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Abstract 

This thesis is comprised of five chapters. It includes two experimental chapters 

in which I detail both psychophysical and fMRI studies carried out at the 

University of Glasgow as part of this PhD project. These are followed by a 

literature review which outlines the implementation of ultra-high-resolution 

fMRI, both generally within the field and within a specific project proposal.  

Chapter 1 is a general introduction. I outline the broad organisation and basic 

functions of the visual system at the pre-cortical and cortical stages, in turn. I 

then discuss the concept of feedback within the visual system, outlining what 

feedback is, what it does and how it is implemented before outlining the 

rationale for the thesis.  

Chapter 2 is an experimental chapter detailing a series of psychophysical 

experiments. These experiments employ a partial occlusion paradigm to explore 

how top-down predicted information can influence the processing of degraded 

feedforward input. Throughout the experimental series, different aspects of this 

question are addressed in order to investigate whether the consistency of 

contextual information influences the detection and/or recognition of low-

contrast visual scenes. 

Chapter 3 is another experimental chapter which details two 3T fMRI 

experiments. These projects also employed a partial occlusion paradigm to 

investigate contextual modulation on the processing of degraded feedforward 

input at the neuronal level in early visual cortex. Both univariate and 

multivariate analysis techniques were used to reveal the impact of consistency 

within top-down information.  

Chapter 4 contains a literature review which looks into ultra-high-resolution 

fMRI. Here, I detail the motivation behind the development of higher resolution 

imaging as well as potential confounds and limitations. I also outline adaptations 

required at higher resolution in terms of data acquisition and analysis as well as 

briefly exploring layer-specific findings within the visual cortex. Finally, I 

propose a 7T fMRI project that would continue to explore the influence of top-
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down predictions on the processing of degraded visual input by expanding the 

investigation to a laminar level.  

Chapter 5 is a general discussion which summarises the key points from each of 

the previous chapters and briefly discusses their conceptual relation to the 

current field and beyond.  
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1 General Introduction 

1.1 Organisation and properties of the Visual System 

As one of our most salient senses, vision allows us to effectively perceive and 

navigate our environment. Along with other sensory processes, vision guides our 

action and behaviour, allowing us to interact with the external world. Outside of 

visual neuroscience, the focus is often on the optics of the eyes and the retina 

(Wässle, 2004) when thinking about vision, however, the majority of visual 

processing occurs in the cortex, resulting in a large portion of the cortex being 

devoted to this sensory modality (Zhaoping, 2014). An understanding of the 

cortical components of vision is therefore crucial in gaining an insight into vision 

as a whole.  

1.1.1 Pre-Cortical Processing 

Vision begins with the eyes. The retinae in the eyes detect the available visual 

information which the brain processes. Each eye detects input from the entire 

visual field. Light pigments (photons) in the visual environment travel through 

the various layers of the eye until they reach the retina, located at the back of 

the eye. Comprised of five layers, the retina contains photoreceptors which are 

responsible for capturing information about the available light entering the eyes 

(Goebel et al., 2012). Originally thought of as a pre-filter to visual processing 

(Gollisch & Meister, 2010), the role of the retina is now believed to be more 

prolific, even deemed a peripheral component of the brain (Dowling, 1987), 

rather than a sensory organ (Goebel et al., 2012). The principal task of the 

retina is to convert light into neural signals in a process known as transduction 

(Berry et al., 1999) which allows for subsequent cortical processing.  

There are two main types of photoreceptors: rods and cones (Boycott & Wässle, 

1999). Rods are the more abundant of the two and are adapted to detect 

photons in low-light environments. They are situated in the periphery of the 

retina and are absent in the centre, meaning peripheral vision is a function 

reserved for rods. Cones on the other hand, are responsible for colour vision and 

do not function in dim light levels . Cones occupy the central retina, in an area 

known as the fovea, where visual acuity is highest (Goebel et al., 2012). Visual 
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acuity decreases with eccentricity, due to the depletion of cone receptors 

toward the periphery (Zhaoping, 2014). Cones are preferentially sensitive to 

specific wavelengths of visible light. Humans are trichromats; meaning we have 

three types of cone photoreceptors, allowing a broad spectrum of visible light to 

be processed, and giving rise to the many colours we can observe. Short (blue), 

medium (green) and long (red) wavelengths are preferentially captured by S, M 

and L cone receptors, respectively (Wässle, 2004) - a function dictated by the 

absorption capabilities of the visual pigments within each cone type.  

Signals from the photoreceptors are passed on via a series of 

excitatory/inhibitory inputs from several retinal interneuron sub-types before 

reaching the retinal ganglion cells, which are considered the retinal output cells. 

Retinal ganglion cells have receptive field properties which allow parallel 

processing streams pertaining to different features of the visual signal to be 

formed. This is an important element of visual processing which extends into the 

cortex. The receptive fields of retinal ganglion cells are comprised of a centre 

and surround region which work antagonistically to portray the visual signal 

efficiently. Such antagonistic firing mechanisms mean that the ganglion neurons 

will fire most rapidly when the centre and surround regions are differentially 

activated, such that the centre and surround are not simultaneously stimulated. 

Having an on/off system such as this holds several advantages in terms of 

effective processing. Contours are more readily detected as changes in 

luminance across the visual scene are highlighted, as opposed to overall net 

luminance. As a whole, the collective receptive fields of the retinal ganglion 

cells cover the entire visual field, with each neuron evaluating a specific (and 

overlapping) portion, depending on the location and size of its centre and 

surround. The output of retinal ganglion cells compresses the visual signal by an 

order of magnitude to be transmitted via their axons to the brain for further 

processing. This bundle of retinal ganglion cell axons is more commonly referred 

to as the optic nerve. The portion of retina connected to the optic nerve 

contains no photoreceptors, leaving a blind spot in the visual field. However, 

this goes unnoticed perceptually due to cortical ‘filling in’. See (Zhaoping, 2014) 

for further details on retinal ganglion cells.  
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The optic nerve transports the visual signal from the eye to the brain and is the 

point of the visual system in which the visual signal is converged to the lowest 

number of neurons (Berry et al., 1999). The optic nerve from each eye traverses 

posteriorly until they conjoin in the optic chiasm. Here, a portion of the axons 

from each optic nerve crosses hemisphere, resulting in two optic tracts which 

contain visual representations of the contralateral visual field, such that visual 

cortex in each hemisphere receives input solely from the contralateral visual 

field (Goebel et al., 2012).  

An important processing stage prior to cortical involvement is the thalamus. The 

optic tracts terminate mainly in the Lateral Geniculate Nucleus (LGN), a portion 

of the thalamus dedicated to early visual processing (Dagnelie, 2011; Goebel et 

al., 2012). The distinct neural pathways that arise in the retina pertaining to the 

processing of different aspects of the visual input, innervate different layers of 

the LGN. Commonly, these pathways are termed the Magnocellular (M) and 

Parvocellular (P) pathways and are each primarily concerned with the processing 

of different features of the visual signal (Tobimatsu et al., 1995). Neurons in the 

Magnocellular pathway are more responsive to information regarding movement 

and contrast, whereas Parvocellular neurons are more sensitive to wavelength 

properties, and thus, colour vision. Not only do we observe visual feature 

distinctions in this pre-cortical processing stage but there is also a laminar 

division of contralateral and ipsilateral visual field representations. An important 

feature of the LGN representation of the visual field is that a disproportionately 

large region of the thalamic space is dedicated to the foveal representation, a 

trait of visual processing which continues into the cortex. Initially considered a 

relay station in the retino-cortical pathway, the subdivision of the LGN as well as 

its connections with other cortical areas, indicates its role is more complex than 

traditionally thought. LGN output to visual cortex is in the form of four 

projection streams, containing segregated information of visual properties ready 

for cortical processing.  

1.1.2 Cortical Processing 

Once the visual signal reaches the cortex, a complex series of processing stages 

and interactions are undertaken in order to interpret and respond to the sensory 

input.  
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1.1.2.1 The visual hierarchy 

At the cortical level, the visual system is arranged in a hierarchy (Young, 2000), 

denoted by its anatomical structure and reflected in its functional properties, 

with each level of the hierarchy differing in key aspects of processing.  

Sensory input is projected from the LGN to primary visual cortex (PVC or also 

known as, V1). Anatomically, V1 lies at the occipital pole and occupies the banks 

of the calcarine sulcus. It is the first point of contact that visual signal has with 

the cortex, with virtually all visual tasks resulting in V1 activation (Grill-Spector 

& Malach, 2004a) and it therefore plays a key role in visual processing. As a 

result, it is one of the most extensively researched areas in visual cortex and 

indeed, cortex in general. Early work mainly involved invasive techniques on 

non-human mammals (Hubel & Wiesel, 1998), which, although not possible in 

humans and therefore could only be used to make inferences about human 

structure and function, did provide important and pioneering information about 

the visual system which still forms the fundamental knowledge basis that we 

work from today.  

From V1, visual information transcends the visual hierarchy through higher visual 

areas, namely V2, V3, and so on; each processing different aspects of the 

information it receives (Livingstone & Hubel, 1987). V1 is considered a region in 

which the entirety of the visual signal is represented, albeit as a set of low-level 

features, before these properties are segregated and processed in parallel by 

the higher visual areas. This sequential stream of processing from lower to 

higher areas is considered feedforward or ‘bottom-up’ meaning sensory input 

moves up the hierarchy in a feedforward manner with increasingly abstract and 

holistic representations being formed at each level. This relatively straight-

forward system formed the basis of traditional views of visual processing, 

however, as we will mention in more detail, it only forms part of what is now 

considered a dual processing account of the visual system.  

1.1.2.2 Cortical organisation 

Early investigation of the visual cortex, in particular V1, reveal distinct vertical 

organisation principles in the form of columns (Hubel & Wiesel, 1968; 
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Livingstone & Hubel, 1987). That is, neurons are organised into columnar 

structures, with all neurons within a column responding preferentially to similar 

stimulation features. Across both animal and human studies using a variety of 

techniques, cortical columns have been shown for numerous properties of visual 

processing such as ocular dominance and orientation selectivity (Hubel & Wiesel, 

1974; Hubel, Wiesel, & Stryker, 1978).  

Another vertical organisation feature of the cortex is that of layers. The cortex 

is a laminar structure, typically defined by six distinct layers, characterised 

anatomically by the abundance and type of neurons they contain. The superficial 

layers lie near the pial surface of the brain, and the deep layers extend towards 

the white matter. As well as differing in their structural features, the layers 

have also been shown to exhibit functional segregation, with different layers 

responding to different types of visual information as well as forming different 

functional connections within the layers themselves and to other cortical and 

sub-cortical areas. Advancements in MRI and fMRI now permit the exploration of 

the structure and function of laminar-resolution cortex greatly facilitating the 

research into layer-dependent functions.  

The visual cortex also shows a high-level of horizontal organisation. The 

introduction of fMRI allowed larger regions of cortex to be investigated and 

reveals a series of maps throughout visual cortex (Benson et al., 2012; Brewer et 

al., 2005; Sereno et al., 1995; Wandell et al., 1994; Wandell & Winawer, 2011). 

In order to obtain such maps, subjects maintain central fixation while polar 

angle- and eccentricity-focused visual stimulation is presented to map the 

distance from the horizontal visual axis and the distance from the centre of the 

visual field, respectively. These maps represent the visual field topographically, 

meaning adjacent regions of visual space occupy neighbouring regions of cortex 

(via similarly retinotopically organised retinal and LGN representations). Multiple 

maps are found within different regions of visual cortex, each mapping a 

subsection or all of the contralateral hemifield, the boundaries of which can be 

determined through separation via horizontal and vertical meridians. Their 

representations of the centre of the visual field (i.e. the foveal representations) 

occupy a disproportionately large area of cortex, in a phenomenon known as 

cortical magnification (Duncan & Boynton, 2003; Qiu et al., 2006) and converge 
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at the occipital pole. Retinotopic organisation is thought to be a property of 

earlier visual regions, however, higher-order visual areas have also been shown 

to be retinotopically organised (Grill-Spector et al., 1998; Hasson et al., 2003). 

For an in-depth look at cortical organisation, see (Rockland, 2017).   

1.1.2.3 Receptive fields 

Key components of the visual system are the receptive field properties of 

neurons. Classical receptive fields refer to the location and properties of the 

stimulus which preferentially causes a neuron to spike (Hubel & Wiesel, 1959). 

V1 neurons respond favourably to stimulation of a specific orientation in a 

specific region of the visual field. When such a stimulus meets these criteria, the 

neuron will fire. Therefore, the classical receptive field responds according to 

feedforward stimulation.  

Firing rates of neurons however are not solely dependent on activation within 

the classical receptive field. Extra-classical receptive field properties mean that 

firing rates of V1 neurons are modulated by both lateral and feedback 

connections. The extra-classical receptive field is comprised of near and far 

surround regions which respond largely, although not exclusively, to input from 

lateral and top-down connections from higher visual areas (Angelucci & 

Bressloff, 2006). Response within the near and far surround tends to be 

suppressive in contrast to the excitatory-based classical RF but is not always. 

The presence of such extra-classical receptive fields mean that the spatial and 

temporal context in which a stimulus is presented can influence the receptive 

field properties of a given neuron (Wörgötter & Eysel, 2000).  

Receptive field size increases along the visual hierarchy, with V1 neurons having 

relatively small receptive fields (Levitt & Lund, 2002) and higher visual areas 

having successively larger RFs. Thus, extra-classical RFs of lower visual areas are 

driven by stimulation of larger receptive fields from further up the hierarchy. As 

noted, cells in primary visual cortex are sensitive to orientation along with other 

low-level visual features (Goebel et al., 2012). This is conceptually logical as 

line orientation carries information about object boarders and edges, which is a 

salient feature of the visual scene. Other regions of visual cortex have receptive 
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fields tuned to other visual features, giving rise to the functional specialisation 

within different areas of visual cortex.  

1.1.2.4 Functional specialisation  

The hierarchical model account of feedforward processing encompasses the 

processing of increasingly complex aspects of the visual scene starting with low-

level visual properties and eventually creating a more holistic representation of 

the visual scene as the signal transcends the hierarchy.  

Cortical processing begins with V1 which is traditionally considered a low-level 

feature detector (Petro, Vizioli, & Muckli, 2014), processing simple aspects of 

the visual input such as basic feature statistics. Areas outside of V1, known as 

extrastriate areas due to their anatomical distinction from striate PVC, are 

specialised in the processing of different aspects of the visual signal. V2 exhibits 

wavelength, orientation and direction selectivity within its neuronal population 

and is also thought to be somewhat involved in depth perception (Anzai & 

DeAngelis, 2010; Goebel et al., 2012). V3a and V3b/KO respond to contrast 

information and shape/moving contour information, respectively (Goebel et al., 

2012). V4 also sometimes referred to as V8 (Hadjikhani et al., 1998) is 

considered a primary colour centre in the brain as it specialises in the processing 

of different wavelengths (Heywood & Cowey, 1987). V5/hMT+ shows high motion 

selectivity (Zeki, 2015), with preferential firing for moving elements within the 

visual array. Visual processing also extends beyond the occipital cortex to the 

parietal and temporal lobes. As such, these higher visual areas such as the LOC 

and PPA selectively respond to specific stimulus types such as objects and places 

(Cichy et al., 2011; O'Craven & Kanwisher, 2000).  

 It is important to note that these functional distinctions are not discrete. That 

is, although areas show preference for certain facets of visual information, they 

do not process these facets exclusively, with considerable functional overlap 

between regions. The system operates as a whole, processing every aspect of 

the visual scene in a sequential, yet parallel manner with a flow of information 

receiving functional contribution at every level.  
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Functional specialisation of the visual cortex extends to the presence of parallel 

processing streams; namely the ventral and dorsal streams(Milner & Goodale, 

2008; Mishkin et al., 1983) (Goodale & Milner, 1992; Kravitz, Saleem, Baker, 

Ungerleider, & Mishkin, 2013; Milner & Goodale, 2008; Mishkin, Ungerleider, & 

Macko, 1983). These streams selectively encompass the specialist regions 

outlined above to process overarching properties broadly related to different 

aspects of visual processing. Work by Ungerleider, Mishkin and colleagues 

(Kravitz et al., 2013; Mishkin et al., 1983) defined two cortical pathways; the 

ventral stream which has an occipitotemporal trajectory and processes details 

related to object identification. They coined this the ‘what’ stream. The dorsal 

stream (also referred to as the ‘where’ stream by Mishkin and colleagues) is 

largely associated with object localisation and occupies regions spanning the 

occipitoparietal lobes. Later work by Milner and Goodale re-evaluated the 

function of these two streams and through patient-focused studies revealed the 

dorsal stream to be involved in visually guided action. Thus, they proposed the 

dorsal stream to be concerned more with ‘how’ to interact with objects rather 

than ‘where’ the objects are and subsequently termed the two streams as 

processing vision for perception and vision for action. Figure 1.1 depicts the 

main visual regions and where they lie in relation to each processing stream.  

 

Figure 1.1 Key human visual areas. Prominent cortical areas of the human visual system. 
The solid lines indicate the dorsal and ventral visual pathways which encompass regions of 
the visual hierarchy. V denotes visual area; higher visual areas include MST – medial 
superior-temporal area; LOC – lateral occipital cortex; FFA – fusiform face area; PPA – 
parahippocampal place area; IPS – intrapartietal sulcus; SPL – superior parietal lobule; 
DLPFC – dorso-lateral prefrontal cortex; VLPFC – ventro-lateral prefrontal cortex. (Figure 
obtained with permission from (Goebel et al., 2012)).  
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1.2 Feedback in the visual system 

1.2.1 What is meant by feedback? 

In addition to the traditional sequential processing of feedforward external 

input, the visual system operates via another major stream which processes top-

down information generated internally. The term top-down refers to aspects of 

cognition and behaviour that are not stimulus-driven (Engel et al., 2001). These 

two streams operate in parallel such that as sensory information is fed (forward) 

through the cortex via the retina and thalamus, top-down information from 

higher visual (and non-visual) areas is fed back down through the hierarchy in so 

that complex information in higher processing stages influences the processing 

at earlier stages ( Gilbert & Sigman, 2007). In other words, the processing of 

sensory information is guided by influences from internally generated signals.  

Evidence of feedback pathways can be taken from the architecture of the cortex 

itself. Regions within visual cortex are linked via reciprocal connections, 

highlighting a flow of information in both directions. This is evident throughout 

the cortex as a whole and even in sub-cortical processing within the thalamus 

(Gilbert & Li, 2013). Not only is the presence of this second information stream 

evident within the cortical architecture, its importance is also highlighted 

structurally with feedback connections outnumbering feedforward connections 

throughout the hierarchy (Friston, 2005). For example V1 contains more 

feedback than feedforward connections (Muckli & Petro, 2013). Similarly, most 

input to a given V1 neuron comes from different cortical regions, as illustrated 

in Figure 1.2. V1 receives more input from V2 than the LGN and upper layer 

pyramidal cells in V1 has approximately twice as many synapses with other 

cortical regions than V2 in macaques (Budd, 1998). Feedback connections from 

higher-order visual areas have also recently been mapped in cats (Pan et al., 

2021). Cortical feedback projections have been found from the occipital face 

area which can modulate V1 activity during facial processing tasks (Petro et al., 

2013). Topographic organisation of the intraparietal sulcus mirrors the 

retinotopic organisation of early visual cortex and the feedback projections from 

this area are thought to be implicated in attentional modulation (Greenberg et 
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al., 2012). Additionally, feedback projections from auditory and multisensory 

cortices are thought to play a role in multisensory integration and spatial 

awareness (Clavagnier et al., 2004). Together these structural properties of the 

visual system highlight the importance of top-down influences on visual 

perception. It is also worth noting that while feedforward and feedback 

connections will be the focus of this discussion, a third neuronal input also 

operates during sensory processing in the form of lateral connections which 

connect neurons within a given cortical area. These have been shown to play a 

role in conveying spatial context information (Mayer et al., 2018) and integrating 

with feedback connections during image grouping and segmentation (Liang et 

al., 2017)  Feedback connections on the other hand, connect neurons across 

cortical areas which are responsible for processing different aspects of visual 

information and their interaction with feedforward connections will form the 

focus of this thesis.  

 

Figure 1.2 Areas connected to V1 via feedback pathways. Depiction of regions within and 
beyond the visual cortex which feed back to primary visual cortex. VOT – ventral 
occipitotemporal cortex; SC – superior colliculus; FEF – frontal eye fields; IP – intraparietal 
sulcus. Figure obtained and adapted with permission from (Muckli & Petro, 2013).  

 

This merging of the external and internal worlds during visual processing is now 

widely accepted as a template for how the cortex operates as a whole, and the 

brain is now commonly considered a parallel rather than serial processor (Singer, 

2013), but the exact nature of how this dual-processing system is implemented 

and indeed the reasons why it is used are still being characterised. Below, I will 

attempt to address each of these questions using evidence from the current 

literature to piece together the properties and function of the feedback system. 
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Ultimately, we must understand what these feedback signals contain and how 

they are conveyed at the neuronal level in order to incorporate them effectively 

into models of how the visual system operates.   

1.2.2 What does feedback do? 

Generally, feedback influences the processing of incoming sensory input by 

conveying internally driven signals relating to the external information. 

Specifically, feedback encompasses a wide range of internally guided processes 

which modulate how the visual system responds to its visual environment in 

different ways. Processing everything in a feedforward manner would be 

computationally exhaustive. If the visual system operated in a purely bottom-up 

manner, every aspect of the visual scene (from individual objects and their 

relationship within and to the global structure of the scene) would have to be 

processed sequentially in a sensory-driven way. This would not only be energy- 

and time-consuming, but also does not seem efficient or even plausible in a 

rapidly changing environment that is the visual world. Indeed, it is advantageous 

to interpret the scene using guidance from previous experience than to 

continuously interpret a noisy signal (Panichello et al., 2013). It is therefore 

clear why a feedback system is needed, with the overall aim of top-down 

processing being to optimise information processing throughout the system 

(Teufel & Nanay, 2017) but the full extent of the benefits of such a system is yet 

to be clearly characterised.  

A major role of top-down signalling is to provide predictions about the bottom-

up information. In this sense, predictions refer to expectations about the current 

sensory environment formed through previous exposure and experience 

(Panichello et al., 2013). The terms prediction and expectation are used 

interchangeably throughout the literature with expectation describing a 

representation of what is predicted to occur and predictions describing a general 

orientation towards the future (Bubic et al., 2010). I will use the terms 

interchangeably throughout the thesis however it is worth noting that a 

consistent definition throughout the literature is not evident and a lack of 

systemisation in the terminology may influence the understanding of what 

exactly is being tested (Bubic et al., 2010). Predictive processing is based on 

regularities within our environment, (i.e. associations of objects and scenes that 
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commonly co-occur), and how these predictive properties can influence 

perception (Bar, 2004). Its role is often considered a fundamental aspect of 

sensory processing and is implicated within many accounts of cortical function.   

One way in which predictions can be formed is through contextual information. 

In the visual world, objects almost never appear in isolation; they are embedded 

within a visual scene. Surrounding information present within the visual scene 

serve as context for the objects within it and can greatly influence their 

interpretation. A scene is considered contextually coherent if it contains 

elements which commonly appear together with the right configuration (Bar, 

2004). This coherence has shown to facilitate the perception of objects. For 

example, Palmer (Palmer, 1975) presented visual scenes followed by consistent 

or inconsistent objects. The objects were more easily identified when preceded 

by a contextually relevant scene. A few years later, using simple line drawings 

Biederman (Biederman et al., 1982), demonstrated that objects that are 

semantically consistent with their surrounding context are recognised more 

rapidly and accurately. Enhanced detection of consistent objects is also found by 

(Henderson & Hollingworth, 1999; Hollingworth & Henderson, 1998) This effect 

was extended to natural viewing conditions by Mack & Eckstein (Mack & 

Eckstein, 2011), who found visual search to be more efficient for expected 

versus unexpected stimuli.  

Contextual information has been shown to facilitate the recognition of other 

objects which share the same context (Bar & Ullman, 1996) and recent work by 

Bar and colleagues (Afiki & Bar, 2020) has shown that associated (versus un-

associated) pairs of images resulted in improved performance in several visual 

perception-related tasks. The human trait of seeking coherence within our visual 

environment and evaluating probabilities of object-scene co-occurrence is 

emphasised by Sauvé and colleagues (Sauvé et al., 2017) in a study which looked 

at both behavioural and electrophysiological correlates of contextual effects, 

based on previous work by Bar and colleagues (Bar, 2004). As well as a 

behavioural advantage of object-scene pairs which had a high probability of co-

occurrence, they also found differences in event-related potentials following 

stimuli with different levels of likelihood of co-occurrence between the object 
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and scene. This highlights both a behavioural and neurological effect of 

contextual modulation.  

Contextual modulation of objects highlights a key function of top-down 

predictive processing. However, in order for this process to seem more 

ecologically valid, it must also extend to the perception of scenes in general 

rather than simply the objects within them (Bar, 2004; Greene, 2013). We view 

the world as a dynamic flow of visual arrays, rich in visual information and 

therefore scenes are more representative of our visual experience. In addition to 

scene information facilitating object processing, object recognition has been 

shown to aid scene perception (Davenport & Potter, 2004). Caddigan and 

colleagues (Caddigan et al., 2017) demonstrated that ‘good’ scenes (those which 

are more representative of their category) were more easily detected than ‘bad’ 

scenes (those less representative of their category) even when the differences 

were not task relevant. Thus, contextual modulation is implicated in both object 

and scene perception, although arguably these processes are not mutually 

exclusive within visual processing itself and therefore should reflect an overall 

influence of visual recognition by context.  

Information in the context is also useful when elements of the visual scene are 

ambiguous. For example, (Bar & Ullman, 1996) presented portions of a visual 

stimulus which could contain ambiguous or unambiguous features. They found 

that the presence of key identifiable features aided the identification of the 

ambiguous elements. An ambiguous object could be interpreted in different 

ways depending on the contextual information it is presented with. For example, 

a blurred object could be recognised as a hairdryer if portrayed in a bathroom 

scene or as a drill if presented within the context of a garage or workshop (Bar, 

2004). This effect of context on ambiguity has been replicated in computer 

vision studies (Oliva & Torralba, 2003; Torralba, 2003).  

Effects of predictive processing in relation to ambiguity are also evident in 

perceptual illusions which prompt perceptual uncertainty or offer different ways 

to interpret the visual input. A classic example of this is binocular rivalry in 

which two different images are presented to each eye. Instead of merging these 

two percepts, each takes it in turn to dominate perception. Contextual 



1 30 
 
information has been shown to influence the experience of binocular rivalry by 

modulating the dominating percept  (Denison et al., 2011; Sobel & Blake, 2002).  

The effects of contextual modulation are bi-directional. Contextual information 

that is incoherent with the objects presented, can disrupt or slow down their 

recognition (Biederman et al., 1982). Predictions derived from contextual 

information can also ‘taint’ the perception of visual stimuli (Bar, 2004), 

affecting the processing of sensory information but not necessarily in a 

perceptually relevant or beneficial way. This is evident through phenomenon 

such as false memories (Miller & Gazzaniga, 1998), boundary extension (Intraub 

et al., 1996) and change blindness (White et al., 2016).   

Evidence of top-down modulation within the visual cortex can also be found at 

the neuronal level. Predictable information has been shown to enhance activity 

in the visual cortex (e.g. Mannion, Kersten, & Olman, 2015). Conversely, 

enhanced activity has also been observed for unexpected stimuli (Alink, 

Schwiedrzik, Kohler, Singer, & Muckli, 2010; Joo, Boynton, & Murray, 2012; Kok, 

Van Lieshout, & De Lange, 2016), meaning we are yet to reach a consensus over 

how predictions influence cortical activity at the univariate level. Expectations 

have been shown to bias representations in visual cortex (Kok et al., 2013), with 

stimulus templates reflected in the pattern of activity in PVC being present 

when the stimulus is expected (Kok, Failing, & de Lange, 2014).  

Cortical representations have also been shown to be enhanced by the 

surrounding context for individual written letters (Heilbron et al., 2020), a 

neural feature which presumably facilitates the ability to read. A link between 

the neural activation and resulting percept was also found by (Joo et al., 2012), 

who found that subjects were more likely to see an object that deviated from 

the surrounding context in conjunction with greater cortical activation for such 

stimulation. Rideaux & Welchman (Rideaux & Welchman, 2019) were able to 

decode information about perceived depth from the neural representation 

within V1, again linking neural representation with the resulting percept. 

Similarly, it has been found that objects perceived as different sizes occupy 

different amounts of primary visual cortex in their neural representations ( 

Murray et al., 2006). They demonstrated using fMRI that objects that were 

perceived to be distant (and therefore perceived as occupying a larger portion of 
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the visual field) activated a larger portion of the visual cortex relative to objects 

(of the same angular size) perceived as closer (and subsequently perceived to 

occupy a smaller portion of the visual field). This highlights a contextual effect, 

in the form of contextual depth cues, in early visual cortex.  

Contextual information has been shown to bias perception in the absence of 

direct visual input, implying that top-down influences can exert an effect 

without any bottom-up stimulation. Haynes & Rees (Haynes & Rees, 2005) were 

able to decode the orientation of invisible stimuli from the response pattern in 

visual cortex. In a similar vein, Smith & Muckli (Smith & Muckli, 2010) were able 

to decode information about the surrounding context in an unstimulated area of 

V1. They achieved this through occluding a portion of the visual scene, 

effectively eliminating feedforward input to the corresponding region of visual 

cortex. Several other studies have also employed occlusion paradigms and found 

evidence of top-down signalling in the absence of bottom-up input (Ban et al., 

2013; Chen et al., 2018; Muckli et al., 2015; Sugita, 1999). These findings imply 

feedback signals can carry information about the surrounding context, a notion 

supported by Williams and colleagues (Williams et al., 2008) who found foveal 

cortex to contain information about peripheral stimulation. Further evidence of 

cortical activation from indirect stimulation this comes from the attentional 

blink paradigm (Lindh et al., 2019) studies looking at the cortical correlate of 

the blind spot (Chen et al., 2017), illusion studies (Chemla et al., 2019; Dekel & 

Sagi, 2020; Muckli et al., 2005; Vetter et al., 2012), as well as mental imagery 

studies (Bergmann, 2019; Gosselin & Schyns, 2003; Keogh et al., 2020; Smith et 

al., 2012).  

The majority of the findings discussed implicate V1 and early visual areas within 

predictive processing and contextual modulation. These processes have recently 

been shown to be driven by low-level features (Lauer et al., 2018), (a known 

driver of activity in PVC) but modulated by scene complexity (Groen et al., 

2018). Evidence of these processes are also found in higher visual areas (Faivre 

et al., 2019), suggesting feedback is influential on many levels of the 

feedforward hierarchy. The feedback signals themselves are thought to originate 

from higher visual areas but have also been shown to implicate other sensory 

areas such as auditory cortex (Meijer, Montijn, Pennartz, & Lansink, 2017; Petro, 



1 32 
 
Paton, & Muckli, 2017), highlighting a potential role within multisensory 

integration.  

Top-down predictions are also considered to play a role in other higher-level 

processing such as working memory and attention (Mehrpour et al., 2020). 

Activation of working memory is required to maintain predictions which need to 

be updated and held within WM as the sensory information is further processed. 

Knowledge may be stored as early as V1 and then reactivated by top-down 

feedback signals (Petro et al., 2014). Pratte & Tong (Pratte & Tong, 2014) 

demonstrated working memory representations being stored in V1 through the 

ability to decode stimulus information during a retention period.  

The relationship between top-down signalling and attention is bi-directional, 

with attention being attracted to salient stimuli (so-called bottom-up attention), 

as well as being voluntarily directed by top-down control (Connor et al., 2004), 

particularly by prefrontal and frontal areas (Katsuki & Constantinidis, 2014; 

Paneri & Gregoriou, 2017). Gilbert & Li ( Gilbert & Li, 2013) outline evidence for 

different types of attention influenced by top-down control. Firstly, spatial 

attention, most commonly associated with a gain control mechanism whereby 

relevant or salient stimuli are captured by attention at particular points in the 

visual field or conversely, irrelevant stimuli are suppressed (Motter, 1993; 

Posner et al., 1980). In contrast to a searchlight-based control of attention, 

attention can also highlight object properties or features of the visual field with 

common properties. Therefore, attention appears to be a complex and multi-

level mechanism of top-down control which ultimately influences how the visual 

field is processed. For more detailed discussions see (Muckli & Petro, 2013) and 

(Gilbert & Sigman, 2007). 

Attention could be used by top-down predictions exert an effect across 

processes involved in visual perception. For example, top-down effects could 

prime the system to attend to specific features (Serences & Boynton, 2007) or 

areas in space but in turn, expected or unexpected stimulation could capture 

attention. Endogenous attention in particular is referred to as top-down, goal-

driven attention (Maclean et al., 2009) operating via the ventral pathway using 

predictions and expectations to guide attention in contrast to exogenous 

attention which responds to external factors such as stimulus properties. It is 
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therefore difficult to disentangle the processes of expectation and attention as 

there is considerable overlap. Attention can mediate contextual influences and 

thus in turn influence predictions. Although often considered interchangeable, 

expectation and attention should be kept apart according to Panichello and 

colleagues (Panichello et al., 2013), an opinion based on work by Summerfield 

and Egner (Summerfield & Egner, 2009) who define the distinction between 

attention and expectations. Attention prioritises processing on the basis of 

relevance whereas expectation restrains interpretation depending on likelihood. 

In other words, attention may determine the response to the stimuli but 

predictions may provide an anchor to modulate this response (Hsu et al., 2014). 

Summerfield and Egner detail differences between the two processes but also 

outline how they overlap and interact. An ERP study by Marzecova and 

colleagues (Marzecová et al., 2017) show differential effects of both 

predictability and attention but also how these factors integrate in visual 

processing. Through a meta-analysis Ficco and colleagues (Ficco et al., 2021) 

found overlap between the predictive coding and attentional networks. These 

works highlight both the separation and integration of these two important 

mechanisms in visual processing. Although the picture of how these processes 

interact is not yet clear, it seems that the endogenous attention system acts as a 

channel for predictive processing to operate. Exogenous attention is then used 

to provide the bottom-up input. An example of which can be found in a study by 

Macaluso & Doricchi (Macaluso & Doricchi, 2013).  

Overall, the role of feedback in the visual system is complex with many 

attributes that need taking into consideration before we can build an effective 

model of its function. We know it is implicated in processes such as object and 

scene perception, working memory, attention, predictive processing, contextual 

modulation and multisensory integration, as well as many more within and 

beyond the visual system. Many features of these processes overlap and could 

reflect an overarching influence of feedback or the contribution of many sub-

processes and the interplay between them. What we do know is that feedback 

plays a crucial role in cortical function, and we are potentially just scratching 

the surface of discovering the extent of its nature. 
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1.2.3 How is feedback implemented in visual processing? 

We have discussed the varying processes influenced by top-down processing and 

can appreciate the importance of the feedback system, but how are top-down 

signals implicated in visual processing and how do they interact with the 

counter-current stream of feedforward input? Addressing these questions taps 

into an area of research that is rich in theoretical concepts encompassing a wide 

range of hypotheses and possible mechanisms underlying cortical function. I will 

highlight a few of the key ideas that attempt to explain the way in which 

feedback signalling is implemented throughout the visual system. It is important 

to note that these concepts are not mutually exclusive, some encompass or work 

in conjunction with others. While there is plenty of evidence supporting each 

notion, a clear consensus on how feedback operates within the cortex is yet to 

be established.  

Attempts to ascertain how feedback is employed within the brain start with 

some more abstract conceptualisations. For example, Bar (Bar, 2004) suggests 

that contextual modulation occurs through context frames, which are structures 

of contextually consistent information created from experience. These context 

frames are then activated by cues from the feedforward information and trigger 

the top-down facilitation of object recognition. Bar (Bar, 2007) goes on to 

develop a three-part model of contextual modulation in which information from 

the sensory input develops analogies which are linked to memory. These 

analogies initiate associations which are used to create predictions about the 

information being presented. Bar also proposes that context may activate top-

down predictions which are used to lower the perceptual threshold, in turn 

increasing sensitivity to relevant information. Increased sensitivity is also 

outlined by Serences & Boynton (Serences & Boynton, 2007) who suggest that 

feature-based attention, guided by top-down processes, increases sensitivity to 

behaviourally relevant information.   

Another way in which top-down processing is activated is thought to be through 

the type of information that is extracted from the bottom-up input. Specifically, 

it is proposed that the visual system rapidly extracts a coarse representation of 

the visual scene (Bar, 2003) which is used to activate context frames used for 

further processing (Bar et al., 2006). This coarse-level extraction comes in the 
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form of low-spatial frequency information which conveys enough information 

about global scene properties to activate high-level predictions. These perhaps 

originate as high as the orbito-frontal cortex (OFC), which shows early 

activation, reminiscent of expectations. The quick extraction of LSF information 

provides the gist of the visual scene (Schyns & Oliva, 1994) and activates 

schemas stored in memory, which is followed by slower processing of the HSF 

information conveying fine-grained information to fill in details. This is similar to 

Bar’s proposal (Bar, 2007) whereby LSF information activates analogies stored in 

memory however Bar expands this to explain how analogies may then be used to 

eventually form predictions about the visual input.  

Other theories encompassing neuronal function-based hypotheses posit several 

processes involved in visual perception as potential mechanisms for how 

feedback exerts an effect. These include surround suppression (Er et al., 2020) 

in which a neuron’s response is reduced when stimulated from outside its classic 

RF, or mechanisms that operate on a much larger scale such as synchronised 

neural oscillations at distinct frequencies for feedforward and feedback 

information (Bastos et al., 2015) or a general network state mechanism (Zagha 

et al., 2013). Smaller scale notions propose that rather than point processors, 

individual neurons themselves instead act as adaptive processors, dynamically 

combining top-down and bottom-up input (Gilbert & Sigman, 2007). A more 

simplistic neuronal account of top-down modulation points to receptive field 

characteristics of V1 neurons. Indeed, Gilbert & Li ( Gilbert & Li, 2013) stipulate 

that understanding how cognitive influences affect neuronal function requires an 

understanding of the receptive field. So, when addressing how top-down 

influences exert an effect, one should consider that this may be through RF 

properties that allow stimuli outside of the classical receptive field (i.e., stimuli 

which is unable to elicit a response alone) to drive neural activity when 

combined with specific information inside the classic RF. In other words, 

information from large parts of the visual field can be integrated within a single 

RF response profile due to top-down modulatory effects.  

Beyond the computational capabilities of individual neurons, neural circuits have 

been implicated in the integration of feedback and feedforward information, 

such as canonical microcircuits within cortical columns (Bastos et al., 2012; 
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Keller & Mrsic-Flogel, 2018; Wibral et al., 2017) or circuits connecting cortico- 

and either thalamic (Mumford, 1991) or (higher) cortical (Mumford & Mumford, 

1992) inputs. Furthermore, accounts of cortical function as a whole have been 

used to explain the process of top-down processing. Hierarchical Bayesian 

inferencing is a popular framework encompassing several relevant theories of 

visual function (Lee & Mumford, 2003, 2007) but it is important to note that its 

central notion applies to general brain function as is not limited to that of the 

visual system. The core understanding of Bayesian inference posits that loops 

combining feedforward and feedback information apply probabilistic inference 

to merge the available sensory information with experience-driven contextual 

priors (Lee & Mumford, 2007). Feedforward input triggers hypotheses about the 

sensory input whereas feedback information provides predictions to generate the 

hypotheses. Each pathway is used to systematically update and modify the 

signal; thus, the inference of the visual input is determined by information from 

both. Lee & Mumford outline a potential problem with this notion in that if an 

incorrect interpretation is implemented in either pathway, the other will be 

updated accordingly which may lead to an invalid conclusion being drawn. 

Therefore, they suggest it may be beneficial to maintain several hypotheses in 

parallel to circumvent this potential issue.  

A theory formed on the basis of Bayesian inferencing is predictive coding (Hohwy 

et al., 2008; Kwisthout et al., 2017; Shipp, 2016; Spratling, 2010). Predictive 

coding integrates the role of feedback and feedforward signalling by proposing 

that feedback signals provide predictions about the feedforward input gleaned 

from statistical regularities encountered through previous experience. These 

predictions are then compared to the input from the feedforward signal and any 

disparities (termed prediction errors) are fed to the next level of the hierarchy 

(Rao & Ballard, 1999). This comparison of predictions and input (referred to as a 

matching inhibition mechanism by (Clark, 2013)) occurs at every processing 

stage and the errors are continuously reduced with every hierarchical step. 

Information which is compatible between the two streams is ‘explained away’ by 

cancellation (Rao & Ballard, 1999) or attenuation (Alink et al., 2010; Fang et al., 

2008) of the signal, so that only information which required further processing 

advances to the next stage. This is a concept underpinned by the principle of 

minimising free energy (Friston, 2005; Friston et al., 2015; Gershman, 2019). 
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In contrast to predictive coding accounts of cortical function, which ultimately 

imply that signal is enhanced only when feedforward information does not match 

the top-down predictions, other theories propose the opposite. Theories such as 

adaptive resonance theory (Grossberg, 2013) and coherent infomax ( Kay & 

Phillips, 2011) suggest that neural activity is enhanced when top-down and 

bottom-up signals are compatible. Once such neural account of this 

enhancement is that of apical amplification (Kay & Phillips, 2018; Phillips, 2017; 

Phillips et al., 2016). Apical amplification stipulates that feedback and 

feedforward integration can occur at the level of individual neurons. In 

particular, layer 5 pyramidal cells are implicated in this function whereby 

cellular response to feedforward stimulation is amplified if the top-down signal 

is consistent. A mechanism in which this may be implemented is via BAC firing, 

whereby coincidental input to the apical dendrites (via feedback signalling) and 

the cell soma (via feedforward input) triggers a cascade of action potentials via 

calcium spiking channels, a process shown to occur within rodent pyramidal cells 

(Larkum, 2013; Major et al., 2013). BAC propagation is therefore a strong 

candidate mechanism for apical amplification and other theories which propose 

an increase in neural response to consistent information. Figure 1.3 and Figure 

1.4 illustrate how feedforward and feedback signals are integrated at the 

neuronal level.  
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Figure 1.3 A cellular mechanism for integrating feedforward and feedback signals in object 
recognition. Low-level features are encoded in primary visual cortex and transcend the 
hierarchy. Feedback inputs from various sources (red arrows) are carried by horizontal 
fibres that synapse on the distal tuft dendrites. Feedback therefore informs lower areas 
about higher-level representations to serve processing. BAC firing serves as a possible 
mechanism in which top-down information influences bottom-up processing. This 
schematic shows a simplified representation of the visual system, highlighting key areas 
and features. Figure obtained with permission from (M. Larkum, 2013).  

 

 

Figure 1.4 Integration sites of pyramidal cell neurons. The two integration sites of pyramidal 

cells ∫ 𝒔 shows the somatic integration site which generates action potentials. ∫𝒂 is the 

apical integration site which when combined with sufficient activation at the somatic 
integration site can convert a single action potential into multiple potentials. The potential 
outputs are depicted on the right-hand side. Figure obtained with permission from (Phillips, 
2017).  
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Rather than amplifying or suppressing coherent feedback and feedforward 

signals, a third possibility is that consistent predictions are used to sharpen the 

representation of upcoming stimuli. That is, that consistency between 

expectations and sensory input has been shown to reduce response amplitude, 

while improving the stimulus representation within the BOLD response pattern in 

early visual cortex (Kok et al., 2012). This sharpening of representation has 

recently been extended to deep-learning applications (Abdelhack & Kamitani, 

2018).  

1.3 Thesis rationale 

With the many advantages of top-down processing highlighted, and a particular 

emphasis being found on contextual modulation, this thesis broadly aims to 

investigate how top-down and bottom-up processing streams integrate within 

the visual system to influence perception. More specifically, we aim to explore 

how top-down contextual information can influence the processing of degraded 

feedforward input.  

To do this, we will harness the capabilities of occluding a portion of the visual 

scene in being able to isolate feedback signals. Investigating the role of 

feedback in general is challenging due to its implicit integration with 

feedforward information. Occlusion, however, permits the separation of 

feedback from feedforward information in order to test their individual 

contributions to visual processing. The occlusion format we will use will follow 

that of Smith & Muckli (Smith & Muckli, 2010), in which feedback signals carrying 

information about surrounding context were found in unstimulated primary 

visual cortex, suggesting the visual system compensates for a lack of input using 

top-down predictions. To develop these exciting findings further, we aim to test 

how these feedback signals may be used when degraded feedforward 

information is present. In a real-world environment this could be akin to 

situations in which perceptual ambiguity is present and contextual information 

may be used to interpret the signal, for example, like looking through a frosted 

pane of glass – feedforward input is weak and therefore contextual information 

must be used to ultimately determine its meaning. By including weak 
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feedforward information within our occluded region, we reintroduce the 

amalgamation of the two signals to an extent, but in doing so we hope to gain an 

insight into how the top-down signals can help us interpret the weak, 

feedforward ones. Smith & Muckli’s findings have shown that feedback signals 

are present and now we want to explore how these signals may be used during 

visual processing. It is important to note that other salient processes involved in 

top-down control will naturally play a role in our experiments, however we are 

not specifically searching for the influence of attention and/or working memory 

here so manipulation of these mechanisms does not form part of the 

experiments outlined. However, their implications will be discussed in brief 

where relevant.  

We aim to address this thesis aim on two levels: psychophysically and 

neuronally. We firstly want to test whether manipulation of the contextual 

information used to generate the feedback signals can result in different 

behavioural outcomes. That is, do the expectations derived from the feedback 

signals, and consequently the predictability of the feedforward information 

result in different behavioural responses. Based on findings within the literature, 

we expect to see a behavioural advantage of contextually coherent information, 

and perhaps a disadvantage of incoherent information.  

We will then investigate this effect by looking at the cortical consequences of 

such manipulation. Do relevant predictions alter the neuronal response of the 

visual cortex relative to irrelevant predictions? Previous findings have revealed 

mixed neuronal responses to contextually coherent or incoherent information 

which is reflected in theories of cortical function which encompass neural 

mechanisms which could either enhance or suppress signal for expected or 

unexpected stimuli. We anticipate neural differences between the two types of 

signals but the direction of which less clear.  

More specifically we will aim to address the following questions: In Chapter 2 we 

will investigate how top-down and bottom-up inputs interact to influence the 

processing of degraded feedforward information at the behavioural level. In 

Chapter 3 we will test the effects of consistency at the neuronal level by 

exploring whether top-down predicted information can amplify degraded 

feedforward input within primary visual cortex. Furthermore, Chapter 4 will 
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outline a project proposal which aims to expand these behavioural and neuronal 

findings to explore a contextual effect on degraded information at a higher 

resolution, enabling a greater insight into the neuronal underpinnings of the 

integration of feedback and feedforward inputs.  

By incorporating feedforward input into a traditionally top-down driven 

paradigm, we hope to elucidate the role of each of these information streams 

within visual processing and hope to add to the growing body of evidence 

highlighting the importance of feedback signals within cortical function.  
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2 Chapter 2 

2.1 Abstract 

The recurrent processing of the visual system is well recognised but still yet to 

be fully understood. The way in which top-down and bottom-up inputs are 

integrated in the processing of the visual scene is an important aspect of visual 

processing that requires thorough exploration. Here, we present a series of 

psychophysical experiments which aim to investigate how top-down and bottom-

up information is integrated to process degraded feedforward information. We 

employ a partial occlusion paradigm in which we present natural visual scenes 

with the bottom right corner shown at low contrast so that the information that 

it contains is degraded compared to the full contrast surrounding information. 

This surrounding information either matches or does not match the low-contrast 

region meaning the contextual information provided is either relevant or 

irrelevant. Through our experiments we then explore how well subjects are able 

to detect and/or identify the low-contrast scene.  

Results reveal a consistency advantage in terms of recognition only, in that 

subjects are better able to identify the content of the low-contrast information 

when it is surrounded by consistent contextual information. When the context is 

inconsistent, performance decreases. This finding is revealed through both 

accuracy-based and Signal Detection Theory-based analyses which account for 

any response bias that could be driving the effect. While a response bias toward 

the surrounding context appears to contribute to the consistency effect we 

observe, it does not account for it wholly and thus our results provide evidence 

of a contextual modulation upon degraded feedforward information. This gives 

insight into the way in which feedback and feedforward information is used at 

the behavioural level within visual processing when input is degraded or 

ambiguous.  
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2.2 Introduction 

2.2.1 Theoretical Background 

The visual world can present an unlimited number of individual scenes, 

containing an infinite array of objects differing in numerosity and spatial 

configuration. Our ability to recognise thousands of object categories within 

scenes despite these variations is a capability of the human visual system still 

unmatched by computer algorithms (Oliva & Torralba, 2007). Processing every 

visual scene in a bottom-up, sequential manner would use an unreasonable 

amount of neuronal processing, however, the visual system operates using a two-

way processing system whereby bottom-up input is processed with the help of 

top-down information from other (visual and non-visual), (Felleman & Van Essen, 

1991; Markov et al., 2014; Vezoli et al., 2021).  

A crucial role of this top-down flow of information during visual processing is to 

provide predictions about the visual environment (Petro et al., 2014). 

Predictions are formed from our past and current experience of the world and 

serve to help us efficiently process current and upcoming visual input. One way 

in which these predictions can be formed is by using contextual information 

available within the visual scene (Bar, 2004). 

There is a wealth of literature which illustrates how contextual information can 

facilitate the processing of objects and scenes. Typically, contextual information 

facilitates the processing of objects which are consistent with the scene they are 

presented in. Contextual information has also been shown to facilitate the 

processing of ambiguous objects. (Bar & Ullman, 1996), found that ambiguous 

objects were more easily identified when surrounded by reliable contextual 

information. Additionally, inconsistent context has been shown to inhibit 

effective processing (Biederman et al., 1982; Green & Hummel, 2006; Palmer, 

1975). Other experiments, however, have even found a facilitatory effect of 

inconsistent context in object processing (Brockmole & Henderson, 2008; 

Henderson & Hollingworth, 1999).  

One way to assess the presence and/or content of these feedback signals is by 

occlusion which provides the motivation behind the paradigm used in this 
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project. Smith & Muckli (Smith & Muckli, 2010) adopted a partial occlusion 

paradigm (see Figure 2.1) to isolate feedback signals to a region of early visual 

cortex. They presented a series of visual scenes and occluded the bottom right 

corner, eliminating feedforward information in this region of the visual field. 

During either a blocked design or a rapid event-related design, subjects were 

asked to maintain fixation and perform either a colour change detection task or 

a one-back repetition detection task, respectively. In the corresponding 

(unstimulated) region of early visual cortex (both V1 and V2), using a 

multivariate pattern classification-based analysis they found signals containing 

information about the surrounding scene; evident through the classifier’s ability 

to accurately decode the surrounding scene within this region of cortex. This 

effect persists across both experiments, in both areas (V1 and V2) and using 

different types of classifiers and classification techniques. In a further study in 

2015, Muckli and colleagues (Muckli et al., 2015) extended the exploration of 

this feedback effect to a layer-specific analysis. Using ultra-high field fMRI, they 

again found evidence of feedback signals in occluded visual cortex.  

These results therefore robustly imply that contextual information is fed back to 

cortical areas deprived of feedforward information and used even in the absence 

of bottom-up input. We want to extend this finding by investigating how context 

influences processing when some degraded feedforward information is present. 

Although we plan to investigate this neuronally, we initially want to explore 

whether we can find a behavioural influence of feedback information on the 

processing of degraded input. Therefore, unlike these previous occlusion studies, 

our task will explicitly test for a contextual effect of surrounding (‘feedback’) 

information.  
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Figure 2.1 Partial occlusion paradigm used by Smith & Muckli. The two conditions used by 
Smith & Muckli (2010) (adapted with permission). Left – occluded: the bottom right quadrant 
of the image is replaced by a uniform white field. Right – control: the bottom right quadrant 
contains the same scene as the remaining image. Black lines are for illustration purposes to 
highlight the regions. 

 

The main question this chapter will address is: how do top-down and bottom-up 

inputs interact to influence the processing of degraded feedforward information? 

We will investigate this through a series of psychophysical experiments which 

will explore different aspects relating to this central aim.  

2.2.2 What we mean by top-down inputs 

Top-down signalling refers to the information fed back to lower visual areas to 

aid the processing of upcoming sensory information, or, more generally, 

cognitive influences on earlier steps in processing (Gilbert & Li, 2013). As 

reviewed above, feedback may contain contextual information extrapolated 

from the scene and combined with prior knowledge to make sense of the 

feedforward information currently available. In our experiment series, we will 

manipulate the reliability of these predictive signals by altering their contextual 

information. As in the partial occlusion paradigm by Smith & Muckli, outlined 

above, the main portion of our stimulus images will contain full-contrast 

contextual information. In our case, the occluded region will also contain 

degraded feedforward information. This will allow us to compare feedforward 

and feedback influences by manipulating the consistency between the scenes 

depicted in the surround and occluded regions, in turn manipulating the 

reliability of the context and thus the predictability of the degraded 

information. In other words, we will assess subjects’ ability to interpret the 
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content of the occluded region when surrounded by either consistent or 

inconsistent context.  

A further effect we wish to test is whether contextual facilitation can extend 

beyond simple image features such as line continuation within our paradigm. 

Line continuation plays a crucial role in facets of perceptual processing such as 

boundary extension (Gottesman & Intraub, 1999) and amodal completion (Murray 

et al., 2004; Nanay, 2018). Recent work by Morgan and colleagues (Morgan et 

al., 2019) has shown that predictions reliably follow contours and boundaries 

using information available in the context. Here, the consistency between the 

surround and occluded information will be determined on different levels of 

categorisation, meaning both portions of the stimulus image may not be parts of 

the same image but instead may be considered consistent at the subordinate or 

basic category level. Basic level categorisation is the level at which the most 

relevant conceptualisation of a category is found. For example, ‘dogs’ would be 

classed as a basic-level category. Subordinate categorisation further divides the 

basic categories. Using our example, ‘Spaniel’ would be a subordinate level 

category. Thus, our stimulus images will be consistent along this continuum of 

categorisation.  

Another important feature in object and scene recognition literature is spatial 

frequency information. Findings from (Bar et al., 2006) suggest low spatial 

frequency information is sufficient to drive an early predictive response about 

the scene. This notion is supported by early work from Schyns & Oliva (Schyns & 

Oliva, 1994) who suggest visual processing occurs in a coarse to fine manner, of 

which low spatial frequencies could contribute to the coarse information 

referred to in their findings. Bar then proposes that higher spatial frequencies 

drive a later response to confirm or rule out predictions based on the gist 

information gleaned from the lower spatial frequencies processed earlier. The 

importance of low spatial frequency information in early scene processing and a 

distinction between different spatial frequencies in visual processing generally is 

supported by more recent work (Dima et al., 2018; Kauffmann et al., 2014; 

Kihara & Takeda, 2010; Mu & Li, 2013). We will therefore assess the 

consequence of manipulating spatial frequency information in both the context 

and occluded region in turn, within our paradigm. We expect that removing low-
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spatial frequency information in the context will reduce the ability to infer the 

identity of the degraded input. How this interacts with the contextual influence 

will help us determine what type of information is portrayed in the feedback 

signals used to facilitate performance. Limiting spatial frequencies in the 

occluded region will increase task difficulty so may enhance or eliminate any 

contextual modulation we observe.  

2.2.3 What we mean by Bottom-Up inputs 

The bottom-up aspect of our central research question pertains to the degraded 

feedforward information in the occluded region. Previous occlusion studies have 

occluded one portion of the visual field entirely, eliminating feedforward input 

to a region of visual cortex. Our occluded region, however, will contain 

degraded scene information. How does the level of degradation of the 

feedforward input modulate the contextual effects?  

We will degrade the scene information in the occluded region by lowering its 

contrast. Reducing the contrast of an image removes fine grained information 

however objects can still be identified with degraded visual conditions if global 

information is preserved (de Cesarei & Loftus, 2011). At the lowest levels of 

contrast, feedforward information may become invisible.  

There is a multitude of research showing how top-down information can 

influence the processing of perceptually invisible stimuli. For example, visual 

illusions such as the Kanzsia triangle (Kanzsia, 1979, found in (Wang et al., 

2012)) and motion induced illusions such as apparent motion (Muckli et al., 2005) 

arise from top-down predictions which create the illusion of either contours or a 

motion trajectory, meaning some of the information processed has no direct 

retinal input. This finding is also replicated in instances of perceptual rivalry 

with the filling in of information in the absence of retinal input (Chen et al., 

2017). Context also influences illusory percept when the stimulus does stimulate 

the retina, for example in binocular rivalry, information in the context 

influences which image is selected (Denison et al., 2011) or maintained (Sobel & 

Blake, 2002) in conscious perception. Other studies have explored contextual 

modulation when the context itself is rendered invisible, although some effects 
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have been found, they are less pronounced than if the stimulus itself is beyond 

conscious perception (Biderman et al., 2020; Harris et al., 2011). 

At the neuronal level, the orientation of invisible stimuli can still be predicted 

from activation patterns using fMRI (Haynes & Rees, 2005) and global context has 

been shown to influence local processing as early as V1 (Rideaux & Welchman, 

2019; Smith & Muckli, 2010). Faivre and colleagues (Faivre et al., 2019) found 

different neural signatures of stimuli that were congruent versus incongruent 

with their context when the stimuli were visible but this did not persist when 

the stimuli were invisible, indicating a disparity between information that is or 

isn’t consciously perceived. By testing perceptual threshold, we can investigate 

the role conscious perception plays in contextual modulation at the behavioural 

level.  

We will firstly include an array of contrast levels with a wide range spanning 

from very low to a level at which the scene is fairly visible but is still 

substantially degraded compared to the context. This will enable us to gauge the 

behavioural consequence of the processing of varying degrees of reduced 

feedforward input and how the predictions based on high contrast information 

influence the ability to process low-contrast information.  

We will then limit contrasts to around the visual threshold and test the influence 

of top-down predictions on the processing of this threshold-level information. 

This will allow us to investigate whether consistency of contextual information 

influences the detection and/or identification of scene information that is not 

necessarily perceptually visible.  

If top-down predictions enhance or amplify consistent information, then we 

would expect a beneficiary effect even around threshold level. Evidence 

supporting the notion of amplification comes from neuronal architecture and 

function. Apical amplification is a mechanism proposed to serve this function in 

which top-down information can enhance the processing of feedforward input by 

increasing firing rates of neurons receiving both types of input (Phillips, 2017). 

Although we know that top-down information influences how the brain interprets 

bottom-up input and there are proposed mechanisms to explain how this occurs, 

we are still far from knowing exactly how this process manifests cortically and 
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behaviourally and this series of experiments aims to contribute to the 

understanding of the latter.   

2.2.4 What we mean by processing 

As we focus on how top-down information influences the processing of bottom-

up input, it is important to clarify what aspects of visual processing we refer to 

and how we plan to investigate this.  

We will firstly consider two important aspects of visual processing: detection 

and recognition. Detection refers to the ability to determine whether or not a 

signal is present. Recognition refers to the ability to accurately determine what 

that signal is. Although they can be considered relatively separate processes 

(Straube & Fahle, 2011), they are considered interlinked (Swets et al., 1978). 

These aspects of processing will be tested separately and in combination 

throughout our experiment series, subjects will be tasked with both a detection 

and identification task to investigate whether contextual information exerts a 

similar effect on each.  

Additionally, we will focus not only on performance accuracy but we will also 

employ Signal Detection Theory (SDT) measures of performance (DePauli, 1967; 

Macmillan & Creelman, 2005). SDT is a theoretical framework which may be 

applied to both detection and recognition, and is particularly useful in situations 

of perceptual uncertainty (Lynn & Barrett, 2014). In a detection task, subjects 

decide how likely the presence of a signal is, relative to noise. In a recognition 

task (when a signal is known to be present), subjects must decide how likely the 

presence of signal A is, over signal B (Swets, 1966, outlined in (DePauli, 1967)). 

SDT is a useful tool for analysis as it allows subjects’ responses to be broken 

down into two measures which depend on different internal processes, allowing 

a better understanding of the observed behaviour, particularly in situations with 

ambiguity: sensitivity to the signal and response bias. Sensitivity refers to the 

ability to discriminate between signal and noise or between two signal types. 

Response bias concerns the subject’s tendency to respond with one option over 

the other. Assessing performance accuracy confounds sensitivity and bias 

measures (Lynn & Barrett, 2014). Subjects who perform very differently in terms 
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of these indices could have similar response accuracies and thus, accuracy is not 

a good representation of behaviour (Lynn et al., 2014; Lynn & Barrett, 2014).  

 

Figure 2.2 Distribution of signal and noise using SDT. The curve shows the distribution of 
signal or noise. If the curve denotes signal, then values above the criterion (c) result in hits 
and those below result in misses. If the curve represents noise, then responses above the 
criterion result in false alarms and those below lead to correct rejections. Criterion 
represents a subject’s response criterion for responding in either direction.  

 

To sum, we aim to look at how top-down and bottom-up signals interact to 

process degraded visual input. We will address this question using the following 

experiments which will utilise the partial occlusion paradigm outlined above:  

• In the first and second experiments we will test whether consistent 

contextual information influences the detection and/or recognition of 

low contrast information. This will be explored by manipulating the 

consistency between the full-contrast surround and low-contrast target 

region and the visibility of the target regions. Participants will perform 

both a detection and recognition task to investigate whether the 

consistency between the high-contrast feedback signals and low-contrast 

feedforward signals influences these facets of perceptual processing.  

• In the following experiment we will employ the same paradigm to test 

whether a consistency effect exists around the perceptual threshold. 

Here, the target region will be shown at contrast levels around the 
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threshold for detection. The same tasks as the previous experiments will 

be employed.  

• Next, we will explore whether a consistency effect extends beyond 

simple image features by testing whether congruency of the full-contrast 

surround can exert an effect even when simple image feature 

consistencies are removed.  

• Finally, spatial frequency information will be limited within the stimuli to 

assess how limiting other image features can influence the effect of 

consistency in the recognition of degraded feedforward information.  

Further details on the aim and methodology of each experiment can be found in 

section 2.3.6. Taken together, our results from this series of experiments should 

shed light on how the visual system uses top-down predictions to process 

upcoming sensory information. They will help allow us to determine how top-

down predictions interact with the bottom-up signal and to what extent each of 

them contribute to the overall processing of the degraded information and how 

this manifests as a behavioural output. 

2.3 Methods 

2.3.1 Overall Rationale 

The main aim of the project is to investigate how top-down and bottom-up 

information interact to influence the processing of dim feedforward input. In 

order to sufficiently address this, we look at the role of context and how the 

consistency between the contextual information (used to shape the top-down 

predictions) and the available feedforward information influences the processing 

of weak visual input. We also manipulate other aspects of the top-down signal as 

well as the bottom-up input and test subjects’ ability to both detect and 

interpret the degraded information. This is achieved through a series of 

psychophysical experiments. The general paradigm and procedure is outlined 

below, in addition to a summary of each experiment in turn.  
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2.3.2 Paradigm 

All of the experiments followed the same general protocol but differed in 

aspects depending on the specific aim of each. Details are outlined for each 

experiment in turn in section 2.3.6. The basis of all the experiments, however, 

is an adaptation of a partial occlusion paradigm initially introduced by Smith & 

Muckli (Smith & Muckli, 2010). 

The partial occlusion paradigm was developed to investigate the role of cortical 

feedback in early visual cortex. It works by occluding a portion of the stimulus 

image, eliminating feedforward input to the corresponding area of primary visual 

cortex. Subsequent activity in this corresponding cortical region provides 

evidence of feedback to primary visual cortex, in the absence of feedforward 

information. Here, we wanted to investigate whether these feedback signals 

could influence the processing of weak feedforward visual signals.  

To achieve this, the occluded region in this series of experiments contained 

degraded (low contrast) feedforward information. We then manipulated the 

content of the feedback signals by altering the image in the un-occluded portion 

of the stimulus, to assess whether different contextual information influences 

the processing of the degraded information. The image in the un-occluded 

region (herein referred to as the ‘surround’ region), therefore either matched or 

did not match the low contrast ‘occluded’ information (herein referred to as the 

‘target’ region). Figure 2.3 (a) depicts the location of the surround and target 

regions. To vary the degree of degraded information, we presented the target 

region at a variety of contrast levels. This enabled us to explore the moderating 

effect of context depending on the strength of the visual input.  

2.3.3 Stimuli 

Twenty-four scene images were selected from the Scene Classification Project 

Upright versus Inverted scene database 

(http://vision.stanford.edu/projects/sceneclassification/resources.html;Walther

, Caddigan, Fei-Fei, & Beck, 2009). Split equally, the images depicted images 

from two basic-level categories (natural and manmade scenes) which in turn fall 

into six subordinate-level categories: beaches, forests, mountains, buildings, 

http://vision.stanford.edu/projects/sceneclassification/resources.html
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highways and industry scenes. We selected image exemplars from each category 

by applying the Spatial Envelope Model (Oliva & Torralba, 2001). The model 

ensures maximal dissimilarity between image features such as spatial frequency 

and orientation information while ensuring that this dissimilarity is equally 

represented within each category to eliminate the possibility that the variation 

could be biased in any categorical direction.  

Once the images were selected, the stimuli were generated using MATLAB 

software version R2016a. Each stimulus image was comprised of two scene 

images: a full contrast surround image and a low-contrast target image. To 

create the images, the first image was selected from our twenty-four image 

stimulus database and grey-scaled. The second image was also greyscaled and 

the contrast reduced to one of the predetermined contrast levels. The two 

images were then merged so that the target image is shown in the bottom right 

corner and the surround image occupies the remaining three quadrants (as in 

Figure 2.3 (a)). This particular quadrant was chosen as the target region to 

replicate the stimulus layout of the stimulus used in previous partial occlusion 

paradigms within the lab (Muckli et al., 2015; Smith & Muckli, 2010). The 

stimulus image as a whole subtended 47.5° x 36.5° visual angle (VA), with the 

target region occupying 24.8° x 18.7° and the fixation cross the central 0.1° x 

0.1°.  

We manipulated the consistency between the surround and target regions to give 

rise to different task conditions, referred to as consistency level. These 

conditions are outlined in Figure 2.3(b). The Consistent Image condition 

contained a stimulus image in which the surround and target images both come 

from the same scene image. Thus, a Consistent Image stimulus looked like a 

complete scene, but with the bottom right quadrant being shown in low 

contrast. A Consistent Subordinate (level) stimulus had a surround and target 

image from within the same subordinate category but not from the same scene 

image (e.g., a beach and another beach image). A Consistent Basic (level) 

stimulus had a surround and target from within the same basic-level category 

but not the same subordinate-level category (e.g., a beach and a mountain; both 

are natural scenes but are not the same type of scene, nor the same image). An 

Inconsistent stimulus contained a surround and target from different basic-level 
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categories (i.e., a natural surround and manmade target region or vice versa, for 

example, a beach and a building). Finally, a Target Only stimulus did not contain 

an image in the surround, only a low-contrast target image, eliminating 

contextual information in the surround. Collectively, these conditions were used 

across experiments, however the number and specific consistency conditions 

varied between experiments, details of which are outlined in section 2.3.6.  

In addition to consistency between the surround and target being manipulated, 

we presented the target region at a range of low contrast levels, thus varying 

the degree to which the feedforward information was degraded. It is important 

to note however, that all the contrast levels are very low, meaning the target 

region was always substantially degraded compared to the full-contrast 

surround. Depending on which experiment, contrast levels ranged from either 

0%-6.4% or 0.6%-1.8%. Figure 2.3 (c) gives example stimuli at each contrast level 

used.  

2.3.4 Subjects & Procedure 

We recruited subjects via an online subject pool through the University of 

Glasgow Institute of Neuroscience and Psychology. Recruitment stipulations were 

healthy (or corrected-to-healthy) vision and that subjects have not already taken 

part in a previous experiment from this project series, as each experiment was 

run consecutively. They attended one testing session which took place at the 

University’s Institute of Neuroscience & Psychology. Before participation in the 

experiment, we verbally explained details of the task to each participant, and 

they were provided with an information sheet to read through before starting 

the experiment. We obtained informed consent prior to the experiment 

commencing in addition to demographic details for reporting. Subjects were paid 

GBP 6.00 per hour for their participation. Data for subjects were excluded on 

the basis of them not understanding task requirements or incompletion of the 

task. 

During the testing session, subjects were seated 45cm from a desktop computer 

monitor (OptiPlex 9030 AIO with a 24” 1080p hd screen), replicating the distance 

within the 3T scanner in the Institute. Head position was supported with a chin 
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rest. Screen resolution was set to 1024 x 768 pixels, replicating that of the in-

scanner projector and screen brightness was kept at the default setting.  

We ran each experiment using Presentation software (Neurobehavioral Systems, 

Inc., Berkeley, CA; www.neurobs.com). Although individual experiments varied 

in terms of stimulus type and number, each consisted of four experimental runs. 

Task instructions were displayed at the beginning of each run where subjects 

were required to press a key in order to continue, to allow enough time to read 

the instructions and ask any further questions. For each trial, the stimulus image 

was flashed at 4Hz (on/off 4x) for 1000ms, interleaved with a blank grey full-

screen image containing the central fixation cross to maintain fixation. 

Flickering stimuli were chosen with the prospect of a future fMRI experiment. V1 

is known to respond to stimulus flicker (Sekuler et al., 2002) and this rate is used 

is previous work within the lab (not yet published). Eye movements were not 

monitored within this series of experiments due to limitations with the 

availability of eye tracking equipment for psychophysical experiments, however 

the importance of eye tracking within visual perception studies (see (Saito & 

Sadoshima, 2016) for a review) is noted and is a measurement to consider for 

future experiments following the same principles.  

After the stimulus presentation, the task question was presented for a maximum 

duration of 5000ms, but the next trial commenced as soon as the subject 

responded. Subjects indicated their response by pressing one of two response 

keys on the computer keyboard. The trial process is depicted in Figure 2.3 (d). 

Between runs, subjects were permitted take a break for as long as needed to 

maintain comfort throughout the experiment. Each run followed the same 

protocol and used the same stimulus set; however, stimulus order is 

pseudorandomised and differed between runs. Table 2.3 provides a summary of 

each Experiment and the aspects in which they differ.  
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Figure 2.3 Psychophysical experiment details. (a) Depiction of the surround and target 
region locations (left) and example stimuli showing these two regions (right). Note that the 
contrast level of the target region on the right is higher than that used in the experiment, for 
demonstration purposes. (b) Stimulus conditions. Here, the target regions are shown at full 
contrast to illustrate the images used. Consistent image refers to a stimulus in which the 
surround and target regions contain the same image; Consistent Subordinate refers to a 
stimulus in which the surround and target regions contain an image from the same 
subordinate-level category but not the same image (e.g. a beach and another beach); 
Consistent Basic – the surround and target regions contain images from the same basic-
level category (natural or manmade) but not the same subordinate-level category (e.g. 
beach and mountain); Inconsistent refers to a stimulus in which the surround and target 
region scenes differ at the basic level (e.g. a natural surround and manmade target region); 
Target Only – a stimulus in which there is no information in the surround. (c) Illustration of 
the contrast levels used in the experiments. Experiments 1 & 2 used contrast levels ranging 
from 0% to 6.4% (top row) whereas The Threshold Contrast Experiment onwards used 
contrast levels between 0.6% and 1.8% (bottom row). (d) Depiction of a trial, starting with 
flickering stimulus presentation and ending with the task question. 
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2.3.5 Analysis 

Analysis for all experiments was be performed in both MATLAB (R2016a) and IBM 

SPSS Statistics (v27). We calculated participant detection rate and performance 

accuracy in the identification task on an individual basis and then averaged for a 

group-level analysis. We then tested the effects of consistency and contrast (and 

their interaction) on detection rate and identification accuracy using a repeated 

measures ANOVA for each experiment and conducted post-hoc tests using 

Bonferroni-correction. The dependent variable was performance accuracy (or 

detection frequency) and the independent variables were contrast (with 7 or 8 

levels depending on which experiment) and consistency condition (ranging from 

3-5 levels depending on experiment). We also analysed the data using a Signal 

Detection framework to give a measure of sensitivity and response bias with 

criterion and d’ serving as the dependent variables and independent variables 

again being contrast level and consistency condition. 

To analyse the data using Signal Detection Theory (SDT), we split the responses 

into hits, misses, false alarms and correct rejections (H, M, FA, CR) in two 

different ways. In the first instance, used the content of the target region along 

with the subject responses to determine H, M, FA and CR rates (Table 2.1). 

Secondly, we split the data according to the consistency between the surround 

and target regions, along with subject responses. Table 2.2 summarises how H, 

M, FA and CR rates were determined in this way.  

We used the SDT analysis to give a measure of sensitivity (D prime (or d’)) and 

criterion (response bias). Sensitivity refers to the ability for a subject to 

determine signal A over signal B and criterion provides a measure of how likely 

they are to respond a certain way. We considered these measures both overall 

and within each consistency condition. 

SDT measures are calculated using a hit ratio and false alarm ratio. In the first 

analysis type (using only the content of the target region to determine H, M, FA 

and CR), hit rate was calculated as the number of hits/the number of trials in 

which the target contained a natural scene (or a beach, depending on which 

experiment), FA rate was calculated as the number of FA/the number of trials in 

which the target was manmade (or a mountain). In the second SDT analysis, 
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where H, M, FA and CR was determined using the consistency between the 

surround and target regions, hit rate will be determined as the number of 

hits/the number of trials in which the surround and target were consistent. FA 

rate was calculated as the number of FA/the number of trials in which surround, 

and target were inconsistent.  

 

Experiments using natural and manmade stimuli 
 

 Target Stimulus 

 
Response 

 Natural Manmade 

Natural Hit False Alarm 

Manmade Miss Correct Rejection 

 

Experiments using beach and mountain stimuli 

 Target Stimulus 

 
Response 

 Beach Mountain 

Beach Hit False Alarm 

Mountain Miss Correct Rejection 
Table 2.1 Calculation of H, M, FA and CR using the content of the target region. Here, these 
categories are determined using the content of the target region only and how this relates to 
the subject response. For example, a natural target stimulus and natural response results in 
a hit whereas a natural target stimulus and manmade response is categorised as a miss. 
Categorisation is shown for both stimulus types (natural/manmade (top) and 
beach/mountain (bottom)).  
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Experiments using natural and manmade stimuli 

Surround Target Response Category 

Natural Natural Natural Hit 

Manmade Manmade Manmade 

Natural Natural Manmade Miss 

Manmade Manmade Natural 

Natural Manmade Natural False Alarm 

Manmade Natural Manmade 

Natural Manmade Manmade Correct Rejection 

Manmade Natural Natural 

 

Experiments using beach and mountain stimuli 

Surround Target Response Category 

Beach Beach Beach Hit 

Mountain Mountain Mountain 

Beach Beach Mountain Miss 

Mountain Mountain Beach 

Beach Mountain Beach False Alarm 

Mountain Beach Mountain 

Beach Mountain Mountain Correct Rejection 

Mountain Beach Beach 
Table 2.2 Calculation of H, M, Fa and CR when the consistency between the surround and 
target regions is considered.  Here, subject responses are categorised based on their ability 
to determine whether the surround and target region are consistent. Consistency between 
the surround and target regions either results in hits or misses, depending on the subject 
response, whereas inconsistency between the two regions results in either a false alarm or 
correct rejection.  

 

2.3.6 Rationale for and details of each experiment  

This project consists of a series of psychophysical experiments. Together they 

aim to aid our understanding of how top-down and bottom-up inputs interact to 

process degraded visual information. Separately, the experiments explore 

different aspects pertaining to this central question. The rationale for each 

experiment is outlined below, each aims to either fully or partly address a 

specific research question.  

2.3.6.1 Does consistent context influence the detection and/or recognition of 
low-contrast information? 

This section is comprised of results from two experiments (the Consistency 

Effect Experiment and Simplified Experiment). In the Consistency Effect 

Experiment (N=22, Mean Age=21.86, SD=2.27, 20 female), we aimed to test how 

different levels of consistency within the context influences the processing of 

degraded feedforward visual input.  
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The consistency between the context and low-contrast information was 

manipulated to several degrees, meaning the identity of the low-contrast scene 

could be determined by either simple image features such as line continuation or 

higher-level abstract visual features represented within the scene category. This 

experiment employed all of the twenty-four scene images from two basic-level 

categories: natural and manmade scenes. Each of these basic categories 

contained three subordinate-level categories, each with four image exemplars. 

The natural scene category contained (the subordinate categories depicting) 

images of beaches, mountains and forests and the manmade scenes were 

buildings, highways and industry. The stimulus images were comprised of two of 

these images combined depending on the consistency condition it belonged to. 

Experiment 1 consisted of five experimental conditions: Consistent Image 

(containing the same image in the surround and target regions), Consistent 

Subordinate (both regions contained images from the same subordinate 

category, e.g. beach and another beach), Consistent Basic (both regions 

contained images from the same basic level category but different subordinate 

categories, e.g. beach and mountain), Inconsistent (both regions were 

inconsistent at the basic-category level, e.g. beach and building) and Target 

Only (in which no information was depicted in the surround). Including such a 

range of consistency levels aimed to help distinguish which level of 

categorisation predictions operate at when processing degraded scene 

information; whether it can only exert an influence when low-level features are 

consistent or if more abstract consistencies are sufficient to drive an effect.  

The target region in each of these consistency conditions was shown at 8 

different contrast levels: 0% (no image shown in the target region), 0.1%, 0.2%, 

0.4%, 0.8%, 1.6%, 3.2% and 6.4%. These contrast levels were chosen to 

encompass the perceptual threshold which is considered to be around 1% (Pelli & 

Bex, 2013). Per run, there were six repetitions of each condition at each 

contrast level, counterbalanced to ensure equal representation across 

subordinate categories.  

The Consistency Effect Experiment followed a within-subjects design in which 

subjects took part in both a detection and recognition task in every trial. After 

each stimulus image, subjects were firstly presented with the recognition task 
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where they were asked to report whether the target region contained a natural 

or manmade scene. This was then followed by a detection task in which we 

asked subjects whether they thought there was a scene present in the target 

region. This task order was deemed more intuitive than firstly asking whether or 

not a scene was present and then asking subjects to identify the scene, 

regardless of their response to the previous question. By employing a within-

subjects design in this experiment, we were able to gauge both detection and 

recognition ability for the same stimuli, within the same subjects. We were also 

able to look separately at recognition-task performance in trials that were 

detected or undetected.  

In the Simplified Experiment, we streamlined the design to allow for a more 

focused investigation and to test the effects of context on detection and 

recognition separately. In this experiment, the context and low-contrast portions 

of the visual scene were either consistent or inconsistent in the most explicit 

sense to test the rudimentary effect of contextual congruency on the processing 

of degraded information. Therefore, we used only two natural scene images 

(i.e., from the same basic-level category) to generate the stimuli: one of a 

beach and one of a mountain. This results in only three consistency conditions: 

Consistent (termed Consistent Image in the previous experiment but herein 

simply referred to as ‘Consistent’), Inconsistent and Target Only. The stimulus 

images were presented at the same eight contrast levels as Experiment 1, 

ranging from 0%-6.4%. Between-subject effects of detection (N=7, Mean 

Age=22.86, SD=3.58, all female) and recognition (N=7, Mean Age=28.43, SD=6.48, 

3 female) were tested separately (contrasting the within-subjects design of the 

previous experiment) as we reasoned this would eliminate any task-related 

confusion which may arise from performing both tasks together (for example, 

being asked to identify a stimulus which has been explicitly confirmed as not 

been detected), thus minimising any potential confounding effects this may 

have. As there is no basic category-level distinction between the two stimulus 

images, the recognition task question in this experiment asked subjects if the 

target image contained a beach, with a yes/no response option.  
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2.3.6.2 Does a consistency effect persist around threshold contrast level? 

The aim of the next experiment (the Threshold Contrast Experiment) was to 

focus on the perceptual threshold to see whether a consistency effect exists 

when feedforward information is degraded as such that it is only just 

perceptually visible. It followed the simplified design of two natural scene 

images (beach and mountain) and three consistency conditions (Consistent, 

Inconsistent and Target Only). Instead of contrast levels ranging from 0%-6.4% as 

in the first two experiments, the target region stimuli in The Threshold Contrast 

Experiment were shown at the following seven contrast levels: 0.6%, 0.8%, 1.0%, 

1.2%, 1.4%, 1.6% and 1.8%. These levels were established a-priori based on the 

detection task results from the previous experiments and were identified as 

encapsulating the perceptual threshold across participants. Again, we tested 

both detection (N=10, Mean Age=24.20, SD=3.33, 9 female) and recognition 

(N=10, Mean Age=27.20, SD=7.55, 6 female) separately in a between-subjects 

design, using the same tasks as the previous experiment. If top-down predictions 

enhance or amplify consistent information, then we would expect a beneficiary 

effect even around threshold level.  

2.3.6.3 Does a consistency effect extend beyond simple image features? 

The next experiment termed Beyond Simple Image Features Experiment (N=28, 

Mean Age=22.14, SD=3.64, 20 female) aimed to look at whether a consistency 

effect can extend beyond the simple image feature of line continuation. In other 

words, do we see a facilitatory effect of consistency even when the context and 

target scenes are not part of the same image? If so, such an effect cannot be 

attributed to line continuation from the high contrast surround into the low 

contrast target region.  

To test this, we used consistency conditions replicating those from the first 

(Consistency Effect) experiment whereby surround and target matched either on 

the Subordinate- or Basic- category level but did not include a Consistent Image 

condition. The contextual information was instead consistent in terms of higher-

level (task relevant) information. Stimuli in the Inconsistent condition did not 

match at the basic category level and again, we also included a Target Only 

condition. Contrast levels ranged from 0.6%-1.8% (i.e., around perceptual 
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threshold) and subjects were asked to indicate whether the target image was 

natural or manmade (in a recognition task). This experiment did not include a 

detection task. A consistency effect in this experiment would imply that 

predictable information influences the processing of degraded visual information 

beyond the effects of simple image features.  

To further address this question, a separate experiment (N=29) was run via the 

online platform Pavlovia (www.pavlovia.org), with subjects recruited using 

Prolific (www.prolific.co). This experiment investigated whether a consistency 

effect extends beyond simple image features when the possibility of a response 

bias is controlled for a-priori, thus we term this experiment the Response Bias 

Experiment. It is important to note that I was not directly involved in the 

running of this particular experiment as it was undertaken as part of an MSc 

project. However, it adds value to the experimental series by addressing the key 

point of a potential response bias and therefore is included in this chapter with 

permission from those directly involved.  

In the Response Bias Experiment, the opportunity for subjects to respond 

according only to the information in the context was eliminated, and instead 

they were provided with a task in which the content of both the context and the 

low-contrast scene information needed to be taken into account. This allowed us 

to determine whether our results so far reflect a perceptual process attributed 

to top-down influence (enhanced processing of consistent information) or a bias 

to overcome the task difficulty (a tendency to base responses on information 

that is more readily available).  

This experiment shares the same underlying principle (of partial occlusion) as 

the previous experiments but does differ in a few critical aspects to allow 

response bias to be sufficiently addressed. Here, stimulus images are comprised 

of three rather than two sections. The top half of the image was shown at full 

contrast and was termed the context (akin to the surround in the previous 

experiments). The image in the context was either a beach, a mountain, a forest 

or left as a blank grey image. The bottom two quadrants contained two different 

scenes, each of which was shown at low contrast (6 levels: 0.3%, 0.6%, 1.2%, 

2.4%, 4.8%, 9.6%). The images in these quadrants were always a beach and a 

http://www.pavlovia.org/
http://www.prolific.co/
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mountain but the order of which was randomised, i.e., sometimes the beach was 

on the left and sometimes the right.  

Whilst maintaining central fixation, subjects were asked to identify which image 

(left or right) depicts a specific type of scene (e.g., ‘which image was a beach?’) 

and indicate their result using the left and right arrow keys. Depending on the 

type of image outlined in the task (some subjects were asked to identify the 

beach scene and others the mountain scene, however, the requested scene was 

maintained for each subject throughout the whole experiment). The type of 

scene referred to in the task question is termed the target and the other scene 

the non-target. There were six stimulus images used (2 of each beaches, forests 

and mountains) and also six experimental conditions, which arise from the 

consistency between the context and target versus non-target regions. 1 – same 

target: context is consistent with the target image and is also the same image 

exemplar; 2 – different target: context is consistent with the target in terms of 

category but contains a different image exemplar; 3 – same non-target: context 

is the same image as the non-target region; 4 – different non-target: context is 

the same category as the non-target region but is a different image exemplar; 5 

– inconsistent: context contains a forest and therefore does not match either the 

target or non-target region; 6 – no context: context region contains a blank grey 

image and therefore does not contain any contextual cues. Figure 2.4 

summarises the experimental conditions used as well as the trial sequence 

presented to participants.  
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Figure 2.4 Response Experiment task details. The top portion of the figure outlines the 
experimental conditions if the task question asked subjects to indicate which region 
contained a beach (therefore making beach the target image). Same target – the context 
contains the same image as the target; Same non-target – the context contains the same 
image as the non-target region; Different target – the context contains an image from the 
same category as the target but uses a different image exemplar; Different non-target – the 
context contains an image from the same category as the non-target region but uses a 
different image exemplar; Fully inconsistent – the context contains a forest scene which 
does not match either the target or non-target regions; No context – the context contains a 
uniform grey image, providing no contextual information.  

The bottom portion of the image depicts the trial sequence in which the stimulus is 
presented followed by a short delay before subjects are able to indicate their response via 
button key press.  

Note that the stimulus images here are shown at higher contrast and the fixation cross is 
larger than in the experiment, for illustration purposes. Figures obtained with permission 
from the MSc student who ran the experiment.  

 

Data were analysed using R (RStudio Team, 2019). A general linear mixed model 

(GLMM) was determined for each condition which fitted a logistic psychometric 

function to subjects’ accuracy (ability to determine the target stimulus correctly 

within each condition) as a function of contrast level. Performance was 

compared between conditions using a t-test at the 25%, 50% and 75% points on 

each curve. This allowed us to assess how well subjects could determine the 
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low-contras scene information when the surrounding context differed in terms of 

its consistency.  

2.3.6.4 What happens if the spatial frequencies are limited? 

In the next experiment, we aimed to explore the influence of different aspects 

of the top-down and bottom-up signals in order to investigate the type of 

information which may drive a consistency effect. To do this, we manipulated 

the spatial frequency information in both the surround and target regions, 

altering their low-level properties. This experiment is therefore referred to as 

the Spatial Frequency Experiment.  

We ran two separate experiments limiting the spatial frequencies in either the 

surround or target region (namely the Spatial Frequency Target Experiment and 

Spatial Frequency Surround Experiment, in turn). In the first (Spatial Frequency 

Target Experiment, (N=10, Mean Age=30.3, SD=10.10. 8 female)), we altered the 

spatial frequency information in the target region and not in the surround. The 

target region was therefore shown at low contrast and with limited spatial 

frequencies (low versus high), further degrading the target information. The 

spatial frequencies in the surround were maintained, thus the contextual 

information remained intact. We followed our standard paradigm of three main 

conditions (Consistent (same image), Inconsistent and Target Only) and seven 

contrast levels (0.6%-1.8%), however, we introduced the additional variable of 

spatial frequency so that each consistency condition was shown at both a low 

(only, LSF) and high (only, HSF) spatial frequency (with an equal number of trials 

in each condition). Spatial frequency of the stimulus images was altered using 

the MATLAB function Butterfilter which applies a low- or high-pass filter to 

generate low and high spatial frequency stimulus images. Figure 2.5 gives 

example low and high spatial frequency stimulus images. Subjects performed a 

recognition task only, in which they were asked whether the target region 

contained a beach. 

In the second experiment (Spatial Frequency Surround Experiment, (N=10, Mean 

Age=25.3, SD=5.48, 5 female)) we manipulated the spatial frequency information 

in the surround only. Thus, testing how limited spatial frequencies available in 

the context influences the processing of degraded feedforward information. In a 
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sense, this version of the experiment tests how degraded contextual information 

influences the processing of degraded feedforward information. The target 

region was again shown at low contrast, but its spatial frequency was not 

altered.  

We expect to find differences in recognition abilities when contextual (surround) 

information is limited to either high or low frequency domains. High spatial 

frequency context will provide information about edges and will therefore still 

enable processes exploiting these image features (such as line continuation) to 

be used. Low spatial frequency information on the other hand provides a more 

coherent representation of the scene as many visual features can still be 

distinguished when high spatial frequency information is removed but may 

prompt a more abstract utilisation of the top-down predictions. This may or may 

not differentially influence subjects’ ability to determine the low-contrast 

target. Conversely, limiting spatial frequencies in the target region further 

degrades the available signal, therefore we may not find any substantial 

differences between spatial frequency types in the target region if the task 

becomes too difficult as a result. If the task is still manageable with this 

limitation imposed, then we may find that subjects are better at identifying the 

low-contrast scene when it is shown at low (versus high) spatial frequencies due 

to previous findings within the literature showing that the gist of a scene can be 

gleaned from low spatial frequency information.  

 

Figure 2.5 Illustration of low and high spatial frequency information. Stimulus image 
depicting the same beach scene, with the spatial frequency information limited to low 
spatial frequencies on the left and high spatial frequencies on the right. Low spatial 
frequencies capture the gist of the scene whereas high spatial frequencies convey fine-
scale information about boundaries and edges. 

 



2 68 
 

2.3.7 Summary 

Through this series of experiments, we explored different characteristics and 

aspects of predictive processing within the visual system to investigate how this 

processing system operates within the realm of vision. More specifically, we 

addressed our fundamental experimental aim of investigating how top-down and 

bottom-up inputs interact to influence the processing of degraded visual 

information.  
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Experiment Name 
 

N Task Rationale 

Consistency Effect 
Experiment 

22 
(within) 

Detection 
Recognition 

To test for a consistency effect 
across 5 levels of categorical 
consistency, using 8 contrast 
levels ranging from 0%-6.4%. 

Simplified 
Experiment 

7 
7 

Detection 
Recognition 

Simplifying the design to 
include only 3 consistency 

levels and the same 8 contrast 
levels. Detection and 

recognition tested separately. 

Threshold Contrast 
Experiment 

10 
10 

Detection 
Recognition 

Testing for a consistency effect 
around the threshold (0.6%-
1.8% contrast). 3 levels of 

consistency. 

Beyond Simple Image 
Features Experiment 

28 
 

Recognition Testing whether an effect 
extends beyond the simple 

image feature of line 
continuation. 4 levels of 
consistency (excluding 

consistent image). Contrast 
0.6%-1.8%. 

Response Bias 
Experiment 

29 Recognition Testing whether a consistency 
effect exists beyond line 

continuation when a response 
bias is accounted for. Used 3 

images to constitute the 
stimulus image. Contrast levels 

0.3%-9.6%. 

Spatial Frequency 
Target Experiment 

10 
 

Recognition Testing whether limiting 
spatial frequencies in the 
target region influences 

recognition. Contrast levels 
0.6%-1.8%. 

Spatial Frequency 
Surround 

Experiment 

10 Recognition Testing whether limiting 
spatial frequencies in the 

surround influences 
recognition. Contrast levels 

0.6%-1.8%. 
Table 2.3 Breakdown of individual experiments. Outline of key experiment details; number 
of subjects, type of task involved and a summary of the main rationale of each.  
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2.4 Results 

2.4.1 Consistent context enhances recognition (but not detection) 
of low-contrast information 

We aimed to test whether consistent contextual information influences the 

perception of low-contrast feedforward input. We found that reliable 

information in the surround enhances the recognition of low contrast 

information but does not improve the ability to detect it. We ran a repeated 

measures ANOVA with detection frequency being the dependent variable and the 

independent variables being contrast level (7 or 8 levels, depending on the 

experiment) and consistency condition (5 or 3 levels depending on the 

experiment). Details of our findings from two experiments demonstrating this 

are outlined below.  

2.4.1.1 Detection Frequency 

We ran a repeated measures ANOVA to examine the effects of consistency 

(between the surround and target regions) and contrast level on subjects’ ability 

to detect low-contrast information in the target region. Results reported using 

Greenhouse-Geisser correction, showed no significant differences in subjects’ 

detection frequency between conditions in either the Consistency Effect 

Experiment (F(1.414, 29.686)=1.553, p=.228) or The Simplified Experiment 

(F(1.120, 6.720)=.684, p=.453). Detection rates are similar across all conditions 

in each experiment, as shown in Figure 2.6 (top row), suggesting that 

consistency of contextual information does not influence the ability to detect 

low-contrast information.  

We find a highly significant effect of contrast in both the Consistency Effect 

Experiment (F(1.600, 33.610)=217.422, p<.001), with a large effect size of 

ƞp
2=.912 and The Simplified Experiment (F(1.533, 9.199)=154.301, p<.001), also 

with a large effect size of ƞp
2=.963. As expected, subjects’ ability to detect low-

contrast information in the target region increases with contrast level. Post-hoc 

tests using Bonferroni correction confirm this effect (ps<.005) and reveal 

significant differences between lower and higher contrast levels. Visual 

inspection of these plots confirms the findings that detection improves with 

increased contrast level but is not influenced by the consistency between the 
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high-contrast surround and low-contrast target information. We find a significant 

interaction for consistency x contrast in the Consistency Effect Experiment 

(F(8.821, 185.247)=2.795, p=.005), in which differences in detection rates 

between consistency conditions decrease as contrast levels increase. However, 

these differences at the lower contrast levels are non-significant and this 

significant interaction does not persist in The Simplified Experiment.  

2.4.1.2 Recognition Accuracy 

Subjects also completed a recognition task in which they were asked to identify 

the type of scene depicted in the low-contrast target region. The same subjects 

completed both the detection and recognition tasks in the Consistency Effect 

Experiment in a within-subjects design, whereas The Simplified Experiment 

followed a between-subjects design with different subjects taking part in each 

task. Using recognition accuracy as the dependent variable in the repeated-

measures ANOVA, in the Consistency Effect Experiment we find a significant 

main effect of consistency (F(1.285, 26.988)=106.582, p<.001), reported using 

Greenhouse-Geisser corrections with a large effect size of ƞp
2=.835. Post-hoc 

tests using Bonferroni correction reveal significant differences between all 

consistency conditions (ps<.005) except the Consistent Subordinate (e.g., beach 

and another beach) and Consistent Basic (consistent within the basic-level 

category of either natural or manmade, e.g., beach and mountain) conditions 

(p>.05), who have Mean accuracies of 85.933% (SE=1.936%) and 86.024% 

(SE=1.760%), respectively. The Consistent Image condition (in which the 

surround and target images are from the same image exemplar) provides the 

highest recognition accuracy (Mean=89.561%, SE=1.694%) and the Inconsistent 

condition results in the lowest performance accuracy (Mean=41.496%, 

SE=2.812%). When there is no information in the surround region, subjects 

perform with a Mean accuracy of 67.931% (SE=1.169%). Thus, subjects’ ability to 

identify low-contrast information appears to be enhanced when high-contrast 

information in the surround is consistent. Performance is significantly lower 

when there is no information provided in the surround (Target Only condition) 

and is further decreased when information in the surround is inconsistent. This 

suggests the ability to identify low-contrast information is somewhat hindered by 

contextual information which is not congruent.  
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This consistency-effect, however, is not replicated in The Simplified Experiment. 

In this experiment, we find no significant difference between consistency 

conditions on the ability to recognise the scene in the low-contrast target 

region. The same pattern of results as the Consistency Effect Experiment are 

observed, with highest performance accuracy being found in the Consistent 

condition (Mean=67.694%, SE=4.540%), followed by the Target Only condition 

(Mean=63.974%, SE=4.153%), and lowest performance in the Inconsistent 

condition (Mean=62.619%, SE=2.418%). However, these differences are slight 

compared to those found in the Consistency Effect Experiment and fail to reach 

significance (F(2,12)=1.189, p=.338).  

Again, we find a significant effect of contrast in both the Consistency Effect 

Experiment (F(3.735, 78.435)=210.579, p<.001)) and the Simplified Experiment 

F(1.436, 8.617)=13.914, p=.003), reported using Greenhouse-Geisser corrections 

and each with a large effect size (ƞp
2 =.909 and ƞp

2 =.699, respectively). These 

reflect differences between lower and higher contrast levels, with higher 

performance accuracy when contrast levels are higher (post-hoc pairwise 

comparisons reveal the distinction between lower and higher contrast levels to 

be highly significant in The Consistency Effect Experiment (ps<.001) and slightly 

less pronounced in The Simplified Experiment (ps<.05), implying that subjects 

found the task easier when the stimulus was more easily perceived.  

Figure 2.6 (bottom row) reveals performance accuracy in both experiments for 

each consistency condition, at every contrast level. We see the clear consistency 

effect in the Consistency Effect Experiment, in which consistency between the 

surround and target regions improves performance compared to having no 

information in the surround. This consistency-effect appears to be bi-directional 

as inconsistency between the surround and target appears to hinder 

performance. This pattern can also be observed in The Simplified Experiment 

but does not reach significance. As can be seen by visual inspection of The 

Simplified Experiment, performance increases with contrast level until the 

highest contrast level (6.4%) whereby performance decreases slightly in all 

conditions. However, this is non-significant, (performance between contrast 

levels 3.2% and 6.4% do not differ significantly (p>.05)).  
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We also observe a significant interaction between consistency and contrast in 

the Consistency Effect Experiment (F(6.902, 144.946)=32.540, p<.001), which 

reflects a decrease in the consistency effect as contrast levels increase. That is, 

as the low-contrast information becomes more visible, subjects appear to be less 

influenced by the consistency of the high-contrast context. We do not see a 

significant interaction in The Simplified Experiment.  

 

Figure 2.6 Detection frequency and recognition accuracy for the Consistency Effect 
Experiment (N=22) and the Simplified version (N=14). Results of The Consistency Effect 
Experiment (left) and the Simplified Experiment (right) for both the detection task (top row) 
and recognition task (bottom row). The Detection task results depict the frequency at which 
subjects detected a scene in the target region at each contrast level and in each 
consistency condition. Results of the recognition task depict subject accuracy in being able 
to determine the content of the target region, at each contrast level and within each 
consistency condition. Error bars represent Standard Error. 

 

The significant consistency effect we observe in The Consistency Effect 

Experiment suggests that when top-down predictions (formed on the basis of the 

contextual information in the surround) are informative, the content of the low-

contrast target region is more easily recognised. In contrast, when these 
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predictions are uninformative, in the case where the surround and target region 

are inconsistent, subjects’ ability to recognise the low-contrast scene is 

reduced. Taken together, these results imply that contextual information 

strongly influences the behavioural response to degraded feedforward 

information. However, by simply looking at accuracy as an indication of 

performance we cannot determine whether there is a response bias.  

2.4.1.3 Response Bias and Sensitivity 

The aim of the recognition task is for subjects to determine the type of scene 

(natural/manmade; beach/mountain) in the target region. If contextual 

information in the surround influenced the perception of the low-contrast 

information in the target region then we would expect to see improved 

recognition performance when the context is consistent relative to inconsistent, 

which is indeed what we find. However, we could also find this pattern of results 

if subjects were responding only according to the information in the surround. 

That is, we would expect a similar pattern of performance accuracy if 

participants were not actually better at identifying the content of the target 

region but were instead biased towards responding that the information in the 

target area is consistent with information in the surround. A response bias in this 

case would also result in increased accuracy when the surround and target are 

consistent and decreased accuracy when they are Inconsistent, as well as 

chance-level accuracy when there is no information in the surround.  

To account for response bias, we will now consider performance in the 

recognition task in terms of Signal Detection Theory. Signal Detection Theory 

provides a measure of response bias (known as criterion) indicating how inclined 

subjects are to respond in a certain manner, as well as a measure of sensitivity 

(akin to performance accuracy but not influenced by response bias) in the form 

of d prime (denoted as d’). We ran two types of signal detection analysis, 

resulting from splitting the data in two different ways. Further details of Signal 

Detection Theory and its application within this experiment series can be found 

in section 2.3.5.  

When taking only the content of the target region into account, a negative 

response bias means that subjects are more likely to respond that the target is 
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natural (in The Consistency Effect Experiment) or a beach (in the Simplified 

Experiment). Using a repeated-measures ANOVA with criterion and sensitivity as 

the dependent variables in turn here, we find a significant main effect of 

consistency on bias in the Consistency Effect Experiment (F(4,84)=4.160, 

p<.005), with a large effect size of ƞp
2 =.165, in which subjects are more likely 

to respond with ‘natural’ when the surround and target are consistent (post-hoc 

pairwise comparisons reveal significant differences between the Consistent 

Subordinate and Inconsistent (p<.005) and also Consistent Subordinate and 

Inconsistent (p<.05). Importantly, this does not mean that subjects are more 

likely to respond that the target is natural if the surround is natural as the 

consistent condition includes trials in which both the surround and target are 

manmade. We do not find this significant effect of surround type in the 

Simplified Experiment (F(1.151, 6.908)=.270, p=.652), reported here using 

Greenhouse-Geisser corrections. We find a significant effect of contrast in the 

Simplified Experiment (F(6,36)=63.845, p<.001) with a large effect size of ƞp
2 

=.914, with subjects being more likely to respond with beach as the contrast 

increases (post-hoc pairwise comparisons again reveal significant differences 

between the lower and higher contrast levels (ps<.05). This contrast effect is not 

observed in the Consistency Effect Experiment (F(3.135, 65.843)=.875, p=.515). 

We find a significant interaction between consistency x contrast in both the 

Consistency Effect Experiment (F(24,504)=1.894, p=.007), (effect size ƞp
2 =.083), 

and the Simplified Experiment (F(12,72)=2.759, p=.004) with a large effect size 

ƞp
2 =.315). It is perhaps worth mentioning that while the span of bias is quite 

small in the Consistency Effect Experiment, in the Simplified Experiment, 

subjects are biased towards saying that the target is a mountain when the 

contrast is low and a beach when the contrast increases. This could suggest a 

qualitative difference in the categories or stimulus images used within The 

Simplified Experiment and between both experiments.  

Despite the potential for bias, we find a significant main effect of consistency in 

the Consistency Effect Experiment using the non-biased sensitivity (d’) as a 

measure of performance (F(1.1477, 31.022)=55.374, p<.001, reported using 

Greenhouse-Geisser corrections), (effect size ƞp
2 =.725), but not in the 

Simplified Experiment (F(2, 12)=1.678, p=.228). In The Consistency Effect 

Experiment we find an increased sensitivity when the surround and target region 
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are consistent, relative to both no or inconsistent information in the surround 

(post-hoc pairwise comparisons reveal these effects to be highly significant 

(ps<.001). There is a significant effect of contrast in both experiments, the 

Consistency Effect Experiment: F(6,126)=151.717, p<.001; the Simplified 

Experiment: F(6,36)=12.507, p<.001, each with large effect sizes (ƞp
2 =.878 and 

ƞp
2 =.676, respectively). Post-hoc pairwise comparisons using Bonferroni 

corrections again reveal mainly significant differences between the low and high 

contrast levels in the Consistency Effect Experiment (p<.001) but the pairwise 

comparisons in the Simplified Experiment do not reach significance despite an 

overall main effect of contrast. We also find a significant interaction between 

consistency and contrast in the Consistency Effect Experiment only (F(9.865, 

207.155)=6.212, p<.001), (effect size ƞp
2 =.228), whereby the overall effect of a 

consistent surround decreases as contrast increases. Figure 2.7 summarises the 

SDT measures for the two experiments.  

When applying Signal Detection Theory using consistency between the target and 

surround to calculate bias and sensitivity (Figure 2.8), a negative response bias 

indicates that subjects are more likely to say that the target region is consistent 

with the surround. Here, we consider all trials grouped together, rather than 

between consistency conditions, in order to investigate these measures overall. 

We find a significant effect of contrast on response bias in the Consistency 

Effect Experiment (F(2.607, 54.757)=8.378, p<.001), effect size ƞp
2 =.285, with 

subjects less likely to respond that the surround and target are consistent as 

contrast levels increase. At the lower contrast levels, subjects are more likely to 

respond that the surround and target region are consistent, a tendency which 

reduces as contrast increases (however these differences are only reflected in a 

few of the Bonferroni-corrected post-hoc comparisons, ps<.05). This suggests 

that when the target region is the most difficult to see, subjects may be more 

reliant upon the information in the surround. This finding is not replicated in the 

Simplified Experiment, (F(2.207, 13.243)=.629, p=.563), meaning criterion values 

remained stable across contrast levels. Subjects do not exhibit much of a 

response bias at any contrast level.  

Looking at sensitivity, we find a significant effect of contrast in the Consistency 

Effect Experiment (F(2.758, 57.923)=117.399, p<.001), with a large effect size 
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ƞp

2 =.848. Post-hoc pairwise comparisons reveal highly significant differences 

between the highest three contrast levels and all other contrasts (ps<.001). 

When contrast levels are low, sensitivity is around chance level, however, this 

increases with increased contrast. As sensitivity is a measure that is independent 

of bias, we can therefore assume that task performance does improve with 

increased contrast, and that this improvement is not due to a response bias 

towards consistency between the surround and target regions. We also find a 

significant main effect of contrast on sensitivity in the Simplified Experiment 

(F(1.333, 8.000)=6.887, p=.025) (reported here with Greenhouse-Geisser 

corrections), effect size is large ƞp
2 =.534. Again, sensitivity increases with 

contrast, however post-hoc comparisons using Bonferroni corrections do not 

reflect this significant main effect (ps>.05).  

 

Figure 2.7 SDT results for Experiments 1 and 2. Response bias (top) and sensitivity (bottom) 
for each consistency condition, at each contrast level in the Consistency Effect Experiment 
(left) and the Simplified Experiment (right). Hits, misses, false alarms and correct rejections 
were determined using the content of the target region and subject response only. Error 
bars represent Standard Error. 
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Figure 2.8 SDT results for Experiments 1 and 2 when consistency between surround and 
target is considered.  Response bias (top) and sensitivity (bottom) results for Experiments 1 
(left) and 2 (right) across all trials, for each contrast level. Hits, misses, false alarms and 
correct rejections here are determined using the consistency between the surround and 
target region in addition to subject response. Error bars represent Standard Error. 

 

In sum, we do not find evidence to suggest that the consistency between the 

surround and target regions influences the ability to detect a low contrast scene. 

We do, however, find that different information in the surround influences the 

ability to identify the low-contrast scene. Performance accuracy improves with 

consistent information presented in the surround and decreases when 

inconsistent information is presented. This effect also manifests in sensitivity 

measures which are independent of response bias. Performance generally 

increases with increased contrast. It appears that when the contrast levels are 

low, subjects are more inclined to presume that the surround and target regions 

are consistent, but that their tendency to do so decreases with increased 
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contrast, and therefore results in increased sensitivity when the target region is 

more visible.  

 

2.4.1.4 Detected versus Undetected Trials 

As the Consistency Effect Experiment was a within-subjects design, in which the 

same subjects were asked to perform both a detection and recognition task 

consecutively on each trial, we are able to investigate the effects of consistency 

and contrast on performance in the recognition task separately for detected and 

undetected trials. Detected trials refer to those in which the subject reported 

perceiving information in the low-contrast target region and undetected trials 

are those in which they reported not perceiving the low-contrast scene.  

Although it seems counter-intuitive for subjects to perform a recognition task on 

trials which they report not being able to see a scene present, subjects were 

asked to give their best guess in a two-alternative recognition task, even if they 

felt like there was no stimulus present. Subjects were also always presented 

with the recognition task first on each trial, followed by the detection task, in 

an attempt to minimise the counter-intuitive nature of trying to identify a 

stimulus that one cannot perceive. By performing the recognition task first, the 

detection task in a sense provides a confidence rating of their recognition task 

response.    

When focusing only on Detected Trials (56.66% of all trials), we find a significant 

effect of both consistency (F(2.392, 45.441)=66.111, p<.001) and contrast 

(F(3.711, 70.509)=104.091, p<.001) on performance accuracy, as well as a 

significant interaction between consistency and contrast (F(7.326, 

139.191)=9.188, p<.001), each with large effect sizes (ƞp
2 =.777, ƞp

2 =.846, ƞp
2 

=.326, respectively). In terms of the effect of consistency, there are significant 

differences between all conditions (ps<.05 using Bonferroni corrections) except 

Consistent Basic category and the other two Consistent conditions (the 

difference between Consistent Image and Consistent Subordinate is significant 

(p=.007)). We see the same response pattern as when all trials are included, in 

that consistent conditions improve performance, relative to having no 
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information in the surround, and performance decreases in the inconsistent 

condition.  

Performance improves as contrast increases. Post-hoc pairwise comparisons 

using Bonferroni Correction reveal significant differences between the lower and 

higher contrast levels (ps<.001). Figure 2.9 shows performance accuracy for each 

consistency condition, at each contrast. As contrast increases, the differences in 

performance accuracy observed between consistencies decreases, indicating 

that the more easily a stimulus is perceived, the less influence context 

consistency has on performance.    

Turning attention to the Undetected Trials only (i.e., trials in which subjects 

responded that they could not perceive a stimulus in the low-contrast target 

region), (41.71% of all trials) we again see the same pattern of results whereby 

there is a bi-directional consistency effect on performance accuracy. The 

consistency between the surround and target regions significantly influences 

performance on the recognition task (F(1.663)=105.650, p<.001) with a large 

effect size of ƞp
2 =.834, with consistent contextual information resulting in the 

highest performance accuracy and inconsistent context resulting in the lowest 

recognition accuracy. Bonferroni-corrected post-hoc pairwise comparisons reveal 

a significant difference between the Inconsistent and Target Only conditions and 

all other conditions (ps<.001). While performance does increase with contrast 

level, this effect does not reach significance (F(2.016, 38.313)=2.865, p=.069), 

revealing less of an effect of contrast when the target is not detected.  
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Figure 2.9 Recognition accuracy for detected and undetected trials. Results of the 
recognition task for The Consistency Effect Experiment for trials which subjects detected 
that there was a scene presented in the target region (left) and those in which they did not 
detect a scene (right). Recognition accuracy is plotted for each consistency condition, at 
each contrast level. Error bars represent Standard Error. 

 

Applying the principles of SDT to our analysis firstly on detected trials only 

reveals no significant evidence of a response bias when a general bias towards 

responding in either direction (natural or manmade) is considered. Biases 

between conditions are all clustered close to zero and there are no significant 

differences between any of the conditions (ps>.05). We also find no significant 

effect of contrast, nor a significant interaction between condition x contrast.  

In terms of sensitivity, we do see significant differences between conditions 

(F(1.386, 5.546)=10.559, p=.016), reported using Greenhouse-Geisser 

corrections, with a large effect size of ƞp
2 =.725. The three consistent conditions 

(Consistent Image: Mean=5.082, SE=.534; Consistent Subordinate: Mean=3.972, 

SE=.477; Consistent Basic: Mean=3.685, SE=.548) resulting in the highest 

sensitivity rates. Sensitivity is higher than chance in the Target Only condition 

(Mean=3.173, SE=.195), implying subjects are still able to determine the content 

of the target region when no contextual information is present but not as 

effectively as when consistent contextual information is shown in the surround. 

Sensitivity is weakest in the Inconsistent condition (Mean=.464, SE=.739) with 

sensitivity being lower than chance at the lowest contrast levels. Bonferroni-

corrected post-hoc comparisons reveal these differences to be non-significant. 

We find a significant main effect of contrast (F(2.592, 10.369)=19.853, p<.001) 
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(effect size ƞp

2 =.832), with sensitivity increasing with contrast level (post-hoc 

pairwise comparisons reveal significant effects between the highest contrast 

level and the lowest three contrast levels (ps<.05)). Although we find that 

sensitivity differences between the consistency conditions decrease with 

contrast, this interaction is insignificant (p>.05).  

When testing for a response bias toward being inclined to respond that the 

surround and target are consistent, we do find evidence to suggest that subjects 

are responding in this way even in the detected trials. Criterion values are below 

zero for all contrast levels (although we do find a significant effect of contrast, 

with bias decreasing with increasing contrast (F(3.555, 74.651)=7.070, p<.001)), 

ƞp
2 =.252, indicating a tendency to report that the surround and target are 

consistent, which differs significantly between the lowest and highest contrast 

levels according to post-hoc comparisons (ps<.05).  

When this bias is controlled for however, we find that sensitivity levels are 

around chance at the lower contrast levels, implying that here subjects may be 

responding according to the surround. However, when the contrast levels 

increase, we find significantly improved sensitivity (F(4.023, 84.482)=52.544, 

p<.001), ƞp
2 =.714, suggesting subjects are able to accurately determine the 

content of the target region at the higher contrast levels, independent of a 

response bias towards the surround. Post-hoc comparisons revel significant 

differences between the highest two contrast levels and all other levels 

(ps<.001). Figure 2.10 summarises the Signal Detection results for detected 

trials.    
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Figure 2.10 SDT results for detected trials only. Response bias and sensitivity measures for 
The Consistency Effect Experiment in detected trials only. The top row shows response 
bias (c) and sensitivity (d’) in each consistency condition, at each contrast level. Here, hits, 
misses, false alarms and correct rejections are calculated using the content of the target 
region and the subject response. The bottom row shows overall response bias (left) and 
sensitivity (right) when hits, misses, false alarms and correct rejections are determined 
using the consistency between the surround and target regions. Error bars represent 
Standard Error.  

 

When focusing only on Undetected Trials for our SDT-based analysis (Figure 

2.11), we are not able to include the last contrast level in the analysis as there 

is an insufficient number of undetected trials at the highest contrast level. 

Therefore, analysis is performed on the first 6 contrast levels. In terms of a 

general response bias, we find no significant differences between conditions and 

biases are close to chance-level. We then observe the same pattern of sensitivity 

results, with increased sensitivity in the consistent conditions and decreased 

sensitivity in the Inconsistent condition, however, this difference does not reach 

significance. In fact, we find no significant main effect of either condition or 
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contrast, nor a significant interaction between these factors for either response 

bias or sensitivity. This could reflect a lack of power due to low trial numbers 

available.  

When considering a response bias toward the surround, the results are more 

telling. Again, we excluded the highest contrast level here due to lack of 

undetected data. We observe a negative response bias across all contrast levels, 

meaning subjects were likely to respond that the target and surround were 

consistent for all contrasts in undetected trials. We find no main effect of 

contrast (p>.05), meaning this bias persists despite an increased availability of 

feedforward information, which is reflective of the subjects’ inability to detect 

the target region in these trials. In addition to evidence of a response bias, we 

find that subject sensitivity remains around chance level across all contrasts 

(with a non-significant main effect of contrast), meaning not only are subjects 

biased toward responding according to the surround, when this is controlled for, 

they are no longer able to distinguish the content of the target region.  

Taken together, these results reveal differences in underlying behavioural 

measures between trials which were detected, versus those which were not. 

Subjects are still able to determine the content of the target region despite a 

small bias towards the surround in detected trials, whereas this ability is lost 

when they can no longer perceive the target region. Figure 2.11 summarises the 

SDT results for Undetected Trials.  
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Figure 2.11 SDT results for undetected trials only. Response bias and sensitivity measures 
for The Consistency Effect Experiment in undetected trials only. The top row shows 
response bias (c) and sensitivity (d’) in each consistency condition, at each contrast level. 
Here, hits, misses, false alarms and correct rejections are calculated using the content of 
the target region and the subject response. The bottom row shows overall response bias 
(left) and sensitivity (right) when hits, misses, false alarms and correct rejections are 
determined using the consistency between the surround and target regions. Error bars 
represent Standard Error. 

 

2.4.2 The consistency effect persists around threshold contrast-
level 

2.4.2.1 Detection Frequency 

The Threshold Contrast Experiment tests the effects of consistency around the 

threshold contrast level. We find a significant main effect of consistency in the 

detection task (F(1.251, 11.262)=26.071, p<.001) with a large effect size ƞp
2 

=.743. In the previous two experiments, we do not find any influence of 

consistency on detection frequency; however, here we see a higher detection 
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rate in the consistency condition with no information in the surround (Target 

Only). Post-hoc pairwise comparisons using Bonferroni Correction reveal this 

difference is significant (p<.005), with the Target Only condition leading to 

significantly higher (Mean=71.713, SE=4.714) detection rates than Consistent 

trials (Mean=47.215, SE=4.009) and Inconsistent trials (Mean=49.787, SE=4.552), 

p<.005, both of which do not differ significantly from each other (p>.05). This 

detection enhancement effect for trials in which there is no information in the 

surround is not observed around the threshold in either of the previous 

experiments.  

There is also a significant effect of contrast level (F(1.871, 16.841)=123.516, 

p<.001), ƞp
2 =.932, supporting our previous findings that detection frequency 

increases with contrast. Post-hoc pairwise comparisons reveal these differences 

exist between all contrast levels (ps<.05) except the lowest three contrasts and 

the highest two (i.e., those which are physically most similar to each other). We 

again observe a significant interaction between consistency x contrast (F(2.482, 

22.334)=3.829, p=.030) ƞp
2 =.298. Figure 2.12 (left) indicates that as contrast 

increases, the effect of consistency decreases, and the detection frequency 

becomes more similar across consistency conditions when subjects can better 

perceive the low-contrast information.  

2.4.2.2 Recognition Accuracy 

Results of the recognition task in The Threshold Contrast Experiment Figure 2.12 

(right) reveal the same response pattern observed in the previous experiments, 

with Consistent surround information resulting in the highest performance 

accuracy (Mean=81.274%, SE=3.893%), followed by the Target Only condition 

(Mean=67.426%, SE=4.878%) and finally the Inconsistent condition (Mean53.764%, 

SE=9.750%). Post-hoc pairwise comparisons using Bonferroni Correction reveal 

that these differences are not significant and the main effect of consistency on 

performance accuracy doesn’t quite reach significance (F(1.179, 9.436)=4.752, 

p=.055). 

There is a significant main effect of contrast (F(1.774, 14.192)=11.606, p=.001), 

ƞp
2 =.592. Post-hoc analysis reveals a significant difference only between the 

lowest and highest contrast level (p<.05). The interaction between consistency 



2 87 
 
and contrast level is non-significant (F(4.138, 33.101)=0.66, p=.625), with 

differences between consistency conditions remaining stable across contrast 

levels.  

 

Figure 2.12 The Threshold Contrast Experiment detection and recognition results. Detection 
frequency (left) and recognition accuracy (right) in The Threshold Contrast Experiment. 
Results are depicted at for each consistency condition, at each contrast level. Error bars 
represent Standard Error. 

 

2.4.2.3 Response Bias and Sensitivity 

We will start with the application of Signal Detection Theory which takes only 

the target region content into account. Looking at response bias, we find no 

significant difference in criterion levels between the consistency conditions 

(F(1.167, 10.500)=0.251, p=.663). There is a significant effect of contrast 

(F(2.432, 21.886)=14.332, p<0.001), ƞp
2 =.614, with response bias decreasing as 

contrast increases (revealed through significant post-hoc pairwise comparisons 

between the lower and higher contrast levels). In the lower contrast levels, 

subjects are more likely to respond that the target region contains a mountain in 

all of the conditions. This bias reduces to around chance as contrast levels 

increase. The interaction between consistency and contrast is insignificant 

(F(5.073, 45.655)=1.182, p=.333), meaning response bias did not vary between 

conditions at any contrast level.  

Looking at sensitivity for each condition, we find a significant main effect of 

consistency in The Threshold Contrast Experiment (F(1.075, 9.671)=5.061, 

p.047), with an effect size of ƞp
2 =.360. Sensitivity is improved when surround 
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and target regions are consistent, relative to both no information in the surround 

and inconsistent information in the surround, however Bonferroni-corrected 

post-hoc comparisons reveal these differences to be non-significant. A 

significant effect of contrast was also found (F(2.284, 20.553)=5.098, p=.013), 

ƞp
2 =.362, with sensitivity increasing with contrast level (again however, the 

post-hoc comparisons are non-significant). The interaction between consistency 

and contrast is non-significant (F(5.023, 45.206)=0.844, p=.526) meaning these 

consistency differences persist across all contrast levels.  

 

Figure 2.13 SDT results for the Threshold Contrast Experiment. Response bias (left) and 
sensitivity (right) results for the Threshold Contrast Experiment. The top row depicts these 
measures for each consistency condition, at each contrast level when hits, misses, false 
alarms and correct rejections are calculated using the content of the target region and 
subject response. The bottom row shows the results when the consistency between the 
surround and target regions is taken into account to calculate hits, misses, false alarms and 
correct rejections. Error bars represent Standard Error. 
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When considering the consistency between the surround and target regions as 

the basis of the signal detection analysis, we find that subjects are slightly more 

inclined to respond that the target region and surround are consistent across all 

contrast levels, therefore finding no significant effect of contrast on response 

bias (F(6, 54)=1.052, p=.403). This bias is only small, with criterion values 

remaining above -1 at all times. In addition to finding little evidence of a 

response bias, subject sensitivity is above chance level and increases with 

contrast, driving a significant effect of contrast on sensitivity (F(2.832, 

24.487)=6.352, p=.003), ƞp
2 =.414 (post-hoc comparisons, however, reveal these 

differences are largely insignificant (p>.05) expect between 0.8% contrast and 

both 1.6% and 1.8% (ps<.05). Figure 2.13 summarises the SDT-based results for 

the Threshold Contrast Experiment.  

In sum, we again find little evidence of different contextual information having 

an influence on detection rates around the perceptual threshold. Instead, the 

absence of any information in the surround results in better detection of low-

contrast information in the target region. We find a similar response pattern in 

terms of accuracy in the recognition task, with increased performance when 

surround information is consistent and decreased performance accuracy when it 

is inconsistent. This effect almost reaches significance. We find no evidence of a 

response bias difference between conditions and little evidence of a response 

bias towards reporting surround and target consistency overall. In a similar 

manner to accuracy, we find consistent information in the surround increases 

subject sensitivity and inconsistent information decreases it. Removing the 

potential bias towards reporting that the surround and target are consistent, we 

still find subject sensitivity to be above chance and this increases with contrast 

level.  

2.4.3 The consistency effect extends beyond simple image 
features 

2.4.3.1 Recognition Accuracy 

The Beyond Simple Image Features Experiment consisted of only a recognition 

task and was performed on the threshold-contrast levels used in the previous. 

Results reveal a significant main effect of consistency (F(1.230, 33.298)=22.864, 
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p<.001), with a large effect size of ƞp

2 =.459, reported here with Greenhouse-

Geisser corrections. Reflective of our previous findings, we find consistency 

between surround and target increases recognition performance, with highest 

accuracies in the Consistent Subordinate (e.g., beach and another beach) 

condition (Mean=77.091%, SE=2.040%) and in the Consistent Basic (e.g., beach 

and mountain) condition (Mean=77.228%, SE=2.308%). The facilitatory effect 

does not differ significantly between these two consistent conditions (p>.05). 

The Inconsistent condition results in the lowest performance (Mean=57.354%, 

SE=6.636%), although here at around chance level rather than below chance as 

in previous experiments, and the Target Only accuracy falls between the 

Consistent and Inconsistent conditions (Mean=70.072%, SE=2.222%). Differences 

between all consistency levels are significant (ps<.05) except the two Consistent 

conditions, which both exert similar facilitatory effects on performance accuracy 

(p>.05).  

We also find a significant effect of contrast in this experiment, with increased 

performance with increasing contrast levels (F(2.282, 61.616)=40.831, p<.001), 

ƞp
2 =.602, with pairwise comparisons revealing a significant distinction between 

low versus high contrast levels (ps<.05). The interaction between consistency 

and contrast is non-significant (F(7.849, 211.929)=1.796, p=.081); meaning the 

consistency effect between consistency conditions remains stable across contrast 

levels. Performance accuracy is summarised below in Figure 2.14.  
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Figure 2.14 Recognition accuracy for The Beyond Simple Image Features Experiment. 
Subject performance is displayed as a function of contrast level for each consistency 
condition. Error bars represent Standard Error. 

 

2.4.3.2 Response Bias and Sensitivity 

Using the content of the target region to run the Signal Detection analysis Figure 

2.15 (top), the effect of consistency on response bias almost reaches 

significance (reported using Greenhouse-Geisser corrections) - (F(2.337, 

60.758)=2.989, p=.50), ƞp
2 =.103. However, the overall span of response bias is 

low and the majority of differences between conditions are non-significant 

(p>.05, reported using Bonferroni corrected pairwise comparisons). Subjects are 

slightly more inclined to report that the target contained a beach similarly 

across all conditions. This response bias decreases significantly with contrast 

increase (F(3.884, 100.988)=3.575, p=.010), ƞp
2 =.121 (although post-hoc 

comparisons reveal no significant differences between conditions (ps>.05), but 

does so uniformly across all consistency conditions, resulting in a non-significant 

interaction between consistency and contrast. When looking at sensitivity, we 

find a significant main effect of consistency on sensitivity (F(1.527, 

39.703)=21.858, p<.001) with a large effect size of ƞp
2 =.457, with subject 

sensitivity being higher in both of the Consistent conditions (Consistent 

Subordinate: Mean=2.240, SE=.262; Consistent Basic: Mean=2.293, SE=.266) and 
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lower (around chance) in the Inconsistent condition (Mean=.689, SE=.249). Post-

hoc Bonferroni-corrected comparisons reveal significant differences between all 

conditions (ps<.05) except the two Consistent conditions (p>.05).   

 

Figure 2.15 SDT results for the Beyond Simple Image Features Experiment. Response bias 
(left) and sensitivity (right) results for The Beyond Simple Image Features Experiment. The 
top row depicts bias and sensitivity within each consistency condition when hits, misses, 
false alarms and correct rejections are calculated based on the subject response and the 
content of the target region. The bottom row shows bias and sensitivity when the 
consistency between the surround and target regions is used to determine d’ and criterion 
values. Error bars represent Standard Error. 

 

When taking the consistency between the surround and target region into 

account within the Signal Detection framework Figure 2.15 (bottom), overall 

response bias is low however, we find a slightly significant effect of contrast 

(F(3.850, 103.956)=2.545, p=.046), ƞp
2 =.086, with subjects being less likely to 

respond that the target and surround are consistent when the contrast is higher 

(i.e. the target region is more visible). Post-hoc comparisons of the contrast 
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levels are largely insignificant except for 1.6% contrast which differs significantly 

from the contrast levels surrounding it (ps<.05). Sensitivity is low when contrast 

levels are low, but we find a highly significant effect of contrast on sensitivity 

(F(3.202, 86.445)=31.027, p<.001), ƞp
2 =.535, with subjects having increased 

sensitivity with increased contrast and post-hoc pairwise comparisons revealing 

significant differences between the lower and higher contrast levels (ps<.05).  

Overall, we replicate the findings of the Consistency Effect Experiment whereby 

consistency improves recognition accuracy despite simple image features like 

line continuation not being used to determine the consistency between the two 

regions. This enhancement in the consistent conditions persists in the measure 

of sensitivity, with higher sensitivity when the surround and target are 

consistent. We find an above chance level of sensitivity when response bias for 

reporting that the target is the same as the surround is taken into account. This 

increases when the target region becomes more visible, and the response bias 

decreases with increased contrast.  

2.4.3.3 Response Bias Experiment 

A General Linear Mixed Model was used to assess performance accuracy as a 

function of contrast. The GLMMs fitted logistic psychometric functions to 

determine the probability of participants correctly identifying the target 

stimulus in each condition. In each condition, performance was compared at the 

25%, 50% and 75% points (Q.25, Q.50 and Q.75, respectively) on each 

psychometric curve, (note that these are percentages above chance 

performance).  

Results reveal that overall performance increases with contrast level, as would 

be expected. Furthermore, context plays a more salient role in identification 

accuracy at the lower contrast levels, with a performance increase being 

observed in the Same Target condition when the contrast levels are low (at the 

Q.25 level), compared to all other conditions. As contrast increases, this Same 

Target condition advantage decreases, implying that the role of context 

becomes less influential when the feedforward information is more visible, with 

performance being similar across all conditions at the Q.25 and Q.5 levels. 

Consistency in general, did not influence performance.  
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In this paradigm, contextual information only facilitates performance in the 

condition where line continuation is possible. Contextual consistency alone (with 

the absence of line continuation) is insufficient in improving task performance. 

The line continuation advantage does not persist in the same non-target 

condition, implying an element of task relevancy. Further, category consistency 

did not generally improve performance. Figure 2.16 summarises results for the 

Response Bias Experiment.  

 

Figure 2.16 Response Bias Experiment results – a summary of model fit for the MSc 
Experiment conducted within the lab. The top figure depicts the psychometric curves fitted 
by the GLMM for each condition. The curves predict accuracy values as a function of 
contrast level. The bottom figure compares condition performance at the Q.25 level in which 
the same target condition provides an advantage. Figures obtained with permission from 
the MSc student who produced them as part of their report. N=29. 
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2.4.4 Altering spatial frequencies 

2.4.4.1 Spatial Frequency manipulated in the target region 

In this experiment (The Spatial Frequency Target Experiment), the image in the 

surround was always shown at full contrast (except the Target Only condition, in 

which no scene was shown in the surround). Spatial frequency of the target 

region was manipulated, such that it was shown at low contrast but also at 

either high or low spatial frequency. Again, subjects only performed a 

recognition task in this experiment.  

We performed a three-way repeated measures ANOVA to investigate the 

individual influences of the independent variables of spatial frequency (low 

versus high), consistency and contrast level, as well as any interactions between 

these predictors. Results are summarised below in Figure 2.17. When considering 

performance accuracy, we found a significant and large effect of spatial 

frequency (F(1.000, 9.000)=12.170, p=.007) ƞp
2 =.575. Post hoc comparisons 

using Bonferroni corrections reveal that low spatial frequency in the target 

region resulted in significantly (p<.05) higher performance accuracy (M=63.305%, 

SE=4.069%) than a high spatial frequency target region (M=54.320%, SE=2.187%), 

regardless of consistency or contrast level. Generally, we also observe an overall 

lower performance accuracy in this experiment than any of our previous 

experiments, suggesting limiting the spatial frequency of the low-contrast 

information increases task difficulty.  

We find no significant main effect of consistency (F(2, 18)=.531, p=.056) or 

contrast (F(6, 54)=2.247, p=.052), and therefore do not replicate the findings of 

the previous experiments. Unlike our previous results, consistency between 

surround and target regions does not influence the subjects’ ability to identify 

the low-contrast information. Performance does improve slightly with increasing 

contrast-level; however, this does not reach significance, indicating limiting 

spatial frequency overrides the beneficial effects of a more visible stimulus. We 

also find no significant interactions between any of the predictors. 
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Figure 2.17 Performance accuracy in the Spatial Frequency Target Experiment. Spatial 
frequencies limited (to low versus high) in the target region. Performance accuracy in the 
recognition task is depicted for each consistency condition and each spatial frequency 
type, at each contrast level. Error bars represent Standard Error. 

 

Analysis of the data using signal detection theory reveals some key influences of 

spatial frequency which can be observed in Figure 2.18. When considering 

response bias in terms of the content of the target region only (whereby a 

negative response bias indicates that subjects are more likely to respond that 

the target contains a beach and a positive bias indicates subjects are more likely 

to respond with mountain), we find a significant effect of spatial frequency 

(F(1.000, 9.000)=14.787, p=.004), ƞp
2 =.622 which is confirmed with post-hoc 

analysis which is also significant (p<.005). Criterion values for both spatial 

frequency types are largely positive, meaning subjects are generally more likely 

to consider the target region as a mountain over a beach. This bias is 

significantly more pronounced when the target region is limited to high 

(Mean=2.333, SE=.423) rather than low (Mean=1.315, SE=.536) spatial 

frequencies. We do not find a significant main effect of consistency condition 

(F(1.096, 9.868)=.835, p=.394), or contrast (F(2.517, 22.656)=1.605, p=.220) 

meaning the consistency between the surround and target region or the contrast 

of the target region itself does not influence subjects’ criteria for determining 

their response.  
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We do however find a significant interaction between spatial frequency and 

consistency condition (F(1.138, 10.242)=15.057, p=.002), ƞp
2 =.626, with almost 

mirrored criterion patterns between conditions within the two spatial frequency 

types. This is especially evident in the condition in which there is no information 

in the surround (Target Only condition – yellow lines) whereby high spatial 

frequency information in the target region results in subjects being more likely 

to respond with mountain and low spatial frequency target information means 

subjects are more likely to respond with beach. This interaction implies overall 

that the consistency between the target and surround modulates the impact of 

spatial frequency limitations in subjects’ ability to identify the target region.   

We also find a significant interaction between spatial frequency and contrast 

(F(2.320, 20.876)=4.811, p=.016), ƞp
2 =.348, with response bias discrepancies 

between the two conditions increasing with contrast level. That is, as the 

content of the target region becomes more visible, subjects are more likely to 

respond differently according to the type of spatial frequency information 

provided in the target region.  

We do not find a significant interaction between consistency and contrast level 

(F(29.066, 4.218)=1.059, p=.385) or between all three factors (SF x Consistency x 

Contrast), (F(4.218, 37.858 = 1.955, p=.118).  

In terms of sensitivity as a measure of performance, we find a significant effect 

of spatial frequency on d’ values (F(1.000, 9.000)=11.442, p=.008), ƞp
2 =.560, 

with low spatial frequency information in the target region resulting in increased 

sensitivity (Mean=1.464, SE=.463) relative to high spatial frequency information 

(Mean=.546, SE=.269) – supported by the Bonferroni-corrected pairwise 

comparisons (p<.05). We do not find a significant main effect of consistency 

(F(2, 18)=.961, p=.401) or contrast (F(6, 54)=1.291, p=.277). We find no 

significant interactions between any of the factors (ps>.05). These results imply 

that the type of spatial frequency information in the target region influences 

subjects’ ability to determine its content, but the contextual information in the 

surround and the relative visibility of the target region in terms of contrast do 

not. Therefore, sensitivity is driven primarily by what spatial frequency 
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information is available and not other low-level image features such as contrast 

or higher-level influences such as context.  

When we take the consistency between the surround and target region into 

account within the Signal Detection Theory parameters, a negative response bias 

indicates that subjects are more likely to respond that the target region is 

consistent with the surround. Response bias in this instance is very small and 

around chance level for both spatial frequency types. We do not find a 

significant difference in subject criterion values between having low versus high 

spatial frequency information in the target region (F(1.000, 9.000)=.629, 

p=.448). We also find no significant main effect of contrast (F(1.627, 

14.643)=1.866, p=.193) nor a significant interaction between spatial frequency 

and contrast level (F(1.272, 11.449)=1.065, p=.343). Therefore, there is no 

evidence of a response bias toward responding that the surround and target 

region are consistent in this experiment.  

Using sensitivity to measure performance, we again find a significant difference 

between the two spatial frequency types with low spatial frequency resulting in 

higher sensitivity across subjects (Mean=.882, SE=.362) than high spatial 

frequency information (Mean=.211, SE=.107), (F(1.000, 9.000)=6.565, p=.031), 

ƞp
2 =.422. This means subjects are better at determining the content of the 

target region when low spatial frequency information is preserved (supported by 

significant (p<.05) post-hoc comparisons). Sensitivity does increase with contrast 

level in both spatial frequencies however this effect does not reach significance 

(F(6, 54)=1.888, p=.100) and we do not find a significant interaction between 

spatial frequency and contrast (F(2.298, 20.680)=1.149, p=.343).  
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Figure 2.18 SDT results for the Spatial Frequency Target Experiment. Response bias (left) 
and sensitivity (right) in the Spatial Frequency Target Experiment in which spatial 
frequencies were limited in the target region. The top row depicts criterion and d’ within 
each consistency condition, for each spatial frequency as a function of contrast level. With 
hits, misses, false alarms and correct rejections calculated using the content of the target 
region and subject response. The bottom row shows the bias and sensitivity values as a 
function of contrast level for high and low spatial frequency data. Here, hits, misses, false 
alarms and correct rejections are calculated using the consistency between the surround 
and target regions. Error bars represent Standard Error. 

 

In sum, we find that low spatial frequency information in the target region 

significantly improves both accuracy and sensitivity in being able to determine 

the scene depicted. This effect seems to override the beneficial influence of 

consistent information in the surround; however, this could be attributed to the 

increased task difficulty as a result of further degradation of the target region. 

Although so far, we have generally found more of a dependence upon the 

surround when the target region is most degraded, manipulation of the spatial 

frequency information available in the target region appears to diminish this 

effect.   
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2.4.4.2 Spatial Frequency manipulated in the surround region 

The Spatial Frequency Surround Experiment manipulated spatial frequencies in 

the surround. The target region was shown at low contrast but spatial 

frequencies were not limited. Instead, the surround was shown at either low or 

high spatial frequency (but at full contrast, as in the previous experiments).  

Performance accuracy results (Figure 2.19) reveal a significant main effect for 

spatial frequency on response accuracy (F(1.000, 9.000)=6.156, p=.035), ƞp
2 

=.406. In contrast to The Spatial Frequency Target Experiment, performance 

accuracy is significantly higher when spatial frequency is limited to higher 

(M=73.030%, SE=4.966%) rather than low (M=68.643%, SE=4.469%) levels 

(supported by significant (p<.05) post-hoc results). This is particularly evident in 

the Consistent conditions, however the interaction between spatial frequency 

and consistency is insignificant (p>.05). Looking at consistency itself, post-hoc 

Bonferroni-corrected pairwise comparisons reveal higher accuracy in the 

Consistent condition (M=80.128%, SE=3.661%) than the Inconsistent condition 

(M=61.545%, SE=8.545%), in line with previous findings. However, this effect fails 

to reach significance (F(1.000, 9.000)=3.983, p=.077).  

We do observe a significant effect of contrast (F(1.549, 13.941)=11.039, p<.005), 

ƞp
2 =.551, with performance accuracy increasing with contrast level (although 

Bonferroni-corrected pairwise comparisons reveal these differences to be mainly 

insignificant (ps>.05). We also find a significant interaction between spatial 

frequency and contrast (F(6, 54)=3.667, p=.004), ƞp
2 =.289, with differences in 

spatial frequency effects reducing as contrast of the target region increases.  
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Figure 2.19 Performance accuracy in The Spatial Frequency Surround Experiment. 
Performance in the recognition task in The Spatial Frequency Surround Experiment in 
which spatial frequency information is limited in the surround and the target region is 
shown at low contrast. Accuracy is displayed for each consistency condition for both types 
of spatial frequency information, as a function of contrast level. Error bars represent 
Standard Error. 

 

Signal Detection Analysis taking only the target region content into account can 

measure differences in response bias and sensitivity between consistency 

conditions. As noted, a negative response bias here indicates that subjects are 

more likely to respond that the target region is a beach. We find a significant 

main effect of spatial frequency on response bias (F(1.000, 9.000)= 5.690, 

p=.041), ƞp
2 =.387, with subjects significantly more likely to respond that the 

target region is a mountain when the surround is limited to low spatial 

frequencies (or absent as in the Target Only condition), (Mean=1.601, SE=.376), 

than when the surround contains only high spatial frequencies (Mean=.273, 

SE=.328), as confirmed by post-hoc comparisons (p<.05). This bias significantly 

reduces as contrast increases (F(1.860, 16.739)=12.164, p=.001), ƞp
2 =.575, and 

is around chance at the highest contrast levels. Post-hoc comparisons reveal the 

higher contrast levels to mainly differ significantly from the other contrasts. We 

also find a significant interaction between spatial frequency and contrast (F(6, 

54)=2.483, p=.034), ƞp
2 =.216, with the distinction between the spatial frequency 

types reducing as contrast increases. The bias does not differ significantly 

between consistency conditions (F(1.000, 9.000)=.962, p=.352) and we find no 

significant interactions between consistency and spatial frequency or 
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consistency and contrast level (ps>.05). We do find a significant interaction 

between all three factors (F(6, 54)=2.282, p=.049), ƞp
2 =.202. Differences 

between the spatial frequencies decrease as the target region becomes more 

visible and at the higher contrast level a consistent surround and target region 

mean that subjects are more likely to respond with beach over mountain and 

vice versa for the Inconsistent condition. These differences are slight however, 

and overall response bias at the higher contrast levels is near chance level. The 

interaction itself only just reaches significance.  

In terms of sensitivity, we only find a significant effect of contrast (F(1.995, 

17.958)=8.862, p=.002), ƞp
2 =.496, with sensitivity increasing with contrast. Mean 

sensitivity is higher when the surround and target regions are consistent (4.043, 

SE=.399) compared to when they are inconsistent (Mean=1.388, SE=1.113), 

however, this effect does not reach significance (F(1.000, 9.000)=4.604, p=.074). 

There is no significant main effect of spatial frequency, nor any significant 

interactions between variables. This implies that when contextual information is 

limited in terms of its spatial frequency and response bias is taken into account, 

we do not find a significant influence of consistency on the ability to identify the 

low-contrast target region.  
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Figure 2.20 SDT results for the Spatial Frequency Surround Experiment. Response bias and 
sensitivity in the Spatial Frequency Surround Experiment in which spatial frequency 
information in the surround is limited to either low or high spatial frequencies and the target 
region is displayed at low contrast but with spatial frequency information not limited. The 
top row depicts bias and sensitivity as a function of contrast level within each consistency 
condition and for both spatial frequency groups. Hits, misses, false alarms and correct 
rejections are calculated depending on the content of the target region and the subject 
response. The bottom row depicts bias and sensitivity for each spatial frequency category 
(low versus high), as a function of contrast level, with consistency between the surround 
and target region being used to determine these measures. Error bars represent Standard 
Error. 

 

When consistency between the surround and target region is used to calculate 

signal detection measures, we find no significant main effects of response bias 

for either spatial frequency (F(1.000, 9.000)=1.567, p=.242) or contrast (F(3.665, 

32.981)=.361, p=.819). We also do not find a significant interaction between 

these factors (F(6, 54)=.602, p=.727). Response bias overall is negative, meaning 

subjects are more likely to indicate that the target is consistent with the 
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surround, however, this bias is only slight with criterion values remaining above -

1.  

With sensitivity, we find a significant main effect of spatial frequency (F(1.000, 

9.000)=7.578, p=.022), ƞp
2 =.457, with higher spatial frequencies in the surround 

eliciting higher sensitivity in being able to determine the content of the target 

region (Mean=2.161, SE=.430) relative to low spatial frequency information in 

the surround (Mean=1.541, SE=.395), supported by post-hoc pairwise 

comparisons (p<.05). We also find a significant main effect of contrast (F(2.125, 

19.126)=8.475, p=.002), ƞp
2 =.485, with sensitivity increasing with contrast level 

(although post-hoc comparisons are mainly insignificant except 1.6% contrast 

differing significantly from 0.6% and 0.8%). The interaction between spatial 

frequency and contrast is non-significant (F(6, 54)=1.706, p=.137), meaning the 

distinction between the two frequency types remains stable across contrast 

levels. SDT-based results for The Spatial Frequency Surround Experiment are 

summarised in Figure 2.20.  

To sum, in contrast to the Spatial Frequency Target Experiment, in the Surround 

Experiment we find that the high spatial frequency information results in better 

performance across both accuracy and sensitivity measures. That is, high spatial 

frequency contextual information allows subjects to more accurately determine 

the content of degraded feedforward information.  

 

2.5 Discussion 

2.5.1 Summary of Results 

2.5.1.1 Consistent context enhances recognition (but not detection) of low-
contrast information 

Results from the Consistency Effect Experiment and the Simplified Experiment 

indicate a differential influence of context upon detection and recognition of 

degraded visual input. The consistency of the high-contrast contextual 

information does not influence subjects’ ability to detect low-contrast 

information in the target region. That is, the type of information in the surround 
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did not influence subjects’ ability to detect information in the target region as 

detection rates were similar across consistency conditions. This is not in line 

with previous findings which have observed a modulatory effect of congruency 

on detectability (Caddigan et al., 2017; Hollingworth & Henderson, 1998). 

Caddigan and colleagues demonstrated that the degree to which an image 

exemplifies its category influenced how easily it was detected. Using intact or 

scrambles images, subjects detected intact images better regardless of whether 

categorisation was a task factor or not. Perhaps this effect extends to how well 

intact images represent their categories and could highlight a limitation with our 

specific images. Their detection task was also based on rapid presentation of the 

(full contrast) image, meaning the amount of signal was greater than in our 

experiment in which the signal was very low in the low-contrast target region. 

Hollingworth & Henderson found a perceptual advantage for semantically 

consistent objects and scenes. Our stimuli consistent of images of scenes 

without objects which may incorporate a different level of visual processing. 

(Note that Hollingworth & Henderson’s effect could also be explained by a 

response bias and therefore may not truly represent a perceptual advantage in 

sensitivity for semantically consistent objects). We find that contrast level does 

have an influence on detection, as one would expect, as the low-contrast 

information becomes more visible (with increased contrast), subjects’ detection 

frequency increases, reflective of a general contrast effect (Grill-Spector & 

Malach, 2004a). 

Congruency of available information in the surround does have a significant 

effect on the ability to recognise the content of the low-contrast (‘occluded’) 

region. Consistent information in the context significantly improves subjects’ 

ability to identify the low-contrast scene presented in the target region, relative 

to having no contextual information available. Conversely, having inconsistent 

information in the context significantly decreases subjects’ ability to identify 

low-contrast information relative to the condition in which no context is 

present. This implies that when feedforward information is difficult to perceive, 

contextual information is used to provide predictions about the degraded input. 

When these predictions are relevant, the ability to determine the low-contrast 

information increases. On the other hand, when the predictions are irrelevant 

(based on inconsistent contextual information), the ability to identify the 
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degraded feedforward information is hindered. Both of these findings suggest 

contextual modulation takes place to some degree when feedforward input it 

difficult to interpret. Increased contrast also improves performance in the 

recognition task, and this enhancement is stable across consistency conditions. 

This effect is more pronounced in The Consistency Effect Experiment than The 

Simplified Experiment which does not reach significance. This could be due to 

low power in The Simplified Experiment due to lower subject numbers or could 

reflect a fundamental difference in the design of the experiments.  

The within-subjects design of the Consistency Effect Experiment allowed us to 

separate trials in which subjects detected a scene present versus those in which 

they did not. This enabled recognition performance to be assessed in stimuli 

which was either detected or not. Splitting the trials by whether or not they 

were detected does not influence the apparent effect of consistency upon 

recognition performance. We still observe a clear recognition advantage in trials 

with a consistent surround, regardless of whether or not the low-contrast scene 

was detected. In undetected trials however, visibility of the target region has 

less of an influence, with contrast level not exerting a significant effect. This 

would be expected as although visibility of the stimulus varies, this is irrelevant 

in trials in which subjects did not perceive a stimulus presence. In detected 

trials, recognition increases with contrast, as we observe when all trials are 

included.   

The consistency effect therefore persists even in trials that were not detected 

by subjects, suggesting that this effect could extend into subconscious 

perception. However, SDT analysis reveals that this consistency effect can be 

explained by a response bias toward the surround in the undetected trials. 

Importantly, inferring consciousness from subject responses to a detection task 

may not be entirely accurate due to our relatively long presentation times and 

the assumption that subjects reported their visual experience reliably meaning 

conscious and subconscious processing cannot be accurately disentangled within 

the parameters of this experiment. To do so we would need to explore different 

ways to prevent conscious perception of the stimuli on some trials through 

different means such as rapid presentation or perceptual masking. We also find a 

strong response bias of subjects reporting that the surround and target regions 
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are consistent within these trials which is coupled with sensitivity which is 

around chance level. This effect is not observed in detected trials which show a 

smaller response bias which decreases with contrast alongside increased 

sensitivity, which is more reflective of the SDT results when all trials are 

combined. This distinction between detected and undetected trials highlights 

the importance of considering the underlying components of behaviour. On face 

value, accuracy scores suggest that a consistency effect exists even in 

undetected trials, but SDT reveals this to be due to a response bias in which 

subjects are reporting the information in the surround.  

During the recognition task, subjects are presented with a visual scene which for 

the most part is high contrast, but the task is aimed at information which is 

shown at very low contrast. It is therefore possible that subjects are (either 

implicitly or explicitly) overlooking the information in the target and attending 

only to the information in the surround, indicating the possibility of a response 

bias. Should this be the case, we would observe a similar response pattern, in 

that accuracy for the Consistent condition would be high and accuracy for the 

Inconsistent condition would be low. Performance should be around chance in 

the Target Only condition. This is the response pattern we find continuously 

throughout our experiments. A very sensitive observer would have high 

performance accuracy, as would a very biased observer. Thus, accuracy alone 

cannot provide a true representation of underlying behaviour.  

In order to ascertain the extent to which a response bias contributed toward our 

consistency effect, we applied Signal Detection Theory. Signal Detection Theory 

uses participant hit ratio and false alarm ratio to compute two measures of 

behavioural response: response bias and sensitivity. Response bias refers to how 

likely participants are to respond in a certain manner and sensitivity refers to 

how well subjects are able to distinguish one stimulus type from another, whilst 

taking any bias into account (Swets et al., 1978). Evidence of a response bias has 

been found in previous studies investigating congruency effects (Bar, 2004; 

Henderson & Hollingworth, 1999; Hollingworth & Henderson, 1998) and it is 

thought that predictions bias perception in situations of uncertainty (Panichello 

et al., 2013), which our degraded stimulus lends itself to. Therefore, quantifying 
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the contribution of a bias to our findings using SDT helps us understand the 

underlying mechanisms driving behaviour.  

We used two applications of Signal Detection Theory within our analysis. Firstly, 

we split the data into response categories according to information in the target 

region (see Table 2.1 for details). This allowed us to measure whether subjects 

were biased towards reporting a certain scene in the target region when 

information in the surround was either consistent or inconsistent. It also allows a 

measure of sensitivity in being able to distinguish natural versus manmade (or 

beach versus mountain) images in the target region and whether the consistency 

differences we observe when looking at accuracy results persists within 

sensitivity.  

In The Consistency Effect Experiment, we find little evidence of a response bias 

in any consistency conditions, with criterion values remaining close to zero 

across all contrast levels. Response bias results of The Simplified Experiment are 

more distinct and worth mentioning. The criterion values in this experiment 

suggest that when contrast levels are low, subjects are more likely to respond 

that the target is a mountain and as contrast levels increase (i.e., the target 

becomes more visible), subjects are more likely to respond that the target is a 

beach. This bias is reflected in the accuracy ratings where we see a slight 

decrease in accuracy at the higher contrast levels. Without any logical 

explanation as to why a more visible stimulus results in poorer performance that 

is biased in such a way that subjects respond inaccurately at the higher contrast 

levels, it is possible that the stimulus images used may be driving this 

observation. The Consistency Effect Experiment used several stimuli from 

different basic and sub-ordinate level categories. The Simplified Experiment 

used two images to generate the stimuli: one of a beach and one of a mountain. 

It is possible that at higher contrast levels, the beach and mountain stimulus 

images look very similar and are interpreted as a beach by the observer. The 

target region is positioned in the bottom right quadrant, an area of a mountain 

scene that would not give any obvious clues as to the identity of the scene, 

unlike for example, the upper quadrants of a mountain scene which would 

contain depictions of mountain peaks. It is therefore possible that the grassy 
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side of the mountain can be easily mistaken for the sand of a beach when the 

target region becomes more visible.  

Despite this potential bias, in The Consistency Effect Experiment we find 

differing sensitivity values (d’) between different conditions, with consistent 

information in the surround resulting in greater sensitivity in being able to 

determine the content of the target region and inconsistent information in the 

surround decreasing sensitivity to below chance. Sensitivity was around chance 

in the condition in which no contextual information was present, reinforcing the 

influence of contextual information being present. These distinctions, however, 

reduce with increased contrast suggesting the higher visibility of the target 

region reduces the impact of the contextual information surrounding it. Overall 

sensitivity across conditions increases with contrast meaning subjects were 

better able to distinguish the low-contrast information when it was easier to 

perceive. This increased sensitivity with contrast is replicated in The Simplified 

Experiment, but the consistency effect is not. We do see a slight sensitivity 

advantage in the consistent condition, but it does not reach significance and 

generally sensitivity across conditions is around chance until the target region is 

sufficiently visible.  

The second application of SDT the consistency between the surround and target 

regions into account. So far, our results have only been able to show whether 

subjects are generally biased toward responding in a certain manner within each 

consistency condition, without factoring in the content of the surround itself. 

Ultimately, we wanted to know whether subjects were biased towards 

responding according to the surround, or, in other words, thinking the surround 

and target regions were consistent. We therefore recalculated hit and false 

alarm rates based on consistency between the surround and target regions (see 

Table 2.2 for details). This analysis, however, cannot report response bias and 

sensitivity within each condition, but can calculate these parameters overall to 

give an overall indication of subject responses when consistency between the 

surround and target is taken into account. 

In terms of response bias, a more negative bias implies that subjects are more 

likely to (correctly or incorrectly) respond that the surround and target are 

consistent. This gives us a good indication as to whether subjects are responding 
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according to the surround. In The Consistency Effect Experiment a slight bias 

toward responding in this way can be observed across contrast levels but 

decreases with increased contrast. Sensitivity is around chance at the lower 

contrast levels but increases considerably around the perceptual threshold. The 

higher contrast levels however are where we observe less of an effect of 

consistency. In The Simplified Experiment, the bias remains around chance 

across contrast levels but does increase slightly with increased contrast which 

again could reflect the stimulus images used. Sensitivity increases with contrast 

in The Simplified Experiment, but we do not observe a consistency effect in this 

Experiment as revealed by the initial SDT analysis.  

Thus, our results point toward a potential response bias toward the surround at 

the lower contrast levels. This is where we observe the largest consistency 

effect. As contrast increases, response bias decreases as does the influence of 

the surround. This implies that subject response could be more dependent on 

surround information when the low-contrast feedforward input is particularly 

difficult to distinguish. As this information becomes more visible, the context 

has less of an influence.  

It is tempting to view this contextual bias as a potential confound, however, it 

could perhaps indicate a mechanism which the visual system employs when the 

feedforward information is especially degraded. The reliance upon the 

information in the surround could be scalar, dependent upon availability of the 

feedforward input. If subjects were responding wholly according to the 

surround, performance accuracy in the Consistent condition would be near 100% 

and accuracy in the Inconsistent condition would be 0% (as the target does not 

match the surround in this condition, therefore response to the task would 

always be incorrect). Similarly, we would find evidence of extreme bias in both 

the hit rate and false alarm rate which would be evident in the sensitivity and 

response bias measures. We do not see clear evidence of a strong response bias 

in our results, and therefore it cannot fully explain our findings. Rather, it is 

likely the pattern of results we observe is due partially to a bias and partially to 

a consistency effect.   
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2.5.1.2 The consistency effect persists around threshold contrast-level 

We observe the same pattern of results when we test both detection rate and 

recognition accuracy around threshold contrast level. We limited contrast levels 

to around the perceptual threshold (based on detection rates shown in the 

Consistency Effect Experiment and the Simplified Experiment) and found no 

significant effect of consistency on subjects’ ability to detect the low-contrast 

information. Detection rates for degraded information in the target region were 

similar for consistent and inconsistent contexts, implying that predictable low-

contrast information is no more detectable than unpredictable threshold-level 

information.  

At these low contrast levels, we do however find a significant advantage in being 

able to detect low-contrast information in the target region when there is no 

information in the surround. As such, subjects have a significantly higher 

detection rate when there is no high-contrast contextual information present, 

compared to when there is information available in the surround, regardless of 

its consistency. In other words, high contrast information in the surround, 

regardless of its relevance, appears to interfere with the detection of low-

contrast target information (contrasting findings from (Sasaki et al., 2006) who 

find that a degree of noise enhances detection). Such an effect could be due to 

a phenomenon known as visual crowding in which target information is difficult 

to perceive in the presence of nearby flankers (Ronconi et al., 2016). Visual 

crowding has been shown to occur in natural scenes (Levi, 2011) and its neural 

underpinning has been identified as early as V1 (Millin et al., 2014). It is 

however, a process thought to only interfere with recognition, and not detection 

(Levi, 2011; Ronconi et al., 2016) but there is some evidence of crowding effects 

of detection, modulated by complexity of the visual scene (Põder, 2008). 

Crowding effects are weak whenever the target stands out from within the 

stimulus array and strong when it forms a coherent texture with the flanking 

stimuli (Saarela et al., 2009), which could account for our finding here. 

However, as visual crowding effects are unusual within detection tasks, our 

result here could simply reflect a more straightforward contrast effect. In the 

Target Only condition, the contrast level of the target region exceeds the 

contrast-level of the surround (as the surround is presented as a uniform grey 

image), making the target information more visible, by default. In the conditions 
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in which there is information in the surround, the contrast-level of the target 

region does not exceed that of the surround and thus, the target scene is not as 

readily detected.  

It is interesting to note that we only observe this effect in the Simplified 

Experiment, in which the contrast levels of the target images are presented 

around threshold contrast. We do not see any advantage of a lack of contextual 

information with a larger range of contrast levels, despite them remaining low in 

the Contrast Effect and Simplified Experiments. Perhaps the higher contrast 

levels used in these experiments are sufficient to detect a scene in the target 

region despite the cluttering effects of the high contrast surround, overriding 

the discrepancies between contrast levels of the two stimulus image elements. 

Although this finding may offer insight into such aspects of visual perception, it 

does not help our understanding of the distinction between predictable and 

unpredictable information processing. With no significant differences being 

observed between the consistent and inconsistent conditions, the data provide 

no meaningful effects of consistency on the detection of degraded feedforward 

information. 

With regards to recognition around the threshold, we see the same pattern of 

response accuracy across consistency levels as observed in the experiments 

investigating a wider range of contrast levels, although in this experiment it 

doesn’t quite reach significance. Consistency between the surround and target 

regions enables greater performance in the recognition task than having either 

no information in the surround or inconsistent information in the surround. Thus, 

the effects of contextual modulation appear to withstand even when the 

feedforward input is very near threshold.  

In terms of signal detection, we find a slight bias towards subjects reporting that 

the surround and target are consistent. This reduces as contrast increases and 

despite this, we still observe accurate sensitivity overall, which increases with 

contrast. We also observe increased sensitivity when the surround and target are 

consistent, and decreased sensitivity when they are inconsistent, when taking a 

general response bias into account. These results imply that subjects have a 

tendency to report that the target matches the surround, especially when the 

target region is most degraded. When contrast level increases, this tendency 
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decreases, and overall sensitivity increases. This suggests that even around the 

perceptual threshold, where the contrast range is reduced, there could be 

multiple mechanisms at play in helping subjects process degraded feedforward 

information.  

2.5.1.3  The consistency effect can extend beyond simple image features 

We wanted to explore properties the consistency effect found in the recognition 

task. In The Consistency Effect Experiment, we find an advantage in task 

performance in all three of the consistency conditions. Subjects are better able 

to identify the content of the low-contrast target when surrounded by 

information that is consistent in terms of the task requirements. In The 

Consistency Effect Experiment, subjects were asked whether the target 

contained a natural or manmade scene. In each of the consistency conditions, 

when the target was natural, the surround was also natural and when the target 

was manmade, the surround was also manmade, however in two of the three 

consistency conditions, the surround and target images do not form parts of the 

same image. Despite this, we still observe a clear consistency advantage in these 

conditions.  

In the Beyond Simple Image Features Experiment we wanted to see if this finding 

could be replicated around the threshold contrast-level. We find a significant 

effect of consistency, as in the Consistency Effect Experiment, whereby trials in 

which the surround and target were consistent either at the subordinate- or 

basic-category level resulted in higher recognition accuracy than trials in which 

there was no information or inconsistent information in the surround. As we 

replicate this finding despite the surround and target images never containing 

the same stimulus image, this suggests that the facilitatory consistency effect 

extends beyond the simple image feature of line continuation. When the context 

provided by the surround is useful for interpreting the low-contrast target 

information, without providing predictions about the actual stimulus image in 

the target, we see an increase in performance accuracy.  

Using a signal detection approach, we find an increase in sensitivity within all 

consistent conditions, when a general response bias is taken into account. When 

consistency between the surround and target regions is used to measure 
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response bias and d Prime, we still find subjects are able to accurately 

determine the content of the target region overall. Again, we find that response 

bias reduced as contrast increases and sensitivity also increases. 

To experimentally address the potential for response bias a-priori, rather than 

account for this analytically, a control experiment was conducted within the lab. 

The experimental design of the Response Bias Experiment minimised the 

possibility of response bias influencing performance by including a 2-AFC task 

which meant subjects could not be biased toward selecting the category based 

solely on the context. Results of this experiment support the notion of 

consistency-related contextual facilitation on a recognition task; however, this is 

only found in instances in which the context contains the same image as the low-

contrast target region, suggesting low-level image features may be a driving 

mechanism behind the consistency advantage, especially at low-contrast levels.  

Taking both experiments into account, it is unclear whether the consistency 

effect is driven by low-level features as evidence for both is provided. The 

experiments differ in terms of methodologies and analyses, and it is therefore 

difficult to draw direct comparisons.  

2.5.1.4 Altering spatial frequencies modulates this effect 

Having found a fairly robust consistency effect across experiments, we then 

explored different properties of the feedforward and feedback information to 

see how limiting certain aspects (namely spatial frequency information) of the 

stimulus image would influence the ability to interpret the low-contrast target 

information.  

Firstly, we limited spatial frequencies in the low-contrast target region, further 

degrading the feedforward input. Performance accuracy in this experiment was 

generally lower than previous experiments, indicating that further degradation 

of the feedforward signal increased task difficulty.  

We find a significant difference between presenting the target region in either 

low or high spatial frequencies. Recognition accuracy was higher in the low 

spatial frequency condition, implying that removing high spatial frequency 
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information in the target region had less of an impact on task performance than 

removing the low spatial frequency information. Current literature proposes that 

low spatial frequency information is extracted first from the visual scene and is 

used to prime context frames and associations in the higher visual areas which 

are fed to the lower visual areas and integrated with a more bottom-up, high 

spatial frequency driven scene extraction (Bar, 2003). The notion of low spatial 

frequency information driving an initial response capturing the gist of a scene 

which is then corroborated with finer details provided by higher spatial 

frequencies is well supported (Kauffmann et al., 2014; Schyns & Oliva, 1994). 

The finding of this experiment would therefore lend evidence to this notion and 

indicate that this spatial frequency distinction remains when information is 

ambiguous or difficult to perceive.  

Furthermore, additional degradation of the feedforward information eliminates 

the consistency effect that we have reported thus far. Consistency between the 

surround and target is no longer influential on task performance when spatial 

frequency of the low-contrast information is limited. We also no longer find a 

significant increase in performance with increased contrast level. There are no 

significant interactions between the predictors; importantly, this suggests that 

the consistency effect also diminishes within each spatial frequency. In other 

words, we no longer find a beneficial effect of consistent contextual information 

(and vice versa for inconsistent contextual information) within either spatial 

frequency condition, as well as overall, collapsed across both spatial frequency 

conditions.  

This pattern of results observed in the accuracy data are also reflected in the 

Signal Detection measures. We find only very slight evidence of a response bias 

towards reporting that the surround and target information are consistent, 

despite the notion to adhere to such a bias in the lower contrast levels in 

previous experiments which is thought to be a reflection of task difficulty. Yet 

here, further degradation of the target region does not result in such a 

pronounced bias, suggesting contextual information is not as influential when 

spatial frequency information is manipulated. We find a general response bias 

toward responding that the target region is a mountain, which is more 

pronounced in the higher spatial frequency condition. The response bias only 
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reduces to around chance for the condition in which there is no information in 

the surround.  

We find increased sensitivity when low spatial frequency information is 

preserved in both of the Signal Detection Analyses. This persists when both a 

general response bias and a bias toward responding to the surround are 

accounted for. As with the accuracy data, we do not find an influential effect of 

context in this experiment.  

Results therefore indicate that reducing parameters of the feedforward input 

even further than previously tested not only increases task difficulty but also 

eliminates the influence of context. We find that removing high spatial 

frequency information is less of a detriment than removing low spatial frequency 

information, however, performance is driven mainly by the degraded 

feedforward input as top-down influence driven by the context no longer exerts 

a behavioural effect.  

In a separate experiment, we limited the spatial frequencies in the full-contrast 

surround and the spatial frequency information in the low-contrast target region 

remained intact. We find a significant effect of spatial frequency, however, in 

contrast to the previous experiment, we find that removing low spatial 

frequencies has less of and influence on task performance than removing high 

spatial frequencies. Performance was therefore higher when the surround was 

limited to high spatial frequencies, versus low. This extends beyond accuracy as 

we find increased sensitivity when high spatial frequency information is 

maintained in the surround. This opposes the views of the general 

aforementioned literature in which low spatial frequencies appear to drive top-

down predictions. Our results however imply that maintaining high spatial 

frequency information in the context is more central to performance than low 

spatial frequency information. Unlike when the spatial frequencies are limited in 

the target region, in this experiment we still observe a pattern within the 

consistency conditions, with consistent information enhancing performance. This 

consistency effect, however, does not quite reach significance.  

We find a bias across all trials to report that the target region contains a 

mountain, but this is less pronounced when the surround is shown at high spatial 
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frequencies. We also find evidence of a slight bias toward reporting that the 

surround and target are consistent in this experiment, which is more prominent 

in the high spatial frequency condition. Despite this, we find higher sensitivity in 

the high spatial frequency trials, independent of the response bias toward the 

surround. We also find higher sensitivity when the surround and target are 

consistent, but this does not reach significance. Taken together, the results 

imply that despite degradation of the contextual information, subjects still use 

this to interpret the low-contrast target region and that it still exerts an effect 

at the consistency level, to a certain extent. In terms of spatial frequency 

however, it appears that high spatial frequency information in the context is 

more pertinent in determining the content of low-contrast information.   

2.5.2 Key findings and how they fit within the current picture 

With this experimental series, we aimed to investigate how top-down, and 

bottom-up information interacts to process degraded visual input. In doing so, 

we manipulated different aspects of each information stream as well as 

investigating different types of processing. We mainly focused on manipulating 

the reliability of the top-down information by modifying the consistency of the 

context. This bottom-up input was degraded to varying degrees to further 

explore this effect. We also investigated other low-level properties of both the 

top-down and bottom-up signal. Exploring these facets of visual processing will 

give insight into the underlying processing streams and how these ultimately 

influence behavioural response.    

Our results provide evidence for a facilitatory effect of consistent top-down 

predictions on the processing of degraded feedforward information. Not only 

that, but we also find that inconsistent predictions hamper the ability to 

interpret low-contrast information. This adds to the literature surrounding the 

effect of context on object identification, with support of a bi-directional 

influence of context in recognition performance (Bar, 2004; Bar et al., 2006; 

Fenske et al., 2006). While some of this effect may be explained by the 

influence of a response bias (whether implicit or explicit) toward the content of 

the context, such a bias cannot wholly account for the effects. Evidence of such 

a bias is observed mainly in the lower contrast levels and decreases as the target 

region becomes more visible which is accompanied by an increase in sensitivity. 
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The fact that subjects are still able to accurately determine the content of the 

target region when any bias is accounted for (evident through sensitivity), could 

suggest that rather than performance being confounded by a response bias, a 

bias toward the surround could in fact be a mechanism in itself which is used 

when the feedforward information is sufficiently degraded. When more 

feedforward information is available (as contrast increases), subjects may 

respond less according to the surround and instead use the contextual cues to 

distinguish the content of the degraded input. Perhaps top-down influences are 

less relied upon when feedforward information is sufficient (Bar et al., 2006). As 

such, a response bias would instead reflect a separate (or conjunctive) process 

that is utilised under certain circumstances. It is also important to note that 

what we refer to as a response bias (where subjects tend to report that the 

target is the same as the surround) could in fact instead reflect a perceptual 

bias. According to Raslear (Raslear, 1985), a perceptual bias results from 

perceived changes in the stimulus whereas a response bias reflects an induced 

response preference. That is, rather than the task difficulty at the lower 

contrast levels making subjects more likely to respond according to the surround 

due to perceptual uncertainty (i.e., choosing to respond according to the 

surround as the target region is indistinguishable), it is possible that the 

contextual information dominates the perceptual processing meaning subjects 

exhibit a perceptual bias consistent with the information in the surround.   

In terms of bottom-up influences, we find a robust effect of contrast across our 

experiments. Increasing the contrast of the target region and therefore the 

availability of the bottom-up input, by definition, results in increased 

performance both in terms of accuracy and sensitivity. The influential effect of 

context on the processing of this degraded, bottom-up input is evident around 

the perceptual threshold; implying the that top-down signals resulting from 

contextual information can help process bottom-up input that is not always 

perceptually visible. Manipulating the low-level property of spatial frequency 

within the low-contrast target region highlights the role of low-spatial 

frequencies in discerning ambiguous feedforward information, independent of 

available contextual information.  
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The role of bottom-up and top-down processing was explored within two 

different aspects of visual processing: detection and recognition. While we find 

an influence of context on subjects’ ability to recognise a degraded scene, we 

do not find a similar effect in detectability of said scene. That is, the content of 

the context does not appear to have a beneficial or detrimental effect on 

whether low contrast information can be identified. Instead, we find evidence to 

suggest that merely the presence of context may reduce subjects’ ability to 

detect low-contrast information around the perceptual threshold. This can 

perhaps be explained by attributes of the visual system such as perceptual 

crowding (Levi, 2011). However, real-world scenes are naturally ‘crowded’ in 

terms of the vast array of elements, contours, textures etc. that they contain. It 

would seem problematic if a visual system built for processing complex scenes 

were to function more proficiently when contextual information is eliminated. 

That being said, we rarely have the need to process information degraded to 

such an extent as the target scenes presented in this experimental series. It is 

more likely that the effect we observe is simply due to a contrast effect in which 

the target region having higher contrast when surrounded by a blank grey image 

makes it easier to detect than when surrounded by high contrast information.   

With such diverging findings between different task goals (detecting versus 

identifying a scene), it is important to look at the differences between the two 

aspects of visual processing within the visual system (Straube & Fahle, 2011). 

These distinctions highlight the different roles of detection and identification in 

visual processing and may account at least partially for the differences we 

observe.  

Of course, our results may also partially reflect limitations within the 

experiment itself and not just limitations in the interpretation of the results. 

Firstly, sample sizes differed considerably between experiments (ranging from 

N=28 to N=7) and overall were low for gold-standard psychophysical experiments 

in order to obtain the desired power (Brysbaert, 2019). Including more subjects 

would be first priority in re-investigating the effects found within the 

experimental series as well as ensuring an equal number of subjects across each 

experiment.  



2 120 
 
Secondly, the dichotomous nature of the task (yes/no) response may limit 

conclusions that can be drawn. Including a confidence rating for example may 

allow for a more representative picture of subjects’ detection/recognition 

ability to be drawn as it provides an indication of how certain subjects are of 

their response. Confidence ratings are often used within SDT-based analyses, 

however including such ratings increases the number of thresholds that are 

calculated which again increases with the number of categories. A larger data 

set (i.e. more trials) would need to be collected in order to capture each 

threshold reliably (Selker et al., 2019). Our experiment already contained a 

number of conditions so perhaps this is more feasible if we limited our 

conditions (in the interest of time for participants’ motivation and attention) in 

future.  

Thirdly, the difficulty of the task itself may be limiting the results. We may find 

more or less of an effect by increasing the visibility of the target region so that 

performance was more likely to remain above chance level. This however may 

negate or compromise the need for contextual information if the feedforward 

signal is too visible and mask any effects the reliance on feedback signals has. 

However, it could still be informative to test the effect at higher contrast levels 

(albeit before reaching the perceptual ceiling) to investigate whether there is a 

parametric shift in any effect when more feedforward information is available.   

Finally, it could be argued that the placement of the occluded region may 

influence the effects found and applying this paradigm using different areas of 

the visual field as the target region may reveal different findings. There is a 

lower field bias for object perception and hand actions towards objects (Rossit 

et al., 2013; Schmidtmann et al., 2015) whereby subjects are better at 

perceiving objects presented in the lower visual field relative to the upper visual 

field. Scenes however encompass the whole visual field (Groen et al., 2017). 

Performance asymmetries have been found along the vertical and horizontal 

meridians (Abrams et al., 2012; Corbett & Carrasco, 2011) with optimal 

performance being just below fixation. As scenes subtend the periphery, it may 

be worth exploring occluding other regions of the visual field. This has been 

tested previously in our lab (Morgan et al., 2019) with the upper quadrant being 

occluded without much impact. With this in mind, we reasoned that key scene 
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information is more likely to be in the lower visual field (as upper is most likely 

to contain sky) and therefore this is most appropriate to occlude within this 

study.  

One way to account for our data (which we do not do here) could be by applying 

a computational model which would predict recognition based on the core 

features of bottom-up input (including parameters such as stimulus visibility and 

stimulus features available (for example type of spatial frequency information) 

and top-down signals (including strength of the top-down signal, features 

contained within that signal and its consistency with the bottom-up signal). 

Response bias could also be implemented as a feature of the model to account 

for any tendencies to respond in a certain way. The model would then predict 

subjects’ ability to recognise degraded feedforward information depending on 

the parameter inputs estimated by the model. By carefully weighting the 

relative contribution of these features the model could account for the findings 

we report here, however difficulties lie within the contradictory findings of our 

data compared to the literature (for example our finding that the contributions 

of HSF information outperformed LSF input) therefore inconsistencies such as 

this would need to be considered when applying such a model. 

Despite these limitations, our results give insight into how bottom-up and top-

down signals influence the processing of degraded visual input. We find evidence 

of contextual modulation within the visual system by finding support for the role 

of feedback in the interpretation of feedforward input and highlight an 

interaction of the two processing streams when both types of information are 

available. This interaction ultimately manifests as a behavioural output with 

top-down influences altering subjects’ behavioural response to feedforward 

information.  

The findings of this experimental series, however, cannot give insight into the 

underlying neural processes involved in such interactions. There is a wealth of 

literature investigating the role of feedback at the neuronal level and exploring 

the contextual effect we find here within the visual cortex itself forms the basis 

of Chapter 3 of this thesis. Ultimately, we interact with the environment on a 

behavioural level, which reflects the output of underlying neural processes and 

interactions, so the findings here provide key insight into the way in which the 
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visual system operates by highlighting the consequences of such interactions and 

prompts the exploration of this effect at the cortical level. 
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3 Chapter 3 

3.1 Abstract 

The influence of top-down predictions on the processing of visual input is well 

documented (Gilbert & Li, 2013) but the way in which they exert an effect at 

the cortical level is less clear. That is, the way in which top-down and bottom-

up inputs are integrated at the neuronal level is still under debate. Some 

accounts postulate that the representation of predictable information is 

enhanced (Phillips, 2017) whereas others suggest that unpredictable information 

drives a greater cortical response (Rao & Ballard, 1999). Here, we aim to test 

whether top-down predicted information can amplify dim, feedforward input.  

To achieve this, we employed a partial occlusion paradigm in which we 

presented a series of natural scenes with the bottom-right corner shown at low 

contrast, thus degrading the feedforward input to a region of early visual cortex. 

The content of the occluded region either matched or did not match the rest of 

the scene, manipulating the consistency (and therefore predictability) of the 

context. Using 3T fMRI we investigated the cortical response to such contextual 

modulation in early visual cortex, while simultaneously testing subjects’ ability 

to recognise the content of the occluded region, psychophysically.  

We tested this effect in areas V1 and V2 using both univariate and multivariate 

approaches. We also ran two experiments in which the contrast of the occluded 

region was either shown at 50% threshold-level or slightly higher at 75% 

threshold-contrast. In terms of BOLD response amplitude, we do not find a 

strong effect of consistency in V1 but do find evidence of the presence of 

feedback signals. V2 results suggest an enhancement of inconsistent information, 

suggesting higher areas may be more susceptible to visual scene inconsistencies. 

These findings are generally supported at the multivariate level and provide an 

insight into the cortical interaction between top-down and bottom-up signals.  

3.2 Introduction 

Imagine yourself looking through a pane of frosted glass. You would be able to 

make out the shape and form of large objects, but the quality of the visual 
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information is drastically reduced, and many details of the scene are 

compromised. Nevertheless, you would still be able to infer what is on the other 

side to a degree, despite the level of visual information you are provided with 

being severely impaired compared to typical viewing conditions. How does the 

brain achieve this? How can we still interpret visual information when it is 

significantly degraded? 

In this project we explore aspects of visual processing related to these 

questions. Specifically, we want to assess whether top-down predicted 

information can amplify dim, feedforward input. The dim feedforward input 

refers to the aforementioned frosted glass effect. If visual input is degraded in 

some aspect, we want to investigate how top-down predicted information 

influences the processing of such information. 

Predictions in general serve an important purpose in the brain’s function. 

Research has found evidence of feedback across all sensory modalities. In the 

visual system, feedback signals have been shown to play both a modulatory and 

driving role in mechanisms such as gain control and predictive processing (see 

(Muckli & Petro, 2013) for details). In auditory processing (Bonte et al., 2006) 

outline how feedback signals may be used to extract meaning from complex 

streams of sound. Using fMRI, Grabenhorst and colleagues (Grabenhorst et al., 

2008) demonstrated both behavioural and neural modulation of taste and flavour 

perception using words to influence the cognitive labels associated with the 

stimuli and thus in turn, influencing the top-down signals. Manita and colleagues 

(Manita et al., 2015) found evidence for a neural circuit containing both top-

down and bottom-up components in mouse somatosensory cortex. Finally, with 

electrophysiological recordings, Zagha (Zagha et al., 2013) demonstrate cortico-

cortico feedback connections between the motor and somatosensory cortices, 

with motor cortex activity influencing network activity in the somatosensory 

cortex within their study. This widespread evidence of feedback signalling across 

the cortex suggests that feedback is a critical aspect of cortical function. The 

general consensus on the role of predictions is that they serve to facilitate the 

processing of the outside world by speeding up/reducing the processing of 

predictable stimuli while disambiguating information that is not so clearly 

distinguishable. 
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The role of feedback in visual processing is largely undervalued in classical, 

hierarchical models of visual processing (Grill-Spector & Malach, 2004b; 

Riesenhuber & Tomaso Poggio, 1999). They propose a sequential, feedforward 

flow of information and neglect to sufficiently acknowledge the top-down 

counter processing stream. However, architecturally, feedback connections 

outnumber feedforward connections within cortex (Clavagnier, Falchier, & 

Kennedy, 2004; Larkum, 2013) and cognitively, top-down processing has been 

shown to play a crucial role in both scene and object recognition. Historical 

studies have shown an advantage for possible (versus impossible) inter-object 

relationships within scenes (Hock et al., 1978) as well as a disadvantage for 

inconsistent object-scene relationships. This interplay between object and scene 

relationships is reinforced in later studies by Oliva & Torralba (Oliva & Torralba, 

2006, 2007) who emphasise the importance of a scene-centred approach to 

investigating object processing (as objects do not appear in isolation in a real-

world environment). They postulate that a scene-centred approach constrains 

local feature analysis, enhancing object recognition within natural scenes. In 

2018, Lauer and colleagues (Lauer et al., 2018) conducted a series of 

experiments looking at the role of context in both scene and object recognition 

and conclude that a scene’s low-level features contribute to the processing of 

scenes in real-world environments again highlighting an interplay between 

object and scene processing. The notion of a top-down influence on object and 

scene recognition led Bar (Bar, 2003) to propose a mechanism for how this 

mechanism may function for object recognition. Bar suggests that a coarse 

representation of an object is quickly extracted and triggers top-down 

expectations of the most likely interpretation (thus limiting the number of 

representations that need to be considered). These are then integrated with the 

bottom-up signal until an agreement is met regarding the object’s identity. 

There is a wealth of literature on the role of top-down processing on object and 

scene recognition (see (Bar, 2004) for a review). An understanding of the 

mechanisms behind counter-current processing is crucial in understanding visual 

processing as a whole.  

Predictions are formed from past experiences; knowledge gained from previous 

exposure to similar situations is used to guide perception and behaviour within 

the current visual environment. Predictions can also be formed from current 
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contextual cues. Contextual information can be used to draw on prior 

experience and make predictions about the upcoming sensory information. 

Behaviourally, consistent contextual information has been shown to facilitate 

object recognition (Bar, 2004; Bar et al., 2006) and disambiguate ambiguous 

objects (Bar & Ullman, 1996). Contextual modulation therefore appears to play a 

key role in predictive processing and allows elements of the visual scene to 

generate predictions about the scene identity by combining top-down and 

bottom-up information.  

In a broad sense, contextual modulation flexibly fits prior knowledge to current 

circumstances (Phillips, Clark, & Silverstein, 2015) and is a process thought to 

underlie several cognitive functions, meaning its utilisation is likely to be 

widespread throughout the cortex. How this process is achieved, however, is still 

not clear and there is evidence supporting several contrasting cortical theories 

which underlie contextual modulation.  

A significant discrepancy between different theories of cortical function lies 

with how top-down and bottom-up information is integrated. Theories such as 

Adaptive Resonance Theory (ART), (Carpenter & Grossberg, 2016; Grossberg, 

2013) propose that when incoming data matches expectations, there is an 

amplification and prolongation of neural signal. In other words, when sensory 

information matches our predictions, the signal is amplified and when the 

expectations and feedforward input do not match, the signal is suppressed. 

Contextual modulation also plays a central role in the theory of coherent 

infomax (Kay, Floreano, & Phillips, 1998; Kay & Phillips, 2011) which works on 

the basis that a key objective of cognitive processing is to maximise the amount 

of coherent information that is transmitted. This is achieved through 

amplification of coherent signal and suppression of incoherence, echoing the 

concept behind ART.  

A proposed neural mechanism underpinning these two theories comes from 

apical amplification (Phillips, 2017). The concept behind apical amplification 

goes beyond viewing neurons as integrate-and-fire point processors, in which 

firing output depends on the trade-off between excitatory and inhibitory input 

and whether a threshold is exceeded as a result. Instead, apical amplification 

functions on the basis that neurons (specifically layer 5 Pyramidal neurons) have 
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two integration sites which interact to determine the cell’s output. A somatic 

integration site receives driving input for feedforward signals, and an apical 

integration site for modulatory input (Phillips, 2017). As these two sites are 

within the same cell, the process serves as an intracellular mechanism 

underlying theories which implicate the amplification/suppression of 

relevant/irrelevant signals, respectively.  

An intracellular process in which apical amplification can be achieved is through 

backpropogation-activated coupling (BAC), (Larkum, 2013). Larkum and 

colleagues outline the two integration sites in the soma and apical dendrites and 

provide intracellular evidence of the modulatory effect of the apical tuft. 

Feedback signals providing context and predictions target these apical dendrites 

via calcium spiking. When initiated, this causes a high frequency burst of action 

potentials in the soma. Therefore, feedback can drastically increase the cell’s 

overall output, further enhancing the notion that the sensory brain functions in a 

concurrent manner.  

While the theories and mechanisms outlined above suggest that coherent 

contextual information is what amplifies the neuronal response to visual 

stimulation, there is a wealth of literature to suggest the opposite. One such 

framework is predictive coding. Predictive coding is built on the notion of 

Bayesian inferencing and stipulates that disparities between predictions and 

feedforward input are what is passed on to the next stage of the hierarchy (Rao 

& Ballard, 1999). Compatible feedforward and feedback signals are ‘explained 

away’ at the earliest opportunity so that only information which may require 

further processing to establish its meaning reaches the next stage of processing. 

These so-called prediction errors are addressed at every level through 

integration of top-down and bottom-up signals, with the ultimate goal of free 

energy minimisation (Friston, 2005). Empirical evidence for predictive coding 

accounts of processing come from many lines of research (e.g., Alink et al., 

2010). All ultimately provide evidence for a reduction in neural activity when 

stimulation is consistent with predictions and an increase in signal when there 

are discrepancies, contrasting what is proposed by theories explained by apical 

amplification. Furthermore, there is also evidence to suggest that rather than an 

enhancement or decrease in neural signal modulated by expectations, top-down 
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information may serve to sharpen the neural representation of predictable 

information (Abdelhack & Kamitani, 2018; Kok et al., 2012).   

While these theories contrast in their propositions as to how the neural signal 

should respond to consistent versus inconsistent contextual information, they do 

share a common feature in that feedback signals play an important role in visual 

processing and have the ability to modulate the feedforward signal. This 

modulation is achieved through the amplification and/or suppression of select 

signals depending on their coherence with the bottom-up input. The exact 

nature of this interaction between the two processing streams is yet to be fully 

established however this study aims to help to shed some light onto the neural 

consequences of bottom-up top-down information integration.  

Within this study, we want to address the key question of whether top-down 

predicted information can amplify dim, feedforward input. To do this, we 

employ a partial occlusion paradigm coined by Smith & Muckli (Smith & Muckli, 

2010). Occlusion is a regular occurrence during natural scene viewing. Scene 

elements and objects within a scene are rarely viewed in isolation of each other, 

instead they overlap and occlude portions of the scene from view at any given 

time point. Occlusion during experimentation of visual processing allows 

feedback signals to be isolated in a region of visual cortex by eliminating direct 

feedforward input to the corresponding area of the visual field.  

In Smith & Muckli’s paradigm, they occlude one quadrant of the visual scene and 

are able to decode information about the surrounding scene in occluded visual 

cortex. This implies that when feedforward information is missing, feedback 

signals carry scene information to the subsequent region of visual cortex. We 

aim to adapt this paradigm so that our occluded region contains degraded 

feedforward input. Our stimuli will also consist of natural scenes however, the 

occluded region will also contain low-contrast scene information that either 

matches or does not match the main image, thus manipulating the predictability 

of the top-down signals.  

We will investigate the cortical implications of such an occlusion using 3T fMRI to 

gauge whether BOLD response to predictable information in the visual cortex is 

amplified relative to non-predictive signals. fMRI is a useful tool in mapping 
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neural correlates of brain function and is sometimes considered advantageous 

over measures of behaviour itself (Logothetis, 2008). Applying such a technique 

is therefore a natural progression of this paradigm. Furthermore, we will apply a 

pattern classification technique (MVPA) so that we can also assess the response 

pattern to predictable versus non-predictable visual information. Differences 

that exist within BOLD response to different stimuli may be missed if the focus is 

limited to univariate responses such as response amplification. Multivariate 

analysis such as MVPA may reveal differences in response patterns which are not 

possible to discern at the univariate level.  

Finding evidence of either an amplification or a decrease in response to 

predictable or unpredictable information or a difference in the pattern of 

response will facilitate our understanding of predictive visual processing at the 

neuronal level and help map the connection between behavioural and cortical 

responses.  
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3.3 Methods 

3.3.1 Paradigm 

We used the same partial occlusion paradigm used in the psychophysical 

experiments outlined in Chapter 2 (Smith & Muckli, 2010) in which part of the 

visual scene is degraded in order to investigate how top-down predictions 

influence the processing of degraded feedforward information. For paradigm 

details, see section 2.3.2 and Figure 2.3 (a) for a depiction of the basic stimulus 

features. 

The behavioural studies previously outlined inform the motivation for this 

Chapter. They provide tentative evidence of a behavioural effect of context and 

therefore we are keen to explore if there are any neural underpinnings of a 

contextual effect within this paradigm. As this is an fMRI experiment, we looked 

at both the behavioural and cortical consequences of these consistent or 

inconsistent feedback signals. We used performance accuracy and sensitivity 

measures for the psychophysical responses and both univariate and multivariate 

measures of BOLD signal change to capture the neural response pattern. 

 

3.3.2 Stimuli 

To generate our stimuli, we used two images depicting natural scenes: one of a 

beach and one of a mountain. These were chosen from the same image database 

as the stimulus images used in the psychophysical experiment series (Walther et 

al., 2009) and passed through a Spatial Envelope Model (Oliva & Torralba, 2001) 

to control for image features.  

We created the stimulus images using MATLAB (R2016a). The image for the 

surround was greyscaled and cropped to comply with the screen resolution inside 

the scanner (1024 x 768 pixels). A second image was then selected for the target 

region. The contrast level of the target image was adjusted to the threshold 

contrast-level of the subject. In the Lower-Contrast Experiment we used each 

subject’s 50% threshold contrast level (the contrast level at which the subject 

could detect a target region scene 50% of the time) and in the Higher-Contrast 
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Experiment, we used each subject’s 75% threshold contrast level. The two 

images were then combined so that the low-contrast target region occupied the 

bottom right corner (24.8° x 18.7° VA) of the stimulus image and the remaining 

three quadrants contained the full-contrast surround. A fixation cross (0.1° x 

0.1° VA) was overlaid in the centre of the image to direct subjects’ gaze and 

this stimulus image as a whole was presented during the task trial, subtending 

47.5° x 36.5° VA. 

The content of both the surround and target regions was manipulated across four 

experimental conditions: Consistent, wherein the surround and target regions 

contained the same stimulus image; Inconsistent in which the two regions 

contained different images; Target Only, in which there was no image displayed 

in the surround, only a low-contrast image in the target region; and finally 

Context Only, which contained no image in the target region but a full-contrast 

image in the surround. We also included a Null condition, which contained no 

image in either the surround or target region.  

3.3.3 Subjects 

We recruited subjects via a participant subject pool advertised through the 

University of Glasgow, Institute of Neuroscience and Psychology intranet. All 

subjects had healthy or corrected vision. During the recruitment process, 

subjects were sent an MRI pre-screening checklist to ensure they were eligible to 

take part in an MRI experiment. Once confirmed, we arranged the scanning 

session.  

Upon arrival at the scanning session and before entering the scanner, subjects 

gave informed consent to take part in the experiment and completed an MRI 

safety checklist. To comply with MRI safety guidelines, subjects were required to 

remove any metal such as piercings or hair ties before entering the scanner. 

Participants also wore MRI-compatible clothing provided by the University during 

their scan. Subjects were paid for their participation (regardless of whether they 

completed the whole session) at a standard rate of GBP 10.00 per hour. 

A total of 74 participants were recruited (37 for each experiment). Data from 

35% of the sample were excluded at different stages of acquisition or analysis for 
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reasons such as incomplete datasets or excessive head movement within the 

scanner. As such, results are reported from forty-eight subjects, twenty-four 

subjects from the Lower-Contrast Experiment (16 female, M age = 22.13, SD = 

4.12) and twenty-four from the Higher-Contrast Experiment (13 female, M age = 

22.92, SD = 3.94). 

3.3.4 Data Acquisition 

Data were acquired on a Siemens Tim Trio System 3T MRI scanner, located at the 

University of Glasgow, Centre of Cognitive Neuroimaging (CCNi). We used a 32-

channel head coil to acquire anatomical and functional data of the brain. 

Anatomical data were acquired using a T1-weighted high-resolution Gradient-

Echo (GE) sequence, imaging the whole brain with 192 volumes and an isotropic 

voxel size of 1mm.  Functional images were acquired using an Echo-Planar-

Imaging (EPI) sequence to measure the BOLD response in line with the functional 

task. We acquired 18 interleaved axial slices, positioned optimally over the 

occipital pole, to ensure sufficient capture of primary visual cortex. Slice 

thickness was 3mm with an inter-slice gap of 0.3mm and a voxel size of 3mm 

isotropic. We used a TR of 1000ms and a TE of 30ms. Matrix size was 70 x 70, 

and we used a flip angle of 62°. Field of view (FOV) was 210 x 210mm. Each 

experimental functional run consisted of 757 volumes and the retinotopic 

mapping run used the same scan parameters but contained 795 volumes. 

Experimental stimuli were presented using Presentation software 

(Neurobehavioral Systems, Inc., Berkeley, CA; www.neurobs.com) and projected 

to a projector screen located within the scanner.  

3.3.5 Procedure 

Upon arrival to the scanning session, we carefully explained the task 

requirements and obtained written consent and completion of the MRI safety 

checklist. Subjects had chance to ask any questions about the task itself or the 

process of an MRI experiment. We provided MRI compliant clothing. If subjects 

had vision corrected by glasses, we also provided MRI compatible goggles in 

which lenses matching individual subject prescriptions can be inserted. We were 

careful to ensure subjects have no metal on their person before entering the 

scanner.  

http://www.neurobs.com/
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When entering the scan room, subjects were given earplugs to protect from the 

noise of the scanner and asked to lie on the scanner bed in a head-first supine 

position. Cushions or inflatable pads were placed around the head to minimise 

head movement during the scan. Subjects were given a response box in their 

right hand and an emergency buzzer in their left hand. The head coil was placed 

over their head followed by a mirror to enable them to view the projector 

screen. Once subjects were comfortable, they were moved inside the scanner 

and the lights were turned off. From the control room, we were able to verbally 

communicate with the subjects through a microphone and speaker system. We 

requested subjects to test the emergency buzzer before the scanning session 

began. 

Prior to the main experiment, subjects completed a behavioural pre-screening 

test whilst in the scanner (Figure 3.1), to ascertain their threshold contrast 

level. This is performed during the anatomical scan to minimise time spent 

inside the scanner. The pre-screening test employed the same paradigm as the 

main experiment, except with only three experimental conditions: Consistent, 

Inconsistent and Target Only. The two image exemplars used to create the 

stimuli (one of a beach and one of a mountain) were different to the two used in 

the main experiment, to minimise any practice effects.  

In the pre-screening test, the target region in each condition was shown at seven 

contrast levels, ranging from 0.6%-1.8%, in increments of 2%, in the Lower-

Contrast Experiment, and from 1.0%-2.2% in the Higher-Contrast Experiment, 

also in increments of 2%. Stimulus images were presented for 1000ms flickering 

at 4Hz. Following each trial, subjects performed a detection task in which they 

were asked whether the target region contained a scene. Responses were two-

alternative (yes/no) and were indicated by button press on the response box. 

See Figure 3.1 for details of the pre-screen experiment.  

Subjects remained in the scanner while the pre-screen data were analysed. This 

identified each subject’s detection threshold (50% in the Lower-Contrast 

Experiment or 75% in the Higher-Contrast Experiment) which was used to 

determine the contrast level for the target region in the main experimental 

stimuli. In this time, we reminded subjects about the task requirements, either 

verbally or by writing instructions on the screen.  
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Figure 3.1 Pre-screen experiment details. (a) Images used to create the stimuli; one beach 
and one mountain. We used different image exemplars in the pre-screen experiment to the 
main fMRI experiment to avoid any practice effects. (b) Contrast levels used for the target 
region in the Lower-Contrast Experiment (top row) and the Higher-Contrast Experiment  
(bottom row). These were used to determine subjects’ 50% and 75% detection thresholds, 
respectively. (c) Experimental conditions: Consistent – surround and target region contain 
the same image; Inconsistent – surround and target region contain different images; Target 
Only – no information is shown in the surround. Note that the target region is shown at high 
contrast here for demonstration purposes. (d) Trial sequence. The stimulus image is flashed 
on/off at 4Hz for 1s followed by a baseline blank screen before the task question (did the 
target region contain a scene?) is displayed until subjects respond either yes or no (or for a 
maximum of 5s if there is no response).  
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The main fMRI experiment (Figure 3.2) consisted of four experimental runs, each 

containing 47 trials and lasting approximately twelve minutes. Each 14s trial 

consisted of 3s stimulus presentation (stimulus on) followed by 3s of a blank 

screen (stimulus off) then a 2s response window in which the task question was 

presented and finally a 6s inter-stimulus-interval (ISI) before the next trial 

began.  

Each experimental condition (bar the Null condition) had two sub-conditions 

pertaining to each of the two stimulus images. For example, the Consistent 

condition contained both Consistent Beach stimulus images and Consistent 

Mountain stimulus images. Thus, each sub-condition is repeated five times in 

each run, plus five Null trials in which there is no image in either the surround or 

the target region. The first two trials were repeated at the end of the run, to 

account for the haemodynamic saturation experienced at the beginning of the 

run. The first two trials were therefore removed in the analysis stage.  

At the end of each run, we performed mapping of the target, border and 

surround regions, in turn. Contrast-reversing flickering (4Hz) checkerboard 

stimuli were shown, occupying the target (21.8° x 15.4° VA), surround (47.5° x 

36.5° VA) and border regions, mapping the border between the surround and 

target with a width of 3.2° x 3.2° VA. Following the four experimental runs, we 

performed retinotopic mapping, which consisted of one run, also lasting 

approximately twelve minutes. A combined eccentricity and polar angle (PA) 

mapping stimulus (again contrast-reversing checkerboards, flickering at 4Hz) 

traversed the visual field, mapping the PA and eccentricity retinotopic 

organisation of each subject’s visual cortex.  

Mapping the cortex using tailored mapping stimuli alongside retinotopic mapping 

enables us to determine the cortical location of the target region within the V1, 

V2 and V3 boundaries of each subject.  
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Figure 3.2 fMRI experiment details. (a) The image exemplars used in the main fMRI 
experiment. One beach and one mountain which were different to those used in the pre-
screen experiment. (b) The experimental conditions: Consistent – the surround and target 
regions contain the same image; Inconsistent – the surround and target regions contain 
different images; Target Only – Information is displayed in the target region only and the 
surround is left blank; Context Only – information is shown only in the surround; Null – no 
scene information is shown in either the surround or target regions. (c) Mapping stimuli. 
Flickering checkerboards used to map the target region (left), border (middle) and surround 
(right). Responses to these stimuli were used to identify the ROIs for each subject in early 
visual cortex. (d) Trial sequence. The stimulus image was displayed for 3s (with a green 
fixation cross) followed by a 3s baseline blank screen (with a white fixation cross). The 
fixation cross then changed to red for 2s in which subjects were required to respond with 
beach or mountain (pertaining to the target region scene). Finally, a 6 second inter-stimulus-
interval (ISI), with a white fixation cross, allowed for some haemodynamic response 
recovery before the next trial commenced.  
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Figure 3.3 Retinotopic mapping exemplar. Example retinotopic mapping stimulation (left), in 
which a combined polar-angle and eccentricity mapping stimulus rotates and expands 
periodically to map the visual field using high-contrast flickering checkerboards. An 
example polar angle retinotopic map (right), demonstrating areas V1, V2 and V3 in the visual 
cortex, here located in a left hemisphere occipital pole/cortex. This map is obtained by a 
flickering checkerboard wedge stimulus which rotates around the centre of the visual field 
while subjects maintain fixation.  

 

 

3.3.6 Analysis 

3.3.6.1 Pre-screen 

Analysis of the pre-screen task response was performed while subjects remained 

in the scanner using MATLAB (R2016a). We fitted a Sigmoid function to each 

subject’s responses, averaged across all consistency conditions, plotting their 

detection rate as a function of contrast, to obtain their threshold contrast level 

(the value of which, dependent on experiment). This contrast level was then 

used to generate the stimulus images required for the main experiment. See 
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Figure 3.4 Determining stimulus contrast level. We fitted a sigmoid function to subjects’ 
detection-rate data from the pre-screen experiment. This enabled us to determine the point 
at which subjects could detect a stimulus either 50% of the time (top row – used for the 
Lower-Contrast Experiment) or 75% of the time (bottom row – used for the Higher-Contrast 
Experiment). The left-hand images show example Sigmoid functions, and the right-hand 
images show stimuli at the resulting contrast level.  

 

3.3.6.2 Psychophysical Task 

Responses to the psychophysical task are recorded and used to calculate 

percentage accuracy in each consistency condition. That is, subjects’ ability to 

correctly identify the low-contrast information in the target region, within each 

condition. Performance accuracy (as a percentage) for each consistency 

condition was plotted as a function of contrast level. Although accuracy can be 

used to quantify task performance, it does not take into account the underlying 

components of a behavioural response. We therefore also analysed the 

behavioural data using the principles of Signal Detection Theory (Swets et al., 

1978), which provides an independent measure of sensitivity while 

simultaneously accounting for any response bias.  

We used the principles of SDT to split the responses into hits, misses, false 

alarms and correct rejections using the subject response and content of the 

target region (see Table 3.1 for details). These values were then used to 
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calculate the hit and false alarm ratio (number of hits/number of trials in which 

the target and surround are consistent or number of false alarms/number of 

trials in which the surround and target are inconsistent). These ratios were then 

in turn, used to calculate d-prime (d’), a sensitivity measure. Sensitivity 

determines how effectively subjects can distinguish one category of stimulus 

over another while accounting for potential bias, so is therefore more 

informative than using accuracy as a measure of performance.  

Surround Target Response Category 

Beach Beach Beach Hit 

Mountain Mountain Mountain 

Beach Beach Mountain Miss 

Mountain Mountain Beach 

Beach Mountain Beach False Alarm 

Mountain Beach Mountain 

Beach Mountain Mountain Correct Rejection 

Mountain Beach Beach 
Table 3.1 SDT response categorisation. How hits, misses, false alarms and correct 
rejections are determined for the psychophysical data depending on the consistency 
between the target and surround regions as well as the subject response.  

 

3.3.6.3 Anatomical and fMRI Data 

Anatomical data were analysed using BrainVoyager (version 21.2 and Qx) (Brain 

Innovation, Maastricht, Netherlands). Each subject’s 3D scan images were passed 

through a brain extraction tool and corrected for inhomogeneities in the image 

intensities to maximise segmentation of white and grey matter. Anatomical data 

were then aligned along the AC-PC plane and co-registered with the functional 

data using boundary-based registration (BBR). Boundary-based registration uses 

the WM/GM borders to align the functional and anatomical data by maximising 

the boundaries between the tissue types (Greve & Fischl, 2009).  

The anatomical data were also used in conjunction with the functional data to 

create high-resolution volume time courses in the visual cortex as well as define 

a volume of interest (in which to perform the statistical analysis). An inflated 3D 

mesh cortical representation was then created in which the functional and 

retinotopic mapping data were overlaid to allow the regions of activation and 

boundaries of early visual areas to be visualised.  
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Analysis of the fMRI data is also performed using BrainVoyager (versions 21.2 and 

Qx) and began with pre-processing. Data from each run were 3D motion 

corrected (using trilinear/sinc interpolation), slice scan time correction was 

applied using cubic spline interpolation as well as temporal filtering with a GLM-

Fourier high-pass filter with a cycle of 6 sines/cosines. Alignment between 

functional runs was correlated using Pearson’s r correlation and adjustments are 

made to ensure all functional runs are well aligned (>0.9). Anatomical data were 

co-registered with the functional data (using BBR) and a 3D mesh was created in 

which statistical maps could be overlaid.  

We defined individual subject Regions of Interest (ROIs) for both V1 and V2 

(where possible) by fitting a GLM to a conjunction contrast of the mapping trials. 

We are interested in testing for a contextual effect in early visual cortex and 

therefore any activation beyond V1 and V2 was not analysed. V3 was not 

included due to the limited number of voxels activated (due to the relative 

cortical size of V3) which would make multivariate analysis difficult. We 

contrasted the target versus border and target versus surround mapping blocks 

and used the activity which persisted in both of these contrasts to define our 

ROIs. This is a fairly conservative approach to ROI definition but was employed 

to minimise the risk of spill-over activity due to extra-classical RF properties 

that exist within visual cortex (Angelucci & Bressloff, 2006). This resulted in a 

total of 1041 voxels (mean voxels per subject= 43) in V1 and 818 voxels (mean 

voxels per subject also = 43) in V2. These numbers are fairly low due to the 

conservative nature of our contrast.  

For the statistical analysis within the ROIs, we applied a deconvolution analysis 

due to its efficacy in analysing rapid event-related designs (Hinrichs et al., 

2000). Due to the closely spaced events in such a design, the haemodynamic 

responses to each trial overlap considerably. These must be deconvolved in 

order to ascertain the response (defined as the activity in relation to the 3s of 

stimulus ‘on’ time) to each predictor. Predictors were defined in the 

experimental protocol files and correspond the consistency conditions (trials) to 

a series of twenty (1s) time points across the haemodynamic response, 

commencing at stimulus onset.  
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We fit a GLM to estimate the haemodynamic response function for each 

predictor (corrected for multiple comparisons). These haemodynamic responses 

were deconvolved to give a BOLD response amplitude value in the form of beta-

weighted estimates for each condition, at each time point. Jittered timing was 

not used within this design to allow for averaging across trials and on the 

reasoning that the deconvolution analysis still enables the HRF signal to be 

deconvolved. Six contrasts were defined in order to statistically compare 

response amplitudes between conditions (Consistent versus Inconsistent; 

Consistent versus Target Only; Consistent versus Context Only; Inconsistent 

versus Target Only; Inconsistent versus Context Only; Target Only versus Context 

Only). The Null condition was initially set to be used as a baseline however we 

wanted to measure the difference in signal in the Consistent versus Inconsistent 

directly rather than each relative to baseline, therefore it was not included in 

the analysis. Using visual inspection, we separated the HDRF into three time 

windows which we labelled the peak (8-11s post-stimulus onset), post-peak (12-

15s post-stimulus onset) and recovery (16-19s post-stimulus onset) windows. 

Within each of these time frames, we ran the six defined contrasts within the 

subjects’ ROIs, allowing us to thoroughly compare the effect of contextual 

consistency on the univariate BOLD response amplitude in early visual cortex. 

Group-level results are reported below. We firstly report BOLD response 

amplitude results for all trials to search for a neuronal effect irrespective of 

behavioural performance. Including all trials also allowed for a more direct 

comparison of univariate and multivariate analyses as the multivariate analysis 

required a sufficient number of trials which is not guaranteed if limiting the 

analysis to correct trials only (see below for details on the multivariate analysis). 

We then confined the analysis to correct trials only (i.e., we removed trials in 

which subjects responded incorrectly or did not respond). When a subject 

responded incorrectly, we do not know the reason why. Therefore, removing 

these trials removes instances in which the subjects were not fully concentrating 

on the task (which may dilute any effect). In other words, limiting the analysis 

to correct trials only may refine any influence of context on neuronal response.  

We also examined the effects of context on BOLD response using multivariate 

analysis in the form of multivariate pattern classification (MVPA), (Haxby, 2012; 

Haxby et al., 2014). The classifier was coded in MATLAB as part of the original 
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partial occlusion paradigm employed by Smith & Muckli (Smith & Muckli, 2010) 

and operates using a Support Vector Machine (SVM) algorithm which is trained to 

distinguish voxel response patterns. As our stimuli were comprised of two types 

of natural scenes (beach and mountain), the classifier aimed to discriminate 

between the response patterns in the target region pertaining to each image 

type.  

The volume time courses for voxels within the defined VOIs are input into the 

classification analysis along with a design matrix which defines the predictor 

variables (outlining conditions and timings within each run). A GLM is then run to 

obtain betas and t-values, giving an estimate of the effect. Post-processing steps 

include excluding values with low signal change (as these are likely to represent 

noise). A dissimilarity matrix is then calculated to represent similarity between 

evoked responses to the predictors. Voxels at the border between the target and 

surround regions are then excluded to avoid any spill-over effects from surround 

region stimulation. The analysis then assigns and stacks betas to their 

corresponding conditions and labels these appropriately for classification.  

We employed both cross-validation and cross-classification multivariate analysis 

techniques. In cross-validation, the classifier is trained and tested on the same 

condition in a leave-one-run-out manner. For each sub-condition (consistent 

beach, consistent mountain, etc.), the classifier was trained on identifying voxel 

response patterns to each image type in n-1 runs and tested on the remaining 

run. This was repeated until all runs were used as the testing run in turn.  

In cross-classification, the classifier was trained and tested on different 

conditions. We firstly trained the classifier to identify the response pattern of 

the target region using the feedback signals only (the Context Only condition) 

and tested on all other conditions. We then repeated this process using the 

Target Only condition (i.e., purely feedforward information) followed by the 

Consistent condition for training. In both types of classification analysis, we 

average across both sub-conditions to give a classifier accuracy percentage for 

each consistency condition and ran the classifier for each individual subject 

before averaging to get a group-level indication of classifier performance. To 

test the classifier performance statistically, we used the Wilcoxon Signed Rank 

test to test for differences between conditions as well as to test whether 
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classifier performance differed significantly from chance. This replicates a 

classification-based significance test performed by Morgan and colleagues 

(Morgan et al., 2019).   

3.4 Results – Lower Contrast Experiment 

3.4.1 Psychophysics 

Subjects performed a behavioural recognition task while in the scanner. For each 

trial, they were required to identify whether the target region contained a 

beach or a mountain. Results reveal increased performance accuracy in the 

recognition task when the information in the surround was consistent with the 

target region. In other words, when both the surround and target regions contain 

a beach or both contain a mountain, subjects were more easily able to identify 

the content of the low-contrast target region (Mean=67.32%, SD=16.29%), than if 

there was no information in the surround (Mean=62.50%, SD=13.85%). 

Performance is lowest in trials in which the surround and target contain 

different images (Mean=52.51%, SD=18.45%). A repeated measures ANOVA 

reveals that these differences are significant, with a significant main effect of 

consistency being found using Greenhouse-Geisser corrections (F(1.527, 

35.128)=6.935, p=.006). Post-hoc pairwise comparisons using Bonferroni 

corrections reveal significant differences between all consistency levels except 

the Consistent and Target Only conditions.  

These findings imply that contextual information in the surround influences the 

ability to recognise low-contrast information in the target region, with 

consistent context enhancing performance and inconsistent context resulting in 

chance-level performance. However, analysis of the data using principles from 

Signal Detection Theory determines the underlying mechanisms of response bias 

and sensitivity which drive the behavioural output. Using SDT, we can 

investigate whether the behavioural effects we observe can be explained, at 

least in part, by a response bias toward the surround. That is, is the 

performance difference that we find between the Consistent/Inconsistent 

conditions due to subjects’ tendency to base their response on the information 

shown in the high-contrast surround?  



3 144 
 
Accuracy as a measure performance is insufficient in determining the difference 

between a highly sensitive observer (i.e., someone who is accurately able to 

determine the content of the target region) and a highly biased observer (e.g., 

someone who has a strong tendency to respond according to the surround) – 

these two types of responders would both have high performance accuracy. SDT, 

however, is able to provide a measure of response bias (how likely subject are to 

consider the surround and target regions to be consistent) and sensitivity (a 

measure of performance, independent of a response bias. Hits, misses, false 

alarms and correct rejections were determined using the consistency between 

the surround and target regions alongside the subject response (see Table 3.1 

for details).  

Looking at response bias, a negative criterion value indicates that subjects are 

more likely to respond that the surround and target regions are consistent. 

Across subjects, we observe a criterion value of -0.2246, meaning subjects are 

slightly inclined to respond according to the surround. Despite this slight bias, 

we observe a sensitivity (dPrime) value above chance (0.5942, with 0 being 

chance level). These results imply that although subjects show a tendency 

towards the surround, when this is taken into account, they are still able to 

determine the content of the target region. The way in which the hit and false 

alarm rates are calculated using surround and target consistency does not allow 

us to determine these measures within conditions, and instead these values 

represent bias and sensitivity across all trials. Therefore, we are unable to infer 

whether sensitivity is indeed enhanced when the target and surround are 

consistent, but we are able to assume that the results do not wholly reflect a 

response bias. Figure 3.5 and Table 3.2 summarise the results of the 

psychophysical task.   
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Figure 3.5 Psychophysical Results. The left figure depicts performance accuracy as a 
percentage within each consistency condition. The right figure displays the results of the 
SDT-based analysis in which a negative response bias indicates a tendency to respond that 
the surround and target region are consistent. Sensitivity (independent of response bias) is 
displayed in the right-hand column.  

 

Hit Ratio False Alarm Ratio Response Bias 
(c) 

Sensitivity 
(dPrime) 

 
0.6732 

 

 
0.4749 

 
-0.2246 

 
0.5942 

Table 3.2 SDT results. Table displaying the SDT results with hit and false alarm ratio which 
are used to calculate response bias (criterion) and sensitivity (dPrime) values.  

 

3.4.2 Univariate Analysis (V1) 

3.4.2.1 All Trials 

Turning our attention away from the psychophysical data, we then consider the 

neural response to low-contrast information when surrounded by consistent or 

inconsistent contextual information. We ran a Deconvolution Analysis on the 

region of interest corresponding to the stimulus target region in V1 which splits 

the BOLD response into twenty time points, post-stimulus onset. Upon visual 

inspection of the BOLD response at the individual and group level, we decided 

the peak BOLD response amplitude was between 8-11 seconds post stimulus 

onset. We therefore focused our analysis within this time window but to avoid 

neglecting the rest of the haemodynamic response, we also considered a post-

peak time window (12-15 seconds post-stimulus-onset) and a time window during 
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the haemodynamic recovery (between 16-20 seconds post-stimulus-onset). These 

time frames will be referred to as peak, post-peak and recovery, going forward. 

Within each of these, we investigate an effect in the BOLD response amplitude 

by reporting the beta estimate of response amplitude (which provides 

information about the amplitude of the effects itself) followed by an associated 

t-statistic (a directional measure offering substantiation of the effect estimate). 

It is important to consider both of these aspects of the effect (Chen et al., 

2017).  

In the peak response time-window, we find no significant difference in BOLD 

response amplitude between the Consistent and Inconsistent conditions (β=.301 

(SE=.282), t=1.067, p=.286), meaning we find that the area of cortex 

corresponding to the low-contrast target region has a similar peak BOLD 

response whether the contextual information in the surround is consistent or 

inconsistent. The Context Only condition (in which there is information in the 

surround but no scene presented in the target region) also elicits a similar 

response amplitude as both the Consistent and Inconsistent conditions and there 

is no significant difference between the Context Only and Consistent condition 

(β=.282 (SE=.282), t=.999, p=.317) or the Context Only and Inconsistent 

condition (β =-.019 (SE=.282), t=-.067, p=.926) within the peak response 

window. At the peak, the Target Only condition (the condition in which there is 

no information in the surround) elicits a highly significantly lower BOLD response 

than the other three conditions in which there is contextual information in the 

surround (ps<.001), implying feedback information from the surround drives the 

BOLD response in the conditions that include contextual information, at least in 

the peak response window.  

In the post-peak time window, the BOLD response of the Consistent, Inconsistent 

and Context Only conditions decreases and the non-significant difference 

between the Consistent and Inconsistent conditions is maintained (β =-.181 

(SE=.283), t=-.640, p=.524). The Context Only condition elicits a significantly 

higher response than the Consistent condition within this time window (β =-.64 

(SE=.282), t=-2.265, p=.023) but not the Inconsistent or Target Only conditions 

(ps>.05). In contrast to the peak response window, the Target Only condition has 

a significantly higher BOLD response than both the Consistent (β -.79 (SE=.283), 
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t=-2.794, p=0.005) and Inconsistent (β =-.610 (SE=.283), t=-2.157, p=.031) 

conditions. The response to the Target Only condition is also higher than the 

Context only condition in this time frame, but this does not reach significance 

(p=.596).  

The response pattern observed in the post-peak time window becomes more 

apparent in the recovery window. The Consistent and Inconsistent conditions 

elicit the lowest response and there is no significant difference between the 

BOLD recovery amplitudes in these conditions (β =.250 (SE=.284), t=.879, 

p=.379). The BOLD response in this time window in the Context Only condition is 

significantly higher than the Inconsistent (β =-.778 (SE=.284), t=-.241, p=.006) 

but not the Consistent condition (β =-.529 (SE=.284), t=-1.865, p=.062). The 

Target Only condition has the highest BOLD response in this time window, which 

is significantly higher than both the Consistent and Inconsistent conditions 

(ps=.001). The Target Only response is not significantly higher here than the 

Context Only condition (β =.534 (SE=.284), t=1.876, p=.061).  

In sum, it appears that during the peak, the BOLD response is driven by 

information in the surround as conditions which contain contextual information 

elicit a higher response amplitude than the condition in which no information is 

present in the surround. Conversely, following the peak, the low-contrast 

information in the target region drives a higher response but to a lesser extent 

than the distinction found at the peak. This is only the case in the purely 

feedforward driven (Target Only) condition as when this information is combined 

with feedback signals from the surround, as in the Consistent and Inconsistent 

conditions, the BOLD recovery amplitude is lower. Figure 3.6 depicts the BOLD 

response amplitude for each condition, as a function of time.  
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Figure 3.6 V1 BOLD response when all trials are included. Haemodynamic response as a 
function of time in V1 target region ROI for each experimental condition across participants 
(N=24) obtained from a deconvolution analysis. The top figure includes the target mapping 
condition to demonstrate the V1 response to high contrast stimulation. The bottom figure 
removes the target mapping condition to reveal differences between the experimental 
conditions. In both figures, the X axis corresponds to time in seconds post-stimulus-onset. 
The Y axis corresponds to the beta estimates of the BOLD response. Error bars represent 
Standard Error. 
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The magnitude of the BOLD response is important to note. The top figure of 

Figure 3.6 includes the cortical response to the target mapping condition. In this 

condition, the target region was stimulated by a high-contrast flickering 

checkerboard pattern and the surround was left as a blank grey screen. This 

condition can therefore be likened to a scenario in which the target region 

contained full-contrast information, without the influence of contextual 

feedback from the surround. We observe a considerably higher BOLD response to 

the target mapping stimulus than any of the four conditions of interest. Thus, 

illustrating that the contextual effects we are investigating are of smaller 

magnitude than if the target region were to be stimulated by non-degraded 

feedforward information.  

It is also worth noting that in our first eight subjects, the fixation cross remained 

white for the duration of the trial (both stimulus presentation and blank grey 

screen during the ISI). We reasoned that as the target image was presented at 

threshold contrast level, there will be trials in which the subject does not 

consciously perceive any information in the target region. This could pose a 

problem during the Target-Only trials as subjects may not recognise a target 

region stimulus presence and thus, the processing of such trials could differ 

based on an attention-related effect. We therefore decided to proceed by 

including a fixation cross colour change when the stimulus was presented in all 

conditions, with the aim of reducing any impact of awareness (or lack thereof) in 

the Target Only condition. Figure 3.7 depicts the different BOLD response in the 

Target Only condition in the subjects without the fixation cross colour change 

(unaware - Target Only – U) and the subjects with the fixation cross colour 

change (aware - Target Only – A). When subjects are aware of a trial being 

presented, there is a considerably higher BOLD response than when subjects are 

unaware of a trial presentation, implying an attentional effect which drives a 

greater haemodynamic response.  
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Figure 3.7 Comparing attentional effects. The haemodynamic response in V1 target region 
ROI across subjects, as a function of time. Focusing on the yellow lines which depict the 
Target Only condition in which there is no high-contrast information in the surround. The 
unaware subjects (Target Only – U) were presented with trials in which the fixation cross 
remained the same throughout the entire trial, meaning in the Target Only condition they 
were at least sometimes unaware that a stimulus had been presented. In the aware subjects 
(Target Only – A), we introduced a fixation cross colour change when a stimulus was being 
displayed, meaning they were then made aware that there was a stimulus present even in 
the Target Only condition. Error bars represent Standard Error. 

 

3.4.2.2 Correct Trials Only 

We then limit our interest only to trials in which the subjects responded 

correctly. At the peak time-window, we find no significant difference between 

the BOLD response amplitude in the Consistent and Inconsistent conditions 

(β=.368 (SE=.371), t=.991, p=.321). Again, the Context Only condition elicits a 

similar response amplitude to the conditions in which there is scene information 

in both the surround and target regions (Consistent and Inconsistent conditions), 

however this is still significantly lower than the Consistent (β =.702 (SE=.322), 

t=2.180, p=.029) but not the Inconsistent condition (β =.334 (SE=.348), t=.961, 

p=.337), implying feedforward information does contribute to some of the peak 

BOLD response, especially when it is consistent with the information in the 

surround. The Target Only condition results in a significantly lower BOLD 
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response amplitude than all other conditions which contain surround 

information, (ps<.001).  

In the post-peak time window, the BOLD response for the conditions in which 

there is information in the surround (i.e., those which drive the highest peak 

BOLD response) decreases whereas the Target Only condition response remains 

fairly stable. As such, all conditions elicit a similar BOLD response amplitude in 

this time-window, and we find no significant differences between any conditions 

(all ps>0.05).  

In the recovery time-window, we see a similar response pattern in the correct 

trials only as we do across all trials, with the conditions in which there is 

information in both the surround and target regions having more of an 

undershoot than trials in which information is absent in either the surround or 

target regions. Here, the response amplitude is significantly higher in the Target 

Only condition than both the Consistent (β=-.929 (SE=.359), t=2.588, p.009) and 

Inconsistent (β =-1.499 (SE=.381), t=-3.936, p=.001) conditions but is not 

significantly higher than the Context Only condition (β =.493 (SE.335), t=1.473, 

p=.141). The response amplitude in the Context Only condition is significantly 

higher than the Inconsistent (β1.006 (SE=.35) t=-2.873, p=.004) but not the 

Consistent (β=-.436 (SE=.325), t=-1.343, p=.179) condition. Figure 3.8 displays 

the BOLD response in the correct trials only. 
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Figure 3.8 V1 BOLD response for correct trials only. Haemodynamic response in the target 
region of V1 for each consistency condition, for trials in which the subjects responded 
correctly. The x-axis displays time in seconds post-stimulus-onset and the y-axis displays 
the beta estimates of the BOLD response. Error bars represent Standard Error. 

 

To sum, much like the response profile across all trials, in trials in which the 

subject responded correctly, the peak BOLD response appears to be driven by 

contextual information in the surround. When surround information is missing in 

the Target Only condition, the BOLD response amplitude is significantly lower, 

however this could also reflect the lower contrast of the available information as 

well as the fact that less of the visual field is being stimulated in the Target Only 

condition. Following the peak of the BOLD response, the conditions in which 

more information is available to the observer (in the form of both feedforward 

information in the surround and feedback information in the target region) have 

a greater undershoot than conditions in which information is absent to some 

degree. The type of information present in the context does not appear to 

influence the BOLD response amplitude.   

3.4.3 Multivariate Analysis (V1) 

3.4.3.1 Cross-Validation 

We also ran multivariate pattern analysis on the V1 ROIs. While different 

information in the surround may not influence the signal amplitude, the pattern 
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of response may differ depending on the content of the context. In this cross-

validation, we trained and tested an SVM classifier to be able to decode the 

information in the target region (either a beach or a mountain) within each of 

the four consistency conditions. The classifier was trained on n-1 runs within 

each condition and tested on the remaining run. This was repeated until each 

run was tested in turn and the results were averaged across runs. (See Methods 

section 3.3.6 for further details). 

 

Figure 3.9 MVPA V1 cross-validation results. Results of a cross-validation analysis in which 
a classifier was trained on n-1 runs within each consistency condition to determine the 
content of the target region (beach versus mountain). Percentage classifier performance (y-
axis) is displayed for each consistency condition (x-axis). The top and bottom edges of the 
box indicate the 75th and 25th percentiles, respectively, with the median denoted with a solid 
black line. The whiskers depict the range, excluding outliers (which are denoted by +). The 
horizontal dashed line indicates chance-level performance at 50%. Performance 
significantly different from chance is denoted by *.  

 

Figure 3.9 displays the results of the cross-validation analysis. A Wilcoxon Signed 

rank test reveals the classifier is able to accurately decode the target region 

significantly above chance in the Consistent (Mean=57.92%, Median=57.5%, 

SD=11.34%), p=.004, Inconsistent (Mean=59.27%, Median=55%, SD=12.86%), 

p=.004, and Context Only (Mean=56.77%, Median=55%, SD=11.22%), p=.013, 

conditions. The classifier is unable to decode the target region in the Target 

Only condition (Mean=50.31%, Median=50.0%, SD=8.67%), (p=.861). Differences 

between the conditions in which the classifier can accurately decode are not 
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significant (ps>.05), however the Target Only condition classifier performance is 

significantly lower than all other conditions (ps<.05). The classifier is therefore 

only able to decode when the stimulus condition contains information in the 

surround, implying that information from the surround is present in the BOLD 

response signal in the target region. The classifier loses its ability to decode the 

target region when no information is present in the surround and only low-

contrast information is present in the target region.  

3.4.3.2 Cross-Classification 

Following cross-validation we then sought to test whether the classifier could 

cross-classify between conditions in the target region. We ran an SVM cross-

classification analysis with three scenarios to test how accurately the classifier 

could distinguish between beach and mountain images between conditions. In 

the feedback cross-classification analysis, we trained the classifier on the 

Context Only condition which is akin to training purely based on feedback signals 

from the surround (as no feedforward information is present in the target region 

in this condition). Once trained on feedback information, we tested the 

classifier on being able to decode in each of the other conditions. Conversely, 

we then trained the classifier on the purely feedforward (Target Only) condition 

and tested on the other conditions. Lastly, we trained the classifier on the 

Consistent condition, which contains compatible feedforward and feedback 

signals and tested on each of the other conditions. Figure 3.10 summarises the 

cross-classification results.  



3 155 
 

 

Figure 3.10 V1 cross-classification results. Results from the cross-classification MVPA 
analysis in which the classifier was trained on purely feedback (top), purely feedforward 
(middle) and consistent feedback and feedforward (bottom) information and tested on all 
other conditions in turn. Classifier performance as a percentage is plotted for each 
condition, reflecting the classifier’s ability to determine the content of the target region as 
either a beach or mountain scene. The top and bottom edges of the box indicate the 75th and 
25th percentiles, respectively, with the median denoted with a solid black line. The whiskers 
depict the range, excluding outliers (which are denoted by +). The dashed black line 
represents chance-level performance at 50%. Performance significantly different from 
chance is denoted by *. 

 

When the classifier was trained on purely feedback information (Context Only 

condition), classifier performance was highest for the Consistent condition 

(Mean=55.89%, Median=55%, SD=8.96%), a Wilcoxon Signed rank test reveals this 

is significantly above chance (p=.009). Accuracy for the Inconsistent condition 

drops to significantly below chance (p=.001), with a mean accuracy of 43.18%, 

median of 43.13% and SD of 8.18%. When tested on purely feedforward 

information (Target Only condition), mean accuracy was 49.53%, with a median 

of 49.36% and SD of 6.34%. This is not significantly different from chance level 

(p=.772). Differences between all conditions were significant (ps<.05).  
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When trained on feedforward information (Target Only condition), the decoding 

accuracy does not differ significantly from chance in the Consistent (p=.250), 

Inconsistent (p=.279) or Context Only (p=.772) conditions. The Inconsistent 

condition results in a slightly higher decoding accuracy (Mean=55.93%, 

Median=51.25%, SD=6.78%) compared to the Consistent (Mean=51.78%, 

Median=50%, SD=6.52%) and Context Only (Mean=49.58%, Median=51.25%, 

SD=6.34%). The decoding accuracy did not differ significantly between conditions 

(ps>.05).  

When trained on consistent feedforward and feedback information (Consistent 

condition), the classifier is only able to accurately decode above chance in the 

Context Only condition (p=.0092) with a mean decoding accuracy of 55.89% 

(Median=55%, SD=8.96%). Accuracy drops to around chance for the Target Only 

condition (Mean=51.77%, Median=50%, SD=6.52%) and slightly lower for the 

Inconsistent condition (Mean=47.08%, Median=45.63%, SD=7.85%), although 

neither of these differ significantly from chance level classification (p=.250 and 

p=.072, respectively). The classifier performed significantly worse in the 

Inconsistent condition than both the Target Only (p=.033) and Context Only 

(p=.011) conditions but the Target Only and Context Only conditions did not 

differ significantly from each other (p=.072) in classification performance.  

To sum, when the classifier was trained on purely feedback information from the 

surround, it was only able to accurately decode the target region in the 

Consistent condition, when both feedback and feedforward information were 

compatible. Performance dropped to significantly below chance when the 

information in the surround and target regions were inconsistent and classifier 

performance was around chance level when tested on purely feedback 

information in the target region. When trained on purely feedforward 

information (low-contrast information in the target region) the classifier was not 

able to cross-classify significantly above chance when tested on any of the three 

remaining conditions. When trained on the condition in which both feedback and 

feedforward information is compatible, the classifier is only able to accurately 

decode when tested on information in the surround only.   
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3.4.4 Univariate Analysis V2 

3.4.4.1 All Trials 

We were able to adequately define V2 target region ROIs in twenty-two out of 

the twenty-four participants. Looking at BOLD response amplitude overall, the 

response is slightly lower in V2 than V1, for both the conditions in which the 

target region is shown at low-contrast and in the target mapping condition in 

which the target region contains high-contrast mapping stimuli.  

Unlike in V1, we find a significant peak difference in BOLD response amplitude 

between the Consistent and Inconsistent conditions, with Inconsistent stimuli 

eliciting a significantly higher BOLD response than Consistent stimuli (β=-.684 

(SE=.281), t=-2.435, p=.0149) This distinction continues through the post-peak 

and recovery time frames but does not reach significance in either of these 

windows (ps>.05).  

As in V1, the Target Only condition has a significantly lower peak BOLD response 

than the Consistent (=.724 (SE=.281), t=2.577, p=.009), Inconsistent (β=1.409 

(SE=.281), t=5.011, p<.001) and Context Only (β=-.943 (SE=.281), t=3.354, 

p=.001) conditions. In the post-peak and recovery time windows, the Target Only 

condition elicits a significantly higher BOLD response than all other conditions 

(post-peak: Consistent (β=-1.318 (SE.282), t=-4.677, p<.001), Inconsistent (β=-

.806 (SE=.282), t=.031, p=.004), Context Only (β=.815 (SE=.282), t=2.891, 

p=.004), which is also found in the recovery time window (ps<.001). This effect 

is observed in V1 but does not reach significance for all conditions as we find 

here in V2.  

We find no significant differences in between the Context only condition and 

either the Consistent or Inconsistent conditions in any of the three time windows 

(ps>.05). The BOLD response is similar in amplitude to trials in which the target 

region contains low-contrast information, and the surround contains high-

contrast information, implying the BOLD response we observe is driven mainly by 

information in the surround, at least at the peak. Results are summarised in 

Figure 3.11.   
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Figure 3.11 V2 BOLD response. Haemodynamic response of V2 target region ROIs across 
participants (N=22). Beta estimates (y-axis) are plotted as a function of time (seconds post-
stimulus-onset, x-axis) for each consistency condition. The top figure includes the target 
mapping condition in which a high contrast stimulus is presented in the target region, 
driving a higher BOLD response. The bottom figure removes this condition to illustrate any 
differences between the low-contrast consistency conditions. Error bars represent Standard 
Error. 
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3.4.4.2 Correct Trials Only 

Limiting our analysis to correct trials only, we see the same effects as with all 

trials being included (Figure 3.12). We find a significant difference between the 

Consistent and Inconsistent conditions in both the peak (β-.787 (SE=.376), t=-

.2903, p=.036) and post-peak (β=-.766 (SE.376), t=-2.034, p=.042) time windows, 

with Inconsistent trials eliciting a significantly higher BOLD response amplitude 

than trials in which the surround and target region were Consistent. As with all 

trials, this response amplitude profile reverses in the recovery time window and 

the BOLD response amplitude for Consistent trials is higher than Inconsistent 

trials, however this difference does not reach significance (β.322 (SE=.378), 

t=.851, p=.394).  

BOLD response amplitude in the Target Only condition is lower than all other 

conditions at the peak, however this only reaches significance between the 

Inconsistent and Target Only condition (β=1.239 (SE=.383), t=3.234, p=.001). The 

Context Only condition response is also lower at the peak than the two 

conditions which contain both surround and target information, however this 

does not reach significance (ps>.05).  

In the post-peak and recovery time windows, we find a higher BOLD response in 

the conditions in which information is only available in either the target or 

surround region, compared to the conditions in which both types of input are 

present. The Target Only condition response amplitude is significantly higher 

than the Consistent condition (β=-1.502 (SE=.358), t=-4.199, p<.001) and almost 

significant for the Inconsistent condition (β-.736 (SE=.383), t=-1.920, p=.055). 

The Context Only condition is also only significantly higher than the Consistent 

condition (β=-.864 (SE=.324), t=-2.667, p=.008) and not the Inconsistent 

condition (β-.098 (SE=.353), t=-.279, p=.779).  The Target Only condition elicits 

a higher response amplitude than the Context Only condition, but this does not 

quite reach significance in the post-peak time window (β=.638 (SE=.333), 

t=1.916, p=.055).  

In the recovery window, the distinction between Target Only and Context Only 

response amplitude increases, with the Target Only condition eliciting a 

significantly higher response than the Context Only condition (β=.713 (SE=.335), 



3 160 
 
t=2.126, p=.033). The Target Only condition response is also significantly higher 

than both the Consistent (β=-.938 (SE=.360), t=-2.609, p=.009) and Inconsistent 

(β=-1.260 (SE=.385), t=-3.275, p=.001) conditions whereas the response in the 

Context Only condition does not differ significantly from either Consistent or 

Inconsistent responses (ps>.05).  

 

Figure 3.12 V2 BOLD response for correct trials only. Haemodynamic response for trials in 
which subjects responded correctly. Beta estimates are plotted as a function of time post-
stimulus-onset for each consistency condition. Error bars represent Standard Error. 

 

 

3.4.5 Multivariate Analysis V2 

3.4.5.1 Cross-Validation 

Multivariate cross-validation analysis on the V2 ROIs concerning the ability to 

decode the content of the target region reveals distinctions between some of 

the experimental conditions. The classifier can decode significantly above 

chance (p=.015) only in the Inconsistent condition (Mean=56.36%, 

Median=53.75%, SD=10.20%) but not in the Consistent (Mean=52.27%, 



3 161 
 
Median=50%, SD=6.48%), Target Only (Mean=52.73%, Median=55.00%, SD=11.90%) 

and Context Only (Mean=52.50%, Median=52.50%, SD=10.72%) conditions which 

do not allow for decoding accuracy significantly above chance (p=.195, p=.286, 

p=.253, respectively). The mean decoding accuracies do not differ significantly 

between conditions (ps>.05). Figure 3.13 shows the cross-validation performance 

for each of the four conditions.  

 

Figure 3.13 MVPA cross-validation results for V2. Multivariate cross-validation classification 
results for V2 ROIs (N=22). Classifier performance (%) is plotted for each consistency 
condition. The top and bottom edges of the box indicate the 75th and 25th percentiles, 
respectively, with the median denoted with a solid black line. The whiskers depict the range, 
excluding outliers (which are denoted by +). The dashed black line depicts chance-level 
performance (50%). Performance that differs significantly from chance is denoted by *.   

 

3.4.5.2 Cross-Classification 

We employed the same cross-classification analysis to V2 ROIs as we did to V1; 

we trained the classifier on purely feedback information (Context Only 

condition), purely feedforward information (Target Only) and consistent 

feedforward and feedback information (Consistent condition) in turn and tested 

on the remaining conditions. 
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When trained on purely feedback information, the classifier was not able to 

accurately decode above chance in any of the three conditions. Mean accuracy 

in the Consistent condition was 50.23% (Median=51.25%, SD=8.30) and this 

performance was not significantly above chance level (p=.741). Performance 

decreases in the Inconsistent condition with a Mean accuracy of 46.25% 

(Median=46.88%, SD=7.07%). This decreased performance accuracy is 

significantly below chance level (p=.016) implying that the contribution of 

incompatible feedforward signals interferes with classifier performance. When 

tested on the Target Only (i.e., purely feedforward information), performance 

again is around chance level (p=.346), (Mean=48.13%, Median=50.63%, 

SD=6.02%). Performance between conditions does not differ significantly from 

each other (ps>.05). Thus, it appears that when trained on feedback information 

from the surround, the classifier cannot accurately decode the content of the 

target region above chance level in V2 ROIs. Performance is hindered when 

incompatible feedforward information is present in the target region.  

When trained on feedforward information the classifier was not able to 

accurately decode the content of the target region significantly above chance in 

V2 in the Consistent (Mean=52.39%, Median=41.88%, SD=5.60%, p=.050), 

Inconsistent (Mean=52.33%, Median=51.25%, SD=7.05%) or Context Only 

(Mean=48.13%, Median=50.63%, SD=6.02%) condition (ps>.05). Only the 

Inconsistent and Context Only conditions differed significantly from each other 

(p=.042).  

When trained on the Consistent condition, the classifier is not able to decode 

significantly above chance in the Target Only condition (Mean=52.39, 

Median=51.88, SD=5.60). Performance in the Inconsistent (Mean=49.72, 

Median=48.75, SD=6.41) and Context Only (Mean=50.23%, Median=51.25%, 

SD=8.30%) are even closer to chance level (ps>.05). Therefore, when trained on 

contributions from both feedforward and feedback signals, the classifier cannot 

accurately decode the content of the target region. Performance between 

conditions does not differ significantly. Figure 3.14 depicts classifier 

performance in each of the three training and testing scenarios.  
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Figure 3.14 V2 MVPA cross-classification results. Multivariate cross-classification results 
for V2 target-region ROIs when trained on feedback (top), feedforward (middle) and 
consistent (bottom) information and tested on the remaining conditions. Classifier 
performance as a percentage is plotted for each consistency condition. The top and bottom 
edges of the box indicate the 75th and 25th percentiles, respectively, with the median 
denoted with a solid black line. The whiskers depict the range, excluding outliers (which are 
denoted by +). The dashed black line shows chance-level performance at 50%.  

 

3.5 Results Higher Contrast Experiment  

3.5.1 Psychophysics 

In The Higher-Contrast Experiment, the low-contrast target region was shown at 

each subject’s 75% threshold contrast-level. I.e., the contrast level at which 

subjects detected a stimulus presence 75% of the time. Results of the 

psychophysical data in this experiment reveals the same pattern of results as 

previously observed. Consistent information in the surround increases 

performance accuracy (Mean=90.71%, SD=9.49) of the recognition task compared 

to trials in which there is no information in the surround (Mean=86.38%, 

SD=11.67), or the information in the surround is inconsistent (Mean=76.65%, 
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SD=14.79). Compared to the lower-contrast experiment, performance accuracy 

is higher in each consistency condition. This reflects the higher contrast level of 

the target region in this experiment. We find a significant effect of consistency 

on performance accuracy (F(2, 46) = 11.346, p<.001). Bonferroni-corrected post-

hoc tests reveal a significant difference between Consistent and Inconsistent 

trials and Inconsistent and Target Only trials but performance in the Consistent 

and Target Only trials is not significantly different. This implies that consistent 

contextual information does not necessarily improve perception of degraded 

information in the target region, (as performance is similar to instances in which 

there is no contextual information available). Instead, Inconsistent information 

in the surround hinders ability to identify low-contrast scene information. In 

other words, information in the context only influences recognition of low-

contrast information if it is incongruent.  

Analysis of the data using Signal Detection Theory reveals a slight overall 

tendency for subjects to respond according to the surround, (criterion value = -

0.3586). Despite this, subjects overall show a degree of sensitivity in being able 

to determine the content of the target region (dPrime = 2.5088) which is above 

chance-level performance. Thus, subjects are reliably able to perform the task 

despite a slight tendency toward basing their decision on information in the 

surround. Figure 3.15 and Table 3.3 summarise the behavioural test results.    

 

Figure 3.15 Psychophysical results for the higher-contrast experiment. The left figure 
displays performance accuracy as a percentage for each of the consistency conditions. The 
figure on the right shows the SDT-based measures of response bias (criterion) and 
sensitivity (dPrime).  
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Hit Ratio False Alarm Ratio Response Bias 
(c) 

Sensitivity 
(dPrime) 

 
0.9071 

 
0.2335 

 

 
-0.3586 

 
2.5088 

Table 3.3 SDT results for the higher-contrast experiment. Results from the signal-detection-
based analysis. The Hit ratio and False Alarm ratio are used to calculate response bias 
(criterion) and sensitivity (dPrime).  

 

3.5.2 Univariate Analysis V1 

3.5.2.1 All Trials 

Looking at the BOLD response amplitude (Figure 3.16), we firstly note that there 

is a stronger BOLD response in this experiment compared to the lower contrast 

experiment, which would be expected due to the higher contrast of the target 

region.  
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Figure 3.16 V1 BOLD response. Haemodynamic response in the V1 target region ROI across 
participants (N=24). Beta estimates are plotted as a function of time for each consistency 
condition. In the top figure, the target mapping condition is included in which a high 
contrast stimulus is presented in the target region, driving a higher BOLD response and 
providing perspective for the low-contrast conditions. In the bottom figure, this condition is 
removed and differences between the low-contrast target region conditions can be 
observed. Error bars represent Standard Error. 
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When looking for an effect of consistency, we find no significant differences 

between the Consistent and Inconsistent conditions in any of the three time 

windows (ps>.05). In the peak response window, the Context Only condition 

elicits a significantly lower BOLD response amplitude than both the Consistent 

(β=.747 (SE=.300), t=2.489, p=.013) and Inconsistent (β=.697 (SE=.300), t=2.322, 

p=.020) conditions. This distinction likely reflects the higher contrast of the 

target region in this experiment, meaning the BOLD signal is significantly 

reduced when there is no information in the Target region. As in The Lower-

Contrast Experiment, the Target Only condition results in a significantly lower 

peak BOLD response amplitude than the Consistent, Inconsistent and Context 

Only (ps<.001) conditions. However, in this experiment, this reduction in 

response when contextual information is absent is less pronounced than in The 

Lower-Contrast Experiment in which the target region contained weaker 

feedforward information. Therefore, this finding likely reflects a stronger 

feedforward signal in the Target Only condition.  

In the post-peak time window, the decreased BOLD response in the Target Only 

condition with respect to the conditions containing contextual information is 

maintained (ps<.05). The significant difference between the Context Only 

condition and the Consistent and Inconsistent conditions observed in the peak 

time-window disappears in the post-peak phase (ps>.05). The response 

amplitude is similar across all conditions with only a significant difference being 

observed between the Context Only and Target Only (β=-1.369 (SE=.301), t=-

4.551, p<.001) conditions however, this effect decreases as a function of time. 

The response amplitude for all conditions is similar in the recovery time-window, 

with the only significant difference being observed between the Inconsistent and 

Context Only condition (β=-.661 (SE=.302), t=-2.188, p=.029). We do not observe 

the differences in undershoot profiles that we consider in The Lower-Contrast 

Experiment.   

Again, it is worth noting for perspective the difference in signal amplitude 

between the experimental conditions and the target mapping condition, as with 

the lower contrast experiment, the target mapping condition elicits a much 

higher BOLD signal response amplitude. This is as expected as the target 

mapping condition stimulates the cortical target region with high contrast 
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stimuli, compared to low-contrast scene information in the experimental 

conditions.  

3.5.2.2 Correct Trials Only 

 

Figure 3.17 V1 BOLD response for correct trials only. Haemodynamic response function in 
the V1 target region for trials only in which the subjects responded correctly. Beta estimates 
are plotted as a function of time for each of the consistency conditions. Error bars represent 
Standard Error. 

 

Focusing only on trials in which subjects responded correctly (Figure 3.17), we 

find an almost significant difference between the Consistent and Inconsistent 

conditions at the peak (β=-.654 (SE=.335), t=-1.952, p=.051), with Inconsistent 

eliciting a higher BOLD response than the Consistent in correct trials. This 

difference does not persist beyond the peak and there is no significant 

difference between the two conditions in the post-peak or recovery time 

windows (ps>.05).  

In the peak time-window, BOLD response in the Target Only condition is 

significantly lower than the Consistent (β=3.862 (SE=.323), t=11.939, p<.001) 

Inconsistent (β=4.516 (SE=.339), t=13.327, p<.001) and Context Only (β =3.210 
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(SE=.380), t=-8.453, p<.001) conditions. The Context Only condition is also 

significantly lower than the Inconsistent (β=1.307 (SE=.390), t=3.353, p=0.001) 

but not the Consistent condition (p>.05).  

In the post-peak time window, the significant difference between the Consistent 

and Inconsistent condition is eradicated (p=0.827) and both conditions lose 

response amplitude. The response amplitude in the Context Only condition 

decreases significantly less than the Consistent (β=-.812 (SE=.377), t=-2.153, 

p=0.031), Inconsistent (β=-.866 (SE=.390), t=-2.271, p=0.023) and Target Only 

(β=-2.215 (SE=.380), t=-5.824, p<.001) conditions, resulting in a higher response 

amplitude than conditions which contain feedforward information. The response 

in the Target Only condition remains lower than the other three conditions, 

significantly so for both Consistent (β=1.403 (SE=.324), t=4.330, p<.001) and 

Inconsistent (β=1.328 (SE=.339), t=3.914, p<.001) conditions. 

In the recovery phase, we observe a less pronounced undershoot in the Context 

Only condition which is significant compared to the Consistent (β=-.961 

(SE=.379), t=-2.535, p=.011), Inconsistent (β=-.849 (SE=.392), t=-2.165, p=0.030) 

and Target Only (β=-1.053 (SE.382), t=-2.756, p=.006) conditions. The other 

three conditions do not differ significantly from one another (ps>.05). It 

therefore appears that a lack of information in the target region results in less of 

an undershoot of the BOLD response amplitude.  

3.5.3 Multivariate Analysis V1 

3.5.3.1 Cross-Validation 

In the cross-validation multivariate analysis (Figure 3.18), we find that the 

classifier is only able to perform significantly above chance in the Inconsistent 

(Mean=56.15%, Median=55.00%, SD=12.45%, p=.027) and Target Only condition 

(Mean=55.73%, Median=56.25%, SD=9.82%, p=.008) but does not perform above 

chance in either the Consistent (Mean=53.54%, Median=53.75%, SD=10.73%, 

p=.154) or Context Only (Mean=51.25%, Median=51.25%, SD=11.28%, p=.625). In 

other words, the classifier is only able to accurately distinguish scene 

information in the target region when the feedback signals are incompatible or 

absent in this experiment. Only the Target Only and Context Only conditions 
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differ significantly from one another (p=.038), the other conditions have overall 

similar performance accuracies (ps>.05).  

 

Figure 3.18 V1 cross-validation classification results. Classifier performance on the cross-
validation analysis is plotted as a percentage for each of the four consistency conditions. 
Performance reflects the classifier’s ability to decode a beach versus mountain scene in the 
target region. The top and bottom edges of the box indicate the 75th and 25th percentiles, 
respectively, with the median denoted with a solid black line. The whiskers depict the range, 
excluding outliers (which are denoted by +). The dashed black line depicts chance-level 
performance of 50%. Performance that differs significantly from chance is denoted by *.  

 

3.5.3.2 Cross-Classification 

In the first scenario, with the classifier trained on feedback information, we find 

that we are not able to decode significantly above chance in any of the three 

conditions (ps>.05). Despite this, performance is highest in the Consistent 

condition (Mean=52.45%, Median=50.63%, SD=7.05%) and drops significantly in 

the Inconsistent condition compared to Consistent performance (p=0.043), 

(Mean=46.72, Median=45.63%, SD=8.47%). The Target Only condition results in 

performance levels between the Consistent and Inconsistent conditions 

(Mean=50.16%, Median=47.5%, SD=6.97%).  

Training on purely feedforward information results in chance level performance 

across all conditions (ps>.05). Consistent: Mean=50.47%, Median=50%, SD=5.76; 

Inconsistent: Mean=48.49%, 47.50%, SD=5.12%; Context Only: Mean=50.16, 
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Median=47.50, SD=6.97%. Performance did not differ significantly between 

conditions (ps>.05).  

Finally, when trained on consistent feedforward and feedback information, we 

also find that the classifier is unable to decode significantly better than chance 

in the Inconsistent (Mean=47.50%, Median=46.88%, SD=6.34%), Target Only 

(Mean=50.47%, Median=50.00%, SD=5.76%) or Context Only (Mean=52.45%, 

Median=50.63%, SD=7.05%), all ps>.05. We also find no significant differences 

between performance in any of the conditions (ps>.05). Classifier performance 

across the three cross-classification scenarios is summarised in Figure 3.19.  

To sum, we don’t find any evidence of significant cross-classification ability in 

target region V1 in any of the training/testing scenarios. We observe a general 

pattern in which decodability is reduced in the Inconsistent condition relative to 

the other conditions, but this is not enough of an effect to reach significance. 

The overall lack of findings with this cross-classification analysis could imply that 

when the feedforward signal is stronger (relative to The Lower-Contrast 

Experiment), the feedback signal patterns become less pronounced, influencing 

the classifier’s ability to be able to distinguish the target region.  
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Figure 3.19 V1 cross-classification results. Classifier performance (as a percentage) plotted 
for each consistency condition for each of the three cross-classification scenarios. The 
classifier is trained on feedback (top), feedforward (middle) and consistent feedback and 
feedforward information (bottom) in turn and tested on each of the other consistency 
conditions. The top and bottom edges of the box indicate the 75th and 25th percentiles, 
respectively, with the median denoted with a solid black line. The whiskers depict the range, 
excluding outliers (which are denoted by +). The dashed black line represents chance-level 
performance at 50%. 

 

3.5.4 Univariate Analysis V2 

3.5.4.1 All Trials 

 Including all trials in a univariate analysis of BOLD response amplitude, the 

general response is lower in V2 than V1, an observation we also note in the 

lower-contrast experiment. BOLD response in this Experiment is higher than the 

V2 response in the lower-contrast experiment, likely due to the increased 

stimulus contrast in this experiment.  

We find no significant differences between the Consistent and Inconsistent 

conditions in any of the three time windows (ps>.05). In fact, the response 
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profile across all conditions is similar, an observation we do not find in The 

Lower-Contrast Experiment. Again, this can likely be contributed to the 

increased strength of the feedforward input.  

In the peak time-window however, we still find a significantly lower BOLD 

response in the Target Only condition compared to both the Consistent (β=.891 

(SE=.291), t=3.064, p=.002) and Inconsistent (β=1.115 (SE=.291), t=3.832, 

p<.001) conditions. The response between Target Only and Context Only is not 

significantly different. The Context Only condition response is significantly lower 

than the Inconsistent (β=.768 (SE=.291), t=2.640, p=.008) but not the Consistent 

(p=.061) condition. It is worth noting that upon visually inspecting the 

haemodynamic response for V2 in this Experiment, the actual peak response 

appears to be earlier than we have accounted for in the previous sections 

(approximately 6s post-stimulus-onset compared with our previously defined 

peak of 8s post-onset), however, we have used the same time-windows to 

maintain consistency across analyses.  

In the post-peak time-window we find a significantly lower response in the 

Target Only condition (versus the Consistent (β=.994 (SE=.291), t=3.411, 

p<.001), Inconsistent (β=.702 (SE=.291), t=2.410, p=.016) and Context Only (β=-

.814 (SE=.291), t=-2.792, p=.005) conditions). The Context Only condition 

response does not differ significantly from either the Consistent (p=.536) or 

Inconsistent (p=.705) conditions.  

In the recovery timeframe, we observe a greater undershoot of the BOLD 

response in both conditions containing information in the surround and target 

regions. The Target Only and Context Only conditions have a similar response 

amplitude (p=.722). The Target Only condition differs significantly from the 

Inconsistent (β=-.585 (SE=.293), t=-1.999, p=.045) but not the Consistent 

(p=.116) condition. The Context Only condition also differs significantly from the 

Inconsistent (β=-.688 (SE=.293), t=-2.350, p=.019) condition and almost reaches 

significance when compared to the Consistent condition (p=.054). Figure 3.20 

summarises the response profile across conditions.  
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Figure 3.20 V2 BOLD response. Beta estimates as a function of time (post-stimulus-onset) 
for each consistency condition in V2 target region ROIs across subjects. The top plot 
includes the target mapping condition which stimulates the visual cortex with a high 
contrast flickering image, driving a higher BOLD response. The bottom plot removes this 
condition to closer inspect differences between the low-contrast consistency conditions. 
Error bars represent Standard Error. 
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3.5.4.2 Correct Trials Only 

Focusing only on the trials in which the subjects responded correctly by 

eliminating any trials in which they responded incorrectly or did not respond at 

all, we find significant differences in the BOLD response amplitude in V2 

(summarised in Figure 3.21).  

 

Figure 3.21 V2 BOLD response for correct trials only. BOLD response (as beta estimates) as 
a function of time post-stimulus-onset for each consistency condition in V2 ROIs for trials in 
which subjects responded correctly only. Error bars represent Standard Error. 

 

In the peak time-window, the Inconsistent condition has a significantly higher 

BOLD response than all other conditions (Consistent: β=-.892 (SE=.324), t=-

2.757, p=.006; Target Only: β=1.578(SE=.328), t=4.814, p<.001; Context Only: 

β=1.746 (SE=.377), t=4.624, p=<.001). The Consistent condition also elicits a 

higher response than both the Target Only (β=.686 (SE=.312), t=2.194, p=.028) 

and Context Only (β=.853 (SE=.364), t=2.343, p=.019) conditions. The Target 

Only and Context Only condition responses do not differ significantly from each 

other (p=.648).  
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The distinction between the Consistent versus Inconsistent response decreases in 

the post-peak recovery window and does not reach significance (p=.668). The 

Target Only condition however has a significantly lower response than the 

Consistent (β=1.012 (SE=.313), t=3.234, p=.001), Inconsistent (β=.873 (SE=.328, 

t=2.661, p=0.008) and Context Only (β=-1.261 (SE=.369), t=-3.421, p=.001) 

conditions. In contrast, the Context Only condition has a similar response to the 

Consistent (p=.496) and Inconsistent (p=.305) conditions.  

In the recovery time window, the responses across conditions are similar, the 

Context Only has a slightly less pronounced undershoot than all other conditions 

but this does not reach significance (ps>.05).  

Therefore, when we know subjects can correctly identify the content of the 

target region, there is a distinction in their BOLD response between conditions in 

V2, with Inconsistent trials eliciting a higher response.  

3.5.5 Multivariate Analysis V2 

3.5.5.1 Cross-Validation 

Results of a cross-validation analysis (in which we train and test the classifier 

within each condition) reveal that the classifier is not able to accurately decode 

the content of the target region above chance in any of the four conditions 

(ps>.05). The Consistent condition resulted in the highest performance accuracy 

(Mean=52.76%, Median=55%, SD=9.71%), whereas performance was similar for the 

Inconsistent (Mean=50%, Median=50%, SD=9.90%), Target Only (Mean=50.92%, 

Median=50%, SD=9.94%) and Context Only (Mean=50.39%, Median=50%, 

SD=10.48%) conditions. The conditions did not differ significantly from each 

other (ps>.05). Figure 3.22 summarises the cross-validation classification results.  
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Figure 3.22 MVPA cross-validation results for V2. Classifier performance as a percentage is 
plotted for each consistency condition. The top and bottom edges of the box indicate the 
75th and 25th percentiles, respectively, with the median denoted with a solid black line. The 
whiskers depict the range, excluding outliers (which are denoted by +). The dashed line 
represents chance-level performance at 50%.  

 

3.5.5.2 Cross-Classification 

When trained on purely feedback information (Context Only condition), we find 

a similar pattern of performance accuracy as we found in V1. The consistent 

condition resulted in the highest accuracy (Mean=51.64%, Median=52.50%, 

SD=6.90%). Performance dropped in the Inconsistent condition (Mean=48.95%, 

Median=47.50%, SD=6.85%) and was closest to chance in the Context Only 

condition (Mean=51.64%, Median=50%, SD=7.03%), however performance did not 

differ significantly from chance in any of the three conditions (ps>.05).  

When trained purely on feedforward information (Target Only condition), the 

classifier again cannot decode significantly above chance in any of the three 

remaining conditions (ps>.05). In contrast to the scenario in which the classifier 

is trained on feedback information, when trained on feedforward information, 

testing on the Consistent condition resulted in the lowest performance accuracy 

(Mean=50.79%, Median=48.75%, SD=7.07%), compared to the Inconsistent 

(Mean=51.18%, Median=53.75%, SD=7.15%) and Context Only (Mean=51.64%, 

Median=50%, SD=7.03) conditions.  
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When trained on Consistent feedforward/feedback information, the classifier 

was unable to accurately decode the target region scene in the Inconsistent 

(Mean=51.91%, Median=52.50%, SD=7.43%), Target Only (Mean=50.79%, 

Median=48.75%, SD=7.07%) or Context Only (Mean=51.64%, Median=52.50%, 

SD=6.90%), (ps>.05). We also find no significant differences in accuracy between 

the conditions tested (ps>.05).  

In sum, like classification performance in V1 in this Experiment, we are unable 

to distinguish between scenes of the target region using cross-classification. As 

we were able to do so in The Lower-Contrast Experiment when the feedforward 

information was weaker, the difficulty could be due to interference from the 

higher-contrast feedforward information present in this experiment. Figure 3.23 

summarises the MVPA results in each scenario.  

 

Figure 3.23 V2 MVPA cross-classification results. The figure depicts three training/testing 
scenarios in which the classifier is trained on feedback (top), feedforward (middle) and 
consistent feedback/feedforward (bottom) information in turn and tested on the remaining 
conditions. Classifier accuracy as a percentage is plotted for each consistency condition. 
The top and bottom edges of the box indicate the 75th and 25th percentiles, respectively, with 
the median denoted with a solid black line. The whiskers depict the range, excluding 
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outliers (which are denoted by +). The dashed black line depicts chance-level performance 
at 50%.  

 

Summary statistics can be found below. 

Lower-Contrast Experiment 

Region Time 
Window 

Contrast β SE t p 

V1 Peak C vs I 0.301 0.282 1.067 .286 

C vs TO 3.784 0.282 13.416 <.001 

C vs CO 0.282 0.282 0.999 .317 

I vs TO 3.483 0.282 12.349 <.001 

I vs CO -0.019 0.282 -0.067 .926 

TO vs CO -3.502 0.282 -12.416 <.001 

 Post-peak C vs I -0.181 0.283 -0.640 .524 

C vs TO -0.790 0.283 -2.794 .005 

C vs CO -0.640 0.282 -2.265 .023 

I vs TO -0.610 0.283 -2.157 .031 

I vs CO -0.459 0.283 -1.624 .104 

TO vs CO 0.151 0.283 0.533 0.596 

 Recovery C vs I 0.250 0.284 0.879 .379 

C vs TO -1.062 0.285 -3.722 <.001 

C vs CO -0.529 0.284 -1.865 .062 

I vs TO -1.312 0.284 -4.618 <.001 

I vs CO -0.778 0.284 -2.741 .006 

TO vs CO 0.534 0.284 1.876 .061 

V1 
Correct  

Peak C vs I 0.368 0.371 0.991 .322 

C vs TO 4.095 0.356 11.494 <.001 

C vs CO 0.702 0.322 2.180 .029 

I vs TO 4.208 0.379 11.093 <.001 

I vs CO 0.334 0.348 0.961 .337 

TO vs CO -3.393 0.332 -10.230 <.001 

 Post-peak C vs I -0.316 0.372 -0.850 .393 

C vs TO -0.617 0.357 -1.728 .084 

C vs CO -0.549 0.323 -1.700 .089 

I vs TO -0.301 0.380 -0.792 .429 

I vs CO -0.232 0.348 -0.667 .505 

TO vs CO 0.068 0.332 0.205 .844 

 Recovery C vs I 0.570 0.373 1.528 .126 

C vs TO -0.929 0.359 -2.588 .010 

C vs CO -0.436 0.325 -1.343 .179 

I vs TO -1.499 0.381 -3.936 <.001 

I vs CO -1.006 0.350 -2.873 .004 

TO vs CO 0.493 0.335 1.473 .141 

V2 Peak C vs I -0.684 0.281 -2.435 .015 

C vs TO 0.724 0.281 2.577 .010 

C vs CO -0.219 0.281 -0.777 .438 

I vs TO 1.409 0.281 5.011 <.001 

I vs CO 0.466 0.281 1.657 .097 

TO vs CO -0.943 0.281 -3.354 <.001 
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 Post-peak C vs I -0.512 0.282 -1.820 .069 

C vs TO -1.318 0.282 -4.677 <.001 

C vs CO -0.504 0.281 -1.790 .073 

I vs TO -0.806 0.282 -2.863 .004 

I vs CO 0.009 0.282 0.031 1.000 

TO vs CO 0.815 0.282 2.891 .004 

 Recovery C vs I 0.007 0.283 0.026 1.000 

C vs TO -1.102 0.284 -3.873 <.001 

C vs CO -0.198 0.283 -0.702 .484 

I vs TO -1.109 0.283 -3.917 <.001 

I vs CO -0.206 0.283 -0.726 .467 

TO vs CO 0.903 0.284 3.182 .001 

V2 
Correct  

Peak C vs I -0.787 0.376 -2.093 .036 

C vs TO 0.452 0.357 1.266 .205 

C vs CO -0.173 0.323 -0.535 .592 

I vs TO 1.239 0.383 3.234 .001 

I vs CO 0.614 0.352 1.743 .081 

TO vs CO -0.625 0.332 -1.882 .060 

 Post-peak C vs I -0.766 0.376 -2.034 .042 

C vs TO -1.502 0.358 -4.199 <.001 

C vs CO -0.864 0.324 -2.667 .008 

I vs TO -0.736 0.383 -1.920 .055 

I vs CO -0.098 0.353 -0.279 .779 

TO vs CO 0.638 0.333 1.916 .055 

 Recovery C vs I 0.322 0.378 0.851 .394 

C vs TO -0.938 0.360 -2.609 .009 

C vs CO -0.225 0.326 -0.690 .489 

I vs TO -1.260 0.385 -3.275 .001 

I vs CO -0.547 0.355 -1.540 .123 

TO vs CO 0.713 0.335 2.126 .033 
Table 3.4 Statistics for the lower-contrast experiment. Summary statistics for each region 
(all trials and correct trials only) in each time window for the low-contrast experiment. Peak, 
post-peak and recovery time windows refer to 8-11s, 12-15s, and 16-19s post-stimulus 
onset, respectively. We ran the following 6 contrasts in each of these time-windows: C vs I – 
Consistent vs Inconsistent; C vs TO – Consistent vs Target Only; C vs CO – Consistent vs 
Context Only; I vs TO - Inconsistent vs Target Only; I vs CO - Inconsistent vs Context Only; 
TO vs CO - Target Only vs Context Only. We provide a beta-estimate which estimates the 
amplitude of the effect, followed by standard error of this effect and a t-value which is the 
associated statistic of the effect. Finally, we display the significance value (α=.05). Statistics 
are calculated through a deconvolution GLM-based analysis conducted on BrainVoyager 
software.  

 

Higher-Contrast Experiment 

Region Time 
Window 

Contrast β SE t p 

V1 Peak C vs I 0.050 0.300 0.167 .862 

C vs TO 3.924 0.300 13.069 <.001 

C vs CO 0.747 0.300 2.489 .013 

I vs TO 3.874 0.300 12.902 <.001 

I vs CO 0.697 0.300 2.322 .020 

TO vs CO -3.177 0.300 -10.581 <.001 
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 Post-peak C vs I 0.089 0.301 0.296 .769 

C vs TO 0.992 0.301 3.300 .001 

C vs CO -0.376 0.301 -1.252 .210 

I vs TO 0.903 0.301 3.004 .003 

I vs CO -0.465 0.301 -1.547 .121 

TO vs CO -1.369 0.301 -4.551 <.001 

 Recovery C vs I 0.184 0.302 0.609 .545 

C vs TO -0.164 0.302 -0.543 .585 

C vs CO -0.477 0.302 -1.581 .114 

I vs TO -0.348 0.302 -1.151 .249 

I vs CO -0.661 0.302 -2.188 .029 

TO vs CO -0.313 0.302 -1.037 .299 

V1 
Correct  

Peak C vs I -0.654 0.335 -1.952 .051 

C vs TO 3.862 0.323 11.939 <.001 

C vs CO 0.652 0.376 1.734 .083 

I vs TO 4.516 0.339 13.327 <.001 

I vs CO 1.307 0.390 3.353 .001 

TO vs CO -3.210 0.380 -8.453 <.001 

 Post-peak C vs I 0.075 0.336 0.222 .828 

C vs TO 1.403 0.324 4.330 <.001 

C vs CO -0.812 0.377 -2.153 .031 

I vs TO 1.328 0.339 3.914 <.001 

I vs CO -0.886 0.390 -2.271 .023 

TO vs CO -2.215 0.380 -5.824 <.001 

 Recovery C vs I -0.112 0.337 -0.332 .743 

C vs TO 0.092 0.325 0.283 .781 

C vs CO -0.961 0.379 -2.535 .011 

I vs TO 0.204 0.341 0.598 .550 

I vs CO -0.849 0.392 -2.165 .030 

TO vs CO -1.053 0.382 -2.756 .006 

V2 Peak C vs I -0.223 0.291 -0.768 .442 

C vs TO 0.891 0.291 3.064 .002 

C vs CO 0.545 0.291 1.872 .061 

I vs TO 1.115 0.291 3.832 <.001 

I vs CO 0.768 0.291 2.640 .008 

TO vs CO -0.347 0.291 -1.192 .233 

 Post-peak C vs I 0.292 0.291 1.001 .316 

C vs TO 0.994 0.291 3.411 .001 

C vs CO 0.180 0.291 0.619 .536 

I vs TO 0.702 0.291 2.410 .016 

I vs CO -0.111 0.291 -0.382 .705 

TO vs CO -0.814 0.291 -2.792 .005 

 Recovery C vs I 0.125 0.292 0.427 .668 

C vs TO -0.460 0.293 -1.572 .116 

C vs CO -0.563 0.293 -1.924 .054 

I vs TO -0.585 0.293 -1.999 .046 

I vs CO -0.688 0.293 -2.350 .019 

TO vs CO -0.103 0.293 -0.351 .722 

V2 
Correct  

Peak C vs I -0.892 0.324 -2.757 .006 

C vs TO 0.686 0.312 2.194 .028 

C vs CO 0.853 0.364 2.343 .019 
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I vs TO 1.578 0.328 4.814 <.001 

I vs CO 1.746 0.377 4.624 <.001 

TO vs CO 0.168 0.368 0.455 .648 

 Post-peak C vs I 0.139 0.324 0.428 .668 

C vs TO 1.012 0.313 3.234 .001 

C vs CO -0.249 0.365 -0.681 .496 

I vs TO 0.873 0.328 2.661 .008 

I vs CO -0.387 0.378 -1.024 .305 

TO vs CO -1.261 0.369 -3.421 .001 

 Recovery C vs I -0.085 0.325 -0.260 .799 

C vs TO -0.424 0.315 -1.348 .178 

C vs CO -0.720 0.367 -1.963 .050 

I vs TO -0.339 0.329 -1.030 .304 

I vs CO -0.636 0.380 -1.673 .094 

TO vs CO -0.296 0.370 -0.800 .423 
Table 3.5 Statistics for the higher-contrast experiment. Summary statistics for each region 
(all trials and correct trials only) in each time window for the low-contrast experiment. Peak, 
post-peak and recovery time windows refer to 8-11s, 12-15s, and 16-19s post-stimulus 
onset, respectively. We ran the following 6 contrasts in each of these time-windows: C vs I – 
Consistent vs Inconsistent; C vs TO – Consistent vs Target Only; C vs CO – Consistent vs 
Context Only; I vs TO - Inconsistent vs Target Only; I vs CO - Inconsistent vs Context Only; 
TO vs CO - Target Only vs Context Only. We provide a beta-estimate which estimates the 
amplitude of the effect, followed by standard error of this effect and a t-value which is the 
associated statistic of the effect. Finally, we display the significance value (α=.05). Statistics 
are calculated through a deconvolution GLM-based analysis conducted on BrainVoyager 
software. 
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3.6 Discussion 

3.6.1 Outline of study 

With this study we aimed to investigate how top-down predicted information 

influences the processing of dim feedforward input. To achieve this, we 

employed a partial occlusion paradigm in which a portion of the visual scene was 

shown at low contrast. The remaining full-contrast scene was either contextually 

consistent or inconsistent, meaning predictions formed on the basis of this 

context were either relevant or irrelevant. We looked at the psychophysical 

effects of consistency using a recognition task and also investigated the neural 

response to predicted or unpredicted low-contrast information at both the 

univariate and multivariate level.  

In this discussion, I will look at what the results tell us about the individual role 

of feedback and feedforward input within this paradigm as well as their 

integration. I will then outline possible ways in which the two processes operate 

at the cortical level and how these results lend support to some important 

theories of cortical function and some emerging findings. I will outline some 

potential modulations and contributing factors to the interpretation of our 

findings. Finally, I will discuss potential caveats in the interpretation of these 

results and how they can be used to aid our understanding of how feedback and 

feedforward processing occurs in the brain.  

 

3.6.2 Evidence of feedback signals in occluded cortex  

We measured BOLD response amplitude in primary visual cortex as a function of 

time using a deconvolution analysis. Our univariate findings provide further 

support for the presence of feedback signals in occluded V1, in line with 

previous multivariate findings (Muckli et al., 2015; Smith & Muckli, 2010). We 

find a significantly higher BOLD response in occluded V1 in conditions in which 

there is contextual information present in the surround. When no contextual 

information is available, the BOLD signal is significantly reduced. These findings 

suggest that the neural response within the occluded target region of V1 is 
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driven largely by feedback signals as their presence has a substantial influence 

on the amplitude of the BOLD response.  

The evidence of feedback within this paradigm supports previous findings which 

reveal scene information from the surrounding context is present in 

unstimulated regions of visual cortex (Keller et al., 2020; Morgan et al., 2019; 

Muckli et al., 2015; Revina, 2021; Smith & Muckli, 2010; van Kemenade et al., 

2020), a finding which extends to artificial neural networks (Ernst et al., 2019). 

These highlight a role for context in providing information about the visual scene 

when information is missing. Our results extend this finding to suggest that 

contextual information is still fed back to areas of V1 that contain degraded 

feedforward input. That is, in addition to unstimulated areas of primary visual 

cortex, information in the surround still largely drives a neural response when 

feedforward in formation is present.  

Our multivariate findings further corroborate previous work. Cross-validation 

MVPA reveals we are able to decode information in the occluded region of V1 

only when contextual information is present. As such, our findings are in line 

with that of Smith & Muckli, (2010) who were also able to decode scene 

information in occluded V1. Our results, however, suggest these feedback signals 

are still sufficient to decode contextual information even when weak 

feedforward information is present.  

The presence of contextual information also appears to largely drive the BOLD 

response in V2, with a significant distinction between conditions which contain 

contextual information and those which don’t. The overall response in V2 is 

lower than V1, which could arise from the nature of the visual hierarchy and 

differences in retinotopic properties of the two regions. Smith and Muckli do not 

find much of a contextual effect in V2 however our V2 results largely mirror 

those found in V1 in terms of the presence or absence of context, indicating a 

modulatory effect of contextual information outside of the primary visual 

cortex. Earlier work on V2 has implicated its role within contextual processing to 

an extent (Bakin et al., 2000; Raizada & Grossberg, 2001). 
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3.6.3 Influence of degraded feedforward information  

A unique feature of our experiment lies in the inclusion of degraded feedforward 

information in our occluded region. How much of the response signal can be 

attributed to this weak feedforward information alone? When no information is 

presented in the target region, (that is, the occluded region contains no 

feedforward information), the signal is reduced in both V1 and V2, albeit 

marginally, relative to the signal difference between context versus no context. 

This suggests feedforward information also contributes to the BOLD response due 

to the reduction in signal when this information is eliminated and is not simply 

overwritten by the stronger influence of feedback signals.  

When feedforward input is stronger in the higher-contrast experiment, we find 

more of a distinction between conditions in which feedforward information is 

present versus absent than we do when feedforward input is weaker. This is 

expected if feedforward information is driving some of the BOLD response and 

therefore this provides evidence that this is indeed the case.  

At the multivariate level, with threshold-level information in the target region, 

the target only condition is the only condition in which we cannot accurately 

decode significantly above chance. This implies the feedforward information 

alone is insufficient in being able to determine the content of the target region. 

Conversely, in V2, the Target Only condition is the only condition in which we 

are able to decode significantly above chance, suggesting that degraded 

feedforward information drives a BOLD effect in V2.  

When the feedforward information is stronger in the higher-contrast experiment, 

we can only decode feedforward information in the target region, reflecting the 

relative contribution of this stronger feedforward signal. We can no longer 

decode feedforward information in V2, suggesting a potential modulation of 

ambiguity in V2 activation.  
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3.6.4 Interactions between the two processing pathways 

The central aim of this study is to investigate the influence of top-down 

predictions on the processing of degraded feedforward information. We have 

thus far considered the separate contribution of both feedforward and feedback 

information by looking at the implications if either input is eliminated. However, 

the trials which contain both information channels permit us to investigate how 

these processing streams interact at the neuronal level.  

While the presence of feedback information has a significant influence on the 

response amplitude in V1, the content of the feedback signals does not seem to 

have such an effect. Consistent and inconsistent signals from the surrounding 

context elicit similar response profiles in occluded V1, at least when 

feedforward information is severely degraded. When feedforward input is more 

perceptually visible, the congruency between feedforward and feedback signals 

appears to be more salient, as inconsistent information in the surround elicits a 

higher response in the occluded region of V1.  

This notion is supported at the multivariate level by the results of a cross-

validation analysis. We find that when the feedforward signal is more degraded, 

only the presence of contextual information influences the ability to decode 

scene information in occluded V1. The content of the contextual information 

does not appear to make a difference to the pattern of the BOLD response, with 

no significant differences being found between the consistent and inconsistent 

conditions. When feedforward input is stronger, we are only able to decode in 

the Inconsistent and Target Only conditions- supporting the notion from the 

univariate findings that an increased feedforward input contributes more to the 

BOLD response than when the feedforward input is weaker. We also find 

multivariate evidence suggesting inconsistency between the feedback and 

feedforward inputs is reflected in the neural response of V1. This could be due 

to the inconsistency being more easily detectable when the feedforward signal is 

stronger which manifests as a detectable discrepancy in the underlying BOLD 

response.  

The contextual modulation of V2 activation appears to be more sensitive to the 

content of the feedback information. Inconsistent feedforward and feedback 
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signals appear to drive a higher BOLD response in V2 than when the signals are 

compatible. This is observed even when the target information is shown at very 

low contrast. Thus, while both regions are influenced by the presence of 

contextual information, V2 may play a role in processing the content of this 

information. This is supported in part by findings of a cross-validation analysis in 

which the classifier is only able to decode the target region of V2 when the 

contextual information is inconsistent, at least when the feedforward input is 

weakest.  

A cross-classification analysis is able to give us insight into the individual 

contributions of feedback and feedforward information to the cortical BOLD 

response. By training the classifier on one condition and testing on another, we 

can investigate how much of the signal between the two conditions is 

compatible and how much each signal type contributes to the overall response 

pattern. When trained on purely feedback signals (information from the surround 

only), the addition of feedforward information in the testing phase significantly 

influenced classifier performance bi-directionally. This pattern, although not 

always significant, is replicated across regions and within both Experiments. This 

indicates that although our findings so far have suggested that the type of 

information in the surround does not influence the neuronal response, here we 

find that when training purely on surround information, the content of the 

additional feedforward input has a modulatory effect on the content of the 

target region. In cross-validation while training and testing within the same 

conditions, we are able to decode in both the Consistent and Inconsistent 

condition to the same degree. We have taken this to mean that the presence of 

feedback information is important for being able to decode the content of the 

target region. However, cross validation cannot tell us to what extent feedback 

and feedforward information is contributing to the response pattern. Cross-

classification results here therefore reveal that feedforward information does 

indeed contribute to the response pattern.  

Cross classification using the feedforward information to train the classifier 

results in the inability to decode the target region in any of the other conditions. 

This could reflect a genuine lack of contribution of the feedforward signal to the 

overall response profile or could merely be due to the lack of strength of the 
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feedforward signal in comparison to the full-contrast surround information. The 

distinction found between the Consistent and Inconsistent conditions when the 

classifier is trained purely on feedback information suggests the latter, as it 

reveals a contributing role of the content of the feedforward signal, implying 

that the feedforward signal does play a role in the overall response pattern but 

is not sufficient on its own to enable accurate decoding.  

Finally, cross-classification in which the classifier is trained on the Consistent 

condition (i.e., compatible feedforward and feedback signals) and tested on the 

remaining conditions reveals we are only able to accurately decode in the 

Context Only condition in V1. This again reinforces the driving role of feedback 

information in the overall response pattern in PVC. Testing on the Inconsistent 

condition decreased performance, highlighting the contribution of the 

feedforward input. This effect is more prominent in the low-contrast 

Experiment, implying that feedback signals have a stronger influence with a 

more degraded feedforward input. It is also only found in V1 as differences 

between conditions in V2 are non-significant and decoding in general is not 

above chance level.  

Taken together, the results allude to a segregation of feedforward and feedback 

information within the response pattern in early visual cortex (a notion recently 

reported by Semedo and colleagues (Semedo et al., 2022)). Cross-classification 

reveals distinctions between the effects of feedforward and feedback 

contributions meaning signals from both processing streams are able to be 

teased apart within the BOLD response. This implies that contextual information 

from the surround has a modulatory effect on the processing of the feedforward 

input, but this may not be as straightforward as a simple combination of the 

signals, at least at the stage of early visual processing. It seems that this 

contextual effect is a result of feedback signals that remain distinct in their 

representation. This could be tested statistically by comparing the linear 

combination of both feedforward (only) and feedback (only) modulatory effects 

with the actual signal in trials in which both feedback and feedforward 

information is present.  

A noteworthy finding lies in the recovery time-window of the haemodynamic 

response. Here, we find a cross-over of BOLD response amplitude between 
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conditions which contain one type of information (either feedforward or 

feedback) versus conditions which contain both types of information. Generally, 

we find that the presence of both feedback and feedforward information results 

in a larger undershoot of the haemodynamic response. However, when the 

feedforward input increases in The Higher-Contrast Experiment, the undershoot 

response is similar for feedforward information only (Target Only) as it is for a 

combination of both types of signals. It appears that the more information 

available, the more of an undershoot of the BOLD response we observe. This is in 

line with findings from (Sadaghiani et al., 2009) who find a stronger post-

stimulus undershoot for stronger feedforward input. They propose this 

undershoot effect reflects underlying neuronal activity rather than simply a 

vascular consequence as the effect persists even when vascular contributions are 

controlled for. In the context of our experiment, the undershoot phenomenon 

simply serves to reiterate the components of the response signal as being 

comprised of both feedback and feedforward information, as opposed to 

revealing any potential underlying contextual differences.  

3.6.5 What are the implications? 

We were not only interested in the neuronal responses to contextual 

modulation, but we also tested the behavioural implications by employing a 

recognition task. Subjects were asked to identify the content of the target 

region with every stimulus presentation. Results of the psychophysical task 

reveal performance was significantly reduced in terms of accuracy when the 

surround and target regions were inconsistent. This could imply that rather than 

an enhancement of recognition accuracy when relevant contextual information 

is present, irrelevant context in fact hinders performance, suggesting strong 

feedback signals that are incompatible with the weak feedforward information 

hamper subjects’ ability to determine the content of the low-contrast region at 

the behavioural level. However, statistical analysis comparing Inconsistent trial 

performance to chance-level performance would be needed to confirm this 

effect.  

When a response bias toward the information in the high-contrast surround is 

controlled for, we find that subjects are able to accurately determine the 

content of the target region (evident through sensitivity levels above chance), 
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however, the nature of this analysis does not permit this to be tested within 

each consistency condition, so we cannot determine the relative sensitivities for 

each condition when a response bias is accounted for. Thus, performance 

accuracy implies that contextual consistency influences behavioural 

performance, however, we cannot rule out the possibility that this effect is at 

least in part, driven by a behavioural bias towards responding according to the 

information in the surround.  

Neuronally, we find robust evidence (through both univariate and multivariate 

analyses) of the existence of feedback signals in occluded areas of visual cortex. 

The role of feedback is implicated within a wealth of findings across many 

sensory modalities and using a multitude of different neuroscientific techniques, 

and its importance in visual processing is undisputed. The exact nature of how 

concurrent processing occurs in the cortex however is still yet to be fully 

understood. Several theories and frameworks have encompassed the interaction 

between feedforward and feedback signals as a central hypothesis. Apical 

amplification (Phillips et al., 2016; Phillips, 2017) for example, proposes that 

contextual information in the form of feedback signals can influence how the 

cell responds to feedforward information. Specifically, when the top-down and 

bottom-up signals are compatible, the output of the cell is amplified. At the 

neural level, feedback information targeting the apical tufts of the layer 5 

pyramidal cells can actively influence the action potentials generated in 

response to feedforward input to the soma. A mechanism in which this can 

operate is via BAC propagation (Larkum, 2013) in which compatible signals 

arriving at the active dendrites results in a burst of action potentials from the 

cell body.  

Apical amplification is a candidate cortical operation that could be in play in 

situations in which feedforward input is weak, for example if it is degraded in 

some way or the input is ambiguous. If the weak feedforward signal is 

accompanied by compatible contextual information, the signal could be 

amplified. Incompatible signals on the other hand would be dis-amplified. This 

does not however, harmonise with our findings of the BOLD response. We largely 

find that the content of the contextual information does not impact the 

magnitude of the BOLD response, so although feedback signals are clearly crucial 
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in driving the response, the information they contain does not appear significant 

at this level of processing. In fact, we find some indication that there is an 

enhancement at the cortical level of inconsistent information. This is more in 

line with predictive coding (Rao & Ballard, 1999) accounts of cortical processing 

which propose that the brain operates on the principle of minimising error 

(Friston, 2005) and as such error signals are deemed more salient and it is those 

signals which are allocated neural resources. The proposal by Bar and colleagues 

(Bar, 2007) in which there is a rapid activation of top-down information from 

bottom-up signal also implies an integration of both information streams within 

visual processing, in line with Rao & Ballard and Friston’s accounts of predictive 

processing, and indeed each can be interpreted as highlighting different aspects 

of the same process. Bar’s proposal would suggest bottom-up input initiates 

analogies and associations stored within memory which form predictions as to 

the interpretation of the bottom-up signal. The predictions are then compared 

to the bottom-up input and discrepancies are represented as an error signal 

according to Rao & Ballard and any consistencies are ‘explained away’ in order 

to minimise free energy, in line with Friston’s suggestions. Thus, it is possible 

that the three proposals interplay during visual processing.  

There are several potential explanations for our findings. Firstly, there could be 

multiple mechanisms and processes in play at once, which could account for 

different aspects of the relationship between contextual information and 

feedforward input. Perhaps different processes are used under different 

conditions, such as the level of ambiguity or the level of discrepancy between 

the context and input. If this is the case, it is likely these would be difficult to 

tease apart without actively setting out to do so a-priori and designing the 

experiment accordingly. For example, within subjects, we could parametrically 

manipulate the level of ambiguity and thus the reliance on feedback 

information. This could be achieved by altering the strength of the feedforward 

signal (meaning more emphasis is required on top-down information) within the 

one experiment. Alternatively, the strength of the feedback signals could be 

manipulated to test for bottom-up processing capabilities. Differences in 

discrepancies between the two information streams could be tested by including 

more levels of consistency or introducing different types of consistencies (e.g., 

temporal or spatial). The number of manipulations achievable within one 
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experiment however is limited in fMRI in the interest of time and comfort for the 

participant when more predictors are included, and the number of trial 

repetitions required for multivariate-level analysis.  

Secondly, we set out to investigate how top-down and bottom-up signals interact 

in early visual cortex when feedforward input is degraded but perhaps the 

integration of such signals is not specifically a process of primary visual cortex. 

Levelt and colleagues recently observed segregation of feedback and 

feedforward information in rodent V1 using two-photon calcium imaging within a 

partial occlusion paradigm. Neurons which did not respond (or showed a 

suppressed response) to fully visible natural scenes, showed a strong response to 

occluded images, suggesting a neural distinction between feedforward and 

feedback information (findings revealed through recent communication with 

Muckli & Petro, 2021). With cross-classification performance in our experiment 

not being highest when feedforward and feedback signals are consistent, we may 

too find evidence of segregation of these two inputs in primary visual cortex. 

While the presence of contextual information influences the response in PVC, 

the content of these signals may only be required at a higher processing stage.  

3.6.6 Modulatory effects 

Through our experimental design, we capture two potential regulatory factors 

on the contextual influence of early visual cortex, strength of feedforward input 

and level of hierarchical processing. Looking at differences between the two 

experiments, (i.e., comparing different strengths of feedforward information), 

we find a generally stronger response in both regions when the feedforward 

information is presented at higher contrast (although this is not tested for 

significance). We also find less of a distinction between conditions where both 

types of information are presented versus those in which one information source 

is eliminated. This implies that higher-contrast feedforward information 

contributes more to the overall response. In other words, when the feedforward 

signal is further degraded, the neural response is driven more by feedback 

information from the surround. When more feedforward information is available, 

the response in visual cortex is driven by both types of signals. We do not 

however, find a modulatory effect of the strength of signal on contextual 

modulation. It was hypothesised a-priori that increasing the contrast of the 
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target region in the second experiment may enhance neuronal disparities 

between the content of the feedforward and feedback signals, however, we 

generally do not find this to be the case.  

We explored two main regions of interest in early visual cortex to investigate our 

effect: V1 and V2. Both regions are part of the early processing stage of the 

visual system but both have been shown to perform distinct and often discreet 

operations (Goebel et al., 2012; Grill-Spector & Malach, 2004b). The main 

distinction we find in our results is that feedback information tends to drive the 

response in V1, with the BOLD signal being dependent on the presence of 

context. In V2 however, we begin to observe an implication of the content of the 

feedback signal and also find a driving effect of feedforward information in this 

region.  

Through our findings we have identified two further factors which could 

modulate the effect of context on the processing of degraded input. The first 

factor is attention. In The Lower-Contrast Experiment, we initially tested 

participants (N=7) using a fixation cross which did not change for the duration of 

each trial. We then considered that in the Target Only condition (when only very 

low-contrast information in the target region was presented and no information 

was present in the surround), subjects may not recognise that a trial has begun. 

The target region stimulus is presented at perceptual threshold and therefore 

subjects will not accurately be able to recognise that a trial has been presented 

without the information in the surround being present. On subsequent subjects 

(N=18), we altered the fixation cross to change colour when the stimulus image 

was presented, thus indicating when a low-contrast scene was present in the 

Target Only condition. Comparing responses to the Target Only condition of the 

two groups of subjects, we observe a distinct difference between the two. When 

subjects were potentially unaware of the stimulus presentation, we see a much 

lower BOLD response to the Target Only condition than subjects who were made 

aware of the trial by a fixation cross colour change. This may provide evidence 

of an attentional effect driving the BOLD response. Engaged attention in task 

demands results in a markedly higher response amplitude than if attention is not 

necessarily engaged, implicating higher-level processing in the response profile 
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of primary visual cortex during contextual modulation. This, however, would 

need to be tested for significance before any firmer claims can be made.  

The second factor is task performance. In The Higher-Contrast Experiment, the 

peak response in V2 appears to be earlier than V1 in both experiments and 

earlier than V2 in The Lower-Contrast Experiment. Generally, the peak is found 

around 8s post-stimulus onset, whereas in V2 of The Higher-Contrast 

Experiment, the peak appears to be around 6s post-onset. However, when we 

focus only on the correct trials, the peak appears to match that found 

previously. This observation, in addition to the inconsistency effect in V2 only 

becoming prominent in the correct trials in this experiment (but still being 

present) suggests task performance in the higher-contrast experiment may 

confound the neuronal responses. The task is (at least in theory) easier in the 

higher-contrast experiment as the target region is more visible, therefore 

perhaps the trials which subjects respond incorrectly or don’t respond to are 

more of an indication that they did not follow the task on these trials. In the 

first experiment, the target region is shown around threshold level contrast and 

incorrect/missed trials could instead reflect task difficulty (an effect explored 

by (Chen et al., 2009)) or perceptual threshold rather than a lack of 

concentration which could explain why isolating correct trials in the first 

experiment does not greatly influence the effects we observe. The nature of the 

task itself could also have a confounding effect on the neuronal response. In 

such an explicit recognition task like ours, the dependency on feedback signals 

may differ to a less explicit visual task such as a one back repetition task (used 

by Smith & Muckli (Smith & Muckli, 2010)), perhaps exploring different task 

types within the same paradigm would reveal any effects of task or task 

performance on neural activity during occlusion.  

3.6.7 Caveats  

Although we find strong evidence to support the prevalence of feedback signals 

in early visual areas, how can we determine that these signals do not instead 

reflect input from lateral connections? Feedforward connections to V1 are 

outnumbered not only by feedback, but also lateral connections, which are 

involved in processes such as perceptual grouping and contour integration ( 

Gilbert & Li, 2013). It is possible that within this paradigm, activation found in 
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unstimulated cortex is projected from stimulated cortex via lateral connections. 

We cannot rule the potential impact of these horizontal connections out 

completely however, Smith & Muckli controlled for such input via a weighted 

classification analysis and found that these connections are unlikely to be solely 

driving the activity found in the occluded region. As we employ a very similar 

paradigm, we can presume to a degree that the same would be found for our 

results. Additionally, if activity in our unstimulated ROIs is being driven by 

lateral connections, we may expect to find more of a distinction pertaining to 

the content of the feedforward information due to their role in contour 

integration. Gilbert & Sigman (Gilbert & Sigman, 2007) outline a potential role 

of feedback connections in gating horizontal connections which could highlight a 

complex interplay between three information streams. 

Another critical point could be that the activity we observe in occluded cortex 

could be a result of spill over effects from the surround region. Extra-classical 

receptive field properties of primary visual neurons mean that visual stimulation 

in the surround region using high contrast scene images could be activating the 

receptive fields of some neurons within the target region (Angelucci et al., 

2002), particularly near the border between the surround and target. It is 

difficult to know for certain that this is not the case without mapping the 

population receptive fields and analysing only voxels with PRFs in the target 

region, which we did not do in this experiment. However, we used mapping 

blocks to identify the ROIs as voxels responding to the target region while 

eliminating those responding to the border and surround regions using a 

conjunction contrast. This therefore eliminated voxels pertaining to the border 

between the surround and target regions, allowing a buffer that accounts for 

surround contamination. Thus, our selection of ROI voxels was as conservative as 

we could make it to avoid any spill over effects from the surround and we are 

fairly confident that the target region activity we observe is due to feedback 

information as a result. Smith & Muckli also rule out any significant influence of 

spill over using their weighted classification analysis, as they do not find 

differences in weighted classifier performance near the border between the 

surround and occluded region.  
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Our lack of definitive results could also reflect limitations of the study design. 

For example, the stimulus contrast was tailored for each subject’s threshold 

detection level to ensure the influence of individual differences in visual 

perception were controlled for during stimulus presentation. However, we based 

this threshold on subjects’ ability to detect a stimulus in the target region. 

Results from our experimental series in Chapter 2 suggest that contextual 

information does not influence detection rate. Therefore, it may have been 

more appropriate to use subject’s recognition threshold to generate the stimuli 

given the fact our experiment here used a recognition task. There may be 

individual differences in ability to detect versus recognise an object, with some 

subjects having similar thresholds for each task, whereas others may have 

markedly different detection and recognition thresholds. Creating the 

experimental stimuli using subjects’ recognition threshold would eliminate a 

confounding effect of this variability which we do not account for in this study. 

One final caveat to highlight is the indirect relationship between BOLD signal 

and neural activity (Logothetis, 2008). Instead of measuring the neural response 

directly, BOLD is a measure of the metabolic consequences of such activity and 

therefore any inferences drawn rely on the assumption that BOLD signal reflects 

underlying neural activity. Nevertheless, it is generally deemed a reliable 

measure of cortical signalling due to multimethod studies and coincidental 

findings between different methodologies.  

3.6.8 Conclusion 

To conclude, our findings reveal neuronal evidence of feedback signalling within 

early visual cortex, when degraded feedforward input is present. The presence 

of such signals drives both univariate and multivariate response patterns 

revealed through fMRI. It is less clear how these signals interact to ultimately 

influence the processing of weak feedforward input as we do not find a distinct 

difference between predictable and unpredictable top-down effects. Perhaps 

the findings are limited by the spatial resolution at 3T and higher-resolution 

investigation at the columnar or laminar level could provide further insight.  
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4 Ultra-high field fMRI – Review and project 
proposal 

4.1 Abstract 

This chapter constitutes the final PhD project, an investigation into the layered 

function of the cortex. Originally this was planned to be executed as a 7T fMRI 

project aiming to look at the role of feedback within the different layers. 

However, the circumstances of 2020 resulted in a change of plan and now the 

chapter will be presented as a literature review of ultra-high resolution fMRI 

followed by a project proposal for a 7T study. Despite this project not going 

ahead as planned, it is still important to review the literature to gain an 

understanding of ultra-high field MRI and its application. It is a recent 

advancement in neuroscientific methodology and thus even more crucial to 

understand the way in which it is being utilised and any potential problems it 

may bring. Without any background understanding, high-resolution and ultra-

high-resolution fMRI may seem similar, however advancements such as this open 

up many opportunities as well as many issues to overcome and therefore a 

breadth of knowledge than encompasses this technique is vital for someone who 

wishes to continue in their research career.  

4.2 The layered cortex 

The mammalian cortex is divided into six distinct layers. These were first 

identified in the mid- 19th century by Ballanger (1840) who noticed that (to the 

naked eye) the cortical architecture was striped in appearance. This notion was 

reinforced by early staining and microscope work by Berlin in 1858, who noted 

differences in cell body architecture across the six layers. Since these pioneering 

observations, the six-layered cortex has been extensively investigated using a 

number of neuroscientific techniques. This has allowed for a relatively well-

established understanding of the structural and functional connectivity profile of 

each layer.  

As in the rudimentary work defining cortical architecture, the cortical layers 

have been identified over time using their differences in cell prevalence and 

arrangement as well as cell body and myelination density (Palomero-Gallagher & 
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Zilles, 2019). Laminar differences in dendritic and axonal properties have also 

been observed (Mohan et al., 2015). The six cortical layers are divided into nine 

neuronal layers (1, 2, 3, 4a, 4b, 4cα, 4cβ, 5 and 6), with layer 1 on the outer 

surface, closest to the pial and layer 6 on the inner surface closest to the white 

matter (Goebel et al., 2012). These differences ultimately play a role in the 

functional distinctions between the laminae (Trampel et al., 2019). Using 

invasive techniques mainly in non-human primates, Lund and colleagues (Blasdel 

& Lund, 1983; Hawken et al., 1988; Rockland & Lund, 1983) outlined properties 

of each layer in primary visual cortex and their relative connections. See Figure 

4.1 for an illustration of the cortical layers.  

 

Figure 4.1 Illustration of cortical layers. Depiction of the cortical layers on the occipital 
cortex acquired with ultra-high resolution (9.4T, 0.35mm isotropic) fMRI. 2D depiction of the 
layers is on the left which can be used to create 3D cortical grids which define the layers 
across depths. Image obtained and adapted with permission from (De Martino et al., 2018).  

 

In primary visual cortex, Layer 1 is comprised mainly of dendritic and axonal 

connections, receiving inputs from the LGN, thalamic nuclei, extrastriate areas 

as well as subcortical regions. This layer is sparse in neural cell bodies but is 

salient in providing network connections with several stages of the cortical 

hierarchy. Layers 2 and 3 are known as the supragranular layers and consist of 

pyramidal cell bodies and dendrites. They receive input from layer 4 subdivision 

c and also connect with layer 5 neurons. They project to extrastriate cortex. 

Layer 4 is divided into four layers, known as the granular layers. These layers 

receive feedforward input, and the magnocellular and parvocellular pathways 

remain segregated within these layers. Finally, deep layer 5 contains mainly 

pyramidal neurons which receive feedback from other areas. Layer 5 mainly 

projects to Layer 6 which has recurrent axons with layer 4 and the LGN. For a 
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more in-depth summary of the cortical layer connections, see (Geyer et al., 

2011; Goebel et al., 2012; Self et al., 2019; Thomson & Bannister, 2003). 

Overall, layers have distinct anatomical and physical properties (such as 

differences in energy consumption) (Goense et al., 2012) which coincide with 

functional differences, such as relaying feedforward and/or feedback signals. It 

is however, important to note that the division of layers is not clear-cut, with 

cell components spanning across layers (Larkum et al., 2018). Nevertheless, 

cortical models should encompass influences of laminar structure and function 

(Larkum et al., 2018) to account for this important feature of the cortex.  

4.3 Traditional Methodologies 

Classical investigation of the laminar cortex involves invasive techniques 

performed in-vivo in non-human primates, other mammals or rodents. These 

studies mainly rely on electrophysiological (Gilbert, 1977; Hubel & Wiesel, 1962) 

or optical-based methodologies which characterise the cortical response using 

neuronal firing rates or response to wavelengths of light, respectively. While 

their application has proven invaluable in aiding our understanding of cortical 

structure and function, these techniques have limitations. Animals do not have 

the same cognitive capabilities as humans and are not able to report perceptual 

processes, limiting the tasks that can be deployed in their experimentation. 

Additionally, these methodologies can have poor spatial resolution, particularly 

at the laminar level (De Martino et al., 2018) and have an extremely limited 

field-of-view, with an inability to measure the whole brain at once (Ugurbil, 

2016). The nature of such investigations and the limit to non-human species 

means only potential inferences can be made about human cortical function 

based on their findings.  

Human laminar profiling has traditionally been done either using slices of 

cortical tissue post-mortem or less frequently in-vivo in surgical patients. This 

brings about the same limitations as sedated or anaesthetised animal studies in 

that inferences can only be made about the structure of the cortex and not the 

functional capabilities. Initial advances in fMRI resolution allowed for early 

studies to demonstrate laminar profiling in humans (Cheng et al., 2001; Ress et 

al., 2007).  
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The goal is to bridge the gap between invasive techniques and the investigation 

of cortical function in humans (Kemper et al., 2018), allowing the awake and 

functioning human brain to be explored at such fine detail. Ultra-high field fMRI 

moves us a significant step closer to bridging that gap by enabling detailed 

investigation of neural processing in humans. 

4.4 The need for non-invasive laminar profiling 

While the invasive techniques typically used in animal studies and post-mortem 

investigations in humans have taught us a substantial amount about the layered 

cortex, inferences that can be drawn about human cognition are limited without 

the ability to study the laminar function of the cortex in-vivo. Being able to 

capture laminar activity non-invasively in humans is a key step in advancing our 

knowledge of the cortical processing underlying human cognition and behaviour.  

Support is emerging within the literature for theories recognising the different 

input/output functions of neurons. For example, apical amplification (Phillips, 

2017) proposes that the activation of a neuron depends on two sources of input; 

a bottom-up sensory input and a top-down contextual input which modulates the 

response to the feedforward information. This notion is supported by 

mechanisms such as BAC-propagation studied in-vivo in rodents (Larkum, 2013), 

whereby the firing rate of the cell is increased substantially by sufficient 

contextual information arriving from top-down cortical areas and targeting the 

cell’s dendrites. Much of the focus of neural processing is on the output of the 

cell body exclusively, without much consideration (if any) to the dendritic 

properties or influence. Since neurons span several cortical layers with their 

axons and dendrites, and findings are increasingly highlighting the importance of 

both types of input/output of the cell, the functional properties of each layer 

needs to be considered to gain an understanding of the functional property of 

the cortex itself.  

Advances in MRI technology has led to the development of ultra-high field MRI. 

Most MRI scanners used within the neuroscientific community have a field 

strength of 3 Tesla (3T) which is considered high-field compared to standard 

hospital-grade scanners operating at 1.5T. However, there is a growing 

population of ultra-high field (7T and above) scanners being deployed within 



4 202 
 
research facilities. Standard resolution (3-5mm isotropic resolution), high 

resolution (1-2mm isotropic) and ultra-high resolution (<1mm isotropic) can be 

used to investigate the neural response between different cortical areas, the 

response within a given cortical area, and the properties of neurons within that 

area, respectively, meaning different spatial scales are available with different 

resolutions (Olman & Yacoub, 2011). The advent of ultra-high field (UHF) has 

thus allowed the cortical function to be studied within a further dimension 

(cortical depth), which could aid in tracking the direction of flow within 

connections (De Martino et al., 2018). According to (Larkum et al., 2018), we 

still require an understanding of the input/output functions of most neurons and 

their role within the layered cortex. UHF MRI can provide microscopic scale 

insight, adding to our understanding of the meso- and macro-scopic function of 

the brain.  

Increased resolution of UHF MRI allows for non-invasive laminar and columnar 

investigation of the cortex (De Martino et al., 2018), but how is this higher 

resolution achieved with an increase in field strength? At the physical level, 

increased field strength results in a linear increased polarisation of the proton 

signal, which forms the fundamental MRI signal (Olman & Yacoub, 2011), 

meaning a higher field strength leads to an increase in available MR signal. 

Functionally speaking, BOLD contrast also increases with field strength. 

Fundamentally, the underlying advantages of higher field strength lie in 

increased signal to noise ratio (SNR), increased spatial specificity and increased 

contrast to noise ratio (CNR) which ultimately leads to greater spatial resolution 

(De Martino et al., 2013; Olman & Yacoub, 2011). These enhanced parameters 

that result from increased magnetic field mean that UHF MRI can be used to 

acquire higher resolution functional and structural images.    

The advantages that UHF MRI could potentially bring to the field of neuroscience 

mainly lie in using the increased resolution to explore the computational 

processing of the cortex at the columnar and laminar level. Theories highlighting 

a pivotal role of dendrite signalling can be tested non-invasively in humans using 

UHF MRI, with the ability to detect activity in dendrites that isn’t necessarily 

coupled with an action potential (Larkum et al., 2018). Furthermore, using 

higher resolution imaging could allow us to separately study the contributions of 
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feedforward and feedback signals as well as excitatory/inhibitory inputs which 

may otherwise be coupled within a single voxel at a lower resolution (Goense et 

al., 2012). This could lead to crucial steps towards our understanding of the 

computational processing of the cortex. UHF eventually lends itself to novel 

opportunities such as investigation of processes that are uniquely human (De 

Martino et al., 2018) and the ability to compare the sub-millimetre components 

of many brains, giving insight into the variability of laminar structure and 

function.  

 

Figure 4.2 Layer fMRI publications per year. The number of layer-fMRI papers published per 
year has been steadily increasing since its advent. Figure obtained with permission from a 
layer-fMRI blog (https://layerfmri.com/).  

 

4.5 Limitations of UHF MRI 

4.5.1 General 

While ultra-high field neuroimaging provides advantages in terms of the 

potential to investigate the cortex at a much more detailed spatial scale, the 

increased field strength doesn’t come without some crucial limitations which 

must be considered. Olman & Yacoub (Olman & Yacoub, 2011) provide a review 

of the limitations surrounding UHF MRI and ultimately propose that higher 

resolutions are not always better. Pitfalls of MRI in general are often 

exacerbated in ultra-high resolution but it also highlights new challenges and 

considerations when running a UHF MRI experiment. The transition within the 

field to higher resolution seems slow and these limiting factors and challenges of 

UHF could play a role in this delay (De Martino et al., 2018).  

https://layerfmri.com/
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Limitations can lie with acquiring data from human subjects, such as head 

movement within the scanner. When imaging with such fine spatial resolution, 

the range of motion tolerable within the data set is extremely limited, with 

head movement of a few millimetres able to cause considerable issues with data 

alignment and motion correction. Human subjects are also prone to fatigue or 

adaptation/practice effects. This limits the amount of data that can be 

collected within a scanning session. Increasing the number of samples collected 

can increase the SNR at UHF, however, this is caveated by the limitations of 

human capabilities. Specific absorption rate (SAR) is also an issue within MRI in 

general but the higher energy RF pulses at higher fields mean SAR limitations are 

more profound. UHF also results in increased distortion rates than lower field 

strengths and also leaves the images more prone to artifacts. See (Goense et al., 

2016) for a more in-depth account of limitations encountered at UHF. These 

constraints of imaging at higher resolution must be considered within the 

context of the experimental aim in order to adequately account for their 

influences without compromising the potential of the experiment.  

4.5.2 Neurovascular considerations 

One of the major criticisms of MRI in general is its indirect link to neural 

processing. Functional MRI typically measures Blood Oxygen Level Dependent 

(BOLD) contrast, which reflects the metabolic demands of cortical processing. 

Other methodologies measure neural activation directly and thus this 

dissociation between the signal measured in MRI and the underlying neural 

activity is often highlighted as a key concern in its application and 

interpretation.  

Neural activity leads to a local increase in oxygen consumption due to the 

metabolic demands of the neurons involved. This is enabled by an increase in 

both blood flow and blood volume (via vasodilation) to active regions of the 

cortex. The changes in blood flow and oxygen consumption rate leads to changes 

in levels of deoxyhaemoglobin, which is what forms the basis of the BOLD signal 

(Drew, 2019) and constitutes the haemodynamic response. Functional MRI signals 

are consequently tightly coupled with and dependent upon vascular properties. 

It is therefore crucial to gain a thorough understanding of the relationship 

between neural processing and vasculature dynamics in order to accurately 
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determine what the BOLD response tells us about neuronal computations. See 

(Turner, 2016) for a review.    

At standard (or high) resolution, voxel sizes above 1mm mean multiple features 

with different vascular properties can be confounded within one voxel. A single 

voxel above 1mm isotropic resolution could contain different blood vessels such 

as veins, arteries or capillaries or could capture signal from several layers or 

columns, which are known to differ in their haemodynamic profiles. These 

contributions can potentially be separated with ultra-high resolution, (Goense et 

al., 2012) therefore an understanding of their individual neurovascular dynamics 

is needed to interpret the signals achieved at higher resolution.  

Cortical vasculature plays a more salient role in the generation and 

interpretation of BOLD signalling at higher resolution and is often considered a 

significant limitation to employing such a high spatial resolution. Being able to 

accurately interpret the haemodynamic response depends on our understanding 

of the neural and vascular components of the signal (Drew, 2019). One key area 

of concern lies in the large draining veins on the cortical surface. Blood enters 

the cortex via pial and intracortical arteries before reaching capillaries that 

have direct contact with neuronal tissue. It then drains through a series of veins 

eventually arriving in the large pial veins on the cortical surface (Turner, 2002). 

This results in a stronger BOLD signal amplitude in the superficial layers which 

decreases with layer depth (Dumoulin et al., 2018; Lawrence et al., 2019; 

Polimeni et al., 2010) as some BOLD signal is carried from deeper to superficial 

layers in this draining blood. Therefore activity in lower cortical layers will 

influence the signal in higher layers, (Markuerkiaga et al., 2016) meaning BOLD 

activation in superficial layers could partly reflect this influence of draining 

veins. Supply to the deeper layers is also therefore dependent on activation (and 

thus blood supply) to other layers (Goense et al., 2016). This draining effect also 

means that measured BOLD signal can reflect local changes in deoxyhaemoglobin 

as well as distant changes from draining veins (Turner, 2002). 

The vertical nature of the vascular architecture also adds a temporal confound 

to the interpretation of the haemodynamic response. With temporal delays to 

some layers due to the vascular structure of the cortex, BOLD response onset 

therefore operates as a function of depth (Siero et al., 2011). The relationship 
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between neural activity and haemodynamic response in sensory areas is 

considered to be explained by a linear convolution model, however this 

relationship is dependent upon factors such as the behavioural state or the 

cortical region (Drew, 2019). The temporal modulation of vasodilation of blood 

vessels can also lead to a blurring of the haemodynamic response with respect to 

the neuronal activity driving it (O’Herron et al., 2016). This particular temporal 

confound is beyond the temporal capabilities of MRI, however, being able to 

model the control of capillary dilation would enable local haemodynamic signals 

to be detected (Drew, 2019), which could have advantageous implications in 

terms of signal specificity.  

The vascular architecture is not homogenous across layers. The mid-layers have 

a more concentrated network of blood vessels (Olman et al., 2012). Findings 

showing increased BOLD response in the mid-layers could simply be revealing a 

consequence of this expansion of vasculature rather than a true increase in 

signal due to neural activation (Koopmans et al., 2010). Synaptic transmission 

requires considerable energy, therefore the higher BOLD signal in these layers 

could also reflect the costly process of synaptic signalling (Logothetis, 2008).  

The haemodynamic signal is also influenced by other factors relating to the 

vasculature of the cortex such as blood pooling effects that differ between 

layers (Heinzle et al., 2016). Variation in signal also exists due to the proximity 

of different types of vessels and their size and orientation (Ogawa et al., 1993), 

as well as the location of the water protons in terms of being intravascular or 

extravascular. These complex considerations regarding the vascular architecture 

and function of the cortex leas to drawbacks in being able to easily map the MRI 

signal to the underlying neural responses. I have only briefly touched on the 

multitude of vascular influences on the haemodynamic response and the 

complexities of the mechanisms behind them. For a more detailed account, see 

a review by (Uludağ & Blinder, 2018).  

Despite these limitations, research has found distinct laminar differences in 

cortical processing, regardless of neurovascular confounds. Influences of the 

neurovascular system can be circumvented at the acquisition or analysis stage 

using a variety of techniques, discussed below. With adequate measures taken to 

limit these influences and research into understanding of the neurovascular 
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taking place, it is possible to ensure the signals found reflect neuronal activity as 

opposed to biases induced by the cortical vasculature. Harnessing these 

haemodynamic profiles in the right way could also be beneficial for localisation 

of the response signal, giving greater insight into the localisation of the neural 

activity.  

Pushing the spatial resolution to under 1 cubic millimetre may seem like the 

ideal standard to pursue, however, even voxels of this size could potentially 

contain input of thousands of neurons (Olman & Yacoub, 2011), making the 

disambiguation of underlying neural and vascular processes difficult. The 

importance of understanding the relationship between vascular and neuronal 

processes is not strictly limited to higher resolution and is a factor that is not yet 

resolved in lower resolution either (Logothetis, 2008), but higher resolution at 

least provides the opportunity to disambiguate these processes, even if we have 

not fully reached that point yet. Ultimately the trade-off between potential 

benefits of higher resolution and the complications that accompany it depends 

on question you want to ask. In a lot of instances, lower resolution may be 

sufficient, however, the ability to explore the cortex on mesoscopic scale 

undoubtedly benefits many areas of cognitive neuroscience.  

4.6 UHF fMRI Acquisition & Analysis 

Since its development, the application of UHF MRI has grown in popularity, with 

the number of studies using this technique rapidly increasing year by year. As 

such, high field brain mapping is a fast-developing field in human cognitive 

neuroscience (Larkum et al., 2018). This is driven by a steady influx of interest 

and resources along with a growing skill set within the neuroscientific 

community. Its expanding application has not been met without challenges and 

the advantages it brings to the field are not met without difficulties in the 

technicalities of data acquisition and analysis. In the same thread, the 

aforementioned limitations it encompasses can be overcome with appropriate 

acquisition and analysis parameters. The intricacies of each of these areas is 

inherently complex so I will only outline some of the key acquisition and analysis 

features which are currently deployed. For a more detailed discussion, see a 

review by (van der Zwaag et al., 2016). 
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4.6.1 Acquisition  

To an extent, the limitations incurred at increased field strength can be 

minimised by accounting for such factors at the acquisition stage. By eliminating 

potential confounds a-priori, less needs to be done to deconvolve these factors 

from the resulting image signal. Several important parameters can be 

manipulated when acquiring UHF data which are not as influential at lower field 

strengths and therefore should be considered more carefully when running a 

higher resolution study.  

One important aspect of UHF data acquisition is the imaging sequence that is 

used. Sequence design has the potential to improve both spatial and temporal 

resolution as well as increase the spatial specificity of the BOLD response (van 

der Zwaag et al., 2016). Gradient-Echo (GE) and Spin-Echo (SE) sequences are 

those most commonly used in ultra-high resolution fMRI, each encompassing 

specific benefits and drawbacks. Generally, GE sequences are more sensitive to 

blood oxygenation changes but are less spatially specific whereas SE methods are 

less sensitive than GE overall (Markuerkiaga et al., 2016) but less influenced by 

the vasculature of the cortex, reflecting the factors affecting T2 and T2* 

acquisition methods, respectively. GE-weighted sequences are more sensitive to 

the effects of draining veins and therefore can bias BOLD response signal to the 

pial surface. These draining effects lower the spatial specificity by 

contaminating BOLD response signal potentially far from its underlying neuronal 

source. Spin-Echo weighted measures are not immune to the effects of the 

vasculature architecture, with signal captured using SE sequencing affected by 

nearby capillaries (Goense et al., 2016). SE weighted imaging is also inefficient 

in terms of SNR, have less statistical power and can be problematic in their 

analysis in terms of motion correction and alignment with anatomical data 

(Koopmans & Yacoub, 2019) but SE based techniques have higher spatial 

specificity and are more laminar specific than GE. See Figure 4.3 for an 

illustration of a comparison between the two main acquisition types.   

Overall, most UHR studies use T2* GE based sequencing due to the reduction in 

BOLD sensitivity incurred with T2-weighted sequences (van der Zwaag et al., 

2016), but others have successfully used SE based sequences at the laminar level 

(Norris, 2012; Yacoub et al., 2007; Zhao et al., 2006). A combination of gradient- 
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and spin- echo imaging (3D GRASE) can also be used to counteract the drawbacks 

associated with each, but this too comes with limitations. It is important to note 

that the same acquisition method can still show differences in response profiles 

depending on other parameters such as field strength or TE (Goense et al., 2016) 

and different sequences can also show similar response profiles. Muckli and 

colleagues (Muckli et al., 2015) tested the same paradigm using T2 and T2* 

sequences and found no discernible differences between the two in terms of the 

output response.  

 

Figure 4.3 Comparison of Gradient-Echo (GE) and Spin-Echo (SE) sequences. GE (A) and 
SE (B) high-resolution sequences result in different laminar activations (C and D). GE BOLD 
response results in stronger activation at the cortical surface whereas SE BOLD signal is 
less sensitive to the veins on the cortical surface. Figure obtained with permission from 
(Goense et al., 2016) using a Creative Commons Attribution (CC BY) licence.  

 

The resulting signal therefore depends on other contributing factors beyond the 

sequence employed. Koopmans and colleagues (Koopmans et al., 2011) have 

shown the influence of echo time (TE) on the resulting signal. They found 

sequences with short TEs resulted in the highest activation on the pial surface. 

Longer TEs however showed the most signal change in grey matter.  

Slice coverage can also limit the capabilities of UHF imaging with temporal 

sampling rates needing to be taken into account to ensure sufficient time for the 

BOLD contrast to emerge. EPI and multiband methods can help achieve this as 

well as avoiding whole brain acquisition. Voxel size should also be considered as 
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noise distortions can scale with voxel size, making smaller voxels more 

preferable (van der Zwaag et al., 2016).  

Outside of neurovascular issues, other physiological factors need to be taken 

into account at the acquisition stage when imaging human subjects. Peripheral 

nerve stimulation and the levels of SAR (both of which differ in higher resolution 

imaging) need to be appropriately measured for human application. With human 

subjects being awake unlike animal studies, motion is an issue for MRI in general 

but is exacerbated at higher resolution. Sequence parameters are also sensitive 

to human behaviour inside the scanner, with different acquisition times 

influencing subject attention and motivation and ultimately, data quality.  

So far, I have only mentioned acquisition within methodologies centred around 

the BOLD response. Increased SNR at higher fields allows for alternative imaging 

methods to be used (De Martino et al., 2018). Strategies harnessing other 

aspects of the neurovascular response are proving useful in negating some of the 

limitations of BOLD-focused techniques. Cerebral blood volume (CBV) and 

cerebral blood flow (CBF) methods can be used alone or in conjunction with 

BOLD profiling to capture different consequences of the neural response. 

Application of such techniques has proven fruitful (Huber et al., 2015, 2017; 

Poplawsky et al., 2019) and models have been developed to account for these 

haemodynamic factors. These techniques are sensitive to different physiological 

elements and can therefore provide different insight into cortical activity, not 

afforded by BOLD response. In fact, BOLD response has been considered 

inefficient for laminar investigation (Larkum et al., 2018) and so measurement 

of different vascular considerations could be more beneficial for layer-specific 

investigation.  

4.6.2 Analysis 

While the potential benefits of UHF MRI can be maximised through manipulation 

of acquisition parameters, the analysis of UHF data is also crucial in order to 

reap the benefits that higher resolution imaging can allow. Higher-order analysis 

is required of such data to account for any biases induced by vascular 

architecture, minimise confounds caused by participant behaviour and to 
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attempt to circumvent any drawbacks that arise from different acquisition 

parameters.  

Interpretation of raw signal changes is more challenging in higher resolution UHF 

imaging techniques. Therefore it is common practice to employ more advanced 

analysis techniques that go beyond the absolute signal change and instead 

consider relative signal change resulting from computational modelling (Huber et 

al., 2017). An example of this is performing classification-based analysis to 

determine the decodability of the signal within cortical layers (Muckli et al., 

2015). Computational analysis also allows for physiological confounds to be 

modelled and ultimately removed from the relevant task-induced signal changes. 

These can be applied on BOLD-fMRI data or in conjunction with vascular 

profiling. 

Removal of the superficial layers within data analysis can also be useful in 

consolidating the task signal and eliminating bias induced by pial veins or other 

vasculature effects (e.g., Polimeni, Fischl, Greve, & Wald, 2010) and improving 

spatial localisation. Vascular confounds have also been removed through the 

development of numerous different models (Moerel et al., 2018; Ugurbil, 2016).  

Other approaches focus on preserving the laminar profiles such as modelling 

based on equi-volume strategies (Kemper et al., 2018) or through temporal noise 

analysis (Koopmans et al., 2011). Analysis of UHR data has some flexibility by 

pooling along different dimensions of the cortical space allowing prioritisation of 

activity within different aspects of the cortical tissue to be examined (Kemper 

et al., 2018), such as laminar or regional-based analysis.  

Different acquisition methods also pose different challenges at the analysis stage 

which can lead to different outcomes (Moerel et al., 2018). For example, T2-

weighted imaging required a small FOV which can cause issues in motion-

correction and registration between functional and anatomical data. Conversely, 

T2*-weighted imaging motion correction and co-registration is easier in higher-

resolution data but is more susceptible to vascular-related issues (Koopmans & 

Yacoub, 2019).  

Ultimately the acquisition and analysis strategies employed while running a high-

resolution experiment can greatly affect the outcome of the data (Kashyap et 
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al., 2018). There is no gold standard of practice which can eliminate all 

potential confounds and there will always be a trade-off between different 

advantages that coincide with different practices. Similarly there is no current 

standard practice in general, meaning there is no unanimous agreement on 

acquisition and analysis protocols as well as the ultimate interpretation of the 

data (Koopmans & Yacoub, 2019). UHF imaging is still in its relative infancy and 

therefore key developments are yet to be made to achieve such a consensus. It 

is therefore important to tailor the methodologies to suit the study aims and 

requirements in order to maximise the benefits that higher resolution can 

provide.   

4.7 UHF in visual cortex  

Understanding visual cognition is a key area of research within the 

neuroscientific community in general. The advent of ultra-high field fMRI has 

only strengthened this effort by providing the opportunity to investigate the 

visual cortex in a spatial scale not previously possible in human research. The 

higher resolution afforded by higher field MR imaging allows the neural 

computations and mechanisms operating in the visual cortex, highlighted by 

lower-resolution efforts, to be tested at a finer spatial scale. The higher 

resolution of UHF MRI also has the potential to tease apart processes of visual 

cognition operating within cortical columns or on different cortical layers. 

Furthermore, higher level visual processes have the opportunity to be explored 

in greater detail than previously afforded by lower-resolution and interactions 

that operate within the layers and columns across the visual hierarchy can be 

unveiled through UHF. 

With the theoretical drive to seek to understand the mechanisms of visual 

processing on several spatial scales to gain insight into the function of the visual 

cortex (from the individual neuronal computations through the laminar and 

columnar operations, eventually to functional connectivity within the visual 

cortex itself and with other cortical areas), the visual cortex has already become 

one of the most explored cortical areas at UHF. From a practical perspective, 

the position of the visual cortex permits the use of local send and receive coils 

which maximise SNR and minimise implications of SAR (van der Zwaag et al., 

2016), making it a good candidate for exploration at this resolution.  
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The application of UHF MRI has already proved fruitful in many aspects of visual 

perception and cognition research. Early UHF studies have successfully mapped 

ocular dominance columns (Cheng et al., 2001; Yacoub et al., 2007) and later 

orientation columns (Yacoub et al., 2008) within human V1. These findings are 

extended by the more recent work of (Dumoulin et al., 2018) who also find 

evidence of columnar organisation in V2 and V3. Outlining columnar function in 

human visual cortex is an important advancement of MRI research as previously 

cortical columns have only been exhibited architecturally in humans or 

functionally in animals using invasive techniques not suitable for human 

application. Columnar structure thus far has not been identifiable through 

standard (3T) resolution fMRI. Being able to investigate sensory areas at the 

columnar level could have important implications for the organisational and 

functional processing within these sub-units of cortical structure. The 

advantages of high resolution are however limited as such that the spatial 

resolution can focus on cortical depth in a small cortical region or be directed 

horizontally to capture surface-level activity over larger areas. Thus, functional 

connectivity between columns is a potential expansion of UHF imaging when the 

necessary developments are made.  

Ultra-high field MRI has also been applied to the mapping of population 

receptive fields (PRFs). Higher resolution allows a more precise investigation of 

PRF properties in visual cortex, compared to the larger voxel sizes at lower 

resolutions (Zaretskaya, 2021) and also facilitates mapping across layers 

(Fracasso et al., 2016). Fracasso and colleagues found smaller PRF sizes in mid-

layer cortex, relative to deep and superficial layers, revealing a U-shaped 

function of PRF size and cortical depth. Thus, there appears to be laminar 

distinctions of visuospatial mapping properties which suggests laminar-level 

distribution of sensory-driven input. Extending the high-field investigation of PRF 

properties to look at the influence of high-level processes, Klein and colleagues 

(Klein et al., 2018) found spatial attention to have a modulatory effect on PRF 

attraction. They revealed voluntary spatial attention attracts PRFs toward the 

attended location particularly in deep layers. This implies a top-down 

attentional affect that has a layer-specific profile.  
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In addition to revealing detailed attributes of various cortical maps and columns, 

high resolution fMRI has implications within higher level visual processing. Layer-

specific attentional effects have been observed (Lawrence et al., 2019; 

Scheering et al., 2016) with different attention selectively modulating the 

activity in different cortical layers. Illusion studies at ultra-high resolution have 

also revealed layer-wise activation patterns employing classical illusory 

stimulation such as apparent motion (Schneider et al., 2019), Kanizsa shapes 

(Kok, Bains, et al., 2016), and illusions and mental imagery (Keogh et al., 2020); 

each of which point towards a layer dependent activation profile of visual 

awareness. Higher order processes outside of visual cortex such as working 

memory have also been shown to operate in a layer specific manner in primates 

(Koyano et al., 2016; Van Kerkoerle et al., 2017). Further investigation into the 

laminar profile of working memory is a therefore good candidate for ultra-high 

field fMRI exploration. In fact, the application of ultra-high field fMRI extends 

far beyond visual processing in general and can be applied to other sensory and 

non-sensory modalities as well as multisensory integration and functional 

connectivity. The progress and potential of which, however, is outside the scope 

of this thesis.  

Layer-specific top-down modulation found in PRFs and other visual processes 

alludes to a segregation of top-down and bottom-up input within the layers of 

the visual cortex. There is a wealth of literature outlining the role of feedback 

pathways across the sensory cortex in general and in visual cortex in particular 

(Muckli & Petro, 2013; Petro et al., 2014). As such, feedback plays a key role in 

some of the central theories outlining cortical function (Phillips, 2017; Rao & 

Ballard, 1999), especially its integration with bottom-up input. The exact nature 

of this relationship between both types of input is still however, under debate 

and there is still much to learn about how and when these two processing 

streams converge within the visual hierarchy. Laminar fMRI could be a key tool 

in exploring the concurrent processing in visual cortex, specifically by mapping 

the layer-dependent segregation of feedback and feedforward signals.  

Differences in the layer-wise activity between feedforward and feedback 

processing has been found across several studies (see Lawrence et al., 2019) and 

it is generally accepted that feedforward sensory input arrives in the mid-layers 
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and feedback is most prominent in the superficial and deep layers. Two key 

studies have considered the implication of feedback within the layered cortex 

and have revealed seemingly conflicting findings.  

In 2015, Muckli and colleagues (Muckli et al., 2015) partially occluded natural 

scene images to isolate feedback signals to a region of visual cortex in a high-

resolution follow up to their lower-resolution finding that feedback signals can 

be decoded in unstimulated regions of V1 (Smith & Muckli, 2010). When the 

scene was presented in full, they found BOLD response signal to peak in the 

middle layers, where feedforward information is considered to project. This was 

revealed through MVPA and therefore scene information was most easily 

decoded in the mid-layers. However, when the image was partially occluded 

(that is, the bottom-right quadrant of the image was replaced with a uniform 

blank image, removing any scene information from the corresponding cortical 

region), activation peaked in the superficial layers. As such, information about 

the surrounding scene image was able to be decoded in these superficial layers, 

despite a lack of direct feedforward stimulation in this region. This implies 

feedback signals containing information about the surround are fed to the 

superficial layers of occluded V1 and reinforce the notion of a laminar 

distinction between the processing streams.  

Kok and colleagues (Kok, Bains, et al., 2016) have also investigated the role of 

feedback in early visual cortex using a paradigm that also partially removes 

feedforward input. They utilised the Kanizsa illusion, in which contour 

configurations within the stimulus give rise to illusory shape edges and 

boundaries. As such, the illusion of a completed shape is thought to arise from 

expectations carried in feedback signals as these edges are perceived despite no 

direct bottom-up stimulation. Kok and colleagues find increased activity in the 

deep layers in regions of V1 corresponding to the illusory shape contours. Thus, 

implying that the feedback signals are projected to the deeper layers of visual 

cortex.  

The findings of these two studies therefore differentially implicate both 

superficial and deep layers of cortex within feedback processing. These 

differences could simply reflect differences in acquisition and analysis 

techniques, with Muckli and colleagues focusing on the multivariate 
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representation of the BOLD signal and Kok’s study focusing on the univariate 

response. They also employed different sequencing to obtain the fMRI data, with 

Muckli opting for GE based EPI which is known to fall victim to the effects of 

large draining veins, driving a larger response in the superficial layers. Beyond 

technical disparities, the differences could also reflect distinctions in underlying 

processing resulting from the tasks themselves. A recent study by Bergmann and 

colleagues (Bergmann, 2019) found different activation profiles between 

different types of feedback signals; namely, mental imagery and illusory 

imagery. The feedback mechanisms used by Muckli and Kok could also have 

differing layer activation as they represent different aspects of visual processing 

(amodal and modal completion, respectively). Figure 4.4 illustrates the 

differences observed between the two studies.  

The discrepancies noted here reveal how perhaps an important advantage of 

higher resolution investigation is that it may uncover key distinctions between 

findings that are currently clustered together on the basis of having compatible 

findings. Layer specific testing may expose differences currently concealed by 

lower-resolution limitations, leading to a deeper understanding of processes 

involved in visual perception.  

 

Figure 4.4 Deep and superficial layer effects. Comparison of (Kok, Bains, et al., 2016) and 
(Muckli et al., 2015) findings obtained with permission from (Zaretskaya, 2021) using a 
Creative Commons Attribution (CC BY) licence. Stimuli used by Kok and colleagues is 
depicted by A and that by Muckli and colleagues depicted in B. Figures C and D 
demonstrate the depth dependent effects observed by each, respectively.  
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4.8 Project proposal – Laminar investigation of top-down 
influence on the processing of degraded visual input  

With the promising notion of delineating contributions of feedforward and 

feedback processing in visual cortex using layer-specific fMRI, we propose an 

experiment using ultra-high (7T) resolution to explore these fundamental 

cognitive processes further in this sensory modality.  

4.8.1 Aim 

This project aims to expand the findings of the two current projects which 

formed the basis of my PhD, and this thesis (Chapters 2 and 3). These projects 

addressed the fundamental research question of how top-down and bottom-up 

inputs interact to process degraded visual input. This was explored at the 

behavioural level in Chapter 2 and at the neuronal level in Chapter 3 using 3T 

fMRI. Here, I propose a project which explores this research question at the 

laminar level using ultra-high resolution (7T) fMRI.  

The previous projects employed a partial-occlusion paradigm introduced by 

Smith & Muckli (Smith & Muckli, 2010) used by the original authors to isolate 

feedback signals within a region of visual cortex. In our paradigm, however, the 

occluded region contained degraded (low contrast) feedforward information in 

order to investigate how the surrounding context influences the processing of 

this input. The contextual information provided by the surround region is either 

consistent or inconsistent with the low-contrast (target region) information and 

therefore provides either accurate or inaccurate predictions about the content 

of the target region.  

4.8.2 Rationale 

Through our psychophysical experimental series, we found a reliable consistency 

effect in which consistent information in the surround enhances the recognition 

of low-contrast information in the target region and inconsistent information 

hinders performance. This effect somewhat persists when response bias is 

accounted for. Exploring this effect within the visual cortex revealed no distinct 

differences between the two surround types but does highlight the presence of 

feedback signals in occluded visual cortex. The presence of these signals is 
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therefore revealed using conventional resolution fMRI; however, the content of 

these signals is still somewhat unknown. With no definitive differences between 

consistent and inconsistent feedback signals found at 3T, it prompts the need to 

explore these effects at higher resolution in an attempt to tease apart any 

differences which may be concealed by the lower resolution of 3T image 

acquisition. Employing this paradigm at 7T will allow us to explore whether 

there are any laminar signatures which could reveal an effect of consistent 

versus inconsistent top-down information.  

Although our paradigm will replicate that used for the 3T experiment, I will 

briefly outline it here. Further details of the stimuli etc. can be found within 

Chapter 3. Our stimuli will involve grayscale images of natural scenes. These will 

be comprised of two regions; a high-contrast surround region which will 

encompass the majority of the visual scene and a low-contrast target region 

which will occupy the bottom-right quadrant. The two regions will either match 

(i.e., be consistent) or not match (i.e., be inconsistent). Subjects will be 

required to indicate the type of scene presented in the target region (e.g., a 

beach or mountain).  

4.8.3 Experimental Approach 

Experimentally, subjects will attend one scanning session at the Imaging Centre 

of Excellence (the University of Glasgow’s 7T research facility, located at the 

Queen Elizabeth University Hospital, Glasgow). We will aim to collect data from 

around 20 subjects to ensure enough power in our results and to replicate 

sample sizes from previous 7T projects within the lab (e.g. (Morgan et al., 2019). 

Informed consent will be obtained, and we will follow all required protocol for 

scanning subjects at 7T. Although the full sequencing parameters are yet to be 

tested using this paradigm, we plan to use a GE-based sequence to acquire 

functional data of a cortical volume centred around the occipital cortex. Voxel 

size will be 0.8mm isotropic to achieve sufficient resolution for cortical-depth 

analysis. Analysis will be performed on each subject’s V1 ROI which will be 

identified using both retinotopic mapping and target mapping stimulation. We 

will perform both univariate and multivariate analysis to examine differences in 

the amplitude of BOLD signal change between layers as well as potential 

differences in the response pattern.  
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4.8.4 Expected Outcomes 

Firstly, we expect to find a laminar distinction between feedforward and 

feedback signals. Our paradigm will contain trials in which only feedforward or 

feedback information is presented and therefore we can assess the individual 

laminar profiles for each. As is consistently found within the literature, we 

expect feedforward information to peak in the mid-layers. Our feedforward 

input, however, is weak and therefore this effect may not be easily observable 

within our data. In terms of feedback, we expect to find activation primarily in 

the superficial layers, replicating the findings of (Muckli et al., 2015). Although 

feedback has also been observed in deep layers, the paradigm we employ here is 

similar to that used by Muckli and colleagues and therefore we expect our 

findings to reflect this similarity.  

Secondly, we hope to observe differences at the laminar level between 

consistent and inconsistent feedforward/feedback signals. At 3T we do not find 

an overall distinction however, 3T resolution does not permit layer-wise effects 

to be investigated. As such, potential distinctions between these two 

consistency conditions will be distorted at 3T. The fact that we provide evidence 

of feedback influence on the processing of the feedforward input at the 

behavioural level and that feedback information drives a lot of the BOLD 

response alludes to an effect being present, just as yet uncovered. 

Conceptually, it seems inefficient of the visual system to represent these 

feedback signals in early visual cortex without capitalising on their content at 

this level. Results could reveal input of consistent versus inconsistent top-down 

information to different cortical layers or distinctions in the amount of signal 

they result in at the same or different depths.  
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Figure 4.5 Schematic of expected results options. Potential results outcomes of the 7T 
experiment. We expect to find feedback signals to peak in the superficial layers and 
feedforward signals to peak in the mid layers. We also expect feedback signals to elicit a 
stronger response than the feedforward signals due to the degradation of the feedforward 
input. In the first scenario, we find an amplification of consistent information in which 
consistent feedback and feedforward signals result in a higher BOLD response signal 
(and/or higher classifier performance) than inconsistent fb/ff input. In the second scenario, 
inconsistent signals result in higher response signals (in line with predictive coding 
accounts of cortical function). Finally, in the third scenario we observe no differences 
between the consistent and inconsistent conditions.   

 

4.8.5 Impact 

It is hoped that exploring this paradigm at higher resolution will give insight into 

the cortical depth dependency of feedback and feedforward information. Not 

only will it allow contextual modulation to be investigated at a higher spatial 

resolution, but it will also add to the growing evidence of a laminar distinction 

between these two processing streams.  

4.9 Conclusion 

In sum, UHF fMRI allows the human brain to be explored on a new level which 

was previously only available using invasive animal studies. As such, it opens up 

the possibility to glean insight into human cortical function at a much finer 
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spatial scale than previously achievable and may lead to findings about the 

computational capabilities of laminar and sub-laminar components.  

Being able to image the cortex with such resolution is no doubt an invaluable 

advancement in the field, however we must now work to overcome its 

shortcomings to ensure to exploit the opportunities it lends. Furthermore, it is 

also important to build on the theoretical accounts of cortical function at this 

level to guide a-priori experimental design and hypotheses. Informed predictions 

about what to expect with UHR fMRI will require well-informed theories of 

cortical function (Larkum et al., 2018), in turn, knowledge gained from being 

able to explore the cortex on this level can be used to inform proposed theories 

and help better our understanding of the brain as a whole.  
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5 General Discussion 

5.1 Aim 

The work presented in this thesis set out to explore the influence of top-down 

feedback signals on the processing of feedforward information. More 

specifically, it looked at the role of contextual modulation within the processing 

of degraded visual input. It aimed to develop the findings of Smith & Muckli 

(Smith & Muckli, 2010) who found evidence of feedback signals within 

unstimulated early visual cortex. Through a series of experiments, we wanted to 

expand this paradigm to investigate whether these feedback signals can be used 

in the interpretation of visual input which is degraded and therefore difficult to 

perceive.  

To achieve this, we developed what we termed the ‘frosted occluder’ which 

gets its namesake from mimicking the perceptual effects of looking through a 

frosted screen. In such circumstances, visual information is perceptually 

available but is difficult to interpret. With the role of top-down signalling in 

contextual modulation sufficiently highlighted through several lines of research, 

we reasoned that providing contextual information that is easy to interpret will 

influence the ability to process the degraded or ‘frosted’ input. In terms of 

direction of this effect, consistent contextual information has been shown to 

facilitate the processing of ambiguous information. Therefore, at the 

behavioural level we expected to find a facilitatory effect of consistency. The 

picture is a lot less clear at the neuronal level, with some theories suggesting 

inconsistency signals can be enhanced whereas others suggesting the opposite. 

Based on the concept of apical amplification, we wanted to test whether top-

down predicted information can amplify dim, feedforward input.  

5.2 Psychophysical Findings 

We firstly ran a series of psychophysical experiments aiming to investigate 

different aspects of how top-down and bottom-up inputs integrate to influence 

the processing of weak, feedforward information. We utilised an adaptation of 

the partial occlusion paradigm introduced by Smith & Muckli in 2010 whereby a 

series of natural scenes are presented with the bottom right quadrant of the 
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scene occluded. In our adaptation, the bottom right corner contained low-

contrast (I.e., degraded) information that either matched or did not match the 

surrounding high-contrast scene, constituting the context. Subjects were asked 

to perform either a detection task (e.g., ‘is there a scene present in the target 

region?’) or a recognition task (e.g., ‘did the target region contain a beach?’), or 

in some instances, both tasks were performed in a within-subjects design.  

In terms of detection, we considered detection rates between different 

consistency conditions and found that the consistency of the surrounding context 

(and therefore the reliability of the top-down predictions, by definition) did not 

influence subjects’ ability to detect whether or not a low-contrast scene was 

present. Detection rates were similar across consistency conditions but improved 

with increased visibility of the target region through an increase in its contrast 

level, reflecting a generic contrast effect rather than any effect of consistency.  

For the recognition task, we looked at raw accuracy results as a measure of 

performance and found a significant advantage of consistent contextual 

information in the ability to determine the content of the low-contrast region. 

This effect was dichotomous, with inconsistent information hampering this 

ability. Performance was around chance level when no contextual information 

was present, reinforcing the influential ability of context.  

We also analysed the data using Signal Detection Theory to account for any 

response bias within our consistency effect. Signal Detection was used to 

determine whether a consistency effect persists between consistency conditions 

while accounting for bias in responding in a particular direction. We still found 

evidence of increased sensitivity when the low-contrast target region was 

surrounded by contextually coherent information. Sensitivity was lower when 

the surrounding information was incoherent, indicating an influence of the 

predictability of top-down information on the interpretation of degraded 

information, independent of a tendency to respond in either direction.  

In a second round of signal-detection-based analysis, we factored in a bias for 

subjects to respond according to the information presented in the surround. We 

reasoned that due to the ambiguous nature of the information in the target 

region and the difficulty in perceiving the low-contrast signal, subjects may 
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depend on the information in the surround to make their judgement. This would 

result in a bias toward the surround, which could be interpreted as a perceptual 

bias or an influence of contextual modulation. The way in which the response 

components (hits and false alarms) are categorised within this analysis do not 

permit the division of responses into the consistency conditions. Therefore, we 

considered an overall indication of response bias and sensitivity within this 

framework. We did find a slight indication that subjects were inclined to 

presume the surround and target regions were consistent, particularly at the 

lower contrast levels where the target region is the most degraded. However, 

we did not find any evidence of extreme bias within any of our experiments and 

regardless of the tendency to respond according to the surround in some 

instances, we still find that subject sensitivity in being able to recognise the 

low-contrast scene was above chance-level.  

We also manipulated properties of the contextual and feedforward information. 

We limited spatial frequency information in both the target and the surround in 

turn. When spatial frequencies were limited in the target region in addition to 

degradation of the contrast level, we found that low spatial frequencies were 

better at enabling subjects to identify the scene content, an effect which 

overrode the consistency effect we previously observed. When spatial 

frequencies were limited in the surround, contrary to previous findings 

implicating LSF information in contextual modulation, we found that when the 

context contained high spatial frequency information, subjects were better able 

to determine the low-contrast target information.  

Overall, findings of our psychophysical experiment series highlight a congruency 

effect in contextual modulation which transpires as a behavioural response 

pattern. The tendency of subjects to occasionally respond according to the 

surround, that we observe through a slight response bias, may reflect a task-

related mechanism employed when the feedforward input is too degraded. When 

the input is stronger, the surrounding context may then serve as a predictive 

mechanism employed by the top-down information stream. However, it may also 

suggest that the perceptual bias we accredit to contextual modulation is in part 

driven simply by a response bias in which subjects attend to the information in 

the surround and do not pay much attention to what is shown in the target 
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region. We may therefore be attributing a behavioural outcome to the incorrect 

perceptual process, limiting the inferences that can be drawn about contextual 

modulation within this paradigm. Furthermore, we are unable to determine 

sensitivity within each condition independent of a surround bias (as we cannot 

test for an influence of consistency category when response bias for consistency 

between the target and surround regions are controlled for due to limitations in 

defining hit and false alarm rate required) which limits the interpretation of our 

findings somewhat. To circumvent this, SDT based analysis would need to be 

kept in mind when designing the experiment such that the design affords hit and 

false alarm rates to be determined within each condition. Alternatively, a design 

which reduces the ability to show bias towards the context would negate the 

need for this to be factored into the analysis (as in The Response Bias 

Experiment reported in 2.3.6.3). 

Despite this, we provide evidence for the integration of top-down and bottom-up 

input when the bottom-up signal is degraded in the form of a behavioural 

pattern. Behaviour after all is how we interact with the environment and 

therefore we have demonstrated the outcome of contextual modulation in scene 

processing. It is also important, however, to understand the underlying neural 

processing of such an effect. 

5.3 Neural Findings 

We also explored our frosted occluder effect at the neuronal level. We wanted 

to test whether a consistency effect can be observed within the neural signal 

itself. That is, would we find differences between neural responses to feedback 

signals containing predictable (consistent) or unpredictable (inconsistent) 

information? More specifically, is top-down predictable information able to 

amplify dim feedforward input? 

To achieve this, we applied the same frosted occluder paradigm to an fMRI 

experiment. We presented a series of visual scenes with the bottom right corner 

degraded. Instead of presenting the target region at a series of low contrast 

levels, we determined each subject’s perceptual threshold via a pre-screen 

detection task. We ran two fMRI experiments, with the target region being 

shown at either subjects’ 50% (i.e., lower-contrast) or 75% (i.e., higher-contrast) 
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detection threshold. Therefore, the higher-contrast experiment was identical to 

the first except the target region and (therefore the feedforward information) 

was more visible. Again, the surround was shown in full-contrast and was either 

consistent or inconsistent with the scene in the target region. We also included a 

Target Only (in which no information was shown in the surround) and a Context 

Only (in which no information was shown in the target region) condition. 

Subjects completed a psychophysical recognition task within the scanner so that 

we could also acquire a behavioural response for each trial.  

We analysed the neuronal responses within each consistency condition using 

both univariate and multivariate approaches. Our univariate analysis looked at 

the amplitude of signal change in response to the visual stimulation within the 

occluded region of visual cortex. Our multivariate analysis encompassed both 

cross-validation and cross-classification multivariate-pattern-analysis to reveal 

any differences in response patterns within occluded visual cortex.  

In the lower-contrast experiment, we find a psychophysical advantage when the 

contextual information in the surround is consistent with the low-contrast target 

region, reinforcing the concept of a behavioural advantage of consistent 

context. In V1, the univariate analysis does not reveal any significant differences 

between predictable versus unpredictable information. Instead, we highlight the 

presence of feedback signals in occluded V1, with a significantly lower response 

signal when no contextual information is present. This is reflected at the 

multivariate level, with a cross-validation classification also highlighting the 

contribution of feedback signals to the response pattern; the classifier is only 

able to decode target-region information when feedback signals are present. 

Thus, it appears that the presence of feedback signals, rather than the content 

drives the response to degraded feedforward information in V1. V2 on the other 

hand, does appear to be influenced by the content of the feedback signals, with 

inconsistent information in the surround resulting in both a higher response 

amplitude and a higher classifier performance accuracy. This suggests that 

unpredictable information may drive a stronger response in occluded V2.  

Motivated by the idea that the lack of differences in response to predictable 

versus unpredictable information in V1 could be due to feedforward information 

being too severely degraded that the feedback signals override any bottom-up 
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influence, we increased the contrast of the target region in the higher-contrast 

experiment, therefore strengthening the feedforward signal. Increasing the 

feedforward information increased overall performance in the psychophysical 

task, however, rather than a consistency advantage, we observe more of an 

inconsistency disadvantage, with inconsistent information in the surround 

significantly reducing performance compared to either no or consistent 

information, which both resulted in similar performance accuracies.  

In higher-contrast V1, we find a nearly significant higher response in the 

Inconsistent condition when only the correct trials are taken into account. When 

all trials are included, this distinction is non-significant at the univariate level, 

but we do find an advantage in the Inconsistent condition at the multivariate 

level within the cross-validation analysis. This inconsistency effect is also 

observed in a univariate analysis of V2 when only correct trials are considered. 

Overall, increasing the strength of the feedforward input increases both 

psychophysical performance and the strength of the BOLD response amplitude. It 

also lessens the distinction between having feedback information 

present/absent, suggesting a greater contribution of feedforward information to 

the response signal when the input is stronger. Increased feedforward 

information also suggests an amplification of inconsistent information, 

modulated by task performance. This enhancement is also observed in the 

response pattern. Regardless, the key driver behind V1 response appears to be 

the presence of feedback signals, rather than their content. V2 on the other 

hand, appears to be more influenced by the consistency between the surround 

and target regions in both experiments, and demonstrates increased response to 

inconsistency. It would be interesting to model such contributions of these two 

early visual areas to the contextual modulation of visual processing. Differential 

weighting of features such as strength of feedback signal and content of 

feedback signal would need to be considered for each area to accurately 

determine the relative contribution of each factor within each area.   

5.4 Layer-specific hypotheses 

A natural next step in the course of this paradigm would be to explore these 

effects of contextual modulation at the laminar level. Recent advances in ultra-
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high-field fMRI allow high-resolution imaging of visual cortex which can be used 

to investigate cortical responses at a finer spatial scale than previously afforded, 

for example, within cortical columns or layers. This experiment lends itself to 

laminar investigation following a recent higher-resolution application of the 

Smith & Muckli partial occlusion paradigm (Muckli et al., 2015), who found 

laminar distinctions between feedforward and feedback information.  

Applying this paradigm in which feedback signals are present in conjunction with 

degraded feedforward input may allow us to investigate how these two 

information processing streams are segregated and/or integrated within cortical 

layers. We expect to find a laminar difference between purely feedback and 

feedforward information but whether this distinction is maintained if both 

signals are combined, as in this paradigm is an interesting notion to investigate.  

Such an application will provide important insight into how bottom-up and top-

down signals are processed, particularly in situations of perceptual uncertainty 

when top-down input is more crucially required.    

5.5 Interpretation and future directions 

Through this project, we demonstrate that context plays a role in both the 

behavioural and neural response to scene information. Through this contextual 

modulation, we highlight a salient role of top-down influences on the processing 

of degraded feedforward information. At the behavioural level, consistency 

between the context and available visual information is an important 

determinant of how this information is interpreted, as is the availability of such 

information. This is in line with the general literature which finds a dichotomous 

relationship between consistency/inconsistency and object/scene processing 

(Bar, 2004; Bar et al., 2006; Biederman et al., 1982). 

Cortically, the picture is less clear, we find strong evidence to suggest that 

feedback signals are important for processing degraded feedforward information 

but how they are used and what information they convey is still to be 

determined. In our experiments, consistency of the feedback and feedforward 

inputs results in less of a distinction neuronally than behaviourally. We find some 

evidence of an enhancement of inconsistent information in the target region, 

suggesting a mechanism in line with predictive coding (Rao & Ballard, 1999) 
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accounts of cortical processing as opposed to amplification of consistent signals 

as in apical amplification (Phillips, 2017), for example. We do also find some 

multivariate evidence of a segregation of feedback and feedforward signals in 

early visual cortex.  

The psychophysical effect of consistency that we reliably find suggests that 

contextual modulation is a key component in the processing of degraded input 

and that this effect manifests as a behavioural response. Therefore, this effect 

must arise somewhere along the visual processing stream. The fact that our 

neuronal findings are less resounding does not mean that a consistency effect is 

not present at the neuronal level, the task is rather how we move forward and 

adapt our investigation in order to best expose such an effect. A further avenue 

for exploration could be to consider functional connectivity not only within the 

visual system (e.g. (Genç et al., 2016)) but across the whole brain within the 

context of this paradigm. Feedback signals arise from many regions in the brain 

(see Figure 1.2). Locating the source of these signals and exploring how the 

connections influence cortical function between areas will undoubtedly aid in 

the understanding of how feedback contributes to visual processing. Limiting our 

analysis to activity in primary visual cortex may prevent us from observing 

influences from other cortical regions that can help build a clearer picture of 

top-down and bottom-up integration.  

Drawbacks of fMRI as a methodology could be limiting our search. The principles 

of fMRI lie within an indirect measure of cortical activity through its metabolic 

consequences. Perhaps a more direct measure of cortical activity will reveal 

top-down, and bottom-up interactions overlooked by fMRI limitations. 

Additionally, rather than constraints of fMRI in general, the lack of clear 

consistency effect could simply reflect our specific application. We focus our 

investigation in early visual cortex, particularly V1. The emergence of a 

consistency effect we observe in V2 could imply that an integration of signals 

occurs in higher visual areas. The role of V1 may be to relay the feedback and 

feedforward signals while their interaction may occur elsewhere, or perhaps 

contextual modulation is a result of functional connectivity which extends 

beyond visual cortex. Additionally, as mentioned, we may be limited by the 
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resolution of our search and higher-resolution investigation may be the key in 

revealing top-down and bottom-up interactions within early processing stages.  

One thing that is clear is that the notion of feedback influences on feedforward 

input processing is worth exploring in great detail in order to clarify how these 

processing streams allow us to visually perceive the world. The concept 

underlying this paradigm can be harnessed and adapted to build a clearer 

picture of top-down/bottom-up integration. For example, consistency can be 

manipulated in different ways beyond categorical features such as temporal 

aspects. We interact with scenes in a dynamic fashion and therefore temporal 

consistency is as crucial as spatial consistency in terms of scene processing. 

Adding a temporal element to the processing of degraded input could provide an 

interesting avenue to explore, as would other ways to degrade the visual input 

beyond lowering the contrast.   

In terms of impact and how these findings contribute to the overall conceptual 

picture, we have provided evidence of a psychophysical effect of contextual 

modulation on scene categorisation, irrespective of a potential response bias.  

This supports previous notions of behavioural consistency effects in both objects 

and scenes and thus supports the idea that top-down predictions are used to 

facilitate the processing of bottom-up input, particularly in situations of 

ambiguity. There is an abundance of theories suggesting a distinction between 

the processing of predictable and unpredictable information within the visual 

hierarchy which is yet to be fully established at the cortical level , but we may 

need to redirect our focus to layer-wise comparisons in order to reveal where 

these distinctions exist.  

The implications of these projects as they stand may have scope to extend 

beyond cortical processing of a healthy visual system. The role of feedback  

signals have been investigated within an experiment attempting to replicate 

central vision loss (Brown et al., 2021) to help understand the clinical 

implications of feedback signalling in visual cortex. Work has also looked at top-

down signalling in those with vision loss (Masuda et al., 2010). Our findings may 

form a useful reference for the exploration of top-down modulatory effects 

when feedforward information is degraded, as is the case in clinical applications 

where vision has been compromised. Being able to build a picture of how the 
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two processing streams function and integrate within healthy vision forms a 

foundation to understanding how feedback signalling may present when vision 

loss occurs. Being able to harness contextual information from within the visual 

system without the bottom-up input could have key implications for treating 

sight problems.  

Nevertheless, despite the exciting prospect of real-world application of the 

findings beyond neuroscientific understanding of the cortex, the results from the 

PhD project as a whole contribute to the literature investigating top-down and 

bottom-up interactions within the visual system; a cortical function that is 

clearly salient in how we process our environment and one which is important to 

gain a full understanding of to human visual perception.   
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