

Victorova, Elizaveta (2022) Essays on college admissions and fair team

formation. PhD thesis.

http://theses.gla.ac.uk/82867/

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study,

without prior permission or charge

This work cannot be reproduced or quoted extensively from without first

obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any

format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author,

title, awarding institution and date of the thesis must be given

Enlighten: Theses

https://theses.gla.ac.uk/

research-enlighten@glasgow.ac.uk

http://theses.gla.ac.uk/82867/
mailto:research-enlighten@glasgow.ac.uk

Essays on college admissions and
fair team formation

Elizaveta Victorova

Submitted in fulfilment of the requirements for the Degree
of Doctor of Philosophy in Economics

Adam Smith Business School
College of Social Sciences

University of Glasgow

May, 2022

Abstract

The thesis consists of three Chapters.

The first Chapter considers college admission process with restricted applications.

Each student has heuristic beliefs about the probability of being admitted and applies

to a limited number of programmes within the colleges. We find that reducing the

number of applications may result in an increase in total utility.

Second Chapter focuses of a team formation problem in markets with indivisible

goods without transfers. Each agent is allocated equal number of goods. Since fair-

ness notions are unattainable, we consider the relations between approximate fairness

properties. We find that, contrary to general case, most approximate fairness and

minimal guarantee properties are logically independent in relatively big markets. We

show that when there are two agents, envy-freeness up to one good and optimality

are compatible. We examine some of the well-known assignment rules and find that

Round Robin and Generalised Round Robin are not efficient, although satisfy some of

the approximate fairness properties. Nash Max, Utilitarian Max and Leximin proce-

dures are efficient, but do not guarantee that any of the approximate fairness notions

hold.

Third chapter investigates allocating students to equal number of elective courses.

Compared to Chapter 2, here we examine many-to-many markets. We show that

the Deferred Acceptance (DA) mechanism may violate the quotas, and design two

modifications. We show that the modifications may allow for additional profitable

manipulations compared to DA. We then simulate the allocation procedures and show

that, on average, there are no more than 1% of additional profitable manipulations.

When considering the number of manipulable markets, we find that roughly 20%

and 18% of the markets are manipulable under our two modifications, which is low

compared to the similar outcomes in one-to-many markets without lower quotas.

i

Contents

Abstract i

Acknowledgements vii

0 Introduction 1

1 Truncated allocations under DAmechanism: consequences

on students’ strategies and welfare 4

1.1 Introduction . 4

1.2 Model . 7

1.2.1 Allocation process 8

1.3 Results . 10

1.3.1 Unrestricted reports 10

1.3.2 Restricted reports 11

1.3.3 Welfare . 13

1.3.4 Discussion . 16

1.4 Extensions of the model 17

1.4.1 Application assumptions 17

1.4.2 Student types . 18

1.4.3 Three programmes 19

ii

CONTENTS

1.4.4 Welfare . 24

1.5 Numerical Experiment 27

1.6 Conclusion . 32

1.7 Appendix. Proofs of propositions 34

2 Fair team formations with allocations of equal size 40

2.1 Introduction . 40

2.1.1 Motivation . 43

2.2 Literature . 46

2.3 Model . 49

2.4 Properties: definitions 50

2.4.1 Pareto Optimality 50

2.4.2 Envy-Freeness . 51

2.4.3 Proportionality 52

2.5 Assignment rules: definitions 53

2.6 Compatibility of properties 55

2.7 Mechanisms’ Properties 65

2.8 Conclusion and Future Work 72

2.9 Appendix. Summary of results 74

3 Student allocation to equal number of elective courses 75

3.1 Introduction . 75

3.2 Literature . 77

3.3 Model . 79

3.3.1 Why we cannot use original DA 79

iii

CONTENTS

3.3.2 Modified DA . 81

3.4 Strategy proofness . 83

3.4.1 ModDA1 . 89

3.4.2 ModDA2 . 92

3.4.3 Simulations . 94

3.5 Conclusions and Future Work 96

A Appendix to Chapter 1 101

B Appendix to Chapter 3 112

iv

List of Figures

1.1 Student’s estimate of the probability of acceptance into p 10

1.2 Final matching, baseline . 11

1.3 Optimal student’s strategy . 13

1.4 Students’ allocation: case 1 if seb > s′b (top) and seb < s′b (bottom) 15

1.5 Students’ allocation: case 2 . 16

1.6 Final matching with unrestricted applications 21

1.7 Optimal student’s strategy . 22

1.8 Student’s expected utility comparison depending on the preference profile 23

1.9 Optimal student’s strategy . 24

1.10 Example of an increase in total utility (application to one programme) 25

1.11 Example of an increase in total utility (application to two programmes) 26

1.12 Number of reallocations and change in total utility with normally dis-

tributed exam scores . 29

1.13 Number of reallocations and change in total utility with uniformly dis-

tributed exam scores . 29

1.14 Number of reallocations and change in total utility with normally dis-

tributed exam scores and distorted previous year’s cutoff scores 30

1.15 Number of reallocations and change in total utility with uniformly dis-

tributed exam scores, four colleges . 31

1.16 Student’s expected utility comparison, student prefers programme a . . 34

1.17 Student’s expected utility comparison, student prefers programme b . . 35

v

List of Tables

1.1 Expected utility of an application ai of student i 21

2.1 RR allocation . 65

2.2 Pareto Improvement (PI) . 66

2.3 Summary or results . 74

3.1 Fraction of beneficial misreports among all misreports under DA and

ModDA1 . 95

3.2 Fraction of beneficial misreports among all misreports under DA and

ModDA2 . 95

vi

Acknowledgements

I am very grateful for all the support I received during the last few years.

This thesis would not be possible without my supervisors. I am thankful to Dr

Patrick Harless for his support and guidance at the start of my PhD research. I am

grateful to Prof Anna Bogomolnaia, Prof Herve Moulin and Dr Constantine Sorokin

for their expertise, advise and patience.

I would like to extend my sincere thanks to the University of Glasgow for providing

me with the opportunity to study here. Being awarded with the College of Social

Sciences Scholarship opened many doors.

Thank you, Arthur, Jerome, Rohan, Damiano, Vladimir, Johanna, Fivos, Li, Mo,

Hualin, Arsenii, Nikolas, Helena for the hours of studies, discussions and suggestions.

I am deeply grateful to Anton, Arman, Dasha and Kirill.

Special thank to my parents for setting a good example, encouraging my curiosity

and taking an active part in my life and education.

vii

Declaration

I declare that, except where explicit reference is made to the contribution

of others, this dissertation is the result of my own work and has not been

submitted for any other degree at the University of Glasgow or any other

institution.

Printed Name: Elizaveta Victorova

viii

Chapter 0

Introduction

The thesis is composed of three chapters. Each chapter is a paper con-

tributing to matching literature.

Chapter 1 focuses on deferred acceptance (DA) allocations in col-

lege admissions. The student-proposing DA mechanism is well-known

in the literature for being stable and resulting in the best possible sta-

ble allocation for students. According to our model, however, students

are applying to a limited number of programmes within each college.

This implies that the students need to decide which programmes to

apply to and which ones to amend in the reported preferences. The

constraint is drawn from real-life examples of college admissions when

students are only allowed to apply to up to a certain number of colleges

or programmes within a college. We assume that students have heuristic

beliefs about the probability of being admitted into each programme.

The probabilities are based on the previous year’s cutoff scores. We

focus on changes to the total utility of all students compared to baseline

case in which the students are allowed to apply to all programmes. We

investigate cases with two and three colleges analytically. We find that,

contrary to expectations, the total welfare of students may increase as

a result of truncating preference lists. This happens when high-scoring

students predict the cut-off scores incorrectly, and their ’baseline seats’

are allocated to lower-scoring students who gain higher utility from the

1

programme. We then run some numerical experiments to verify our

findings, and find that the results of our model are replicated by the

simulations.

Chapter 2 studies fair division of goods in which every agent receives

equal number of goods. This is a specific case of a general fair division

when each agent receives any number of goods, and the number of goods

depends on the utility of each good and its fairness implications. Allo-

cating equal number of goods is a problem that is often seen in reality.

Doctors are assigned the same number of night shifts per year, professors

supervise equal number of students and students pick equal number of

elective courses to graduate with a specific degree. These examples are

often resolved in a heuristic manner or on a first come first served basis.

Such approaches are impossible in professional sports. Drafting new

player in major leagues means choosing equal number of new players by

the teams. The process is well-regulated in attempt to make drafting

as fair as possible. We study the properties of approximate fairness in

this set-up. Usual notions of envy-freeness and proportionality are un-

feasible, so we tailor their approximate equivalents to our case. We also

consider minimal guarantees: minimal and lexicographic envy-freeness.

We find that, contrary to general case, most approximate fairness and

minimal guarantee concepts are independent and only imply each other

when number of agents or number of goods is very small (two, some-

times up to three). Considering goods, bads or mixed goods has no

effect on whether the properties hold, which is drastically different in

the general case. We find that among the well-known allocation mech-

anisms, there are none that satisfy both optimality and approximate

fairness. Round Robin mechanism is approximately fair up to one good

and guarantees minimal envy-freeness, but is not optimal. Mechanisms

that maximise the minimum utility among all the agents or maximise

the sum or product of all utilities are optimal, but do not guarantee any

2

of the approximate fairness or minimal guarantee properties.

Chapter 3 focuses on allocating students to courses in a many-to-

many matching with equal quotas. Each student needs to choose the

exact number of elective courses, and the allocation takes the prefer-

ences of both students and courses into account. We assume that both

students and courses have responsive preferences. First, we show that

using the DA mechanism is not feasible as the allocation may result in

a student being allocated to a few copies of the same course. We there-

fore design two modifications of the DA rule (ModDA1 and ModDA2) to

avoid such allocations. If the DA assignment of students to courses does

not violate any restrictions, we make sure that ModDA1 and ModDA2

results in the same allocation as DA. We then study the implications

of modificaitions on strategy-proofness. We find that the modifications

make some of the DA manipulations ineffective or even harmful, but

also allow for appearance of new manipulations that were not effective

under DA. We then simulate the allocation procedures and find that

the number of profitable manipulations increases by less than 1% on

average. Most of the manipulations are beneficial under both DA and

its modifications. Overall, roughly 20% of the markets are manipulable

under ModDA1 and about 18% under ModDA2, which is low compared

to the similar outcomes in one-to-many markets without lower quotas

in [4].

3

Chapter 1

Truncated allocations under DA mechanism:

consequences on students’ strategies and welfare

Abstract

In many countries, students are allowed to apply to a limited

number of programmes as part of the college admission pro-

cess. We find surprising consequences of such limitations on

welfare: decreasing number of applications may have a posi-

tive effect on students’ total utility. Assuming that students

base their application decision on a heuristic belief about ac-

ceptance probability, we show this result when there are two

programmes and demonstrate that it persists if the number of

programmes is increased to three. We replicate these results

in a numerical experiment.

1.1 Introduction

Millions of students seek admission to colleges each year, often in a cen-

tralised system1. Students submit their preferences to a central planner

who allocates the seats to students according to a predetermined proce-

1Countries which include Australia [18], China [45], Turkey [5], Greece and South Korea [21] follow

centralised procedures based solely on a national examination. Additionally, Hungary [6], Spain [36]

and Germany [14] follow centralised processes that also account for student’s preferences and other

factors.

4

1.1. INTRODUCTION

dure. Policy-makers choosing the allocation mechanism aim to increase

students’ welfare while balancing other social goals.

We study a stylised admission process model with a continuum of

students and two programmes. Students take a standardised test and,

after learning their scores, submit a preference list to a central plan-

ner. They apply to specific programmes in different colleges rather than

applying to colleges. Students may only include a limited number of pro-

grammes on the submitted list, so, they must strategically choose which

ones to include on the list. As students’ preferences differ, some pro-

grammes may be more popular making admission more competitive. To

estimate the admission probability, students apply a heuristic based on

the programme-specific cutoff scores reported the previous year. Specif-

ically, students estimate the probability that a programme’s cutoff score

takes a particular value to be linear function of its distance from last

year’s cutoff score. Although all students apply the same heuristic, some

are more confident in their beliefs and are distinguished by the size of

the interval of scores on which they place positive probability. The

distribution of students’ scores is independent of their preferences. In

our baseline model, students may include both programmes to the re-

ported preference list. We then limit the number of applications to one

and compare the resulting welfare to the baseline case. We first derive

equilibria in each case (Proposition 2). Our main result shows that,

surprisingly, the restriction may improve students’ welfare (Proposition

3). We then consider some extensions and show that the increase in

welfare may also be present if there are three programmes.

The programmes admit students based on the exam scores by de-

ferred acceptance (DA) mechanism that was adapted2 to incorporate

priorities in one-sided markets, where colleges are not strategic players,

by Abdulkadiroglu and Sönmez [1]. Hafalir et al. [21] base the priorities

2The original version of the rule is due to Gale and Shapley [20]

5

1.1. INTRODUCTION

of the students on their exam scores. They, however, assume that all stu-

dents have the same preferences and can only apply to one programme

even when their number is large. Abdulkadiroğlu et al. [2] study stu-

dent’s welfare resulting from Boston and DA mechanisms. They show

that Boston mechanism is underrated in the literature because of unre-

alistic assumptions and in fact possesses several desirable features that

DA does not, and students may be better off under Boston mechanism

rather than DA. Miralles [30] simulates more realistic cases and shows

that the results agree with [2]. This suggests that all results need to be

checked for robustness.

Students’ choice of optimal strategy depends on the expected util-

ity received from studying a programme which, in turn, depends on

the probability of being accepted. Thus, it is important to take uncer-

tainty about other students’ preferences into account. Allan Hernandez-

Chanto [22] analyses centralised assignment to majors within the Uni-

versity of Costa Rica. As the rules remain constant year after year

students estimate the probability of being admitted into each major

based one the past cutoff scores published by the university using sta-

tistical tools. In a paper by Julia Varga [44] that studies the effect

of expected wages and admission probabilities on students’ application

strategies, students only know the cutoff score in the preceding year.

Admission probability is calculated as a ratio of student’s total score to

the cutoff score, it is linear in score and reaches zero only when the total

score of the student is zero as well. Both authors try to be accurate in

their estimations, however, when students have some information and

estimate the chances of the applications to be successful, they tend to

make mistakes. Experimental studies by Pais and Pintér [33] and Pais

et al. [34] show that amount of information in a matching game has an

impact on the strategies students choose under DA, top trading cycles

and Boston mechanisms. Under partial or full information students of-

6

1.2. MODEL

ten misreport their preferences even when truth-telling is the dominant

strategy. Thus, in our study we do not assume the correct beliefs and

introduce a belief system to analyse students’ problem.

The paper proceeds as follows. Section 1.2 introduces the model,

Section 1.3 derives our main results. Section 1.4 extends the model and

shows robustness of our results as the number of programmes increases.

We run some numerical simulation with greater number of colleges in

Section 1.5. Section 1.6 concludes.

1.2 Model

There is a continuum of students I = [0, 1] and two programmes P =

{a, b} to which they can apply. Students’ preferences differ so that the

fraction αa prefer a and the remaining fraction αb = 1−αa prefer b. We

denote the top-ranked programme in student i’s preferences as ti, the

other one as bi. Students’ utilities are common among students:

ui(p) =


1 if admitted into p = ti

1/2 if admitted into p = bi

0 if not admitted

(1.1)

Each student has an exam score Ei drawn from a continuous cdf F (·)
with density f(·). Each programme has a capacity qi ∈ [0, 1]. Students

estimate their admission chances based on programme-specific cutoff

scores S = {sa, sb} in the previous year’s admission process. Without

loss of generality, we assume that sa ≥ sb, which implies that programme

a was more competitive than b.

We examine a model with linear utilities, which means that student’s

evaluation of the programme depends linearly on the ranking of the

programme in the student’s preferences. Assuming that the structure of

the utility function is the same for all students is the first step in moving

7

1.2. MODEL

away from identical preferences. This model can be altered to allow more

general utilities. For example, bi may yield utility x above or below

1/2. Exceeding 1/2 could imply that a student has strong preference

of being admitted anywhere rather than remaining unmatched. On the

contrary, a student may have a low value for a programme, then x

would be close to zero. In addition, the utility from being admitted

into bi may be different for each student i. In this paper, we focus

our attention and derive the results based on utility function (1.1). We

provide some comments about potential changes if ui(bi) = x, however,

detailed explanations of the modifications of the utility function are a

subject of future research.

1.2.1 Allocation process

An application of a student i is a list ai ∈ P = {(a), (b), (a, b), (b, a)}
where programmes are listed in order of preference. We study two cases:

unrestricted and restricted reports. When the length of the report is

unrestricted, students report their preferences over both programmes

ai ∈ {(a, b), (b, a)}; if the submitted preferences are restricted then ai ∈
{(a), (b)}. Students are assigned to programmes in the colleges using

the student-proposing deferred acceptance algorithm, colleges compare

students based on their exam scores:

Step 1. Each student applies to his top choice in ai. Colleges put the

best qj applicants on the waiting lists of each programme j = a, b

and reject the rest.
...

Step m. Each student that was rejected at the previous step applies to

his next choice in ai. For each programme j, the best to date qj

applicants are put on the waiting list and the rest are rejected.
...

8

1.2. MODEL

Termination. The algorithm terminates when no new offers are made 3.

All students on the waiting lists are admitted in the respective pro-

grammes, other students are unmatched. The resulting allocation

is denoted by µ.

Students consider the likelihood of being accepted into the pro-

grammes when applying. Students are distinguished by confidence types

τ and estimate their acceptance probabilities by comparing their exam

score to the previous year’s published cutoff score, some placing greater

confidence in this estimate. Specifically, a student of type τ estimates

his probability of acceptance to programme p as:

Pr
(
accepted to p

∣∣sp + τ ≤ Ei

)
= 1

Pr
(
accepted to p

∣∣sp − τ < Ei < sp + τ
)
=

Ei −
(
sp − τ

)
2τ

Pr
(
accepted to p

∣∣Ei < sp − τ
)
= 0.

(1.2)

As illustrated in Figure 1.1, if student’s exam score Ei is considerably

greater than the previous year’s cutoff score sp of a programme p then

the student is absolutely sure that he will be admitted into p if he

applies. If it is much less that sp then the student believes that he has

no chance of being admitted. If Ei is close to the previous year’s cutoff

score, the student estimates his acceptance probability to be a linear

function of his score.

Each student i maximises his expected utility by choosing ai ∈
argmaxEui(ai). An equilibrium of

(
I, P

)
is a set of strategies a ∈ PI ,

such that for each student i ∈ I and each ai, a
′
i ∈ P

Eui(ai) ≥ Eui(a
′
i).

If indifferent between two applications, the student lists his more pre-

ferred programme first.

3This may happen for two reasons: 1) there were no rejections at the previous step or 2) all students

who were rejected at the previous step do not have any programmes left on their applications.

9

1.3. RESULTS

0

0.5

1

sp − τ sp sp + τ E

Pr

Figure 1.1: Student’s estimate of the probability of acceptance into p

1.3 Results

We solve for equilibrium with unrestricted and restricted reports and

compare final allocations and utilities.

1.3.1 Unrestricted reports

As a baseline, consider an admission process in which students can apply

to both (all) programmes. When the preferences are not truncated, our

case is not different from the general one-to-many case. It is known

that when all proposing agents have capacity one, DA mechanism is

strategyproof for the proposing side [31]. We formulate this well-known

result as Proposition 1.

Proposition 1. When the applications are unrestricted, students truth-

fully report their full preferences in equilibrium.

This result is only true under full reports. When reports are re-

stricted, students strategize, hence, the true preferences are not revealed.

We are studying how this fact affects the welfare of the students by com-

paring the cases with restricted reports to the baseline.

In the baseline, the mechanism matches the top (qa + qb) students

10

1.3. RESULTS

s∗b s∗a

b ≻ a

a ≻ b

E

P

admitted into a
admitted into b
not admitted

Figure 1.2: Final matching, baseline

to the programmes and leaves the rest unmatched. Denote the cutoff

scores that result from the allocation mechanism as s∗a and s∗b .

If s∗a = s∗b , then among top (qa + qb) students exactly qa prefer pro-

gramme a and qb prefer programme b, all of them are accepted into

their first choice programme. If programme a is more competitive than

programme b, that is, if s∗a > s∗b , programme a is over-demanded. Since

the distribution of scores is independent of students’ preferences, some

of the students, who prefer a to b, are allocated to programme b. The

allocation is illustrated in Figure 1.2. The cutoff scores s∗a and s∗b solve:

qa = αa

[
1− F (s∗a)

]
qb =

[
αb

(
1− F (s∗a)

)
+ F (s∗a)− F (s∗b)

] (1.3)

1.3.2 Restricted reports

Now we consider the case of two programmes where students are con-

strained to apply to only one programme. Combining the utilities (1.1)

and beliefs (1.2) and restricting all students to be of the same type τ ,

the expected utility Eui(ai) of student i’s application ai depending on

his exam score Ei is:

11

1.3. RESULTS

Eui(ai) Ei ≥ sai + τ sai + τ > Ei ≥ sai − τ sai − τ > Ei

ai = ti 1
Ei − (sti − τ)

2τ
0

ai = bi
1

2

Ei − (sbi − τ)

4τ
0

Based on the expected utilities, we now identify the optimal strategies

of students by solving their maximisation problem. If the expected

utilities are the same for both applications, a student applies to his

preferred programme ti. This decision is based on hopeful thinking:

since there is no difference in expected utility, why not try to apply to

a more preferred programme. Other tie-breaking rules include applying

to a less competitive programme or randomising. We discuss both in

Section 1.4.

Proposition 2. In equilibrium, students who prefer a more competitive

programme apply to their preferred programme when their exam scores

are larger than or equal to sea or smaller than or equal to seb and to

the other programme if the score is in the interval
(
seb, s

e
a

)
. Values of

the estimated cutoff scores sea and seb depend on the parameters of the

model. Students who prefer a less competitive programme apply to their

preferred programme.

Proof. The proof is in the appendix.

Figure 1.3 illustrates the optimal strategy of each student4. Stu-

dents who prefer a more competitive programme face a tradeoff between

higher payoff of their preferred programme and lower probability of be-

ing accepted, while students who prefer a less competitive programme

always yield higher expected utility when applying to their preferred

programme.
4Changing ui(bi) from 1/2 to x would impact sea and seb. As a result, the number of students who

prefer a but apply to b would be different (the dotted blue area in the top part of the graph, where

a ≻ b, would shift and become wider or narrower depending on the value of x).

12

1.3. RESULTS

seb sea

b ≻ a

a ≻ b

E

P

apply to a
apply to b

Figure 1.3: Optimal student’s strategy

The optimal strategies closely resemble the outcome of the allocation

process without truncation of the applications, as shown in Figure 1.2.

When sea = s∗a and seb = s∗b , the outcome of the allocation with restricted

reports will not change compared to the baseline case. If, however, the

estimated cutoff scores are different, then the total utility of students

may increase or decrease. We examine such outcomes below.

Corollary 1. The values of the estimated cutoff scores sea and seb are:

(a)sb ≤ sa − τ (b) sa − τ ≤ sb ≤ sa

sea = sa

seb = sb − τ

sea = 2sa − sb − τ

seb = sb − τ

Proof. The proof is in the appendix.

1.3.3 Welfare

We measure students’ welfare as the total utility of students that results

from the allocation process5. Using the students’ optimal strategies, we
5Welfare of the students depends on the values they assign to each programme conditional on

being admitted. Hence, it changes not only with a change in allocation, but also with a change in

the utility function. If ui(bi) = x, both the utility function and the allocation are affected. Given all

possible preference profiles, the frequency of increases and decreases in total utility due to reports’

truncation may change too.

13

1.3. RESULTS

compare the total utilities of the allocation with restricted applications

to the welfare in the baseline case. We compare the programmes ac-

cording to their cutoff scores in the baseline case and call a programme

with a higher cutoff score more competitive.

Proposition 3. 1) If students who prefer a more competitive programme

a overestimate their probability of admission into a, total utility in-

creases. 2) If students who prefer a more competitive programme a

underestimate their probability of admission into a and overestimate the

probability of admission into b, total utility decreases. 3) If students who

prefer a more competitive programme a underestimate their probability

of admission into both a and b, the total utility comparison is ambiguous.

Proof. The proof is in the appendix.

Proposition 3 shows that the total utility can both increase and de-

crease. Ambiguity in the third case is caused by the fact that we do

not consider any specific values of the parameters such as quotas and

students’ type and previous year’s cutoff scores. When the values are

known, we can draw an unequivocal conclusion regarding the change

in welfare. In the propositions in this paper, we call the total utility

comparison ambiguous if it depends on the values of the parameters.

Case 1. Students who prefer a more popular programme a overes-

timate their probability of admission to a, total utility increases.

14

1.3. RESULTS

s′b seb sea s∗a

b ≻ a

a ≻ b

E

P

admitted into a
admitted into b
not admitted

s′bseb sea s∗a

b ≻ a

a ≻ b

E

P

Figure 1.4: Students’ allocation: case 1 if seb > s′b (top) and seb < s′b (bottom)

Restricting the reports changes the cutoff scores that result from

the allocation process from s∗a and s∗b to s′a and s′b. Because of the

misestimation, students who would be admitted into b in a baseline

case applied to a and were left unmatched. Their places are allocated

among lower-scoring students who applied to b, lowering the cutoff score

of a less competitive programme to s′b < s∗b , while s′a = s∗a remained

the same. The allocation of students to programmes that follows from

their optimal strategies is illustrated in Figure 1.4. Denote the smallest

exam score of a students who prefers a and is admitted into b as s′′b =

max{s′b, seb}. The cutoff scores s∗a and s′b solve:

qa = αa

[
1− F (s∗a)

]
qb = αa

[
F (sea)− F (s′′b)

]
+ αb

[
1− F (s′b)

]

15

1.3. RESULTS

Case 2. Students who prefer a more popular programme a un-

derestimate their probability of admission to a and overestimate the

probability of admission into b, total utility decreases.

s′a seb s′b s∗a sea

b ≻ a

a ≻ b

E

P

admitted into a
admitted into b
not admitted

Figure 1.5: Students’ allocation: case 2

Some of the students who would be admitted into a in a baseline case

applied to b. Their places are allocated to applicants whose scores are

below seb, they applied to their preferred programme as they estimated

their chances to be accepted into either of the programmes as zero. The

final allocation in shown in Figure 1.5, the cutoffs solve:

qa = αa

[
1− F (sea) + F (seb)− F (s′a)

]
qb = αa

[
F (sea)− F (s′′b)

]
+ αb

[
1− F (s′b)

]
1.3.4 Discussion

Intuition suggests that allowing more applications increases total utility

and eliminates justified envy. Surprisingly, the conclusion depends on

students’ beliefs.

Restricting applications decreases the total utility when high-scoring

students who prefer a more popular programme believe that they have

a low chance of admission and apply to their safe choice instead. As a

results, too many students who prefer a more competitive programme

16

1.4. EXTENSIONS OF THE MODEL

are assigned to their least preferred programme, decreasing the total

utility and leaving seats in the more competitive programme unfilled.

The unfilled seats are reallocated to low-scoring students with the same

preferences. Restricting applications may also increase the total utility,

but it does so by allowing low-scoring students to replace high scoring

students with different preferences, who are now unassigned. Both allo-

cations are not envy-free, moreover, the first one yield lower total utility

compared to the baseline.

1.4 Extensions of the model

1.4.1 Application assumptions

In our models we assumed that if the expected utilities are the same for

both applications, a student applies to his preferred programme ti. The

expected utilities are the same at the estimated cutoff sea and on the

interval of low exam scores in [0, seb] where Eui(ti) = Eui(bi) = 0. The

latter implies that the students apply to their top choice when believing

that they will not be admitted. However, they might prefer to apply to

the least competitive programme or randomise.

Applying to a less competitive programme

If students apply to b when Eui(ti) = Eui(bi) = 0, the qualitative

results remain the same. The increase and decrease in the total utility

still follow Proposition 3.

When students who prefer a overestimate their probability of admis-

sion to a, the new allocation is as described by Figure 1.4 (bottom) and

the total utility increases. Figure 1.4 (top) no longer describes the allo-

cation; since all the students apply to b when their exam score is below

sea, s
e
b is effectively equal to zero.

17

1.4. EXTENSIONS OF THE MODEL

When students who prefer a underestimate their chances of being

admitted into a, the effect is the same as given the initial assumptions

except the seats in a that are not matched to high-scoring students

because of the misestimation now remain unfilled. This causes an addi-

tional decrease in total utility.

Randomising

When students randomise, they apply to programme a with probability

βi and to programme b with complementary probability 1 − βi, where

βi ∈ (0, 1) for all i. The parameter βi may be different for some or all

the students and is independent of the exam scores.

Proposition 4. If students randomise between applying to a and apply-

ing to b when Eui(ti) = Eui(bi) = 0, results of Proposition 3 do not

change.

Proof. The proof is in the appendix.

1.4.2 Student types

Our model assumes that all students have the same type τ . We relax

this assumption by allowing two types and continuum types.

Two types of students

Assuming two types of students τ1 and τ2 increases the number of es-

timated cutoff scores to four, sea,1, s
e
a,2, s

e
b,1 and seb,2, two for each type.

The values of sea,1, s
e
a,2, s

e
b,1 and seb,2 are the same as ones described in

Corollary 1 given student’s type.

Proposition 5. 1) If students who prefer a more popular programme a

of both types overestimate their probability of admission into a, total util-

ity increases. 2) If students who prefer a more competitive programme

18

1.4. EXTENSIONS OF THE MODEL

a of both types underestimate their probability of admission into a and

overestimate the probability of admission into b, total utility decreases.

3) If students who prefer a more competitive programme a of one or both

types underestimate their probability of admission into both a and b, the

total utility comparison is ambiguous.

Proof. The proof is in the appendix.

Continuum types of students

Now we assume that students’ types τi are drawn from a distribution

with cdf G(τ), τ ∈ [τmin, τmax]. The estimated cutoff scores sea,i and seb,i

are student specific. In a case of unrestricted reports, they solve the

same system of equations (1.3) as in the initial case with only one type;

students apply to both programmes, thus, distribution of types has no

effect on the resulting allocation.

When reports are restricted, for each student the optimal strategy

is determined as described in Proposition 2. However, the total utility

outcomes depend on the parameters and realisations of the random vari-

ables; we plan to estimate the total utility in simulations rather than

pursue further theoretical results.

1.4.3 Three programmes

With 3 programmes a, b and c, students have six possible preferences

{(abc), (acb), (bac), (bca), (cab), (cba)}. Denote by αxy the ratio of stu-

dents who prefer x to y and y to z, by αx· the ratio of students whose

first choice is x. Also denote student i’s first, second and third ranked

19

1.4. EXTENSIONS OF THE MODEL

programmes by ti, mi and bi . Students’ utilities are:

ui(p) =



1 if admitted into p = ti

2/3 if admitted into p = mi

1/3 if admitted into p = bi

0 if not admitted

(1.4)

The previous year’s cutoff scores are sa, sb and sc, all students are of the

same type τ . To extend the algorithm we repeat Step 2 by updating

the waiting lists until there are no new applications.

The utility function 1.4, similarly to it’s two-programme counterpart,

is linear in the programme’s ranking on each student’s preference list.

Similarly, the valuations of the middle and bottom programmes mi and

bi would be different in a case with non-linear utility. We could assume

that they follow a different utility function or that they are arbitrary.

These assumptions are a subject of future research.

Unrestricted reports

As a baseline, consider a process with unrestricted applications. Denote

the cutoff scores that result from the allocation process as s∗a, s
∗
b and

s∗c. Proposition 1 holds for any number of programmes, so the students

report their preferences truthfully.

The final matching is shown in Figure 1.6 and the cutoff scores s∗a, s
∗
b

and s∗c solve:

qa = αa·

[
1− F (s∗a)

]
qb = αb·

[
1− F (s∗b)

]
+ αab

[
F (s∗a)− F (s∗b)

]
qc = αc·

[
1− F (s∗c)

)]
+ (αab + αb·)

[
F (s∗b)− F (s∗c)

]
+ αac

[
F (s∗a)− F (s∗c)

]

20

1.4. EXTENSIONS OF THE MODEL

s∗c s∗b s∗a

c ≻ a ≻ b

c ≻ b ≻ a

b ≻ c ≻ a

b ≻ a ≻ c

a ≻ c ≻ b

a ≻ b ≻ c

E

P

admitted into a, 1st choice

admitted into b, 1st choice

admitted into b, 2nd choice

admitted into c, 1st choice

admitted into c, 2nd choice

admitted into c, 3rd choice
not admitted

Figure 1.6: Final matching with unrestricted applications

Reports restricted to 1 programme

Now assume that students can only apply to one out of the three pro-

grammes. Combining the utilities (1.4) and beliefs (1.2), the expected

utility Eui(ai) of student i’s application ai depending on his exam score

Ei is shown in Table 1.1.

Eui(ai) Ei ≥ sai + τ sai + τ > Ei ≥ sai − τ sai − τ > Ei

ai = ti 1
Ei − (sti − τ)

2τ
0

ai = mi
2

3

Ei − (smi
− τ)

3τ
0

ai = bi
1

3

Ei − (sbi − τ)

6τ
0

Table 1.1: Expected utility of an application ai of student i

A student optimally applies to a programme that yields the maximum

expected utility. After estimating cutoff scores with three programmes,

there are either five or six cutoff scores. In the scenario depicted in

Figure 1.8, we show that the total utility may increase as a result of

restricting the applications. The functional form the cutoff score se

estimated by a student i depends on whether he is deciding between ti

21

1.4. EXTENSIONS OF THE MODEL

and mi, ti and bi or mi and bi as well as whether the student expects

guaranteed alternative. For instance, se1 (see Figure 1.8) results from

comparing programmes ti = a and mi = b by a student who prefers

a ≻ b ≻ c and is not sure about being admitted into ether of the

programmes. Cutoff score se4 is the lowest score of a student who prefers

a ≻ c ≻ b at which he is willing forgo guaranteed admittance to mi for a

chance at ti. Although both compare first and second choices, estimated

cutoffs differ.

sec se3se7 se8 se1 se4

c ≻ a ≻ b

c ≻ b ≻ a

b ≻ c ≻ a

b ≻ a ≻ c

a ≻ c ≻ b

a ≻ b ≻ c

E

P

apply to a
apply to b
apply to c

Figure 1.7: Optimal student’s strategy

Proposition 6. In equilibrium with three programmes, students with

each preference apply to one programme according to their estimated

cutoffs as shown in Figure 1.7.

Proof. The proof is in the appendix.

Figure 1.7 illustrates the optimal strategy for each student.

22

1.4. EXTENSIONS OF THE MODEL

sec se3 se2 se1

0.25

0.5

E

Eu

Eu(a)
Eu(b)
Eu(c)

(a) a ≻ b ≻ c

sec se5 se4

0.25

0.5

E

Eu

Eu(a)
Eu(b)
Eu(c)

(b) a ≻ c ≻ b

sec se7 se6

0.25

0.5

E

Eu

Eu(a)
Eu(b)
Eu(c)

(c) b ≻ a ≻ c

sec se8

0.25

0.5

E

Eu

Eu(a)
Eu(b)
Eu(c)

(d) b ≻ c ≻ a

sec se9

0.25

0.5

E

Eu

Eu(a)
Eu(b)
Eu(c)

(e) c ≻ a ≻ b

sec

0.25

0.5

E

Eu

Eu(a)
Eu(b)
Eu(c)

(f) c ≻ b ≻ a

Figure 1.8: Student’s expected utility comparison depending on the preference profile

Reports restricted to 2 programmes

When reports are restricted to two programmes, the application ai of a

student i is ai = (t′i,m
′
i), possibly different from (ti,mi). A student may

be admitted to t′i, m
′
i or remain unmatched. The probability of being

rejected by t′i is Pr(rejected by t′i|Ei) = 1 − Pr(accepted to t′i|Ei) =

23

1.4. EXTENSIONS OF THE MODEL

1−Pr(t′i|Ei). The expected utility of an application ai of a student i is:

Eu(ai) = Eu(t′i,m
′
i) = Pr(t′i|Ei) ·ui(t′i)+(1−Pr(t′i|Ei)) ·Pr(m′

i) ·ui(m′
i)

Students can can maximise Eu using the Marginal Improvement Algo-

rithm (MIA) [17]. MIA starts with an empty application list. At each

step, it adds a programme that increases Eu(ai) by the largest amount

among those not yet selected to the list. Once the two programmes

that form an optimal application are selected, each student submits the

report ordering the programmes in his preference order.

Proposition 7. In equilibrium with three programmes and two applica-

tions, students apply to programmes as shown in Figure 1.9 listing the

programmes in the preference order.

Proof. The proof is in the appendix.

sec se5 se3 se9 se6

c ≻ a ≻ b

c ≻ b ≻ a

b ≻ c ≻ a

b ≻ a ≻ c

a ≻ c ≻ b

a ≻ b ≻ c

E

P

apply to a and b
apply to a and c
apply to b and c

Figure 1.9: Optimal student’s strategy

1.4.4 Welfare

Based on the students’ optimal strategies, we show some examples of

increases in the total utility with restricted applications.

24

1.4. EXTENSIONS OF THE MODEL

Example 1. Reports restricted to one programme. If the students

who prefer a ≻ b ≻ c overestimate their probability of admission into

a while the students who prefer a ≻ c ≻ b do not make a mistake, and

students who prefer b to c overestimate their probability of admission

into b, the total utility increases.

As can be seen in Figure 1.10, some high scoring students were not

allocated to any programmes. In the baseline, students who prefer a ≻
b ≻ c and have the exam score in the interval [s∗b , s

∗
a) are allocated to

programme b. They, however, applied to a and were not admitted into

any programme leaving some spaces in b vacant and lowering the actual

cutoff score from s∗b to s
′
b. Those spaces were reallocated to students with

the same preference and those who prefer b to any other programme,

increasing the total utility. Other unmatched students in the baseline

are allocated to c, their least preferred programme. Their seats now

belong to students who rank c not only third but also first and second,

further increasing total utility.

s′c s∗c s′b s∗b s∗a

c ≻ a ≻ b

c ≻ b ≻ a

b ≻ c ≻ a

b ≻ a ≻ c

a ≻ c ≻ b

a ≻ b ≻ c

E

P

admitted into a
admitted into b
admitted into c
not admitted

Figure 1.10: Example of an increase in total utility (application to one programme)

Example 2. Reports restricted to two programmes. If the stu-

dents who prefer a ≻ b ≻ c overestimate their probability of admission

25

1.4. EXTENSIONS OF THE MODEL

into a and b, the total utility increases.

Overestimation leads to some high-scoring students that prefer a ≻
b ≻ c to be unmatched (Figure 1.11). Other students misestimate the

probability of admission into a and b as well, but it has no effect on their

final allocation as the second programme on the report compensates for

the mistake. As a result, high-scoring students that are assigned to their

least preferred programme in the baseline case are now unmatched, and

the seats are reallocated to students with different preferences. Depend-

ing on the accuracy of the estimations of s∗c the seats may be matched to

either students with all types of preferences (as shown in Figure 1.11) or

only to those students who do not rank it last in their preferences (this

happens if students’ estimated utility is zero and they simply apply to

their two most preferred programmes). As a result of reallocation the

total utility increases.

sec se8 s∗b s∗a

c ≻ a ≻ b

c ≻ b ≻ a

b ≻ c ≻ a

b ≻ a ≻ c

a ≻ c ≻ b

a ≻ b ≻ c

E

P

admitted into a
admitted into b
admitted into c
not admitted

Figure 1.11: Example of an increase in total utility (application to two programmes)

The examples show that our main result holds in a case of three

programmes. In other situations, the total utility may also decrease or

remain the same.

26

1.5. NUMERICAL EXPERIMENT

1.5 Numerical Experiment

In order to verify the theoretical results and to show the effects of the

parameters of the model, we simulate the data. Like in the theoretical

analysis, we compare the allocation under restricted reports to a baseline

case when students submit their full preferences. If student’s allocation

changes as a result of truncating his reports, we call such student real-

located. We investigate the change in the total utility and the number

of reallocations, that is, the number of students who are reallocated.

To simulate the data and the allocation process we need to make

assumptions on the following:

• The number of the students

• The number of the programmes

• Programmes’ capacities

• Distribution of the students’ exam scores

• Students’ preferences

• Programmes’ cutoff scores

According to the Universities and Colleges Admissions Service (UCAS)

[43], the organisation that processes most6 of the applications for British

universities, in the years 2006-2018, roughly 70% − 77% of applicants

were accepted to full-time undergraduate programmes. Accordingly, we

assume capacities that result in roughly 60% − 80% admission rate.

We also investigate a case with considerable lower admissions of 20%.

Analysing the SAT scores in 2019 [9] and SAT Subject Tests’ scores in

6Around a third of undergraduate full-time education admission in Scotland happens outside of

the UCAS, which amounts to roughly 2 − 3% of all applications. “For people living in England,

Wales, and Northern Ireland, UCAS covers the overwhelming majority of full-time undergraduate

provision.” [43]

27

1.5. NUMERICAL EXPERIMENT

2017-2019 [8] using Shapiro-Wilk test, we find that the SAT test scores

are normally distributed, however, out of nine SAT Subject Tests only

the scores in the U.S. History form the normal distribution. We hence

consider two distributions of students’ scores: uniform and truncated

normal. Normal or close to normal distribution would be expected when

an exam the students are passing is compulsory. It is truncated because

there is a minimum and a maximum possible score. Due to self-selection

bias7, however, the distribution may resemble uniform or even have

increasing density. The uniform distribution has only two parameters,

min and max values, which arise naturally. Where self-selection bias is

not present, normal distribution of scores is assumed.

In our numerical experiments, we assign 1000 students to two and

then to four colleges. Programmes’ capacities are chosen to result is

20% and 60 − 80% admission. Students’ exams are distributed ran-

domly between 0 and 100. We use two different distributions of scores

as discussed above. Students’ preferences are also generated randomly

assuming that they are equally likely to prefer each of the colleges. In

a simulation, previous year’s cutoff scores are unknown, so we set them

using the cutoffs that arise from the baseline case for the current year

s∗a and s∗b . We also consider distorted previous year’s cutoffs.

Two programmes

We start by analysing the case with two colleges. We verify that the

theoretical findings in Proposition 3 can be confirmed numerically. We

start by assuming that the cutoff scores of the programmes in the previ-

ous year were the same as this year’s s∗a and s∗b . According to Corollary

1, when maximising their expected utility, students will either estimate

the cutoff scores correctly or underestimate them. In the former case

7Where only the average score matters or exam is required by the programme, the students choose

to pass exams in subjects they are good at, which affects the distribution of grades.

28

1.5. NUMERICAL EXPERIMENT

students’ welfare will not be affected, in the latter, according to Propo-

sition 3, the total utility will increase since students overestimate their

admission probabilities. As student’s type τ increases, the students be-

come more confident, which further increases the total utility.

Figure 1.12: Number of reallocations and change in total utility with normally dis-

tributed exam scores

Figure 1.13: Number of reallocations and change in total utility with uniformly dis-

tributed exam scores

Figures 1.12 and 1.13 depict the result of the simulations. The num-

ber of reallocations (on the left-hand side) shows a number of students

who as a result of the preference lists’ truncation are allocated a dif-

ferent programme compared to the baseline case. The change in total

utility (on the right-hand side) demonstrates the corresponding per-

centage change in utility. When quotas are the same, the cutoff scores

29

1.5. NUMERICAL EXPERIMENT

are very close to each other8. This means that an increase in the type

will increase the total utility almost immediately. When the quotas are

different, so are the baseline cutoff scores. The cutoff scores will be

misestimated when the type is big enough. The graphs support our

theoretical findings for the first case of Proposition 3. We now turn to

the second case.

Our model predicts a decrease in total utility when the cutoff score

of the more competitive programme is overestimated. To simulate this

scenario, we assume that the previous year’s cutoff scores for this pro-

gramme exceeded the current value s∗a. We observe that until the type

of students τ reaches a certain value, the change in total utility is nega-

tive. After reaching the value of approximately 20, the change becomes

positive. At this type, the misestimation corrects for the difference in

the last year’s and current baseline cutoffs.

Figure 1.14: Number of reallocations and change in total utility with normally dis-

tributed exam scores and distorted previous year’s cutoff scores

The results of the simulations for the case with two programmes are

in line with theoretical results of our model, so we now consider an

example with more colleges.

8They may not be identical as the simulation is randomised. When the students are simulated to

prefer each programme with equal probability, we may see, for example, 503 students who prefer a

and 497 who prefer b.

30

1.5. NUMERICAL EXPERIMENT

Four programmes

Our theoretical model only discusses the outcomes of allocation pro-

cesses in presence of two or three colleges. We simulate the admission

process with four colleges, all of which are equally likely to be preferred

to other ones. Our goal is to check that the total utility may still in-

crease as a result of report’s truncation. We choose two sets of quotas:

one makes the process symmetric (qa = qb = qc = qd = 200), and the

other makes the first two colleges more competitive (qa = qb = 100, qc =

200, qd = 300). In both cases the total number of seats is 800 per 1000

students, which means that 80% of all students are admitted. We as-

sume that the previous year’s cutoff scores are the same as the baseline

ones in the current year, hence, we expect the total utility to increase

(at least for small values of τ). This is exactly what we observe in Figure

1.15. We also notice that as τ increases, the change in the total utility

starts to decline and eventually reaches negative values. This leads us

to believe that as the misestimations increase, some of them negate the

effect of others.

Figure 1.15: Number of reallocations and change in total utility with uniformly dis-

tributed exam scores, four colleges

In this paper, we run the experiments to check that the theoretical

and numerical results coincide. As the number of colleges increases,

analysing results theoretically becomes unfeasible. For large number of

31

1.6. CONCLUSION

colleges we plan to devise simulations that will describe how the number

of allocations and the total utility respond to changes in the parameters

of the model.

1.6 Conclusion

We show that, contrary to expectation, restricting the length of the

applications may increase welfare when students judge their admission

probability heuristically. When high-scoring students misestimate their

admission probabilities, their seats may be reassigned to lower-scoring

students who obtain higher utility from those seats. We also observe

an increase in welfare when students choose among two or three pro-

grammes. Ability to apply to two programmes out of three sometimes

results in the same allocation as the baseline case but other times in-

creases or decreases total utility. We run some numerical experiments

and find that the theoretical findings are in line with the simulated

outcomes.

Our model allows for several extensions. First, the utility function

may be non-linear. The evaluations of the programmes may follow a

different function or be arbitrary. The utilities of programmes that are

ranked the same by different students may not be same. Second, the

number of programmed may be larger. It would be interesting to analyse

how the total utility changes depending on the fraction of programmes

that can be included in the application. Third, students’ exam scores

may be correlated with preferences. More popular programmes usually

provide better quality of education. However, students with lower exam

scores may find it too hard to study in such programmes and prefer other

programmes instead. The change in computations of welfare and further

comparisons, which would significantly complicate theoretical analysis,

is unlikely to affect the qualitative results. Additionally, students may

32

1.6. CONCLUSION

be indifferent among some programmes. Finally, the admission process

can be decentralised or based on a different allocation procedure.

33

1.7. APPENDIX. PROOFS OF PROPOSITIONS

1.7 Appendix. Proofs of propositions

Proposition 2. In equilibrium, students who prefer a more competitive

programme apply to their preferred programme when their exam scores

are larger than or equal to sea or smaller than or equal to seb and to

the other programme if the score is in the interval
(
seb, s

e
a

)
. Values of

the estimated cutoff scores sea and seb depend on the parameters of the

model. Students who prefer a less competitive programme apply to their

preferred programme.

Proof. Students are determining the optimal strategy by maximising the

expected utility of the application. The expected utility of students who

prefer a more competitive programme is shown in Figure 1.16. There are

only two cases as, by assumption, sa > sb. When student’s exam score

is above sea application to programme a yields higher expected utility

than application to programme b, the opposite is true when the score is

below sea and above seb. Finally, if the student’s exam score is below seb

or is equal to sea or seb, then he is indifferent between applying to both

programmes and, by assumption, applies to his preferred programme

a.

seb sb sea sa

0.25

0.5

E

Eu

Eu(a)
Eu(b)

(a) sa − τ < sb < sa

seb sb sea = sa

0.25

0.5

E

Eu

Eu(a)
Eu(b)

(b) sb < sa − τ

Figure 1.16: Student’s expected utility comparison, student prefers programme a

34

1.7. APPENDIX. PROOFS OF PROPOSITIONS

Students who prefer a less competitive programme b always have

weakly larger expected utility when applying to their most preferred

programme, thus, they always apply to b . The expected utilities are

depicted in Figure 1.17.

sb sa

0.25

0.5

E

Eu

Eu(a)
Eu(b)

Figure 1.17: Student’s expected utility comparison, student prefers programme b

Corollary 1.

Proof. Student that prefer programme a apply to programme a if:

(a)sb ≤ sa − τ (b) sa − τ ≤ sb ≤ sa

Eui(a) > Eui(b)

Ei−(sa−τ)
2τ

≥ Ei−(sb−τ)
4τ

2Ei − 2sa + 2τ ≥ Ei − sb + τ

Ei ≥ 2sa − sb − τ

Thus, sea = 2sa − sb − τ

Ei−(sa−τ)
2τ

≥ 1
2

Ei − sa + τ ≥ τ

Ei ≥ sa

Thus, sea = sa

Eui(a) = Eui(b) = 0
Ei ≤ sb − t

Thus, seb = sb − t

Proposition 3. 1) If students who prefer a more competitive programme

a overestimate their probability of admission into a, total utility in-

creases. 2) If students who prefer a more competitive programme a

underestimate their probability of admission into a and overestimate the

35

1.7. APPENDIX. PROOFS OF PROPOSITIONS

probability of admission into b, total utility decreases. 3) If students who

prefer a more competitive programme a underestimate their probability

of admission into both a and b, the total utility comparison is ambiguous.

Proof. Students are allocated to programmes a and b. Students who

prefer b only apply to their first preference, thus, only students who

prefer a are allocated to a. They each yield utility ui = 1. It follows

that the changes in total utility result from differences in final allocations

to programme b, namely, on the ratio of students who prefer b among

those admitted to b.

1) The seats in b are reallocated from students who prefer a with

exam scores Sc ∈ [sea, s
∗
a] and Sc ∈ [s∗b , s

′′
b] (if s

∗
b < s′′b) to students who

prefer b. Thus, the utility of students either remains the same or, as

a result of reallocation, decreased from 1/2 to 0 for one student and

increases from 0 to 1 for another, therefore, increasing the total utility.

2) All students with scores in [s′b, s
e
a] are accepted into b as well as the

ones that prefer b and have higher scores. If s′b ≤ s∗b then more students

would be admitted into b than in the baseline case as sea > s∗a, but the

capacities did not change. It follows, that s′b > s∗b and among students

matched to b there are now less students who prefer b, thus, the total

utility decreases.

3) As students apply to their favourite programme when the expected

utilities of applying to each programme are the same, only student who

prefer a are admitted into a, therefore, the fraction of students who

prefer programme a among the students admitted into b needs to be

compared to the baseline case. The allocation with larger number of

such student will result in a lower total utility since students who prefer

a do not yield as much utility from being admitted into b as students

who prefer b.

In the baseline case, there are Stbaseline =
(
F (s∗a)−F (s∗b)

)
αa students

36

1.7. APPENDIX. PROOFS OF PROPOSITIONS

who prefer a and are admitted into b, in the restricted reports’ case there

are Strestricted =
(
F (sea) − F (seb)

)
αa of them. If Stbaseline < Strestricted,

the welfare increases and if Stbaseline > Strestricted, the welfare decreases.

Note that when students who prefer a more competitive programme a

underestimate their probability of admission into both a and b, sea >

s∗a and seb > sb∗. This means that the estimated cutoff scores with

truncated reports are greater than in the baseline case, and every student

who prefers a but applies to b will be admitted into b.

If the distribution of scores was uniform, comparing the distances

between the cutoffs would be enough to arrive at an unequivocal con-

clusion. If s∗a − s∗b = sea − seb, Stbaseline would be equal to Strestricted,

having no effect on welfare. s∗a − sb∗ > sea − seb would imply that more

students who prefer a are admitted to b in the baseline case, thus, the

total utility would increase with emergence of restrictions. The opposite

would be true if the sign changed to the opposite strict inequality.

The distribution of exam scores, however, is not necessarily uniform.

Due to self-selection bias9 and depending of the difficulty of any spe-

cific exam, distribution of scores may be unpredictable. We can deter-

mine the welfare implications by computing Stbaseline and Strestricted and

comparing them to each other. Theoretically, as a result of restricting

reports, both increase and decrease in total utility are possible in this

case.

Proposition 4. If students randomise between applying to a and apply-

ing to b when Eui(ti) = Eui(bi) = 0, results of Proposition 3 do not

change.

Proof. 1) An increase in total utility is due to reallocation of spaces

9Apart from compulsory exams, students tend to choose to pass the exams in the subjects they

are good at. This leads to various distribution of scores.

37

1.7. APPENDIX. PROOFS OF PROPOSITIONS

resulting from the misestimation of the cutoff scores. High-scoring stu-

dents, who prefer a and could be admitted into b, apply to a and remain

unmatched. The now vacant seats in b are given to lower-scoring stu-

dents who applied to b. As long as students who prefer b receive some of

these seats, the total utility will increase as a result of the reallocation.

Since βi ∈ (0, 1) for all students i, students who prefer b will apply to it

with positive probability and receive some of the seats. Thus, the utility

will still increase.

Note that the total utility cannot decrease in this case. In the worst

scenario where all the seats are reallocated to students who prefer a, the

total utility remains unchanged. This scenario, however, is not allowed

as βi ∈ (0, 1).

2) A decrease in total utility is a result of high-scoring students who

prefer and could be admitted into a applying and being admitted into

b, replacing students who prefer b and, thus, reducing the utility yielded

from the reallocated seats. The seats in a that are vacant because of the

mistake in applying are matched to lower-scoring students who applied

to a. Under the initial assumption, all the seats were given to students

who prefer a and receive maximum utility from the reallocation, but the

total utility decreased. When students randomise, some of the seats are

allocated to students who prefer b, which means that under βi ∈ (0, 1)

the total utility is lower than under the initial assumption, hence, it

decreases even further compared to the baseline case.

Proposition 5. 1) If students who prefer a more popular programme a

of both types overestimate their probability of admission into a, total util-

ity increases. 2) If students who prefer a more competitive programme

a of both types underestimate their probability of admission into a and

overestimate the probability of admission into b, total utility decreases.

3) If students who prefer a more competitive programme a of one or both

38

1.7. APPENDIX. PROOFS OF PROPOSITIONS

types underestimate their probability of admission into both a and b, the

total utility comparison is ambiguous.

Proof. 1,2) The effect on the total utility is qualitatively the same as

when all students are of the same type.

3) The fraction of students who prefer programme a among the stu-

dents admitted into b needs to be compared to the baseline case. Denote

the fraction of students of type t1 as γ. In the baseline case, there are

Stbaseline =
((

F (s∗a)−F (s∗b)
)
γ+

(
F (s∗a)−F (s∗b)

)(
1−γ

))
αa students who

prefer a and are admitted into b, in the restricted reports’ case there are

Strestricted =
(
F (sea,1)−F (seb,1)

)
αa of them. If Stbaseline < Strestricted, the

welfare increases and if Stbaseline > Strestricted, the welfare decreases.

Proposition 6. In equilibrium with three programmes, students with

each preference apply to one programme according to their estimated

cutoffs as shown in Figure 1.7.

Proof. Students are expected utility maximizers, so this result follows

directly from Figure 1.8.

Proposition 7. In equilibrium with three programmes and two applica-

tions, students apply to programmes as shown in Figure 1.9 listing the

programmes in the preference order.

Proof. This result follows directly from Figure 1.8 and Marginal Im-

provement Algorithm.

39

Chapter 2

Fair team formations with allocations of equal size

Abstract

We study fair team formations with allocations of equal size.

We find that this case differs from a general case when every

agent is allocated different number of indivisible goods. We

update the notions of approximate fairness EF1, EFX, Pro1

and ProX as well as consider lexicographic and minimal envy-

freeness. We find that most of the fairness properties are inde-

pendent when the market is large (3 or more agents and more

than 3 goods allocated to each agent). We show that Round

Robin and generalised Round Robin are EF1, Pro1 and mEF,

hence, all there fairness notions can be guaranteed in an alloca-

tion. These rules, however, are not necessarily efficient. The

efficient Nash Max, Utalitarian Max and Leximin allocation

mechanisms may not satisfy any of the fairness properties.

2.1 Introduction

Fair division is a problem that people are faced with on a regular basis.

When splitting the rent and bills or allocating goods or jobs, we want

to be fair to our friends, colleagues and employees. Although most of

us recognise unfair behaviour, defining fairness in a unique way is not

40

2.1. INTRODUCTION

always easy. We may split the rent equally or based on the room sizes,

allocate tasks randomly or based on preferences and other criteria. Even

when we agree on which division would be the fairest, the nature of the

goods may prevent us from achieving it.

In the simpler problems, goods are divisible. Every good can be cut

into infinitely many pieces and distributed between the agents. In real-

ity, most goods are not divisible or are only divisible to a certain extent.

We can think of money as being divisible, however, paying someone a

half of a penny is not possible. We could cut a loaf of bread into as many

pieces as we want, but we rarely distribute crumbs between guests or

family members. It is therefore important to consider indivisible goods.

There are two branches of research that study fairness when goods

are indivisible. The first suggests compensating the agents who receive

less goods or goods of poorer quality. The compensations require trans-

ferable utilities or monetary transfers. In many cases, however, such

transfers are not feasible or legal. Think of patients who need organ

transplants, but cannot legally purchase the organs. When an organ

becomes available, it is matched to a recipient based on a priority list

that is constructed depending on the patients’ circumstances. Monetary

transfers for changing the place on the list are highly undesirable. The

second approach, therefore, does not allow transfers. The goods have

to be matched to agents in the fairest way with minimal disparity. We

focus our attention on division of indivisible goods without transfers.

We consider a ’team formation problem’, namely, a problem of di-

viding nk items between n agents such that each agents gets the same

number k of goods. The agents have heterogeneous cardinal preferences

over the goods. We assume that the valuations of the objects are ad-

ditive, that is, the valuation of the bundle is equal to the sum of the

valuations of the individual items in the bundle. The valuations do not

41

2.1. INTRODUCTION

have to be positive. The aim of the division is reaching a fair allocation.

Examples of fair team formation problems include assigning players to

teams of equal size, allocating tasks or shifts to workers, students to

supervisors, etc.

We study fairness using three different notions: efficiency, envy-

freeness (EF) and proportionality (Pro). Efficiency states that the allo-

cation cannot be improved for any agent without harming other agents.

Envy-freeness suggest that there is no envy, that is, every agent prefers

his allocation to allocations of other agents. Proportionality states that

every agent receives at least 1/n-th of the total utility of all of the

available items combined.

There is extensive research on fair division. We can guarantee fairness

when the goods are divisible, however, indivisibility makes the EF and

Pro unattainable. Consider a division of 1 valuable object and n − 1

equally worthless objects between n agents. The worthless objects will

not reach 1/n-th of total utility, and their owners will envy the person

who receives the valuable object. Since EF and Pro are not feasible, we

consider ’approximate’ fairness by weakening the notions.

In the literature, we find common ways of relaxing the EF and Pro

properties: ”up to one good” and ”up to any good”. The former is

commonly denoted with ’1’ (EF1/Pro1) and allows the agent to change

his or other’s bundle up to one good in the most favourable way before

comparing his bundle to that of his peers. The latter is denoted with

’X’ (EFX/ProX) and states that any alteration up to one good prof-

itable to the agent must result in the desirable outcome. ’X’ is clearly

a stronger property than ’1’ as it considers any profitable rather than

the most favourable change. To formalise the alteration of the bundles,

an agent is usually permitted one of the following: (i) removing one

item from another agent, (ii) adding a copy of an item to his allocation

42

2.1. INTRODUCTION

without taking it away from another agent or (iii) disregarding one item

belonging to a given agent, any other agent or the agent himself. Since

our feasible allocations result in all agents receiving equal number of

items, we adapt the notions of ’approximate’ fairness by allowing an

exchange of a single good, or ’single exchange’. The exchange does not

take place in reality, rather it is a thought experiment conducted by the

agent prior to evaluating his bundle.

We also consider notions of envy-freeness that are applicable to the

case where each agent receives equal number of goods. These properties

do not rely on exchanges, but compare the allocated bundles. Lexi-

cographic envy-freeness (lexEF) prohibits the bundles dominating each

other and minimal envy-freeness (mEF) states that the best item of any

agent is better than the worst objects of other agents. Both properties

are ordinal and do not require cardinal valuations.

2.1.1 Motivation

Fair division of indivisible goods has been considered in the literature,

however, allocating equal number of goods to each of the agents has not

been studied. Since the general and special cases have some significant

differences, we are interested in the applications of the special case.

Real-life examples of allocating equal number of goods to agents in-

clude allocating players to teams, students to courses, professors to stu-

dents for supervision and workers to shifts.

In many universities, students are allowed to choose which courses to

study from a list. The total number of credits received by all students to

achieve a degree is the same, and the courses are mostly worth the same

number of credits. As a result, each student needs to study equal number

of courses. Normally, students indicate which classes they would like to

attend, but the allocation happens in different ways. In some universities

43

2.1. INTRODUCTION

mechanisms are unclear or even undefined (if all of the courses have

roughly the same demand), in others students are enrolled on the ’first

come, first served’ basis or according to their rating.

In problems of smaller sizes the allocations are often performed

heuristically. In a relatively small department, doctors may have to

take night shifts a few times a month. A provisional schedule is pre-

pared by one member of the medical team and takes into account doc-

tors’ availability and preferences. It can then be altered by the doctors

and finalised. If there are no volunteers, the unpopular shifts (ones that

fall on public holidays, for example) are allocated to doctors in turn.

Often a doctor who joined the department most recently would get the

first unpopular shift.

Slightly bigger problem concerns allocating PhD students to Teaching

Assistant (TA) jobs on different courses. In some cases the TAs are as-

signed to their supervisor’s courses, however, big undergraduate courses

need significantly more tutorials than smaller honours or postgradu-

ate classes. Therefore, TAs can often express their interest in teaching

specific courses as well as supply some additional information. Such

information may include preferred semester of teaching, the number of

hours per week and availability throughout the week. This year, opt-

ing out of face-to-face teaching also became possible. The applications

are received by the School, and one of the members of the admin staff

aggregates it trying to create the best possible allocation. The process

is time-consuming and requires a lot of back and forth communication

and negotiations. The resulting outcome may not be efficient as human

factor plays a role is determining the heuristic approach and assigning

jobs.

Where the allocation problem is larger or requires clear rules, draft-

ing may be used. Drafting is a common way of recruiting new players

44

2.1. INTRODUCTION

to teams in North America. It is not surprising that the richer teams

can afford to hire more talented and expensive players. This, in turn,

generates larger profits and increases the gap between the richer and

poorer teams, making the former unbeatable. To remove the dispar-

ity to some extent and allow all teams to compete equally, drafting

was introduces by National Football League (NFL) in 1936 [24]. The

main goal was to stop teams from recruiting all the star players, thus,

improving the competition. Eligible players participate in drafting pro-

cess, they are generally young players representing high school teams or

teams in junior leagues. The players are picked by teams in the major

leagues in multiple rounds. In each round, each of the teams chooses a

player that it can then sign. The picking order differs from league to

league. National Football League uses the reverse order of the results

from the previous season. Each of the 32 teams participates in 7 rounds

of drafting, the choosing order remains unchanged throughout [42]. Na-

tional Basketball Association (NBA)[32] and National Hockey League

(NHL)[19] use lotteries assigning larger probabilities of being at the be-

ginning of the line to teams that performed worse. A team that is clearly

not doing well in a season can improve its position in the drafting order

by losing the last few games on purpose when the order is deterministic.

Randomisation removes the incentive to under-perform as coming last

does not guarantee that the team will be the first to draft.

Our model closely resembles the drafting examples in which every

team gets to pick the same number of players, and the players do not

have a say in which team chooses him/her. Teams are ’agents’ with

distinct preferences, and players are ’goods’ that are allocated to the

agents.

The paper is structures in the following way. Chapter 2.2 covers the

literature on the topic. Chapter 2.3 presents the model. Chapters 2.4

and 2.5 define and discuss properties and assignment rules. We present

45

2.2. LITERATURE

the results on connections between the properties in Chapter 2.6 and

show which assignment rules satisfy which of the properties in Chapter

2.7. We discuss the results and future work in Chapter 2.8. Our results

are summarised in the Appendix.

2.2 Literature

Fair division literature started with the study of divisible goods. Stein-

haus [41] studies the cake-cutting problem and introduced an algorithm

that allowed dividing the cake between n players. Every player is guar-

anteed a fair share, that is, every player receives at least 1/n-th of the

cake’s value according to his valuation of the pieces. We call this prop-

erty proportionality. Interestingly, in this setup envy-freeness implies

proportionality, the inverse is not true. Brams and Taylor [13] devised

an algorithm that is envy free, however, the number of cuts that are

made increases rapidly with the number of agents. Kurokawa et al.[27]

bound the number of cuts when preferences are piece-wise linear. They

also obtain a negative result: there are no finite ways of cutting a cake

that are efficient, that is, satisfy Pareto optimality.

While in the problem with divisible goods Pro and EF can be reached,

the indivisible goods often violate these properties. We mentioned an

example of dividing one valuable and n − 1 cheap goods between n

agents. In order to study fairness in this set up, one needs to relax the

notions of fairness to ones that are attainable.

The recent literature on fair divisions with indivisible goods lies in the

intersection of economics and computer science. The authors not only

study the properties of allocation rules, but also their computational

complexity. Our paper is theoretical, hence, we focus on the known

theoretical results. Caragiannis et al. [16] study the properties of max-

46

2.2. LITERATURE

imum Nash welfare procedure which maximises the product of utilities

of all agents. They show that in addition to being fair when the goods

are divisible, it is also EF1. Kurokawa et al. [28] focus on existence of

MMS guarantee. In more detail, they verify if every agent receives a

weakly better bundle than what he can guarantee by partitioning the

set of items and choosing the worst bundle (the number of subsets in

the partition is the same as the number of players). They show that

although reaching MMS guarantee is not always possible, allocations

with 2/3 of MMS guarantee always exist.

Azevedo and Budish [3] propose a new way of analysing incentive

compatibility. Strategy-proofness in the large implies that truth-telling

is optimal within a small neighbourhood in large markets. Lee [29]

proves that in large one-to-one markets do not have significant incen-

tives to manipulate the allocation. Budish [15] studies the compatibility

of fairness, efficiency and strategy-proofness. He presents Approximate

Competitive Equilibrium from Equal Incomes Mechanism and shows

that it guarantees approximate (N +1) - Maximin Share guarantee (A-

MMS) and Envy Bounded by a Single Good (EF1), and is strategyproof

in the large. EF1 incorporates a comparison of the bundle of agent i to

that of agent j without one of the goods. In our paper, we alter this

definition as exactly k objects must be allocated to all agents, hence,

removing a good from j while keeping the original bundle of i is unnat-

ural.

Plaut and Roughgarden [35] study envy-freeness up to any good

(EFX) and show existence of EFX allocations in some settings. Bou-

veret, Sylvain and Lemâıtre [12] study five properties and how they are

connected to each other. The properties under considerations are max-

min fair-share (MFS), proportional fair-share (Pro), envyfreeness (EF),

competitive equilibrium from equal incomes (CEEI) and min-max fair-

share (mFS). They show that these criteria can be ordered according to

47

2.2. LITERATURE

their strength and that CEEI ⇒ EF ⇒ mFS ⇒ Pro ⇒ mFS.

The study of fair division and allocation mechanisms has many prac-

tical implications. It can help people allocate goods and tasks as well

as split rent and bills. A website called Spliddit1 is available to every-

one, and uses the latest results in fair division literature to achieve best

possible allocations.

Our work contributes to the literature as we study the fairness prop-

erties in a natural setting. Despite seemingly small difference from the

general case, we find that some of the established links do not hold,

and mechanisms stop satisfying certain properties. In our set up many

of the notions of envy-freeness are independent, and EF1 does not im-

ply Pro1. Maximum Nash welfare procedure is not necessarily EF1

anymore. Moreover, allocations that maximise the product and sum

of utilities of all agents or maximise the minimum utility among the

agents may not satisfy any of the fairness notions. Round Robin (RR)

procedure, in contrast, is EF1, Pro1 and minimal EF (mEF). We can-

not guarantee lexicographic EF (lexEF) when using RR or generalising

the procedure (gRR), in addition, neither RR nor gRR can guarantee

efficiency.

When studying the allocation procedures, we restrict our attention to

division with positive valuations of the goods by all agents. Although,

the properties of allocations allow affine transformation of utilities, the

assignment mechanisms need to be adapted to the cases where some (or

all) of the distributed items are ’bads’ rather than ’goods’. In general,

properties of the mechanisms may change in presence of bads or mixed

goods [10, 11]. We expect that some changes may persist when the

number of items allocated to all agents is the same, and plan to examine

this in future papers.

1http://www.spliddit.org

48

2.3. MODEL

2.3 Model

There is a set of agents N = {1, ..., n}, and a set of indivisible goods A

with nk goods. The goods are to be divided between the agents, and

each agent receives k items from A. We assume that n ≥ 2 and k ≥ 2.

We only consider deterministic allocations and do not allow monetary

transfers.

Agents have cardinal additive utilities over goods and sets of goods

ui : A → R, where for any S ⊂ A, ui(S) =
∑

a∈S ui(a).

Zi is a set of objects allocated to agent i. A feasible allocation is an

ordered equipartition of A, (Z1, ..., Zn), that is,
n⋃

i=1

Zi = A and Zi∩Zj =

∅, |Zi| = k for any agents i ̸= j.

The set of all feasible allocations is denoted by Π.

An assignment rule is f = (f1, ..., fn) : (u1, ..., un) 7−→ Π.

We use a ⪰i b and ui(a) ≥ ui(b) interchangeably when agent i weakly

prefers item a to item b. We also write Zi \ {a} as Zi − a and Zi ∪ {b}
as Zi + b.

In our model, affine transformations of utilities are allowed without

loss of generality. Consider vi(·) = αiui(·) + βi, where αi ∈ R+ and

βi ∈ R. Since the utilities are additive and each agent i is assigned

a set Zi with exactly k elements, vi(Zi) = αiui(Zi) + kβi, hence, the

utility of the allocation is re-scaled by the same multiplier αi and by

a constant kβi. If under ui(·) agent prefers Zi to Z ′
i or yields more

than average utility from Zi, then the same is true under vi(·). As a

result, the properties that we study (Pareto Optimality, Proportionality

and Envy-Freeness) are invariant with respect to any affine changes to

utilities. This allows us to normalise agents’ utility functions. We will

often assume that the total utility of all goods is equal to 1 and that

the individual utilities of all goods are positive, that is, ui(a) ≥ 0 and

49

2.4. PROPERTIES: DEFINITIONS

ui(A) =
∑

a∈A ui(a) = 1 for all i ∈ N . This is in contrast to the general

model where considering goods, bads and mixed goods yields different

results, so such transformations cannot be applied.

Many of the examples used in the proofs contain goods with identical

utilities or agents who are indifferent between goods, however, since all

of the examples are satisfied with strict inequalities, they are still valid

in the neighbourhood of the utility vectors. It follows that our results

hold generally.

2.4 Properties: definitions

Deterministic allocations without monetary transfers pose serious re-

strictions on providing meaningful fairness guarantees to all agents. Al-

though we use the classical definition of Pareto Optimality, other desir-

able properties, such as envy-freeness and proportional shares become

unfeasible. We weaken these notions slightly and consider ’approximate’

guarantees when a property holds after a minor change to the allocation.

We denote allocations of agents i and j by Zi and Zj before the ex-

change and by Z ′
i and Z ′

j after the single exchange. The single exchange

consists of agent i giving one of his items to agent j and receiving one

the j’s items in return.

2.4.1 Pareto Optimality

Pareto Optimality (PO). An allocation is Pareto Optimal if it is

impossible to make some agents better off without making some other

agents worse off. Since Π is finite, PO allocation always exists.

50

2.4. PROPERTIES: DEFINITIONS

2.4.2 Envy-Freeness

We start by providing the definition of envy-freeness common to the

literature.

Envy-Freeness (EF): for any two agents i, j ∈ N , ui(Zi) ≥ ui(Zj).

Envy-freeness states that any agent prefers his bundle to those of his

peers. Agents compares all bundles according to their own preferences.

They do not compare their utility to the utilities that other agents re-

ceive from their bundles. In the spirit of the general model, we consider

envy-freeness up to one good. Since every agent is allocated exactly

k goods, we compare the utilities after a single exchange rather than

remove items from either of the bundles.

EF1: for any two agents i, j ∈ N ,

either ui(Zi) ≥ ui(Zj)

or there is a ∈ Zj and there is b ∈ Zi s.t.

ui(Zi + a− b) ≥ ui(Zj − a+ b) (we can think of the exchange

as the most favourable to i, where a is the best object for i in Zj,

and b is the worst object for i in his own allocation).

We also consider envy-freeness up to any good, which means that any

profitable exchange with another agent eliminates envy.

EFX: for any two agents i, j ∈ N ,

either ui(Zi) ≥ ui(Zj)

or for any a ∈ Zj and any b ∈ Zi it follows that ui(Zi + a − b) ≥
ui(Zj − a+ b) as long as ui(b) < ui(a).

In addition, we define minimal and lexicographic envy-freeness. These

notions follow the spirit of minimal guarantees. Minimal envy-freeness

suggest that any agent prefers his best item to the worst items of his

51

2.4. PROPERTIES: DEFINITIONS

peers. Lexicographic envy-freeness does not allow any bundle to domi-

nate others. It is only applicable when agents receive exactly k goods.

Minimal Envy-Freeness (mEF): for any two agents i, j ∈ N ,

either ui(Zi) ≥ ui(Zj)

or max
a∈Zi

ui(a) > min
b∈Zj

ui(b), that is, agent i prefers his best item to

the worst item (according to preferences of i) of j .

Lexicographic Envy-Freeness (lexEF). Consider two potential al-

locations S and T , where S, T ⊂ A and |S| = |T | = k. We say that

allocation S dominates (or ’lex-dominates’) allocation T for agent i if

there exists a bijection f : S → T such that ui(a) ≥ ui(f(a)) for all

a ∈ S, and at least one inequality is strict.

lexEF: for any two agents i, j ∈ N , Zj does not dominate Zi for agent

i.

Note that mEF and lexEF are purely ordinal properties, they only

depend on the ordinal preferences of an agent, and not on the cardinal

utility functions. Note also that mEF and lexEF seem weaker than EF1

and EFX as they do not require comparing the utilities of the whole

allocation. However, they do not allow a single exchange in contrast to

EF1 and EFX, and compare existing allocations instead. This results

in independence of the two types of notions, as we show in our paper.

2.4.3 Proportionality

Similarly, we provide the definition of Proportionality and Proportion-

ality up to one and up to any good.

Proportionality (Pro): For any agent i ∈ N , ui(Zi) ≥ 1
nui(A).

Approximate proportionality, like EF1 and EFX, make use of single

exchanges. Allocation is Pro1 if every agent can receive at least 1/n-th

52

2.5. ASSIGNMENT RULES: DEFINITIONS

of the total utility after a single exchange. The item that each agent

receives after a single exchange may be assigned to any other agent in

the initial allocation.

Pro1: For any agent i ∈ N ,

either ui(Zi) ≥ 1
nui(A)

or there are a /∈ Zi and b ∈ Zi such that ui(Zi + a − b) ≥ 1
nui(A)

(we can think of a as the best object for i outside of the assigned

set Zi, and b as the worst object for i in his own allocation).

Allocation is ProX if every agent receives at least 1/n-th of the total

utility after any profitable single exchange.

ProX: For any agent i ∈ N ,

either ui(Zi) ≥ 1
nui(A)

or for any a /∈ Zi and for any b ∈ Zi it follows that ui(Zi+a− b) ≥
1
nui(A) as long as ui(b) < ui(a).

An alternative definition of fairness up to one good in our case may

allow agent i to replace one of his objects by an object belonging to

j without removing it from j. This would improve Zi while keeping

Zj constant. Both bundles would still consist of k goods, however, a

duplicate of one of the goods will be created. We do not consider this

property in this paper for two reasons: i) we do not want to allow

for creation of duplicates (even if they are imaginary), ii) this notion is

stronger than EF1 above. Although we find that EF1 can be guaranteed,

it does not hold for the rules that are known to be EF1 in a general case

with different number of goods assigned to the agents.

2.5 Assignment rules: definitions

We consider five assignment rules and their properties in our paper.

53

2.5. ASSIGNMENT RULES: DEFINITIONS

1. Round Robin (RR). Agents pick best available objects one by one,

according to an exogenous ordering (i1, . . . , in) in k rounds (the

ordering is the same for all rounds).

2. Generalised Round Robin (gRR). Agents pick best available objects

one by one, according to an ordering π = (i1, . . . , ink). Every agent

appears once in a section of the ordering (in(r−1)+1, . . . , inr) where

r = 1, . . . , k. Compared to RR, in gRR the picking order may differ

in every round.

3. Leximin (LM). Among all allocations in Π, choose the ones that

maximise utility of the least happy agent, among those - the ones

which maximise penultimate lowest utility, etc. Note that LM al-

locations are the maximal elements of the leximin ordering, which

first re-arranges the coordinates of the vectors of utilities in ascend-

ing order and then compares them by the first different coordinate.

4. Nash Max (NM). Among all allocations in Π, choose the ones that

maximise the product of utilities of all agents.

5. Utilitarian Max (UM). Among all allocations in Π, choose the ones

that maximise the sum of utilities of all agents.

Note that LM, NM and UM may result in non-unique allocations,

and are therefore correspondences.

All of the above allocation rules are well-known and well-studied. RR

and gRR algorithms rely on ordinal preferences and do not need any

adjustments when the preferences are described by a utility function.

LM, NM and UM may result in different allocations after a trans-

formation of the utility functions. NM is not sensitive to scale, that is,

multiplying all utilities by the same positive factor will not change the

allocation, however, adding the same number to all utilities may affect

the result. The opposite is true for LM and UM, which means that some

form of normalisation may be necessary to make sure that all agents are

54

2.6. COMPATIBILITY OF PROPERTIES

treated equally. Moreover, additional clarifications are required when

applying NM in case some of the individual utilities are negative. If

the number of agents with negative utility is odd, then the product of

utilities will become negative, and an increase in total utility may be

achieved through a decrease in individual utility of an agent whose eval-

uation of his bundle is positive. This is the first paper on this topic,

so we will not focus on these issues and assume that all the goods have

positive valuations when applying the rules. We will show that even if

that is true, none of the properties are guaranteed to hold. We plan to

extend the research to negative utilities in future.

2.6 Compatibility of properties

We start by investigating the relations between different properties. We

have two goals. Firstly, we want to know if some of the properties imply

others. Secondly, we want to know if some properties are compatible,

that is, if there exists an allocation that satisfies all of these properties.

In the general case, properties form a hierarchy. In our case, when values

of n and k are small, there are some implications and equivalences. As

n and k increase, logical independence becomes more common.

EF1 holds whenever each agent receives two goods as a result of the

allocation. We therefore will not say that EF1 follows from any other

property when k = 2 because it simply always holds in that case.

Proposition 8. Any allocation is EF1 if k = 2.

Proof. Consider any two agents i and j with two items allocated to each.

According to ui, goods allocated to i yield x1 and x2 and goods allocated

to j are worth y1 and y2. Let x1 > x2 and y1 > y2.

If x1 + x2 ≥ y1 + y2, then agent i does not envy agent j. If x1 + x2 <

55

2.6. COMPATIBILITY OF PROPERTIES

y1+y2, after a single exchange he will have the better items from each of

the allocated bundles. The total utility of i’s altered bundle, x1+y1, will

exceed that of j’s, x2+y2, which follows from term-by-term comparison.

Hence, the allocation is EF1.

Now let k = 3. Minimal envy freeness states that the best object of

agent i is preferred to the worst object of agent j. If the allocation is

mEF, then it will also be EF1. The inverse is not necessarily true. A

single exchange can improve i’s utility enough to close the gap between

the bundles even if the initial allocation provided agent i with good that

he considers worse than any of the goods allocated to j.

Proposition 9. mEF implies EF1 if k = 3, but EF1 does not imply

mEF.

Proof. Denote element of the set of goods of agent i as ai, then Zi =

{a1i , a2i , . . . , aki }. Without loss of generality, we label all goods of each

agent in a descending order according to ui. Then for any j, ui(a
1
j) ≥

ui(a
2
j) ≥ · · · ≥ ui(a

k
j). Following this notation,

ui(a
1
i) ≥ui(a

2
i) ≥ ui(a

3
i) (2.1)

ui(a
1
j) ≥ui(a

2
j) ≥ ui(a

3
j) (2.2)

According to mEF,

ui(a
1
i) ≥ uj(a

3
i) (2.3)

Let a = a1j and b = a3i , we then compare ui(a
1
i+a2i+a1j) to ui(a

2
j+a3j+a3i).

From (2.1), (2.2) and (2.3) follows that:

ui(a
2
i) ≥ui(a

3
i)

ui(a
1
j) ≥ui(a

2
j)

ui(a
1
i) ≥ui(a

3
j)

Adding them up, we get ui(a
1
i + a2i + a1j) ≥ ui(a

2
j + a3j + a3i), hence, EF1

holds.

56

2.6. COMPATIBILITY OF PROPERTIES

Now, consider an allocation which is EF1, but not mEF. Let ui(b) = 1

for any b ∈ Zi, ui(a
1
j) = 4 and ui(a) = 2 for any a ∈ Zj \ a1j . mEF does

not hold since 1 < 2. EF1 holds as

ui(a
1
i + a2i + a1j) > ui(a

2
j + a3j + a3i)

1 + 1 + 4 > 2 + 2 + 1

6 > 5

When more goods are allocated to agents, mEF and EF1 are inde-

pendent. mEF relies on ordinal utilities of the goods in the allocated

bundles, while EF1 compares the cardinal utilities after a single ex-

change. We show that mEF and EF1 may hold simultaneously, one at

a time or not at all.

Proposition 10. If k > 3, mEF is logically independent of EF1; mEF

and EF1 are not necessarily satisfied.

Proof. Using the same notation as in Proposition 8,

ui(a
1
i) ≥ui(a

2
i) ≥ · · · ≥ ui(a

k
i) (2.4)

ui(a
1
j) ≥ui(a

2
j) ≥ · · · ≥ ui(a

k
j) (2.5)

Let a = a1j and b = a3i . If EF1 holds, then

ui(Zi + a− b) ≥ ui(Zj − a+ b)

ui(a
1
i + · · ·+ ak−1

i + a1j) ≥ ui(a
2
j + · · ·+ akj + aki)

The above inequality may be true or false depending on the value of

each good. Consider four examples:

Example 3. Let ui(b) = 10 for any b ∈ Zi and ui(a) = 5 for any a /∈ Zi.

mEF holds and the allocation is EF1.

57

2.6. COMPATIBILITY OF PROPERTIES

Example 4. Let ui(b) = 5 for any b ∈ Zi and ui(a) = 10 for any

a /∈ Zi. mEF does not holds and the allocation is not EF1 as k > 3 (the

exchange cannot compensate for the difference in bundles’ utilities).

Example 5. Let ui(a
1
i) = 6, ui(a

l
i) = 3 for any ali ∈ Zi\a1i and ui(a) = 5

for any a /∈ Zi. mEF holds since ui(a
1
i) = 6 > ui(a

k
j) = 5 for any

j ∈ N \ i.
The original allocation is not EF1 since ui(Zi + a− b) < ui(Zj − a+ b)

at k > 3. EF1 holds if

ui(a
1
i + · · ·+ ak−1

i + a1j) > ui(a
2
j + · · ·+ akj + ak1)

6 + 3(k − 2) + 5 > 5(k − 1) + 3

3.5 > k

Since we are considering a case when k > 3 and k is an integer, EF1

does not hold.

Example 6. Let ui(b) = 1 for any b ∈ Zi, ui(a
1
j) = k + 1 and ui(a) = 2

for any a ∈ Zj \a1j . mEF does not hold since 1 < 2 < k+1. EF1 holds

as

ui(a
1
i + · · ·+ ak−1

i + a1j) > ui(a
2
j + · · ·+ akj + ak1)

1(k − 1) + (k + 1) > 2(k − 1) + 1

k + 1 > k

Based on the examples above, we observe that mEF and EF1 can

hold simultaneously as well as one can hold while the other does not,

hence, they are logically independent. Moreover, both of them may not

hold.

We now examine two ordinal properties: mEF and lexEF. mEF com-

pares one item from i’s bundle to one item from j’s, while lexEF con-

siders the whole bundles of both agents. It is not surprising that lexEF

turns out to be stronger than mEF regardless of the values of k and n.

58

2.6. COMPATIBILITY OF PROPERTIES

Proposition 11. lexEF implies mEF, but mEF does not imply lexEF.

Proof.

lexEF ⇒ mEF. Allocation is lexEF when for any i, j ∈ N , Zj does not dominate

Zi according to preferences of i. Since there is no domination,

either all objects are the same, or there are a ∈ Zi and b ∈ Zj

such that a ≻i b and c ∈ Zi and d ∈ Zj such that c ≺i d. Then,

either ui(Zi) = ui(Zj) or max
a∈Zi

ui(a) > min
b∈Zj

ui(b). It is possible that

both conditions hold if, for example, agent are allocated identical

bundles of goods with various utilities.

mEF ̸⇒ lexEF. Consider RR allocation assuming that all agents have the same

preferences. It is mEF since every object chosen by any agent in

the first round is preferred by that agent to any of the k object

left for the last round. The allocation is not lexEF as allocation of

an agent i who was choosing the objects before j in every round

dominates the allocation of j.

Although lexEF is stronger than mEF, it is related to EF1 in the

same way as mEF.

59

2.6. COMPATIBILITY OF PROPERTIES

Proposition 12.

(i) lexEF implies EF1, but EF1 does not imply lexEF when k = 3.

(ii) lexEF and EF1 are logically independent k > 3.

Proof.

(i) By combining Propositions 9 and 11, we find that lexEF ⇒ mEF ⇒
EF1 and EF1 ̸⇒ lexEF, otherwise it would imply mEF.

(ii) By combining Propositions 10 and 11, we find that EF1 ̸⇒ lexEF,

otherwise it would imply mEF.

We show that lexEF ̸⇒ EF1 by providing an example that is lexEF,

but it not EF1.

Example 7. Consider Zi = a, c, . . . , c and Zj = b, . . . , b, where ui(a) =

x > ui(b) = y > ui(c) = z and uj(a) ≥ uj(b) ≥ uj(c). lexEF holds since

agent i has both the best and the worst available goods, whereas agents

of type j have the medium good. EF1 does not hold whenever

x+ y + (k − 2)z <(k − 1)y + z

x− z <(k − 2)y − (k − 2)z

x− y <(k − 2)(y − z)

Let x− y = 1 and y − z = 2, then EF1 does not hold when k > 3.

Large number of division problems such as corporate legislation, dis-

solving partnerships and divorce settlements involve only two parties.

It turns out that when n = 2, EF1 and Pro1 are equivalent and EF1

is compatible with efficiency. Note that EF1 always holds when k = 2,

therefore, when two agents are diving four indivisible goods, the result-

ing allocations will always be EF1 and Pro1.

Proposition 13. When n = 2, EF1 and Pro1 are equivalent.

60

2.6. COMPATIBILITY OF PROPERTIES

Proof. Because there are only two agent, the agent will perform the

same single exchange and consider the same Z
′

i in both EF1 and Pro1.

Not to be envious, the agent needs to have a better bundle from the

start or prefer the post-exchange bundle Z
′

i to Z
′

j. Given that there are

only two bundles in the partition, the weakly better bundle has a utility

of at least 1
2ui(A), hence, EF1 implies Pro1.

Pro1 implies EF1 as if u(Z
′

i) ≥ 1
2ui(A), then u(Z

′

i) ≥ u(Z
′

i) since

A = Z
′

i ∪ Z
′

j.

In the general model with no limitations on how many goods are

assigned to each agent, EF1 implies Pro1. In contrast to the general

case, we find that whenever there are three or more agents EF1 and

Pro1 are independent.

Proposition 14. When n ≥ 3, EF1 and Pro1 are logically independent.

Proof.

EF1 ̸⇒ Pro1. Assume that there is one agent i, (n − 1) identical agents j and

three types of goods: a, b and c. Agents j are indifferent between

the goods, while ui(a) = x > ui(b) = y > ui(c) = z. There are

(n−1) items a, n(k−1)−1 items b and two items c, and the agents

are allocated Zi = {c, c, b, . . . , b} and Zj = {a, b, . . . , b}.
This allocation satisfies EF1. If i takes a from agent j and gives

her c in exchange, their allocations become Z
′

i = {a, c, b, . . . , b} and

Z
′

j = {c, b, b, . . . , b}. Since i prefers a to b, and b to c, this single

exchange eliminates envy, hence, EF1 holds. Agent j is indifferent

between the items, hence, the allocation is EF for j.

This allocation is not necessarily Pro1 for agent i. The best ex-

change for i is described above, and results in ui = x+ z + (k − 2)y.

61

2.6. COMPATIBILITY OF PROPERTIES

Pro 1 holds if

ui(Z
′
i) ≥

1

n
ui(A)

x+ z + (k − 2)y ≥
(n− 1)x+

(
n(k − 1)− 1

)
y + 2z

n

x+ z + (k − 2)y ≥
(n− 1)x+

(
n(k − 1)− 1

)
y + 2z

n

nx+ nz + n(k − 2)y ≥ (n− 1)x+
(
n(k − 1)− 1

)
y + 2z

x+ (n− 2)z ≥ (n− 1)y

x− y ≥ (n− 2)(y − z)

This condition does not necessarily hold. Let, for example, x = 4,

y = 3, z = 1, then Pro 1 is not satisfied for any n ≥ 3. Moreover,

if the utility increases linearly, Pro1 will still not hold when n > 3.

Pro1 ̸⇒ EF1. Since EF1 holds when k = 2, we consider k ≥ 3. Assume that there

is one agent i, (n − 2) identical agents j and an agent k. Assume

three types of goods: a, b and c. Agents j and k are indifferent

between the goods, while ui(a) = x > ui(b) = y > ui(c) = z.

There is one item a, (n− 2)k + 1 items b and 2k − 2 items c. The

agents are allocated bundles Zi = {c, . . . , c}, Zj = {b, b, . . . , b} and

Zk = {a, b, c, . . . , c}.
Let us first find the values of x, y and z for which Pro1 holds.

The best single exchange for agent i results in Z
′

i = a, c, . . . , c. To

62

2.6. COMPATIBILITY OF PROPERTIES

satisfy Pro1,

ui(Z
′

i) ≥
1

n
ui(A)

x+ (k − 1)z ≥
x+

(
(n− 2)k + 1

)
y + (2k − 2)z

n

nx+ n(k − 1)z ≥x+
(
(n− 2)k + 1

)
y + (2k − 2)z

(n− 1)x+ (nk − n− 2k + 2)z ≥(nk − 2k + 1)y

(n− 1)(x− z) ≥(nk − 2k + 1)(y − z)

(x− z) ≥nk − 2k + 1

n− 1
(y − z)

Note that
nk − 2k + 1

n− 1
= k − k − 1

n− 1
< k and

nk − 2k + 1

n− 1
> 1

whenever k > 1 and n > 2, which means that it is always be-

tween 1 and k in the case under consideration. Let x = k + 1,

y = 2, z = 1. It follows, that Pro1 holds.

The allocation,however, is not EF1 as agent i envies agent j even

after a single exchange. Z
′

i = {b, c, . . . , c} and Z
′

j = {c, b, . . . , b},
and

ui(Z
′

i) <ui(Z
′

j)

y + (k − 1)z <z + (k − 1)y

(k − 2)z <(k − 2)y

It follows, that i envies j whenever k > 2. Since we are considering

k ≥ 3, EF1 does not hold regardless of the values of x, y and z.

The desirable properties of any allocation include fairness and effi-

ciency. Although compatibility of PO with all of the notions of envy-

freeness and proportionality is an open question, EF1 and PO are com-

patible in the market with two agents.

63

2.6. COMPATIBILITY OF PROPERTIES

Theorem 1. If n=2, EF1 and efficiency are compatible when utilities

are normalised.

Proof. Normalise the utilities such that
∑

a∈A ui(a) = 1 for i = 1, 2.

Allocate the bundles based on leximin mechanism, that is, if the alloca-

tion results in u1 < u2, then agent 1 gets the largest possible u1. This

allocation is efficient since one of the agents receives the maxminui.

There are three possibilities:

1. u1 < 1/2, u2 < 1/2. Both agents benefit from exchanging their

allocated goods, so the original allocation was not leximin.

2. u1 > 1/2, u2 > 1/2. Both agents do not envy each other, hence,

EF holds.

3. u1 < 1/2, u2 > 1/2. Let agent 1 exchange his worst good for the

best good of agent 2. Assume that the resulting utility u1(S
′

1) <

1/2, note that u1(S
′

1) > u1(S1) = x. Since the initial allocation

(S1, S2) was leximin, it must be that in any allocation other than

(S1, S2) one of the agents receives utility inferior to x.

If u1(S
′

1) < 1/2 and u2(S
′

2) < 1/2, then, u1(S
′

2) > 1/2 and u2(S
′

1) >

1/2. Both agents prefer (S
′

2, S
′

1) to the initial allocation, thus, the

initial allocation was not leximin. Contradiction.

If u1(S
′

1) < 1/2 and u2(S
′

2) > 1/2, then both u1(S
′

1) > x and

u2(S
′

2) > x. The initial allocation was not leximin. Contradiction.

It follows that our initial assumption was incorrect, and u1(S
′

1) >

1/2. Consequently, the initial allocation is EF1.

We consider six ways of evaluating fairness: four notions of envy-

freeness and two notions of proportionality. We find that most of them

are independent when enough agents are present in the market and

enough goods are allocated. With exception of EFX implying EF1 and

64

2.7. MECHANISMS’ PROPERTIES

ProX implying Pro1 (by definition) as well as lexEF being stronger than

mEF, we show that the properties can hold or not hold independently of

each other. We do not consider whether combination of a few properties

implies another one in this paper.

Apart from the strength of the fairness properties, we would like to

know if they are compatible. In the next section we show that RR

satisfies EF1, Pro1 and mEF, hence, the three are compatible and can

be guaranteed.

2.7 Mechanisms’ Properties

We now study the allocation mechanisms and their properties. We con-

sider five rules: RR, gRR, LM, NM and UM.

Round Robin is a rule that is common and simple to use. Agents

pick the best of the remaining objects one-by-one until there are no

more objects left. We show that RR is EF1, Pro1 and mEF, however it

is not efficient. It also fails EFX and ProX.

Proposition 15. RR is not necessary PO.

Example 8. Consider an example with n = 2 and k = 3. Denote the

two players by i and j and goods by a, b, c, d, e and f . Assume that

both players prefer a ≻ b ≻ c ≻ d ≻ e ≻ f , and that player i chooses

first. Then, following the Round Robin assignment rule, goods a, c, e are

allocated to i and b, d, f are allocated to j. If ui(b)+ui(d) > ui(a)+ui(e)

and uj(a) + uj(e) > uj(b) + uj(d), then this allocation is not PO. Below

is a table with numerical values that satisfy this condition.

RR a b c d e f u(Z)

i 10
32

9
32

6
32

5
32

2
32

0 18
32

j 12
40

10
40

8
40

5
40

4
40

1
40

16
40

Table 2.1: RR allocation

65

2.7. MECHANISMS’ PROPERTIES

PI a b c d e f u(Z)

i 10
32

9
32

6
32

5
32

2
32

0 20
32

j 12
40

10
40

8
40

5
40

4
40

1
40

17
40

Table 2.2: Pareto Improvement (PI)

The total utility of agent i is ui(a, c, e) =
10
32 +

6
32 +

2
32 = 18

32 . Agent j

receives uj(b, d, f) =
10
40+

5
40+

1
40 =

16
40 . If i receives goods b, c, d and j get

goods a, e, f , then the total utilities are ui(b, c, d) =
9
32+

6
32+

5
32 =

20
32 >

18
32

and uj(a, e, f) =
12
40 +

4
40 +

1
40 =

17
40 >

16
40 . The new allocation is a Pareto

Improvement (shown in the PI table above), hence, RR does not satisfy

PO.

We now check if the RR allocations satisfy envy-freeness up to one

and up to any good.

Proposition 16. RR is EF1, but not necessarily EFX.

Proof. According to EF1, for any agents i, j there is a ∈ Zj and b ∈ Zi

such that ui(Zi + a − b) ≥ ui(Zj − a + b). EFX establishes the same

relation for any a ∈ Zj and b ∈ Zi s.t. ui(a) > ui(b).

Let ali be an object chosen by agent i in the lth round. Consider any

two agents i and j. Consider two possibilities for the picking order in

the Round Robin rule:

i chooses before j. If i chooses the objects before j, then the alloca-

tion is EF. At any round l, ui(a
l
i) > ui(a

l
j), hence, ui(Zi) > ui(Zj)

(follows from additivity).

j chooses before i. If i chooses the objects after j, then in the first

round j may choose an object that is most preferred by i, how-

ever, at any round l ∈ 1..k − 1, ui(a
l
i) > uj(a

l+1
j). This implies

that ui(a
1
i , . . . , a

k−1
i) ≥ ui(a

2
j , . . . , a

k
j). If ui(a

k
i) > ui(a

1
j), then the

allocation is EF. If the opposite is true, then it satisfies EF1 as for

66

2.7. MECHANISMS’ PROPERTIES

a = a1j and b = aki it follows that ui(Zi + a− b) ≥ ui(Zj − a+ b) by

additivity.

When it comes to EFX, any profitable exchange must guaran-

tee envy-freeness. Let agents have the same valuations of ob-

jects with a fixed increment ε. Then j’s bundle is better than

i’s by at least kε, however, the smallest profitable exchange will

improve i’s utility by ε and decrease j’s utility by ε, meaning

that ui(Z
′

j) − ui(Z
′

i) = (k − 2)ε > 0, hence, EFX does not hold

whenever k > 2. If k = 2, let a, b, c, d be the best choices for i

from A (ui(a) > ui(b) > ui(c) > ui(d)), and let the allocations of i

and j be Zi = {b, d} and Zj = {a, c}. One of the profitable ex-

changes for i results in Z
′

i = {b, c} and Z
′

j = {a, d}. If, for example,

ui(a) = 5, ui(b) = 3, ui(c) = 2 and ui(d) = 1, then EFX does not

hold.

Similarly to envyfreeness, proportionality up to one good is guaran-

teed by RR, however, ProX may not hold.

Proposition 17. RR is Pro1, but not necessarily ProX.

Proof.

Pro1. We will use the same notation as in Proposition 16: ali is an ob-

ject chosen by agent i in the lth round. In every round of RR, agent

i chooses the best available item, hence, ui(a
l
i) > ui(a

l+1
j). When com-

paring his bundle for Pro1, agent i will either find that Pro holds or

exchange aki for the best item belonging to the other agents abest. Then,

ui(Z
′

i) = ui(a
1
i) + · · ·+ ui(a

k−1
i) + ui(a

best). Compare it to the average

67

2.7. MECHANISMS’ PROPERTIES

utility:

ui(Z
′

i) >
1

n
ui(A)

ui(a
1
i) + · · ·+ ui(a

k−1
i) + ui(a

best) >
1

n

∑
j=1,...,n
l=1,...,k

ui(a
l
j)

n
(
ui(a

1
i) + · · ·+ ui(a

k−1
i) + ui(a

best)
)
>

∑
l=1,...,k

ui(a
l
1) + · · ·+ ui(a

l
n)

If ui(a
best) < ui(a

k
i), then agent i received his k top choices from A. This

implies Pro.

If ui(a
best) > ui(a

k
i), then for every object in Zi chosen in the first

k − 1 rounds, the corresponding utility is present on both sides on the

inequality, for the kth round we use ui(a
best) > ui(a

k
i). For every object

not in Zi chosen in the 2nd round or later, ui(a
l
i) > ui(a

l+1
j). Finally,

ui(a
best) > ui(a

1
j ̸=i). Hence, the overall inequality holds and the alloca-

tion is Pro1.

ProX. Consider n agents with the same preferences, let agent i be the

ith in the picking order each round. The preferences are a strict order

and the associated utilities are linear2, that is, the vector of utilities

of all elements in A is (0, 2, . . . , nk). At every round l = 1, . . . , k, ith

agents picks the best remaining element with a corresponding utility

(k − l)n+ (n− i+ 1)3. Let us check if ProX holds for the last agent.

Consider agent k, his utility u(Zk) is:

0+(n+1)+· · ·+((k−1)n+1) = n(1+· · ·+(k−1))+k−1 =
nk(k − 1)

2
+k−1

When considering ProX for this agent, exchange his item chosen in any

but the last round with an item chosen by agent (k − 1) in the same

round. This will increase his utility by the smallest possible amount 1,

2Except for the worst object’s utility, which is valued at 0 rather than 1.
3The value of the worst object will not follow this formula.

68

2.7. MECHANISMS’ PROPERTIES

hence, u(Z
′

k) =
nk(k − 1)

2
+ k. If ProX holds, then

u(Z
′

k) ≥
1

n
u(A)

nk(k − 1)

2
+ k ≥ 1

n
(
nk(nk + 1)

2
− 1)

nk(k − 1)

2
+ k ≥ 1

n

nk(nk + 1)

2
− 1

n

nk(k − 1) + 2k ≥ k(nk + 1)− 2/n

nk2 − nk + 2k ≥ nk2 + k − 2/n

k ≥ nk − 2/n

It follows, that ProX does not hold whenever k < nk− 2/n. This paper

examines allocations with k ≥ 2 and n ≥ 2, the inequality holds for any

pair of such k and n. Hence, the allocation is not ProX.

Next, we turn to the minimal guarantees. RR results in allocations

that are mEF, but not lexEF.

Proposition 18. RR is mEF, but not necessarily lexEF.

Proof. For any agent i, an item chosen in the first round of RR is better

than any item chosen in the last round, hence, mEF holds.

If all agents have identical preferences, then the allocation Zj of the

agent j who was choosing the items before agent i in each round will

dominate Zi, hence, the allocation will not be lexEF.

In order to eliminate unfair advantage of the first chooser, RR can

be generalised to a rule where the picking order is determined before

every round of choosing. This does not guarantee that the order will be

different every time, but it does shuffle the list in vast majority of cases.

Despite this, gRR may still fail PO and lexEF and only guarantees the

same properties as RR.

69

2.7. MECHANISMS’ PROPERTIES

Proposition 19. gRR is EF1, Pro1, mEF, but not necessarily PO or

lexEF.

Proof. EF1 Consider and agent i. Under gRR i will get a weakly better

allocation than if he was the last person in the picking order under

RR. In the worst case scenario, i will remain last in every round of

gRR, but in most cases he will not pick last in every round. Being

last under RR results in the worst possible allocation, but it is still

EF1 because RR is EF1 (Proposition 16). Hence, gRR is EF1.

Pro1 Using the same logic, since under gRR an agent cannot receive a

bundle that is worse than the allocation of an agent who picks last

under RR, and RR is Pro1, so is gRR4.

mEF Similarly to RR, for any agent i, an item chosen in the first round

of gRR is better than any item chosen in the last round, hence,

mEF holds.

PO Since the RR picking order is possible, efficiency is not guaranteed.

lexEF Let all agents have identical strict preferences over n best objects

and be indifferent between the rest. Then, in the first round of

gRR the n best objects will be chosen, and the choice of agent i

will dominate the choice of agent j if i picks the object before j

in the first round. Since all other objects are worse than the first

n and have identical utility, the dominance will remain, hence, the

allocation will not be lexEF.

We aggregate the above results to show that EF1, Pro1 and mEF are

compatible and can be guaranteed.

Theorem 2. EF1, Pro1 and mEF allocation always exists.

Proof. Such allocation can be obtain by using RR or gRR.
4Note that the argument that proves that RR is Pro1 does not use the fact that agents’ picking

order does not change. Hence, we can use the same argument here.

70

2.7. MECHANISMS’ PROPERTIES

In order to obtain efficiency, we study LM, NM and UM. Despite

being efficient, these rules do not guarantee that the resulting allocation

is fair. Unfortunately, all of the fairness notions may fail to hold.

Proposition 20. LM, NM and UM do not necessarily satisfy any of

EF1, EFX, mEF, lexEF, Pro1 and ProX.

Proof. Consider an example with agent i and n − 1 identical agents j.

There are (n − 1)k goods a and k goods b such that ui(a) = p, ui(b) =

q = uj(a), uj(b) = 0, where p > q. Since LM maximizes the mini-

mum utility and NM maximizes the product, the resulting allocation

is Zi = {b, b, ..., b} and Zj = {a, a, ..., a} when using both mecha-

nisms. Under UM, as we go from this allocation to one in which agent

i and agent j performed a single exchange, the total utility increases by

∆U = (p− q) + (0− q) = p− 2q. By making an additional assumption

that p < 2q, we make sure that the same allocation is optimal under

UM.

EF1 Note that when k = 2, any allocation is EF1. Let k > 2, check if

the allocation is EF1:

ui(Zi + a− b) >ui(Zj + b− a)

(k − 1)q + p >(k − 1)p+ q

(k − 2)q >(k − 2)p

Since q < p, the inequality above does not hold whenever k > 2,

hence, the allocation is not EF1.

EFX Since all agents are allocated k units of the same good, EFX and

EF1 become identical. It follows that EFX does not hold whenever

k > 2.

mEF max
x∈Zi

ui(x) = ui(b) = q < min
x∈Zj

ui(x) = ui(a) = p, hence, mEF does

not hold.

lexEF According to the preferences of agent i, every element in Zj is

71

2.8. CONCLUSION AND FUTURE WORK

superior to every element in Zi, that is, Zj dominates Zi, and lexEF

does not hold.

Pro1 Pro1 holds whenever

ui(Zi + a− b) >
1

n
ui(A)

(k − 1)q + p >
kq + (n− 1)kp

n

n(k − 1)q + np >kq + (n− 1)kp

(nk − n− k)q >(nk − k − n)p

Since q < p, the inequality above does not hold whenever nk−n−
k > 0. By re-writing this condition, we find that Pro1 does not

hold whenever n > 1+ 1
k−1 or, alternatively, k > 1+ 1

n−1 . These are

satisfied when k > 2 and n ≥ 2 or k ≥ 2 and n > 2. We conclude

that Pro1 does not hold when k ≥ 2, n ≥ 2, and at least one of the

inequalities is strict.

ProX Since all agents are allocated k units of the same good, ProX and

Pro1 become identical. It follows that ProX does not hold when

k ≥ 2, n ≥ 2, and at least one of the inequalities is strict.

2.8 Conclusion and Future Work

We examined a fair division model in which every agent is allocated

equal number of goods. We adjusted fairness notions to suit our model

and analysed relations between them. We also verified if allocations

resulting from RR, gRR, LM, NM and UM satisfy the fairness and

optimality conditions.

We found that allocating equal number of goods to the agents differs

from a general case of fair division with indivisible goods. Most of the

properties become logically independent, most notably, EF1 does not

72

2.8. CONCLUSION AND FUTURE WORK

imply Pro1. Allocation rules can also lose some of the desired properties.

RR is fair up to one good but not efficient, while efficient LM, NM and

UM are not fair. When two agents divide the goods, EF1 is equivalent

to Pro1 and is compatible with efficiency.

There are several direction in which our model can be studied further.

Firstly, there are alternative ways of defining fairness up to one good

(as discussed in Section 2.4) as well as additional notions of minimal

guarantees (for example, MMS). Secondly, combinations of our proper-

ties may imply others. Thirdly, we do not yet know if efficiency and our

fairness notions are compatible when n > 2. The common allocation

procedures are either efficient or fair, but this does not imply incom-

patibility. When considering the allocation rules, we assumed that the

valuations were positive. We might get additional results for ’bads’ in-

stead of goods. Finally, we plan to consider the properties and allocation

rules on specific preference domains. In this paper, the preferences are

additive and otherwise arbitrary. We might be able to guarantee bet-

ter results when the utilities are identical, identical ordinally but not

cardinally or dichotomous.

73

2.9.
A
P
P
E
N
D
IX

.
S
U
M
M
A
R
Y

O
F
R
E
S
U
L
T
S

2.9 Appendix. Summary of results

We summarise the results of the paper in the table below. Yes indicated that an allocation rule satisfies the

property, i.e., the property holds for all allocations that result from the rule. If the rule does not guarantee

that a property will hold for the resulting allocation, we write No.

EF1 EFX mEF lexEF Pro1 ProX PO

EF1 k = 2 ⇒ EF1 (8)

EFX EFX ⇒ EF1 (by definition)

mEF
mEF ⇒ EF1, EF1 ̸⇒ mEF when k = 3 (9)

mEF ⇔/ EF1 when k > 3 (10)

lexEF
lexEF ⇒ EF1, EF1 ̸⇒ lexEF when k = 3 (12)

lexEF ⇔/ EF1 when k > 3 (12)
lexEF ⇒ mEF, but mEF ̸⇒ lexEF (11)

Pro1
Pro1 ⇔ EF1 when n = 2, k ≥ 3 (13)

Pro1 ⇔/ EF1 when n ≥ 3, k ≥ 3(14)

ProX ProX ⇒ Pro1 (by definition)

RR Yes (16) No (16) Yes (18) No (18) Yes (17) No (17) No (15)

gRR Yes (19) Yes (19) No (19) Yes (19) No (19)

LM No (20) No (20) No (20) No (20) No (20) No (20) Yes

NM No (20) No (20) No (20) No (20) No (20) No (20) Yes

UM No (20) No (20) No (20) No (20) No (20) No (20) Yes

Table 2.3: Summary or results

74

Chapter 3

Student allocation to equal number of elective

courses

Abstract

We consider many-to-many allocation of students to elective

courses. Each student must attend equal number of courses,

and all courses admit exact number of students. We show that

DA mechanism may violate the quotas and design two modi-

fications that ensure that the quotas are respected. We show

that both modifications may create additional opportunities

for manipulation. We simulate the admissions and show that,

on average, the number of profitable manipulations increases

by no more than 0.4%. When considering the number of ma-

nipulable markets, we find that roughly 20% and 18% of the

markets are manipulable under our two modifications.

3.1 Introduction

Matching literature focuses on allocating goods to agents. Goods and

agents are matched in one-sided or two-sided markets. One-sided mar-

kets imply that agents have preferences over goods, but the goods do

not have preferences over agents and have no effect on the resulting allo-

cation. In two-sided markets, both sides comprise disjoint sets of agents

who have preferences over the agents on the other side of the market.

The well-known marriage problem is set in a two-sided market with men

and women on each side. They have preferences over each other, and

the goal is to marry the largest number of couples in the ’best’ way. In

75

3.1. INTRODUCTION

the marriage problem, each man marries at most one woman, and each

woman marries at most one man, hence, the one-to-one matchings are

analysed. A natural extension of this problem considers one-to-many or

many-to-many allocations. Such allocations are common in education

and work environments. Consider a problem of matching professors to

students for supervision, where each student is supervised by one profes-

sor, or allocating workers to shifts (or tasks) with each workers having

multiple shifts and each shift consisting of multiple workers.

We study many-to-many matching in a two-sided market with iden-

tical sizes of the allocated sets. We base our study on a simple example:

college students choose elective courses. All students have to study the

same number of electives in a semester in order to complete a degree,

and the number of seats in each course is limited. Similar problem

arises when allocating workers to tasks. Each full-time employee works

the same number of hours per week, and each task requires exact num-

ber of hours to be completed. We therefore want to make sure that the

employees work to the full capacity, and that the tasks are completed

efficiently. We study the outcomes of applying the deferred acceptance

(DA) mechanism to such problems.

In their paper, Gale and Shapley [20] introduced the DA allocation

mechanism and showed that it has two desirable properties: 1) it results

in a stable matching and 2) proposers in the DA mechanism receive the

best possible stable allocation. This strong positive result holds in a

marriage problem when men and women submit their full list of strict

preferences omitting only those women and men, respectively, whom

they find unacceptable. The central planner then uses the proposed

rule to create pairs (man, woman). Every person is assigned no more

than one partner. Stability states that there is no pair who prefer to be

together rather than with the people they were assigned to. Existence of

stable matching and minimal guarantee sparked extensive research into

the properties of the DA and other allocation rules in different markets.

One of the natural generalisations of the original DA mechanism ap-

plies to many-to-one or many-to-many markets. In such markets stable

and strategyproof mechanisms do not exist, hence, the research explores

specific domains where both properties do hold or studies the degree

to which stability or strategy-proofness is violated. In this paper, we

76

3.2. LITERATURE

follow the latter path. We show that the standard DA mechanism can-

not always be used when each students is assigned an exact number

of courses. We develop two modifications of the procedure that satisfy

the requirements of our market and investigate the strategy-proofness

of those modifications.

The paper is structured as follows: Section 3.2 discusses the related

literature, Section 3.3 formally introduces the model and algorithms

under consideration. Section 3.4 presents our results and Section 3.5

concludes.

3.2 Literature

Existence of a simple mechanism that guarantees stable allocation in-

spired research into assignment mechanisms that satisfy certain proper-

ties. The positive result of Gale and Shapley [20] was eventually followed

by a negative result by Roth [39]: in two-sided one-to-one matching mar-

kets no allocation is both stable and strategyproof. A few years later,

Roth [38] proved that one-to-many college admission problem is not the

same as the marriage problem. Stability and truth-telling are still not

compatible, but also there may be an allocation that all colleges prefer

to college-optimal stable outcome.

Although telling the truth is not necessarily a dominant strategy,

Roth and Peranson [40] show that in one-to-many matching markets

there are not many opportunities for manipulation. Immorlica and Mah-

dian [23] observe similar results in markets with one-to-one matching

showing that the truth-telling is a dominant strategy with high proba-

bility when other agents report their preferences truthfully. Kojima and

Pathak [26] highlight that colleges may manipulate the admissions by

misrepresenting either their preferences or quotas. The latter is not an

issue in one-to-one matching markets as all quotas equal one. They in-

vestigate not only the frequency of existence of profitable manipulations

in the one-to-many allocations, but also examine equilibrium strategies.

They show that in large market truthful reports are an approximate

equilibrium. All of the above results apply when the submitted prefer-

ence lists are restricted. Under the complete preferences the results do

not necessarily hold. In our paper, students report their full preferences,

77

3.2. LITERATURE

hence, manipulations may be more frequent.

Aziz et al. [4] show that when all participants submit full preference

lists, DA mechanism cannot be manipulated by the proposers with unit

capacity in one-to-many (or one-to-one) markets. If the capacity of

the proposer exceeds one, finding manipulations is FTP-complex. They

simulate the student-proposing and college-proposing DA allocations

and find that, on average, colleges can manipulate the allocations in

roughly 37% and 70% of the markets, respectively.

Biro et al. [7] consider college admissions with lower quotas. Based

on Hungarian system, where a programme may not open if there are not

enough students, they require that the number of allocated students is

between a lower and an upper bounds. They show that stable one-to-

many matching may not exist and that the problem of verifying the

existence of such allocation is NP-complete.

Many-to-many markets introduce additional challenges. In contrast

to one-to-one markets, we need to be able to compare groups of allocated

agents rather than individual agents. Given complete preferences over

individual items, responsive preferences [38] imply that if two groups

differ in one item, then the group with the preferred item is the better

one. Substitutable preferences are a generalisation of responsive pref-

erences. Under substitutable preferences, an agent that is chosen from

a bigger set must also be chosen from a smaller set of available items.

Roth [37] analysed stability under the two types of preferences. He

showed that in many-to-two markets with substitutable (and, hence,

responsive) preferences set of stable allocations is not empty. However,

when the preferences are responsive the stable allocations may not be

in the core or be Pareto optimal.

In our paper we consider many-to-many markets, and allocate exact

number of students to exact number of courses. Effectively, we have a

market in which lower and upper quotas coincide. Our work in close to

Aziz et al. [4] as we too analyse performance of DA mechanism under

responsive preferences. We, however, examine a different type of market

and find that manipulations are more rare.

78

3.3. MODEL

3.3 Model

There is a set of students S = {s1, ..., sn}, and a set of courses C =

{c1, . . . , cm}. Each course has a quota and can only admit up to q

students. Each student must study k courses in order to graduate,

hence, we only consider allocations in which each student is allocated

to exactly1 k courses. We assume that nk = mq, in other words, all

courses are filled to their full capacity once the allocation is completed.

Each student has preferences P (si) = Pi over the courses, each course

has preferences P (cj) = Pj over students. Since each student is allocated

to multiple courses, and each course admits multiple students, we need

to extend the preferences to compare sets of courses and students re-

spectively. We assume that preferences are responsive, namely, if two

sets of courses (students) differ in one element, then the set containing

a preferred course (student) is the preferred one.

All students and courses find each other acceptable, that is, no stu-

dent would rather stay unmatched than take a course and vice versa.

3.3.1 Why we cannot use original DA

Before discussing the allocations resulting from the student-proposing

DA algorithm, let us formally define it in the many-to-many markets.

DA

Step 1. Each student applies to his top k choices in Pi. Colleges put

the best q applicants on the waiting lists of each course j ∈ C and

reject the rest. If there are less than q applicants, then all of them

are put on the waiting list of the course, and no one is rejected.
...

Step m. Each student that was rejected at the previous step applies

to his next t choices in Pi, where t is the number of courses the

student was rejected from. Student may apply to less courses if

1This assumption is in line with standard practices as students need to gain a fixed number of

academic credits (can be converted to number of hours taught) to graduate, and only that number

of credits is covered by the tuition fee. Hence, students are generally not allowed to take additional

courses.

79

3.3. MODEL

there are not enough courses left on the preference list. For each

course j, the best to date q applicants are put on the waiting list

and the rest are rejected.
...

Termination. The algorithm terminates when no new offers are made.

All students on the waiting lists are admitted in the respective

courses.

Applying the deferred acceptance mechanism does not necessarily

yield the desired results. The final allocation may leave some students

allocated to less than k courses. Consider an example with three stu-

dents and three courses, where each student needs to study two courses

and each course admits two students.

Example 9. Let N = {s1, s2, s3} and C = {c1, c2, c3}, k = q = 2. We

list preferences of the students and courses below in a descending order:

Students P (s1) : c1, c2, c3 P (s2) : c1, c2, c3 P (s3) : c2, c1, c3

Courses P (c1) : s1, s2, s3 P (c2) : s1, s2, s3 P (c2) : s3, s1, s2

At the first step of the DA mechanism, all students apply to their top

choices. Below, we show courses which put students on the waiting lists

in green, the rejections are shown in red and in black are the courses

that students did not apply to at the current step.

s1 :c1, c2, c3

s2 :c1, c2, c3

s3 :c2, c1, c3

The third student was rejected from both courses that he applied to. Next,

he applies to the third course and is admitted.

s1 :c1, c2, c3

s2 :c1, c2, c3

s3 :c2, c1, c3

At this point students do not make any new applications and the pro-

cedure terminates. Clearly, the third student is only admitted into the

80

3.3. MODEL

third course. We could also say that he is admitted twice by the same

course. This happens because the original DA algorithm was aimed at

one-to-one matching. We have a many-to-many set up in which the

courses cannot be repeated in any of the students’ allocations.

To make sure that each student is allocated to k courses and never

twice to the same course, we need to modify the algorithm. Re-allocation

of each student i who was not assigned to enough courses will be at the

expense of the students who ranked higher than i in the courses that i

did not get.

3.3.2 Modified DA

We want to preserve the properties of the DA while making sure that

the students are allocated to exactly k courses. To that end, we start

by allocating students using the original DA mechanism, and then alter

the resulting allocation only if it does not satisfy our requirements.

We call the courses that are not filled to their full capacity and the

students who were allocated to less than k courses underdemanded. We

denote the set of underdemanded courses by CU and the set of un-

derdemanded students by SU . We call the complements of these sets

demanded and denote them by CD = C \ CU and SD = S \ SU .

We consider two modifications of the the original DA. Both use pri-

ority lists of students and alter DA in the spirit of serial dictatorship.

Whenever a student is allocated to less than k courses, he can only be

matched to an additional course if a student on that course gives up his

seat. Our first modification bans a student from attending a demanded

course and re-runs the DA. As a result, a spot appears on one of the

demanded courses that an underdemanded students takes. Our second

modification forces a demanded student to attend one of the underde-

manded courses. As a result, such student can now apply to less courses

(as there is no need to apply to the course he is forced to attend, but k

is still the same), and one seat at a demanded course becomes vacant.

In both procedures, we need to decide which student(s) will be forced

to vacate his (their) seat(s). We do this based on priority. We assume

that there is an exogenous priority list which orders the students from

low to high priority. Demanded student with lowest priority will be the

81

3.3. MODEL

first to give up his seat.

Define the first modification of the DA procedure.

ModDA1

PART 1. Run the DA algorithm. Call the existing allocation µ.

PART 2. If |µ(si)| = k for every si ∈ S, then terminate. If not,

repeat the following steps until the modified allocation µ′ is s.t.

|µ′(si)| = k for every si ∈ S:

Stage 1. Denote the current allocation by µ. Pick a student

according to the picking order (described below). Ban this student

from his least preferred demanded course in µ(s), which did not

admit all underdemanded students, SU ̸⊂ µ(c).

Stage 2. Run the DA algorithm. Students are not allowed

to apply to courses they were previously banned from. Call the

updated allocation µ′. Update the sets of underdemanded students

and courses.

Note that this modification prevents student(s) from applying to cer-

tain courses. Banning may cause a chain reaction, and the banned

student will not necessarily end up with an underdemanded course.

Our second modification does not ban students from applying. In-

stead, it forces the demanded students to pick underdemanded courses.

ModDA2

PART 1. Run the DA algorithm. Call the existing allocation µ.

PART 2. If |µ(si)| = k for every si ∈ S, then terminate. If not,

repeat the following steps until the modified allocation µ′ is s.t.

|µ′(si)| = k for every si ∈ S:

Stage 1. Denote the current allocation by µ. Pick a student

according to the picking order (described below). Force this student

to attend an underdemanded course that he was not assigned to

and likes the most.

Stage 2. Run the DA algorithm. Students have to apply to

the courses they were forced to attend. Courses cannot reject such

students. Update the sets of underdemanded students and courses.

82

3.4. STRATEGY PROOFNESS

To decrease a number of underdemanded students and underde-

manded courses, we pick a student who has to vacate a seat at a de-

manded course or has to attend an underdemanded course, which in

turn leads to him giving up a seat at a demanded course.

Picking order

We pick a student who:

• was allocated to k courses at the previous iteration of the algorithm,

that is, s ∈ SD

• is not assigned to all underdemanded courses, CU ∩ µ(s) ̸= CU

• has the lowest priority on the priority list among all students who

satisfy the first two criteria

Priority list can have a significant effect on strategy-proofness. We

find that the same manipulation may be profitable given one priority

list, but harmful when the priorities are different. In our paper, we

assume that the priorities are fixed and exogenous. We expect that

endogenous priorities may be useful in reducing manipulabity of the

allocation procedures, however, we do not study endogenous priorities

in this paper.

The DA mechanism and its modifications are well-defined2 and de-

terministic, hence, they result in a unique allocation for any given allo-

cation problem3.

3.4 Strategy proofness

First, we analyse the underdemanded students. These students are least

preferred by the courses compared to their peers. This affects their

power when trying to affect the outcome of the allocation procedure.

Lemma 1. Every underdemanded student has been rejected from all the

courses that he is not allocated to under DA.
2We can always compare individual courses (students) according to student’s (course’s) prefer-

ences.
3An allocation problem is determined by n, m, p, q, students’ and colleges’ preferences over each

other and the exogenous list of priorities

83

3.4. STRATEGY PROOFNESS

Proof. The DA assignment rule does not terminate until there are no

more new application. A student s who has been tentatively accepted

by less than k courses keeps applying to the courses in his preference

list until: 1) he is put on a waiting list by k courses OR 2) he has

applied to all courses on the preference list. Since we assume that stu-

dents have complete preferences, underdemanded student s applied to

all programmes by the time the procedure terminated, hence, he must

have been rejected by all the courses that did not admit him.

Proposition 21. Under DA, each underdemanded student is allocated

to all underdemanded courses.

Proof. A course only rejects a student if the number of applications to

the course exceeds the quota. Underdemanded courses do not reach the

quota by the end of the allocation process, hence, each student who

applies to the course is accepted. According to Lemma 1, each underde-

manded student has been rejected by all the courses he is not assigned

to. An underdemanded course cannot reject students, therefore, each

underdemanded student is assigned to all underdemanded courses.

Above propositions imply that the number of underdemanded stu-

dents and courses cannot be too large.

Proposition 22. Under DA, the number of underdemanded courses is

less than k, and the number of underdemanded students is less than q,

that is, |CU | < k and |SU | < q.

Proof. Since every underdemanded student is assigned to all underde-

manded courses, |SU | ≥ k would imply that the student is not underde-

manded. Same logic applies if the number of underdemanded students

exceeds q − 1.

In our paper, we focus on manipulability. We start by showing that

underdemanded students cannot affect the DA. This result is known in

the literature.

Proposition 23. Reports of underdemanded students do not affect the

outcome of the DA mechanism.

84

3.4. STRATEGY PROOFNESS

Proof. In their paper, Klijn and Yazıcı [25] examine the Rural Hospital

Theorem in the many-to-many setup. They show that the underde-

manded students are allocated to the same set of courses in any stable

matching given substitutable and weakly separable preferences. Re-

sponsive preferences are a subset of these, and DA mechanism results in

a stable matching, hence, underdemanded students are assigned to the

same set of courses regardless of their reports.

In contrast to underdemanded students, demanded students may be

able manipulate the DA matching by misreporting their preferences.

When it comes to modifications, sets of underdemanded courses and

students are updated every time DA is re-run. In presence of multi-

ple underdemanded students, one becomes demanded faster than the

rest. This implies that initially underdemanded students may be able

to manipulate the modified algorithms at some point.

Proposition 24. Demanded students may be able to manipulate the DA

allocation.

Proof. Consider an example with n = 4, m = 4, k = 2 and q = 2. Let

students and colleges have the preferences described below:

Students’ preferences Courses’ preferences

s1 c1, c2, c4, c3 c1 s2, s4, s1, s3

s2 c1, c2, c3, c4 c2 s1, s4, s2, s3

s3 c3, c4, c1, c2 c3 s2, s3, s4, s1

s4 c2, c3, c1, c4 c4 any

At each step of the DA mechanism, students apply to their top two

courses that they have not been rejected from. The list of applicants

to each course is shown in the columns of the table below. When the

number of applications to a course exceeds two, the course rejects the

least preferred applicants keeping two on the waiting list. The students

who were rejected apply to the next course(s) on their preference list.

We summarise the application process below (rejections are highlighted

in red, new applications are blue unless they are immediately rejected):

85

3.4. STRATEGY PROOFNESS

DA c1 c2 c3 c4

Step 1 s1, s2 s1, s2, s4 s3, s4 s3

Step 2 s1, s2 s1, s4 s2, s3, s4 s3

Step 3 s1, s2,s4 s1, s4 s2, s3 s3

Step 4 s2, s4 s1, s4 s2, s3 s1, s3

The resulting matching then is:

s1 s2 s3 s4

Students’ allocations c2, c4 c1, c3 c3, c4 c1, c2

We observe that student s1 is matched to courses c2 and c4. However,

his application to c2 starts a chain reaction which results in him losing

a seat at his most preferred course c1. If instead student s1 applies to

c1 and c4 from the start, there will be no rejections, and the resulting

allocation will be an improvement for s1. The reported preferences of

student s1 are then, for example,

P ′(s1) : c1, c4, c2, c3,

and the resulting DA procedure terminates after the first step:

DA manipulation c1 c2 c3 c4

Step 1 s1, s2 s2, s4 s3, s4 s1, s3

By misreporting his preferences, student s1 improved his allocation.

When introducing the modifications to the allocation procedure, we

may affect the manipulability. When studying the possible manipula-

tions, we are mostly interested in the existence of the manipulations

that are beneficial:

only under DA. Such manipulations suggest that the modification

of the initial algorithm removes some manipulation opportunities,

hence, inducing more honest reporting.

only under ModDA. This would suggest that the modification is

open to new manipulations compared to the original DA.

86

3.4. STRATEGY PROOFNESS

Proposition 25. Both ModDA1 and ModDA2 may make some manip-

ulations that were profitable under DA ineffective or harmful to the ma-

nipulator, hence, modifying DA may decrease the number of profitable

manipulations.

Proof. We will demonstrate this using an example with n = 5, m = 5,

k = 2 and q = 2. Let student s1 be the last on the priority list and let

the preferences be as shown below:

Students’ preferences Courses’ preferences

s1 c1, c2, c3, c4, c5 c1 s2, s3, s4, s1, s5

s2 c2, c3, c4, c1, c5 c2 s1, s4, s2, s3, s5

s3 c1, c4, c5, c1, c2 c3 s1, s2, s3, s4, s5

s4 c2, c4, c1, c3, c5 c4 s1, s2, s3, s4, s5

s5 c3, c4, c2, c1, c5 c5 s1, s2, s3, s4, s5

First we run DA algorithm. It ends with one of the students being

allocated to only one course, so we implement both modifications keep-

ing in mind that s1 has the lowest priority, hence, is chosen by both

modifications to give up a seat.

DA c1 c2 c3 c4 c5

Step 1 s1, s3 s1, s2, s4 s2, s5 s3, s4, s5

Step 2 s1, s3 s1, s4, s5 s2, s5 s2, s3,s4

Step 3 s1, s3,s4, s5 s1, s4 s2, s5 s2, s3

Step 4 s3, s4 s1, s4 s1, s2, s5 s2, s3 s5

Outcome s3, s4 s1, s4 s1, s2 s2, s3

ModDA1 prevents s1 from applying to the least preferred course that

he is currently allocated to, c3. This means that Steps 1-3 after the ban

are the same as under DA, at Step 4 s1 applies to c4 instead of c3.

ModDA1 c1 c2 c3 c4 c5

Step 1 s1, s3 s1, s2, s4 s2, s3 s3, s4, s5

Step 2 s1, s3 s1, s4, s5 s2, s5 s2, s3,s4

Step 3 s1, s3,s4, s5 s1, s4 s2, s5 s2, s3

Step 4 s3, s4 s1, s4 s2, s5 s1, s2, s3 s5

Step 5 s3, s4 s1, s4 s1, s2 s2, s3 s1, s5

87

3.4. STRATEGY PROOFNESS

ModDA2 forces s1 to apply to the the underdemanded course c5. As

a result, s1 is unable ao apply to s2.

ModDA2 c1 c2 c3 c4 c5

Step 1 s1, s3 s2, s4 s2, s3 s3, s4, s5 s1

Step 2 s1, s3 s2, s4, s5 s2, s3 s3, s4, s5 s1

Step 3 s1, s3, s5 s2, s4 s2, s3 s3, s4, s5 s1

Step 4 s1, s3 s2, s4 s2, s3 s3, s4, s5 s1, s5

Now assume that s1 decides to manipulate the DA mechanism. By

applying to c2, he lost a seat at his favourite course c1. To avoid this, he

reports c3 as his favourite keeping the rest of the preferences the same:

P ′(s1) : c3, c1, c2, c3, c4.

As a result, both modification will prevent s1 from attending c1 as

shown below.

DA with manipulation c1 c2 c3 c4 c5

Step 1 s1, s3 s2, s4 s1, s2, s5 s3, s4, s5

Step 2 s1, s3, s5 s2, s4, s5 s1, s2 s3, s4

Step 3 s1, s3 s2, s4 s1, s2 s3, s4 s5

ModDA1 with manipulation c1 c2 c3 c4 c5

Step 1 s1, s3 s1, s2, s4 s2, s5 s3, s4, s5

Step 2 s1, s3 s1, s4, s5 s2, s5 s2, s3,s4

Step 3 s1, s3,s4, s5 s1, s4 s2, s5 s2, s3

Step 4 s3, s4 s1, s4 s2, s5 s1, s2, s3 s5

Step 4 s3, s4 s1, s4 s2, s5 s1, s2 s3, s5

ModDA2 with manipulation c1 c2 c3 c4 c5

Step 1 s3 s2, s4 s1, s2, s5 s3, s4, s5 s1

Step 2 s3, s5 s2, s4, s5 s1, s2 s3, s4 s1

Step 3 s3, s5 s2, s4 s1, s2 s3, s4 s1, s5

Now we compare the outcomes of the allocation procedures. Clearly,

a manipulation that improved the allocation of s1 when the courses

88

3.4. STRATEGY PROOFNESS

were allocated with DA procedure is not effective when the algorithm

is modified; ModDA1 results in the same allocation regardless of the

manipulation, and ModDA2 makes it harmful to s1:

Outcome comparison Allocation of s1 Manipulation result

DA c2, c3

DA with manipulation c1, c3 Beneficial

ModDA1 c2, c4

ModDA1 with manipulation c2, c4 Ineffective

ModDA2 c1, c5

ModDA2 with manipulation c3, c5 Harmful

The above proposition suggests that it may be possible to modify

the DA in such a way that the resulting outcome induces more thruth

telling. We now consider both aforementioned modificaitons.

3.4.1 ModDA1

We start by showing that the first modifications, ModDA1, allows for

beneficial manipulations that do not improve the outcome of the ma-

nipulator under DA.

Proposition 26. There are manipulations that are profitable under

ModDA1 but not under DA, hence, modifying DA to ModDA1 may in-

crease the number of profitable manipulations.

Proof. We show this using an example with n = 4, m = 4, k = 2 and

q = 2. Let students and colleges have the preferences described below:

Students’ preferences Courses’ preferences

s1 c1, c2, c3, c4 c1 s2, s3, s1, s4

s2 c1, c3, c2, c4 c2 s1, s3, s4, s2

s3 c2, c3, c1, c4 c3 s2, s3, s4, s1

s4 c4, c2, c1, c3 c4 any

First run the DA procedure:

89

3.4. STRATEGY PROOFNESS

DA c1 c2 c3 c4

Step 1 s1, s2 s1, s3, s4 s2, s3 s4

Step 2 s1, s2, s4 s1, s3 s2, s3 s4

Step 3 s1, s2 s1, s3 s2, s3, s4 s4

Student s4 is rejected from all courses but c4. We therefore need to

apply the modification of DA to make sure that all students are allocated

to exactly two courses. Assume that s3 has the lowest priority. He was

allocated to courses c2 and c3, and he is banned from the course that he

prefers least out of the two. Hence, under the modification s3 is banned

from applying to c3. Given the ban, we run the DA algorithm again:

ModDA1, s3 has lowest priority c1 c2 c3 c4

Step 1 s1, s2, s3 s1, s3, s4 s2 s4

Step 2 s2, s3, s4 s1, s3 s1, s2 s4

Step 3 s2, s3 s1, s3 s1, s2,s4 s4

Step 4 s2, s3 s1, s3 s2, s4 s1, s4

Now consider a manipulation in which the first student submits the

following preferences:

P ′(s1) : c1, c4, c2, c3.

The DA mechanism terminates in one step:

DA manipulation c1 c2 c3 c4

Step 1 s1, s2 s3, s4 s2, s3 s1, s4

Note that since the DA results in all students receiving exactly two

courses to study, the modification is not going to be used given the

manipulation.

Now compare the outcomes of the DA and modified DA when the

students tells the truth as well as manipulates:

s1 s2 s3 s4

DA allocation c1, c2 c1, c3 c2, c3 c4

ModDA1 allocation c2, c4 c1, c3 c1, c2 c3, c4

DA and ModDA1 allocation with manipulation c1, c4 c1, c3 c2, c3 c2, c4

90

3.4. STRATEGY PROOFNESS

Clearly, s1 has no incentive to misrepresent his preferences when DA

is used since under DA he receives his top two choices. Under ModDA1,

s3 loses his seat at c3 and applies to c1. Course c1 finds s1 least desirable

at this step, and s1 is rejected by his favourite course. In order to prevent

this from happening when all students get assigned to the same number

of courses, s1 should give up c2. Then, he will be able to study c1.

Consider different priority orders. Even if student s4 has the lowest

priority, he will not be banned from any of the courses, so we only have

two cases to consider.

When s1 has the lowest priority, he is banned from c2. He therefore

applies to c1 and c3 at the start of ModDA1:

ModDA1, s1 has lowest priority c1 c2 c3 c4

Step 1 s1, s2 s3, s4 s1, s2, s3 s4

Step 2 s1, s2 s3, s4 s2, s3 s1, s4

If s2 has the lowest priority, then he is banned from c3 and applies to

c1 instead:

ModDA1, s2 has lowest priority c1 c2 c3 c4

Step 1 s1, s2 s1, s3, s4 s3 s2, s4

Step 2 s1, s2, s4 s1, s3 s3 s2, s4

Step 3 s1, s2 s1, s3 s3, s4 s2, s4

When s1 has the lowest priority, he receives the same allocation as

when he manipulates. However, when s2 has the lowest priority, s1 is

matched to the top two courses according to his preferences. Manipu-

lating in this case would be harmful.

Corollary 2. A manipulation may improve the allocation of an agent

given a fixed priority order, but harm him as priorities change.

Given the priority list, ModDA1 may create additional ways of ma-

nipulating the outcome of the allocation. Hence, we consider the second

modification.

91

3.4. STRATEGY PROOFNESS

3.4.2 ModDA2

In order to decrease the number of manipulations, we study another

modification of the DA algorithm.

Proposition 27. There are manipulations that are profitable under

ModDA2 but not under DA, hence, modifying DA to ModDA2 may in-

crease the number of profitable manipulations.

Proof. Let n = 4, m = 4, k = 2 and q = 2. Let students and colleges

have the preferences described below:

Students’ preferences Courses’ preferences

s1 c1, c2, c3, c4 c1 s3, s2, s1, s4

s2 c2, c4, c1, c3 c2 s1, s3, s4, s2

s3 c2, c1, c3, c4 c3 s3, s2, s4, s1

s4 c3, c4, c1, c2 c4 s2, s1, s4, s3

We start by running the DA algorithm:

DA c1 c2 c3 c4

Step 1 s1, s3 s1, s2, s3 s4 s2, s4

Step 2 s1, s2, s3 s1, s3 s4 s2, s4

Step 3 s2, s3 s1, s3 s1, s4 s2, s4

Since all students are allocated to exactly two courses, DA procedure

terminates without calling upon the modification. Student s1 receives

his second and third choices, and he realises that there is a possible

manipulation when s2 is the lowest on the priority list. Let student s1
report his preferences as

P ′(s1) : c1, c2, c4, c3.

Given the new reported preferences, DA will result in:

DA c1 c2 c3 c4

Step 1 s1, s3 s1, s2, s3 s4 s2, s4

Step 2 s1, s2, s3 s1, s3 s4 s2, s4

Step 3 s2, s3 s1, s3 s4 s1, s2, s4

Step 4 s2, s3, s4 s1, s3 s4 s1, s2

Step 5 s2, s3 s1, s3, s4 s4 s1, s2

92

3.4. STRATEGY PROOFNESS

The manipulation forces the fourth student out of the second course.

Since s4 is low in preferences of other courses, he is allocated to only one

course. We then need to use the modification to resolve this issue. Given

the above assumption about s2 having the lowest priority, we force him

to attend c3. We will indicate the students who cannot be removed from

a course by using green colour:

ModDA2 manipulation, s2 has lowest priority c1 c2 c3 c4

Step 1 s1, s3 s1, s2, s3 s2, s4 s4

Step 2 s1, s3 s1, s3 s2, s4 s2, s4

When s1 or s3 have the lowest priority, the resulting allocation also

improves as a result of manipulation:

ModDA2 manipulation, s1 has lowest priority c1 c2 c3 c4

Step 1 s1, s3 s2, s3 s1, s4 s2, s4

ModDA2 manipulation, s3 has lowest priority c1 c2 c3 c4

Step 1 s1 s1, s2, s3 s3, s4 s2, s4

Step 2 s1, s2 s1, s3 s3, s4 s2, s4

We are not considering the case when s4 has the lowest priority be-

cause it will be the same as one of the above. Student s4 is under-

demanded, therefore, he does not fit the criteria according to which a

student is chosen and forced to attend an underdemanded course. Stu-

dent who is forced to attend c4 will be chosen out of {s1, s2, s3}.

Under DA, the manipulation worsens the outcome of student s1.

However, under ModDA2, s1 makes sure that the modification is im-

plemented. As a result, his allocation improves regardless of the priori-

ties.

In this section, we find that if the mechanism of course allocations

is changed from DA to ModDA1 or ModDA2, the number of profitable

manipulations may increase or decrease. In order to see how many ma-

nipulations are profitable and how often they arise, we run simulations.

93

3.4. STRATEGY PROOFNESS

3.4.3 Simulations

We showed that both our modifications may increase manipulability.

We now analyse the frequency with which students can manipulate the

allocation before and after the modification of the procedure. We gen-

erated the preferences randomly, each preference profile being equally

likely. We then checked if any of the students can improve his allocation

by reporting any preference profile other than the truthful one. We ran

1000 iterations of the simulations when n = m = 4 and k = q = 2

to examine the average values across different markets with different

agents.

We consider all possible untruthful reports of each agent in the mar-

ket. We find that a very small number of misreported preferences result

in an improvement for the agent. Compared to markets where each

agent may receive a different numbers of goods, we have a strict re-

quirement that each student is admitted into k courses. This implies

that the manipulator cannot receive an extra good, rather a manipula-

tion will result in an exchange.

We study both ModDA1 and ModDA2, and find that the number

of profitable misrepresentations of the true preferences does not exceed

20% and 15%, respectively. Under ModDA1, between 0% and 5.4% of

the manipulations become ineffective compared to DA, but up to 15%

new manipulations become available. On average, 0.15% of all possible

manipulation stop working and number of additional manipulations is

about 0.35%. Under ModDA2, only 0.07% of all misrepresentations

become beneficial.

The results of our simulations are summarised in the tables below.

For each simulation, we compute the number of manipulations that are

beneficial under both DA and a modification, one of the allocation rules

and none of them. We then compute average and median number of

possible profitable manipulations to see how manipulable the algorithms

are ’on average’. We also record the minimum and maximum number of

benefial manipulations to show the results for the best and worst case

scenarios. The extremum values arise from individual (hence, different)

simulations. Maximum values show the biggest number of profitable

manipulations under DA, modification or both. The minimum number

of manipulations that are not beneficial allows us to find the upper

94

3.4. STRATEGY PROOFNESS

bound for the number of manipulations that are profitable in at least

on the assignment rules. We present these results as frequencies rather

than the number of manipulations.

Misrepresentenation of preferences Average Median Min Max

Beneficial under DA, but not ModDA1 0.15% 0% 0% 5.4%

Beneficial under both DA and ModDA1 1% 0% 0% 11.9%

Beneficial under ModDA1, but not DA 0.35% 0% 0% 15.2%

Not beneficial under both DA and ModDA1 98.5% 100% 80.4% 100%

Total 100% 100%

Table 3.1: Fraction of beneficial misreports among all misreports under DA and

ModDA1

Misrepresentenation of preferences Average Median Min Max

Beneficial under DA, but not ModDA2 0.004% 0% 0% 4.2%

Beneficial under both DA and ModDA2 1.3% 0% 0% 14.6%

Beneficial under ModDA2, but not DA 0.07% 0% 0% 8.3%

Not beneficial under both DA and ModDA2 98.6% 100% 85.4% 100%

Total 100% 100%

Table 3.2: Fraction of beneficial misreports among all misreports under DA and

ModDA2

Although the number of beneficial manipulations is small, there is a

considerable number of markets that at least one student is motivated

and capable of manipulating. When considering the number of markets

in which profitable manipulations are possible, we find that roughly 20%

are manipulable under ModDA1 and about 18% under ModDA2.

Our results suggest that ModDA2 is a better modification as it al-

lows for less additional beneficial manipulations compared to ModDA1

and it exposes less markets to manipulating. Intuitively, this is some-

thing we could expect. ModDA1 bans a student from attending one

of the courses, but allows him to apply to other courses that were not

underdemanded after the last run or re-run of DA. Hence, the student

may try to get admitted into a course that was not underdemanded at

95

3.5. CONCLUSIONS AND FUTURE WORK

the previous stage and force someone else to take the worse alternative.

However, in ModDA2 a popular student is forcefully allocated to an un-

derdemanded course. A pair of (forced student, forced course) is created

prior to the re-run of DA and cannot be changed, reducing the number

of new beneficial manipulations.

3.5 Conclusions and Future Work

We consider a problem of matching student to elective courses. Each

student must be allocated to exact number of courses and each course

has equal number of seats. The deferred acceptance mechanism (DA)

may result in a student being allocated to the same course multiple

times, hence, we develop two modifications and study their strategy-

proofness.

The modifications are based on a priority list which specifies which

students have to give up their seats in popular courses so that under-

demanded students could attend enough classes. We assume that the

priority list is exogenous, however, we show that the priorities have an

affect on manipulations. The two modifications show roughly the same

results in simulations: the average increase in the number of effective

manipulations is very small. Our second modifications performs better

in reducing the number of markets in which submitting non-truthful

preferences may be beneficial.

Future work includes multiple directions. Firstly, we plan to run

simulations with larger markets. The biggest challenge in this regard is

to balance the market size and computational requirements. Secondly,

we are going to examine the possibility of reducing manipulability by

making the priority list endogenous. On the one hand, this would imply

that the student might be able to affect not only the matching, but the

list as well. On the other, it may be possible to design it as to reduce

the number of manipulable markets.

96

Bibliography

[1] Atila Abdulkadiroglu and Tayfun Sönmez. “School choice: A mechanism design

approach”. In: The American Economic Review 93.3 (2003), pp. 729–747.

[2] Atila Abdulkadiroğlu, Yeon-Koo Che, and Yosuke Yasuda. “Resolving conflicting

preferences in school choice: The “Boston mechanism” reconsidered”. In: The

American Economic Review 101.1 (2011), pp. 399–410.

[3] Eduardo M Azevedo and Eric Budish. “Strategy-proofness in the large”. In: The

Review of Economic Studies 86.1 (2019), pp. 81–116.

[4] Haris Aziz, Hans Georg Seedig, and Jana Karina von Wedel. “On the susceptibil-

ity of the deferred acceptance algorithm”. In: arXiv preprint arXiv:1502.06318

(2015).

[5] Michel Balinski and Tayfun Sönmez. “A tale of two mechanisms: student place-

ment”. In: Journal of Economic theory 84.1 (1999), pp. 73–94.

[6] Péter Biró. “Student admissions in Hungary as Gale and Shapley envisaged”.

In: University of Glasgow Technical Report TR-2008-291 (2008).

[7] Péter Biró et al. “The college admissions problem with lower and common quo-

tas”. In: Theoretical Computer Science 411.34-36 (2010), pp. 3136–3153.

[8] Colleage Board. “SAT Subject Tests Percentile Ranks: 2017–2019 Graduat-

ing Classes”. In: https://secure-media.collegeboard.org/sat/pdf/sat-subject-tests-

percentile-ranks.pdf (2019).

[9] Colleage Board. “SAT Understanding Scores”. In:

https://collegereadiness.collegeboard.org/pdf/understanding-sat-scores.pdf

(2019).

[10] Anna Bogomolnaia et al. “Competitive division of a mixed manna”. In: Econo-

metrica 85.6 (2017), pp. 1847–1871.

[11] Anna Bogomolnaia et al. “Dividing bads under additive utilities”. In: Social

Choice and Welfare 52.3 (2019), pp. 395–417.

97

BIBLIOGRAPHY

[12] Sylvain Bouveret and Michel Lemaıtre. “Characterizing conflicts in fair division

of indivisible goods using a scale of criteria”. In: Autonomous Agents and Multi-

Agent Systems 30.2 (2016), pp. 259–290.

[13] Steven J Brams and Alan D Taylor. “An envy-free cake division protocol”. In:

The American Mathematical Monthly 102.1 (1995), pp. 9–18.

[14] Sebastian Braun, Nadja Dwenger, and Dorothea Kübler. “Telling the truth may

not pay off: An empirical study of centralized university admissions in Germany”.

In: The BE Journal of Economic Analysis & Policy 10.1 (2010).

[15] Eric Budish. “The combinatorial assignment problem: Approximate competitive

equilibrium from equal incomes”. In: Journal of Political Economy 119.6 (2011),

pp. 1061–1103.

[16] Ioannis Caragiannis et al. “The unreasonable fairness of maximum Nash wel-

fare”. In: ACM Transactions on Economics and Computation (TEAC) 7.3

(2019), pp. 1–32.

[17] Hector Chade and Lones Smith. “Simultaneous search”. In: Econometrica 74.5

(2006), pp. 1293–1307.

[18] Yeon-Koo Che and Youngwoo Koh. “Decentralized college admissions”. In: Jour-

nal of Political Economy 124.5 (2016), pp. 1295–1338.

[19] Draft Rules. url: http://www.nhl.com/ice/page.htm?id=86689.

[20] David Gale and Lloyd S Shapley. “College admissions and the stability of mar-

riage”. In: The American Mathematical Monthly 69.1 (1962), pp. 9–15.

[21] Isa E Hafalir et al. College admissions with entrance exams: Centralized versus

decentralized. Tech. rep. SFB 649 Discussion Paper, 2016.

[22] Allan Hernandez-Chanto. “Centralized Assignment of Students to Majors: Evi-

dence from the University of Costa Rica Job Market Paper”. In: (2016).

[23] Nicole Immorlica and Mohammad Mahdian. “Marriage, honesty, and stability”.

In: (2003).

[24] Kathryn Johnston et al. “To draft or not to draft? A systematic review of North

American sports’ entry draft”. In: Scandinavian journal of medicine & science

in sports (2021).

[25] Flip Klijn and Ayşe Yazıcı. “A many-to-many ‘rural hospital theorem’”. In:

Journal of Mathematical Economics 54 (2014), pp. 63–73.

[26] Fuhito Kojima and Parag A Pathak. “Incentives and stability in large two-sided

matching markets”. In: American Economic Review 99.3 (2009), pp. 608–27.

98

http://www.nhl.com/ice/page.htm?id=86689

BIBLIOGRAPHY

[27] David Kurokawa, John Lai, and Ariel Procaccia. “How to cut a cake before the

party ends”. In: Proceedings of the AAAI Conference on Artificial Intelligence.

Vol. 27. 1. 2013.

[28] David Kurokawa, Ariel D Procaccia, and Junxing Wang. “Fair enough: Guar-

anteeing approximate maximin shares”. In: Journal of the ACM (JACM) 65.2

(2018), pp. 1–27.

[29] SangMok Lee. “Incentive compatibility of large centralized matching markets”.

In: The Review of Economic Studies 84.1 (2016), pp. 444–463.

[30] Antonio Miralles. “School Choice:The Case for the Boston Mechanism”. In:

(2008). Boston University Job Market Paper.

[31] B Moldovanu. “Roth, AE, and Sotomayor, MAO: Two-sided Matching-A Study

in Game-theoretic Modeling and Analysis (Book Review)”. In: Journal of Eco-

nomics/Zeitschrift für Nazionalökonomie 55 (1992), p. 116.

[32] NBA Draft Lottery: Schedule, odds and how it works. url: https://www.nba.

com/nba-draft-lottery-explainer.

[33] Joana Pais and Ágnes Pintér. “School choice and information: An experimental

study on matching mechanisms”. In: Games and Economic Behavior 64.1 (2008),

pp. 303–328.

[34] Joana Pais, Ágnes Pintér, and Róbert F Veszteg. “College admissions and the

role of information: An experimental study”. In: International Economic Review

52.3 (2011), pp. 713–737.

[35] Benjamin Plaut and Tim Roughgarden. “Almost envy-freeness with general val-

uations”. In: SIAM Journal on Discrete Mathematics 34.2 (2020), pp. 1039–

1068.

[36] Antonio Romero-Medina. “Implementation of stable solutions in a restricted

matching market”. In: Review of Economic Design 3.2 (1998), pp. 137–147.

[37] Alvin E Roth. “A natural experiment in the organization of entry-level labor

markets: Regional markets for new physicians and surgeons in the United King-

dom”. In: The American economic review (1991), pp. 415–440.

[38] Alvin E Roth. “The college admissions problem is not equivalent to the marriage

problem”. In: Journal of economic Theory 36.2 (1985), pp. 277–288.

[39] Alvin E Roth. “The economics of matching: Stability and incentives”. In: Math-

ematics of operations research 7.4 (1982), pp. 617–628.

99

https://www.nba.com/nba-draft-lottery-explainer
https://www.nba.com/nba-draft-lottery-explainer

BIBLIOGRAPHY

[40] Alvin E Roth and Elliott Peranson. “The redesign of the matching market for

American physicians: Some engineering aspects of economic design”. In: Amer-

ican economic review 89.4 (1999), pp. 748–780.

[41] Hugo Steihaus. “The problem of fair division”. In: Econometrica 16 (1948),

pp. 101–104.

[42] The rules of the NFL Draft. url: https://operations.nfl.com/journey-to-

the-nfl/the-nfl-draft/the-rules-of-the-draft/. (Accessed: 23.11.2021).

[43] UCAS. “UCAS Undergraduate end of cycle data resources 2016 – 2018”.

In: https://www.ucas.com/data-and-analysis/ucas-undergraduate-releases/ucas-

undergraduate-end-cycle-data-resources (2018).

[44] Júlia Varga. “The role of labour market expectations and admission probabilities

in students’ application decisions on higher education: The case of Hungary”.

In: Education Economics 14.3 (2006), pp. 309–327.

[45] Min Zhu. “College admissions in China: A mechanism design perspective”. In:

China Economic Review 30 (2014), pp. 618–631.

100

https://operations.nfl.com/journey-to-the-nfl/the-nfl-draft/the-rules-of-the-draft/
https://operations.nfl.com/journey-to-the-nfl/the-nfl-draft/the-rules-of-the-draft/

Appendix A

Appendix to Chapter 1

Python code used for simulations of college admis-
sions

from scipy.stats import truncnorm

import random

import numpy as np

from itertools import groupby

import matplotlib.pyplot as plt

from collections import OrderedDict , Counter

from copy import deepcopy

from datetime import datetime

from statistics import median

import pickle

** **

* Generate and update colleges *

** **

def generateColleges(nColleges , cutoffs , quotas):

colleges = []

for i in range(nColleges):

newCollege = {

"name": i,

"lastYearCutoff": cutoffs[i],

"quota": quotas[i]

}

colleges.append(newCollege)

return colleges

def updateColleges(colleges , cutoffs):

changes the elements in colleges

101

for i, college in enumerate(colleges):

college["lastYearCutoff"] = cutoffs[i]

return

** **

* Generate and update Students *

** **

def getTruncatedNormal(mean=60 , sd=30 , low=0, upp=10):

return truncnorm ((low - mean) / sd , (upp - mean) / sd , loc=mean ,

scale=sd).rvs(size=1)[0]

def getUniform(low=0, high=100):

return np.random.uniform(low , high)

def getPreferences(PreferenceProbabilities):

nOfColleges = len(PreferenceProbabilities)

preferences = list(np.random.choice(nOfColleges , nOfColleges ,

replace=False , p=

PreferenceProbabilities))

return preferences

def getUtilities(preferences):

utilities = []

nOfColleges = len(preferences)

valUtilities=[]

utilities = []

nOfColleges = len(preferences)

for i in range(0,nOfColleges):

newUtility = 1 - i/nOfColleges

valUtilities.append(newUtility)

utilities = [x[1] for x in sorted(zip(preferences ,valUtilities),

key=lambda x: x[0])] #

, reverse=

True)]

utilities

return utilities

def generateStudents(nStudents , StudentType ,

StudentPreferenceProbabilities):

from random import randint

students = []

for i in range(nStudents):

newStudent = {

"examScore": getTruncatedNormal(70, 20, 0, 100) , #

102

getUniform () #,

"type": StudentType ,

"preferences": [],

"probabilities": [],

"utilities": [],

"expectedUtilities": [],

"applications":[],

"applications_to_keep":[],

"continueAllocating": True ,

"allocatedTo": None ,

"perceivedCutoffs": []

}

newStudent["preferences"] = getPreferences(

StudentPreferenceProbabilities

)

newStudent["applications"] = deepcopy(newStudent["preferences

"]) # by default students

can apply everywhere

newStudent["applications_to_keep"] = deepcopy(newStudent["

preferences"])

newStudent["utilities"] = getUtilities(newStudent["

preferences"])

students.append(newStudent)

students = sorted(students , key=lambda x: x["examScore"], reverse

=True) #otherwise sorting will

be needed during allocation

return students

def getProbabilities(examScore , studentType , lastYearCutoff):

probabilities = [(examScore-element+studentType)/(2*studentType)

for element in lastYearCutoff]

probabilities = [min(1,element) for element in probabilities]

probabilities = [max(0,element) for element in probabilities]

return probabilities

def updateStudentsPerceivedCutoffs(students , perceived_cutoffs):

changes the elements in students

for student in students:

student[’perceivedCutoffs ’] = perceived_cutoffs

def updateStudentsProbAndEu(students):

changes the elements in students

for student in students:

student["probabilities"] = getProbabilities(student["

examScore"],student["type"

103

],student["

perceivedCutoffs"])

student["expectedUtilities"] = [a * b for a, b in zip(student

["utilities"], student["

probabilities"])]

return students

def optimalApplication(student ,nApplications):

tuple_in_order = sorted(zip(student[’expectedUtilities ’], list(i

for i in range(len(student[’

preferences ’])))), key =

lambda x: -x[0])

maxExpectedUtility = tuple_in_order[0][0]

best_colleges = [x[1] for x in tuple_in_order if x[0]==

maxExpectedUtility]

if len(best_colleges) == 1:

return best_colleges

else:

preference_order = [student["preferences"].index(x) for x in

best_colleges]

best_colleges_sorted_by_preference = [x[1] for x in sorted(

zip(preference_order ,

best_colleges))]

return best_colleges_sorted_by_preference[:nApplications]

def updateStudentApplications(students , nApplications):

changes the elements in students

for student in students:

student["applications"] = optimalApplication(student ,

nApplications)

student["applications_to_keep"] = deepcopy(student["

applications"])

student[’continueAllocating ’] = True

return students

** **

* Allocation procedure *

** **

def getAllocation(students , colleges):

remainingQuota = [item[’quota’] for item in colleges]

for student in students:

while student[’continueAllocating ’] == True:

college = student["applications"].pop(0)

if student["applications"]==[]:

student["continueAllocating"] = False

104

if remainingQuota[college]>0:

if student["allocatedTo"] is None:

remainingQuota[college] -= 1

student["allocatedTo"] = college

elif student["preferences"].index(college)<student["

preferences"].

index(student["

allocatedTo"]):

remainingQuota[student["allocatedTo"]]+=1

remainingQuota[college] -= 1

student["allocatedTo"] = college

** **

* Data generation *

** **

def findCutoffs(colleges , students):

getAllocation(students ,colleges)

cutoffs = {k: min([x[’examScore ’] for x in v]) for k, v in

groupby(students , lambda x: x[

"allocatedTo"])}

del cutoffs[None]

cutoff_output = OrderedDict(sorted(cutoffs.items (), key=lambda t:

t[0]))

return [elem[1] for elem in cutoff_output.items()]

def distortCutoffs(cutoffs ,distort):

for key in cutoffs:

cutoffs[key] += distort

getAllocation(students ,colleges)

cutoffs = {k: min([x[’examScore ’] for x in v]) for k, v in

groupby(students , lambda x: x[

"allocatedTo"])}

cutoffs_to_return = []

for k in sorted(cutoffs.keys()):

cutoffs_to_return.append(cutoffs[k][:-1])

return cutoffs_to_return

def GenerateData(nColleges , quotas , nStudents , StudentType ,

StudentPreferenceProbabilities ,

distort):

colleges = generateColleges(nColleges , [0]*nColleges , quotas)

baseStudents = generateStudents(nStudents , StudentType ,

StudentPreferenceProbabilities

)

105

limitedStudents = deepcopy(baseStudents)

lastYearCutoffs = findCutoffs(colleges , baseStudents)

updateStudentsPerceivedCutoffs(limitedStudents , lastYearCutoffs)

updateColleges(colleges , lastYearCutoffs)

updateStudentsProbAndEu(limitedStudents)

return colleges , baseStudents , limitedStudents , lastYearCutoffs

** **

* Visuals *

** **

def findFrontiers(students):

frontiers = {}

preferenceProfile = set([tuple(x[’preferences ’]) for x in

students])

for pref in preferenceProfile:

studentsWithPreferences = [stud for stud in students if tuple

(stud[’preferences ’]) ==

pref]

#

printStudents(studentsWithPreferences)

currentAllocation = studentsWithPreferences[0][’allocatedTo ’]

maxFrontier = 100

currentPref = tuple ()

currentCutoff = studentsWithPreferences[0][’examScore ’]

for st in studentsWithPreferences[1:]:

if st[’allocatedTo ’] != currentAllocation:

currentPref = tuple(st[’preferences ’])

frontiers.setdefault(currentPref ,[]).append([

currentCutoff ,

maxFrontier ,

currentAllocation]

)

maxFrontier = currentCutoff

currentAllocation = st[’allocatedTo ’]

currentCutoff = st[’examScore ’]

currentPref = tuple(st[’preferences ’])

frontiers.setdefault(currentPref ,[]).append([0, maxFrontier ,

currentAllocation])

return frontiers

def plotAllocation(students , nColleges):

coloursTwoColleges={0: ’green ’, 1: ’blue’, None: ’red’}

coloursThreeColleges={0: ’green’, 1: ’blue’, 2: ’cyan’, None:’red

’}

106

if nColleges == 2:

colours = coloursTwoColleges

elif nColleges == 3:

colours = coloursThreeColleges

n_points = 1000

eScore = np.arange(0, 100 , 0.1)

frontiers = findFrontiers(students)

print(frontiers)

y_step = 1/len(frontiers)

current_ymax = 1

current_ymin = 0

fig , (ax) = plt.subplots(1, 1, sharex=True)

y1 = [1]*n_points

ax.plot(eScore , y1 , color=’black’)

for i, key in enumerate(frontiers):

y2 = [1 - (i+1)*y_step]*n_points #1-...to plot from the top

ax.plot(eScore , y2 , color=’black’)

current_frontiers = frontiers[key]

for fr in current_frontiers:

ax.fill_between(np.linspace(fr[0], fr[1], n_points), y1 ,

y2, facecolor=colours[

fr[2]], interpolate=

True)

y1 = y2

def plotEu(students):

fig = plt.figure ()

ax = fig.add_subplot(1, 1, 1)

students_who_prefer_0 = [elem for elem in students if elem[’

preferences ’]==[0,1]]

students_who_prefer_1 = [elem for elem in students if elem[’

preferences ’]==[1,0]]

Eu_0_prefer_0 = [st["expectedUtilities"][0] for st in

students_who_prefer_0]

Eu_1_prefer_0 = [st["expectedUtilities"][1] for st in

students_who_prefer_0]

ax.plot([st["examScore"] for st in students_who_prefer_0],

Eu_0_prefer_0 , color=’tab:

green ’)

ax.plot([st["examScore"] for st in students_who_prefer_0],

Eu_1_prefer_0 , color=’tab:blue

’)

for st in students_who_prefer_0:

if st["expectedUtilities"][0] < st["expectedUtilities"][1]:

107

print(st["examScore"])

break

#ax = fig.add_subplot(2, 1, 2)

fig2 = plt.figure ()

ax2 = fig2.add_subplot(1, 1, 1)

ax2.plot([st["examScore"] for st in students_who_prefer_1], [st["

expectedUtilities"][0] for st

in students_who_prefer_1],

color=’tab:green ’)

ax2.plot([st["examScore"] for st in students_who_prefer_1], [st["

expectedUtilities"][1] for st

in students_who_prefer_1],

color=’tab:blue’)

def plotChanges(changes , varx , vary , xlabel , ylabel , legend):

colours = {0: ’blue’, 1:’green’, 2:’red’, 3:’orange ’, 4:’cyan’}

fig = plt.figure ()

ax = fig.add_subplot(1, 1, 1)

for i, ch in enumerate(changes):

ax.plot([x[varx] for x in ch], [y[vary] for y in ch], color=’

tab:’+colours[i])

ax.legend(legend)

ax.set_xlabel(xlabel)

ax.set_ylabel(ylabel)

** **

* Single iteration with allocation graphs *

** **

def getTotalUtility(students):

totalUtility = sum([x[’utilities ’][x[’allocatedTo ’]] for x in

students if not (x["

allocatedTo"] is None)])

return totalUtility

numColleges = 2

numStudents = 1000

Quotas = [200 ,600]

stType = 30

prefProbabilities = [0.5,0.5]

cutoffsDistortions = 0

maxApplicationsLimited = 1

108

Colleges , BaseStudents , LStudents , cutoffs = GenerateData(numColleges

, Quotas , numStudents , stType ,

prefProbabilities ,

cutoffsDistortions)

LimitedStudents = updateStudentApplications(deepcopy(LStudents),

maxApplicationsLimited)

getAllocation(LimitedStudents , Colleges)

print(getTotalUtility(BaseStudents))

plotAllocation(BaseStudents ,numColleges)

print(getTotalUtility(LimitedStudents))

plotAllocation(LimitedStudents ,numColleges)

** **

* Computing results , medians *

** **

AllMedianChanges = []

numColleges = 2 #4

numStudents = 1000

#Quotas = [200 ,300]

AllQuotas = [[100 ,100],[350 ,350],[300 ,400]] #[[200 ,200 ,200 ,200], [100

,100 ,200 ,300]]

#stType = 5

stMaxType = 20

stTypeStep = 1

prefProbabilities = [0.5,0.5]

cutoffsDistortions = 0

maxApplicationsLimited = 1

numRepetitions = 50

for Quotas in AllQuotas:

start_time = datetime.now()

changes = []

median_changes = []

baseline = []

for t in list(range(1, stMaxType+1,stTypeStep)):

print(t, "/", stMaxType)

iter_changes = []

for i in range(numRepetitions):

Colleges , BaseStudents , LStudents , cutoffs = GenerateData

(numColleges , Quotas ,

numStudents , t,

prefProbabilities ,

109

cutoffsDistortions)

currBaselineTotalUtility = getTotalUtility(BaseStudents)

currBaseline = {

’type’: ’baseline ’,

’totalUtility ’: currBaselineTotalUtility

}

baseline.append(currBaseline)

LimitedStudents = updateStudentApplications(deepcopy(

LStudents),

maxApplicationsLimited

)

getAllocation(LimitedStudents , Colleges)

numReallocations = 0

for i, st in enumerate(BaseStudents):

st2 = LimitedStudents[i]

if st[’allocatedTo ’]!=st2[’allocatedTo ’]:

numReallocations += 1

currTotalUtility = getTotalUtility(LimitedStudents)

currTotalUtilityChange = currTotalUtility -

currBaselineTotalUtility

curr_change = {

’type’: t,

’totalUtility ’: currTotalUtility ,

’totalUtilityChange ’: currTotalUtilityChange ,

’TotalPerCentUtilityChange ’: currTotalUtilityChange*

100/

currBaselineTotalUtility

,

’frontiers ’: findFrontiers(LimitedStudents),

’reallocations ’: numReallocations

}

iter_changes.append(curr_change)

changes.append(curr_change)

av_change = {

’type’: t,

’totalUtility ’: median([elem[’totalUtility ’] for elem in

iter_changes]),

’totalUtilityChange ’: median([elem[’totalUtilityChange ’]

for elem in

iter_changes]),

’TotalPerCentUtilityChange ’: median([elem[’

TotalPerCentUtilityChange

110

’] for elem in

iter_changes]),

’reallocations ’: median([elem[’reallocations ’] for elem

in iter_changes])

}

median_changes.append(av_change)

AllMedianChanges.append({’Quotas ’:Quotas , ’MedianChanges ’:

median_changes})

print(datetime.now() - start_time)

with open(’.pickle ’, ’wb’) as f:

pickle.dump(AllMedianChanges , f)

** **

* Plots *

** **

QuotasToPrint = [[100 ,100],[200 ,200],[350 ,350],[300 ,400],[400 ,500]]

MedianChangesToPrint = [elem for elem in AllMedianChanges if elem[’

Quotas ’] in QuotasToPrint]

plotChanges([elem[’MedianChanges ’] for elem in MedianChangesToPrint],

’type’, ’reallocations ’,

’Student type’, ’Number of reallocations ’, [elem [’Quotas

’] for elem in

MedianChangesToPrint])

plotChanges([elem[’MedianChanges ’] for elem in MedianChangesToPrint],

’type’, ’

TotalPerCentUtilityChange ’,

’Student type’, ’Change in Total Utility , %’,[elem [’

Quotas ’] for elem in

MedianChangesToPrint])

111

Appendix B

Appendix to Chapter 3

Python code used for simulations of ModDA1

from scipy.stats import truncnorm

from pprint import pprint

import random

from random import shuffle

import numpy as np

from itertools import groupby , permutations #product

import matplotlib.pyplot as plt

from collections import OrderedDict , Counter

from copy import deepcopy

from datetime import datetime

from statistics import median

import pickle

** **

* Data generation *

** **

def GenerateStudents(nCourses , nStudents ,

limitNumberOfPreferenceProfilesStudents

=None):

Students=[]

CoursesIndices = [i for i in range(nCourses)]

PreferenceProfiles = list(permutations(CoursesIndices))

if limitNumberOfPreferenceProfilesStudents is not None:

PreferenceProfiles = PreferenceProfiles[:

limitNumberOfPreferenceProfilesStudents

]

preferences = random.choices(PreferenceProfiles , k=nStudents)

for i in range(nStudents):

Student={

112

’Preferences ’: list(preferences[i]),

’ReportedPreferences ’:list(preferences[i]),

’WaitingList ’: [],

’RejectionList ’: [],

’ForcedCourses ’:[],

’boolForcedCourses ’: False ,

’StillToApply ’: list(preferences[i])

#’k’

}

Students+=[Student]

return Students

def GenerateCourses(nCourses , nStudents):

Courses=[]

StudentsIndices = [i for i in range(nStudents)]

PreferenceProfiles = list(permutations(StudentsIndices))

preferences = random.choices(PreferenceProfiles , k=nCourses)

for i in range(nCourses):

Course={

’Preferences ’: preferences[i],

’WaitingList ’: [],

’Applications ’: []

#’Capacity ’: q #q[i]

}

Courses+=[Course]

return Courses

def GenerateData(nStudents , nCourses ,

limitNumberOfPreferenceProfilesStudents

=None):

return GenerateStudents(nCourses , nStudents ,

limitNumberOfPreferenceProfilesStudents

), GenerateCourses(nCourses ,

nStudents)

** **

* DA and ModDA1 *

** **

def AllocationDA(Students , Courses , k, q):

’’’

k - number of courses each student needs to be allocated to,

q - quotas at all courses

’’’

flagApplicationMade=True

113

while flagApplicationMade:

flagApplicationMade = False

for i,st in enumerate(Students):

for _ in range(0,k-len(st[’WaitingList ’])):

if not st[’StillToApply ’]:

break

Courses[st[’StillToApply ’][0]][’Applications ’] += [i]

flagApplicationMade=True

st[’StillToApply ’] = st[’StillToApply ’][1:]

st[’WaitingList ’] = []

for j, course in enumerate(Courses):

ApplicationsInPrefOrder = [ap for ap in course[’

Preferences ’] if ap in

course[’Applications ’

]]

WaitingList = ApplicationsInPrefOrder[:q]

course[’WaitingList ’] = deepcopy(WaitingList)

course[’Applications ’] = deepcopy(WaitingList)

RejectionList = ApplicationsInPrefOrder[q:]

for i_st in WaitingList:

Students[i_st][’WaitingList ’]+=[j]

for i_st in RejectionList:

Students[i_st][’RejectionList ’]+=[j]

return deepcopy(Students), deepcopy(Courses)

def ListUnderDemandedCourses(Courses ,q):

UnderdemandedCourses = []

for i,c in enumerate(Courses):

if len(c["WaitingList"])<q:

UnderdemandedCourses += [i]

return UnderdemandedCourses

def ListUnderDemandedStudents(Students ,k):

UnderdemandedStudents = []

for i,s in enumerate(Students):

if len(s["WaitingList"])<k:

UnderdemandedStudents += [i]

return UnderdemandedStudents

def AllocationModDA(DataStudents ,DataCourses , Priorities , k, q):

’’’

Priorities is a list of students ordered from low to high

priority

k - number of courses each student needs to be allocated to,

q - quotas at all courses

114

’’’

Students , Courses = AllocationDA(deepcopy(DataStudents), deepcopy

(DataCourses), k, q)

#check if all the students are already allocated to exactly k

courses

UnderdemandedStudents = ListUnderDemandedStudents(Students ,k)

if not UnderdemandedStudents:

return Students , Courses

#if not , remove the student with lowest priority from his least

preferred course (conditions

apply)

while UnderdemandedStudents:

for st in Students:

st[’boolForcedCourses ’]=True

UnderdemandedCourses = ListUnderDemandedCourses(Courses ,q)

for i in range(len(Priorities)):

iStudent = Priorities[i] #Student ’s index in Students

if iStudent not in UnderdemandedStudents:

WaitingOverdemandedCourses = [c for c in Students[

iStudent][’

WaitingList ’] if c

not in

UnderdemandedCourses

]

iCourseRemove = [c for c in Students[iStudent][’

ReportedPreferences

’] if c in

WaitingOverdemandedCourses

][-1]

Courses[iCourseRemove][’WaitingList ’].remove(iStudent

)

Students[iStudent][’WaitingList ’].remove(

iCourseRemove)

Students[iStudent][’ReportedPreferences ’].remove(

iCourseRemove)

iForcedCourse = [c for c in Students[iStudent][’

ReportedPreferences

’] if c in

UnderdemandedCourses

][0]

Courses[iForcedCourse][’WaitingList ’]+=[iStudent]

Students[iStudent][’WaitingList ’]+= [iForcedCourse]

Students[iStudent][’ForcedCourses ’]+= [iForcedCourse]

break

for st in Students:

115

st[’StillToApply ’] = deepcopy(st[’ReportedPreferences ’])

for c in Courses:

c[’Applications ’] = []

Students ,Courses = AllocationDA(deepcopy(Students), deepcopy(

Courses), k, q)

UnderdemandedStudents = ListUnderDemandedStudents(Students ,k)

return deepcopy(Students), deepcopy(Courses)

** **

* Manipulations *

** **

def ManipulateDA(Students , Courses , k, q, iManipulator=0):

’’’iManipulator is an index of a student who manipulates ’’’

Manipulations = []

DAStudents , DACourses = AllocationDA(deepcopy(Students), deepcopy

(Courses), k, q)

DAAllocation = deepcopy(DAStudents[iManipulator][’WaitingList ’])

CoursesIndices = [i for i in range(len(Courses))]

PreferenceProfiles = list(permutations(CoursesIndices))

PreferenceProfiles.remove(tuple(Students[0][’Preferences ’]))

manipStudents = deepcopy(Students)

for pref in PreferenceProfiles:

manipStudents[iManipulator][’Preferences ’] = deepcopy(list(

pref))

manipStudents[iManipulator][’StillToApply ’] = deepcopy(list(

pref))

DAManipStudnets , DAManipCourses = AllocationDA(deepcopy(

manipStudents), deepcopy(

Courses), k, q)

Manipulation = {

’Allocation ’: ’DA’,

’Manipulator ’: iManipulator ,

’Reported preferences ’: deepcopy(pref),

’Students ’: deepcopy(DAStudents),

’Courses ’: deepcopy(DACourses),

’ManipStudnets ’: deepcopy(DAManipStudnets),

’ManipCourses ’: deepcopy(DAManipCourses)

}

Manipulations+=[Manipulation]

return Manipulations

def ManipulateModDA(Students , Courses , Priorities , k, q, iManipulator

116

=0):

#without manipulations

Manipulations = []

ModDAStudents , ModDACourses = AllocationModDA(deepcopy(Students),

deepcopy(Courses), Priorities ,

k, q)

CoursesIndices = [i for i in range(len(Courses))]

PreferenceProfiles = list(permutations(CoursesIndices))

PreferenceProfiles.remove(tuple(Students[iManipulator][’

Preferences ’]))

manipStudents = deepcopy(Students)

for pref in PreferenceProfiles:

manipStudents[iManipulator][’Preferences ’] = deepcopy(list(

pref))

manipStudents[iManipulator][’StillToApply ’] = deepcopy(list(

pref))

ModDAManipStudnets , ModDAManipCourses = AllocationModDA(

deepcopy(manipStudents),

deepcopy(Courses),

Priorities , k, q)

noForcedMAllocation = deepcopy(ModDAManipStudnets[0][’

WaitingList ’])

ForcedMAllocation = deepcopy(ModDAManipStudnets[0][’

WaitingList ’])

Manipulation = {

’Allocation ’: ’ModDA’,

’Manipulator ’: iManipulator ,

’Reported preferences ’: deepcopy(pref),

’Students ’: deepcopy(ModDAStudents),

’Courses ’: deepcopy(ModDACourses),

’ManipStudnets ’: deepcopy(ModDAManipStudnets),

’ManipCourses ’: deepcopy(ModDAManipCourses)

}

Manipulations+=[Manipulation]

return Manipulations

** **

* Summarising results *

** **

def isImprovement(InitialAllocation , FinalAllocation , Preferences):

IndecesOutcome1 = sorted([Preferences.index(i) for i in

InitialAllocation])

117

IndecesOutcome2 = sorted([Preferences.index(i) for i in

FinalAllocation])

if IndecesOutcome1==IndecesOutcome2:

return ’no change ’

#if different length , assign the worst outside options to the

shoter list

if len(IndecesOutcome1)<len(IndecesOutcome2):

IndecesOutcome1 +=[len(Preferences)]*(len(IndecesOutcome2)-

len(IndecesOutcome1))

if len(IndecesOutcome2)<len(IndecesOutcome1):

IndecesOutcome2 +=[len(Preferences)]*(len(IndecesOutcome1)-

len(IndecesOutcome2))

IndecesTupled = list(zip(IndecesOutcome1 ,IndecesOutcome2))

WeakComparison = [x[0]>=x[1] for x in IndecesTupled]#if x[0]>x[1

], then the new allocation is

better

nWeaklyDominantPairs = sum(WeakComparison)

if nWeaklyDominantPairs ==len(WeakComparison):

return ’Yes’

else: return ’No’

def ManupulationResultSummary(Manipilations):

Summary=[]

for Manip in Manipilations:

InitialAllocation = []

ManipulatedAllocation = []

iManipulator = Manip[’Manipulator ’]

ReportedPreferences = Manip[’Reported preferences ’]

for st in Manip[’Students ’]:

InitialAllocation += [[i for i in st[’WaitingList ’]]]

for st in Manip[’ManipStudnets ’]:

ManipulatedAllocation += [[i for i in st[’WaitingList ’]]]

#find manipulator ’s outcomes

manInitAlloc = InitialAllocation[iManipulator]

manFinAlloc = ManipulatedAllocation[iManipulator]

manPreferences = Manip[’Students ’][iManipulator][’Preferences

’]

AllocationImproved = isImprovement(manInitAlloc , manFinAlloc ,

manPreferences)

Sum= {

’Allocation ’: Manip[’Allocation ’],

’Manipulator ’: iManipulator ,

’ReportedPreferences ’: ReportedPreferences ,

’InitialAllocation ’: InitialAllocation ,

118

’ManipulatedAllocation ’: ManipulatedAllocation ,

’Allocation of manipulator improved ’: AllocationImproved

}

Summary+=[Sum]

return Summary

def ManipulationsComparison(ManipulationsDA , ManipulationsModDA):

ManDA = ManupulationResultSummary(ManipulationsDA)

ManModDA = ManupulationResultSummary(ManipulationsModDA)

comparison = {

’DA not ModDA’: 0,

’not DA , modDA’: 0,

’neither ’: 0,

’both’: 0,

’total’:0,

’Same outcome in both’: 0,}

for i in range(len(ManDA)):

comparison[’total ’]+=1

mDA = ManDA[i]

mModDA = ManModDA[i]

DAimprovement = mDA[’Allocation of manipulator improved ’]

ModDAimprovement = mModDA[’Allocation of manipulator improved

’]

if DAimprovement == ’Yes’ and ModDAimprovement == ’Yes’:

comparison[’both’]+=1

if mDA[’ManipulatedAllocation ’][mDA[’Manipulator ’]] ==

mModDA[’

ManipulatedAllocation ’

][mModDA[’Manipulator ’

]]:

comparison[’Same outcome in both’] += 1

elif DAimprovement == ’Yes’:

comparison[’DA not ModDA ’]+=1

elif ModDAimprovement == ’Yes’:

comparison[’not DA, modDA ’]+=1

else: comparison[’neither ’]+=1

return comparison

** **

* Summarising results *

** **

nStudents = 4

nCourses = 4

119

kCourses = 2 #exact number of courses to be allocated

Quotas = 2

iterations = 1000

limitNumberOfPreferenceProfilesStudents = 3

#DataStudents , DataCourses = GenerateData(nStudents , nCourses ,

limitNumberOfPreferenceProfilesStudents

)

start_time_all = datetime.now()

TheComparisons = []

for iter in range(iterations):

Students , Courses = GenerateData(nStudents , nCourses)

Comparisons=[]

for iManipulator in range(nStudents):

ManipulationsDA = ManipulateDA(deepcopy(Students), deepcopy(

Courses), kCourses , Quotas

, iManipulator)

Priorities = [i for i in range(nStudents)]

random.shuffle(Priorities)

ManipulationsModDA = ManipulateModDA(deepcopy(Students),

deepcopy(Courses),

Priorities , kCourses ,

Quotas , iManipulator)

Comparison = ManipulationsComparison(ManipulationsDA ,

ManipulationsModDA)

Comparisons += [Comparison]

TheComparison={}

for key in Comparisons[0].keys():

TheComparison[key]=(sum([x[key] for x in Comparisons]))

TheComparisons +=[TheComparison]

SummarisedComparisons={}

for key in TheComparisons[0].keys():

SummarisedComparisons[key]=[x[key] for x in TheComparisons]

pprint(TheComparison)

pprint(SummarisedComparisons)

Python code used for simulations of ModDA2

from scipy.stats import truncnorm

from pprint import pprint

120

import random

from random import shuffle

import numpy as np

from itertools import groupby , permutations #product

import matplotlib.pyplot as plt

from collections import OrderedDict , Counter

from copy import deepcopy

from datetime import datetime

from statistics import median

import pickle

** **

* Data generation *

** **

def GenerateStudents(nCourses , nStudents , k,

limitNumberOfPreferenceProfilesStudents

=None):

Students=[]

CoursesIndices = [i for i in range(nCourses)]

PreferenceProfiles = list(permutations(CoursesIndices))

if limitNumberOfPreferenceProfilesStudents is not None:

PreferenceProfiles = PreferenceProfiles[:

limitNumberOfPreferenceProfilesStudents

]

preferences = random.choices(PreferenceProfiles , k=nStudents)

for i in range(nStudents):

Student={

’Preferences ’: list(preferences[i]),

’ReportedPreferences ’:list(preferences[i]),

’WaitingList ’: [],

’RejectionList ’: [],

’ForcedCourses ’:[],

’StillToApply ’: list(preferences[i]),

’k’: k[i],

’current_k ’: k[i]

}

Students+=[Student]

return Students

def GenerateCourses(nCourses , nStudents , q):

Courses=[]

StudentsIndices = [i for i in range(nStudents)]

PreferenceProfiles = list(permutations(StudentsIndices))

preferences = random.choices(PreferenceProfiles , k=nCourses)

for i in range(nCourses):

Course={

121

’Preferences ’: preferences[i],

’WaitingList ’: [],

’Applications ’: [],

’ForcedStudents ’:[],

’q’: q[i],

’current_q ’: q[i]

}

Courses+=[Course]

return Courses

def GenerateData(nStudents , nCourses , k, q,

limitNumPrProfilesStudents=None):

’’’

k - list of number of courses each student needs to be

allocated to,

q - list of quotas at all courses

’’’

return GenerateStudents(nCourses , nStudents , k,

limitNumPrProfilesStudents),

GenerateCourses(nCourses ,

nStudents , q)

** **

* DA and ModDA2 *

** **

def AllocationDA(Students , Courses):

flagApplicationMade=True

while flagApplicationMade:

flagApplicationMade = False

for i,st in enumerate(Students):

for _ in range(0,st[’current_k ’]-len(st[’WaitingList ’])):

if not st[’StillToApply ’]:

break

Courses[st[’StillToApply ’][0]][’Applications ’] += [i]

flagApplicationMade=True

st[’StillToApply ’] = st[’StillToApply ’][1:]

st[’WaitingList ’] = []

for j, course in enumerate(Courses):

ApplicationsInPrefOrder =

[ap for ap in course[’Preferences ’]

if (ap in course[’Applications ’])

and (ap not in course[’ForcedStudents ’])]

WaitingList = ApplicationsInPrefOrder[:course[’current_q ’

]]

122

course[’WaitingList ’] = deepcopy(WaitingList)

course[’Applications ’] = deepcopy(WaitingList)

RejectionList = ApplicationsInPrefOrder[course[’current_q

’]:]

for i_st in WaitingList:

Students[i_st][’WaitingList ’]+=[j]

for i_st in RejectionList:

Students[i_st][’RejectionList ’]+=[j]

return deepcopy(Students), deepcopy(Courses)

def ListUnderDemandedCourses(Courses):

UnderdemandedCourses = []

for i,c in enumerate(Courses):

if len(c[’WaitingList ’])<c[’current_q ’]:

UnderdemandedCourses += [i]

return UnderdemandedCourses

def ListUnderDemandedStudents(Students):

UnderdemandedStudents = []

for i,s in enumerate(Students):

if len(s[’WaitingList ’])<s[’current_k ’]:

UnderdemandedStudents += [i]

return UnderdemandedStudents

def AllocationModDA(DataStudents ,DataCourses , Priorities):

’’’

Priorities is a list of students ordered from low to high

priority

’’’

Students , Courses = AllocationDA(deepcopy(DataStudents), deepcopy

(DataCourses))

#check if all the students are already allocated to exactly k

courses

UnderdemandedStudents = ListUnderDemandedStudents(Students)

if not UnderdemandedStudents:

return Students , Courses

#if not , remove the student with lowest priority from his least

preferred course (conditions

apply)

while UnderdemandedStudents:

UnderdemandedCourses = ListUnderDemandedCourses(Courses)

for i in range(len(Priorities)):

iStudent = Priorities[i] #Student ’s index in Students

if iStudent not in UnderdemandedStudents:

cur_st = Students[iStudent]

123

iForcedCourse = [c for c in cur_st[’

ReportedPreferences

’] if c in

UnderdemandedCourses

and c not in

cur_st[’

ForcedCourses ’]][

0]

Courses[iForcedCourse][’ForcedStudents ’]+=[iStudent]

Courses[iForcedCourse][’current_q ’]-=1

cur_st[’ForcedCourses ’]+=[iForcedCourse]

cur_st[’current_k ’]-=1

break

for st in Students:

StillToApply = deepcopy(st[’ReportedPreferences ’])

for ForcedCourse in st[’ForcedCourses ’]:

StillToApply.remove(ForcedCourse)

st[’StillToApply ’] = StillToApply

for c in Courses:

c[’Applications ’] = []

Students ,Courses = AllocationDA(deepcopy(Students), deepcopy(

Courses))

UnderdemandedStudents = ListUnderDemandedStudents(Students)

return deepcopy(Students), deepcopy(Courses)

** **

* Manipulations *

** **

def ManipulateDA(Students , Courses , iManipulator=0):

’’’iManipulator is an index of a student who manipulates ’’’

Manipulations = []

DAStudents , DACourses = AllocationDA(deepcopy(Students), deepcopy

(Courses))

DAAllocation = deepcopy(DAStudents[iManipulator][’WaitingList ’])

CoursesIndices = [i for i in range(len(Courses))]

PreferenceProfiles = list(permutations(CoursesIndices))

manipStudents = deepcopy(Students)

for pref in PreferenceProfiles:

manipStudents[iManipulator][’ReportedPreferences ’] = deepcopy

(list(pref))

manipStudents[iManipulator][’StillToApply ’] = deepcopy(list(

pref))

DAManipStudnets , DAManipCourses = AllocationDA(deepcopy(

124

manipStudents), deepcopy(

Courses))

Manipulation = {

’Allocation ’: ’DA’,

’Manipulator ’: iManipulator ,

’Reported preferences ’: deepcopy(pref),

’Students ’: deepcopy(DAStudents),

’Courses ’: deepcopy(DACourses),

’ManipStudnets ’: deepcopy(DAManipStudnets),

’ManipCourses ’: deepcopy(DAManipCourses)

}

Manipulations+=[Manipulation]

return Manipulations

def ManipulateModDA(Students , Courses , Priorities , iManipulator=0):

#without manipulations

Manipulations = []

ModDAStudents , ModDACourses = AllocationModDA(deepcopy(Students),

deepcopy(Courses), Priorities)

CoursesIndices = [i for i in range(len(Courses))]

PreferenceProfiles = list(permutations(CoursesIndices))

manipStudents = deepcopy(Students)

for pref in PreferenceProfiles:

manipStudents[iManipulator][’ReportedPreferences ’] = deepcopy

(list(pref))

manipStudents[iManipulator][’StillToApply ’] = deepcopy(list(

pref))

ModDAManipStudnets , ModDAManipCourses = AllocationModDA(

deepcopy(manipStudents),

deepcopy(Courses),

Priorities)

noForcedMAllocation = deepcopy(ModDAManipStudnets[0][’

WaitingList ’])

ForcedMAllocation = deepcopy(ModDAManipStudnets[0][’

WaitingList ’])

Manipulation = {

’Allocation ’: ’ModDA’,

’Manipulator ’: iManipulator ,

’Reported preferences ’: deepcopy(pref),

’Students ’: deepcopy(ModDAStudents),

’Courses ’: deepcopy(ModDACourses),

’ManipStudnets ’: deepcopy(ModDAManipStudnets),

’ManipCourses ’: deepcopy(ModDAManipCourses)

}

125

Manipulations+=[Manipulation]

return Manipulations

** **

* Summarising results *

** **

def isImprovement(InitialAllocation , FinalAllocation , Preferences):

IndecesOutcome1 = sorted([Preferences.index(i) for i in

InitialAllocation])

IndecesOutcome2 = sorted([Preferences.index(i) for i in

FinalAllocation])

if IndecesOutcome1==IndecesOutcome2:

return ’no change ’

#if different length , assign the worst outside options to the

shoter list

if len(IndecesOutcome1)<len(IndecesOutcome2):

IndecesOutcome1 +=[len(Preferences)]*(len(IndecesOutcome2)-

len(IndecesOutcome1))

if len(IndecesOutcome2)<len(IndecesOutcome1):

IndecesOutcome2 +=[len(Preferences)]*(len(IndecesOutcome1)-

len(IndecesOutcome2))

IndecesTupled = list(zip(IndecesOutcome1 ,IndecesOutcome2))

WeakComparison = [x[0]>=x[1] for x in IndecesTupled]#if x[0]>x[1

], then the new allocation is

better

nWeaklyDominantPairs = sum(WeakComparison)

if nWeaklyDominantPairs ==len(WeakComparison):

return ’Yes’

else: return ’No’

def ManupulationResultSummary(Manipilations):

Summary=[]

for Manip in Manipilations:

InitialAllocation = []

ManipulatedAllocation = []

iManipulator = Manip[’Manipulator ’]

ReportedPreferences = Manip[’Reported preferences ’]

for st in Manip[’Students ’]:

InitialAllocation += [[i for i in st[’WaitingList ’]+st[’

ForcedCourses ’]]]

for st in Manip[’ManipStudnets ’]:

ManipulatedAllocation += [[i for i in st[’WaitingList ’]+

st[’ForcedCourses ’]]]

#find manipulator ’s outcomes

126

manInitAlloc = InitialAllocation[iManipulator]

manFinAlloc = ManipulatedAllocation[iManipulator]

manPreferences = Manip[’Students ’][iManipulator][’Preferences

’]

AllocationImproved = isImprovement(manInitAlloc , manFinAlloc ,

manPreferences)

Sum= {

’Allocation ’: Manip[’Allocation ’],

’Manipulator ’: iManipulator ,

’Reported Preferences ’: ReportedPreferences ,

’InitialAllocation ’: InitialAllocation ,

’ManipulatedAllocation ’: ManipulatedAllocation ,

’Allocation of manipulator improved ’: AllocationImproved

}

Summary+=[Sum]

return Summary

def ManipulationsComparison(ManipulationsDA , ManipulationsModDA):

ManDA = ManupulationResultSummary(ManipulationsDA)

ManModDA = ManupulationResultSummary(ManipulationsModDA)

comparison = {

’DA not ModDA’: 0,

’not DA , modDA’: 0,

’neither ’: 0,

’both’: 0,

’total’:0,

’Same outcome in both’: 0,}

for i in range(len(ManDA)):

comparison[’total ’]+=1

mDA = ManDA[i]

mModDA = ManModDA[i]

DAimprovement = mDA[’Allocation of manipulator improved ’]

ModDAimprovement = mModDA[’Allocation of manipulator improved

’]

if DAimprovement == ’Yes’ and ModDAimprovement == ’Yes’:

comparison[’both’]+=1

if mDA[’ManipulatedAllocation ’][mDA[’Manipulator ’]] ==

mModDA[’

ManipulatedAllocation ’

][mModDA[’Manipulator ’

]]:

comparison[’Same outcome in both’] += 1

elif DAimprovement == ’Yes’:

comparison[’DA not ModDA ’]+=1

elif ModDAimprovement == ’Yes’:

127

comparison[’not DA, modDA ’]+=1

else: comparison[’neither ’]+=1

return comparison

def ManipulationAveragesAndMedians(SummarisedComparisons):

for res in SummarisedComparisons

** **

* Simulation *

** **

nStudents = 4

nCourses = 4

kCourses = [2]*nStudents #exact number of courses to be allocated

Quotas = [2]*nCourses

iterations = 10000

AllComparisons = []

AllManipulationsDA = []

AllManipulationsModDA = []

for iter in range(iterations):

Students , Courses = GenerateData(nStudents , nCourses , kCourses ,

Quotas)

Comparisons=[]

CurrManipulationsDA = []

CurrManipulationsModDA = []

Priorities = [i for i in range(nStudents)]

random.shuffle(Priorities)

for iManipulator in range(nStudents):

ManipulationsDA = ManipulateDA(deepcopy(Students), deepcopy(

Courses), iManipulator)

CurrManipulationsDA +=[ManipulationsDA]

ManipulationsModDA = ManipulateModDA(deepcopy(Students),

deepcopy(Courses),

Priorities , iManipulator)

CurrManipulationsModDA+=[ManipulationsModDA]

Comparison = ManipulationsComparison(ManipulationsDA ,

ManipulationsModDA)

Comparisons += [Comparison]

AllManipulationsDA += [CurrManipulationsDA]

AllManipulationsModDA += [CurrManipulationsModDA]

TheComparison={}

for key in Comparisons[0].keys():

TheComparison[key]=(sum([x[key] for x in Comparisons]))

AllComparisons +=[TheComparison]

128

SummarisedComparisons={}

for key in AllComparisons[0].keys():

SummarisedComparisons[key]=[x[key] for x in AllComparisons]

for key in SummarisedComparisons:

SummarisedComparisons[key] = [SummarisedComparisons[key][i]/

SummarisedComparisons[’total ’]

[i]*100 for i in range(len(

SummarisedComparisons[key]))]

TheAverages = {}

for key in SummarisedComparisons:

TheAverages[key] = sum(SummarisedComparisons[key])/len(

SummarisedComparisons[key])

TheMedians = {}

for key in SummarisedComparisons:

TheMedians[key] = median(SummarisedComparisons[key])

TheMax={}

for key in SummarisedComparisons:

TheMax[key] = max(SummarisedComparisons[key])

TheMin={}

for key in SummarisedComparisons:

TheMin[key] = min(SummarisedComparisons[key])

129

	Abstract
	Acknowledgements
	Introduction
	Truncated allocations under DA mechanism: consequences on students' strategies and welfare
	Introduction
	Model
	Allocation process

	Results
	Unrestricted reports
	Restricted reports
	Welfare
	Discussion

	Extensions of the model
	Application assumptions
	Student types
	Three programmes
	Welfare

	Numerical Experiment
	Conclusion
	Appendix. Proofs of propositions

	Fair team formations with allocations of equal size
	Introduction
	Motivation

	Literature
	Model
	Properties: definitions
	Pareto Optimality
	Envy-Freeness
	Proportionality

	Assignment rules: definitions
	Compatibility of properties
	Mechanisms' Properties
	Conclusion and Future Work
	Appendix. Summary of results

	Student allocation to equal number of elective courses
	Introduction
	Literature
	Model
	Why we cannot use original DA
	Modified DA

	Strategy proofness
	ModDA1
	ModDA2
	Simulations

	Conclusions and Future Work

	Appendix to Chapter 1
	Appendix to Chapter 3

