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I will stay behind, to gaze at the Sun. The Sun is a wondrous body.
Like a magnificent father! If only I could be so grossly incandescent!

— Solaire of Astora
Dark Souls
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Abstract

The study of the lower flaring atmosphere of the Sun is one facet of understanding
the complex physics involved in solar flares and their effect on space weather and
the Earth. Despite a rich history of investigation into the study of the lower flaring
atmosphere, there are still many unanswered questions in regards to the mecha-
nism of energy deposition and the response to such energy being injected into the
atmosphere. This thesis aims to provide tools for future researchers to rigorously
explore these problems. In particular, this thesis looks at how machine learning –
with a particular focus on deep learning – can improve data storage and analysis
pipelines as well as uncover new results from data that were not feasibly possible
before.

In Chap. 1, the standard model of a solar flare is introduced and its extension
to three dimensions explained. This allows for the definition of a flare ribbon – the
brightest points in the lower solar atmosphere resulting from direct heating from a
flare – which is a key observational feature whose origin is explored in later chapters.
A brief history of study on flare ribbons is then given with a particular focus on the
asymmetries in spectral lines that show clear flare ribbons. These asymmetries link
directly to the velocity field in the flaring atmosphere as a static atmosphere would
yield symmetric profiles. This gives a direct diagnostic of the motion happening in
the atmosphere as it is heated and the ribbons evolve.

In Chap. 2, the field of deep learning is introduced from its inception to the cur-
rent models used today. This chapter covers how to build and train deep neural
networks and some best practices when implementing these tools.

The telescopes and detectors used to obtain the data analysed in Chaps. 4 - 6 are
described in Chap. 3. In this chapter, the inner workings of the Swedish 1-m Solar
Telescope’s CRisp Imaging SpectroPolarimeter (SST/CRISP), Hinode’s Solar Optical
Telescope (Hinode/SOT) and Solar Dynamics Observatory’s Atmospheric Imaging
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Assembly (SDO/AIA) is described.
Chap. 4 introduces a deep convolutional neural network (CNN) trained on H𝛼

images from Hinode/SOT for solar image classification. This is trained to distin-
guish between five classes of solar features prominent in H𝛼: filaments, flare rib-
bons, prominences, sunspots and the absence of any of the other four features. The
final model has a validation accuracy of 99.2% misclassifying only one image in the
validation dataset. The trained CNN is then tested with adversarial examples from
SDO/AIA UV continua and EUV spectral line images where the features look per-
ceptually different but still identifiable to the human eye. This demonstrates that
the network cannot identify these features in different wavelengths well and to ex-
tend this network to non-visible wavelengths, the training set must be expanded
to include such wavelengths. The trained CNN in this chapter is used further in
Chap. 5 for transfer learning – the process of using a trained deep learning model
to influence the training of another, related deep learning model.

In Chap. 5, a method based on deep learning for correcting the atmospheric ef-
fects in optical solar flare observations is presented. This takes the form of a fully
convolutional autoencoder trained on data from SST/CRISP imbued with synthetic
seeing described by the model developed in the first sections of the chapter. The
trained model works well on the validation dataset showing accurate reconstruc-
tion of both spatial and spectral elements of the data. SST/CRISP data with real
atmospheric seeing is then corrected by the trained model. The sources of error
in this reconstruction are discussed with a coarse error estimate on the recovered
intensity values used.

Then in Chap. 6 a novel deep learning method for estimating the parameters
of the flaring atmosphere from observations is presented – an Invertible Neural
Network (INN). The INN is trained on synthetic flare data produced by the one di-
mensional radiation hydrodynamics code RADYN with near-perfect restoration of
the atmospheric paramters during validation. This is then applied to a single pixel
from a CRISP image to show the power of this method in disentangling the ambigu-
ity in the velocity field responsible for observed asymmetry in the spectrum. This
method is then applied to flare ribbons as a whole – which are selected through a
combination of a Gaussian Mixture Model (GMM) and Density-Based Spatial Clus-
tering of Applications with Noise (DBSCAN) – to determine the specific motions of
the flaring velocity field responsible for the observed spectral line asymmetries.
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1 | The Sun and its Flares

As viewed from the Earth, the Sun is the brightest star in the sky. Sporadically, the
Sun expels up to 10% of its power from localised regions due to restructuring of its
local magnetic field. This is known as a solar flare.

Solar flares are immense, explosive releases of energy occurring in the solar at-
mosphere producing radiation across the electromagnetic spectrum. As well as ra-
diation, flares can also drive large quantities of material from the solar atmosphere
into interplanetary space – this phenomenon is known as a coronal mass ejection
(CME). Earthbound consequences of solar flares can have beautiful and catastrophic
effects. The aurora polaris observed at high magnitudes of latitude on the Earth
are formed via incident particles from the solar wind injecting their energy into the
Earth’s atmosphere. This injection of energy causes the emission of light of the auro-
rae. During a flare, if there is an associated CME, the interaction between the mag-
netic clouds expelled from the solar atmosphere and the Earth’s magnetosphere can
greatly modify the aurorae observed, both in colour and location (if directed Earth-
wards). One such example comes from the mid-19th century where on the night of
1st September 1859 where the aurorae extended further towards the equator than
at any other time in observed history (Tsurutani et al., 2003). The aurora borealis
in the northern hemisphere was observed as far south as Honolulu, Hawaii with
the aurora australis observed as far north as Santiago, Chile1. The typical vibrant
green light of the aurorae was turned a dark crimson on this night. This wondrous
display of light was accompanied by electromagnetic disturbances all over the world.
The accounts examined in Shea and Smart (2006) speak of sparking telegraph wires

1There have been reports of people in the Rocky Mountains, USA, being able to read their news-
paper using only the light from the aurorae (Green et al., 2006).
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1.1. THE SUN’S ATMOSPHERE

setting nearby materials alight and telegraph systems’ operators receiving electric
shocks from their equipment. This event came to be known as the Carrington Event
for a much tamer reason.

Approximately, 18 hours before the bright lights and explosive damages, Richard
Carrington was observing a sunspot region before a large brightening lasting around
five minutes happened above the group of sunspots (Carrington, 1859). This was in
fact the first published observation of a solar flare.

The interaction between the Sun and the Earth and the effects that large solar
events such as the Carrington event can have on modern satellite and Earth-based
systems is a driving force behind solar flare research. This thesis focuses on the
intersection between machine learning and solar flare research, particularly, lever-
aging machine learning methods to streamline flare data analysis and provide new
insights into the physics of solar flares. Chap. 2 provides an introduction to deep
learning – the field of machine learning involving the use of deep neural networks
– covering the construction, optimisation and utilisation of such methods. Chap. 3
introduces the optical spectral lines used in later chapters to analyse flares and the
instruments used to observe these lines. Chap. 4 presents a method using a deep
convolutional neural network for identifying features in images of the Sun and how
this can be used in data pipelines and to help train other deep learning models.
Chap. 5 introduces a new method for correcting for atmospheric effects in solar flare
observations using a neural network to learn how to perform these corrections by
training it on examples with originally good seeing marred by a model of the seeing
based on the statistics of turbulent media. Chap. 6 presents an application of an
invertible neural network to learn the inverse problem between spectral line obser-
vations and atmospheric parameters from solar flare simulations. This is then used
to explore the relationship between the asymmetry of the spectral lines and the flare
velocity field. Chap. 7 recaps the research in the thesis and outlines next steps to be
taken to further utilise machine learning in flare observations. The next section in-
troduces the different layers of the solar atmosphere and what physics makes them
distinct.

1.1 The Sun’s Atmosphere
The solar atmosphere is considered to have three distinct layers: the photosphere,
chromosphere and corona. Typically, the photosphere is defined as the region of
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1.2. SOLAR FLARES

optical depth unity at 𝜆 = 5000Å and is referred to as the “surface” of the Sun.
The photosphere is characterised by visible continuum with some strong absorption
lines due to atomic/ionic species absorbing the emergent flux from below. The chro-
mosphere is the region approximately 500km above the photosphere and is about
1000km thick before transitioning into the corona. The chromosphere is the least
understood layer of the atmosphere and the focus of much modern solar physics
research. The temperature profile in the solar atmosphere gives an indication of
the state of each of the layers. The photosphere has a quasi-constant temperature
around 5771K which decreases in the lower chromosphere to 4000K (the tempera-
ture minimum region) before increasing rapidly to 20000K (Vernazza et al., 1981).
Semi-empirical models show that the mass density in the photosphere is of the or-
der 10−7 g cm−3 which falls to 10−9 g cm−3 at the base of the chromosphere (pp. 155,
289; Foukal, 2004). Above this is the corona where there is an almost discontin-
uous temperature gradient, over a plasma width of ∼50 km, and the temperature
increases to a few million Kelvin and the plasma becomes very tenuous compared
to the photosphere (𝜌 ≈ 10−11 g cm−3).

1.2 Solar Flares
Solar flares are a phenomenon that affect all layers in the solar atmosphere. They
are highly energetic (up to ∼ 1032 ergs) brightenings of the solar atmosphere across
all wavelengths, occurring in and around active regions. Magnetic reconnection is
hypothesised to take place at a region of twisted magnetic field in the corona which
is thought to be the cause of a flare. Magnetic reconnection is the process where
the direction of magnetic flux is discontinuously changed in a short period of time
which causes the magnetic field lines to change their configuration into a lower-
energy topology. The magnetic energy previously stored by the pre-reconnection
field is then converted to heating of the chromosphere, particle acceleration and
(sometimes) bulk plasma motion which is often referred to as a coronal mass ejection
(CME; Fletcher et al., 2011).

An active region is an area from the photosphere to the corona accounting for
all detectable radiation brought about by an extension of the magnetic field. This is
caused by the emergence of twisted magnetic flux with strengths on the order of kilo-
Gauss into the corona from below the photosphere (van Driel-Gesztelyi and Green,
2015). These emergent fields are driven by currents in the sub-photospheric plasma
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1.2. SOLAR FLARES

Figure 1.1: An example of an active region (NOAA AR12673) imaged in Fe i 𝜆6173Å (left
panel) by SDO/HMI highlighting the granular structure of the photosphere with an accom-
panying magnetogram (right panel) showing the emergent magnetic flux in this active re-
gion. Note that in the magnetogram, the darker and brighter areas correspond to opposite
magnetic polarities showing the complexity of the geometry of the field.

and the emergence is thought to come from the magnetic buoyancy instability which
drives the plasma upwards (Choudhuri, 1998). The plasma brings the twisted mag-
netic flux with it due to the plasma below the surface having a high magnetic
Reynolds number (i.e. the magnetic flux is frozen in to the plasma; Alfvén, 1942).
When a maximum energy threshold is exceeded that a field can store, it is explosively
released – i.e. a flare. An example of an active region (NOAA AR12673) imaged
by Solar Dynamics Observatory’s Helioseismic and Magnetic Imager (SDO/HMI) is
shown in Fig. 1.1. The left panel of Fig. 1.1 shows an image of the active region
taken in Fe i 𝜆6173Å and the right panel shows the magnetogram for the active re-
gion where the darker and brighter regions show opposite polarity magnetic fluxes.
This shows the complexity of the geometry of the magnetic field in this active region.

The following description of a solar flare is based on the two-dimensional stan-
dard flare model known as the CSHKP model named after the authors who orig-
inated the model (Carmichael, 1964; Sturrock, 1966; Hirayama, 1974; Kopp and
Pneuman, 1976) and its extensions into three dimensions. This is illustrated by the
cartoon in Fig. 1.2 from Holman (2012)2. The temporal evolution of an active re-

2This cartoon was found in the “Grand Archive of Flare and CME Cartoons” compiled by H. S. Hud-
son with redesigned website by N. Chrysaphi available at https://www.astro.gla.ac.uk/cartoons/
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1.2. SOLAR FLARES

Figure 1.2: Cartoon of the standard CSHKP flare model and its extension to three dimen-
sions from Holman (2012). Panel (a) shows a zoomed in view of the reconnection region
where the oppositely directed magnetic field lines are swept into the diffusion region by
the flows in the corona leading to the reconnection event and energy release. This panel
shows the pre-reconnected field lines (blue) and post-reconnected field lines (green). Panel
(b) shows the original 2D CSHKP model showing the reconnection in the corona with energy
travelling outwards and inwards producing Earth-bound SEPs and CMEs and Sun-bound
post-flare loops that have footpoints deep in the solar atmosphere. The magnetic flux rope
perpendicular to this 2D structure is the extension into three dimensions giving electrons ac-
celerated in the flare region the freedom to travel along this field producing gyrosynchrotron
and X-ray emission. Panel (c) shows the full extension to 3D with multiple CSHKP struc-
tures connected by a flux rope undergoing reconnection with the footpoints of the post-flare
loops forming elongated structures in the lower solar atmosphere: flare ribbons.

5

https://www.astro.gla.ac.uk/cartoons/index.html
https://www.astro.gla.ac.uk/cartoons/index.html


1.2. SOLAR FLARES

gion/flare system typically has three stages: preflare evolution, the impulsive phase
and the gradual phase. Preflare evolution gives initial (albeit ambiguous) signs of
activity on the Sun at an active region that a flare might occur. These are small-scale
brightenings in ultraviolet (UV) to soft X-ray (SXR) wavelengths (4000-1Å which can
occur on the order of tens of minutes before the flare eruption. High resolution obser-
vations of these preflare precursors indicate that they happen close to the flare site
but not exactly where the flare occurs (Fárník et al., 1996). Non-thermal spectral
line broadening due to plasma turbulence has also been observed in these regions
up to the order of hours before the flare indicating turbulent flows near the active
region (Harra et al., 2001, 2009).

The impulsive phase is the first stage of energy release and lasts a very short
amount of time (of the order tens of seconds to tens of minutes). Many forms of
radiation across the electromagnetic spectrum are observed throughout the impul-
sive phase giving indications of the processes and interactions occurring through-
out. The bulk of the impulsive phase emission occurs in the chromosphere (Hudson,
1972) particularly at the footpoints (the base of the magnetic structure) and the
ribbons (approximately the chromospheric intersection with the separatrix surfaces
between the pre- and post-reconnected field). As the flare reconnection region is
thought to be in the corona and ribbons brighten nearly simultaneously, the energy
which causes the chromospheric emission must be transported extremely quickly.
This phenomenon is not well understood and is arguably the biggest open question
in flare physics. Kurokawa et al. (1986) showed that the heat conduction front in a
solar flare moves too slowly to account for the nearly instantaneous heating of the
lower solar atmosphere ruling out conduction as a possible heating mechanism of
the lower atmosphere during the impulsive phase. The hypothesised explanation
for the accelerated particles that cause heating in the chromosphere is beams of
non-thermal electrons being accelerated into the solar atmosphere and the colli-
sional transfer of their energy to the particles in the chromosphere causes heating
(Brown, 1971). However, there is also a hypothesis of the energy being carried down
the reconnected field and deposited by Alfvénic waves (Fletcher and Hudson, 2008;
Hudson and Fletcher, 2009). A combination of these two energy transfer modes is
also possible. This can be investigated by studying the type of emission observed
during the impulsive phase.

Heating of the chromosphere during the flare leads to an increase in optical,

index.html.
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1.2. SOLAR FLARES

near-infrared (NIR) and ultraviolet/extreme ultraviolet (UV/EUV) emissions. This
accounts for a large portion of the released energy from a flare and causes emission
from lines that are observed in absorption in the non-flaring Sun, such as hydro-
gen alpha (H𝛼) which is the Balmer series transition from level 3 to level 2, and
singly-ionised calcium (Ca ii) which has several prominent lines from UV to NIR.
H𝛼 and Ca ii 𝜆8542 are two of the most prominent lines in a flaring chromosphere
and are therefore vital to chromospheric diagnostics (see Sec. 1.2.1 for more details).
Deciphering these relationships is extremely important in understanding the chro-
mospheric response to a flare. As well as optical lines, optical continua are produced
by free-bound interactions (between electrons and ions where there is electron cap-
ture).

Acceleration of nuclei to high energies (≥10 MeV) leads to nuclear recombination
emitting gamma rays most notably from neutron capture (2.2 MeV) and electron-
positron annihilation (511 keV) along with a continuum resulting from free-free in-
teractions (between electrons and ions where there is no electron capture; Lingen-
felter and Ramaty, 1967; Hua and Lingenfelter, 1987). Free-free interactions also
lead to the emission of hard X-rays (HXR, 𝐸 > 10 keV) at the footpoints. These HXRs
are also observed at the loop-top.

Energy from the flaring region also accelerates particles into interplanetary
space – these are known as solar energetic particles (SEPs). SEP electrons emit
radio waves from mode conversion of Langmuir waves (Emslie and Smith, 1984).
Electrons trapped by coronal magnetic fields emit SXR continuum (𝐸 ≤ 10 keV) due
to thermal brehmsstrahlung and high-energy radio waves due to their gyrational
motion about the magnetic field. The flux of these SXRs is how flares are classi-
fied from GOES (Geostationary Operational Environmental Satellite). The differ-
ent classes of flares is shown in Tab. 1. Each has a corresponding emission measure
which yields the amount of plasma emissivity along the line-of-sight (LOS) and is
given by the equation:

EM =

∫
𝑛2
𝑒 dV, (1.1)

where dV is the emitting volume of plasma and 𝑛𝑒 is the electron number density
of the plasma.

The gradual phase can last up to several hours depending on the magnitude of
the flare (Fletcher et al., 2011). This phase is indicated by its slowly-decaying SXR
intensity profile. Arcades of loops form filled with what is hypothesised to be plasma
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1.2. SOLAR FLARES

Table 1.1: GOES Classification System for Solar Flares.

GOES Class Flux [erg cm−2 s−1] SXR Emission Measure [cm−3]
X10 > 101 1051

X 10−1 < F < 100 1050

M 10−2 < F < 10−1 1049

C 10−3 < F < 10−2 1048

B 10−4 < F < 10−3 1047

A < 10−4 1046

from the chromosphere which must expand due to rapid heating in the impulsive
phase. This is known as chromospheric evaporation (Neupert, 1968; Fisher et al.,
1985; Graham and Cauzzi, 2015). This causes an increase in gas pressure in the
corona due to an increase in density and due to the upflowing plasma having flar-
ing temperatures (∼10–30 MK). Conservation of momentum requires there to be
a downflow in the chromosphere to balance the evaporative upflow. This is known
as chormospheric condensation (Ichimoto and Kurokawa, 1984; Wülser and Marti,
1987). As the coronal loops cool, the arcade begins to emit in lower temperature lines
such as H𝛼 and EUV. Once the loops cool to emitting H𝛼 they begin to drain under
gravity. This is known as coronal rain. These upflows into the corona are coupled to
downflows from the corona as these processes happen in overlapping time periods.

1.2.1 Observational Signatures of Optical Flare Ribbons
Flare ribbons are observed across the optical, ultraviolet and infrared parts of the
spectrum as bright elongated structures. Their formation during solar flares is di-
rectly linked to energy deposition in the lower atmosphere from electrons acceler-
ated from the reconnection region downwards (and potentially Aflvénic wave heat-
ing). As time progresses, ribbons have an apparent motion associated as they appear
to move in the solar atmosphere. This is not true motion of the ribbons themselves
but rather new parcels of the quieter lower solar atmosphere being excited by newly
reconnecting field lines while the old parcels return towards their quiescent state
or are excited even further to the point where the excitation is no longer observable
in the wavelength being examined. This is visualised in Fig. 1.3 where one can see
as time progresses that the brightest points in the flare ribbons at a given wave-
length are in different spatial locations due to the heating of different parts of the
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1.2. SOLAR FLARES

Figure 1.3: An example from the M1.1 SOL20140906T17:09 solar flare observed with
SST/CRISP shown at eight different times to highlight the motion of flare ribbons as new
parcels of the atmosphere are excited by reconnecting field lines. These images shown are
taken in the red wing of H𝛼 at Δ𝜆 = +0.8Å.

atmosphere3.
It is important to note that “true” ribbons are strictly defined as the emission di-

rectly caused by the heating of the lower atmosphere, not just any bright point that
appears in an image. This is where spectroscopy becomes invaluable in the study
of flare ribbons. The wings and the core of H𝛼 are formed at different heights in
the solar atmosphere with the wings forming in the upper photosphere/lower chro-
mosphere and the cores forming in the mid-upper chromosphere (Vernazza et al.,
1981). As such, images of the wings and core can be used as a method of detecting
the “true” ribbon sources. There is a lot of complex motion in the chromosphere due
to the fibril structure of the chromospheric plasma. As a result, when areas are
heated by flare energy deposition, energy transfer through the fibrils can lead to
bright points elsewhere in the chromosphere not directly heated by the flare. The
photosphere does not contain this fibril structure and thus the bright points in the
images of the line wing are considered the “true” ribbons – this will become im-
portant in Chap. 6 where the ribbon sources are isolated for analysis. An example
of this effect is shown in Fig. 1.4 where a comparison of the flare ribbons at three
different wavelengths in H𝛼 (blue wing, line core, red wing) are shown along with
the cotemporal observation from the SDO/AIA 1700Å UV image. This demonstrates
the discussion above where there are bright points in the line core of H𝛼 that do not

3Note, however, in this particular flare there is not much relative motion between the two ribbons,
which is often observed in solar flares such as the flare shown in Svestka (1976, pp. 40, 41). This
could be due to this being a shorter lived event compared to that in Svestka (1976) thus the ribbons
do not experience as much lateral motion.
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1.2. SOLAR FLARES

Figure 1.4: An example of the same flare as in Fig. 1.3 imaged at different wavelengths along
the H𝛼 spectrum (first three panels) and a comparison showing the ribbons in UV from
SDO/AIA 1700Å (right panel). All observations are imaged at ∼17:01 UTC. This demon-
strates that the bright sources in the wing of the H𝛼 spectrum are the “true” ribbon sources
as they match well with some source in the line core and the ribbons as shown in the AIA
image.

match up spatially with bright points in the H𝛼 line wings or the AIA 1700Å image.
Studying the spectra of flare ribbons can uncover the dynamics of the flaring

chromosphere and the energy source responsible. For instance, optical flare ribbon
spectra are typically very asymmetrical in that the ratio of the blue wing to the
red wing intensities differs from unity. This asymmetry is attributed to the flaring
velocity field as spectral lines such as H𝛼 and Ca ii 𝜆8542 would be symmetrical
around the line core if there was no bulk motion of the plasma (Canfield and Gun-
kler, 1984; Fang et al., 1993; Cheng et al., 2006). This has been studied in great
detail throughout the history of flare physics but a clear picture of ribbon dynam-
ics is still elusive. This is partially due to the definition of asymmetry. In some
literature, the asymmetry of a spectral line refers to ratio of the intensities of the
spectral line wings defined close (within 1-2Å) of the line core (Canfield and Gun-
kler, 1984; Kuridze et al., 2015, and Chap. 6 of this thesis) while others refer to the
asymmetry of the far wings of the spectral lines (O(10)Å away from the line core
Ichimoto and Kurokawa, 1984). The ambiguity in the definition of asymmetry leads
to discussion on different physics involved in the observations being analysed. The
second reason for the difficulty in understanding ribbon dynamics is that the asym-
metry itself (regardless of how it is defined) is ambiguous. Consider motion along
the line of sight affecting the symmetry of an observed spectral line. If there is an
excess of intensity on the blue side of the line, there can be either material emit-
ting the observed radiation moving along the line of sight towards the observer of
there could be material absorbing the observed radiation moving along the line of
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1.2. SOLAR FLARES

sight away from the observer. Similarly, for an intensity excess on the red side of
the line, there can be emitting material moving away from the observer along the
line of sight or absorbing material moving towards the observer along the line of
sight (Svestka, 1976; Ichimoto and Kurokawa, 1984; Heinzel et al., 1994). The dis-
ambiguation of the flare velocity field is important for understanding the dynamics
of the flaring chromosphere and the conditions that lead to the observations. For
example, Ichimoto and Kurokawa (1984) studied the enhancements of the far wings
(up to ±15 Å from line centre) of H𝛼 and determined that it was chromospheric con-
densation (the downwards motion of cooler flare material) responsible for the red
asymmetries in their data. They also made estimations of these condensation ve-
locities of ∼40-100km s−1. The data of Ichimoto and Kurokawa (1984) were taken
using a slit spectrograph mounted at the 60cm Domeless Solar Telescope at Hide
Observatory, University of Kyoto. They observed 30 flares in 1982 and analysed all
in their study. The spectrograph was operated in a “sit and stare” mode meaning
only a small area of each flare was observed. In these flares, only red asymmetries
were observed at the onset which was in stark contradiction to Svestka (1976, and
references therein) who reported on blue asymmetries being observed in the H𝛼

spectrum at these times. Moreover, it was not until Canfield et al. (1990) that this
difference was cleared up.

Canfield et al. (1990) showed that in a study of flares observed with the Sacra-
mento Peak Observatory’s H𝛼 spectrograph that H𝛼 spectra with a red asymmetry
are more common, with the blue asymmetry profiles occurring only early in the im-
pulsive phase of the flares. Similarly in this study, the spectra were taken with a
wide passband (of ±4 Å) leading this discussion to being about the same class of
asymmetries as Ichimoto and Kurokawa (1984). They also showed that H𝛼 profiles
with a red asymmetry show good spatial and temporal correlation to impulsive HXR
emissions which they used to justify the Ichimoto and Kurokawa (1984) conclusion
that the profiles are explained by condensation and evaporation processes (however,
Canfield et al. (1990) noted that not all instances of red asymmetry are due to con-
densation). No physical interpretation of the blue asymmetry was concluded upon.

Moving on to the second definition of asymmetry – the relative intensity ratio
of the line wings close to the vacuum wavelength – Canfield and Gunkler (1984)
showed that the characteristic H𝛼 flare spectrum with central reversal is the re-
sult of the Stark effect when nonthermal electrons heat the lower atmosphere. The
asymmetry between the two enhanced wings then comes from the motion of the re-
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gions forming the wings. In flare profiles with no central reversal in H𝛼, there was
found to be a higher coronal pressure (Canfield and Gunkler, 1984). Canfield and
Gunkler (1984) also remarked that other H𝛼 flare characteristics are not as easily
explainable without additional information – e.g. low H𝛼 emission is not necessarily
characteristic of low flare heating as H𝛼 emission can be low when flare heating by
nonthermal electrons is high but there is also a high value of the conductive flux.

Heinzel et al. (1994) studied how the flux of an electron beam heating the lower
atmosphere affects the blue asymmetry in hydrogen Balmer lines 𝛼, 𝛽, 𝛾, 𝜖 and
the Ca ii H spectral line. They found that the duration of the blue asymmetry de-
creases with increasing beam flux in their flare simulations due to heating (and thus
the onset of condensation/evaporation) of high density regions quicker. However, no
conclusive explanation is reached for the blue asymmetry.

Kuridze et al. (2015) revisited potential explanations for spectral line asymme-
tries during flares by comparing radiation hydrodynamic simulations with observa-
tions of H𝛼 during a solar flare. They concluded that the cause of the asymmetries
in H𝛼 is inconclusive. Chap. 6 builds upon this work in analysing flare observations
using an Invertible Neural Network (INN) and its properties to find an unambiguous
solution to the asymmetry in the spectra.

This chapter has discussed the known physics behind solar flares as a whole split
by the regions of the electromagnetic spectrum that are observed. A particular em-
phasis was placed on the formation of flare ribbons – the brightenings in optical and
UV wavelengths in the lower solar atmosphere due to energy deposition – and the
historical observations and analyses of these structures. This is due to the obser-
vations of flares in this thesis being primarily of optical wavelengths and thus the
observed signature of flares are the ribbons. Moreover, the data analysis in Chap. 6
builds upon the historical work of determining the origin of spectral line asymmetry
within and around flare ribbons.
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2 | A Primer on Deep Learning

Rather than accounting for every edge case and boundary condition in a system,
machine learning (ML) allows the computer to learn complex problems via high-
dimensinoal optimisation. The main idea behind machine learning is that "data-
driven" models are being created. That is, given a sufficient, diverse dataset, a
model can be learned from the data to perform a specific task. What this task is
determines what constitutes "sufficient" and "diverse" data, i.e. if one wanted a
system to distinguish between images of dogs and stairs and the dataset contained
only one breed of dog then the dataset would not be diverse enough to learn to dis-
tinguish all breeds of dogs from stairs. (Similarly, if the system is optimised using
a single image of a dog and a single image of some stairs then it would not be well
suited to tell the user about other dogs or stairs that are not the exact examples it
has seen before). The “learning” that takes place by the system is the optimisation
of parameters within the system to best estimate what the user desires.

Following this definition, machine learning can take many forms: from fitting
analytical models through linear and logistic regression to modelling complex clas-
sification and regression tasks using neural networks. All machine learning algo-
rithms can be expressed via the following equation,

𝑌 = 𝑓 (𝑋 ;Θ), (2.1)

where 𝑌 is the desired output, 𝑋 is the dataset, 𝑓 is the process learned by the
algorithm (e.g. the function that maps inputs to outputs or the determination of
the underlying data distribution) and Θ is the set of parameters optimised within
the system to learn the task at hand (henceforth Θ will be referred to as learnable
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parameters).
There is a vast arsenal of different machine learning algorithms that can be lever-

aged to learn different tasks more effectively than others. There are two main dis-
tinctions when looking for an ML algorithm to use:

1. How the algorithm learns: supervised or unsupervised1.

2. What kind of algorithm is being used: classical or deep.

“Classical” ML refers to the practice of using techniques not involving deep neural
networks (DNNs) while “deep” is the opposite. Both classical and deep ML methods
can be subdivided depending on how they learn the task: this can either be in a
supervised or unsupervised manner. Supervised learning is when the dataset used
to train an algorithm must be labelled such that the function learning the input to
the output of the dataset has constraints within the optimisation space. For exam-
ple, when learning what features are in an image (see Chap. 4 for more details),
the dataset that the algorithm is learning from must describe what is in each image
so that the algorithm can optimise its parameters to get as close as possible to the
correct output for each input. Unsupervised learning is used when the data is to be
explored for patterns and correlations (e.g. clustering algorithms), or when learning
the distribution of the data. The former requires no extra information provided by
the user to the algorithm and gives the algorithm freedom to distribute the data in
the way it wants to. The latter requires a definite answer within the dataset used
for learning but can produce probabilistic insights when used for inference (this is
sometimes called semi-supervised learning).

One may construct the different families of ML algorithms by imagining a Pun-
nett square with one parent carrying “Supervised” and “Unsupervised” genes while
the other carries “Classical” and “Deep” genes. A visualisation of this is shown in
Table 2.1. This table also gives examples of what algorithms constitute each type of
machine learning.

Within this thesis, the main focus will be on supervised deep learning which
consists of training deep neural networks (DNNs) in a supervised manner to learn
the task at hand2. DNNs are often referred to as function approximators due to their
satisfying of the Universal Function Approximation Theorem which states that a

1There is a third “how” known as reinforcement learning which is not explored in detail in this
thesis.

2However, Chapter 6 will explore concepts in unsupervised classical and deep learning.
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neural network of fixed depth and arbitrary width (Cybenko, 1989) or of arbitrary
depth and fixed width (Lu et al., 2017) has the ability to approximate any continuous,
well-defined function. To understand how DNNs came to be, how they learn and
what purpose they can serve, we must visit the Cornell Aeronautical Laboratory in
the 1950s and understand how Frank Rosenblatt’s “perceptron” works.

Table 2.1: The four different families of machine learning algorithms: Supervised Classical,
Unsupervised Classical, Supervised Deep and Unsupervised Deep. Each entry of the table
shows examples of machine learning algorithms from each family.

Supervised Unsupervised

Classical
Decision Trees,

Support Vector Machines,
Shallow Neural Networks

Clustering,
Dimensionality Reduction,

Random Forests

Deep
Multi-layer Neural Networks,

Convolutional Neural Networks,
Residual Neural Networks

Generative Adversarial Networks,
Variational Autoencoders,

Invertible Neural Networks

Whilst notions of artificial intelligence have been around since antiquity, the first
tractable example can be traced back to the 1950s. This was the invention of the per-
ceptron (Rosenblatt, 1958). It was designed for image recognition3 by mimicking the
function of a neuron in an animal’s brain: there are many inputs to a neuron in the
brain with varying electrical signals that are summed together and if this amalga-
mated signal is larger than a threshold then the neuron fires. This translates to
finding the vector inner product between an input 𝑥 and the learnable parameters
of the perceptron Θ which is then passed through a Heaviside step function to de-
termine whether the neuron fires (= 1) or not (= 0). Whether or not a neuron fires
is assigned a meaning in the problem one wishes to solve, e.g. a value of 1 may
indicate dogs whilst a value of 0 indicates cats if the user’s desire is to have a per-
ceptron tell the different between dogs and cats. Given that input data is fixed, the
deciding factor for whether the perceptron gives 1 or 0 comes down to the values of
the learnable parameters. These parameters are changed until the desired result is
achieved, with an automated algorithm to do this known as “backpropagation” be-
ing regularly used (see Sec. 2.3 for more details). Mathematically, this means that
the desired output for the data can be represented as the composition of the linear
inner product and the non-linear Heaviside step function:

3https://www.youtube.com/watch?v=cNxadbrN_aI
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Figure 2.1: A schematic for Rosenblatt’s perceptron. The input data 𝑥 = {𝑥1, 𝑥2, 𝑥3, 𝑥4}
are combined with the learnable parameters of the system Θ = {𝜃1, 𝜃2, 𝜃3, 𝜃4} through the
vector inner product Σ before being passed through the Heaviside step function to produce
the output: 1 if the dot product is positive and 0 otherwise.

𝑦 = 𝑓 (𝑥;Θ) = 𝐻 (𝑥 · Θ) =
1, if 𝑥 · Θ > 0

0, otherwise
, (2.2)

where 𝐻 is the Heaviside step function. An example of Rosenblatt’s perceptron
is shown in Fig 2.1. This type of system is referred to as a “feed forward” system
because the input data is processed by the perceptron from start to finish and then
a solution is given for the data at the end of the perceptron. Feed forward systems
are how most modern DNNs work. By construction, Rosenblatt’s perceptron can
only learn binary classification problems due to the use of the Heaviside function,
severely limiting its functionality. However, the vector inner product can be replaced
as can the Heaviside function for other linear/non-linear function pairings allowing
this perceptron to become more versatile. These modified perceptrons, known as
nodes, are the starting building block for neural networks.
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2.1. NODES: THE GENERALISATION OF ROSENBLATT’S PERCEPTRON

Figure 2.2: The two most common activation functions: the rectified linear unit (ReLU)
on the left, which is linear when the input is positive and zero otherwise, and the sigmoid
function on the right.

2.1 Nodes: The Generalisation of Rosenblatt’s Per-
ceptron

2.1.1 Activation Functions
One of the main limitations of Rosenblatt’s perceptron is its inability to learn any-
thing more complex than a binary classification problem. This can be rectified by
modifying the non-linear function within the perceptron. That is, changing the
Heaviside step function to a different non-linear function. In general, the non-linear
function within an artificial neuron (generalised perceptron) setup is known as the
activation function. While possible to use any differentiable non-linear function as
the activation function within an artificial neuron, the Universal Function Approx-
imation Theorem has been proven for sigmoid functions Cybenko (1989):

𝜙(𝑥) = 1
1 + 𝑒−𝑥 , (2.3)
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2.1. NODES: THE GENERALISATION OF ROSENBLATT’S PERCEPTRON

and for rectified linear unit (ReLU) functions (Nair and Hinton, 2010; Lu et al.,
2017):

𝜙(𝑥) =
𝑥, 𝑥 > 0,

0, otherwise
, (2.4)

As such, these are the two most common activation functions to use, with other
commonly-used functions being linear combinations of sigmoids and ReLUs (e.g.
the hyperbolic tan function is often used as an activation function and this can be
expressed in terms of Eq.2.3). The shapes of these functions are shown in Fig. 2.2
which gives an indication of the advantages of using these activation functions be-
yond their satisfying of the Universal Function Approximation Theorem. The sig-
moid activation function’s codomain is (0, 1) which makes it very useful for networks
interested in calculating probabilities, as this can return an already normalised re-
sult. However, the sigmoid activation function is susceptible to the vanishing gra-
dient problem (Hochreiter et al., 2001) as follows. When training a system using
sigmoid activations, the gradient of the function with respect to the learnable pa-
rameters must be calculated as it is used to update the learnable parameters (see
Sec. 2.3 for more details). If the output from the sigmoid for is close to either 0
or 1 then the gradients can become miniscule causing a halt in the training of the
system.

On the other hand, the ReLU activation function avoids this due to the linear
nature of the positive results leading to a constant gradient. Furthermore, the out-
put of the ReLU function is sparse due to any negative values being mapped to zero,
leading to an increase in computational efficiency. This increase is one of the main
benefits of using the ReLU activation in DNNs. However, this is a double-edged
sword. If all of the inputs are negative (or close to zero), then the activation will
be zero everywhere. This causes a stagnation when training a model using ReLUs
as the gradients become zero. This is known as the dying ReLU problem (He et al.,
2015b).

The key point here is that all activation functions have strengths and weak-
nesses. The “correct” activation function to use will depend on two different factors.
Firstly, how complex the neural network is. Typically, the sparsity of ReLUs (and
ReLU-like functions) is preferred when using DNNs as the computational speed-up
is significant compared to using sigmoids. However, sigmoids may be better suited
to learning the function, meaning that even in DNNs they should be used as it
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2.1. NODES: THE GENERALISATION OF ROSENBLATT’S PERCEPTRON

Figure 2.3: Illustration of how the convolution function is used in place of the vector dot
product. In this example, the data is a 4×4 grid of values with the learnable parameters
(the convolution kernel) being a 2×2 matrix. The output of this convolution operation is the
3×3 grid shown in the bottom row of the figure, known as a feature map. The convolutional
kernel “slides” along the data with a defined stride of one with the discrete convolution given
by Eq. 2.7 calculated at each stopping point. Each entry in the output is the result of these
operations.

will learn faster than using ReLUs (nullifying the sparsity speed-up). Secondly,
the dataset being used to train. A particular activation function may lead to a DNN
learning the mapping from input data to output data more efficiently, however there
is no empirical way to determine which activation function will fulfil this role (be-
sides trial and error). In the end, it is possible that the choice of activation function
can improve the learning of a DNN but there is no rigorous metric to be exploited
to help one choose which activation function is best. Regardless, by the universal
function approximation theorem, any activation function should be able to learn the
desired function.

2.1.2 Linear Functions
The other part of Rosenblatt’s perceptron is the vector dot product which combines
the input data and the learnable parameters linearly. For 𝑛-dimensional data this

19



2.1. NODES: THE GENERALISATION OF ROSENBLATT’S PERCEPTRON

can be written:

𝜁 (𝑥) = 𝑥 · Θ =

𝑛∑︁
𝑖=1
𝑥𝑖Θ𝑖. (2.5)

The output of Eq. 2.5 is then passed as the input to the activation function giv-
ing the output for the system. The downside to using the vector inner product, is
that the number of learnable parameters needed in a system scales linearly with
the dimensionality of the input data. This can become particularly inefficient when
dealing with image and video data as each pixel within a field of view needs to be
treated independently and paired with its own learnable parameter. For example,
a megapixel image would correspond to around a million inputs requiring the per-
ceptron to have O(106) learnable parameters. To counter this, LeCun et al. (1998)
used the convolution function as the linear part of their nodes.

𝜁 (𝑥) (𝑛1, 𝑛2, . . . , 𝑛𝑀) =
∞∑︁

𝑘1=−∞

∞∑︁
𝑘2=−∞

. . .

∞∑︁
𝑘𝑀=−∞

Θ (𝑘1, 𝑘2, . . . , 𝑘𝑀) 𝑥 (𝑛1 − 𝑘1, 𝑛2 − 𝑘2, . . . , 𝑛𝑀 − 𝑘𝑀) ,

(2.6)

which for images can be simplified to the two-dimensional case:

𝜁 (𝑥) (𝑚, 𝑛) =
𝐻−1∑︁
ℎ=0

𝑊−1∑︁
𝑤=0

Θ(ℎ, 𝑤) × 𝑥(𝑚 − ℎ, 𝑛 − 𝑤), (2.7)

where 𝐻 is the height of the convolutional kernel and𝑊 is the width and (𝑛, 𝑚) de-
notes an arbitrary pixel in the image. The learnable parameters, Θ, in Eq. 2.6, 2.7
are an initialised matrix with predefined size known as a convolutional kernel. The
output of Eq. 2.7 is known as a feature map. The idea is that rather than having a lin-
ear relationship between the number of inputs and the number of learnable param-
eters, each node has a singular convolution kernel that is convolved over the whole
input in a sliding window manner (this is known as weight sharing, see Fig. 2.3 for
an illustration). The weight sharing drastically reduces the number of learnable pa-
rameters per node (e.g. in Fig. 2.3, there are 4 learnable parameters compared to 16
if the vector dot product was being used as the linear function). Also, it incorporates
interesting properties beneficial when working with images. Neighbouring pixels in
an image are typically strongly correlated, with the correlation dropping as a func-
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tion of Euclidean distance from the pixel. This important property is understood
by the convolution function and is something that influences the size of the kernel
chosen. Also, the convolution function, by construction, deals with shift-invariance,
meaning that the relative positions of pixels in an image are not learned but rather
the geometry of the features are, i.e. two images could be of the same object with the
object in different orientations or magnifications and the feature map will have the
same response to both images (Simard et al., 2003). Two important factors when
defining a convolution kernel are the kernel size and the stride of the kernel.

The choice of the kernel’s size is mostly a personal preference. Increasing the
size of the kernel leads to a larger number of learnable parameters, allowing for
more flexibility when learning a problem but, ultimately, increasing how long the
optimisation process would take. Furthermore, having a larger convolution area
could be beneficial depending on the dataset, if the user feels that including more
data per convolution will lead to greater insight into the data for the algorithm.
Kernel sizes are typically chosen to be square and typically have an odd numbered
dimension. The odd numbered dimension makes it easier to pad the input if the
user does not want to reduce the dimensions in the output and also has the nice
property of centring one of the pixels in the middle of the kernel. N.B. even number
dimensional kernels are often used in pooling layers, see Chap. 4.

The stride of the kernel is the size of the “step” the sliding window takes during
the convolution. For example, in Fig. 2.3, the stride is equal to 1 as the kernel moves
along by one column (and eventually down by one row) for each slide of the convolu-
tional window. In most cases, this stride will be set to one as the user will want to
evaluate the convolution centred on every pixel of an image. However, strided con-
volutions have been popularised as a way to downsample the input data, e.g. if the
stride is two then the input dimensions will be halved; see Chap. 5 for more details.

Now that the perceptron has been generalised to being a single node (Fig. 2.4),
many nodes can be combined in parallel and in series to create a neural network.

2.2 Building a Neural Network
As it turns out, many of these nodes can be stacked in parallel, creating what is
known as a layer. Each node in a layer produces an output dependent on inde-
pendent sets of learnable parameters. This allows for more complex problems to be
learned as each node can learn a different feature of the problem. The mapping from

21



2.2. BUILDING A NEURAL NETWORK

Figure 2.4: The generalised perceptron: a node. The set of inputs {𝑥1, 𝑥2, 𝑥3, 𝑥4} is combined
with the set of learnable parameters {𝜃1, 𝜃2, 𝜃3, 𝜃4} by a linear function 𝜁. The result of the
function 𝜁 is then passed through the non-linear activation function 𝜙 giving the output of
the node.

input to a single layer to the output is, in fact, a neural network. This is the simplest
kind of neural network known as a shallow neural network (SNN, see Fig. 2.5).

While it is true that SNNs – whose layer comprises of nodes made up using the
linear/non-linear pairings in Sec. 2.1 – can learn any non-linear function (Jones,
1990) via the Universal Function Approximation Theorem, the timescales needed
to learn more complex tasks becomes infinitely long. As such, it is more efficient
to stack layers in series as each layer will learn a different part of the overall non-
linear function (Hornik, 1991). These neural networks with more than one hidden
layer are known as deep neural networks.

The idea behind using multiple layers is that with each successive layer, the
representation of the data becomes more abstract. The inputs to one layer are the
outputs from the previous layer. Rather than having the activations from each node
in a layer combined to give an output, if they are passed as input to the next layer
like the input dataset is passed to the first layer, then successive layers will per-
form operations on already-transformed data. This allows the NN to learn about the
transforms of the transform, in a similar way that the second derivative of a function
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2.2. BUILDING A NEURAL NETWORK

Figure 2.5: A schematic of a shallow neural network (SNN). SNNs consist of a set of inputs
{𝑥1, 𝑥2, 𝑥3, 𝑥4} being passed through a layer of nodes {𝑛1, . . . , 𝑛6} each providing their own
set of learnable parameters {Θ1 = {𝜃11, 𝜃12, 𝜃13, 𝜃14}, . . . ,Θ6 = {𝜃61, 𝜃62, 𝜃63, 𝜃64}}. The
outputs of these nodes are then combined to give the output of the SNN 𝑦. Note that the
final connection transforms the outputs of the hidden layer to the output of the SNN and
the result can be either a single number or a vector of outputs depending on the task being
learned.

informs us about the nature of the first derivative. In essence, adding more layers
allows the network to learn a hierarchical, abstract representation of the data, with
earlier layers learning low-level information and later layers learning high-level in-
formation.

The number of layers, nodes and what architecture to use vary from problem
to problem and are things to be experimented with when applying DNNs. This
makes building a DNN difficult with the optimal architecture and training param-
eters challenging to find. A rigourous study of the combinations of these different
architectures and parameters is ideal when applying a DNN to a task4 (see Feurer

4However, in reality, the time may not always be there to do as rigorous a search as one would
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2.2. BUILDING A NEURAL NETWORK

Figure 2.6: A fully-connected neural network. The outputs of the nodes in one layer are used
as the inputs to the nodes in the proceeding layer. This is a typical setup that utilises the
vector dot product as the linearity in the nodes. Each connection between nodes is a set of
learnable parameters in this system.

and Hutter, 2019, and references therein for hyperparameter optmisation meth-
ods).

The following sections will discuss the two most commonly-used DNN architec-
tures: fully-connected networks (FCNs) and convolutional neural networks (CNN)
to illustrate how they are built and the benefits and drawbacks of each.

2.2.1 Fully-Connected Networks
Fully-connected networks consist of layers of nodes where every node of one layer
is connected to every node in the proceeding layer (see Fig. 2.6). Each connection
between nodes is a set of learnable parameters following a vector dot product lin-
ear function and some activation function. This leads to the number of learnable
parameters scaling linearly with the number of inputs as discussed in Sec. 2.1.2.
Consequently, FCNs are typically used for input data with lower dimensionality or
after downsampling the input data using convolutional layers (see Sec. 2.2.2).
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2.2. BUILDING A NEURAL NETWORK

Figure 2.7: An example of a convolutional neural network. The first two layers indicate
feature extraction layers with an increasing number of feature maps. These are then passed
to a set of fully-connected layers to map to an output. The red square here is the input image
to the network.

2.2.2 Convolutional Neural Networks
As mentioned in Sec. 2.1.2, images consist of O(106) pixels. Using an FCN in this
case would mean that there would be as many inputs as pixels and for the first layer
with 𝑁 nodes there would be O(106 × 𝑁) learnable parameters (and so on for any
subsequent layers). As a result, using an FCN for image problems is unfeasible. The
solution is to look at implementing a convolutional neural network.

CNNs utilise the convolution function as the linear function in its nodes (as de-
scribed in Sec. 2.1.2) in the first several layers of the network before passing that
transformed data to some fully-connected layers to find the output. The idea for
CNNs came about by considering the visual cortices of animals. In loose terms, the
visual cortex of an animal is a system of interconnected neurons, starting at the
eye with an image and ending at the brain with an understanding of what is in the
image, and passing a specific electrical signal between the connected neurons de-
pending on the features that each group of neurons identifies. This is achieved in
a hierarchical manner meaning that the first groups of neurons identify low-level
features (e.g. colour, lighting, gradients) and the later groups identify high-level
features (e.g. facial features). Thus the group of neurons within the visual cortex
do not detect specific features of objects but rather each group identifies an abstract
quantity whose signal will help the subsequent groups pick out other abstract quan-
tities with the final combination telling the brain what the animal sees. The animal
then subconsciously teaches its neurons how to react to different objects – it learns.

like.
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Translating this to CNNs, each layer consists of 𝑁 convolutional nodes producing
𝑁 feature maps and aims to extract abstract features within image data to produce
the desired output by learning the geometry of objects within the image. A set of
𝑁 feature maps from one convolutional layer is then used as the input to the next
with each new feature map generated by a kernel convolved with all previous feature
maps. This, however, comes at the cost of interpretability as the abstract features of
the image that the network chooses to learn are chosen by the computer itself. The
earlier layers pick out coarse properties of an image with each feature map likely
focussing on different features. The output feature maps can then be downsampled
in some way for subsequent layers to learn more abstract features. This works as
each downsampled pixel will represent more information, leading to more abstract
features being extracted deeper in the network. Once features have been extracted
by convolutional layers, they are passed through fully-connected layers to produce
an output. The fully-connected layers here will be less computationally expensive
than an FCN due to the downsampling of the data between layers.

The setup of a CNN is illustrated in Fig. 2.7. The first layer of this CNN takes
a monochromatic image (red square) and transforms this into five feature maps.
That is, each feature map is calculated via Eq. 2.7 using a different convolutional
kernel each time. The five feature maps are then used as the input to the second
convolutional layer which transforms the five feature maps into nine feature maps.
This is achieved by using the previous five feature maps as an input to each new
convolution. This adds an explicit third dimension to the convolution meaning that
the kernels are now 3D rather than 2D – the initial convolutional layer is implicitly
three-dimensinoal but since the image is monochromatic, the third dimension col-
lapses. The resultant nine feature maps are then flattened into a one-dimensional
signal to be passed to the first fully-connected layer. This fully-connected layer trans-
forms and downsamples this 1D representation before a second fully-connected layer
maps the resultant data to an output.

2.3 Training a Neural Network
Oftentimes, training is the most important and difficult process in any machine
learning algorithm. Training is how a neural network learns what function it is try-
ing to approximate. In practice, this is done through very high dimensional optimi-
sation over the space spanned by the learnable parameters in the system. Initially,
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a training dataset is defined with known input and output for the neural network
to learn from. To perform the optimisation, a family of methods based on stochastic
gradient descent (SGD) with backpropagation can be used – sometimes referred to
as optimisers of a neural network. SGD is the numerical method used to update the
value of the learnable parameters based on the output of the network in its previous
state. In other words, the performance (a measure of how well the network estimates
the correct output for a given input) of a DNN is evaluated by a loss function, L –
a user-defined metric that measures the similarity of the network-generated output
and the desired output. The gradient of the loss function is used to iteratively update
the learnable parameters in the system until it converges to an acceptable approx-
imation of the function of interest – this occurs when the loss function reaches a
suitable local minimum. Mathematically, gradient descent (GD) can be written as

𝜃𝑡+1 = 𝜃𝑡 − 𝜂∇L( �̃�, 𝑦), (2.8)

where 𝜃𝑡+1 and 𝜃𝑡 refer to the values of the learnable parameter 𝜃 at the (𝑡 + 1)-th
and 𝑡-th iteration. Here, 𝑦 is the true output and �̃� is the estimate from the DNN.
The stochasticity of the optimisation comes in the form of batching the data when
training. There is a user-chosen parameter (herein referred to as a hyperparameter)
known as the batch size which defines how many groups the data is split into for
training. An iteration in the system is then the update of the learnable parameters
based on the gradient of the loss function per batch of data. That is, for Eq. 2.8
to describe SGD and not just GD 𝑦, �̃� must represent a batch of true outputs and
network-generated outputs. The loss over a batch is then averaged to provide an
estimate of the loss on the entire batch. The batch loss then updates the learnable
parameters via Eq. 2.8. Iterating through all of the batches of data is referred to as
an epoch when training a neural network.

The reasoning behind batches and SGD is twofold. Firstly, providing an aver-
aged parameter update of a batch can be beneficial in traversing the space being
optimised over. Using the gradient calculated for every single input would result in
an oscillatory path throughout the learnable parameter space, as the loss of each
input would change the direction of travel slightly. In averaging over a batch, the
traversal will be smoother allowing the algorithm to avoid the incorrect local min-
ima. Also, rather than pulling the parameters towards a solution for one input, they
are moved generally in the direction of a solution that works the best for most of
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the inputs. Secondly, and maybe unintentionally, choosing the correct batch size
can speed up the training of the network depending on the hardware being used.
Loading more data onto the hardware device at once will allow for fast, parallel
computations allowing for fewer I/O operations between storage and device. How-
ever, a correct balance between what batch size should be and what it can be needs
to be investigated as increasing the batch size too high lowers the stochasticity of
the SGD.

The estimate �̃� is a function of the input to the neural network and the learnable
parameters of the system and can be written as the composition of the layers of the
network:

�̃�(𝑥;Θ) = (𝜙𝑀 ◦ 𝜁𝑀 ◦ · · · ◦ 𝜙1 ◦ 𝜁1) (𝑥), (2.9)

where the linear functions encompass the learnable parameters Θ of the system.
Due to the construction of the network output, calculating the gradients required for
SGD is made simple since the linear and non-linear functions comprising the neural
network are differentiable. Updating the learnable parameters at every iteration in
this manner is known as backpropagation (Rumelhart et al., 1986a,b) and is the
pillar of training in deep learning.

Consider an arbitrary learnable parameter in a DNN attributed to node 𝑗 of
layer 𝑘 with data being fed from node 𝑖 of the previous layer 𝑘− 1, 𝜃𝑘

𝑖 𝑗
. The gradient

term on the right-hand side of Eq. 2.8 can then be written as 𝜕L/𝜕𝜃𝑘
𝑖 𝑗

which can be
estimated via the chain rule:

𝜕L
𝜕𝜃𝑘

𝑖 𝑗

=
𝜕L
𝜕𝑜𝑘

𝑗

𝜕𝑜𝑘
𝑗

𝜕𝜃𝑘
𝑖 𝑗

, (2.10)

where 𝑜𝑘
𝑗

is the output of the node 𝑗 of layer 𝑘. 𝑜𝑘
𝑗

can be written

𝑜𝑘
𝑗
=

𝑟𝑘−1∑︁
𝑟=0

𝜙𝑘(𝜁𝑘(𝑜𝑘−1
𝑟 )), (2.11)

where 𝑟𝑘−1 is the total number of nodes in the previous layer 𝑘−1. That is the output
of node 𝑗 at layer 𝑘 is the layer applied to all of the outputs from previous layer 𝑘−1.
This means that when calculating the gradient due to learnable parameter 𝜃𝑘

𝑖 𝑗
, the
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second term on the right-hand side of Eq. 2.10 can be written as

𝜕𝑜𝑘
𝑗

𝜕𝜃𝑘
𝑖 𝑗

=
𝜕

𝜕𝜃𝑘
𝑖 𝑗

©«
𝑛𝑘−1∑︁
𝑟=0

𝜙𝑘(𝜁𝑘(𝑜𝑘−1
𝑟 ))ª®¬ = 𝜙𝑘(𝑜𝑘−1

𝑖
), (2.12)

The first term on the right-hand side can also be expanded using the chain rule
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where 𝑛𝑘+1 is the number of nodes in layer 𝑘 + 1. Using Eq. 2.11 the second term on
the right-hand side of Eq. 2.13 can be written
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meaning Eq. 2.13 can be written
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Combining Eqs. 2.12 & 2.15 means Eq. 2.10 can be written
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Now the update of the learnable parameter depends on the output of the previous
layer’s node, the output of the current node and the gradient of the loss function
with respect to the outputs of the next layer. The outputs are known when the
data is fed through the network in the former direction leaving only the gradients
to be calculated. Since the parameter update depends on the gradients from the
next layer, the gradients must be calculated in reverse leading to the inception of
backpropagation.

Going back to Eq. 2.8, 𝜂 is known as the learning rate and is a hyperparameter
which determines the rate at which the parameter space is traversed. This can be
vital; a learning rate too large can lead to a network that will never converge because
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it will continually hop over the troughs of minimal loss that it is looking for. On the
other hand, a learning rate too small will result in the network falling into the first
local minimum that it encounters and never being able to escape. The idea is to
find a medium place between these two extremes and hope that the algorithm can
land in a local minimum that is an area of minimal loss. SGD says that the value of
the weights at iteration 𝑡 + 1 is then the value at the previous iteration plus some
correction depending on how close the model is to convergence.

Typically, convergence is determined when the value of the loss function settles
below a certain threshold. This is a good metric for measuring performance in tradi-
tional numerical methods where a statistical model is the framework used. However,
the goal in machine learning is to produce a data-driven model which interpolates
to unseen data. Therefore, the loss function being below a certain threshold on the
training data can be useful to the performance of the hyperparameters, but can ac-
tually be detrimental to generalisation if it is too low. If the training loss is too low,
the model will be over-fitted and will not interpolate to any data outside of the train-
ing domain. To combat this a validation set of data is used which is a subset of the
training data (typically 10-20%) that the network has never seen before. The values
of the loss function for this validation set are not used during backpropagation, but
rather as a metric of how well the model generalises i.e. the validation loss does
not update the learnable parameters of the network. That is, if the network is over-
fitting the loss function will increase. As a result, convergence in an ML framework
is defined as the minimum of the validation loss function. Furthermore, the number
of epochs used for training is an important hyperparameter. If it is too small, the
network will not have enough time to learn and generalise, whereas if it is too large,
the network can overfit. The typical way of testing for the correct number of epochs
without overfitting is using a validation dataset.

2.3.1 Aiding Training Through Initialisation
Like any optimisation problem, initialisation of the learnable parameters in a DNN
can be beneficial to its performance. The type of initialisation to be used is entirely
dependent on the problem to be learned. Zero initialisation or initial values drawn
from a unit normal distribution are commonly implemented in DNN frameworks
but do not have any problem-specific reasoning behind their use. Furthermore, the
variance of the learnable parameters is not considered in these initialisations which
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2.3. TRAINING A NEURAL NETWORK

can lead to exploding or vanishing gradients immediately in a DNN. As such, He
et al. (2015b) proposed an initialisation scheme for DNNs which takes into account
the architecture of the network. This is known as He (or Kaiming) initialisation.

Consider trying to initiliase learnable parameter Θ𝑘 from layer 𝑘. Before the
activation function in layer 𝑘, Θ𝑘 will be combined linearly with input 𝑥𝑘 such that

𝑦𝑘 = Θ𝑘𝑥𝑘, (2.17)

where 𝑥𝑘 = 𝜙𝑘−1(𝑦𝑘−1) is the vector of inputs to layer 𝑘 and 𝑦𝑘 is the vector of outputs
of the linear functions in layer 𝑘. The following assumptions are made about the
distributions of the data and the learnable parameters:

1. All learnable parameters are drawn from the same distribution and are statis-
tically independent from one another – similar assumption is made about the
input data and the output data.

2. The learnable parameters and the input are statistically independent of one
another.

3. The distributions of the learnable parameters and the output of the linear func-
tion (Eq. 2.17) have mean zero and are symmetrically distributed about this
mean.

Under these assumptions, the variance of Eq. 2.17 can be investigated:

Var [𝑦𝑘] = 𝑛𝑙Var
[
Θ𝑘𝑥𝑘

]
, (2.18)

where 𝑛𝑙 is the total number of nodes in layer 𝑘. Using the properties of the product
of variances and the assumptions about the distributions, the right-hand side of
Eq. 2.18 can be written

Var
[
Θ𝑘𝑥𝑘

]
= Var

[
Θ𝑘

]
𝔼

[
𝑥2
𝑘

]
. (2.19)

Given that the input to layer 𝑘 can be written in terms of the output of layer 𝑘 − 1,
the variance on the output of the layer can be written as a recurrence relation

Var [𝑦𝑘] =
𝑛𝑙

𝑔2 Var
[
Θ𝑘

]
Var [𝑦𝑘−1] (2.20)
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where 𝑔 is known as the gain of the activation function. Equation 2.20 can then be
applied to the variance on the output of the whole network

Var [𝑦𝐿] = Var [𝑥1]
(
𝐿∏
𝑘=2

𝑛𝑙

𝑔2 Var
[
Θ𝑘

] )
, (2.21)

where 𝐿 is the total number of layers in the DNN, 𝑦𝐿 is the output of the network
and 𝑥1 is the input to the first layer. The point in the initialisation is to avoid explod-
ing/vanishing gradients from the start which would be the case if the variance of the
output of the network is equal to the variance of the input to the network. This puts
the condition on the variance of the learnable parameters that ∀𝑘 ∈ [1, . . . , 𝐿]

𝑛𝑙

𝑔2 Var
[
Θ𝑘

]
= 1. (2.22)

From assumption 3 above, this leads to a good initialisation of learnable parameters
being drawn from a normal distribution with mean zero and standard deviation

𝜎 = 𝑔/√𝑛𝑙, (2.23)

i.e. the initialised parameters are drawn from the normal distribution N(0,𝜎). This
result can also be derived from backpropagation arguments as shown in He et al.
(2015b). This initialisation led to the first machine learning algorithm that outper-
formed a human in image classification.

The distribution for which Eq. 2.22 holds can also be varied and other common
implentations use a uniform distribution rather than a normal distribution to in-
tialise the parameters with the bounds on the normal distribution given by

𝑏 = 𝑔

√︂
3
𝑛𝑙
, (2.24)

with the initialised parameters drawn from the distribution U(−𝑏, 𝑏).

The concepts discussed in this chapter will be applied in Chaps. 4, 5 & 6 where
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a variety of different deep learning tools will be exploited for the data processing
and analysis of solar flare data. The next chapter discusses the telescopes and in-
struments used to collect the data that is then used for training, validation and
application of the deep learning models.
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3 | Instrumentation

The following chapter will provide an overview of the instrumentation and detectors
whose data is analysed throughout Chaps. 4–6.

3.1 Swedish 1-m Solar Telescope’s CRisp Imaging
SpectroPolarimeter

The Swedish 1-m Solar Telescope (SST; Scharmer et al., 2003) is a refracting tele-
scope whose primary lens has a diameter of 1m. SST is located in the Observatorio
Roque de los Muchachos, La Palma, Spain at an altitude of approximately 2.4km.
Built to replace the Swedish Vacuum Solar Telescope (SVST) in the same tower, the
SST is also a vacuum telescope meaning it avoids telescopic seeing and artifacts
that may appear in data due to dirty mirrors. A diagram of the optical path adapted
from Scharmer et al. (2003); de la Cruz Rodríguez et al. (2015) is shown in Fig. 3.1.
Light enters the telescopes at the 1m primary lens (PL) before being reflected down
the tower by two flat mirrors configured such that the angle of incidence is 45◦. The
beam is focussed at the bottom of the tower (inset A) where light is reflected by a mir-
ror towards the Schupmann corrector (SC, inset B). The PL produces an image with
chromatic aberration which is corrected for by the SC. The beam then undergoes
corrections for atmospheric seeing by the adaptive optics system (inset C) consist-
ing of a deformable (DM) and a tip-tilt mirror (TT). The corrected wavefronts are
then passed through a reimaging lens (RL) and onto the optical bench.

The optical bench of the SST can consist of up to three instruments: the TRI-Port
Polarimetric Echelle-Littrow (TRIPPEL; Kiselman et al., 2011), the CRisp Imaging
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3.1. SST/CRISP

Figure 3.1: Diagram of the optical path of the SST adapted from Scharmer et al. (2003);
de la Cruz Rodríguez et al. (2015). Light enters the telescope via the 1m primary lens (PL)
before being reflected by two flat mirrors (M1, M2) and sent down the tower. Inset A shows
where the light is focussed onto the optical bench. Inset B shows the Schupmann corrector
(SC) and inset C shows the adaptive optics system containing the deformable mirror (DM),
tip-tilt mirror (TT) and reimaging lens (RL).
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3.1. SST/CRISP

Figure 3.2: Layout of CRISP on SST’s optical bench. After being corrected by the adaptive
optics system, the light is split into a red and blue component via the dichroic beamsplitter
(DBS) where the blue light goes through another beamsplitter (BS3) where the reflected
light is used in the correlation tracking (CT) and the transmitted light may be used for
CHROMIS if it is in use. The red light encounters a beamsplitter (BS1) where the reflected
light is fed to the adaptive optics wavefront sensor (AO WFS) which gives updates to the
DM (same meanings as in Fig. 3.1). The remaining light passes through an optical chopper
(OC) and a filter wheel (FW) before arriving at a second beamsplitter (BS2). The reflected
light from BS2 is imaged by the wideband (WB) camera with the transmitted light fed into
the CRISP instrument. The CRISP instrument itself consists of a high resolution etalon
(HRE), low resolution etalon (LRE) and liquid crystals (LCs). The HRE & LRE splits the
light by wavelength depending on settings from the FW and polarises the light using the
LCs. Finally, the light is split by the polarisation beamsplitter (PBS) to record two narrow-
band (NB) signals: reflected (R) and transmitted (T) each of which measures an orthogonal
polarisation state (e.g. 𝐼 + 𝑉 , 𝐼 − 𝑉).

SpectroPolarimeter (CRISP; Scharmer, 2006; Scharmer et al., 2008) and the CHRO-
Mospheric Imaging Spectrometer (CHROMIS; Löfdahl et al., 2021). TRIPPEL is a
Littrow spectrograph capable of observing three different spectral regions at the
same time with a tunable wavelength range 3800-11000Å. CRISP is a Fabry-Pérot
tunable filter (also known as an etalon) system working in the red end of the visible
spectrum (5100-8600Å) with polarimetric capabilities provided by liquid crystals.
Similarly, CHROMIS is a Fabry-Pérot system but working in the blue end of the vis-
ible spectrum (3800-5000Å) and does not have polarisation capabilities. The data
analysed in this thesis mainly came from CRISP and so the layout of the CRISP
instrument will be described in more detail.

The path of light through CRISP’s area on the optical bench is shown in Fig. 3.2.
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After the light from the telescope passes through RL, a dichroic beamsplitter (DBS)
is used to split the light into a blue and a red component where the blue light is
transmitted and the red light is reflected. The blue light passes through another
beamsplitter (BS3) where the reflected light is passed onto the correlation tracker
(CT). This is part of the AO system of the SST and measures the motion of the images
in the image plane and sends instructions to the TT mirror to keep the image steady.
The transmitted component of the blue light can be used with CHROMIS if it is being
used.

The red light goes through a beamsplitter (BS1) where the reflected light en-
counters the AO wavefront sensor (WFS) which provides the updates needed to the
deformable mirror to correct the wavefronts for atmospheric seeing. The transmit-
ted red light then passes through an optical chopper (OC) and filter wheel (FW). The
OC is a rotating plate with holes which periodically interrupts the light beam. The
FW is then used to select the spectral line the observer wishes to record. After the
FW, the remaining light passes through a second beamsplitter (BS2) where this time
the reflected light is imaged by a wideband (WB) camera to produce a set of com-
plimentary wideband observations used for alignment and restoration of the nar-
rowband data via the Multi Object Multi Frame Blind Deconvolution (MOMFBD;
Van Noort et al., 2005) algorithm. The light transmitted from BS2 then enters the
CRISP instrument passing through a high resolution etalon (HRE) and a low res-
olution etalon (LRE). An etalon is made up of two reflecting optical flats with the
light undergoing multiple reflections in the cavity between the two. Each etalon will
have a transmission profile corresponding to peaks where the light being reflected
interferes with itself. The HRE will produce a transmission profile with multiple
narrow peaks which is refined to the wavelength the observer wants to measure by
the wider transmission profile of the LRE (see Fig. 3 of de la Cruz Rodríguez et al.,
2015). Even with both etalons, there can still be some unwanted transmission peaks
which the choice of the wavelength observed in the FW deals with.

After the etalons are the nematic liquid crystals (LCs). These are used to encode
the polarisation information into the intensity with four linear combinations of the
Stokes parameters. Finally, a polarising beamsplitter (PBS) is used to split the light
into two orthogonally polarised light beams which are imaged on two synchronised
CCDs: one for the narrowband reflected (NBR) light and one for the narrowband
transmitted (NBT) light. The separation between the flats in the etalons is changed
to alter the wavelength being observed. This is used to step through the spectral line
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an observer is looking at and image in many different wavelengths. One drawback
to observing using FPIs is that the different points along the spectrum cannot be
sampled at the same time which puts a constraint on the number of wavelength
points that can be sampled – it is recommended that the observation time be less
than the solar evolution time for the feature being observed to avoid smearing effects
introduced by the evolution of the feature. For flares particularly, this can pose an
issue due to the subsecond evolution of the flaring atmosphere.

3.2 Hinode’s Solar Optical Telescope
Hinode (Kosugi et al., 2007), formerly known as Solar-B, is a spaced-based solar ob-
servatory in a Sun-synchronous orbit (SSO) launched on 22nd September 2006 from
Uchinoura Space Centre, Japan. It was originally planned to run for three years
but as of writing, most of the instruments on-board are still taking data. Hinode
was launched with three instruments: the Solar Optical Telescope (SOT; Tsuneta
et al., 2008), the X-ray Telescope (XRT; Golub et al., 2007) and the Extreme ultra-
violet Imaging Spectrometer (EIS; Culhane et al., 2007). SOT is a 50cm Gregorian
telescope used for imaging and spectropolarimetry across the visible spectrum to
study the solar photosphere and chromosphere, XRT uses grazing incident optics to
capture images of the whole Sun measured in different X-ray filters and EIS is an
imaging spectrometer able to capture two EUV spectral bands to study the corona.
The data used from Hinode in Chap. 4 of this thesis is entirely from SOT therefore
the rest of the focus of this section will be on how SOT deals with the light it collects.

Figure 3.3 shows a detailed diagram (adapted from Fig. 5 in Tsuneta et al., 2008)
of the optical path of Hinode/SOT. Light collected by the telescope is passed to a beam
splitter via a tip tilt mirror with one of four possible destinations. A small amount
of light is passed to the correlation tracker which keeps the images steady in the
field of view. The three main science destinations are then the slit spectropolarime-
ter (SP), broadband filter imager (BFI) and narrowband filter image (NFI). The SP
observes the neutral iron (Fe i) line doublet at 6302Å taking measurements of the
four Stokes parameters of these lines. The BFI images several spectral windows
of interest in SOT’s highest spatial resolution (0.0541′′ px−1): spectral lines from
neutral cyanogen (CN i) 3383.5Å, Ca ii H 3968.5Å and neutral methylidyne (CH i)
4305.0Å, and continua from the blue (4504.5Å), green (5550.5Å) and red (6684.0Å)
parts of the visible spectrum. The NFI collects data in the green and red parts of
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Figure 3.3: Diagram of light path in Hinode/SOT adapted from Tsuneta et al. (2008). The
incoming light indicated in the diagram is incident on the primary mirror before reflection
on the secondary mirror passes it to the instruments. The light is then split between four
paths: the correlation tracker which keeps the image steady; the slit spectropolarimeter (SP)
which observes the Fe i 𝜆6302Å doublet and records the four Stokes parameters over these
lines; the broadband filter imager (BFI) used to observe continua and some spectral lines
in the blue end of the spectrum in the solar atmosphere; and the narrowband filer image
(NFI) used to observe spectral lines in the green and red part of the visible spectrum.

the visible spectrum with a high spatial resolution of 0.08′′ px−1. The NFI has four
different imaging modes:

1. Filtergram: a high resolution image taken in one of the observable spectral
windows.

2. Dopplergram: an image of the Doppler shift of a spectral line by taking several
filtergrams centred on different wavelengths and subtracting them from the
image centred on the rest wavelength of the line.

3. Longitudinal magnetogram: The ratio of the Stokes 𝑉/𝐼 images.

4. Stokes 𝐼, 𝑄,𝑈,𝑉 : high resolution images of the four Stokes parameters1.
1Up to the four Stokes parameters can be selected in these modes.
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The imaging of the NFI is taken through the Lyot (birefringence) filter and can
observe in passbands focussed on the following spectral lines and centred on the
given wavelengths: neutral magnesium b (Mg i b) 5172.0Å, Fe i triplet 5250.0Å, Fe i
5576.0Å, neutral sodium D (Na i D) 5896.0Å, Fe i doublet 6302.0Å and H𝛼 6563.0Å.
The data used in Chap. 4 from Hinode/SOT is H𝛼 filtergrams from the NFI.

3.3 Solar Dynamics Observatory’s Atmospheric
Imaging Assembly

The Solar Dynamics Observatory (SDO; Pesnell et al., 2012) is a spaced-based solar
observatory launched on 11th February 2010 from Cape Canaveral Air Force Station
in Brevard County, Florida, USA. SDO is in a geosynchronous orbit chosen to keep
constant communication with the ground station receiving the data. It is currently
scheduled to take data until the year 2030 and has three main instruments on-board
(two are still fully operational). The three instruments on SDO are the Heliospheric
and Magnetic Imager (HMI; Scherrer et al., 2012), Extreme ultraviolet Variability
Experiment (EVE; Woods et al., 2012) and the Atmospheric Imaging Assembly (AIA;
Lemen et al., 2012). HMI focusses on observations of the Fe i 6173Å spectral line and
its polarisation, using this information to produce intensity images and longitudinal
and vector magnetograms. EVE measures the irradiance from the Sun across EUV
wavelengths treating the Sun as a single spatial point in the sky. AIA consists of
four 20cm normal-incidence telescopes each sensitive to two of the eight wavelength
ranges AIA observes2 The passbands observed by AIA span the visible, UV and
EUV spectral ranges with the seven EUV channels covering spectral lines sensitive
to tempeatures from 50kK-20MK: continuum (4500, 1700 & 1600Å), Fe XVI 335Å,
He ii 304Å, Fe XIV 211Å, Fe XII,XXIV 193Å, Fe IX 171Å, Fe XIII,XXI 131Å and
Fe XVIII 94Å.

The layout of the AIA telescopes along with which filters each telescope observes
is shown in Fig. 3.4. Telescope 1 images in 335Å and 131Å, telescope 2 in 211Å
and 193Å, telescope 3 in 171Å and the UV continua and telescope 4 in 304Å and
94Å. Telescopes 1, 3 and 4 have filter wheels to select which passband to image
while telescope 2 makes use of an aperture blade. A mechanical shutter is used

2There are technically 10 passbands AIA observes but the 1600, 1700 & 4500Å continua are all
imaged by the same filter.
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Figure 3.4: The setup of the four AIA telescopes on board and the filters each one observes
adapted from Fig. 2 of Lemen et al. (2012). Telescope number 1 (right) observes the 335Å
and 131Å filters, with telescope number 2 (middle right) observing the 211Å and 193Å pass-
bands, telescope number 3 (middle left) observing 171Å and the UV continua and telescope
number 4 (left) observing 304Å and 94Å.

to regulate the exposure time. A full set of AIA exposures takes approximately 12
seconds to acquire. This full set contains an image in each of the EUV passbands
and an image in one of the three optical/UV bands. That is the UV band used, 1600
or 1700Å, is alternated every 12 seconds unless the timestamp falls on an integer
minute wherein the continuum exposure is of the optical continuum at 4500Å. AIA
images with a spatial resolution of 1.2′′and a field of view size of 41′. AIA data
imaged in 304, 1600 & 1700Å is used in the adversarial testing in Chap. 4.
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4 | Classification of Solar Images
Using Convolutional Neural
Networks

The following chapter is based on the work in Armstrong and Fletcher (2019) with
Sec. 4.1 following the same logic as the introduction of Armstrong and Fletcher
(2019) but updated for values in 2022. Section 4.2 takes a more in-depth look at
how the CNN known as Slic was constructed and how the training data was put
together. Sections 4.3 & 4.4 cover the training and validation of Slic in more depth
than in the paper while Sec. 4.5 covers adversarial examples described in the paper
as well as new examples not covered in the scope of the paper.

4.1 Exponential Growth in Solar Physics Data
With each new solar physics mission/telescope, instruments are improving in spa-
tial, temporal and/or wavelength resolution. Increased resolution in any of these
three categories equals greater volumes of data. This has led to an exponential in-
crease in the amount of data acquired in the past decade, from < 10 TB per year
from Hinode/Solar Optical Telescope (SOT) in 2006 (Tsuneta et al., 2008) to 500 TB
per year from the Solar Dynamics Observatory (SDO) in 2012 (Pesnell et al., 2012)
to 10 000 TB per year expected from the Daniel K. Inouye Solar Telescope (DKIST)
which saw first light in 2021 (Elmore et al., 2014). On top of this, the Hinode and
SDO data is all archived totaling 4.1 PB (petabytes, 1PB = 1000 TB) of data which
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will only keep growing with each passing year.
This is a huge amount of data, and sorting through it is not a task which can

be given to humans. For an efficient alternative, automation of data preparation
and sorting must be explored with machine learning. This is the kind of automation
that can save data analysts time and effort when acquiring and traversing their data
and in the age of data-intensive solar physics these techniques can prove invaluable.
Motivated by this, an efficient machine learning algorithm for the classification of
solar images is proposed: a convolutional neural network (CNN). This is designed to
learn the different geometry of large-scale features on the Sun such that, after the
model has been trained, a dataset of solar images can be passed to the network and
it will identify which images contain which relevant feature in a very short time.

The proposed algorithm will allow the user to easily identify the images of most
importance to the study they are carrying out. Furthermore, having a pre-trained
CNN that understands the geometry of solar features can be very beneficial for
“transfer learning”. Transfer learning is when a previously trained neural network
is used for initialisation and/or training for a new network which aims to learn a dif-
ferent but related task. This can be beneficial during training a new network as the
old network teaches the new network what it knows about the physical system it has
learned about and can steer the optimiser towards a better solution1. This particu-
lar trained DNN is used in transfer learning in Chap. 5 to help the DNN proposed
there to correct for atmospheric seeing in ground-based solar flare observations.

4.2 Constructing a Convolutional Neural Network
and Training Set for Solar Image Classification

The work in this thesis is mostly concerned with optical wavelengths and the use
of the classifier in this chapter will focus on images within this range. The CNN is
trained using images from the Hinode/SOT instrument taken by the H𝛼 filter. The
images are sorted into 5 classes: filaments, flare ribbons, prominences, sunspots
and the quiet Sun (i.e. lack of any of the other four features). While filaments and
prominences are the same physical feature (dense, cool plasma that runs parallel to
a magnetic neutral line and is suspended in the atmosphere by a coronal magnetic

1Note that the converse is also true: if a new network is taught by an existing network that knows
about a system not beneficial to what is trying to be learned, the training of the new network can
take longer.
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field; Labrosse et al., 2010), just in different locations (prominences off-limb; fila-
ments on- disk), their geometries in the Hinode/SOT H𝛼 images are vastly different
leading to the split in classification. This split can easily be consolidated when us-
ing the network by asking for images with both filaments and prominences. The H𝛼

flare ribbons are intense brightenings in the solar atmosphere which are interpreted
as the base of the coronal magnetic field structures to which flare energisation is at-
tributed. The images of sunspots either contain one or multiple sunspots such that
our network learns what a singular sunspot looks like but can still understand if
there is a group. Thus, the network learns the geometry of these features when ob-
served at this wavelength. One of the goals is to see if the computer perceptually
understands what these features are. That is, if it can identify the same features cor-
rectly when they are imaged in different (UV and extreme ultraviolet) wavelengths
e.g. sunspots observed in 1600/1700Å and prominences observed in 304Å.

The training set itself is a catalogue of 13175 H𝛼 images from SOT’s NFI that
were classified by hand into one of the five classes2. This dataset was constructed to
be as diverse as possible for each class i.e. the sunspot class contains images with
single sunspots, multiple sunspots, different shapes and sizes of sunspots; the flare
ribbon class contains flares with two ribbons, flares with different ribbon geometry
and confined flares; the filament class consists of filaments of different geometries
taken at different viewing angles; the prominence class features prominence images
taken on both limbs of the Sun at different positions; and, finally, the quiet Sun class
features images taken from a variety of viewing angles from disk centre out to the
limb so that the trained CNN will not get confused by the limb brightening observed
in H𝛼. All images in the training and validation are resized to 256×256 with anti-
aliasing using the resize function from scikit-image’s skimage.transform module
(van der Walt et al., 2014).

The neural network architecture used is a 13 layer CNN inspired by the VGG
networks3 (Simonyan and Zisserman, 2014) and is shown in Fig. 4.2. The network
seeks to model the function that maps an image of the Sun in H𝛼 to a vector of
probabilities of the images containing a specific feature. Therefore, the input of the
network will be the pixel intensities of the image and the output will be a vector of
class probabilities with each element corresponding to the probability of a feature.

2The Hinode/SOT data is available from http://sdc.uio.no/sdc/
3Named after the Visual Geometry Group at the University of Oxford who developed these archi-

tectures.
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Figure 4.2: The setup of the 13 layer CNN inspired by VGG networks (Simonyan and Zisser-
man, 2014) where the arrows between each block indicate the flow of data in the feed-forward
process. The blocks are colour-coded to reflect their purpose. Orange, green, yellow and
blue are all convolutional layers which have 64, 128, 256 and 512 trainable feature maps,
respectively. The inside of one of the convolutional layers is shown which is the same for all
convolutional layers – the data undergoes a convolution followed by batch normalisation fol-
lowed by the activation via a ReLU function. The red circles correspond to the max pooling
layers. The grey block corresponds to the classifier at the end of the network. The example
here is of a prominence in H𝛼 from Hinode/SOT being classified correctly.

Figure 4.3: The classifier mini-network. The 3D blocks represent fully-connected layers
which map the output feature maps from the last maxpooling layer to the class labels with
a certain probability. The pink boxes refer to rectified linear unit (ReLU) activation followed
by dropout regularisation. The input dimension to the classifier mini-network is 512×8×8 =
32768, with the output dimension being 4096.
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If the network learns the features correctly then the highest probability (i.e. the
maximum value element of this vector) will correspond to the correct class for the
image.

The layers shown as cuboids in groups of two in Fig. 4.2 between the input and
the output are convolutional layers as discussed in Sec. 2.1. The convolution kernels
in each of these layers is composed of 3 × 3 pixels initialised by He initialisation de-
scribed in Sec. 2.3.1. The number of feature maps in each of these groups of layers
increases towards the output of the network as the model is detecting more and more
complex features and a larger number of convolutions to look at will help to distin-
guish between these features. In the first group of convolutional layers 64 feature
maps are used which is doubled at each new group of two until the fourth where the
fourth and fifth groups of two use 512 feature maps. The insides of these layers is
shown also in Fig. 4.2 where the eagle-eyed may notice that there is something extra
compared to the convolutional layers discussed in Sec. 2.1: batch normalisation.

Batch normalisation (Ioffe and Szegedy, 2015) is applied to the output from the
convolution operation. This is a technique used to increase the stability of our net-
work and normalises the output of the convolution calculation around a batch mean
(𝛽) and standard deviation (𝛾) via the equation

𝑦 = 𝛾 × 𝑥 − 𝐸[𝑥]√
𝜎 + 𝜖

+ 𝛽, (4.1)

where 𝑥 is the output feature maps and 𝑦 is the batch normalised feature maps, 𝜖
is a small positive constant used to stop the denominator going to zero. 𝜎 is the
sample standard deviation and 𝐸[𝑥] is the sample mean of the feature maps be-
ing normalised. Both of these depend on the batch size hyperparameter introduced
in Sec. 2.3. This is beneficial as it reduces the dynamic range of the data at the
cost of two extra trainable parameters (𝛽,𝛾) and speeds up training sufficiently (if
the batch size is large enough). That is, it helps with what is known as the inter-
nal covariate shift (ICS) of a DNN. The ICS refers to the change in a layer’s input
distribution when a preceding layer has been updated while training. Updating
the learnable parameters in a DNN layer will lead to changes in activations within
nodes and layers which will change what the input to a following layer looks like to
the network. This causes the network to try to adapt to this new form of the input
which can prolong training. The role of batch normalisation is to mitigate this by
stabilising the input distributions to layers based on a learned mean and standard
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deviation, i.e. the feature maps are normalised by a learned mean and standard
deviation (𝛽,𝛾) such that the input distribution to the next layer appears to be the
same as the previous epoch despite the learnable parameters in the system being up-
dated. This is achieved by (𝛽,𝛾) themselves being additional learnable parameters.
This will speed up training by reducing the ICS in a network. Moreover, batch nor-
malisation reduces the dependence of the gradients calculated during optimisation
on the scale of the inputs and their initial values. This means that higher learning
rates can be used without the risk of divergence (which is beneficial in learning rate
scheduler methods, see Sec. 5.5). Equation 4.1 can then easily be manipulated dur-
ing backpropagation to return 𝑥 such that the true feature maps can be recovered
from the batch normalised feature maps. The activation function used in each of the
convolutional layers is the ReLU (see Sec. 2.1.1).

The red circles in Fig. 4.2 represent maxpooling layers used to downsample the
data by a factor of 2 in their spatial dimensions. This downsampling works by pars-
ing the image into segments of four pixels (2 × 2 grids) and taking the maximum of
those pixels. This means that one pixel in a downsampled image is representative
of the four pixel block it came from. This is, in a sense, how the network learns more
complex features – as the resolution of the input is decreased, each pixel represents
more information from the original input and thus each operation is performed on
a larger fraction of the original image (e.g. four pixels rather than one) which will
highlight more complex, larger features via the convolution operation. Other types
of pooling exist, such as average pooling (taking the average of the group of pixels
being downsampling), but maxpooling is the prevailing method in this case due to its
benefits for reducing over-fitting since the same pixel out of the four may not be the
maximum after every learnable parameter update. Furthermore, downsampling of
data in a network is typically tied to increasing the number of feature maps, since
decreasing the dimensions of the feature maps as the number of them is increased
is computationally efficient.

The grey cuboid at the end of the network in Fig. 4.2 is the classifier of our net-
work: after the features within the images are identified by the convolutional layers,
they are passed to the classifier which decides what class to assign to the images.
This can be described by a mini-network shown in Fig. 4.3. The 3D blocks in Fig. 4.3
represent fully-connected layers to classify the final set of 512 feature maps from
the last convolutional layer. The output of the first and second fully-connected lay-
ers go through a ReLU activation and a regularisation technique known as dropout
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(Srivastava et al., 2014). This assigns a probability, 𝑝, to each input node in a layer
such that for each training epoch there is a probability that the network will ignore
that node and connection and thus train on an approximate model. Training on a
set of approximate models and then averaging them at validation time works well
as a regularisation technique – i.e. helps reduce over-fitting – whilst still preserv-
ing (and actually improving, in many cases) results as shown in Srivastava et al.
(2014). In the CNN, 𝑝 = 0.5 (i.e. 50% chance of the connection being dropped). The
third fully-connected layer (in gold in Fig. 4.3) determines which class each image
should be assigned. Normally, there would need to be a final activation function here
but the class labels are inferred in this CNN via the choice of loss function which
implicitly adds this final activation layer (see Sec. 4.3).

4.3 Training the Convolutional Neural Network
The loss function chosen to minimise for this network is the standard for image
classification tasks: the cross-entropy loss (CEL). In information theory, the entropy,
𝐻, of a random variable 𝑥 is the uncertainty in the random variable’s outcome from
its probability distribution, 𝑝,

𝐻 (𝑥) = −
∑︁
𝑥𝑖

𝑝(𝑥𝑖) log 𝑝(𝑥𝑖), (4.2)

where {𝑥𝑖} are all possible values of 𝑥. That is, a random variable 𝑥 ∼ 𝑝 can take
one of the values {𝑥𝑖}, if the probability distribution 𝑝 is skewed towards any values
𝑥 can take then the value of Eq. 4.2 will be lower (less entropy, more certainty in val-
ues 𝑥 can take) whereas if 𝑝 is uniform then the value of Eq. 4.2 will be higher (more
entropy, less certainty in values 𝑥 can take). The concept comes from information
theory describing the amount of information given by certain events. Events with a
high probability are less surprising than those with low probability meaning there
is less entropy in the system and thus less information is needed to describe these
events. Extending this idea, cross entropy can be introduced to give a measure be-
tween two probability distributions 𝑝 and 𝑞 both characterised by random variable
𝑥

𝐻 (𝑝, 𝑞) = −
∑︁
𝑥𝑖

𝑝(𝑥𝑖) log 𝑞(𝑥𝑖). (4.3)
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The value of 𝐻 (𝑝, 𝑞) will then be small for two similar probability distributions.
That is, when the distributions 𝑝 and 𝑞 are similar there is less entropy in the
system. It is Eq. 4.3 that gives way to the CEL. The output of the classifier CNN
is the vector of probabilities of an input being of a certain class, �̃� = 𝑞(𝑥𝑖;Θ) and
the ground truth is a similar probability vector with a 1 in the entry corresponding
to its class and 0s elsewhere, 𝑦 = 𝑝(𝑥𝑖). This means that by minimising the cross
entropy between these two probability vectors, the network will learn how to classify
images correctly – this is because when the two distributions are dissimilar, the
cross entropy value will be high communicating to the network that there is a lot of
entropy in the system. That is, the CEL can be written

L = −
𝐶∑︁
𝑖

𝑝(𝑥𝑖) log(𝑞(𝑥𝑖;Θ)), (4.4)

where𝐶 is the number of classes in the classification problem and the estimate from
the network depends on the learnable parameters of the system Θ. The probability
distribution 𝑞 is modelled as a softmax function

𝑞(𝑥𝑖) =
exp(𝑥𝑖)∑
𝑘 exp(𝑥𝑘)

. (4.5)

This softmax function is the last non-linear activation after the final fully-connected
layer. Due to the truncating nature of the exponential function, if the network cor-
rectly thinks an image is a certain class then 𝑞→ 1 giving a low value of Eq. 4.44.

In the training of this CNN, a variant of vanilla SGD is used known as SGD
with Nesterov momentum (Sutskever et al., 2013). Rather than updating a learnable
parameter 𝜃 by Eq. 2.8, Nesterov momentum updates it by the following

𝜃𝑡+1 = 𝜃𝑡 + 𝑣𝑡+1, (4.6)

where 𝑣𝑡+1 is referred to as the velocity term and

𝑣𝑡+1 = 𝜇𝑣𝑡 − 𝜂∇L(𝜃𝑡 + 𝜇𝑣𝑡), (4.7)
4The softmax function is the multinomial generalisation of the logistic function used in binary

logistic regression. Thus the use of the softmax distribution and CEL here characterises the classifier
as a non-linear variant of multinomial logistic regression.
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Figure 4.4: The single misclassified case from our validation set. The network identifies
the image as containing flare ribbons likely due to the brightenings at the top of the image.
The image was truly classified by eye as containing a filament. However by inspection of the
probability distribution for the classes (right), the second most likely class is the correct one.
This could point to using the entire distribution rather than just the maximum to inform
the classification.

where 𝜇 is called the momentum coefficient and is a new hyperparameter introduced
to the system. 𝑣𝑡 is the velocity for the previous epoch. The term in the argument of
the gradient allows this method to correct the velocity term in a faster way if the cur-
rent prediction is not good. For example, if the product 𝜇𝑣𝑡 results in a poor update
for the learnable parameter then the gradient function calculated will be steeper
and thus tend back towards 𝜃𝑡 such that the optimiser can try again in another di-
rection. Thus SGD with Nesterov momentum allows the traversal of the loss space
at an accelerated rate but, by construction, since areas with flatter curvature will
be closer to the minima, the acceleration will slow as the minimum is approached
and thus the optimiser will not overshoot.

The CNN is trained over 100 epochs at a constant learning rate 𝜂 = 5×10−4 with a
momentum coefficient of 0.9 and a batch size of 32. After 4 epochs, the CNN achieves
99.92% classification on the validation set and this is taken as the final model (1 out
of the 1318 validation images are misclassified, Fig. 4.4). The near-perfection of this
model is impressive and not to be understated, as a perfect classifier for image data
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Filaments Flares Prominences Quiet Sunspots
Filaments 175 1 0 0 0
Flares 0 270 0 0 0
Prominences 0 0 304 0 0
Quiet 0 0 0 242 0
Sunspots 0 0 0 0 326

Table 4.1: The confusion matrix for the trained CNN. This is a representation of the net-
work’s performance on the validation set where each element in the confusion matrix is the
number of images classified as containing a feature compared to the true feature contained
in that image.

is difficult to come by due to the possibility of distortions and artefacts leading to
misclassification. Training takes approximately three hours on an NVIDIA Titan Xp
and the validation step takes 4.66 seconds per epoch on the same hardware (3.54ms
per image per epoch). Note that the speed with which the CNN learns the task does
not represent the complexity of the task but rather that the initialisation of the pa-
rameters was particularly good. The initialisation is determined by a random seed
that can be user-chosen or picked by default by the library being used. This changes
where the solution begins in the loss space and means it is likely that the training
starts in a place close to a local minimum giving excellent results5. This highlights
that retraining the same network can lead to different results unless everything is
kept the same. An important takeaway from this is if the model gets a high valida-
tion accuracy, but not to the user’s requirements, then retraining by altering single
hyperparameters can lead to finding the increase in performance desired.

4.4 Validation and Confusion Matrix
Classification percentage on a validation set is, however, not statistically robust
enough to determine whether or not a classifier has actually learned what it is set
up to do. This can be a result of having an uneven split in the validation set be-
tween the classes or having a strongly biased classification task. To deal with this,
the “confusion matrix” is calculated for the CNN. This is a matrix whose elements
correspond to what class an image actually belongs to compared to what class the

5Note that ideally the network would find a global minimum in the loss space for the task it is
trying to learn but attaching such certainty to a converged solution is difficult hence the use of the
term “local” when describing the minimum
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network classified it in. This is shown in Table 4.1. This quantifies the types of er-
rors made by a classifier. The predictions a classifier makes can now be split into
four categories for each of the features:

i) True positives: the number of images containing the feature of interest correctly
identified as containing that feature. That is, for a feature 𝑖 that is of interest:

tp𝑖 = 𝑐𝑖𝑖, (4.8)

where 𝑐𝑖 𝑗 is an element of the confusion matrix.

ii) False positives: the number of images not containing the feature of interest that
are identified as containing that feature

fp𝑖 =
𝑛rows∑︁
𝑘=1

𝑐𝑘𝑖 − tp𝑖. (4.9)

iii) False negatives: the number of images containing the feature i that are misclas-
sified as not containing the feature.

fn𝑖 =
𝑛cols∑︁
𝑙=1

𝑐𝑖𝑙 − tp𝑖. (4.10)

iv) True negatives: the number of images not containing feature i that are correctly
classified as not containing feature i

tn𝑖 =
𝑛cols∑︁
𝑙=1

𝑛rows∑︁
𝑘=1

𝑐𝑘𝑙 − tp𝑖 − fp𝑖 − fn𝑖. (4.11)

From these measures two statistics can be defined that can probe how well a
classifier works. The first is known as precision and this is a measure of the fraction
of the images that the model classified as having feature 𝑖 that truly contain feature
𝑖

𝜌𝑖 =
tp𝑖

tp𝑖 + fp𝑖
. (4.12)

The second is known as recall. This is a measure of the fraction of images containing
feature i that were correctly identified as containing feature i. This can be thought
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of as the ability of the model to find all of the images of interest

𝑟𝑖 =
tp𝑖

tp𝑖 + fn𝑖
. (4.13)

Ideally precision and recall will both be equal to one for all classes. The precision for
flare ribbons deviates from one as the misclassified image is misclassified as a flare
ribbon. This corresponds to the image not containing a flare ribbon but the network
deciding it does. The precision for all other classes is one, meaning that the network
does not classify any images not containing these features as actually containing
them. The recall for filaments is the only recall different from one as it is an image
containing a filament that is misclassified. This means that the network thinks this
image containing a filament actually contains another feature (in this case a flare
ribbon). The recall being equal to unity for all other classes means that the network
never classifies any of those images as having a feature different from the feature
they contain. Overall, the misinterpretation of the CNN is not detrimental to its
performance.

Figure 4.5 shows examples of the network classifying images. These are images
from SOT in H𝛼 which the network has not seen during training. This provides a
test to ensure our network is not “memorising” the training data i.e. adjusting its
learnable parameters to classify only the training set correctly.

The second column of Fig. 4.5 shows an image with clear flare ribbons that are
classified correctly by the network. However, there is also a sunspot in this image
which the network picks up on in the probability distribution (second column, bot-
tom). There is a non-negligible probability that the important feature in this image
is a sunspot. This means that the network can be used for classification of multiple
large-scale features in a single image. However, a more precise way to do multi-label
classification would be more beneficial and is discussed in Sec. 4.6. The other images
are classified correctly in Fig. 4.5 showing that the model has learned the geometry
of these features.

4.5 Application to SDO/AIA Wavelengths
Having trained the network on Hinode/SOT H𝛼 data, adversarial tests on the net-
work are performed. These are tests in which the input to the network is designed
to be confusing to the network. Adversarial examples are used where the answer is
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obvious to the user but not necessarily to the network. That is, datasets of sunspots
and prominences are used in different wavelengths given that they look perceptually
similar to the features in H𝛼. The sunspot datasets come from the UV wavelengths
(1600 & 1700Å) of SDO/AIA and the prominence datasets come from the 304Å EUV
channel. This gives an idea of whether or not the trained CNN can generalise to
other wavelengths without retraining.

4.5.1 Sunspots in UV
Three different sunspot datasets observed in UV are used as adversarial tests:
AR11638 from 2013/01/01, AR12665 from 2017/07/10 and AR12674 from 2017/09/06.
Each dataset used is over a one hour time range (12:00:00–13:00:00 UTC).

The 1600Å sunspot data was not classified well by the trained CNN, with
the 1700Å data faring better. In 1600Å, every image was classified incor-
rectly as containing either flare ribbons or a prominence with results shown in
Figs. 4.6, 4.7 & 4.8. It is hypothesised that there could be two possible reasons
for this:

i) There are small-scale UV brightenings around sunspots. This can be attributed
to plage (dispersed brightenings in an active region). While these brightenings
occur in the optical and the ultraviolet; they are more noticeable in the UV due
to the background UV quiet Sun being dimmer than in the optical. This implies
that the contrast between plage and quiet Sun in UV wavelengths will be higher
which can impact the network’s classification ability by convincing it that the
brightenings are the important feature. Furthermore, the plage can often look
like elongated bright regions and this elongation may be further proof to the
network that this image should be classified as something other than a sunspot.

ii) The lack of spatial resolution in the AIA images. In H𝛼, SOT has a spatial res-
olution of 0.33′′whereas for the AIA UV channels the spatial resolution is 1.2′′.
This disparity could be another cause (or composite cause) of the misclassifica-
tion of the UV sunspot observations. Due to the nature of convolutional feature
extraction, the extracted features from two images of the same object but with
different resolutions can be vastly different. This would affect the feature maps
being passed through the trained CNN and thus the end classification result.
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The first hypothesis is tested using these three datasets and the results are illus-
trated in Figs. 4.6, 4.7 & 4.8. Due to the incorrect classifications being either flare
ribbons or prominences for these active regions it is believed that the brightness and
elongation of the plage region is responsible for this. As can be seen in Figs. 4.1 & 4.5,
in H𝛼 both flare ribbons are bright, elongated structures on a darker background
which is what leads us to believe the first hypothesis is responsible for incorrect
classification. Moreover, for the 1600Å sunspot observations that are misclassified
as prominences (namely Fig. 4.7 third column) the image background is darker than
the other images possibly leading the network to be confused into thinking this im-
age contains a prominence. It could also be that in this image the bright plage region
resembles more of the geometry of the prominences that the CNN is trained on than
the flare ribbons.

To test for the second hypothesis, sunspot observations that are cotemporal with
observations from SOT in H𝛼 must be used. The results of this test are shown in
Fig. 4.9. The dataset chosen was from a single-sunspot active region AR11108 from
2010/09/25. The observations used from AIA were taken from 08:05:00 – 09:20:00
UTC. An example is shown in the left column of Fig. 4.9 where the sunspot was
misclassified as a flare ribbon. The observations used from SOT were taken con-
temporaneously with AIA in H𝛼. These H𝛼 images are downsampled by a factor of
3 to AIA resolution. The full resolution and low resolution images are then passed
to the network. Both sets of images are classified perfectly by the network as shown
by the middle and right columns of Fig. 4.9. This result invalidates the second hy-
pothesis and leads to the conclusion that resolution is not a determining factor in
misclassifications. Thus, it is concluded that the plage is the feature confusing our
network from understanding sunspots in 1600Å.

In 1700Å, despite the sunspots in each active region not evolving much over
the observed time range, the network sometimes classifies these sunspots correctly
whilst sometimes incorrectly classifying them as either flare ribbons or prominences
(Figs. 4.10, 4.11 & 4.12). In general, the trained CNN performs much better in 1700Å
than 1600Å as it actually gets most classifications correct. The results shown in
Figs. 4.10, 4.11 & 4.12 show confident sunspot classifications in the 1700Å data. It
seems as though the bright plage regions in 1700Å have less of an effect on the clas-
sifications than they do in 1600Å leading to some interesting possibilities of how the
network interprets the data. There appears to be a lower contrast between the plage
and the background in 1700Å than in 1600Å and comparing to SOT H𝛼 sunspot ob-
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Figure 4.6: The three images analysed here are of the same sunspot (AR11638) imaged
in SDO/AIA 1600Å a few minutes apart. These are shown to highlight the confusion of
the network when dealing with 1600Å sunspots as the sunspot is never classified correctly.
The sunspots in 1600Å are always either classified as flare ribbons or prominences. It is
hypothesised that this is due to the elongated, bright plage in the images.

servations this points to a potential reason why the trained CNN classifies 1700Å
correctly but not 1600Å. Looking at the last columns of Figs. 4.1 & 4.5, perceptually
it makes sense for images with less contrast between the plage and the background
to be classified more accurately as the network is trained on images without these
bright plage regions. Methods such as saliency maps or SHAP (SHapely Additive
exPlanations; Lundberg and Lee, 2017) for exploring the important features the
network picks out from the images when doing these classifications would confirm
these hypotheses.

4.5.2 Prominences/Filaments in 304Å
Two different datasets for three different prominences are used to investigate if the
trained CNN can classify prominences in other wavelengths. SDO/AIA 304Å ob-

58



4.5. APPLICATION TO SDO/AIA WAVELENGTHS

Figure 4.7: Same layout as Fig. 4.6 but for the sunspot in AR12665.

servations are used to look at prominences which correspond to Heii emission at
≈50,000 K. These datasets were taken from 2012/08/31 12:00:00–13:00:00 UTC and
2013/01/01 10:00:00–11:00:00 UTC. The 2012/08/31 dataset has the prominence lo-
cated off the eastern limb of the Sun and is shown in the right column, top row of
Fig. 4.13. The 2013/01/01 dataset has two prominences: one located off the eastern
limb north-east from disk centre and another located off the eastern limb south-
east from disk centre. These are shown in the left and middle columns, top row of
Fig. 4.13.

As shown in the bottom row of Fig. 4.13, none of the structures are predicted
correctly. This is thought to be caused by the noisy coronal background emission at
the heights of the prominence. This is seen in the images in Fig. 4.13, where there
is emission in the region of the prominence that is not directly from the prominence.
In contrast, the H𝛼 images from Hinode/SOT do not have emission except in the
prominence at the heights of the prominence (as can be seen in the third columns
Figs. 4.1 & 4.5).

All of the images in Fig. 4.13 are misclassified as flare ribbons. For the two
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Figure 4.8: Same layout as Figs. 4.6 & 4.7 but for the sunspot in AR12674.

prominences from 2013/01/01, this is caused by the background Heii emission as
this causes the prominence to appear bright against an emitting background which
is similar to the flare ribbon images used for training in H𝛼. The filament from
2012/08/31 has comparable probabilities of the image containing a flare ribbon or
a prominence. In the image of this filament, it is assumed that for the flare ribbon
classification that the trained CNN chooses the bright point in the middle of the im-
age as the most important feature. Interestingly, though, the trained CNN picks up
the geometry of the filament as a different feature and is almost equally confident
that this image contains a prominence. Also the same argument as in Sec. 4.5.1
follows: that the difference in resolution does not impact the CNN’s classification
ability. Therefore, the conclusion that only the coronal emission affects the classi-
fication ability of the trained CNN is reached. Again, the saliency maps or SHAP
method could be used to confirm this hypothesis.
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Figure 4.9: Comparison of the sunspot from AR11108 images in SDO/AIA 1600Å (left col-
umn) and Hinode/SOT H𝛼 at full resolution and degraded to AIA resolution (middle and
right columns, respectively). This illustrates that the resolution does not play a significant
role in skewing the classification of the trained CNN as both the full resolution and low
resolution SOT images are classified correctly whilst the AIA image is not.

4.6 Conclusion and Further Work
The deep convolutional neural network presented in this chapter has been shown to
be able to learn the geometry of features on the Sun. This works very well for the
wavelength that the network is trained on but does not always generalise to other
wavelengths (which is to be expected due to some emission mechanisms occurring
in some wavelengths and not others). This leads to a discussion of how the network
can be improved through more detailed classification and multi-wavelength training
regimes that could produce a classifier that generalises better to unseen data. Also
increasing the depth of training can lead to more efficient uses of transfer learning
from one network to another.

Further improvements to the network will make it more versatile and precise. In
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Figure 4.10: SDO/AIA 1700Å observations of the sunspot in AR11638 (top row) and the
resulting classifications by the trained CNN (bottom row). This performs much better than
the same dataset observed in 1600Å as all three examples here are classified correctly as
sunspots.

the versatility direction, multi-label classification can be used. This means that each
image will have more than one label e.g. n sunspots or single flare ribbon; this can
be analysed sequentially. One way to do this is by using multiple binary classifier
CNNs on the images and using the results from the binary networks to determine
what features are in an image, e.g. one network to detect sunspots, one to detect
flare ribbons and so on (Read et al., 2011). Another is using an ensemble method
where there is a set of multiclass classifiers that each assign one label to the image.
These predictions are then combined with each class getting a certain percentage of
a vote from each classifier and the labels with a percentage above a certain thresh-
old are used as the multi-label for the image (Rokach et al., 2014). This can be done
using a recursive neural network (RNN). An RNN is a network that is specialised
at processing sequential data. RNNs do this by using the previous layer’s output as
the dependency for the current layer’s input – there is some function that connects
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Figure 4.11: Same layout as Fig. 4.10 but for sunspots observed in AR12665. The data here
is also classified correctly as sunspots despite its 1600Å counterpart being misclassified.

the output of the previous layer to the input of the current layer in a specified se-
quence (a “recurrence relation”). Following Bui et al. (2016), a convolutional RNN
(C-RNN) which takes the feature maps from the last convolutional layer in the orig-
inal network (after activation) as an input and outputs a compact representation of
each feature over many convolutions can be used. This allows the C-RNN to learn a
general form for the features (i.e. over many convolutional filters). For multi-label
classification, the C-RNN architecture network will generate N RNNs to describe
each image by N labels. For example, if an image contains at least one sunspot and
the user wants to know if it has a single sunspot or multiple sunspots then two RNN
blocks will be used – one to predict that the image contains a sunspot and the second
to predict how many sunspots are in the image. This has seen great success in other
image classification cases (Bui et al., 2016; Wang et al., 2016) and could work well
for solar images.

There are many changes that can be implemented to improve precision. The
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Figure 4.12: Same layout as Figs. 4.10 & 4.11 but for sunspots observed in AR12665. The
data here is also classified correctly as sunspots despite its 1600Å counterpart being mis-
classified.

dropout layers could be replaced with max-dropout or stochastic dropout proposed
in Park and Kwak (2017) which has improved performance on standard datasets.
Another possibility is to change the convolution blocks to residual blocks (He et al.,
2015a) wherein the network learns the residual of a function (the difference between
the function and the input) rather than the function itself (see Sec. 5.4 for more
information). This has been shown to improve speed, performance and how deep a
network can be before suffering from vanishing gradients.

Another interesting property of the trained CNN is that it is based on a series
of very successful deep CNNs known as VGG networks which were made to learn
the ImageNet dataset (Deng et al., 2009; Simonyan and Zisserman, 2014). These
deep architectures are necessary for solar image classification as shallower networks
did not yield sufficient results (even for a simple task such as image classification).
The ImageNet dataset is a well-known database of millions of images that has been
classified into thousands of classes. This has been an incredibly successful approach
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Figure 4.13: Examples of incorrect classification of prominences/filaments observed in
SDO/AIA 304Å. The left and middle columns are quite confidently classified as flare rib-
bons which is thought to be due to the background coronal Heii emission visible in these
images but does not have an analogue in the H𝛼 training set. The right column shows the
trained CNN thinking that the image is nearly as likely to contain a prominence as a flare
ribbon. It is assumed that the trained CNN identifies the bright patch in the middle as a
flare ribbon but also picks up the filament above it. This shows the trained CNN’s capability
of giving a good idea if there are multiple features in a single image without being explicitly
taught to do so.

and is useful in transfer learning. The pre-trained VGG networks have proven to
be extremely useful for transfer learning for real-world images (Kupyn et al., 2017;
Johnson et al., 2016). This leads to the proposal of an analogous solar dataset i.e. a
solar ImageNet (SIN). SIN would be a huge dataset containing features imaged in
different wavelengths from different instruments. A classifier could then be trained
to learn what these features look like in different solar contexts. (Or a series of
classifiers to identify features in different wavelengths before the overall result is
combined at the other end). The classification network presented here can be used
as a building block for SIN and acts like a VGG network trained on a subset of
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ImageNet.
This would make a transfer learning approach to solar machine learning ex-

tremely plausible and could lead to increased accuracies in deep learning tasks in
solar physics compared to the same networks initialised without transfer learning.
For example, this kind of network would be useful in data pipelines for creating
catalogues of data and picking up on observations that were targeted at a specific
feature but picked up something else too. Furthermore, the network presented can
be used in conjunction with already existing data pipelines where the data may not
have a specific target specified in the meta information. Due to its speed and accu-
racy, this model will be useful for anyone having to sift through terabytes of data.
Lastly, networks of this design could be utilised in automating telescope pointing.
With more detailed training, a sufficient network could parse synoptic observations
of the observer’s target and calculate where the target will be when the observations
will be occurring.
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5 | Correcting for Atmospheric
Seeing in Solar Flare Obser-
vations

The following chapter presents a more in-depth view of the research published in
Armstrong and Fletcher (2021) on the Seeing AUtoeNcoder (Shaun). Particularly,
Sec. 5.2 details the mathematical derivation of the synthetic seeing model used while
Sec. 5.6 provides more examples of the trained model in action.

5.1 Atmospheric Seeing and the Current State of
the Art

Atmospheric scintillation (also referred to as seeing) is the refraction of incoming
wavefronts of light from astronomical sources by the turbulent Earth’s atmosphere.
This causes the observations to become noisy and degraded as the incoming light is
no longer coherent. This is ubiquitous in ground-based astronomy. It poses a prob-
lem for all observers, particularly those studying highly variable phenomena. It has
become the norm for observing facilities to use adaptive optics (AO) systems in their
optical path to correct for the wavefront deviations introduced by the atmosphere.
AO systems use a wavefront sensor to detect changes in the photon’s trajectory from
the plane-parallel direction. The sensor then sends commands for how to correct
the photons back to being plane-parallel to a deformable mirror which applies this
correction to incoming photons. There are two important atmospheric parameters
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that characterise an AO system: the isoplanatic angle, 𝜃0, and the coherence time,
𝑡0. Both of these quantities depend on the Fried parameter 𝑟0 (Fried, 1966, dis-
cussed further in Sec. 5.2) which is a quantity that describes the length scales over
which turbulent areas of the Earth’s atmosphere will produce coherent refractions
to photons.

The isoplanatic angle is the maximum distance in the sky that two plane waves
can be separated and still pass through the same turbulent cell before reaching the
detector. The isoplanatic angle is directly proportional to the Fried parameter and
inversely proportional to the height of the turbulent layer. This means that the iso-
planatic angle is smaller for smaller values of the Fried parameter, i.e. less coherent
turbulence leads to smaller source separation passing through the same turbulence.
That is, when the seeing is worse, it is harder to estimate the statistics characteris-
ing the atmosphere and thus harder to correct for the seeing. Mathematically, the
isoplanatic angle is given by

𝜃0 =
𝑟0
ℎ
, (5.1)

where ℎ is the height of the turbulent layer that the wavefronts are passing through.
With modern imagers looking at extended sources, 𝜃0 is smaller than the field of
view being imaged (known as anisoplanatism). 𝜃0 is estimated from the centre of
the field of view meaning that the statistics may not hold for observations outside of
a disc with radius 𝜃0 centred on the image centre. The same wavefront corrections
are used over the entire field of view meaning that the corrections outside of the disc
will not be as accurate.

The coherence time is the evolution timescale of the turbulence for a given Fried
parameter. That is, within the coherence time, an area of the atmosphere will pro-
duce the same refractions to wavefronts passing through it. Therefore, once a coher-
ence time has passed there will no longer be the same deformations to the light. This
is due to the wind speed in the atmosphere and the coherence time can be written
as

𝑡0 =
𝑟0
𝑣
, (5.2)

where 𝑣 is the average wind speed in the atmosphere. Moreover, this means that
the AO system must work on timescales shorter than the coherence time to make
sure that the corrections sent to the deformable mirror are correct for incoming
wavefronts. This can be difficult as typical values for 𝑡0 are O(10ms).

As a result of constraints by 𝜃0 and 𝑡0, when the seeing conditions are particu-
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larly bad, the object being observed evolves faster than the speed of the AO system,
or the field of view is much larger than the isoplanatic patch, and post-processing
techniques must be introduced to correct for seeing. The two most common post-
processing techniques used in solar physics are Speckle interferometry and Phase
Diversity (PD) methods.

Speckle interferometry is the process of using 2D power spectra of many short
exposures to estimate the atmosphere’s effects on the observations and correct for
these (for solar applications these methods are developed in von der Lühe and Dunn,
1987; von der Lühe, 1993). As the turbulence changes on small time scales, 𝑡0,
analysing many short exposures will lead to any errant motions within the data be-
ing solely due to the atmospheric turbulence. This process consists of two passes
through the set of short exposures. In the first pass, the Fourier transform of the
images is found before averaging these transforms and their power spectra. The ra-
tio of the average transforms to average power spectra is independent of the static
structure within the field of view and thus only depends on the atmospheric tur-
bulence present (averaging the observations will remove high frequency data due
to the atmospheric turbulence but the average power spectrum will maintain the
higher frequency information so that the ratio can be used to estimate the turbu-
lence). The information learned about the turbulence is used to produce a noise filter
characterising the atmospheric noise. This noise filter is then used to remove the
seeing effects by passing through the data again. However, due to anisoplanatism,
the field of view in each short exposure frame must be divided into overlapping sub-
fields before being corrected individually. Once the subfields are corrected, they are
combined back into the whole field of view by examining their cross spectra, and an
inverse Fourier transform is performed to recover the corrected image in real space.

For the most dynamic of processes (e.g. solar flares), the evolution time will be
shorter than the cumulative length of the exposures required to obtain the frames
necessary for the reconstruction. This means that the ratio of averaged Fourier im-
ages to averaged power spectra will depend also on the dynamics of the processes
being imaged if all short exposures are considered. Therefore, the atmospheric pa-
rameters will need to be estimated from a number of consecutive short exposures
which is suboptimal for the algorithm. This will lead to greater uncertainty in the
atmospheric parameters and a poorer restoration, as a result.

PD methods jointly estimate the restored image and the distortions responsible
for the aberrated image in a maximum likelihood estimation. The state of the art PD
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method in solar physics is multi-object multiframe blind deconvolution (MOMFBD;
Van Noort et al., 2005). MOMFBD implements a simple model of the optics and
detectors used in the observations, eliminating the need to rely on the atmospheric
statistics as in Speckle reconstruction. Synthetic images are then generated by dif-
ferent pupil functions until a maximal likelihood pupil function is found. As ex-
plained in Van Noort et al. (2005), PD methods work best when contrast is high,
noise is low, and exposure time is short. This is difficult to achieve in narrow-band
solar observations and, as a result, wide-band data collected simultaneously must
be used to aid in the MOMFBD restoration. It is this that poses the biggest prob-
lem for the restoration of flare data. Chromospheric energy deposition in a flare
is mostly seen through the enhancement of optical and near-infrared spectral lines
and not necessarily strong continuum enhancements (Fletcher et al., 2011). This
can lead to the objects being studied looking very different in the wide-band and
narrow-band observations. Given that the wide-band is used to help the optimisa-
tion of the restoration, in cases where there is no continuum enhancement in a flare,
it can actually be a hindrance to the restoration1.

Furthermore, both Speckle and PD methods have a limit to their restoration ca-
pabilities (as all methods will). This is detrimental to flare observations due to their
sporadic nature meaning observers cannot wait for optimal seeing conditions to ob-
serve. For these reasons, a dedicated flare seeing-correction tool is proposed based
on training a deep neural network (DNN) on diffraction-limited narrow-band flare
data synthesized with artificial seeing. Note that this model is for the application to
data that is time-integrated i.e. has already been processed by one of the aforemen-
tioned methods. This is due to the assumption of the azimuthally-symmetric point-
spread functions in the model which makes it unsuitable for use on raw frames of
data. This use and how it can be expanded upon are discussed further in Chap. 7.

1Note that MOMFBD also provides near-perfect image alignment between the images taken at
different wavelengths which is something that is assumed by the neural network model described
below. Inclusion of this kind of registration between images would be hugely important for processing
the data completely MOMFBD-free.
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5.2 Development of a Seeing Model From the Statis-
tics of Turbulent Media

The following section discusses the development of the model to simulate the ef-
fects of synthetic atmospheric seeing on an image, dependent on the wavelength the
data is observed at. This model is used to generate the training dataset in Sec. 5.3
which is in turn used to train the DNN to correct for real seeing (Secs. 5.5, 5.6). In
any photon-collecting system, any change in medium that the observed light travels
through has an effect on the light when observed by a detector. This is typically
characterised by a point spread function (PSF) of the system which “spreads” the
photons in a smearing pattern either spatially or spectroscopically. The PSF of dif-
ferent instruments within a photon-collecting system are well characterised before
construction of said system, allowing for the removal of these effects during post-
processing of the data to present the data as true to the emitted light from the source
as possible. The removal of such artefacts is posited as a deconvolution problem as
the observed data, 𝑂 at a detector can be written:

𝑂 = 𝐼 ∗ 𝑃 + N , (5.3)

where ∗ represents the convolution of 𝐼 and 𝑃, 𝐼 is the light emitted from an as-
tronomical source, 𝑃 represents the PSF of the system and N represents random
noise occurring within components of the system such as readout or thermal noise.
In modern systems, even the random noise attributed, N , can be well characterised
allowing for accurate reconstruction of emitted light. The problem then becomes
observing astronomical sources from the ground.

Much like observing through an instrument, observing through the Earth’s at-
mosphere alters the incoming photons that observers wish to detect. These al-
terations in reality are the incoming photons being refracted by random varia-
tions within the atmosphere’s density and temperature structure. Such refractions
change the path length of the photons greatly impacting ground-based observations
by introducing a large smearing effect. While the instruments used can be well
characterised, it is much more difficult to characterise the atmosphere as it is a tur-
bulent system meaning the changes within the system are random. The effects of

71



5.2. DEVELOPMENT OF A SEEING MODEL FROM THE STATISTICS OF
TURBULENT MEDIA

the atmosphere can be written in the same way as Eq. 5.3 as a PSF:

𝑂 = 𝐼 ∗ 𝑃atmos + 𝐺, (5.4)

where everything retains its same meaning from Eq. 5.3, 𝑃atmos represents the
PSF of the Earth’s atmosphere and 𝐺 is random Gaussian noise. As discussed in
Van Noort et al. (2005)’s Sec. 4.4.3, the use of Gaussian noise in favour of Pois-
sonian noise in Eq. 5.4 is likely not the best assumption for spectral lines with low
signal-to-noise ratio (SNR). However, since the cameras at the SST have a high SNR,
Van Noort et al. (2005) claim that the assumption of Gaussian noise “is probably not
a bad one at least in the wavefront sensing step”. As such, the model here also
uses this assumption of Gaussian noise given the majority of the data this method
is applied to is from the SST.

The model being developed here boils down to finding a form for 𝑃atmos that can
be populated for various atmospheric conditions to create a diverse training set.
Racine (1996) showed that the atmospheric PSF can be written generally as the
Hankel transfer of the modulation transfer function (MTF) of the atmosphere:

𝑃atmos (𝜌) =
∫ ∞

0
𝐽0(𝜌𝜈) exp {−0.5𝐷S(𝜈)} 𝜈d𝜈, (5.5)

where 𝜌 is the 2D spatial coordinate, 𝜈 is the 2D spatial frequency coordinate and
𝐽0 is the zeroth order Bessel function. The MTF depends solely on the structure
function of the atmosphere, 𝐷𝑆, which is where the form of the seeing comes from.

To find a form for this structure function, the assumption is made following
Tatarski (2016) that the Earth’s atmosphere is a medium with smoothly varying
turbulence. Media with smoothly varying turbulence have phase-structure func-
tions of the following form:

𝐷S(𝜌) = 2.91𝑘2𝜌5/3
∫
®ℓ
𝐶2
𝑛(®𝑟)d®𝑟, (5.6)

where 𝑘 is the wavenumber of the photon, ®ℓ is the path travelled by the photon and
𝐶2
𝑛 is proportional to the ratio of the rate of dissipation of inhomogeneities in the

atmosphere, �̄�, to the cube-root of the mean energy dissipation per unit mass, 𝜀,
which describes the structure of the atmosphere at a point ®𝑟. To understand how
Eq. 5.6 comes to be, the statistical description of continuous random fields must be
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understood.
For Sec. 5.2.1, the mathematical definitions of random functions, stationary ran-

dom functions and random functions with stationary increments along with their
associated two-point correlation and structure functions are adapted from Tatarski
(2016) Part 1 “Some Topics from the Theory of Random Fields and Turbulence The-
ory” with added description around some of the more dense mathematics. This is
similarly the case when introducing random fields in Sec. 5.2.2. Deriving the ex-
pression for the structure function of the Earth’s atmosphere follows the arguments
presented in Tatarski (2016) Part 3 “Parameter Fluctuations of Electromagnetic and
Acoustic Waves Propagating in a Turbulent Medium” under the assumption that the
Earth’s atmosphere is a medium with smoothly-varying turbulence. This results in
a comprehensive derivation of the Kolmogorov structure function which is then used
to estimate the entries in the seeing disk whose size is defined by the Fried param-
eter. Many of the mathematical steps shown in these sections are not presented
within Tatarski (2016) (left as “exercises to the reader” some might say) but are
presented here for transparency of the mathematical rigour required to reach the
model.

5.2.1 What Actually is a Structure Function?
Consider a random function 𝑓 . At a given fixed point in space, 𝑥, the value of the
function 𝑓 (𝑥) is a random variable (i.e. can assume a set of different values) and
there exists a definite probability 𝐹 (𝑥, 𝜉1) such that 𝑓 (𝑥) < 𝜉1. However, since 𝑓
is random, to be able to be completely described, one must know the definite prob-
abilities and in all dimensions making it very difficult to fully describe a random
function in reality. Therefore, statistics of the random function are used instead to
describe the random function. Tatarski (2016) makes use of two important statistics
used to describe random functions: the mean of the random function 𝑓 (𝑥) and the
correlation function within the field:

𝐵𝑓 (𝑥1, 𝑥2) =
(
𝑓 (𝑥1) − 𝑓 (𝑥1)

) (
𝑓 ∗(𝑥2) − 𝑓 ∗(𝑥2)

)
, (5.7)

where 𝑓 ∗ is the complex conjugate of 𝑓 (however, only real functions are considered
here so 𝑓 ∗ = 𝑓 ). The correlation function of a random function gives a measure of
how a change at point 𝑥1 affects the random function at point 𝑥2 and vice versa. If
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𝑥1 and 𝑥2 are statistically independent then the value of Eq. 5.7 will approach zero.
The correlation function (Eq. 5.7) and the structure function (Eq. 5.6) turn out to
be related for a specific kind of random function known as a “random function with
stationary increments”.

A random function is known as stationary if the mean of the random function is
constant at different points in space and the two point correlation function depends
only on the distance between the two points. This can simplify the description of
the function as only the distance between two points being considered is important.
The assumption is made (unless otherwise explicitly stated) that the mean value of
a stationary random function is zero2. Therefore, Eq. 5.7 can be written

𝐵𝑓 (𝑥1, 𝑥2) = 𝑓 (𝑥1) 𝑓 ∗(𝑥2). (5.8)

Furthermore, a stationary random function 𝑓 can be written as a Fourier-Stieltjes
integral with the following form:

𝑓 (𝑥) =
∫ ∞

−∞
𝑒𝑖𝑘𝑥 d𝜑(𝑘), (5.9)

where d𝜑(𝑘) are random complex amplitudes describing the fluctuations in the ran-
dom process and 𝑘 is the wavenumber of the fluctuation. Substituting Eq. 5.9 into
Eq. 5.8, an expression for the correlation function depending only on the difference
between the two arguments can be constructed

𝐵𝑓 (𝑥1 − 𝑥2) =
∫ ∞

−∞

∫ ∞

−∞
exp [𝑖(𝑘1𝑥1 − 𝑘2𝑥2)] d𝜑(𝑘1)d𝜑∗(𝑘2). (5.10)

As 𝑓 is a stationary random function, 𝐵𝑓 can only depend on the difference between
𝑥1 and 𝑥2 and the differential in Eq. 5.10 has the following form

d𝜑(𝑘1)d𝜑∗(𝑘2) = 𝛿(𝑘1 − 𝑘2)𝑊 (𝑘1)d𝑘1d𝑘2, (5.11)

where 𝛿(·) represents the Dirac delta function. Eq. 5.11 says that the correlation
function only exists when the parameters 𝑘1 = 𝑘2 = 𝑘. Eq. 5.10 can then be written

2In the case where 𝑓 (𝑥) ≠ 0, there always exists a random function 𝑔(𝑥) = 𝑓 (𝑥) − 𝑓 (𝑥) where
𝑔(𝑥) = 0.
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as:

𝐵𝑓 (𝑥1 − 𝑥2) =
∫ ∞

−∞

∫ ∞

−∞
exp [𝑖(𝑘1𝑥1 − 𝑘2𝑥2)] 𝛿(𝑘1 − 𝑘2)𝑊 (𝑘1)d𝑘1d𝑘2

=

∫ ∞

−∞
exp [𝑖𝑘(𝑥1 − 𝑥2)]𝑊 (𝑘)d𝑘,

(5.12)

since
∫ ∞
−∞ 𝛿(𝑥 − 𝑎) 𝑓 (𝑥)𝑑𝑥 = 𝑓 (𝑎). 𝐵𝑓 and 𝑊 (𝑘) are thus Fourier transforms of one

another. The function 𝑊 (𝑘) is the spectral density of the random function 𝑓 (𝑥)
describing how the turbulent fluctuations are spread on different spatial scales.

However, for the Earth’s atmosphere, the mean value of the density and temper-
ature change in time meaning it cannot be considered a stationary function. What
is investigated instead, is whether there are length scales under which the Earth’s
atmosphere can be considered a stationary random function and whether or not it
is feasible to evaluate it in this way. A random function that can be considered sta-
tionary under certain length/time scales is referred to as a random function with
stationary increments. Treating the quantities (e.g. density, temperature, pressure)
in the Earth’s atmosphere as random functions with stationary increments allows
the quantities to be described by a structure function rather than the two point cor-
relation function. For example, if the random function 𝑓 is not stationary, then
consider small scales 𝜖 such that the difference

𝐹𝜖 (𝑥) = 𝑓 (𝑥 + 𝜖) − 𝑓 (𝑥), (5.13)

is not largely affected by slow changes in 𝑓 . That is, the function 𝐹𝜖 is approximately
a stationary random function (consequently implying that 𝑓 is a random function
with stationary increments). If the two-point correlation function for the stationary
random function 𝐹𝜖 is considered and under the assumption that the mean of the
stationary functions are zero then:

2𝐵𝐹 (𝑥1, 𝑥2) = ( 𝑓 (𝑥1 + 𝜖) − 𝑓 (𝑥2))2 + ( 𝑓 (𝑥1) − 𝑓 (𝑥2 + 𝜖))2−

− ( 𝑓 (𝑥1 + 𝜖) − 𝑓 (𝑥2 + 𝜖))2 − ( 𝑓 (𝑥1) − 𝑓 (𝑥2))2, (5.14)

using Eq. 5.13 and the algebraic identity:

2(𝑎 − 𝑏) (𝑐 − 𝑑) = (𝑎 − 𝑑)2 + (𝑏 − 𝑐)2 − (𝑎 − 𝑐)2 − (𝑏 − 𝑑)2. (5.15)
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The two point correlation function (Eq. 5.14) can then be written as a linear combi-
nation of functions of the form:

𝐷𝑓 (𝑥𝑖, 𝑥 𝑗) = ( 𝑓 (𝑥𝑖) − 𝑓 (𝑥 𝑗))2, (5.16)

which are referred to as the structure functions of the random process 𝐹𝜖. From here
on out Eq. 5.16 will be used as a proxy for Eq. 5.14. If the structure functions depend
only on the difference between the two points being considered then the two point
correlation function of the system will also only depend on this, satisfying the crite-
ria that within scales of 𝜖, the system is a stationary random function. As such the
structure function is the standard characteristic used to describe a random function
with stationary increments. It acts like a proxy for the two point correlation being
specifically constructed to consider the process on scales smaller than or equal to
𝜖. Similarly to how a stationary random function can be expressed using a Fourier-
Stieltjes integral, a random function with stationary increments can be represented
in the form

𝑓 (𝑥) = 𝑓 (0) +
∫ ∞

−∞
(1 − 𝑒𝑖𝑘𝑥)d𝜑(𝑘), (5.17)

where 𝑓 (0) is a random variable and the amplitudes d𝜑(𝑘) follow Eq. 5.11. Eq. 5.16
can then be written

𝐷𝑓 (𝑥𝑖, 𝑥 𝑗) = ( 𝑓 (𝑥𝑖) − 𝑓 (𝑥 𝑗))2 = ( 𝑓 (𝑥1) − 𝑓 (𝑥2)) ( 𝑓 ∗(𝑥1) − 𝑓 ∗(𝑥2))

=

∫ ∞

−∞

∫ ∞

−∞

(
𝑒𝑖𝑘1𝑥1 − 𝑒𝑖𝑘1𝑥2

) (
𝑒−𝑖𝑘2𝑥2 − 𝑒−𝑖𝑘2𝑥1

)
d𝜑(𝑘1)d𝜑∗(𝑘2),

(5.18)

and following the same logic as Sec. 5.2.1, 𝐷𝑓 (𝑥1 − 𝑥2) can be expressed by the fol-
lowing integral and the spectral density of 𝑓

𝐷𝑓 (𝑥1 − 𝑥2) =
∫ ∞

−∞

[
1 − 𝑒𝑖𝑘(𝑥2−𝑥1)𝑊 (𝑘)

]
d𝑘. (5.19)

Since the structure function and spectral density are real-valued functions, on the
real part of Eq. 5.19 will yield a physical solution, therefore, it can be written

𝐷𝑓 (𝑥1 − 𝑥2) = 2
∫ ∞

−∞
[1 − cos(𝑘(𝑥2 − 𝑥1))𝑊 (𝑘)] d𝑘. (5.20)
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5.2.2 From Random Functions to Random Fields
A random field is simply a random function considered in three spatial dimensions.
That is, the quantities to be described in the Earth’s atmosphere are random fields.
As with random functions in Sec. 5.2.1, the mean and two-point correlation function
can be defined for points within a random field.

𝐵𝑓 (®𝑟1, ®𝑟2) = ( 𝑓 (®𝑟1) − 𝑓 (®𝑟1)) ( 𝑓 (®𝑟2) − 𝑓 (𝑟2)), (5.21)

where 𝑓 is the random field and ®𝑟1, ®𝑟2 are vector positions within the field being
considered.

The concept of a random field being stationary is now referred to as the field being
homogeneous as the mean value does not vary as the field is moved through. A ho-
mogeneous random field also has the property that the correlation function depends
only on the displacement between the two points. The field can also be referred to as
isotropic if the values of the Eq. 5.21 depend on the separation between two points
but not the direction in which they are separated. The fields to be emulated in the
model are not globally homogeneous or isotropic but can be formulated to be locally
homogeneous and isotropic meaning the structure function can be defined for these
random fields as

𝐷𝑓 (®𝑟1, ®𝑟2) = ( 𝑓 (®𝑟1) − 𝑓 (®𝑟2))2, (5.22)

following the same logic as in Sec. 5.2.1. Along the same lines, the structure function
for a random field which is locally homogeneous and isotropic can be expressed in
terms of a three dimensional spectral density Φ𝑓 ( ®𝑘)

𝐷𝑓 ( ®𝜌 = ®𝑟1 − ®𝑟2) = ( 𝑓 (®𝑟1 + ®𝜌) − 𝑓 (®𝑟1))2

= 2
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
(1 − cos ®𝑘 · ®𝜌)Φ𝑓 ( ®𝑘)d®𝑘.

(5.23)

Given that the random field 𝑓 is assumed to be locally isotropic, the structure func-
tion will now depend on the magnitude of the distance between the two points 𝜌 = | ®𝜌 |
meaning

𝐷𝑓 (𝜌) = 8𝜋
∫ ∞

−∞
(1 − cos 𝑘𝜌)Φ𝑓 (𝑘)𝑘2d𝑘, (5.24)

where 𝑘 = | ®𝑘|.
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Having argued that a structure function can be used to describe the nature of the
random processes in the Earth’s atmosphere, an analytical form for this function
will be derived to be used to generate synthetic atmospheric seeing in solar flare
observations.

5.2.3 Creating a Model of the Earth’s Atmosphere
Plane parallel photons entering the Earth’s atmosphere from a distant astronomi-
cal source undergo refraction due to inhomogeneities in the refractive index in the
Earth’s atmosphere. The refractive index inhomogeneities are present due to the
turbulent nature of the density, temperature and pressure in the atmosphere and
result in the refractive index being well-described by a random field. The assump-
tion is made that the refractive index field is locally homogeneous and isotropic such
that it can be described by the structure function given by Eq. 5.22. The characteri-
sation of the field then comes from the form that this structure function takes when
related to physical parameters.

Consider the plane parallel optical photons entering the top of the Earth’s at-
mosphere from the Sun. Since there is negligible scattering of optical photons in
interplanetary space, the assumption is made that at the top of the Earth’s atmo-
sphere, the photons are unchanged compared to when they were emitted. Therefore,
an effective source of photons at the top of the Earth’s atmosphere is assumed. The
model of the Earth’s atmosphere then aims to describe how the phase of the light
wave changes as it is refracted by the inhomogeneities. That is, given a photon trav-
els a distance 𝐿 from the effective source to the detector, can the changes to this
photon caused by the atmosphere be estimated?

Following Kolmogorov’s theory of turbulent flows (Kolmogorov, 1941), the as-
sumption is made that the Earth’s atmosphere consists of a turbulent flow made up
of eddies of varying sizes where there exists two important length scales: 𝐿0 known
as the outer length scale of the turbulence and 𝑙0 known as the inner length scale
of the turbulence. These two quantities are bounds on the size of the eddies in the
turbulent atmosphere. The inner length scale is the lower bound on the size of the
eddies and depends on the kinematic viscosity of the atmosphere — below scales
of 𝑙0, eddies are dissipated by viscous motions. The outer length scale is the upper
bound on the size of the eddies and is known as the turbulence correlation length
— below scales of 𝐿0 but above scales of 𝑙0, the field is locally homogeneous and
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isotropic as it is within one eddy, allowing for the description in Sec. 5.2.2 to be used
to describe the properties of the medium. Since the turbulent flow affects the at-
mospheric parameters, it will also affect the refractive index within the atmosphere
leading to the refraction of incoming photons.

As described in Sec. 5.2.2, the structure function of a random field (in this case,
the refractive index) is given by Eq. 5.22 and can be rewritten in terms of the refrac-
tive index of the atmosphere 𝑛 as

𝐷𝑛(®𝑟1, ®𝑟2) = (𝑛(®𝑟1) − 𝑛(®𝑟2))2, (5.25)

To understand how the structure of the refractive index field affects the incoming
radiation, the wave equation must be solved assuming the incoming photon is a
plane parallel monochromatic wave. Under the assumption that the wavelength of
the light 𝜆 << 𝑙0 (which is a reasonable assumption as the discussion concerns
optical light), the wave equation can be written in terms of the photon’s electric field
as:

∇2 ®𝐸 + 𝑘2𝑛2(®𝑟) ®𝐸 = 0, (5.26)

where here 𝑘 now refers to the photon wavenumber. This has a simple plane wave
solution of:

®𝐸(®𝑟) = ®𝐸0𝑒
𝑖𝑆(®𝑟), (5.27)

where 𝑆 is the phase of the wave. Assuming that the amplitude of the wave remains
unchanged by the refraction then the wave equation can be written in terms of the
change of the phase as:

(∇𝑆)2 = 𝑘2𝑛2(®𝑟). (5.28)

Since 𝑛 is a random field, there is no exact solution to Eq. 5.28 and instead a solution
can be characterised by the fluctuations in 𝑛 causing fluctuations in 𝑆, that is 𝑆 and
𝑛 can be replaced by

𝑛 = 1 + 𝛿𝑛(®𝑟), (5.29)
𝑆 = 𝑆0 + 𝛿𝑆, (5.30)

where the average refractive index of the Earth’s atmosphere is 1 and 𝛿𝑛(®𝑟) is how
this differs for some position ®𝑟. 𝑆0 = ®𝑘 · ®𝑟 is the phase of the light at the top of
the Earth’s atmosphere and 𝛿𝑆 is the phase after moving through the turbulent
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refractive index field. Assume the fluctuations are small, i.e. |𝛿𝑛(®𝑟) | << 1 and
𝛿𝑆 << 𝑆0. Substituting Eqs. 5.29 & 5.30 into Eq. 5.28 gives

(∇𝑆0)2 + 2∇𝑆0 · ∇𝛿𝑆 + (∇𝛿𝑆)2 = 𝑘2(1 + 2𝛿𝑛(®𝑟) + 𝛿𝑛2(®𝑟)). (5.31)

Equating first order terms and neglecting second order terms, Eq. 5.31 becomes

∇𝑆0 · ∇𝛿𝑆 = 𝑘2𝛿𝑛(®𝑟), (5.32)

and from equating first order terms in Eq. 5.31, it can be seen that ∇𝑆0 = 𝑘. Assum-
ing a Cartesian coodinate system where the (𝑥, 𝑦)–plane is the plane of the sky and
the 𝑧-direction is the direction of propagation of the waves, normal to this plane,
then Eq. 5.32 can be rewritten as

d𝛿𝑆
d𝑧

= 𝑘𝛿𝑛(𝑧). (5.33)

The solution to this equation is then:

𝛿𝑆(𝑥, 𝑦, 𝐷) = 𝑘
∫ 𝐷

0
𝛿𝑛(𝑧) d𝑧, (5.34)

where the limits 𝑧 = 0 represents the top of the atmosphere and 𝑧 = 𝐷 represents
the position of the detector.

Now consider the change in phase at two different points (𝑥1, 𝑦1), (𝑥2, 𝑦2) in the
sky at the plane 𝑧 = 𝐷. The difference between the two changes in phase can be
written as

𝛿𝑆(𝑥1, 𝑦1, 𝐷) − 𝛿𝑆(𝑥2, 𝑦2, 𝐷) = 𝑘
∫ 𝐷

0
𝛿𝑛(𝑥1, 𝑦1, 𝑧) − 𝛿𝑛(𝑥2, 𝑦2, 𝑧) d𝑧. (5.35)

Going back to the assumption that the Earth’s atmosphere is homogeneous and
isotropic on scales between 𝑙0 and 𝐿0, Eq. 5.35 can be squared and averaged to give
an expression for the structure function of the phase changes

(𝛿𝑆(𝑥1, 𝑦1, 𝐷) − 𝛿𝑆(𝑥2, 𝑦2, 𝐷))2 = 𝑘2
(∫

V
𝛿𝑛(𝑥1, 𝑦1, 𝑧) − 𝛿𝑛(𝑥2, 𝑦2, 𝑧) d𝑧

)2
. (5.36)
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Using the property of square integrals:(∫ 𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥
)2

=

∫ 𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥 ×
∫ 𝑏

𝑎

𝑓 (𝑦) 𝑑𝑦 =
∫ 𝑏

𝑎

𝑑𝑦

∫ 𝑏

𝑎

𝑑𝑥 𝑓 (𝑥) 𝑓 (𝑦), (5.37)

Eq. 5.36 can be written as

(𝛿𝑆(𝑥1, 𝑦1, 𝐷) − 𝛿𝑆(𝑥2, 𝑦2, 𝐷))2 =

= 𝑘2
∫ 𝐷

0
d𝑧2

∫ 𝐷

0
d𝑧1(𝛿𝑛(𝑥1, 𝑦1, 𝑧1) − 𝛿𝑛(𝑥2, 𝑦2, 𝑧1)) (𝛿𝑛(𝑥1, 𝑦1, 𝑧2) − 𝛿𝑛(𝑥2, 𝑦2, 𝑧2)).

(5.38)

Using Eq. 5.15, Eq. 5.38 can be rewritten as:

𝐷𝑆 (𝜌) = (𝛿𝑆(𝑥1, 𝑦1, 𝐷) − 𝛿𝑆(𝑥2, 𝑦2, 𝐷))2

= 𝑘2
∫ 𝐷

0
d𝑧2

∫ 𝐷

0
d𝑧1

[
𝐷𝑛

(√︃
𝜌2 + (𝑧1 − 𝑧2)2

)
− 𝐷𝑛 ( |𝑧1 − 𝑧2 |)

]
,

(5.39)

where 𝜌 =
√︁
(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2. A locally homogeneous and isotropic random

field’s structure function will be an even function so the property of even functions∫ 𝐷

0
d𝑧2

∫ 𝐷

0
d𝑧1 𝑓 (𝑧1 − 𝑧2) = 2

∫ 𝐷

0
(𝐷 − 𝑧) 𝑓 (𝑧)d𝑧, (5.40)

can be used to simplify Eq. 5.39

𝐷𝑆 (𝜌) = 2𝑘2
∫ 𝐷

0
(𝐷 − 𝑧)

[
𝐷𝑛(

√︃
𝑧2 + 𝜌2) − 𝐷𝑛(𝑧)

]
d𝑧. (5.41)

The positions and distances considered in the model will be smaller than the outer
length scale of the turbulence which in turn is much smaller than the distance
travelled by a photon in the Earth’s atmosphere i.e. 𝑧, 𝜌 < 𝐿0 << 𝐷. Therefore,
(𝐷 − 𝑧) ≈ 𝐷 and Eq. 5.41 can be written

𝐷𝑆 (𝜌) ≈ 2𝑘2𝐷

∫ 𝐷

0

[
𝐷𝑛(

√︃
𝑧2 + 𝜌2) − 𝐷𝑛(𝑧)

]
d𝑧. (5.42)

In addition to being able to describe this field by Eqs. 5.17 & 5.24, an expression
can also be written for the random field in two dimensions (i.e. in the plane where
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𝑧 = const.).

𝑛(𝑥, 𝑦, 𝑧) = 𝑛(0, 0, 𝑧) +
∫ ∞

−∞

∫ ∞

−∞
{1 − exp [𝑖(𝑘1𝑥 + 𝑘2𝑦)]} d𝜑(𝑘1, 𝑘2, 𝑧), (5.43)

where 𝑛(0, 0, 𝑧) is a random function describing the refractive index and 𝜑(𝑘1, 𝑘2, 𝑧)
follows a relation similar to Eq. 5.11

d𝜑(𝑘1, 𝑘2, 𝑧)d𝜑∗(𝑘′1, 𝑘
′
2, 𝑧

′) =
𝛿(𝑘1 − 𝑘′1)𝛿(𝑘2 − 𝑘′2)𝐹 (𝑘1, 𝑘2, |𝑧 − 𝑧′|)d𝑘1d𝑘2d𝑘′1d𝑘′2, (5.44)

where 𝐹 here is the two-dimensional spectral density of the random field. Following
Eq. 5.18 but expanding it to the two-dimensional case and using Eq. 5.15:

𝐷𝑛(
√︃
𝑧2 + 𝜌2) − 𝐷𝑛(𝑧) = 2

∫ ∞

−∞

∫ ∞

−∞
{1 − cos [𝑘1(𝑥1 − 𝑥2) + 𝑘2(𝑦1 − 𝑦2)]} ×

×𝐹 (𝑘1, 𝑘2, |𝑧1 − 𝑧2 |)d𝑘1d𝑘2.

(5.45)

Given that the difference in refractive index structure functions can also be given
by Eq. 5.23, the expression for 𝐹 (𝑘1, 𝑘2, |𝑧 − 𝑧′|) can be obtained

𝐹 (𝑘1, 𝑘2, 𝑧) =
∫ ∞

−∞
cos(𝑘3𝑧)Φ(𝑘1, 𝑘2, 𝑘3) d𝑘3. (5.46)

Equations. 5.45 & 5.46 can then be substituted into Eq. 5.42 to give two give two
equivalent expressions for 𝐷𝑆 (𝜌)

𝐷𝑆 (𝜌) = 2
∫ ∞

−∞

∫ ∞

−∞
[1 − cos(𝑘1(𝑥1 − 𝑥2) + 𝑘2(𝑦1 − 𝑦2))] 𝐹𝑆 (𝑘1, 𝑘2, 𝑧) d𝑘1 d𝑘2,

(5.47)

𝐷𝑆 (𝜌) = 2𝜋𝑘2𝐷

∫ ∞

−∞

∫ ∞

−∞
{1 − cos[𝑘1(𝑥1 − 𝑥2) + 𝑘2(𝑦1 − 𝑦2)]}Φ𝑛(𝑘1, 𝑘2, 𝑧) d𝑘1 d𝑘2,

(5.48)

where 𝐹𝑆 is the two dimensional spectral density of the phase fluctuations and Φ𝑛
is the three dimensional spectral density of the refractive index fluctuations. It can
then be posited that

𝐹𝑆 (𝑘1, 𝑘2, 𝑧) = 2𝜋𝑘2𝐷Φ𝑛(𝑘1, 𝑘2, 𝑧), (5.49)
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and in a locally isotropic field this reduces to

𝐹𝑆 (𝜅, 𝑧) = 2𝜋𝑘2𝐷Φ𝑛(𝜅, 𝑧), (5.50)

where 𝜅 =

√︃
𝜅2

1 + 𝜅2
2.

Following Tatarski (2016) Chap. 3 “Microstructure of the Concentration of a Con-
servative Passive Additive in a Turbulent Flow” and originally reported by Obukhov
(1970), the structure function of the refractive index for the scales considered here
can be written using the “two-thirds law”

𝐷𝑛(𝑧) = 𝐶2
𝑛𝑧

2/3. (5.51)

Using Eq. 5.51 to solve Eq. 5.24, an expression for the three dimensional spectral
density of the refractive index field can be found

Φ𝑛(𝜅, 𝑧) = 0.033𝐶2
𝑛𝜅

−11/3, (5.52)

where 𝐶2
𝑛 is a constant describing the model of the Earth’s atmosphere used. 𝐹𝑆 can

then be found for this model using Eq. 5.50

𝐹𝑆 (𝜅, 𝑧) = 0.21𝑘2𝐷𝐶2
𝑛𝜅

−11/3. (5.53)

Eq. 5.47 can be rewritten in terms of 𝜅:

𝐷𝑆 (𝜌) = 4𝜋(0.21)𝑘2𝐷𝐶2
𝑛

∫ ∞

0
[1 − 𝐽0(𝜅𝜌)] 𝜅−8/3 d𝜅, (5.54)

where 𝐽0 is the zeroth order Bessel function of the first kind. This gives a solution
for 𝐷𝑆 (𝜌) as

𝐷𝑆 (𝜌) = 2.91𝑘2𝐷𝐶2
𝑛𝜌

5/3, (5.55)

using the identity (Tatarski, 2016):∫ ∞

0
[1 − 𝐽0(𝑎𝑥)] 𝑥−𝑝𝑑𝑥 = 𝜋𝑎𝑝−1

{
2𝑝

[
Γ

(
𝑝 + 1

2

)]2
sin

(
𝜋(𝑝 − 1)

2

)}−1

, (5.56)

where 1 < 𝑝 < 3 and Γ represents the Gamma function. Thus, an expression has
been derived to measure the structure function of the phase fluctuations of photons

83



5.2. DEVELOPMENT OF A SEEING MODEL FROM THE STATISTICS OF
TURBULENT MEDIA

travelling through the Earth’s atmosphere assuming they arrive as plane parallel
waves from astronomical sources within regions smaller than the outer length scale
of the turbulence 𝐿0.

This model would work perfectly if an observer could look through exactly one
eddy of size < 𝐿0 but unfortunately this cannot be the case. Therefore, the previ-
ously assumed constant 𝐶2

𝑛 is constant only within an individual eddy. If the photon
travels through more than one eddy then the contributions of each of those eddies
must be summed to give the change in the phase of the photon. This is what was
referred to earlier as a medium with smoothly-varying turbulence. On length scales
of 𝐿0 the turbulence changes according to some atmospheric model encompassed
in the 𝐶2

𝑛 term in Eq. 5.55. Modifying the model is relatively easy by making 𝐶2
𝑛 a

function of the altitude meaning Eqs. 5.51 & 5.52 become:

𝐷𝑛(𝑧) = 𝐶2
𝑛(𝑧)𝑧2/3, (5.57)

Φ𝑛(𝜅, 𝑧) = 0.033𝐶2
𝑛(𝑧)𝜅−11/3. (5.58)

This results in the solution to Eq. 5.42 being:

𝐷𝑆 (𝜌) = 2.91𝑘2𝜌5/3
∫

path
𝐶2
𝑛(®𝑟) d®𝑟, (5.59)

which is Eq. 5.6 quoted above as the model for the phase fluctuations. For a photon
incident to the plane at the top of the Earth’s atmosphere, 𝑧 = 0, at arbitrary angle
of incidence 𝜃, the Eq. 5.59 can be simplified by writing the 𝐶2

𝑛 profile as∫
path

𝐶2
𝑛(®𝑟) d®𝑟 = sec 𝜃

∫ 𝐷

0
𝐶2
𝑛(𝑧) d𝑧. (5.60)

Equation 5.59 can then be rewritten as

𝐷S(𝜌) = 2.91𝑘2𝜌5/3 sec 𝜃
∫ 𝐷

0
𝐶2
𝑛(𝑧) d𝑧. (5.61)

To simplify Eq. 5.61 further, a characteristic scale length for the turbulence is in-
troduced known as the Fried parameter (Fried, 1966). Also known as the Fried
coherence length (or just the coherence length), the Fried parameter gives a mea-
sure of the length scales over which the distorted light wave can still be assumed to
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be a plane wave. That is, it gives an estimate of the length scales over which ran-
dom turbulence inhomogeneities will affect the wavefront. Empirically, the Fried
parameter was shown to be related to the turbulence structure in the atmosphere
via

𝑟0 =

(
0.423𝑘2 sec 𝜃

∫ 𝐷

0
𝐶2
𝑛(𝑧) d𝑧

)−3/5

, (5.62)

which can be used to simplify Eq. 5.61 to

𝐷S(𝜌) = 6.88
(
𝜌

𝑟0

)5/3
= 6.88

(
𝜆𝜈

2𝜋𝑟0

)5/3
, (5.63)

where 𝜆 is the air wavelength of the photon and 𝜈 is the spatial frequency expressed
in units of radians of phase per radian field of view (Racine, 1996). Equation 5.63
is used when emulating synthetic seeing as it provides a model independent of the
atmospheric model used (𝐶2

𝑛) with 𝑟0 being the free parameter defining the system.
A variety of different, typical values for 𝑟0 are used when generating the training
dataset (see Sec. 5.3) to estimate realistic data marred by seeing.
𝑟0 has another important property: the Fried parameter gives the size of the

effective aperture that the observation is taken through. That is, regardless of tele-
scope aperture size, for turbulence characterised by a value 𝑟0, the observations will
appear as if taken through a telescope with aperture size 𝑟0. Thus the angular size
of the atmospheric PSF can be found using

𝛼 = 2.021 × 105 × 𝜆

𝑟0
, (5.64)

where 𝛼 is given in arcseconds. The size of the PSF in detector pixels (𝑛pix) can then
be calculated by dividing the angular size of a single pixel 𝛼pix

𝑛pix =
𝛼

𝛼pix
. (5.65)

𝑛pix is then the size of the PSF array to be convolved with the image. This PSF is
populated using Eqs. 5.5 & 5.63.
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5.3 Construction of Training Data
The model developed in Sec. 5.2 depends on two main parameters: the wavelength
of the light observed and the Fried parameter of the atmosphere. Defining these two
parameters allows the angular size of the PSF in the sky to be defined by Eq. 5.64
and allows for the calculation of the structure function by Eq. 5.63 (and via Eq. 5.5
the PSF) at a distance 𝜌 from the centre of the PSF kernel. Once a PSF kernel is
constructed for a set of parameters (𝑟0,𝜆), it is convolved following Eq. 5.4 with data
observed at the same wavelength that were taken in good seeing conditions such that
the assumption can be made that the data before artificial seeing is imprinted on
them is diffraction limited. This gives a dataset comprising data without bad seeing
and data imprinted with bad seeing from the model. The DNN described in Sec. 5.4
is then trained with the bad seeing data as input and the images with good seeing
as output.

The data used for training the network is imaging spectroscopy from three differ-
ent flares observed using SST/CRISP in two different optical lines: hydrogen-𝛼 (H𝛼)
and the infrared triplet line of singly-ionised calcium observed at 𝜆 = 8542Å (Ca ii
𝜆8542). Each of these sets of observations have a pixel size of 0.057′′ resulting in a
theoretical spatial resolution of 0.114′′. However, the diffraction limit for both H𝛼

and Ca ii 𝜆8542 for the SST (0.162′′ and 0.211′′, respectively) are greater than the
theoretical spatial resolution meaning that the observations are diffraction-limited.
The three datasets used are:

1. The M1.1 solar flare SOL20140906T17:09, which took place in NOAA active
region (AR) 12157 with helioprojective coordinates (-732′′, -302′′). In these ob-
servations, the H𝛼 line was sampled at 15 different wavelengths and the Ca ii
𝜆8542 line was sampled at 25 different wavelengths. Both lines are sampled
uniformly through a 1.2Å bandpass filter with H𝛼 being sampled every 200mÅ
and Ca ii𝜆8542 being sampled every 100mÅ. The cadence of these observations
is 11.54 seconds.

2. The X2.2 solar flare SOL20170906T09:10, which took place in NOAA AR 12673
with helioprojective coordinates (537′′, -222′′). Here the H𝛼 line was sampled
at 13 wavelengths non-uniformly over a passband of 1.2Å being more densely
sampled in the core than the wings. Similarly, the Ca ii𝜆8542 line was sampled
at 11 wavelengths through the same passband in the same way. The cadence
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of these observations is 15 seconds.

3. Lastly, the X9.3 solar flare SOL20170906T12:02, which took place in the same
NOAA AR as SOL20170906T09:10 and was the most energetic solar flare of
solar cycle 24. The two spectral lines were observed identically to the observa-
tions of SOL20170906T09:10 and the cadence remained unchanged.

All data has been pre-processed using the CRISPRED data reduction pipeline (de la
Cruz Rodríguez et al., 2015) that includes all alignment, instrument calibration
and image restoration using MOMFBD. Therefore, the ground truth to be recovered
makes the assumption that images without bad seeing are completely corrected for
seeing and other aberrations by the CRISPRED pipeline.

Given that the properties of the atmospheric PSF are wavelength-dependent,
different PSFs should be calculated for the two different lines under consideration
here. This is due to the sizes of the atmospheric PSF kernels being used varying
largely between the two spectral lines for the same atmospheric conditions i.e. since
𝑟0 ∝ 𝜆6/5, 𝛼 ∝ 𝜆−1/5 and 𝛼H𝛼/𝛼Ca ii ≈ 1.054. However, the size of the kernel does
not change substantially across the line leading to the same kernel being used per
passband. This means that there are two models (one for each spectral line) and
so two DNNs with the same architecture (see Sec. 5.4) are trained to approximate
separately the corrections in each spectral line. The use of two different DNNs and
how they may be consolidated into one are discussed in Sec. 5.6.

A range of Fried parameters 𝑟0 = {1, 2.5, 5, 7.5, 10, 12.5, 15} cm is used to generate
many different PSFs to convolve with the good seeing images following Eq. 5.4. This
creates a diverse training data set for the neural network to learn from.

Figures 5.1–5.6 show examples of the training data for H𝛼. Figures 5.1 & 5.2
show how the seeing models for a variety of Fried parameters (𝑟0 = {5, 10, 15} cm)
affect the M1.1 solar flare H𝛼 observations, particularly an observation from approx-
imately 19 minutes before the GOES SXR peak. Figure 5.1 focuses on the line core
images and the effects of the seeing model on the spectral line as a whole. Panels
(a), (b), (c) & (d) show the ground truth and models with 𝑟0 = 5 cm, 𝑟0 = 10 cm and
𝑟0 = 15 cm, respectively. This highlights the smearing effect that seeing has over a
field of view, as the models with a smaller 𝑟0 to have their light spread more across
the image. This is complemented by panel (h) which shows the azimuthally-averaged
(also known as radially-averaged) power spectrum for each of the images. The power
spectrum gives information of the strengths of different features at different spatial
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scales. This is characterised by taking the square of the Fourier transform of the
image in question

𝑃(𝑢, 𝑣) = |F (𝑂(𝑥, 𝑦)) |2, (5.66)

where the (𝑢, 𝑣) spatial frequency plane is the Fourier pair to the (𝑥, 𝑦) spatial plane
and F represents the Fourier transform. Then starting from the centre of the image
and defining annuli of thickness 𝑑, the power spectrum within a radius 𝜈𝑑 can be
calculated

𝑃(𝜈𝑑) =
1
𝑁𝑑

𝑁𝑑−1∑︁
𝑖=0

𝑃(𝜈𝑑,𝑖), (5.67)

where 𝜈𝑑 =

√︃
𝑢2
𝑑
+ 𝑣2

𝑑
is the radius of an annulus centred on the image centre in

Fourier space and 𝑁𝑑 is the number of power spectra within the annulus. Eq. 5.67
gives the azimuthally-averaged power spectrum. Lower spatial frequencies repre-
sent larger spatial scales which describe the larger scale structures in the image,
with the opposite being true for the higher spatial frequencies. A large value of the
power spectrum at a spatial frequency will point to a strong signal at that spatial
scale indicating defined features on these scales. The higher the spatial frequency,
the lower the spatial scale meaning a higher power here represents that small scale
features are well-represented in an image i.e. the images are sharper. Going back to
the effects of seeing on observations and looking at the effects of the seeing models on
the sharp observation’s power spectrum in Fig. 5.1(h), it is apparent that the seeing
models have an impact at the higher end of the spatial frequency scales with each
of the models losing a lot of the highest resolution information. In Figs. 5.1–5.12,
the ground truth is represented by circles, with the 𝑟0 = 5 cm model being repre-
sented by triangles, 𝑟0 = 10 cm represented by squares and 𝑟0 = 15 cm represented
by pentagons. Therefore, looking at panel (h), high resolution information is lost
in all three seeing models with lower spatial frequencies being impacted more the
worse the seeing becomes. This is what is expected of the seeing model as the main
effect of seeing is the apparent effect of observing through a smaller aperture equal
to 𝑟0.

Furthermore, panels (e) & (g) show the change to spectral lines caused by the
seeing models. The two spectral lines shown are indicated by the cross and the plus
markers in panels (a)–(d). A point near the flare ribbon and away from the flare
ribbon are chosen and shown in panels (e) & (g) respectively. These spectra exhibit
the kind of behaviour that is expected in response to the seeing models: for the point
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near the flare ribbon, the intensities at different wavelengths are slightly increased
(moreso for worse seeing conditions) which is to be expected due to the light from
the flare ribbons being spread into these darker pixels. Moreover, the spectrum for
the quieter part of the atmosphere is not changed significantly by the seeing models
which is also expected due to there being smaller gradients in intensity around these
areas. The intensities for data affected by seeing are increased slightly which could
be down to the averaging-like effect of the seeing PSF.

Finally, panel (f) shows a spatial slice through each of these images which dis-
plays the intensity as a function of distance along the 𝑦-axis. This shows the smooth-
ing effect of the seeing models well as, overall, the brighter points appear fainter and
the dark points appear brighter due to the spatial spreading of the light.

Figure 5.2 shows the application of the three seeing models listed above to the
same observation as Fig. 5.1 but this time showing the blue and red wing images
(Δ𝜆 = ∓600mÅ, top and bottom row, respectively). In the last column, there is the
azimuthally-averaged power spectrum for each of the images to show how the image
is affected by the seeing models. The points in the last column retain their same
meaning from Fig. 5.1. As with the line core images, high resolution information is
lost in all seeing models with lower resolution information lost in the seeing models
with smaller 𝑟0.

Figures 5.3 & 5.4 show how the three seeing models discussed for Figs. 5.1 & 5.2
affect the H𝛼 observations of the X2.2 solar flare. In this case, an observation 1.5
minutes after the GOES SXR peak is examined. The panels in Fig. 5.3 are equiva-
lent to those in Fig. 5.1 (similarly for Fig. 5.4 and Fig. 5.2). The spectral line near the
flare ribbon (panel (e)) shows a great enhancement due to the spreading of the flare
ribbon light to surrounding pixels and there is a larger increase than in the previous
flare as this flare is about an order of magnitude more energetic (also, because this
observation is after the main reconnection event whereas the observations looked
at in Figs. 5.1 & 5.2 were before). The spectral lines, spatial distributions and power
spectra shown in Figs. 5.3 & 5.4 exhibit the same effects as described for the M1.1
flare above. Similarly, Figs. 5.5 & 5.6 present data in the same way from the X9.3
event.

Due to its longer wavelength, the size of the atmospheric PSFs for the Ca ii𝜆8542
line will be larger for the same Fried parameter meaning that the effect of each
seeing model will be worse. This is shown in Figs. 5.7–5.12 where these figures
are cotemporal with Figs. 5.1–5.5 but showcasing the Ca ii 𝜆8542 observations. The
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Figure 5.13: Schematic of the DNN used to learn seeing correction. This network consists
of six convolutional layers and nine residual layers The picture on the left of the network
shows the input that is an image from the data set generated in Sec. 5.3 of an image marred
with synthetic seeing. The picture on the right is the ground truth the network is trying to
recover. The first block (with the solid lines) is a convolutional layer using a 7 × 7 kernel
and generating 64 feature maps. The block with the dashed lines downsamples the feature
maps produced by the first block by a factor of 2 using a strided convolution of 3 × 3 kernel
and produces 128 feature maps. The dotted line block downsamples the feature maps by
a further factor of 2 using a strided convolution of 3 × 3 kernel and produces 256 feature
maps. The shorter blocks in the middle are the residual layers that all consist of 3 × 3 kernel
convolutions with 256 feature maps. The inner structure of the residual layers is shown
in Fig. 5.14. The next dotted line block upsamples the feature maps by a factor of 2 using
nearest neighbour interpolation and reduces the number of feature maps to 128. The second
dashed line block then upsamples by a further factor of 2 using the same method while
reducing the number of feature maps to 64. The last block in the network is a convolutional
block that reduces the number of feature maps to the number of output channels using a 7 ×
7 kernel convolution before passing the output through a hyperbolic tangent (tanh) function.
This is then combined with the input to the network (red arrow) to produce the output of
the network. In each of the convolutional and residual layers, the normalisation is batch
normalisation and the activation is ReLU.

same spreading and smearing effects are observed when applying the seeing models
to the Ca ii 𝜆8542 data.

5.4 Construction of Neural Network
The DNN architecture used is illustrated in Fig. 5.13 and inspired by the genera-
tor network used in Kupyn et al. (2017). The network follows an encoder-decoder
framework wherein the input data – in this case, the images with bad seeing, di-
vided into 256×256 pixel segments – are downsampled in the spatial dimensions
to a lower dimensional, abstract representation of itself while increasing the num-
ber of feature maps which can then be reconstructed without the bad seeing by the
learned network; by upsampling the representation at the other end of the network.
This is accomplished using a combination of convolutional layers and residual lay-
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Figure 5.14: Inside a residual layer (short boxes in Fig. 5.13): two convolution layers applied
to the input like traditional convolutional neural networks but with a skip connection (blue
arrow) adding the input of the layer to the output before the second activation. This allows
residual networks to be deeper than traditional networks as it prolongs the onset of the
vanishing gradient problem.

ers (Fig. 5.14, He et al., 2015a). Residual neural network layers are an ingenious
solution to the degradation problem in DNNs. This is when networks that are too
deep (have too many layers) fail to learn the problem at hand. DNNs with too many
layers3 apply so many functions to the data that by the time the network needs to
construct the output, there is no clear link between what the input was and what
the output should be. This causes a stagnation in training. Residual layers combat
this problem by not learning a specific function per layer but rather the residual to
a function. For example, consider an arbitrary DNN layer looking to approximate
some function 𝑓 (𝑥). For input 𝑥, the residual of this function, ℎ(𝑥) can be given by:

ℎ(𝑥) = 𝑓 (𝑥) − 𝑥. (5.68)

The goal of the residual layer (like any other layer or DNN) is to approximate the
function 𝑓 (𝑥), therefore, the learnable parameters within a residual layer are used
to approximate ℎ(𝑥) and then 𝑓 (𝑥) is calculated by ℎ(𝑥) + 𝑥 by definition of the
residual. What this means conceptually is that the residual layer is shown what the
input looks like after it has performed the transformations to it. This constrains
the layer to learning the residual which was shown by He et al. (2015a) to improve
how deep DNNs can be. How the residual layer works is illustrated in Fig. 5.14. A
residual layer is two convolutional layers stacked with an extra connection known as
a skip connection before the second activation which adds the input to the output of
the computations. This can be thought of as “reminding” the layer what it originally
took as an input and making sure the solution to learning the function remains on
the right track. In this problem, residual layers aim to learn the complexities of the
downsampled abstract representation of data with bad seeing and transform this

3The number of layers before arriving at the degradation problem is a hyperparameter and de-
pendent on the problem and the DNN architecture. However, He et al. (2015a) found for CNNs that
anything above 20 layers suffered from the degradation problem.
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Figure 5.15: Example of a strided convolution used for downsampling in DNNs. The input
to the convolution layer is the 4 × 4 solid grid with the 3 × 3 solid grid representing the
convolutional kernel. This differs from Fig. 2.3 in that the stride is set to two meaning that
the centre of the kernel moves two places between computations. This results in a 2 × 2
output shown on the right as there are only four locations where the kernel will stop. The
dotted box indicates the padding applied to the input so as not to reduce the dimensionality
due to the size of the kernel but due to the value of the stride.

into an abstract representation that can be upsampled to produce data corrected for
bad seeing. Nine residual layers were found to be the optimal number to learn this
problem.

In total there are six convolutional layers: three before the set of residual lay-
ers used to downsample and transform the input and three after to upsample the
corrected abstract representation into an image with seeing corrected. The first con-
volutional layer (shown with bold vertices in Fig. 5.13) convolves the image with a
7 × 7 kernel and transforms the input to 64 feature maps. The dashed line layer
convolves these feature maps with a 3 × 3 kernel, using a stride of 2 to downsample
(the convolution kernel only performs the convolution operation when it is centred
on every second value, see Fig. 5.15 for an illustration) and doubling the number of
feature maps to 128. The dotted line layer convolves the 128 feature maps in the
same way as the previous layer, downsampling by a factor of 2 and doubling the
number of feature maps to 256.

After this, these feature maps are passed to the nine residual layers, shown as
the shorter blocks in Fig. 5.13. Each of these layers has the structure shown in
Fig. 5.14. The convolution kernel sizes are all 3×3 with each residual layer keeping
the number of feature maps at 256.

Subsequently, the feature maps are given to the second dotted line layer that up-
samples the feature maps by a factor of 2 using a transpose convolution with stride
of 2 (see Fig. 5.16 for an illustration) and reduces the number of feature maps by a
factor of 2 to 128 using a convolution with a 3 × 3 kernel. Mathematically, a trans-
pose convolution is just a convolution with some extra padding used to upsample
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Figure 5.16: Example of a transpose convolution with stride 2 used for upsampling an input.
Each of the four solid line boxes represent one of the data values of the output of Fig. 5.15.
There is padding between each value (which is the input for the transpose convolution) as
“stride” in transpose convolutions refers to how many steps the kernel needs to take to get
between inputs rather than how often it will perform computations. The 3 × 3 solid line
grid represents the convolution kernel with the dotted box representing padding around the
outside to account for the size of the convolution kernel. The output shown on the right is
the 4 × 4 input in Fig. 5.15.

some data. This is exemplified in Fig. 5.16, where the 2 × 2 output from Fig. 5.15 is
upsampled back to its original 4×4 resolution. In this situation, the use of the word
“stride” takes on a different meaning: while in normal convolutional layers “stride”
is used to downsample by dictating the stopping points of the convolution kernel,
in transpose convolutions, the stride refers to the distance the kernel would have
to travel to get between two of the inputs. Essentially, a convolution is performed
on data that has padding between the values to allow the learnable parameters in
these layers to learn the optimal upsample. There is also still padding around the
data to not have the kernel’s size interfere with the dimensionality of the output.
Then, the second dashed line layer follows the same process resulting in there being
64 feature maps a factor of 2 larger than those before, which are then passed to the
final layer. The final layer transforms the feature maps to the number of output
channels (in this case, 1) using a convolution with a 7 × 7 kernel.

The normalisation used in the convolutional and residual layers is called in-
stance normalisation (Ulyanov et al., 2016), and the activations used are ReLUs (see
Sec. 2.1.1). Instance normalisation differs from batch normalisation (see Chap. 4)
as it normalises each input individually with its own learnable mean and standard
deviation. This introduces orders of magnitude more learnable parameters than
batch normalisation but having these parameters per input rather than per batch
can improve training efficiency4.

4It can also do the opposite. Like with all DNN options, choosing the correct normalisation to use
in layers can be considered a hyperparameter. In this case, instance normalisation provided better
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The output of this layer is then operated on by a hyperbolic tangent (tanh) func-
tion before being combined with the input to the network (shown by the red arrow
in Fig. 5.13). Being combined with the input is what Kupyn et al. (2017) coined
as a “ResOut” connection. The philosophy behind this is analogous to how a resid-
ual layer works but for the whole network: the network learns the residual needed
to correct for the bad seeing before being combined with the input before the final
output.

5.5 Training the Neural Network
The network described in Sec. 5.4 is then trained using the data generated in Sec. 5.3
with the images synthesised with artificial seeing as the input to the network and
the corrected images as the output. Training follows the skeleton given in Sec. 2.3
with 90% to 10% split of the training data into training and validation with a few
extra modifications used to improve the learning of the network.

Aside from generation of a good training data set, training a DNN using a mean-
ingful loss function is crucial. For this problem, a loss function which can account
for changes in both the overall look of the image and in the intensity values stored
within each pixel is needed. This loss function takes the form of two individual loss
functions in a linear combination5: perceptual loss and mean square error (MSE)
loss:

L = LP + LMSE. (5.69)

Perceptual loss (introduced by Johnson et al., 2016) is a measure of similarity be-
tween two images based on how they are perceived by a different neural network
from the one being trained. This is an example of transfer learning: the process of
using a previously trained neural network to influence the learning of a new net-
work. The network from Chap. 4 (henceforth, referred to as Slic) is used here due to
it being trained to classify features in the solar atmosphere. The argument is that
a network trained sufficiently well on recognizing features should produce the same
feature maps for two identical images. Therefore, using a measure of the difference

convergence than batch normalisation as tests were carried out with both.
5Aside: linear combinations of loss functions can have scalar multipliers to weight each individual

loss function accordingly. In this work, it was found that weighting both loss functions equally pro-
vided the best results. These weightings would be further hyperparameters to tune in the training
of the network.
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of these features maps produced deep within the Slic network will give a measure of
the similarity in the two images. This works by taking the network-generated image
𝐼𝐺 and the ground-truth image 𝐼𝑆 and applying Slic to them. The output is then cut
after the eighth layer and the feature maps compared using an MSE metric. This
can be written as

LP =
1

𝑊 𝑗𝐻 𝑗𝐶 𝑗

𝑊 𝑗∑︁
𝑥=0

𝐻 𝑗∑︁
𝑦=0

𝐶 𝑗∑︁
𝑐=0

(
𝜓 𝑗 (𝐼S)𝑥,𝑦,𝑐 −𝜓 𝑗 (𝐼G)𝑥,𝑦,𝑐

)2
, (5.70)

where 𝑊 𝑗 are 𝐻 𝑗 are the width and height of the feature maps in the 𝑗-th output
layer of Slic, respectively, and𝐶 𝑗 is the number of feature maps after the 𝑗−th output
layer of Slic. 𝜓 𝑗 is the function resulting from feeding the images through Slic and
taking the output after the eighth layer. The definition of 𝜓 𝑗 is a hyperparameter
when training this network. A different cutoff layer of Slic could be used for dif-
ferent purposes. In this case, both lower and higher cutoff layers resulted in worse
models being trained potentially due to the lower-level feature maps not encoding
enough complex information for an accurate reconstruction and the higher-level fea-
ture maps not encoding enough coarse information for reconstruction. The MSE
loss is the N-dimensional Euclidean distance function squared where the data are
N-dimensional.

LMSE = ∥𝐼S − 𝐼G∥2 . (5.71)

This loss function compares the intensity values in each pixel of an image to ensure
that the generated image does not violate the conservation of energy. If only con-
strained by perceptual loss, one can imagine a trained DNN being able to produce
an image that looks similar to the target image (a low value of Eq. 5.70) but doing
so by introducing larger intensity discrepancies between pixels to get the required
sharpness. This may lead to unphysical data being produced which is why the inclu-
sion of the MSE error is used as this should make sure the network does not produce
vastly over- or under-estimated photon counts. (i.e. the DNN should learn to redis-
tribute the photons within the image to preserve conservation laws before changing
the total number of photons collected by the detector). Both loss functions are min-
imised simultaneously using the Adaptive Moment Estimation (Adam) variant of
SGD with backpropagation (Kingma and Ba, 2014). Rather than using the gradi-
ents of the loss function to update the learnable parameters in the system, Adam
uses the first and second moments of the loss function under the assumption that
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the gradient of the loss function evaluated for a batch of data can be considered a
random variable. As such Eq. 2.8 can be rewritten as the following:

𝜃𝑡+1 = 𝜃𝑡 − 𝜂
�̂�

√
�̂� + 𝜖

, (5.72)

where 𝜖 ∼ O(10−8) to avoid division by 0 and:

�̂� =
𝛽1

1 − 𝛽1
𝜇𝑡 + ∇L, (5.73)

�̂� =
𝛽2

1 − 𝛽2
𝜎𝑡 + (∇L)2 , (5.74)

are estimates of the first and second moments of the gradient of the loss function,
respectively. 𝛽1 and 𝛽2 are new hyperparameters introduced by Adam that control
the influence of the previous moments on the updates to those moments for the next
epoch. Much like Nesterov momentum discussed in Chap. 4, the previous first and
second moments of the gradient of the loss function is used as a velocity term to
control the speed through which the optimisation space is navigated. At the same
time, the gradient of the loss function for the current epoch is used to steer the
optimiser in the right direction. The optimal solution for Adam would be for the
gradient of the loss’ distribution to be a standard normal distribution. As discussed
previously, the choice of variant of SGD to be used when optimising a neural network
is a problem-dependent conundrum. In this work, it was found that convergence was
achieved more efficiently using Adam than using SGD with Nesterov momentum
while the opposite was true for the network trained in Chap. 4.

On top of using the Adam optimiser, minibatch training (minibatching) was
utilised when training this network. Minibatching consists of not using the entirety
of the training and validation data sets while training the network. Instead, 10%
of the training and validation data are used randomly per epoch for training. This
increases the speed of the epoch that can speed up the convergence of the network
(diversity across the data will lead to better generation as the network does not see
the same data every epoch and having more but quicker epochs leads to more pa-
rameter updates and thus faster learning). However, minibatching can lead to the
need for more epochs of training due to only a percentage of the training and vali-
dation sets being seen each epoch. It is useful to circumvent hardware limitations
as loading/unloading the entire dataset can be costly. In training, a batch size of 12
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is used with 100 minibatches per epoch for the training data and 10 minibatches
for the validation data – this constitues 4% of the training dataset and 27% of the
validation dataset.

Furthermore, using an adaptive learning rate was found to aid the convergence
of this network. Changing the learning rate while training a network can provide
the network with the ability to descend stably into a local minimum but also escape
a local minimum not suited to the task that is to be learned. One such example of
changing the learning rate during training is to use cosine annealing:

𝜂𝑡 = 𝜂min + 1
2
(𝜂max − 𝜂min)

(
1 + cos

(
𝑇cur
𝑇max

𝜋

))
, (5.75)

where 𝜂𝑡 is the current learning rate, 𝜂min is the minimum learning rate, 𝜂max is
the starting learning rate, 𝑇cur is the current epoch number, and 𝑇max is the num-
ber of epochs to get to the minimum learning rate. The change in learning rate
follows a smooth decrease (since the cosine function is differentiable) as the number
of epochs progresses, allowing the network to slow down and explore local minima,
and is then followed by a “warm restart” after 𝑇max is exceeded. A “warm restart”
refers to the increase of the learning rate back to 𝜂max from 𝜂min after 𝑇max epochs
allowing for an escape of any local minima the optimiser may have been stuck in.
The network here has 𝜂max = 5×10−3, 𝜂min = 1×10−6, and𝑇max =100. As mentioned
in Sec. 5.3, separate DNNs are trained for each spectral line in the training dataset.
The hyperparameters for each DNN are kept the same, except the number of epochs
it is trained for. The H𝛼 network is trained on an NVIDIA Titan Xp for 1900 epochs
and the Ca ii 𝜆8542 network is trained on the same hardware for 1513 epochs. The
results are shown in Sec. 5.6 below.

5.6 Results

5.6.1 Validation Results
The following section is dedicated to the trained DNNs being applied to data from
the validation dataset (i.e. originally good-seeing data with the bad-seeing models
applied, which the network does not see during training).

An ad-hoc error on output estimates from the trained neural networks is obtained
by evaluating the whole training set by the trained models and averaging the results
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from Eq. 5.69. This leads to an error for the H𝛼 model of 𝜎H𝛼 = 185.14DNs and an
error for the Ca ii 𝜆8542 model of 𝜎Ca ii = 170.99DNs. A more robust error analysis
will be proposed in Sec. 5.7.

The results of the validation reconstruction for the H𝛼 data are shown in
Figs. 5.17–5.22. Figure 5.17 shows the reconstruction of the data presented in
Fig. 5.1. Panel (a) again shows the ground truth data before artificial seeing is
applied. However, in Fig. 5.17, panels (b)–(d) shows both the data with bad seeing
and the reconstruction. The reconstruction is shown below the diagonal dashed line
in these panels and the data with bad seeing (that is the data from Fig. 5.1(b)–(d))
is shown above the line. As with Fig. 5.1, the cross in panels (b)–(d) represents
the data shown in panel (e), the plus indicates the data shown in panel (g) and the
vertical solid line the data in panel (f). Moreover, panel (h) shows the azimuthally-
averaged power spectrum as described in Sec. 5.3. Here, however, panels (e)–(h)
have three extra curves to show the correction to the data with bad seeing. That
is, the data represented by the upward facing triangles are the reconstructed data
from the 𝑟0=5 cm model, the rhombi are the reconstructions of the 𝑟0=10 cm model
and the five pointed stars are the reconstruction of the 𝑟0=15 cm model. All other
symbols retain their meaning from Fig. 5.1. The estimates from the network are
plotted with their associated error 𝜎H𝛼.

Looking at panel (e), despite the large error bars, each case of different seeing
is reconstructed well by the model with the ground truth falling within the error
bars. Furthermore, the central reversal and blue asymmetry of the spectral line
present in the original data are reconstructed accurately. For instance, the correc-
tion to the 𝑟0=5 cm model slightly overestimates the value of the intensity for this
particular spectrum but the ratio of intensities between the blue and red peaks is
approximately equal for the ground truth and the reconstruction. Panel (g) shows
the results for the spectral line from the quieter part of the atmosphere. In this case,
all of the reconstructions are close to the ground truth with the worse-seeing models
having a less accurate reconstruction. This may be due to the focus of the trained
model being subverted by the bright features with the lower contrast features not
being as crucial in the reconstruction. Panel (f) shows the slice of constant y. This
illustrates on the whole that the brighter and darker features are reconstructed well
by the model as there is not much discrepancy between reconstruction and ground
truth along the slice. Panel (h) shows the power spectrum for the ground truth,
each of the degraded images and the reconstructed images. The reconstructions
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show that the large- to medium-scale structure (up to 𝜈 = 10 pix−1) within the field
of view is almost perfectly reconstructed regardless of seeing conditions. The rest of
the spectrum for each reconstruction shows a tendency to reconstruct smaller fea-
tures but not with the power they are represented by in the ground truth image.
This is noticeable towards the highest frequencies where length-scales approach a
single pixel; however, when the features are on scales of tens of pixels their power
is still restored well for all seeing conditions. For example, when 𝑟0=15 cm, there
is still a good reconstruction up to approximately 𝜈 = 200 pix−1. The shapes of
the reconstructed power spectra are correct compared with the ground truth, which
suggests that learning for a better convergence of the L2 loss (Eq. 5.71) may result
in the restoration of the lost power.

Figure 5.18 shows the correction to the line wing reconstructions with the blue
wing observed at Δ𝜆 = −600mÅ shown in the top row and the red wing observed at
Δ𝜆 = 600mÅ shown in the bottom row. The columns retain their same meaning from
Fig. 5.2. However, much like the first four panels in Fig. 5.17, the reconstructions are
shown with the ground truth contaminated by bad seeing in the second, third and
fourth columns with the former being above the diagonal dashed line and the latter
being below. The last column shows the power spectra of each of the cases where
the markers of each curve retain their meanings from Fig. 5.17. Qualitatively, the
reconstructions in the second, third and fourth columns look accurate and sharp.
This is reinforced quantitatively by the last column of this figure as again the power
spectra of the images are reconstructed well up to around 𝜈 = 200 pix−1.

Figures 5.19 & 5.20 are equivalent figures to Figs. 5.17 & 5.18 but demonstrating
the reconstructions of Figs. 5.3 & 5.4. The model struggles more with the reconstruc-
tion for this particular data, which gets worse towards the line centre. In the two
points selected (the cross and plus in Fig. 5.19 (a)–(d)), there is some discrepancy
between the reconstructions and the ground truth. The point on the ribbon is more
accurate in the wings of the line compared to the core where the trained DNN seems
to overestimate how bright these pixels should be at line centre. Conversely, for the
quieter part of the atmosphere, the wing data is estimated as darker while the line
core is estimated well. These differences may arise from a lack of diversity in the
training dataset for these regions as the network may decide a certain region is fa-
miliar to another and correct it in the same way. Moreover, the energy conservation
constraint introduced by the L2 loss could be at fault as the total number of photons
needs to be redistributed throughout the image leading to some misplaced photons.
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Looking at the power spectra (Fig. 5.19 (h)), a discrepancy starts to appear at spatial
frequencies of 𝜈 ≈ 70 pix−1, implying a worse reconstruction of the data. However,
the last column in Fig. 5.20, shows that the line wing data for this observation are
reconstructed very well. In the blue wing, the images are reconstructed perfectly
up until 𝜈 = 300 pix−1 and, in the red wing, the images are reconstructed nearly
perfectly for all spatial frequencies.

Again, Figs. 5.21 & 5.22 are equivalent to Figs. 5.17 & 5.18 but for the reconstruc-
tion of the data in Figs. 5.5 & 5.6. The model performs a much better reconstruction
than the previous observation. This is demonstrated by looking at panels (e), (f)
& (g) of Fig. 5.21 (which take their usual meanings) where the reconstructed light
curves are very close to the ground truth. The biggest discrepancy here seems to be
in the blue wing of the ribbon spectrum where the trained model seems to perform
consistently less well than for other points along the spectrum. Regardless, looking
at the reconstructed power spectra for the line core images reveals great reconstruc-
tion with the finer details recovered well up to 𝜈 ≈ 120pix−1. At the very highest
spatial frequencies (𝜈 ≳ O(400 pix−1)), the power in the image increases above the
ground truth indicating there are small features (on the order of a few pixels) that
are made bright in the reconstruction when they weren’t originally. This is likely
in the region of the flare ribbons as there is a lot of fine structure there. Looking
at the power spectra in the last column in Fig. 5.22, the red and blue wing images
are reconstructed similarly to the core images, again with a slight overestimation
of some of the smaller scale features but with good reconstruction up to scales of
𝜈 ≈ 300 pix−1.

Figures 5.23–5.28 shows the results of the validation reconstructions for the
Ca ii 𝜆8542 trained DNN. These are formatted in the same way as the figures
for the H𝛼 model with Figs. 5.23 & 5.24 being cotemporal with Figs. 5.17 & 5.18;
Figs. 5.25 & 5.26 cotemporal to Figs. 5.19 & 5.20; and Figs. 5.27 & 5.28 cotemporal
to Figs. 5.21 & 5.22. The error bars for the Ca ii 𝜆8542 model look unflattering in
Figs. 5.25 & 5.27(e), (f) & (g) due to the lower number of DNs in these light curves.
This is actually an issue that stemmed from the calibration of the data due to the
highly energetic nature of these events. The data was originally reduced as 16-bit
integers but the flux incident on the detector was so large that the 16-bit integers
overflowed meaning the largest values in the flare were negative. To fix this, the
data were reprocessed as floats with a (unknown) scaling factor resulting in the DN
values being small (Aaron Reid, priv. comm.). This is, unfortunately, not good for
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the training of the DNN and the reconstruction of data from this flare. As each
wavelength image is reconstructed independently by this model, the ability of ac-
curate reconstruction depends somewhat on the intensity values within an image.
Furthermore, as seen in the top right corner of Fig. 5.25 (a)–(d), there are dark
artefacts present in this data which occur due to difficulties during data reduction.
This causes the appearance of dark patches in other points throughout the restora-
tion of this data indicating that not including this data in the training set might
improve the network performance. This is particularly present in the reconstruc-
tions in Fig. 5.26. Disregarding this data from the training dataset would also help
reduce the size of the error bars.

The reconstruction of the M1.1 flare works well despite the contamination
from the other flare data. The light curves are reconstructed to high accuracy
in Fig. 5.7(e)–(g) and the power spectra are accurate up to 𝜈 ≈ 300pix−1 for the
line centre images and similarly for the line wing images. The power spectra for
Figs. 5.25, 5.26, 5.27 & 5.28 are only accurate on the larger scales 𝜈 ≈ 10pix−1.
There is often overestimation on the smaller scales in these power spectra, indicat-
ing an overcompensation in the pixels.

5.6.2 Correction to New Data
For the AR12157 dataset, there are three examples in this section where the data
contain bad seeing: one from the pre-flare phase, one from the rise of the soft X-ray
peak, and one in the decay phase. The results of the trained H𝛼 DNN applied to this
data is shown are shown in Figs. 5.29 & 5.30. Figure 5.29 (a) shows the GOES soft X-
ray light curves indicating the flare classification and is annotated to show the three
different examples used throughout Figs. 5.29 & 5.30. The examples are: the pre-
flare of SOL20140906T17:10 at 15:33:14UTC; during the rise of the soft X-ray peak
of SOL20140906T17:10 at 16:54:13UTC; and in the decay of SOL20140906T17:10
at 17:15:24UTC. Figure 5.29 (d)–(g) show the pre-flare observation in the H𝛼 red
wing Δ𝜆 = +1.0Å, the corrected red wing observation, the H𝛼 line core observation,
and the corrected line core observation, respectively. Figure 5.29 (h)–(k) and (l)–(o)
follow the same layout for the rise of the soft X-ray peak of SOL20140906T17:10 and
the decay of SOL20140906T17:10, accordingly.

Each of Fig. 5.29 (d)–(o) is annotated with a “+” and an “x”. The “+” indicates
the spectra shown in Fig. 5.29 (b) and the “x” the spectra shown in Fig. 5.29 (c).
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Figure 5.29: Panel(a) shows the GOES soft X-ray curve for the AR12157 data, annotated
to show the time of each observation. (b) and (c) show absorption and emission spec-
tra, respectively, from the uncorrected data, and the corrected versions for each of the
cases. The 𝑦-axis labels on the left of panel (c) show the intensity values of the spec-
tra at the rise and decay times of the flare with the right labels showing the intensity
of the preflare spectrum. The trained model applied to observations from AR12157 for
the pre-flare of SOL20140906T17:10 is shown in (d)–(g); the rise of the soft X-ray peak of
SOL20140906T17:10 is shown in (h)–(k); and the decay of SOL20140906T17:10 is shown in
(l)–(o). In each row, the first panel is the observation before correction, taken in the red wing
of H𝛼 (Δ𝜆 = 1.0Å); the second is the correction to the red wing image; the third panel is the
image in the line core before correction; and the last panel is the corrected line core image.
The spectra shown are indicated in (d)–(o) using the “+” and “x” for (b) and (c), respectively.
The boxes in panels (d)–(o) represent the subfields shown in Fig. 5.30.
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Figure 5.30: The subfields indicated by the boxes in Fig. 5.29. These show the correction
on the small-scale features in the image for the three different observations of AR12157
indicated in Fig. 5.29(a). Panels (a)–(d) show the model applied to part of AR12157 north-
west of the main sunspot during the pre-flare of SOL20140906T17:10 in both the H𝛼 red
wing – (a) and (b) – and H𝛼 line core – (c) and (d). Panels (e)–(h) show the application to
part of the sunspot umbra/penumbra during the rise of SOL20140906T17:10 following the
same layout as the previous row. Likewise, panels (i)–(l) show the application to a region
containing some sunspot penumbra and some of the northern flare ribbon during the decay
of SOL20140906T17:10.
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Figure 5.31: Panel (a) shows the GOES soft X-ray curve for the AR 12673 data, anno-
tated to show where each observation corresponds to. (b) and (c) show spectra off and
on the flare ribbon from the raw frames, respectively, and the corrected spectra for each
of the cases. Trained model applied to observations from AR 12673 for the decay phase
of the X2.2 flare SOL20170906T09:10 is shown in panels (d)–(g); the soft X-ray peak of
the X9.3 flare SOL20170906T12:02 is shown in panels (h)–(k); and the decay phase of
SOL20170906T12:02 is shown in panels (l)–(o). In each row, the first panel is the obser-
vation before correction taken in the far blue wing of H𝛼 (Δ𝜆 = −1.5Å); the second panel is
the correction to the blue wing image; the third panel is the image in the line core before
correction; and the last panel is the correction to the line core. The spectra shown are in-
dicated in (d)–(o) using “+” and “x” for (b) and (c), respectively. The boxes in panels (d)–(o)
represent the subfields shown in Fig. 5.32.
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Figure 5.32: The subfields indicated by the boxes in Fig. 5.31. This shows the correction on
the small-scale features in the images for the three different observations of AR 12673 indi-
cated in Fig. 5.31(a). Panels (a)–(d) show the model applied to a sunspot umbra/penumbra
region in the decay phase of SOL20170906T09:10 in both the H𝛼 blue wing – (a) and (b) –
and H𝛼 line core – (c) and (d). Panels (e)–(h) show the application to the eastern flare ribbon
at the peak of the SOL20170906T12:02 event following the same convention as the previous
row. Similarly, panels (i)–(l) show the application to the western flare ribbon during the
decay phase of SOL2017:0906T12:02.
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Figure 5.33: Panel(a)shows the GOES soft X-ray curve for the AR12157 data, anno-
tated to show the time of each observation. (b) and(c) show absorption and emission
spectra, respectively, from the uncorrected data, and the corrected versions for each
of the cases. The trained model applied to observations from AR12157 for the pre-
flare of SOL20140906T17:10 is shown in (d)–(g); the rise of the soft X-ray peak of
SOL20140906T17:10 is shown in (h)–(k); and the decay of SOL20140906T17:10 is shown
in (l)–(o). In each row, the first panel is the observation before correction, taken in the red
wing of Ca ii 𝜆8542 (Δ𝜆 = 1.0Å); the second is the correction to the red wing image; the
third panel is the image in the line core before correction; and the last panel is the corrected
line core image. The spectra shown are indicated in (d)–(o) using the “+” and “x” for (b) and
(c), respectively. The boxes in panels (d)–(o) represent the subfields shown in Fig. 5.34.
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Figure 5.34: The subfields indicated by the boxes in Fig. 5.33. These show the correction
on the small-scale features in the image for the three different observations of AR12157
indicated in Fig. 5.33(a). Panels (a)–(d) show the model applied to part of AR12157 north-
west of the main sunspot during the pre-flare of SOL20140906T17:10 in both the H𝛼 red
wing – (a) and (b) – and H𝛼 line core – (c) and (d). Panels (e)–(h) show the application to
part of the sunspot umbra/penumbra during the rise of SOL20140906T17:10 following the
same layout as the previous row. Likewise, panels (i)–(l) show the application to a region
containing some sunspot penumbra and some of the northern flare ribbon during the decay
of SOL20140906T17:10.
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Figure 5.35: Panel (a) shows the GOES soft X-ray curve for the AR 12673 data, anno-
tated to show where each observation corresponds to. (b) and (c) show spectra off and
on the flare ribbon from the raw frames, respectively, and the corrected spectra for each
of the cases. Trained model applied to observations from AR 12673 for the decay phase
of the X2.2 flare SOL20170906T09:10 is shown in panels (d)–(g); the soft X-ray peak of
the X9.3 flare SOL20170906T12:02 is shown in panels (h)–(k); and the decay phase of
SOL20170906T12:02 is shown in panels (l)–(o). In each row, the first panel is the obser-
vation before correction taken in the far blue wing of Ca ii 𝜆8542 (Δ𝜆 = −1.5Å); the second
panel is the correction to the blue wing image; the third panel is the image in the line core
before correction; and the last panel is the correction to the line core. The spectra shown are
indicated in (d)–(o) using “+” and “x” for (b) and (c), respectively. The boxes in panels (d)–(o)
represent the subfields shown in Fig. 5.36.
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Figure 5.36: The subfields indicated by the boxes in Fig. 5.35. This shows the correction on
the small-scale features in the images for the three different observations of AR 12673 indi-
cated in Fig. 5.35(a). Panels (a)–(d) show the model applied to a sunspot umbra/penumbra
region in the decay phase of SOL20170906T09:10 in both the H𝛼 blue wing – (a) and (b) –
and H𝛼 line core – (c) and (d). Panels (e)–(h) show the application to the eastern flare ribbon
at the peak of the SOL20170906T12:02 event following the same convention as the previous
row. Similarly, panels (i)–(l) show the application to the western flare ribbon during the
decay phase of SOL2017:0906T12:02.
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In these panels, the downward-facing triangles represent the spectral line before
correction for the pre-flare observation and the upward-facing triangles represent
the post-correction spectrum; the square points show the line profile before correc-
tion for the rise of the soft X-ray peak of SOL20140906T17:10, with the diamonds
showing the line profile post correction; and the pentagons correspond to the profile
before correction of the decay observation, with the stars showing the profile post
correction. The line profiles in Fig. 5.29 (b) retain their shape and have enhanced
intensities across the lines. The pre-flare-corrected spectrum is the one that has
changed the most with a noticeable increase in intensity towards the line core. This
is a result of the “smearing” of light mentioned in Sec. 5.2. Again, the Doppler shifts
and intensity-averaged wavelengths are approximately conserved. The line profiles
from the rise-phase observations in Fig. 5.29 (c) show a different story. The inten-
sity values are estimated at around 1.5× higher after reconstruction. This could be
in part due to not only the “smearing” of the flare ribbon emission before correction
but also due to overestimation of the bright features. Moreover, the shapes of the
spectral lines differ significantly. Before the correction, the line has the typical H𝛼

centrally-reversed shape whereas after, the intensity in the blue part of the line is
greatly reduced compared to the red part. The change in line shape may arise from
the location of the point selected. The bright point examined here is directly above
the sunspot umbra which typically have deep absorption profiles. Therefore, when
correcting these pixels, their close proximity to the umbra may lead the network to
deciding these locations are part of the umbra at the bluer wavelengths but not at
the redder wavelengths. This is something that could be rectified through refined
training of the network and having more diversity within the dataset. Similarly
for the pre-flare spectrum, the corrected profile has a different shape than the pre-
flare corrected with the line core intensities being larger than their surrounding
points. This could be due to the fibril structure in the line core regions of the line
becoming finer through correction with an initially darker fibril becoming brighter
post-correction. This correction is outside of the range of the error bars of the esti-
mate and a more robust approach to error calculation for this model may be needed
and is discussed further in Sec. 5.7.

The boxes in Fig. 5.29 (d)–(o) reference the subfields shown in Fig. 5.30. This is
to illustrate how well the model recovers small-scale features across the varied field
of view. Fig. 5.30 (a)–(d) show the north-easterly part of AR12157 for the pre-flare
both in the red wing – panels (a) and (b) – and line core – panels (c) and (d) – of H𝛼.
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Fig. 5.30 (e)–(h) show part of the sunspot umbra/penumbra in the previous format
during the rise of the soft X-ray curve of the flare, and Fig. 5.30 (i)–(l) part of the
sunspot penumbra during the decay of the flare in the same format. This figure is for
illustrative purposes and shows the good recovery of small-scale feature particularly
in the line core.

In Fig. 5.31, there are three examples of corrections made to H𝛼 observations
with the trained H𝛼 DNN. Fig. 5.29(a) shows the GOES soft X-ray light curves in-
dicating the de facto flare classification. This is annotated to show the three dif-
ferent times the examples are from: in the decay phase of SOL20170906T09:10
at 09:34:26UTC; at the peak of SOL20170906T12:02 at 12:02:26UTC; and in the
decay phase of SOL20170906T12:02 at 12:09:11UTC. Fig. 5.31 (d)–(g) show the
SOL20170906T09:10 decay phase observation in the H𝛼 blue wing Δ𝜆 = −1.5Å,
the corrected observation in the blue wing, the observation in the H𝛼 line core, and
the corrected observation in the line core, respectively. Similarly, Fig. 5.31 (h)–(k)
shows the peak of SOL20170906T12:02 and Fig. 5.31 (l)–(o) shows the decay phase
of SOL20170906T12:02.

Each of Fig. 5.31 (d)–(o) is annotated with a “+” and an “x”. The “+” indicates a
point in a quieter part of the atmosphere with “x” indicating a point on the flare rib-
bons. Correspondingly, the spectra from these points are shown in Fig. 5.31(b) & (c).
In these panels, the downward-facing triangles represent the spectral line before
correction for the decay of SOL20170906T09:10, with the upward- facing triangles
representing the spectrum following correction; the square points show the line
profile before correction for the peak of SOL20170906T12:02, with the diamonds
showing the line profile post correction; and the pentagons correspond to the pro-
file before correction for the decay phase of SOL20170906T12:02, with the stars
showing the profile post correction. The line profiles in Fig. 5.31 (b) retain their
shape when corrected with the intensity values in the wings (and, to a lesser ex-
tent, the core) increasing, which we would expect as seeing will effectively “smear”
light over many pixels causing a reduction in intensity in one pixel. This correction
also preserves asymmetry in the line profile and Doppler shifts that can be seen
clearly due to the differences in wing intensities between the blue and red wings
and the intensity-averaged line core not being equal to the emitted wavelength, re-
spectively. The line profiles in Fig. 5.31 (c) show three very different line profiles on
the flare ribbon depending on the time at which it is observed. For the decay phase of
SOL20170906T09:10, the line profile has small changes in the wings after correction
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but a larger change towards the line core. The peak of SOL20170906T12:02 spec-
tral line before correction appears as the characteristic twin-peaked H𝛼 profile (with
a very broad red wing) with the correction implying that the blue wing should be
stronger than that in the raw observations. The decay phase of SOL20170906T12:02
spectral line before and after correction maintains a similar shape with the intensi-
ties of the corrected profile being larger at every wavelength point. The increases in
intensity of each of these line profiles are to be expected by the same spatial “smear-
ing” effect mentioned earlier but not every pixel would have an increased intensity
(otherwise, there would be phantom photons in the observations).

The boxes in Fig. 5.31 (d)–(o) reference the subfields shown in Fig. 5.32. This is
to illustrate how well the model recovers small-scale features in the flare ribbons
and quieter parts of the Sun. Figure 5.32 (a)–(d) show part of the umbra/penumbra
of AR 12673 for the decay phase of SOL20170906T09:10 both in the far blue wing –
panels (a) and (b) – and line core – panels (c) and (d) – of H𝛼. Figure 5.32 (e)–(h) show
the eastern flare ribbon in the prior format for the peak of SOL20170906T12:02 and
Fig. 5.32 (i)–(l) show the western flare ribbon in the same format for the decay phase
of SOL20170906T12:02. This figure is for illustrative purposes and shows the good
recovery of small-scale features even when the seeing is particularly bad, as is most
prominently seen in the observation of the decay phase of SOL20170906T12:02.

Figures 5.33 & 5.34 are cotemporal counterparts to Figs. 5.29 & 5.30 but
for Ca ii 𝜆8542 observations corrected by the train Ca ii 𝜆8542 DNN. Similarly,
Figs. 5.35 & 5.36 are cotemporal counterparts to Figs. 5.31 & 5.32.

5.7 Conclusions and Future Work
A new method for seeing correction of intensity (Stokes I) images in ground-based
solar flare observations has been presented. This method can be adapted to other
problems after generation of the training set. Also, the ability to reconstruct these
observations removing the residual seeing allows for more coherent time series anal-
ysis of solar flares. Previously, observations would have to be discarded due to the
ambiguity in whether motion is due to the flare or due to the bad seeing conditions.
Moreover, this method could be implemented in data pipelines for post-processing
of data to produce data products with this residual seeing corrected for.

In this method, a neural network was trained to learn to correct for synthetic see-
ing (Secs. 5.4 & 5.5), generated by a mathematical model (Sec. 5.2), which is applied
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to data observed in good seeing (Sec. 5.3). This network is then applied to real data
taken in bad seeing. It was found that the network performs best when the effects of
seeing are minimal, as expected. When seeing is worse, the network is still good at
recovering large- scale features in the images but, on small scales, the reconstruc-
tion is perceptibly less accurate. Moreover, when the seeing is worse, the network
seems to overcompensate on the small scales introducing features that are not nec-
essarily physical. On the other hand, the overcompensation may not be due to the
bad seeing entirely, as a small instrumental artefact can be seen in Fig. 5.30(k) & (l).
This takes the form of a Moiré pattern that may be introduced during the observa-
tion or the calibration of the data. Further examples of this pattern appearing can
be seen on larger scales in Fig. 5.29(h) & (l). These patterns may cause inaccuracies
in the reconstruction by the network. Furthermore, Figs. 5.35 & 5.36 show patterns
of noise horizontally across the field of view which can also be attributed to the data
reduction process. Characterising and adding these kinds of noise to the training
set may help the DNNs be able to deal with them.

An estimate of the error of the network was made by taking the final trained
model and applying it to the training and validation sets combined and calculat-
ing the mean of the calculated losses by Eq. 5.69. This is a rather ad hoc error
that can be improved in the future using the method proposed in Lowe and Zapart
(1999) of training a network with an additional input that is the variance of the
estimate that the network generates. This will add a robustness to the error calcu-
lation and deliver a network capable of providing corrections and their confidence
intervals. Another potential improvement to the network could come from imple-
menting a variational inference system using the methods of Tonolini et al. (2019).
This would provide the network with the means to sample the posterior distribution
of the corrected images to gain more confidence in the reconstructions. This would
also increase the confidence in producing intermediate data products using machine
learning methods. Like all statistical methods, there needs to be some trust when
using a method to generate intermediate data products which can be difficult due
to the interpretability issues facing neural networks. In this case, since the overall
average error is low, the intermediate data products can be trusted but by taking a
more probabilistic approach, a stronger trust can be achieved.

All in all, the model that has been trained produces accuirate corrections on
spectroscopic images that would otherwise be plagued with bad seeing. This allows
for the study of these flare events at higher time resolution more confidently as the
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geometry of the ribbons and their intensities have been corrected for bad seeing.
This model only performs seeing correction for Stokes I and in the case of having
full spectropolarimetric imaging it is hypothesised that the seeing in Stokes Q, U,
and V can be corrected for using the method in Díaz Baso et al. (2019).
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6 | Solar Flare Atmosphere De-
termination Using Invertible
Neural Networks

The following chapter is based on and builds upon the work in Osborne et al. (2019).
In particular, Secs. 6.2 & 6.3 correspond to work published in Osborne et al. (2019)
while Sec. 6.4 contains new analysis and unpublished results.

6.1 Introduction to Inverse Problems in Solar
Physics

An inverse problem is one in which a set of measurements is used to deduce the
properties of the system that caused them. It is usually the case that information
about the system is missing because of the properties of the system or the complexity
of the physics involved. This leads to the determination of the relationship between
observables and system becoming mathematically ill-posed: from a parameter es-
timation point of view, this means that the marginalised posterior distributions of
the parameters of interest will be multimodal as demonstrated by Asensio Ramos
et al. (2007). This can be shown visually using set theory with the example of the in-
verse problem being investigated in this chapter (Fig. 6.1). On the left of Fig. 6.1 are
sets of solar atmospheric parameters that produce the intensity observables (right
of Fig. 6.1). The function 𝑓 is known as the forward process and is the mapping
that produces observables and can be characterised, in solar physics (depending on
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Figure 6.1: This plot shows that while the function 𝑓 from the physical system 𝑥 mapping
to the observables 𝑦 i.e. 𝑦 = 𝑓 (𝑥) is well-defined for each set of possible parameters within
the physical system, the inverse 𝑥 = 𝑓 −1(𝑦) is not due to information about the system
being lost in producing the observables. Here the example is of the physical parameters
describing a system being mapped to the observed data collected by telescopes with the
function 𝑓 describing the process of radiative transfer producing the observations.

the context), by various radiative transfer and (magneto)hydrodynamics processes.
The inverse process is the mapping 𝑓 −1 that maps the observables back to the atmo-
spheric quantities that produced them. The difficulty in formulating this mapping
comes from the inverse mapping not being bijective (or one-to-one). A bijective func-
tion is one in which for a domain 𝑋 and codomain𝑌 the function connecting the two
maps exactly one input to output. Due to the information lost in the forward process,
the inverse process cannot be bijective. This is illustrated in Fig. 6.1 as two sets of
atmospheric parameters can result in the same observables which causes ambiguity
when investigating the inverse.

Currently in solar physics, there are two main ways to infer atmospheric param-
eters from spectroscopic observations and the method used depends on how the ob-
served spectral line is formed. There is the method of “direct” inversions for optically
thin spectral lines (Hannah and Kontar, 2012; Cheung et al., 2015) and “forward
modelling” for optically thick spectral lines. This chapter is concerned with observa-
tions and parameter estimation from optically thick spectral lines thus a comparison
will be drawn with forward modelling techniques1. Forward modelling is an iterative
process where the equations of (sometimes polarised) radiative transfer are solved
for a given set of atmospheric parameters to give emulated observables. These syn-

1However, many of the statements henceforth can be applied to direct inversion methods too.
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thetic observables are then compared to the true observables that the atmospheric
parameters are to be estimated for using a least squares metric to measure “close-
ness”. If the value of this metric is high, i.e. the simulated observables are not a
good fit, then the atmospheric parameters are modified before the radiative trans-
fer problem is solved again producing new synthetic observables to be compared to
the real observables. Atmospheric parameters are updated by defining “nodes” at
specific points along them e.g. if one of the parameters was how the temperature of
the plasma changes with height above the surface of the Sun then 𝑛 nodes would
be chosen at different heights and the parameters would be varied at these points
depending on the value of the metric. For a bad fit, the nodes are updated using the
Levenberg-Marquardt algorithm of least squares minimisation (Levenberg, 1944;
Marquardt, 1963, similar to how SGD updates the learnable parameters in neu-
ral networks but also including information about the second derivative of the least
squares metric) with the values between the nodes (since the atmospheric parame-
ters are continuous variables) estimated by interpolation.

This method has seen great success in a variety of areas of solar physics such
as analytic methods employing the Milne–Eddington approximation for frequency-
independent opacity in a local thermodynamic equilibrium (LTE) atmosphere (Sku-
manich and Lites, 1987) allowing for the investigation of the magnetic properties of
sunspots and their umbra/penumbra; the Stokes Inversion based on Response func-
tions (SIR) code (Ruiz Cobo and Del Toro Iniesta, 1992) which solves the problem
of local thermodynamic equilibrium polarised radiative transfer including the Zee-
man effect by making use of the response functions of various spectral lines2; the
HAZEL code (Asensio Ramos et al., 2008) which solves non-local thermodynamic
equilibrium (non-LTE) polarised radiative transfer including the Hanle effect for ac-
curate simulation of neutral helium spectral lines; the NICOLE code (Socas-Navarro
et al., 2000, 2015) which solves non-LTE polarised radiative transfer for a variety of
spectral lines to investigate the chromosphere; and the newer STockholm inversion
Code (STiC; de la Cruz Rodríguez et al., 2019) which builds upon NICOLE and in-
corporates the RH code (Uitenbroek, 2001) to solve the radiative transfer problem
allowing for the analysis of multiple spectral lines with a complicated atmospheric
structure. The inner workings of these inversion codes are succinctly described in

2A response function is how the outgoing intensity at a particular wavelength reacts to perturba-
tions in the atmosphere and has been shown to be an invaluably useful diagnostic when exploring
these problems (Milić and van Noort, 2017; Osborne, 2021a)
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the corresponding papers and a curious reader is referred there for further informa-
tion.

While this method of forward modelling to iterate towards a solution is a sound
one, there are three key issues that this chapter aims to address. Firstly, none of
these “traditional” inversion codes were designed with solar flares in mind: they all
assume hydrostatic equilibrium when solving the radiative transfer problem which
is an assumption that breaks down for flares. As such, the use of these methods for
solar flare data is discouraged but can give indicative results when used under cer-
tain assumptions as demonstrated by Kuridze et al. (2017, 2018) where the NICOLE
inversion code is used to estimate atmospheric parameters for flaring observations.
However, to understand the full extent of the flaring lower solar atmosphere, the
full coupled system of radiation hydrodynamics (RHD) must be solved3. RHD codes
which model flares have been used in a different definition of “forward modelling”
where the simulations will be run for a variety of different flare energy inputs and
a best match to observations is performed “by eye” giving the resultant solution
(Kuridze et al., 2015; Kerr et al., 2016; Simões et al., 2017; Kowalski et al., 2017;
Costa et al., 2016). Efforts to consolidate the two forms of forward modelling have
been unsuccessful leading to the need for the proposed solution in this chapter.

Secondly, with ever-increasing resolution in all dimensions – spatial, temporal,
spectral – (discussed in Chap. 4), the need for efficient, automated algorithms has
never been greater. Traditional inversion techniques can be slow to converge for
complicated observations and currently work one pixel at a time. This can lead
to weeks of computational power to estimate the parameters over a large field of
view. Being able to estimate these parameters quickly given the volume of data from
instruments is only increasing is a major bonus to implementing machine learning
when doing inversions.

Finally, as discussed earlier, the inversion mapping is ill-defined meaning that
there is no way to know if the converged solution is correct. Disambiguation tech-
niques are not natively built-in to traditional inversion codes and are often not con-
sidered when estimating parameters. This means that all results obtained through
inversions have some inherent uncertainty associated with them4. The method pro-
posed in this chapter has ambiguity resolution built-in by construction under the as-

3Really it should be RMHD (radiation magnetohydrodynamics) but current codes only simulate
RHD for flares.

4see https://github.com/ivanzmilic/toy_model_inversion for why this is the case
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sumption that the algorithm learns the inverse process sufficiently from the training
and validation dataset.

Motivated by the first and second reasons, a new automated technique for learn-
ing how to do inversions is constructed and applied to solar flare data which can also
deal with the third reason, namely an invertible neural network (INN; Ardizzone
et al., 2019). Note that, the results of traditional inversion codes have been im-
proved upon using DNNs trained on inversions to create a starting atmosphere for
traditional inversion codes providing better convergence (Gafeira et al., 2021). This
typically works better as a more realistic atmosphere is used as a starting point
for the LM algorithm rather than a semi-empirical model which is the norm. Fur-
ther note that Asensio Ramos and Diaz Baso (2019) used several traditional DNNs
to learn inversions of spectropolarimetric data for spectral lines whose parameters
had unimodal posterior distributions as discussed in Asensio Ramos et al. (2007).

6.2 Invertible Neural Networks
Supervised deep learning that has been discussed so far in this thesis is unsuited
to the task of learning the inverse mapping due to its ill-defined nature. Learning
the mapping from produced observables to atmospheric parameters will more of-
ten than not generalise poorly when using traditional DNNs since the function is
not deterministic. In fact, Ardizzone et al. (2019) claim that training such a DNN
would result in either the DNN picking one of the possible solutions at random or
an average of all possible solutions. In either case, this can lead to physically incom-
patible solutions. On the other hand, DNNs would work very well in learning the
forward model from atmospheric parameters to observations, however, inverting a
traditional DNN made up of convolutional and fully-connected layers is non-trivial
as the sets of learnable parameters are not guaranteed to be non-singular (that is,
the learnable parameters for each layer can be thought of as a matrix, Θ, which
would be non-singular if detΘ ≠ 0). If any of the trained model’s layers have a sin-
gular set of learnable parameters then the inverse of that neural network cannot
be computed. Both of these reasons lead to the choice of using an invertible neural
network (INN) to model the inverse problem.
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6.2.1 Constructing RADYNVERSION
RADYNVERSION is the INN trained on flare simulations from the 1D radiation
hydrodynamics code RADYN. The training of this INN is discussed in Sec. 6.2.2
while this section focuses on its architecture and inner workings.

INNs circumvent the issue of the inverse function being ill-defined in two ways:
by the introduction of a latent space 𝑍 learned to encapsulate the information lost
in the forward process to provide a one-to-one mapping for the inverse; and by con-
struction of the network allowing both the forward and inverse problem to be learned
without having to invert large, possibly singular, matrices of learnable parameters.
The latent space 𝑍 represents the space of all information lost in the forward pro-
cess, such that a sample from the latent space, 𝑧 ∈ 𝑍 combined with the observation
𝑦 ∈ 𝑌 can be mapped to the correct input parameters 𝑥 ∈ 𝑋 . This is shown in
the same set theory illustration in Fig. 6.2. Through the Cartesian product of the
observation space 𝑌 and the latent space 𝑍, there now exists a bijective mapping
𝑔 : [𝑦, 𝑧] ↔ 𝑥 such that the inverse process 𝑔 and the forward process 𝑔−1 are deter-
ministic. 𝑔−1, by design, will track which element of the latent space corresponds to
the correct set of observations to be produced. The form of this latent space is the
unit multivariate Gaussian distribution N(0,I𝑁) for an 𝑁-dimensional data space
in the reverse direction. Here 𝑔−1 will populate the true latent space 𝑍true with the
information lost in the forward process. RADYNVERSION is then trained in such
a way (see Sec. 6.2.2) as to learn this mapping from the true latent distribution to
the unit Gaussian latent distribution. After sufficient training, sampling the unit
Gaussian distribution will be equivalent to sampling the true latent distribution,
since they differ by only a known mapping. That is, each training sample during the
forward process will map to values in the latent space drawn from the true latent
distribution. Then when the inverse is performed, latent values are drawn from the
unit Gaussian, with these random draws compared to the true latent variables and
a loss function minimised between them such that the forward process produces
latent variables drawn from the same latent distribution that is sampled by the
inverse process. The choice of drawing from the unit multivariate Gaussian is an
arbitrary one. It is true that any distribution could be used here, but a Gaussian is
chosen because it is smooth and continuous.

Like traditional neural networks, INNs are composed of interconnected layers of
neurons that aim to learn a function from input to output. The key difference is the
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Figure 6.2: Modification of Fig. 6.1 including the latent space introduced by the invertible
neural network. This means the system is now defined by a bijective function 𝑔 : [𝑦, 𝑧] ↔ 𝑥

where an exact solution to the inverse problem can be found given sufficient training of the
INN.

composition of the hidden layers between the input and output. These take the form
of affine coupling layers (Dinh et al., 2014, 2016). Affine coupling layers are simple
yet powerful tools. By construction, in learning the function from the input to the
output with an affine coupling layer, the inverse function is learned for free. This
is due to the reversibility of the blocks, illustrated in Fig. 6.3. The layers are based
on the form first presented in Ardizzone et al. (2019). The input 𝑥 is split into two
equals parts [𝑥1, 𝑥2] that are propagated through the forward direction of the layer.
This leads to 𝑥2 undergoing an affine transformation before combining with 𝑥1 to
obtain half of the output 𝑦1. Then, 𝑦1 is subject to its own affine transformation and
combination with 𝑥2 to get the second half of the output 𝑦2. This is illustrated in
the upper panel of Fig. 6.3. There is now a simple relation between the input and
output for this layer

𝑦1 = 𝑥1 ⊗ exp (𝑠2 (𝑥2)) + 𝑡2 (𝑥2) , (6.1)
𝑦2 = 𝑥2 ⊗ exp (𝑠1 (𝑦1)) + 𝑡1 (𝑦1) , (6.2)

where ⊗ denotes the element-wise multiplication of two matrices, and the functions
𝑠𝑖, 𝑡𝑖 are arbitrarily complex and differentiable (𝑖 ∈ 1, 2). After obtaining the pair of
outputs [𝑦1, 𝑦2], they are then concatenated to give the total output 𝑦. The inverse
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of this operation is then simply expressed as

𝑥2 = (𝑦2 − 𝑡1 (𝑦1)) ⊘ exp (𝑠1 (𝑦1)) , (6.3)
𝑥1 = (𝑦1 − 𝑡2 (𝑥2)) ⊘ exp (𝑠2 (𝑥2)) , (6.4)

where ⊘ denotes the element-wise division of two matrices. This defines a setup
in which the inverse is easily calculable. This means that the only problem now is
learning the mapping from the true latent distribution to the multivariate normal
latent distribution to make sure that RADYNVERSION produces the correct inver-
sion. Since the functions 𝑠𝑖, 𝑡𝑖 do not need to be inverted themselves to calculate
the inversion, they can be as complex and arbitrary a function as needed. As such
FCNs (see Sec. 2.2.1) are used to approximate the optimal affine transformation.
The FCNs comprising the functions 𝑠𝑖, 𝑡𝑖 are initialised randomly with a fixed seed,
contain four hidden layers and every activation besides the last in each FCN is a
leaky ReLU (the last activation is a normal ReLU described in Sec. 2.1.1). A leaky
ReLU differs from a normal ReLU (Eq. 2.4) by

𝜙(𝑥) = max(0.01𝑥, 𝑥). (6.5)

Thus rather than setting all negative values to zero, negative values in a leaky ReLU
have a smaller but non-zero effect on the gradients. This can help avoid the dying
ReLU problem (Sec. 2.1.1). The functional forms of 𝑠𝑖 and 𝑡𝑖 differ by a clamping
inverse tangent function applied at the end of the 𝑠𝑖 networks. This clamping func-
tion stops the exponential terms dominating the affine transform while still being
smooth (i.e. gradients are still easy to calculate).

The RADYNVERSION INN is comprised of five stacked affine coupling layers.
This means that the network is dependent on 20 deep neural networks to approxi-
mate the inverse problem. Between each subsequent affine coupling layer, there is
what is known as a permutation layer. This introduces channel mixing into RADYN-
VERSION by permuting the order of the inputs to each new layer. Channel mixing
is when the inputs are shuffled into a different order. This is done as the input to
the affine coupling layers is split in two, meaning that if there is no permutation,
then these two halves remain independent throughout the network. The permuta-
tions are done by shuffling the input dimensions of the INN in a random but fixed
way (Dinh et al., 2014, 2016). Each permutation is different from the previous. This
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Figure 6.3: Affine coupling layer showing the affine transformation between input and out-
put for the forward process (top) and reverse process (bottom). These form the building
blocks of our INN, as they are easily invertible.

will increase the generalisation properties of RADYNVERSION. The architecture
of RADYNVERSION is shown in Fig. 6.4. The flow of the forward model is shown
by the black arrows, and the flow of the inverse is shown by the cyan arrows.

6.2.2 Training RADYNVERSION
As mentioned in Sec. 6.1, the forward modelling technique for fitting solar flare
data consists of simulating a flare with a 1D RHD code and looking for the best
fit to a small area of observations. There are several state of the art forward mod-
elling codes for solar flares such as RADYN (Carlsson and Stein, 1992, 1997; Allred
et al., 2005, 2015); FLARIX (Varady et al., 2010; Heinzel et al., 2016); and HYDRAD
(Bradshaw and Cargill, 2013). Due to its widespread acceptance in analysing opti-
cal spectral lines (Kuridze et al., 2015; Kerr et al., 2016; Capparelli et al., 2017),
UV spectral lines (Brown et al., 2018; Kerr et al., 2019b,a) and white light and UV
continua (Simões et al., 2017) and the existence of a preexisting database of models
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Figure 6.4: RADYNVERSION architecture. There are five affine coupling layers with a
permutation layer sandwiched between each pair of affine coupling layers (four in total).
The forward process mapping the input to the output is illustrated by the black arrows. The
inverse process mapping a combination of the output and the latent space to the input is
illustrated by the cyan arrows.

compiled as part of the FCHROMA project5, RADYN is chosen as the forward model
to be learned by the INN shown in Fig. 6.4. Hence, RADYNVERSION is born.

All of the simulations in the FCHROMA RADYN grid start from a modified VAL-
C (Vernazza et al., 1981) quiet Sun atmosphere which then has the flare energy de-
posited by means of an electron beam with varying characteristics. Each simulation
lasts for 50s with timesteps saved every 0.1s (resulting in 501 timesteps per simu-
lation) with the energy deposition beginning at 𝑡 = 0.0s with the beam profile being
a symmetric triangular pulse (in all cases) peaking at 𝑡 = 10.0s and lasting until
𝑡 = 20.0s. The distribution of electron energies within the beam are modelled as a
power law described by three parameters:

1. The total energy flux of the beam which is one of four values {3 × 1010, 1 ×
1011, 3 × 1011, 1 × 1012}erg cm−2.

2. The low energy cutoff, 𝐸𝑐, which takes one of the values {10, 15, 20, 25}keV.

3. The spectral index of the distribution, 𝛿, which can be one of six values {3, 4, 5,
6, 7, 8}.

This results in 96 simulations in the grid. However, two thirds of the simulations
with a total energy flux of 1 × 1012erg cm−2 did not converge and thus were left out
of the training set, reducing the number of simulations used to 806. Most of these

5Available from https://star.pst.qub.ac.uk/wiki/doku.php/public/solarmodels/start.
6In fact, one can note an interesting trend in the simulations that did not converge: fewer simu-

lations converge for lower values of 𝐸𝑐 regardless of the value of 𝛿 with high 𝐸𝑐 simulations only not
converging when 𝛿 is larger.
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simulations contain 501 timesteps (some contain 500) and each timestep has its at-
mospheric parameters and spectra extracted and used to make input, output pairs
for training. There are now approximately 40,000 pairs of atmospheric parameters
and spectral lines to train the INN on. 20% of the training data chosen at random
is used as the validation dataset. The relationship chosen for RADYNVERSION to
learn is that of the electron number density of the plasma (𝑛𝑒), electron plasma tem-
perature (𝑇) and bulk flow velocity (𝑣) mapping to the spectral lines of H𝛼 and Ca ii
𝜆8542, to line up with the sets of observations from the SST/CRISP available. More
spectral lines could be included in the forward process but would require cotemporal
and cospatial observations between all selected lines which is why only H𝛼 and Ca ii
𝜆8542 are chosen. Moreover, other atmospheric parameters such as the level pop-
ulations or the electron beam parameters could be included for estimation but the
three chosen were done so as they are quantities typically estimated in traditional
inversions so an easy comparison can be drawn.

To prepare the RADYN data for training RADYNVERSION, the atmospheric pa-
rameters are interpolated from RADYN’s adaptive spatial grid to a fixed spatial grid
to avoid the INN learning changes in the adaptive grid as being relevant to the syn-
thesis of the spectral lines. The observations of interest are going to be affected most
by the plasma parameters in the (upper) chromosphere, therefore, the static height
grid the parameters are interpolated onto has 45 points spaced linearly apart from
𝑧 = 0 − 3.5Mm (where 𝑧 = 0Mm is defined by the point in the adaptive grid where
log10𝜏5000 = 0 before heating and 𝑧 = 3.5Mm is roughly the height of the transition
region before heating) with 5 points used to represent the corona spaced exponen-
tially from 𝑧 = 3.5Mm to 𝑧 = 10Mm. Furthermore, to reduce the dynamic range in
the plasma parameters (and thus accelerate training of the INN), the parameters
undergo the following mappings before training

𝑛𝑒 ↦→ log10𝑛𝑒, (6.6)
𝑇 ↦→ log10𝑇, (6.7)
𝑣 ↦→ sign(𝑣)log10( |𝑣| + 1). (6.8)

The spectral lines are interpolated onto a grid of 30 linearly spaced wavelength
points with the half-widths of the lines in RADYN being 1.4Å and 1Å for H𝛼 and Ca ii
𝜆8542, respectively. These lines are then normalised to the range [0–1] by dividing
by the maximal intensity across both profiles. An example of the training data is
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shown in Fig. 6.5. Henceforth, the concatenation of the atmospheric parameters
combining to give the input to RADYNVERSION will be called 𝑥, with the output
being the concatenation of the spectral lines called 𝑦, 𝑧 will refer to the true latent
space of the system. The estimate of the spectral lines obtained by the forward
process in the INN will be �̃� and �̃�will be the estimate of the atmospheric parameters
obtained by the inverse process in the INN.

RADYNVERSION is trained differently to the other neural networks discussed
in Chaps. 4 & 5 due to the inclusion of the latent space. Rather than a fully super-
vised learning approach, an INN is part of the family of semi-supervised learning
algorithms (Tab. 2.1) which is reflected by the training set including known map-
pings (which atmospheric parameters map to which spectral lines) and unknown
mappings (the true form of the latent space required to produce unique inverse
mappings). To jointly learn the forward and the inverse mappings, bidirectional
training is employed. This is when an epoch now consists of the input data being
passed forwards through the network to calculate an output with learnable param-
eter updates estimated by the gradient of the loss function, as well as the output
data together with draws from the latent space being passed backwards through
the network to calculate the input with its own set of learnable parameter updates
estimated through a different loss function. The learnable parameters are then up-
dated by both sets of gradients in each epoch. Both the forward and inverse processes
are constrained by the linear combination of two loss functions (but the total forward
and inverse losses are considered independent from one another)

Lf = 𝜆1LMSE,𝑓 + 𝜆2LMMD,𝑓 , (6.9)
Li = 𝜆3LMSE,𝑖 + 𝜉(𝑛)𝜆4LMMD,𝑖, (6.10)

where L𝑓 refers to the total forward loss and L𝑖 refers to the total inverse loss.
Both losses are a combination of an MSE loss (described in Sec. 5.5, Eq. 5.71) and
the maximum mean discrepancy (MMD) loss (Gretton et al., 2012). The MMD is
a statistic used for computing the similarity between two probability distributions
based on a set of randomly drawn samples from each distribution by means of a
high- or infinite-dimensional space through a nonlinear mapping (see Appendix of
Osborne et al. (2019) and Chap. 7 of Osborne (2021a) for more information). The
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MMD between two probability distributions 𝑃, 𝑄 can be written

MMD2 = | |𝜇𝑃 − 𝜇𝑄 | |2F = ⟨𝜇𝑃, 𝜇𝑃⟩F + ⟨𝜇𝑄, 𝜇𝑄⟩F − 2⟨𝜇𝑃, 𝜇𝑄⟩F , (6.11)

where 𝜇𝑃, 𝜇𝑄 are the expectation vectors of the distributions 𝑃, 𝑄 for samples drawn
from these distributions evaluated on the reproducing kernel Hilbert space (RKHS)
and ⟨·, ·⟩F represents the inner product on the RKHS. For the two probability dis-
tributions being compared, it can be assumed that the randomly drawn samples
come from the same underlying set of numbers 𝑋 . Therefore, a function known as
a feature map (different from the CNN feature map) can be defined as the mapping
𝜒 : 𝑋 → F which maps probability distribution draws to values in the RKHS. Then
for two random draws from the space 𝑧1, 𝑧2 ∈ 𝑋 , a kernel 𝑘 can be defined such that

𝑘(𝑧1, 𝑧2) = ⟨𝜒(𝑧1), 𝜒(𝑧2)⟩F , (6.12)

which now gives a closed form for which two random draws can be compared on the
RKHS. The reason for the choice of comparing the distributions on an RKHS is that
the kernel will always be recovered when finding the inner product of two features.
This means that the inner product of the distributions can be written as

⟨𝜇𝑃, 𝜇𝑄⟩ = 𝔼𝑃,𝑄 [𝑘(𝑧1, 𝑧2)], (6.13)

where 𝑧1 ∼ 𝑃 and 𝑧2 ∼ 𝑄. This then gives a closed form for the MMD which can be
computed given the choice of a kernel function, 𝑘,

MMD2 = 𝔼𝑃 [𝑘(𝑧1, 𝑧1)] + 𝔼𝑄 [𝑘(𝑧2, 𝑧2)] − 2𝔼𝑃,𝑄 [𝑘(𝑧1, 𝑧2)], (6.14)

The kernel used for calculating the MMD loss is the same as that of Tolstikhin et al.
(2017) and Ardizzone et al. (2019), the inverse multiquadric (IMQ) kernel

𝑘𝛼 (𝑧1, 𝑧2) =
𝛼2

𝛼2 + ∥𝑧1 − 𝑧2∥2 , (6.15)

as it has been found most effective for comparing sample quality in inverse problems.
The choice of the value for𝛼 is then a hyperparameter in the system. Ardizzone et al.
(2019) showed that the sum of IMQ kernels with different 𝛼 (due to the properties
of the RKHS over which the MMD is defined, this sum is also a kernel) is the best
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kernel for their examples. This did not work when training RADYNVERSION as it
was difficult to find a set of values for 𝛼 that were effective in training the latent
distribution to match the expected distribution without dependence on the spectral
lines. By plotting the MMD for the same input and output samples but for different
values of 𝛼, it was found that the biased sample estimate of the MMD between two
random variables drawn from similar but perturbed distributions produced a peak
for certain values of 𝛼. The maximum value of MMD2(𝛼) is then computed for a
set of 𝛼 during training and 𝛼 itself is updated every five epochs. This approach is
supported by Sriperumbudur et al. (2009), as the kernel of a family that yields the
greatest distinction between the two differing distributions is the one for which the
MMD estimate is maximal.

In learning the forward process, RADYNVERSION is attempting to approxi-
mate the function 𝑥 ↦→ [𝑦, 𝑧]. The forward MMD loss, LMMD,𝑓 , compares [ �̃�, 𝑧]
with [𝑦,N(0,I𝑁)]. During backpropagation, the gradients pertaining to �̃� from the
MMD loss are ignored so that the learnable parameters can learn the mapping from
𝑧 ↦→ N (0,I𝑁) without interfering with the learning of the mapping 𝑥 ↦→ 𝑦 from the
MSE loss term, LMSE,𝑓 . The convergence of this forward MMD loss ensures that 𝑧
is independent of 𝑦. The inverse process is trained similarly to learn the mapping
[𝑦, 𝑧] ↦→ 𝑥. The vector of 𝑦 and the latent variables 𝑧 generated by the forward iter-
ation is propagated through the network in reverse, and an MSE loss is applied be-
tween �̃� and 𝑥. Another vector of 𝑦 with latent variables drawn from N(0,I𝑁) is also
propagated in reverse, and an MMD loss is computed between �̃� and 𝑥. This second
MMD loss serves to ensure that sampling the true latent distribution is equivalent
to sampling the normal distribution (while taking into account internal variability
within the true distribution).

The 𝜉(𝑛) term in Eq. 6.10 is a function used in the initial stages of training the
INN to stop the inverse MMD loss (which initially has large dominating gradients)
from diverging the INN from the correct solution. This takes the form

𝜉(𝑛) =
(
min

(
𝑛

𝑁fade
, 1

))
, (6.16)

where 𝑛 is the current epoch number and 𝑁fade is the number of epochs over which
the gradients of the inverse MMD should be suppressed. In training RADYNVER-
SION, 𝑁fade = 800 epochs. Over these initial 800 epochs, 𝜆1 = 𝜆3 = 4000, 𝜆2 = 900,
𝜆4 = 1000. Then every 400 epochs, up to 4800 epochs, 𝜆1 & 𝜆3 are increased by
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1000; which was then repeated every 600 epochs until 12000 epochs has passed. The
model with the best performance on the validation data was chosen as the trained
RADYNVERSION model – this was obtained after 11400 epochs.

Furthermore, the Adam optimiser was used in training (see Sec. 5.5) with 𝛽1 =

𝛽2 = 0.8 and 𝜖 = 1 × 10−6. The learning rate 𝜂 is initially set to 1.5 × 10−3 and is
decayed by a factor of 0.0041/1333 every 12 epochs resulting in a final learning rate of
3.38×10−5 after 11400 epochs. Minibatch training was used here also (as described
in Sec. 5.5) with a minibatch size of 500 and 20 minibatches per epoch.

Results of RADYNVERSION on a validation example are shown in Fig. 6.6 for
the forward process and Fig. 6.7 for the inverse process. Figure 6.6 shows near per-
fect synthesis of the spectral lines from the set of atmospheric parameters given to
RADYNVERSION (synthesised lines are solid and ground truth are dashed lines in
the bottom row). Figure 6.7 shows a two dimensional histogram where the dashed
line are the true atmospheric profiles and each entry in the histogram are the es-
timated parameters for the ground truth spectral lines inverted with random sam-
ples from the normal latent distribution (this inversion is performed 20,000 times
i.e. 20,000 different sets of latent variables). Given how well the atmospheric pa-
rameters are recovered by the inverse process, one can conclude that sampling the
normal latent distribution is equivalent to sampling the true latent distribution and
thus the inverse process has also been learned.

6.3 Single Pixel Inversions
The next step is to apply RADYNVERSION to real spectroscopic data, with the in-
tention of characterising the atmosphere that produced it, and eventually learning
about the physics of a flaring chromosphere. Since RADYNVERSION’s training is
only constrained by the formation of H𝛼 and Ca ii𝜆8542 which occurs in the chromo-
sphere (line cores) and upper photosphere (line wings), the atmospheric parameters
estimated below around 2 Mm are focused on. Since H𝛼 and Ca ii 𝜆8542 are not
sensitive to changes in the corona7 not much significance is attributed to the few
points there.

The spectral lines chosen to invert come from the M1.1 SOL20140906T17:09 flare
7The conditions in the corona will influence the conductive flux responsible for secondary heating

in the lower atmosphere. Although, due to RADYNVERSION treating each timestep independently,
any conclusions drawn about the conductive heating in later timesteps would be speculative.
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Figure 6.6: An example showing the synthesis of spectral lines by the learned RADYNVER-
SION model on the validation dataset. The top two panels show the input plasma param-
eters as a function of height above the photosphere previously unseen during training and
the bottom two panels show the comparison of the synthesised lines and the true spectral
line profiles. This shows very good agreement between the ground truth observables and
synthesised observables by the forward model.

155



6.3. SINGLE PIXEL INVERSIONS

Figure 6.7: The spectral lines shown in the bottom row of Fig. 6.6 are inverted by the learned
RADYNVERSION inverse with a variety of different random draws from the latent space.
This provides a two-dimensional histogram describing the recovered atmospheric param-
eters where the dashed lines refer to the ground truth parameters to be recovered. This
shows that sampling the normal latent distribution recovers the profiles of the atmospheric
parameters very well indicating a learned mapping between the true latent space and the
normal latent space.

observed by CRISP described in Sec. 5.3. Due to the joint data reduction via the
CRISPRED pipeline, it is assumed that the intercalibration of the two lines is reli-
able such that the relative intensities between the two spectral lines are physically
meaningful which RADYNVERSION assumes for the joint normalisation. The aim
of analysing a single pixel is to determine the properties of the flaring velocity field
responsible for the asymmetry observed in the spectral lines (since the lines being
analysed would be symmetric around the line core for a static atmosphere Canfield
and Gunkler, 1984; Fang et al., 1993; Cheng et al., 2006). This is to demonstrate the
method that will be used in Sec. 6.4 over an extended area to determine global rela-
tionships between line asymmetry and flare velocity field at different times through-
out the flare. The complex nature of the flare velocity field is likely linked to chro-
mospheric condensation (Ichimoto and Kurokawa, 1984; Wülser and Marti, 1987)
and evaporation (Neupert, 1968; Fisher et al., 1985; Graham and Cauzzi, 2015).
However, mapping between the observed asymmetry and the flow direction is com-
plicated by absorption and emission in the moving plasma. For example, a blue
asymmetry could be due to emission from upflowing plasma or absorption by down-
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Spectral Line 𝜆0 [Å] 𝜎 [Å] 𝜆0𝐵 [Å] 𝜆0𝑅 [Å] 𝛿𝜆 [Å] 𝐼𝐵/𝐼𝑅
H𝛼 6564.573 0.618 6563.478 6565.662 0.322 1.035

Ca ii 𝜆8542 8544.433 0.412 8543.504 8545.340 0.288 0.949

Table 6.1: The results of calculating the intensity-averaged line core and standard deviation
from moments analysis and using these values to calculate the asymmetries in the spectra
from Fig. 6.8.

flowing plasma. Likewise a red asymmetry could be due to emission from downflow-
ing plasma or absorbing upflowing plasma.

To calculate the asymmetries in the profiles, a technique similar to that described
in Mein et al. (1997); De Pontieu et al. (2009); Kuridze et al. (2015) is used. Namely,
the following expressions are used to find the integrated blue and red intensities for
a spectral line

𝐼𝐵 =

∫ 𝜆0𝐵+𝛿𝜆

𝜆0𝐵−𝛿𝜆
𝐼(𝜆) d𝜆, (6.17)

𝐼𝑅 =

∫ 𝜆0𝑅+𝛿𝜆

𝜆0𝑅−𝛿𝜆
𝐼(𝜆) d𝜆, (6.18)

where 𝜆0𝐵 and 𝜆0𝑅 are the centre wavelengths of the blue and red wings, respec-
tively. 𝛿𝜆 is the width of the wing from its centre wavelength. The wings are de-
fined as being the area starting one standard deviation, 𝜎, away from the intensity-
averaged line core, 𝜆0. 𝜆0 and 𝜎 can be calculated via (Jeffrey et al., 2016)

𝜆0 =

∫
𝐼(𝜆)𝜆 d𝜆∫
𝐼(𝜆) d𝜆

, (6.19)

𝜎2 =

∫
𝐼(𝜆) (𝜆 − 𝜆0)2 d𝜆∫

𝐼(𝜆) d𝜆
. (6.20)

This defines the end of the blue wing and the start of the red wing as 𝜆0 − 𝜎 and
𝜆0+𝜎, respectively. The midpoint between the bluest wavelength sampled and𝜆0−𝜎
defines 𝜆0𝐵. Similarly, 𝜆0𝑅 can be found as the midpoint between 𝜆0 + 𝜎 and the
reddest wavelength sampled. The half-width of the wings, 𝛿𝜆, is then the difference
between the wing centre and wing edge. A measure of the asymmetry of the spectral
line can then be given by the ratio 𝐼𝐵/𝐼𝑅, i.e. if there is a red asymmetry then this
ratio will be less than 1 and vice versa for a blue asymmetry.
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Figure 6.8: The data used for the single pixel inversion example. The top row shows H𝛼
and Ca ii 𝜆8542 CRISP blue wing data from 16:56:13UTC of the M1.1 SOL20140906T17:09
solar flare with the circular point indicating the spatial location where the spectra are taken
from for inversion. The spectra themselves at these points are shown in the bottom row,
normalised to each other for input to RADYNVERSION.
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Figure 6.9: The results of inverting the data in Fig. 6.8. The top panels show the atmospheric
parameters obtained from the inversion where the latent space is sampled 20,000 times
and the results are plotted as two-dimensional histograms. The top left panel shows the
electron density and temperature plotted on log scales, and the top right panel shows the
flow velocity in our plasma. The bins with the greatest density are the most likely values
for the parameters at a certain height. The black dotted lines show the median profiles for
each quantity. The bottom panels show the lines that were inverted. The blue dotted lines
are the true line profiles. The black bins are the round-trip generation of the spectral lines
produced by performing the forward process on the sets of atmospheric parameters obtained
from the inversions.
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Figure 6.10: The one-dimensional histogram of the flow velocities obtained from applying
RADYNVERSION to the data in Fig. 6.8 at specified heights in the atmosphere (that is,
these are slices of the top right panel in Fig. 6.9). These histograms give an insight into
what properties of the velocity field are responsible from the observed asymmetries in the
spectra (calculated in Tab. 6.1) as they are shown at the formation heights of the wings and
line cores of H𝛼 and Ca ii 𝜆8542 as demonstrated by Kuridze et al. (2015) and Kerr et al.
(2016), respectively.
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The point inverted in this section is shown by the circular point indicated in the
blue wing images of the spectral lines in the top row of Fig. 6.8. The bottom row of
Fig. 6.8 shows the spectra to be inverted already normalised with respect to each
other to serve as input to RADYNVERSION. The Ca ii 𝜆8542 line is characteristic
of the profile during a flare as it is fully in emission. The line peak is also slightly
blue-shifted with respect to the intensity-averaged line core by 3.23km s−1. Calcu-
lation of the asymmetry of this line reveals a red asymmetry of ∼5.1% (last column
of Tab. 6.1). The H𝛼 line is centrally reversed (typical in some regions in flares)
with the blue horn having a larger intensity than the red horn pointing to a blue
asymmetry in the H𝛼 which is corroborated by the calculations of the asymmetry
shown in Tab. 6.1 (blue asymmetry of ∼3.5%). Due to its centrally reversed nature,
it is difficult to pinpoint the motion of the core of the H𝛼 line in the same way that
can be done for Ca ii 𝜆8542.

The results of inverting these lines with 20,000 draws from the latent space are
shown in Fig. 6.9. The results of the inversions are plotted as two-dimensional his-
tograms (top panels of Fig. 6.9). The dashed lines show the median profile for the
parameters. This gives an approximation to the true solution. The bottom panels of
Fig. 6.9 are plots of the observed spectral lines (dotted blue lines) and the densities of
the round-trip profiles obtained by passing the results of the inversion back through
the network in the forward direction. This shows that each of the atmospheres pro-
duced are viable for the production of these spectral lines, with some curves being
less likely due to the lack of density in the bins of the histogram (i.e., models with
specific points in less dense bins are less likely to be the true solution).

According to Kerr et al. (2016), the Ca ii 𝜆8542 line during solar flares is formed
between 0.2 Mm and 1.0 Mm above the base of the height grid used here. In par-
ticular, the wings of the line are formed between 0.2–0.4 Mm, with the core formed
between 0.9–1.0 Mm (with the core region defined to be within ±0.3Å of the vacuum
wavelength). Exploring these regions in the inverted atmospheres can lead to under-
standing of the physics involved in producing the blue-shifted line core and the red
asymmetry observed in the Ca ii𝜆8542 spectral line. To do so, the posterior distribu-
tions of the velocity specific heights in the atmosphere is studied and shown at four
different heights (𝑧 = {0.4, 0.9, 0.98, 1.23} Mm) in Fig. 6.10. In Fig. 6.10, the black
dotted lines correspond to the median velocity value for that height. Each of these
distributions points to upflows being responsible for the behaviour in the observed
spectral line. This would indicate that in the region of the line wing formation since
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the asymmetry is red there would be absorbing material being evaporated, while
in the region of line core formation there would be some emitting material being
evaporated. This is reasonable on the timescales of the flare as these observations
are taken just after the flare onset, and before the flare SXR peak, where it would
be expected for evaporation to be the dominant process as the material in the lower
atmosphere is beginning to be heated by the flare energy.

Similarly for H𝛼, Kuridze et al. (2015) estimate that during this flare in par-
ticular, the line is formed below heights of 1.2 Mm with the wings forming below
0.95 Mm and the core forming above this. Since there is a strong blue asymmetry
in this line, Figs. 6.9 & 6.10 point to upflowing emitting material being responsi-
ble for this asymmetry. A further confirmation of upflowing emitting material in
the formation heights of H𝛼 and the Ca ii 𝜆8542 line core is the temperature. The
temperature at these heights is around the temperature required to give the species
enough energy to emit these photons (∼ 1 − 1.5 × 104 K).

Similar analysis will now be applied to entire flare ribbon structures to identify
the physics occurring in these regions.

6.4 Flare Ribbon Identification and Asymmetries

6.4.1 Finding Flare Ribbons Using Unsupervised Machine
Learning

Before the comparison of the flare velocity field and the asymmetries in the flare
ribbon spectral lines can be made, a method for identifying the flare ribbons must
be formulated. Fletcher et al. (2004); Fletcher (2009) previously employed manual
identification of flare ribbon footpoints in UV Transition Region And Coronal Ex-
plorer (TRACE) observations. This method involved selecting a bright point in one
observation and tracking its evolution in time by fitting a two-dimensional Gaus-
sian in the initial time frame and drawing a small “tracking box” centred on the
Gaussian centroid. At the next time step, the same Gaussian fit is reapplied and
a centroid within the distance of the tracking box is taken to be the same feature
having undergone motion. A new tracking box is then centred on the new centroid.
This requires the tracking box to be large enough such that the same source will
still be within the bounds of the old box for identification but small enough to only
contain one source. It is these conditions on the tracking box which makes this an
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ill-suited method for the SST/CRISP data. The CRISP data has ∼ 10× higher spa-
tial resolution than TRACE (Handy et al., 1999) thus leading to sources taken to
be single sources in the TRACE data likely to be identified as multiple sources in
the CRISP data. This makes it harder to use the tracking box method as it must be
smaller and there are also many more sources to track. Moreover, for the purposes
of this study, the identification of the ribbon structures as a whole is more impor-
tant than the identification of individual flare bright points. Therefore, a new flare
ribbon identification technique based on using clustering algorithms is proposed.

Clustering algorithms are a class of unsupervised machine learning techniques.
Unsupervised machine learning differs from supervised machine learning in that
the task to be learned is not necessarily known. While with supervised learning
there is a defined input and output to learn from, unsupervised learning provides
only the input and hyperparameters to an algorithm with the result analysed to see
if it fits the user’s specification. As such, hyperparameter tuning in unsupervised
learning techniques is very important. There are two main families of unsuper-
vised machine learning algorithms: clustering and dimensionality reduction. Di-
mensionality reduction algorithms aim to use statistical properties of the training
data to find optimal representations of the data to then make further data analysis
simpler, these include techniques such as principal component analysis. Cluster-
ing algorithms sort the training data into groups based on the properties of the
data. Clustering algorithms have seen a rise in popularity in solar physics with
an algorithm called k-means proving particularly useful in analysing singly-ionised
magnesium (Mg ii) spectral line profiles in solar flares (Panos et al., 2018; Panos
et al., 2021; Panos and Kleint, 2021) and in the compression of data for use in fu-
ture space-based solar missions (Ivanov et al., 2021). Below, a generalisation of the
k-means clustering algorithm known as a Gaussian mixture model (GMM) is used
in conjunction with the Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) algorithm to identify and separate flare ribbons in CRISP data (this
workflow is inspired by Sisti et al., 2021, who use k-means clustering followed by
DBSCAN to identify reconnecting current sheets in 2D MHD simulations.).

A Gaussian mixture is a function comprising of a set of 𝐾 Gaussians where each
Gaussian 𝑘 ∈ {1, . . . , 𝐾} is described by a mean ®𝜇𝑘, a covariance matrix Σ𝑘 and a
so-called mixing coefficient 𝜋𝑘 (where

∑𝐾
𝑘=1 𝜋𝑘 = 1 to ensure the normalisation of

the total probability distribution). A GMM uses each Gaussian in the mixture as a
cluster and assigns each of the data to one of the clusters with a certain probabil-
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ity that it belongs to each cluster. These probabilities are used to update the means
and covariance matrices of the Gaussians using the expectation-maximisation (EM)
algorithm to find the maximum likelihood estimate that the Gaussian mixtures de-
scribe the clusters required. Mathematically, the quantity of interest is the prob-
ability that a data point ®𝑥 belongs to cluster 𝑘 which can be written as 𝑝(𝑧𝑘 | ®𝑥𝑖)
where 𝑧𝑘 is a latent variable equal to 1 when ®𝑥𝑖 comes from Gaussian 𝑘 and zero
otherwise. There are then a set of 𝐾 latent variables ®𝑧 = {𝑧1, . . . , 𝑧𝐾 } one for each
cluster. Via Bayes’ theorem, 𝑝(𝑧𝑘 | ®𝑥𝑖) can be written

𝑝(𝑧𝑘 | ®𝑥𝑖) =
𝑝(®𝑥𝑖 | 𝑧𝑘)𝑝(𝑧𝑘)

𝑝(®𝑥𝑖)
. (6.21)

The prior probability of observing any point from one of the clusters 𝑘 is equal to
the mixing coefficient 𝑝(𝑧𝑘) = 𝜋𝑘. Moreover, the probability of observing any point
from any of the clusters can be written

𝑝(®𝑧 = {𝑧1, . . . , 𝑧𝐾 }) =
𝐾∏
𝑘=1

𝑝(𝑧𝑘) =
𝐾∏
𝑘=1

𝜋𝑘, (6.22)

since the probabilities of any point belonging to any Gaussian are statistically inde-
pendent. 𝑝(®𝑥𝑖) is found by marginalising over the joint distribution 𝑝(®𝑥𝑖, ®𝑧)

𝑝(®𝑥𝑖) =
∫

𝑝(®𝑥𝑖, ®𝑧)d®𝑧 =
∫

𝑝(®𝑥𝑖 | ®𝑧)𝑝(®𝑧)d®𝑧 =
𝐾∑︁
𝑘=1

𝑝(®𝑥𝑖 | 𝑧𝑘)𝑝(𝑧𝑘), (6.23)

since the probabilities of observing a point and observing something from a cluster
are statistically independent (i.e. one can be done without the other). 𝑝(®𝑥𝑖 |𝑧𝑘) is
just the probability that ®𝑥𝑖 was drawn from Gaussian 𝑘 meaning that Eq. 6.23 can
be written as

𝑝(®𝑥𝑖) =
𝐾∑︁
𝑘=1

𝜋𝑘N(®𝑥𝑖 | ®𝜇𝑘,Σ𝑘). (6.24)

Now Eq. 6.21 becomes

𝑝(𝑧𝑘 | ®𝑥𝑖) =
𝜋𝑘N(®𝑥𝑖 | ®𝜇𝑘,Σ𝑘)∑𝐾
𝑗=1 𝜋 𝑗N(®𝑥𝑖 | ®𝜇 𝑗,Σ 𝑗)

. (6.25)

The log likelihood for the point ®𝑥𝑖 to come from Gaussian 𝑘 can then be maximised
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by finding the optimal solutions for ®𝜇𝑘, Σ𝑘 and 𝜋𝑘. However, ®𝑥𝑖 is just one of the
points to assign to a cluster (𝑋 = {®𝑥1, . . . , ®𝑥𝑖, . . . , ®𝑥𝑁}) so in reality, the likelihood
function becomes

𝑝(𝑋 | 𝑧𝑘) =
𝑁∏
𝑖=1

𝑝(®𝑥𝑖 |𝑧𝑘) =
𝑁∏
𝑖=1

𝜋𝑖N(𝑥𝑖 | ®𝜇𝑘,Σ𝑘), (6.26)

and maximising the log of Eq. 6.26 becomes infeasible from an analytical standpoint.
Therefore a numerical method, the EM algorithm, is used to estimate the properties
of the Gaussians to cluster each data point where the likelihood of each data point
will be maximal for exactly one Gaussian cluster.

There are four steps to the EM algorithm:

1. Each Gaussian representing a cluster is described by the mixing coefficient,
mean vector and covariance matrix, therefore, the set of these parameters rep-
resent the learnable parameters in the system. There parameters must be ini-
tialised accordingly and this is typically achieved by initialising them by fitting
an initial k-means to the data and using the k-means result as a starting point
for the GMM (this is possible as k-means is actually a specific case of a GMM
where the covariance matrices are diagonal and equal for each Gaussian).

2. Expectation step: Compute the expected value of the log likelihood of the opti-
mal parameters 𝜃, log of Eq. 6.26, with respect to the current set of posterior
distributions for the latent variables.

Q(𝜃 = {𝑀, 𝑆,Π}, 𝜃𝑡 = {𝑀𝑡, 𝑆𝑡,Π𝑡}) = 𝔼𝑝(®𝑧 | 𝑋 ;𝜃𝑡) [ln 𝑝(𝑋 | 𝑧𝑘; 𝜃)] , (6.27)

where 𝑀 = { ®𝜇1, . . . , ®𝜇𝐾 } is the set of mean vectors, 𝑆 = {Σ1, . . . ,Σ𝐾 } is the set
of covariance matrices and Π = {𝜋1, . . . ,𝜋𝐾 } is the set of mixing coefficients.
The subscript 𝑡 variables refer to the estimates of the parameters at iteration
𝑡 with the non-subscript referring to the optimal values of said parameters.

3. Maximisation step: An update for the learnable parameters is computed by
finding the maximum value for 𝜃 such that

𝜃𝑡+1 = argmax
𝜃

Q(𝜃, 𝜃𝑡), (6.28)
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4. Steps 2 and 3 are iterated until a convergence criterion is met.

The estimated optimal clustering for the data can now be found. GMM is preferred
to k-means here due to its ability to model more complex distributions of data which
was found to be important when identifying flare ribbons.

The data the GMM is trained on is from the M1.1 SOL20140906T17:09 CRISP
flare dataset described in Sec. 5.3 – particularly, the observations at 16:54:18UTC.
A separate GMM is trained for H𝛼 and Ca ii 𝜆8542. The spectral lines are inter-
polated to 15 points using the Weno interpolation method (Janett et al., 2019) im-
plemented in the Weno4Interpolation Python package (Osborne, 2021b) to allow for
use on other datasets. It was found that the clustering worked better when the spec-
tral line profiles had their preflare profiles subtracted and so the observations from
16:38:09UTC were subtracted before clustering (examples are shown in Fig. 6.13).
Only points that always remain within the field of view can have their subtracted
profiles clustered so the spatial mask for this dataset from Millar et al. (2021) is
used to extract only omnipresent pixels. Examples of the data used to train the
GMMs are shown in Figs. 6.11 & 6.12 – that is the spectrum of each point that is
omnipresent in the field of view is used to train the GMM for these observations.

The number of clusters to be used can be estimated by evaluating a statistic
known as the Bayesian information criterion (BIC).

BIC(𝐾) = 𝐾 ln(𝑁) − 2 ln �̂�, (6.29)

where �̂� is the estimate of the maximum likelihood from the converged model for a
number of clusters 𝐾 . The BIC gives a metric for detecting overfitting in the number
of clusters. Increasing the number of clusters can increase the maximum likelihood
but will lead to overfitting if the value of K is too large. Overall, a smaller value
of the BIC indicates a better fit, however with real data being noisy, there is not
always necessarily an increase in the BIC after overfitting but rather a plateauing
of the BIC value. In this case, it is prudent to look at the gradient of the BIC with
respect to 𝐾 to get an idea of what the optimal number of clusters are. This is the
case for clustering the data here with the optimal number of clusters found to be 𝐾
= 9 for H𝛼 and 𝐾 = 11 for Ca ii 𝜆8542. These numbers are decided upon as after
this number of clusters, the gradient of the BIC remains approximately constant
(Fig. 6.14).

The cluster means can be plotted to give an idea of the types of profiles contained
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Figure 6.11: Examples of preflare subtracted H𝛼 images from the M1.1 SOL20140906T17:09
used to train the GMM for H𝛼. The top row shows observations from during the flare at
16:54:13UTC. The middle row shows the preflare observation that is subtracted before clus-
tering is performed, namely the observation from 16:38:04UTC. The bottom row shows the
preflare subtracted 16:54:13UTC observation. The left column shows the blue wing of H𝛼,
the middle column shows the line centre and the right column shows the red wing.
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Figure 6.12: Equivalent figure to Fig. 6.11 but for Ca ii 𝜆8542.
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Figure 6.13: The preflare subtracted H𝛼 and Ca ii 𝜆8542 spectra for the point indicated
by the circle in the top left panel of Figs. 6.11 & 6.12. This is shown for certain points in
time that are all clustered by the trained GMM. Here, Δ𝐼 = 𝐼 − 𝐼pf where 𝐼pf is the preflare
intensities at each wavelength point.

Figure 6.14: The gradient of the Bayesian Information Criterion (BIC) with respect to the
number of clusters in a GMM. Where the gradient of the BIC plateaus indicates the optimal
number of clusters for a GMM before overfitting. It is shown here that the optimal number
of clusters is 9 for H𝛼 and 11 for Ca ii 𝜆8542.
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Figure 6.15: The H𝛼 cluster means for the trained GMM. This indicates the clusters of
interest for flare ribbons. Cluster #1 clearly contains the brightest points in the flare ribbons
and this represents the group where the H𝛼 line is fully in emission and without central
reversal. Clusters #3 & #4 represent similar profiles to cluster #1 but with less of an excess
in intensity which are taken to be the outer regions of the flare ribbon structures. Cluster
#7 represents H𝛼 emission lines with a central reversal, indicating a complex velocity field
in the region where these lines are formed.
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Figure 6.16: The Ca ii 𝜆8542 cluster means for the trained GMM. This indicates the clusters
of interest for flare ribbons. In the Ca ii 𝜆8542 model, clusters #3, #5 and #6 seem to best
represent the flare ribbons with clusters #8 & #9 representing the points near the flare
ribbons that are heated.
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Figure 6.17: The clusters pertaining to flare ribbons overplotted on the images where the
spectra were extracted to train the GMM. This shows that the combinations of clusters #1,
#3 & #7 for H𝛼 and clusters #3, #5 & #6 for Ca ii 𝜆8542 are optimal for covering the flare
ribbon regions of interest.

within each cluster. This is shown in Fig. 6.15 for H𝛼 and Fig. 6.16 for Ca ii 𝜆8542.
Both the shape and the magnitude of the cluster means point to the spectra encom-
passed by those clusters. For instance, in the H𝛼 cluster means, cluster #1 contains
the brightest points since the intensity is the largest and also the line profiles are
fully in emission. Cluster #7 shows line profiles with the characteristic centrally-
reversed H𝛼 profiles and clusters #3 & #4 show similar profiles to cluster #1 but
with lower intensities. The spatial distribution of all the clusters was examined and
it was determined that clusters #1, #3 and #7 are the representative clusters of the
flare ribbons in the H𝛼 data. This is shown in the left panel of Fig. 6.17. Similarly
for Ca ii 𝜆8542, the cluster means are shown in Fig. 6.16. Clusters #3, #5 and #6 are
found to describe the flare ribbons and overplotted to demonstrate this in the right
panel of Fig. 6.17. The choice of these clusters is sound as they demonstrate lines in
emissions with large intensities as is expected of Ca ii 𝜆8542 spectral lines in flare
ribbons.

Now that flare ribbons can be identified in the CRISP observations, a way to
separate the ribbons in two ribbon flares (and possibly to segment each ribbon into
smaller sources depending on their GMM cluster) is needed. The tool used for this
is a deterministic unsupervised machine learning method, DBSCAN (Ester et al.,
1996; Schubert et al., 2017). DBSCAN is not like other ML algorithms in that there
is not a model that is trained to be applied to other observations. Instead, DB-
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SCAN uses the spatial locations of points along with hyperparameters to segment
the structures given to the algorithm. This is done by classifying each point to be
clustered as one of three: core points, density-reachable points and outliers. The
points are classified by the two hyperparameters in the system: minPts and 𝜖. A
point is considered a core point if there are minPts points within a distance 𝜖 where
the distance is defined by a user-chosen metric (here it is Euclidean distance in the
image plane). A density-reachable point is one that is within a distance 𝜖 of a core
point but is not itself a core point. All other points are considered outliers. A starting
point is chosen at random and if it is assigned as a core point, a cluster is formed.
All of the other points are then classified with respect to this core point until they
all have a designation. The cluster is then populated by anything density-reachable
from the initial core point and the chain created by the points in its vicinity. A ran-
dom point classified as an outlier from the initial cluster is then chosen as a new
core point to follow the same method for determining the next cluster from the re-
maining set of points. This process is repeated until all points are part of a cluster
or designated as noise. This is applied to the identified flare ribbon areas from the
trained GMM with promising results. Note that the fact that DBSCAN does not
work from a trained model is actually beneficial in the context of robustness. If a
user would like to study larger or smaller scale phenomena they can simply modify
the minPts and 𝜖 hyperparameters without having to change anything else about
the model.

There are now two roads which can be travelled to study the atmospheric con-
ditions that lead to these spectral line profiles: either each GMM cluster is treated
individually to see if the same underlying physics contributes to all line profiles in
a cluster or all three flare ribbon GMM clusters are used and the west and east rib-
bons of this flare are separated to study the physics in each of them individually.
The former will be explored followed by the latter.

6.4.2 Cluster Asymmetries and Correlations to the Flare Ve-
locity Field

In this section, three different times from around the impulsive phase of the M1.1
solar flare SOL20140906T17:09 are analysed using the clustering methods and RA-
DYNVERSION described above to investigate the relationship between the asym-
metry of the spectral lines and the flaring velocity field. Kurokawa et al. (1986) found
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Figure 6.18: RHESSI lightcurves for the SOL20140906T17:09 M1.1 solar flare with arrows
indicating the time that are to be analysed in the following section: 16:48:05 UTC before non-
thermal electrons are injected by the flare; 16:54:25 UTC as the electrons are being injected
and 16:57:29 UTC after the initial population of electrons impact the lower atmosphere.

that there is a subsecond temporal correlation between H𝛼 brightenings and hard
X-ray (HXR) spikes during the impulsive phase of solar flares. As such, the times
of interest analysed in this section are selected based on the HXR lightcurves taken
by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI; Lin,
2000). These lightcurves for energy ranges 25-50 keV and 50-100 keV are shown in
Fig. 6.18. In this figure, the three different times are indicated by arrows showing
the three times to be analysed as being: 16:48:05 UTC just after a small event in the
25-50keV range; 16:54:25 UTC during the first big event which shows clear signals
in both energy ranges; and 16:57:29 UTC after the first big HXR event but before
the second. These observations then have their flare ribbons identified using the the
H𝛼 GMM described in Sec. 6.4.1. The points for H𝛼 clusters #7 and #1 are extracted
as the points directly excited by the injection of energy on the flare ribbons. Once
the points for these clusters are subtracted, DBSCAN is performed on the clusters
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Figure 6.19: Demonstrating how DBSCAN refines the areas around the flare ribbons for
further analysis. The top row demonstrates the reduction in numbers of points when using
DBSCAN on H𝛼 GMM cluster #7 (see Fig. 6.15) while the bottom row shows the same for
cluster #1. The left column shows the points selected for each cluster by the GMM with the
right column showing the post-DBSCAN results.

in turn to identify the flare ribbon structures. This is shown in Fig. 6.19 for 16:48:05
UTC, Fig. 6.24 for 16:54:25 UTC and Fig. 6.29 for 16:57:29 UTC. The specific hyper-
parameters used for DBSCAN at each time for each cluster is given in Tab. 6.2. The
asymmetries in these locations in the H𝛼 and Ca ii 𝜆8542 spectral lines are then
studied.

16:48:05 UTC

Initially focusing on the observations from 16:48:05 UTC, Fig. 6.20 shows the asym-
metries of the spectra (calculated using the method in Sec. 6.3) for the points iden-
tified by DBSCAN as flare ribbons for GMM clusters #7 and #1. The top row of
Fig. 6.20 shows the asymmetries in cluster #7 and interestingly, every spectrum in
the eastern ribbon in cluster #7 is red asymmetric. As for the western ribbon, the
spectra are more blue asymmetric with some red asymmetric patches occurring in
the same spatial locations. The bottom row shows cluster #1 asymmetries for H𝛼

(left) and Ca ii 𝜆8542 (right). The western ribbon in both lines is mostly red asym-
metric with some blue asymmetries cropping up in concentrated spatial locales. The
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𝜖 minPts

16:48:05 Cluster #7 0.1 150
Cluster #1 0.1 300

16:54:25 Cluster #7 0.25 100
Cluster #1 0.25 100

16:57:29 Cluster #7 0.25 200
Cluster #1 0.25 100

Table 6.2: The DBSCAN hyperparameters used at the three different times producing the
results in Figs. 6.19, 6.24 & 6.29.

Figure 6.20: The calculated line asymmetries for H𝛼 (left column) and Ca ii 𝜆8542 (right
column). The colours are indicative of the asymmetry in the pixels as calculated by the
method described in Sec. 6.3. The top row shows the asymmetries from GMM cluster #7 and
the bottom row shows the asymmetries from GMM cluster #1 (both post-DBSCAN).

176



6.4. FLARE RIBBON IDENTIFICATION AND ASYMMETRIES

Figure 6.21: The flow velocity and temperatures estimated by RADYNVERSION for the
eastern flare ribbon (left columns) and western (right columns). These are also split by GMM
cluster with the top row showing cluster #7 and the bottom cluster #1. These parameters
are plotted over the ranges in height of line formation of H𝛼 and Ca ii 𝜆8542. The gradation
in colour indicates different spatial locations within the specified ribbons.

eastern ribbon is again interesting with most of the H𝛼 profiles being red asymmet-
ric but nearly half of the Ca ii 𝜆8542 profiles being blue asymmetric. In fact, there is
a large portion of this eastern ribbon where H𝛼 is red asymmetric and Ca ii𝜆8542 is
blue asymmetric. This points to some potentially complex motions in the lower solar
atmosphere in the early phases of this flare and impacts how the data is analysed.

The points identified by DBSCAN for each cluster are inverted by RADYNVER-
SION 20,000 times as with the example in Sec. 6.3. The inverted atmospheres are
used to investigate the causes of the asymmetries observed in the spectra, particu-
larly the gradient of the flow velocity and the temperature. Furthermore, the rib-
bons were analysed based on their GMM cluster and per ribbon structure (east and
west). The ribbons were then split into red and blue components to investigate the
differences in the atmospheres producing each type of asymmetry8.

Figure 6.21 shows the inverted atmospheres for the flare ribbons as whole struc-
tures by GMM cluster for 16:48:05 UTC. The left two columns are the atmospheres
for the eastern flare ribbon and the right two columns are for the western flare rib-

8These splits were done depending on the asymmetry of the Ca ii 𝜆8542 line.
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Figure 6.22: The flow velocity for the identified flare ribbons at 16:48:05 UTC split by asym-
metry and GMM cluster. The left column shows the western ribbon’s cluster #7 points split
into blue (top row) and red (bottom row) asymmetry. The middle and right columns show
the same for the eastern and western ribbons’ cluster #1 points, respectively. Note that the
eastern ribbon at this time has all red asymmetries hence it is excluded from this figure.

Figure 6.23: An identical figure to Fig. 6.22 but this time showing the temperatures of the
flare ribbons split by asymmetry.
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bon with the top row being GMM cluster #7 and the bottom #1. The first and third
columns are the flow velocity and the second and fourth columns are the logarithm
of the temperature. For the eastern flare ribbon, the red asymmetric cluster #7
points typically have profiles with upflows in the lower part before sharp downflows
around the steep increase in temperature followed by more upflows when tempera-
tures reach coronal values. Looking at the regions where the wings of these spectra
typically form during flares leads to the conclusion that the sharp downflows are
responsible for the H𝛼 red asymmetry while the upflows are responsible for the
Ca ii 𝜆8542 red asymmetry. This seems typical in comparison with Ichimoto and
Kurokawa (1984) who concluded it was the downward condensation of plasma re-
sponsible for red H𝛼 asymmetries during flares. The red asymmetry in Ca ii 𝜆8542
can be thought of as upward motion of absorbing material which ties into the recip-
rocal chromospheric evaporation that occurs during flares. The small magnitudes
of the velocities are appropriate for the early time in the flare as there has not been
a lot of HXR emission observed at this time.

The remaining panels describe structures which have both red and blue asym-
metric components. While the profiles for all points in these ribbon structures are
shown in Fig. 6.21, it is more constructive to split these structures by asymmetry
to consider the physics causing each asymmetry within a structure. This is shown
for velocity in Fig. 6.22 and temperature in Fig. 6.23. N.B. in Figs. 6.22 & 6.23,
the top row shows the blue asymmetric atmospheres and the bottom row shows the
red asymmetric atmospheres. The western ribbon’s cluster #7 points (left column of
Figs. 6.22 & 6.23) are mostly blue asymmetric with some small regions of red asym-
metry. This shows that blue asymmetric Ca ii 𝜆8542 profiles seem to be affected by
upward moving emitting material while red asymmetric profiles seem to be affected
by upward moving absorbing material. In the region of formation of H𝛼 wings, both
the blue and red asymmetric profiles have velocities both positive and negative indi-
cating a lot of complex motion around this region with small clouds of emitting and
absorbing plasma rising and falling in the excited atmosphere (similar to what was
reported in Graham and Cauzzi, 2015).

Switching focus back to the eastern ribbon, now considering the points identified
as being cluster #1, most of the H𝛼 profiles are red asymmetric but there is a large
proportion of Ca ii 𝜆8542 profiles with a blue asymmetry. Particularly, the southern
portion of the ribbon is mostly blue asymmetric and moving north there appears
a mix before a large area where all profiles are red asymmetric. Also, the profiles
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surrounding the points in cluster #7 are all red asymmetric. Examining the inverted
atmospheres split by asymmetry (middle columns of Figs. 6.22 & 6.23, respectively),
there are large negative velocities (O(10km s−1)) in the regions where the H𝛼 wings
form. This places the cause of the red asymmetry as the same as for the cluster
#7 points: emitting material flowing downwards. The jointly red asymmetric Ca ii
𝜆8542 profiles are formed in regions with small upflow velocities again indicating
evaporation processes occurring here.

For the locations where a blue asymmetric Ca ii𝜆8542 is cospatial with red asym-
metric H𝛼, the top panels of the middle column of Figs. 6.22 & 6.23 are examined.
There are larger downflows in the H𝛼 forming region with upflows in the Ca ii𝜆8542
forming region. This implies that the Ca ii 𝜆8542 profiles are produced by upward
moving emitting material – potentially evaporations that have not reached a high
enough temperature yet to ionise all of their Ca ii. The H𝛼 lines are again fueled by
the downward moving condensations.

Lastly, considering the cluster #1 points for the western flare ribbon it is seen
in the bottom right panel of Fig. 6.20 that the ribbon is mostly red asymmetric in
both lines with some small regions of blue asymmetry sprinkled throughout. Re-
gardless, the asymmetries in this ribbon seem to be cospatial (i.e. red asymmetric
H𝛼 is cospatial with red asymmetric Ca ii 𝜆8542). Investigating the right columns
of Figs. 6.22 & 6.23 gives insights into the causes behind these asymmetries. The
atmospheres responsible for the red asymmetric profiles in this case do not provide a
definitive answer for the H𝛼 asymmetries: some inverted atmospheres boast down-
flows in H𝛼 forming regions while others indicate upflows. This means that in some
regions the evaporating absorbing material is more prevalent while in others it is
the condensation emitting material. A further study of the spatial locations where
these differing atmospheres are estimated could highlight some explanations for
this dichotomy. In the Ca ii 𝜆8542-forming regions for all red asymmetric inverted
atmospheres, there is again an upflow of material pointing to hot evaporation ma-
terial. The story for the blue asymmetric profiles is the opposite as the inverted at-
mospheres have similar velocity and temperature profiles. This means that for H𝛼

there is emitting material moving upwards with absorbing material moving down-
wards. For Ca ii𝜆8542, there is some emitting material moving upward as the cause
for the blue asymmetric profiles.
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Figure 6.24: An equivalent to Fig. 6.19 but for 16:54:25 UTC – when energetic electrons are
being injected into the lower solar atmosphere.

16:54:25 UTC

Moving on to the observation from 16:54:25 UTC, the asymmetries of the spectral
lines for the two clusters of interest are shown in Fig. 6.25. The dynamics of the
ribbons is more complicated at this time as more and more HXRs are observed
(Fig. 6.18). The same approach is taken with the atmospheric parameters for each
ribbon and cluster shown in Fig. 6.26 with the same layout as Fig. 6.21 (eastern
ribbon represented in left two columns and western ribbon in right two columns).
Similarly, Figs. 6.27 & 6.28 show the velocities and temperatures of the ribbon loca-
tions split by their asymmetry with the blue asymmetric profiles shown in the top
row and the red in the bottom as in Figs. 6.22 & 6.23. The difference at this time is
that all ribbon structures have a mix of asymmetries and so can all be split in this
way. Consquently, in Figs. 6.27 & 6.28, the left column is the western ribbon’s clus-
ter #7 points, the second column is the eastern ribbon’s cluster #7 points, the third
column is the eastern ribbon’s cluster #1 points and the last column is the western
ribbon’s cluster #1 points.

Following the previous observation, the first structure discussed will be the east-
ern ribbon’s cluster #7 points. Compared to the earlier time, there is now an elon-
gated, curved structure of cluster #7 points. They are mostly red asymmetric in both

181



6.4. FLARE RIBBON IDENTIFICATION AND ASYMMETRIES

Figure 6.25: An equivalent to Fig. 6.20 but for 16:54:25 UTC.

Figure 6.26: An equivalent to Fig. 6.21 but for 16:54:25 UTC.
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Figure 6.27: Similar to Fig. 6.22 but this time at 16:54:25 UTC, the eastern ribbon can also
be split by asymmetry for the cluster #7 points (second column). The western ribbon’s cluster
#7 points are represented in the left column with the ribbons’ cluster #1 points shown in the
third and fourth columns.

Figure 6.28: An identical figure to Fig. 6.27 but this time showing the temperatures of the
flare ribbons split by asymmetry.
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H𝛼 and Ca ii 𝜆8542, including the area in which there existed cluster #7 profiles in
the earlier observation, with some blue asymmetric profiles in small concentrations.
Looking at the velocities and temperatures split by asymmetry for this structure
(second column of Figs. 6.27 & 6.28) gives an insight into the dynamics of the flar-
ing atmosphere at this time. The velocity of the plasma is positive in the region of
Ca ii 𝜆8542 regardless of the asymmetry being red or blue implying regions of blue
asymmetry result from upflowing emitting material with upflowing absorbing ma-
terial being responsible for the red asymmetry. For H𝛼 blue asymmetric profiles,
the prevailing velocity signature seems to be downflows in the region of formation.
This combined with the large gradient in temperature at these heights points to this
blue asymmetry being caused by the heating of the lower solar atmosphere and its
compression by the impact of nonthermal electrons. The red asymmetrical profiles
are formed via both upflows and downflows in the H𝛼 formation region indicating
that there is evaporation and condensation processes at work in these regions.

Considering the western ribbon’s cluster #7 points, Fig. 6.25 shows that there
is both red and blue asymmetric profiles for both spectral lines with the majority
of same asymmetries occurring in the same spatial locations. Looking at Fig. 6.27,
both red and blue asymmetries of H𝛼 can be associated with downflowing plasma
implying an interplay of downflowing emission and downflowing absorption. The
asymmetries of Ca ii 𝜆8542 are both due to upflowing material with the red asym-
metry due to upflowing absorbing plasma (evaporation) of all similar velocity mag-
nitudes and the blue asymmetry due to upflowing emitting plasma with a varying
magnitude of velocity. In fact, looking at Fig. 6.28, there is a noticeable spread in the
temperature of the plasma around the region of Ca ii 𝜆8542 formation implying that
each of the different regions with blue asymmetry are in different stages of heating.

Returning to the east ribbon and considering its cluster #1 points, it is noted
that a lot of the points selected by cluster #1 that exhibit a red asymmetry in both
spectral lines do not appear to be part of the brightest ribbon structure (Fig. 6.25).
These locations are postulated to be heated either by some form of radiative heating
owing to their adjacency with the brightest flare ribbons or via weaker direct flare
heating due to the sweeping motion of the flare ribbons in the chromosphere. It is
likely a combination of both effects that leads to these points being candidates for
cluster #1. For the H𝛼 and Ca ii 𝜆8542 red asymmetric points upflows are mostly
responsible. This indicates evaporating hot plasma in these regions. Considering
the blue asymmetries, the Ca ii 𝜆8542 formation region experiences upflows indi-
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Figure 6.29: Equivalent to Fig. 6.19 & 6.24 but for 16:57:29 UTC – after energetic electrons
have been injected into the lower solar atmosphere.

cating emission in upflowing plasma with most of the profiles in the H𝛼 formation
region presenting downflows similar to the eastern ribbon’s cluster #7 points.

For the western ribbon’s cluster #1 points, there is a mix of red and blue asym-
metric profiles. The H𝛼 blue asymmetric profiles are mainly caused by downflows
of up to 30km s−1 implying fast moving absorbing material. This is again roughly
at the same height where the transition region occurs in the temperature profiles
implying that these points with blue H𝛼 asymmetry are caused by material being
strongly heated in the lower atmosphere. The H𝛼 red asymmetric profiles form due
to downflows of cooler emitting material. Both Ca ii 𝜆8542 asymmetries occur as a
result of upflows as has been seen in the other structures.

16:57:29 UTC

The asymmetries of the spectral line profiles for the 16:57:29 UTC observation are
shown in Fig. 6.30 (which is equivalent to Figs. 6.20 & 6.25 for this observation). The
identified flare ribbons are then analysed in the same way as for the previous two
observations. This time represents one after which there has been energy injected
into the lower atmosphere (after a HXR peak).

The eastern ribbon’s cluster #7 points are mainly red asymmetric in both H𝛼
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Figure 6.30: Equivalent to Fig. 6.20 & 6.25 but for 16:57:29 UTC.

Figure 6.31: An equivalent to Fig. 6.21 & 6.26 but for 16:57:29 UTC.
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Figure 6.32: Similar to Fig. 6.27 but this time at 16:57:29 UTC.

Figure 6.33: An identical figure to Fig. 6.32 but this time showing the temperatures of the
flare ribbons split by asymmetry.

187



6.5. DISCUSSION

and Ca ii 𝜆8542. Looking at Figs. 6.31 & 6.32, it can be seen the red asymmetric H𝛼

profiles are influenced by downflowing plasma implying this downflowing plasma is
emitting. Moreover, the Ca ii 𝜆8542 profiles are red asymmetric due to evaporating
absorbing plasma. In a few locations, the spectra are blue asymmetric implying
in these locations that there is downflowing material absorbing H𝛼 and upflowing
material emitting Ca ii 𝜆8542.

For the western ribbon’s cluster #7 points, both spectral lines are mostly red
asymmetric too. Similarly to the eastern ribbon, these asymmetries are due to down-
flowing emitting plasma for H𝛼 and upflowing absorbing plasma for Ca ii 𝜆8542.
Also, for the few regions showing a blue asymmetry in the line profiles, the same
explanation as for the eastern ribbon’s cluster #7 points apply.

For the eastern ribbon’s cluster #1 points, there is again a split between red and
blue asymmetric profiles in Ca ii 𝜆8542 with nearly all H𝛼 points red asymmetric.
As such when both are red asymmetric, the H𝛼 can be described by downflowing
emitting material and the Ca ii 𝜆8542 by upflowing absorbing material. However,
when the Ca ii𝜆8542 is blue asymmetric and the H𝛼 is still red asymmetric, the Ca ii
𝜆8542 can be described by upflowing emitting material with the H𝛼 still described
by downflowing emitting material.

Lastly, for the western ribbon’s cluster #1 points, most of the points are red asym-
metric in both spectral lines with some blue asymmetric profiles present in the west-
ern edges of the ribbons for both spectral lines. The red asymmetric profiles for H𝛼

correspond to downflowing emitting material with the blue asymmetric profiles cor-
responding to downflowing absorbing material. For Ca ii 𝜆8542, the red asymmetric
profiles correspond to upflowing absorbing material and the blue asymmetric pro-
files to upflowing emitting material.

6.5 Discussion
This chapter has presented a novel deep learning algorithm for analysing inverse
problems in solar physics and the wider astronomy community: an invertible neural
network. A specific INN trained on 1D RHD flare simulations from RADYN, RA-
DYNVERSION, was trained to produce the first determinations of the flaring atmo-
sphere from observations considering the full RHD treatment of the solar plasma.
This was then applied to real data from SST/CRISP to learn about the chromo-
spheric flaring velocity field and its relation to the observed spectral line asymme-
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Figure 6.34: An illustration of the asymmetries observed and the motion causing them at
16:48:05 UTC. The colour of the box of material responsible for a spectral line indicates
which type of asymmetry the line has in such a case with the arrow indicating the motion
of the material. When the colours of the box and arrow match, there is emitting material
responsible in the corresponding direction for the asymmetry and when they differ there
is absorbing material responsible for the asymmetry. (a) and (b) both correspond to areas
where Ca ii 𝜆8542 has a blue asymmetry and H𝛼 has a red asymmetry. The difference is
in (a), the H𝛼 red asymmetry is caused by upflowing absorbing material whereas in (b) it is
caused by downflowing emitting material. Similarly, (c) and (d) both correspond to regions
where Ca ii 𝜆8542 and H𝛼 have blue asymmetries. (e) shows the case where both lines have
red asymmetries.
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Figure 6.35: An illustration of the asymmetries observed and the motion causing them at
16:54:25 UTC. (a) shows the case where both lines have blue asymmetries and (b) and (c)
shows the two different cases where both lines have red asymmetries.

Figure 6.36: An illustration of the asymmetries observed and the motion causing them at
16:57:29 UTC. (a) shows the case where both lines have blue asymmetries, (b) shows Ca ii
𝜆8542 having a blue asymmetry and H𝛼 having a red asymmetry and (c) shows the case
where both lines have red asymmetries.

190



6.5. DISCUSSION

tries.
While this is a good first step, improvements can be made in the training of RA-

DYNVERSION to provide more physically reliable results. For instance, the grid
of models RADYNVERSION is trained on are all heated by an electron beam with
a triangular pulse time profile. This is not necessarily the time profile of an elec-
tron beam and so running more RADYN simulations with different beam heating
profiles and including them in the training of RADYNVERSION could improve re-
sults. In fact, at times where the HXR flux peaks in the SOL20140906T17:09 M1.1
flare, the H𝛼 line profile is centrally reversed with its horns broadened so much that
it appears like an absorption profile. The current RADYNVERSION has not been
trained on profiles this broad hence the inverted atmosphere seems quieter than
one would expect (lower velocities and temperatures in the lower atmopshere). In-
cluding other beam heating profiles in the training of RADYNVERSION allows for
a more predictable atmosphere to be recovered indicating that these profiles may
be broadened to such an extent due to the beam heating profile. Moreover, includ-
ing other heating mechanisms of the lower solar atmosphere, such as Alfvénic wave
heating (Fletcher and Hudson, 2008; Hudson and Fletcher, 2009; Kerr et al., 2016),
may also lead to more accurate atmospheric determinations. Also, Osborne et al.
(2021) showed that proper non-local thermodynamic equilibrium (NLTE) treatment
of the hydrogen Lyman lines has a non-negligible effect on the emergent Ca ii 𝜆8542
radiation. Resimulating the RADYN models with a proper treatment of the Lyman
lines can then therefore change which atmospheric parameters map to what obser-
vations. This could potentially alter any of the conclusions previously drawn from
the analysis in this chapter. Lastly, all of the simulations that RADYNVERSION
was trained on have the same viewing angle (𝜇 = 0.95) which corresponds to a flare
occurring at approximately disk centre on the Sun. As a result, any flares analysed
that are not near disk centre will experience projection effects in their spectra that
the recovered atmospheres will not take into account. This can be improved upon by
including simulations from a multitude of viewing angles in the training dataset.

The RADYNVERSION model was used to determine the properties of the flar-
ing atmosphere in the vicinity of the flare ribbons – points directly heated by flare
energy – at three different times determined by their coincidence with the observed
HXR from RHESSI. At each time the flare ribbons were identified using a GMM and
DBSCAN with the asymmetry of the H𝛼 and Ca ii𝜆8542 spectra in each point calcu-
lated. Each location was then inverted by RADYNVERSION with 20,000 samples of
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the latent distribution with the median profile of the atmospheric parameters used
in the final analysis.

Throughout the times analysed, both red and blue asymmetric profiles were ob-
served for both H𝛼 and Ca ii 𝜆8542. In line with the works of Svestka (1976) and
Canfield et al. (1990), this study finds that H𝛼 profiles are mostly red asymmetric
throughout the flare with small confined patches of blue asymmetry occurring dur-
ing flare energy input (according to the HXR lightcurves) and after the first HXR
spike. Canfield et al. (1990) remarked that the patches of blue asymmetry they ob-
served occur in patches with diameter <10′′, while the largest H𝛼 blue asymmetric
patches observed here are around half that size (such is the nature of having higher
spatial resolution observations). Moreover, the red asymmetry of H𝛼 is consistently
present in agreement with Ichimoto and Kurokawa (1984).

Additionally, this study provides the first analysis of the asymmetries in Ca ii
𝜆8542 during a solar flare. Heinzel et al. (1994) previously studied the asymmetry
during flares of the Ca ii H spectral line and the Balmer lines of hydrogen concluding
that the blue asymmetry in these lines are driven by downward plasma motions
caused by the nonthermal electrons with a return current. Larger areas of blue
asymmetry of Ca ii 𝜆8542 were observed during the aforementioned observations
often occurring cospatially with the H𝛼 blue asymmetry but in certains cases, Ca ii
𝜆8542 would be blue asymmetric while H𝛼 would be red. Similarly, there are plenty
of areas where Ca ii 𝜆8542 was red asymmetric and this always coincided with red
asymmetric H𝛼.

The inverted atmospheres were studied to determine the flow velocity and tem-
perature structure in the regions of line wing formation of H𝛼 and Ca ii 𝜆8542
according to Kuridze et al. (2015) and Kerr et al. (2016), respectively. It was found
at each of the three times that the explanation for the Ca ii 𝜆8542 asymmetries
was always the same: the regions where the wings of Ca ii 𝜆8542 are formed at
the times studied always had upflow velocities indicating the material responsible
for the asymmetry was moving towards the observer. This means that when Ca ii
𝜆8542 is red asymmetric the upflowing material can be classed as absorbing with
blue asymmetry being caused by emitting upflowing material. Overall, this can be
interpreted as the plasma in the region of formation evaporating due to the injec-
tion of energy from the nonthermal electrons. Looking at the temperature profiles
for each type of asymmetry shows an overall increase in temperature in the region of
formation of Ca ii𝜆8542 for the red asymmetric profiles. This solidifies the interpre-
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tation of absorbing material as the hotter material moving upwards can have more
of its Ca ii 𝜆8542 population ionised leading to a reduction in Ca ii 𝜆8542 emission.

The H𝛼 asymmetries were more varied in their origin. During the early time,
16:48:05 UTC, the red asymmetric H𝛼 was caused by downward flowing emitting
material in some regions and upward flowing absorbing material in others. In par-
ticular, when Ca ii 𝜆8542 was blue asymmetric and H𝛼 was red asymmetric, the
cause of the red asymmetry in H𝛼 in many locations was due to the upflow of absorb-
ing material. This upflow of material could be tied to the same upflowing material
responsible for the blue asymmetric Ca ii 𝜆8542 profiles. In this case, it is postu-
lated that the plasma has enough energy for the Ca ii 𝜆8542 transition but not for
H𝛼. Other locations with overlapping blue Ca ii 𝜆8542 and red H𝛼 have downward
emission responsible for the red asymmetric H𝛼. This is the result of downward con-
densation material being pushed into the lower atmosphere by energy deposition as
described by Ichimoto and Kurokawa (1984). Regions of blue asymmetric H𝛼 at this
time coincided with blue Ca ii𝜆8542 with upflows mostly being responsible for these
asymmetries. These upflows of emitting material are thought to be the initial evap-
oration stages as the plasma is heated but before it is too hot to produce H𝛼 and
Ca ii 𝜆8542. The fact that the overlapping blue asymmetries in both lines do not
occur very frequently points to this being a transient consequence of the efficient
flare heating. There are also regions where the blue H𝛼 asymmetry is caused by
downflows interpreted to be of the same cause as given by Heinzel et al. (1994).

During both the 16:54:25 and 16:57:29 UTC observations, there is much more oc-
currence of blue asymmetric H𝛼. These points are much more spatially correlated
with the Ca ii𝜆8542 blue asymmetries and studying the velocity profiles in these re-
gions points to downward moving plasma absorbing H𝛼 responsible for these asym-
metries. Given that the Ca ii 𝜆8542 blue asymmetry is caused by emitting upwards
moving plasma and the H𝛼 blue asymmetry is caused by absorbing downwards
moving plasma indicates chromospheric condensation producing the H𝛼 observa-
tions while chromospheric evaporation of the material producing the Ca ii 𝜆8542
observables takes place. This makes some semblance of sense when considering the
RHESSI observations show that both of these times occur after high energy HXRs
have been observed.

The red asymmetric H𝛼 at time 16:54:25 UTC boast some locations being caused
by downward moving emission and others by upward moving absorption. The loca-
tions correlate with the locations of red asymmetric Ca ii 𝜆8542 which is always
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6.5. DISCUSSION

caused by upward moving absorption. In the regions where both lines’ asymmetries
are caused by upwards moving absorption, it is concluded that the evaporating ma-
terial has reached such a temperature that it is too hot to produce either line and is
opaque enough to obscure the plasma condensation below that may be emitting H𝛼.
The converse was assumed about the opacity of the evaporating material when the
red asymmetry of H𝛼 was caused by downflowing emission: the material was still
opaque to Ca ii 𝜆8542 but not to H𝛼 where the emission of condensation material
was observed.

At 16:57:29 UTC, the red asymmetric H𝛼 was caused purely by downflowing
emission. This can be seen as the condensation material cooling and emitting H𝛼

after the original influx of nonthermal electrons.
An illustration of the different combinations and causes of asymmetries at this

time is presented in Fig. 6.34. Similar demonstrations are given in Fig. 6.35 for
16:54:25 UTC and Fig. 6.36 for 16:57:29 UTC.
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7 | Conclusions

In this thesis, the applications of machine learning techniques in solar flare data
analysis pipelines from identifying flare ribbons observed in optical spectral lines to
correcting residual seeing effects in such observations and estimating the underly-
ing atmospheric conditions responsible for the observations. This has involved a mix
of deep learning – the field of using deep neural networks to automate tasks – and
clustering methods – a family of unsupervised machine learning algorithms used to
categorise data based in their intrinsic properties. This thesis serves as a good proof
of concept for how automation via machine learning can be beneficial in optimising
workflows in solar physics as well as uncovering new answers to old problems. All of
the code used in this thesis is publicly available under the MIT license with the code
for Chap. 4 available at https://github.com/bionictoucan/slic/, Chap 5 https://

github.com/bionictoucan/shaun/ and Chap. 6 https://github.com/bionictoucan/

Radynversion/1 & https://github.com/bionictoucan/ribbon_asymmetries.
In Chap. 4, the first deep convolutional neural network (CNN) trained on images

of the Sun for the classification of different solar features is presented. This CNN,
referred to as Slic, is trained on ∼13,000 H𝛼 images taken by Hinode/SOT split into
five different categories: filaments, flare ribbons, prominences, sunspots and the
lack of the other four features (the quiet Sun). The trained Slic model, benefitting
from good initialisation via He initialisation (Sec. 2.3.1), took only four epochs to
reach 99.2% classification accuracy on the validation dataset (corresponding to one
misclassified image in the validation dataset). After further investigation via the
confusion matrix, it was found that the misclassified image was an image of a fila-

1This is a fork of the original repo at https://github.com/Goobley/Radynversion/ and may not
be up to date.
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ment misclassified as flare ribbons indicating that more examples of filaments and
flare ribbons in training could resolve this ambiguity in the knowledge of Slic. Slic
was then presented with adversarial examples (examples whose answer is obvious
to the user but can confuse the network) in the form of sunspot observations taken
with SDO/AIA in 1600 & 1700Å UV continua and prominence observations taken
with AIA in 304Å EUV band. This test showed that the trained network was not
able to identify sunspots in 1600Å or prominences in 304Å at all and would only
sparingly correctly identify a sunspot in 1700Å. Despite the perceptual similarity
between H𝛼 and 1600/1700Å sunspots, Slic does not have the capability to be ap-
plied to AIA UV data. This is potentially due to bright plage regions around the
sunspots that are present in UV and not in H𝛼 or other optical wavelengths. The
bright plage confuses Slic into thinking the images contain flare ribbons as that
is typically the class that dominates these misclassifications. For prominences in
304Å, the common misconception is again towards flare ribbons. This is thought to
be due to the presence of noisy coronal emission in the background at the height of
the prominence. In these examples, this acts like the quiet Sun background in flare
ribbon images hence the misclassification. Furthermore, the background emission
is not present in H𝛼 prominence images at all. Finally, the use of Slic in transfer
learning is realised in Chap. 5 as it is used to quantify the perceptual loss between
reconstructed and ground truth images with good seeing.

Chapter 5 focuses on the creation and implementation of the Seeing AUtoeN-
coder (Shaun). Shaun was designed to correct for residual atmospheric seeing in op-
tical solar flare observations taken with SST/CRISP (Sec. 3.1). Shaun was developed
as current postprocessing techniques for seeing correction are not suited for flares
as they either need 100s of frames without much solar variation (Speckle methods)
or use wideband images to aid in the restoration which do not always contain flare
ribbons (MOMFBD). Firstly, a model was derived to imprint synthetic atmospheric
seeing on images taken during good seeing conditions (and thus considered approx-
imately diffraction-limited). This was done by starting from the statistical descrip-
tion of the Earth’s atmosphere as a medium with smoothly varying turbulence. This
led to the derivation of the Kolmogorov structure function (Eq. 5.63) which describes
how the turbulence of the atmosphere varies from a defined centre point. A seeing
disc was then defined based on the value of the Fried parameter wishing to be em-
ulated and the observed wavelength of the light. This seeing disc was populated by
Eq. 5.63 and convolved with good seeing images according to Eq. 5.4. Seeing discs
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are then created for a range of Fried parameters (𝑟0 = {1, 2.5, 5, 10, 12.5, 15} cm)
and convolved with CRISP data to create a training dataset.

The two spectral lines of focus in the CRISP datasets of flares used are H𝛼 and
Ca ii 𝜆8542. Due to the difference in wavelength between their vacuum values, see-
ing will have different effects on them for the same value of the Fried parameter
(as 𝑟0 ∝ 𝜆6/5) therefore two different Shauns were trained: one for H𝛼 and one for
Ca ii 𝜆8542. Both have the same fully convolutional autoencoder architecture and
are trained identically besides different numbers of epochs for convergence. The per-
formance on the validation dataset is good providing good reconstruction of small
and large scale features within the field of view. The H𝛼 model seems to perform
more reliably than the Ca ii 𝜆8542 but this was due to artifacts in the Ca ii 𝜆8542
training dataset being learned by the network causing poor reconstructions. This
could be fixed by a more careful construction process for the training data. The data
is then applied to CRISP observations with real bad seeing to promising results.
The trained Shauns are subject to an adhoc error estimate on the reconstructed in-
tensities taken to be the average of the total loss of the system calculated over the
whole training and validation dataset at the epoch of convergence. This is an in-
credibly fast method for correction of seeing taking ∼500 ms for a 1k×1k image with
15 wavelength channels. Due to the advent of Pytorch’s torchscript allowing for
the compilation of deep learning models, this can be reduced to ∼80 ms. Moreover,
this compilation could be used to create a Shaun module that could be run on any
system with sufficient hardware e.g. telescope data collection pipelines.

Chapter 6 introduced a novel deep learning approach to estimating the parame-
ters of the solar atmosphere that lead to the observations: RADYNVERSION. This
was done through the application of an invertible neural network (INN). Inverse
problems are ill-defined due to information loss in the forward process meaning it
is difficult to disambiguate the solution. INNs avoid the need for disambiguation
via their architecture being mathematically invertible. This invertibility allows for
a bijective solution to the inverse problem to be given.

RADYNVERSION learned from 1D RHD simulations of flares from the RADYN
code the connection between the atmospheric parameters (electron density, temper-
ature and bulk flow velocity) to the observable H𝛼 and Ca ii 𝜆8542 spectral lines.
In doing so, RADYNVERSION is capable of synthesising these spectral lines from a
set of RADYN-like atmospheric parameters and, more importantly, can estimate the
atmospheric parameters from a set of observations. This was an important step in
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understanding the flaring chromosphere as traditional parameter estimation tech-
niques used in solar physics were not as applicable to flares due to the radiative
transfer occurring under hydrostatic equilibrium. This is the first method to produce
atmospheric parameters as they are discussed elsewhere in solar physics literature
but using the full RHD treatment of a flare.

The trained RADYNVERSION was then used over areas of entire flare ribbons
at certain points indicated by the RHESSI 25-50keV light curve. The flare ribbons
were identified using a combination of two classical unsupervised machine learning
techniques: Gaussian Mixture Models (GMM) and Density-Based Spatial Cluster-
ing on Applications with Noise (DBSCAN). The GMM identified the different types
of spectra in the data wishing to be analysed indicating points that are more likely
to occur in a flare ribbon. DBSCAN was then used to filter out the points clustered
into a flare ribbon spectral cluster but were far away from the flare ribbon struc-
tures in space. The estimated velocities and temperatures in the regions where the
H𝛼 and Ca ii 𝜆8542 spectra form was used to infer the atmospheric dynamics which
leads to the asymmetric profiles observed.

These asymmetries were studied at three different times during the M1.1 flare
based on when the observations were taken with regard to the RHESSI spectra. In
particular, one time was selected before the initial HXR spike in 25-50keV, another
during this spike and the last after this spike but before any subsequent spikes. This
spike in 25-50keV also showed a healthy signal in the 50-100keV range indicating
a good presence of nonthermal electrons. For blue asymmetric Ca ii 𝜆8542 profiles,
it was found at all times that this asymmetry was caused by upflowing emitting
plasma. An explanation for this is chromospheric evaporation which results from
chromospheric plasma being heated to coronal temperatures by flare energy mech-
anisms causing the material to rise. At early stages of energy release, the evaporat-
ing material will be cooler allowing it to expand upwards while still producing Ca ii
𝜆8542 emission. This is supported by cospatial blue asymmetric H𝛼 which is also
caused by upflowing emitting plasma at early times indicating that the plasma is
rising as it is heated. For the two later times, the cospatial blue H𝛼 was caused by
downward absorbing plasma showing that while there is evaporation, there is also
hot material that is opaque to H𝛼.

For red symmetric Ca ii 𝜆8542 profiles, it was found that upflowing absorbing
material was responsible. The temperature profiles of red asymmetric Ca ii 𝜆8542
had higher temperatures in the region of Ca ii 𝜆8542 formation pointing to the up-
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ward moving material being opaque to Ca ii 𝜆8542. The H𝛼 blue asymmetries were
found to be caused by both upward emitting material and downward absorbing ma-
terial while the red asymmetries were found to be caused by both upward absorbing
material and downward emitting material depending on the spatial location and the
time observed.

Future Work

While the work presented in this thesis is a good jumping off point in demonstrating
the use of machine learning tools in data processing and analysis pipelines in solar
physics, these works can be improved upon.

Firstly, the Slic network introduced in Chap. 4 shows the feasibility and robust-
ness of deep convolutional neural networks when classifying images of the Sun.
Currently, this model is trained only on H𝛼 observations from Hinode/SOT but the
expansion of the training set to include other wavelengths such as UV/EUV obser-
vations from SDO/AIA will increase its merit. Moreover, models such as these can
be compressed and run on-board new solar space missions to aid in identification
and pointing of the telescopes. Having an accurate model trained in many wave-
lengths would also benefit the tagging of data after downlink from satellite or after
post-processing from a ground-based facility. There would be an increase in effi-
ciency releasing these datasets to the public leading to more efficient science and
less researcher time spent trawling through image databases.

Moving onto Shaun, introduced in Chap. 5. Shaun demonstrated the use of deep
neural networks for data post-processing by learning to reconstruct imaging spec-
troscopic data of solar flares without any residual seeing left behind by any post-
processing done up until that point. This was implemented as current methods for
atmospheric seeing correction in solar observations are ill-suited to solar flares due
to their subsecond evolution. Further development into Shaun and other similar
methods would be twofold.

The model used to generate the synthetic seeing point-spread functions and thus
the training data assumes that these PSFs are azimuthally-symmetric. As discussed
in Sec. 5.1, for the applications of Shaun to time-integrated data this is a valid as-
sumption but for the application to instantaneous frames of data being images by
a telescope, the azimuthally-symmetric assumption is too simplistic – as shown in
Asensio Ramos and Olspert (2021) and references therein, these PSFs are far from

199



azimuthally-symmetric. As such, the generation of the PSFs for instantaneous data
correction would need to include a more accurate depiction of the PSFs such as us-
ing Zernike polynomials to generate them (Van Noort et al., 2005, and references
therein).

Furthermore, the estimation of robust errors when removing the atmospheric
seeing would increase the trustworthiness of Shaun. The author thinks that the
best way to do this would be to apply a setup similar to Tonolini et al. (2019) who
employ conditional variational autoencoders to sample the posterior distribution of
images without applied noise. This could be easily applied to sample the posterior
distribution of solar flare data corrected for seeing. This would also lead to an esti-
mate of the confidence in the reconstructions.

Overall, Shaun can be applied today out-of-the-box to give accurate recon-
structions of solar flare data after correcting for residual seeing leftover by post-
processing techniques such as MOMFBD or Speckle interferometry. On the other
hand, there are some critical improvements needed to both the synthetic seeing
model and the learned seeing correction before it can be applied to raw frames at a
telescope.

Lastly, the RADYNVERSION technique for estimating the atmospheric param-
eters of a solar flare was presented in Chap. 6. RADYNVERSION is a great first
step in developing inferential tools to study the optical spectra of a solar flare. RA-
DYNVERSION presents the first purpose-built inversion code to examine flares as
it is trained specifically using flare simulations. This is an important step in study-
ing the evolution of the flaring velocity field as this seems to be the most important
when considering optical emissions during these events. However, as with all ML,
RADYNVERSION is only as good as its training dataset meaning there is an as-
terisk attached to the results obtained using this method: the assumption that the
simulations comprising the training dataset are accurate representations of solar
flares. Increasing the training dataset to include more varied simulations would go
a long way in improving the applicability of RADYNVERSION.

Finally, the RADYNVERSION model shows the applicability of INNs in physical
inverse problems. It has shown that a mathematical inverse can be formulated for
the data it is trained on and this may have implications in other areas of astrophysics
where the scientists are always trying to make inferences about systems they have
no control over. As with other ML algorithms used for parameter estimation, the
INN has its drawbacks but its ability to learn a mathematically invertible function
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has its appeal for anyone looking to study astrophysical phenomena.

The work presented in this thesis has presented the usefulness of exploiting ma-
chine learning tools for data processing and analysis purposes in solar flare physics.
As the field of applied machine learning in solar physics continues to grow, it is
prudent to remember that these “black box” methods are not so. There is a cer-
tain amount of mathematical rigour underpinning these methods that should not
be understated. The uniqueness of data driven modelling lies in the unquantifiable.
Many of the tasks set out to be modelled by machine learning do not have a nice for-
mulation that can be simply written down. As such, the process of learning any of
these functions is often seen as opaque and can be difficult to comprehend in the be-
ginning2. But without any suspension of disbelief, it can be seen logically how these
methods learn what they do. A system is being defined with N >> 1 degrees of free-
dom meaning there are innumerable possibilities of combinations of these degrees
of freedom that can result in different answers. The user then gives the system a
guide in the right direction and given that these are all conceived by human inge-
nuity, it should not be surprising that the conclusion the system arrives at is one
that a person might given the same information. At the end of the day, everything
is data and given a large enough parameter space anything can be learned.

2It took me about two years of this actually being my job to where I was comfortable saying I “get”
what a neural network is doing.
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