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Abstract

In cognitive neuroscience, encoding and decoding models mathematically relate stim-
uli in the outside world to neuronal or behavioural responses. While both stimuli and
responses can be multidimensional variables, these models are on their own limited to
bivariate descriptions of correspondences. In order to assess the cognitive or neurosci-
entific significance of such correspondences, a key challenge is to set them in relation
to other variables. This thesis uses information theory to contextualise encoding and
decoding models in example cases of audition and vision. In the first example, encoding
models based on a certain operationalisation of the stimulus are relativised by models
based on other operationalisations of the same stimulus material that are conceptually
simpler and shown to predict the same neuronal response variance. This highlights the
ambiguity inherent in an individual model. In the second example, a methodological
contribution is made to the problem of relating the bivariate dependency of stimuli and
responses to the history of response components with high degrees of predictability. This
perspective demonstrates that only a subset of all stimulus-correlated response variance
can be expected to be genuinely caused by the stimulus, while another subset is the
consequence of the response’s own dynamics. In the third and final example, complex
models are used to predict behavioural responses. Their predictions are grounded in
experimentally controlled stimulus variance, such that interpretations of what the models
predicted responses with are facilitated. Together, these three perspectives underscore
the need to go beyond bivariate descriptions of correspondences in order to understand
the process of perception.
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Preface

0.1 Author’s note

In late 2015 | applied for a PhD scholarship of the College of Science and Engineering
at the University of Glasgow. For this application, | had to write a “research plan". Six
years later, | am finally close to submitting my thesis, and stumble across this document.
| decide to include it at the start of my thesis, as it documents the insecurities and the
enthusiasm, the fears and the hopes as well as the ignorance and the understanding
with which | went into this project.

When | ask myself what my younger self would have thought of this result, | cannot
help but feel surprised of how many of the ideas mentioned in the plan indeed found their
way into the final thesis.

Perhaps most striking seems the somewhat haphazardly cited work by Gi¢li & van
Gerven (2015), as | had no idea whatsoever that | would end up venturing into the mod-
eling of visual processing with deep neural networks.

Another peculiar aspect is that the plan was centered on the idea of describing
cortico-cortical connectivity with Transfer Entropy (TE) and “content-based connectivity
measures” (Ince et al., 2015), which at the time were still under development. | indeed
spent a great deal of my time on the maturely suggested simulations, something | often
came back to from different stages of other projects. During those simulations however,
| built up a great deal of skepticism towards the idea of cortico-cortical connectivity, es-
pecially with magnetoencephalography (MEG). This was probably best summarised in
the work of Mehler & Kording (2018). The plans were thus changed to a restriction to
cerebro-peripheral connectivity. That some of the TE simulations have still made it into
a chapter of this thesis makes me very happy, not least since this chapter was finalised
at the very end of the PhD.

A further mismatch is between the goal of “integrating auditory encoding into a broader,
brain wide perspective" and the thesis’ focus on bilateral auditory cortices. In the MEG
passive story listening data | collected, | did not find clear evidence for robust systematic
explainable variance outside of auditory cortices. This might on the one hand stem from
a relatively conservative approach in identifying such regions (correlation of responses
to a repeatedly presented chapter together with considerations of cross-talk and point-
spread functions in MEG source space). On the other hand, this might stem from the
task as such, which did not involve behaviour, and thus did not trigger a cascade of

Xiii
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brain activity from sensory to motor and perhaps frontal areas. Cascades like this are
arguably on the spatial scale which the spatial resolution of MEG is best suited to exploit
(Gwilliams & King, 2020).

A deep regret is that despite being aware of it when writing the research plan, we
forgot to cite the in my opinion excellent work by Ding et al. (2016) in the chapter on
linguistic vs acoustic representations. lts omission in the chapter makes it appear a little
short-sighted — a reference to well-controlled experiments should have been part of its
discussion section.

Nevertheless, the combination of MEG- and information theory expertise of Joachim
and Robin, who would become my supervisors, the interest in abstraction, and the use of
higher-order information theoretic concepts such as redundancy and synergy are indeed
well represented in the final thesis.

| hope that you, dear reader, can enjoy some of it.

0.2 Research plan

| am fascinated by the seemingly infinite multitude of processes on any conceivable scale
that result in human beings listening to their environment. For me, it is thrilling to dis-
cover patterns of neuronal activity which almost omnipresent phenomena such as verbal
communication or music critically rely on.

In my studies, | was so far involved in several projects that were driven by an interest in
basic science derived from this fascination. They mainly revolved around the role of the
phase of low frequency EEG oscillations in primary auditory encoding. From Bachelor to
Master studies, my investigations spanned the range from implementing and executing
psychophysical and tACs experiments to fully designing, measuring and analyzing EEG
studies.

For my Master’s Thesis, | then decided to broaden my methodological scope by tak-
ing the chance of analyzing a previously acquired MEG dataset whose texture stimuli
were similar to those of an undergraduate project of mine. Heavily inspired by work from
the group of Joachim Gross (Park et al., 2015) | set up an analysis framework geared
towards the identification of directed cortico-cortical communication using beamformer
techniques and phase transfer entropy.

| would now like to continue to integrate auditory encoding into a broader, brain wide
perspective. This relates to one of the perhaps oldest strands in the history of audi-
tory neuroscience (Broca et al., 1861) and leads to the concept of processing streams
(Hickok & Poeppel, 2007; Rauschecker & Scott, 2009). Similarly to visual neuroscience,
ventral and dorsal pathways have been proposed as an overarching principle explain-
ing brain structure and functionality. However, these concepts so far mainly stem from
fMRI studies with low temporal resolution. The current models are thus largely based on
studies revealing rather static processing specializations (e.g. Obleser et al., 2007) and
long range fiber tracts (Friederici, 2009). A transformation and spread of information in
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space (cf. Gugli & van Gerven, 2015) can only be indirectly inferred from these studies.
An intuitive notion of a "stream" however critically relies on a direct demonstration of the
dynamics of information representation.

During my PhD, | would like to contribute to filling this gap with a methodological ap-
proach that for me builds on the skills | have acquired during my Master’s Thesis and for
which expertise is available in Glasgow. A combination of beamformed MEG recordings
(Gross et al., 2001) and content based connectivity measures (Ince, in prep.) seems
ideally suited to improve our understanding of the human cortical framework that is built
around primary encoding of the environment.

The project might start out with an assessment of the degree to which current models
can be helpful in interpreting beamformed MEG data. An initial experimental design
could be geared towards provoking a dissociation between ventral and dorsal pathways
(cf. Saur et al., 2008). To start with, first analyses should capitalize on classic event
related fields, oscillatory components and bidirectional measures of connectivity.

In a next step, it might then be possible to test the concept of forward and inverse map-
ping (Rauschecker & Scott, 2009). For the dorsal stream, it would be particularly exciting
to investigate a proposed integration of efference copies and sensory signals in parietal
cortex (see also Morillon et al., 2015). Regarding the ventral route, it would be interest-
ing to see whether results obtained with microstimulation in macaque monkeys (Petkov
et al., 2015) can prove their claimed significance. One would for example expect to find
information stemming from primary or belt areas and transported via direct fiber con-
nections to frontal cortex to later merge at their destination with outputs from anterior
temporal networks.

Information theoretic measures such as redundancy and synergy or directed feature in-
formation seem of high relevance here. Their application to the above mentioned ques-
tions might well make simulations necessary to ensure they can capture the relevant
effects.

A central question then is how to keep track of the domains the information is trans-
formed into, especially under the limitation of neural mass signals recorded from outside
the skull (Panzeri et al., 2015). A candidate concept that has repeatedly been proposed
to be applicable to this problem is cross frequency coupling (Lakatos et al., 2005; Gross
et al., 2013; Jiang et al., 2015). With a perspective on auditory functions that also covers
music processing, it could finally be attractive to expand the approach developed so far
correspondingly and use this concept to delineate more universal abstraction gradients
allowing for hierarchical representations of information (Ding et al., 2016).
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Chapter 1

Introduction

1.1 Outline

This thesis deals with the question of how the outside world is related to human neuronal
or behavioural responses. Unless one is interested in sensory neurons, which directly
interact with the environment, answering this question entails assumptions about unob-
served or “latent” phenomena that take place between the presentation of a stimulus
and the response of downstream neurons or behaviour of interest. These assumptions
are manifested in terms of models that specify which transformations of a stimulus are
believed to be relevant to the responses, and that thus aim to bring light in the dark of
our understanding of the processes that happen between the presentation of a stimulus
and the elicitation of responses.

For example, we can consider a sound as it leaves a speaker. It exists in the form of
pressure deviations at various intensities and frequencies that impinge on the eardrums
before they get encoded in a frequency-specific way by the cochlea (McDermott, 2013).
This brings the sound into the so-called spectrographic format, with comparably high
agreement across the field. What happens to the sound afterwards, as neurons across
multiple relay stations of the subcortical auditory pathway propagate it to the auditory
cortex and beyond, is however heavily debated.

Likewise, we can think of light as it is reflected by an object in our visual field. It tra-
verses the lens of the eye and excites the rods and cones of the retina, passes through
multiple layers of further retinal neurons, travels through the optic nerve past the op-
tic chiasm and lateral geniculate nucleus to finally arrive in the back of the brain, the
so-called occipital cortex (Palmer, 1999). Although a lot of research has explored the
cascade of neuronal firing that is triggered here and that eventually leads to behaviour,
as of now we are nowhere near having “solved" human vision.

As a consequence, many models exist that compete to predict and explain neuronal
or behavioural responses to sound or light. They all specify different transformations im-
plying the relevance of different aspects of the stimulus for a certain type of responses. In
order to achieve progress in the field of perceptual cognition and neuroscience, we thus
need new approaches to adjudicate between the plethora of hypotheses about stimu-
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lus transformations that have been and that will be developed. This thesis hopes to
contribute to such progress by means of suggestions on how to relate models to one
another, how to relate stimuli to responses and how to develop and exploit suitable ex-
perimental paradigms to obtain meaningful stimulus response pairings in the first place.
A central common element of these suggestions is the adoption of a genuinely trivariate
point of view on those problems (Figure 1.1). In this introduction, | will first generally
outline each of these information theoretic perspectives on en- and decoding in audition
and vision, and then place them in broader contexts of the terms constituting the thesis
title.

Chapter 2 Chapter 3 Chapter 4
Model A Response past Generative model of
the stimulus
Model B Response Stimulus Response present Model Response

Figure 1.1: Triple Venn diagrams illustrating concepts in chapters 2, 3 and 4.

1.1.1 Going beyond pairwise tests of model performance

In chapter 2, we consider the general problem that the degree to which a model accu-
rately predicts responses is as such insufficient to argue for or against the relevance of
any of the assumptions manifested in the model to the system under study. In simple
terms, this is because often, many other models can be constructed that achieve the
same or an even better accuracy by virtue of other assumptions. From the perspective
of philosophy of mind, this problem can be seen as an example of multiple realisability
(Putnam, 1967).

We substantiate this point with a Magnetoencephalography (MEG) experiment in
which humans listen to a continuous speech stimulus (Poeppel & Embick, 2005). We
compare different models of varying complexity and demonstrate that even relatively sim-
ple models can reach prediction performances comparable to a given complex model.
Moreover, we develop a framework to compare models not only with respect to their
prediction performance, but also with respect to the amount of information about the re-
sponses of interest that they share with a competing model. This is important because
it is easily conceivable that two models reach comparable performances by means of
correctly predicting different parts of the responses, while failing to predict those parts
that the respective competing model succeeds to predict. In our case however, we
demonstrate that the simple model indeed succeeds in predicting the same parts of
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the responses that the complex model predicts. Based on these findings, we make a
case for parsimony as an often undervalued design principle for models of neuronal or
behavioural responses. Identifying the simplest model that suffices to predict a given
phenomenon is a promising goal to understand the phenomenon.

1.1.2 Predicting responses from stimuli and response history

Chapter 3 suggests an alternative to the paradigm of models that predict responses
from stimuli alone. Specifically, we consider the perspective of Transfer Entropy (TE,
Schreiber, 2000), where separately to the stimulus, the past of the response variable is
considered for the prediction of a given present sample of the response. In cases where
the responses are temporally correlated, it is possible that these “auto-correlations" be-
tween the response past and present can account for some portion of the information
about the response available from the stimulus. TE aims to ignore such auto-information
of the response when quantifying stimulus-reponse relationships. It is thus highly rele-
vant for research questions pertaining to the neuronal prediction of upcoming stimulus
material (Friston, 2005).

We focus on the issue of frequency-specific narrowband components of responses,
which are ubiquitous in neuronal mass signals as recorded with MEG (Wang, 2010).
Such band-limited components are by definition highly auto-correlated, but are usually
seen as problematic in combination with TE. We develop an estimator that tackles such
problems and subject it, together with classic estimators, to an extensive range of tests
based on simple simulations. We finally explore the behaviour of our estimator on the
same MEG data as studied in chapter 2, finding that measures of stimulus-response
delay and interaction strength differ from those recovered by bivariate dependency mea-
sures.

1.1.3 Constraining the features which humans and models can use
with experimental control

Chapter 4 revisits the issue of multiple realisability from chapter 2. Here, we make an
additional suggestion of a constraint that could alleviate mappings of properties of a
model to the system whose responses it tries to predict. The idea is that experiments
should make use of generative models of stimuli to use the opportunity to decorrelate
stimulus features of interest (Olman & Kersten, 2004). As concluded in chapter 2, if
as in experimental designs involving naturalistic stimulus material this opportunity is not
seized, it is harder to isolate effects of a stimulus feature of interest since many features
will be confounded with one another. To the extent to which experimental control rules
out confounds, it becomes possible to make causal statements regarding the relationship
of stimulus features and responses.

This is of additional relevance when trying to interpret response predictions of com-
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plex models. If we reduce the ambiguity about what stimulus features cause human
responses, this also reduces ambiguity about what complex models can predict human
responses with. With this approach, the chapter not only shows what kind of model of a
set of complex candidate models can predict behavioural responses to face stimuli best,
but also grounds its predictions in experimentally controlled shape features.

1.2 Information theory

In order to study relationships between the components of the individual chapters, this
thesis makes use of data analysis strategies that are rooted in information theory. At
its core, information theory is a set of formalisms to interpret probability distributions and
relate them to one another. Together, these were originally conceived of as a “mathemat-
ical theory of communication" (Shannon, 1948; Cover & Thomas, 1991). The initial remit
was in telecommunication, where messages of a given size were to be passed from a
sender to a receiver along a noisy channel of a given capacity. Applications to neuro-
science have both been criticised (de-Wit et al., 2016) and praised (Quiroga & Panzeri,
2009). In this thesis, we take a pragmatic stance and simply use information theory as
a principled framework to quantify statistical dependencies between variables of inter-
est. The following section will develop the information theoretic quantities relevant to this
thesis.

1.2.1 Entropy

A central interpretation of probability within information theory is given by the definition
of entropy, which can be described as the amount of uncertainty associated with a given
probability distribution. For a discrete variable with a given number of possible states,
it is defined as the product of the probability of a given state with the logarithm of the
reciprocal of that probability (the latter factor can thus be rewritten as the negative loga-
rithm of the probability), summed over all possible states. For a binary variable that can
thus only assume one of two states, this results in a symmetric positive curve that peaks
when both states of the variable are equiprobable (Figure 1.2). This corresponds to the
uncertainty of the toss of a fair coin. When the logarithms are computed with respect to
base 2, this defines the perhaps most popular unit in information theory, the bit.

The definition of entropy for a discrete variable can be generalised to continuous vari-
ables. This can be done by understanding that the summing operation together with the
weighting of the logarithm of the reciprocal of the probability of a given state by its prob-
ability reflects the expected value over the logarithm of the reciprocal of the probability.
For continuous variables, the expected value can be obtained by instead integrating the
product of probability density multiplied by the logarithm of the reciprocal of the probabil-
ity density over the support of the probability distribution.
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Figure 1.2: Entropy of a binary variable X for all possible Bernoulli distributions.

1.2.2 Mutual information

A fundamental quantity in information theory that justifies its relevance to problems of
communication between a sender and a receiver is mutual information (Ml). It can be
computed by quantifying the joint entropy (using the joint probability distribution of the
two variables) and subtracting it from the sum of the two marginal entropies. Graphically,
it can thus be thought of as the set intersection of the entropies of two variables (Figure
1.3). Intheory, it is a non-negative measure that is zero if and only if the two variables are
statistically independent. As they become more dependent, the MI between them grows.
In principle, it can thus be seen as a generalisation of the concept of linear correlation to
arbitrary nonlinear relationships.

If we recall Figure 1.1, we however notice that the quantification of bivariate rela-
tionships is insufficient for an application within conceptualisations of the problems ad-
dressed in this thesis.

A widely known information theoretic quantity that is applicable to a trivariate system
is conditional MI (Figure 1.3). In conditional MI, the relationship between two variables
can be measured given that we already know a third variable. Often, this is described as
“conditioning out" the third variable, since usually, the MI of two variables shrinks when
conditioning it on a third variable (but see below). There are multiple ways to compute
the MI between two variables A and B conditional on C. One possibility is to obtain it as
the difference of two MI terms: We first construct a joint variable consisting of B and C
and then compute the MI between this joint variable and A. From this, we subtract the Ml
between A and C.
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Figure 1.3: Information theoretic quantities visualised as Venn diagrams.

1.2.3 Co-information

If we are instead interested in the central triple set intersection, one option is to turn
to interaction information (McGill, 1954). Here, the same idea that is used to relate
entropies of two variables to one another is applied to two bivariate MI terms which share
one variable (Figure 1.3). In this situation, it is often helpful to refer to the variable that
appears in both Ml terms as the “target”, and the two variables that only appear in either
of the Ml terms as “sources”. Note however that interaction information is symmetric with
respect to its inputs, and the labels of source and target can thus be interchanged without
changing the output interaction information. The triple intersection of three entropies can
be obtained by subtracting joint Ml of the two sources together with the target from the
sum of two marginal Mls of each source with the target. By convention, this is referred to
as negative interaction information or co-information. In cases where it is positive, i.e. in
scenarios where the joint Ml is smaller than the sum of the two marginal Ml terms, this
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indicates that the sources share the same information about the target. This is referred
to as “redundant" information. In cases where it is instead negative, it indicates that there
is information that can exclusively be obtained when jointly considering the two sources.
This is referred to as “synergistic" information.

1.2.4 Partial information decomposition

Interestingly, this way of thinking about such higher-order interactions only recently got
under closer scrutiny. In particular, it was pointed out that a problem of co-information
is that it conflates both redundant and synergistic information into the same quantity
(Williams & Beer, 2010). A problem with this is that it is theoretically conceivable that
two sources at the same time both share information but also contribute synergistic in-
formation when considered together. These two quantities of synergy and redundancy
would then cancel out in the net sum reflected by co-information. Therefore, the goal
of partial information decomposition (PID, Williams & Beer, 2010) is to decompose the
joint information of the sources about the target into four different “atoms": separate re-
dundancy and synergy as well as unique information of each source (Figure 1.3). Note
that this is generalisable to scenarios with more than two sources (Williams & Beer,
2010), leading to more than just four atoms. In this thesis however, only systems with
two sources are considered. To achieve this decomposition, PID classically starts by
quantifying redundancy. Once that is done, unique information can be obtained as the
difference of Ml and redundancy, and synergy can be obtained by subtracting redun-
dancy and unique terms from the joint MIl. How to obtain redundancy in the first place
is however a matter of debate (Williams & Beer, 2010; Harder et al., 2013; Bertschinger
et al., 2014; Ince, 2017a; James et al., 2018, 2019). In this thesis, the solution I.. pro-
vided by Ince (2017a) is used. For a detailed description, we here refer to the methods
sections of the respective chapters. In brief, I..; resolves co-information on a pointwise
level, such that terms that contribute to redundancy and synergy can be separated. To
then obtain the global redundancy, the positive (i.e. redundant) pointwise co-information
terms that co-incide with positive pointwise marginal and joint MI terms are summed.

From the perspective of PID, it can be explained how it is possible that conditioning
bivariate Ml on a third variable can not only lead to a decrease, but also an increase of
conditional MI relative to bivariate MI. This is because conditional MI does not quantify
unique information, but instead the sum of unique information and synergy. In cases of
strong synergistic interactions of two sources, conditional Ml can thus exceed the bivari-
ate MI. This can also be understood from the perspective of co-information, i.e. the net
sum of redundancy and synergy. Another way of obtaining it is as the difference of bi-
variate and conditional MI. Strong synergistic contributions will then manifest in negative
co-information, meaning that conditional M| has to exceed bivariate MI.
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1.2.5 Practical considerations

From a pragmatic data analysis perspective, it is hard to name conclusions that can
exclusively be drawn with information theoretic tools and not with other statistical ap-
proaches. One practical advantage however is that information theory unifies many
statistical tests under the common effect size of the bit (Ince et al., 2017). It thus be-
comes easily possible to meaningfully compare results across different research ques-
tions where one would classically deal with relatively incomparable values of ¢, F, x> or
R

In theory, information theoretic approaches are sensitive to statistical dependencies
manifested in all possible nonlinear effects and in that sense generalise linear models.
With finite datasets, this can however only be realised to a limited degree depending
on the estimator that is used to describe probability distributions. In this thesis, we
follow the Gaussian copula MI approach by Ince et al. (2017). Here, continuous vari-
ables are transformed into standard normal variables. The desired information theoretic
measures can then be calculated from closed-form expressions. Especially for higher-
order information theoretic quantities, this is computationally efficient, but only preserves
rank-based relationships. A similarly pragmatic alternative for cases where there is an
interest in nonlinear effects is to use binning with a relatively low number of bins to avoid
a combinatorial explosion when considering joint probability distributions for higher order
information theoretic quantities.

1.3 Encoding and decoding models

In simple terms, encoding and decoding models (Dayan & Abbott, 2001; Friston, 2009)
describe regression models that either predict the responses from the stimuli (encoding)
or vice versa (decoding). As such, they are thus suited to address questions of corre-
spondence (Baker et al., 2021). A classic approach to implement such models follows
a two-stage procedure (Naselaris et al., 2011). Here, a hypothesis is first specified in
the form of a nonlinear function of the stimulus. Examples of such “linearising feature
spaces" in both vision and audition are Gabor features (Kay et al., 2008; Santoro et al.,
2014), semantic features (Huth et al., 2012, 2016) or deep neural network (DNN) activa-
tions (Eickenberg et al., 2017; Kell et al., 2018). Once this is done, the hypothesis can
then be tested with a linear regression mapping from the linearising feature space to the
responses or vice versa.

1.3.1 Cross-validation

Irrespective of the direction, such models should be fit to data within a framework called
cross-validation (Mosier, 1951; Hastie et al., 2009). This relates to a split of the available
data into disjoint training- and testing sets. It is crucial since models usually come with
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parameters which are optimised to maximise the match of predictions and observed
data. This optimisation can result in overfitting to noise in the data which the model is
trained on, which will impair that model’s performance when it is used to predict new
data. Such generalisation to new data is however what the scientific significance of a
model critically hinges on (loannidis, 2005) — if it only works within the local conditions
of a single experiment, it is hard if not impossible for other science to make use of it.
Cross-validation is thus essentially a simulation where one pretends that a part of the
available data was recorded in a follow-up replication experiment (Yarkoni & Westfall,
2017). It directly incentivises strategies to mitigate overfitting, which can be measured
as the difference between a model’s performance in the training- and testing sets.

Such regularisation strategies usually consist of decreasing a model’s flexibility and
thus lead to a decrease of a model’s performance on the training set. If this is applied ad-
equately, this will prevent the model from fitting the noise in the training set and thereby
contribute to an increased performance on new data such as the testing set. In linear
regression, arguably one of the simplest and yet ubiquitous machine learning models,
such regularisation can be implemented by a zero-mean prior on the weights (Hoerl &
Kennard, 1970). An alternative view on this is that it reflects a penalty term for large
weights that is added to the loss function given by the error between observations and
predictions. This penalty term can itself be adjusted and thus constitutes a hyperpa-
rameter of the model. The adjustment of such hyperparameters requires an additional
splitting of the training set into validation- and genuine training sets (Varoquaux et al.,
2017). The hyperparameter can then be chosen such that it maximises the model’s per-
formance on the validation set, leaving the test set untouched for a final assessment of
the model’s performance.

1.3.2 The question of the direction

Before setting up such a cross-validation procedure, one faces a choice of the direction.
Should one opt for an “encoding" or “forward" model of the process, or should one invert
this direction in favour of a “decoding" or “backward" model?

Encoding models (Naselaris et al., 2011) follow the arrow of causality during per-
ception, and thus constitute a simulation of the process of perception. They are a way
to assemble and interrelate all that is known or assumed about a perceptual process
within one mathematical object. This can then be subjected to tests of generalisation to
both stimuli of the same distribution as the training data but also to stimuli of different
distributions. An individual researcher, or optimally groups of researchers such as labs
or entire fields can use them to systematically reason about this model and attempt to
continually improve it, rendering it a powerful tool for basic neuroscience. Ideally, such
an approach should thus help neuroscientific inquiry to move beyond an era of isolated
individual experiments and develop into an integrative endeavour (Schrimpf et al., 2020).

An important distinction is that of functional and mechanistic models (Kay, 2018). An
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arbitrary encoding model that merely succeeds in predicting responses is a functional
model, while only the inclusion of aspects of the biological implementation will make it
mechanistic. For models of neuronal responses, mechanistic models eventually have
to make concrete hypotheses about the computational significance of the responses
themselves: Are these directly involved in the processing of information, or are they
mere “exhaust fumes" of such activity (Jonas & Kording, 2017)?

Decoding models (Norman et al., 2006; Hebart & Baker, 2018) on the other hand
invert the arrow of causality and are thus not models of the process of perception as
such. Their prime application are brain-computer interfaces, where they can be used
to solve the engineering problem of providing information about brain states to external
devices such as hearing aids (Mirkovic et al., 2015; Fiedler et al., 2017; Geirnaert et al.,
2021). When applied to neuronal responses, a possible neuroscientific interpretation
is that of modeling what information about the stimulus neurons downstream from the
recorded population could in principle read out from the recorded activity.

Similarly to the distinction between functional and mechanistic encoding models, a
problem of this interpretation is that it is hard to compare the way neuroimaging inter-
faces with neuronal activity to how actual neurons interface with a given neuronal pop-
ulation. In all likelihood, neuroimaging will miss the lion’s share of the neuronal activity
that effectively communicates with other neurons. It is however also well possible that
neuroimaging is sensitive to activity that is invisible to downstream neurons. For the in-
terpretations of both encoding and decoding models, it is thus important to keep in mind
that they mediate between stimuli and observations made by the experimenter (de-Wit
et al., 2016).

From a practical perspective, they are both suited to quantify a statistical relationship
between stimuli and responses (Friston, 2009; Holdgraf et al., 2017; Hebart et al., 2020).
It is further possible to convert them into one another by multiplication with stimulus- or
response covariance matrices (Haufe et al., 2014; van Vliet & Salmelin, 2020).

It is sometimes argued that encoding models are exclusively suited for “complete
functional characterisations" of a certain neuronal response of interest (Naselaris et al.,
2011). The idea is that this is achieved by an encoding model that reaches the “noise
ceiling" of the responses (defined by e.g. the correlation of responses to repeatedly pre-
sented stimuli) to broadly sampled naturalistic stimuli. If a given decoding model on the
other hand allowed the perfect reconstruction of a given linearising feature space of the
presented stimuli, this would not exclude that other untested feature spaces could be re-
constructed as well. This argument however has three problems: firstly, the noise ceiling
is not trivial to estimate, and rests on assumptions such as the invariance of responses
to repeated stimuli despite commonly known effects such as habituation. Secondly, if
an inverse function could perfectly restore the entire original stimulus from the perfectly
decoded linearising feature space, this would reach the same footing as the encod-
ing model affording a “complete functional characterisation" — correlated feature spaces
could exist that could achieve the same. Thirdly, and most importantly, the argument crit-
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ically hinges on the completeness of the sampling of the stimulus material. Seemingly
trivial “out-of-distribution" stimuli not included in the training set of the encoding model
can however lead to failures to predict the correct response (Szegedy et al., 2014; Barbu
et al., 2019).

Depending on the available data, a given direction can however have statistical ad-
vantages (Kriegeskorte & Douglas, 2018b; Hebart et al., 2020). Classically, encoding
and decoding models are implemented as a multiple linear regression (given a linearising
feature space, see above). This means that covariances in stimuli or responses can be
exploited to improve the statistical power of the approach. In the case of one-dimensional
behavioural responses to multidimensional stimuli that are correlated on multiple dimen-
sions, an encoding model is the optimal choice. Decoding models can then only be
implemented as mass-univariate regressions, where the stimulus covariance cannot be
leveraged. In typical neuroimaging applications with multiple response channels, de-
coding models are generally more sensitive. They can be implemented in a “mass-
multivariate" fashion, where for each stimulus dimension, noise correlations across re-
sponse channels can be exploited. Mass-multivariate encoding models can leverage the
covariance of multiple stimulus dimensions, but will ignore correlations across response
channels.

Ideally, these advantages can be combined into a single approach. That is, one at-
tempts to find a linear combination of stimulus channels that best predicts a linear com-
bination of response channels. This can for example be implemented as a canonical
correlation analysis (Friston, 2009; de Cheveigné et al., 2018). An alternative approach
suggested in chapter 2 is to parameterise a biophysically motivated function that pro-
vides a linear combination of response channels (i.e. a spatial filter with the parameters
of position in source space and response channel covariance regularisation) and then
optimise its parameters as hyperparameters of an encoding model aiming to predict the
output of the linear combination of response channels.

Information that can be decoded, but which no forward process model can account
for essentially highlights a gap in understanding. In order to study a given dataset, it can
thus be advantageous to implement both directions: An encoding model will help to shift
the focus on simulating the forward process of perception, and a decoding model can
then serve as both a further characterisation of the observed process as well as a test
of the forward model with respect to this characterisation. This approach is central to
chapters 2 and 4.

1.4 Audition and vision

In this thesis, the tools as described above are applied to examples from two sensory
modalities, audition and vision. Specifically, the focus lies on acoustic speech signals
(and more specifically, non-invasive electrophysiological responses to them) and visual
face signals (and more specifically, behavioural responses to them). The following sec-
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tion will provide brief reviews of these topics with the goal of putting the respective chap-
ters into a historical context.

1.4.1 Non-invasive electrophysiology of speech tracking in supe-
rior temporal gyrus

Speech is an acoustically rich stimulus full of spectrotemporal interdependencies. Healthy
humans produce and understand it seemingly effortlessly in order to communicate infor-
mation from one mind to another.

Its reflection in human electrophysiological signals spans a history of multiple decades
(Wéstmann et al., 2017). Shortly after the first description of the electroencephalogram
(EEG, Berger, 1929), auditory evoked potentials in response to simple pure tones were
discovered (Davis, 1939). More systematic studies of variations of such averages of
responses to multiple repeated presentations of the same stimulus with respect to vari-
ous acoustic manipulations followed later (Davis et al., 1966), as did the use of speech
sounds as stimulus material in EEG studies (Feldman & Goldstein, 1967; Roth et al.,
1970; Wood et al., 1971). The localisation of the neuronal generators of such audi-
tory evoked responses to bilateral auditory cortices was already possible based on EEG
recordings of this early period (Vaughan Jr & Ritter, 1970). With the advent of Mag-
netoencephalography (MEG, Cohen, 1968), refinements of substantially increased spa-
tial precision became possible (Naatanen & Picton, 1987). The dominant experimen-
tal paradigm for both MEG and EEG (MEEG) studies in this latter half of the twentieth
century however remained the controlled psycholinguistic experiment with its analytical
workhorse, the event-related potential (EEG) or field (MEG). For this research paradigm,
scientists used either isolated subword components (Dorman, 1974; Aaltonen et al.,
1987; Naatanen et al., 1997; Obleser et al., 2003), words (Bentin et al., 1993) or con-
nected speech segments (McCallum et al., 1984; Friederici et al., 1993; Gross et al.,
1998) as stimulus material.

This event-related approach contributed to an enormous wealth of experimental find-
ings and remains an indispensable tool for the study of MEEG signatures of speech per-
ception until the present day (Khalighinejad et al., 2017; Daube et al., 2019b; Gwilliams
et al., 2020). However, when applied to connected speech, it requires a discretisation of
the inherently continuous speech signal, and thereby comes with limitations on the hy-
potheses about perceptual processes it can serve to study. The last two decades have
thus seen the rise of approaches relating continuous features of stimuli — most promi-
nently the time-varying energy or “envelope" — and MEEG responses (Ahissar et al.,
2001).

A popular narrative of this approach is that of band-limited response components
referred to as “oscillations" (Luo & Poeppel, 2007; Giraud & Poeppel, 2012; Peelle &
Davis, 2012; Gross et al., 2013; Doelling et al., 2014). Accordingly, such rhythmic activity
is thought to be present in auditory cortices in the absence of auditory stimulation, to then
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be temporally “entrained" by input signals, affording a segmentation of the continuous
input into syllable-like units (Ahissar et al., 2001; Lakatos et al., 2005; Hyafil et al., 2015).

A contemporaneous approach of continuous analyses remains more agnostic to-
wards mechanistic accounts of the responses. Here, either univariate cross-correlation
(Abrams et al., 2008; Hertrich et al., 2012; Ince et al., 2017) or, more recently, multivari-
ate temporal response function approaches (Lalor & Foxe, 2010; Ding & Simon, 2012;
O’Sullivan et al., 2015; Crosse et al., 2016; Brodbeck & Simon, 2020) are used to con-
struct en- or decoding models relating MEEG responses to stimulus features. This has
opened the door to richer (Di Liberto et al., 2015) and more elaborate computational
accounts (Brodbeck et al., 2018b; Donhauser & Baillet, 2020; Heilbron et al., 2021) of
MEEG responses to speech.

In light of such developments, chapter 2 calls for sustained attention to not only more
complex, but also simpler models. Neuroscientists will rightly assume great undiscov-
ered complexity in MEEG responses to speech. Accordingly complex models should
however always be subjected to severe tests against less complex alternatives. This
holds especially for experiments relying on uncontrolled naturalistic stimulation, and is of
direct interest to translational opportunities such as the application to hearing aids. Here,
the decoding of attention to a speaker amongst a multitude of sound sources (Ding & Si-
mon, 2012; O’Sullivan et al., 2015; Brodbeck et al., 2020) is hoped to be exploitable
in order to selectively amplify the signal of interest for the wearer of the hearing aids
based on EEG electrodes placed e.g. in the ear canal (Fiedler et al., 2017; Geirnaert
et al., 2021). Such devices are limited in both computing power and energy consump-
tion, and will therefore benefit from incentives to balance complex accounts with simpler
explanations wherever possible (Kubilius, 2018).

Chapter 3 then takes a more methodological perspective on the problem. The van-
tage point here is the observation of band-limited components in responses to speech
(Ding & Simon, 2014). A computational function of such oscillations could be to rep-
resent a hypothesis of upcoming stimulus input by virtue of its continuous alignment to
the merely “quasi-rhyhtmic" temporal stimulus structure (Lakatos et al., 2005; Giraud &
Poeppel, 2012; Lakatos et al., 2019). If such an “entrainment" of response components
takes place, then an interesting challenge is to separate response components reflecting
the prediction based on past input from response components reflecting the alignment,
i.e. reactions to aspects of the stimulus that were not anticipated. Methodologically,
this falls into the purview of Granger-causal approaches (Granger, 1969), or their infor-
mation theoretic generalisation, transfer entropy (TE, itself classically implemented as
conditional MI). Here, parts of the responses that are predictable from their own past are
attempted to be omitted when estimating the stimulus-response relationship. Such ap-
proaches however are generally problematic when applied to band-limited signals (Florin
et al., 2010; Barnett & Seth, 2011). The chapter aims to overcome these problems, test
the proposal on simple simulations and explore the results it suggests when applied to
real data from chapter 2.
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Looking ahead, computational modeling of language and speech, methodological
developments for mapping models to responses, medical applications and last but not
least new recording techniques such as optically pumped magnetometers (Boto et al.,
2018; De Lange et al., 2021) promise to keep the field exciting.

1.4.2 Visual perception of faces

As speech, faces are an important social stimulus that humans, unless they are living in
isolation and without access to reflective surfaces or cameras, are confronted with on a
daily basis. In light of the intensive exposure to and the high relevance of faces (Gau-
thier et al., 1999; Jack & Schyns, 2017), it is not surprising that entire brain areas have
been ascribed the main purpose of processing this class of visual stimuli (Sergent et al.,
1992; Kanwisher et al., 1997; Grill-Spector et al., 2004). In order to categorise faces on
continua such as familiarity, age or sex, humans tend to be highly skilled in processing
faces. Except for face-blind or “prosopagnostic” individuals (Bodamer, 1947), humans
can detect even small differences in such high-dimensional visual objects with high ac-
curacy, such that it has even been suggested to use parameterisations of them for data
visualisation (Chernoff, 1973). It is for a similar reason that faces are an interesting class
of stimuli for vision sciences: They are an example of a category for which it is compa-
rably easy to construct generative models of stimuli in high dimensional pixel space by
varying relatively few underlying dimensions.

To develop the significance of this, we will first consider a brief historic overview over
a line of research that is concerned with extracting mental representations from experi-
mental participants. In general, such experiments follow the idea of the encoding model
as described above. Importantly however, stimuli are sampled from random distributions
in order to characterise response biases.

These experiments go back to ideas of Wiener (1958), who had postulated that in or-
der to characterise an unknown nonlinear system just by relating its inputs to its outputs,
Gaussian white noise inputs would be optimally suited. The suggested procedure be-
comes intractable to characterise higher-order nonlinearities (Marmarelis & Naka, 1972;
Franz & Schélkopf, 2005), but started a tradition in electrophysiology where impulse re-
sponses of single neurons to temporally decorrelated white noise stimuli were estimated
with linear cross-correlation. This was originally referred to as “triggered correlation”
(De Boer & Kuyper, 1968), since only performing the computation of the correlation at
the onset of sparsely occurring spikes was more efficient than computing it over the
whole response vector. Later, this was referred to as “reverse correlation”, since in this
procedure, one would go back in time to look up stimulus segments preceding the spike
(Jones & Palmer, 1987; Dayan & Abbott, 2001; Ringach & Shapley, 2004).

Applying this principle to human behavioural experiments had its origins in the au-
ditory domain (Ahumada Jr & Lovell, 1971), where it was implemented as a multiple
regression encoding model. The application in vision experiments followed later (Abel
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& Quick Jr, 1978; Ahumada Jr, 1996). Here it was mainly referred to as “classification
images" (Murray, 2011), classically consisting of a structuring signal (e.g. a neutral face)
on which pixel noise is overlaid. The classification image is then a visualisation of the
statistical relationship between the stimuli at each stimulus dimension (e.g. pixel loca-
tion) and the responses. Ignoring nuisance effects such as fatigue, the responses follow
the task instructions of the experiment, which usually ask participants to rate the simi-
larity of the stimuli to a category of interest. The assumption then is that the noise in
stimuli that cause a given response contains patterns that match the participant’s per-
sonal mental representation of the concept of interest to some degree. In this way, the
final classification image reflects an estimate of such mental representations. It is for ex-
ample possible to present entirely unstructured pixel noise to participants, falsely inform
them that on half of the trials the letter “S" will be shown which they are to detect, and
obtain weights of encoding models that show the respective letter (Gosselin & Schyns,
2003). Importantly, details of the reconstructed letter such as its font are uniquely de-
fined by the participant’s personal interpretation of the category that is abstractly defined
in the task instructions. In principle, this approach is applicable to arbitrary categories,
but has a strong tradition for face information such as the emotional expression, identity
or ethnicity (Gosselin & Schyns, 2003; Mangini & Biederman, 2004; Dotsch et al., 2008).
Within this tradition, the term “reverse correlation" is used for experiments characterising
response biases from noise stimuli (Gosselin & Schyns, 2003), although an analysis of
the eponymous temporal dimension is usually not considered.

An important element of these studies is the format which the noise is rendered in.
Since a direct mapping of samples from a random distribution to pixel intensities of im-
age stimuli can be seen as the simplest form of a generative model of visual stimuli, this
problem brings us back to the beginning of the section. Pixel noise allows a high degree
of freedom with respect to what can appear in the final classification image. However,
it requires a substantial number of trials in order to reveal effects that surpass noise
thresholds, since the perceived similarity of a given category of interest and a given pixel
noise image is restricted to low levels. In analogy to this, the field of electrophysiol-
ogy had found neurons that would only respond weakly to white noise stimulation, but
vividly to naturalistic stimuli with more complex statistics (Rieke et al., 1995; Theunis-
sen et al., 2000). When the experimenter has a strong prior about the object class of
interest, it is possible to effectively leverage this prior in terms of a generative model that
imposes a corresponding structure on samples from a random distribution (Chomsky,
1965; Grenander, 1994; Olman & Kersten, 2004; Jack & Schyns, 2017). This will con-
strain the kind of classification image (or “classification object", Olman & Kersten, 2004)
that can be obtained: with a face prior, the reconstruction will always be a face as defined
by a generative model of faces. To the degree to which such a prior is sensible, it will
enhance the reconstruction of a mental representation by narrowing the sampling space
for the experiment to fewer dimensions of higher relevance. As a result, more realistic
reconstructions can be obtained, for example of dynamic emotional expressions (Jack
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et al., 2012) or of the participant-specific memory of a given familiar person (Zhan et al.,
2019a). Both of these examples rely on a generative model that renders pixel images
of faces as a function of 3D shape and RGB texture parameters as well as viewing and
lighting angles. An important corollary is that with such models of the latent causes of
variance in pixels of images, it becomes possible to attribute variance in behavioural re-
sponses to the hypothesised causes of the images instead of only their pixels (Olman &
Kersten, 2004). This becomes important when for example considering how entirely dif-
ferent pixel regions of an image carry the information of the same underlying face shape
at different viewing angles. Attributing a system’s outputs to such pixel regions in one
viewing angle is of little help when trying to infer the output-relevant regions of an image
of another viewing angle.

Chapter 4 re-examines the dataset recorded by Zhan et al. (2019a) mentioned above.
In the chapter, a framework is developed to apply the vision scientific approach as de-
scribed above to the question of forward encoding models of human vision. These mod-
els take on the daunting task of recreating central aspects of the mapping from the
human retina to the latent mental spaces that eventually afford behaviour. Deep neural
network models (DNNs, Fukushima, 1980; LeCun et al., 2015) are an interesting candi-
date, since they have been shown to solve end-to-end engineering challenges of com-
puter vision with unprecedented performance scores. The central idea of the chapter is
to subject various DNNSs to the same controlled “face noise" that human participants had
seen and rated, so that it becomes possible to compare DNNs and humans with respect
to the same experimentally controlled causal structure of the stimuli. In this sense, it is
attempting to move beyond the dominant approach in the current literature which eval-
uates encoding models of human vision (such as DNNs) by only seeking to establish a
high prediction performance between uncontrolled inputs and outputs, and thus has no
classical vision scientific grasp on what it is that the models are predicting outputs with.
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2.1 Abstract

When we listen to speech, we have to make sense of a waveform of sound pressure.
Hierarchical models of speech perception assume that, to extract semantic meaning,
the signal is transformed into unknown, intermediate neuronal representations. Tradi-
tionally, studies of such intermediate representations are guided by linguistically defined
concepts, such as phonemes. Here, we argue that in order to arrive at an unbiased
understanding of the neuronal responses to speech, we should focus instead on repre-
sentations obtained directly from the stimulus. We illustrate our view with a data-driven,
information theoretic analysis of a dataset of 24 young, healthy humans who listened to
a one-hour narrative while their magnetoencephalogram (MEG) was recorded. We find
that two recent results, the improved performance of an encoding model in which an-
notated linguistic and acoustic features were combined, and the decoding of phoneme
subgroups from phoneme-locked responses, can be explained by an encoding model
that is based entirely on acoustic features. These acoustic features capitalise on acous-
tic edges and outperform Gabor-filtered spectrograms, which can explicitly describe the
spectrotemporal characteristics of individual phonemes. By replicating our results in
publicly available electroencephalography (EEG) data, we conclude that models of brain
responses based on linguistic features can serve as excellent benchmarks. However, we
believe that in order to further our understanding of human cortical responses to speech,
we should also explore low-level and parsimonious explanations for apparent high-level
phenomena.

2.2 Introduction

Speech perception is often conceptualised as a hierarchical process (Pisoni & Luce,
1987; DeWitt & Rauschecker, 2012). The human brain is assumed to extract semantic
meaning from a highly dynamic sound pressure signal via a cascade of transformations
that create increasingly abstract representations of speech. It is well established that
perceived speech sounds are first decomposed into a spectrally resolved representation
at the cochlea. Various structures along the subcortical auditory pathway are believed
to then undertake further processing steps (Verhulst et al., 2018; Sitek et al., 2019).
However, considerable uncertainty remains about exactly how sound is represented in
the auditory cortex (Mtynarski & McDermott, 2018).

One way to gain further insight into human speech processing is to employ encoding
models. These models aim to predict the time-series of recorded neural data from the
waveform of the presented stimulus. A popular framework for encoding models organ-
ises this in two steps (Naselaris et al., 2011; Holdgraf et al., 2017). In the first step,
the stimulus material undergoes nonlinear transformations into various sets or spaces
of features. These features capture hypotheses about the cortical computations that are
performed on the input signal. In the second step, a linear mapping of these feature
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spaces onto the neuronal responses is obtained to evaluate the utilised hypotheses in
terms of out-of-sample linear prediction performance. In this way, data-rich, naturalistic
listening conditions of a relatively long duration can be exploited, considerably improv-
ing a model’s validity over isolated and artificial experimental paradigms (Theunissen &
Elie, 2014; Hamilton & Huth, 2018). Recent results demonstrate the applicability of this
approach across various neuroimaging modalities and research questions (Di Liberto
et al., 2015; Huth et al., 2016; de Heer et al., 2017; Berezutskaya et al., 2017; Forte
et al., 2017; Maddox & Lee, 2018; Kell et al., 2018; Brodbeck et al., 2018b,a; Biesmans
et al., 2017; Broderick et al., 2018b).

A compelling finding obtained with this approach is that predictions of cortical re-
sponses as measured by EEG (Di Liberto et al., 2015) or functional magnetic resonance
imaging (fMRI, de Heer et al., 2017) using acoustic feature spaces can be improved by
additionally considering so-called articulatory feature spaces. The latter originate from
the linguistic concept of representing a language with a set of minimal contrastive units,
called phonemes. However, superior temporal regions are known to selectively respond
to subgroups of phonemes rather than to individual phonemes (Mesgarani et al., 2014).
Therefore, the full phoneme set is usually reduced by mapping each phoneme to its
corresponding vocal gestures (“articulatory features”), such as the voicing, tongue po-
sition or place and manner of articulation. Recently, it was shown that these manners
of articulation can also be decoded from EEG data time-locked to phoneme onsets in
continuous speech stimuli (Khalighinejad et al., 2017). Encoding and decoding analy-
ses based on articulatory feature spaces are thus interpreted as concordantly capturing
a faculty called “pre-lexical abstraction” (Obleser & Eisner, 2008), i.e., a transformation
of continuous physical properties of the waveform to speech-specific, categorical and
invariant units of perception.

However, the transformation of speech stimuli into articulatory features comes with
certain critical caveats. Most importantly, this representational format of speech is based
on concepts that humans have agreed on to talk about language. And while a match of
such linguistic constructs with physiological responses is conceivable, it is a potentially
biased and specific hypothesis with a range of alternatives (Pisoni & Luce, 1987; Hasson
et al., 2018; Massaro, 1974; Lotto & Holt, 2000). Moreover, the partly arbitrary mapping
of phonemes to articulatory features provides a low degree of computational specifica-
tion. As such, models that use articulatory features could be considered to be so-called
‘oracle models’, which rely on information that is not available to the individual’s brain
being modelled (Kriegeskorte & Douglas, 2018a).

Additionally, current implementations of this transformation rely on a semi-automated,
forced alignment of a textual transcription to the sound wave of the stimulus material.
While such alignment methods incorporate a high degree of computational sophistica-
tion, the task they solve is not a good model of the task that the listening brain faces.
This compromises the usefulness of the intermediate representations generated by such
alignments to serve as candidate features to predict brain responses, such that usually
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only the final output is used. It thus remains unclear whether the level of complexity
implied by the final articulatory features is actually necessary.

These caveats thus raise an important question. Can the gain in prediction perfor-
mance that is reportedly provided by articulatory features be explained by alternative
features that are based on computationally more specified, physiologically plausible and
possibly less complex transformations of stimulus acoustics? The extent to which this
were the case would indicate how much of the predictive gain that is provided by ar-
ticulatory features is attributable to the generic, feed-forward processing of an acoustic
stimulus that is not specific to speech processing. When choosing such acoustic feature
spaces, one can proceed in different directions. One possibility is that in order to explain
the same variance as models based on articulatory features, the characteristic spec-
trotemporal patterns that define the phoneme subgroups are needed. Correspondingly,
one could extract such abstract information from the spectrogram with suitable filters. A
physiologically inspired candidate feature space is the Gabor-filtered spectrogram, which
interestingly improves the performance of automatic speech recognition (ASR) software
when used as input features (Schéadler et al., 2012). With this generic class of spec-
trotemporal kernels, one can describe several acoustic patterns that dissociate groups
of phonemes. Examples include the spectral distance between formants, as captured
by filters of different spectral modulation, and formant transitions, as captured by filters
of joint spectrotemporal modulation. Although this feature space is long established in
encoding and decoding models of the human and animal midbrain and auditory cortices
(Holdgraf et al., 2017; Berezutskaya et al., 2017; Qiu et al., 2003; Pasley et al., 2012;
Santoro et al., 2014, 2017; Norman-Haignere & McDermott, 2018; Schénwiesner & Za-
torre, 2009), it has yet to be applied to magneto- and electroencephalography (MEEG)
data.

Another possibility is that the performance boost provided by articulatory features
is instead attributable to their correlation with simpler acoustic properties. It has repeat-
edly been observed that neuronal responses from bilateral superior temporal regions are
particularly sensitive to acoustic edges (Prendergast et al., 2010; Hertrich et al., 2012;
Gross et al., 2013; Doelling et al., 2014; Hamilton et al., 2018; Oganian & Chang, 2019).
Features that extract these onsets from envelope representations via a half-wave rectifi-
cation of the temporal gradient of time- varying energy have been used in several studies
(Hertrich et al., 2012; Hambrook & Tata, 2014; Fiedler et al., 2018). Features that rely
on the temporal gradient also capture the relationship of neighbouring time points, which
contain information present in MEEG data across a range of different analyses (Ince
et al., 2017). It is thus interesting to assess the degree to which the gain in prediction
performance that is provided by articulatory features can be explained by such onset
features.

In this study, we examined these two possible explanations by comparing the pre-
dictive power of different acoustic feature spaces to that of an annotated articulatory
feature space. We performed these investigations on an MEG story dataset of one hour
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Figure 2.1: Study concept and design.

A Magnetoencephalography (MEG) data were recorded while participants (n = 24)
listened to a story of 1 hour duration. B The speech waveform was then nonlinearly
transformed into various feature spaces. C These feature spaces were used to predict
neuronal responses using (multivariate) temporal response functions ((m)TRFs) in a
nested cross-validation framework. The majority of the data were used to fit the
(m)TRFs. D Hyper-parameters controlling the (m)TRFs (separately for each feature
(sub-)space, hemisphere and participant: temporal extent and L2 regularisation) and
the MEG source reconstruction (sensor covariance matrix regularisation and position of
dipoles in source space) were optimised on separate validation data. E The predicted
responses of the encoding model (dashed lines) were evaluated on unseen test data by
asking to which degree a benchmark feature space that relied on articulatory features
was redundant with competing, acoustic feature spaces using partial information
decomposition (PID). F Additionally, four classes of phonemes were decoded from
phoneme-locked observed and predicted MEG responses. PID was used to determine
to which degree the predictions of the encoding models contained the same information
about phoneme classes as the observed data.

duration per participant in a rigorous data-driven approach (see figure 2.1). A nested-
cross validation framework (Varoquaux et al., 2017) was used to delegate the choice of
model settings to a recent optimisation algorithm (Acerbi & Ma, 2017). We thus allowed
encoding models based on different feature spaces the same chances to find optimal
parameter combinations with a minimum of a-priori information, while minimising the risk
of overfitting. We then applied partial information decomposition (PID, Ince, 2017a) to
assess the degree to which the predictions of acoustic-feature-based models shared in-
formation about observed recordings with those of articulatory feature-based models,
and to assess the degree to which these feature spaces contained unique predictive in-
formation. This flexible theoretic framework also allowed us to quantify to what extent the
information about manners of articulation decodable from phoneme-evoked responses
could be accounted for by the predictions of our encoding models. Lastly, since MEG
and EEG data can reflect different neuronal processes (Destoky et al., 2019; Cohen &
Cuffin, 1983), we performed similar analyses on a publicly available EEG story-listening
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dataset (Broderick et al., 2018b). Using this approach, we found that apparent encod-
ing and decoding signatures of high-level pre-lexical abstraction could be explained with
simple low-level acoustic models.

2.3 Results

2.3.1 Speech tracking in bilateral auditory cortices
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Figure 2.2: Identification and characterisation of story-responsive regions in
source space.

A Grand average story responsivity (variance of source-reconstructed brain activity
recorded during first presentation explained by activity recorded during second
presentation of the last block). Each image shows different viewing angles on the same
data. B (Left) Story responsivity using mutual information (Ml). Plot shows MI of activity
in the first repetition of the last block about activity in the second repetition of the last
block. (Right) Shared information (redundancy) of activity at bilateral story-responsivity
peaks in the first repetition and activity in the first repetition at each other grid point
about activity at these other grid points in the second repetition. See video S1 for
further explanation. Data from one exemplary participant are shown. C Unique
information added by sources additional to the bilateral story-responsivity peaks. See
also figure 2.3.

First, we characterised where in MEG source space we could find robust responses
related to speech processing and also the spatial resolution that these responses could
be studied at. To identify regions in source space where MEG responses were repeatably
activated by the stimulus (“story responsive" regions, Honey et al., 2012; de Heer et al.,
2017), we correlated source-localised, full-brain responses to one chapter of the story
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to the responses to its repeated presentation. These correlations peaked in regions that
agree with the typical localisation of the bilateral auditory cortices (ACs, figure 2.2A).
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Figure 2.3: Caption on following page.

Instead of falling off sharply, the story responsivity decreased gradually with increas-
ing distance from these peaks. However, we expected that querying activity from different
locations within these story-responsive regions would yield highly similar (i.e. redundant)
time series since the spatial resolution of MEG inverse solutions is inherently limited (Fa-
haribozorg et al., 2018). To avoid an unnecessary computational burden for the later
modelling, we therefore explored how much of the repeatable activity we could explain
with dipoles at the two bilateral story responsivity peaks, and also how much we could
explain by considering further dipoles at different locations. To do so, we implemented
an iterative information theoretic approach based on PID (see video S1 and methods
2.5.2 for a detailed description). This approach revealed that indeed one source per
hemisphere could account for most of the spatial spread of the story responsivity. The
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Figure 2.3 (previous page): Redundancy is related to Cross-Talk and Point-Spread
Functions (related to figure 2.2).

A Cross-Talk Function in one exemplary participant (same as in figure 2B). It shows
how activity at different grid points leaks into estimates of activity queried at grid point of
interest, here at a right AC dipole. B Relationship of squared Cross-Talk Function (CTF)
and Redundancy in exemplary participant. Correlation in top left reports Pearson
correlation. The mean of this correlation (Fisher-Z transformed before averaging and
retransformed after averaging) was 0.75 (right AC, range: [0.26,0.91]) and 0.68 (left AC,
range: [—0.09,0.94]). C Point-Spread Function in one exemplary participant. It shows
how activity at grid point of interest, here at a right AC dipole, leaks into estimates of
activity queried at other positions in source space. D Relationship of squared
Point-Spread Function (CTF) and Redundancy in exemplary participant. Correlation in
top left reports Pearson correlation. The mean of this correlation (Fisher-Z transformed
before averaging and retransformed after averaging) was 0.60 (right AC, range:
[0.16,0.83]) and 0.51 (left AC, range: [—.10,.87]).

individual maps of story-responsivity correlated highly with maps of redundancy (aver-
age Pearson correlation 0.89, range: [0.80,0.97], figure 2.2B). As such, the information
that activity at additional grid points carried about the activity recorded during the sec-
ond presentation of the same chapter largely overlapped with the information that could
be obtained from activity at the bilateral peaks. Correspondingly, the amount of infor-
mation contributed by sources additional to the bilateral peaks fell off in a characteristic
L-shaped curve (figure 2.2D). This was largely attributable to measures of leakage of
the spatial filters, such as their cross-talk and point-spread functions (see figure 2.3 for
details).

Based on these results, we subsequently analysed one source location per hemi-
sphere, since this single location could capture the repeatable signal that stems from the
bilateral ACs. Note, however, that in the following modelling, the exact location of these
two sources was not fixed, but instead was optimised independently for each tested fea-
ture space.

2.3.2 Predictive power of feature spaces

The main goal of this study was to compare the cross-validated performance of linear
models that were trained to predict relevant parts of the MEG responses from different
sets or “spaces” of features extracted from the speech stimulus. The central question we
investigated was: to what degree can purely acoustic feature spaces achieve the perfor-
mance of a benchmark feature space (namely, spectrograms and annotated articulatory
features combined (Di Liberto et al., 2015)? Crucially, our modelling approach ensured
that the settings of our models (“hyper-parameters”) could flexibly adapt to each different
feature (sub-)space, individual participant, and to each hemisphere (see methods for a
detailed description). The hyper-parameters operated on the predictors, the model, and
also the MEG responses such that, for example, the exact position of the dipole in source
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space was optimised for each feature space (see table 2.1 for an overview over all fea-
ture spaces used in this study). This gave each feature space the same chances to opti-
mally predict the MEG responses within our bilateral sources linear modelling framework.
The performances of our models exhibited relatively large inter-participant variability and
comparatively low variability across feature spaces (figure 2.4A).
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Figure 2.4: Caption on following page.

To focus on the systematic differences across the feature spaces, we used Bayesian
hierarchical linear modelling (Blrkner, 2017) and separated the overall effects of dif-
ferent feature spaces from effects attributable to participants, hemispheres and cross-
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Figure 2.4 (previous page): Evaluating the performance of different feature spaces.
A Raw test set performances in the left and right auditory cortex (AC) for models based
on different feature spaces shown on the horizontal axis. See table 2.1 for an
explanation of the feature spaces and their shorthand notations. Each colour codes for
a single participant (n = 24), each dot is one test set. Pooled medians are indicated with
black lines. B Samples from the posterior distribution of differences of beta estimates
(competing feature spaces minus benchmark Sg&Art feature space, results left of the
red line thus reflect that the Sg&Art feature space has a higher performance, results
right of the red line indicate that the competing feature space has a higher
performance). Feature spaces are colour coded as indicated. C Percent of samples in
favour of hypotheses of differences of beta estimates between all feature spaces.
Hypotheses are colour coded using the same colour mapping as in B, which
corresponds to the bottom row and right column of the matrix shown here. D Samples
from posterior distribution of differences of beta estimates of individual participants’
right ACs minus left ACs. Colour mapping in D is the same as in A. See also Figures
2.5and 2.6.

validation folds. We extracted the samples of the posterior distributions of the regression
coefficients (“betas”) of interest. We then subtracted the samples that referred to the
benchmark feature space from those referring to the other competing feature spaces.
From the resulting posteriors of differences (figure 2.4B), we could determine the frac-
tion of samples above or below zero, i.e. in the direction of the corresponding hypotheses
(fn,)- We repeated this for all other possible comparisons between the feature spaces
(figure 2.4C).

Initially, we were interested in whether we could replicate the previously reported
increase in prediction performance when combining linguistically motivated articulatory
features with spectrograms (Sg&Art, red vertical line, figure 2.4B) over spectrograms
alone (Sg, blue) in our data. Indeed, we found a large fraction of samples of the posterior
of differences in favour of a successful replication (mean of the difference in Pearson
correlation A =0.0093, f;,, = 0.9994). This allowed us to test whether various alternative
feature spaces could achieve a similar gain in performance in order to investigate the
origin of the improved prediction achieved using articulatory features.

We first investigated spectrotemporal Gabor patterns, which can be used to disso-
ciate several phonemic groups (Schéadler et al., 2012), because the articulatory feature
space might have benefitted from describing responses that are specific to phoneme
subgroups. In combination with the spectrogram, which directly accounted for time vary-
ing sound energy, this feature space (Sg&Gb, yellow) achieved a comparable gain in
prediction performance over the spectrograms alone (A = 0.0098, f, = 0.9994). lts
performance was on par with the benchmark feature space (Sg&Art), i.e. it was only
negligibly better (A = 0.0006, f,, = 0.5960). This feature space thus achieved a similar
performance to that of the linguistically motivated feature space but did so without re-
quiring linguistic concepts. Instead, it was physiologically motivated and computationally
fully specified.
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Shorthand Name Dimensionality Description

Env envelope 1 sum across channels of
Sg

Sg log-mel spectrogram 31 spectral decomposition of

time-varying stimulus en-
ergy in 31 mel-spaced
bands with logarithmic
compressive nonlinearity

S9&(Sg’)+ combination of Sgand  31+31 Sg and positive temporal
half-wave rectified tem- rate of change of power in
poral derivatives of in- each channel of Sg
dividual Sg channels

Sg&Gb combination of Sgand 31 -+455 Sg and decomposition of
Gabor-filtered Sg Sg according to spectral,

temporal and joint spec-
trotemporal modulations

Sg&PhOn combination of Sgand 31+1 Sg and unit impulses at
annotated phoneme the beginning of each an-
onsets notated phoneme

Sg&Art combination of Sgand 31423 Sg and 23 channels with
articulatory features of unit impulses at the begin-
each phoneme, ning of each phoneme
“benchmark features" characterised by the cor-

responding vocal gesture

Sg&(Sg')+ &Art  combination of 31+31+23 Control combination

Sg&(Sg')+ and articu-
latory features of each
phoneme

Table 2.1: Feature spaces.

However, we also wanted to explore simpler models to determine the level of com-
plexity that would be required to optimise prediction. Sound onsets offer a promising
candidate for a neurally relevant, low-dimensional auditory feature (Hertrich et al., 2012;
Hamilton et al., 2018; Oganian & Chang, 2019; Ince et al., 2017). As a first test of this
hypothesis, we reduced the articulatory features to phoneme onsets (Sg&PhOn, pink).
This model outperformed the spectrograms in a similar way to Sg&Art (A = 0.0081,
frn, = 0.9983), indicating that the performance increase obtained with articulatory fea-
tures originates from the timings of the phoneme onsets, and not the identity of different
phoneme subgroups.

The phoneme onsets were, however, still an abstracted representation of the stimulus
resulting from transcription alignment, with an unclear relation to the original acoustics.
One way to derive a signal representing sound onsets directly from speech acoustics is
by half-wave rectification of the first derivative of the time-varying stimulus energy (Her-
trich et al., 2012). This quantifies positive rates of change, i.e. increases in the stimulus
amplitude. We found that spectrally resolving this energy using spectrograms (Sg, blue)
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Figure 2.5: Caption on following page.

outperformed the broadband envelope (Env, black, A = 0.0152, f; = 1). We therefore
computed the positive rate of change of energy of the individual channels of the spec-
trogram. Combined with the spectrogram features, this model (Sg&(Sg’)-, turquoise,
(figure 2.4B) outperformed the benchmark feature space (A = 0.0073, f;, = 0.9972). It
also outperformed the combination of spectrograms and Gabor-filtered spectrograms
(A =0.0067, fn, = 0.9958). Thus, a relatively simple acoustic feature space that fo-
cussed on acoustic edges not only equalled the benchmark but surpassed it. As a first
test whether these best acoustic features could account for the same information as the
articulatory features, we also tested a combination of them (Sg&(Sg')+ &Art, purple). The
improvement of this combination of three feature subspaces over the best acoustic fea-
ture space was negligible (A = 0.0013, f,, = .0.7078). This indicated that the articulatory
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Figure 2.5 (previous page): Hyperparameter choices for source model optimisation
(related to figure 2.4).

A Maximum distance between source positions used for test set prediction across all
test sets and feature spaces. Each dot is one participant in the respective hemisphere,
colour codes participants. B and C Positions of all test sets and feature spaces in
meshes of individual brain volumes of two exemplary participants. B shows the
participant with the largest maximum distance between chosen source locations and C
the participant closest to the median of maximum distances between chosen source
locations. Each dot is one test set, colour codes feature spaces. D Evaluation of spatial
clustering of choices of source positions for different feature spaces using the
Silhouette Index. Values close to 1 reflect that the optimisation procedure finds
positions in source space that are highly similar within feature spaces but dissimilar
across feature spaces, lower values reflect that the found positions are randomly
arranged in source space. Each dot is one test set of one participant, colour codes
participants. Black lines denote pooled means. E Choices of beamformer regularisation
hyperparameter A,,,c. for each feature space. Each dot represents one test set of one
participant, colour codes participants. Black lines denote pooled means.

features are not needed for an optimal prediction of the MEG responses.

We also explored the lateralisation of the performances by evaluating within-participant
differences across hemispheres independent of feature spaces (figure 2.4D). We found
that the posterior distributions of hemispheric beta differences were narrow for individual
participants but exhibited a broad range of means within our sample. Some participants’
responses were easier to explain in the left AC, others in the right AC, while for some
there were no strong lateralisation effects.

Taken together, these results demonstrate that the gain in prediction performance
obtained by combining articulatory features with spectrograms can be replicated in MEG
data. However, a similar or even larger gain can be obtained by using algorithmically
specified and generic acoustic features that capitalise on acoustic edges. Their perfor-
mance in turn could not be improved by combining them with articulatory features. Next,
we wanted to reveal in more detail how the precise information about the MEG predicted
by the competing feature spaces was related to the information predicted by the bench-
mark articulatory features: were the similar levels of performance driven by the same or
by different predictive information?

2.3.3 Shared and unique information of articulatory and acoustic
features

Even if two models have the same predictive power, both higher than a reference model,
each could offer improved performance based on different information (i.e. by better-
predicting different periods of the speech signal) or the same information (i.e. by better-
predicting the same periods of speech). The information theoretic PID framework (Ince,
2017a; Williams & Beer, 2010) provides a means to address this question (see meth-
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ods 2.5.5 for details). We used it to address two questions: 1) to which degree is the

information carried by the acoustic- feature-based predictions shared (redundant) with

that carried by predictions based on the benchmark articulatory features? And 2) to

which degree do the predictions from each feature space contain unique information?

If the benchmark features could be explained by the acoustic alternatives, then the re-

sults would be characterised by 1) a high degree of redundancy and 2) a low amount
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Figure 2.6 (previous page): Hyperparameter choices of forward model optimisation
differ systematically across feature (sub-)spaces (related to figure 2.4).

A Choices of temporal extent hyperparameters for each feature (sub-)space. Shown
are averages across inner folds used for test set predictions, pooled across participants.
Values that were used in all cross-validated models of all participants are plotted as
transparent bars ranging from #ysi, — faax Such that the opacity codes for the number of
participants and folds for which the temporal extent was chosen correspondingly. B
Choices of L2 regularisation hyperparameters for each feature (sub-)space. Shown are
distributions of choices averaged across inner folds used for test set predictions, pooled
across participants. Colours code feature spaces.

of unique information left to the benchmark articulatory features. Such a finding would
suggest that the two feature spaces predict the same parts of the response in the same
way.

To investigate this question, we retrained all models with their source-space-related
hyper-parameters fixed to the values that were found to be optimal for the benchmark
articulatory features. We then considered separate, pairwise PIDs, where each acoustic
feature space was compared to the benchmark articulatory feature space (figure 2.7).
To make the resulting quantities more easily interpretable, we normalised the resulting
redundant and unique information by the marginal Mutual Information (MI, Ince et al.,
2017, a non-parametric measure of the relationship between variables) of the bench-
mark features and the observed MEG. We then statistically analysed these values using
Bayesian hierarchical models similar to our analyses of the raw performances, focussing
again on the regression coefficients that modelled the effects of feature spaces.

The acoustic features with the best prediction performance, Sg&(Sg').-, were indeed
also highly redundant with the benchmark articulatory features, reaching ~ 100% of the
marginal Ml provided by Sg&Art about the observed MEG (mean of the corresponding
effect: 0.99, 95% credible interval (Cl) [0.98,1.01]). The same was the case when com-
bining the best acoustic features with the articulatory features (Sg&(Sg’)+ &Art, mean:
1.01, 95% ClI: [0.99,1.02]). Furthermore, we observed more unique information present
in the acoustic feature space (mean: 0.07, 95% CI: [0.06,0.09]) than in the benchmark ar-
ticulatory feature space (f;, = 1), in which the unique information was distributed around
0 (mean: 0.01, 95% CI [—0.01,0.02]). This means that all of the predictive information of
the benchmark Sg&Art model was included in the predictions of the Sg&(Sg')+ model.
There was no unique information available in the Sg&Art prediction that a Bayesian op-
timal observer could not have extracted from the Sg&(Sg')+ model.

Lastly, the information about the MEG responses only available from a joint consider-
ation (i.e. synergy) of the benchmark articulatory features and the best acoustic features
had a negligible effect size that was two orders of magnitude lower than that of the re-
dundancy and failed to surpass a permutation-based noise threshold (see figure 2.11).
These results agreed with the finding that a combination of the best acoustic feature
spaces and the articulatory features did not have a better prediction performance than
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Figure 2.7: Shared and unique contributions of articulatory and competing
features.

A Normalised redundancy in left and right auditory cortex (AC). Each colour codes for a
single participant (n = 24). Each dot is one test set of one participant, black and red
lines show pooled medians. B Normalised unique information of benchmark articulatory
features and competing features in left and right AC. Colours code for a feature space,
as shown. Each dot is one test set of one participant, black red lines show pooled
medians. C and D Modelling of redundancy and unique information results,
respectively. Filled areas show density estimates of posterior distributions of estimates
of betas of feature spaces. Lines show density estimates of samples from posterior
predictive distribution of the respective condition. Colour coding of feature spaces is the
same as in B. See also figure 2.11.

the best acoustic features (see previous section).

A relatively high, normalised redundancy close to 100% was also achieved by
Sg&PhOn (mean: 0.97, 95% Cl: [0.96,0.99]). In addition, Sg&PhOn provided a weak
amount of unique information (mean: 0.03, 95% CI: [0.01,0.05]) and left a very similar
amount of unique information to the benchmark articulatory feature space (mean: 0.03,
95% CI: [0.01,0.04]). The annotated onsets thus provide most of the information that the
benchmark features provide about the observed MEG.

A very similar pattern was found for the second-best acoustic features, Sg&Gb.
These features also achieved a relatively high redundancy (mean: 0.96, 95% Cl:
[0.95,0.97]) but one that was lower than that of the best acoustic features (f;, = 0.9988).
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Sg&Gb also provided a weak amount of unique information (mean: 0.04, 95% CI:
[0.02,0.05]) and left a very similar amount of unique information to the benchmark articu-
latory features (mean: 0.04, 95% CI: [0.02,0.06]). We conclude that this high-dimensional
acoustic feature space included both relevant and many irrelevant dimensions. The in-
crease in the separability of the different spectrotemporal patterns that refer to different
phoneme subgroups (Schéadler et al., 2012) is thus less important than the sound energy
patterns that are contained in the best acoustic feature space.

Finally, as expected from their comparably low prediction performances, the remain-
ing feature spaces (Env and Sg) exhibited redundancies that were lower than that of the
previously mentioned feature spaces (both f;,, = 1). They also left considerable amounts
of unique information to the benchmark feature space while providing no substantial pos-
itive unique information themselves (mean of Env: —0.03, 95% Cl: [-0.05,—0.02]; mean
of Sg: 0.00, 95% Cl: [—0.02,0.02]).

On a group level, all of these patterns were highly similar between left and right ACs.

Thus, the best acoustic features achieve their improved prediction performance over
spectrograms alone by explaining the same parts of the responses that the benchmark
articulatory features explain, and they additionally explain parts that the linguistic fea-
tures do not while a joint consideration of both feature spaces does not add meaningful
extra information.

2.3.4 Phoneme-evoked dynamics of observed and predicted time-
series

As recently demonstrated, four manners of articulation of phonemes can be decoded
from EEG data (Khalighinejad et al., 2017). We next assessed if this decoding was
possible in our MEG data and the degree to which our encoding models could account
for this phenomenon.

For this decoding analysis, we re-optimised the dipole position and sensor covariance
matrix regularisation parameters of the spatial filters. We did this by using black-box op-
timisation, as before (Acerbi & Ma, 2017), only this time with respect to the Ml between
MEG data epoched to phoneme onsets and the manner of articulation of each phoneme
(4 discrete phoneme classes were used: vowels, nasals, plosives and fricatives, see fig-
ure 2.13). The Ml was calculated separately for each time point in the extracted phoneme
epochs. For optimisation, we subsequently summed the MI across time points. In most
cases, the positions found in this re-optimisation were very similar to those found before
(figure 2.9A).

At the corresponding source locations, we found characteristic responses to the four
manners of articulation (i.e. the four phoneme classes used, see figure 2.8A). We then
retrained our encoding models based on all feature spaces with the source-level param-
eters fixed to the values found when optimising for MI between MEG data epoched to
phoneme onsets and the manners of articulation. In the cross-validated predictions of
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these retrained models, we observed phoneme-locked responses that were very similar
to those obtained with observed MEG data (figure 2.8A, right).
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Correspondingly, we observed a sustained pattern of Ml following the phoneme on-
sets in bilateral ACs for the observed data (figure 2.8B). We found very similar patterns
of MI between manners of articulation and predicted phoneme-related fields, with values
roughly an order of magnitude higher for the predictions. On average, this result pat-
tern did not substantially differ between either of the two hemispheres or between the
different feature spaces.
Together, our results thus show that the decoding of these manners of articulation
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Figure 2.8 (previous page): Phoneme-related fields captured by model predictions.
A Phoneme-related fields of a single participant in (left) observed and (right) predicted
MEG (from Env feature space). Colours code for 4 different phoneme classes that
represent 4 manners of articulation. B M| of observed (solid lines, left y-axes) and
predicted MEG (dashed and coloured, right y-axes) about the four phoneme categories
in the left and right AC. Colour coding of feature sapces is the same as in C. C
Redundancy from PID (amount of information that observed and predicted MEG share
about the 4 manners of articulation). D Unique Information of observed (solid) and
predicted MEG about the manners of articulation. Maximum information uniquely
available from observed MEG across all participants, feature spaces, and time points
are shown as black bars. Colour coding of feature spaces in C also applies to B and D.
C and D show medians across all participants £95% (frequentist) confidence intervals
(Clf), bootstrapped with 10,000 samples. See also figure 2.9.

was replicable in the observed MEG data and in the MEG data predicted by our models.

To assess the amount of information that is shared by the observed and predicted
time series about these manners of articulation, and the amount of information that is
unique to them, we performed PIDs with observed and predicted time series as sources
and the manners of articulation as targets. This analysis should reveal if the observed
MEG contained information about these manners of articulation that is different from
that obtained, for example, from the speech envelope when convolved with an encoding
model temporal response function (TRF).
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Figure 2.9: Hyperparameter choices for phoneme related field (PRF) analysis
(related to figure 2.8).

A Maximal euclidean distances of source positions when optimised with regard to
model performances across all test sets and feature spaces subtracted from maximal
euclidean distances of source positions when positions found when optimising with
regard to PRF MI are included. B Results of optimising sensor covariance
regularisation parameter with regard to PRF MI. Colour in A and B codes participants.

The PIDs resulted in profiles of redundancy that closely resembled the marginal MI
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profiles for both hemispheres and for all feature spaces alike (figure 2.8C). Most impor-
tantly, the information that was unique to the predicted MEG exhibited the same patterns
(figure 2.8D, dashed lines), while the information unique to the observed MEG (solid
lines) was negative, i.e. this information represented misinformation with respect to the
predicted MEG source. This means that there were trials where an observer predict-
ing phoneme classes optimally from the observed MEG would make a mistake (hence
misinformation) that an observer of the predicted MEG would not make (hence unique
to observed MEG; see methods 2.5.5 for more details on negative unique information).
Thus, there was no relevant information about these manners of articulation present in
the observed MEG that could not be retrieved from responses modelled with a convo-
lution of any of our feature spaces with an encoding model filter. This pattern of results
was also essentially the same for both hemispheres and for all feature spaces.

Taken together, these results demonstrate that models based on all of our feature
spaces could fully account for the information about these four manners of articulation
that was decodable from the observed MEG responses.

2.3.5 Replication using a publicly available EEG dataset

The original report of the effect of a performance gain provided by articulatory features
over spectrograms alone was derived from EEG data (Di Liberto et al., 2015). Since
MEG and EEG are sensitive to different sources (Cohen & Cuffin, 1983), it is possible
that the MEG sensors we used here were blind to parts of the effect. We therefore
investigated whether we could replicate our MEG results using EEG data. We analysed
n = 13 participants for whom data with 128 channel recordings of approximately an hour
are publicly available (Broderick et al., 2018b,a). On the stimulus side, we used the same
analysis pipeline as for the MEG dataset. However, due to the higher noise level of the
EEG data (Destoky et al., 2019), we did not try to fit the high- dimensional Gabor feature
space. Instead, we concentrated on comparing the benchmark articulatory feature space
to the lower dimensional acoustic feature spaces that had best explained the MEG data.
We fitted cross-validated encoding models to the scalp-level EEG data and focussed
our modelling on the 12 electrodes reported in the original publication (Di Liberto et al.,
2015).

Using the same Bayesian modelling approach, results derived from the EEG data
closely accorded with those derived from the MEG data (figure 2.10B). Our analysis repli-
cated the gain in performance of the benchmark articulatory feature space compared to
spectrograms alone (A = 0.0031, f;,, = 0.9712). We again found that the benchmark ar-
ticulatory feature space was outperformed by the combination of spectrograms and their
rectified temporal derivatives (A = 0.0045, f,, = 0.9963). Also, we again found that com-
bining the articulatory features with the best acoustic features only led to a negligible in-
crease in performance (A = 0.0009, f,, = 0.7218). In addition, as before, the benchmark
articulatory feature space performance was not stronger than that of the spectrograms
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and phoneme onsets combined (A = 0.0010, f;,, = 0.2577). Lastly, we found that all com-
peting feature spaces outperformed the one dimensional envelope (A = [0.0128,0.0213],
all f,, = 1). These results thus show that — in terms of prediction performance — acoustic
features outperform the more complex articulatory features, which perform on a par with
features that only describe the phoneme timing.
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Figure 2.10: Caption on following page.

Note that when we replaced the log-mel spectrogram features chosen in the present
study with a spectrogram more closely modelled after the one used in (Di Liberto et al.,
2015), we obtained generally lower performances and also a different pattern of results.
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Figure 2.10 (previous page): Analysis of EEG data.

A Test set performances of forward models. Left: Each dot shows the performance in
one test set averaged across electrodes. Colours code individual participants (n = 13),
black lines show pooled medians. B Samples from posterior distribution of differences
of beta estimates of competing feature spaces and the benchmark Sg&Art feature
space. Colours code feature spaces. C PID results normalised by MI of predictions
based on Sg&Art features and observed EEG signals. Each dot is one test set
prediction of one participant and electrode. Samples from posterior distributions of
effects of feature spaces are overlaid as filled areas, and posterior predictive
distributions are shown as lines. Left: Redundancy of predictions based on benchmark
articulatory features and competing feature spaces about observed EEG signals. Dot
colours represent a participant, filled area and line colours represent feature spaces.
Right: Unique information of benchmark articulatory features (red) and competing
feature spaces about observed EEG signals. Colours of dots, filled areas and lines
represent feature spaces. D Phoneme related potential analysis. Colours represent
feature spaces, shaded areas denote 95% (frequentist) confidence intervals (Cls),
bootstrapped with 10,000 samples. All traces show averages across participants and
electrodes. Left: Ml of observed (solid black line, left y-axis of subplot) and predicted
(dashed coloured lines, right y-axis of subplot) EEG about four manner of articulation
phoneme classes (“phClass”). Middle: Redundancy — information shared by observed
and predicted EEG from different feature spaces about phoneme classes. Right:
Unique information of observed (solid lines) and predicted (dashed lines) EEG about
phoneme classes. Maximum of information uniquely available from observed EEG
across all participants, feature spaces and time points shown as black bar. See also
figures 2.11 and 2.12.

Crucially, we found that this could be attributed to a compressive non-linearity as included
in the log-mel spectrogram (see figure 2.11 for a more detailed explanation).

Taken together, these results further support the notion that simple and physiologi-
cally motivated transformations of the auditory stimulus can make important differences
to the interpretation of more-complex annotated features.

Next, we considered the results of a PID analysis that assessed the degree to
which the predictions of competing feature spaces shared information about the ob-
served EEG responses with that of the benchmark feature space, and the degree to
which they contributed unique information (figure 2.10C). We again found that the pre-
dictions based on the best acoustic feature space were highly redundant with predic-
tions based on the benchmark articulatory features (mean of the corresponding effect:
0.9776;95% Cl [0.9358,1.0167]). The same was the case for the combination of the best
acoustic features and the articulatory features (mean: 0.9527; 95% CI [0.9104,0.9945]).
We also again found that the unique information contributed by the benchmark artic-
ulatory features was close to 0 (mean of the corresponding effect: 0.0231,95% CI
[—0.0115,0.0657]), while the unique information contributed by the best acoustic fea-
ture space was weakly positive (mean of the corresponding effect: 0.1575,95% CI
[0.1121,0.2109]). Lastly, the amount of information only available when jointly consid-
ering the best acoustic features and the benchmark articulatory features (i.e., the syn-
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ergy) was an order of magnitude lower than that of the redundancy and did not exceed
noise thresholds (see figure 2.11), which agreed with the finding that combining the best
acoustic features and the articulatory features did not lead to an improvement over the
best acoustic features.
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Figure 2.11: Raw values and comparison to noise thresholds of PID in EEG and
MEG (related to Figures 2.7 and 2.10).

A Raw (unnormalised) PID values (Red: redundancy, U: unique information [of
competing feature spaces and of benchmark articulatory feature space] and Syn:
synergy) in MEG data from left and right AC. Each colour codes for a single participant,
each dot is one test set. Pooled medians are indicated with black lines. B Comparison
of PID values in MEG data to noise thresholds. Image plot shows the fraction of data
points (sources, test sets) that exceeded the corresponding noise threshold in each
participant and for each feature space and each PID atom. C Raw (unnormalised) PID
values (redundancy, unique information of competing feature spaces, unique
information of benchmark articulatory feature space and synergy) in EEG data from all
12 electrodes. Each colour codes for a single participant, each dot is one test set.
Pooled medians are indicated with black lines. D Comparison of PID values in EEG
data to noise thresholds. Image plot shows the fraction of data points (sources, test
sets) that exceeded the corresponding noise threshold in each participant and for each
feature space and each PID atom.

Similar to our results using MEG, the combination of spectrograms and phoneme
onsets produced slightly lower levels of redundancy compared to the best acoustic model
(mean: 0.9317; 95% CI [0.8902,0.9765]), and even lower levels of redundancy were
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Figure 2.12: Comparison of 16 channel spectrogram, 16 channel spectrogram
with compressive nonlinearity and log-mel spectrogram in EEG data (related to
figure 2.10).

A Raw test set performances of feature spaces. Each dot is one test set of one
participant, averaged across electrodes. Colour codes participants. Pooled medians
overlaid. Colours in x-axis labelling refer to feature spaces. B Percent of samples in
favour of hypotheses of differences of beta estimates between all feature spaces.
Hypotheses are colour coded using the same colour mapping as in x-axis labelling of A.
The performances obtained using Sg were in general higher than those obtained using
Sg16, a 16-channel spectrogram modelled after the original study (Di Liberto et al.,
2015). The combination of Sg16&Art failed to outperform Sg on its own (f;,, = 0.2318).
The overall pattern of performances was largely similar regardless of using Sg or Sg16
as the spectrogram. In contrast to the results produced using Sg however, we found that
the Sg16&Art combination outperformed the Sg16&PhOn combination (f;,, = 0.9675).
To assess whether these differences were driven by the compressive linearity included
in Sg, we additionally tested a version of Sg16 in which we raised its values to the power
of 0.3 (“Sg16¢”). Such nonlinearities are classically included in models of auditory
processing, as early as the cochlea (Chi et al., 2005; Verhulst et al., 2018; Biesmans

et al., 2017). This tweak indeed resulted in a pattern of performances that was largely
similar to that obtained with Sg: The combination of Sg&Deriv did not clearly outperform
the combination of Sgl6c&Deriv16c (fj, = 0.8191), and combining Sg16c&Art was not
better than combining Sg16¢&PhOn (f,, = 0.6097).

obtained for spectrograms alone (mean: 0.8658; 95% CI [0.8157,0.9118]), and for the
envelope (mean: 0.6714; 95% ClI [0.5956,0.7205]).

Based on these results, we concluded that in both MEG and EEG data, the increased
performance provided by benchmark articulatory features over spectrograms alone could
be explained by a combination of spectrograms and their rectified temporal derivatives.
This purely acoustic feature space achieved higher overall performance in predicting
EEG responses. It did so by explaining the same information as the benchmark artic-
ulatory features. However, it also carried information that was not available from the
predictions based on the benchmark articulatory features.

Finally, we also found a very similar pattern of results in an analysis of phoneme-
evoked responses (figure 2.10D). The MI of the observed EEG time series and the four
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phoneme classes was mostly shared with that of the predicted time series based on all
feature spaces. The predicted time series could thus account for a substantial amount
of positive unique information, while the observed EEG time series could only contribute
negative unique information, i.e. misinformation. The observed EEG responses thus did
not contain any more information about the manners of articulation than did the EEG
response predictions based solely on the envelope.

2.4 Discussion

In this study, we set out to investigate to which degree signatures of “pre-lexical ab-
straction” in MEEG responses to speech can be explained with simpler, purely acoustic
models. Our results suggest that care must be taken when interpreting the results of
encoding or decoding models that consider higher-order constructs, such as the artic-
ulatory features of phonemes. We showed that the predictive information that can be
derived from articulatory features is rooted in the timing information of these features
rather than in a more-detailed characterisation of the phoneme. Similarly, the ability
to reliably decode subgroups of phonemes from MEEG data can be explained by our
simplest feature model, that is, it is a direct consequence of MEEG speech envelope
tracking. It should therefore not be interpreted as evidence of more complex speech pro-
cessing being reflected in the recorded signal. Based on these results, we argue here
for the consideration of algorithmically interpretable and physiologically plausible mod-
els of sensory encoding, for which annotated feature spaces can nevertheless serve as
excellent benchmarks.

An inevitable limitation of this study is that our results cannot ultimately prove the
absence of explanatory power unique to the articulatory features. It is possible that
analysis pipelines exist that could carve out parts of the responses such that the artic-
ulatory features could beat our best acoustic feature space. However, in our analyses,
the articulatory features were given strong chances to predict response variance. And
we could indeed replicate the originally reported effect of a performance gain over spec-
trograms alone, only to then find a more parsimonious explanation for this gain. More-
over, our findings suggest that if the articulatory features could better explain certain
parts of the responses, these parts would account for a relatively small portion of the
total response variance. Given the already small effect sizes, it would then be possible
that additional and similarly simple transformations of the acoustics could compensate
for possible articulatory advantages. The same holds true for recent demonstrations of
more-sophisticated linguistic feature spaces (Broderick et al., 2018b; Brodbeck et al.,
2018a). Essentially, this line of reasoning thus drives home our main point. Any invoca-
tion of exciting, high-level feature spaces will always entail the heavy burden of proof of
the absence of simpler explanations (Sassenhagen, 2018). This should by no means dis-
courage inspiring investigations from using such high-level feature spaces but it should
encourage researchers to nevertheless continue to consider simpler explanations.
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Similarly, the ability to decode high-level semantic or phonetic properties of speech
from evoked neural data tantalisingly suggests that the measured neural response re-
flects high-level processing. However, in general it is extremely difficult to control prop-
erly for all possible low-level stimulus properties, which could confound the interpretation
of the high-level feature decoding. Applying decoding analyses to the predictions of for-
ward models as we suggest here provides one way to address this issue. If, as we
find here, the high-level feature can indeed be decoded from the prediction of a forward
model based on low-level stimulus features, it suggests that the decoding results should
not be interpreted as strong evidence of high-level neural processing.

We used in our study a source reconstruction approach that used data derived from
two dipoles in bilateral auditory cortices. Source-level MEG data in (Brodbeck et al.,
2018a), for example, suggest that multiple, superior temporal sources related to speech
processing are robustly separable. This could be explained by the difference in source
localisation algorithms. Given the relatively coarse, spatial resolution of our source-level
data, we chose not to focus our analysis on modelling activity reconstructed from mul-
tiple locations in source space. Instead, we invested our computational resources in a
detailed analysis of responses from a single point per hemisphere that accounted for
much of the speech-related variance. This allowed us to flexibly optimise analysis pa-
rameters specific to participants, hemispheres and feature (sub-)spaces. We believe
that this data-driven approach to parameter settings (Hahn et al., 2018) marks an impor-
tant step towards more-principled pipelines in neuroimaging (Bzdok & Yeo, 2017), and
our approach was inspired by growing efforts to avoid MEG analysis parameter settings
based on tradition (Woolrich et al., 2011; Engemann & Gramfort, 2015).

Since forward-encoding models promise to inform theories of neuronal computations,
what are the potential implications of this study? The central question of interest con-
cerns the origins of the response variance that is commonly explained by the best acous-
tic and articulatory benchmark features. However, interpreting the results of encoding
and decoding models with regard to such a causal question is never trivial (Weichwald
et al., 2015; Kriegeskorte & Douglas, 2018b). The feature spaces considered here reflect
functional — not mechanistic — models (Kay, 2018) of varying predictive performance.
What they essentially relate is the input of the waveform of a speech stimulus to the
output of MEEG responses. These responses are far from reflecting the entire, dras-
tically higher-dimensional cortical auditory representation of the stimulus. Against this
backdrop, the fact that the envelope, a low-fidelity representation of the stimulus, could
still account for most of the observed response variability, suggests that this part of brain
activity might not so readily provide a window to arbitrary high-level cognitive processes.

Furthermore, an algorithmic consideration of our best acoustic feature space rather
points to operations which occur relatively early in auditory processing. A spectral de-
composition of compressed dynamic range is typically part of cochlear models (Verhulst
et al., 2018; Chi et al., 2005). An additional temporal derivative and half-wave rectifica-
tion might possibly be implemented by the various stations along the subcortical auditory
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pathway. The question then is why cortical neuronal mass signals (Panzeri et al., 2015)
are time-locked to this result of very early auditory processing, and whether these low-
frequency cortical responses carry such information so that further cortical processes
react to it. Deeper insights into this problem will also have to consider proxies to what
downstream neurons are encoding, such as the final behavioural responses (Williams
et al., 2007; de-Wit et al., 2016; Panzeri et al., 2017; Bouton et al., 2018; Keitel et al.,
2018; Carlson et al., 2018; Brette, 2018).

Despite these caveats, it is interesting to speculate how the feature spaces consid-
ered here might reflect aspects of actual cortical computations. Unlike modern ASR
systems that can, with limitations, understand a speaker’s intention (Sarikaya et al.,
2016), the mid-level feature spaces considered here are all far from this feat. Never-
theless, they can be interpreted as contributing to this goal. The information bottleneck
framework (Tishby et al., 2000) for example suggests that feature spaces should allow
information compression, i.e., gradual decreasing stimulus fidelity, while retaining rele-
vant aspects of the input. The log-mel spectrograms allow to discard irrelevant spectral
and dynamic ranges, and Gabor-filtering can do the same for spectrotemporal patterns
relevant for ASR systems (Schédler et al., 2012). This decomposition seems to be es-
pecially beneficial for speech in noise, when features similar to the best acoustic feature
space used here can be used to exploit the rapid amplitude dynamics in speech sig-
nals to the benefit of ASR systems (Kumar et al., 2011). It is thus conceivable that the
predictive performance of this feature space could be rooted in a tuning of the auditory
system to ubiquitous noisy listening environments. Hypotheses about the processing of
speech in noise are, however, best examined in datasets that sample the stimulus space
correspondingly (Fiedler et al., 2018; Giordano et al., 2016).

Another interesting observation is that the edges of these rapid amplitude dynamics
coincide with transitions to the central vowels of syllables (Oganian & Chang, 2019). A
rich literature is available on the interpretation of low-frequency signals as a signature of
a chunking of the speech signal into syllable-like units (Hertrich et al., 2012; Gross et al.,
2013; Doelling et al., 2014; Hyafil et al., 2015; Rasanen et al., 2018; Giraud & Poeppel,
2012; Ghitza, 2013). An eventual goal would however be to treat mid-level representa-
tions as less independent from the more-abstract aspects of speech understanding. Ex-
tracting the intermediate representations generated while embedding speech into fixed
dimensional semantic vectors (Chung et al., 2018) could be a promising step towards an
unbiased and context dependent description of speech signals.

2.4.1 Conclusion

In a data-driven approach, we have studied models that explain cortical neuronal re-
sponses as captured by source-localised MEG and sensor level EEG in a story- listen-
ing paradigm. Our results underscore that annotated linguistic feature spaces are useful
tools to explore neuronal responses to speech and serve as excellent benchmarks. We
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find their performance for explaining neuronal responses of high temporal resolution to
be exceeded and explained by a simple low-level acoustic feature space that capitalises
on spectrotemporal dynamics. Thus, we conclude that the consideration of parsimo-
nious, algorithmically interpretable and physiologically plausible features will eventually
lead to clearer explanations of observed neuronal responses.

2.5 Methods

2.5.1 Participants

24 healthy young participants (native speakers of English, 12 female, mean age 24.0
years, age range [18,35] years) agreed to take part in our experiment. They provided
informed written consent and received a monetary compensation of £9 per hour. The
study was approved by the College of Science and Engineering Ethics Committee at the
University of Glasgow (application number: 300170024).

2.5.2 MEG recording, preprocessing and spatial filtering
MEG recording

Participants listened to a narrative of 55 minutes duration (“The Curious Case of Ben-
jamin Button”, public domain recording by Don W. Jenkins, librivox.org) while their brain
activity was recorded with a 248 channel magnetometer MEG system (MAGNES 3600
WH, 4D Neuroimaging) at a sampling rate of 1017.25 Hz (first 10 participants) and
2034.51 Hz (last 14 participants). Prior to recording, we digitised each participant’s
headshape and attached five head position measurement coils to the left and right pre-
auricular points as well as to three positions spread across the forehead. The session
was split into 6 blocks of equal duration and additionally included a repetition of the last
block. The last ten seconds of each block were repeated as a lead-in to the following
block to allow listeners to pick up the story. Prior to and after each block, we measured
the positions of the coils. If the movement of any of them exceeded 5 mm, we repeated
the block. Playback of the story and trigger handling was done using PsychToolBox
(Brainard, 1997), and sound was delivered via two MEG compatible Etymotic ER-30
insert earphones. After the recording, participants had to answer 18 multiple choice
questions with 3 options each, where the number of correct options could vary between
1 and 3 per question. The questions referred to the entire story, covering three details
per recording block. The average performance was .95 with a standard deviation of 0.05
and a range from 0.78 to 1.00.
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MEG preprocessing

Most of our analyses were carried out within the MATLAB computing environment
(v2016a, MathWorks, Natick, MA, USA) using several open-source toolboxes and cus-
tom code. Deviations from this are highlighted. Preprocessing was done using the
fieldTrip toolbox (Oostenveld et al., 2011). Initially, we epoched the data according to
the onsets of the full blocks including the ten seconds of lead-in. For noise cancellation,
we subtracted the projection of the raw data on an orthogonal basis of the reference
channels from the raw data. We manually removed and subsequently replaced artefac-
tual channels with spherical spline interpolations of surrounding channels (mean number
of artefactual channels per block: 3.07, standard deviation: 3.64; pooled across partic-
ipants), replaced squid jumps with DC patches, filtered the signal with a fourth-order
forward-reverse zero-phase butterworth high-pass filter with a cutoff-frequency of .5 Hz
and downsampled the data to 125 Hz. We then excluded the lead-in parts from the blocks
and performed Independent Component Analysis (ICA, runica algorithm) to identify and
remove components reflecting eye and heart activity (mean number of components per
block: 6.70, standard deviation: 5.01; pooled across participants) and further downsam-
pled the data to 40 Hz.

MEG source space

We employed three different source modelling approaches for our analysis. Firstly, we
aimed to identify regions in source space whose activity was in a repeatable relationship
with our auditory stimulation (“story-responsive” regions, Honey et al., 2012; de Heer
et al., 2017). Secondly, we wished to visualise these results on a group-level. Lastly,
for our main intention of modelling the story-responsive regions, we designed a frame-
work that would allow us to optimise parameters of our spatial filters as part of a cross-
validation, similar to a recent proposal by Engemann & Gramfort (2015).

Volume conductor models For all three approaches, we obtained common volume
conductor models. We first aligned individual T1-weighted anatomical MRI scans with
the digitised headshapes using the iterative closest point algorithm. Then, we segmented
the MRI scans and generated corrected-sphere volume conductor models (Nolte, 2003).
We generated grids of points in individual volumes of 5 mm resolution. For group-level
visualisation purposes, we also generated a grid with 5 mm point spacing in MNI space,
and transformed this to individual spaces by applying the inverse of the transform of
individual anatomies to MNI space.

Initial data exploration: identification and characterisation of story-responsive re-
gions To identify story-responsive regions in MEG source space, we projected the
time- domain sensor level data through rank-reduced linearly constrained minimum vari-
ance beamformer spatial filters (Van Veen et al., 1997) with the regularisation of the
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sensor covariance matrices Agyuce S€t 1o 5%, using the dipole orientation of maximal
power. We correlated the responses to the last block with those to its repeated presen-
tation within each participant to obtain maps of test-retest-R2. We repeated this using
the grids in MNI space we had warped into individual anatomies for a group-level visual-
isation using the plot_glassbrain function of the Python module Nilearn (Abraham et al.,
2014).

We then explored how many dipoles would explain how much of the repeatable ac-
tivity in story-responsive regions. It is known that due to the non-uniqueness of the
inverse problem, the spatial resolution of MEG source reconstructions is inherently lim-
ited. Neighbouring grid points are thus often highly correlated, rendering analyses on
a full grid highly redundant (Faharibozorg et al., 2018). To avoid such an unnecessary
computational burden for our modelling, we used an information theoretic approach to
characterise redundant and unique regions in source space.

First, we computed Mutual Information (MI, Ince et al., 2017) at each grid point in in-
dividual source spaces between activity in the first and the second repetition, essentially
repeating the initial identification of story-responsive regions. Next, we applied the frame-
work of PID (Ince, 2017a) to the data of repeated blocks in an iterative approach. PID
aims to disentangle redundant, unique and synergistic contributions of two source vari-
ables about a target variable (see later section dedicated to PID for more details). As the
first source variable, we here used the two-dimensional activity at bilateral grid points of
individual peak story-responsivity during the first repetition. We then scanned the whole
grid in parallel for both repetitions, using the activity recorded during the first repetition
as the second source variable and the activity recorded during the second repetition as
the target variable of PIDs (see video S1 for an intuitive visualisation). We were then in-
terested in the resulting maps of redundancy and unique information. The former would
allow us to infer to what degree other grid points with high story-responsivity shared
their information about the repetition with the grid points of peak story-responsivity. The
latter on the other hand would show us where information unexplainable by these two
peaks could be found. After this first iteration, we added the grid point of peak unique
information to the then three-dimensional first source variable in the PIDs and repeated
the computation across the whole grid. We reran this approach for a total of ten itera-
tions. Finally, we computed MI between the two-dimensional activity at bilateral peaks of
story-responsivity in the first and the second repetition and compared this to the unique
information found in each iteration of our iterative approach.

Optimisation of source space coordinates and sensor covariance regularisation
In order not to unnecessarily spend computational resources, we wanted to limit our
main endeavour of modelling MEG responses to parts of the signal which actually were
in a systematic relationship with the stimulus. A straight-forward solution for a selec-
tion of these parts would have been to directly use the grid points identified as story-
responsive using the test-retest correlation. However, since it is likely that participants
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paid a lesser degree of attention to the more predictable repeated presentation of the
last chapter, we could not rule out that the test-retest-R*> maps would be biased towards
low-level auditory processing. Furthermore, these maps could be influenced by differ-
ences in the position of the participant’s head in the scanner as well as the amount of
eye blinks and head movements. The peak test-retest points are thus not guaranteed
to be the optimal locations for any given feature space model fit, tested over the whole
experiment. Moreover, it was possible that different feature spaces would optimally pre-
dict distinct regions. Finally, we did not know a-priori what level of regularisation of the
sensor covariance matrices would be ideal to capture the responses of interest in each
individual dataset.

To account for all of these considerations in a data-driven manner, we treated the
coordinates of regions of interest as well as the regularisation of sensor covariance ma-
trices as hyperparameters of our model, which we optimised by means of a black-box
optimisation algorithm. We kept the other specifications of the spatial filter design as de-
scribed above. As initial coordinates, we used the maxima of test-retest-R? maps within
each hemisphere. The boundaries of the coordinate hyperparameters were defined by
the boundaries of the respective hemisphere of the individual brain volume which we
shrunk by a factor of 0.99 for this purpose to avoid instabilities of the forward models
close to their boundaries (table 2.2). In each iteration of the black-box optimisation, we
then applied a given amount of regularisation to the precomputed sensor covariance ma-
trix and computed the leadfield for a given vector ¢ = (X,Y,Z) of coordinates in source
space using the precomputed volume conductor model for each block. Since the ori-
entation of the resulting dipoles was then arbitrary, i.e. possibly flipped across blocks,
we estimated the mean axis of dipoles across blocks and changed the sign of the ori-
entations of dipoles whose dot products with the orientation of the dipole closest to the
mean axis were negative. We then recomputed the leadfields for these aligned dipole
orientations. Finally, we projected the sensor level data through these spatial filters and
z-scored them within each block to account for differences in mean amplitude across
blocks.

2.5.3 Stimulus transformations

The speech stimulus was transformed into various feature spaces. We used the GBFB
toolbox (Schadler et al., 2012) to obtain 31-channel Log-Mel-Spectrograms (“Sg ", rang-
ing from [124.1,7284.1] Hz) and summed these across the spectral dimension to also
obtain the amplitude envelope (“Env ").

Additionally, we filtered the spectrograms with a set of 455 2D Gabor filters (“Gb”) of
varying centre frequencies corresponding to those of the Sg as well as spectral modu-
lation frequencies Q (0, 2.9, 6, 12.2 and 25 Hz) and temporal modulation frequencies @
(0,6.2,9.9, 15.7 and 25 Hz). Notably, this implementation of the toolbox only considers a
subset of all possible combinations of centre frequency as well as spectral and temporal



48 CHAPTER 2. ACOUSTIC EXPLANATIONS FOR PHONEMES

mMOII252,223222
NNNN-iNNNNNNL
. |
.'-_.5-'-'
. _
e I

H B

| I N I I N |

I
1
-

Phonemes
T
|
L
|

NG B .

ow -
oYy =

'l H N Em

O X B LV CB B DD QAL g O 28 L L 2T B

082558 %% % o9 % %2%5929092%%2% %Y

T TR R S T AT YUY e %Y

S Z 7 % > 2 Qe %% ~ % GERONCIRCS

> Q > © o
o) % =4 % »
A - 2

Articulatory Features

Figure 2.13: Caption on following page.

modulation frequencies to avoid overly redundant features. As a last acoustic feature
space, we computed half-wave rectified first derivatives of the individual channels of the
spectrograms “(Sg’)..”, (Hertrich et al., 2012; Brodbeck et al., 2018a).
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Figure 2.13 (previous page): Mapping of phonemes to articulatory features and
manners of articulation (related to methods 2.5.3).

Black and white part shows articulatory features used for forward modelling (Di Liberto
et al., 2015), coloured part shows manners of articulation used for decoding
(Khalighinejad et al., 2017).

To construct annotated feature spaces, we used the Penn Phonetics Lab Forced
Aligner (Yuan & Liberman, 2008) to align the text material to the stimulus waveforms,
providing us with onset times of phonemes comprising the text. These were manu-
ally corrected using Praat (Boersma, 2001) and subsequently transformed into a 23-
dimensional binary articulatory feature space (“Art" de Heer et al., 2017). Figure figure
2.13 provides the mapping from each phoneme to the articulatory features. We gener-
ated 23 time-series of zeros at a sampling rate of 40 Hz and inserted unit impulses at the
onset times of phonemes corresponding to the respective articulatory feature. Finally,
we discarded the information about phoneme identity to obtain a one-dimensional binary
feature space of phoneme onsets (“PhOn”). Our set Fyr; of employed feature spaces
then consisted of the following combinations: Fyrg = {Env, Sg, Sg&(Sg’)+, Sg&Gb,
Sg&PhOn, Sg&Art, Sg&(Sg')+ &Art }. We downsampled the acoustic feature spaces to
40 Hz and z-scored all feature spaces prior to modelling.

2.5.4 Mapping from stimulus to MEG

To perform a linear mapping from our feature spaces to the recorded MEG signals, we
used ridge regression (Crosse et al., 2016) in a 6-fold nested cross-validation framework
(Varoquaux et al., 2017). This allowed us to tune hyperparameters controlling the tempo-
ral extent and the amount of L2 regularisation of the ridge models as well as the amount
of regularisation of the sensor covariance matrices and the coordinates of positions in
source space for the beamformer spatial filters in the inner folds, yielding data-driven
optimised models for each feature space, hemisphere and participant.

Linear model
The single-subject linear model we employed can be formulated in discrete time as:

IMax

Pe e 1) =2, ), W(0,T)s(0,1 = 7) (2.1)

V T=lIpmin
Here, 7 denotes the neuronal response as obtained with a spatial filter with maximum
gain at the vector ¢ of coordinates (X,Y,Z) in source space and a regularisation of the
sensor covariance matrix of As.c.. Further, s is a representation of the stimulus in a
given feature space, possibly multidimensional with dimensions v. Finally, w describes
the filter weights across these dimensions and time lags t ranging from #i, 10 fyax,
where negative values refer to samples in the future of r and positive values refer to
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samples in the past of 7.
To obtain these filter weights, we used the following closed-form solution:

w=(STS+Ao0) " 'STre

source

(2.2)

Here, S denotes the lagged time series of the stimulus representation, each column
consisting of a particular combination of lags 7 and feature dimensions v, organised
such that neighbouring feature dimensions populate neighbouring columns within groups
of columns corresponding to time lags. The identity matrix 7 is multiplied with A;,, a
hyperparameter adjusting the amount of L2 regularisation. Larger values of A;, force the
resulting weights w closer to zero and thus reduce overfitting.

For the joint feature spaces consisting of multiple subspaces, the temporal extent
and L2 regularisation was optimised individually for each subspace to obtain the best
possible prediction performance. This meant that the matrix § was constructed as the
columnwise concatenation of multiple submatrices with different numbers not only of
feature dimensions v but also of lags 7. Additionally, this meant that A;, here was a
vector instead of a scalar, with as many elements as feature spaces in the joint space.
Corresponding to the concatenation of S, different sections of the diagonal of the identity
matrix were multiplied with the dedicated regularisation parameters of the corresponding
subspace.

We used an additional regularisation for the Gb feature space. We had observed that
feature dimensions belonging to the group of fastest temporal modulation frequencies
had noisy and small filter weights at long absolute temporal lags. Based on this, we
concluded that the temporal extents T chosen for this feature space were essentially a
compromise of long optimal 7 for feature dimensions of slow  (“Gb-Low") and short op-
timal 7 for feature dimensions of fast @ (“Gb-Hi"). To remedy this problem, we assigned
the usual 7 to the group of slowest @ and added additional T hyperparameters for the
group of fastest w. The 7 of the central w were then spaced proportionally to the mean
auto-correlation times (ACT) of the corresponding groups of feature dimensions of this
stimulus representation. We defined the ACT as the shortest lag where the normalised
and absolute auto-correlation dropped below a value of .05. This allowed the optimi-
sation algorithm to pick long 7 for feature dimensions of slow w and short 7 for feature
dimensions of fast .

Nested cross-validation and hyperparameter tuning

To make data-driven optimal choices for the range of lags 7 defined by #yi, and ty4, the
amount of L2 regularisation A;,, the coordinates in source space as well as the amount of
regularisation of the sensor covariance matrices As,cc, We used nested cross-validation.
Specifically, this means that we split our stimulus and response data in six portions of
equal durations. Two loops then subdivided the data into training, tuning and testing sets.
In each iteration, an outer loop assigned each of the six portions to be the testing set.
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Additionally, in each iteration of the outer loop, a full run of an inner loop was performed,
assigning four portions to be the training set and the remaining portion to be the tuning
set. This resulted in a total of 30 different assignments of portions to different sets. With
this framework, we first picked a certain combination of hyperparameters and computed
the corresponding weights w, the elementary parameters, using the training set. The
resulting filters were convolved with the stimulus of the tuning set to obtain predictions
7 which we correlated with the observed responses r to obtain the tuning performance.
This was repeated 200 times with different combinations of the hyperparameters.

These combinations were chosen by a black-box optimisation algorithm, Bayesian
Adaptive Direct Search (Acerbi & Ma, 2017). BADS uses Gaussian Processes to con-
struct a computationally cheap internal model of the multidimensional performance land-
scape using already available evidence and smoothness assumptions. As the compu-
tationally relatively costly linear models are evaluated across iterations, more evidence
about the true performance landscape builds up which is used to update the internal
model, i.e. assumptions about the smoothness and shape of the performance landscape
at hyper-parameter combinations not yet evaluated. The internal model is used to update
an acquisition function, whose maximum determines which combination of hyperparam-
eters would be most informative to evaluate next in order to find the global optimum of
the performance landscape. While this algorithm is not guaranteed to find the optimal
combination, i.e. it is possible that it gets stuck in local optima, it has been shown to
outperform other black-box optimisation algorithms on datasets typical for cognitive neu-
roscience (Acerbi & Ma, 2017). The values at which the hyperparameters were initiated
as well as the ranges to which they were constrained are shown in table 2.2. Once all
iterations of an inner loop were finished, we averaged the hyperparameter choices of
all inner folds. We then retrained the elementary model parameters with stimulus and
response data corresponding to these averaged hyperparameters on all five possible
assignments of data portions to training sets in the current outer fold. We subsequently
averaged the elementary parameters across inner folds and used the resulting weights
to perform a prediction on the test set of the current outer fold. This was repeated for
all outer folds to obtain a number of test set predictions corresponding to the number of
outer folds.

initial value lower boundary upper boundary
tMin [S] -0.2 -1.5 5
MaxS] 0.8 0.2 25
Ing(le) 19 -30 30
As[%] 30 0 200

Xsource Xmax(Rz) \hemisphere I (Xvol ume|hemisphere) max (Xvol ume|hemis phere)
Ysource Ymax(Rz) |hemisphere min (Yvolume|hemisphere ) max(Yvolume\hemisphere)
Zsource Zmax(Rz) |hemisphere TN (Zvolume\hemisphere) max (Zvol ume|hemisphere)

Table 2.2: Initial values and boundaries for hyperparameters in BADS optimisation
(related to related to methods 2.5.4).
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As the optimisation procedure was not guaranteed to find the optimal combinations
of parameters, a crucial quality control of our approach was to check the amount of
variance across parameter choices. High degrees would e.g. reflect that the optimisa-
tion algorithm would get stuck in local optima, or that the respective parameter was of
minor importance for the model performance. Low degrees on the other hand would
demonstrate that the black-box optimisation would converge on the same choice. For
the positions in source space, we found the overall amount of variation to be rather small
(figure 2.5A). In the worst case (figure 2.5B), the source locations were scattered within
a range of 3.06 cm, the median of this range was 0.61 cm (figure 2.5C), only slightly
above the amount we allowed the participants to move in the scanner. In the best case,
the range was only 0.23 cm.

We were also interested if our optimisation would consistently pick distinct locations
in source space for different feature spaces. To evaluate this, we computed the silhouette
index. As a measure of the consistency of a clustering, it relates the similarity of data
within a given class to the similarity of data outside of that given class and is bound
between —1 and +1. For the optimised source positions of each outer fold o of the set
of outer folds O and each feature space f of the set of feature spaces F, we computed
the silhouette index s(oy) using the following formula:

b(oy) —aloy)
max(a(oy),b(of))
Here, a(oy) denotes the average euclidean distance between the source position

s(of) = (2.3)

chosen in the outer fold 0 and the source positions chosen in O\ o for that feature space
f, while b(oy) refers to the minimum of average distances between the source position
chosen in the outer fold o for feature space f and source positions chosen for all outer
folds in O for all feature spaces in F\ f.

Across feature spaces and hemispheres, we found results that were mostly inconsis-
tent across participants (figure 2.5D). Specifically, we observed participants for whom the
assignment of chosen source positions to feature spaces was appropriate as reflected
by silhouette indices close to 1, but also participants for whom this assignment was in-
appropriate as reflected by silhouette indices close to —1. In sum, on a group level and
across feature spaces, there was no clear relationship between the choices of positions
in source space and the feature space used to model the MEG responses. Overall, this
suggests that while there was no direct and robust mapping of feature spaces to source
positions, the optimisation of the source positions tended to converge on relatively small
regions within a participant.

The choices of optimal hyperparameters for the beamformer spatial filter did not dif-
fer substantially across feature spaces (figure 2.5E). While we observed a relatively high
degree of variance in optimal choices across participants, we found the choices to be
relatively consistent within one hemisphere of a participant and across feature spaces
as indicated by relatively high intra-class correlation coefficients across participants with
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outer folds and feature spaces as different measurements for the left (0.96) and right
(0.88) hemispheres. However, we observed a pronounced difference between left and
right ACs, with a higher level of regularisation for the left AC. Here, in some cases the
optimal values even bordered on the boundaries we chose for the hyperparameter, sug-
gesting that in some cases, even higher values could have been optimal.

For the temporal extent, we found that this optimisation resulted in characteristic tem-
poral extents for each feature (sub-)space (figure 2.6A). For example, for the combination
of articulatory features and log-mel spectrograms the optimisation algorithm consistently
found shorter temporal extents for the articulatory features than for the log-mel spec-
trogram. Pooled across participants, we observed very similar patterns in left and right
ACs.

For the L2 regularisation, we again found that the optimisation found characteristic
values to be optimal for each feature (sub-)space. Specifically, for lower dimensional
feature (sub-)spaces the amount of L2 regularisation seemed to be less critical, yielding
flat distributions. However, for higher- dimensional (sub-)spaces, a higher value of reg-
ularisation seemed to be beneficial (figure 2.6B). This was especially the case for the
combination of articulatory features and the log-mel spectrogram, for which the distribu-
tions for the two subspaces clearly differ.

2.5.5 Model comparisons
Bayesian Hierarchical Modeling of performances

In an initial evaluation of the encoding models, we wanted to statistically compare the
predictive performance from models using different feature spaces, obtained from mul-
tiple participants. Similar situations often arise in neuroimaging and are usually compli-
cated by small raw effect sizes across conditions in the presence of much larger between
subject variability. A promising way to address this is provided by hierarchical models,
which allow to maintain sensitivity to effects of interest in these cases. To evaluate the
model performances r in both hemispheres & for each outer fold & of all participants i and
focus on the differences between the m different feature spaces f, we used a Bayesian
hierarchical model with a zero intercept, participant-independent and participant-specific
effects for each feature space as well as effects specific to each combination of par-
ticipants and folds, participants and hemispheres as well as hemispheres and feature
spaces. This allowed us to assess posterior distributions of the beta estimates of the
means of each level of the categorical variable feature space. To implement this model,
we used the brms package (Blrkner, 2017) within the R computing environment (R Core
Team, 2013). Specifically, the chosen package implements a user-friendly interface to
set up Bayesian hierarchical models using stan (Stan Development Team, 2020). We
used Markov chain Monte- Carlo sampling with four chains of 4000 iterations each, 1000
of which were used for their warmup. The priors for standard deviation parameters were
not changed from the default values, i.e. half-student-t distributions with 3 degrees of
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freedom, while we used weakly informative normal priors with a mean of 0 and a vari-
ance of 10 for the effects of individual feature spaces. The model can be described with
the following formula:

Fn ~ N (U, 0'2)
& ~ (3,0, 10)|
tn ~ By p) + Bieop) + Bicnn) + Brepn) + By ) - + By

(ﬁi:f[n}?ﬁi:b[n]aﬁi:h[n}vﬁh:f[n]) ~ ‘/V<076[%m,)
0B, ~ [7(3,0,10)|
By, ~ -4(0,10)

To compare the resulting posterior distributions for several parameter combinations of
interest, we evaluated the corresponding directed hypotheses using the brms package:
By, — By, > 0, for all possible pairwise combinations of feature spaces, and obtained the
ratio of samples of the posterior distributions of differences that were in line with the
hypothesis.

Partial Information Decomposition

Besides directly comparing the raw predictive power of models across feature spaces,
we were also interested in characterising the detailed structure of predictive information
carried in the different feature spaces. Since we were particularly interested in discover-
ing to what degree the contributions of the annotated feature spaces can be explained
with contributions of acoustic feature spaces, we thus asked to what degree their predic-
tions contained the same information about the observed MEG (redundancy, or shared
information) or to what degree their contributions were distinct (unique information). In
information theory, this is possible within the framework of Partial Information Decompo-
sition (PID, Williams & Beer, 2010; Wibral et al., 2015). This can be seen as a further
development of the concept of interaction information (McGill, 1954) or co-information
(defined equivalently but with opposite sign). Considering the case where we have two
source variables (for example test set predictions from different models, 7y;; and 72)
and a single target variable (for example the observed test set MEG time course, r), co-
Information can be thought of as the set intersection of the two source-target Ml values
(i.e. the predictive information common to the two considered models). It is calculated
as the difference between the sum of the individual source-target Mls and the full joint
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MI when considering both sources together:

COI:MI(fM17r>+MI(f‘M27r) _MI([f‘th‘Mz]?r) (24)

If both sources provide the same information about the target then

COI:MI(fMl,r) :Ml(f'Mz,r) :MI([?Ml,sz],r) (25)

which quantifies in this case fully redundant overlap in information content. However,
it is possible that

MI([Fyrr, Para],r) > MI(Ragy,r) + M1 (P2, ) (2.6)

This results in a negative value for co-information and this sort of super-additive pre-
dictive effect is termed synergy.

Crucially however, co-information measures only the difference between redundancy
and synergy, i.e. a net effect (Williams & Beer, 2010). In the presence of equally
strong synergistic and redundant contributions, co-information is zero. Therefore, co-
information does not provide a way to quantify information provided uniquely by a single
source.

The PID framework provides a solution to this problem. We used a recent implemen-
tation based on common change in surprisal (Iccs, Ince, 2017a) which has previously
been applied within a neuroimaging context (Park et al., 2018). The crucial step in a PID
is to quantify redundancy, since once this is done, the other quantities (unique informa-
tion and synergy) can then be inferred via a lattice structure (Williams & Beer, 2010). For
the redundancy measure Iccs, pointwise co-information is considered.

MI can be quantified at the pointwise level (i.e. at specific values of the underlying
variables): Ml is defined as the expectation of pointwise MI (PMI) over all values of both
variables and is non-negative. PMI on the other hand is a signed quantity. When it is
positive it indicates those two particular values of the considered variables are more likely
to occur together than would be expected if the variables were independent. When it is
negative, it indicates that those two particular values are less likely to co-occur than in the
independent case. Positive PMI can be interpreted as redundant entropy, while negative
PMI is synergistic entropy (Ince, 2017b). Negative PMI values have also been termed
misinformation (Wibral et al., 2015), since they correspond to a case where a Bayes
optimal gambler who was betting on the outcome of one variable based on observation
of the other would actually do worse (on that particular observation) than if they ignored
the observation.

In regression terms, negative PMI relates to values that, were they to occur in the
data, would have large absolute residual from the regression line (i.e. deviate from the
overall relationship), while positive PMI occurs for values that would be close to the
regression line (i.e. following the overall relationship). Similarly, pointwise co-information
can be considered as quantifying the set theoretic intersection of PMI values from two
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sources. Two conditions have to be fulfilled in order for a pointwise co-information term
to contribute to Iccs redundancy: (l) both sources have PMI about the target with the
same sign and (Il) the pointwise co-information of these three variables is of the same
sign as the two PMI values. This allows to quantify pointwise contributions of the sources
about the target which can be unambiguously interpreted as redundant or overlapping
contributions. A crucial advantage of this redundancy measure as opposed to other PID
implementations is that it measures the overlap at the pointwise level and therefore can
be interpreted as a within sample measure of redundant prediction, directly linked to the
decoding interpretation of MI. This is essential for the comparison of predictive models as
we consider here, for which redundancy measures which ascribe redundancy to sources
even when they predict the target on disjoint sets of samples would be inappropriate
(Ince, 2017a).

This implementation of PID does not provide a non-negative decomposition. For
example, negative unique information values are possible and they reflect a situation
where there are pointwise misinformation terms that are unique to one source-target
relationship (Ince, 2017a, see Table 7). In our application, negative unique information
means there are time periods where one model mis-predicts, i.e. that combination of
model prediction and MEG values is less likely to occur than if the model and prediction
were shifted randomly, while the second model does not. In other words, there is a
time window where that model is uniquely unhelpful for predicting the MEG signal, even
though, of course, on average over time, it does have predictive value. In cases where
there is negative unique information in the predictions of one model whose marginal Ml
about the MEG values is being used to normalise the redundancy values, it is therefore
possible to obtain normalised redundancy ratios > 1.

We here performed PIDs for each combination of outer fold predictions of the an-
notated feature space with those of the acoustic feature spaces as sources and the
recorded MEG as targets. Critically, we retrained all models with fixed hyperparame-
ters of regularisation of sensor covariance matrices and coordinates in source space to
those previously chosen as optimal in the inner folds when training the model based on
the Sg&Art feature space. This way, we gave the Sg&Art feature space the best chances
to achieve maximal unique information. To compute the respective information theoretic
quantities with these continuous variables, we transformed the variables to be standard
normal while preserving rank relationships by calculating the empirical cumulative den-
sity function (CDF) value at each data point and applying the inverse standard normal
CDF (Ince et al., 2017) prior to running Iocs PIDs for Gaussian variables via Monte Carlo
integration (Ince, 2017a). To interpret the raw values of the PIDs, we divided them by the
marginal Ml of the benchmark articulatory feature space. The normalised redundancy
then represents the proportion of the predictive information of the benchmark model
which is available also from the tested acoustic feature model.

To evaluate the results across folds, hemispheres, participants and feature spaces,
we used Bayesian models similar to those used for the evaluation of the performances.
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The corresponding model can be described as follows:

red,
MI,

& ~ [(3,0,10)|
tn ~ By fin) + Bizwon) + Binpn) + Brapim) + Brip -+ Br )
(ﬁi:_f[n]7ﬁi:b[n]uﬁi:h[n]7Bh:f[n]) ~ ‘/V<07 G[%im)
o5, ~ [1(3,0,10)|
Bijn ~ -4 (0,10)

~ J/(“m 62)

Bf, i) ~ - (0,10)

For the ratios of unique information, we concatenated the unique information of both
competing sources x and y in all comparisons to a single response variable and changed
the modelling approach to include predictors for unique information of both sources in all
m — 1 comparisons.

ungy
MI,

G ~ [1(3,0,10)|
tn ~ By fin) + Biswn) + Biinfn) + Brspim +
Bungsy, i+ + Bungx,  1n) + Bungyy, 1+ + Bungy; ]
(B::fin) Bistu)» Biin] s Brep1a)) ~ 4 (0,03,.)
o5, ~ [1(3,0,10)|
Bungxy, 1 ~ 4°(0,10)

~ =/V(Iin7 Gz)

ﬁunqu_l [n] ™ J/(Ou 10)
,Bunqyf1 [n] ™ JV(O, 10)

Bunqyfﬂh1 [n] ™ ‘A/(Oa 10)

The resulting values of synergy were very low. We thus wanted to assess to which
degree the observed synergy could only be obtained with intact predictions from the
benchmark articulatory features, or to which degree it could also be observed when the
benchmark’s predictions were randomly permuted. We performed circular shifts of the
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predictions based on the Sg&Art features by a random number of samples, where the
random number was constrained to be at least 200 samples and maximally the number
of available samples minus 200 samples to avoid temporal autocorrelation. We com-
puted PIDs of 1000 of these permutations. We then defined noise thresholds as the 95th
percentile of the 1000 maximum values found in permutations across feature spaces,
sources and outer fold test sets and calculated the fraction of data points (outer fold test
sets, sources) within each participant and feature space. To also compare unique infor-
mation of both sources and redundancy values to such noise thresholds, we repeated
this process, shuffling predictions based on the Sg&Art features for thresholds for the
information unique to predictions based on the Sg&Art features and shuffling observed
MEG time series for redundancy and information unique to predictions based on the
competing feature spaces.

Phoneme-evoked dynamics

A recent study reported that epoching EEG recordings from a story-listening paradigm
according to the onsets of phonemes allowed the decoding of four classes of phonemes,
so-called manners of articulation, from the resulting event-related potentials (Khalighine-
jad et al., 2017). We aimed to firstly replicate this finding with our MEG data and secondly
assess to which degree our linear encoding models could account for this phenomenon.

We computed “Phoneme-Related Fields” (PRFs) using the 34562 phoneme presen-
tations we had previously identified in our stimulus material. For this, we mapped the set
of phonemes to manners of articulation as specified by Khalighinejad et al. (2017, see
Figure S6 for a mapping table): Plosives, fricatives, nasals and vowels. We then epoched
the continuous MEG data for a time range from —0.1s — +0.6s around phoneme onsets,
binned it across epochs for each time point using four equipopulated bins and computed
mutual information between the MEG data and the four manners of articulation.

To ensure that we would capture the maximum effect of the MI, we delegated the
choice of source positions for the left and right hemispheres as well as sensor covari-
ance regularisations to the BADS algorithm similarly as before (figure 2.9). However,
this time we optimised the source model parameters with respect to the sum of Ml of ob-
served MEG data about the phoneme classes across time points. We then retrained our
encoding models with the source model parameters fixed to these choices. To assess
the results of this optimisation, we recalculated the maximum distance metric used in the
assessment of the chosen source positions during our modelling, this time also including
the positions found for optimal phoneme class decoding and plotted the difference to the
previously obtained maximum differences (figure 2.9A). The results reflected that still, all
positions lay in STG, while for some participants, the positions found to be optimal for
the PRF analysis were different from those obtained during the modelling.

Subsequently, we performed the same PRF analysis on the outer fold predictions
of each feature space. We were then interested in the redundant and unique contri-
butions of observed and predicted MEG to the MI about manners of articulation. We
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thus performed PIDs with observed and predicted PRFs as sources and the manners of
articulation as the target, separately for each feature space, yielding phoneme-related
redundancy as well as unique profiles.

2.5.6 Analysis of EEG dataset

To assess to which degree our main findings would generalise from our MEG to EEG
data, we also performed an analysis of an openly available EEG story listening dataset
(Broderick et al., 2018a). This dataset is part of the data on which the effect of a gain
of prediction performance of the combination of spectrograms and articulatory features
over spectrograms alone was originally reported.

EEG preprocessing

We analysed the 128 channel EEG recordings of a duration of 1 hour and 29 seconds of
13 participants. They had been acquired in 20 blocks of approximately equal duration at
a sampling rate of 512 Hz using a BioSemi ActiveTwo system and downsampled to 128
Hz. We rereferenced the data to the average of two additional mastoid reference chan-
nels, spline interpolated noisy channels identified by visual inspection (mean number of
noisy channels: 3.29 standard deviation: 4.19, pooled across participants), applied a
fourth order forward-reverse butterworth high-pass filter with a cutoff frequency of .5 Hz
and attenuated strong transient artefacts identified by visual inspection with a hamming
window to have an absolute amplitude of 90% of the maximum of the absolute clean
signal. Next, we z-scored individual blocks and winsorized the time series by replacing
remaining artefacts with an amplitude stronger than +3 standard deviations by +3 and
concatenated the individual blocks to single datasets. We then found unmixing matrices
using the runica ICA algorithm. We identified artefactual components reflecting eye or
heart activity and backprojected the unmixed data using mixing matrices where the arte-
factual components were removed. Finally, we downsampled the data to a sampling rate
of 40 Hz.

Stimulus Transformations

In general, we reused the same pipeline to generate non-linear transformations of the
stimulus as we had used for the stimulus of our MEG dataset. However, due to the
high noise level of the EEG data, we decided to omit the high-dimensional Gabor fea-
ture space and focussed on assessing if the acoustic feature space found to explain the
performance gain of the benchmark articulatory features over spectrograms alone in the
MEG dataset could do so in the EEG data as well. Additionally, we were interested in
more faithfully reproducing the original results (Di Liberto et al., 2015), where a spec-
trogram different from the log-mel spectrogram employed here had been applied. To
do so, we generated a bank of 16 fourth order zero-phase butterworth bandpass filters
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with mel-spaced centre frequencies (250, 402, 577, 780, 1015, 1288, 1605, 1971, 2396,
2888, 3459, 4121, 4888, 5777, 6807 and 8001 Hz), where the cutoff frequencies were
defined as half of the distances to the neighbouring centre frequencies. The absolute
values of the Hilbert transform of the output of these filters served as an approximation
to the spectrogram used in the original publication (“Sg16”). Moreover, we were inter-
ested to which degree possible differences between the performances achieved with
this spectrogram compared to our log-mel spectrogram were attributable to a compres-
sive nonlinearity (Biesmans et al., 2017) included in the latter. We therefore gener-
ated an additional spectrogram (“Sg16c¢”) where we raised the values of Sg716 to the
power of .3. This gave us a set of feature spaces Frgg = {Env, Sg16, Sgi1éc, Sg,
Sg16&(Sg16')+, Sg16¢c&(Sg16c’)y, Sg&(Sq')+, Sg16&PhOn, Sg16c&PhOn, Sg&PhOn,
Sg16&Art, Sg16¢c&Art, SQ&Art, Sg&(Sg')+ &Art }.

Forward Modelling

To keep the results comparable to the original publication, we performed ridge regres-
sions to model responses at the 12 electrodes whose performances were reported in the
main result of the original publication (B28, B29, B30, C3, C4, C5, D3, D4, D5, D10, D11,
D12) using the function “mTRFcrossval.m” from the mTRF toolbox (Crosse et al., 2016).
However, we implemented a small change that allowed us to do a nested crossvalida-
tion to tune the regularisation hyperparameter A;,. We trained models on 18 of the 20
available blocks, picked the A;; that resulted in the best prediction performance on a val-
idation block and evaluated the test performance on the remaining block. This procedure
was rotated such that each block served as the test set once. We specified the range
of Az» values as {0.1k | ke[—25...60]}, over which the function performed an exhaustive
grid search where the extreme values were never chosen. For the parameters of tempo-
ral extent, we used the same values as in the original publication, i.e. ty;;, = —0.1 and
tvar = 0.4 seconds.

Model Comparisons

The model comparisons employed here were largely the same as for the MEG data. To
evaluate the test set prediction performances of the forward models, we used the same
Bayesian modelling approach as we had used for the analysis of the MEG data. We also
performed the same PID analysis with model predictions as sources and observed EEG
time-series as targets and evaluated its performances with the same Bayesian models
as we had used for the MEG analysis. However, due to the higher noise level, we only
considered data points where the Ml of predictions based on the benchmark articulatory
feature space and observed time-series surpassed a noise threshold defined as the
95th percentile of Ml values obtained from time shifted permutations, corrected across
electrodes using maximum statistics. Additionally, to account for the skewed distributions
of the ratios of PID quantities normalised by the marginal Ml of the predictions based on
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the benchmark articulatory feature space and the observed MEG, we used a log-normal
response family for the Bayesian modelling and considered the posterior distributions of
the medians of the effects of interest. We repeated the computation of noise thresholds
as described for the MEG data. Finally, we performed the same analysis of phoneme
evoked responses on the set of electrodes used for the modelling as we had performed
on the MEG data.
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64 CHAPTER 3. TRANSFER ENTROPY FOR NARROWBAND SIGNALS

3.1 Abstract

Transfer Entropy, a generalisation of Granger Causality, promises to measure “informa-
tion transfer” from a source to a target signal by ignoring self-predictability of a target
signal when quantifying the source-target relationship. A simple example for signals with
such self-predictability are narrowband signals. These are both thought to be intrinsi-
cally generated by the brain as well as commonly dealt with in analyses of brain signals,
where band-pass filters are used to separate responses from noise. However, the use
of Transfer Entropy is usually discouraged in such cases. We simulate simplistic exam-
ples where we confirm the failure of classic implementations of Transfer Entropy when
applied to narrow-band signals, as made evident by a flawed recovery of effect sizes and
interaction delays. We propose an alternative approach based on a whitening of the in-
put signals before computing a bivariate measure of directional time-lagged dependency.
This approach solves the problems found in the simple simulated systems. Finally, we
explore the behaviour of our measure when applied to delta and theta response compo-
nents in Magnetoencephalography (MEG) responses to continuous speech. The small
effects that our measure attributes to a directed interaction from the stimulus to the neu-
ronal responses are stronger in the theta than in the delta band. This suggests that the
delta band reflects a more predictive coupling, while the theta band is stronger involved
in bottom-up, reactive processing. Taken together, we hope to increase the interest in
directed perspectives on frequency-specific dependencies.

3.2 Introduction

Over the last decades, the description of statistical dependencies in cerebro-cerebral
and cerebro-peripheral pairs of time series has witnessed a surge of interest (Bassett
& Bullmore, 2006; Brookes et al., 2011; Naselaris et al., 2011; Crosse et al., 2016; Mell
et al., 2021; Gross et al., 2021). In these fields, the general idea is to gain insight into
the workings of the brain by either studying how time series of neuronal activity relate to
other neuronal activity or to external signals such as auditory or visual stimuli as well as
the activity of other organs.

As a consequence, countless methodological approaches have been suggested to
mathematically quantify these dependencies (Bastos & Schoffelen, 2016). Some of
these ideas specifically aim at the description of directed interactions, for example by
using measures of the so-called “Granger-causal” (Granger, 1969) family, or their gen-
eralisation to nonlinear relationships, Transfer Entropy (Schreiber, 2000; Barnett et al.,
2009). In both of these measures, the main idea is to quantify a directional dependency
by first assessing to what degree a target time-series can be predicted from itself and
secondly assessing to what degree this auto-prediction can be improved upon with the
assumed source time-series. In its classic formulation, TE implements this by way of
conditioning the mutual information (MI) between source and target on an operationali-
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sation of the target past. It has been suggested that this warrants the capacity to correctly
estimate not only “predictive information transfer” between source and target time-series,
but also the recovery of the true underlying interaction delay (Wibral et al., 2013). The
precise estimation of such quantities is of high interest for the research programmes not
only of functional connectivity, but of cognitive neuroscience in general.

However, in the arguably simplest and in many applications ubiquitous case of self-
predictable or auto-correlated time-series, namely narrowband time-series as obtained
e.g. when applying band-pass filters, TE fails to deliver intuitively comprehensible results.
The application of TE in such cases has therefore repeatedly been discouraged (Florin
et al., 2010; Barnett & Seth, 2011).

Such applications however are of potentially high interest, given that frequency spe-
cific interactions are at the core of popular hypotheses about cerebro-peripheral (Gi-
raud & Poeppel, 2012; Donhauser & Baillet, 2020) and cerebro-cerebral (Schnitzler &
Gross, 2005; Fries, 2015; Michalareas et al., 2016; Schoffelen et al., 2017) interactions.
There is an abundance of evidence for intrinsically auto-correlated or band-limited parts
of neuronal activity (“oscillations”), whose presence in neuronal recordings (Wang, 2010;
Donoghue et al., 2020) should accordingly impede the use of TE even without the use
of analysis filters. Moreover, in light of the usually low signal-to-noise ratio (SNR) of
many recording modalities, particularly of non-invasive neuroimaging, the isolation of
band-limited activity via spectral filtering is a pervasive strategy to achieve acceptable
sensitivity and specificity. The main idea of TE thus turns out to be an empty promise for
many real-world applications where auto-correlations are indeed clearly visible.

Suggestions to implement TE mainly differ in their approaches to remove the self-
predictability of the target signal from the quantification of the effect. While it has been
argued previously that simplistic approaches relying on a target past operationalisation
consisting of a single delay are insufficient (Wibral et al., 2013), such approaches remain
popular. This might imply that the literature is missing more intuitive demonstrations of
the shortcomings of such approaches. Furthermore, it also has been shown previously
that prominent proposals relying on multidimensional embeddings of the target time se-
ries fail in scenarios of narrow-band effects (Wollstadt et al., 2017). While suggestions
exist that try to overcome this problem by means of constructing frequency-specific sur-
rogate data (Pinzuti et al., 2020) or state-space models (Faes et al., 2017), more in-
tuitive explanations of these failure cases are arguably still lacking. Such an intuitive
understanding should pave the way towards both more widespread awareness as well
as simple fixes of these issues.

One interesting use case for measures that overcome the problems outlined above is
the heavily studied phenomenon of speech envelope tracking as observed in magneto-
and electroencephalography (henceforth MEEG to denote both modalities) recordings
(Ahissar et al., 2001; Hertrich et al., 2012; Gross et al., 2013; Ding & Simon, 2012;
O’Sullivan et al., 2015; Di Liberto et al., 2015; Wdstmann et al., 2017; Brodbeck et al.,
2018a; Daube et al., 2019b; Obleser & Kayser, 2019; Zan et al., 2020; Donhauser &
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Baillet, 2020). In short, the low-frequency portion of MEEG signals is reliably related to
the time varying energy of the speech signal at a certain delay. In noninvasive recordings,
speech envelope tracking is heavily studied in the canonical delta and theta bands (Ding
& Simon, 2014). At higher frequencies, the effect usually fails to robustly exceed noise
thresholds (but see Kulasingham et al., 2020). Limiting the analysis to the delta and theta
frequency bands is thus an efficient means to achieve stronger effects. Theories exist
that link this phenomenon to frequency specific mass-neuronal processes of debated
algorithmic significance (Giraud & Poeppel, 2012; Hyafil et al., 2015).

From the perspective of directed connectivity, an interesting question is to what de-
gree the resemblance of MEEG signals and the speech envelope at a given time ¢ can
be explained from the MEEG signal’s own past, and to what degree it can only be ex-
plained when additionally considering the stimulus. Given the auto-correlated nature of
both neuronal processes and the speech envelope in the relevant spectral range, it is in
theory possible for a system to predict the upcoming speech envelope (and, as made
evident by the progress of past and current machine learning approaches, also richer
parts of the speech signal Chung et al., 2020; Lakhotia et al., 2021). According to popu-
lar theories of brain function, such predictive coding is also of high utility for a biological
system (Rao & Ballard, 1999; Friston, 2005). The extent to which speech tracking as
quantified by undirected measures such as delayed Ml would decrease when using suit-
able directed measures would highlight the extent to which the heavily studied tracking
might in fact reflect predictive rather than reactive processing. This would add to ac-
counts that characterise low-frequency oscillations as the deliberate effort of biological
systems to be in a state of optimal neuronal excitability (Lakatos et al., 2008; Henry &
Obleser, 2012), such that metabolically costly states of high encoding fidelity co-occur
with the relevant parts of the stimulus (Jones & Boltz, 1989; Schroeder & Lakatos, 2009;
Kayser et al., 2015; Mtynarski & Hermundstad, 2018).

Here, we consider a simple simulated system of band-limited delayed bivariate in-
teractions with a clear and intuitively comprehensible ground truth spectral range and
delay. We implement delayed MI, two classic algorithms to estimate TE as well as a
novel, whitening based estimator (“Directed Information based on conditional entropy”,
“Dlee”) within the Gaussian copula MI framework (gcmi, Ince et al., 2017) and exten-
sively test these measures with simulations. Finally, we explore the behaviour of Dl
in an MEG dataset of continuous speech listening. We find that estimates of the delay
between the stimulus and the response as well as the recovered interaction strength in
the delta and theta bands differ from those recovered by the bivariate delayed MI.
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3.3 Results

3.3.1 An intuitive overview over multiple measures

A first goal of this study was to provide an overview of various implementations of TE in
a simple and intuitively understandable example case. To do so, we simulated coupled
systems with a known ground truth spectral interaction range and delay. These consisted
of 4 - 8 Hz narrow-band filtered Gaussian white noise to obtain a band-limited source sig-
nal, which was delayed in time by .15 s to obtain a target signal. We added Gaussian
white noise to these signals to mimic the noisy measurement process in neuroimaging.
For such a simplistic but intuitive system, a suitable measure of TE should peak at the
ground truth simulated delay and spectral range. Further, for such highly auto-correlated
signals, TE should yield a highly reduced effect size in comparison to undirected mea-
sures such as delayed MI: a potential source signal can only add little information if the
target signal is already highly predictable from its own recent history.

Figure 3.1 shows the results of applying delayed MI, classical TE estimators TE1p
and TEgpp as well as our proposal, Dl (see below for more detailed explanations of
each individual measure) to the same time series, both without and with applying an
analysis filter.

A first observation is that in the present implementation with gcmi (Ince et al., 2017),
all measures yield increased effect sizes when a suitable analysis filter is applied. This,
potentially trivially (but see Pinzuti et al., 2020), demonstrates that the effect size and
consequently the sensitivity can benefit from the application of analysis filters. It thus un-
derscores the utility of directed connectivity measures that behave robustly when applied
to narrow-band signals. Further, the pass-band of the effect can be found by applying
analysis filters of varying centre frequencies: all measures return the highest effect sizes
across analysis bands within the pass-band of the simulated effect.

Secondly, we observe that TEp fails to return a reduced effect size in compari-
son to the undirected delayed MI, even when applied to highly self-predictable signals
as simulated here. This happens for both broadband and filtered analysis scenarios.
TE¢p is a classical implementation of TE (Besserve et al., 2010; Lobier et al., 2014;
Ince et al., 2015; Park et al., 2015; Giordano et al., 2016; Morillon & Baillet, 2017) that
operationalises the target past by means of using only one delay of the target time se-
ries (more specifically, the same delay as that of the source signal relative to the target
present when scanning across delays). For the ground truth delay simulated here, this
single delay fails to capture most of the self-predictability of the target signal, resulting in
an overestimation of the directed effect.

A third measure, TEgpo (Wibral et al., 2013), yields the anticipated strong reduction
in effect size by roughly an order of magnitude in comparison to MI. It achieves this
by using a more effective handle on the target past: a multi-dimensional “non-uniform”
(Vlachos & Kugiumtzis, 2010; Faes et al., 2011) embedding optimised for self-prediction.
As opposed to TEqp, this essentially consists of multiple delays that are independent
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Figure 3.1: Comparison of delay profiles of various undirected and directed
dependency measures in a simplistic simulation scenario.
The simulation here consists of a 4 - 8 Hz bandpass filtered white noise source signal
that is temporally delayed to obtain the target. White noise is added to both source and
target to model measurement noise. First and middle columns show time domain
sections of the analysed time series, where a filled circle denotes a target present
sample, an empty circle denotes a source past sample at a delay corresponding to the
simulated effect, and crosses denote the respective target past samples. 2nd and 4th
columns show delay profiles of the respectives measures relative to the ground truth
interaction delay and noise thresholds. 5th column shows spectrotemporal maps, where
the frequency response of the filter used to generate the ground truth effect is overlaid
as a black curve. A Delayed Mutual Information correctly recovers the ground truth
interaction delay. B TE1p also correctly recovers the interaction delay, but measures an
interaction effect that is highly similar to delayed MI. C TEgpo recovers an interaction
delay different from the ground truth, even more so when the analysis is performed on
the filtered signal. D Dl¢e only finds a super-threshold effect with correct recovery of the
interaction delay when an analysis filter is used, but with a strongly reduced effect size
in comparison to other measures.
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of the analysis delay in the scanning procedure. However, it fails to recover the ground
truth interaction delay simulated in the coupled systems (Wollstadt et al., 2017), in both
broadband and filtered analysis settings. Given this failure in a simplistic problem setting
that is ubiquitous in neuroscientific datasets, it is unclear to which degree TEgpp can
practically live up to its promise of correctly quantifying “predictive information transfer”
as well as the interaction delay.

Finally, the last measure considered in and proposed by this study, Dl¢e, solves both
of these problems: It returns the smallest effect sizes in this comparison, even to the
degree that it fails to detect the effect in a broadband analysis setting. However, when a
suitable analysis filter is applied, it returns a delay profile with a super-threshold peak at
the simulated delay. It achieves this in a two-step approach (Haugh, 1976): First, both
source and target signals are transformed into time series of surprisal, i.e. the sample-
wise entropy of each time point conditional on the same non-uniform embedding used in
TEspo. Secondly, delayed Ml is computed for these whitened time series.

Taken together, this first analysis provides an overview of four different connectivity
measures in an intuitive and simplistic simulation setting, illustrating how Dl succeeds
in returning intuitive results where TEp and TEgpo fail.

3.3.2 Synergy of source and target past about target present dis-
torts conditional Ml based TE

We wanted to investigate possible explanations for the counterintuitive results returned
by our implementation of TEgpg. To do so, we considered a perspective on TE offered
by partial information decomposition (PID). PID is an information theoretic approach to
study trivariate relationships (Williams & Beer, 2010; Ince, 2017a). The central goal in
PID is to quantify shared information (redundancy) between two source variables about
a third target variable. Further, PID aims to measure unique information of both source
variables as well as synergistic information that is only obtainable when jointly consider-
ing both sources. A key insight of PID relevant to TE is that the basis of TE, conditional
MI, is the sum of two “atoms” of PID: unique information and synergy (James et al.,
2016). In other words, conditioning a bivariate relationship on a third variable will remove
redundant information, but will not deliver solely unique information. It has been pointed
out that this conflation of unique and synergistic information defies interpretations of TE
as measuring “information flow” (James et al., 2016). By relying on conditional M|, TE
measures not just unique information of the source about the target present ignoring the
target past, but instead conflates this with synergistic information stemming from inter-
actions of the source and the target past. The resulting quantity is thus not “localisable”
to the source (James et al., 2016).

We turned to data from the same simulated system as analysed in the previous sec-
tion. In a first step, we considered co-information (McGill, 1954) of the source, the target
present and the target past. It can be obtained by subtracting conditional M| from bivari-
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Figure 3.2: Partial information decomposition perspective on TE.

A Delay profile of Dl for reference. B Delay profile of delayed MI. C Delay profile of
TEgpo, Which is based on conditional Ml and can, according to PID, be seen as the sum
of synergy (F) and unique information of the source (H). D Delay profile of
co-information (abbreviated as “co-info”), which quantifies the triple set intersection in
classic Venn-diagram conceptualisations of three variable systems. According to PID, it
is the net sum of synergy (F) and redundancy (E). Axis limits chosen to highlight the
negative (net synergistic) portion at positive delays. E - H Delay profiles of the PID
atoms redundancy, synergy and unique information (of target and source). |1 Delay
profiles of synergy and sign-flipped unique information of the source, highlighting a
surplus of synergy at positive delays. J Delay profiles of Dlce when simulating data with
different ground truth effect bandwidths. Dl.e recovers the correct delay at all
bandwidths (left) and recovers an increasing effect size as a function of bandwidth. It
exceeds the noise threshold in all cases. K Delay profiles of unique information of the
source (left) and synergy (right) for the same effect bandwidths as in J. For narrow
bandwidths, unique information of the source fails to become positive and recovers the
wrong delay. Further, the sum of unique information of the source and synergy is
dominated by synergy, which features a greater delay estimation error than unique
information.
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ate MI, and thus quantifies the triple set intersection in classic Venn diagram concep-
tualisations. It can take on positive and negative values, where positive values denote
redundancy and negative values denote synergy. It is important to note that from a
PID perspective, the conceptually simpler (and less controversial) co-information con-
flates redundancy and synergy to a single net quantity, which PID aims to decompose
into pure redundancy and synergy. Figure 3.2D shows negative co-information values
at later delays, demonstrating that there is indeed a net synergy of the source and the
target past about the target present.

Next, we applied PID using an implementation based on common change in surprisal
(lecs Ince, 2017a). We find that TEgpo (figure 3.2C), as it is based on conditional MI, can
be decomposed into largely identical profiles of synergy (figure 3.2F) and unique infor-
mation of the source (figure 3.2H) differing only in their sign. The positive net conditional
MI (i.e. TEspo) however turns out to entirely stem from a surplus of synergy at later
delays that is not cancelled out by unique information of the source (figure 3.2l). In other
words, in this simplistic example case, TEgpo measures a synergistic effect.

As a consequence of the PID perspective on conditional MI based TE implemen-
tations, it has been proposed to use the unique information of the source as a more
appropriate measure in order to avoid the quantification of synergistic effects (Barrett,
2015). However, in our example case, this quantity is negative across the entire range of
considered interaction delays (figure 3.2H), meaning that from considering the source on
its own, predictions of the target would become worse. This can be seen as the result of
two factors: firstly, in this simulation, the source signal is noisy, and secondly, the simu-
lated effect has a very narrow spectral range and thus highly limited degrees of freedom.
As these factors come together, the efficient operationalisation of the target past makes
it impossible to improve on its prediction of the target present.

We thus considered similar simulations with varying bandwidths of the ground truth
effect, and verified that at broader bandwidths, the unique information of the source be-
comes positive (figure 3.2K). Of note, the delay recovered by unique information of the
source generally has lower deviations from the ground truth than what is recovered by
synergy, but this deviation is still non-zero at narrower effect bandwidths. We further find
that with increasing bandwidths of the effect, synergy increases as well and peaks at de-
lays closer to the ground truth delay. Crucially however, across all simulated bandwidths,
our proposed measure, Dlge, finds super-threshold effects at the correct delay (figure
3.2J).

Taken together, we have shown that the delay mis-estimation problems of TEgpo,
when applied to narrow-band signals, stem from the known conflation of unique and
synergistic effects in conditional MI based TE implementations. In this example, the
effect quantified by TEgpg is in fact dominated by synergy. We further show that a possi-
ble alternative, namely unique information of the source as obtained from PID, has both
a lower sensitivity and a worse performance in recovering the ground truth interaction
delay than our proposed conditional MI-free measure Dlge.
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3.3.3 Varying the ground truth interaction delay

After these initial intuitive and single sample based demonstrations of problems of two
classic algorithms to quantify TE as well as a suggestion to explain their origin, we were
interested in more thoroughly testing the characteristics of the measures. To do so,
we performed extensive analyses of the simplistic coupled systems that measured the
problems over repeated samples. For each of these samples, we computed the delay
profiles of the set of four measures and evaluated the recovered interaction delay as well
as the recovered effect size as obtained from the peaks across the delay profile of a
given repetition.
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Figure 3.3: Simulation with varying ground truth delay.

Basic setup of the simulation is the same as in figure 3.1, however, here, the ground
truth interaction delay is varied, and 100 repetitions are sampled. Moreover, a higher
SNR is used. Plots show the median across repetitions, shaded regions indicate
bootstrapped 95% confidence intervals. A Recovered effect size when the data are
analysed without a filter. TE1p suffers from recovering a systematically varying effect
size across different ground truth delays despite a constant simulated interaction
strength. B Same as A, but applying an analysis filter. C Recovered delays when data
are analysed without a filter. TEgpo underestimates the true interaction delay. D Same
as C, but applying an analysis filter.

In a first simulation, we were interested in the characteristics of the measures across
a range of simulated ground truth interaction delays. In principle, a suitable measure of
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TE should recover the same constant effect size at varying simulated interaction delays
when all other factors are kept constant. In figure 3.3, the results demonstrate that this
is indeed the case for all measures in both broadband and filtered analysis scenarios
except for TE1p. This measure exhibits a systematic variation in the recovered effect
size across different simulated interaction delays reminiscent of the filter ringing of the
auto-correlation profile of the target signal. The failure here again highlights the problems
of operationalising the target past with a single delay that varies as the analysis delay is
scanned (Wibral et al., 2013). In case of very short ground truth delays, the Ml at the
peak of the delay profile is conditioned on the same short delay of the target variable.
Since narrow-band signals have high auto-correlation at such short delays, this leads to
a strong reduction of conditional Ml vs MI. As the ground truth delay increases, the Ml
is conditioned on longer delays, where the auto-correlation of the target variable wanes
and waxes and thus leaves a correspondingly varying conditional MI. This can lead to
potential interpretational pitfalls when for example the results of TE{p obtained in two
different experimental conditions are compared. If these conditions simply differ in delay,
this will lead to different recovered effect sizes and could thus be falsely interpreted as
differences in directed dependency.

Further, the results reiterate that TEgpp, while featuring a constant effect across
different ground truth interaction delays, recovers a flawed estimate of the interaction
delay. Dl on the other hand behaves favourably by returning a constant effect size at
the correct interaction delay. However, due to its drastically reduced effect size in this
band-limited interaction, its estimates are noisier.

3.3.4 Varying the signal-to-noise ratio in source and target signals

In a second simulation, we were interested in comparing the four measures when faced
with increasingly noisy signals. While the ideal measure should be highly sensitive to
a present effect and recover it at the correct delay, ignoring self-predictable parts of
dependencies should inevitably reduce the effect size.

We indeed found that Dl.e recovered the smallest effects and hit the noise floor at
the lowest noise amplitude in comparison to the other measures (figure 3.4). In a fil-
tered analysis scenario, the recovered effects were in general higher than those in a
broadband analysis scenario. Interestingly, for some noise amplitudes, Dl recovered
stronger effects than TEgpg. At very low noise amplitudes, all measures succeeded in
recovering the correct delay irrespective of whether filters were applied in the analysis
or not. However, as noise increased, especially TEgpg failed in recovering correct delay
estimates. While this was especially problematic for filtered analyses, other measures
had lower delay estimation errors at higher noise amplitudes due to the gain in sensitivity
afforded by filtering.
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Figure 3.4: Simulation with varying signal-to-noise ratios.

Basic setup of the simulation is the same as in figure 3.1, however, here, the amplitude
of noise added to source and target varies (but the same amount is added to source
and target), and 100 repetitions are sampled. Plots show the median across 100
repetitions, shaded regions denote bootstrapped 95% confidence intervals. A In a
broadband analysis scenario, all measures recover decreasing effect sizes with
increasing noise amplitudes. Dlg recovers the smallest effect sizes and reaches the
noise floor the earliest. B In a filtered analysis scenario, the recovered effect sizes are
in general higher for all measures. C The recovered delays deteriorate as the noise
increases. In a broadband analysis scenario, all measures correctly recover the ground
truth interaction delay at low noise amplitudes. D In a filtered analysis scenario, TEgpo
has higher delay reconstruction errors, while the delays recovered by the other
measures benefit from the increased effect size.

3.3.5 Varying the signal-to-noise ratio independently in source and
target signals

In a third step, we were interested in assessing how the four measures would react to
asymmetric variations of the SNR (Bastos & Schoffelen, 2016). The ideal measure of
TE should recover an invariant interaction delay and an effect size that symmetrically
decreases as noise of increasing amplitude is added to either source or target signals.
Figure 3.5 shows how the set of four measures behaved. All measures succeeded in
returning symmetric decreases of the recovered effect sizes when there was more noise
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Figure 3.5: Caption on following page.

in either source or target signals, irrespective of whether analysis filters were applied
or not. However, only the undirected delayed MI as well as the practically undirected
TEqp (see figure 3.1) recovered interaction delays that were unaffected in these settings.
For TEgpp, an increasing SNR imbalance with noisier source signals led to stronger
biases in the estimated interaction delay for broadband analyses. For analyses where
filters were applied, these biases grew stronger for both noisier source and noisier target
signals. Dl¢e exhibited biases in the broadband analyses, but performed favourably when
analyses filters were applied. This analysis additionally corroborates an argument of
caution when interpreting TE results (Wollstadt et al., 2017): when there are asymmetric
changes in e.g. measurement noise across conditions, this does not automatically imply
a change of coupling across these conditions, but only reflects the sensitivity of TE to
such measurement noise.
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Figure 3.5 (previous page): Simulation with signal-to-noise ratios varying
independently in source and target signals.

Basic setup of the simulation is the same as in figure 3.1, however, here, the amount of
noise added to source or target signals is varied, and 100 repetitions are sampled. A -
D show single trial delay profiles in a broadband analysis scenario for various
measures, corrected for the true interaction delay across different noise amplitudes
(negative delta on the y-axis refers to higher noise amplitude in the target signal,
positive delta on the y-axis refers to a higher noise amplitude in the source signal). The
ideal measure should always return the highest values at a lag of 0 relative to the true
delay. Only Ml and TE1p succeed (but do not quantify Granger-causal information). E
and F show the same as A — D, but repeated for 100 trials. Plots show the median
across trials, shaded regions denote bootstrapped 95% confidence intervals. The
maximum effect size across lags for all measures symmetrically decays as the noise
increases in either source or target signals. The delay misestimation however behaves
asymmetrically, especially for TEgpg, which recovers wrong delays when the source is
noisier than the target. G —J The same as A — D, but within a filtered analysis scenario.
Here, Dlge performs favourably. K and L show the same as E and F, but within a filtered
analysis scenario.

3.3.6 Varying the bandwidths of the simulated effect as well as of
the analysis filter

In our fourth simulation, we reasoned that a characteristic effect that a suitable measure
of TE should show is a varying recovered effect size as a function of the bandwidth of
the ground truth effect. Specifically, the theoretical extreme case of a sinusoidal source
signal and its phase-shifted copy as a target signal should lead to zero TE. Such signals
have no degrees of freedom and are perfectly predictable from themselves. Additionally
considering potential source signals can thus not add any information. As one turns to
signals with increasingly broad passbands, these degrees of freedom increase. Conse-
quently, a higher directed effect should be quantifiable.

When testing this with the set of four measures (figure 3.6), we found that all mea-
sures monotonically increased in effect size as the bandwidth of the effect increased.
However, in a broadband analysis, this increase spanned 2.5 orders of magnitude for
Dl¢e, which thus had the strongest relationship between its recovered effect size and
increased degrees of freedom of the input signals. This was however also driven by
the ground truth effect covering a larger part of the entire frequency spectrum. In a fil-
tered analysis scenario where filter parameters were chosen to isolate the effect from
the noise, only TEgpp and Dl¢e showed increases in effect size with broader effect band-
widths. The recovered delays were, as shown in previous analyses, unaffected for all
measures except for TEgpp. The latter exhibited stronger biases in the recovered delay
for narrower simulated effect bandwidths.

In theory, applying analysis filters that match the ground truth effect should return a
stronger effect size than analysis filters that are too broad or too narrow. Too broad anal-
ysis filters should fail to reduce the impact of noise in neighbouring frequencies, while too
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Figure 3.6: Simulation with varying bandwidths of the transmitted signal.

Basic setup of the simulation is the same as in figure 3.1, however, here, the ground
truth bandwidth of the effect is varied, and 100 repetitions are sampled. Plots show the
median across 100 repetitions, shaded regions denote bootstrapped 95% confidence
intervals. A The recovered effect size increases as the bandwidth of the effect grows.
This increase however spans the most orders of magnitude for Dlce. B In a filtered
analysis scenario, the effect sizes are stronger than in a broadband analysis scenario.
C When varying the bandwidth of the filter used in the analysis, Dlce returns the peak
effect size when the analysis filter matches the ground truth effect. All other measures
fail to do so, TEgpp even increases monotonically as the analysis filter passband grows.
D - F report the interaction delays recovered in the same simulations as shown in A - C.
The previously reported misestimation of the interaction delay of TEgpg is limited to
narrow band effects.

narrow analysis filters should ignore variance of the effect of interest and thus reduce the
sensitivity. When applying analysis filters of varying width to a simulated coupled sys-
tem of fixed ground truth effect bandwidth, Dl.e showed the clearest peak close to the
ground truth effect (bandwidth of 10 Hz, figure 3.6C) across analysis filter widths. TEgpo
on the other hand exhibited a monotonic increase in effect size as the analysis filter
was broadened, which would thus result in mis-estimations of the interaction bandwidth.
The undirected delayed M| and the practically undirected TEp only showed comparably
weak variance across different analysis filters.
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3.3.7 Varying the centre frequency of the simulated effect

In a last simulation, we were interested in assessing the stability of the set of four mea-
sures when the centre frequency was varied. A suitable measure of TE should recover
effect sizes and interaction delays with no variation under different ground truth centre
frequencies, and it should find the strongest effects at the ground truth frequency.
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Figure 3.7: Simulation with varying centre frequencies of the effect.

Basic setup of the simulation is the same as in figure 3.1, however, here, the centre
frequency of the effect is varied, and 100 repetitions are sampled. Line plots show
median across 100 repetitions, shaded regions denote bootstrapped 95% confidence
intervals. A In a broadband analysis scenario, all measures recover effect sizes that are
highly constant across centre frequencies. TE{p however exhibits a slight ringing,
TEgpo and Dlge recover noisier estimates. B The same holds for a filtered analysis
scenario, where Dlge and TEgpg exhibit stronger variations. C and D As shown in other
simulations, TEgpo suffers from delay estimation problems. These vary especially
strong across centre frequencies for filtered analysis scenarios. E - H Confusion
matrices obtained when scanning data with different ground truth interaction
frequencies with a bank of analysis filters (choosing the frequency with the maximum
across analysis filters). All measures generally succeed in returning peak effects at the
true interaction frequency. TEgpp has the highest error.

We found that all measures considered here recovered effect sizes that were indeed
relatively stable across different ground truth centre frequencies in both broadband and
filtered analysis scenarios (figure 3.7). TE1p and Dlce however did exhibit slight biases,
especially for the combination of Dlge and higher simulated centre frequencies. All mea-
sures except TEgpp recovered unbiased estimates of the interaction delay for all tested
centre frequencies. TEgpo on the other hand exhibited a marked variation of the recov-
ered interaction delay across the different centre frequencies.
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Finally, when analysing the simulated data with filters across different bands, all mea-
sures mostly peaked when analysis filters matched the ground truth frequency. For Ml
and TEp, the mean absolute error (MAE) across frequency bands was 0 frequency bins,
for Dlee it was .01 frequency bins and for TEgpo, the MAE was strongest with .04 fre-
quency bins. Identifying the correct spectral band thus did not seem to pose a particular
problem for any of the considered measures.

3.3.8 Studying low-frequency MEG speech envelope tracking with
directed measures

Finally, we wanted to explore the behaviour of our measure on real data. To do so,
we turned to a dataset of n = 24 participants who listened to a continuous narrative
of 1 hour duration while their MEG was recorded (Daube et al., 2019b). Examples of
cerebro-peripheral coupling such as this present a good testbed for frequency-specific
measures of directed connectivity, because the ground truth direction of the effect is
known. Further, a plethora of studies has examined the relationship of MEEG responses
to the time varying energy, or “amplitude envelope”, of the speech stimulus in the delta
and theta bands (Ding & Simon, 2014). However, it is usually studied using bivariate,
undirected measures of connectivity that do not consider the self-predictability of the
MEG responses. The degree to which such bivariate dependencies could be accounted
for by auto-regressive models of the neuronal response signal could in principle reflect
the degree to which bivariate speech tracking is a signature of predictive rather than
reactive bottom-up processing. On the other hand, effects found by directed measures of
dependency (under the assumption of a given auto-regressive model) would be stronger
evidence of reactive, bottom-up processing of unpredictable parts of the stimulus input.

In most participants, we found spectra of delayed Ml (see figure 3.8B and figure 3.9)
that were suggestive of two spectral components involved in speech tracking which we
will refer to as delta and theta bands (note that our functional definition of the theta band
had higher upper cutoffs than the canonical theta band, which is commonly defined be-
tween 4 to 8 Hz, Klimesch, 1999; Wang, 2010). We found super-threshold delayed Ml in
both left and right auditory cortices of all participants in both delta and theta bands (fig-
ure 3.8C). This was stronger in delta than in theta frequency bands (fraction of samples
in favour of hypothesis f;,, = 1, figure 3.8E, see also figure 3.11). With Dlce however, we
found only weak effects that barely exceeded the noise thresholds in the delta bands,
while effects in the theta bands exceeded noise thresholds with only 1 exception in the
left and 2 exceptions in the right hemisphere (figure 3.8C). This constitutes strong ev-
idence for a robust population-level prevalence of the effect (Ince et al., 2021). These
theta Dl effects were generally much stronger than in the delta band (f,, = 1; figure
3.8E, see also figure 3.8E, see al