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Abstract

This thesis contains three parts related to trigonometric solutions of Witten—Dijkgraaf—
Verlinde—Verlinde (WDVV) equations.

In the first part of the thesis we consider a class of trigonometric solutions of WDVV
equations determined by collections A of covectors with multiplicities. This class of solu-
tions involves an extra variable which makes them non-trivial already for planar collections.

These solutions have the general form

F=3caf(o(e) + Q. (0.1)
acA
where ¢, € C are multiplicity parameters and @) is a cubic polynomial in z = (z1,...,zy)

and additional variable 3, and f is the function of a single variable z satisfying f" (z) =
cot z. We show that such solutions can be restricted to special subspaces to produce new
solutions of the same type. We find new solutions given by restrictions of root systems, as
well as examples which are not of this form. Further, we consider a closely related notion
of a trigonometric V-system, and we show that its subsystems are also trigonometric V-
systems. While reviewing the root system case we determine a version of generalised
Coxeter number for the exterior square of the reflection representation of a Weyl group.
We give a list of all the known trigonometric V-systems on the plane.

In the second part of the thesis, we consider solutions of WDVV equations in N-
dimensional space (without extra variable), which are of the form (0.1) with @ = 0.
Such class of solutions does not exist in general even for the case of root system A and
invariant multiplicities c¢,. However, it is known to exist for the root system By and
specific choice of invariant multiplicities [33]. We generalize this solution to a multi-
parameter family so that the underlying configuration A is the root system BCy. These
BC'y type solutions of WDVV equations are found by applying restrictions to the known
solutions of the commutativity equations and by relating commutativity equations with
WDVV equations for the corresponding prepotential. We apply these solutions to define
N = 4 supersymmetric mechanical systems.

In the third part of the thesis we reveal the relation between the set of WDVV equations

and the set of the commutativity equations for an arbitrary function F'. We reformulate
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it as the existence of the identity vector field for the natural associative multiplication
associated with a solution F' of commutativity equations. We give explicit formulas of the
identity vector field corresponding to root systems for all the cases when commutativity
equations are known to be satisfied. We also get new solutions of WDVV equations related

to root system Fj.
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Chapter 1

Introduction

1.1 Background

The Witten—Dijkgraaf—Verlinde—Verlinde (WDVV) equations are a remarkable set of non-
linear third order partial differential equations for a single function F. They were discov-
ered originally in two-dimensional topological field theories at the end of 1980’s by the
physicists E. Witten, R. Dijkgraaf, E.Verlinde, and H.Verlinde [15,55]. One of the forms

of these equations for a holomorphic function F is
FF Fo=FF; ' Fi, i, k=1,...,N, (1.1)

where F;’s are N x N matrices constructed from the third derivatives of the unique function
F = F(t1,...,tn) of N variables with entries

OF

(Fi)pg = Fipg = 0L, 01,

(p,g=1,...,N). (1.2)
When F is a function of one or two variables (N = 1,2) then equations (1.1) are always
satisfied. However for more variables, regardless the simplicity of their compact matrix
form these equations form a highly nontrivial overdetermined system of nonlinear partial
differential equations for the function F. These equations have been widely discussed and
have found various interesting applications in connection with many areas of mathematical
physics. Sometimes equations (1.1) are referred to as the generalized WDVV equations
while the usual WDVV equations have the form (1.1) with a fixed index j. However, we
will call the full set of equations (1.1) simply as WDVV equations. Following [15, 55|,
WDVV equations appeared in the core of Frobenius manifolds theory in the early ‘1990’s,
where the mathematical structure of these equations had been thoroughly studied by
Boris Dubrovin as a way to provide a geometric setting of the solutions to the WDVV

equations [16,17]|. Dubrovin’s Frobenius manifolds give invariant coordinates free way to
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think about WDVV equations. In his work he gave differential geometric formulation of
WDVYV equations as he proved that locally any solution of the WDVV equations defines
the structure of a Frobenius manifold and vice versa.

Let us briefly outline the setting of this relation before giving more details in the next
chapter. The main features of a Frobenius manifold M are the existence of an associative
commutative multiplication o on each of its tangent space T; M and a holomorphic flat
metric 7 so that it has zero curvature. This metric is compatible with the multiplication,
that is

n(xoy,z)=n(r,yoz), xvy,ze€T,M. (1.3)

Another characters that play roles in the structure of a Frobenius manifold are two distin-
guished vector fields e, & € I'(T'M). The vector field e is the unity for the multiplication
o and it is required to be flat with respect to the Levi-Civita connection of the metric
n, namely Ve = 0. The other vector field £ is called Euler vector field and the metric
and multiplication are assumed to be homogeneous with respect to this additional vector
field. Furthermore, there exists a symmetric (0, 3) tensor ¢ related to the metric 1 and the

multiplication o by the formula
n(@oy,z) =clx,y,z), xyz2€l(TM). (1.4)

The multiplication o with condition (1.3) makes 7'M into a family of commutative as-
sociative algebras with unity e, which is a family of Frobenius algebras. The axioms of
the Frobenius manifold require that the tensor c is totally symmetric in all its arguments.
Such a condition implies local existence of a function F = F(ty,...,tny) on M called
the (free energy) prepotential of the Frobenius manifold M, and allows one to express
the structure constants of the multiplication in terms of the third order derivatives of the

function F, that is
PF(t)

Capy = (v, B,7) = Dt sOL, (1.5)
o ¥

where variables ¢;, are flat coordinates of the metric . Hence, by (1.3) and (1.5) the
flat metric  can be defined in terms of the third order derivatives of F which allows
to reformulate WDVV equations as the associativity condition of a multiplication o in a
family of Frobenius algebras defined on the tangent spaces T; M. By this reason sometimes
WDVV equations are referred as associativity equations.

Let us recall some of the important known classes of solutions of WDV'V equations they
are related to finite Coxeter groups VW which are finite groups of linear transformations of
a real vector space V' of dimension N generated by reflections.

There is a remarkable class of polynomial solutions of WDVV equations which corre-
sponds to (finite) Coxeter groups W [17]. In this case the Frobenius manifold M = M,
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is the (complexified) space of W-orbits in the reflection representation V' of W. K. Saito
proved that there exists a flat structure on M,y [51], and this structure can be presented as
a flat metric, which is known as the Saito metric. It has been shown by Dubrovin that the
orbit space M,y admits the structure of a Frobenius manifold [17, Lecture 4]. Moreover,
his construction shows that the corresponding prepotential F of this Frobenius manifold
is a polynomial in the flat coordinates of the Saito metric. Following Dubrovin’s result
and conjecture, Hertling proved that under some assumptions every polynomial Frobenius
manifold arises in this way [32]. Thus, the orbit space construction gives all polynomial
solutions to the WDVV equations under certain assumptions. Note that the polynomial
prepotential corresponding to the space of orbits M,y of a finite Coxeter group VW cannot
be written explicitly in a simple way.

For any Frobenius manifold there is an associated almost dual Frobenius manifold in-
troduced by Dubrovin in [20]. In this new structure some of the axioms of a Frobenius
manifold are relaxed. New multiplication is considered on the tangent spaces which is
defined via the old multiplication of the Frobenius manifold and its Euler vector field.
Tangent spaces remain to be Frobenius algebras with respect to new multiplication and
new metric. There is also a new prepotential F* satisfying WDVV equations which are as-
sociativity conditions for the new multiplication. For the orbit space M,y the prepotential

F* can be expressed in a simple form

= Ft = Za *loga(z), z €V, (1.6)
acA

where A = R is the root system of the group V. In this case the constant metric is the
W-invariant form on the vector space V' of the reflection representation of the group W.

A class of solutions to WDVV equations (1.1) includes some prepotentials arising from
low-energy effective actions of N' = 2 supersymmetric gauge theories in four dimensions via
Seiberg-Witten theory. More precisely, perturbative parts of Seiberg—Witten prepotentials
take the form (1.6) and solve WDVV equations. Note that the geometric structure of the
WDVV equations in Seiberg-Witten theory appears to be different from that of Frobenius
manifolds as for WDV'V equations in the case of Seiberg-Witten theory there may be no full
structure of Frobenius manifolds associated with them. Marshakov, Mironov and Morozov
found in this context solutions (1.6) of WDVV equations for classical root systems R in

[39,40]. More generally, it has been shown in [40] that the prepotential
Frat _ Z (y_(xi — Ij)2 log(x; — ;) + vi(x; + xj)2 log(x; + l‘])) +n Z rilogx; (1.7)
irj i

solves WDVV equations for any value of n if v, = v_ or v, = 0. Suitable choices of

scalars 1, v, ,v_ correspond to the prepotentials for the classical groups Dy, By and Ay.
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Note that solutions corresponding to some deformations of the root system Ay are also
contained in the family (1.7) when v = 0 although this point was not emphasized in [40].
Solutions (1.6) for non-classical root systems were found by Gragert and Martini in [41].

Veselov found solutions F"* of the form (1.6) for non-crystallographic (Coxeter) root
systems as well as, more importantly, for not fully symmetric configurations of covectors
A C V*, where V can now be a complex vector space. He introduced the notion of a
V-system [53| formulated in terms of linear algebra. The following theorem describes the

connection between V-systems and WDVV equations.

Theorem 1.1.1. [26,53|. Under a non-degeneracy assumption configuration of vectors
A is a V-system if and only if the corresponding logarithmic prepotential (1.6) satisfies
WDVV equations.

Another equivalent statement that relates the class of V-systems and WDVV equations
is given via associativity of a multiplication defined on the tangent space of the complement
My = V \ Ugeall, to the union of all hyperplanes I, = {z € V: a(x) = 0}. The

multiplication is given by the formula

ukxv = Z Mav, u,v € Ty My, (1.8)
acA

where ¥ € V is the vector corresponding to the covector o € V* with respect to a non-
degenerate bilinear form defined on V. The relation then is formulated by the following

statement.

Theorem 1.1.2. |26, 54| The multiplication (1.8) is associative if and only if A is a

V-system.

This statement together with Theorem 1.1.1 leads to the fact that associativity of the
multiplication (1.8) is equivalent to the WDVV equations (1.1) for prepotential (1.6).
This property can also be reformulated in terms of flatness of a connection on the

tangent bundle TV [54]. The connection is given by the formula

V=0, Y olw) v ® a. (1.9)

acA Oé(.il?)
Then the following statement holds.
Theorem 1.1.3. [54] Connection (1.9) is flat if and only if A is a \V-system.

As a corollary of this statement together with Theorem 1.1.1 it is easy to see that
the flatness condition for connection (1.9) is equivalent to the WDVV equations (1.1)

for prepotential (1.6). A closely related notion of the Dunkl system was introduced and
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studied in [14]. That structure for complex reflection groups was investigated further in
[5] in relation with Frobenius manifolds theory.

The class of V-systems is closed under the natural operations of taking subsystems [26]
and under restriction of a system to the intersection W of some of the hyperplanes II,
where o € A [25]. A brief formulations of these facts can be given as follows, more details
are given later in Chapter 2.

By a subsystem B C A we mean the intersection of A with a linear subspace in V.

Theorem 1.1.4. Let A be a V-system. Then under some non-degeneracy conditions any
subsystem B C A as well as the set of non-zero restricted covectors of A to the subspace

W are also V-systems.

By considering these two operations of taking subsystems and restrictions one can
obtain new solutions to the WDVV equations from known solutions. Note that the re-
striction of Coxeter root systems in general are not root sytems, so the class of V-systems
can be thought of as an extension of the class of Coxeter root systems that satisfies such
property. In fact, the class of V-systems contains multi-parameter deformations of the
root systems Ay and By (|13], see also [26] for more examples). The underlying matroids
were examined in [46]. The problem of classification of V-systems remains open.

Other remarkable solutions to WDVV equations that arise in theory of Frobenius

manifolds are trigonometric generalisation of solutions (1.6). These solutions have the

form
ftrig = Z Caf(a(x» + Q7 (11())
acA
where ¢, € C are some multiplicity parameters and () is a cubic polynomial in z = (z1,...,zy)

and, often, in additional variable y, and f is a function of a single variable z given by

1 1 .
f(2) = =iz® + — Lis(e™ %), (1.11)
6 4
where Lis is the (trilogarithm) function so that f”(z) = cot z. The WDVV equations in

this case have the form

ffrig(fjrig)—lfliTig — F]irig(ﬂrig)_lﬁrigy (112)
similar to equations (1.1) but they involve N + 1 variables z1,...,xy,Zy+1 = Yy, Where
) a3ftm'g
Firoy —_—~ _ (j =1,....N+1). 1.13
(%5 g 0x;0x,0x, (.pg=1-, N l) (1.13)

Such solutions (for root system of type Ay) appeared in five-dimensional Seiberg—Witten

theory as perturbative parts of prepotentials [40]. Solutions of the form (1.10) corre-
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sponding to (crystallographic) irreducible reduced root systems A =R of Weyl groups
and W-invariant multiplicities ¢, were studied by Hoevenaars and Martini in [33,42]. The
polynomial @) is W-invariant, and it was specified fully explicitly in the case of constant
multiplicity.

Such solutions also appear as prepotentials for the almost dual Frobenius manifold
structures on the extended affine Weyl groups orbit spaces [18,21]- see [45] for type Ax.
In some cases such solutions may be related to the rational solutions (1.6) by twisted
Legendre transformations [45].

Bryan and Gholampour found another remarkable appearance of trigonometric solu-
tions (1.10), or rather the corresponding associative product, in geometry as they studied
quantum cohomology of resolutions of (simple) A, D, E singularities [11]. The associative
quantum product on these cohomologies is governed by the corresponding solutions F9
with A = Ay, Dy, En respectively and with special multiplicities. The invariant cubic
polynomial @ is given in terms of the highest root of the root system. Furthermore, a
family of associative products was given in [11] for any irreducible reduced root system.
The corresponding prepotential can be checked to be of the form (1.10).

In Shen’s work [47, 48] families of Frobenius algebras in trigonometric settings are
considered. A related object is one-parameter family of torsion free and flat connections
on the tangent bundle of the complement of a toric arrangement associated with a root
system. This family of connections is the Dubrovin (deformed) connection V* and it has
the form

Vv = 030 + au * v, (1.14)

where a € C and the multiplication * is defined so that each fiber of the tangent bundle of
the complement of a toric arrangement for a root system R with a VW-invariant multiplicity
cq is endowed with Frobenius algebra structure. This associative multiplication is given
as follows.

Let E be the vector field corresponding to the additional variable y = xy.1, that is
E = 0,y,,. Consider two vector fields X =X+ ME, Y =Y + A E, where XY €

V, A1, Ao € C. The product * is given by the formula

Xy =2 > CQ%Q(X)Q(Y)QV — (X, VVE + 0 X + MY £ AN E. (1.15)
a€RT

In this algebra E plays the role of the identity of the product. The corresponding potential

functions to these Frobenius algebras have the form (1.10). Shen finds the form of u

explicitly so that multiplication (1.15) is associative which is equivalent to the flatness of

connection (1.14). This can be rephrased as explicit specification of polynomial @ in (1.10).

Thus it complements results from [33,42| to the case of arbitrary invariant multiplicities

for all the reduced root systems.
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Solutions of WDVV equations of the form (1.10) without full Weyl symmetry were
considered by Feigin in [27] where the notion of a trigonometric V-system was introduced
and its close relation with WDVV equations was established. Feigin derived geometric
and algebraic conditions for a system of vectors with multiplicities so that the correspond-
ing function of the form (1.10) for a configuration A satisfies the WDVV equations (see
Definition 2.6.17 for precise definition of a trigonometric V-system). A key difference with
the rational case is the existence of a rigid geometrical structure of a series decomposition
of vectors from A parallel to a chosen one which generalizes the notion of strings for root
systems. In more detail, for any a € A the set of vectors in A not collinear to o can be
decomposed as A\ (o) = | |, ', where for any two covectors 71,7, € I'}, one has either
Y1 + 72 = ma or y; — ¥ = ma for some m € Z. There are further algebraic conditions for
each series I'¥. The following example illustrates such series/strings decompositions for

the root system BCj.

Example 1.1.5. Let A = {e!, 2¢e!, €%, 2¢?, ¢! 4 €} be the positive half of the root system

BC5. Then we have the following series:

L = {e? e' %}, T4 = {2e%}; TL = {e!, et £ 62}, T% = {2e');
Dy ={e! £ e}, T = {e’}, T = {267} T = {e £ €}, [ = {e'}, [ = {2}
Fil—i-e? = {617 62}7 F31+62 = {2617 262761 - 62}; T, 2 = {61762}7 I 2 = {2617 262761 + 62}'

el—e el—e

The algebraic conditions for each a-series have the form

Z cpB(aY)B = ba (1.16)

pers

for some b € C, where oV is a vector corresponding to covector o under a certain identifi-
cation of V' and V*. Under additional conditions it was shown in [27] that configuration
of covectors A with multiplicities ¢: A — C such that (1.10) is a solution of WDVV equa-
tions has to be a trigonometric V-system, and the converse statement holds true as well.
We give a version of this result below in Theorem 1.2.1.

All irreducible trigonometric V-systems with up to five vectors on the plane were de-
termined in [27] and some more examples were given.

The study of the trigonometric and rational cases is related as the next statement

illustrates.

Proposition 1.1.6. [27] If a configuration A with collection of multiplicities c,, € A is
a trigonometric \V/-system then configuration \/coa is a rational V-system, that is F ' =

> wes Cat(x)?log ax) is a solution of the WDVV equations on the space V.

However, due to the presence of the extra variable y in the trigonometric case the
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WDVV equations are already nontrivial for dim V' = 2 while the smallest nontrivial di-
mension of V' in the rational case is 3.

Many-parameter deformations of solutions F% for the classical root systems were
obtained by Pavlov from reductions of Egorov hydrodynamic chains [43|. In his work
Pavlov derived an effective algorithm to construct infinitely many particular solutions of
the WDVV equations written in an explicit form in the flat coordinates of correspond-
ing Egorov hydrodynamic type systems. Closely related many-parameter family of flat
connections in type Ay was considered by Shen in [47,48].

It has been proven in [41] (see also [40]) that WDVV equations (1.1) can be written

equivalently in the form
FB'F,=FB'F, ij=1,...,N, (1.17)

where B is any non-degenerate linear combination of matrices Fj with functional coeffi-
cients. Solution of WDVV equations of the form (1.10) when the cubic corrections are
absent, that is when ) = 0, does not exist in general even for the case of a root system
A = R and invariant multiplicities ¢,. However, such a solution is known to exist for
the root system By and specific choice of invariant multiplicities [33]. In fact, in their
derivation Hoevenaars and Martini proved that for such a solution for the root system By

the corresponding WDVV equations (1.17) are reduced to the commutativity equations
FiF;=FiFi, 4,j=1...,N, (1.18)

as they found a matrix B = (Bij)fyjzl given as a linear combination of the third order
derivatives of the function F which is a multiple of the identity matrix of size N x N.
Another area where WDVV equations or rather commutativity equations (1.18) emerge
is N' = 4 supersymmetric mechanics. Relations of such mechanical systems with WDVV
equations were known since [56] and [9]. Similarly to the case of Seiberg-Witten theory,
there is no full structure of Frobenius manifolds in these settings. In order to construct
an N = 4 supersymmetric mechanical system, N (quantum) particles on a line with co-
ordinates z; and momenta p; = —i0,,, (j = 1,..., N) are considered. For each particle
four fermionic variables {¢¥ 17 |a = 1,2, j = 1,..., N} are assigned. These fermionic
variables are chosen so that they obey the standard (anti)-commutation rules. The N' = 4
supersymmetry algebra then is generated by four supercharges {Q%, Q, | a,b = 1, 2}. Those
supercharges are differential operators in variables x1,...,zy whose coefficients depend
on particle coordinates z1, ..., 2y and the additional (fermonic) variables . The N = 4

supersymmetry algebra has the form

{Q% Q" ={Q4, Q) =0, Hsysy = —%(Q“Qa + Q.Q%), (1.19)
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where Hgpgy is the supersymmetric Hamiltonian, and {-, -} is the anti-commutator.

Wyllard in [56] (see also [9]) constructed a set of generators of N' = 4 supersymmetric
mechanics, where his ansatz for the four supercharges involves two scalar prepotentials F’
and W which depend on positions of particles only. The case when the second prepoten-
tional W = 0 was also considered in [56] (see also [30,31]). The structure of such an algebra
forces functions F' and W to satisfy a system of partial differential equations, which are
the commutativity equations (1.18) for F' [9]. Wyllard’s ansatz for F' has the form (1.6),
where A is the root system Ay_;. Examples with root systems A = G5, B3 were discussed
in [56]. Wyllard’s potential for N/ = 4 supercharges was extended to other root systems
in [30,31] where solutions for a small number of particles were considered. More gener-
ally, any rational V-system leads to N = 4 supersymmetric mechanical systems (see [4]).
Trigonometric solutions of the form (1.10) with @@ = 0 to the commutativity equations
(1.18) were obtained in [3]. In this case A is an irreducible root system with more than one
orbit of the Weyl group, namely BC'y, Fy and G5. These solutions were used to construct
N = 4 supersymmetric Hamiltonians in [3]. This gave, in particular, supersymmetric ver-
sion of quantum Calogero-Moser-Sutherland system of type BCy with two independent
coupling parameters. The corresponding solution F generalizes By solution from [33].
More recently, other N' = 4 supersymmetric extensions of Calogero—Moser—Sutherland
type systems were obtained in [38] for the models with many fermionic variables, and in
[22] for the models with extra spin variables.

There is also an important class of elliptic solutions of WDVV equations, which was
considered by Strachan in [44,49] where, in particular, certain solutions related to Ay
and By root systems were found. The prepotentials appear as almost dual prepotential
associated to Frobenius manifold structures on Ay and By Jacobi groups orbit spaces

[7,8]. Such solutions appear also in six-dimensional Seiberg-Witten theory [10].

1.2 Present work and plan of this thesis

1.2.1 Main results I (Chapter 3)

In the first part of the thesis (Chapter 3) we study trigonometric solutions F of the
form (1.10) of WDVV equations. Let us explain the relation between a trigonometric
V-system and WDVV equations.

Let A C V* be a finite set of covectors. Assume it belongs to a lattice of rank V.

Define the bilinear form G4 (which will be assumed to be non-degenerate) on V' by

Galz,y) = ana(x)oz(y), z,y e V. (1.20)

acA
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Let oY € V be the vector corresponding to the covector @ € V* with respect to the
bilinear form G 4. Let U = C be a one-dimensional vector space. Consider a function
F:V ®U — C of the form

[ 2
F=gy'+ D caa(@)’y+ A caf(al)), (1.21)
acA acA
where A\ € C* and function f(z) given by (1.11).

Define the following two bilnear forms on A2V:

1
G (zw) = > cacsBas(z)Bas(w),
a,feA

GY (z,w) = 3" cacsGa(a, 8Y)Bas(2) Bas(w), (1.22)
a,feEAL

where z,w € A%V, and for any a,b €V,
B,sla®b) =a A Ba®b) =ala)sb) —ab)B(a).

In the formula (1.22) AT is obtained by replacing some vectors from A with their opposite
ones and keeping the multiplicity unchanged so that the new configuration of vectors
belongs to a half-space.

The following theorem gives the relation between WDVV equations and trigonometric

V-systems.

Theorem 1.2.1. [1,27] Under some non-degeneracy conditions, the WDVV equations
(1.12) for the function (1.21) imply the following two conditions:

(1) A is a trigonometric \V-system,

(2) Bilinear forms GS) and Gf) are proportional: Gfi) = %Gﬁ).

Conversely, if a configuration (A, c) satisfies conditions (1) and (2) then the WDVV
equations for the function (1.21) hold.

A version of Theorem 1.2.1 that relates solutions of the form (1.21) of WDVV equations
with the trigonometric V-systems was also given in |27, Theorem 1], and it was obtained
by analyzing WDVV equations for the function (1.21). In this thesis we derive and clarify
condition (2) of Theorem 1.2.1. Solution (1.21) depends on a scalar A = A4, which is
invariant under linear transformations applied to the configuration A. In the case of root
systems A = R the scalar Az may be thought of as a version of generalized Coxeter
number for the irreducible YW-module A2V since it is given as a ratio of the two canonical
Wh-invariant symmetric bilinear forms GS) and Gf) on A%V,

We define a multiplication * on the tangent space T,(V ®U), where x = (z1,...,ZN411),
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given by the formula

N+1
Op, % Op, = > WM Fyjply, i,j=1,...,N+1, (1.23)
kl=1

where n*! is defined by 7 = (Fy.,);;. We arrive at Theorem 1.2.1 by making use of

flatness of Dubrovin connection (1.14) and the following well-known result.

Theorem 1.2.2. The flatness of connnection (1.14) for all a € C where the multiplication
x is given by (1.23) is equivalent to WDV'V equations for the function F.

By working with the flatness conditions we arrive at equivalent identities for the config-
uration (A, ¢). These identities under some non-degeneracy conditions led to the trigono-
metric V-conditions (1.16) for each series. In our derivation we notice that certain condi-
tions for collinear vectors should be satisfied in order to study possible singularities in the
identities. Note that these conditions for collinear vectors were not considered in |27, The-
orem 1] although they are needed for the analysis. Formulation of Theorem 1.2.1 in the
thesis and [1] rectifies this. An important class of solutions of the form (1.21) of WDVV
equations is given by root systems with WW-invariant multiplicities as we review above.
Theorem 1.2.1 gives another way to see this since any such configuration can be easily
checked to be a trigonometric V-system.

A natural problem to study is the operations of taking subsystems and restrictions in
the trigonometric case. Moreover, one has to clarify whether the resulting configurations
form trigonometric V-systems or not, and whether these two processes lead to new solutions
of WDVV equations. These questions are motivated by the rational version of V-systems.
Analogous questions for the rational case were answered positively in [26] (see also [24])
for taking subsystems and in [25] for the restriction operation, see Theorem 1.1.4 above.
Before we state our results for the trigonometric case, let us review the settings.

For any o € Alet ¢, := {y € A: v ~ a}, where ~ stands for proportionality. Consider
a subsystem B = AN W and assume that W = (B). Let WY = {a" € V,a € W}. Define
a bilinear form Gz on V' by

Ggp(u,v) == ZCBB(u)B(U), u,v e V.

BeB

Define the subspace Wi = {z € V: f(z) = 0Vp € B} C V. We show that the following

statements take place.

Theorem 1.2.3. The subsystem B of a trigonometric V-system A is also a trigonometric
V-system if Gglwv is non-degenerate, where Gg|wv is the restriction of the bilinear form
G5 to the subspace WV.
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Theorem 1.2.4. Let B C A be a subsystem. Assume that prepotential F' satisfies WDV'V

equations. Then under certain generic conditions on multiplicities, the function

Fo = Fs(6y) = 507+ Y cnl@y+2 Y caf @),

acA\B acA\B
where £ € Wi, @ = g, satisfies WDVV equations on Wy & U.

In contrast to the rational case, the collinear vectors in the trigonometric case should
be taken into account and be dealt with as they are since proportional vectors cannot
be replaced with a single vector which is the case in the rational version. Thus a set
of collinear vectors {k;a: k; € R, i = 1,...,m, m € N} in the rational case can be
equivalently replaced by a single covector & = ko, where k* = ", k7. This is also true
for the restricted systems where collinear vectors may appear. In the trigonometric case
if the restricted system contains collinear vectors we keep them with their multiplicities
and if a vectors « is repeated (up to a sign) with multiplicities ¢!, then we replace this
collection with the single vector o with multiplicity ¢, = >, ¢,.

The following example illustrates restrictions for both the rational and trigonometric

cases.

Example 1.2.5. Let A = {e!,e?,e3,e! £ e e! + % e? + €3} be the positive half of
the root system Bs. Let multiplicity ¢, = 1 for all a € A. Let us restrict A to the
hyperplane 2, = 3. The rational restricted system is A™ = {e', v/6¢?, v/2(e! £¢?)}, and
the trigonometric restricted system is A% = {e!, % 2¢? ! + €2} with the corresponding
multiplicities {1, 2,1, 2}.

Note that we cannot show that given a solution of the form (1.21) a subsystem B
provides another solution. Also we cannot show that a restriction of a trigonometric
V-system is a trigonometric V-system.

In order to apply Theorem 1.2.4 for classical root systems we firstly find a family of
solutions of the form (1.21) of WDVV equations corresponding to the (non-reduced) root
system BC'y which depends on three independent multiplicity parameters. This result
generalizes the results found in [33], [42], [11] and [47] for root systems Dy, By and Cl.
Then we apply the restriction operation to these solutions and we obtain a family of
solutions depending on (n + 3) parameters, where n = dim Wp, which generalizes the

(n + 1)-parametric family from [43]. This result is given in the following statement.

Theorem 1.2.6. Assume that parameters r,q,s and mq, ..., m, satisfy the relation r +

4s 4+ 2q(m; — 1) # 0 for any 1 < i < n. Then for a suitable subspace Wy of dimension n
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the function

Fs(€,y) = 50+ (r+ 4+ 2003 mi = 1)y Yol + 4 S mif (&)
=1 =1

=1

+ A (smy+ L gma(m; — ) f(26) + Ay mam;f(& £ ),

2 —
1<7

where £ = (&1,...,&,) € Wg,y € U = C, satisfies the WDVV equations on Wi & U
provided that (r + 8s+2(}_1, m; — 2)q)q # 0.

Similarly, the restriction process for type Ay solutions gives a multi-parameter family
of solutions which can be specialized to Pavlov’s (n+ 1)-parametric family from [43] (there

seem to be typos in [43| for type A, solutions). This result can be summarized as follows.

Theorem 1.2.7. Let £ = (&1,...,&u1) € CVLoand y = Z?Ill &. Then prepotential

1 n+1 n+1 n+l n+l
F=Fp&) = (5 - Dy’ +ty Y me > mill + 2677y e > mam (& — &)
k=1 =1 k=1 i<j
satisfies WDV'V equations in C"*1 for any generic t,m, ..., my41 € C.

Solutions given by Theorems 1.2.6, 1.2.7 give certain deformations of BCy and Ay
root systems solutions depending on many parameters. We show that in rank two all

trigonometric V-systems with small number of vectors fit into these families.

Theorem 1.2.8. Any trigonometric V-system with up to five vectors on the plane is a

deformation of type Ay or BCs.

The value of the scalar A in solution (1.21) for each root system is given in the following
table.

Table 1.1: The scalar A for root systems

R BCy Go Eg Ex Ey Fy AN

3/2

V2 (r+ds+2g(N-1)) 6(p+3q) 6v/3(2q-+p)
A pi30) | 9 /a5 | 9 /6p | 30/ | SBRUR) | 9N 1 1) /p
\/§(T+8s+2(I(N—2)) V2l V9 VP VAq+p ( NG

Here p is the multiplicity of short roots and ¢ is the multiplicity of long roots in the
case of a reduced not simply-laced root system R. In the case of BCy the multiplicities

co = c(a) are defined as follows:

c(e)=r(1<i<N), c(2¢")=5(1<i<N), cle"+e))=q(1<i<j<N). (1.24)
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1.2.2 Main results II (Chapter 4)

In the second part of the thesis (Capter 4), we find multiparametric family of trigonometric
solutions without extra variable, that is solutions of the form (1.10) with @ = 0 for both
the WDVV equations (1.17) and the commutativity equations (1.18). These solutions are
associated with root system BCy and they generalize solutions found in [33| for type By
root systems for the WDVV equations and they also generalize two-parameter solutions

found in [3] for the commutativity equations. The following statement takes place.

Theorem 1.2.9. Suppose that parameters r,s,q and mq,...,m, satisfy the relation
n
r=—8s— ZQ(Zmi —2).
i=1

Then the prepotential

2

i=1 i<j

F = Z rmy f(x;) + Z (sm; + 1qmz(mZ — 1)) f(2z;) + Z gmim; f(z; £x;)  (1.25)

satisfies both the WDV'V equations E}'}_IFk = Fij_lFi (4,5,k =1,...,n) as well as the

commutativity equations FiF; = F;F; (i, =1,...,n).

This result is established firstly for the case of WDVV equations using a version of
restriction procedure, then it is proven for the commuttivity equations by specifying the
matrix B as a linear combination of the third order derivatives of F' which is a multiple
of identity.

Restrictions of exceptional root systems by Theorem 1.2.4 give other examples of
trigonometric solutions of WDVV equations of the form (1.21). We work out all two-
dimensional cases explicitly in the Appendix. We also note that there are trigonometric
solutions which are not given as a restriction of root systems. An example is given in the

next statement.

Proposition 1.2.10. Let a configuration A C C* consist of the following covectors:
e, with multiplicity p, 1<1i <3,

e*,  with multiplicity q,

el + el with multiplicity r, 1<i<j <3,

1

5(61 +e?+ed £et),  with multiplicity s,

where p,q,r,s € C are such that 4r + s # 0. Then this configuration is a trigonometric

V-system and the corresponding prepotential of the form (1.21) gives a solution of WDVV

equations for some X provided that p=2r +s, q= % and ps # 0.
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In analogy with trigonometric V-systems, we define Fuclidean trigonometric \/-systems.
In this case we have a Euclidean vector space V' with inner product (-, -) and a collection
of vectors A C V with multiplicity function ¢: A — C. The bilinear form G4 given by
(1.20) is replaced in the considerations by the inner product (-,-). The class of Euclidean
trigonometric V-systems contains root systems with Weyl invariant multiplicity.

Let us consider the function F' given by the formula

F=> cufl((a,z)). (1.26)

acA

We are interested in configurations A4 with a multiplicity function c¢(«) = ¢,, @ € A, such

that the following commutativity equations hold:
FF; = FF;, i,j=1,...,N, (1.27)

where F; is the N x N matrix with entries

PF

(Fi)pg = Fipg = 20,07,

We investigate the relation between the commutativity equations (1.27) for the function
(1.26) and the class of Euclidean trigonometric V-systems. Analogously to Theorem 1.2.1

the following statement clarifies this relation.

Theorem 1.2.11. Under some non-degeneracy conditions, the commutativity equations
(1.27) for the prepotential (1.26) imply the following two conditions:

(1) A is a Euclidean trigonometric \V-system,

(2) > pea, Cacala, B)Bagla,b)a A B =0 for every a,b € V.

Conversely, if a configuration (A, c) satisfies conditions (1), (2) then commutativity
equations (1.27) hold.

Similarly to the trigonometric V-system case we show that the class of Euclidean
trigonometric V-system (under some non-degeneracy conditions) is closed under the natu-
ral operation of taking subsystems. We also show that the natural restriction process can
be applied to a given solution of the commutativity equations (1.27) to get new solutions.

We apply the restriction operation to the known solutions of the form (1.26) corre-
sponding to root systems BC'y and F; and we get new solutions by this procedure. These
new solutions imply existence of certain N’ = 4 supersymmetric Hamiltonians. We find a
multiparameter family of Hamiltonians which extends the supersymmetric Hamiltonians

found in [3] in the case of BCy. This result is given as follows.
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Theorem 1.2.12. Let A C C™ be the configuration of vectors o with multiplicities c,
given by

—-1/2
i

2m‘—1/2

(2

e;, with multiplicity rm;, 1 <1< mn,
1
ei,  with multiplicity —sm; + §qm,-(mi —-1), 1<i<n,

m;1/2e,- + mj_l/er, with multiplicity qm;m;, 1<1<j<n,

where my,...,m, € C*. Let the Hamiltonian H be given by

=y 2l % £ cacsl0,0)(8, 8)(0 ) cotla, ) cot(5, ) + @,
i=1 ! an.Z ’

a,ﬁeﬁ

with the fermionic term

2¢4 0505 i nci Tl T ai 77
® = Z 2—] <alak€bc€adwb (0 Jwéwif + (a, )y é>7
< sin (o, x)
ac

where o = (av, . .., ap) and summation over repeated indices is assumed. Then H can be

included into N' = 4 supersymmetry algebra for suitable supercharges Q%, Qy, a,b = 1,2.

We also find new supersymmetric Hamiltonians corresponding to restrictions of the
root system Fj.
We also show that under certain assumptions Euclidean trigonometric V-system defines

a trigonometric V-system.

1.2.3 Main results IIT (Chapter 5)

In the final part of the thesis (Chapter 5) we establish and explore the close relation
between the set of commutativity equations (1.27) and the WDVV equations

F,B'F;=F;B'F,, i,j=1,...,N, (1.28)

where B is any non-degenerate linear combination of matrices Fj, with functional coeffi-
cients. Starting with a function F' = F(zy,...,xy) that satisfies commutativity equations
(1.27), the question arises under what conditions one can obtain a linear combination B
of the third order derivatives of F' which is a multiple of the identity matrix so that the
two sets of equations (1.27) and (1.28) become equivalent. We answer this question and
reveal the sufficient non-degeneracy condition formulated as maximality of rank of a cer-
tain matrix associated with prepotential F'. We give a general formula for the constant

metric B = Zivzl Ak Fy, for arbitrary dimension N, where functions A* are given as specific
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determinants of matrices of size N — 1. Namely,

Frg Fop - Fa—iypz Fage 0 Fvi
i (_1>k+1 dot F1'13 F2'13 . F(ki1)13 F(kJ.rl)13 : F]\.fl3 (1.29)
F].]_N FQ]_N . F(k*l)lN F(k‘+1)1N e FN].N

The following statement relates the commutativity equations and WDVV equations for

arbitrary dimension V.

Theorem 1.2.13. Assume that a function F = F(xy,...,zx5) on V = CV satisfies the
commutativity equations (1.27). Suppose that for a fized iy, 1 < ig < N the rank of the
matriz (Fi;;) where 1 <i,7 < N, i # iy is N — 1. Suppose also that there exists a non-
degenerate linear combination ZZ]\LI n'E; for some functions 0. Then F is a solution of
WDVV equations (1.28), where the matriz B is given by B = Zgzl A*Ey and functions

A* are given by formula (1.29). Moreover, B is proportional to the identity matriz.

The vector field 25:1 A*9,, corresponding to the metric B is in fact proportional to
the identity vector field of the natural associative multiplication on the tangent spaces
T.V given by

Oy * Oy = u'v! Fij1.0pn. (1.30)

Thus Theorem 1.2.13 implies the existence of the identity vector field for the multiplication
(1.30). We also give a generalized version of Theorem 1.2.13 in which the standard metric
d;; is replaced with an arbitrary constant (non-degenerate) metric g. In this case we

consider equations of the form
Fijag*" Far = Frjag™ Faa, (1.31)

where the summation over repeated indices is assumed. Under certain non-degeneracy
conditions we show that g,s = >, 7" Fiap for some functions n".

Theorem 1.2.13 allows us to obtain new solutions of WDVV equations from known
solutions of the commutativity equations. We apply these results to solutions of the form
(1.26). Commutativity equations for function F' of the form (1.26), where A is a root
system, are known to be satisfied if there are more than one orbits of the Weyl group
of the root system A, and multiplicities of different orbits have to be related (see [3]).
This leads to new solutions of WDVV equations for root systems BC'y and Fj and their
restrictions. The corresponding identity fields can be given explicitly as the following

statement demonstrates for A = BCY;, the positive half of the root system BCly.

Proposition 1.2.14. Assume that parameters r,s,q satisfy the condition r = —8s —
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2q(N —2). Then the vector filed

N
e=ht Z sin 24,0, ,
k=1
where h = 2q fo:l cos 2xy + 1, is the identity vector field for the multiplication (1.30),

where function F is given by

N

F = Z (rf(xz) + sf(2xz)> +q> f((z+ay)).

i=1 i<j

We also find the identity vector field for the remaining cases of F; and G,. The
following statement reveals the explicit formula of the identity field e for root system Fj

under a specific relation between the two multiplicities.

Proposition 1.2.15. Let r be the multiplicity of the short roots and q be the multiplicity
of the long roots of root system Fy. The identity vector field e for A = F," under the

condition r = —2q is given by the formula

4
e=h"Y_ Ao, (1.32)
k=1
where function h is given by the formula

h(x) =5 (12¢+ Y cacos(2(a,x))), (1.33)

046F4Jr

DN | —

and functions A* are given by the formula

AF — sin:pk<cosxk(—1 + ZCOS 2x;) — QHCOS%).

itk ik

The only other possibility for the multiplicities of root system F} for the commutativity
equations to hold is r = —4¢, and it is dealt with as well.

For the root system Gs its multiplicities p, ¢ have to satisfy the condition (p + 3¢)(p +
9¢g) = 0 for the commutativity equations to hold [3]. We find the identity field explicitly
in both cases.

We also deal with the restrictions of a given solution of the commutativity equations
and observe that the identity vector field of a restricted system can be obtained by restrict-
ing the identity vector field of the original system. We apply this to the three-dimensional
restrictions of root system Fj (along the hyperplanes x; = 0 and z3 = x4), and we find

the corresponding identity vector fields and deduce new solutions of WDVV equations of
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the form (1.26).

Let us now describe the structure of the thesis more specifically.

1.2.4 Structure of the thesis

Chapter 2 contains introductory material on the theory of Frobenius manifolds. We de-
scribe the foundation and background topics which are relevant to our subsequent chapters.
These include the notations, basic definitions, and results one should be familiar with so
that to make the thesis self-contained.

In Section 2.1 we start by giving a brief introduction to the notions of Frobenius algebra
and Frobenius manifold as well as the appearance of the associativity (WDVV) equations
in these contexts. In Section 2.2 we recall key notions and some general properties of
Dubrovin connection which will be useful later. In Section 2.3 the concept of almost
Frobenius structure and its construction is reviewed including the intersection form and
Dubrovin’s almost duality. Orbit spaces of finite Coxeter groups examples are discussed
in Section 2.4 as an important class of Frobenius manifolds which admits polynomial
prepotentials.

Section 2.5 is devoted to reviewing the rational solutions of WDVV equations corre-
sponding to the class of (rational) V-systems. We also recall the natural operations of
restriction and taking subsystems of a V-system.

In Section 2.6 we introduce the class of trigonometric solutions F' of WDVV equations
which involve an extra variable. These solutions are of the form (1.21) and are associated
with a configuration of vectors A with multiplicity function ¢: A — C. We give the
corresponding associative multiplication explicitly in Propositions 2.6.4, 2.6.5. Then we
work out Dubrovin’s connection explicitly and relate its flatness with WDVV equations for
the prepotential (1.21) in Theorem 2.6.14, which is known in general theory of Frobenius
manifolds.

In Subsection 2.6.2 we present the notion of a trigonometric V-system and we derive
some identities from the flatness condition of Dubrovin connections which lead to the
statement that relates trigonometric V-systems and WDVV equations. We present this
result in Theorem 2.6.21 (see also Theorem 1.2.1 above). Note that this result was es-
sentially given in [27|, where it was derived from the WDVV equations directly. We also
note that some conditions regarding collinear vectors were missing in [27], and we clarify
the conditions which trigonometric V-system should satisfy in order to give a solution of
WDVYV equations.

In Section 2.7 we introduce root systems of Weyl groups and prove that they give
examples of trigonometric V-systems. We also review the trigonometric solutions related
to root systems which can be found in [11,33,42,47,48|.

We review the notion of Coxeter number and we give a version of generalized Coxeter
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number in Section 2.8. The additional condition for a trigonometric V-system in our
Theorem 2.6.21 can be interpreted in terms of this number.

Considerations of Chapter 2 except for Sections 2.6.2, 2.7 are known from the previous
literature. The main new statement which is Theorem 2.6.21 improves its earlier version
from [27].

In Chapter 3 we investigate operations of taking subsystems and restrictions in Sec-
tions 3.1 and 3.2 respectively. Thus in Theorem 3.1.9 we show that a subsystem of a
trigonometric V-system is also a trigonometric V-system. Then in Theorem 3.2.4 we show
that one can restrict solutions of WDVV equations of the form (1.10) to the intersections
of hyperplanes to get new solutions. These results are analogous to the results for the
rational V-systems case.

In Section 3.3 we find solutions F% for the root system BCy which depend on three
parameters. By applying restrictions we obtain in Sections 3.3 and 3.4 the multi-parameter
families of solutions F'% for the classical root systems thus recovering and extending
results from [43]. In the case of BCy we get a family of solutions depending on N + 3
parameters which can be specialized to Pavlov’s (N + 1)-parametric family from [43].
These solutions are given in Theorem 3.3.5 (see also Theorem 1.2.6 above). In Section 3.5
we consider solutions F% for N = dimV < 4. We show that solutions with up to five
vectors on the plane belong to deformations of classical root systems. The statement is
given in Propositions 3.5.4, 3.5.5 (see also Theorem 1.2.8 above). We also get new examples
of solutions F of the form (1.10) some of which cannot be obtained as restrictions of
solutions (1.10) for the root systems, see for example Proposition 1.2.10 above. Other
examples are also given in the chapter.

In Section 3.6 we revisit solutions F"% for the root systems studied in [11,33,42,47,48].
The polynomial ) in this case depends on a scalar vz, which is determined in these
references for any invariant multiplicity function c: R — C. We give a formula for vz ) in
terms of the highest root of R generalizing a statement from [11] for special multiplicities.
The result corresponding to all the reduced not simply-laced root systems R is given in
Proposition 3.7.2.

We also find a related scalar Az, which is invariant under linear transformations
applied to the root system R. This scalar may be thought of as a version of generalized
Coxeter number (see e.g. [28]) for the irreducible WW-module A?V since it is given as a
ratio of two canonical W-invariant symmetric bilinear forms on A?V. The main results of
Chapter 3 are published in [1].

In Chapter 4 we consider trigonometric solutions of WDVV equations without extra
variable. We review such solutions found in the previous literature in Section 4.1. In
Section 4.2 we generalize solution of the form (1.10) with @ = 0 corresponding to By root

systems found in [33| so that it is included in (N + 2)-parametric family. The underlying
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configuration A is the positive half of BCy root system, and multiplicities are chosen in
a specific way. In order to get such a solution, we find firstly a two-parameter family of
solutions where the configuration A is the positive half of BCy and multiplicities are Weyl-
invariant. We find a metric B given as a linear combination of the third order derivatives
for these prepotentials, so that it is a multiple of the identity. The choice of the metric
B is motivated by the metric B for the root system By which is contained in [33]. Then
we generalize these considerations in Section 4.3 to obtain the family of solutions with
many parameters corresponding to BCy solutions by taking special restrictions of these
solutions using procedure similar to one we applied in Section 3.3. This result is given in
Theorem 4.3.7.

In Section 4.4 we recall the construction of NV = 4 supersymmetric mechanics and their
relations with the trigonometric solutions of WDVV equations. Then we use the multi-
parameter deformation of BC'y solutions to construct N = 4 supersymmetric mechanical
systems. Thus we extend Hamiltonians with two independent coupling parameters found
in [3] into multiparameter family. This result is given in Theorem 4.4.7. The above
considerations of Chapter 4 are joint work with G. Antoniou and M. Feigin published in
12].

In Section 4.5 we define Euclidean trigonometric V-systems for which the bilinear form
(1.20) is replaced by the standard inner product. We establish a close relation between
the commutativity equations with the class of Euclidean trigonometric V-systems and
generalize a result given in [3] for root systems.

In Section 4.6 we discuss the natural operation of taking a subsystem and show that
(under some non-degeneracy conditions) the subsystem of a FEuclidean trigonometric V-
system is also a Fuclidean trigonometric V-system.

In Section 4.7 we discuss the relation between Euclidean trigonometric V-systems and
trigonometric V-systems and show that an irreducible Euclidean trigonometric V-system
is a trigonometric V-system (under a non-degeneracy assumption). We also study the
relation between Euclidean trigonometric V-systems and (rational) complex Euclidean
V-systems, which were introduced in [26] as a generalization of (rational) V-systems to
the class when the canonical form degenerates. We prove that if (A, c) is an irreducible
Euclidean trigonometric V-system then the set {,/c,a} is a (rational) complex Euclidean
V-system.

Finally, in Section 4.8 we apply the restriction procedure to a given solution of the
commutativity equations and prove that under some assumptions one can get new solutions
throughout this process. These multi-parameter solutions can be applied to construct
N = 4 supersymmetric mechanical systems.

In Chapter 5 we investigate the relation between the set of commutativity equations

and the set of WDVV equations in N-dimensional space. We show that under some non-
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degeneracy conditions the function F which satisfies the commutativity equations also
satisfies the WDVV equations. This is done by showing that the commutativity equations
lead to the existence of a non-degenerate linear combination (metric) B of matrices of the
third order derivatives F, with functional coefficients A*, (k = 1,..., N) where the matrix
B = Z,ivzl AF Fy, is proportional to the identity matrix. Therefore WDVV equations follow
from the commutativity equations. This leads to new solutions of WDVV equations.

Another way to interpret the linear combination 25:1 AFFy is to note that the corre-
sponding vector field E,ivzl A*9,, is a multiple of the identity vector field for the natural
product associated with solution F' of the commutativity equations. In Section 5.3 we find
the formula for the identity vector field in terms of F' for arbitrary dimension N. In Sub-
section 5.5.1 we apply these results to establish that Euclidean trigonometric V-systems
lead to solutions of commutativity equations provided that certain additional conditions
hold. In Subsections 5.5.4-5.5.7 we give examples to illustrate these results for the root
system F and its restrictions as well as for the root system Gj.

In the Appendix we present explicitly all the two-dimensional trigonometric V-systems
which are restrictions of root systems. We finish the appendix by listing all the known

trigonometric V-systems on the plane.



Chapter 2
Frobenius manifolds structures

In this chapter we provide an overview of notations, basic definitions and results including
rational and trigonometric V-systems, which one should be familiar with throughout the
rest of the thesis. We give a brief introduction to the notions of Frobenius algebra and
Frobenius manifold and we review the appearance of the associativity (WDVV) equations

in these contexts, which feature in this work.

2.1 Frobenius manifolds and WDVYV equations

In this section we start by giving a brief introduction to the notion of Frobenius Algebra

and some general properties of Dubrovin connection which which will be useful later.

Definition 2.1.1. [17] Let A be some N-dimensional vector space over C endowed with
a symmetric non-degenerate bilinear form (metric) (-,-) on A and a commutative multi-

plication of vectors
0: Ax A— A.

Then the 4-tuple (A, o,e, (- >) is said to constitute a (commutative, associative) Frobe-

nius algebra if the following conditions hold:
1. (A, o) is a commutative associative algebra over C with unity e;

2. The symmetric non-degenerate bilinear form (-, -) together with the multiplication

o satisfy the following condition (Frobenius condition)

(XoY,Z)=(X,YoZ), X)Y Ze€A.
Remark 2.1.2. Let w € A* (w: A — C), be the map defined by
w(v) = (e, v).

23
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Then we have

w(uowv) = ({e,uov) = (eou,v) = (u,v).

Hence the non-degenerate metric (-, -) determines the form w and visa-versa. This linear

form w is often called a trace form (or Frobenius form).

A Frobenius manifold has such a family of Frobenius algebra structure on each of
its tangent space which also possesses some additional properties. Before we state the
definition of the Frobenius manifold, let us introduce two tensors as follows.

Let V be the Levi-Civita connection of the metric (-, -), which has zero curvature, and

let us define the (0, 3)-tensor ¢ given by the formula
o X,Y,Z) =(XoY, Z), (2.1)

as well as the (0, 4)- tensor (VWC> (X,Y, Z), which is given by the formula

(vwc> (X,Y,Z) = Vi <c(X, Y, Z)) — o(VwX,Y,Z) — (X, VY, Z) — e(X,Y, Vv Z).
(2.2)
Let M be an N-dimensional complex smooth manifold equipped with a (non-degenerate)
metric 1 which does not need to be positive definite. For any p € M we denote by (-, -),
the restriction of n to the tangent space T, M. Sometimes we will omit p € M in the
notation (-,-),. Let o: T,M x T, M — T, M be a commutative, associative multiplication
such that T, M is a Frobenius algebra. Let e € I'(T’M) be the unity vector field for the
multiplication o. Denote the Levi-Civita connection of the metric n by V. Now we give

the definition of a Frobenius manifold.

Definition 2.1.3. [17] The set (M, o,e,n, ) is a Frobenius manifold, where £ € T'(T M),
if the following properties hold:

1. The metric 7 is flat,
2. The unit vector field e is flat, that is Ve = 0,

3. The two tensors ¢(X,Y, Z) and (Vwc)(X,Y, Z) given by formulas (2.1), (2.2) re-

spectively are totally symmetric,

4. The vector field £ is linear in the flat variables, such that the corresponding group of
diffeomorphisms acts by conformal transformation on the metric and by rescalings
on the algebra on T; M, namely

e V(VE)=0,
o E(X,)Y)—([€,X],Y) —(X,[€,Y]) = D(X,Y),
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¢ [£.XoY]—[6,X]oY —Xo[E,Y]=d X oY,

for some constants D, d;.

These axioms of the existence of the two totally symmetric tensors together with the
successive application of the Poincaré Lemma imply a local existence of a prepotential F’
(called the free energy of the Frobenius manifold) which satisfies the WDVV equations of
associativity in the flat coordinates of the metric on M. Before we explain this fact in the
following statement, let us first explain the notion of a flat coordinates by recalling some
facts from the Riemannian geometry.

Let {z}}2_, be a smooth coordinate system on an N-dimensional smooth manifold M.
With respect to this smooth coordinate system, let 0; := %. Then locally, the Levi-Civita
connection V can be described by how it behaves on the basis field {9;} by

N
Vo, 0j =Y TEok, (2:3)
k=1

where the connection coefficients Ffj: U — C are called the Christoffel symbols. Now, let
us consider two vector fields X = SN f,0;, Y = Zjvzl g;0;, where f,g € C*°(M). Then

by the properties of the connection and formula (2.3) it is easy to see that

N N N
VaY =) ( Fi0igi + Y F§kfj9k)3¢-
=1 j=1 k=1

If the metric is flat then there exists a coordinate system such that components of

the metric are constant and the Christoffel symbols of the Levi-Civita connection of the

metric are zero.

Proposition 2.1.4. Let M be an N-dimensional complex smooth manifold. Then there
exists locally a single holomorphic function F' = F(ty,...,ty) defined on some region

M c CV and unique up to a polynomial of degree two such that

OF 0 0 0,
01,04, 0k, o, O, Oy

where c is the tensor given by (2.1) and {t;}_, is some flat coordinates on M.

Proof. Tt is known by Poincaré Lemma that one can locally solve the equation 0y F = G,
if and only if the condition 0xG, = 0,Gy is satisfied for all k,l. Since (-,-) is flat, one

can choose the flat coordinates {t;}{_; such that the functions (2, 2-) are constants.
P q
Let 0, = a%j’ and ¢;jx = ¢(0;, 0, 0k). By the axioms of the Frebinus manifold the tensor

(Vwe)(X,Y, Z) is totally symmetric, also note that in ¢-coordinates the tensor (2.2) re-

duces to (Vapc) (04, 0j, 0k) = OpCiji- Then by Poincaré Lemma we can introduce a potential
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Hjj, such that
Cijk = GZ(H] )

But again by the axioms the tensor c;j;;, is also totally symmetric, hence we have ¢, = ¢,
that is 0;,(H;x) = 0;(Hux), with Hy, = Hy,; (since ¢, is totally symmetric). Then Poincaré

Lemma implies that we can introduce a potential G, such that
Hj, = 0,
Since H;, = Hj; then we have
0:Gr, = G,
which again by Poincaré Lemma implies that there exists a prepotential F' such that
Hence the prepotential F' exists, moreover, ¢;jr = 0;0;0;F.

]

Proposition 2.1.5. In the notations of Proposition 2.1.4, the associativity of the product

o is equivalent to the following condition

OF

0t:0t;0t (24)

Cijk(t)nknclmn(t) = Czjk(t)ﬁkncimn<t)a Cijm =

forany 1 <4,5,l,m < N.

Proof. By choosing the variables ¢, (1 < k < N) to be flat coordinates of the metric 7,

together with the condition Ve = (0 means this can be done in such a way that e = a%'
Hence by the normalization 0; = Bitl = e, we have
nij = (0, 0;) = (€0 0;,0j) = cuyj
is a constant non-degenerate matrix. Let n” = (n;;)~'. Then the components of the
product o are given by the functions
ij = nklcijla (2.5)

which define an associative, commutative algebra

&- o (%]t = CZ(t)ak (26)

on each tangent space Ty M with unity e. By Proposition 2.1.4 the function F' exists

and satisfies that ¢, = 0;0;0,F. The associativity of the multiplication o reads in
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t-coordinates
(01 o) 0]) 9] 8m = 82 e} (0] e} 0m),

which is by formulae (2.5), (2.6) leads to following system of nonlinear partial differential

equations for the function F"
Cijn ()1 o (8) = 1 (B Cimn (£),

for any 1 <4, 7,l,m < N as required. ]

Remark 2.1.6. (1) Equations (2.4) are known as the WDVV equations after Edward
Witten, Robbert Dijkgraaf, Erik Verlinde, and Herman Verlinde who discovered the system
of these equations for the first time [17].

(2) The invariant properties (4) in Definition 2.1.3 with respect to the Euler vector

field lead to demanding I’ be a quasi-homogeneous function, namely,
E(F) = dpF + quadratic polynomial int, (2.7)

for some constant dp.

The curvature form of any connection V is defined by
R(X,Y)Z = [Vx,Vy|Z - VixyZ, X,Y,Z¢€ F(TM). (2.8)

We say that V is a flat connection if it has zero curvature. The connection V is said to

be torsion free if it satisfies the condition:
VxY - VyX = [X,Y], (2.9)

where [+, -] is the Lie bracket operator and X,Y are any smooth vector fields. The con-

nection V is said to be compatible with the metric (-,-) if it satisfies

Z(X,Y) = (VzX,Y) + (X,VY)

2.2 Dubrovin connection

Dubrovin connection (deformed flat connection) is a one-parameter family of flat con-
nections which is defined on a Frobenius manifold as follows. Let V be a Levi-Civita
connection of a metric 77, and o define a multiplication of tangent vectors on a manifold
M. Then Dubrovin Connection V* for any p € C (here p is called the spectral parameter)
has the form

VAY = VxY +puXoY. (2.10)
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In the following two propositions we show some general properties for the Dubrovin con-
nection (2.10).

Proposition 2.2.1. The Dubrovin connection (2.10) is torsion free for any u if and only

if the product o is commutative.

Proof. By formula (2.10) we have

VLY —VEX —[X,Y] = (VXY—VYX—[X,Y]) —|—,u(XoY—YoX)

:;L(XOY—YOX)

since the Levi-Civita connection V is a flat connection. This implies the statement.  []

Proposition 2.2.2. Assume that the product o is commutative and the tensor ¢(X,Y, Z)
is a totally symmetric tensor. Then Dubrovin connection (2.10) is flat for any u if and
only if the product o is associative and the tensor T(X,Y, Z, W) = (VWC> (X,Y, Z) given
by (2.2) is totally symmetric.

Proof. By the definition of Dubrovin connection (2.10) its curvature (2.8) takes the form

RM(X,Y)Z = R(X, Y)Z+M<VX(Y 0Z)—Vy(Xo0Z)+XoVyZ—Y oVxZ—[X,Y]o Z>

—1—,u2<Xo(YoZ)—Yo(XoZ)>, (2.11)

where R(X,Y)Z is the curvature of the Levi-Civita connection V and it is equal to zero
since it is a flat connection. Together with the commutativity of the product o relation
(2.11) reduces to the form

RUX,Y)Z = u(VX(Y 0Z)~Vy(Xo0Z)+ X oVyZ —Y oVxZ—[X,Y]o Z)
+,LL2<Xo(ZoY)—(XoZ)oY). (2.12)
While the vanishing of p?-terms gives rise to the associativity of the multiplication o, we
will show that the vanishing of u-terms is equivalent to the totally symmetric of the tensor
T(X,Y,Z,W). To do so, let us take the product of u-terms with any vector field W € T M
via the bilinear form (-, ), where (u,v) = n(u,v),u,v € T, M. Then by the compatibility

and torsion freeness of the Levi-Civita connection we have
(Vx(YoZ)=Vy(XoZ)+ XoVyZ—-YoVxZ—[X,Y]oZ W)

- (VX<Yo ZW) — (Y 0 Z, VXW>> - (Vy(XoZ, W) — (X o Z, vyw>>
+ (X oVyZ W)= (Y oVxZ W) —(VxYoZ W)+ (VyXoZ W). (2.13)
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Using the notation ¢(X,Y, Z) = (X oY, Z) relation (2.13) can be rearranged as
(Vx(Y0Z)—Vy(X0Z)+ XoVyZ—Y oVxZ—|X,Y]o0 Z,W)

- (vx (c(Y, Z, W)) — o(VxY, Z,W) — (Y, Vx Z, W) — (Y, Z, VXW)>

- (vy (c(X, Z, W)> —o(Vy X, Z,W). — (Y, Vx Z,W) — (X, Z, VYW)>
= (vxc) Y, Z,W) — (vyc) (X, Z,W)=T(Y,Z,W,X)~T(X,Z,W,Y).  (2.14)

Since ¢(X, Y, Z) is a totally symmetric tensor, then relation (2.14) tells that vanishing of y-
terms is equivalent to the symmetric of the tensor T'(X,Y, Z, W) in all its four arguments.

Hence the statement follows by the above discussion together with relation (2.12). O

Remark 2.2.3. Proposition 2.2.2 guarantees that on a Frobenius manifold, V" is flat for

all p.

The following two propositions are general facts that hold for any connection V on the

tangent bundle T'W, where W is a vector space.

Proposition 2.2.4. Let V be a connection on the tangent bundle TW, where W is a vector
oo N,
be the corresponding constant vector fields. Define V; == Vg, . Then Vi, V;]0k =0 for all
k implies that [V, V;](Z) = 0, where Z = S| 2;(x)d; € T(TW).

space of dimension N. Let zy,...,xy be coordinates in W and let 0; == 0,,, (i = 1

Proof. We have
N N
k=1

Hence we have
N N N
ViVi( Z 2 ViVi(00) + Y (0i2)V(0) + D (0:0;2) 0k + Y _(9;21) Vil D). (2.15)
k=1 k=1 k=1 k=1

Similarly, we get (by exchanging ¢ <+ j) the formula of V;V,(Z), then we have

N
Vi Vil(2) = 3 2 (ViV; = U,V ),
k=1
which implies the statement since [V;, V,]0; = 0 for all k. O

Proposition 2.2.5. In the notations of Proposition 2.2.4, let u,v,z € T'(TW) be given by
u= ZZ Lui(x)0; v = ZZ Li(2)0;, 2 = ZZ L2i(x)0;. If [V, V,]0k = 0 for all k, then

Vi, V| Z = V2
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Proof. Firstly, we have

N N N
= [Zul&, Z?Jjaj] = Z <u182(v])8] — vﬂ%(uﬂ&) (216)
=1 j=1 1,j=1

Since ViuwitfowsZ = iV Z + foVu,Z, where fi, fo are functions in W, then by (2.16)

we have

N N
V[M](Z):Zm@v] WV;Z) — Zvj(?uz W(V.2)

2,7=1 1,7=1

N
= > wi(00)V;(20k) —
k=1

Mz

v;(05u;) Vi(21,0k)

i7j7k:1

= Z u; (0;v;)(0;21) Ok + Z ;2 (070) (V ;0k)

i,7,k=1 i,7,k=1
N N
— Z vj((?jul)(&zk)ak— Z v]zk(ajuz)(vlﬁk) (217)
1,7,k=1 1,7,k=1

N N
VoZ =Y vz(Viok) + > v;(052)0
Ji:k=1 gk=1
Hence we have
N N N
VUVUZ: Z Uﬂ)jzk<vivj‘ak>+ Z uzzk(&v])(vjﬁk)+ Z ulv](&zk)(vjak)
i,j,k=1 ig,k=1 ig,k=1

1,5,k=1 ,7,k=1 1,5,k=1

Similarly, (by swapping i <> j,u <> v) we get the formula of V,V,Z and hence we have

N N
[VU,VUKZ) = Z UinZk(viVjak - Vjvlak) + Z uizk(aﬂlj)(v]'ak)

i,5,k=1 0,5, k=1
N N N
+ Z w;(0;v;)(0;2k ) Ok — Z v 2 (0;u;) (Vi0k) — Z v;(0ju;) (0 21,) Ok, (2.19)
ij k=1 ij k=1 ivj k=1

The statement follows from relations (2.17) and (2.19) since [V;,V,]0p =0 for all k. O
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2.3 Almost dual Frobenius structure

In this section we review the concept of almost Frobenius structure and its construction,

this includes the notion of the intersection form and Dubrovin’s almost duality.

2.3.1 The intersection form

Another important character naturally associated to any Frobenius manifold is the ex-
istence of a second flat metric [17]. This new metric is defined as an inner product of
1-forms on the cotangent bundle of the Frobenius manifold and it is related to the original
metric 7, where the original metric n is used to provide an isomorphism between T'M and

T* M. The second metric g is called the intersection form of the Frobenius manifold.

Definition 2.3.1. [17]|. Let (M, o,e,7n, &) be a Frobenius manifold. Let wy,wy € T M be
two 1-forms, and let w; owsy be the product which is induced from the product of vectors in
T; M by the isomorphism 7: T3 M — T M. The intersection form is a symmetric bilinear
form g defined on each of the cotangent space 7 M by the formula

g(wi, ws) = E(wy o wy). (2.20)
In the flat coordinates {t;} for the metric 1, we have

dt, odtsg = cg‘ﬁ(t)dtv, cgﬁ(t) =" 0" eryr (2.21)

Then we have the Gram matrix
9P (t) = g(dta, dtg) = E(dts o dtg) = SPE(dt,) (2.22)

with the basic property that agt_aﬁ = n*# [17]. The following proposition gives the relation
1
between the original metric 7 and the new metric g (cf.[17], note that the proof of the

statement was omitted there).

Proposition 2.3.2. The intersection metric g is related to the original metric n by the

following relation:

g(€ou,v) =n(u,v), wu,vel(TM).

Proof. In some flat coordinates {t;} of M, let €& = £#0,,, uw = 0,,, v = J). Then by formula
(2.6) we have
Eou= Sucfu(t)ag.

Hence we have
g(Eou,v) = €“gm(t)c§u(t). (2.23)
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Note that from relation (2.5) we have
Cafy = ey Cap- (2.24)
Now by formulae (2.21), (2.22) we have
g°%(t) = 10 e (HE.
By multiplying both sides by gs\(t) we get
05 = g™ (t)gan(t) = gar (™ cren(t)EX.

Then by multiplying both sides by 7,, and using formulae (2.5),(2.24) we have

o = EXga(t)nan ( Mcveu(t))
= E'gax ()™ (mpcd, (1))
= 5“9&@)(77 “Cpen(t))
= £ gan (1) (1), (2.25)
The statement follows by relations (2.23), (2.25). O

Definition 2.3.3. Two contravariant metrics (+,-); and (-, ), form a flat pencil if:
(1) The metric

(5 )1+ ules )2 (2.26)
is flat for all p.
(2) The components of the Levi-Civita connection for the metric (2.26) have the form
11ap 21af
L7+ w155
where T’ 35 and QF‘;‘ﬁ are the contravariant components of corresponding Levi-Civita con-
nections of metrics (+,-); and (-, )3 respectively.
The following statement holds.

Proposition 2.3.4. [17] Let M be a Frobenius manifold and let n* be the metric induced
on T* M by the contravariant metric n. Assume that the Fuler vector field & is invertible.

Then the intersection form g and the metric n* on M form a flat pencil.

Remark 2.3.5. Consider points t € M where there exists 71 € TyM suchthat £ 1o & = e.

Then from Frobenius condition with respect to the original metric 7 we have

n(E ou,v) =nE L uow). (2.27)
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On the other hand from Proposition 2.3.2 we have
(€ ou,v)=g(Eo (7 ou),v) = g(u,v). (2.28)
Hence from relations (2.27), (2.28) we have
g(u,v) =n(E " uow). (2.29)

Thus the metric g is well-defined on the points of M where the vector field £ is an invertible

element of the algebra.

2.3.2 Dubrovin’s almost duality

The concept of almost duality was introduced by Dubrovin [20]. In the construction of this
structure one of the Frobenius manifold axioms is relaxed, but a solution of the WDVV
equations still exists. The unity vector field is not covariantly constant, that is the axiom
of the flatness of the identity vector field is relaxed.

Given a Frobenius manifold (M, o, e, (-, -), ), one can define a new multiplication x on
the tangent bundle via the original product o by twisting with the help of the Euler field
& as follows:

XxY=E'oXoY, XY cI(TM), (2.30)

where £0 71 = £71 0 £ = e. Hence, the new product (2.30) is well defined whenever & is

invertible. Now to construct new Frobenius algebra, we first define
M= M\ {t € M : € is not invertible}. (2.31)

Since o is commutative and associative, then it is clear from (2.30) that x is also commu-

tative and associative. Also since
ExX=E'0foX=¢c0oX =X,

then the Euler vector field £ plays the role of the unity for the product (2.30). Moreover,
if g is the intersection form defined by formula (2.20) and wy, ws, ws € T'(T'M), then by
relations (2.29) and (2.30) we have

g(w1 *x wa, w3) = g(E7" 0wy 0wy, w3) = n(E7, (E7 0wy 0 ws) o wy). (2.32)
Since the product o is commutative, then the right-hand side of relation (2.32) is sym-
metric in wy, wy, w3. Hence we have g(w; * ws, w3) = g(wy, we x w3) which means that the

intersection form ¢ satisfies the Frobenius condition with respect to the product , and
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hence the the tangent bundle TM* is endowed with the structure of a Frobenius algebra.
Let us denote this Frobenius algebra by A, = (1T, M, %), p € M*. This algebra is called a
rescaling of the original algebra. Now we give the precise definition of almost Frobenius

manifold.

Definition 2.3.6. [20] Let M* be a smooth manifold equipped with a (non-degenerate)
metric g. Let x be a commutative, associative multiplication such that 7, M* is a Frobenius
algebra. Let £ e € T'(TM*). An almost Frobenius structure of the charge d # 1 on the
manifold M* is the structure of a Frobenius algebra on the tangent spaces T,M* =
(T,M*, %,g9),p € M*, depending (smoothly, analytically etc.) on the point p € M*. It
must satisfy the following axioms.

(1) The metric g is flat.

(2) In the flat coordinates py, ..., p, for the metric g, the structure constants cék of the

algebra A, can be locally represented in the form

il PE* (p)

i (p) = g2 ) 2.33

for some function F*(p) and ¢ = (dp;, dp;). The function F*(p) must satisfy the following
homogeneity condition:

g(p,p)
1—d’

N
OF*(p)
E ; =2F*

(3) The vector field € (will be called the Euler vector field) takes the form

1—d<L 9
= — — 2.34

i=1

and it is the unity of the Frobenius algebra.
(4) The vector field e has the form

N

0
e = Z ei(p) o0,

=1

and being an invertible element of the Frobenius algebra A,, p € M* such that it acts by

shifts v — v — 1 on the solutions of the system of equations

k)
Op;Op; P op’

(2.35)

for some function p = p(p;v).

Such structure given by Definition 2.3.6 is also known as dual (almost) Frobenius man-
ifold. This is due to the following result.
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Theorem 2.3.7. [20] Let (M, 0,¢,(-,-),E) be a Frobenius manifold. Then (M*,*,e,g,E),
where M* %, g are given by formulae (2.31), (2.50), (2.29) respectively, is an almost
Frobenius structure. Furthermore (M*,%,E,¢,E), satisfies all the axioms of Frobenius

manifold given in Definition 2.1.3 except axiom (2).

The following statement gives the relation between the almost Frobenius structure and
WDVYV equations.

Theorem 2.3.8. [20] Let (M,o,¢,(-,-),E) be a Frobenius manifold. Let (M*,x,E,g,E),
be the corresponding almost dual Frobenius manifold where M*, x, g are given by formulae
(2.31), (2.30), (2.29) respectively. Then the function F* defined (locally) by the condition
(2.33) satisfies the WDV'V equations in the flat coordinates {p;}Y., of the metric g.

2.4 Orbit spaces examples

The construction of the Frobenius structure on the orbit spaces of finite Coxeter groups
was established in [19]. Flat pencils of metrics can be used to provide the (complexified)
orbit space of a finite Coxeter group with the structure of a Frobenius manifold. One of the
flat metrics on the complexified orbit space of a finite Coxeter group is given by invariant
bilinear form while the other one was found by K. Saito et al. [50]. Dubrovin used this
metric to construct the structure of a Frobenius manifold on the orbit space [17, Lecture
4]. Tt follows from the construction that the corresponding Frobenius prepotential which
solves the WDV'V equations will be a polynomial in the flat coordinates {#}X_; of this

metric. Here we give a brief summary for this structure.

Definition 2.4.1. Let V = R" and let (-,-) be the standard positive definite symmetric
bilinear form in V. A reflection is a linear operator s on V which sends some non-
zero vector « to its negative while fixing point-wise the hyperplane (called a mirror)
I, ={x € V: (o,x) = 0} orthogonal to a.

We will write s = s,. This map can be given as follows:

2(1),04}@

V.
(a, a> Ve

SqU =10 —
Indeed V =R, @ II,, where R, denotes the one-dimensional vector space spanned by «
Ry ={uveV :iu=rareR}

Definition 2.4.2. Let R be a finite set of non-zero vectors in V such that:

I. RNR, ={a,—a}, VaeR,
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2. For any « € R, so R = R.

The set R is called a reduced Coxeter root system with associated reflection group W,

where

W= (sa:a€R).

W is called the Coxeter group of the root system R and it is a subgroup of the group
O(V) of all orthogonal transformations of V.

Definition 2.4.3. A root system R is called irreducible if R cannot be written as a union
R = Ry U R, of two non-empty subsets R, R, of R orthogonal with respect to the
standard bilinear form (-,-) on V| that is (o, 8) = 0 for all &« € Ry, f € Rs.

Definition 2.4.4. A root system R is called crystallographic root system if for all o, € R

the following condition holds:
2(cv, B)

(@, )

€ Z.

The associated reflection group W is called Weyl group.

Consider a root system R. One can find a vector d € V, such that Vo € R, (d, a) # 0.
Then we can decompose the root system into two disjoint parts: R = R, UR_, where
Ry =Ri(d)={aeR:{(d,a) >0} and R_ =R_(d) = —R.(d).

Let V = RY and let W be a finite irreducible Coxeter group. By definition, W acts
on the vector space V. The action of the group W is extended linearly to the complexified
space V ® C = CV. The orbit space My of W is defined by

My =V ®@C/W=CN/Ww.

Let us choose a basis in V such that {x;}Y , is the corresponding coordinate system.
The group W acts also on these coordinates as well as on the symmetric algebra S(V') =
Clz1, ..., zn] of polynomials in these coordinates. A coordinate system on the orbit space
M,y is given by choosing N homogeneous W-invariant polynomials y;(z),...,ynv(z) €
S(V') generating freely the ring C[zy, ..., zn]"Y 2 Clyy, . . ., yn] of W-invariant polynomials
on CV [17,19]. The degrees of these invariant polynomials are uniquely determined by the

Coxeter group. Let d, = deg(y,), and arrange the degrees such that
d1>d22"'ZdN_1>dN:2.

The maximal degree d; = h is called Cozeter number of the group W.

Theorem 2.4.5. [17| There exists a unique, up to an equivalence, Frobenius manifold
structure on the space of orbits of a finite Cozeter group with the following properties:
(1) the vector field e := aiyl 1s unity field for the Frobenius manifold.
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(2) The Euler vector field is given by

lem, 0
= ﬁ;dzyza—

i

(8) The intersection form is given by the formula

OYq O
gas(y Z aiz aif
The components gnz(y) are polynomials in ys,...,yn. The corresponding connection one-
form s given by
igraﬁ )y, = i Yo Os 4.
T 8x 0z Oxy,

v=1
and it is also a polynomial one. Another metric n (called the Saito metric) which is given

by 5
Nas(y) = a—yl(ga@(y))

and the corresponding contravariant Levi-Civita connection

O (oran(y)).

T (y) = 3

(4) The pair of metrics g, n given in (3) form a flat pencil.

The following Theorem by Dubrovin gives the formula of the Frobenius prepotential

associated to the Frobenius manifold structure on the orbit space.

Theorem 2.4.6. [20]| For any finite irreducible Cozeter group the prepotential F*(z) for

the almost dual structure has the form

F(2) = > a(2)’loga(z)?, (2.36)

a€R
where the roots are normalised so that (o, a) =2, z € CN \ Uper, 11,

Remark 2.4.7. Martini and Gragert showed in [41], by straightforward computation,
that function of type (2.36) corresponding to root systems of any semisimple Lie algebra
satisfies the WDV'V equations. Note that the root systems of any semisimple Lie algebra
are the particular examples of the Coxeter systems.

Veselov in [53] also followed a different approach to obtain other examples of the
logarithmic solutions to the WDVV equations given by a formula of the form (2.36) where
R may no longer be a root system. The fact that prepotential (2.36) satisfies WDVV
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equations for any Coxeter root system was established by Veselov in [53| (see Corollary
2.5.6 below).

In Veselov’s work a special class of such solutions was investigated for some not fully
symmetric configurations of finite set of covectors A C V* (so-called V-systems). These
kind of configurations were formulated in terms of linear algebra, and can be considered as
a generalization of the class of Coxeter systems. Deformed root systems were discovered
by Chalykh, Feigin and Veselov [12,52]. These multi parameters deformed versions of root
systems appeared in the theory of the generalised Calogero-Moser problems and it was

shown that they also give examples of the logarithmic solutions of the WDVV equations.

2.5 Rational solutions of WDVYV equations

In this section we review the rational solutions of WDVV equations corresponding to the
class of (rational) V-systems. We also recall the natural operations of restriction and

taking subsystems of a V-system and present the known results related to this class.

2.5.1 (Rational) V-systems

An important class of soultions of WDVV has the form

F = Za *loga(z), w €V, (2.37)

acA

where A is a system of covectors in V. This class of solutions was given by Veselov in [53],
and the corresponding configurations A are known as V-systems. The class of V—systems
includes any two-dimensional system (trivial examples). This class also contains all Cox-
eter root systems. As we have seen in Section 2.4 that solutions of WDVV equations
constructed from a Coxeter group define the almost dual structure of the Frobenius mani-
folds defined on the space of orbits of these groups. These solutions can be expressed in the
form (2.37) with A = R (see Theorem 2.4.6). The class of V-systems includes also the
deformed versions of the Coxeter root systems related to simple Lie superalgebras coming
from the theory of the generalised Calogero-Moser systems, but the full classification of
the V-systems is still an open problem. It has been shown in [26] (see also references
therein) that the class of V-systems is closed under the natural operations of restriction
and taking subsystems. In this section we present the notion of V-system and we describe
the geometric conditions (V- conditions) on such a special collection of covectors which are
necessary and sufficient for the corresponding function to satisfy the generalised WDVV
equations. We also give a proof that any Coxeter root system belongs to such a system.
We also summarize some important results which are found in the literature which con-

firms that (under some mild assumptions) a subsystem of a V-system is also a V-system
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[24,26] and that the restrictions of a V-system to certain subspaces are also V-systems
25, 26].

For this section let V' be an n-dimensional complex vector space and A C V* be a
finite set of covectors in the dual space V*. To such a set one can associated the following

canonical form G4 on V:

Galz,y) = Z a(z)aly), =z,yeV. (2.38)
acA

We will assume that the bilinear form (2.38) is non-degenerate, which establishes an iso-
morphism

¢AZV—>V*.

Let us denote the inverse ¢ ;' («) by a”. let us also identify V 22 V* using the canonical form
G4 and for any «, § € V* we define G4(a, §) := G4(a”, ). We will also assume without
loss of generality that A has no collinear vectors. Indeed, if a configuration has collinear
covectors {k;a, k; € R, i = 1,...m, m € N} then by replacing this group of covectors
with a single covector & = ke, where k* = " | k7, the corresponding prepotential (2.37)

is unchanged up to quadratic terms. The vector ka is removed from the configuration if
k=0.

Definition 2.5.1. [53] The system A is called (rational) V-system if the following relations

(called V-conditions) are satisfied

> Ba")BY =Y, (2.39)

perNA

for any a € A and any two-dimensional plane w7 C V* containing o and some X, which

may depend on 7 and «.

Define an operator A,: ¥ — 7" by the formula

Ar= ) BepY, (2.40)

BEANT

that is Ar(v) = > sc 4nr B(v)BY for any v € 7V. In this notation, for a fixed a € A the
V-condition (2.39) reads

that is, o is an eigenvector of A, with the eigenvalue . The following lemma is known

from linear algebra.

Lemma 2.5.2. If the operator A, given by (2.40) has at least three non-proportional

ergenvectors, then eigenvalues do not depend on the eigenvectors. Moreover, the operator
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A, s proportional to the identity.

By Definition 2.5.1, the condition for a system A to be a V-system is equivalent to the

following conditions:
o If TN A= {a}, then the V-condition is obviously satisfied.

e If N A = {«,3}, where @ ~ (3, then condition (2.39) means that «",3" are
orthogonal with repect to the bilinear form G4, that is S(a") = G4(8,a") = 0.

o If |[ANm| > 2, then by Lemma 2.5.2 the scalar A in condition (2.39) does not depend
on «, that is A = A\(7). Moreover, the condition (2.39) means that bilinear forms G 4
given by (2.38) and G (z,y) = >_ e 4nr B(2)B(y) restricted to the plane 7¥ C V are
proportional:

Gﬂ"ﬂ'vXV = )\GA‘TI'\/XV'

To see this, take « € 7N A and v € V| then by using condition (2.39) we have

Go(a”v)= Y Ba)B) = > Ba)Ga(B,v) = AGa(a",v)

BeANT BeANT
which implies the result.

Originally V-system appeared in [53] as geometric reformulation of the Wittern-Dijkgraaf-
Verlinde-Verlinde (WDV'V) equations for the prepotential (2.37). The (generalized) WDVV

equations have the form
EF'Fy = FF'F, i k=1,..,n, (2.41)

where F; is the matrix of third derivatives

PFE
E ab — 3 _ a4 Ao ’ Jb = 17 )
( ) b 8@-8%8% na "
The system (2.41) is equivalent to the system
FG'F;=F,G'F, ij=1,..n, (2.42)

where G is any non-degenerate linear combination
G=> nx)F, (2.43)
i=1

for some analytic functions 7;(z) [41] (see also [40]). The following theorem shows the

equivalence of V-system conditions and the WDVV equations for the prepotential (2.37).
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Theorem 2.5.3. [26,53]| The prepotential (2.37) satisfies the WDV'V equations (2.42) if
and only if A is a \V-system.

Before we present the statement that gives the relation between root system and the
(rational) V-system, let us give some properties with respect to root systems.

Let V' =R" and let (-,-) be the standard positive definite symmetric bilinear form on
V. Let R be a Coxeter root system in a real vector space V¥, where complexification is
V. Let A = R,. We recall that by identifying V' = V* using the canonical form G4 and
for any a, f € V* we define

Gala, B) = Gala”, B7). (2.44)

Also, since the bilinear form (2.38) is W-invariant then it is proportional to the standard

inner product (-,-) on V. Let
Ga(u,v) = plu,v), peR uveV. (2.45)

Also, one can identify V' = V* using the standard inner product (-, -) and for any «, 8 € V*

we define

(o, B) = (", B"). (2.46)

Thus relations (2.44)—(2.46) leads to the relation

Gale,B) = pla, B), peR, a,f eV

Lemma 2.5.4. Let A =R,. Let « € A and let 1 C V* be any two-dimensional plane

containing o. Then s,m = 7.

Proof. Let B € m. Then by the definition of the reflection s, we have

Saﬁ = ﬁ — ma,
where m = 2&;@ € Z. Since s, is a linear combination of vectors in the plane 7 then
Sq3 € m for all 8 € . The statement follows. H

The following theorem gives us the relation between root system and the (rational)

V-system.
Theorem 2.5.5. [53]| Let R be a Coxeter root system in R™. Then A =R, is a V-system.

Proof. In order to check that A = R, is a V-system we have to check that conditions
(2.39) hold. Fix o € A. Let 7 be any two-dimensional plane containing «. Let f € AN.
Since R is invariant under the action of Weyl group, then 5,5 € R = RyUR_ = AU(—A),
and hence either s, € A or —s,8 € A If |[AN7| =2, say ANn = {«, [}, then by
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Lemma 2.5.4 s, = . Hence G 4(«, 5) = p{a, ) = 0 and the V-condition holds in this
case. Assume that [ AN 7| > 2. We study two cases:

Case (1). Assume that s,8 = (. Let s,8 € A. Then by Lemma 2.5.4 we have
Saf3 € AN 7. Let us now study the contribution of the pairs § and s, to conditions
(2.39). We have (we use (2.45) thoroughly)

GA(CY, ﬁ)ﬁv + GA(a’ 3&6) (Saﬁ)v

Y 2{a, B) v 2{a,B)
= Ga(, 9" + (Gl ) = 7 =Gl @) (87 = 1 aY)
= Gl 9)5" + (Galon ) = 2t ) (5 - 2k
= Gala,9)5" + (Gale ) — 26t ) (7 - )

— Gala,0)8" ~ Gl B + 2 Gl )
_ 2p{ax, >2av
(.0

Hence the contribution of pairs of vectors f3,s,8 € A N7 in the left-hand side of V-
condition (2.39) is proportional to av. If —s,8 € A then similarly the contribution of
pairs of vectors 3, —s, € AN in the left-hand side of V-condition (2.39) is proportional
to aV.

Case (2). Assume that s, ~ (. Assume firstly that s,5 € A. Hence we have
B, 848 € AN . This implies that s, = § (since the only multiples of 3 are +£). Hence for
this case the vector § is orthogonal to v and vector § has zero contribution in the left-hand
side of V-condition (2.39). Now assume that —s, 3 € A. Hence we have 3, —s, € AN .
This implies that s,/ = —f (since the only multiples of g are +3). Thus we have

That is
(o, )
«

(@, a)

b=

But this means that [ is proportional to a and hence § = «. Hence the contribution
of vector /3 in the left-hand side of V-condition (2.39) is proportional to . The lemma
follows by the above considerations.

O

As a corollary of Theorems 2.5.3 and 2.5.5 the following statement holds.
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Corollary 2.5.6. [53] For any Cozeter root system R the function

F= Z )2 log af

a€ER 4

satisfies WDV'V equations (2.41).

Remark 2.5.7. Note that all the results of V-systems have been originally proven for
real vector space in [53| then these results have been generalized to complex vector spaces

where the natural complex version of the V-systems appeared firstly in [26].

2.5.2 The associative product

Theorem 2.5.3 can also be reformulated in terms of flatness of a connection on the tangent
bundle TV [25,53]. By defining M4 =V \ Upeall,, it was shown that the considerations
of WDVV equations with respect to function (2.37) leads to the following multiplication

for the tangent vectors u and v on M 4:
u*vzzwav, x € My, u,v € Ty My. (2.47)
acA o

It is clear from formula (2.47) that the multiplication * is commutative.
Before we find the identity vector field for multiplication (2.47), let us define an operator
K4:V — V by the formula
Ky = Za@av, (2.48)
that is K4(v) = > 4 @(v)a” for any v € V. The following property holds.

Lemma 2.5.8. The operator K4 given by formula (2.48) is the identity operator that is
Ka(v) =v for anyv e V.

Proof. Let u,v € V. Then we have

GA(u,KA(v)):Z (V)G a(a", u) Za = G A(u,v).

acA acA

Hence we have G 4(u, K 4(v) —v) = 0, for any u € V. This implies the statement since the

bilinear form G 4 is non-degenerate. O]
The following proposition gives the identity vector field for the product (2.47).

Proposition 2.5.9. The vector field

£ = ixi&i e I(TV) (2.49)
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is the identity vector field of the multiplication (2.47).

Proof. Let v € V. Then by formulae (2.47), (2.48) and Lemma 2.5.8 we have

5*0:ZMQV:Za(v)&V:KA(U):v.

acA acA

The statement follows since by commutativity of * we have v+ & = & xv = v. O

Proposition 2.5.10. The multiplication (2.47) satisfies the Frobenius algebra condition
with respect to the bilinear form (2.38), that is for any u,v,w € T, M4 for generic x € M4
the following condition holds:

Galuxv,w) =Galu,v*w).

Proof. By the product formula (2.47) we have

a(u)o(v) a(u)a(v)o(w)

GA(u*v,w):Z GA(aV,w):Z

2.50
2 "o 27 ol 250

The statement follows since the right-hand side of relation (2.50) is symmetric in w, v, w.
O

The following result relates the associativity of product * and WDVV equations.

Proposition 2.5.11. [25] The associativity of the product (2.47) is equivalent to the
WDVV equations (2.41) for the prepotential F given by (2.37).

It has been shown in [25] that the associativity of multiplication (2.47) can be rewritten

as

GA(aV7 ﬁV)Ba,ﬁ(av b)
#5;5@ a(z)B(z)

where a AN f=a® [ — B® a, and B, g(a,b) = a A B(a,b) = a(a)B(b) — a(b)B(a).
The following statement relates the associativity of the product (2.47) with the V-

aAB=0, (2.51)

system.

Theorem 2.5.12. (25| A is a V-system if and only if product (2.47) is associative.
Note that Theorem 2.5.3 follows from Proposition 2.5.11 and Theorem 2.5.12.
The following flat connection defined on tangent bundle T'M 4 was introduced in [54]:

Vv = 0uv — ku x v, (2.52)

where * is the product given by formula (2.47) and k£ € C is a parameter. The following

statement relates the flatness of connection (2.5.13) with the V-condition.
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Theorem 2.5.13. [54| The connection (2.52) is flat for any k € C if and only if A is a

V-system.

Remark 2.5.14. [25] For any V-system A the product (2.47) defines what is called loga-
rithmic Frobenius structure on A with prepotential (2.37). Provided that * is associative,
the set (V,*,&,G 4, &) satisfies all the properties of the Frobenius manifold except the

covariant constancy of the unit vector field (axiom (2) in Definition 2.1.3).

2.5.3 Subsystems of a V-system

Now we present notion of a subsystem of a V-system, then we proceed to theorems related

to this notion.

Definition 2.5.15. [26] Let A C V* be a V-system. The subset B C A is called subsystem
if
B=ANW,

for some linear subspace W C V*. We will assume that W = (B). A subsystem B is called
reducible if B = B; U Bs is a disjoint union of two non-empty subsystems orthogonal with
respect to the canonical form on V, that is G4(f1, B2) = 0,V € By, 52 € Bs.

Definition 2.5.16. [26] Consider the following bilinear form on V

Ga(x,y) ==Y Bx)By), w,yeV,

peB

associated with subsystem 5. The subsystem B is called isotropic if the restriction G |y

of the form G on to the subspace WV C V is degenerate and non-isotropic otherwise.
Theorem 2.5.17. [26] Any non-isotropic subsystem of a \/-system is also a V-system.

Theorem 2.5.18. [26] For any subsystem B = ANW of a V-system A, either Gg |wvxv

and G4 |wvxv are proportional or B is reducible.

2.5.4 Restrictions of V-systems

Let us now consider the restriction operation for V-systems.
For any subsystem B C A consider the corresponding subspace Wz C V defined as the
intersection of hyperplanes 5(x) = 0, where [ € B, that is

Wg={xeV:p(x)=0,Vpec B}. (2.53)
For any o € A let us denote the restriction « |y, as ma(a), that is mg(a)(z) = a(z). Let

m3(A) = {ms(a) - a € A\ B}
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be the restriction of covectors o € A on Wp. Let Mg = B\ Upca\slla. The following

statement shows that the class of V-systems is closed under the restriction operator.

Theorem 2.5.19. |25,26] Assume that the restriction G4 |w, is non-degenerate. Then

the restriction mg(A) of a V-system A to the subspace Mg is also a \V-system.

Remark 2.5.20. Note that Theorem 2.5.19 applied to a root system A gives V-systems

which are not root systems in general.

The following statement gives the solution of WDVV equations corresponding to the

restricted system.

Theorem 2.5.21. [25,26] The logarithmic Frobenius structure (2.47) with its correspond-
ing prepotential (2.37) has a natural restriction to the space Mg with the prepotential

Fg = Z a(z)?loga(x)?, =€ Mg,
acA\B

which also satisfies the WDV'V equations.

2.6 Trigonometric case

In this section we introduce the class of trigonometric solutions F' of WDVV equations
which involve an extra variable. We present the notion of a trigonometric V-system and

we review results associated to this class.

2.6.1 Prepotential, product and Dubrovin connection

Let V' be a vector space of dimension N over C and let V* be its dual space. Let A be a
finite collection of covectors o € V* which belongs to a lattice of rank N.
Let us also consider a multiplicity function ¢: A — C. We denote c¢(a) as ¢,. We will

assume throughout that the corresponding symmetric bilinear form

Gae(u,v) = ana(u)a(v), u,v €V (2.54)
acA

is non-degenerate. We will also write G 4 for G4 to simplify notations. The form G 4
establishes an isomorphism ¢: V' — V*, and we denote the inverse ¢~ *(a) by o, where
Ga(aY,v) = a(v) for any v € V.

Let U = C be a one-dimensional vector space. We choose a basis in V @ U such that
€1,...,en is a basis in V and ey, is the basis vector in U, and let x1,...,xy11 be the
corresponding coordinates. We represent vectors z € V,y € U as ¢ = (z1,...,xy) and

y = xn41. Consider a function F': V @ U — C of the form
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1 3 2
F =g+ 3 canl@Py+ A3 cf(ala) (255)

where A € C* and function f is given by (1.11). The WDVV equations is the following

system of partial differential equations
EFyi Fy = FjFy Fy, di,j=1,..,N, (2.56)

where F; is (N + 1) x (N + 1) matrix with entries (F}),, = ﬁqu (p,g=1,...,N+1).

Let €', ...,e" be the basis in VV* dual to the basis ey, ...,ex € V. Then for any covector

N N
a € V* we have a = Zaiei and oV = Zal\/ei, where a;, ) € C. Then
i=1 i=1
Z ca@a 0
FN+1 =2 acA s (257)

0 1

where we denoted by « both column and row vectors o« = (v, ..., an), and a®@a is N x N

matrix with matrix entries (o ® a)jx = ajoy,. Let us define
Nij = (Fn+1)ijs n“ = (Fﬁil)ij, (2.58)

where 7,5 = 1,..., N + 1. Now we will establish a few lemmas which will be useful later.

The next statement is standard.

Lemma 2.6.1. Let G be the matriz of the bilinear form G4, that is its matriz entry
(é)w = G (e, ej), where i,5 =1,...,N. Then for any covector v = (y1,...,7n) € V* and
V= (W, 9%) €V, we have G717 = (V)T

Let My =V \ Uaeull, be the complement to the union of all the hyperplanes I1,, =
{r € V:a(x) = 0}. For any vector @ = (ay,...,ans1) € V @ U let us introduce the
corresponding vector field 9z = SN 4,0, € T(T(V @ U)). For any b = (by,...,by41) €
V @ U we define the following multiplication on the tangent space T, (M4 @ U):

Oz % O = aibn™ Fijp0Oyy, 4,5,k 0l =1,...,N+1, (2.59)

where 7* is defined in (2.58) and the summation over repeated indices here and below
is assumed. It is clear from the definition that the multiplication * is commutative and

distributive. The next statement follows from Proposition 2.1.5.

Proposition 2.6.2. The associativity of multiplication x is equivalent to the WDV'V equa-
tion (2.56).
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Let us introduce vector field E by

E=0

TN+1

el(T(Veal)).

For a fixed (z,y) € M4 @ U after the identification T, (V@ U) = V & U we have that
EecU.

Proposition 2.6.3. Vector field E is the identity for the multiplication (2.59).

Proof. For all 1 <7< N + 1 we have

am * I = UkjE,N+1,j8xk = nkjnijaxk = axi'

[
Proposition 2.6.4. Let a = (ay,...,ay),b = (by,...,bx) € V, and let 0, = Zfil ;0% ,
Oy = SN b;0,,. Then the product (2.59) has the following explicit form
/\
Oy % Op = Z Col¥ cot a(x)0,v + E). (2.60)

acA

Proof. Note that n™N+! = %5%“ for any m = 1,..., N + 1, where (5{ is the Kronecker
symbol. Therefore from (2.59) we have

1
aa * 81; = al Z nle ka’rl + EJN+18$N+1)
k=1

where

Fiji = )\Z caaiajapcota(z), 1<1i,5,k<N.
acA

Then we have

A
Z aibin™ Fijn0, = A Z Z coa(a)a(b)agn™ cot a(x)0,, = 3 Z co(a)a(b) cot a(x)dyv
k=1 acd k=1 acA
(2.61)
by Lemma 2.6.1. Also by formula (2.57) we have that
N
3 > aibiFijna =Y caa(a)a(b). (2.62)

1,5=1 acA

The statement follows from formulas (2.61) and (2.62). O
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If we identify vector space V @ U with the tangent space T(, (V@ U) =V @ U, then

multiplication (2.60) can also be written as
A v
ax*xb= Z caa(a)a(b)(a cota(z)a’ + E), abeV. (2.63)
acA

The following proposition gives the explicit formula for the multiplication (2.59) on the

tangent space T{; ) (M4 ® U).

Proposition 2.6.5. Let u = u+ p1E,v = v+ poF € D(T(V & U)), where u,v € V and
p1,p2 € C. Then multiplication (2.59) takes the following form on T, \(V @ U) =V @ U:

- A
uxU=g cac(w)ar(v) cot a(z)a’ + pou+ prv + (Galu,v) + pip2) E. (2.64)

Proof. We have by Proposition 2.6.3
UxvV=uxv+u*xpFE+pExv+pExpE=uxv+ pou+ p1v+ p1poE.

Then formula (2.64) follows from formula (2.63). O

Let us extend the bilinear form (2.54) to the symmetric bilinear form G4onVaU by
defining

éA(ua U) = GA(uv U>7
Galu, E) =0,
GA(E,E) =1, (2.65)

for all u,v € V. It is clear that the multiplication (2.64) is commutative. Let us now recall
the notion of Frobenius algebra in which its prepotential appears as a solution of WDVV

equations. The following result holds.

Proposition 2.6.6. The multiplication (2.64) satisfies the Frobenius algebra condition
with respect to the bilinear form (2.65), that is for any XY, Z¢€ Ty (VO U) for generic
(x,y) the following condition holds:

GAX *Y,Z)=GAX,Y x Z).

Proof. Let X = X+mE,Y =Y +poE, Z = Z+ p3E, where X, Y, Z € V, and py, pa, p3 €
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C. Then by the product formula (2.64) we have

GAX V. 7) = % S caa(X)a(Y) cota(@)Ga(a’, Z) + paGalX, Z) + pGalY, Z)
acA

+ (GA(X7 Y) + plp?)éA(Ea 2)

= % Z Ca(X)a(Y)a(Z) cot a(z) + p1GA(Y, Z) + p2Ga(X, Z)
+ p3Ga(X.Y) + p1p2ps. (2.66)

The statement follows since the right-hand side of relation (2.66) is invariant under the
arbitrary permutations of X , }7, Z.
[

Remark 2.6.7. The commutativity of the product (2.64) together with Proposition 2.6.6
imply that the 4-tuple (T(V@U ), *, B, G A) constitutes a commutative, associative Frobe-

nius algebra provided that the product * is associative.

Let us now define the (deformed) Dubrovin connection corresponding to the multi-
plication (2.64). Let V%f/ = 8)?}7 be the trivial connection. We know that the trivial

connection is a torsion free and also a flat connection, that is

0 v 0 v _
V&Y - VIX = [X,Y],

and

R(X.Y)Z =V, V§Z = V372 =0,

for any smooth vector fields )A(/, }7, Z e F(T(V P U))
The Dubrovin connection (2.10) on the tangent bundle T'(V @ U) takes the form

VED = VU + pu * 0, (2.67)

where the multiplication * is given by (2.64), and V° is the trivial connection, and u € C.

The (0, 3)-tensor ¢ given by formula (2.1) takes the form

oX,Y,Z)=GAX *Y,Z), (2.68)
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and the (0,4)-tensor T° given by formula (2.2) takes the form
TX,Y,Z,W) = (vg@ (X,Y,2)
- Vo (c()“(’, Y, Z)) — (VXY Z) — (X, VeV, Z) — (X, Y, V2 2)
= 0 (XY, 2)) = 0 X,V 2) = (X, 0V, Z) - (X, ¥, 0p2),
(2.69)
where )?,17, Z,W € F(T(V & U)>, the product * is given by formula (2.64) and C~¥A is

given by formula (2.65).

The following statement takes place.
Proposition 2.6.8. The tensor ¢(X,Y,Z) given by (2.68) is totally symmetric.

Proof. Let X =X+ mkE, Y =Y + P E, Z =7+ p3E, where X|Y,Z € T'(TV), and
p1, p2, p3 € C°°(U). Then by the product formula (2.64) we have

o(X,Y,Z)=GCGAX*Y,Z) = % Z ca(X)a(Y)a(Z) cot a(z) + pGaY, Z)

acA

+ p2Ga(X, Z) + psGa(X,Y) + p1p2ps. (2.70)
The statement follows since the right-hand side of relation (2.66) is invariant under the
arbitrary permutations of X , BN/, Z. O

The following statement holds.

Proposition 2.6.9. For any vector fields )?,37, Z,W € F(T(V @ U)), the (0,4)-tensor
TO()A(:,?, Z, ﬁ//) given by formula (2.69) is totally symmetric in all its arguments.

Proof. Let X = X+ E, Y =Y +pE, Z = Z+p3E, W = W+ poE, where X,Y, Z,W €
D(TV), and py, p2, p3, ps € C°(U). By formula (2.66) we have

YV %ana(X)a(Y)a(Z) cota(z) + p1Ga(Y, Z) + ppGa(X, Z)

o

I

=~

N
Il

+ p3GA(X,Y) + p1p2ps.
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Then to find the explicit formula of the tensor (2.69) we have

+ % Z Co COb () ((8wa(X)>a(Y)a(Z) + a(X) (3W04(Y)>04(Z) + a(X)a(Y) <5Wa(Z)>)
acA

+ <P18W6A(Y, Z) + (aWpl)éAO/v Z)) + (anWéA(Xv Z) + (awp2>éA(X7 Z))

+ (P38WCN;A(X, Y) + (3wp3)éA(X, Y)) + ((3’V[701)P2p3 + p1 (3W,02),03 + p1p2 (3wp3)>.
(2.71)

Also using Frobenius condition we have

(O XV, Z) = Cal0n X + ¥, Z) = G0 X7 # Z)

W
A ~ - ~ - _ -
=5 coa(Y)a(Z) cot a(x)Ga(a”, 05X ) + psGa(05 X, Y) + p2Ga(05 X, Z)
acA
+ GalY, Z2)G 405X, E) + p2psGa(05 X, E). (2.72)

But using the compatibility condition we have
Gala”,05X) = 035G 4(”, X) — Ga(05a”, X) = dza(X), (2.73)
since dja = 0. Also by the compatibility condition we have
Gal07 X, E) = 05Ga(X, B) = Ga(. X, 05 B) = 05Ga(X, E) = (1), (274)

since 0z E = 0. Hence by relations (2.73) and (2.74) relation (2.72) becomes

((’9~X Y, Z Z Calt Z) cot a(x) 0z (X) + pgéA(aﬁ;)?, Y)+ ,02@,4(5%)?, Z)
aE.A
+ (3W(Pl))éA(Ya Z) + (O (p1)) p2ps- (2.75)

Similarly, we have

(X O Y, Z Z Col¥ Z) cot a(x) 0z (Y) + p3GA(X, 817,}7) + pléA(GW?, Z)

aGA

+ (O(p2)) Ga(X, Z) + p1 (955 (p2)) ps. (2.76)
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Also we have

~ ~ ~ A ~ ~ ~ ~
o(X,Y,057) = 5 Y cac(X)a(Y) cot a(2)dpa(Z) + pGa(X, 05 2) + pGa(05Y, Z)
acA

+ (057 (p3)) Ga(X,Y) + p1pa2 (957 (ps)) - (2.77)

Then by substituting relations (2.71), (2.75), (2.76) and (2.77) into the formula (2.69) and
making use of the compatibility condition when required the formula of the tensor (2.69)

reduces to

T(X,Y,Z,W) = <V%;c> (X.Y,Z) = —% Y X)aY)(Z) e (278)

The statement follows since formula (2.78) is symmetric in all its arguments X , }7, Z, w.
O

Propositions 2.6.8, 2.6.9 together with Poincaré Lemma confirm the existence of Frobe-

nius prepotential as in the following proposition.

Proposition 2.6.10. There exists a (local) prepotential I = ﬁ(xl, ..., TN, Y) satisfies

3)283762? = éA()? * Y, Z),

where the multiplication * is given by formula (2.64) and )N(JN/,Z are flat vector fields.
This prepotential takes the form

Pl S o + 3 3 cuflola) = 2Py,

6 acA acA
where F' is the solution given by (2.55).

Proof. By Propositions 2.6.8, 2.6.9 the two tensors (2.1), (2.2) are totally symmetric in
all their arguments. Then Proposition 2.1.4 agrees of existence of the prepotential F. Let
us denote by cgy7 = c()N( , }N/, Z ). Let us now find the explicit formula of the prepotential
2 corresponding to the flat connection V° which can be extracted by integrating the
polynomial ¢y as follows.

By the formula of the multiplication (2.64) we have

050505 F = cyop = GA(X * Y, Z) = % > caa(X)a(Y)a(Z) cot a(x) + p1Ga(Y, Z)

acA
+02GA(X, Z) +,03GA(X, Y) + p1p2p3. (2.79)
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Then it is easy to see that
3

3)?3?32(%) = p1p2p3- (2.80)
Also we can show that
aga?afzv(g 3 caa(as)2> = p1GA(Y, Z) + poGa(X, Z) + psGa(X,Y). (2.81)

acA

For the term 5>, cac(X)a(Y)a(Z) cot a(z) we consider a function f to be such of

that f"(a(x)) = cot () and hence we have

050505 ( Z caf(a(:c)> = Z ca(X)a(Y)a(Z) cot a(z). (2.82)

acA acA

Then by relations (2.80)—(2.82) the prepotential F' in (2.79) takes the form

~

vy , A 1
Flo,y) =% +35 z;caa(x) +3 z;caf(a(a:)) = 5P (@),

where F' is the solution given by (2.55).
O

Remark 2.6.11. In the Definition 2.1.3 of the Frobenius manifold it is usually assumed
that the scaling constant d; is nonzero. One can allow to choose d; = 0. This happens
if we define £ = e = FE, that is the Euler vector field coincides with the identity of the
product. Then

~

E(F) = 0,(F) =

(> + D cacr(w)?),

acA

N —

which agrees with the relation (2.7) where dp = 0. Thus the set (V o U x F, éA,E>

becomes a Frobenius manifold provided that the product * is associative.
The following property holds.
Proposition 2.6.12. Dubrovin connection (2.67) is torsion free.

Proof. The statement follows from Proposition 2.2.2 since the product * is commutative.
O

The curvature of connection (2.67) is defined by

RMX,Y)Z = [V, V4|2 = Vi 2, X.Y,Z € F(T*(V ® U)). (2.83)

The following result holds.
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Proposition 2.6.13. The flatness of the connection (2.67) is equivalent to the associa-
twity of the product (2.64).

Proof. By Proposition 2.2.2 the flatness of the connection (2.67) is equivalent to the to-
tally symmetric of the tensor TO()? Y, Z, W) given by formula (2.69) together with the
associativity of the product * is given by (2.64). But from Proposition (2.6.9) the tensor

TV is totally symmetric, hence the statement follows. O
As a corollary of Propositions 2.6.2, 2.6.13 the following result holds.

Theorem 2.6.14. The flatness of Dubrovin connection (2.67) for all u is equivalent to
WDVV equations (2.56).

Let us now consider A*V* as a subspace in (V ® V)* given by the anti-symmetric
tensors, then we can define the quantity B, g: V @ V' — C as follows. For any o, € A
we define B, g =aAf=a® —&a e A*V* such that

Bapla®b) =aAfla®b) = ala)sb) — a(b)b(a)

for any a,b € V. The following property holds.

Lemma 2.6.15. For any o, € V*,a,b € V we have
Baﬁ(a N b) = QBa,,B(a & b)
Proof. Since a ANb=a®b—b® a, then

Baﬁ(a VAN b) = Baﬁ(a ® b—1b &® CL) = Baﬂ(a ® b) — Ba75(b &® a)
~ (a(@)80) = a(v)(@)) ~ (a(v)B(a) — a(a)8() ) = 2(a(@)8() - a(b)5(a) ).

which implies the statement. O

Let us introduce the following symmetric bilinear form GS) = GEX ¢ O the vector
space A’V C V @V given by

GS)(z,w) = Z CaCpBap(2)Bag(w), (2.84)
a,BeA

where z,w € A?V. It is easy to see that for z = u; Avy, w = us Avy, where uy, ug, v1,v2 €V,

we have

GO (z,0) = S(GA(ul, wn)Ga(v1, v3) — GA(ul,vg)GA(UQ,v1)>, (2.85)

which is a natural extension of the bilinear form G4 to the space A?V. It is also easy to

see that this form GS) is non-degenerate and that it is VW-invariant.
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Since the flatness of connection (2.67) is equivalent to WDVV equations (2.56) one
expects that the flatness condition determines the restrictions on the scalar A that lead
to a solution of form (2.55). The following proposition gives the condition in the solution

(2.55) which follows from the flatness of the corresponding connection.

Proposition 2.6.16. The flatness of Dubrovin connection (2.67) for all p is equivalent
to the identity

Z (AZQCQC,BGA(ON, BY) cot a(z) cot B(z) + cacﬁ> Bap(u®v)Bag(z @ w) =0. (2.86)
a,feA

Proof. Firstly, note that by Proposition 2.2.5 and formula (2.83), it is enough to study the
zero-curvature (flatness condition) by considering constant vector fields u, v, z, and hence

the flatness condition for the connection (2.67) reduces to the formula
V2, V() = 0. (2.87)
Let us now consider constant vector fields:
u=u+mE, v=v+pFE, Z=2+psE € (T(Val)),

where u, v,z € V and py, p2, p3 € C. By straightforward calculation we have

\%~ <Vg(2}> __m Z Caa(u')o;(v)a(z)av +£ Ay Z co(v)a(z) cot a(r)a”

2 = sin” () 2 =
B >\p2 an z) cot a(z)a’ + —— a p3 Z Cact(u)a(v) cot a(x)a
a>0 a>0
2)\2
> cacsa(u)B(v) cot afz) cot B(x)(a @ a¥)(B @ BY)(2) + 1*Ga(v, 2)u
a,3>0
+ 1’ (mpzz + p1p3v + Pzpsu) + 1’ (mGA(v, 2) + p2Galu, 2) + paGa(u,v) + plpng)E
+ ,u2<% ana(u)a(v) cot a(w))E. (2.88)
a>0

Similarly, (by swapping u <+ v and py <+ p2) we obtain the formula of V% (V%(%}) Hence

the flatness condition (2.87) reduces to

0= ,u4)\ Z CaCB (a AB(u® U)) cot a(x) cot B(x) (@ @ a¥) (B ® BY)(2)

a,5>0

+ p? (GA(U, 2)u — G 4(u, z)v) (2.89)
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Note that
(a®a")(B®BY)(2) = (a®a’)(B(2)8") = a(f")B(2)a’ = Gala’, 8Y)B(2)a".

Hence identity (2.89) can be rewritten as

,u2)\2
0= 1 Z caCsGa(aY, BY) cot a(z) cot B(z) (a A B(u® U))ﬁ(z)av
a,3>0

+ u® (GA(U,Z)U — G4(u, z)v) (2.90)

Since the identity (2.90) valid for all vectors o, f > 0, then by exchanging a <+ § we
get a similar identity in which adding them up together and multiplying the result by /%
gives the following identity

A2 Z cacsGa(a”, BY) cot a(z) cot B(x) (a A Bu® v)) (a(z)ﬁv — B(z)av>

a,5>0

+8<GA(U,Z)U—GA(U, z)v) = 0. (2.91)

Let w € V and let us calculate the bilinear form G 4(w,-) with respect to the identity
(2.91). We have

2 Z cacsGa(a”, BY) cot a(z) cot B(x) (a A B(u® U)) (a(z)GA(ﬂv, w) — B(2)G4(a”, w))

a,3>0

+8(Galv, 2)Galu,w) = Ga(u, 2)Galv,w)) =0,
which can be rewritten as

A2 Z cacsG (Y, BY) cot a(z) cot B(x) (a A B(u® v)) <a AB(z® w))

a,BeA
+ 8<G,4(U, 2)GA(u,w) — G4(u, 2)G4(v, w)) =0. (2.92)

But from Lemma 2.6.15 and relation (2.85) we have

8<GA(U, 2)GA(u,w) — G 4(u, 2)G4(v, w)) =Ga(uNv,z ANw)

= Z CaCpBag(u NV)B,g(2 ANw) =4 Z CaCBap(u ®v)Byg(2z @ w).
a,BEA o,BeA

Hence the flatness condition (2.92) reduces to the required identity. ]
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2.6.2 Trigonometric V-systems

For a fixed o € A identity (2.86) may contain singularities when tana(z) = 0, and in
order to cancel these singularities we need further investigation. To do so, we need to
prove some results.

For each vector a € A let us introduce the set of its collinear vectors from A:
ba ={y€Ar v~ a}l.

Let 6 C 6, and o € d4. Then for any v € § we have v = k,aq for some k, € R. Note that
k., depends on the choice of o and different choices of ay give rescaled collections of these

parameters. Define C§° = Z cvkg. Note that C§° is non-zero if and only if C’fo # 0 for

YES
any &0 € 0.

The WDVV equations for a function F' can be reformulated using geometry of the
configuration A. Such a geometric structure is embedded in the notion of a trigonometric
V-system. Before defining trigonometric V-system precisely we need a notion of series (or
strings) of vectors (see [27]).

For any a € A let us distribute all the covectors in A \ ¢, into a disjoint union of

a-series i
A\ b, = | |13,
s=1

where £ € N depends on «. These series I} are determined by the property that for
any s = 1,...,k and for any two covectors 7;,v2 € I'; one has either v; + 72 = ma or
v1 — 72 = ma for some m € Z. We assume that the series are maximal, that is if v € I'] for
some s € N, then [}, must contain all the covectors of the form +v+ma € A with m € Z.
Note that if for some § € A there is no v € A such that § +~v = ma for m € Z, then
[ itself forms a single a-series. Note also that any a-series belongs to a two-dimensional
vector space.

By replacing some vectors from A with their opposite ones and keeping the multiplicity
unchanged one can get a new configuration whose vectors belong to a half-space. We will
denote such a system by A, . If this system contains repeated vectors o with multiplicities

¢, then we replace them with the single vector o with multiplicity ¢, ==, c%,.

Definition 2.6.17. [27] The pair (A, ¢) is called a trigonometric V-system if for all « € A

and for any a-series I, one has the relation

> cpa(B)a A B =0. (2.93)

pery,

Note that if 8, 8y € I'¥ for some a, s, then a A 1 = £a A By so the identity (2.93)
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may be simplified by cancelling wedge products. We also note that if A is a trigonometric
V-system then A, is the one as well.

Let us also define the following bilinear form Gfﬂ on A?V:

ia (z,w) Z caCsG (", 3Y)Bag(2)Bas(w), (2.94)
a,BeEAL

where z,w € A%V.
The following statement shows that the bilinear form Gia is independent of the choice

of the positive system A, .

Lemma 2.6.18. For any positive systems AS:),A(E) for a trigonometric V-system (A, c)

we have G 2()1) = Gf@)

Proof. Suppose firstly that two positive systems A(j), Af) for a trigonometric V-system

(A, ¢) satisfy the condition
AP = (AP 6 ) U (— )

for some o € A(j). Notice that vector « cannot be a linear combination of vectors in

Asrl) \ 0, with positive coefficients. Hence for each a-series I'¥, in .AS: ) we have

> cga(BY) =0 (2.95)
pery
since B, g, = By, for all f1, 8, € I's.

Let us consider terms in Gf()l) (z,w) which contain . They are proportional to
+

> csGala”, 8Y)Bas(z =3 cs0(8Y)Ba(2) Bas(w) =0

(1) ers,
BeAY s B

by (2.95). The statement follows in this case.

In general, the system Af ) can be obtained from the system A$ ) by a sequence of steps
where in each one we replace the subset of vectors d, with vectors —d, and the resulting
system is still a positive one. In order to see this, one moves continuously the hyperplane
defining A(j) into the hyperplane defining Af) so that at each moment the hyperplane
contains at most one vector from A up to proportionality. The statement follows from the

case considered above. O

As a consequence of Lemma 2.6.18 we can and will denote the form G? A, s sz).

The following proposition holds.
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Proposition 2.6.19. Assume that prepotential (2.55) satisfies the WDV'V equations (2.56).
Suppose that C5° # 0 for any o € A, g € 64. Then the identity

Z cga(BY) cot B(x)Bagla@b)a A B =0 (2.96)

BeEA\Sq
holds for all a,b € V provided that a(x) = 0.

Proof. By Theorem 2.6.14 the WDVV equations (2.56) are equivalent to the flatness of
connection (2.67), and by Proposition 2.6.16 the flatness condition of connection (2.67) is
equivalent to relation (2.86).

Let us consider terms in the left-hand side of relation (2.86), where § or « is propor-
tional to a. The sum of these terms has to be regular at a(z) = 0. This implies that the

product

()\2 Z k3, cot 7(:5)) ( Z cpag(BY) cot B(x) Bay sla ® b)ag A ﬁ) (2.97)

7660& ﬁeA\éa

is regular at «(z) = 0. The first factor in the product (2.97) has the first order pole at
a(z) = 0 by the assumption that C§° # 0 for any o € A, ap € &, This implies the

statement. O
Similarly to Proposition 2.6.19 the following proposition can also be established.

Proposition 2.6.20. Assume that prepotential (2.55) satisfies the WDV'V equations (2.56).
Suppose that C5° # 0 for any o € A, 8 C d4, 0 € do. Then the identity (2.96) holds for
any a,b € V provided that tan a(x) = 0.

The proof is similar to the proof of Proposition 2.6.19. Indeed, we have that expression
(2.97) is regular at a(z) = mm, m € Z. Assumptions imply that the first factor in (2.97)
has the first order pole, which implies the statement.

A close relation between trigonometric V-systems and solutions of WDVV equations

is given by the following theorem.

Theorem 2.6.21. (cf.[27]) Suppose that a configuration (A,c) satisfies the condition
Cs # 0 forall o € A, 0 C 64, ag € 0. Then WDVV equations (2.56) for the func-
tion (2.55) imply the following two conditions:

1. A is a trigonometric V-system,
2. Bilinear forms (2.84), (2.94) satisfy proportionality Gfi) = )‘IQGEZ).

Conversely, if a configuration (A, c) satisfies conditions (1) and (2) then WDVV equations
(2.56) hold.
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The key part of the proof is to derive trigonometric V-conditions from WDVV equa-
tions, which goes along the following lines (see [27] for details). By Proposition 2.6.20
identity (2.96) holds if tana(x) = 0. The identity (2.96) is a linear combination of
cot () |tan a(z)=0, Which can vanish only if it vanishes for each a-series. Hence identity

(2.96) implies relations (2.93) so A is a trigonometric V-system.

Remark 2.6.22. A version of Theorem 2.6.21 is given in |27, Theorem 1| without speci-
fying conditions C§° # 0. However these assumptions seem needed in general in order to
derive trigonometric V-conditions for a-series in the case when 4, \ {£a} # 0 as above

arguments and proofs of Propositions 2.6.19, 2.6.20 explain.

2.7 Root systems examples

An important class of trigonometric solutions of WDVV equations is given by (crystallo-

graphic) root systems A = R of Weyl groups W. Recall that a root system R satisfies the

property
2(cv, B)

(@, a)

Saff =0 — aeR (2.98)

for any o, 8 € R, and one has 26;—0{? € Z, where (-,-) is a W-invariant scalar product on

V* = V. The corresponding Weyl group is generated by reflections s,,a € R.

The following statement was established in [42] for the non-reduced root systems.

Theorem 2.7.1. (cf. [42]) Let A =R be an irreducible root system with the Weyl group
W and suppose that the multiplicity function c: R — C is W-invariant. Then prepotential
(2.55) satisfies WDV'V equations (2.56) for some X\ € C .

Let us explain a proof of this statement different from [42] by making use the notion

of a trigonometric V-system and Theorem 2.6.21.

Proposition 2.7.2. Root system A = R with W-invariant multiplicity function c is a

trigonometric V-system.

Proof. Fix a € R. Take any § € R, and let v = s,. Then from (2.98) we have that
B—~y=ma, mEZL.

Hence B,7 € I'} for some s. The bilinear form Gx is W-invariant so is proportional to

(-,-). Therefore we have

g = Cy, G’R(Oéaﬁ) = _GR(a77)7 a 5 =aN7.
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Hence,
CBGR(aa B)CY A ﬁ + C’YGR(CY7 P)/)a N Y= Oa

which implies trigonometric V-conditions (2.93). O

It is easy to see that the bilinear form G%) is W-invariant, and the same is true for the
bilinear form Gg) (see e.g. |3, Proposition 6.4]). Since W-module A?V is irreducible, the
forms G%) and Gg) have to be proportional. By Theorem 2.6.21 this implies Theorem 2.7.1
provided that the form Gg) is non-zero. The latter fact is claimed in [42] where the corre-
sponding solution of WDVV equations was explicitly stated for the constant multiplicity
function. It was found for any multiplicity function for the non-reduced root systems in
[47,48|.

It follows that a positive half A = R* of a root system R also defines a solution
of WDVV equations (2.56). We find the corresponding form Ggl for the root system
R = BCl explicitly in Section 3.3. We also specify corresponding constants A = A\ ) for
(the positive halves of) reduced root systems R in Section 3.6. Note that A is invariant
under the linear transformations applied to \A. In the root system case the scalar Az
may be thought of as a version of the (generalized) Coxeter number for the case of the
representation A%V, as the usual (generalized) Coxeter number can also be given as a ratio
of two W-invariant forms on V' (|6, 28]).

The value of the parameter A was found in a few earlier works which we now recall.

1. Martini’s and Hoevenaars’ works

A prepotential F of N + 1 variables (z1,...,2y,y) was considered in [42] in the form

Fle,y) = 2o + Jyle.a) + Y kaf(ala)), (2:99)

where R is a positive half of the (crystallographic) root system R of rank N, the multiplic-
ity function k(«) := k, and the inner product (-, ) are invariant under the corresponding

Weyl group W of R, v € C is depending on the root system R and function ]? given by

~ 1 1
f(2) = =2° — = Lis(e™ ) (2.100)
6 4
satisfies f(z) = coth z. With respect to the extra variable y = 2y,; the matrix of the

third order derivatives

 OF
" On10:0,

becomes a multiple of the identity, more precisely (Fny1);; = 79d;;. Hence the WDVV

(FNJrl)ij

systems (2.56) in this case reduces to the system

F,F; = F;F;.
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It has been shown that function (2.99) satisfies WDVV equations (2.56) and the corre-
sponding values of y(r ) were given explicitly (except for R = BCy, G2) where a constant

Wh-invariant multiplicity function was considered as the following statement explains.

Proposition 2.7.3. [42| The function (2.99) satisfies WDV'V equations (2.56) and the
corresponding values of g, for a constant W-invariant multiplicity function ko =1 Va

are given in the following table:

R By Cn Dy AN Es | By | Bg | Fy

2 [ 22N =3) | 4(N+2) | 4N—-2) | (N+1) | 24 | 48 | 120 | 15

Remark 2.7.4. (1) A function of the form (2.99) was also considered in [33] for special
value of multiplicities were k(e’) =7,(1 <i < N), k(e'+e’) =1, (1 <i < j < N), and
it has been shown that function (2.99) for this case satisfies the WDVV system (2.56) if

and only if
7_2
2 Y

which agrees with the value of v given above where the values n = 1,0 in (2.101) are

n=-2(N-2)— (2.101)

corresponding to the root systems of type By, Dy respectively.
(2) There seems to be typos in [42] in the values of v which are given for root sys-
tems Ay, Fg, Fs as we will clarify that later when we generalize these results to general

multiplicities.

2. Bryan’s and Gholampour’s case

Solutions of WDVV equations of the form (2.99) can also be extracted from the consid-
erations in [11, Section 4|, where a family of (Frobenius) algebras for irreducible reduced
root systems R C V* of rank N with special multiplicities function were considered,
where V' is a real N-dimensional vector space. The multiplication * on the tangent space
Ty Ve U)=V U, where dimU = 1,2 € V,y € U was given by the formula

wrv=(u,0)E+7 " Y 2 B(u)B(v) coth B(x)B, (u,v € V), (2.102)
2, 5.8

where 7 = Yz € C, and £ € U is the identity of . It was shown in [11] that this
multiplication is associative and satisfies the Frobenius condition. This gives rise to exis-
tence of solutions of WDVV equations corresponding to each root system. The constant

¥ = Y(r.c) Was expressed in [11] in terms of the highest root 6 of the root system R.
Proposition 2.7.5. [11]| The function

F(z,y) = gyg—ir —y(x,x) + Z x)) (2.103)
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corresponding to the multiplication (2.102) solves WDV'V equations (2.56) and the value

of Y(r,e) in the solution (2.103) in the case of constant multiplicity function c, =t is given

by N
~ t?
7(273,0) = _g (<97 9) + Z n? <ai7 a1>) :
=1

3. Shen’s result

Note that in [47,48] a prepotential function for a Frobenius structure was considered,
this prepotential gives a solution of WDVV equations for root systems R for arbitrary
(not simply-laced) root system R with invariant multiplicity. Let us recall that solution

which is given by

o = —% + g@, Dy+2n Y %q(a(x)), (2.104)
a€ERT ’

for some scalar 1 € R, where k, is a WW-invariant multiplicity function and the function ¢
satisfies ¢ (z) = —1 coth(%). For each k, a product structure was defined on the tangent
bundle T'(V & U) which endows each fiber of T'(V & U) with Frobenius algebra structure.
Let us recall this algebra structure.

Let £ = 0 e T(T(V & U)). Consider two vector fields X = X + ME, ¥ =

TN+1

Y+ MEel(T(VaU)), where X, Y € V, A\, Ay € C. The product o was defined by the

formula

-~ k.,
XoV=-% coth(%)a(X)a(Y)& — WX, YVVE + XX + MY + M AE.

a€ERT <Oé’ a>

In this algebra F plays the role of the identity of the product. Then a family of the
corresponding Dubrovin connections V* was considered in which its flatness conditions
determine the value of u for each root system. Note that the root system Ay was treated

differently from our configuration’s form of type Ay root system.

Proposition 2.7.6. (47| Function (2.104) solves WDV'V equations (2.56) and the values
of p in solution (2.104) for each root system are given in the following table:

R By Cn Dy Go FEg Er Eg Fy

p | e+ (N =2)q) | p(2a+ (N —=2)p) | (N=2)p> | 3(p+a)(p+3q) | 6p° | 12p% | 30p% | (p+a)(p+29)

Here p is the multiplicity of short roots and q is the multiplicity of long roots in a

reduced not simply-laced root system R.
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2.8 Generalized Coxeter number

In this section let V = R¥ be a real Euclidean space of dimension N. Let R be a reduced
irreducible root system of rank N with the corresponding finite irreducible Coxeter group
W acting on the vector space V by compositions of reflections. Consider a system of
simple roots A = {ay, ..., ay} with the corresponding simple reflections sy, ..., sy. Then
the product of all simple reflections s;...sy € W is called a Cozxeter element. 1t is clear

that it depends on the choice of A, but the following proposition holds.
Proposition 2.8.1. [34] All Cozeter elements are conjugate in V.

Since all Coxeter elements are conjugate, they have the same order h, which is called
the Coxeter number of W.

In fact there are a few different ways to define the Coxeter number A of an irreducible
root system. In addition to the previous definition of the Coxeter number we also have

the following equivalent definitions:

2m
N’
crystallographic case, 2m -+ N is the dimension of the corresponding semi-simple Lie

e The Coxeter number h = where m is the number of reflections in W. In the

algebra.

e [f the highest root is Zfil m;a; for simple roots «;, then the Coxeter number h =

e The Coxeter number is the highest degree of a fundamental invariant of the Coxeter

group acting on polynomials (see Section 2.4).

A remarkable property that the Coxeter number admits, is that it can be written as
the factor of proportionality of two VW-invariant bilinear forms. The statement is given in

the following proposition.

Proposition 2.8.2. [6] Let (-,-) be the standard inner product on V' which is assumed to

be non-degenerate and VW-invariant. Then

> o) = h(z,z) (2.105)

forallz e V.

In fact relation (2.105) holds for any symmetric, non-degenerate and W-invariant bilin-
ear form on V' as such a form is unique up to proportionality for irreducible group W. Since
the scalar A in Theorem 2.6.21 appears as the coefficient of the proportionality between
two W-invariant bilinear forms Gfi) and fo) on A%V then for the case when A =R be a

root system the scalar A can be thought as a generalized version of the Coxeter number h
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in this sense for the exterior square A2V of the reflection representation W of a Coxeter

group.



Chapter 3

Operations with trigonometric

V-systems and solutions

In this chapter we consider the operation of taking subsystems of a trigonometric V-
system and the operation of restriction of a solution of WDVV equations. We prove
statements analogous to the results for the rational case. We also find trigonometric
solutions of WDVV equations corresponding to root systems and their restrictions as
well as some other non-Coxeter examples. We also generalize some results found in the

literature corresponding to trigonometric solutions of WDVV equations.

3.1 Subsystems of trigonometric V-systems

In this section we consider subsystems of trigonometric V-systems and show that they are
also trigonometric V-systems. An analogous statement for the rational case was shown in
[26] (see also [24]).

A subset B C A is called a subsystem if B = ANW for some linear subspace W C V*.
The subsystem B is called reducible if B is a disjoint union of two non-empty subsystems,
and it is called irreducible otherwise. Consider the following bilinear form on V' associated

with a subsystem B:
Gp(u,v) = Zcﬁﬂ(u)ﬂ(v), u,v € V.

peB

The subsystem B is called isotropic if the restriction Gg|wv of the form Gy onto the

subspace WY C V, where W = (B), is degenerate and B is called non-isotropic otherwise.

Remark 3.1.1. Suppose that B is reducible so that W = W; & W, for some subspaces
Wy, Wy C W where (B) = W and B C W; U W,. Then one can show that G 4(vy,v2) =
Gp(v1,v2) = 0 for any vy € Wy, v, € Wy (see Corollary 3.1.7 below).

Let us prove some lemmas which will be useful for the proof of the main theorem of

67
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this section.

Lemma 3.1.2. Let A be a trigonometric V-system. Let B = ANW be a subsystem of
A for some linear subspace W C V* such that W = (B). Consider the linear operator
M:V — WY given by

M=) csB®pB" (3.1)

BeB

that is, M (v) = Z cgB(v)BY, for any v € V. Then
BeB

1. For any u,v € V we have G 4(u, M (v)) = Gg(u,v).
2. For any o € B, o is an eigenvector for M.

3. The space WV can be decomposed as a direct sum
wV =Uy, Uy, ®--- DUy, k €N, 612)

where \; € C are distinct, and the restriction M‘UM = NI, where I is the identity

operator.

Proof. Let u,v € V. We have

Galu, M) =) esB(v)Galu,BY) = caB(u)B(v) = Gp(u,v),

BeB peB

which proves the first statement.
Let us consider a two-dimensional plane 7 C V* such that 7 contains « and another
covector from B which is not collinear with «. Let us sum up V-conditions (2.93) over

a-series which belong to the plane 7. We get that

Z cpa(B)a N B = Z cgBa)a N B =0,

BerNA BernB

hence
S csBa)BY = Ara? (3.3)
pgemnA
for some A, € C. Let us now sum up relation (3.3) over all such two-dimensional planes 7
which contain v and another non-collinear covector from B. It follows that M (a") = Ao,
for some A € C, hence property (2) holds.
The set of vectors {a": a € B} spans WV since B spans W. As aV is an eigenvector
for M|y for any o € B we get that M|y is diagonalizable, and WV has the eigenspace

decomposition as stated in (3.2). O
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Lemma 3.1.3. Let A and B be as stated in Lemma 3.1.2. Suppose that B is non-isotropic.
Then

GB|U)\1.><V - )\iGAlU)\iXV7 (34>
where \; #0 for alli=1,... k.

Proof. Let w € V and v € U,, for some i, where U,, is given by (3.2). Then by Lemma
3.1.2 we have
Ga(u, M(v)) = \iGa(u,v) = G(u,v).

Hence we have the required relation (3.4). Note that A\; # 0 for all i as otherwise

Gglu, xv = 0 which contradicts the non-isotropicity of B. O

Assume that the subsystem B = ANW, W = (B), is non-isotropic so that the bilinear
form Gplwv is nondegenerate. Then it establishes an isomorphism ¢g: WY — (WV)*. For
any 3 € B, let us denote ¢z'(B|wv) by BYE. The following lemma relates vectors 3V5 and

BY.

Lemma 3.1.4. In the assumptions and notations of Lemmas 3.1.2 and 3.1.3 let B € B.
Let i € N be such that B¥ € Uy,. Then V58 = \;'5Y.

Proof. Let uw € WY. By Lemma 3.1.3 we have Gg(8Y,u) = \;5(u). By the definition of
BYE we have Gp(Y5,u) = B(u). It follows that Gg(\;'BY — Y5, u) = 0, which implies

the statement since the form Gpg is non-degenerate on WV, [

Lemma 3.1.5. Let A and B be as stated in Lemma 3.1.2. Let o € B and let ¢ € N be
such that oV € Uy,. Consider an a-series TS in B and let 3 € TB. Then T8 C U,, or
e € {+8}.

Proof. Suppose firstly that 3¥ € U,,. Since any covector v € I'® is a linear combination of
B and o, we get that v € Uy, as required.

Suppose now that 3¥ ¢ Uy,. Then ¥ € U,, for some j # i. Since we have a direct sum
decomposition (3.2) it follows that I'5 C {+3}. O

Lemma 3.1.6. Let A C V* be a finite collection of covectors, and let B C A be a
subsystem. Let o, 3 € B. Let ', T8 be the a-series in A and B respectively containing 3.
Then the set T'A coincides with the set T'5.

Proof. Let v € TA. Tt follows that v € B. By maximality of I'2) it follows that v € I'5.

o

Hence T4 C T'5. The opposite inclusion is obvious. ]
Corollary 3.1.7. The statement of Remark 3.1.1 holds.

Proof. Let p; € BNWy, By € BNW,. Consider a [3;-series containing f. It is easy to see
that this series contains no other elements. Hence G4(8Y, 85) = Gs(6Y,B5) = 0. O
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Proposition 3.1.8. In the assumptions and notations of Lemma 3.1.2 we have Gg(u,v) =
0 for any u € Uy, and v € Uy, such that i # j.

Proof. From Lemma 3.1.3 we have Gg(u, v) = A\;Ga(u,v) = A\;jGa(u,v). Hence G 4(u,v) =
0, which implies the statement. ]

Now we present the main theorem of this section.

Theorem 3.1.9. Any non-isotropic subsystem of a trigonometric V-system is also a

trigonometric V-system.

Proof. Let A be a trigonometric V-system and let B be its non-isotropic subsystem. Let
« € B. Then o € U,, in the decomposition (3.2) for some i. Consider an a-series I'5 in
B. Let 8 € I'5. Then by Lemma 3.1.5 we have the following two cases.

(i) Suppose 8¥ € U,,. Then I'’ C U,, and by Lemmas 3.1.3, 3.1.4 we have

Gp(aV®,8Y8) = A\ 2Gp(a”, BY) = A\ 'Gala, BY).
Hence we have

Z csGp(aVB, BB )a A B = At Z csG (Y, BV )anNB =0

pers Bers

by Lemma 3.1.2 and since A is a trigonometric V-system. Hence the V-condition (2.93)
for B holds.

(i) Suppose Y € U,;, where j # i. Then Gp(aVs,V8) = )\Z-_lx\j_lGB(aV,BV) =0, by
Proposition 3.1.8, and I'® C {43} by Lemma 3.1.5. Hence the V-condition (2.93) for B
holds. O

3.2 Restriction of trigonometric solutions of WDV'V equa-

tions

In this section we consider the restriction operation for the trigonometric solutions of
WDVYV equations and show that this gives new solutions of WDVV equations. An analo-
gous statement in the rational case was established in [25].
Let
B=ANW (3.5)

be a subsystem of A for some linear subspace W = (B) C V*. Define

Wg={xeV:p(x)=0 Vp5eB} (3.6)
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Let us denote the restriction oy, of a covector a € V* as mg(a), then
m8(A) ={mg(a): mg(a) #0, o€ A\ B}

is the set of non-zero restrictions of covectors a € A on Wp. Define Mp = Wi\ |J,c A\B I1,.

Consider a point xy € Mp and tangent vectors ug, vy € T,,Mp. We extend vectors ug
and vy to two local analytic vector fields u(x), v(z) in the neighbourhood U of x, that are
tangent to the subspace Wy at any point x € WNU such that ug = u(zg) and vy = v(zo).
Consider the multiplication * given by (2.63). We want to study the limit of u(z) * v(x)
when = tends to . The limit may have singularities at © € Wp as cot a(x) with o € B is
not defined for such z. Also we note that outside Wy we have a well-defined multiplication

The proof of the next lemma is similar to the proof of |25, Lemma 1] in the rational

case (see also [2]).

Lemma 3.2.1. The limit of the product u(x)*v(x) exists when vector x tends to xy € Mg
and it satisfies
A v
Ug * Vg = Z CaOé(Uo)@(Ug)(§ cot a(xg)a’ + E). (3.7)
acA\B

In particular, the product ug * vy s determined by vectors ug and vy only.

Proof. We are going firstly to analyse the singular part of u(x) % v(z) near a generic point
on the hyperplane Il = {x € V': f(z) = 0}, where § € B. We choose a basis { f1, ..., fn-1}
for Il and we extend this basis to the basis { fi, ..., fn_1, fx} for V such that g(fy) = 1.
Any x € V can be represented as @ = Y0 s; fi+tfn, where (s1, ..., sy_1,t) = (s,t) € CV

and t = (). The vector fields u(x),v(z) can be represented as

N-1

u(a) = u(s,t) =Y Gi(s.t)fi+als, t)fx,

=1

N-1

v(z) =v(s,t) = Z ni(s,t) fi + b(s,t) fw,

where (;, 1, a,b are some analytic functions. Note that 3(f;) =0 foralli=1,..,. N —1
since f; € Ilg.
Also since u(z), v(x) are assumed to be tangential to Wy then for xy with coordinates

(s°,0), where s° = (89, ..., s%_,), we must have B(u(xg)) = S(v(xy)) = 0. Hence we have

N-1

0= Blu(zo)) = Y G(s" 0)8(fi) +a(s*,0)8(fn) = a(s°, 0)5(fx) = a(s",0).

i=1
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Similarly we have that b(s° 0) = 0. Now we have

lim B(u)B(v) cot f(z)BY = Pm als, )b(s, )8" cot t = lim a(s,t)b(s,t)ﬁv.

t—0 —0 t—0 t

(3.8)

As the coefficients a(s, t) and b(s,t) are analytic then for s = s we have

where a(t), b(t) are some analytic functions. Hence (3.8) implies that

lim (3 (u)B(v) cot B(z) Y = lim ta(t)b(t)3Y = 0.

t—0 t—0

This means that u(z) * v(z) is non-singular at 5(z) = 0 and that § term vanishes when
we calculate the product at IIz. Lemma follows as § is an arbitrary element from B and
Wi = (1L,. ]

yEB

Now for the subsystem B C A given by (3.5) let
S={wm,...,q} CB, (3.9)

where k = dim W, be a basis of W. The following lemma shows that multiplication (3.7)
is closed on the tangent space T,(Mg @ U).

Lemma 3.2.2. Let B C A be a subsystem. Assume that prepotential (2.55) correspond-
ing to a configuration (A, c) satisfies WDVV equations (2.56). Suppose that C5° # 0
for any o € S, € 6o If u,v € Ty (M ® U), where x € Wg,y € U, then one has
uxv € Ty (Mp®U), that is

*: Tog) (M @ U) X Tg ) (M & U) = Tiay) (Mp & U),

where multiplication * is given by (3.7).

Proof. Suppose that the subspace W given by (3.6) has codimension 1 in V, and let a € S.
We have B = 6,. Let v € Mg C Il,. Let u,v € T,y (Ilo @ U). Then u and v can be
written as u = a,u + b, F, v = a,v + b,FE, where u,v € Il,, and ay,b,,a,,b, € C. By

Proposition 2.6.19 we have

Y csGala, 8Y) cot B(x)a(z)B@)a(w)5(@) = 0 (3.10)

ﬂGA\éa

for any z,w € V. By taking z,w ¢ TI, we derive from (3.10) that
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> cpa(BY)B(@)B(T) cot B(x) =0,

BeA\B
which implies the statement by Lemma 3.2.1.

Let us now consider Wy of codimension 2. Let S = {ay, as}. By the above arguments
U*vV € T(x,y)(Hai ©® U)

if x € Il,, is generic and u,v € Ty, (Ilo, ®U), (i =1,2). By Lemma 3.2.1, u * v exists
for # € Mg and hence u * v € T(, ) ((Ila, N 1la,) @ U). This proves the statement for the

case when Wy has codimension 2. General B is dealt with similarly. ]

Let us assume that G 4|w, is non-degenerate. Then we have the orthogonal decompo-
sition

V =Wz Wg.

Vector ¥ € V' can be represented as
o =a¥ +w, (3.11)
where oV € Wp and w € Wy . By Lemmas 3.2.1, 3.2.2 we have associative product

A —~
uxv = Z caa(u)a(v)(g cot a(zp)a + E),
acA\B

where xq € Mg, u,v € Wp.
For any v € W} we define vYWs € Wi by G 4(vWs,v) = v(v), Vv € Wp.

Lemma 3.2.3. Suppose that the restriction G 4|w, is non-degenerate. Then a¥ = mg(o)V"s

for any a € V*.

Proof. From decomposition (3.11) we have
a(v) = G(a”,v) = Ga(a¥ 4+ w,v) = G4(a¥,v)

for any v € Wp. It follows that G4(ms(a)’"s — a¥,v) = 0, which implies the statement

as G 4|w, is non-degenerate. [

Let us choose a basis in the space Wy @ U such that fi,..., f, is a basis in Wg,n =
dim Wpg, and f,1 is the basis vector in U, and let &, ..., &,1 be the corresponding coor-
dinates. We represent vectors £ € Wg,y € U as £ = (&1, ...,&,) and y = &,+1. The WDVV
equations for a function F': Wz @& U — C is the following system of partial differential
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equations:
FFE L\F,=FF.NF, i,j=1,..n, (3.12)

where Fj is (n + 1) x (n + 1) matrix with entries (F;),, = % (p,g=1,...,n+1).

The previous considerations lead to the following theorem.

Theorem 3.2.4. Let B C A be a subsystem, and let S be as defined in (3.9). Assume
that prepotential (2.55) satisfies WDVV equations (2.56). Suppose that C5° # 0 for any
a € S,aq € 0y. Then the prepotential

Fo=Fs6y) = 30'+ 3 cdl€fy+) Y cf @), €€ WeyeU=C, (313
aEA\B acA\B

where @ = 7mg(a), satisfies the WDVV equations (3.12). The corresponding associative

multiplication has the form

UKV = Z coﬂ(u)a(v)(% cota()a’"s + E), (3.14)
acA\B

where § € Mp,u,v € Ti¢ ) Mp.

Proof. Tt follows by Lemmas 2.6.2, 3.2.1-3.2.3, that multiplication (3.14) is associative.
The corresponding prepotential has the form (4.44) and it satisfies WDVV equations (3.12)
by Lemma 2.6.2. O

In general a restriction of a root system is not a root system, so we get new solutions
of WDVV equations by applying Theorem 3.2.4 in this case. In Sections 3.3, 3.4 and 3.6

we consider such solutions in more details.

3.3 BCy type configurations

In this section we discuss a family of configurations of BCy type and show that it gives
trigonometric solutions of the WDVV equations. Let the set A = BC}; consist of the

following covectors:
e,2e', (1<i<N), e+, (1<i<j<N).

Let us define the multiplicity function ¢: BCY; — C by c(€’) = r, ¢(2¢') = s, c(e' £e’) = g,
where 7, s,q € C. We will denote the configuration (BCy;,c) as BCY(r, s, q). It is easy to
check that

Ga(u,v) = h{u,v), u,v €V, (3.15)
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where
h=r+4s+2q(N —1) (3.16)

is assumed to be non-zero, and (u,v) = Ef\il u;v; is the standard inner product for
u=(uy,...,un),v=(vy,...,vy). Forany a, 8 € V*, (a A3)?: V@V — C denotes the
square of the covector a A € (V @ V)*.

Lemma 3.3.1. The following two identities hold:

> ((eiAej)2—|—(eiAek)2+(ej/\e'“)Q):(N—2) Yo ne)? (317

1<i<j<k<N 1<i<j<N

and

Z ((ei Aed)? 4 (ef Aef)? + (eh A e) 24 (eF AeF)? + (eF Ae)? + (eF A el)Q)
1<i<j<k<I<N

:%(N—Q)(N—?)) > (@ ne)’ (3.18)

1<i<j<N

Proof. Note that

Yooo@ndyP= ) (N—jene), (3.19)

1<i<j<k<N 1<i<j<N

Do ne)y= Y (k—i-1)(e' Ak, (3.20)

1<i<j<k<N 1<i<k<N

and

Y@ A=Y (G- e (3.21)

1<i<j<k<N 1<j<k<N

By adding together relations (3.19)—(3.21) we get identity (3.17).

We also have

dooo(end)y= Y %(N—j—l)(N—j)(ei/\ej)Q, (3.22)

1<i<j<k<I<N 1<i<j<N

Yo=Y (N=k)(k—i-1)(e' Aek), (3.23)

1<i<j<k<I<N 1<i<k<N
. 1 .
Yoo (eney= Y 5(1-@-2)@-@-1)@%4)?, (3.24)
1<i<j<k<I<N 1<i<I<N
Y@= ) (N=jli—1)(ne), (3.25)
1<i<j<k<I<N 1<i<j<N

doo(@ady= > (I-j-D{-1) A€, (3.26)

1<i<j<k<I<N 1<j<I<N
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and

S Fadp= Y %(k Sk — 1)(F A 2. (3.27)

1<i<j<k<I<N 1<k<I<N

Then by adding together identities (3.22)—(3.27) we obtain identity (3.18).
0

Proposition 3.3.2. The quadratic forms GS),G&%) corresponding to the bilinear forms
GS)(-, ), Gf)(-, -) given by formulas (2.84), (2.94) respectively have the following forms:

GV =21 > (ene), (3.28)
1<i<j<N
and
GP =4g(r+8s+2(N—2)q)h™" D (¢ A€, (3.29)
1<i<j<N

where h is given by (3.16).

Proof. Let us first prove identity (3.28). Note that GS) is a quadratic polynomial in 7, s

and ¢. The terms containing r? add up to

2r? Z (e' A el (3.30)

1<i<j<N

Similarly, the terms containing s? add up to

325 Z (e" A el)2 (3.31)

1<i<j<N

The terms containing rs add up to

2rs Z ((ei A 2e7)? + (2€" A ej)2> = 16rs Z (e" N el)?. (3.32)

1<i<j<N
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Now the terms containing rq have the form

P> ((ei Ae+e))" + (e A (e —e)) + (e A (el +eh)" + (7 A (e — ej))Q)

1<i<j<N

+2rq Z ((ei A+ )+ (€N (=) 4+ (P A (e +e)) + (eF A (el — )’

1<i<j<k<N

+ (&7 A (e + e’““))2 + (/A (e — ek))2)

2 2
=8rq > (AP +2rg D> <<eiAej+eiAe’“) +(6i/\6j—€i/\€k)

1<i<j<N 1<i<j<k<N

2 2 2 2
+(ei/\e’“+eﬂ'Ae"f) +(e"Ae’“—eﬂ'Ae’“) +(e"/\ef—ej/\e’“) +(ei/\ej+ejAe’“>)

= 8rq Z (e" Aed)? + 8rq Z ((ei Ae )4 (e A eF)? 4 (e A ek)2>
1<i<j<N 1<i<j<k<N
=8rq(N—-1) Y (e'Ael) (3.33)

1<i<j<N

by Lemma 3.3.1. Similarly, the terms containing sq add up to

B2sq(N —1) Y (e'nel). (3.34)

1<i<j<N

The terms containing ¢* have the form

2q° Z ((e"+e) A (e —e)?)

1<i<j<N

+2¢7 Z (((ei F) A+ N+ (@ + ) A =)’ + (€ = &) A (el + b))

(€= A (e =)+ (6 + &) A (e + M) +

+ ((e" =) A (e + ek))2 + ((e" =€) A (e — ek))2 + ((e'+e*) A (e + e’“))2
+

2

+ ()N =)+ (@ =) A (el + k)

+ 24¢° Z (((ei+ej)A(ek+el))2+ ((ei+ej)/\(e"7—el))2

1<i<j<k<I<N

(3.35)
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Expression (3.35) is equal to

8¢> Z (e N e?)? 4 2447 Z ((ei Aed)? 4 (ef AN+ (ed A ek)2)

1<i<j<N 1<i<j<k<N
+16¢° ) ((e" ANl 4 (e Aef)? + (e ne)? + (eF Aef) + (ef Aeh)? + (F A el)z)
1<i<j<k<I<N
=8°(N -1 >  (&né) (3.36)
1<i<j<N

by Lemma 3.3.1. By adding together expressions (3.30)—(3.34) and (3.36) we get identity
(3.28).

Let us now prove identity (3.29). Note that th) is a quadratic polynomial in r, s and
q and that terms containing 72, 7s and s? all vanish. Terms containing rq in th) are

given by

2

2rq Z (ei(ei + ej)v<ei A (e + ej)>2 + e'(e" — ej)v<ei A (e — ej)>

—i—ej(ei—f—ej)v(ej/\(ei+ej)>2+ej(ei—ej)v<ej/\(ei—ej)>2>:4rq Z (e" A el)2

T @

Similarly, the terms containing sq in th) add up to

325 Y (e'Ael) (3.38)
Finally, the terms containing ¢? in th) are given by
2¢ Z ((ei+ej)((ei+ek)v) ((e'+ ) A (ei+ek))2
+ (e +e)((e" = €)Y ((e" +eT) A (e — e’“))2 + (e —e)((e"+€)Y)((e =€) A (e + € )2
+ (e =€) ((e" =€) ((e" = &) A (e — ek))2 + (e +e) (e +€))((e +el) A (e + e'“))2
+ (e +e) (e —e))((e+el) A (e — ek))2 + (e —e) (e +€))((e — 7)) A (e + €Y))
+ (e =) (e =) (€ — &) A (e — ) + (e + €M) (e + e)Y) (e + ) A (¢ + "))
+ (" + ek)((ej — ek)v) ((ei +eF) A (ef = ek))2 + (e’ — ek)((ej + ek)v) ((eZ — MY A (e + ek))
+ (e — ") ((ed — X)) ((e" — ) A (ef — ek))2). (3.39)
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Expression (3.39) is equal to
2¢° Z ((ei/\ek—ei/\ej+ej/\ek)2+ (ei/\eﬂzl’“%—ei/\ej—ej/\e”“)2
1<i<j<k<N
+ (ei/\e’“—ei/\ej—ej/\ek)2+ (ei/\ej+ei/\ek+ejAek)2)
= 8¢° Z ((ei Ael): 4 (e Aef)? + (el A ek)Q) =8¢*(N —2) Z (e' Nel)?

1<i<j<k<N 1<i<j<N

(3.40)

by Lemma 3.3.1. By adding together expressions (3.37), (3.38) and (3.40) we get identity
(3.29). O

The previous proposition allows us to prove the following theorem.

Theorem 3.3.3. Prepotential (2.55) for the configuration (A, c) = BCY(r,s,q) satisfies
WDVV equations (2.56) with

2h3 1/2
A:( ) , (3.41)
q(r +8s+2(N — 2)q)
where h is given by (3.16), provided that q(r + 8s + 2(N — 2)q) # 0.

Proof. Firstly, BC}(r,s,q) is a trigonometric V-system by Proposition 2.7.2. Secondly,
by Proposition 3.3.2 we have that GS) — ’\4—2Gf) = 0 if X is given by (3.41). The statement
follows by Theorem 2.6.21. O

Theorem 3.3.3 gives a generalization of the results in [33], [42], [11] and [47], where, in
particular, solutions of the WDVV equations for the root systems Dy, By and Cy were
obtained (see Section 2.7). Following [33], [42] consider the function F of N + 1 variables

(1,...,2N,y) of the form

Fle,y) = 29" + Jyle.a) + Y caf(al)), (3.42)
a€RT

where R* is a positive half of the root system R, multiplicities ¢, are invariant under the
Weyl group, v € C and function f given by (2.100). Note that f(z) = —f(—iz2).

Let us explain that our solution (2.55) for the configuration BC}(r, s, q) leads to a
solution of the form (3.42).

Proposition 3.3.4. Function F given by (3.42) with RT = BCY; satisfies WDV'V equa-
tions (2.56) if
v = —2¢(r + 8s + 2(N — 2)q). (3.43)
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Proof. By formula (3.15) solution F' given by (2.55) for A = BC}; has the form

N
1
P@,9) =30 +hg)_F+X Y caf(a(@)), (3.44)
i=1 aEBC;
where we redenoted variables (z,y) by (z,y). By changing variables = = —iz, y = %y
and dividing F' by —\ solution (3.44) takes the form (3.42) provided that y?\* = —4h3
which is satisfied for v given by (3.43). O

Let n € N and let m = (my,...,m,) € N” be such that
> mi=N. (3.45)
i=1

Let us consider the subsystem B C A = BCY}; given by

i—1

i—1 i
B={eXimmith _exjmmitl | <k<l<m;, i=1,...,n}

Let us also consider the corresponding subspace Wi = {z € V': f(z) = 0,Vp € B}. It can
be given explicitly by the equations

7

T :"':l'ml :gla
Tma+1 = " = Tmytmg = 527
(st = = 2w =,
where &1, ..., &, are coordinates on Wg. Let us now restrict the configuration BCY;(r, s, q)

to the subspace Wy. That is we consider non-zero restricted covectors @ = mg(a),a € BCY;
with multiplicities ¢,, and we add up multiplicities if the same covector on Wj is obtained
a few times. Let us denote the resulting configuration as BC,,(q,r, s;m). It is easy to see

that it consists of covectors
f*, with multiplicity rm;, 1<1i<n,
21 with multiplicity sm; + %qmi(mi —-1), 1<i<n,
fi4 f7,  with multiplicity gmimj, 1<i<j<mn,
where f1,..., f™ is the basis in W} corresponding to coordinates &, ..., &,.

As a corollary of Theorem 3.2.4 and Theorem 3.3.3 we get the following result on

(n 4+ 3)-parametric family of solutions of WDVV equations, which can be specialized to
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(n + 1)-parametric family of solutions from [43].

Theorem 3.3.5. Let £ = (&,...,&,) € W,y € U = C. Assume that parameters r,q, s
and m satisfy the relation r + 4s + 2q(m; — 1) # 0 for any 1 < i < n. Then function

Fs(€,y) = 5y° + (r + s + 20(N Zm@éHerl (&)

i=1 i<j

1/2
where N is given by (3.45), satisfies the WDV'V equations (3.12) if A = < 217 ) )
q<r+8s+2(N—2)q)

where h is given by (3.16), and (r + 8s + 2(N — 2)q)q # 0.

Proof. We only have to check that cubic terms in (3.46) have the required form. For any
¢ € Wg we have

Z cat(€)? = T;miéf + 4; (Smi + %qmi(mi - 1)) H

aEBC]J{,
+2¢ Y mmy(E + &) (3.47)
1<i<j<n
Note that
Z mim;(& + &) me] & +&) ZmQSQ ZN—mi)miﬁf
1<i<j<n 'L] 1 i=1

by formula (3.45). Hence (3.47) becomes

Y (@)= (r+4s+2q(N—1)) > m&

ocEBCX, i=1

as required. N

Solution (3.46) gives a generalization of the results in [43]|. Let us recall the following

solution of WDVV equations from that paper. Consider the function g, of n + 1
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variables (z1,...,x,,y) of the form

2 n n £ 1 + &; . T . —dx.
Ppe, = %yS + gyzgix? + Z %(ng(e4 )+ Lig(e™* )>
i=1 i=1

2 " =
_ + M +82k=1 €k ; € <Li3(€2xi) 4 Li3(€_2m))

1
_6 Z £i€; (Li3<e2(l’i+xj)) + Li3(€72($i+x]‘)) + Li3<€2(xiij)) + Lig(@iQ(mil‘j))) :
1<J

(3.48)

where p # 0, p,e; € Cyi = 1,...,n. It is stated in [43| that ®po, satisfies WDVV

equations.

Proposition 3.3.6. Assume that u # —1. Then solution (3.46) for the configuration

BC,(q,r,s;m) reduces to solution (3.48) if one specifies parameters

e — QS_qg- . ql/Q(\/i(QJrM) _QN(W)uz(lJFM)l/Z)
T ((1 + )"
2l (20u01 +“)>1/2 C 3.49
o Ap(l + ) g€t (3.49)

Proof. First, solution (3.46) has the general formula (where we redenoted the varible £ by

7)

1 ~
F:§y + (r+4s+2q(N Zm,m +— Z cof(a(T)),
aEBCn(q,r,s;m)
which takes the following form after making the change of variable 7 = —ix
1 ~
F = gy — (r+4s +2¢(N Z mix Y caflalr), (3.50)

aGBCn(q,T,S;m)

where f"(z) = coth z. Note that

Flalw)) + Fl-a(e)) =~ (Lis(e*®) + Lis(e ).
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Hence solution (3.50) takes the form

1

n )\ n
F =gy’ = (r+4s+2(N=1))y ; miwf + 3 ; rmg(Lig(e®) + Lig(e )

)\ — 1
A n
+ 52 amum; (Lig(€7) + Lig(e720)) 4 Lig (e277)) 4 Lig (e7257%) ).
=1
(3.51)

By dividing solution (3.51) by 2 and dividing solution (3.48) by p? and comparing the

corresponding coefficients in both solutions, we get the following set of equations

1 i(l+e
(r+4s+2q(N— 1))m2 = ——¢, )\mi(Zs—q—l—qmi) = 6(——§€>
H H
2 s i€
Arm; = —2( +'u+22:k:1 Ek)c‘:i, )\Qmimj = 8?7
H H
which are satisfied for the given values (3.49). O
Note that the case u = —1 is not covered by the generalization given in the Proposition

3.3.6 since parameters 7, s, A are not defined. Let us also recall another solution from [43]
which has the form

O, 'lgy + yZé?Zl' +Z€l (ke 18€k 221) (Lz (e**) + Lis(e 21))

- = Z Ei€j (ng #it5)) 4 Lig(e” @) 4 Lig(e® ™)) + Lig(e’(x"’“’f))>, (3.52)

z<j
where p # 0, p,e; € Cii=1,....n

Proposition 3.3.7. Solution (3.46) for the configuration BC,(q,r, s;m) reduces to solu-
tion (3.52) if one specialized parameters

4 w+ N —2

mZ:€l7 TZO, q:—’ 8:—7
p(p — N) p(p —N)

(3.53)

where N =Y 'm;.

Proof. First, solution (3.46) with » = 0 has the general form

F:%y3+2(2s+q —1 yZma: + = anf

aECn
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where we redenoted the variables &; by 7;. It takes the following form after making the
change of variable 7 = —i3:
1, 1 . D ~
F = 3V~ 5(28 +q(N — 1))92”%% -3 Z Caf(@(§))a (3.54)
i=1 a€Ch
where fm(z) = coth z. Similarly to the proof of Proposition 3.3.6, solution (3.54) then

takes the form

_la L C))yS me?
F—3y 2(28—|—q(N 1))yizlm,xi

)\ — 1
+ g ; <Smi + §qmz(ml - 1)) (Lig(emci) + Li3(€72xi)>

>\ n
+ 3 Z qgm;m; <Li3(e(“”7)) + Lig(e™@it®)) 4 Lig(e@ =) 4 Lig(e’(”i’xﬂ'))) (3.55)
i=1

By dividing solution (3.55) by 2 and dividing solution (3.52) by u? and comparing the

corresponding coefficients in both solutions, we get the following set of equations

2 8€i€;j
(2s +q(N = 1))m; = —=¢;,  Agmym; = — 828],
[ p
— 9, n
AmZ(ZS_q—’—qml) :4<lu e +22k_18k>82'7
v
which are satisfied for the given values (3.53). O

3.4 Ay type configurations

In this section we discuss a family of configurations of type Ay and show that it gives
trigonometric solutions of the WDVV equations.

Let V € CN*! be the hyperplane V = {(1,...,Zns1): Sont @ = 0}. Let A = A}
be the positive half of the root system Ay given by

A={e—¢, 1<i<j<N+1}

Let t = c¢(e' —e’) € C be the constant multiplicity. The following lemma gives the relation

between covectors in A and their dual vectors in V.

Lemma 3.4.1. We have

<€l_ej)v:t(]\f—_|_1)(€i_€j)’ 1SZ,]§N+1
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Proof. Let © = (z1,...,2n41),y = (Y1,--.,Yn+1) € V. Then the bilinear form G 4 takes

the form
N+1 N+1
Galw,y) =t (wi—z;) (i —y;) =t(N+1) >z,
i<j i=1
which implies the statement. O

Now we can find the forms G’ﬁ),z’ =1,2.

Proposition 3.4.2. The quadratic forms GS),GE? corresponding to the bilinear forms
Gi)(-, ), GEE)(-, -) respectively have the following forms:

N+1
G’Ei) = (N + 1)%*? Z(ei Ael)?,
ij=1
and
N+1
GP =t> (A (3.56)
ij=1
Proof. For the first equality we have
NIN4L ' )
GS) =¢? Z Z ((e’ — ) A (e — el))
i<j k<l
2 N ) . . . 2
=— Z ((ez AeF) — (et nel) — (ef Ae) + (ef A el)>
4
ijkl=1
N+1
=(N+1)°) (¢'nel)
ij=1

since 5\21 'y = 0. For equality (3.56) we have by Lemma 3.4.1 that

Gﬁ) = 22 Z ((ei — ej)((ei — ek)v) ((ei — ) A (e — e’“))2

1<i<j<k<N+1

+ (€' — ej)((ej - ek)v) ((ei — A (e — €k))2 + (€' — ek)((ej - ek)v) ((ei — MY A (e — ek))2>

2t . . . ,
= N1 Z (" Nel —e' NeP 4 el A eF)2 (3.57)
tcicicgrenn
Note that
N+1 N+1 ‘
Z (e"Nel —et NeF + el NeF)? =3(N +1) z:(ez Ael)? (3.58)

i,5,k=1 ij=1
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since SN el = 0. Also it is easy to see that

N+1
Z (" Nel —et NeP el NeF)? = 6 Z (e"Nel —e' NeF 4+ ed AeF) (3.59)
1<i<j<k<N+1 1,7,k=1
Equality (3.56) follows from formulas (3.57)—(3.59). O

This leads us to the following result which can also be extracted from [42].

Theorem 3.4.3. (cf. [42]) Prepotential (2.55), where y = S~ x;, for the configuration

(A, c) = (A, t) satisfies WDVV equations
Efwj_le:Fk}?j_IE7 ivjakzlv"'vN—'—lv
where (F})pq = am%fa%v (p,g=1,...,N+1), with

A =2(N+ 1)Vt (3.60)

Proof. Firstly, A is a trigonometric V-system by Proposition 2.7.2. Secondly, by Proposi-
tion 3.4.2 we have that

which is equal to 0 for A given by (3.60). It follows by Theorem 2.6.21 that F' satisfies
WDVV equations (2.56) as a function on the hyperplane V' C C¥*! which also depends
on the auxiliary variable y. Now we change variables to (z1,...,zy41) by putting y =

S V*1 4, which implies the statement. O

Theorem 3.4.3 gives the value of the scalar A for the general root system of type Ay
for arbitrary multiplicity of its vectors. This result matches the result from [33], [42]
where, in particular, solutions for the root systems Ay (with multiplicity equal to 1 for
its vectors) were obtained. Following [33], [42], consider the function F' given by (3.42).
We will explain that our solution (2.55) for the configuration (A%}, t) leads to a solution

of the form (3.42). The following lemmas will be used.

Lemma 3.4.4. We have

N+1

Z (QSZQ—FZL'?) :NZx?.
i=1

1<i<j<N+1
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Proof.

. WA= N+1 1 N+1 N+1
1§i§§:N+l(xi+xj):§<i;$ +x 22x>:§< (N+1 ; 2295)
which implies the required relation. [

Lemma 3.4.5. We have

N+1

Z alr)* = (N +1) Z T (3.61)

aeAx
where y = SN ;.
Proof. Let z € CN*1. Then we have

Z a(r)? = Z (zi — ) = Z (] + 25 — 2x;2)

acAl; 1<i<<N+1 1<i<j<N+1

=N ) ai-2 > am (3.62)

1<i<j<N+1 1<i<j<N+1

by Lemma 3.4.4. Note that

N+1 N+1 N+1  N+1 N+1
_ 2 _ . o 2
2 g Tir; = g Tl — E T; = E T; E T E x;
1<i<j<N+1 i,j=1 i=1 i=1  j=1 i=1
N+1 N+1 N+1
2 : 2 } : 2 2 2 : 2
i=1 i=1 i=1
Hence, the lemma follows. O]

As we have seen in Section 2.7 that solutions of WDVV equations corresponding to
root systems were obtained by Hoevenaars and Martini. Let us recall their solution for

type Ay root system and show that our solution leads to such a solution.

Proposition 3.4.6. (cf.[33], [42]) Function F given by

N
F(z,y) = gy3+gy(zx?—Ny—H > fla

i=1 ozEAJr
T+ e+ X o (369
6(N +1) ot

where the variable y is defined by y = ZZ 1 i, satisfies WDV'V equations (2.56) for root
system An and the value of v is given by —v* = N + 1.
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Proof. Let ¢, =t = 1. Then by Lemma 3.4.5 solution (2.55) has the form

N+1
—2
F(@ ~):?y+N+1 Zx +A ) flaf (3.64)
aEA"'
where we redenoted variables (z,y) by (7,y). By changing the variable ¥ = —iZ, one

accordingly has y = —iy where y = ZNJ{ Z;. Then by dividing the resulting solution by

—\ and calling it F we get

2% 4 (N+1)i N+1

pofips WAL l 3.65
o Uy E Y fla (3.65)
i=1 ozEAJr

—A\yi—2( N+1)

STEEYE . Accordingly one

Now let us replace variable z with z; = x; + Sy, where S =

can show that change of variable for y takes the form y = iy. Hence solution (3.65)

A
2(N+1)
takes the form

X292+ 6(N + 1)3((N +1)s® + 2s) ™
( 12(N + 1)° ) W yz”” + 2 fl (3.66)
ozEAJr
2,2 3 82 s
In order to compare functions (3.66) and (3.42), we let s +6(NI;1()NS(1];[:1) +25) = 63’\[121)7
which implies the required value of v since A = 2(N + 1). O

Let us now apply the restriction operation to the root system Ay. Let n € N and
m = (my,...,muy1) € N**1 be such that 37" m; = N+1. Let us consider the subsystem

B C A given as follows:
B={eXimimith _oXimmitl | <k <l<mui=1,...,n+1}

The corresponding subspace Wy defined by (3.6) can be given explicitly by the equations

.
Ty =" "= Tmy,

Tmi+1 = = Tmy+ma
sz:?:lmi‘f‘l =t = INt1-

Define covectros f1,..., f"™ € W} by restrictions f' = g (ezj':lmj). Let us denote by
A, (t;m) the restriction of the configuration A} to the subspace Wp. It consists of the
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following covectors:
fi—f7,  with multiplicity tm;m;, 1<i<j<n-+1. (3.67)

The following result holds, which is closely related to a multi-parameter family of solutions
found in [43] (see also [47]).

Theorem 3.4.7. The prepotential

n+1 n+1 n+1 n+1
F(&) = ( ——t +ty2mk2m1§ +2t3/2zmk2mzmjf &),  (3.68)
i= 1<j

where £ = (&1,...,&pp1) € Coand y = Z?:ll i, satisfies WDV'V equations
FF'Fy=FF'F, di,j,k=1,...,n+1,

where (F})pg = %, (p,qg=1,...,n+1), for any generic t,my,...,my,1 € C.

Proof. Let us suppose firstly that m; € Nforall: =1,...,n+1. Define N = —1+Zf+11 m;.
By Theorem 3.4.3 function (2.55) with A = A}, and A given by (3.60) is a solution of
WDVYV equations (2.56). By Theorem 3.2.4 the prepotential given by

1 n+1 n+1
F(&y) =3y Sty > mim(&— &) 2N+ DY Tmimf(&6—&), € € Wa, (3.69)
1<j 1<j

as a function on Wy @ C satisfies WDVV equations. Note that

n+1 n+1 n+1
S mmye — &) =3 mimy (€2 +€2) — 2 mam&e;. (3.70)
i<j i<j i<j
Note also that
n+1 n+1 n+1 n+1
> mamy (& + &) Zmzmgé +&) st =Y (N+1—m)mi€?, (3.71)
1<j 1] 1 =1
and that » »
1<i<j<n+1 i=1

By making use of relations (3.70)—(3.72) the function (3.69) takes the form

n+1 n+1 n+1

F(E, y)—1y+ (N+DEY - mily—t() | mi&e) y+2(N+Dt2 Y~ mam; f(§—¢;). (3.73)

=1 =1 1<j
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By setting y = >.74' m;& and moving to variables (£, ...&,,1) € C™! solution (3.73)
takes the required form (3.68). The case of complex m; follows from the above considera-

tions since F' depends on m; polynomially. O]

Remark 3.4.8. (1) We note that Theorem 3.4.3 and the solution F given by (2.55) is valid
if one takes any generic linear combination of coordinates x; to form the extra variable

Yy = Zf:{l a;x;, a; € C. The corresponding solution after restriction is given by the formula

n+1 n+1

1
F(§) = §y3 +ty Y mmy(& — &)+ 2N + DY mim; f(& - &),
i<j 1<J
where y is a linear combination of &;,...,&,.1,& € C.

(2) A multi-parameter family of solutions related to the root system of type A, was
stated in [43, Section 5.2]. We expect that our solution (3.73) is equivalent to the family
of solutions in [43]|. It seems that there is a typo in the formula of the solution for type
A, in [43], since that it seems to not satisfy the WDVV equations.

3.5 Further examples in small dimensions

In Section 3.2 we presented the method of obtaining new solutions of WDVV equations
through restrictions of known solutions. We applied it to classical families of root systems
in Sections 3.3, 3.4. Similarly, starting from any root system and the corresponding
solution of WDVV equations one can obtain further solutions by restrictions. In the next
proposition we deal with a family of configurations in 4-dimensional space which in general

is not a restriction of a root system.

Proposition 3.5.1. Let a configuration A C C* consist of the following covectors:
e, with multiplicity p, 1<i<3,

et,  with multiplicity q,

el +el,  with multiplicity r, 1<i<j<3,

1
5(61 +e?+ e £et),  with multiplicity s,

where p,q,r,s € C are such that 4r + s # 0. Then A is a trigonometric V-system if

p= 2r + s, (374)

~ s(s—2n)
1= " vs (3.75)
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and ps # 0. The corresponding prepotential (2.55) with
A = 6V3(2r + 5)(4r + 5) /2 (3.76)

is a solution of WDV'V equations.

Proof. For & = (x1, T2, 3, 74),y = (Y1, Y2, Y3, ya) € C* the bilinear form G 4 is given by
Ga(z,y) = (p+4r + 2s)(x191 + T2y2 + 23y3) + (¢ + 25) T4y

To simplify notations let us introduce covectors

1 1
a = 5(61 +e®+e’+e'), ap= 5(61 +e?+e* —e),

1 1
as==(e'+e2—e’+et), ag=-(e'—e*+e’+e),
1 1
as = =(e! —e? —e* + ), 04625(61—624-63—64),

1 1
ay = 5(61 +et—el—et), ag= 5(61 —e?—e® —et).

Because of B3 x Aj-symmetry it is enough to check the trigonometric V-conditions for the

following series only:

Pel = {a17a8}7 P64 = {a17a2}7 F€1+62 = {041,067}, Fflll = {a27 64}7 Fil = {043763},

I ={as,e*+ €’}

Trigonometric V-conditions for the series I';1, "4, 1y 2 are immediate to check. Let us

consider the trigonometric V-condition for o;-series. We have

3g+4s —p—4r 1
o (ay) = d b ar(e?) = 92

, —, o Ny = —« /\64,
4(p+4r+2s)(q + 2s) (q+ 2s) PO !

which implies the V-condition (2.93) for I'}, since s(3¢+4s—p—4r) —2q(p+4r+2s) =0
by relations (3.74), (3.75).

Also we have

1
(p+4r+2s)’

q+p+4r+4s
p+4r+2s)(q+2s)’

Y

051(043) = 4(

a(e?Y) = 5 a1 Aas = —ag A€’
which implies the V-condition for I'Z since s(q+p+4r+4s) — 2p(q+2s) = 0 by relations
(3.74), (3.75).

Finally, we have

p+4r —q

. 1
2 3\V 2 3

C p4dr+2s’

aroy) =
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which implies the V-condition for I}, since s(p + 4r — ¢) — 4r(¢q + 2s) = 0 by relations
(3.74), (3.75).

Let us now find the quadratic form GS). By straightforward calculations we get

3
GS) — 2(p2 + 8pr + 4ps + 16rs + 1612 + 482) Z (ei A €j>

i<j

2

3
+ 2(pq + 2ps + 4qr + 2qs + 8rs + 457) Z e’ /\e
=1

S = CER) W oo >) C em

i<j i=1

Now let us find the quadratic form Gf). We have

38
_przz (ef £ €¥) (ei/\(ejie —l—psZZez e/\oz])Q

=1 j<k i=1 j=1
38 8
+rsZZ(eiiej)(aZ) (e"£e?) A ay) +SQZOQ )y A aj)?
1<j k=1 3,7=1
3 3
+23 N (@ ) (P Ee)) (€ £ ed) A (F £ )
i<j k<l
4dpr ’ 2ps !
- = ei/\ej2+— el A ef)2
p+4r+2s;( ) p+4r—|—23;( )
4
+p+4:8+ 25((61/\62)2+(61/\63)2—0—2(62/\€3>2—|—2(€1/\64)2+(62/\64)2+(€3/\€4)2)
8r? L , 252 4r
i A el (2/\32__ LA 42 2 7 o2 3/\42>_
+p+4r+QS§(e D e m\@ NS T e Ad e Ad (e

(3.78)

By making further use of relations (3.74), (3.75) the expression (3.78) can be simplified to

the form
2 > 2 <
2 _ i i\2 i 472
Gy = 3(4r—|—s) 1§<] (" Nel)” + 3° ;:1 (' Ne*). (3.79)

The final statement of the proposition follows from formulas (3.77), (3.79) and Theorem
2.6.21. [l

Remark 3.5.2. We note that for special values of the parameters configuration A is a
restriction of a root system (cf. [25] where the rational version of this configuration was

considered). Thus if » = 0 and p = ¢ = s then A reduces to the root system Dy. If
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r=1,s =4, then p =6 and ¢ = 1 and the resulting configuration is the restriction of the
root system FE- along subsystem of type As. If s = 2r then the resulting configuration is

the restriction of the root system FEjg along subsystem of type A; x Aj.

Further solutions of WDVV equations can be obtained from Proposition 3.5.1 by re-

stricting the configuration A.

Proposition 3.5.3. Let Ay C C? be the configuration
1 1
Ay = {2, e, €% 3 et £ 6 5(62 + e3), 5(261 +e? £ %)},

with the corresponding multiplicities {r,2p, p, q,2r,2s, s}, where p,q,r,s € C. Let configu-
ration Ay C C? consist of the following set of covectors:
e, with multiplicity p+s, 1<i<3,
el +el,  with multiplicity r+s, 1<i<j<3,
et — el with multiplicity r, 1<i<j<3,

el + e+ e, with multiplicity q + s.

Suppose that relations (3.74), (3.75) hold and that ps(4r + s) # 0. Then A;, Ay are
trigonometric \/-systems which also define solutions of WDV'V equations given by formula
(2.55) with A given by (3.76).

Proof of this proposition follows from an observation that configuration A; can be
obtained from the configuration A from Proposition 3.5.1 by restricting it to the hyper-
plane x; = x5 (up to renaming the vectors). Similarly, configuration A can be obtained
by restricting the configuration A to the hyperplane 1 + 25 + 3 — x4 = 0 (and up to
renaming the vectors). Other three-dimensional restrictions of the configuration A give
restriction of the root system F and a configuration from BCj5 family.

Rational versions of configurations A;, Ay were considered in [25]. Note that configu-
ration A; has collinear vectors 2e!, e!, so its rational version has different size.

Two-dimensional restrictions of A are considered below in Proposition 3.5.6 and Propo-
sition 3.5.9, or can belong to BCy family of configuration, or have the form of configuration
G or appear in [27, Proposition 5].

Let us now consider examples of solutions (2.55) of WDVV equations where configura-
tion A contains a small number of vectors on the plane. The next two propositions confirm

that trigonometric V-systems with up to five covectors belong to A; or BC families.

Proposition 3.5.4. Any irreducible trigonometric V-system A C C? consisting of three
vectors with non-zero multiplicities has the form (3.67) where n = 2 for some values of

parameters.



CHAPTER 3. OPERATIONS WITH TRIGONOMETRIC SOLUTIONS 94

Proof. By |27, Proposition 2| any such configuration has the form A = {«, 5,7} with the
corresponding multiplicities {c,, cg, ¢, }, where vectors in A satisfy o+ 4~ = 0 for some

choice of signs. It is easy to see that equations
tmymg = ¢, tmyms =cg, tmomsz=c,,

for my, mg, m3,t € C can be resolved. O

Proposition 3.5.5. Any irreducible trigonometric \V-system A C C? consisting of four
or five vectors with non-zero multiplicities has the form BCy(r, s, q;m) for some values of

parameters.

Proof. By |27, Proposition 3| any irreducible trigonometric V-system A consisting of four
vectors has the form A = {2e!,2¢? ¢! +¢?} in a suitable basis, and the corresponding mul-
tiplicities {¢1, ca, o} where ¢y # —2¢; for i = 1, 2. Now we require parameters r, s, g, my, ms
to satisfy

smy + iqml(ml —1) =¢,

smo + Eqmg(mg —1) =y,

gmimg = cg, 1 =0,

which can be done by taking

1 co(m1 - 1)(201 + Co)
s= (e - )
mq 2m1(202 + Co)
co(2¢1 + o) (2¢9 + co)my
==~ Mmpg=-——— m € C\{0}
1 m3(2¢y + ¢o) 2 2c1 + ¢ ! \ {0}

By [27, Proposition 4| any irreducible trigonometric V-system B consisting of five vec-
tors in a suitable basis has the form B = {e!, 2¢!, €?, ¢! +-¢?}, and the corresponding multi-
plicities {c1, 1, ¢2, e+ } satisty ¢y = c_ and 2¢;¢0 = ¢4 (¢1 — ¢3), where (¢1 +4¢; +2¢4 ) (ca +
2¢;) # 0. In order to compare the configuration B with the configuration BCy(r, s, q;m),

we require parameters r, s, q, my, mo to satisfy

rmy = Cy, Mo = Cog, qmims = C4,

1 - 1
smq + §qm1(m1 —1)=7¢, smy+ §qm2(m2 —1)=0.

These equations can be solved by taking

r=2, goglazem) o ca o em e o).
1

2
2comy Comy c1
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O

In the rest of this section we give more examples of trigonometric V-systems on the

plane, which can be checked directly or using Theorem 2.6.21. The configuration in the

following proposition can be obtained by restricting configuration A; from Proposition
3.5.3 to the plane 221 + x5 — 23 = 0.

Proposition 3.5.6. Let

A= {e!,2e!, e et +e% et — e, 2e! + €%} C C?

be with the corresponding multiplicities {4a, a,2a,2a,2(a — b), 43??31; , where 4a — 3b # 0.
Then A is a trigonometric V-system provided that a(2a — b) # 0. The corresponding

solution of the WDV'V equations has the form (2.55) with A = 6/3(2a — b)(4a — 3b)~1/2.

The configuration in the following proposition can be obtained by restricting configu-

ration A; from Proposition 3.5.3 to the plane z; = x».

Proposition 3.5.7. (cf. [27]) Let
1 1
A= {e!,e,26, J(e' £ &), (! £3¢)} € €7
a(g?;:fbb),?)a + 2b,b,3a,a}. Then A is a trigono-

metric V-system. The corresponding solution of the WDV'V equations has the form (2.55)
with A\ = 6(3a + 2b)(3a + 4b) /2.

be with the corresponding multiplicities {

Remark 3.5.8. If we let b = 0 for the configuration in Proposition 3.5.7 then we recover

the root system G5 with special multiplicities.

The configuration in the following proposition can be obtained by restricting configu-

ration A; from Proposition 3.5.3 to the plane x5 = 0.

Proposition 3.5.9. Let
A= {e',2e!,e%,2e% et £ €%, ! £ 2e*} C C?

be with the corresponding multiplicities {2a, § — %, 2b,a,b,a — %}, where a # 0. Then A is
a trigonometric \V-system and the corresponding solution of the WDV'V equations has the
form (2.55) with X = 6v/6a(4a — b)_l/Q.

In the next two propositions we give examples of trigonometric V-systems with nine

and ten covectors on the plane.



CHAPTER 3. OPERATIONS WITH TRIGONOMETRIC SOLUTIONS 96

Proposition 3.5.10. (cf. [27]) Let

1 1
A= {e' 2! e? et £ 62 5(361 + e?), 5(61 +e?)} c C?
) %7 ) %a
system provided that a # —2b. The corresponding solution of the WDV'V equations has the
form (2.55) with A\ = 6(a + 2b)(a + 4b)~1/2.

be with the corresponding multiplicities {a,b a}. Then A is a trigonometric V-

Note that if b = 0 then after rescaling e*> — /22 this configuration reduces to the
positive half of the root system Gj.

Proposition 3.5.11. (cf. [27]) Let
A= {e' 2!, e 2e% et + % et £ 267 2e! + €%} € C?

3a 3a
3a 6. 3a
) 92 ) 92
V-system provided that a # 0. The corresponding solution of the WDV'V equations has the

form (2.55) with A = 15a*/2.

be with the corresponding multiplicities {6a 4a,a,a}. Then A is a trigonometric

The following configuration containing 14 vectors on the plane.

Proposition 3.5.12. Let

A= {e', 2!, 3¢, e?,2¢? 3e? e €2, 2(e! £ %), 2e" £ €2, e £ 26} C C?
be with the corresponding multiplicities {3a, 37“, 3, 3a, 3—2“, $.2a,%,a,a}. Then Ais a trigono-
metric V-system provided that a # 0. The corresponding solution of the WDV'V equations
has the form (2.55) with A = 5(6a)'/2.

The following configuration containing 9 vectors on the plane which does not belong

to any restrictions of Coxeter root system for general values of multiplicities.

Proposition 3.5.13. Let
A= {e',2¢e!, 3!, €%, 2e% et £ €2, 2e! £+ e} € C?

be with the corresponding multiplicities {%g:;“j“), b(gl:;i“), 2;((1)1:22;)),2a + 3b,a,2b,b}, where
b+ 2a # 0. Then A is a trigonometric V-system provided that b(3b + 2a) # 0. The
corresponding solution of the WDVV equations has the form (2.55) with A\ = 3v/2(3b +

2a)(b+ 2a)~1/2.
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3.6 Exceptional root systems solutions revisited

We know that a function F' with extra variable y given by formula (2.55) is a solution
of WDVV equations (2.56) if the nonzero constant A\ € C exists. In Section 3.2 we have
shown that any restricted function of a solution F' also gives a solution of WDV'V equations
with the same value of A. This fact can be used to find the value of A for any configuration
through out the process of restriction. This can help us to determine the value of the
scalar A\ for a higher dimensional configuration by making restriction of the configuration
to obtain a restricted system in a small dimension which make it easier to calculate. Also
if two configurations have the same restricted system then actually one can derive the
value of A for one of these configurations whenever the value of A is known for the other
configuration. In this section we will make use of this procedure to find the value of A for
root systems of type Fg, 7, Fg, Fy and Go. Following [33,42], recall that WDV'V equations

(2.56) have solutions of the form

Flz,y) = %gﬁ + %y(w,x} + 3 cflal), (@eVyeo), (3.80)

where V = CY and R C V* is a root system of rank N, multiplicities ¢, and the inner
product (-,-) are invariant under the Weyl group, v = vy, € C and function ]7 is
given by (2.100). By identifying V' = V* via the standard inner product (-,-), we define
(o, B) = (a*, 5*). The corresponding values of vz ) were given explicitly in [33,42] for
constant multiplicity functions ¢, =t Va (except for R = BCy, G2), they were found in
[11] for special multiplicities and in [47,48] for arbitrary (non-reduced) root system R with

invariant multiplicity. For type F root systems we have
VEer) = 20V6t, Yy = 4iV3,  Ymen = 2iV30t.

Similarly to analysis of the BCy case in Section 3.3 these solutions lead to solutions F' of

the form (2.55) for A =R* and the corresponding values of A = A\(g ) are given by
AEen) = 1228, Ny = V6L, Ay = 30VL. (3.81)

We recall that A\, in contrast to y(r,), is invariant under linear transformations
applied to R. An alternative way to derive values (3.81) is to apply Theorem 3.2.4 to
already known solutions. Thus A(gg ;) can be derived, for example, by considering the
four-dimensional restriction of Eg along a subsystem of type A; x A; as this restriction is
equivalent to the configuration from Proposition 3.5.1 when parameter s = 2r. Likewise
restriction of F; along a subsystem of type As gives the same configuration from Proposi-

tion 3.5.1 with r = 1 and s = 4. Similarly, restriction of Fg along a subsystem of type Dg
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gives the configuration of type BC, which allows to get A(g; 4.

3.6.1 FEj type configuration

Proposition 3.6.1. Let A = E be the positive half of the root system FEg consisting of

the following vectors

elt+el, 1<i<j<bh,

1

5(61 +elteldtet+e® £ \/§€6), with odd number of plus sign,
where all vectors have the same multiplicity r. Then the corresponding solution of the
WDVV equations has the form (2.55) with A = 12+/2r.

Proof. From Remark 3.5.2, since the restriction of the root system FEjg along subsystem
of type A; x A; gives the same configuration one can obtain from the configuration A in
Proposition 3.5.1 by putting the parameter s = 2r in proposition 3.5.1, then the value of
the scalar \ for the root system FEjg is the same value of A for A in Proposition 3.5.1 when

s = 2r. Let us recall the value of \ for A in Proposition 3.5.1 which is given by

)= 6v/3(2r + s)
 VAr+s

Hence for s = 2r we have A = 12+/2r. This proves the proposition. O

In the following proposition we show that our solution F' for the root system FEjg takes
the form of the solution obtained in [33| for Ej.

Proposition 3.6.2. [42] Function F given by (3.42) satisfies WDV'V equations (2.56) for
root system Eg and the value of 7 is given by v = 2i/6.

Proof. For the root system Fg as defined above we have

6
Z caa(1)? = IQTZx?.
i=1

aEEg'

Let us take parameter 7 = 1. Then the solution F' given by (2.55) takes the form

6
- 1 A~ -
F(Z,7) = §y3 +125) T AN f(a(@), (3.82)
i=1 a€Ef
6
where we redenoted variables (z,y) by (z,y). By changing variables ¥ = —ix and y = %y

and dividing by —\ solution (3.82) takes the form (3.42) provided that 7?A\? = —6912
which is satisfied for v = 2iv/6.
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]

Remark 3.6.3. There seems to be a typo in [42] as the value of ~y stated in [42] for root
system FEg should be 2iv/6 instead of i1/6.

3.6.2 FE; type configuration

Here we discuss a family of E; type configurations and show that it gives trigonometric
solutions of the WDVV equations.
Let V be the hyperplane in C® consisting of vectors whose coordinates add up to 0.

Let B be the positive half of the root system E; consisting of the following vectors in C®

1
5(61:t62:i:€3:]:64:|:65:t€6:|:€7:]:68), (3.83)

el—el, 1<i<j<s8, (3.84)

where the sum of all eight coordinates of vectors (3.83) is zero. Let ¢t € C be the multiplicity
of all vectors (3.83), (3.84).
Before we discuss solutions of WDVV equations corresponding to the root system FE-,

the following lemma will be used.

Lemma 3.6.4. For A = EF, consider the extra variable y given by y = Zle x;. Then we
have

8
9
D> al@) =18 af - Zyz. (3.85)
=1

aEEi

Proof. Let © = (1,...,23) € C® Then we have

1
Z 06(13)2:Z(.Tli$2i$3ix4ix5i$6i$7ix8)2+ Z (LUZ'—IJ')Q
acEY 1<i<j<8

8 8

8 8 8
S OIS I D L1 () D I EATIES)
i=1 =1 i i=1 i=1
8

9 2 2
which gives the required result. [

In the following proposition we show that our solution F' for the root system FE; takes
the form of the solution obtained in [33] for E7.

Proposition 3.6.5. Let Ef be the positive half of the root system E; as defined above.
Then the corresponding solution of the WDV'V equations has the form (2.55) with A = EF
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and y = Zle x;, satisfies WDV'V equations

EF'F,=FF'F, ijk=1,.,8, (3.86)

A = 96t (3.87)

Proof. From Remark 3.5.2, since the restriction of the root system FE; along subsystem of
type Az gives the same configuration one can obtain from the configuration A in Propo-
sition 3.5.1 by putting parameters r = 1,s = 4,p = 6,¢ = 1 in proposition 3.5.1, then the
value of the scalar A for the root system FE; is the same value of A for A in Proposition
3.5.1 for this special choices of parameters. Let us recall the value of A for A in Proposition

3.5.1 which is given by
6v/3(2r + 5)
Viar+s

Hence for r = 1,5 =4,p = 6,q = 1 we have X\ = 9v/6. This proves the proposition. O

A:

Proposition 3.6.6. [42] Function F given by

Fz,y) = y+ ny?—— > Flal

CMEE7
8

w + ny + Y fla (3.88)

a€E7

where the variable y is defined by y = Z§:1 x;, satisfies WDV'V equations (3.86) and the
value of v is given by v* = —48.

Proof. Let ¢, = 1. Then by Lemma 3.6.4 solution (2.55) takes the form

F(z,7) = y +18yZ:B +A D) fla (3.89)

a€E+

where we redenote variables (x,y) by (Z,7). By changing the variable T = —iZ, one

accordingly has y = —iy where iy = Zle z;. Then by dividing the resulting solution by

—\ and calling it F we get

Fe 122‘9; 7 — 1—& 2+ Y Fla@). (3.90)

aeE?

s = WAZ 36

555 - Accordingly we have

Now let us replace variable T with ¥ = x + sy, where
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Y= é—’giy. Hence solution (3.90) takes the form

8s2 4+ 2s 2392\
3.91
17 +559872 o nyJ“Zf (3:91)
aGE+
: : 8s242s 23v202

In order to compare function (3.88) with (3.91), we let 825 4 2922 — 5 which implies

that
o 23328
Since A = 9v/6, we get the required value of 7. n

We can also have a slightly different solution associated with root system FE;.

Proposition 3.6.7. Function F given by

Flz,y) = =y + yz:c + > fla (3.92)

a€E7
where the variable y is defined by y = ZNJ{ x;, satisfies WDV'V equations (3.86) and the
value of v is given by —v?* = 66.

Proof. As in the proof of Proposition 3.6.6 we get relation (3.91), and in order to compare
function (3.92) with (3.91), we let % + BN &, which implies that

559872
o 32076
Since A = 9v/6, we get the required value of 7. n

3.6.3 FEj type configuration

In the following proposition we derived the solution of WDVV equations corresponding to

the root system Eg using the restriction operation in order to reduce the dimension.

Proposition 3.6.8. Let A = EJ be the positive half of the root system Eg consisting of
the following vectors
e + e, with multiplicity t, 1<i<j<8§,

1
5(61 +telted et de® £l £ £ 68, with multiplicity t,

where the sum of all eight coordinates is even. Then the corresponding solution of the
WDVV equations has the form (2.55) with

A =30Vt (3.93)
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Proof. Let us restrict the root system Ejg to the subspace where

T1 = Ty = XT3 = T4,

Ts = Tg — X7 = I§g.
The resulting restricted system (after renaming vectors) is given by
A ={2e,2e% e 4+ €% et — €2 2(e! +€7),2(e' — %)}

with the corresponding multiplicities 12t, 12t, 32t, 32t, ¢, t. Let us make the following linear

transformation

el + e — el

el —e? — e2,

The resulting equivalent system is given by
A= {el,e?,2e1 2e2 el 4 €2, el — 2}

with the corresponding multiplicities {32t, 32t,¢,¢,12t,12t}. We note that the configura-
tion is of type BC5, hence the value of the scalar A of FEg is the same of that for the
restricted configuration A. The value of A for A is given by (3.41) with

r=32t, s=t, q=12t,

which gives the required value of . O

In the following proposition we show that our solution F' for the root system FEjg takes
the form of the solution obtained in 33| for Ej.

Proposition 3.6.9. [42] Function F given by (3.42) satisfies WDV'V equations (2.56) for
root system Eg and the value of vy is given by v = 21/ 30.

Proof. For the root system Fjg as defined in Proposition 3.6.8 we have

8
Z cac(w)? = SOth?.
acE} i=1

Let us take parameter ¢ = 1. Then the solution F' given by (2.55) takes the form

F(Z,7) = %g?’ + 30@2 AN fla@), (3.94)

aEE;
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where we redenoted variables (z,y) by (z,y). By changing of variables T = —iz, y = %y
and dividing by —\ solution (3.94) takes the form (3.42) provided that 42\? = —108000
which is satisfied for v = 2i4/30. [

Remark 3.6.10. There seems to be a typo in [42] as the value of v stated in [42] for root
system FEjg should be 724/30 instead of i/320.

3.6.4 F), type configuration
Proposition 3.6.11. Let A = FE;° be the positive half of the root system Fy with the
multiplicity function c given by
1 .
6(5(61 teftedtet)) =clef)=s, (1<i<A4),
cle"+e)=r, (1<i<j<4), (3.95)
where r,s € C. Then in the corresponding solution (2.55) of the WDVV equations (2.56)

we have
A= Aro) = 6V3(2r + 5)(4r + 5)7 2 (3.96)

Proof. We note that the restriction of the configuration defined in Proposition 3.5.1 to the
hyperplane z, = 0 gives the same configuration as one gets by restricting A =F," to the

hyperplane x, = 0. Hence X is given by formula (3.76). O

Proposition 3.6.11 has the following implication for the corresponding solution of the
form (3.80), which is also contained in [47].

Proposition 3.6.12. [47] For R = Fy with the multiplicity function (3.95) we have
7(2F4,c) = —(s+2r)(s+ 4r).
Proof. We have 3¢ cao(z)? = 3(s + 2r) .1, 2. Then solution F' given by (2.55) for

i=1"1
A = F," takes the form

FGE,§) = %;73 +3(s 20T B+ Y caf (@) (3.97)

oz€F4Jr

where A is given by (3.96), and we redenoted variables (z,y) by (Z,y). By dividing F' by

—\ and changing variables T = —iz, y = #’\Qﬂy, solution (3.97) takes the form (3.80)
provided that 4?A\? = —108(s + 2r)3, which implies the statement. O

Let us now find the value of A for R = Gs.
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3.6.5 G5 type configuration
Proposition 3.6.13. Let A = G be the positive half of the root system Go with the

multiplicity function given by

\/gel 3e?
5 + 7) =q, c(e?) =¢(

3 1 2
“;e £3)=p. (3.98)

c(v/3e') = ¢

where q,p € C. Then in the corresponding solution (2.55) of the WDV'V equations (2.56)
we have
A= A@ae) = 6(p +39)(p + 99) /2. (3.99)

Proof. Note that by restricting the configuration As defined in Proposition 3.5.3 to the

hyperplane x; + x5 + 3 = 0 we get the two-dimensional configuration
Ay = {e' e? et +e? el —e? e! +2¢%,2e' + €%}

which can be mapped to the configuration GG by a linear transformation. The correspond-
ing multiplicities satisfy

p=3(r+s), q=r,
which implies the statement by Proposition 3.5.3 and Theorem 3.2.4. O

Proposition 3.6.13 has the following implication for the corresponding solution of the
form (3.80), which is also contained in [47].

Proposition 3.6.14. [47] For R = Gy with multiplicity function (3.98) we have

3
Vene) = —5(p+39)(p + 90).

Proof. We have 3+ cact(2)? = 3(p+3q)(x?+ 23). Then solution F given by (2.55) for
A = G takes the form

F@E) = 57+ 30+ 305 + ) + A Y caf(al®) (3.100)
aEG;

where ) is given by (3.99), and we redenoted variables (z,y) by (z,y). By dividing F' by
—A\ and changing variables ¥ = —iz, y = 3(pr/\3(1)97 solution (3.100) takes the form (3.80)
provided that v?A* = Z(p + 3¢)* which implies the statement. O

3.7 Bryan-Gholampour solutions revisited

Solutions of WDVV equations of the form (3.80) were also obtained in [11]. More ex-
actly, consider the multiplication * on the tangent space T, \(V @ U) = V @ U, where
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dimU =1,z € V,y € U which is given by

wxv=(u0)E+5" Y o Bu)B(v)coth B(z)B, (u,v € V), (3.101)

P 5.5
7 =Yr,e € Cand E € U is the identity of the product (3.101). It was shown in [11] that
this multiplication is associative. It can be seen (cf. Section 2.1 above) that associativity

of (3.101) is equivalent to the statement that function

Fla,y) = Lyt + 1 Sylea)+ Y dafla (3.102)

6
aeRt

where d, = ((5:20 satisfies WDVV equations, hence ¥ = Y(r.c) = V(r,d)-

Let {ay,...,an} be a basis of simple roots of R. Recall that there exists the highest
root 0 = Op = ZZN:1 n;co; € R such that, for every § = Zf\il pio; € R, we have n; > p; for
all i =1,...,N [6]. The constant ¥ = (g, was expressed in [11] in terms of the highest

root of the root system R.

Proposition 3.7.1. [11] The value of Vg, in the solution (3.102) in the case of constant

multiplicity function c, =t is given by

t? -
o =~ (1000 + Xm0
=1

Now we give a generalization of Proposition 3.7.1 to the case of non-constant multi-
plicity function. Let p be the multiplicity of short roots and ¢ be the multiplicity of long

roots in a reduced not simply-laced root system R.
Proposition 3.7.2. We have
1 N
7y’(27z7c) =3 <a0<0, 0) + Z a;in:{ay, az>> (3.103)
i=1

where scalars a; for all irreducible reduced not simply-laced root systems are given as fol-
lows. (1) Let R = By with the basis of simple roots

N-1 N N
011261—62,...,041\7_1:6 — € ,any =€ .

Then

ap=a =ay =pq, a;=q, (2<i<N-1). (3.104)
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(2) Let R = Cx with the basis of simple roots

o :61—62, e, QN1 :eN_l—eN, ay = 2eV.
Then
ap=a1 =an =pq, a; =p>, (2<i<N-1). (3.105)
(3) Let R = Fy with the basis of simple roots
ar=¢e>—e* ay=e>—et ag=e?, Oé4=%(61—€2—€3—64).

Then
a=ay=as=pqg, a1 =p’, a3=q’. (3.106)
(4) Let R = Gy with the basis of simple roots ay = @ — %, ay = e2. Then
a=p?, a1 =pqg, as=q>. (3.107)
Proof. Tt follows from Proposition 3.3.4 that
Yoy = —alp+ (N —2)q).

Note that 0p, = el+e? =y +2(ag+- - -+an). Then it is easy to see that the substitution

of (3.104) into formula (3.103) gives the same value of (g, ). Similarly, we have

Viowe) = —P(2q+ (N —2)p),

which is equal to the value given by formula (3.103) after substitution a; from (3.105) and
by using O¢, = 2e' =2(ay + -+ + ay_1) + ay. It follows from Proposition 3.6.12 that

Yr e = —(0+a)(p+29).

Note that 0, = e +€? = 2a; +3as +4as+2ay. Then it is easy to see that the substitution
of values (3.106) into formula (3.103) gives the same value of (g, (). Similarly, it follows
from Proposition 3.6.14 that

N 3
Vicao = —g P+ a)p+39),

which is equal to the expression in formula (3.103) after the substitution of (3.107) and
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by using fq, = v3e' = 2a; + 3ay. O

It is not clear to us how to formulate Proposition 3.7.2 for any not simply-laced (re-
duced) root system in a uniform way.

Let us also give another formula for 7z, in terms of the dual root system RY of R

where RY = {8Y: f € R}, and ¥ = 2’8> Then we have

2 N
Py = — 00 (a0t0”,6%) + Z o)), (3.108)

where coefficients 77; € Zs( are determined by the expansion 0V = Efvl ;o . Formula

(3.108) follows from formula (3.103) by observing the relation 7; = "’{;‘—190" for 1 <i<N.
Let us explain how solutions for root systems considered above correspond to solutions
considered by Shen in [47,48].
Note that in [47,48] a prepotential function for a Frobenius structure was considered,
this prepotential gives a solution of WDVV equations for root systems R. Let us first

recall that solution which is given by
vy
b =—F+ e > a@)’+ Y fo N ) ( (2)), (3.109)
a€ERT a€RT
where k, is a W-invariant multiplicity function, the function ¢ satisfies

" 1 1+¢€? 1

q"(2) = 3(;—=) = —5 coth(5).

and a(-,-) is a symmetric bilinear form that satisfies
a(u,v) = pufu, v), (3.110)
for some scalar 1 € R, and c¢ is a constant corresponding to the bilinear form a and satisfies

i=cYawa (3.111)

Let us explain that the solution (3.102) leads to a solution of the form (3.109).
Firstly, by (3.110) and (3.111) we have

c Z =a(x,z) = plx, ). (3.112)
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2c

then we have
a,a)

Also, since oV = (

a(@”) =2, ala’,a’)= . (3.113)

Hence by substituting relations (3.110) and (3.113) in (3.109) and dividing the resulting

function by i we get

3

D(z,y) = i@ = —1y2—u + %<LE, z) + a;; <a]{:a&>q(a(as)). (3.114)

On the other hand for the solution (3.102), let us make change of variable by putting
x = % Note that f(g)) = —1q(2). Also, let ¢q = k,. Then after multiplying the solution
(3.102) by —4, we get

FOGy) = 2= 2w+ Y o) (3.115)
a€ERT

Now in order to compare (3.115) with (3.114) we make a change of variable by putting
y = —% in (3.115). Hence (3.115) becomes

53
F(z,7)

=§¢+%a®+g%é?wmmy (3.116)

Solutions F'®) given by (3.116) coincides with solution ® given by (3.114) if we identify
T=uxz,y=yand u=—72

The values of 42 for not simply-laced root systems By, C, Fy, G are given in Proposi-
tion 3.7.2. Note also that since 7 = J(r.¢) = Y(r,q), then by Propositions 3.3.4, 3.4.6, 3.6.2,

3.6.6, 3.6.9 the values of 72 for simply-laced root systems Dy, An, Fg, E7, Eg are given by

R DN AN E6 E7 ES
32| (N —2)s? | W2 | 652 | 1252 | 3057

where ¢, = s is the multiplicity of all vectors « in the simply-laced root system R. This

matches the scalar y = —32 given in [47].



Chapter 4

Trigonometric solutions without extra

variable

In this chapter we consider trigonometric solutions of WDVV equations without extra
variable. We review such solutions found in the literature. We generalize solutions of this
type found in [33] corresponding to the root systems By. Our initial solution corresponds
to the root system BCy with Weyl-invariant multiplicities. Then we obtain a family
of solutions with N + 2 multiplicity parameters corresponding to the root system BCy
solutions by the restriction procedure. We also use these solutions to construct N' = 4

supersymmetric mechanical systems.

4.1 Solutions of WDVYV and related equations

Let FF' = F(x1,...,x,) be a function in V = C". Consider a vector field

e = zn:Ai(x)ﬁxi,
i=1

where A;(z) = Ai(z1,...,7,) are some functions. Define n x n matrix B = (B;;)}';—; by
By =e(Fy) =Y Ap)Fy, ij=1,...,n, (4.1)
k=1
where
PF
Fijk = —F—F—.
i axlﬁmﬂxk

Recall that WDV'V equations (2.56) can be written equivalently in the form [41] (see

109
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also [40])
F,B7'F;=F;B'F;,, i,j=1,...,N, (4.2)

where B is any linear combination of matrices Fj. We have in Chapter 2 the class of

trigonometric solutions of WDVV equations (4.2) which have the form

F=>Y cuf((a,z)+Q, (4.3)

acA

where A is a finite set of vectors in V = C¥, ¢, € C, are some multiplicity parameters,
the function f is given by (1.11), and @ = Q(z,y) is a cubic polynomial which depends
on (x1,...,zy) and the auxiliary variable y € C. We have presented solutions of the
form (4.3) for all root systems A = R,. Also, solutions of the form (4.3) without full
Weyl symmetry were considered where A is a trigonometric V-system. We also have
shown that the class of trigonometric V-systems includes all root systems with VW-invariant
multiplicities (Proposition 2.7.2).

In general, in the case when the cubic corrections are absent, that is ) = 0 the
corresponding solution of the form (4.3) does not exist even for the case of root system
A with invariant multiplicities ¢,. However, in [33] Hoevenaars and Martini found such a
solution for the root system of type By and specific choice of invariant multiplicities. Their
result with respect to By root system is given by the following theorem (|33, Theorem
2.3]).

Theorem 4.1.1. (33| The function

F(zy,...,xy) = Z (f(xi_xj)+f(xi+xj)>+n2f<xi>7

1<i<j<N

where function f is given by (2.100), satisfies WDV'V equations (4.2) if and only if n =
—2(N —2).

The main idea of the proof of Theorem 4.1.1 in [33] is to find an appropriate invertable
metric B such that WDVV equations (4.2) holds. In their proof of Theorem 4.1.1 the
corresponding metric B was chosen in a specific way to be a multiple of identity, and

hence the WDVV equations (4.2) reduce to the commutativity formula
FF,=FF, ij=1,..N. (4.4)

Solutions of the form (4.3) for equations (4.4) for root systems BCly, Fy, G5 with special
collections of invariant multiplicities were found in [3]. Before we summarize these results,

let us prove the following statement.
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Proposition 4.1.2. Let A be a finite set of vectors in V = CN and ¢, € C, be some

multiplicity parameters. Let

F=> cuf((a,x)), (4.5)

acA

where the function f is given by (1.11). Let

F\ = anf((()é,f)),

acA

where function f is given by (2.100). Then we have
(1) F satisfies WDV V equations (4.2) if and only z'f]3 satisfies WDV'V equations (4.2),
(2) F satisfies the commutativity equations (4.4) if and only Zfﬁ satisfies the commu-
tativity equations (4.4).

Proof. By making the change of variable x = —iz we have
~ L. s 1. —2i(—i7) g 1. o o
flx) = f(=ix) = Zi(—ix)” + ; Lis(e ) = —(=2° — 7 Lis(e™™)) = —f(2).
6 4 6 4
The result follows since —2£ _— — _i0°F m

Oxj0x0x; ~  0%;0T,0T;"

The following theorem gives the solution of equations (4.4) corresponding to the root
system BCy (see [3, Theorem 6.6], see also [4]).

Theorem 4.1.3. [3] The function

N N
F = Z(rfxl+sf2x,>+q2fzzj:xj)
=1 1<J

satisfies conditions (4.4) if and only if r = —8s — 2(N — 2)q.

The following theorem gives the solution of equations (4.4) corresponding to the root

system Fj (see |3, Theorem 6.8], see also [4]).

Theorem 4.1.4. (3] The function

4 4
F:TZ Z f( Elxl"‘525’72‘1‘53133‘1‘64$4>-|-(]Zf r; + x;)
i=1 e€{1,—1} i<j

satisfies conditions (4.4) if and only if r = —2q or r = —4q.

The following theorem gives the solution of equations (4.4) corresponding to the root

system G5 considered in three-dimensional space (see |3, Theorem 6.9], see also [4]).
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Theorem 4.1.5. (3] The function

3
.
F=s) floi—u)+5 ) f(2500) = @) — o)

i<j 0€S3
satisfies conditions (4.4) if and only if s = —3r or s = —9r.

Remark 4.1.6. (1) It was shown in [4, Remark 4.5.7] (see also [3]) that if R = Ax_
with constant multiplicity then equations (4.4) do not hold.

(2) In [3] solutions of the commutativity equations of the form (4.5) were considered
with f replaced by f Proposition 4.1.2 allows us to deal with the stated trigonometric

version of these results.

A question arises as to whether usual WDVV equations hold for these prepotentials
considered in Theorems 4.1.3, 4.1.4, 4.1.5. Since WDV'V equations (4.2) are equivalent to
the system (4.4) when the metric B is proportional to the standard metric (55 , the question
reduces to the question whether the identity metric can be obtained as a linear combination
of the third order derivatives for these prepotentials. We answer this question positively
for the case of the root system BCy. In fact we find (N +2)-parametric family of solutions
whose underlying configuration A is the positive half of BC'y root system. The choice of
the metric B is motivated by the metric B for the root system By which was chosen in
[33]. Thus the (N + 2)-parametric family of solutions reduces to the two-parameter family
of prepotentials given in Theorem 4.1.3 after specialization of parameters. In fact we
show firstly that a two-parameter family of prepotentilas given in Theorem 4.1.3 satisfies
WDVV equations (4.2) for a suitable combination of the third order derivatives of the
prepotential which gives metric B proportional to the identity. This also generalized
Theorem 4.1.1. Then we generalize these considerations to obtain the family of solutions
with many parameters by taking special restrictions of these solutions using procedure

similar to one we applied in Section 3.3.

4.2 Metric for a family of BC), type configurations

We are going to present solution F' to the equations (4.2) for a suitable vector field e. This
solution is related to BC), root system with prescribed multiplicities of the root vectors.
e;, with multiplicity rm;, 1 <17 <n,
. e 1 .
2¢e;, with multiplicity sm; + §qmi(m,~ —-1), 1<i<n,

e; £e;, with multiplicity g¢mm;, 1<i<j<n,
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where eq, ..., e, is the standard basis in C". Note that if all the multiplicities m; = 1 then
the configuration reduces to the configuration BC,,(r, s, q) which is a positive half of the
root system B(, with an invariant collection of multiplicities r, s, q.

Let us consider the function F' given by (4.3) with @ = 0, that is

F= Y cafl((a,2)). (4.6)

a€BCy(r,s,q;m)
More explicitly the function F' can be written as follows:
n n 1 n
F = rm; f(x;) + sm; + —gm;(m; — 1 2x;) + mym,; fx; £ x;). 4.7
; fz:) ;( 54 ) f(22;) ;q if( i) (A7)
Let us now define the matrix (4.1) by taking

Ay, = sin 2z, (4.8)

where k = 1,...,n. This choice is motivated by [33| where a solution of WDVV equation
(4.2) for the root system B,, was obtained.

Let us also define the following functions:

cot(z; + x;) + cot(z; — ), 1<i#j<n,
0, =7,

and

bi:COt(L’i, bi:COtZ’Ei, z:l,,n
Lemma 4.2.1. We have the following expression for the third order derivatives of F':
Fklt = kabkéklglt + 4(2smk + qmy (mk — 1))’5]4514315” + qéklélt Z mjmkbkj (49)
j=1
ik

+ gmuymyby O + qrymugbigOre + gmumybi oy,

where k,I,t =1,....n, and ¢ is the Kronecker symbol.

Proof. We note that the first two terms in (4.9) are obtained from the first two terms in

formula (4.7). The last term in (4.7) contributes the following sum in Fyy:

q Z m;m; (((5@ + 5]4])((511 + 5lj)(5ti + 515]') cot(:ci + ZE]') (4.10)

1<j

(B = 07) (O — 017) (O — 5 cot(i — ).
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We rearrange some of the terms in (4.10) as follows:

q Z i (01i01i61i + 0k;015045) cot(x; + x;) = ¢ Z MMk o cot(zy + x;), (4.11)
i<j j=1
ik

and

q Z M (01i 0161 — O1j015015) cot(x; — ;) = ¢ Z m M0k Oy cot(xy — ;). (4.12)
i<j =1

’ Jk

The sum of expressions (4.11) and (4.12) equals the third term in (4.9). Further on, let

us collect the following terms from (4.10):

i qmymyOg, cot(xy + xy), t#k,
q Z m;m; (6ki51i5tj + (5kj(51j5ti) COt(iL’i + :ch) = (413)
’L<j O, t - k,
and
" qmymydg cot(xy — x), t#k,
q Z i (0i01i0; — Okj01j04 ) cot(x; — a;) = {0 - (4.14)
i<j , =k.

The sum of the terms (4.13) and (4.14) equals to gmymybdy,. Similarly, the sum of the

terms

q Z m;m; (5]%'5”5” + (5kj(sli5ti) C0t<xi + xj) =

1<j

gmymydy cot(zy + xp),  k #1,
0, k=1,

and

q Z mm; (001015 — Ok ) cot(x; — ;) =

1<j

gmymyoy cot(xy — ), k #1,
0, k=1

equals gmym;b ;. Finally, the sum of the following terms

q Z m;m; (5kzz‘5lj5ti + 5kj51i5tj) cot(x; + ;) =

1<j

gmymyOgs cot(x; + xy), 1 #k,
0, 1=k

and

q Z m;my; (5]“'(5”6&' — 5kj5li6tj> COt(SCj — LEZ) =

i<j

qmumyOg, cot(x; — xy), k #1,
0, 1=k
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equals gmymyb;or;. The statement follows. O

Lemma 4.2.2. We have the following identities:
Agbj + Ajbjk = 2(cos 2y, + cos2xj), 1< j#k<n, (4.15)
and
Apbjr + Ajb; =0, 5, k=1,...,n, (4.16)

where Ay, is given by (4.8).
Proof. We have

A sin 2z, — A; sin 2z cos 4xy, — cosdx;

Apbrj + Ajbj, = — - - ’
kOk; 705k sin(zy + z;) sin(zy — ;) cos 2y — cos 2z

which implies the first formula (4.15). Identity (4.16) follows similarly. O

Now we show that the matrix B is diagonal. Moreover, it is proportional to a constant

diagonal matrix under a particular restriction on the parameters r, g, s.

Proposition 4.2.3. The matriz B = B(x) with the matriz entries
By = ZAkalta Lt=1,...,n
k=1

1s diagonal. Furthermore, if the multiplicities r, q, s and m satisfy the relation
r=—8s—2q(N —2), (4.17)
where N = Y"7'_, my, then the matriz B takes the form
By = myh(z)dy, (4.18)

where h(x) = 2q % ,_, my cos2xy, +r.

Proof. Tt follows by Lemma 4.2.1 that for [ # ¢
By = qmymy(Aiby + Asby),

which is equal to zero by Lemma 4.2.2.
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Let us now consider the diagonal entries of B. We have by Lemmas 4.2.1, 4.2.2

Bll = TmlAlbl —+ 4(23ml -+ qml(ml — 1))1416[ + q Z mkml(Alblk + Akbkl)

k=1
k£l

n

= 2rmy cos® x; + 4(2sml + gmy(my — 1)) cos 2x; + 2q Z mymy(cos 2xy, + cos 2x;).
=
Then

By = 2rmy cos® x; + 4(23ml + gmy(my — 1)) cos 2z; + 2q(N — 2my)my cos 2x;

n
+ 2qmy Z my, COS 22y,
k=1

= ml<(7“ + 8s + 2q(N — 2)) cos2x; + Qquk cos 2xy, + r),
k=1

which implies the statement. O

Since now the matrix B is constructed to be proportional to the identity matrix, then
WDVYV equations (4.2) are equivalent to the system of equations (4.4) in this case. Now we
define a commutative algebra on 7T,V as follows. Below summation over repeated indices
will be assumed. Let us now assume that multiplicities m; = 1 for all ¢ = 1, ..., n. For any
vector v = (vy,...,v,) € V let us introduce the vector field 0, = v;0,, € I'(T'V). For any
u = (u1,...,u,) €V we define the following multiplication on the tangent space T,V for
generic x € V:

Oy * 0y = Fijpuvj0,, . (4.19)

Note that multiplication (4.19) defines a commutative algebra on T, V. The following

theorem takes place.

Theorem 4.2.4. Suppose that parameters r, s and q satisfy the linear relation (4.17).

Then function

n

F= TZf(CCi) +st(2xi) +q Z (f (s + ;) + f(zi — ;) (4.20)

i=1 1<i<j<n
satisfies WDV'V equations (4.2) where B is determined by (4.1) and (4.8). Also, multipli-
cation (4.19) is associative.

Proof. 1t has been shown in [3] that the function (4.20) satisfies the following system of

equations if the linear relation (4.17) holds:

FFy = FF, (4.21)
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for all 4,7 = 1,...,n. It then follows from Proposition 4.2.3 that conditions (4.21) are
equivalent to WDVV equations (4.2) since the matirx B is proportional to the identity
matrix. Also it is easy to see that associativity of the multiplication (4.19) is equivalent
to the relation (4.21). O

Thus, Theorem 4.2.4 leads to Theorem 4.1.3 by the given metric B. Moreover, by
letting parameters s =0, ¢ = 1, r = 1, Theorem 4.2.4 coincides with Theorem 4.1.1, and
in this way a generalisation of Theorem 4.1.1 is obtained. In fact, one can consider a
generalisation of the configuration BCy and show that the corresponding function also
satisfies WDV'V equations. By this we aim to generalize Theorem 4.2.4 to the configuration
BC,(q,r,s;m), that is to the case of arbitrary multiplicities m;. This generalization can
be formulated as follows. In the remaining part of the chapter we prove generalization
of Theorem 4.2.4 to the configuration BC,(q,r,s;m), that is to the case of arbitrary

multiplicities m;. This generalization can be formulated as follows.

Theorem 4.2.5. Suppose parameters r, s,q and m satisfy the relation

r— 85— 2g(N - 2), (422
where N = 3" m;. Then prepotential (4.7) satisfies WDVV equations (4.2) where B =
o sin 2a, F;.

Remark 4.2.6. Theorem 4.2.5 generalizes Theorem 2.3 from [33]. In this case we have
all m; = 1 and s = 0. Then putting ¢ = 1 we get the standard By root system and the
condition (4.22) reduces to r = —2(N — 2) which is the multiplicity of the short root of

By root system considered in [33].

Remark 4.2.7. In the rational limit solutions (4.7) of WDVV equations reduce to B,
family of V-systems found in [13].

4.3 Proof through restrictions

Let A be the configuration A = BCx(r,s,q) C W = CN N € N. Let ey,...,ex be the
standard basis of W. Let (-, -) be the standard inner product which is defined by

(2.y) = D _ iy (4.23)

where © = (z1,...,25),y = (y1,...,yn) € W. Let n € N and m = (my,...,m,) with
m; € N such that Y, m; = N. Let us consider subsystem B C A as follows:

BZ{GZ;;llmj—&-k_eZ;;llmj-i-l? 1<k<i<myi=1,...,n}.
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Now let us consider the corresponding subspace of W of dimension n given by
Wg={xeW:(5,z) =0,V € B}.

More explicitly, vectors = = (x1,...,xy) € Wp satisfy conditions:

,
X1 =" ""=Tmy,

Tmi+1 = = Tmy+mae;

\'IZ?;llm'r‘rl — e e — :L’N

For any vector v = (vq,...,vy) € W let us define the vector field 9, = v;0,, € TW.
For any u = (uq,...,uy) € W we define the following multiplication on the tangent plane
T, W for generic x € W

Ou * 0y = U0 Fj1.0y, (4.24)

where the function F' is given by

F=Y cufl(a,z)). (4.25)

acA

Assume that parameters r,s,q and m satisfy the relation r = —8s — 2¢(N — 2). Then
multiplication (4.24) is associative by Theorem 4.2.4 (applied with n = N). Note that
function (4.25) satisfies

Fiji = g Caja;ay cot(a, ),

acA

hence multiplication (4.24) can be expressed as follows:

Ou* 0y =Y _ calor,u)(a,v) cot(a, ). (4.26)
acA

If we identify W with T,,W = W, then multiplication (4.26) takes the form

Uxv = Z cola,u)(a, v) cot(a, z)a. (4.27)
acA

Define Mz = Wp \ U,ca\5la, Where I, = {z € W: (a,x) = 0}. Consider now a point
xg € Mp and two tangent vectors ug, vy € T,,Mp. We extend vectors uy and vy to two
local analytic vector fields u(x), v(x) in the neighbourhood U of zy that are tangent to the
subspace Wp at any point © € MpNU such that ug = u(zg) and vy = v(xy). Now we want
to study the limit of u(z) * v(z) when x tends to xy. The limit may have singularities at
x € Wg as cot(a,z) with o € B is not defined for such x. Also we note that outside Wy
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we have a well-defined multiplication u(z) * v(x). Similarly to the rational case considered

in [25] and trigonometric case with extra variable [1| the following lemma holds.

Lemma 4.3.1. The product u(x) * v(x) has a limit when x tends to xo € Mg given by

Ug * Vg = Z cola, up)(a, vg) cot(a, zg)a. (4.28)
acA\B

In particular ug * vy 1s determined by ug and vy only.

Now we are going to show that the product uy * vy belongs to T,,Mp. We will need
the following lemma (cf. [25], [1]).

Lemma 4.3.2. Let a € A. Let x € 11, be generic. Then the identity

> " csla, B) cot(B, ) Bagla,b)a A B =0 (4.29)

BeA

Bra

holds for all a,b € V provided that (o, x) = 0, where B, g(a,b) = (o, a)(B,b) — (o, b)(B, a)
andaANf=a®p— R a.

Proof. For any 8 € A such that 8 ~ « let v = s,3, where s, is the orthogonal reflection
about I1,. Note that cot(v,z) = cot(S,z) at («,z) = 0. Also note that

(0577> = _(aaﬂ)a Ba,’)'(a?b) :Ba,ﬂ(avb)a aNy=alp.
We have that either v or —v is an element of A. Suppose firstly that v € A. Then
ca(a, B) cot(B, x)Bagla,b)a A B+ ¢ (a,y) cot(y,x)Bay(a,b)a Ay =0 (4.30)

at (o, x) = 0 since multiplicities are By-invariant. If one replaces v with —y then (4.30)
holds as well. O

Proposition 4.3.3. Let u,v € T, Mg where x € Mg. Then uxv € T,Mg.

Proof. By Lemma 4.3.1 it is enough to show that

Z 65(6711’)(67 U)(Oé,ﬁ) COt(67Q:> =0 (4-31>

BeA\B

for all o € B. Assume firstly that Wy has codimension 1. By Lemma 4.3.2 we get

> esla, B) cotl(8,2) ((@,0)(8,) = (@, 0)(B,)) () (8. 2) = (0, 2)(B,9)) =0 (4.32)

BeA

Brea
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for any a,b,y,z € V and generic x € I1,. Assume that a,y ¢ II, and let b = u € I, and
z=wv € Il,. Then (a,b) = («, z) = 0 and relation (4.32) implies that

> csla, B)(B,u) (B, v) cot(B, ) = 0.

BeA

Bra
As Wy has codimension 1 the relation 5 ~ « is equivalent to 5 € A\ B and lemma follows.
Let us now suppose that Wy has codimension 2. Let a,y € B be non-proportional
to each other. By the above arguments for generic x € Il, and u,v € T,Il,, we have
uxv € T,Il,. Similarly, if € IL, is generic and u,v € T,IL,, then u x v € T,II,. By
Lemma 4.3.1, u * v exists for x € Mg and u,v € T, Mg. It follows that for any x € Mg we
have u x v € T,, Mg, which proves the statement for the case when W5 has codimension 2.

General Wy is dealt with similarly. m

Consider now the orthogonal decomposition
W=Wsd Wy (4.33)

with respect to the standard inner product. Any o € W can be written as

a=a+w, (4.34)

where & € Wpg is the orthogonal projection of vector a to Wi and w € Wg. For any

xg € Mp and u,v € T),,Mp one can represent product u * v as

uxv = Z cola,u) (e, v) cot(a, zg)a (4.35)
acA\B

by Proposition 4.3.3. Hence, we have

Oy % 0y = Z Colav,u)(a, v) cot(a, x)05. (4.36)
acA\B

Let us define vectors f;,1 < i <n, by

m;

[ S (37
j=1
These vectors form a basis for Wp.
The following lemma gives the general formula for the orthogonal projection of any
vector u € W to Wjp.
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Lemma 4.3.4. Let u = Zf\il ue; € W. Then the projection u has the form

~ 1 1 1 & 1 I
U:<m—12Uz7,m—lzuz,,m—n;UZZ_SmsJﬂ,,m—n;uzz_5m5+l> (438)

J/

-~ -~
mi Mn

Let us now project A to the subspace Wy. Notice that by Lemma 4.3.4 we have

P — . — P — -1 . —
it 1 = = e, =M fiy, i=1,...,n.

Let us denote the projected system as A = BC,(q,r,s;m) C Wg = C". It consists of

vectors a with the corresponding multiplicities ¢, given as follows:

fi =m; 'f;, with multiplicity rm;, 1<i<mn,
~ 1
2fi =2m; ' f;, with multiplicity sm; + Eqmi(mi —-1), 1<i<n,

ﬁ + E = m;lf,- + mj_lfj, with multiplicity ¢m;,m;, 1<i¢<j<n.

By Lemma 4.3.4, for any o € W, its orthogonal projection has the form
a=> apfi.
k=1

where the basis fj, is given by (4.37) and

(fr ) My,

Let us define

F@) =Y e f((.3). (4.40)

veEA
where

F=) Tifi € Ws (4.41)

=1

Note that function (4.40) can also be represented as

F@ =) caf((a,7)).

acA\B

Let F; be the n x n matrix constructed from the third-order partial derivatives of the
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function ﬁ, that is

- . PF
F)ey =F.p — ——
(F)j = i 0%,01,;0%,

i k=1,...,n

The following lemma gives another way to represent multiplication (4.36) on Wj.
Lemma 4.3.5. The multiplication (4.36) takes the form
8fz. * 8f]. = Zm,;ll?}jkafk, Z,j = 1, o, n.
k=1

Proof. We rearrange 0y in the right-hand side of (4.36) as

Oa = Z a0y, = Z mlzl(O@ fk)afk
k=1 k=1
by (4.39). Therefore the multiplication (4.36) can be rewritten as

afi * afj = Z Z Camlzl(oﬁ fi)(av fj)(Oé, f’f) COt(a’ %)81%

acA\B k=1

n
= Zmlzlﬂjkafk7 27.] - ]-7 =y 1
k=1

as required. O
Let Hgp be the matrix of the restriction of the standard inner product on Wy in the

basis fi,..., f,. That is

(Hg)lt = (fl, ft) = mlélt, l, t = 1, o, n. (442)

Lemma 4.3.6. The matrix Hg can be written as a linear combination

HB = i a’ifFV’ia
=1

where functions a; are given by a; = h(Z)~'sin 27;, and h(T) = 2¢ >, _, my, cos 2T + -
Proof. By Proposition 4.2.3 and (4.42), we have Hg = h(Z)~'B(Z), where B(T) = Z(sin 2%;) F}.
i=1
This implies the statement. [
The previous considerations allow us to prove the following theorem, which is a version

of stated earlier Theorem 4.2.5 where multiplicities m; do not have to be integer.
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Theorem 4.3.7. Suppose parameters r,s,q and m satisfy the relation

r=—8s—2q(N —2), (4.43)
where N =" 'm;. Then the prepotential

F=Y cof((a,7), T€Ws, (4.44)

ae]

satisfies the WDV'V equations
EB'F,=F,B'F,, i,j=1,..n, (4.45)

where B =", sin 2%, F}.

The corresponding associative multiplication has the form

Uxv = Z Cola, u)(a, v) cot(a, T)a

acA
for any u,v € T;Mp, v € Mg.

Proof. Let us assume firstly that m; € N for any i. Consider the multiplication

uxv= Z colar, u)(a,v) cot(a, x)a (4.46)
a€BCy(r,s,9)

on the tangent space T,W for x € W. By Theorem 4.2.4 the multiplication (4.46) is
associative. Now as z tends to T € Mg, by Lemmas 4.3.1, 4.3.5 and Proposition 4.3.3 this

product restricts to an associative product on the tangent space T3Mp which has the form
O, % 0p, = > _my ' Fyydy, 1<ij<n. (4.47)
I=1
The associativity condition

(afi N afj) N afk = afi * (afj * afk)v

for any 7,7,k = 1,...,n, can be rearranged as

n n
Y my Epdy 05 =Y my Eiady, x Oy
=1 =1
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Hence, we have

melﬁijlﬁzkp = melﬁjklﬁizm (4.48)
=1 =1
for any 7,7, k,p=1,...,n. In the matrix form we have

FHZ'F, = F Hg'F;.

By Lemma 4.3.6 we obtain relation (4.45) where B = > sinh 27;F; as required. This
proves the theorem for the case when m; € N. Since m; can take arbitrary integer values

the statement follows for general m,; as well. O

4.4 Application to supersymmetric mechanical systems

One of the topics where (generalised) WDVV equations emerge include N' = 4 supersym-
metric mechanics. These corresponding differential equations are similar to what we have

discussed in Chapter 2 but they rather have the form of commutativity
FF;=F;F;,, i,7=1,...,N, (4.49)

where F; is the matrix of the third order derivative of a prepotential F' given by

PF

Fyjo = o,
ik 0x;0x;0xy,

i,j,k=1,...,N.

Wyllard in [56] (see also [9]) constructed a set of generators of N = 4 supersymmetric
mechanics, where his ansatz for the four supercharges involves two scalar prepotentials F’
and W which depend on position of particles only. The case when the second prepoten-
tional W = 0 was also considered in [56] (see also [30,31]), and we will be interested in
this case only. The structure of such an algebra forces functions F and W to satisfy a
system of partial differential equations. The setting of the structure leads to the result
that the function F' obeys the comutativity equations [9)].

There are two approaches to deal with the arising system of partial differential equa-
tions [9]. The first way is to start with a particular known solution of the commutativity
equations (4.49) for the prepotential F' and then construct an N' = 4 superconformal
multi—particle model associated to it. Alternatively, one can start with a bosonic confor-
mally invariant multi-particle mechanics and then seek a solution of equations (4.49) that
will provide an N/ = 4 superconformal extension. We follow the first approach. Motivated
by the family of multi-parameters solutions (4.7) we obtained in the previous section for

BCy type root system, we apply these solutions in order to construct N/ = 4 supersym-
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metric mechanical systems. Note that trigonometric solutions of WDVV equations were
used to construct N = 4 supersymmetric Hamiltonians in [3]. This gave, in particular, su-
persymmetric version of quantum Calogero-Moser—Sutherland system of type BCy with
two independent coupling parameters. We extend this Hamiltonian into multiparameter
family. Note also that any rational V-system leads to N/ = 4 supersymmetric mechanical

systems (see [4] and references therein).

4.4.1 Notations and ansatz for supercharges (trigonometric set-
tings)

Particles can be classified in two general classes: bosons and fermions. Bosons and fermions
have very different physical behaviour. One of the main differences is that bosonic fields
obey canonical commutation relations, that is, involve the commutators [a,b] = ab —
ba, while fermionic fields obey canonical anti-commutation relations, that is, involve the
anticommutators {a,b} = ab + ba. In order to implement an N/ = 4 supersymmetric
mechanical system, consider N (quantum) particles on a line with coordinates z; and
momenta p; = —i0,,, (j =1,...,N), to each of which we assign four fermionic variables.
Let us denote them by {%,¢J |a = 1,2, j = 1,...,N}. They obey the standard (anti)-

commutation rules (a,b=1,2, j,k=1,...,N):
, . 1 y o
[, k] = W6, {VY, U4} = —5 kO, {0 W} = {4, 45} = 0.

Then there are four supercharges {Q% Qp|a,b = 1,2} which generate the N' = 4 super-
symmetry algebra. The N/ = 4 supersymmetry algebra has the form

{Q% Q" ={Qa4, @} =0, Hsysy = —%(QaQa + Q.Q%), (4.50)

where Hgysy is the supersymmetric Hamiltonian.

Two different representations of N/ = 4 supersymmetry algebra were constructed in [3]
(see also references therein for one of the representations). The corresponding supercharges
depend on a prepotential of the form (4.3) (with @ = 0). This prepotential is assumed to
satisfy equations of the form (4.4). In our application we follow the considerations of [3]
of N' = 4 supersymmetry algebra, so let us recall these settings.

Let €43, € be the fully anti-symmetric tensors in two dimensions such that e;o = €' = 1.
These tensors are used to lower and raise indices, for example Q% = €®Q,, Q* = €™Q),.

Further fermionic variables are introduced by

P = e P = el (4.51)
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They satisfy the following useful relations:
i bk L cin s aj bk L cik ab j Tk Lok
{¢a7¢ } = 55 5@7 {¢ 7¢ } = 56 €, {¢a7¢b} = 55 €ba - (452>

Throughout it is assumed that summation over repeated indices takes place (even when
both indices are either low or upper indices) unless it is indicated that no summation is
applied.

A function F' = F(xy,...,xy) of the form (4.3) with @) = 0 is considered, that is

F=)Y caf((o,2)), (4.53)

acA

where A is a finite set of vectors in V = CV, ¢, € C, are some multiplicity parameters,
the function f is given by (1.11).

The function F' is assumed to satisfy the commutativity equations

Frijk:mn = Frmkajn7 (454)

O3F
aﬁraxj axk

For the first representation the supercharges are of the form

where Fj, = for any r,j,k,m,n=1,..., N.

Q" = )™ + i Fypjp (WP,
Q. = b + i Fppn (Pl ™™™y,

a,c = 1,2, where the symbol (...) stands for the anti-symmetrisation. That is given N

operators A;, (i =1,..., N) we define
1
(A Ay = 1 > sen(o) Ay - - Ao (4.55)
" oeSn

The following statement takes place.

Theorem 4.4.1. [3| Let us assume that F satisfies conditions (4.54). Then for all a,b =

1,2 we have
{Qaa Qb} = {Qaa Qb} =0 and {Qa7 Qb} = _ZH(SZL)I?

where the Hamiltonian H 1s given by

L R 1 ... 1 oo
(wbzwiwéwdk o wzwb](slk + Zdw(slk) 4 1_6F1iijvlmn§nm6]l5zk.

p_2 Ol
4 2

H—
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Furthermore, the rescaled Hamiltonian Hy = 4H has the form

H, = —A+1 Z M—%}l Z cacs(a, ) (B, B)(a, B) cot(a, z) cot(f5, x)+ P, (4.56)

2
2 £ sin (o, ) Geu
where A = —p? is the Laplacian in 'V and the fermionic term
2C,0400; P i i
0 =3 S (o O™ — (o, @)y, (4.57)
Ssin*(a, x)

For the second representation the supercharges are of the form
Qa _ prl/}ar + iFrjkl/JbrwgzZak;
Qc = plqui + Z.lemnl/_}(liq]}quvb?v
a,c = 1,2. Then the following statement on supersymmetry algebra takes place [3].

Theorem 4.4.2. [3|. Let us assume that F satisfies conditions (4.54). Then for all

a,b=1,2 we have
{Q% Q" ={Qu. @} =0 and {Q",Qy} = —2H5},
where the Hamiltonian H is given by

4 2

R . 7
H = YOl pap ™ — P54 Z(san,a,,mpr. (4.58)

Furthermore, the rescaled Hamiltonian Hy = 4H, has the form

Hy=-A+ Z Colav, ) cot(a, )0y + P, (4.59)
acA

where ® is the fermionic term defined by (4.57).
The following result holds.

Proposition 4.4.3. [3|. Hamiltonians Hy, Hy from Theorems 4.4.1, 4.4.2 respectively
satisfy gauge relation
5_10H205:H1,

where § =[], 4 sin®@/2(q, 7).

The following theorem deals with BCy root system and has been proven in [3].
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Theorem 4.4.4. (3| Let R = BCy. Under the assumptions of Theorem 4.1.3 where the
positive half of the root system BC'y is defined by

nei, 2ne;, 1 <i < N; n(e; ej), 1 <i<j<N,

where n € C* is a parameter, the corresponding supersymmetric Hamiltonians given by
(4.56), (4.59), take the form

0 —A+n4Z( (85 +2(N = 29 2N - D ~ 1), 16s(4sn’ + 1>) (4.60)

sin? nx; sin? 2nx;
N
4q 2q7] +1) ~
4
+ @,
Z sin?(n(z; &+ ;))
and
N
Hy = —A+25" ) (8scot 2na; — (85 + 2(N — 2)q) cot nz;); (4.61)

=1

N
+ 4qn? Z cot(n(x; £ x;))(0; £ 9;) + ®

i<j

with ® given by

O — 4n4§: (‘(83+2(N 2)q) 4 16s )(wbz'wz&éi}di _ ¢Mbi>
=1

sin” nx; sin? 2nz;

PRI P (T — 2007,

66{1 —1} m<tijglk

where dyx = dpir(€) = Omp + €04, and d = ® + const.

Remark 4.4.5. The supersymmetric Hamiltonians corresponding to root systems of type

Fy and G; are given in details in [3| (see also [4]).

4.4.2 Multi-parametr generalization

In this section we generalize Theorem 4.4.4 by introducing extra parameters in the Hamil-
tonians following [2] .

Let us define coordinates = = (1,...,2,) € C* by z; = m, V20, (1 <i<n). Let A
be the n x n diagonal matrix A = (m;/25ij)i,j:1. Let F be given by formula (4.7) with

relation (4.17) on parameters r, ¢, s. By Proposition 4.2.3 the matrix B can be represented
as B = h(z)A% Let us define a function F(Z) such that ﬁ(f) = F(z(x)). Consider the
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n X n matrices Fj, with entries

~ ~ PPF
(Fy)u = F)

- 4.62
it 07,0707, ( )

k,l,t = 1,...,n. Note that ﬁk = mgl/zA_leA_l, where F}, is the matrix with entries
(Fp)u = Fryp. Let B be the n x n matrix with entries Bij = hd;j, where h = h(z(Z)) is

given in Proposition 4.2.3.

Proposition 4.4.6. The metric B can be represented as
B= Zm}f sin(2m;1/2fc\k)ﬁk,
k=1

and the function F satisfies generalised WDV'V equations of the form

)
)

FEy = FjF;, (4.63)

J
forallt,7=1,... ,n.

Proof. The first part of the statement is immediate by Proposition 4.2.3. Consider the
left-hand side of (4.63). We have

EF; = (mym;) PAT FA2FA™ = h(mym;) " 2A" F, B FAY (4.64)

It follows by Theorem 4.2.5 that the rightmost expression in (4.64) is unchanged if one

swaps ¢ and j, hence the statement follows. ]

It follows by Proposition 4.4.6 that the function F satisfies such type of equations,
hence we obtain in this way two supersymmetric Hamiltonians H;, + = 1,2 for a family
of BC, type configurations. We give these Hamiltonians in detail. Let us consider the

following configuration A C C" of vectors o with multiplicities c,:

m{l/Qei, with multiplicity rm;, 1<i<mn,

_ 1
2m; 1/261-, with multiplicity sm; + §qmi(mi —-1), 1<i<n,

m{lmei + m]l/er, with multiplicity g¢m;,m;, 1<1i<j <n,
where myq, ..., m, € C*. Consider n (quantum) particles on a line with coordinates z; and
momenta p; = —idz,, (j = 1,...,n), to each of which we associate four fermionic variables
Y% )i a = 1,2. These variables may be thought of as operators acting on wavefunctions
which depend on bosonic and fermionic variables. Let €, be the fully anti-symmetric

tensors in two dimensions such that ;o = —eg; = 1.
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Fermionic variables are assumed to satisfy the following (anti)-commutation relations
(a,b=1,2;5,k=1,...,n):

R 1 . .
{waijz]f} = _5 jk5a67 {wa]7wbk} = {Qﬁi, wl’f} = 0.
We consider supercharges of the form

. 8 ar i r 1.cl . 1 ar
Q" = —im "+ iF i (ehecant VPG — S Oj),

0z,
A . 8 7l .75 7l,om, en 1 7l
Qa = —Z—,\wa + 1 Fpmn (Edeacwdwb ¢ - _waanm)a
8$l 2
where a = 1, 2, ﬁijk is defined in (4.62), and we assume summation over repeated indices.

Let A = Y70, 8%]_ be the Laplacian in C". We have the following statement on the
supersymmetry algebra which follows from [3] (see Theorems 4.4.1, 4.4.2 above).

Theorem 4.4.7. For all a,b = 1,2 the supercharges Q%, Qy satisfy N' = 4 supersymmetry

algebra relations

{Qaa Qb} = {Qm Qb} = Oa and {Qaa Qb} = _%Hl(saba

where the Hamiltonian Hy s given by

H =-A+ E Z Cola,0)® + ! Z cacs(a, @) (B, B)(a, B) cot(a, T) cot(5, T) + P,

2 £ sin®*(a,7) 4
acA a,fed

(4.65)

with the fermionic term

2¢cq0504 i - wi
¢ = Z — (al@kaCEadl/)b ST + (o, ) %)- (4.66)
< sin”(a, T)
ac

The Hamiltonian H, is formally self-adjoint. Similar considerations (see [3]) yield not

self-adjoint Hamiltonian of the form

Hy=-A+ Z cola, @) cot(a, )0y + P (4.67)

a€A

with the same fermionic term ®. In fact Hamiltonians H;, Hs satisfy gauge relation
Hy = gHyg7', where g = [],15in°®**/%(a,7) (see Proposition 4.4.3 above). Super-
symmetric Hamiltonians Hy, Hy given by formulas (4.65), (4.67) give multi-parameter
generalization of the two-parameter supersymmetric Hamiltonians related to the root sys-
tem BC,, considered in [3].
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4.5 Commutativity equations and Euclidean trigono-

metric V-systems

In this section let A be a finite set of vectors in an N-dimensional Euclidean space V'
with the bilinear inner product (-,-). Let ¢, € C,a € A be some multiplicity parameters.
Assume that A belongs to a lattice of rank N. For each vector o € A we recall the set of
its collinear vectors from A:

ba ={y€Ar v~ a}l.

Let 6 C 6, and o € d,. Then for any v € § we have v = kg for some k, € R. Note that
k., depends on the choice of o and different choices of o give rescaled collections of these

parameters. Define C§° = Z Cvki- Note that C§° is non-zero if and only if Cg“ # 0 for

YES
any g € 6. Let us also recall the definition of series of vectors.

For any a € A let us distribute all the vectors in A\ J,, into a disjoint union of a-series

k
A\do = | |3
s=1

where £ € N depends on «. These series I} are determined by the property that for
any s = 1,...,k and for any two covectors 7;,72 € I'? one has either v; + 72 = ma or
71 — 72 = ma for some m € Z. We assume that the series are maximal, that is if v € I'}
for some s € N, then I') must contain all the covectors of the form +v + ma € A with
m € Z.

Let us now define Fuclidean trigonometric V-system in analogy with trigonometric

V-system with the bilinear form G4 replaced by the inner product (-, ).

Definition 4.5.1. The pair (A, c) is called a Fuclidean trigonometric \V-system if for all

a € A and for any a-series ', one has the relation

Z cgla, flanp =0. (4.68)

pery,

Now we give two examples which illustrate this notion. The corresponding canonical
form GG 4 is identically zero in both cases.
Proposition 4.5.2. Let A = {ey, %eQ, %el + %62, %(61 + e5)} C C? with the correspond-
ing multiplicities {—2, —%, 3,1}. Then A is a Euclidean trigonometric \V-system with the
bilinear form defined by (x,y) = x1y; — 3TaYys, where x = (x1,72),y = (y1,92) € C2

Proof. To simplify notations let us introduce the following vectors:

2 1 1 1 1 1
Q1 = e, Qg = 5627 Qg = 561 + 662’ Qyq = 561 - 662’ Q5 = 5(61 +e2), ag = 5(61 —e3).
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Then we have the following a-series:

Il o={as}, T2 ={agas}, I3 ={as a6},
0, ={a}, T2, ={as,a6}, T3, = {au, a5},
Iy, ={an,as}, T2, ={as, a6}, T2, ={as},
rL, = {a,as), T2 ={as,a5}, T2 ={ag},
Ih. ={anas}, T2 ={as,au}, T2 ={as},
rlo={onasy, T2 ={ogas}, I3 ={as}.

We also have the following inner products:

1 1

(061,052) - 07 (Oél,Oég) ) (0617(14) = 5 (0617(15) - 57 (Oél,Oéﬁ) - 57
1 1 1
(042,043) = —57 (0427044) = g, (0427045) = -1, (042,046) =1, (043,044) = g:

1
(az,a5) =0, (as,06) ==, (a4,a5)= 5> (o, 06) =0, (as, o) =1

N | —

Then it is easy to check that condition (4.68) holds for all a-series, a € A. O

Remark 4.5.3. Let A be the configuration of covectors on the plane given in Proposi-
tion 3.5.7. That is A = {e*, €2, 2¢?, 1(e' £€?), 3(e' £3e*)} C C? with the corresponding
a?@tfbb),?)a +2b,b,3a,a}. Then for x = (z1,22),y = (y1,y2) € C* we have
the canonical form

multiplicities {

3(3a + 2b)
GJZ(ZIZ’, y) = m (axlyl + (3& + 4b)$2y2) .
By letting multiplicity b = —3a we get the following configuration Ay = {e!,2¢2, (et £
e?), 3(e! & 3e?)} with the corresponding multiplicities {—2a, —3a, 3a,a}. For this config-
uration the canonical form Gz = 0. We regularise GG 7, by defining a new non-degenerate

bilinear form as follows

(z,y) = — lim M

= -3 . 4.69
b B 30 1 20 T1Y1 T2Y2 ( )

Note that configuration A given in Proposition 4.5.2 contains vectors dual to the

covectors in system A, with respect to the form (4.69).

Proposition 4.5.4. Let A = {2e¢;, %62, e+ %62, e1tey} C C? with the corresponding mul-
tiplicities {—i, 2,1, —%} Then A is a Euclidean trigonometric V-system with the bilinear

form defined by (z,y) = x1y1 + 2T2ys, where x = (x1,2),y = (y1,y2) € C2
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Proof. To simplify notations let us introduce the following vectors:

1 1
oy = 2e1, ay = 562 a3 =6 + 362 Q4 =€17 56, 05 =€ + e, g = e — e

Then we have the following a-series:

L, ={ao}, Th ={as,au}, T, ={as,a6},
F}m = {1}, Fg@ = {3, ay, a5, 0},

Ih, ={on,au}, T2 ={as, a5}, T2, ={ag},
Lo, ={on,as}, To, ={aa}, T, ={os},
Ih. ={anact, T2 ={as,a3}, T2 ={au},
I ={an,as}, T2 ={as,au}, T3 ={as}.

We also have the following inner products:

(ala 042) - 07 (ala Oég) - 27 (0617 O{4) - 27 (O{h Oé5) - 27 <a17 Oéﬁ) - 27

1 1
(a2, 3) = B} (g, q) = —y (ag,a5) =1, (g, 06) = =1, (a3, aq) = 2
(az,a5) =2, (a3,06) =0, (ag,05) =0, (au,06) =2, (a5,05)=—1
Then it is easy to check that condition (4.68) holds for all a-series, o € A. O

Remark 4.5.5. Let A be the configuration of covectors on the plane given in Proposi-
tion 3.5.9. That is A = {e!, 2e!,e?,2e2 et + €%, e! 4+ 2¢%} C C? with the corresponding
multiplicities {2a, ¢ — 2,2b,a,b,a — £}. Then for z = (z1,22),y = (y1,¥2) € C* we have
the canonical form

G,Z(% y) = 6a(z1y1 + 2:5292)-

By letting multiplicity a = 0 we get the following configuration A; = {2¢!,¢2, ¢! £ ¢2, ¢! +
2¢?} with the corresponding multiplicities {—g, 2b, b, —%} For this configuration the

canonical form Gz = 0. We regularise G 3 by defining a new non-degenerate bilinear

G (2, y)

form as follows

(z,y) = lim = 211 + 2%2Y>. (4.70)

a—0
Note that configuration A given in Proposition 4.5.4 contains vectors dual to the covectors

in system A; with respect to the form (4.70).

Let us consider the function F' given by the formula (4.53). We are interested in con-
figurations A with a multiplicity function c(a) = ¢,, @ € A, such that the commutativity
equations (4.49) hold.

In what follows we investigate the relation between the commutativity equations (4.49)
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for the function (4.53) and Euclidean trigonometric V-systems.

Lemma 4.5.6. The commutativity equations (4.49) for the function (4.53) are equivalent
to the tdentity

S cacs(a, B) cot(a, 1) cot (B, 1) Bas(a, bl A B =0, (1)
a,BeA

for all a,b € V, where B, g(a,b) = a A (a,b) = (a,a)(5,b) — (o, b) (B, a).

Proof. Let F, be the N x N matrix of the third order derivatives of the function (4.53)

with entries 9 p
Fo)ij= ———.
(Fa):s 0,07,;0x;

Then from the formula (4.53) we have

(Fa)ij = Z cala, a)agaj cot(a, x).
acA

Hence we have

F,F, = Z cacp(a,a)(B,0)(a, B) cot(a, z) cot(f,z)a® B = 0.

a,BeA

Therefore the commutativity equations (4.49) which are equivalent to the condition [F,, Fy] = 0

can be written as

> cacs(e, B) cot(a, ) cot (B3, 2) Ba,g(a, b)a @ B = 0. (4.72)
a,feA

By exchanging a and 3 one gets a similar identity to (4.72) and by subtracting the resulting
identity from identity (4.72) we get the required identity. [

The following result takes place.

Lemma 4.5.7. Assume that prepotential (4.53) satisfies the commutativity equations
(4.49). Suppose that C5° # 0 for any a € A, 0 C 04, a9 € do. Assume that the iden-
tity
Z cacpla, ) cot(a, ) cot(B,x)Bagla,b)a AN =0 (4.73)
a,feA

holds for any a,b € V and a € A provided that tan (o, ) = 0. Then A is a Euclidean

trigonometric V-system.

Proof. Fix a € A such that tan (o, ) = 0. Let us consider terms in the left-hand side of
identity (4.73), where v = k o, k, € R, that is vy is proportional to a. The sum of these
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terms has to be regular at tan(a, x) = 0. This implies that the product

(2:163’/07 cot (7, x)) ( Z cg(ao, B) cot(B, ) Ba, g(a, b)ag A B) (4.74)

'Yeéa ,BEA\5a

is regular at tan(a, ) = 0. The first factor in the product (4.74) has the first order pole at
tan(a, x) = 0 by the assumption that C§° # 0 for any a € A, ap € d,. This implies that

Z cs(ao, B) cot(B, x)Ba, s(a,b)ag A B = 0. (4.75)

BEA\Iq

Since all the vectors 5 € A\ 0, can be found in one of the disjoint a-series, then (4.75) is
equivalent to the identity

Z Z cg(aw, B) cot(B, ) Bay gla, b)ag A 5= 0. (4.76)

s Bely,

But the sum in (4.76) is a linear combination of functions cot(f, x)|tan(a,z)=0 Which can

vanish only if it vanishes for each a-series (see [23,27]) , hence we have

> cslag, B) cot(B,2) Bag,s(a, b)ag A B =0 (4.77)

Bers,

for all a-series I'3.

Now we will show that identities (4.77) imply that A is a Euclidean trigonometric
V-system. Let us fix a particular element 5y € I'; . Then for any v € I'; we have
v+efo = may, where m € Z and € = 1. We have cot(v, z) = € cot(So, x) and By, (@, b) =
£Ba, 5, (a,b) provided that tan(ag,x) = 0. Hence relation (4.77) implies the Euclidean
trigonometric V-condition Z,@ergo cg(ao, B)ag A B = 0. ]

Note that if A is a Euclidean trigonometric V-system then this guaranties that the
left-hand side of identity (4.71) is non-singular. Since all vectors from .4 belong to an
N-dimensional lattice then the left-hand side of identity (4.71) is a rational function in
suitable exponential variables which has degree zero and therefore is a constant. In order
to find this constant, by changing some of the vectors from A to their opposite ones we
can assume that all vectors from A belong to a half space, hence form a positive system
A, . Then in an appropriate limit in a cone cot(c,z) — ¢ for all « € A, identity (4.71)

reduces to

Z cacgla, B)Bagla,b)a A S = 0.

a,BeAL

From these considerations together with Lemmas 4.5.6, 4.5.7 we have the following result.

Theorem 4.5.8. Suppose that a configuration (A, c) satisfies the condition C§5° # 0 for
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any o € A, § C by, g € 4. Then the commutativity equations (4.49) for the prepotential
(4.53) imply the following two conditions:

(1) A is a Euclidean trigonometric \/-system,

(2) > pea, Cacsle, B)Bagla,b)a A B =0 for any a,be V.

Conversely, if a configuration (A, c) satisfies conditions (1), (2) then commutativity
equations (4.49) hold.

The following statement confirms that the class of Euclidean trigonometric V-systems

contains root systems with W-invariant multiplicity.

Proposition 4.5.9. Root system A = R with W-invariant multiplicity function c is a

Fuclidean trigonometric \-system.

Proof. Fix o € R. Take any § € R, and let v = 5,8 = [ — 2((0?‘;5))(1. Since 229 ¢ 7 we

(a,c)

get that 3,~ € I'? for some s. We have

Cp = Cy, (a,ﬂ):—(oz,”y), Oé/\ﬁza/\’%

Hence the contribution of 8 and 7 to the sum in (4.68) gives

cgla, Bla A B+ c (o, y)a Ay =0,

which implies that R is a Euclidean trigonometric V-system. [

As a corollary of Proposition 4.5.9 and Theorem 4.5.8 the following result takes place.

Corollary 4.5.10. [3] Let A = RT be a positive half of the root system R. Then the
commutativity equations (4.49) are satisfied for the function (4.53) if and only if

> cacs(@, B)Bagsla,b)a N B =0 (4.78)

a,BERT
holds for any a,b € V.

The result [3, Theorem 6.5] states that if a root system with invariant multiplicity
satisfies property (2) of Theorem 4.5.8 then commutativity relations (4.49) hold. It has
been shown in [3]| that relation (4.78) is satisfied for root systems R = BCy, Fy, Gy with
special invariant multiplicities, see Theorems 4.1.3, 4.1.4, 4.1.5 above. Thus Theorem 4.5.8
may be viewed as a generalization of this statement for the class of Euclidean trigonometric
V-systems.

Solutions of commutativity equations can be applied to construct N' = 4 supersym-
metric mechanical systems, see Theorems 4.4.1, 4.4.2 above. Hamiltonians corresponding

to root systems R = BCly, Fy, G2 were given explicitly in [3] (see also [4]) for more details.
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4.6 Subsytems of a Euclidean trigonometric V-system

In this section we study the process of taking of a subsystem of a Euclidean trigonometric
V-system and we prove some results analogous to those of trigonometric V-systems in
Chapter 3. The section ends up with the main theorem which shows the fact that under
some non-degeneracy conditions subsystems of a Euclidean trigonometric V-system A is

also a Euclidean trigonometric V-system. Let us first recall the definition of a subsystem.

Definition 4.6.1. Let A C V be a Euclidean trigonometric V-system. A subset B C A
is called a subsystem if
B=ANW,

for some linear subspace W C V. The subsystem B is called reducible if B is a disjoint
union of two non-empty subsystems B = B; U By. The subsystem B is called #rreducible
if it is not reducible. We will also equip subsystem B C A with the multiplicity function
which is the restriction of the multiplicity function ¢: A — C on B.

Let A be a finite set of vectors in V = CV, and let ¢, € C,a € A be some multiplicity
parameters. Assume that A belongs to a lattice of rank N. Let B = AN W be a
subsystem of A where W C V be some n-dimensional linear space. Assume also that
W = (B). Assume now for this section that A is a Euclidean trigonometric V-system, that

is for all @ € A and any a-series ', the following condition holds.

> ca(e, B)a A B =0. (4.79)
BET,
We say that the subsystem B is non-isotropic if the inner product (-, )y = (-,-)|w, is

non-degenerate on W.
Define the linear operator M : W — W given by

M=> csB®p, (4.80)

BeB

that is, M(u) = ZBGB cs(B,u)p, for any u € W. In what follows we prove some lemmas

which are useful to prove the main theorem of this section later.

Lemma 4.6.2. Let A be a Fuclidean trigonometric V-system and B = ANW be its

subsystem. Then
1. Any « € B is an eigenvector of M, that is Ma = Aa for some A € C.

2. The vector space W can be decomposed as

W:U)\lEBU)\2€B"'€BU)\k, kEN, (481)
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where \; € C and M ’UM: Nl , where I is the identity operator.

Proof. Firstly, let o € A. Consider a two-dimensional plane 7 C V containing « and
another vector from A non-collinear to o. Let us sum up the Euclidean trigonometric

V-condition (4.79) over a-series which belong to the plane 7. Then

Z cs(B,a)B8 = Aa, (4.82)
pBeETNA
holds for some A = A(q, 7).
Secondly, let a@ € B. Consider a collection of two-dimensional planes 7y, ..., T such
that o € m; C W for any ¢ = 1,...,k and for any § € B there exist 7, (1 < i < k) such
that 8 € ;. Define linear operator M, : W — W, by

M, = Z csB®pB.
5671’1'0./4
It follows from (4.82) that
M, (o) = \a, (4.83)

for some \; € C. Now sum the equation (4.83) over all two-dimensional planes 7y, ... my,

gives

D dia=3 M) =3 > cs(B0)p

i=1 BemnA
= Z cs(B, ) + (k= 1)eq(a, a)a
BeWNA
= M(a) + (k — Deq(a, a)a.

Hence M(a) = Aa, where A = 328 Ay + (1 — k)cala, @). Thus « is an eigenvector for M
for any o € B which proves the first statement.

Let us now prove the second statement. As « is an eigenvector for the operator M for
any a € B, we have that M is diagonalizable since (B) = W, and we have an eigenspace

decomposition

W:U,\l@U)\zEB"'@U)\k, ke N

where \; € C and M |y, = A1, where [ is the identity operator. This proves the second

statement. ]

The following two lemmas relate the series of vectors in A and B.

Lemma 4.6.3. Let A and B be as stated in Lemma 4.6.2. Let o € B be such that o € U,
for some i € N. Consider an a-series T5 in B and let 3 € TE. Then either T8 C Uy, or
5 c {+}.
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Proof. For 8 € I'5 we have the following tow possible cases.

Case (i) B € Uy,. Then for any v € I'5 we have for some m € Z that v = ma+ 3 € U,
or v =ma — 3 € Uy,. Hence I'8 C U,,.

Case (ii) 8 ¢ U,,. Hence § € Uy, for some j # i. Then for any vy € I'} we have that
v € Uy or v € U, since decomposition (4.81) is the direct sum. Note that v ¢ U, as
otherwise for some m € Z we will have f = ma —~ € Uy;, or f = ma+~ € U);, which is a
contradiction. Note also that v ¢ Uy, unless v = £/ as otherwise for some m € Z we have
ma =+~ € Uy, or ma = f§—~ € Uy, which is a contradiction. Hence 'S C {£}. O

Lemma 4.6.4. Let A and B as stated in Lemma 4.6.2. Let o, 3 € B. Let T2, T'5 be the

a-series in A and B respectively containing B. Then the set T2 is equal to the set T'5.

Proof. Let v € I'2. Then v = ma + 8 € B, (or v = ma — 8 € B) for some m € Z. Thus
v € T8 by the maximality of T'5. Hence I'' C I'5. The opposite conclusion is obvious.
Therefore I'5 = I'A, ]

Proposition 4.6.5. In the assumptions and notations of Lemma 4.6.2 we have (u,v) = 0

for any v € Uy, and v € Uy, such that i # j.

Proof. 1t is clear that (M (u),v) = (u, M (v)) for any u,v € W. Now for any u € U,, and
v € W we have
(M<u)7 U) = )‘z<u7 U)‘

On the other hand for any v € W and v € Uy; we have
(u, M(v)) = X;(u, v).
Hence for v € Uy, v € Uy,, i # j we have
(A — Aj)(u,v) = 0.

Thus (u,v) = 0 since \; # A;. O
Now we present the main theorem in this section.

Theorem 4.6.6. Any non-isotropic subsystem of a Euclidean trigonometric V-system is

also a FEuclidean trigonometric \V-system.

Proof. Let A be a Euclidean trigonometric V-system and let B be a non-isotropic subsys-
tem of A. We will show that the Euclidean trigonometric V-conditions hold in B.
Let a € B be such that o € Uy, i € N. Consider an a-series 'S in B. Let 8 € I'5. By

Lemma 4.6.3 we have the following two cases.
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Case (i) B € Uy,. Then '8 C U,,. In this case we have

Z cgla, Bla A B = Z cgla, Bl aNB =0

Bers perg

since I'® = I'! by Lemma 4.6.4 and that A is Euclidean trigonometric V-system.

Case (i) 3 ¢ Uy,. Then 3 € Uy, for some j # i. Hence («, ) = 0 by Proposition 4.6.5
and moreover '’ C {£3} by Lemma 4.6.3. Hence Euclidean trigonometric V-conditions
hold for B in this case as well. O

4.7 FEuclidean trigonometric V-systems and complex Eu-

clidean V-systems

Now let us discuss the relation between Euclidean trigonometric V-systems and complex
Euclidean V-systems. Let us first recall some definitions and relations related to the
complex Euclidean V-systems following [26]. Let V' be a complex Euclidean space, which
is a complex vector space with a non-degenerate bilinear form (-,-). We will identify V'

with the dual space V* using this form.

Definition 4.7.1. [26] Let A be a finite set of vectors in V. We say that the set A is

well-distributed if the canonical form

Gl (,y) =) (a,2)(ony), zy€eV,

acA

is proportional to the form (-,-).

Definition 4.7.2. [26] The set A C V is called a (rational) complex Euclidean V-system
if it is well-distributed in V' and any of its two-dimensional subsystems is either reducible

or well-distributed in the corresponding plane.

Note in this definition we allow the canonical form G’{* to be degenerate. In analogy
to Definition 4.7.1 let us introduce the trigonometric version.

For a subset A C V' with multiplicity function ¢: A — C, where ¢, = ¢(a), consider
the bilinear form G 4 on V' given by

Gu(z,y) = an(a,x)(a,y), z,y eV. (4.84)
acA

Definition 4.7.3. We say that the pair (A, ¢) is well-distributed in V' if the bilinear form
(4.84) is proportional to the form (-, -).
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As we identify the vector space V with its dual space V* and A C V', we will understand

the trigonometric V-system (A, ¢) as a collection of vectors satisfying relations

Z csGala, flaNB =0 (4.85)

Bers

for all @« € A and all a-series I'?, where G 4 is given by formula (4.84).
Now let (A, c¢) be a Euclidean trigonometric V-system, that is conditions (4.68) hold.
Define the linear operator M: V — V given by

A4:§:%ﬂ®ﬂ, (4.86)

BeA

that is, M (u) = 5.5 cs(B,u)B, for any v € V. Assume also that the linear span (A) = V.

The following statement takes place.
Lemma 4.7.4. Let (A, c) be a Euclidean trigonometric V-system. Then

1. Any a € A is an eigenvector of M, that is Mo = Ao for some X € C.

2. The vector space V' can be decomposed as
V=V,eV,e oV, keN )\ eC, (4.87)

where M |VAZ~: Nil, and I is the identity operator, and \; # \; for i # j.

Proof. Firstly, let a € A. Since A is a Euclidean trigonometric V-system then for each

a-series I'* condition (4.68) is equivalent to the relation

Z cs(B, ) =vsa (4.88)

Bers,

for some v; = vg(a, ).

Now we have

M(a) =) es(B.a)f

BeA
- Z cs(B, )8 + Z (7, )y
BeA yeA
Bra Y~
- Z Z cs(B,a)B8 + Z Cra(ka, a)ka
s el k: kac A
= Z Vsl + Z k2c;m(o¢, CK)C(
s k: kacA

= A\,
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where A =" Vs + D1 paca K Cra(a, ). This proves the first statement.
Secondly, the space V is spanned by A. As any vector o € A is an eigenvector for the

operator M, the operator M is diagonalizable, and we have an eigenspace decomposition
V=WoeV,d  -aV,, keN )\eC

where M |y, = A1, and I is the identity operator. This proves the second statement. [J

Since ACV =V,, &---®V,, then A can be represented as
A:All_l--~|_|.Ak, (489)

where A; = ANV, C Vy,i=1,....k and A, NA; = 0 for i # j. The following two

lemmas relate the series of vectors in A and its components A;.

Lemma 4.7.5. Let A be a FEuclidean trigonometric V-system. Let o € A be such that
a €V, for some i € N. Consider an a-series I'S, in A; and let 5 € I'5. Then either
s cVy, orI's C {£}.

Proof. For f € ') we have the two possible cases.

Case (i) B € V,,. Then for any v € I') we have that v = ma + ¢ € V), for some
m € Z and € = £1. Hence I'} C V),.

Case (ii) B ¢ Vy,. Hence B € Vy, for some j # i. Then for any v € I';, we have that y €
Vj, or v € V), since decomposition (4.87) is the direct sum. Note that v ¢ V), as otherwise
we will have 8 = ma + ¢y € V),, for some m € Z and ¢ = £1, which is a contradiction.
Note also that ¢ V), unless 7 = /3 as otherwise we have ma = 8 + ey € V), for some
m € Z and € = %1, which is a contradiction. Hence I'?, C {£+/}. O

Lemma 4.7.6. Let o, € A;. Let AT%, 4Tt be the a-series in A and A; respectively
containing B. Then the set “T'%, is equal to the set AT,

Proof. Let v € AT, Then v = ma + e € A;, for some m € Z and ¢ = +£1. Thus
v € 4T by the maximality of 4. Hence A% C “T*. The opposite inclusion is
obvious. Therefore 4T = AT, O

We will denote V), by V;. Thus we have M|y, = A\ 1.
Proposition 4.7.7. We have (u,v) =0 for any v € V; and v € V; such that i # j.

Proof. 1t is clear that (M (u),v) = (u, M(v)) for any u,v € V. Now for any u € V; and

v € V we have
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On the other hand for any v € V' and v € V; we have

(u, M(v)) = X;(u, v).
Hence for u € V;, v € Vj, i # j we have

(A — Aj)(u,v) =0.

Thus (u,v) = 0 since \; # A;. O
The following statement takes place.

Lemma 4.7.8. Restriction (-,-); of the bilinear form (-,-) onto the subspace V; is non-

degenerate.

Proof. Suppose that v € V; satisfies (v,u); = 0 for all u € V;. By Proposition 4.7.7 we

have (v,u) =0 for all w € V. Hence v = 0 since (-, -) is non-degenerate. O

The following statements relate the Euclidean trigonometric V-systems and the trigono-

metric V-systems.

Theorem 4.7.9. If A is a Fuclidean trigonometric V-system then subsystem A; = ANYV;
is well-distributed in the subspace V; with the bilinear form (-,-); for alli. Furthermore, if

the bilinear form
GAi(u’U) = Z ca(a,u)(a,v), u,v €V;

a€A;

is non-degenerate on V; (equivalently, G4, is non-zero), then A; is a trigonometric V-

system.

Proof. By Lemma 4.7.4 we have M|y, = A\;I. Hence for any u,v € V; we have
Ga(u,v) = (M(u),v) = \(u,v). (4.90)
Note also that by Proposition 4.7.7 and formula (4.90) we have for any w,v € V; that

Gy, (u,v) = Z Cola,u)(a,v) = Z Cola,u)(a,v) = G a(u,v) = N\i(u,v). (4.91)

a€A; acA

Thus subsystem A; is well-distributed in the subspace V; for all i.

Let us now assume that G4, is non-degenerate on V;, that is A\; # 0. Let a € A;.
Consider an a-series IS in A;. Then by Lemmas 4.7.5, 4.7.6 and formulas (4.90), (4.91)
we have

Z cgGa, (o, B)a N =\ Z cgla, flaNnpB =0

BETS, BEL,
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since A is a Euclidean trigonometric V-system. This proves the statement. O]

The following statement takes place as a corollary of Theorem 4.7.9.

Corollary 4.7.10. If (A, c) is an irreducible Fuclidean trigonometric V-system and G 4

is non-degenerate then (A, c) is a trigonometric \/-system.

Proof. Since A is irreducible then we have V' = V; and M|y, = AI. Then by Theorem
4.7.9 ANV; = A is a trigonometric V-system since the bilinear form G_4 is non-degenerate.

This proves the statement. O

Let m be a two-dimensional plane in V' which contains two non-proportional vectors

from A.
Proposition 4.7.11. Let A be a Euclidean trigonometric \V/-system. Then the set of

vectors AN 7 is well-distributed in m or the system AN x is reducible.

Proof. Let o € AN 7. Define a linear operator M,: m — 7, by

M, = Z cgfB ® B.

BeANT

Let us sum up the Euclidean trigonometric V-condition (4.68) over a-series which belong

to the plane m. Then
> cs(8,0)8 = Aa, (4.92)

BeANT

holds for some A = A(«). Suppose that A N 7 is irreducible. Then A does not depend on
« and M. = AI. Therefore

D ea(Bu)(Bv) = (Mx(u),v) = A(u, v),

BeEANT

and the set AN 7 is well-distributed. This proves the statement. O

Let us also note that if the subsystem A N7 is reducible then it is contained in a pair
of orthogonal lines, which is easy to see from the Euclidean trigonometric V-conditions.
The following statement relates the Euclidean trigonometric V-system and the (ratio-

nal) complex Euclidean V-system.

Proposition 4.7.12. Let (A, ¢) be an irreducible Euclidean trigonometric \V-system. Then

the set of vectors \/cqav is a (rational) complex Euclidean V-system.

Proof. Firstly, since A is irreducible then by Lemma 4.7.4 we have A = A; C V =V} and
M]y, = A\1. Then by Theorem 4.7.9 we have that A; = A is well-distributed.

Secondly, by Proposition 4.7.11 we have that any two-dimensional subsystem AN is
well-distributed or reducible. Since the form G4 coincides with the canonical form for the

system {,/c,a} in the rational case, the statement follows. ]
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4.8 Restricted solutions of commutativity equations

In this section we apply the restriction procedure to a given solution to the commutativity
equations in analogy to what we have done in Chapter 3 with the solution of WDVV
equations.
Let B = AN W be a subsystem of A for some n-dimensional linear subspace W =
(B) C V. Define
Wg={xeV:(6,z)=0 VS e B}. (4.93)

Let (-, ) be the restriction of (-,-) on Wg, and assume that it is non-degenerate. Let
us denote by mg(a) the orthogonal projection of o € V' to the subspace Wy with respect
to the inner product (-,-). Let m5(A) = {mp(a): () # 0, a € A}. Note that we
include each vector once even if it can be obtained as different projections. We define the

multiplicity c(mp(a)) = > 4 c(v) where m5(7) = 75(c). Let
S={w,...,a,} CB (4.94)

be a basis of W. Let fi,..., f, be an orthonormal basis of the space Wy, and let &;,...,&,
be the corresponding orthonormal coordinates in Wy. Define My = V' \ |, 4 Ha, and
Mg = W\ Useasla; where Il, = {z € V: (a,z) = 0}. The following statement
shows that the class of solutions of commutativity equations corresponding to Euclidean

V-systems is closed under the restrictions.

Theorem 4.8.1. Assume that prepotential (4.53) satisfies commutativity equations (4.49).
Let B C A be a subsystem, and let S be as defined in (4.94). Suppose that C5° # 0 for
any a € S, ag € do. Then the prepotential

Fs= Y cf((@g), &€ Ms, (4.95)

acA\B

where & = mg(a), satisfies the commutativity equations

(FB)i(FB)j = (FB)j(FB)i; ’L,j = 1,...,71, (496)

where (Fg); is the n x n matriz with entries

O®Fg
F8)i)pa = (Fi)ipg = —s o
(( B) )Pq ( B) g a&agpagq
Proof. First for any v = (uy,...,un), v = (v1,...,vy) € V let us consider the vector

fields 0, = ZZ]\LI U;iOy,, Op = Zf\il 0;0,, € T, M 4. We define the following multiplication
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on the tangent space T, M 4:
3u * &, = uinF;jk@xka (497)

where the summation over repeated indices here and below is assumed. It is easy to check
that the associativity of the multiplication * is equivalent to the commutativity equations
(4.49). From the formula (4.53) we have

Fiji = E Caiiorjoy, cot (o, ).
acA

Hence multiplication (4.97) takes the form

Oy * 0y = Z oo, u)(a,v) cot (o, ) Dy (4.98)
acA

By identifying V = T, V', we have

Uxv = Z Cala,u)(a,v) cot (o, x)cr. (4.99)
acA

Consider now a point zy € Mp and two tangent vectors ug, vg € T, Mp. We extend vectors
up and vy to two local analytic vector fields u(x),v(z) in the neighbourhood U of z that
are tangent to the subspace Wp at any point x € Mp N U such that ug = wu(zg) and
vo = v(xp). The following lemma holds and its proof is similar to the proof of Lemma
3.2.1

Lemma 4.8.2. The limit of the product u(x)*v(x) exists when vector x tends to xy € Mg

and it satisfies

Ug * Vg = Z Ca (v, ug)(a, vg) cot(a, xo)a. (4.100)
acA\B

In particular, the product ug * vy is determined by vectors ug and vy only.

The following lemma holds and it shows that multiplication (4.98) is closed on the
tangent space 1), Mpg.

Lemma 4.8.3. Let u,v € T, Mp where zo € Mp. Then ux*v € T, Mpg.

The proof of Lemma 4.8.3 is similar to the proof of Lemma 3.2.2. It uses analogue
of Proposition 2.6.20 which claims that the following identity holds for any a,b € V if
tan(a, x) = 0:

Z cs(a, B) cot(B, ) Bagla @ b)a A B = 0.

BEA\da



CHAPTER 4. TRIGONOMETRIC SOLUTIONS WITHOUT EXTRA VARIABLE 147

Then for u,v € T, Mg, xy € Mg, the product (4.98) takes the form

Ou* 0y = Y  cal@u)(@,v)cot (a,0)0. (4.101)
acA\B

By using the orthonormal basis fi, ..., f, of Wz we rearrange d; as

n

0z = > (@, fi)0y,.

k=1

Hence for zg =& =Y | & f; we have

O, %0, = 3 Y cal@, £:)(@, f3)(@, fir) cot (&, €)dy,

acA\B k=1

=Y Fupdy, ij=1,...,n, (4.102)
k=1

where ﬁ(é‘) =2 weas Caf(a,§) = Fz. Now multiplication (4.102) is associative and it is

easy to check that its associativity is equivalent to the commutativity equations

FF;=FF, ij=1,...n.

Hence the restricted prepotential on Wy corresponding to the restricted system satisfies

the commutativity equations, which proves the theorem. O
As a corollary of Theorems 4.8.1 and 4.1.3 the following result takes place.

Corollary 4.8.4. Under the assumption of Theorem 4.1.3 on multiplicities, all the func-
tions of the form (4.53) corresponding to restricted systems of the root system BCy satisfy

the commutativity equations.

Note that in Section 4.2 we proved Corollary 4.8.4 following a different approach,
by relating WDVV equations (4.2) with the commutativity equations for the restricted
systems of the root system BC'y. See Theorem 4.2.5.

Similarly, as a corollary of Theorems 4.8.1 and 4.1.4 the following result takes place.

Corollary 4.8.5. Under the assumptions of Theorem 4.1.4 on multiplicities, all the func-
tions of the form (4.53) corresponding to the three-dimensional and two-dimensional re-

stricted systems of the root system F} satisfy the commutativity equations.

Solutions of the commutativity equations corresponding to the projected systems of
root systems BCy and F) imply existence of certain N' = 4 supersymmetric Hamiltonians
given by formulas (4.56), (4.57) and (4.59) in Theorems 4.4.1 and 4.4.2.
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In the case of BCy root system the Hamiltonians of its restricted systems are given in
Theorem 4.4.7 by formulas (4.65), (4.66) and (4.67).

In the case of Fj root system there are two projected systems in dimension three
and four projected system in dimension two. The projected systems on the plane are
given in Appendix A.1, where these configuration are given explicitly and denoted by
(Fy, A)1, (Fy, A2), see Table A.1 below. The configurations (Fy, As), and (Fy, By) are
equivalent to root systems G5 and BCs, these cases were considered in [3]. The other four
cases in dimension two and three are new. Let us give details of the three-dimensional
projected systems of Fj.

Consider the positive half of root system Fj consisting of vectors
1
Ff={ei(1<i<4), e;+e;(1<i<j<4), §(€1i€2i63i64)}.

Let r be the multiplicity of short roots and let ¢ be the multiplicity of long roots. Then

we have the following three-dimensional projected systems.

e The projected system (Fy, Aj); of Fy to the hyperplane x4 = 0 consists of the

following set of vectors:

e;, with multiplicity »+2q, 1<17<3,
e; £e;, with multiplicity ¢, 1<:<j <3,

1
5(61 + ey +e3), with multiplicity 2r.
e The projected system (Fjy, A1)s of Fy to the hyperplane z3 = x4 consists of the

following set of vectors (after making change of variables and renaming vectors):

ey, ey, with multiplicity r,
\/563, with multiplicity g,

2
5 €3 with multiplicity 2r,

e; * ey, with multiplicity g,
1

5(61 +e5), with multiplicity 2r,

2 2
e1 £ \/7_63, es £ geg, with multiplicity 2gq,
1

5(61 + ey + V2e3),  with multiplicity 7.

Theorem 4.8.6. Let (./Zl\, ¢) be one of the configurations (Fy, Ay)1, (Fy, A1), (Fy, A2)1, (Fy, A).
Then the function F =", _zcaf((o, x)), where [ (z) = cot z, satisfies the commutativity
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equations, where x € C? for the first two configurations and x € C? for the last two con-
figurations and parameters r,q satisfy the condition r = —2q or r = —4q. Furthermore,
the corresponding Hamiltonians (4.56), (4.59) satisfy the supersymmetry algebra relations
stated in Theorems 4.4.1, 4.4.2



Chapter 5

Commutativity equations and WDVYV

equations

In this chapter we investigate the relation between the set of commutativity equations
and the set of WDVV equations in N-dimensional space. This leads to new solutions for
WDVYV equations from known solutions of the commutativity equations.

Let V= CV. Let F = F(zy,...,zy) be a function on V. We recall that it has been
proven in [41] (see also [40]) that the (generalized) WDVV equations

EF'Fo=FF'F, i, k=1,...,N (5.1)
can be written equivalently in the form
FEB'F;=FB'F, i,j=1,...,N, (5.2)

where B is any non-degenerate linear combination of matrices Fj, with functional coeffi-
cients A*, (k =1,..., N). If the matrix B happens to be a multiple of identity for some
functions A*, then WDVV equations (5.2) reduce to the commutativity equations

F,F;=F,F,, ij=1,...N. (5.3)

The natural question to investigate is when there exists such a linear combination B which
is proportional to the standard metric 6. We do this in this section.

Let us assume that the function F' = F(xq,...,xy) satisfies the commutativity equa-
tions (5.3). Let us denote by [F}, Fj](ap the (a,b)-entry of the commutator [F;, F}], that

is we have the explicit form

N
Ea F (a,b) Z zam - zbmF’jam>-

m=1

150
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Since the function F' satisfies the commutativity equations then we have

zam - 1bijam):07 (1§Z,j,(l,b§N)

Mz

EaF (ap) —

m:l

These equations imply the following identity for any 1 <4, 7,k < N:

z]kEn Z Fz]szkm Z zzm jkm (‘54>

m£i

which is obtained from [F}, Fy]; ;) = 0, k # 4,7. We also have

FijiFi + Fiij Fjj5 = Z 2n— > FumFim, (5.5)
m#£i,j
for i # j, which is obtained from the identity (5.4) for k = j.
Observe also the equality of matrix entries [F,, Fy|i ;) = [F5, Fjlap)- Let us also intro-
duce the following notation

[Fy, ] = Fiam Fjom — Fivm Fiam (5.6)

where there is no summation over m in the right-hand side. Let us define a matrix
B = (By;)};=1 with the entries given as a linear combination of the third order derivatives
of F"

N
=> ARy, (5.7)
k=1
for some functions A* = A¥(zy,..., xx). Now we will investigate when there exists such a

combination B so that equations (5.3) imply the equations (5.2). For that it is sufficient
to deduce that the matrix B is proportional to the identity.

Before we start our investigation, let us recall the formula of Laplace expansion in
multiple rows of a determinant from linear algebra which will be used later.

Let @ be a given N x N matrix. Let [N] = {1,2,..., N} and let I be a fixed subset
of [N]. Let J be another subset of [N] where subsets J and I has the same size, that is
|J| = |I]. Let I',J be the complements of I, .J respectively in [N]. We want to calculate
the determinant of () by expanding along all rows which belong to the subset I. This

leads to the formula

detQ = > o det QrydetQy (5.8)

JC[N]

where ()7, is a matrix composed of rows I and columns J of the matrix @), and o; = (—1)°
with s =3, i+ Zjer.
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5.1 Constant metric in dimension two

The commutativity equations for dimension two is the equation FiF, = FyF} which is

equivalent to the single relation
FrasFiny + FrisFoss — Fijy — Fipy = 0. (5.9)

Note that WDV'V equations hold for any function F' on the plane. In the next proposition

we give the formulas for coefficients A', A2

Proposition 5.1.1. Assume that the function F = F(x1,xs) satisfies the commutativity
equation (5.9). Let
Al - F122, A2 - —F112. (510)

Then the matriz B = A'Fy + A%F, is a multiple of the identity matriz.

Proof. Firstly, we have
Biy = Byy = A'Fiig + A*Fip =0

by (5.10). Secondly, we have

By = A'Fyyy + A*Fis = FiooFi — Fi,
By = A'Fiay + A*Fagy = Fiyy — Fi12Fm.

By relation (5.9) we have Bj; = Bays. This proves the proposition. O

5.2 Constant metric in dimension three

In this section we assume that N = 3.

Proposition 5.2.1. Assume that the function F satisfies the commutativity equations
(5.3). Then the matriz @ given by

F112 F122 F123

Q= | Fus Flas Fiss (5.11)
Fioz  Fagg  Fiss

s singular.

Proof. Let D be the determinant of the matrix ). We have

D = det Q - F112(F233F123 - F133F223) - F122(F113F233 - F133F123) + F123<F113F223 - F1223)-
(5.12)
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Firstly, from relation (5.4) we have

Fio3Fi11 = FriaFiis + FiaaFiag + FiazFiss — FriaFaos — Fii3Fass, (5.13)
FragFago = FriaFi23 + FiaaFoos + FlazFazs — FlaoFis — Fags Fiss. (5.14)

Secondly, by multiplying relation (5.5) for ¢ = 1,j = 2 by Fjs3 we have
Fros(FiooFipy + Fi1oFpg) = Froz(Fla + Fh + Fiyg — FlizFaos). (5.15)

Now by substituting relations (5.13), (5.14) into the left-hand side of relation (5.15) we
get D = 0. This proves the proposition. O]

As a corollary of Proposition 5.2.1 the following statement takes place.

Corollary 5.2.2. Assume that the function F satisfies the commutativity equations (5.3).

Then there exists a non-zero solution (A, A%, A3) for the following system of equations:

3 3 3
By = Z A" Figym =0, Biz= Z A"Fizp =0, Bog = Z A" Fyzy = 0. (5.16)

m=1 m=1 m=1

Proof. To prove the statement, it is enough to show that commutativity equations imply
that the coefficient matrix corresponding to the homogeneous system of equations (5.16)
is singular. Since this coefficient matrix is given by formula (5.11) the statement follows

from Propositin 5.2.1. O

Define

Fiag Fiog Fiia Flas
Al = det = FipoFi33 — Fhy;, A*= —det = [13F193 — F112F33,
<F123 Fis3 128 Fiis Fiss

F F;
A3 = det ( 12 122) = F112F123 — F113F122. (517)

F113 F123

Proposition 5.2.3. Assume that the function F satisfies the commutativity equations
(5.3). Then functions A*, (i = 1,2,3) given by (5.17) solve the system of equations

3 3 3
By =) A"Fig =0, Biz= ) A"Fi3, =0, Byy=» A"Fy,=0. (5.18)

m=1 m=1 m=1

Proof. After substituting of functions A%, (i = 1,2,3) into the formula of B, we get a
determinant with repeated rows, which is equal to zero. Similarly, the equality B3 = 0 is
also satisfied. Let us now check that By; = 0. We have

Boz = A'Flog + A% Faoz + A Fass.
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After substituting the values of A', A%, A3 we get that Bys = det Q, where ( is the matrix
given by (5.11). The statement follows from Proposition (5.2.1). O

Let us define the coefficient matrix

F E F:
Q= 112 f212 F312 (5.19)
Fus Foiz Fas

corresponding to the system of equations By, = 0, B3 = 0.

The following statement takes place.

Proposition 5.2.4. Assume that the rank of of the matriz Q given by formula (5.19) is
equal to two. Then the diagonal entries of matriz B = mezl A™F,,, where A™ are given
by formula (5.17), are equal; Byy = By; for i =2, 3.

This proposition is a particular case of Proposition 5.3.4 below which is valid for any
dimension N > 3, so we postpone the proof until Section 5.3.

As a corollary of Propositions 5.2.3 and 5.2.4 the following statement takes place.

Proposition 5.2.5. Assume that the matriz Q) given by formula (5.19) has rank two. Then
the matrix B = Zf’n:l A™F,,, where A™ are given by relations (5.17), is proportional to

the identity matrix.

5.3 Constant metric in general

Let us now assume N > 4. Let V' be an N-dimensional space. Let F' = F(xy,...,zN)
be a function such that commutativity equations (5.3) hold. Let us also define functions
A* (k=1,...,N) by the formula

Frio Foiz - Fa—yiz Fagnie - P
A= (e | T1e e Fenis B B (5.20)
Fun Fun - Fe—in Fogony o0 Fan

That is A* are given by the determinant of the (N — 1) x (N — 1) matrix corresponding to
equations Bis = Bis = --- = By = 0 after removing the k' column. In this section the
summation over repeated indices will be assumed provided that one of indices is subscript

and the other is superscript.
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Lemma 5.3.1. For any function F = F(x1,...,xy) which satisfies the commutativity
equations (5.3) the following relation holds

Falr Fblr Fclr Falr Fblr Fclr
det | Foy Fyy Fue | ==Y det [ Fo Fo Fom | (5.21)
Fart Fbrt Fcrt m7t Farm Fbrm Fcrm

where 1 < a,b,c < N and2 <r <t <N.
Proof. We have by the first row expansion and commutativity equations

Falr Fblr Fclr

det | Foiy Fyy Fep | = Fardet TN Ry, det Tl
brt Fcrt art Fcrt
Fart Fth ch“t

Fo F
+me< i W)=&ﬂﬂi%&—ﬂﬂﬂfﬁ”+ﬂﬁﬂfﬁ”

art Fbrt (@) (a.b)
= —Lglr Z[Fla Fr]é}ﬁ}) + Fblr Z[Fla Fr]&{;flc}) - Fclr Z[Fla FT]E:;,})
m#t m#t m#t

Falr Fblr Fclr

:—Zdet Fuim Foum Fam
m#t Fm«m Fbrm Fcrm

This proves the statement. [

The following statement takes place.

Lemma 5.3.2. Suppose that the function F' = F(xq,...,xN) satisfies the commutativity
equations (5.3). Then the matriz

F112 F212 FN12
F113 F213 FN13
Fllr F21r FNlr
Q=1 : A (5.22)
Fllt F21t FNlt
FllN F21N FNlN
Flrt F27't e FNrt

where 2 < r <t < N 1is singular.
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Proof. Let D = det . Let R; denote the i*" row in the matrix Q. Let us now perform
Laplace expansion of D along rows number » — 1, t — 1, N, that is along the following

rows of ():

erl = <F11T7F21r7 cee 7FN1’I”)7
Rtfl = (F11t7F21t7 .. '7FN1t>7
RN - (Flrt7F2rt7 B 7FN7‘t>7

In the notations of Laplace expansion formula (5.8) we choose [ = {r —1,t — 1, N} and
J ={a,b,c}, where 1 <a < b< c<N. Hence we have

Fal'r Fblr Fclr
QIJ = | For Fyie Fe |- (5-23)
Fart Fbrt Fcrt

By formula (5.8) the determinant D takes the form

Falr Fblr Fclr
_D = Z (o det QI/J/ det Falt Fblt Fclt 5 (524)
J Fart Fbrt Fcrt

where I',J" are the complements of I, J respectively in [N] = {1,..., N}, 0; = (—1)* and
=7 icrt+dc;i=N+r+t+a+b+c—2 Now by Lemma 5.3.1 the determinant

(5.24) can be rewritten equivalently as

Foir For  Far
D:_ZgjdetQI/J/<Zdet Falm Fblm Fclm )
J

m7t Farm Fbrm Fcrm
Fllr F217’ FNlr
Fllm Fle FNlm
F112 F212 FN12
= Z det ,
mat Fll,u FQl,u FNlu
Fun Fany - Fanin
Flrm F2rm e FNrm

where p runs from 2 to N excluding r and t. Hence D = 0 since for each m the determinant
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contains a pair of repeated rows. Hence the matrix @) is singular as required. O]
The following statement takes place.

Proposition 5.3.3. Assume that the function F = F(xq,...,xy) salisfies the commu-
tatiity equations (5.3). Assume also that the rank of the matriz (F;;), where 2 < i <
N,1<j <N, is N—1. Then the coefficient matriz corresponding to the system (5.7)
where functions A¥, (k=1,...,N) are given by formula (5.20), is diagonal.

Proof. Let us consider the system of linear equations
N
Bip =Y A*Fij =0, (5.25)
k=1

for some functions A*¥ = AF(xy,... ,2x). The system (5.25) represents a homogeneous
system of N — 1 linear equations in N variables A, (i = 1,..., N). The assumption that
rank of the matrix P = (Fy;;), where 2 < ¢ < N, 1 < j < N,is N — 1 implies that the
system (5.25) has a non-trivial solution which is unique up to proportionality.

Now, fix 2 < s < N. The direct substitution of the functions A* given by formula (5.20)
into the right-hand side of relation (5.25) gives a row expansion of the determinant with the
repeated rows, hence the equation B;, = 0 is satisfied. Note also that A* # 0 for some k
since the rank of the matrix P is N—1. Now we will check the other non-diagonal equations,
namely, we will show that off-diagonal entries B,; = 0, where 2 < r <t < N. In order
to do so, we add one row corresponding to the non-diagonal entry B,; to the coefficient
matrix of the linear system (5.25) and we will show that the matrix is singular. This
will imply the existence of a non-trivial solution to the resulting system of N equations.
Indeed, as the first N — 1 equations have a unique solution given by (5.20) up to the

proportionality, it also has to solve the last equation. Thus we consider the equations
Bim=0,(m=2,...,N), By=0, 2<r<t<N. (5.26)

Then the coefficient matrix @) corresponding to equations (5.26) is given by formula (5.22)

which is a singular matrix as required by Lemma 5.3.2. This proves the statement. O]
The following statement gives further property for the matrix of the system (5.7).

Proposition 5.3.4. Under the assumption of Proposition 5.53.3 the matrix of the system
of linear equations (5.7), where function A*, (k=1,...,N) are given by formula (5.20),
satisfies

By = By, (5.27)

for all p.
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Proof. Let us first consider the case p = 2. Since the matrix (F};),where (2 <7 < N, 1<
k < N) has the maximal rank N — 1, this implies that there exists some ¢ (1 < ¢ < N)
such that Fio # 0. Following the idea of the proof of Proposition 5.3.3, let us consider

the following set of homogeneous equations:

Bim =0, 2<m<N,
Fi94(B11 — By) = 0. (5.28)

It is sufficient to show that the coefficient matrix corresponding to equations (5.28) is

singular. Let @ be the coefficient matrix corresponding to equations (5.28), That is

Fiio Fa1o Fnio
Fiis Foi3 Fni3
Q= : : : . (5.29)
Fiin Foin Fnin
Frog(Fiin — Fia2)  Fiog(For1 — Faza) -+ Fiog(Fnin — Fa)

Let D = det Q. Now from the identity (5.4) for i = 1,7 = 2,k = ¢, we have

N N
F12qF111 = Z FlQmqum - Z FllmFqu'

m=1 m=2

Similarly, from the identity (5.4) for i = 2,j = 1,k = ¢, we have

N
F12qF222 - Z FlZmF2qm - Z qumFQQm-
m=1

m#£2

Let R; denote the ¥ row in the matrix (). Then we have

Ry = (Fugsn)s Forgesn)s - - Fnvigesn), (1<kESN —1),

RN:<TN1;TN2a"‘7TNN)7 (530>

where

N1 = Z qumF12m - Z FllmFqua

m#2 m#l
N2 = Z qumF22m - Z FlQmFqua
m#2 m#l

ke = Fiag(Frin — Fra2), (3 <k <N).

Now let us perform the following row operation on the matrix () and let @ be the resulting
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matrix:

N
RN — RN = RN — Fllqu + ZFqukal-
k=2

Let 7n be the k" element in the row ﬁN of the matrix @ We have

N1 = E qumFIZma

m#1,2
?NZ = Z qumFQZma
m#1,2
N
TNE = Z FogmFigm — FrogFoor — FiigFiok, (3 <k < N). (5.31)
m=1
Note that
Fiig Fora -+ Fnio
Fiiz Fois -+ Fais
det : : : =0
Fun Fan - Fnin
F12m F22m FNZm

for any 3 < m < N by Lemma 5.3.2. Therefore one can add the row corresponding to
equation By, =0, (3 < m < N) to the last row of the matrix @ without changing its de-
terminant D. Let Sap, = (Fiam, Fooms - - - Fyam). Let us now add the rows —Fi g, Sopm, (m =
3,...,N) consecutively to the last row of @ The last row (T'n1,7n2, ..., 7nn) of the re-

sulting matrix has the form

rn1 =0, Ty =0,

N N
?Nk = Z F2qmF1km - Z qumFka = _[FlaFZ](q,k)a (3 < k < N)
m=1 m=1

Since [F}, Fg](q,k) = 0 by the commutativity equations, we get 'y = 0 for all 1 < k < N.
Therefore D = 0. This proves that By; = Byy. Similarly, one can prove that By = By,
for all p. O]

As a corollary of Propositions 5.3.3 and 5.3.4 the following statement takes place.

Theorem 5.3.5. Under the assumptions of Proposition 5.3.8 the matriz (5.7), where
functions A¥, (k=1,...,N) are given by formula (5.20), is proportional to the identity.

We also have the following result.

Proposition 5.3.6. Under the assumptions of Proposition 5.3.3 suppose also that there ex-

ists a mon-degenerate linear combination G = n*Fy for some functions n*, (k =1,..., N).



CHAPTER 5. COMMUTATIVITY EQUATIONS AND WDVV EQUATIONS 160

Let B = AFFy,, where functions A* are given by formula (5.20) and A¥ # 0 for some

k=1,...,N. Then B is a non-zero multiple of the identity matriz.

Proof. From Theorem 5.3.5 we know that the matrix B is proportional to the identity. It
remains to show that B is not the zero matrix. Let B;; = Z]k;v:1 AkF,-jk = ho;; for some
function h = h(z). We will show that i # 0. Assume that h = 0. Then A¥F};, = 0. Hence
n' A¥Fi; = 0 which means that the non-zero vector (A',..., AY) belongs to the kernel of
the form G (cf. a similar argument in [26]). Therefore G is degenerate, which contradicts

the assumption of G. Hence h # 0 and the statement follows. [l

The following theorem is a corollary of Theorem 5.3.5 and Proposition 5.3.6, and it
confirms that function F' which satisfies the commutativity equations also solves WDVV

equations under some non-degeneracy conditions.

Theorem 5.3.7. Assume that the function F = F(xy,...,xx) on V = CV satisfies the
commutativity equations (5.3). Suppose that for a fized iy, 1 < ig < N the rank of the
matriz (Fi;;) where 1 <i,7 < N, i # iy is N — 1. Suppose also that there exists a non-
degenerate linear combination G = n'F; for some functions n',(i = 1,...,N). Then F
is a solution of WDVV equations (5.2) where the matriz B is given by B = A*F, where
functions A are given by formula (5.20).

Proof. From Theorem 5.3.5 we know that for iy = 1 the matrix (5.7), where functions
A* (k=1,...,N) are given by formula (5.20), is proportional to the identity. Note that
the same arguments can be applied for any ig and the matrix (5.7) is proportional to the
identity in this case as well. Moreover, from Proposition 5.3.6 we know that the matrix
(5.7) is a non-zero matrix, therefore the system of WDVV equations (5.2) is equivalent to
the system of commutativity equations (5.3) and the statement follows since F' solves the

commutativity equations. ]

Remark 5.3.8. Note that under the assumptions of Theorem 5.3.7, function F also
satisfies WDVV equations

EF'Fo=FF'F, i, k=1,...,N

provided that matrices F}; are non-degenerate. Indeed these equations follow from equa-
tions (5.2) for any particular non-degenerate combination B = A'F; by the result from
[41] (see also [40]). It also follows that F' satisfies the WDVV equations

FG'F,=F,G'F;,, i,j=1,...,N

for any non-degenerate linear combination G of matrices F;.
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5.4 The identity field

In this section we define a natural multiplication on the tangent planes T,V associated
with a solution F' of the commutativity equations. We find the identity vector field of this
multiplication and establish that it is proportional to the vector field Zi\;l A%, where
functions A* were defined in Section 5.3. Thus we will express the identity vector field in
terms of F' for arbitrary dimension N.

For any functions v = (u!,...,u’), v = (v!,...,0"): V — V, consider vector fields
Oy = u'0yi, 0, = v'0y € T(TV). Let us define the following multiplication on the tangent
space T,V for generic x € V:

Oy * Oy = UV F Fi5.0,0. (5.32)

Note that multiplication (5.32) defines a commutative algebra on T, V.

Consider a vector field

e=e"0,x, (5.33)
where " = ¢¥(z!, ..., 2") are some functions. Consider the N x N matrix B = (By;)};_,
given by

Bjj =e(F;) = " Fye, i,j=1,...,N. (5.34)
The following statement takes place.

Proposition 5.4.1. The following statements are equivalent:

(1) The matriz B with entries given by (5.34) is equal to the identity,

(2) The vector field e given by formula (5.33) is the identity vector field of the multi-
plication (5.32).

Proof. From relations (5.32), (5.33) and (5.34) we have
e Jy = €V 0y % Opy = €'V FijOpr = Bjv? Oy (5.35)
Let us firstly assume that Bj; = d,;. Then relation (5.35) reduces to
e %0, = O0I O = 190, = .

That is statement (2) follows from (1).
Secondly, assume that e is the identity vector field of the multiplication (5.32). Then

from relation (5.35) we have
ex 0, = Bjkvjﬁzk =0, = 1v70,;.

This implies that Bj; = d;;, that is statement (1) holds. This proves the statement. [
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Proposition 5.4.1 allows us to reformulate Theorem 5.3.5 as follows.

Theorem 5.4.2. Assume that the function F = F(xy,...,2x) on V = CV satisfies the
commutativity equations (5.3). Suppose that for a fized ig, 1 < ig < N the rank of the
matric (Fi;) where 1 < 4,57 < N, i # iy is N — 1. Suppose also that there exists a
non-degenerate linear combination G = n'F; for some functions n°, (i = 1,...,N). Then
there exists a unique vector field e = e*0,x, where e& = e*(zt, ... xN) are some functions,
such that e(F;;) = d;5. Moreover, the vector field e is the identity vector field of the
multiplication (5.32), and it has the form & = h™t Ak, where functions A* are given by

formula (5.20) and h = A*Fy; (for anyi=1,...,N).

Proof. From Theorem 5.3.5 we know that the matrix B with its entries given by formula
(5.7), and functions A%, (k=1,..., N) are given by formula (5.20), is proportional to the

identity matrix. That is we have
B = A*F, = hiy, (5.36)

where Iy is the N x N identity matrix and h = AXF,; for any ¢ = 1,...,N. Let
B =h"'B. Thus B is the identity matrix and its entries have the form

Bij = h 1AFFyy = 6,5, (5.37)

Now let e = h™'A*9,x. Then by (5.37) we have e(F};) = h=*A*F};, = §;;. Therefore, by
Proposition 5.4.1 the vector field e = h=tA¥d,x is the identity vector field of the multipli-
cation (5.32) since the matrix (5.37) is the identity matrix. This proves the theorem. [J

Now we are going to generalize Theorem 5.3.7 to the case of arbitrary constant metric

g in place of the standard metric d;;. Thus we start with equations of the form
Fijag® Fop = Frjag® Fau, (5.38)

where the summation over repeated indices is assumed, and we will show that metric g
can be represented as a linear combination of the third order derivatives of the function

F under some non-degeneracy assumptions.

Theorem 5.4.3. Let F = F(x!,... 2) be a function on CN that satisfies equations of the
form (5.38) for some constant non-degenerate matriz (¢*°), wherei, j, k,l,a,3=1,...,N.

Let C be the constant matriz of change of variables such that
y' = Clad, (5.39)

wherey, ..., y"N is a new coordinate system and the matriz g satisfies the relation C’\f‘ajﬂg” =
68, Let F(y) = F(x). Suppose that there exists io, (1 < ig < N) such that the matriz
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(Eoij(y)) has rank N — 1, where 1 < 4,7 < N, i # iy. Then there exists a unique vector
field e = e*(x)0y for some functions e*, (k=1,...,N) such that

e(ﬂm) = ek(x)Fklm = Gim, (540)

where (gin) is the inverse matriz for (g*°).

Before we prove the theorem, we give firstly a prove of the following lemma which is

needed.

Lemma 5.4.4. Relation @‘“@Bg” = 0°7 implies that Y-, 6365(5"5 = Geq, where the
matriz C is defined by formula (5.39).

Proof. Firstly, note that for any matrices G and H, if GH = I;, where I is the identity
matrix, then HG = I;. This is easy to show as GH = I; implies that H = G~! and
we know that GG=! = G7'G = I;. Now, let us multiply relation @O‘Gjﬁg” = 0% by C¢,
we get @B g% = C§. By multiplying this relation by C} we get g* = >, C4C}. This
relation after multiplying it by g, becomes 6 = 8 C’gC’ggac. Let us also multiply this
relation by Cp' so we get O = Cg,.. Finally, by multiplying this relation by C§ we get
> égcg = gea Which is equivalent to the relation 6?0;‘(50‘5 = gcq- This proves the

lemma. ]
Now we give the proof of Theorem 5.4.3.

Proof. Let C be the matrix such that C’,fzéjk = 6%, Thus we have 2’ = Cly’/. We also have
0y = Cldyi, Oy = Cl0,. (5.41)
Since @”‘@6 g7 = §°%, then this implies that
CLCT O™ = gay (5.42)
by Lemma 5.4.4. From (5.41) we have the following relations:
Fj() = 0 F(z) = Cj0,: F(y) = CiFi(y). (5.43)

Similarly, we have
Fouly) = CL,F (@), (5.44)

Hence, we have the following relation:

Fyjr(x) = CpCiClFrma(y). (5.45)
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By multiplying relation (5.45) by C?C{C* we get
Fely) = CECICE Fypu(@). (5.46)
Now let us consider the system of equations (5.38), that is,
F;09" Farg = Frjag™ Fau. (5.47)
Then from relation (5.45) we see that relations (5.47) are equivalent to
CrCICH Frgrg™ P CaCh O F g = CCICH F gy g™ C4CLCE F . (5.48)
By relation (5.42) we reduce relation (5.48) to
CPCY Frpgr 0" Fupa = CiCL gy 6 Fopa. (5.49)
By multiplying equation (5.49) by C:C* this equation reduces to
Frgr0 Fumi = Frugr0® Fana, (5.50)

that is [, and F,, commutes. Now since mnk(ﬁ’iozj) = N — 1, then by Theorem 5.3.5

there exists a unique vector field e given in the coordinate system 3, ..., y" by

e(y) = € (y)0y

such that for the function F we have

e(Fap(y)) = € () Fjap(y) = das. (5.51)
Now we will show that e(Fy;(x)) = gap. From relation (5.45) we have
0yi Fup(2) = Fiap(w) = CECLCT Frym (y)-

Hence we have
Ci0yi Fup(x) = CLCY Fim (y).

This equation implies that

& (y(2))Cidy, Fup(x) = & (y(2)) Ejim (y) CLOF" = 81nCLCP" = gup

by relation (5.42) as required. This proves the theorem. ]

To conclude this section we illustrate Theorem 5.4.3 by considering prepotential F'
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coming from a Frobenius manifold.

Example 5.4.5. Consider the prepotential F' of an /N-dimensional Frobenius manifold

given by
Ft)=Q+ f(t?,...,tY), (5.52)

where () is a cubic term given by

N-1
Q= %((tl)%N +y titN“_i). (5.53)

1=2

We assume that F'(t) satisfies the equations F;GF; = F;GF;, for all i,j =1,..., N, where

G=G"'= (5.54)

= o O O
oS O O

0
1
0
0

It is immediate to check that G = F;. Now we are going to derive this equality by applying
Theorem 5.4.3.
Let C, C be the constant matrices of the change of variables such that C =C"and

t=Ciad, o' =Cit, (5.55)

where 2!, ..., 2" is a new coordinate system and the matrix G' = (g%) satisfies the relation

(ﬁg(?f g = 6*%. Then matrix C' is given as follows:

[ 1 7
—3 0 3 —3 0 3
_ 1 1 _ 1 1
2 2 2 2
C=10 1 0|, or C=1]0 01,
7 1 7 1
) 0 1 7 0 1

for N being odd or even respectively. That is the ij-entries C’]’: of the matrix C' are given
by
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e If Nisoddlet b= %, then the entries are

1 2 b—1
Ci=0y=--=0G7 — Ty
b b1 N
Cb:CbL =--=0Cy=1
1 2 b—1
CN:ON—1:"'_Cb+1 5
b1 b2 N
bel :ij2 =...=CN =,
and all the other entries are zeros.
e If Niseven let b= %, the entries are
1 2 b v
b1 b4-2 N
Cb-&J-rl = Cb—i+-2 = = CN =1
1
2 b
Czl\f:ON—1:"'— b+1 = oo
Cht =GPt == O =i
and all the other entries are zeros.
The matrix C is given as follows:
7 0 —% 7 0
R i -3 ~ 1 -3
C=10 1 0], or C=1]0
1 1
1 3 1 3
1 0 : 1 0

N[

1
2

166

for N being odd or even respectively. Hence we have the following relations. Firstly, for

N being odd number we have

;o
—%@1 + 10y, k=1,
) N -1
—%atk + 01k, 2< k< 5
N+1
axk == 8tk, k: == ;_ )
1 N+3
—atNka + atk7 + S k S N — 1,
2 2
1
_at1+atN7 k:N
\ 2
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Secondly, for N being even number we have

(

_%atl + iatN, l{} = 1’
' N
—zﬁtk + 0Nk, 2<k< —,
A N 2
iatNJrl—k +atk, 5+1§k§N—1,
1
_atl‘{—atN, k:N
\ 2

Let F(z) = F(t). Define Fjy(x) = 9,0y, 05, F(t). Since O f(£2, ..., 1) = idpn f(£2, ..., 1Y),

we also have

01 Op1 Opr (12, .. 1Y) = 10, Opn Opr f (12, .., tY), 2<7r <N,
6x16xj81kf(t2, e ,tN) = i@xwﬁxjﬁxkf(ﬂ, c ,tN). (5.56)

The following relations are also easy to verify:

0101 Opr Q.. tN) = 10,1 0,0 Q(th, ..., tN) =0, 2<r <N —1,
010,108 Q(tY, .. tN) = 10,0, O Q(E, . .. 1Y),

031040k QL .. tN) = 10,80 0 Q(t, ... ), #k,

01 0k 0 Q(t*, .. 1Y) = i0,n 0 0 Q(t, ... Y)Y —i, 1<k <N. (5.57)

Hence relations (5.56), (5.57) imply the relations

Fir =iFiny, 2<r <N, (5.58)
Fu, = iFnj, j#Fk (5.59)
Fion = iFyme —i, 1<k<N. (5.60)

Assume that there exists jo, (1 < jo < N) such that the matrix (onk(a:)) has rank
N — 1, where 1 < j,k < N, j # jo. One can now define the matrix B = Akﬁk, where
A are given by formula (5.20), and there exist at least 7, where (1 < r < N), such
that A" # 0. Now from relations (5.58), (5.59) and formula (5.20) it is easy to see that
Al =AY and that A¥ =0 for 2 < k < N — 1 since the right-hand side of formula (5.20)
for 2 < k < N — 1 is a determinant of a matrix which contains two proportional columns.
Thus the matrix B takes the form

B=A'F, + ANFy = AV(iF, + Fy). (5.61)

Hence for j # k we have Bj, = AN(iﬁljk + ﬁNjk) =0 by (5.59). Let us now find By,. We



CHAPTER 5. COMMUTATIVITY EQUATIONS AND WDVV EQUATIONS 168
have from (5.60) that
By, = A P + AN Fypy = i AN (i Fygg, — 1) + AN Fype = AV,

Hence we have shown that B = hly, where h = AY. Let us now define the vector field
e = ef0, by e = h™1A*0,x. Then we have

e—=ht (Alaxl + ANaxN) — piav (iaxl + a,EN> — 01 + Opn = Oy

As expected, this formula coincides with the well-known formula of the identity field of a

Frobenius manifold.

Remark 5.4.6. We note that the maximality of rank condition is sufficient but not
necessary for the existence of the identity. Indeed, in the case of Example 5.4.5 with
N = 2 we have

"

~ 1 "o, . jd Z . .
FnzZZ—f (iz' + 2%), F122=—Z+Zf (iz' + 2?).

Then the matrix (ﬁng ﬁlgg) has rank zero if f(t?) = i(tg)?’. Nonetheless e = 9,1 is the
identity field.

5.5 Applications

In this section we explore the close relation between commutativity equations and WDVV
equations established in Section 5.3 through the existence of the identity field. This leads

to new solutions of WDVV equations.

5.5.1 Applications to Euclidean trigonometric V-systems

Let us recall the function F' given by the formula (4.53)

F = anf((oz,a:)), (5.62)

acA

where A is a finite set of vectors in V = CV, ¢, € C, are some multiplicity parameters,
where the function f is given by (1.11). Let us recall some notations from Section 4.5. Let
A be a finite set of vectors in a Euclidean space V' with the bilinear inner product (-,-).
Let ¢, € C,a € A be some multiplicity parameters. Assume that A belongs to a lattice

of rank N. For each vector o € A we recall the set of its collinear vectors from A:

ba ={yv€Ar v~ a}.
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Let 6 C 6, and o € d4. Then for any v € § we have v = k,aq for some k, € R. Note that
k., depends on the choice of o and different choices of ay give rescaled collections of these

parameters. Define C§° = Z ka’3~ Note that C§° is non-zero if and only if C’fo # 0 for

YES
any &0 € 0.

As a corollary of Theorems 4.5.8, 5.3.7, the following statement takes place.

Theorem 5.5.1. Suppose that a configuration (A, c) satisfies the following conditions

(1) A is a Euclidean trigonometric \/-system,

(2) 3w pea, Cacsla, B)Bagla,b)a A B =0,

(3) C3° #0 for any o € A, 6 C by, 0 € dq,

(4) The function F given by formula (5.62) satisfies that for a fized iy the rank of the
matriz (Fiyi;), where 1 <i,5 < N, i #ig, is N — 1,

(5) There exists a non-degenerate linear combination G = C'F; for some functions
Ci(i=1,...,N).

Then function (5.62) satisfies both the commutativity equations (5.3) and the WDVV
equations (5.2), where the entries of the matric B = (Bi;)N,_, are given by formula (5.7)

and functions Ay = Ag(x1,...,zN) are given by formula (5.20).

We have shown in Theorem 4.8.1 that the class of solutions of commutativity equations
corresponding to FEuclidean V-systems is closed under the restrictions. As a corollary of

Theorem 4.8.1 and Theorem 5.3.7, the following statement takes place.

Theorem 5.5.2. In the notations and under the assumptions of Theorem 4.8.1, assume
that prepotential (5.62) satisfies the commutativity equations (5.3). Let B C A be a
subsystem of rank n. Suppose that the prepotential

Fs= Y cf((@f), &€ Ms, (5.63)

acA\B

satisfies that for a fized iy the rank of the matrix (Fp)i,ij, where 1 < i,5 < mn, i # iy, is
n — 1. Then prepotential (5.63) satisfies the WDV'V equations of the form

(Fp)iB~ Y (Fg); = (Fg); B~ " (Fg);, i,j=1,...,n, (5.64)

where (Fg); is the n X n matriz with entries

P Fy
((FB)i)pg = (FB)ipg = 920,01,

and the entries of the matriv B = (By;)},=, are given by formula (5.7) (with N=n) and
functions Ay = Ag(x1,...,x,) are given by formula (5.20) provided that B # 0.
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5.5.2 New solutions of WDVYV equations

In this subsection we check that maximal rank assumption from Theorem 5.4.2 is satisfied
in the example related to root system F}. This leads to a new solution of WDV'V equations.

Consider the positive half of root system Fj consisting of vectors
1
FI = {ei (1 <1< 4), €; + €; (1 <1 <j < 4), 5(61 + €9 + €3 + 64)}. (565)

Let r be the multiplicity of the short roots and let ¢ be the multiplicity of the long roots.
We assume that r, q # 0.

Recall that by Theorem 4.1.4 (see [3]) function (5.62) for the collection A = F}" satisfies
commutativity equations (5.3) if and only if r = —2¢ or r = —4¢. Now we will check that
the condition of Theorem 5.3.5 is satisfied for both cases.

Consider the following 3 x 4 matrix

Fiio Foia Fz12 Fao
Q = F113 F213 F313 F413 . (5'66>
Fiia Fory Fs14 Fu

Matrix @ is the coefficient matrix corresponding to the homogeneous system of equations
By = Bis = Byy = 0 where By, is given by formula (5.25) for some functions A, =
Ay (1, 9, 23, 4), where function F' has the form (5.62) and A = F}" is given by formula

(5.65). The following statement takes place.
Lemma 5.5.3. Matriz () has rank three.

Proof. To show that rank(Q) = 3, we will show that the following 3 x 3 sub-matrix Q has

rank three, where

Q: F113 F213 F313 . (5'67>

That is we will show that matrix (5.67) is not singular. Let D = D(z) = det Q. From
(5.67) we have

D(z) = Fiia(FisFizs — FizsFiaa) — Fioa(FiisFisa — FuuaFhss) + Fias(FuusFiaa — FiiaFig).
(5.68)
We will establish that D(x¢) # 0, where xy = (21,0,0,24). We have the following third
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order derivatives:

r x x x x
Fip = q(cot (x1 + x9) — cot (x1 — :vg)) + §<cot(51 + ?2 + 53 + 34)
X X2 Zs3 4 Ty X2 €3 T4 € T2 X3 Xy
—cot (-2 p(E 22y (22
oty -5 g ) tetG g Ty Tty )
1 o) €3 4 x X2 xs3 Xy Ty X2 T3 Xy
p(E 2By (222 = p(L 2Bt
oty +y g —3) (g g ttetg g -5 +5)
1 X2 xs3 Xy
PIETIE I T
oty -5 +3T3)
r x x x
Fiiy = q(cot (x1 4+ z4) — cot (1 — x4)) + g(COt (?1 + 52 ?3 + 54)
1 T2 €3 Ty X T2 xs3 Ty x T2 €3 Tyq
oty -y g )Tt Gy my Tty )
T X2 Zs3 4 x T2 €3 T4 € T2 €3 T4
—cot (L4243 2 gL 23 - p(L 423,
co(2-+2—+2 2)+co(2 5 2—+2)+co(2—+2 2—+2)
T i) I3 Ty
SETET N P
+ co (2 5 + 5 + 2)

1 2 Z3 4 1 T2 X3 Ty T 2 X3 Ty
+cot(2—2—2—2)+cot(2+2—2—2)+ct(2—2 2—2)
1 T2 X3 4 x X2 Z3 Ty T X2 Z3 Ty

t(—+ —+ — — — t(—— — — — — t(—+— — — + —
tet(G g+ mglretlG - oy F ) ety -5+

X2 €3 4 X2 X3 X1 X2 X3 Ty
t(———= = —= t(=+ === t(=——=+=—-=
tot(g -5 g )tetG g g o)ty -yt - 5)
x1 T2 X3 4 1 2 x3 4 x1 X2 x3 Xq
+cm(2-+2 2-—2)+cm(2-—2-—2-+2)+cm(2+—2—-2 2)
I ) T3 Ty
toot(5 -5+ 2)>’
r 1 2 €3 Ty 1 ) x3 4 Z1 ) x3 Ty
}7——<t— =4+ t(=— === —cot (= +—=——=—-=
= gloot(G+o+gtg)tot(y -5 -y -g)-otlg+ro -5 -3
xr xr T X xr T xr xr T
—cot (2422 o ot (R 242 ot (= -2 -2
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T T i) T3 Ty T i) I3 Ty T i) I3 Ty
F :{ T e T T RIS o Gt B R g2 M
m=glotlg oyttt -5 -y -)retg g -5 -3)
r1 Ty T3 X 1 Ty T3 T T Ty Ty X
—cot (- 242 o ot (4 2+ 2 - ot (B - 2 -2

2 2 2 2 2 2 2 2

T i) T3 T4 T i) T3 Ty
—cot (422t gL - 242 —)
(:o(2+2 2+2)+co(2 2+2+2)

Now we have the following two cases to consider.
Case (1). » = —2¢. We have

F112|zo = 07 F123|ro = 07 F134|x0 = 07

Fiualz, = q(cot (x1 + x4) — cot (x; — x4) — cot (El + ?4) + cot (?1 _ ?4)>7
F122|$0 = q<200tx1 — cot (% + %) — cot (% _ %)>’
Fisg)ze = q<2cot:171 — cot (% + %) — cot (% _ %))

Hence, the determinant (5.68) reduces to

D(l"o) = FiooF114F133
— q3<cot (x1 4+ x4) — cot (xq — x4) — cot (% I $4> 1 cot (ﬂ _ ﬂ))
Xyq

T 2
X <2 cot xp — cot (? + ?) —cot (— — —)) # 0. (5.69)

Case (2). r = —4q. We have

Fii2lzg =0,  Fiagley =0, Figals, =0,

T xZ €T €T
Fiialzy = q(cot (1 + 24) — cot (x1 — x4) — 2 cot (51 + ?4) + 2 cot (51 - ?4)>,
Ty X4 1 T4
e o Rl =)
Ty | X4 A R
Fissla, = 2q<cot 1 — cot (? + 5) — cot (? — 5)>
Hence, the determinant (5.68) reduces to
D(xg) = FioaF114F133
— 4q3(cot (x1 4+ x4) — cot (1 — x4) — 2cot (% + 2%) + cot (% — %))
T T4 x1 Ta\2
tx; —cot(— + —) —cot (— — — ' '
x(coxl co(2+2) co(2 2)) # 0 (5.70)

This proves the statement. [
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Now let us define

Fo12 F312 Fuo Fiio Fz12 Fio
Al =det | Fouy Fys Fus |, A= —det| Fiy Fy Fus |,
Fors Fz1a Fiug Fiia Fza Fig
Fiiz Forp Fyio Fiiz Fop F3ip
A’ =det | iy Faz Fus |, A'=—det | Fiiz3 Foy Fus | - (5.71)
Fiig Foiy Fig Fiiy Foig Fzu

As a corollary of Theorem 5.3.5 and Lemma 5.5.3 the following statement takes place.

Theorem 5.5.4. Consider the function

4 4

1
F = TZf((L’Z) +7r Z f<§(€111 +52$2 +€3$3+€4$4)> +qu(xlﬂ:xj), (572)
=1 ei€{1,-1} i<j
Suppose that parameters r,q satisfy the conditions r = —2q or r = —4q. Define the vector

field
4
e=Y A(x)dy, (5.73)
=1

where functions A'(x) are given by formulas (5.71). Define 4 x 4 matriz B = (By)} -, by

4

By =e(Fy) =Y A"x)Fy, i,j=1,....4. (5.74)

k=1
Then the matriz B is proportional to the identity matrix.

This leads us to another solution of WDVV equations.

Theorem 5.5.5. Consider the function (5.72) such that parameters r,q satisfy the con-
ditions r = —2q or r = —4q. Then F satisfies WDV V equations (5.2).

5.5.3 The identity field for root system F}

In this subection we consider A = F;" given by formula (5.65) and the corresponding
function of the form (5.62) which satisfies commutativity equations (5.3). We give explicit
simple formulas for the functions A* (k = 1,2,3,4), and we show that the metric B =
Zizl A*Fy is a multiple of the identity matrix I,. By uniqueness of the identity field
this implies, in particular, that these functions A* coincides up to proportionality with

corresponding functions defined in Section 5.3 by determinant formulas.
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Let [4] = {1,2,3,4}. Let us also introduce the following functions:

1+ 29+ T3+ 24

by = (A' + A% 4+ A% + A*) cot( 5 ),
by = (A4 A7 = AP ATy cor(LT 2T
by = (A1 + A2 4+ A% — A cop(TTR T T,
by = (A + 42 — 45 4 A cop( T2 T,
bs = (A' — A + A% 4 A% (:o‘c(gc1 - Ig—gl’i’) —1—904)7
by = (A1 — A% — 4% — Aty cor(L2 T T
by = (A' — A% + A% — AY) cot(ml _m;x?) _M);
T1 — Ty — T3 + T4

= (A — A% — A% + AY) cot( 5 ),
(A + AQ) ($1 + 1‘2), blO = (Al — AQ) COt(QTl — [L’Q),

bll = (A + Ag) (5131 + 113’3), b12 = (Al — Ag) COt(.ﬁCl — .’13'3),
(Al

b1 = + A% cot(zy + x4), by = (A" — AY) cot(z) — 24). (5.75)

We consider separately two cases r = —2¢q and r = —4q.

5.5.4 F; with the condition r = —2¢q

Assume that the multiplicity parameters r, ¢ satisfy the condition r = —2¢. Define

AF = sinxk(cosxk(—l + Zcos 2z;) — 2 Hcosxz), k=1,2,34. (5.76)
ik i#£k
The following relation takes place.
Lemma 5.5.6. Functions A*, (k= 1,2,3,4) given by formula (5.76) satisfy the relation
4

i . E1X1 + E9X9 + E3T3 + £4T4 €121 + E2%2 + €3%3 + €424
ZgiA = sin( 5 )< — 2 cos( 5 )

=1
€ix; + €515 — 3erxy — 3611 €ix; +€;T; + €pxy — 312 )
+ Z cos( 5 ) Z cos( 5 )],
1<i<y<4 1<i<j<k<4
kvle[]jL\l{i,j} le[d\{i.5,k}

(5.77)
where g; € {1, —1} for all i.

Proof. Let us substitute functions A, (k = 1,2, 3, 4) from relation (5.76) into the left-hand
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side of the equation (5.77). Then by rearranging the terms one gets the formula

4 4
o1 , .
;_1 g A = 5( E sin (2e;z; + 2¢,x;) — ;_1 sin (2gixi)>

1<i<j<4

-2 < sin (£121 + £22) cos (e323) cos (e4x4) + sin (323 + £424) cos (£121) cos (52x2)> :

(5.78)
On the other hand we have
sin(&wi + E;T; + e + Ell'l> COS(EiZL‘Z‘ + E;X5 — 35k:93k — 3€l$l)
2 2
1
=3 (sin (eix; + €@ — ey, — gxy) + sin (2e5xy, + 251951)). (5.79)
Also we have
Sin(gimi + €iT; “+ ey + Ell‘l) COS(éixi + € + T — 38[Il>
2 2
1
=3 ( sin (g,x; + €25 + exry, — €12;) + sin (25@;)). (5.80)

Now let M be the right-hand side of the equation (5.77). Then from relations (5.79) and
(5.80) we have

1 .
M = —sin (e121 + 99 + £33 + £414) + = Z (sm (eix; + €jxj — ey — €127)

2 L=

1<)

k<l

k7l#l7j
1
+ sin (2ex) + 28m)> b E <sin (eix; + €@ + ey, — €27) + sin (25m)). (5.81)

i<j<k
I#i,5,k

Note that

sin (e1xq + 9y + £33 + £414) = sin (€121 + £2x9) o8 (£33 + £424)

+ cos (g1 + 29) Sin (€323 + €424).

Note also that
Z sin (g,x; + €25 — epxy, — €2y) = 0.

1<j
k<l
kl#i,j
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Also we have

sin (811‘1 + €99 + €373 — 841‘4) + sin (81[[’1 + €9X9 — €373 + 54[L‘4)

= 2sin (e1x1 + £2x9) 08 (£33 — €424),
and

sin (e121 — €99 + £3%3 + £4%4) — SN (6121 — €909 — £33 — E4T4)

= 2cos (121 — €9%9) sin (e323 + £424).

Thus, formula (5.81) can be rearranged as

4
M = —sin (e121 + €222) ( cos (€33 + £414) + cos (e3w3 — €474 ) 1 Z sin (2e;x;)
2 i=1
. 1 .
— sin (e3x3 + £474) ( cos (121 + €2x9) + cos (6121 — 52902)) 5 sin (2g,x; + 2¢,x;).

<i<j<4

(5.82)

It is clear that the right-hand side of the formula (5.82) is equal to the right-hand side of
the relation (5.78), which proves the lemma. O

The following identity holds.

Lemma 5.5.7. Functions A*, (k= 1,2,3,4) given by formula (5.76) satisfy the identity

24:&;141- COt(élxl + €929 —g €33 + 64[)34)

=—-1- COS({:‘ll'l + €99 + €373 + 841‘4) + COS(Slel + €9X9 — €33 — 841‘4)
+ cos(e111 — €9%9 + £3%3 — £44) + COS(€1X1 — E9g — £33 + €4T4)

4
1 1
+ B g cos(2e,x; + 2ex;) — 5 E cos (g;x; + €2 + k), — €127) ~3 g cos(2e;x;).
1<i<j<4 i<j<k i=1
l#1,5,k

—_

(5.83)

where €; € {1, —1} for all i.
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Proof. We have by Lemma 5.5.6 that

4
i €1%1 + E2%9 + E3%3 + €474
E g; A" cot( )
=1

2
E1T1 + E9To + £33 + E£424 E1T1 + 920 + €373 + €424
= cos( 5 )( — 2 cos( 5 )
iTi r;— 3 -3 iTi i -3
" Z cos(s T + €5 - ERTE szl) B Z COS(E T + ;x5 +2€ka:k 51x1)>.
1<i<j<4 1<i<j<k<4
k,i€[4\{i.j} le[4)\{3,5,k}
k<l
(5.84)
Firstly, we have
€ +e +¢ + e
2 cos?( LT T 22 5 3703 4x4) = 1+ cos(e1x1 + €229 + €3x3 + €424). (5.85)
Secondly, we have
COS(sixi + €T “+ e + Ell‘l)cos(é‘ixi + EjL; — 35k$k — 3811’1)
2 2
1
=3 ( cos(g;x; + €jx; — ey, — €11y) + cos(2exzy + 251xl)>. (5.86)
Also we have
COS(Ei:Ci + ;X5 + ey + 5[1'1) COS(Qxi + E;j; + Epxy — 3€l$l)
2 2
1
=5 (cos(aixi + ez + eprp — ) + cos(2€lxl)>. (5.87)

Relation (5.83) follows by substituting relations (5.85)—(5.87) into the right-hand side of
relation (5.84). O

We will also need the following identity:.

Lemma 5.5.8. For distinct i,7,k,l € [4] we have

g A" + ;A = sin(ex; + 525) ( cos(g;x; + €j;) — 2 cos(epxy) cos(g,2y)

+ cos(e;z; — gja5) (— 1+ cos(2e,my) + cos(Qalxl))>, (5.88)

where functions A* (k =1,2,3,4) are given by formula (5.76) and g; € {1,—1} for all .
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Proof. From formula (5.76) we have

A ' + ;A = 552- sin(2xi)< -1+ Z cos 2xk> — 2¢;sinx; H COS T},

ki ki
1
+ §5j sin 23:j< -1+ Z cos 2xk> — 2¢;sin H COS Ty,
ki e

1
= §<sin(25imi) + sin(25jxj)> ( — 1+ cos(2exzy) + COS(QEll’l))
1
+ B sin(2e;x; + 2¢jx;) — 2 cos(exy) cos(gxy) sin(e;z; + €;x5). (5.89)
By applying formulas
sin(2e;x;) + sin(2e,x;) = 2sin(e;z; + €x;) cos(g;x; — €;x5),
and
sin(2e;x; + 2¢;x;) = 2sin(e;x; + €x;) cos(e;x; + €;25),
we see that relation (5.89) takes the form (5.88). This proves the lemma. O]

The following statement confirms that with the choice of the functions A; given by
formula (5.76), the metric B = 3_r_, A¥z;, is diagonal.

Proposition 5.5.9. The linear combination B = Zizl AFFy,, where functions A* are

given by formula (5.76) and function F' has the form (5.62), is a diagonal matriz.

Proof. Let us show that the entry By, = Zizl AFFy5. = 0. In the notation of formulas
(5.75) we have

4 4
5312 = 4(A' + A?) cot(zy + 29) — 4(A' — A?) cot(z) — x9) — Z b; + Z b;.  (5.90)
i=1 :
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By making use of Lemmas 5.5.7 and 5.5.8 formula (5.90) reduces to

4
—Byy = 4(cos(x1 + x5) — cos(z — x2)> (cos(ml + o) + cos(x — xg))
q

— 8| cos(x; + x2) — cos(xy — :cg)) cos(x3) cos(xy)

2

_I_

CoS(T1 + To + T3+ 24) +CcOS(T1 + T2 — XT3 — 24

l\D

(
COS(T1 — T + T3 — T4 +Cos(x1 — Lo — T3 + X4
(

N— N N —T

2

_|_

cos(x1 + xo + w3 — x4) + cos(xy + x2 — T3+ 14

((cos(
(‘cos( ) )
— 2 cos( ) )
2<cos(:c1 s+ T3 + 24) + cos(z1 — 22 — T3 — 24)
((cos( ) )
2( (

cos(2xy + 2x5) — cos(2xy — 2x2)> (5.91)

Formula (5.91) can be rearranged as follows

4 ) .
—Bis = 168in z; sin 9 ( COS X1 COS L9 — COS X3 COS a:4>
q

+ 8(008(:61 + x9) — cos(zy — xg)) COS T3 COS T4 — 4 sin 2 sin 275
= 16sin z; sin x> ( COS Ty COS T9 — COS T3 COS a:4> + 16 sin x1 Sin 5 COS T3 COS T4

— 16 sin x1 sin x5 cos 1 cos xo = 0. (5.92)
The other off-diagonal entries can be done by symmetry. O

The following statement gives further property to the metric B.

Proposition 5.5.10. The linear combination B = Zizl AFEy where functions A* are
given by formula (5.76) and function F' has the form (5.62), is proportional to the identity

matriz.

Proof. By Proposition 5.5.9 we are left to show that By; = B, for all s = 2,3,4. Let us
consider s = 2. We have B;; = Zizl A*Fy1,. In the notation of formulas (5.75) we have

4
A A 1
¢ ‘B = —2A'cotm; + Z ((A1 + A cot(xy + x;) + (A — AY) cot(z; — :171)> —1 Z b;.

i=2 i=1
(5.93)
Also we have
. . 1o
q ' Boy = —2A%cot zy + ; ((A2 + A") cot(zg + x;) + (A% — A") cot(zg — xz)) ~1 ; b;.
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Hence from (5.93), (5.94) we have

4
q ' (B11 — Boy) = —2A' cot 11 + 2A% cot 25 + Z ((A1 + A" cot(zy + ;)

+ (A' — A" cot(z; — xl)) — i ((A2 + A") cot(zg + ;) + (A% — A") cot(z9 — xl)>

=3

(5.95)

Now by making use of Lemma 5.5.8 formula (5.95) reduces to

4 4

q ' (B11 — Boy) = 2(cos® 1 — cos® 15) — 2 cos® x; Z cos 2z; + 2 cos® X9 Z cos 2x;
i#1 i#2

+2cosx; Z cos ; ( cos(zz + x;) + cos(zz — x;))

3<i,j<4
i#j
— 2¢08 To Z cos z; (cos(z1 + x;) + cos(zy — z;))

3<iy<s
i#j
+ Z (cos®(z1 + x;) + cos®(z1 — ;) — Z (cos®(z2 + x;) + cos*(z2 — ;)

3<i<4 3<i<4

+2 Z cos(xy + x;) cos(xy — xz)( — 1+ cos2xy + cos 2l’j)
3<i,j<4
i#£]
-2 Z cos(xy + ;) cos(xy — xz)( — 1+ cos2x; + cos ij). (5.96)
3<i,j<4
i#£]

By applying identities

2 cos(a + b) cos(a — b) = cos 2a + cos 2b,
cos?(a + b) 4 cos*(a — b) = 1 + cos 2a cos 2b,
cos(a + b) + cos(a — b) = 2 cosacosb,

2cos’a = cos2a + 1,

it follows that By; — Byy = 0. Similarly one can check that By; = B, for s = 3, 4. O

Since the metric B = 22:1 AFFy is a multiple of the identity matrix, we can write
B = hly, where h = h(z) is some function. The coefficient of proportionality h = B;; for
any ¢ = 1,2,3,4. In order to find the explicit formula for the function h, let us first prove

some lemmas.
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Lemma 5.5.11. In the notation of formulas (5.75) we have

8
Z =—8— 42608 2z, + 2 Z (cos 2z, + 2x;) + cos(2z; — 2x])> (5.97)

i=1 1<i<j<d
where functions A* are given by formula (5.76) and function F has the form (5.62).

Proof. Relation (5.97) follows by direct substitution of the formulas of b; from Lemma
5.5.7 into the left-hand side of relation (5.97). O

Lemma 5.5.12. In the notation of formulas (5.75) we have

14 4 4 4
Zbi =3 - 12HCOSLEi —3cos2x; — ZCOSQJZZ' + 320032331 cos 2x;
i=9 i=1 i=2 =2

+2 Z cos 2x; cos 2, (5.98)

2<i<j<4
where functions A are given by formula (5.76) and function F has the form (5.62).

Proof. From Lemma 5.5.8 we have

Z b =2 Z cos(z1 + ;) cos(zy — ;) ( — 1+ cos 2z; + cos 2xy,)
i=9 2<i<4
Jke[A\ 1,2}
J#k

-2 E (cos(xl + x;) + cos(xy — xz)> COS T} COS T,
2<i<4
sl {1}

4

Z (cos x1 + 1) + cos?(x — xl)> (5.99)

i=2
Relation (5.98) follows by applying the following identities to the right-hand side of relation
(5.99):

2 cos(a + b) cos(a — b) = cos 2a + cos 2b,
cos?(a + b) 4 cos*(a — b) = 1 + cos 2a cos 2b,
cos(a + b) + cos(a — b) = 2 cos acosb.

Also we have the following relation which is easy to check directly.
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Lemma 5.5.13. .

E cos(x1 + 9%9 + €323 + €474) = 8 H COS ;.
cie{-1,1} i=1

The following statement gives the explicit formula of the coefficient of the proportion-

Proposition 5.5.14. The linear combination B = Zizl AFFEy . where functions A* are
given by formula (5.76) and function F' has the form (5.62), has the form B = hly, where
the function h = h(x) is given by

4
h(z) = (12 -2 Z cos 2x; — 2 Z cos (T1 + €2Xo + £33 + €424)
i=1

61‘6{—1,1}

N [

+ Z cos (293i+25j:£j)> = %(12q~|— Z Ca cOs (2(a, 7))

1<i<j<d acFy
sj_e{ijfl} <4
1 .
— 5( - Z Co + Z Co c0s (2(a, 7)) = — Z Casin® (a, ). (5.100)
a€F;" a€F;" aEF;

Proof. From Proposition 5.5.10 we know that h = B;; for any ¢ = 1,2, 3,4. In the notation

of formulas (5.75) we have

8 14
4
—BH = —8141 cot Try — Z bz +4 Z bz (5101)
q i=1 i=9
Note that
4
2A' cot 11 = —(1 4 cos 221) + (1 + cos 2z;) ZCOS 2r; — 4Hcos X (5.102)
i#1 i=1

Then by relations (5.101), (5.102) and Lemmas 5.5.11-5.5.13 we get

4
4
—Bj1=24—-14 Z cos2x; — 4 Z cos (1 + €99 + €373 + €424)
9 i=1 eie{-1,1}
+2 ) cos (2w + 2e51;). (5.103)
1<i<j<d
EjE{—l,l}
Formula (5.100) follows from relation (5.103). O

The following statement takes place.
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Proposition 5.5.15. Functions A* given by formula (5.76) have the equivalent formula

1

/L ——
4q

D caler,a)sin(2(a,z)), k=1,2,34. (5.104)

aeFj‘

Proof. Firstly, formula (5.76) is equivalent to the formula

1 . 1 . .
AF = —Zgin 2x) + 5 8in 2% Z cos 2x; — 2sin H COS ;. (5.105)

2 , ,
i#k i#k

Secondly, it is easy to check that the following identities take place in dimension four:

1
sin 2, Z cos2x; = B Z sin(2xy £ 2x;),

itk itk
Z sin(zy + g2 + €525 + g1y) = 8sinxy, H COS Ty, - (5.106)
556{7171} m;ék
s={i,5,l}

From (5.106) formula (5.105) becomes

1
Ak — 1 ( — 2sin 2z, + Z sin 2z, + 2x,,) — Z sin(zy + € + 525 + 5lxl)) . (5.107)
m#k es€{—1,1}
s={i,5,1}

Now it is easy to check that the right-hand side of relation (5.107) is equal to the right-hand
side of formula (5.104). This proves the proposition. O

The following statement is a corollary of Theorem 5.4.2 and Proposition 5.5.15.

Proposition 5.5.16. The identity vector field e for the collection A = F;" given by

formula (5.65) under the condition r = —2q is given by the formula
e=h"tA%, , k=1234 (5.108)

where function h is given by formula (5.100) and A* is given by formula (5.104).

5.5.5 F; with the condition r = —4q

Assume that the multiplicity parameters r, g satisfy the condition » = —4q. Define
A* :sinmk<cosxk+2ncosxi>, k=1,2,3,4. (5.109)
itk

We establish that identity field in this case is proportional to A*9; by performing analysis

similarly to Section 5.5.4. The following relation takes place.
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Lemma 5.5.17. Functions A*, (k = 1,2,3,4) given by formula (5.109) satisfy the relation

4
i . E1X1 + E92X9 + E3X3 + €424 €11 + E2%2 + €3%3 + €424
g g; A" = sin( ) (2 cos( )

— 2 2
€T + €5 + Ty, — 3811y )
A1
+ | 5 cos( 5 ) ), (5.110)
1<i<j<k<4
le[4)\{i,5,k}

where ; € {1, —1}.

Proof. Let us substitute functions A%, (k = 1,2,3,4) from relation (5.109) into the left-

hand side of the equation (5.110). Then by rearranging the terms one can get the formula

4
1
g1 AT 4+ g9 A? 4 343 4 g4A* = 3 z; sin (2e;;)

+2 ( sin (e121 + e99) cos (e3x3) cos (e424) + sin (e323 + £424) cos (€121) cos (52952)).

(5.111)
On the other hand we have
sin(gixi + €jT; + e + 81]31) COS(aixi + Ej; + T — 38[Il>
2 2
1/ . .
=5 ( sin (g,x; + €25 + exry, — €,2;) + sin (25@;)). (5.112)

Now let M be the right-hand side of the equation (5.110). Then by relation (5.112) we

have

1
M =sin (e1x1 + e9x9 + €323 + €424) — 5 E <sin (eix; + €@ + ey, — g127) + sin (ng)).
i<j<k
1#i,5,k
(5.113)

Note that

sin (e1xq + 9y + £33 + £414) = sin (€121 + €9x9) o8 (£33 + £424)

+ cos (g1 + 99) Sin (€323 + €424).
Note also that

sin (511’1 + E9%9 + €373 — 84134) + sin (511’1 + E9X9 — €33 + 84.734)

= 2sin (e121 + £29) cos (£33 — €424),
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Also we have
sin (611’1 — E9X9 + €313 + 641)4) — sin (611)1 — E9X9 — £33 — €4ZE4)

= 2co0s (€121 — €9%9) sin (e323 + £424).

Thus, formula (5.113) can be rearranged as

4
1
M = sin (e121 + €9x9) (cos (€33 + £44) + cos (323 — 54x4)) + 5 Z sin (2e;z;)
i=1
+ sin (egx3 + £414) ( cos (e1x1 + e99) + cos (121 — 521’2)). (5.114)

It is clear that the right-hand side of relation (5.113) is equivalent to the right-hand side

of relation (5.111) which proves the lemma. O
The following identity holds.

Lemma 5.5.18. Functions A*, (k = 1,2,3,4) given by formula (5.109) satisfy the identity

E1X1 + E92X9 + E3T3 + £4X
(81141+82A2+83A3+€4A4)CO1§( Ll 272 5 373 4 4)

= 1+ cos(e1x1 + €2x9 + €323 + €424)

1
+ 3 Z cos(g;x; + €55 + epry — 1) + cos(2€lxl)). (5.115)
1<i<j<k<d
lela\{4.4,k}
where ¢; € {1, —1} for all i.
Proof. We have by Lemma 5.5.17 that
(e1A' + £9A? + 23 A% + g4 AY) cot(glgc1 + E2T —; €33 + 84364)
E1X1 + E92X9 + £33 + €424 E1X1 + €929 + £3T3 + €424
= cos( 5 )<2 cos( 5 )
Eix; + EjT; + T — 38137[ >
11
+ Z cos( 5 )), (5.116)
1<i<j<k<4
le[a\{i.4,k}
Firstly, we have
(5.117)

€171 + €29 + €3T3 + 4T
2COSQ( 17 272 5 373 1 4):1+COS(€1I1+€2I2+€3I3+64!E4).
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Secondly, we have

€;T; + €% + EpTy + €T €;T; + €k + epxy — 36T
cos( +jj+kk+ll)cos( + €% + ExTy ll)
2 2
1

=3 (COS(&‘Z'.Ti + ez + eprp — ) + cos(2€lxl)>. (5.118)

Relation (5.115) follows by substituting relations (5.117), (5.118) into the right-hand side
of relation (5.116). O

We will also need the following identity.

Lemma 5.5.19. For distinct i, 7, k,l € [4] we have
(e A" + ;A7) = sin(g;z; + €;;) < cos(g;x; — €;x5) + 2 cos(epxy) cos(&?lxl)), (5.119)
where functions A* (k =1,2,3,4) are given by formula (5.109) and ¢; € {1, —1}.

Proof. From formula (5.109) we have

: . 1
g A"+ ;A = 5(5,- sin 2x; + €, sin 2x;) + 2(g; sin z; H cos Ty, + ¢; sin H COS Ty
ki k#j

1
=3 < sin(2e;z;) + Sin(25]~x]~)> + 2 cos(egxy) cos(exy) sin(e;z; + €525).

(5.120)
By applying formula
sin(2e;x;) + sin(2e,x;) = 2sin(g;x; + €525) cos(e;x; — €5x5),
we see that relation (5.120) takes the form (5.119). This proves the lemma. O

The following statement confirms that with the choice of the functions A; given by
formula (5.109), the metric B = Y,_, A*F}, is diagonal.

Proposition 5.5.20. The linear combination B = Zizl AFFEy . where functions A* are

given by formula (5.109) and function F has the form (5.62), is a diagonal matriz.

Proof. Let us show that the entry By, = Zizl AFF5 = 0. In the notation of formulas
(5.75) we have

4 8
2312 = 2(A! + A%) cot(my + 12) — 2(A" — A%)cot(my —w2) — Y bi+ Y b (5.121)
q

=1 1=5



CHAPTER 5. COMMUTATIVITY EQUATIONS AND WDVV EQUATIONS 187

By making use of Lemmas 5.5.18 and 5.5.19 formula (5.90) reduces to

2
—Bjy = 4<cos(x1 + x9) — cos(zy — xg)) COS T'3 COS T4

(cos + X9 + T3 + T4) + COS

+ o+

(21 ) (21
(cos(xl — g+ x5 — x4) + cos(xy — o — w3+ 24
<cos(a:1 — To + T3+ x4) + CcOS(T1 — Ty — T3 — 14
— ((cos( ) -+ cos(

cos(xy + T9 + x3 — 14) + cos(xy + x9 — T3 + T4 (5.122)

Formula (5.122) can be rearranged as follows

q ' Bia = 4sin 1 sin x5 cos 13 cos 14 — cos (11 + To) ( cos (g + x4) + cos (z3 — x4)>
+ cos (z1 — x2) < cos (x3 + x4) + cos (z3 — x4))

= 4 sin x; sin Ty cos T3 COS T4 — 2 COS T3 COS x4<cos (x1 4 x9) — cos (1 — xg)) = 0.

The other off-diagonal entries can be done by symmetry. O
The following statement gives further property to the metric B.

Proposition 5.5.21. The linear combination B = Zizl AFEy where functions A* are
given by formula (5.109) and function F has the form (5.62), is proportional to the identity

matriz.

Proof. By Proposition 5.5.20 we are left to show that B;; = B, for all s = 2,3,4. Let us
consider s = 2. We have B;; = Zizl AFFy1,. In the notation of formulas (5.75) we have

4 8
A A 1
-1 _ 1 1 i 1 )
q By =—4A cotz; + 2_2 ((A + A") cot(zy + ;) + (A* — A") cot(xy — :z:z)> ~5 E_l b;.

(5.123)

Also we have

. , 1
q ' By = —4A%cot zy + Z ((A2 + A") cot(zg + x;) + (A% — A") cot(zg — xz)) - = Z b;.

i£2 i=1
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Hence from (5.123), (5.124) we have

4
q ' (B11 — Boy) = —4A' cot 11 + 4A% cot 25 + Z ((A1 + A" cot(zy + ;)

=3

+ (A' — A" cot(z; — xl)) — Z ((A2 + A") cot(zg + ;) + (A% — A") cot(z9 — xl)>
) (5.125)

Now by making use of Lemma 5.5.19 formula (5.125) reduces to

4
q ' (B11 — Boy) = —2(cos® 11 — cos® z3) + 2 Z cos (z1 + x;) cos (x1 — ;)
=3
4
-2 Z cos (9 + x;) cos (xg — x;) — 2 €08 11 Z cos xi(cos(afg + x;) + cos(xg — :1:]))

i=3 3<i,j<4
i
+ 2cos xg Z cos z; ( cos(z1 + x;) + cos(z1 — x;)). (5.126)
3<i,j<4
i#]

By applying the following identities

2 cos(a + b) cos(a — b) = cos 2a + cos 2b,
cos(a + b) + cos(a — b) = 2cosacosb,
2cos?a = cos2a + 1,

it follows that Bj; — Boy = 0. Similarly one can check that By; = Bss for s = 3, 4. O

Now since the metric B is a multiple of the identity matrix, let B = hl; for some
function h = h(z). Before we find the explicit formula for the function h, let us prove

some lemmas.
Lemma 5.5.22. In the notation of formulas (5.75) we have
8 4
Z by =8+4 Z cos2x; + 3 Z cos(y + £9%9 + €373 + €474). (5.127)
i=1 i=1 eie{~1,1}
where functions A¥ are given by formula (5.109) and function F has the form (5.62).

Proof. Relation (5.127) follows by direct substitution of the formulas of b; from Lemma
5.5.18 into the left-hand side of relation (5.127). O
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Lemma 5.5.23. In the notation of formulas (5.75) we have

14 4 4
Zbi = 3cos 21, +ZCOSI¢ + 12Hcosxi. (5.128)
=9 =2 i=1

where functions A* are given by formula (5.109) and function F has the form (5.62).

Proof. From Lemma 5.5.19 we have

14 4
Z b; =2 Z cos(zy + x;) cos(xy — ;)
i=9 =2

+2 E (cos(xl + ;) + cos(xy — xl)> COS T j COS T (5.129)
2<i<4
Jke[d\{1,i}
ik

Relation (5.128) follows by making use of Lemma 5.5.13 and by applying the following
identities on the right-hand side of relation (5.129):

2 cos(a + b) cos(a — b) = cos 2a + cos 2b,

cos(a + b) + cos(a — b) = 2 cosacosb.

]

The following statement gives the explicit formula of the coefficient of the proportion-
ality B ~ 1.

Proposition 5.5.24. The linear combination B = Zizl AFFy . where functions A* are
given by formula (5.109) and function F has the form (5.62), has the form B = hly, where
the function h = h(x) is given by

4 4
h(z) = —q<6 + Z cos2z; + 8 H Ccos %)
i=1 i=1

4
= —q<6 + Z cos 2x; + Z cos (1 + e9x9 + 373 + 545104))

i=1 ei€{-1,1}
1
= (~210+ Y cocos(2(0)))
aGFI’S
1 )
_ _5(36(] n Z ¢ sin (04733))7 (5.130)
aEFIS

where Fy, is the subset of short roots in Fy".
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Proof. From Proposition 5.5.21 we know that B is a multiple of the identity matrix, thus
the diagonal entries B;; are equal and hence h = B;; for any ¢ = 1,2, 3,4. In the notation

of formulas (5.75) we have

8 14
2
ZBiy = —8A'cota; — 3 bi+2> by (5.131)
q i=1 i=9
Note that
) 4
Alcotx; = 5(1 + cos2z1) + QHCOSJJZ'. (5.132)
i=1

Then by relation (5.132) and Lemmas 5.5.22, 5.5.23 we get

4 4
2
—-By = —12 — 22(}082@ - 16Hcos:ci. (5.133)
q i=1 i=1

Formula (5.130) follows from relation (5.133). O

The following statement takes place.
Proposition 5.5.25. Functions A* given by formula (5.109) have the equivalent formula
1
Ak = 5 > caler,a)sin(2(a,x)), k=1,2,34. (5.134)
q
erFIS

Proof. Since

Z sin(zy + €2, + €525 + 1) = 8sinxy, H COS Ty,
es€{-1,1} m#k
S:{ivj’l}
then formula (5.109) can be written equivalently as
1
Ak = Z (2 sin 2z, + Z sin(xk + e €525 + 8[1’1)) (5135)
es€{-1,1}

s={i,jl}

Then it is easy to check that the right-hand side of formula (5.135) is equal to the right-
hand side of formula (5.134). O

The following statement is a corollary of Theorem 5.4.2 and Proposition 5.5.24.

Proposition 5.5.26. The identity vector field e for the collection A = F;~ given by
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formula (5.65) under the condition r = —4q is given by the formula
e=h"tA*, , k=1,234, (5.136)

where function h is given by formula (5.130) and A* is given by formula (5.134).

5.5.6 Identity vector field for projections of F}

In this subsection we deal with the restrictions of a given solution of the commutativity
equations and find the corresponding identity vector field and its relation with the original
one before restriction. This process allows to obtain new solutions to WDVV equations.

The following statement explains this relation.

Proposition 5.5.27. Let F(z) be a function and e = €*d,, be a vector field such that
e(F;j) = 6;;. Let m be the hyperplane m == {x € V : oy = 0} and let F(z1,...,2x-1) =
F(x1,...,zN)|r. Suppose that e(z) € Tzm for all T € w. Suppose also that (Fyij)|x is
well-defined for alli,j=1,...,N —1. Let e = e|, € I'(Tim). Then E(Ej) = 0jj.

Proof. Consider equality e(F;;) = d;; forz € m, 4,5 =1,..., N—1. Note that (e, F};)|» =
0 since €N|7r = 0 and Fl;; is well-defined for all 2,7 = 1,...,N — 1. It follows that
e(Fy;) = 6. O

Now, recall that Corollary 4.8.5 confirms that all the functions of the form (5.62)
corresponding to the three-dimensional and two-dimensional projections of the root system
Fy under the conditions r = —2q or r = —4q satisfy the commutativity equations (5.3).
As an application of Proposition 5.5.27 we find the identity vector field for the three
dimensional projections of root system Fj. Recall also that for F root system there are
two projections in dimension 3. Let us start with the first projected system.

The projected system (Fy, Ay); of Fy to the hyperplane x4 = 0 consists of the following

set of vectors:

e;, with multiplicity r+2¢, 1<1<3,

e; £e;, with multiplicity ¢, 1<:¢<j <3,

1
5(61 + ey +e3), with multiplicity 2r. (5.137)

For the projected system (5.137) where parameters r, ¢ satisfy the condition r = —2¢
the following statement takes place. Note that the configuration (5.137) in the case r =

—2q contains 10 vectors only with non-zero multiplicities.
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Theorem 5.5.28. The identity vector field € for the restricted system (5.137), where

parameters r,q satisfy the condition r = —2q, exists and has the formula

3
e=hn1t> Ao,
k=1

where
AF = sin z;, ( COS T, Z cos2x; — 2 H coS xi>, k=1,2,3, (5.138)
itk itk
and
h= g<10 + Z cos (2x; + 2exj) — 4 Z cos (1 + €229 + 53x3)>
1<i<y<3 eo,e3€{—1,1}
ee{-1,1}
1 1
= §<10q + Z Ca cos(2(a,x))> = 5( - Z Co + Z Ca cos(2(04,x)))
aG(F4,A1)1 QE(F4,A1)1 CME(F4,A1)1
=— Z o sin?(a, 7). (5.139)
a€(Fy,A1)1

Proof. Let 7 be the hyperplane m := {x € C*: 2, = 0}, and let F be the restriction
of the function F = ZaeFj cof((c,x)) to the hyperplane w. That is ﬁ(a:l,:vQ,x;;) =
F (1,79, 23,14)|,. Note that identity vector field (5.108) for the collection A = F;" given
by formula (5.65), where parameters r, ¢ satisfy condition r = —2¢, satisfies e(F};) = J;;.
It is easy to see that (Fj;)|s,—0 is regular for all 7, 7 = 1,2,3. Now let = € 7. It is easy to
see that A?|,,—¢ = 0 from formula (5.76). Hence by Proposition 5.5.27 there exist a vector
field € that satisfies €(Fg) = dug, and it is given by & = el = (30_, h ™' A*d,, )|s,—0. Now
from formula (5.76) it is easy to check that (A*)|,,—o is equal to the stated form A* for
k =1,2,3. Also by formula (5.100) it is easy to check that h|,,—¢ has the stated formula
of h. Vector field € is the identity field by Proposition 5.4.1. This complete the proof of

the theorem. O
The following proposition gives an equivalent formula for functions (5.138).

Proposition 5.5.29. Function AF given by formula (5.138) can be written equivalently

as
~ 1
ko - _
A¥ = 1 E colep,a)sin (2(a,x)), k=1,2,3. (5.140)

a€(Fy,A1)1
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Proof. Firstly, it is easy to check that the following identities take place in dimension three

1

sin xy, H CO8 Ty = 7 | Z 'Sin(xk +x; £ x;),
m#£k 1£jFEkFEL
1
sin 22, ; cos 2x; = 5 %:ksin@xk +2x,,).

Hence the right-hand side of formula (5.138) becomes
Z’“:lzsm(zxki% )—1 > sin(zg £ 1y + ). (5.141)
4 " e B
matk i Ak
Now one can check that the right-hand sides of formulas (5.140) and (5.141) are equal. [

For the projected system (5.137) where parameters 7, g satisfy the condition r = —4q

the following statement takes place.

Theorem 5.5.30. The identity vector field € for the projected system (5.137), where pa-

rameters r,q satisfy the condition r = —4q, exists and has the formula
~ 3 o~
e=h"Y Ao,
k=1
where
AF = sin z,(cos —|—2Hcosxi), k=1,2,3, (5.142)
ik
and
N 3 3
h = —q(?—i— ZCOSQ:L‘Z' +8Hcosxi). (5.143)
i=1 i=1

Proof. Let 7 be the hyperplane m := {z € C*: x; = 0}, and let F be the restriction
of the function F' = ZaeFj cof((c,z)) to the hyperplane 7. That is F(z1,22,23) =
F (1,79, 23,74)|,. Note that identity vector field (5.136) for the collection A = F," given
by formula (5.65), where parameters r, ¢ satisfy condition r = —4gq, satisfies e(F};) = 6;;. It
is easy to see that (Fy;;)|s,—0 is regular for all i, j = 1,2,3. Now let = € 7. It is easy to see
that A*|,,—o = 0 from formula (5.109). Hence by Proposition 5.5.27 there exist a vector
field & that satisfies €(Fg) = 045, and it is given by € = e|, = (330_, h"' A9, )|s,—0. Now
from formula (5.109) it is easy to check that (A¥)|,,—o is equal to the stated form A* for
k =1,2,3. Also by formula (5.130) it is easy to see that h|,,—o is equal to the stated form
of h. Vector field ¢ is the identity field by Proposition 5.4.1. This complete the proof of
the theorem. ]
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The following statement is easy to check since the identities

1
sin xy, H CO8 Ty = 7 Z sin(zy, £ x; £ ),
mk it j Ak

and
3

Z cos(xy + €9x9 + €3x3) = 4 H COS Ty,

e2,e36{—1,1} m=1

hold in dimension three.

Proposition 5.5.31. Functions Ak given by formula (5.142) can be written equivalently

as
1
Ak — 5<sin 2ep+ Y sin(wpta, £ xj)), k=1,2.3, (5.144)
1#jFEkFEL

and function (5.143) can be written as

3
h= —q(? + Z cos 2z; + 2 Z cos(xy + 929 + 53x3)>. (5.145)

i=1 eo,e3€{—1,1}

Now let 7 be the hyperplane 7 := {x € C*: 3 = 24}. Let us consider the projection

of the root system F} to 7, and let us denote the resulting system by A = (Fy, A1),. Let
us define vectors f;(1 <i <4) by

€3+ ey es — ey

V2 V2

Vectors fi, f2, f3 form a basis in 7, where {e;}}_, is the standard basis. Then the projected

(5.146)

fa=

fi=e, fo=e, [f3=

system A consists of vectors o with the corresponding multiplicities ¢, given as follows:

f1, f2,  with multiplicity r,
V2fs, with multiplicity g,
V2
2
fi £ fo,  with multiplicity ¢,

f3, with multiplicity 2r,

1
(i f2), with multiplicity  2r,

fligf?n f2i§

1
§(f1 + fo 4+ V/2f;), with multiplicity . (5.147)

f3, with multiplicity 2gq,

In order to make use of Proposition 5.5.27 let us perform the orthogonal change of variables
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(5.146). Let C be the constant 4 x 4 matrix such that
4
T =Y Cfx;, (5.148)
i=1

where 71, T2, T3, T4 is a new coordinates system given by

~ T3+ T4 ~ T3 — X4

51 = T, 52 = T, T3 = \/§ > Ty = \/§ (5149)
Thus we have
ci ¢l ci Ch 1 0 O 0
|| o1 o o 5150
B Ke:e:ane e B NNV '
1 2 Lg Uy 2 2
e e e 00 L —1

Note also that Z3|, = V25, and Z4]x = 0. Hence the hyperplane 7 in the new coordinates
reads 7 = {T € C*: 73 = 0}. Before we give the formula of the identity vector field for
the configuration (5.147), let us proof some general propositions.

The following statement confirms that commutativity equations are preserved under

orthogonal transformations.

Proposition 5.5.32. Let F' = F(xy,...,zn) be a function on CN that satisfies commu-

tativity equations
FF; = FF;, 1,j=1,...,N.

Let C be the constant matriz of an orthogonal change of variables such that

Ty, = CFay, (5.151)
where Tq,...,Tn 1S a new coordinates system and summation over i is assumed. Let
C = C~' so we have

crel = 60, (5.152)

Then commutativity equations

FZF}:-F}Fw iajzla"‘aN7

where F(T) = F(z), hold.
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Proof. Since 9,, = CF05, , then we have

Fij, = CkC]C”

) ’L]k‘

Consider the commutativity equations
Fijt Frm = FojiE .
Then by formula (5.153) equality (5.154) reads in the new coordinates as

CECICICECYCl B Fopg = CRCICECECYCLF - Fopa.

m* ijk

Let us multiply both sides of equality (5.155) by 636;5@5; We get

.
Ok Ck Bk Fooy = CpCR L, a,BEF aye:

196

(5.153)

(5.154)

(5.155)

(5.156)

But for the orthogonal transformation we have C,EC’,‘; — 6% Hence equality (5.156) reduces

to

FeﬁaFaoc"/ = FaBaFave‘

That is ﬁeﬁa = faﬁe. This proves the proposition.

The next statement takes place.

Proposition 5.5.33. Let F(z) be a function and e = €*d,, be a vector field such that
e(Fy;) = 6;5. Let C and C be as given in Proposition 5.5.32. Let F(Z) = F(z) and

@) = e(x). Then &(Fap) = ap, with € = &CLI,_.

Proof. We have
GkFijk = 51]

By relation (5.151) we have 9,, = C¥0;,. Hence we have

Fy. = CECICIF

2 zjk

Let e*(x) = ¢*(Z). Then by formula (5.158) relation (5.157) can be written as

FCECIC Py = 6.

2 zyk

Multiply equality (5.159) by 6&@% We get

.

e CFF, g = CLC

«

(5.157)

(5.158)

(5.159)

(5.160)
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But for the orthogonal transformation we have 6&6& = J,5. Hence equality (5.160)

becomes

ECOEF, 47 = bap- (5.161)

Let e = ékC,E@xE. We have by relation (5.161) that &(F,s) = das and hence € is the identity
vector field by Theorem 5.4.2. The new identity vector field satisfies

e(@) = e"(2)0,, = e (2)0,, = e(x). (5.162)

This proves the proposition. O

For the restricted system (5.147) where parameters r, ¢ satisfy the condition r = —2q¢

the following statement takes place.

Theorem 5.5.34. The identity vector field € for the system (5.147), where parameters

r,q satisfy the condition r = —2q, exists and has the formula
~ 3 o~
e=h"Y Ao,
k=1

where

Al =sin7, (cos T1(—1 + cos 2T, + 2 cos V2T3) — cos Ty (1 + cos \/535;:,)),

A% = sin §2<cos To(—1 + cos 271 + 2 cos V2T3) — cos 71 (1 + cos \/5%};)),

~ 1 » _ _ _ _ _
A3 — E sin \/5:63( — 1 4 cos 27 + 08 279 + cos V273 — 2 cos T; cOS x2>, (5.163)
and
h = (13 — Q(COS 271 + cos 279 + 2 cos \/ﬁig)

N o

Z cos (T + 275 4 £3V/273) + 2( cos (2T + V2T5) + cos (2T — \/5%’3))

82,836{—1,1}
+2(cos (22, + V2T5) + cos (2T — \/5553)) — 4( cos (Ty + T) + cos (T — T2))
_ _ ~ ~ _ 1 —
+ c0s 2v/2%;5 + cos (221 4 275) + cos (277 — 2:62)) =3 (13q + Z Co cOs(2(a, a:)))

ocE.Z

= %( - an + an cos(2(a, f))) =— Z Casin?(a, T). (5.164)

acA a€A acA

Proof. Firstly, note that identity vector field (5.136) for the collection A = F," given by for-
mula (5.65), where parameters r, ¢ satisfy condition r = —2¢, satisfies that e(F};) = 6;; by
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Theorem 5.4.2. Let us make the change of variables (5.149). Let €(Z) = e(z) be the iden-
tity vector field in the new coordinates and let F(Z) = F (). Then by Proposition 5.5.33
the vector field € satisfies é\(ﬁaﬁ) = 04p. The hyperplane x3 = x4 in the new coordinates
can be represented as 7 == {T € C*: 73 = 0}. Let A¥(Z) = A¥(z), k = 1,2, 3,4, where A

is defined by (5.76). We have

2T + 224 2x3 — 2§4>)

7 ) + COS(T

Al = sinfl(cosfl( — 1 + cos 2z + cos(

53+§4) S(fg —374)>7

V2 V2

— 2cos T3 cos(

A2 = sin@(cosfz( — 1+ cos2z; + cos(%L\/;@) n COS(2§3\;§2554>)
— 2cos 7 cos( 53\—/1_;?4) 005(553\;;?4 )) ,
A% = sin(%\%@)(cos (%;;:4)( — 14 cos2x; + cos 23 + cos(—Qgg\;;ﬁ))
— 208 T COS To (:os(gg\;ig4 )) ,
At = Sin(gg\;;h) ( cos (53\;554 )(— 1+ cos2z; + cos 2T, + cos(—Q%S\—/i_;@))
T3+ T4

)). (5.165)

— 2 ¢08 7 €os T3 cos(
V2
Let e = €*(2)0,,, and let €(Z) = €*(z). Then e = € = €*(7)C"05,,, where coefficients
C} are defined by (5.150).

We have that

A\3+A\4 12{3_2[4

4

km=1

)0z, (5.166)

where h is defined in (5.5.14). From (5.165) it is clear that A3|z,_g = A%|z,_o. Thus from
formula (5.166) we have (Zi,mzl /ch,g"agm) I2,—0 € T.7. Hence ¢|= € T.7.

It is easy also to see that (ﬁ4ij)|554:0 is regular for all 4, j = 1,2, 3. Hence by Proposition
5.5.27, the vector field € given by € = €|z = e|, = (34—, h A%, )|sy—s, satisfies e(Fap) =
dap. Vector field € is the identity field by Proposition 5.4.1. Now from formula (5.76) it is
easy to check that (A%)|z,_o = A* for k = 1,2, and (23\%24> 7,0 = A3. Also by formula
(5.100) it is easy to check that h|z,_o gives the stated form of h. This complete the proof

of the theorem. O

The following proposition gives an equivalent formula for functions (5.163).

Proposition 5.5.35. Functions Ak given by formula (5.163) can be written equivalently
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as
A= ) calena)sin(2a,2), k=1,23. (5.167)

a€(Fy,A1)2

Proof. The straightforward calculations of the right-hand side of formula (5.167) shows
that formula (5.167) leads to formulas (5.163) where the following basic identities are

applied when required

a-+b a—>b

sina + sinb = 2 sin( 5 ) cos( 5 )R
b —b

sina—sinb:2(:08((1;L )cos(a2 )
b —b

cosa+cosb:2cos(a+ )cos(a2 ).

O

For the projected system (5.147) where parameters 7, g satisfy the condition r = —4q

the following statement takes place.

Theorem 5.5.36. The identity vector field € for the system (5.147), where parameters

r,q satisfy the condition r = —4q, exists and has the formula

3
€= E_l Z ﬁ’f@gk,

k=1
where
Al = sin 7, < cos T1 + cos To(1 + cos \/5553)),
A? = gin To ( cos Ty + cos T1 (1 + cos \/5%},)),
~ 1
A% = —sin(V27 (1—1—20085 cosf), 5.168
7 (V2zs3) 1 COS Ty (5.168)
and
- B N _ T
h = —q<6 4+ cos 2x1 + cos 2z + 2 cos \/53:3 + 8 cos T cos Ty cos E> (5.169)

Proof. Firstly, note that identity vector field (5.136) for the collection A = F;~ given by
formula (5.65), where parameters r, ¢ satisfy condition r = —4gq, satisfies e(F};) = J;; by
Theorem 5.4.2. Let us make the change of variables (5.149). Let € be the identity vector
field in the new coordinates and let F(Z) = F(z). Then by Proposition 5.5.33 the vector

field € satisfies e(F,3) = dap. The hyperplane z3 = x4 in the new coordinates can be
represented as 7 = {# € C*: &; = 0}. Let A*(F) = A¥(z), k = 1,2,3,4, where A* is
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defined by (5.109). We have

534—54) (%3—37/4)>
V2 v2 )

~ .~ ~ ~ T3+ Ty T3 — Ty
A? =sing (cosx + 2 cos 17 cos cos ),
2 2 1 ( \/§ ) ( \/5 )

) + 2cos cosfgcos(in3 _M)),

V2

Al = sin:?:](cos:iﬁ + 2 cos T3 cos(

Ty + T4

V2

?L73 + 554> (
V2
n . T3 — T T3 — . x: + 54
A = sin(Z2 M (cos i o )
( 7 )| cos ( 7 7 )
Let e = €*(2)0,,, and let €*(Z) = ¢¥(x). Then e = € = e*(7)C"05,,, where coefficients
C}* are defined by (5.150).
We have that

A® = sin( cos (

) + 2 cos &7 cos Ty cos( (5.170)

4 A3 1 A4 A3 _ A4
he = k%;?x’fo;j@gm — A0, + A0, + (%)a@ + (%)a@, (5.171)
where function £ is defined in (5.130). From (5.165) it is clear that A%|z,_o = A%|z,—o.
Thus from formula (5.166) we have (Zi,m:l EkClTﬁgm> |z,=0 € T\7. Hence €|z € T,7. It
is easy also to see that (ﬁ4ij> |7,=0 is regular for all 4, j = 1,2, 3. Hence by Proposition 5.5.27
the vector field € given by € = €|z = e|r = (3 p_; h ' A* 0y, )| vyn, satisfies E(ﬁag) = dup.
Vector field ¢ is the identity field by Proposition 5.4.1. Now from formula (5.109) it is
casy to check that (A%)|z,_o = A* for k = 1,2, and (23\%24) |5,—0 = A%, Also by formula
(5.130) it is easy to check that h|z,_o gives the stated form of h. This complete the proof
of the theorem. ]

The following statement is a corollary of Corollary 4.8.5 and Theorems 5.5.28, 5.5.30,
5.5.34, and 5.5.36.

Theorem 5.5.37. The function F given by formula (5.62) corresponding to configurations
(5.137) and (5.147) where r = —2q or r = —4q satisfies WDVV equations (5.2).

Let B = AN W be a subsystem of A for some n-dimensional linear subspace W =
(B) C V. Let
Wg={zxeV:(B,2z)=0 VBeB}

Recall that mz(«) denotes the orthogonal projection of o« € V' to the subspace Wy with
respect to the inner product (-,-) and 75(A) = {mp(a): m(a) # 0,0 € A}. Let fi,..., fn
be an orthonormal basis of the space Wy, and let &, ..., &, be the corresponding orthonor-
mal coordinates in Wpy. Let us extend the orthonormal basis in Wy to an orthonormal
basis fi,..., fa, fot1,---, v In Vand let &,...,&,,&rt, - ., En be the corresponding or-

thonormal coordinates in V.
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Then the following statement takes place.

Theorem 5. 5 38 Let e be a vector field such that e(F;;) = 6;; for alli,j = 1,...,N,

where Fj; = 8:(: 81‘ . Let F(fl, o én) = F(xq,...,zy) and €(&, ..., En) = e(xq,...,zN).
Suppose that e(f) € TeWp for all € € Wi Let € = elw, € I'(T.Wg). Then e((Fg)i;) = 0ij,
where (Fg)ij = 3¢ g? and function Fg is given by formula (5.63).

Proof. Let C' be the constant matrix of an orthogonal change of variable such that &, =

ZZ L C¥x;. Then by Proposition 5.5.33 we have &( ZJ) = 0;; where F = %{i, (1,5 =

1,...,N). Hence e(E-j]WB) = 0,5, (1,7 =1,...,n). The statement follows since € = €|y, €
['(TWg) and Flw, = Fg, Fijlws; = (FB)ij- O
The following statement is a corollary of Theorem 5.5.38.

Theorem 5.5.39. Under the assumptions of Theorem 5.5.38 let e be the vector filed given
by

e=coH! Z Co SIN(2(cr, ))0a, (5.172)
acA
for some constant cq, where
H = H,+ Z Co sin?(a, 1) (5.173)
acA

for some constant Hy. Let vector field € be given by

¢ =coH™! Z casin(2(a,§))0z, €& € Wp, (5.174)

aemp(A)

where H = Ho+ ) gensa)
Fy is given by formula (5.63).

cgsin®(a, &). Then €((Fg)i;) = 6ij,i,7 = 1,...n, where function

Proof. For any o € A we have the decomposition
a=a +a?, (5.175)
where o) = 75(a) € Wi and a? € Wg. Now for any & € Wy we have

H(f):Ho—l—ansinQ(oz,f) Ho—i-ansm oW &) = Hy + Z casin?(@, &) = H(¢).

acA acA aermp(A)
(5.176)

Similarly, for any & € Wy we have

D casin((,£)0s =Y casin(2(@M, )00 = Y casin(2(@,£)0z  (5.177)

acA acA aenp(A)



CHAPTER 5. COMMUTATIVITY EQUATIONS AND WDVV EQUATIONS 202

since e(§) € T¢Wp by assumption. From (5.176) and (5.177) we have e(§) = e(§). It
follows from Theorem 5.5.38 that €((Fg);;) = d;;. This completes the proof. O

Note that root system Fj has four projected system on the plane (see the Appendix

for more details). Let us present these planar projections briefly.

e The projected system (Fy, Ay); which is obtained by projecting F to the subspace
Wl(gl) ={r € C* 2; = 29 = 23}, (5.178)

e The projected system (Fy, As)s which is obtained by projecting F to the subspace
Wl(f) = {2 € C" w3 =12, + 9, 24 = 0}, (5.179)

e The projected system (Fy, By) which is obtained by projecting Fy to the subspace
W) = {z e CY zy = 24 = 0}, (5.180)

e The projected system (Fy, A3) which is obtained by projecting Fj to the subspace
W[(;l) = {z € C* 2y = 23, 24 = 0}. (5.181)

In the following theorem we apply Proposition 5.5.39 to the planar projections of the root

system Fj.

Theorem 5.5.40. Let

e= —Lﬁv Z Co SIN(2(, £))0q, (5.182)
4qH acA
where
H =Y cysin*(a,8). (5.183)
acA

Then g(f}j) = 0;j, 1, = 1,2, where F = Y wciCaf(a,§)) and &1,& are an orthonormal
coordinates in C%, and A is one of the configurations (Fy, As)1, (Fy, As)a, (Fy, Ba), (Fy, A?)
with r = —2q.

Proof. Firstly, for root system F}, where parameters r, g satisfy r = —2¢, the identity field
e given by formula (5.108) satisfies that e(F};) = ¢;; for all ¢,j = 1,2, 3,4. Secondly, it is
easy to check that for each of the given cases the condition e(z) € TzWg for all T € Wi
holds. Hence the statement follows as a corollary of Proposition 5.5.16 and Theorem
5.5.39. O
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For simplicity we will write my (F;,) = (Fj,, W) for a subspace W c C".

Theorem 5.5.41. Let .

e=—= Z Co SIN(2(v, £))0q, (5.184)
4qH aed
where
H =360+ casin’(a,f). (5.185)

ch.Z

Then 'é(ﬁ’ij) = 0;j, 1, = 1,2, where F = Y aciCaf(a,§)) and &1,& are an orthonormal
coordinates in C?, and A is one of the configurations (FIS, WL(;)), (FA;:, Wéz)), (Fy, Wég)),
(Fys, Wl(;l)) with r = —4q.

Proof. Firstly, for root system F}, where parameters r, g satisfy » = —4¢q, the identity field
e given by formula (5.136) satisfies that e(F;;) = ¢;; for all ¢, j = 1,2, 3,4. Secondly, it is
easy to check that for each of the given cases the condition e(¥) € Tng(;) for all x € Wl(;),
where s = 1,2, 3,4, holds. Hence the statement follows as a corollary of Proposition 5.5.26
and Theorem 5.5.39. O

5.5.7 Identity vector field for G,

In this subsection we give the formula of the identity vector field for root system G.,.
Let A = G5 be the positive half of the root system G with the multiplicity function
given by

V3el  e?

V3e j:gi):q, c(e?) = ; i5>:p’ (5.186)

2 2
where p, g € C. Recall that by Theorem 4.1.5 function (5.62) corresponding to the collec-

c(vV/3el) = ¢

tion A = G5 satisfies commutativity equations FiF, = FyF, if and only if p = —3q or
p = —9q. Define the vector field

e =AY (2)0,, + A*(2)0,,, x = (11,7), (5.187)

where functions A*(z), i = 1,2, are the functions given by formulas A' = Fjy, A% =
—Fi12. Then the matrix B = A'F, + A?F, satisfies

2
By =e(Fy) =Y AMa)Fy, i.j=12 (5.188)
k=1

Moreover, the matrix B is proportional to the identity matrix. Let us now give the explicit
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formulas for functions A', A? for both cases. We have

\/gp \/§$1 T2 \/§$1 T2
1 _ 2 _ 2
A —F122——8 (COt( 9 + 2)+C0t( 9 2))
9v3 3 2 3 3
—i——\é_q(cot(\/;xl +%)+cot(\/;xl —%)),

xl—i——)—cot(

?)p(cot(\/§

T NEY T
A2:—F112:—§ - - 2))

2 2 2 2
9q \/§$1 219 \/3371 3T
g (et (5 5 —eot (7 =),

Now we have two cases to consider.
Case (1). p = —3q. We have
A = /3 sin \/gxl ( Cos \/gxl + cos xg(cos 2x9 — 2)),

A? = 3sin x2<cos V32, cos 2145 — cos x2>. (5.189)

The following proposition gives general formula for functions A!, A2.

Proposition 5.5.42. Functions A, A? given by formula (5.189) take the form

AP = 2_1(] Z caler, @) sin(2(a, x)), k=1,2. (5.190)

aEG;

Proof. Firstly, since cos 2z, cos x5 = 5(cos 3z + cos x2), then from (5.189) we have

3
Al = % sin 2\/§$1 +v/3sin \/gml COS Ty COS 229 — 2v/3 sin \/gml COS X9

1
=3 (\/5 sin 2v/3x; + v/3sin v/3z; cos 3z, — 3v/3sin V3, cos $2> - (5.191)

It is easy to check that the right-hand side of formula (5.191) is equal to right-hand side
of formula (5.190) for &k = 1.

Secondly, since cos 25 sin ¥ = 3(sin 3z, + sin ), then from (5.189) we have

3
A? = 3cos \/5:1:1 Sin x9 cos 29 — 3 sin 2x9
3

=5 ( cos V31 sin 329 — cos V3z; sin 2y — sin 2x2>. (5.192)

It is easy to check that the right-hand side of formula (5.192) is equal to right-hand side
of formula (5.190) for k = 2. O

Now we have the linear combination B = A'F;, = h(z)I,, where I is the 2 x 2 identity
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matrix and function h(z) has the form

h(z) = %(COS 2v/3x; + (cos 225 — 2)(—3 4 4 cos V3, cos x2)>

= %(6q+ Z Ca cos(2(oz,x))) = ?1(_ Z Ca + Z Ca cos(2(a,x)))
aEG; aEG; aEG;
= —g Z Casin?(a, ). (5.193)
aEG;

The following statement takes place.

Proposition 5.5.43. The identity vector field e for the collection A = G5 defined by
(5.186) under the condition p = —3q is given by the formula

e=h"1(A'9,, + A%0,,), (5.194)

where function h is given by formula (5.193) and A*, A? are given by formula (5.190) with
k = 1,2 respectively.

Case (2). p = —9¢g. We have
Al = /3 sin \/gxl COoSs g,
A? = sin xQ(cos V32, + 2 cos x2>. (5.195)
The following proposition gives general formula for functions A', A2.

Proposition 5.5.44. Functions A, A? given by formula (5.195) take the form

AF = _g_lq Z caler, ) sin(2(a, z)), k=1,2, (5.196)

aGG;S
where G5 , is the subset of short roots in Gy .

Proof. 1t is easy to check that the right-hand side of formula (5.196) for k = 1,2 gives the
formula A', A? given by (5.195). O

Now we have the linear combination B = A'F, = h(z)I,, where I is the 2 x 2 identity
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matrix and function h(z) has the form

9
h(z) = _?q (3 + 2 cos V3z; cos zo + cos 2952)

_ %( —27q + Z Co c08(2(av, :L‘)))

aEG;S

:—(27q—|— Z casiDQ(a,$)>. (5.197)

aeG;S
The following statement takes place.

Proposition 5.5.45. The identity vector field e for the collection A = G5 defined by
(5.186) under the condition p = —9q is given by the formula

e=h"1(A'0,, + A%0,,), (5.198)

where function h is given by formula (5.197) and A', A% are given by formula (5.196) for
k = 1,2 respectively.

5.5.8 Identity vector field for BCYy

In this subsection we give the formula of the identity vector field corresponding to root
system BC'y based on our results from Chapter 4.
Recall that we have the configuration A = BC}, C C¥ consisting of the following

vectors and their corresponding multiplicities

e;, with multiplicity », 1<:< N,
2e;, with multiplicity s, 1<i<N,
e; £ e;, with multiplicity ¢, 1<i<j <N, (5.199)

where e, ..., ey is the standard basis in C¥. We have shown that if the multiplicities 7,

s and ¢ satisfy the relation
r=—8s—2q(N —2), (5.200)
then function

F=) cuf((o,2)) (5.201)

acA
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satisfies both equations (5.2) and (5.3) with the matrix B given by

N
B =Y sin2zF}. (5.202)
k=1

Moreover, the entries of the matrix B are given by the formula

Blt = h(ﬁf)élt, l,t = 1,...,N, (5203)
where
N
h(z) =r+2q Z COS 2. (5.204)
k=1

The following statement follows by Proposition 5.4.1.

Proposition 5.5.46. The identity vector field e for BCY; under the condition (5.200) for

the multiplicity parameters is given by the formula
N
e=h""Y) " sin2w0,,, (5.205)
k=1
where function h is given by formula (5.204).
The following proposition gives an equivalent formula for the identity field (5.205).

Proposition 5.5.47. Let A= {er, k=1,...,N} C BC}. Then the identity vector field
for BCY; under the condition (5.200) for the multiplicity parameters has the formula

| )
e = _4_qH an sin(2(a, ))0a, (5.206)
acA
where function H is given by
s —
H= y + Z Casin®(a, z). (5.207)
acA

Proof. Firstly, since ¢, = r for any a € A then we have

N N
: 1 : 1 :
321 sin 2240, = . E g coler, o) sin(2(a, )0y, = . E Cosin(2(a, ))d,.  (5.208)

k=1 CMEA\ CMGA\
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Secondly, we have

N
2
T+ QqZ cos2r, =1+ 7(] Z Co cOs(2(a, x))
k=1 acA

Qe _ 2q P
= —8s —2q(N 2)—|—TZCQ(1 2sin*(a, 7))

a€A

= _@(M + an sin2(a,x)>. (5.209)

r q ‘
acA

Then formula (5.206) follows by substituting formulas (5.208) and (5.209) into formula
(5.205). O

5.5.9 Identity vector field for restrictions of BCy

In this subsection we give the formula of the identity vector field corresponding to root
system BC,,(q,, s;m) based on our results from Chapter 4.

Recall that we have the configuration A = BCY; given by (5.199). Let n € N and
m = (my,...,m,) with m; € N such that >" 'm; = N. Let us consider subsystem

B C A as follows:

B:{ezéflmj+k—ezé;llmj+l, 1<k<i<myi=1,...,n}.

=1

Let us also consider the corresponding subspace Wy of dimension n given by
Wg={xeW:(B8,z)=0V5 € B}.

More explicitly, vectors = = (x1,...,xy) € Wp satisfy conditions:

)
Ty == Ty,

Tmyi+1 = = Tmy+ma

Note that vectors f;, 1 <1 < n, given by

1
= e (5210
(3 j=1

form an orthonormal basis for Wgz. Now for any vector u = Zfil uze; € CN. let u be its

orthogonal projection to the subspace Wy. The formula of w is given by Lemma 4.3.4.
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Now from Lemma 4.3.4 we have the following expression for the orthogonal projections of
basis e;, (1 < j < N) to the subspace W in terms of the basis (5.210).

gm1+~~-+mi_1+1 - gm1+~~-+mi—1+2 == gm1+~~~+mi
1 Ji .
=—(0,...,0 ,1,...,1, 0,...,0 )= L, 1<i<n. (5.211)
m’i N’ N— A /mi
mi+-+mi—1 N—(m1+--~+mi)

Let us now project BCY to the subspace Wy, and denote the projected system as A=
BC,(q,r,s;m) C Wg = C". Then configuration A consists of vectors a with multiplicities

Ca:

m; 1/2 fi,  with multiplicity rm;, 1< <mn,
_ 1
om; 2 f;,  with multiplicity —sm; + §qmi(mi —1), 1<i<n,

m; P fi£m; 2 f;, with multiplicity  gmgm;, 1<i<j<n. (5.212)

Now suppose that parameters r, s,q and m satisfy relation (5.200) with N = >  m,.
Consider the function
F=Y cf((e,7), T€Ws (5.213)
acA
Note that (see Corollary 4.8.4, see also Proposition 4.4.6) function (5.213) satisfies the
commutativity equations
FF,=FF, i,j=1,...n

It is easy to check that the identity field (5.206) satisfies that e(z) € TzWp for any
T € Wg. Hence the following statement follows as a corollary of Theorem 5.5.39 and
Proposition 5.5.47.

Theorem 5.5.48. Let B = {m,zl/ka, k=1,...,n} C BCy(q,r,s;m). Then the identity
vector field for BC,(q,r,s;m) under the condition (5.200) for the multiplicity parameters,
where N = >"""  'm;, has the formula

g = _4_qH—1 an sin(2(a, )0, T € Wp (5.214)
aeB
where function H is given by
~ r(2s—q c 20~
H=—“~+ Co SIn“(a, ). 5.215
. >, (o, 7) (5.215)

a€B
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5.5.10 Uniform formulas of identity field for (not simply-laced)
root systems and their projections
In this subsection we summarize the identity vector fields for all root systems with more

than one orbit as well as their restrictions.

The following theorem is a corollary of Propositions 5.5.16, 5.5.43.

Theorem 5.5.49. Let function F be given by (5.62). Consider a vector field e given by

e=coH! Z Co SIN(2(c, ))Da, (5.216)
acA

for some constant cqy, where

H=H,+ Z Casin?(a, 1)
acA

for some constant Hy. Then e(Fj;) = ;5 if

o A = F} given by formula (5.65) or A is one of the 3-dimensional projections
(Fy, A1)1, (Fy, Ay)a given by formulas (5.137), (5.147) respectively, or A is one of
the 2-dimensional projections (Fy, As)1, (Fy, Az)a, (Fy, Ba), (Fy, A?), under the con-
ditions

r=—2q, cy= —i7 Hy =0,
4q

o A= FIS the subset of short roots in F; or A is one of the 3-dimensional projections
of FZ; along the subspaces vy = 0, x5 = x4 respectively, or A is one of the 2-
dimensional projections of FIS to one of the subspaces Wl(gl), Wg),

Wg}), ng) given by formulas (5.178), (5.179), (5.180), (5.181) respectively, under
the conditions
r=-—4q, cy= i, Hy = 36q,
4q

o A =G given by formula (5.186) under the conditions

b= _3(], Co = —7—, HO = 07
9q

o A= G3, the subset of short roots in G5 under the conditions

1
b= _9Q7 Co= HO = 27Q7
9q

o A= {m;1/2fk, k=1,...,n} C BC,(q,r,s;m), where BC,(q,r,s;m) is given by
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(5.212), under the conditions

- 1 r(2s — q)
r=—8s—2q m; —2), c¢=——, Hy=——""">
(; ) o= Ho -
where in this case if all m; = 1(i = 1,...,n), then BC,(q,r,s;m) reduces to the

standard BCY, with N =" m;.



Chapter 6

Concluding remarks and open questions

6.1 Classification

In the current work we studied the trigonometric version of V-systems and trigonometric
solutions to WDV'V equations related to these systems. We proved that under some non-
degeneracy conditions these collections are closed under the natural operations of taking
subsystems and restrictions respectively, which extends the corresponding results in the
rational case.

Solutions related to the trigonometric V-systems involve an extra variable which make
the classification problem non-trivial already for dimension two. The classification of
trigonometric V-systems remains an important open problem. We gave detailed descrip-
tion of all the known two-dimensional examples based on restrictions of root systems as
well as some examples which are not of this form. We note that these configurations
involve collinear vectors which makes the task of classification more challenging.

The existence of a rigid geometrical structure of a series decomposition of vectors in
the trigonometric V-system helped to classify such systems up to five vectors on the plane
(see [27]). In the current work we do further investigations and prove that these systems
up to five vectors on the plane actually belong to the family of BCy and Aj root systems
and their deformations. We can also prove the following statement by working out the

conditions of the series decomposition of vectors.

Proposition 6.1.1. Let trigonometric V-system A on the plane consist of six vectors with
non-zero multiplicities. Assume that A contains exactly two pairs of proportional vectors.

Then A belong to the family of BCy(r, s, q;m) for some values of parameters.

We hope that these examples as well as the strong series conditions would be instru-

mental in achieving classification of the trigonometric V-systems which requires further

212
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work.

6.2 Commutativity equations and WDVV equations

Commutativity equations F;F; = F;F; appear in N' = 4 supersymmetric mechanics. So-
lutions to these equations corresponding to root systems G, BCy, Fy were given in [3].
In the current work we investigated and clarified the relation between the commutativity
and WDVV equations. We have shown that under certain non-degeneracy conditions the
commutativity equations imply the WDVV equations, which leads to new solutions of
WDVYV equations from known solutions of the commutativity equations. We gave such
trigonometric solutions of WDV'V equations (without extra variables) related to root sys-
tems BCy and Fj and their restrictions. It would be interesting to see whether there
are more Frobenius manifold structures associated to solutions of WDVV equations both

without and with the extra variable.



Appendix A

Trigonometric V-systems on the plane

In this appendix we present explicitly all the known trigonometric V-systems on the plane.
We follow Bourbaki’s work [6] for the presentation of root systems. Let us denote by (R, B)

the restriction of the root system R along the subsystem B.

A.1 Planar restrictions of root system F)

Recall that R = F}' is the positive half of the root system F, with the multiplicity function
c given by
1 .
6(5(61 tette’ tet)) =clef)=p, (1<i<4),
cle'+ed)=¢q, (1<i<j<4), (A1)
where p, g € C. Recall also that in the corresponding solution (2.55) of WDVV equations

(2.56) we have
A= Npo = 6V3(2g + p)(4g +p) 2. (A.2)

The basis of simple roots consists of

1
ar=¢e>—¢*, ay=e—e', ay=el, 05425(61—62—63—64).

The Dynkin graph of F} is

————e¢——o—0
a1 Qo Q3 Q4

Note that there are two different restrictions of the root system Fj along the root system
Ay. The first one (Fjy, Ay); is obtained by taking subsystem (As); spanned by «ay, as. The
second one (Fy, As)s is obtained taking subsystem (As)s spanned by as, ay. The following

table gives all the planar restrictions of root system Fj.

214



APPENDIX A. TRIGONOMETRIC V-SYSTEMS ON THE PLANE 215

Table A.1: Restricted systems of Fj; on the plane

Fy root system
Subsystem Restricted system A Multiplicities |A|
(A2); el e?, 2e2, el :I:e2,%(e1 162),%(61 + 3e?) P, 3p, 3q,3q,3p, p 9
(A2)2 el e?, S(e! £ e?), 5(3e! £ e?) 3(p+9),4,3(p+9q):q 6
B el e?,2e!,2e?, el £ e? 4dp,4p,q,q,p + 4q 6
A? el,e?,2el,2e2 el £ €2, e! + 262 2(p + 2q),4p, q,p + 24, 2p, 2q 8

The following equivalences take place:

Configuration (Fy, As); is equivalent to the configuration given in Proposition 3.5.10.

Configuration (Fj, As)s is equivalent to root system G5 with invariant multiplicities.

Configuration (Fj, By) belongs to the family of BCy configurations.

Configuration (Fy, A?) coincides with the configuration given in Proposition 3.5.9.

A.2 Planar restrictions of root system FEg

Recall that R = Ey is the positive half of the root system Fg with the multiplicity function
c given by

e' + eJ with multiplicity ¢, 1<i<j <8,

1
5(61 +efted et e e £ £6), with multiplicity ¢,

where the sum of all eight coordinates is even and ¢t € C.
Recall also that in the corresponding solution (2.55) of WDVV equations (2.56) we
have
A= Agen) = 30V, (A.3)

The basis of simple roots consists of

1 1
al:§€1+68—§(€2+63+64+65+66+67)7 ap =e' +e?, ag=e? e
ay=e"—e* as=c' - ag=¢e"—¢', ar=e’—¢€" ag=e" €l

The Dynkin graph of Eg is
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>—0—B¢—0—0—4
& 3 a4 O5 Qg Q7 O

The following table gives all the planar restrictions of root system FEs.

Table A.2: Restricted systems of Eg on the plane

FEg root system

Subsystem Restricted system A Multiplicities | Al
FEs el e?, 2(e! £ e?),1(3e! £e?) 27,1,27,1 6
D el e?, 2et,2¢e?, el + e? 32,32,1,1,12 6
Ag el 2e!, e, T(e! £ €?), 1(3e! +¢?) 35,7,1,21,7 7

A1 X Ds el 2el, €2, 2e2, el +e2,2e! £ €2 32,10,20,1,16,2 8
Al X As el 2el. 3el, e2,2e2, el £ €2, 2e! + €2 30,15,2,20,1,12,6 9
Ay x Dy el e?,2e! el e, L(3e! £e?), 1(e! £e?) 24,8,3,3,8,24 9
1’217317 Q’l 1:|: 2’131:|: 27
Ay x Ay €h2e0ene 12<61 62) 2(3e” %) 30,15,5,1,15,10,3 10
5(5e! £ e?)
A2 el 2el,e?,2e? el £e2,2e! £e?,e! £ 22 24,6,24,6,16,4,4 10
el 2e' e, 3(e! +€?), F(e! +€?),
A2 x Ay %(261 —€2), %(el — 2¢e?), %(2@1 —€?), 20,5,2,20,10,20,10,5,2,4,10 || 11
$(5e! +2¢2), 2 (5e! — €?), (4e! +¢€?)

1213141 222 1i 2
Ay x Ay x Ay €20, 9080 0L 20 e e 24,18,8,3,12,1,12,6, 4 12
2e! 4 €2, 3e! £ €2
121’31’2’2232 1:t2
A2 x A2 €00 EL R E O 18,9,2,18,9,2,12,3,6,6 14
2(e! £e%),2e! e el +2e

The following equivalences take place:

The restriction (Es, Eg) is equivalent to root system Gy with special multiplicities.

The restriction (Eg, Dg) belongs to the family of BCy configurations.

The restriction (Fg, Ag) is equivalent to a configuration from the family given in

Proposition 3.5.7 with special multiplicities.

The restriction (FEg, A; X As) belongs to the family of configuration given in Propo-

sition 3.5.13 with special multiplicities.
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e The restriction (FEs, A; X Ds) is equivalent to a configuration from the family given

in Proposition 3.5.9 with special multiplicities.

e The restriction (Eg, A2 x Dy4) belongs to the family given in Proposition 3.5.10 with

special multiplicities.

A.3 Planar restrictions of root system F~

Recall that R = E is the positive half of the root system F; with the multiplicity function
c =1t € C given by

el 1<i<j<6, e —¢,
1 6 6
3 (68 —e’ + ;(—1)”@6’) , with ; v(i) odd.

Another realization of root system FE7 is given earlier in Subsection 3.6.2. Recall also
that in the corresponding solution (2.55) of WDVV equations (2.56) we have

A= A = V6. (A.4)

The basis of simple roots consists of

1 1
041:561—1-68—§(€2+€3+64+65+66+67), ar=¢e' +e az=e*—é,
=€ —€, az=¢e'—€}, ag=e"—el, a;=e—¢.

The Dynkin graph of E7 is

P—O—Iio—o—i
oy (g 04 Qo5 O Q7

Note that there are two different restrictions of root system F; along the root system
As. The first one (E7, As); is obtained by taking subsystem the (Ajs); spanned by the
simple roots oy, as, ay, as, ag. The second one (E;, As), is obtained by taking subsystem
the (As)2 spanned by the simple roots s, ay, as, ag, a7. Note also that the restricted
system obtaining by taking the subsystem spanned by the simple roots ay, s, ay, as, ag
is equivalent to (E7, As);.

The following table gives all the planar restrictions of root system E-.
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Table A.3: Restricted systems of E7 on the plane

218

E; root system
Subsystem Restricted system A Multiplicities |A|
Dy el e? el +e2 el —e? 16,16,10,1 4
(A5)1 el, 2el e?, el £e? 20,1,15,6 5
(As)2 el e, 3(et £ e?), £ (3e! £ e?) 15,1,15,1 6
A1 X Dy el e? 2el, 2e2 el £ €2 16,16,1,1,8 6
A x Ay et sl + 621)’ 3(el + ), 528 — ), 2,5,20,5,10, 10 6

g(el —2¢e?)

Ay x Ag 2el 2e2 4e? el £ €2, el + 32 1,18,3,12,4 7
A? x Az el, 2el e?,2e?, el £e2,e! £ 22 12,1,16,6,8,2 8
Ay x A3 el,2e!,3el €2, el £e2,2e! £e2 18,9,2,9,6,3 8
A3 x Ay 2et 2e2 4e? el + €2 2(e! £e?), el 4 3e? 4,12,3,12,3,4 9

The following equivalences take place:

e Configuration (E7, As); belongs to the family of BCy configurations.

e Configuration (E7, As), is equivalent to the root system Go with special multiplici-

ties.

e Configurations (E7, Ds), (E7, Ay X Dy4) belong to the family of BCy configurations.

e Configuration (E7, A; x A4) is equivalent to a configuration from the family given

in Proposition 3.5.6 with special multiplicities.

e Configuration (E7, A2 x Ajz) is equivalent to the configuration given in Proposi-

tion 3.5.7 with special multiplicities.

o Configuration (E;, A2 x A3) belongs to the family of configurations given in Propo-

sition 3.5.9 with special multiplicities.

e Configuration (E7, A? x A,) is equivalent to a configuration from the family given

in Proposition 3.5.10 with special multiplicities.
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A.4 Planar restrictions of root system FEj

Recall that R = Ej is the positive half of the root system Fg with the multiplicity function
c=1t € C given by

elt+el, 1<i<j<Bh,

5 5

1 N

3 (68 —e’ —ef E (—1)”(’)e”> , with E v(1) even.
=1 i=1

Recall also that in the corresponding solution (2.55) of WDVV equations (2.56) we
have

A= Ay = 12V2t. (A.5)

The basis of simple roots consists of

1 1
=t tef— (P tetred Feft+eT), ay=e +e? az=e? ¢,

2 2

3

ay=ed— 2 3 5_ 4

as =et—e3, ag=e — e

&

a;p (g Qg OGF5 Op

The Dynkin graph of Ejg is

The following table gives all the planar restrictions of root system FE;.

Table A.4: Restricted systems of Eg on the plane

FEg root system

Subsystem Restricted system A Multiplicities | Al
D, 2el el 4 2 8,8 3

Ay 2el, 2e2, el & €2 1,5,10 4

A; X As el, 2el e?, el £e2 12,1,8,4 5
Ag X Ay el e?, 3(et £ e?), £(3e! £ e?) 9,1,9,1 6
A2 x A, 61762’%(61+€21)’%(61+62)7%(261 — <), 2,2,12,3,6,6 6

5(61 —2¢?%)

The following equivalences take place:
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e The restriction (Fg, Dy4) is equivalent to the root system As.

e The restrictions (Fg, Ag), (Fs, A1 X A3) belong to the family of BC, type configura-

tions.

e The restriction (Eg, Az X As) is equivalent to the root system Gy with special mul-

tiplicities.

e The restriction (Fg, A? x Aj) is equivalent to a configuration from the family given

in Proposition 3.5.6 with special multiplicities.

A.5 Summary

Let us summarize all the known trigonometric V-systems on the plane. In addition to
configurations BCy(q,r, s;m), As(t;m) and the root system G5 we have the following

configurations (with general multiplicities) coming from restrictions of the root systems:
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Table A.5: Planar restrictions of root systems
(R, B) Restricted system A Multiplicities A | Al
(F4 AQ) 617 627 2617 262> 2(p + 2Q)7 4p, q, 6v/3(p+2q) ]
T el +e2 el + 2¢2 p+ 2q,2p, 2q vp+iq
el, 2el,e? el £ e? 6
Fi, A ’ ,q,p/3,q,p/3,p | SZ20 | 9
(Fy, Ag) (36! + ¢2)2, () + )2 P,4:p/3,4:0/3,0 | s
el,2el,3el, e?, 2e2 30t, 15t, 2t, 20t t
E ,A XA ’ I ) ) ’ ) ) ) » Y 30\/Z 9
(Es, A5 x Au) e+ 2,21 + ¢2 12¢, 6t
L 2el 3el, €2, (el +€2)/2 30t, 15t, 5t,t, 15t
(E87A4XA2) 676’6’6’(6 6)/? ) ) Y ) 30\/i 10
(3e! £ €2)/2, (5el £ e2)/2 10t, 3t
el,2el,e?,2e? el +¢2 24t, 6t, 24t, 6t, 16t
E ,A2 ’ ) ) ’ ’ ) ’ ’ ’ 9 30\/17’ 10
(Es. 43) 2e! + €2 el £ 2¢2 4¢, 4t
el,2el,e?, (el + e2)/3,
2(e! + €2)/3, (2e! — €2)/3, 20t, 5t, 2t, 20t,
(Es, Ay x A?) (el —2e2)/3,2(2e! — €?)/3, 10t, 20¢, 10¢, 5t, 30V/t 11
(5e! +2¢%)/3, (5e! — €2)/3, 2t, 4t, 10t
(4e! +¢2)/3
19el 3el, el €2, 2e2, e! + €2, | 24¢,18t,8t,3t,12t
(Eg,AgXAQXAl) €7,2€7,0€", 467, €7, 467, € €, ) 9 DYy Dy ) 30\/17’ 192
2e! + €2, 3e! £ €2 t,12t, 6t, 4t
12el 3el,e2,2e2,3e?, et £ 2, | 18t,9¢t,2t, 18,9t
(E87A%XA%) 676 676 67676 e? ) bl 9 ) 30\/i 14
2(e! +€?), 2e! + €2, el £ 262 2t, 12t, 3t, 6t, 6t
(Er7, A2 x Ay) el,2el,3el, e, el +e2,2e! + 2 | 18t,9¢,2t,9t,6t,3t | 96t 8
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In the next table we list all the known trigonometric V-systems which are not restric-

tions of root systems.

Table A.6: Non-Coxeter planar examples

A Multiplicities Conditions A |A|
el 2el,e? el + e?, 4a, a,2a, 2a, 4a — 3b #£ 0, 6v/3(2a—b)
el —e2, 2! + 2 2(a —b), 43?3% a(2a —b) #0 Vda—3b 0
1 a(3a—2b)
el 62)12827 §(el + (32), Sagdb 3a + 2b, S+ 4b £ 0 6(3a-+2b) 7
3 (e! £3e?) b,3a,a V/3a+4b)
2b(3b+2a) b(3b+2a) 2b(b—2a
617 261’ 361’ 627 2627 (b+—2~_a ) ) (b+—;a ) ) 3((b+2a)) ’ b+2a # 0, 3v2(3b+2a) 9
el +e2,2¢! + 2 2a + 3b, a,2b,b b(3b+ 2a) #0 vb+2a
Note that

e The first configuration A with 6 vectors can be obtained by restricting the configu-
ration A; along the plane 2z, + x5 — x3 = 0, where A; is the configuration given in

Proposition 3.5.3.

e The second configuration A with 7 vectors can be obtained by restricting the configu-

ration A; along the plane x1 = x5, where A; is the configuration given in Proposition
3.5.3.

e The third configuration A in the special case a = 0 reduces to the 8-vectors config-
uration (FEy, A3 x Ay).
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