challenges in science robotics (Yang et al., 2018), 

identified the exploration capabilities of mobile robots as one of these great 

challenges that also have “a wider impact on all application areas of robotics”, 

adding that “The associated challenges are therefore much greater than those 

encountered today”. 

The term rover usually applies to a system that uses wheels for locomotion; 

however, they may alternatively use tracks, legs or a combination of these 

(Yoshida et al., 2008). Throughout this work, the term rover is used to refer to an 

unmanned, mobile, wheeled robot that can explore a surface with varying degrees 

of autonomy. Thus, rover as a term can be considered equivalent to a wheeled 

mobile robot (WMR) in this work. The term robot is used more generally to indicate 

any mobile system, regardless of its means of locomotion. 

Rovers in terms of exploration capabilities have significant advantages: they can 

traverse different terrain types, slopes and overcome obstacles and can explore a 

large area. The recent achievements of the NASA Mars Exploration Rovers (MER) 

Spirit and Opportunity (2004), Curiosity (2012), Perseverance (2020) and the 

forthcoming ESA ExoMars (2022) mission have captured the public’s imagination. 

They have also been a significant contributing factor in driving the relevant 

research forward on control, control architectures, guidance, navigation, 

autonomy, mobility, computer processing, vision and communications (Quadrelli 

et al., 2015; Mateo Sanguino, 2017). 
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To manoeuvre a rover (and any robot in general) three tasks are required: 

guidance, navigation, and control (GNC). An additional requirement is motion 

planning: the determination of the desired path or trajectory that can provide the 

reference condition needed to determine a guidance command (Siegwart et al., 

2011). A path is a route through space that has only spatial constraints, whereas 

a trajectory also has temporal constraints (Siegwart et al., 2011). For example, in 

Cartesian space, a trajectory can be defined as a series of (x(t), y(t), z(t)) or their 

derivatives. The following definitions for GNC are used, based on (Fossen, 2011). 

Navigation is the determination of the system’s current state: position, attitude, 

distance travelled and, in some cases, velocity and acceleration are determined 

as well. 

Guidance is the action or the system that continuously computes the reference 

(desired) position, velocity, and acceleration to be used by the motion control 

system. The guidance system determines the reference trajectories to be fed to 

the control system from the vehicle's current location (from navigation) to a 

designated target, as well as desired changes in velocity, rotation, and 

acceleration for following that reference trajectory. 

Control, or more specifically motion control, is the action of determining the 

necessary control forces and moments to be provided to satisfy a certain control 

objective. The desired control objective is usually seen in conjunction with the 

guidance system. Constructing the control algorithm involves the design of 

feedback and feedforward control laws. The outputs from the navigation system, 

(position, velocity, and acceleration) are used for feedback control while 

feedforward control is implemented using signals available in the guidance system 

and when available, other external sensors. 

For mobile robots, the overall objective is (a) follow a desired path, (b) follow a 

desired trajectory or (c) achieve a certain pose (Morin et al., 2008). Case (a) and 

(b) are referred to as output tracking. Ideally, the tracking error converges to 

zero. Sometimes this is not possible, and the concept of practical stabilisation is 

defined when the tracking error is small but not zero (Morin et al., 2008). Point-

to-point motion (also known as point or posture stabilisation) is defined as starting 

from an initial configuration, the robot must reach a desired goal configuration 
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(Morin et al., 2008). This contrasts with output tracking, where we care not only 

about the robot’s end configuration but also about how it is achieved. 

The key to extracting the maximum scientific value is to ensure that the rovers 

can operate effectively on the surface and be capable of efficiently and safely 

traversing as much of the terrain as possible. Therefore, the capability to perform 

output tracking for a desired trajectory is of interest in this work. 

There is a plethora of methodologies to control a rover. These approaches range 

from the simplest to the most complex; (Aström et al., 2014) provide a thorough 

historical review of the general problem of control and (Garcia et al., 2007) an 

evolution of robotics research across industrial, service and field applications. 

Specifically, for mobile robot control developed over the last decades, (Tzafestas, 

2018) provides a thorough overview of control methodologies for mobile robots, a 

selection of relevant books and a summary of survey papers. 

So, why would anyone think that they can add something new to this exciting 

field? To answer this, this thesis takes a somewhat different approach. The 

developed control methods take the view of obtaining a specific system model 

(dynamic, kinematic or both), simplifying it when necessary, constructing a 

control law based on an objective and then attempting to prove that the control 

law is stable, i.e., it will not lead the system astray but rather to its goal. 

In this work, the focus shifts somewhat: a general algorithm that depends only on 

the model itself is developed and then is applied to the rover model. Within this 

general framework, a novel guidance and control method is proposed based on 

Inverse Simulation. 

Inverse Simulation is a method that incorporates a mathematical model which is 

representative of the system and calculates the control inputs necessary to 

produce a desired, predefined response. The desired response is defined using the 

system’s output variables. Inverse simulation works by taking a model of the 

system and solving it in a conventional form over a discrete time step. It is a 

model-based, numerical, iterative process where step changes in the various 

controls are applied until the system’s response matches the desired, predefined 

response within a certain tolerance (Murray-Smith, 2000; Thomson et al., 2006). 
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Applications for Inverse Simulation so far have ranged from the aerospace domain 

and rotorcraft flight control such as (Murray-Smith, 2000; Thomson et al., 2006), 

to applications to unmanned underwater vehicles such as (Murray-Smith et al., 

2008; Murray-Smith, 2014), unmanned aerial vehicles (Murray-Smith et al., 2015), 

hypersonic vehicles (Forbes-Spyratos et al., 2014) or investigating the handling 

qualities of a manually controlled rendezvous and docking system (Zhou et al., 

2017). An in-depth review is in Chapter 3. Inverse Simulation has been used to 

produce the required control signals for specific manoeuvres, design and test the 

feasibility of a desired output, and for model validation and pilot training. 

It is, therefore, necessary to present Inverse Simulation not just in the context of 

a particular application, with all its specific complications, but in a broader, 

abstracted way. 

A key factor is the availability of a suitable mathematical model that is a good 

approximation of the system. An important aspect of the Inverse Simulation 

algorithm is that the actuator and rover dynamics are incorporated into the 

system's mathematical model and are used during the calculation of the control 

signals. This results in control signals that consider the limitations of the rover 

and the actuators. The model can also be updated to include degradation to the 

actuators, power supply, mechanical structure or compensate for any damage that 

may occur. The control signals generated by Inverse Simulation will compensate 

for this degradation.  

The desired output for Inverse Simulation is a trajectory to a goal destination. 

First, a trajectory to the destination is determined as a series of waypoints, e.g., 

from terrain maps or sensor information. This information will provide the desired 

trajectory for the Inverse Simulation, which in turn will generate the required 

control inputs to follow the trajectory. The method can be applied in situ given a 

defined trajectory, the rover can calculate the necessary control inputs; or 

offline: define the trajectory, the control inputs are calculated, uploaded to the 

rover, which then executes the trajectory. 

Essentially, in Inverse Simulation the system’s model is used to generate a series 

of control inputs that will drive the system to a desired output, instead of applying 

an additional external controller. The model incorporates the dynamics, states, 
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inputs, outputs, and hardware limitations of the system and this allows for the 

consideration of these parameters when calculating a control input to achieve a 

specified output – a trajectory (path) in the case of rovers. Moreover, because the 

method depends explicitly on the system model, the model parameters, hardware 

constraints, actuators and the trajectories, their influence on the control inputs 

can be investigated to identify problem areas in advance. 

The approach in this work differs in that an attempt is made to describe a general 

algorithm and then apply it to the specific system to obtain a control input. This 

control input is entirely and exclusively based on the model used, without using 

any additional external controllers or imposing any simplifications on the existing 

model – apart from those needed to construct a model in the first place, but that 

is unavoidable. The method provides the best available inputs for a given system 

and a desired output, and these inputs are nominal. We are not interested in 

imposing an external control law on the system; rather we are looking to see if 

the system as is, can achieve the goal defined in terms of its outputs. 

Therefore, Inverse Simulation can be used for guidance by providing the changes 

in velocity, rotation, and acceleration for following a desired trajectory and for 

control by using these inputs to execute the desired trajectory. Hence, Inverse 

Simulation is a method for guidance and control. The Inverse Simulation control 

inputs are nominal, and, in this work, they are applied to a forward simulation 

without additional corrections. Thus, their validity depends on the model used 

and the assumptions made. In the last chapter of this work, two different schemes 

for using these nominal signals are included in cases where there may be 

significant changes and unmodelled disturbances that may require additional 

correction. 

1.2 Thesis Aims 

The main aims of this thesis are summarised as the following: 

• Develop the Inverse Simulation algorithm for the general case, develop its 

main requirements and establish a theoretical background using two 

different approaches: Differentiation and Integration. 
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• Establish and examine the parameters that affect the performance of 

Inverse Simulation, and the type of solution Inverse Simulation finds, given 

a desired output and system model. 

• Apply Inverse Simulation for output tracking to a four-wheeled rover model. 

• Examine the parameters that affect the performance of Inverse Simulation 

when applied to the rover, within the general framework established in the 

thesis. 

To support these main aims and to place the method within the broader context 

of GNC, the secondary aims are: 

• Establish the current state of rover design and control. 

• Establish the current state of Inverse Simulation. 

• Provide Inverse Simulation application examples using common mechanical 

systems. 

1.3 Thesis Outline 

First, in Chapter 2 a review of the state of the art of rover system design and 

control methodologies is presented. The system review aims to propose a 

taxonomy for rover design from which a baseline design emerges. The review 

provides an overview of the current methods and where Inverse Simulation fits 

within that paradigm. 

Chapter 3 is the review of the existing applications of Inverse Simulation, the two 

main implementations (Differentiation and Integration), and the application 

considerations from previous experience. 

Following Chapter 3, Chapter 4 builds on this review and examines in depth the 

two main implementations of Inverse Simulation for the standard state space 

model, itself an abstraction for a variety of systems. The algorithms are for the 

general, non-square case of an unequal number of inputs and outputs. There is an 

in-depth discussion on the parameters that affect the numerical stability of the 
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algorithms and the issue of an unequal number of inputs and outputs. Next, the 

relation of Inverse Simulation to feedback linearisation is investigated. Both 

Inverse Simulation and feedback linearisation require the expression of the input 

in terms of the output and thus an exploration of their differing qualities is 

important. Then, the linear case of Inverse Simulation is presented, as it 

showcases certain aspects of the method as to what can be considered an 

appropriate desired output based on the system model and how the control input 

can be expressed using the output. Finally, application examples are given to show 

how the method can be applied. Chapter 4 concludes with a set of tunning 

recommendations for the general case of Inverse Simulation. While some 

parameters are by necessity application specific, certain general considerations 

are highlighted. 

Chapter 5 presents the dynamics and kinematics of the rover and the trajectories 

that will be used as desired outputs for Inverse Simulation. 

Having established what Inverse Simulation is and how it works, Chapter 6 applies 

the Differentiation and the Integration algorithm to the specific case of a four-

wheeled rover, using the model and output trajectories from Chapter 5. The goal 

is to find the inputs to achieve a desired trajectory and several trajectories of 

varying length and duration are tested. Then, having found these inputs, they are 

applied in a standard forward simulation to see if they indeed achieve the desired 

trajectory, thus fulfilling the goal of trajectory tracking. The point is to check that 

using these inputs the rover can track the trajectory with a very small error, based 

only on the system model used. The implementation specifics for the 

Differentiation and Integration are discussed and their comparative performance 

is investigated. 

In Chapter 7, the rover model is augmented with the motor dynamics. The Inverse 

Simulation algorithms already developed are applied for this new model and it is 

shown how can this be done, without fundamentally altering the algorithm. 

An important element to consider is what type of solution the Inverse Simulation 

algorithms find and even if there is one to begin with, as well as what parameters 

affect its numerical performance. In Chapter 3 a review of the stability of Inverse 

Simulation is presented based on previous applications and in Chapter 4 the 



18 

general recommendations were discussed. In Chapter 8 a closer look is taken at 

the specific algorithms applied to the rover and the choices made, based on the 

tunning recommendations for the general case of Inverse Simulation in Chapter 4. 

Finally, in Chapter 9, the main findings are summarised and recommendations and 

opportunities to further develop Inverse Simulation are presented, including two 

different schemes for using the Inverse Simulation nominal signals in combination 

with another control method. 

1.4 Contributions 

During the research for this thesis, the following publications were made. They 

are detailed below, together with the relevant chapter that includes their results. 

Flessa, T., McGookin, E. W., and Thomson, D. G. (2014) Taxonomy, Systems 

Review and Performance Metrics of Planetary Exploration Rovers. In: 13th 

International Conference on Control, Automation, Robotics and Vision 

(ICARCV'14), Marina Bay Sands, Singapore, 10-12 Dec 2014, pp. 1554-1559. The 

results are included in Chapter 2. 

Worrall, K., Thomson, D., McGookin, E. and Flessa, T. (2015) Autonomous 

Planetary Rover Control Using Inverse Simulation. In: 13th Symposium on Advanced 

Space Technologies in Robotics and Automation (ASTRA 2015), ESA/ESTEC, 

Noordwijk, 11-13 May 2015. The results are included in 6, 7, and 8. 

Flessa, T., McGookin, E. and Thomson, D. (2016) Numerical Stability of Inverse 

Simulation Algorithms Applied to Planetary Rover Navigation. In: 24th 

Mediterranean Conference on Control and Automation (MED 2016), Athens, 

Greece, 21-24 June 2016, pp. 901-906, The results are included in Chapters 6, 7, 

and 8. 

Flessa, T., McGookin, E., Thomson, D. and Worrall, K. (2016) Numerical Efficiency 

of Inverse Simulation Methods Applied to a Wheeled Rover. In: 9th EUROSIM 

Congress on Modelling and Simulation, Oulu, Finland, 12-16 Sep 2016. The results 

are included in Chapters 6, 7, and 8. 
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Ireland, M. L., Flessa, T., Thomson, D. and McGookin, E. (2017) Comparison of 

nonlinear dynamic inversion and inverse simulation. Journal of Guidance, Control, 

and Dynamics, 40(12), pp. 3304-3309. The results are included in Chapter 4. 

Furthermore, the Integration algorithm developed in Chapter 4 was used as a 

method for fault detection in the following two publications. These results are not 

included in the thesis, as the fault detection results were primarily developed by 

the co-authors, but they do showcase the validity of the general algorithm and its 

more general application for finding inputs given a model and an output. 

Ireland, M. L., Worrall, K. J., Mackenzie, R., Flessa, T., McGookin, E. and 

Thomson, D. (2017) A Comparison of Inverse Simulation-Based Fault Detection in 

a Simple Robotic Rover with a Traditional Model-Based Method. In: 19th 

International Conference on Autonomous Robots and Agents (ICARA 2017), Madrid, 

Spain, 26-27 Mar 2017. 

Ireland, M. L., Mackenzie, R., Flessa, T., Worrall, K. J., Thomson, D. G. and 

McGookin, E. W. (2017) Inverse Simulation as a Tool for Fault Detection and 

Isolation in Planetary Rovers. In: 10th International ESA Conference on Guidance, 

Navigation and Control Systems, Salzburg, Austria, 29 May - 02 Jun 2017. 



Chapter 2 Review of Rover Systems and Control 
Methodologies 

The literature review focuses on the following two aspects: (a) the state of the 

art of planetary exploration systems, with an emphasis on rovers and related 

experimental systems and (b) the state of the art of control methodologies for 

wheeled systems, whether used on Earth or for planetary exploration. 

The review of the state of the art of planetary exploration systems includes those 

used in missions and selected experimental designs. A general taxonomy of rovers 

is proposed based on this review. The taxonomy can be used for comparing rover 

characteristics from a set of possible configurations, thus facilitating a more 

systematic design process. From this review, the baseline design is proposed, 

which is then used as an appropriate system for Inverse Simulation in this work. 

The review of the GNC methodologies is intended as an overview and focuses on 

the methods applied to differentially driven wheeled robots, as these are widely 

used in the research community and achieve high manoeuvrability with decreased 

complexity (Siegwart et al., 2011). Furthermore, the baseline design proposed in 

this chapter is driven differentially as well as the rover model used for Inverse 

Simulation. 

2.1 Rover Taxonomy 

The autonomous robotic exploration of Mars, the Moon, asteroids, and other 

celestial bodies is a necessary step for space exploration and the expansion of 

human presence in space. These robots can take the form of rovers, stationary 

landers, hoppers, and probes. The most mature locomotion method is wheeled, 

whereas legged and tracked locomotion are still in an experimental phase for 

space applications (Yoshida et al., 2008; Siegwart et al., 2011; Mateo Sanguino, 

2017). The focus is on wheeled rovers, as these have demonstrated their ability 

to perform with varying degrees of autonomy robustly and reliably over more than 

fifty years of active research (Yoshida et al., 2008; Mateo Sanguino, 2017); to date 

all successful planetary rover missions employ wheels. 
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Rovers have significant advantages compared with landers and probes: they can 

traverse different terrain types, slopes and overcome obstacles and so they can 

explore a large area. This is the concept of the “robotic field geologist”, where a 

rover was used instead of an astronaut team (Lindemann et al., 2006). Landers, 

such as NASA’s InSight lander (2018) (InSight Mission Overview, 2018), are 

stationary and their exploration capabilities are limited to the landing site. 

Hoppers and probes have been used in asteroid landing and sample collection, for 

example in ESA’S Rosetta mission and Philae lander (2004) (Ulamec et al., 2006, 

2016). The complexity of rovers for planetary exploration means that to date there 

have only been seven successful missions, detailed in Table 2.2. 

An exploration rover consists of the following subsystems: (a) instrumentation, (b) 

communications, (c) on board data handling (OBDH), (d) guidance, navigation and 

control (GNC), (e) power, (f) thermal, (g) chassis & structures (e.g. camera mast, 

arm), (h) locomotion including the suspension (Sellers, 2005). A question arises as 

to how we can categorize the different configurations and what a meaningful 

baseline design looks like. To this end, a taxonomy is presented in Table 2.1 with 

regards to locomotion method (mobility type), suspension type, steering system 

configuration and chassis articulation. 

Table 2.1: Rover Taxonomy 

Criterion Type Example 

Mobility 

Continuous 

Wheeled 
Tracked 
Crawling 
Tumbling 

Discrete Legged 

Hybrid 
Wheels on legs 
Tracks and wheels 
Circulating Wheels 

Steering Configuration Wheeled Locomotion 

Skid 
Coordinated (e.g., Ackerman steering) 
Independent (incl. crab steering) 
Differential 

Suspension 

Active/Semi Active 
Independent 
Dynamic 

Passive 

Rocker – Bogie 
Multiple Rockers 
Multiple Bogies 
Kinematic (other) 
Mass Spring Damper 

Chassis Articulation 
Articulated (actively or passively controlled) 
Fixed 
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2.1.1 Mobility Type 

Wheels are very well suited for operating on flat terrain and do not have the 

control complexity, energy efficiency and power distribution issues associated 

with legged and tracked vehicles (Siegwart et al., 2011; Nie et al., 2013; Reina et 

al., 2013). Legs perform better overall at the expense of increased complexity 

and power requirements (Bartlett et al., 2008; Siegwart et al., 2011; Nie et al., 

2013; Reina et al., 2013). Tracks perform better on soft terrain than wheels or 

legs but have reliability issues and a high power-to-weight ratio (Wong et al., 

2006; Bartlett et al., 2008; Siegwart et al., 2011; Nie et al., 2013; Reina et al., 

2013). Hybrid systems are still in the experimental stage and include wheels on 

legs, tracks and wheels and circulating wheels. The most popular hybrid system is 

the combination of wheels and legs, as it combines the efficiency of wheels with 

the adaptability on different terrains of legs (Siegwart et al., 2011; Nie et al., 

2013). The number of wheels is also an important consideration. Three wheels are 

the minimum for static stability (Siegwart et al., 2011). The number of wheels is 

usually four or six; eight or more wheels are cumbersome and difficult to control. 

Four wheels have reduced motion resistance, power requirements, and design 

complexity, and can be actuated with as little as two motors. Six wheels are 

generally better for traversing obstacles, reducing the pressure at each wheel and 

maintaining a smooth chassis pitch adjustment (Siegwart et al., 2011). 

2.1.2 Steering Configuration 

An important design aspect is the steering configuration. For planetary exploration 

rovers, all wheels are usually driven (actuated by a motor), and at least some of 

them are steered (an additional motor is added to change where the wheel is 

pointing). In independent (or explicit) steering each wheel is driven and steered 

with a dedicated motor assembly; this increases the ability of the rover to 

manoeuvre but also increases the overall complexity (Shamah, 1999). When each 

wheel is driven and steered, crab steering is achieved: all wheels point in the 

same direction by the same angle and the rover can move sideways. In skid 

steering, each set of wheels on the left and right sides of the rover is 

independently powered and a zero-turn radius is possible (Siegwart et al., 2011). 

Skidding increases the traction of the robot but requires more power and imposes 

considerable stress on the chassis and the wheels (Siegwart et al., 2011). 
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Ackerman steering is the most well-known example of coordinated steering, used 

in commercial automobiles and the hobby robotics market but requires a turning 

diameter that is larger than the vehicle, thus making it unsuitable for mobile robot 

exploration (Siegwart et al., 2011). 

A wheeled mobile robot (WMR) with differential steering has the advantage of 

being able to turn on the spot (Campion et al., 2008; Cook, 2011; Siegwart et al., 

2011). The wheels on one side of the robot are controlled and are always actuated 

with the same speed, in contrast with the skid steering method (Siegwart et al., 

2011). By coordinating the two different speeds (left and right wheel speed), the 

robot can turn on the spot, move in a straight line or move in a circular path 

(Campion et al., 2008; Cook, 2011; Siegwart et al., 2011). Mobile exploration 

robots most frequently use this type of steering in practice or experimental 

designs (Siegwart et al., 2011; Mateo Sanguino, 2017).  

The mobility type and steering configuration also influence whether the rover is 

holonomic or not and this is something that impacts how the rover is controlled, 

a point that will be discussed in 2.3.1. A system is holonomic if the controllable 

degrees of freedom are equal to the total degrees of freedom (Siegwart et al., 

2011). A differentially driven WMR is always non-holonomic because its 

controllable degrees of freedom are two (left and right wheel speed), but the 

total degrees of freedom are three: x, y, and orientation θ using a Cartesian 

reference frame. In practice, a non-holonomic WMR can achieve any feasible pose 

x, y, θ but this may require more time and energy than a holonomic WMR because 

the robot may need to first orient itself and then move in that particular direction 

(Siegwart et al., 2011). Essentially, the non-holonomic constraints arise from the 

fact that the robot cannot move sideways (Siegwart et al., 2011). A more general 

definition is that a non-holonomic system is a non-integrable one (Siegwart et al., 

2011): there are kinematic constraints that involve the derivatives of the position 

variables, and these constraints cannot be integrated to provide a relationship 

using only the position variables. 

2.1.3 Suspension 

The suspension system is how the means of locomotion are connected to the rest 

of the rover and influence how the rover interacts with the terrain. For robots 
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with more than three wheels, a suspension system is normally required to maintain 

wheel contact with the ground. A passive suspension uses springs and dampers 

with a predefined damping ratio to absorb the dynamical loads whereas a semi-

active suspension has a controllable damper but does not introduce any additional 

energy into the system (Dixon, 2007; Savaresi et al., 2010). An active suspension 

uses a powered actuator to actively control the damping ratio; energy is now 

introduced into the system (Dixon, 2007; Savaresi et al., 2010). In terms of 

performance, response time and reduction of impulse forces, active suspensions 

are superior; however, they are costly, complex and require a dedicated power 

supply (Dixon, 2007; Savaresi et al., 2010). 

A further distinction is made between kinematic and dynamic suspensions 

(Wettergreen et al., 2010; Reina et al., 2013). Dynamic suspensions use springs, 

torsion tubes, dampers, and high-speed actuators to adjust the damping ratio. 

These are used when a fast response to comply with the terrain is needed. 

Kinematic suspensions use freely pivoting joints with unsprung and undamped 

passive linkages, and they are well suited to slow-moving vehicles. 

The speed of a planetary rover is less than1 5 cm/s (Biesiadecki et al., 2007; Mateo 

Sanguino, 2017) and in planetary mobile robotics, if a suspension is chosen, it will 

probably be a kinematic one (Reina et al., 2013). In fact, below a speed of about 

8 m/s, sprung suspensions are an impediment to mobility since they change the 

force each wheel exerts on the ground, as obstacles are negotiated (Reina et al., 

2013). The simplest approach to suspension suitable for low speeds and not 

significantly uneven terrain is to utilise the flexibility of the wheel by using a 

deformable tyre made of soft rubber for the wheel (Siegwart et al., 2011) 

The suspension most often used in the successful missions to date is the rocker-

bogie (Lindemann et al., 2005; Reina et al., 2013), Figure 2.1. The rocker-bogie 

is a passive, kinematic suspension that keeps all wheels in contact with the surface 

at all times and no wheel sinks more than the rest (Lindemann et al., 2005). There 

are three main components: the rocker, the bogie, and the differential, Figure 

2.1. The differential is a passive, motion-reversal joint that constrains the two 

sides to equal and opposite motion and keeps the rover level. The rocker-bogie 

 
1 For comparison, the average speed of a common garden snail is 1.3 cm/s. 
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suspension can be adapted for four wheels by using a rocker and a pivoting joint 

for each side, connected with a differential. Another variation is the three-bogie 

system used in the ExoMars Rosalind Franklin rover; each wheel pair is suspended 

on a pivoted bogie (Patel et al., 2010; Silva et al., 2013). 

 

Figure 2.1: Rocker – Bogie Suspension 
(Lindemann et al., 2005) 

2.1.4 Chassis 

The ability of the rocker-bogie suspension to maintain the average pitch angle 

between the two sides is called body averaging. Body averaging is the case where 

the two chassis sides are connected via a joint or a linkage (active or passive) to 

maintain the average pitch between them. More generally, active articulation of 

the chassis transforms the chassis size for different configurations, such as stowing 

and driving (Rollins et al., 1998; Wagner et al., 2005) or actively lowering the 

chassis and extending its wheel base when drilling (Bartlett et al., 2008; 

Wettergreen et al., 2010). Adding actively controlled articulation joints at the 

chassis increases the complexity and power requirements and therefore this type 

of design is still limited to experimental systems. 

2.2 Analysis of Rover Design 

A review of the planetary exploration rovers successfully used (Table 2.2) and 

selected experimental designs (Table 2.3), focusing on wheeled, legged or hybrid 

systems, is presented to provide an overview of ongoing research and to highlight 

the different configurations based on Table 2.1. From Table 2.2 and Table 2.3, a 

baseline design is then proposed in Section 2.2.3. 
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2.2.1 Flown Exploration Rovers 

Table 2.2 presents all the successful rover exploration missions to date. The values 

for speed, obstacle height and tilt are the maximum. The first planetary vehicles 

were the Apollo Lunar Roving Vehicles (1971, 1972) and the first teleoperated 

rovers were the Lunokhod rovers (1971, 1973) (Young, 2007). Since then, research 

efforts have mostly focused on developing rovers for Mars exploration: NASA’s 

Sojourner rover (1996) (Muirhead, 2004), Mars Exploration Rovers (MER) Spirit and 

Opportunity (2003) (Lindemann et al., 2005), Curiosity (2011) (Heverly et al., 

2013) and Perseverance (2020), which is based on the design of Curiosity rover 

with upgraded hardware and new scientific instruments (Chu et al., 2017). ESA’s 

ExoMars Rosalind Franklin rover (Silva et al., 2013) is scheduled for launch in 2022. 

The Rosalind Franklin rover has a wheel walking ability; the rover can lift each 

wheel to adjust its attitude and ground clearance and to create a type of walking 

ability so that the rover can slowly walk out of adverse terrain, e.g. soft soil 

(Michaud et al., 2008; Silva et al., 2013). In July 2020 China launched the Tianwen-

1 mission for Mars, which consists of an orbiter, a lander, and a six-wheeled rover 

but no further details are available at this point (Mallapaty, 2020) and so it is not 

included. China has also developed a robotic lunar exploration programme. In 

December 2013, the rover Yutu (“Jade Rabbit”) landed on the Moon (Sun et al., 

2013) but the rover was unable to move after the end of the second lunar night. 

The follow up mission had the same rover design and landed on the far side of the 

moon in January 2019 (Jia et al., 2018). 

A full-scale size comparison of three generations of NASA Mars exploration rovers 

is in Figure 2.2 and the Rosalind Franklin rover is in Figure 2.3. 

 

Figure 2.2: Sojourner (F), MER (L), Curiosity (R) 
(courtesy of NASA) 

 

Figure 2.3: Rosalind Franklin 
Prototype (courtesy of ESA) 

 



27 

In Table 2.2, the maximum speed, obstacle, and tilt may be exceeded in some 

cases (e.g., level hard ground with high traction). The maximum object height is 

equal to the wheel diameter when using the rocker-bogie suspension. All rovers in 

Table 2.2 use wheels and a passive suspension. The maximum speed, permissible 

obstacle height, maximum tilt, and weight increase over time. In terms of 

operation and autonomy capabilities, the Apollo Lunar Vehicles were operated in-

situ by astronauts (Young, 2007) and the Lunokhod rovers were teleoperated 

(Yoshida et al., 2008). All other rovers have a degree of autonomy to explore the 

nearby area and that capability is increased with each mission, especially as the 

computational efficiency increases (Bajracharya et al., 2008; Correal et al., 2016).  

Table 2.2: Planetary Exploration Rovers 

Name (Launch) Institution kg 
Size 
(m) 

Locomotion 
Steering 

Suspension 
Speed 
(cm/s) 

Obstacle 
Height 
(cm) 

Tilt (deg) 

Apollo LRV 
(1971, 1972) 

NASA 210 

1.14(h) 
x 

1.83(w) 
x 

3.1(l) 

4 wheels 
Ø51cm 

Ackerman 
Steering 

Passive: 
suspension 
arms and 

torsion bars 

360 30 

Lunokhod 
(1971, 1973) 

NPO 
Lavochkin 

840 

1.35(h) 
x 

1.6(w) 
x 

1.7(l) 

8 wheels 
Ø51cm 

Skid steering 

Passive: 
independent 

at each 
wheel 

55.5 n/a 

Sojourner 
(1996) 

NASA 11 
0.3(h) x 
0.48(w) 
x0.65(l) 

6 wheels 
Ø13cm 
6 drive 
4 steer 

Rocker-Bogie 1 
13 
15 

Spirit & 
Opportunity (2003) 

NASA 176 
1.5(h) x 
1.2(w) 
x 1.4(l) 

6 wheels 
Ø25cm 
6 drive 
4 steer 

Rocker-Bogie 4.6 
26 
16 

Curiosity (2011) NASA 900 
2.2(h) x 
2.8(w) 
x 2.8(l) 

6 wheels 
Ø50cm 
6 drive 
4 steer 

Rocker-Bogie 4.6 
50 
28 

Yutu  
(2013, 2019) 

CNSA 140 
1.5(h) x 
1(w) x 
1.1(l) 

6 wheels 
6 drive 
4 steer 

Rocker-Bogie 5.5 n/a 

Perseverance 
(2020) 

NASA 
102
5 

2.2(h) x 
2.7(w) 
x 3(l) 

6 wheels 
Ø52.5cm 
6 drive 
4 steer 

Rocker-Bogie 4.2 
52.5 
45 

Rosalind Franklin 
(2022) 

ESA 310 
2(h) x 
1.1(w) 
x 1.2(l) 

6 wheels 
Ø25cm 
6 drive 
6 steer 

Three Bogies 3.6 
25 
40 
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2.2.2 Selected Experimental Designs 

Table 2.3 presents selected experimental designs to provide an overview of 

current research and of the different configurations. The table presents selected 

experimental designs for planetary exploration rovers to show the design variety, 

especially in comparison with the flown systems in Table 2.2. Historical reviews 

such as (Yoshida et al., 2008; Mateo Sanguino, 2017) provide a broad overview of 

the development efforts for planetary exploration and include results pre-2008.  

Table 2.3: Selected Experimental Designs 

Name (Year) Institution kg 
Size 
(m) 

Locomotion 
Steering 

Suspension 
Speed 
(cm/s) 

Scarab 
(2008) 

Carnegie 
Melon 

University 
28 1.2 wheelbase 

4 wheels 
Ø71 cm 

4-wheel drive 
skid steering 

Passive: 
Two Rockers 
Active body 
roll control 

6 

Nanokhod 
(2008) 

ESA 3 0.65(h)x0.16(w)x0.24(l) 
Two Tracks 
skid steering 

n/a 0.14 

AMALIA 
(2010) 
(Della Torre 
et al., 2010) 

Team Italia 
for Google 

LunarXPrize 
30 n/a 

4 wheels 
Ø21 cm 

Passive n/a 

SpaceClimber 
(2010) 

DFKI 23 0.17(h)x0.2(w)x0.85(l) 
6 legs 

4 DOF each 
n/a 17.5 

CESAR (2012) 
University 
of Bremen 

13.3 0.5(h)x0.82(w)x0.98(l) 
2 hybrid legs 

/ wheels 
n/a n/a 

ATHLETE 
(2012) 

NASA 300 4(h)x2.75(w)x2.75(l) 

6 Hybrid legs 
/ wheels 
Ø71 cm 

6 DOF legs 

n/a 83cm/s 

Axel (2012) NASA 40 1.5 m × 0.9 m 
2 wheels 
Ø30 cm 

n/a n/a 

Cataglyphis 
(2015) 
(Gu et al., 
2017) 

West 
Virginia 

University 
65 

1.5(h) 
total volume < 1.5m3 6 wheels 

Rocker 
Bogie 

2 

Artemis Jr. 
(2015) 
(Reid et al., 
2015) 

CSA 260kg 1.53(h)x1.62(w)x1.47(l) 

4 wheels 
Ø30 cm 

4-wheel drive 
skid steering 

Passive n/a 

 

SCARAB (Bartlett et al., 2008) is an example of a four-wheeled rover with an 

actively transforming chassis. The SCARAB design (Bartlett et al., 2008; 

Wettergreen et al., 2010) combines a passive rocker suspension for pitch 

adjustment with an active part for chassis transformation, Figure 2.4.  
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The Nanokhod rover (Schiele et al., 2008) is a small, rugged explorer developed 

for exploring more environmentally extreme bodies such as Mercury. It is one of 

the few examples of tracked locomotion, Figure 2.5. To reduce Nanokhod’s size, 

while maintaining its scientific payload, it is tethered to a lander that provides 

power, communications, control and navigation commands (Schiele et al., 2008). 

 

Figure 2.4: SCARAB 
(Wettergreen et al., 2010) 

 

Figure 2.5: Nanokhod model 
(courtesy of ESA) 

Space Climber, Figure 2.6, was designed as a small scout for steep slopes up to 40 

deg. It has six legs, each with four DOF, for locomotion and a tether is used for 

power and commands (Bartsch et al., 2012). CESAR was developed for an ESA lunar 

crater robotic exploration challenge (Belo et al., 2012), Figure 2.7. It utilises a 

wheel/leg hybrid and an additional module, a repeater, is used for teleoperation. 

 

Figure 2.6: SpaceClimber, 25 deg slope 
(Bartsch et al., 2010) 

 

Figure 2.7: CESAR prototype 
(courtesy of ESA) 

ATHLETE in Figure 2.9 is designed for carrying cargo, hence its large size and 

speed; it is a hexagonal platform on six legs and each leg is individually actuated 

(SunSpiral et al., 2012; Wilcox, 2012). Each leg has a wheel and the system uses 

the locked wheels as “feet” to “walk” when in challenging terrain (SunSpiral et 

al., 2012; Wilcox, 2012). The wheels and their actuators are sized for nominal 

terrain, which requires less torque and smaller wheel diameter, which results in 

a mass saving of up to 25% (Wilcox, 2012).  
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The Axel rover, Figure 2.8, is a two-wheeled tethered robot capable of rappelling 

down steep slopes and traversing rocky terrain. (Nesnas et al., 2012). Only three 

actuators are used to control its wheels, caster arm, and tether (Nesnas et al., 

2012). Two or more Axel rovers can be combined to form a larger, untethered 

system (Nesnas et al., 2012). 

 

Figure 2.8: Axel Rover 
(courtesy of NASA/JPL-Caltech) 

 

Figure 2.9: Athlete on a Hill 
(courtesy of Nasa/JPL-Caltech) 

The Nanokhod rover, the Axel rover and the Space Climber rover are all small 

systems that use a tether to connect to the main module. This is a mother-

daughter systems configuration (Nesnas et al., 2012). The mother ship handles 

tasks such as long-range communications and onboard scientific analysis and so 

the daughter ship is lighter and simpler and is suitable for exploring areas where 

a larger rover could not go (Nesnas et al., 2012).  

The AMALIA, Cataglyphis and Artemis Jr designs all share certain design elements: 

wheels and a passive suspension. The AMALIA rover is a small, four-wheeled rover,  

each wheel is directly driven and is connected with an independent suspension to 

the main body that has a torsional spring but no damper (Della Torre et al., 2010). 

The Cataglyphis rover (Gu et al., 2017) was equipped with a manipulator for 

sample collecting and used six wheels and rocker-bogie passive suspension (Gu et 

al., 2017). The Artemis Jr. rover has six wheels actuated by only two motors for 

locomotion to reduce complexity, mass and cost; it is skid steered and has a 

passive suspension (Reid et al., 2015). 

Most of the experimental designs in Table 2.3 use skid-steering, in addition to all-

wheel drive. When using skid steering, the traction increases, and the rover can 

better negotiate difficult terrain (e.g., loose soil) and achieve a zero-turn radius. 

Skidding also requires more power and imposes considerable stress on the chassis 

and the wheels. In experimental designs, however, there is more freedom to 
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investigate different means of locomotion and steering. For most cases, the 

suspension of choice (when present), is a passive, kinematic one. A trend is 

apparent in using hybrid wheel/legged locomotion combining the maturity of 

wheels with the versatility of legs, as seen in ATHLETE, CESAR, and Rosalind 

Franklin from Table 2.2 and Table 2.3. Of the eight robots participating in the ESA 

Lunar challenge (Belo et al., 2012), CESAR was the only one that completed the 

mission and used a wheel/leg hybrid. The other robots included wheeled, tracked 

and track/wheel hybrids. 

2.2.3 Review Summary and Baseline Design 

There is a proliferation of experimental designs that shows the intense research 

effort over a long period of time, the need to optimise designs, the trial-error 

methodology adopted and the unique challenges faced (Nie et al., 2013; Mateo 

Sanguino, 2017). There are several designs for planetary exploration rovers; 

however, all rovers successfully used in a mission since Sojourner share a similar 

design: wheels, passive kinematic suspension (using the rocker-bogie 

configuration), independent all-wheel driving and selected wheel steering. The 

main difference is the weight, size, and power requirements. With each successive 

mission and as technology and launch capabilities advance, the scale and demands 

of the objectives are increased as well as the system’s capabilities. Most 

experimental designs in Table 2.3 use four wheels, only two use six wheels and 

just one has two wheels. Furthermore, a survey of over 100 rovers over the past 

50 years (Mateo Sanguino, 2017) showed that 31% had six wheels and 29% had four 

wheels and in terms of steering, 23% had four wheels with differential steering 

versus 25% that also had four wheels and skid steering, 

Therefore, from Table 2.2, Table 2.3 and the subsequent analysis, a rover baseline 

design emerges: (a) wheeled locomotion using four to six wheels (b) all-wheel 

drive and selected wheel steering, (c) passive suspension, usually the rocker-bogie 

system with a differential for steering. Using a passive suspension reduces 

complexity and increases reliability: fewer actuators and fewer moving parts 

reduce the chance of mechanical failure and the control requirements. A passive 

kinematic suspension has the benefits of simplicity, stiffness and a more equal 

distribution of weight (Lindemann et al., 2005; Bartlett et al., 2008; Wettergreen 

et al., 2010).  
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A simpler design, suitable for simulation and experiments would incorporate the 

following characteristics: (a) 4 wheels, (b) differential drive, and (c) passive 

suspension. The simplest approach to suspension suitable for not significantly 

uneven terrain is to design flexibility into the wheel itself, e.g. by using a 

deformable tyre made of soft rubber for the wheel, and not including any other 

suspension type (Siegwart et al., 2011). It is this baseline design, without 

suspension, that will be used further on in this work for applying the Inverse 

Simulation algorithms, as it represents a good analogy of the actual systems 

currently used. 

2.3 Overview of Guidance, Navigation and Control for 
wheeled vehicles 

2.3.1 Control for Mobile Robots with a Differential Drive 

A wheeled mobile robot is described by a dynamic model and a kinematic model 

(Morin et al., 2008), where: q is the system’s configuration vector in the body-

fixed frame, τ is a vector of independent motor torques, H is the invertible mass 

matrix, Γ is the combined effect of the Coriolis forces (C), gravitational forces 

(G), friction and other damping forces (D) and J(η) relates q from the body-fixed 

frame to η  in the Earth-fixed frame: 

 ( ) ( ) ( )+ +

Γ

τ = Hq+C q D q q G η  (2.1) 

 ( )η = J η q   (2.2) 

The system described by Eq. (2.1) and Eq.(2.2) forms a control system; Eq.(2.1) is 

the dynamic model and Eq.(2.2) is the kinematic model (Morin et al., 2008). The 

kinematic model on its own is also a control system with η being the state vector 

and q the control input vector (Morin et al., 2008). The kinematic model is very 

often used on its own to develop control algorithms for wheeled mobile robots, as 

it is simpler than the dynamic model, has lower computational requirements, is 

easier to implement and the resulting controllers exhibit good performance at 

moderate speeds. An additional reason is that depending on the system, the 

architecture may not allow the usage of torque or acceleration inputs (Oriolo et 
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al., 2002). From a kinematic viewpoint, the control of a differential drive robot is 

equivalent to that of the unicycle (i.e. a vehicle with only one wheel) (De Luca et 

al., 2001) and so a lot of the controllers proposed are for unicycles. 

There are numerous control methodologies to design the control system, from the 

simplest to the most complex; (Aström et al., 2014) provide a thorough historical 

review of the general problem of control and (Garcia et al., 2007) an evolution of 

robotics research across industrial, service and field applications. Specifically, for 

mobile robots, this work (Tzafestas, 2018) provides an overview of control 

methodologies, a selection of relevant books and a summary of survey papers. 

For vehicles with non-holonomic constraints, which is the case of a differential 

driven, wheeled robot, the trajectory following case is relatively simpler to 

control compared with the point-to-point motion and position stabilisation (i.e., 

remain at a set point), due to the nature of the non-holonomic kinematics. It was 

first established by (Brockett, 1983) that point stabilisation is not achievable with 

continuous, constant feedback control that uses only the states. It can however 

be achieved by time-varying control laws, discontinuous feedback, or both and 

the authors of (De Luca et al., 2001; Oriolo et al., 2002; Morin et al., 2008) provide 

intuitive examples as to how this can be circumvented by using time-varying 

control laws, discontinuous feedback or both control laws. 

At its most fundamental, the control on a plane of a mobile robot is achieved by 

defining its heading and forward velocity (Cook, 2011). For a differentially driven 

robot, this is equivalent to controlling the velocity of the left ( leftv ) and of the 

right side ( rightv ) (Cook, 2011); these two velocities are the system’s two control 

inputs. To achieve a particular heading and position the rover can (a) turn while 

travelling (i.e. spread the rotation uniformly while moving at the maximum speed) 

or (b) turn then travel (i.e. turn in place using the maximum rotational speed and 

then move forward using the maximum speed) (Cook, 2011). The time required to 

achieve the desired heading and position is shorter for the turn-then-travel 

strategy and the greater the change in heading is, the faster it is compared to the 

turn-while-travelling strategy (Cook, 2011). The computed control method (Cook, 

2011) assumes that the heading and velocity cannot change instantaneously and 
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the steering system to change them behaves as a second-order system with a 

specified natural frequency and damping ratio (Cook, 2011). 

Two well-known and widely used methodologies to achieve mobile robot control 

is PID (Proportional Integral Derivative) control and pole placement control. These 

methods are extensively described in the literature, such as (Skogestad et al., 

2005; Ogata, 2008). A common element of all these methods is that they are 

usually applied to the kinematic model of the robot, without considering the 

dynamics, and are based on linear control theory. The performance of a PID 

controller, a pole placement controller and a sliding mode controller when applied 

to a four-wheeled differential drive robot were compared in (Worrall et al., 2006; 

Worrall, 2010). The performance of the pole placement controller was superior in 

terms of the tracking time and error for a given trajectory, but it did require a 

linearised model of the system (Worrall, 2010). 

Overall, the standard controllers used are: proportional plus integral controller 

and its variations, Lyapunov function-based controller and computed control 

torque (Tzafestas, 2018). More advanced controllers include feedback 

linearisation-based controllers, adaptive and robust control (Tzafestas, 2018). 

Adaptive control is suitable for systems that involve slowly varying parameters or 

uncertainties/disturbances (Tzafestas, 2018). Robust control, such as sliding mode 

control, is applied in cases where there are strong parameter variations or 

uncertainties and can face fast disturbances, variations and unmodelled 

characteristics (Tzafestas, 2018).  

Another overview and comparison of commonly used controllers for path and 

trajectory following that employ the kinematic model can be found in (De Luca et 

al., 2001; Morin et al., 2008; Paden et al., 2016). These focus on feedback 

linearisation control and Lyapunov based control design. One of the first results 

for trajectory tracking that proposes a control rule for determining the linear and 

the rotation velocity and proves its stability using a Lyapunov function is 

(Kanayama et al., 1990). 
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Feedback linearisation is applied to single-input and output, control affine2 

systems in Eq.(2.3), where x is the state (m states), u the control input and y the 

output: 

 ( ) ( ) ( ),  u y h= + =x f x ξ x x   (2.3) 

Feedback linearisation transforms the system to an equivalent linear one, thus 

allowing the usage of linear control methods. There are two types of feedback 

linearisation: input-output linearization and input-state linearisation (Slotine et 

al., 1991; Khalil, 2003). 

In input-output linearisation, there is a direct, linear relationship between the 

output and the input and the state equation is partially linearised (Slotine et al., 

1991; Khalil, 2003). In input-state linearisation, the system is fully transformed 

into an equivalent linear system, i.e. both the state and output equation (Slotine 

et al., 1991; Khalil, 2003). Non-holonomic systems, however, such as a 

differentially driven robot, cannot be input-state linearised but can be input-

output linearised (Yun et al., 1992), another reason for using the kinematic model.  

For single-input and output systems, there is a ready form of input-output 

linearisation (Slotine et al., 1991; Khalil, 2003). For multi-input and multi-output 

(MIMO) affine systems, with an equal number of inputs and outputs (square 

systems) (Slotine et al., 1991; Isidori, 1995, 1999) provide a generalisation, but 

the process is far more involved. The results for single-input systems have been 

adapted for differential drive robots and then the trajectory tracking control was 

solved for the resulting input-output linearised systems, using conventional linear 

state-feedback control (Tzafestas, 2018).  

The method of feedback linearisation (input-output) for trajectory tracking has 

received particular interest in the robotics community since it transforms the 

input-output relation to a linear one and the developed controllers exhibit good 

results (i.e. small errors when following the trajectory and asymptotic stability 

 
2 A system is control affine when it is linear in the control input, i.e. linear in the action but nonlinear 

with respect to the state (LaValle, 2006). 
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proved via Lyapunov theory), such as in (De Luca et al., 2001; Oriolo et al., 2002; 

Morin et al., 2008; Blažič, 2011; Rodríguez-Seda et al., 2014; Paden et al., 2016). 

Lyapunov based controller design is based on the concept of selecting a feedback 

control u and then selecting a Lyapunov function3 V  to prove that the closed-loop 

dynamics are stable, as defined by Lyapunov theory (Slotine et al., 1991; Khalil, 

2003). This can be done in two ways for the nonlinear system, where the state is 

mx  and the input is ku  (Slotine et al., 1991; Khalil, 2003). 

 
( )

( )

x = f x,u

f 0,0 = 0
  (2.4) 

The first technique is to select a control ( )u x  and then substitute it so that the 

closed-loop dynamics are: 

 ( )( )x = f x,u x   (2.5) 

Then, a candidate Lyapunov function ( ) : mV  →x  is selected and the next step 

is to prove that the derivative of ( )V x  along the trajectories of Eq.(2.4) is at least 

negative semi-definite, thus validating the original choice of ( )u x . 

 ( ) 0
V V

V
 

= = 
 

x f x,u
x x

  (2.6) 

The second technique selects first a Lyapunov candidate function ( )V x  and then 

attempts to find a control law ( )u x  so that ( )V x  is indeed a Lyapunov function. 

This process can be applied to essentially all systems in the form of Eq.(2.5) but 

the real issue is finding the Lyapunov function. There is no general method for 

doing so, though there are guidelines for constructing the Lyapunov function, such 

as the variable gradient method (Slotine et al., 1991; Khalil, 2003). None of these 

 
3 A Lyapunov function ( )V x  is defined as a function that is continuously differentiable, ( )0 0V = , 

( ) 0 V   x x 0  and ( ) 0V x  (Slotine et al., 1991; Khalil, 2003). 
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methods however guarantee that a suitable ( )V x  will be found (Slotine et al., 

1991; Khalil, 2003). It is a trial-and-error method guided by intuition, experience 

and physical insights into the system (Slotine et al., 1991; Khalil, 2003). 

Sometimes it is possible to know in advance that a Lyapunov function exists for 

that particular system, so at least the search is not hopeless (Khalil, 2003). 

An adaptive controller is one whose parameters are variable and there is a 

mechanism for adjusting these parameters based on signals from the system 

(Slotine et al., 1991). There are two main approaches for adaptive control: the 

model reference adaptive control (MRAC) and the self-tuning method (ST) (Slotine 

et al., 1991). In MRAC control, the parameters are updated so that the tracking 

errors between the plant output and the reference model output are minimised 

(Slotine et al., 1991). In ST systems, the parameters are updated to minimise the 

data fitting error in input-output measurements (Slotine et al., 1991). ST 

controllers are more flexible compared with MRAC controllers but their stability 

and convergence are more difficult to guarantee (Slotine et al., 1991). Usually, 

however, the adaptive control techniques require some linearisation of the 

dynamics around an operational set-point (Slotine et al., 1991; Tzafestas, 2018). 

Sliding mode control (Slotine et al., 1991) was originally applied to a single-input 

single-output nonlinear system, though it can be extended to multi-input and 

output systems. Sliding mode control has the benefit of reducing the system to a 

series of first-order ordinary differential equations and can handle the uncertainty 

at a trade-off against performance. Examples of sliding mode control methods 

that use in some form the kinematic and dynamic model for trajectory tracking of 

two-wheeled mobile robots include (Solea et al., 2009; Hwang et al., 2013; Tian 

et al., 2014). 

Model predictive control (MPC) based methods are used when a high fidelity model 

is available (kinematic or dynamic) and emergency or aggressive manoeuvres may 

need to be performed (Martins et al., 2008; Paden et al., 2016; Sharma et al., 

2017; Škrjanc et al., 2017). The approach is often to solve the control problem 

over a short time horizon, apply the control inputs in an open loop and while 

executing, solve the problem for the next time interval (Paden et al., 2016). MPC 

as a control technique requires the solution of a (convex) quadratic program at 
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each step. For this reason, MPC methods are computationally expensive to 

perform online and model linearisation is often used in an attempt to simplify the 

process (Paden et al., 2016; Sharma et al., 2017; Škrjanc et al., 2017). As the 

computational capabilities of the onboard CPUs improve, the use of MPC methods 

is also expected to increase over time. 

2.3.2 GNC for Planetary Rovers 

While a planetary rover is essentially a mobile robot and thus the control methods 

are those presented in the previous section, there are several very specific 

challenges for a rover operating on a distant planet: time delays, uncertainty over 

the terrain type and varied terrain (e.g., loose sand, hard soil, rocks, varying 

slopes), unknown dynamic environment, limited communication bandwidth and 

high latency, minimum or zero capability of ground control intervention (Quadrelli 

et al., 2015; Correal et al., 2016). 

The Apollo LRVs were operated by astronauts and the Lunokhods were 

teleoperated; Earth operators sent driving commands in real-time. All other rovers 

have autonomous navigation capabilities: Earth operators upload instructions for 

the rover to follow and the rover can also plot its path and place its instruments 

on a selected target using the onboard navigation software (Bajracharya et al., 

2008; Correal et al., 2016). Early systems devoted most of their power to 

computing rather than to mobility (Yoshida et al., 2008). Later systems have a 

more balanced approach and future systems will likely devote most of their power 

to mobility (Yoshida et al., 2008). 

The control of the successful NASA planetary rovers (Table 2.2) is achieved using 

a combination of non-, semi-, and fully autonomous operating modes. For the non-

autonomous mode (directed driving), operators upload instructions for the rover 

to follow and then evaluate the results (Bajracharya et al., 2008; Correal et al., 

2016). The distance travelled can be over 100 m, with limited correction for errors 

and uncertainties while driving (Wright et al., 2006; Biesiadecki et al., 2007; 

Bajracharya et al., 2008). 

In the case of the semi- and fully autonomous modes, the rover can be given a 

target and a path made up of a series of waypoints. The onboard navigation 
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software is then used to follow the path and overcome any unforeseen obstacles 

(Bajracharya et al., 2008; Correal et al., 2016). The rover can also analyse terrain 

images, detect hazards, and plot its path for a limited number of motions using 

the onboard navigation software. Semi-autonomous is when the rover is 

commanded to travel to a particular destination and the on-board systems 

evaluate the path and control inputs to navigate to the destination (M. W. 

Maimone et al., 2006; Biesiadecki et al., 2007; Maimone et al., 2007; Bajracharya 

et al., 2008; Woods et al., 2014; Arvidson et al., 2017). 

When in fully autonomous mode, the rover receives very limited commands and 

selects areas of interest on its own, based on existing parameters. In this case, 

the rover must select a target destination, choose suitable waypoints by analysing 

stereo images, plot a safe path and finally execute the movement. This is a very 

slow process, necessary to ensure the rover’s safety (Maimone et al., 2006; 

Biesiadecki et al., 2007; Bajracharya et al., 2008; Quadrelli et al., 2015; Correal 

et al., 2016).  

An overview of the mobility trends for the Curiosity rover during its first seven 

years of operation is in (Rankin et al., 2020). The average drive distance is 28.9 m 

and the total distance travelled is 21,318.5 m (Rankin et al., 2020). Curiosity 

attempted 738 drives, of which 622 drives were completed successfully and 116 

drives were stopped by the onboard fault-protection software (Rankin et al., 

2020). The maximum rotation rate of each wheel is 0.168 rad/s, which is equivalent 

to a maximum speed of 4.2 m/s, though the wheel speed can vary depending on 

the terrain (Rankin et al., 2020). The Mars 2020 Perseverance rover also utilises 

similar modes of operation (Barfoot et al., 2011; Correal et al., 2016).  

The designs developed for the ESA ExoMars Rosalind Franklin rover have addressed 

the issue of control and the degree of its autonomy by including an element of 

autonomous control within the guidance paradigm (Silva et al., 2013; Woods et 

al., 2014; Correal et al., 2016). The Rosalind Franklin rover has two main 

navigation functions: one for short range and one for long range (Silva et al., 

2013). For the short range, the rover drives from one waypoint to the next without 

updating its information (Silva et al., 2013). For the long range, the rover has 

moved several waypoints but still utilises past acquired information to refine its 

movement (Silva et al., 2013). There is also a differentiation between normal 
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traverse and drill placement, due to the specific requirements of drilling (Silva et 

al., 2013). 

Allowing the rover to determine its path to a user-specified destination is more 

efficient as the motion of the vehicle is controlled locally and does not rely on 

continuous commands being received remotely (Maimone et al., 2006; Biesiadecki 

et al., 2007; Maimone et al., 2007; Bajracharya et al., 2008). Considering the 

unknown environment and the time delays, it takes a significant amount of time 

to implement manoeuvres in advance and drive the rover to points of interest. 

However, the resulting systems are more complex and need additional onboard 

power and computational capabilities (Madison et al., 2007; Barfoot et al., 2011; 

Howard et al., 2012; Correal et al., 2016). They also depend on the accuracy of 

the method used to select and execute the rover’s trajectory (Maimone et al., 

2006; Biesiadecki et al., 2007; Bajracharya et al., 2008; Quadrelli et al., 2015), 

which may accumulate significant error over time.  

2.3.3 Trajectory Generation 

A necessary element of GNC is motion planning: the generation of the desired 

trajectory that will enable the robot to reach its goal destination efficiently and 

safely (Siegwart et al., 2011). Motion planning provides the reference condition 

that will be fed into the guidance and then into the control system (Howard et 

al., 2007; Siegwart et al., 2011; Quadrelli et al., 2015; Paden et al., 2016; Wolek 

et al., 2017). The authors of (Howard et al., 2007) define trajectory generation 

for mobile robots as the problem of finding a feasible motion that will permit to 

robot to move from an initial state to a final state, given some model and a number 

of constraints. This results in a nonlinear differential equation describing an 

optimal control problem that is often solved using numerical and optimisation 

methods. The methods for solving the trajectory problem can be broadly 

categorised as (a) algorithms that produce a motion assuming a flat terrain and 

(b) algorithms that produce a discrete group of motions over a rough terrain, 

without any or few connecting in between motions (Howard et al., 2007). This is 

very much an open research field, and an overview is provided here for context. 

In general, trajectory (path) generation starts from a selection of waypoints and 

each waypoint is defined using Cartesian coordinates x-y-z and they represent the 
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safe points through which the robot must pass (Fossen, 2011). These points form 

a group of waypoints that consists of: 

 ( ) ( ) ( ) 0 0 0 1 1 1, , , , , , , , ,n n nwpt x y z x y z x y z=   (2.7) 

From this group, a trajectory (path) must be generated that connects one 

waypoint to the next. To do so a curve must be fitted, and the simplest case is 

that of connecting straight lines and circular arcs, Figure 2.10. In this case, a 

straight line connects two waypoints ( )1 1,i ix y− − , ( ),i ix y and for turning, a circle of 

radius Ri is inscribed between two successive straight lines to form a curved path 

(Fossen, 2011). This choice is motivated by the result (Dubins, 1957) that “The 

shortest path with minimum time between two configurations of a particle moving 

with a constant forward speed is a path formed by straight lines and circular arc 

segments”. A path that consists of straight lines and circular arcs is called a Dubins 

path (Fossen, 2011). 

 

Figure 2.10: Straight lines & inscribed circles for guidance (Fossen, 2011) 

There are two main drawbacks to this method (Howard et al., 2007; Fossen, 2011). 

First, the desired yaw rate is zero along the straight line and constant (non-zero) 

on the circle arc; thus, the yaw derivative is not continuous during the transition 

from the straight line to the circular arc. Second, the arc connecting two 



42 

successive waypoints may not necessarily pass through the two waypoints but in 

their vicinity; this may or may not be acceptable depending on the application. 

If a continuous curve is desired, then a suitable method must be selected that 

ensures this, such as using a polynomial, splines (e.g. cubic splines, Hermite 

polynomials) or Bezier curves (Moler, 2004; Howard et al., 2007; Fossen, 2011; 

Lekkas et al., 2014). A Bezier curve and its generalisation (B-splines) that is fitted 

through n waypoints is only guaranteed to pass through the first (i=0) and last 

waypoint (i=n) (Moler, 2004; Lekkas et al., 2014). 

There is a unique polynomial in x of a degree less than n, that passes through all 

n points defined by Eq.(2.7) (Moler, 2004). The number of data points is also the 

number of coefficients, although some of the leading coefficients might be zero, 

so the degree might be less than n (Moler, 2004). There are many different 

formulas for the polynomial, but they all define the same function. This 

polynomial is called the interpolating polynomial because it exactly reproduces 

the given data (Moler, 2004). The more data points that are used in the 

interpolation, the higher the degree of the resulting polynomial. Such a 

polynomial tends to show excessive variations between waypoints and overshoots 

them while guaranteeing that the graph will pass through each waypoint used 

(Moler, 2004). There is a trade-off between a good fit and a smooth, well-behaved 

fitting function. For this reason, full degree polynomial interpolation for a large 

number of waypoints (usually more than five) is hardly used in practice (Moler, 

2004). Common methods of fitting to n points a unique polynomial of degree n-1 

are Newton’s Interpolating Polynomials and Lagrange Interpolating Polynomials 

(Chapra et al., 2001; Moler, 2004). 

A way to solve this problem of a high degree polynomial through multiple 

waypoints is to fit the polynomial through every few waypoints and use 

appropriate boundary continuity conditions. This process is known as piecewise 

interpolation can be done using linear interpolation, splines and Bezier curves as 

well as other suitable, higher degree polynomials (Moler, 2004). 

For a planar moving robot, the faster way to travel through several waypoints is a 

path of connecting straight lines and circular arcs (Cook, 2011; Wolek et al., 

2017). In the ideal case where the forward speed is fixed and there are few 
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disturbances, the fastest path is the Dubins path already described (Wolek et al., 

2017). In practice, the robot cannot move forward or turn always at a constant 

speed and there are speed limits on the surge and yaw velocity, therefore the 

Dubins path with a variable speed is constructed (Wolek et al., 2017). In that case, 

a forward speed profile is assigned to the straight segment and a yaw speed profile 

to the turning segment. Additionally, a robot that is differentially driven can turn 

on the spot. There are two contrasting strategies for moving between waypoints. 

The first is the turn while travelling method (Cook, 2011): the rotation is spread 

uniformly over the entire trajectory while travelling at a constant forward speed. 

The second is the turn then travel or stop and turn method (Cook, 2011): the robot 

turns on the spot to achieve the desired heading and then travels forwards to the 

next waypoint, i.e. a Dubins path, with a circular arc of zero radius. The time 

required to achieve the desired heading and position is smaller for the turn-then-

travel strategy and the greater the change in heading is, the faster it is compared 

to the turn-while-travelling strategy (Cook, 2011). 

Beyond considerations such as the shortest path and minimum time to travel, 

other issues come into play when designing a trajectory (Fossen, 2011; Siegwart 

et al., 2011): obstacle avoidance, energy use minimisation, onboard 

computational power constraints, environmental disturbances, speed limits, 

curvature limits. Planetary rovers face additional challenges: time delays, 

uncertainty over the terrain type and varied terrain (e.g., loose sand, hard soil, 

rocks, varying slopes), unknown dynamic environment, limited communication 

bandwidth and high latency, minimum or zero capability of ground control 

intervention through teleoperation (Quadrelli et al., 2015; Correal et al., 2016). 

A historical review of trajectory (or path) generation methods and challenges for 

mobile robots can be found in (Howard et al., 2007; Paden et al., 2016) and 

specifically for planetary mobile robots in (Quadrelli et al., 2015; Correal et al., 

2016). The question of how to design a suitable trajectory from a set of waypoints 

is very specific to the task at hand and the required application, as the next 

examples from the literature show. 

The authors of (Yongguo Mei et al., 2006), develop a power model for a mobile 

robot and then examine the best way to manage the speed of a group of robots to 

maximise the travelling distance, under time and energy constraints. The authors 

of (Connors et al., 2007) use splines to generate a trajectory that avoids obstacles 
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in a cluttered environment. In (Liu et al., 2011, 2014), the authors propose an 

algorithm that generates a Bezier curve between every two successive waypoints, 

with appropriate continuity conditions, that is optimised for energy consumption, 

based on the arrival time and velocity at each waypoint. Using monotone cubic 

Hermite splines (Lekkas et al., 2013, 2014), a path between successive waypoints 

is interpolated, allowing for better shape control and avoiding excessive variations 

between waypoints. A real-time smooth trajectory generation based on piecewise 

Bezier curves for obstacle avoidance is proposed in (Renny Simba et al., 2016), 

albeit for a teleoperated robot in an indoor environment. (Kolter et al., 2009) 

develop an algorithm for designing a smooth trajectory using cubic splines 

optimisation. The method optimises the initial waypoint positions (within a user-

specified limit), while also obeying additional constraints on velocity, 

acceleration, kinematics and obstacles and was used for designing the trajectory 

of a four-legged robot (Kolter et al., 2009). All these methods were developed 

under the assumption of planar movements. 

All of the current NASA Mars Rovers (Spirit & Opportunity, Curiosity, Perseverance) 

use the same algorithm for computing a path, the GESTALT local planner (Grid-

based Estimation of Surface Traversability Applied to Local Terrain), designed by 

NASA/JPL (Biesiadecki et al., 2006; M. W. Maimone et al., 2006; Carsten et al., 

2009; Correal et al., 2016). The planning strategy consists of a set of routines that 

decide the next best direction for a rover to move, given environment & terrain 

sensor data and the final location or waypoint (Wright et al., 2006; Carsten et al., 

2009; Correal et al., 2016; Rankin et al., 2020). A set of candidate arcs (short 

paths from the current rover location) is then produced and considered. These 

paths can be straight or arc trajectories, depending on mechanical characteristics 

and mission constraints (Wright et al., 2006; Carsten et al., 2009; Correal et al., 

2016; Rankin et al., 2020). Nominally, the arc set consists of forward and 

backward arcs of varying curvature, as well as point turns to a variety of headings 

(Wright et al., 2006; Carsten et al., 2009; Correal et al., 2016). Each arc is 

evaluated based on three criteria: avoiding hazards, minimizing steering time, and 

reaching the goal (Wright et al., 2006; Carsten et al., 2009; Correal et al., 2016; 

Rankin et al., 2020). The algorithm then chooses from among the safe arcs one 

that will best ensure the rover reaches the goal (Wright et al., 2006; Carsten et 

al., 2009; Correal et al., 2016; Rankin et al., 2020). 
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2.3.4 Review Summary 

From the control methods presented in this chapter, there is a need for 

incorporating the dynamic model into the controller for increased accuracy. 

Methods that use the model are limited by issues such as linearity, affine in the 

control, number of inputs and outputs and non-holonomic constraints. 

Overall, rovers drive from one waypoint to the next and for shorter traverses of a 

few meters, the rover can move autonomously, in the context already described. 

The two main strategies can be summed up as the following (Correal et al., 2016). 

The rover can go to a given location by executing a pre-defined path without any 

corrections (Correal et al., 2016), similarly to open-loop control (Silva et al., 

2013). The rover can also move autonomously to a given location by sensing the 

environment and making its own decision (Correal et al., 2016). Finally, there are 

hybrids of these two strategies, such as having the first part of the trajectory 

already planned and the remaining distance travelled autonomously (Correal et 

al., 2016). For the Curiosity rover, the average drive distance is 28.9 m, the 

shortest drive is 2.6 cm and the longest is 142.5 m (Rankin et al., 2020). 

 



Chapter 3 Review of Inverse Simulation 

In this chapter, a review of the existing applications of Inverse Simulation, the 

two main implementations, and the application considerations are presented.  

Inverse Simulation is a method that uses a representative model of the system and 

calculates the control inputs necessary to produce the desired response. This 

desired response is defined in terms of the system’s output variables, represented 

as a time history. It is a model-based, numerical, iterative method, where step 

changes in the various controls are applied until the response matches the desired 

outcome within the desired tolerance (Murray-Smith, 2000; Thomson et al., 2006). 

The inverse simulation techniques can be potentially used in almost all areas 

where the direct simulation4 technique is applicable. Then, inverse simulation can 

be defined as a process where computer simulation methods are used to find a set 

of unknown input variables that realize a set of known and required model output 

responses (Du, 2013). 

Inverse Simulation has two main requirements for its operation: the desired output 

and a suitable model of the system. A general nonlinear system can be used with 

m state equations, p output equations and k control inputs in the usual state-space 

form. The control inputs calculated from Inverse Simulation are nominal for the 

given model and output. Accordingly, the output from Inverse Simulation and the 

corresponding states are also the nominal ones for the given model and desired 

output. Essentially, the system dynamics – in the form of a representative model 

– and desired outputs are used to drive the system to the desired output, instead 

of applying an additional external controller. 

Inverse Simulation considers how the system responds over the course of the 

complete output manoeuvre and there is an emphasis on how the desired response 

is achieved. This is especially pertinent to the case of nonlinear systems, where 

there might be singularities along the course of the manoeuvre and the nonlinear 

mathematical model can only be solved numerically.  

 
4 This is the forward process where the behaviour (simulation output) of a system under design is 

found from a given model structure and a set of model input variables 
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Compared with other methods for nonlinear system inversion, such as feedback 

linearisation, Inverse Simulation numerically inverts the system model through a 

series of discretised time points (e.g., using the Newton-Raphson method) 

whereas conventional methods invert the model in advance and have the 

advantage of being suitable for a wide variety of systems with model 

discontinuities, discontinuities in the manoeuvres, control and saturation 

constraints, non-minimum phase systems and systems not affine in the control 

(Murray-Smith, 2000; Thomson et al., 2006; Lu et al., 2008; Ιreland et al., 2017). 

3.1 Review of Inverse Simulation Applications 

Applications of Inverse Simulation are so far predominantly within the aerospace 

domain. The application to rotorcraft flight control, compound helicopters and 

more generally aircraft control has been a major area of research (Hess et al., 

1991, 1993; Rutherford et al., 1996; Murray-Smith, 2000; Avanzini et al., 2001, 

2013; Bottasso et al., 2001; Su et al., 2002; Thomson et al., 2006; Lu et al., 2007; 

Karelahti et al., 2008; Blajer et al., 2009; Bagiev et al., 2012; Ferguson et al., 

2016; Kim et al., 2020). Inverse Simulation is used in these cases to (a) produce 

the required control inputs for specific flight manoeuvres, (b) investigate the 

handling qualities of the system, (c) investigate whether these manoeuvres are 

achievable, and (d) investigate the control commands the pilot must and for pilot 

training. Inverse Simulation has also been used as a model validation method 

(Bradley et al., 1990; Thomson et al., 1990; Gray, 1992; Rutherford et al., 1996; 

Murray-Smith, 2000; Avanzini et al., 2010, 2017).  

The method has also been applied to autonomous underwater vehicles (Murray-

Smith et al., 2008; Murray-Smith, 2014); unmanned aerial vehicles as the design 

basis of flight control systems (Murray-Smith et al., 2015); for the design and 

trajectory evaluation of hypersonic vehicles (Forbes-Spyratos et al., 2014); for 

developing a method to estimate the fatigue of aircraft (Öström, 2007); for 

evaluating the proper control actions to achieve an orbit change of a plane (de 

Divitiis, 1999) and for investigating the handling qualities of a manually controlled 

rendezvous and docking system (Zhou et al., 2017). Finally, Inverse Simulation has 

also been used for fault detection using the nominal control inputs calculated from 

Inverse Simulation (Ireland et al., 2017a; Ireland et al 2017b). 
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From this review, Inverse Simulation applications can be categorized into two 

main categories. First, is the a priori evaluation of the required control inputs for 

a given, desired output. This process finds the time histories of input variables 

(i.e., the control inputs) that, for a given model, match the desired output 

response. When using a dynamic and kinematic model, such as the general 

described in Eq.(2.1) and Eq.(2.2), the control inputs found are the forces or 

torques needed to produce desired motions. This approach can also be used to 

design and test the feasibility of the desired output and to investigate the model 

parameters. 

Second, as a method of validation and fault detection. In this case, the actual 

system output is passed on to the Inverse Simulation scheme, which in turn 

produces the corresponding control input. Then, the inputs from Inverse 

Simulation can then be used to reconstruct the actual system input signals. 

To deal with unforeseen disturbances (Bagiev et al., 2012) use a receding horizon 

predictive approach for applications involving aggressive helicopter manoeuvres. 

Another approach is the work by (Avanzini et al., 2013), which introduces an 

element of adaptability to the Inverse Simulation algorithm applied to rotorcraft 

control based on a model predictive control scheme. In (Du, 2013) an optimisation 

approach is developed that given a set of output variables, along with the 

distributions of a set of uncertain input variables, the distributions of the unknown 

input variables are obtained. This method is then applied to an impact problem 

involving two rigid bodies to perform traffic accident reconstruction (Du, 2013). 

There are two main implementations for Inverse Simulation: Differentiation 

(Thomson, 1987; Bradley et al., 1990; Thomson et al., 1990, 2006; Rutherford et 

al., 1996; Murray-Smith, 2000; Lu et al., 2008; Murray-Smith et al., 2015) and 

Integration (Hess et al., 1991, 1993; Rutherford et al., 1996; Murray-Smith, 2000; 

Su et al., 2002; Thomson et al., 2006; Karelahti et al., 2008; Lu et al., 2008; 

Blajer et al., 2009; Du, 2013; Forbes-Spyratos et al., 2014; Kim et al., 2020). As 

can been for these examples, the Integration method is the more popular of the 

two.  

The underlying algorithm (Figure 3.1) is similar for both methods but the method 

of convergence to the control input is different.  
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Figure 3.1: Inverse Simulation Flowchart 

The basic Inverse Simulation algorithm in Figure 3.1 employs a Newton-Raphson 

scheme and a Jacobian that can be approximate (e.g., based on finite differences) 

or more rarely analytical for solving the nonlinear model equations and computing 

the outputs, which are then compared with the desired. It runs through a time 

interval that is discretised N times using the time step dt; this is the outer loop. 

The inner loop runs until convergence is achieved based on pre-defined tolerance 

or until the maximum number of iterations has been exceeded (see also Appendix 

B, and C for the algorithm steps). 

For the Differentiation method, a numerical differentiation scheme is used, and 

the convergence is based on the system’s state and output equations. The 

acceleration terms in the equations of motion are estimated by backward 
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differencing (or another appropriate numerical differentiation formula) and the 

differential equations effectively become algebraic. The Newton-Raphson 

algorithm then uses these equations directly in the error function rather than the 

difference between desired and actual response used in Integration methods. For 

the Integration method, a numerical integration scheme is used, and the 

convergence is based on whether the system’s output matches the desired.  

For both methods, existing research has been mostly restricted to the case of 

equal numbers of inputs and outputs because the Jacobian is a square matrix and 

this simplifies the calculations (Hess et al., 1991, 1993; Murray-Smith, 2000; 

Thomson et al., 2006; Avanzini et al., 2017). When there are more outputs than 

inputs, this is an under-actuated system and a factorisation can be used for the 

Jacobian (Hess et al., 1991, 1993; Thomson et al., 2006). 

Since the Differentiation method needs the states and outputs, the model must 

be in a suitable mathematical description where both are readily available. For 

the Integration method, the model can be a mathematical model or a grey or black 

box model if the outputs remain the same. This is because there are three main 

model types. A white-box model is a model based on physical laws with 

corresponding physical parameters (Keesman, 2011). If some of these parameters 

are estimated from the data, this is then a grey box model (Keesman, 2011). A 

black-box model is viewed only in terms of its inputs and outputs (Keesman, 2011). 

For example, in control applications, a black-box model may be a linear model, 

which does not necessarily refer to the underlying physical laws and relationships 

of the system (Keesman, 2011). For both methods, convergence to a point is 

dependent on the tolerance value set within the Inverse Simulation algorithm. A 

control input is accepted if the output is within the defined convergence 

tolerance. This tolerance is dependent on the actual capabilities of the system 

and is typically set to ensure convergence. If convergence is not reached after a 

set number of iterations, then this is an indication that the system has either been 

set up with inadequate parameters or the system is unable to achieve the current 

set trajectory. 

A variation on the Integration method that uses the derivative-free Nelder-Mead 

search-based optimisation algorithm applied to models used in ship steering 

control can be found in (Lu et al., 2008) and an approach based on sensitivity 
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analysis applied to a helicopter model is in (Lս et al., 2007). Furthermore, (Celi, 

2000) presents an Inverse Simulation approach based on numerical optimisation, 

which operates on a family of desired trajectories for a helicopter model.  

Overall, the Integration method based on (Hess et al., 1991, 1993) is the most 

widely used for Inverse Simulation. It requires only the inputs and outputs of the 

system and thus is suitable for complex models and it can also handle more easily 

problems where the number of inputs exceeds the number of outputs (Rutherford 

et al., 1996; Murray-Smith, 2000; Thomson et al., 2006; Lu et al., 2008; Avanzini 

et al., 2017). Nonetheless, the Differentiation method may be more complex to 

set up but it also converges faster to the required control inputs (Rutherford et 

al., 1996; Murray-Smith, 2000; Thomson et al., 2006; Lu et al., 2008). 

3.2 Review of Application Considerations of Inverse 
Simulation Algorithms 

This section presents an overview of the key results for the application and 

stability of Inverse Simulation based on the literature review in 3.1 

Integration can use any representative model of the system if the outputs and 

inputs remain the same. Differentiation requires both the states and the outputs, 

so any change in the model needs a reformulation of the algorithm. This results in 

Differentiation being more model specific and more time consuming to set up and 

maintain when changing the model. For the Integration method, the model can be 

more easily modified, if the outputs remain the same, which is a significant 

advantage and enables the use of a grey or black-box model. 

The issue of the stability of Inverse Simulation is examined in (Lin et al., 1995; 

Rutherford et al., 1996; Murray-Smith, 2000; Thomson et al., 2006; Lu et al., 

2007, 2008; Lս et al., 2007), with these references also providing a discussion on 

parameter selection, desired output selection and application examples primarily 

in selected systems from the flight dynamics domain and ship steering control in 

the case of (Lu et al., 2007). Each algorithm has advantages and disadvantages, 

detailed next based on (Lin et al., 1995; Rutherford et al., 1996; Murray-Smith, 

2000; Thomson et al., 2006; Lu et al., 2007, 2008). 
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The Integration method converges using only the outputs and so has a convergence 

rate that is an order of magnitude slower than that of the Differentiation method 

(Hess et al., 1993; Murray-Smith, 2000; Thomson et al., 2006; Lu et al., 2008). 

Integration however is generally more stable than Differentiation; what is gained 

in flexibility and stability, is lost in computing time. Moreover, the Integration 

method produces smoother control signals (Hess et al., 1993; Murray-Smith, 2000; 

Thomson et al., 2006; Lu et al., 2008). 

The numerical properties of both Differentiation and Integration have been 

examined when applied mostly to flight dynamics (Hess et al., 1993; Lin et al., 

1995; Rutherford et al., 1996; Thomson et al., 2006; Lu et al., 2008). The authors 

of (Thomson et al., 2006) examine the stability properties of the method in this 

context. When using Differentiation, it has been observed that there are 

oscillations in the response of the uncontrolled states (so-called “constraint 

oscillations”) (Thomson et al., 2006). However, these oscillations depend more on 

the dynamical properties of the system and its uncontrollable states and zero 

dynamics rather than the method used and its numerical properties (Lu et al., 

2008). It has also been observed that there are low amplitude, high frequency 

oscillations superimposed on the calculated control input. These oscillations are 

due to several reasons (Hess et al., 1993; Thomson et al., 2006; Lu et al., 2008): 

redundancy issues, non-square Jacobian and multiple solutions, several local 

minima of the error function Eq.(4.6) or Eq.(4.10). The authors of (Lu et al., 2008) 

propose for the Integration case a derivative-free method using constrained 

Nelder–Mead search-based optimisation to overcome issues related to the 

Jacobian. Another approach for the Integration method is to calculate the 

Jacobian by solving a sensitivity equation, thus increasing the calculation accuracy 

(Lս et al., 2007). The low amplitude, high frequency oscillations are increased 

when the discretisation step dt is too small, as it could excite the uncontrollable 

states (Lin et al., 1995; Lu et al., 2008). Nonetheless, a relatively small dt can 

have a positive effect because it captures the changes in the system dynamics and 

this may reduce or even remove them, as well as increase accuracy (Lin et al., 

1995; Rutherford et al., 1996; Lu et al., 2008). 

Since the two main algorithms of Inverse Simulation presented here are numerical 

implementations, the accuracy and execution time of Inverse Simulation varies 

with the number of iterations required for convergence, the tolerance limit set 
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for convergence and the discretisation step dt used in Figure 3.1. Selecting a dt is 

a case of compromising between adequately following the system as it evolves 

over time, accuracy and possibly exciting the uncontrollable states. Furthermore, 

for systems where there are fast responding dynamics and slower responding 

dynamics, as is the case for helicopter applications, a “two timescale” Integration 

method using a reduced-order system model that eliminates the high-frequency 

oscillations has been developed by (Avanzini et al., 2001).  

The authors of (Lin et al., 1995) perform a global error analysis of Inverse 

Simulation for Differentiation and Integration. The definition for the global error 

of Inverse Simulation, which will be used is the following. The input from Inverse 

Simulation is applied to the forward system and the output is obtained and 

compared with the desired. This is the global error that measures the fidelity of 

Inverse Simulation (Lin et al., 1995). This definition mirrors the convergence 

criterion for the Inverse Simulation algorithms: a control input is accepted if the 

state & output or output is within the defined convergence tolerance.  

The global error of the Differentiation method relative to dt is of the same order 

as the method used to evaluate the derivatives (Lin et al., 1995). For example, a 

first-order difference formula has a local truncation error5 of order ( )O dt  and so 

if dt decreases by an order of magnitude so does the global error. For Integration, 

the states are obtained via integration, which is less sensitive to numerical errors 

due to time step size, and the smaller the time step dt, the smaller the local error 

in the integration formula (Lin et al., 1995). The convergence is based on the 

outputs and control signals and the convergence tolerance can be set as desired; 

thus, the global error can be reduced accordingly and there is no direct correlation 

with the dt as in Differentiation. That said, when there are uncontrolled states 

and a very small dt, numerical instability may arise for the Integration method (Lin 

et al., 1995). This is expected since as described the method converges using the 

inputs and outputs only. 

 
5 The local truncation error of a difference formula results from the use of the Taylor series to 

approximate the derivative. A first order formula results from using the first term of the Taylor 
series and thus has first order error and so on. 
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The choice of the desired output is also important since the validity of the 

calculated inputs depends on it. The proposed output should represent a realistic 

expectation of what the system can achieve (Thomson et al., 2006). The Ci 

continuity order is a parameter that needs to be carefully selected (Rutherford et 

al., 1996; Thomson et al., 2006; Ireland et al., 2017). In theory, for Inverse 

Simulation the desired output can be of any order and does not depend on the 

need to have a specific relative degree. In practice, this output needs to be 

sufficiently smooth; the derivative information is needed since the output 

equation may need to be differentiated. The stability of Inverse Simulation is 

improved when the desired outputs used are of higher order, e.g. acceleration or 

velocity compared to position and orientation (Rutherford et al., 1996; Thomson 

et al., 2006). A high degree polynomial for describing the desired trajectory is an 

efficient and flexible method for defining desired outputs and usually, a 

polynomial of at least C2 order is preferred (Rutherford et al., 1996; Thomson et 

al., 2006). Furthermore, the elements of the desired output vector should be 

equal to or less than the number of elements of the control vector, to ensure 

adequate actuation (Rutherford et al., 1996; Murray-Smith, 2000; Thomson et al., 

2006). 

3.3 Summary 

From this review, it is evident that Inverse Simulation has been applied to a large 

variety of systems for the a priori evaluation of the required control inputs to 

produce a given, desired output, given a model of the system that provides at 

least the inputs and outputs. Two main algorithms were identified: Differentiation 

and Integration. Most of the applications use the Integration Method, as it is 

simpler to set up since it requires the model’s inputs and outputs only, can handle 

more easily problems where the number of inputs exceeds the number of outputs 

and produces smoother inputs. All these however come at the expense of 

increased execution time, compared to Differentiation which also uses the 

system’s state equations.  

Inverse Simulation is a model-based method, and its successful application 

depends on several parameters. First, the choice of the model and the desired 

output is important as the validity of the calculated inputs depends on these. 

Second, the number of inputs and outputs is important as they impact the 
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Jacobian used for the Newton-Raphson scheme and more outputs than inputs 

result in an under-actuated system. Third, since this is a numerical method, it 

depends on numerical parameters: the tolerance limit set for convergence, the 

discretisation step dt used, and the number of iterations required for convergence. 

Of these, the tolerance limit set for convergence and the discretisation step dt are 

the most important. 

 



Chapter 4 Analysis of Inverse Simulation with 
Application Examples 

In Chapter 3, a review of the existing Inverse Simulation applications was 

presented, together with the application considerations. Having established this 

overview of the existing work on Inverse Simulation, in this Chapter the two main 

implementations are discussed in more detail not just in the context of a 

particular application, with all its specific complications, but in a broader, 

abstract way. Additional material is presented on how to overcome the issue of 

unequal numbers of inputs and outputs to facilitate the usage of Inverse 

Simulation in a wider variety of systems, so long as they are in the general state-

space form. Finally, the background of Inverse Simulation from feedback 

linearisation and linear systems is examined. 

4.1 Analysis of Inverse Simulation 

4.1.1 General Algorithm for Differentiation and Integration 

Inverse Simulation has two main requirements for its operation: the desired output 

(e.g., a trajectory) represented as a time history with an appropriate time step 

and a model of the system. The model’s inputs and outputs must be representative 

of the inputs and outputs of the actual system. A wide variety of systems are 

suitable if these requirements hold. A general nonlinear system is used with m 

state equations, p output equations and k control inputs in the usual state-space 

form. 

 ( ), ,  , m k=  x f x u x u  (4.1) 

 ( ), ,  , p k=  y g x u y u  (4.2) 

The desired output ( )d tg  is defined over the time interval Τ.  

 ( ) ( ) ,  Td dt t t= y g   (4.3) 

    0T , , , , ,  ,  0,1, ,i N it t t t idt i N= =    (4.4) 
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The time interval Τ is discretised N times using the time step dt in Eq.(4.4). The 

time step (or discretisation step) is selected after consideration of the rate of 

change of the system, the response time of its actuators, the motor time constant 

and the required response time. 

4.1.1.1 Differentiation 

For the Differentiation method, the convergence to an appropriate control input 

for the current time step is based on the system’s state and output equations. 

The state and output equations are discretised N times over the time interval Τ 

with a step of dt: 
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By using the desired output ( )d itg  at every discretisation point i, a time series of 

suitable control inputs u and the corresponding states x is found. The functions F1 

and F2 are defined to find the values of input u and the states x: 
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In this work, the system described by Eq.(4.6) is solved using the Newton-Raphson 

method until the calculated values of the control input u and the states x are such 

that F1 and F2 are both close to zero within a certain tolerance. 

At each inner iteration n, u and x are updated, and J is the Jacobian of F1 and F2. 

 
( )

( )

( )

( )

( ) ( )

( ) ( )

( ) ( )( )
( ) ( )( )

1

1 1

1 1 11

1 2 2 2 1 1

1

,

,

i i
n i n in i n i

n i n i n i n i
i i

n

t t
t tt t

t t t t
t t

 

 

 

 

−

− −−

− − −

−

 
     

= −      
       

  
J

F F
F x ux x x u

u u F F F x u

x u

  (4.7) 



58 

The algorithm for the Differentiation method of Inverse Simulation given a system 

defined by Eq.(4.1), Eq.(4.2) and the desired trajectory ( )d tg  over a discretised 

time interval T is in Appendix B. This is for the general case, so the steps in 

Appendix B can be used for any system in the form of Eq.(4.1), Eq.(4.2). 

The algorithm has two loops: the inner loop (steps 2–9 in Appendix B) that 

converges after n iterations and an outer loop (steps 1–10 in Appendix B) that runs 

through each desired output at each discretisation point i (see also Figure 3.1). 

The convergence is estimated based on how close the values of F1 and F2, which 

correspond to the state and output equations, are to zero within a tolerance. The 

Differentiation method requires the differentiation of the system’s state and 

output equation at each it , which means that any changes in these equations need 

the algorithm to be changed to accommodate them. 

Several parameters are critical for the convergence of the algorithm and the 

quality of the calculated inputs: the tolerance limit set for convergence, the 

discretisation step dt used, the number of maximum iterations required for 

convergence and how the Jacobian for the Newton-Raphson scheme is 

approximated and inverted in Eq.(4.7). The tolerance limit, the discretisation step 

dt used are the main numerical parameters.  

For the dt, it should take into consideration how fast the system dynamics are 

evolving and what the actual capabilities of the system are (e.g., the response 

time of the actuators, motor time step). The choice of dt also impacts the global 

error of the Differentiation method as discussed in (Lin et al., 1995) and in Section 

3.2. This point will be further elaborated on in Section 4.1.1.3. 

The selection of the convergence tolerance is related to how the condition of 

convergence is estimated given the estimated values of F1 and F2 from Eq.(4.6) 

and the condition that both should be close to zero (within the convergence 

tolerance, see also Appendix B) This can be done in two ways. First, by using the 

relative error which represents the qualitative side: how accurate is the estimate 

relative to the value of the desired. Second, by using the absolute error, which 

measures the total error and represents the quantitative side. The absolute error 

depends on the magnitude of the measured quantities and frames the result within 
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the interval or tolerance tol. Appendix H provides a detailed background of the 

relative and the absolute error. 

Eq.(4.7) is a system of ( )m k+  algebraic equations and is treated as a linear system 

to solve for ( )n itx , ( )n itu . The inversion of the Jacobian J is necessary and so its 

dimensions are of interest. From Eq.(4.1), (4.2) and (4.7) there are m states, k 

control input variables and p outputs and the dimension of J is ( ) ( )m p m k+  + . 

If there is an equal number of inputs and outputs p k=  the Jacobian is a square 

matrix and existing research has been mostly restricted to this case (Hess et al., 

1991, 1993; Murray-Smith, 2000; Thomson et al., 2006; Avanzini et al., 2017). 

If the number of inputs and outputs is not equal then a few factorisation 

methodologies are used to solve Eq.(4.7) and achieve the least square solution, 

which is the best available solution (Higham, 2002; Strang, 2009). There are the 

following two cases. 

If there are more inputs than outputs k p , this is an over-actuated system. From 

a linear algebra viewpoint, this is an underdetermined system without a unique 

solution. If the system in Eq.(4.7) is consistent then an input can be found for each 

desired output; the remaining k p−  inputs are free parameters, which can be 

allocated using a suitable factorisation method. 

If there are more outputs than inputs k p , this is an under-actuated system. 

From a linear algebra viewpoint, this is an overdetermined system and so an input 

cannot be found for each desired output. If the system in Eq.(4.7) is consistent all 

k inputs can be found and the remaining p k−  outputs cannot be directly 

associated with an input. Again, a suitable factorisation method can be used to 

ensure a least-squares solution. 

Several available factorisation methods can provide the least square solution, such 

as LU (L is a lower triangular matrix and U is an upper triangular matrix), QR (Q 

is a matrix with orthonormal columns and R an upper triangular matrix), Cholesky 

or the pseudoinverse. (Strang, 2009). The Jacobian in Eq.(4.7) may not necessarily 

have only one unique factorisation but Eq.(4.7) does have a unique least square 



60 

solution (Strang, 2009), which means the best available solution for the control 

input ( )n itu and the state ( )n itx  will be found. 

The best factorisation method for any matrix to provide a computationally 

efficient least square solution depends on its dimension and rank (Strang, 2009). 

Choosing this factorisation among those available is as much an art as is a science 

and is highly specific to the problem at hand (Davis, 2013). The use of the 

commonly available formulas in linear algebra textbooks for square and non-

square systems, such as those in (Strang, 2009), is strongly discouraged for 

numerical computations (Higham, 2002; Davis, 2013; Foster et al., 2013). 

Furthermore, estimating the rank of a non-square matrix in numerical 

computations to select the best factorisation at every iteration of Eq.(4.7) is 

computationally expensive and not always straightforward (Strang, 2009; Davis, 

2013). For all these reasons, it is recommended to carefully select the 

factorisation implementation to be used. Appendix G provides a detailed 

background on the solution of a non-square linear system and the available 

factorisations to ensure a least-squares result. 

4.1.1.2 Integration 

For the Integration method, the convergence to an appropriate control input for 

the current time step is based on whether the system’s output matches the desired 

output. 

To start, the state and output equations are again discretised N times over the 

time interval Τ with a step of dt. The desired output is ( )d tg  and  0, Nt t . At it  

the state Eq.(4.1) is numerically integrated to obtain the state x and then the 

output y is calculated. 

 
( ) ( ) ( )

( ) ( ) ( )( )
1

1

1,

i

i

t

i i

t

i i i

t d t

t t t

 

−

−

−

= +

=

x x x

y g x u

  (4.8) 

If using the Euler rule for the numerical integration of x: 
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 ( ) ( ) ( )1i i it t dt t −= +x x x   (4.9) 

The error function between the current output and the desired is: 

 ( ) ( )( ) ( ) ( ) ( )1,e i i d i i d it t t t t−= − = −f g x u g y g   (4.10) 

In this work, Eq.(4.10) is solved using the Newton-Raphson method until 

convergence, that is until a suitable input u is found so that the error function is 

zero within an acceptable tolerance. At each iteration the value of input u is 

updated using Eq.(4.11), where n is the current Newton-Raphson inner iteration 

and Je is the Jacobian of the error function fe or equivalently the Jacobian of the 

system outputs y when perturbing the control inputs u. 

 

( ) ( ) ( ) ( )( ) ( ) ( )( )1

1 1 1 1 1 1 1 1 1, ,n i n i e n i n i e n i n i

e

t t t t t t





−

− − − − − − − − −= − 

=

u u J x u f x u

y
J

u

  (4.11) 

The algorithm for the Integration method of Inverse Simulation given a system 

defined by Eq.(4.1), Eq.(4.2) and a desired trajectory output ( )d tg  over the 

discretised time interval Τ is in Appendix C. 

The algorithm has two loops: the inner loop (steps 2 – 9 in Appendix C) that 

converges after n iterations and an outer loop (steps 1 – 10 in Appendix C) that 

runs through each desired output at each discretisation point. The convergence is 

estimated based on minimising the error function in Eq.(4.10), i.e. how close the 

current output is to the desired within a tolerance. 

Several parameters are critical for the convergence of the algorithm and the 

quality of the calculated inputs: the tolerance limit set for convergence, the 

discretisation step dt used, the number of maximum iterations required for 

convergence and how the Jacobian for the Newton-Raphson scheme is 

approximated and inverted in Eq.(4.11). For the tolerance limit and the 

discretisation step the same considerations with the Differentiation method apply 

here. 
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As was the case for the Differentiation algorithm, Eq.(4.11) is a system of k 

algebraic equations and so can be treated as a linear system to solve for ( )1n it −u . 

The dimension of Je is p k  and if the number of inputs and outputs is the same 

then the Jacobian is a square matrix. If, however, the number of inputs and 

outputs are not equal, then a least-square solution is available using a suitable 

factorisation such as LU, QR, Cholesky decomposition or the Moore-Penrose 

pseudoinverse (Strang, 2009; Davis, 2013), see also Appendix G. If there are more 

inputs k than outputs p, then this is an over-actuated system and from a linear 

algebra viewpoint, an underdetermined system, so there never is a unique 

solution. When there are more outputs p than inputs k, this is an under-actuated 

system and so an overdetermined system; then a factorisation can be used. In this 

case, the calculated outputs are a least-square fit to the desired outputs (Hess et 

al., 1991, 1993; Thomson et al., 2006). Viewed from the point of linear algebra, 

this is an overdetermined system and usually has no unique solution; an input 

cannot be found for each desired output. Generally, the problems are restricted 

to p k  where there is sufficient actuation to directly influence the dynamics of 

the system, but a least-square solution is available even for underactuated 

problems. 

A key point here is that the Integration method does not require the 

differentiation of the system’s state and output equation. Instead, the Jacobian 

of the output vector when perturbing the input is used. This means that any 

changes in the model’s state equations do not require the algorithm to be changed 

to accommodate them. This can also be seen by comparing Eq.(4.6), Eq.(4.7) for 

Differentiation, which use both the states and the outputs equations, with 

Eq.(4.10) and Eq.(4.11) for Integration, which use only the output equations. The 

system’s state equation can be called from an external function when needed 

(step 5 in Appendix C) and so is isolated from the main algorithm, thus the 

method’s suitability for grey or black-box models. 

4.1.1.3 Numerical Differentiation and Integration for Inverse Simulation 

Consider again the Differentiation method in Section 4.1.1.1 that is (as the name 

suggests) based on evaluating the time derivatives of the states and then 

attempting to find the control inputs to achieve the outputs. The process is 
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repeated until convergence within a tolerance at each point in time (ti), see 

Eq.(4.7). Therefore, the nature of numerical differentiation is important and has 

a direct impact on the method. 

From numerical analysis (Kreyszig, 2014), divided-difference formulas for 

differentiation can be generated by the Taylor series expansion. For example, for 

1i idt t t+= −  a first-order approximation is: 

 ( )
( ) ( )

( )1i i

i

f t f t
f t O dt

dt

+ −
 = +   (4.12) 

The local truncation error (i.e. the local error) results from the use of the Taylor 

series (Kreyszig, 2014) and is of order ( )O dt , which in this case is the 

discretization time step for Inverse Simulation. When the truncation error is of 

the order ( )O dt , this is a first-order method. 

An idea would be to reduce the local truncation error, by reducing dt. However, 

when dt is reduced too much, there is a point where the truncation error is reduced 

but the round off error starts to dominate (Higham, 2002; Kreyszig, 2014). 

Rounding errors occur due to the way computers represent numerical values and 

thus cannot be influenced (Higham, 2002) (see also Appendix H). The difficulty 

with differentiation is tied in with the definition of the derivative, which is the 

limit of the difference quotient, and, in that quotient, there is the division of a 

large quantity by a small quantity or the difference between two large and nearly 

equal terms; both cases can cause numerical instability (Kreyszig, 2014). Similar 

difficulties occur with all differentiation formulas, and overall, for these reasons 

numerical formulas for differentiation are considered less (numerically) stable 

(Kreyszig, 2014). 

The Integration method starts by integrating the states q  and then calculating the 

output, Eq.(4.8). Then, the error ef  between the actual and desired output, 

Eq.(4.10), is calculated based on the control input estimation. The process is 

repeated, and the control input estimation is refined until the outputs converge 

to the desired ones, i.e., the error ef  between the actual and the desired output 
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converges within a tolerance for a given control input at each point in time ( )it . 

Therefore, the nature of numerical integration is also important and has a direct 

impact on the method’s results. 

From numerical analysis (Kreyszig, 2014) the simplest and most often used method 

in engineering problems for integrating differential equations as in Eq.(4.13) is the 

forward Euler method. 

 ( ),
dy

f y t
dt

=   (4.13) 

The derivative can be approximated by: 

 ( ) 1
1, ,n n

n n

y y
f y t dt t t

dt

+
+

−
= −   (4.14) 

Then the forward Euler method is: 

 ( )1 ,n n n ny y f y t dt+ = +    (4.15) 

Eq.(4.15) involves two types of error: the round off error and the truncation error. 

The truncation error arises from using the approximation of the derivative in 

Eq.(4.14). Same with differentiation, the local truncation error is of interest 

because it is the one that can be influenced (see also Appendix H). 

The truncation error results from the application of the Euler method over a single 

interval ( )1,n nt t +  in Eq.(4.15) (Kreyszig, 2014). The truncation error occurs because 

the true solution is approximated using what is essentially a Taylor series at 

Eq.(4.15) and is proportional to the square of the step size ( )2O dt (Kreyszig, 2014). 

The global error results from the approximations done in all previous steps to 

evaluate Eq.(4.13) using Eq.(4.15) over a time interval and is ( )O dt , proportional 

to the step size (Kreyszig, 2014). The useful conclusion from this analysis is that 

if the dt is made sufficiently small, then the accuracy is increased. In practice, 

this may not be computationally efficient (Chapra et al., 2001; Kreyszig, 2014) 

and is constrained by application-specific issues (for example exciting the 



65 

uncontrollable states). This implies that the method is stable as dt approaches 

zero, i.e., as dt approaches zero the error also does. This property of integration 

is in contrast with differentiation, where when dt is reduced too much, the 

truncation error is reduced but the round off error starts to dominate (Higham, 

2002; Kreyszig, 2014). A point however to consider is that for a very small dt, the 

estimation of the derivative ( ),n nf y t  in Eq.(4.15) may not be accurate, for the 

reasons that have to do with the definition of the derivative. 

Finally, note that the Euler method in Eq.(4.15) uses straight line segments to 

approximate the solution and is so a first-order method (Chapra et al., 2001). In 

practice, most functions are not linear and therefore the method will yield good 

results from a dt small enough that a local linear approximation is valid. How small 

that dt is, depends on the quantity being approximated. 

Overall, numerical integration is a smoothing process and is not very sensitive to 

small inaccuracies in function values and reducing the step size has a directly 

beneficial effect (Kreyszig, 2014). Numerical differentiation generally provides 

values that, for very small time steps, are dominated by the rounding error 

(Kreyszig, 2014). 

These fundamental differences are the reason that the Integration method of 

Inverse Simulation is considered more numerically stable than the Differentiation 

method and why the global error of the Differentiation method in terms of the 

time step dt is of the same order as the method used to evaluate the derivatives 

as discussed in Section 3.2. 

4.1.2 Inverse Simulation and Feedback Linearisation 

In Inverse Simulation, the goal is to find a suitable input u given a desired output 

( )d tg  for the general nonlinear system in Eq. (4.1) and Eq.(4.2). However, Eq. 

(4.2) usually cannot be solved directly for u. For this reason, it is differentiated 

again (Thomson et al., 2006): 

 
( )

( )
( ) ( )

 


 



x

g
y = x x

x y = g x f x,u

x = f x,u

  (4.16) 
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If Eq.(4.16) can be solved for u, we do so by setting: 

 ( ) ( )→d d dy = y = g x y = g x   (4.17) 

Then a suitable u can be found from: 

 ( ) ( )=d xg g x f x,u   (4.18) 

If it cannot be solved, a second differentiation can be performed: 

 ( ) ( ) ( ) ( ) ( ) ( )2

x x u+ +  x x
y = g x f x,u g x f x,u f x,u f x,u u   (4.19) 

Eq.(4.19) can then be solved for u. If that is not possible, then further 

differentiations can be performed (Thomson et al., 2006), provided that the 

system in Eq. (4.1), (4.2) and ( )d tg  is sufficiently smooth. 

The idea of differentiating Eq.(4.16) until the output can be written in terms of 

the input, recalls the definition of the relative degree for a nonlinear, single input, 

single output, affine in the control system defined by Eq.(4.20), (4.21) (Khalil, 

2003), i.e. the number of differentiations needed for the input to appear at the 

output equation Eq.(4.21). 

 ( ) ,  , mu u=  x f x + ξ(x) x  (4.20) 

 ( ) ,  , my h y=  x x  (4.21) 

 
( ) ( ) ( ) ( )f

h
y u L h L h u


= + +  

f x ξ x x x
x   (4.22) 

The Lie derivative of ( )h x  with respect to ( )f x  and to ( )ξ x  is defined as: 

 

( ) ( )

( ) ( )

f

h
L h

h
L h h


=



=


x f x
x

x x
x

  (4.23) 
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If ( ) 0L h =x  then Eq.(4.22) cannot be solved for u. Further differentiation until 

( )1 0rL h

− x  yields Eq.(4.24). 

 ( ) ( ) ( )( ) ( 1)r r r

f fy L h L L h u

−= +x x   (4.24) 

Then, the control input u: 

 ( )

( 1)

1
( )

( )

r

fr

f

u L h v
L L h

−
 = − + x

x
  (4.25) 

reduces the output equation Eq.(4.24) to: 

 ( )ry v=   (4.26) 

The relative degree of the system is defined as r, where r m  (Slotine et al., 

1991; Khalil, 2003). The output is now a chain of r integrators and this process is 

called input-output linearisation (Slotine et al., 1991; Khalil, 2003). In input-

output linearisation, there is a direct, linear relationship between the output and 

the input and the state equation is partially linearised (Slotine et al., 1991; Khalil, 

2003). If the relative degree r is equal to the number of states ( )r m=  then it can 

be fully feedback linearised, i.e. full-state linearisation: it can be transformed 

into an equivalent linear system (Slotine et al., 1991; Khalil, 2003). The definitions 

of the relative degree, input-output linearisation and feedback linearisation are 

similarly expanded for nonlinear, control affine, multi-input and multi-output 

(MIMO) systems, with an equal number of inputs and outputs (square systems), 

though the notation can become quite complex (Slotine et al., 1991; Isidori, 1995, 

1999). 

Overall, systems described by Eq. (4.20) and (4.21) can be analytically inverted to 

provide an expression for the input in terms of the state and output. The control 

design based on input-output linearization consists of three stages: differentiate 

the output until the input appears, Eq.(4.20) to Eq.(4.26), choose a control input 

to cancel the non-linearities and finally study the behaviour of the non-linearised 

states (Slotine et al., 1991). If the system can be fully feedback linearised, then 

there are no non-linearised states, which simplifies things (Slotine et al., 1991) – 
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though that is never the case for non-holonomic systems such as the four-wheeled 

differential rover (Yun et al., 1993).  

This approach to input-output and full-state linearisation is also known as 

nonlinear dynamic inversion (NDI). NDI has the advantage of providing an 

analytical solution that depends on the system model and its relative degree. 

Systems with a high relative degree can experience drift due to minute numerical 

errors and as the system’s complexity increases, its inversion through NDI becomes 

more difficult. In (Ireland et al., 2017) a comparison of tracking a desired 

trajectory between a system that is input-output linearised and inverted using 

Inverse Simulation Integration is given. Inverse Simulation is found to be more 

accurate in terms of tracking the desired output, at the expense of greater 

computational effort but this is offset by the more flexible nature of Inverse 

Simulation (Ireland et al., 2017). 

Compared with NDI, Inverse Simulation is a more general method that can be used 

for MIMO systems that are not control-affine and are not square. In practice, most 

systems are not control-affine and are quite complex and so this ability is a major 

advantage. Also, from Section 2.3.1, a non-holonomic system, such as a 

differentially driven robot, cannot be input-state linearised but can be input-

output linearised (Yun et al., 1993). Inverse Simulation depends on the system 

model, but there is no analytical inversion. Practical implementations usually 

require model changes and Inverse Simulation can handle these better than NDI. 

This is especially useful in the case of Integration (see Section 4.1.1.2) where the 

method is essentially decoupled from the system itself, so long as the inputs and 

outputs remain the same. As a system grows in complexity, its analytical inversion 

becomes less trivial. Conversely, any model change requires that NDI’s inverse 

model be redefined, and practical implementation is almost guaranteed to require 

such model changes. Furthermore, the relative degree of the system is fixed, 

whereas, for Inverse Simulation, the desired output can be of any order, though 

in practice the order of the desired output is a parameter that needs to be 

carefully selected (Rutherford et al., 1996; Thomson et al., 2006), as was also 

discussed in Section 3.2. 
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4.1.3 Inverse Simulation for a Linear Time Invariant System 

Inverse Simulation is simplified in the case of a linear, time-invariant (LTI) system. 

A general LTI system is used with: m state equations, p output equations and k 

control inputs in the usual state-space form, Eq.(4.27) and Eq.(4.28). The desired 

output ( )d itg  is defined over the time interval Τ, which is discretised with a time 

step dt, same as in Eq.(4.3).  

 ,  ,  ,  ,  m k m m m k = +    x Ax Bu x u A B   (4.27) 

 ,  ,  p p m=  y Cx y C   (4.28) 

The Inverse Simulation problem is stated as: Given a desired output ( )d tg  over 

the time interval T, find a corresponding control input u over the time interval T. 

Differentiating Eq.(4.28) gives: 

 =y Cx   (4.29) 

Substituting Eq.(4.27) to Eq.(4.29) and solving for u: 

 ( ) ( ) ( ),  p kCB u = y - CA x CB   (4.30) 

If the number of inputs is not equal to the number of outputs, matrix CB is not 

square and cannot be inverted. If there are more inputs than outputs, k p , this 

is an over-actuated system that results in an underdetermined system, so there is 

never a unique solution. If there are more outputs than inputs, k p , this is an 

under-actuated system that results in an overdetermined system. An input cannot 

be found for each desired output. If the system in Eq.(4.30) is consistent, all k 

inputs can be found and the remaining p k−  outputs cannot be directly associated 

with an input. A suitable factorisation method can be used to ensure a least-

squares solution (Appendix G). 
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A unique control u can be found if the number of outputs p is equal to the number 

of inputs k and the determinant of matrix CB is not zero, i.e., CB is square and 

full rank: 

 
( ) ( )

( ) ( )

1

det 0rank p k

−
   

= =  

u = CB y - CA x

CB CB
  (4.31) 

The LTI system in Eq.(4.27), Eq.(4.28) is defined as output controllable if it is 

possible to find an unconstrained control input ( )tu  that will transfer any given 

initial output 0y  to any desired, final output y  in a finite amount of time (Ogata, 

2008). To check if a system is output controllable, the rank of the following matrix 

(this is known as the controllability matrix and its size is p×(m+k)) is calculated 

(Ogata, 2008): 

 2 1... mrank p−  = CB CAB CA B CA B   (4.32) 

The system is output controllable if and only if the rank is p, where p is the number 

of outputs. The condition for output controllability is of practical importance 

because the goal of Inverse Simulation is to control the system’s output to match 

it to the desired. 

By comparing Eq.(4.31) and Eq.(4.32), the condition for finding a unique control 

input u for an output y for the LTI system in Eq.(4.27), Eq.(4.28) can be written 

as (Murray-Smith, 2000; Thomson et al., 2006):  

 2 1... mp k rank − = =  CB CAB CA B CA B   (4.33) 

The condition p k=  recalls the case of the numerical Differentiation and 

Integration algorithms where if there is an equal number of inputs and outputs, 

then the Jacobian is a square matrix. 

If instead of Eq.(4.28), the output is written as: 

 ,  ,  ,  ,  m q p m p q    y = Cx + Du y u C D   (4.34) 
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Then, the controllability condition is (Ogata, 2008): 

 2 1... mrank p−  = CB CAB CA B CA B D   (4.35) 

The presence of the Du  term in Eq.(4.34) always helps to establish output 

controllability (Ogata, 2008), since they add one more entry to the controllability 

matrix. From an Inverse Simulation point of view, this is expected since in 

Eq.(4.34) there is already a relationship between the output y and the input u and 

there is no need to differentiate y for u to appear. Whether of course Eq.(4.34) 

can be solved for u depends on the matrices C and D. 

Substituting the control input from Eq.(4.31) to Eq.(4.27) yields a new LTI system, 

defined by the matrices A  and B : 

 ( )  ( ) 
 

-1 -1

B
A

x = A - B× CB ×CA x + B× CB y   (4.36) 

The stability of this system is now determined by the matrix A  which represents 

the new system dynamics. The matrices A and B are given from Eq.(4.36), but the 

selection of matrix C can vary. Therefore, the selection of desired outputs to 

control can affect the stability of the system. 

In the case where the determinant of matrix CB is zero, a second differentiation 

of Eq.(4.28) can be attempted. This process is repeated until it is possible to 

express the output 
( )n

y  in terms of the input u , where 
( )n

y  is a linear combination 

of derivatives of y , ( )det 0D , C  and D  are a linear combination of the rows of 

CA, CA2, and CB, CAB respectively and so on (Thomson et al., 2006). 

  

( )

2

n

y = CA x + CABu + CBu

y = Cx + Du

  (4.37) 

Then, the input u is: 
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 ( )( )n-1
u = D y - Cx   (4.38) 

and the new system dynamics are: 

 ( ) ( )-1 -1

BA

x = A - BD C x + BD y   (4.39) 

The stability of this system is now determined by the matrix A , which represents 

the new system dynamics. The matrices , , , A B C D  are given from Eq.(4.27) and 

Eq.(4.37) and the selection of desired outputs to control affects the stability of 

the system. In Sections 4.2.2, and 4.3.2 examples will be given as to how the 

selection of output affects the system stability and so the Inverse Simulation 

results. 

For the LTI case, Inverse Simulation using Eq.(4.36) or Eq.(4.39) is the simplest 

case of the Differentiation algorithm. The Differentiation algorithm requires the 

appearance of the output in terms of the states and input. This contrasts with the 

general case for Integration which deals only with the input and output; the states 

and thus the system dynamics are not affected. This is an important difference in 

terms of the stability of Inverse Simulation Differentiation and Integration and the 

selection of appropriate desired outputs. 

4.2 Application example: Mass Spring Damper System 

To demonstrate the application of Inverse Simulation two well-known mechanical 

systems are used. The first system examined is the mass spring damper (MSD). 

For comparison, the linear case of Inverse Simulation from Section 4.1.3 is 

examined alongside the Integration algorithm from Section 4.1.1.2. This provides 

the opportunity to demonstrate why selecting an appropriate output is important 

in Section 4.2.2. Also consider that in practice, a system may be locally linearised 

and so using the linear case may be a reasonable choice.  

The state equation for the MSD system is: 
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0 1 0

-k -b 1

m m m

x x
u

x x

   
      = +         

   
BA

  (4.40) 

This is a linear system with one input u  and two states: the velocity x  of the mass 

and its acceleration x . Matrix A  has two conjugate complex eigenvalues, both 

with a negative real part and so the system is asymptotically stable (Appendix D). 

The desired output, i.e., the desired system response, can be the position x , its 

velocity x , its acceleration x or a combination. Their profiles are in Figure 4.1. 

 

Figure 4.1: Position, velocity, acceleration 

In Sections 4.2.2 and 4.2.3, the following methodology is used. 

First, the desired output is defined, Figure 4.1. Then, the input from Inverse 

Simulation is found and applied to the forward system. The resulting output is 

then compared with the desired.  

To facilitate a further comparison, a PID controller is used to achieve the same 

desired output, Figure 4.1, with Inverse Simulation. The result from the PID 

controller (the position x ) is compared with the result from Inverse Simulation 

(the position x ) to show how the system response compares. Additionally, the PID 

control input is compared with that from Inverse Simulation. 



74 

In all cases, the total trajectory time is discretised with a time step of dt = 0.01s, 

and the controller (PID or Inverse Simulation) is applied at each discretised point 

in time. All relevant parameters are in Appendix D. 

4.2.1 PID Controller Response 

A PID controller (see Appendix D) is used to achieve position x in Figure 4.1. The 

PID controller is applied to the system with a time step of dt = 0.01 s.  

The error of position x  is in Figure 4.2 and its average value is 1.36 10-4 m. Figure 

4.3 is the PID control input. Note that for dt = 0.1 s the PID fails because the time 

step is too large. 

 

Figure 4.2: MSD PID Error between desired 
and actual position 

 

Figure 4.3: MSD PID Control Input 

4.2.2 MSD Linear Inverse Simulation 

The output equation is: 

 
1 0

0 1

x

x

   
=    
   

C

y   (4.41) 

For the linear case, to solve directly for the input u, matrix CB must be factorised. 

From Eq.(4.40), Eq.(4.41): 
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( )

( ) ( )
1

0

, 1

m

u

u
−

 
  = =
 
 

=

CB y - CAx CB

CB y - CAx

 (4.42) 

It would be reasonable to select only x as the desired output, using the output 

matrix C . In that case, however, u does not appear as in Eq.(4.42) and a second 

differentiation would be needed. 

  1 0= → =C CΒ 0   (4.43) 

If the velocity x  is chosen as desired, then: 

  
1

0 1
m

= → =C CB   (4.44) 

This would simplify things, however, the new system dynamics matrix A , 

calculated using Eq.(4.36) and Eq.(4.44), now has two zero eigenvalues: 

 ( )  =
 

-1
A A - B CB CA   (4.45) 

This example demonstrates how the selection of desired outputs to control affects 

the stability of the system, even in this simple case. 

The time step is the same as the one used for the PID: dt = 0.01 s. The average 

position error is 1.15 10 -7 m for the linear Inverse Simulation, Figure 4.4, which is 

less compared with that of the PID (1.36 10 -4 m.). This difference is because the 

linear case for Inverse Simulation uses the backslash (\) operator in MATLAB (see 

Appendix G for the available factorisation methods) that guarantees the best 

solution for Eq.(4.42) and both the position and the velocity (which are coupled) 

are used for converging to the control input 

Figure 4.5 shows the control input calculated by Eq.(4.42) compared with the one 

required by the PID. The control input required for both cases is similar, the mean 

difference between them is 2.56 10-3 N.  
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Figure 4.4: MSD IS Linear Error between 
desired and actual positions 

 

Figure 4.5: MSD IS Linear Control Input vs 
PID Input 

For dt = 0.1 s the PID controller fails but the linear Inverse Simulation provides good 

results, the average position error is 1.73 10 -6 m. 

4.2.3 MSD Integration Inverse Simulation 

For the Integration algorithm, position x is the output. 
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There is one input and one output and so the Jacobian is replaced by the single 

partial derivative of the output when the input is perturbed. Using central 

differences and y from Eq.(4.46), the Jacobian is: 
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  (4.47) 

The perturbation of the control input u  is based on the previous estimate of the 

input multiplied by dt. There is a minimum acceptable u  and δy, to avoid division 

by zero. The method gives good results for dt = 0.01 s and 0.1 s.  
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For dt = 0.01 s the average position error is 3.16 10-5 m, Figure 4.6. Compared with 

the PID position error which is 1.36 10 -4 m, Integration provides better results. In 

comparison, however, with the linear case, where the average position error is 

1.15 10 -7 m, Integration provides worse results. This difference is because the 

linear case for Inverse Simulation uses the backslash (\) operator in MATLAB (see 

Appendix G for the available factorisation methods) that guarantees the best 

solution for Eq.(4.42) but only the position is considered for converging to the 

control input in Integration. In practice, these position errors are all small and 

provide a good system response in terms of position accuracy. 

Figure 4.7 shows the control input calculated by Eq.(4.47) compared with the one 

required by the PID. The control input required for both cases is similar, the mean 

difference between them is 2.81 10-3 N.  

 

Figure 4.6: MSD IS Integration Position 
Error 

 

Figure 4.7: MSD IS Integration Control 
Input vs PID Input 

For dt = 0.1 s the PID controller fails but the Integration Inverse Simulation provides 

good results, the average position error is 2.98 10 -4 m. 

Overall, a dt = 0.01 s is sufficient for Inverse Simulation to achieve good results in 

terms of the position error and the control effort required for following the desired 

trajectory profile. Furthermore, if there is a need for a larger dt, Inverse 

Simulation provides results, whereas the PID controller fails. 
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4.3 Application Example: Active Quarter Car Model 

The quarter car (QC) model, Figure 4.8, allows the behaviour of the system in 

relation to its suspension type to be examined. The sprung mass sqm  represents 

one-quarter of the vehicle mass and the unsprung mass usm represents one-quarter 

of the tyre mass. The spring force sk  is proportional to the displacement 1x  and 

the viscous damping force is proportional to velocity 1x . In the case of the active 

suspension, a controllable actuator force sF  is used. For the passive suspension, 

this force is set to zero. The system parameters are in Appendix E. 

 

Figure 4.8: Quarter Car Model 

The state equation for the QC is presented next, and the system is asymptotically 

stable (see Appendix E). 
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In Eq.(4.48), the velocity of the sprung mass 2x  is a measure of the ride comfort 

of the vehicle, while 4x is the velocity of the unsprung mass and is a measure of 

the vehicle's terrain handling ability (Dixon, 2007; Savaresi et al., 2010). The 

unsprung mass velocity 4x  is chosen here as the output of interest, as this is 

relevant to the vehicle's ability to navigate rough terrain.  

The road disturbance is modelled as a sine wave with a duration of 2 s and the 

total simulation time is 10 s. There are more complex models of road disturbance, 

(Dixon, 2007), but for the purposes here, a sine wave is sufficient. 
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  (4.49) 

 

Figure 4.9: Sine Road Disturbance 

In Sections 4.3.1 and 4.3.2, the following methodology is used. 

First, a PID controller is applied to the system in Eq.(4.48) to reduce the 

oscillations from the road disturbance, Eq.(4.49), for the unsprung mass velocity 

4x . Then, the system response (in terms of 4x ) from the PID controller is chosen 

as the desired output for Inverse Simulation. In this way, Inverse Simulation has a 

realistic desired output and the control effort from both PID and Inverse 

Simulation is compared. Note this choice of desired output is more realistic than 
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setting the desired output directly to zero; in such a system the goal is to minimise 

the oscillations and drive them to zero in a reasonable amount of time. 

The numerical Integration method of Inverse Simulation is used, and the linear 

case of Inverse Simulation is also examined, as this is a linear system, though in 

practice that is rarely the case. In all cases, the total trajectory time is discretised 

with a time step of dt of 0.001 s, and the controller (PID or Inverse Simulation) is 

applied at each discretised point in time. 

4.3.1 Desired Output 

A PID controller (the gains are in Appendix E) is applied and then the system 

response ( 4x ) in Figure 4.10 is used as the desired output for Inverse Simulation. 

The PID control input is shown in Figure 4.11. 

 

Figure 4.10: QCA PID Response 
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Figure 4.11: QCA PID Control Input 

4.3.2 QCA Linear Inverse Simulation 

From Eq.(4.48), and Eq. (4.53) the control input is: 

  1( )s rF y x z−= − −CB CA CR   (4.50) 

The unsprung velocity 4x  from Figure 4.10 is selected as the desired output for 

Inverse Simulation. The output matrix is: 

  
us

1
0 0 0 1 ,  

m
= = −C CB   (4.51) 

The new system dynamics matrix is calculated by substituting the control input 

from Eq.(4.50) to Eq.(4.48) and is now: 

 ( ) ( ) rz
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    = −         
 
 

-1 -1-1

BA R

x A B (CB) CA x + B CB y + R - B CB CR   (4.52) 

When 4x  is selected as the desired output, matrix A  again from Eq.(4.52) has two 

imaginary eigenvalues, in a conjugate pair, and a double zero eigenvalue. The 

system is marginally stable.  
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If 2x  is selected, then  
sq

1
0 1 0 0 ,  

m
= = −C CB  and A  from Eq.(4.52) has two 

imaginary eigenvalues, in a conjugate pair, and a double zero eigenvalue. The 

system is marginally stable. Since both choices result in a similar condition, the 

unsprung mass velocity 4x  is preferred as it best represents the handling abilities 

of the system. 

Note that if the output matrix  0 1 0 1=C  ( 2 4,  x x  as outputs) was used, then 

the new system dynamics matrix, would have two zero eigenvalues, one negative 

real and one positive real and so would be unstable. Additionally, selecting 1x  or 

3x  as the desired output is not possible, because in both cases it is =CB 0 . 

Therefore, 4x  is the desired output and the required control input is calculated 

and then applied to the forward system. The simulation parameters are in 

Appendix E. 

Figure 4.12 shows the error between the actual output from linear Inverse 

Simulation and the desired. The output 4x  matches closely the desired; the 

maximum error is 0.042 m/s at the start of the simulation and the average error is 

0.035 m/s. The spike at 2 s occurs at the point where the road disturbance ends. 

 

Figure 4.12: QCA Linear IS unsprung velocity error 
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Figure 4.13 shows the linear Inverse Simulation control input versus the PID control 

input. The control input calculated from the Inverse Simulation is larger than that 

of the PID controller, which signifies that a larger control effort is required, 

although both control inputs are comparable. Between the PID and the linear case, 

the PID is more accurate, though the linear case is significantly easier to set up. 

Using the output matrix from Eq.(4.51) results in a new system dynamics matrix, 

that has two zero eigenvalues and two imaginary. In this more complex system, 

this effect can be seen indirectly in the fact that the results for the linear case of 

Inverse Simulation are worse than the PID and a larger effort is required to achieve 

the desired output. 

 

Figure 4.13: QCA Linear IS Control vs PID Control 

4.3.3 QCA Integration Inverse Simulation 

The simulation parameters for the numerical Integration method of Inverse 

Simulation are in Appendix E.  

There is one input ( sF ), and one output ( 4x ) in Eq. (4.53). The goal is to eventually 

drive to zero the velocity 4x , using as the desired the PID output from Figure 4.10. 
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The Jacobian is a number, the partial derivative of the single output when the 

single input is perturbed. Using central differences and y  from Eq.(4.53), the 

Jacobian is similarly derived as in Eq.(4.47). 

Figure 4.14 shows the error in 4x  when using the PID output as the desired. The 

output follows very closely the desired; the maximum error is 10-5 m/s, around the 

time when the road disturbance stops. 

 

Figure 4.14: QCA IS Integration unsprung velocity error 

As was the case for the Linear Inverse Simulation, the choice of the desired output 

is important. From Eq.(4.48), all the states are coupled and so any one of them 

can be chosen as the desired output. When the sprung mass velocity 2x  is chosen 

as the output to control, the Inverse Simulation algorithm exhibits significant 

numerical errors. However, when the unsprung mass velocity 4x  is chosen, the 

algorithm converges without significant errors. Intuitively, this is because 2x  is 

quite small compared to 4x  and changes rapidly, Figure 4.10, thus the algorithm 

cannot follow. 
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Figure 4.15 shows the Inverse Simulation control input versus the PID control 

input. In contrast to the linear case of Inverse Simulation, the control inputs, the 

two control inputs are almost identical. The Integration method does not impact 

the system dynamics and follows the desired output very closely. 

 

Figure 4.15: QCA IS Integration Control vs PID Control 

4.4 Application Example: Road Disturbance Identification 

The passive QC model (QCP) is derived from Eq.(4.48) by setting the actuator force 

to zero. In this case, the road disturbance zr is considered as the input to the 

system. 
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Motivated by the previous examples, Inverse Simulation is used to find the road 

disturbance (considered an input), given the output. In this way, the road 

disturbance is identified. 
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To do this, a disturbance is applied to the system and, as in the case of the active 

QC model, the unsprung mass velocity 4x  is chosen as the output of interest since 

it is a measure of the vehicle’s terrain handling ability (Dixon, 2007; Savaresi et 

al., 2010) and was used with good results for the QC active case. Then, the 

resulting control input from Inverse Simulation is compared with the road 

disturbance imposed on the forward system. The output equation is: 
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This process is repeated for two types of disturbances zr: a sine function as in 

Eq.(4.49) (plot repeated here for clarity, Figure 4.16) and a disturbance with a 

trapezoidal profile that has a maximum height of 0.1 m and a duration of 2.5 s, 

Figure 4.17. 

 

Figure 4.16: Road disturbance, sine  

 

Figure 4.17: Road disturbance, trapezoid 

There is one input and one output, and the Integration Inverse Simulation method 

is used. The Jacobian is calculated using central differences, as in Eq.(4.47). The 

perturbation is based on the previous estimate multiplied by dt and there is no 

minimum perturbation size. The simulation parameters are shown in Appendix E. 

Figure 4.18 shows the results when the road disturbance is a sine function, the 

dashed line indicates the actual disturbance. The control input identified by the 

Inverse Simulation matches very well the initial disturbance, the average error is 

1 mm, and the maximum is 5 mm. 
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Figure 4.18: Sine Road Disturbance 
identified by IS 

 

Figure 4.19: Trapezoid Road Disturbance 
identified by IS 

Figure 4.19 shows the results when the road disturbance is a trapezoid, the dashed 

line indicates the actual disturbance. The control input identified is very close to 

the initial disturbance; the average error is 2 mm, and the maximum error is 1 cm. 

The identified road disturbance in Figure 4.19 is less smooth, especially when the 

input changes from ascending to a straight line and again when it starts to 

descend. However, in reality, the disturbance will not have well-defined edges as 

the trapezoid function used here. 

The identification of the road disturbance affecting a vehicle is an important issue 

that influences the navigation capability of any ground vehicle and certainly so in 

the case of a rover operating in a distant, hostile environment. Currently, the 

issue of identifying road disturbances and road defects, either on paved roads or 

on off-road terrain, is discussed in several papers and different methods are used. 

A few examples include the use of line scan sensors, LiDAR sensors, stereography 

using digital cameras (Botha et al., 2015), the reconstruction of road defects using 

neural networks (Ngwangwa et al., 2014), the use of nonlinear observers (Rath et 

al., 2015) and the use of Kalman filters (Dawkins, 2014). Reference (Chhaniyara 

et al., 2012) is a survey of various terrain characterisation techniques (remote, in 

situ sensing, direct sensors) for planetary exploration rovers and notes that “in a 

number of areas, suitable light-weight, compact, power-efficient technology has 

yet to be fully realised”. The ability to identify these disturbances from the 

outputs of the system and without any need of additional equipment is an 

important advantage of Inverse Simulation. 
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4.5 Inverse Simulation Tuning Recommendations 

Inverse Simulation is affected by numerical and stability issues that depend on 

certain parameters. These are identified as: the tolerance limit set for 

convergence, the discretisation step dt used, the number of maximum iterations 

required for convergence and how the Jacobian for the Newton-Raphson scheme 

is approximated and inverted. Of these, the tolerance limit, and the discretisation 

step dt used are the numerical parameters of the problem. 

The time step dt is important for the stability of the Inverse Simulation, especially 

for Differentiation, and must correspond to the physical limitations and response 

times of the system, such as the onboard actuators. For the Differentiation 

method, increasing dt corresponds to an analogous increase in the error between 

the actual and the desired and reducing dt reduces the error only up to a point. 

For the Integration case, a small dt results in a smaller error, that in theory can 

be reduced to zero as the dt decreases. In practice, no numerical computation will 

achieve this. Selecting a dt is a case of compromising between adequately 

following the system as it evolves over time, accuracy and possibly exciting the 

uncontrollable states, as was also discussed in the review in Section 3.2.  

The convergence tolerance can be set according to the acceptable error between 

the actual and the desired, considering that this is a numerical method and thus 

no computer will produce a perfect zero error. Additionally, the convergence 

tolerance should be relevant to the scale of the desired output. In Appendix H 

additional mathematical background is provided. 

The size of the Jacobian and thus the solution for the Inverse Simulation depends 

on the number of the system’s k control input variables and p outputs. An equal 

number of inputs and outputs is the preference, as this is neither an overactuated 

nor an underactuated control problem. In practice though, that may not be the 

case. Additionally, when solving numerically and since all measurements are never 

perfect, the choice should always be to select the best factorisation method to 

provide a computationally efficient least-square solution. It is important to have 

a clear idea of the size of the system to solve for Differentiation and Integration 

and examining the system’s physical properties should provide the necessary 

information.  
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Selecting the desired output is necessary for formulating the algorithms and the 

physical properties of the system should be considered. The proposed output 

should represent a realistic expectation of what the system can achieve. In cases 

where there is ambiguity as to what outputs to select, it is worth remembering 

that for Differentiation the desired outputs can affect the overall stability, as 

shown for the linear case in Section 4.1.3. The linear case itself is the simplest 

version of the Differentiation algorithm, which requires the appearance of the 

output in terms of the states and input. This contrasts with the general case for 

Integration which deals only with the input and output, the states and thus the 

system dynamics are not affected. Furthermore, this output needs to be 

sufficiently smooth, especially if the derivative information may be needed to 

differentiate the output equation. 

A final observation is that the Integration method does not require the 

differentiation of the system’s state and output equation. Instead, the Jacobian 

of the output vector when perturbing the input is used. The state and output 

equations can be called from an external function and so are isolated from the 

main algorithm, thus the method’s suitability for grey or black-box models, 

Differentiation converges based on the system’s state and output equations and 

their Jacobian when the input is perturbed. Therefore, any changes in the system 

dynamics (e.g., number of states) require a change in the algorithm. 

4.6 Summary of Application Results 

Overall, for the MSD, the active and the passive QC models, Integration provided 

consistently good results in terms of accurately following the desired output. Even 

for a seemingly simple LTI system such as the MSD, care should be taken when 

selecting the desired output or outputs and using the linear case of Inverse 

Simulation is not always the best choice. Furthermore, the selection of outputs 

for the linear case of Inverse Simulation and how they influence the system 

dynamics can provide insight into which is the best output to select if there are 

several choices. This was shown in the MSD example in Section 4.2 and the QCA 

example in Section 4.3. Finally, the Inverse Simulation algorithm can be used to 

determine in general an input given an output, without that input being 

necessarily a control input. This extends the usage of Inverse Simulation.



Chapter 5 Rover Mathematical Model and 
Trajectory Generation 

The purpose of this chapter is to present the mathematical model and the test 

trajectories that will be used for Inverse Simulation for the rover in Chapter 6 and 

Chapter 7. The rover model used conforms to the baseline design from Section 

2.2.3: (a) 4 wheels, (b) differential drive. Instead of using a passive suspension, 

the simpler approach is adopted of using the flexibility of the wheel itself for 

terrain that is not significantly uneven (Siegwart et al., 2011). 

5.1 Rover Model Overview 

A realistic, accurate model that describes the behaviour of the robot under a 

defined range of operating conditions is required to create a simulation capable 

of testing control algorithms. More so in the case of Inverse Simulation when the 

model is numerically inverted to find the input for a desired output. 

A wheeled mobile robot is described by a kinematic model and a dynamic model. 

The kinematic model is the most basic study of how the system behaves (Siegwart 

et al., 2011) and provides a description of the pose of the robot given a frame of 

reference, the system’s configuration vector, and the vector of independent 

velocity variables associated with the system’s degrees of freedom (Campion et 

al., 2008; Siegwart et al., 2011). The kinematic model provides a description of 

the robot that can be used on its own, as it is simpler than the dynamic model, 

has lower computational requirements and is easier to implement (Morin et al., 

2008; Cheein et al., 2014; Paden et al., 2016). The dynamic model provides a 

complete description of all the forces and torques that act on the robot, including 

the forces provided by the actuators (Campion et al., 2008). Together, these two 

models completely describe the behaviour of the robot. 

The model used in this work is that of a four-wheel, differentially driven rover 

with no suspension. The rover’s left and right sides are symmetrical to each other, 

and each side is actuated independently, with the wheels on each side always 

being actuated with the same signal. This model is a close analogue to the baseline 

model in Section 2.2.3 and has the same three basic characteristics: (a) wheeled 

locomotion using four wheels (b) wheel drive, and (c) differentially driven. There 
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is no suspension. The simplest approach that is suitable for terrain that is not 

significantly uneven, is to design flexibility into the wheel itself, e.g. by using a 

deformable tyre made of rubber for the wheel (Siegwart et al., 2011). In this 

model, the wheel conformity to the ground and the associated terramechanics are 

not considered, the assumption is that the terrain is not significantly uneven or 

soft and the wheels can traverse the terrain with no issues. For this work, the 

robot moves on a planar, smooth, and rigid terrain. 

Note that there is no general definition in the literature about what is exactly soft 

terrain or uneven terrain (Nie et al., 2013; Ghotbi et al., 2016). For wheeled 

robots moving on rigid, flat ground, when it can be assumed that the robot wheels 

roll without (significant) slipping and no sinkage occurs, then this is the type of 

terrain that is not significantly uneven or soft (Ghotbi et al., 2016). These 

assumptions may be violated when the vehicle moves on soft terrain (Thueer et 

al., 2010; Ghotbi et al., 2016), but this is not the case for this model in this work. 

Reference (Nie et al., 2013) provides a planar to rough terrain classification using 

the obstacle size relative to the robot’s size. The obstacles (Nie et al., 2013) are 

subdivided into four categories: single, continuous, slopes, and gaps.  

The rover’s chassis is a Lynxmotion 4WD3 model that employs four identical DC 

motors and has rubber, treaded wheels, Figure 5.1. The chassis width is 0.2488 m 

(from the centre of the left wheel to the centre of the right wheel), the length is 

0.35 m, and the wheel height is 0.127 m. The complete rover specifications are in 

Appendix A. The model used has been previously extensively presented in (Worrall 

et al., 2006; Worrall, 2010) based on the method in (Fossen, 2002). The model has 

also been experimentally validated (Worrall, 2010). 

 
Figure 5.1 Lynxmotion 4WD3 Chassis (Lynxmotion, 2018) 
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Using a validated model ensures that the simulation results will be like those of 

the actual robot. The validation process is fully described in (Worrall, 2010) and 

was done using two comparison methods: Analogue Matching (also known as visual 

inspection) and Integral Least Squares. When using Analogue Matching, the 

simulation model output is compared graphically with available experimental data 

by superimposing the two plots (Gray, 1992). The simulation data that best fit the 

experimental data correspond to the model that best represents the physical 

system (Gray, 1992). The Integral Least Squares method is a quantitative method 

that calculates the least-squares error between the experimental data and the 

simulation data; the model that has the smallest error is the best representation 

of the physical system (Worrall, 2010). During the validation process, seven 

different experiments of increasing complexity were carried out (Worrall, 2010): 

(1) drive the robot forward in a straight line, (2) drive the robot forward in a 

straight line and then execute a left turn, (3) drive the robot in a square, (4) drive 

the robot forward on a small up-down ramp with a maximum of 15 deg incline: the 

robot moves forward, one set of wheels drives up the ramp, then down the ramp 

then continues to move forward, this is to evaluate the coupling between roll and 

pitch (5) drive the robot forward on a small up-down ramp with a maximum of 15 

deg incline, this time the whole robot is on the ramp, (6) drive the robot forward 

on a flat surface to evaluate the roll and pitch coupling, (7) drive the robot in a 

zig-zag pattern. In each case, the linear and angular accelerations and velocities 

were recorded and compared with those from simulation (Worrall, 2010). In 

Appendix A, the validation results from the second experiment are shown. 

5.1.1 Model Variables and Frame of Reference 

The inertial Earth-fixed frame e and the rover body-fixed frame b are shown in 

Figure 5.2. 
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Figure 5.2: Rover Frames of Reference 

The origin of the body-fixed frame is at the centre of mass of the rover, which is 

also the centre of the robot, Figure 5.2. Table 5.1 presents the model variables. 

The rover’s specifications (such as mass, wheel radius, moments of inertia etc) 

are in Appendix A. 

Table 5.1: Model Variables 

DOF  Axis Name (Type) Velocity Force or 
Moment 

Position or 
Orientation 

1 Xe / Xb Surge (Translation) u (m/s) X (N) x (m) 

2 Ye / Yb Sway (Translation) v (m/s) Y (N) y (m) 

3 Ze / Zb Heave (Translation) w (m/s) Z (N) z (m) 

4 Xe / Xb Roll (Rotation) p (rad/s) K (Nm) φ (rad) 

5 Ye / Yb Pitch (Rotation) q (rad/s) P (Nm) θ (rad) 

6 Ze / Zb Yaw (Rotation) r (rad/s) M (Nm) ψ (rad) 

 

The following notation is used. Vector q describes the linear and angular velocities 

in the body-fixed frame, these are the independent velocity variables. It is further 

decomposed in q1 and q2 to represent the body-fixed translation and orientation 

velocities respectively. 

 

translation rotation

 

T

u v w p q r
 
 
  

q =   (5.1) 

  
T

u v w=1q   (5.2) 

  
T

p q r=2q   (5.3) 
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Vector τ combines the independent forces F and moments M that act on the 

system. 

  

T

x y zX Y Z M M M
 
 
 
 F M

τ =   (5.4) 

Vector η is the configuration vector and describes the pose in the Earth-fixed 

frame. It is further decomposed into η1 and η2 to represent the Earth-fixed position 

and orientation respectively. 

 

position orientation

z  

T

x y   
 
 
 
 

η =   (5.5) 

  
T

x y z=1η   (5.6) 

  
T

  =2η   (5.7) 

5.1.2 Dynamics 

The complete dynamic model is presented here:  

 ( ) ( ) ( )τ = Hq+C q q +D q q +G η  (5.8) 

In Eq.(5.8) H is the mass matrix, C(q) are the Coriolis forces, D(q) are damping 

forces and G(η) are the gravitational forces. In the next sections, the individual 

elements of the dynamics described by Eq.(2.1) are presented. These are the 

forces & moments in vector τ in Eq.(5.4) that cause the rover’s movement, the 

rigid body dynamics described by matrices H, C(q), the damping forces & moments 

D(q) and the gravitational forces G(η). Note that for the cosines and sines, c is 

used instead of cos and s instead of sin. 

5.1.2.1 Forces & Moments 

The forces are the forces that drive the rover and are generated by each wheel 

when actuated. The force iF  is the result of the torque iT  applied to the wheel, 
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where i refers to each wheel (fl, fr, bl, br) as in Figure 5.3, Figure 5.4, and rw is 

the wheel radius. 

 
wr

i
i

T
F =   (5.9) 

The rover has a differential drive configuration that uses four motors wired in 

parallel so that the motors on each side always receive the same input. Thus, two 

motors drive the left-hand side wheels and two drive the right-hand side wheels. 

The wheels at each side are always actuated with the same input by the motors. 

The rover motion is controlled by specifying the torque to be sent to each side. 

Later, with the inclusion of the motor dynamics in Section 5.1.4, that input will 

be a voltage, but the basic functionality remains the same. 

To achieve forward (surge) motion each wheel is actuated with identical torques 

(Figure 5.3). To rotate the rover, the wheels on opposite sides are driven in 

opposite directions. For example, to rotate clockwise, the wheels on the outside 

of the turn rotate forward and the wheels on the inside of the turn rotate 

backwards (Figure 5.4). To rotate on the spot, the signals to the left side and right 

side are equal and in opposite directions. 

 

Figure 5.3: Forward Surge Motion 
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F
X
 

Fbr                                                 Ffr 
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Figure 5.4: Clockwise Turn 

Using this wheel drive configuration, the movement along the surge direction and 

the yaw direction is directly controlled, X and Mz respectively in Eq.(5.4). 

Before moving on to the calculation of the propulsion forces, it is worth going over 

the issue of lateral slip. This is different to roll (or longitudinal) slip, where in an 

ideal rolling wheel, the velocity of the contact point between the wheel and the 

ground is zero (Schramm, Hiller and Bardini, 2014). In the case of lateral slip, a 

wheel that is acted upon by a lateral force gets a velocity component that is 

lateral to the rolling direction (Pacejka, 2012; Schramm et al., 2014). The forward 

(surge) speed is the longitudinal component of the total velocity vector at the 

wheel centre and the sway is the lateral component (Pacejka, 2012; Schramm et 

al., 2014). This is present, for example, when the rover is turning (Worrall et al., 

2006) in one direction and the wheels are pointing in the previous direction. This 

is because the wheels are driven but not steered, the wheel cannot turn around a 

vertical axis passing through the centre of the wheel and the ground contact point 

to change its direction (Siegwart et al., 2011). The lateral (or skew) wheel slip is 

then defined as the ratio of the lateral and the forward velocity of the wheel, 

which corresponds to the tangent of the slip angle β (Pacejka, 2012; Schramm et 

al., 2014). The slip angle β is (Pacejka, 2012; Schramm et al., 2014): 

 

( )2 2
arcsin

v

u v


 
 =
  +
 

  (5.10) 

Ideally, this slip angle should be as close to zero as possible and there would be 

no sway force acting on the wheels, so the sway velocity should be zero. For a 

slow-moving system on flat terrain, this is not an unreasonable assumption (Tian 
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et al., 2014; Paden et al., 2016). Recall also that the rover is differentially driven 

and thus it can control its forward speed u and its orientation, but not the sway 

speed v. The slip angle is set to zero when the rover is not moving. Eq.(5.10) 

provides a relation between the surge and the yaw velocity and this coupling will 

further be used when developing the Inverse Simulation algorithm for the rover. 

Force X, where Ffl is the force at the front left wheel and so on and β is the slip 

angle is (Worrall et al., 2006; Worrall, 2010): 

 ( )cfl fr bl brX F F F F = + + +   (5.11) 

The yaw moment Mz, where Ffl is the force at the front left wheel and so on and 

rm is the moment arm is (Worrall et al., 2006; Worrall, 2010): 

 ( ) ( )z fl bl rl br mM F F F F r = + − +
 

  (5.12) 

So far, the surge force X and the yaw moment Mz have been defined in Eq.(5.4). 

The remaining forces and torques at Eq.(5.4) cannot be directly controlled and 

are therefore the system’s unmatched dynamics: sway (Y), heave (Z), roll (Mx) 

and pitch (My). These forces & moments are the result of the interaction between 

surge, yaw, and the environment. The sway force Y, in particular, is the result of 

the robot slipping on the ground (angle β) when turning, Eq.(5.13) (Worrall et al., 

2006; Worrall, 2010): 

 ( )sfl fr bl brY F F F F = + + +   (5.13) 

Comparing Eq.(5.13) with Eq.(5.11) for the sway force X and Eq.(5.12) for the yaw 

moment Mz, it can be seen that while Y is not directly controlled, it does depend 

on the wheel forces and thus on the actuation torque. Also, when the slip angle is 

very small due to the small angle approximation6, the effect on the surge force X 

is very small and the sway force Y is almost zero. 

 
6 Small angle approximation (Fossen, 2002): sin    or even sin 0  , cos 1   for 

0.17 rad (10deg)  , which results in less than 1%  error. 



98 

5.1.2.2 Rigid Body Dynamics 

The rigid body dynamics are a simpler form of the complete dynamics in Eq.(5.8)

and are obtained by omitting the effect of the damping and gravitational forces, 

matrices D and G. This is the system’s response when subjected only to a force F 

and a moment M, Eq. (5.4). Because the centre of the body-fixed frame (Figure 

5.2) coincides with the system’s centre of gravity and with the principal axes of 

inertia, the mass matrix H is diagonal (Popp et al., 2010).  

The rigid body dynamics are:  

 ( )=τ Hq+C q q   (5.14) 

In Eq.(5.14), H is the mass matrix and C is the Coriolis matrix: 

 ( )xc yc zcm m m I I Idiag=H   (5.15) 

 
zc yc

zc xc

yc xc

0 0 0 0 m m

0 0 0 m 0 m

0 0 0 m m 0

0 m m 0 I I

m 0 m I 0 I

m m 0 I I 0

w v

w u

v u

w v r q

w u r p

v u q r

− 
 

−
 
 −

=  
− − 

 − −
 

− −  

C   (5.16) 

In Eq.(5.15) and Eq.(5.16) m is the robot’s mass, Ixc is the inertia around the Xb 

axis, Iyc around the Yb axis and Izc around the Zb axis (Figure 5.2 and Appendix A). 

5.1.2.3 Damping & Gravitational Forces 

A wheeled rover encounters two damping forces: friction fF , air resistance arF . 

 ( ) ( ) ( )f ar= +D v F v F v   (5.17) 

The friction reaction fF  depends on the rover’s weight and a frictional coefficient. 

The friction reaction fF  is decomposed into the friction forces ( )fricF v  and 

moments fricM : 
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 ( )
x

y

z

σ 0 0

mg 0 σ 0

0 0 σ

fric

u

v

w

   
   

=     
     

F v   (5.18) 

 

p p

q q

r r

r σ 0 0

mg 0 r σ 0

0 0 r σ

f

p

q

r

   
   

=     
     

M   (5.19) 

To increase the accuracy, it was found that an additional variable is required, the 

numerical velocity component along or about each axis (Worrall et al., 2006), seen 

in Eq.(5.19). This velocity term has the effect of scaling the frictional term to suit 

the current wheel velocity (Worrall et al., 2006). In Eq.(5.18), Eq.(5.19) the 

parameters g (gravity acceleration), iσ  (the friction coefficient) and jr  (moment 

arm) are in Appendix A. 

The air resistance force Far is caused by the movement of the robot through the 

air: 

 ( )
2

d

ρ
C A 0 0 0 0 0

2

T

ar

u
u

 
=  
 

F   (5.20) 

In Eq. (5.20) (Worrall, 2010; Nakayama, 2018), Cd is the drag coefficient, A is the 

surface area presented to the direction of travel, ρ is the air density and u  is the 

velocity in the direction of travel. Axis Xb is the main axis of motion and so the 

other velocities and their effect on the air resistance force is negligible. The drag 

coefficient Cd depends on the shape of the robot and the values of parameters Cd, 

ρ and A are in Appendix A. Note that at low speeds or low density, the air 

resistance force is negligible. For example, using the values from Appendix A, the 

rover’s air resistance is less than 0.001 N for a speed of 0.1 m/s. 

Vector G(η) (Worrall, 2010), represents the effect of any gravitational forces and 

moments that act on the robot, where θ is the pitch angle and φ is the roll angle. 
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 ( )

mg s

mg s c

mg c c

0

0

0



 

 

− 
 
−
 
 −

=  
 
 
 
 

G η   (5.21) 

Eq.(5.21) is based on the way gravitational forces act on the robot when moving 

on an incline, with the additional multiplication term cθ along the Ye and Ze axis. 

This term is added to represent the coupling when both a roll and a pitch exist 

(Worrall, 2010). 

5.1.3 Kinematics 

The system’s kinematics are the geometric transformations that map the body-

fixed velocities to the Earth-fixed reference frame (Fossen, 2002): 

 ( )η = J η q   (5.22) 

Matrix J(η) relates the body-fixed linear and angular velocities q from Eq.(5.1) to 

the Earth-fixed position and orientation configuration vector η from Eq.(5.5).  

The kinematics are further decomposed to the linear and angular velocities using 

q1 from Eq.(5.2) and q2 from Eq.(5.3) for the body-fixed velocities and η1 from 

Eq.(5.6) and η2 from Eq.(5.7) for the Earth-fixed position and orientation 

respectively. 

Using the Euler angles φ, θ, ψ and the zyx convention (Fossen, 2002), the rotation 

matrix from the body-frame b to the Earth-fixed frame e is: 

 

, , ,

e

b z y x

e

b

c c s c c s s s s c c s

s c c c s s s c s s s c

s c s c c

  

           

           

    

− − − 
 

− − −
 
  

R = R R R

R =
  (5.23) 

From the Earth-fixed frame to the local frame the rotation matrix is: 
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 ( )
1

, , ,

b e T T T

e b x y z  

−

=R R = R R R   (5.24) 

The relationship between the body-fixed translation velocities q1 and those in the 

Earth-fixed frame is: 

 e

b=
1 1
η R q   (5.25) 

Expanding Eq.(5.25) gives: 

 

( ) ( )

( ) ( ) 

                          

x uc c v c s s s c w s s c c s

y us c v c c s s s w s s c c s

z us vc s wc c

           

           

    

= + − − + −

= + − + − −

= + +

  (5.26) 

Using Euler integration, where dt is the time step and i+1 is the current instance, 

the numerical computation of the global position based on Eq.(5.25) is: 

 ( ) ( ) ( ) ( )1 e

bi i dt i i + = +  1 1 1
η η R q   (5.27) 

If the translation velocities in the local frame are needed, then: 

 ( )
1

e

b

−

=1 1q R η   (5.28) 

Similarly, the relationship between the body-fixed angular velocity vector q2 and 

the Earth-fixed angular velocity is: 

 
e

b=
2 2
η T q   (5.29) 

The rotation matrix is: 

 

1

0 ,  
2

0

e

b

s t c t

c s

s c
c c

   

  

 
 

 
− 

 =  
 

− 
 

T   (5.30) 

Expanding Eq.(5.29): 
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p qs t rc t

qc rs

s cq r
c c

    

  

 
 

= − +

= +

= − +

  (5.31) 

The angular velocity vector 2q  in the body frame cannot be integrated to obtain 

the angular coordinates7 (Fossen, 2002). Instead, vector 2η  from Eq.(5.29), 

Eq.(5.31) can be integrated to obtain the angles φ, θ, ψ.  

For small angles δφ, δθ of less than 0.17 rad (10 deg) to achieve less than 1% error, 

the rotation matrix in Eq.(5.30) is simplified (Fossen, 2002): 

 

1 0

0 1

0 1

e

b







 
 


 
 − 

Τ   (5.32) 

Overall, the kinematics described by Eq.(5.22) and matrix J(η) are: 

 

( )

( )
 

 
3 3

3 3 6 6

e

b x

e

bx x

 
=  
  

η = J η q

R 0
J η

0 T

  (5.33) 

5.1.4 Motor Dynamics 

The model of the rover is augmented by the inclusion of the motor dynamics, the 

parameters are in Appendix A. The rover employs four identical DC motors and 

both wheels on each side receive the same input. This reduces the voltage inputs 

to two: a voltage V1 to the left side and a voltage V2 to the right side: 

  1 2

T
V V=V    (5.34) 

Since each side receives the same voltage input, the equations are written for the 

left (i=1) and right side (i=2). 

 
7 This is because (and in contrast to translation) in general rotations around different axis, do not 

commute; the order in which rotations are applied is important. Therefore, integrating the 
angular velocity to find angular position does not work in the general case. 
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The motor dynamics consist of an electrical and a mechanical component. The 

electrical component describes the behaviour of the current (Ii) in response to the 

voltage input (Vi), where aL  is the inductance of the circuit, R  is the resistance 

and eK  is the EMF constant. 

 a e

a

R K

L

i i i idI I V

dt

− − +
=   (5.35) 

The dynamics of the mechanical component describe the interaction of the motor 

speed ( )i  with the current ( )iI ; mJ  is the motor moment of inertia, tK  is the 

torque constant, b  is the viscous torque constant and ξ  is the base friction 

coefficient. 

  t

m

K b ξ
,  1,2

J

i i i id I
i

dt

  − −
= =   (5.36) 

Each motor generates the torque i  and iη  is the motor efficiency. 

  t iK η ,  1,2i iI i = =   (5.37) 

The force per wheel is the propulsion force that drives the rover and is generated 

by each wheel when actuated, where wr  is the wheel radius. Because each side 

receives the same voltage input, the front left and back left wheels produce the 

same force ( fl blF F=  ) and so do the front right and back right wheel ( fr brF F= ). 

This is the point where the motor dynamics are connected to the system dynamics 

via the wheel force from Eq.(5.9). 

5.2 Trajectory generation for the four-wheeled robot 

The trajectory of the rover is represented as a series of waypoints on a plane, 

each defined by a (Xe, Ye) coordinate with a common origin, such as the example 

in Figure 5.5. The waypoints represent safe points and have been pre-selected by 

an appropriate methodology. The algorithm creates the trajectory between each 

successive waypoint with the robot stopping at each waypoint to turn on the spot 

to achieve the desired orientation, then move again; this is the turn then travel 
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strategy described in Section 2.3.3 and when the rover moves there is either a 

surge motion or a yaw rotation. The benefit is that the time required to achieve 

the desired heading and position is smaller for the stop and turn strategy and the 

greater the change in heading is, the faster it is compared to the turn-while-

travelling strategy (Cook, 2011). 

Through this process, the trajectory is described by a series of forward surge 

movements along the Xb axis (defined on the local frame), each followed by a turn 

along the Zb axis. The surge and turn movements are in a format that can then be 

used by the Inverse Simulation algorithm. 

To define the trajectory, the desired constant speed is needed for both the 

forward and rotational velocity as well as the required time for acceleration and 

deceleration. The system’s operating limits for the maximum surge and yaw are 

also considered. This information is used along with the distances and angles 

calculated from one waypoint to the next to evaluate the acceleration along the 

Xb axis (when moving forward) or the acceleration around the Zb axis (when 

rotating) using a fixed time step, which is the same as the time step dt used later 

for the Inverse Simulation algorithm. The motion consists of an acceleration stage, 

followed by a stage of constant velocity and then a deceleration stage, such as 

the example in Figure 5.6. 

The profile for the surge and yaw velocity is generated using a 6th order polynomial 

between two successive waypoints and the method presented here is based on 

(Thomson et al., 2006; Worrall et al., 2015). A 6th order polynomial ensures 

smooth trajectory profiles due to the continuity of the higher-order derivatives. 

This is the process of piecewise interpolation, where the polynomial is fitted 

through two successive waypoints and uses appropriate boundary continuity 

conditions to connect them. 

The distance to travel between waypoint ( )1 1,i ix y− −  to waypoint ( ),i ix y  is 

calculated for a maximum speed of 0.1 m/s for the surge velocity and 10 deg/s for 

the angular velocity next. These limits are in line with the actual capabilities of 

the robot, ensure that the air resistance is almost negligible and act as an indirect 

constraint on the minimum traverse time from one waypoint to the next. At each 

waypoint, it is determined if the rover is at the correct angle for the next traversal 
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forward. If not, then the rover is commanded to turn on the spot until the desired 

angle of travel is achieved. The acceleration and deceleration ( )u r  are calculated 

using the following polynomial: 

 

6 5 4 3

max max max max

7 6 5 4

20u 70u 84u 35u
7 6 5 4i i i iu t t t t

e e e e

              
= − + − +              

              
  (5.38) 

In Eq.(5.38), ( )max maxu  r  is the maximum value of the surge (yaw) velocity and it  

is the current time. From Eq.(5.38), a time history for the acceleration is 

obtained; it is then numerically integrated to provide the velocities which are 

then further integrated to provide the displacements.  

For example, Figure 5.5 shows a desired trajectory in the Xe – Ye plane and the 

waypoints are marked with a cross (+). Figure 5.6 shows the corresponding surge 

and yaw velocities generated by this method.  

 

Figure 5.5: Arc Trajectory 

 

Figure 5.6: Arc Desired Surge Velocity (top), 
Desired Yaw Velocity (bottom) 

The trajectory is an arc that is defined by six waypoints in the Xe – Ye plane, the 

total duration is 25.9 s, and the total drive distance is 0.73 m. In Figure 5.6 the 

motion consists of an acceleration stage, followed by a stage of constant velocity 

and then a deceleration stage (a trapezoidal profile), with 0.1 m/s set for maximum 

surge velocity and 10 deg/s (0.17 rad/s) for maximum yaw velocity. When the rover 

moves there is either a surge motion or a yaw rotation. 
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These limits are reasonable for a rover traverse scenario, such as the one in 

(Correal et al., 2016) and the actual drive data from Curiosity (Rankin et al., 

2020), where the maximum rotation rate is 0.168 rad/s. 

The choice of outputs and the polynomial is further motivated by the fact that the 

trajectories will be used further along for demonstrating the Inverse Simulation 

algorithms and the following points were considered for the trajectory, based on 

those discussed in Section 3.2. 

It is good practice to specify as desired outputs variables that are related to those 

that can be more strongly controlled and are a realistic representation of what 

the rover can achieve. The rover is differentially driven, which means that the 

rover’s left and right sides are symmetrical to each other, and each side is 

actuated independently, with the wheels on each side always being actuated with 

the same signal. Therefore, the two directly controlled variables are the surge 

velocity u and the yaw angular velocity r and these two variables are sufficient for 

completely describing the pose of the robot moving on a plane. 

The preference for using a high order polynomial for Inverse Simulation is balanced 

against the need to avoid the oscillations present in polynomial interpolation, 

which further motivates the choice of using an interpolating polynomial between 

two waypoints for the turn-then-travel method. In this way, a trajectory is 

designed from a set of waypoints with considerations specific to the task at hand 

and the application of Inverse Simulation. 
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Chapter 6 Application of Inverse Simulation to 
the Rover I: Non-linear Model 

In this chapter, the general algorithm is applied to the specific problem of using 

Inverse Simulation for guidance by providing the changes in velocity, rotation, and 

acceleration for following the desired trajectory and for control by using these 

inputs to execute the desired trajectory, thus performing output tracking. The 

non-linear dynamic and kinematic rover model from Section 5.1 is used. The 

desired output is a series of trajectories that were produced using waypoints and 

the stop and turn method detailed in Section 5.2. The benefit is that the time 

required to achieve the desired heading and position is smaller for the stop and 

turn strategy (Cook, 2011). Finally, the assumption is made that the terrain is not 

significantly uneven or soft and that the robot moves on a planar, smooth, and 

rigid terrain. 

The method of evaluating the Inverse Simulation signals is by applying them in a 

standard forward simulation and checking if the response matches the desired. In 

this way, the rover moves autonomously for traverses up to a few meters. This is 

similar to the strategy in Section 2.3.2, where the rover can go to a given location 

by executing a pre-defined path without any corrections (Correal et al., 2016), 

similarly to open-loop control (Silva et al., 2013). 

The rover is differentially driven and the motion along the surge axis and the yaw 

rotation is directly controlled (the left and right wheel speed); these are sufficient 

so that the rover can turn on the spot, move in a straight line or move in a circular 

path. Therefore, the rover control inputs û  are reduced to torque 1̂  to the left 

side and torque 2̂  to the right side. 

  1 2
ˆ ˆ ˆ ˆ

T
 = =u τ   (6.1) 

The state-space model describing the rigid body dynamics of the four-wheeled 

rover, with m=6 states and k=2 control inputs, is: 

 ( ) ( )( ) ( ) ( ) ( ) ˆt t = −-1
q = f q ,u H τ -C q q D q q -G η   (6.2) 
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Vector τ are the forces and moments acting on the rover, vector q represents the 

state velocity vector in the body-fixed frame, and û  is the control input. 

The output equation y is: 

 ( ) ( )( )ˆ
u

t t
r

 
= = 
 

y g q ,u   (6.3) 

The desired output dg  is defined over the time interval Τ and is discretised with 

a time step dt. 
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= 

y g T

T   (6.5) 

The Inverse Simulation problem is stated as: 

Given a desired output ( )d tg  defined as a vector of surge velocities ( )du  and a 

vector of yaw velocities ( )dr  over a time interval T, find the vector of suitable 

control inputs û  so that the vector of outputs g of the system is equal to the 

desired ( )d tg  within the specified tolerance. The control inputs are the left and 

right side torques, therefore  1 1
ˆ ˆ ˆ ˆ

T
 = =u τ . 

6.1 Differentiation 

There are six states, two desired outputs ( ),  d du r , two system outputs to control 

( ),  u r  and two control inputs ( )1 2
ˆ ˆ,     to identify at every it  over the time interval 

T. The state and output equations Eq.(6.2), Eq.(6.3) are discretised N times over 

the time interval Τ with a step of dt. At it  given the desired output ( )d itg , the 

functions F1 and F2 are defined to find the value of the input τ̂  and the states q 

respectively, as described in Section 4.1.1.1. 
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The size of F1 is 6×1 and of F2 is 2×1. 

 ( ) ( )( )
( ) ( )

 -1

1 1 2 3 4 5 6

-1

ˆ, -
-

Ti i

i i

i i

t t
t t F F F F F F

t t

 
= = 

 

q - q
F f q τ   (6.6) 

 ( ) ( )
( ) ( )

( ) ( )
1

2

2

i d i

i i

i d i

u t u t g
t t

r t r t g

−   
= − =   

−   
dF g g   (6.7) 

Then, by using the desired output at every i discretisation point, a time series of 

suitable control inputs ( )ˆ
itτ  and the corresponding states ( )itq  is found. This is 

done by solving the system described by Eq.(6.6), (6.7) using the Newton-Raphson 

method. 

At each inner iteration n, q and τ̂  are updated using Eq.(6.8), where ( )itJ  is the 

Jacobian of F1 and F2 at it . The method converges when the calculated values of 

the control input and the states are such that F1 and F2 are both equal to zero, 

within a certain tolerance. 
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J

F F

F q τq q q τ

τ τ F F F q τ

q τ

  (6.8) 

If all six states are perturbed in the Jacobian, its size will be 8×8. However, only 

the states u  and r  are directly controllable, whereas the remaining four states 

( ),  ,  ,  v w p q  are not. Therefore, it makes physical sense to only perturb u and r, in 

which case the Jacobian becomes: 
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  (6.9) 

The rank of J in Eq.(6.9) is 4. This is expected since the system has two directly 

controllable states (u, r) and two control inputs ( 1̂ , 2̂ ). 

If only the directly controllable states are considered for the Jacobian, then it is 

reduced to a 4×4: 
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J   (6.10) 

The sway velocity v is not matched dynamically to the system’s actuators and 

therefore is not directly controllable. As was discussed in Section 5.1.2.1, 

however, the sway velocity is strongly coupled to the surge velocity via the slip 

angle, Eq.(5.10) and Section 5.1.2.1. This interaction provides an indirect control 

of the sway and acts as an additional constraint when solving for the control input. 

Consider also that a differential driven system by its nature does not move 
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sideways (i.e., slip) and for low speeds, this is a reasonable assumption. Hence, 

0d =v  is used. 

Furthermore, it was observed during the initial simulations that including the 

perturbation of the sway velocity v and selecting as an additional output to control 

the sway velocity, the overall results were significantly improved. This is 

examined further in Section 8.2.3. Therefore, there are three vectors of desired 

outputs over the time interval: du , dr  and the sway velocity dv  which is set to 

zero.  

The outputs to control are now ( ),  ,  u v r  the inputs ( )1 2
ˆ ˆ,     to identify are as 

before. The number of outputs is now higher than the number of the control 

inputs, making the system overdetermined. All outputs, however, are directly 

related to those that can be strongly controlled. The output equation F2 is 3×1 

and the Jacobian is 6×5: 
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  (6.12) 

The Jacobian is calculated using finite differences and a first-order, forward 

difference formula is used. A suitable factorisation method has to be used to find 

the pseudoinverse of J required for Eq.(6.8). During the simulations, the MATLAB 

package presented by (Davis, 2013) was used that is suitable for square, 
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orthogonal, rank deficient and over/under determined systems and provides 

reliable results, even for near-singular systems. The algorithm extends the 

functionality of the backslash operator (\) by improving how rank-deficient systems 

are handled and selects the best factorisation method for a matrix A m×n that is 

then used to solve the system to provide the least square solution. The selection 

is between LU (L is a lower triangular matrix and U is an upper triangular matrix), 

QR (Q is a matrix with orthonormal columns and R an upper triangular matrix), 

SVD (Singular Value Decomposition), Cholesky and COD (complete orthogonal 

decomposition) (Davis, 2013). This method ensures that the solution is the best 

and most efficient in terms of errors and execution time (Davis, 2013); a warning 

is given if no suitable method is found. For the Jacobian J defined in Eq.(6.12), 

COD is the selected method, which was expected since the Jacobian matrix is 

orthogonal and rank. This choice is further examined in Section 8.1 and Appendix 

G contains more details on the factorisation methods. 

Because only the states ,  ,  u v r  are used for the Jacobian, only ,  ,  u v r , 1̂ , 2̂ are 

updated in Eq.(6.8), which results in an updated reduced vector for the states and 

a fully updated control vector, Eq.(6.14). 
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  (6.14) 

Therefore, the remaining states ( ),  ,  w p q  must be estimated. These correspond 

to moving along the body-fixed Zb axis (heave), rotating around the body-fixed Xb 

axis (roll), and rotating around the body-fixed Yb axis (pitch). When moving on a 

flat plane (or a surface that can be considered flat with a good degree of 
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accuracy), the states (w, p, q) must all be zero due to the physics of the problem. 

This also confirms the choice to not perturb w, p, q in Eq.(6.9). In total, the states 

( ) ( )1 1 1, ,n n n iw p q t− − −  from the previous iteration n-1 are always set to zero and the 

full state vector with the updated only ,  ,  u v r , 1̂ , 2̂  is now: 

 ( )  ( )1 1 1n i n n n n n n it u v w p q r t− − −=q   (6.15) 

Then, the new values for iteration n for 1F , Eq.(6.6), and 2F , Eq.(6.11),  are 

calculated using ( )n itq  from Eq.(6.15). If both are equal to zero, within a certain 

tolerance, the algorithm converges. 
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- tol

- tol
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2 2

F F

F F
  (6.16) 

The dynamics for the next step ( )1it +q  are calculated and integrated from Eq.(6.2) 

using the updated control vector and states from Eq.(6.14) and Eq.(6.15). If 

convergence is not achieved, the vector state for the next iteration n+1 is 

Eq.(6.15) and the input is from Eq.(6.14). 

6.2 Integration 

The algorithm follows the general process discussed in Section 4.1.1.2. From the 

state equation Eq.(6.2) and the output equation Eq.(6.3) there are two desired 

outputs ( ),  d du r , two system outputs to control ( ),  u r  and two control inputs 

( )1 2
ˆ ˆ,     to identify at every it  over the time interval T. The error function ef  

between the actual output y from Eq.(6.3) and the desired output ( )tdg  from Eq. 

(6.4) is: 

 ( ) ( ) ( ) ( )( )
( ) ( )

( ) ( )1
ˆ i d i

i i i i

i d i

u t u t
t t t t

r t r t
−

− 
= =  

− 
e df = y - g g q , τ   (6.17) 

The Jacobian eJ  of the error function is square and has a size of 2×2 since there 

are two inputs and two outputs. 
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The Jacobian in Eq.(6.18) is calculated using central finite differences. To do so, 

the perturbations of the control inputs need to be considered and then the 

corresponding change in the outputs. The perturbation matrix for the control 

inputs is: 
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The perturbation matrix represents four different cases that correspond to all the 

possible movement combinations of the rover. The first line, ˆ +

-
τ , corresponds to 

the case where the left side torque is increased and the right side is decreased 

(i.e., a right turn), and so on for the rest (left turn, forward movement, backward 

movement). For each of the four cases, the control inputs from Eq.(6.19) are 

applied to the system equation Eq.(6.2), the new outputs are produced for each 

case from Eq.(6.3) and the error for each case from Eq.(6.17) is: 
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  (6.20) 

Using matrix notation, the error matrix is errorF  and its size is 2x4: 
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The Jacobian e
J  can now be calculated using central differences. Then, From 

Eq.(4.11), the new control inputs are calculated, where n is the current Newton-

Raphson inner iteration. Using these new input estimates the states and outputs 

are updated using the system dynamics Eq.(5.8). Then, the error function 
,e nf  is 

calculated using the updated outputs, Eq.(6.23). If the error 
,e nf  is within the 

acceptable range, then the calculated control input vector ˆ
nτ  is the required for 

this time instance, ( ) ( )1 1
ˆ ˆ

n i n it t− −=τ τ . 

 ( ) ( ) ( ) ( )( ) ( ) ( )( )1 1 1 1

1
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The MATLAB backslash operator (\) was selected as the best method for solving a 

square system like that in Eq.(4.11). This choice is further examined in Section 

8.1 and Appendix G provides more details. 

6.3 Test Trajectories 

The trajectories used are calculated using the stop and turn method and the 

polynomial from Section 5.2. All the trajectories are a combination of linear travel 

along the surge axis and a yaw rotation and are depicted in the global e eX ,Y  

system, as in Figure 5.2. The following two basic trajectories are first 

demonstrated. 

Forward: Move forward 1 m, Figure 6.1. This test shows that the algorithms can 

generate the required control inputs for driving linearly without heading changes. 

Left Right Turn: Forward for 1 m, turn 90 deg counter clockwise, forward 1 m, turn 

90 deg clockwise and move 1m forward, Figure 6.2. This shows that the required 
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control inputs to enable forward movement followed by yaw rotation, followed by 

a consecutive forward, and turn movement, can be generated. 

 

Figure 6.1: Forward 

 

Figure 6.2: Left – Right Turn 

Having demonstrated these two basic trajectories, four more complex trajectories 

are examined, to ensure that control inputs for the desired trajectories can be 

generated. 

Arc: The rover will have to move between closely spaced waypoints. Two 

consecutive waypoints relate to a forward line and a turn, creating overall an 

approximation of an arc, Figure 6.3. 

Rhombus: This trajectory demonstrates a closed path with multiple turns, Figure 

6.4. 

 

Figure 6.3: Arc 

 

Figure 6.4: Rhombus 

Valley: One of the most difficult scenarios would be a valley run, where obstacles 

are present on both sides and in proximity. This run consists of a series of forward 

motions with rotations within tight spaces, Figure 6.5. 
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Long Arc: The long arc run involves traversing tens of meters with several pose 

alterations, Figure 6.6. This test will examine the error built over time over a 

demanding path. 

 

Figure 6.5: Valley 

 

Figure 6.6: Long Arc 

The waypoints used for each test scenario are shown in Table 6.1. 

Table 6.1: Test Trajectories Overview 

Test Total Drive Distance [m] Duration [s] Waypoints 

Forward 1 11.01 [0 0; 1 0] 

Left Right Turn 3 53 [0 0; 1 0; 1 1; 2 1] 

Arc 0.73 25.9 
[0.0175 0.174; 0.0698 0.342; 0.156 
0.500; 0.276 0.643; 0.423 0.766] 

Rhombus 11.31 152.63 [0 0; 2 2; 4 0; 2 -2; 0 0] 

Valley 13.44 203.70 
[0 0; 1 1; 1 2;2 3;3 3;3.5 4; 3.5 5; 3 6;3 

7;3.2 7.3; 4 7; 7 8]; 

Long Arc 16.91 208.55 
[3.2139 3.8302; -0.862 4.9240; -4.3301 

2.500; -4.6985 -1.7101; -1.7101 -4.6985] 

 

6.4 Results for Stop and Turn Trajectories 

This section presents the results of Inverse Simulation when applied to trajectory 

tracking. For each trajectory, the objective is to calculate suitable control inputs 

that when applied to the rover the desired trajectory is achieved. A series of 

waypoints are first defined and then a trajectory between them is generated. 

Inverse Simulation calculates the control inputs for each trajectory. Then, these 

inputs are applied to the forward system, and it is checked whether the resulting 

trajectory matches the desired. The control inputs from Inverse Simulation are 

nominal and the resulting outputs and states are also nominal. The desired 

trajectory is represented in the local frame by a vector of desired surge velocities 
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ud and a vector of desired yaw velocities rd that have been evaluated in advance. 

Throughout this analysis, the rover operates on a horizontal plane. 

The simulation parameters used for both the Differentiation and Integration 

Inverse Simulation algorithm are the discretisation time step dt, the convergence 

tolerance for the Newton-Raphson method, the maximum number of iterations for 

convergence and the initial control estimate. The rover starts from rest and the 

initial motor torque is zero, with a very small non-zero value used as an initial 

estimate. The number of iterations is set to 30 per time step and in practice, it is 

usually between 1 to 4 iterations per time step. The values for these parameters 

were selected to ensure accuracy and decreased execution time and are shown in 

Table 6.2. Additionally, when selecting the time step dt, the time constant of the 

motors was considered. 

Table 6.2: Inverse Simulation Parameters (Baseline) 

Parameter Value 

dt [s] 0.01 

convergence tolerance (tol) [Nm] 5 10-7 

initial control estimate [Nm] 2.5 10-7 

maximum iterations 30 

 

6.4.1 Trajectory Results Figures 

The results for each trajectory when applying the Inverse Simulation control inputs 

are presented in the following sections. For each case, the actual path (solid line) 

versus the desired (dashed line) are depicted in the global eX , eY  coordinate 

system and the related calculated control inputs are shown. The results for the 

Forward, Rhombus and Valley trajectories are in Appendix F.  

6.4.1.1 Left Right 

The trajectory results are presented in Figure 6.7, Figure 6.8 and there is no 

discernible deviation from the desired trajectory. The control inputs from Inverse 

Simulation are in Figure 6.9, Figure 6.10. 
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Figure 6.7: Left – Right, Differentiation 

 

Figure 6.8: Left – Right, Integration 

 

Figure 6.9: Left – Right Control Input, 
Differentiation 

 

Figure 6.10: Left – Right Control Input, 
Integration 

For Differentiation, in Figure 6.7 the final error is 1.61 10-3 m on the global eX  axis 

and 1.31 10-3 m on the eY  axis. For Integration, in Figure 6.8 the final error is  

1.55 10-3 m on the eX  axis and 1.22 10-3 m on the eY  axis. The Left-Right trajectory 

tests the ability of the algorithm to produce a series of forward movements and 

sharp turns and the method responds well. 

6.4.1.2 Arc 

The trajectory results are presented in Figure 6.11, Figure 6.12 and there is no 

significant deviation from the desired trajectory. The control inputs from Inverse 

Simulation are in Figure 6.13, Figure 6.14. Both methods produce good results 

when required to produce a series of control inputs for navigating between closely 

spaced waypoints. 
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Figure 6.11: Arc, Differentiation 

 

Figure 6.12: Arc, Integration 

  

 

Figure 6.13: Arc Control Input, 
Differentiation 

 

Figure 6.14: Arc Control Input, Integration 

For Differentiation, in Figure 6.11 the final error is 1.80 10-3 m on the global eX  

axis and 2.71 10-3 m on the eY  axis. For Integration, in Figure 6.12 the final error 

is 1.80 10-3 m in the eX  axis and 2.78 10-3 m in the eY  axis. 

6.4.1.3 Long Arc 

The trajectory results are presented in Figure 6.15, Figure 6.16 and there is no 

serious deviation from the desired trajectory. For Differentiation, in Figure 6.15 

the final error is 0.87 10-2 m on the global eX  axis and 2.54 10-2 m on the eY  axis. 

For Integration, in Figure 6.16 the final error is 1.10 10-2 m on the eX  axis and 2.42 

10-2 m on the eY  axis. Both algorithms perform well when required to produce 

inputs over a longer, complex drive. The control inputs from Inverse Simulation 

are in Figure 6.17, Figure 6.18. In Figure 6.17 high frequency and low amplitude 
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oscillations in the control signal from Differentiation can be seen, for example 

around 25 s, 75 s, 125 s, 150 s and 180 s. That is not the case for the Integration 

control signal in Figure 6.18. 

 

Figure 6.15: Long Arc, Differentiation 

 

Figure 6.16: Long Arc, Integration 

 

Figure 6.17: Long Arc Control Input, 
Integration 

 

Figure 6.18: Long Arc Control Input, 
Differentiation 

It can be seen, e.g. in Figure 6.17, Figure 6.18, that when the robot must turn, 

the control signals are symmetrical (i.e., equal magnitude, opposite sign) and 

when it moves forward the control signal for each side are equal. 

A difference between the Differentiation and the Integration is the smoothness of 

the calculated control signals; while they are equal between the two methods, 

those produced by Integration are smoother. The low amplitude, high frequency 

oscillations observed in the control input results from Differentiation becomes 

more pronounced as the complexity (i.e., drive distance, duration and heading 
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changes) of the trajectory increases, such as the Long Arc trajectory, where a 

snapshot from Figure 6.17 and Figure 6.18 is shown in Figure 6.19 and Figure 6.20. 

 

Figure 6.19: Long Arc left side control 
Differentiation (L) and Integration (R) 

 

Figure 6.20: Long Arc right side control 
Differentiation (L) and Integration (R) 

This behaviour for the Differentiation Inverse Simulation is because the 

convergence is based on the derivative and both the states, and the outputs and 

the Jacobian is not square, whereas the Integration requires only the outputs, and 

the Jacobian is square. It is in line with previous observations in Section 3.2.  

6.4.2 Tabulated Trajectory Results 

The performance of the Inverse Simulation algorithms is assessed using the 

absolute errors8 between the actual and desired surge velocity u m/s, sway velocity 

v m/s and yaw velocity r rad/s. The actual velocities u, r, and v are the result of the 

application of the control input calculated by the Inverse Simulation to the rover 

in a standard forward simulation. Therefore, these errors measure the 

performance of the Inverse Simulation in calculating the control input and 

achieving the desired trajectory profile, i.e., the global error as defined in Section 

3.2. This type of error is a true indication of the Inverse Simulation accuracy. The 

sway velocity v is not used for the Integration method but its error in the forward 

simulation is included for comparison; in all cases, the desired sway velocity is set 

to zero. In this assessment, two things are of interest for each type of error: the 

centre and the dispersion of the error values. 

 
8 This is the error du u− and so on, see also Appendix H. 
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• The mean of the error ( e ) and the maximum error ( maxe ). These values 

provide the central tendency and the scale of the error. 

• The dispersion of the data is measured by the standard deviation ( e ) and 

is a reliable measure of the scale and dispersion (Heumann et al., 2016). 

In addition to these, for each trajectory, the final position in the global coordinate 

system and heading error are presented. The runtime9 rt  to calculate the inputs 

is also shown for a relative comparison between Differentiation and Integration. 

The results of the Inverse Simulation errors are in Table 6.3. 

Table 6.3: Inverse Simulation Results 

 
Left Right 
Drive: 3m 

Arc 
Drive: 0.73m 

Long Arc 
Drive: 16.90m 

Errors Differentiation 
Integrati

on 
Differentiation 

Integrati
on 

Differentiation 
Integrati

on 

 [ ]
eXe m  1.61 10-3 1.55 10-3 1.80 10-3 1.80 10-3 8.66 10-3 1.10 10-2 

 [ ]
eYe m  1.31 10-3 1.22 10-3 2.71 10-3 2.78 10-3 2.54 10-2 2.42 10-2 

 [ ]e rad  5.10 10-5 5.15 10-6 6.51 10-5 1.26·10-6 1.75 10-4 2.39 10-5 

( )max  u

m
e

s

 
 
 

 2.92 10-5 0 3.26 10-5 0 1.32 10-4 0 

 u

m
e

s

 
 
 

 4.36 10-6 0 3.64 10-6 0 7.46 10-6 0 

ue  4.01 10-6 0 5.22 10-6 0 7.15 10-6 0 

( )max  v

m
e

s

 
 
 

 2.07 10-6 0 1.98 10-6 1.97 10-6 9.83 10-6 9.04 10-6 

 v

m
e

s

 
 
 

 0 0 0 0 1.06 10-6 1.07 10-6 

ve  0 0 0 0 1.59 10-6 1.52 10-6 

( )max  r

rad
e

s

 
 
 

 5.42 10-5 0 1.81 10-5 0 1.16 10-4 0 

 r

rad
e

s

 
 
 

 4.62 10-6 0 4.42 10-6 0 5.45 10-6 0 

re  3.95 10-6 0 2.68 10-6 0 6.51 10-6 0 

  rt s  9.50 16.02 6.25 9.21 54.15 66.39 

 
9 The simulations were conducted on a system with the following specifications: Intel Core 2 Duo 

@2.50 GHz, 4GB RAM. 
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The Left-Right trajectory shows the two basic movements of the rover, a forward 

movement, and a turn on the spot. The Arc trajectory demonstrates its capability 

to move between closely spaced waypoints. The Long Arc trajectory is the longest 

in distance and duration and requires the rover’s heading to adapt throughout. 

Any values smaller than 10-6 are rounded off to zero, recalling that the Inverse 

Simulation tolerance is set to 5 10-7. The data provided show that the Inverse 

Simulation control input when applied to the forward system, results in velocities 

that converge to the desired ones with very good accuracy. 

The maximum error between the desired and actual u, v and r is always in the 

range of 10-5. The only exception is the Long Arc trajectory, which is the longest 

drive, and the maximum error is in the range of 10-4 for u and r. The mean error 

between the desired and actual u is always in the range of 10-6, the same for the 

mean error between the desired and actual r and v. The errors increase as the 

drive distance and the drive duration increase. Integration has smaller average 

and maximum errors than those of Differentiation for all cases, even though the 

sway velocity v is not used for converging to the control input. 

The final position errors are always less than 1 mm for the shorter trajectories and 

for the Long Arc trajectory where the position error is in the order of 1 - 2 cm. It 

is also worth considering that the Arc trajectory has a duration of 25.9 s and a 

drive distance of 0.73 m, whereas the Long Arc trajectory has a duration of  

208.55 s and a drive distance of 16.90 m. In practice, a rover would not be expected 

to travel such a distance without any other correction. Overall, both methods have 

comparable results and the final position and heading errors are small. 

The runtime for Integration is larger than the time required for Differentiation, 

especially for the longer trajectory; the greater accuracy comes at the expense 

of execution time but also with a simpler algorithm. This also confirms previous 

observations in Section 3.2 that the rate of convergence of Integration is overall 

slower than Differentiation, a difference that can be up to an order of magnitude. 

The Differentiation algorithm converges using a numerical differentiation scheme 

and the system’s state and output equations. The Integration algorithm converges 

using a numerical integration scheme and the convergence is based on the 

difference between the desired and actual response. Differentiation looks toward 

the next time point and anticipates it, whereas Integration looks toward the 
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current and previous time point. Therefore, the key points are a) Integration 

produces smoother signals b) Differentiation has a shorter runtime c) Integration 

is more accurate in comparison with Differentiation, but in practice both perform 

very well for trajectory following 

6.5 Summary of Results 

Inverse Simulation has been successfully applied for trajectory tracking to a 

mobile wheeled robot. The method is applied to an experimentally validated 

model and the calculated control inputs consider the system limitations. A non-

square Jacobian that uses a reduced number of states and the remaining states 

are estimated was used for Differentiation with good results. The Differentiation 

scheme applied to the rover uses a Jacobian that is not square and estimates some 

of the states, instead of updating them all, while also taking advantage of the 

physics of the problem. This is a novel approach since Differentiation was until 

now applied to systems with a square Jacobian. 

The feasibility of Inverse Simulation as a guidance and control method is shown by 

calculating the nominal control inputs for different trajectories, including a Long 

Arc test. The results show that Inverse Simulation is an appropriate method for 

generating control inputs. The accuracy of both algorithms is high and given a 

desired path the control inputs generated by the Inverse Simulation algorithms 

can be used to guide the rover along this path, as shown by the small errors 

between the actual and the desired surge velocity (u), yaw velocity (r), and sway 

velocity (v), which are in the range of 10-5 or less. The issue of runtime required 

for the control inputs was also examined. Differentiation calculates the control 

inputs faster than Integration, but they are also less smooth, especially for more 

complex trajectories. This is due to the equations used within the Differentiation 

algorithm, which converges using the derivative and the system states and 

outputs, and the usage of a non-square Jacobian. Compared to Integration, 

Differentiation is more complex since it depends on the number of states as well 

as the number of inputs and outputs. This is seen here, where there are six states, 

with only two of them directly controllable and a Jacobian that is not square. If 

the desired outputs were changed, this would mean that Eq.(6.6) to (6.13) would 

have to change. In contrast to this, for Integration, only the error function, 

Eq.(6.17) and its Jacobian, Eq.(6.18) would change.
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Chapter 7 Application of Inverse Simulation to 
the Rover II: Non-Linear Model with Motor 
Dynamics 

So far, the control inputs are the torque for the left and right sides. The 

Lynxmotion 4WD3 rover DC motors are wired in parallel, and each side receives 

the same voltage input. Therefore, when including the motor dynamics, the 

system control inputs are now a voltage V1 to the left side and a voltage V2 to the 

right side: 

  1 2

T
V V=V   (7.1) 

Since each side receives the same voltage input, the equations are written for the 

left (i=1) and right side (i=2) and were presented in Section 5.1.4. Each motor 

generates a torque ( )i  that is proportional to the current ( )iI , which depends on 

the voltage ( )iV  and the motor efficiency ( )iη . The values for the motor 

parameters are in Appendix A. 

  a e

a

R K
,  1,2

L

i i i idI I V
i

dt

− − +
= =   (7.2) 

  t

m

K b ξ
,  1,2

J

i i i id I
i

dt

  − −
= =   (7.3) 

  i tη K ,  1,2i iI i = =   (7.4) 

The force per wheel is calculated by Eq.(7.5), where wr  is the wheel radius. 

Because each side receives the same voltage input, the front left and back left 

wheels produce the same force ( fl blF F=  ) and so do the front right and back right 

wheel ( fr brF F= ). Thus, the motor dynamics are connected to the system dynamics 

via the wheel force. 

 
wr

i
iF


=   (7.5) 
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There are six rover states, two desired outputs (ud, rd) and two system outputs to 

control (u, r). The two control inputs to identify are now the input voltages, one 

for each side:  1 2V V=V . To the six states for the rover, four additional motor 

states are added: (I1, ω1) for the left side and (I2, ω2) for the right side. The motors 

on each side are actuated with the same voltage and have the same efficiency 

and thus the same current and motor speed. 

Each time the system dynamics need to be calculated, the estimated control input 

at each point in time is first used to find (I1, ω1, I2, ω2), then the torque from 

Eq.(7.4) and then the wheel force, Eq.(7.5). From this point onwards, the rover 

dynamics and kinematics are calculated as in Section 5.1.3. When the motor 

dynamics are also considered in the model, a few modifications to the Inverse 

Simulation algorithm are needed. 

7.1 Differentiation 

At ti given the desired output ( )d itg  from Eq.(6.4), the functions F1 and F2 are 

defined to find the value of the input  1 2V V=V  and the rover states q 

respectively. The size of F1 is 6×1, Eq.(6.6) and of F2 is 3×1, Eq.(6.11). Their sizes 

remain the same since they refer to the rover dynamics, which have not changed. 

There are still the same three desired outputs (u, v, r) and the two voltage inputs 

to find. The Jacobian, Eq.(6.12) also retains the same form, but instead of 

torques, 1F  and 2F  are perturbed in terms of the voltage inputs: 
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    
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 
 
 
 
 
 
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 
 
 
 
 
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  (7.6) 
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The Jacobian is calculated using finite differences and a first-order, forward 

difference formula is used. Then, Eq.(6.13) (with 1, 1nV −  instead of 1, 1
ˆ

n −  etc.) is 

solved using the factorize command from the MATLAB package presented at (Davis, 

2013) and the reduced state vector and the full control input vector are found: 

 

1,

2,

ˆ

ˆ,  

i

i

r

n t

t

n

n

r n

n

n

u
V

v
V

r

 
=  
 

 
  

= =   
   

q
Q

τ

q τ

  (7.7) 

The full state vector for the rover with the updated values 1 2, , , , u v r V V  is now as 

in Eq.(6.15), repeated below for clarity: 

 ( )  ( )n i n n n n n n it u v w p q r t=q   (7.8) 

Then, F1 and F2 from Eq.(6.6), Eq.(6.11) are calculated using ( )n itq . If both F1 

and F2 are close to zero, within a certain tolerance, the algorithm converges. At 

this point, the new dynamics come into play to calculate and integrate the vector 

( )1it +q  using the updated control vector and rover states ( )n itq . If convergence is 

not achieved, the vector state for the next iteration n+1 and the input is from 

Eq.(6.14). 

Overall, the Differentiation algorithm remains the same as before. This is because 

the addition of the motor dynamics may add some complexity, but the number of 

inputs and the system states are the same. The additional motor dynamics 

equations are connected to the system dynamics via the wheel force only. 

Therefore, when the rover dynamics come into play the forces and moments are 

calculated from the wheel forces and the rover model remains the same. 

7.2 Integration 

From the state equation Eq.(6.2) and the output equation Eq.(6.3) there are two 

desired outputs ( ), d du r  and two system outputs ( ), u r  to control over the time 

interval T. There are two changes: (a) the calculated input vector corresponds to 



129 

input voltages instead of torques and (b) the motor dynamics Eq.(7.2) to Eq.(7.5) 

are added to the model. In terms of programming the algorithm, virtually no 

changes are needed, since the number of inputs and outputs is the same as before 

and the model dynamics are called as an external function (see also the general 

algorithm setup in Section 4.1.1.2). The control input is  1 2
ˆ V V=V  instead of τ̂

, to indicate that this is now a voltage input. The error function is: 

 ( ) ( ) ( ) ( )( )
( ) ( )

( ) ( )1
ˆ i d i

i i i i

i d i

u t u t
t t t t

r t r t
−

− 
− = =  

− 
e df = y g g q ,V   (7.9) 

The actual output y is from Eq.(6.3) and the desired output dg  is from Eq.(6.4). 

The Jacobian eJ  of the error function ef  in Eq.(6.17) is square and has a size of 

2×2 since there are two inputs and two outputs. 
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2 2
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ˆ ˆ

ˆ
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 
 =
 
 
 

e

y
J =

V
  (7.10) 

Eq.(7.10) is calculated using central finite differences and using the perturbation 

matrix as outlined in Section 6.2 with voltages instead of torques for the control 

inputs. The algorithm continues as in Section 6.2. Finally, the new control inputs 

are calculated using Eq.(6.22), where ( )1
ˆ

n it −τ  represents the control input 

voltages and n is the current Newton-Raphson inner iteration. Using these new 

input estimates, the outputs are updated and checked for convergence. If the 

error from Eq.(6.23) is within the acceptable range, then the calculated control 

input vector ˆ
nV  is the required for this time instance, ( ) ( )1 1

ˆ
n i n it t− −=V V . 

 

( ) ( ) ( ) ( )( ) ( ) ( )( )

( )

( )

1 1 1 1

1

1

1 1 1 1 1
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ˆ ˆ ˆ ˆ, ,

ˆ

ˆ

n n n n

i

n i n i e i i e i i

n d
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n d
t

t t t t t t

u u
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− − − −

−

−

− − − − −= − 
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e

V V J x V f x V

V
f

V

  (7.11) 

The MATLAB backslash operator (\) was selected for solving Eq.(7.11). 
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7.3 Results 

The results of the Inverse Simulation errors for Differentiation and Integration for 

the Arc and Long Arc trajectory are shown in Table 7.1. Compared with the results 

in Table 6.3, the execution time has increased and so have the errors. The Arc 

trajectory is a test for the rover moving between closely spaced waypoints and 

the Long Arc trajectory involves traversing several meters with pose alterations 

and examines the error built over time over a demanding path. 

Table 7.1: Inverse Simulation Results with Motor Dynamics 

 
Arc 

Drive: 0.73m 
Long Arc 

Drive: 16.90m 

Errors Differentiation Integration Differentiation Integration 

 [ ]
eXe m  4.65 10-3 1.81 10-3 1.80 10-2 1.09 10-2 

 [ ]
eYe m  3.84 10-4 2.78 10-3 3.55 10-2 2.42 10-2 

 [ ]e rad  1.29 10-3 0 1.69 10-3 4.58 10-6 

( )max  u

m
e

s

 
 
 

 1.16 10-2 0 1.15 10-2 0 

 u

m
e

s

 
 
 

 4.85 10-4 0 5.97 10-5 0 

ue  9.36 10-4 0 3.36 10-4 0 

( )max  v

m
e

s

 
 
 

 6.20 10-4 1.97 10-6 6.20 10-4 9.04 10-6 

 v

m
e

s

 
 
 

 5.16 10-6 0 1.62 10-6 1.07 10-6 

ve  2.07 10-5 0 7.58 10-6 1.52 10-6 

( )max  r

rad
e

s

 
 
 

 9.74 10-3 0 9.74 10-3 0 

 r

rad
e

s

 
 
 

 5.96 10-4 0 7.77 10-5 0 

re  1.12 10-3 0 4.41 10-4 0 

  rt s  8.40 11.78 66.10 70.63 

 

From the errors in Table 7.1 and compared with the results in Table 6.3 for the 

case without motor dynamics, the inclusion of the motor dynamics increases the 

errors. This is because more calculations are needed, and any errors are 

propagated. 
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For the voltage control input, Figure 7.1 and Figure 7.2, the voltage is far less 

smooth compared with the torque control inputs calculated without the inclusion 

of motor dynamics, Figure 6.13, Figure 6.14. This is because the current is 

obtained by integrating Eq.(7.2), the voltage from Eq.(7.3) and then the torque 

and the wheel force in Eq.(7.5) are calculated.  

The Differentiation method has low amplitude oscillations superimposed on the 

control input; Figure 7.3, Figure 7.4 show a snapshot to show the oscillations in 

the control input. This is due to the less stable nature of Differentiation. The 

Integration method provides a far smoother control input.  

 

Figure 7.1: Voltage Control Input for Arc 
(Differentiation) 

 

Figure 7.2: Voltage Control Input for Arc 
(Integration) 

 

Figure 7.3: Arc left side control Volt 
Differentiation (L) and Integration (R) 

 

Figure 7.4: Arc right side control Volt 
Differentiation (L) and Integration (R) 

 

Figure 7.5 and Figure 7.6 show the torque equivalent for the calculated voltages. 

Figure 7.7 and Figure 7.8 show a snapshot to indicate the oscillations in the control 

input. 
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Figure 7.5: Torque control input for Arc 
(Differentiation) 

 

Figure 7.6: Torque control input for Arc 
(Integration) 

 

Figure 7.7: Arc left side control Torque 
Differentiation (L) and Integration (R) 

 

Figure 7.8: Arc left side control Torque 
Differentiation (L) and Integration (R) 

The oscillations are more pronounced here for the Differentiation, this is because 

the torque is calculated from the current and volt and more steps are required, 

thus any errors add up. The required torque has increased; the maximum torque 

is now 0.019 Nm, whereas before it was 0.012 Nm. This is due to the fact the motor 

dynamics include the motor efficiency  , losses from the electronic and 

mechanical components and the base friction coefficient   at each side. The 

voltage and torques calculated using the motor dynamics are more realistic 

because they include the motor losses. Overall, the number of states, inputs and 

outputs remained the same for both methods and so no modifications were needed 

to the Inverse Simulation algorithms themselves, only to the file that contains the 

system dynamics. 
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Chapter 8 Inverse Simulation Algorithm Tuning 
for Improved Performance 

In the previous chapters, the Differentiation and Integration algorithms for Inverse 

Simulation were presented and then applied to the rover. Both algorithms require 

the numerical evaluation of a Jacobian to solve a linear system at each iteration 

at each point in time and depend on a set of numerical parameters, the most 

important being the time step dt and the convergence tolerance tol. In this 

chapter, a closer look is taken at the calculation of the Jacobian for the specific 

application to the rover model and the numerical parameters that were selected. 

The relevant mathematical background is in Appendix G and H and this Chapter 

expands on the general tuning recommendations from Section 4.5. For each case, 

the average, and the standard deviation of the absolute error for the surge and 

yaw velocity are shown, as these are the two desired outputs for Inverse 

Simulation. 

8.1 Calculation of the Jacobian: Application to the Rover 

The Jacobian inverse was calculated using the factorize command from (Davis, 

2013) and the backslash operator (\) for the Differentiation and Integration 

Algorithm respectively. This section examines more in depth the reason for these 

choices. 

For the Differentiation method from Eq.(6.8) the system is solved for δu: 
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  (8.1) 

The Jacobian in Eq.(8.1) considers only the controllable states u, r and also v is 

taken into account and so its size is 6x5. There are more outputs (u, v, r) than 

inputs (τ1, τ2) and so from the control perspective, this is at first glance an under-

actuated system. From the linear algebra perspective, this is an overdetermined 

system since there are more equations than unknowns. In this case, the third 
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output is coupled to the other two and so the actual independent variables are 

four, which also means that the rank of J is four and is column rank deficient. 

Therefore, the third output is associated with the inputs due to the physics of the 

problem and is very much constrained by this. So, if the system is consistent, of 

the five unknowns ( )1 2
ˆ ˆ, , , ,u v r    the two inputs ( )1 2

ˆ ˆ,   and two of the three outputs 

( ),u r  can be found and the remaining output is coupled to the other two. 

For the Integration method, the case is somewhat simpler. The system to solve at 

each iteration n , at each point in time it , from Eq.(4.11) is square and if it is 

consistent both inputs can be uniquely identified. Otherwise, a least square 

solution must be found. 

 ˆ
n e = −

e
J τ f   (8.2) 

Since both Inverse Simulation methods are developed in MATLAB, the focus is on 

selecting one of the several methods available at the linear algebra library. The 

methods that are available in the MATLAB linear algebra library and are suitable 

for square and non-square systems are detailed in Appendix G. Table 8.1 

summarizes the available methods; more details on their implementation are in 

Appendix G. 

Table 8.1: MATLAB Factorisation methods 

Command Comments 

inv() 

 

Built-in function. Suitable only for square systems of full rank, is inaccurate 
and slow. 

pinv() 

Built-in function 

Built-in function. Suitable for non-square systems. Calculates the Moore-
Penrose inverse using SVD (singular value decomposition) 

backslash (\) operator 

Built-in function 

Built-in function. Suitable for square or overdetermined systems with full 
column rank. Fast, accurate but cannot reuse factorisation. 

factorize 

Additional MATLAB package, freely available. Suitable for square, over/under 
determined and rank deficient systems. Selected the best factorisation 

method between LU, QR, SVD, COD, Cholesky. 

 

Overall, selecting the best method at each iteration n at every time point it . of 

the Inverse Simulation algorithm is not a straightforward task. Each time the 
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individual requirements for each factorisation method must be checked and the 

best method selected. Additionally, always a least-squares solution is the 

minimum requirement for even when the system is not consistent, for example, 

due to numerical errors, unsuitable initial guess, or unsuitable dt. To further 

illustrate these choices, tests were performed for the Differentiation and the 

Integration method using the parameters in Table 6.2 for the Long Arc trajectory, 

Figure 6.6. The performance was assessed using the absolute errors and standard 

deviation between the actual and desired surge velocity u m/s and yaw velocity r 

rad/s when the Inverse Simulation input was applied to the system. The execution 

time s required to calculate the inputs is also shown for a relative comparison 

between the different methods. Any values smaller than 10-6 are rounded off to 

zero, recalling that the Inverse Simulation tolerance is 5 10-7. 

Table 8.2 shows the results of the Differentiation scheme. The backslash method 

fails as expected: the system is not square, and J is (column) rank deficient (the 

rank is four and there are five columns). Between pinv(J) and factorize(J), the 

factorize command is superior in terms of errors and is the one selected, at the 

expense of increased execution time. The method used by factorize(J) is the 

complete orthogonal decomposition, which is the best and most efficient for rank 

deficient systems – hence the reduced errors in u and r when applying the 

calculated control input u from Eq.(8.1) in a standard, forward simulation. 

Table 8.2: Factorisation for Differentiation (Long Arc) 

 backslash (\) pinv(J) factorize(J) 

u

m
e

s

 
 
 

 - 1.58 10-5 7.46 10-6 

ue  - 2.11 10-5 7.15 10-6 

r

rad
e

s

 
 
 

 - 9.23 10-5 5.45 10-6 

re  - 2.14 10-5 6.51 10-6 

 rt s  - 44.52 54.15 

 

Table 8.3 shows the results of the Integration scheme. It is worth noting that the 

results are identical for all three methods, regardless of rounding to zero for any 

value less than 10-6. The only difference is the execution time. This is expected 
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since this is a full rank, square system so there is only one solution. Furthermore, 

there is no need to check the rank and select the best factorisation to ensure a 

least square solution, as factorize does. The backslash method is selected due to its 

inherent superiority for square systems, which makes the method more robust. 

This benefit does come at the expense of increased execution time, compared 

with the inv command. 

Table 8.3: Factorisation for Integration (Long Arc) 

 backslash (\) inv(J) factorize(J) 

u

m
error

s

 
 
 

 0 0 0 

( )error u  0 0 0 

r

rad
error

s

 
 
 

 0 0 0 

( )error r  0 0 0 

 exect s  66.39 59.68 96.91 

 

8.2 Influence of parameters on results: Application to the 
Rover 

So far, all the results using the rover model are based on an initial set of 

parameters that were selected to ensure accuracy and decreased execution time; 

they are in Table 6.2. Additionally, when selecting the time step dt, the time 

constant of the motors was considered. Furthermore, to improve the 

Differentiation algorithm results, in terms of accuracy the sway velocity was used 

as an additional output. 

In this section, the inclusion of the sway velocity and the influence of the 

numerical parameters dt and convergence tolerance (tol) are investigated. These 

parameters are by necessity specific to the type of system and model used.  

8.2.1 Effect of time step dt 

The variation of the time step dt is motivated by previous observations discussed 

in Section 4.2.5 that (a) reducing the time step positively affects the accuracy of 
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the results, and (b) too small a dt can have a negative effect by exciting possible 

uncontrolled states and increasing the high frequency, low amplitude oscillations 

superimposed on the calculated control input, particularly for the Differentiation 

method. Note that these oscillations are also dependent on redundancy issues and 

using a non-square Jacobian. The initial time step dt was set to 0.01. In practice, 

when applied to the rover the time step becomes 0.05 s because this is more 

representative of the control signals the rover controller can generate. Three 

different cases for the dt were tested: 0.001, 0.05 and the default 0.01 s. Table 8.4 

presents the results of the Inverse Simulation Differentiation Method. 

Table 8.4: Differentiation results for different dt (Arc trajectory) 

Errors dt = 0.001 s 
dt = 0.01 s 
(default) 

dt = 0.05 s 

  
eXe m  3.82 10-4 1.80 10-3 9.89 10-3 

  
eYe m  5.11 10-4 2.71 10-3 2.30 10-2 

 u

m
e

s

 
 
 

 7.14 10-6 3.64 10-6 1.00 10-4 

ue  5.97 10-6 5.22 10-6 2.33 10-4 

 r

rad
e

s

 
 
 

 6.07 10-6 4.42 10-6 1.07 10-5 

re  3.91 10-6 2.68 10-6 1.40 10-5 

  rt s  63.34 6.25 1.95 

 

For the Inverse Simulation Differentiation method reducing the time step 

increases the accuracy in achieving the desired outputs up to a point. In Table 8.4 

between 0.01 s and 0.001 s the results are very similar and of the same order for 

the average error and standard deviation of the surge and yaw velocity; this 

indicates that the dt should not be further educed to potentially increase the 

accuracy. Additionally, the execution time is ten times longer for 0.001 s. As the 

dt increases above 0.01 s, the errors increase but are still within reasonable bounds 

and the execution time decreases. 
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Table 8.5: Integration results for different dt (Arc trajectory) 

Errors dt = 0.001 s 
dt = 0.01 s 
(default) 

dt = 0.05 s 

  
eXe m  3.15 10-5 1.80 10-3 1.13 10-2 

  
eYe m  3.58 10-4 2.78 10-3 3.00 10-2 

 u

m
e

s

 
 
 

 0 0 0 

ue  0 0 0 

 r

rad
e

s

 
 
 

 0 0 0 

re  0 0 0 

  rt s  92.88 9.21 3.16 

 

For the Inverse Simulation Integration method reducing the time step increases 

the accuracy. This can be seen in Table 8.5: as the dt increases, the final errors in 

the position ( ,E EX Y ) increase and the execution time decreases. Consider also 

that for the Integration method, the calculation of the control signals is based on 

an integral scheme approximated by a first-order Euler integration which is 

proportional to the step size (Kreyszig, 2014). 

If a value of dt is selected that is too small, the prominence of high frequency low 

amplitude oscillations superimposed on the calculated control input is observed 

for the Differentiation method, as was also discussed in Section 3.2. Because of 

the way numerical differentiation works, these oscillations are affected by the 

increased round off errors. These may be very small but tend to dominate instead 

of the truncation errors for very small dt. The high frequency, low amplitude 

oscillations for the Differentiation method can be seen in Figure 8.1, especially 

between 0 – 9 s and around 20 s and 25 s. In Figure 8.2, where the dt is increased, 

these oscillations are no longer present. Also, there is no such issue for the control 

inputs calculated by the Integration method, Figure 8.3, Figure 8.4. 
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Figure 8.1: Arc Control Input, 
Differentiation (dt = 0.001) 

 

Figure 8.2: Arc Control Input, 
Differentiation (dt = 0.05) 

 

Figure 8.3: Arc Control Input, Integration 
(dt = 0.001) 

 

Figure 8.4: Arc Control Input, Integration 
(dt = 0.05) 

8.2.2 Effect of convergence tolerance 

In this work, the approximate absolute error E  is used for the convergence of 

the Differentiation method and the Integration method, Eq.(6.23). The absolute 

error provides a good way to frame the result using the tolerance, since the 

desired quantity is known and, in some cases, the desired can also be zero (for 

example, the desired sway velocity is always zero). 

The convergence tolerance tol for the Newton-Raphson scheme is based on the 

maximum acceptable error for 
i

n t
Q  from Eq.(6.14) for the Differentiation method 

and ,nef  from Eq.(6.23) for the Integration method. The vector 
i

n t
Q  contains the 

states (and also desired outputs) , ,u v r   as well as the control inputs 1̂ , 2̂  to 

achieve these. The error ,nef  is simply the difference between the current estimate 

for u and r and their desired values. 
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The initial tolerance was set to 5 10-7. This is the tolerance for the convergence of 

the Newton-Raphson scheme. Based on this, the control inputs were calculated. 

Then, these inputs were passed on to a forward simulation and the resulting 

trajectory errors are the error between the actual and the desired u, v, r. 

Therefore, increasing or decreasing the convergence tolerance, affects the 

convergence to the control inputs and then through the usage of the control inputs 

in the forward simulation the actual results. The initial tolerance was selected 

while considering the scale of the desired outputs: the maximum surge velocity 

max 0.1 
m

u
s

=  and the maximum yaw velocity max

deg
10r

s
= . 

First, the tolerance is set to 5 10-8 and all other parameters are as in Table 6.2  

(dt is set to 0.01 s). Table 8.6 shows the results. 

Table 8.6: Inverse Simulation Results for tol = 5 10-8 

 Left Right Arc 

Errors Differentiation Integration Differentiation Integration  

u

m
error

s

 
 
 

 4.73 10-6 0 3.64 10-6 0 

( )error u  5.25 10-6 0 5.22 10-6 0 

r

rad
error

s

 
 
 

 4.57 10-6 0 4.42 10-6 0 

( )error r  3.69 10-6 0 2.68 10-6 0 

 rt s  10.84 12.01 8.48 9.05 

 

Compared to the results for tol 5 10-7 in Table 6.3, there are almost no differences 

in the errors and Inverse Simulation execution time. This shows that the selected 

combination of tolerance 5 10-7 and time step 0.01 s are sufficient and there is no 

need to set a lower tolerance. 

Then, the tolerance is increased to 5 10-5 and all other parameters are as in Table 

6.2 (dt is set to 0.01 s). Table 8.7 shows the results. The Differentiation method 

produces control input results for all the test trajectories in Table 6.1, with some 

slightly increased errors and execution time. This shows that the method 

converges but a bit slower. Integration produces results only for the Forward and 
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Left-Right test and fails to converge for the other, such as the Arc trajectory. At 

first, this may seem surprising; however, it is worth looking at what exactly each 

method uses to converge to the desired control inputs in the Newton Raphson 

scheme.  

Table 8.7: Inverse Simulation Results for tol = 5 10-5 

 Left Right Arc 

Errors Differentiation Integration Differentiation 
Integration 
(with sway) 

u

m
error

s

 
 
 

 4.35 10-6 1.95 10-5 3.63 10-6 1.92 10-5 

( )error u  4.01 10-6 1.13 10-6 5.22 10-6 1.01 10-5 

r

rad
error

s

 
 
 

 4.61 10-6 2.21 10-5 4.42 10-6 2.78 10-5 

( )error r  3.95 10-6 1.31 10-6 2.64 10-6 1.27 10-5 

 rt s  14.31 18.72 8.48 11.55 

 

The Integration method converges using the difference between the actual and 

the desired output. In this case, this is represented by the error function ,nef  from 

Eq.(6.23) for converging and it contains the desired outputs u and r.  

The Differentiation method uses 
i

n t
Q  from Eq.(6.14) for converging and it 

contains the states (and also desired outputs) u, v, r as well as the control inputs 

( 1̂ , 2̂ ) to achieve these.  

In this way, while Integration has a simpler scheme that results in a square system, 

for a larger tolerance and without adjusting the time step, it fails. The 

Differentiation method, by virtue of using more system parameters for 

convergence, can tolerate a little better the loss of fidelity by a larger accepted 

error tolerance.  

One way to remedy this is by using the Integration method with the addition of 

the sway velocity. This sacrifices somewhat the method’s simplicity, but the sway 

velocity acts as an additional constraint for u and r. In that case, Integration 

produces results for all test trajectories, with an increased execution time and 
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errors (but still very acceptable), Table 8.7 ( tol = 5·10-5 ) compared with Table 6.3 

(tol =5·10-7) or even Table 8.6 (tol = 5·10-8).  

Additionally, the maximum desired yaw velocity is max

deg
10 0.17 

rad
r

s s
= = . Using 

a tolerance in the order of 10-5 may not be the best choice anyway when the 

maximum desired value is in the order of 10-2. 

8.2.3 Effect of sway velocity 

The motivation for adding the sway velocity to the Differentiation method was to 

reduce the errors. This is illustrated in Table 8.8, which shows the results for the 

Forward 1m test for the Differentiation method with and without the inclusion of 

the sway velocity. Table 8.8 also shows the results for the Integration method with 

and without the inclusion of the sway velocity. 

As was discussed in Section 5.1.2.1, the sway velocity is strongly coupled to the 

surge and yaw velocity via the slip angle, Eq.(5.10), Eq.(5.11), Eq.(5.13). This 

interaction provides an indirect control of the sway and acts as an additional 

constraint when solving for the control input. Furthermore, because the 

assumption was made that the terrain is not significantly uneven or soft and that 

the robot moves on a planar, smooth, and rigid terrain, the desired sway velocity 

can be set to zero. In this way, the system’s properties are utilised to improve the 

performance of Inverse Simulation. 

Table 8.8: Effect of sway velocity in Inverse Simulation Results 

 Forward 1m Arc 

Errors 
Differentiatio

n without 
sway 

Differentiatio
n with sway 

Integratio
n without 

sway 

Integratio
n with 
sway 

Integratio
n without 

sway 

Integratio
n with 
sway 

u

m
error

s

 
 
 

 1.57 10-4 4.43 10-6 0 0 0 0 

( )error u  3.32 10-4 2.98 10-6 0 0 0 0 

r

rad
error

s

 
 
 

 1.25 10-6 3.39 10-6 0 0 0 0 

( )error r  1.66 10-6 3.54 10-6 0 0 0 0 

 rt s  5.06 3.42 3.10 4.23 9.21 17.78 
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For the Differentiation method, the inclusion of the sway velocity is beneficial for 

the surge velocity errors, there is a difference of magnitude of 102 between the 

two cases and has no serious effect on the yaw velocity. Considering that the 

algorithm with the sway velocity is faster, i.e., converges faster, the inclusion of 

sway is beneficial even for this very simple test. It could be argued that an error 

of 10-3 is acceptable, however considering that the error increases with the 

complexity of the trajectory as seen in Table 6.3, this is not a good choice. 

In comparison, including the sway velocity for the Integration method only 

increases the execution time. The results are identical with or without the sway 

for all trajectories (with the other simulation parameters as in Table 6.2), 

regardless of rounding to zero any value less than 10-6. The only difference is the 

execution time. This is expected, since without the inclusion of the sway, this is 

a 2x2 square system with a full rank of 2, so there is only one solution. With the 

inclusion of sway, the system is now 3x2 and is overdetermined, but its rank is still 

equal to 2. This means that the system again has a unique solution which is of 

course always the same (Davis, 2013). Furthermore, the system is still solved with 

the \ (backlash) operator even though the Jacobian has changed. 

Table 8.8 also shows the results for the Arc trajectory, which fails for the 

Differentiation method without the inclusion of the sway velocity. For the 

Integration method, including the sway velocity again has no effect, beneficial or 

not, apart from increasing the execution time. 

8.3 Summary of Results: Inverse Simulation Tuning: 
Recommendations for the rover 

In this chapter, the parameters that affect the application of the Inverse 

Simulation are investigated. The calculation and inversion of the Jacobian, the 

selection of outputs, the time step dt and convergence tolerance tol significantly 

affect the method’s properties and are examined. 

First, the inversion of the Jacobian was examined. This is a crucial part of the 

Inverse Simulation algorithm, and the validity of the results depends to a great 

extent on its correct execution. Four different methods were examined, the built-

in MATLAB functions inv(), pinv(), the backslash (\) operator and the factorize 
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command (Davis, 2013). These methods were tested in MATLAB: the factorize 

command was selected for the Differentiation method and the backslash (\) 

operator for the Integration method. The selection was based not only on the 

numerical results but also on what type of linear system is solved for each method. 

For the Differentiation method there are infinite solutions because the system is 

overdetermined (6x5) and rank deficient (rank is 4). The third output v is 

associated with the other two outputs u & r due to the physics of the problem and 

is very much constrained by this. So, of the five unknowns ( )1 2
ˆ ˆ, , , ,u v r    the two 

inputs ( )1 2
ˆ ˆ,   and two of the three outputs ( ),u r  can be found and the remaining 

output is coupled with the other two. Using the factorize command ensures that 

the input and outputs are always a least-squares solution that minimizes the error. 

For the Integration method, the case was simpler. The system to solve is square 

and consistent so both inputs can be uniquely identified. The backslash (\) operator 

ensures that the correct solution is always identified. Even in the case of modifying 

the system to add the sway velocity, which results in a non-square overdetermined 

system (size is 3x2), the solution is still the correct one. 

A small dt results in high frequency, low amplitude oscillations in the control input. 

These oscillations are more evident if the system is overdetermined, as is here for 

Differentiation. Moreover, if the dt is too small, it introduces additional, rounding 

errors due to the way Differentiation works and these are not easily corrected. A 

compromise between a dt that can adequately follow the system as it evolves 

without inducing oscillations and additional errors is needed. In contrast to this, 

for the Inverse Simulation Integration method reducing the time step increases 

the accuracy. 

The effect of the convergence tolerance tol was then examined. When the 

tolerance was set to a lower threshold 
8tol 5 10−= , instead of 

7tol 5 10−= , there 

were almost no differences in the errors and Inverse Simulation execution time. 

This shows that the selected combination of tolerance 
7tol 5 10−= and time step 

0.01 s are sufficient. To further investigate the effect of the tolerance, it was then 

set to a higher threshold at 
55 10−
. The result was that the Differentiation method 

by virtue of using more system parameters for convergence can tolerate a little 
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better the loss of fidelity by a larger accepted error tolerance. Integration on the 

other hand did not produce results for the more complex trajectory. One way to 

remedy this is by using the Integration method with the addition of the sway 

velocity. This sacrifices somewhat the method’s simplicity, but the sway velocity 

acts as an additional constraint for u and r. In that case, Integration produces 

results for all test trajectories, with an increased execution time and errors (but 

still very acceptable). 

The convergence tolerance also depends on the scale of the desired outputs. The 

maximum desired yaw velocity is max

deg
10 0.17 

rad
r

s s
= =  so using a tolerance in 

the order of 10-5 may not be the best choice anyway. The Integration method 

converges using error between the actual and desired output, so when the 

maximum yaw velocity is in the order of 10-4, a lower threshold should be chosen 

in any case. Nonetheless, by adding the sway velocity to the Integration method, 

it produced good results even when using such a marginal tolerance. 

Overall, the combination of dt = 0.01s and a tol = 5 10-7 produces the best results. 

For simplicity and overall stability, the Integration scheme is more appropriate. 

For decreased execution time, Differentiation is preferred, at the expense of 

slightly larger errors, an overdetermined system that requires special handling and 

less smooth control signals. 

The effect of adding the sway velocity v, which is strongly coupled with u, r, as an 

additional desired output was also examined. For Differentiation, using v as output 

is beneficial from the start, even for the simpler trajectories. In contrast to this, 

for the Integration method, including the sway velocity has no effect, apart from 

increasing the execution time. Integration with or without the sway produces the 

same results for all trajectories. This is because the rank of the Jacobian is always 

2 and this means that the system has a unique solution. Furthermore, the fact that 

the sway is not necessary for the Integration method confirms previous results 

that Integration is more stable overall.
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Chapter 9 Conclusions and Future Work 

The four main aims of this thesis were to (a) develop Inverse Simulation for a 

general state-space system and establish a methodology for its application, using 

two different approaches (Integration, Differentiation) to converge to the control 

inputs given a desired output, (b) examine the application of Inverse Simulation 

in terms of the parameters that affect its performance & type of solution it 

provides, (c) apply Inverse Simulation for output tracking to a four wheeled rover 

model and (d) examine the parameters that affect the performance of Inverse 

Simulation when applied to the rover, within the general framework established 

in the thesis. 

In support of these aims, a review of the current state of the art of rover design 

and control methodologies was conducted, a suitable model and trajectory for the 

rover were presented, a review of previous Inverse Simulation applications was 

done and Inverse Simulation application examples and comparison with common 

controllers were also presented. 

Overall, this work provides a general methodology and theoretical background for 

the Inverse Simulation using two different methods, Differentiation, and 

Integration. The parameters that affect its performance were investigated using 

tools from numerical analysis and linear algebra. These parameters were 

identified as the number of inputs and outputs, what can be considered a desired 

output, the time step dt, and the convergence tolerance for the numerical 

scheme. Both methods converge using a Newton-Raphson numerical scheme that 

employs the Jacobian. Particular attention was given to the formulation of the 

Jacobian and how can an efficient solution be ensured. 

The main benefit of having developed this general methodology is that Inverse 

Simulation can now be used for a wide range of applications, so long as the system 

can be formulated in a standard state-space form and at least the system’s inputs 

and outputs are available. This can be used as a framework and stepping point for 

any future developments of Inverse Simulation algorithms. 

Furthermore, in this work Inverse Simulation was applied for the first time for the 

guidance and control of a four wheeled, differentially driven rover. The principle 
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is that the time history for the desired trajectory is used for the Inverse Simulation 

to produce the required control inputs. These control inputs are nominal for the 

given model and are applied without additional correction to the rover to achieve 

the desired trajectory. These inputs resulted in accurate position and orientation 

control of the rover while considering the limitations of the rover model and the 

actuators used. Using the definition of GNC from Chapter 1, Inverse Simulation is 

used for guidance by providing the changes in velocity, rotation, and acceleration 

for following a desired trajectory and for control by using these inputs to execute 

the desired trajectory in a forward simulation. Inverse Simulation addresses the 

need for incorporating the dynamic model into the guidance and control system 

for increased accuracy. In the next section, the main conclusions relevant to each 

aim per chapter are expanded. 

9.1 Conclusions 

In Chapter 2 the relevant state of the art of rover designs is established and a 

system taxonomy is proposed, based on the following characteristics: mobility 

type, steering configuration, suspension, and chassis articulation. This system 

taxonomy is an original result of this thesis and can be used independently to 

support the design and classification of such systems. The baseline design is four 

wheels, all-wheel drive, and passive suspension, with a differential for steering. 

Also in Chapter 2, a review of the most common control methods for mobile rover 

control is presented. The control strategy of a rover is also investigated and there 

are two main approaches: (a) the rover can go to a given location by executing a 

pre-defined path without any corrections or (b) the rover can also navigate 

autonomously to a given location by sensing the environment and making its own 

decisions. 

Chapter 3 is a review of the existing applications of Inverse Simulation. The two 

main implementations (Differentiation and Integration) and the application 

considerations from previous experience are presented. 

Chapter 4 builds on the review to take a general approach and examine in depth 

the two main implementations of Inverse Simulation for the standard state-space 

model. The algorithms are for the general case of an unequal number of inputs 

and outputs. In Chapter 4 the first aim of this work is achieved: a general 
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methodology and theoretical background for the Inverse Simulation using the two 

different methods, Differentiation, and Integration, is developed. The second aim 

is also achieved: to examine the application of Inverse Simulation in terms of the 

parameters that affect its performance and the type of solution it provides. In 

Chapter 4 the parameters that affect the Inverse Simulation performance are 

identified as (a) the time step dt, (b) the convergence tolerance tol, (c) the number 

of inputs and outputs, (d) the selection of the desired output. The first two are 

the numerical parameters and the last two depend on the type of system used. 

A state-space model is used with m state equations, p output equations and k 

control inputs. Both methods converge using a Newton-Raphson numerical scheme 

that employs the Jacobian. The two approaches differ in how they converge to 

the control input. Differentiation converges using a scheme based on the state 

derivative and output; its Jacobian has a size of ( ) ( )m p m k+  + . The Integration 

method converges based on whether the system’s output matches the desired; its 

Jacobian has a size of ( )p k . Integration has the benefit of being decoupled from 

the system dynamics and is simpler to set up. The usage of both states and outputs 

means that Differentiation tends to converge faster than Integration, a difference 

that can be up to an order of magnitude.  

Because both methods use an iterative Newton-Raphson scheme to solve the 

system of algebraic equations, the problem is essentially transformed into a set 

of linear equations. For the general case when k p  the Jacobian needs to be 

factorised to achieve the best available solution, which is defined as the least 

square solution. The factorisation of the Jacobian at each iteration depends on its 

size and rank, which is not trivial to estimate. To solve the problem and to provide 

a computationally efficient solution that is also numerically stable (as defined in 

Appendix G) it is recommended to carefully select the factorisation 

implementation to be used and Appendix G provides a detailed background. 

The time step dt should correspond to the physical limitations and response times 

of the system. Reducing the time step positively affects the accuracy of the results 

and increases the execution time. When using the Differentiation method, when 

the dt is reduced too much, there is a point where the truncation error is reduced 

but the round off error starts to dominate, which is detrimental to the method’s 
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accuracy. The Integration method does not have these issues and the error can be 

reduced by decreasing the step size, which is why it is considered more stable. 

Additionally, too small a dt can have a negative effect by exciting possible 

uncontrolled states and increasing the high frequency, low amplitude oscillations 

superimposed on the calculated control input, particularly for the Differentiation 

method. 

Differentiation and Integration converge using a specified tolerance value, tol. The 

tolerance value depends on the scale of the actual and the desired solution and 

frames the result within the interval of ± tol, thus should be chosen depending not 

only on the acceptable error but also on the scale of the values calculated. 

The Ci continuity order of the desired output needs to be carefully selected so 

that it is a realistic representation, and the output is sufficiently smooth, but this 

is not constrained by issues such as the system’s relative degree. In fact, compared 

with feedback linearisation, Inverse Simulation is a more general method that can 

be used for MIMO systems that are not control affine and are not square. Inverse 

Simulation depends on the system model, but there is no analytical inversion and 

so Inverse Simulation can handle model changes better, especially Integration. 

Also in Chapter 4, the linear case of Inverse Simulation is developed. The linear 

case is the simplest case of the Differentiation method and shows that the desired 

output selection may affect the system stability. This is not the case for 

Integration. For the linear case, the relationship between output controllability 

and Inverse Simulation is established, namely that p k= . This corresponds to the 

general case of a square system that has a unique solution. 

Application examples of the linear case and Integration are given using a mass 

spring damper (MSD) and an active quarter car model (QCA). The system response 

and control effort are compared with that of a PID controller for the MSD. For the 

QCA model, the system response from applying a PID controller was the desired 

output for Inverse Simulation. Integration provided consistently good results in 

terms of accurately following the desired output. A third application example is 

given where Inverse Simulation is used to determine the road disturbance, using 

the passive quarter car model. This shows how the Inverse Simulation algorithm 
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can be generally used to determine an input given an output, without that input 

being necessarily a control input, thus further extending the method’s validity. 

In Chapter 5 the main requirements for applying Inverse Simulation to the rover 

are presented: a model and a suitable output. The kinematic and dynamic model 

of an experimentally validated rover moving on planar, smooth, and rigid terrain 

is presented. The rover adheres to the baseline design from Chapter 2 and uses 

differential steering, thus it can turn on the spot. The trajectory is based on 

waypoints and is generated using a 6th order polynomial that constitutes a series 

of forward (surge) movements followed by on-the-spot turns (yaw rotations). 

In Chapter 6 the fourth aim of this work is achieved: Inverse Simulation is applied 

for the first time for the control of a four-wheeled, differentially driven rover. 

The Differentiation method uses a non-square Jacobian with a reduced number of 

states; the remaining states are estimated. This is a novel approach that utilises 

the physics of the problem since Differentiation was until now applied to systems 

with a square Jacobian. The inputs to determine are reduced to two (left and 

right-side motor torque). Three outputs are used, surge (u), yaw (r) and sway 

velocity (v). The sway velocity is set to zero and is included because it improves 

the performance of the method. The Jacobian is also reduced to a 6 5  by 

perturbing only the controllable states ( , , u r v ) and the scheme estimates the 

remaining states. This is an overdetermined system and from a control 

perspective, at first glance, under-actuated. The sway however is matched 

dynamically to the surge and yaw velocity via the slip angle, thus of the three 

outputs, only two are independent and are matched to the number of control 

inputs. For the Integration method, things are somewhat simpler: two inputs and 

two outputs ( , u r ) that result in a square 2 2  Jacobian. 

The feasibility of Inverse Simulation as a guidance and control method that can 

produce nominal control signals is shown by calculating the nominal control inputs 

for different trajectories: moving between closely spaced waypoints in the Arc 

trajectory (0.73 m drive distance, 25.9 s) and longer distances with several pose 

changes, such as the Long Arc (16.91 m drive distance, 208.55 s) and Valley test 

(13.44 m drive distance, 203.70 s). The errors between the actual and the desired 

surge velocity (u), yaw velocity (r), and sway velocity (v), are in the range of 10-5 
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or less. Integration has smaller average and maximum errors than those of 

Differentiation, even though the sway velocity v is not used for converging to the 

control input. Differentiation also calculates the control inputs faster than 

Integration by about 20%. 

In Chapter 7 the rover model is augmented with the inclusion of the motor 

dynamics. This is part of the fourth aim. The inputs are now two voltages, one for 

each side, instead of torques. The motor dynamics are connected to the system 

dynamics via a single equation and the number of states, inputs and outputs 

remain the same for both methods. Thus, no modifications were needed to the 

Inverse Simulation algorithms themselves. 

In Chapter 8 the parameters and solution type of Inverse Simulation are further 

investigated, motivated by the previous analysis and the application to the rover. 

Thus, the second and fourth aims are achieved. For the rover application, the 

following conclusions are reached: When using Integration, there is a unique 

solution and the most efficient way to find it is the backslash (\) operator. For 

Differentiation, the factorize command from (Davis, 2013) is used to provide the 

best, least-squares solution. Both algorithms are formulated with and without the 

addition of the sway velocity. For Differentiation, using the sway velocity is 

beneficial, even for the simpler trajectories. For the Integration method, 

including the sway velocity only increases the execution time without improving 

the accuracy of the results. 

For the Differentiation method reducing the time step increases the accuracy only 

up to a point. Additionally, the prominence of high frequency, low amplitude 

oscillations superimposed on the calculated control input is increased for the 

Differentiation method. These oscillations are affected by the increased round off 

errors that tend to dominate for very small dt. For Integration, reducing dt 

increases the accuracy. For both cases, the accuracy gains are offset by increased 

computation time. The time step selected should be between 0.01 and 0.05 s, 

which is in line with what the rover actuators can achieve. 

When varying the tolerance, while Integration has a simpler scheme that results 

in a square system, for a larger tolerance and without adjusting the time step at 

all, it fails. The Differentiation method by virtue of using more system parameters 
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for convergence can tolerate a little better the loss of fidelity by a larger accepted 

error tolerance. 

9.2 Future Work 

In this section, the following further pathways of development of Inverse 

Simulation are proposed. 

9.2.1 Combination with another control method 

Inverse Simulation calculates the nominal signals given a desired output and a 

model. A natural question would be, what happens when we are no longer in the 

nominal case. In this case, the Inverse Simulation nominal control signals can now 

be used for further development of control algorithms. Inverse Simulation can be 

applied either in situ (the rover calculates the necessary control inputs given a 

defined trajectory) or offline. In the latter case, the trajectory and the control 

inputs are defined elsewhere, they are uploaded to the rover which then executes 

the trajectory. Two different approaches are proposed. 

In the first approach, Inverse Simulation acts on the difference y  between the 

actual system output ( )iy t  and the desired ( )d iy t . This means that the Inverse 

Simulation algorithm runs online, in real-time and utilizes as an output the 

difference between the actual and the desired, thus using the feedback action 

from the system. The resulting control signal is aimed to correct the difference 

y , Figure 9.1. This approach has been used by (Avanzini et al., 2013) for 

rotorcraft control, using a scheme that resembles that of a model predictive 

scheme. A simplified model was used to perform the Inverse Simulation and then, 

for the forward simulation from which the actual system output was obtained, the 

full rotorcraft model was used (Avanzini et al., 2013). The Integration method was 

used to take advantage of the fact that it required the outputs and inputs and that 

the full state vector may not be available in a practical application. 



153 

 

Figure 9.1: Inverse Simulation Online Scheme 

The second approach is that the Inverse Simulation inputs are used to drive the 

system without any additional correction unless a predefined error exceeds a 

threshold. In that case, an additional controller could be used. The Inverse 

Simulation nominal inputs can be calculated online or offline to preserve 

computational resources and uploaded to the system. 

This scheme is based on the idea of expected perception in (Cauli et al., 2016). 

Expected perception control systems utilise the system’s internal model and its 

interaction with the environment. The control system monitors the error between 

the predicted and the actual data. If the error is small, the system may skip any 

corrective action, thus saving computational and energy resources. If the error is 

large, the system will implement a corrective action through feedback. The 

internal model can be (Cauli et al., 2016) a forward model (predict future data 

from current), an environmental model (predict dynamics of external objects) or 

an inverse model (finds the actions to obtain a desired response). Expected 

perception control systems have been used in robotic arms, grasping tasks, or to 

locate unexpected objects and they use either forward or environmental models 

(Cauli et al., 2016). 
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Figure 9.2: Inverse Simulation Expected Perception 

In the context of this work, the internal model is the inverse as defined by Inverse 

Simulation and provides the nominal inputs for the desired outputs. While the 

actual outputs as obtained by the nominal inputs in a forward simulation do not 

exceed the error tolerance, then there is no need for additional correction. 

9.2.2 Existence of Solution and Initial Parameters 

In Chapter 4, the observation was made that both methods use an iterative Newton 

– Raphson scheme to solve the system of algebraic equations, over a time interval 

discretised with an appropriate time step dt . This led to investigating the number 

of inputs, outputs and states, the size of the Jacobian, its dependence on the 

number of inputs and outputs and how this affects the solution in Chapters 4 & 7. 

Viewing Inverse Simulation as fundamentally trying to find a solution using the 

Newton-Raphson method at each ti, it can be reduced to Eq.(9.1). The 

convergence rate is at best quadratic locally in an area around the initial starting 

point x0 (Kreyszig, 2014). 

 ( ) ( )
1

1 1 1n n n n

−

− − −
= −   x x F x F x   (9.1) 

At this point, another set of questions arises. First, is it possible to know in 

advance that Eq.(9.1) has a solution at least locally, i.e. in an area around the 

initial starting point, and can that area be calculated? Second, under which 

conditions for the Jacobian ( ) ( )0 , nF x F x  will Eq.(9.1) converge? 
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Knowing the existence of a solution in advance and the area where it may be found 

would mean that the Inverse Simulation will indeed find the solution if the 

algorithm is set up appropriately. It would also indicate whether the desired 

output is feasible. These questions do not deal directly with the properties 

discussed in this work; rather they attempt to see if there is such a solution, to 

begin with. Of course, the Jacobian and so the number of inputs, outputs and 

states do matter, as well as how well the Newton-Raphson algorithm is set up in 

terms of the time step and the convergence tolerance. After all, it is the same 

problem viewed in a different way. 

The questions of existence, conditions and error bounds can be answered by the 

Kantorovich theorem, which states that: “The iterative Newton method applied 

to a general system of nonlinear equations, converges to a solution near an initial 

point 0x , provided that the Jacobian of the system satisfies a Lipschitz condition10 

near 0x and its inverse at 0x  satisfies certain boundness conditions. The theorem 

also gives computable error bounds for the iterates” (Tapia, 1971).  

This theorem is both an existence and a convergence theorem for nonlinear 

equations, without the need to find the actual solution (Polyak, 2006). References 

(Ortega, 1968; Tapia, 1971; Argyros, 2008) provide formulations for the 

Kantorovich theorem for square systems The Kantorovich theorem has also been 

expanded for overdetermined and underdetermined systems (Galántai, 2000; 

Polyak, 2006; Argyros, 2008). Applied to Inverse Simulation, a square system 

corresponds to the case of an equal number of inputs and outputs and a non-

square system (over or underdetermined) to the more general case, as detailed in 

Chapter 3. The benefit of using this approach is that based on the values of the 

Jacobian and its inverse (or factorised inverse) at the starting point, the area and 

order of convergence can be found as well as an upper error bound for the iterates 

(Ortega, 1968; Tapia, 1971; Argyros, 2008).  

 
10 A function :f V E→  satisfies a Lipschitz condition (is Lipschitz-continuous) on the open set 

U V  if there is a positive constant L  (called the Lipschitz constant) such that 

( ) ( )f x f y L x y−  −  for all ,x y U  (Lang, 1997). This is a weaker condition than saying 

a function is differentiable (Lang, 1997). 
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The error bound for the current iteration n that is given by 
d n n− x x , where 

dx is the solution (the desired output for Inverse Simulation), and the maximum 

error is 0 0d − x x . The values of 0 , n    can be calculated as in (Ortega, 1968; 

Tapia, 1971; Argyros, 2008) Then, the value of 0  can be used as an upper 

estimate for the convergence tolerance of Inverse Simulation. 

The way this approach could be used is to examine if the initial starting point at 

the start of each iteration, would lead to a solution at each. The main issue is, as 

always, the calculation of the Jacobian and its inverse. Of course, both the 

Differentiation and the Integration algorithm require the calculation of the 

Jacobian anyway, so this will not be an additional calculation. For example, when 

applied to the rover, this could be used to check if the waypoints are feasible 

given the model. The works that developed and applied the Kantorovich theorem 

assume that the Jacobian in its analytical form is accessible, which is far from 

straightforward. An alternative worth investigating is assuming that at least a good 

approximation of the Jacobian and its reverse (instead of its analytical form) is 

also suitable. 

9.2.3 Other Considerations 

In this work, the calculation of the Jacobian is required. An alternative to 

numerical formulas using divided differences is Automatic Differentiation. 

Automatic differentiation uses “exact formulas along with floating-point values, 

instead of expression strings as in symbolic differentiation, and it involves no 

approximation error as in numerical differentiation using difference” (Neidinger, 

2010). The method has been used in computational fluid dynamics, atmospheric 

sciences, engineering design optimization and machine learning (Baydin et al., 

2015). The benefit of this approach is that the accuracy is guaranteed, it works 

well in iterative solvers and is easy to generalize to higher derivatives. This 

approach is suitable for both the Differentiation and the Integration methods. Also 

observed were low amplitude, and high frequency oscillations present in the 

control signal, primarily when using the Differentiation method. If these are 

deemed to be problematic for application particular implementation, a filter 

could be used to remove these oscillations before applying the inputs to the 

system. 
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Another thing for future consideration is augmenting the model used in this work. 

This could be done by including terramechanics, a suspension and simulating the 

movement of the rover on a slope. The last case would be particularly interesting 

for Differentiation because Differentiation uses a reduced Jacobian with only u, r, 

and v – the states that can be directly controlled. A further point to consider is 

what would constitute a desired output; for example, when moving on a slope it 

would make sense to constrain the permissible tilt. 

In closing, this thesis (a) provides the tools to move forward in applying Inverse 

Simulation to a wide range of applications, such as control, fault detection, 

disturbance detection, and output feasibility, and (b) applies Inverse Simulation 

for output tracking to a four wheeled rover model. Inverse Simulation calculates 

the changes in velocity, rotation, and acceleration for following a desired 

trajectory and for control by using these inputs to execute the desired trajectory. 

Hence, Inverse Simulation is a method for guidance and control. 
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Appendix A: Rover Specifications 

Quantity Symbol Value 

Mass m 2.148 kg 

Wheel Radius rw 0.0635 m 

Moment arm of wheel rm 0.1245 m 

Effective area in x-axis Ax 0.0316 m2 

Effective area in y-axis Ay 0.0448 m2 

Drag Coefficient Cd 0.89 

Moment of Inertia about x-axis Ix 0.0140 kgm2 

Moment of Inertia about y-axis Iy 0.0252 kgm2 

Moment of Inertia about z-axis Iz 0.0334 kgm2 

Coefficient of friction in x σx 0.22 

Coefficient of friction in y σy 1.00 

Coefficient of friction in z σz 0.30 

Coefficient of friction about x σp 0.35 

Coefficient of friction about y σq 0.44 

Coefficient of friction about z σr 0.18 

Viscous torque b 0.008 Nm 

Moment of inertia of motor Jm 0.005 kgm2 

Torque constant Kt 0.35 NmA-1 

EMF constant Ke 0.35 Vrad-1s-1 

Inductance of circuit L 0.1 H 

Resistance of circuit R 4 Ω 

Gradient for efficiency curve α -0.133 Α-1 

Offset for efficiency curve γ 0.6 

Base friction coefficient on wheel ξ 0.002 Nmsrad-1 
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The validation results for the second experiment (drive the robot forward in a 

straight line and then execute a left turn) are shown below (Worrall, 2010). 

 
Linnear Accelerations 

 
Linear Velocities 

 
Angular Velocities 

 
Linear Displacements 

 
Angular Displacements 
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Appendix B: Inverse Simulation Differentiation 

The algorithm steps for the Inverse Simulation Differentiating are the following. 

1. At it  the desired output ( )itd
g , the state ( )1it −x  & input ( )1it −u  are known. 

2. Iteration 1n =  : obtain estimates for ( )0 itx , ( )
0 itu . 

3. Iteration 1n  : ( )1n it−x , ( )
1 in

t
−

u  from the previous iteration 1n − . 

4. Calculate new estimates for 1F  and 2F  using ( )1n it−x , ( )
1 in

t
−

u , ( )1it −x  from 

Eq. (4.1), Eq.(4.2) and Eq.(4.6). 

5. Calculate the Jacobian J  of 1F  and 2F . To do this, assume that the values 

of ( )1n it−x , ( )
1 in

t
−

u  are perturbed by x  and u  respectively. 

6. Factorise the Jacobian J  to obtain 
1−

J and use Eq.(4.7) to find the new 

estimates ( )n itx , ( )in
tu . 

7. Use the new estimates ( )n itx , ( )in
tu  to calculate the new values of 1F  and 

2F  from Eq.(4.6). 

8. Check if the values of 1F  and 2F  are close enough to zero given a defined 

tolerance. 

9. If NO, then go to step 3 and continue to iteration 1n + . 

10. If YES, then the current estimates ( )n itx , ( )in
tu  are the values necessary 

to achieve the desired output ( )itd
g . Set ( ) ( )i n it t=x x , ( ) ( )i n it t=u u , 

( ) ( ) ( )( ),i i it t t=y g x u  and move to 1it + .
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Appendix C: Inverse Simulation Integration 

The algorithm steps for the Inverse Simulation Integration are the following. 

1. At it  the desired output ( )itd
g , the state ( )1it −x  & input ( )2it −u  are known 

2. Iteration 1n = : obtain estimates for ( )0 1it −x , ( )0 1it −u , ( )0 ity from Eq.(4.8). 

3. Iteration 1n  : obtain control input ( )1 1n it− −u  and output ( )1n it−y  from the 

previous iteration 1n − . 

4. Calculate the error function ef  from Eq.(4.10) using ( )1n it−y . 

5. Calculate the Jacobian eJ  of the error function ef  by perturbing ( )1 1n it− −u  

and then applying it to the system state and output, Eq.(4.1), Eq.(4.8) to 

get the perturbed system output. 

6. Calculate the new control input estimate ( )1n it −u  using Eq.(4.11) and the 

inverted Jacobian 1

e

−
J . 

7. Calculate the new state ( )1n it −x  & new output ( )1n it −y , Eq.(4.1), Eq.(4.8). 

8. Calculate the absolute difference between the new output ( )1n it −y and the 

desired output ( )itd
g  and check if the difference is within a certain 

tolerance. 

9. If NO, then go to step 3 and continue to iteration 1n + . 

10. If YES, then the current control estimate ( )1n it −u  is what will drive the 

output to the desired ( )itd
g . Set ( ) ( )1 1i n it t− −=u u , ( ) ( )1 1i n it t− −=x x , 

( ) ( )1 1i n it t− −=y y and move to 1it + .
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Appendix D: MSD System & Inverse Simulation 
Parameters 

Quantity Symbol Value 

Mass m 1 kg 

Spring constant k 10 Nm-1 

Damping coefficient c 4 Ns-1m 

Damping ratio ζ 0.63 

Natural frequency ω0 3.16 s-1 

Control input u  N 

Matrix Α eigenvalues λ1,2 -2 ± 2.45i 

Total simulation time T 20 s 

Time step dt  0.001 s 

Convergence tolerance tol 10-6 m 

Maximum iterations ηmax 25 

Position perturbation 
(Differentiation) 

δx 10-5 m 

Velocity perturbation 
(Differentiation) 

δx' 10-4 m 

Control perturbation 
(Differentiation) 

δu 10-3 N 

Minimum control perturbation 
(Integration) 

pertu 10-4 N 

Minimum output perturbation 
(Integration) 

perty 10-5 N 

PID Gain Kp 500 

PID Gain KD 50 

PID Gain KI 300 
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Appendix E: QC System & Inverse Simulation 
Parameters 

Quantity Symbol Value 

Sprung mass msq 250 kg 

Sprung mass position x1 m 

Sprung mass velocity x2 = x1’ ms-1 

Unsprung mass mus 30 kg 

Unsprung mass position x3 m 

Unsprung mass velocity x4 = x3’ ms-1 

Spring stiffness ks 2000 Nm-1 

Damping coefficient bs 1000 Nsm-1 

Tyre Stiffness kt 200000 Nm-1 

Road disturbance zr m 

Actuator force  Fs N 

Matrix A eigenvalues λ1,2 

 

λ3,4 

-16.9950 ± 83.289i 

-1.6716 ± 8.427i 

Total simulation time T 10 s 

Time step dt 0.001 s 

Maximum iterations ηmax 50 

Minimum control perturbation pertu 10-4 N 

Minimum output perturbation (Active QC) perty 10-8 m 

Convergence tolerance (Active QC) tol 10-5 m 

PID Gain KP 7000 

PID Gain KD 1000 

PID Gain KI 10000 

LQR control penalty R 0.001 

LQR variation for matrix Q var 20000 

Convergence tolerance (Passive QC) tol 10-4 m 

Minimum output perturbation (Passive QC) perty 10-7 m 
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Appendix F: Rover Inverse Simulation Results 

 
Forward Drive 

Drive:1m 
Rhombus 

Drive: 11.31m 
Valley 

Drive: 13.44m 

Errors Differentiation 
Integrati

on 
Differentiation 

Integrati
on 

Differentiation 
Integrati

on 

 [ ]
eXe m  8.40 10-4 8.76 10-7 1.24 10-2 1.24 10-2 2.19 10-2 2.13 10-2 

 [ ]
eYe m  9.06 10-6 5.91 10-7 2.76 10-2 2.79 10-2 4.11 10-2 4.05 10-2 

 [ ]e rad  1.09 10-5 1.19 10-6 3.31 10-5 1.68 10-5 1.47 10-4 2.00 10-5 

( )max  u

m
e

s

 
 
 

 1.45 10-5 0 6.11 10-5 0 6.25 10-5 0 

 u

m
e

s

 
 
 

 4.43 10-6 0 7.98 10-6 0 8.95 10-6 0 

ue  3.00 10-6 0 7.36 10-6 0 8.43 10-6 0 

( )max  v

m
e

s

 
 
 

 0 0 6.08 10-6 6.64 10-6 9.56 10-6 8.56 10-6 

 v

m
e

s

 
 
 

 0 0 1.07 10-6 1.62 10-6 1.50 10-6 1.54 10-6 

ve  0 0 1.46 10-6 1.54 10-6 1.98 10-6 2.06·10-6 

( )max  r

rad
e

s

 
 
 

 2.78 10-5 0 7.23 10-5 0 7.72 10-5 0 

 r

rad
e

s

 
 
 

 3.39 10-6 0 4.96 10-6 0 5.21 10-6 0 

re  3.54 10-6 0 4.65 10-6 0 5.00 10-6 0 

  rt s  3.42 3.10 33.41 43.32 50.68 70.36 
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Forward 1m Results: For Differentiation, the final error is 8.40 10-4 m on the global 

eX  axis, 8.76 10-4 m on the eY  axis. For Integration, the final error is 8.76 10-4 m on 

the eX  axis and 5.91 10-4 m on the eY  axis. 

 

Trajectory Forward 1m (Differentiation) 

 

Trajectory Forward 1m (Integration) 

 

Control Input Forward 1m (Differentiation) 

 

Control Input Forward 1m (Integration) 
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Rhombus: The rover starts from the origin (0,0) and moves clockwise along the 

trajectory. For Differentiation, the final error is 1.24 10-2 m on the global eX  axis 

and 2.76 10-2 m on the eY  axis. For Integration, the final error is 1.23 10-2 m on the 

eX  axis and 2.79 10-2 m on the eY  axis. The spikes in the control input occur at the 

points where the rover executes a sharp turn. Both algorithms produce good 

results in the case of a closed trajectory with sharp 45 deg turns. 

 
Trajectory Rhombus (Differentiation) 

 
Trajectory Rhombus (Integration) 

 
Control Input Rhombus (Differentiation) 

 
Control Input Rhombus (Integration) 
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Valley: For Differentiation, the final error is 2.19 10-2 m on the global eX  axis and 

4.1 10-2 m on the eY  axis. For Integration, the final error is 2.13 10-2 m on the eX  

axis and 4.05 10-2 m on the eY  axis. Again, the spikes in the control input occur at 

the points where the rover executes a sharp turn. 

 
Trajectory Valley (Differentiation) 

 
Trajectory Valley (Integration) 

 
Control Input Valley (Differentiation) 

 
Control Input Valley (Integration) 
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Appendix G: Solution of a General Linear System, 
Matrix Factorisation Methods and MATLAB 
implementation 

The Differentiation method results in Eq.(4.7), which is a system of ( )m+k  

algebraic equations. This solution requires some form of factorisation for the 

Jacobian J of size ( ) ( )m+p x m+k , where there are m states, k control input 

variables and p outputs. Similar to the Differentiation algorithm, Integration 

results in a system of k algebraic equations, Eq.(4.11). The dimension of the 

Jacobian Je is pxk , where k are the control input variables and p the outputs. 

The general form of a linear system to be solved is ,  : , : 1, : 1nxm mx nx=Ax b A x b  

and is either consistent (has at least one solution) or inconsistent (has no solution). 

To find if it is consistent, the rank of the augmented matrix A b  must be the same 

as the rank of A: ( ) ( )rank rank=A A b , while always ( ) ( )min ,rank n mA  (Strang, 

2009). The system has a unique solution if, additionally, the rank of matrix A is 

equal to the number of unknowns (m) or equivalently A has full column rank 

(Strang, 2009). Otherwise, there are infinite solutions and the free parameters 

are equal to ( )m rank− A  (Strang, 2009): 

Therefore, a system with n<m is underdetermined and can never have a unique 

solution; even if it has full column rank it will be n, so always less than m. An 

underdetermined system can have either zero or infinite solutions. A system with 

n>m is an overdetermined system. If it has full column rank of m there is a unique 

solution, though in practical problems this is rare and there is no solution or 

infinite solutions (Strang, 2009). 

It often happens that the linear system has no full column rank or even no solution 

(Higham, 2002; Strang, 2009). In the case of infinite solutions, there is some part 

of x that can be defined but there are still free parameters. When solving 

numerically and since all measurements are never perfect, an equation that 

cannot be solved is reached and the algorithm stops (Higham, 2002; Strang, 2009). 

This means that the residual error =e Ax - b  is not zero and an exact solution x 

cannot be found. 
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To overcome all these issues and because for practical problems, we do need a 

solution; even in the case of an inconsistent system, the best available solution is 

accepted. This is a least-squares solution and is defined as finding a solution *x  

so that the residual error e is minimised: *min Ax - b  (Higham, 2002; Strang, 

2009). The least-squares solution *x  is also the preferred type of solution in the 

case of infinite solutions, which is usually the case for overdetermined systems 

(Strang, 2009). The next step is to find the inverse of A (in the ideal case of a full 

rank, square system) or more usually a suitable factorisation for A that will then 

provide *A  and thus solve for *x  (Strang, 2009) so that * *=x A b . 

A factorisation is when the original matrix A becomes the product of two or more 

special matrices, which makes evaluating *A  and solving for *x  relatively easier 

(Strang, 2009). A matrix A does not necessarily have only one unique factorisation 

but it does have a unique least square solution (Strang, 2009). For example, a 

square, full rank matrix has the inverse matrix and can also be factorised using 

other methods, but all result in the same unique solution. 

Sometimes, matrix A is not square, but it does have full column (row) rank. Then, 

there is a ready formula for *A , which is the left (right) inverse of A. For practical 

problems, matrix A usually does not have full column (row) rank and a more 

general factorisation is performed (Higham, 2002; Strang, 2009; Davis, 2013).  

The factorisation methods that are most often used and are available in 

mathematical software (such as MATLAB, Mathematica, LAPACK) are presented 

next, along with a discussion on their numerical stability and their MATLAB 

implementation. 

Choosing the best factorisation method, suitable for the type of matrix A and 

based on its dimension and rank, to provide a computationally efficient least-

squares solution is as much an art as is a science and is highly specific to the 

problem at hand (Davis, 2013). Moreover, the use of the commonly available 

formulas in linear algebra textbooks, such as those for the left (right) inverse 

(Strang, 2009), is strongly discouraged for numerical computations (Higham, 2002; 

Davis, 2013; Foster et al., 2013). For example, calculating the inverse matrix using 

the standard formula is not only more computationally expensive, but also much 
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less stable and prone to numerical errors (Higham, 2002; Davis, 2013). 

Furthermore, estimating the rank of a non-square matrix in numerical 

computations is not always straightforward and can be computationally expensive 

(Strang, 2009; Davis, 2013). 

For all these reasons, the decision was made to use the specialised software from 

(Davis, 2013) that selects the best available factorisation method and then always 

provides the least square solution at each iteration n at every time point it . 

There is also another issue to consider: how “good” is the least square solution. 

Generally, any matrix A of size n m  has ( ) ( )min ,rank r n m= A . A rank of r 

means that there are r number of linearly independent rows and columns of A, the 

rest can be omitted (Strang, 2009). The closer the rank of matrix A is to ( )min ,n m  

the fewer equations need to be discarded and ideally, one would have r n m= = . 

Intuitively then, the closer r is to n (or m), then the better formulated is the 

system being solved in terms of its equations, unknowns, and constraints. For the 

specific problem of Inverse Simulation, the quality of the solution is determined 

by how well the calculated control input from Eq.(4.7) or Eq.(4.11) achieves the 

desired output when it is applied in the forward system. 

The factorisation methods that are most often used and are available in 

mathematical software (such as MATLAB, Mathematica, LAPACK) are the following 

(Higham, 2002; Strang, 2009; Davis, 2013). 

LU (lower – upper) decomposition is based on Gaussian elimination and factors a 

matrix as the product of a lower triangular matrix L and an upper triangular matrix 

U, A=LU. The variation used in numerical computing is decomposing matrix A 

into an upper triangular matrix U, a lower triangular matrix L, and a permutation 

matrix P, PA = LU . LU and its variations are used for square and non-square 

matrices. 
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If matrix A is symmetric and positive definite11, then the Cholesky decomposition 

is faster than the LU and T=A LL . Another option related to the Cholesky 

decomposition is LDLT, which decomposes matrix A as T=A LDL , where D is a 

diagonal matrix. 

A non-square matrix A with n>m and full column rank is best factorised using the 

QR method, =A QR  , where Q is an orthogonal matrix and R is an upper triangular 

matrix. 

If matrix A is rank deficient, ( ) ( )min ,rank r n m= A , then the COD (complete 

orthogonal decomposition) can be used and T=A URV , where R is and an upper 

triangular matrix, U and V have orthonormal columns. 

Any matrix A can be factorised using SVD (singular value decomposition) and 

T

1 2=A Q ΣQ , where Σ is diagonal and Q1 and Q2 are orthogonal. The SVD method 

is more time consuming than other alternative factorisations, but it is also the 

most reliable, especially for rank deficient problems (Strang, 2009; Davis, 2013). 

To start with, for square systems MATLAB has the inv command for calculating the 

inverse of a square matrix and the backslash operator (\) for solving more general 

linear systems. Another option for non-square systems is the pinv command that 

calculates the pseudoinverse that acts as a partial replacement for the matrix 

inverse and provides a least-squares solution. The \ operator is always preferred 

instead of the inv command because the backslash calculation is quicker and has a 

smaller residual error by several orders of magnitude than inv. The backslash \ 

operator selects between four factorisations: LU, Cholesky, LDLT, or QR. If one 

method fails, then it attempts to solve the system using another of these four 

factorisations and for non-square systems, it always uses the QR factorisation. The 

backslash operator is a powerful function but cannot guarantee a least-squares 

solution for underdetermined systems and rank deficient systems and its 

factorisation cannot be reused (Davis, 2013). Using the individual MATLAB 

functions for LU, Cholesky, LDLT, QR, COD, or SVD factorisation is a difficult task 

 
11 A is positive definite if all its eigenvalues have a positive real part (Strang, 2009). From linear 

stability theory, this is an unstable system and thus undesirable in control problems (Ogata, 
2008). 
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and between different versions of MATLAB, there also may be subtle differences 

in their implementation. The decomposition command in MATLAB creates a 

reusable matrix decomposition but still doesn’t provide directly a least-squares 

solution. 

The factorisation methods LU, Cholesky, LDLT, QR, COD and SVD are backwards 

stable and thus are considered numerically stable, using the definition below 

(Higham, 2002). 

A method for computing an approximate solution ŷ  to the problem ( )y f x=  is 

backwards stable if for a small x , ( )ŷ f x x= +   (Higham, 2002). The value of 

x  is the backwards error and its scale depends on the problem being solved 

(Higham, 2002). If a method is backwards stable, then it is also numerically stable 

in the sense that ( )ŷ y f x x+  = +   for small x  and y  (Higham, 2002). In this 

way, a numerically stable solution means that “the computed value of ŷ  scarcely 

differs from the value ŷ y+  that would have been produced by an input x̂ x+  

that is scarcely different from the actual input x. In other words, ŷ  is almost the 

right answer for almost the right data” (Higham, 2002). 

Another issue to consider is how sensitive the solution x  or +x  is to small changes 

in matrix A or b. For a square matrix A , this is defined by the condition number 

1c −= A A , where  is the matrix norm (Strang, 2009): 

Ideally, small changes A  or b  should result in small changes in x , which is why 

it is desirable that the condition number should be small. When solving the linear 

system =Ax b , errors enter in two ways.  

They begin with an error A  or b  which is then carried over to the solution. The 

error b  depends on the measurements of b  and on the computer round off 

error (Higham, 2002; Strang, 2009). In addition to these two errors, the error A  

also depends on the method by which A  is factorised to solve the system (Strang, 

2009). Therefore, the factorisation method has an important role in determining 

the overall sensitivity to errors in the solution, that does not depend on the 

condition number of the problem. The factorisation methods in this Appendix are 
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numerically stable as implemented in MATLAB, and thus have a positive effect in 

the solution – which is what was expected from a least square solution. 

Finally, the condition number and the backwards error can also provide an upper 

bound for the forward error, which is defined as the difference between the exact 

solution and the computed solution (Higham, 2002). As a rule of thumb it is that  

( ) ( )  forward error c backward error   (Higham, 2002). Estimating the backward 

error and the condition number is not trivial and the forward error can also be 

estimated using perturbation theory (Higham, 2002).  

The main takeaway from this analysis is that even if the condition number is high, 

using an appropriate factorisation method provides a least-squares solution that 

minimises the approximation error and we can be reasonably certain that the 

rounding errors (such as those in A  or b  ) do not adversely affect the solution. 

This, combined with reducing data uncertainty in measurements and a well-

formulated problem in terms of its physical qualities, all ensure a good solution. 
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Appendix H: Error and convergence tolerance 

In numerical computations, there are three main sources of errors: truncation, 

rounding, and data uncertainty (Higham, 2002). Truncation errors result from the 

use of an approximation for a desired quantity (e.g. Taylor series or more 

generally an iterative solution of equations) (Higham, 2002). Rounding errors 

occur due to the way computers represent numerical values (Higham, 2002). Data 

uncertainty arises from errors in measurement and estimation (Higham, 2002). 

The assumption here is that the data have been properly acquired and processed. 

Rounding errors are generally unavoidable due to the finite precision arithmetic 

used in computers, available memory, and computational time constraints. 

Therefore, the truncation errors are the errors of interest in this section. 

In general, for the desired dx  and its estimate x  (scalar or vector), the error can 

be defined as the absolute a dE x x= −  or the relative , 0a
r d

d

E
E x

x
=  . 

The relative error represents the qualitative side, how accurate is the estimate x  

relative to the value of the desired dx  and is a measure of the number of 

significant digits that are correct (Higham, 2002). 

The absolute error measures the total error between x  and dx  and it represents 

the quantitative side of the error. The absolute error depends on the magnitude 

of dx  and frames the result within the interval or tolerance tol : 

 ,a d dE tol x x tol x tol →  − + . It depends on the scale of x  and dx  and it should 

always be stated what it is an error of. If the desired value is not known, which is 

usually the case, then the error is calculated using the change in the approximate 

value from one iteration to the next: 1a n nE x x+= − . 

Errors such as ,a aE E   arise for example when a derivative is approximated using a 

Taylor expansion, when solving a least-squares problem or when estimating how 

close to zero the error is for the Newton-Raphson algorithm. 
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