

Flessa, Thaleia (2021) Analysis of inverse simulation algorithms with an
application to planetary rover guidance and control. PhD thesis.

https://theses.gla.ac.uk/82863/

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study,
without prior permission or charge

This work cannot be reproduced or quoted extensively from without first
obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author,
title, awarding institution and date of the thesis must be given

Enlighten: Theses
https://theses.gla.ac.uk/

research-enlighten@glasgow.ac.uk

mailto:research-enlighten@glasgow.ac.uk

Analysis of Inverse Simulation Algorithms with an
Application to Planetary Rover Guidance and

Control

Thaleia Flessa

Submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

Aerospace Sciences Research Division

James Watt School of Engineering

College of Science and Engineering

University of Glasgow

December 2021

©Thaleia Flessa, 2021

2

Author’s Declaration

I declare that, except where explicit reference is made to the contribution of

others, this dissertation is the result of my own work and has not been submitted

for any other degree at the University of Glasgow or any other institution.

Thaleia Flessa

3

Acknowledgement

I would like to thank my research supervisors, Dr Euan McGookin and Dr Douglas

Thomson for giving me the opportunity to conduct research for this work.

My thanks also to the Engineering and Physical Sciences Research Council (EPSRC)

for providing the funding (EPSRC/1369575) which allowed me to carry out the work

presented in this thesis; without it, this work would not be possible. Also, to the

School of Engineering and the Aerospace Sciences Division for providing me with

all necessary resources.

A very special thanks to Dimitrios for his love, encouragement, patience, and

support and for being with me on every step of this journey; the highs, the lows,

and the plateaus.

And a final thanks to you, reader for picking this up and giving it a go.

This thesis is dedicated to my father, Professor George P. Flessas, who passed

away so very unexpectedly.

4

Abstract

Rover exploration is a contributing factor to driving the relevant research forward

on guidance, navigation, and control (GNC). Yet, there is a need for incorporating

the dynamic model into the controller for increased accuracy. Methods that use

the model are limited by issues such as linearity, systems affine in the control,

number of inputs and outputs. Inverse Simulation is a more general approach that

uses a mathematical model and a numerical scheme to calculate the control inputs

necessary to produce a desired response defined using the output variables.

This thesis develops the Inverse Simulation algorithm for a general state space

model and utilises a numerical Newton-Raphson scheme to converge to the inputs

using two approaches: The Differentiation method converges based on the state

and output equations. The Integration method converges based on whether the

output matches the desired and is suitable for grey or black-box models. The thesis

offers extensive insights into the requirements and application of Inverse

Simulation and the performance parameters. Attention is given to how the inputs

and outputs affect the Jacobian formulation and ensure an efficient solution. The

linear case and the relationship with feedback linearisation are examined.

Examples are given using simple mechanical systems and an example is also given

as to how Inverse Simulation can be used for determining system input

disturbances.

Inverse Simulation is applied for the first time for guidance and control of a four-

wheeled, differentially driven rover. The desired output is the time history of the

desired trajectory and is used to produce the required control inputs. The control

inputs are nominal and are applied to the rover without additional correction.

Using insights from the system’s physics and actuation, the Differentiation and

Integration schemes are developed based on the general method presented in this

thesis. The novel Differentiation scheme employs a non-square Jacobian. The

method provides very accurate position and orientation control of the rover while

considering the limitations of the model used. Finally, the application of Inverse

Simulation to the rover is supported by a review of current designs that resulted

in a rover taxonomy.

5

Table of Contents

Author’s Declaration ... 2

Acknowledgement .. 3

Abstract .. 4

Table of Contents .. 5

List of Tables .. 8

List of Figures ... 9

Chapter 1 Introduction ... 11

1.1 Motivation .. 11

1.2 Thesis Aims ... 15

1.3 Thesis Outline .. 16

1.4 Contributions ... 18

Chapter 2 Review of Rover Systems and Control Methodologies 20

2.1 Rover Taxonomy ... 20

2.1.1 Mobility Type .. 22

2.1.2 Steering Configuration ... 22

2.1.3 Suspension ... 23

2.1.4 Chassis .. 25

2.2 Analysis of Rover Design .. 25

2.2.1 Flown Exploration Rovers .. 26

2.2.2 Selected Experimental Designs ... 28

2.2.3 Review Summary and Baseline Design 31

2.3 Overview of Guidance, Navigation and Control for wheeled vehicles ... 32

2.3.1 Control for Mobile Robots with a Differential Drive 32

2.3.2 GNC for Planetary Rovers ... 38

2.3.3 Trajectory Generation ... 40

2.3.4 Review Summary .. 45

Chapter 3 Review of Inverse Simulation ... 46

3.1 Review of Inverse Simulation Applications 47

3.2 Review of Application Considerations of Inverse Simulation Algorithms 51

3.3 Summary .. 54

Chapter 4 Analysis of Inverse Simulation with Application Examples 56

4.1 Analysis of Inverse Simulation ... 56

4.1.1 General Algorithm for Differentiation and Integration 56

4.1.2 Inverse Simulation and Feedback Linearisation 65

4.1.3 Inverse Simulation for a Linear Time Invariant System 69

4.2 Application example: Mass Spring Damper System 72

4.2.1 PID Controller Response ... 74

6

4.2.2 MSD Linear Inverse Simulation .. 74

4.2.3 MSD Integration Inverse Simulation 76

4.3 Application Example: Active Quarter Car Model 78

4.3.1 Desired Output .. 80

4.3.2 QCA Linear Inverse Simulation .. 81

4.3.3 QCA Integration Inverse Simulation 83

4.4 Application Example: Road Disturbance Identification 85

4.5 Inverse Simulation Tuning Recommendations 88

4.6 Summary of Application Results ... 89

Chapter 5 Rover Mathematical Model and Trajectory Generation 90

5.1 Rover Model Overview .. 90

5.1.1 Model Variables and Frame of Reference 92

5.1.2 Dynamics ... 94

5.1.3 Kinematics .. 100

5.1.4 Motor Dynamics .. 102

5.2 Trajectory generation for the four-wheeled robot 103

Chapter 6 Application of Inverse Simulation to the Rover I: Non-linear Model
 107

6.1 Differentiation .. 108

6.2 Integration ... 113

6.3 Test Trajectories ... 115

6.4 Results for Stop and Turn Trajectories 117

6.4.1 Trajectory Results Figures ... 118

6.4.2 Tabulated Trajectory Results .. 122

6.5 Summary of Results .. 125

Chapter 7 Application of Inverse Simulation to the Rover II: Non-Linear Model
with Motor Dynamics ... 126

7.1 Differentiation .. 127

7.2 Integration ... 128

7.3 Results ... 130

Chapter 8 Inverse Simulation Algorithm Tuning for Improved Performance ... 133

8.1 Calculation of the Jacobian: Application to the Rover 133

8.2 Influence of parameters on results: Application to the Rover 136

8.2.1 Effect of time step dt ... 136

8.2.2 Effect of convergence tolerance .. 139

8.2.3 Effect of sway velocity ... 142

8.3 Summary of Results: Inverse Simulation Tuning: Recommendations for
the rover .. 143

Chapter 9 Conclusions and Future Work .. 146

9.1 Conclusions .. 147

7

9.2 Future Work ... 152

9.2.1 Combination with another control method 152

9.2.2 Existence of Solution and Initial Parameters 154

9.2.3 Other Considerations .. 156

List of References .. 158

Appendix A: Rover Specifications .. 177

Appendix B: Inverse Simulation Differentiation 179

Appendix C: Inverse Simulation Integration .. 180

Appendix D: MSD System & Inverse Simulation Parameters 181

Appendix E: QC System & Inverse Simulation Parameters 182

Appendix F: Rover Inverse Simulation Results 183

Appendix G: Solution of a General Linear System, Matrix Factorisation Methods
and MATLAB implementation ... 187

Appendix H: Error and convergence tolerance 193

8

List of Tables

Table 2.1: Rover Taxonomy .. 21

Table 2.2: Planetary Exploration Rovers ... 27

Table 2.3: Selected Experimental Designs ... 28

Table 5.1: Model Variables ... 93

Table 6.1: Test Trajectories Overview .. 117

Table 6.2: Inverse Simulation Parameters (Baseline) 118

Table 6.3: Inverse Simulation Results ... 123

Table 7.1: Inverse Simulation Results with Motor Dynamics 130

Table 8.1: MATLAB Factorisation methods ... 134

Table 8.2: Factorisation for Differentiation (Long Arc) 135

Table 8.3: Factorisation for Integration (Long Arc) 136

Table 8.4: Differentiation results for different dt (Arc trajectory) 137

Table 8.5: Integration results for different dt (Arc trajectory) 138

Table 8.6: Inverse Simulation Results for tol = 5 10-8 140

Table 8.7: Inverse Simulation Results for tol = 5 10-5 141

Table 8.8: Effect of sway velocity in Inverse Simulation Results 142

9

List of Figures

Figure 2.1: Rocker – Bogie Suspension (Lindemann et al., 2005) 25

Figure 2.2: Sojourner (F), MER (L), Curiosity (R) (courtesy of NASA) 26

Figure 2.3: Rosalind Franklin Prototype (courtesy of ESA) 26

Figure 2.4: SCARAB (Wettergreen et al., 2010) 29

Figure 2.5: Nanokhod model (courtesy of ESA) 29

Figure 2.6: SpaceClimber, 25 deg slope (Bartsch et al., 2010) 29

Figure 2.7: CESAR prototype (courtesy of ESA) 29

Figure 2.8: Axel Rover (courtesy of NASA/JPL-Caltech) 30

Figure 2.9: Athlete on a Hill (courtesy of Nasa/JPL-Caltech) 30

Figure 2.10: Straight lines & inscribed circles for guidance (Fossen, 2011) 41

Figure 3.1: Inverse Simulation Flowchart .. 49

Figure 4.1: Position, velocity, acceleration ... 73

Figure 4.2: MSD PID Error between desired and actual position 74

Figure 4.3: MSD PID Control Input ... 74

Figure 4.4: MSD IS Linear Error between desired and actual positions 76

Figure 4.5: MSD IS Linear Control Input vs PID Input 76

Figure 4.6: MSD IS Integration Position Error .. 77

Figure 4.7: MSD IS Integration Control Input vs PID Input 77

Figure 4.8: Quarter Car Model ... 78

Figure 4.9: Sine Road Disturbance .. 79

Figure 4.10: QCA PID Response .. 80

Figure 4.11: QCA PID Control Input ... 81

Figure 4.12: QCA Linear IS unsprung velocity error 82

Figure 4.13: QCA Linear IS Control vs PID Control 83

Figure 4.14: QCA IS Integration unsprung velocity error 84

Figure 4.15: QCA IS Integration Control vs PID Control 85

Figure 4.16: Road disturbance, sine .. 86

Figure 4.17: Road disturbance, trapezoid ... 86

Figure 4.18: Sine Road Disturbance identified by IS 87

Figure 4.19: Trapezoid Road Disturbance identified by IS 87

Figure 5.1 Lynxmotion 4WD3 Chassis (Lynxmotion, 2018) 91

Figure 5.2: Rover Frames of Reference .. 93

Figure 5.3: Forward Surge Motion ... 95

Figure 5.4: Clockwise Turn ... 96

Figure 5.5: Arc Trajectory .. 105

Figure 5.6: Arc Desired Surge Velocity (top), Desired Yaw Velocity (bottom) .. 105

Figure 6.1: Forward .. 116

Figure 6.2: Left – Right Turn .. 116

Figure 6.3: Arc .. 116

Figure 6.4: Rhombus ... 116

Figure 6.5: Valley ... 117

Figure 6.6: Long Arc.. 117

Figure 6.7: Left – Right, Differentiation .. 119

Figure 6.8: Left – Right, Integration ... 119

Figure 6.9: Left – Right Control Input, Differentiation 119

Figure 6.10: Left – Right Control Input, Integration 119

Figure 6.11: Arc, Differentiation ... 120

Figure 6.12: Arc, Integration ... 120

Figure 6.13: Arc Control Input, Differentiation 120

Figure 6.14: Arc Control Input, Integration ... 120

10

Figure 6.15: Long Arc, Differentiation .. 121

Figure 6.16: Long Arc, Integration ... 121

Figure 6.17: Long Arc Control Input, Integration 121

Figure 6.18: Long Arc Control Input, Differentiation 121

Figure 6.19: Long Arc left side control Differentiation (L) and Integration (R) . 122

Figure 6.20: Long Arc right side control Differentiation (L) and Integration (R) 122

Figure 7.1: Voltage Control Input for Arc (Differentiation) 131

Figure 7.2: Voltage Control Input for Arc (Integration) 131

Figure 7.3: Arc left side control Volt Differentiation (L) and Integration (R) ... 131

Figure 7.4: Arc right side control Volt Differentiation (L) and Integration (R) .. 131

Figure 7.5: Torque control input for Arc (Differentiation) 132

Figure 7.6: Torque control input for Arc (Integration) 132

Figure 7.7: Arc left side control Torque Differentiation (L) and Integration (R) 132

Figure 7.8: Arc left side control Torque Differentiation (L) and Integration (R) 132

Figure 8.1: Arc Control Input, Differentiation (dt = 0.001) 139

Figure 8.2: Arc Control Input, Differentiation (dt = 0.05) 139

Figure 8.3: Arc Control Input, Integration (dt = 0.001) 139

Figure 8.4: Arc Control Input, Integration (dt = 0.05) 139

Figure 9.1: Inverse Simulation Online Scheme 153

Figure 9.2: Inverse Simulation Expected Perception 154

11

Chapter 1 Introduction

1.1 Motivation

Current research on guidance, navigation, and control (GNC) for wheeled, mobile

robots is a vast, constantly evolving field. A search at IEEEXplore using the

keywords “motion”, “control” and “mobile” returns 16,508 results published in

conferences, journals, magazines, and books indexed by IEEE between 1980 and

2020, of which 14,637 were published between 2000 – 2020. A similar search at

ScienceDirect using the keywords “motion”, “control” and “mobile” returns

62,904 results between 2010 and 2020; adding the term “ground” (e.g., to exclude

mobile manipulators) returns 17,785 results. A review article published in 2018

outlining the ten great challenges in science robotics (Yang et al., 2018),

identified the exploration capabilities of mobile robots as one of these great

challenges that also have “a wider impact on all application areas of robotics”,

adding that “The associated challenges are therefore much greater than those

encountered today”.

The term rover usually applies to a system that uses wheels for locomotion;

however, they may alternatively use tracks, legs or a combination of these

(Yoshida et al., 2008). Throughout this work, the term rover is used to refer to an

unmanned, mobile, wheeled robot that can explore a surface with varying degrees

of autonomy. Thus, rover as a term can be considered equivalent to a wheeled

mobile robot (WMR) in this work. The term robot is used more generally to indicate

any mobile system, regardless of its means of locomotion.

Rovers in terms of exploration capabilities have significant advantages: they can

traverse different terrain types, slopes and overcome obstacles and can explore a

large area. The recent achievements of the NASA Mars Exploration Rovers (MER)

Spirit and Opportunity (2004), Curiosity (2012), Perseverance (2020) and the

forthcoming ESA ExoMars (2022) mission have captured the public’s imagination.

They have also been a significant contributing factor in driving the relevant

research forward on control, control architectures, guidance, navigation,

autonomy, mobility, computer processing, vision and communications (Quadrelli

et al., 2015; Mateo Sanguino, 2017).

12

To manoeuvre a rover (and any robot in general) three tasks are required:

guidance, navigation, and control (GNC). An additional requirement is motion

planning: the determination of the desired path or trajectory that can provide the

reference condition needed to determine a guidance command (Siegwart et al.,

2011). A path is a route through space that has only spatial constraints, whereas

a trajectory also has temporal constraints (Siegwart et al., 2011). For example, in

Cartesian space, a trajectory can be defined as a series of (x(t), y(t), z(t)) or their

derivatives. The following definitions for GNC are used, based on (Fossen, 2011).

Navigation is the determination of the system’s current state: position, attitude,

distance travelled and, in some cases, velocity and acceleration are determined

as well.

Guidance is the action or the system that continuously computes the reference

(desired) position, velocity, and acceleration to be used by the motion control

system. The guidance system determines the reference trajectories to be fed to

the control system from the vehicle's current location (from navigation) to a

designated target, as well as desired changes in velocity, rotation, and

acceleration for following that reference trajectory.

Control, or more specifically motion control, is the action of determining the

necessary control forces and moments to be provided to satisfy a certain control

objective. The desired control objective is usually seen in conjunction with the

guidance system. Constructing the control algorithm involves the design of

feedback and feedforward control laws. The outputs from the navigation system,

(position, velocity, and acceleration) are used for feedback control while

feedforward control is implemented using signals available in the guidance system

and when available, other external sensors.

For mobile robots, the overall objective is (a) follow a desired path, (b) follow a

desired trajectory or (c) achieve a certain pose (Morin et al., 2008). Case (a) and

(b) are referred to as output tracking. Ideally, the tracking error converges to

zero. Sometimes this is not possible, and the concept of practical stabilisation is

defined when the tracking error is small but not zero (Morin et al., 2008). Point-

to-point motion (also known as point or posture stabilisation) is defined as starting

from an initial configuration, the robot must reach a desired goal configuration

13

(Morin et al., 2008). This contrasts with output tracking, where we care not only

about the robot’s end configuration but also about how it is achieved.

The key to extracting the maximum scientific value is to ensure that the rovers

can operate effectively on the surface and be capable of efficiently and safely

traversing as much of the terrain as possible. Therefore, the capability to perform

output tracking for a desired trajectory is of interest in this work.

There is a plethora of methodologies to control a rover. These approaches range

from the simplest to the most complex; (Aström et al., 2014) provide a thorough

historical review of the general problem of control and (Garcia et al., 2007) an

evolution of robotics research across industrial, service and field applications.

Specifically, for mobile robot control developed over the last decades, (Tzafestas,

2018) provides a thorough overview of control methodologies for mobile robots, a

selection of relevant books and a summary of survey papers.

So, why would anyone think that they can add something new to this exciting

field? To answer this, this thesis takes a somewhat different approach. The

developed control methods take the view of obtaining a specific system model

(dynamic, kinematic or both), simplifying it when necessary, constructing a

control law based on an objective and then attempting to prove that the control

law is stable, i.e., it will not lead the system astray but rather to its goal.

In this work, the focus shifts somewhat: a general algorithm that depends only on

the model itself is developed and then is applied to the rover model. Within this

general framework, a novel guidance and control method is proposed based on

Inverse Simulation.

Inverse Simulation is a method that incorporates a mathematical model which is

representative of the system and calculates the control inputs necessary to

produce a desired, predefined response. The desired response is defined using the

system’s output variables. Inverse simulation works by taking a model of the

system and solving it in a conventional form over a discrete time step. It is a

model-based, numerical, iterative process where step changes in the various

controls are applied until the system’s response matches the desired, predefined

response within a certain tolerance (Murray-Smith, 2000; Thomson et al., 2006).

14

Applications for Inverse Simulation so far have ranged from the aerospace domain

and rotorcraft flight control such as (Murray-Smith, 2000; Thomson et al., 2006),

to applications to unmanned underwater vehicles such as (Murray-Smith et al.,

2008; Murray-Smith, 2014), unmanned aerial vehicles (Murray-Smith et al., 2015),

hypersonic vehicles (Forbes-Spyratos et al., 2014) or investigating the handling

qualities of a manually controlled rendezvous and docking system (Zhou et al.,

2017). An in-depth review is in Chapter 3. Inverse Simulation has been used to

produce the required control signals for specific manoeuvres, design and test the

feasibility of a desired output, and for model validation and pilot training.

It is, therefore, necessary to present Inverse Simulation not just in the context of

a particular application, with all its specific complications, but in a broader,

abstracted way.

A key factor is the availability of a suitable mathematical model that is a good

approximation of the system. An important aspect of the Inverse Simulation

algorithm is that the actuator and rover dynamics are incorporated into the

system's mathematical model and are used during the calculation of the control

signals. This results in control signals that consider the limitations of the rover

and the actuators. The model can also be updated to include degradation to the

actuators, power supply, mechanical structure or compensate for any damage that

may occur. The control signals generated by Inverse Simulation will compensate

for this degradation.

The desired output for Inverse Simulation is a trajectory to a goal destination.

First, a trajectory to the destination is determined as a series of waypoints, e.g.,

from terrain maps or sensor information. This information will provide the desired

trajectory for the Inverse Simulation, which in turn will generate the required

control inputs to follow the trajectory. The method can be applied in situ given a

defined trajectory, the rover can calculate the necessary control inputs; or

offline: define the trajectory, the control inputs are calculated, uploaded to the

rover, which then executes the trajectory.

Essentially, in Inverse Simulation the system’s model is used to generate a series

of control inputs that will drive the system to a desired output, instead of applying

an additional external controller. The model incorporates the dynamics, states,

15

inputs, outputs, and hardware limitations of the system and this allows for the

consideration of these parameters when calculating a control input to achieve a

specified output – a trajectory (path) in the case of rovers. Moreover, because the

method depends explicitly on the system model, the model parameters, hardware

constraints, actuators and the trajectories, their influence on the control inputs

can be investigated to identify problem areas in advance.

The approach in this work differs in that an attempt is made to describe a general

algorithm and then apply it to the specific system to obtain a control input. This

control input is entirely and exclusively based on the model used, without using

any additional external controllers or imposing any simplifications on the existing

model – apart from those needed to construct a model in the first place, but that

is unavoidable. The method provides the best available inputs for a given system

and a desired output, and these inputs are nominal. We are not interested in

imposing an external control law on the system; rather we are looking to see if

the system as is, can achieve the goal defined in terms of its outputs.

Therefore, Inverse Simulation can be used for guidance by providing the changes

in velocity, rotation, and acceleration for following a desired trajectory and for

control by using these inputs to execute the desired trajectory. Hence, Inverse

Simulation is a method for guidance and control. The Inverse Simulation control

inputs are nominal, and, in this work, they are applied to a forward simulation

without additional corrections. Thus, their validity depends on the model used

and the assumptions made. In the last chapter of this work, two different schemes

for using these nominal signals are included in cases where there may be

significant changes and unmodelled disturbances that may require additional

correction.

1.2 Thesis Aims

The main aims of this thesis are summarised as the following:

• Develop the Inverse Simulation algorithm for the general case, develop its

main requirements and establish a theoretical background using two

different approaches: Differentiation and Integration.

16

• Establish and examine the parameters that affect the performance of

Inverse Simulation, and the type of solution Inverse Simulation finds, given

a desired output and system model.

• Apply Inverse Simulation for output tracking to a four-wheeled rover model.

• Examine the parameters that affect the performance of Inverse Simulation

when applied to the rover, within the general framework established in the

thesis.

To support these main aims and to place the method within the broader context

of GNC, the secondary aims are:

• Establish the current state of rover design and control.

• Establish the current state of Inverse Simulation.

• Provide Inverse Simulation application examples using common mechanical

systems.

1.3 Thesis Outline

First, in Chapter 2 a review of the state of the art of rover system design and

control methodologies is presented. The system review aims to propose a

taxonomy for rover design from which a baseline design emerges. The review

provides an overview of the current methods and where Inverse Simulation fits

within that paradigm.

Chapter 3 is the review of the existing applications of Inverse Simulation, the two

main implementations (Differentiation and Integration), and the application

considerations from previous experience.

Following Chapter 3, Chapter 4 builds on this review and examines in depth the

two main implementations of Inverse Simulation for the standard state space

model, itself an abstraction for a variety of systems. The algorithms are for the

general, non-square case of an unequal number of inputs and outputs. There is an

in-depth discussion on the parameters that affect the numerical stability of the

17

algorithms and the issue of an unequal number of inputs and outputs. Next, the

relation of Inverse Simulation to feedback linearisation is investigated. Both

Inverse Simulation and feedback linearisation require the expression of the input

in terms of the output and thus an exploration of their differing qualities is

important. Then, the linear case of Inverse Simulation is presented, as it

showcases certain aspects of the method as to what can be considered an

appropriate desired output based on the system model and how the control input

can be expressed using the output. Finally, application examples are given to show

how the method can be applied. Chapter 4 concludes with a set of tunning

recommendations for the general case of Inverse Simulation. While some

parameters are by necessity application specific, certain general considerations

are highlighted.

Chapter 5 presents the dynamics and kinematics of the rover and the trajectories

that will be used as desired outputs for Inverse Simulation.

Having established what Inverse Simulation is and how it works, Chapter 6 applies

the Differentiation and the Integration algorithm to the specific case of a four-

wheeled rover, using the model and output trajectories from Chapter 5. The goal

is to find the inputs to achieve a desired trajectory and several trajectories of

varying length and duration are tested. Then, having found these inputs, they are

applied in a standard forward simulation to see if they indeed achieve the desired

trajectory, thus fulfilling the goal of trajectory tracking. The point is to check that

using these inputs the rover can track the trajectory with a very small error, based

only on the system model used. The implementation specifics for the

Differentiation and Integration are discussed and their comparative performance

is investigated.

In Chapter 7, the rover model is augmented with the motor dynamics. The Inverse

Simulation algorithms already developed are applied for this new model and it is

shown how can this be done, without fundamentally altering the algorithm.

An important element to consider is what type of solution the Inverse Simulation

algorithms find and even if there is one to begin with, as well as what parameters

affect its numerical performance. In Chapter 3 a review of the stability of Inverse

Simulation is presented based on previous applications and in Chapter 4 the

18

general recommendations were discussed. In Chapter 8 a closer look is taken at

the specific algorithms applied to the rover and the choices made, based on the

tunning recommendations for the general case of Inverse Simulation in Chapter 4.

Finally, in Chapter 9, the main findings are summarised and recommendations and

opportunities to further develop Inverse Simulation are presented, including two

different schemes for using the Inverse Simulation nominal signals in combination

with another control method.

1.4 Contributions

During the research for this thesis, the following publications were made. They

are detailed below, together with the relevant chapter that includes their results.

Flessa, T., McGookin, E. W., and Thomson, D. G. (2014) Taxonomy, Systems

Review and Performance Metrics of Planetary Exploration Rovers. In: 13th

International Conference on Control, Automation, Robotics and Vision

(ICARCV'14), Marina Bay Sands, Singapore, 10-12 Dec 2014, pp. 1554-1559. The

results are included in Chapter 2.

Worrall, K., Thomson, D., McGookin, E. and Flessa, T. (2015) Autonomous

Planetary Rover Control Using Inverse Simulation. In: 13th Symposium on Advanced

Space Technologies in Robotics and Automation (ASTRA 2015), ESA/ESTEC,

Noordwijk, 11-13 May 2015. The results are included in 6, 7, and 8.

Flessa, T., McGookin, E. and Thomson, D. (2016) Numerical Stability of Inverse

Simulation Algorithms Applied to Planetary Rover Navigation. In: 24th

Mediterranean Conference on Control and Automation (MED 2016), Athens,

Greece, 21-24 June 2016, pp. 901-906, The results are included in Chapters 6, 7,

and 8.

Flessa, T., McGookin, E., Thomson, D. and Worrall, K. (2016) Numerical Efficiency

of Inverse Simulation Methods Applied to a Wheeled Rover. In: 9th EUROSIM

Congress on Modelling and Simulation, Oulu, Finland, 12-16 Sep 2016. The results

are included in Chapters 6, 7, and 8.

19

Ireland, M. L., Flessa, T., Thomson, D. and McGookin, E. (2017) Comparison of

nonlinear dynamic inversion and inverse simulation. Journal of Guidance, Control,

and Dynamics, 40(12), pp. 3304-3309. The results are included in Chapter 4.

Furthermore, the Integration algorithm developed in Chapter 4 was used as a

method for fault detection in the following two publications. These results are not

included in the thesis, as the fault detection results were primarily developed by

the co-authors, but they do showcase the validity of the general algorithm and its

more general application for finding inputs given a model and an output.

Ireland, M. L., Worrall, K. J., Mackenzie, R., Flessa, T., McGookin, E. and

Thomson, D. (2017) A Comparison of Inverse Simulation-Based Fault Detection in

a Simple Robotic Rover with a Traditional Model-Based Method. In: 19th

International Conference on Autonomous Robots and Agents (ICARA 2017), Madrid,

Spain, 26-27 Mar 2017.

Ireland, M. L., Mackenzie, R., Flessa, T., Worrall, K. J., Thomson, D. G. and

McGookin, E. W. (2017) Inverse Simulation as a Tool for Fault Detection and

Isolation in Planetary Rovers. In: 10th International ESA Conference on Guidance,

Navigation and Control Systems, Salzburg, Austria, 29 May - 02 Jun 2017.

Chapter 2 Review of Rover Systems and Control
Methodologies

The literature review focuses on the following two aspects: (a) the state of the

art of planetary exploration systems, with an emphasis on rovers and related

experimental systems and (b) the state of the art of control methodologies for

wheeled systems, whether used on Earth or for planetary exploration.

The review of the state of the art of planetary exploration systems includes those

used in missions and selected experimental designs. A general taxonomy of rovers

is proposed based on this review. The taxonomy can be used for comparing rover

characteristics from a set of possible configurations, thus facilitating a more

systematic design process. From this review, the baseline design is proposed,

which is then used as an appropriate system for Inverse Simulation in this work.

The review of the GNC methodologies is intended as an overview and focuses on

the methods applied to differentially driven wheeled robots, as these are widely

used in the research community and achieve high manoeuvrability with decreased

complexity (Siegwart et al., 2011). Furthermore, the baseline design proposed in

this chapter is driven differentially as well as the rover model used for Inverse

Simulation.

2.1 Rover Taxonomy

The autonomous robotic exploration of Mars, the Moon, asteroids, and other

celestial bodies is a necessary step for space exploration and the expansion of

human presence in space. These robots can take the form of rovers, stationary

landers, hoppers, and probes. The most mature locomotion method is wheeled,

whereas legged and tracked locomotion are still in an experimental phase for

space applications (Yoshida et al., 2008; Siegwart et al., 2011; Mateo Sanguino,

2017). The focus is on wheeled rovers, as these have demonstrated their ability

to perform with varying degrees of autonomy robustly and reliably over more than

fifty years of active research (Yoshida et al., 2008; Mateo Sanguino, 2017); to date

all successful planetary rover missions employ wheels.

21

Rovers have significant advantages compared with landers and probes: they can

traverse different terrain types, slopes and overcome obstacles and so they can

explore a large area. This is the concept of the “robotic field geologist”, where a

rover was used instead of an astronaut team (Lindemann et al., 2006). Landers,

such as NASA’s InSight lander (2018) (InSight Mission Overview, 2018), are

stationary and their exploration capabilities are limited to the landing site.

Hoppers and probes have been used in asteroid landing and sample collection, for

example in ESA’S Rosetta mission and Philae lander (2004) (Ulamec et al., 2006,

2016). The complexity of rovers for planetary exploration means that to date there

have only been seven successful missions, detailed in Table 2.2.

An exploration rover consists of the following subsystems: (a) instrumentation, (b)

communications, (c) on board data handling (OBDH), (d) guidance, navigation and

control (GNC), (e) power, (f) thermal, (g) chassis & structures (e.g. camera mast,

arm), (h) locomotion including the suspension (Sellers, 2005). A question arises as

to how we can categorize the different configurations and what a meaningful

baseline design looks like. To this end, a taxonomy is presented in Table 2.1 with

regards to locomotion method (mobility type), suspension type, steering system

configuration and chassis articulation.

Table 2.1: Rover Taxonomy

Criterion Type Example

Mobility

Continuous

Wheeled
Tracked
Crawling
Tumbling

Discrete Legged

Hybrid
Wheels on legs
Tracks and wheels
Circulating Wheels

Steering Configuration Wheeled Locomotion

Skid
Coordinated (e.g., Ackerman steering)
Independent (incl. crab steering)
Differential

Suspension

Active/Semi Active
Independent
Dynamic

Passive

Rocker – Bogie
Multiple Rockers
Multiple Bogies
Kinematic (other)
Mass Spring Damper

Chassis Articulation
Articulated (actively or passively controlled)
Fixed

22

2.1.1 Mobility Type

Wheels are very well suited for operating on flat terrain and do not have the

control complexity, energy efficiency and power distribution issues associated

with legged and tracked vehicles (Siegwart et al., 2011; Nie et al., 2013; Reina et

al., 2013). Legs perform better overall at the expense of increased complexity

and power requirements (Bartlett et al., 2008; Siegwart et al., 2011; Nie et al.,

2013; Reina et al., 2013). Tracks perform better on soft terrain than wheels or

legs but have reliability issues and a high power-to-weight ratio (Wong et al.,

2006; Bartlett et al., 2008; Siegwart et al., 2011; Nie et al., 2013; Reina et al.,

2013). Hybrid systems are still in the experimental stage and include wheels on

legs, tracks and wheels and circulating wheels. The most popular hybrid system is

the combination of wheels and legs, as it combines the efficiency of wheels with

the adaptability on different terrains of legs (Siegwart et al., 2011; Nie et al.,

2013). The number of wheels is also an important consideration. Three wheels are

the minimum for static stability (Siegwart et al., 2011). The number of wheels is

usually four or six; eight or more wheels are cumbersome and difficult to control.

Four wheels have reduced motion resistance, power requirements, and design

complexity, and can be actuated with as little as two motors. Six wheels are

generally better for traversing obstacles, reducing the pressure at each wheel and

maintaining a smooth chassis pitch adjustment (Siegwart et al., 2011).

2.1.2 Steering Configuration

An important design aspect is the steering configuration. For planetary exploration

rovers, all wheels are usually driven (actuated by a motor), and at least some of

them are steered (an additional motor is added to change where the wheel is

pointing). In independent (or explicit) steering each wheel is driven and steered

with a dedicated motor assembly; this increases the ability of the rover to

manoeuvre but also increases the overall complexity (Shamah, 1999). When each

wheel is driven and steered, crab steering is achieved: all wheels point in the

same direction by the same angle and the rover can move sideways. In skid

steering, each set of wheels on the left and right sides of the rover is

independently powered and a zero-turn radius is possible (Siegwart et al., 2011).

Skidding increases the traction of the robot but requires more power and imposes

considerable stress on the chassis and the wheels (Siegwart et al., 2011).

23

Ackerman steering is the most well-known example of coordinated steering, used

in commercial automobiles and the hobby robotics market but requires a turning

diameter that is larger than the vehicle, thus making it unsuitable for mobile robot

exploration (Siegwart et al., 2011).

A wheeled mobile robot (WMR) with differential steering has the advantage of

being able to turn on the spot (Campion et al., 2008; Cook, 2011; Siegwart et al.,

2011). The wheels on one side of the robot are controlled and are always actuated

with the same speed, in contrast with the skid steering method (Siegwart et al.,

2011). By coordinating the two different speeds (left and right wheel speed), the

robot can turn on the spot, move in a straight line or move in a circular path

(Campion et al., 2008; Cook, 2011; Siegwart et al., 2011). Mobile exploration

robots most frequently use this type of steering in practice or experimental

designs (Siegwart et al., 2011; Mateo Sanguino, 2017).

The mobility type and steering configuration also influence whether the rover is

holonomic or not and this is something that impacts how the rover is controlled,

a point that will be discussed in 2.3.1. A system is holonomic if the controllable

degrees of freedom are equal to the total degrees of freedom (Siegwart et al.,

2011). A differentially driven WMR is always non-holonomic because its

controllable degrees of freedom are two (left and right wheel speed), but the

total degrees of freedom are three: x, y, and orientation θ using a Cartesian

reference frame. In practice, a non-holonomic WMR can achieve any feasible pose

x, y, θ but this may require more time and energy than a holonomic WMR because

the robot may need to first orient itself and then move in that particular direction

(Siegwart et al., 2011). Essentially, the non-holonomic constraints arise from the

fact that the robot cannot move sideways (Siegwart et al., 2011). A more general

definition is that a non-holonomic system is a non-integrable one (Siegwart et al.,

2011): there are kinematic constraints that involve the derivatives of the position

variables, and these constraints cannot be integrated to provide a relationship

using only the position variables.

2.1.3 Suspension

The suspension system is how the means of locomotion are connected to the rest

of the rover and influence how the rover interacts with the terrain. For robots

24

with more than three wheels, a suspension system is normally required to maintain

wheel contact with the ground. A passive suspension uses springs and dampers

with a predefined damping ratio to absorb the dynamical loads whereas a semi-

active suspension has a controllable damper but does not introduce any additional

energy into the system (Dixon, 2007; Savaresi et al., 2010). An active suspension

uses a powered actuator to actively control the damping ratio; energy is now

introduced into the system (Dixon, 2007; Savaresi et al., 2010). In terms of

performance, response time and reduction of impulse forces, active suspensions

are superior; however, they are costly, complex and require a dedicated power

supply (Dixon, 2007; Savaresi et al., 2010).

A further distinction is made between kinematic and dynamic suspensions

(Wettergreen et al., 2010; Reina et al., 2013). Dynamic suspensions use springs,

torsion tubes, dampers, and high-speed actuators to adjust the damping ratio.

These are used when a fast response to comply with the terrain is needed.

Kinematic suspensions use freely pivoting joints with unsprung and undamped

passive linkages, and they are well suited to slow-moving vehicles.

The speed of a planetary rover is less than1 5 cm/s (Biesiadecki et al., 2007; Mateo

Sanguino, 2017) and in planetary mobile robotics, if a suspension is chosen, it will

probably be a kinematic one (Reina et al., 2013). In fact, below a speed of about

8 m/s, sprung suspensions are an impediment to mobility since they change the

force each wheel exerts on the ground, as obstacles are negotiated (Reina et al.,

2013). The simplest approach to suspension suitable for low speeds and not

significantly uneven terrain is to utilise the flexibility of the wheel by using a

deformable tyre made of soft rubber for the wheel (Siegwart et al., 2011)

The suspension most often used in the successful missions to date is the rocker-

bogie (Lindemann et al., 2005; Reina et al., 2013), Figure 2.1. The rocker-bogie

is a passive, kinematic suspension that keeps all wheels in contact with the surface

at all times and no wheel sinks more than the rest (Lindemann et al., 2005). There

are three main components: the rocker, the bogie, and the differential, Figure

2.1. The differential is a passive, motion-reversal joint that constrains the two

sides to equal and opposite motion and keeps the rover level. The rocker-bogie

1 For comparison, the average speed of a common garden snail is 1.3 cm/s.

25

suspension can be adapted for four wheels by using a rocker and a pivoting joint

for each side, connected with a differential. Another variation is the three-bogie

system used in the ExoMars Rosalind Franklin rover; each wheel pair is suspended

on a pivoted bogie (Patel et al., 2010; Silva et al., 2013).

Figure 2.1: Rocker – Bogie Suspension
(Lindemann et al., 2005)

2.1.4 Chassis

The ability of the rocker-bogie suspension to maintain the average pitch angle

between the two sides is called body averaging. Body averaging is the case where

the two chassis sides are connected via a joint or a linkage (active or passive) to

maintain the average pitch between them. More generally, active articulation of

the chassis transforms the chassis size for different configurations, such as stowing

and driving (Rollins et al., 1998; Wagner et al., 2005) or actively lowering the

chassis and extending its wheel base when drilling (Bartlett et al., 2008;

Wettergreen et al., 2010). Adding actively controlled articulation joints at the

chassis increases the complexity and power requirements and therefore this type

of design is still limited to experimental systems.

2.2 Analysis of Rover Design

A review of the planetary exploration rovers successfully used (Table 2.2) and

selected experimental designs (Table 2.3), focusing on wheeled, legged or hybrid

systems, is presented to provide an overview of ongoing research and to highlight

the different configurations based on Table 2.1. From Table 2.2 and Table 2.3, a

baseline design is then proposed in Section 2.2.3.

26

2.2.1 Flown Exploration Rovers

Table 2.2 presents all the successful rover exploration missions to date. The values

for speed, obstacle height and tilt are the maximum. The first planetary vehicles

were the Apollo Lunar Roving Vehicles (1971, 1972) and the first teleoperated

rovers were the Lunokhod rovers (1971, 1973) (Young, 2007). Since then, research

efforts have mostly focused on developing rovers for Mars exploration: NASA’s

Sojourner rover (1996) (Muirhead, 2004), Mars Exploration Rovers (MER) Spirit and

Opportunity (2003) (Lindemann et al., 2005), Curiosity (2011) (Heverly et al.,

2013) and Perseverance (2020), which is based on the design of Curiosity rover

with upgraded hardware and new scientific instruments (Chu et al., 2017). ESA’s

ExoMars Rosalind Franklin rover (Silva et al., 2013) is scheduled for launch in 2022.

The Rosalind Franklin rover has a wheel walking ability; the rover can lift each

wheel to adjust its attitude and ground clearance and to create a type of walking

ability so that the rover can slowly walk out of adverse terrain, e.g. soft soil

(Michaud et al., 2008; Silva et al., 2013). In July 2020 China launched the Tianwen-

1 mission for Mars, which consists of an orbiter, a lander, and a six-wheeled rover

but no further details are available at this point (Mallapaty, 2020) and so it is not

included. China has also developed a robotic lunar exploration programme. In

December 2013, the rover Yutu (“Jade Rabbit”) landed on the Moon (Sun et al.,

2013) but the rover was unable to move after the end of the second lunar night.

The follow up mission had the same rover design and landed on the far side of the

moon in January 2019 (Jia et al., 2018).

A full-scale size comparison of three generations of NASA Mars exploration rovers

is in Figure 2.2 and the Rosalind Franklin rover is in Figure 2.3.

Figure 2.2: Sojourner (F), MER (L), Curiosity (R)
(courtesy of NASA)

Figure 2.3: Rosalind Franklin
Prototype (courtesy of ESA)

27

In Table 2.2, the maximum speed, obstacle, and tilt may be exceeded in some

cases (e.g., level hard ground with high traction). The maximum object height is

equal to the wheel diameter when using the rocker-bogie suspension. All rovers in

Table 2.2 use wheels and a passive suspension. The maximum speed, permissible

obstacle height, maximum tilt, and weight increase over time. In terms of

operation and autonomy capabilities, the Apollo Lunar Vehicles were operated in-

situ by astronauts (Young, 2007) and the Lunokhod rovers were teleoperated

(Yoshida et al., 2008). All other rovers have a degree of autonomy to explore the

nearby area and that capability is increased with each mission, especially as the

computational efficiency increases (Bajracharya et al., 2008; Correal et al., 2016).

Table 2.2: Planetary Exploration Rovers

Name (Launch) Institution kg
Size
(m)

Locomotion
Steering

Suspension
Speed
(cm/s)

Obstacle
Height
(cm)

Tilt (deg)

Apollo LRV
(1971, 1972)

NASA 210

1.14(h)
x

1.83(w)
x

3.1(l)

4 wheels
Ø51cm

Ackerman
Steering

Passive:
suspension
arms and

torsion bars

360 30

Lunokhod
(1971, 1973)

NPO
Lavochkin

840

1.35(h)
x

1.6(w)
x

1.7(l)

8 wheels
Ø51cm

Skid steering

Passive:
independent

at each
wheel

55.5 n/a

Sojourner
(1996)

NASA 11
0.3(h) x
0.48(w)
x0.65(l)

6 wheels
Ø13cm
6 drive
4 steer

Rocker-Bogie 1
13
15

Spirit &
Opportunity (2003)

NASA 176
1.5(h) x
1.2(w)
x 1.4(l)

6 wheels
Ø25cm
6 drive
4 steer

Rocker-Bogie 4.6
26
16

Curiosity (2011) NASA 900
2.2(h) x
2.8(w)
x 2.8(l)

6 wheels
Ø50cm
6 drive
4 steer

Rocker-Bogie 4.6
50
28

Yutu
(2013, 2019)

CNSA 140
1.5(h) x
1(w) x
1.1(l)

6 wheels
6 drive
4 steer

Rocker-Bogie 5.5 n/a

Perseverance
(2020)

NASA
102
5

2.2(h) x
2.7(w)
x 3(l)

6 wheels
Ø52.5cm
6 drive
4 steer

Rocker-Bogie 4.2
52.5
45

Rosalind Franklin
(2022)

ESA 310
2(h) x
1.1(w)
x 1.2(l)

6 wheels
Ø25cm
6 drive
6 steer

Three Bogies 3.6
25
40

28

2.2.2 Selected Experimental Designs

Table 2.3 presents selected experimental designs to provide an overview of

current research and of the different configurations. The table presents selected

experimental designs for planetary exploration rovers to show the design variety,

especially in comparison with the flown systems in Table 2.2. Historical reviews

such as (Yoshida et al., 2008; Mateo Sanguino, 2017) provide a broad overview of

the development efforts for planetary exploration and include results pre-2008.

Table 2.3: Selected Experimental Designs

Name (Year) Institution kg
Size
(m)

Locomotion
Steering

Suspension
Speed
(cm/s)

Scarab
(2008)

Carnegie
Melon

University
28 1.2 wheelbase

4 wheels
Ø71 cm

4-wheel drive
skid steering

Passive:
Two Rockers
Active body
roll control

6

Nanokhod
(2008)

ESA 3 0.65(h)x0.16(w)x0.24(l)
Two Tracks
skid steering

n/a 0.14

AMALIA
(2010)
(Della Torre
et al., 2010)

Team Italia
for Google

LunarXPrize
30 n/a

4 wheels
Ø21 cm

Passive n/a

SpaceClimber
(2010)

DFKI 23 0.17(h)x0.2(w)x0.85(l)
6 legs

4 DOF each
n/a 17.5

CESAR (2012)
University
of Bremen

13.3 0.5(h)x0.82(w)x0.98(l)
2 hybrid legs

/ wheels
n/a n/a

ATHLETE
(2012)

NASA 300 4(h)x2.75(w)x2.75(l)

6 Hybrid legs
/ wheels
Ø71 cm

6 DOF legs

n/a 83cm/s

Axel (2012) NASA 40 1.5 m × 0.9 m
2 wheels
Ø30 cm

n/a n/a

Cataglyphis
(2015)
(Gu et al.,
2017)

West
Virginia

University
65

1.5(h)
total volume < 1.5m3 6 wheels

Rocker
Bogie

2

Artemis Jr.
(2015)
(Reid et al.,
2015)

CSA 260kg 1.53(h)x1.62(w)x1.47(l)

4 wheels
Ø30 cm

4-wheel drive
skid steering

Passive n/a

SCARAB (Bartlett et al., 2008) is an example of a four-wheeled rover with an

actively transforming chassis. The SCARAB design (Bartlett et al., 2008;

Wettergreen et al., 2010) combines a passive rocker suspension for pitch

adjustment with an active part for chassis transformation, Figure 2.4.

29

The Nanokhod rover (Schiele et al., 2008) is a small, rugged explorer developed

for exploring more environmentally extreme bodies such as Mercury. It is one of

the few examples of tracked locomotion, Figure 2.5. To reduce Nanokhod’s size,

while maintaining its scientific payload, it is tethered to a lander that provides

power, communications, control and navigation commands (Schiele et al., 2008).

Figure 2.4: SCARAB
(Wettergreen et al., 2010)

Figure 2.5: Nanokhod model
(courtesy of ESA)

Space Climber, Figure 2.6, was designed as a small scout for steep slopes up to 40

deg. It has six legs, each with four DOF, for locomotion and a tether is used for

power and commands (Bartsch et al., 2012). CESAR was developed for an ESA lunar

crater robotic exploration challenge (Belo et al., 2012), Figure 2.7. It utilises a

wheel/leg hybrid and an additional module, a repeater, is used for teleoperation.

Figure 2.6: SpaceClimber, 25 deg slope
(Bartsch et al., 2010)

Figure 2.7: CESAR prototype
(courtesy of ESA)

ATHLETE in Figure 2.9 is designed for carrying cargo, hence its large size and

speed; it is a hexagonal platform on six legs and each leg is individually actuated

(SunSpiral et al., 2012; Wilcox, 2012). Each leg has a wheel and the system uses

the locked wheels as “feet” to “walk” when in challenging terrain (SunSpiral et

al., 2012; Wilcox, 2012). The wheels and their actuators are sized for nominal

terrain, which requires less torque and smaller wheel diameter, which results in

a mass saving of up to 25% (Wilcox, 2012).

30

The Axel rover, Figure 2.8, is a two-wheeled tethered robot capable of rappelling

down steep slopes and traversing rocky terrain. (Nesnas et al., 2012). Only three

actuators are used to control its wheels, caster arm, and tether (Nesnas et al.,

2012). Two or more Axel rovers can be combined to form a larger, untethered

system (Nesnas et al., 2012).

Figure 2.8: Axel Rover
(courtesy of NASA/JPL-Caltech)

Figure 2.9: Athlete on a Hill
(courtesy of Nasa/JPL-Caltech)

The Nanokhod rover, the Axel rover and the Space Climber rover are all small

systems that use a tether to connect to the main module. This is a mother-

daughter systems configuration (Nesnas et al., 2012). The mother ship handles

tasks such as long-range communications and onboard scientific analysis and so

the daughter ship is lighter and simpler and is suitable for exploring areas where

a larger rover could not go (Nesnas et al., 2012).

The AMALIA, Cataglyphis and Artemis Jr designs all share certain design elements:

wheels and a passive suspension. The AMALIA rover is a small, four-wheeled rover,

each wheel is directly driven and is connected with an independent suspension to

the main body that has a torsional spring but no damper (Della Torre et al., 2010).

The Cataglyphis rover (Gu et al., 2017) was equipped with a manipulator for

sample collecting and used six wheels and rocker-bogie passive suspension (Gu et

al., 2017). The Artemis Jr. rover has six wheels actuated by only two motors for

locomotion to reduce complexity, mass and cost; it is skid steered and has a

passive suspension (Reid et al., 2015).

Most of the experimental designs in Table 2.3 use skid-steering, in addition to all-

wheel drive. When using skid steering, the traction increases, and the rover can

better negotiate difficult terrain (e.g., loose soil) and achieve a zero-turn radius.

Skidding also requires more power and imposes considerable stress on the chassis

and the wheels. In experimental designs, however, there is more freedom to

31

investigate different means of locomotion and steering. For most cases, the

suspension of choice (when present), is a passive, kinematic one. A trend is

apparent in using hybrid wheel/legged locomotion combining the maturity of

wheels with the versatility of legs, as seen in ATHLETE, CESAR, and Rosalind

Franklin from Table 2.2 and Table 2.3. Of the eight robots participating in the ESA

Lunar challenge (Belo et al., 2012), CESAR was the only one that completed the

mission and used a wheel/leg hybrid. The other robots included wheeled, tracked

and track/wheel hybrids.

2.2.3 Review Summary and Baseline Design

There is a proliferation of experimental designs that shows the intense research

effort over a long period of time, the need to optimise designs, the trial-error

methodology adopted and the unique challenges faced (Nie et al., 2013; Mateo

Sanguino, 2017). There are several designs for planetary exploration rovers;

however, all rovers successfully used in a mission since Sojourner share a similar

design: wheels, passive kinematic suspension (using the rocker-bogie

configuration), independent all-wheel driving and selected wheel steering. The

main difference is the weight, size, and power requirements. With each successive

mission and as technology and launch capabilities advance, the scale and demands

of the objectives are increased as well as the system’s capabilities. Most

experimental designs in Table 2.3 use four wheels, only two use six wheels and

just one has two wheels. Furthermore, a survey of over 100 rovers over the past

50 years (Mateo Sanguino, 2017) showed that 31% had six wheels and 29% had four

wheels and in terms of steering, 23% had four wheels with differential steering

versus 25% that also had four wheels and skid steering,

Therefore, from Table 2.2, Table 2.3 and the subsequent analysis, a rover baseline

design emerges: (a) wheeled locomotion using four to six wheels (b) all-wheel

drive and selected wheel steering, (c) passive suspension, usually the rocker-bogie

system with a differential for steering. Using a passive suspension reduces

complexity and increases reliability: fewer actuators and fewer moving parts

reduce the chance of mechanical failure and the control requirements. A passive

kinematic suspension has the benefits of simplicity, stiffness and a more equal

distribution of weight (Lindemann et al., 2005; Bartlett et al., 2008; Wettergreen

et al., 2010).

32

A simpler design, suitable for simulation and experiments would incorporate the

following characteristics: (a) 4 wheels, (b) differential drive, and (c) passive

suspension. The simplest approach to suspension suitable for not significantly

uneven terrain is to design flexibility into the wheel itself, e.g. by using a

deformable tyre made of soft rubber for the wheel, and not including any other

suspension type (Siegwart et al., 2011). It is this baseline design, without

suspension, that will be used further on in this work for applying the Inverse

Simulation algorithms, as it represents a good analogy of the actual systems

currently used.

2.3 Overview of Guidance, Navigation and Control for
wheeled vehicles

2.3.1 Control for Mobile Robots with a Differential Drive

A wheeled mobile robot is described by a dynamic model and a kinematic model

(Morin et al., 2008), where: q is the system’s configuration vector in the body-

fixed frame, τ is a vector of independent motor torques, H is the invertible mass

matrix, Γ is the combined effect of the Coriolis forces (C), gravitational forces

(G), friction and other damping forces (D) and J(η) relates q from the body-fixed

frame to η in the Earth-fixed frame:

 () () ()+ +

Γ

τ = Hq+C q D q q G η (2.1)

 ()η = J η q (2.2)

The system described by Eq. (2.1) and Eq.(2.2) forms a control system; Eq.(2.1) is

the dynamic model and Eq.(2.2) is the kinematic model (Morin et al., 2008). The

kinematic model on its own is also a control system with η being the state vector

and q the control input vector (Morin et al., 2008). The kinematic model is very

often used on its own to develop control algorithms for wheeled mobile robots, as

it is simpler than the dynamic model, has lower computational requirements, is

easier to implement and the resulting controllers exhibit good performance at

moderate speeds. An additional reason is that depending on the system, the

architecture may not allow the usage of torque or acceleration inputs (Oriolo et

33

al., 2002). From a kinematic viewpoint, the control of a differential drive robot is

equivalent to that of the unicycle (i.e. a vehicle with only one wheel) (De Luca et

al., 2001) and so a lot of the controllers proposed are for unicycles.

There are numerous control methodologies to design the control system, from the

simplest to the most complex; (Aström et al., 2014) provide a thorough historical

review of the general problem of control and (Garcia et al., 2007) an evolution of

robotics research across industrial, service and field applications. Specifically, for

mobile robots, this work (Tzafestas, 2018) provides an overview of control

methodologies, a selection of relevant books and a summary of survey papers.

For vehicles with non-holonomic constraints, which is the case of a differential

driven, wheeled robot, the trajectory following case is relatively simpler to

control compared with the point-to-point motion and position stabilisation (i.e.,

remain at a set point), due to the nature of the non-holonomic kinematics. It was

first established by (Brockett, 1983) that point stabilisation is not achievable with

continuous, constant feedback control that uses only the states. It can however

be achieved by time-varying control laws, discontinuous feedback, or both and

the authors of (De Luca et al., 2001; Oriolo et al., 2002; Morin et al., 2008) provide

intuitive examples as to how this can be circumvented by using time-varying

control laws, discontinuous feedback or both control laws.

At its most fundamental, the control on a plane of a mobile robot is achieved by

defining its heading and forward velocity (Cook, 2011). For a differentially driven

robot, this is equivalent to controlling the velocity of the left (leftv) and of the

right side (rightv) (Cook, 2011); these two velocities are the system’s two control

inputs. To achieve a particular heading and position the rover can (a) turn while

travelling (i.e. spread the rotation uniformly while moving at the maximum speed)

or (b) turn then travel (i.e. turn in place using the maximum rotational speed and

then move forward using the maximum speed) (Cook, 2011). The time required to

achieve the desired heading and position is shorter for the turn-then-travel

strategy and the greater the change in heading is, the faster it is compared to the

turn-while-travelling strategy (Cook, 2011). The computed control method (Cook,

2011) assumes that the heading and velocity cannot change instantaneously and

34

the steering system to change them behaves as a second-order system with a

specified natural frequency and damping ratio (Cook, 2011).

Two well-known and widely used methodologies to achieve mobile robot control

is PID (Proportional Integral Derivative) control and pole placement control. These

methods are extensively described in the literature, such as (Skogestad et al.,

2005; Ogata, 2008). A common element of all these methods is that they are

usually applied to the kinematic model of the robot, without considering the

dynamics, and are based on linear control theory. The performance of a PID

controller, a pole placement controller and a sliding mode controller when applied

to a four-wheeled differential drive robot were compared in (Worrall et al., 2006;

Worrall, 2010). The performance of the pole placement controller was superior in

terms of the tracking time and error for a given trajectory, but it did require a

linearised model of the system (Worrall, 2010).

Overall, the standard controllers used are: proportional plus integral controller

and its variations, Lyapunov function-based controller and computed control

torque (Tzafestas, 2018). More advanced controllers include feedback

linearisation-based controllers, adaptive and robust control (Tzafestas, 2018).

Adaptive control is suitable for systems that involve slowly varying parameters or

uncertainties/disturbances (Tzafestas, 2018). Robust control, such as sliding mode

control, is applied in cases where there are strong parameter variations or

uncertainties and can face fast disturbances, variations and unmodelled

characteristics (Tzafestas, 2018).

Another overview and comparison of commonly used controllers for path and

trajectory following that employ the kinematic model can be found in (De Luca et

al., 2001; Morin et al., 2008; Paden et al., 2016). These focus on feedback

linearisation control and Lyapunov based control design. One of the first results

for trajectory tracking that proposes a control rule for determining the linear and

the rotation velocity and proves its stability using a Lyapunov function is

(Kanayama et al., 1990).

35

Feedback linearisation is applied to single-input and output, control affine2

systems in Eq.(2.3), where x is the state (m states), u the control input and y the

output:

 () () (), u y h= + =x f x ξ x x (2.3)

Feedback linearisation transforms the system to an equivalent linear one, thus

allowing the usage of linear control methods. There are two types of feedback

linearisation: input-output linearization and input-state linearisation (Slotine et

al., 1991; Khalil, 2003).

In input-output linearisation, there is a direct, linear relationship between the

output and the input and the state equation is partially linearised (Slotine et al.,

1991; Khalil, 2003). In input-state linearisation, the system is fully transformed

into an equivalent linear system, i.e. both the state and output equation (Slotine

et al., 1991; Khalil, 2003). Non-holonomic systems, however, such as a

differentially driven robot, cannot be input-state linearised but can be input-

output linearised (Yun et al., 1992), another reason for using the kinematic model.

For single-input and output systems, there is a ready form of input-output

linearisation (Slotine et al., 1991; Khalil, 2003). For multi-input and multi-output

(MIMO) affine systems, with an equal number of inputs and outputs (square

systems) (Slotine et al., 1991; Isidori, 1995, 1999) provide a generalisation, but

the process is far more involved. The results for single-input systems have been

adapted for differential drive robots and then the trajectory tracking control was

solved for the resulting input-output linearised systems, using conventional linear

state-feedback control (Tzafestas, 2018).

The method of feedback linearisation (input-output) for trajectory tracking has

received particular interest in the robotics community since it transforms the

input-output relation to a linear one and the developed controllers exhibit good

results (i.e. small errors when following the trajectory and asymptotic stability

2 A system is control affine when it is linear in the control input, i.e. linear in the action but nonlinear

with respect to the state (LaValle, 2006).

36

proved via Lyapunov theory), such as in (De Luca et al., 2001; Oriolo et al., 2002;

Morin et al., 2008; Blažič, 2011; Rodríguez-Seda et al., 2014; Paden et al., 2016).

Lyapunov based controller design is based on the concept of selecting a feedback

control u and then selecting a Lyapunov function3 V to prove that the closed-loop

dynamics are stable, as defined by Lyapunov theory (Slotine et al., 1991; Khalil,

2003). This can be done in two ways for the nonlinear system, where the state is

mx and the input is ku (Slotine et al., 1991; Khalil, 2003).

()

()

x = f x,u

f 0,0 = 0
 (2.4)

The first technique is to select a control ()u x and then substitute it so that the

closed-loop dynamics are:

 ()()x = f x,u x (2.5)

Then, a candidate Lyapunov function () : mV  →x is selected and the next step

is to prove that the derivative of ()V x along the trajectories of Eq.(2.4) is at least

negative semi-definite, thus validating the original choice of ()u x .

 () 0
V V

V
 

= = 
 

x f x,u
x x

 (2.6)

The second technique selects first a Lyapunov candidate function ()V x and then

attempts to find a control law ()u x so that ()V x is indeed a Lyapunov function.

This process can be applied to essentially all systems in the form of Eq.(2.5) but

the real issue is finding the Lyapunov function. There is no general method for

doing so, though there are guidelines for constructing the Lyapunov function, such

as the variable gradient method (Slotine et al., 1991; Khalil, 2003). None of these

3 A Lyapunov function ()V x is defined as a function that is continuously differentiable, ()0 0V = ,

() 0 V   x x 0 and () 0V x (Slotine et al., 1991; Khalil, 2003).

37

methods however guarantee that a suitable ()V x will be found (Slotine et al.,

1991; Khalil, 2003). It is a trial-and-error method guided by intuition, experience

and physical insights into the system (Slotine et al., 1991; Khalil, 2003).

Sometimes it is possible to know in advance that a Lyapunov function exists for

that particular system, so at least the search is not hopeless (Khalil, 2003).

An adaptive controller is one whose parameters are variable and there is a

mechanism for adjusting these parameters based on signals from the system

(Slotine et al., 1991). There are two main approaches for adaptive control: the

model reference adaptive control (MRAC) and the self-tuning method (ST) (Slotine

et al., 1991). In MRAC control, the parameters are updated so that the tracking

errors between the plant output and the reference model output are minimised

(Slotine et al., 1991). In ST systems, the parameters are updated to minimise the

data fitting error in input-output measurements (Slotine et al., 1991). ST

controllers are more flexible compared with MRAC controllers but their stability

and convergence are more difficult to guarantee (Slotine et al., 1991). Usually,

however, the adaptive control techniques require some linearisation of the

dynamics around an operational set-point (Slotine et al., 1991; Tzafestas, 2018).

Sliding mode control (Slotine et al., 1991) was originally applied to a single-input

single-output nonlinear system, though it can be extended to multi-input and

output systems. Sliding mode control has the benefit of reducing the system to a

series of first-order ordinary differential equations and can handle the uncertainty

at a trade-off against performance. Examples of sliding mode control methods

that use in some form the kinematic and dynamic model for trajectory tracking of

two-wheeled mobile robots include (Solea et al., 2009; Hwang et al., 2013; Tian

et al., 2014).

Model predictive control (MPC) based methods are used when a high fidelity model

is available (kinematic or dynamic) and emergency or aggressive manoeuvres may

need to be performed (Martins et al., 2008; Paden et al., 2016; Sharma et al.,

2017; Škrjanc et al., 2017). The approach is often to solve the control problem

over a short time horizon, apply the control inputs in an open loop and while

executing, solve the problem for the next time interval (Paden et al., 2016). MPC

as a control technique requires the solution of a (convex) quadratic program at

38

each step. For this reason, MPC methods are computationally expensive to

perform online and model linearisation is often used in an attempt to simplify the

process (Paden et al., 2016; Sharma et al., 2017; Škrjanc et al., 2017). As the

computational capabilities of the onboard CPUs improve, the use of MPC methods

is also expected to increase over time.

2.3.2 GNC for Planetary Rovers

While a planetary rover is essentially a mobile robot and thus the control methods

are those presented in the previous section, there are several very specific

challenges for a rover operating on a distant planet: time delays, uncertainty over

the terrain type and varied terrain (e.g., loose sand, hard soil, rocks, varying

slopes), unknown dynamic environment, limited communication bandwidth and

high latency, minimum or zero capability of ground control intervention (Quadrelli

et al., 2015; Correal et al., 2016).

The Apollo LRVs were operated by astronauts and the Lunokhods were

teleoperated; Earth operators sent driving commands in real-time. All other rovers

have autonomous navigation capabilities: Earth operators upload instructions for

the rover to follow and the rover can also plot its path and place its instruments

on a selected target using the onboard navigation software (Bajracharya et al.,

2008; Correal et al., 2016). Early systems devoted most of their power to

computing rather than to mobility (Yoshida et al., 2008). Later systems have a

more balanced approach and future systems will likely devote most of their power

to mobility (Yoshida et al., 2008).

The control of the successful NASA planetary rovers (Table 2.2) is achieved using

a combination of non-, semi-, and fully autonomous operating modes. For the non-

autonomous mode (directed driving), operators upload instructions for the rover

to follow and then evaluate the results (Bajracharya et al., 2008; Correal et al.,

2016). The distance travelled can be over 100 m, with limited correction for errors

and uncertainties while driving (Wright et al., 2006; Biesiadecki et al., 2007;

Bajracharya et al., 2008).

In the case of the semi- and fully autonomous modes, the rover can be given a

target and a path made up of a series of waypoints. The onboard navigation

39

software is then used to follow the path and overcome any unforeseen obstacles

(Bajracharya et al., 2008; Correal et al., 2016). The rover can also analyse terrain

images, detect hazards, and plot its path for a limited number of motions using

the onboard navigation software. Semi-autonomous is when the rover is

commanded to travel to a particular destination and the on-board systems

evaluate the path and control inputs to navigate to the destination (M. W.

Maimone et al., 2006; Biesiadecki et al., 2007; Maimone et al., 2007; Bajracharya

et al., 2008; Woods et al., 2014; Arvidson et al., 2017).

When in fully autonomous mode, the rover receives very limited commands and

selects areas of interest on its own, based on existing parameters. In this case,

the rover must select a target destination, choose suitable waypoints by analysing

stereo images, plot a safe path and finally execute the movement. This is a very

slow process, necessary to ensure the rover’s safety (Maimone et al., 2006;

Biesiadecki et al., 2007; Bajracharya et al., 2008; Quadrelli et al., 2015; Correal

et al., 2016).

An overview of the mobility trends for the Curiosity rover during its first seven

years of operation is in (Rankin et al., 2020). The average drive distance is 28.9 m

and the total distance travelled is 21,318.5 m (Rankin et al., 2020). Curiosity

attempted 738 drives, of which 622 drives were completed successfully and 116

drives were stopped by the onboard fault-protection software (Rankin et al.,

2020). The maximum rotation rate of each wheel is 0.168 rad/s, which is equivalent

to a maximum speed of 4.2 m/s, though the wheel speed can vary depending on

the terrain (Rankin et al., 2020). The Mars 2020 Perseverance rover also utilises

similar modes of operation (Barfoot et al., 2011; Correal et al., 2016).

The designs developed for the ESA ExoMars Rosalind Franklin rover have addressed

the issue of control and the degree of its autonomy by including an element of

autonomous control within the guidance paradigm (Silva et al., 2013; Woods et

al., 2014; Correal et al., 2016). The Rosalind Franklin rover has two main

navigation functions: one for short range and one for long range (Silva et al.,

2013). For the short range, the rover drives from one waypoint to the next without

updating its information (Silva et al., 2013). For the long range, the rover has

moved several waypoints but still utilises past acquired information to refine its

movement (Silva et al., 2013). There is also a differentiation between normal

40

traverse and drill placement, due to the specific requirements of drilling (Silva et

al., 2013).

Allowing the rover to determine its path to a user-specified destination is more

efficient as the motion of the vehicle is controlled locally and does not rely on

continuous commands being received remotely (Maimone et al., 2006; Biesiadecki

et al., 2007; Maimone et al., 2007; Bajracharya et al., 2008). Considering the

unknown environment and the time delays, it takes a significant amount of time

to implement manoeuvres in advance and drive the rover to points of interest.

However, the resulting systems are more complex and need additional onboard

power and computational capabilities (Madison et al., 2007; Barfoot et al., 2011;

Howard et al., 2012; Correal et al., 2016). They also depend on the accuracy of

the method used to select and execute the rover’s trajectory (Maimone et al.,

2006; Biesiadecki et al., 2007; Bajracharya et al., 2008; Quadrelli et al., 2015),

which may accumulate significant error over time.

2.3.3 Trajectory Generation

A necessary element of GNC is motion planning: the generation of the desired

trajectory that will enable the robot to reach its goal destination efficiently and

safely (Siegwart et al., 2011). Motion planning provides the reference condition

that will be fed into the guidance and then into the control system (Howard et

al., 2007; Siegwart et al., 2011; Quadrelli et al., 2015; Paden et al., 2016; Wolek

et al., 2017). The authors of (Howard et al., 2007) define trajectory generation

for mobile robots as the problem of finding a feasible motion that will permit to

robot to move from an initial state to a final state, given some model and a number

of constraints. This results in a nonlinear differential equation describing an

optimal control problem that is often solved using numerical and optimisation

methods. The methods for solving the trajectory problem can be broadly

categorised as (a) algorithms that produce a motion assuming a flat terrain and

(b) algorithms that produce a discrete group of motions over a rough terrain,

without any or few connecting in between motions (Howard et al., 2007). This is

very much an open research field, and an overview is provided here for context.

In general, trajectory (path) generation starts from a selection of waypoints and

each waypoint is defined using Cartesian coordinates x-y-z and they represent the

41

safe points through which the robot must pass (Fossen, 2011). These points form

a group of waypoints that consists of:

 () () () 0 0 0 1 1 1, , , , , , , , ,n n nwpt x y z x y z x y z= (2.7)

From this group, a trajectory (path) must be generated that connects one

waypoint to the next. To do so a curve must be fitted, and the simplest case is

that of connecting straight lines and circular arcs, Figure 2.10. In this case, a

straight line connects two waypoints ()1 1,i ix y− − , (),i ix y and for turning, a circle of

radius Ri is inscribed between two successive straight lines to form a curved path

(Fossen, 2011). This choice is motivated by the result (Dubins, 1957) that “The

shortest path with minimum time between two configurations of a particle moving

with a constant forward speed is a path formed by straight lines and circular arc

segments”. A path that consists of straight lines and circular arcs is called a Dubins

path (Fossen, 2011).

Figure 2.10: Straight lines & inscribed circles for guidance (Fossen, 2011)

There are two main drawbacks to this method (Howard et al., 2007; Fossen, 2011).

First, the desired yaw rate is zero along the straight line and constant (non-zero)

on the circle arc; thus, the yaw derivative is not continuous during the transition

from the straight line to the circular arc. Second, the arc connecting two

42

successive waypoints may not necessarily pass through the two waypoints but in

their vicinity; this may or may not be acceptable depending on the application.

If a continuous curve is desired, then a suitable method must be selected that

ensures this, such as using a polynomial, splines (e.g. cubic splines, Hermite

polynomials) or Bezier curves (Moler, 2004; Howard et al., 2007; Fossen, 2011;

Lekkas et al., 2014). A Bezier curve and its generalisation (B-splines) that is fitted

through n waypoints is only guaranteed to pass through the first (i=0) and last

waypoint (i=n) (Moler, 2004; Lekkas et al., 2014).

There is a unique polynomial in x of a degree less than n, that passes through all

n points defined by Eq.(2.7) (Moler, 2004). The number of data points is also the

number of coefficients, although some of the leading coefficients might be zero,

so the degree might be less than n (Moler, 2004). There are many different

formulas for the polynomial, but they all define the same function. This

polynomial is called the interpolating polynomial because it exactly reproduces

the given data (Moler, 2004). The more data points that are used in the

interpolation, the higher the degree of the resulting polynomial. Such a

polynomial tends to show excessive variations between waypoints and overshoots

them while guaranteeing that the graph will pass through each waypoint used

(Moler, 2004). There is a trade-off between a good fit and a smooth, well-behaved

fitting function. For this reason, full degree polynomial interpolation for a large

number of waypoints (usually more than five) is hardly used in practice (Moler,

2004). Common methods of fitting to n points a unique polynomial of degree n-1

are Newton’s Interpolating Polynomials and Lagrange Interpolating Polynomials

(Chapra et al., 2001; Moler, 2004).

A way to solve this problem of a high degree polynomial through multiple

waypoints is to fit the polynomial through every few waypoints and use

appropriate boundary continuity conditions. This process is known as piecewise

interpolation can be done using linear interpolation, splines and Bezier curves as

well as other suitable, higher degree polynomials (Moler, 2004).

For a planar moving robot, the faster way to travel through several waypoints is a

path of connecting straight lines and circular arcs (Cook, 2011; Wolek et al.,

2017). In the ideal case where the forward speed is fixed and there are few

43

disturbances, the fastest path is the Dubins path already described (Wolek et al.,

2017). In practice, the robot cannot move forward or turn always at a constant

speed and there are speed limits on the surge and yaw velocity, therefore the

Dubins path with a variable speed is constructed (Wolek et al., 2017). In that case,

a forward speed profile is assigned to the straight segment and a yaw speed profile

to the turning segment. Additionally, a robot that is differentially driven can turn

on the spot. There are two contrasting strategies for moving between waypoints.

The first is the turn while travelling method (Cook, 2011): the rotation is spread

uniformly over the entire trajectory while travelling at a constant forward speed.

The second is the turn then travel or stop and turn method (Cook, 2011): the robot

turns on the spot to achieve the desired heading and then travels forwards to the

next waypoint, i.e. a Dubins path, with a circular arc of zero radius. The time

required to achieve the desired heading and position is smaller for the turn-then-

travel strategy and the greater the change in heading is, the faster it is compared

to the turn-while-travelling strategy (Cook, 2011).

Beyond considerations such as the shortest path and minimum time to travel,

other issues come into play when designing a trajectory (Fossen, 2011; Siegwart

et al., 2011): obstacle avoidance, energy use minimisation, onboard

computational power constraints, environmental disturbances, speed limits,

curvature limits. Planetary rovers face additional challenges: time delays,

uncertainty over the terrain type and varied terrain (e.g., loose sand, hard soil,

rocks, varying slopes), unknown dynamic environment, limited communication

bandwidth and high latency, minimum or zero capability of ground control

intervention through teleoperation (Quadrelli et al., 2015; Correal et al., 2016).

A historical review of trajectory (or path) generation methods and challenges for

mobile robots can be found in (Howard et al., 2007; Paden et al., 2016) and

specifically for planetary mobile robots in (Quadrelli et al., 2015; Correal et al.,

2016). The question of how to design a suitable trajectory from a set of waypoints

is very specific to the task at hand and the required application, as the next

examples from the literature show.

The authors of (Yongguo Mei et al., 2006), develop a power model for a mobile

robot and then examine the best way to manage the speed of a group of robots to

maximise the travelling distance, under time and energy constraints. The authors

of (Connors et al., 2007) use splines to generate a trajectory that avoids obstacles

44

in a cluttered environment. In (Liu et al., 2011, 2014), the authors propose an

algorithm that generates a Bezier curve between every two successive waypoints,

with appropriate continuity conditions, that is optimised for energy consumption,

based on the arrival time and velocity at each waypoint. Using monotone cubic

Hermite splines (Lekkas et al., 2013, 2014), a path between successive waypoints

is interpolated, allowing for better shape control and avoiding excessive variations

between waypoints. A real-time smooth trajectory generation based on piecewise

Bezier curves for obstacle avoidance is proposed in (Renny Simba et al., 2016),

albeit for a teleoperated robot in an indoor environment. (Kolter et al., 2009)

develop an algorithm for designing a smooth trajectory using cubic splines

optimisation. The method optimises the initial waypoint positions (within a user-

specified limit), while also obeying additional constraints on velocity,

acceleration, kinematics and obstacles and was used for designing the trajectory

of a four-legged robot (Kolter et al., 2009). All these methods were developed

under the assumption of planar movements.

All of the current NASA Mars Rovers (Spirit & Opportunity, Curiosity, Perseverance)

use the same algorithm for computing a path, the GESTALT local planner (Grid-

based Estimation of Surface Traversability Applied to Local Terrain), designed by

NASA/JPL (Biesiadecki et al., 2006; M. W. Maimone et al., 2006; Carsten et al.,

2009; Correal et al., 2016). The planning strategy consists of a set of routines that

decide the next best direction for a rover to move, given environment & terrain

sensor data and the final location or waypoint (Wright et al., 2006; Carsten et al.,

2009; Correal et al., 2016; Rankin et al., 2020). A set of candidate arcs (short

paths from the current rover location) is then produced and considered. These

paths can be straight or arc trajectories, depending on mechanical characteristics

and mission constraints (Wright et al., 2006; Carsten et al., 2009; Correal et al.,

2016; Rankin et al., 2020). Nominally, the arc set consists of forward and

backward arcs of varying curvature, as well as point turns to a variety of headings

(Wright et al., 2006; Carsten et al., 2009; Correal et al., 2016). Each arc is

evaluated based on three criteria: avoiding hazards, minimizing steering time, and

reaching the goal (Wright et al., 2006; Carsten et al., 2009; Correal et al., 2016;

Rankin et al., 2020). The algorithm then chooses from among the safe arcs one

that will best ensure the rover reaches the goal (Wright et al., 2006; Carsten et

al., 2009; Correal et al., 2016; Rankin et al., 2020).

45

2.3.4 Review Summary

From the control methods presented in this chapter, there is a need for

incorporating the dynamic model into the controller for increased accuracy.

Methods that use the model are limited by issues such as linearity, affine in the

control, number of inputs and outputs and non-holonomic constraints.

Overall, rovers drive from one waypoint to the next and for shorter traverses of a

few meters, the rover can move autonomously, in the context already described.

The two main strategies can be summed up as the following (Correal et al., 2016).

The rover can go to a given location by executing a pre-defined path without any

corrections (Correal et al., 2016), similarly to open-loop control (Silva et al.,

2013). The rover can also move autonomously to a given location by sensing the

environment and making its own decision (Correal et al., 2016). Finally, there are

hybrids of these two strategies, such as having the first part of the trajectory

already planned and the remaining distance travelled autonomously (Correal et

al., 2016). For the Curiosity rover, the average drive distance is 28.9 m, the

shortest drive is 2.6 cm and the longest is 142.5 m (Rankin et al., 2020).

Chapter 3 Review of Inverse Simulation

In this chapter, a review of the existing applications of Inverse Simulation, the

two main implementations, and the application considerations are presented.

Inverse Simulation is a method that uses a representative model of the system and

calculates the control inputs necessary to produce the desired response. This

desired response is defined in terms of the system’s output variables, represented

as a time history. It is a model-based, numerical, iterative method, where step

changes in the various controls are applied until the response matches the desired

outcome within the desired tolerance (Murray-Smith, 2000; Thomson et al., 2006).

The inverse simulation techniques can be potentially used in almost all areas

where the direct simulation4 technique is applicable. Then, inverse simulation can

be defined as a process where computer simulation methods are used to find a set

of unknown input variables that realize a set of known and required model output

responses (Du, 2013).

Inverse Simulation has two main requirements for its operation: the desired output

and a suitable model of the system. A general nonlinear system can be used with

m state equations, p output equations and k control inputs in the usual state-space

form. The control inputs calculated from Inverse Simulation are nominal for the

given model and output. Accordingly, the output from Inverse Simulation and the

corresponding states are also the nominal ones for the given model and desired

output. Essentially, the system dynamics – in the form of a representative model

– and desired outputs are used to drive the system to the desired output, instead

of applying an additional external controller.

Inverse Simulation considers how the system responds over the course of the

complete output manoeuvre and there is an emphasis on how the desired response

is achieved. This is especially pertinent to the case of nonlinear systems, where

there might be singularities along the course of the manoeuvre and the nonlinear

mathematical model can only be solved numerically.

4 This is the forward process where the behaviour (simulation output) of a system under design is

found from a given model structure and a set of model input variables

47

Compared with other methods for nonlinear system inversion, such as feedback

linearisation, Inverse Simulation numerically inverts the system model through a

series of discretised time points (e.g., using the Newton-Raphson method)

whereas conventional methods invert the model in advance and have the

advantage of being suitable for a wide variety of systems with model

discontinuities, discontinuities in the manoeuvres, control and saturation

constraints, non-minimum phase systems and systems not affine in the control

(Murray-Smith, 2000; Thomson et al., 2006; Lu et al., 2008; Ιreland et al., 2017).

3.1 Review of Inverse Simulation Applications

Applications of Inverse Simulation are so far predominantly within the aerospace

domain. The application to rotorcraft flight control, compound helicopters and

more generally aircraft control has been a major area of research (Hess et al.,

1991, 1993; Rutherford et al., 1996; Murray-Smith, 2000; Avanzini et al., 2001,

2013; Bottasso et al., 2001; Su et al., 2002; Thomson et al., 2006; Lu et al., 2007;

Karelahti et al., 2008; Blajer et al., 2009; Bagiev et al., 2012; Ferguson et al.,

2016; Kim et al., 2020). Inverse Simulation is used in these cases to (a) produce

the required control inputs for specific flight manoeuvres, (b) investigate the

handling qualities of the system, (c) investigate whether these manoeuvres are

achievable, and (d) investigate the control commands the pilot must and for pilot

training. Inverse Simulation has also been used as a model validation method

(Bradley et al., 1990; Thomson et al., 1990; Gray, 1992; Rutherford et al., 1996;

Murray-Smith, 2000; Avanzini et al., 2010, 2017).

The method has also been applied to autonomous underwater vehicles (Murray-

Smith et al., 2008; Murray-Smith, 2014); unmanned aerial vehicles as the design

basis of flight control systems (Murray-Smith et al., 2015); for the design and

trajectory evaluation of hypersonic vehicles (Forbes-Spyratos et al., 2014); for

developing a method to estimate the fatigue of aircraft (Öström, 2007); for

evaluating the proper control actions to achieve an orbit change of a plane (de

Divitiis, 1999) and for investigating the handling qualities of a manually controlled

rendezvous and docking system (Zhou et al., 2017). Finally, Inverse Simulation has

also been used for fault detection using the nominal control inputs calculated from

Inverse Simulation (Ireland et al., 2017a; Ireland et al 2017b).

48

From this review, Inverse Simulation applications can be categorized into two

main categories. First, is the a priori evaluation of the required control inputs for

a given, desired output. This process finds the time histories of input variables

(i.e., the control inputs) that, for a given model, match the desired output

response. When using a dynamic and kinematic model, such as the general

described in Eq.(2.1) and Eq.(2.2), the control inputs found are the forces or

torques needed to produce desired motions. This approach can also be used to

design and test the feasibility of the desired output and to investigate the model

parameters.

Second, as a method of validation and fault detection. In this case, the actual

system output is passed on to the Inverse Simulation scheme, which in turn

produces the corresponding control input. Then, the inputs from Inverse

Simulation can then be used to reconstruct the actual system input signals.

To deal with unforeseen disturbances (Bagiev et al., 2012) use a receding horizon

predictive approach for applications involving aggressive helicopter manoeuvres.

Another approach is the work by (Avanzini et al., 2013), which introduces an

element of adaptability to the Inverse Simulation algorithm applied to rotorcraft

control based on a model predictive control scheme. In (Du, 2013) an optimisation

approach is developed that given a set of output variables, along with the

distributions of a set of uncertain input variables, the distributions of the unknown

input variables are obtained. This method is then applied to an impact problem

involving two rigid bodies to perform traffic accident reconstruction (Du, 2013).

There are two main implementations for Inverse Simulation: Differentiation

(Thomson, 1987; Bradley et al., 1990; Thomson et al., 1990, 2006; Rutherford et

al., 1996; Murray-Smith, 2000; Lu et al., 2008; Murray-Smith et al., 2015) and

Integration (Hess et al., 1991, 1993; Rutherford et al., 1996; Murray-Smith, 2000;

Su et al., 2002; Thomson et al., 2006; Karelahti et al., 2008; Lu et al., 2008;

Blajer et al., 2009; Du, 2013; Forbes-Spyratos et al., 2014; Kim et al., 2020). As

can been for these examples, the Integration method is the more popular of the

two.

The underlying algorithm (Figure 3.1) is similar for both methods but the method

of convergence to the control input is different.

49

Figure 3.1: Inverse Simulation Flowchart

The basic Inverse Simulation algorithm in Figure 3.1 employs a Newton-Raphson

scheme and a Jacobian that can be approximate (e.g., based on finite differences)

or more rarely analytical for solving the nonlinear model equations and computing

the outputs, which are then compared with the desired. It runs through a time

interval that is discretised N times using the time step dt; this is the outer loop.

The inner loop runs until convergence is achieved based on pre-defined tolerance

or until the maximum number of iterations has been exceeded (see also Appendix

B, and C for the algorithm steps).

For the Differentiation method, a numerical differentiation scheme is used, and

the convergence is based on the system’s state and output equations. The

acceleration terms in the equations of motion are estimated by backward

Generate Time Histories of Desired
Outputs

Initial Estimates of
Control Inputs and States

Compare Outputs to Desired

Within Tolerance?

Trajectory Complete?

Exit

Inner Loop:
Go to Next Inner Iteration,
increase inner counter n

Run Model

Yes

No

No

Yes

Previous Control Signals
 Desired Outputs

Update Control Inputs

Save Control Inputs, States, Outputs

Outer Loop:
Go to Next Time Step & Update

Desired Outputs
Increase outer counter i={1,…N}

50

differencing (or another appropriate numerical differentiation formula) and the

differential equations effectively become algebraic. The Newton-Raphson

algorithm then uses these equations directly in the error function rather than the

difference between desired and actual response used in Integration methods. For

the Integration method, a numerical integration scheme is used, and the

convergence is based on whether the system’s output matches the desired.

For both methods, existing research has been mostly restricted to the case of

equal numbers of inputs and outputs because the Jacobian is a square matrix and

this simplifies the calculations (Hess et al., 1991, 1993; Murray-Smith, 2000;

Thomson et al., 2006; Avanzini et al., 2017). When there are more outputs than

inputs, this is an under-actuated system and a factorisation can be used for the

Jacobian (Hess et al., 1991, 1993; Thomson et al., 2006).

Since the Differentiation method needs the states and outputs, the model must

be in a suitable mathematical description where both are readily available. For

the Integration method, the model can be a mathematical model or a grey or black

box model if the outputs remain the same. This is because there are three main

model types. A white-box model is a model based on physical laws with

corresponding physical parameters (Keesman, 2011). If some of these parameters

are estimated from the data, this is then a grey box model (Keesman, 2011). A

black-box model is viewed only in terms of its inputs and outputs (Keesman, 2011).

For example, in control applications, a black-box model may be a linear model,

which does not necessarily refer to the underlying physical laws and relationships

of the system (Keesman, 2011). For both methods, convergence to a point is

dependent on the tolerance value set within the Inverse Simulation algorithm. A

control input is accepted if the output is within the defined convergence

tolerance. This tolerance is dependent on the actual capabilities of the system

and is typically set to ensure convergence. If convergence is not reached after a

set number of iterations, then this is an indication that the system has either been

set up with inadequate parameters or the system is unable to achieve the current

set trajectory.

A variation on the Integration method that uses the derivative-free Nelder-Mead

search-based optimisation algorithm applied to models used in ship steering

control can be found in (Lu et al., 2008) and an approach based on sensitivity

51

analysis applied to a helicopter model is in (Lս et al., 2007). Furthermore, (Celi,

2000) presents an Inverse Simulation approach based on numerical optimisation,

which operates on a family of desired trajectories for a helicopter model.

Overall, the Integration method based on (Hess et al., 1991, 1993) is the most

widely used for Inverse Simulation. It requires only the inputs and outputs of the

system and thus is suitable for complex models and it can also handle more easily

problems where the number of inputs exceeds the number of outputs (Rutherford

et al., 1996; Murray-Smith, 2000; Thomson et al., 2006; Lu et al., 2008; Avanzini

et al., 2017). Nonetheless, the Differentiation method may be more complex to

set up but it also converges faster to the required control inputs (Rutherford et

al., 1996; Murray-Smith, 2000; Thomson et al., 2006; Lu et al., 2008).

3.2 Review of Application Considerations of Inverse
Simulation Algorithms

This section presents an overview of the key results for the application and

stability of Inverse Simulation based on the literature review in 3.1

Integration can use any representative model of the system if the outputs and

inputs remain the same. Differentiation requires both the states and the outputs,

so any change in the model needs a reformulation of the algorithm. This results in

Differentiation being more model specific and more time consuming to set up and

maintain when changing the model. For the Integration method, the model can be

more easily modified, if the outputs remain the same, which is a significant

advantage and enables the use of a grey or black-box model.

The issue of the stability of Inverse Simulation is examined in (Lin et al., 1995;

Rutherford et al., 1996; Murray-Smith, 2000; Thomson et al., 2006; Lu et al.,

2007, 2008; Lս et al., 2007), with these references also providing a discussion on

parameter selection, desired output selection and application examples primarily

in selected systems from the flight dynamics domain and ship steering control in

the case of (Lu et al., 2007). Each algorithm has advantages and disadvantages,

detailed next based on (Lin et al., 1995; Rutherford et al., 1996; Murray-Smith,

2000; Thomson et al., 2006; Lu et al., 2007, 2008).

52

The Integration method converges using only the outputs and so has a convergence

rate that is an order of magnitude slower than that of the Differentiation method

(Hess et al., 1993; Murray-Smith, 2000; Thomson et al., 2006; Lu et al., 2008).

Integration however is generally more stable than Differentiation; what is gained

in flexibility and stability, is lost in computing time. Moreover, the Integration

method produces smoother control signals (Hess et al., 1993; Murray-Smith, 2000;

Thomson et al., 2006; Lu et al., 2008).

The numerical properties of both Differentiation and Integration have been

examined when applied mostly to flight dynamics (Hess et al., 1993; Lin et al.,

1995; Rutherford et al., 1996; Thomson et al., 2006; Lu et al., 2008). The authors

of (Thomson et al., 2006) examine the stability properties of the method in this

context. When using Differentiation, it has been observed that there are

oscillations in the response of the uncontrolled states (so-called “constraint

oscillations”) (Thomson et al., 2006). However, these oscillations depend more on

the dynamical properties of the system and its uncontrollable states and zero

dynamics rather than the method used and its numerical properties (Lu et al.,

2008). It has also been observed that there are low amplitude, high frequency

oscillations superimposed on the calculated control input. These oscillations are

due to several reasons (Hess et al., 1993; Thomson et al., 2006; Lu et al., 2008):

redundancy issues, non-square Jacobian and multiple solutions, several local

minima of the error function Eq.(4.6) or Eq.(4.10). The authors of (Lu et al., 2008)

propose for the Integration case a derivative-free method using constrained

Nelder–Mead search-based optimisation to overcome issues related to the

Jacobian. Another approach for the Integration method is to calculate the

Jacobian by solving a sensitivity equation, thus increasing the calculation accuracy

(Lս et al., 2007). The low amplitude, high frequency oscillations are increased

when the discretisation step dt is too small, as it could excite the uncontrollable

states (Lin et al., 1995; Lu et al., 2008). Nonetheless, a relatively small dt can

have a positive effect because it captures the changes in the system dynamics and

this may reduce or even remove them, as well as increase accuracy (Lin et al.,

1995; Rutherford et al., 1996; Lu et al., 2008).

Since the two main algorithms of Inverse Simulation presented here are numerical

implementations, the accuracy and execution time of Inverse Simulation varies

with the number of iterations required for convergence, the tolerance limit set

53

for convergence and the discretisation step dt used in Figure 3.1. Selecting a dt is

a case of compromising between adequately following the system as it evolves

over time, accuracy and possibly exciting the uncontrollable states. Furthermore,

for systems where there are fast responding dynamics and slower responding

dynamics, as is the case for helicopter applications, a “two timescale” Integration

method using a reduced-order system model that eliminates the high-frequency

oscillations has been developed by (Avanzini et al., 2001).

The authors of (Lin et al., 1995) perform a global error analysis of Inverse

Simulation for Differentiation and Integration. The definition for the global error

of Inverse Simulation, which will be used is the following. The input from Inverse

Simulation is applied to the forward system and the output is obtained and

compared with the desired. This is the global error that measures the fidelity of

Inverse Simulation (Lin et al., 1995). This definition mirrors the convergence

criterion for the Inverse Simulation algorithms: a control input is accepted if the

state & output or output is within the defined convergence tolerance.

The global error of the Differentiation method relative to dt is of the same order

as the method used to evaluate the derivatives (Lin et al., 1995). For example, a

first-order difference formula has a local truncation error5 of order ()O dt and so

if dt decreases by an order of magnitude so does the global error. For Integration,

the states are obtained via integration, which is less sensitive to numerical errors

due to time step size, and the smaller the time step dt, the smaller the local error

in the integration formula (Lin et al., 1995). The convergence is based on the

outputs and control signals and the convergence tolerance can be set as desired;

thus, the global error can be reduced accordingly and there is no direct correlation

with the dt as in Differentiation. That said, when there are uncontrolled states

and a very small dt, numerical instability may arise for the Integration method (Lin

et al., 1995). This is expected since as described the method converges using the

inputs and outputs only.

5 The local truncation error of a difference formula results from the use of the Taylor series to

approximate the derivative. A first order formula results from using the first term of the Taylor
series and thus has first order error and so on.

54

The choice of the desired output is also important since the validity of the

calculated inputs depends on it. The proposed output should represent a realistic

expectation of what the system can achieve (Thomson et al., 2006). The Ci

continuity order is a parameter that needs to be carefully selected (Rutherford et

al., 1996; Thomson et al., 2006; Ireland et al., 2017). In theory, for Inverse

Simulation the desired output can be of any order and does not depend on the

need to have a specific relative degree. In practice, this output needs to be

sufficiently smooth; the derivative information is needed since the output

equation may need to be differentiated. The stability of Inverse Simulation is

improved when the desired outputs used are of higher order, e.g. acceleration or

velocity compared to position and orientation (Rutherford et al., 1996; Thomson

et al., 2006). A high degree polynomial for describing the desired trajectory is an

efficient and flexible method for defining desired outputs and usually, a

polynomial of at least C2 order is preferred (Rutherford et al., 1996; Thomson et

al., 2006). Furthermore, the elements of the desired output vector should be

equal to or less than the number of elements of the control vector, to ensure

adequate actuation (Rutherford et al., 1996; Murray-Smith, 2000; Thomson et al.,

2006).

3.3 Summary

From this review, it is evident that Inverse Simulation has been applied to a large

variety of systems for the a priori evaluation of the required control inputs to

produce a given, desired output, given a model of the system that provides at

least the inputs and outputs. Two main algorithms were identified: Differentiation

and Integration. Most of the applications use the Integration Method, as it is

simpler to set up since it requires the model’s inputs and outputs only, can handle

more easily problems where the number of inputs exceeds the number of outputs

and produces smoother inputs. All these however come at the expense of

increased execution time, compared to Differentiation which also uses the

system’s state equations.

Inverse Simulation is a model-based method, and its successful application

depends on several parameters. First, the choice of the model and the desired

output is important as the validity of the calculated inputs depends on these.

Second, the number of inputs and outputs is important as they impact the

55

Jacobian used for the Newton-Raphson scheme and more outputs than inputs

result in an under-actuated system. Third, since this is a numerical method, it

depends on numerical parameters: the tolerance limit set for convergence, the

discretisation step dt used, and the number of iterations required for convergence.

Of these, the tolerance limit set for convergence and the discretisation step dt are

the most important.

Chapter 4 Analysis of Inverse Simulation with
Application Examples

In Chapter 3, a review of the existing Inverse Simulation applications was

presented, together with the application considerations. Having established this

overview of the existing work on Inverse Simulation, in this Chapter the two main

implementations are discussed in more detail not just in the context of a

particular application, with all its specific complications, but in a broader,

abstract way. Additional material is presented on how to overcome the issue of

unequal numbers of inputs and outputs to facilitate the usage of Inverse

Simulation in a wider variety of systems, so long as they are in the general state-

space form. Finally, the background of Inverse Simulation from feedback

linearisation and linear systems is examined.

4.1 Analysis of Inverse Simulation

4.1.1 General Algorithm for Differentiation and Integration

Inverse Simulation has two main requirements for its operation: the desired output

(e.g., a trajectory) represented as a time history with an appropriate time step

and a model of the system. The model’s inputs and outputs must be representative

of the inputs and outputs of the actual system. A wide variety of systems are

suitable if these requirements hold. A general nonlinear system is used with m

state equations, p output equations and k control inputs in the usual state-space

form.

 (), , , m k=  x f x u x u (4.1)

 (), , , p k=  y g x u y u (4.2)

The desired output ()d tg is defined over the time interval Τ.

 () () , Td dt t t= y g (4.3)

    0T , , , , , , 0,1, ,i N it t t t idt i N= =  (4.4)

57

The time interval Τ is discretised N times using the time step dt in Eq.(4.4). The

time step (or discretisation step) is selected after consideration of the rate of

change of the system, the response time of its actuators, the motor time constant

and the required response time.

4.1.1.1 Differentiation

For the Differentiation method, the convergence to an appropriate control input

for the current time step is based on the system’s state and output equations.

The state and output equations are discretised N times over the time interval Τ

with a step of dt:

() ()
() ()()

() () ()()

1

1

,

,

i i

i i

i i

dt

i i i

t t
t t

t t

t t t

−

−

−
=

−

=

x x
f x u

y g x u

 (4.5)

By using the desired output ()d itg at every discretisation point i, a time series of

suitable control inputs u and the corresponding states x is found. The functions F1

and F2 are defined to find the values of input u and the states x:

() () ()()

() ()

() () ()() ()

1

1

1

2

,

,

i i

i i i

i i

i i i d i

t t
t t t

t t

t t t t

−

−

−
= −

−

= −

x x
F f x u

F g x u g

 (4.6)

In this work, the system described by Eq.(4.6) is solved using the Newton-Raphson

method until the calculated values of the control input u and the states x are such

that F1 and F2 are both close to zero within a certain tolerance.

At each inner iteration n, u and x are updated, and J is the Jacobian of F1 and F2.

()

()

()

()

() ()

() ()

() ()()
() ()()

1

1 1

1 1 11

1 2 2 2 1 1

1

,

,

i i
n i n in i n i

n i n i n i n i
i i

n

t t
t tt t

t t t t
t t

 

 

 

 

−

− −−

− − −

−

 
     

= −      
       

  
J

F F
F x ux x x u

u u F F F x u

x u

 (4.7)

58

The algorithm for the Differentiation method of Inverse Simulation given a system

defined by Eq.(4.1), Eq.(4.2) and the desired trajectory ()d tg over a discretised

time interval T is in Appendix B. This is for the general case, so the steps in

Appendix B can be used for any system in the form of Eq.(4.1), Eq.(4.2).

The algorithm has two loops: the inner loop (steps 2–9 in Appendix B) that

converges after n iterations and an outer loop (steps 1–10 in Appendix B) that runs

through each desired output at each discretisation point i (see also Figure 3.1).

The convergence is estimated based on how close the values of F1 and F2, which

correspond to the state and output equations, are to zero within a tolerance. The

Differentiation method requires the differentiation of the system’s state and

output equation at each it , which means that any changes in these equations need

the algorithm to be changed to accommodate them.

Several parameters are critical for the convergence of the algorithm and the

quality of the calculated inputs: the tolerance limit set for convergence, the

discretisation step dt used, the number of maximum iterations required for

convergence and how the Jacobian for the Newton-Raphson scheme is

approximated and inverted in Eq.(4.7). The tolerance limit, the discretisation step

dt used are the main numerical parameters.

For the dt, it should take into consideration how fast the system dynamics are

evolving and what the actual capabilities of the system are (e.g., the response

time of the actuators, motor time step). The choice of dt also impacts the global

error of the Differentiation method as discussed in (Lin et al., 1995) and in Section

3.2. This point will be further elaborated on in Section 4.1.1.3.

The selection of the convergence tolerance is related to how the condition of

convergence is estimated given the estimated values of F1 and F2 from Eq.(4.6)

and the condition that both should be close to zero (within the convergence

tolerance, see also Appendix B) This can be done in two ways. First, by using the

relative error which represents the qualitative side: how accurate is the estimate

relative to the value of the desired. Second, by using the absolute error, which

measures the total error and represents the quantitative side. The absolute error

depends on the magnitude of the measured quantities and frames the result within

59

the interval or tolerance tol. Appendix H provides a detailed background of the

relative and the absolute error.

Eq.(4.7) is a system of ()m k+ algebraic equations and is treated as a linear system

to solve for ()n itx , ()n itu . The inversion of the Jacobian J is necessary and so its

dimensions are of interest. From Eq.(4.1), (4.2) and (4.7) there are m states, k

control input variables and p outputs and the dimension of J is () ()m p m k+  + .

If there is an equal number of inputs and outputs p k= the Jacobian is a square

matrix and existing research has been mostly restricted to this case (Hess et al.,

1991, 1993; Murray-Smith, 2000; Thomson et al., 2006; Avanzini et al., 2017).

If the number of inputs and outputs is not equal then a few factorisation

methodologies are used to solve Eq.(4.7) and achieve the least square solution,

which is the best available solution (Higham, 2002; Strang, 2009). There are the

following two cases.

If there are more inputs than outputs k p , this is an over-actuated system. From

a linear algebra viewpoint, this is an underdetermined system without a unique

solution. If the system in Eq.(4.7) is consistent then an input can be found for each

desired output; the remaining k p− inputs are free parameters, which can be

allocated using a suitable factorisation method.

If there are more outputs than inputs k p , this is an under-actuated system.

From a linear algebra viewpoint, this is an overdetermined system and so an input

cannot be found for each desired output. If the system in Eq.(4.7) is consistent all

k inputs can be found and the remaining p k− outputs cannot be directly

associated with an input. Again, a suitable factorisation method can be used to

ensure a least-squares solution.

Several available factorisation methods can provide the least square solution, such

as LU (L is a lower triangular matrix and U is an upper triangular matrix), QR (Q

is a matrix with orthonormal columns and R an upper triangular matrix), Cholesky

or the pseudoinverse. (Strang, 2009). The Jacobian in Eq.(4.7) may not necessarily

have only one unique factorisation but Eq.(4.7) does have a unique least square

60

solution (Strang, 2009), which means the best available solution for the control

input ()n itu and the state ()n itx will be found.

The best factorisation method for any matrix to provide a computationally

efficient least square solution depends on its dimension and rank (Strang, 2009).

Choosing this factorisation among those available is as much an art as is a science

and is highly specific to the problem at hand (Davis, 2013). The use of the

commonly available formulas in linear algebra textbooks for square and non-

square systems, such as those in (Strang, 2009), is strongly discouraged for

numerical computations (Higham, 2002; Davis, 2013; Foster et al., 2013).

Furthermore, estimating the rank of a non-square matrix in numerical

computations to select the best factorisation at every iteration of Eq.(4.7) is

computationally expensive and not always straightforward (Strang, 2009; Davis,

2013). For all these reasons, it is recommended to carefully select the

factorisation implementation to be used. Appendix G provides a detailed

background on the solution of a non-square linear system and the available

factorisations to ensure a least-squares result.

4.1.1.2 Integration

For the Integration method, the convergence to an appropriate control input for

the current time step is based on whether the system’s output matches the desired

output.

To start, the state and output equations are again discretised N times over the

time interval Τ with a step of dt. The desired output is ()d tg and  0, Nt t . At it

the state Eq.(4.1) is numerically integrated to obtain the state x and then the

output y is calculated.

() () ()

() () ()()
1

1

1,

i

i

t

i i

t

i i i

t d t

t t t

 

−

−

−

= +

=

x x x

y g x u

 (4.8)

If using the Euler rule for the numerical integration of x:

61

 () () ()1i i it t dt t −= +x x x (4.9)

The error function between the current output and the desired is:

 () ()() () () ()1,e i i d i i d it t t t t−= − = −f g x u g y g (4.10)

In this work, Eq.(4.10) is solved using the Newton-Raphson method until

convergence, that is until a suitable input u is found so that the error function is

zero within an acceptable tolerance. At each iteration the value of input u is

updated using Eq.(4.11), where n is the current Newton-Raphson inner iteration

and Je is the Jacobian of the error function fe or equivalently the Jacobian of the

system outputs y when perturbing the control inputs u.

() () () ()() () ()()1

1 1 1 1 1 1 1 1 1, ,n i n i e n i n i e n i n i

e

t t t t t t





−

− − − − − − − − −= − 

=

u u J x u f x u

y
J

u

 (4.11)

The algorithm for the Integration method of Inverse Simulation given a system

defined by Eq.(4.1), Eq.(4.2) and a desired trajectory output ()d tg over the

discretised time interval Τ is in Appendix C.

The algorithm has two loops: the inner loop (steps 2 – 9 in Appendix C) that

converges after n iterations and an outer loop (steps 1 – 10 in Appendix C) that

runs through each desired output at each discretisation point. The convergence is

estimated based on minimising the error function in Eq.(4.10), i.e. how close the

current output is to the desired within a tolerance.

Several parameters are critical for the convergence of the algorithm and the

quality of the calculated inputs: the tolerance limit set for convergence, the

discretisation step dt used, the number of maximum iterations required for

convergence and how the Jacobian for the Newton-Raphson scheme is

approximated and inverted in Eq.(4.11). For the tolerance limit and the

discretisation step the same considerations with the Differentiation method apply

here.

62

As was the case for the Differentiation algorithm, Eq.(4.11) is a system of k

algebraic equations and so can be treated as a linear system to solve for ()1n it −u .

The dimension of Je is p k and if the number of inputs and outputs is the same

then the Jacobian is a square matrix. If, however, the number of inputs and

outputs are not equal, then a least-square solution is available using a suitable

factorisation such as LU, QR, Cholesky decomposition or the Moore-Penrose

pseudoinverse (Strang, 2009; Davis, 2013), see also Appendix G. If there are more

inputs k than outputs p, then this is an over-actuated system and from a linear

algebra viewpoint, an underdetermined system, so there never is a unique

solution. When there are more outputs p than inputs k, this is an under-actuated

system and so an overdetermined system; then a factorisation can be used. In this

case, the calculated outputs are a least-square fit to the desired outputs (Hess et

al., 1991, 1993; Thomson et al., 2006). Viewed from the point of linear algebra,

this is an overdetermined system and usually has no unique solution; an input

cannot be found for each desired output. Generally, the problems are restricted

to p k where there is sufficient actuation to directly influence the dynamics of

the system, but a least-square solution is available even for underactuated

problems.

A key point here is that the Integration method does not require the

differentiation of the system’s state and output equation. Instead, the Jacobian

of the output vector when perturbing the input is used. This means that any

changes in the model’s state equations do not require the algorithm to be changed

to accommodate them. This can also be seen by comparing Eq.(4.6), Eq.(4.7) for

Differentiation, which use both the states and the outputs equations, with

Eq.(4.10) and Eq.(4.11) for Integration, which use only the output equations. The

system’s state equation can be called from an external function when needed

(step 5 in Appendix C) and so is isolated from the main algorithm, thus the

method’s suitability for grey or black-box models.

4.1.1.3 Numerical Differentiation and Integration for Inverse Simulation

Consider again the Differentiation method in Section 4.1.1.1 that is (as the name

suggests) based on evaluating the time derivatives of the states and then

attempting to find the control inputs to achieve the outputs. The process is

63

repeated until convergence within a tolerance at each point in time (ti), see

Eq.(4.7). Therefore, the nature of numerical differentiation is important and has

a direct impact on the method.

From numerical analysis (Kreyszig, 2014), divided-difference formulas for

differentiation can be generated by the Taylor series expansion. For example, for

1i idt t t+= − a first-order approximation is:

 ()
() ()

()1i i

i

f t f t
f t O dt

dt

+ −
 = + (4.12)

The local truncation error (i.e. the local error) results from the use of the Taylor

series (Kreyszig, 2014) and is of order ()O dt , which in this case is the

discretization time step for Inverse Simulation. When the truncation error is of

the order ()O dt , this is a first-order method.

An idea would be to reduce the local truncation error, by reducing dt. However,

when dt is reduced too much, there is a point where the truncation error is reduced

but the round off error starts to dominate (Higham, 2002; Kreyszig, 2014).

Rounding errors occur due to the way computers represent numerical values and

thus cannot be influenced (Higham, 2002) (see also Appendix H). The difficulty

with differentiation is tied in with the definition of the derivative, which is the

limit of the difference quotient, and, in that quotient, there is the division of a

large quantity by a small quantity or the difference between two large and nearly

equal terms; both cases can cause numerical instability (Kreyszig, 2014). Similar

difficulties occur with all differentiation formulas, and overall, for these reasons

numerical formulas for differentiation are considered less (numerically) stable

(Kreyszig, 2014).

The Integration method starts by integrating the states q and then calculating the

output, Eq.(4.8). Then, the error ef between the actual and desired output,

Eq.(4.10), is calculated based on the control input estimation. The process is

repeated, and the control input estimation is refined until the outputs converge

to the desired ones, i.e., the error ef between the actual and the desired output

64

converges within a tolerance for a given control input at each point in time ()it .

Therefore, the nature of numerical integration is also important and has a direct

impact on the method’s results.

From numerical analysis (Kreyszig, 2014) the simplest and most often used method

in engineering problems for integrating differential equations as in Eq.(4.13) is the

forward Euler method.

 (),
dy

f y t
dt

= (4.13)

The derivative can be approximated by:

 () 1
1, ,n n

n n

y y
f y t dt t t

dt

+
+

−
= − (4.14)

Then the forward Euler method is:

 ()1 ,n n n ny y f y t dt+ = +  (4.15)

Eq.(4.15) involves two types of error: the round off error and the truncation error.

The truncation error arises from using the approximation of the derivative in

Eq.(4.14). Same with differentiation, the local truncation error is of interest

because it is the one that can be influenced (see also Appendix H).

The truncation error results from the application of the Euler method over a single

interval ()1,n nt t + in Eq.(4.15) (Kreyszig, 2014). The truncation error occurs because

the true solution is approximated using what is essentially a Taylor series at

Eq.(4.15) and is proportional to the square of the step size ()2O dt (Kreyszig, 2014).

The global error results from the approximations done in all previous steps to

evaluate Eq.(4.13) using Eq.(4.15) over a time interval and is ()O dt , proportional

to the step size (Kreyszig, 2014). The useful conclusion from this analysis is that

if the dt is made sufficiently small, then the accuracy is increased. In practice,

this may not be computationally efficient (Chapra et al., 2001; Kreyszig, 2014)

and is constrained by application-specific issues (for example exciting the

65

uncontrollable states). This implies that the method is stable as dt approaches

zero, i.e., as dt approaches zero the error also does. This property of integration

is in contrast with differentiation, where when dt is reduced too much, the

truncation error is reduced but the round off error starts to dominate (Higham,

2002; Kreyszig, 2014). A point however to consider is that for a very small dt, the

estimation of the derivative (),n nf y t in Eq.(4.15) may not be accurate, for the

reasons that have to do with the definition of the derivative.

Finally, note that the Euler method in Eq.(4.15) uses straight line segments to

approximate the solution and is so a first-order method (Chapra et al., 2001). In

practice, most functions are not linear and therefore the method will yield good

results from a dt small enough that a local linear approximation is valid. How small

that dt is, depends on the quantity being approximated.

Overall, numerical integration is a smoothing process and is not very sensitive to

small inaccuracies in function values and reducing the step size has a directly

beneficial effect (Kreyszig, 2014). Numerical differentiation generally provides

values that, for very small time steps, are dominated by the rounding error

(Kreyszig, 2014).

These fundamental differences are the reason that the Integration method of

Inverse Simulation is considered more numerically stable than the Differentiation

method and why the global error of the Differentiation method in terms of the

time step dt is of the same order as the method used to evaluate the derivatives

as discussed in Section 3.2.

4.1.2 Inverse Simulation and Feedback Linearisation

In Inverse Simulation, the goal is to find a suitable input u given a desired output

()d tg for the general nonlinear system in Eq. (4.1) and Eq.(4.2). However, Eq.

(4.2) usually cannot be solved directly for u. For this reason, it is differentiated

again (Thomson et al., 2006):

()

()
() ()

 


 



x

g
y = x x

x y = g x f x,u

x = f x,u

 (4.16)

66

If Eq.(4.16) can be solved for u, we do so by setting:

 () ()→d d dy = y = g x y = g x (4.17)

Then a suitable u can be found from:

 () ()=d xg g x f x,u (4.18)

If it cannot be solved, a second differentiation can be performed:

 () () () () () ()2

x x u+ +  x x
y = g x f x,u g x f x,u f x,u f x,u u (4.19)

Eq.(4.19) can then be solved for u. If that is not possible, then further

differentiations can be performed (Thomson et al., 2006), provided that the

system in Eq. (4.1), (4.2) and ()d tg is sufficiently smooth.

The idea of differentiating Eq.(4.16) until the output can be written in terms of

the input, recalls the definition of the relative degree for a nonlinear, single input,

single output, affine in the control system defined by Eq.(4.20), (4.21) (Khalil,

2003), i.e. the number of differentiations needed for the input to appear at the

output equation Eq.(4.21).

 () , , mu u=  x f x + ξ(x) x (4.20)

 () , , my h y=  x x (4.21)

() () () ()f

h
y u L h L h u


= + +  

f x ξ x x x
x (4.22)

The Lie derivative of ()h x with respect to ()f x and to ()ξ x is defined as:

() ()

() ()

f

h
L h

h
L h h


=



=


x f x
x

x x
x

 (4.23)

67

If () 0L h =x then Eq.(4.22) cannot be solved for u. Further differentiation until

()1 0rL h

− x yields Eq.(4.24).

 () () ()() (1)r r r

f fy L h L L h u

−= +x x (4.24)

Then, the control input u:

 ()

(1)

1
()

()

r

fr

f

u L h v
L L h

−
 = − + x

x
 (4.25)

reduces the output equation Eq.(4.24) to:

 ()ry v= (4.26)

The relative degree of the system is defined as r, where r m (Slotine et al.,

1991; Khalil, 2003). The output is now a chain of r integrators and this process is

called input-output linearisation (Slotine et al., 1991; Khalil, 2003). In input-

output linearisation, there is a direct, linear relationship between the output and

the input and the state equation is partially linearised (Slotine et al., 1991; Khalil,

2003). If the relative degree r is equal to the number of states ()r m= then it can

be fully feedback linearised, i.e. full-state linearisation: it can be transformed

into an equivalent linear system (Slotine et al., 1991; Khalil, 2003). The definitions

of the relative degree, input-output linearisation and feedback linearisation are

similarly expanded for nonlinear, control affine, multi-input and multi-output

(MIMO) systems, with an equal number of inputs and outputs (square systems),

though the notation can become quite complex (Slotine et al., 1991; Isidori, 1995,

1999).

Overall, systems described by Eq. (4.20) and (4.21) can be analytically inverted to

provide an expression for the input in terms of the state and output. The control

design based on input-output linearization consists of three stages: differentiate

the output until the input appears, Eq.(4.20) to Eq.(4.26), choose a control input

to cancel the non-linearities and finally study the behaviour of the non-linearised

states (Slotine et al., 1991). If the system can be fully feedback linearised, then

there are no non-linearised states, which simplifies things (Slotine et al., 1991) –

68

though that is never the case for non-holonomic systems such as the four-wheeled

differential rover (Yun et al., 1993).

This approach to input-output and full-state linearisation is also known as

nonlinear dynamic inversion (NDI). NDI has the advantage of providing an

analytical solution that depends on the system model and its relative degree.

Systems with a high relative degree can experience drift due to minute numerical

errors and as the system’s complexity increases, its inversion through NDI becomes

more difficult. In (Ireland et al., 2017) a comparison of tracking a desired

trajectory between a system that is input-output linearised and inverted using

Inverse Simulation Integration is given. Inverse Simulation is found to be more

accurate in terms of tracking the desired output, at the expense of greater

computational effort but this is offset by the more flexible nature of Inverse

Simulation (Ireland et al., 2017).

Compared with NDI, Inverse Simulation is a more general method that can be used

for MIMO systems that are not control-affine and are not square. In practice, most

systems are not control-affine and are quite complex and so this ability is a major

advantage. Also, from Section 2.3.1, a non-holonomic system, such as a

differentially driven robot, cannot be input-state linearised but can be input-

output linearised (Yun et al., 1993). Inverse Simulation depends on the system

model, but there is no analytical inversion. Practical implementations usually

require model changes and Inverse Simulation can handle these better than NDI.

This is especially useful in the case of Integration (see Section 4.1.1.2) where the

method is essentially decoupled from the system itself, so long as the inputs and

outputs remain the same. As a system grows in complexity, its analytical inversion

becomes less trivial. Conversely, any model change requires that NDI’s inverse

model be redefined, and practical implementation is almost guaranteed to require

such model changes. Furthermore, the relative degree of the system is fixed,

whereas, for Inverse Simulation, the desired output can be of any order, though

in practice the order of the desired output is a parameter that needs to be

carefully selected (Rutherford et al., 1996; Thomson et al., 2006), as was also

discussed in Section 3.2.

69

4.1.3 Inverse Simulation for a Linear Time Invariant System

Inverse Simulation is simplified in the case of a linear, time-invariant (LTI) system.

A general LTI system is used with: m state equations, p output equations and k

control inputs in the usual state-space form, Eq.(4.27) and Eq.(4.28). The desired

output ()d itg is defined over the time interval Τ, which is discretised with a time

step dt, same as in Eq.(4.3).

 , , , , m k m m m k = +    x Ax Bu x u A B (4.27)

 , , p p m=  y Cx y C (4.28)

The Inverse Simulation problem is stated as: Given a desired output ()d tg over

the time interval T, find a corresponding control input u over the time interval T.

Differentiating Eq.(4.28) gives:

 =y Cx (4.29)

Substituting Eq.(4.27) to Eq.(4.29) and solving for u:

 () () (), p kCB u = y - CA x CB (4.30)

If the number of inputs is not equal to the number of outputs, matrix CB is not

square and cannot be inverted. If there are more inputs than outputs, k p , this

is an over-actuated system that results in an underdetermined system, so there is

never a unique solution. If there are more outputs than inputs, k p , this is an

under-actuated system that results in an overdetermined system. An input cannot

be found for each desired output. If the system in Eq.(4.30) is consistent, all k

inputs can be found and the remaining p k− outputs cannot be directly associated

with an input. A suitable factorisation method can be used to ensure a least-

squares solution (Appendix G).

70

A unique control u can be found if the number of outputs p is equal to the number

of inputs k and the determinant of matrix CB is not zero, i.e., CB is square and

full rank:

() ()

() ()

1

det 0rank p k

−
   

= =  

u = CB y - CA x

CB CB
 (4.31)

The LTI system in Eq.(4.27), Eq.(4.28) is defined as output controllable if it is

possible to find an unconstrained control input ()tu that will transfer any given

initial output 0y to any desired, final output y in a finite amount of time (Ogata,

2008). To check if a system is output controllable, the rank of the following matrix

(this is known as the controllability matrix and its size is p×(m+k)) is calculated

(Ogata, 2008):

 2 1... mrank p−  = CB CAB CA B CA B (4.32)

The system is output controllable if and only if the rank is p, where p is the number

of outputs. The condition for output controllability is of practical importance

because the goal of Inverse Simulation is to control the system’s output to match

it to the desired.

By comparing Eq.(4.31) and Eq.(4.32), the condition for finding a unique control

input u for an output y for the LTI system in Eq.(4.27), Eq.(4.28) can be written

as (Murray-Smith, 2000; Thomson et al., 2006):

 2 1... mp k rank − = =  CB CAB CA B CA B (4.33)

The condition p k= recalls the case of the numerical Differentiation and

Integration algorithms where if there is an equal number of inputs and outputs,

then the Jacobian is a square matrix.

If instead of Eq.(4.28), the output is written as:

 , , , , m q p m p q    y = Cx + Du y u C D (4.34)

71

Then, the controllability condition is (Ogata, 2008):

 2 1... mrank p−  = CB CAB CA B CA B D (4.35)

The presence of the Du term in Eq.(4.34) always helps to establish output

controllability (Ogata, 2008), since they add one more entry to the controllability

matrix. From an Inverse Simulation point of view, this is expected since in

Eq.(4.34) there is already a relationship between the output y and the input u and

there is no need to differentiate y for u to appear. Whether of course Eq.(4.34)

can be solved for u depends on the matrices C and D.

Substituting the control input from Eq.(4.31) to Eq.(4.27) yields a new LTI system,

defined by the matrices A and B :

 ()  () 
 

-1 -1

B
A

x = A - B× CB ×CA x + B× CB y (4.36)

The stability of this system is now determined by the matrix A which represents

the new system dynamics. The matrices A and B are given from Eq.(4.36), but the

selection of matrix C can vary. Therefore, the selection of desired outputs to

control can affect the stability of the system.

In the case where the determinant of matrix CB is zero, a second differentiation

of Eq.(4.28) can be attempted. This process is repeated until it is possible to

express the output
()n

y in terms of the input u , where
()n

y is a linear combination

of derivatives of y , ()det 0D , C and D are a linear combination of the rows of

CA, CA2, and CB, CAB respectively and so on (Thomson et al., 2006).

()

2

n

y = CA x + CABu + CBu

y = Cx + Du

 (4.37)

Then, the input u is:

72

 ()()n-1
u = D y - Cx (4.38)

and the new system dynamics are:

 () ()-1 -1

BA

x = A - BD C x + BD y (4.39)

The stability of this system is now determined by the matrix A , which represents

the new system dynamics. The matrices , , , A B C D are given from Eq.(4.27) and

Eq.(4.37) and the selection of desired outputs to control affects the stability of

the system. In Sections 4.2.2, and 4.3.2 examples will be given as to how the

selection of output affects the system stability and so the Inverse Simulation

results.

For the LTI case, Inverse Simulation using Eq.(4.36) or Eq.(4.39) is the simplest

case of the Differentiation algorithm. The Differentiation algorithm requires the

appearance of the output in terms of the states and input. This contrasts with the

general case for Integration which deals only with the input and output; the states

and thus the system dynamics are not affected. This is an important difference in

terms of the stability of Inverse Simulation Differentiation and Integration and the

selection of appropriate desired outputs.

4.2 Application example: Mass Spring Damper System

To demonstrate the application of Inverse Simulation two well-known mechanical

systems are used. The first system examined is the mass spring damper (MSD).

For comparison, the linear case of Inverse Simulation from Section 4.1.3 is

examined alongside the Integration algorithm from Section 4.1.1.2. This provides

the opportunity to demonstrate why selecting an appropriate output is important

in Section 4.2.2. Also consider that in practice, a system may be locally linearised

and so using the linear case may be a reasonable choice.

The state equation for the MSD system is:

73

0 1 0

-k -b 1

m m m

x x
u

x x

   
      = +         

   
BA

 (4.40)

This is a linear system with one input u and two states: the velocity x of the mass

and its acceleration x . Matrix A has two conjugate complex eigenvalues, both

with a negative real part and so the system is asymptotically stable (Appendix D).

The desired output, i.e., the desired system response, can be the position x , its

velocity x , its acceleration x or a combination. Their profiles are in Figure 4.1.

Figure 4.1: Position, velocity, acceleration

In Sections 4.2.2 and 4.2.3, the following methodology is used.

First, the desired output is defined, Figure 4.1. Then, the input from Inverse

Simulation is found and applied to the forward system. The resulting output is

then compared with the desired.

To facilitate a further comparison, a PID controller is used to achieve the same

desired output, Figure 4.1, with Inverse Simulation. The result from the PID

controller (the position x) is compared with the result from Inverse Simulation

(the position x) to show how the system response compares. Additionally, the PID

control input is compared with that from Inverse Simulation.

74

In all cases, the total trajectory time is discretised with a time step of dt = 0.01s,

and the controller (PID or Inverse Simulation) is applied at each discretised point

in time. All relevant parameters are in Appendix D.

4.2.1 PID Controller Response

A PID controller (see Appendix D) is used to achieve position x in Figure 4.1. The

PID controller is applied to the system with a time step of dt = 0.01 s.

The error of position x is in Figure 4.2 and its average value is 1.36 10-4 m. Figure

4.3 is the PID control input. Note that for dt = 0.1 s the PID fails because the time

step is too large.

Figure 4.2: MSD PID Error between desired
and actual position

Figure 4.3: MSD PID Control Input

4.2.2 MSD Linear Inverse Simulation

The output equation is:

1 0

0 1

x

x

   
=    
   

C

y (4.41)

For the linear case, to solve directly for the input u, matrix CB must be factorised.

From Eq.(4.40), Eq.(4.41):

75

()

() ()
1

0

, 1

m

u

u
−

 
  = =
 
 

=

CB y - CAx CB

CB y - CAx

 (4.42)

It would be reasonable to select only x as the desired output, using the output

matrix C . In that case, however, u does not appear as in Eq.(4.42) and a second

differentiation would be needed.

  1 0= → =C CΒ 0 (4.43)

If the velocity x is chosen as desired, then:

  
1

0 1
m

= → =C CB (4.44)

This would simplify things, however, the new system dynamics matrix A ,

calculated using Eq.(4.36) and Eq.(4.44), now has two zero eigenvalues:

 ()  =
 

-1
A A - B CB CA (4.45)

This example demonstrates how the selection of desired outputs to control affects

the stability of the system, even in this simple case.

The time step is the same as the one used for the PID: dt = 0.01 s. The average

position error is 1.15 10 -7 m for the linear Inverse Simulation, Figure 4.4, which is

less compared with that of the PID (1.36 10 -4 m.). This difference is because the

linear case for Inverse Simulation uses the backslash (\) operator in MATLAB (see

Appendix G for the available factorisation methods) that guarantees the best

solution for Eq.(4.42) and both the position and the velocity (which are coupled)

are used for converging to the control input

Figure 4.5 shows the control input calculated by Eq.(4.42) compared with the one

required by the PID. The control input required for both cases is similar, the mean

difference between them is 2.56 10-3 N.

76

Figure 4.4: MSD IS Linear Error between
desired and actual positions

Figure 4.5: MSD IS Linear Control Input vs
PID Input

For dt = 0.1 s the PID controller fails but the linear Inverse Simulation provides good

results, the average position error is 1.73 10 -6 m.

4.2.3 MSD Integration Inverse Simulation

For the Integration algorithm, position x is the output.

 1 0

x
y y x

x

 
= → = 

 

=

C

C

 (4.46)

There is one input and one output and so the Jacobian is replaced by the single

partial derivative of the output when the input is perturbed. Using central

differences and y from Eq.(4.46), the Jacobian is:

() ()

1

2 2

2

e

e

y u u y u uy y
J

u u u

u
J

y

u u dt

  

 







−

+ − −
= = =
  


=

= 

 (4.47)

The perturbation of the control input u is based on the previous estimate of the

input multiplied by dt. There is a minimum acceptable u and δy, to avoid division

by zero. The method gives good results for dt = 0.01 s and 0.1 s.

77

For dt = 0.01 s the average position error is 3.16 10-5 m, Figure 4.6. Compared with

the PID position error which is 1.36 10 -4 m, Integration provides better results. In

comparison, however, with the linear case, where the average position error is

1.15 10 -7 m, Integration provides worse results. This difference is because the

linear case for Inverse Simulation uses the backslash (\) operator in MATLAB (see

Appendix G for the available factorisation methods) that guarantees the best

solution for Eq.(4.42) but only the position is considered for converging to the

control input in Integration. In practice, these position errors are all small and

provide a good system response in terms of position accuracy.

Figure 4.7 shows the control input calculated by Eq.(4.47) compared with the one

required by the PID. The control input required for both cases is similar, the mean

difference between them is 2.81 10-3 N.

Figure 4.6: MSD IS Integration Position
Error

Figure 4.7: MSD IS Integration Control
Input vs PID Input

For dt = 0.1 s the PID controller fails but the Integration Inverse Simulation provides

good results, the average position error is 2.98 10 -4 m.

Overall, a dt = 0.01 s is sufficient for Inverse Simulation to achieve good results in

terms of the position error and the control effort required for following the desired

trajectory profile. Furthermore, if there is a need for a larger dt, Inverse

Simulation provides results, whereas the PID controller fails.

78

4.3 Application Example: Active Quarter Car Model

The quarter car (QC) model, Figure 4.8, allows the behaviour of the system in

relation to its suspension type to be examined. The sprung mass sqm represents

one-quarter of the vehicle mass and the unsprung mass usm represents one-quarter

of the tyre mass. The spring force sk is proportional to the displacement 1x and

the viscous damping force is proportional to velocity 1x . In the case of the active

suspension, a controllable actuator force sF is used. For the passive suspension,

this force is set to zero. The system parameters are in Appendix E.

Figure 4.8: Quarter Car Model

The state equation for the QC is presented next, and the system is asymptotically

stable (see Appendix E).

()

s s s s1 1

sq sq sq sq2 2

3 3

4 4s ts s s

us us us us

sq

t

us

us

0 1 0 0

-k -b k b

m m m m

0 0 0 1

- k +kk b -b

m m m m

0
0

1
0

m
0

0
k

-1
m

m

s

x x

x x

x x

x x

F

 
 

    
    
   =  + 
    
    
    

  

 
  
  
  
 +  + 
  
  
    

 

A

R

B

rz

 (4.48)

79

In Eq.(4.48), the velocity of the sprung mass 2x is a measure of the ride comfort

of the vehicle, while 4x is the velocity of the unsprung mass and is a measure of

the vehicle's terrain handling ability (Dixon, 2007; Savaresi et al., 2010). The

unsprung mass velocity 4x is chosen here as the output of interest, as this is

relevant to the vehicle's ability to navigate rough terrain.

The road disturbance is modelled as a sine wave with a duration of 2 s and the

total simulation time is 10 s. There are more complex models of road disturbance,

(Dixon, 2007), but for the purposes here, a sine wave is sufficient.

()sin 2

0 2 , 7 , 0.1

rz h ft

t s f Hz h m

=

  = =
 (4.49)

Figure 4.9: Sine Road Disturbance

In Sections 4.3.1 and 4.3.2, the following methodology is used.

First, a PID controller is applied to the system in Eq.(4.48) to reduce the

oscillations from the road disturbance, Eq.(4.49), for the unsprung mass velocity

4x . Then, the system response (in terms of 4x) from the PID controller is chosen

as the desired output for Inverse Simulation. In this way, Inverse Simulation has a

realistic desired output and the control effort from both PID and Inverse

Simulation is compared. Note this choice of desired output is more realistic than

80

setting the desired output directly to zero; in such a system the goal is to minimise

the oscillations and drive them to zero in a reasonable amount of time.

The numerical Integration method of Inverse Simulation is used, and the linear

case of Inverse Simulation is also examined, as this is a linear system, though in

practice that is rarely the case. In all cases, the total trajectory time is discretised

with a time step of dt of 0.001 s, and the controller (PID or Inverse Simulation) is

applied at each discretised point in time.

4.3.1 Desired Output

A PID controller (the gains are in Appendix E) is applied and then the system

response (4x) in Figure 4.10 is used as the desired output for Inverse Simulation.

The PID control input is shown in Figure 4.11.

Figure 4.10: QCA PID Response

81

Figure 4.11: QCA PID Control Input

4.3.2 QCA Linear Inverse Simulation

From Eq.(4.48), and Eq. (4.53) the control input is:

  1()s rF y x z−= − −CB CA CR (4.50)

The unsprung velocity 4x from Figure 4.10 is selected as the desired output for

Inverse Simulation. The output matrix is:

  
us

1
0 0 0 1 ,

m
= = −C CB (4.51)

The new system dynamics matrix is calculated by substituting the control input

from Eq.(4.50) to Eq.(4.48) and is now:

 () () rz

 
    = −         
 
 

-1 -1-1

BA R

x A B (CB) CA x + B CB y + R - B CB CR (4.52)

When 4x is selected as the desired output, matrix A again from Eq.(4.52) has two

imaginary eigenvalues, in a conjugate pair, and a double zero eigenvalue. The

system is marginally stable.

82

If 2x is selected, then  
sq

1
0 1 0 0 ,

m
= = −C CB and A from Eq.(4.52) has two

imaginary eigenvalues, in a conjugate pair, and a double zero eigenvalue. The

system is marginally stable. Since both choices result in a similar condition, the

unsprung mass velocity 4x is preferred as it best represents the handling abilities

of the system.

Note that if the output matrix  0 1 0 1=C (2 4, x x as outputs) was used, then

the new system dynamics matrix, would have two zero eigenvalues, one negative

real and one positive real and so would be unstable. Additionally, selecting 1x or

3x as the desired output is not possible, because in both cases it is =CB 0 .

Therefore, 4x is the desired output and the required control input is calculated

and then applied to the forward system. The simulation parameters are in

Appendix E.

Figure 4.12 shows the error between the actual output from linear Inverse

Simulation and the desired. The output 4x matches closely the desired; the

maximum error is 0.042 m/s at the start of the simulation and the average error is

0.035 m/s. The spike at 2 s occurs at the point where the road disturbance ends.

Figure 4.12: QCA Linear IS unsprung velocity error

83

Figure 4.13 shows the linear Inverse Simulation control input versus the PID control

input. The control input calculated from the Inverse Simulation is larger than that

of the PID controller, which signifies that a larger control effort is required,

although both control inputs are comparable. Between the PID and the linear case,

the PID is more accurate, though the linear case is significantly easier to set up.

Using the output matrix from Eq.(4.51) results in a new system dynamics matrix,

that has two zero eigenvalues and two imaginary. In this more complex system,

this effect can be seen indirectly in the fact that the results for the linear case of

Inverse Simulation are worse than the PID and a larger effort is required to achieve

the desired output.

Figure 4.13: QCA Linear IS Control vs PID Control

4.3.3 QCA Integration Inverse Simulation

The simulation parameters for the numerical Integration method of Inverse

Simulation are in Appendix E.

There is one input (sF), and one output (4x) in Eq. (4.53). The goal is to eventually

drive to zero the velocity 4x , using as the desired the PID output from Figure 4.10.

84

  

1

2

3

4

0 0 0 1

x

x
y

x

x

 
 
 = 
 
 
 

C

 (4.53)

The Jacobian is a number, the partial derivative of the single output when the

single input is perturbed. Using central differences and y from Eq.(4.53), the

Jacobian is similarly derived as in Eq.(4.47).

Figure 4.14 shows the error in 4x when using the PID output as the desired. The

output follows very closely the desired; the maximum error is 10-5 m/s, around the

time when the road disturbance stops.

Figure 4.14: QCA IS Integration unsprung velocity error

As was the case for the Linear Inverse Simulation, the choice of the desired output

is important. From Eq.(4.48), all the states are coupled and so any one of them

can be chosen as the desired output. When the sprung mass velocity 2x is chosen

as the output to control, the Inverse Simulation algorithm exhibits significant

numerical errors. However, when the unsprung mass velocity 4x is chosen, the

algorithm converges without significant errors. Intuitively, this is because 2x is

quite small compared to 4x and changes rapidly, Figure 4.10, thus the algorithm

cannot follow.

85

Figure 4.15 shows the Inverse Simulation control input versus the PID control

input. In contrast to the linear case of Inverse Simulation, the control inputs, the

two control inputs are almost identical. The Integration method does not impact

the system dynamics and follows the desired output very closely.

Figure 4.15: QCA IS Integration Control vs PID Control

4.4 Application Example: Road Disturbance Identification

The passive QC model (QCP) is derived from Eq.(4.48) by setting the actuator force

to zero. In this case, the road disturbance zr is considered as the input to the

system.

()

s s s s1 1

sq sq sq sq2 2

3 3

t

4 4s ts s s
us

us us us us

0 1 0 0
0

-k -b k b
0

m m m m
0

0 0 0 1
k

- k +kk b -b
m

m m m m

r

x x

x x
z

x x

x x

 
  

      
      
     =  +  
      
      
        

   R

A

 (4.54)

Motivated by the previous examples, Inverse Simulation is used to find the road

disturbance (considered an input), given the output. In this way, the road

disturbance is identified.

86

To do this, a disturbance is applied to the system and, as in the case of the active

QC model, the unsprung mass velocity 4x is chosen as the output of interest since

it is a measure of the vehicle’s terrain handling ability (Dixon, 2007; Savaresi et

al., 2010) and was used with good results for the QC active case. Then, the

resulting control input from Inverse Simulation is compared with the road

disturbance imposed on the forward system. The output equation is:

  

1

2

3

4

0 0 0 1

x

x
y

x

x

 
 
 = 
 
 
 

C

 (4.55)

This process is repeated for two types of disturbances zr: a sine function as in

Eq.(4.49) (plot repeated here for clarity, Figure 4.16) and a disturbance with a

trapezoidal profile that has a maximum height of 0.1 m and a duration of 2.5 s,

Figure 4.17.

Figure 4.16: Road disturbance, sine

Figure 4.17: Road disturbance, trapezoid

There is one input and one output, and the Integration Inverse Simulation method

is used. The Jacobian is calculated using central differences, as in Eq.(4.47). The

perturbation is based on the previous estimate multiplied by dt and there is no

minimum perturbation size. The simulation parameters are shown in Appendix E.

Figure 4.18 shows the results when the road disturbance is a sine function, the

dashed line indicates the actual disturbance. The control input identified by the

Inverse Simulation matches very well the initial disturbance, the average error is

1 mm, and the maximum is 5 mm.

87

Figure 4.18: Sine Road Disturbance
identified by IS

Figure 4.19: Trapezoid Road Disturbance
identified by IS

Figure 4.19 shows the results when the road disturbance is a trapezoid, the dashed

line indicates the actual disturbance. The control input identified is very close to

the initial disturbance; the average error is 2 mm, and the maximum error is 1 cm.

The identified road disturbance in Figure 4.19 is less smooth, especially when the

input changes from ascending to a straight line and again when it starts to

descend. However, in reality, the disturbance will not have well-defined edges as

the trapezoid function used here.

The identification of the road disturbance affecting a vehicle is an important issue

that influences the navigation capability of any ground vehicle and certainly so in

the case of a rover operating in a distant, hostile environment. Currently, the

issue of identifying road disturbances and road defects, either on paved roads or

on off-road terrain, is discussed in several papers and different methods are used.

A few examples include the use of line scan sensors, LiDAR sensors, stereography

using digital cameras (Botha et al., 2015), the reconstruction of road defects using

neural networks (Ngwangwa et al., 2014), the use of nonlinear observers (Rath et

al., 2015) and the use of Kalman filters (Dawkins, 2014). Reference (Chhaniyara

et al., 2012) is a survey of various terrain characterisation techniques (remote, in

situ sensing, direct sensors) for planetary exploration rovers and notes that “in a

number of areas, suitable light-weight, compact, power-efficient technology has

yet to be fully realised”. The ability to identify these disturbances from the

outputs of the system and without any need of additional equipment is an

important advantage of Inverse Simulation.

88

4.5 Inverse Simulation Tuning Recommendations

Inverse Simulation is affected by numerical and stability issues that depend on

certain parameters. These are identified as: the tolerance limit set for

convergence, the discretisation step dt used, the number of maximum iterations

required for convergence and how the Jacobian for the Newton-Raphson scheme

is approximated and inverted. Of these, the tolerance limit, and the discretisation

step dt used are the numerical parameters of the problem.

The time step dt is important for the stability of the Inverse Simulation, especially

for Differentiation, and must correspond to the physical limitations and response

times of the system, such as the onboard actuators. For the Differentiation

method, increasing dt corresponds to an analogous increase in the error between

the actual and the desired and reducing dt reduces the error only up to a point.

For the Integration case, a small dt results in a smaller error, that in theory can

be reduced to zero as the dt decreases. In practice, no numerical computation will

achieve this. Selecting a dt is a case of compromising between adequately

following the system as it evolves over time, accuracy and possibly exciting the

uncontrollable states, as was also discussed in the review in Section 3.2.

The convergence tolerance can be set according to the acceptable error between

the actual and the desired, considering that this is a numerical method and thus

no computer will produce a perfect zero error. Additionally, the convergence

tolerance should be relevant to the scale of the desired output. In Appendix H

additional mathematical background is provided.

The size of the Jacobian and thus the solution for the Inverse Simulation depends

on the number of the system’s k control input variables and p outputs. An equal

number of inputs and outputs is the preference, as this is neither an overactuated

nor an underactuated control problem. In practice though, that may not be the

case. Additionally, when solving numerically and since all measurements are never

perfect, the choice should always be to select the best factorisation method to

provide a computationally efficient least-square solution. It is important to have

a clear idea of the size of the system to solve for Differentiation and Integration

and examining the system’s physical properties should provide the necessary

information.

89

Selecting the desired output is necessary for formulating the algorithms and the

physical properties of the system should be considered. The proposed output

should represent a realistic expectation of what the system can achieve. In cases

where there is ambiguity as to what outputs to select, it is worth remembering

that for Differentiation the desired outputs can affect the overall stability, as

shown for the linear case in Section 4.1.3. The linear case itself is the simplest

version of the Differentiation algorithm, which requires the appearance of the

output in terms of the states and input. This contrasts with the general case for

Integration which deals only with the input and output, the states and thus the

system dynamics are not affected. Furthermore, this output needs to be

sufficiently smooth, especially if the derivative information may be needed to

differentiate the output equation.

A final observation is that the Integration method does not require the

differentiation of the system’s state and output equation. Instead, the Jacobian

of the output vector when perturbing the input is used. The state and output

equations can be called from an external function and so are isolated from the

main algorithm, thus the method’s suitability for grey or black-box models,

Differentiation converges based on the system’s state and output equations and

their Jacobian when the input is perturbed. Therefore, any changes in the system

dynamics (e.g., number of states) require a change in the algorithm.

4.6 Summary of Application Results

Overall, for the MSD, the active and the passive QC models, Integration provided

consistently good results in terms of accurately following the desired output. Even

for a seemingly simple LTI system such as the MSD, care should be taken when

selecting the desired output or outputs and using the linear case of Inverse

Simulation is not always the best choice. Furthermore, the selection of outputs

for the linear case of Inverse Simulation and how they influence the system

dynamics can provide insight into which is the best output to select if there are

several choices. This was shown in the MSD example in Section 4.2 and the QCA

example in Section 4.3. Finally, the Inverse Simulation algorithm can be used to

determine in general an input given an output, without that input being

necessarily a control input. This extends the usage of Inverse Simulation.

Chapter 5 Rover Mathematical Model and
Trajectory Generation

The purpose of this chapter is to present the mathematical model and the test

trajectories that will be used for Inverse Simulation for the rover in Chapter 6 and

Chapter 7. The rover model used conforms to the baseline design from Section

2.2.3: (a) 4 wheels, (b) differential drive. Instead of using a passive suspension,

the simpler approach is adopted of using the flexibility of the wheel itself for

terrain that is not significantly uneven (Siegwart et al., 2011).

5.1 Rover Model Overview

A realistic, accurate model that describes the behaviour of the robot under a

defined range of operating conditions is required to create a simulation capable

of testing control algorithms. More so in the case of Inverse Simulation when the

model is numerically inverted to find the input for a desired output.

A wheeled mobile robot is described by a kinematic model and a dynamic model.

The kinematic model is the most basic study of how the system behaves (Siegwart

et al., 2011) and provides a description of the pose of the robot given a frame of

reference, the system’s configuration vector, and the vector of independent

velocity variables associated with the system’s degrees of freedom (Campion et

al., 2008; Siegwart et al., 2011). The kinematic model provides a description of

the robot that can be used on its own, as it is simpler than the dynamic model,

has lower computational requirements and is easier to implement (Morin et al.,

2008; Cheein et al., 2014; Paden et al., 2016). The dynamic model provides a

complete description of all the forces and torques that act on the robot, including

the forces provided by the actuators (Campion et al., 2008). Together, these two

models completely describe the behaviour of the robot.

The model used in this work is that of a four-wheel, differentially driven rover

with no suspension. The rover’s left and right sides are symmetrical to each other,

and each side is actuated independently, with the wheels on each side always

being actuated with the same signal. This model is a close analogue to the baseline

model in Section 2.2.3 and has the same three basic characteristics: (a) wheeled

locomotion using four wheels (b) wheel drive, and (c) differentially driven. There

91

is no suspension. The simplest approach that is suitable for terrain that is not

significantly uneven, is to design flexibility into the wheel itself, e.g. by using a

deformable tyre made of rubber for the wheel (Siegwart et al., 2011). In this

model, the wheel conformity to the ground and the associated terramechanics are

not considered, the assumption is that the terrain is not significantly uneven or

soft and the wheels can traverse the terrain with no issues. For this work, the

robot moves on a planar, smooth, and rigid terrain.

Note that there is no general definition in the literature about what is exactly soft

terrain or uneven terrain (Nie et al., 2013; Ghotbi et al., 2016). For wheeled

robots moving on rigid, flat ground, when it can be assumed that the robot wheels

roll without (significant) slipping and no sinkage occurs, then this is the type of

terrain that is not significantly uneven or soft (Ghotbi et al., 2016). These

assumptions may be violated when the vehicle moves on soft terrain (Thueer et

al., 2010; Ghotbi et al., 2016), but this is not the case for this model in this work.

Reference (Nie et al., 2013) provides a planar to rough terrain classification using

the obstacle size relative to the robot’s size. The obstacles (Nie et al., 2013) are

subdivided into four categories: single, continuous, slopes, and gaps.

The rover’s chassis is a Lynxmotion 4WD3 model that employs four identical DC

motors and has rubber, treaded wheels, Figure 5.1. The chassis width is 0.2488 m

(from the centre of the left wheel to the centre of the right wheel), the length is

0.35 m, and the wheel height is 0.127 m. The complete rover specifications are in

Appendix A. The model used has been previously extensively presented in (Worrall

et al., 2006; Worrall, 2010) based on the method in (Fossen, 2002). The model has

also been experimentally validated (Worrall, 2010).

Figure 5.1 Lynxmotion 4WD3 Chassis (Lynxmotion, 2018)

92

Using a validated model ensures that the simulation results will be like those of

the actual robot. The validation process is fully described in (Worrall, 2010) and

was done using two comparison methods: Analogue Matching (also known as visual

inspection) and Integral Least Squares. When using Analogue Matching, the

simulation model output is compared graphically with available experimental data

by superimposing the two plots (Gray, 1992). The simulation data that best fit the

experimental data correspond to the model that best represents the physical

system (Gray, 1992). The Integral Least Squares method is a quantitative method

that calculates the least-squares error between the experimental data and the

simulation data; the model that has the smallest error is the best representation

of the physical system (Worrall, 2010). During the validation process, seven

different experiments of increasing complexity were carried out (Worrall, 2010):

(1) drive the robot forward in a straight line, (2) drive the robot forward in a

straight line and then execute a left turn, (3) drive the robot in a square, (4) drive

the robot forward on a small up-down ramp with a maximum of 15 deg incline: the

robot moves forward, one set of wheels drives up the ramp, then down the ramp

then continues to move forward, this is to evaluate the coupling between roll and

pitch (5) drive the robot forward on a small up-down ramp with a maximum of 15

deg incline, this time the whole robot is on the ramp, (6) drive the robot forward

on a flat surface to evaluate the roll and pitch coupling, (7) drive the robot in a

zig-zag pattern. In each case, the linear and angular accelerations and velocities

were recorded and compared with those from simulation (Worrall, 2010). In

Appendix A, the validation results from the second experiment are shown.

5.1.1 Model Variables and Frame of Reference

The inertial Earth-fixed frame e and the rover body-fixed frame b are shown in

Figure 5.2.

93

Figure 5.2: Rover Frames of Reference

The origin of the body-fixed frame is at the centre of mass of the rover, which is

also the centre of the robot, Figure 5.2. Table 5.1 presents the model variables.

The rover’s specifications (such as mass, wheel radius, moments of inertia etc)

are in Appendix A.

Table 5.1: Model Variables

DOF Axis Name (Type) Velocity Force or
Moment

Position or
Orientation

1 Xe / Xb Surge (Translation) u (m/s) X (N) x (m)

2 Ye / Yb Sway (Translation) v (m/s) Y (N) y (m)

3 Ze / Zb Heave (Translation) w (m/s) Z (N) z (m)

4 Xe / Xb Roll (Rotation) p (rad/s) K (Nm) φ (rad)

5 Ye / Yb Pitch (Rotation) q (rad/s) P (Nm) θ (rad)

6 Ze / Zb Yaw (Rotation) r (rad/s) M (Nm) ψ (rad)

The following notation is used. Vector q describes the linear and angular velocities

in the body-fixed frame, these are the independent velocity variables. It is further

decomposed in q1 and q2 to represent the body-fixed translation and orientation

velocities respectively.

translation rotation

T

u v w p q r
 
 
  

q = (5.1)

  
T

u v w=1q (5.2)

  
T

p q r=2q (5.3)

Xb

Y
b

X
e

Y
e

Z
b

Z
e

94

Vector τ combines the independent forces F and moments M that act on the

system.

T

x y zX Y Z M M M
 
 
 
 F M

τ = (5.4)

Vector η is the configuration vector and describes the pose in the Earth-fixed

frame. It is further decomposed into η1 and η2 to represent the Earth-fixed position

and orientation respectively.

position orientation

z

T

x y   
 
 
 
 

η = (5.5)

  
T

x y z=1η (5.6)

  
T

  =2η (5.7)

5.1.2 Dynamics

The complete dynamic model is presented here:

 () () ()τ = Hq+C q q +D q q +G η (5.8)

In Eq.(5.8) H is the mass matrix, C(q) are the Coriolis forces, D(q) are damping

forces and G(η) are the gravitational forces. In the next sections, the individual

elements of the dynamics described by Eq.(2.1) are presented. These are the

forces & moments in vector τ in Eq.(5.4) that cause the rover’s movement, the

rigid body dynamics described by matrices H, C(q), the damping forces & moments

D(q) and the gravitational forces G(η). Note that for the cosines and sines, c is

used instead of cos and s instead of sin.

5.1.2.1 Forces & Moments

The forces are the forces that drive the rover and are generated by each wheel

when actuated. The force iF is the result of the torque iT applied to the wheel,

95

where i refers to each wheel (fl, fr, bl, br) as in Figure 5.3, Figure 5.4, and rw is

the wheel radius.

wr

i
i

T
F = (5.9)

The rover has a differential drive configuration that uses four motors wired in

parallel so that the motors on each side always receive the same input. Thus, two

motors drive the left-hand side wheels and two drive the right-hand side wheels.

The wheels at each side are always actuated with the same input by the motors.

The rover motion is controlled by specifying the torque to be sent to each side.

Later, with the inclusion of the motor dynamics in Section 5.1.4, that input will

be a voltage, but the basic functionality remains the same.

To achieve forward (surge) motion each wheel is actuated with identical torques

(Figure 5.3). To rotate the rover, the wheels on opposite sides are driven in

opposite directions. For example, to rotate clockwise, the wheels on the outside

of the turn rotate forward and the wheels on the inside of the turn rotate

backwards (Figure 5.4). To rotate on the spot, the signals to the left side and right

side are equal and in opposite directions.

Figure 5.3: Forward Surge Motion

Fbl Ffl

F
X

Fbr Ffr

96

Figure 5.4: Clockwise Turn

Using this wheel drive configuration, the movement along the surge direction and

the yaw direction is directly controlled, X and Mz respectively in Eq.(5.4).

Before moving on to the calculation of the propulsion forces, it is worth going over

the issue of lateral slip. This is different to roll (or longitudinal) slip, where in an

ideal rolling wheel, the velocity of the contact point between the wheel and the

ground is zero (Schramm, Hiller and Bardini, 2014). In the case of lateral slip, a

wheel that is acted upon by a lateral force gets a velocity component that is

lateral to the rolling direction (Pacejka, 2012; Schramm et al., 2014). The forward

(surge) speed is the longitudinal component of the total velocity vector at the

wheel centre and the sway is the lateral component (Pacejka, 2012; Schramm et

al., 2014). This is present, for example, when the rover is turning (Worrall et al.,

2006) in one direction and the wheels are pointing in the previous direction. This

is because the wheels are driven but not steered, the wheel cannot turn around a

vertical axis passing through the centre of the wheel and the ground contact point

to change its direction (Siegwart et al., 2011). The lateral (or skew) wheel slip is

then defined as the ratio of the lateral and the forward velocity of the wheel,

which corresponds to the tangent of the slip angle β (Pacejka, 2012; Schramm et

al., 2014). The slip angle β is (Pacejka, 2012; Schramm et al., 2014):

()2 2
arcsin

v

u v


 
 =
  +
 

 (5.10)

Ideally, this slip angle should be as close to zero as possible and there would be

no sway force acting on the wheels, so the sway velocity should be zero. For a

slow-moving system on flat terrain, this is not an unreasonable assumption (Tian

Fbl Ffl

Fbr Ffr

M
Z

97

et al., 2014; Paden et al., 2016). Recall also that the rover is differentially driven

and thus it can control its forward speed u and its orientation, but not the sway

speed v. The slip angle is set to zero when the rover is not moving. Eq.(5.10)

provides a relation between the surge and the yaw velocity and this coupling will

further be used when developing the Inverse Simulation algorithm for the rover.

Force X, where Ffl is the force at the front left wheel and so on and β is the slip

angle is (Worrall et al., 2006; Worrall, 2010):

 ()cfl fr bl brX F F F F = + + + (5.11)

The yaw moment Mz, where Ffl is the force at the front left wheel and so on and

rm is the moment arm is (Worrall et al., 2006; Worrall, 2010):

 () ()z fl bl rl br mM F F F F r = + − +
 

 (5.12)

So far, the surge force X and the yaw moment Mz have been defined in Eq.(5.4).

The remaining forces and torques at Eq.(5.4) cannot be directly controlled and

are therefore the system’s unmatched dynamics: sway (Y), heave (Z), roll (Mx)

and pitch (My). These forces & moments are the result of the interaction between

surge, yaw, and the environment. The sway force Y, in particular, is the result of

the robot slipping on the ground (angle β) when turning, Eq.(5.13) (Worrall et al.,

2006; Worrall, 2010):

 ()sfl fr bl brY F F F F = + + + (5.13)

Comparing Eq.(5.13) with Eq.(5.11) for the sway force X and Eq.(5.12) for the yaw

moment Mz, it can be seen that while Y is not directly controlled, it does depend

on the wheel forces and thus on the actuation torque. Also, when the slip angle is

very small due to the small angle approximation6, the effect on the surge force X

is very small and the sway force Y is almost zero.

6 Small angle approximation (Fossen, 2002): sin   or even sin 0  , cos 1  for

0.17 rad (10deg)  , which results in less than 1% error.

98

5.1.2.2 Rigid Body Dynamics

The rigid body dynamics are a simpler form of the complete dynamics in Eq.(5.8)

and are obtained by omitting the effect of the damping and gravitational forces,

matrices D and G. This is the system’s response when subjected only to a force F

and a moment M, Eq. (5.4). Because the centre of the body-fixed frame (Figure

5.2) coincides with the system’s centre of gravity and with the principal axes of

inertia, the mass matrix H is diagonal (Popp et al., 2010).

The rigid body dynamics are:

 ()=τ Hq+C q q (5.14)

In Eq.(5.14), H is the mass matrix and C is the Coriolis matrix:

 ()xc yc zcm m m I I Idiag=H (5.15)

zc yc

zc xc

yc xc

0 0 0 0 m m

0 0 0 m 0 m

0 0 0 m m 0

0 m m 0 I I

m 0 m I 0 I

m m 0 I I 0

w v

w u

v u

w v r q

w u r p

v u q r

− 
 

−
 
 −

=  
− − 

 − −
 

− −  

C (5.16)

In Eq.(5.15) and Eq.(5.16) m is the robot’s mass, Ixc is the inertia around the Xb

axis, Iyc around the Yb axis and Izc around the Zb axis (Figure 5.2 and Appendix A).

5.1.2.3 Damping & Gravitational Forces

A wheeled rover encounters two damping forces: friction fF , air resistance arF .

 () () ()f ar= +D v F v F v (5.17)

The friction reaction fF depends on the rover’s weight and a frictional coefficient.

The friction reaction fF is decomposed into the friction forces ()fricF v and

moments fricM :

99

 ()
x

y

z

σ 0 0

mg 0 σ 0

0 0 σ

fric

u

v

w

   
   

=     
     

F v (5.18)

p p

q q

r r

r σ 0 0

mg 0 r σ 0

0 0 r σ

f

p

q

r

   
   

=     
     

M (5.19)

To increase the accuracy, it was found that an additional variable is required, the

numerical velocity component along or about each axis (Worrall et al., 2006), seen

in Eq.(5.19). This velocity term has the effect of scaling the frictional term to suit

the current wheel velocity (Worrall et al., 2006). In Eq.(5.18), Eq.(5.19) the

parameters g (gravity acceleration), iσ (the friction coefficient) and jr (moment

arm) are in Appendix A.

The air resistance force Far is caused by the movement of the robot through the

air:

 ()
2

d

ρ
C A 0 0 0 0 0

2

T

ar

u
u

 
=  
 

F (5.20)

In Eq. (5.20) (Worrall, 2010; Nakayama, 2018), Cd is the drag coefficient, A is the

surface area presented to the direction of travel, ρ is the air density and u is the

velocity in the direction of travel. Axis Xb is the main axis of motion and so the

other velocities and their effect on the air resistance force is negligible. The drag

coefficient Cd depends on the shape of the robot and the values of parameters Cd,

ρ and A are in Appendix A. Note that at low speeds or low density, the air

resistance force is negligible. For example, using the values from Appendix A, the

rover’s air resistance is less than 0.001 N for a speed of 0.1 m/s.

Vector G(η) (Worrall, 2010), represents the effect of any gravitational forces and

moments that act on the robot, where θ is the pitch angle and φ is the roll angle.

100

 ()

mg s

mg s c

mg c c

0

0

0



 

 

− 
 
−
 
 −

=  
 
 
 
 

G η (5.21)

Eq.(5.21) is based on the way gravitational forces act on the robot when moving

on an incline, with the additional multiplication term cθ along the Ye and Ze axis.

This term is added to represent the coupling when both a roll and a pitch exist

(Worrall, 2010).

5.1.3 Kinematics

The system’s kinematics are the geometric transformations that map the body-

fixed velocities to the Earth-fixed reference frame (Fossen, 2002):

 ()η = J η q (5.22)

Matrix J(η) relates the body-fixed linear and angular velocities q from Eq.(5.1) to

the Earth-fixed position and orientation configuration vector η from Eq.(5.5).

The kinematics are further decomposed to the linear and angular velocities using

q1 from Eq.(5.2) and q2 from Eq.(5.3) for the body-fixed velocities and η1 from

Eq.(5.6) and η2 from Eq.(5.7) for the Earth-fixed position and orientation

respectively.

Using the Euler angles φ, θ, ψ and the zyx convention (Fossen, 2002), the rotation

matrix from the body-frame b to the Earth-fixed frame e is:

, , ,

e

b z y x

e

b

c c s c c s s s s c c s

s c c c s s s c s s s c

s c s c c

  

           

           

    

− − − 
 

− − −
 
  

R = R R R

R =
 (5.23)

From the Earth-fixed frame to the local frame the rotation matrix is:

101

 ()
1

, , ,

b e T T T

e b x y z  

−

=R R = R R R (5.24)

The relationship between the body-fixed translation velocities q1 and those in the

Earth-fixed frame is:

 e

b=
1 1
η R q (5.25)

Expanding Eq.(5.25) gives:

() ()

() ()

x uc c v c s s s c w s s c c s

y us c v c c s s s w s s c c s

z us vc s wc c

           

           

    

= + − − + −

= + − + − −

= + +

 (5.26)

Using Euler integration, where dt is the time step and i+1 is the current instance,

the numerical computation of the global position based on Eq.(5.25) is:

 () () () ()1 e

bi i dt i i + = +  1 1 1
η η R q (5.27)

If the translation velocities in the local frame are needed, then:

 ()
1

e

b

−

=1 1q R η (5.28)

Similarly, the relationship between the body-fixed angular velocity vector q2 and

the Earth-fixed angular velocity is:

e

b=
2 2
η T q (5.29)

The rotation matrix is:

1

0 ,
2

0

e

b

s t c t

c s

s c
c c

   

  

 
 

 
− 

 =  
 

− 
 

T (5.30)

Expanding Eq.(5.29):

102

p qs t rc t

qc rs

s cq r
c c

    

  

 
 

= − +

= +

= − +

 (5.31)

The angular velocity vector 2q in the body frame cannot be integrated to obtain

the angular coordinates7 (Fossen, 2002). Instead, vector 2η from Eq.(5.29),

Eq.(5.31) can be integrated to obtain the angles φ, θ, ψ.

For small angles δφ, δθ of less than 0.17 rad (10 deg) to achieve less than 1% error,

the rotation matrix in Eq.(5.30) is simplified (Fossen, 2002):

1 0

0 1

0 1

e

b







 
 


 
 − 

Τ (5.32)

Overall, the kinematics described by Eq.(5.22) and matrix J(η) are:

()

()
 

 
3 3

3 3 6 6

e

b x

e

bx x

 
=  
  

η = J η q

R 0
J η

0 T

 (5.33)

5.1.4 Motor Dynamics

The model of the rover is augmented by the inclusion of the motor dynamics, the

parameters are in Appendix A. The rover employs four identical DC motors and

both wheels on each side receive the same input. This reduces the voltage inputs

to two: a voltage V1 to the left side and a voltage V2 to the right side:

  1 2

T
V V=V (5.34)

Since each side receives the same voltage input, the equations are written for the

left (i=1) and right side (i=2).

7 This is because (and in contrast to translation) in general rotations around different axis, do not

commute; the order in which rotations are applied is important. Therefore, integrating the
angular velocity to find angular position does not work in the general case.

103

The motor dynamics consist of an electrical and a mechanical component. The

electrical component describes the behaviour of the current (Ii) in response to the

voltage input (Vi), where aL is the inductance of the circuit, R is the resistance

and eK is the EMF constant.

 a e

a

R K

L

i i i idI I V

dt

− − +
= (5.35)

The dynamics of the mechanical component describe the interaction of the motor

speed ()i with the current ()iI ; mJ is the motor moment of inertia, tK is the

torque constant, b is the viscous torque constant and ξ is the base friction

coefficient.

  t

m

K b ξ
, 1,2

J

i i i id I
i

dt

  − −
= = (5.36)

Each motor generates the torque i and iη is the motor efficiency.

  t iK η , 1,2i iI i = = (5.37)

The force per wheel is the propulsion force that drives the rover and is generated

by each wheel when actuated, where wr is the wheel radius. Because each side

receives the same voltage input, the front left and back left wheels produce the

same force (fl blF F=) and so do the front right and back right wheel (fr brF F=).

This is the point where the motor dynamics are connected to the system dynamics

via the wheel force from Eq.(5.9).

5.2 Trajectory generation for the four-wheeled robot

The trajectory of the rover is represented as a series of waypoints on a plane,

each defined by a (Xe, Ye) coordinate with a common origin, such as the example

in Figure 5.5. The waypoints represent safe points and have been pre-selected by

an appropriate methodology. The algorithm creates the trajectory between each

successive waypoint with the robot stopping at each waypoint to turn on the spot

to achieve the desired orientation, then move again; this is the turn then travel

104

strategy described in Section 2.3.3 and when the rover moves there is either a

surge motion or a yaw rotation. The benefit is that the time required to achieve

the desired heading and position is smaller for the stop and turn strategy and the

greater the change in heading is, the faster it is compared to the turn-while-

travelling strategy (Cook, 2011).

Through this process, the trajectory is described by a series of forward surge

movements along the Xb axis (defined on the local frame), each followed by a turn

along the Zb axis. The surge and turn movements are in a format that can then be

used by the Inverse Simulation algorithm.

To define the trajectory, the desired constant speed is needed for both the

forward and rotational velocity as well as the required time for acceleration and

deceleration. The system’s operating limits for the maximum surge and yaw are

also considered. This information is used along with the distances and angles

calculated from one waypoint to the next to evaluate the acceleration along the

Xb axis (when moving forward) or the acceleration around the Zb axis (when

rotating) using a fixed time step, which is the same as the time step dt used later

for the Inverse Simulation algorithm. The motion consists of an acceleration stage,

followed by a stage of constant velocity and then a deceleration stage, such as

the example in Figure 5.6.

The profile for the surge and yaw velocity is generated using a 6th order polynomial

between two successive waypoints and the method presented here is based on

(Thomson et al., 2006; Worrall et al., 2015). A 6th order polynomial ensures

smooth trajectory profiles due to the continuity of the higher-order derivatives.

This is the process of piecewise interpolation, where the polynomial is fitted

through two successive waypoints and uses appropriate boundary continuity

conditions to connect them.

The distance to travel between waypoint ()1 1,i ix y− − to waypoint (),i ix y is

calculated for a maximum speed of 0.1 m/s for the surge velocity and 10 deg/s for

the angular velocity next. These limits are in line with the actual capabilities of

the robot, ensure that the air resistance is almost negligible and act as an indirect

constraint on the minimum traverse time from one waypoint to the next. At each

waypoint, it is determined if the rover is at the correct angle for the next traversal

105

forward. If not, then the rover is commanded to turn on the spot until the desired

angle of travel is achieved. The acceleration and deceleration ()u r are calculated

using the following polynomial:

6 5 4 3

max max max max

7 6 5 4

20u 70u 84u 35u
7 6 5 4i i i iu t t t t

e e e e

              
= − + − +              

              
 (5.38)

In Eq.(5.38), ()max maxu r is the maximum value of the surge (yaw) velocity and it

is the current time. From Eq.(5.38), a time history for the acceleration is

obtained; it is then numerically integrated to provide the velocities which are

then further integrated to provide the displacements.

For example, Figure 5.5 shows a desired trajectory in the Xe – Ye plane and the

waypoints are marked with a cross (+). Figure 5.6 shows the corresponding surge

and yaw velocities generated by this method.

Figure 5.5: Arc Trajectory

Figure 5.6: Arc Desired Surge Velocity (top),
Desired Yaw Velocity (bottom)

The trajectory is an arc that is defined by six waypoints in the Xe – Ye plane, the

total duration is 25.9 s, and the total drive distance is 0.73 m. In Figure 5.6 the

motion consists of an acceleration stage, followed by a stage of constant velocity

and then a deceleration stage (a trapezoidal profile), with 0.1 m/s set for maximum

surge velocity and 10 deg/s (0.17 rad/s) for maximum yaw velocity. When the rover

moves there is either a surge motion or a yaw rotation.

106

These limits are reasonable for a rover traverse scenario, such as the one in

(Correal et al., 2016) and the actual drive data from Curiosity (Rankin et al.,

2020), where the maximum rotation rate is 0.168 rad/s.

The choice of outputs and the polynomial is further motivated by the fact that the

trajectories will be used further along for demonstrating the Inverse Simulation

algorithms and the following points were considered for the trajectory, based on

those discussed in Section 3.2.

It is good practice to specify as desired outputs variables that are related to those

that can be more strongly controlled and are a realistic representation of what

the rover can achieve. The rover is differentially driven, which means that the

rover’s left and right sides are symmetrical to each other, and each side is

actuated independently, with the wheels on each side always being actuated with

the same signal. Therefore, the two directly controlled variables are the surge

velocity u and the yaw angular velocity r and these two variables are sufficient for

completely describing the pose of the robot moving on a plane.

The preference for using a high order polynomial for Inverse Simulation is balanced

against the need to avoid the oscillations present in polynomial interpolation,

which further motivates the choice of using an interpolating polynomial between

two waypoints for the turn-then-travel method. In this way, a trajectory is

designed from a set of waypoints with considerations specific to the task at hand

and the application of Inverse Simulation.

107

Chapter 6 Application of Inverse Simulation to
the Rover I: Non-linear Model

In this chapter, the general algorithm is applied to the specific problem of using

Inverse Simulation for guidance by providing the changes in velocity, rotation, and

acceleration for following the desired trajectory and for control by using these

inputs to execute the desired trajectory, thus performing output tracking. The

non-linear dynamic and kinematic rover model from Section 5.1 is used. The

desired output is a series of trajectories that were produced using waypoints and

the stop and turn method detailed in Section 5.2. The benefit is that the time

required to achieve the desired heading and position is smaller for the stop and

turn strategy (Cook, 2011). Finally, the assumption is made that the terrain is not

significantly uneven or soft and that the robot moves on a planar, smooth, and

rigid terrain.

The method of evaluating the Inverse Simulation signals is by applying them in a

standard forward simulation and checking if the response matches the desired. In

this way, the rover moves autonomously for traverses up to a few meters. This is

similar to the strategy in Section 2.3.2, where the rover can go to a given location

by executing a pre-defined path without any corrections (Correal et al., 2016),

similarly to open-loop control (Silva et al., 2013).

The rover is differentially driven and the motion along the surge axis and the yaw

rotation is directly controlled (the left and right wheel speed); these are sufficient

so that the rover can turn on the spot, move in a straight line or move in a circular

path. Therefore, the rover control inputs û are reduced to torque 1̂ to the left

side and torque 2̂ to the right side.

  1 2
ˆ ˆ ˆ ˆ

T
 = =u τ (6.1)

The state-space model describing the rigid body dynamics of the four-wheeled

rover, with m=6 states and k=2 control inputs, is:

 () ()() () () () ˆt t = −-1
q = f q ,u H τ -C q q D q q -G η (6.2)

108

Vector τ are the forces and moments acting on the rover, vector q represents the

state velocity vector in the body-fixed frame, and û is the control input.

The output equation y is:

 () ()()ˆ
u

t t
r

 
= = 
 

y g q ,u (6.3)

The desired output dg is defined over the time interval Τ and is discretised with

a time step dt.

d

d

d

u

r

 
=  
 

g (6.4)

() ()

 

 
0

,

... ...

, 0,

d i d i

i N

i

t t t

t t t

t idt i N

=  

=

= 

y g T

T (6.5)

The Inverse Simulation problem is stated as:

Given a desired output ()d tg defined as a vector of surge velocities ()du and a

vector of yaw velocities ()dr over a time interval T, find the vector of suitable

control inputs û so that the vector of outputs g of the system is equal to the

desired ()d tg within the specified tolerance. The control inputs are the left and

right side torques, therefore  1 1
ˆ ˆ ˆ ˆ

T
 = =u τ .

6.1 Differentiation

There are six states, two desired outputs (), d du r , two system outputs to control

(), u r and two control inputs ()1 2
ˆ ˆ,   to identify at every it over the time interval

T. The state and output equations Eq.(6.2), Eq.(6.3) are discretised N times over

the time interval Τ with a step of dt. At it given the desired output ()d itg , the

functions F1 and F2 are defined to find the value of the input τ̂ and the states q

respectively, as described in Section 4.1.1.1.

109

The size of F1 is 6×1 and of F2 is 2×1.

 () ()()
() ()

 -1

1 1 2 3 4 5 6

-1

ˆ, -
-

Ti i

i i

i i

t t
t t F F F F F F

t t

 
= = 

 

q - q
F f q τ (6.6)

 () ()
() ()

() ()
1

2

2

i d i

i i

i d i

u t u t g
t t

r t r t g

−   
= − =   

−   
dF g g (6.7)

Then, by using the desired output at every i discretisation point, a time series of

suitable control inputs ()ˆ
itτ and the corresponding states ()itq is found. This is

done by solving the system described by Eq.(6.6), (6.7) using the Newton-Raphson

method.

At each inner iteration n, q and τ̂ are updated using Eq.(6.8), where ()itJ is the

Jacobian of F1 and F2 at it . The method converges when the calculated values of

the control input and the states are such that F1 and F2 are both equal to zero,

within a certain tolerance.

()

()

()

()

() ()

() ()

() ()()
() ()()

1

1 1

1 1 11

1 2 2 2 1 1

ˆ,ˆ

ˆ ˆ ˆ,

ˆ

i i

n i n in i n i

n i n i n i n i
i i

t t
t tt t

t t t t
t t

 

 

 

 

−

− −−

− − −

 
      
 = −      
        
 
 

J

F F

F q τq q q τ

τ τ F F F q τ

q τ

 (6.8)

If all six states are perturbed in the Jacobian, its size will be 8×8. However, only

the states u and r are directly controllable, whereas the remaining four states

(), , , v w p q are not. Therefore, it makes physical sense to only perturb u and r, in

which case the Jacobian becomes:

110

1 1 1 1

1 2

2 2 2 2

1 2

3 3 3 3

1 2

4 4 4 4

1 2

5 5 5 5

1 2

6 6 6 6

1 2

1 1 1 1

1 2

2 2 2

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

F F F F

u r

F F F F

u r

F F F F

u r

F F F F

u r

F F F F

u r

F F F F

u r

g g g g

u r

g g g

u r

   

   

   

   

   

   

   

   

   

   

   

   

  

   

  

 

=J

2

1 2

g

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 (6.9)

The rank of J in Eq.(6.9) is 4. This is expected since the system has two directly

controllable states (u, r) and two control inputs (1̂ , 2̂).

If only the directly controllable states are considered for the Jacobian, then it is

reduced to a 4×4:

1 1 1 1

1 2

2 2 2 2

1 2

1 1 1 1

1 2

2 2 2 2

1 2

ˆ ˆ

ˆ ˆ

ˆ ˆ

ˆ ˆ

F F F F

u r

F F F F

u r

g g g g

u r

g g g g

u r

   

   

   

   

   

   

   

   

 
 
 
 
 
 =
 
 
 
 
 
 

J (6.10)

The sway velocity v is not matched dynamically to the system’s actuators and

therefore is not directly controllable. As was discussed in Section 5.1.2.1,

however, the sway velocity is strongly coupled to the surge velocity via the slip

angle, Eq.(5.10) and Section 5.1.2.1. This interaction provides an indirect control

of the sway and acts as an additional constraint when solving for the control input.

Consider also that a differential driven system by its nature does not move

111

sideways (i.e., slip) and for low speeds, this is a reasonable assumption. Hence,

0d =v is used.

Furthermore, it was observed during the initial simulations that including the

perturbation of the sway velocity v and selecting as an additional output to control

the sway velocity, the overall results were significantly improved. This is

examined further in Section 8.2.3. Therefore, there are three vectors of desired

outputs over the time interval: du , dr and the sway velocity dv which is set to

zero.

The outputs to control are now (), , u v r the inputs ()1 2
ˆ ˆ,   to identify are as

before. The number of outputs is now higher than the number of the control

inputs, making the system overdetermined. All outputs, however, are directly

related to those that can be strongly controlled. The output equation F2 is 3×1

and the Jacobian is 6×5:

() ()

() ()

() ()

1

2 2

3

i d i

i d i

i d i

u t u t g

v t v t g

r t r t g

−   
   

= − =   
   −   

F (6.11)

1 1 1 1 1

1 2

2 2 2 2 2

1 2

6 6 6 6 6

1 2

1 1 1 1 1

1 2

2 2 2 2 2

1 2

3 3 3 3 3

1 2

ˆ ˆ

ˆ ˆ

ˆ ˆ

ˆ ˆ

ˆ ˆ

ˆ ˆ

F F F F F

u v r

F F F F F

u v r

F F F F F

u v r

g g g g g

u v r

g g g g g

u v r

g g g g g

u v r

    

    

    

    

    

    

    

    

    

    

    

    

 
 
 
 




=








 

J
















 (6.12)

The Jacobian is calculated using finite differences and a first-order, forward

difference formula is used. A suitable factorisation method has to be used to find

the pseudoinverse of J required for Eq.(6.8). During the simulations, the MATLAB

package presented by (Davis, 2013) was used that is suitable for square,

112

orthogonal, rank deficient and over/under determined systems and provides

reliable results, even for near-singular systems. The algorithm extends the

functionality of the backslash operator (\) by improving how rank-deficient systems

are handled and selects the best factorisation method for a matrix A m×n that is

then used to solve the system to provide the least square solution. The selection

is between LU (L is a lower triangular matrix and U is an upper triangular matrix),

QR (Q is a matrix with orthonormal columns and R an upper triangular matrix),

SVD (Singular Value Decomposition), Cholesky and COD (complete orthogonal

decomposition) (Davis, 2013). This method ensures that the solution is the best

and most efficient in terms of errors and execution time (Davis, 2013); a warning

is given if no suitable method is found. For the Jacobian J defined in Eq.(6.12),

COD is the selected method, which was expected since the Jacobian matrix is

orthogonal and rank. This choice is further examined in Section 8.1 and Appendix

G contains more details on the factorisation methods.

Because only the states , , u v r are used for the Jacobian, only , , u v r , 1̂ , 2̂ are

updated in Eq.(6.8), which results in an updated reduced vector for the states and

a fully updated control vector, Eq.(6.14).

() ()

() ()

() ()()
() ()()

1

1 1

1 1
1

1 1 1

1

2 2 2 1 1
1, 1, 1

2, 2, 1

ˆ,ˆ

ˆ,
ˆ ˆ

ˆ
ˆ ˆ

n ni i

n n

n n i i

n i n i

n n

n i n i
i in n

n n

t t

u u

v v t t
t t

r r
t t

t t

 

 

 
 

 
 

−

− −

−

− −

−

− −
−

−

   
    
      
    = −   
       
    
    

    J

Q Q

F F

F q τq τ

F F F q τ

q τ

 (6.13)

1,

2,

ˆ

ˆ
ˆ,

ˆ

i

i

r

n t

t

n

n

r n

n

n

u

v

r





 
=  
 

 
  

= =   
   

q
Q

τ

q τ

 (6.14)

Therefore, the remaining states (), , w p q must be estimated. These correspond

to moving along the body-fixed Zb axis (heave), rotating around the body-fixed Xb

axis (roll), and rotating around the body-fixed Yb axis (pitch). When moving on a

flat plane (or a surface that can be considered flat with a good degree of

113

accuracy), the states (w, p, q) must all be zero due to the physics of the problem.

This also confirms the choice to not perturb w, p, q in Eq.(6.9). In total, the states

() ()1 1 1, ,n n n iw p q t− − − from the previous iteration n-1 are always set to zero and the

full state vector with the updated only , , u v r , 1̂ , 2̂ is now:

 ()  ()1 1 1n i n n n n n n it u v w p q r t− − −=q (6.15)

Then, the new values for iteration n for 1F , Eq.(6.6), and 2F , Eq.(6.11), are

calculated using ()n itq from Eq.(6.15). If both are equal to zero, within a certain

tolerance, the algorithm converges.

1

1

n n

n n

- tol

- tol

−

−





1 1

2 2

F F

F F
 (6.16)

The dynamics for the next step ()1it +q are calculated and integrated from Eq.(6.2)

using the updated control vector and states from Eq.(6.14) and Eq.(6.15). If

convergence is not achieved, the vector state for the next iteration n+1 is

Eq.(6.15) and the input is from Eq.(6.14).

6.2 Integration

The algorithm follows the general process discussed in Section 4.1.1.2. From the

state equation Eq.(6.2) and the output equation Eq.(6.3) there are two desired

outputs (), d du r , two system outputs to control (), u r and two control inputs

()1 2
ˆ ˆ,   to identify at every it over the time interval T. The error function ef

between the actual output y from Eq.(6.3) and the desired output ()tdg from Eq.

(6.4) is:

 () () () ()()
() ()

() ()1
ˆ i d i

i i i i

i d i

u t u t
t t t t

r t r t
−

− 
= =  

− 
e df = y - g g q , τ (6.17)

The Jacobian eJ of the error function is square and has a size of 2×2 since there

are two inputs and two outputs.

114

1 1

1 2

2 2

1 2

ˆ ˆ

ˆ

ˆ ˆ

y y

y y

 

 

 

 

 
 
 =
 
 
 

e

y
J =

τ
 (6.18)

The Jacobian in Eq.(6.18) is calculated using central finite differences. To do so,

the perturbations of the control inputs need to be considered and then the

corresponding change in the outputs. The perturbation matrix for the control

inputs is:

 

1 1 2 2

1 1 2 2

1 2

1 1 2 2

1 1 2 2

1 1 2 2

1 2

ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ
ˆ ˆ(,)

ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ

...

ˆ ˆ ˆ

p

   

   
 

   

   

   

  

−

−

−
−

−

+ −   
  

− +   = =
  + +
  

− −     

= + −

= =

+

+

+
+

+

τ

τ

τ

τ

τ

 (6.19)

The perturbation matrix represents four different cases that correspond to all the

possible movement combinations of the rover. The first line, ˆ +

-
τ , corresponds to

the case where the left side torque is increased and the right side is decreased

(i.e., a right turn), and so on for the rest (left turn, forward movement, backward

movement). For each of the four cases, the control inputs from Eq.(6.19) are

applied to the system equation Eq.(6.2), the new outputs are produced for each

case from Eq.(6.3) and the error for each case from Eq.(6.17) is:

()

()

()

()

ˆ

ˆ

ˆ

ˆ

d

d

d

d

d

d

d

d

uu u

rr r

uu u

rr r

uu u

rr r

uu u

rr r

















+
+−−

− − +
+−−

−
−+− − +

−
−++

+
+++

+
+++

−
−−− − −

− − −
−−−

 −  
= =   

−   

 −  
= =   

−   

 −  
= =   

−   

 −  
= =   

−   

+ +

e

e+ +

+ +

e+ +

e

f τ

f τ

f τ

f τ

 (6.20)

Using matrix notation, the error matrix is errorF and its size is 2x4:

115

error

u u u u

r r r r

   

   

+− −+ ++ −−− + −

+ + −

+− −+ ++ −−

 
 = =   

 

+

e- e e e
F f f f f (6.21)

The Jacobian e
J can now be calculated using central differences. Then, From

Eq.(4.11), the new control inputs are calculated, where n is the current Newton-

Raphson inner iteration. Using these new input estimates the states and outputs

are updated using the system dynamics Eq.(5.8). Then, the error function
,e nf is

calculated using the updated outputs, Eq.(6.23). If the error
,e nf is within the

acceptable range, then the calculated control input vector ˆ
nτ is the required for

this time instance, () ()1 1
ˆ ˆ

n i n it t− −=τ τ .

 () () () ()() () ()()1 1 1 1

1

1 1 1 1 1
ˆ ˆ ˆ ˆ, ,n n n nn i n i e i i e i it t t t t t− − − −

−

− − − − −= − τ τ J x τ f x τ (6.22)

()

()
1

,

ˆ

ˆ
i

n d

n

n d
t

u u

r r
−

− 
=  

− 
e

τ
f

τ
 (6.23)

The MATLAB backslash operator (\) was selected as the best method for solving a

square system like that in Eq.(4.11). This choice is further examined in Section

8.1 and Appendix G provides more details.

6.3 Test Trajectories

The trajectories used are calculated using the stop and turn method and the

polynomial from Section 5.2. All the trajectories are a combination of linear travel

along the surge axis and a yaw rotation and are depicted in the global e eX ,Y

system, as in Figure 5.2. The following two basic trajectories are first

demonstrated.

Forward: Move forward 1 m, Figure 6.1. This test shows that the algorithms can

generate the required control inputs for driving linearly without heading changes.

Left Right Turn: Forward for 1 m, turn 90 deg counter clockwise, forward 1 m, turn

90 deg clockwise and move 1m forward, Figure 6.2. This shows that the required

116

control inputs to enable forward movement followed by yaw rotation, followed by

a consecutive forward, and turn movement, can be generated.

Figure 6.1: Forward

Figure 6.2: Left – Right Turn

Having demonstrated these two basic trajectories, four more complex trajectories

are examined, to ensure that control inputs for the desired trajectories can be

generated.

Arc: The rover will have to move between closely spaced waypoints. Two

consecutive waypoints relate to a forward line and a turn, creating overall an

approximation of an arc, Figure 6.3.

Rhombus: This trajectory demonstrates a closed path with multiple turns, Figure

6.4.

Figure 6.3: Arc

Figure 6.4: Rhombus

Valley: One of the most difficult scenarios would be a valley run, where obstacles

are present on both sides and in proximity. This run consists of a series of forward

motions with rotations within tight spaces, Figure 6.5.

117

Long Arc: The long arc run involves traversing tens of meters with several pose

alterations, Figure 6.6. This test will examine the error built over time over a

demanding path.

Figure 6.5: Valley

Figure 6.6: Long Arc

The waypoints used for each test scenario are shown in Table 6.1.

Table 6.1: Test Trajectories Overview

Test Total Drive Distance [m] Duration [s] Waypoints

Forward 1 11.01 [0 0; 1 0]

Left Right Turn 3 53 [0 0; 1 0; 1 1; 2 1]

Arc 0.73 25.9
[0.0175 0.174; 0.0698 0.342; 0.156
0.500; 0.276 0.643; 0.423 0.766]

Rhombus 11.31 152.63 [0 0; 2 2; 4 0; 2 -2; 0 0]

Valley 13.44 203.70
[0 0; 1 1; 1 2;2 3;3 3;3.5 4; 3.5 5; 3 6;3

7;3.2 7.3; 4 7; 7 8];

Long Arc 16.91 208.55
[3.2139 3.8302; -0.862 4.9240; -4.3301

2.500; -4.6985 -1.7101; -1.7101 -4.6985]

6.4 Results for Stop and Turn Trajectories

This section presents the results of Inverse Simulation when applied to trajectory

tracking. For each trajectory, the objective is to calculate suitable control inputs

that when applied to the rover the desired trajectory is achieved. A series of

waypoints are first defined and then a trajectory between them is generated.

Inverse Simulation calculates the control inputs for each trajectory. Then, these

inputs are applied to the forward system, and it is checked whether the resulting

trajectory matches the desired. The control inputs from Inverse Simulation are

nominal and the resulting outputs and states are also nominal. The desired

trajectory is represented in the local frame by a vector of desired surge velocities

118

ud and a vector of desired yaw velocities rd that have been evaluated in advance.

Throughout this analysis, the rover operates on a horizontal plane.

The simulation parameters used for both the Differentiation and Integration

Inverse Simulation algorithm are the discretisation time step dt, the convergence

tolerance for the Newton-Raphson method, the maximum number of iterations for

convergence and the initial control estimate. The rover starts from rest and the

initial motor torque is zero, with a very small non-zero value used as an initial

estimate. The number of iterations is set to 30 per time step and in practice, it is

usually between 1 to 4 iterations per time step. The values for these parameters

were selected to ensure accuracy and decreased execution time and are shown in

Table 6.2. Additionally, when selecting the time step dt, the time constant of the

motors was considered.

Table 6.2: Inverse Simulation Parameters (Baseline)

Parameter Value

dt [s] 0.01

convergence tolerance (tol) [Nm] 5 10-7

initial control estimate [Nm] 2.5 10-7

maximum iterations 30

6.4.1 Trajectory Results Figures

The results for each trajectory when applying the Inverse Simulation control inputs

are presented in the following sections. For each case, the actual path (solid line)

versus the desired (dashed line) are depicted in the global eX , eY coordinate

system and the related calculated control inputs are shown. The results for the

Forward, Rhombus and Valley trajectories are in Appendix F.

6.4.1.1 Left Right

The trajectory results are presented in Figure 6.7, Figure 6.8 and there is no

discernible deviation from the desired trajectory. The control inputs from Inverse

Simulation are in Figure 6.9, Figure 6.10.

119

Figure 6.7: Left – Right, Differentiation

Figure 6.8: Left – Right, Integration

Figure 6.9: Left – Right Control Input,
Differentiation

Figure 6.10: Left – Right Control Input,
Integration

For Differentiation, in Figure 6.7 the final error is 1.61 10-3 m on the global eX axis

and 1.31 10-3 m on the eY axis. For Integration, in Figure 6.8 the final error is

1.55 10-3 m on the eX axis and 1.22 10-3 m on the eY axis. The Left-Right trajectory

tests the ability of the algorithm to produce a series of forward movements and

sharp turns and the method responds well.

6.4.1.2 Arc

The trajectory results are presented in Figure 6.11, Figure 6.12 and there is no

significant deviation from the desired trajectory. The control inputs from Inverse

Simulation are in Figure 6.13, Figure 6.14. Both methods produce good results

when required to produce a series of control inputs for navigating between closely

spaced waypoints.

120

Figure 6.11: Arc, Differentiation

Figure 6.12: Arc, Integration

Figure 6.13: Arc Control Input,
Differentiation

Figure 6.14: Arc Control Input, Integration

For Differentiation, in Figure 6.11 the final error is 1.80 10-3 m on the global eX

axis and 2.71 10-3 m on the eY axis. For Integration, in Figure 6.12 the final error

is 1.80 10-3 m in the eX axis and 2.78 10-3 m in the eY axis.

6.4.1.3 Long Arc

The trajectory results are presented in Figure 6.15, Figure 6.16 and there is no

serious deviation from the desired trajectory. For Differentiation, in Figure 6.15

the final error is 0.87 10-2 m on the global eX axis and 2.54 10-2 m on the eY axis.

For Integration, in Figure 6.16 the final error is 1.10 10-2 m on the eX axis and 2.42

10-2 m on the eY axis. Both algorithms perform well when required to produce

inputs over a longer, complex drive. The control inputs from Inverse Simulation

are in Figure 6.17, Figure 6.18. In Figure 6.17 high frequency and low amplitude

121

oscillations in the control signal from Differentiation can be seen, for example

around 25 s, 75 s, 125 s, 150 s and 180 s. That is not the case for the Integration

control signal in Figure 6.18.

Figure 6.15: Long Arc, Differentiation

Figure 6.16: Long Arc, Integration

Figure 6.17: Long Arc Control Input,
Integration

Figure 6.18: Long Arc Control Input,
Differentiation

It can be seen, e.g. in Figure 6.17, Figure 6.18, that when the robot must turn,

the control signals are symmetrical (i.e., equal magnitude, opposite sign) and

when it moves forward the control signal for each side are equal.

A difference between the Differentiation and the Integration is the smoothness of

the calculated control signals; while they are equal between the two methods,

those produced by Integration are smoother. The low amplitude, high frequency

oscillations observed in the control input results from Differentiation becomes

more pronounced as the complexity (i.e., drive distance, duration and heading

122

changes) of the trajectory increases, such as the Long Arc trajectory, where a

snapshot from Figure 6.17 and Figure 6.18 is shown in Figure 6.19 and Figure 6.20.

Figure 6.19: Long Arc left side control
Differentiation (L) and Integration (R)

Figure 6.20: Long Arc right side control
Differentiation (L) and Integration (R)

This behaviour for the Differentiation Inverse Simulation is because the

convergence is based on the derivative and both the states, and the outputs and

the Jacobian is not square, whereas the Integration requires only the outputs, and

the Jacobian is square. It is in line with previous observations in Section 3.2.

6.4.2 Tabulated Trajectory Results

The performance of the Inverse Simulation algorithms is assessed using the

absolute errors8 between the actual and desired surge velocity u m/s, sway velocity

v m/s and yaw velocity r rad/s. The actual velocities u, r, and v are the result of the

application of the control input calculated by the Inverse Simulation to the rover

in a standard forward simulation. Therefore, these errors measure the

performance of the Inverse Simulation in calculating the control input and

achieving the desired trajectory profile, i.e., the global error as defined in Section

3.2. This type of error is a true indication of the Inverse Simulation accuracy. The

sway velocity v is not used for the Integration method but its error in the forward

simulation is included for comparison; in all cases, the desired sway velocity is set

to zero. In this assessment, two things are of interest for each type of error: the

centre and the dispersion of the error values.

8 This is the error du u− and so on, see also Appendix H.

123

• The mean of the error (e) and the maximum error (maxe). These values

provide the central tendency and the scale of the error.

• The dispersion of the data is measured by the standard deviation (e) and

is a reliable measure of the scale and dispersion (Heumann et al., 2016).

In addition to these, for each trajectory, the final position in the global coordinate

system and heading error are presented. The runtime9 rt to calculate the inputs

is also shown for a relative comparison between Differentiation and Integration.

The results of the Inverse Simulation errors are in Table 6.3.

Table 6.3: Inverse Simulation Results

Left Right
Drive: 3m

Arc
Drive: 0.73m

Long Arc
Drive: 16.90m

Errors Differentiation
Integrati

on
Differentiation

Integrati
on

Differentiation
Integrati

on

 []
eXe m 1.61 10-3 1.55 10-3 1.80 10-3 1.80 10-3 8.66 10-3 1.10 10-2

 []
eYe m 1.31 10-3 1.22 10-3 2.71 10-3 2.78 10-3 2.54 10-2 2.42 10-2

 []e rad 5.10 10-5 5.15 10-6 6.51 10-5 1.26·10-6 1.75 10-4 2.39 10-5

()max u

m
e

s

 
 
 

 2.92 10-5 0 3.26 10-5 0 1.32 10-4 0

 u

m
e

s

 
 
 

 4.36 10-6 0 3.64 10-6 0 7.46 10-6 0

ue 4.01 10-6 0 5.22 10-6 0 7.15 10-6 0

()max v

m
e

s

 
 
 

 2.07 10-6 0 1.98 10-6 1.97 10-6 9.83 10-6 9.04 10-6

 v

m
e

s

 
 
 

 0 0 0 0 1.06 10-6 1.07 10-6

ve 0 0 0 0 1.59 10-6 1.52 10-6

()max r

rad
e

s

 
 
 

 5.42 10-5 0 1.81 10-5 0 1.16 10-4 0

 r

rad
e

s

 
 
 

 4.62 10-6 0 4.42 10-6 0 5.45 10-6 0

re 3.95 10-6 0 2.68 10-6 0 6.51 10-6 0

  rt s 9.50 16.02 6.25 9.21 54.15 66.39

9 The simulations were conducted on a system with the following specifications: Intel Core 2 Duo

@2.50 GHz, 4GB RAM.

124

The Left-Right trajectory shows the two basic movements of the rover, a forward

movement, and a turn on the spot. The Arc trajectory demonstrates its capability

to move between closely spaced waypoints. The Long Arc trajectory is the longest

in distance and duration and requires the rover’s heading to adapt throughout.

Any values smaller than 10-6 are rounded off to zero, recalling that the Inverse

Simulation tolerance is set to 5 10-7. The data provided show that the Inverse

Simulation control input when applied to the forward system, results in velocities

that converge to the desired ones with very good accuracy.

The maximum error between the desired and actual u, v and r is always in the

range of 10-5. The only exception is the Long Arc trajectory, which is the longest

drive, and the maximum error is in the range of 10-4 for u and r. The mean error

between the desired and actual u is always in the range of 10-6, the same for the

mean error between the desired and actual r and v. The errors increase as the

drive distance and the drive duration increase. Integration has smaller average

and maximum errors than those of Differentiation for all cases, even though the

sway velocity v is not used for converging to the control input.

The final position errors are always less than 1 mm for the shorter trajectories and

for the Long Arc trajectory where the position error is in the order of 1 - 2 cm. It

is also worth considering that the Arc trajectory has a duration of 25.9 s and a

drive distance of 0.73 m, whereas the Long Arc trajectory has a duration of

208.55 s and a drive distance of 16.90 m. In practice, a rover would not be expected

to travel such a distance without any other correction. Overall, both methods have

comparable results and the final position and heading errors are small.

The runtime for Integration is larger than the time required for Differentiation,

especially for the longer trajectory; the greater accuracy comes at the expense

of execution time but also with a simpler algorithm. This also confirms previous

observations in Section 3.2 that the rate of convergence of Integration is overall

slower than Differentiation, a difference that can be up to an order of magnitude.

The Differentiation algorithm converges using a numerical differentiation scheme

and the system’s state and output equations. The Integration algorithm converges

using a numerical integration scheme and the convergence is based on the

difference between the desired and actual response. Differentiation looks toward

the next time point and anticipates it, whereas Integration looks toward the

125

current and previous time point. Therefore, the key points are a) Integration

produces smoother signals b) Differentiation has a shorter runtime c) Integration

is more accurate in comparison with Differentiation, but in practice both perform

very well for trajectory following

6.5 Summary of Results

Inverse Simulation has been successfully applied for trajectory tracking to a

mobile wheeled robot. The method is applied to an experimentally validated

model and the calculated control inputs consider the system limitations. A non-

square Jacobian that uses a reduced number of states and the remaining states

are estimated was used for Differentiation with good results. The Differentiation

scheme applied to the rover uses a Jacobian that is not square and estimates some

of the states, instead of updating them all, while also taking advantage of the

physics of the problem. This is a novel approach since Differentiation was until

now applied to systems with a square Jacobian.

The feasibility of Inverse Simulation as a guidance and control method is shown by

calculating the nominal control inputs for different trajectories, including a Long

Arc test. The results show that Inverse Simulation is an appropriate method for

generating control inputs. The accuracy of both algorithms is high and given a

desired path the control inputs generated by the Inverse Simulation algorithms

can be used to guide the rover along this path, as shown by the small errors

between the actual and the desired surge velocity (u), yaw velocity (r), and sway

velocity (v), which are in the range of 10-5 or less. The issue of runtime required

for the control inputs was also examined. Differentiation calculates the control

inputs faster than Integration, but they are also less smooth, especially for more

complex trajectories. This is due to the equations used within the Differentiation

algorithm, which converges using the derivative and the system states and

outputs, and the usage of a non-square Jacobian. Compared to Integration,

Differentiation is more complex since it depends on the number of states as well

as the number of inputs and outputs. This is seen here, where there are six states,

with only two of them directly controllable and a Jacobian that is not square. If

the desired outputs were changed, this would mean that Eq.(6.6) to (6.13) would

have to change. In contrast to this, for Integration, only the error function,

Eq.(6.17) and its Jacobian, Eq.(6.18) would change.

126

Chapter 7 Application of Inverse Simulation to
the Rover II: Non-Linear Model with Motor
Dynamics

So far, the control inputs are the torque for the left and right sides. The

Lynxmotion 4WD3 rover DC motors are wired in parallel, and each side receives

the same voltage input. Therefore, when including the motor dynamics, the

system control inputs are now a voltage V1 to the left side and a voltage V2 to the

right side:

  1 2

T
V V=V (7.1)

Since each side receives the same voltage input, the equations are written for the

left (i=1) and right side (i=2) and were presented in Section 5.1.4. Each motor

generates a torque ()i that is proportional to the current ()iI , which depends on

the voltage ()iV and the motor efficiency ()iη . The values for the motor

parameters are in Appendix A.

  a e

a

R K
, 1,2

L

i i i idI I V
i

dt

− − +
= = (7.2)

  t

m

K b ξ
, 1,2

J

i i i id I
i

dt

  − −
= = (7.3)

  i tη K , 1,2i iI i = = (7.4)

The force per wheel is calculated by Eq.(7.5), where wr is the wheel radius.

Because each side receives the same voltage input, the front left and back left

wheels produce the same force (fl blF F=) and so do the front right and back right

wheel (fr brF F=). Thus, the motor dynamics are connected to the system dynamics

via the wheel force.

wr

i
iF


= (7.5)

127

There are six rover states, two desired outputs (ud, rd) and two system outputs to

control (u, r). The two control inputs to identify are now the input voltages, one

for each side:  1 2V V=V . To the six states for the rover, four additional motor

states are added: (I1, ω1) for the left side and (I2, ω2) for the right side. The motors

on each side are actuated with the same voltage and have the same efficiency

and thus the same current and motor speed.

Each time the system dynamics need to be calculated, the estimated control input

at each point in time is first used to find (I1, ω1, I2, ω2), then the torque from

Eq.(7.4) and then the wheel force, Eq.(7.5). From this point onwards, the rover

dynamics and kinematics are calculated as in Section 5.1.3. When the motor

dynamics are also considered in the model, a few modifications to the Inverse

Simulation algorithm are needed.

7.1 Differentiation

At ti given the desired output ()d itg from Eq.(6.4), the functions F1 and F2 are

defined to find the value of the input  1 2V V=V and the rover states q

respectively. The size of F1 is 6×1, Eq.(6.6) and of F2 is 3×1, Eq.(6.11). Their sizes

remain the same since they refer to the rover dynamics, which have not changed.

There are still the same three desired outputs (u, v, r) and the two voltage inputs

to find. The Jacobian, Eq.(6.12) also retains the same form, but instead of

torques, 1F and 2F are perturbed in terms of the voltage inputs:

1 1 1 1 1

1 2

2 2 2 2 2

1 2

6 6 6 6 6

1 2

1 1 1 1 1

1 2

2 2 2 2 2

1 2

3 3 3 3 3

1 2

F F F F F

u v r V V

F F F F F

u v r V V

F F F F F

u v r V V

g g g g g

u v r V V

g g g g g

u v r V V

g g g g g

u v r V V

    

    

    

    

    

    

    

    

    

    

    

    

 
 
 
 
 
 
 
 
 =
 
 
 
 
 
 
 

 

J




 (7.6)

128

The Jacobian is calculated using finite differences and a first-order, forward

difference formula is used. Then, Eq.(6.13) (with 1, 1nV − instead of 1, 1
ˆ

n − etc.) is

solved using the factorize command from the MATLAB package presented at (Davis,

2013) and the reduced state vector and the full control input vector are found:

1,

2,

ˆ

ˆ,

i

i

r

n t

t

n

n

r n

n

n

u
V

v
V

r

 
=  
 

 
  

= =   
   

q
Q

τ

q τ

 (7.7)

The full state vector for the rover with the updated values 1 2, , , , u v r V V is now as

in Eq.(6.15), repeated below for clarity:

 ()  ()n i n n n n n n it u v w p q r t=q (7.8)

Then, F1 and F2 from Eq.(6.6), Eq.(6.11) are calculated using ()n itq . If both F1

and F2 are close to zero, within a certain tolerance, the algorithm converges. At

this point, the new dynamics come into play to calculate and integrate the vector

()1it +q using the updated control vector and rover states ()n itq . If convergence is

not achieved, the vector state for the next iteration n+1 and the input is from

Eq.(6.14).

Overall, the Differentiation algorithm remains the same as before. This is because

the addition of the motor dynamics may add some complexity, but the number of

inputs and the system states are the same. The additional motor dynamics

equations are connected to the system dynamics via the wheel force only.

Therefore, when the rover dynamics come into play the forces and moments are

calculated from the wheel forces and the rover model remains the same.

7.2 Integration

From the state equation Eq.(6.2) and the output equation Eq.(6.3) there are two

desired outputs (), d du r and two system outputs (), u r to control over the time

interval T. There are two changes: (a) the calculated input vector corresponds to

129

input voltages instead of torques and (b) the motor dynamics Eq.(7.2) to Eq.(7.5)

are added to the model. In terms of programming the algorithm, virtually no

changes are needed, since the number of inputs and outputs is the same as before

and the model dynamics are called as an external function (see also the general

algorithm setup in Section 4.1.1.2). The control input is  1 2
ˆ V V=V instead of τ̂

, to indicate that this is now a voltage input. The error function is:

 () () () ()()
() ()

() ()1
ˆ i d i

i i i i

i d i

u t u t
t t t t

r t r t
−

− 
− = =  

− 
e df = y g g q ,V (7.9)

The actual output y is from Eq.(6.3) and the desired output dg is from Eq.(6.4).

The Jacobian eJ of the error function ef in Eq.(6.17) is square and has a size of

2×2 since there are two inputs and two outputs.

1 1

1 2

2 2

1 2

ˆ ˆ

ˆ

ˆ ˆ

y y

V V

y y

V V

 

 

 

 

 
 
 =
 
 
 

e

y
J =

V
 (7.10)

Eq.(7.10) is calculated using central finite differences and using the perturbation

matrix as outlined in Section 6.2 with voltages instead of torques for the control

inputs. The algorithm continues as in Section 6.2. Finally, the new control inputs

are calculated using Eq.(6.22), where ()1
ˆ

n it −τ represents the control input

voltages and n is the current Newton-Raphson inner iteration. Using these new

input estimates, the outputs are updated and checked for convergence. If the

error from Eq.(6.23) is within the acceptable range, then the calculated control

input vector ˆ
nV is the required for this time instance, () ()1 1

ˆ
n i n it t− −=V V .

() () () ()() () ()()

()

()

1 1 1 1

1

1

1 1 1 1 1

,

ˆ ˆ ˆ ˆ, ,

ˆ

ˆ

n n n n

i

n i n i e i i e i i

n d

n

n d
t

t t t t t t

u u

r r

− − − −

−

−

− − − − −= − 

 −
 =
 −
 

e

V V J x V f x V

V
f

V

 (7.11)

The MATLAB backslash operator (\) was selected for solving Eq.(7.11).

130

7.3 Results

The results of the Inverse Simulation errors for Differentiation and Integration for

the Arc and Long Arc trajectory are shown in Table 7.1. Compared with the results

in Table 6.3, the execution time has increased and so have the errors. The Arc

trajectory is a test for the rover moving between closely spaced waypoints and

the Long Arc trajectory involves traversing several meters with pose alterations

and examines the error built over time over a demanding path.

Table 7.1: Inverse Simulation Results with Motor Dynamics

Arc

Drive: 0.73m
Long Arc

Drive: 16.90m

Errors Differentiation Integration Differentiation Integration

 []
eXe m 4.65 10-3 1.81 10-3 1.80 10-2 1.09 10-2

 []
eYe m 3.84 10-4 2.78 10-3 3.55 10-2 2.42 10-2

 []e rad 1.29 10-3 0 1.69 10-3 4.58 10-6

()max u

m
e

s

 
 
 

 1.16 10-2 0 1.15 10-2 0

 u

m
e

s

 
 
 

 4.85 10-4 0 5.97 10-5 0

ue 9.36 10-4 0 3.36 10-4 0

()max v

m
e

s

 
 
 

 6.20 10-4 1.97 10-6 6.20 10-4 9.04 10-6

 v

m
e

s

 
 
 

 5.16 10-6 0 1.62 10-6 1.07 10-6

ve 2.07 10-5 0 7.58 10-6 1.52 10-6

()max r

rad
e

s

 
 
 

 9.74 10-3 0 9.74 10-3 0

 r

rad
e

s

 
 
 

 5.96 10-4 0 7.77 10-5 0

re 1.12 10-3 0 4.41 10-4 0

  rt s 8.40 11.78 66.10 70.63

From the errors in Table 7.1 and compared with the results in Table 6.3 for the

case without motor dynamics, the inclusion of the motor dynamics increases the

errors. This is because more calculations are needed, and any errors are

propagated.

131

For the voltage control input, Figure 7.1 and Figure 7.2, the voltage is far less

smooth compared with the torque control inputs calculated without the inclusion

of motor dynamics, Figure 6.13, Figure 6.14. This is because the current is

obtained by integrating Eq.(7.2), the voltage from Eq.(7.3) and then the torque

and the wheel force in Eq.(7.5) are calculated.

The Differentiation method has low amplitude oscillations superimposed on the

control input; Figure 7.3, Figure 7.4 show a snapshot to show the oscillations in

the control input. This is due to the less stable nature of Differentiation. The

Integration method provides a far smoother control input.

Figure 7.1: Voltage Control Input for Arc
(Differentiation)

Figure 7.2: Voltage Control Input for Arc
(Integration)

Figure 7.3: Arc left side control Volt
Differentiation (L) and Integration (R)

Figure 7.4: Arc right side control Volt
Differentiation (L) and Integration (R)

Figure 7.5 and Figure 7.6 show the torque equivalent for the calculated voltages.

Figure 7.7 and Figure 7.8 show a snapshot to indicate the oscillations in the control

input.

132

Figure 7.5: Torque control input for Arc
(Differentiation)

Figure 7.6: Torque control input for Arc
(Integration)

Figure 7.7: Arc left side control Torque
Differentiation (L) and Integration (R)

Figure 7.8: Arc left side control Torque
Differentiation (L) and Integration (R)

The oscillations are more pronounced here for the Differentiation, this is because

the torque is calculated from the current and volt and more steps are required,

thus any errors add up. The required torque has increased; the maximum torque

is now 0.019 Nm, whereas before it was 0.012 Nm. This is due to the fact the motor

dynamics include the motor efficiency  , losses from the electronic and

mechanical components and the base friction coefficient  at each side. The

voltage and torques calculated using the motor dynamics are more realistic

because they include the motor losses. Overall, the number of states, inputs and

outputs remained the same for both methods and so no modifications were needed

to the Inverse Simulation algorithms themselves, only to the file that contains the

system dynamics.

133

Chapter 8 Inverse Simulation Algorithm Tuning
for Improved Performance

In the previous chapters, the Differentiation and Integration algorithms for Inverse

Simulation were presented and then applied to the rover. Both algorithms require

the numerical evaluation of a Jacobian to solve a linear system at each iteration

at each point in time and depend on a set of numerical parameters, the most

important being the time step dt and the convergence tolerance tol. In this

chapter, a closer look is taken at the calculation of the Jacobian for the specific

application to the rover model and the numerical parameters that were selected.

The relevant mathematical background is in Appendix G and H and this Chapter

expands on the general tuning recommendations from Section 4.5. For each case,

the average, and the standard deviation of the absolute error for the surge and

yaw velocity are shown, as these are the two desired outputs for Inverse

Simulation.

8.1 Calculation of the Jacobian: Application to the Rover

The Jacobian inverse was calculated using the factorize command from (Davis,

2013) and the backslash operator (\) for the Differentiation and Integration

Algorithm respectively. This section examines more in depth the reason for these

choices.

For the Differentiation method from Eq.(6.8) the system is solved for δu:

() ()

() ()

() ()

() ()

() ()()
() ()()

1 1

1 1 11

12 2 2 1 1

ˆ,ˆ

ˆ ˆ ˆ,

ˆ

i i

n i n in i n i

n i n i n i n i
i i

t t
t tt t

t t t t
t t



 

 

 

 

− −−

− − −

 



 
   − 
  = −   

−      
 
  u F

xJ b

A

F F

F q τq qq τ

τ τF F F q τ

q τ

 (8.1)

The Jacobian in Eq.(8.1) considers only the controllable states u, r and also v is

taken into account and so its size is 6x5. There are more outputs (u, v, r) than

inputs (τ1, τ2) and so from the control perspective, this is at first glance an under-

actuated system. From the linear algebra perspective, this is an overdetermined

system since there are more equations than unknowns. In this case, the third

134

output is coupled to the other two and so the actual independent variables are

four, which also means that the rank of J is four and is column rank deficient.

Therefore, the third output is associated with the inputs due to the physics of the

problem and is very much constrained by this. So, if the system is consistent, of

the five unknowns ()1 2
ˆ ˆ, , , ,u v r   the two inputs ()1 2

ˆ ˆ,  and two of the three outputs

(),u r can be found and the remaining output is coupled to the other two.

For the Integration method, the case is somewhat simpler. The system to solve at

each iteration n , at each point in time it , from Eq.(4.11) is square and if it is

consistent both inputs can be uniquely identified. Otherwise, a least square

solution must be found.

 ˆ
n e = −

e
J τ f (8.2)

Since both Inverse Simulation methods are developed in MATLAB, the focus is on

selecting one of the several methods available at the linear algebra library. The

methods that are available in the MATLAB linear algebra library and are suitable

for square and non-square systems are detailed in Appendix G. Table 8.1

summarizes the available methods; more details on their implementation are in

Appendix G.

Table 8.1: MATLAB Factorisation methods

Command Comments

inv()

Built-in function. Suitable only for square systems of full rank, is inaccurate
and slow.

pinv()

Built-in function

Built-in function. Suitable for non-square systems. Calculates the Moore-
Penrose inverse using SVD (singular value decomposition)

backslash (\) operator

Built-in function

Built-in function. Suitable for square or overdetermined systems with full
column rank. Fast, accurate but cannot reuse factorisation.

factorize

Additional MATLAB package, freely available. Suitable for square, over/under
determined and rank deficient systems. Selected the best factorisation

method between LU, QR, SVD, COD, Cholesky.

Overall, selecting the best method at each iteration n at every time point it . of

the Inverse Simulation algorithm is not a straightforward task. Each time the

135

individual requirements for each factorisation method must be checked and the

best method selected. Additionally, always a least-squares solution is the

minimum requirement for even when the system is not consistent, for example,

due to numerical errors, unsuitable initial guess, or unsuitable dt. To further

illustrate these choices, tests were performed for the Differentiation and the

Integration method using the parameters in Table 6.2 for the Long Arc trajectory,

Figure 6.6. The performance was assessed using the absolute errors and standard

deviation between the actual and desired surge velocity u m/s and yaw velocity r

rad/s when the Inverse Simulation input was applied to the system. The execution

time s required to calculate the inputs is also shown for a relative comparison

between the different methods. Any values smaller than 10-6 are rounded off to

zero, recalling that the Inverse Simulation tolerance is 5 10-7.

Table 8.2 shows the results of the Differentiation scheme. The backslash method

fails as expected: the system is not square, and J is (column) rank deficient (the

rank is four and there are five columns). Between pinv(J) and factorize(J), the

factorize command is superior in terms of errors and is the one selected, at the

expense of increased execution time. The method used by factorize(J) is the

complete orthogonal decomposition, which is the best and most efficient for rank

deficient systems – hence the reduced errors in u and r when applying the

calculated control input u from Eq.(8.1) in a standard, forward simulation.

Table 8.2: Factorisation for Differentiation (Long Arc)

 backslash (\) pinv(J) factorize(J)

u

m
e

s

 
 
 

 - 1.58 10-5 7.46 10-6

ue - 2.11 10-5 7.15 10-6

r

rad
e

s

 
 
 

 - 9.23 10-5 5.45 10-6

re - 2.14 10-5 6.51 10-6

 rt s - 44.52 54.15

Table 8.3 shows the results of the Integration scheme. It is worth noting that the

results are identical for all three methods, regardless of rounding to zero for any

value less than 10-6. The only difference is the execution time. This is expected

136

since this is a full rank, square system so there is only one solution. Furthermore,

there is no need to check the rank and select the best factorisation to ensure a

least square solution, as factorize does. The backslash method is selected due to its

inherent superiority for square systems, which makes the method more robust.

This benefit does come at the expense of increased execution time, compared

with the inv command.

Table 8.3: Factorisation for Integration (Long Arc)

 backslash (\) inv(J) factorize(J)

u

m
error

s

 
 
 

 0 0 0

()error u 0 0 0

r

rad
error

s

 
 
 

 0 0 0

()error r 0 0 0

 exect s 66.39 59.68 96.91

8.2 Influence of parameters on results: Application to the
Rover

So far, all the results using the rover model are based on an initial set of

parameters that were selected to ensure accuracy and decreased execution time;

they are in Table 6.2. Additionally, when selecting the time step dt, the time

constant of the motors was considered. Furthermore, to improve the

Differentiation algorithm results, in terms of accuracy the sway velocity was used

as an additional output.

In this section, the inclusion of the sway velocity and the influence of the

numerical parameters dt and convergence tolerance (tol) are investigated. These

parameters are by necessity specific to the type of system and model used.

8.2.1 Effect of time step dt

The variation of the time step dt is motivated by previous observations discussed

in Section 4.2.5 that (a) reducing the time step positively affects the accuracy of

137

the results, and (b) too small a dt can have a negative effect by exciting possible

uncontrolled states and increasing the high frequency, low amplitude oscillations

superimposed on the calculated control input, particularly for the Differentiation

method. Note that these oscillations are also dependent on redundancy issues and

using a non-square Jacobian. The initial time step dt was set to 0.01. In practice,

when applied to the rover the time step becomes 0.05 s because this is more

representative of the control signals the rover controller can generate. Three

different cases for the dt were tested: 0.001, 0.05 and the default 0.01 s. Table 8.4

presents the results of the Inverse Simulation Differentiation Method.

Table 8.4: Differentiation results for different dt (Arc trajectory)

Errors dt = 0.001 s
dt = 0.01 s
(default)

dt = 0.05 s

 
eXe m 3.82 10-4 1.80 10-3 9.89 10-3

 
eYe m 5.11 10-4 2.71 10-3 2.30 10-2

 u

m
e

s

 
 
 

 7.14 10-6 3.64 10-6 1.00 10-4

ue 5.97 10-6 5.22 10-6 2.33 10-4

 r

rad
e

s

 
 
 

 6.07 10-6 4.42 10-6 1.07 10-5

re 3.91 10-6 2.68 10-6 1.40 10-5

  rt s 63.34 6.25 1.95

For the Inverse Simulation Differentiation method reducing the time step

increases the accuracy in achieving the desired outputs up to a point. In Table 8.4

between 0.01 s and 0.001 s the results are very similar and of the same order for

the average error and standard deviation of the surge and yaw velocity; this

indicates that the dt should not be further educed to potentially increase the

accuracy. Additionally, the execution time is ten times longer for 0.001 s. As the

dt increases above 0.01 s, the errors increase but are still within reasonable bounds

and the execution time decreases.

138

Table 8.5: Integration results for different dt (Arc trajectory)

Errors dt = 0.001 s
dt = 0.01 s
(default)

dt = 0.05 s

 
eXe m 3.15 10-5 1.80 10-3 1.13 10-2

 
eYe m 3.58 10-4 2.78 10-3 3.00 10-2

 u

m
e

s

 
 
 

 0 0 0

ue 0 0 0

 r

rad
e

s

 
 
 

 0 0 0

re 0 0 0

  rt s 92.88 9.21 3.16

For the Inverse Simulation Integration method reducing the time step increases

the accuracy. This can be seen in Table 8.5: as the dt increases, the final errors in

the position (,E EX Y) increase and the execution time decreases. Consider also

that for the Integration method, the calculation of the control signals is based on

an integral scheme approximated by a first-order Euler integration which is

proportional to the step size (Kreyszig, 2014).

If a value of dt is selected that is too small, the prominence of high frequency low

amplitude oscillations superimposed on the calculated control input is observed

for the Differentiation method, as was also discussed in Section 3.2. Because of

the way numerical differentiation works, these oscillations are affected by the

increased round off errors. These may be very small but tend to dominate instead

of the truncation errors for very small dt. The high frequency, low amplitude

oscillations for the Differentiation method can be seen in Figure 8.1, especially

between 0 – 9 s and around 20 s and 25 s. In Figure 8.2, where the dt is increased,

these oscillations are no longer present. Also, there is no such issue for the control

inputs calculated by the Integration method, Figure 8.3, Figure 8.4.

139

Figure 8.1: Arc Control Input,
Differentiation (dt = 0.001)

Figure 8.2: Arc Control Input,
Differentiation (dt = 0.05)

Figure 8.3: Arc Control Input, Integration
(dt = 0.001)

Figure 8.4: Arc Control Input, Integration
(dt = 0.05)

8.2.2 Effect of convergence tolerance

In this work, the approximate absolute error E is used for the convergence of

the Differentiation method and the Integration method, Eq.(6.23). The absolute

error provides a good way to frame the result using the tolerance, since the

desired quantity is known and, in some cases, the desired can also be zero (for

example, the desired sway velocity is always zero).

The convergence tolerance tol for the Newton-Raphson scheme is based on the

maximum acceptable error for
i

n t
Q from Eq.(6.14) for the Differentiation method

and ,nef from Eq.(6.23) for the Integration method. The vector
i

n t
Q contains the

states (and also desired outputs) , ,u v r as well as the control inputs 1̂ , 2̂ to

achieve these. The error ,nef is simply the difference between the current estimate

for u and r and their desired values.

140

The initial tolerance was set to 5 10-7. This is the tolerance for the convergence of

the Newton-Raphson scheme. Based on this, the control inputs were calculated.

Then, these inputs were passed on to a forward simulation and the resulting

trajectory errors are the error between the actual and the desired u, v, r.

Therefore, increasing or decreasing the convergence tolerance, affects the

convergence to the control inputs and then through the usage of the control inputs

in the forward simulation the actual results. The initial tolerance was selected

while considering the scale of the desired outputs: the maximum surge velocity

max 0.1
m

u
s

= and the maximum yaw velocity max

deg
10r

s
= .

First, the tolerance is set to 5 10-8 and all other parameters are as in Table 6.2

(dt is set to 0.01 s). Table 8.6 shows the results.

Table 8.6: Inverse Simulation Results for tol = 5 10-8

 Left Right Arc

Errors Differentiation Integration Differentiation Integration

u

m
error

s

 
 
 

 4.73 10-6 0 3.64 10-6 0

()error u 5.25 10-6 0 5.22 10-6 0

r

rad
error

s

 
 
 

 4.57 10-6 0 4.42 10-6 0

()error r 3.69 10-6 0 2.68 10-6 0

 rt s 10.84 12.01 8.48 9.05

Compared to the results for tol 5 10-7 in Table 6.3, there are almost no differences

in the errors and Inverse Simulation execution time. This shows that the selected

combination of tolerance 5 10-7 and time step 0.01 s are sufficient and there is no

need to set a lower tolerance.

Then, the tolerance is increased to 5 10-5 and all other parameters are as in Table

6.2 (dt is set to 0.01 s). Table 8.7 shows the results. The Differentiation method

produces control input results for all the test trajectories in Table 6.1, with some

slightly increased errors and execution time. This shows that the method

converges but a bit slower. Integration produces results only for the Forward and

141

Left-Right test and fails to converge for the other, such as the Arc trajectory. At

first, this may seem surprising; however, it is worth looking at what exactly each

method uses to converge to the desired control inputs in the Newton Raphson

scheme.

Table 8.7: Inverse Simulation Results for tol = 5 10-5

 Left Right Arc

Errors Differentiation Integration Differentiation
Integration
(with sway)

u

m
error

s

 
 
 

 4.35 10-6 1.95 10-5 3.63 10-6 1.92 10-5

()error u 4.01 10-6 1.13 10-6 5.22 10-6 1.01 10-5

r

rad
error

s

 
 
 

 4.61 10-6 2.21 10-5 4.42 10-6 2.78 10-5

()error r 3.95 10-6 1.31 10-6 2.64 10-6 1.27 10-5

 rt s 14.31 18.72 8.48 11.55

The Integration method converges using the difference between the actual and

the desired output. In this case, this is represented by the error function ,nef from

Eq.(6.23) for converging and it contains the desired outputs u and r.

The Differentiation method uses
i

n t
Q from Eq.(6.14) for converging and it

contains the states (and also desired outputs) u, v, r as well as the control inputs

(1̂ , 2̂) to achieve these.

In this way, while Integration has a simpler scheme that results in a square system,

for a larger tolerance and without adjusting the time step, it fails. The

Differentiation method, by virtue of using more system parameters for

convergence, can tolerate a little better the loss of fidelity by a larger accepted

error tolerance.

One way to remedy this is by using the Integration method with the addition of

the sway velocity. This sacrifices somewhat the method’s simplicity, but the sway

velocity acts as an additional constraint for u and r. In that case, Integration

produces results for all test trajectories, with an increased execution time and

142

errors (but still very acceptable), Table 8.7 (tol = 5·10-5) compared with Table 6.3

(tol =5·10-7) or even Table 8.6 (tol = 5·10-8).

Additionally, the maximum desired yaw velocity is max

deg
10 0.17

rad
r

s s
= = . Using

a tolerance in the order of 10-5 may not be the best choice anyway when the

maximum desired value is in the order of 10-2.

8.2.3 Effect of sway velocity

The motivation for adding the sway velocity to the Differentiation method was to

reduce the errors. This is illustrated in Table 8.8, which shows the results for the

Forward 1m test for the Differentiation method with and without the inclusion of

the sway velocity. Table 8.8 also shows the results for the Integration method with

and without the inclusion of the sway velocity.

As was discussed in Section 5.1.2.1, the sway velocity is strongly coupled to the

surge and yaw velocity via the slip angle, Eq.(5.10), Eq.(5.11), Eq.(5.13). This

interaction provides an indirect control of the sway and acts as an additional

constraint when solving for the control input. Furthermore, because the

assumption was made that the terrain is not significantly uneven or soft and that

the robot moves on a planar, smooth, and rigid terrain, the desired sway velocity

can be set to zero. In this way, the system’s properties are utilised to improve the

performance of Inverse Simulation.

Table 8.8: Effect of sway velocity in Inverse Simulation Results

 Forward 1m Arc

Errors
Differentiatio

n without
sway

Differentiatio
n with sway

Integratio
n without

sway

Integratio
n with
sway

Integratio
n without

sway

Integratio
n with
sway

u

m
error

s

 
 
 

 1.57 10-4 4.43 10-6 0 0 0 0

()error u 3.32 10-4 2.98 10-6 0 0 0 0

r

rad
error

s

 
 
 

 1.25 10-6 3.39 10-6 0 0 0 0

()error r 1.66 10-6 3.54 10-6 0 0 0 0

 rt s 5.06 3.42 3.10 4.23 9.21 17.78

143

For the Differentiation method, the inclusion of the sway velocity is beneficial for

the surge velocity errors, there is a difference of magnitude of 102 between the

two cases and has no serious effect on the yaw velocity. Considering that the

algorithm with the sway velocity is faster, i.e., converges faster, the inclusion of

sway is beneficial even for this very simple test. It could be argued that an error

of 10-3 is acceptable, however considering that the error increases with the

complexity of the trajectory as seen in Table 6.3, this is not a good choice.

In comparison, including the sway velocity for the Integration method only

increases the execution time. The results are identical with or without the sway

for all trajectories (with the other simulation parameters as in Table 6.2),

regardless of rounding to zero any value less than 10-6. The only difference is the

execution time. This is expected, since without the inclusion of the sway, this is

a 2x2 square system with a full rank of 2, so there is only one solution. With the

inclusion of sway, the system is now 3x2 and is overdetermined, but its rank is still

equal to 2. This means that the system again has a unique solution which is of

course always the same (Davis, 2013). Furthermore, the system is still solved with

the \ (backlash) operator even though the Jacobian has changed.

Table 8.8 also shows the results for the Arc trajectory, which fails for the

Differentiation method without the inclusion of the sway velocity. For the

Integration method, including the sway velocity again has no effect, beneficial or

not, apart from increasing the execution time.

8.3 Summary of Results: Inverse Simulation Tuning:
Recommendations for the rover

In this chapter, the parameters that affect the application of the Inverse

Simulation are investigated. The calculation and inversion of the Jacobian, the

selection of outputs, the time step dt and convergence tolerance tol significantly

affect the method’s properties and are examined.

First, the inversion of the Jacobian was examined. This is a crucial part of the

Inverse Simulation algorithm, and the validity of the results depends to a great

extent on its correct execution. Four different methods were examined, the built-

in MATLAB functions inv(), pinv(), the backslash (\) operator and the factorize

144

command (Davis, 2013). These methods were tested in MATLAB: the factorize

command was selected for the Differentiation method and the backslash (\)

operator for the Integration method. The selection was based not only on the

numerical results but also on what type of linear system is solved for each method.

For the Differentiation method there are infinite solutions because the system is

overdetermined (6x5) and rank deficient (rank is 4). The third output v is

associated with the other two outputs u & r due to the physics of the problem and

is very much constrained by this. So, of the five unknowns ()1 2
ˆ ˆ, , , ,u v r   the two

inputs ()1 2
ˆ ˆ,  and two of the three outputs (),u r can be found and the remaining

output is coupled with the other two. Using the factorize command ensures that

the input and outputs are always a least-squares solution that minimizes the error.

For the Integration method, the case was simpler. The system to solve is square

and consistent so both inputs can be uniquely identified. The backslash (\) operator

ensures that the correct solution is always identified. Even in the case of modifying

the system to add the sway velocity, which results in a non-square overdetermined

system (size is 3x2), the solution is still the correct one.

A small dt results in high frequency, low amplitude oscillations in the control input.

These oscillations are more evident if the system is overdetermined, as is here for

Differentiation. Moreover, if the dt is too small, it introduces additional, rounding

errors due to the way Differentiation works and these are not easily corrected. A

compromise between a dt that can adequately follow the system as it evolves

without inducing oscillations and additional errors is needed. In contrast to this,

for the Inverse Simulation Integration method reducing the time step increases

the accuracy.

The effect of the convergence tolerance tol was then examined. When the

tolerance was set to a lower threshold
8tol 5 10−= , instead of

7tol 5 10−= , there

were almost no differences in the errors and Inverse Simulation execution time.

This shows that the selected combination of tolerance
7tol 5 10−= and time step

0.01 s are sufficient. To further investigate the effect of the tolerance, it was then

set to a higher threshold at
55 10−
. The result was that the Differentiation method

by virtue of using more system parameters for convergence can tolerate a little

145

better the loss of fidelity by a larger accepted error tolerance. Integration on the

other hand did not produce results for the more complex trajectory. One way to

remedy this is by using the Integration method with the addition of the sway

velocity. This sacrifices somewhat the method’s simplicity, but the sway velocity

acts as an additional constraint for u and r. In that case, Integration produces

results for all test trajectories, with an increased execution time and errors (but

still very acceptable).

The convergence tolerance also depends on the scale of the desired outputs. The

maximum desired yaw velocity is max

deg
10 0.17

rad
r

s s
= = so using a tolerance in

the order of 10-5 may not be the best choice anyway. The Integration method

converges using error between the actual and desired output, so when the

maximum yaw velocity is in the order of 10-4, a lower threshold should be chosen

in any case. Nonetheless, by adding the sway velocity to the Integration method,

it produced good results even when using such a marginal tolerance.

Overall, the combination of dt = 0.01s and a tol = 5 10-7 produces the best results.

For simplicity and overall stability, the Integration scheme is more appropriate.

For decreased execution time, Differentiation is preferred, at the expense of

slightly larger errors, an overdetermined system that requires special handling and

less smooth control signals.

The effect of adding the sway velocity v, which is strongly coupled with u, r, as an

additional desired output was also examined. For Differentiation, using v as output

is beneficial from the start, even for the simpler trajectories. In contrast to this,

for the Integration method, including the sway velocity has no effect, apart from

increasing the execution time. Integration with or without the sway produces the

same results for all trajectories. This is because the rank of the Jacobian is always

2 and this means that the system has a unique solution. Furthermore, the fact that

the sway is not necessary for the Integration method confirms previous results

that Integration is more stable overall.

146

Chapter 9 Conclusions and Future Work

The four main aims of this thesis were to (a) develop Inverse Simulation for a

general state-space system and establish a methodology for its application, using

two different approaches (Integration, Differentiation) to converge to the control

inputs given a desired output, (b) examine the application of Inverse Simulation

in terms of the parameters that affect its performance & type of solution it

provides, (c) apply Inverse Simulation for output tracking to a four wheeled rover

model and (d) examine the parameters that affect the performance of Inverse

Simulation when applied to the rover, within the general framework established

in the thesis.

In support of these aims, a review of the current state of the art of rover design

and control methodologies was conducted, a suitable model and trajectory for the

rover were presented, a review of previous Inverse Simulation applications was

done and Inverse Simulation application examples and comparison with common

controllers were also presented.

Overall, this work provides a general methodology and theoretical background for

the Inverse Simulation using two different methods, Differentiation, and

Integration. The parameters that affect its performance were investigated using

tools from numerical analysis and linear algebra. These parameters were

identified as the number of inputs and outputs, what can be considered a desired

output, the time step dt, and the convergence tolerance for the numerical

scheme. Both methods converge using a Newton-Raphson numerical scheme that

employs the Jacobian. Particular attention was given to the formulation of the

Jacobian and how can an efficient solution be ensured.

The main benefit of having developed this general methodology is that Inverse

Simulation can now be used for a wide range of applications, so long as the system

can be formulated in a standard state-space form and at least the system’s inputs

and outputs are available. This can be used as a framework and stepping point for

any future developments of Inverse Simulation algorithms.

Furthermore, in this work Inverse Simulation was applied for the first time for the

guidance and control of a four wheeled, differentially driven rover. The principle

147

is that the time history for the desired trajectory is used for the Inverse Simulation

to produce the required control inputs. These control inputs are nominal for the

given model and are applied without additional correction to the rover to achieve

the desired trajectory. These inputs resulted in accurate position and orientation

control of the rover while considering the limitations of the rover model and the

actuators used. Using the definition of GNC from Chapter 1, Inverse Simulation is

used for guidance by providing the changes in velocity, rotation, and acceleration

for following a desired trajectory and for control by using these inputs to execute

the desired trajectory in a forward simulation. Inverse Simulation addresses the

need for incorporating the dynamic model into the guidance and control system

for increased accuracy. In the next section, the main conclusions relevant to each

aim per chapter are expanded.

9.1 Conclusions

In Chapter 2 the relevant state of the art of rover designs is established and a

system taxonomy is proposed, based on the following characteristics: mobility

type, steering configuration, suspension, and chassis articulation. This system

taxonomy is an original result of this thesis and can be used independently to

support the design and classification of such systems. The baseline design is four

wheels, all-wheel drive, and passive suspension, with a differential for steering.

Also in Chapter 2, a review of the most common control methods for mobile rover

control is presented. The control strategy of a rover is also investigated and there

are two main approaches: (a) the rover can go to a given location by executing a

pre-defined path without any corrections or (b) the rover can also navigate

autonomously to a given location by sensing the environment and making its own

decisions.

Chapter 3 is a review of the existing applications of Inverse Simulation. The two

main implementations (Differentiation and Integration) and the application

considerations from previous experience are presented.

Chapter 4 builds on the review to take a general approach and examine in depth

the two main implementations of Inverse Simulation for the standard state-space

model. The algorithms are for the general case of an unequal number of inputs

and outputs. In Chapter 4 the first aim of this work is achieved: a general

148

methodology and theoretical background for the Inverse Simulation using the two

different methods, Differentiation, and Integration, is developed. The second aim

is also achieved: to examine the application of Inverse Simulation in terms of the

parameters that affect its performance and the type of solution it provides. In

Chapter 4 the parameters that affect the Inverse Simulation performance are

identified as (a) the time step dt, (b) the convergence tolerance tol, (c) the number

of inputs and outputs, (d) the selection of the desired output. The first two are

the numerical parameters and the last two depend on the type of system used.

A state-space model is used with m state equations, p output equations and k

control inputs. Both methods converge using a Newton-Raphson numerical scheme

that employs the Jacobian. The two approaches differ in how they converge to

the control input. Differentiation converges using a scheme based on the state

derivative and output; its Jacobian has a size of () ()m p m k+  + . The Integration

method converges based on whether the system’s output matches the desired; its

Jacobian has a size of ()p k . Integration has the benefit of being decoupled from

the system dynamics and is simpler to set up. The usage of both states and outputs

means that Differentiation tends to converge faster than Integration, a difference

that can be up to an order of magnitude.

Because both methods use an iterative Newton-Raphson scheme to solve the

system of algebraic equations, the problem is essentially transformed into a set

of linear equations. For the general case when k p the Jacobian needs to be

factorised to achieve the best available solution, which is defined as the least

square solution. The factorisation of the Jacobian at each iteration depends on its

size and rank, which is not trivial to estimate. To solve the problem and to provide

a computationally efficient solution that is also numerically stable (as defined in

Appendix G) it is recommended to carefully select the factorisation

implementation to be used and Appendix G provides a detailed background.

The time step dt should correspond to the physical limitations and response times

of the system. Reducing the time step positively affects the accuracy of the results

and increases the execution time. When using the Differentiation method, when

the dt is reduced too much, there is a point where the truncation error is reduced

but the round off error starts to dominate, which is detrimental to the method’s

149

accuracy. The Integration method does not have these issues and the error can be

reduced by decreasing the step size, which is why it is considered more stable.

Additionally, too small a dt can have a negative effect by exciting possible

uncontrolled states and increasing the high frequency, low amplitude oscillations

superimposed on the calculated control input, particularly for the Differentiation

method.

Differentiation and Integration converge using a specified tolerance value, tol. The

tolerance value depends on the scale of the actual and the desired solution and

frames the result within the interval of ± tol, thus should be chosen depending not

only on the acceptable error but also on the scale of the values calculated.

The Ci continuity order of the desired output needs to be carefully selected so

that it is a realistic representation, and the output is sufficiently smooth, but this

is not constrained by issues such as the system’s relative degree. In fact, compared

with feedback linearisation, Inverse Simulation is a more general method that can

be used for MIMO systems that are not control affine and are not square. Inverse

Simulation depends on the system model, but there is no analytical inversion and

so Inverse Simulation can handle model changes better, especially Integration.

Also in Chapter 4, the linear case of Inverse Simulation is developed. The linear

case is the simplest case of the Differentiation method and shows that the desired

output selection may affect the system stability. This is not the case for

Integration. For the linear case, the relationship between output controllability

and Inverse Simulation is established, namely that p k= . This corresponds to the

general case of a square system that has a unique solution.

Application examples of the linear case and Integration are given using a mass

spring damper (MSD) and an active quarter car model (QCA). The system response

and control effort are compared with that of a PID controller for the MSD. For the

QCA model, the system response from applying a PID controller was the desired

output for Inverse Simulation. Integration provided consistently good results in

terms of accurately following the desired output. A third application example is

given where Inverse Simulation is used to determine the road disturbance, using

the passive quarter car model. This shows how the Inverse Simulation algorithm

150

can be generally used to determine an input given an output, without that input

being necessarily a control input, thus further extending the method’s validity.

In Chapter 5 the main requirements for applying Inverse Simulation to the rover

are presented: a model and a suitable output. The kinematic and dynamic model

of an experimentally validated rover moving on planar, smooth, and rigid terrain

is presented. The rover adheres to the baseline design from Chapter 2 and uses

differential steering, thus it can turn on the spot. The trajectory is based on

waypoints and is generated using a 6th order polynomial that constitutes a series

of forward (surge) movements followed by on-the-spot turns (yaw rotations).

In Chapter 6 the fourth aim of this work is achieved: Inverse Simulation is applied

for the first time for the control of a four-wheeled, differentially driven rover.

The Differentiation method uses a non-square Jacobian with a reduced number of

states; the remaining states are estimated. This is a novel approach that utilises

the physics of the problem since Differentiation was until now applied to systems

with a square Jacobian. The inputs to determine are reduced to two (left and

right-side motor torque). Three outputs are used, surge (u), yaw (r) and sway

velocity (v). The sway velocity is set to zero and is included because it improves

the performance of the method. The Jacobian is also reduced to a 6 5 by

perturbing only the controllable states (, , u r v) and the scheme estimates the

remaining states. This is an overdetermined system and from a control

perspective, at first glance, under-actuated. The sway however is matched

dynamically to the surge and yaw velocity via the slip angle, thus of the three

outputs, only two are independent and are matched to the number of control

inputs. For the Integration method, things are somewhat simpler: two inputs and

two outputs (, u r) that result in a square 2 2 Jacobian.

The feasibility of Inverse Simulation as a guidance and control method that can

produce nominal control signals is shown by calculating the nominal control inputs

for different trajectories: moving between closely spaced waypoints in the Arc

trajectory (0.73 m drive distance, 25.9 s) and longer distances with several pose

changes, such as the Long Arc (16.91 m drive distance, 208.55 s) and Valley test

(13.44 m drive distance, 203.70 s). The errors between the actual and the desired

surge velocity (u), yaw velocity (r), and sway velocity (v), are in the range of 10-5

151

or less. Integration has smaller average and maximum errors than those of

Differentiation, even though the sway velocity v is not used for converging to the

control input. Differentiation also calculates the control inputs faster than

Integration by about 20%.

In Chapter 7 the rover model is augmented with the inclusion of the motor

dynamics. This is part of the fourth aim. The inputs are now two voltages, one for

each side, instead of torques. The motor dynamics are connected to the system

dynamics via a single equation and the number of states, inputs and outputs

remain the same for both methods. Thus, no modifications were needed to the

Inverse Simulation algorithms themselves.

In Chapter 8 the parameters and solution type of Inverse Simulation are further

investigated, motivated by the previous analysis and the application to the rover.

Thus, the second and fourth aims are achieved. For the rover application, the

following conclusions are reached: When using Integration, there is a unique

solution and the most efficient way to find it is the backslash (\) operator. For

Differentiation, the factorize command from (Davis, 2013) is used to provide the

best, least-squares solution. Both algorithms are formulated with and without the

addition of the sway velocity. For Differentiation, using the sway velocity is

beneficial, even for the simpler trajectories. For the Integration method,

including the sway velocity only increases the execution time without improving

the accuracy of the results.

For the Differentiation method reducing the time step increases the accuracy only

up to a point. Additionally, the prominence of high frequency, low amplitude

oscillations superimposed on the calculated control input is increased for the

Differentiation method. These oscillations are affected by the increased round off

errors that tend to dominate for very small dt. For Integration, reducing dt

increases the accuracy. For both cases, the accuracy gains are offset by increased

computation time. The time step selected should be between 0.01 and 0.05 s,

which is in line with what the rover actuators can achieve.

When varying the tolerance, while Integration has a simpler scheme that results

in a square system, for a larger tolerance and without adjusting the time step at

all, it fails. The Differentiation method by virtue of using more system parameters

152

for convergence can tolerate a little better the loss of fidelity by a larger accepted

error tolerance.

9.2 Future Work

In this section, the following further pathways of development of Inverse

Simulation are proposed.

9.2.1 Combination with another control method

Inverse Simulation calculates the nominal signals given a desired output and a

model. A natural question would be, what happens when we are no longer in the

nominal case. In this case, the Inverse Simulation nominal control signals can now

be used for further development of control algorithms. Inverse Simulation can be

applied either in situ (the rover calculates the necessary control inputs given a

defined trajectory) or offline. In the latter case, the trajectory and the control

inputs are defined elsewhere, they are uploaded to the rover which then executes

the trajectory. Two different approaches are proposed.

In the first approach, Inverse Simulation acts on the difference y between the

actual system output ()iy t and the desired ()d iy t . This means that the Inverse

Simulation algorithm runs online, in real-time and utilizes as an output the

difference between the actual and the desired, thus using the feedback action

from the system. The resulting control signal is aimed to correct the difference

y , Figure 9.1. This approach has been used by (Avanzini et al., 2013) for

rotorcraft control, using a scheme that resembles that of a model predictive

scheme. A simplified model was used to perform the Inverse Simulation and then,

for the forward simulation from which the actual system output was obtained, the

full rotorcraft model was used (Avanzini et al., 2013). The Integration method was

used to take advantage of the fact that it required the outputs and inputs and that

the full state vector may not be available in a practical application.

153

Figure 9.1: Inverse Simulation Online Scheme

The second approach is that the Inverse Simulation inputs are used to drive the

system without any additional correction unless a predefined error exceeds a

threshold. In that case, an additional controller could be used. The Inverse

Simulation nominal inputs can be calculated online or offline to preserve

computational resources and uploaded to the system.

This scheme is based on the idea of expected perception in (Cauli et al., 2016).

Expected perception control systems utilise the system’s internal model and its

interaction with the environment. The control system monitors the error between

the predicted and the actual data. If the error is small, the system may skip any

corrective action, thus saving computational and energy resources. If the error is

large, the system will implement a corrective action through feedback. The

internal model can be (Cauli et al., 2016) a forward model (predict future data

from current), an environmental model (predict dynamics of external objects) or

an inverse model (finds the actions to obtain a desired response). Expected

perception control systems have been used in robotic arms, grasping tasks, or to

locate unexpected objects and they use either forward or environmental models

(Cauli et al., 2016).

Guidance
Inverse

Simulation
Forward

System

Full or

Simplified

Model

Full Model

yd

y

δy δu y

States x

154

Figure 9.2: Inverse Simulation Expected Perception

In the context of this work, the internal model is the inverse as defined by Inverse

Simulation and provides the nominal inputs for the desired outputs. While the

actual outputs as obtained by the nominal inputs in a forward simulation do not

exceed the error tolerance, then there is no need for additional correction.

9.2.2 Existence of Solution and Initial Parameters

In Chapter 4, the observation was made that both methods use an iterative Newton

– Raphson scheme to solve the system of algebraic equations, over a time interval

discretised with an appropriate time step dt . This led to investigating the number

of inputs, outputs and states, the size of the Jacobian, its dependence on the

number of inputs and outputs and how this affects the solution in Chapters 4 & 7.

Viewing Inverse Simulation as fundamentally trying to find a solution using the

Newton-Raphson method at each ti, it can be reduced to Eq.(9.1). The

convergence rate is at best quadratic locally in an area around the initial starting

point x0 (Kreyszig, 2014).

 () ()
1

1 1 1n n n n

−

− − −
= −   x x F x F x (9.1)

At this point, another set of questions arises. First, is it possible to know in

advance that Eq.(9.1) has a solution at least locally, i.e. in an area around the

initial starting point, and can that area be calculated? Second, under which

conditions for the Jacobian () ()0 , nF x F x will Eq.(9.1) converge?

u

Δy≥tol

Guidance

Error
IS Nominal

Inputs
Forward

System

Controller

yd

y

Δy<tol
unom y

155

Knowing the existence of a solution in advance and the area where it may be found

would mean that the Inverse Simulation will indeed find the solution if the

algorithm is set up appropriately. It would also indicate whether the desired

output is feasible. These questions do not deal directly with the properties

discussed in this work; rather they attempt to see if there is such a solution, to

begin with. Of course, the Jacobian and so the number of inputs, outputs and

states do matter, as well as how well the Newton-Raphson algorithm is set up in

terms of the time step and the convergence tolerance. After all, it is the same

problem viewed in a different way.

The questions of existence, conditions and error bounds can be answered by the

Kantorovich theorem, which states that: “The iterative Newton method applied

to a general system of nonlinear equations, converges to a solution near an initial

point 0x , provided that the Jacobian of the system satisfies a Lipschitz condition10

near 0x and its inverse at 0x satisfies certain boundness conditions. The theorem

also gives computable error bounds for the iterates” (Tapia, 1971).

This theorem is both an existence and a convergence theorem for nonlinear

equations, without the need to find the actual solution (Polyak, 2006). References

(Ortega, 1968; Tapia, 1971; Argyros, 2008) provide formulations for the

Kantorovich theorem for square systems The Kantorovich theorem has also been

expanded for overdetermined and underdetermined systems (Galántai, 2000;

Polyak, 2006; Argyros, 2008). Applied to Inverse Simulation, a square system

corresponds to the case of an equal number of inputs and outputs and a non-

square system (over or underdetermined) to the more general case, as detailed in

Chapter 3. The benefit of using this approach is that based on the values of the

Jacobian and its inverse (or factorised inverse) at the starting point, the area and

order of convergence can be found as well as an upper error bound for the iterates

(Ortega, 1968; Tapia, 1971; Argyros, 2008).

10 A function :f V E→ satisfies a Lipschitz condition (is Lipschitz-continuous) on the open set

U V if there is a positive constant L (called the Lipschitz constant) such that

() ()f x f y L x y−  − for all ,x y U (Lang, 1997). This is a weaker condition than saying

a function is differentiable (Lang, 1997).

156

The error bound for the current iteration n that is given by
d n n− x x , where

dx is the solution (the desired output for Inverse Simulation), and the maximum

error is 0 0d − x x . The values of 0 , n  can be calculated as in (Ortega, 1968;

Tapia, 1971; Argyros, 2008) Then, the value of 0 can be used as an upper

estimate for the convergence tolerance of Inverse Simulation.

The way this approach could be used is to examine if the initial starting point at

the start of each iteration, would lead to a solution at each. The main issue is, as

always, the calculation of the Jacobian and its inverse. Of course, both the

Differentiation and the Integration algorithm require the calculation of the

Jacobian anyway, so this will not be an additional calculation. For example, when

applied to the rover, this could be used to check if the waypoints are feasible

given the model. The works that developed and applied the Kantorovich theorem

assume that the Jacobian in its analytical form is accessible, which is far from

straightforward. An alternative worth investigating is assuming that at least a good

approximation of the Jacobian and its reverse (instead of its analytical form) is

also suitable.

9.2.3 Other Considerations

In this work, the calculation of the Jacobian is required. An alternative to

numerical formulas using divided differences is Automatic Differentiation.

Automatic differentiation uses “exact formulas along with floating-point values,

instead of expression strings as in symbolic differentiation, and it involves no

approximation error as in numerical differentiation using difference” (Neidinger,

2010). The method has been used in computational fluid dynamics, atmospheric

sciences, engineering design optimization and machine learning (Baydin et al.,

2015). The benefit of this approach is that the accuracy is guaranteed, it works

well in iterative solvers and is easy to generalize to higher derivatives. This

approach is suitable for both the Differentiation and the Integration methods. Also

observed were low amplitude, and high frequency oscillations present in the

control signal, primarily when using the Differentiation method. If these are

deemed to be problematic for application particular implementation, a filter

could be used to remove these oscillations before applying the inputs to the

system.

157

Another thing for future consideration is augmenting the model used in this work.

This could be done by including terramechanics, a suspension and simulating the

movement of the rover on a slope. The last case would be particularly interesting

for Differentiation because Differentiation uses a reduced Jacobian with only u, r,

and v – the states that can be directly controlled. A further point to consider is

what would constitute a desired output; for example, when moving on a slope it

would make sense to constrain the permissible tilt.

In closing, this thesis (a) provides the tools to move forward in applying Inverse

Simulation to a wide range of applications, such as control, fault detection,

disturbance detection, and output feasibility, and (b) applies Inverse Simulation

for output tracking to a four wheeled rover model. Inverse Simulation calculates

the changes in velocity, rotation, and acceleration for following a desired

trajectory and for control by using these inputs to execute the desired trajectory.

Hence, Inverse Simulation is a method for guidance and control.

158

List of References

Argyros, I. K. (2008) Convergence and Applications of Newton-type Iterations.

1st edn. New York, NY: Springer New York. doi: 10.1007/978-0-387-72743-1.

Arvidson, R. E., Iagnemma, K. D., Maimone, M., et al. (2017) ‘Mars Science

Laboratory Curiosity Rover Megaripple Crossings up to Sol 710 in Gale Crater’,

Journal of Field Robotics, 34(3), pp. 495–518. doi: 10.1002/rob.21647.

Aström, K. J. and Kumar, P. R. (2014) ‘Control: A perspective’, Automatica,

50(1), pp. 3–43. doi: 10.1016/j.automatica.2013.10.012.

Avanzini, G. and Matteis, G. de (2001) ‘Two-Timescale Inverse Simulation of a

Helicopter Model’, Journal of Guidance, Control, and Dynamics, 24(2), pp. 330–

339. doi: 10.2514/2.4716.

Avanzini, G., Matteis, G. De and Torasso, A. (2010) ‘Modelling issues in

helicopter inverse simulation’, in 36th European Rotorcraft Forum. Paris,

France.

Avanzini, G., De Matteis, G. and Torasso, A. (2017) ‘Assessment of Helicopter

Model Accuracy Through Inverse Simulation’, Journal of Aircraft, 54(2), pp. 535–

547. doi: 10.2514/1.C033847.

Avanzini, G., Thomson, D. G. and Torasso, A. (2013) ‘Model Predictive Control

Architecture for Rotorcraft Inverse Simulation’, Journal of Guidance, Control,

and Dynamics, 36(1), pp. 207–217. doi: 10.2514/1.56563.

Bagiev, M., Thomson, D. G., Anderson, D. and Murray-Smith, D. (2012)

‘Predictive inverse simulation of helicopters in aggressive manoeuvring flight’,

The Aeronautical Journal, 116(1175), pp. 87–98. doi:

10.1017/S0001924000006631.

Bajracharya, M., Maimone, M. W. and Helmick, D. (2008) ‘Autonomy for Mars

Rovers: Past, Present, and Future’, Computer, 41(12), pp. 44–50. doi:

10.1109/MC.2008.479.

159

Barfoot, T., Furgale, P., Stenning, B., et al. (2011) ‘Field testing of a rover

guidance, navigation, and control architecture to support a ground-ice

prospecting mission to Mars’, Robotics and Autonomous Systems, 59(6), pp. 472–

488. doi: 10.1016/j.robot.2011.03.004.

Bartlett, P. W., Wettergreen, D. and Whittaker, W. (2008) ‘Design of the Scarab

Rover for Mobility & Drilling in the Lunar Cold Traps’, in 9th International

Symposium on Artificial Intelligence, Robotics and Automation in Space (i-

SAIRAS). Hollywood, USA, pp. 3–6.

Bartsch, S., Birnschein, T., Cordes, F., et al. (2010) ‘SpaceClimber:

Developement of a Six-Legged Climbing Robot for Space Exploration’, in ISR 2010

(41st International Symposium on Robotics) and ROBOTIK 2010 (6th German

Conference on Robotics),. Munich, Germany, pp. 1–8.

Bartsch, S., Birnschein, T., Römmermann, M., Hilljegerdes, J., Kühn, D. and

Kirchner, F. (2012) ‘Development of the six-legged walking and climbing robot

SpaceClimber’, Journal of Field Robotics, 29(3), pp. 506–532. doi:

10.1002/rob.21418.

Baydin, A. G., Pearlmutter, B. A., Radul, A. A. and Siskind, J. M. (2015)

‘Automatic differentiation in machine learning: a survey’, Journal of Machine

Learning Research, 18, pp. 1–43. Available at: http://arxiv.org/abs/1502.05767.

Belo, F. A. W., Birk, A., Brunskill, C., et al. (2012) ‘The ESA Lunar Robotics

Challenge: Simulating operations at the lunar south pole’, Journal of Field

Robotics, 29(4), pp. 601–626. doi: 10.1002/rob.20429.

Biesiadecki, J. J., Leger, P. C. and Maimone, M. W. (2007) ‘Tradeoffs Between

Directed and Autonomous Driving on the Mars Exploration Rovers’, The

International Journal of Robotics Research, 26(1), pp. 91–104. doi:

10.1177/0278364907073777.

Biesiadecki, J. J. and Maimone, M. W. (2006) ‘The Mars Exploration Rover

Surface Mobility Flight Software: Driving Ambition’, in 2006 IEEE Aerospace

Conference. Big Sky, MT, USA: IEEE, pp. 1–15. doi: 10.1109/AERO.2006.1655723.

160

Blajer, W., Graffstein, J. and Krawczyk, M. (2009) ‘Modeling of Aircraft

Prescribed Trajectory Flight as an Inverse Simulation Problem’, in Modeling,

Simulation and Control of Nonlinear Engineering Dynamical Systems. Dordrecht:

Springer Netherlands, pp. 153–162. doi: 10.1007/978-1-4020-8778-3_14.

Blažič, S. (2011) ‘A novel trajectory-tracking control law for wheeled mobile

robots’, Robotics and Autonomous Systems, 59(11), pp. 1001–1007. doi:

10.1016/j.robot.2011.06.005.

Botha, T. R. and Schalk Els, P. (2015) ‘Rough terrain profiling using digital image

correlation’, Journal of Terramechanics, 59, pp. 1–17. doi:

10.1016/j.jterra.2015.02.002.

Bottasso, C. L. and Ragazzi, A. (2001) ‘Deferred-Correction Optimal Control with

Applications to Inverse Problems in Flight Mechanics’, Journal of Guidance,

Control, and Dynamics, 24(1), pp. 101–108. doi: 10.2514/2.4681.

Bradley, R., Padfield, G. D., Murray-Smith, D. J. and Thomson, D. G. (1990)

‘Validation of helicopter mathematical models’, Transactions of the Institute of

Measurement and Control, 12(4), pp. 186–196. doi:

10.1177/014233129001200405.

Brockett, R. W. (1983) ‘Asymptotic stability and feedback stabilization’, in

Brockett, R. W., Millman, R. S., and Sussmann, H. J. (eds) Differential

Geometric Control Theory. Boston, MA, USA: Birkhauser, pp. 181–208. doi:

10.1.1.324.9912.

Campion, G. and Chung, W. (2008) ‘Wheeled Robots’, in Siciliano, B. and Khatib,

O. (eds) Springer Handbook of Robotics. Berlin, Heidelberg: Springer, pp. 391–

410. Available at: https://link.springer.com/referenceworkentry/10.1007/978-

3-540-30301-5_18.

Carsten, J., Rankin, A., Ferguson, D. and Stentz, A. (2009) ‘Global planning on

the Mars Exploration Rovers: Software integration and surface testing’, Journal

of Field Robotics, 26(4), pp. 337–357. doi: 10.1002/rob.20287.

161

Cauli, N., Falotico, E., Bernardino, A., Santos-Victor, J. and Laschi, C. (2016)

‘Correcting for changes: expected perception-based control for reaching a

moving target’, IEEE Robotics & Automation Magazine, 23(1), pp. 63–70. doi:

10.1109/MRA.2015.2505958.

Celi, R. (2000) ‘Optimization-Based Inverse Simulation of a Helicopter Slalom

Maneuver’, Journal of Guidance, Control, and Dynamics, 23(2), pp. 289–297. doi:

10.2514/2.4521.

Chapra, S. C. and Canale, R. (2001) Numerical Methods for Engineers: With

Software and Programming Applications. 4th edn. McGraw-Hill Higher Education.

Cheein, F. A. and Scaglia, G. (2014) ‘Trajectory Tracking Controller Design for

Unmanned Vehicles: A New Methodology’, Journal of Field Robotics, 31(6), pp.

861–887. doi: 10.1002/rob.21492.

Chhaniyara, S., Brunskill, C., Yeomans, B., et al. (2012) ‘Terrain trafficability

analysis and soil mechanical property identification for planetary rovers: A

survey’, Journal of Terramechanics, 49(2), pp. 115–128. doi:

10.1016/j.jterra.2012.01.001.

Chu, L. E., Brown, K. M. and Kriechbaum, K. (2017) ‘Mars 2020 sampling and

caching subsystem environmental development testing and preliminary results’,

IEEE Aerospace Conference Proceedings, (Figure 2), pp. 1–10. doi:

10.1109/AERO.2017.7943564.

Connors, J. and Elkaim, G. (2007) ‘Analysis of a Spline Based, Obstacle Avoiding

Path Planning Algorithm’, in 2007 IEEE 65th Vehicular Technology Conference -

VTC2007-Spring. IEEE, pp. 2565–2569. doi: 10.1109/VETECS.2007.528.

Cook, G. (2011) Mobile Robots: Navigation, Control and Remote Sensing. 1rst

edn. New Jersey, USA: Wiley-IEEE Press.

Correal, R., Pajares, G. and Ruz, J. J. (2016) ‘Autonomy for ground-level robotic

space exploration: framework, simulation, architecture, algorithms and

experiments’, Robotica, 34(02), pp. 274–305. doi: 10.1017/S0263574714001428.

162

Davis, T. A. (2013) ‘Algorithm 930: FACTORIZE: An Object-Oriented Linear

System Solver for MATLAB’, ACM Transactions on Mathematical Software, 39(4),

pp. 1–18. doi: 10.1145/2491491.2491498.

Dawkins, J. J. (2014) ‘Model based off-road terrain profile estimation’, in 2014

American Control Conference. Portland, Oregon, USA: IEEE, pp. 2792–2797. doi:

10.1109/ACC.2014.6859189.

de Divitiis, N. (1999) ‘Inverse Simulation of Aeroassisted Orbit Plane Change of a

Spacecraft’, Journal of Spacecraft and Rockets, 36(6), pp. 882–889. doi:

10.2514/2.3507.

Dixon, J. C. (2007) The Shock Absorber Handbook, The Shock Absorber

Handbook: Second Edition. Chichester, UK: John Wiley & Sons, Ltd (Wiley-

Professional Engineering Publishing Series). doi: 10.1002/9780470516430.

Du, X. (2013) ‘Inverse simulation under uncertainty by optimization’, Journal of

Computing and Information Science in Engineering, 13(2), pp. 1–8. doi:

10.1115/1.4023859.

Dubins, L. (1957) ‘On Curves of Minimal Length with a Constraint on Average

Curvature and with Prescribed Initial and Terminal Positions and Tangents’,

American Journal of Mathematics, 79, pp. 497–516.

Ferguson, K. and Thomson, D. (2016) ‘Maneuverability Assessment of a

Compound Helicopter Configuration’, Journal of the American Helicopter

Society, 61(1), pp. 1–15. doi: 10.4050/JAHS.61.012008.

Forbes-Spyratos, S., Jahn, I. H., Preller, D. and Smart, M. (2014) ‘Inverse

Simulation for Hypersonic Vehicle Analysis’, in 19th AIAA International Space

Planes and Hypersonic Systems and Technologies Conference. Reston, Virginia,

USA: American Institute of Aeronautics and Astronautics, pp. 1–19. doi:

10.2514/6.2014-2954.

Fossen, T. I. (2002) Marine Control Systems. 1rst edn. Trondheim, Norway:

Marine Cybernetics.

163

Fossen, T. I. (2011) Handbook of Marine Craft Hydrodynamics and Motion

Control. 1st edn. Chichester, UK: John Wiley & Sons, Ltd. doi:

10.1002/9781119994138.

Foster, L. V and Davis, T. A. (2013) ‘Algorithm 933: Reliable Calculation of

Numerical Rank, Null Space Bases, Pseudoinverse Solutions, and Basic Solutions

using SuiteSparseQR’, ACM Transactions on Mathematical Software, 40(1), pp. 1–

23. doi: 10.1145/2513109.2513116.

Galántai, A. (2000) ‘The theory of Newton’s method’, Journal of Computational

and Applied Mathematics, 124(1–2), pp. 25–44. doi: 10.1016/S0377-

0427(00)00435-0.

Garcia, E., Jimenez, M. A., De Santos, P. G. and Armada, M. (2007) ‘The

evolution of robotics research’, IEEE Robotics & Automation Magazine, 14(1),

pp. 90–103. doi: 10.1109/MRA.2007.339608.

Ghotbi, B., González, F., Kövecses, J. and Angeles, J. (2016) ‘Mobility evaluation

of wheeled robots on soft terrain: Effect of internal force distribution’,

Mechanism and Machine Theory, 100, pp. 259–282. doi:

10.1016/j.mechmachtheory.2016.02.005.

Gray, G. J. (1992) Development and Validation of Nonlinear Models for

Helicopter Dynamics. University of Glasgow. Available at:

https://core.ac.uk/download/pdf/293063277.pdf.

Gu, Y., Ohi, N., Lassak, K., et al. (2017) ‘Cataglyphis: An autonomous sample

return rover’, Journal of Field Robotics, (May 2016), pp. 1–27. doi:

10.1002/rob.21737.

Hess, R. A. and Gao, C. (1993) ‘A Generalized Algorithm for Inverse Simulation

Applied to Helicopter Maneuvering Flight’, Journal of the American Helicopter

Society, 38(4), pp. 3–15. doi: 10.4050/JAHS.38.3.

Hess, R. A., Wang, S. H. and Gao, C. (1991) ‘Generalized technique for inverse

simulation applied to aircraft maneuvers’, Journal of Guidance, Control, and

164

Dynamics, 14(5), pp. 920–926. doi: 10.2514/3.20732.

Heumann, C., Schomaker, M. and Shalabh (2016) Introduction to Statistics and

Data Analysis, Springer International Publishing. Springer International

Publishing. doi: 10.1007/978-3-319-46162-5.

Heverly, M., Matthews, J., Lin, J., et al. (2013) ‘Traverse Performance

Characterization for the Mars Science Laboratory Rover’, Journal of Field

Robotics, 30(6), pp. 835–846. doi: 10.1002/rob.21481.

Higham, N. J. (2002) Accuracy and stability of numerical algorithms. 2nd edn.

Philadelphia, USA: SIAM (Society for Industrial and Applied Mathematics). doi:

10.2307/2669725.

Howard, T. M. and Kelly, A. (2007) ‘Optimal Rough Terrain Trajectory

Generation for Wheeled Mobile Robots’, The International Journal of Robotics

Research, 26(2), pp. 141–166. doi: 10.1177/0278364906075328.

Howard, T. M., Morfopoulos, A., Morrison, J., et al. (2012) ‘Enabling continuous

planetary rover navigation through FPGA stereo and visual odometry’, in 2012

IEEE Aerospace Conference. Big Sky, MT, USA: IEEE, pp. 1–9. doi:

10.1109/AERO.2012.6187041.

Hwang, C.-L. and Wu, H.-M. (2013) ‘Trajectory tracking of a mobile robot with

frictions and uncertainties using hierarchical sliding-mode under-actuated

control’, IET Control Theory & Applications, 7(7), pp. 952–965. doi: 10.1049/iet-

cta.2012.0750.

InSight Mission Overview (2018) Nasa. Available at:

https://mars.nasa.gov/insight/mission/overview/ (Accessed: 15 December

2018).

Ireland, M., Flessa, T., Thomson, D. and McGookin, E. (2017) ‘Comparison of

Nonlinear Dynamic Inversion and Inverse Simulation’, Journal of Guidance,

Control, and Dynamics, 40(12), pp. 3307–3312. doi: 10.2514/1.G002875.

165

Ireland, M. L., Worrall, K. J., Mackenzie, R., Flessa, T., McGookin, E. W. and

Thomson, D. G. (2017) ‘A Comparison of Inverse Simulation-Based Fault

Detection in a Simple Robotic Rover with a Traditional Model-Based Method’, in

19th International Conference on Autonomous Robots and Agents (ICARA 2017).

Madrid, Spain. doi: doi.org/10.5281/zenodo.1129652.

Ireland, M., Mackenzie, R., Flessa, T., Worrall, K. J., Thomson, D. and

McGookin, E. (2017) ‘Inverse Simulation as a Tool for Fault Detection and

Isolation in Planetary Rovers’, in 10th International ESA Conference on

Guidance, Navigation and Control Systems (GNC). Salzburg, Austria. Available

at: http://eprints.gla.ac.uk/136302/.

Isidori, A. (1995) Nonlinear Control Systems. London: Springer London

(Communications and Control Engineering). doi: 10.1007/978-1-84628-615-5.

Isidori, A. (1999) Nonlinear Control Systems II. London: Springer London

(Communications and Control Engineering). doi: 10.1007/978-1-4471-0549-7.

Kanayama, Y., Kimura, Y., Miyazaki, F. and Noguchi, T. (1990) ‘A stable tracking

control method for an autonomous mobile robot’, in 1990 IEEE International

Conference on Robotics and Automation. Cincinnati, OH, USA: IEEE Comput. Soc.

Press, pp. 384–389. doi: 10.1109/ROBOT.1990.126006.

Karelahti, J., Virtanen, K. and Öström, J. (2008) ‘Automated Generation of

Realistic Near-Optimal Aircraft Trajectories’, Journal of Guidance, Control, and

Dynamics, 31(3), pp. 674–688. doi: 10.2514/1.31159.

Keesman, K. J. (2011) System Identification. London: Springer London (Advanced

Textbooks in Control and Signal Processing). doi: 10.1007/978-0-85729-522-4.

Khalil, H. K. (2003) Nonlinear Systems International Edition. 3rd edn. New

Jersey, USA: Pearson Education.

Kim, C. J., Lee, S. H. and Hur, S. W. (2020) ‘Kinematically Exact Inverse-

Simulation Techniques with Applications to Rotorcraft Aggressive-Maneuver

Analyses’, International Journal of Aeronautical and Space Sciences, 21(3), pp.

166

790–805. doi: 10.1007/s42405-020-00249-8.

Kolter, J. Z. and Ng, A. Y. (2009) ‘Task-space trajectories via cubic spline

optimization’, in 2009 IEEE International Conference on Robotics and

Automation. Kobe, Japan: IEEE, pp. 1675–1682. doi:

10.1109/ROBOT.2009.5152554.

Kreyszig, E. (2014) Advanced Engineering Mathematics. 10th edn. John Wiley &

Sons, Ltd. Available at: https://www.wiley.com/.

Lang, S. (1997) Undergraduate Analysis. New York, NY: Springer New York

(Undergraduate Texts in Mathematics). doi: 10.1007/978-1-4757-2698-5.

LaValle, S. M. (2006) Planning Algorithms, Planning Algorithms. Cambridge:

Cambridge University Press. doi: 10.1017/CBO9780511546877.

Lekkas, A. and Fossen, T. (2013) ‘Line-of-sight guidance for path following of

marine vehicles’, in Gal, O. (ed.) Advanced in Marine Robotics. 1st edn. Lambert

Academic, pp. 1–29.

Lekkas, A. M. and Fossen, T. I. (2014) ‘Integral LOS Path Following for Curved

Paths Based on a Monotone Cubic Hermite Spline Parametrization’, IEEE

Transactions on Control Systems Technology, 22(6), pp. 2287–2301. doi:

10.1109/TCST.2014.2306774.

Lin, K. C. and Lu, P. (1995) ‘Inverse Simulation - An Error Analysis’, SIMULATION,

65(6), pp. 385–392. doi: 10.1177/003754979506500602.

Lindemann, R. A., Bickler, D. B., Harrington, B. D., Ortiz, G. M. and Voothees,

C. J. (2006) ‘Mars exploration rover mobility development’, IEEE Robotics &

Automation Magazine, 13(2), pp. 19–26. doi: 10.1109/MRA.2006.1638012.

Lindemann, R. A. and Voorhees, C. J. (2005) ‘Mars Exploration Rover Mobility

Assembly Design, Test and Performance’, in 2005 IEEE International Conference

on Systems, Man and Cybernetics. Waikoloa, HI, USA: IEEE, pp. 450–455. doi:

10.1109/ICSMC.2005.1571187.

167

Liu, S. and Sun, D. (2011) ‘Optimal motion planning of a mobile robot with

minimum energy consumption’, in 2011 IEEE/ASME International Conference on

Advanced Intelligent Mechatronics (AIM). Budapest, Hungary: IEEE, pp. 43–48.

doi: 10.1109/AIM.2011.6027010.

Liu, S. and Sun, D. (2014) ‘Minimizing Energy Consumption of Wheeled Mobile

Robots via Optimal Motion Planning’, IEEE/ASME Transactions on Mechatronics,

19(2), pp. 401–411. doi: 10.1109/TMECH.2013.2241777.

Lu, L., Murray-Smith, D. J. and McGookin, E. W. (2007) ‘Investigation of inverse

simulation for design of feedforward controllers’, Mathematical and Computer

Modelling of Dynamical Systems, 13(5), pp. 437–454. doi:

10.1080/13873950701344023.

Lu, L., Murray-Smith, D. J. and Thomson, D. G. (2008) ‘Issues of numerical

accuracy and stability in inverse simulation’, Simulation Modelling Practice and

Theory, 16(9), pp. 1350–1364. doi: 10.1016/j.simpat.2008.07.003.

De Luca, A., Oriolo, G. and Vendittelli, M. (2001) ‘Control of Wheeled Mobile

Robots: An Experimental Overview’, in Nicosia, S., Siciliano, B., Bicchi, A., and

Valigi, P. (eds) Lecture Notes in Control and Information Sciences. 1st edn.

Berlin, Heidelberg: Springer, pp. 181–226. doi: 10.1007/3-540-45000-9_8.

Lynxmotion (2018). Available at:

http://www.lynxmotion.com/driver.aspx?Topic=oldassem (Accessed: 15

December 2018).

Lս, L., Murray-Smith, D. J. and Thomson, D. G. (2007) ‘Sensitivity-Analysis

Method for Inverse Simulation Application’, Journal of Guidance, Control, and

Dynamics, 30(1), pp. 114–1215. doi: 10.2514/1.20722.

Madison, R., Jain, A., Lim, C. and Maimone, M. (2007) ‘Performance

characterization of a rover navigation algorithm using large-scale simulation’,

Scientific Programming, 15(2), pp. 95–105.

Maimone, M., Cheng, Y. and Matthies, L. (2007) ‘Two years of Visual Odometry

168

on the Mars Exploration Rovers’, Journal of Field Robotics, 24(3), pp. 169–186.

doi: 10.1002/rob.20184.

Maimone, M., Johnson, A., Cheng, Y., Willson, R. and Matthies, L. (2006)

‘Autonomous Navigation Results from the Mars Exploration Rover (MER) Mission’,

in Ang, M. H. and Khatib, O. (eds) Experimental Robotics IX. Springer Tracts in

Advanced Robotics. 1st edn. Berlin, Heidelberg: Springer, Berlin, Heidelberg, pp.

3–13. doi: 10.1007/11552246_1.

Maimone, M. W., Biesiadecki, J., Tunstel, E., Cheng, Y. and Leger, C. (2006)

‘Surface Navigation and Mobility Intelligence on the Mars Exploration Rovers’, in

Howard, A. M. and Tunstel, E. W. (eds) Intelligence for Space Robotics. San

Antonio, TX, USA: TSI Press, pp. 45–70.

Martins, F. N., Celeste, W. C., Carelli, R., Sarcinelli-Filho, M. and Bastos-Filho,

T. F. (2008) ‘An adaptive dynamic controller for autonomous mobile robot

trajectory tracking’, Control Engineering Practice, 16(11), pp. 1354–1363. doi:

10.1016/j.conengprac.2008.03.004.

Mateo Sanguino, T. de J. (2017) ‘50 years of rovers for planetary exploration: A

retrospective review for future directions’, Robotics and Autonomous Systems,

94, pp. 172–185. doi: 10.1016/j.robot.2017.04.020.

Michaud, S., Hoepflinger, M., Thueer, T., et al. (2008) ‘Lesson Learned from

Exomars Locomotion System Test Campaign’, in 10th Symposium on Advanced

Space Technologies in Robotics and Automation (ASTRA). Noordwijk, The

Netherlands, pp. 1–8.

Moler, C. B. (2004) Numerical Computing with Matlab. Society for Industrial and

Applied Mathematics. doi: 10.1137/1.9780898717952.

Morin, P. and Samson, C. (2008) ‘Motion Control of Wheeled Mobile Robots’, in

Siciliano, B. and Khatib, O. (eds) Springer Handbook of Robotics. 1st edn. Berlin,

Heidelberg: Springer, pp. 133–159. doi: 10.1007/978-3-540-30301-5_7.

Muirhead, B. K. (2004) ‘Mars rovers, past and future’, in 2004 IEEE Aerospace

169

Conference. Big Sky, MT, USA: IEEE, pp. 128–134. doi:

10.1109/AERO.2004.1367598.

Murray-Smith, D. J. (2000) ‘The inverse simulation approach: a focused review of

methods and applications’, Mathematics and Computers in Simulation, 53(4–6),

pp. 239–247. doi: 10.1016/S0378-4754(00)00210-X.

Murray-Smith, D. J. (2014) ‘Inverse simulation and analysis of underwater

vehicle dynamics using feedback principles’, Mathematical and Computer

Modelling of Dynamical Systems, 20(1), pp. 45–65. doi:

10.1080/13873954.2013.805146.

Murray-Smith, D. J., Lu, L. and McGookin, E. W. (2008) ‘Applications of inverse

simulation to a nonlinear model of an underwater vehicle.’, in Summer

Simulation Multi-Conference 2008 - Grand Challenges in Modelling & Simulation.

Edinburgh, Scotland,.

Murray-Smith, D. J. and McGookin, E. W. (2015) ‘A case study involving

continuous system methods of inverse simulation for an unmanned aerial vehicle

application’, Proceedings of the Institution of Mechanical Engineers, Part G:

Journal of Aerospace Engineering, 229(14), pp. 2700–2717. doi:

10.1177/0954410015586842.

Nakayama, Y. (2018) ‘Drag and Lift’, in Introduction to Fluid Mechanics.

Elsevier, pp. 177–201. doi: 10.1016/B978-0-08-102437-9.00009-7.

Neidinger, R. D. (2010) ‘Introduction to automatic differentiation and MATLAB

object-oriented programming’, SIAM Review, 52(3), pp. 545–563. doi:

10.1137/080743627.

Nesnas, I. A. D., Matthews, J. B., Abad-Manterola, P., et al. (2012) ‘Axel and

DuAxel rovers for the sustainable exploration of extreme terrains’, Journal of

Field Robotics, 29(4), pp. 663–685. doi: 10.1002/rob.21407.

Ngwangwa, H. M., Heyns, P. S., Breytenbach, H. G. A. and Els, P. S. (2014)

‘Reconstruction of road defects and road roughness classification using Artificial

170

Neural Networks simulation and vehicle dynamic responses: Application to

experimental data’, Journal of Terramechanics, 53, pp. 1–18. doi:

10.1016/j.jterra.2014.03.002.

Nie, C., Pacheco Corcho, X. and Spenko, M. (2013) ‘Robots on the Move:

Versatility and Complexity in Mobile Robot Locomotion’, IEEE Robotics &

Automation Magazine, 20(4), pp. 72–82. doi: 10.1109/MRA.2013.2248310.

Ogata, K. (2008) Modern Control Engineering International Edition. 5th edn.

New Jersey, USA: Pearson Education.

Oriolo, G., De Luca, A. and Vendittelli, M. (2002) ‘WMR control via dynamic

feedback linearization: design, implementation, and experimental validation’,

IEEE Transactions on Control Systems Technology, 10(6), pp. 835–852. doi:

10.1109/TCST.2002.804116.

Ortega, J. M. (1968) ‘The Newton-Kantorovich Theorem’, The American

Mathematical Monthly, 75(6), p. 658. doi: 10.2307/2313800.

Öström, J. (2007) ‘Enhanced Inverse Flight Simulation for a Fatigue Life

Management System’, in AIAA Modeling and Simulation Technologies Conference

and Exhibit. Reston, Virigina: American Institute of Aeronautics and

Astronautics. doi: 10.2514/6.2007-6367.

Pacejka, H. B. (2012) ‘Basic Tire Modeling Considerations’, in Tire and Vehicle

Dynamics. Elsevier, pp. 59–85. doi: 10.1016/B978-0-08-097016-5.00002-4.

Paden, B., Cap, M., Yong, S. Z., Yershov, D. and Frazzoli, E. (2016) ‘A Survey of

Motion Planning and Control Techniques for Self-Driving Urban Vehicles’, IEEE

Transactions on Intelligent Vehicles, 1(1), pp. 33–55. doi:

10.1109/TIV.2016.2578706.

Patel, N., Slade, R. and Clemmet, J. (2010) ‘The ExoMars rover locomotion

subsystem’, Journal of Terramechanics, 47(4), pp. 227–242. doi:

10.1016/j.jterra.2010.02.004.

171

Polyak, B. T. (2006) ‘Newton-Kantorovich Method and Its Global Convergence’,

Journal of Mathematical Sciences, 133(4), pp. 1513–1523. doi: 10.1007/s10958-

006-0066-1.

Popp, K. and Schiehlen, W. (2010) Ground vehicle dynamics, Ground Vehicle

Dynamics. doi: 10.1007/978-3-540-68553-1.

Quadrelli, M. B., Wood, L. J., Riedel, J. E., et al. (2015) ‘Guidance, Navigation,

and Control Technology Assessment for Future Planetary Science Missions’,

Journal of Guidance, Control, and Dynamics, 38(7), pp. 1165–1186. doi:

10.2514/1.G000525.

Rankin, A., Maimone, M., Biesiadecki, J., Patel, N., Levine, D. and Toupet, O.

(2020) ‘Driving Curiosity: Mars Rover Mobility Trends during the First Seven

Years’, IEEE Aerospace Conference Proceedings, (Lm). doi:

10.1109/AERO47225.2020.9172469.

Rath, J. J., Veluvolu, K. C. and Defoort, M. (2015) ‘Simultaneous Estimation of

Road Profile and Tire Road Friction for Automotive Vehicle’, IEEE Transactions

on Vehicular Technology, 64(10), pp. 4461–4471. doi:

10.1109/TVT.2014.2373434.

Reid, E., Iles, P., Muise, J., et al. (2015) ‘The Artemis Jr. rover: Mobility

platform for lunar ISRU mission simulation’, Advances in Space Research, 55(10),

pp. 2472–2483. doi: 10.1016/j.asr.2014.10.025.

Reina, G. and Foglia, M. (2013) ‘On the mobility of all‐terrain rovers’, Industrial

Robot: An International Journal, 40(2), pp. 121–131. doi:

10.1108/01439911311297720.

Renny Simba, K., Uchiyama, N. and Sano, S. (2016) ‘Real-time smooth trajectory

generation for nonholonomic mobile robots using Bézier curves’, Robotics and

Computer-Integrated Manufacturing, 41, pp. 31–42. doi:

10.1016/j.rcim.2016.02.002.

Rodríguez-Seda, E. J., Tang, C., Spong, M. W. and Stipanović, D. M. (2014)

172

‘Trajectory tracking with collision avoidance for nonholonomic vehicles with

acceleration constraints and limited sensing’, The International Journal of

Robotics Research, 33(12), pp. 1569–1592. doi: 10.1177/0278364914537130.

Rollins, E., Luntz, J., Foessel, A., Shamah, B. and Whittaker, W. (1998) ‘Nomad:

A demonstration of the transforming chassis’, in 1998 IEEE International

Conference on Robotics and Automation. Leuven, Belgium: IEEE, pp. 611–617.

doi: 10.1109/ROBOT.1998.677040.

Rutherford, S. and Thomson, D. G. (1996) ‘Improved methodology for inverse

simulation’, The Aeronautical Journal, 100(93), pp. 79–86.

Savaresi, S. M., Poussot-Vassal, C., Spelta, C., Sename, O. and Dugard, L. (2010)

Semi-Active Suspension Control Design for Vehicles. 1rst edn. Oxford, UK:

Elsevier. doi: 10.1016/B978-0-08-096678-6.00014-6.

Schiele, A., Romstedt, J., Lee, C., et al. (2008) ‘Nanokhod exploration rover - A

rugged rover suited for small, sow-cost, planetary lander mission’, IEEE Robotics

and Automation Magazine, 15(2), pp. 96–107. doi: 10.1109/MRA.2008.917888.

Schramm, D., Hiller, M. and Bardini, R. (2014) Vehicle Dynamics, SAE Technical

Papers. Berlin, Heidelberg: Springer Berlin Heidelberg. doi: 10.1007/978-3-540-

36045-2.

Sellers, J. J. (2005) Understanding Space: An Introduction to Astronautics. 3rd

edn. McGraw-Hill.

Shamah, B. (1999) Experimental Comparison of Skid Steering vs. Explicit

Steering for Wheeled Mobile Robot. Carnegie Mellon University.

Sharma, K. R., Dusek, F. and Honc, D. (2017) ‘Comparitive study of predictive

controllers for trajectory tracking of non-holonomic mobile robot’, in 2017 21st

International Conference on Process Control (PC). Štrbské Pleso, Slovakia: IEEE,

pp. 197–203. doi: 10.1109/PC.2017.7976213.

Siegwart, R., Nourbakhsh, I. R. and Scaramuzza, D. (2011) Introduction to

173

Autonomous Mobile Robots. 2nd edn. Cambridge, Massachusetts: MIT Press.

Silva, N., Lancaster, R. and Clemmet, J. (2013) ‘ExoMars Rover Vehicle Mobility

Functional Architecture and Key Design Drivers’, in 12th Symposium on Advanced

Space Technologies in Robotics and Automation (ASTRA). Noordwijk, The

Netherlands.

Skogestad, S. and Postlethwaite, I. (2005) Multivariable feedback control:

analysis and design. 2nd edn. John Wiley & Sons, Ltd.

Škrjanc, I. and Klančar, G. (2017) ‘A comparison of continuous and discrete

tracking-error model-based predictive control for mobile robots’, Robotics and

Autonomous Systems, 87, pp. 177–187. doi: 10.1016/j.robot.2016.09.016.

Slotine, J. J. and Li, W. (1991) Applied Nonlinear Control. New Jersey, USA:

Pearson Education.

Solea, R., Filipescu, A. and Nunes, U. (2009) ‘Sliding-mode control for

trajectory-tracking of a Wheeled Mobile Robot in presence of uncertainties’, in

7th Asian Control Conference. Hong Kong, China, pp. 1701–1706.

Strang, G. (2009) Introduction to Linear Algebra. 4th edn. Wellesley MA:

Wellesley-Cambridge Press.

Su, Y. and Cao, Y. (2002) ‘A nonlinear inverse simulation technique applied to

coaxial rotor helicopter maneuvers’, Aircraft Engineering and Aerospace

Technology, 74(6), pp. 525–533. doi: 10.1108/00022660210420852.

SunSpiral, V., Wheeler, D. W., Chavez-Clemente, D. and Mittman, D. (2012)

‘Development and field testing of the FootFall planning system for the ATHLETE

robots’, Journal of Field Robotics, 29(3), pp. 483–505. doi: 10.1002/rob.20410.

Tapia, R. A. (1971) ‘The Kantorovich Theorem for Newton’s Method’, The

American Mathematical Monthly, 78(4), p. 389. doi: 10.2307/2316909.

Thomson, D. G. (1987) Evaluation of helicopter agility through inverse solution

of the equations of motion. University of Glasgow.

174

Thomson, D. G. and Bradley, R. (1990) ‘Prediction of the dynamic characteristics

of helicopters in constrained flight’, The Aeronautical Journal, 94(940), pp. 344–

354. doi: 10.1017/S0001924000023307.

Thomson, D. G. and Bradley, R. (2006) ‘Inverse simulation as a tool for flight

dynamics research-Principles and applications’, Progress in Aerospace Sciences,

42(3), pp. 174–210. doi: 10.1016/j.paerosci.2006.07.002.

Thueer, T. and Siegwart, R. (2010) ‘Mobility evaluation of wheeled all-terrain

robots’, Robotics and Autonomous Systems, 58(5), pp. 508–519. doi:

10.1016/j.robot.2010.01.007.

Tian, Y. and Sarkar, N. (2014) ‘Control of a Mobile Robot Subject to Wheel Slip’,

Journal of Intelligent & Robotic Systems, 74(3–4), pp. 915–929. doi:

10.1007/s10846-013-9871-1.

Della Torre, A., Ercoli Finzi, A., Genta, G., et al. (2010) ‘AMALIA Mission Lunar

Rover—The conceptual design of the Team ITALIA Rover, candidate for the

Google Lunar X Prize Challenge’, Acta Astronautica, 67(7–8), pp. 961–978. doi:

10.1016/j.actaastro.2010.05.023.

Tzafestas, S. G. (2018) ‘Mobile Robot Control and Navigation: A Global

Overview’, Journal of Intelligent and Robotic Systems: Theory and Applications,

91(1), pp. 35–58. doi: 10.1007/s10846-018-0805-9.

Ulamec, S., Espinasse, S., Feuerbacher, B., et al. (2006) ‘Rosetta Lander—

Philae: Implications of an alternative mission’, Acta Astronautica, 58(8), pp.

435–441. doi: 10.1016/j.actaastro.2005.12.009.

Ulamec, S., Fantinati, C., Maibaum, M., et al. (2016) ‘Rosetta Lander – Landing

and operations on comet 67P/Churyumov–Gerasimenko’, Acta Astronautica, 125,

pp. 80–91. doi: 10.1016/j.actaastro.2015.11.029.

Wagner, M., Heys, S., Wettergreen, D., et al. (2005) ‘Design and control of a

passively steered, dual axle vehicle’, in 8th International Symposium on

Artificial Intelligence, Robotics and Automation in Space (i-SAIRAS). Munich,

175

Germany, pp. 29–36.

Wettergreen, D., Moreland, S., Skonieczny, K., Jonak, D., Kohanbash, D. and

Teza, J. (2010) ‘Design and field experimentation of a prototype Lunar

prospector’, The International Journal of Robotics Research, 29(12), pp. 1550–

1564. doi: 10.1177/0278364910370217.

Wilcox, B. H. (2012) ‘ATHLETE: A limbed vehicle for solar system exploration’,

IEEE Aerospace Conference Proceedings, pp. 1–9. doi:

10.1109/AERO.2012.6187269.

Wolek, A. and Woolsey, C. A. (2017) ‘Model-Based Path Planning’, in Fossen, T.

I., Pettersen, K. Y., and Nijmeijer, H. (eds) Sensing and Control for Autonomous

Vehicles. 1st edn. Cham: Springer International Publishing (Lecture Notes in

Control and Information Sciences), pp. 183–206. doi: 10.1007/978-3-319-55372-

6_9.

Wong, J. Y. and Huang, W. (2006) ‘“Wheels vs. tracks” – A fundamental

evaluation from the traction perspective’, Journal of Terramechanics, 43(1), pp.

27–42. doi: 10.1016/j.jterra.2004.08.003.

Woods, M., Shaw, A., Tidey, E., et al. (2014) ‘Seeker-Autonomous Long-range

Rover Navigation for Remote Exploration’, Journal of Field Robotics, 31(6), pp.

940–968. doi: 10.1002/rob.21528.

Worrall, K. (2010) Guidance and search algorithms for mobile robots:

application and analysis within the context of urban search and rescue.

University of Glasgow.

Worrall, K. J., Thomson, D., McGookin, E. and Flessa, T. (2015) ‘Autonomous

Planetary Rover Control using Inverse Simulation’, in 13th ESA Workshop on

Advanced Space Technologies for Robotics and Automation (ASTRA 2015).

Noordwijk, The Netherlands. Available at: http://eprints.gla.ac.uk/106312/.

Worrall, K. and McGookin, E. W. (2006) ‘A Mathematical Model of a LEGO

Differential Drive Robot’, in International Control Conference (ICC). Glasgow,

176

UK: UKACC (United Kingdom Automatic Control Council). Available at:

http://eprints.gla.ac.uk/30835/.

Wright, J., Hartman, F., Cooper, B., Maxwell, S., Yen, J. and Morrison, J. (2006)

‘Driving on Mars with RSVP’, IEEE Robotics & Automation Magazine, 13(2), pp.

37–45. doi: 10.1109/MRA.2006.1638014.

Yang, G., Bellingham, J., Dupont, P. E., et al. (2018) ‘The grand challenges of

Science Robotics’, Science Robotics, 3(14), p. eaar7650. doi:

10.1126/scirobotics.aar7650.

Yongguo Mei, Yung-Hsiang Lu, Hu, Y. C. and Lee, C. S. G. (2006) ‘Deployment of

mobile robots with energy and timing constraints’, IEEE Transactions on

Robotics, 22(3), pp. 507–522. doi: 10.1109/TRO.2006.875494.

Yoshida, K., Yoshida, K., Wilcox, B. and Wilcox, B. (2008) ‘Space Robots and

Systems’, in Siciliano, B. and Khatib, O. (eds) Springer Handbook of Robotics. 1st

edn. Berlin, Heidelberg, pp. 1031–1063. Available at:

https://link.springer.com/referenceworkentry/10.1007/978-3-540-30301-5_46.

Young, A. (2007) Lunar and Planetary rovers. 1st edn, Book. 1st edn. Chichester,

UK: Springer - Praxis.

Yun, X. and Yamamoto, Y. (1992) On feedback linearization of mobile robots,

Technical Reports (CIS). Available at:

http://repository.upenn.edu/cgi/viewcontent.cgi?article=1524&context=cis_rep

orts.

Yun, X. and Yamamoto, Y. (1993) ‘Internal dynamics of a wheeled mobile robot’,

in Proceedings of 1993 IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS ’93). IEEE, pp. 1288–1294. doi: 10.1109/IROS.1993.583753.

Zhou, W., Wang, H., Yu, D. and Sun, F. (2017) ‘Error Analysis and Modification of

Inverse Simulation for Manually Controlled Rendezvous and Docking’, Journal of

Aerospace Engineering, 30(1), p. 04016072. doi: 10.1061/(ASCE)AS.1943-

5525.0000662.

177

Appendix A: Rover Specifications

Quantity Symbol Value

Mass m 2.148 kg

Wheel Radius rw 0.0635 m

Moment arm of wheel rm 0.1245 m

Effective area in x-axis Ax 0.0316 m2

Effective area in y-axis Ay 0.0448 m2

Drag Coefficient Cd 0.89

Moment of Inertia about x-axis Ix 0.0140 kgm2

Moment of Inertia about y-axis Iy 0.0252 kgm2

Moment of Inertia about z-axis Iz 0.0334 kgm2

Coefficient of friction in x σx 0.22

Coefficient of friction in y σy 1.00

Coefficient of friction in z σz 0.30

Coefficient of friction about x σp 0.35

Coefficient of friction about y σq 0.44

Coefficient of friction about z σr 0.18

Viscous torque b 0.008 Nm

Moment of inertia of motor Jm 0.005 kgm2

Torque constant Kt 0.35 NmA-1

EMF constant Ke 0.35 Vrad-1s-1

Inductance of circuit L 0.1 H

Resistance of circuit R 4 Ω

Gradient for efficiency curve α -0.133 Α-1

Offset for efficiency curve γ 0.6

Base friction coefficient on wheel ξ 0.002 Nmsrad-1

178

The validation results for the second experiment (drive the robot forward in a

straight line and then execute a left turn) are shown below (Worrall, 2010).

Linnear Accelerations

Linear Velocities

Angular Velocities

Linear Displacements

Angular Displacements

179

Appendix B: Inverse Simulation Differentiation

The algorithm steps for the Inverse Simulation Differentiating are the following.

1. At it the desired output ()itd
g , the state ()1it −x & input ()1it −u are known.

2. Iteration 1n = : obtain estimates for ()0 itx , ()
0 itu .

3. Iteration 1n  : ()1n it−x , ()
1 in

t
−

u from the previous iteration 1n − .

4. Calculate new estimates for 1F and 2F using ()1n it−x , ()
1 in

t
−

u , ()1it −x from

Eq. (4.1), Eq.(4.2) and Eq.(4.6).

5. Calculate the Jacobian J of 1F and 2F . To do this, assume that the values

of ()1n it−x , ()
1 in

t
−

u are perturbed by x and u respectively.

6. Factorise the Jacobian J to obtain
1−

J and use Eq.(4.7) to find the new

estimates ()n itx , ()in
tu .

7. Use the new estimates ()n itx , ()in
tu to calculate the new values of 1F and

2F from Eq.(4.6).

8. Check if the values of 1F and 2F are close enough to zero given a defined

tolerance.

9. If NO, then go to step 3 and continue to iteration 1n + .

10. If YES, then the current estimates ()n itx , ()in
tu are the values necessary

to achieve the desired output ()itd
g . Set () ()i n it t=x x , () ()i n it t=u u ,

() () ()(),i i it t t=y g x u and move to 1it + .

180

Appendix C: Inverse Simulation Integration

The algorithm steps for the Inverse Simulation Integration are the following.

1. At it the desired output ()itd
g , the state ()1it −x & input ()2it −u are known

2. Iteration 1n = : obtain estimates for ()0 1it −x , ()0 1it −u , ()0 ity from Eq.(4.8).

3. Iteration 1n  : obtain control input ()1 1n it− −u and output ()1n it−y from the

previous iteration 1n − .

4. Calculate the error function ef from Eq.(4.10) using ()1n it−y .

5. Calculate the Jacobian eJ of the error function ef by perturbing ()1 1n it− −u

and then applying it to the system state and output, Eq.(4.1), Eq.(4.8) to

get the perturbed system output.

6. Calculate the new control input estimate ()1n it −u using Eq.(4.11) and the

inverted Jacobian 1

e

−
J .

7. Calculate the new state ()1n it −x & new output ()1n it −y , Eq.(4.1), Eq.(4.8).

8. Calculate the absolute difference between the new output ()1n it −y and the

desired output ()itd
g and check if the difference is within a certain

tolerance.

9. If NO, then go to step 3 and continue to iteration 1n + .

10. If YES, then the current control estimate ()1n it −u is what will drive the

output to the desired ()itd
g . Set () ()1 1i n it t− −=u u , () ()1 1i n it t− −=x x ,

() ()1 1i n it t− −=y y and move to 1it + .

181

Appendix D: MSD System & Inverse Simulation
Parameters

Quantity Symbol Value

Mass m 1 kg

Spring constant k 10 Nm-1

Damping coefficient c 4 Ns-1m

Damping ratio ζ 0.63

Natural frequency ω0 3.16 s-1

Control input u N

Matrix Α eigenvalues λ1,2 -2 ± 2.45i

Total simulation time T 20 s

Time step dt 0.001 s

Convergence tolerance tol 10-6 m

Maximum iterations ηmax 25

Position perturbation
(Differentiation)

δx 10-5 m

Velocity perturbation
(Differentiation)

δx' 10-4 m

Control perturbation
(Differentiation)

δu 10-3 N

Minimum control perturbation
(Integration)

pertu 10-4 N

Minimum output perturbation
(Integration)

perty 10-5 N

PID Gain Kp 500

PID Gain KD 50

PID Gain KI 300

182

Appendix E: QC System & Inverse Simulation
Parameters

Quantity Symbol Value

Sprung mass msq 250 kg

Sprung mass position x1 m

Sprung mass velocity x2 = x1’ ms-1

Unsprung mass mus 30 kg

Unsprung mass position x3 m

Unsprung mass velocity x4 = x3’ ms-1

Spring stiffness ks 2000 Nm-1

Damping coefficient bs 1000 Nsm-1

Tyre Stiffness kt 200000 Nm-1

Road disturbance zr m

Actuator force Fs N

Matrix A eigenvalues λ1,2

λ3,4

-16.9950 ± 83.289i

-1.6716 ± 8.427i

Total simulation time T 10 s

Time step dt 0.001 s

Maximum iterations ηmax 50

Minimum control perturbation pertu 10-4 N

Minimum output perturbation (Active QC) perty 10-8 m

Convergence tolerance (Active QC) tol 10-5 m

PID Gain KP 7000

PID Gain KD 1000

PID Gain KI 10000

LQR control penalty R 0.001

LQR variation for matrix Q var 20000

Convergence tolerance (Passive QC) tol 10-4 m

Minimum output perturbation (Passive QC) perty 10-7 m

183

Appendix F: Rover Inverse Simulation Results

Forward Drive

Drive:1m
Rhombus

Drive: 11.31m
Valley

Drive: 13.44m

Errors Differentiation
Integrati

on
Differentiation

Integrati
on

Differentiation
Integrati

on

 []
eXe m 8.40 10-4 8.76 10-7 1.24 10-2 1.24 10-2 2.19 10-2 2.13 10-2

 []
eYe m 9.06 10-6 5.91 10-7 2.76 10-2 2.79 10-2 4.11 10-2 4.05 10-2

 []e rad 1.09 10-5 1.19 10-6 3.31 10-5 1.68 10-5 1.47 10-4 2.00 10-5

()max u

m
e

s

 
 
 

 1.45 10-5 0 6.11 10-5 0 6.25 10-5 0

 u

m
e

s

 
 
 

 4.43 10-6 0 7.98 10-6 0 8.95 10-6 0

ue 3.00 10-6 0 7.36 10-6 0 8.43 10-6 0

()max v

m
e

s

 
 
 

 0 0 6.08 10-6 6.64 10-6 9.56 10-6 8.56 10-6

 v

m
e

s

 
 
 

 0 0 1.07 10-6 1.62 10-6 1.50 10-6 1.54 10-6

ve 0 0 1.46 10-6 1.54 10-6 1.98 10-6 2.06·10-6

()max r

rad
e

s

 
 
 

 2.78 10-5 0 7.23 10-5 0 7.72 10-5 0

 r

rad
e

s

 
 
 

 3.39 10-6 0 4.96 10-6 0 5.21 10-6 0

re 3.54 10-6 0 4.65 10-6 0 5.00 10-6 0

  rt s 3.42 3.10 33.41 43.32 50.68 70.36

184

Forward 1m Results: For Differentiation, the final error is 8.40 10-4 m on the global

eX axis, 8.76 10-4 m on the eY axis. For Integration, the final error is 8.76 10-4 m on

the eX axis and 5.91 10-4 m on the eY axis.

Trajectory Forward 1m (Differentiation)

Trajectory Forward 1m (Integration)

Control Input Forward 1m (Differentiation)

Control Input Forward 1m (Integration)

185

Rhombus: The rover starts from the origin (0,0) and moves clockwise along the

trajectory. For Differentiation, the final error is 1.24 10-2 m on the global eX axis

and 2.76 10-2 m on the eY axis. For Integration, the final error is 1.23 10-2 m on the

eX axis and 2.79 10-2 m on the eY axis. The spikes in the control input occur at the

points where the rover executes a sharp turn. Both algorithms produce good

results in the case of a closed trajectory with sharp 45 deg turns.

Trajectory Rhombus (Differentiation)

Trajectory Rhombus (Integration)

Control Input Rhombus (Differentiation)

Control Input Rhombus (Integration)

186

Valley: For Differentiation, the final error is 2.19 10-2 m on the global eX axis and

4.1 10-2 m on the eY axis. For Integration, the final error is 2.13 10-2 m on the eX

axis and 4.05 10-2 m on the eY axis. Again, the spikes in the control input occur at

the points where the rover executes a sharp turn.

Trajectory Valley (Differentiation)

Trajectory Valley (Integration)

Control Input Valley (Differentiation)

Control Input Valley (Integration)

187

Appendix G: Solution of a General Linear System,
Matrix Factorisation Methods and MATLAB
implementation

The Differentiation method results in Eq.(4.7), which is a system of ()m+k

algebraic equations. This solution requires some form of factorisation for the

Jacobian J of size () ()m+p x m+k , where there are m states, k control input

variables and p outputs. Similar to the Differentiation algorithm, Integration

results in a system of k algebraic equations, Eq.(4.11). The dimension of the

Jacobian Je is pxk , where k are the control input variables and p the outputs.

The general form of a linear system to be solved is , : , : 1, : 1nxm mx nx=Ax b A x b

and is either consistent (has at least one solution) or inconsistent (has no solution).

To find if it is consistent, the rank of the augmented matrix A b must be the same

as the rank of A: () ()rank rank=A A b , while always () ()min ,rank n mA (Strang,

2009). The system has a unique solution if, additionally, the rank of matrix A is

equal to the number of unknowns (m) or equivalently A has full column rank

(Strang, 2009). Otherwise, there are infinite solutions and the free parameters

are equal to ()m rank− A (Strang, 2009):

Therefore, a system with n<m is underdetermined and can never have a unique

solution; even if it has full column rank it will be n, so always less than m. An

underdetermined system can have either zero or infinite solutions. A system with

n>m is an overdetermined system. If it has full column rank of m there is a unique

solution, though in practical problems this is rare and there is no solution or

infinite solutions (Strang, 2009).

It often happens that the linear system has no full column rank or even no solution

(Higham, 2002; Strang, 2009). In the case of infinite solutions, there is some part

of x that can be defined but there are still free parameters. When solving

numerically and since all measurements are never perfect, an equation that

cannot be solved is reached and the algorithm stops (Higham, 2002; Strang, 2009).

This means that the residual error =e Ax - b is not zero and an exact solution x

cannot be found.

188

To overcome all these issues and because for practical problems, we do need a

solution; even in the case of an inconsistent system, the best available solution is

accepted. This is a least-squares solution and is defined as finding a solution *x

so that the residual error e is minimised: *min Ax - b (Higham, 2002; Strang,

2009). The least-squares solution *x is also the preferred type of solution in the

case of infinite solutions, which is usually the case for overdetermined systems

(Strang, 2009). The next step is to find the inverse of A (in the ideal case of a full

rank, square system) or more usually a suitable factorisation for A that will then

provide *A and thus solve for *x (Strang, 2009) so that * *=x A b .

A factorisation is when the original matrix A becomes the product of two or more

special matrices, which makes evaluating *A and solving for *x relatively easier

(Strang, 2009). A matrix A does not necessarily have only one unique factorisation

but it does have a unique least square solution (Strang, 2009). For example, a

square, full rank matrix has the inverse matrix and can also be factorised using

other methods, but all result in the same unique solution.

Sometimes, matrix A is not square, but it does have full column (row) rank. Then,

there is a ready formula for *A , which is the left (right) inverse of A. For practical

problems, matrix A usually does not have full column (row) rank and a more

general factorisation is performed (Higham, 2002; Strang, 2009; Davis, 2013).

The factorisation methods that are most often used and are available in

mathematical software (such as MATLAB, Mathematica, LAPACK) are presented

next, along with a discussion on their numerical stability and their MATLAB

implementation.

Choosing the best factorisation method, suitable for the type of matrix A and

based on its dimension and rank, to provide a computationally efficient least-

squares solution is as much an art as is a science and is highly specific to the

problem at hand (Davis, 2013). Moreover, the use of the commonly available

formulas in linear algebra textbooks, such as those for the left (right) inverse

(Strang, 2009), is strongly discouraged for numerical computations (Higham, 2002;

Davis, 2013; Foster et al., 2013). For example, calculating the inverse matrix using

the standard formula is not only more computationally expensive, but also much

189

less stable and prone to numerical errors (Higham, 2002; Davis, 2013).

Furthermore, estimating the rank of a non-square matrix in numerical

computations is not always straightforward and can be computationally expensive

(Strang, 2009; Davis, 2013).

For all these reasons, the decision was made to use the specialised software from

(Davis, 2013) that selects the best available factorisation method and then always

provides the least square solution at each iteration n at every time point it .

There is also another issue to consider: how “good” is the least square solution.

Generally, any matrix A of size n m has () ()min ,rank r n m= A . A rank of r

means that there are r number of linearly independent rows and columns of A, the

rest can be omitted (Strang, 2009). The closer the rank of matrix A is to ()min ,n m

the fewer equations need to be discarded and ideally, one would have r n m= = .

Intuitively then, the closer r is to n (or m), then the better formulated is the

system being solved in terms of its equations, unknowns, and constraints. For the

specific problem of Inverse Simulation, the quality of the solution is determined

by how well the calculated control input from Eq.(4.7) or Eq.(4.11) achieves the

desired output when it is applied in the forward system.

The factorisation methods that are most often used and are available in

mathematical software (such as MATLAB, Mathematica, LAPACK) are the following

(Higham, 2002; Strang, 2009; Davis, 2013).

LU (lower – upper) decomposition is based on Gaussian elimination and factors a

matrix as the product of a lower triangular matrix L and an upper triangular matrix

U, A=LU. The variation used in numerical computing is decomposing matrix A

into an upper triangular matrix U, a lower triangular matrix L, and a permutation

matrix P, PA = LU . LU and its variations are used for square and non-square

matrices.

190

If matrix A is symmetric and positive definite11, then the Cholesky decomposition

is faster than the LU and T=A LL . Another option related to the Cholesky

decomposition is LDLT, which decomposes matrix A as T=A LDL , where D is a

diagonal matrix.

A non-square matrix A with n>m and full column rank is best factorised using the

QR method, =A QR , where Q is an orthogonal matrix and R is an upper triangular

matrix.

If matrix A is rank deficient, () ()min ,rank r n m= A , then the COD (complete

orthogonal decomposition) can be used and T=A URV , where R is and an upper

triangular matrix, U and V have orthonormal columns.

Any matrix A can be factorised using SVD (singular value decomposition) and

T

1 2=A Q ΣQ , where Σ is diagonal and Q1 and Q2 are orthogonal. The SVD method

is more time consuming than other alternative factorisations, but it is also the

most reliable, especially for rank deficient problems (Strang, 2009; Davis, 2013).

To start with, for square systems MATLAB has the inv command for calculating the

inverse of a square matrix and the backslash operator (\) for solving more general

linear systems. Another option for non-square systems is the pinv command that

calculates the pseudoinverse that acts as a partial replacement for the matrix

inverse and provides a least-squares solution. The \ operator is always preferred

instead of the inv command because the backslash calculation is quicker and has a

smaller residual error by several orders of magnitude than inv. The backslash \

operator selects between four factorisations: LU, Cholesky, LDLT, or QR. If one

method fails, then it attempts to solve the system using another of these four

factorisations and for non-square systems, it always uses the QR factorisation. The

backslash operator is a powerful function but cannot guarantee a least-squares

solution for underdetermined systems and rank deficient systems and its

factorisation cannot be reused (Davis, 2013). Using the individual MATLAB

functions for LU, Cholesky, LDLT, QR, COD, or SVD factorisation is a difficult task

11 A is positive definite if all its eigenvalues have a positive real part (Strang, 2009). From linear

stability theory, this is an unstable system and thus undesirable in control problems (Ogata,
2008).

191

and between different versions of MATLAB, there also may be subtle differences

in their implementation. The decomposition command in MATLAB creates a

reusable matrix decomposition but still doesn’t provide directly a least-squares

solution.

The factorisation methods LU, Cholesky, LDLT, QR, COD and SVD are backwards

stable and thus are considered numerically stable, using the definition below

(Higham, 2002).

A method for computing an approximate solution ŷ to the problem ()y f x= is

backwards stable if for a small x , ()ŷ f x x= +  (Higham, 2002). The value of

x is the backwards error and its scale depends on the problem being solved

(Higham, 2002). If a method is backwards stable, then it is also numerically stable

in the sense that ()ŷ y f x x+  = +  for small x and y (Higham, 2002). In this

way, a numerically stable solution means that “the computed value of ŷ scarcely

differs from the value ŷ y+ that would have been produced by an input x̂ x+

that is scarcely different from the actual input x. In other words, ŷ is almost the

right answer for almost the right data” (Higham, 2002).

Another issue to consider is how sensitive the solution x or +x is to small changes

in matrix A or b. For a square matrix A , this is defined by the condition number

1c −= A A , where is the matrix norm (Strang, 2009):

Ideally, small changes A or b should result in small changes in x , which is why

it is desirable that the condition number should be small. When solving the linear

system =Ax b , errors enter in two ways.

They begin with an error A or b which is then carried over to the solution. The

error b depends on the measurements of b and on the computer round off

error (Higham, 2002; Strang, 2009). In addition to these two errors, the error A

also depends on the method by which A is factorised to solve the system (Strang,

2009). Therefore, the factorisation method has an important role in determining

the overall sensitivity to errors in the solution, that does not depend on the

condition number of the problem. The factorisation methods in this Appendix are

192

numerically stable as implemented in MATLAB, and thus have a positive effect in

the solution – which is what was expected from a least square solution.

Finally, the condition number and the backwards error can also provide an upper

bound for the forward error, which is defined as the difference between the exact

solution and the computed solution (Higham, 2002). As a rule of thumb it is that

() () forward error c backward error  (Higham, 2002). Estimating the backward

error and the condition number is not trivial and the forward error can also be

estimated using perturbation theory (Higham, 2002).

The main takeaway from this analysis is that even if the condition number is high,

using an appropriate factorisation method provides a least-squares solution that

minimises the approximation error and we can be reasonably certain that the

rounding errors (such as those in A or b) do not adversely affect the solution.

This, combined with reducing data uncertainty in measurements and a well-

formulated problem in terms of its physical qualities, all ensure a good solution.

193

Appendix H: Error and convergence tolerance

In numerical computations, there are three main sources of errors: truncation,

rounding, and data uncertainty (Higham, 2002). Truncation errors result from the

use of an approximation for a desired quantity (e.g. Taylor series or more

generally an iterative solution of equations) (Higham, 2002). Rounding errors

occur due to the way computers represent numerical values (Higham, 2002). Data

uncertainty arises from errors in measurement and estimation (Higham, 2002).

The assumption here is that the data have been properly acquired and processed.

Rounding errors are generally unavoidable due to the finite precision arithmetic

used in computers, available memory, and computational time constraints.

Therefore, the truncation errors are the errors of interest in this section.

In general, for the desired dx and its estimate x (scalar or vector), the error can

be defined as the absolute a dE x x= − or the relative , 0a
r d

d

E
E x

x
=  .

The relative error represents the qualitative side, how accurate is the estimate x

relative to the value of the desired dx and is a measure of the number of

significant digits that are correct (Higham, 2002).

The absolute error measures the total error between x and dx and it represents

the quantitative side of the error. The absolute error depends on the magnitude

of dx and frames the result within the interval or tolerance tol :

 ,a d dE tol x x tol x tol →  − + . It depends on the scale of x and dx and it should

always be stated what it is an error of. If the desired value is not known, which is

usually the case, then the error is calculated using the change in the approximate

value from one iteration to the next: 1a n nE x x+= − .

Errors such as ,a aE E arise for example when a derivative is approximated using a

Taylor expansion, when solving a least-squares problem or when estimating how

close to zero the error is for the Newton-Raphson algorithm.

	Thesis cover sheet
	2021FlessaPhD
	Author’s Declaration
	Acknowledgement
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Chapter 1 Introduction
	1.1 Motivation
	1.2 Thesis Aims
	1.3 Thesis Outline
	1.4 Contributions

	Chapter 2 Review of Rover Systems and Control Methodologies
	2.1 Rover Taxonomy
	2.1.1 Mobility Type
	2.1.2 Steering Configuration
	2.1.3 Suspension
	2.1.4 Chassis

	2.2 Analysis of Rover Design
	2.2.1 Flown Exploration Rovers
	2.2.2 Selected Experimental Designs
	2.2.3 Review Summary and Baseline Design

	2.3 Overview of Guidance, Navigation and Control for wheeled vehicles
	2.3.1 Control for Mobile Robots with a Differential Drive
	2.3.2 GNC for Planetary Rovers
	2.3.3 Trajectory Generation
	2.3.4 Review Summary

	Chapter 3 Review of Inverse Simulation
	3.1 Review of Inverse Simulation Applications
	3.2 Review of Application Considerations of Inverse Simulation Algorithms
	3.3 Summary

	Chapter 4 Analysis of Inverse Simulation with Application Examples
	4.1 Analysis of Inverse Simulation
	4.1.1 General Algorithm for Differentiation and Integration
	4.1.1.1 Differentiation
	4.1.1.2 Integration
	4.1.1.3 Numerical Differentiation and Integration for Inverse Simulation

	4.1.2 Inverse Simulation and Feedback Linearisation
	4.1.3 Inverse Simulation for a Linear Time Invariant System

	4.2 Application example: Mass Spring Damper System
	4.2.1 PID Controller Response
	4.2.2 MSD Linear Inverse Simulation
	4.2.3 MSD Integration Inverse Simulation

	4.3 Application Example: Active Quarter Car Model
	4.3.1 Desired Output
	4.3.2 QCA Linear Inverse Simulation
	4.3.3 QCA Integration Inverse Simulation

	4.4 Application Example: Road Disturbance Identification
	4.5 Inverse Simulation Tuning Recommendations
	4.6 Summary of Application Results

	Chapter 5 Rover Mathematical Model and Trajectory Generation
	5.1 Rover Model Overview
	5.1.1 Model Variables and Frame of Reference
	5.1.2 Dynamics
	5.1.2.1 Forces & Moments
	5.1.2.2 Rigid Body Dynamics
	5.1.2.3 Damping & Gravitational Forces

	5.1.3 Kinematics
	5.1.4 Motor Dynamics

	5.2 Trajectory generation for the four-wheeled robot

	Chapter 6 Application of Inverse Simulation to the Rover I: Non-linear Model
	6.1 Differentiation
	6.2 Integration
	6.3 Test Trajectories
	6.4 Results for Stop and Turn Trajectories
	6.4.1 Trajectory Results Figures
	6.4.1.1 Left Right
	6.4.1.2 Arc
	6.4.1.3 Long Arc

	6.4.2 Tabulated Trajectory Results

	6.5 Summary of Results

	Chapter 7 Application of Inverse Simulation to the Rover II: Non-Linear Model with Motor Dynamics
	7.1 Differentiation
	7.2 Integration
	7.3 Results

	Chapter 8 Inverse Simulation Algorithm Tuning for Improved Performance
	8.1 Calculation of the Jacobian: Application to the Rover
	8.2 Influence of parameters on results: Application to the Rover
	8.2.1 Effect of time step dt
	8.2.2 Effect of convergence tolerance
	8.2.3 Effect of sway velocity

	8.3 Summary of Results: Inverse Simulation Tuning: Recommendations for the rover

	Chapter 9 Conclusions and Future Work
	9.1 Conclusions
	9.2 Future Work
	9.2.1 Combination with another control method
	9.2.2 Existence of Solution and Initial Parameters
	9.2.3 Other Considerations

	List of References
	Appendix A: Rover Specifications
	Appendix B: Inverse Simulation Differentiation
	Appendix C: Inverse Simulation Integration
	Appendix D: MSD System & Inverse Simulation Parameters
	Appendix E: QC System & Inverse Simulation Parameters
	Appendix F: Rover Inverse Simulation Results
	Appendix G: Solution of a General Linear System, Matrix Factorisation Methods and MATLAB implementation
	Appendix H: Error and convergence tolerance

