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Abstract

In cognitive neuroscience, encoding and decoding models mathematically relate stim-

uli in the outside world to neuronal or behavioural responses. While both stimuli and

responses can be multidimensional variables, these models are on their own limited to

bivariate descriptions of correspondences. In order to assess the cognitive or neurosci-

entific significance of such correspondences, a key challenge is to set them in relation

to other variables. This thesis uses information theory to contextualise encoding and

decoding models in example cases of audition and vision. In the first example, encoding

models based on a certain operationalisation of the stimulus are relativised by models

based on other operationalisations of the same stimulus material that are conceptually

simpler and shown to predict the same neuronal response variance. This highlights the

ambiguity inherent in an individual model. In the second example, a methodological

contribution is made to the problem of relating the bivariate dependency of stimuli and

responses to the history of response components with high degrees of predictability. This

perspective demonstrates that only a subset of all stimulus-correlated response variance

can be expected to be genuinely caused by the stimulus, while another subset is the

consequence of the response’s own dynamics. In the third and final example, complex

models are used to predict behavioural responses. Their predictions are grounded in

experimentally controlled stimulus variance, such that interpretations of what the models

predicted responses with are facilitated. Together, these three perspectives underscore

the need to go beyond bivariate descriptions of correspondences in order to understand

the process of perception.
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Preface

0.1 Author’s note

In late 2015 I applied for a PhD scholarship of the College of Science and Engineering

at the University of Glasgow. For this application, I had to write a “research plan". Six

years later, I am finally close to submitting my thesis, and stumble across this document.

I decide to include it at the start of my thesis, as it documents the insecurities and the

enthusiasm, the fears and the hopes as well as the ignorance and the understanding

with which I went into this project.

When I ask myself what my younger self would have thought of this result, I cannot

help but feel surprised of how many of the ideas mentioned in the plan indeed found their

way into the final thesis.

Perhaps most striking seems the somewhat haphazardly cited work by Güçlü & van

Gerven (2015), as I had no idea whatsoever that I would end up venturing into the mod-

eling of visual processing with deep neural networks.

Another peculiar aspect is that the plan was centered on the idea of describing

cortico-cortical connectivity with Transfer Entropy (TE) and “content-based connectivity

measures" (Ince et al., 2015), which at the time were still under development. I indeed

spent a great deal of my time on the maturely suggested simulations, something I often

came back to from different stages of other projects. During those simulations however,

I built up a great deal of skepticism towards the idea of cortico-cortical connectivity, es-

pecially with magnetoencephalography (MEG). This was probably best summarised in

the work of Mehler & Kording (2018). The plans were thus changed to a restriction to

cerebro-peripheral connectivity. That some of the TE simulations have still made it into

a chapter of this thesis makes me very happy, not least since this chapter was finalised

at the very end of the PhD.

A further mismatch is between the goal of “integrating auditory encoding into a broader,

brain wide perspective" and the thesis’ focus on bilateral auditory cortices. In the MEG

passive story listening data I collected, I did not find clear evidence for robust systematic

explainable variance outside of auditory cortices. This might on the one hand stem from

a relatively conservative approach in identifying such regions (correlation of responses

to a repeatedly presented chapter together with considerations of cross-talk and point-

spread functions in MEG source space). On the other hand, this might stem from the

task as such, which did not involve behaviour, and thus did not trigger a cascade of

xiii
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brain activity from sensory to motor and perhaps frontal areas. Cascades like this are

arguably on the spatial scale which the spatial resolution of MEG is best suited to exploit

(Gwilliams & King, 2020).

A deep regret is that despite being aware of it when writing the research plan, we

forgot to cite the in my opinion excellent work by Ding et al. (2016) in the chapter on

linguistic vs acoustic representations. Its omission in the chapter makes it appear a little

short-sighted – a reference to well-controlled experiments should have been part of its

discussion section.

Nevertheless, the combination of MEG- and information theory expertise of Joachim

and Robin, who would become my supervisors, the interest in abstraction, and the use of

higher-order information theoretic concepts such as redundancy and synergy are indeed

well represented in the final thesis.

I hope that you, dear reader, can enjoy some of it.

0.2 Research plan

I am fascinated by the seemingly infinite multitude of processes on any conceivable scale

that result in human beings listening to their environment. For me, it is thrilling to dis-

cover patterns of neuronal activity which almost omnipresent phenomena such as verbal

communication or music critically rely on.

In my studies, I was so far involved in several projects that were driven by an interest in

basic science derived from this fascination. They mainly revolved around the role of the

phase of low frequency EEG oscillations in primary auditory encoding. From Bachelor to

Master studies, my investigations spanned the range from implementing and executing

psychophysical and tACs experiments to fully designing, measuring and analyzing EEG

studies.

For my Master’s Thesis, I then decided to broaden my methodological scope by tak-

ing the chance of analyzing a previously acquired MEG dataset whose texture stimuli

were similar to those of an undergraduate project of mine. Heavily inspired by work from

the group of Joachim Gross (Park et al., 2015) I set up an analysis framework geared

towards the identification of directed cortico-cortical communication using beamformer

techniques and phase transfer entropy.

I would now like to continue to integrate auditory encoding into a broader, brain wide

perspective. This relates to one of the perhaps oldest strands in the history of audi-

tory neuroscience (Broca et al., 1861) and leads to the concept of processing streams

(Hickok & Poeppel, 2007; Rauschecker & Scott, 2009). Similarly to visual neuroscience,

ventral and dorsal pathways have been proposed as an overarching principle explain-

ing brain structure and functionality. However, these concepts so far mainly stem from

fMRI studies with low temporal resolution. The current models are thus largely based on

studies revealing rather static processing specializations (e.g. Obleser et al., 2007) and

long range fiber tracts (Friederici, 2009). A transformation and spread of information in
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space (cf. Güçlü & van Gerven, 2015) can only be indirectly inferred from these studies.

An intuitive notion of a "stream" however critically relies on a direct demonstration of the

dynamics of information representation.

During my PhD, I would like to contribute to filling this gap with a methodological ap-

proach that for me builds on the skills I have acquired during my Master’s Thesis and for

which expertise is available in Glasgow. A combination of beamformed MEG recordings

(Gross et al., 2001) and content based connectivity measures (Ince, in prep.) seems

ideally suited to improve our understanding of the human cortical framework that is built

around primary encoding of the environment.

The project might start out with an assessment of the degree to which current models

can be helpful in interpreting beamformed MEG data. An initial experimental design

could be geared towards provoking a dissociation between ventral and dorsal pathways

(cf. Saur et al., 2008). To start with, first analyses should capitalize on classic event

related fields, oscillatory components and bidirectional measures of connectivity.

In a next step, it might then be possible to test the concept of forward and inverse map-

ping (Rauschecker & Scott, 2009). For the dorsal stream, it would be particularly exciting

to investigate a proposed integration of efference copies and sensory signals in parietal

cortex (see also Morillon et al., 2015). Regarding the ventral route, it would be interest-

ing to see whether results obtained with microstimulation in macaque monkeys (Petkov

et al., 2015) can prove their claimed significance. One would for example expect to find

information stemming from primary or belt areas and transported via direct fiber con-

nections to frontal cortex to later merge at their destination with outputs from anterior

temporal networks.

Information theoretic measures such as redundancy and synergy or directed feature in-

formation seem of high relevance here. Their application to the above mentioned ques-

tions might well make simulations necessary to ensure they can capture the relevant

effects.

A central question then is how to keep track of the domains the information is trans-

formed into, especially under the limitation of neural mass signals recorded from outside

the skull (Panzeri et al., 2015). A candidate concept that has repeatedly been proposed

to be applicable to this problem is cross frequency coupling (Lakatos et al., 2005; Gross

et al., 2013; Jiang et al., 2015). With a perspective on auditory functions that also covers

music processing, it could finally be attractive to expand the approach developed so far

correspondingly and use this concept to delineate more universal abstraction gradients

allowing for hierarchical representations of information (Ding et al., 2016).
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Chapter 1

Introduction

1.1 Outline

This thesis deals with the question of how the outside world is related to human neuronal

or behavioural responses. Unless one is interested in sensory neurons, which directly

interact with the environment, answering this question entails assumptions about unob-

served or “latent" phenomena that take place between the presentation of a stimulus

and the response of downstream neurons or behaviour of interest. These assumptions

are manifested in terms of models that specify which transformations of a stimulus are

believed to be relevant to the responses, and that thus aim to bring light in the dark of

our understanding of the processes that happen between the presentation of a stimulus

and the elicitation of responses.

For example, we can consider a sound as it leaves a speaker. It exists in the form of

pressure deviations at various intensities and frequencies that impinge on the eardrums

before they get encoded in a frequency-specific way by the cochlea (McDermott, 2013).

This brings the sound into the so-called spectrographic format, with comparably high

agreement across the field. What happens to the sound afterwards, as neurons across

multiple relay stations of the subcortical auditory pathway propagate it to the auditory

cortex and beyond, is however heavily debated.

Likewise, we can think of light as it is reflected by an object in our visual field. It tra-

verses the lens of the eye and excites the rods and cones of the retina, passes through

multiple layers of further retinal neurons, travels through the optic nerve past the op-

tic chiasm and lateral geniculate nucleus to finally arrive in the back of the brain, the

so-called occipital cortex (Palmer, 1999). Although a lot of research has explored the

cascade of neuronal firing that is triggered here and that eventually leads to behaviour,

as of now we are nowhere near having “solved" human vision.

As a consequence, many models exist that compete to predict and explain neuronal

or behavioural responses to sound or light. They all specify different transformations im-

plying the relevance of different aspects of the stimulus for a certain type of responses. In

order to achieve progress in the field of perceptual cognition and neuroscience, we thus

need new approaches to adjudicate between the plethora of hypotheses about stimu-

1
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lus transformations that have been and that will be developed. This thesis hopes to

contribute to such progress by means of suggestions on how to relate models to one

another, how to relate stimuli to responses and how to develop and exploit suitable ex-

perimental paradigms to obtain meaningful stimulus response pairings in the first place.

A central common element of these suggestions is the adoption of a genuinely trivariate

point of view on those problems (Figure 1.1). In this introduction, I will first generally

outline each of these information theoretic perspectives on en- and decoding in audition

and vision, and then place them in broader contexts of the terms constituting the thesis

title.

Generative model of
the stimulus

Model A

Model B Response Stimulus Response present

Response past

Model Response

Chapter 2 Chapter 3 Chapter 4

Figure 1.1: Triple Venn diagrams illustrating concepts in chapters 2, 3 and 4.

1.1.1 Going beyond pairwise tests of model performance

In chapter 2, we consider the general problem that the degree to which a model accu-

rately predicts responses is as such insufficient to argue for or against the relevance of

any of the assumptions manifested in the model to the system under study. In simple

terms, this is because often, many other models can be constructed that achieve the

same or an even better accuracy by virtue of other assumptions. From the perspective

of philosophy of mind, this problem can be seen as an example of multiple realisability

(Putnam, 1967).

We substantiate this point with a Magnetoencephalography (MEG) experiment in

which humans listen to a continuous speech stimulus (Poeppel & Embick, 2005). We

compare different models of varying complexity and demonstrate that even relatively sim-

ple models can reach prediction performances comparable to a given complex model.

Moreover, we develop a framework to compare models not only with respect to their

prediction performance, but also with respect to the amount of information about the re-

sponses of interest that they share with a competing model. This is important because

it is easily conceivable that two models reach comparable performances by means of

correctly predicting different parts of the responses, while failing to predict those parts

that the respective competing model succeeds to predict. In our case however, we

demonstrate that the simple model indeed succeeds in predicting the same parts of
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the responses that the complex model predicts. Based on these findings, we make a

case for parsimony as an often undervalued design principle for models of neuronal or

behavioural responses. Identifying the simplest model that suffices to predict a given

phenomenon is a promising goal to understand the phenomenon.

1.1.2 Predicting responses from stimuli and response history

Chapter 3 suggests an alternative to the paradigm of models that predict responses

from stimuli alone. Specifically, we consider the perspective of Transfer Entropy (TE,

Schreiber, 2000), where separately to the stimulus, the past of the response variable is

considered for the prediction of a given present sample of the response. In cases where

the responses are temporally correlated, it is possible that these “auto-correlations" be-

tween the response past and present can account for some portion of the information

about the response available from the stimulus. TE aims to ignore such auto-information

of the response when quantifying stimulus-reponse relationships. It is thus highly rele-

vant for research questions pertaining to the neuronal prediction of upcoming stimulus

material (Friston, 2005).

We focus on the issue of frequency-specific narrowband components of responses,

which are ubiquitous in neuronal mass signals as recorded with MEG (Wang, 2010).

Such band-limited components are by definition highly auto-correlated, but are usually

seen as problematic in combination with TE. We develop an estimator that tackles such

problems and subject it, together with classic estimators, to an extensive range of tests

based on simple simulations. We finally explore the behaviour of our estimator on the

same MEG data as studied in chapter 2, finding that measures of stimulus-response

delay and interaction strength differ from those recovered by bivariate dependency mea-

sures.

1.1.3 Constraining the features which humans and models can use

with experimental control

Chapter 4 revisits the issue of multiple realisability from chapter 2. Here, we make an

additional suggestion of a constraint that could alleviate mappings of properties of a

model to the system whose responses it tries to predict. The idea is that experiments

should make use of generative models of stimuli to use the opportunity to decorrelate

stimulus features of interest (Olman & Kersten, 2004). As concluded in chapter 2, if

as in experimental designs involving naturalistic stimulus material this opportunity is not

seized, it is harder to isolate effects of a stimulus feature of interest since many features

will be confounded with one another. To the extent to which experimental control rules

out confounds, it becomes possible to make causal statements regarding the relationship

of stimulus features and responses.

This is of additional relevance when trying to interpret response predictions of com-
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plex models. If we reduce the ambiguity about what stimulus features cause human

responses, this also reduces ambiguity about what complex models can predict human

responses with. With this approach, the chapter not only shows what kind of model of a

set of complex candidate models can predict behavioural responses to face stimuli best,

but also grounds its predictions in experimentally controlled shape features.

1.2 Information theory

In order to study relationships between the components of the individual chapters, this

thesis makes use of data analysis strategies that are rooted in information theory. At

its core, information theory is a set of formalisms to interpret probability distributions and

relate them to one another. Together, these were originally conceived of as a “mathemat-

ical theory of communication" (Shannon, 1948; Cover & Thomas, 1991). The initial remit

was in telecommunication, where messages of a given size were to be passed from a

sender to a receiver along a noisy channel of a given capacity. Applications to neuro-

science have both been criticised (de-Wit et al., 2016) and praised (Quiroga & Panzeri,

2009). In this thesis, we take a pragmatic stance and simply use information theory as

a principled framework to quantify statistical dependencies between variables of inter-

est. The following section will develop the information theoretic quantities relevant to this

thesis.

1.2.1 Entropy

A central interpretation of probability within information theory is given by the definition

of entropy, which can be described as the amount of uncertainty associated with a given

probability distribution. For a discrete variable with a given number of possible states,

it is defined as the product of the probability of a given state with the logarithm of the

reciprocal of that probability (the latter factor can thus be rewritten as the negative loga-

rithm of the probability), summed over all possible states. For a binary variable that can

thus only assume one of two states, this results in a symmetric positive curve that peaks

when both states of the variable are equiprobable (Figure 1.2). This corresponds to the

uncertainty of the toss of a fair coin. When the logarithms are computed with respect to

base 2, this defines the perhaps most popular unit in information theory, the bit.

The definition of entropy for a discrete variable can be generalised to continuous vari-

ables. This can be done by understanding that the summing operation together with the

weighting of the logarithm of the reciprocal of the probability of a given state by its prob-

ability reflects the expected value over the logarithm of the reciprocal of the probability.

For continuous variables, the expected value can be obtained by instead integrating the

product of probability density multiplied by the logarithm of the reciprocal of the probabil-

ity density over the support of the probability distribution.
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Figure 1.2: Entropy of a binary variable X for all possible Bernoulli distributions.

1.2.2 Mutual information

A fundamental quantity in information theory that justifies its relevance to problems of

communication between a sender and a receiver is mutual information (MI). It can be

computed by quantifying the joint entropy (using the joint probability distribution of the

two variables) and subtracting it from the sum of the two marginal entropies. Graphically,

it can thus be thought of as the set intersection of the entropies of two variables (Figure

1.3). In theory, it is a non-negative measure that is zero if and only if the two variables are

statistically independent. As they become more dependent, the MI between them grows.

In principle, it can thus be seen as a generalisation of the concept of linear correlation to

arbitrary nonlinear relationships.

If we recall Figure 1.1, we however notice that the quantification of bivariate rela-

tionships is insufficient for an application within conceptualisations of the problems ad-

dressed in this thesis.

A widely known information theoretic quantity that is applicable to a trivariate system

is conditional MI (Figure 1.3). In conditional MI, the relationship between two variables

can be measured given that we already know a third variable. Often, this is described as

“conditioning out" the third variable, since usually, the MI of two variables shrinks when

conditioning it on a third variable (but see below). There are multiple ways to compute

the MI between two variables A and B conditional on C. One possibility is to obtain it as

the difference of two MI terms: We first construct a joint variable consisting of B and C

and then compute the MI between this joint variable and A. From this, we subtract the MI

between A and C.
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Conditional
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Information

Figure 1.3: Information theoretic quantities visualised as Venn diagrams.

1.2.3 Co-information

If we are instead interested in the central triple set intersection, one option is to turn

to interaction information (McGill, 1954). Here, the same idea that is used to relate

entropies of two variables to one another is applied to two bivariate MI terms which share

one variable (Figure 1.3). In this situation, it is often helpful to refer to the variable that

appears in both MI terms as the “target", and the two variables that only appear in either

of the MI terms as “sources". Note however that interaction information is symmetric with

respect to its inputs, and the labels of source and target can thus be interchanged without

changing the output interaction information. The triple intersection of three entropies can

be obtained by subtracting joint MI of the two sources together with the target from the

sum of two marginal MIs of each source with the target. By convention, this is referred to

as negative interaction information or co-information. In cases where it is positive, i.e. in

scenarios where the joint MI is smaller than the sum of the two marginal MI terms, this



1.2. INFORMATION THEORY 7

indicates that the sources share the same information about the target. This is referred

to as “redundant" information. In cases where it is instead negative, it indicates that there

is information that can exclusively be obtained when jointly considering the two sources.

This is referred to as “synergistic" information.

1.2.4 Partial information decomposition

Interestingly, this way of thinking about such higher-order interactions only recently got

under closer scrutiny. In particular, it was pointed out that a problem of co-information

is that it conflates both redundant and synergistic information into the same quantity

(Williams & Beer, 2010). A problem with this is that it is theoretically conceivable that

two sources at the same time both share information but also contribute synergistic in-

formation when considered together. These two quantities of synergy and redundancy

would then cancel out in the net sum reflected by co-information. Therefore, the goal

of partial information decomposition (PID, Williams & Beer, 2010) is to decompose the

joint information of the sources about the target into four different “atoms": separate re-

dundancy and synergy as well as unique information of each source (Figure 1.3). Note

that this is generalisable to scenarios with more than two sources (Williams & Beer,

2010), leading to more than just four atoms. In this thesis however, only systems with

two sources are considered. To achieve this decomposition, PID classically starts by

quantifying redundancy. Once that is done, unique information can be obtained as the

difference of MI and redundancy, and synergy can be obtained by subtracting redun-

dancy and unique terms from the joint MI. How to obtain redundancy in the first place

is however a matter of debate (Williams & Beer, 2010; Harder et al., 2013; Bertschinger

et al., 2014; Ince, 2017a; James et al., 2018, 2019). In this thesis, the solution Iccs pro-

vided by Ince (2017a) is used. For a detailed description, we here refer to the methods

sections of the respective chapters. In brief, Iccs resolves co-information on a pointwise

level, such that terms that contribute to redundancy and synergy can be separated. To

then obtain the global redundancy, the positive (i.e. redundant) pointwise co-information

terms that co-incide with positive pointwise marginal and joint MI terms are summed.

From the perspective of PID, it can be explained how it is possible that conditioning

bivariate MI on a third variable can not only lead to a decrease, but also an increase of

conditional MI relative to bivariate MI. This is because conditional MI does not quantify

unique information, but instead the sum of unique information and synergy. In cases of

strong synergistic interactions of two sources, conditional MI can thus exceed the bivari-

ate MI. This can also be understood from the perspective of co-information, i.e. the net

sum of redundancy and synergy. Another way of obtaining it is as the difference of bi-

variate and conditional MI. Strong synergistic contributions will then manifest in negative

co-information, meaning that conditional MI has to exceed bivariate MI.
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1.2.5 Practical considerations

From a pragmatic data analysis perspective, it is hard to name conclusions that can

exclusively be drawn with information theoretic tools and not with other statistical ap-

proaches. One practical advantage however is that information theory unifies many

statistical tests under the common effect size of the bit (Ince et al., 2017). It thus be-

comes easily possible to meaningfully compare results across different research ques-

tions where one would classically deal with relatively incomparable values of t, F , χ2 or

R2.

In theory, information theoretic approaches are sensitive to statistical dependencies

manifested in all possible nonlinear effects and in that sense generalise linear models.

With finite datasets, this can however only be realised to a limited degree depending

on the estimator that is used to describe probability distributions. In this thesis, we

follow the Gaussian copula MI approach by Ince et al. (2017). Here, continuous vari-

ables are transformed into standard normal variables. The desired information theoretic

measures can then be calculated from closed-form expressions. Especially for higher-

order information theoretic quantities, this is computationally efficient, but only preserves

rank-based relationships. A similarly pragmatic alternative for cases where there is an

interest in nonlinear effects is to use binning with a relatively low number of bins to avoid

a combinatorial explosion when considering joint probability distributions for higher order

information theoretic quantities.

1.3 Encoding and decoding models

In simple terms, encoding and decoding models (Dayan & Abbott, 2001; Friston, 2009)

describe regression models that either predict the responses from the stimuli (encoding)

or vice versa (decoding). As such, they are thus suited to address questions of corre-

spondence (Baker et al., 2021). A classic approach to implement such models follows

a two-stage procedure (Naselaris et al., 2011). Here, a hypothesis is first specified in

the form of a nonlinear function of the stimulus. Examples of such “linearising feature

spaces" in both vision and audition are Gabor features (Kay et al., 2008; Santoro et al.,

2014), semantic features (Huth et al., 2012, 2016) or deep neural network (DNN) activa-

tions (Eickenberg et al., 2017; Kell et al., 2018). Once this is done, the hypothesis can

then be tested with a linear regression mapping from the linearising feature space to the

responses or vice versa.

1.3.1 Cross-validation

Irrespective of the direction, such models should be fit to data within a framework called

cross-validation (Mosier, 1951; Hastie et al., 2009). This relates to a split of the available

data into disjoint training- and testing sets. It is crucial since models usually come with
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parameters which are optimised to maximise the match of predictions and observed

data. This optimisation can result in overfitting to noise in the data which the model is

trained on, which will impair that model’s performance when it is used to predict new

data. Such generalisation to new data is however what the scientific significance of a

model critically hinges on (Ioannidis, 2005) – if it only works within the local conditions

of a single experiment, it is hard if not impossible for other science to make use of it.

Cross-validation is thus essentially a simulation where one pretends that a part of the

available data was recorded in a follow-up replication experiment (Yarkoni & Westfall,

2017). It directly incentivises strategies to mitigate overfitting, which can be measured

as the difference between a model’s performance in the training- and testing sets.

Such regularisation strategies usually consist of decreasing a model’s flexibility and

thus lead to a decrease of a model’s performance on the training set. If this is applied ad-

equately, this will prevent the model from fitting the noise in the training set and thereby

contribute to an increased performance on new data such as the testing set. In linear

regression, arguably one of the simplest and yet ubiquitous machine learning models,

such regularisation can be implemented by a zero-mean prior on the weights (Hoerl &

Kennard, 1970). An alternative view on this is that it reflects a penalty term for large

weights that is added to the loss function given by the error between observations and

predictions. This penalty term can itself be adjusted and thus constitutes a hyperpa-

rameter of the model. The adjustment of such hyperparameters requires an additional

splitting of the training set into validation- and genuine training sets (Varoquaux et al.,

2017). The hyperparameter can then be chosen such that it maximises the model’s per-

formance on the validation set, leaving the test set untouched for a final assessment of

the model’s performance.

1.3.2 The question of the direction

Before setting up such a cross-validation procedure, one faces a choice of the direction.

Should one opt for an “encoding" or “forward" model of the process, or should one invert

this direction in favour of a “decoding" or “backward" model?

Encoding models (Naselaris et al., 2011) follow the arrow of causality during per-

ception, and thus constitute a simulation of the process of perception. They are a way

to assemble and interrelate all that is known or assumed about a perceptual process

within one mathematical object. This can then be subjected to tests of generalisation to

both stimuli of the same distribution as the training data but also to stimuli of different

distributions. An individual researcher, or optimally groups of researchers such as labs

or entire fields can use them to systematically reason about this model and attempt to

continually improve it, rendering it a powerful tool for basic neuroscience. Ideally, such

an approach should thus help neuroscientific inquiry to move beyond an era of isolated

individual experiments and develop into an integrative endeavour (Schrimpf et al., 2020).

An important distinction is that of functional and mechanistic models (Kay, 2018). An
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arbitrary encoding model that merely succeeds in predicting responses is a functional

model, while only the inclusion of aspects of the biological implementation will make it

mechanistic. For models of neuronal responses, mechanistic models eventually have

to make concrete hypotheses about the computational significance of the responses

themselves: Are these directly involved in the processing of information, or are they

mere “exhaust fumes" of such activity (Jonas & Kording, 2017)?

Decoding models (Norman et al., 2006; Hebart & Baker, 2018) on the other hand

invert the arrow of causality and are thus not models of the process of perception as

such. Their prime application are brain-computer interfaces, where they can be used

to solve the engineering problem of providing information about brain states to external

devices such as hearing aids (Mirkovic et al., 2015; Fiedler et al., 2017; Geirnaert et al.,

2021). When applied to neuronal responses, a possible neuroscientific interpretation

is that of modeling what information about the stimulus neurons downstream from the

recorded population could in principle read out from the recorded activity.

Similarly to the distinction between functional and mechanistic encoding models, a

problem of this interpretation is that it is hard to compare the way neuroimaging inter-

faces with neuronal activity to how actual neurons interface with a given neuronal pop-

ulation. In all likelihood, neuroimaging will miss the lion’s share of the neuronal activity

that effectively communicates with other neurons. It is however also well possible that

neuroimaging is sensitive to activity that is invisible to downstream neurons. For the in-

terpretations of both encoding and decoding models, it is thus important to keep in mind

that they mediate between stimuli and observations made by the experimenter (de-Wit

et al., 2016).

From a practical perspective, they are both suited to quantify a statistical relationship

between stimuli and responses (Friston, 2009; Holdgraf et al., 2017; Hebart et al., 2020).

It is further possible to convert them into one another by multiplication with stimulus- or

response covariance matrices (Haufe et al., 2014; van Vliet & Salmelin, 2020).

It is sometimes argued that encoding models are exclusively suited for “complete

functional characterisations" of a certain neuronal response of interest (Naselaris et al.,

2011). The idea is that this is achieved by an encoding model that reaches the “noise

ceiling" of the responses (defined by e.g. the correlation of responses to repeatedly pre-

sented stimuli) to broadly sampled naturalistic stimuli. If a given decoding model on the

other hand allowed the perfect reconstruction of a given linearising feature space of the

presented stimuli, this would not exclude that other untested feature spaces could be re-

constructed as well. This argument however has three problems: firstly, the noise ceiling

is not trivial to estimate, and rests on assumptions such as the invariance of responses

to repeated stimuli despite commonly known effects such as habituation. Secondly, if

an inverse function could perfectly restore the entire original stimulus from the perfectly

decoded linearising feature space, this would reach the same footing as the encod-

ing model affording a “complete functional characterisation" – correlated feature spaces

could exist that could achieve the same. Thirdly, and most importantly, the argument crit-
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ically hinges on the completeness of the sampling of the stimulus material. Seemingly

trivial “out-of-distribution" stimuli not included in the training set of the encoding model

can however lead to failures to predict the correct response (Szegedy et al., 2014; Barbu

et al., 2019).

Depending on the available data, a given direction can however have statistical ad-

vantages (Kriegeskorte & Douglas, 2018b; Hebart et al., 2020). Classically, encoding

and decoding models are implemented as a multiple linear regression (given a linearising

feature space, see above). This means that covariances in stimuli or responses can be

exploited to improve the statistical power of the approach. In the case of one-dimensional

behavioural responses to multidimensional stimuli that are correlated on multiple dimen-

sions, an encoding model is the optimal choice. Decoding models can then only be

implemented as mass-univariate regressions, where the stimulus covariance cannot be

leveraged. In typical neuroimaging applications with multiple response channels, de-

coding models are generally more sensitive. They can be implemented in a “mass-

multivariate" fashion, where for each stimulus dimension, noise correlations across re-

sponse channels can be exploited. Mass-multivariate encoding models can leverage the

covariance of multiple stimulus dimensions, but will ignore correlations across response

channels.

Ideally, these advantages can be combined into a single approach. That is, one at-

tempts to find a linear combination of stimulus channels that best predicts a linear com-

bination of response channels. This can for example be implemented as a canonical

correlation analysis (Friston, 2009; de Cheveigné et al., 2018). An alternative approach

suggested in chapter 2 is to parameterise a biophysically motivated function that pro-

vides a linear combination of response channels (i.e. a spatial filter with the parameters

of position in source space and response channel covariance regularisation) and then

optimise its parameters as hyperparameters of an encoding model aiming to predict the

output of the linear combination of response channels.

Information that can be decoded, but which no forward process model can account

for essentially highlights a gap in understanding. In order to study a given dataset, it can

thus be advantageous to implement both directions: An encoding model will help to shift

the focus on simulating the forward process of perception, and a decoding model can

then serve as both a further characterisation of the observed process as well as a test

of the forward model with respect to this characterisation. This approach is central to

chapters 2 and 4.

1.4 Audition and vision

In this thesis, the tools as described above are applied to examples from two sensory

modalities, audition and vision. Specifically, the focus lies on acoustic speech signals

(and more specifically, non-invasive electrophysiological responses to them) and visual

face signals (and more specifically, behavioural responses to them). The following sec-
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tion will provide brief reviews of these topics with the goal of putting the respective chap-

ters into a historical context.

1.4.1 Non-invasive electrophysiology of speech tracking in supe-

rior temporal gyrus

Speech is an acoustically rich stimulus full of spectrotemporal interdependencies. Healthy

humans produce and understand it seemingly effortlessly in order to communicate infor-

mation from one mind to another.

Its reflection in human electrophysiological signals spans a history of multiple decades

(Wöstmann et al., 2017). Shortly after the first description of the electroencephalogram

(EEG, Berger, 1929), auditory evoked potentials in response to simple pure tones were

discovered (Davis, 1939). More systematic studies of variations of such averages of

responses to multiple repeated presentations of the same stimulus with respect to vari-

ous acoustic manipulations followed later (Davis et al., 1966), as did the use of speech

sounds as stimulus material in EEG studies (Feldman & Goldstein, 1967; Roth et al.,

1970; Wood et al., 1971). The localisation of the neuronal generators of such audi-

tory evoked responses to bilateral auditory cortices was already possible based on EEG

recordings of this early period (Vaughan Jr & Ritter, 1970). With the advent of Mag-

netoencephalography (MEG, Cohen, 1968), refinements of substantially increased spa-

tial precision became possible (Näätänen & Picton, 1987). The dominant experimen-

tal paradigm for both MEG and EEG (MEEG) studies in this latter half of the twentieth

century however remained the controlled psycholinguistic experiment with its analytical

workhorse, the event-related potential (EEG) or field (MEG). For this research paradigm,

scientists used either isolated subword components (Dorman, 1974; Aaltonen et al.,

1987; Näätänen et al., 1997; Obleser et al., 2003), words (Bentin et al., 1993) or con-

nected speech segments (McCallum et al., 1984; Friederici et al., 1993; Gross et al.,

1998) as stimulus material.

This event-related approach contributed to an enormous wealth of experimental find-

ings and remains an indispensable tool for the study of MEEG signatures of speech per-

ception until the present day (Khalighinejad et al., 2017; Daube et al., 2019b; Gwilliams

et al., 2020). However, when applied to connected speech, it requires a discretisation of

the inherently continuous speech signal, and thereby comes with limitations on the hy-

potheses about perceptual processes it can serve to study. The last two decades have

thus seen the rise of approaches relating continuous features of stimuli – most promi-

nently the time-varying energy or “envelope" – and MEEG responses (Ahissar et al.,

2001).

A popular narrative of this approach is that of band-limited response components

referred to as “oscillations" (Luo & Poeppel, 2007; Giraud & Poeppel, 2012; Peelle &

Davis, 2012; Gross et al., 2013; Doelling et al., 2014). Accordingly, such rhythmic activity

is thought to be present in auditory cortices in the absence of auditory stimulation, to then
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be temporally “entrained" by input signals, affording a segmentation of the continuous

input into syllable-like units (Ahissar et al., 2001; Lakatos et al., 2005; Hyafil et al., 2015).

A contemporaneous approach of continuous analyses remains more agnostic to-

wards mechanistic accounts of the responses. Here, either univariate cross-correlation

(Abrams et al., 2008; Hertrich et al., 2012; Ince et al., 2017) or, more recently, multivari-

ate temporal response function approaches (Lalor & Foxe, 2010; Ding & Simon, 2012;

O’Sullivan et al., 2015; Crosse et al., 2016; Brodbeck & Simon, 2020) are used to con-

struct en- or decoding models relating MEEG responses to stimulus features. This has

opened the door to richer (Di Liberto et al., 2015) and more elaborate computational

accounts (Brodbeck et al., 2018b; Donhauser & Baillet, 2020; Heilbron et al., 2021) of

MEEG responses to speech.

In light of such developments, chapter 2 calls for sustained attention to not only more

complex, but also simpler models. Neuroscientists will rightly assume great undiscov-

ered complexity in MEEG responses to speech. Accordingly complex models should

however always be subjected to severe tests against less complex alternatives. This

holds especially for experiments relying on uncontrolled naturalistic stimulation, and is of

direct interest to translational opportunities such as the application to hearing aids. Here,

the decoding of attention to a speaker amongst a multitude of sound sources (Ding & Si-

mon, 2012; O’Sullivan et al., 2015; Brodbeck et al., 2020) is hoped to be exploitable

in order to selectively amplify the signal of interest for the wearer of the hearing aids

based on EEG electrodes placed e.g. in the ear canal (Fiedler et al., 2017; Geirnaert

et al., 2021). Such devices are limited in both computing power and energy consump-

tion, and will therefore benefit from incentives to balance complex accounts with simpler

explanations wherever possible (Kubilius, 2018).

Chapter 3 then takes a more methodological perspective on the problem. The van-

tage point here is the observation of band-limited components in responses to speech

(Ding & Simon, 2014). A computational function of such oscillations could be to rep-

resent a hypothesis of upcoming stimulus input by virtue of its continuous alignment to

the merely “quasi-rhyhtmic" temporal stimulus structure (Lakatos et al., 2005; Giraud &

Poeppel, 2012; Lakatos et al., 2019). If such an “entrainment" of response components

takes place, then an interesting challenge is to separate response components reflecting

the prediction based on past input from response components reflecting the alignment,

i.e. reactions to aspects of the stimulus that were not anticipated. Methodologically,

this falls into the purview of Granger-causal approaches (Granger, 1969), or their infor-

mation theoretic generalisation, transfer entropy (TE, itself classically implemented as

conditional MI). Here, parts of the responses that are predictable from their own past are

attempted to be omitted when estimating the stimulus-response relationship. Such ap-

proaches however are generally problematic when applied to band-limited signals (Florin

et al., 2010; Barnett & Seth, 2011). The chapter aims to overcome these problems, test

the proposal on simple simulations and explore the results it suggests when applied to

real data from chapter 2.
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Looking ahead, computational modeling of language and speech, methodological

developments for mapping models to responses, medical applications and last but not

least new recording techniques such as optically pumped magnetometers (Boto et al.,

2018; De Lange et al., 2021) promise to keep the field exciting.

1.4.2 Visual perception of faces

As speech, faces are an important social stimulus that humans, unless they are living in

isolation and without access to reflective surfaces or cameras, are confronted with on a

daily basis. In light of the intensive exposure to and the high relevance of faces (Gau-

thier et al., 1999; Jack & Schyns, 2017), it is not surprising that entire brain areas have

been ascribed the main purpose of processing this class of visual stimuli (Sergent et al.,

1992; Kanwisher et al., 1997; Grill-Spector et al., 2004). In order to categorise faces on

continua such as familiarity, age or sex, humans tend to be highly skilled in processing

faces. Except for face-blind or “prosopagnostic" individuals (Bodamer, 1947), humans

can detect even small differences in such high-dimensional visual objects with high ac-

curacy, such that it has even been suggested to use parameterisations of them for data

visualisation (Chernoff, 1973). It is for a similar reason that faces are an interesting class

of stimuli for vision sciences: They are an example of a category for which it is compa-

rably easy to construct generative models of stimuli in high dimensional pixel space by

varying relatively few underlying dimensions.

To develop the significance of this, we will first consider a brief historic overview over

a line of research that is concerned with extracting mental representations from experi-

mental participants. In general, such experiments follow the idea of the encoding model

as described above. Importantly however, stimuli are sampled from random distributions

in order to characterise response biases.

These experiments go back to ideas of Wiener (1958), who had postulated that in or-

der to characterise an unknown nonlinear system just by relating its inputs to its outputs,

Gaussian white noise inputs would be optimally suited. The suggested procedure be-

comes intractable to characterise higher-order nonlinearities (Marmarelis & Naka, 1972;

Franz & Schölkopf, 2005), but started a tradition in electrophysiology where impulse re-

sponses of single neurons to temporally decorrelated white noise stimuli were estimated

with linear cross-correlation. This was originally referred to as “triggered correlation"

(De Boer & Kuyper, 1968), since only performing the computation of the correlation at

the onset of sparsely occurring spikes was more efficient than computing it over the

whole response vector. Later, this was referred to as “reverse correlation", since in this

procedure, one would go back in time to look up stimulus segments preceding the spike

(Jones & Palmer, 1987; Dayan & Abbott, 2001; Ringach & Shapley, 2004).

Applying this principle to human behavioural experiments had its origins in the au-

ditory domain (Ahumada Jr & Lovell, 1971), where it was implemented as a multiple

regression encoding model. The application in vision experiments followed later (Abel
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& Quick Jr, 1978; Ahumada Jr, 1996). Here it was mainly referred to as “classification

images" (Murray, 2011), classically consisting of a structuring signal (e.g. a neutral face)

on which pixel noise is overlaid. The classification image is then a visualisation of the

statistical relationship between the stimuli at each stimulus dimension (e.g. pixel loca-

tion) and the responses. Ignoring nuisance effects such as fatigue, the responses follow

the task instructions of the experiment, which usually ask participants to rate the simi-

larity of the stimuli to a category of interest. The assumption then is that the noise in

stimuli that cause a given response contains patterns that match the participant’s per-

sonal mental representation of the concept of interest to some degree. In this way, the

final classification image reflects an estimate of such mental representations. It is for ex-

ample possible to present entirely unstructured pixel noise to participants, falsely inform

them that on half of the trials the letter “S" will be shown which they are to detect, and

obtain weights of encoding models that show the respective letter (Gosselin & Schyns,

2003). Importantly, details of the reconstructed letter such as its font are uniquely de-

fined by the participant’s personal interpretation of the category that is abstractly defined

in the task instructions. In principle, this approach is applicable to arbitrary categories,

but has a strong tradition for face information such as the emotional expression, identity

or ethnicity (Gosselin & Schyns, 2003; Mangini & Biederman, 2004; Dotsch et al., 2008).

Within this tradition, the term “reverse correlation" is used for experiments characterising

response biases from noise stimuli (Gosselin & Schyns, 2003), although an analysis of

the eponymous temporal dimension is usually not considered.

An important element of these studies is the format which the noise is rendered in.

Since a direct mapping of samples from a random distribution to pixel intensities of im-

age stimuli can be seen as the simplest form of a generative model of visual stimuli, this

problem brings us back to the beginning of the section. Pixel noise allows a high degree

of freedom with respect to what can appear in the final classification image. However,

it requires a substantial number of trials in order to reveal effects that surpass noise

thresholds, since the perceived similarity of a given category of interest and a given pixel

noise image is restricted to low levels. In analogy to this, the field of electrophysiol-

ogy had found neurons that would only respond weakly to white noise stimulation, but

vividly to naturalistic stimuli with more complex statistics (Rieke et al., 1995; Theunis-

sen et al., 2000). When the experimenter has a strong prior about the object class of

interest, it is possible to effectively leverage this prior in terms of a generative model that

imposes a corresponding structure on samples from a random distribution (Chomsky,

1965; Grenander, 1994; Olman & Kersten, 2004; Jack & Schyns, 2017). This will con-

strain the kind of classification image (or “classification object", Olman & Kersten, 2004)

that can be obtained: with a face prior, the reconstruction will always be a face as defined

by a generative model of faces. To the degree to which such a prior is sensible, it will

enhance the reconstruction of a mental representation by narrowing the sampling space

for the experiment to fewer dimensions of higher relevance. As a result, more realistic

reconstructions can be obtained, for example of dynamic emotional expressions (Jack
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et al., 2012) or of the participant-specific memory of a given familiar person (Zhan et al.,

2019a). Both of these examples rely on a generative model that renders pixel images

of faces as a function of 3D shape and RGB texture parameters as well as viewing and

lighting angles. An important corollary is that with such models of the latent causes of

variance in pixels of images, it becomes possible to attribute variance in behavioural re-

sponses to the hypothesised causes of the images instead of only their pixels (Olman &

Kersten, 2004). This becomes important when for example considering how entirely dif-

ferent pixel regions of an image carry the information of the same underlying face shape

at different viewing angles. Attributing a system’s outputs to such pixel regions in one

viewing angle is of little help when trying to infer the output-relevant regions of an image

of another viewing angle.

Chapter 4 re-examines the dataset recorded by Zhan et al. (2019a) mentioned above.

In the chapter, a framework is developed to apply the vision scientific approach as de-

scribed above to the question of forward encoding models of human vision. These mod-

els take on the daunting task of recreating central aspects of the mapping from the

human retina to the latent mental spaces that eventually afford behaviour. Deep neural

network models (DNNs, Fukushima, 1980; LeCun et al., 2015) are an interesting candi-

date, since they have been shown to solve end-to-end engineering challenges of com-

puter vision with unprecedented performance scores. The central idea of the chapter is

to subject various DNNs to the same controlled “face noise" that human participants had

seen and rated, so that it becomes possible to compare DNNs and humans with respect

to the same experimentally controlled causal structure of the stimuli. In this sense, it is

attempting to move beyond the dominant approach in the current literature which eval-

uates encoding models of human vision (such as DNNs) by only seeking to establish a

high prediction performance between uncontrolled inputs and outputs, and thus has no

classical vision scientific grasp on what it is that the models are predicting outputs with.
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2.1 Abstract

When we listen to speech, we have to make sense of a waveform of sound pressure.

Hierarchical models of speech perception assume that, to extract semantic meaning,

the signal is transformed into unknown, intermediate neuronal representations. Tradi-

tionally, studies of such intermediate representations are guided by linguistically defined

concepts, such as phonemes. Here, we argue that in order to arrive at an unbiased

understanding of the neuronal responses to speech, we should focus instead on repre-

sentations obtained directly from the stimulus. We illustrate our view with a data-driven,

information theoretic analysis of a dataset of 24 young, healthy humans who listened to

a one-hour narrative while their magnetoencephalogram (MEG) was recorded. We find

that two recent results, the improved performance of an encoding model in which an-

notated linguistic and acoustic features were combined, and the decoding of phoneme

subgroups from phoneme-locked responses, can be explained by an encoding model

that is based entirely on acoustic features. These acoustic features capitalise on acous-

tic edges and outperform Gabor-filtered spectrograms, which can explicitly describe the

spectrotemporal characteristics of individual phonemes. By replicating our results in

publicly available electroencephalography (EEG) data, we conclude that models of brain

responses based on linguistic features can serve as excellent benchmarks. However, we

believe that in order to further our understanding of human cortical responses to speech,

we should also explore low-level and parsimonious explanations for apparent high-level

phenomena.

2.2 Introduction

Speech perception is often conceptualised as a hierarchical process (Pisoni & Luce,

1987; DeWitt & Rauschecker, 2012). The human brain is assumed to extract semantic

meaning from a highly dynamic sound pressure signal via a cascade of transformations

that create increasingly abstract representations of speech. It is well established that

perceived speech sounds are first decomposed into a spectrally resolved representation

at the cochlea. Various structures along the subcortical auditory pathway are believed

to then undertake further processing steps (Verhulst et al., 2018; Sitek et al., 2019).

However, considerable uncertainty remains about exactly how sound is represented in

the auditory cortex (Młynarski & McDermott, 2018).

One way to gain further insight into human speech processing is to employ encoding

models. These models aim to predict the time-series of recorded neural data from the

waveform of the presented stimulus. A popular framework for encoding models organ-

ises this in two steps (Naselaris et al., 2011; Holdgraf et al., 2017). In the first step,

the stimulus material undergoes nonlinear transformations into various sets or spaces

of features. These features capture hypotheses about the cortical computations that are

performed on the input signal. In the second step, a linear mapping of these feature
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spaces onto the neuronal responses is obtained to evaluate the utilised hypotheses in

terms of out-of-sample linear prediction performance. In this way, data-rich, naturalistic

listening conditions of a relatively long duration can be exploited, considerably improv-

ing a model’s validity over isolated and artificial experimental paradigms (Theunissen &

Elie, 2014; Hamilton & Huth, 2018). Recent results demonstrate the applicability of this

approach across various neuroimaging modalities and research questions (Di Liberto

et al., 2015; Huth et al., 2016; de Heer et al., 2017; Berezutskaya et al., 2017; Forte

et al., 2017; Maddox & Lee, 2018; Kell et al., 2018; Brodbeck et al., 2018b,a; Biesmans

et al., 2017; Broderick et al., 2018b).

A compelling finding obtained with this approach is that predictions of cortical re-

sponses as measured by EEG (Di Liberto et al., 2015) or functional magnetic resonance

imaging (fMRI, de Heer et al., 2017) using acoustic feature spaces can be improved by

additionally considering so-called articulatory feature spaces. The latter originate from

the linguistic concept of representing a language with a set of minimal contrastive units,

called phonemes. However, superior temporal regions are known to selectively respond

to subgroups of phonemes rather than to individual phonemes (Mesgarani et al., 2014).

Therefore, the full phoneme set is usually reduced by mapping each phoneme to its

corresponding vocal gestures (“articulatory features”), such as the voicing, tongue po-

sition or place and manner of articulation. Recently, it was shown that these manners

of articulation can also be decoded from EEG data time-locked to phoneme onsets in

continuous speech stimuli (Khalighinejad et al., 2017). Encoding and decoding analy-

ses based on articulatory feature spaces are thus interpreted as concordantly capturing

a faculty called “pre-lexical abstraction” (Obleser & Eisner, 2008), i.e., a transformation

of continuous physical properties of the waveform to speech-specific, categorical and

invariant units of perception.

However, the transformation of speech stimuli into articulatory features comes with

certain critical caveats. Most importantly, this representational format of speech is based

on concepts that humans have agreed on to talk about language. And while a match of

such linguistic constructs with physiological responses is conceivable, it is a potentially

biased and specific hypothesis with a range of alternatives (Pisoni & Luce, 1987; Hasson

et al., 2018; Massaro, 1974; Lotto & Holt, 2000). Moreover, the partly arbitrary mapping

of phonemes to articulatory features provides a low degree of computational specifica-

tion. As such, models that use articulatory features could be considered to be so-called

‘oracle models’, which rely on information that is not available to the individual’s brain

being modelled (Kriegeskorte & Douglas, 2018a).

Additionally, current implementations of this transformation rely on a semi-automated,

forced alignment of a textual transcription to the sound wave of the stimulus material.

While such alignment methods incorporate a high degree of computational sophistica-

tion, the task they solve is not a good model of the task that the listening brain faces.

This compromises the usefulness of the intermediate representations generated by such

alignments to serve as candidate features to predict brain responses, such that usually
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only the final output is used. It thus remains unclear whether the level of complexity

implied by the final articulatory features is actually necessary.

These caveats thus raise an important question. Can the gain in prediction perfor-

mance that is reportedly provided by articulatory features be explained by alternative

features that are based on computationally more specified, physiologically plausible and

possibly less complex transformations of stimulus acoustics? The extent to which this

were the case would indicate how much of the predictive gain that is provided by ar-

ticulatory features is attributable to the generic, feed-forward processing of an acoustic

stimulus that is not specific to speech processing. When choosing such acoustic feature

spaces, one can proceed in different directions. One possibility is that in order to explain

the same variance as models based on articulatory features, the characteristic spec-

trotemporal patterns that define the phoneme subgroups are needed. Correspondingly,

one could extract such abstract information from the spectrogram with suitable filters. A

physiologically inspired candidate feature space is the Gabor-filtered spectrogram, which

interestingly improves the performance of automatic speech recognition (ASR) software

when used as input features (Schädler et al., 2012). With this generic class of spec-

trotemporal kernels, one can describe several acoustic patterns that dissociate groups

of phonemes. Examples include the spectral distance between formants, as captured

by filters of different spectral modulation, and formant transitions, as captured by filters

of joint spectrotemporal modulation. Although this feature space is long established in

encoding and decoding models of the human and animal midbrain and auditory cortices

(Holdgraf et al., 2017; Berezutskaya et al., 2017; Qiu et al., 2003; Pasley et al., 2012;

Santoro et al., 2014, 2017; Norman-Haignere & McDermott, 2018; Schönwiesner & Za-

torre, 2009), it has yet to be applied to magneto- and electroencephalography (MEEG)

data.

Another possibility is that the performance boost provided by articulatory features

is instead attributable to their correlation with simpler acoustic properties. It has repeat-

edly been observed that neuronal responses from bilateral superior temporal regions are

particularly sensitive to acoustic edges (Prendergast et al., 2010; Hertrich et al., 2012;

Gross et al., 2013; Doelling et al., 2014; Hamilton et al., 2018; Oganian & Chang, 2019).

Features that extract these onsets from envelope representations via a half-wave rectifi-

cation of the temporal gradient of time- varying energy have been used in several studies

(Hertrich et al., 2012; Hambrook & Tata, 2014; Fiedler et al., 2018). Features that rely

on the temporal gradient also capture the relationship of neighbouring time points, which

contain information present in MEEG data across a range of different analyses (Ince

et al., 2017). It is thus interesting to assess the degree to which the gain in prediction

performance that is provided by articulatory features can be explained by such onset

features.

In this study, we examined these two possible explanations by comparing the pre-

dictive power of different acoustic feature spaces to that of an annotated articulatory

feature space. We performed these investigations on an MEG story dataset of one hour
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Figure 2.1: Study concept and design.
A Magnetoencephalography (MEG) data were recorded while participants (n = 24)
listened to a story of 1 hour duration. B The speech waveform was then nonlinearly
transformed into various feature spaces. C These feature spaces were used to predict
neuronal responses using (multivariate) temporal response functions ((m)TRFs) in a
nested cross-validation framework. The majority of the data were used to fit the
(m)TRFs. D Hyper-parameters controlling the (m)TRFs (separately for each feature
(sub-)space, hemisphere and participant: temporal extent and L2 regularisation) and
the MEG source reconstruction (sensor covariance matrix regularisation and position of
dipoles in source space) were optimised on separate validation data. E The predicted
responses of the encoding model (dashed lines) were evaluated on unseen test data by
asking to which degree a benchmark feature space that relied on articulatory features
was redundant with competing, acoustic feature spaces using partial information
decomposition (PID). F Additionally, four classes of phonemes were decoded from
phoneme-locked observed and predicted MEG responses. PID was used to determine
to which degree the predictions of the encoding models contained the same information
about phoneme classes as the observed data.

duration per participant in a rigorous data-driven approach (see figure 2.1). A nested-

cross validation framework (Varoquaux et al., 2017) was used to delegate the choice of

model settings to a recent optimisation algorithm (Acerbi & Ma, 2017). We thus allowed

encoding models based on different feature spaces the same chances to find optimal

parameter combinations with a minimum of a-priori information, while minimising the risk

of overfitting. We then applied partial information decomposition (PID, Ince, 2017a) to

assess the degree to which the predictions of acoustic-feature-based models shared in-

formation about observed recordings with those of articulatory feature-based models,

and to assess the degree to which these feature spaces contained unique predictive in-

formation. This flexible theoretic framework also allowed us to quantify to what extent the

information about manners of articulation decodable from phoneme-evoked responses

could be accounted for by the predictions of our encoding models. Lastly, since MEG

and EEG data can reflect different neuronal processes (Destoky et al., 2019; Cohen &

Cuffin, 1983), we performed similar analyses on a publicly available EEG story-listening
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dataset (Broderick et al., 2018b). Using this approach, we found that apparent encod-

ing and decoding signatures of high-level pre-lexical abstraction could be explained with

simple low-level acoustic models.

2.3 Results

2.3.1 Speech tracking in bilateral auditory cortices

L R
L R

0

0.014A

1

Figure 2.2: Identification and characterisation of story-responsive regions in
source space.
A Grand average story responsivity (variance of source-reconstructed brain activity
recorded during first presentation explained by activity recorded during second
presentation of the last block). Each image shows different viewing angles on the same
data. B (Left) Story responsivity using mutual information (MI). Plot shows MI of activity
in the first repetition of the last block about activity in the second repetition of the last
block. (Right) Shared information (redundancy) of activity at bilateral story-responsivity
peaks in the first repetition and activity in the first repetition at each other grid point
about activity at these other grid points in the second repetition. See video S1 for
further explanation. Data from one exemplary participant are shown. C Unique
information added by sources additional to the bilateral story-responsivity peaks. See
also figure 2.3.

First, we characterised where in MEG source space we could find robust responses

related to speech processing and also the spatial resolution that these responses could

be studied at. To identify regions in source space where MEG responses were repeatably

activated by the stimulus (“story responsive" regions, Honey et al., 2012; de Heer et al.,

2017), we correlated source-localised, full-brain responses to one chapter of the story

https://www.sciencedirect.com/science/article/pii/S0960982219304968?via%3Dihub#mmc2
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to the responses to its repeated presentation. These correlations peaked in regions that

agree with the typical localisation of the bilateral auditory cortices (ACs, figure 2.2A).

Figure 2.3: Caption on following page.

Instead of falling off sharply, the story responsivity decreased gradually with increas-

ing distance from these peaks. However, we expected that querying activity from different

locations within these story-responsive regions would yield highly similar (i.e. redundant)

time series since the spatial resolution of MEG inverse solutions is inherently limited (Fa-

haribozorg et al., 2018). To avoid an unnecessary computational burden for the later

modelling, we therefore explored how much of the repeatable activity we could explain

with dipoles at the two bilateral story responsivity peaks, and also how much we could

explain by considering further dipoles at different locations. To do so, we implemented

an iterative information theoretic approach based on PID (see video S1 and methods

2.5.2 for a detailed description). This approach revealed that indeed one source per

hemisphere could account for most of the spatial spread of the story responsivity. The

https://www.sciencedirect.com/science/article/pii/S0960982219304968?via%3Dihub#mmc2
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Figure 2.3 (previous page): Redundancy is related to Cross-Talk and Point-Spread
Functions (related to figure 2.2).
A Cross-Talk Function in one exemplary participant (same as in figure 2B). It shows
how activity at different grid points leaks into estimates of activity queried at grid point of
interest, here at a right AC dipole. B Relationship of squared Cross-Talk Function (CTF)
and Redundancy in exemplary participant. Correlation in top left reports Pearson
correlation. The mean of this correlation (Fisher-Z transformed before averaging and
retransformed after averaging) was 0.75 (right AC, range: [0.26,0.91]) and 0.68 (left AC,
range: [−0.09,0.94]). C Point-Spread Function in one exemplary participant. It shows
how activity at grid point of interest, here at a right AC dipole, leaks into estimates of
activity queried at other positions in source space. D Relationship of squared
Point-Spread Function (CTF) and Redundancy in exemplary participant. Correlation in
top left reports Pearson correlation. The mean of this correlation (Fisher-Z transformed
before averaging and retransformed after averaging) was 0.60 (right AC, range:
[0.16,0.83]) and 0.51 (left AC, range: [−.10, .87]).

individual maps of story-responsivity correlated highly with maps of redundancy (aver-

age Pearson correlation 0.89, range: [0.80,0.97], figure 2.2B). As such, the information

that activity at additional grid points carried about the activity recorded during the sec-

ond presentation of the same chapter largely overlapped with the information that could

be obtained from activity at the bilateral peaks. Correspondingly, the amount of infor-

mation contributed by sources additional to the bilateral peaks fell off in a characteristic

L-shaped curve (figure 2.2D). This was largely attributable to measures of leakage of

the spatial filters, such as their cross-talk and point-spread functions (see figure 2.3 for

details).

Based on these results, we subsequently analysed one source location per hemi-

sphere, since this single location could capture the repeatable signal that stems from the

bilateral ACs. Note, however, that in the following modelling, the exact location of these

two sources was not fixed, but instead was optimised independently for each tested fea-

ture space.

2.3.2 Predictive power of feature spaces

The main goal of this study was to compare the cross-validated performance of linear

models that were trained to predict relevant parts of the MEG responses from different

sets or “spaces” of features extracted from the speech stimulus. The central question we

investigated was: to what degree can purely acoustic feature spaces achieve the perfor-

mance of a benchmark feature space (namely, spectrograms and annotated articulatory

features combined (Di Liberto et al., 2015)? Crucially, our modelling approach ensured

that the settings of our models (“hyper-parameters”) could flexibly adapt to each different

feature (sub-)space, individual participant, and to each hemisphere (see methods for a

detailed description). The hyper-parameters operated on the predictors, the model, and

also the MEG responses such that, for example, the exact position of the dipole in source
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space was optimised for each feature space (see table 2.1 for an overview over all fea-

ture spaces used in this study). This gave each feature space the same chances to opti-

mally predict the MEG responses within our bilateral sources linear modelling framework.

The performances of our models exhibited relatively large inter-participant variability and

comparatively low variability across feature spaces (figure 2.4A).

Figure 2.4: Caption on following page.

To focus on the systematic differences across the feature spaces, we used Bayesian

hierarchical linear modelling (Bürkner, 2017) and separated the overall effects of dif-

ferent feature spaces from effects attributable to participants, hemispheres and cross-
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Figure 2.4 (previous page): Evaluating the performance of different feature spaces.
A Raw test set performances in the left and right auditory cortex (AC) for models based
on different feature spaces shown on the horizontal axis. See table 2.1 for an
explanation of the feature spaces and their shorthand notations. Each colour codes for
a single participant (n = 24), each dot is one test set. Pooled medians are indicated with
black lines. B Samples from the posterior distribution of differences of beta estimates
(competing feature spaces minus benchmark Sg&Art feature space, results left of the
red line thus reflect that the Sg&Art feature space has a higher performance, results
right of the red line indicate that the competing feature space has a higher
performance). Feature spaces are colour coded as indicated. C Percent of samples in
favour of hypotheses of differences of beta estimates between all feature spaces.
Hypotheses are colour coded using the same colour mapping as in B, which
corresponds to the bottom row and right column of the matrix shown here. D Samples
from posterior distribution of differences of beta estimates of individual participants’
right ACs minus left ACs. Colour mapping in D is the same as in A. See also Figures
2.5 and 2.6.

validation folds. We extracted the samples of the posterior distributions of the regression

coefficients (“betas”) of interest. We then subtracted the samples that referred to the

benchmark feature space from those referring to the other competing feature spaces.

From the resulting posteriors of differences (figure 2.4B), we could determine the frac-

tion of samples above or below zero, i.e. in the direction of the corresponding hypotheses

( fh1). We repeated this for all other possible comparisons between the feature spaces

(figure 2.4C).

Initially, we were interested in whether we could replicate the previously reported

increase in prediction performance when combining linguistically motivated articulatory

features with spectrograms (Sg&Art , red vertical line, figure 2.4B) over spectrograms

alone (Sg, blue) in our data. Indeed, we found a large fraction of samples of the posterior

of differences in favour of a successful replication (mean of the difference in Pearson

correlation ∆ = 0.0093, fh1 = 0.9994). This allowed us to test whether various alternative

feature spaces could achieve a similar gain in performance in order to investigate the

origin of the improved prediction achieved using articulatory features.

We first investigated spectrotemporal Gabor patterns, which can be used to disso-

ciate several phonemic groups (Schädler et al., 2012), because the articulatory feature

space might have benefitted from describing responses that are specific to phoneme

subgroups. In combination with the spectrogram, which directly accounted for time vary-

ing sound energy, this feature space (Sg&Gb, yellow) achieved a comparable gain in

prediction performance over the spectrograms alone (∆ = 0.0098, fh1 = 0.9994). Its

performance was on par with the benchmark feature space (Sg&Art), i.e. it was only

negligibly better (∆ = 0.0006, fh1 = 0.5960). This feature space thus achieved a similar

performance to that of the linguistically motivated feature space but did so without re-

quiring linguistic concepts. Instead, it was physiologically motivated and computationally

fully specified.
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Shorthand Name Dimensionality Description

Env envelope 1 sum across channels of
Sg

Sg log-mel spectrogram 31 spectral decomposition of
time-varying stimulus en-
ergy in 31 mel-spaced
bands with logarithmic
compressive nonlinearity

Sg&(Sg')+ combination of Sg and
half-wave rectified tem-
poral derivatives of in-
dividual Sg channels

31+31 Sg and positive temporal
rate of change of power in
each channel of Sg

Sg&Gb combination of Sg and
Gabor-filtered Sg

31+455 Sg and decomposition of
Sg according to spectral,
temporal and joint spec-
trotemporal modulations

Sg&PhOn combination of Sg and
annotated phoneme
onsets

31+1 Sg and unit impulses at
the beginning of each an-
notated phoneme

Sg&Art combination of Sg and
articulatory features of
each phoneme,
“benchmark features"

31+23 Sg and 23 channels with
unit impulses at the begin-
ning of each phoneme
characterised by the cor-
responding vocal gesture

Sg&(Sg')+&Art combination of
Sg&(Sg')+ and articu-
latory features of each
phoneme

31+31+23 Control combination

Table 2.1: Feature spaces.

However, we also wanted to explore simpler models to determine the level of com-

plexity that would be required to optimise prediction. Sound onsets offer a promising

candidate for a neurally relevant, low-dimensional auditory feature (Hertrich et al., 2012;

Hamilton et al., 2018; Oganian & Chang, 2019; Ince et al., 2017). As a first test of this

hypothesis, we reduced the articulatory features to phoneme onsets (Sg&PhOn, pink).

This model outperformed the spectrograms in a similar way to Sg&Art (∆ = 0.0081,

fh1 = 0.9983), indicating that the performance increase obtained with articulatory fea-

tures originates from the timings of the phoneme onsets, and not the identity of different

phoneme subgroups.

The phoneme onsets were, however, still an abstracted representation of the stimulus

resulting from transcription alignment, with an unclear relation to the original acoustics.

One way to derive a signal representing sound onsets directly from speech acoustics is

by half-wave rectification of the first derivative of the time-varying stimulus energy (Her-

trich et al., 2012). This quantifies positive rates of change, i.e. increases in the stimulus

amplitude. We found that spectrally resolving this energy using spectrograms (Sg, blue)
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Figure 2.5: Caption on following page.

outperformed the broadband envelope (Env , black, ∆ = 0.0152, fh1 = 1). We therefore

computed the positive rate of change of energy of the individual channels of the spec-

trogram. Combined with the spectrogram features, this model (Sg&(Sg')+, turquoise,

(figure 2.4B) outperformed the benchmark feature space (∆ = 0.0073, fh1 = 0.9972). It

also outperformed the combination of spectrograms and Gabor-filtered spectrograms

(∆ = 0.0067, fh1 = 0.9958). Thus, a relatively simple acoustic feature space that fo-

cussed on acoustic edges not only equalled the benchmark but surpassed it. As a first

test whether these best acoustic features could account for the same information as the

articulatory features, we also tested a combination of them (Sg&(Sg')+&Art , purple). The

improvement of this combination of three feature subspaces over the best acoustic fea-

ture space was negligible (∆ = 0.0013, fh1 = .0.7078). This indicated that the articulatory
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Figure 2.5 (previous page): Hyperparameter choices for source model optimisation
(related to figure 2.4).
A Maximum distance between source positions used for test set prediction across all
test sets and feature spaces. Each dot is one participant in the respective hemisphere,
colour codes participants. B and C Positions of all test sets and feature spaces in
meshes of individual brain volumes of two exemplary participants. B shows the
participant with the largest maximum distance between chosen source locations and C
the participant closest to the median of maximum distances between chosen source
locations. Each dot is one test set, colour codes feature spaces. D Evaluation of spatial
clustering of choices of source positions for different feature spaces using the
Silhouette Index. Values close to 1 reflect that the optimisation procedure finds
positions in source space that are highly similar within feature spaces but dissimilar
across feature spaces, lower values reflect that the found positions are randomly
arranged in source space. Each dot is one test set of one participant, colour codes
participants. Black lines denote pooled means. E Choices of beamformer regularisation
hyperparameter λsource for each feature space. Each dot represents one test set of one
participant, colour codes participants. Black lines denote pooled means.

features are not needed for an optimal prediction of the MEG responses.

We also explored the lateralisation of the performances by evaluating within-participant

differences across hemispheres independent of feature spaces (figure 2.4D). We found

that the posterior distributions of hemispheric beta differences were narrow for individual

participants but exhibited a broad range of means within our sample. Some participants’

responses were easier to explain in the left AC, others in the right AC, while for some

there were no strong lateralisation effects.

Taken together, these results demonstrate that the gain in prediction performance

obtained by combining articulatory features with spectrograms can be replicated in MEG

data. However, a similar or even larger gain can be obtained by using algorithmically

specified and generic acoustic features that capitalise on acoustic edges. Their perfor-

mance in turn could not be improved by combining them with articulatory features. Next,

we wanted to reveal in more detail how the precise information about the MEG predicted

by the competing feature spaces was related to the information predicted by the bench-

mark articulatory features: were the similar levels of performance driven by the same or

by different predictive information?

2.3.3 Shared and unique information of articulatory and acoustic

features

Even if two models have the same predictive power, both higher than a reference model,

each could offer improved performance based on different information (i.e. by better-

predicting different periods of the speech signal) or the same information (i.e. by better-

predicting the same periods of speech). The information theoretic PID framework (Ince,

2017a; Williams & Beer, 2010) provides a means to address this question (see meth-
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Figure 2.6: Caption on following page.

ods 2.5.5 for details). We used it to address two questions: 1) to which degree is the

information carried by the acoustic- feature-based predictions shared (redundant) with

that carried by predictions based on the benchmark articulatory features? And 2) to

which degree do the predictions from each feature space contain unique information?

If the benchmark features could be explained by the acoustic alternatives, then the re-

sults would be characterised by 1) a high degree of redundancy and 2) a low amount
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Figure 2.6 (previous page): Hyperparameter choices of forward model optimisation
differ systematically across feature (sub-)spaces (related to figure 2.4).
A Choices of temporal extent hyperparameters for each feature (sub-)space. Shown
are averages across inner folds used for test set predictions, pooled across participants.
Values that were used in all cross-validated models of all participants are plotted as
transparent bars ranging from tMin – tMax such that the opacity codes for the number of
participants and folds for which the temporal extent was chosen correspondingly. B
Choices of L2 regularisation hyperparameters for each feature (sub-)space. Shown are
distributions of choices averaged across inner folds used for test set predictions, pooled
across participants. Colours code feature spaces.

of unique information left to the benchmark articulatory features. Such a finding would

suggest that the two feature spaces predict the same parts of the response in the same

way.

To investigate this question, we retrained all models with their source-space-related

hyper-parameters fixed to the values that were found to be optimal for the benchmark

articulatory features. We then considered separate, pairwise PIDs, where each acoustic

feature space was compared to the benchmark articulatory feature space (figure 2.7).

To make the resulting quantities more easily interpretable, we normalised the resulting

redundant and unique information by the marginal Mutual Information (MI, Ince et al.,

2017, a non-parametric measure of the relationship between variables) of the bench-

mark features and the observed MEG. We then statistically analysed these values using

Bayesian hierarchical models similar to our analyses of the raw performances, focussing

again on the regression coefficients that modelled the effects of feature spaces.

The acoustic features with the best prediction performance, Sg&(Sg')+, were indeed

also highly redundant with the benchmark articulatory features, reaching ≈ 100% of the

marginal MI provided by Sg&Art about the observed MEG (mean of the corresponding

effect: 0.99, 95% credible interval (CI) [0.98,1.01]). The same was the case when com-

bining the best acoustic features with the articulatory features (Sg&(Sg')+&Art , mean:

1.01, 95% CI: [0.99,1.02]). Furthermore, we observed more unique information present

in the acoustic feature space (mean: 0.07, 95% CI: [0.06,0.09]) than in the benchmark ar-

ticulatory feature space ( fh1 = 1), in which the unique information was distributed around

0 (mean: 0.01, 95% CI [−0.01,0.02]). This means that all of the predictive information of

the benchmark Sg&Art model was included in the predictions of the Sg&(Sg')+ model.

There was no unique information available in the Sg&Art prediction that a Bayesian op-

timal observer could not have extracted from the Sg&(Sg')+ model.

Lastly, the information about the MEG responses only available from a joint consider-

ation (i.e. synergy) of the benchmark articulatory features and the best acoustic features

had a negligible effect size that was two orders of magnitude lower than that of the re-

dundancy and failed to surpass a permutation-based noise threshold (see figure 2.11).

These results agreed with the finding that a combination of the best acoustic feature

spaces and the articulatory features did not have a better prediction performance than
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Figure 2.7: Shared and unique contributions of articulatory and competing
features.
A Normalised redundancy in left and right auditory cortex (AC). Each colour codes for a
single participant (n = 24). Each dot is one test set of one participant, black and red
lines show pooled medians. B Normalised unique information of benchmark articulatory
features and competing features in left and right AC. Colours code for a feature space,
as shown. Each dot is one test set of one participant, black red lines show pooled
medians. C and D Modelling of redundancy and unique information results,
respectively. Filled areas show density estimates of posterior distributions of estimates
of betas of feature spaces. Lines show density estimates of samples from posterior
predictive distribution of the respective condition. Colour coding of feature spaces is the
same as in B. See also figure 2.11.

the best acoustic features (see previous section).

A relatively high, normalised redundancy close to 100% was also achieved by

Sg&PhOn (mean: 0.97, 95% CI: [0.96,0.99]). In addition, Sg&PhOn provided a weak

amount of unique information (mean: 0.03, 95% CI: [0.01,0.05]) and left a very similar

amount of unique information to the benchmark articulatory feature space (mean: 0.03,

95% CI: [0.01,0.04]). The annotated onsets thus provide most of the information that the

benchmark features provide about the observed MEG.

A very similar pattern was found for the second-best acoustic features, Sg&Gb.

These features also achieved a relatively high redundancy (mean: 0.96, 95% CI:

[0.95,0.97]) but one that was lower than that of the best acoustic features ( fh1 = 0.9988).
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Sg&Gb also provided a weak amount of unique information (mean: 0.04, 95% CI:

[0.02,0.05]) and left a very similar amount of unique information to the benchmark articu-

latory features (mean: 0.04, 95% CI: [0.02,0.06]). We conclude that this high-dimensional

acoustic feature space included both relevant and many irrelevant dimensions. The in-

crease in the separability of the different spectrotemporal patterns that refer to different

phoneme subgroups (Schädler et al., 2012) is thus less important than the sound energy

patterns that are contained in the best acoustic feature space.

Finally, as expected from their comparably low prediction performances, the remain-

ing feature spaces (Env and Sg) exhibited redundancies that were lower than that of the

previously mentioned feature spaces (both fh1 = 1). They also left considerable amounts

of unique information to the benchmark feature space while providing no substantial pos-

itive unique information themselves (mean of Env : −0.03, 95% CI: [−0.05,−0.02]; mean

of Sg: 0.00, 95% CI: [−0.02,0.02]).
On a group level, all of these patterns were highly similar between left and right ACs.

Thus, the best acoustic features achieve their improved prediction performance over

spectrograms alone by explaining the same parts of the responses that the benchmark

articulatory features explain, and they additionally explain parts that the linguistic fea-

tures do not while a joint consideration of both feature spaces does not add meaningful

extra information.

2.3.4 Phoneme-evoked dynamics of observed and predicted time-

series

As recently demonstrated, four manners of articulation of phonemes can be decoded

from EEG data (Khalighinejad et al., 2017). We next assessed if this decoding was

possible in our MEG data and the degree to which our encoding models could account

for this phenomenon.

For this decoding analysis, we re-optimised the dipole position and sensor covariance

matrix regularisation parameters of the spatial filters. We did this by using black-box op-

timisation, as before (Acerbi & Ma, 2017), only this time with respect to the MI between

MEG data epoched to phoneme onsets and the manner of articulation of each phoneme

(4 discrete phoneme classes were used: vowels, nasals, plosives and fricatives, see fig-

ure 2.13). The MI was calculated separately for each time point in the extracted phoneme

epochs. For optimisation, we subsequently summed the MI across time points. In most

cases, the positions found in this re-optimisation were very similar to those found before

(figure 2.9A).

At the corresponding source locations, we found characteristic responses to the four

manners of articulation (i.e. the four phoneme classes used, see figure 2.8A). We then

retrained our encoding models based on all feature spaces with the source-level param-

eters fixed to the values found when optimising for MI between MEG data epoched to

phoneme onsets and the manners of articulation. In the cross-validated predictions of
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these retrained models, we observed phoneme-locked responses that were very similar

to those obtained with observed MEG data (figure 2.8A, right).

Figure 2.8: Caption on following page.

Correspondingly, we observed a sustained pattern of MI following the phoneme on-

sets in bilateral ACs for the observed data (figure 2.8B). We found very similar patterns

of MI between manners of articulation and predicted phoneme-related fields, with values

roughly an order of magnitude higher for the predictions. On average, this result pat-

tern did not substantially differ between either of the two hemispheres or between the

different feature spaces.

Together, our results thus show that the decoding of these manners of articulation
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Figure 2.8 (previous page): Phoneme-related fields captured by model predictions.
A Phoneme-related fields of a single participant in (left) observed and (right) predicted
MEG (from Env feature space). Colours code for 4 different phoneme classes that
represent 4 manners of articulation. B MI of observed (solid lines, left y-axes) and
predicted MEG (dashed and coloured, right y-axes) about the four phoneme categories
in the left and right AC. Colour coding of feature sapces is the same as in C. C
Redundancy from PID (amount of information that observed and predicted MEG share
about the 4 manners of articulation). D Unique Information of observed (solid) and
predicted MEG about the manners of articulation. Maximum information uniquely
available from observed MEG across all participants, feature spaces, and time points
are shown as black bars. Colour coding of feature spaces in C also applies to B and D.
C and D show medians across all participants ±95% (frequentist) confidence intervals
(CIf), bootstrapped with 10,000 samples. See also figure 2.9.

was replicable in the observed MEG data and in the MEG data predicted by our models.

To assess the amount of information that is shared by the observed and predicted

time series about these manners of articulation, and the amount of information that is

unique to them, we performed PIDs with observed and predicted time series as sources

and the manners of articulation as targets. This analysis should reveal if the observed

MEG contained information about these manners of articulation that is different from

that obtained, for example, from the speech envelope when convolved with an encoding

model temporal response function (TRF).
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Figure 2.9: Hyperparameter choices for phoneme related field (PRF) analysis
(related to figure 2.8).
A Maximal euclidean distances of source positions when optimised with regard to
model performances across all test sets and feature spaces subtracted from maximal
euclidean distances of source positions when positions found when optimising with
regard to PRF MI are included. B Results of optimising sensor covariance
regularisation parameter with regard to PRF MI. Colour in A and B codes participants.

The PIDs resulted in profiles of redundancy that closely resembled the marginal MI
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profiles for both hemispheres and for all feature spaces alike (figure 2.8C). Most impor-

tantly, the information that was unique to the predicted MEG exhibited the same patterns

(figure 2.8D, dashed lines), while the information unique to the observed MEG (solid

lines) was negative, i.e. this information represented misinformation with respect to the

predicted MEG source. This means that there were trials where an observer predict-

ing phoneme classes optimally from the observed MEG would make a mistake (hence

misinformation) that an observer of the predicted MEG would not make (hence unique

to observed MEG; see methods 2.5.5 for more details on negative unique information).

Thus, there was no relevant information about these manners of articulation present in

the observed MEG that could not be retrieved from responses modelled with a convo-

lution of any of our feature spaces with an encoding model filter. This pattern of results

was also essentially the same for both hemispheres and for all feature spaces.

Taken together, these results demonstrate that models based on all of our feature

spaces could fully account for the information about these four manners of articulation

that was decodable from the observed MEG responses.

2.3.5 Replication using a publicly available EEG dataset

The original report of the effect of a performance gain provided by articulatory features

over spectrograms alone was derived from EEG data (Di Liberto et al., 2015). Since

MEG and EEG are sensitive to different sources (Cohen & Cuffin, 1983), it is possible

that the MEG sensors we used here were blind to parts of the effect. We therefore

investigated whether we could replicate our MEG results using EEG data. We analysed

n = 13 participants for whom data with 128 channel recordings of approximately an hour

are publicly available (Broderick et al., 2018b,a). On the stimulus side, we used the same

analysis pipeline as for the MEG dataset. However, due to the higher noise level of the

EEG data (Destoky et al., 2019), we did not try to fit the high- dimensional Gabor feature

space. Instead, we concentrated on comparing the benchmark articulatory feature space

to the lower dimensional acoustic feature spaces that had best explained the MEG data.

We fitted cross-validated encoding models to the scalp-level EEG data and focussed

our modelling on the 12 electrodes reported in the original publication (Di Liberto et al.,

2015).

Using the same Bayesian modelling approach, results derived from the EEG data

closely accorded with those derived from the MEG data (figure 2.10B). Our analysis repli-

cated the gain in performance of the benchmark articulatory feature space compared to

spectrograms alone (∆ = 0.0031, fh1 = 0.9712). We again found that the benchmark ar-

ticulatory feature space was outperformed by the combination of spectrograms and their

rectified temporal derivatives (∆ = 0.0045, fh1 = 0.9963). Also, we again found that com-

bining the articulatory features with the best acoustic features only led to a negligible in-

crease in performance (∆ = 0.0009, fh1 = 0.7218). In addition, as before, the benchmark

articulatory feature space performance was not stronger than that of the spectrograms
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and phoneme onsets combined (∆ = 0.0010, fh1 = 0.2577). Lastly, we found that all com-

peting feature spaces outperformed the one dimensional envelope (∆ = [0.0128,0.0213],
all fh1 = 1). These results thus show that – in terms of prediction performance – acoustic

features outperform the more complex articulatory features, which perform on a par with

features that only describe the phoneme timing.

Figure 2.10: Caption on following page.

Note that when we replaced the log-mel spectrogram features chosen in the present

study with a spectrogram more closely modelled after the one used in (Di Liberto et al.,

2015), we obtained generally lower performances and also a different pattern of results.
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Figure 2.10 (previous page): Analysis of EEG data.
A Test set performances of forward models. Left: Each dot shows the performance in
one test set averaged across electrodes. Colours code individual participants (n = 13),
black lines show pooled medians. B Samples from posterior distribution of differences
of beta estimates of competing feature spaces and the benchmark Sg&Art feature
space. Colours code feature spaces. C PID results normalised by MI of predictions
based on Sg&Art features and observed EEG signals. Each dot is one test set
prediction of one participant and electrode. Samples from posterior distributions of
effects of feature spaces are overlaid as filled areas, and posterior predictive
distributions are shown as lines. Left: Redundancy of predictions based on benchmark
articulatory features and competing feature spaces about observed EEG signals. Dot
colours represent a participant, filled area and line colours represent feature spaces.
Right: Unique information of benchmark articulatory features (red) and competing
feature spaces about observed EEG signals. Colours of dots, filled areas and lines
represent feature spaces. D Phoneme related potential analysis. Colours represent
feature spaces, shaded areas denote 95% (frequentist) confidence intervals (CIf),
bootstrapped with 10,000 samples. All traces show averages across participants and
electrodes. Left: MI of observed (solid black line, left y-axis of subplot) and predicted
(dashed coloured lines, right y-axis of subplot) EEG about four manner of articulation
phoneme classes (“phClass”). Middle: Redundancy – information shared by observed
and predicted EEG from different feature spaces about phoneme classes. Right:
Unique information of observed (solid lines) and predicted (dashed lines) EEG about
phoneme classes. Maximum of information uniquely available from observed EEG
across all participants, feature spaces and time points shown as black bar. See also
figures 2.11 and 2.12.

Crucially, we found that this could be attributed to a compressive non-linearity as included

in the log-mel spectrogram (see figure 2.11 for a more detailed explanation).

Taken together, these results further support the notion that simple and physiologi-

cally motivated transformations of the auditory stimulus can make important differences

to the interpretation of more-complex annotated features.

Next, we considered the results of a PID analysis that assessed the degree to

which the predictions of competing feature spaces shared information about the ob-

served EEG responses with that of the benchmark feature space, and the degree to

which they contributed unique information (figure 2.10C). We again found that the pre-

dictions based on the best acoustic feature space were highly redundant with predic-

tions based on the benchmark articulatory features (mean of the corresponding effect:

0.9776;95% CI [0.9358,1.0167]). The same was the case for the combination of the best

acoustic features and the articulatory features (mean: 0.9527; 95% CI [0.9104,0.9945]).
We also again found that the unique information contributed by the benchmark artic-

ulatory features was close to 0 (mean of the corresponding effect: 0.0231,95% CI

[−0.0115,0.0657]), while the unique information contributed by the best acoustic fea-

ture space was weakly positive (mean of the corresponding effect: 0.1575,95% CI

[0.1121,0.2109]). Lastly, the amount of information only available when jointly consid-

ering the best acoustic features and the benchmark articulatory features (i.e., the syn-
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ergy) was an order of magnitude lower than that of the redundancy and did not exceed

noise thresholds (see figure 2.11), which agreed with the finding that combining the best

acoustic features and the articulatory features did not lead to an improvement over the

best acoustic features.

Figure 2.11: Raw values and comparison to noise thresholds of PID in EEG and
MEG (related to Figures 2.7 and 2.10).
A Raw (unnormalised) PID values (Red: redundancy, U: unique information [of
competing feature spaces and of benchmark articulatory feature space] and Syn:
synergy) in MEG data from left and right AC. Each colour codes for a single participant,
each dot is one test set. Pooled medians are indicated with black lines. B Comparison
of PID values in MEG data to noise thresholds. Image plot shows the fraction of data
points (sources, test sets) that exceeded the corresponding noise threshold in each
participant and for each feature space and each PID atom. C Raw (unnormalised) PID
values (redundancy, unique information of competing feature spaces, unique
information of benchmark articulatory feature space and synergy) in EEG data from all
12 electrodes. Each colour codes for a single participant, each dot is one test set.
Pooled medians are indicated with black lines. D Comparison of PID values in EEG
data to noise thresholds. Image plot shows the fraction of data points (sources, test
sets) that exceeded the corresponding noise threshold in each participant and for each
feature space and each PID atom.

Similar to our results using MEG, the combination of spectrograms and phoneme

onsets produced slightly lower levels of redundancy compared to the best acoustic model

(mean: 0.9317; 95% CI [0.8902,0.9765]), and even lower levels of redundancy were
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Figure 2.12: Comparison of 16 channel spectrogram, 16 channel spectrogram
with compressive nonlinearity and log-mel spectrogram in EEG data (related to
figure 2.10).
A Raw test set performances of feature spaces. Each dot is one test set of one
participant, averaged across electrodes. Colour codes participants. Pooled medians
overlaid. Colours in x-axis labelling refer to feature spaces. B Percent of samples in
favour of hypotheses of differences of beta estimates between all feature spaces.
Hypotheses are colour coded using the same colour mapping as in x-axis labelling of A.
The performances obtained using Sg were in general higher than those obtained using
Sg16, a 16-channel spectrogram modelled after the original study (Di Liberto et al.,
2015). The combination of Sg16&Art failed to outperform Sg on its own ( fh1 = 0.2318).
The overall pattern of performances was largely similar regardless of using Sg or Sg16
as the spectrogram. In contrast to the results produced using Sg however, we found that
the Sg16&Art combination outperformed the Sg16&PhOn combination ( fh1 = 0.9675).
To assess whether these differences were driven by the compressive linearity included
in Sg, we additionally tested a version of Sg16 in which we raised its values to the power
of 0.3 (“Sg16c”). Such nonlinearities are classically included in models of auditory
processing, as early as the cochlea (Chi et al., 2005; Verhulst et al., 2018; Biesmans
et al., 2017). This tweak indeed resulted in a pattern of performances that was largely
similar to that obtained with Sg: The combination of Sg&Deriv did not clearly outperform
the combination of Sg16c&Deriv16c ( fh1 = 0.8191), and combining Sg16c&Art was not
better than combining Sg16c&PhOn ( fh1 = 0.6097).

obtained for spectrograms alone (mean: 0.8658; 95% CI [0.8157,0.9118]), and for the

envelope (mean: 0.6714; 95% CI [0.5956,0.7205]).
Based on these results, we concluded that in both MEG and EEG data, the increased

performance provided by benchmark articulatory features over spectrograms alone could

be explained by a combination of spectrograms and their rectified temporal derivatives.

This purely acoustic feature space achieved higher overall performance in predicting

EEG responses. It did so by explaining the same information as the benchmark artic-

ulatory features. However, it also carried information that was not available from the

predictions based on the benchmark articulatory features.

Finally, we also found a very similar pattern of results in an analysis of phoneme-

evoked responses (figure 2.10D). The MI of the observed EEG time series and the four
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phoneme classes was mostly shared with that of the predicted time series based on all

feature spaces. The predicted time series could thus account for a substantial amount

of positive unique information, while the observed EEG time series could only contribute

negative unique information, i.e. misinformation. The observed EEG responses thus did

not contain any more information about the manners of articulation than did the EEG

response predictions based solely on the envelope.

2.4 Discussion

In this study, we set out to investigate to which degree signatures of “pre-lexical ab-

straction” in MEEG responses to speech can be explained with simpler, purely acoustic

models. Our results suggest that care must be taken when interpreting the results of

encoding or decoding models that consider higher-order constructs, such as the artic-

ulatory features of phonemes. We showed that the predictive information that can be

derived from articulatory features is rooted in the timing information of these features

rather than in a more-detailed characterisation of the phoneme. Similarly, the ability

to reliably decode subgroups of phonemes from MEEG data can be explained by our

simplest feature model, that is, it is a direct consequence of MEEG speech envelope

tracking. It should therefore not be interpreted as evidence of more complex speech pro-

cessing being reflected in the recorded signal. Based on these results, we argue here

for the consideration of algorithmically interpretable and physiologically plausible mod-

els of sensory encoding, for which annotated feature spaces can nevertheless serve as

excellent benchmarks.

An inevitable limitation of this study is that our results cannot ultimately prove the

absence of explanatory power unique to the articulatory features. It is possible that

analysis pipelines exist that could carve out parts of the responses such that the artic-

ulatory features could beat our best acoustic feature space. However, in our analyses,

the articulatory features were given strong chances to predict response variance. And

we could indeed replicate the originally reported effect of a performance gain over spec-

trograms alone, only to then find a more parsimonious explanation for this gain. More-

over, our findings suggest that if the articulatory features could better explain certain

parts of the responses, these parts would account for a relatively small portion of the

total response variance. Given the already small effect sizes, it would then be possible

that additional and similarly simple transformations of the acoustics could compensate

for possible articulatory advantages. The same holds true for recent demonstrations of

more-sophisticated linguistic feature spaces (Broderick et al., 2018b; Brodbeck et al.,

2018a). Essentially, this line of reasoning thus drives home our main point. Any invoca-

tion of exciting, high-level feature spaces will always entail the heavy burden of proof of

the absence of simpler explanations (Sassenhagen, 2018). This should by no means dis-

courage inspiring investigations from using such high-level feature spaces but it should

encourage researchers to nevertheless continue to consider simpler explanations.
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Similarly, the ability to decode high-level semantic or phonetic properties of speech

from evoked neural data tantalisingly suggests that the measured neural response re-

flects high-level processing. However, in general it is extremely difficult to control prop-

erly for all possible low-level stimulus properties, which could confound the interpretation

of the high-level feature decoding. Applying decoding analyses to the predictions of for-

ward models as we suggest here provides one way to address this issue. If, as we

find here, the high-level feature can indeed be decoded from the prediction of a forward

model based on low-level stimulus features, it suggests that the decoding results should

not be interpreted as strong evidence of high-level neural processing.

We used in our study a source reconstruction approach that used data derived from

two dipoles in bilateral auditory cortices. Source-level MEG data in (Brodbeck et al.,

2018a), for example, suggest that multiple, superior temporal sources related to speech

processing are robustly separable. This could be explained by the difference in source

localisation algorithms. Given the relatively coarse, spatial resolution of our source-level

data, we chose not to focus our analysis on modelling activity reconstructed from mul-

tiple locations in source space. Instead, we invested our computational resources in a

detailed analysis of responses from a single point per hemisphere that accounted for

much of the speech-related variance. This allowed us to flexibly optimise analysis pa-

rameters specific to participants, hemispheres and feature (sub-)spaces. We believe

that this data-driven approach to parameter settings (Hahn et al., 2018) marks an impor-

tant step towards more-principled pipelines in neuroimaging (Bzdok & Yeo, 2017), and

our approach was inspired by growing efforts to avoid MEG analysis parameter settings

based on tradition (Woolrich et al., 2011; Engemann & Gramfort, 2015).

Since forward-encoding models promise to inform theories of neuronal computations,

what are the potential implications of this study? The central question of interest con-

cerns the origins of the response variance that is commonly explained by the best acous-

tic and articulatory benchmark features. However, interpreting the results of encoding

and decoding models with regard to such a causal question is never trivial (Weichwald

et al., 2015; Kriegeskorte & Douglas, 2018b). The feature spaces considered here reflect

functional – not mechanistic – models (Kay, 2018) of varying predictive performance.

What they essentially relate is the input of the waveform of a speech stimulus to the

output of MEEG responses. These responses are far from reflecting the entire, dras-

tically higher-dimensional cortical auditory representation of the stimulus. Against this

backdrop, the fact that the envelope, a low-fidelity representation of the stimulus, could

still account for most of the observed response variability, suggests that this part of brain

activity might not so readily provide a window to arbitrary high-level cognitive processes.

Furthermore, an algorithmic consideration of our best acoustic feature space rather

points to operations which occur relatively early in auditory processing. A spectral de-

composition of compressed dynamic range is typically part of cochlear models (Verhulst

et al., 2018; Chi et al., 2005). An additional temporal derivative and half-wave rectifica-

tion might possibly be implemented by the various stations along the subcortical auditory
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pathway. The question then is why cortical neuronal mass signals (Panzeri et al., 2015)

are time-locked to this result of very early auditory processing, and whether these low-

frequency cortical responses carry such information so that further cortical processes

react to it. Deeper insights into this problem will also have to consider proxies to what

downstream neurons are encoding, such as the final behavioural responses (Williams

et al., 2007; de-Wit et al., 2016; Panzeri et al., 2017; Bouton et al., 2018; Keitel et al.,

2018; Carlson et al., 2018; Brette, 2018).

Despite these caveats, it is interesting to speculate how the feature spaces consid-

ered here might reflect aspects of actual cortical computations. Unlike modern ASR

systems that can, with limitations, understand a speaker’s intention (Sarikaya et al.,

2016), the mid-level feature spaces considered here are all far from this feat. Never-

theless, they can be interpreted as contributing to this goal. The information bottleneck

framework (Tishby et al., 2000) for example suggests that feature spaces should allow

information compression, i.e., gradual decreasing stimulus fidelity, while retaining rele-

vant aspects of the input. The log-mel spectrograms allow to discard irrelevant spectral

and dynamic ranges, and Gabor-filtering can do the same for spectrotemporal patterns

relevant for ASR systems (Schädler et al., 2012). This decomposition seems to be es-

pecially beneficial for speech in noise, when features similar to the best acoustic feature

space used here can be used to exploit the rapid amplitude dynamics in speech sig-

nals to the benefit of ASR systems (Kumar et al., 2011). It is thus conceivable that the

predictive performance of this feature space could be rooted in a tuning of the auditory

system to ubiquitous noisy listening environments. Hypotheses about the processing of

speech in noise are, however, best examined in datasets that sample the stimulus space

correspondingly (Fiedler et al., 2018; Giordano et al., 2016).

Another interesting observation is that the edges of these rapid amplitude dynamics

coincide with transitions to the central vowels of syllables (Oganian & Chang, 2019). A

rich literature is available on the interpretation of low-frequency signals as a signature of

a chunking of the speech signal into syllable-like units (Hertrich et al., 2012; Gross et al.,

2013; Doelling et al., 2014; Hyafil et al., 2015; Räsänen et al., 2018; Giraud & Poeppel,

2012; Ghitza, 2013). An eventual goal would however be to treat mid-level representa-

tions as less independent from the more-abstract aspects of speech understanding. Ex-

tracting the intermediate representations generated while embedding speech into fixed

dimensional semantic vectors (Chung et al., 2018) could be a promising step towards an

unbiased and context dependent description of speech signals.

2.4.1 Conclusion

In a data-driven approach, we have studied models that explain cortical neuronal re-

sponses as captured by source-localised MEG and sensor level EEG in a story- listen-

ing paradigm. Our results underscore that annotated linguistic feature spaces are useful

tools to explore neuronal responses to speech and serve as excellent benchmarks. We
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find their performance for explaining neuronal responses of high temporal resolution to

be exceeded and explained by a simple low-level acoustic feature space that capitalises

on spectrotemporal dynamics. Thus, we conclude that the consideration of parsimo-

nious, algorithmically interpretable and physiologically plausible features will eventually

lead to clearer explanations of observed neuronal responses.

2.5 Methods

2.5.1 Participants

24 healthy young participants (native speakers of English, 12 female, mean age 24.0
years, age range [18,35] years) agreed to take part in our experiment. They provided

informed written consent and received a monetary compensation of £9 per hour. The

study was approved by the College of Science and Engineering Ethics Committee at the

University of Glasgow (application number: 300170024).

2.5.2 MEG recording, preprocessing and spatial filtering

MEG recording

Participants listened to a narrative of 55 minutes duration (“The Curious Case of Ben-

jamin Button”, public domain recording by Don W. Jenkins, librivox.org) while their brain

activity was recorded with a 248 channel magnetometer MEG system (MAGNES 3600

WH, 4D Neuroimaging) at a sampling rate of 1017.25 Hz (first 10 participants) and

2034.51 Hz (last 14 participants). Prior to recording, we digitised each participant’s

headshape and attached five head position measurement coils to the left and right pre-

auricular points as well as to three positions spread across the forehead. The session

was split into 6 blocks of equal duration and additionally included a repetition of the last

block. The last ten seconds of each block were repeated as a lead-in to the following

block to allow listeners to pick up the story. Prior to and after each block, we measured

the positions of the coils. If the movement of any of them exceeded 5 mm, we repeated

the block. Playback of the story and trigger handling was done using PsychToolBox

(Brainard, 1997), and sound was delivered via two MEG compatible Etymotic ER-30

insert earphones. After the recording, participants had to answer 18 multiple choice

questions with 3 options each, where the number of correct options could vary between

1 and 3 per question. The questions referred to the entire story, covering three details

per recording block. The average performance was .95 with a standard deviation of 0.05
and a range from 0.78 to 1.00.
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MEG preprocessing

Most of our analyses were carried out within the MATLAB computing environment

(v2016a, MathWorks, Natick, MA, USA) using several open-source toolboxes and cus-

tom code. Deviations from this are highlighted. Preprocessing was done using the

fieldTrip toolbox (Oostenveld et al., 2011). Initially, we epoched the data according to

the onsets of the full blocks including the ten seconds of lead-in. For noise cancellation,

we subtracted the projection of the raw data on an orthogonal basis of the reference

channels from the raw data. We manually removed and subsequently replaced artefac-

tual channels with spherical spline interpolations of surrounding channels (mean number

of artefactual channels per block: 3.07, standard deviation: 3.64; pooled across partic-

ipants), replaced squid jumps with DC patches, filtered the signal with a fourth-order

forward-reverse zero-phase butterworth high-pass filter with a cutoff-frequency of .5 Hz

and downsampled the data to 125 Hz. We then excluded the lead-in parts from the blocks

and performed Independent Component Analysis (ICA, runica algorithm) to identify and

remove components reflecting eye and heart activity (mean number of components per

block: 6.70, standard deviation: 5.01; pooled across participants) and further downsam-

pled the data to 40 Hz.

MEG source space

We employed three different source modelling approaches for our analysis. Firstly, we

aimed to identify regions in source space whose activity was in a repeatable relationship

with our auditory stimulation (“story-responsive” regions, Honey et al., 2012; de Heer

et al., 2017). Secondly, we wished to visualise these results on a group-level. Lastly,

for our main intention of modelling the story-responsive regions, we designed a frame-

work that would allow us to optimise parameters of our spatial filters as part of a cross-

validation, similar to a recent proposal by Engemann & Gramfort (2015).

Volume conductor models For all three approaches, we obtained common volume

conductor models. We first aligned individual T1-weighted anatomical MRI scans with

the digitised headshapes using the iterative closest point algorithm. Then, we segmented

the MRI scans and generated corrected-sphere volume conductor models (Nolte, 2003).

We generated grids of points in individual volumes of 5 mm resolution. For group-level

visualisation purposes, we also generated a grid with 5 mm point spacing in MNI space,

and transformed this to individual spaces by applying the inverse of the transform of

individual anatomies to MNI space.

Initial data exploration: identification and characterisation of story-responsive re-

gions To identify story-responsive regions in MEG source space, we projected the

time- domain sensor level data through rank-reduced linearly constrained minimum vari-

ance beamformer spatial filters (Van Veen et al., 1997) with the regularisation of the
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sensor covariance matrices λsource set to 5%, using the dipole orientation of maximal

power. We correlated the responses to the last block with those to its repeated presen-

tation within each participant to obtain maps of test-retest-R2. We repeated this using

the grids in MNI space we had warped into individual anatomies for a group-level visual-

isation using the plot_glassbrain function of the Python module Nilearn (Abraham et al.,

2014).

We then explored how many dipoles would explain how much of the repeatable ac-

tivity in story-responsive regions. It is known that due to the non-uniqueness of the

inverse problem, the spatial resolution of MEG source reconstructions is inherently lim-

ited. Neighbouring grid points are thus often highly correlated, rendering analyses on

a full grid highly redundant (Faharibozorg et al., 2018). To avoid such an unnecessary

computational burden for our modelling, we used an information theoretic approach to

characterise redundant and unique regions in source space.

First, we computed Mutual Information (MI, Ince et al., 2017) at each grid point in in-

dividual source spaces between activity in the first and the second repetition, essentially

repeating the initial identification of story-responsive regions. Next, we applied the frame-

work of PID (Ince, 2017a) to the data of repeated blocks in an iterative approach. PID

aims to disentangle redundant, unique and synergistic contributions of two source vari-

ables about a target variable (see later section dedicated to PID for more details). As the

first source variable, we here used the two-dimensional activity at bilateral grid points of

individual peak story-responsivity during the first repetition. We then scanned the whole

grid in parallel for both repetitions, using the activity recorded during the first repetition

as the second source variable and the activity recorded during the second repetition as

the target variable of PIDs (see video S1 for an intuitive visualisation). We were then in-

terested in the resulting maps of redundancy and unique information. The former would

allow us to infer to what degree other grid points with high story-responsivity shared

their information about the repetition with the grid points of peak story-responsivity. The

latter on the other hand would show us where information unexplainable by these two

peaks could be found. After this first iteration, we added the grid point of peak unique

information to the then three-dimensional first source variable in the PIDs and repeated

the computation across the whole grid. We reran this approach for a total of ten itera-

tions. Finally, we computed MI between the two-dimensional activity at bilateral peaks of

story-responsivity in the first and the second repetition and compared this to the unique

information found in each iteration of our iterative approach.

Optimisation of source space coordinates and sensor covariance regularisation

In order not to unnecessarily spend computational resources, we wanted to limit our

main endeavour of modelling MEG responses to parts of the signal which actually were

in a systematic relationship with the stimulus. A straight-forward solution for a selec-

tion of these parts would have been to directly use the grid points identified as story-

responsive using the test-retest correlation. However, since it is likely that participants

https://www.sciencedirect.com/science/article/pii/S0960982219304968?via%3Dihub#mmc2
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paid a lesser degree of attention to the more predictable repeated presentation of the

last chapter, we could not rule out that the test-retest-R2 maps would be biased towards

low-level auditory processing. Furthermore, these maps could be influenced by differ-

ences in the position of the participant’s head in the scanner as well as the amount of

eye blinks and head movements. The peak test-retest points are thus not guaranteed

to be the optimal locations for any given feature space model fit, tested over the whole

experiment. Moreover, it was possible that different feature spaces would optimally pre-

dict distinct regions. Finally, we did not know a-priori what level of regularisation of the

sensor covariance matrices would be ideal to capture the responses of interest in each

individual dataset.

To account for all of these considerations in a data-driven manner, we treated the

coordinates of regions of interest as well as the regularisation of sensor covariance ma-

trices as hyperparameters of our model, which we optimised by means of a black-box

optimisation algorithm. We kept the other specifications of the spatial filter design as de-

scribed above. As initial coordinates, we used the maxima of test-retest-R2 maps within

each hemisphere. The boundaries of the coordinate hyperparameters were defined by

the boundaries of the respective hemisphere of the individual brain volume which we

shrunk by a factor of 0.99 for this purpose to avoid instabilities of the forward models

close to their boundaries (table 2.2). In each iteration of the black-box optimisation, we

then applied a given amount of regularisation to the precomputed sensor covariance ma-

trix and computed the leadfield for a given vector c = (X ,Y,Z) of coordinates in source

space using the precomputed volume conductor model for each block. Since the ori-

entation of the resulting dipoles was then arbitrary, i.e. possibly flipped across blocks,

we estimated the mean axis of dipoles across blocks and changed the sign of the ori-

entations of dipoles whose dot products with the orientation of the dipole closest to the

mean axis were negative. We then recomputed the leadfields for these aligned dipole

orientations. Finally, we projected the sensor level data through these spatial filters and

z-scored them within each block to account for differences in mean amplitude across

blocks.

2.5.3 Stimulus transformations

The speech stimulus was transformed into various feature spaces. We used the GBFB

toolbox (Schädler et al., 2012) to obtain 31-channel Log-Mel-Spectrograms (“Sg ", rang-

ing from [124.1,7284.1] Hz) and summed these across the spectral dimension to also

obtain the amplitude envelope (“Env ").

Additionally, we filtered the spectrograms with a set of 455 2D Gabor filters (“Gb”) of

varying centre frequencies corresponding to those of the Sg as well as spectral modu-

lation frequencies Ω (0, 2.9, 6, 12.2 and 25 Hz) and temporal modulation frequencies ω

(0, 6.2, 9.9, 15.7 and 25 Hz). Notably, this implementation of the toolbox only considers a

subset of all possible combinations of centre frequency as well as spectral and temporal
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Figure 2.13: Caption on following page.

modulation frequencies to avoid overly redundant features. As a last acoustic feature

space, we computed half-wave rectified first derivatives of the individual channels of the

spectrograms “(Sg')+”, (Hertrich et al., 2012; Brodbeck et al., 2018a).
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Figure 2.13 (previous page): Mapping of phonemes to articulatory features and
manners of articulation (related to methods 2.5.3).
Black and white part shows articulatory features used for forward modelling (Di Liberto
et al., 2015), coloured part shows manners of articulation used for decoding
(Khalighinejad et al., 2017).

To construct annotated feature spaces, we used the Penn Phonetics Lab Forced

Aligner (Yuan & Liberman, 2008) to align the text material to the stimulus waveforms,

providing us with onset times of phonemes comprising the text. These were manu-

ally corrected using Praat (Boersma, 2001) and subsequently transformed into a 23-

dimensional binary articulatory feature space (“Art" de Heer et al., 2017). Figure figure

2.13 provides the mapping from each phoneme to the articulatory features. We gener-

ated 23 time-series of zeros at a sampling rate of 40 Hz and inserted unit impulses at the

onset times of phonemes corresponding to the respective articulatory feature. Finally,

we discarded the information about phoneme identity to obtain a one-dimensional binary

feature space of phoneme onsets (“PhOn”). Our set FMEG of employed feature spaces

then consisted of the following combinations: FMEG = {Env , Sg, Sg&(Sg')+, Sg&Gb,

Sg&PhOn, Sg&Art , Sg&(Sg')+&Art }. We downsampled the acoustic feature spaces to

40 Hz and z-scored all feature spaces prior to modelling.

2.5.4 Mapping from stimulus to MEG

To perform a linear mapping from our feature spaces to the recorded MEG signals, we

used ridge regression (Crosse et al., 2016) in a 6-fold nested cross-validation framework

(Varoquaux et al., 2017). This allowed us to tune hyperparameters controlling the tempo-

ral extent and the amount of L2 regularisation of the ridge models as well as the amount

of regularisation of the sensor covariance matrices and the coordinates of positions in

source space for the beamformer spatial filters in the inner folds, yielding data-driven

optimised models for each feature space, hemisphere and participant.

Linear model

The single-subject linear model we employed can be formulated in discrete time as:

r̂c,λsource(t) = ∑
υ

tMax

∑
τ=tMin

w(υ ,τ)s(υ , t− τ) (2.1)

Here, r̂ denotes the neuronal response as obtained with a spatial filter with maximum

gain at the vector c of coordinates (X ,Y,Z) in source space and a regularisation of the

sensor covariance matrix of λsource. Further, s is a representation of the stimulus in a

given feature space, possibly multidimensional with dimensions υ . Finally, w describes

the filter weights across these dimensions and time lags τ ranging from tMin to tMax,

where negative values refer to samples in the future of t and positive values refer to
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samples in the past of t.

To obtain these filter weights, we used the following closed-form solution:

w = (ST S+λL2I)−1ST rc,λsource (2.2)

Here, S denotes the lagged time series of the stimulus representation, each column

consisting of a particular combination of lags τ and feature dimensions υ , organised

such that neighbouring feature dimensions populate neighbouring columns within groups

of columns corresponding to time lags. The identity matrix I is multiplied with λL2, a

hyperparameter adjusting the amount of L2 regularisation. Larger values of λL2 force the

resulting weights w closer to zero and thus reduce overfitting.

For the joint feature spaces consisting of multiple subspaces, the temporal extent

and L2 regularisation was optimised individually for each subspace to obtain the best

possible prediction performance. This meant that the matrix S was constructed as the

columnwise concatenation of multiple submatrices with different numbers not only of

feature dimensions υ but also of lags τ . Additionally, this meant that λL2 here was a

vector instead of a scalar, with as many elements as feature spaces in the joint space.

Corresponding to the concatenation of S, different sections of the diagonal of the identity

matrix were multiplied with the dedicated regularisation parameters of the corresponding

subspace.

We used an additional regularisation for the Gb feature space. We had observed that

feature dimensions belonging to the group of fastest temporal modulation frequencies ω

had noisy and small filter weights at long absolute temporal lags. Based on this, we

concluded that the temporal extents τ chosen for this feature space were essentially a

compromise of long optimal τ for feature dimensions of slow ω (“Gb-Low") and short op-

timal τ for feature dimensions of fast ω (“Gb-Hi"). To remedy this problem, we assigned

the usual τ to the group of slowest ω and added additional τ hyperparameters for the

group of fastest ω . The τ of the central ω were then spaced proportionally to the mean

auto-correlation times (ACT) of the corresponding groups of feature dimensions of this

stimulus representation. We defined the ACT as the shortest lag where the normalised

and absolute auto-correlation dropped below a value of .05. This allowed the optimi-

sation algorithm to pick long τ for feature dimensions of slow ω and short τ for feature

dimensions of fast ω .

Nested cross-validation and hyperparameter tuning

To make data-driven optimal choices for the range of lags τ defined by tMin and tMax, the

amount of L2 regularisation λL2, the coordinates in source space as well as the amount of

regularisation of the sensor covariance matrices λsource, we used nested cross-validation.

Specifically, this means that we split our stimulus and response data in six portions of

equal durations. Two loops then subdivided the data into training, tuning and testing sets.

In each iteration, an outer loop assigned each of the six portions to be the testing set.
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Additionally, in each iteration of the outer loop, a full run of an inner loop was performed,

assigning four portions to be the training set and the remaining portion to be the tuning

set. This resulted in a total of 30 different assignments of portions to different sets. With

this framework, we first picked a certain combination of hyperparameters and computed

the corresponding weights w, the elementary parameters, using the training set. The

resulting filters were convolved with the stimulus of the tuning set to obtain predictions

r̂ which we correlated with the observed responses r to obtain the tuning performance.

This was repeated 200 times with different combinations of the hyperparameters.

These combinations were chosen by a black-box optimisation algorithm, Bayesian

Adaptive Direct Search (Acerbi & Ma, 2017). BADS uses Gaussian Processes to con-

struct a computationally cheap internal model of the multidimensional performance land-

scape using already available evidence and smoothness assumptions. As the compu-

tationally relatively costly linear models are evaluated across iterations, more evidence

about the true performance landscape builds up which is used to update the internal

model, i.e. assumptions about the smoothness and shape of the performance landscape

at hyper-parameter combinations not yet evaluated. The internal model is used to update

an acquisition function, whose maximum determines which combination of hyperparam-

eters would be most informative to evaluate next in order to find the global optimum of

the performance landscape. While this algorithm is not guaranteed to find the optimal

combination, i.e. it is possible that it gets stuck in local optima, it has been shown to

outperform other black-box optimisation algorithms on datasets typical for cognitive neu-

roscience (Acerbi & Ma, 2017). The values at which the hyperparameters were initiated

as well as the ranges to which they were constrained are shown in table 2.2. Once all

iterations of an inner loop were finished, we averaged the hyperparameter choices of

all inner folds. We then retrained the elementary model parameters with stimulus and

response data corresponding to these averaged hyperparameters on all five possible

assignments of data portions to training sets in the current outer fold. We subsequently

averaged the elementary parameters across inner folds and used the resulting weights

to perform a prediction on the test set of the current outer fold. This was repeated for

all outer folds to obtain a number of test set predictions corresponding to the number of

outer folds.

initial value lower boundary upper boundary

tMin[s] -0.2 -1.5 .5
tMax[s] 0.8 0.2 2.5

log2(λL2)
19 -30 30

λs[%] 30 0 200
Xsource Xmax(R2)|hemisphere min(Xvolume|hemisphere) max(Xvolume|hemisphere)

Ysource Ymax(R2)|hemisphere min(Yvolume|hemisphere) max(Yvolume|hemisphere)

Zsource Zmax(R2)|hemisphere min(Zvolume|hemisphere) max(Zvolume|hemisphere)

Table 2.2: Initial values and boundaries for hyperparameters in BADS optimisation
(related to related to methods 2.5.4).
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As the optimisation procedure was not guaranteed to find the optimal combinations

of parameters, a crucial quality control of our approach was to check the amount of

variance across parameter choices. High degrees would e.g. reflect that the optimisa-

tion algorithm would get stuck in local optima, or that the respective parameter was of

minor importance for the model performance. Low degrees on the other hand would

demonstrate that the black-box optimisation would converge on the same choice. For

the positions in source space, we found the overall amount of variation to be rather small

(figure 2.5A). In the worst case (figure 2.5B), the source locations were scattered within

a range of 3.06 cm, the median of this range was 0.61 cm (figure 2.5C), only slightly

above the amount we allowed the participants to move in the scanner. In the best case,

the range was only 0.23 cm.

We were also interested if our optimisation would consistently pick distinct locations

in source space for different feature spaces. To evaluate this, we computed the silhouette

index. As a measure of the consistency of a clustering, it relates the similarity of data

within a given class to the similarity of data outside of that given class and is bound

between −1 and +1. For the optimised source positions of each outer fold o of the set

of outer folds O and each feature space f of the set of feature spaces F , we computed

the silhouette index s(o f ) using the following formula:

s(o f ) =
b(o f )−a(o f )

max(a(o f ),b(o f ))
(2.3)

Here, a(o f ) denotes the average euclidean distance between the source position

chosen in the outer fold o and the source positions chosen in O\o for that feature space

f , while b(o f ) refers to the minimum of average distances between the source position

chosen in the outer fold o for feature space f and source positions chosen for all outer

folds in O for all feature spaces in F \ f .

Across feature spaces and hemispheres, we found results that were mostly inconsis-

tent across participants (figure 2.5D). Specifically, we observed participants for whom the

assignment of chosen source positions to feature spaces was appropriate as reflected

by silhouette indices close to 1, but also participants for whom this assignment was in-

appropriate as reflected by silhouette indices close to −1. In sum, on a group level and

across feature spaces, there was no clear relationship between the choices of positions

in source space and the feature space used to model the MEG responses. Overall, this

suggests that while there was no direct and robust mapping of feature spaces to source

positions, the optimisation of the source positions tended to converge on relatively small

regions within a participant.

The choices of optimal hyperparameters for the beamformer spatial filter did not dif-

fer substantially across feature spaces (figure 2.5E). While we observed a relatively high

degree of variance in optimal choices across participants, we found the choices to be

relatively consistent within one hemisphere of a participant and across feature spaces

as indicated by relatively high intra-class correlation coefficients across participants with
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outer folds and feature spaces as different measurements for the left (0.96) and right

(0.88) hemispheres. However, we observed a pronounced difference between left and

right ACs, with a higher level of regularisation for the left AC. Here, in some cases the

optimal values even bordered on the boundaries we chose for the hyperparameter, sug-

gesting that in some cases, even higher values could have been optimal.

For the temporal extent, we found that this optimisation resulted in characteristic tem-

poral extents for each feature (sub-)space (figure 2.6A). For example, for the combination

of articulatory features and log-mel spectrograms the optimisation algorithm consistently

found shorter temporal extents for the articulatory features than for the log-mel spec-

trogram. Pooled across participants, we observed very similar patterns in left and right

ACs.

For the L2 regularisation, we again found that the optimisation found characteristic

values to be optimal for each feature (sub-)space. Specifically, for lower dimensional

feature (sub-)spaces the amount of L2 regularisation seemed to be less critical, yielding

flat distributions. However, for higher- dimensional (sub-)spaces, a higher value of reg-

ularisation seemed to be beneficial (figure 2.6B). This was especially the case for the

combination of articulatory features and the log-mel spectrogram, for which the distribu-

tions for the two subspaces clearly differ.

2.5.5 Model comparisons

Bayesian Hierarchical Modeling of performances

In an initial evaluation of the encoding models, we wanted to statistically compare the

predictive performance from models using different feature spaces, obtained from mul-

tiple participants. Similar situations often arise in neuroimaging and are usually compli-

cated by small raw effect sizes across conditions in the presence of much larger between

subject variability. A promising way to address this is provided by hierarchical models,

which allow to maintain sensitivity to effects of interest in these cases. To evaluate the

model performances r in both hemispheres h for each outer fold b of all participants i and

focus on the differences between the m different feature spaces f , we used a Bayesian

hierarchical model with a zero intercept, participant-independent and participant-specific

effects for each feature space as well as effects specific to each combination of par-

ticipants and folds, participants and hemispheres as well as hemispheres and feature

spaces. This allowed us to assess posterior distributions of the beta estimates of the

means of each level of the categorical variable feature space. To implement this model,

we used the brms package (Bürkner, 2017) within the R computing environment (R Core

Team, 2013). Specifically, the chosen package implements a user-friendly interface to

set up Bayesian hierarchical models using stan (Stan Development Team, 2020). We

used Markov chain Monte- Carlo sampling with four chains of 4000 iterations each, 1000
of which were used for their warmup. The priors for standard deviation parameters were

not changed from the default values, i.e. half-student-t distributions with 3 degrees of
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freedom, while we used weakly informative normal priors with a mean of 0 and a vari-

ance of 10 for the effects of individual feature spaces. The model can be described with

the following formula:

rn ∼N (µn,σ
2)

σ ∼ |t(3,0,10)|

µn ∼ βi: f [n]+βi:b[n]+βi:h[n]+βh: f [n]+β f f1 [n]
+ · · ·+β f fm [n]

(βi: f [n],βi:b[n],βi:h[n],βh: f [n])∼ N (0,σ2
βint

)

σβint ∼ |t(3,0,10)|

β f f1 [n]
∼N (0,10)

...

β f fm [n] ∼N (0,10)

To compare the resulting posterior distributions for several parameter combinations of

interest, we evaluated the corresponding directed hypotheses using the brms package:

β fa−β fb > 0, for all possible pairwise combinations of feature spaces, and obtained the

ratio of samples of the posterior distributions of differences that were in line with the

hypothesis.

Partial Information Decomposition

Besides directly comparing the raw predictive power of models across feature spaces,

we were also interested in characterising the detailed structure of predictive information

carried in the different feature spaces. Since we were particularly interested in discover-

ing to what degree the contributions of the annotated feature spaces can be explained

with contributions of acoustic feature spaces, we thus asked to what degree their predic-

tions contained the same information about the observed MEG (redundancy, or shared

information) or to what degree their contributions were distinct (unique information). In

information theory, this is possible within the framework of Partial Information Decompo-

sition (PID, Williams & Beer, 2010; Wibral et al., 2015). This can be seen as a further

development of the concept of interaction information (McGill, 1954) or co-information

(defined equivalently but with opposite sign). Considering the case where we have two

source variables (for example test set predictions from different models, r̂M1 and r̂M2)

and a single target variable (for example the observed test set MEG time course, r), co-

Information can be thought of as the set intersection of the two source-target MI values

(i.e. the predictive information common to the two considered models). It is calculated

as the difference between the sum of the individual source-target MIs and the full joint
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MI when considering both sources together:

CoI = MI(r̂M1,r)+MI(r̂M2,r)−MI([r̂M1, r̂M2],r) (2.4)

If both sources provide the same information about the target then

CoI = MI(r̂M1,r) = MI(r̂M2,r) = MI([r̂M1, r̂M2],r) (2.5)

which quantifies in this case fully redundant overlap in information content. However,

it is possible that

MI([r̂M1, r̂M2],r)> MI(r̂M1,r)+MI(r̂M2,r) (2.6)

This results in a negative value for co-information and this sort of super-additive pre-

dictive effect is termed synergy.

Crucially however, co-information measures only the difference between redundancy

and synergy, i.e. a net effect (Williams & Beer, 2010). In the presence of equally

strong synergistic and redundant contributions, co-information is zero. Therefore, co-

information does not provide a way to quantify information provided uniquely by a single

source.

The PID framework provides a solution to this problem. We used a recent implemen-

tation based on common change in surprisal (ICCS, Ince, 2017a) which has previously

been applied within a neuroimaging context (Park et al., 2018). The crucial step in a PID

is to quantify redundancy, since once this is done, the other quantities (unique informa-

tion and synergy) can then be inferred via a lattice structure (Williams & Beer, 2010). For

the redundancy measure ICCS, pointwise co-information is considered.

MI can be quantified at the pointwise level (i.e. at specific values of the underlying

variables): MI is defined as the expectation of pointwise MI (PMI) over all values of both

variables and is non-negative. PMI on the other hand is a signed quantity. When it is

positive it indicates those two particular values of the considered variables are more likely

to occur together than would be expected if the variables were independent. When it is

negative, it indicates that those two particular values are less likely to co-occur than in the

independent case. Positive PMI can be interpreted as redundant entropy, while negative

PMI is synergistic entropy (Ince, 2017b). Negative PMI values have also been termed

misinformation (Wibral et al., 2015), since they correspond to a case where a Bayes

optimal gambler who was betting on the outcome of one variable based on observation

of the other would actually do worse (on that particular observation) than if they ignored

the observation.

In regression terms, negative PMI relates to values that, were they to occur in the

data, would have large absolute residual from the regression line (i.e. deviate from the

overall relationship), while positive PMI occurs for values that would be close to the

regression line (i.e. following the overall relationship). Similarly, pointwise co-information

can be considered as quantifying the set theoretic intersection of PMI values from two
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sources. Two conditions have to be fulfilled in order for a pointwise co-information term

to contribute to ICCS redundancy: (I) both sources have PMI about the target with the

same sign and (II) the pointwise co-information of these three variables is of the same

sign as the two PMI values. This allows to quantify pointwise contributions of the sources

about the target which can be unambiguously interpreted as redundant or overlapping

contributions. A crucial advantage of this redundancy measure as opposed to other PID

implementations is that it measures the overlap at the pointwise level and therefore can

be interpreted as a within sample measure of redundant prediction, directly linked to the

decoding interpretation of MI. This is essential for the comparison of predictive models as

we consider here, for which redundancy measures which ascribe redundancy to sources

even when they predict the target on disjoint sets of samples would be inappropriate

(Ince, 2017a).

This implementation of PID does not provide a non-negative decomposition. For

example, negative unique information values are possible and they reflect a situation

where there are pointwise misinformation terms that are unique to one source-target

relationship (Ince, 2017a, see Table 7). In our application, negative unique information

means there are time periods where one model mis-predicts, i.e. that combination of

model prediction and MEG values is less likely to occur than if the model and prediction

were shifted randomly, while the second model does not. In other words, there is a

time window where that model is uniquely unhelpful for predicting the MEG signal, even

though, of course, on average over time, it does have predictive value. In cases where

there is negative unique information in the predictions of one model whose marginal MI

about the MEG values is being used to normalise the redundancy values, it is therefore

possible to obtain normalised redundancy ratios > 1.

We here performed PIDs for each combination of outer fold predictions of the an-

notated feature space with those of the acoustic feature spaces as sources and the

recorded MEG as targets. Critically, we retrained all models with fixed hyperparame-

ters of regularisation of sensor covariance matrices and coordinates in source space to

those previously chosen as optimal in the inner folds when training the model based on

the Sg&Art feature space. This way, we gave the Sg&Art feature space the best chances

to achieve maximal unique information. To compute the respective information theoretic

quantities with these continuous variables, we transformed the variables to be standard

normal while preserving rank relationships by calculating the empirical cumulative den-

sity function (CDF) value at each data point and applying the inverse standard normal

CDF (Ince et al., 2017) prior to running ICCS PIDs for Gaussian variables via Monte Carlo

integration (Ince, 2017a). To interpret the raw values of the PIDs, we divided them by the

marginal MI of the benchmark articulatory feature space. The normalised redundancy

then represents the proportion of the predictive information of the benchmark model

which is available also from the tested acoustic feature model.

To evaluate the results across folds, hemispheres, participants and feature spaces,

we used Bayesian models similar to those used for the evaluation of the performances.
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The corresponding model can be described as follows:

redn

MIn
∼N (µn,σ

2)

σ ∼ |t(3,0,10)|

µn ∼ βi: f [n]+βi:b[n]+βi:h[n]+βh: f [n]+β f1[n]+ · · ·+β fm−1[n]

(βi: f [n],βi:b[n],βi:h[n],βh: f [n])∼ N (0,σ2
βint

)

σβint ∼ |t(3,0,10)|

β f1[n] ∼N (0,10)
...

β fm−1[n] ∼N (0,10)

For the ratios of unique information, we concatenated the unique information of both

competing sources x and y in all comparisons to a single response variable and changed

the modelling approach to include predictors for unique information of both sources in all

m−1 comparisons.

unqn

MIn
∼N (µn,σ

2)

σ ∼ |t(3,0,10)|

µn ∼ βi: f [n]+βi:b[n]+βi:h[n]+βh: f [n]+

βunqx f1 [n]
+ · · ·+βunqx fm−1 [n]

+βunqy f1 [n]
+ · · ·+βunqy fm−1 [n]

(βi: f [n],βi:b[n],βi:h[n],βh: f [n])∼ N (0,σ2
βint

)

σβint ∼ |t(3,0,10)|

βunqx f1 [n]
∼N (0,10)

...

βunqxm−1[n] ∼N (0,10)

βunqy f1 [n]
∼N (0,10)

...

βunqy fm−1 [n]
∼N (0,10)

The resulting values of synergy were very low. We thus wanted to assess to which

degree the observed synergy could only be obtained with intact predictions from the

benchmark articulatory features, or to which degree it could also be observed when the

benchmark’s predictions were randomly permuted. We performed circular shifts of the
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predictions based on the Sg&Art features by a random number of samples, where the

random number was constrained to be at least 200 samples and maximally the number

of available samples minus 200 samples to avoid temporal autocorrelation. We com-

puted PIDs of 1000 of these permutations. We then defined noise thresholds as the 95th

percentile of the 1000 maximum values found in permutations across feature spaces,

sources and outer fold test sets and calculated the fraction of data points (outer fold test

sets, sources) within each participant and feature space. To also compare unique infor-

mation of both sources and redundancy values to such noise thresholds, we repeated

this process, shuffling predictions based on the Sg&Art features for thresholds for the

information unique to predictions based on the Sg&Art features and shuffling observed

MEG time series for redundancy and information unique to predictions based on the

competing feature spaces.

Phoneme-evoked dynamics

A recent study reported that epoching EEG recordings from a story-listening paradigm

according to the onsets of phonemes allowed the decoding of four classes of phonemes,

so-called manners of articulation, from the resulting event-related potentials (Khalighine-

jad et al., 2017). We aimed to firstly replicate this finding with our MEG data and secondly

assess to which degree our linear encoding models could account for this phenomenon.

We computed “Phoneme-Related Fields” (PRFs) using the 34562 phoneme presen-

tations we had previously identified in our stimulus material. For this, we mapped the set

of phonemes to manners of articulation as specified by Khalighinejad et al. (2017, see

Figure S6 for a mapping table): Plosives, fricatives, nasals and vowels. We then epoched

the continuous MEG data for a time range from −0.1s – +0.6s around phoneme onsets,

binned it across epochs for each time point using four equipopulated bins and computed

mutual information between the MEG data and the four manners of articulation.

To ensure that we would capture the maximum effect of the MI, we delegated the

choice of source positions for the left and right hemispheres as well as sensor covari-

ance regularisations to the BADS algorithm similarly as before (figure 2.9). However,

this time we optimised the source model parameters with respect to the sum of MI of ob-

served MEG data about the phoneme classes across time points. We then retrained our

encoding models with the source model parameters fixed to these choices. To assess

the results of this optimisation, we recalculated the maximum distance metric used in the

assessment of the chosen source positions during our modelling, this time also including

the positions found for optimal phoneme class decoding and plotted the difference to the

previously obtained maximum differences (figure 2.9A). The results reflected that still, all

positions lay in STG, while for some participants, the positions found to be optimal for

the PRF analysis were different from those obtained during the modelling.

Subsequently, we performed the same PRF analysis on the outer fold predictions

of each feature space. We were then interested in the redundant and unique contri-

butions of observed and predicted MEG to the MI about manners of articulation. We
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thus performed PIDs with observed and predicted PRFs as sources and the manners of

articulation as the target, separately for each feature space, yielding phoneme-related

redundancy as well as unique profiles.

2.5.6 Analysis of EEG dataset

To assess to which degree our main findings would generalise from our MEG to EEG

data, we also performed an analysis of an openly available EEG story listening dataset

(Broderick et al., 2018a). This dataset is part of the data on which the effect of a gain

of prediction performance of the combination of spectrograms and articulatory features

over spectrograms alone was originally reported.

EEG preprocessing

We analysed the 128 channel EEG recordings of a duration of 1 hour and 29 seconds of

13 participants. They had been acquired in 20 blocks of approximately equal duration at

a sampling rate of 512 Hz using a BioSemi ActiveTwo system and downsampled to 128
Hz. We rereferenced the data to the average of two additional mastoid reference chan-

nels, spline interpolated noisy channels identified by visual inspection (mean number of

noisy channels: 3.29 standard deviation: 4.19, pooled across participants), applied a

fourth order forward-reverse butterworth high-pass filter with a cutoff frequency of .5 Hz

and attenuated strong transient artefacts identified by visual inspection with a hamming

window to have an absolute amplitude of 90% of the maximum of the absolute clean

signal. Next, we z-scored individual blocks and winsorized the time series by replacing

remaining artefacts with an amplitude stronger than ±3 standard deviations by ±3 and

concatenated the individual blocks to single datasets. We then found unmixing matrices

using the runica ICA algorithm. We identified artefactual components reflecting eye or

heart activity and backprojected the unmixed data using mixing matrices where the arte-

factual components were removed. Finally, we downsampled the data to a sampling rate

of 40 Hz.

Stimulus Transformations

In general, we reused the same pipeline to generate non-linear transformations of the

stimulus as we had used for the stimulus of our MEG dataset. However, due to the

high noise level of the EEG data, we decided to omit the high-dimensional Gabor fea-

ture space and focussed on assessing if the acoustic feature space found to explain the

performance gain of the benchmark articulatory features over spectrograms alone in the

MEG dataset could do so in the EEG data as well. Additionally, we were interested in

more faithfully reproducing the original results (Di Liberto et al., 2015), where a spec-

trogram different from the log-mel spectrogram employed here had been applied. To

do so, we generated a bank of 16 fourth order zero-phase butterworth bandpass filters
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with mel-spaced centre frequencies (250, 402, 577, 780, 1015, 1288, 1605, 1971, 2396,

2888, 3459, 4121, 4888, 5777, 6807 and 8001 Hz), where the cutoff frequencies were

defined as half of the distances to the neighbouring centre frequencies. The absolute

values of the Hilbert transform of the output of these filters served as an approximation

to the spectrogram used in the original publication (“Sg16”). Moreover, we were inter-

ested to which degree possible differences between the performances achieved with

this spectrogram compared to our log-mel spectrogram were attributable to a compres-

sive nonlinearity (Biesmans et al., 2017) included in the latter. We therefore gener-

ated an additional spectrogram (“Sg16c”) where we raised the values of Sg16 to the

power of .3. This gave us a set of feature spaces FEEG = {Env , Sg16, Sg16c, Sg,

Sg16&(Sg16')+, Sg16c&(Sg16c')+, Sg&(Sg')+, Sg16&PhOn, Sg16c&PhOn, Sg&PhOn,

Sg16&Art , Sg16c&Art , Sg&Art , Sg&(Sg')+&Art }.

Forward Modelling

To keep the results comparable to the original publication, we performed ridge regres-

sions to model responses at the 12 electrodes whose performances were reported in the

main result of the original publication (B28, B29, B30, C3, C4, C5, D3, D4, D5, D10, D11,

D12) using the function “mTRFcrossval.m” from the mTRF toolbox (Crosse et al., 2016).

However, we implemented a small change that allowed us to do a nested crossvalida-

tion to tune the regularisation hyperparameter λL2. We trained models on 18 of the 20
available blocks, picked the λL2 that resulted in the best prediction performance on a val-

idation block and evaluated the test performance on the remaining block. This procedure

was rotated such that each block served as the test set once. We specified the range

of λL2 values as {0.1k | kε[−25...60]}, over which the function performed an exhaustive

grid search where the extreme values were never chosen. For the parameters of tempo-

ral extent, we used the same values as in the original publication, i.e. tMin = −0.1 and

tMax = 0.4 seconds.

Model Comparisons

The model comparisons employed here were largely the same as for the MEG data. To

evaluate the test set prediction performances of the forward models, we used the same

Bayesian modelling approach as we had used for the analysis of the MEG data. We also

performed the same PID analysis with model predictions as sources and observed EEG

time-series as targets and evaluated its performances with the same Bayesian models

as we had used for the MEG analysis. However, due to the higher noise level, we only

considered data points where the MI of predictions based on the benchmark articulatory

feature space and observed time-series surpassed a noise threshold defined as the

95th percentile of MI values obtained from time shifted permutations, corrected across

electrodes using maximum statistics. Additionally, to account for the skewed distributions

of the ratios of PID quantities normalised by the marginal MI of the predictions based on



2.6. ACKNOWLEDGMENTS 61

the benchmark articulatory feature space and the observed MEG, we used a log-normal

response family for the Bayesian modelling and considered the posterior distributions of

the medians of the effects of interest. We repeated the computation of noise thresholds

as described for the MEG data. Finally, we performed the same analysis of phoneme

evoked responses on the set of electrodes used for the modelling as we had performed

on the MEG data.
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3.1 Abstract

Transfer Entropy, a generalisation of Granger Causality, promises to measure “informa-

tion transfer” from a source to a target signal by ignoring self-predictability of a target

signal when quantifying the source-target relationship. A simple example for signals with

such self-predictability are narrowband signals. These are both thought to be intrinsi-

cally generated by the brain as well as commonly dealt with in analyses of brain signals,

where band-pass filters are used to separate responses from noise. However, the use

of Transfer Entropy is usually discouraged in such cases. We simulate simplistic exam-

ples where we confirm the failure of classic implementations of Transfer Entropy when

applied to narrow-band signals, as made evident by a flawed recovery of effect sizes and

interaction delays. We propose an alternative approach based on a whitening of the in-

put signals before computing a bivariate measure of directional time-lagged dependency.

This approach solves the problems found in the simple simulated systems. Finally, we

explore the behaviour of our measure when applied to delta and theta response compo-

nents in Magnetoencephalography (MEG) responses to continuous speech. The small

effects that our measure attributes to a directed interaction from the stimulus to the neu-

ronal responses are stronger in the theta than in the delta band. This suggests that the

delta band reflects a more predictive coupling, while the theta band is stronger involved

in bottom-up, reactive processing. Taken together, we hope to increase the interest in

directed perspectives on frequency-specific dependencies.

3.2 Introduction

Over the last decades, the description of statistical dependencies in cerebro-cerebral

and cerebro-peripheral pairs of time series has witnessed a surge of interest (Bassett

& Bullmore, 2006; Brookes et al., 2011; Naselaris et al., 2011; Crosse et al., 2016; Mell

et al., 2021; Gross et al., 2021). In these fields, the general idea is to gain insight into

the workings of the brain by either studying how time series of neuronal activity relate to

other neuronal activity or to external signals such as auditory or visual stimuli as well as

the activity of other organs.

As a consequence, countless methodological approaches have been suggested to

mathematically quantify these dependencies (Bastos & Schoffelen, 2016). Some of

these ideas specifically aim at the description of directed interactions, for example by

using measures of the so-called “Granger-causal” (Granger, 1969) family, or their gen-

eralisation to nonlinear relationships, Transfer Entropy (Schreiber, 2000; Barnett et al.,

2009). In both of these measures, the main idea is to quantify a directional dependency

by first assessing to what degree a target time-series can be predicted from itself and

secondly assessing to what degree this auto-prediction can be improved upon with the

assumed source time-series. In its classic formulation, TE implements this by way of

conditioning the mutual information (MI) between source and target on an operationali-
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sation of the target past. It has been suggested that this warrants the capacity to correctly

estimate not only “predictive information transfer” between source and target time-series,

but also the recovery of the true underlying interaction delay (Wibral et al., 2013). The

precise estimation of such quantities is of high interest for the research programmes not

only of functional connectivity, but of cognitive neuroscience in general.

However, in the arguably simplest and in many applications ubiquitous case of self-

predictable or auto-correlated time-series, namely narrowband time-series as obtained

e.g. when applying band-pass filters, TE fails to deliver intuitively comprehensible results.

The application of TE in such cases has therefore repeatedly been discouraged (Florin

et al., 2010; Barnett & Seth, 2011).

Such applications however are of potentially high interest, given that frequency spe-

cific interactions are at the core of popular hypotheses about cerebro-peripheral (Gi-

raud & Poeppel, 2012; Donhauser & Baillet, 2020) and cerebro-cerebral (Schnitzler &

Gross, 2005; Fries, 2015; Michalareas et al., 2016; Schoffelen et al., 2017) interactions.

There is an abundance of evidence for intrinsically auto-correlated or band-limited parts

of neuronal activity (“oscillations”), whose presence in neuronal recordings (Wang, 2010;

Donoghue et al., 2020) should accordingly impede the use of TE even without the use

of analysis filters. Moreover, in light of the usually low signal-to-noise ratio (SNR) of

many recording modalities, particularly of non-invasive neuroimaging, the isolation of

band-limited activity via spectral filtering is a pervasive strategy to achieve acceptable

sensitivity and specificity. The main idea of TE thus turns out to be an empty promise for

many real-world applications where auto-correlations are indeed clearly visible.

Suggestions to implement TE mainly differ in their approaches to remove the self-

predictability of the target signal from the quantification of the effect. While it has been

argued previously that simplistic approaches relying on a target past operationalisation

consisting of a single delay are insufficient (Wibral et al., 2013), such approaches remain

popular. This might imply that the literature is missing more intuitive demonstrations of

the shortcomings of such approaches. Furthermore, it also has been shown previously

that prominent proposals relying on multidimensional embeddings of the target time se-

ries fail in scenarios of narrow-band effects (Wollstadt et al., 2017). While suggestions

exist that try to overcome this problem by means of constructing frequency-specific sur-

rogate data (Pinzuti et al., 2020) or state-space models (Faes et al., 2017), more in-

tuitive explanations of these failure cases are arguably still lacking. Such an intuitive

understanding should pave the way towards both more widespread awareness as well

as simple fixes of these issues.

One interesting use case for measures that overcome the problems outlined above is

the heavily studied phenomenon of speech envelope tracking as observed in magneto-

and electroencephalography (henceforth MEEG to denote both modalities) recordings

(Ahissar et al., 2001; Hertrich et al., 2012; Gross et al., 2013; Ding & Simon, 2012;

O’Sullivan et al., 2015; Di Liberto et al., 2015; Wöstmann et al., 2017; Brodbeck et al.,

2018a; Daube et al., 2019b; Obleser & Kayser, 2019; Zan et al., 2020; Donhauser &
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Baillet, 2020). In short, the low-frequency portion of MEEG signals is reliably related to

the time varying energy of the speech signal at a certain delay. In noninvasive recordings,

speech envelope tracking is heavily studied in the canonical delta and theta bands (Ding

& Simon, 2014). At higher frequencies, the effect usually fails to robustly exceed noise

thresholds (but see Kulasingham et al., 2020). Limiting the analysis to the delta and theta

frequency bands is thus an efficient means to achieve stronger effects. Theories exist

that link this phenomenon to frequency specific mass-neuronal processes of debated

algorithmic significance (Giraud & Poeppel, 2012; Hyafil et al., 2015).

From the perspective of directed connectivity, an interesting question is to what de-

gree the resemblance of MEEG signals and the speech envelope at a given time t can

be explained from the MEEG signal’s own past, and to what degree it can only be ex-

plained when additionally considering the stimulus. Given the auto-correlated nature of

both neuronal processes and the speech envelope in the relevant spectral range, it is in

theory possible for a system to predict the upcoming speech envelope (and, as made

evident by the progress of past and current machine learning approaches, also richer

parts of the speech signal Chung et al., 2020; Lakhotia et al., 2021). According to popu-

lar theories of brain function, such predictive coding is also of high utility for a biological

system (Rao & Ballard, 1999; Friston, 2005). The extent to which speech tracking as

quantified by undirected measures such as delayed MI would decrease when using suit-

able directed measures would highlight the extent to which the heavily studied tracking

might in fact reflect predictive rather than reactive processing. This would add to ac-

counts that characterise low-frequency oscillations as the deliberate effort of biological

systems to be in a state of optimal neuronal excitability (Lakatos et al., 2008; Henry &

Obleser, 2012), such that metabolically costly states of high encoding fidelity co-occur

with the relevant parts of the stimulus (Jones & Boltz, 1989; Schroeder & Lakatos, 2009;

Kayser et al., 2015; Młynarski & Hermundstad, 2018).

Here, we consider a simple simulated system of band-limited delayed bivariate in-

teractions with a clear and intuitively comprehensible ground truth spectral range and

delay. We implement delayed MI, two classic algorithms to estimate TE as well as a

novel, whitening based estimator (“Directed Information based on conditional entropy”,

“DIce”) within the Gaussian copula MI framework (gcmi, Ince et al., 2017) and exten-

sively test these measures with simulations. Finally, we explore the behaviour of DIce

in an MEG dataset of continuous speech listening. We find that estimates of the delay

between the stimulus and the response as well as the recovered interaction strength in

the delta and theta bands differ from those recovered by the bivariate delayed MI.
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3.3 Results

3.3.1 An intuitive overview over multiple measures

A first goal of this study was to provide an overview of various implementations of TE in

a simple and intuitively understandable example case. To do so, we simulated coupled

systems with a known ground truth spectral interaction range and delay. These consisted

of 4 - 8 Hz narrow-band filtered Gaussian white noise to obtain a band-limited source sig-

nal, which was delayed in time by .15 s to obtain a target signal. We added Gaussian

white noise to these signals to mimic the noisy measurement process in neuroimaging.

For such a simplistic but intuitive system, a suitable measure of TE should peak at the

ground truth simulated delay and spectral range. Further, for such highly auto-correlated

signals, TE should yield a highly reduced effect size in comparison to undirected mea-

sures such as delayed MI: a potential source signal can only add little information if the

target signal is already highly predictable from its own recent history.

Figure 3.1 shows the results of applying delayed MI, classical TE estimators TE1D

and TESPO as well as our proposal, DIce (see below for more detailed explanations of

each individual measure) to the same time series, both without and with applying an

analysis filter.

A first observation is that in the present implementation with gcmi (Ince et al., 2017),

all measures yield increased effect sizes when a suitable analysis filter is applied. This,

potentially trivially (but see Pinzuti et al., 2020), demonstrates that the effect size and

consequently the sensitivity can benefit from the application of analysis filters. It thus un-

derscores the utility of directed connectivity measures that behave robustly when applied

to narrow-band signals. Further, the pass-band of the effect can be found by applying

analysis filters of varying centre frequencies: all measures return the highest effect sizes

across analysis bands within the pass-band of the simulated effect.

Secondly, we observe that TE1D fails to return a reduced effect size in compari-

son to the undirected delayed MI, even when applied to highly self-predictable signals

as simulated here. This happens for both broadband and filtered analysis scenarios.

TE1D is a classical implementation of TE (Besserve et al., 2010; Lobier et al., 2014;

Ince et al., 2015; Park et al., 2015; Giordano et al., 2016; Morillon & Baillet, 2017) that

operationalises the target past by means of using only one delay of the target time se-

ries (more specifically, the same delay as that of the source signal relative to the target

present when scanning across delays). For the ground truth delay simulated here, this

single delay fails to capture most of the self-predictability of the target signal, resulting in

an overestimation of the directed effect.

A third measure, TESPO (Wibral et al., 2013), yields the anticipated strong reduction

in effect size by roughly an order of magnitude in comparison to MI. It achieves this

by using a more effective handle on the target past: a multi-dimensional “non-uniform”

(Vlachos & Kugiumtzis, 2010; Faes et al., 2011) embedding optimised for self-prediction.

As opposed to TE1D, this essentially consists of multiple delays that are independent
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Figure 3.1: Comparison of delay profiles of various undirected and directed
dependency measures in a simplistic simulation scenario.
The simulation here consists of a 4 - 8 Hz bandpass filtered white noise source signal
that is temporally delayed to obtain the target. White noise is added to both source and
target to model measurement noise. First and middle columns show time domain
sections of the analysed time series, where a filled circle denotes a target present
sample, an empty circle denotes a source past sample at a delay corresponding to the
simulated effect, and crosses denote the respective target past samples. 2nd and 4th
columns show delay profiles of the respectives measures relative to the ground truth
interaction delay and noise thresholds. 5th column shows spectrotemporal maps, where
the frequency response of the filter used to generate the ground truth effect is overlaid
as a black curve. A Delayed Mutual Information correctly recovers the ground truth
interaction delay. B TE1D also correctly recovers the interaction delay, but measures an
interaction effect that is highly similar to delayed MI. C TESPO recovers an interaction
delay different from the ground truth, even more so when the analysis is performed on
the filtered signal. D DIce only finds a super-threshold effect with correct recovery of the
interaction delay when an analysis filter is used, but with a strongly reduced effect size
in comparison to other measures.
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of the analysis delay in the scanning procedure. However, it fails to recover the ground

truth interaction delay simulated in the coupled systems (Wollstadt et al., 2017), in both

broadband and filtered analysis settings. Given this failure in a simplistic problem setting

that is ubiquitous in neuroscientific datasets, it is unclear to which degree TESPO can

practically live up to its promise of correctly quantifying “predictive information transfer”

as well as the interaction delay.

Finally, the last measure considered in and proposed by this study, DIce, solves both

of these problems: It returns the smallest effect sizes in this comparison, even to the

degree that it fails to detect the effect in a broadband analysis setting. However, when a

suitable analysis filter is applied, it returns a delay profile with a super-threshold peak at

the simulated delay. It achieves this in a two-step approach (Haugh, 1976): First, both

source and target signals are transformed into time series of surprisal, i.e. the sample-

wise entropy of each time point conditional on the same non-uniform embedding used in

TESPO. Secondly, delayed MI is computed for these whitened time series.

Taken together, this first analysis provides an overview of four different connectivity

measures in an intuitive and simplistic simulation setting, illustrating how DIce succeeds

in returning intuitive results where TE1D and TESPO fail.

3.3.2 Synergy of source and target past about target present dis-

torts conditional MI based TE

We wanted to investigate possible explanations for the counterintuitive results returned

by our implementation of TESPO. To do so, we considered a perspective on TE offered

by partial information decomposition (PID). PID is an information theoretic approach to

study trivariate relationships (Williams & Beer, 2010; Ince, 2017a). The central goal in

PID is to quantify shared information (redundancy) between two source variables about

a third target variable. Further, PID aims to measure unique information of both source

variables as well as synergistic information that is only obtainable when jointly consider-

ing both sources. A key insight of PID relevant to TE is that the basis of TE, conditional

MI, is the sum of two “atoms” of PID: unique information and synergy (James et al.,

2016). In other words, conditioning a bivariate relationship on a third variable will remove

redundant information, but will not deliver solely unique information. It has been pointed

out that this conflation of unique and synergistic information defies interpretations of TE

as measuring “information flow” (James et al., 2016). By relying on conditional MI, TE

measures not just unique information of the source about the target present ignoring the

target past, but instead conflates this with synergistic information stemming from inter-

actions of the source and the target past. The resulting quantity is thus not “localisable”

to the source (James et al., 2016).

We turned to data from the same simulated system as analysed in the previous sec-

tion. In a first step, we considered co-information (McGill, 1954) of the source, the target

present and the target past. It can be obtained by subtracting conditional MI from bivari-
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Figure 3.2: Partial information decomposition perspective on TE.
A Delay profile of DIce for reference. B Delay profile of delayed MI. C Delay profile of
TESPO, which is based on conditional MI and can, according to PID, be seen as the sum
of synergy (F) and unique information of the source (H). D Delay profile of
co-information (abbreviated as “co-info”), which quantifies the triple set intersection in
classic Venn-diagram conceptualisations of three variable systems. According to PID, it
is the net sum of synergy (F) and redundancy (E). Axis limits chosen to highlight the
negative (net synergistic) portion at positive delays. E - H Delay profiles of the PID
atoms redundancy, synergy and unique information (of target and source). I Delay
profiles of synergy and sign-flipped unique information of the source, highlighting a
surplus of synergy at positive delays. J Delay profiles of DIce when simulating data with
different ground truth effect bandwidths. DIce recovers the correct delay at all
bandwidths (left) and recovers an increasing effect size as a function of bandwidth. It
exceeds the noise threshold in all cases. K Delay profiles of unique information of the
source (left) and synergy (right) for the same effect bandwidths as in J. For narrow
bandwidths, unique information of the source fails to become positive and recovers the
wrong delay. Further, the sum of unique information of the source and synergy is
dominated by synergy, which features a greater delay estimation error than unique
information.
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ate MI, and thus quantifies the triple set intersection in classic Venn diagram concep-

tualisations. It can take on positive and negative values, where positive values denote

redundancy and negative values denote synergy. It is important to note that from a

PID perspective, the conceptually simpler (and less controversial) co-information con-

flates redundancy and synergy to a single net quantity, which PID aims to decompose

into pure redundancy and synergy. Figure 3.2D shows negative co-information values

at later delays, demonstrating that there is indeed a net synergy of the source and the

target past about the target present.

Next, we applied PID using an implementation based on common change in surprisal

(Iccs Ince, 2017a). We find that TESPO (figure 3.2C), as it is based on conditional MI, can

be decomposed into largely identical profiles of synergy (figure 3.2F) and unique infor-

mation of the source (figure 3.2H) differing only in their sign. The positive net conditional

MI (i.e. TESPO) however turns out to entirely stem from a surplus of synergy at later

delays that is not cancelled out by unique information of the source (figure 3.2I). In other

words, in this simplistic example case, TESPO measures a synergistic effect.

As a consequence of the PID perspective on conditional MI based TE implemen-

tations, it has been proposed to use the unique information of the source as a more

appropriate measure in order to avoid the quantification of synergistic effects (Barrett,

2015). However, in our example case, this quantity is negative across the entire range of

considered interaction delays (figure 3.2H), meaning that from considering the source on

its own, predictions of the target would become worse. This can be seen as the result of

two factors: firstly, in this simulation, the source signal is noisy, and secondly, the simu-

lated effect has a very narrow spectral range and thus highly limited degrees of freedom.

As these factors come together, the efficient operationalisation of the target past makes

it impossible to improve on its prediction of the target present.

We thus considered similar simulations with varying bandwidths of the ground truth

effect, and verified that at broader bandwidths, the unique information of the source be-

comes positive (figure 3.2K). Of note, the delay recovered by unique information of the

source generally has lower deviations from the ground truth than what is recovered by

synergy, but this deviation is still non-zero at narrower effect bandwidths. We further find

that with increasing bandwidths of the effect, synergy increases as well and peaks at de-

lays closer to the ground truth delay. Crucially however, across all simulated bandwidths,

our proposed measure, DIce, finds super-threshold effects at the correct delay (figure

3.2J).

Taken together, we have shown that the delay mis-estimation problems of TESPO,

when applied to narrow-band signals, stem from the known conflation of unique and

synergistic effects in conditional MI based TE implementations. In this example, the

effect quantified by TESPO is in fact dominated by synergy. We further show that a possi-

ble alternative, namely unique information of the source as obtained from PID, has both

a lower sensitivity and a worse performance in recovering the ground truth interaction

delay than our proposed conditional MI-free measure DIce.
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3.3.3 Varying the ground truth interaction delay

After these initial intuitive and single sample based demonstrations of problems of two

classic algorithms to quantify TE as well as a suggestion to explain their origin, we were

interested in more thoroughly testing the characteristics of the measures. To do so,

we performed extensive analyses of the simplistic coupled systems that measured the

problems over repeated samples. For each of these samples, we computed the delay

profiles of the set of four measures and evaluated the recovered interaction delay as well

as the recovered effect size as obtained from the peaks across the delay profile of a

given repetition.

Figure 3.3: Simulation with varying ground truth delay.
Basic setup of the simulation is the same as in figure 3.1, however, here, the ground
truth interaction delay is varied, and 100 repetitions are sampled. Moreover, a higher
SNR is used. Plots show the median across repetitions, shaded regions indicate
bootstrapped 95% confidence intervals. A Recovered effect size when the data are
analysed without a filter. TE1D suffers from recovering a systematically varying effect
size across different ground truth delays despite a constant simulated interaction
strength. B Same as A, but applying an analysis filter. C Recovered delays when data
are analysed without a filter. TESPO underestimates the true interaction delay. D Same
as C, but applying an analysis filter.

In a first simulation, we were interested in the characteristics of the measures across

a range of simulated ground truth interaction delays. In principle, a suitable measure of
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TE should recover the same constant effect size at varying simulated interaction delays

when all other factors are kept constant. In figure 3.3, the results demonstrate that this

is indeed the case for all measures in both broadband and filtered analysis scenarios

except for TE1D. This measure exhibits a systematic variation in the recovered effect

size across different simulated interaction delays reminiscent of the filter ringing of the

auto-correlation profile of the target signal. The failure here again highlights the problems

of operationalising the target past with a single delay that varies as the analysis delay is

scanned (Wibral et al., 2013). In case of very short ground truth delays, the MI at the

peak of the delay profile is conditioned on the same short delay of the target variable.

Since narrow-band signals have high auto-correlation at such short delays, this leads to

a strong reduction of conditional MI vs MI. As the ground truth delay increases, the MI

is conditioned on longer delays, where the auto-correlation of the target variable wanes

and waxes and thus leaves a correspondingly varying conditional MI. This can lead to

potential interpretational pitfalls when for example the results of TE1D obtained in two

different experimental conditions are compared. If these conditions simply differ in delay,

this will lead to different recovered effect sizes and could thus be falsely interpreted as

differences in directed dependency.

Further, the results reiterate that TESPO, while featuring a constant effect across

different ground truth interaction delays, recovers a flawed estimate of the interaction

delay. DIce on the other hand behaves favourably by returning a constant effect size at

the correct interaction delay. However, due to its drastically reduced effect size in this

band-limited interaction, its estimates are noisier.

3.3.4 Varying the signal-to-noise ratio in source and target signals

In a second simulation, we were interested in comparing the four measures when faced

with increasingly noisy signals. While the ideal measure should be highly sensitive to

a present effect and recover it at the correct delay, ignoring self-predictable parts of

dependencies should inevitably reduce the effect size.

We indeed found that DIce recovered the smallest effects and hit the noise floor at

the lowest noise amplitude in comparison to the other measures (figure 3.4). In a fil-

tered analysis scenario, the recovered effects were in general higher than those in a

broadband analysis scenario. Interestingly, for some noise amplitudes, DIce recovered

stronger effects than TESPO. At very low noise amplitudes, all measures succeeded in

recovering the correct delay irrespective of whether filters were applied in the analysis

or not. However, as noise increased, especially TESPO failed in recovering correct delay

estimates. While this was especially problematic for filtered analyses, other measures

had lower delay estimation errors at higher noise amplitudes due to the gain in sensitivity

afforded by filtering.
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Figure 3.4: Simulation with varying signal-to-noise ratios.
Basic setup of the simulation is the same as in figure 3.1, however, here, the amplitude
of noise added to source and target varies (but the same amount is added to source
and target), and 100 repetitions are sampled. Plots show the median across 100
repetitions, shaded regions denote bootstrapped 95% confidence intervals. A In a
broadband analysis scenario, all measures recover decreasing effect sizes with
increasing noise amplitudes. DIce recovers the smallest effect sizes and reaches the
noise floor the earliest. B In a filtered analysis scenario, the recovered effect sizes are
in general higher for all measures. C The recovered delays deteriorate as the noise
increases. In a broadband analysis scenario, all measures correctly recover the ground
truth interaction delay at low noise amplitudes. D In a filtered analysis scenario, TESPO
has higher delay reconstruction errors, while the delays recovered by the other
measures benefit from the increased effect size.

3.3.5 Varying the signal-to-noise ratio independently in source and

target signals

In a third step, we were interested in assessing how the four measures would react to

asymmetric variations of the SNR (Bastos & Schoffelen, 2016). The ideal measure of

TE should recover an invariant interaction delay and an effect size that symmetrically

decreases as noise of increasing amplitude is added to either source or target signals.

Figure 3.5 shows how the set of four measures behaved. All measures succeeded in

returning symmetric decreases of the recovered effect sizes when there was more noise
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Figure 3.5: Caption on following page.

in either source or target signals, irrespective of whether analysis filters were applied

or not. However, only the undirected delayed MI as well as the practically undirected

TE1D (see figure 3.1) recovered interaction delays that were unaffected in these settings.

For TESPO, an increasing SNR imbalance with noisier source signals led to stronger

biases in the estimated interaction delay for broadband analyses. For analyses where

filters were applied, these biases grew stronger for both noisier source and noisier target

signals. DIce exhibited biases in the broadband analyses, but performed favourably when

analyses filters were applied. This analysis additionally corroborates an argument of

caution when interpreting TE results (Wollstadt et al., 2017): when there are asymmetric

changes in e.g. measurement noise across conditions, this does not automatically imply

a change of coupling across these conditions, but only reflects the sensitivity of TE to

such measurement noise.
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Figure 3.5 (previous page): Simulation with signal-to-noise ratios varying
independently in source and target signals.
Basic setup of the simulation is the same as in figure 3.1, however, here, the amount of
noise added to source or target signals is varied, and 100 repetitions are sampled. A -
D show single trial delay profiles in a broadband analysis scenario for various
measures, corrected for the true interaction delay across different noise amplitudes
(negative delta on the y-axis refers to higher noise amplitude in the target signal,
positive delta on the y-axis refers to a higher noise amplitude in the source signal). The
ideal measure should always return the highest values at a lag of 0 relative to the true
delay. Only MI and TE1D succeed (but do not quantify Granger-causal information). E
and F show the same as A – D, but repeated for 100 trials. Plots show the median
across trials, shaded regions denote bootstrapped 95% confidence intervals. The
maximum effect size across lags for all measures symmetrically decays as the noise
increases in either source or target signals. The delay misestimation however behaves
asymmetrically, especially for TESPO, which recovers wrong delays when the source is
noisier than the target. G – J The same as A – D, but within a filtered analysis scenario.
Here, DIce performs favourably. K and L show the same as E and F, but within a filtered
analysis scenario.

3.3.6 Varying the bandwidths of the simulated effect as well as of

the analysis filter

In our fourth simulation, we reasoned that a characteristic effect that a suitable measure

of TE should show is a varying recovered effect size as a function of the bandwidth of

the ground truth effect. Specifically, the theoretical extreme case of a sinusoidal source

signal and its phase-shifted copy as a target signal should lead to zero TE. Such signals

have no degrees of freedom and are perfectly predictable from themselves. Additionally

considering potential source signals can thus not add any information. As one turns to

signals with increasingly broad passbands, these degrees of freedom increase. Conse-

quently, a higher directed effect should be quantifiable.

When testing this with the set of four measures (figure 3.6), we found that all mea-

sures monotonically increased in effect size as the bandwidth of the effect increased.

However, in a broadband analysis, this increase spanned 2.5 orders of magnitude for

DIce, which thus had the strongest relationship between its recovered effect size and

increased degrees of freedom of the input signals. This was however also driven by

the ground truth effect covering a larger part of the entire frequency spectrum. In a fil-

tered analysis scenario where filter parameters were chosen to isolate the effect from

the noise, only TESPO and DIce showed increases in effect size with broader effect band-

widths. The recovered delays were, as shown in previous analyses, unaffected for all

measures except for TESPO. The latter exhibited stronger biases in the recovered delay

for narrower simulated effect bandwidths.

In theory, applying analysis filters that match the ground truth effect should return a

stronger effect size than analysis filters that are too broad or too narrow. Too broad anal-

ysis filters should fail to reduce the impact of noise in neighbouring frequencies, while too



3.3. RESULTS 77

Figure 3.6: Simulation with varying bandwidths of the transmitted signal.
Basic setup of the simulation is the same as in figure 3.1, however, here, the ground
truth bandwidth of the effect is varied, and 100 repetitions are sampled. Plots show the
median across 100 repetitions, shaded regions denote bootstrapped 95% confidence
intervals. A The recovered effect size increases as the bandwidth of the effect grows.
This increase however spans the most orders of magnitude for DIce. B In a filtered
analysis scenario, the effect sizes are stronger than in a broadband analysis scenario.
C When varying the bandwidth of the filter used in the analysis, DIce returns the peak
effect size when the analysis filter matches the ground truth effect. All other measures
fail to do so, TESPO even increases monotonically as the analysis filter passband grows.
D - F report the interaction delays recovered in the same simulations as shown in A - C.
The previously reported misestimation of the interaction delay of TESPO is limited to
narrow band effects.

narrow analysis filters should ignore variance of the effect of interest and thus reduce the

sensitivity. When applying analysis filters of varying width to a simulated coupled sys-

tem of fixed ground truth effect bandwidth, DIce showed the clearest peak close to the

ground truth effect (bandwidth of 10 Hz, figure 3.6C) across analysis filter widths. TESPO

on the other hand exhibited a monotonic increase in effect size as the analysis filter

was broadened, which would thus result in mis-estimations of the interaction bandwidth.

The undirected delayed MI and the practically undirected TE1D only showed comparably

weak variance across different analysis filters.
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3.3.7 Varying the centre frequency of the simulated effect

In a last simulation, we were interested in assessing the stability of the set of four mea-

sures when the centre frequency was varied. A suitable measure of TE should recover

effect sizes and interaction delays with no variation under different ground truth centre

frequencies, and it should find the strongest effects at the ground truth frequency.

Figure 3.7: Simulation with varying centre frequencies of the effect.
Basic setup of the simulation is the same as in figure 3.1, however, here, the centre
frequency of the effect is varied, and 100 repetitions are sampled. Line plots show
median across 100 repetitions, shaded regions denote bootstrapped 95% confidence
intervals. A In a broadband analysis scenario, all measures recover effect sizes that are
highly constant across centre frequencies. TE1D however exhibits a slight ringing,
TESPO and DIce recover noisier estimates. B The same holds for a filtered analysis
scenario, where DIce and TESPO exhibit stronger variations. C and D As shown in other
simulations, TESPO suffers from delay estimation problems. These vary especially
strong across centre frequencies for filtered analysis scenarios. E - H Confusion
matrices obtained when scanning data with different ground truth interaction
frequencies with a bank of analysis filters (choosing the frequency with the maximum
across analysis filters). All measures generally succeed in returning peak effects at the
true interaction frequency. TESPO has the highest error.

We found that all measures considered here recovered effect sizes that were indeed

relatively stable across different ground truth centre frequencies in both broadband and

filtered analysis scenarios (figure 3.7). TE1D and DIce however did exhibit slight biases,

especially for the combination of DIce and higher simulated centre frequencies. All mea-

sures except TESPO recovered unbiased estimates of the interaction delay for all tested

centre frequencies. TESPO on the other hand exhibited a marked variation of the recov-

ered interaction delay across the different centre frequencies.
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Finally, when analysing the simulated data with filters across different bands, all mea-

sures mostly peaked when analysis filters matched the ground truth frequency. For MI

and TE1D, the mean absolute error (MAE) across frequency bands was 0 frequency bins,

for DIce it was .01 frequency bins and for TESPO, the MAE was strongest with .04 fre-

quency bins. Identifying the correct spectral band thus did not seem to pose a particular

problem for any of the considered measures.

3.3.8 Studying low-frequency MEG speech envelope tracking with

directed measures

Finally, we wanted to explore the behaviour of our measure on real data. To do so,

we turned to a dataset of n = 24 participants who listened to a continuous narrative

of 1 hour duration while their MEG was recorded (Daube et al., 2019b). Examples of

cerebro-peripheral coupling such as this present a good testbed for frequency-specific

measures of directed connectivity, because the ground truth direction of the effect is

known. Further, a plethora of studies has examined the relationship of MEEG responses

to the time varying energy, or “amplitude envelope”, of the speech stimulus in the delta

and theta bands (Ding & Simon, 2014). However, it is usually studied using bivariate,

undirected measures of connectivity that do not consider the self-predictability of the

MEG responses. The degree to which such bivariate dependencies could be accounted

for by auto-regressive models of the neuronal response signal could in principle reflect

the degree to which bivariate speech tracking is a signature of predictive rather than

reactive bottom-up processing. On the other hand, effects found by directed measures of

dependency (under the assumption of a given auto-regressive model) would be stronger

evidence of reactive, bottom-up processing of unpredictable parts of the stimulus input.

In most participants, we found spectra of delayed MI (see figure 3.8B and figure 3.9)

that were suggestive of two spectral components involved in speech tracking which we

will refer to as delta and theta bands (note that our functional definition of the theta band

had higher upper cutoffs than the canonical theta band, which is commonly defined be-

tween 4 to 8 Hz, Klimesch, 1999; Wang, 2010). We found super-threshold delayed MI in

both left and right auditory cortices of all participants in both delta and theta bands (fig-

ure 3.8C). This was stronger in delta than in theta frequency bands (fraction of samples

in favour of hypothesis fh1 = 1, figure 3.8E, see also figure 3.11). With DIce however, we

found only weak effects that barely exceeded the noise thresholds in the delta bands,

while effects in the theta bands exceeded noise thresholds with only 1 exception in the

left and 2 exceptions in the right hemisphere (figure 3.8C). This constitutes strong ev-

idence for a robust population-level prevalence of the effect (Ince et al., 2021). These

theta DIce effects were generally much stronger than in the delta band ( fh1 = 1; figure

3.8E, see also figure 3.8E, see also figure 3.11). These results translated into a differ-

ence of ratios of DI divided by MI between the delta and theta frequency bands, where

we found higher ratios in the theta than in the delta band in both left and right auditory
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Figure 3.8: Caption on following page.

cortices ( fh1 = 1; figure 3.8D, see also figure 3.8E, see also figure 3.11). This suggests

that the bivariate speech tracking in the theta band could consist of more bottom-up

and reactive processing than the bivariate speech tracking in the delta band. We had

found in simulation analyses that the effect size recovered by DIce grows as a function

of increasing bandwidth (see figure 3.6). Since our individualised definitions of delta and

theta bands led to wider theta than delta analysis filters, we repeated this analysis while

constraining the analysis filter bandwidth to be the same in delta and theta bands. We
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Figure 3.8 (previous page): Results obtained from source level MEG recordings
(left and right auditory cortices, l and r ACs) obtained during continuous speech
listening (n=24).
A Results for a typical participant. Plots show spectrotemporally resolved delayed MI
with individual boundaries of delta and theta bands overlaid as black horizontal lines
(leftmost plot) as well as delay profile of delayed MI and DIce in delta and theta bands,
with noise thresholds overlaid as black dotted lines. B Spectral profiles of delayed MI for
all participants in left (top) and right (bottom) ACs. Points denote upper pass-band
cut-off frequencies of the delta (upper scatter) and theta (lower scatter) bands. C
Binarised delayed MI as well as DIce delay profiles for all participants in delta and theta
bands in left and right ACs. While delayed MI in both bands and DIce in the theta bands
cross the noise threshold in most cases, DIce in the delta band is often close to or below
the noise threshold. D Ratios of DI/MI in delta and theta bands of left and right ACs for
each individual participant, medians overlaid as black lines, density estimates from
posterior distributions overlaid as transparent shapes. Theta band bivariate tracking can
be less explained by auto-prediction of the MEG signal than delta band tracking. E
Effect sizes underlying the computation of the ratio in D in delta and theta bands of the
left and right ACs in each individual participant. Medians are overlaid as coloured lines,
density estimates from posterior distributions overlaid as transparent shapes. F Delays
recovered by delayed MI and DIce in the delta and theta bands of left and right ACs.
Since DIce fails to cross the noise threshold in many cases for the delta band, these
delay estimates are uninterpretable. In the theta band, DIce recovers a longer delay
than delayed MI. Also see Figures 3.9 – 3.11.

found that the difference in DI over MI ratios of the delta vs the theta bands shrunk, but

persisted under this constraint ( fh1 = 1; see figures 3.10 and 3.11). We could thus rule

out that analysis bandwidth alone could explain the difference in DI/MI ratios in delta vs

theta bands.

Given the overall relatively narrow passbands of both delta and theta bands, the

measurable directed effects were in general up to several orders of magnitude lower

than the undirected effects, suggesting that predictive processing could indeed make up

the lion’s share of delta and theta envelope tracking.

Lastly, we considered the delays recovered by delayed MI and DIce in delta and

theta bands (figure 3.8F). For the delta band, the delays recovered by DIce spanned

a wide range, even reaching into regions suggestive of the MEG signal preceding the

speech signal for some participants. However, since the effect sizes in the delta band

were in many cases close to or below the noise threshold, these recovered delays were

uninterpretable. For the theta band however, effect sizes were robust in most cases.

Interestingly, the delays recovered by DIce (lAC: median across participants of -.43s, rAC:

median of -.40s) were longer than those recovered by delayed MI (lAC: median of -.10s,

rAC: median of -.10s; fh1 = 1), suggesting a slower bottom-up, reactive processing.

Taken together, we take our results as aligning with models that characterise the lion’s

share of activity of auditory cortices visible in MEG at a given point in time as reflecting

predictions of the stimulus at a short delay. Such predictions can be formed on the basis

of an integration of reactive, bottom-up processing of stimulus input at longer delays with
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Figure 3.9: Spectra of MI for left and right auditory cortices for each individual
participant (related to figure 3.8).
Individual boundaries of delta and theta bands are overlaid as filled circles, theta peak
frequencies (used for figure 3.10) are overlaid as empty circles.

an internal language model.
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Figure 3.10: Caption on following page.

3.4 Discussion

In this study, we have addressed the problem of quantifying band-limited directed in-

teractions in bivariate sets of source and target signals. With a simplistic and intuitive

simulation setup, we have highlighted shortcomings of common estimators of TE when

facing this problem. Our proposed alternative DIce, relying on a type of temporal whiten-

ing of the source and target signals, overcomes these shortcomings. With an array of

simulations, we extensively characterised DIce in relation to undirected MI as well as
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Figure 3.10 (previous page): Results obtained from source level MEG recordings
with constrained frequencies (related to figure 3.8).
Same as figure 3.8, but computed with constrained bandwidths of analysis filters. Delta
band was fixed by means of a low-pass filter common across all participants with a
cutoff frequency of 3.5Hz. Theta frequency was defined as a 3Hz wide band centered
on individual theta centre frequencies (see figure 3.9). The increased DI/MI ratio found
with individualised band definitions (where often theta was defined as a wider band
than delta) was robust to the constrained analysis bandwidths, making it unlikely that
bandwidth alone can fully account for the difference in DI/MI ratio between delta and
theta bands. Also see figure 3.11.
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Figure 3.11: Comparisons of posterior distributions of main effects of
combinations of frequency bands and dependency measures from Bayesian
linear modeling of the raw dependency and lag estimates (related to figure 3.8).
In each cell in the matrices, the greyscale colour denotes the fraction of samples of the
combination of frequency band and dependency measure referenced on the y-axis that
is larger than the combination referenced on the x-axis (testing a hypothesis). Top row
reports results corresponding to figure 3.8, bottom row reports results corresponding to
figure 3.10.

common estimators of TE. Lastly, we turned to a dataset of continuous speech listening

in MEG to study the speech envelope tracking specific to delta and theta bands from the

perspective of a directed measure. We found that in such narrow bands with essentially
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low degrees of freedom, the measurable directed effects are very small in comparison

to undirected effects. Moreover, with DIce, we found that theta speech tracking has a

stronger directed part than delta speech tracking, and that the directed theta speech

tracking has a longer delay and a broader temporal profile than the undirected tracking.

The directed effects could potentially reflect a purely bottom-up processing stage at a

later delay. On the basis of this reactive processing, the auditory cortical system could

then generate predictions about the upcoming speech acoustics, which the undirected

effects could be a signature of.

Many of the problems and perspectives highlighted in this study are not new to the

literature. We are for example not the first to point out problems of TE estimators relying

on only a single sample of the target past signal at a delay equivalent to that of the source

to the target at a given scanned interaction delay (Wibral et al., 2013). However, we hope

that our intuitive demonstrations contribute to a more widespread appreciation of the high

similarity of the resulting “TE”1D and simple delayed MI as well as variations of recov-

ered effect sizes in the presence of different ground truth interaction delays. Likewise,

the delay misestimation problems of more sophisticated estimators such as TESPO when

faced with narrow-band effects have been reported before (Wollstadt et al., 2017). In the

same way, the PID perspective on conditional MI based TE and the implication of includ-

ing synergistic interactions has been developed previously (James et al., 2016). Here,

we found that from this PID perspective on the TE problem, the delay mis-estimations of

TESPO could mostly be attributed to such synergistic interactions of the source and the

target that TE estimators relying on conditional MI pick up on.

An intuitive solution to fix this would be to instead consider the unique information

of the source about the target, and thus effectively ignore the synergistic contributions

included in conditional MI (Barrett, 2015). However, we found that this was neither par-

ticularly sensitive in detecting effects nor accurate in recovering the ground truth delays,

albeit with much less error than synergy-driven conditional MI based estimators. Our

proposed estimator, DIce, circumnavigates these issues by not relying on conditional MI

in the first place, but by instead converting the source and target time series into time

series of sample wise conditional entropy. This effectively frees the signals from pre-

dictable parts, ensuring that a subsequently computed delayed MI cannot be affected by

autocorrelation. Applying this whitening to the target signal only would be analogous to

the basic idea of TE, but would introduce asymmetric temporal distortions in the target

relative to the source, resulting in erroneous delay estimates. Again, the general idea of

such a two-staged approach is not new as such (Haugh, 1976; Cliff et al., 2021). How-

ever, we have here developed it from a simple cross-correlation of residuals (Haugh,

1976), which only takes into account the mean of a predicted time series, to the delayed

MI of sample wise conditional entropy, which instead relates a given sample to the mean

and variance of a predicted distribution. On the basis of our simulations, we put forward

that it does offer a useful perspective on the problem of estimating directed interactions

of band-limited processes at the correct delay.
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In the light of various careful considerations of the pitfalls associated with this goal

(Florin et al., 2010; Barnett & Seth, 2011), we thus hope that we can contribute to

a more widespread adoption of directed perspectives on band-limited dependencies.

Within neuroscience, such genuine narrow-band signal components are arguably not in

all places where aperiodic signals have been straight-jacketed into oscillations by means

of band-pass filters (Donoghue et al., 2020; Gerster et al., 2021). In fact, depending on

the algorithm used to define oscillatory components, even the delta component identified

by us is potentially attributable to the aperiodic part of the MEG spectrum. In general,

oscillatory components are nevertheless indisputably widespread (Wang, 2010). It is

in such situations of high auto-correlation where the consideration of self-predictability

should have the most obvious and strongest effects, and where the use of measures

like TE is thus of potentially high interest. After all, frequency-specific oscillatory compo-

nents are at the heart of popular conceptualisations of interactions of neuronal popula-

tions (Schnitzler & Gross, 2005; Fries, 2015). We conjecture that estimators of directed

interactions that return counterintuitive results in such circumstances as simplistically

simulated may not be well matched to the interpretations typically applied. This problem

has been recognised elsewhere, and (Pinzuti et al., 2020) propose a clever permutation

scheme to address this issue. Here, we instead suggest prioritise the interpretability of

the directly measured effect size.

In this spirit, our measure is in principle a versatile tool applicable to arbitrary (neuro-

)scientific questions. We however subscribe to the view that as such, mechanistic in-

terpretations of cerebro-cerebral dependencies are prohibitively hard in many cases

(Mehler & Kording, 2018). Given the highly incomplete picture of the entire neuronal

activity that is accessible with any given neuroimaging modality, it is virtually impossible

to rule out that a given dependency stems from a third unobservable region affecting the

supposed source and target. Directed dependency measures per se thus never war-

rant the inference of causality. This problem is however alleviated in cerebro-peripheral

settings, where the dependency of neuroimaging signals on external signals is studied

(Gross et al., 2021).

The question of causality is thus arguably less controversial in our example case of

the dependence of MEG signals on a continuous acoustic speech stimulus. According

to the burgeoning field of predictive coding however, the brain appears to predict the

upcoming speech input (Brodbeck et al., 2018a; Donhauser & Baillet, 2020; Heilbron

et al., 2021), rendering temporal relations of time series of assumed cause and effect

less trivial. Our suggestions regarding these problems are mostly of an indirect nature,

arguing that the part of undirected dependencies that directed measures deliberately ig-

nore could reflect predictive processing, while what directed measures quantify should

reflect reactive, bottom-up processing. It is important to note however that simply be-

cause the part of a neural response that we can observe with a given neuroimaging

modality is predictable from its own past does not automatically imply that it is in fact

being predicted by the brain (de-Wit et al., 2016). Response components identified with
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impulse response functions as measured with autocorrelations, temporal response func-

tions (Crosse et al., 2016) or here delayed MI have been suggested to be analogous

to the well-studied components of auditory event-related potentials (Lalor et al., 2009).

These do occur in response to unpredictable events (Ritter et al., 1968), implying that

the underlying generators are not at all restricted to prediction. It has however also been

suggested that the low-frequency potential “entrains” in response to sustained stimuli

such as continuous speech, especially when they are (quasi-)rhythmic (Lakatos et al.,

2008, 2019). Viewing ERPs in response to unpredictable events through this lens, they

could manifest the launch or “reset” of such predictions for subsequent events (Sayers

et al., 1974; Makeig et al., 2002). Such entrainment would serve to align phases of low

and high neuronal excitability to relevant parts of the stimulus, such that crucial stimulus

information could be encoded with high fidelity. In this sense, the low-frequency potential

is indeed often seen as a neuronal signature of a prediction about the upcoming stimulus.

A further interesting detail of our results in this respect is the distribution of lags recov-

ered by delayed MI (i.e. the timing of the peak of the delay profile). This was relatively

broad in the delta frequency band, with the delays of some participants even suggesting

the stimulus to follow the response, a hallmark of prediction that has been observed and

interpreted similarly before in EEG delta-band responses to continuous speech (Etard &

Reichenbach, 2019). Interestingly, such slow delta tracking signatures disappear when

speech of a language foreign to the participant is listened to (Ding et al., 2016), which

is to be expected if it is seen as a predictive component relying on an internal language

model.

Under this perspective, the reactive, bottom-up part of the coupling carved out by

DIce would then essentially be driven by adjustments of the predictions in reaction to

unpredictable parts in the stimulus. An important constraint of our proposed approach

however follows from the choice of the model used to whiten the signals. Our choice of a

non-uniform embedding to predict a signal’s present state from its own past is rooted in

the history of TE, and its suitability to model an actual hypothesised biological acoustic

model is disputable. In principle, there is nothing that prohibits the combination of our

framework with more powerful autoregressive models such as recurrent neural networks.

That the auditory system is actually entertaining correspondingly complex multi-level

predictions of the upcoming input is an increasingly popular perspective (Donhauser &

Baillet, 2020; Koskinen et al., 2020; Heilbron et al., 2021; Jain et al., 2021; Schmitt et al.,

2021; Caucheteux et al., 2021). This would then effectively further shrink the effect sizes

that our proposed DIce could discover, assigning an even smaller portion of variance to

unambiguously bottom-up reactive processing than found here.

Lastly, it is interesting to compare our approach to a recently increasingly popular

analysis strategy in the field of predictive coding. This strategy usually builds on the

framework of encoding models (Naselaris et al., 2011), where first a so-called linearising

feature space (a nonlinear transformation of the stimulus) is identified and then linearly

mapped onto the brain response. For questions of predictive coding, researchers make
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use of powerful predictive models of a stimulus class to derive measures of surprisal

(and uncertainty) associated with a given part of the stimulus given its preceding con-

text to obtain the linearising feature space (Brodbeck et al., 2018a; Donhauser & Baillet,

2020; Koskinen et al., 2020). Our transformation of the signal of time varying energy of

the speech stimulus into a time-series of conditional entropy can be seen as a simple

version thereof. Within the standard approach, it is then however uncommon to perform

a similar operation on the neuronal response, which is central to our proposed measure.

The standard approach makes sense from the viewpoint of the hypothesis that the neu-

roimaging signal mainly reflects a prediction error. The conceptualisation of neuronal

signals as reflecting prediction errors however decreases in its appeal to the degree to

which the neuronal signal is predictable from itself. How could the brain be surprised if it

already knew it was going to be surprised? We thus hypothesise that studies of predic-

tion errors could increase their specificity by including a whitening of the target signals

akin to what we suggest here. In theory, this should allow a more detailed characterisa-

tion of processes related to prediction errors.

Taken together, this study makes a threefold contribution to the problem of quantify-

ing band-limited directed dependencies: We offer simplistic yet intuitive and accessible

simulations, propose our own estimator based on an information theoretic pre-whitening

as well as provide an application to the case of speech tracking in MEG in delta and

theta bands. With this, we hope to spark further interest in directed perspectives on

frequency-specific interactions.

3.5 Methods

3.5.1 Estimation of information theoretic quantities

We used the Gaussian Copula Mutual Information framework (gcmi, Ince et al., 2017).

Here, the basic idea is to transform variables into standard normals to then apply closed-

form expressions for information theoretic quantities of Gaussians. These can be derived

as follows. The entropy H of a variable X is given by the expected value of the surprisal:

H(X) = E(h(x)) (3.1)

For a Gaussian continuous variable X , this corresponds to the “global” differential

entropy:

H(X) =
∫

∞

−∞

f (x)h(x)dx (3.2)

Here, the local or “sample wise” contribution, i.e. the surprisal (also called “informa-

tion content”, “Shannon information” or “self-information”), is thus given by:

h(x) =− log( f (x)) (3.3)
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For a Gaussian continuous variable of k dimensions, this is equal to to the negative

log-likelihood:

h(x) =−
(
−1

2
[
log(|Σ|)+(x−µ)′Σ−1(x−µ)+ k ∗ log(2π)

])
(3.4)

H(X) can then be simplified to:

H(X) =
k
2
+

k
2

log(2π)+
1
2

log(|Σ|) (3.5)

We can then compute the mutual information between the variables X and Y (where

[] denotes concatenation to obtain a joint variable) follows:

MI(X ,Y ) = H(X)+H(Y )−H([XY ]) (3.6)

This pragmatic estimator comes at the cost of not being able to quantify all possible

nonlinear effects, as information theoretic measures should do in theory. Instead, it

quantifies relationships described by a Gaussian copula. However, it avoids the loss

of information and incompatibility with multidimensional variables as well as higher-order

information theoretic quantities incurred by binning, a similarly pragmatic choice. Further,

it is computationally cheaper and has a higher sensitivity for rank relationships than

more sophisticated estimators such as nearest neighbour approaches, which can resolve

nonlinear effects, but can in practice only be computed on vast amounts of samples from

variables of relatively limited dimensionality. In situations where nonlinear effects are of

interest and resolvable when using a binned estimator with a realistically low amount of

bins (such that each bin of the joint distribution is sufficiently sampled), such estimators

are a pragmatic complement to gcmi.

3.5.2 Delayed mutual information

The simplest information theoretic approach of estimating a dependency between source

and target variables is computing the delayed mutual information (MI). It is the informa-

tion theoretic equivalent of cross-correlation, where versions of the source- and target

variables with a range of lags to each other are generated to then compute the depen-

dency measure at each lag and obtain a delay profile of the relationship. In principle, the

lagging of the source and target variables to each other can be implemented either way,

by lagging the source and fixing the target or vice versa. To simplify concrete explana-

tions that follow, we here choose an implementation where the source is lagged while

the target is kept fixed. We thus define delayed MI between time series X and Y at an

interaction delay δa as:

delayed MI(X ,Y )δa = MI
(
Xδa,Y0

)
(3.7)

Here, Xδa denotes the lagged source with negative values of δa corresponding to
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delays where the source precedes the target and positive values corresponding to delays

where the source follows the target. We trim the target present Y0 to be of an equal

number of samples as the lagged source.

3.5.3 Transfer entropy

Originally, transfer entropy (TE) has been described as a conditional MI (Schreiber,

2000). Instead of computing the simple delayed MI at each lag, the idea is to condi-

tion this MI on an operationalisation of the target past. In principle, the resulting quantity

is thereby supposed to quantify to what extent the target signal can be explained by the

source signal over and above to the extent to which the target signal can be explained

by its own past. This idea is equivalent to that of Granger causality (Granger, 1969) in

the case of linear effects observed in Gaussian variables (Barnett et al., 2009). Transfer

Entropy based on conditional MI can be expressed as a difference of two MI terms:

T E(X ,Y )δa = MI
(
Xδa, [Y−Y0]

)
−MI

(
Xδa ,Y−

)
(3.8)

A critical problem is the concrete operationalisation of the target past Y−.

One-dimensional embedding

A simple form of operationalising the target past is to simply mirror the delay of the delay

scanning procedure of the delayed MI (Besserve et al., 2010; Lobier et al., 2014; Park

et al., 2015; Ince et al., 2015; Giordano et al., 2016; Morillon & Baillet, 2017). When a

given interaction delay is considered in diagonal TE, the delayed MI between X and Y is

conditioned on a version of the target to which the same lag is applied as that which is

applied to the source. We refer to this one-dimensional embedding as “TE1D". With Y−
thus corresponding to Yδa , we obtain:

T E1D(X ,Y )δa = MI
(
Xδa,

[
YδaY0

])
−MI

(
Xδa,Yδa

)
(3.9)

Multidimensional embedding approaches

The one-dimensional method of operationalising the target past is simple to implement,

but hard to motivate. When considering that the core goal of quantifying TE is to es-

timate to what degree the source variable contains information about the target that is

not available from the target past itself, it becomes obvious that the assumption of cap-

turing the target’s autoinformation with a single delay that varies as a function of the

considered interaction delay is daunting (Wibral et al., 2013). Multiple target past time

points could jointly influence the target present, and there is no obvious reason why the

target past should be varied as a function of the interaction delay considered. A source

variable could have information about the target variable at a different delay than the

delay at which the target past informs its own future in the same way as the source. A
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more sensible approach to describe the target past is thus to consider a multidimen-

sional representation or “embedding” (Takens, 1981) that is invariant to the interaction

delay considered between source and target in the delay scanning procedure. A classic

idea to find such an embedding of the target past is parameterised by two parameters: A

spacing parameter and a dimensionality parameter (Ragwitz & Kantz, 2002). This means

that the assumption is that the information the target past contains about its present can

be captured with a number of equally spaced delays relative to the present. A further

development of embedding methods relaxes the assumption that the embedding delays

must be uniformly spaced (Vlachos & Kugiumtzis, 2010; Faes et al., 2011). It is conceiv-

able that a lot of information about the target present can be found in a combination of

many, densely clustered delays at very short time scales as well as only few unevenly

spaced delays at longer time scales, or vice versa. To account for this, non-uniform em-

bedding procedures adopt an iterative approach to generate a target past embedding.

Concretely, a search space of candidate delays is defined by the maximal delay that

is assumed to have an influence on the target present. In the first iteration, the delay

within this search space is chosen that maximises the MI of the target variable at this

delay relative to the target present. In subsequent iterations, a conditional MI between

all remaining candidate delays and the target present conditioned on the already chosen

delays is computed. If desired, it can be tested whether the found maximal conditional

MI surpasses a defined noise threshold. In that case, the iterative procedure can be

stopped once the found maximal conditional MI no longer exceeds the threshold. Alter-

natively, a pragmatic hyperparameter of maximal iterations can be defined, which avoids

the computationally costly permutation testing. This procedure thus has two hyperpa-

rameters: the length of a search space as well as a noise threshold (in the form of a

significance level alpha) or alternatively a fixed embedding dimensionality. In our study,

we fixed these to a search space of 1 second and a fixed embedding dimensionality

of 50 (simulations) or 25 (MEG data). Conditional MI based TE estimators that employ

such multidimensional target past operationalisations have been described to be “self

prediction optimal” and are thus referred to as TESPO (Wibral et al., 2013).

T ESPO(X ,Y )δa = MI
(
Xδa , [YembY0]

)
−MI

(
Xδa,Yemb

)
(3.10)

Here, Yemb denotes a multidimensional embedding of the target past.

Whitening approaches

The suggestion we make here is to tackle the TE estimation problem with a whitening ap-

proach. The basic idea is to use a non-uniform multidimensional target past embedding

as a model to derive a prediction about the target present state. Analogous to (Haugh,

1976), this approach could then be used to subtract the prediction from the observed

target time series and compute delayed MI on the residuals. This however ignores the

uncertainty associated with each prediction. We thus instead compute a time series
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of sample wise conditional entropy of each sample in the observed target time series

given its past embedding. We obtain the conditional entropy of each sample x given its

non-uniform embedding xemb by subtracting the marginal entropy of xemb from the joint

entropy of x and xemb:

h(x | xemb) = h([xxemb])−h(xemb) (3.11)

The resulting time series is thus effectively temporally decorrelated, or “whitened”.

We define DIce between the source X and the target Y at an analysis delay δa as:

DIce(X ,Y )δa = MI
(
h(x | xemb)δa

,h(y | yemb)
)

(3.12)

Any resulting quantifiable delayed MI between the whitened source and the target can

thus no longer stem from information that the target carries about itself. To avoid asym-

metrical temporal distortions caused by the temporal whitening, we apply the whitening

to both source and target time series.

3.5.4 Partial information decomposition

In Partial information decomposition (PID, Williams & Beer, 2010), systems of three or

more variables are considered. In situations where there are two sources and one target

variable, it is the goal to quantify the “redundant” amount of information that the two

sources share about the target as well as the “synergistic” information about the target

that is only available when considering the two sources jointly as well as the unique

information about the target that is only available from one of the sources but not the

other. From the lens of this formalism, conditional MI can be seen as the sum of two

“atoms” of PID: Unique information and synergy. TE based on conditional MI is thus the

sum of not only unique information of the source signal about the target present but also

synergy of the source signal and the target past about the target present.

PID has its origins in co-information (McGill, 1954), which is computed as a triple set

intersection.

CoI
(
Xδa,Yemb,Y0

)
= MI

(
Xδa,Y0

)
+MI (Yemb,Y0)−MI

([
XδaYemb

]
,Y0
)

(3.13)

Here, negative values correspond to synergistic information, and positive values cor-

respond to redundant information. From the lens of PID however, these are mere net

sums of the “pure” redundancy and synergy that PID aims to resolve. To do so, the es-

sential first step is to define redundancy. Here, we turned to an implementation based on

“common change in surprisal” (Iccs Ince, 2017a). This starts at the observation that local

MI can be seen as the positive or negative change in surprisal of a given value when
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another is observed:

mi(x,y) = ∆yh(x) = h(x)−h(x | y) (3.14)

We can then also consider equally positive or negative co-information at the local

level:

coi
(
xδa,yemb,y0

)
= mi

(
xδa,y0

)
+mi(yemb,y0)+mi

([
xδayemb

]
,y0
)

(3.15)

Each of such co-information terms can then either contribute to net synergy or net

redundancy. The key idea in Iccs is then to consider only those positive (redundant) terms

of local coi(xδa ,yemb,y0) which coincide with positive terms of mi(xδa,y0), mi(yemb,y0) and

mi([xδayemb],y0). Thus, only co-information terms are counted that represent a commonly

shared change in surprisal. The resulting global redundancy can then be used to infer

the other PID atoms according to a lattice structure (Williams & Beer, 2010):

unique
(
Xδa

)
= MI

(
Xδa,Y0

)
− redundancy

unique (Yemb) = MI (Yemb,Y0)− redundancy

synergy = MI
([

XδaYemb
]
,Y0
)
− redundancy − unique

(
Xδa

)
− unique (Yemb)

(3.16)

3.5.5 Noise thresholds

To establish whether a given effect size exceeded a level that would be expected of data

not containing the effect of interest, we considered the 95th percentile of distributions

of effects obtained from 1000 permutations. For this, we performed circular shifts of the

source variable by a random number of samples and then recomputed the estimators of

interest. We constrained this random amount with a minimum and a maximum, such that

the permuted data could not include instances where potential effects of the observed

data would end up within the range of delays of interest. In cases where multiple com-

parisons were made, we corrected the noise threshold by means of the family wise error

rate, that is, by considering the maximum across all conditions within a given permu-

tation and subsequently applying the 95th percentile of the resulting distribution for all

conditions.

3.5.6 Simulations

The basic approach to simulating narrow-band time series was to firstly sample Gaus-

sian white noise and subsequently apply band-pass filters to it (3rd order butterworth,

forward-only). Such signals M were then circularly shifted by a ground truth interaction

delay. Finally, source and target time series X and Y were generated by adding indepen-

dent white noise of varying amplitude to M. The following specific parameters were used

for the individual simulations and analyses:
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Figure
Number

of
samples

Noise
amplitude

source

Noise
amplitude

target

Effect
filter
[Hz]

Ground
truth

delay [s]

Analysis
filter
[Hz]

Lags [s]

1 75000 .5 .25 6±2 −.12 6±2
−.8 -
+.32

2 75000 .5 .25 6±2 −.12 6±2
−.8 -
+.32

3 40000 .05 .025 6±2
−.08 -
−.4 6±2

.66 -
+.4

4 40000
.001 -

10
.001-

10 6±2 −.12 6±2
−.4 -
+.2

5 40000
0 -
10

0 -
10 6±2 −.12 6±2

−.4 -
+.2

6.1 40000 .01 .01
15±1 -
13.25 −.12

15±1 -
13.25

−.4 -
+.2

6.2 40000 .01 .01 20±5 −.12
20±1 -

15
−.4 -
+.2

7.1 40000 .01 .01
3 -

50±2 −.12
3 -

50±2
−.4 -
+.2

7.2 40000 .01 .01
3 -

47±2 −.12
3 -

47±2
−.4 -
+.2

8 330000 na na na na
1.5 -

16±1
−1 -
.5

Table 3.1: Parameter settings in simulations. Figure 6.1 refers to panels A, B, D and
E, Figure 6.2 refers to panels C and F. Figure 7.1 refers to panels A - D, Figure 7.2
refers to panels E - H. Effect and analysis filters are specified in terms of the passbands
as defined by centre frequencies ± bandwidths. na denotes “not available".

3.5.7 MEG data and analyses

The MEG data in this study has been recorded and analysed before. For details con-

cerning the participants, the experimental design, the recording procedures as well as

the preprocessing, please refer to (Daube et al., 2019b). In brief, 24 participants had

listened to an audiobook of 55 minutes duration (in 6 blocks of equal duration) while their

MEG (MAGNES 3600 WH, 4D Neuroimaging, 248 magnetometers) had been recorded

at a sampling rate of 1017.25 Hz (first 10 participants) or 2034.51 Hz (last 14 partici-

pants). We applied the same pre-processing steps as in the original study. This included

interpolation of artifactual channels, replacement of squid jumps with DC patches, 4th

order zero-phase high-pass filter of .5 Hz as well as independent component analysis for

removal of eye and heart activity (Daube et al., 2019b). Here, we then downsampled the

data to a sampling rate of 100Hz.

To estimate activity from bilateral auditory cortices (ACs), we re-used linearly con-

strained minimum variance beamformer spatial filters (Van Veen et al., 1997) as in

(Daube et al., 2019b). These had been optimised within a nested cross-validation to

return responses that would be maximally correlated with linear predictions of the re-
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sponses based on a combination of log-mel spectrograms and their temporal derivative.

This correlation had been maximised with respect to position- and regularisation hyper-

parameters per participant, hemisphere and fold. Here, we averaged these hyperparam-

eters across folds to then extract time series of activity from left and right ACs.

To define individual delta and theta frequency ranges, we considered spectra of de-

layed MI between AC activity and the speech envelope. To compute these spectra, we

applied 3rd order butterworth forward filters to both AC activity and the envelope. These

had centre frequencies increasing from 1.5 to 15 Hz in steps of .25 Hz, and cutoff fre-

quencies were defined as bands of ±1 Hz width around the centre frequencies. We

computed delayed MI for a range of lags from −1 to .5s and used the maximum across

lags within each frequency. We then searched for troughs in the resulting spectra and

used the trough corresponding to the lowest frequency as the boundary between delta

and theta. In 4 out of 48 cases, this returned boundaries between delta and theta that

surpassed 6.5 Hz, which we considered as unlikely a priori (Klimesch, 1999; Wang,

2010). Therefore, in these cases we instead searched for peaks of the spectral gradient

and used the peak corresponding to the lowest centre frequency. In practise, this corre-

sponded to parts of the spectra where the initial decrease plateaued. To define an upper

boundary of the theta component, we used the highest frequency at which the spec-

trum surpassed the noise threshold. This resulted in theta components with a broader

bandwidth compared to the delta components. Since we had found the bandwidth of an

effect to be correlated with the effect size recovered by DIce, we also repeated analyses

of delayed MI and DIce with fixed bandwidths for delta and theta. For this, we defined the

delta component to be below 3.5 Hz and the theta component to be centered on a theta

peak frequency, around which we defined bandpass filters of 3 Hz width. The theta peak

frequencies were defined as the maximum of the MI spectra within the theta frequency

band as defined previously. In 4 out of 48 cases, this corresponded to the upper bound-

ary of the delta band. In these cases, we defined the theta centre frequency to be 1.5
Hz above the delta-theta boundary.

To extract time series corresponding to the passbands as defined above, we used

3rd order forward butterworth filters, which we applied to both the envelope and the AC

activity. We then subjected the resulting time series to the computation of delayed MI

and DIce. We statistically evaluated the nth observation of recovered log-transformed

effect sizes and the recovered delays r at the maxima across lags of each participant p,

hemisphere h, frequency band b and measure m by fitting Bayesian linear distributional

models as implemented in the brms package (Bürkner, 2017). These models can be



96 CHAPTER 3. TRANSFER ENTROPY FOR NARROWBAND SIGNALS

summarised with the following formula:

r[n] ∼ N
(
ηµ[n],exp

(
ησ [n]

))
ηµ[n] ∼ βµp[n] +βµp:h[n] +βµm:b[n](

βµp[n],βµp:h[n]′βµm:b[n]

)
∼ N(0,v)

ησ [n] ∼ β
σh[n]]

+βσm:b[n](
β

σh[n]]
,βσm:b[n]

)
∼ N(0,10)

(3.17)
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4.1 Abstract

Deep neural networks (DNNs) can resolve real-world categorization tasks with apparent

human-level performance. However, true equivalence of behavioral performance be-

tween humans and their DNN models requires that their internal mechanisms process

equivalent features of the stimulus. To develop such feature equivalence, our method-

ology leveraged an interpretable and experimentally controlled generative model of the

stimuli (realistic three-dimensional textured faces). Humans rated the similarity of ran-

domly generated faces to four familiar identities. We predicted these similarity ratings

from the activations of five DNNs trained with different optimization objectives. Using in-

formation theoretic redundancy, reverse correlation, and the testing of generalization gra-

dients, we show that DNN predictions of human behavior improve because their shape

and texture features overlap with those that subsume human behavior. Thus, we must

equate the functional features that subsume the behavioral performances of the brain

and its models before comparing where, when, and how these features are processed.

4.2 Introduction

Visual categorization is the pervasive process that transforms retinal input into a rep-

resentation that is used for higher-level cognition, such as for memory, language, rea-

soning, and decision. For example, to guide adaptive behaviors we routinely categorize

faces as being relatively happy, aged, or familiar, using different visual features. A long-

standing challenge in the field of cognitive science is therefore to understand the cate-

gorization function which selectively uses stimulus features to enable flexible behavior

(Schyns et al., 1998; DiCarlo & Cox, 2007; Nestor et al., 2020).

From a computational standpoint, this challenge is often framed as understanding the

encoding function (Naselaris et al., 2011) that maps high-dimensional, highly variable in-

put images to the lower-dimensional representational space of features that serve behav-

ior. Deep neural networks (DNNs) have recently become the model of choice to imple-

ment this encoding function. Two key properties justify the popularity of DNNs: first, they

can solve complex, end-to-end (e.g., image-to-behavior) tasks by gradually compressing

real-world images over their hierarchical layers into highly informative lower-dimensional

representations. Second, evidence suggests that the activations of DNN models share

certain similarities with the sensory hierarchies in the brain, strengthening their plausi-

bility (Yamins et al., 2014; Eickenberg et al., 2017; Kell et al., 2018; Kubilius et al., 2019;

Kietzmann et al., 2019; Zhuang et al., 2021). Such findings underlie the surge of re-

newed research at the intersection between computational models, neuroscience, and

cognitive science (Kriegeskorte & Douglas, 2018a).

However, there is ample and mounting evidence that DNNs do not yet catego-

rize like humans. Arguably, the most striking evidence comes from adversarial exam-

ples, whereby a change in the stimulus imperceptible to humans can counter-intuitively
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change its categorization in a DNN (Szegedy et al., 2014) and vice versa (Jacobsen

et al., 2019). Even deceptively simple visual discrimination tasks reveal clear inconsis-

tencies in the comparison between humans and state-of-the-art models (Rajalingham

et al., 2018). Furthermore, when tested with photos of everyday objects taken from un-

usual perspectives, DNNs trained on common databases of naturalistic images decrease

in test-set performance in ways humans do not (Barbu et al., 2019). In sum, although

DNNs can achieve human-like performance on some defined tasks, they often do so

via different mechanisms that process stimulus features different from those of humans

(Geirhos et al., 2020; Golan et al., 2020).

These results suggest that successful predictions of human behavioral (or neural)

responses with DNN models are not sufficient to fully evaluate their similarity, a classic

argument on the shortcomings of similarity in cognitive science (Medin et al., 1993; Edel-

man, 1995). In fact, we already know that similar behaviors in a task can originate from

two human participants processing different features (Schyns & Rodet, 1997). General-

izing to the comparison of a human and their DNN model, consider the example whereby

both categorize a given picture as a horse. Should we conclude that they processed the

same features? Not if the DNN learned to use the incidental horse-specific watermarks

from the image database (Lapuschkin et al., 2019). This simple example illustrates both

the general importance of attributing behavior to the processing of specific features, and

the long-standing challenge of doing so, especially given the dense and unknown correl-

ative structure of real-world stimuli (Schyns et al., 2003). From an information-processing

standpoint, we should know what stimulus information (i.e., features) the brain and its

DNN models process, before comparing where, when, and how they do so (Marr, 2010;

Krakauer et al., 2017). Otherwise, we risk studying the processing of different features

without being aware of the problem (cf. watermark example above). Thus, to realize the

potential of DNNs as information-processing models of human cognition (Kay, 2018), we

need to first take a step back and demonstrate that similar behavior in a task is grounded

in the same stimulus features—i.e., more specifically, in similar functional features: those

stimulus features that influence the behavioral output of the considered system (Schyns

et al., 1998). When such functional feature equivalence is established, we can meaning-

fully compare where, when, and how the processing of these same functional features

is reduced with equivalent (or different) algorithmic-implementation-level mechanisms in

humans and their models.

To develop such equivalence of functional features, we explicitly modeled stimulus

information with an interpretable generative model of faces (GMF, Zhan et al., 2019a).

The GMF allows parametric experimental control over complex realistic face stimuli in

terms of their three-dimensional (3D) shape and two-dimensional (2D) RGB texture. As

illustrated in figure 4.1, a candidate DNN model is typically evaluated on how it predicts

human responses, by computing the bivariate relationship between human responses

and DNN predictions. Here, we further constrained this evaluation by relating human

behavioral responses and their DNN predictions to the same set of experimentally con-
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?

GMF

Human
BehaviorDNN

Figure 4.1: Trivariate relationship to understand the functional features of DNN
models that predict human behaviour.
In general, complex visual inputs are processed in an unknown way in the brain and its
DNN models to produce behavior. DNNs (schematized as layers of neurons) can
predict human behavior and can in principle be used to facilitate our understanding of
the inaccessible information-processing mechanisms of the brain. However, nonlinear
transformations of information in DNNs complicate our understanding, in turn limiting
our understanding of the mechanistic causes of DNN predictions (and human
behavior). To address this issue of interpretability, we used a generative model of
realistic faces (GMF) to control the high-level stimulus information (3D shape and RGB
texture). The Venn diagram illustrates the logic of our approach. Human behavior and
its DNN model predictions are both referred to in the same stimulus model: (1) the GMF
features that underlie human behavior; (2) the GMF features that underlie DNN
predictions of human behavior. The question then becomes: are these GMF features
equivalent? That is, do the two intersections intersect (Schyns et al., 2020)? We
quantify GMF feature overlap with information theoretic redundancy (Ince, 2017a;
Daube et al., 2019a)–i.e., as the information that GMF features and the activations of
the embedded layers of DNN models provide about human behavior. In doing so, we
assess the functional feature equivalence of individual human participants and their
DNN models in relation to a specific model of the stimulus and behavioral task. See
figure 4.3 for a detailed overview of the analysis pipeline. Our results develop why such
feature equivalence enhances our understanding of the information-processing
mechanisms underlying behavior in the human brain and its DNN models. Experiment
on human participants was conducted by Jiayu Zhan.

trolled GMF features. Conceptually, this is represented as the triple intersection in figure

4.1, where the pairwise intersections <GMF features; human> and <GMF features; DNN

predictions> comprise the functional face features that subsume human responses and

their DNN models. The triple intersection further tests whether the same responses in

the two systems arise from the same face features, on the same trials. We then com-

pared how each candidate DNN model represents these face features to predict human

behavior and reconstructed the internal face representations of humans and their DNN
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models with reverse correlation (Murray, 2011). Lastly, and importantly, we used our

generative model to compare the generalization gradients of humans and DNNs to typi-

cal out-of-distribution stimuli (i.e., generalizations to changes of face pose, age, and sex

to create siblings with family resemblance). With this approach, we ranked models not

only according to their surface similarity of predicted human behavior but also according

to the deeper similarity of the underlying functional features that subsume behavioral

performance.

4.3 Results

Figure 4.2: Demonstration of GMF variations used for training set of DNNs
(related to figure 4.3).
A Six different example identities. B First identity from A rendered in three different
ages. C – E Same as in B, but rendered with different sex and ethnicity. F First identity
from A rendered with 6 additional expressions. G First identity from A rendered with
different viewing angles. H First identity from A rendered with different lighting angles.
Experiment on human participants was conducted by Jiayu Zhan.
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C Multivariate forward modeling ("encoding")

E Mass-univariate backward modeling ("decoding"/"reverse correlation")
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G Generalization testing
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accuracy after
training
>99.9%

test-set
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Figure 4.3: Study overview.
We seek to establish the GMF feature equivalence between humans and their DNN
models. A We used the GMF to synthesize random faces (3D shape and RGB texture).
B We asked humans to rate the similarity of these synthesized faces to the faces of four
familiar colleagues (symbolized by purple, light-blue, gray, and olive dots). C Linear
multivariate forward models predicted human responses (denoted by the multiplication
with linear weights B) from GMF shape and texture features and DNN activations (DNN
architectures are schematized with white circles symbolizing neurons, embedding
layers are colored; scatterplots for Triplet network show two-dimensional t-stochastic
neighborhood embeddings (Van der Maaten & Hinton, 2008) of the embedding layer
when activated with 81 different combinations of viewing and lighting angles per
colleague). As a baseline model, we also included the first 512 components of a
principal components analysis on the pixel images (“pixelPCA,” not shown here). D We
then evaluated shared information between human behavior, DNN predictions from
embedded activations, and GMF features using partial information decomposition (Ince,
2017a). Here, the Venn diagram shows the mutual information (MI) between human
responses and their predictions based on the GMF shape features (blue circle) or
based on the Triplet model (yellow circle). The overlapping region denotes redundancy
(R). E–G We performed reverse correlation E to reconstruct internal templates F of the
familiar colleague faces from human and model predicted behavior. Lastly, we amplified
either the task-relevant versus task-irrelevant features of the four colleagues (identified
in E) and rendered these faces in five different generalization conditions G that humans
and DNNs had to identify. See also figure 4.2. Experiment on human participants was
conducted by Jiayu Zhan.

We used a generative model that parameterizes faces in terms of their 3D shape

and 2D RGB texture (GMF; experimental procedures 4.5.1) to control the synthesis of 3
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million 2D face images that varied in identity, sex, age, ethnicity, emotion, lighting, and

viewing angles (see figure 4.2 for a demonstration; see experimental procedures 4.5.4

for details). We used these images to train five DNNs that shared a common ResNet

(He et al., 2015) encoder architecture but differed in their optimization objectives.

The five DNNs were as follows (see figure 4.3 for their schematic architectures and

performances): (1) a triplet loss network (Schroff et al., 2015) that learned to place

images of the same (versus different) identity at short (versus long) Euclidean distances

on its final layer; (2) a classification network (Xu et al., 2018) that learned to classify

2,004 identities (2,000 random faces, plus four faces familiar to our participants as work

colleagues, “ClassID”); (3) another classification network that learned to classify 2,004
identities plus six other factors of variation of the generative model (“ClassMulti”); (4)

an autoencoder (AE) (Ballard, 1987) that learned to reconstruct all input images; and

(5) a view-invariant autoencoder (viAE) (Zhu et al., 2013) that learned to reconstruct the

frontal face image of each identity irrespective of the pose of the input.

We used these five DNNs to model the behavior of each of n = 14 individual human

participants who resolved a face familiarity experiment (see experimental procedures

4.5.2). In this experiment, participants were asked to rate, from memory, the similarity

of random face stimuli generated by the GMF (figure 4.3A) to four familiar identities (see

experimental procedures 4.5.3). On each of 1,800 trials, each participant was presented

six random faces. They were asked to first choose the face most similar to a target

identity and then rate this similarity on a 6-point scale.

Figure 4.4: Distribution of rating responses in the human reverse correlation
experiment (related to figure 4.5).
1 codes for low similarity, 6 codes for highest similarity of stimulus to familiar target
identity. Each data point represents the combination of one participant and one target
familiar identity. Experiment on human participants was conducted by Jiayu Zhan.
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Importantly for our modeling, we propagated these 2D images through the five DNNs

and then used the activations of their respective layer of maximum compression (i.e.,

the “embedding layer”) for the subsequent analyses detailed below. To assess functional

feature equivalence between human participants and the DNN models, we proceeded

in four stages (see figure 4.3 for an overview of our pipeline). First, we used the rep-

resentations of the experimental stimuli on the DNNs’ embedding layers to predict the

corresponding behavior of humans in the experiment (figure 4.3C and D). We did so us-

ing linear models to restrict the assessment to explicit representations (Naselaris et al.,

2011). We call this first stage of seeking to equate human and DNN behavior “for-

ward modeling". In a second stage, we analyzed the face features represented on the

DNN embedding layers that predict human behavior. In a third stage (figure 4.3E and

F), we used reverse correlation to reconstruct and compare these categorization fea-

tures between humans and their DNN models. Lastly, in a fourth stage (figure 4.3G),

we compared the generalization performances of humans and DNNs under new testing

conditions of face viewing angles, sex, or age that did not appear in the data used to fit

the forward models.

Previewing the results of the DNN models tested, the viAE afforded the best predic-

tions of human behavior. These could be attributed to the shape features of the GMF,

which also subsumed human behavior. That is, the surface similarity of behavioral per-

formance was grounded in a deeper similarity of functional face features. Of the DNN

models tested, the viAE model was therefore the most functionally similar to humans.

4.3.1 Forward modeling of human behavior using DNN activations

To evaluate how accurately the compressed stimulus representations on the DNNs’ em-

bedding layers predicted the face similarity ratings (on a 6-point rating scale, see figure

4.4) of human participants, we activated their embedding layers with the 1,800 2D face

stimuli rated in terms of similarity to each target identity in the human experiment. We

then used these activations to linearly predict (see experimental procedures 4.5.5) the

corresponding human ratings in a nested cross-validation (Varoquaux et al., 2017). We

compared DNN performances with three additional benchmark models that also linearly

predicted human behavior. The first model used on each trial the objective 3D shape pa-

rameters of the GMF that define the identity of each face stimulus (rather than the face

image); the second one used instead the GMF texture parameters (cf. Figures 4.1 and

4.1, and 3D shape and 2D RGB texture). Finally, the third model was a simpler architec-

ture that linearly predicted human behavior from the first 512 components of a principal

components analysis (PCA) of all stimulus images (“pixelPCA”). For each model, we

evaluated predictions of human behavior with two information theoretic quantities (figure

4.5A and B). With mutual information (MI), we quantified the strength of the relationship

between the observed human and DNN predicted similarity ratings (figure 4.5A and B,

y-axes). Importantly, we also used redundancy (from partial information decomposition)
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Figure 4.5: Caption on following page.

to evaluate the triple set intersection of figure 4.1, which quantifies the overlap between

predictions from DNN models and predictions from GMF shape parameter models (figure

4.5B, x-axes). This overlap indicates the extent to which the DNN embedding layers and

the GMF shape parameters both predict the same human behaviors on the same trials.

With Bayesian linear models (Bürkner, 2017), we then statistically compared the bivari-

ate relationships (i.e., MI) and overlaps (i.e., redundancy) of different GMF parameters

and DNN embedding layers with each other.

Of all models, the viAE best predicted human behavior (see figure 4.5B), closely

followed by the AE, with a performance level similar to that of the GMF shape param-

eters (fraction of samples of posterior in favor of viAE over shape: fh1 = 0.7536; AE

> shape: fh1 = 0.6457; fh1 = 0 for all other networks versus shape). Surprisingly, the

simple pixelPCA came close to the complex AEs (with the AE only narrowly beating

pixelPCA, fh1 = 0.8582, figure 4.5B). Critically, as model predictions increased in accu-

racy, they also increased in overlap (i.e., redundancy) with the GMF shape parameters

(figure 4.5B), implying that single-trial behavior across systems (i.e., humans, viAE, and

pixelPCA) could be attributed to these same specific parameters of 3D face shape–i.e.,
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Figure 4.5 (previous page): Relationship among GMF features, DNN activations,
and observed behavior.
A Mutual information (MI) between human behavior and test-set predictions from GMF
features. B y-axis: MI between human behavior and test-set DNN predictions; x-axis:
redundant information about human behavior that is shared between DNN predictions
and GMF shape feature predictions. These plots show that DNN prediction
performance of human behavior increases on the y-axis when the DNN embedding
layers represent the same shape features as humans. Each data point in A and B
represents the combination of one test set, one participant, and one familiar identity.
Overlaid lines reflect the 95% (bold) and 50% (light) highest posterior density intervals
(HPDIs) of the corresponding main effects of predictor spaces from Bayesian linear
models fitted to the MI and redundancy values. C Fractions of MI and redundancy data
points exceeding noise threshold (95th percentile of MI and redundancy distributions
obtained from trial-shuffled data). D Comparisons of the posterior distributions of the
main effects for all predictor spaces from Bayesian linear modeling of the raw
performances. For each pair in the matrices, the grayscale color map shows the fraction
of samples of the predictor space color coded on the y-axis that is larger than the
predictor space color coded on the x-axis (testing a hypothesis). Colors in C and D
correspond to those in A and B. See also Figures 4.4–4.11 and figure 4.27. Experiment
on human participants was conducted by Jiayu Zhan.

under these conditions they used the same functional face features to achieve the same

behaviors.

Furthermore, we validated this overlap in shape parameters by showing that a model

using jointly (vi)AE activations and GMF shape parameters (versus (vi)AE activations on

their own) did not improve prediction of human behavior (see Figures 4.7 and 4.11 for ad-

ditional candidate models, including combinations of the predictor spaces reported here,

weighted and unweighted Euclidean distances, variational AEs, and decision neuron

activities; see figure 4.8 for the same comparison using Kendall’s tau as an evaluation

metric; see figures 4.9 and 4.10 for a model comparison on the across-participant aver-

age). Note that the performances of these models could not be reached when predicting

the behavior of participants with the behavior of other participants (see Figures 4.6–4.8).

This means that participants behaved in systematically idiosyncratic ways.

In sum, in our first stage to assess functional equivalence between humans and their

DNN models, we built forward models that predicted human behavior from the DNNs’

embedding layers. The embedding layer of the (vi)AE won. We further showed that

better predictions of human behavior from the embedding layers of DNNs were caused

by their increased representation of the 3D face features that predict human behavior.

However, a simple PCA of the pixel images performed competitively. At this stage, we

know that better predictions of human behavior are caused by better representations of

the 3D shape features that humans use for behavior. Next, we characterized what these

3D features are.
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Figure 4.6: Caption on following page.
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Figure 4.6 (previous page): Accuracy of forward models in predicting choice
behavior (related to figure 4.5).
A Choice accuracy. On each trial, humans were presented with an array of 6 different
random faces. They were asked to choose the one that most resembled the respective
target colleague prior to reporting the perceived similarity on a 6-point rating scale. On
each trial, the forward models “chose” the face of the array of 6 that had the highest
rating among all faces of the array. The panel shows how well each model’s choices
matched the choices of the human participants. Pairwise matches of human
participants with each other are displayed for reference. See figure 4.7 for explanation
of the model shorthands. B Comparisons of the posterior distributions of the main
effects for all forward models from Bayesian linear modeling of the raw performances.
For each pair in the matrices, the color gradient reflects the fraction of samples of the
system color coded on the y-axis that is larger than the system color coded on the
x-axis. See x-axis labels for color legend. Experiment on human participants was
conducted by Jiayu Zhan.

Figure 4.7 (next page): Bivariate evaluations of a larger set of encoding models
(related to figure 4.5).
A Mutual Information (MI) of observed behavior and test-set predictions from GMF
features and various functions of DNN activations as well as human participants
predicting other human participants (pairwise comparisons). Models include variational
autoencoders (“VAE”, (Kingma & Welling, 2014)), VAEs with regularization (“β -VAE”,
(Higgins et al., 2016)), euclidean distances of representations of the ground truth
colleagues and the respective trials (“δ ”), weighted euclidean distances (“δ -lincomb”),
pre-softmax decision neuron activity (“logits”) of the respective colleagues of ClassID
and ClassMulti networks (“dn”) as well as of ID classifiers trained on top of frozen VAE
encoder networks (linear, “VAEldn”, and with 2 rectified fully connected layers of 512
neurons (“VAEnldn"). B Comparisons of the posterior distributions of the main effects for
all systems from Bayesian linear modeling of the raw performances. For each pair in
the matrices, the color gradient reflects the fraction of samples of the forward model
color coded on the y-axis that is larger than the forward model color coded on the
x-axis. See x-axis labels for color legend. Experiment on human participants was
conducted by Jiayu Zhan.
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Figure 4.7: Caption on previous page.
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Figure 4.8: Bivariate evaluations of a larger set of encoding models (related to
figure 4.5).
A Kendall’s τ of observed behavior and test-set predictions from GMF features and
DNN activations as well as human participants predicting other human participants
(pairwise comparisons). Except for the different metric, the analysis of this figure is
identical to figure 4.7. See figure 4.7 for explanation of the model shorthands. B
Comparisons of the posterior distributions of the main effects for all systems from
Bayesian linear modeling of the raw performances. For each pair in the matrices, the
color gradient reflects the fraction of samples of the forward model color coded on the
y-axis that is larger than the forward model color coded on the x-axis. See x-axis labels
for color legend. Experiment on human participants was conducted by Jiayu Zhan.
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Figure 4.9: Accuracy of forward models in predicting choice behavior consensus
across participants (related to figure 4.5).
A Choice accuracy. Instead of predicting the behavior of individual human participants
as in figure 4.6, here, for each panel of 6 faces per trial, the option chosen by the
highest number of participants was used to represent the consensus across
participants. See figure 4.7 for explanation of the model shorthands. B Comparisons of
the posterior distributions of the main effects for all systems from Bayesian linear
modeling of the raw performances. For each pair in the matrices, the color gradient
reflects the fraction of samples of the forward model color coded on the y-axis that is
larger than the forward model color coded on the x-axis. See x-axis labels for color
legend. Experiment on human participants was conducted by Jiayu Zhan.
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Figure 4.10: Bivariate evaluations of a larger set of encoding models on ratings
averaged across participants (related to figure 4.5).
A Mutual Information of averaged behavior and test-set predictions from GMF features
and DNN activations as well as human participants predicting other human participants.
Except for the different predictee, the analysis of this figure is identical to figure 4.7. See
figure 4.7 for explanation of the model shorthands. B Comparisons of the posterior
distributions of the main effects for all systems from Bayesian linear modeling of the raw
performances. For each pair in the matrices, the color gradient reflects the fraction of
samples of the forward model color coded on the y-axis that is larger than the forward
model color coded on the x-axis. See x-axis labels for color legend. Experiment on
human participants was conducted by Jiayu Zhan.
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Figure 4.11: Redundancy with shape of a larger set of encoding models (related to
figure 4.5).
A Redundant information about human behavior that is shared between model
predictions and GMF shape feature predictions. See figure 4.7 for explanation of the
model shorthands. B Comparisons of the posterior distributions of the main effects for
all systems from Bayesian linear modeling of the raw redundancies. For each pair in the
matrices, the color gradient reflects the fraction of samples of the forward model color
coded on the y-axis that is larger than the forward model color coded on the x-axis. See
x-axis labels for color legend. Experiment on human participants was conducted by
Jiayu Zhan.
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4.3.2 Embedded face-shape features that predict human behavior

GMF

DNN model

?
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E (2. & 3.), F, G, H

Human
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Figure 4.12: Caption on following page.

The viAE learned to represent on its embedding layer, from 2D images, the face-

shape features that provide the best per-trial prediction of human behavior. Here, we

establish: (1) how the DNNs represent these face-shape features on their embedding

layers; and (2) how each feature impacts behavioral prediction in the forward models

discussed in stage 1 above. We did not analyze the GMF texture features further be-

cause they could not predict human behavior (see figure 4.5).
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Figure 4.12 (previous page): DNN representations of face-shape features for the
forward linear models of human behavior.
A Schema of the analyses. B Legend for 3D color codes in C and H. C Linear readout
of face-shape features from the embedding layers of the five DNNs, where readout
fidelity of GMF parameters is plotted per face vertex as the mean absolute error (MAE,
averaged across a large set of test faces). Higher fidelity (lower MAE) of (vi)AE
activations (compared with other DNNs) shows they better represent GMF shape
features. D Correlation matrix of error patterns across DNNs. Colored dots on x and y
axes represent each DNN model (see F for a legend). Correlating the MAE patterns
from C across models reveals a high similarity of errors across models: vertices that are
difficult to decode from Triplet activity are also difficult to decode from viAE activity. E
Simulating DNN predictions of observed human behavior with GMF shape features
using re-predictions. First, we estimate BS, the shape receptive fields (SRFs) that
predict human behavior from GMF shape features. Second, we estimate BN , the
weights that predict human behavior from DNN activations. Third, we estimate BSN , the
SRFs that predict DNN predictions of human behavior from GMF shape features. F
Aggregated SRF results from all participants and target familiar colleagues. x-axis:
correlations between original DNN predictions of human behavior and the simulated
predictions; y-axis: correlations between the human SRFs with DNN SRFs. The ideal
DNN model should be located in the top right corner. The (vi)AE comes closest to this
location. Each dot is one test set of one participant in one target familiar colleague
condition. Overlaid crosses denote 95% (bold) and 50% (light) HPDIs of main effects of
feature spaces from Bayesian linear models of the raw results. G Comparisons of the
posterior distributions of main effects of the models from Bayesian linear modeling of
the results in F. H Weight profiles of forward models (SRFs) plotted on 3D scatter of
vertices. From the left, simulated shape weights of each DNN forward model (see main
text, schematic in A, and equations in E for explanations) and weights of the direct GMF
shape forward model of human responses. Plots show results from a typical participant
with the lowest average difference from the six pooled group medians in F. Color coding
in D, F, and G is the same. Experiment on human participants was conducted by Jiayu
Zhan.

Face-shape features represented on the embedding layers of DNNs

To reveal these face-shape features, we built linear decoding models. These used the

embedding layer activations to predict the positions of individual 3D vertices (see exper-

imental procedures 4.5.6). We then evaluated the fidelity of their reconstructions with

the Euclidean distance between the linearly predicted and the objective 3D face vertex

positions. Fidelity increased from the Triplet to the two classifier networks, to the (vi)AE

(which had the lowest error, see figure 4.12C). The pixelPCA achieved a similarly low er-

ror, and all models shared a common type of reconstruction errors (figure 4.12D) which

misrepresented the depth of the peripheral and nasal face regions.

Patterns of face-shape features that predict behavior in the DNN forward models

To better understand the shape features that the aforementioned forward models used

to predict human behavior, we examined their linear weights (see experimental proce-
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dures 4.5.5). The forward GMF shape model weights directly relate a 3D shape space

to human behavior. Thus, their weights form an interpretable face-space pattern that

modulates behavior–i.e., a “shape receptive field” (SRF), see figure 4.12H (rightmost

column). In contrast, the forward models based on the DNN relate (i.e., linearly weigh)

DNN activations, not GMF shape parameters, to human behavior. Thus, we used an

indirect approach to interpret these weights. We built auxiliary forward models that sim-

ulated (i.e., linearly re-predicted, figure 4.12E) the DNN predictions of human behavior,

but this time using the GMF shape parameters instead of the embedding layers. This

produced interpretable SRFs (figure 4.12H) with which we could therefore understand

which shape features are (or are not) represented on the DNN embedding layers to pre-

dict human behavior. Specifically, we reasoned that DNN activations and GMF features

would similarly predict behavior if: (1) both shared the same SRF; and (2) predictions

from DNN activations were similar to their simulations based on GMF features. Our anal-

yses revealed that the (vi)AE best satisfied these two conditions (figure 4.12F and G).

PixelPCA features were again close to the performance of the best DNN models (figure

4.12F). In this second stage to assess functional feature equivalence, we identified, at

the level of individual 3D face vertices, the shape features that DNNs represent to pre-

dict (cf. “forward modeling of human behavior using DNN activations”) human behavior.

Of all five DNNs, we found that the (vi)AE represents face-shape vertices most faith-

fully, leading to the most accurate predictions of human behavior. However, the simpler

pixelPCA used apparently very similar features.

4.3.3 Decoding the shape features with reverse correlation

So far, we have assessed the functional equivalence between human behavior and DNN-

based forward models in two stages: we have quantified to what degree the DNN model

predictions of human behavior are attributable to GMF face-shape parameters (in stage

1), and we have characterized how the DNN models used specific patterns of face-shape

parameters to predict behavior (in stage 2). In this third stage, we use the behavior ob-

served in humans and predicted by DNN models to reconstruct, visualize, and compare

the actual 3D shape features of the target faces represented in both humans and their

DNN models. To run the human experiments (Zhan et al., 2019a) with the DNN models,

we proceeded in three steps (see experimental procedures 4.5.7). First, we used the

forward models described in stage 1 to predict human behavior in response to all face

stimuli of the human experiment (6*3*1,800 = 10,800 face stimuli per familiar target face,

Zhan et al., 2019a). On each trial, the forward models “chose” the face stimulus with the

highest predicted rating from an array of 6 (see figure 4.6). This resulted in 1,800 cho-

sen faces and their corresponding similarity rating predictions. Second, for each model

and participant, we regressed (mass univariately) the GMF parameters of the chosen

faces on the corresponding ratings to derive a slope and intercept per GMF shape and

texture parameter. Third, we multiplied these slopes by individual “amplification values”



4.3. RESULTS 117

?

GMF

1.

2.

3.

Human
behavior

DNN model

Figure 4.13: Caption on following page.

that maximized the behavioral responses (figure 4.13B). The results were faces whose

functional features elicited a high similarity rating in the DNN models (figure 4.13C),

analogous to faces that elicited high similarity ratings in each human participant, as in

the original study (Zhan et al., 2019a). We then compared the functional face features
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Figure 4.13 (previous page): Internal templates reconstructed from human
behavior and its model predictions
A Schema of analysis. We predicted human behavior from GMF features (1.) and DNN
activations (2.). With mass-univariate regression, we predicted each individual GMF
feature from human behavior and its DNN predictions (3.). B Amplification tuning
curves. We presented the reverse correlated templates amplified at different levels to
each model. Solid lines denote pooled median across participants and colleagues,
shaded regions denote 95% (frequentist) confidence intervals. Black lines at the top
denote 95% (bold) and 50% (light) highest density estimates of human amplification
values. The linear GMF shape and texture forward models predicted monotonically
increasing responses for higher amplification levels. Other models peaked at a given
amplification level. See Figure S9 for amplification tuning responses of a broader range
of models. C Comparison of rendered faces. Panels show ground truth face of one
exemplary target familiar colleague captured with a face scanner (top left) and
reconstructions of the face features from human behavior and its DNN predictions for
one typical participant (i.e., closest to the pooled group medians shown in D). Figure
4.19 presents the three other familiar colleagues. D Evaluation of correspondence of
humans and model templates (“humanness,” left) and the relation of templates to
ground truth faces (“veridicality,” right). The x axis shows Pearson correlation of the 3D
features projected onto a single inward-outward direction; the y axis shows the mean
absolute error (MAE) of the 3D features. Each dot corresponds to a single participant in
a specific target familiar colleague condition. Crosses denote 95% (bold) and 50%
(light) HPDIs for each system from Bayesian linear modeling of the results. E
Comparison of main effects of systems in Bayesian linear models of the results in (D).
See also figures 4.14–4.19 and 4.27. Experiment on human participants was
conducted by Jiayu Zhan.

of human participants and their DNN models (figure 4.13D, left). We also computed

how veridical these human and DNN features were to the ground truth faces of familiar

colleagues (figure 4.13D, right).

How human-like are DNN features?

The viAE had the most human-like features, with the lowest mean absolute error (MAE,

figure 4.13D, left, y-axis; comparison with second best DNN model, AE > viAE: fh1 =

0.9943) and a correlation with human features similar to that of the AE (figure 4.13D, left,

x-axis; viAE > AE: fh1 = 0.8489). All DNN models had a lower MAE than the simple

pixelPCA model (all DNNs < pixelPCA: fh1 > 0.9492), but only the (vi)AE had a better

correlation with human features (AE and viAE > pixelPCA: both fh1 > 0.9729).

How veridical are DNN and human features?

viAE features were closest to the veridicality of human features to the ground truth 3D

faces, with the lowest MAE (figure 4.13D, right, y-axis; second best DNN model AE >

viAE: fh1 = 0.9558; viAE > human: fh1 = 0.9996) and a correlation comparable with that

of the AE. All DNN models had a lower MAE than the simple pixelPCA model (all DNNs
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< pixelPCA: all fh1 > 0.9732), but only the (vi)AE had a better correlation with the ground

truth face identity features (AE and viAE > pixelPCA: both fh1 > 0.8842).

In sum, this analysis compared the internal representations of the target faces in hu-

man participants and their DNN models, and all with the ground truth 3D shapes of the

target identities. These comparisons, supported by intuitive visualizations, revealed that

the viAE had internal feature representations that best matched the internal representa-

tions of humans.
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Figure 4.14: Amplification tuning responses of additional encoding models
(related to figure 4.13).
A Amplification tuning responses of euclidean distances (“δ ”) of templates amplified at
different levels and ground truth representations of the target colleagues. Solid lines
denote the pooled median across participants and target colleagues, shaded regions
denote 95% (frequentist) confidence intervals bootstrapped using 10,000 samples. B
Same as in A, but showing amplification tuning responses of linearly weighted
euclidean distances instead (“δ -lincomb”). C Same as in A, but showing amplification
tuning responses of pre-softmax decision neuron activities (“logits”) of respective target
colleagues instead (“dn”). Experiment on human participants was conducted by Jiayu
Zhan.
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Figure 4.15: Evaluation of the mean absolute error between reverse-correlated
faces of humans and reverse-correlated faces of models for a larger set of
encoding models (related to figure 4.13).
A Mean absolute error (MAE, computed as the euclidean distances in 3D space
averaged across vertices) of reverse correlated templates of the models and those of
humans. See figure 4.7 for explanation of the model shorthands. B Comparisons of the
posterior distributions of the main effects for all systems from Bayesian linear modeling
of the raw performances. For each pair in the matrices, the color gradient reflects the
fraction of samples of the forward model color coded on the y-axis that is larger than the
forward model color coded on the x-axis. See x-axis labels for color legend. Experiment
on human participants was conducted by Jiayu Zhan.
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Figure 4.16: Evaluation of the Pearson correlation between reverse-correlated
faces of humans and reverse-correlated faces of models for a larger set of
encoding models (related to figure 4.13).
A Pearson correlation (computed with vectors of 3D vertices projected on a single
inward-outward dimension) of reverse correlated templates of the models and those of
humans. See figure 4.7 for explanation of the model shorthands. B Comparisons of the
posterior distributions of the main effects for all systems from Bayesian linear modeling
of the raw performances. For each pair in the matrices, the color gradient reflects the
fraction of samples of the forward model color coded on the y-axis that is larger than the
forward model color coded on the x-axis. See x-axis labels for color legend. Experiment
on human participants was conducted by Jiayu Zhan.
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Figure 4.17: Evaluation of the mean absolute Error between reverse-correlated
faces of humans and models and the ground truth face shapes for a larger set of
encoding models (related to figure 4.13).
A Mean absolute error (MAE, computed as the euclidean distances in 3D space
averaged across vertices) of reverse correlated templates of the models and ground
truth 3D shape of the target colleagues as captured with a 3D camera array. See figure
4.7 for explanation of the model shorthands. B Comparisons of the posterior
distributions of the main effects for all systems from Bayesian linear modeling of the raw
performances. For each pair in the matrices, the color gradient reflects the fraction of
samples of the forward model color coded on the y-axis that is larger than the forward
model color coded on the x-axis. See x-axis labels for color legend. Experiment on
human participants was conducted by Jiayu Zhan.
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Figure 4.18: Evaluation of the Pearson correlation between reverse-correlated
faces of humans and models and the ground truth face shapes for a larger set of
encoding models (related to figure 4.13).
A Pearson correlation (computed with vectors of 3D vertices projected on a single
inward-outward dimension) of reverse correlated templates of the models and those of
humans. See figure 4.7 for explanation of the model shorthands. B Comparisons of the
posterior distributions of the main effects for all systems from Bayesian linear modeling
of the raw performances. For each pair in the matrices, the color gradient reflects the
fraction of samples of the forward model color coded on the y-axis that is larger than the
forward model color coded on the x-axis. See x-axis labels for color legend. Experiment
on human participants was conducted by Jiayu Zhan.
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Figure 4.19: Renderings of reverse-correlated templates of the three remaining
colleagues of exemplary participant (related to figure 4.13).
Comparison of rendered faces for one exemplary target colleague. Top left panel in
each block of two rows shows ground truth face of one target colleague as captured
with a 3D camera array. Following panels show reconstructions of the face features
from human observed and predicted behavior for one typical participant (i.e. closest to
the pooled group medians shown in figure 4.12D). Experiment on human participants
was conducted by Jiayu Zhan.

4.3.4 Generalization testing

A crucial test of models of human behavior is their generalization to conditions that differ

from the distribution of the training data. We performed such out-of-distribution testing
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Figure 4.20: Caption on following page.

in five different tasks (Zhan et al., 2019a), using the GMF to change the viewing angle,

the age (to 80 years), and the sex (to the opposite sex) of the target familiar face (figure

4.20C). Importantly, we did so while also selectively amplifying functional face features

that were expected (figure 4.20A) or not expected (figure 4.20B) to cause the identifi-

cation of each familiar face (based on reverse correlation, see experimental procedures

4.5.3). Using these new stimuli, we compared the generalization performance of a new

group of n = 12 human validators and the DNN models. On each trial, validators re-

sponded by selecting the familiar identity that was most similar to the face stimulus (or

used a fifth option when the stimulus was not similar to any familiar face). For each face

stimulus, we predicted the human similarity ratings using the forward models fitted to

each of the 14 participants and four familiar faces as described in stage 1 above, and

chose the faces that yielded the highest predicted rating. We then compared the absolute

error of the model choice accuracies with the human choice accuracies. The viAE best
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Figure 4.20 (previous page): Generalization testing.
A Example stimuli for the task-relevant condition in the 0◦ viewing angle condition of
one familiar colleague. Using a group model, each face feature of each familiar identity
was classified as being either task relevant or task irrelevant for human identification.
Versions of each colleague were then created whereby the task-relevant (versus
-irrelevant) features were amplified at different levels, while the remaining features were
defined as those of the average face. B Example stimuli for the task-irrelevant condition
in the 0◦ viewing angle condition of the same target familiar identity as in A. C
Renderings of the task-relevant face amplified at a level of 1.3 for five different
generalization conditions. D Difference of choice accuracy between the task-relevant
and -irrelevant conditions. Positive values denote a higher accuracy when task-relevant
features were amplified. E Posterior distributions of main effects of feature spaces when
modeling absolute error (relative to human behavior) with Bayesian linear models. Gray
bandings denote density estimates of thresholds separating the five possible different
error values (human accuracies are averaged across five ratings of the same item). F
Comparison of the posterior distributions in E. For each pair in the matrices, the color
gradient reflects the fraction of samples of the feature space color coded on the y-axis
> the predictor space color coded on the x-axis. See also Figures 4.21–4.27.
Experiment on human participants was conducted by Jiayu Zhan.

matched human identification performance, which both increased when the functional

features were amplified in the stimulus (figure 4.20D–F). The viAE had only a slightly

smaller error compared with the AE for the frontal view (viAE < AE: fh1 = 0.8958), but a

better view invariance with a clearly smaller error for the −30◦ (viAE < AE: fh1 = 0.9995)

and +30◦ views (viAE < AE: fh1 = 0.9696). Only the GMF shape feature model came

close to the (vi)AE (and was better than both AEs at −30◦, both fh1 = 1, and +30◦ both

fh1 > 0.7656). However, recall that the GMF is a non-image-computable “ground truth”

3D model whose input is not affected by 2D image projection. Critically, the simple pix-

elPCA model did not generalize well to viewpoint changes (viAE and AE < pixelPCA:

fh1 = 1) except in the age generalization task, where it had a slightly lower error than the

second best viAE (pixelPCA < viAE: fh1 = 0.9940). In the opposite sex task, the viAE

again had the lowest error (viAE < second best AE: fh1 = 1). Whereas previous analyses

suggested that a model as simple as the pixelPCA could explain human responses, more

comprehensive tests of the typical generalization gradients of face identity demonstrated

that such a conclusion was unwarranted. Thus, rigorous comparative tests of typical

generalization gradients are required to properly assess human visual categorization in

relation to their DNN models.
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Figure 4.21: Caption on following page.
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Figure 4.21 (previous page): Generalization testing of a larger set of encoding
models (related to figure 4.20).
A Generalization testing for VAE models with various degrees of regularization. None
yield a factorization of the latent spaces that disentangles viewing angle from other
factors. Top row shows difference of choice accuracy between the diagnostic and
non-diagnostic conditions. Positive values denote a higher accuracy when diagnostic
features were amplified. Bottom row shows posterior distributions of main effects of
feature spaces when modeling absolute error vs humans with Bayesian linear model.
Grey bandings denote density estimates of thresholds separating the five different error
values possible (human accuracies are averaged across five ratings of the same item).
B – D show the same as in A, but for different forward models. See figure 4.7 for
explanation of the model shorthands. Experiment on human participants was
conducted by Jiayu Zhan.
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Figure 4.22: Comparison of posterior distributions for larger set of forward
models in -30° viewing angle generalization (related to figure 4.20).
Comparison of the posterior distributions of the leftmost column in figure 4.21. For each
pair in the matrices, the color gradient reflects the fraction of samples of the feature
space color coded on the y-axis that is larger than the predictor space color coded on
the x-axis. See figure 4.7 for explanation of the model shorthands. Experiment on
human participants was conducted by Jiayu Zhan.
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Figure 4.23: Comparison of posterior distributions for larger set of forward
models in 0° viewing angle generalization (related to figure 4.20).
Comparison of the posterior distributions of the second column in figure 4.21. For each
pair in the matrices, the color gradient reflects the fraction of samples of the feature
space color coded on the y-axis that is larger than the predictor space color coded on
the x-axis. See figure 4.7 for explanation of the model shorthands. Experiment on
human participants was conducted by Jiayu Zhan.
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Figure 4.24: Comparison of posterior distributions for larger set of forward
models in +30° viewing angle generalization (related to figure 4.20).
Comparison of the posterior distributions of the middle column in figure 4.21. For each
pair in the matrices, the color gradient reflects the fraction of samples of the feature
space color coded on the y-axis that is larger than the predictor space color coded on
the x-axis. See figure 4.7 for explanation of the model shorthands. Experiment on
human participants was conducted by Jiayu Zhan.
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Figure 4.25: Comparison of posterior distributions for larger set of forward
models in 80 years generalization (related to figure 4.20).
Comparison of the posterior distributions of the fourth column in figure 4.21. For each
pair in the matrices, the color gradient reflects the fraction of samples of the feature
space color coded on the y-axis that is larger than the predictor space color coded on
the x-axis. See figure 4.7 for explanation of the model shorthands. Experiment on
human participants was conducted by Jiayu Zhan.
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Figure 4.26: Comparison of posterior distributions for larger set of forward
models in opposite sex generalization (related to figure 4.20).
Comparison of the posterior distributions of the rightmost column in figure 4.21. For
each pair in the matrices, the color gradient reflects the fraction of samples of the
feature space color coded on the y-axis that is larger than the predictor space color
coded on the x-axis. See figure 4.7 for explanation of the model shorthands.
Experiment on human participants was conducted by Jiayu Zhan.

4.4 Discussion

In this study, we sought to address the long-standing problem of interpreting the infor-

mation processing performed by DNN models so as to ground their predictions of human

behavior in interpretable functional stimulus features. Key to achieving this was our use

of a generative model to control stimulus information (3D face shape and RGB texture).

We trained five DNN models with different objectives, following which we activated the
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Figure 4.27: Caption on following page.

DNNs’ embedding layers with the face stimuli of a human experiment (in which partic-

ipants were asked, based on their memory, to assess the similarity of random faces

to the faces of four familiar colleagues). We then used these activations to fit forward

models that predicted human behavior. Of the tested models, (vi)AE embeddings best

predicted human behavior, because these embeddings represented the human-relevant

3D shape of familiar faces with the highest fidelity. Next, we reconstructed the face fea-
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Figure 4.27 (previous page): Ranking of extended set of models (related to Figures
4.5, 4.13 and 4.20).
We integrated the results of the models in all comparisons except for the re-prediction
analysis reported in figure 4.12 (which is only applicable to linear combination forward
models). Redundancy of the shape model with itself is not computable and was thus
manually set to the best possible score. Scores in veridicality of reverse correlation
were defined as the absolute difference to the veridicality achieved by humans. Scores
in generalization testing (absolute error to human behavior) were additionally penalized
for a low delta in accuracy of diagnostic and non-diagnostic stimuli. Performances of
models (maxima a posteriori of Bayesian linear models) were normalized within
comparisons to range from 0 (worst considered model) to 1 (best considered model).
Scores were summed across comparisons and divided by the number of comparisons
for the overall score. See figure 4.7 for explanation of the model shorthands.
Experiment on human participants was conducted by Jiayu Zhan.

tures represented in the embeddings that impact the behavioral predictions. The 3D

reconstructions demonstrated that the viAE models and humans used the most similar

functional features for behavior. Lastly, we found that the viAE best matched human

generalization performance in a range of five different out-of-distribution changes of the

stimuli (testing several viewing angles, older age, and opposite sex versions of the four

colleagues).

Together, our approach (cf. figure 4.1) and analyses suggests a more stringent test of

functional feature equivalence between human responses and their DNN models beyond

the simple equivalence of responses to uncontrolled naturalistic stimuli. Such deeper

functional features equivalence enables the mechanistic interpretations of the process-

ing of these same features across the layers of the human brain and its DNN models.

However, as shown in psychophysics, exhaustively testing the generalization gradients of

human visual categorization is difficult because it requires not only modeling behavioral

(or neuronal) responses but also the real-world (and artificial) dimensions of variations

of the stimulus categories under consideration.

4.4.1 Why focus on functional equivalence?

A key finding that motivates usage of DNNs as models of the human brain is that their

activations predict behavioral and neural responses to novel real-world stimuli better than

any other model. However, it remains unclear whether these surface similarities between

humans and DNNs imply a deeper similarity of the underlying information-processing

mechanisms (Saxe et al., 2021). Real-world stimuli comprise multiple unknown correla-

tions of undefined features. It is generally unknown which of these features DNNs use,

leading to unpredictable out-of-distribution generalizations. Consequently, it is difficult

to assess the featural competence of the model that predicts the behavioral or neural

responses. Surprisingly simple feature alternatives (“feature fallacy" Diedrichsen, 2020;

Daube et al., 2019b) could explain such surface similarities (Lapuschkin et al., 2019).
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Relatedly, extensive testing of the generalization gradients of humans and DNNs is re-

quired to reveal algorithmic intricacies that would otherwise remain hidden, leading to

failure with out-of-distribution exemplars.

Marr’s framework offers a solution to these problems (Marr, 2010): we should con-

strain the similarity of complex information-processing mechanisms at the abstract com-

putational level of their functional goals of seeking specific information to resolve a task.

Our methodology sought to assess whether the human participants and their DNN mod-

els processed similar functional face features in a face identity task where features are

defined within a generative model of the stimulus. Once functional equivalence is estab-

lished, we can turn to the algorithmic-implementation levels of Marr’s analysis. That is,

we can seek to understand where, when, and how detailed mechanisms of the occipi-

toventral hierarchy, and suitably constrained DNN architectures (e.g., with two communi-

cating hemispheres, properties of contralateral followed by bilateral representations, and

so forth) process the same functional features of face identity, using a model of the stimu-

lus (Schyns et al., 2009). Such algorithmic-implementation-level explorations could then

consider estimates of the algorithmic complexity of the task (Chaitin, 1975) to regular-

ize explanations of model predictions to be as simple as possible (Geirhos et al., 2020;

Morgan, 2018; Buckner, 2019; Kubilius, 2018). We see the deeper functional equiva-

lence of the information processed as a necessary prerequisite to surface comparisons

of network activations or behaviors in a task.

4.4.2 Hypothesis-driven research using generative models

The idea of using generative models in psychophysics and vision research is not new

(Olman & Kersten, 2004; Greene et al., 2014; Lescroart & Gallant, 2019; Jack & Schyns,

2017). It arose from the recognition by synthesis framework (Grenander, 1994; Yuille &

Kersten, 2006), itself an offspring of Chomsky’s generative grammars (Chomsky, 1965).

Explicit experimental hypotheses are directly tied to the parameterization of stimuli by

generative models and vice versa. For example, we explicitly tested that a parameteri-

zation of faces in terms of their 3D shape and RGB texture could mediate human and

DNN behavior in the task (Zhan et al., 2019a; Yildirim et al., 2020). Our study thereby

contributes to the debate about the degree to which convolutional DNNs can make use

of shape information in images (Xu et al., 2018; Kubilius et al., 2016; Baker et al., 2018;

Geirhos et al., 2019; Brendel & Bethge, 2019; Hermann & Kornblith, 2019; Doerig et al.,

2020). In this context, the exact structure of the information represented in the human

brain remains an empirical question. The veridical representation implied by computer

graphics models (Yildirim et al., 2020; Chang et al., 2021; Jozwik et al., 2021) is one

hypothesis. Other specific ideas about face, object, and scene representations must and

will be tested with different designs of generative models, including DNNs (VanRullen

& Reddy, 2019; Bashivan et al., 2019; Ponce et al., 2019). The ideal generative model

for the encoding function of visual categorization would “simply” be the inverse of the
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function implemented by the biological networks of the brain. Such an inverse would

provide the control to experiment with each stage of the brain’s algorithm of the stimulus

processing for visual categorizations. In the absence of such an ideal, we must develop

alternative generative models to test alternative hypotheses of the brain’s encoding func-

tion for categorization. Modern systems such as generative adversarial networks (Kar-

ras et al., 2020) and derivatives of the classical variational autoencoders (VAEs) such as

vector-quantized VAEs (van den Oord et al., 2018b; Razavi et al., 2019) and nouveau

VAEs (Vahdat & Kautz, 2020) which can be trained on large, naturalistic face databases,

can synthesize tantalizingly realistic faces, complete with hair, opening up an interest-

ing avenue for future research and applications (Suchow et al., 2018; Bontrager et al.,

2018; Todorov et al., 2020; Goetschalckx et al., 2021; Peterson et al., 2021a). However,

understanding and disentangling their latent spaces remains challenging (Mathieu et al.,

2019; Schölkopf et al., 2021).

4.4.3 viAE wins

Among the tested DNNs and across the multiple tests, the viAE provided the best face-

shape representations to predict human behavior. With the notable exception of the

generalization testing, the simple nonlinear pixelPCA model came close to this perfor-

mance. This speaks to a model of human familiar face perception whereby the goal of

feedforward processing is a view-invariant but holistic representation of the visual input.

Interestingly, the Triplet, ClassID, and ClassMulti built up to this performance level (cf.

Figures 3, 4, and 5). This suggests that the latent space learned to reconstruct an entire

image of the input ((vi)AE) is approximated by the latent space learned when performing

multiple stimulus categorizations (recall that ClassMulti learned all the categorical factors

of the GMF), whereas simpler cost functions (Triplet and ClassID) yielded less informa-

tive latent spaces. Their discriminative goals can be solved with shortcuts (Geirhos et al.,

2020) relying on a few isolated features, which are not sufficient to generalize as humans

do (Hoel, 2021). This aligns with previous findings that multi-task learning (Scholte et al.,

2018; Standley et al., 2020; Mao et al., 2020) and generative models (Schott et al., 2018)

enhance robustness against adversarial attacks and best predict behavior under severe

testing (Golan et al., 2020). In relation to faces as a broad category, future research

could systematically study the number and combinatorics of categorizations (e.g., iden-

tity, sex, age, ethnicity, facial expressions) and rendering factors (e.g., illumination, pose,

occlusions) that would be required to enhance the latent spaces to match (or surpass)

the predictiveness of behavior of the latent space of the viAE, also across varying levels

of familiarity (Blauch et al., 2020). Note that our specific viAE model remained imperfect

in its prediction of human behavior and functional similarity of features. Its architecture

did not incorporate many well-known characteristics of the human visual hierarchy, in-

cluding temporal, recurrent9 processing (e.g., with multiple fixations (Fabius et al., 2019)

due to foveated and para-foveated image resolution (Friston et al., 2012)), contralateral,
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hemispherically split representations of the input, transfer of visual features across hemi-

spheres (Ince et al., 2016), and integration in the ventral pathway (Zhan et al., 2019b),

among others. An algorithmic-implementation-level explanation of the functional features

learned by the viAE should be part of future research.

4.4.4 Constraints on the comparison of models with human behav-

ior

Our modeling explicitly fitted regressions of multivariate features on unidimensional be-

havior (Naselaris et al., 2011). Our attempts to directly (parameter-free) extract one-

dimensional predictions of human behavior from DNNs failed (4.7). Whereas models

might exist to solve this problem more efficiently (Golan et al., 2020; Schott et al., 2018),

an obstacle remains in that the human task is subjective: we do not expect the behavior

of a given participant to perfectly predict that of another (see figures 4.6 and 4.7, (al-

though representations tend to converge across participants Zhan et al., 2019a; Smith

et al., 2012)). Participants can have their own internal representations of each target

colleague (Schyns et al., 1998; Smith et al., 2012), which is impossible to predict with-

out considering data from individual participants. From that perspective, learning an

abstracted feature representation that still allows prediction of individual behavior is an

attractive compromise. We implemented such a weighting, either directly as a linear

combination of GMF features and DNN activations, or as a linear combination of feature-

or activation-wise distances of stimuli to model representations of the target identities.

For the image-computable models, these approaches did not lead to strong differences.

Arbitrating between such computational accounts of human categorization behavior thus

remains a question for future research (Smith & Sloman, 1994; Griffiths et al., 2017;

Chang & Tsao, 2017). The interpretability of DNNs is now an important research topic.

Sophisticated methods exist to visualize the stimulus features that cause the activation

of a network node, such as deconvolution (Zeiler & Fergus, 2013), class activation maps

(Zhou et al., 2015), activation maximization (Erhan et al., 2009; Simonyan et al., 2014;

Olah et al., 2017, 2018, 2020), locally linear receptive fields (Keshishian et al., 2020),

or layer-wise relevance propagation (Lapuschkin et al., 2019; Bach et al., 2015; Mon-

tavon et al., 2018). These methods usually rely on the noise-free accessibility of the

activations, which is not possible with humans, making these methods unsuitable to

compare humans with their DNN models. This is a significant hindrance to developing

a human-like artificial intelligence, which requires resolving the challenge of designing

experiments and analyses that enable inferences about the hidden representations of

both humans and models (Funke et al., 2021; Thoret et al., 2021).
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4.4.5 Conclusion

We have developed an example of how we can extend mechanistic interpretations of

DNN predictions of human responses, in which we progress beyond surface predictions

to a functional equivalence of the features that affect behavior. We did so by control-

ling complex stimulus features via an interpretable generative model. The limits of what

we can predict about human behavior may be defined by the limits of current computer

vision models. However, within these limits, the proportion that we can meaningfully un-

derstand is defined by the ever increasing capacities of interpretable generative models

of stimulus material (Gan et al., 2020). Databases of natural images will only take us so

far. Hence, we believe that future research attention should be distributed on the gamut

between discriminative models to do the tasks, and generative models of the stimulus to

understand what these models do.

4.5 Methods

4.5.1 Generative model of 3D faces

The generative model of 3D faces decomposes the shape and texture components of a

database of 357 faces, captured with a 3D face-capture system (Dimensional Imaging

Ltd., 2021) to enable their controlled recombination (Zhan et al., 2019a). For this study,

two variations of the database were created: one excluding the faces of two female target

colleagues and another excluding the faces of two male target colleagues. Each of the

two database subsets then consists of a [355 · (4,735 · 3)] (N · (vertices ·XY Z)) shape

matrix S and 5 [355 · (800/2i ·600/2i ·3))] (N · (X/2band ·Y/2band ·RGB)) texture matrices

Ti for bands i = 0, ...,4 of a Gaussian pyramid model.

For each of the two database subsets, the modeling is achieved in two steps. In the

first step, two separate general linear models are used to estimate the linear parameters

of a constant term as well as sex, age, ethnicity (coded using two dummy variables),

and their two- and three-way interactions. This is done with a [355 ·12] design matrix X

describing the predictor values, a [12 · (4,735 ·3)] matrix AS describing the shape coeffi-

cients, and [12 · (800/2i ·600/2i ·3)] matrices ATi describing the texture coefficients:

S = XAS +ES (4.1)

Ti = XATi +ETi (4.2)

Here, ES [355 · (4,735 · 3)] and ETi [355 · (800 · 600 · 3)] are the model residuals for

shape and texture, respectively. AS and ATi are estimated using least-squares linear

regression.

In the second step, the residual components ES and ETi are then isolated by remov-

ing the linear effects of ethnicity, sex, and age as well as their interactions from S and
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Ti. Next, singular value decomposition (SVD, using MATLAB’s economy-sized decompo-

sition) is performed to orthogonally decompose the shape and texture residuals:

USSSV T
S = ES (4.3)

UTiSTiVTi = ETi (4.4)

The matrices US [(4,735 · 3) · 355] and UTi [(800/2i · 600/2i · 3) · 355 for each i of i =

0, ...,4 spatial frequency bands] can thus be used to project randomly sampled shape or

texture identity vectors into vertex or pixel space, respectively.

Any single face can then be considered as a linear combination of two parts: a basic

“prototype face” defined by its factors of sex, age, and ethnicity and a specific individual

variation on that prototype defined by its unique component weights. Once we know

these two parts of the individual face, e.g., by random sampling, we are free to change

one or the other, producing for example the same individual at a variety of different ages.

This can then be rendered to an observable image with a desired viewing and lighting

angle.

4.5.2 Participants

Ratings of random faces

To obtain behavioral data from humans (Zhan et al., 2019a), we recruited seven male

and seven female white Caucasian participants aged 25.86±2.26 years (mean ± SD).

Generalization testing

For a second validation experiment, 12 separate participants (7 white Caucasian female

and 1 East Asian females, 5 white Caucasian males aged 28.25± 4.11 years [mean

± SD]) were recruited (Zhan et al., 2019a). In both experiments, all participants had

been working at the Institute of Neuroscience and Psychology at the University of Glas-

gow for at least 6 months and were thus familiar with the target faces. All participants

had normal or corrected-to-normal vision, without a self-reported history or symptoms of

synesthesia, and/or any psychological, psychiatric, or neurological condition that affects

face processing (e.g., depression, autism spectrum disorder, or prosopagnosia). They

gave written informed consent and received UK£6 per hour for their participation. The

University of Glasgow College of Science and Engineering Ethics Committee provided

ethical approval for both experiments.
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4.5.3 Experiments

Ratings of random faces

Four sets of 10,800 random faces were generated, one for each of the four target col-

leagues. Two sets of random faces were created using the GMF that was built with the

database that excluded the two female target colleagues. The other two sets of random

faces were created using the GMF built with the database that excluded the two male

target colleagues. The demographic variables were fixed (sex, age, and ethnicity) to

those of the target colleagues. The resulting faces were rendered at frontal viewing and

lighting angles. For each participant and target colleague, the generated faces were ran-

domly gathered into 1,800 groups of 2 · 3 arrays, which were superimposed on a black

background. In a given trial, these face arrays were shown on a computer screen in a

dimly lit room while the participant’s head was placed on a chin rest at a 76 cm viewing

distance from the image, such that each face subtended an average of 9.5◦ ·6.4◦ of visual

angle. Participants were instructed to choose the face of the array that most resembled

that of the target colleague by pressing the corresponding button on a keyboard. The

screen then changed to display the instruction to rank the chosen face with respect to its

similarity to the target colleague on a 6-point rating scale, ranging from 1 (“not similar”)

to 6 (“highly similar”). These trials were split into four sets of 90 blocks of 20 trials each,

resulting in a total of 7,200 trials that all participants completed over several days (Zhan

et al., 2019a).

Generalization testing

For each target colleague, 50 new 3D face stimuli were generated. These comprised

the combinations of two levels of diagnosticity at five levels of amplification, which were

each rendered in five different generalization conditions. Each of these factors will be ex-

plained in the following. In the original analysis (Zhan et al., 2019a), the mass-univariate

reconstructions from observed human behavior (see “reverse correlation” below) had

been referenced to reconstructions from 1,000 permuted versions of the responses

(using the same amplification values). For each vertex, the Euclidean distance of the

chance reconstruction to the categorical average had been signed according to whether

it was located inside or outside of the categorical average and averaged across permu-

tations (“chance distance”). This was repeated using the ground truth target colleague

shape (“ground truth distance”) as well as the human-reconstructed shape (“human-

reconstructed distance”). If the absolute difference of the chance distance and the

ground truth distance was larger than the absolute difference of the human-reconstructed

distance and the ground truth distance, the vertex was classified as “faithful.” This had

resulted in a 4,735 ·(14∗4) binary matrix which had then been decomposed into matrices

W [4,735 ·8] and H [8 ·56] (each column corresponding to a combination of a participant

and a target colleague) using non-negative matrix factorization. Any of the eight compo-

nent columns in W had been classified as contributing to a group representation of the
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target colleagues if the median of the loadings H across participants surpassed a thresh-

old value of 0.1. The “diagnostic component” CD of each target colleague had then been

defined as the maximum value on that vertex across components considered to load

on the respective target colleague representation. After construction, CD had then been

normalized by its maximum value. Its “non-diagnostic” complement CN was then defined

as CN = 1−CD . Taken together, the vectors CD and CN could now be interpreted as

reflecting to what degree each vertex contributed to the faithful representation of each

target colleague across the group of participants. These diagnostic and non-diagnostic

components could then be used to construct 3D faces containing varying levels of either

diagnostic (FD) or non- diagnostic (FN) shape information:

FD = G ·CD ·α +XAS(1−CD ·α) (4.5)

FN = G ·CN ·α +XAS(1−CN ·α) (4.6)

Here, G reflects the ground truth representation of the respective colleagues

recorded with the 3D camera array, α reflects an amplification value that was set to

one of five levels (0.33, 0.67, 1, 1.33, 1.67), and X describes the sex, ethnicity, age, and

interaction values that describe the respective colleague such that XAS represents the

categorical average (see “generative model of 3D faces”). Each of these ten faces per

target colleague were rendered at the viewing angles −30◦, 0◦, and +30◦ as well as with

their age factor set to 80 years and a swapped sex factor. The 12 validation participants

completed three sessions (3 viewpoints, age, and sex) in a random order, with one ses-

sion per day. On a given trial, the validators saw a central fixation cross for 1 s, followed

by a face stimulus on a black background for 500 ms. They were then asked to classify

the seen face as showing one of the four target colleagues (or their siblings or parents

in the age and sex conditions) or “other” if they could not identify the face as accurately

and quickly as possible. Between each trial, a fixation cross was shown for a duration of

2 s. Each stimulus was shown five times in a randomized order. In the viewpoint ses-

sion, validators completed 15 blocks of 41 trials; in the age and sex sessions, validators

completed 5 blocks of 44 trials. This yielded accuracies of either 0, 0.2, 0.4, 0.6, 0.8, or 1
for each of the 10 stimuli per target colleague.

4.5.4 Networks

Training and testing of the networks was performed in Python 3.6.8 using keras 2.2.4

(Chollet & others, 2015) with a tensorflow 1.14.0 backend (Abadi et al., 2016). All net-

works shared the same training and testing sets and were constructed using the same

encoder module. All models were trained using three data augmentation methods (ran-

dom shifts in width and range by 5% as well as random zooms with a range of 10%).
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Training and testing sets

The networks were trained on observable images generated by the GMF. We created 500
random identity residuals and combined them with the four combinations of two sexes

(male and female) and two types of ethnicity (Western Caucasian and East Asian). To

these, we added the four target colleagues, resulting in a total of 2,004 identities. We

rendered these at three different ages (25, 45, and 65 years), seven different kinds of

emotion (happy, surprise, fear, disgust, anger, sadness, neutral), and three different hor-

izontal and vertical viewing and lighting angles (−30◦,0◦,+30◦), resulting in 3,408,804
images at a resolution of 224 ·224 RGB pixels. The four colleagues were rendered with

two versions of the GMF built on face database subsets that excluded the two target

colleagues of the same sex. Fifty percent of the 2,000 random identities were rendered

with one of these two GMFs. This dataset had first been generated for experiments not

including the data from the human experiment. The version of the GMF that had been

used to generate the stimuli for the human experiment had slight differences (rescaling

of the data from the face database and different range of random coefficients). To allow

for effortless generalization to the slightly different statistics of the stimuli that had been

generated for the human experiment, we rendered all 3,408,804 images twice, once

with each of the two versions, effectively resulting in a further data augmentation. For

the purpose of training, development, and testing, the dataset of 6,817,608 images was

split into a training set containing 80% of the images, and into a development and test

set each containing 10% of the images.

Encoder module

We used a ResNet architecture to encode the pixel space images into a low-dimensional

feature space (He et al., 2015). The 224 ·224 RGB images were first padded with three

rows and columns of zeros, then convolved with 64 7 ·7 filters with a stride of 2, batch nor-

malized, subjected to a rectifying linear unit (ReLU) nonlinearity, max-pooled in groups

of 3 · 3, and propagated through four blocks with skip connections, across which an in-

creasing number of 3 ·3 filters was used (64, 128, 256, and 512), with a default stride of

1 in the first block and a stride of 2 in the remaining three blocks. In each skip block,

the input was first convolved with the corresponding filters and default stride, then batch

normalized and subjected to a ReLU function, then convolved with filters corresponding

to the current block, however with a stride of 1, batch normalized and then added to a

branch of the input that was only convolved with a 1 ·1 filter with default stride and batch

normalized. The resulting activation was again subjected to an ReLU nonlinearity. After

four of these blocks, an average pooling on groups of 7 ·7 was applied.

Triplet

We used SymTriplet loss (Zhang et al., 2017; Codella, 2020), a version of the triplet loss

function (“Face-Net" Schroff et al., 2015). To do so, we connected the encoder module to
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a dense mapping from the encoder output to a layer of 64 neurons. We then fed triplets of

images to this encoder, consisting of an “anchor,” a “positive,” and a “negative,” where the

anchor and positive were random images constrained to be of the same identity while

the negative was an image constrained to be of a different identity. The loss function

then relates these three images in the 64-dimensional embedding space such that large

Euclidean distances between anchor and positive, and short distances between anchor

and negative, are penalized, as are short distances between positive and negative im-

ages. When training the parameters of this network, this yields a function that places

samples of the same identity close to each other in the embedding space. The triplet

loss network was trained with stochastic gradient descent with an initial learning rate of

10−3 until no more improvements were observed, and fine-tuned with a learning rate of

10−5 until no more improvements were observed.

ClassID

Here, we connected the encoder module to a flattening operation and performed a dense

mapping to 2,004 identity classes. We performed a softmax activation and applied a

cross-entropy loss to train this classifier (Xu et al., 2018). We trained the ClassID network

with a cyclical learning rate (Smith, 2017) that cycled between a learning rate of 10−6

and 0.3.

ClassMulti

This network was the same as the ClassID network; however, it classified not only the

2,004 identity classes but also all other factors of variation that were part of the gener-

ation: the 500 identity residuals, the two sexes, the two ethnicities, the three ages, and

the seven emotional expressions, as well as the three vertical and horizontal viewing and

lightning angles. For each of these extra classification tasks, a separate dense mapping

from the shared flattened encoder output was added to the architecture (Xu et al., 2018).

We trained the ClassMulti network with a cyclical learning rate(Smith, 2017) that cycled

between a learning rate of 10−6 and 0.3.

Autoencoder

For this architecture, we connected the encoder module to two branches, each consisting

of a convolution with 512 1 · 1 filters and a global average pooling operation. This was

then connected to a decoder module, which up-sampled the 512-D vector back into the

original 224 · 224 RGB image space. To do so, we used an existing decoder (“Darknet”

decoder Graves, 2020). In brief, this decoder upsamples the spatial dimension gradually

from a size of 1 to 7 and then in five steps that each double the spatial resolution to

reach the resolution of the final image. Between these upsampling steps, the sample is

fed through sets of blocks of convolution, batch normalization, and ReLU with the number
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of filters alternating between 1,024 and 512 in the first set of five blocks, between 256 and

512 in the second set of five blocks, between 256 and 128 in the third set of three blocks,

between 128 and 64 in the fourth set of three blocks, staying at 64 in the fifth set of one

block, and alternating between 32 and 64 in the last set of two blocks. The filter size in

all of these blocks alternated between 3 ·3 and 1 ·1. Finally, the 224 ·224 ·64 tensor was

convolved with three filters of size 1 ·1 and passed through a tanh nonlinearity.

The loss function used to optimize the parameters of this network is the classic re-

construction loss of an AE, operationalized as the MAE of the input image and the re-

construction in pixel space. We trained the AE using the Adam optimizer(Kingma & Ba,

2017) with an initial learning rate of 10−3 until no further improvements were observed.

View-invariant autoencoder

This network shared its architecture and training regime with the AE; however, we

changed the input-output pairing during training. Instead of optimizing the parameters

to reconstruct the unchanged input, the goal of the viAE was to reconstruct a frontalized

view, independent of the pose of the input, while keeping all other factors of variation

constant. This resulted in a more view- invariant representation in the bottleneck layer

compared with the AE (Zhu et al., 2013).

Variational autoencoder

For this architecture (Kingma & Welling, 2014), we connected the encoder module to

two branches, each consisting of a convolution with 512 1 ·1 filters and a global average

pooling operation. These were fed into a sampling layer as mean and variance inputs,

transforming an input into a sample from a 512-D Gaussian with specified mean and

diagonal covariance matrix.

This sample was then fed into the same decoder module as described for the AE and

viAE above.

The loss function used to optimize the parameters of this network is the sum of two

parts: The first is the reconstruction loss of a classic autoencoder, for which we used

the MAE between the reconstruction and the original image. The second part is the

Kullback-Leibler divergence measured between the multivariate normal distribution char-

acterized by the mean and variance vectors passed into the sampling layer and the prior,

a centered, uncorrelated, and isotropic multivariate normal distribution. The second part

can be seen as a regularization that effectively leads to a continuous latent space. As it

has been reported that weighing the second part of the loss function stronger than the

first part can improve the disentanglement of the resulting latent space (“β -VAE" Higgins

et al., 2016) we also repeated the training with several values of the regularization pa-

rameter β . However, this did not substantially change the latent space that we obtained.

We also trained two additional identity classifiers that used the frozen weights of the

(β = 1)-VAE. The first directly connected the VAE encoder to a dense linear mapping to
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2,004 identity classes. The second first passed through two blocks of fully connected

layers of 512 neurons that were batch normalized and passed through an ReLU nonlin-

earity before the dense linear mapping to identity. In both cases, a so f tmax activation

function was applied and the resulting networks were trained with a cross-entropy loss

function. All models shared the training regime of the AE and viAE models as described

above.

4.5.5 Forward models

We were interested in comparing the degree to which various sets or “spaces” of pre-

dictors describing the rated stimuli were linearly relatable to the human behavioral re-

sponses. To do so in a way that minimizes the quantification of just overfitting, we linearly

regressed the ratings on a range of different descriptors extracted from the random faces

presented on each trial in a cross-validation framework.

The predictor spaces we used for this (each consisting of multiple predictor chan-

nels) were the texture and shape components of the single trials, as provided by the

GMF, as well as the activations of the networks on their “embedding layers,” as ob-

tained from forward passes of the stimuli through the networks. Specifically, we used

the 512-dimensional, pre-decision layers of the classifiers (ClassID and ClassMulti), the

64-dimensional final layer of the triplet loss network, and the 512-dimensional bottleneck

layer of the AE, viAE, and VAE. We then also propagated images of the four target col-

leagues as recorded with the 3D capture system, fit by the GMF, and rendered with

frontal viewing and lighting angles through the four networks, and computed the Eu-

clidean distances on the embedding layers between the random faces of each trial and

these ground truth images. We extended this by computing the channel-wise distances

of each feature space and using them as an input to the regression described below

to obtained weighted Euclidean distances. Additionally, we extracted the pre-so f tmax

activity (“logits”) of the decision neurons trained to provide the logits for the four target

colleagues in the final layer of the classifier networks (ClassID and ClassMulti, as well

as the linear and nonlinear VAE classifiers). Since we were interested in assessing to

what degree the GMF shape and texture features and various embedding layer activa-

tions provided the same or different information about the behavioral responses, we also

considered models with joint predictor spaces consisting of the two subspaces of shape

features and AE, viAE, or VAE activations as well as the three subspaces of shape fea-

tures, texture features, and AE, viAE, or VAE activations. Lastly, to assess the extent

to which a simple linear PCA could extract useful predictors from the images, we per-

formed an SVD on the nonzero channels, a subset of the training images used for the

DNNs. Performing SVD on the entire set of training images used for the DNNs would

have been computationally infeasible. The subset we used consisted of 18,000 RGB

images of all 2,000 identities rendered at nine different viewing angles, limiting emotion

expression to the neutral condition and lighting angles to frontal angles. The first 512
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dimensions could account for 99.5976% of variance in the training set. We projected the

experimental stimuli onto these for further analyses.

We performed the regression separately for each participant and target colleague

in a nested cross-validation procedure (Varoquaux et al., 2017). This allowed us to

continuously tune the amount of L2 regularization necessary to account for correlated

predictor channels and avoid excessive overfitting using Bayesian adaptive direct search

(BADS Acerbi & Ma, 2017) a black-box optimization tool (see Daube et al., 2019b, for

a comparable approach). Specifically, we divided the 1,800 trials per participant into

folds of 200 consecutive trials each and, in each of nine outer folds, assigned one of the

resulting blocks to the testing set and eight to the development set. Then, within each of

the nine outer folds, we performed eight inner folds, where one of the eight blocks of the

development set was assigned to be the validation set and seven were assigned to the

training set. In each of the eight inner folds, we fitted an L2 regularized linear regression

(“ridge regression”) using the closed form solution:

B = (XT X +R)−1XT y (4.7)

where B denotes the weights, y denotes the n · 1 vector of corresponding human

responses, R describes a regularization matrix, and X denotes the matrix of trials n·
predictors M, where

M =
o

∑
s=1

ms (4.8)

such that o denotes the number of combined predictor subspaces and ms describes

the number of predictor channels in the sth subspace. In the cases where the features

were combinations of multiple feature subspaces, i.e., where o > 1, we used a dedicated

amount of L2 regularization for each subspace. This avoids using a common regular-

ization term for all subspaces, which can result in solutions that compromise the need

for high and low regularization in different subspaces, which fails to optimally extract the

predictive power of the joint space. The regularization matrix R can then be described

as

R = diag(λ11, ...,λm1 ,λ12, ...,λm2, ...,λ1o, ...,λmo) (4.9)

where λcs describes the amount of L2 regularization for channel c of predictor sub-

space s, which is constant for all c in one s. For each predictor subspace, λcs thus was

one hyperparameter that we initialized at a value of 217 and optimized in BADS with a

maximum of 200 iterations, where the search space was constrained within the interval

[2−30,230]. The objective function that this optimization maximized was Kendall’s τ , as

measured between predicted and observed responses of the inner fold validation set.

We used the median of the optimal λcs across all inner folds and retrained a model on

the entire development set to then evaluate it on the unseen outer fold.
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This yielded sets of 200 predicted responses for each test set of the nine outer folds.

We evaluated them using two information theoretic measures: MI and redundancy, both

computed using binning with three equipopulated bins (Ince et al., 2017). We computed

bivariate MI with Miller-Madow bias correction between the predictions of each forward

model and the observed human responses. We also computed redundancy, using a re-

cent implementation of partial information decomposition (PID), Iccs (Ince, 2017a). When

there are two source variables and one target variable, PID aims to disentangle the

amount of information the two sources share about the target (redundancy), the amount

of information each source has on its own (unique information), and the amount of in-

formation that is only available when considering both sources. In our case, we were

interested in quantifying how much information the predictions derived from DNN-based

forward models shared with the predictions derived from GMF shape features about

observed human behavior. To assess whether the amount of MI and redundancy ex-

ceeded chance level, we repeated the nested cross-validation procedure 100 times for

each combination of participant and target colleague, each time shuffling the trials. From

these surrogate data, we estimated null distributions of MI and redundancy and defined

a noise threshold within each participant and target colleague condition as the 95th per-

centile of MI and redundancy measured in these surrogate data. We counted the number

of test folds of all participants and colleagues that exceeded this noise threshold and re-

port this as a fraction relative to all data points.

To then assess whether different predictor spaces gave rise to different levels of

MI and redundancy in the presence of high between-subject variance, we employed

Bayesian linear models as implemented in the brms package (Bürkner, 2017), which

provides a user-friendly interface for R(R Core Team, 2013) to such models using Stan

(Stan Development Team, 2020). Specifically, we had performances (MI and redun-

dancy) for each of the nine outer folds b for each combination of target colleague j,

participant i, and all predictor spaces f1 to fq. The factor of interest were the predictor

spaces f . We used Hamiltonian Monte-Carlo sampling with four chains of 4,000 itera-

tions each, 1,000 of which were used for their warm-up. The priors for standard deviation

parameters were not changed from their default values, i.e., half-Student-t distributions

with three degrees of freedom, while we used weakly informative normal priors with a

mean of 0 and a variance of 10 for the effects of individual predictor spaces. Specifically,

we modeled the log-transformed and thus roughly normal distributed MI and redundancy
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as performances k with the following model:

kn ∼ N(µn,σ
2)

σ ∼ |t(3,0,10)|

µn ∼ βi: f [n]+βi:b[n]+βi: j[n]+β f1[n]+ . . .+β fq[n]

(βi: f ,βi:b,βi: j)∼ N(0,σ2
βint

)

σ
2
βint
∼ |t(3,0,10)|

β f1, . . . ,β fq)∼ N(0,10)

(4.10)

To compare the resulting posterior distributions of the parameters of interest, we

evaluated the corresponding hypotheses using the brms package – β fa − β fb > 0 for

all possible pairwise combinations of predictor spaces – and obtained the proportion of

samples of the posterior distributions of differences that were in favor of the correspond-

ing hypotheses.

As well as the predictions, the forward models also produced weights that linearly re-

lated predictors to predicted responses. We were interested in examining these weights

to learn how individual shape features were used in the forward models. For the forward

models, predicting responses from shape features was directly possible: the weights BS

mapped GMF shape features to responses and could thus be interpreted as the “shape

receptive field.” However, to be able to compare these weights on the vertex level, we

used a differently scaled version of the shape features. This was obtained by multiply-

ing the 4,735 · 3 z-scored 3D vertex level shape features with the pseudoinverse of the

matrix of left-singular vectors US from the SVD performed on the identity residuals of

the 3D vertex features of the face database (see “generative model of 3D faces”). This

355-dimensional representation of the shape features performed virtually identically to

the unscaled version in the forward modeling. For visualization, we could then project

the weights BS from the 355D PCA component space into the 4,735 ∗ 3D vertex space,

where the absolute values could be coded in RGB space. This resulted in a map that

indicated how the random faces at each vertex affected the response predictions in the

three spatial dimensions.

The weight maps BN that form the forward models that relate DNN activations to

responses were less simple to study in this shape space, since they mapped the less in-

terpretable network activations, not GMF shape features, to behavioral responses. To in-

terpret these models in vertex space, we re-predicted (“simulated”) the response predic-

tions ŷ derived from DNN features with the GMF shape features to obtain re-predictions
ˆ̂y as well as weights BSN . We reasoned that response predictions of the ideal DNN model

should be perfectly predictable by the shape features and that the corresponding simu-

lated shape weights BSN should be identical to the original shape weights BS in this case.

We thus correlated the simulated response predictions with the DNN response predic-

tions, as well as the simulated shape weights with the original shape weights for each

test fold in each participant for each target colleague condition.
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4.5.6 Decoding shape information from embedding layers

To understand what shape information is available on the embedding layers of the net-

works, independently of human behavior, we trained linear models that decoded GMF

shape PCA components from embedding layer activations in response to images of

faces. We used a cross-validation framework on the full set of stimuli, consisting of

43,200 RGB images and their corresponding GMF shape PCA components, using a

random set of 80% of the images for training, a further 10% for tuning, and the remaining

10% for testing. Specifically, we trained mass-multivariate L2 regularized regressions,

separately predicting each GMF shape component from all neurons of the DNN em-

bedding layers. Similar to the approach taken for the forward models, we tuned the L2
regularization using BADS to maximize the prediction performance on the tuning set.

We then projected all predicted GMF shape PCA components into vertex space and, at

each vertex, assessed the Euclidean distance between the original GMF shape model

and the predictions from the DNN embedding layers.

4.5.7 Reverse correlation

To reconstruct internal templates of the target colleagues’ faces under the GMF, we

performed a mass-univariate linear mapping from the observed behavior of the human

participants to each GMF shape and texture feature.

We repeated this with the choice behavior and rating behavior predicted by the for-

ward models to compare these forward models, human observed behavior, and the

ground truth shape information of the target colleagues as captured by our 3D camera

array.

We performed the linear regressions of variation in the shape vertices and texture

pixels of the random stimuli on the ratings of the images chosen by the human par-

ticipants and their forward models based on GMF features, as well as DNN and PCA

activations. This was done separately for each vertex and spatial dimension, as well as

for each pixel and RGB dimension. In principle, this is equivalent to inverting the weights

of the forward model (Haufe et al., 2014; van Vliet & Salmelin, 2020). However, to match

the procedure in Zhan et al. (2019a), we re-estimated these parameters per vertex and

pixel using the MATLAB function “robustfit".

Each of the v = 1, ...,4735 ·3 shape vertex positions s was thus modeled as

sv = b0v +b1v · r (4.11)

and each of the p = 1, ...,800 ·600 ·3 texture pixel RGB values t was modeled as

tp = b0p +b1p · r (4.12)

Here, r are the vectors of observed or predicted responses, b0 is an intercept term,

and b1 is a slope term.
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In the original experiment, new faces were then generated by multiplying the slopes

obtained from the regressions with different “amplification values”. The resulting faces

had then been presented to the participants to titrate the “amplification” of the weights

that would result in the highest perceptual similarity of the reconstructed face for each

participant. An amplification of 0 here corresponds to the shape or texture feature being

reconstructed as a function of the intercept term only. This corresponds to the shape or

texture feature resulting from the average of the faces chosen from the array of six faces

in the first stage of each trial.

We repeated this for the forward models by storing the shape and texture components

and by rendering observable images of faces corresponding to amplification values rang-

ing from 0 to 50 (the same range used to titrate the human reconstructions) in steps of

0.5. We then computed forward model predictions from GMF shape and texture features,

and propagated the observable images through encoding models based on DNNs. This

resulted in responses of all systems across the range of amplification values. We chose

the peak of each curve and reconstructed the internal templates corresponding to the

shape and texture components at these peaks.

We rendered the corresponding internal templates as intuitively visualizable faces.

We also considered the explicit descriptions in vertex space to compare templates from

humans and templates from forward models among each other, and with the ground

truth face shape from the target colleagues. To evaluate the “humanness” of the for-

ward models, we computed the Euclidean distances and correlations from the internal

templates of the forward models with the internal templates of the humans. To also eval-

uate the “veridicality,” we computed the Euclidean distances and correlations from the

ground truth target colleagues with the internal templates from the forward models and

the human participants.

This resulted in Euclidean distances and correlations for each target colleague con-

dition j and human participant i (observed and predicted by different predictor spaces

f ). We then log-transformed the Euclidean distances and Fisher z-transformed the cor-

relations to obtain evaluation measures e and modeled them with Bayesian hierarchical

models similar to the ones used to model the prediction performances of the forward

models:

en ∼ N(µn,σ
2)

σ ∼ |t(3,0,10)|

µn ∼ βi: f [n]+βi: j[n]+β f1[n]+ . . .+β fq[n]

(βi: f ,βi: j)∼ N(0,σ2
βint

)

σ
2
βint
∼ |t(3,0,10)|

(β f1, . . . ,β fq)∼ N(0,10)

(4.13)

To compare the resulting posterior distributions of the parameters of interest, we eval-

uated the corresponding hypotheses using the brms package – β fa−β fb > 0 for all possi-
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ble pairwise combinations of predictor spaces – and obtained the proportion of samples

of the posterior distributions of differences that were in favor of the corresponding hy-

potheses. Prior to visualization, we back-transformed the posterior distributions of the

log Euclidean distances with an exponential and the posterior distributions of correlations

with the inverse Fisher z-transformation.

4.5.8 Generalization testing

The models of human behavior had been trained and tested under the same conditions.

To also test how they would perform under data from a different distribution, we re-used

data from a validation experiment originally conducted by Zhan et al. (2019a).

We propagated the 50 stimulus images per target colleague (combinations of two

levels of diagnosticity at five levels of amplification, which were each rendered in five

different generalization conditions, see “experiments – generalization testing”) through

each of the model systems under consideration and extracted the rating predictions for

each of the 14 participants of the first experiment for each of the four colleagues from

each of the four correspondingly fitted forward models. Next, we normalized the pre-

dictions to values between 0 and 1 within target colleagues to eliminate possible biases

from participants rating the random stimuli of the first experiment higher for one target

colleague than for others. We then used the maximum predicted rating across all target

colleagues for a given stimulus as the choice of the respective system. The predictions

for each of the 14 participants of the first experiment were compared with the behavior

of each of the 12 additional participants of the second experiment.

Since all systems were deterministic, the resulting accuracy values for the systems

were thus binary (this was different for the human responses, since each stimulus had

been shown to the validators five times; see “experiments—generalization testing”).

We analyzed the data by first computing the absolute difference of human and model

accuracies and then subjecting the resulting absolute errors to a Bayesian linear model.

Since the model accuracies could only take one of six different values (from 0 to 1 in steps

of 0.2), we used an ordinal model. To do so, we used a cumulative model assuming a

normally distributed latent variable as implemented in brms (Bürkner & Vuorre, 2019).

Concretely, we modeled the probability of a model accuracy a of model type f predicting

behavior in task g of participant i for target colleague j and validated by validator k to fall

into category t given the linear predictor η as:

Pr(a = t | η) = F (τt−η)−F (τt−1−η) (4.14)

where F is a cumulative distribution function, τt is one of T = 5 different thresholds

that partition the standard Gaussian continuous latent variable ã into T + 1 categories,
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and η describes ã corresponding to the following model:

τt ∼ t(3,0,10)

ãn ∼ N(µn,1)

µn ∼ β f :g[n]+βi: j:k[n]

(β f :g,βi: j:k)∼ N(0,σ2
βint

)

σ
2
βint
∼ |t(3,0,10)|

(β f1, . . . ,β fq)∼ N(0,10)

(4.15)

To compare the resulting posterior distributions of the parameters of interest, we

evaluated the corresponding hypotheses using the brms package (β fa:gx −β fb:gx > 0 for

all possible pairwise combinations of model types within each task), and obtained the

proportion of samples of the posterior distributions of differences that were in favor of the

corresponding hypotheses.



Chapter 5

General discussion

This thesis consists of three suggestions on how to contextualise bivariate encoding and

decoding models with higher-order information theory. In chapter 2, this was done by

relativising the correlation between a set of stimulus features and responses as achiev-

able by other and potentially even simpler sets of features. Chapter 3 then looked at

a new idea on how to consider the response’s own past as a variable to explain the

stimulus-response correlation. Finally, chapter 4 added experimental control over the

stimulus features to constrain what features models could possibly predict responses

with. We thus extended descriptions of mere correspondence between the stimuli and

responses to trivariate relationships. These extensions directly echo the demand for

stricter considerations of the concept of mental representations, which requires more

than just correlations between features of the outside world and responses (Baker et al.,

2021).

The rest of this discussion will highlight differences and commonalities between the

approaches taken in the individual chapters. While chapters 2 and 3 considered neuronal

responses to naturalistic acoustic stimuli as recorded with MEG, chapter 4 considered

behavioural responses to controlled visual stimuli. Leaving comparisons of visual and

auditory perception aside, this provides interesting tensions:

Should we continue to do research on naturalistic paradigms, or should we abandon

them in favour of experimental control? What insights do we really get in return for

the efforts we undertake to record neuroimaging data, which are certainly enormous in

comparison to relatively easily obtainable behavioural data?

All chapters on the other hand subscribe to a “data-driven" approach. Since many

studies credit themselves with this label, and since it is not always clear what it is sup-

posed to entail, the final discussion section will flesh out what it means within the context

of this thesis.

155



156 CHAPTER 5. GENERAL DISCUSSION

5.1 Naturalistic versus controlled paradigms

At the start of this PhD, the little experience in cognitive neuroscience I could draw from

consisted of several undergraduate projects which I believed all suffered most from two

problems: small sample sizes and experimental designs full of assumptions that strongly

limited opportunities to carry out analyses of a deliberately exploratory nature. Under

the impression of the replication crisis (Ioannidis, 2005) and the increasingly popular

and powerful machine learning models of the 2010s, I grew an interest in larger datasets

on which these types of models could be leveraged to get to more robust conclusions. At

the time, this was (and arguably still is at the time of the submission of this thesis) a pop-

ular best bet on what would open up perspectives on questions of perceptual processes

and mental representations that had hitherto been unexplored (Bzdok & Yeo, 2017). Es-

pecially studies of the type as vigorously promoted by the Gallant lab (Huth et al., 2012,

2016; de Heer et al., 2017; Hamilton & Huth, 2018) seemed to epitomise this approach,

arguing for paradigms of passive viewing or listening of naturalistic stimuli that would

yield large amounts of data in comparably short experimental time. Moreover, such

paradigms would keep participants entertained by a task that is a voluntarily chosen

leisure activity for many people. This would minimise detrimental effects of frustration

and fatigue, which are commonly observed in more classical psychophysics paradigms.

Reasoning about the perceptual processes underlying the neuronal responses would

be formalised in computational models competing to explain the most response vari-

ance, and thereby move beyond the seemingly speculative box-and-arrow models I had

been taught during my undergraduate studies. The models could be explored after data

collection, with seemingly little limitation. In comparison, constructing an experimental

paradigm from prior assumptions to then go through the arduous process of data collec-

tion, only to conclude that the initial assumptions were nonsensical to start with, seemed

to be an unjustifiably risky and cumbersome process for an early career researcher.

In retrospect, I still believe that these arguments have kept much of their relevance.

Having at least one computational model that robustly explains response variance as a

function of complex naturalistic stimulus input is a non-trivial achievement, and a step-

ping stone for lively discussions about alternatives that are simpler, explain more vari-

ance, generalise to more conditions or satisfy more biological or cognitive constraints.

Broadly sampled naturalistic stimulus material is a crucial starting point for such exper-

iments, as it will yield the strongest neuronal responses (Rieke et al., 1995) leading to

the best generalisation within the behaviourally relevant stimulus regime (Theunissen

et al., 2000; David et al., 2004). This approach is currently experiencing a surge of

publications that succeed in explaining ever more response variance by leveraging ever

more sophisticated computational models (Donhauser & Baillet, 2020; Jain et al., 2021;

Schmitt et al., 2021; Caucheteux et al., 2021). Furthermore, it has has paved the way

towards applied research on hearing aids (O’Sullivan et al., 2015; Mirkovic et al., 2015;

Fiedler et al., 2017; Geirnaert et al., 2021), cementing the relevance of the modeling of
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(neuronal) responses to naturalistic stimuli as an intrinsically interesting basic science

endeavour.

And yet, during the process of chapter 2, I started to think that the grass of naturalis-

tic stimuli had just been greener by virtue of being on the other side. While it is possible

to explore a wide range of hypotheses in such datasets, it is hard to then rule out con-

founds. This is especially true for “oracle models" (Kriegeskorte & Douglas, 2018a) that

do not provide end-to-end stimulus-computable hypotheses, where for example simpler

models that suggest lower-level processing could predict the same variance. The prob-

lem particularly applies to a growing body of work whose models rely on text alignment

procedures in order to subsequently leverage ideas from natural language processing

(see e.g. Millet & King, 2021, for a notable exception employing models directly oper-

ating on the speech sounds). Ideally, the field should move towards the use of models

that arrive at the targeted phonetic and semantic feature spaces without implausible pro-

cessing steps requiring a textual annotation (van den Oord et al., 2018a; Chung et al.,

2020; Lakhotia et al., 2021). Testing their successive hierarchies could provide a clearer

idea of the required representational complexity for a given type of responses, such that

the risk of an overestimation could be mitigated.

Experiments that explicitly control for low- or higher level (e.g. linguistic, Taylor

et al., 2020) confounds however are indispendable when arguing for high-level process-

ing (Ding et al., 2016). To the extent to which such controlled experiments additionally

include generalisation conditions that manipulate isolated stimulus dimensions (Zhan

et al., 2019a), they can increase their value for model comparisons as in chapter 4. Con-

trolled experiments can further consider specific non-natural stimuli that are known to

be characteristic for a given system or set of systems of interest. These include hu-

man perceptual illusions, adversarial examples (Szegedy et al., 2014; Jacobsen et al.,

2019), model metamers (Feather et al., 2019), controversial stimuli (Golan et al., 2020)

and stimuli that are specifically optimised to maximise a given neuronal response (Ponce

et al., 2019). Such positions in stimulus space are of high value for model comparisons,

but cannot be included in naturalistic experiments by definition. As the development

of generative models progresses (Gan et al., 2020; Daube et al., 2021; Goetschalckx

et al., 2021; de Melo et al., 2021), controlled experimentation on the other hand loses

its necessary synonymy with unnatural stimulus statistics and the entailed impoverished

neuronal and behavioural responses (Rieke et al., 1995; Theunissen et al., 2000; Jack

& Schyns, 2017; Hamilton et al., 2018).

Taken together, both naturalistic and controlled experiments have been and will be

important components of cognitive neuroscience in their own right (see e.g. Oganian

& Chang, 2019, for a hopefully trendsetting combination of the two). Broadly sampled

naturalistic experiments are well suited to explore ideas and build intuitions for models

that cover the behaviourally most relevant region of stimulus space. Subsequent rig-

orous testing both inside and outside of this region along isolated dimensions is then

necessary to identify models with a better generalisation performance. Fields as well as
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individual researchers will run into danger when prematurely moving on to confirmatory

research, and likewise when refusing to mature by clinging to exploratory approaches

(Tukey, 1980).

5.2 Behavioural versus neuronal responses

A question that is in practise – but not in principle (Hebart et al., 2020) – correlated

with the distinction of naturalistic and controlled experiments is that of neuronal and

behavioural data.

A central tenet of neuroscience as such is that all behaviour and conscious experi-

ence critically rely on the activity and interactions of the approximately 86 billion (Azevedo

et al., 2009) neurons in the human brain. Studying them promises to move beyond a

limitation to the input and output of a system (Chomsky, 1959) and to identify the phys-

ical substrate of the complex processing taking place in between – to learn about the

mechanisms giving rise to cognition (Boone & Piccinini, 2016). The abandonment of

behavioural responses can then be motivated from the perspective of maximising the

amount of unavoidably noisy data recordable from neural activity in expensive experi-

mental time.

Consequently, the classic passive listening (or viewing) paradigm either reports no

behavioural testing at all (e.g. Huth et al., 2016; Di Liberto et al., 2015; Brodbeck et al.,

2018a) or only very coarse checks of understanding and attention (e.g. Daube et al.,

2019b; Donhauser & Baillet, 2020; Heilbron et al., 2021; Gwilliams et al., 2020). As

described in the previous section, the resulting datasets are well-suited for exploratory

and basic research, with the hearing-impaired population being an increasingly realistic

potential benefactor.

Another motivation for datasets of isolated neuronal responses is that healthy human

participants usually “cannot help" but follow the content of passive perceptual paradigms.

Despite the absence of an explicitly defined behavioural task, this approach constrains

brain activity to a degree that correlations across participants even beyond low-level sen-

sory areas can be found (Hasson et al., 2004). When scrambling the stimulus material

at different linguistic scales reaching from words to paragraphs, these intersubject cor-

relations reveal a hierarchy from the low-level sensory areas to higher-order parietal and

frontal regions (Lerner et al., 2011). Such analyses thus aim to realise the dream of

studying the brain “from the inside out" (Buzsáki, 2019), i.e., the dream of unveiling of

neuroscientific phenomena under a minimisation of “philosophical constraints" (Buzsáki,

2020).

And yet, it is notoriously impossible to escape philosophy, theory and prior assump-

tions (Poeppel & Adolfi, 2020; Gershman, 2021). An overly narrow interpretation or

glorification of the “epistemological primacy of hardware" (Poeppel & Adolfi, 2020) runs

in danger of discarding the relevance of behavioural data (that is, discarding the field

of psychology). This would imply a great loss for neuroscience (Krakauer et al., 2017;
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Musall et al., 2019; Niv, 2021). The ultimate purpose of the brain is to allow an organism

to behave adaptively in its environment. Such behaviour can be recorded with virtually

zero measurement noise (i.e. the only “noise" is that of behaviour itself that cannot be

explained by available predictors). Given a defined perceptual query, the behavioural

response is interpretable as the participant’s decision, integrating all neuronal processes

leading to it in specifically that way that characterises how this participant or organism

under study attempts to behave adaptively – that is, all the read-outs of neurons involved

in this particular response are weighted and summed up meaningfully.

Any quantification of neuronal processes on the other hand will always be compro-

mised in three important ways: Firstly, it will be mixed with measurement noise. Sec-

ondly, it will be a subset of the entire neuronal response, i.e. even with the most so-

phisticated synchronous combination of multiple neuroimaging modalities, it is currently

inevitable to miss unquantifiable large parts of the processes of interest. Thirdly, the in-

formation contained in recordings of neuronal activity cannot readily be assumed to have

any relevance for downstream neuronal processes or the final goal, adaptive behaviour

(de-Wit et al., 2016; Baker et al., 2021). It is admittedly questionable to which degree

an organ that has undergone such high evolutionary pressure for energy efficiency as

the human brain does not itself exploit (i.e., read out) processes so energy intensive that

they can be noninvasively recorded. However, the way we record neuronal activity is

only in extremely rare and isolated experimental cases how other neurons “listen” to this

neuronal activity.

These three problems are all non-trivially handicapping the interpretation of isolated

neuronal recordings for the algorithmic understanding of neuronal processes (see chap-

ter 2). For such interpretations, strong assumptions about the noise free unmeasurable

part of the entire population response and its integration across subprocesses are nec-

essary. An interesting case of isolated neuronal data are the rare opportunities of inva-

sive recordings, especially when paired with direct electrical stimulation (Hamilton et al.,

2021; Veit et al., 2021). However, even then it is the combination with behavioural re-

sponses (such as the report of intelligibility of speech signals under electrical stimulation

of different regions, Hamilton et al., 2021) that affords the strongest conclusions. In this

spirit, another exciting and more broadly applicable proposal is that of analysing paired

neuronal and behavioural experimental data with a focus on neuronal response com-

ponents to stimuli that are redundant with behavioural responses (Williams et al., 2007;

Panzeri et al., 2017; Bouton et al., 2018; Keitel et al., 2018; Zhan et al., 2019b; Schyns

et al., 2020). This can be combined with stimulus-computable models that provide hy-

potheses of nonlinear transformations between latent stimulus representations and thus

potentially increase the sensitivity to the processing of more abstracted information.

In sum, neuronal and behavioural data can be used to answer different representa-

tional questions (Baker et al., 2021). With purely neuronal datasets, one is limited to

interpretations of correspondences between stimuli and responses. As done in chapter

2, this can be extended to the relationship of multiple correspondences to one another.
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It can also be extended by relation to the response’s own history as in chapter 3, which

can point to further algorithmic characterisation of the responses. Questions concerning

the representation of information in a stricter sense however require behavioural data as

in chapter 4. To link such representations to the neuronal underpinnings, a combination

of neuronal and behavioural data is suited best.

5.3 Data-driven approaches

During my PhD, there were many debates in which it was tried to create two camps:

one being on the “big data" side, and one being on the “big theory" side (e.g. Cognitive

Neuroscience Society, 2018). The availability of ever growing datasets and ever more

powerful computer hardware has led to a high popularity of “data-driven" approaches

(Bzdok & Yeo, 2017; Bzdok, 2017; Buzsáki, 2019, 2020; Peterson et al., 2021b). In

reaction to this, highlighting arguments against “big data" in isolation is similarly in vogue

(Poeppel & Adolfi, 2020; Gershman, 2021). In general, I share the common opinion that

forcing a “data versus theory" dichotomy is not helpful to achieve the necessary balance

of both (Sejnowski et al., 2014; Frégnac, 2017). However, I feel provoked to defend the

“data-driven" stance I took up for large parts of the thesis against what I think often are

straw-man arguments. It is not at all synonymous with the belief that hypotheses must

be avoided, that data alone will paint a picture of interpretable scientific results obviating

the need for biasing theory or that domain knowledge is to be ignored.

Instead, I suggest to understand it as a proxy for a careful updating of beliefs in light

of data. This entails the belief that the process of a rigorous mathematical formalisation

of hypotheses is a chance (but not a guarantee) to become aware of their assumptions

and shortcomings. Further, it contends that adaptive parameterisations can lay the foun-

dations for abstraction from ideas in order to further increase their reproducibility and

generalisability. Its position with respect to domain knowledge is that it is to be ques-

tioned in order to effectively exploit it and its associated uncertainty for the question at

hand.

The perhaps simplest example of this in this thesis is arguably provided in chapter 3.

Here, a relevant subproblem was to predict samples of a time-series from their own past.

A popular choice to implement this was to use a single delay. The problems caused by

this could be improved with a more flexible implementation relying on a multidimensional

and non-uniform parameterisation (Vlachos & Kugiumtzis, 2010; Faes et al., 2011; Wibral

et al., 2013).

Both chapters 2 and 4 made use of a more flexible parameterisation of the classic

ridge regression (Hoerl & Kennard, 1970) to predict responses from stimuli. Here, a

hyperparameter λ is used to reduce overfitting by adjusting the cost associated with

large weights. The optimal choice of this hyperparameter is affected by the statistics

of the predictor. When multiple sets of predictors with different statistics are combined,

usually a compromise is made by choosing the λ that is best for the average predictor.
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This was improved by instead using independent λs for each set of predictors, such that

each could contribute its maximal predictive power (Daube et al., 2018). This approach

has since been independently developed by other labs (under the name “banded ridge

regression" Nunez-Elizalde et al., 2019), and is increasingly adopted (e.g. Sohoglu &

Davis, 2020; Dupré la Tour et al., 2021).

As chapter 2 focussed on the analysis of neuroimaging data, it entailed many more

parameter settings. A classic case in MEG is the regularisation of the sensor covariance

matrix for the ill-posed inverse problem. For a class of spatial filters called beamformers,

the choice of 5% is suggested in a tutorial of a popular analysis toolbox (Oostenveld

et al., 2011) and as a likely consequence has reached high popularity. In many cases,

this heuristic is probably not a bad choice. However, a data driven approach suggests to

treat this as a flexible parameter that can be optimised with respect to a concrete goal

(Woolrich et al., 2011; Engemann & Gramfort, 2015). As a result, we obtained values low

enough to prevent a mixing of source estimates with unrelated sources and high enough

to provide a robust, noise suppressive spatial filter. This optimised the performance of

the respective encoding models predicting the filter output for individual participants and

even individual points in source space. The values we found were often considerably

higher than the usually chosen 5%, exhibiting considerable stability within a hemisphere

of a given participant and considerable variance across participants.

Another example was the temporal extent of the encoding models in the same chap-

ter. This parameter determines which temporal segment of the stimulus is considered to

predict a given sample of the response. Our optimised parameters revealed characteris-

tic ranges for different predictor sets, showcasing again an adaptive flexibility across and

within participants. An adaptive parameterisation of such an interpretable parameter is

especially interesting in scenarios where multiple regions of interest with similar signal-

to-noise ratios can be identified, such that it becomes possible to compare the “temporal

receptive windows" of these regions (Lerner et al., 2011).

Most of the above examples critically relied on an efficient black-box optimisation

algorithm (Acerbi & Ma, 2017), allowing to optimise parameters without differentiation.

It constructs a computationally cheap model of the function it is consigned to optimise

and then samples outputs from the actual black-box function in places that lead to the

greatest reduction in model uncertainty. This entails two benefits over the commonly

chosen alternative of a grid search: it treats hyperparameters as continuous, and it can

handle a (limited) amount of multiple hyperparameters much more efficiently, i.e. without

a combinatorial explosion of running time.

Traditionally, such optimisations are seen as resulting in an increase of the “re-

searcher degrees of freedom”. Usually, they are thus discouraged as they increase

the danger of overfitting and easily compromise the reproducibility of results (Nichols

et al., 2017). However, the use of a robust nested cross-validation framework (Varo-

quaux et al., 2017) should effectively limit this danger. Instead, such optimisation efforts

thus contribute to fairer model comparisons, where each model’s chances are maximised
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by the parameter settings that make it perform best. They make it possible to evolve from

parameter settings that are traditional in the field to potentially surprising optimal choices.

Taken together, data-driven science means rejecting “quick and dirty solutions" to

questions of parameter settings by reverting to traditional folklore of the field or cherry

picked values. Such pragmatism is certainly sensible when initially exploring datasets.

When attempting to rigorously compare models however, we empirical scientists should

attempt to allow for an integration of our hypotheses with the “bottom-up sensory input"

we face when looking at data.

5.4 Conclusion

By using a principled information theoretic framework, this thesis contextualised the bi-

variate relationship between neuronal or behavioural responses to aspects of the outside

world. These contexts were provided by multiple operationalisations of the outside world

with different complexity, the response’s own history and an experimentally controlled

“world" that constrained what models could predict responses with. Such genuinely mul-

tivariate perspectives in cognitive computational neuroscience break up its confinement

to the study of simple correspondence problems, and are thus an important tool to re-

alise the promise of cognitive computational neuroscience to identify and characterise

the mechanisms underlying cognition.
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