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Abstract

Personalised medicine is a relatively new area of healthcare that uses patient-specific data
at multiple scales, and different scientific models, to inform disease prognosis and treatment
planning. Recently, there has been particular interest in the translation of mathematical
models to the clinical setting. These models are usually implemented in the form of a
computer code that relates a set of model parameters with a set of observable quantities.
Often these parameters have a physiological meaning, and their estimation can provide
information about the level of function or dysfunction of a particular physiological pro-
cess. An important example is in modelling the behaviour of the left ventricle (LV) in
diastole. This model relates cardiac tissue properties (the parameters) with the kinematic
behaviour of the LV that can be observed from cardiac magnetic resonance images. The
personalisation of this model to different patients depends not only on the parameters,
but also on the geometry of the LV, which varies from patient to patient. Improved repre-
sentation of the LV geometry, combined with improved modelling capabilities, has led to
increasingly accurate and personalisable models that can better replicate the real world
process. This increased model fidelity is accompanied by increased computational costs,
which hinders the application of these models in the clinical setting.

A natural solution to the problem posed by computational cost is to use statistical
emulation. In emulation, we build a model that efficiently replicates the behaviour of
the expensive simulator. Although conceptually a simple idea, the application of this
methodology to mathematical models can be complicated. In the context of the LV model,
this complexity is largely tied to the LV geometry. By its very principle, personalised
medicine relies on the ability of the emulator to generalise to different LV geometries,
meaning that the LV geometry itself must be treated as an input to the model. However,
the high dimension of the LV geometry representation makes it incompatible with the
statistical emulation framework. To resolve this issue, the work in this thesis uses a low-
dimensional representation of the LV geometry to reduce the dimension of the input space
of the model and construct a generalisable emulator of the LV model.

Of primary interest is the efficient estimation of the parameters of the LV model, in
a time frame compatible with the clinical setting. For this purpose, the generalisable
emulator allows for the efficient use of Markov chain Monte Carlo, providing a measure
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of uncertainty in the parameters. A common problem in complex models, as is the case
in the LV model, is the presence of weak practical identifiability. This manifests as large
uncertainty in the posterior distributions of the parameters. In a Bayesian framework,
this issue can be tackled using a more informative prior distribution. For the LV model,
an informative prior that includes information from ex vivo studies is proposed, improv-
ing the estimation of the model parameters. Also motivated by the weak identifiability
of the model, a new parameterisation of the model is considered. This involves a com-
prehensive sensitivity and inverse uncertainty quantification study that sheds extra light
on the identifiability—both practical and structural—of the LV model. Finally, the prob-
lems posed by the measurement of clinical data, and the discrepancy between the model
and reality, is considered and methods are proposed that account for this in the inference
framework. Critically, the culmination of the work in this thesis highlights the problems
that need to be resolved before the LV model can be applied in the clinical setting.



Contents

Abstract i

Acknowledgements xxix

Declaration xxx

1 Introduction 1

2 Cardiac mechanics model of the left ventricle 4
2.1 Left ventricle dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Background on heart physiology . . . . . . . . . . . . . . . . . . . . 4
2.1.2 More details on the left ventricle in diastole . . . . . . . . . . . . . 5

2.2 A mathematical model of the left ventricle in diastole . . . . . . . . . . . . 6
2.2.1 Geometry representation . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 Constitutive Law of the Myocardium . . . . . . . . . . . . . . . . . 7
2.2.3 Simulation of LV Passive Filling . . . . . . . . . . . . . . . . . . . . 10

2.3 The need for patient-specific inverse estimation . . . . . . . . . . . . . . . 11

3 Statistical background 13
3.1 Statistical emulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.1 Simulators and emulators . . . . . . . . . . . . . . . . . . . . . . . 13
3.1.2 Design of computer experiments . . . . . . . . . . . . . . . . . . . . 14
3.1.3 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Uncertainty quantification . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.1 Frequentist methods . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.2 Bayesian inference . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.3 Markov chain Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.4 Efficiency, convergence and simple changes to the Metropolis Hast-

ings algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.5 Hamiltonian Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.6 Bayesian calibration for complex simulators . . . . . . . . . . . . . 29

iii



CONTENTS iv

3.2.7 Bayesian calibration in the presence of model discrepancy . . . . . . 30
3.3 Neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3.2 The general regression problem . . . . . . . . . . . . . . . . . . . . 33
3.3.3 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3.4 Bayesian neural networks . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 Gaussian processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4.1 Gaussian process regression . . . . . . . . . . . . . . . . . . . . . . 40
3.4.2 Kernel functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4.3 Multivariate Gaussian processes . . . . . . . . . . . . . . . . . . . . 46
3.4.4 Gaussian process approximations . . . . . . . . . . . . . . . . . . . 47

3.5 Dimension reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4 Emulation of a fixed left ventricle geometry simulator 53
4.1 Background on the problem . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1.1 The fixed geometry simulator . . . . . . . . . . . . . . . . . . . . . 53
4.1.2 A reduced parameterisation . . . . . . . . . . . . . . . . . . . . . . 55

4.2 Emulation methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2.1 Univariate Gaussian process . . . . . . . . . . . . . . . . . . . . . . 56
4.2.2 Multivariate GP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2.3 Global approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.2.4 Parameter estimation with a statistical emulator . . . . . . . . . . . 59

4.3 Building and applying the emulator . . . . . . . . . . . . . . . . . . . . . . 60
4.3.1 Phase 1: Parallel simulations from the model . . . . . . . . . . . . . 61
4.3.2 Phase 2: Training the emulator . . . . . . . . . . . . . . . . . . . . 62
4.3.3 Phase 3: Using the emulator for parameter estimation . . . . . . . . 62

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.4.1 Comparing the neural network with a sparse GP . . . . . . . . . . . 63
4.4.2 Comparing loss and output emulation for parameter estimation . . 64
4.4.3 Evaluating different output emulation approaches . . . . . . . . . . 65
4.4.4 Performance evaluation on MRI cine data . . . . . . . . . . . . . . 68

4.5 Discussion and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5 Analysing the left ventricle geometry representation 72
5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2.1 Extracting the LV geometry from CMR scans . . . . . . . . . . . . 74
5.2.2 Dimension reduction . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2.3 Model training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77



CONTENTS v

5.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.3.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.3.2 Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.4.1 PCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.4.2 Autoencoders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.4.3 Parametric method . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.4.4 Classifying MI cases based on LV geometry . . . . . . . . . . . . . . 84

5.5 Discussion and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6 Generalising the left ventricle emulator to varying LV geometries 89
6.1 Generalising the emulator to new LV geometries . . . . . . . . . . . . . . . 89
6.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.2.1 Generalising the statistical emulator . . . . . . . . . . . . . . . . . 92
6.2.2 Building the emulator . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.2.3 Quantifying our uncertainty about the material parameters with

MCMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.2.4 Including a simple bias correction in the likelihood function . . . . 101

6.3 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.3.1 Implementation details . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.3.2 Quantifying our uncertainty with Bayesian inference . . . . . . . . . 102
6.3.3 Investigating the likelihood function . . . . . . . . . . . . . . . . . . 104
6.3.4 Further exploration of the effect of LV geometry approximation . . 106
6.3.5 Inference while accounting for bias correction . . . . . . . . . . . . 107

6.4 Discussion and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7 Improved inference by combining in vivo strain data with ex vivo volume-
pressure data 112
7.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.2.1 Emulating the likelihood function . . . . . . . . . . . . . . . . . . . 114
7.2.2 Method A: the nonempirical Klotz prior . . . . . . . . . . . . . . . 115
7.2.3 Method B: the empirical Klotz prior . . . . . . . . . . . . . . . . . 119

7.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
7.3.1 Construction of the in clinic emulators . . . . . . . . . . . . . . . . 122
7.3.2 Test data generation . . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.3.3 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
7.4.1 Comparing low fidelity and high fidelity Klotz priors . . . . . . . . 124



CONTENTS vi

7.4.2 Initial prior exploration with high fidelity emulators . . . . . . . . . 125
7.4.3 Assessing the Klotz models with synthetic data . . . . . . . . . . . 127
7.4.4 Inferring parameters from real data . . . . . . . . . . . . . . . . . . 135

7.5 Discussion and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
7.5.1 Discussion of results . . . . . . . . . . . . . . . . . . . . . . . . . . 136
7.5.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

8 A combined sensitivity analysis and inverse uncertainty quantification
study of the H-O model 140
8.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
8.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

8.2.1 Left Ventricular Forward Model . . . . . . . . . . . . . . . . . . . . 145
8.2.2 Constitutive Law of the Myocardium . . . . . . . . . . . . . . . . . 146
8.2.3 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
8.2.4 Surrogate Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . 149
8.2.5 Posterior Parameter Inference . . . . . . . . . . . . . . . . . . . . . 150

8.3 SA Simulation Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
8.3.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
8.3.2 Surrogate Model Training . . . . . . . . . . . . . . . . . . . . . . . 153
8.3.3 Surrogate Model Validation . . . . . . . . . . . . . . . . . . . . . . 155
8.3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

8.4 I-UQ Simulation Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
8.4.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
8.4.2 Surrogate Model Training . . . . . . . . . . . . . . . . . . . . . . . 161
8.4.3 Surrogate model validation . . . . . . . . . . . . . . . . . . . . . . . 162
8.4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

8.5 Discussion and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
8.5.1 Discussion of SA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
8.5.2 Discussion on I-UQ . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
8.5.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
8.5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

9 Studying the effects of physiological conditions on model calibration 173
9.1 Model discrepancy background . . . . . . . . . . . . . . . . . . . . . . . . . 173

9.1.1 Motivation with a set of measured data . . . . . . . . . . . . . . . . 173
9.1.2 The presence of model discrepancy in the LV simulator . . . . . . . 176
9.1.3 A closer look at the physiological conditions . . . . . . . . . . . . . 177
9.1.4 Effect of erroneous physiological conditions and further modelling

errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179



CONTENTS vii

9.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
9.2.1 Acknowledging model discrepancy in Bayesian model calibration . . 180
9.2.2 GP model for circumferential strain discrepancy . . . . . . . . . . . 181
9.2.3 Inference for the model with discrepancy correction . . . . . . . . . 182
9.2.4 The emulator model . . . . . . . . . . . . . . . . . . . . . . . . . . 184

9.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
9.3.1 Joint optimisation of fibre angles and constitutive parameters . . . 185
9.3.2 Accounting for fibre angle discrepancy . . . . . . . . . . . . . . . . 187
9.3.3 Effect of LV geometry . . . . . . . . . . . . . . . . . . . . . . . . . 188

9.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
9.4.1 An initial look at the effect of fibre angles . . . . . . . . . . . . . . 190
9.4.2 Bayesian optimisation of angles and material parameters . . . . . . 191
9.4.3 An attempt to account for fibre angle discrepancy . . . . . . . . . . 191
9.4.4 LV geometry study . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

9.5 Discussion and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

10 Discussion and Conclusion 205
10.1 Main findings of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
10.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

A Appendix for Chapter 3 210
A.1 GP prediction with precomputation . . . . . . . . . . . . . . . . . . . . . . 210
A.2 Sparse GP prediction with precomputation . . . . . . . . . . . . . . . . . . 210

B Appendix for Chapter 4 213
B.1 Multioutput GP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
B.2 Accounting for uncertainty in the loss function . . . . . . . . . . . . . . . . 214

B.2.1 Nonstationary GP model . . . . . . . . . . . . . . . . . . . . . . . . 215
B.2.2 Comparing the loss functions . . . . . . . . . . . . . . . . . . . . . 216

C Appendix for Chapter 5 219
C.1 A weighted autoencoder: task specific dimensionality reduction . . . . . . . 219
C.2 Comparing different hidden layer sizes . . . . . . . . . . . . . . . . . . . . 220

D Appendix for Chapter 7 222
D.1 Removing α from the Klotz function . . . . . . . . . . . . . . . . . . . . . 222
D.2 Delta method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
D.3 Gauss error propagation model . . . . . . . . . . . . . . . . . . . . . . . . 223
D.4 Derivation of (7.12) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
D.5 Details of test generation with MCMC . . . . . . . . . . . . . . . . . . . . 224



CONTENTS viii

D.5.1 Overall generation procedure . . . . . . . . . . . . . . . . . . . . . . 224
D.5.2 Non-empirical Klotz prior data generation . . . . . . . . . . . . . . 225
D.5.3 Empirical Klotz prior data generation . . . . . . . . . . . . . . . . . 228

D.6 Comparing Gauss error model with the first order delta method for the
empirical Klotz prior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

D.7 Real data results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

E Appendix for Chapter 9 235
E.1 Further results of operator effect in the geometry domain . . . . . . . . . . 235
E.2 Full model calibration results . . . . . . . . . . . . . . . . . . . . . . . . . 235

F Emulation with in clinic correction 241
F.1 Bayesian last layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
F.2 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

F.2.1 Applying to a toy problem . . . . . . . . . . . . . . . . . . . . . . . 243
F.2.2 Applying to the LV simulator . . . . . . . . . . . . . . . . . . . . . 243

F.3 Next steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245



List of Tables

4.1 Comparison of the different emulation strategies. Median (1st, 3rd) quar-
tiles of the mean squared error distribution for the out-of-sample parameter
vectors. The method with the lowest median MSE is highlighted in bold:
Output emulation using local multivariate output GPs. . . . . . . . . . . 66

4.2 Estimates for real MRI data. The literature gold standard and the esti-
mated parameters θ̂ from emulation method M3. The confidence intervals
(CIs) are obtained using a parametric bootstrap procedure. . . . . . . . . 71

5.1 Autoencoder nomenclature. . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.2 MSE in reconstructions of the LV geometry obtained wuth different num-

bers of principal components. Proportion change is the proportion reduc-
tion in MSE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.3 Summary of the autoencoder performance, along with the optimal L2 penalty
(L2) and learning rate (LR) for training each network. The mean mesh re-
sults are given as reference values. See Table 5.1 for a description of the
final 2 methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.4 Quantiles of MSE distributions for an autoencoder and PCA. For both
methods, we obtain separate MSE values for each LV geometry. The table
provides the quantiles of this distribution of errors. See Table 5.1 for a
description of the model in the top row. . . . . . . . . . . . . . . . . . . . . 84

6.1 Comparing the accuracy of simulations with different LV geometry approx-
imations using relative absolute error (RAE). There is not a dramatic im-
provement in accuracy when we increase the number of principal components. 95

6.2 Error in parameters estimated from a test dataset of simulations. The table
gives the 0.25,0.5,0.75 quantiles of the mean squared error. . . . . . . . . . 98

6.3 Comparing the accuracy of simulations with different LV geometry approx-
imations, allowing for corrections in the model predictions. . . . . . . . . . 109

7.1 Description of the two different Klotz curve prior models. . . . . . . . . . . 122
7.2 Description of the different emulators used in this study. . . . . . . . . . . 123

ix



LIST OF TABLES x

8.1 Summary of UQ and SA studies on cardiac mechanics . . . . . . . . . . . . 143
8.2 Model input parameters with bounds based on Gao et al. (2017) . . . . . . 147
8.3 Surrogate Model Verification Results: Q2-coefficient values for the

four output quantities considered for the SA experiments, calculated on a
set of 100 independent simulations from the forward model. . . . . . . . . . 156

8.4 Surrogate Model Verification Results: Q2 coefficient value for the two
outputs considered for the I-UQ experiments, calculated on a test-set of 100
simulations from the forward model. The values are rounded to three digits. 162

8.5 The four parameter configurations being considered in greater detail. . . . 166

9.1 Description of all parameters from the model in (9.6) along with priors used
in Bayesian inference. IG represents an inverse Gamma distribution. . . . . 183

9.2 Results of Bayesian optimisation of material parameters, with fibre angles
fixed at αendo = −60 and αepi = 90. . . . . . . . . . . . . . . . . . . . . . . 191

9.3 Results of Bayesian optimisation of fibre angles and material parameters. . 192
9.4 Comparing reconstruction errors of three different operators. Each of the 6

rows gives the results for an individual patient segmented by the operators.
The main operator’s reconstruction is taken to be the benchmark, compared
with its PCA reconstruction and those of the other two operators. The first
reconstruction with PCA that gives lower MSE than either operator is in
bold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

B.1 Comparison of the loss function with and without GP uncertainty. Includ-
ing uncertainty gives us a small improvement for small dataset sizes. . . . . 216

C.1 Comparing different hidden layer sizes (H) in the neural network from Fig-
ure 5.4. For the nonlinear activation function, the leaky ReLU was used. . 221

E.1 Comparing the volumes of the segmented LV geometries across different op-
erators. The final row provides an approximation of the standard deviation,
but this is based on only 3 measurements. . . . . . . . . . . . . . . . . . . 235

E.2 The effect of operator on parameter estimation. The results in each table are
produced by generating synthetic data using the LV geometry segmented by
the main operator and optimising the parameters of the HO law using the
simulator with the test geometry. The ground truth parameter values were:
a = 0.60, b = 1.30, af = 1.00, bf = 3.60 and values in the table highlighted
in bold differ from these by greater than 0.1. . . . . . . . . . . . . . . . . 238



LIST OF TABLES xi

E.3 The effect of operator on parameter estimation. The results in each table are
produced by generating synthetic data using the LV geometry segmented by
the main operator and optimising the parameters of the HO law using the
simulator with the test geometry. The ground truth parameter values were:
a = 0.60, b = 1.30, af = 1.00, bf = 3.60 and values in the table highlighted
in bold differ from these by greater than 0.1. . . . . . . . . . . . . . . . . 239

E.4 The effect of operator on parameter estimation. The results in each table are
produced by generating synthetic data using the LV geometry segmented by
the main operator and optimising the parameters of the HO law using the
simulator with the test geometry. The ground truth parameter values were:
a = 0.60, b = 1.30, af = 1.00, bf = 3.60 and values in the table highlighted
in bold differ from these by greater than 0.1. . . . . . . . . . . . . . . . . 240



List of Figures

2.1 Diagram of the heart. The left and right atria and ventricles work to-
gether to drive blood flow around the body. Image taken from: https://
commons.wikimedia.org/wiki/File:Diagram_of_the_human_heart.

svg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 The LV simulator can be considered as a function from the joint material

parameter-LV geometry-pressure space. Given a set of material parameters,
EDP and LV geometry, the simulator inflates the LV geometry, simulating
the passive filling process. From the deformed mesh, the strains and cavity
volume at end of diastole can be extracted (see Figure 2.3 for details on the
strain extraction). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 The simulator inflates the LV from early diastole, simulating the LV pas-
sive filling process to produce a deformed mesh. To extract the simulated
strains from the deformed LV mesh, the clinical convention is used following
the AHA division. This involves dividing the LV circumferentially into 6
segments in the circumferential direction (top left) and 4 segments in the
longitudinal direction based on the CMR images from base to mid-ventricle.
In total, this gives 24 strains regions/locations, indicated by the plot in the
top right. Since these strains are at well defined locations, corresponding
strains can also be measured from CMR scans. Three different strains can
be extracted at each strain region, as shown in the bottom row. From left
to right, these plots indicate how each type of strain is measured along the
circumferential, radial and longitudinal directions. In simple terms, strain
represents the ratio of length change of a line segment after deformation. . 8

2.4 An example hexahedral mesh representation of the LV geometry that is
used in the simulator. The diagram on the right shows the rotation of the
myofibres from epicardium to endocardium, with the axis in the bottom
right showing the myofibre (m), sheet (s) and sheet normal (n) directions. 9

3.1 Comparison of quasi random (left) and pseudorandom (right) sequences.
Both are generated with 100 points. . . . . . . . . . . . . . . . . . . . . . . 16

xii

https://commons.wikimedia.org/wiki/File:Diagram_of_the_human_heart.svg
https://commons.wikimedia.org/wiki/File:Diagram_of_the_human_heart.svg
https://commons.wikimedia.org/wiki/File:Diagram_of_the_human_heart.svg


LIST OF FIGURES xiii

3.2 In low dimensions, the Sobol sequence fills the space uniformly but patterns
begin to appear in higher dimensions. . . . . . . . . . . . . . . . . . . . . . 16

3.3 The projection properties of a LHD are far better than those of a Sobol
sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.4 Artificial neuron example. The neuron takes a weighted sum of its three
inputs and outputs a transformation of this linear combination. . . . . . . 32

3.5 Demonstration of different activation functions: left=tanh, middle=ReLU
and right=quadratic ReLU. The tanh is a standard sigmoidal shaped acti-
vation function. The ReLU is piecewise linear, with the kink making the
overall function nonlinear. The quadratic ReLU adjusts the linear portion
of the ReLU to be a quadratic, allowing for smooth interpolation. The bot-
tom row shows regression functions fitted using neural networks with the
different activation functions. . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.6 An example of a neural network with two hidden layers. . . . . . . . . . . 33
3.7 Showing the idea of early stopping. The top row shows the training error

as a solid blue line and the validation error as a dashed orange line. The
validation error begins to increase when training progresses beyond simple
models. We can visualise this in the bottom row where the trained models
are displayed at different stages of training. The training data are shown
in these plots as grey scatter points. . . . . . . . . . . . . . . . . . . . . . . 37

3.8 A heavily over-parameterised neural network trained from four random ini-
tialisations at small weights. All optimisations converge to similar models
and the generalisation is good. . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.9 A heavily over-parameterised neural network trained on a deterministic
function. Rather than an increasing validation loss, the poor generalisation
appears simply as a validation loss significantly higher than the training
loss. In the plot on the right, the dashed line shows the actual function
while the solid red curve shows the function learnt by the neural network. . 38

3.10 Demonstration of the Bayesian ensemble. 20 optimised models are used to
obtain the posterior predictive distribution. . . . . . . . . . . . . . . . . . . 40

3.11 Starting from a prior in function space on the left, samples from the GP
prior are very different from the ground truth function (the simulator).
When we condition on the training simulations (red points) we limit the
distribution of functions to those that are consistent with the simulations.
As the number of simulations increases, we gradually begin to limit the
distribution of functions to those that are consistent with the simulator. . . 42

3.12 Samples from a GP with polar kernel for different values of the hyperpa-
rameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45



LIST OF FIGURES xiv

3.13 A mixture of two t-distributions is frequently used as a counter example to
PCA where we have two signals that clearly do not lie orthogonal to one
another. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.14 Visualisations of a shallow autoencoder (left) and deep autoencoder (right).
The bottleneck layer provides the low-dimensional representation of G. . . 52

4.1 Comparing the predictive performance of a neural network and sparse GP
on a held out dataset. Visually, the predictions (y-axis) appear identical
to the ground truth value (x-axis), both for the sparse GP and the neural
network. With the sparse GP there is a small deviation from the ground
truth for the outlying prediction (largest volume) and overall, a small de-
terioration is indicated by a deterioration in predictive performance by a
whole order of magnitude. . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2 Distribution of the 100 out-of-sample MSE scores for each method. (a)
Boxplots of the mean squared error for all 3 methods in the original y-axis
scale and (b) with a reduced y-axis scale. The methods from left to right
on the left plot are as follows: local GP emulation of the loss, local GP
emulation of the outputs, and local multiple output GP emulation. The
plot on the right includes only the output emulation methods. . . . . . . . 66

4.3 Validating the performance of the local multivariate output Gaussian pro-
cess. The numerical values correspond to median out-of-sample MSE values
in the predicted parameters using a local multivariate emulator as outlined
in Section 2 with different numbers of nearest neighbours in function space.
The plot on the right constrains the y-axis to exclude outliers, allowing us
to see the minimum value of MSE occurring around K = 100. . . . . . . . 67

4.4 The nearest neighbours (in input space) from the training set for several
different test points, visualised in output space. In each plot, the target
point is in blue and the nearest neighbours are in red. The plot on the left
highlights the nearest neighbours of the test point for which the multivariate
method performs worst. For this point, nearest neighbours in input space
are quite far apart in output space. This will lead to poorer input space
coverage when we find nearest neighbours in output space. . . . . . . . . . 68



LIST OF FIGURES xv

4.5 Plots of the Cauchy stress against the stretch along (a) the sheet direction
and (b) the myocyte. The current best estimate (i.e. the literature gold
standard) from Gao et al. (2017) is reported as a dashed black line. Esti-
mates of the curves using the best emulation approach (M3) are given as a
blue solid line. The error bars show a 95% confidence interval, obtained by
using the bootstrap method described in Section 4.4.4. Each plot contains
a residual curve, providing the difference between the true and estimated
curves. These residual curves are plotted with 95% confidence intervals in
(c) for the sheet direction and (d) along the myocyte. . . . . . . . . . . . 70

5.1 Top row: the three long axis views of the LV. (a) Four chamber view, (b)
left ventricular outflow tract and (c) one chamber view. Bottom row: three
example of short axis views. From left to right, these are taken at increasing
distances from the basal plane. . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2 The LV is represented by a series of finite element nodes. There are 2896
nodes on the epicardial and endocardial walls providing a 2896 × 2 × 3 =

17376 dimensional representation in Cartesian coordinates. . . . . . . . . . 74
5.3 Visualising the geometry extraction procedure. (a) first we segment the

different short axis slices. (b) next we segment the long axis images before
performing motion correction (c) where we align the short axis segmen-
tations with the long axis view. The final LV geometry, displayed in (d)
is then obtained using a B-spline fitting procedure. This procedure was
proposed by Liu et al. (2009). . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.4 The typical autoencoder architecture. The input and output layers are the
GT and estimated LV geometry, respectively. The intermediate layers (in
blue) consist of a series of nonlinear operations that provide a reduction
into a K dimensional space. This transformation could be performed using
PCA or learnt as part of the entire network. The latter case would relax
the orthogonality assumption of PCA. The hidden layer in orange provides
our low-dimensional representation of the LV geometry in m dimensions.
This diagram is adapted from Figure 1 in Romaszko et al. (2019). . . . . 78

5.5 Some example LVs reconstructed from 5 principal components. The solid
blue surfaces show the endocardium and epicardium of the ground truth
LV while the red meshes show the endocardium and epicardium predictions
from 5 principal components. Also provided is the mean squared error
between the two reconstructions. . . . . . . . . . . . . . . . . . . . . . . . 82



LIST OF FIGURES xvi

5.6 A comparison of activation functions for the two autoencoder architectures,
as indicated by the axis titles of the plots. On the left is the autoencoder
with 17k inputs and on the right the LV geometry has first been reduced to
60 dimensions using PCA. The data are plotted on the log scale for each of
the visualisations. See Table 5.1 for a description of the models and labels
of the axes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.7 Estimation of the LV geometry using the parametric approach. Panel (a)
shows the original LV geometry, (b) is the fitted LV geometry and (c) shows
the overlap of the endocardiums of both. The model assumes that the LV
geometry is symmetric, which limits its flexibility in fitting LV geometries
at early diastole where the LV tends to be more deformed. . . . . . . . . . 84

5.8 Comparison of the parametric approach and PCA for reconstructing the LV
geometry. PCA easily outperforms the parametric approach, partially due
to the symmetry assumption of the parametric method. . . . . . . . . . . . 85

5.9 Projection of healthy volunteers and myocardial infarction patients with t-
SNE on the left and PCA on the right. We see that there is some separation
of the two classes but it probably is not linear and that the separation is
possibly more pronounced in the case of t-SNE than with PCA. . . . . . . 86

5.10 Visualising the second mode of variation from PCA. From left to right, we
move in a positive direction along this mode (towards the MI subjects). . . 86

5.11 A GP classifier is fitted to the 2 PC projections of the MI and HV pa-
tients, assigning probabilities as shown in (a). The ROC curve for the 2 PC
classifier is provided in (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.1 Left: the simulator function for varying θ1 and θ2 with θ3 = θ4 = 1. Right:
the simulator function for varying θ3 and θ4 with θ1 = θ2 = 1. The two
different colours indicate simulations from different LV geometries. . . . . . 90

6.2 Emulation of the LV model for full geometries is not possible. Demonstrated
in part A is the generation of a design for a reduced LV geometry emu-
lator, where we must find a mapping into a lower dimensional space that,
combined with the space of material properties, enables a sufficiently infor-
mative emulator design. Part B shows that the emulator can be trained to
replicate the function from this lower dimensional space since our training
geometries can be fully described in this space. . . . . . . . . . . . . . . . 91

6.3 In the optimal dimension reduction for cardio mechanical modelling, we
would find the encoding and decoding maps that minimise the error be-
tween the simulator evaluated at the original geometry and the simulator
evaluated at the reconstructed geometry. The computational costs of the
simulator make this method non-applicable. . . . . . . . . . . . . . . . . . 93



LIST OF FIGURES xvii

6.4 Random samples in 10PC space lead to physiologically unrealistic LV ge-
ometries. In the plot on the left, the apex region is concave, in the middle
the endocardium (inner surface) intersects the epicardium (outer surface)
and in the right plot the bulge and shape of the apex are unrealistic. . . . 96

6.5 Prediction with the 5PC emulator at a held out dataset. Points lying close
to y = x indicates an accurate approximation. . . . . . . . . . . . . . . . . 99

6.6 Simulations obtained from LV geometry approximation versus simulations
obtained with exact LV geometry. The colour of points distinguishes be-
tween different ground truth LV geometries and we see that points of the
same colour all tend to lie on the same side of the line at y = x. The differ-
ent symbols correspond to a 5PC LV geometry approximation (circles) and
a mean mesh LV geometry approximation (crosses). Each square on the
grid corresponds to a difference of 0.025 in circumferential strain (in both
the horizontal and vertical axes). . . . . . . . . . . . . . . . . . . . . . . . 101

6.7 Comparing results of parameter estimation with a mean mesh LV geometry
representation and an LV geometry representation obtained from 5 principal
components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.8 A more detailed look at the posterior inference of 4 test examples. The
different colours indicate the material parameter, with matching vertical
lines showing the ground truth value of that parameter. . . . . . . . . . . . 104

6.9 Visualising the effect of PCA on the loss function. By reducing the geometry
to a 5PC representation we change the loss function. This causes the global
minimum to shift from the red point (the minimum obtained with the full
LV geometry) to the black point. . . . . . . . . . . . . . . . . . . . . . . . 105

6.10 Showing the effect of the ground truth parameter value on the uncertainty
in our parameters. Each row shows how our uncertainty about the first
parameter in the title of the plot changes over the given space, with bounds
on the parameters being 0.5 and 5.0. The uncertainty is measured as the
IQR in the marginal posterior distribution of the parameter. . . . . . . . . 107

6.11 Using the ejection fraction we can distinguish realistic parameter config-
urations (with EF greater than 55%) and unrealistic ones (EF less than
55%), before assessing the results of the posterior inference in both cases,
as divided by the vertical dashed line. . . . . . . . . . . . . . . . . . . . . . 108

6.12 Comparing results of parameter estimation with a 5PC representation of
the LV geometry when we include a simple bias correction in the likelihood
function (white) and when we do not include a bias correction (grey). . . . 109



LIST OF FIGURES xviii

6.13 Typical inference results. θ1 and θ2 are well identified but θ3 and θ4 are
subject to large uncertainty. Translating to the tissue properties on the
right, we see that the uncertainty is large for high stretch. . . . . . . . . . 110

7.1 A heteroscedastic noise model is fitted to the normalised volume as a func-
tion of pressure. The data, represented by the scatter points, were obtained
from Klotz et al. (2006) using the Grabit function in MATLAB. Pressures
lower than 2mmHg are excluded from the model fitting. The shaded area
shows ±2ω(P ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.2 Including the nonempirical Klotz prior in the cardio-mechanic parameter
estimation. Observed quantities are in grey circles, functions are in boxes
and variables are in white circles. In addition to using the cardio-mechanic
model for modelling in vivo data (y∗) at the in vivo reference pressure (right
branch), it is also used to model the LVV at higher ex vivo reference pres-
sures, providing a distribution on the normalised volume, which is labelled
as Ṽ e
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Chapter 1

Introduction

The heart is often referred to as the most important organ in the body, as it is responsible
for the pumping of blood that supplies oxygen and nutrients to the rest of the body’s
organs. Understanding of the heart’s pump function dates back centuries and is regarded
as the greatest medical discovery of all time (Friedland, 2009). In its early stages, car-
diovascular research was primarily the work of physicians who strived, through ex vivo
experiments, to understand the physiological behaviour of the heart. Over the last century,
cardiovascular research has become more inter-disciplinary, the result of which has been
a more quantitative understanding of the heart’s function (Peirlinck et al., 2021). This
is epitomised by the growing interest in descriptions of the mechanical behaviour of the
heart (Niederer et al., 2019), which is essential for mathematical models of cardiac function.
Mathematical models provide a causal link between the material behaviour of the heart
and its kinematic behaviour, the latter of which is also observable—and measurable—given
the cardiac imaging methods that are now routinely available. The combination of these
two aspects can provide deeper insight into the heart’s level of function. Importantly,
they provide a better understanding of the tissue properties in vivo, with the potential to
increase our understanding of the heart’s physiology and pathophysiology.

Mathematical models of cardiac function are often constructed as partial differential
equations that replicate the spatio-temporal evolution of the heart. These models can be
validated against measurable data, with the validated models implemented in the form of
a computer code or simulator that requires anatomical specifications of the heart at differ-
ent scales. Accurate measurement of these features allows us to tailor cardiac models to
a particular patient and provide patient-specific forward modelling of cardiac behaviour.
Assuming the kinematic behaviour that is predicted by these models can also be measured
in the clinical setting, the patient-specific forward model can be used for patient-specific
inverse modelling, through which we recover the map from the observable to unobservable
behaviour. A natural solution to the inverse problem is to use brute-force gradient-based
optimisation routines: define a loss function that quantifies the squared difference between
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model predictions and observed data, and follow the gradient of this loss through the input
space to the minimum. Computation of this gradient (which is performed numerically)
requires running the simulator, and this must be performed at each iteration of the opti-
misation. Despite the huge computational costs associated with such a procedure, these
are still the most widely used methods in the literature today.

As scientific research becomes more quantitative, statistical and machine learning
methods naturally become increasingly relevant for the synthesis of all the available in-
formation (Alber et al., 2019), with recent work showing their applicability in the field of
cardiology (Quer et al., 2021; Hannun et al., 2019; Al’Aref et al., 2020). While we might
think that the fields of mechanistic and data-driven modelling, which are fundamentally
built upon contrasting views of model building, should be in competition, their uses in car-
diovascular research are becoming more complementary. Recent implementations involve
data-driven replication of mechanistic cardiac models (Maso Talou et al., 2020) and neural
network modelling frameworks that explicitly incorporate the mechanistic descriptions in
the model (Sahli Costabal et al., 2020). Meanwhile, classification has been used to show
the informativeness of the mechanistic model’s parameters (Gao et al., 2017).

Statistical emulation, which has been applied to other scientific disciplines ranging
from epidemiology (Andrianakis et al., 2015) to climate modelling (Tran et al., 2016),
is a method that allows for efficient approximation of an expensive simulator. Treating
the mathematical descriptions as a black box, a statistical emulator learns to replicate the
input to output map given a set of input-output pairs obtained from the model. This relies
on data from the process-driven model, with which an emulator is trained in a data-driven
manner. As such, it relies on the mechanistic description when obtaining the input-output
pairs and can be seen to incorporate the mechanistic description into the model. This
allows for efficient model calibration, where we learn the model settings of the simulator
from a set of measured data (Kennedy and O’Hagan, 2001). Moreover, the improvement
in computational costs allow for the consideration of inverse uncertainty quantification (I-
UQ), where we learn a distribution on the parameters instead of a single point estimate.
This is important in the context of cardio-mechanical models, where uncertainties exist
in both the model and the measured data. A common approach taken to I-UQ involves
quantifying our belief about the parameters both before and after observing the data.
This Bayesian approach to inference allows us to incorporate information in our inference
scheme that has been gained from previous experiments, which can be of particular use
when dealing with mathematical models of cardiac processes since these have often been
studied before in the lab. This idea of prior integration will be explored in this thesis.

The general idea in statistical emulation is the following: obtain a set of training data
from a simulator and train a regression model to replicate the function, using information
gained from these forward simulations. While this would appear simple, its application
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in more complicated models can be difficult. Issues such as dimensionality of inputs and
smoothness of the simulator function can make the application of emulation far from
straightforward. This thesis will explore this extensively in the context of a mathematical
model of cardiac function. This exploration will involve various different studies, first of
all concerned with the task of representing the anatomical geometry in the model, which
allows for generalisation to different patients, and then considering how we can improve
the estimation of the model parameters, first through the introduction of a new prior
distribution and then by learning a parameterisation based on a combined SA and I-UQ
study. The layout of this thesis is as follows:

Chapter 2 provides background on the mathematical model of the left ventricle (LV) in
diastole, which is the model for which statistical emulation and parameter inference will
be considered.

Chapter 3 presents background on statistical methods that will be used in this thesis. This
primarily considers the methods required for parameter inference, with a particular focus
on Bayesian methods, as well as different regression models that can be used for statistical
emulation.

Chapter 4 considers emulation of a simplified simulator, where the left ventricle geometry
is fixed. This acts as a proof of concept study of statistical emulation for the mathematical
model of the LV in diastole.

Chapter 5 considers dimension reduction of the LV geometry, which is necessary for gen-
eralisation of the statistical emulator to different LV geometries.

Chapter 6 uses the results from Chapter 5 in a first attempt at generalising the emulator
to new LV geometries. This consists of extending the input space of the emulator from
Chapter 3 with a low-dimensional LV geometry representation.

Chapter 7 attempts to tackle the issue of weakly identifiable model parameters. This
chapter presents a prior model that takes account of results from ex vivo experiments to
include information not available from clinical measurements.

Chapter 8 considers the parameterisation of the mathematical model. Using a combined
sensitivity analysis and inverse uncertainty quantification study, a new parameterisation
of the model is proposed.

Chapter 9 considers the impact that physiological conditions, such as LV geometry, have
on the inverse estimation.

Chapter 10 provides a summary of the main results and discusses some future research
directions.



Chapter 2

Cardiac mechanics model of the left
ventricle

This chapter introduces the mathematical model that describes the left ventricle (LV) in
diastole, which is the focus of the statistical analysis in the remainder of this thesis. This
starts with an overview of the heart’s physiology, before considering the LV in more detail.
The mathematical description of the filling process is then introduced, before putting the
work in this thesis in the context of patient specific modelling from the literature.

2.1 Left ventricle dynamics

2.1.1 Background on heart physiology

The heart consists of four chambers—the right and left atria and the right and left ven-
tricles (see Figure 2.1)—that act in unison to drive the flow of blood in the circulatory
system. This occurs in two phases: the systemic circulation maintains the supply of
oxygen-rich blood to the distal organs via the systemic arteries, while the pulmonary cir-
culation controls the provision of oxygen depleted blood to the lungs. As the main driving
force behind these systems, the heart acts as a pump in alternating periods of relaxation
(diastole), which allows for refilling, and contraction (systole), which pushes blood out of
the heart. More specifically, during atrial diastole the right atrium (RA) collects deoxy-
genated blood once it has passed through the systemic circulation, and the left atrium
(LA) collects oxygenated blood from the pulmonary circulation. The blood then passes
from the LA into the LV and the RA into the right ventricle (RV) during ventricular
diastole. Once the LV cavity has filled with blood passing in from the left atrium, the
ventricular myocardium starts to contract, triggered by the action potentials propagated
from the sinoatrial node. The pressure of the blood within the LV increases and once this
surpasses the aortic pressure, the aortic valve opens and the blood is pumped into the
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systemic circulation, where it passes round the body to all the distal organs. A similar
process occurs in the RV to push blood out of the heart towards the lungs. In a healthy
heart, the right and left sides act synchronously, meaning that left and right ventricular
diastole and systole happen almost simultaneously. More details on the physiology of the
entire heart can be found in the literature (Quarteroni et al., 2017; Voorhees and Han,
2015)

Figure 2.1: Diagram of the heart. The left and right atria and ventricles work together to
drive blood flow around the body. Image taken from: https://commons.wikimedia.
org/wiki/File:Diagram_of_the_human_heart.svg

2.1.2 More details on the left ventricle in diastole

This thesis is concerned with the behaviour of the LV in diastole, when the LV is passively
filled with blood from the LA. The dynamics of the LV are largely driven by a muscular
tissue—called the myocardium—that lies between two thin layers called the endocardium
(the inner layer) and epicardium (the outer layer), as shown in Figure 2.1. In systole,
when the LV is said to be active, the myocardium generates a contractive force that pushes
blood out of the heart. During diastole, we refer to the myocardium as passive; having
contracted to overcome the aortic pressure in systole, the muscle relaxes and permits the
flow of blood from the LA. As the LV fills with blood, the blood within the cavity exerts a
force on the myocardium, which responds via a resisting force (stress) to the deformation
(strain) induced by the force of the blood. In general, this resistance force is nonlinear and
prevents excessive expansion of the LV cavity. This can be understood in a similar manner
to the stiffness properties in nonlinear springs: with increasing deformation, the resisting

https://commons.wikimedia.org/wiki/File:Diagram_of_the_human_heart.svg
https://commons.wikimedia.org/wiki/File:Diagram_of_the_human_heart.svg
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force that pulls the spring back to its resting shape varies. In the LV, the resting state
is referred to as the unloaded state and the properties of the myocardium that determine
the level of resistance are referred to as the myocardial properties.

An understanding of the underlying myocardial properties is synonymous with an
understanding of the stress and strain behaviour of the tissue. While the deformation
(strain) can be measured in vivo, no methods currently exist for measuring myocardial
stress. This stress is what is fundamentally of interest, since it has been linked to various
physiological and pathological processes (Avazmohammadi et al., 2019; Palit et al., 2018a).
While the stress is not measurable in vivo, the relationship between strain and stress can
be described mathematically, in a form that is fundamentally the same as Hooke’s law.
However, the nonlinear response of the myocardium means that we require a more complex
mathematical description, in what is referred to as a strain-energy density function. This
describes the change in mechanical energy of the tissue during deformation (Voorhees and
Han, 2015). Essentially, this calibrated strain energy function can be used to provide a
measure of the stiffness of the myocardium material and is an important component of
the mathematical model of the LV (Avazmohammadi et al., 2019).

2.2 A mathematical model of the left ventricle in dias-

tole

The mathematical model of interest simulates the LV filling in diastole. A basic visu-
alisation of the model is provided in Figure 2.2. Given an LV geometry, end diastolic
pressure of the blood within the LV cavity (EDP) and a set of parameter values describing
the myocardial properties (also referred to as the material parameters, material properties
or constitutive parameters), the model predicts the deformed state of the LV, which is
summarised using several quantities measured from the deformed mesh. In particular,
three different types of strain can be extracted (see Figure 2.3), along with the volume of
the cavity at end of diastole (LVV). The strain predictions are obtained at well-defined
locations on the LV wall, and these same quantities, measured at the same location, can
be obtained from cardiac magnetic resonance (CMR) scans of the LV. Matching the model
predictions of the strains and LVV with the corresponding measured data formulates the
inverse problem that will be explored in this thesis.

A technical description of the mathematical model requires a background in soft tissue
mechanics, which is not within the scope of this thesis. Instead, a high level summary is
provided, and the reader is referred to the extensive literature on these models for more
mathematical details. In particular, Nordsletten et al. (2011) provides general background
on mechanics before specifying this to the case of cardio mechanics. Voorhees and Han
(2015) give a general and accessible introduction to cardiac biomechanics.



CHAPTER 2. CARDIAC MECHANICS MODEL OF THE LEFT VENTRICLE 7

Material
parameters

End
diastolic
pressure

LV
geometry

Cardio-
mechanic
model

End diastolic
volume

Strains

Figure 2.2: The LV simulator can be considered as a function from the joint material
parameter-LV geometry-pressure space. Given a set of material parameters, EDP and LV
geometry, the simulator inflates the LV geometry, simulating the passive filling process.
From the deformed mesh, the strains and cavity volume at end of diastole can be extracted
(see Figure 2.3 for details on the strain extraction).

2.2.1 Geometry representation

Simulation for a particular subject requires the LV geometry G, over which the mathe-
matical model will be solved. The LV geometry can be extracted from CMR scans using
a procedure that will be discussed in Section 5.2.1. This is discretised using hexahedral
elements, forming a dense finite element mesh as shown in Figure 2.4. The LV geometry
and its representation for cardio-mechanical modelling will be discussed in Chapter 5.

The myocardium is made up of a series of fibres known as myofibres, which consist
of myocytes. Their orientation varies as we move from endocardium to epicardium (see
the right of Figure 2.4, and correctly accounting for this feature is an important part
of accurate cardio mechanic modelling (Wang et al., 2013a). Ideally, a patient-specific
myofibre structure would be included in the model, but although methods are progressing
in this direction (Toussaint et al., 2013; Khalique et al., 2020), it is not currently possible
to acquire the myofibre structure in routine patient care. Instead, a rule based method
(RBM) is used for describing the myofibre structure (Wang et al., 2013a). To do so, a local
material coordinate system was defined, the so-called fibre (m)–sheet (s)– sheet-normal
(n) system, which is visualised in Figure 2.4. Unless otherwise specified, the simulations in
this thesis assume the fibre angle varies linearly from αendo = −60◦ at the endocardium to
αepi = 60◦ at the epicardium1, with the sheet orientation along the transmural direction.

2.2.2 Constitutive Law of the Myocardium

The properties of the myocardium are governed by the intra- and extra-cellular structure of
the tissue. The primary component of this tissue is the myofibres, which provide the intra-

1Note that the fibre angle in this study has the opposite sign compared to the literature convention in
which αendo is positive and αepi is negative (Genet et al., 2014a). Using the opposite signs will not affect
the generated fibre fields since we use the opposite circumferential direction for defining the fibre angle
that is the angle between the fibre vector and the circumferential direction. The generated fibre vectors
have also been validated with literature reported fields in previous studies (Gao et al., 2014).
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Figure 2.3: The simulator inflates the LV from early diastole, simulating the LV passive
filling process to produce a deformed mesh. To extract the simulated strains from the
deformed LV mesh, the clinical convention is used following the AHA division. This
involves dividing the LV circumferentially into 6 segments in the circumferential direction
(top left) and 4 segments in the longitudinal direction based on the CMR images from
base to mid-ventricle. In total, this gives 24 strains regions/locations, indicated by the
plot in the top right. Since these strains are at well defined locations, corresponding
strains can also be measured from CMR scans. Three different strains can be extracted
at each strain region, as shown in the bottom row. From left to right, these plots indicate
how each type of strain is measured along the circumferential, radial and longitudinal
directions. In simple terms, strain represents the ratio of length change of a line segment
after deformation.

cellular structure and are surrounded by the extracellular matrix (ECM) (Avazmohammadi
et al., 2019). A component of the ECM that is of particular relevance is collagen, which
is a fibrous material. The myofibres and collagen play complementary roles in governing
the response of the myocardium. In particular, small-stretch behaviour is governed by the
myofibres, with collagen having very little effect. At higher stretch the collagen kicks in,
interacting with the myofibres and governing the high stretch mechanical behaviour of the
muscle (Voorhees and Han, 2015). These two features, among many others, result in a
complex stress-strain relationship that can be captured by a strain energy density function
(Holzapfel and Ogden, 2009).
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Figure 2.4: An example hexahedral mesh representation of the LV geometry that is used
in the simulator. The diagram on the right shows the rotation of the myofibres from
epicardium to endocardium, with the axis in the bottom right showing the myofibre (m),
sheet (s) and sheet normal (n) directions.

In this study, the passive myocardium is considered as an incompressible (no change in
volume), anisotropic (stress response is direction dependent) and hyperelastic (no energy
dissipation and the stress–strain relationship can be described by a strain energy density
function) material, described by the constitutive law introduced by Holzapfel and Odgen
(Holzapfel and Ogden, 2009). The so-called H-O model is given by:

Ψ =
a

2b
[exp {b (I1 − 3)} − 1]

+
∑
i∈{f,s}

ai
2bi

[
exp

{
bi (max(I4i, 1)− 1)2

}
− 1
]

+
afs
2bfs

{
exp

(
bfsI

2
8fs

)
− 1
}

(2.1)

in which a, b, as, bs, af, bf, afs, bfs are the material parameters. The term depending on
a and b relates to the isotropic response of the myocardium, which we can think of as a
global basis material property. The remaining terms relate to the anisotropic response of
the material, which is best understood with reference to Figure 2.4: af and bf characterise
the reinforced stiffness along the myofibres (in the direction of m); as and bs characterise
the reinforced stiffness along the sheet direction (in the direction of s) and afs, bfs describe
the shear response between the fibre and sheet directions. The max() function in (8.1)
ensures the fibres can only support extension but not compression. The remaining terms
in the H-O model, denoted Ij, are called invariants. I1 is the first invariant of the right
Cauchy-Green deformation tensor C = F>F, with F the deformation gradient, and I4i
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and I8fs are structure-based invariants that account for myocardial anisotropy and shear
properties. Specifically:

I1 = tr(C), I4f = m0 · (Cm0) ,

I4s = s0 · (Cs0) , I8fs = m0 · (Cs0) ,

where m0 and s0 are the unit fibre and sheet directions in the reference configuration.
Interested readers are referred to Holzapfel and Ogden (2009) for a detailed description of
the H-O model. A general introduction to soft tissue mechanics can be found in Holzapfel
(2000).

2.2.3 Simulation of LV Passive Filling

The LV diastolic filling process is described by a quasi-static pressure-loaded boundary-
value problem over the computational domain (Ω) occupied by the LV geometry. A linearly
ramped pressure from 0 to P mmHg is applied to the endocardial surface, where P is the
end diastolic blood pressure inside the LV cavity. The basal plane (see Figure 2.4) is fixed
along the longitudinal and circumferential directions, with only expansion in the radial
direction allowed. The equilibrium equation at the current configuration (Ωt) is given by:

∇ · (τ ) = 0 in Ωt,

τ · n = t in Γendo,

u = u0 in Γbase,

(2.2)

where n is the normal direction of the endocardial surface Γendo, t is the traction force
resulting from the loaded pressure at Γendo, and u0 is the prescribed displacements at
the basal surface Γbase. The base (otherwise known as the basal plane) is identified in
Figure 2.4 while the endocardium can be understood via Figure 2.1. The myocardial
Cauchy stress (τ ) is derived from the H-O model as

τ = F
∑

i=1,4f,4s,8fs

∂Ψ

∂Ii

∂Ii
∂F
− λI, (2.3)

in which I is the identity matrix, and λ is the Lagrange multiplier to enforce the incom-
pressibility. This expression makes explicit the statement made earlier, namely that the
strain energy function governs the stress-strain relationship of the material.

For the work in this thesis, equation (2.2) was solved using the general-purpose finite-
element package ABAQUS (Simulia, Providence, RI, USA).
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2.3 The need for patient-specific inverse estimation

Currently, there is a drive towards the translation of cardiac modelling to the clinical set-
ting, particularly for the purpose of personalised healthcare (Chabiniok et al., 2016; Peir-
linck et al., 2021). For this purpose, calibrated cardio-mechanic models have been shown
to provide information (Krishnamurthy et al., 2013a; Wang et al., 2013a; Asner et al., 2016;
Wang et al., 2020), as well as clinical biomarkers (Hadjicharalambous et al., 2015; Gao
et al., 2017), of cardiac diseases. Successful implementation of these models in healthcare
is dependent on two aspects of ongoing research. Firstly, we require that the models are
increasingly personalised to account for increasing scales of patient-specific information.
This has led to the study of patient-specific parameter estimation (Asner et al., 2016;
Gao et al., 2015), fibre angle representation (Guan et al., 2021) and load-free geometry
approximation (Krishnamurthy et al., 2013a). A second aspect, which partially intersects
the idea of patient-specific modelling, is in the use of statistics or machine learning tech-
niques that allow for efficient, effective, use of these increasingly accurate mathematical
models. For instance, Wang et al. (2020) used PCA in a procedure that inferred the un-
loaded state of the LV geometry, while Cai et al. (2021); Dabiri et al. (2019) used different
machine learning and statistical models for replication of an expensive cardio-mechanic
model. Critically, we rely on progress being made in the intersection of personalisation
and modelling efficiency before cardio-mechanic modelling can be considered as a decision
support mechanism in patient-specific healthcare.

This thesis will consider two areas of patient-specific modelling. The first is in the
representation of the LV geometry, and the second is the use of statistical inference schemes
for estimation of the material parameters of the H-O model. Both of these ideas have
been considered in the literature in isolation, but no studies have tackled a combination
of them both. In all chapters, the LV geometry at early diastole is assumed to be the
load-free state. This is a very commonly adopted assumption in the literature, due to the
difficulty in jointly identifying both the passive parameters and the ground truth load-
free state (Asner et al., 2016). A prevailing interest throughout the thesis will be the
representation of the LV geometry for efficient patient-specific modelling. Generally, there
are two ways we can approach this problem: low order LV geometry representation or
dimension reduction. The former method was adopted by Hong et al. (2019), where they
represented the LV with a series of deformation modes, reducing the computational cost
of the finite element method. On the other hand, dimension reduction has been quite
widely considered for the task of disease analysis (Suinesiaputra et al., 2018; Farrar et al.,
2016), while Maso Talou et al. (2020) introduced PCA to reduce the dimension of the LV
geometry and allow for patient-specific prediction of the displacement field of the LV in
diastole. Although this second approach does not reduce the computational cost of the
cardio-mechanical simulations, the simplification of the LV geometry representation allows
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for the use of surrogate models to replicate the expensive simulator. This idea will be the
basis of the methods used in this thesis.



Chapter 3

Statistical background

The main aim of this thesis is to explore the use of surrogate modelling for a mathematical
model of the left ventricle (LV) in diastole. This involves the inclusion of LV geometry
information in the input space, and the construction of a regression model that allows for
efficient approximation of the expensive mathematical model. The purpose of the present
chapter is to outline different methodologies from the literature that will be required in
the work carried out in this thesis.

3.1 Statistical emulation

3.1.1 Simulators and emulators

The aim of modelling is to replicate the behaviour of a real world system. Mechanistic
models, which are often associated with the field of mathematical modelling, depend on
an understanding, or assumption, of how the real-world system behaves. The modeller
constructs a proxy for reality by expressing, mathematically, the different causal mecha-
nisms within the system and how they impact the observed behaviour (Baker et al., 2018).
The causal nature of these models makes them perfect for analysis of the real world: if we
validate the model on several real world datasets then we can be confident of the model’s
ability to generalise to unseen cases. Moreover, the parameters of these models often have
a physical interpretation, meaning their estimation provides us with further insights. Of
interest in this thesis is a mechanistic model expressed in the form of a computer code,
or simulator. Given a set of inputs, the simulator, ζ, provides a prediction, y, of how the
system will behave:

y = ζ(θ, z), (3.1)

where θ is a set of parameters of the model and z is a set of additional model conditions
that are required to run the simulator. An example of such a model is the Lotka-Volterra

13
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model of predator and prey populations where y would be the populations of the predator
and prey, θ would be the four parameters of the model and z would be the time over which
the system is solved. Associated with prediction from the simulator is a computational
cost, which can be large for complex systems.

An alternative approach to modelling a real world system, built on methods from statis-
tics and machine learning, is data-driven modelling. At its core, data-driven modelling can
completely ignore the underlying behaviour of the system. Rather than explicitly encoding
the laws of nature into the model, relationships are captured by learning to replicate the
patterns in the observed data. In the Lotka-Volterra example, we could train a regression
model on measured lynx-hare populations observed over time t. Such a model would allow
us to predict, at an unseen time point, the population of the lynx and hare, but it would
not allow us to predict the population for a separate system of animals. Moreover, the
parameters of the model, which are just standard regression parameters, would have little
physical meaning. This means that little information about the real world—aside from
prediction—can be elicited from the trained model. One benefit, however, is that these
models are generally more computationally efficient than their mechanistic counterparts.

The ideas of mechanistic and data-driven modelling can be combined to efficiently
link the underlying behaviour of a system with its observable behaviour. In emulation
(Gramacy, 2020; Currin et al., 1988; Conti et al., 2009; Conti and O’Hagan, 2010; Currin
et al., 1991), we train a data-driven model to replicate a simulator. For the simulator
in (3.1), we would generate training data by evaluating the simulator over a range of
different parameter values for a fixed set of model conditions and train a regression model
(the emulator), η(·), to emulate the input to output map. While the mechanisms of
the regression model do not capture the causal structure of the real world system, the
emulator can be used to predict in the same way as the simulator. Moreover, given a
new dataset we can efficiently learn the inputs, otherwise known as model calibration
(Kennedy and O’Hagan, 2001), and gain information about the system in question. The
black-box nature of data-driven modelling does introduce extrapolative limitations, both
in the space of parameters and model conditions. Essentially, this means that prediction at
locations of parameters or model conditions outwith those present in the training set can
be less accurate. For this reason, we have to be careful when generating the training data,
introducing us to the area of statistical research known as design of computer experiments.

3.1.2 Design of computer experiments

When we attempt to approximate continuous functions with only a finite set of data points,
uncertainties and errors are inevitable. As a result, one of our aims during emulator con-
struction is to minimise these uncertainties by encoding in the emulator all our knowledge
about the simulator function. This should involve asking questions like: do all the inputs
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have equal effect? (see Section 3.1.3) and does the complexity of the function change as we
vary the inputs? (ie is the function nonstationary?). One of the obvious tools to deal with
such issues is in the surrogate model itself, by building into our model the features that we
know are present in the simulator function. An equally important—and related— method
lies in the design of computer experiments, which is concerned with the positioning of our
training locations in input space. If we want to make efficient use of a more specialised
model, then we should also account for the simulator behaviour in the design. The reverse
is also true: to maximise the information gained by a design of computer experiments that
accounts for function variation, it must be paired with a statistical model that has the
capacity to capture the behaviours in the data.

To concern ourselves with design of computer experiments is to concern ourselves with
the efficiency of emulator construction. If efficiency is not a concern, and we can afford
to densely fill the configuration space, then the choice of input locations will have little
effect on the fitted function. However, if we want to maximise the efficiency of model
training, then this can be expressed as an optimal design problem where the objective is
to maximise the information gained by the simulator runs.

Generally speaking, two strategies for design of computer experiments exist: sequential
and space filling designs. Sequential designs, using methods like Active Learning Mackay
(MacKay, 1992b) or mutual information based approaches (Beck and Guillas, 2016), allow
us to gradually select the location of our training points based on information we have
gained about the simulator function. An overview of sequential design strategies, which is
outwith the scope of this thesis, can be found in the literature (Gramacy, 2020, Chapter 6;
Santner et al., 2018, Chapter 6). The work in this thesis will consider space filling designs
(Gramacy, 2020, Chapter 4; Santner et al., 2018, Chapter 5) and their adaptations to the
context of the LV simulator from Section 2.2.

Quasi-random sequences

Intuitively, a space filing design corresponds to uniform coverage of the space. Naturally,
one might assume a pseudo random generator, using a function like runif in R, would
be appropriate for this task. However, this can lead to clusters of points as shown in the
right-hand side of Figure 3.1, which will certainly not maximise the information gained
from our simulator runs. The problem here is exactly the point of pseudo-random number
generators: given the first n points, the (n+1)th is selected randomly, with no conditioning
on the existing design. To overcome this problem, quasi-random sequences (also referred
to as low-discrepancy sequences due to their ability to efficiently fill space) (McClarren,
2018, Section 7.3), generate sequences of seemingly random numbers, subject to some
property of point dispersion. We can consider this as introducing a bias: rather than
sampling the (n+ 1)th point independently, we sample point n+ 1 conditional on the first



CHAPTER 3. STATISTICAL BACKGROUND 16

n points subject to some space filling criterion. The result, as shown in the left-hand side
of Figure 3.1, is a sequence that more efficiently fills the configuration space. In Figure 3.1,
a Sobol sequence—which was originally proposed for solving high dimensional integrals
(Sobol, 1967)— was used to generate the sequence, but many other methods such as a
Halton sequence or Hammersley sequence could be used. For more details see McClarren
(2018, Section 7.3) and Santner et al. (2018, Section 5.6.1). One of the advantages of
quasi-random sequences is that they can be extended: if we obtain a sequence of 100
points, train an emulator and realise more simulations are required for a desired level of
accuracy then we can continue the sequence to obtain the 101st point, subject to the same
space filling criteria.

Figure 3.1: Comparison of quasi random (left) and pseudorandom (right) sequences. Both
are generated with 100 points.

Latin hypercube sampling designs

Quasi-random sequences are not a perfect solution to the design of experiments problem.
It is well documented that the space filling criterion they use leads to strange behaviour
in higher dimensions, as shown in Figure 3.2. This is commonly referred to as the poor
projection properties of the sequence (Santner et al., 2018).
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Figure 3.2: In low dimensions, the Sobol sequence fills the space uniformly but patterns
begin to appear in higher dimensions.

An alternative to quasi-random sequences are Latin hypercube designs (LHD), which
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use a combination of stratified sampling and pseudo random number generation in order
to fill a space efficiently (Dette and Pepelyshev, 2010;Gramacy, 2020, Chapter 4; Santner
et al., 2018, Section 5.2.2). The samples obtained using LHD tend to have better space
filling properties than Sobol sequences, but they have less variation in interpoint distances.
In the literature, it has been shown that this variation can be beneficial in some modelling
applications (Zhang et al., 2019). Generally, the LHD provides better designs in higher
dimensions and we see in Figure 3.3 that the projections no longer show any patterns. One
issue with this approach is that we lose the natural ability to continue the design if we
decide we need more points and have to rely on methods like maximin sampling instead.

1

3

1

11

6

13

11

15

Figure 3.3: The projection properties of a LHD are far better than those of a Sobol
sequence.

3.1.3 Sensitivity Analysis

Often, computer codes can be complex and heavily parameterised. For the purpose of
statistical emulation, these high dimensional input spaces can be problematic for reasons
of design and calibration. In Figure 3.2, we saw that patterns begin to appear in a
Sobol sequence in higher dimensions. Therefore, in high dimensional problems it would
make sense to order the inputs by importance in the Sobol sequence input space, so that
important inputs exhibit good projection properties and the joint space is filled densely.
SA allows for this by providing a quantitative measure of an input’s importance in the
function.

In what follows, sensitivity analysis (SA) is referred to in the sense of global sensitivity
analysis. For detail on local sensitivity analysis, see McClarren (2018, Part II). Let us
consider an arbitrary function f that maps a set of D input parameter values θ1, θ2, ...θD
to associated output quantities of interest, y1, y2, ...yM :

f(θ1, θ2, ...θD) = (y1, y2, ...yM) (3.2)
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By performing SA on this forward model, we can quantify the influence that the uncer-
tainty in each random input parameter θi has on the observed variation in any chosen
output quantity yj. Using the approach of Sobol (2001), SA of the forward model f can
be performed by computing the first-order and total-effect Sobol sensitivity indices of the
random input parameters. Below, a brief overview of this approach to SA is given. For a
comprehensive overview, the reader is directed to Saltelli et al. (2010) and Gramacy (2020,
Chapter 8).

SA begins with a selection of the inputs and outputs of interest, along with an assumed
distribution for the input quantities. This distribution is often referred to as an uncertainty
distribution (Gramacy, 2020, Chapter 8). The first-order sensitivity index, denoted Sji,
of input parameter θi for output yj is defined as:

Sji =
Vθi [Eθ∼i [yj | θi]]

V[yj]
(3.3)

where E and V are the expectation and variance operators respectively. The expectation
term in the numerator of (8.4) is called the main-effect function. It returns the expected
value of the output yj given a value of the ith input θi, after all other inputs have been
integrated out. The variance of the main-effect function is then taken, providing a scalar
summary of its variation with respect to θi. This result is then standardised with respect
to the unconditional output variance, allowing the index to be interpreted as the fraction
of the total observed variance in yj attributable to varying θi alone.

The first-order sensitivity index does not account for interaction effects between differ-
ent input parameters, which can potentially be significant for nonlinear models. For this
purpose, we can also consider the total-effect index, Tji, for each input θi, which is defined
with respect to output yj as:

Tji =
V[yj]− Vθ∼i [Eθi [yj | θ∼i]]

V[yj]

=
Eθ∼i [Vθi [Yj | θ∼i]]

V[yj]

(3.4)

where θ∼i is the vector of all random inputs except for θi. The numerator of the total-effect
index gives the difference between the unconditional output variance, and the variance
observed in the output once θi has been accounted for. This is again standardised with
respect to the unconditional output variance, meaning that the total-effect index represents
the proportion of observed variance in the output that is due to θi, including all possible
interaction effects with other input parameters.

The first-order and total-effect indices must usually be calculated numerically, using
evaluations from the forward model. While efficient low-discrepancy Monte-Carlo sampling
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schemes have been proposed for performing these calculations (Saltelli et al., 2010), the
computational expense of each forward evaluation of the cardiac-mechanic model makes
this approach impractical for expensive simulators. For this reason, the use of surrogate
models has been proposed in the literature (see Melis et al. (2017); Rodriguez-Cantano
et al. (2018); Gramacy (2020, Chapter 8)).

The results of an SA can be used to influence our modelling procedure. Strongly in-
fluential parameters can be prioritised for measurement or estimation from clinical data,
while weakly influential parameters can be set to fixed values within their range of uncer-
tainty. It might seem strange that we use an emulator to perform a sensitivity study to
then build another emulator. For starters, if we can build an emulator accurate enough for
the sensitivity study then can we not also build an emulator accurate enough for calibration
and prediction purposes? The answer to this is that, while SA is based on expected values
and is more concerned with the global shape of the function, calibration and prediction
are more reliant on accurate approximations at a point level. In other words, accuracy
is more critical for calibration than SA, and SA can be seen more as a coarse-grained
prescreening step. In high dimensional cases with expensive simulators, it will be more
computationally efficient to build a less accurate emulator in high dimensions, perform
an SA and then reduce the input dimension to construct an accurate emulator over the
inputs that matter for function prediction, or to inform the design of the emulator in the
ways discussed in this section.

3.2 Uncertainty quantification

In model calibration, we are interested in inferring the parameters of a model for a new set
of data. Usually, we are interested in model calibration based on real data. That is, given
a set of measurements, y, we wish to gain some interpretation of the underlying behaviour
of the system. The way in which we arrive at our inference can differ philosophically, but
the common goal of learning from the data requires a relationship with the parameters θ.
This relationship can be expressed through a noise model that tells us how the data were
generated from the parameters. The noise model is expressed as a probability distribution,
associated with which is a probability density function, p(y|θ), that assigns a probability
to different possible values of y for fixed θ. The task in statistical inference is to invert the
parameter→data relationship and recover, based on the data, the underlying parameters
(Robert, 1994). This goal is epitomised in the likelihood function, which is a reframing of
the noise model as a function of the parameters, expressing the evidence about θ obtained
from the data. Although itself not a proper probability density function, the likelihood
function is calculated using the density function of the associated noise model (but now
considered as a function of θ). This is usually denoted as L(θ|y) or p(y|θ), the latter of
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which will be adopted in this thesis.

3.2.1 Frequentist methods

In a frequentist inference framework, we consider the data themselves as random variables,
realisations of which can be drawn from an underlying population, while the parameters
are considered fixed without any probabilistic treatment. From these realisations, we wish
to obtain our approximation of the population parameters, which is done by forming an
estimator. This estimator is itself a function of the data, and it could be evaluated for
any hypothetical realisations of the data that we were to obtain, giving an estimate of the
parameters of interest corresponding to that particular set of realisations: θ̂ = δ(y). Un-
certainty in our estimator naturally follows from these conceptualised data realisations: if
we repeatedly sample from the data distribution and re-evaluate our estimator, a sampling
distribution is induced. Thus, uncertainty in the estimator is a result of the randomness
in the data.

While the estimator used for an inference task is entirely optional, different estimators
can be shown to be more optimal (in some sense) than others. From a decision theoretic
viewpoint, this optimality can be quantified via the risk, R(θ∗, δ) = ED[L(θ∗, δ(D))], where
L is some loss function. An example is the mean squared error loss function, where the
risk naturally decomposes into the bias-variance trade off:

Ey[(θ̂ − θ∗)2] = E[(θ̂ − θ̄)− (θ̄ − θ∗)2] = E[(θ̂ − θ̄)2] + (θ̄ − θ∗)2 (3.5)

where θ̄ = E(θ̂). This motivates a minimum variance unbiased estimator (MVUE). Con-
ceptually, estimators should be close to the ground truth value of the parameters we are
estimating, which is formalised in a notion of unbiasedness. This is an intuitive property,
but we should also consider the variance of the estimator, which for unbiased estimators
is lower bounded by the Cramer-Rao lower bound. The MLE can be shown to asymp-
totically achieve the CRLB, and so has the smallest asymptotic variance among unbiased
estimators. Although this thesis will generally take a Bayesian approach to inference,
optimisation of the mean squared error will be used at various times. Under an assump-
tion of iid Gaussian noise, optimisation of the MSE is equivalent to maximum likelihood
estimation, which is a commonly used estimator.

Conceptually, frequentist UQ involves repeated sampling from the underlying data dis-
tribution and re-evaluation of the estimator. If this procedure is repeated ad infinitum,
the induced distribution of the estimates approaches the sampling distribution. In reality,
we never know the true underlying data distribution and we instead have to come up with
alternative approaches that effectively replicate this process. One procedure to do so is
called bootstrapping, where we form some approximation to the underlying data distribu-
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tion in order to repeatedly sample synthetic datasets. The way in which the resampling
is performed is dictated by the method adopted. In the non-parametric bootstrap this
is based on the empirical distribution of the data (we draw with replacement from the
dataset), and in the parametric case we assume a parametric form for the underlying data
distribution and, having determined our estimates based on a current sample, use these
to generate residuals that can be shuffled and added to the model prediction to gener-
ate a new dataset. A more detailed look at the bootstrap can be found in the literature
(Wakefield, 2013, Section 2.7; Murphy, 2012, Section 6.2.1).

3.2.2 Bayesian inference

Bayesian inference (Gelman et al., 2013; Robert, 1994) differs from frequentist statistics
in its treatment of the parameters. Treating a fixed but unknown parameter value proba-
bilistically, the aim is to quantify our level of belief of the underlying parameter. Initially,
this is expressed through a prior distribution, π(θ). Similar to frequentist inference, the
probabilistic nature of the data is represented by the distribution, p(y|θ). The product
of the prior and the data distribution gives the joint probability distribution of the data
and the parameters before seeing the data. The aim in Bayesian inference, however, is
to represent our inferences a posteriori when we no longer think of the data as random.
To do so, we wish to condition our inferences about θ on the observed y, which is done
by normalising the joint distribution according to Bayes theorem to obtain the posterior
distribution:

p(θ|y) =
p(y|θ)π(θ)∫
p(y|θ)π(θ)dθ

. (3.6)

In special cases, where the prior is said to be conjugate, the posterior has the same func-
tional form as the prior and the update can be performed in closed form.

Based on the posterior we can perform other inferences. Due to the probabilistic treat-
ment of the parameters, these resulting calculations are typically expressed as integrals:

Eθ[f(θ)] =

∫
f(θ)p(θ|y)dθ. (3.7)

for some suitable function f . For instance, if we are interested in the posterior predictive
distribution, p(ỹ|y), then we use f(θ) = p(ỹ|θ). In all but the simplest of cases, these
integrals are not available in closed form and we can replace integration with summation
through Monte Carlo estimation. Here, we sample from p(θ|y) (see Robert and Casella
(2005, Chapter 2) for some standard techniques) and approximate (3.7) with the following
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sum:

Eθ[f(θ)] ≈ 1

n

n∑
i=1

f(θi), θi ∼ p(θ|y) (3.8)

which converges almost surely to (3.7) by the strong law of large numbers (Robert and
Casella, 2005, Section 3.2). Essentially, we can summarise a posterior distribution and
perform any proceeding inferences using samples obtained from that distribution. Several
methods exist for obtaining these samples in situations where the posterior density can be
evaluated. For more details see (Robert and Casella, 2005, Chapter 3).

In many practical uses of Bayesian inference it is the calculation of (3.6) itself that is the
obstacle, meaning that we cannot calculate the posterior in closed form never mind sample
from it. The problem is the calculation of the marginal likelihood in the denominator of
(3.6). Fortunately, several methods exist that allow us to bypass the direct calculation of
this integral. The one that is most common and will be considered in this thesis is Markov
chain Monte Carlo (Brooks et al., 2011).

3.2.3 Markov chain Monte Carlo

MCMC methods perform a series of moves through the support of a target distribution
using a tractable proposal distribution that depends only on the previously seen point.
The collection of random variables θ(1), θ(2), ..., θ(n) produced using such a procedure is
called a Markov chain because the conditional probability distribution of θ(n+1) depends
only on θ(n) (the Markov property). This conditional probability distribution is governed
by a Markov kernel, K(θ(n), θ(n+1)) and we say that a Markov chain (on a continuous state
space) is stationary, with stationary distribution π, if the following relationship holds:

π(θ(n+1)) =

∫
p(θ(n+1)|θ(n))π(θ(n))dθ(n) =

∫
K(θ(n), θ(n+1))π(θ(n))dθ(n). (3.9)

Intuitively, this means that were we to sample an initial point from the stationary distri-
bution and update this point using the Markov kernel associated with the Markov chain,
the updated point is guaranteed to come from the stationary distribution. Assurance of
convergence to the stationary distribution is provided by a property known as as ergod-
icity, which ensures that the stationary distribution is also the chain’s unique limiting
distribution. More details on the theory of Markov chains can be found in the literature
(Murphy, 2012, Section 17.2.3).

From the definitions of stationarity and ergodicity, we can see the obvious potential
of Markov chains for sampling from posterior distributions. By constructing a Markov
chain with a specified target distribution as its limiting distribution, we could simulate
from the posterior distribution. This is the idea underpinning MCMCmethods, which were
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originally developed by Metropolis et al. (1953) and remain the most widely used approach
for sampling from intractable posterior distributions. The two classical approaches are
the Metropolis (Hastings) algorithm (Metropolis et al., 1953; Metropolis and Ulam, 1949;
Hastings, 1970) and the Gibbs sampler (Geman and Geman, 1984), both of which will
now be discussed in greater detail.

Metropolis Hastings algorithm

The Metropolis Hastings algorithm (MH) replaces the task of direct sampling from the pos-
terior distribution with the task of direct sampling from a proposal distribution, q(·|θ(n)).
Considering the case where we wish to sample from the posterior distribution from (3.6),
the algorithm works as follows. Starting from point θ(n) a new point, φ, is proposed from
q(φ|θ(n)). Rather than accepting every move that is proposed, the sampler decides whether
or not to move to φ based on the following criterion:

θ(n+1) =

φ if α(θ(n), φ) > u

θ(n) else
(3.10)

where u ∼ U(0, 1) and α(θ(n), φ) = min
(

p(φ|y)q(θ(n)|φ)
p(θ(n)|y)q(φ|θ(n)) , 1

)
. In other words, we accept

the move from θ(n) to φ with probability α(θ(n), φ). Repeatedly accepting and rejecting
moves based on this acceptance criterion generates a Markov chain that is guaranteed to
converge to the stationary distribution. This is the result of a property known as detailed
balance (Chib and Greenberg, 1995; Murphy, 2012, Section 24.3.6). One of the biggest
benefits of the MH algorithm is that the intractable denominator from (3.6) cancels out
in the acceptance criterion:

α(θ(n), φ) = min

(
p(y|φ)π(φ)q(θ(n)|φ)

p(y|θ(n))π(θ(n))q(φ|θ(n)) , 1
)
, (3.11)

meaning that MH allows us to sample from the posterior distribution without requiring the
calculation of the marginal p(y). In the case where the proposal distribution is symmetric
then this also cancels out in the acceptance criterion, leaving a ratio of the likelihood times
the prior. This simpler case, which was formed before the MH algorithm, is called the
Metropolis algorithm (Metropolis et al., 1953).

Gibbs sampler

The MH algorithm provides a method for sampling from distributions whether univariate
or multivariate, but it can become inefficient in higher dimensional spaces. In this setting,
a Gibbs sampler, which is in fact a special case of the MH algorithm (Gelman et al.,
2013), can be more efficient. Suppose that we wish to sample from the joint distribution,
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p(θ1, .., θm), with initial values (θ
(0)
1 , .., θ

(0)
m ). In its simplest form, where each variable is

sampled separately, the algorithm cycles through the vector of variables at each iteration,
sampling the ith variable from the conditional distribution p(θi|θ−i), where the variables
in θ−i are set to their current values. This means that at the (t + 1)th iteration, the ith
variable is sampled as:

θ
(t+1)
i ∼ p(θi|θ−i), θ−i = (θt+1

1 , .., θt+1
i−1 , θ

t
i+1, ..., θ

t
m) (3.12)

There are a few points worth mentioning. Firstly, the joint distribution of n variables
does not have to be broken up into n univariate conditional distributions. Instead, we can
sample from multiple lower dimensional joint distributions in a procedure called a blocked
Gibbs sampler. Secondly, in some cases the lower dimensional conditional distributions
may not be available in closed form. Although the conditioning of the Gibbs sampler can
be useful, MH will be needed to sample from some of the lower dimensional distributions.
Such a setting is often referred to as a Metropolis-within-Gibbs sampler. For more details
on the Gibbs sampler see Robert and Casella (2009, Chapter 7); Gelman et al. (2013,
Section 11.1)

3.2.4 Efficiency, convergence and simple changes to the Metropo-

lis Hastings algorithm

Convergence of the reversible Markov chain generated by MCMC is guaranteed by ergod-
icity. However, this asymptotic guarantee can have little meaning in practice where we are
interested in the behaviour of the sampler in finite time. Convergence diagnostics exist
that can be used to provide evidence of convergence to the limiting distribution, given the
trajectory of the sampler. Importantly, these different diagnostics are necessary conditions
for convergence but none are sufficient conditions. One of the most commonly used diag-
nostics is the Gelman-Rubin statistic (Gelman and Rubin, 1992), which is also frequently
referred to as the potential scale reduction factor (PSRF). Evaluation of the PSRF requires
a set of M chains initiated from overly-dispersed initial points. Over-dispersion should be
relative to the posterior distribution, but since this will rarely (if ever) be known, a space
filling design can be used to select the initial locations of the chains. The between-chain
variance (B) can be used to define the variance of the averages of the chains while the
within-chain variance (W) provides the average of the variances:

B =
N

M − 1

M∑
j=1

(θ̄j − θ̄)2 W =
1

M

M∑
j=1

1

N − 1

N∑
i=1

(θ
(i)
j − θ̄j)2 (3.13)
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where θ̄j = 1
N

∑N
i=1 θ

(i)
i and θ̄ = 1

M

∑M
j=1 θ̄j. An estimator of the posterior variance can be

found as follows:

v̂ar(θ|y) =
N − 1

N
W +

1

N
B (3.14)

where N is the number of samples in each parallel chain. The PSRF is obtained as:

R̂ =

√
v̂ar(θ|y)

W
(3.15)

which → 1 as n→∞ . Usually, we can take a value of less than 1.01 as being indicative
of convergence of the Markov chain. We can imagine the situations where the PSRF will
be high. If B is large, for instance in the case where several chains converge to different
modes of the posterior, then the between chain variance dwarfs the within chain variance.
Meanwhile, in situations where the proposal makes very small moves through the posterior
support, W will be small (unless the sampler is run for a very long time) and again we
will have a PSRF far greater than 1. The consequences of a poor proposal mechanism can
also be assessed using the effective sample size.

By the definition of a Markov chain, the samples obtained using MCMC are suboptimal
relative to the ideal scenario of iid samples from the posterior distribution. The Markov
property introduces autocorrelation to the chain, meaning that even upon convergence,
the samples will be identically distribution, but not independently distributed. We can
measure the optimality of MCMC samples, relative to the iid scenario, using the effective
sample size (ESS):

neff =
N

1 + 2
∑∞

t=1 ρt
(3.16)

Roughly speaking, the ESS measures how many independent draws contain the same level
of information as the correlated samples obtained using MCMC. Typically, low values of
the ESS indicates poor mixing, which suggests a problem with the sampler. On the other
hand, large values suggest efficient sampling, but this can be misleading. For instance, if
we are sampling from a multi-modal distribution, a chain stuck in one mode could have a
very high ESS despite the fact that the mixing properties are objectively poor. Checking
both the ESS and PSRF should help avoid this issue.

Unsurprisingly, methods have been proposed that aim to tackle the problem of ineffi-
cient sampling in MCMC. In particular, adaptive Metropolis (Haario et al., 2001), learns
a proposal scale from past samples in the MCMC trajectory. This is effective at mov-
ing along ridges because the proposal mechanism can adjust to the shape of the ridge.
An alternative mechanism, aimed at improving mixing, was proposed by Mira (2001).
In delayed rejection, the sampler can propose alternative moves if a step is rejected by
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the acceptance criterion. Haario et al. (2006) combined adaptive metropolis with delayed
rejection in delayed rejection adaptive Metropolis (DRAM). Although providing efficient
exploration of local regions of the posterior, such as ridges of high posterior density, DRAM
cannot overcome the issues caused by multi-modality or heavy tailed posterior densities.
Instead, population MCMC, also called evolutionary Monte Carlo (Liang andWong, 2001),
can be used. Population MCMC uses a series of Markov chains that explore the poste-
rior at different “temperatures", similar to the idea of power posteriors (Friel and Pettitt,
2008). The chains at low temperatures are able to explore the entire posterior support
while chains at high temperatures focus on local regions. As well as proposing new points
in each parallel chain, the algorithm also allows for swap moves between chains, allowing
for information to move up and down the temperature ladder.

3.2.5 Hamiltonian Monte Carlo

The original algorithm

No matter the choice of proposal mechanism from Section 3.2.4, MH can be inefficient
in high dimensions or when the geometry of the posterior becomes complicated. In these
scenarios, Hamiltonian Monte Carlo (Betancourt, 2017; Monnahan et al., 2017; Neal, 1996;
Brooks et al., 2011, Chapter 5) (HMC) can be used. HMC suppresses the random walk
behaviour of MH by introducing a momentum variable, φ that guides the sampler towards
regions of high posterior mass, allowing for more efficient moves through the sample space.
The algorithm borrows ideas from Hamiltonian dynamics, updating the parameters and
momentum variables at each iteration, with the momentum variables, φ, used in the
update rule for the parameters, θ.

In Hamiltonian mechanics, systems are defined in phase space using their position q

and momentum p, and evolve according to Hamilton’s equations:

dpi
dt

=
∂H

∂qi
,

dqi
dt

=
∂H

∂pi
(3.17)

where H is the Hamiltonian. For the purpose of HMC simulations, we are interested in
systems with a Hamiltonian of the form:

H(q,p) = POTENTIAL ENERGY + KINETIC ENERGY = V (q) +K(p) (3.18)

In practice, Hamilton’s equations are approximated by discretising time based on a small
step size, ε. This can be done according to the leapfrog method, a numerical integrator
that will be discussed later in the context of HMC. The evolution of a system according to
Hamiltonian dynamics satisfies several convenient properties: reversibility, conservation
of energy and preservation of volume. The first of these corresponds to a one-to-one
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relationship between points (q,p) and (q∗,p∗), where the former have been updated to
the latter according to Hamilton’s equations. The second property tells us that the total
energy (as quantified by the Hamiltonian) is preserved over time as the system evolves.
Lastly, preservation of volume, which is known as Liouville’s theorem, tells us that a region
of phase space has constant volume when evolving under Hamiltonian dynamics. Each of
these properties is important for the implementation in HMC.

To consider the use of Hamiltonian dynamics in MCMC, we must consider a probabilis-
tic treatment of a Hamiltonian system. The Hamiltonian defines the energy of the system,
which leads to a probability distribution on phase space using the canonical distribution
(Brooks et al., 2011, Chapter 5):

p(q,p) = exp(−H(q,p)) = exp(−V (q)) exp(−K(p))) (3.19)

By the conservation of total energy of the system and preservation of volume, the prob-
ability distribution is unchanged when evolving a system under Hamiltonian dynamics
(Bishop, 2006, Section 11.5). This makes it particularly efficient for exploring the space
in an MCMC simulation, as will now be discussed.

In HMC, Hamiltonian dynamics is used to evolve a system, allowing for more efficient
proposals that better explore the target space. Treating θ as the position of the system,
auxiliary momentum variables φ are introduced to reframe the system in phase space.
Their joint distribution is expressed (and factorises) as follows:

p(θ,φ) = p(θ)p(φ|θ) (3.20)

and the system is evolved in phase space according to Hamilton’s equations, with the
factorisation above ensuring that simulation from the typical set of the joint distribution in
phase space leads to simulation from the typical set of the target distribution (Betancourt,
2017). Comparing with the canonical distribution from (3.19), we see the correspondence
between the potential energy and the target distribution:

V (θ) = − log π(θ)− log p(y|θ) (3.21)

This means the potential energy of the system is prescribed by the target distribution
of interest p(θ|y) ∝ p(y|θ)π(θ). The selection of the distribution on the momentum
variables (and therefore the kinetic energy of the system) is up to the user. Typically,
quadratic kinetic energy is used, corresponding to a multivariate Gaussian:

φ ∼MVN (0,M) (3.22)

where M is referred to as the mass matrix. Usually this is assumed to be a diagonal
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matrix (Gelman et al., 2013, Section 12.4), traditionally taken to be a unit diagonal. The
choice of this distribution affects the efficiency of the algorithm and ideally M should scale
with the inverse covariance matrix of the target distribution (Gelman et al., 2013, Section
12.4).

Starting from a location (θ,φ), HMC updates the points in phase space using the
leapfrog method, where space is discretised according to a step size, ε. Each iteration of
the algorithm begins by updating the momentum variables, drawing them from (3.22).
Following this, the leapfrog method is used to update the system in phase space, with
each trajectory running for L leapfrog steps (Brooks et al., 2011, Chapter 5). A single
leapfrog step consists of two updates of the momentum variables, once before updating the
parameters and once afterwards in so-called half updates of the momentum, that sandwich
an update of the position of the system:

φ = φ+
ε

2
∇p(θ|y)

θ = θ + εM−1φ

φ = φ+
ε

2
∇p(θ|y)

Of the advantageous properties of Hamiltonian dynamics listed earlier, only conservation of
the Hamiltonian is not satisfied by the leapfrog scheme. By updating the system according
to the leapfrog integrator, we ensure that volume is preserved because the update applied
to a variable in phase space is dependent only on the other variable. Such an integration
method, that satisfies preservation of volume, is referred to as symplectic.

Under true Hamiltonian dynamics, total energy, and therefore the Hamiltonian, is con-
served. This means that the system should move around with constant probability density
and acceptance rate of 1. In practice, the discretisation introduces a small deviation to
the joint density in phase space. Although a large error will affect the efficiency of the
algorithm, the discretisation error is corrected with a typical MH acceptance step based
on the following acceptance criterion:

α = min

(
1, exp(−H(θ∗,φ∗) +H(θ,φ))

)
(3.23)

The smaller the error, the higher the acceptance rate of the algorithm. Endowed with the
above acceptance criterion, it can be proven that HMC satisfies detailed balance (which
uses the reversibility of Hamiltonian dynamics) and that it leaves the target distribution
invariant, which relies on preservation of volume (Brooks et al., 2011, Chapter 5).
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No-U-Turn Sampler

The use of HMC requires the selection of a step size, ε and a number of leapfrog steps.
One option is to use Bayesian optimisation to tune the number of leapfrog steps and step
size based on some criterion of efficiency (Wang et al., 2013b). An alternative is to update
them on the fly to achieve some target acceptance rate. Hoffman and Gelman (2014)
proposed an automatic tuning of the number of leapfrog steps in a method referred to
as the No-U-Turn Sampler (NUTS). In NUTS, the leapfrog trajectory continues until it
turns back on itself or a maximum number of leapfrog steps is reached. Conceptually, a
u-turn in the trajectory leads to a reduction in the distance between the current position
in the trajectory and the starting position. Formally, this is assessed using the derivative
of the squared distance between the initial and current trajectory position with respect to
simulation time. This derivative is the dot product between the current momentum and
the vector from the initial position to the current position. If the derivative is negative,
then the angle between these vectors is greater than 90 degrees, which implies that the
momentum is pointing into the wrong direction and the trajectory is moving back to the
initial position. This is the moment when the trajectory starts to turn back on itself.
The tuning of the leapfrog steps can be combined with an automatic tuning of the step
size, such as the dual averaging step size adaptation used by Hoffman and Gelman (2014),
allowing for more efficient sampling than standard HMC.

3.2.6 Bayesian calibration for complex simulators

As was mentioned above, the aim in model calibration is to recover, for some new dataset
y∗, the parameters of the model that led to the data. In the absence of any evidence
otherwise, the following additive noise model can be assumed, where ζ(θ) is the output of
the simulator at θ:

y∗ = ζ(θ) + ξ, ξ ∼MVN (0, σ2I) (3.24)

Giving rise to the likelihood function:

p(y∗|θ, σ2) = −n
2

log(2π)− n

2
log(σ2)− 1

2σ2
‖y∗ − ζ(θ)‖22 (3.25)

which is evaluated by running the simulator at a set of parameters and then plugging the
simulator output, along with a value of the noise variance, into the likelihood function.
Assigning a prior to the parameters θ, σ2, we can sample from the posterior distributions
using MCMC. Each iteration would rely on at least one call of the simulator, which can
be replaced with an emulator in situations where the simulator is expensive to evaluate
(Kennedy and O’Hagan, 2001).
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An alternative technique commonly used for model calibration in the literature is
Bayesian History Matching (BHM), which uses an implausibility criterion to gradually
rule out regions of parameter space as implausible (Gardner et al., 2020; Volodina and
Challenor, 2021). Due to computational costs this criterion is usually evaluated using
an emulator, taking into account both the predictive mean and the predictive variance.
The selection of non-implausible points occurs in waves, with simulations from a shrinking
non-implausible set being added to the emulator training set, constructing an emulator
that is increasingly precise in the region of space where the predictions from the model
best match the observed data. While history matching increasingly excludes areas of
low posterior probability in the parameter space, it does not provide a sample from the
posterior distribution. For this purpose, we could combine the idea of history matching
with HMC, as proposed by Rasmussen (2003). Their algorithm used an exploratory phase
akin to history matching to rule out areas in parameter space with low posterior probability
and build an emulator for the areas with high posterior probability. This exploratory
phase is followed by the sampling phase, which converges to a proper sample from the
posterior distribution. Since BHM usually requires online evaluation of the simulator
during each wave of the algorithm, the computational costs of forward simulation are
incurred a posteriori. For the work carried out in this thesis, the aim is to incur the
computational costs of simulation before the measured data are available.

3.2.7 Bayesian calibration in the presence of model discrepancy

While (3.25) is a commonly used noise model, it makes the assumption that the input-
output map of the simulator perfectly replicates the underlying process. Were this the
case, and y∗ were subject to iid Gaussian noise, we could use the inferred parameters
to draw conclusions about the behaviour of the system in line with the intuition of the
mathematical modeller. Unfortunately, the relationship assumed in (3.25) often misrep-
resents the true relationship between the measurements and the simulator, resulting in
model mismatch. Model mismatch encompasses the error between the simulator and the
true process—often referred to as model discrepancy—and the misspecification of the mea-
surement noise. Acknowledging the presence of model mismatch, a more accurate repre-
sentation of the relationship between the simulator and the measured data could be of the
following form:

y∗ = ζ(θ) + β +α+ ξ, (3.26)

with the extra term β representing the structure from the real world system that is missing
from the simulator, and α providing the structure from the measurement noise that is
missing from the iid Gaussian assumption.
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Intuitively, inference in the presence of model mismatch impacts our parameter estimation,
leading to biased, over-confident, parameter estimates if the missing structure is within
the capacity of the model, or inflated uncertainty if this is not the case. Lei et al. (2020)
referred to the parameter estimates in such a scenario as pseudo-true values, whose values
no longer provide the same insight about the state of the physical system. One solution,
proposed by Kennedy and O’Hagan (2001), is to consider the following noise model:

y∗ = ζ(θ) + φ(x) + ξ, (3.27)

which introduces an extra term φ(x) to account for β+α from (3.26). Importantly, φ(x)

is independent of the model parameters θ.
The use of (3.27) is dependent on our ability to restrict the flexibility of φ(x). For this
reason, it is worth distinguishing between two different situations. Often, structure is
deliberately left out of a mathematical model for the sake of computational efficiency. If
we know the effect that these known unknowns have on the system, then a more informative
prior structure can be used for φ(x) and we may disentangle the two sources of model
mismatch during parameter inference. However, in many cases the differences between
a mathematical model and reality occur as a result of the modeller’s ignorance. These
unknown unknowns are more difficult to account for in (3.27) as we have no information
about the mismatch term. Although information is omitted from the model without
the modeller’s knowledge, the modeller nevertheless makes some assumptions about the
smoothness of these unknown effects (often in the form of a Gaussian process prior, see
Section 3.4), which affects the predicted uncertainty. While the discrepancy function can
be quite flexible, correcting for changes made in the parameters and leading to inflated
uncertainty as shown by Brynjarsdóttir and O’Hagan (2014), some of these corrections
will be in the tail of the distribution defined by the Gaussian process and will hence
effectively be ruled out. Recently, model discrepancy has been discussed in the context of
cardiovascular modelling (Plumlee, 2017; Lei et al., 2020), using methods similar to the
one of Kennedy and O’Hagan (2001).

3.3 Neural networks

3.3.1 Overview

Neural network research started with the conception of artificial neurons, intended to
replicate the behaviour of the brain (Mcculloch and Pitts, 1943; Rosenblatt, 1958). An
example is shown in Figure 3.4, where a series of inputs, denoted xi, pass along weighted
connections to the neuron, indicated by a blue circle. Note that the arrows here correspond
to the direction of travel of information through the network and do not correspond to any
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probabilistic dependence. The weights on the connections tell us the weight with which
the inputs contribute to the activation of the neuron, which is neural network parlance
for a weighted linear combination of the inputs. The neuron applies a transformation to
this activation through a function referred to as an activation function, indicated by φ in
the diagram. In the original work of Mcculloch and Pitts (1943), this activation function
was assumed to be a threshold function, motivated by brain activity where neurons are
triggered by the magnitude of a signal. In later years, more flexible activation functions
were considered, examples of which are found in Figure 3.5. The operation performed by
the neuron in Figure 3.4 draws obvious parallels with the basis functions used in basis
function regression models (see chapters 3 and 5 of Bishop (2006)), only now the weights
into the neuron (the parameters of the basis function) are adaptive. The real expressiveness
of artificial neurons comes from combining multiple neurons in a neural network.

x1

x2

x3

φ φ(x>w)

w11

w12

w
13

Figure 3.4: Artificial neuron example. The neuron takes a weighted sum of its three inputs
and outputs a transformation of this linear combination.

Feedforward neural networks are constructed by stacking series of artificial neurons on
top of each other in a collection of layers. These layers are then connected by weighted
connections that specify how information will pass through the network during the forward
pass, which is the process of feeding data into the model and producing an output. A
typical neural network is visualised in Figure 3.6, where the hidden layers are represented
by blue circles and the nodes containing ones represent the bias parameters of each layer.
If we consider all the activation functions in Figure 3.6 as equal and denoted by φ, then
the forward pass of this network, for input θ, could be summarised by scaling up the
calculations from Figure 3.4 in the following set of matrix equations:

Z1 = φ(θW(1) + b(1)) = φ(θ̃W̃(1)) the output of H1

Z2 = φ(Z1W
(2) + b(2)) = φ(Z̃1W̃

(2)) the output of H2

Zf = Z2W
(3) + b3 = Z̃2W̃

(3) the output of the final layer,

(3.28)

where the parameters b(i) represent the contribution of the bias parameters to the activa-
tion of a node. These were absorbed into the matrix multiplication by appending a row
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Figure 3.5: Demonstration of different activation functions: left=tanh, middle=ReLU
and right=quadratic ReLU. The tanh is a standard sigmoidal shaped activation function.
The ReLU is piecewise linear, with the kink making the overall function nonlinear. The
quadratic ReLU adjusts the linear portion of the ReLU to be a quadratic, allowing for
smooth interpolation. The bottom row shows regression functions fitted using neural
networks with the different activation functions.

containing the bias parameters to the matrices W(i) and a column of ones to the inputs
of the layer. Both updates were denoted by ·̃ notation.

θ1

θm

1

Input
φ
(1)
1

φ
(1)
2

φ
(1)
l

1

H1

φ
(2)
1

φ
(2)
2

φ
(2)
k

H2

1

O1

On

Output

..
.

..
.

..
.

..
.

Figure 3.6: An example of a neural network with two hidden layers.

3.3.2 The general regression problem

Let us consider a typical regression problem where we have a set of input and output
training data, {(x1,y1), ..., (xn,yn)}. Assuming Gaussian noise on the data, the following
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negative log-likelihood quantifies the fit of the neural network model to the data:

L(w,xi,yi) =
n∑
i=1

||(yi − f(xi,Ω)||2, (3.29)

where Ω contains all the weights of the model. This function can be minimised with
respect to Ω to obtain our estimate of the parameters that fit the data. Typically, the
minimum does not exist in closed form and we rely on iterative optimisation. If we
assume that the activation functions are themselves differentiable, then the loss function
in (3.29) is also differentiable, meaning we can use gradient based methods to minimise
(3.29). Given the repeated composition of functions within a network, differentiation is
non-trivial and requires the use of back-propagation. Back-propagation relies on a forward
pass of the model to propagate information through to the loss function from (3.29). The
error that is produced can then be propagated back through the model (hence the name
back-propagation) using repeated invocations of the chain rule of calculus. This allows
for the use of exact gradient calculations in the optimisation and can also be used to
obtain the gradient of neural networks with respect to the inputs themselves. A detailed
discussion on the back-propagation algorithm can be found in the literature (see section
16.5.4 of Murphy (2012) for an overview or chapter 7 of Rojas (1996) or section 14.8 of
Bishop (1995) for more detailed discussions). Back-propagation can be implemented using
automatic differentiation (Baydin et al., 2017) in software such as Tensorflow.

3.3.3 Training

Optimisation

The duration of neural network training is usually specified by the number of training
epochs. One training epoch is defined as the forward pass of the entire dataset through
the network. In the simplest training routine, the parameters of the model are updated
once per epoch in a procedure known as batch gradient descent. The update equation
relies on a learning rate, η, that specifies the size of step taken and an expected value of
the gradient, ∆wt:

wt+1 = wt + η∆wt with ∆wt =
1

n

n∑
i=1

∇L(wt, {xi,yi}). (3.30)

The learning rate affects the efficiency of the optimisation procedure. If this is too high we
might overshoot the minimum while too small a learning rate results in slow convergence.
Usually, neural networks are trained on very large datasets and the calculation of the
expected value of the gradient, which relies on the forward pass of each training example,
is expensive. To overcome this, we can approximate ∆wk using a subset of the data in
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stochastic optimisation (see Chapter 8 of Goodfellow et al. (2016) for more details). Wilson
and Martinez (2003) present the benefits of purely stochastic (so called on-line training)
gradient descent, where approximations are made with only one data example, over batch
gradient descent. In recent times, it has become more common to perform stochastic
optimisation by passing the data through the network in a series of mini-batches. In
doing so, we approximate the expected value of the gradient using a subset of the data
cases (Masters and Luschi, 2018), which is a closer approximation to the quantity in
(3.30) than the approximation made during purely stochastic optimisation. Unlike batch
gradient descent, the number of parameter updates no longer matches the number of
epochs. Instead, when training a model to fit a training set of size n using mini-batch
gradient descent with batch size m, the number of parameter updates per epoch is equal
to n

m
. The kth update per epoch is as follows:

wk+1 = wk + η∆wk with ∆wk =
1

m

(k+1)m∑
i=km

∇L(wk, {xi,yi}), (3.31)

One advantage of stochasticity is that it helps us to avoid local optima in the likelihood
landscape (Bottou, 1991). Keskar et al. (2017) show that introducing stochasticity to
the optimiser encourages the convergence to flatter local optima and these are widely
considered to achieve improved generalisation properties, which also makes sense from a
Bayesian evidence viewpoint (Smith and Le, 2018). Mini-batch gradient descent will be
used in the training of most neural networks in this thesis, which requires the tuning of
the mini-batch size and learning rate.

The behaviour of the loss surfaces of neural networks, and their impact on optimisation
of the parameters, is still a source of great unknowns. While local optima are theoretically
guaranteed as a result of non-identifiabilities such as weight space symmetries (see section
4.4 of Bishop (1995)), these are often inconsequential for model training since they do not
affect the value of the loss at the local optima. A well-documented issue is the presence of
saddle points in the loss surface, which Dauphin et al. (2014) argued are more common than
local optima in high dimensional non-convex loss problems. Recent optimisation routines
like the Adam optimiser (Kingma and Ba, 2015) overcome the saddle point problem by
adapting the learning rate during optimisation (Staib et al., 2019). These optimisers also
help to efficiently traverse valleys in the loss function by using momentum, which prevents
the optimiser from zig-zagging along the sides of the valley. Consider the update performed
in the tth step of gradient descent with momentum to be denoted by ut, then the (t+ 1)th
update of the parameters follows the following rule:

wt+1 = wt + η∆wt + γut (3.32)
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where γ is the momentum variable. As the optimiser progresses, these momentum updates
accumulate and encourage the sampler to move in their direction. Ruder (2016) provides
a useful overview of many commonly used optimisation algorithms and their different
benefits.

Model selection and generalisation of NN emulators

In the case of deterministic training data, as is often the case in statistical emulation,
the aim of neural network training is to replicate the process that produced the data. In
general, we are interested in this process over the continuous input space, which can be
measured using the following:

ED∼p(D)(L(D; Ω)) (3.33)

Unfortunately, this integral is intractable so we approximate it using the training data, as
was done in (3.29), and the integral over a probability distribution becomes a sum over
the training examples. It s well documented that this approximation of an integral with
a sum introduces the risk of overfitting, which Mitchell (1997) defined as follows:

Given a hypothesis space H, a hypothesis h ∈ H is said to overfit the training data if
there exists some alternative hypothesis h′ ∈ H, such that h has smaller error than h′ over
the training examples, but h’ has a smaller error than h over the entire distribution of
instances.

In neural network training, our hypothesis space contains the infinite configurations of
the neural network weights. The idea of overfitting a neural network to noisy data is
quite natural and is visualised in Figure 3.7. Here we see that, having been initialised
with small weights, the network initially underfits the data (the solid red line is the net-
work function), and provides a poor fit to the true underlying function (the black dashed
line). As training progresses, the function gradually becomes more complex before even-
tually overfitting to the data. This plot displays another phenomenon: the inductive bias
resulting from the weight initialisation. Small weights correspond to an inductive bias
favouring simpler models whereas larger weights correspond to an inductive bias for more
complicated models.

The idea that small weights provide simpler models motivates different approaches to
regularisation in neural network training, the main ones being early stopping (Caruana
et al., 2000) and weight decay (Krogh and Hertz, 1992). In early stopping, we monitor
the ability of the network to generalise to unseen cases using a held out validation set. As
training progresses and the network begins to overfit, the loss evaluation on the validation
set begins to increase, as indicated by the orange dashed line in the top row of Figure 3.7.
Rather than continuing training until the minimum of the training error, we should stop at
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Training
Validation

Figure 3.7: Showing the idea of early stopping. The top row shows the training error as
a solid blue line and the validation error as a dashed orange line. The validation error
begins to increase when training progresses beyond simple models. We can visualise this
in the bottom row where the trained models are displayed at different stages of training.
The training data are shown in these plots as grey scatter points.

the minimum of the validation loss, which would roughly correspond to the second fitted
function (from the left) in the bottom row of Figure 3.7. Weight decay is an alternative
method that uses an L2 penalty to penalise large weights. The effect is identical to that of
the ridge penalty in ridge regression: reduce variance in the final estimator at the expense
of introducing a small bias. The size of this penalty is usually tuned on a validation set.

Unlike the noisy data case, training a neural network as a statistical emulator of a
deterministic simulator means training on deterministic data. In this scenario, we concern
ourselves with the generalisability of the model. The generalisation properties of network
parameters can be considered similarly to the case of over-fitting: small parameters gener-
ally elicit good generalisation properties in the model and large values provide models that
are more complex. In Figure 3.7, we saw how easy it was with noisy data to move from
the region of simple models to the region of complex ones. With deterministic data, the
optimiser is no longer as vulnerable to this phenomenon because the data do not provide
a gradient to drive the model into this regime. This is visualised in Figure 3.9, where
a very heavily parameterised model containing 200 hidden nodes is fitted to a noise-free
dataset without any convexity appearing in the validation loss curve. Figure 3.9 shows
what is typically observed in the case of deterministic data. Rather than a convex vali-
dation loss curve, the validation loss converges to a larger loss value, indicating the poor
generalisation of the function. However, the fitted function itself is actually overly simple
and the poor generalisation is not a result of overfitting, but rather a small dataset size.
For this reason, as well as selection of network architecture (the model selection), it is still
important that we track the performance of the neural network on a validation set during
training, but regularisation techniques will not necessarily be useful.
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Figure 3.8: A heavily over-parameterised neural network trained from four random ini-
tialisations at small weights. All optimisations converge to similar models and the gener-
alisation is good.

TrainLoss
ValLoss

Figure 3.9: A heavily over-parameterised neural network trained on a deterministic func-
tion. Rather than an increasing validation loss, the poor generalisation appears simply as
a validation loss significantly higher than the training loss. In the plot on the right, the
dashed line shows the actual function while the solid red curve shows the function learnt
by the neural network.

3.3.4 Bayesian neural networks

Optimisation of neural network models provides us with a single best estimate of the
simulator function. As we saw in Figure 3.8 if the simulator is smooth, this can give a
good fit to the function. However, if we are concerned with a complex simulator function
for which we have limited training data, quantification of our epistemic uncertainty is
important. The parametric nature of neural networks necessitates the specification of
prior information in weight space:

w ∼ p(w|α) (3.34)
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where α is the hyperparameter of the prior (in general, we can have more than one hyper-
parameter). A common choice for this prior is a zero-mean Normal distribution. This is
motivated in a similar manner to L2 regularisation since it encourages smaller parameters.
We can alternatively use a Laplace prior on the weights, which induces sparsity in the
network similar to the LASSO. Having placed a prior on the weights, we wish to update
to a posterior distribution in light of the data using Bayes theorem (3.6):

p(w|y) ∝ p(y|w)p(w) (3.35)

The update of the weight distribution is typically not available in closed form and
computational approaches must be used to approximate it. One option is to assume
the posterior is peaked and obtain a MAP estimate of the parameters. Essentially, this
is equivalent to optimisation with weight decay and gives us no quantification of our
uncertainty. To allow for a posterior distribution instead of a point estimate, MacKay
(1992a) proposed the use of the Laplace approximation, approximating the posterior with a
Gaussian distribution centred on the MAP estimate. The hyperparameters of the Gaussian
prior can then be found by optimising the evidence

∫
p(y|w, α, β)p(w|α, β)dw, which

is analytically tractable given Gaussian assumptions on the prior and data model. See
MacKay (1992a); Bishop (1995, Section 10.4) for further details on this approach, as well
as some of its disadvantages. Neal (1996) proposed the use of HMC to learn the sample
from the posterior distribution from (3.35) and this is widely accepted as the state of
the art for fully Bayesian inference in neural networks. Neal (1996) includes a detailed
discussion on the choice of priors, for which he uses a hierarchical form. One such choice
is to use an Inverse Gamma hyperprior on the weight variances:

w ∼ N (0, σ2
w), σ2

w ∼ IG(α, β) (3.36)

In the simplest case, the same variance hyperparameter is shared within a layer of the
network, but more intricate relationships can be modelled. For instance, ARD is intro-
duced by sharing a unique common weight variance hyperparameter between all of the
connections out of a particular input to the network. Neal (1996) advocated making the
model as flexible as possible since the marginalisation provided by the Bayesian approach
helps to guard against overfitting One drawback of this fully Bayesian approach is the
large computational cost. Since HMC relies on gradients, which in turn relies on back-
propagation, obtaining one sample using HMC can require thousands of forward passes of
the entire dataset through the model.

Several solutions have been proposed to the computational costs of fully Bayesian
HMC. These include variational inference (Graves, 2011), which attempts to approximate
a single mode of the posterior using a parameterised distribution, and ensemble approaches
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(Lakshminarayanan et al., 2017). The latter of these has received particular attention in
recent years and has even been suggested to outperform HMC. One argument for this is
as follows: the expressiveness of neural network models leads to a diverse set of equally
likely hypotheses and these are often spread throughout the parameter space in a series of
modes. Using HMC, we can only move between modes if these are connected by a region
of high posterior density. On the other hand, ensemble approaches specifically target
the multi modality of the likelihood landscape. Fundamentally, the idea is to initialise
optimisers from different initial points in weight space that will then converge to different
modes (Fort et al., 2019), therefore capturing the variety of solutions contained within
the different modes. Recently, ensembles have been improved by Pearce et al. (2020) who
used randomised prior distributions to regularise the optimisation of each network in an
ensemble. This has been shown to outperform standard ensembles and an example for a
toy function is shown in Figure 3.10, showing the good agreement with Gaussian processes
(see Section 3.4), at least for a simple toy problem in 1D.

Bayes ensemble optimizations
Bayes ensemble
GP

Training data
Bayes ensemble approximate posterior

Figure 3.10: Demonstration of the Bayesian ensemble. 20 optimised models are used to
obtain the posterior predictive distribution.

3.4 Gaussian processes

3.4.1 Gaussian process regression

Given data y measured at inputs θ, the task in regression is to recover the underlying
process that produced the data. Typically, y will be subject to some noise, which we often
assume is additive: y = f(θ) + ξ. In the absence of any evidence otherwise, this noise
can also be assumed to be iid Gaussian. Recovery of the underlying process requires a
mathematical description of the function. In some cases knowledge will be available that
allows us to specify a parametric representation for f and inference for f then amounts
to the estimation of a set of parameters. In reality, we often do not have information
that allows for a well specified parametric form and might instead consider the more
flexible, but still parametric, neural network. If we wished to take a Bayesian approach to
regression, this requires prior specification in weight space, as discussed in Section 3.3.4.
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However, beyond fairly simple knowledge (smooth functions, for instance, are a natural
consequence of the Gaussian prior on neural network weights), prior elicitation in weight
space can be challenging.

Instead of relying on a parametric model to encode all the information available about
a function, we can express this information directly in function space. If we wish to take
a probabilistic approach and quantify our uncertainty about the function, then we require
a probabilistic representation of a (possibly infinite) set of random variables, for which a
Gaussian process (GP) (Rasmussen and Williams, 2006; Roberts et al., 2013) can be used.
A GP can be considered as the infinite dimensional extension of the multivariate Gaussian
distribution. Assigning a GP prior to a function f , we assume a distribution that is fully
defined by a mean m(θ) and kernel (covariance) function k(θ,θ):

f ∼ GP(m(θ), k(θ,θ′)). (3.37)

The mean and kernel functions depend on sets of tunable parameters, which are referred
to as the hyperparameters of the GP. Generally, the form of the kernel k is as follows:

k(θ, θ′) = σ2
f k̃(θ, θ;β) (3.38)

where σ2
f is the signal variance, controlling the amplitude of the signal and β is the vector of

kernel hyperparameters. We can gather all of these hyperparameters into a single vector
of hyperparameters, ψ = (σ2

f ,β). The expression k̃ can take various forms, as will be
discussed in Section 3.4.2.

In light of the observed data, we wish to update the prior on functions to a posterior.
Although the infinite dimensionality of the prior would appear intractable, the marginali-
sation property of multivariate Gaussian distributions similarly applies in the case of GPs.
This means that any finite subset of realisations of the function, {f(θi)}ni=1, has a multi-
variate Gaussian distribution. A consequence of this property is that, despite specifying
our prior in the infinite dimensional space of functions, all proceeding inferences can be
performed while ignoring those locations with no data. In particular, the posterior pre-
dictive distribution at new points θ∗, depends only on the function at the locations of the
training data. Starting from the joint distribution:[

f

f∗

]
= N

(
0,

[
k(θ,θ) k(θ, θ∗)

k(θ∗,θ) k(θ∗, θ∗)

])
(3.39)

the predictive distribution p(f∗|f) is obtained using standard Gaussian conditional expres-
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sions (Bishop, 2006, equations 2.81 and 2.82):

p(f∗|f) = N (k(θ∗,θ)K(θ,θ)−1f , k(θ∗, θ∗)− k(θ∗,θ)K(θ,θ)−1k(θ, θ∗)). (3.40)

In the context of emulation, by conditioning on the function at the observed locations, we
limit the distribution to those functions that are consistent with the observed simulations,
as is demonstrated in Figure 3.11.

Figure 3.11: Starting from a prior in function space on the left, samples from the GP prior
are very different from the ground truth function (the simulator). When we condition on
the training simulations (red points) we limit the distribution of functions to those that
are consistent with the simulations. As the number of simulations increases, we gradually
begin to limit the distribution of functions to those that are consistent with the simulator.

Complete specification to the data requires tuning the hyperparameters, ψ, of the
kernel function. The typical approach is to first integrate the function out of the model,
obtaining the marginal likelihood p(y|ψ):∫

p(y, f |ψ)df =

∫
p(y|f)p(f |ψ)df

=

∫
N (y|f , σ2)N (f |0,K)df

= N (y|0,K + σ2I)

which can be optimised to obtain the hyperparameters in a type II maximum likelihood
manner. Due to the interpolative properties of GPs, the value of these hyperparameters
has less effect on the fit as the number of training data increases.

3.4.2 Kernel functions

The knowledge encoded in a GP prior is largely prescribed by our choice of kernel function,
k. This function quantifies the covariance between each unique pair of functions points,
specifying the properties we expect to see in the function. A posteriori, the choice of k
will generally only affect the function inference between the deterministic training data
since GPs are perfect interpolators. Several types of kernels exist that can be used for
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this purpose, and some that are relevant to the work in this thesis will now be discussed
in more detail.

Stationary kernel functions

A stationary GP kernel (see Rasmussen and Williams (2006, Section 4.2.1) is a function
of θ− θ′, meaning that it is invariant under translation of the input space. The notion of
invariance can be extended if k is a function of |θ − θ′|, in which case the kernel function
is called isotropic. Such a kernel does not depend on the direction of change between θ
and θ′, only the distance between them. A common example of an isotropic kernel is the
squared exponential, which was used for the plots in Figure 3.11:

k(θ,θ′) = σ2
f

p∏
i=1

exp

{
(θi − θ′i)2

λi

}
(3.41)

where σ2
f (signal variance) and λi (lengthscale), are the parameters of the kernel function

and the hyperparameters of the resulting GP. The lengthscale dictates the wiggliness of
the function (often referred to as the number of zero crossings of the GP) while the signal
variance controls the amplitude. Making the lengthscale a vector in the multidimensional
setting, as was done in (3.41), introduces ARD to the kernel function. The SE kernel
assumes that the function in question is infinitely differentiable, which can sometimes
be a restrictive assumption. For this reason, we may also consider the Matérn class of
kernels. This class of kernels contain a (nonoptimisable) order parameter that determines
the order of differentiability of the kernel function. Generally, this allows us to produce
functions that are less smooth than those of the squared exponential. For more details
on the Matérn, as well as other stationary kernel functions, see Rasmussen and Williams
(2006, Section 4.2.1).

Kernel functions from neural networks

Neal (1996) explored the behaviour of neural networks in the limit of an infinite width
hidden layer and showed that these are equivalent to GP priors when assuming Gaussian
priors on the weights. Recently, this idea has been extended to deep neural networks (Lee
et al., 2018). The realisation that neural networks in the infinite width limit are equivalent
to GPs has motivated a range of work on kernel functions derived from infinite width
neural networks with a given activation function. Williams (1997) derived the sigmoidal
kernel from a neural network with one hidden layer of erf activation functions (the erf is
shaped similarly to the tanh function). More recently, Cho and Saul (2009) derived the
ArcCosine kernel based on the ReLU activation function. This kernel function contains
an order parameter that specifies the order of the positive portion (up to quadratic). The
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order 1 and order 2 ReLU were shown in Figure 3.5. This kernel is expressed as follows,
where n is the order of the ReLU:

k(θ,θ′) =
σ2
f

2π

√
(b+ wθ · θ)(b+ wθ′ · θ′)Jn(φ) (3.42)

where

φ = cos−1
(

b+ wθ · θ′√
b+ wθ · θ

√
b+ wθ′ · θ′

)

Jn(φ) =


π − φ n = 0

sinφ+ (π − φ) cosφ n = 1

3 sinφ cosφ+ (π − φ)(1 + 2 cos2 φ) n = 2

where w and b are the variances of the weights and bias parameters in the first layer
and σ2

f , which can be interpreted the same way as the signal variance in stationary GPs,
stems from the variance on the weights in the second layer of the network. Making w
a vector allows for different variance parameters for each input, introducing ARD to the
model. More recently, Tsuchida et al. (2018) derived the kernel equivalent to the leaky
ReLU activation function. All of the kernels derived from neural networks are said to be
non-stationary. This means that instead of depending only on the distance between two
points, the kernel depends on the value of the inputs themselves.

Kernel on a circular domain

The kernel functions considered up to this point apply only in Euclidean space. If we
wish to consider inputs distributed on a manifold embedded in Euclidean space, we must
define an appropriate kernel function. One such example is the definition of a GP on a
circular domain. This kernel function requires the consideration of the geodesic distance
between two regions, which is given by d(γ, γ′) = acos(cos(γ− γ′)) where γ and γ′ are the
circumferential positioning of the two points of interest. The first thought would be to
apply a standard kernel, replacing the measure of Euclidean distance with this geodesic
distance. However, as studied by Wood (1995), valid kernels in Euclidean space can
violate the constraint of positive-definiteness when we replace the measure of Euclidean
distance with that of the geodesic distance. For this reason, Padonou and Roustant (2016)
considered the use of compact support kernel functions for GPs on circular domains.
They proposed the use of the C2-Wendland function to account for correlation in the
circumferential direction:

Wc(t) = σ2
f

(
1 + τ

t

c

)(
1− t

c

)τ
+

, c ∈ (0, π]; τ ≥ 4 (3.43)



CHAPTER 3. STATISTICAL BACKGROUND 45

where c, τ and σ2
f are the kernel hyperparameters and t is the geodesic distance between

two strain regions such that 0 ≤ t ≤ π. The effect of c and τ , can be found in Figure 3.12,
showing samples from the GP prior assuming different values of the hyperparameters.
From this figure we see that increasing c, which defines the compact support of the kernel,
or decreasing τ , which can be considered as a standard smoothness parameter, increases
the function smoothness.

Figure 3.12: Samples from a GP with polar kernel for different values of the hyperparam-
eters.

Nonstationary GP kernel

While the kernels derived from neural networks allow for nonstationarity in the func-
tion, we can choose to model this nonstationarity explicitly by introducing a lengthscale
function. Gibbs (1997) proposed the following kernel and proved its positive definiteness:

k(θ, θ′) = σ(θ)σ(θ′)

√
2l(θ)l(θ′)

l(θ)2 + (θ′)2
exp

(
− (θ − θ′)2
l(θ)2 + l(θ′)2

)
(3.44)

This kernel has more recently been used by Heinonen et al. (2016), where they modelled
the signal variance, lengthscale and noise variance with GP functions and sampled the
parameters using HMC. In the supplementary material of their paper, Heinonen et al.
(2016) proposed the following multi-dimensional extension of the kernel:

k(θ,θ′) = σ(θ)σ(θ′)

√
2l(θ)l(θ′)

l(θ)2 + (θ′)2
exp

(
− ||θ − θ′||2
l(θ)2 + l(θ′)2

)
(3.45)
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While a slightly different form was proposed by Gibbs (1997):

k(θ,θ′) = σ2
f

∏
i

√
2li(θ;φ)li(θ

′;φ)

li(θ;φ)2 + li(θ
′;φ)2

exp

(
−
∑
i

(θi − θ′i)2
li(θ;φ)2 + li(θ

′;φ)2

)
(3.46)

Similar to the nonstationary kernel, Gibbs (1997) proposed using a nonlinear map to
transform the input points into a space where the function is stationary. For this purpose,
they proposed the use of radial basis functions, and a similar approach has recently been
used by Zammit-Mangion et al. (2021). The idea to transform the input space was further
explored by Calandra et al. (2016) who suggested the use of a neural network to transform
the inputs. The benefit of the approaches used in the former two studies is their use of
one-to-one mappings, which is generally not a property of neural network models. The one-
to-one property would be particularly useful in design problems if we wished to generate
our design in the warped space and recover the corresponding values in the original space.
This will be further discussed in Chapter 8.

3.4.3 Multivariate Gaussian processes

Often, we are interested in modelling multiple functions from related processes. For in-
stance, the simulator of the LV model produces 24 circumferential strains and an end
diastolic volume, all of which we expect to be highly correlated. Multivariate (also called
multi-output) Gaussian processes attempt to model the correlation between these pro-
cesses, introducing a dependence of function fi(·) on yl for l 6= i. One approach is to
assume an underlying latent process, xl(·), through which all the signals are related as
a weighted sum. Under this framework, which is called the linear model of coregional-
isation, modelling of this latent process as a GP leads to a GP prior over the outputs
of the system since GP priors are closed under linear maps. Moreover, cross-covariance
between the outputs is induced by the autocovariance of this underlying latent process,
providing a dependency between the outputs of the simulator. More details on this ap-
proach, and extensions to convolutional processes, can be found in Alvarez and Lawrence
(2009). Requeima et al. (2019) proposed an autoregressive approach, where the outputs
are regressed on each other. This idea is similar to the autoregressive approach proposed
for multi-fidelity modelling by Perdikaris et al. (2017). However, determining an optimal
ordering of the outputs for training the autoregressive models could be troublesome with
high dimensional outputs.

Conti and O’Hagan (2010) limit the multioutput approach to situations where one
assumes a single latent process underlying all outputs of the system such that lengthscales
are the same for each output. This corresponds to a GP prior over the outputs of the
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simulator y = ζ(·) as follows:

ζ(·)|B,Σ,R ∼ N (m(·), k(·, ·)Σ) (3.47)

where k(·, ·) is a kernel function providing the spatial correlation, Σ provides the covariance
between the outputs of the simulator and m(·) is a mean function. The diagonal matrix
R stores the lengthscale parameters of k in its diagonal r. The covariance structure leads
to the following:

cov(ζ1(θ3), ζ2(θ4)) = k(θ3,θ4)Σ12 (3.48)

where ζl(·) is the lth simulator output. Considering a simulator ζ with q outputs, we
obtain the emulator training set by evaluating the simulator at a set of n inputs Θ and
storing the simulations in a matrix Y. The covariance is expressed in the following way:

cov(vec(Y), vec(Y)) = Σ⊗KΘΘ (3.49)

where vec(·) is the vectorised version of the matrix, KΘΘ is the n × n matrix containing
the kernel evaluations over Θ ×Θ and ⊗ is the Kronecker product. This makes explicit
the constant lengthscale within each of the different outputs—only the cross-covariance
changes. The posterior distribution for this model can be found in Appendix B.1.

3.4.4 Gaussian process approximations

The flexibility of Gaussian process models stems from their ability to grow in complexity as
new data points are added to the training set. Although this property makes them perfect
interpolators, the downside is that the computational complexity also grows with the
training set, both for training and prediction. For a training set of size n, the training costs
are O(n3) and for prediction, costs are O(n2)1. For this reason, various approximations
to full GPs have been developed, with two of the most popular methods being sparse and
local GPs.

When using local GPs (Gramacy and Apley, 2015), a small subset of the available data
is used to train a model. If we are interested in prediction at point θ, a popular choice is to
use the nearest neighbours from the training set to train a model and predict at θ. Noting
the suboptimality of this approach, Gramacy and Apley (2015) proposed taking distant
points into account to minimise mean squared predictive error. Although these methods
do reduce the costs of GP prediction, they only provide a locally emulated surface. If we
wish to use the emulator in Bayesian model calibration, we need a global model for which

1Assuming precomputation of the inverse covariance matrix. Under the same assumption, the compu-
tational cost of the predictive mean is O(n), as shown in Appendix A.1.
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sparse GPs (SGP) are more appropriate. The idea in sparse GP regression is to funnel the
information from n data points through a set of m inducing points (Quiñonero Candela
and Rasmussen, 2005; Titsias, 2009; Bauer et al., 2016). An important innovation in the
development of SGPs was the introduction of inducing points that can be freely optimised
along with the hyperparameters of the GP kernel (Snelson and Ghahramani, 2006). This
idea was used by Titsias (2009), who treated the inducing points as variational parameters
that can be optimised using variational inference (Blei et al., 2017). In variational infer-
ence, we introduce a family of parametric distributions on some variables of interest, z,
and optimise an objective referred to as the evidence lower bound (ELBO), with respect
to the parameters of the family of distributions (Blei et al., 2017). As the name suggests,
the ELBO lower bounds the marginal likelihood. To introduce this to the sparse GP, let
u be a vector of inducing variables. A variational distribution, q(u), is introduced with
parameter to be optimised using variational inference. Letting y be observed values and f

the underlying function values, the ELBO is derived by application of Jensen’s inequality:

log p(y) = log

∫ ∫
p(y, f ,u)dfdu

= log

∫ ∫
q(f ,u)

q(f ,u)
p(y, f ,u)dfdu

≥
∫ ∫

q(f ,u) log
p(y, f ,u)

q(f ,u)
dfdu

=

∫ ∫
p(f |u)q(u) log

p(y|f)����p(f |u)p(u)

����p(f |u)q(u)
dfdu = F(q)

Maximising this lower bound with respect to the variational distribution, q, gives:

F = logN (y|0, σ2I + Qnn)− 1

2σ2
tr(Kθθ −Qnn) (3.50)

where Qnn = KθuK
−1
uuKuu and a matrix Kxx corresponds to the matrix containing kernel

evaluations over x×x. We can then learn the inducing inputs and kernel hyperparameters
by optimising (3.50). Sparse GP training costs are O(nm2) where m is the number of
inducement points and n is the number of training points. With precomputation (see
Appendix A.2, the predictive mean is O(m) and predictive variance is O(m2)

3.5 Dimension reduction

Consider a dataset used to train an emulator, consisting of a set of input-output pairs.
Focusing on the matrix in which the inputs of this dataset are stored X, this is two
dimensional (say n × p) with the number of rows n representing the number of training
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locations and the number of columns p corresponding to the dimension of the input space.
The methods discussed in Section 3.4.4 target the problem of large n in the dataset, by
making more efficient use of the data. One approach considered was the sparse GP, which
was said to funnel the information in the n data points through a set of m < n inducement
points. In the current section, the interest shifts to the issue of large p problems, and
how we can funnel the information of the p dimensions through some lower dimensional
representation.

In the simplest case, we can assume a map from the original p dimensional space
through the following linear transformation:

r = XV (3.51)

where X has dimension n × p and r has dimension n × q, where q < p. As a result of
the transformation, we recover a projection of the data, X, in a lower dimensional space
of dimension q. How we recover the map into this lower dimensional space depends on
how we measure levels of redundancy in the data, which is the information in the original
dataset that will be removed when we funnel the data through the transformation.

Principal component analysis (PCA) assumes that any redundant structure in the data
can be measured as correlation between the different dimensions. With PCA we find a set
of vectors, V, onto which the data can be projected to remove these correlations between
the dimensions. To do so, a low dimensional projection is obtained such that the variance
of the data along this projection is maximal, which is met by optimising the following
criterion:

max
v

cov(Xv) = max
v

vΣvT (3.52)

where v is one of the columns of V and Σ is the covariance matrix of the data, obtained
as:

Σ =
1

n
((X− x̄)>(X− x̄))

We find, by solving (3.52) subject to a constraint that the vector v has unit norm, that the
first principal component is provided by the eigenvector of Σ with the largest corresponding
eigenvalue. Generalising to the j th principal component, we solve (3.52) subject to the
added constraint of the principal component being uncorrelated with the previous j − 1

components. For further details on the derivation of PCA, see section 6.1.1 of Hyvarinen
et al. (2002).

The previous description of PCA alludes to one of its more implicit limitations. Namely,
the mutual orthogonality of the principal components. Once we have found the first m
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components, the constraint that the next has zero correlation leads to an orthogonal pro-
jection relative to the previous components. Obviously, this solution could be suboptimal
as observed in the often concocted example displayed in Figure 3.13 where two signals are
mixed to obtain two non-orthogonal clouds of points. The projection obtained using PCA
fails to find the two obvious directions of principal variation since the second component
must be found to be orthogonal relative to the first. This orthogonality constraint is rooted
in the assumption that any dependence between dimensions is captured by, at the high-
est order, the correlation, which requires also an implicit assumption of Gaussianity, for
which stochastic dependence and correlation are equivalent because the Gaussian distri-
bution does not depend on higher order moments. The solution to this problem is then to
consider higher order measures of dependence than correlations. Independent component
analysis (ICA), which was formulated for the mathematically similar task of signal decom-
position (Hyvarinen et al., 2002), accounts for these higher order dependencies through a
measure of kurtosis. However, this comes at the cost of added computational complexity
since the recovery of the basis now requires iterative optimisation rather than closed form
matrix calculations. Moreover, the recovered components do not have the natural ranking
that is provided by PCA.

(a) (b)

Figure 3.13: A mixture of two t-distributions is frequently used as a counter example to
PCA where we have two signals that clearly do not lie orthogonal to one another.

All of the restrictions of PCA can be overcome using a neural network model referred
to as an autoencoder. A key uniqueness of these models, compared with standard neural
networks, is that the same quantities are used as the inputs and targets of the model. A
simple autoencoder, with two layers of weights and a single bottleneck layer, is visualised
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on the left of Figure 3.14. The hidden layer is referred to as a bottleneck layer, with the
portion of the network between the inputs and bottleneck the encoder and the proceeding
part of the network referred to as the decoder.. These names are intuitive: the encoder
finds a projection into a lower dimensional space that optimally represents the data while
the decoder reconstructs (an approximation of) the original shape. Training this model
as one neural network, optimised using a mean squared error objective function, means
that the encoder and decoder work together as the encoder learns a projection into a
new space that can then be optimally reconstructed by the decoder. This leads to an
important contrast between autoencoders and standard feedforward neural networks. In
the latter, we generally wish to learn a map from inputs to outputs that is nonlinear.
In an autoencoder, while the optimal transformation into the low dimensional space (the
encoder) may be nonlinear, the decoder acts to linearise any nonlinearities in order to
reconstruct the original data as well as possible.

With linear activation functions in the hidden layer, the transformation performed by
an autoencoder has the following form:

h = xW1

x̂ = hW2

where the transformation onto h is of the same form as the projection onto the princi-
pal components in PCA. While the autoencoder is trained without any assumption of
orthogonality on the weight matrix, it can be shown that the resulting transformation is
equivalent to the one obtained using PCA. A more surprising equivalence is the following:
even with the introduction of nonlinear activation functions to the bottleneck layer of the
network on the left of Figure 3.14, the optimal solution is still no better than PCA (Bishop,
2006, Section 12.4.2). To improve upon linear methods we must employ a hidden layer in
both the encoder and decoder, as shown in Figure 3.14. This makes both the encoder and
decoder universal approximators, which ensures that they can model any suitably smooth
function (Hornik, 1991).

For visualisation purposes, t-Distributed Stochastic Neighbour Embedding (t-SNE)
van der Maaten and Hinton (2008) provides a nonlinear projection of the data into a
lower dimensional space by minimising a KL divergence between conditional probabilities
of nearest neighbours in both spaces. However, since an explicit transformation is never
learned, the method is limited to only data visualisation.

The final dimensionality reduction approach is one that is specific to the shape of
the left ventricle. In standard dimension reduction routines, we begin by subtracting the
mean mesh shape from the dataset. The methods then learn to adjust the shape around
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Figure 3.14: Visualisations of a shallow autoencoder (left) and deep autoencoder (right).
The bottleneck layer provides the low-dimensional representation of G.

this mean mesh, making the learning process easier while also restricting the models to
the relevant shape. An alternative approach to this is to consider a fixed parametric
representation of the LV geometry, which can be tuned to fit a new subject specific LV
geometry. This allows us to introduce domain specific knowledge to the learning problem
at the cost of restricting ourselves to a pre-defined class of geometries. This idea was
used to represent LV geometries by Di Achille et al. (2018) where they described the LV
geometry using a symmetric 6 parameter model given by2:

ρepi = Rb(e cos(ψ) + (1− e)(1− sin(ψ))),

ηepi = −Z sin(ψ),

ρendo = (Rb − L)(e cos(ψendo) + (1− e)(1− sin(ψendo))),

ηendo = −(Z −H) sin(ψendo),

(3.53)

where ρ denotes the radial coordinate, η the axial coordinate and the parameters of inter-
est, which we collect in the vector κ = (Rb, Z, L,H, e, ψ0), where ψ0 is the lower bound
on ψ. These parameter are optimised to fit the model to a specific LV geometry, where
volumes can be calculated using a discretisation of space and assigning wall and cavity
indicators to each point.

2This is a slightly adjusted version of the original formulation in Di Achille et al. (2018), which may
have been subject to some typos.



Chapter 4

Emulation of a fixed left ventricle
geometry simulator

The work in this chapter acts as a first step into the use of statistical emulation for
efficient prediction of the left ventricle behaviour in diastole. Considering emulation of
the LV model for a fixed LV geometry, this is best framed as a proof of concept study
that will aim to show that for a fixed LV geometry, statistical emulation provides a good
approximation to the left ventricle simulator. Firstly, this work will assess the use of output
emulation versus loss emulation for parameter estimation before comparing the use of three
competing methods for emulation: univariate Gaussian processes, a multivariate Gaussian
process and a neural network. With the neural network approach, the lower computational
costs associated with neural networks allows efficient optimisation of a global model in the
order of seconds. For the two GP approaches, local approximations are required, allowing
more efficient prediction at a new test point but with the absence of any global function
approximation. The work in this chapter is largely based on work published in Noè et al.
(2019). The local GP results presented in this Chapter were taken from Noè et al. (2019),
where Umberto Noè implemented the local univariate approach and I implemented the
local multivariate approach. Although this publication contained some results on sparse
GPs, these have been updated for use in this thesis. The neural network is a more recent
update that was not included in the original publication, and was implemented by myself.

4.1 Background on the problem

4.1.1 The fixed geometry simulator

Recall the mathematical model that was introduced in Section 2.2. The multi-scale nature
of this model, mapping properties at the tissue level to properties at the observable level,
allows us to relate the stiffness of the passive myocardium, represented by the Holzapfel-

53
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Ogden law, with quantities measured in the clinic. As was shown in Figure 2.2, these
parameters are combined with the subject-specific left ventricle (LV) geometry and end di-
astolic pressure (EDP) to allow for patient-specific simulation of LV dynamics in diastole,
paving the way for personalised non-invasive measurement of myocardial tissue health.
Clinical application of these procedures introduces time constraints to the inference prob-
lem, which poses a problem in the context of cardiac modelling where computational costs
are typically quite high. Requiring computation times of around ten minutes per forward
simulation, implementation of this model in an iterative optimisation procedure for pa-
rameter inference can be expected to require around 2 days to run. More sophisticated
methods from machine learning, such as Bayesian optimisation (Shahriari et al., 2016;
Romaszko et al., 2021), can expedite this procedure but the costs are still more applicable
to research purposes as opposed to clinical applications.

The problem with the optimisation procedures discussed above is the manner in which
they use the simulator, with all the expense incurred during inference. Statistical em-
ulation (Conti et al., 2009; Conti and O’Hagan, 2010) offers an alternative paradigm,
with the burden of the forward simulations incurred prior to the stage of model calibra-
tion (Kennedy and O’Hagan, 2000). Running a large batch of forward simulations, we can
train an approximation to the simulator that can then be used in the optimisation routine.
In theory, this approximation has unbounded accuracy: adding extra training simulations
for training the emulator will lead to increasingly accurate approximations. For the LV
simulator, selection of training points is itself a problem because there is no method for
sampling realistic LV geometries in their original space. One solution to this problem is
to consider a low dimensional representation of the LV geometry. This will be considered
in future chapters of this thesis, but in the current chapter the LV geometry is considered
fixed, allowing us to focus on the map from material parameters to model outputs.

Personalisation of the model to new subjects does not only rely on the LV geometry.
EDP of the blood within the LV cavity will likely be different for each individual patient.
Inclusion of this variable in the emulator would allow us to measure this parameter in the
clinic and feed it into the model during parameter estimation to allow for more personalised
estimation. Although methods do exist for measuring the EDP, the invasiveness of the
procedure ensures that in all but the most severe of cases (where the invasive measurement
can be justified), this data will not be available. In the literature, a common approach
is to fix the EDP to a population based average pressure during inference (Palit et al.,
2018a). Inevitably, this will introduce a bias to the parameter estimation when considering
inference conditional on measured data, but the task of inferring EDP along with material
properties is ill-posed. On top of this, for healthy volunteers we can be confident that a
population average provides a close approximation to the actual pressure in the cavity and
Palit et al. (2018a) showed that only a small bias is incurred when dealing with pressure
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around the healthy in vivo range (8-12mmHg). For this reason, the EDP will not be
included in the emulator’s domain, instead fixing it to 8mmHg (Bouchard et al., 1971)
during training and any subsequent parameter estimation.

4.1.2 A reduced parameterisation

Fixing the LV geometry and EDP simplifies the task of statistical emulation of the LV
simulator. Allowing us to isolate the map between material parameters and outputs of the
model, this fixed geometry LV simulator provides the perfect setting for a proof of concept
study, which can then be followed by the task of generalising the inference problem to new
subjects. The resultant model can be summarised by the following map:

ζ : θ ∈ Rd 7→ y ∈ R25 (4.1)

where y ∈ R25 consists of the LV cavity volume at end diastole (LVV) and 24 circumferen-
tial strains (see Figure 2.3 for a description), which can be measured from CMR scans in
the clinic. In its original form, which is found in (8.1), the H-O model relies on d = 8 ma-
terial parameters. Such a parameterisation exhibits poor identifiability (Gao et al., 2015)
and often in the literature a reparameterisation is adopted (see Krishnamurthy et al.
(2013b); Hadjicharalambous et al. (2015); Palit et al. (2018a) for some examples). The
work in this chapter will adopt a similar approach by introducing four scaling constants
that relate the Holzapfel-Ogden parameters with a set of population values from healthy
volunteers:

a = θ1 a0 b = θ1 b0

af = θ2 af0 as = θ2 as0

bf = θ3 bf0 bs = θ3 bs0

afs = θ4 afs0 bfs = θ4 bfs0

(4.2)

where θ = (θ1, . . . , θ4) ∈ [0.1, 5]4 are now the four parameters to be inferred from in
vivo data, while a0, b0, af0, as0, bf0, bs0, afs0, bfs0 are reference values from the published
literature (Gao et al., 2017)1. This parameterisation was motivated by the results of Gao
et al. (2015).

4.2 Emulation methodology

Given experimental data y∗, consisting of J − 1 circumferential strains and the LVV, the
goal is to find the parameters θ̂ at which the simulator prediction ζ(θ̂) best approximates

1The reference values are, up to 2 decimal places: a0 = 0.22, b0 = 1.62, af0 = 2.43, as0 = 0.56,
bf0 = 1.83, bs0 = 0.77, afs0 = 0.39, and bfs0 = 1.70.
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the data, according to some objective function. Assuming that the data are standardised,
we can make the following assumption of iid Gaussian noise:

p(y∗|ζ(θ), σ2) =
J∏
j=1

N (y∗j |ζj(θ), σ2), (4.3)

where σ2 is the noise variance. This leads to a log-likelihood function of the following
form:

l(y∗|θ) = −J
2

log(σ2)− 1

2σ2

J∑
j=1

(y∗j − ζj(θ))2. (4.4)

The noise variance has no impact on our point estimate of the parameters, so optimisation
of the log-likelihood can be replaced by optimisation of the mean squared error or residual
sum of squares. In the proceeding work, an RSS objective function will be used:

L(θ) =
1

J

J∑
j=1

(y∗j − ζj(θ))2. (4.5)

For the LV simulator, optimisation of (4.5) is computationally intensive, requiring days of
computation time. Given a set of input-output pairs from the simulator:

D = {θi,yi}ni=1, yi = ζ(θi) (4.6)

we can approximate the loss evaluation in (4.5) using a statistical emulator. Several
different emulation approaches will now be discussed, before considering in detail how
these can be used to expedite the model calibration procedure.

4.2.1 Univariate Gaussian process

A general background on Gaussian processes (GPs) was provided in Section 3.4. This
involved a discussion of the computational costs of GP modelling, and the fact that the
non-parametric nature of GPs ensures that these costs grow as the dataset size increases.
As a result, for large training sets we require approximations to the full GP and one such
approach is a local GP. An approach based on M-nearest-neighbours in input space was
proposed in Gramacy and Apley (2015). This method uses the standard GP methodology
described in Section 3.4.1, but subsetting the training data. Whenever we require a pre-
diction at a given input, we find the training inputs representing the M nearest neighbours
in the input domain, which will form the local set of training inputs, and the correspond-
ing outputs will represent the local training outputs. Note that every time we query a
prediction at a different input, the training sets need to be re-computed and the GP needs
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to be re-trained. However, because of the small number of neighbours, which is usually
much smaller than 1000, this method is computationally fast; see Gramacy and Apley
(2015) for further details.

Gramacy and Apley (2015) further discussed adding a fixed number of distant points
in order to help in the estimation of the lengthscale parameters, but this comes with extra
computational costs required by the iterative choice of which point to add to the set of
neighbours. Given the time limitations required by the goal of real-time clinical decision
support systems, this approach will not be pursued. Furthermore, this is mostly relevant
when the interest lies in building predictive models able to make good predictions when
the training data are distant from each other. Since we are working on a compact set that
is very densely covered by the Sobol sequence, this is not necessary. For training data
consisting of intput-output pairs D = {(θ1, y1), . . . , (θn, yn)} = {Θ,y}, we can summarise
the algorithm as follows:

Algorithm 1 Predicting output j from an M nearest neighbour local Gaussian process
at θ∗

1: Find the indices I(θ∗) of the points in Θ having the M smallest Euclidean distances
from θ∗;

2: Training inputs: Θ̃ = {θ′1, ...,θ′M} = {θi : i ∈ I(θ∗)};
3: Training outputs: ỹ = {yi : i ∈ I(θ∗)};
4: Train a GP using the data DM(θ∗) = {Θ̃, ỹ};
5: Predictive mean: µ(θ∗) = m(θ∗) + k(θ∗)>[K + σ2I]−1(ỹ −m);
6: Predictive variance: ν(θ∗) = k(θ∗,θ∗)− k(θ∗)>[K + σ2I]−1k(θ∗).

In the algorithm above, K = [k(θ′i,θ
′
j)]

M
i,j=1 is the M×M training covariance matrix,

the M× 1 vector of covariances between the training points and the test point is k(θ∗) =

(k(θ′1,θ
∗), . . . , k(θ′M,θ

∗)) and m = (m(θ′1), . . . ,m(θ′M)) is the M × 1 prior mean vector.
Note that whenever the target parameters change, e.g. during an iterative optimisation,
the algorithm has to be repeated. A constant mean function m(θ) = c and the squared
exponential kernel will be considered, as widely used in the emulation of computer codes
literature; see e.g. Fang et al. (2006); Santner et al. (2018). The model hyperparameters
are estimated by maximising the log marginal likelihood using the Quasi-Newton method,
with σ initialised at a small value, σ = 10−2 (since the simulator function is deterministic).
This method was found to be the best in the comprehensive comparison presented in Davies
et al. (2019) and represents a benchmark for the current study, along with the expensive
optimisation problem solved in Gao et al. (2015).

4.2.2 Multivariate GP

Given the multi-output nature of the simulator, a multivariate model could provide a
better approximation. For this purpose, the method of Conti and O’Hagan (2010) will be
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used. As discussed in Section 3.4.3, this approach assumes that the lengthscales of the
different input dimensions are the same for each of the outputs in the model. For the
LV simulator, this is a reasonable assumption to make because the shape of the output
function is largely dictated by the H-O model, which is of course the same for each output.

Similar to the univariate case, a local approximation will be made. Instead of using
the parameter space nearest neighbours, function space nearest neighbours will be used,
so that only one emulator has to be trained. If we are interested in a new test case y∗, we
must find the K closest training outputs to y∗. These training data are then used to train
a MOGP, which can be used in place of the simulator to learn the material parameters.
Supposing test data y∗ and training data D = {(θ1,y1), . . . , (θn,yn)} = {Θ,Y}, the
procedure for predicting at a set of parameters θ∗ is outlined in Algorithm 2. A squared

Algorithm 2 Predicting from a multivariate GP at (θ∗,y∗)

1: Standardise the data, y∗
2: Find the indices I(y∗) of the points in Y having the M smallest Euclidean distances

from y∗;
3: Training inputs: Θ̃ = {θ′1, . . . ,θ′M} = {θi : i ∈ I(y∗))};
4: Training outputs: Ỹ = {y′1, . . . ,y′K} = {yi : i ∈ I(y∗)};
5: Train a multivariate output GP using the data DK(y∗) = {Θ̃, Ỹ};
6: Predictive mean at test point θ∗, see Appendix B.1;

exponential kernel was used for the MOGP and, while optimisation could have been used,
the hyperparameters were sampled using Metropolis Hastings, assuming a prior of the
form πR(r) ∝∏p

i=1(1 + r2i )
−1.

4.2.3 Global approaches

Sparse GP

Section 4.2.1 and Section 4.2.2 outlined methods that use local subsets of the data to
overcome the computational complexities of Gaussian processes. Rather than fitting to
the full global set of data, subsets of data were selected for training a Gaussian process
emulator in a particular region of interest. For optimisation, this approach is appropriate
because we never move far away from our particular point of interest. However, for some
MCMC procedures, where proposals could be far away from the current point, we cannot
afford to misrepresent parts of the configuration space. This is especially true if we wish
to use HMC, where the method’s efficiency stems from its ability to make these well-
informed distant proposals. This sampler would inevitably step out of a locally emulated
region to one where the likelihood cannot be evaluated accurately. This could affect our
final posterior densities and introduce bias to any future decision making based on these
inferences.
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Sparse GPs (Titsias, 2009; Bauer et al., 2016), which were discussed in Section 3.4.4,
offer a global alternative to local GPs. These methods tend to provide good approximation
to the mean of the full GP, but we lose the pinching of the variance at the training data
that is associated with standard GPs and this leads to less reliable functional uncertainty
estimates. In the simulation study of this chapter, the variational sparse GP proposed by
Titsias (2009) and discussed in Section 3.4.4 will be used.

Neural networks

In Section 3.4.2, the parallels between neural networks and GPs were discussed. Much of
this was based on the work of Neal (1996) and later work by Williams (1997) who showed
a correspondence between neural networks with the erf activation function and GPs with
the sigmoid kernel. Despite their similarities, neural networks are rarely considered for the
purpose of statistical emulation. Part of this neglect inevitably stems from the training
process, which typically involves optimisation of the model parameters and no uncertainty
quantification. As mentioned in Section 3.3.4, various Bayesian inference schemes have
been proposed, but these are computationally expensive with large training sets. For this
reason, only an optimised neural network will be considered in the current chapter. The
parametric nature of neural networks is such that the full training set can be used to fit
the model without any local approximation. The network parameters will be optimised
using mini-batch gradient descent with the Adam optimiser and an MSE loss function
(see Section 3.3.3 for more details), and the network architecture will be selected using
cross-validation, as will be detailed later in this chapter.

4.2.4 Parameter estimation with a statistical emulator

Now that the general problem has been outlined at the beginning of this section, and sev-
eral emulation strategies have been discussed, we can consider how these will be combined
for efficient model calibration. Broadly speaking, the introduction of an emulator to (4.5)
falls into two paradigms. The first of these is referred to as emulation of the loss. Given
the set of data D and a vector of test observations y∗ of length J , we can form a dataset
of input-loss pairs:

D̃ = {θi, L(θi)}ni=1, L(θi) =
1

J
||y∗ − yi||2

Training an emulator on these data gives a surrogate model for the loss function. Assuming
that the emulator is deterministic, which is the case with an optimised neural network,
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the surrogate loss L̃(θ) can be optimised to obtain the parameter estimates θ̂:

θ̂ = arg min
θ

L̃(θ) (4.7)

Taking a univariate GP approach to emulating the loss, using for instance Algorithm 1,
we treat the unknown loss function as random. A trained GP provides a distribution
on functions that is consistent with the observed loss evaluations (see Figure 3.11 for a
visualisation). The distribution is defined by a posterior mean and variance, which were
expressed in the case of the local GP in steps 5 and 6 of Algorithm 1. This posterior
mean gives the best estimate for the unknown true function values under quadratic loss,
providing a deterministic approximation to the loss function that can be optimised to
estimate the parameters.

An alternative approach is to emulate the outputs by training a surrogate model directly
on D from (4.6). Such an approach provides a direct approximation to the simulator that
allows a surrogate-based loss function to be used in place of the simulator-based loss from
(4.5). If we consider our emulator η to be deterministic, then the surrogate-based loss is
formed by replacing the simulator in (4.5) with the emulator:

L̂(θ) =
1

J
||y∗ − η(θ)||2. (4.8)

As before, training a GP on the training data gives a distribution of functions that is
consistent with the training data (this time the outputs of the simulator). In the current
analysis, the posterior mean of these GPs will be used to replace the simulator in the
loss function. Appendix B.2 outlines an alternative loss function that accounts for the
GP uncertainty, along with a simple simulation study. The issue with such an approach
is that we incur the extra computational complexity of the posterior variance of the GP,
which is O(n2) for each of the J outputs where n is the number of training points. This
can slow the parameter estimation substantially if we consider large training sets. For the
purpose of in-clinic parameter estimation, it therefore seems justified to consider only the
posterior mean.

4.3 Building and applying the emulator

Building and applying the emulator is a process in three phases. In the first phase, a set
of constitutive parameter vectors θ is generated from a Sobol sequence. In general, these
are the 8D vectors from the Holzapfel-Ogden model defined in Section 2.2.2. However,
based on the discussion in Section 4.1.2, the dimension has been reduced to 4D, as defined
in (4.2). For each parameter vector θ, the dynamical equations from Section 2.2.3 are
solved numerically with finite element discretisation, ideally by massive parallelisation, to



CHAPTER 4. EMULATION OF A FIXED LV GEOMETRY SIMULATOR 61

obtain the corresponding data vectors y: these are 25D vectors of 24 peak circumferential
strains and the LVV; see the beginning of Section 2.2 for details. In the second phase, a
regression model is fitted to the training set obtained in the first phase. Depending on
the mode of operation, this training set can either consist of a set of independent scalar
outputs, output vectors, or loss functions. In the third phase, an iterative optimisation
algorithm is applied to the emulated loss function, to obtain the parameter estimate for
new test data. In a clinical context, Phase 1 is carried out before using the emulator in
the clinic. Phase 3 is the way the emulator is used as a decision support system in the
clinic, with the test data corresponding to data obtained from a patient. Phase 2 depends
on the mode of operation. When emulating the output with a global model, this phase
can be completed before using the emulator in the clinic. For the other approaches, the
emulator has to be created “on demand” after obtaining the patient data.

4.3.1 Phase 1: Parallel simulations from the model

In order to build the emulator we need a set of training runs D = {(θi,yi)}ni=1, for
parameter vectors θi and associated model outputs yi. In this study, the training inputs
Θ = [θ1, . . . ,θn]> represent n = 10, 000 points from a Sobol sequence in [0.1, 5]4, where
the domain has been chosen to represent typical parameter ranges from the literature
(Gao et al., 2017). The corresponding outputs yi are obtained using the model detailed
in Section 2.2.

The size of training set used here is typical of all the work in this thesis, where the
number of simulations will be in the order of tens of thousands. While this incurs a large
computational cost at the time of simulation, this is all performed before the parameter
estimation. Importantly, this means that the added computational burden of the forward
simulations does not directly contribute to the cost of parameter estimation in the clinic.
When using a GP emulator, a direct impact of the training set size on parameter estimation
stems from the predictive cost of the emulator, which grows with the training set size. In
particular, with training sets containing 10,000 points we rely on approximations to the
full GP. While this appears to provide evidence in favour of more sophisticated designs,
there is more to be considered here. If we are set on using a GP model for emulation,
efficient parameter estimation with a global GP requires training set sizes in the order of
hundreds. In preliminary studies that looked at more effective designs for a global GP
model, a training set in the order of 1,000 was required for accurate emulation. At this
point, we begin to push the computational costs beyond those that would be appropriate
for in clinic inference and must consider approximations. For this reason, taking a dense
coverage that ensures accurate GP approximations seemed like the best choice for the
simulator considered in this work, which requires around ten minutes of computation
time. While the same arguments apply in principle for more complicated cardiac models
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such as the bi-ventricle model, generation of a training set of similar size to the ones used
in this thesis would be infeasible. In this circumstance, sequential methods can be used
to more densely fill regions of space where the function is more complex.

4.3.2 Phase 2: Training the emulator

As discussed previously, three different GP emulation strategies will be considered along
with a neural network. The parametric nature of the neural network means it can be
trained on the entire n = 10, 000 training points. The GPs require the construction of
an M × M training covariance matrix K = [k(θi,θj)]

M
i,j=1. The local GPs also require

an M × 1 vector of covariances between the training points and the test point k(θ∗) =

(k(θ1,θ
∗), . . . , k(θM,θ

∗)), while the sparse GP with M inducement points requires the
M× 1 vector of covariances between the inducement points and the test point. Note that
this covariance vector must be evaluated at each new point during optimisation while the
covariance matrix and its inverse can be evaluated beforehand (see Appendix A.1).

For the univariate output GPs, a constant mean function m(θ) = c is adopted. For
the multi-output GP, the approach of Conti et al. (2009) and Conti and O’Hagan (2010)
is followed, using a low-order polynomial m(θ) = b>h(θ) with h(θ) = (1,θ). The choice
of kernel function depends on the GP. For the local GP implementations (both univari-
ate and multivariate) the stationary squared exponential kernel with ARD is used. This
kernel is widely used in the emulation of computer codes literature, see e.g. Fang et al.
(2006) and Santner et al. (2018). Although there is no evidence of stationarity, emu-
lation is performed using a local training set of M nearest neighbours, selected from a
dense set of n training data where M << n, and even a highly non-stationary function
can be considered stationary over a small enough input range. For the sparse GP, the
nonstationary ArcCosine kernel of order 2 (Cho and Saul, 2009) with ARD will be used,
which was discussed in Section 3.4.2. For the univariate output GPs, the hyperparameters
were estimated by maximising the log marginal likelihood using the Quasi-Newton method
with multiple restarts (for avoiding local optima). For the multivariate output GPs, the
Metropolis-Hastings algorithm was used to sample the hyperparameters. To optimise the
weights and biases of the neural network, mini-batch gradient descent was implemented
using the Adam optimiser (Kingma and Ba, 2015).

4.3.3 Phase 3: Using the emulator for parameter estimation

The final step is the minimisation of the loss function. When the outputs are emulated,
then the loss function (4.5) is approximated by the surrogate loss (4.8), which can be min-
imised to obtain a parameter estimate. If the loss function is emulated directly, then the
emulator itself is minimised with respect to θ. In either case, we face a high-dimensional
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optimisation problem, for which a variety of algorithms have been proposed in the litera-
ture. In the present work, the optimisation routine changes depending on the emulation
method. For the GP approaches from Algorithm 1 and Algorithm 2, the surrogate-based
loss and the emulated loss are optimised using the Global Search algorithm by Ugray
et al. (2007), implemented in MATLAB’s Global Optimisation toolbox2. For the neural
network, gradient descent with learning rate decay was used. This local optimisation is
repeated 10 times from 10 different start points with the final parameter estimate selected
as the one out of ten with the lowest loss evaluation. The relatively low number of start
points was selected because we do not anticipate many (if any at all) local optima in the
loss function.

4.4 Results

4.4.1 Comparing the neural network with a sparse GP

As outlined in Section 4.2.3, two global approaches to consider are sparse GPs and neural
networks. The first study compares the predictive performance of both of these methods.
The number of inducement points used for the sparse GP was 500. For in clinic inference,
we would rely on a smaller number of inducement points to allow for efficient inference.
However, allowing for a better prediction from the sparse GP than would be possible in
practice will provide stronger evidence in favour of the neural network emulator. For the
sparse GP emulator, 25 univariate sparse GP models were fitted to the entire training set
of 10,000 training points. For the neural network a single 25 output model was trained,
with the number of hidden nodes and batch size tuned using 10-fold cross-validation. The
final network had two hidden layers of size 300 and a batch size of size 125 was used in
optimisation.

Comparing the two methods visually in Figure 4.1, they appear almost identical. If
we look closely at the extreme test points (those with the largest volume and smallest
strain), there is some deviation of the sparse GP predictions from the lines at y = x.
Quantitatively, the neural network outperforms the sparse GP by almost a full order of
magnitude (6× 10−6 versus 6× 10−5). Despite only being a small difference, this combined
with the extra computational costs of the sparse GP are enough to justify adopting a neural
network as a global emulator to compare with the local GP approaches.

2https://uk.mathworks.com/products/global-optimization.html
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Figure 4.1: Comparing the predictive performance of a neural network and sparse GP on
a held out dataset. Visually, the predictions (y-axis) appear identical to the ground truth
value (x-axis), both for the sparse GP and the neural network. With the sparse GP there
is a small deviation from the ground truth for the outlying prediction (largest volume)
and overall, a small deterioration is indicated by a deterioration in predictive performance
by a whole order of magnitude.

4.4.2 Comparing loss and output emulation for parameter esti-

mation

The work in this section compares the paradigms of loss and output emulation, as discussed
in Section 4.2.4. Of interest will be (univariate) GP emulation of the loss, univariate
GP emulation of the outputs and multivariate GP emulation of the outputs. All GP
simulations used local GPs with M = 100 nearest neighbours, with Algorithm 1 used



CHAPTER 4. EMULATION OF A FIXED LV GEOMETRY SIMULATOR 65

for the univariate output GP, and Algorithm 2 used for the multivariate output GP. A
comparison requires test data, for which 100 test cases were generated by continuing the
Sobol sequence used to generate the training data. These 100 parameter sets were then fed
into the simulator, giving us a test set of parameter-output pairs: Dtest = {(θj,y∗j)}100j=1.
For each test simulation, we can estimate the parameters using a particular emulation
method and then compare the jth optimised parameter vector, θ̂j and the jth ground
truth parameter vector, θ∗j , using the mean squared error:

MSEj =
1

4
||θ̂j − θ∗j ||2

obtaining a sample of 100 MSE scores for each of the three emulation methods. In Fig-
ure 4.2, the distributions of the 100 MSE scores for each method are summarised using
boxplots. Panel (a) shows the original vertical axis scale, while Panel (b) shows a reduced
vertical axis scale to focus on the lowest MSE scores.

Figure 4.2 shows that emulating the output and then minimising the surrogate-based
loss (4.8) leads to a substantially lower error than emulating the loss function directly and
then minimising it. The explanation for this result is presumably related to the information
loss inherent in mapping 25 separate outputs (the LVV and 24 circumferential strains) into
a single scalar quantity. This suggests that the higher computational costs of the more
detailed emulation are rewarded by higher accuracy. This is also a result that suits the task
of in-clinic inference, since it is possible for output emulation to be performed in advance
while loss emulation requires the approximation of a function that depends on the observed
data. We can now compare the global emulation approach based on a neural network—
which allows for pretraining of the emulator—with the local emulation approaches that
use GPs.

4.4.3 Evaluating different output emulation approaches

For the test data outlined in Section 4.4.2, the parameters were also estimated using
a neural network as the surrogate model in (4.8). This can be compared with the use
of GPs (both univariate and multivariate), which will be implemented with 100 nearest
neighbours as before. Table 4.1 provides the numerical results for the different output
emulation approaches, along with the results of loss emulation. The parameter estima-
tion error achieved with the multivariate output GP is about two orders of magnitude
lower than the error obtained with the separate univariate output GPs and five orders
of magnitude better than the results obtained using loss emulation. This suggests that
additional accuracy can be achieved by explicitly modelling the correlations between the
various outputs. Comparing the results of the MOGP and neural network, the GP is
roughly an order of magnitude better. However, the computation times are very different:
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(a) (b)

Figure 4.2: Distribution of the 100 out-of-sample MSE scores for each method. (a) Box-
plots of the mean squared error for all 3 methods in the original y-axis scale and (b) with
a reduced y-axis scale. The methods from left to right on the left plot are as follows: local
GP emulation of the loss, local GP emulation of the outputs, and local multiple output
GP emulation. The plot on the right includes only the output emulation methods.

the GP required around 12 minutes of computation time while the neural network required
seconds. This is partly due to the different optimisation routines: the GP implementation
uses Globalsearch while the NN approach uses gradient descent, but generally speaking
the parametric nature of neural networks makes them more efficient predictors than GPs,
once we exclude training time. The neural network results are encouraging, suggesting
that we can use a neural network as a global emulator in situations where we wish to use
MCMC to quantify our uncertainty in the parameters. It is important to note that neural
networks will tend to require larger datasets so more forward simulations will be required.
This is especially true when we do not adopt a Bayesian approach to network training.

Table 4.1: Comparison of the different emulation strategies. Median (1st, 3rd) quartiles
of the mean squared error distribution for the out-of-sample parameter vectors. The
method with the lowest median MSE is highlighted in bold: Output emulation using local
multivariate output GPs.

MSE

Statistical approximation Emulation target Median (1st, 3rd) quartiles

Single output GP Output 1× 10−4 (4× 10−5, 3× 10−4)

Single output GP Loss 2× 10−1 (6× 10−2, 7× 10−1)

Multivariate output GP Output 5× 10−6 (1× 10−6, 3× 10−5)

Neural network Output 2× 10−5 (1× 10−5, 5× 10−5)

A fixed value of M = 100 nearest neighbours was used to obtain the results presented so
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far with Algorithm 2, to mimic the value used for the univariate output GPs in Algorithm 1.
The dependence of the parameter estimation accuracy (in terms of MSE) on M, the number
of nearest neighbours used in the local GP algorithm, will now be investigated by repeating
the estimation of the GP for different values of M. The results are shown in Figure 4.3.
The figure shows that when decreasing the value of M to smaller values, M < 100, the
performance deteriorates, as expected. Interestingly, the performance also degrades when
increasing the value of M beyond M > 200. At first, this appears counter-intuitive but
a possible explanation is as follows. Including additional parameters that are far away
from the target parameter have a negligible direct influence on the GP output, which
follows from the exponential decay implied by the functional form of the kernel. However,
if the characteristic length scales, expressed by the hyperparameters λk of the squared
exponential kernel, are different in different areas of the parameter space, then the increase
of M can lead to a suboptimal estimate of the length scale hyperparameters λk, and hence
a deterioration of the performance overall. Varying length scales can be modelled using
a nonstationary kernel, as used for the sparse GP in Section 4.4.1. However, in a small
enough neighbourhood, as used by the local GPs, we can approximate a globally non-
stationary function as stationary.

(a) (b)

Figure 4.3: Validating the performance of the local multivariate output Gaussian process.
The numerical values correspond to median out-of-sample MSE values in the predicted
parameters using a local multivariate emulator as outlined in Section 2 with different
numbers of nearest neighbours in function space. The plot on the right constrains the
y-axis to exclude outliers, allowing us to see the minimum value of MSE occurring around
K = 100.

Exploring this nonstationarity in more detail sheds some light on the outlying MSE
values for the multivariate GP in Figure 4.2. In Figure 4.4, the input space nearest
neighbours of three different points are visualised in output space. The leftmost plot
highlights the nearest neighbours of the test point where the multivariate GP performs
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worst. As we see, input space nearest neighbours are far apart in output space, suggesting
a region of space where the function is varying more quickly. In such a scenario, the
difference between output space and input space nearest neighbours is affected and we
observe a deterioration in performance as a result of sparse coverage with the local training
set. Importantly, this suggests the suboptimality of a standard space-filling design, since
we should be aiming to more densely fill the region where the function varies more rapidly.
This motivates the use of a different design scheme in Chapter 8.

Figure 4.4: The nearest neighbours (in input space) from the training set for several
different test points, visualised in output space. In each plot, the target point is in blue and
the nearest neighbours are in red. The plot on the left highlights the nearest neighbours of
the test point for which the multivariate method performs worst. For this point, nearest
neighbours in input space are quite far apart in output space. This will lead to poorer
input space coverage when we find nearest neighbours in output space.

4.4.4 Performance evaluation on MRI cine data

The results in Table 4.1 showed that the best strategy is output emulation using a local
multivariate output GP. In this section, this method is used to estimate the constitutive
parameter vector θ of the H-O model from cine MRI data of a healthy volunteer. The
data extracted from the MRI scans were the LV geometry, LVV and 24 circumferential
strains at clearly defined positions on the LV wall. The LV geometry was the one that
was used to generate the training data for the emulator. The LVV and 24 circumferential
strains were standardised to provide the data y∗ that were to be matched by the cor-
responding predictions from the biomechanical model ζ(θ). The emulation was carried
out in the reduced 4D parameter space, which was mapped back into the 8D space via
(4.2). For real data, the true parameters are unknown so the results were compared with
estimates from an already published optimisation routine (Gao et al., 2015, 2017). This
optimisation routine relies on an iterative optimisation scheme, solving the soft-tissue me-
chanical equations by (computationally expensive) brute-force numerical integration using
finite element discretisation. Convergence time for the algorithm is in the order of days.
A comparison between the benchmark parameters and the parameters obtained with the
emulator is shown in Table 4.2. The values are very similar, with a mean square error
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of only MSE = 0.00003. Four parameters lie outside the 95% confidence intervals ob-
tained with the parametric bootstrap procedure described below, which reflects a very
small bias resulting from the emulator. In practice, this bias would be too small to cause
any difference in terms of clinical decision making.

One important aspect of the constitutive behaviour of the myocardium can be reflected
in the Cauchy stress-stretch curves. Figure 4.5 shows the myofibre stress-stretch relation-
ship for the healthy volunteer, obtained using the Holzapfel-Ogden constitutive law with
the parameters shown in Table 4.2. The two panels refer to different directions: stretch
along the sheet direction, panels (a,c), and along the myocyte, panels (b,d). The black
dashed line shows the curve obtained from the literature gold standard method of Gao
et al. (2017). The blue solid curve shows the stress-stretch relationship corresponding to
the parameter vector θ̂ estimated by optimising the surrogate based loss function (4.8)
with MOGP as the emulator. To obtain an indication of the uncertainty in the parameters,
a bootstrap approach can be used (see Section 3.2.1). First we obtain a point estimate
of the parameters, θ̂, from the noisy data, y∗, and use it to compute the corresponding
output in data space, ŷ. We then obtain the residuals, ξ̂ = y∗ − ŷ or ξ̂i = y∗i − ŷi, for
1 ≤ i ≤ 25, randomly sample with replacement from the set of residuals R = {ξ̂i}1≤i≤25,
and generate surrogate data ỹi = ŷi + ξ̃i, where ξ̃i is the ith draw from R. We then repeat
the parameter estimation on the surrogate data ỹ to obtain new parameter estimates θ̃,
and repeat the procedure 100 times, to obtain a distribution of θ̃; this is the bootstrap
distribution used for uncertainty quantification. For every sampled parameter vector θ̃
we compute the Cauchy stress-stretch curve. The results are shown in Figure 4.5. The
figure shows the stress-stretch curve for the estimated parameter vector θ̂ (in blue) and
95% confidence intervals for the estimated curves obtained from the sample of 100 Cauchy
stress-stretch curves corresponding to the bootstrap sample {θ̃}100i=1. The literature curve
lies mostly within this confidence interval, with a slight bias for large stretches resulting
from the dimension reduction in (4.2). The estimate θ̂ giving rise to Figure 4.5 was ob-
tained with a reduction in computational time of 3 orders of magnitude (several days to
15 minutes3).

4.5 Discussion and conclusion

The work in this chapter has shown that statistical emulation is a viable option for efficient
parameter estimation in the biomechanical model of the LV. By fixing the LV geometry
and end diastolic pressure, the emulator was built to replicate the map from material
parameters to outputs, which at the time of this study had not been considered in the
literature. This provides the perfect building block for the work in the remainder of this

3Intel Xeon CPU, 2.9GHz, 32 cores and 32GB memory.
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(a) (b)

(c) (d)

Figure 4.5: Plots of the Cauchy stress against the stretch along (a) the sheet direction
and (b) the myocyte. The current best estimate (i.e. the literature gold standard) from
Gao et al. (2017) is reported as a dashed black line. Estimates of the curves using the
best emulation approach (M3) are given as a blue solid line. The error bars show a 95%
confidence interval, obtained by using the bootstrap method described in Section 4.4.4.
Each plot contains a residual curve, providing the difference between the true and esti-
mated curves. These residual curves are plotted with 95% confidence intervals in (c) for
the sheet direction and (d) along the myocyte.

thesis, aiming to make statistical emulation generalisable to different LV geometries. Sev-
eral different emulation approaches were considered and the best performing method was
found to be the multivariate output GP from Conti et al. (2009). This approach was
compared with a brute force optimisation of the material parameters, considered as the
literature state-of-the-art. The results using the emulator were very similar to the litera-
ture method, with a reduction in computational costs of three orders of magnitude. While
the results in stress–stretch space showed a very small bias at high stretch in Figure 4.5,
this would be unlikely to impact the decision making process in the clinic.

One of the disadvantages of the GP approach was the necessity for local approximations
to the full model. For this reason, neural networks were proposed as an alternative to GPs
for statistical emulation, with optimisation was used to train the network. The benefit of
a neural network approach is that it allows for a global model, which will be important
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Table 4.2: Estimates for real MRI data. The literature gold standard and the estimated
parameters θ̂ from emulation method M3. The confidence intervals (CIs) are obtained
using a parametric bootstrap procedure.

a b af bf as bs afs bfs

Literature 0.2245 1.6215 2.4267 1.8269 0.5562 0.7747 0.3905 1.6950

Point estimate
(95% CI)

0.2249
(0.2246,
0.2252)

1.6247
(1.6223,
1.6264)

2.4218
(2.4128,
2.4685)

1.8232
(1.8165,
1.8283)

0.5633
(0.5586,
0.5673)

0.7845
(0.7795,
0.7901)

0.3916
(0.3885,
0.3943)

1.6994
(1.6862,
1.7114)

when considering the use of MCMC in future chapters. Moreover, parameter estimation
with a surrogate loss relying on evaluation of a neural network emulator required only
seconds of computation time, which is an order of magnitude faster than the local GP
approaches.

Fundamentally, the work of this chapter can be considered as no more than a proof-
of-concept study. For clinical translation, the surrogate model would need to be able to
generalise to new LV geometries to allow for parameter estimation in a wider cohort of
patients. To this end we need to find a low-dimensional representation of the LV geometry,
allowing for it to be included in the emulator input space. There are various approaches
that one can pursue for LV geometry representation, including the 6D parametric represen-
tation proposed in Di Achille et al. (2018). Alternatively, a standard dimension reduction
method like principal component analysis (PCA; see e.g. Chapter 12 in Murphy (2012))
can be used to project the high dimensional LV geometry vector into a low dimensional
coordinate system that contains maximum information about typical variations in the
patient population. This task will be considered in the next chapter of this thesis.



Chapter 5

Analysing the left ventricle geometry
representation

The generalisation of the emulator from Chapter 4 requires the inclusion of LV geometry
variation in the model. For this purpose, dimension reduction will be considered, allow-
ing us to more efficiently represent the LV geometry. The present chapter will consider
a comparison of different dimension reduction techniques for the task of LV geometry
reconstruction. It is shown that, despite the seemingly restrictive assumptions required,
PCA performs similarly to more complicated approaches that allow for nonlinearities and
fewer assumptions in the model. Lastly, the use of the LV geometry in identifying MI
patients is considered in order to show the level of information that can be encoded in
a low-dimensional space obtained using PCA, and the practical uses of dimension reduc-
tion methods beyond cardiac modelling. This work is loosely based by work published in
Romaszko et al. (2019), but all autoencoder and PCA models have been retrained.

5.1 Background

Mathematical modelling of cardiac function relies on an anatomical representation of the
heart. In the early stages of LV modelling, researchers developed models based on idealised
LV geometries. Initially, a cylinder was used (Dumesnil and Shoucri, 1982), before advanc-
ing towards elliptical models of the LV shape (Huyghe et al., 1992; Di Achille et al., 2018).
Peirlinck et al. (2021) and Chabiniok et al. (2016) provide summaries of the progression
of shape representation, from the idealised cases through to the anatomical approaches
used today. An anatomical reconstruction of the LV, which incorporates local variations
in the shape, has allowed for higher fidelity simulations of cardiac mechanics. As a result,
we can recreate patient specific dynamics to a level of accuracy that would be useful in
the clinical setting. The benefits of accurate LV geometry reconstruction stretch beyond
the cardiomechanical field to the analysis of LV geometry changes during disease. For

72
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(a) (b) (c)

(d) (e) (f)

Figure 5.1: Top row: the three long axis views of the LV. (a) Four chamber view, (b) left
ventricular outflow tract and (c) one chamber view. Bottom row: three example of short
axis views. From left to right, these are taken at increasing distances from the basal plane.

instance, as a result of myocardial infarction (MI) the LV remodels to allow for normal
cardiac output (Suinesiaputra et al., 2018). This remodelling manifests as a shape change
in the LV (Azevedo et al., 2016), and quantitative measures of this shape change could be
helpful in understanding disease and planning treatments.

For the use of mathematical models in the clinic, we require methods of extracting
the LV geometry in vivo. This can be done using images of the heart, and the dataset in
this chapter makes use of cardiac magnetic resonance (CMR) scans, examples of which are
found in Figure 5.1. The extracted shape is represented as a series of nodes on the endocar-
dial and epicardial walls, as shown in Figure 5.2. This representation of the LV geometry
can then be used to generate a dense finite element mesh for simulating the diastolic fill-
ing process. Although the accuracy of the LV geometry representation allows for accurate
simulation of the dynamics, the computational costs are prohibitive. Therefore, efficient
use of these models relies on approximations such as lower order representations of the
LV shape (Hong et al., 2019) or data-driven models like the one proposed by Maso Talou
et al. (2020). Approaches like the latter, which allow us to generalise a surrogate model to
different LV geometries, rely on some encoded form of the LV shape. The principal aim of
the current chapter is to find a method for efficient representation of the LV geometry in a
low-dimensional space. One approach to achieving this low-dimensional representation is
through an idealised model of the LV geometry, such as the one used by Di Achille et al.
(2018). Alternatively, we can allow for a more general shape representation through the
use of standard dimension reduction methods.
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Figure 5.2: The LV is represented by a series of finite element nodes. There are 2896 nodes
on the epicardial and endocardial walls providing a 2896 × 2 × 3 = 17376 dimensional
representation in Cartesian coordinates.

For the purpose of disease analysis, quantitative measures beyond the typical clinical
indicators of shape change are difficult to obtain in the high-dimensional space in which
the LV geometry resides. Although these standard indicators have obvious utility in every
day medicine, they fail to acknowledge the more subtle changes in the LV geometry. It
is widely believed that these changes could provide information in the analysis of cardiac
disease (Farrar et al., 2016). The extraction of these shape properties relies on a more
objective approach to the summary of the LV geometry, for which dimension reduction
can be used. This idea has been considered in the literature (Suinesiaputra et al., 2018;
Farrar et al., 2016) and also used to assess the effectiveness of a disease treatment for
cardiac amyloidosis (Li et al., 2020b).

5.2 Methods

5.2.1 Extracting the LV geometry from CMR scans

Images of the LV can be obtained in vivo using cardiac magnetic resonance (CMR) scan-
ning. From this procedure, we obtain multiple long axis views (usually 3 as shown in the
top row of Figure 5.1) and short axis (SA) views (usually around 9, three examples of
which are in the bottom row of Figure 5.1) of the LV. The SA images are obtained at
equally spaced locations along the long axis (the z-axis) of the LV, with the meta-data of
the CMR scan providing their exact location. Generally, we obtain images over the entire
cardiac cycle starting from end of diastole, but in the current work only the early diastole
images are used. Extracting information from these images in the form of segmentations,
we then reconstruct the LV geometry at early diastole and represent it using a series of
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nodes on the endocardial and epicardial surfaces, as shown in Figure 5.2
State of the art segmentations of the different short axis and long axis views of the LV

were obtained manually using in-house Matlab code, taking between 30 and 60 minutes
per LV geometry. This involves tagging the boundaries of the short axis and long axis
images. A cubic spline interpolant fitted to these landmark points provides boundaries of
the endocardium and epicardium as shown in the top row of Figure 5.3. Superimposing, at
the appropriate z-position, the short axis segmentations on top of the long axis views, we
would expect that the boundaries roughly align. However, movement of the patient during
the CMR scan usually affects this alignment. After segmenting the short and long axis
boundaries, these artefacts are manually corrected by adjusting the x and y coordinates
of the short axis segmentations in a process referred to as motion correction. For all
LV geometries, the final representation is formed by deforming a template mesh in prolate
coordinates1 to match the segmented boundaries, subject to a smoothness constraint. The
angular coordinates of this template are held fixed during fitting, meaning that only the
radial coordinate is adjusted. In addition, the basal plane of the LV geometry is always
aligned horizontally at z = 0 (in Cartesian coordinates). This is beneficial for shape
analysis because it means that the shapes are all aligned in the same plane, around which
we can find the principal sources of variation. An example LV geometry resulting from
the reconstruction procedure is shown in panel (d) of Figure 5.3. A thorough overview
of the reconstruction procedure, which is outwith the scope of this thesis, can be found
in the literature (see the supplementary material of Gao et al. (2017) for a discussion of
motion correction and Liu et al. (2009) for an overview of the general method).

5.2.2 Dimension reduction

The LV representation obtained using the procedure from Section 5.2.1 consists of a series
of 2896 nodes on the endocardial and epicardial surfaces, giving a 2896 × 2 × 3 = 17376

dimensional representation in 3d Cartesian coordinates. For the sake of brevity, this full
representation of the LV geometry will be referred to as a 17k representation. Repeating
the reconstruction procedure multiple times, for different LV geometries, provides a set
of aligned shapes, each a 17k representation of a unique LV geometry. An example LV
geometry, represented as a series of nodes, was given in Figure 5.2. Although this consists
of two surfaces, the entire 17k dimensional representation is processed within one vector
of coordinates, g∗ = (g∗1, ..., g

∗
n). This allows for any dimension reduction approach to

account for inter-layer effects like the thickness of the myocardium that can be important
both in disease analysis and cardio-mechanical modelling.

1In prolate coordinates each coordinate is represented by two angles and a radius. The angles are the
circumferential angle and the angle between the z = 0 plane and the point of interest while the radius is
the distance from the centre of the LV to the coordinate.
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(a) (b)

(c) (d)

Figure 5.3: Visualising the geometry extraction procedure. (a) first we segment the differ-
ent short axis slices. (b) next we segment the long axis images before performing motion
correction (c) where we align the short axis segmentations with the long axis view. The
final LV geometry, displayed in (d) is then obtained using a B-spline fitting procedure.
This procedure was proposed by Liu et al. (2009).

In general, the aim of dimension reduction is to reduce the full LV geometry repre-
sentation, g∗, to a lower dimensional form, h∗, while preserving the important structure
in the original shape. For this methodology to be of use in disease analysis and cardio
mechanical modelling, we require that we can recover the explicit mapping into the lower
dimensional space:

f : g∗ 7→ h∗. (5.1)

In addition to this, and of particular relevance to cardio-mechanical modelling, we require
that the mapping, f , is invertible. Invertibility ensures that given a new point in the lower
dimensional space we can then recover the corresponding LV geometry reconstruction.
Of the methods discussed in Section 3.5, PCA, autoencoding neural networks and the
idealised LV geometry all satisfy these properties and these will be considered in this
chapter for the task of dimension reduction of the LV geometry2. The fundamental goal of

2Kernel PCA (Scholkopf et al., 1998) was also considered but preliminary results suggested that this
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the dimension reduction, with regards to the outline of this thesis, is to efficiently represent
the LV geometry in a cardio mechanical model. With this in mind, attempts were made
to adapt these standard approaches to the specific context of biomechanical modelling.
This approach is summarised in Appendix C, but it did not allow for any improvement in
the LV geometry representation.

With the exception of the idealised LV approach, the application of dimension reduction
requires a set of LV training geometries from which we can extract the relevant features
of the data. From here, PCA is a simple application of the methodology outlined in
Section 3.5, only requiring selection of the dimension of the low-dimensional space. For
the autoencoder, we must specify a network architecture in terms of the number of nodes
and type of activation functions at each layer of the network. The general structure to be
considered can be found in Figure 5.4. This network has one input and output node for
each dimension of the LV geometry representation. The blue nodes represent two hidden
layers, where nonlinear activation functions can be used to make the model nonlinear. As
was mentioned in Section 3.5, the hidden layers are essential if we hope to build a model
that can outperform PCA.

As discussed above, the LV geometry lies in a 17k dimensional space. Building a neural
network with one input and output node per dimension creates a very high dimensional
parameter vector to be optimised during model training. For example, a network with
two hidden layers of 100 nodes and a bottleneck of 5 nodes requires training of over 3
million parameters. The obvious concern with such a model is overfitting, which we can
guard against using weight decay. An alternative approach to help avoid overfitting is to
first reduce the dimension of the LV geometry using PCA. If we choose a large enough
number of principal components then the reconstruction of the LV geometry is almost
perfect. This allows us to reduce the number of parameters that must be optimised while
incurring negligible loss in reconstruction accuracy. Romaszko et al. (2019) found that 60
PCs is enough to represent the LV geometry accurately so this will be used in the current
study.

5.2.3 Model training

Autoencoder

Autoencoders, like all neural networks, require that we learn the weights of the model to
fit the training set of data. Letting ĝ(i) = A(g(i),W,B) be the reconstruction of the ith LV
geometry obtained by evaluating the autoencoder parameterised by W = {W1, ...,Wk}
provided no improvement over PCA
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Figure 5.4: The typical autoencoder architecture. The input and output layers are the
GT and estimated LV geometry, respectively. The intermediate layers (in blue) consist of
a series of nonlinear operations that provide a reduction into a K dimensional space. This
transformation could be performed using PCA or learnt as part of the entire network. The
latter case would relax the orthogonality assumption of PCA. The hidden layer in orange
provides our low-dimensional representation of the LV geometry in m dimensions. This
diagram is adapted from Figure 1 in Romaszko et al. (2019).

and {b1, ...,bk}, we can define the following mean squared error (MSE) objective function:

L(W,B) =
m∑
i=1

1

n
||g(i) − ĝ(i)||2, (5.2)

which will be optimised with respect to W and B. Often, optimisation is performed
using mini-batch gradient descent, as discussed in Section 3.3.3. Due to the small size
of the training set (198 LV geometries), one large batch of all LV geometries will be
passed through the model at each iteration of the optimisation of the autoencoder. The
optimisation is performed in a leave-one-out cross-validation (LOOCV) scheme, with L2
regularisation and learning rate selected as the best performing combination from a grid
of possible values. That is to say that the LOOCV is repeated a number of times for
different learning rates and L2 penalties and the same value of these hyperparameters3

is selected for the entire population based on the overall performance. The grid of L2
penalties was [1, 3]×10Z , Z ∈ [−8, ...,−3] and for the learning rate this was [1, 3]×10Z , Z ∈
[−2,−3], giving a grid of size 12×4. Two different activation functions—the tanh and leaky
ReLU—will also be considered. Note that the results will not be given for each setting
of hyperparameter separately. Instead, just the optimal results and the corresponding

3Strictly speaking, the learning rate is not a hyperparameter, but a tuning parameter affecting con-
vergence. However, in the training scheme where the epochs are fixed for varying learning rates, we can
think of this is a regularisation hyperparameter having the same effect as early stopping.
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hyperparameters will be provided. Optimisation was carried out using the Adam optimiser
(Kingma and Ba, 2015). The number of training epochs is less of a concern than usual
because the use of L2 regularisation allows us to train until convergence on the training
set.

Idealised LV method

For each of the 198 LVs in the dataset, the model from (3.53) is fitted twice by minimising
two loss functions with respect to the parameter vector κ (see the parameter vector below
(3.53)). These loss functions belong to the intersection-over-union (IOU) class and are
based on a comparison of the volume of the wall Wκ and cavity Cκ of the LV prediction
at parameters κ with the corresponding volumes in the true LV, denoted WT and CT ,
respectively. The two objective functions are given by:

EWC = 1− 1

2

{
Wκ ∩WT

Wκ ∪WT

+
Cκ ∩ CT
Cκ ∪ CT

}
, EW = 1− Wκ ∩WT

Wκ ∪WT

, (5.3)

where E=0 gives a perfect LV alignment in either case. The objective function on the left
hand side in (5.3) is the original objective used by Di Achille et al. (2018) and takes into
account both cavity and wall volumes. The function on the right is an alternative loss
function based on the wall volume only, which was found to perform well in simulations.

Optimisations were performed inMATLAB using fminsearch for local optimisation and
particleswarm for global optimisations. The calculation of the quantities Wκ, Cκ, WT and
CT was done by set allocation of a grid of points. For each point on a three-dimensional
grid, an indication of wall allocation and cavity allocation for the idealised (fitted) and
actual (true) geometries was assigned. Using these set-assignments we obtain a discrete
approximate to the loss functions in (5.3) that can be optimised to learn the 6 parameters.
Suitable positivity constraints were placed on the values of these parameters and, where
possible, each parameter was initialised at an estimate taken from the LV geometry.

5.3 Implementation

5.3.1 Data

The dimension reduction methods will be fitted to a population of 198 LVs, obtained from
a mix of 70 healthy volunteers and 128 MI patients. The MI patients were reconstructed in
an identical way to the HVs, without a separate treatment of the infarct region, as outlined
in Section 5.2.1. The MI patients were identified from the British Heart Foundation MR-
MI study population (ClinicalTrials.gov identifier: NCT02072850) from a population of
patients with acute STEMI, who had been enrolled into a CMR cohort study between
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Table 5.1: Autoencoder nomenclature.

Name Description
17-y:FUNh-z:FUNb Autoencoder with the full 17k LV geometry representation as

input, y hidden nodes with FUNh activation functions and z
nodes in the bottleneck layer with FUNb activation functions.

60-y:FUNh-z:FUNb Autoencoder with the 60 PC reduced LV geometry representa-
tion as input, y hidden nodes with FUNh activation functions
and z nodes in the bottleneck layer with FUNb activation
functions.

July 14, 2011 and November 22, 2012. CMR imaging was performed at 1.5 Tesla (Siemens
Avanto, Siemens Healthcare, Erlangen, Germany). For MI patients the scans were taken
within 2 days after hospital admission. MI patients and HVs underwent the same imaging
protocol except that HVs below the age of 45 did not receive intravenous gadolinium
contrast. The CMR protocol involved steady-state free precession cine scans with a short-
axis left ventricular stack from the base to the apex. The slice thickness was 7 mm with
a 3mm gap, typical cine imaging parameters were matrix = 180 × 256, flip angle = 80o,
TR: 3.3ms, TE: 1.2ms, bandwidth: 930Hz/pixel. The voxel size was 1.32×1.32×7mm3.
Cine images were acquired in the four chamber view, left ventricular outflow tract and one
chamber view, as was shown in the top row of Figure 5.1. In total 4 different operators—
referred to as operators 1,2,3 and 4— segmented the data. The healthy volunteers were
mostly segmented by operator 1, but operator 2 segmented a subset of ten. The MI
patients were segmented by all operators, with short axis segmented by operators 1 and 2
and the long axis images segmented by operators 3 and 4. All four operators performed
the motion correction. Operator 1, who segmented most of the HVs, checked all MI
segmentations and updated many of the long axis segmentations in line with their own
judgement. Although the use of different operators is not an ideal experimental setup, it
is an inevitability in situations where data collection is so time-consuming.

5.3.2 Comparisons

The autoencoder shown in Figure 5.4 has three hidden layers, one of which is the bottleneck
layer that provides the low-dimensional representation of the LV geometry. For reasons
that were previously discussed (namely the universal approximation theorem) only a neural
network with two hidden layers and a bottleneck layer will considered in the comparison
of methods. Recall that, as a way of reducing the number of parameters to be optimised,
PCA will be used to preprocess the data for the autoencoder.

In the following results, each different autoencoder model is referred to by the size of
the layers of the network as follows: x-y:FUNh-z:FUNb where x is the size of the input
layer (either 60 for PCA reduced inputs or 17 for the full 17k LV geometry representation),
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y is the size of the hidden layer with activation function FUNh and z is the size of
the bottleneck layer, which has activation function FUNb. For the activation function in
the hidden layer, the tanh and leaky ReLU activation functions will be considered. The
latter function is similar to the ReLU, which was visualised in Figure 3.5, but rather than
being zero for negative values, the activation function takes value 0.3x. This was proposed
as a solution to the dying ReLU problem4. In the bottleneck layer, only linear activation
functions will be used. The metric used for comparison of PCA and the autoencoder is the
MSE between the ground truth test LV geometry, g∗ = (g∗1, ..., g

∗
n), and its reconstruction,

ĝ∗ = (ĝ∗1, ..., ĝ
∗
n):

MSE∗ =
1

n
||g∗ − ĝ∗||2, (5.4)

5.4 Results

5.4.1 PCA

First, let us consider the results obtained using PCA. To correctly assess the performance
of PCA, LOOCV was used, learning the principal components on 197 LV geometries and
testing on the 198th. In Table 5.2 the quantification of the accuracy, in terms of the MSE
between the ground truth and the PCA reconstruction, is provided for different numbers
of principal components. The median value, obtained from the 198 MSE evaluations, is
provided in the table. Inevitably, as we increase the number of principal components, the
reconstruction error decreases. In most practical applications, it is beneficial to sacrifice
some of this accuracy for the sake of a lower dimensional encoding of the geometry. For
comparisons with other methods, it is also easier to have a fixed size of low-dimensional
space that we aim for. Based on the results in Table 5.2, an argument could be made
for using either 4 or 5 principal components, but since we observe a slight drop-off in
proportion change beyond 5 PCs, this size of encoding will be assumed. In particular,
notice that the improvement we observe in terms of median MSE when increasing from
4 to 5 PCs is matched by increasing the dimension from 5 to 7 PCs. Some intuition for
the quantitative measures of reconstruction accuracy is provided by Figure 5.5. In this
figure, the reconstructions of three different LV geometries using 5 principal components
are plotted. The ground truth LV geometries and reconstructed LV geometries are repre-
sented by blue and red surfaces, respectively, and the MSE value is provided below each
reconstruction.

4The dying ReLU problem occurs when the parameters into a unit lead to a negative activation to the
node for all examples in the training set. The result of this is a gradient of zero in the direction of these
parameters and the “death” of the unit because the parameters will never be updated in gradient descent.
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Table 5.2: MSE in reconstructions of the LV geometry obtained wuth different numbers
of principal components. Proportion change is the proportion reduction in MSE.

NPC 0 1 2 3 4 5 6 7
Median MSE 0.066 0.021 0.017 0.012 0.009 0.007 0.006 0.005

Proportion change — 0.68 0.22 0.28 0.25 0.24 0.11 0.18

(a) MSE=0.004 (b) MSE=0.007 (c) MSE=0.009

Figure 5.5: Some example LVs reconstructed from 5 principal components. The solid
blue surfaces show the endocardium and epicardium of the ground truth LV while the red
meshes show the endocardium and epicardium predictions from 5 principal components.
Also provided is the mean squared error between the two reconstructions.

5.4.2 Autoencoders

We can now consider the autoencoder for dimension reduction. Firstly, different architec-
tures will be compared, before comparing the best performing model and PCA.

Comparing architectures

Based on the PCA results, an LV geometry encoding in 5 dimensions has been chosen.
This fixes the size of the bottleneck layer of the autoencoder, meaning only the input
layer size, hidden layer size and activation functions have to be selected. Based on re-
sults in Section C.2, a hidden layer of size 100 was used. Different activation functions
are compared for both types of input (60 PCs and original 17k) in Figure 5.6. For the
network that encodes the full LV geometry, the leaky-ReLU noticeably outperforms the
tanh function. In the second model, where we consider first reducing the LV geometry
to 60 dimensions with PCA before applying the autoencoder, the performance is similar
in both cases. Indeed, comparing the 0.25,0.5 and 0.75 quantiles in the distribution of
MSEs, the values were identical up to the 3rd digit. We can now compare both of these
architectures (the 60 dimensional and 17k dimensional inputs), in both cases using leaky
ReLU activation functions. This comparison is made in Table 5.3, where the methods
are also compared with the mean mesh. Both outperform the mean mesh by roughly a
whole order of magnitude, and both autoencoders performed identically according to the
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Figure 5.6: A comparison of activation functions for the two autoencoder architectures,
as indicated by the axis titles of the plots. On the left is the autoencoder with 17k inputs
and on the right the LV geometry has first been reduced to 60 dimensions using PCA.
The data are plotted on the log scale for each of the visualisations. See Table 5.1 for a
description of the models and labels of the axes.

quantiles considered in the table. Notice that different learning rates and L2 penalty were
selected during training. This is not surprising, since the network with 17k dimensional
inputs has a much larger number of weights, meaning a smaller learning rate and larger
weight decay are required.

Table 5.3: Summary of the autoencoder performance, along with the optimal L2 penalty
(L2) and learning rate (LR) for training each network. The mean mesh results are given
as reference values. See Table 5.1 for a description of the final 2 methods.

Method 0.5 (0.25,0.75) quantiles of MSE L2 LR
MM 0.051 (0.030,0.081) — —

60-100:lrelu-5:linear 0.007 (0.005,0.009) 3× 10−7 0.005
17-100:lrelu-5:linear 0.007 (0.005 , 0.009) 1× 10−5 0.001

Comparison with PCA

We can now compare the optimal autoencoder performance with that of PCA. Table 5.4
provides a summary of the overall performance of both methods, comparing a large number
of quantiles of the MSE distribution to show the similarity in overall results of both
methods. The similarity between the results is surprising. Although the exact error on
each individual test case is different, the performance across the entire population is nearly
identical. This suggests that, for the given training set of data (which is smaller than would
be ideal), the extra complexities introduced by the autoencoder do not allow for any extra
encoding of LV geometry information compared with PCA.
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Table 5.4: Quantiles of MSE distributions for an autoencoder and PCA. For both methods,
we obtain separate MSE values for each LV geometry. The table provides the quantiles of
this distribution of errors. See Table 5.1 for a description of the model in the top row.

Quantile
0.1 0.25 0.5 0.75 0.9

17-100:lrelu-5:linear 0.0034 0.0046 0.0068 0.0090 0.0131
PCA 0.0036 0.0045 0.0066 0.0091 0.0134

5.4.3 Parametric method

As a final comparison we can compare the parametric description of the LV geometry
from Di Achille et al. (2018) with PCA. An example of this model fitted to an actual LV
geometry is found in Figure 5.7. In panel (a) the original LV geometry is shown and in
panel (b) is the fit of the idealised geometry. This is compared with the original mesh in
panel (c) where we see the issues caused by the symmetry of the model. This model was
originally devised for LV geometries at end of diastole, when the LV geometry is inflated
and more elliptical. The limitation of this assumption is likely the reason for the poor
performance over the entire population found in Figure 5.8, where we see that similar
reconstruction accuracy is obtained when using only 1 principal component to encode the
LV geometry.

(a) (b) (c)

Figure 5.7: Estimation of the LV geometry using the parametric approach. Panel (a)
shows the original LV geometry, (b) is the fitted LV geometry and (c) shows the overlap
of the endocardiums of both. The model assumes that the LV geometry is symmetric,
which limits its flexibility in fitting LV geometries at early diastole where the LV tends to
be more deformed.

5.4.4 Classifying MI cases based on LV geometry

The study population was made up of 70 healthy volunteers and 128 MI patients. As a
test of the informativeness of the encoded LV geometry, we can attempt to classify MI
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Figure 5.8: Comparison of the parametric approach and PCA for reconstructing the LV
geometry. PCA easily outperforms the parametric approach, partially due to the symmetry
assumption of the parametric method.

from healthy volunteers. It is well known that cardiac remodelling leads to a change in
the volume of the LV at end of systole (Suinesiaputra et al., 2018). Of interest here is
whether other aspects of the LV geometry allow for accurate classification of MI, so the
data were scaled to be the same size as the mean mesh in order to discount the volume
effect from the classification.

Firstly, we can consider 2D visualisations of the data. In Figure 5.9 two projections
of the data are plotted, one using PCA (linear) and one using t-SNE (nonlinear). We see
that there is no perfect separation of the two groups, but we could obtain a reasonable
classification using a linear classification method. In particular, there appears to be sep-
aration of the two classes along the second PC. The physical interpretation of this mode,
provided by the second mode of variation, is found in Figure 5.10. This plot suggests that
MI and HV classes are separated based on elongation of the LV.

We can take a more flexible approach and consider the accuracy of a Gaussian process
classifier for MI, allowing for a nonlinear boundary between the two groups. This is
visualised in two dimensions in panel (a) of Figure 5.11, which shows the projection of
the data onto 2 PCs along with the probabilities of MI assigned to different regions of the
space by a fitted GP classifier. Note that this diagram is purely illustrative since the PCA
and classification were not performed with LOOCV. In panel (b) of Figure 5.11 a ROC
curve of the classifier performance with 2 PCs is shown, with an area under the curve
(AUC) of 0.79 suggesting good classification of MI. For this study, full LOOCV was used
so that each subject was left out of the PCA and GP classifier training, and prediction
required first a projection into the trained PCA space and then classification with the GP
classifier. The GP classifier was implemented in Scikit-learn (Pedregosa et al., 2011) with
a logistic link function (see Chapter 3 of Rasmussen and Williams (2006) for more details
on classification with GPs) and a Matérn 52 kernel, which is a standard stationary kernel
function (see Section 3.4.2).
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Figure 5.9: Projection of healthy volunteers and myocardial infarction patients with t-SNE
on the left and PCA on the right. We see that there is some separation of the two classes
but it probably is not linear and that the separation is possibly more pronounced in the
case of t-SNE than with PCA.

Figure 5.10: Visualising the second mode of variation from PCA. From left to right, we
move in a positive direction along this mode (towards the MI subjects).

2 1 0 1 2
PC1

2

1

0

1

2

PC
2

GP classifier probabilities

0.300

0.700

0.900

0.500

MI
HV

(a)

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 ra
te

AUC=0.79

(b)

Figure 5.11: A GP classifier is fitted to the 2 PC projections of the MI and HV patients,
assigning probabilities as shown in (a). The ROC curve for the 2 PC classifier is provided
in (b).

5.5 Discussion and conclusion

This chapter has explored the ability of different dimension reduction methods to encode
the LV geometry in a low-dimensional space. Each of the standard methods was assessed
in terms of MSE between the reconstruction and the ground truth LV geometry, with PCA
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proving to be as good as an autoencoder when compared using this metric. A context
specific parameterised geometry representation was also considered, but this was shown to
be inferior to PCA. Some example reconstructions from 5PCs were plotted in Figure 5.5.
Qualitatively, the performance at the 0.5 quantile (MSE=0.007) does not look very good.
However, the performance of the algorithm can only really be considered with reference
to operator errors. This will be explored extensively in Chapter 9.

Building on this dimension reduction work, a low-dimensional representation of the LV
was used to classify myocardial infarction from a set of healthy volunteers. An AUC of
0.79 for a 2 PC classifier showed the high level of classification performance. The task of
MI classification would be made easier by considering multiple time points in the cardiac
cycle, allowing the classifier to identify MI using the stroke volume, which is also used
by clinicians. In a project carried out with a collaborator5 it was shown that with scans
from early systole and end of diastole, accurate classification is possible directly from the
CMR images using a deep convolutional neural network. The disadvantage of such an
approach, as is frequently a criticism aimed at machine learning approaches, is a lack
of interpretability of the results. On the other hand, by classifying based on principal
component projections, we can use the modes of variation to analyse the shape changes
between the two populations. In the current study, elongation of the LV appears to allow
for fairly accurate classification of MI from healthy volunteers. The presence of multiple
operators in the generation of the training data was a confounding factor in this study
and records should have been kept that specify the operator in each example.

In Section 5.2.1 the procedures for extracting the LV geometry from CMR scans were
discussed. This is a time consuming process that would ideally be automated for in
clinic use. Recently, there have been important steps taken towards this goal (Bai et al.,
2018) while Romaszko et al. (2021) used a convolutional neural network, regularised by
constraining it to learn a PC representation, to accurately predict the LV geometry from
CMR scans. Essentially, the deep neural network model learns to encode the LV geometry,
directly from the CMR scan, in the low-dimensional space obtained with PCA. The upside
of the PCA layer is that it acts as a regulariser that can only produce LV geometries
consistent with the mapping from PCA, while also reducing the number of weights that
must be learnt during network training. The downside is that the model can never be more
accurate than PCA for generating LV geometries. An interesting future direction would be
to combine automatic and manual segmentations to create a more accurate reconstruction
of the LV geometry with only a small increase in computation time.

The final goal of the dimension reduction is to find a method that can be used to
provide a lower-dimensional representation of the LV geometric for use in an emulator of
the simulator. In this chapter, comparison in geometry space has suggested that PCA

5This was done by Lukasz Romaszko in a feasibility study.
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should be used for this purpose. This will be put to the test in the next chapter where a
first attempt will be made to generalise the statistical emulator to multiple LV geometries
by including 5PCs in the emulator input space.



Chapter 6

Generalising the left ventricle emulator
to varying LV geometries

The work in this chapter makes a first attempt at generalising the statistical emulator to
multiple LV geometries. Based on the results from Chapter 5, PCA will be used to provide
a low-dimensional LV geometry representation. For the purpose of cardio-mechanical
modelling, this PCA representation will be benchmarked against a mean mesh to assess
how much information is gained when we increase the quantity of LV geometry information.
Using the PCA representation as a baseline, an attempt will be made to improve the results
using a small number of forward simulations. Finally, the emulators will be used to explore
the inference task for the LV model, showing the changing complexity of the problem over
the input space and the poor identifiability of some of the parameters in the model.

6.1 Generalising the emulator to new LV geometries

In the mathematical model outlined in Section 2.2, the left ventricle is represented in the
form of a discretised mesh with 2896 nodes on the endocardial and epicardial walls (see
Figure 5.2). As discussed in Section 5.2.1, this LV geometry can be manually extracted
from CMR scans, requiring around 40 minutes of manual work. Forming a dense finite
element mesh from the extracted LV geometry and solving the set of momentum balance
equations, the simulator provides us with an accurate prediction of the LV behaviour in
diastole for a given set of material parameters. In Figure 6.1, a randomly selected strain
from the LV simulator outputs is plotted for two different LV geometries in blue and
orange, over a range of different material parameter configurations. Although the change
in the output over parameter space for different LV geometries follows the same general
shape, as governed by the H-O model, local perturbations ensure that at any one location,
simulations can differ by as much as 0.02 for the circumferential strain. If we consider the
fact that these strains generally vary between 0.1 and -0.3, the error obtained is around
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10% of this interval and could lead to a bias in the model calibration. This suggests the
importance of accounting for the LV geometry in the simulator.

Figure 6.1: Left: the simulator function for varying θ1 and θ2 with θ3 = θ4 = 1. Right:
the simulator function for varying θ3 and θ4 with θ1 = θ2 = 1. The two different colours
indicate simulations from different LV geometries.

Given the dependence of the simulator on the LV geometry, application of these models
in the clinical setting relies on a generalisation of a statistical emulator, similar to the
one from Chapter 4, to a whole population of LV geometries. An immediate step towards
generalisation would be to include the LV geometry as an input to the emulator. However,
this would require extending the emulator input space by around 17k dimensions, by which
point emulator design is impossible. As such, we require either a different approach to
statistical emulation or a reparameterisation of the LV geometry component of the model
input space.

First, we can consider the practicality of a different emulation approach. Making use
of the segmented LV geometries from Chapter 5, a logical step towards generalising the
statistical emulator would be to consider building surrogate models from multiple batches
of high fidelity forward simulations over the sample of training left ventricle geometries.
This would amount to the training of a series of emulators akin to the fixed geometry
emulator considered in Chapter 4. Relying on a discrete space of LV geometry representa-
tion, we could simply assign a patient to their nearest neighbour from the training set and
use this nearest neighbour emulator to learn the material parameters. Unfortunately, our
sample of left ventricles is quite small (fewer than 200) and, although it is inevitable that
our 17k dimensional LV geometries lie on a far lower dimensional manifold, we cannot be
sure that the set of training geometries provides dense enough coverage of this manifold.
With this in mind, we could consider a weighted ensemble of the different training emula-
tors, with the weighting determined based on the closeness of fit of the LV geometries to
the new test point of interest. However, the method for measuring this closeness of fit is
unclear since we do not know which aspects of the LV geometry are important for accurate
prediction from the LV simulator. Given these obstacles, the ensemble of emulators will
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not be explored further in this chapter, but Appendix F preliminary results for a method
that uses simulations from multiple LV geometries to inform a set of basis functions for
patient-specific emulation are provided.

An alternative modelling paradigm considers an explicit LV geometry component in the
input space of the emulator, allowing us to encapsulate the changing left ventricle dynamics
with varying left ventricle shapes as a continuous function. This framework provides the
opportunity to introduce a patient-specific component to the model, alleviating some of
the concerns associated with the ensemble approach. In Figure 6.2, the emulator with a
reduced LV geometry representation is visualised. Starting from a sample of LV geometries,
we can learn a transformation that provides a low-dimensional representation. Given a
new point in the low-dimensional space, we can invert this transformation and recover a
synthetic LV geometry. Repeating this procedure multiple times—sampling a new point
in low-dimensional space and inverting the transformation—provides a set of synthetic
LV geometries that can be paired with a sample of material parameters. Evaluating
these different geometry-parameter combinations in the simulator provides a training set
of simulations for a statistical emulator that allows us to predict the LV dynamics in
diastole for a new LV geometry at any material parameter configuration, subject to some
error that is introduced by the LV geometry approximation. The aim of the current
chapter is to investigate the parameter inference task in the presence of this LV geometry
approximation.

Figure 6.2: Emulation of the LV model for full geometries is not possible. Demonstrated in
part A is the generation of a design for a reduced LV geometry emulator, where we must
find a mapping into a lower dimensional space that, combined with the space of material
properties, enables a sufficiently informative emulator design. Part B shows that the
emulator can be trained to replicate the function from this lower dimensional space since
our training geometries can be fully described in this space.
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6.2 Methods

6.2.1 Generalising the statistical emulator

Let us start by considering the aim of dimension reduction in our context, describing
several mappings that will be referred to in the remainder of this chapter. We may consider
the exact, or ground truth, simulator model, ζ(·), as providing the following map:

ζ : X ,G → Y (6.1)

where all inputs and outputs to the model are exact i.e. the LV geometry is represented by
the exact shape extracted from CMR scans1, which belongs to a space GeomSpace. The
space of material parameters X is assumed to be the 4 dimensional theta representation
from Section 4.1.2. The first approximation to the model in (6.1) would be, imagining
the possibility of design and emulation in the original input space, to approximate the
map ζ(·) by training on variables in the domain and codomain of (6.1) to obtain the
approximation:

υ : X ,G → Y . (6.2)

The domain and codomain of this function are identical to (6.1), but the function between
them is provided by an emulator. Constructing an accurate approximation in this manner
is implausible due to our ignorance of the manifold on which the LV geometries lie. An
alternative approximation of (6.1) considers an approximation of the input space:

ζ̃ : X , Ĝ → Y (6.3)

where the LV geometry space has been replaced by the space of LV geometry approxima-
tions, Ĝ, that is of lower dimension than G. Unlike (6.2), this function is no cheaper to
evaluate than (6.1). However, because an element from this new space ĝ can be fully spec-
ified by a low-dimensional representation h, we can consider emulating (6.3), obtaining an
approximation of the map from (6.1):

η : X ,H → Y (6.4)

where the accuracy of our approximation to (6.3) is determined by a combination of the
dimension of H and the number of training simulations. The accuracy of this mapping,
relative to (6.1), is bounded by the accuracy of (6.3). This new model is represented by
part B in Figure 6.2.

1In Chapter 9 we will see that this notion of an exact shape is misleading due to errors introduced by
different operators.
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At this point, we should consider how to recover the low-dimensional representation
of the LV geometry. One could hypothesise an optimal solution to this task as visualised
in Figure 6.3. Given a training set of LV geometries G, the idea would be to construct
a parametric function from LV geometry g ∈ G to LV geometry reconstruction ĝ ∈ Ĝ
(indicated by the encoder and decoder). Optimising the parameters of this model using
the sum-of-squared differences between the outputs of the simulator evaluated for the
actual LV geometries and the outputs of the simulator evaluated at the approximate LV
geometries would provide an encoded form of the LV geometry, h ∈ H. This method, which
properly optimised over a training set of LV geometries would give the optimal encoding
of the LV geometries for the purpose of biomechanical modelling, is not attainable due to
the high computational costs required in the forward pass of the system. A compromise on
efficiency and optimality was attempted in Appendix C.1, but this did not prove successful.

The computational cost incurred by the optimal methodology stems from the coupling
of the LV geometry reduction and the computational simulator. Gradient based opti-
misation of the parameters requires the derivative of a loss function that depends on the
simulator model. Requiring a number of forward passes in the order of thousands, training
of this system is impossible in the current context where one simulation requires around
ten minutes of computation time. Instead, we must detach the ideas of dimensionality
reduction and simulator error, selecting the best dimensionality reduction approach based
on LV geometry reconstruction error. Such an approach was taken in Chapter 5, with PCA
proving to perform at least as well as competing methods. Albeit a compromise on the
optimal reconstruction approach, the reconstruction error criterion ensures an accurate fit
to the actual geometry while avoiding the expensive coupling discussed above.

h

ζ(ĝ,θ)ζ(g,θ)

L{ζ(g,θ), ζ(ĝ,θ)}

Encoder Decoder
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Figure 6.3: In the optimal dimension reduction for cardio mechanical modelling, we would
find the encoding and decoding maps that minimise the error between the simulator eval-
uated at the original geometry and the simulator evaluated at the reconstructed geometry.
The computational costs of the simulator make this method non-applicable.
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Dimension reduction for the purpose of cardio-mechanical modelling has been explored
in the literature. Di Achille et al. (2018) used an idealised geometrical shape in a model
of the inverse LV dynamics in an attempt to recover the unloaded configuration (the LV
geometry without any pressure loading). This dimension reduction method was explored
in Chapter 5 but was found to perform quite poorly. More similar to the work in this
chapter is that of Maso Talou et al. (2020), who adopted PCA to obtain a low-dimensional
representation of the LV, permitting the inclusion of a geometry component in the input of
a model estimating the deformation field of the LV during diastole. However, the authors
did not benchmark the method against simulations from actual LV geometries, and gave
no justification for their choice of lower-dimensional space (in that case 2 PCs).

6.2.2 Building the emulator

How many principal components to use?

The construction of an emulator that allows for variation in the LV geometry requires
that we choose a dimension of the LV geometry encoding. The larger the number of PCs
used, the more information we encode in our low-dimensional representation and the closer
our reconstructions move to the ground truth LV geometry. Although the corresponding
improvement in the fit of (6.3) to (6.1) may not be monotonic (this is due to the fact
that our objective function for dimension reduction is independent of the simulator), we
would expect that, in general, as reconstruction error decreases, so too does the error in
our forward simulator. Unfortunately, the opposite is true for our second approximation:
as we increase the number of PCs the emulation task becomes more difficult as a result of
the higher dimension and the approximation of (6.3) with (6.4) becomes more crude.

Although the optimal dimension reduction from Figure 6.3 is too expensive, we can use
the LV simulator to compare the accuracy of different sizes of LV geometry encodings in the
cardio-mechanical model. This was done by running a batch of forward simulations with
LV geometry reconstructions obtained using different numbers of principal components.
While our final goal is model calibration, accuracy of the forward model should provide
a good proxy for suitability of low-dimensional representations for parameter estimation.
In total, 42 LV geometries were used, each reconstructed in a LOOCV implementation of
PCA. Note that the PCA included the full training set of LV geometries from Chapter 5
but for reasons of computational cost, only 42 of these were run in the simulator. For
the material parameters, a Sobol sequence of length 42 × 3 was obtained and each LV
geometry was combined with three unique material parameter configurations to get a set
of 126 ground-truth simulations2. Running the PCA reconstructions at the same material
parameter configurations allows us to assess the impact that PCA has on the mechanical

2During simulation, of the 126 examples, 2 led to an error in Abaqus as a result of excessive distortion
of the LV mesh



CHAPTER 6. GENERALISING THE LV EMULATOR 95

model. To account for the fact that the early diastole volume is different with the mean
mesh, the standardised volume is used in the error evaluation, where the end diastole
cavity volume (LVV) is standardised by the early diastole volume:

V̄end =
Vend − Vearly

Vearly
, (6.5)

this gives a dimensionless volume quantity that has similar interpretation to the circum-
ferential strains. This is also a fairer comparison if we are concerned about the effects
on model calibration since unequal early diastole volumes can easily be accounted for by
including the above dimensionless quantity in our likelihood function.

Table 6.1 gives the results of running the simulator with LV geometries reconstructed
using 0,2,4,5,7 and 10 principal components in Cartesian space3. Despite the improvement
in reconstruction error as we increase the number of PCs (see Table 5.2), the circumferen-
tial strain predictions do not really change in accuracy as we increase the number of PCs,
while the error in the LVV prediction decreases quite rapidly. With 5PCs, the LVV RAE
is less than half that of the mean mesh. It is worth emphasising that even with a constant
MM representation, the median absolute relative error in volume is only 4.4%. In other
words, there is not that much room for improvement in terms of average performance. In
light of these results, we would not expect drastic changes in the accuracy of our parameter
estimates as we increase the number of PCs.

Table 6.1: Comparing the accuracy of simulations with different LV geometry approx-
imations using relative absolute error (RAE). There is not a dramatic improvement in
accuracy when we increase the number of principal components.

Reconstruction LVV RAE 0.5 (0.25,0.75)
quantiles

Circumferential strain RAE
0.5 (0.25,0.75) quantiles

0PC 0.044 (0.022,0.069) 0.065 (0.030,0.120)
2PC 0.028 (0.010,0.050) 0.062 (0.029,0.118)
4PC 0.028 (0.011,0.054) 0.056 (0.025,0.106)
5PC 0.021 (0.010,0.036) 0.052 (0.023,0.104)
7PC 0.016 (0.007,0.031) 0.049 (0.023,0.092)
10PC 0.013 (0.007,0.024) 0.042 (0.020,0.080)

An issue to consider in the context of a low-dimensional geometry representation is the
consistency of the synthetically constructed LV geometries with respect to physiological
constraints. As we begin to consider higher numbers of principal components, we begin to
consider aspects of the LV shape that are not representative of the population as a whole,

3A prolate coordinate system representation of the LV geometry could be proposed instead of a Carte-
sian one. In such a system, we only require a single radial coordinate for each 3D Cartesian coordinate, so
the initial dataset dimension reduces to 17376/3. However, when assessing the results of PCA in prolate
coordinates in the simulator, the results were similar to those obtained with Cartesian coordinates.
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possibly including artefacts from operator errors that should not be there in the first
place. Given that we will be sampling synthetic LV geometries from our lower dimensional
space, the increased flexibility could cause problems. To demonstrate this, Figure 6.4
presents three samples obtained using random sampling in the 10 PC space, projected
back into the original 17k dimensional space. As suspected, some of the generated LV
geometries are physiologically unrealistic, displaying issues such as overlapping endocardial
and epicardial walls and concavity at the apex. In the end we could consider checks to
assess whether an LV geometry is realistic, but it is likely that some irregularities will not
be accounted for. This issue is partly caused by an assumption of a uniform distribution in
the low-dimensional space, which is likely an oversimplification of the problem. However,
in the absence of a large enough training set of LV geometries, taking a conservative
approach and assuming a uniform distribution seems like the correct strategy. A more

(a) (b) (c)

Figure 6.4: Random samples in 10PC space lead to physiologically unrealistic LV geome-
tries. In the plot on the left, the apex region is concave, in the middle the endocardium
(inner surface) intersects the epicardium (outer surface) and in the right plot the bulge
and shape of the apex are unrealistic.

obvious consequence of increasing the dimension of the LV geometry representation is
the deterioration of our emulator performance. This, combined with the problem posed
by the flexibility of the low-dimensional representation, means that we have to make a
compromise on the number of PCs to include in the input space. Based on results in
Table 6.1, and the discussion of the excessive flexibility permitted by increasing numbers
of PCs, a 5 dimensional geometry space will be assumed. This number of PCs will be
further justified by a study performed in Chapter 9.

The Design

In Chapter 4, a space filling design was used to fill the 4-dimensional design space effi-
ciently before running the simulator. With the inclusion of a low-dimensional LV geometry
representation, the new simulator function has 9 input dimensions: the first four are ma-
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terial parameters and the final 5 provide the low-dimensional representation of the LV
geometry. Therefore, the trained emulator will map a set of material parameters θ, and
low-dimensional LV geometry representation h, to a vector of simulator outputs y that
contains the LVV and 24 circumferential strains:

η : θ,h 7→ y (6.6)

For further details on the extraction of circumferential strains from the deformed mesh,
see Figure 2.3.

In light of what we saw in Section 4.4.3, it appears that uniform coverage is somewhat
suboptimal for our problem: if a function is nonstationary then a uniform coverage of
input space will be a suboptimal design. This is because we require more data in the
region of space where the function is more varied. As a solution, one might propose
sequential design schemes that allow us to gradually learn the regions of space where the
design should be focused. However, to achieve noticeable improvements in the design of
computer experiments for the LV simulator, we would require the use of a nonstationary
GP such as the one proposed by Heinonen et al. (2016). These methods increase the
computational cost of sequential design even further since they rely on expensive MCMC
procedures for hyperparameter estimation, and cannot realistically be used with dataset
sizes in the order of thousands. Another issue with such approaches is the increase in
computational costs since the generation of the design is no longer as parallelisable.

At this point in the thesis, the interest lies in determining the accuracy with which
we can infer the material parameters of the HO law given only an approximation of the
LV geometry. Exploration of more sophisticated design schemes could lead to a more
efficient design in terms of the size of training set required, but the computational cost
of generating such a design will be higher. Instead, we can just consider the same design
scheme as Section 4.3.1, which allows for massive parallelisation of the forward simulations.
This scheme also allows for the possibility of extending the emulator design in the event
that the approximation is not sufficient. Later in this thesis more efficient methods for
design will be considered that use a simple adaptation of uniform coverage to focus on the
more complex part of the function.

In total, 16,000 training data were generated for training the emulator, with a further
615 used for testing. These numbers were selected based on the number of successful runs
from a large batch of forward simulations. The bounds used for parameter space were
[0.1, 5]4, which was also used in Section 4.3.1. For PCA space, the bounds were obtained
based on the projection of the training set of LV geometries into the lower dimensional
space, extending the space in each direction by 10% of the most extreme projected value.
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Training the emulator

Dalton et al. (2020) compared several different statistical emulation methods for approx-
imation of the LV simulator. They found that local GPs provide the best results in the
inverse estimation, with similar results obtained using a neural network. Relevant results
from that study are provided in Table 6.2, where the 0.25,0.5,0.75 quantiles of the errors
in the parameter estimates for a population of test cases are provided for three different
emulation approaches4. It should be noted that the optimisation routines for each method
were not the same. The neural network and sparse GP were fitted in Python using Ten-
sorflow (Abadi et al., 2015) and GPflow (Matthews et al., 2017), respectively. The model
calibration for these two models used gradient descent in Tensorflow, initiated from 100
different start points. On the other hand, the local GP, which used 500 nearest neighbours
in function space similar to Algorithm 2, was fitted using fitrgp in MATLAB and model
calibration was performed using GlobalSearch in MATLAB. More general information on
these regression methods can be found in Chapter 3. The benefit of neural networks over

Table 6.2: Error in parameters estimated from a test dataset of simulations. The table
gives the 0.25,0.5,0.75 quantiles of the mean squared error.

Method Quantile
0.25 0.5 0.75

Sparse GP 7.1× 10−3 2.6× 10−2 6.1× 10−2

Local GP 4.3× 10−3 1.6× 10−2 4.7× 10−2

Neural network 6.6× 10−3 2.1× 10−2 6.0× 10−2

local GPs is their global nature, which is beneficial for the implementation of MCMC
approaches to uncertainty quantification where we require accurate evaluation of the like-
lihood over the entire prior support. For this reason, a neural network emulator will be
used as an approximation to the ground truth function. Cross validation was used to
select the network architecture, with mini-batch optimisation performed using the Adam
optimiser (Kingma and Ba, 2015). It was found that a network with two hidden layers of
200 nodes, with initial weights sampled from a N (0, 0.1) distribution, gives the lowest val-
idation error for this problem. The small standard deviation in the Gaussian distribution
is unsurprising when we consider the simplicity of the simulator function. Based on the
discussion in Appendix B.2, the benefit of including emulator uncertainty in the model
calibration scheme (which was small in that case) is judged to be outweighed by the extra
computational costs involved in both training a Bayesian neural network and predicting
from the resulting ensemble of models. The performance of the neural network emulator
on the held-out test data set can be found in Figure 6.5, where the predictions from the
model are compared with the outputs of the test dataset. The test data were obtained by

4The sparse GP results have been updated having adjusted the parameter optimisation routine.
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running forward simulations for a sample of synthetic LV geometries created using random
samples in the low-dimensional space, so the emulator should be able to match the data
perfectly.

V S1 S2 S3 S4

S5 S6 S7 S8 S9

S10 S11 S12 S13 S14

S15 S16 S17 S18 S19

S20 S21 S22 S23 S24

Figure 6.5: Prediction with the 5PC emulator at a held out dataset. Points lying close to
y = x indicates an accurate approximation.

6.2.3 Quantifying our uncertainty about the material parameters

with MCMC

Model specification

In Chapter 4, optimisation was used to infer the material parameters of the HO law,
and a bootstrap approach was used to quantify our uncertainty about the parameters in
the model. In this chapter, a Bayesian approach to uncertainty quantification will be
adopted, which was discussed in Section 3.2.2. Of interest is the accuracy with which
we can infer the material parameters in light of the error introduced by the LV geometry
approximation.

Let us consider inferring the parameters from measured data, obtained from a patient
with an LV geometry g that has a 5 PC representation h. These data consist of a measured
LVV y∗0 and the 24 circumferential strains measured at end of diastole: y∗ = (y∗0, y

∗
1, ..., y

∗
24).

We can assume that these data are corrupted with iid Gaussian noise with variance σ2,
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giving a log-likelihood function of the form:

p(y∗|θ, σ2) = −n
2

log(2π)− n

2
log(σ2)− 1

2σ2
‖y∗ − η(θ,h)‖22 (6.7)

where η(θ,h) is the patient-specific prediction from the emulator at material parameters
θ (see (6.6) for further details). Within the likelihood function, the LVV is standard-
ised according to (6.5) and the data are all standardised using the means and standard
deviations of the emulator training outputs.

As discussed in Section 4.1.1, the parameters of the HO law exhibit poor identifiability.
For this reason, the same parameterisation given in Section 4.1.1 and used by Noè et al.
(2019) and Davies et al. (2019) will be adopted for the work in this simulation study where
the 8 parameters in the HO law are replaced by θ = (θ1, θ2, θ3, θ4), which relate to the
original HO law parameterisation through population average values found in Gao et al.
(2017). For each of the θ parameters, a u(0.1, 5) prior is assumed, which is considered to
be the physiological range of the parameters. Furthermore, an inverse Gamma prior is
assumed for the noise variance. The posterior distribution of the material parameters, θ,
is not available in closed form, so MCMC is used to sample from the posterior distribution
Specifically, the NUTS variant of HMC (Hoffman and Gelman, 2014) will be used (see
Section 3.2.5). In each implementation, ten chains are initiated from a Sobol sequence
and the convergence is assessed using the Gelman-Rubin statistic (Gelman and Rubin,
1992) with a value less than 1.01 indicative of convergence.

A note on existing methods to speed up inference with HMC

Given that HMC will be used to sample from the posterior distribution of the parameters
using an emulator-based likelihood function, it is worth considering existing methods for
speeding up inference in HMC. Rasmussen (2003) proposed the use of Gaussian processes
to speed up HMC simulations. Their method still relies on expensive forward simulations,
but these are only used in an initial exploratory phase and in the acceptance of a proposed
move. In other words, the leapfrog steps move along the GP approximated function so each
iteration of the sampling phase requires only one evaluation of the expensive simulator.
A similar approach was proposed by Conrad et al. (2016), but using local approximations
in Metropolis Hastings instead of HMC. For the simulator considered in this study, these
procedures would require days of simulation, because they both require sequential calls to
the simulator that cannot be performed in parallel. For this reason, they are not applicable
in the current problem and we must instead consider the sole use of an emulator-based
log-likelihood.
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6.2.4 Including a simple bias correction in the likelihood function

In Table 6.1 we saw that approximation of the LV geometry with a reconstruction ob-
tained using PCA introduces an error to the simulator. In that analysis, the different
subjects were grouped together under one quantitative assessment of accuracy. If we in-
stead consider the subjects individually, a pattern begins to emerge in the comparison
of the approximate simulations and ground truth simulations. In Figure 6.6, simulations
using the 5PC LV geometry approximation (circles) and the MM geometry approximation
(crosses) are plotted against simulations obtained from the actual LV geometry. Three
simulations obtained from four different ground truth LV geometries are plotted, with the
colour of the points distinguishing between the different LV geometries. The line at y = x

indicates perfect correspondence between the simulations obtained with an LV geometry
approximation and those obtained with the actual LV geometry. As well as the obvious
deviations from the line at y = x, points of the same colour are more or less parallel in each
individual plot and, in cases where they deviate from parallel, the bias present between
ground truth and approximate simulation is at least in the same direction. This begs the
question of how well we can infer the parameters if we allow for a simple bias correction
in the predictions from the 5PC model.

Figure 6.6: Simulations obtained from LV geometry approximation versus simulations
obtained with exact LV geometry. The colour of points distinguishes between different
ground truth LV geometries and we see that points of the same colour all tend to lie
on the same side of the line at y = x. The different symbols correspond to a 5PC LV
geometry approximation (circles) and a mean mesh LV geometry approximation (crosses).
Each square on the grid corresponds to a difference of 0.025 in circumferential strain (in
both the horizontal and vertical axes).

To allow for a bias correction in the emulator, we can update (6.7) to account for
deviations in the emulator. This update provided by the inclusion of b, which contains a
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separate bias correction for each different output of the model:

p(y∗|θ, σ2) = −n
2

log(2π)− n

2
log(σ2)− 1

2σ2
‖y∗ − (η(θ,h) + b)‖22 (6.8)

Obtaining bi relies on running forward simulations, but this can be done with very few
parallel simulations, with total run time equal to around ten minutes. The total compu-
tation time, including the time for obtaining the bias correction and running the MCMC
samplers, is still comfortably below 15 minutes. However, use of the method now has
the extra burden of requiring an Abaqus license at inference time, which might not be so
readily available. Although the simple bias correction proposed here does help to correct
for errors in the generalised emulator, the actual correction required is inevitably more
complex than a constant. In Appendix F an alternative, more accurate, correction mech-
anism is proposed that relies on more forward simulations than the simple correction that
is considered here.

6.3 Simulation study

6.3.1 Implementation details

Parameter inference was performed in Tensorflow probability (TFP), allowing for the
implementation of HMC and NUTS for emulator models constructed in Tensorflow. The
run times required for 1000 samples were typically lower than 10 seconds5. For comparison,
using simple Metropolis Hastings with the simulator would require 6× 106 seconds, which
equals roughly 69 days. To give some idea of the efficiency of the sampling routine, 1000
samples obtained using NUTS typically gives an effective sample size of 300-400. This
could be improved by tuning of the mass matrix in NUTS, allowing for better fit to the
posterior surface. However, mass matrix adaptation was not implemented in TFP at the
time of this analysis.

6.3.2 Quantifying our uncertainty with Bayesian inference

Of principal concern is the effect that the LV geometry approximation has on the modelling
of a patient’s LV dynamics in diastole. With regards to the forward problem, the results
in Table 6.1 suggested that the improvement in accuracy is small when we include LV
geometry information obtained from PCA. An understanding of the effect this has on the
inverse problem is best obtained through a simulation study. For this task, the emulator
discussed in Section 6.2.2 will be used to provide a computationally efficient evaluation of

5The computation time was always in the order of seconds, whether running on a computing cluster
or laptop.



CHAPTER 6. GENERALISING THE LV EMULATOR 103

the likelihood function from (6.7), allowing us to sample the material parameters of the
model using either a 5 PC representation of the LV geometry or a mean mesh representa-
tion. Given a set of 40 LV geometries, a total of 120 synthetic test points were generated
as follows: obtain 120 samples from a Sobol sequence in 4-dimensional material parameter
space and evaluate in the simulator three different parameters with every one of the 40
different LV geometries6. This process gives us 120 synthetic datasets obtained from 120
unique parameter-geometry pairs. Conditional on each of these synthetic datasets, we can
sample the material parameters according to the details given in Section 6.2.3.

Using the MCMC samples, the posterior distributions are summarised in Figure 6.7.
The left plot shows the 120 median absolute errors of the marginal posterior distributions
for each parameter and the right plot shows the corresponding interquartile ranges. Com-
paring the MM and 5PC representations, we see that both provide similar results, with
the 5PC representation slightly outperforming the mean mesh. Looking at the different
parameters, the IQR and MAE are larger for θ3 and θ4 and smallest for θ2.
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Figure 6.7: Comparing results of parameter estimation with a mean mesh LV geometry
representation and an LV geometry representation obtained from 5 principal components.

In Figure 6.8, some example inference results are plotted in more detail in the form
of marginal posterior density plots. The spread of the posterior densities varies quite
substantially, especially for θ1 and θ2. One reason for this could be that certain LV geome-
tries are better approximated using 5PCs, so the error and uncertainty in the posterior
distributions would decrease. However, another possibility is that this is the result of the
nonstationarity discussed in Section 4.4.3. In such a scenario, the uncertainty would be
lower in the region of space where the function varies more rapidly. This possibility will
now be explored in greater detail.

6Note that the test LV geometries were not out of sample. This means that the training set used to
generate the principal components of the emulator contained the test LV geometries. However, it was
found that the in sample and out of sample performance of PCA was similar for these test cases.
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Figure 6.8: A more detailed look at the posterior inference of 4 test examples. The different
colours indicate the material parameter, with matching vertical lines showing the ground
truth value of that parameter.

6.3.3 Investigating the likelihood function

Let us first consider how the LV geometry approximation affects the loss function. In
Figure 6.9, two typical loss functions, approximated using the 5PC emulator, are visualised
with the ground truth parameter shown as a red point and the new optimum shown in
black. The effect that the LV geometry approximation has on the loss function changes
quite substantially between the two plots, displaying a more fundamental property of the
simulator. On the left, the optimum shifts by as much as 0.3 in the θ1 direction as a
result of the LV geometry approximation and on the right the change in the optimum is
negligible. Reconsidering Figure 6.1, we can see that the rate of change of the function
over the parameter space is not constant, which was modelled by a nonstationary kernel
in Appendix B.2. The relationship for the simulator, ζ(·), can be expressed as follows:

ζ(θ1 + δθ)− ζ(θ1) > ζ(θ2 + δθ)− ζ(θ2)

where θ1 is a parameter configuration corresponding to a soft material and θ2 corresponds
to one that is stiff. The consequence this has on the parameter estimation, in the presence
of errors incurred by LV geometry approximation, is intuitive: for soft parameters, the
deviation resulting from an LV geometry approximation has less effect on the optimum
of the loss function than with stiffer parameters. This change in the function variation
manifests itself in other ways: for ground truth parameters in the stiffer region, we see a
long ridge forming at the optimum of a flatter loss function. This latter feature is also
indicative of correlations between the model parameters.

It is worth investigating in more detail how the varying rate of change of the simula-
tor outputs can affect the parameter identifiability. The procedure to do so is outlined
in Algorithm 3. This will be repeated for every combination of parameters, each time
sampling all four parameters together but only summarising the results for the two pa-
rameters that vary during synthetic data generation. The uncertainty in the parameters
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Figure 6.9: Visualising the effect of PCA on the loss function. By reducing the geometry
to a 5PC representation we change the loss function. This causes the global minimum to
shift from the red point (the minimum obtained with the full LV geometry) to the black
point.

will be summarised by the IQR in the marginal posterior distribution of each parameter.

Algorithm 3 Producing a contour plot of IQR over θ1 − θ2 space
1: Generate grid of θ1 − θ2 values in the range 0.1-5.
2: For each point in the grid, obtain synthetic data by evaluating the emulator, with θ3

and θ4 fixed equal to 1.
3: Add N(0, 0.1) noise to the standardised test data (standardised by the mean and

standard deviation of the emulator training data).
4: For each test point, obtain samples of the material parameters using HMC and use

these to approximate the IQR of the posterior distribution.
5: Create contour plot of the IQR at each point on the grid of material parameter values.

Figure 6.10 shows the results of this analysis. Each row shows how the IQR of an
individual material parameter, the target parameter, changes as we vary the ground truth
parameter set over the joint space of the target parameter and one of the other material
parameters, the extra parameter, while keeping the other parameters fixed equal to 1.
In each plot, the target parameter varies along the vertical axis, the extra parameter
varies along the horizontal axis and the title is arranged as follows: main parameter-extra
parameter. For θ1, shown in the top row of plots, we see that the uncertainty increases as we
increase the target parameter without much effect from the value of the extra parameter.
The exception is θ2, where small values of the extra parameter make θ1 less identifiable if
θ1 is large. The uncertainty in θ2, shown in the second row, appears to depend not just on
its value but also the value of the extra parameter. When the extra parameter is θ1 or θ3
then increasing both parameters generally increases the uncertainty in θ2. The only time
this changes is when the extra parameter is θ4, which has less effect on the uncertainty of
θ2. Interestingly, the uncertainty in θ2 appears to have less variation than that of θ1, which
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can be seen by comparing the values in the θ1−θ2 and θ2−θ1 plots. The uncertainty in θ1
changes from 0.016 to 0.088 as we vary the value of the parameters while the uncertainty
in θ2 changes from 0.036 to 0.078. The pattern in variation of θ3 is similar to that of θ2
although we see that the uncertainty has increased quite substantially. This is consistent
with the findings in Figure 6.7. The pattern in θ4 uncertainty is quite different to the
others. When θ1 is the extra parameter, the pattern is more difficult to interpret and it
appears as though for small values of the parameters, uncertainty in θ4 increase as both
parameters increase. Moreover, the value of θ1 appears to have a substantial effect on
the identifiability of θ4, with the uncertainty increasing from 0.24 to 0.72 over the joint
space. When θ2 and θ3 are the extra parameters, the uncertainty in θ4 appears to be
lowest for small values of θ4 and large values of the extra parameter, and increases as the
extra parameter decreases and θ4 increases. Overall, from comparing typical values found
in the contour plots, θ3 and θ4 are less identifiable than θ1 and θ2.

6.3.4 Further exploration of the effect of LV geometry approxi-

mation

Figure 6.10 showed that parameter identifiability changes over the parameter space. Pa-
rameters that describe a soft material tend to be more identifiable than those describing a
stiff material and, as we saw in Figure 6.9, the optimum of the loss function is less affected
by the LV geometry approximation when the ground truth parameters are softer. Since
the material parameters for testing were generated according to a uniform distribution,
the parameters in the stiffer region could be hijacking the inference results in Figure 6.7.
These stiffer parameters could even be configurations that we would never find in real-
ity and we should investigate the effect of the LV geometry approximation for inferring
parameters that are more realistic.

One easy check to determine the type of material the parameters describe is to deter-
mine the corresponding ejection fraction (EF):

End diastolic volume-End systolic volume
End diastolic volume

(6.9)

This quantity is often used to assess cardiac function in the clinic. According to Hudson
and Pettit (2020), normal ejection fraction is greater than 55%. In the test data used for
Figure 6.7, 61% of cases had an EF lower than 55%. To determine the effect this has on
the inference results, we can break the results up according to the EF. These results are
given in Figure 6.11, with MAE on the left and IQR on the right. In each subplot, boxes
to the right of the red dashed line are the results for test data with EF>55%. We see that
the results do improve, particularly for θ1, but we still have a median error of around 0.4.
The uncertainty about the parameters appears to change more drastically, especially for
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Figure 6.10: Showing the effect of the ground truth parameter value on the uncertainty
in our parameters. Each row shows how our uncertainty about the first parameter in the
title of the plot changes over the given space, with bounds on the parameters being 0.5
and 5.0. The uncertainty is measured as the IQR in the marginal posterior distribution
of the parameter.

θ1. The change in results depending on the EF is another indication of the effects of the
function nonstationarity on our inference since a high EF occurs in the region of space
where the function varies more rapidly.

6.3.5 Inference while accounting for bias correction

The final analysis will consider the Bayesian inference task while adopting the likelihood
function from Section 6.2.4. Thirty of the LV geometries that have been reconstructed
from PCA in a LOOCV manner will be used. For each LV geometry, 3 simulations
were obtained at different material parameter values for the analysis in Table 6.1. These
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Figure 6.11: Using the ejection fraction we can distinguish realistic parameter configura-
tions (with EF greater than 55%) and unrealistic ones (EF less than 55%), before assessing
the results of the posterior inference in both cases, as divided by the vertical dashed line.

simulations were obtained with a 5PC LV geometry approximation {y(i)
5 }3i=1, a mean mesh

LV geometry approximation {y(i)
M }3i=1, and the ground truth LV geometry, {y(i)

T }3i=1. The
testing procedure for assessing the adequacy of a bias correction is as follows: treating the
jth simulation of LV geometry i as the test data for inference, obtain a bias correction as
follows:

b5 =
1

2

∑
k∈{1,2,3}\{j}

(y
(k)
T − ŷ

(k)
5 ) bM =

1

2

∑
k∈{1,2,3}\{j}

(y
(k)
T − ŷ

(k)
M ) (6.10)

The success of this correction is assessed in two ways: first by comparing the predictions,
corrected using a bias correction, with the ground truth simulation and then using pa-
rameter inference, with the bias included in the log-likelihood from (6.8). The comparison
based on predictions is found in Table 6.3, where the bias corrected prediction errors are
compared with baseline results from the 10 PC LV geometry approximation without any
bias correction (note that the results are slightly different to those found in Table 6.1
because a subset of the data is now used). By correcting for the simple bias in the predic-
tions from the approximate LV geometry, we achieve better results than with the 10PC
LV geometry approximation.

The results in parameter space, comparing the likelihood function with and without
bias correction, are found in Figure 6.12. There is a quite substantial difference in the
results when we introduce this simple correction, in some cases the median absolute error
is reduced by as much as a factor of 0.5. The change in IQR is equally as large, indicating
the reduction in discrepancy of the model predictions from the ground truth (recall that



CHAPTER 6. GENERALISING THE LV EMULATOR 109

Table 6.3: Comparing the accuracy of simulations with different LV geometry approxima-
tions, allowing for corrections in the model predictions.

Reconstruction End diastolic volume RAE
0.5 (0.25,0.75) quantiles

Circumferential strain RAE
0.5 (0.25,0.75) quantiles

0PC corrected 0.007, (0.006, 0.01) 0.02, (0.009, 0.04)
5PC corrected 0.007 (0.003, 0.01) 0.02 (0.008, 0.04)

10PC 0.013 (0.002,0.049) 0.032 (0.02,0.07)

because data are generated from actual LV geometries without any added noise, the only
noise entering the problem is the result of the discrepancy caused by the LV geometry
approximation).
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Figure 6.12: Comparing results of parameter estimation with a 5PC representation of the
LV geometry when we include a simple bias correction in the likelihood function (white)
and when we do not include a bias correction (grey).

6.4 Discussion and conclusion

Representation of the LV geometry with five principal components, although far superior
in terms of reconstruction error, does not give much improvement over the mean mesh in
terms of accuracy in simulated circumferential strains, as seen in Table 6.1. Even increasing
the number of principal components to ten does not appear to provide much improvement
over the mean mesh for this purpose. This is surprising when considered in the context of
the results from Table 5.2, which showed that there is a large improvement in MSE—by
a whole order of magnitude—when we introduce LV geometry information in the form of
5 PCs. A possible justification for these results is the fact that geometry reconstruction
methods attempt to capture global shape changes, whereas the circumferential strains will
likely be influenced by local properties of the LV geometry.

By quantifying the uncertainty in the parameters, the identifiability of the parame-
ters was explored in the presence of LV geometry errors. These results were shown in
Figure 6.7, where the median absolute error and interquartile ranges of the 120 posterior
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distributions were summarised. These results showed that θ3 and θ4 are less identifiable
than θ1 and θ2. Given knowledge of the physiological meaning of the parameters, these
results make sense: θ3 relates to behaviour in the high stretch region and θ4 largely gov-
erns the behaviour of components of the system that are not currently included in the
likelihood function evaluation. The absence of information in the high-stretch region is
apparent if we consider our inference results in stress–stretch space. Figure 6.13 shows a
posterior distribution of stress–stretch curves obtained by evaluating the H-O model for
the samples of material parameters represented by the densities in the left of the figure.
The spread in the distribution of stress values increases as we increase the stretch, resulting
from the lack of information about large-stretch tissue behaviour.
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Figure 6.13: Typical inference results. θ1 and θ2 are well identified but θ3 and θ4 are
subject to large uncertainty. Translating to the tissue properties on the right, we see that
the uncertainty is large for high stretch.

In Figure 6.10, the parameter identifiability was shown to change over the parame-
ter space, affecting the results of inference with synthetic data generated from real LV
geometries in Figure 6.11. Again, this result is intuitive: with stiff materials, the small
deviation in simulations between an approximated LV geometry and the ground truth LV
geometry corresponds to large deviations in parameter space, as a result of the slowly
varying function in this stiffer parameter regime. With softer materials and a faster vary-
ing simulator function, the small deviations that result from approximation with PCA
or the mean mesh no longer correspond to large deviations in parameter space. These
results show the effect that the nonstationarity observed in Section 4.4.3 can have on our
parameter identifiability.

The accuracy of the parameter inference when adopting a representation of the LV
geometry obtained using PCA is worse than the results of Chapter 4. At first this would
appear concerning, pointing to the new LV geometry representation as the source of the
issue, or perhaps the new emulator, which will inevitably be subject to higher error as a
result of the increase in dimension of the input space. However, the results from Chapter 4
have to be considered with a word of caution. In that study, only one LV geometry was
considered and we had zero discrepancy between the emulator and the test data. The
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result of LV geometry approximation is effectively to introduce extra noise, likely in the
form of structured noise. While this will introduce bias to the inference results, the errors
incurred in simulator output space as a result of an LV geometry approximation can only
really be considered in the context of actual measured volume and strain data. Moreover,
proper assessment of the errors incurred by PCA would require a comparison with the
inference results of LV geometries reconstructed by different operators. If the level of
error incurred by PCA is lower than that incurred when changing operator then we can
have more confidence in our approximation. This will be explored in Chapter 9.

Overall, the results of this chapter have shed light on the task of patient-specific pa-
rameter estimation. In particular, the use of MCMC methods has shown the poor identi-
fiability of θ3 and θ4. Moreover, we have seen that the identifiability of the tissue changes
depending on the ground truth value of the parameters. When these describe a soft mate-
rial, the tissue properties are easier to learn than when the tissue is stiff. This highlights
the importance of generating data from realistic ground truth parameters in order to as-
sess parameter inference methods. Moreover, it appears that the inclusion of information
about the tissue at higher stretches will be necessary to improve the identifiability of the
parameters. With this in mind, the next chapter will consider the inclusion of information
from ex vivo experiments in an attempt to improve parameter identifiability.



Chapter 7

Improved inference by combining in
vivo strain data with ex vivo
volume-pressure data

A key component of a Bayesian inference model is the prior distribution. Expressing
knowledge gained from previous experiments, this can help to constrain our posterior
distribution to regions that make physiological sense. Until this point, this thesis has
considered the non-informative case of a uniform prior, which expresses the prior belief
that all regions in input space are equally likely. The current chapter proposes to introduce
prior information to the parameter estimation problem by way of ex vivo data from the
literature. Two alternative priors, an empirical Bayesian prior (where the prior depends
on the data) and a nonempirical prior, will be proposed before comparing these on a series
of problems using both synthetic and measured data. The work in this chapter is based
on work that has been submitted to the Journal of the Royal Statistical Society Series C
and received minor revisions.

7.1 Background

Until this point, the focus of this thesis has been the likelihood function. For the purpose
of efficient estimation of the parameters, emulation was used to expedite the calculation of
the likelihood. The theta parameterisation of the H-O model was originally introduced in
Chapter 4 (specifically (4.2)), where a fixed LV geometry emulator was used to successfully
estimate the parameters from synthetically generated observations and real observations
measured from CMR scans. In Chapter 6, the emulator was generalised to different LV
geometries by introducing a PCA representation of the LV geometry to the emulator’s
input space. Using MCMC, the parameters were inferred, showing that the uncertainty
in θ3 and θ4 was higher than in θ1 and θ2. This is the problem that is of interest in the

112



CHAPTER 7. KLOTZ PRIOR FOR IMPROVED PARAMETER INFERENCE 113

current study.
The behaviour of the myocardium, which was discussed in Section 2.1.2, is governed

by components operating at a microscopic scale within the tissue whose influence changes
with the level of stretch in the muscle (Voorhees and Han, 2015). This behaviour is
replicated by the H-O model from (8.1), where different mathematical terms take effect
at different stretches. In particular, some of the parameters in this expression relate to
the behaviour at small stretch and some to the behaviour at larger stretch. This property
is useful in the forward problem because it allows us to simulate the behaviour of the
tissue at stretches beyond those typically observed in vivo. However, it also introduces
identifiability problems to the inverse problem because the in vivo data do not inform
us about the behaviour of the material at higher stretches. To overcome this issue, the
current study proposes to introduce ex vivo information to the inference routine through
a relationship known as the Klotz curve (Klotz et al., 2006).

Klotz et al. (2006) investigated the dependence between pressure and end-diastolic
volume of the LV cavity (LVV) over a large population of various diseased patients and
healthy volunteers. In their study, the end-diastolic volume-pressure curves varied substan-
tially and spanned a wide range of volumes. However, they found that on standardising
the LVV, the curves become nearly identical, and that despite different disease status, the
shape of the curve is nearly the same (Figure 2 in Klotz et al. (2006)), with a functional
form provided by:

P = α exp
(
βṼ
)
, where Ṽ =

V − V0
V30 − V0

. (7.1)

V is the LVV at pressure P , V30 is the LVV at pressure 30mmHg and V0 is the volume of
the unloaded left ventricle, at pressure 0mmHg. Throughout this chapter, VP will be used
to denote the LVV at pressure P mmHg, and ṼP will be used to denote the corresponding
normalised volume ṼP = VP−V0

V30−V0 .
The Klotz curve has already been explored in the context of cardio mechanical mod-

elling. In particular, Palit et al. (2018a); Peirlinck et al. (2019); Krishnamurthy et al.
(2013b) used it in combination with in vivo data to estimate the cardio-mechanic param-
eters, while Hadjicharalambous et al. (2015) considered it in a comparison of different
constitutive laws. The current study will expand on the current literature, particularly
with regards to parameter estimation, in the following ways: firstly, a prior distribution
that is based on the Klotz curve will be introduced, allowing us to correctly introduce
this information in a Bayesian inference scheme for the material parameters. The prior
will be implemented using statistical emulators, enabling the introduction of the Klotz
information to the parameter inference procedure while avoiding any large computational
costs. Secondly, these priors will be used to improve parameter inference in the presence
of LV geometry errors and information loss caused by the dimension reduction. The re-
sult is a reduction in the posterior uncertainty and improving accuracy of the parameter
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estimation. Thirdly, this study contributes a comparative performance assessment of two
alternative prior representations, using both synthetic data and real CMR images, and
quantifying the effect that the inclusion of the empirical Klotz law has on the inference.

7.2 Methodology

As discussed above, two alternative prior distributions will be formulated for the introduc-
tion of information from the Klotz curve, each derived from the parametric form suggested
by Klotz et al. (2006) and provided in (7.1). The first distribution, which is called the
nonempirical Klotz prior, will relate two emulated volumes at different end diastolic pres-
sures while the second—called the empirical Klotz prior—will require the introduction of
the LVV to the expression, resulting in a prior distribution that depends on the measured
data. Both of these priors will require samples of the parameters from (7.1), for which a
rearrangement of the original model is considered, expressing the normalised volume as a
function of pressure. For now, consider this relationship to be of the form Ṽ = f(p;φ)

where f depends on some parameters φ. The form of this function is deliberately not
made explicit at the moment so that the discussion generalises to both of the Klotz prior
distributions. Assuming a heteroscedastic noise model:

Ṽ ∼ N
(
Ṽ
∣∣∣f(P ;φ), ω(P )

)
, (7.2)

where
log(ω(P )2) = a+ bP + cP 2 (7.3)

the parameters φ, a, b and c are sampled from the posterior distribution conditional on
the data from Figure 7.1. The posterior mean values of a, b and c are used to provide a
heteroscedastic noise model estimate. Prediction of the Klotz curve is shown in Figure 7.1,
along with uncertainty bands obtained as ±2ω(P ).

7.2.1 Emulating the likelihood function

The data available from in vivo CMR images are K = 24 end diastolic circumferential
strains at well-defined positions on the endocardial wall (see Figure 2.3) and the LVV. In
what follows, the measured quantities are denoted by:

y∗ = (y∗0, y
∗
1, . . . , y

∗
K)T. (7.4)

Given an emulator training set, the mean and standard deviation of the simulations µy
and σy, can be used to standardise these data. The corresponding true quantities, which
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(a)

Figure 7.1: A heteroscedastic noise model is fitted to the normalised volume as a function
of pressure. The data, represented by the scatter points, were obtained from Klotz et al.
(2006) using the Grabit function in MATLAB. Pressures lower than 2mmHg are excluded
from the model fitting. The shaded area shows ±2ω(P ).

are modelled by the neural network emulator η from Chapter 6, are:

η(θ,h) =
(
η0(θ,h), η1(θ,h), . . . , ηK(θ,h)

)T
, (7.5)

where the dependence of the emulator on the cardio-mechanic parameters θ and a 5 PC
approximation of the LV geometry h has been made explicit.

Under the assumption that the measurement noise is iid additive Gaussian with vari-
ance σ2

m:
y∗ = η(θ,h) + ξ; ξ ∼ N (0, σ2

mI), (7.6)

we obtain the log likelihood:

log p
(
y∗|η(θ,h)

)
=
−1

2σ2
m

K∑
i=0

(
y∗i − ηi(θ,h)

)2
− K + 1

2
log(2πσ2

m). (7.7)

In Chapter 6, this log-likelihood function was used in combination with a u(0.1, 5) prior
on θ to sample from the posterior distribution of the parameters. The aim in the current
study is to combine the in vivo likelihood function with an informative prior derived from
the Klotz curve.

7.2.2 Method A: the nonempirical Klotz prior

The emulated form of the cardio-mechanic model from Section 7.2.1 is used to model the
in vivo data, represented by the right branch in Figure 7.2 with an arrow from the cardio
mechanic model to y∗ (the in vivo data). To include extra information, obtained from the
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ex vivo study performed by Klotz et al. (2006), information from the relationship in (7.1)
will be introduced to the inference problem. Eliminating α from the Klotz curve function
in (7.1) (see Appendix D.1), we can evaluate the following function for some parameter
value β, providing a prediction of the normalised volume at pressure 20mmHg based on
the Klotz relationship:

Ṽ20 =
1

β
log

(
2

3

)
+ 1 (7.8)

Recalling the general form of the Klotz noise model in (7.2), we have the following function:

f(P ;φ) =
1

β
log

(
P

30

)
+ 1 (7.9)

so that φ = β. Information from the ex vivo data is introduced by inferring the parameters
of this model β, a, b and c, from the Klotz data plotted in Figure 7.1. Assuming priors of
the form β ∼ u(0, 10)1, a, b, c ∼ u(−100, 100), where the bounds are deliberately overly
conservative, these parameters are sampled using MCMC. The posterior distribution on
β can be approximated with a Normal distribution:

π(β) = N (β|µβ, σ2
β).

The validity of which was confirmed using the Shapiro-Wilk test.
Estimating the mean µβ and standard deviation σβ using the posterior samples, we

can use the delta method (see Appendix D.2) to propagate the uncertainty in β through
to the normalised volume via (7.8):

πKl(Ṽ20) ≈ N

Ṽ20
∣∣∣∣∣Ṽ20(µβ),

[
∂Ṽ20
∂β

]2
µβ

σ2
β


= N

Ṽ20
∣∣∣∣∣ 1

µβ
log

(
2

3

)
+ 1,

[
1

µ2
β

log

(
2

3

)]2
σ2
β

 (7.10)

giving a distribution on Ṽ20 induced by the Klotz data and function. This part of the
model is represented by the left branch of Figure 7.2, where we relate the normalised
volume with the ex vivo data, yex, through the Klotz curve model.

Reconsidering Figure 7.1, we see that there is fairly substantial variance in the data.
Due to the restrictive nature of the model in (7.8) and the large quantity of data, much
of the variation is inferred as noise during inference instead of an increased uncertainty in

1Positivity is a result of physiological knowledge that the normalised volume increases as pressure
increases.



CHAPTER 7. KLOTZ PRIOR FOR IMPROVED PARAMETER INFERENCE 117

θ

Cardio
mechanic
model
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Figure 7.2: Including the nonempirical Klotz prior in the cardio-mechanic parameter es-
timation. Observed quantities are in grey circles, functions are in boxes and variables are
in white circles. In addition to using the cardio-mechanic model for modelling in vivo
data (y∗) at the in vivo reference pressure (right branch), it is also used to model the
LVV at higher ex vivo reference pressures, providing a distribution on the normalised vol-
ume, which is labelled as Ṽ e

20. In addition, an empirical law based on the function from
(7.1) fitted to ex vivo data (yex) provides a distribution on the normalised volume at the
same reference pressure (left branch), with noise model assumed to be heteroscedastic (see
details below (7.2)). Despite the fact that the normalised volume resulting from the em-
ulator and the Klotz relationship are actually the same variable, we choose to distinguish
between these based on their distributions (Ṽ e

20 for emulator induced distribution and Ṽ Kl
20

for Klotz induced.) The two distributions are combined via a product-of-experts approach
(dashed line).

the parameters. This could lead to a slight underestimation of the true variation in the
Klotz curve so an alternative form of (7.10) will be considered, where the heteroscedastic
noise at pressure 20mmHg, given by equation (7.3) with P = 20mmHg, replaces the
variance of the Normal distribution. This model is referred to as the nonempirical Klotz
prior with model mismatch.

Instead of predicting the normalised volume using the Klotz curve, we can predict
this quantity for a given set of material parameters using the simulator from Figure 2.2.
This allows us to relate the normalised volume from (7.1) with the material parameters.
Training Gaussian process emulators, we learn a probabilistic representation of the LVV
at pressure 20mmHg and 30mmHg. Using the delta method, we can propagate the
uncertainty in V20 and V30—induced by the probabilistic nature of the emulators—through
to the normalised volume:

πe(Ṽ20) = N (.|µ, σ2), (7.11)
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where

µ=
V̂20(θ, h̃)− V0
V̂30(θ, h̃)− V0

,

σ2=

(
1

V̂30(θ, h̃)−V0

)2

σ̂2
20(θ, h̃)+

(
V̂20(θ, h̃)−V0

(V̂30(θ, h̃)−V0)2

)2

σ̂2
30(θ, h̃).

(7.12)

A more detailed derivation can be found in Appendix D.4. Here, V̂i(θ, h̃) and σ̂2
i (θ, h̃) are

the mean and variance of the predictive distribution of the pressure i volume emulator,
evaluated at (θ, h̃) where h̃ is a low dimensional summary of the LV geometry that will
be defined in Section 7.3.1. This distribution is represented by the branch leading to Ṽ e

20

in Figure 7.2, where a dependence of the normalised volume on the material parameters,
θ, is introduced through the underlying cardio-mechanic model.

We now have two different distributions for Ṽ20: πKl(Ṽ20), from fitting the Klotz func-
tion to the ex vivo data, and πe(Ṽ20) from the cardio-mechanic emulators. Intuitively, we
want to reward cardio-mechanic parameters for which the agreement between these two
distributions is high, and penalise parameters for which the agreement is poor. There are
different ways to quantify the agreement between the distributions. In the present study,
the so-called “product of experts" approach is used, which is widely used in the Machine
Learning literature; see e.g. Calderhead et al. (2008) and Dondelinger et al. (2013). In
the present case, it leads to a Gaussian convolution integral with a closed-form solution.
Define:

F =

∫
πKl(Ṽ20)πe(Ṽ20)dṼ20. (7.13)

Inserting (7.10) and (7.11) into (7.13) and using standard results for Gaussian integrals,
we obtain:

F(θ, h̃) = N
(
µ
∣∣∣ 1

µβ
log

(
2

3

)
+ 1, σ2

K + σ2
)

(7.14)

where σ2
K is the variance of the distribution in (7.10). This is represented by the dashed

line connecting the two ex vivo reference volume terms in Figure 7.2. Note that while F
interpreted as a function of µ is a normal distribution, F interpreted as a function of the
cardio-mechanic parameters, θ, is a complex non-linear function where:

Z =

∫
F(θ, h̃)dθ, (7.15)

does not have a closed-form solution. We obtain, for a given LV geometry representation
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h̃, the prior distribution of θ via normalisation:

π(θ|h̃) =
F(θ, h̃)

Z
, (7.16)

where MCMC sampling techniques have to be applied due to the intractability of Z. We
have now obtained a prior distribution of the cardio-mechanic parameters θ by fitting
an empirical law for the pressure-volume dependence to ex vivo data from the literature,
combining it with the cardio-mechanic model via the emulation of the LV cavity volumes
at two ex vivo reference pressures – at 20mmHg and 30mmHg; see (7.12) – and taking
explicitly the uncertainty predicted by the emulator into consideration.

7.2.3 Method B: the empirical Klotz prior

The first Klotz model was developed under the framework of the normalised Klotz curve,
incorporating directly the relationship between normalised volume and pressure in (7.1)
through a prior that measures the adherence of the predicted LV dynamics to the Klotz
law. An alternative model, referred to as the empirical Klotz prior, will now be considered,
where the level of fit with the Klotz curve is measured as a function of the measured LVV.
Recall that the measured LVV is the cavity volume at end of diastole, measured from
CMR scans and denoted as y∗0 in (7.4). The empirical Klotz prior formulation is more in
line with the use of the Klotz curve in the literature, which usually depends on an in vivo
volume measurement.

Consider a rearrangement of the original Klotz function from (7.1), where εP ∼
N (0, ω(P )) arises from an assumption of heteroscedastic Gaussian noise on the Klotz
data (as presented in (7.2)):

ṼP =
log
(
P
α

)
β

+ εP ⇒ V30 =
VP − V0

log
(
P
α

)
β

+ εP

+ V0. (7.17)

This equation expresses the volume at pressure 30mmHg as a function of the volume
at some pressure P . Choosing P = 20mmHg and plugging in the volume prediction
from an emulator will result in a prior the same as the one from Section 7.2.2. Instead,
P = 8mmHg will be used, which means plugging in the LVV from the measured dataset
y∗0. This assumes that EDP=8mmHg, which was justified in Section 4.1.1.

From the above relationship, and with reference to (7.2), we have:

f(P,φ) =
log(P

α
)

β
. (7.18)

Similar to the model from Section 7.2.2, ex vivo information can be introduced to the
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empirical Klotz model by inferring the parameters α, β and ω(P ) conditional on the data
in Figure 7.1 (recall from (7.3) that estimating ω(P ) involves inferring the parameters a, b
and c). For estimation, the priors on the parameters were as follows: α, β ∼ u(0, 10) and
a, b, c ∼ u(−100, 100).

Using the posterior samples of α and β, the uncertainty in α and β can be propa-
gated through to V30 via the Gauss error propagation model (see Appendix D.3) to give a
distribution on V30:

πKl(V30) = N(V30|µKl, σ2
Kl). (7.19)

with parameters:

µKl =
V8 − V0

log
(

8
α

)
β

+ ε8

+ V0

∣∣∣∣
α=µα,β=µβ ,ε8=0

=
y∗0 − V0

log
(

8
α

)
β

+ ε8

+ V0

∣∣∣∣
α=µα,β=µβ ,ε8=0

, (7.20)

σ2
Kl =

[
∂V30
∂α

]2
µα,µβ

σ2
α +

[
∂V30
∂β

]2
µα,µβ

σ2
β +

[
∂V30
∂ε8

]2
µα,µβ

ω(8)2 (7.21)

=

[
µβ(y∗0 − V0)
µα(log( 8

µα
))2

]2
σ2
α +

[
y∗0 − V0
log( 8

µα
)

]2
σ2
β −

[
µ2
β(y∗0 − V0)
log( 8

µα
)2

]2
ω(8)2 (7.22)

where P = 8mmHg has been used. Substituting ω(P )2 = 0 gives the zero Klotz model
mismatch case where only the uncertainty in α and β contributes towards the Klotz prior
evaluation. The final result—displayed in the left branch of Figure 7.3—is a distribution
on V30 with dependence on the Klotz curve model and the measured LVV y∗0. In the
clinical setting, we must also account for noise in the y∗0 measurement. Assuming that y∗0
is the mean of a distribution on measured LVV values with standard deviation σ8 =5ml
(for justification of this value see Table E.1), the uncertainty on the volume measurement
is propagated through the model via the delta method and σ2

Kl includes the extra term:[
∂V30
∂V8

]2
µα,µβ

σ2
8 =

[
µβ

log 8
µα

]2
σ2
8 (7.23)

While the distribution in (7.19) was derived from the Klotz curve, we can train a
surrogate model on simulated volume data at pressure 30mmHg and obtain a distribution
on V30 obtained from the predictive distribution of the Gaussian process:

πe(V30) = N (.|µ30(θ, h̃), σ2
30(θ, h̃)), (7.24)

which, unlike πKl(·), depends explicitly on the material parameters. This distribution is
represented by the right branch of Figure 7.3 (leading to V e

30), which shows its dependence
on the material parameters and the cardio mechanical model. We now have two distribu-
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tions on V30: πKl(V30) from the Klotz function in (7.19) and the other, πe(V30), from the
V30 emulator with mean µ30(θ, h̃) and variance σ2

30(θ, h̃). Considering a statistic similar
to that from (7.13):

FEK =

∫
πKl(V30)πe(V30)dV30, (7.25)

we obtain:

FEK(θ, h̃) = N
(
µ30(θ, h̃)|µKl, σ2

Kl + σ2
30(θ, h̃)

)
. (7.26)

Letting Z =
∫
FEK(θ, h̃)dθ, we retrieve a prior distribution:

πEK(θ|h̃) =
FEK(θ, h̃)

Z
, (7.27)

where the intractability of the denominator, Z, does not affect the inference if we use
MCMC.

θ

V e
30

Cardio
mechanic
model

y∗0

σ

y∗1:

V Kl
30

Klotz
curve
model

αβ

yex

ω(P )

Figure 7.3: Visualising the model with the empirical Klotz prior. The central branch,
leading to y∗0 and y∗1:, provides the in vivo data model where we match the simulator
predictions with the in vivo measured volume (y∗0) and strains (y∗1:), which are assumed to
be obtained at EDP 8mmHg. Based on the cardiac model, an emulator has been trained
to predict the volume at pressure 30mmHg and the predictive distribution provides a
distribution on the volume, indicated by V e

30. Inferring the Klotz relationship from the
ex vivo data, yex, and estimating V30 from the in vivo volume using (7.17) gives another
distribution on V30, denoted by V Kl

30 in the diagram. Using a product of experts approach,
we assess the similarity of the two different distributions, indicated by the dashed line.
Although the formulation of this model is different from the nonempirical Klotz prior,
including a dependence on both α and β in a rearranged expression for predicting V30
from the in vivo volume (compare (7.17) with (7.8)), the important difference with the
model in Figure 7.2 is the introduction of a connection between the measured volume and
the Klotz curve model, represented by the horizontal arrow exiting the node y∗0.

To summarise: the important difference between the empirical Klotz curve prior and
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the nonempirical Klotz prior is the dependence of the former on the in vivo measured
LVV. The two priors are described in Table 7.1.

Table 7.1: Description of the two different Klotz curve prior models.

Prior Description
nonempirical Klotz prior This uses the normalised form of the Klotz function from

(7.1), not depending on any in vivo end of diastole measure-
ments.

Empirical Klotz prior This uses a rearrangement of (7.1) where we evaluate the
Klotz predicted V30 based on (7.17) using the measured LVV
y∗0.

7.3 Implementation

This section discusses the implementation of the Klotz prior, beginning with the emulators
used to speed-up inference and then the generation of test data to assess the utility of the
priors. The test data will be used in several simulation studies in Section 7.4.

7.3.1 Construction of the in clinic emulators

Efficient inference with the Klotz prior and in vivo likelihood requires two “in-clinic"
emulators that can generalise to unseen LV geometries. Both of these are described in
Table 7.2. The multi-geometry emulator emulates the cardio-mechanical model at in vivo
EDP (8mmHg), taking as input an approximation of the LV geometry at early diastole and
the four material parameters. This emulator is identical to the one explored in Chapter 6,
which required a 5 PC representation of the LV geometry and the four parameter values
of the theta parameterisation of the H-O model, found in (4.2). For training the emulator,
16,000 training points were generated and a neural network was optimised to be used as
the emulator. Further details about this emulator can be found in Chapter 6. For the
Klotz prior evaluation, we require generalised Klotz emulators that are used to predict V20
and V30 for different LV geometries. The input space for these models is 6 dimensional: 4
dimensions for material properties, one for cavity volume and one for wall volume at early
diastole. This means that h̃ is a two-dimensional vector containing the cavity and wall
volumes at early diastole. To train the emulator, 9000 simulations were used, on which the
sparse GP of Titsias (2009) was trained. This GP approximation method was described
in Section 3.4.4. For both sparse GP emulators, 200 inducement points were used.
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Table 7.2: Description of the different emulators used in this study.

Emulator Description Use
Generalised Klotz emulator Emulator constructed over an in-

put space of 4 material properties,
early diastolic cavity volume and
early diastolic wall volume.

In clinic prediction of
volumes at ex vivo
pressure ranges for im-
plementation of Klotz
priors.

Multi geometry emulator The emulator of the cardio me-
chanic model, generalised over 5
dimensional LV geometry repre-
sentations obtained with PCA.

In clinic efficient
approximation of the
simulator model

7.3.2 Test data generation

Exploring the effects of LV geometry approximation

Using six different LV geometries that were excluded from the original PCA analysis during
emulator training, the first simulation study will assess the ability of the empirical and
nonempirical Klotz priors to reduce the error incurred by the LV geometry approximation
in the emulator, as well as the intrinsic identifiability problems in the model. To do so, we
require the gold standard parameters so synthetic data were generated that are consistent
with the Klotz priors to assess the improvement in inference accuracy that can be obtained
under the assumption that the Klotz model is physiologically realistic (which is based on
the evidence provided in the literature cited in Section 7.1). In the generation of these test
data, θ1 and θ4 were fixed at population based averages (this corresponds to fixing them
equal to 1). For each of the six LV geometries, five different parameter configurations were
used, giving 30 test cases in total. Further details on the sampling procedure for test data
generation can be found in Appendix D.5.

Measured data study

As a second study, the task of inferring the material properties from measured CMR scans
is considered. In this case, we do not possess the ground truth parameters. Instead,
the effect the Klotz curve priors have on cardio-mechanic parameter estimation will be
assessed, including the physiological plausibility of this effect. For five different healthy
volunteers, four positions of short-axis cine images from the base to the middle ventricle
were chosen for strain measurements so that the position of the measured strain matched
the position of the model prediction. A B-spline deformable registration approach was used
for estimating segmental averaged circumferential strains at each location (Mangion et al.,
2016a). Following the clinical convention, 6 peak diastolic strains are calculated at four
different short axis slices from the base- to mid-LV. The end-diastolic LV cavity volume
is calculated from short-axis cine images at the end of diastole after manually delineating
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the endocardial boundaries. The LV cavity volume at early diastole was calculated from
the reconstructed LV geometry using the MATLAB function convhull. In total there
were 24 peak diastolic strains and 2 LV cavity volumes (one at early diastole, and the
LVV).

7.3.3 Simulations

Sampling of the material properties is carried out using NUTS with dual averaging step
size adaptation (Hoffman and Gelman, 2014; Betancourt, 2017). The likelihood function
is evaluated using the statistical emulator so no forward simulations are required during
inference. A burnin phase of length at least 5000 was used, continuing until a potential
scale reduction factor (Gelman and Rubin, 1992) of 1.1 was reached and then samples
were taken until an effective sample size (see Section 11.5 of Gelman et al. (2013)) of 100
was achieved. The burnin was then discarded and the sample was used for analysis of the
different methods.

7.4 Results

7.4.1 Comparing low fidelity and high fidelity Klotz priors

In Section 7.3.1, multiple emulators were discussed and summarised in Table 7.2. As
discussed above, the multi geometry emulator was explored extensively in Chapter 6,
where it was found to introduce errors compared to benchmark simulations with a full
LV geometry representation. A similar assessment of the generalised Klotz emulators
is required because these also rely on a summary of the LV geometry at early diastole.
Of interest is the use of these emulators in the Klotz prior models, which is compared
to evaluation of the prior using the high fidelity emulators that were developed for the
generation of the synthetic test data. As discussed in Appendix D.5, these high fidelity
emulators were trained on data in the 2 dimensional θ2−θ3 space, with simulations obtained
using the full LV geometry.

Figure 7.4 shows the comparison of the Klotz prior evaluations. For the nonempirical
prior, this assessment compares evaluations of (7.14) and for the empirical prior (7.26) was
used. The prior surfaces are only compared in the two dimensional θ2−θ3 space, the latter
of which is the parameter we expect to be affected most by the prior information. In the
nonempirical Klotz prior, which is on the left of Figure 7.4, there is quite a large change
in the prior surface. For the empirical Klotz prior, which is on the right of Figure 7.4, the
prior does not change substantially when using the generalised Klotz emulator compared
with a high fidelity emulator. The difference in accuracy of the prior evaluation when using
generalised Klotz emulators is almost certainly related to the fact that the empirical Klotz
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prior depends on only one emulator, while the nonempirical prior depends on emulators
for both V20 and V30.

(a) (b)

Figure 7.4: Comparing the evaluation of the empirical and nonempirical Klotz priors
when evaluated using the generalised Klotz emulators (labelled Emulator) that rely on LV
geometry approximations with high fidelity emulators (labelled exact) that do not rely on
an LV geometry approximation. On the left is the nonempirical Klotz prior (evaluated
using (7.14)) and on the right is the empirical Klotz prior (compared by evaluating (7.26)).
In each plot, the horizontal and vertical axes show the entire physiological range for the
parameters.

7.4.2 Initial prior exploration with high fidelity emulators

Building on Section 7.4.1, this section considers sampling in 2D space, with priors evalu-
ated using the high fidelity Klotz emulators. The top row of Figure 7.5 provides visuali-
sations of the prior surfaces, obtained by evaluation of (7.14) for the nonempirical Klotz
prior and (7.26) for the empirical Klotz prior. In the bottom row, the evaluation of the
log likelihood from (7.7) over the parameter space is plotted. For the estimation of the
cardio-mechanic parameters the data extracted from the CMR scans are informative to
different degrees, generally allowing for accurate estimation of θ2 but not θ32. In light of
this, the contour plot in the top left panel of Figure 5 suggests that with the nonempirical

2Although this general trend is observed, the ability to infer the material parameters changes depending
on their ground truth value, as we saw in Section 6.3.3. For instance, parameters describing a soft material
are easier to learn than those of a stiffer material as a result of the faster varying simulator outputs in
the softer region of space.
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Klotz prior we will achieve little improvement in our inference, in that on estimating θ2
from the CMR data, the conditional probability of θ3 conditional on θ2 remains diffuse.

The problems witnessed in the nonempirical Klotz prior are largely alleviated by con-
sideration of the empirical Klotz prior on the right of Figure 7.5. Here, the introduction
of the measured LVV means that only V30 is predicted using an emulator (see left branch
of Figure 7.3). As a result, the ridge in the prior distribution is re-oriented so that condi-
tioning on θ2 (which can usually be easily estimated from the data as shown in the bottom
right panel of this figure) substantially reduces the uncertainty for θ3. The most likely
reason for this improvement is the fact that one of the two LV volume emulators required
for the nonempirical Klotz prior has become obsolete as a consequence of explicitly in-
cluding the measured LVV. In particular, as we increase pressure, the contours gradually
align more with the θ2 axis. This is precisely what we hope will happen. However, by
standardising V20 with V30 we partially negate this realignment and end up with a density
that is often aligned with the θ3 direction. This effect is visualised in Figure 7.6.
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Figure 7.5: Comparing the shapes of the nonempirical and empirical Klotz priors, from
(7.14) and (7.26) respectively, (top row) and the RSS functions (bottom row) for the in
vivo data: nonempirical (evaluation of (7.14)) on the left, and empirical (evaluation of
(7.26)) on the right. The orientation of the mode in the empirical Klotz prior (top right)
, along with identifiability of θ2 based on the in vivo data, should allow for a reduction
in the uncertainty of the parameters in the model. In the case of the nonempirical Klotz
prior (top left) , the high density ridge is aligned with the θ3 direction. In each plot, the
horizontal and vertical axes show the entire physiological range for the parameters, which
is [0.1, 5].
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V8 V20 V30 V20

Figure 7.6: Change in the shape of the LVV simulated function over parameter space as
the EDP varies. The horizontal axis is θ2 and the vertical axis is θ3. Increasing the EDP
from 8 to 30mmHg aligns the contours more with the θ2 axis. The final plot shows that by
normalising the volume at EDP=20mmHg with the volume at EDP=30mmHg we end up
with a completely new alignment of the surface that is often aligned with the θ3 direction.

Combining the priors from Figure 7.5 with a likelihood function obtained using the
multi geometry emulator, we can sample from the two dimensional posterior of θ2 and
θ3 while fixing θ1 and θ4 to their true values. As a benchmark, this is compared with
posterior samples when adopting a non-informative u(0.1, 5) prior in each dimension. The
posterior density, when using the nonempirical Klotz prior, is shown in Figure 7.7a. For
data generated in the way described in Section 7.3.2, the nonempirical Klotz prior appears
to reduce the uncertainty in the parameters compared with the non-informative prior in
Figure 7.7c but some bias is present in the posterior samples. Using the empirical Klotz
prior, with results shown in Figure 7.7b, the uncertainty in θ3 is reduced compared with
the results of the non-informative prior in Figure 7.7d. In this case, bias is not introduced
to the posterior samples. This initial study demonstrates the potential the empirical Klotz
prior has for improving cardio-mechanic parameter inference.

7.4.3 Assessing the Klotz models with synthetic data

A key question of interest is the following: can the introduction of ex vivo information
help to alleviate any error that is introduced to the inference problem by the LV geometry
approximation while reducing uncertainty in the parameters? With test data generated
as described in Section 7.3.2, this question will now be explored using the generalised
Klotz emulators to efficiently evaluate the Klotz prior models and the multi geometry
emulator to evaluate the likelihood function, both described in Table 7.2. The results will
be assessed both in parameter space and in stress-stretch space.

Beginning with parameter space, the results are evaluated using the squared error,
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(a) (b)

(c) (d)

Figure 7.7: Kernel density estimates obtained using samples from the posterior of the
material properties when ex vivo information is introduced in (a) the nonempirical Klotz
prior (b) the empirical Klotz prior. The red dashed lines show the true parameter values.
Panels (c) and (d) show posterior density plots obtained from samples when assuming a
uniform prior on each of the parameters. In two dimensional plots, θ2 is on the x-axis and
θ3 is on the y-axis, with the entire physiological range plotted. For the 1D density plots,
the horizontal axis shows the entire physiological range.

which is defined as follows:

SEi = (θ̂i − θ̃i)2. (7.28)

In this error function, θ̂i is an estimate of material parameter i and θ̃i is the ground
truth value of this parameter. For each of the six LV geometries, synthetic data have
been generated from five different material parameter configurations. MCMC is then
used to obtain a sample from the posterior distribution of the material parameters for
each of these 30 test cases, providing a distribution of squared errors for each of the four
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material parameters. Given that the performance is measured in absolute terms via the
squared error, the results for all these test cases are combined, separately for each LV
geometry, into one summary in the boxes of Figures 7.8 to 7.11. That is to say that, in
total, each box provides the distribution of SEs obtained from 5 (the number of parameter
configurations per LV geometry used for synthetic data generation) × 100 samples of
the material parameters, where each subset of size 100 is the posterior distribution of
squared errors corresponding to different test parameter configurations. For LV geometry
i, these distributions are labelled as Gi, with separate plots for each of the four material
parameters.

The nonempirical Klotz model

Figures 7.8 and 7.9 display the squared error in parameter samples when adopting the
nonempirical Klotz prior. Considering first Figure 7.8, which shows the results without
including model mismatch, the estimation accuracy of θ2 and θ3 is improved very slightly by
introducing the Klotz information. The distributions of θ1 and θ4 are unchanged, the latter
of which is consistent with our expectations based on the physical interpretation of this
parameter, which governs the shear response of the material. Neither the circumferential
strains nor the volume captures this property. These results are mirrored in Figure 7.9,
where the Klotz model mismatch term was included in the prior, albeit with a smaller
difference between inference with the Klotz prior and inference without. It is worth noting
that the lack of improvement observed with the nonempirical Klotz prior could be partially
attributed to errors observed in the approximation of the LVV, which was shown to affect
the prior evaluation in Section 7.4.1.

The empirical Klotz model

The results obtained in the empirical Klotz prior analysis are shown in Figures 7.10
and 7.11. The former shows the performance when not accounting for the mismatch
in the Klotz model (εP from (7.17)), compared against results with a non-informative
prior on the four parameters. Quite clearly the estimation of θ2 and θ3 is improved while
sampling of θ4 is largely unchanged. Information from the in vivo data is already enough
to identify θ1, so we observe little difference in this parameter. In Figure 7.11, we ob-
serve less improvement upon inclusion of the Klotz model mismatch term (recall that this
stems from the inclusion of the heteroscedastic noise term in the Klotz prior expression,
as discussed below (7.22)). This is exactly as expected given the weaker form of the prior
distribution. The derivation of the empirical Klotz prior used the Gauss error propagation
model. Instead of this, the multivariate delta method could have been used, which would
include the covariance between the two Klotz parameters in the variance calculation in
(7.22). A comparison between the two is made in Appendix D.6 where we see that there
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Figure 7.8: Squared error in samples from the posterior distribution of the material pa-
rameters when using the nonempirical Klotz prior without the Klotz model mismatch
term. Row i gives the results for θi, with the boxplots arranged into the 6 different LV
geometries, denoted by Gi for the ith geometry, with samples obtained while adopting the
nonempirical Klotz prior and a non-informative prior shown side by side in each pair. For
each LV we have 5 parameter configurations and the squared errors from the 100 posterior
samples for each configuration are combined into one distribution of 500 squared errors.
The physiological range for each parameter is [0.1, 5]

is only a small difference in the marginal posterior distributions for each test case.
In light of the superior results with the empirical Klotz prior, the effect of this prior



CHAPTER 7. KLOTZ PRIOR FOR IMPROVED PARAMETER INFERENCE 131

0.0

0.5

1.0

1.5

2.0

Sq
ua

re
d 

er
ro

r Klotz
No Klotz

0.0

0.5

1.0

1.5

2.0

Sq
ua

re
d 

er
ro

r

0

2

4

6

8

10

Sq
ua

re
d 

er
ro

r

G1 G2 G3 G4 G5 G6
0

2

4

6

8

10

Sq
ua

re
d 

er
ro

r

Figure 7.9: Squared error in samples from the posterior distribution of the material pa-
rameters when using the nonempirical Klotz prior with the Klotz model mismatch term.
Row i gives the results for θi, with the boxplots arranged into the 6 different LV ge-
ometries, denoted by Gi for the ith geometry, with samples obtained while adopting the
nonempirical Klotz prior and a non-informative prior shown side by side in each pair. For
each LV we have 5 parameter configurations and the squared errors from the 100 posterior
samples for each configuration are combined into one distribution of 500 squared errors.
The physiological range for each parameter is [0.1, 5]

model is now assessed in more detail. For each test case, we have a sample from the
4 dimensional posterior distribution of the model parameters (the four θ parameters).
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Figure 7.10: Squared error in samples from the posterior distribution of the material
parameters when using the empirical Klotz prior without the Klotz model mismatch term.
Row i gives the results for θi, with the boxplots arranged into the 6 different LV geometries,
denoted by Gi for the ith geometry, with samples obtained while adopting the nonempirical
Klotz prior and a non-informative prior shown side by side in each pair. For each LV we
have 5 parameter configurations and the squared errors from the 100 posterior samples
for each configuration are combined into one distribution of 500 squared errors. The
physiological range for each parameter is [0.1, 5]

Physiologically, these parameters characterise the tissue stiffness, which is more easily
viewed in the stress-stretch space, i.e. by virtually stretching a myocardial strip along
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Figure 7.11: Squared error in samples from the posterior distribution of the material
parameters when using the empirical Klotz prior with the Klotz model mismatch term.
Row i gives the results for θi, with the boxplots arranged into the 6 different LV geometries,
denoted by Gi for the ith geometry, with samples obtained while adopting the nonempirical
Klotz prior and a non-informative prior shown side by side in each pair. For each LV we
have 5 parameter configurations and the squared errors from the 100 posterior samples
for each configuration are combined into one distribution of 500 squared errors. The
physiological range for each parameter is [0.1, 5]

a specific direction uni-axially (Gao et al., 2015). This provides a metric with which to
assess the health of the cardiac tissue that could be used in the clinical setting. Note
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that stress here means the Cauchy stress, which is the actual stress that the myocardium
experiences.

From the parameter samples of each of the 30 test cases, a distribution of stress–stretch
curves was obtained, with one curve for each sample from the posterior distribution of the
material parameters. Similarly, knowledge of the ground truth parameters provides a
ground-truth stress–stretch curve for each test case. Measuring the distance between each
sampled curve and the ground truth curve at each stretch level provides a distribution
of distances that measure the accuracy with which the sampled material parameters can
replicate the tissue behaviour of the ground truth parameters at a given stretch. Plotted
in Figure 7.12 is the proportion of the 30 test cases (recall we have 6 LV geometries
each with 5 test parameter configurations) where the distribution of curves at a given
stretch, obtained from material parameters sampled under an assumption of the empirical
Klotz prior, is significantly closer than the distribution of curves obtained from material
parameters sampled under an assumption of a uniform prior, where closeness is measured
by distance to the ground truth stress–stretch curve. A significant difference between the
distributions of distances, which is assessed via the one-sided Mann-Whitney U test at
a 5% level (Mann and Whitney, 1947), signifies that the stress–stretch curves obtained
from the samples under an assumption of the empirical Klotz prior are significantly closer
to the ground-truth stress–stretch curve than the stress–stretch curves obtained under an
assumption of a uniform prior on the material parameters (note that a lack of significance
does not imply a deterioration). This same procedure is repeated—checking for significant
improvements in the stress–stretch curve estimation—to check for improvement when using
the uniform prior with the proportion of significant results also plotted in Figure 7.12. At
the majority of stretch locations we observe an improvement upon introduction of the
empirical Klotz prior, but there is a dip in the proportion of significant improvements
around stretch 1.12 for the myocyte direction and 1.2 for the sheet direction. Looking at
the number of significant improvements when adopting the uniform prior we see a reverse of
this pattern, but the proportion of significant improvements with the uniform prior is low,
reaching a peak of around 0.2 in the no model mismatch case. The corresponding stretch,
where proportion of improvements with the empirical Klotz prior is low, is at a level where
behaviour of the myocardium can be inferred from the in vivo data alone. Moreover,
the fact that we do see a few cases where the inference is better with a uniform prior
is not surprising since the effect of the Klotz prior distribution is to act as a regulariser,
potentially introducing a small bias to the parameter estimates at the in vivo location while
allowing for improved estimation in the ex vivo domain. This will be further discussed in
the discussion section.
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Figure 7.12: Using stress–stretch curves to compare the performance of the empirical Klotz
prior, with and without model mismatch as discussed below (7.22), and a uniform prior.
Two different cases are considered: 1. if the empirical Klotz prior without model mismatch
improves upon a unif(0.1, 5) prior (K no mismatch) and 2. if the empirical Klotz prior
with model mismatch improves upon a unif(0.1, 5) prior (K mismatch). The plots show
the proportion of test cases where we find a significant improvement in our inference when
using the empirical Klotz prior, assessed by comparing the distribution of distances of the
sample of stress–stretch curves obtained under an assumption of the different priors. To
complete the study, improvement was also tested in the other directions: 1. if a unif(0.1, 5)
prior improves upon the empirical Klotz prior without model mismatch (U no mismatch)
and 2. if a unif(0.1, 5) prior improves upon the empirical Klotz prior with model mismatch
(U mismatch), assessing improvement as before.

7.4.4 Inferring parameters from real data

Finally, the task of inferring material properties from real measured data of five healthy
volunteers is considered. The data measuring procedure was outlined in Section 7.3.2. This
time, the strains and LV volume are subject to measurement error, inevitably affecting
the parameter estimation both with and without the Klotz prior. Results for two of the
examples are shown in Figure 7.13 (one subject in (a) and one in (b)). In Appendix D.7, the
full samples of curves for all five real data cases are provided. Again, only the empirical
Klotz prior is considered and, given that real data are used, we do not possess ground
truth material properties so inference will only be assessed in stress–stretch space. In
both test cases shown in Figure 7.13, which show inference with the introduction of the
empirical Klotz prior without Klotz model mismatch, the stress in the upper stretch region
is reduced, signifying a softer material than is described when we do not introduce the
Klotz curve.

An important difference between the results with and without the Klotz prior is that
without the Klotz prior, mismatch between the measured strains and volumes can lead
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us to sample material properties at which the model predicted V30 is smaller than the
observed V8, violating the “Frank–Starling” law of the heart (Moss and Fitzsimons, 2002).
Essentially, the problem is that the measured circumferential strains imply material pa-
rameters that are far stiffer than those suggested by the LVV measurement. More detail on
this mismatch will be provided in Chapter 9. Introducing the Klotz information helps to
alleviate this problem by balancing the weights between the measured strains and volumes.
Thus the material property prediction with Klotz information will be physiologically more
realistic within a wide range of LV pressures covering from in vivo to ex vivo.
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Figure 7.13: Stress–stretch samples for two real test cases (left and right). From a sample
of material parameters, obtained from the posterior distribution of the material parameters
for each real test case, we obtain a sample of stress–stretch curves. These stress values
are then plotted as points at the different stretch locations along the myocyte (top) and
sheet direction (bottom). Inference results are compared with prior knowledge expressed
through the uniform prior on material parameters (grey dots) and the empirical Klotz
prior on the material parameters (white dots). The physiological range for the stress is
less than 100 kPa.

7.5 Discussion and conclusion

7.5.1 Discussion of results

The work in this chapter has adopted an approximation to the in vivo likelihood function in
the form of a statistical emulator. This provides a computationally efficient approximation
to the true model, but was shown in Chapter 6 to introduce some error as a result of the LV
geometry approximation and the difficult emulation problem in nine dimensions. The work
in the current chapter aimed to mitigate any errors through the introduction of ex vivo
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information to the parameter inference scheme in the form of Klotz prior distributions. The
results of the study showed that the introduction of this extra information does allow us to
reduce the posterior uncertainty in θ3, which characterises myofibre stiffening under higher
pressure. The idea of introducing information from the Klotz curve to assist with inferring
this behaviour is not novel, but the formulation of this information as a prior distribution
has never been presented before. Importantly, this allowed for the implementation of
Bayesian inference schemes that account for the uncertainty in the material parameters.

The first Klotz paradigm presented in this chapter considered the normalised form of
the Klotz curve in a prior named the nonempirical Klotz prior. The presence of both V20
and V30 in the Klotz function in (7.8) via (7.1) is potentially the cause of two issues in the
prior. The first of these is a problem of identifiability, which is a fundamental property
of the prior, and not a result of the particular implementation in this study. As shown in
Figure 7.6, the normalisation of V20 by V30 gives a function such that material parameter
configurations that give very different V20 and V30 predictions, and therefore represent
different physiological behaviours, are evaluated equally. While the nonempirical prior
was shown to massively reduce the uncertainty in the 2D problem in Figure 7.5, it was
found to give very little benefit in four dimensions. The problems with the nonempirical
prior motivated the development of the empirical Klotz prior, where V30 is expressed as
a function of the empirical LVV measurement at pressure 8mmHg. The results showed
that, in the context of inference with a statistical emulator, the inclusion of an in vivo
LVV measurement in the Klotz prior proves to be important for achieving a performance
improvement in the inference scheme. The second issue with the nonempirical prior relates
to the way that it was implemented for the work in this chapter. By summarising the LV
geometry with the cavity volume and wall volume, an error was introduced to both Klotz
prior evaluations, and this was more substantial in the case of the nonempirical prior, as
shown in Figure 7.4. The reason for the extra error in the nonempirical Klotz prior is the
presence of two emulated volumes in this model. While the presence of extra emulator
error is a confounding factor in the comparison of the Klotz priors, we could also regard
the absence of the V20 emulator from the empirical prior as one of its strengths.

The empirical Klotz prior was found to improve inference in parameter space in Sec-
tion 7.4.3, while in Figure 7.12 it was shown that this leads to significant improvements
in the estimation of stress–stretch behaviour at the majority of stretch locations. While
the Klotz curve is quite widely used in the literature to assist with parameter estimation,
it does remain a slightly contentious subject. The conditions in which the Klotz data
were measured (ex vivo) inevitably change the dynamics of the LV, and may affect the
compatibility of any Klotz-based loss functions or prior distributions with models of the
in vivo LV. In reality, any mismatch between the behaviour of the in vivo and ex vivo left
ventricle—or the consideration of a left ventricle that violates the Klotz curve relation—
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will lead to a bias in the parameter estimates, particularly those parameters that relate to
the behaviour of the tissue in the high stretch regime such as θ3. It is important to note,
however, that the effect of the Klotz prior is also to reduce the variance in the posterior
samples. Considering the bias-variance decomposition of the generalisation error of the
model, the prior will act to reduce the variance term while incurring a small increase in
the bias (see Section 3.2 of Bishop (2006) for more details). In this sense, the overall effect
of the Klotz prior will be to improve the generalisation error in much the same way as any
regularisation method from statistics.

There are some limitations in the methodology. Currently, the statistical emulator
for the in vivo predictions does not account for differing patient pressures in the input
space. This limits the applicability of the model to healthy volunteers, since this pressure
assumption is only valid for this cohort. It is likely that the generalisation of the input to
different end diastolic pressures would increase the uncertainty in the material properties
since the uncertainty in the pressure measurement must also be accounted for in the
parameter inference scheme. A second limitation of the work in this study is the use
of the LV geometry at early diastole as the unloaded state (with zero pressure in the
LV cavity). This approximation, which is required for evaluation of the Klotz priors in
(7.14) and (7.26) where both µi(θ, h̃) terms depend on V0, also introduces error to the
in vivo likelihood for measured data and future work will aim to estimate the unloaded
configuration, as has been done in the recent literature (Wang et al., 2020). Another issue
encountered was the informativeness of the measured data, particularly with reference to
parameters θ3 and θ4. Of course, this is precisely what we attempt to overcome with the
use of the Klotz curve, but it would be preferable to use information in the measured data
to resolve the issue. An interesting line of future research would consider other strain
measurements, like radial and longitudinal strains, when estimating the parameters, but
current methods for extraction from CMR scans are inaccurate. The sensitivity of the
radial and longitudinal strains to the inputs of the H-O model will be explored further in
the next chapter.

7.5.2 Conclusion

The use of statistical emulators is critical for the translation of cardio-mechanical models
to the clinical setting. In particular, these models are thought to hold potential for person-
alised healthcare, which requires patient specific measurements of LV geometry, pressure
and other anatomical features. Unfortunately, the inclusion of the LV geometry in the
emulator is confounded by the dimension of the representation, necessitating the use of a
generalised emulator like the one explored in Chapter 6, and implemented in this chapter.
The approximation of the LV geometry introduces errors to the model that exacerbate
the weak identifiability of the H-O model. With the introduction of ex vivo information
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via the Klotz curve, the methods in this study have partially alleviated these issues. In
particular, the prior was successful in reducing the uncertainty in the weakly identifiable
θ3 parameter. By generating synthetic data that are consistent with the empirical Klotz
function, it was shown that this ex vivo information leads to a significant bias and un-
certainty reduction for one of the two Klotz prior models proposed (the empirical Klotz
prior). For measured datasets, the ability of the Klotz curve to alter the inferred behaviour
of the myocardium in the ex vivo domain was presented, reducing the uncertainty about
this behaviour. The results of this study, which confirm that certain parameters affect the
behaviour of the tissue at higher pressures, motivate a proper sensitivity analysis of the
H-O model that accounts for different end diastolic pressures in the model. This will be
the subject of the next chapter of this thesis, returning to the original parameter space of
the H-O model from (8.1).



Chapter 8

A combined sensitivity analysis and
inverse uncertainty quantification study
of the H-O model

Up to this point a fixed reparameterisation of the H-O model, originally given in (4.2),
has been considered. This was motivated by the work of Gao et al. (2015), as well as
our understanding of the physiological meaning of the parameters. Instead of taking this
parameterisation as a given, it is important that a proper, global, sensitivity study is
carried out, providing a quantitative justification for a new parameterisation of the H-O
model. Additionally, we should also be interested in the practical identifiability of the
parameters of the model, which tells us how well the parameters can be estimated in
light of the measured data. This chapter considers these two critical analyses for the H-O
model, using global sensitivity analysis (SA) to assess structural identifiability, and inverse-
uncertainty quantification (I-UQ) to assess practical identifiability. The SA is carried out
on a range of different input parameters to the LV model, making use of computationally
efficient GP surrogate models in place of the numerical forward simulator. The results
of the SA are then used to inform a low-order reparameterisation of the constitutive law
for passive myocardium. The quality of this parameterisation in the context of an inverse
problem having observed noisy experimental data is then quantified with an I-UQ study,
which again makes use of GP surrogate models. The I-UQ is carried out in a Bayesian
manner using Markov Chain Monte Carlo, which allows for full uncertainty quantification
of the material parameter estimates.

This chapter reveals insights into the relation between SA and I-UQ, elucidates the
dependence of parameter identifiability on external factors, like LV cavity pressure, and
sheds new light on cardio-mechanic model formulation, with the particular focus on the
H-O myocardial model. This work has been submitted for review to Biomechanics and
Modelling in Mechanobiology, and is joint work with David Dalton, Dirk Husmeier and
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Hao Gao. All authors contributed to the design and building of the emulators while David
carried out the SA and I carried out the inverse uncertainty quantification. All authors
were involved in discussions throughout the project and contributed to all studies in this
manner. The extensive literature review was carried out by the entire group.

8.1 Background

Ever since the publication of the seminal white paper by Mirams et al. (2016), the cardio-
physiological modelling community has appreciated the importance of allowing for vari-
ability and uncertainty in their computational and mathematical models. The present
work distinguishes between sensitivity analysis (SA) and uncertainty quantification (UQ)
in the way depicted in Figure 8.1. SA focuses on structural identifiability, i.e. whether
parameters are unidentifiable as a result of the model structure per se. This is closely
related to forward uncertainty quantification (F-UQ), where the aim is to establish how
uncertainties in model inputs (such as parameters) affect the model output, and is rep-
resented by the upper arrow in Figure 8.1. Since structural identifiability is an intrinsic
feature of the model, the analysis is a priori in nature, meaning that it can be carried out
based on the model alone, without the need for any measurements or experimental data.

I-UQ focuses on practical identifiability. When parameters are unidentifiable as a
result of practical restrictions related to limited availability and quality of data, they are
referred to as practically unidentifiable. I-UQ is therefore a posteriori in nature, meaning
conditionally dependent on the experimental data, and this is represented by the bottom
arrow in Figure 8.1.

SA can be conceptually divided into local and global SA; see Smith (2014) and Morio
(2011) for a review. Local SA merely analyses how small perturbations near an input
space value influence the output of the model. Global SA, originally introduced by (Sobol,
2001), is a more powerful global approach that has been promoted by Saltelli et al. (2010)
via the design of computationally efficient quasi-Monte Carlo sampling techniques, and
is increasingly being used for the analysis of complex biological systems (Jarrett et al.,
2015).

SA techniques have been widely applied in haemodynamic and cardio-vascular mod-
elling. Melis et al. (2017) have carried out global SA for a range of 1D vascular circulation
models, following the procedure of Saltelli et al. (2010) and using Gaussian process emu-
lation to reduce the computational complexity. Eck et al. (2016) have compared Monte
Carlo and polynomial chaos methods for global SA in 0D and 1D cardiovascular circulation
models. Marquis et al. (2017) and Colebank et al. (2019) have combined SA and I-UQ for
cardiovascular modelling, by first using SA to select a subset of identifiable parameters,
and then using both frequentist and Bayesian I-UQ techniques to obtain confidence and
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Model Data

Sensitivity Analysis (SA)

Inverse Uncertainty 
Quantification (I-UQ)

Forward Uncertainty Quantification (F-UQ)

Figure 8.1: Illustration of sensitivity analysis (SA) and uncertainty quantification (UQ).
SA and forward uncertainty quantification (F-UQ) are a priori in nature and focus on
structural parameter identifiability. Inverse uncertainty quantification (I-UQ) is a poste-
riori in nature and focuses on practical parameter identifiability.

credible intervals of the identifiable parameters. While the first study was restricted to
local SA, the second study applied both local and global SA. SA and F-UQ have also been
applied to arterial wall mechanics for evaluation of vascular drug therapies (Heusinkveld
et al., 2018).

There have been various applications of SA and F-UQ in cardiac electrophysiology
(Clayton et al., 2020; Pagani and Manzoni, 2021; Mirams et al., 2016), cardiac mechanics
(Rodriguez-Cantano et al., 2018; Campos et al., 2019; Kallhovd et al., 2019) and coupled
electromechanics (Hurtado et al., 2017; Levrero-Florencio et al., 2020; Rodero et al., 2021).
The focus of the present article is on cardiac mechanics, which requires a review of the
recent work on SA and UQ in this field in more detail. An overview can be found in
Table 8.1.

Osnes and Sundnes (2012) have investigated F-UQ and global SA for the LV passive
filling phase using an idealised geometry and a Fung-type constitutive law, with a focus
on replacing intrusive methods (i.e. methods that modify the simulation code) with non-
intrusive methods (i.e. methods that do not require changes in the simulation code).
The impact of constitutive parameters and fibre orientation uncertainties on ventricular
dynamics (LV cavity volume, apex lengthening and rotation, wall thickness) were studied,
and they found that the overall stiffness and cross-fibre stiffness had the greatest influences
on selected model outputs, while fibre orientation had a minor influence on apex rotation.
Rodriguez-Cantano et al. (2018) have extended this work with a focus on the impact of
uncertainties in material parameters and fibre orientation field on LV mechanics during
diastolic filling. The fibre field variation was approximated using a truncated Karhunen-
Loeve expansion, and a polynomial chaos expansion-based method was adopted for F-UQ
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Table 8.1: Summary of UQ and SA studies on cardiac mechanics
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analysis in a more realistic LV model compared to Osnes and Sundnes (2012). Similar
results were reported in Barbarotta and Bovendeerd (2021). Campos et al. (2019) have
extended global SA and F-UQ analysis in LV passive mechanics by considering geometrical
uncertainties like wall thickness variation, and they suggested that LV passive mechanics
may be more affected by wall thickness than material properties. Later, they (Campos
et al., 2020) further extended the similar analysis to a full cardiac cycle by taking into
account uncertainties in active stress and the circulatory model. They found that LV
ejection fraction and ventricular torsion were very sensitive to active stress, wall thickness
and fibre direction, but not the passive material parameters, which was different from the
SA and F-UQ in LV passive mechanics.

The aforementioned studies (Osnes and Sundnes, 2012; Rodriguez-Cantano et al., 2018;
Osnes and Sundnes, 2012; Campos et al., 2019, 2020) used a transversely isotropic Fung-
type constitutive law. Recent studies have demonstrated that the myocardium is an
orthotropic material with three mutually orthogonal principal axes (Dokos et al., 2002;
Holzapfel and Ogden, 2009; Sommer et al., 2015), and for that reason, a few orthotropic
nonlinear constitutive laws have been proposed, including the widely used H-O model
developed by Holzapfel and Ogden (2009).

For the H-O model, Gao et al. (2015) performed local SA for the passive myocardial
properties using a patient-specific LV geometry and found that the LV passive mechanics
are highly sensitive to the isotropic stiffness and myofibre stiffness. They also found that
the parameters in the H-O model are highly correlated. This correlation between the pa-
rameters has motivated various reparameterisations of the model that will be discussed in
Section 8.2.2, as well as the parameterisation used in the preceding chapters of this thesis.
Levrero-Florencio et al. (2020) studied local/global SA in an idealised LV electromechani-
cal model with a focus on LV pump function by treating the cross-fibre stiffness as the only
uncertain parameter in the H-O model. To the best of our knowledge, a comprehensive
global SA and I-UQ analysis using the H-O model has not been reported in the literature
despite its wide application in cardiac mechanics (Gao et al., 2017; Sahli Costabal et al.,
2019).

This work aims to complement previous work on SA and F-UQ in cardio-mechanics
models (Osnes and Sundnes, 2012; Rodriguez-Cantano et al., 2018; Campos et al., 2020)
by including I-UQ with a focus on the H-O model in the LV passive filling. To paraphrase
this with reference to Figure 8.1: while the previous studies cited above have carried out
UQ that is intrinsically a priori in nature (F-UQ), focusing on structural parameter identi-
fiability corresponding to the top arrow in the diagram. This work is complemented with a
dimension that is a posteriori in nature, corresponding to the bottom arrow in Figure 8.1.
This makes it possible to additionally quantify the degree of practical parameter identi-
fiability, in light of experimental data. This work extends the work of Gao et al. (2015)
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by carrying out global rather than local SA, and systematically combining it with I-UQ.
This study is conceptually related to the work of Marquis et al. (2017) and Colebank et al.
(2019), but shifts the focus from cardiovascular to cardio-mechanics modelling. Besides
gaining methodological insights into the relation between structural and practical param-
eter identifiability in the context of the LV passive mechanics, this work leads to a better
understanding of the appropriate level of complexity for constitutive cardiac mechanics
models, with a particular focus on the H-O strain energy function.

8.2 Methods

The objective of this chapter is to perform SA and I-UQ for the parameters of the H-O
model, with the SA proposing a new parameterisation that can be explored using I-UQ.
Section 8.2.1 revisits the model of interest, namely the H-O model, while briefly discussing
some existing reparameterisations that have been adopted in the literature. Section 8.2.3
gives a summary of the global approach to SA that will be used to quantify the importance
of the input parameters of this model. A more detailed overview of SA was provided in
Section 3.1.3. Section 8.2.4 describes the concept of surrogate modelling, which allows for
the global SA to be carried out at significantly lower computational expense, and finally
Section 8.2.5 details the Bayesian approach used to perform I-UQ.

8.2.1 Left Ventricular Forward Model

Patient-specific LV Geometry

In this study, a cardiac magnetic resonance (CMR) imaging derived LV model of a healthy
volunteer (male, 43 years) is chosen from previous work (Gao et al., 2017), which was
reconstructed from both the short and long axial CMR cine images at early diastole
following existing studies (Genet et al., 2014b) and the method outlined in Section 5.2.1.
The LV geometry, which is displayed in Figure 8.2 (a), was discretised using hexahedral
elements. Further details of LV geometry reconstruction can be found in Li et al. (2020a)
and the discussion in Section 5.2.1.

It is common practice to incorporate the layered myofibre structure in LV models.
Due to the extreme difficulty of imaging myofibres in vivo, a rule based method (RBM)
was adopted for describing the myofibre structure (Wang et al., 2013a), in which a local
material coordinate system was defined, the so-called fibre (m)–sheet (s)– sheet-normal (n)
system that was shown in Figure 2.4. In the present study, the fibre angle varied linearly
from αendo at the endocardium to αepi at the epicardium, with the sheet orientation along
the transmural direction. This same method was used to generate the fibre directions in
the simulator for the preceding work in this thesis.
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(a) (b)

Figure 8.2: A reconstructed LV geometry with indications of 4 short-axis slices from
the base to the mid-ventricle (a), and schematic illustration of 6 segmental regions for a
selected short-axis slice following the AHA division convention. infsept: inferior septum;
antsept:anterior septum; ant: anterior; antlat: anterior lateral; inflat: inferior lateral; inf:
inferior. The strain regions were similarly visualised in Figure 2.3.

8.2.2 Constitutive Law of the Myocardium

The passive myocardium is considered an incompressible, anisotropic and hyperelastic
material, described by the constitutive law introduced by Holzapfel and Odgen (Holzapfel
and Ogden, 2009):

Ψ =
a

2b
[exp {b (I1 − 3)} − 1]

+
∑
i∈{f,s}

ai
2bi

[
exp

{
bi (max(I4i, 1)− 1)2

}
− 1
]

+
afs
2bfs

{
exp

(
bfsI

2
8fs

)
− 1
} (8.1)

Implementation in the simulator requires the specification of 8 different material parame-
ters: a, b, af and bf, as, bs, afs and bfs, all related to different properties of the myocardial
tissue. The H-O model is combined with a set of momentum balance equations to simu-
late the behaviour of the LV in diastole. Further details on this model can be found in
Section 2.2.

The H-O model has been used widely in personalised cardiac modelling in recent years
(Gao et al., 2017; Palit et al., 2018b; Baillargeon et al., 2014; Sahli Costabal et al., 2019;
Guan et al., 2019). Due to the poor identifiability of some parameters, different reduced
forms have been proposed in the literature, which generally fall into two frameworks. The
first of these is to introduce scaling parameters that link multiple parameters together.
For example, Palit et al. (2018b) used a four dimensional parameterisation, a, b,Ka,Kb
where Ka and Kb scale the remaining a and b parameters of the H-O model. Further
examples of this type of reparameterisation can be found in the literature (Gao et al.,
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2015) and in Section 4.1.2. The alternative approach is to also ignore several parameters,
either by fixing them to constant values or removing them from the model altogether.
Krishnamurthy et al. (2013a) removed the terms depending on as.bs, afs, bfs from the model.
Hadjicharalambous et al. (2015) set as and afs equal to 0 and fixed b and bf to constant
values, leaving two unknown parameters (a and af). They further showed the bijectivity of
the map from this two dimensional parameter space. However, this bijectivity only holds
in the case where the end diastolic pressure of blood within the cavity (EDP) is known and
b and bf are fixed. With this in mind, they further proposed learning a ratio of a and af
in the real data case when EDP is not known in advance. This method has been adopted
in more recent work (Asner et al., 2016; Hadjicharalambous et al., 2017, 2021). None of
the above reparameterisations are based on a comprehensive global sensitivity study, but
from empirical observations and intuitive insights of myocardial behaviours. The current
study is the first to motivate a reparameterisation using a proper sensitivity analysis.

Input Parameters

A total of eleven input parameters to the H-O model are considered as random in the SA
experiments. They are the eight material parameters from (8.1): a, b, af, bf, as, bs, afs, bfs,
EDP, and two fibre rotation angles of the RBM for fibre generation: αendo and αepi. Each
input parameter is considered independently and randomly distributed within the intervals
given in Table 8.2 based on a previous study (Gao et al., 2017). Two different forms of
input parameter distributions are considered in the SA experiments, as will be discussed
in Section 8.3.1. For the I-UQ study, interest lies in inferring the material parameters for
fixed fibre angles over a range of different pressures. The reasoning for fixing the fibre
angles will be discussed in Section 8.2.5.

Table 8.2: Model input parameters with bounds based on Gao et al. (2017)

Bounds
Input Unit Lower Upper

a kPa 0.1 10
b - 0.1 10
af kPa 0.1 10
bf - 0.1 10
as kPa 0.1 10
bs - 0.1 10
afs kPa 0.1 10
bfs - 0.1 10
EDP mmHg 4 30
αendo Degrees -90 0
αepi Degrees 0 90
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Quantities of Interest

Four different types of end-diastolic response of the LV model will be considered as quanti-
ties of interest (QoIs) for the experiments in this study: LV cavity volume at end diastole
(LVV), as well as segmental circumferential (εcc), radial (εrr) and longitudinal (εll) strains.
These were all visualised in Figure 2.3, and are formally defined as follows:

εcc = c ·
(
1
2
(FT

edFed − I)c
)
,

εll = l ·
(
1
2
(FT

edFed − I)l
)
,

εrr = r ·
(
1
2
(FT

edFed − I)r
)
,

(8.2)

where c, l, r are the unit circumferential, longitudinal and radial directions, and Fed =

∂z0/∂z1 with z0 the position at early diastole and z1 the position at end diastole. Note
that all strains are calculated with respect to the end-diastolic phase to be consistent with
clinical convention.

To extract the segmental strains from the deformed mesh at end of diastole, the clinical
convention (which is the convention used throughout this thesis) is used, dividing the LV
circumferentially into 6 segments, as visualised for a CMR scan in Figure 8.2 and presented
in Figure 2.3. Normally, 4 short-axial slices are available from the most basal region to the
middle of the LV, and dividing each slice into the 6 segments gives a total of 24 segments
on the LV. For each of these segments an averaged peak strain is calculated, providing 24
simulated strains at end of diastole. In the SA study only one segmental strain region is
used because the sensitivity is similar for all segments. Specifically, and with reference to
Figure 8.2, the segmental circumferential strain, segmental longitudinal strain and radial
strain at the inferior lateral segment from Slice 2, denoted as ε∗cc, ε∗ll, ε∗rr, respectively, were
used. Here ∗ indicates that the strain is taken from a preselected segment. For the I-UQ
study (see Section 8.4), all 24 segmental circumferential strains are used, which means an
inverse problem identical to the ones in the preceding chapters of this thesis.

8.2.3 Sensitivity Analysis

An overview of SA was provided in Section 3.1.3 and a high level summary will be provided
in this section. The cardio-mechanic forward model described in Section 8.2.1 is imple-
mented as a simulator, ζ, that, for a fixed LV geometry, maps a set of input parameter
values θ = (θ1, θ2, ...θD) to associated output quantities of interest, y1, y2, ...yM :

f(θ1, θ2, ...θD) = (y1, y2, ...yM). (8.3)

In this case, D = 11, corresponding to the eleven input parameters outlined in Sec-
tion 8.2.2, while the M outputs can be chosen to be any of the quantities of interest
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detailed in Section 8.2.2. The first-order sensitivity index, denoted Sji, of input parameter
θi for output yj is defined as:

Sji =
Vθi [Eθ∼i [yj | θi]]

V[yj]
, (8.4)

where the notation θ∼i denotes the vector of all the random inputs except from θi. The first
order index does not account for interaction effects between different input parameters.
For this purpose, we must use the total-effect index, Tji, for each input θi, which is defined
with respect to output yj as:

Tji =
V[yj]− Vθ∼i [Eθi [yj | θ∼i]]

V[yj]
,

=
Eθ∼i [Vθi [yj | θ∼i]]

V[yj]
.

(8.5)

Due to the computational costs of the simulator, an emulator will be used for the SA, as
has been done in the literature (see Melis et al. (2017); Rodriguez-Cantano et al. (2018);
Gramacy (2020, Chapter 8)). This means replacing yj with its emulated quantity.

8.2.4 Surrogate Modelling

A GP will be used to emulate the simulator function, requiring the selection of mean and
covariance functions. In the present study, a zero mean function was used as all outputs
were standardised to mean zero and unit variance before training. For the covariance
function, the squared exponential function will be used, with separate lengthscales for
each input dimension allowing for automatic relevance determination (recall that this
allows for the changing influence of the input dimensions on the function):

k(xi,xj) = σ2
f exp

(
−1

2

D∑
k=1

(xik − xjk)2
λ2k

)
+ η2δij. (8.6)

The quantity η2 is a small nugget term added to ensure numerical stability when calculating
the predictive distribution of the GP. As discussed in Section 3.4.1, the properties of the
kernel are governed by its hyperparameters σf , λ1, λ2, ...λk, η, and their values can be
tuned to allow the GP to best represent the true underlying function. In the current
study, this will be done by setting the hyperparameters to those values that maximise the
log marginal likelihood of the training data. While fully Bayesian approaches are possible
for fitting the hyperparameters, obtaining a point estimate in this manner is the most
common approach in the GP literature. This is because the number of hyperparameters
is relatively low when compared to flexible parametric models, and for sufficiently large
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training sets the posterior distributions tend to be highly peaked.
The posterior mean of the GP gives the best estimate for the unknown true function

values under quadratic loss. Using this point estimate to compute the Sobol indices allows
for efficient calculation that is multiple orders of magnitude quicker than directly using the
numerical forward model. However, in addition to a best point estimate, the GP returns
a full posterior probability distribution over the unknown function values. Oakley and
O’Hagan (2004) incorporate this uncertainty analytically in their Bayesian approach to
SA, but this requires assumptions are made about the distribution of the inputs to the
model. To include this extra uncertainty we can follow the approach detailed in Gramacy
(2020, Chapter 8) and, instead of plugging in a single point estimate to compute the
Sobol indices, draw an ensemble of samples from the posterior distribution of the GP, and
compute the Sobol indices for each sample. The uncertainty in the value of the indices can
then be quantified by calculating summary statistics of the resulting ensemble of index
values.

8.2.5 Posterior Parameter Inference

For a given patient, a fixed but unknown set of material parameters is assumed. Mea-
surement of these parameters would require mechanical tests on a sample of dissected my-
ocardium, so these can instead be inferred from measurements of circumferential strains
and LVV obtained in vivo. Parameter estimation for a specific patient requires that we
specify suitable physiological conditions—the EDP and fibre angles—which were treated
as random variables in the SA study. As discussed in Section 8.2.2, the fibre angles will
be fixed for the I-UQ study. This is motivated by the fact that in vivo estimation of these
angles will be available with further development of already existing techniques (Toussaint
et al., 2013; Khalique et al., 2020).

From the model, we obtain 24 circumferential strains s = {εicc, i = 1, ..., 24}, and a
prediction of the LVV V . The measured quantities, y∗, are assumed to relate to these
predictions through the following noise model:

y∗ = (V, s) + ξ, (8.7)

where (V, s) is the concatenation of the volume prediction and strain predictions and ξ is a
random variable representing the additive noise. Future work could also include segmental
radial and longitudinal strains in this model, but currently there is no method for obtaining
these at high precision from CMR images. Therefore, excluding these from the model
better resembles what would be feasible with currently available measured data. In the
preceding chapters of this thesis, this model was assumed to be iid Gaussian, with the
standardised volume and strains corrupted by the same level of Gaussian noise. However,
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a more accurate representation of reality is to assume that the volume is corrupted by a
separate, smaller, variance than the circumferential strains:

y∗0 = V + ξ0, y∗1: = s + ξ̃, (8.8)

where ξ0 ∼ N (0, σ2
0) is a random variable representing the additive Gaussian noise on the

volume and ξ̃ ∼ MVN(0, σ̃2I) is a random variable representing the additive iid Gaussian
noise on the circumferential strains. Given that σ2

0 is the variance of the noise on only one
measurement, this parameter is non-identifiable. As a result, we must fix this variance
during inference to a value obtained in empirical studies. The assumption that the 24
circumferential strains are all corrupted by Gaussian noise with the same variance ensures
that the other variance parameter, σ̃2, can be inferred along with the material parameters.
The noise model from (8.8) gives rise to the following log-likelihood function:

l(y∗ | θ, σ̃2) =− 1

2
log(σ2

0)− 1

2σ2
0

(y∗0 − ζ0(θ))2

− 24

2
log(σ̃2)− 1

2σ̃2

24∑
i=1

(y∗i − ζi(θ))2,

(8.9)

where ζi(θ) is the ith circumferential strain prediction at material parameters θ and ζ0(θ)

is the simulated LVV. Unlike the SA study, θ does not contain all the 8 parameters from the
H-O model (8.1). Instead, the SA study results are used to inform a new parameterisation
of the H-O model where some parameters are held fixed. Different from previous chapters
in this thesis, the dependence of the simulator on the LV geometry is not explicit here.
This is because the LV geometry was fixed throughout the study.

As in previous chapters, the high computational cost of the simulator necessitates
the use of a surrogate model. For this purpose, a GP model will be used in order to
be consistent with the choice of surrogate model for the SA study. In Appendix B.2, the
integration of the predictive variance out of the loss function was considered, and a similar
approach could be used here to give a likelihood function that incorporates both the mean
and variance of the GP posterior distribution. Unfortunately, the computational costs
of this approach are huge when we consider large training datasets. For this reason, the
uncertainty in the posterior distribution of the GP will not be accounted for in the I-UQ.

A Bayesian approach will be taken to parameter inference, using MCMC to sample
from the posterior distribution of the material parameters. This requires the selection of
a prior distribution, for which a uniform prior will be used with bounds selected according
to Table 8.2. Combining the prior and the likelihood, samples are obtained from the
posterior distribution of the parameters using NUTS (see Section 3.2.5), with 5 parallel
chains used to check for convergence using the PSRF (see Section 3.2.4). In total, 1000
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samples were drawn using MCMC, before thinning to obtain the final summary of the
posterior distribution.

8.3 SA Simulation Studies

Two SA experiments have been carried out for the H-O model. Section 8.3.1 gives the
details of the two experimental studies, before Sections 8.3.2 and 8.3.3 describe how GP
surrogate models were trained and validated. Finally, the experimental results obtained
using the surrogates are presented and discussed in Section 8.3.4.

8.3.1 Experimental Setup

Sensitivity Analysis One

In the first numerical experiment, which is referred to as Sensitivity Analysis One (SA1),
an SA is performed with all eleven input parameters detailed in Section 8.2.2 considered
as random variables. The analysis is performed for four different output quantities: LVV,
ε∗cc, ε∗ll and ε∗rr. For brevity, each strain value is considered only in the inferior lateral
segment at slice 2 from Figure 8.2, as the SA results for each strain type are similar across
the 24 segmental strain regions. To examine the influence on the SA results of the prior
distribution for the eight material parameters, two prior distributions are considered. In
the first experiment, the material parameters are considered to be independently uniformly
distributed between the bounds given in Table 8.2. This is referred to as the uniform-prior.
In the second experiment, the material parameters are considered to be independently
uniformly distributed on the log-scale between these bounds. This is referred to as the
log-uniform prior. For both priors, the non-material parameter inputs: EDP, αendo and
αepi, were considered independently uniformly distributed between the bounds stated in
Table 8.2. The computation of the Sobol indices (8.4) and (8.5) was performed using the
Python package SAlib (Herman and Usher, 2017).

Sensitivity Analysis Two

In Sensitivity Analysis Two (SA2), the effect of EDP on the sensitivity scores of the
material parameters of the H-O model is explored. Specifically, the value of EDP is
fixed to each of the values {5, 7.5, 10, ...25} mmHg, before conducting an emulator-based
sensitivity analysis for each fixed pressure value. This experiment is informative because
the results of SA1 considered EDP as a random variable, with a wide range of uncertainty
between 4 and 30mmHg. However, for a given subject EDP could be a measured value. For
this reason, this study examines whether the sensitivity scores of the material parameters
vary for different fixed EDP values. As discussed in Section 8.2.5, currently only LVV
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and εcc can be measured with high accuracy from cardiac imaging scans (Mangion et al.,
2016b), so this analysis is restricted to these two output quantities. In addition, because
the material parameters are of primary interest in this experiment, we do not consider
the two RBM fibre generation parameters as random variables for SA2. Instead, αendo

and αepi were fixed to the values 60◦ and −90◦ (Lombaert et al., 2011; Land et al., 2015),
respectively.

8.3.2 Surrogate Model Training

SA experiments are performed using GP surrogate models, as discussed in Section 3.4.1;
one surrogate each for the four output quantities under consideration. Constructing these
surrogate models requires training data sets of input-output pairs to be created for each
output. This in turn requires the location and number of training inputs to be specified.
Given the high computational costs incurred with each forward simulation of the LV
diastolic filling process, it is important to choose a set of input points that cover the
parameter domain described in Section 8.2.2 as efficiently as possible. As was discussed in
Section 3.1.2, a Sobol sequence can be used for this purpose. Since two different material
parameter priors will be considered for the SA, the first 1000 material parameter samples
were taken in standard parameter space, and the final 1000 were taken in log-parameter
space. The simulator was then evaluated at each of these input points and the output
quantities of interest were extracted from each simulation result, yielding a training data
set of 2000 input-output pairs on which the GP surrogates for each output QoI could be
trained.

The effect of the two alternative material parameter sampling procedures is illustrated
in Figure 8.3 (a), which plots the first 100 sampled a and b values in original Euclidean
space, and the first 100 sampled in log-warped Euclidean space. By sampling in log space,
lower stiffness material parameter configurations are favoured. In this lower stiffness region
where the cardiac tissue is softer, the magnitude of the expansion of the left ventricle is
more sensitive to small changes in the material stiffness parameters than is the case at
higher stiffness levels. As a result, the variance observed in the end-diastolic quantities of
interest is higher under the log-uniform prior than for the uniform prior. This is illustrated
in Figure 8.3 (b), which displays empirical density plots for the simulated LVV obtained
when running from the input points of Figure 8.3 (a). With the log-uniform sampled
points, the distribution of LVV values exhibits a significantly longer tail. This analysis
hints at the benefits of a log-uniform emulator design, which will now be discussed in more
detail.

The nonstationarity of the simulator has been acknowledged in previous parts of this
thesis (see Section 4.4.3 and Section 6.3.3) and the emulator design will now be discussed
in this context. In Figure 8.4, the output functions of the simulator are visualised in
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Figure 8.3: (a) - Distribution of first 100 a/b values for uniform design (blue), and log-
uniform design (orange). (b) - Density plots for LVV for simulations run from input points
in (a)

different two-dimensional spaces. These functions have a sigmoidal shape, and we can
separate a surface into two regimes: fast varying and slow varying. As a rule of thumb,
large parameters lead to a slowly varying regime and small parameters lead to a fast
varying one. In other words, the function is non-stationary. For such a function, a space
filling design is suboptimal because it assumes that each point in input space is equally
informative about the shape of the function. If we have a region of space where the
function varies more than in others, then points in this fast varying region of space are
more informative about the function shape. A simple way to account for this property is
to use a manifold GP approach (Calandra et al., 2016) to find a transformation that makes
the function more stationary. If we then build a space filling design in the transformed
space and transfer back to the original space, then the design will be more concentrated
in regions where the function is more varied. To perform this second task, we require
that the transformation to the new space is injective. In Figure 8.5 we see that a log
transformation performs similarly to more complicated neural network transformations
(labelled as MLP-nhidX for a neural network with X hidden nodes) for this purpose. As
was discussed in Section 3.1.2, we must combine with this design a model that accounts for
the nonstationarity. If we were to fit a GP regression model with standard SE kernel, the
posterior distribution of the GP would be heavily influenced by the fast varying portion of
space, with the log marginal likelihood peaking at smaller lengthscale hyperparameters.
This would result in a function with too much variation and overly-conservative uncertainty
intervals in the slowly varying region of space. Instead, when training the GPs, the log of
the eight material input parameters was used as inputs, rather than the raw values. This
approach is similar in principle to the one adopted by Calandra et al. (2016), but with a
more context-specific transformation.
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Figure 8.4: Plots of the simulator function over different two dimensional input spaces. In
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Figure 8.5: Comparison of different input warped GPs. The non-stationary ArcCosine
kernel is also included in the comparison. Each of the other models uses some form of
transformation of the input space. Of particular interest are the neural network trans-
formations, labelled as MLP-nhidX for a neural network (multilayer perceptron) with X
hidden nodes.

8.3.3 Surrogate Model Validation

By performing the SA experiments with surrogate models rather than the true forward
model, we will introduce some error in the calculation of the Sobol indices (8.4) and (8.5).
Therefore, it is essential that the accuracy of the surrogates is validated. This can be
done by evaluating their accuracy on a set of 100 independent test simulations from the
forward model. The input locations that the test simulations were run from were found by
continuing the Sobol sequence used to generate the training data for a further 100 points.
Note that, for the material stiffness parameters, the sequence was run in log space, which
favours less stiff material parameter configurations, as discussed in Section 8.3.2. The
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accuracy of the surrogates was quantified using the Q2 coefficient. If we denote the true
outputs from the simulator as f∗, and the predictions of the GP surrogate as f̂∗, where f̂∗

is set to be the posterior mean of the GP, then the Q2-coefficient is defined as:

Q2 = 1− (f∗ − f̂∗)>(f∗ − f̂∗)

(f∗ − f̄∗)>(f∗ − f̄∗)
(8.10)

where f̄∗ is the vector of the mean value of the test outputs. This definition is analogous
to that for the R2 coefficient, except it is calculated on out-of-sample, rather than in-
sample data. The Q2-coefficient gives the proportion of the variance in the test outputs
that is accounted for by the surrogate model, with values close to one indicating that the
surrogate has high predictive accuracy.

8.3.4 Results

Surrogate Model Verification

The SA experiments were performed using GP surrogate models with squared-exponential
covariance functions, as described in Section 8.2.4. For the four output quantities of
interest in the SA: LVV, ε∗cc, ε∗ll and ε∗rr, the accuracy of the surrogates is validated on
the 100 test simulations detailed in Section 8.3.3. Table 8.3 presents the Q2-coefficient
for the four outputs, to two decimal places. The Q2 values for LVV, ε∗cc and ε∗ll are each
0.98, indicating very strong agreement between the true outputs and the predictions of
the surrogate model. The surrogate model for ε∗rr is less accurate, with a Q2-coefficient of
0.86. Nevertheless, this value still indicates good predictive accuracy, and for this reason
these trained surrogates can be trusted to perform the two SA experiments described in
8.3.1.

Table 8.3: Surrogate Model Verification Results: Q2-coefficient values for the four
output quantities considered for the SA experiments, calculated on a set of 100 independent
simulations from the forward model.

Output Q2

LVV 0.98
ε∗cc 0.98
ε∗ll 0.98
ε∗rr 0.86

Sensitivity Analysis One

The results of SA1 are displayed in Figure 8.6. All eleven input parameters detailed in
Section 8.2.2 are assumed to be random variables in this experiment. As discussed in
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Section 8.3.1, the analyses are repeated for two prior distributions over these inputs: the
uniform prior and the log-uniform prior, where the log-uniform prior favours less stiff
material parameter configurations. Four output quantities of interest at end diastole are
considered: LVV, ε∗cc, ε∗ll and ε∗rr. The four rows of Figure 8.6 correspond to each of these
output quantities, while the left column shows the results under the uniform prior, and
the right column shows the results under the log-uniform prior. The analyses were carried
out using the sampling approach detailed in Section 8.2.4. That is, rather than plug in
the point estimate from the GP surrogate when numerically evaluating the Sobol indices,
250 samples were drawn from the posterior distribution of the GP. The Sobol indices were
then evaluated for each sample, resulting in an ensemble of estimated indices. The bars
in Figure 8.6 correspond to the ensemble mean values, and a box-plot is then overlaid on
each bar, showing the uncertainty in the index values.

Comparing the two columns of Figure 8.6 allows the effect of the two different prior
distributions on the SA indices to be assessed. Under the log-uniform prior, more proba-
bility mass is placed on less stiff material parameter configurations than is the case for the
uniform prior, which in turn leads to a significant tail in the distribution of the magnitudes
of the resulting simulated displacements. This effect is illustrated in Figure 8.3. Never-
theless, the SA results under the two priors indicate qualitatively reasonable agreement.
That is, inputs which have close to zero influence under one prior tend to have close to
zero influence under the other, with the same agreement observed for highly influential
inputs. The exception to this is the influence of EDP, which exhibits significantly less
influence on each QoI under the log-uniform prior. This issue is discussed in more detail
below.

Considering the sensitivity indices observed for the material stiffness input parameters,
we can see that a, b, af and bf are clearly the most influential on the output quantities of
interest. For all analyses except ε∗cc under the uniform prior, either a or b has the highest
total-effect index, with the effect of a tending to be larger under the uniform prior, while
b is generally more influential under the log-uniform prior. Parameters af and bf tend
to have lower, but still significant sensitivity indices, and for LVV under the log-uniform
prior they are the third and second most influential inputs, respectively. By contrast, the
total-effect sensitivity indices are always lower for as, bs, afs and bfs than the other material
parameters, for each combination of output quantity and material prior distribution, and
in many cases their indices values are very close to zero. Given that these four parameters
have very little influence on the variation in the model outputs, if we now consider the
inverse problem of trying to estimate their values given from noisy experimental data,
they will be essentially non-identifiable. For this reason, in subsequent experiments these
are fixed to values from the literature (Gao et al., 2017).

EDP has significant first-order and total-effect sensitivity indices for each output quan-
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Figure 8.6: SA1 Results. The left column shows the SA results under the uniform material
parameter prior, and the right column shows the results under the log-uniform prior. Each
row corresponds to one of the four output QoI respectively.

tity under the uniform prior. However, under the log-uniform prior, the influence of EDP
is lower for all outputs. For LVV and ε∗rr in particular, the influence of EDP is close to
zero. This is because the log-uniform prior places more weight on low material stiffness
parameter configurations, as illustrated in Figure 8.3 (a), aggregated in the left bottom
corner. For sufficiently low material stiffness parameter values, the magnitude of LVV
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and ε∗rr values at the end of diastole are very high, across the entire range of EDP values
considered in this study. As a result, the influence of EDP on observed variance for LVV
and ε∗rr is suppressed by the large influence of the material stiffness parameters, resulting
in Sobol indices that are close to zero. By contrast, ε∗cc and ε∗ll do not exhibit the same
level of skewness under the log-uniform prior, meaning that the influence of EDP on these
two QoI remains significant.

For both choices of prior, the fibre orientation angles αendo and αepi tended to have a
low, but still clearly non-zero, impact on the end-diastolic output quantities. The exception
to this was ε∗rr under the log-uniform prior. Here, αendo shows a small first-order sensitivity
index, but a large total-effect index.

Sensitivity Analysis Two

In SA2, EDP was not assumed to be a random variable. Instead, a range of fixed EDP
values (5, 7.5, ... 25) mmHg were considered, and a separate SA was carried out for each
fixed value. The objective of this experiment was to quantify how this fixed EDP value
impacts the Sobol indices of the material parameters. This is because, for a given subject,
EDP will not be a random variable over the range [4, 30] mmHg as in SA1, but will be
a fixed value, which can in principle be measured. Two output QoI are analysed: LVV
and ε∗cc. Since the material parameters as, bs, afs and bfs exhibited very low influence on
LVV and ε∗cc in SA1 (see Figure 8.6) these parameters were fixed in this study, and the
analysis concentrates on the material parameters a, b, af and bf. The fixed values are
those published in (Gao et al., 2017), namely as = 0.69 kPa, bs = 1.11, afs = 0.31 kPa
and bfs = 2.58. In addition, because the material parameters are of primary interest here,
the RBM parameters αendo and αepi are also considered fixed, to the values −60◦ and 90◦,
respectively.

The results of this experiment are displayed in Figure 8.7 for the uniform prior, and
Figure 8.8 for the log-uniform prior. As in SA1, the GP sampling approach discussed
at the end of Section 8.2.4 was used to generate an ensemble of total-effect Sobol index
values at each fixed EDP value. The solid lines in Figures 8.7 and 8.8 show the ensemble
mean values, while the dashed lines indicate 95% credible intervals (CIs). These results
exhibit stability under the different choices of prior. That is, the effect of EDP on the
Sobol indices of each material parameter is qualitatively similar for both the uniform and
log-uniform prior distributions. For LVV under the uniform prior the effect of a decreases
with rising EDP, while the effect of b increase slightly, whereas the sensitivity scores of af
and bf do not exhibit large variation as a function of EDP. Under the log-uniform prior,
the influence of all four material parameters remain constant as a function of EDP. This
is consistent with the results of SA1, where the Sobol indices of EDP for LVV were found
to be close to zero with the log-uniform prior. For ε∗cc, the effect of EDP on the sensitivity
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indices of the material parameters tends to be larger than for LVV. Specifically, the total-
effect scores of b and bf on ε∗cc increase as EDP rises, whereas the total-effect scores of a
and af decrease with rising EDP.
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Figure 8.7: SA2 Results under the uniform material parameter prior. The dashed lines
indicate 95% credible intervals.
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Figure 8.8: SA2 Results under the log-uniform material parameter prior. The dashed lines
indicate 95% credible intervals.

8.4 I-UQ Simulation Studies

We can now use an I-UQ study to build on the results of the SA. The details of the study
to be carried out are given in Section 8.4.1, the implementation and results of which are
discussed in Section 8.4.2 and Section 8.4.4, respectively.
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8.4.1 Experimental setup

Inputs and outputs of the emulator

As explained in Section 8.2.5, only the circumferential strains and LVV were included in
the outputs of the I-UQ emulator. Motivated by the results of Section 8.3.4, a reduced
parameterisation of the H-O model from (8.1) was adopted, where as, bs, afs and bfs were
held fixed to values obtained from the literature (Gao et al., 2017). Additionally, the fibre
angles were held fixed at αendo = −60o and αepi = 90o, as discussed in Section 8.2.5. The
resulting five dimensional input space, containing a, b, af, bf and P , is identical to the one
considered in Section 8.3.4.

Test data generation

For the I-UQ, we require a set of test data to be used as observations for the posterior
inference. A total of 100 test simulations were obtained at EDP of 5,10,15,20 and 25mmHg.
For each EDP, the same 100 unique material parameter configurations were used for the
simulations, generated from a log-uniform distribution with bounds 0.1 and 10. Out of
the 100 simulations, one led to an error in the simulator as a result of excessive distortion
of the LV mesh causing numerical instabilities and lack of convergence of the numerical
solver. For this reason, the final test set contained 99 data points. Of interest is I-UQ
in the presence of noisy data, so Gaussian noise with standard deviation 5ml was added
to the simulated volumes and Gaussian noise with standard deviation 0.03 was added to
the circumferential strains, motivated by results in the literature (Zhang et al., 2021).
The volume standard deviation was informed by an empirical study that is provided in
Table E.1. The use of different noise variances on volumes and circumferential strains is
consistent with the noise model in (8.8).

8.4.2 Surrogate Model Training

As discussed in Section 8.2.5, the computational costs of the simulator make statistical
emulation (see Section 8.2.4) a necessity for I-UQ in any reasonable time frame. For each
of the 25 outputs (24 circumferential strains and end diastolic volume) an independent GP
emulator is built, which requires a set of training data. The design for statistical emulation
was discussed in Section 8.3.2 and, motivated by the discussion there, a Sobol sequence in
log-material parameter space was used. In total, 2000 training simulations were used and
the GP emulator was trained over the joint space of pressure and log-material parameters.
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8.4.3 Surrogate model validation

The surrogate model was validated on a set of 100 points generated from a Sobol sequence
in log-material parameter space. The Q2 metric, which was discussed in Section 8.3.3,
was used with the results provided in Table 8.4. Due to the reduction in dimension of
the emulator input space the performance is slightly better than with the SA emulator in
Table 8.3.

Table 8.4: Surrogate Model Verification Results: Q2 coefficient value for the two
outputs considered for the I-UQ experiments, calculated on a test-set of 100 simulations
from the forward model. The values are rounded to three digits.

Output Q2

LVV 1.00
εcc 1.00

8.4.4 Results

I-UQ Results in Parameter Space

Of interest is the certainty with which we can infer the parameters and how this is af-
fected by EDP. For each of the 99 test cases at all five values of pressure, the material
parameters were sampled conditional on the synthetic observed data, generated according
to Section 8.4.1. The MCMC samples are obtained in the joint space of the four mate-
rial parameters, but to summarise the results the marginal posterior of each of the four
parameters is considered. In the case of high practical identifiability, we expect a more
peaked distribution, which can be quantified using the interquartile range (IQR). Taking
the inverse of the IQR (denoted as I-IQR) provides a quantity that is analogous to the
sensitivity index used in the SA, with large values indicating better practical identifia-
bility of the parameters, as demonstrated in Figure 8.9. Since there are 99 different test
cases, a set of 99 different I-IQR values at each of the five different pressure values is
obtained, giving us five different distributions of I-IQR values as plotted in each subplot
of Figure 8.10. In the plots of a and af, we see the general trend of the I-IQR decreasing
as EDP increases. For b and bf, the I-IQR of the marginal posterior distribution increases
as EDP increases, suggesting that the practical identifiability improves. These results are
in general agreement with the results of SA2 (see Section 8.3.4), as shown in Figure 8.11.

In Figure 8.10, we saw the change in the spread of p(Iθ|P ) over P , where Iθ is the
I-IQR of the marginal posterior distribution of θ and P is EDP. For a and af, the spread
of this distribution decreases while for b and bf, the spread increases as we increase P . In
Figure 8.12, this is taken a step further, considering the distribution p(Iθ|P,V) where V is
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Figure 8.9: Demonstrating the I-IQR metric. For more peaked distributions (lower uncer-
tainty), the I-IQR is larger and indicates improved practical identifiability.
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Figure 8.10: Distributions of I-IQRs of marginal posterior distributions, conditional on
data obtained at each of the five different EDPs.
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Figure 8.11: A comparison of SA and I-UQ. The I-UQ results are presented by orange bars
showing the median I-IQR from the 99 test cases at each pressure. The SA results with
the uniform prior (strains=SU and volume=VU) are provided as trend plots, allowing us
to see the agreement between the results of the two studies.
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the LVV, simulated at pressure 10mmHg. To do so, the test cases were arranged in bins
according to their LVV, with:

• v1 : LVV < 102 • v2 : 102 < LVV < 126

• v3 : 126 < LVV < 153 • v4 : LVV > 153.

These values were selected using the 0.25, 0.5 and 0.75 quantiles of the test set LVVs (at
EDP=10mmHg). The ith column of plots show the distributions p(Iθ|P,V = vi) over
the range of pressures. That is to say that within subplot i, the different boxes show the
distribution p(Iθ|P,V = vi), with the EDP indicated by the labels of the horizontal axes in
the bottom row. Therefore, if we wish to compare the distributions p(Ia|P = 15,V) over
varying V , we should compare the 3rd box in each subplot of the first row of Figure 8.12.

All the distributions in the first column of boxplots (corresponding to LVV<102ml)
have a low median value and very little spread. This indicates the difficulty of inferring the
parameters when the material is very stiff. As we increase V , the I-IQR gradually moves
away from zero and the pattern in p(Iθ|P,V = vi) begins to resemble the pattern we saw
in Figure 8.10. These plots suggest that the value of the parameters, which influences the
LVV, impacts their identifiability. This feature was explored for the theta parameterisation
from (4.2) in Section 6.3.3, and will now be considered for the new parameterisation.

Figure 8.13 shows 2D projections of the 99 test inputs from Section 8.4.1. These 2D
projections show the value of a primary parameter (the first parameter in the plot title) in
the horizontal axis and a secondary parameter (the second parameter in the title) in the
vertical axis. The shading of the points indicates the value of the I-IQR of the marginal
posterior density of the primary parameter, where the parameters have been inferred
conditional on the test data obtained by simulating to EDP as indicated by the title of
the subplot. In general, if the ground truth value of a parameter is large (moving left to
right on the horizontal axis of a subplot) the I-IQR of the marginal posterior distribution
is small. Inconsistencies in the pattern of I-IQR values suggests there are other factors
influencing the practical identifiability and this will now be explored with several specific
test cases.

To display some of the effects of parameter values on the I-UQ, several examples are
highlighted in Figure 8.13. The different edge colours and shapes allow us to see the value
of the material parameters for 5 different configurations, which are also given in Table 8.5.
The results for these configurations are considered in more detail in Figure 8.14, where the
colour and shape of the scatter points match those in Figure 8.13. θ4 gives an example
where all parameters clearly follow the general pattern seen in Figure 8.10. In the case
of θ1 and θ2, the large value of b contributes to a low I-IQR of bf at all pressures. This
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Figure 8.12: We can split up the I-IQR distributions based on LVV and consider the
changes in the distribution of I-IQR with pressure and LVV. Each subplot shows the I-
IQR of the marginal posterior for a particular material parameter (per row) for parameter
configurations that give a simulated LVV at pressure 10mmHg in a particular range (per
column). For instance, the subplot in the second column from the left of the second
row from the top provides the distribution of I-IQR values of the marginal posterior
distributions of b for test parameter configurations with simulated LVV between 102 and
126ml at pressure 10mmHg. The limits of the vertical axes are all the same and have
been removed because they are not required for interpretation of the plots.

effect of b on the inference of bf at pressure 25mmHg is also seen in the bf − b−P=25 plot
in Figure 8.13, where all points in the upper left corner (bf small and b large) are lightly
coloured. In θ3, we see an example where despite a being small, the I-IQR is fairly small.
This shows the influence b and af can have on the identifiability of a. When we push the
model to extreme configurations, such as θ5 where a is large and all other parameters
are small, we get strange patterns in the I-IQR distributions. In this case, the I-IQR
of b and bf is huge at high pressure and the I-IQR of af increases as pressure increases.
This last feature is only observed in these more extreme cases, while a marginal posterior
distribution for b and bf with large I-IQR relies on these parameters being very small.
Overall, these different examples show the dependence of the parameter identifiability
on the values of the other parameters. In particular, this leads to a large spread of the
distribution of I-IQRs of a and af at low pressure and b and bf at large pressures.

I-UQ Results in Stress–Stretch Space

Any interpretation of inference results in terms of summaries of marginal posterior dis-
tributions is limited by the correlations that exist between the material parameters. In
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Figure 8.13: Scatter plot of test points in 2D, coloured based on I-IQR of the marginal
posterior distribution. The title of each plot, x − y − P = z gives the parameter of the
horizontal axis (x), the parameter of the vertical axis (y) and the pressure at which the
parameters are inferred (z). The points are shaded based on the I-IQR of the marginal
posterior distribution of parameter x. Several points are highlighted (by colour and shape)
to be looked at more extensively in proceeding visualisations in Figure 8.14, corresponding
to the five configurations listed in Table 8.5. All subplots share the same bounds on the
vertical and horizontal axes so these are only provided for the outer plots.

Table 8.5: The four parameter configurations being considered in greater detail.

Config a (kPa) b af (kPa) bf
θ1 1.13 9.63 0.16 0.45
θ2 0.85 7.22 1.24 1.91
θ3 0.46 6.48 7.20 0.18
θ4 0.62 2.73 3.04 1.38
θ5 4.46 0.10 0.18 0.75

an attempt to overcome this, the inferred tissue properties were also considered in stress–
stretch space, where we simulate the deformation of a myocardial strip under a given set
of material parameters from the H-O model (8.1). From a posterior sample of material
parameters obtained using MCMC, we can determine a posterior distribution of stress–
stretch curves, which is repeated for each of the 99 test cases at each of the five pressures.
These distribution of curves are obtained by simulating the deformation of a sample of tis-
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sue as characterised by the H-O model (8.1). Repeating for each sample from the posterior
distribution of parameters gives a posterior distribution of stress–stretch curves.

Firstly, we are interested in the uncertainty in the inferred tissue properties, which will
be measured using the I-IQR of the stress distribution at given levels of stretch. From the
99 test cases we get a distribution of I-IQR at each level of stretch, as shown in Figure 8.15.
The value decreases for all end diastolic pressures as the stretch location increases but the
rate of this decrease is different for the different end diastolic pressures. This means that
at low stretch the lowest uncertainty in the stress distribution was achieved using low
pressure data (higher I-IQR scores, in general) while at high stretch, the lower uncertainty
was achieved using high pressure data. The median inverse absolute error, plotted in
Figure 8.16, shows a similar pattern: at low stretch, MAE is lowest for pressure 5 and
highest for pressure 25. As we increase the stretch, the pattern gradually reverses.

8.5 Discussion and conclusion

The objective of this chapter has been to perform SA and I-UQ experimental studies of
the passive mechanics of the left ventricle using the H-O myocardial model. As illustrated
in Figure 8.1, these analyses are complementary; the SA quantifies how the structure of
the model affects observed data (forward modelling effect), while the I-UQ quantifies how
well-observed data can be used to identify the model structure (inverse modelling effect).

8.5.1 Discussion of SA

A total of eleven model input variables were considered across all studies: the eight ma-
terial parameters of the H-O constitutive law, EDP, and two inputs to the RBM fibre
generation algorithm. In addition, four different output quantities of interest were consid-
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Figure 8.15: Representing our uncertainty about the tissue properties at different pres-
sures. From each posterior distribution of material parameters, we obtain a distribution
of stress-stretch curves (one curve for each sample). At different stretch locations, we cal-
culate the inverse interquartile range of the stress distribution. Based on the 99 test cases,
we get a distribution of these inverse interquartile ranges as found in the boxplots. This
can be repeated for test data at different end diastolic pressures to assess the certainty of
our estimation of the tissue properties at different pressures.
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Figure 8.16: The error in the inferred tissue properties at different pressures. From each
posterior distribution of the material parameters, we obtain a distribution of stress–stretch
curves (one curve for each sample). We possess the ground truth stress-stretch curves and
can obtain the median inverse absolute error in the distribution of stress–stretch curves.
Based on the 99 test cases, we get a distribution of these median inverse absolute errors.
This can be repeated for test data at different end diastolic pressures to assess the accuracy
of our estimation of the tissue properties at different pressures.

ered in total: LVV, ε∗cc, ε∗ll and ε∗rr, all measured at end diastole. These input and output
quantities were discussed in Sections 8.2.2 and 8.2.2, respectively. All experiments were
performed with respect to the LV geometry of a healthy volunteer. The SA experiments
focused on assessing how uncertainty in each of the a-priori uncertain input variables
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accounted to the uncertainty observed in the output quantities of interest. The I-UQ
analysis then built on the results of the SA, to quantify how identifiable the most im-
portant material stiffness parameters were from noisy data, with emphasis on quantifying
how these identifiability levels were affected by changing EDP values.

This study is the first to perform a comprehensive global sensitivity analysis and I-UQ
of the H-O model in LV biomechanics. The clear takeaway from the results of the SA is
that the material parameters a, b, af and bf are of primary importance to the four output
quantities of interest considered. While the relative importance of these parameters varies
under the two different prior distributions, Figure 8.6 shows that they are consistently the
most important inputs for each QoI. In contrast, the material parameters as, bs, afs, bfs
have either zero or close to zero influence for each output quantity and prior distribution
configuration. We see this low influence as justification for a low-order reparameterisation
of the H-O model, where these parameters are set to fixed values, rather than discarding
the two related terms in Equation (8.1), since such reduction may not fit the experimentally
measured stretch-stress data well (Holzapfel and Ogden, 2009; Guan et al., 2019).

By using the Guccione myocardial model in LV diastolic filling, Rodriguez-Cantano
et al. (2018) showed that the general stiffness parameter C has the highest sensitivity
for their chosen quantities of interest, around 70%, much higher than other constitutive
parameters. They further found that the total Sobol indices for the parameters associating
with the fibre direction, the sheet direction and the shear response were clearly not zero.
Similar results were reported in their subsequent study (Campos et al., 2019). While it
was found that the parameters associated with the sheet direction and shear response,
in general, have very low sensitivity, the parameters for the isotropic response and fibre
reinforcement were found to have high sensitivity, see Figure 8.6. Those different findings
may be due to different constitutive laws, QoI and parameter ranges used in the two
studies.

Computational studies have shown that myofibre architecture, such as fibre angles, can
have a substantial impact on LV mechanics, but not the sheet angle (Wang et al., 2013a;
Palit et al., 2018b; Guan et al., 2021). For this reason, only the fibre rotation angles
were included in the inputs in this study. These angles were found to generally have a
low influence on the observed variations in the output quantities, but not zero in general,
especially for radial strains. Similar results have been reported in (Rodriguez-Cantano
et al., 2018). Fibre angles have been found to potentially have an even higher impact
on myocardial active contraction (Campos et al., 2019). In the literature, nonrotationally
symmetric distributions (Holzapfel et al., 2019), such as π-periodic von Mises distributions,
have been used to model fibre dispersion in the myocardium (Guan et al., 2021). Due to
limited measured data for describing local fibre distribution variations, the uncertainty in
fibre dispersion was not included in the current study. Future sensitivity studies should
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incorporate both uncertainties in the fibre rotation angles (i.e. a truncated Karhunen-
Loeve expansion (Rodriguez-Cantano et al., 2018)) and fibre dispersion, in particular for
myocardial contraction.

LV cavity pressure usually needs to be measured in an invasive way, so it is not available
for most cardiac patients. Instead, many existing studies rely on population-based EDP
(Gao et al., 2017; Genet et al., 2014b). LV EDP was found to have high importance for
the uniform prior, while its influence declined under the log-uniform prior, as discussed
in Section 8.3.4. The high sensitivity of EDP during the diastolic filling highlights the
need for accurate measurement of EDP, in particular by using non-invasive approaches.
One such recent development is using 4D cardiac CMR flow imaging to estimate realistic
ventricular relative pressure (Marlevi et al., 2021). We also see from the results of SA2
in Figures 8.7 and 8.8 respectively that the influence of the material parameters a, b, af
and bf on circumferential strains can vary significantly as a function of the value of EDP
when it is considered a known input. This has important implications when we consider
the inverse problem of trying to estimate these parameters from experimental data for a
given patient with a measured LV EDP.

8.5.2 Discussion on I-UQ

Considering the results of the I-UQ study, in Figure 8.10 we saw that as we vary EDP
the uncertainty in the marginal posterior distributions changes as follows: the uncertainty
of a and af increases as we increase pressure while the uncertainty of b and bf decreases.
This uncertainty was measured using the I-IQR metric (see Figure 8.9). This trend in
identifiabilities over EDP agrees with the SA results from Figure 8.7, especially if we
consider the fact that our inverse estimation is based on a set of measurements containing
24 circumferential strains and only one LVV, meaning that the circumferential strains
carry extra weight in the likelihood function from (8.9). These results are also in line with
our physical interpretation of the parameters, which is that a and af govern low stretch
behaviour of the myocardium while b and bf govern high stretch behaviour in the nonlinear
regime.

The parameter space results of the I-UQ study showed that there is quite a large change
in the spread of the distribution of I-IQR values, suggesting variation in the identifiability
of the parameters. There were two reasons for this change. First of all, we must refer
to Figure 8.12. Here it was shown that when pressure is large, a and af tend to be
poorly identified regardless of the ground truth parameter values and when pressure is
small b and bf are poorly identified regardless of ground truth parameter value. This
explains the low spread of the I-IQR distributions for b and bf at low pressure and a and
af at large pressure. Now, in Figure 8.13 it was shown that at high pressure, there are
variations in the I-IQR of the marginal posteriors of b and bf that result from the ground



CHAPTER 8. COMBINED SA UQ STUDY OF THE H-O MODEL 171

truth value of the parameters. For a and af, this same figure showed a similar variation
at low pressure. Another feature is that, in general, parameter inference in the case of
large material parameters tends to lead to lower I-IQR values. These variations are a
result of the nonstationarity discussed in Section 8.3.2, leading to improved parameter
identifiability in the region where the function varies more rapidly. Overall, this leads to
large spread in the distribution of I-IQR values for b and bf at higher pressures, and high
spread in the I-IQR distributions of a and af at lower pressure. For emulation purposes,
a log-transformation was proposed to account for this nonstationarity in the GP model.

The interpretation of inference results in terms of marginal posterior distributions is
confounded by the strong coupling that exists between the parameters of the H-O model.
To overcome this, the results were also considered in stress-stretch space, providing a more
direct measurement of tissue behaviour that takes into account the entire set of material
parameters. Figure 8.15 showed the change in distributions of inverse IQRs for different
EDP at different stretches. As we expect, the uncertainty in stress locations increases as
the stretch increases and the pressure that provides the lowest uncertainty in the stress
distribution increases. This pattern in the pressures is intuitive, since larger pressures
give us information about the behaviour of the tissue at higher stretch locations. The
stress–stretch curves were also used to assess the accuracy of our inference in Figure 8.16.
These results show the same behaviour as the IQR results, with high pressure data giving
lower error in the high stretch region.

8.5.3 Limitations

One limitation with the SA experiments presented in this study was the choice of an unin-
formative prior distribution for the model input parameters, in the absence of knowledge of
the true population distribution. Future work could improve on this with a rejection sam-
pling approach, whereby input parameter configurations which lead to unrealistic outputs,
for example extremely large values of LVV, are discarded. A prior distribution obtained
in this manner is likely to better approximate the true population distribution than those
used in this study, which assumed independence between the inputs.

In the I-UQ study, the noise added to the circumferential strains and LVV makes an
assumption of Gaussianity. Additionally, for the circumferential strains a fixed standard
deviation on the noise was assumed, which may be an inaccurate assumption. For instance,
the noise levels in a CMR scan at different regions of the LV can be different due to partial
volume effects and wall motion, etc. These noise distributions would be worth studying
in more detail in future work, allowing the generation of more realistic synthetic data.

In this study, only the diastolic filling of the LV biomechanics was considered with a
limited set of quantities of interest. The reason for such a choice is because the passive
property has very low influence on active contraction, as demonstrated in (Campos et al.,
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2020), but highly determines the passive response of the myocardium during the diastolic
filling process (Campos et al., 2019; Rodriguez-Cantano et al., 2018). The quantities of
interest are chosen based on routinely available in vivo CMR measurements. For example,
LVV and circumferential strains have been widely used for clinical diagnosis. Future
studies shall extend the model to consider both passive filling and active contraction
(Campos et al., 2020), and to include other measurements such as ejection fraction, the
rate of systolic pressure increase, the torsion, etc., and further extend it to a coupled
electromechanics full-heart model (Levrero-Florencio et al., 2020). Another limitation
is that the geometrical uncertainty has not been considered, which can arise from the
imaging protocol, the segmentation procedure and the reconstruction. The effect of LV
geometry segmentation errors on parameter estimation will be explored in Chapter 9. For
a detailed review of uncertainties associated with cardiac models, the reader is referred to
(Mirams et al., 2016) and the presentations given at the workshops of “The Fickle heart”
programme held at the Isaac Newton Institute, 2019 (Mirams et al., 2020).

8.5.4 Conclusion

The work in this chapter has provided a comprehensive sensitivity analysis of the H-O
model, proposing a new parameterisation that has been studied using I-UQ. This involved
the use of Bayesian inference, with a likelihood function approximated using a statistical
emulator. To our knowledge, the final parameterisation is different from any previously
proposed in the literature and, unlike the existing models, it comes with a quantitative
justification from a sensitivity analysis. The results of the I-UQ study were found to
be consistent with those of the SA. In particular, good identifiability of a and af was
observed in the in vivo pressure range. These parameters are associated with the toe
region of the myocardial mechanical response. It was also found that b and bf cannot be
reliably inferred without the inclusion of high pressure data. This should motivate future
work on the inclusion of high-stretch behaviour of the tissue in the inference framework,
using priors similar to those derived in Chapter 7. For these methods to be reliable in
a clinical setting, this must all be done within a proper statistical inference framework,
taking account of the uncertainties introduced by the data and the model.



Chapter 9

Studying the effects of physiological
conditions on model calibration

The end goal of model calibration in mathematical models of cardiac function is to pro-
vide real world information on cardiac health. By linking the underlying behaviour of
the heart with observable quantities, tuning these models to match a given dataset can
provide insight into the system at a level that is naked to the human eye. While funda-
mentally informative, the utility of our parameter estimation depends on the accuracy of
the mathematical model: if the model is imperfect, we may only ever obtain a represen-
tation in the parameters that is imperfect. Such imperfections—which can be the result
of measurement error or suboptimal modelling— are an inevitability of the translation of
mathematical models to the real world. Acknowledging these imperfections necessitates
the use of statistical methodology that can correctly account for the discrepancy between
the model and the data. This chapter will consider this task in the context of parameter
estimation for data measured from cardiac magnetic resonance (CMR) imaging scans. In
addition, the effect that operator errors during LV geometry segmentation have on the
parameter estimation task will be explored. The LV operator study is joint with David
Dalton and Arash Rabbani, who acted as the other two operators.

9.1 Model discrepancy background

9.1.1 Motivation with a set of measured data

Let us begin with an example that shows the typical results of parameter inference for
measured LV data. Directly from CMR scans we can measure a set of 24 circumferential
strains and the end diastolic volume of the cavity (LVV), as well as the LV geometry
G, which has vector representation g. The parameterisation of the H-O model used
for this study is the one proposed by the SA in Chapter 8. Adopting the likelihood
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function used in Section 8.2.5, predictions of the LVV and strains are provided by an
emulator η(θ,h), where h is the 5 PC representation of g. The material parameters
a, b, af and bf can be sampled from the posterior distribution under an assumption of iid
zero-mean Gaussian noise on the circumferential strains and a noise standard deviation
on the volume held fixed at 5ml, which is consistent with the results of an empirical study
that is found in Appendix E.1. The parameter sampling is performed using NUTS, before
thinning to get the final sample to be used for the analysis. In Figure 9.1, the posterior
distributions of η(θ,h), obtained by predicting with the emulator at the thinned material
parameter samples, are plotted as solid black density curves for each model output. The
vertical dashed line, showing the measured value of that output, allows us to identify any
discrepancy between the posteriors and the observations. For comparative purposes, the
inference task is repeated with a likelihood function that contains only the LVV, with
the results displayed in the same plots using dashed density curves. Recall that strain
measurements are negative, so a density lying to the right of the dashed vertical line
shows an underestimation of the strain. For the volume (shown in the top left plot), the
opposite is true: density to the left of the vertical dashed line indicates an underestimation
of the LVV.

The solid density lines in Figure 9.1 (which result from inference conditional on volume
and strains) present a familiar theme, and one that was touched on in Section 7.4.4:
in order to match the measured strains, we must underestimate the volume. The word
“match" is used rather loosely here because, as we can see in the plot, many of the densities
do not match the observed values. The level of noise in the measured data is so large that
the measurements span the majority of the space of possible strain values (in some cases
between -0.05 and -0.25). In the presence of such high levels of noise, the best we can do
is match the mean strain and this is always in disagreement with the LVV measurement,
which can only be matched at parameter configurations that correspond to predicted
circumferential strains that are of greater (in absolute value) than 0.2.

In Figure 9.2, the measured circumferential strains for 8 different test cases are com-
pared with simulated circumferential strains obtained at material parameter values that
allow us to match the LVV. Comparing the observations and simulations in each test case
presents two consistent findings. The first of these is the high degree of noise in the mea-
sured data. In the majority of test cases, the IQR of the measured data is significantly
larger than that of the simulated data. The second finding is that the simulated circum-
ferential strains correspond to a greater deformation than the measured circumferential
strains. This pattern suggests that some combination of the following is occurring: the
measurement noise is not iid zero-mean Gaussian (related to the measurement process)
or there is a systematic mismatch between the simulator and underlying physical process
(related to the model building process). Each of these problems can manifest in a similar
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Figure 9.1: Posterior distributions of η(θ) for each of the 25 model outputs in two sit-
uations: material parameters sampled conditional on volume alone (dashed lines) and
material parameters sampled conditional on the measured data. The upper left plot gives
results for the LVV and the others show circumferential strains, with each plot containing
two different predictive distributions. The solid line is the predictive distribution obtained
when inferring the parameters conditional on both volume and circumferential strains
while the dashed line is obtained from parameters estimated using only the volume mea-
surement. The vertical dashed lines show the measured value of the output. Notice that
the volume is underestimated in order to match the strain measurements.

way: through a departure of the residuals from normality. This means that their influence
can be difficult to disentangle. To allow for a proper analysis of discrepancy introduced by
the simulator, this chapter will use a series of synthetic data studies to study the effects
that different components of the simulator can have on our parameter inference.
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Figure 9.2: Each subplot compares the measured circumferential strain data for a single
test case with simulated circumferential strains obtained at parameters that allow us to
match the LVV measurement. In all plots the spread of the distributions of measurements
is larger than that of the simulations and the median of the simulations is consistently
below the median of the measurements.

9.1.2 The presence of model discrepancy in the LV simulator

For a new subject, with end diastolic pressure (EDP) P (either measured or assumed) and
LV geometry g, we may relate a set of measured data y∗, obtained from a CMR scan of
a subject’s LV, with the true underlying strains and standardised LVV, gathered in the
term ψ:

y∗ = ψ + ξ, (9.1)

When modelling the measured LV data, we approximate the unknown ψ with a simulator,
ζ(·). Similar to the exposition of Goldstein and Rougier (2009), we can consider this
simulator as consisting of several parts. The biomechanical model, which includes the
H-O model and the momentum balance equations, provides the system of equations to
be solved during simulation. This is assumed to be fixed, selected by the mathematical
modeller during the forward modelling. This model takes as input a set of constitutive
parameters, θ, and depends on a set of conditions, u, that must be selected in order to
evaluate the simulator for a given set of parameters. These physiological conditions—
which allow us to specify the model for a given subject— include the LV geometry, g, and
boundary conditions such as the EDP of the blood within the cavity at end of diastole.
Finally, the simulator also requires a solver, which consists of the finite element solver and
the discretisation of the LV geometry into a set of finite element nodes. Like the model,
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the solver is fixed by the mathematical modeller and built into the simulator code. The
simulator was discussed in greater detail in Section 2.2.

9.1.3 A closer look at the physiological conditions

Accurate model calibration depends on the accuracy with which we can represent the set of
physiological conditions for a patient. In principle, these can all be measured in the clinical
setting and included in the simulator. In practice, the absence of accurate non-invasive
measurement methods, or the vulnerability of existing ones to operator subjectivity, intro-
duces extra uncertainties to the modelling of the LV that decrease the confidence we have
in the model and subsequent inferences. These sources of error, which will be explored in
simulation studies later in this chapter, will now be discussed in more detail.

Fibre angles

The ventricular myocardium is built up of a stack of fibres, the orientation of which varies
as we move from endocardium to epicardium. Advanced imaging techniques, such as
diffusion tensor magnetic resonance imaging (DTMRI), have been used to show that the
fibres in the myocardium follow a mean fibre direction, subject to some dispersion (random
fluctuations around the mean direction) (Guan et al., 2021). This mean orientation can
vary from patient to patient and is affected by ventricular remodelling (Palit et al., 2015).
In the simulator used for this work, a Laplace Dirichlet rule based approach (Bayer et al.,
2012; Wang et al., 2013a) is adopted for the fibre orientation, assuming that the mean
fibre angle varies linearly between the endocardium and epicardium. The effect of these
bounds was explored in the sensitivity study carried out in Chapter 8, but no consideration
was given to how they could impact the inverse problem. Instead, fixed boundaries of
αendo = −60 and αepi = 90 were used for the endocardium and epicardium, respectively.

The effect of fibre orientation on the estimation of passive tissue properties has been
explored by Palit et al. (2018a), who inferred the passive properties while allowing for
different angles in a rule based approach. They found that the fibre angles affected the
parameter estimates when optimising based on an objective function that included the
LVV1. More recently, Guan et al. (2021) studied the effect of fibre dispersion, which ac-
counts for random perturbation of the fibre orientation around the mean fibre angle. They
found that the dispersion especially affects the behaviour in the active contraction part of
the cardiac cycle, but still had some effect on the passive filling process. Unfortunately,
dispersion is still being explored by the mathematical modellers (Guan et al., 2021) and
could not be included in the current simulator code. For this reason, it will not be explored
in this work.

1This objective included LVV and an extra term measuring adherence to the Klotz curve, which was
discussed extensively in Chapter 7
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Pressure

Easily accounted for in the emulator, as done in Chapter 8, is the EDP of the blood within
the LV cavity. Problematic, however, is the invasiveness of measurement methods, which
means that we can only rely on measured values when dealing with diseased patients. For
healthy volunteers, a value is usually assumed, which in most of the work in this thesis has
meant setting the EDP to a value of 8mmHg. This value, motivated by Bouchard et al.
(1971), inevitably introduces some bias to the parameter estimation. However, the work of
Palit et al. (2018a) showed that the parameter estimates were fairly robust when varying
pressure around values that we expect in healthy volunteers (between 8 and 12mmHg).

LV geometry

Calibrating the LV simulator to a particular patient depends, importantly, on the LV
geometry. Unlike pressure and fibre angles, non-invasive methods currently exist for mea-
suring the LV geometry in vivo, using the procedures outlined in Section 5.2.1. In previous
chapters, a PCA representation of the LV geometry was adopted, while acknowledging in
Chapter 6 that the failure of this method to take the biomechanical model into account
makes it suboptimal for LV geometry representation in the simulator. This idea of the LV
geometry representation being suboptimal was built on the premise that the LV geometry
extracted from a CMR scan can be treated as a ground truth. However, in reality this
makes little sense because the final shape extracted from the CMR scan will be subject to
both inter and intra observer (operator) errors. As a result, the effect that these different
operators have on the biomechanical model is of interest for two reasons. Firstly, the
variation introduced to the inferred cardio-mechanics as a result of operators is of interest.
Secondly, the utility of a PCA basis for representing the LV geometry in the simulator
depends critically on its comparison with the performance of different operators: if LV
modelling errors incurred using a PCA representation of the LV geometry are lower than
those incurred with a new operator then PCA is a sufficient representation of the LV
geometry. At the time of this work the effect of operators on the mechanical modelling
of the LV had not been explored, but recently this was carried out by Hasaballa et al.
(2021) who found that the operator could have a substantial effect on the results of the
parameter estimation. However, they did not benchmark this operator effect against the
performance of PCA. In this chapter, it will be shown that errors introduced to parameter
estimation as a result of PCA are in line with the error introduced by a new operator.
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9.1.4 Effect of erroneous physiological conditions and further mod-

elling errors

It is worth considering the consequences of erroneous physiological conditions on the noise
model from (9.1). Assuming that the simulator has the capacity to perfectly replicate
the underlying behaviour of the real world, we can take the ground truth constitutive
parameters, θ̃, and physiological conditions, ũ, to be those that provide the perfect fit to
the true underlying process. The simulator can be incorporated into (9.1) by replacing ψ
with ζ evaluated at this parameter combination:

y∗ = ζ(θ̃, ũ) + ξ, (9.2)

Note that the LV geometry g has been absorbed by ũ because the LV geometry is also
considered as a physiological condition. The noise model is the same as before due to the
perfect correspondence between simulator and reality. In any use of the simulator model,
we rely on measured or assumed values for u, which we may represent as û. When these
are measured, such as the case of the LV geometry, they will be subject to measurement
error (or possibly approximation error in the case of the statistical emulator with PCA)
and when they are assumed known and fixed to population based values, they will be
subject to some bias. In the presence of these suboptimal modelling conditions, the best
fitting constitutive parameters will no longer be the same as the “ground truth" values. At
the new best fitting parameters θ̂, we could argue that it no longer makes sense to think
of the noise model the same as before, instead considering the following model:

y∗ = ζ(θ̂, û) + ξ∗ (9.3)

where ξ∗ will often not have the same variance and may no longer satisfy the independence
assumption. For instance, in the presence of incorrect fibre angles we might expect a
relationship between the error in two neighbouring regions of the model. Critically, if we
were to assume the same noise model as was considered in (9.2), then a bias would be
introduced to the estimated parameters.

It turns out that the inconsistencies between the model and reality are more funda-
mental than erroneous physiological conditions. Built into all parts of the simulator are
several simplifying assumptions and chief among these is the model itself. The H-O model
is not a fundamental law of nature to which the myocardium abides. Instead, it is a math-
ematical description of the myocardium, constructed by modellers and validated against
experimental data to prove its ability to match the behaviour of the myocardium tissue
at different ranges of stretch (Holzapfel and Ogden, 2009). As such, we can be confident
that, although accurate, this description of the tissue will not perfectly replicate the en-
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ergy build-up in the myocardium. A further inconsistency is in our use of this law in the
simulator, where we make the assumption that the myocardium tissue can be described by
homogeneous material properties. Even for healthy tissues we would expect this assump-
tion is violated, but any introduction of heterogeneity to the model is highly complex and
methods do not currently exist to allow for it in the simulator. This reality of heterogeneity
does introduce the question of how we can justify an interpretation of homogeneous tissue
properties, especially if we do not account for any resulting mismatch in the simulator. A
final limiting assumption is that the model considers the LV in isolation. In reality, the LV
motion at the septum (see Figure 2.3) will be limited by the presence of the right ventricle
(RV). Using a bi-ventricular model would better resemble the boundary conditions on the
wall of the LV, without which we will incur a discrepancy between the reality and the
simulator, as studied by Palit et al. (2015).

9.2 Methodology

In Figures 9.1 and 9.2, we saw evidence of systematic mismatch between the simulator and
reality. The possible sources of this discrepancy, specifically related to the mathematical
model, were discussed in Section 9.1.2. This section will present an approach that allow
us to acknowledge this discrepancy in our noise model, largely based on the methods
for parameter calibration in the presence of model discrepancy that were discussed in
Section 3.2.7.

9.2.1 Acknowledging model discrepancy in Bayesian model cali-

bration

Consider the situation where we wish to infer the material parameters from measured data
y∗, with an LV geometry vector g that has a 5 PC projection h. In order to acknowledge
model discrepancy, a likelihood of the following form will be considered:

p(y∗|θ) = lV(θ)− k

2
log(σ2

S)− 1

2σ2
S

k∑
i=1

(y∗i − (ηi(θ,h) + bi))
2, (9.4)

where ηi(θ,h) is the emulator prediction for output i at parameters θ and 5 PC repre-
sentation h. The first term, which is the log-likelihood term associated with the volume
measurement, has the following form:

lV(θ) = −1

2
log(σ2

V )− 1

2σ2
V

(y∗0 − η0(θ,h))2, (9.5)
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and σ2
S is the variance associated with the strain measurements. The volume variance

σ2
V , which is non-identifiable given only one volume measurement, will be fixed during

inference to a value that is consistent with an operator error study (see Table E.1) while
the strain variance will be inferred along with the constitutive parameters. Within the
likelihood in (9.4), an extra term bi has been included. This extra parameter, which
must be inferred along with the constitutive parameters, adds an offset to the prediction
for strain i, making the strain more consistent with the volume. To summarise: the
model in (9.4) assumes that there is no systematic mismatch between the predicted and
measured LVV, which is necessary because of the absence of prior knowledge about the
model discrepancy. Moreover, in the presence of only one volume measurement we cannot
expect to learn a model discrepancy term on this quantity.

9.2.2 GP model for circumferential strain discrepancy

We have 24 circumferential strains, each of which will be subject to a separate bias cor-
rection. Modelling the corrections independently would lead to overfitting and a model
that is non-identifiable. To overcome this, we must model some dependence between the
correction variables, encouraging smoothness that will help to limit the flexibility of the
function. Following the work of Brynjarsdóttir and O’Hagan (2014), this can be done
by introducing a GP prior on the discrepancy function, allowing for the correction to
be jointly sampled with the constitutive parameters according to the following likelihood
function:

p(y∗|θ) = lV(θ)− k

2
log(σ2

S)− 1

2σ2
S

k∑
i=1

(y∗i − (ηi(θ,h) + bi(x) + v))2, (9.6)

where the parameter v is needed due to a zero-mean assumption on the GP. Assigning a
GP prior and treating b as a function, we require a domain X that defines the space over
which the discrepancy varies. On this domain we can then specify a kernel function that
provides the covariance between realisations of b at two separate points, as required for
the GP prior. For identifiability purposes, we require that X is independent of θ.

To account for model discrepancy in the LV problem, the domain of b is assumed
to be the strain location. The location of the strains on the LV wall was visualised in
Figure 2.3, where the colouring indicated a different circumferential positioning. One
possible choice for X is to consider the strain values defined over 1D space, with an
ordering that accounts for their location on the LV surface. However, any ordering we
consider here will be suboptimal because we cannot fully define the positioning of 3D
strain locations in only 1 dimension. Instead, we could use 3D coordinates in Euclidean
space to define the positioning of the strain locations and use a standard GP kernel, like
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the squared exponential, to define the correlations between locations. The issue with such
an approach is that the distance measure can jump across the centre of the cavity and
misrepresent the distance between two strain locations. Ideally, we want to account for
the circular shape of each short axis slice, for which we require a GP kernel defined on
polar coordinates.

Let us assume the strain measurements lie on a grid in two dimensional cylindrical
coordinates with a circumferential coordinate from

{
0, π

3
, 2π

3
, π, 4π

3
, 5π

3

}
and z coordinate

from {0, 1, 2, 3}. Thinking first about how to define the correlation in the circumferential
direction, we can consider the geodesic distance between two regions, which is given by
d(γ, γ′) = acos(cos(γ − γ′)) where γ and γ′ are the circumferential positioning of the two
regions of interest. Naturally, we can apply the polar GP kernel that was discussed in
Section 3.4.2 to specify correlations in this domain. In the z-direction, the strain locations
are defined in Euclidean space and we can use standard kernel functions like squared
exponential or Matérn class kernels. Combining this kernel in the z-direction and the
polar kernel in the circumferential direction provides us with a kernel function defined on
the surface of a cylinder. These can be combined additively or multiplicatively if we wish
to account for interactions between the two dimensions. Multiplying two kernels can be
thought of as an AND operation. That is, if you multiply together two kernels, then the
resulting kernel will have high value only if both of the two base kernels have a high value.
Adding two kernels can be thought of as an OR operation. That is, if you add together
two kernels, then the resulting kernel will have high value if either of the two base kernels
have a high value. In this work, an additive structure will be assumed as it was found
to lead to smoother corrective functions in preliminary runs. The final kernel has the
following form:

k({γ, z}, {γ′, z′}) = σ2
f1
Wc(d(γ, γ′); c, τ) + σ2

f2
kz(z, z

′;λ) (9.7)

with the hyperparameters of the model summarised in Table 9.1.

9.2.3 Inference for the model with discrepancy correction

Inference will be carried out using MCMC. Specifically, a HMC within Gibbs sampler will
be adopted, where sampling of the hyperparameters is performed adjacent to sampling of
the main model parameters. Table 9.1 provides a summary of the parameters present in
the model along with the corresponding prior that is used during inference. The bounds
for the uniform priors on θ were as follows: a, af ∈ [0.05, 10] and b, bf ∈ [0.1, 30].

The posterior of the discrepancy function b is highly correlated due to the multivariate
normal prior that results from the assumption of a GP. To improve efficiency of sampling,
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Table 9.1: Description of all parameters from the model in (9.6) along with priors used in
Bayesian inference. IG represents an inverse Gamma distribution.

Parameter Description Prior (π(·)) Rationale
σ2
S Noise variance of strains IG(0.001,0.001) Conjugate and vague

θ
Material parameters

(a, b, af, bf)
Uniform Physiological bounds

v Global bias of strains Normal(0.05) Knowledge of small
global discrepancy

λ
Lengthscale of z-component

of kernel function Gamma(2,2) Encourage smoother
functions

σ2
f1

Signal variance of polar
kernel IG(0.001,0.001) Vague

σ2
f2

Signal variance of
z-direction kernel IG(0.001,0.001) Vague

c
Compact support

parameter of polar kernel u(0, π) Physical bound

τ
Smoothness parameter of

polar kernel u(4, 10)
Encourage smoother

functions

this is sampled in the whitened space:

b̃ = L−1b (9.8)

where b ∼ GP(0,K) and K = LL> is the Cholesky decomposition. This method was
used by Kuss and Rasmussen (2005) to improve sampling efficiency, and depends on the
selection of the hyperparameters to determine the matrix L. Due to the Gibbs step, we
only compute the Cholesky decomposition once per MCMC sample because the GP hy-
perparameters have been sampled before the model parameters. The procedure is outlined
in Algorithm 4.

Algorithm 4 HMC within Gibbs for the polar GP model.
1: Sample from p(σ2

S|θ, v, λ, σ2
f , c, τ,b,y

∗), which is possible in closed form given conju-
gate inverse Gamma prior.

2: Sample from p(λ, c, τ, σ2
f1
, σ2

f2
|y∗,θ, σ2,b, v) using HMC.

3: Calculate updated covariance matrix K and corresponding Cholesky decomposition:
K = LL>.

4: Sample from p(θ,b, v|y∗, σ2
S, λ, c, τ, σ

2
f1
, σ2

f2
) using HMC, where b is sampled in

whitened space.

The posterior distributions used in steps 2 and 3 of Algorithm 4 have the following



CHAPTER 9. EFFECT OF ERRONEOUS PHYSIOLOGICAL CONDITIONS 184

form:

p(λ, c, τ, σ2
f |y∗,θ.σ2

S,b, v) ∝MVN (b|0,K(λ, c, τ, σ2
f1
, σ2

f2
))π(λ)π(c)π(τ)π(σ2

f )

p(θ,b, v|y∗, σ2
S, λ, c, τ, σ

2
f1
, σ2

f2
) ∝ p(y∗|θ,b, v)MVN (b|0,K(λ, c, τ, σ2

f1
, σ2

f2
))π(v)

where the various prior distributions, represented by π(·), are found in Table 9.1 and
K(λ, c, τ, σ2

f1
, σ2

f2
) is the GP covariance matrix.

9.2.4 The emulator model

Based on the results from Chapter 8, a four dimensional parameterisation of the H-O
model is adopted where a, b, af, bf are considered as random variables while as, bs, afs, bfs
are fixed to population based values from the literature (Gao et al., 2017). To allow for
variations in the LV geometry, a 5PC representation of the LV geometry is included in
the input space of the emulator, resulting in a 9 dimensional regression problem. The
same simulator outputs as previous chapters were used: 24 circumferential strains and
the LVV. Essentially, this emulator is the same as the one from Chapter 6 but a different
parameterisation of the H-O model is adopted.

In Chapter 6, a Sobol sequence was used to generate the training data for the emulator,
despite the evidence from Chapter 4 that the function is nonstationary. In Chapter 8, it
was shown that a warping of input space provided by a log transformation performed
similarly to more flexible neural network transformations of the input space, motivating
the use of a Sobol sequence on log-uniform space. This method will be used to generate
the training data for the current emulator. In total, 30,000 simulations were obtained for
training the emulator model and, as in Chapter 6, a neural network was used. To decide
on a final network, different combinations of 50,100,120 and 200 nodes were used in two
hidden layers, each containing tanh activation functions. The optimal architecture was
selected based on the MSE on a validation set of 3000 simulations. Training was performed
using the Adam optimiser with a decaying learning rate starting at 0.01. As with other
neural network models in this thesis, the validation set also allowed for experimentation
with different batch sizes. Based on previous results, the weights were initialised using
samples from a N (0, 0.1) distribution.

9.3 Implementation

Section 9.1.2 discussed the idea of discrepancy as a result of physiological conditions.
These included the LV geometry, the fibre orientation and the EDP. In order to explore
the effects of these on our model calibration, we can generate synthetic data by running
the simulator at a series of different physiological conditions. Several simulation studies
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to determine the effect of physiological conditions on the model calibration will now be
outlined.

9.3.1 Joint optimisation of fibre angles and constitutive parame-

ters

The data in Figure 9.1 are subject to a substantial degree of noise. Despite this, we
could see that the model and reality are in disagreement: in order to match the volume,
most of the circumferential strains must be overestimated. As we learnt in Section 9.1.2,
there are several sources of error in the model related to assumptions being made in
the physiological conditions and the typical approach taken in this thesis was to fix the
physiological conditions to sensible values based on knowledge from the literature. In
light of this, it is worth questioning whether we can get closer to the measured data by
estimating the physiological conditions from the data. Not all conditions can be considered
here: due to its high-dimensional representation the LV geometry is difficult to tune to
the data, and jointly inferring EDP and material parameters is an ill-posed problem.
On the other hand, the fibre angles can be represented in a two dimensional space and,
until now, their effect on the parameter estimation has not been thoroughly explored.
In this study, the angles will be jointly optimised with the material parameters using
Bayesian optimisation (BO) (Shahriari et al., 2016), which has been used to optimise the
material parameters by Romaszko et al. (2021). In doing so, we treat the angles as tuning
parameters, and their value is only a secondary concern. Primarily, we are hypothesising
that the fixing of the fibre angles represents a primary source of discrepancy between the
model and reality and wish to see whether treating these parameters as tunable can help
us to better match the LVV and circumferential strains. This will be investigated for each
of the 8 measured test sets.

The general idea in BO is to replace the iterative optimisation of an objective function
f(θ), with iterative optimisation of an acquisition function A(θ). Starting with a set of
objective function evaluations {θi, f(θi)}ni=1, a GP (or similar regression model) is fitted to
approximate f . Using information from the fitted GP, an acquisition function is defined
that will be optimised to select a new query point at which to evaluate the objective
function. This acquisition function typically has a multi-modal landscape, but is very
computationally cheap to evaluate and optimise. Once the query point is added to the
training set {θi, f(θi)}n+1

i=1 , the GP is updated. Updating the GP that is fitted to the
objective function evaluations also updates the acquisition function, which can then be
reoptimised to find the next query point. Importantly, the form of A(θ) is such that
there is a trade-off between exploring unseen locations in input space, and exploiting
areas where we think the objective function is low (assuming minimisation). The fact
that the acquisition function encourages exploration as well as exploitation means that
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the crudeness of the objective function approximation, especially at early stages, is not
detrimental. As long as the posterior distribution of the function correctly represents our
state of belief, we will explore areas where the uncertainty is high and exploit areas where
the posterior mean is low. In particular, the algorithm will initially explore the input
space, before exploiting as the fitted GP becomes more confident. Further details can be
found in the literature (Shahriari et al., 2016).

To use BO in this study, an initial set of 300 points (from a LHD) were run in parallel
before initialising the BO algorithm. The benefit of such a large number of initial runs is
that we can easily exploit parallelisation at this stage of the algorithm. This LHD gives a
matrix of design points X that is 300 × p, where p is 4 for the fixed physiological condi-
tion runs (only material parameter space) and 6 for the optimised angles runs (material
parameters plus two angles). To get the initial design for BO X̃, the first 4 dimensions of
X are transformed as follows:

x̃i = exp(xi)

and rescaled to [0.1, 10], which was the physiological range of the parameters in this study.
As we see in Figure 9.3, this newly transformed design (labelled as the exp design) is a
compromise between the highly skewed log-uniform design and the uniform design.

Uniform Log-uniform exp

Figure 9.3: Comparing the different designs. The log-uniform design is better for building
an emulator because most points are in the highly varying portion of the function, but
many of these parameter values will not be physiologically realistic. The exp design used in
this chapter is a compromise between the standard Sobol sequence and the Sobol sequence
in log-Uniform space.

From the initial points, a set of simulations Y was obtained, and the LVV was stan-
dardised using the early diastole volume. The mean and standard deviation of these
simulations (one for each of the 25 outputs) were used to standardise the initial data and
the test data. The residual sum of squares was used as the objective function, but prelim-
inary runs suggested that with volume and strains equally weighted there was not enough
incentive to match the volume. Therefore, the contribution of the LVV to the RSS was
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upweighted by a factor of 2, ensuring that the optimiser tries to match the LVV as well as
the circumferential strains. The BO was run for 300 iterations after the initial set of data
were generated, with the lower confidence bound acquisition function (Shahriari et al.,
2016) used to propose the next query point in the BO algorithm. In the LCB acquisition
function, the default weighting between mean and standard deviation of the GP predictive
distribution in the MATLAB BO toolbox was used:

A(θ) = µ(θ)− 2σ(θ) (9.9)

This acquisition function promotes exploration, which makes sense when we are in such a
high dimensional space.

9.3.2 Accounting for fibre angle discrepancy

To explore the effect of fibre angle approximation, the emulator from Section 9.2.4 will be
used to infer the material parameters. Recall that the emulator was trained on simulations
obtained from different combinations of constitutive parameters and 5PC representations
of the LV geometry, with the fibre angles held fixed at αendo = −60 and αepi = 60. These
are standard values of the fibre angles, used in the work in the earlier chapters of this
thesis and found in the literature (Noè et al., 2019). To introduce discrepancy between
the model and the test data as a result of fibre angle discrepancy, test data were generated
with fibre angles and constitutive parameters set to combinations of the following values:

(αendo, αendo) = {(−60, 90), (−30, 60), (0, 90)}
(a, b, af, bf) = {(0.1, 5, 1, 6), (0.5, 8, 1.5, 6), (1, 1, 1, 1), (1, 5, 1, 5)}

(9.10)

These material parameter vectors were selected to give physiologically realistic diastolic
behaviour. Each combination of material parameters and fibre angles was used, giving
12 synthetic test sets in total. Gaussian noise with standard deviation equal to 5ml
was added to the volume (motivated by the study in Table E.1) and iid Gaussian noise
with a standard deviation of 0.03 was added to the circumferential strains (as discussed in
Chapter 8, this is consistent with results from the literature). In order to remove the effect
of LV geometry error on the fibre angle exploration, the simulated data were generated
from a synthetic LV geometry generated in the 5 PC space.

Of interest is the effect that erroneous fibre angles can have on the estimation of
the material parameters. In addition to this, we can investigate the use of methods from
Section 9.2.2 to correct for the discrepancy introduced by the erroneous fibre angles. Given
the nature of the discrepancy model, we might expect that inference is driven by the LVV
component of the model. This concern will be addressed by comparing with inference
results based on LVV alone. For each model, inference will be performed using MCMC.
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For the volume only model and the model without discrepancy correction, this is a simple
application of NUTS in line with the procedures used throughout this thesis. In the case
of the discrepancy correction model, the procedure outlined in Section 9.2.3 will be used.
Convergence is assessed using the PSRF, with 1000 samples obtained after convergence.

9.3.3 Effect of LV geometry

In order to infer the material parameters from measured data, we require the LV geometry.
During parameter inference, we fix the LV geometry as an input to the simulator and
optimise or sample the constitutive parameters. In the real data case, the measured data
are obtained from CMR scans with the LVV obtained by reconstruction of the LV geometry
at end of diastole (this follows the same procedure as segmentation of the early diastole
LV geometry, which was outlined in Section 5.2.1) and the circumferential strains obtained
using an independent measurement procedure called deformation tracking (Mangion et al.,
2016a). Ideally, the effect of operator error would be assessed using data measured from
CMR scans. For multiple different subjects, we could get multiple operators to segment
the LV geometry at early and end of diastole and then measure the circumferential strains
from the CMR scans. Unfortunately, the inconsistencies between model and data that
we witnessed in Section 9.1.1 make this a difficult analysis to perform. Moreover, the
difficulty in measuring circumferential strains means that the errors in their measurement
would overshadow the errors in the LV geometry representation, which is of principal
interest here. As a result, a different study had to be constructed.

Of interest is the effect that different operators (different people segmenting the LV
geometry) have on the biomechanical model. In total, the LVs of 6 different patients2

were segmented by three different operators who will be referred to as operators 1,2 and
3. The operators had different levels of experience in segmentation of the LV, but all were
trained for the task. To investigate the effect of the operator on parameter estimation,
the procedure visualised in Figure 9.4 was used.

Each operator will be treated as a main operator, with the other two considered as
test operators. The main operator’s LV geometry G, which has vector representation g,
will be used to generate a set of synthetic data by evaluating the simulator using g and
material parameters θ̃ = (a, b, af, bf) = (0.60, 1.30, 1.00, 3.60)3. This is repeated for each
of the 6 different patients, creating 6 “measured” datasets for each main operator. To
infer the parameters from these datasets, several test geometries Ĝ, which have vector
representation ĝ, will be used. These are the LV segmentations of the test operators, as
well as the 5 and 10 PC reconstructions of the main operator’s segmented LV geometry. If

2These were obtained from a study of COVID patients.
3The material parameters were selected because the simulated LVV corresponds to an EF roughly

equal to 60%, which is a normal value (Hudson and Pettit, 2020).
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the error introduced to the parameter estimates by PCA is lower than the error introduced
by a new operator, then we have evidence that the inclusion of any extra LV geometry
information will not improve the parameter inference accuracy, given the current methods
for measuring the LV geometry.

PCA

Operator i

MAIN
OPERATOR g is used to generate

test data at parame-
ters θ̃, y∗ = ζ(θ̃,g)

MEASURED
DATA

Operator j, j 6=
i

TEST
OPERATORS

Denoted as g. Vector
representation of the
LV geometry recon-
struction of the main
operator.

MAIN
GEOMETRY

Denoted as ĝ. Vec-
tor representation of
the LV geometry re-
constructions of the
test operators, and
the PCA reconstruc-
tions of g.

TEST
GEOMETRIES

Use ĝ to infer the
material parameters
via the simulator
ζ(θ, ĝ)

SIMULATOR

Optimise θ

using (9.11),
which de-
pends on
y∗

OPTIMISE

Figure 9.4: Diagram of the optimisation procedure for the LV geometry study. In total
there are 4 test LV geometries, coming from the two test operators and the 5 and 10 PC
reconstruction of the main geometry. Therefore, the optimisation is repeated 4 times.

For the following outline of the optimisation procedure, let y∗ = ζ(θ̃,g) be the mea-
sured data. The first output, y∗0, is the LVV and the remaining 24, {y∗i }24i=1, are the
measured circumferential strains. To optimise the material parameters, the following ob-
jective function is used:

L(θ) =

(
Vearly − y∗0

y∗0
− V̂early − ζ0(θ, ĝ)

ζ0(θ, ĝ)

)2

+
24∑
i=1

(y∗i − ζi(θ, ĝ))2, (9.11)

where Vearly is the volume of G at early diastole and V̂early is the volume of Ĝ at early
diastole (this is in contrast to y∗0, which is the LVV). The volume component of this loss
function is unconventional and requires some discussion. The motivation behind this term
is to negate the effect that the initial volume of a reconstruction has on the parameter
optimisation, instead focusing on the effect of the shape of the LV geometry. This does
not remove any contribution of LVV from the loss function, instead it means that the
contribution from LVV is not dominated by the difference in early diastole volume. The
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optimisation was performed in MATLAB using fmincon with the sequential quadratic
programming method, which was also used by Gao et al. (2015). Each optimisation is
initialised from the ground truth material parameter value, so the optimiser measures the
perturbation introduced as a result of the LV geometry approximation.

9.4 Results

9.4.1 An initial look at the effect of fibre angles

In Figure 9.5, simulations obtained using the same LV geometry and material parameters
but with a range of different fibre angles are plotted. The line plots show the trend in
the circumferential strains, which can vary quite substantially as the angle changes. The
corresponding angles are provided in the legend along with the LVV (in the legend it is
labelled as EDV). The effect of the angle change is similar no matter the LV geometry,
which is that some circumferential strains are affected quite substantially, especially the
anterior lateral and inferior lateral regions. An important observation to take from this plot
is as follows: by varying the angle from αendo = −60, αepi = 90 to αendo = −30, αepi = 60,
we get only a 2ml difference in LVV but a more substantial increase in the circumferential
strains, particularly in the anterior lateral, inferior lateral and inferior region. In other
words, it appears that the effect of fibre angle on volume and circumferential strain is not
always in the same direction. This is precisely the type of effect that could be missing
when we calibrate the simulator to new data, as shown in Figure 9.1.
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Figure 9.5: Effect of fibre angle on the simulated circumferential strains and LVV.
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9.4.2 Bayesian optimisation of angles and material parameters

The second exploration of the fibre angles considers the task of learning the material pa-
rameters and fibre angles together from data measured from CMR scans. Using BO, the
four constitutive parameters a, b, af, bf were optimised, with final results provided in Ta-
ble 9.2. As well as providing the optimal configuration of the constitutive parameters, the
table provides the error in the LVV at the optimum as well as the error in the circumferen-
tial strains, assessed as the mean absolute error in the 24 circumferential strains. We see a
common inability to fit both the circumferential strains and the LVV. Both the angles in
the table are constant because these were held fixed during optimisation. Table 9.3 gives
the results of the 6 dimensional BO problem, including the four constitutive parameters
and the two fibre angles from the RBM. Comparing the volume errors, we see that by op-
timising the fibre angles along with the constitutive parameters we can better match the
volume measurements while still reaching the same (or lower) errors in the circumferential
strains. Typically, this requires that the two angles are quite small compared with the
values used to obtain the results in Table 9.2 and, as discussed above, these were treated
as tuning parameters with no attention paid to their physiological validity.

Table 9.2: Results of Bayesian optimisation of material parameters, with fibre angles fixed
at αendo = −60 and αepi = 90.

Fixed angles Vweight=2

ID a b af bf αendo αepi
Absolute LVV

error
Median absolute

strain error
HV1 0.30 0.54 0.60 9.74 -60 90 20.58 5.05× 10−2

HV2 0.12 9.91 8.32 0.92 -60 90 12.48 4.0× 10−2

HV3 0.10 5.88 3.17 9.94 -60 90 23.8 3.67× 10−2

HV4 0.18 9.80 2.68 10.0 -60 90 35.50 4.18× 10−2

HV5 0.10 6.88 1.98 9.96 -60 90 17.2 4.71× 10−2

HV6 2.35 0.27 3.83 1.59 -60 90 16.0 2.62× 10−2

HV7 0.14 9.90 1.29 9.8 -60 90 15.0 3.08× 10−2

HV8 0.12 3.18 3.76 9.98 -60 90 29.8 4.24× 10−2

9.4.3 An attempt to account for fibre angle discrepancy

Based on the results of the BO study, it appears that fixing of fibre angles introduces a
source of model discrepancy. To explore how this discrepancy can be acknowledged during
parameter inference, the model from Section 9.2.3 will now be considered, inferring the
parameters from the test data that were generated according to Section 9.3.2. Comparisons
in parameter space are confounded by the strong correlations between the parameters of
the H-O model, so another method for comparison is required. Recall from (9.10) that
the test data were generated using each pair of material parameter-fibre angle pairs from
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Table 9.3: Results of Bayesian optimisation of fibre angles and material parameters.

Optimised angles Vweight=2

ID a b af bf αendo αepi
Absolute LVV

error
Median absolute

strain error
HV1 0.36 1.27 3.00 0.58 -11.2 24.8 1.23 4.48× 10−2

HV2 0.12 9.95 5.84 1.01 -33.7 89.7 3.13 3.93× 10−2

HV3 0.18 3.52 5.01 9.91 -17.7 5.5 1.11 3.79× 10−2

HV4 0.12 5.55 4.63 6.26 -36.2 25.9 16.78 3.82× 10−2

HV5 0.16 5.79 3.37 0.96 -1.9 36.2 8.7 4.13× 10−2

HV6 1.43 3.67 2.19 0.54 -33.0 52.7 8.94 2.64× 10−2

HV7 0.15 4.31 3.03 5.19 -7.3 5.8 3.12 2.86× 10−2

HV8 1.69 0.35 3.65 2.90 -2.73 19.3 12.5 3.76× 10−2

sets of 4 material parameters configurations and 3 fibre angle configurations. Letting α̃
be a particular fibre angle configuration from this set of 3 and θ̃ be a material parameter
vector from the set of 4 different parameter configurations, then the test data are:

y∗ = ζ(θ̃, α̃,g) + ξ = z + ξ (9.12)

where g is the representation of an LV geometry generated from a point, h, in 5 PC space.
The variable ξ corresponds to the Gaussian noise, with standard deviation of 5ml for the
volume and 0.03 for circumferential strains. If we were to plug θ̃ and h into the emulator
η, we would recover:

ỹ = η(θ̃,h) 6= z (9.13)

where the lack of equality stems from the fact that the emulator was trained on simulations
that assume a fixed fibre angle configuration of αendo = −60◦, αepi = 60◦, which are
different from the three possible values of α̃.

In the preceding work of this thesis, two noise models have been considered: the first
was iid Gaussian noise on the 25 standardised outputs (LVV and 24 circumferential strains)
and the other considered iid Gaussian noise on the circumferential strains with a unique
noise standard deviation of 5ml on the LVV. Were we to assume this model and sample
the material parameters from test data that, like y∗, were produced by a process with
fibre angles different from those used to generate the training data for the emulator, then
the inferred parameters θ̂ would be biased, as discussed in Section 9.1.4. As a result, the
following would hold:

ỹ 6= η(θ̂,h). (9.14)

where ỹ comes from (9.13). The lack of equality here is solely because θ̂ 6= θ̃, and ideally
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we would infer material parameters θ̂ such that (9.14) is an equality. This is what we
hope to achieve by sampling parameters using the likelihood function from (9.6), where
the term b(x) + v corrects for discrepancy between η(θ̂,h) = ỹ and y∗. Therefore, when
sampling parameters using (9.6) as the likelihood function, we can assess the success of the
model by comparing the distribution of predictions from the emulator at each posterior
sample with ỹ. These simulations ỹ, which are produced according to (9.13), are now
referred to as benchmark simulations. Note that we would ideally use the simulator to
obtain the distribution of the simulator evaluations over the posterior of the parameters
but due to computational costs, the emulator will be used instead.

First, we can perform a posterior predictive check by comparing the posterior predictive
distribution with the test data. Since there are many test cases, this is only done for a
single example (with αendo = 0◦, αepi = 90◦). Figure 9.6 shows the posterior predictive
distributions of the circumferential strains in the case where parameters were sampled
with the likelihood with model discrepancy (blue dashed lines) and the model that does
not account for model discrepancy (red solid lines). Focusing first on the model without
discrepancy correction, we see that the variance in the posterior predictive is quite large.
Because the discrepancy introduced in y∗ is not fully within the capacity of the emulator,
the noise standard deviation is overestimated (by a factor of 2) and very little is learnt
about the material parameters of the model. For the model with discrepancy correction,
the variance in the posterior predictive is smaller. Indeed, the noise variance is now slightly
underestimated, with the median of the posterior distribution of the standard deviation
equal 0.024, which underestimates the true value of 0.03 as shown in Figure 9.7.

Figure 9.6: Comparing the posterior predictive distribution of the model that does not
account for model discrepancy (red solid lines) and the model that does account for model
discrepancy (blue dashed). Each subplot gives the result for a different circumferential
strain, with the vertical dashed line showing the measured strain value.

We can now assess the performance of the different models by comparing the posterior
distribution of η(θ,h) with the benchmark simulations that were discussed previously.
This time the volume only model can be considered as well. For all models, a distribution
of model predictions is created by predicting from the emulator at each posterior sample.



CHAPTER 9. EFFECT OF ERRONEOUS PHYSIOLOGICAL CONDITIONS 194

0.02 0.04 0.06 0.08 0.10
0

20

40

60

80

De
ns

ity

Figure 9.7: Comparing the posterior distribution of the noise standard deviation with the
ground truth value, which is indicated by a vertical dashed line at 0.03. Without model
discrepancy (red solid line), there is a huge inflation in noise standard deviation because
the discrepancy between model and data is outwith the capacity of the model. With the
inclusion of model discrepancy, this noise standard deviation is slightly underestimated as
the model discrepancy term models some of the extra structure in the data.

According to the discussion at the beginning of this section, this distribution should contain
the benchmark simulation if the model discrepancy correction is successful. Figure 9.8
provides detailed results for three different test cases (in each column) using each of the
different models (in the different rows), as indicated in the legend. Note that the first
column shows results for the same test case for which the posterior predictive distribution
was visualised in Figure 9.6. The volume and polar GP models perform similarly, both
outperforming the model without any discrepancy correction, which is particularly bad
in the last example. The results for all test cases are compared in Figure 9.9, which
shows the distribution of errors between the benchmark simulation and the posterior of
η over the 12 different test cases. These are all combined into one distribution for each
method of inference. From these plots we see that the volume only model and the model
with discrepancy correction provided by the polar GP perform almost identically, both of
which outperform inference with the standard normal likelihood function ((9.6) without
any discrepancy correction included on the circumferential strains).

9.4.4 LV geometry study

An initial look at the effect of LV geometry

It is already clear from previous work that the behaviour of the LV in diastole can vary
depending on the LV geometry. This was made evident by the error introduced to the
outputs of the simulator when adopting a PCA representation of the LV geometry in
Chapter 6. In Figure 9.10, the variations that result from running the simulator at the
same material parameters for different LV geometries are presented. From this plot we
see that the LV geometry can have a fairly substantial effect on the simulator outputs
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Figure 9.8: Comparing the posterior distribution of η(θ,h) with the benchmark simula-
tions. Three different test cases are shown (in each column), with the different rows giving
the results when parameters are inferred using each of the different models, as indicated
in the legend. “None" corresponds to the model that includes LVV and circumferential
strains without accounting for any model discrepancy.
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Figure 9.9: Distribution of absolute errors between the posterior distribution of η(θ,h) and
the benchmark simulations for all 12 test cases combined, across the three different noise
models. The Polar GP and model with only volume perform similarly, both outperforming
the standard iid Gaussian noise model (labelled as “None”).
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and, similar to the fibre angles, the effect of LV geometry variation seems to be most
pronounced in the inferior lateral region.
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Figure 9.10: The effect of LV geometry on the simulated circumferential strains and LVV.

Operator effect in the geometry domain

As discussed in Section 9.3.3, 3 operators segmented 6 different LV geometries. A visual
comparison of the LV geometry reconstructions of the different operators is provided in
Appendix E.1, along with comparisons of the cavity volumes. Quantitative differences
between the segmentations are provided in Table 9.4, where each subtable gives the results
when a different operator is used as the main operator (recall that the main operator’s
segmentations are taken to be the benchmark). Also provided is the reconstruction error of
a PCA reconstruction of the main operator’s LV geometry segmentation, with the values
highlighted in bold indicating the number of PCs needed to outperform both of the test
operators in a particular example. In general, it appears that the shapes of operator 1 and
3 are in good agreement (at least in terms of MSE), but 8PCs are enough to outperform
the test operators in 5 out of 6 test cases. The first segmentation of operator 1 appears
to be a bit of an outlier, suggesting some error has been made during the segmentation.
Indeed, upon further inspection it was discovered that an obvious error had been made
during motion correction (where we align the short and long axis of the LV geometry
reconstructions). The bottom row of the table provides the proportion of cases where PCA
outperforms either operator. For instance, the value 0.44 below the 5PC column shows
that in 44% of the 18 cases, 5PCs give lower reconstruction error than either operator. In
all but one example, 10PCs (and often less) is enough to outperform a different operator
in terms of reconstruction error.
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Table 9.4: Comparing reconstruction errors of three different operators. Each of the 6 rows
gives the results for an individual patient segmented by the operators. The main operator’s
reconstruction is taken to be the benchmark, compared with its PCA reconstruction and
those of the other two operators. The first reconstruction with PCA that gives lower MSE
than either operator is in bold.

Main operator: 1
Oper 2 Oper 3 5PC 6PC 7PC 8PC 9PC 10PC
0.025 0.030 0.002 0.002 0.002 0.001 0.001 0.001
0.003 0.003 0.012 0.007 0.006 0.005 0.004 0.003
0.009 0.006 0.008 0.007 0.007 0.006 0.004 0.004
0.020 0.005 0.005 0.005 0.004 0.002 0.002 0.002
0.016 0.008 0.013 0.011 0.007 0.007 0.006 0.006
0.005 0.005 0.003 0.003 0.003 0.003 0.003 0.003

Main operator: 2
Oper 1 Oper 3 5PC 6PC 7PC 8PC 9PC 10PC
0.025 0.004 0.003 0.003 0.002 0.002 0.002 0.002
0.003 0.006 0.014 0.007 0.007 0.006 0.005 0.004
0.009 0.013 0.003 0.003 0.003 0.002 0.002 0.002
0.020 0.013 0.012 0.012 0.004 0.004 0.004 0.004
0.016 0.023 0.021 0.020 0.011 0.010 0.008 0.008
0.005 0.004 0.002 0.002 0.002 0.002 0.002 0.002

Main operator: 3
Oper 1 Oper 2 5PC 6PC 7PC 8PC 9PC 10PC
0.030 0.004 0.006 0.005 0.002 0.002 0.002 0.002
0.003 0.006 0.006 0.004 0.004 0.003 0.002 0.002
0.006 0.013 0.007 0.007 0.007 0.005 0.004 0.004
0.005 0.013 0.010 0.009 0.006 0.004 0.003 0.003
0.008 0.023 0.015 0.014 0.008 0.008 0.007 0.007
0.005 0.004 0.002 0.002 0.002 0.002 0.002 0.002
- - 0.44 0.44 0.67 0.83 0.89 0.94

Operator effect in the biomechanical domain

The primary interest lies in the effect that the operator induced variations in the LV
geometry have on the simulator. First considered using a comparison in output space, the
results of this analysis are found in Figure 9.11. As before, each operator is individually
treated as a main operator, and the simulated circumferential strains obtained using the
main operator’s LV geometry are compared with simulated quantities obtained using the
2 test operators and the 5 and 10 PC reconstructions. The labels on the horizontal axis
of the violin plots indicate which test reconstruction we are considering. Note that the
distributions combine the results for all 6 patients segmented by the operators.

From Figure 9.11, we see that operators 1 and 3 are in quite good agreement: if either
1 or 3 is the main operator and the other is the test operator, the simulated circumferential
strain error is roughly the same as that obtained using a 10 PC reconstruction. Operator
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2 tends to perform similarly to the 5 PC reconstruction, both of which are worse than
the other two test operators. The real assessment of these errors is in the parameter
estimation, which is the ultimate interest in this study.

Oper 2 Oper 3 5PC 10PC
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Main operator:1

Oper 1 Oper 3 5PC 10PC
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Main operator:2
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Figure 9.11: Distribution of simulated strain errors with different LV geometry approxi-
mations. In each subplot, a different operator is treated as the main operator (as specified
in the title) and the simulations with the main operator’s LV geometries are compared
with the simulations using the other two operator’s LV geometries and the 5 and 10 PC
reconstructions of the main operator’s LV geometry.

The effect of operators on the parameter estimation is explored using the simulation
study outlined in Section 9.3.3. In this section the results will be summarised, with
the exact numerical results found in Appendix E.2. The plots in Figure 9.12 compare
the inference results using the absolute error in each individual parameter, with each row
corresponding to a different main operator (recall that the six LV geometry reconstructions
obtained by the main operator are used to generated test data for parameter optimisation).
The results in the plots suggest that optimisation using each different test geometry gives
similar results no matter the main operator.

A comparison that depends on the Euclidean distance of each individual parameter
from its ground truth value is not a fair indicator of performance because it fails to take into
account the relationship between the different material parameters. This inter-dependence
is indicated by the ridges in Figure 9.13, where the loss function is plotted as a function of
different combinations of material parameters. When assessing the success of parameter
inference, a perturbation of the parameters by distance D along a ridge should be viewed
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Figure 9.12: Results of parameter estimation. Each subplot shows the absolute errors in
material parameters when a particular operator is treated at the main operator, whose
segmentation is used to generate synthetic test data. In each subplot, the summaries
are split according to each constitutive parameter with the sets of 4 error bars showing
results for test operators, 5PC and 10PC. For instance, in the top subplot the first 4 (blue)
error bars show the error in parameter estimates for a when using the reconstructions of
operator 2, operator 3, 5PC and 10 PC where the segmentations of operator 1 are used to
generate the test data. Each error bar shows the results for the 6 different LV geometries
as narrow tick marks with the median shown as a wider tick mark.

differently to perturbation by distance D off a ridge. One metric that could overcome this
issue is the Mahalanobis distance, which accounts for correlations between variables of
interest. However, this is not straightforward to compute because it relies on a numerical
estimate of the Hessian to provide an approximate covariance matrix. Instead of this, a
metric in simulator output space can be used.

Recall that the data used in this study were generated using the main operator’s LV
geometry segmentation and the ground truth material parameters θ̃. For the current
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comparison, this simulation is referred to as a benchmark simulation. For each test LV
geometry, the material parameters were optimised to obtain θ̂, and in general θ̂ 6= θ̃

because G 6= Ĝ. In the current comparison, these parameters will be compared not in
parameter space, but in function space. To do so, the simulator is evaluated using the main
operator’s LV geometry segmentation and θ̂. This simulation can then be compared with
the benchmark simulation to assess the accuracy of inference. By assessing the accuracy of
the parameter estimates in simulator output space, movements along a ridge in parameter
space will be penalised less than movements off a ridge.
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Figure 9.13: Contour plot of the RSS function over different combinations of parameters.
The red X marks the ground truth parameter value.

The results of the output comparison are shown in Figure 9.14. Each subplot shows
the results when a different operator is treated as the main operator, as indicated by the
titles of the plots. The first two distributions correspond to results with the 2 test op-
erators (indicated by the label of the violin plot) and the final 2 distributions are those
corresponding to 5 and 10PC reconstructions of the LV geometry. Although it is diffi-
cult to see the details of some of the distributions, it is clear that the two different PC
representations provide results that are at least as consistent as the new operators. This
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Figure 9.14: Comparing the parameter estimates in output space using Euclidean dis-
tance between circumferential strains. Each plot gives the results for a different main
operator. The simulator is evaluated, with the ground truth LV geometry, at the op-
timised parameters (the test simulation) and ground truth parameters (the benchmark
simulation). Comparing the test and benchmark simulation allows for a comparison of
parameter estimates that takes into account correlations between the parameters.

result suggests that we will not gain anything by including large numbers of PCs in the
parameter inference scheme, because the errors introduced by new operators lead to larger
errors than with just 5 PCs.

9.5 Discussion and conclusion

Having acknowledged an obvious mismatch between the cardio-mechanic model and mea-
sured CMR data in Section 9.1.1, the work in this chapter considered the effect of erroneous
physiological conditions on the model calibration task. The first study showed the change
in the fit of the model to the measured data when the fibre angles are allowed to vary
during optimisation. Building on this, a synthetic data study was carried out where test
data were generated using deliberately incorrect angles in the rule-based fibre generation
algorithm. Finally, the effect of the LV geometry on the parameter estimation task was
considered. In particular, the knock-on effect of LV segmentation operator errors on the
parameter estimation was studied.

In Section 9.4.2, the fibre angles were treated as extra variables during inference and
jointly optimised along with the material parameters. This was motivated by the fact that
the volume tends to be underestimated during inference, and the exploratory analysis in
Figure 9.5 that showed that a change to the fibre angles can affect the circumferential
strains more than the cavity volume. Therefore, it was postulated that one reason for the
LVV-circumferential strain mismatch could be the fibre angles. This joint-optimisation
study showed that tuning the parameters and the angles together does allow for an im-
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provement in the fit to the measured CMR data. These results should motivate future
work on inferring the material parameters and fibre angles jointly, especially given the
difficult of measuring the fibre angles in vivo. To do so reliably would require more precise
or more plentiful datasets than those that are currently available.

The next stage in studying the effect of fibre angles was to consider a synthetic data
study. In replacement of the cardio-mechanical model, an emulator was used where the
training data had been generated assuming a fixed set of fibre angles (which was the case
with all other emulators used for I-UQ in this thesis). To introduce model discrepancy, the
synthetic data were generated using fibre angles different from the ones used when gener-
ating the training set. This introduced a mismatch between the emulated circumferential
strains and the measured circumferential strains, but resulted in no systematic mismatch
in the LVV. In total, three different models were used to estimate the parameters from
the test data. The first was the standard Gaussian noise model used in the previous
work in this thesis. In particular, this assumed a fixed noise variance on the LVV and iid
Gaussian noise on the circumferential strains, the latter of which could be inferred during
inference. The second was a model that accounted for discrepancy on the circumferential
strains via a correction function on the circumferential strains that was modelled using a
GP as outlined in Section 9.2.2. To ensure model identifiability, the LVV was assumed to
be corrupted with Gaussian noise with a fixed noise variance, but no model discrepancy.
Finally, a model that included the LVV alone was considered, again with fixed noise stan-
dard deviation. The fixed noise standard deviation for the LVV was the same across the
three models. By assuming the first noise model, a bias was introduced to the parameter
estimates as a result of the mismatch between the fibre angles used in the emulator and
the fibre angles used to generate the test data. In addition, there was an inflation in the
inferred noise variance, resulting from the fact that there was extra discrepancy between
model and data that could not be accounted for by the model. This discrepancy was
corrected by including a discrepancy term on the circumferential strains, allowing for a
reduction in the inferred noise variance on the circumferential strains that was closer to
the ground truth value, and a reduction in the bias of the parameter estimates. Lastly, the
model with discrepancy correction and the model with only LVV were shown to provide
similar inference results. While this might motivate the idea of using the LVV alone for
parameter inference, the benefit of the model with discrepancy correction is that it is auto-
matic, without requiring us to study the relationship between circumferential strains and
LVV. In the future, it would be worth exploring ways of incorporating a more informative
discrepancy correction for both the circumferential strains and the LVV.

One of the main tasks in this thesis has been to allow for the generalisation of a
statistical emulator to different LV geometries. Previous work, in particular Chapter 6,
suggested that 5 PCs were not sufficient for representation of the LV geometry in parameter
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inference. Making use of three different LV segmentation operators, the final study in this
chapter has compared inter-operator LV geometry errors with those obtained using PCA.
The comparison was performed first in geometry space and then using the biomechanical
model. Considering first the geometry space comparison, the results in Table 9.4 showed
that in all but one example, a 10 PC reconstruction gave a more accurate approximation
to an LV geometry than a segmentation obtained by a new operator. The next stage of
the comparison considered the biomechanical model, first in terms of the forward model
and then in terms of inverse modelling. In the forward model, operators 1 and 3 were
found to be fairly consistent, both achieving results similar to 10 PCs. On the other hand,
Operator 2 and the 5 PC reconstructions were noticeably worse. The real test of these
different LV geometry approximation methods was in the parameter estimation, which
is ultimately our main interest. Comparing parameter optimisation results in parameter
space, the different LV geometry approximations were found to give similar results. It
was suggested that this parameter space comparison might be suboptimal because it does
not account for correlations between parameters. As a result, an output space comparison
of the parameter estimates was performed. The result of this comparison showed that 5
and 10 PCs give better results than the new operators, which is a quite substantial result
in the context of this thesis. In particular, this suggests that there is no advantage to
improving the accuracy of the LV geometry reconstruction in the generalised emulator.

While the results in the current chapter suggest that there is no need to improve the
accuracy of the generalised emulators that were built in this thesis, it is possible that
the accuracy of LV segmentation will improve to be more objective in the future. In this
case, a more accurate emulator would be beneficial for parameter inference. Appendix F
suggests an alternative approach to emulation of the simulator model, where a set of basis
functions is learnt from a training set of LV geometries (with corresponding simulations)
and adapted to a new test subject. Fitting to the new test subject relies on a small number
of simulations that can be run in parallel, but preliminary results show that the model can
be very accurate with only 20 simulations. Further exploration of the design and training
of the model would likely lead to further improvements in accuracy.

In conclusion, the present study has highlighted several problems with the translation
of mathematical models to the clinic. First of all, the large mismatch between measured
data and the LV model was highlighted, acknowledging that this could be the result of
either model-reality discrepancy or noise introduced by the measurement process. The
former situation was studied in the remainder of the chapter, which sheds light on the
effect that the fibre angles of the rule based method and the error introduced by operators
to the LV geometry can have on the parameter estimation. In particular, a model that
accounts for model discrepancy was found to provide better results than one that assumes
iid measurement errors, while providing no noticeable difference with a model that included
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LVV alone. This study assumed that there is no bias introduced to the LVV, which was
the case for the fibre angles used to generate the test data. In the LV geometry study,
the effect that operator segmentation variation has on the parameter estimation in the
LV model was found to exceed that that was introduced by PCA. This should motivate
multiple lines of future study. Principal among these is the collection of larger and more
reliable datasets for the estimation of the model parameters, without which the parameter
estimates obtained for these models cannot really be trusted. Secondly, a better informed
discrepancy correction that accounts for bias in the LVV and circumferential strains would
allow for more trustworthy inferences than are currently available.



Chapter 10

Discussion and Conclusion

10.1 Main findings of this thesis

The work in this thesis considered the task of statistical emulation of a patient-specific
mathematical model of the LV in diastole. To this end, several important contributions
have been made. Principal among these was the proposal of a generalisable emulator for
the mathematical model, allowing for generalisation to previously unseen LV geometries.
While the PCA representation of the LV geometry that was used in the model was not
perfect, a comparison with inter-operator errors has suggested that the errors incurred are
within those experienced when varying the operator that performs the segmentation of
the LV geometry. A second key contribution was the construction of a prior distribution
from the information contained in the Klotz curve. This is an ex vivo study that has often
been used in the literature as part of an objective function for optimisation of passive
myocardial parameters. The formation of a prior distribution allowed for the incorporation
of the Klotz curve in a Bayesian inference model. Finally, a combined SA/I-UQ study was
used to explore the structural and practical identifiability of the H-O model. This study
proposed a new four-dimensional parameterisation of the H-O model as a result of the low
sensitivity of some of the model’s parameters.

Starting from a simplified simulator in Chapter 4, it was shown that emulation of
the outputs of the simulator allows for improved parameter inference accuracy compared
with emulation of the loss function. In this same chapter, a neural network model, which
provides an efficient global emulator of the simulator function, was shown to perform
similarly to local GP models. This, together with results found in Chapter 6, motivated the
use of neural networks for emulation of the outputs of the simulator in the remainder of the
thesis. As opposed to GPs, neural networks only allow regression rather than interpolation;
the ability to do the latter is one of the main advantages of GPs for emulating deterministic
functions. However, the results from Chapter 9 suggest that interpolation is not what
we want in practice, due to the noise in the data and the intrinsic model mismatch.

205
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This provides a motivation for the use of parametric regression models, like NNs, due to
their lower computational complexity. The simplification of the simulator in Chapter 4
involved fixing the LV geometry, which meant that the emulator could not generalise to
new subjects. As a solution to this, the proceeding two chapters considered first the task
of dimension reduction of the LV geometry in Chapter 5 and then the extension of the
emulator input space to include a low dimensional representation of the LV geometry in
Chapter 6. During the exploration in Chapter 6, the identifiability of the parameters was
shown to display two properties. Firstly, as a result of nonstationarity of the simulator
function, it was found that accurate parameter estimation is more attainable in certain
parts of the configuration space. Secondly, certain parameters of the model were found
to exhibit poor identiability, which is the result of their physiological meaning. In more
detail: certain parameters in the H-O model are helpful for providing accurate prediction
of the myocardium’s behaviour at stretches beyond the in vivo range, and this introduces
identifiability problems when we consider the task of inferring parameters from in vivo
measured data.

In Chapter 7, a technique that is commonly used in optimisation routines in the liter-
ature was formalised as a prior distribution. Specifically, the Klotz curve has previously
been used to introduce a dependence of an objective function on the high stretch be-
haviour of the myocardium. In Chapter 7, the uncertainty in the Klotz function, obtained
through MCMC sampling of the Klotz curve function parameters, was propagated through
to the LVV at different pressure values. Using a product of experts approach, two different
prior distributions were derived: the empirical Klotz prior depended on the measured end
diastolic volume of the cavity while the nonempirical Klotz prior depended only on the
predicted end diastolic volume at different cavity pressures. The empirical Klotz prior
was shown to reduce the uncertainty in the parameter estimates when compared with a
standard uniform prior on the physiological range of the parameters, and outperformed
the nonempirical Klotz prior for this purpose.

While the results of Chapter 7 were encouraging, we ideally wish to extract as much
information as possible about the parameters from the in vivo data. To this end, one
hypothesis was that the radial and longitudinal strains could help in the estimation of
the parameters that are weakly-identified using only circumferential strains and LVV.
In Chapter 8, the sensitivity of the LVV and radial, longitudinal and circumferential
strains to the H-O model inputs was assessed. This showed that, while the sensitivity
indices for a, b, af and bf (see (8.1)) varied slightly across the different outputs from
the LV model, the remaining parameters of the H-O model have near-zero sensitivity
regardless of the output considered. This motivated a new parameterisation of the H-O
model in which the first 4 parameters are treated as random variables and the final 4 are
fixed to population-based values. The use of I-UQ in this study showed the variation in
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the practical identifiability of the parameters with varying end diastolic pressure, which
provides retrospective motivation for the use of the Klotz prior. The I-UQ study showed
that the identifiability of the parameters depended on their locations in the parameter
space, which was similar to the results found for the previous theta parameterisation.

Chapter 9 tackled some issues that are of particular relevance to the translation of
mathematical models of cardiac function to the clinical setting. These were motivated by
apparent inconsistencies between the LV model and the measured data during inference.
Based on this, the issues of model discrepancy as a result of the physiological conditions
were explored. A synthetic data study revealed that without accounting for model dis-
crepancy, inconsistencies between the assumed fibre angles and the actual fibre angles
can lead to a bias in our parameter estimates. The bias in the parameter estimates was
corrected by accounting for model discrepancy in the noise model. Finally, a study of the
effect that operator variations in the LV segmentation have on the parameter estimates
was explored, showing that the error incurred with a 5 PC reduction of the LV geometry
is within the error obtained by changing the operator. This provides empirical evidence
that the generalisable emulator proposed in this thesis is sufficiently accurate given the
current methods for reconstructing the LV geometry manually. Assuming that LV geom-
etry measurement approaches improve sufficiently, the preliminary exploration of a new
method to emulation with in clinic correction has proven encouraging in Appendix F, but
this method is still in the early stages of development.

10.2 Future work

In all studies throughout this thesis, the LVV and 24 circumferential strains at well defined
locations on the LV wall were used to summarise the deformation of the LV in diastole
for the purpose of inverse estimation. Given the high levels of noise we typically find in
these datasets, it would be beneficial to increase the number of observations. Recall from
Section 2.2 that the mathematical model of the LV produces the entire deformed LV mesh,
from which the circumferential strains and LVV are extracted. Rather than using these
summaries of the mesh, an alternative would be to attempt to match the actual deformed
mesh with one that is extracted from the CMR scans at end of diastole. To define a loss
or likelihood function from these data and model, we must find a correspondence between
the nodes of the simulator deformed mesh and the meshes extract from the CMR scans,
which is a non-trivial task. If possible, the larger dataset provided by this approach would
allow us to better infer the underlying signal, while also allowing for better exploration
of the discrepancy correction methods that were studied in Chapter 9. Also related to
the measured data is the LV geometry segmentation, which was shown in Chapter 9
to be subject to operator subjectivity. An interesting direction of future work would
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be to consider accounting for the uncertainty in the LV geometry segmentation in the
forward modelling, which could be done using a probabilistic treatment of the segmented
boundaries.

The inclusion of LV geometry uncertainties in the inverse estimation requires a model
that can more accurately generalise to new LV geometries. The work in Appendix F is
promising in this regard, but we ideally would use a method that requires zero simulator
invocations, which is also desirable for in clinic inference approaches. To this end, recent
efforts have been made to apply graph neural networks (GNNs) to the LV simulator
(Dalton et al., 2021). GNNs replace costly finite element numerical integration by message
passing on graphs, which has been widely studied by the machine learning community (see
for instance Bishop (2006, Section 8.4); Murphy (2012, Section 22.4)). This produces a
model that can generalise to unseen graphs, which in this case are new LV finite element
meshes. While the results of Dalton et al. (2021) are promising, these methods have yet
to be applied to full-scale anatomical LV meshes.

One of the disadvantages of data-driven modelling approaches, including the emula-
tors used throughout this thesis, is that they perform poorly outwith the vicinity of the
training data. This was the fundamental reason why the model developed in Chapter 4
could not generalise to new LV geometries. Physics informed neural networks (PINN) are
recently proposed methods that overcome this issue by taking the physics of the prob-
lem into account by using the form of the PDEs to train the network weights, turning
what is typically a black-box method into a “grey-box” method. These models require no
simulator runs for training, and have already been applied in the context of cardiac mod-
elling (Sahli Costabal et al., 2020) and in the specific context of the LV in diastole (Buoso
et al., 2021). Successful implementation of either PINNs or GNNs to model anatomical
LV geometries would be a huge step forward, with lasting impact in other cardiac models.

The ultimate goal of mechanical modelling of the heart is clinical translation. While
mathematical and statistical modelling of cardiac function are progressing to the point
of patient-specific modelling, further developments in terms of model accuracy could ulti-
mately be in vain without greater consideration of how these models will be used in the
clinic. An impact area in this regard is the provision of clinical biomarkers (Chabiniok
et al., 2016; Niederer and Smith, 2016). For this task, the inferred parameters would
be used to provide an indicator of disease, and an important consideration here is the
parameterisation of the model. While more heavily parameterised models can provide
higher fidelity simulations, these models often become practically unidentifiable, making
the interpretation of our inference results more difficult. The parameterisation proposed
in Chapter 8, while motivated by the SA study, could probably be reduced further with
this in mind. Ultimately, this model selection task would require the consideration of dis-
eased patients to see which parameters have diagnostic potential. Assuming the selection



CHAPTER 10. DISCUSSION AND CONCLUSION 209

of an appropriate parameterisation, we also require greater consideration of how to com-
municate or summarise the inferred mechanical behaviour of the heart in a way that can
be interpreted by clinicians. For instance, while uncertainty quantification is vital given
the uncertainties associated with all aspects of cardiac models, results summarised in the
form of parameter space posterior distributions would be of little use to clinicians. More
useful would be to devise a system that takes the uncertainty into account to provide some
interpretable, complementary information to the clinician when assessing the health of a
patient.



Appendix A

Appendix for Chapter 3

A.1 GP prediction with precomputation

Recall the predictive equations for a GP model:

m(θ∗) = kθ∗θ[Kθθ + σ2I]−1y

v(θ∗) = kθ∗θ∗ − kθ∗θ[Kθθ + σ2I]−1kθθ∗ + σ2

With Kθθ = LL>, which requires O(n3) computations, the predictive mean becomes:

µ(θ∗) = kθ∗θL
−>L−1y

where b = L−>L−1y can be precomputed using forward and backward substitution. At
a test point, the predictive mean µ(θ∗) = kθ∗θb requires O(n) computation. For the pre-
dictive variance, only [Kθθ + σ2I]−1 can be precomputed, meaning the predictive variance
requires computational cost O(n2) rather than O(n3)

A.2 Sparse GP prediction with precomputation

The predictive equations of the sparse GP proposed by Titsias (2009), with training inputs
θ, training outputs y and inducing inputs θ̃ are:

m(θ∗) = kθ∗θ̃K
−1
θ̃θ̃
µ (A.1)

v(θ∗) = kθ∗θ∗ − kθ∗θ̃K
−1
θ̃θ̃

kθ̃θ∗ + kθ∗θ̃K
−1
θ̃θ̃

AK−1
θ̃θ̃

kθ̃θ∗ (A.2)
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where θ∗ is the test input. A and µ have the following form:

µ = Kθ̃θ̃ΣKθ̃θy (A.3)

A = Kθ̃θ̃ΣKθ̃θ̃ (A.4)

Σ = [σ2Kθ̃θ̃ + Kθ̃θKθθ̃]
−1 (A.5)

Plugging (A.5) into (A.3), and (A.3) into (A.1) gives:

m(θ∗) = kθ∗θ̃K
−1
θ̃θ̃

Kθ̃θ̃[σ
2Kθ̃θ̃ + Kθ̃θKθθ̃]

−1Kθ̃θy (A.6)

With Kθ̃θ̃ = LmL>m, we have the following:

m(θ∗) = kθ∗θ̃[σ
2LmL>m + Kθ̃θKθθ̃]

−1Kθ̃θy

= kθ∗θ̃L
−>
m [I + σ−2L−1m Kθ̃θKθθ̃L

−>
m ]−1L−1m Kθ̃θy

Letting b = L−1m Kθ̃θ, we have the following:

m(θ∗) = kθ∗θ̃L
−>
m [I + σ−2bb>]−1L−1m Kθ̃θy

= kθ∗θ̃L
−>
m [LBL>B]−1L−1m Kθ̃θy

= kθ∗θ̃L
−>
m [LBL>B]−1ỹ

Letting z = L−1B ỹ, we have:

= kθ∗θ̃L
−>
m L−>B z

= kθ∗θ̃a

where a is an m × 1 vector that can be precomputed. Therefore, the predictive mean is
O(m) with precomputation.

As in the standard GP, there is a limit on precomputation of the predictive variance
of the sparse GP.

v(θ∗) = kθ∗θ∗ − kθ∗θ̃K
−1
θ̃θ̃

kθ̃θ∗ + kθ∗θ̃K
−1
θ̃θ̃

AK−1
θ̃θ̃

kθ̃θ∗ (A.7)

= kθ∗θ∗ − kθ∗θ̃K
−1
θ̃θ̃

kθ̃θ∗ + kθ∗θ̃[σ
2Kθ̃θ̃ + Kθ̃θKθθ̃]

−1kθ̃θ∗ (A.8)

Now, without repeating the process of writing out matrix decompositions to introduce
stable matrix calculations, we can just read off the computational costs of the predictive
variance. In the term kθ∗θ̃K

−1
θ̃θ̃

kθ̃θ∗ , the matrix inverse can be precomputed, but kθ∗θ̃ and
kθ̃θ∗ cannot. Therefore, the cost of the matrix multiplications, which is O(m2) is incurred
at prediction time. In the second term kθ∗θ̃[σ

2Kθ̃θ̃ + Kθ̃θKθθ̃]
−1kθ̃θ∗ , the matrix inverse
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can be precomputed so at prediction time this also requires O(m2) computational costs,
and the total cost of the predictive variance is O(m2). Note that many GP packages do
not include precomputation in their prediction routines and require repeated inversion of
the covariance matrix at predict time.
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Appendix for Chapter 4

B.1 Multioutput GP

Continuing from the main text, assume a linear form for the mean function, with h(θ) =

[1,θ] an m× 1 vector and coefficients B, which is an m× q matrix. At point θ the mean
is calculated as m(θ) = B>h(θ). Letting H be a matrix with ith row containing h(θi)

>

leads to the matrix Normal distribution as a generalisation of the multivariate Gaussian:

Y|B,Σ, r ∼ MN(HB,Σ⊗KΘΘ) (B.1)

which combined with the prior in (3.47) gives a full posterior for the latent variable of the
form:

ζ(·)|B,Σ, r,Y ∼ N (µ(·), v(·, ·)Σ) (B.2)

where µ(·) and v(·, ·) can be found using standard Gaussian identities to be:

µ(θ∗) = B>h(θ∗) + (Y −HB)>K−1ΘΘkΘθ∗ (B.3)

v(θ∗,θ∗) = kθ∗θ∗ − kθ∗ΘK−1ΘΘkΘθ∗ (B.4)

B and Σ can be integrated out of the model, giving a process of the following form:

ζ(·)|Σ, r,Y ∼ N (µ̃(·), ṽ(·, ·)Σ) (B.5)

where

µ̃(θ∗) = B̂>h(θ∗) + (Y −HB̂)>K−1kΘθ∗ (B.6)

ṽ(θ∗,θ∗) = v(θ∗,θ∗) + [h(θ∗)−H>K−1ΘΘkΘθ∗ ]>(H>K−1ΘΘH)−1[h(θ∗)−H>K−1ΘΘkΘθ∗ ]

(B.7)

213
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where B̂ = (H>K−1ΘΘH)−1H>A−1Y. The mean of the above distribution can be used as
the emulator.

To sample the hyperparameters of the GP kernel using MCMC, the following prior:

π(B,Σ, r) = π(r)π(B,Σ|r) ∝
p∏
i=1

(1 + r2i )
−1|Σ|− q+1

2 (B.8)

where p=dimension of inputs and q=number of outputs, is combined with the likelihood
from (B.1). Integrating out B and Σ we can sample from the posterior:

πR(r|Y) ∝ πR(r)|KΘΘ|−
q
2 |H>KΘΘH|− q2 |Y>GY|−n−m2 (B.9)

where n is the number of training points, m is the number of regression functions and
G = K−1−K−1H(H>K−1ΘΘH)−1H>K−1ΘΘ. Further details on the MOGP can be found in
Conti et al. (2009).

B.2 Accounting for uncertainty in the loss function

Let us assume that the trained GP emulator has a predictive mean, µ(·), and predictive
variance, ν(·). The predictive distribution of output j, obtained from a GP trained on
outputs y(j) has the following form:

p(ỹ(j)|θ,yj) = N
(
ỹ(j)|µj(θ), νj(θ)

)
(B.10)

Inclusion of the predictive uncertainty will be considered for the case of univariate GPs
used to emulate the outputs of the simulator. As discussed above, the standard approach
to parameter estimation would use the predictive mean as the emulator:

L(θ) =
m∑
j=1

(y∗j − µj(θ))2. (B.11)

However, this loss function ignores the uncertainty associated with our prediction at θ.
For the inclusion of the predictive variance, we can compute the marginal likelihood

by integrating over the emulator outputs:

p(y∗|θ, σ2) =

∫
p(y∗|η, σ2)p(η|θ)dη =

m∏
i=0

∫
p(y∗j |ηj, σ2)p(ηi|θ)dηi (B.12)

where conditional independence between the outputs has been assumed. The two prob-
ability distributions under the integral are given by (4.3) and (B.10), respectively. The
integral in (B.12) is thus a standard Gaussian integral, which has the closed-form solution
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(see e.g. Bishop (2006), Section 2.3.3):

p(y∗|θ, σ2) =
m∏
j=0

N
(
y∗j |µj(θ), σ2 + νj(θ)

)
. (B.13)

This gives:

log p(y|θ, σ2) = −
m∑
j=1

(
y∗j − µj(θ)

)2
2[σ2 + νj(θ)]

− 1

2
log(2π[σ2

m + νj(θ)]) (B.14)

which takes account of the entire GP posterior. The issue with such an approach is
that we increase the computational costs of the parameter estimation. As discussed in
Appendix A.1, the predictive mean of a GP requires a computational cost of O(n), where
n is the size of the training set. The predictive variance incurs a computational cost of
O(n2), which is particularly troublesome when dealing with large datasets. At the same
time, we would expect that the information provided by the predictive variance decreases
as the training set grows, meaning that (B.14) should only really be used in situations
where the training data are sparse.

B.2.1 Nonstationary GP model

A fair exploration of the loss functions with and without predictive variance requires that
the emulator accurately accounts for our uncertainty about the function. With a GP
model, this uncertainty is linked to the choice of the kernel function. Usually, we assume
that this function is stationary, which essentially means that the level of variation in the
function is constant over the training input support. For many functions, this assumption
is an incorrect one, but given enough training data the effects of a suboptimal kernel
choice are mitigated by the information fed in from the data. In cases where our data
are sparse, which will be the basis of the loss function comparison in this chapter, we
can consider more sophisticated kernels that allow for more flexible function properties.
One such kernel that allows for an input dependent lengthscale function was presented
in Section 3.4.2. In particular, the kernel from (3.46) is of interest in this study, where
lengthscale functions are trained for each individual input dimension as a function of all
the other inputs.

Rather than using a GP to model the lengthscale function, a neural network will
be used with one hidden layer of 50 nodes. This means that the lengthscale for input
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dimension k is defined by the following function:

h = tanh(θW1 + b1) (B.15)

λk = softplus(hW2 + b2) (B.16)

where b1 and b2 have fixed N (0, 5) priors. For W1 and W2, hierarchical priors are used.
Letting w

(j)
1 be the jth row of weights in W1 (in other words the weights out of input j)

these were as follows:

W2 ∼ N (0, σ2
2), σ2

2 ∼ IG(0.001, 0.001)

w
(j)
1 ∼ N (0, σ2

j ), σ
2
j ∼ IG(0.001, 0.001)

which allows for automatic relevance determination.
Sampling of the weights and variance parameters is performed using a HMC within

Gibbs scheme. In the Gibbs step, the weight variances are sampled and then all other
parameters in the GP model are sampled using HMC. The noise variance and signal
variance could have been moved to the Gibbs step, which would probably improve efficiency
of sampling. Convergence of the HMC sampler was only checked visually in traceplots of
the lengthscale function (convergence of network weights is widely known to be difficult
to achieve).

B.2.2 Comparing the loss functions

A comparison of the parameter estimation when using both objectives is found in Ta-
ble B.1. We could question why the results are so good given a training set of only 100

Table B.1: Comparison of the loss function with and without GP uncertainty. Including
uncertainty gives us a small improvement for small dataset sizes.

MSE quantiles MSE loss NTR=100
0.25 0.5 0.75

θ1 5.5× 10−5 2.2× 10−4 1.1× 10−3

θ2 3.6× 10−5 2.4× 10−4 1.3× 10−3

θ3 1× 10−3 9.9× 10−3 3.3× 10−2

θ4 1.4× 10−3 1.2× 10−2 8.0× 10−2

MSE quantiles uncertain loss NTR=100
0.25 0.5 0.75

θ1 5.1× 10−5 1.8× 10−4 6.9× 10−4

θ2 3.2× 10−5 1.8× 10−4 1.0× 10−3

θ3 8.1× 10−4 6.8× 10−3 3.5× 10−2

θ4 1.3× 10−3 1.1× 10−2 6.0× 10−2

points. The answer is in the nonstationarity of the function. As we see in Figure B.1, pre-
dictions for the test set, which has been generated uniformly over the entire input space,
are very good for nearly all points because most of them are generated from the stiff region
of space. The error bars in this plot allow us to see the increase in the predictive variance
caused by the changing function variation over the input space. A more thorough explo-
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Figure B.1: Assessing the non-stationary GP model, trained on a dataset of size 100, on
an out of sample test set.
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ration of the loss functions would consider the problem over varying training set sizes.
We would expect that the benefit of including uncertainty reduces as the training set size
increases, but a comparison for large training sets is very computationally expensive.



Appendix C

Appendix for Chapter 5

C.1 A weighted autoencoder: task specific dimension-

ality reduction

For the purpose of emulation, we are most interested in the dimension reduction procedure
that allows us to best represent the strains of the LV at end of diastole. It turns out that
the locations of the strain measurements all lie between the mid ventricle and the basal
plane, which is highlighted in Figure C.1. It is postulated that better reconstruction
is necessary in this region of the LV than near the apical region. In the main text, it
was discussed that the optimal dimension reduction approach would take the simulator
into account when reducing the dimension of the LV geometry, but due to computational
costs of the simulator, this is not possible. As a compromise, we can introduce weights
to different regions of the LV that upweight particular nodes of the LV geometry in the
loss function, and use the simulator to optimise these weights. Effectively, this turns the
problem of optimising all the parameters of our neural network based on the simulator to a
problem of optimising only one weight parameter that downweights the apical region. To
assess the viability of this approach, a weight is assigned to the nodes of the LV geometry
that are not highlighted in Figure C.1. This downweights these nodes in the loss function
for training the autoencoder for dimension reduction, meaning that the trained network
should be tailored more towards accurate representation of the region where strains are
measured. In Figure C.2 the strain errors are obtained by running the reconstructed left
ventricle (obtained in a LOOCV training scheme) in the simulator model. The label 0.3

corresponds to a weighting of 0.3 applied to the apical points in the loss function of the
autoencoder therefore reducing their influence on the low dimensional mapping. We see
in this plot that adjusting this weight parameter does not greatly affect the accuracy of
the resulting forward simulations.

219
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Figure C.1: Strains at end diastole are only measured in the upper portion of the LV,
indicated by the less transparent nodes in the above plot.

Figure C.2: Simulator strain errors for each weighting compared with the ground truth
simulation. There is not a large difference in simulator error when we downweight the
apical region.

C.2 Comparing different hidden layer sizes

The hidden layer size of the autoencoder was assumed to be 100 for all experiments in
Chapter 5. Other hidden layer sizes were assessed in the model, but were shown to perform
similarly, or worse, than a hidden layer of size 100 as we see in Table C.1.
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Table C.1: Comparing different hidden layer sizes (H) in the neural network from Fig-
ure 5.4. For the nonlinear activation function, the leaky ReLU was used.

H Median MSE
20 8.2× 10−3

50 8.1× 10−3

100 8.0× 10−3

200 8.1× 10−3
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Appendix for Chapter 7

D.1 Removing α from the Klotz function

Recall the functional form proposed by Klotz et al. (2006):

Ṽ =
V − V0
V30 − V0

P = α exp
(
βṼ
)

(D.1)

Nondimensionalising (D.1) with the definitions

P̃ =
P

30mmHg
; α̃ =

α

30mmHg
(D.2)

gives:

P̃ = α̃ exp
(
βṼ
)
⇒ Ṽ =

1

β
log

(
P̃

α̃

)
(D.3)

From (D.1) and (D.2) we have

Ṽ30 = 1, P̃30 = 1 (D.4)

which implies, from (D.3):

α̃ = exp(−β) (D.5)

Ṽ20 =
1

β
log

(
2

3

)
+ 1 (D.6)

where P̃20 = 2/3 has been used, from (D.2).

222
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D.2 Delta method

Suppose we have random variable θ ∼ N (µ, σ2). The delta method says that a function
of this random variable, g(θ), is approximately normally distribution with expected value
and variance given by:

E[g(θ)] ≈ g(µ)

var[g(θ)] ≈
[
∂g

∂θ

]2
µ

σ2

D.3 Gauss error propagation model

The Gauss error propagation model can be used in the multivariate case. For θ =

(θ1, ..., θd), θi ∼ N (µi, σ
2
i ), the expected values and variance can be expressed as:

E[g(θ)] ≈ g(µ)

var[g(θ)] ≈
d∑
i=1

[
∂g

∂θi

]2
µ

σ2
i

(D.7)

This model ignores correlations between the variables, which can be accounted for through
the multivariate delta method as outlined in Appendix D.6.

D.4 Derivation of (7.12)

We have built two emulators for V20 and V30:

V20 ∼ N
(
.
∣∣∣V̂20(θ, h̃), σ̂2

20(θ, h̃)
)

V30 ∼ N
(
.
∣∣∣V̂30(θ, h̃), σ̂2

30(θ, h̃)
)

(D.8)

where V̂20(θ, h̃) and V̂30(θ, h̃) are the parameter-dependent means of the two emulators,
and σ̂2

20(θ, h̃), σ̂2
30(θ, h̃) are the corresponding variances. From (7.1), this gives us an

alternative distribution of Ṽ20, which we denote by πe(Ṽ20) (where the subscript e stands
for “emulator"). To derive an approximate expression for πe(Ṽ20), we apply the delta
method to the standardised volume

Ṽ20 =
V20 − V0
V30 − V0

(D.9)

with derivatives
∂Ṽ20
∂V20

=
1

V30 − V0
,

∂Ṽ20
∂V30

= − V20 − V0
(V30 − V0)2

.
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This gives:
πe(Ṽ20) = N(.|µ, σ2) (D.10)

where

µ =
V̂20(θ, h̃)− V0
V̂30(θ, h̃)− V0

, (D.11)

σ2 =

(
∂Ṽ20
∂V20

)2

σ̂2
20(θ, h̃) +

(
∂Ṽ20
∂V30

)2

σ̂2
30(θ, h̃)

=

(
1

V̂30(θ, h̃)−V0

)2

σ̂2
20(θ, h̃)+

(
V̂20(θ, h̃)−V0

(V̂30(θ, h̃)−V0)2

)2

σ̂2
30(θ, h̃) (D.12)

D.5 Details of test generation with MCMC

D.5.1 Overall generation procedure

As stated in the main text, we fix θ1 = θ4 = 1 for test data generation. Given that we
now work in the two dimensional θ2− θ3 space, we choose to build a series of high fidelity
emulators for each of the 6 test LV geometries for the sole purpose of test data generation.
This is made possible by the fact that no input LV geometry component is required since we
build six separate emulators, each of them specific to one of the selected 6 LV geometries.
These emulators—referred to as high fidelity emulators–allow us to efficiently sample the
test data based on highly accurate emulated Klotz likelihood functions. However, these
would not be available in the clinical setting and so we make no use of them during
parameter inference. For the empirical Klotz prior case, we require emulators of volume
at pressures 8mmHg and 30mmHg. Generation of data for the non-empirical Klotz curve
requires several pressure-volume simulations, allowing us to replicate the upper region of
the pressure-volume curve. We use pressures 16, 20 and 25mmHg, with the volume at
pressure 30mmHg required for the normalisation.

From the MCMC samples of the material properties, we select 5 samples as test points
for the emulator comparison, chosen at equally spaced points along the MCMC trajectory
for a minimum degree of autocorrelation. We then run the expensive simulator to generate
the test outputs. No fictitious noise is added since our sole concern here is whether the
introduction of Klotz information reduces parameter inference errors that result from our
LV geometry approximation. Once the test data have been generated, the high fidelity
emulators are abandoned for the multi geometry emulator and generalised Klotz emulators
outlined in Section 7.3.1 in the main text and described in Table 7.2 in the main text.
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D.5.2 Non-empirical Klotz prior data generation

Recall that the Klotz curve introduces a relationship between normalised volume, Ṽ , and
pressure P . In order to fairly test the ability of the non-empirical Klotz prior to reduce
uncertainty and bias in material property estimates, we require test data that themselves
satisfy the assumption of the Klotz curve. Letting V denote the vector of normalised
volumes at pressures 16, 20 and 25mmHg, we can adopt the likelihood:

p(V|θ) = p(Ṽ16|θ)p(Ṽ20|θ)p(Ṽ25|θ) (D.13)

= N (Ṽ16|µ16
K , σ

2
K)N (Ṽ20|µ20

K , σ
2
K)N (Ṽ25|µ25

K , σ
2
K), (D.14)

where Ṽm denotes the normalised volume at pressure Pm. Assuming a non-informative
U(0.1, 5) prior on each of the material properties we can now sample from the posterior
distribution of the material properties, conditional on the normalised volume data. In the
above, µmK is the mean normalised Klotz volume at pressure m and Ṽm is the normalised
Klotz volume at pressure Pm. σ2

K is the Klotz variance (7.10) in the zero model mismatch
case and is obtained from an estimate of the heteroscedastic noise for the model mismatch
case. We fix θ1 and θ4, leaving a two dimensional parameter vector, θ. Making explicit
the parameters that vary in the likelihood function, we express the likelihood as

p(V|θ2, θ3) = p(Ṽ16|θ2, θ3)p(Ṽ20|θ2, θ3)p(Ṽ25|θ2, θ3). (D.15)

Instead of running MCMC using the actual simulator in the likelihood evaluations, it is
now more computationally efficient to construct a highly accurate emulator for the different
volumes for each of the test cases. These emulations are constructed using a series of 100
simulations run over the two dimensional θ2 − θ3 parameter subspace. This means that
evaluation of the likelihood function in (D.15) requires the evaluation of 4 different volume
emulators (at pressures 16, 20, 25 and 30mmHg with V30 required for the denominator of
the normalisation). We sample from the posterior distribution of the material properties
using Delayed rejection adaptive Metropolis (Haario et al., 2006) to obtain a sample of size
10000 from the posterior distribution of the Klotz curve. The volumes at these parameter
samples are shown superimposed on the Klotz curve in Figure D.1 for the case with model
mismatch term included and Figure D.2 without. In both figures, the dashed line indicates
the mean Klotz curve normalised volume at pressures 16 (yellow), 20 (green) and 25 (red).
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(a) (b)

(c) (d)

(e) (f)

Figure D.1: Densities of normalised volumes obtained from MCMC samples for test points
of the nonempirical Klotz prior with model mismatch included. Each plot corresponds to
a different test case.
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(a) (b)

(c) (d)

(e) (f)

Figure D.2: Densities of normalised volumes obtained from MCMC samples for test points
of the nonempirical Klotz prior with no model mismatch. These are each for different test
LV geometries.
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D.5.3 Empirical Klotz prior data generation

Recall the unnormalised form of the Klotz function, used to derive the empirical Klotz
prior:

Ṽp =
log
(
p
α

)
β

+ εp ⇒ V30 =
Vp − V0

log
(
p
α

)
β

+ εp

+ V0. (D.16)

We have a high fidelity emulator for V30 which gives, for some material parameters pre-
sented at the input, a distribution πGP (V30) with its associated mean µ30(θ,H) and vari-
ance σ2

30(θ,H). We also have a high fidelity V8 emulator with mean µ8(θ,H) and variance
σ2
8(θ,H), which can be plugged into (D.16). Together with the presence of uncertainty in
α and β, this provides a distribution on V30, πKL(V30). The mean µKL(θ,H) and variance
σ2
KL(θ,H) are given as follows:

µKL(θ,H) =
V8 − V0

log
(

8
α

)
β

+ ε8

+ V0

∣∣∣∣
α=µα,β=µβ ,ε8=0,V8=µ8(θ,H)

, (D.17)

σ2
KL(θ,H) =

∂V30
∂α

2

σ2
α +

∂V30
∂β

2

σ2
β +

∂V30
∂ε

2

σ2
ε +

∂V30
∂V8

2

σ2
8(θ,H). (D.18)

Now, consider the integral of the product of these two densities on V30:∫
πKL(V30)πGP (V30)dV30 =

∫
N (V30|µKL(θ,H), σ2

KL(θ,H))N (V30|µ30(θ,H), σ2
30(θ,H))dV30

= N (µ30(θ,H)|µKL(θ,H), σ2
KL(θ,H) + σ2

30(θ,H)).

This is equivalent to the following likelihood function:

p(y|θ) = N (µ30(θ,H)− µKL(θ,H)
∣∣0, σ2(θ,H) + σ2

KL(θ,H)), (D.19)

where y is the difference between the two V30 predictions. This can be combined with a
non-informative U(0.1, 5) prior on the material properties to obtain samples satisfying the
empirical Klotz prior. For the case with model mismatch, the variance of the πKL(V30)

distribution includes a Klotz heteroscedastic noise variance term.

D.6 Comparing Gauss error model with the first order

delta method for the empirical Klotz prior

The Gauss propagation model considers only variances in the function variance calculation.
In the multivariate case (such as the empirical Klotz in (7.22)), we could also consider the
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multivariate Delta method. The updated variance calculation from (D.7) is:

var[g(θ)] ≈
d∑
i=1

[
∂g

∂θi

]2
µ

σ2
i +

d∑
i=1

∑
j 6=i

∂g

∂θi

∂g

∂θj
σ2
ij

The multivariate delta method was applied to each test case to compare with the Gauss
method. Detailed distributions for each individual test case are found in Figure D.3 and
Figure D.4 while summaries based on the IQR of the univariate posterior distributions are
found in Figure D.5. We see here that the multivariate delta method consistently gives
a slightly smaller IQR in the marginal posterior of θ3 and θ2, but the change is small.
Importantly, the smaller IQR suggests that the multivariate delta method will reduce the
uncertainty in the parameters relative to the non informative prior case.

D.7 Real data results

Here the results for the real data examples are provided by way of stress–stretch curve
samples. Figure D.6 provides inference results for the empirical Klotz prior without model
mismatch and Figure D.7 shows results when we include the model mismatch term.
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1 2 3 4

Figure D.3: Comparing the marginal posterior distributions when using the multivariate
delta method and the Gauss method. Each row is a different LV geometry (G1,G2 and
G3), with each pair of violin plots in a subplot showing the comparison for a particular
test case. In each pair the first plot is the multivariate delta result and the second is the
Gauss error method. While there are differences between the distributions, these are very
minor.
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1 2 3 4

Figure D.4: Comparing the marginal posterior distributions when using the multivariate
delta method and the Gauss method. Each row is a different LV geometry (G4,G5,G6),
with each pair of violin plots in a subplot showing the comparison for a particular test
case. In each pair the first plot is the multivariate delta result and the second is the Gauss
error method. While there are differences between the distributions, these are very minor.
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Figure D.5: Comparing the IQR of the marginal posterior distributions for the 30 test
cases. The horizontal axis shows the results with the multivariate delta method while the
vertical axis shows the Gauss method. As expected, the multivariate delta method gives
slightly larger IQR for θ3 but for all other parameters there is no consistent pattern in
IQRs.
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Figure D.6: Inferring material properties based on measured volume and strain data from
5 different healthy volunteers adopting the empirical Klotz prior without model mismatch.
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Figure D.7: Inferring material properties based on measured volume and strain data from
5 different healthy volunteers, adopting the empirical Klotz prior with model mismatch.



Appendix E

Appendix for Chapter 9

E.1 Further results of operator effect in the geometry

domain

The final reconstructed geometries from the three different operators are found in Fig-
ures E.1 and E.2, where the LV geometry of the third operator is compared, in turn, with
operators 1 and 2. These were obtained using the procedure outlined in Section 5.2.1.

We can consider the volume of the LV cavity at early diastole in Table E.1. The final
row of the table provides a measure of the uncertainty using the approximation of the
standard deviation as 1.4826 times the median absolute deviation (MAD). In the table,
the maximum volume for each case is highlighted and we see that in all but one example,
operator 3 produces LV geometries with the largest volume. These results suggest that
a standard deviation of 5ml is appropriate for the noise on the end diastolic volume,
especially since the segmentation of the LV geometry at end diastole is subject to lower
errors than early diastole as a result of the clearer boundaries, in the CMR scans, of the
inflated LV.

Table E.1: Comparing the volumes of the segmented LV geometries across different op-
erators. The final row provides an approximation of the standard deviation, but this is
based on only 3 measurements.

Operator G1 G2 G3 G4 G5 G6
1 82.0 105.1 85.5 76.9 114.0 86.6
2 78.9 97.7 92.2 75.1 114.8 83.4
3 88.6 112.9 97.3 79.5 119.0 85.9

1.4826×MAD 5.3191 7.5850 6.0877 2.3023 3.0307 1.8453

E.2 Full model calibration results
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Figure E.1: Comparing the reconstruction of the first 3 LVs. operator 1 vs operator 3
(left) and operator 2 vs operator 3 (right).
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Figure E.2: Comparing the reconstruction of the final 3 LVs. operator 1 vs operator 3
(left) and operator 2 vs operator 3 (right).
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Table E.2: The effect of operator on parameter estimation. The results in each table are
produced by generating synthetic data using the LV geometry segmented by the main
operator and optimising the parameters of the HO law using the simulator with the test
geometry. The ground truth parameter values were: a = 0.60, b = 1.30, af = 1.00, bf =
3.60 and values in the table highlighted in bold differ from these by greater than 0.1.

Main operator: 1
ID Operator a b af bf

G1

2 0.55 1.28 0.93 3.58
3 0.90 1.50 0.62 3.57

5PC 0.77 1.21 0.91 3.57
10PC 0.61 1.30 1.00 3.59

G2

2 0.45 0.98 1.26 3.61
3 0.51 1.25 1.07 3.87

5PC 0.60 1.30 1.00 3.60
10PC 0.62 1.30 1.03 3.61

G3

2 0.60 1.30 0.99 3.59
3 0.59 1.30 0.98 3.59

5PC 0.57 1.29 0.96 3.59
10PC 0.61 1.30 0.96 3.60

G4

2 0.52 1.26 0.91 3.57
3 0.58 1.30 0.97 3.59

5PC 0.64 1.33 0.93 3.58
10PC 0.60 1.30 1.01 3.61

G5

2 0.47 1.26 0.87 3.55
3 0.56 1.29 0.96 3.59

5PC 0.60 1.31 1.02 3.59
10PC 0.61 1.31 1.01 3.61

G6

2 0.62 1.30 1.02 3.61
3 0.61 1.30 1.01 3.60

5PC 0.68 1.54 0.82 3.76
10PC 0.60 1.31 0.99 3.60
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Table E.3: The effect of operator on parameter estimation. The results in each table are
produced by generating synthetic data using the LV geometry segmented by the main
operator and optimising the parameters of the HO law using the simulator with the test
geometry. The ground truth parameter values were: a = 0.60, b = 1.30, af = 1.00, bf =
3.60 and values in the table highlighted in bold differ from these by greater than 0.1.

Main operator: 2
ID Operator a b af bf

G1

1 0.65 1.32 1.07 3.63
3 0.60 1.29 0.97 3.60

5PC 0.62 1.31 1.02 3.61
10PC 0.62 1.29 1.01 3.60

G2

1 0.88 1.51 0.78 3.52
3 0.62 1.35 1.01 3.63

5PC 0.64 1.36 1.02 3.60
10PC 0.63 1.32 1.03 3.62

G3

1 0.60 1.30 1.01 3.61
3 0.62 1.34 0.94 3.65

5PC 0.59 1.30 0.97 3.59
10PC 0.62 1.32 0.95 3.62

G4

1 0.67 1.33 1.11 3.66
3 0.65 1.32 1.08 3.64

5PC 0.58 1.32 0.99 3.58
10PC 0.53 1.27 1.00 3.59

G5

1 0.34 1.72 1.45 3.85
3 0.68 1.33 1.11 3.64

5PC 0.68 1.34 1.07 3.63
10PC 0.91 1.53 0.74 3.42

G6

1 0.59 1.30 0.98 3.59
3 0.56 1.30 1.00 3.61

5PC 0.59 1.29 0.99 3.59
10PC 0.57 1.30 0.98 3.60
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Table E.4: The effect of operator on parameter estimation. The results in each table are
produced by generating synthetic data using the LV geometry segmented by the main
operator and optimising the parameters of the HO law using the simulator with the test
geometry. The ground truth parameter values were: a = 0.60, b = 1.30, af = 1.00, bf =
3.60 and values in the table highlighted in bold differ from these by greater than 0.1.

Main operator: 3
ID Operator a b af bf

G1

1 0.30 1.19 1.35 3.72
2 0.60 1.30 1.02 3.61

5PC 0.60 1.30 1.04 3.58
10PC 0.57 1.30 0.98 3.60

G2

1 0.56 1.30 0.95 3.59
2 0.59 1.29 0.96 3.60

5PC 0.57 1.31 0.97 3.61
10PC 0.57 1.32 1.02 3.60

G3

1 0.60 1.30 1.02 3.61
2 0.42 1.34 1.09 3.72

5PC 0.58 1.28 0.92 3.56
10PC 0.57 1.29 0.96 3.60

G4

1 0.62 1.31 1.02 3.61
2 0.55 1.26 0.92 3.56

5PC 0.59 1.30 0.96 3.60
10PC 0.58 1.29 1.00 3.59

G5

1 0.64 1.31 1.04 3.61
2 0.83 1.48 0.64 3.10

5PC 0.62 1.31 1.04 3.63
10PC 0.60 1.30 1.00 3.60

G6

1 0.60 1.29 0.98 3.59
2 0.63 1.35 0.99 3.58

5PC 0.58 1.29 0.98 3.59
10PC 0.59 1.30 0.95 3.63



Appendix F

Emulation with in clinic correction

F.1 Bayesian last layer

Recall the in clinic emulation task: equipped with a set of training LV geometries and
their corresponding simulations, learn to approximate the simulator function for a new left
ventricle geometry. We anticipate that the simulator model does not change drastically
depending on the LV geometry, motivating the idea of a quick in clinic correction based on
only a few simulations. For instance, we know that no matter the geometry, the simulator
model has a standard sigmoidal shape as a result of the H-O model. The method proposed
here proposes to learn a set of basis functions that allows us to represent the simulator for
a wide range of training LV geometries. Given a set of simulations obtained using a test
LV geometry (called the high fidelity simulations), these basis functions can be fitted to
the new data and used as an emulator.

Let the simulator for training LV geometry i be denoted by ζ(i)(θ) where the de-
pendence on the LV geometry is removed because for each individual LV geometry, this
component is fixed. We can generate several ensembles of training data:

D = {Di}mi=1, where Di = {θ(i)j , ζ(i)(θ(i)j )}nj=1 (F.1)

where the design in material parameter space is unique for each LV geometry. Suppose
that we have a new LV geometry for which we wish to make predictions from the simulator,
ζ∗(θ). The proposed scheme trains a neural network to learn the simulator functions of
the training LVs, training in a way that allows for the model to be fitted to a new simulator
function given some high fidelity simulations obtained online.

Essentially, the proposed scheme treats the problem as one of transfer learning. Here,
we transfer knowledge gained about the function from the set of training LV geometries
to a new unseen LV geometry. To do so, the neural network in Figure F.1 is trained on
D. During training, the first k − 1 layers of the network are the same for each batch of

241



APPENDIX F. EMULATION WITH IN CLINIC CORRECTION 242

data, but the final layer of weights (highlighted in red) is unique to each Di. By training
in this manner, the first n− 1 layers learn a flexible set of basis functions that allow us to
fit each of the n separate simulator functions.

θ1

θ2

θ3

θ4
..
.

..
.

φ1

φ2

φm

1
..
.

V

S1

S24

..
.

Trained on large sample
of training LV geometries

Trained on new
test LV geometry

Figure F.1: The neural linear model or Bayesian last layer model is a neural network
where the parameters in the first n-1 layers (black arrows above) are optimised and we
account for uncertainty in the parameters of the final layer. If we train all weights up
to the final hidden layer using simulations from training LV geometries, we learn a set of
basis functions that allow us to infer the function for a new LV geometry by inferring the
weights in only the final layer of the network. Activations in the first n− 1 hidden layers
are tanh functions to allow for non linear basis functions. However, the functions in the
final hidden layer can be linear. Note that each hidden layer contains a bias parameter
but this has only been shown for the final layer (the node labelled 1).

Placing a Gaussian prior on the weights in the final layer, these can be integrated out of
the model in the same way as a standard Bayesian linear regression model. For a new test
simulator, ζ∗(θ), we wish to tune the basis functions to the new simulator. Given a set of
high fidelity simulations {θi, ζ∗(θi)}qi=1, the hyperparameters of the Gaussian priors are
sampled and the predictive distribution is found in closed form. For the exact form of the
marginal likelihood, and the predictive distribution of the model, see Ober and Rasmussen
(2019). This approach is conceptually the same as the neural linear model or Bayesian last
layer (BLL) model (Ober and Rasmussen, 2019; Watson et al., 2021; Thakur et al., 2020),
which has received increasing interest in the literature in recent years. In particular, the
model in Figure F.1 is similar to that of Thakur et al. (2020) where the authors introduced
a set of auxiliary functions that the NLM targets during training, learning a flexible suite
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of functions that are based on a priori knowledge of the function of interest. In the current
model, the training cases allow us to learn a set of appropriate basis functions. Note that
the BLL is essentially a GP model with the kernel defined by the trained basis functions
(Rasmussen and Williams, 2006, Section 2.1.2).

F.2 Result

In this section, the BLL idea will first of all be applied to a simple toy problem. The BLL
model will then be applied to the unseen LV geometries and compared with the multi
fidelity model.

F.2.1 Applying to a toy problem

In this section, the method is applied to a simple 1D toy problem. The function of interest
is of the form:

ζ(x) = sin(bx) exp(ax) (F.2)

For training, 30 different a, b combinations were sampled from u(−0.6,−0.2) and u(0.5, 1.1)

priors respectively. For each pair of values, 30 training simulations were obtained, and
the functions are plotted in grey in the bottom left of Figure F.2, labelled as training
functions in the legend. The target functions takes values a = −0.3, b = 1. Using the
neural network from Figure F.1, a network with two hidden layers of size 100 and 20 basis
functions was trained on the training data. The final trained basis functions are visualised
in the bottom right plot of Figure F.2 as grey curves. We see that where the function is
more varied (to the left of the horizontal axis) the basis functions are also more varied.
Using 4 simulations from the function of interest, as indicated by red points in Figure F.2,
an emulator is fitted that fits the true function far better than the standard GP model in
the top row.

F.2.2 Applying to the LV simulator

Of interest is the improvement gained using the BLL model compared with a standard 5PC
generalised emulator. Three different test cases where the generalised emulator performs
poorly were considered for comparison here. The predictions of a subset of test points are
shown in Figure F.3, where the 5PC emulator has been used and the BLL with varying
numbers of training simulations. The simulations for the BLL were generated in log-
Uniform space, with a filter than filtered out simulations with circumferential strains of
magnitude greater than 0.35. Values greater than this were deemed to be unrealistic given
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GP Prediction
Target function
Simulations

Training functions
Target function

Bases
Prediction
Target function
Simulations

Figure F.2: Applying the Transferred Bayesian last layer network to a toy problem. Top
row: standard Gaussian process with squared exponential kernel. The prior does not
include enough information to allow a close fit to the simulator. In the bottom row, the
basis functions are trained on functions similar to the one we are ultimately interested
in (these training functions are represented by grey curves in the plot on the left). This
allows us to learn the function with access to few function evaluations, using a set of learnt
basis functions (indicated by grey curves on the right).
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the values seen in measured datasets. In total, 80 forward simulations were used for each
training LV geometry, with 120 LV geometries used in total. Error bars are provided
for the BLL, since the Bayesian approach allows us to quantify the uncertainty in the
function. With only 20 simulations, the BLL vastly outperforms the 5PC emulator. In
Figures F.4 to F.6, the prediction error is compared across individual model outputs (on
the log scale), with the bars showing the median absolute error and error bars providing
the 0.25 and 0.75 quantiles. The BLL universally outperforms the generalised emulator for
all outputs across the test cases, but the performance does appear to hit a plateau. This
is as expected given that the basis functions are fixed beforehand and limit the capacity
of the model.

F.3 Next steps

As mentioned in the main text, this study is very preliminary. Nonetheless, the results for
the three LVs considered here are very encouraging, suggesting that with as little as 20
simulations we can achieve very good accuracy for these test cases that were hand-picked
due to their lack of compatibility with the generalised emulator model. There are various
directions that this work could be continued in the future. One of these is to consider the
design; in the current work the simulations were taken from a log-Uniform design but a
more carefully selected design could give better performance. An alternative model could
be constructed using Gaussian processes. While the construction of a model like the one
considered here would be challenging with Gaussian processes, a multi-fidelity GP model
has been considered. This was constructed as follows: take the generalisable emulator
with 5 PCs in the input space as a low fidelity model and, using simulations obtained
from the exact LV geometry train a multi fidelity GP model like the one proposed by
Perdikaris et al. (2017) (this is essentially the same as the model proposed by Kennedy
and O’Hagan (2000) but with a non-linear transformation from low to high fidelity). In
some preliminary simulations, this was shown to perform worse than the BLL for small
numbers of high fidelity simulations but the unlimited expressiveness of the GP means
that the predictive error does not reach a plateau as quickly as the BLL.
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5PC emulator BLL n=20 BLL n=40 BLL n=80 BLL n=100
Subject A

5PC emulator BLL n=20 BLL n=40 BLL n=80 BLL n=100
Subject B

5PC emulator BLL n=20 BLL n=40 BLL n=80 BLL n=100
Subject C

Figure F.3: Comparing the BLL with the generalised emulator that uses five PCs for three
cases where the generalised emulator performs poorly. Each pair of rows give results for
a separate subject (as titled) with the volume predictions in the top row and the strain
predictions in the bottom row, plotted against the ground truth simulations.
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Subject A

Figure F.4: Errors in each output for subject A. The (orange) leftmost bar in each subplot
shows the median error of the generalised emulator, the second to last bars give the results
of the BLL model for increasing dataset sizes: (20,30,40,50,60,70,80,90,100,200,300,400).
Results are in log scale.
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Subject B

Figure F.5: Errors in each output for subject B. The (orange) leftmost bar in each subplot
shows the median error of the generalised emulator, the second to last bars give the results
of the BLL model for increasing dataset sizes: (20,30,40,50,60,70,80,90,100,200,300,400).
Results are in log scale.
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Subject C

Figure F.6: Errors in each output for subject C. The (orange) leftmost bar in each subplot
shows the median error of the generalised emulator, the second to last bars give the results
of the BLL model for increasing dataset sizes: (20,30,40,50,60,70,80,90,100,200,300,400).
Results are in log scale.
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