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Abstract

This thesis contains three parts related to trigonometric solutions of Witten–Dijkgraaf–
Verlinde–Verlinde (WDVV) equations.

In the first part of the thesis we consider a class of trigonometric solutions of WDVV
equations determined by collections A of covectors with multiplicities. This class of solu-
tions involves an extra variable which makes them non-trivial already for planar collections.
These solutions have the general form

F =
∑
α∈A

cαf(α(x)) +Q, (0.1)

where cα ∈ C are multiplicity parameters and Q is a cubic polynomial in x = (x1, . . . , xN)

and additional variable y, and f is the function of a single variable z satisfying f ′′′
(z) =

cot z. We show that such solutions can be restricted to special subspaces to produce new
solutions of the same type. We find new solutions given by restrictions of root systems, as
well as examples which are not of this form. Further, we consider a closely related notion
of a trigonometric ∨-system, and we show that its subsystems are also trigonometric ∨-
systems. While reviewing the root system case we determine a version of generalised
Coxeter number for the exterior square of the reflection representation of a Weyl group.
We give a list of all the known trigonometric ∨-systems on the plane.

In the second part of the thesis, we consider solutions of WDVV equations in N -
dimensional space (without extra variable), which are of the form (0.1) with Q = 0.
Such class of solutions does not exist in general even for the case of root system A and
invariant multiplicities cα. However, it is known to exist for the root system BN and
specific choice of invariant multiplicities [33]. We generalize this solution to a multi-
parameter family so that the underlying configuration A is the root system BCN . These
BCN type solutions of WDVV equations are found by applying restrictions to the known
solutions of the commutativity equations and by relating commutativity equations with
WDVV equations for the corresponding prepotential. We apply these solutions to define
N = 4 supersymmetric mechanical systems.

In the third part of the thesis we reveal the relation between the set of WDVV equations
and the set of the commutativity equations for an arbitrary function F . We reformulate
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it as the existence of the identity vector field for the natural associative multiplication
associated with a solution F of commutativity equations. We give explicit formulas of the
identity vector field corresponding to root systems for all the cases when commutativity
equations are known to be satisfied. We also get new solutions of WDVV equations related
to root system F4.
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Chapter 1

Introduction

1.1 Background

The Witten–Dijkgraaf–Verlinde–Verlinde (WDVV) equations are a remarkable set of non-
linear third order partial differential equations for a single function F . They were discov-
ered originally in two-dimensional topological field theories at the end of 1980’s by the
physicists E. Witten, R. Dijkgraaf, E.Verlinde, and H.Verlinde [15, 55]. One of the forms
of these equations for a holomorphic function F is

FiF−1
j Fk = FkF−1

j Fi, i, j, k = 1, . . . , N, (1.1)

where Fi’s areN×N matrices constructed from the third derivatives of the unique function
F = F(t1, . . . , tN) of N variables with entries

(Fi)pq = Fipq =
∂3F

∂ti∂tp∂tq
(p, q = 1, . . . , N). (1.2)

When F is a function of one or two variables (N = 1, 2) then equations (1.1) are always
satisfied. However for more variables, regardless the simplicity of their compact matrix
form these equations form a highly nontrivial overdetermined system of nonlinear partial
differential equations for the function F . These equations have been widely discussed and
have found various interesting applications in connection with many areas of mathematical
physics. Sometimes equations (1.1) are referred to as the generalized WDVV equations
while the usual WDVV equations have the form (1.1) with a fixed index j. However, we
will call the full set of equations (1.1) simply as WDVV equations. Following [15, 55],
WDVV equations appeared in the core of Frobenius manifolds theory in the early ‘1990’s,
where the mathematical structure of these equations had been thoroughly studied by
Boris Dubrovin as a way to provide a geometric setting of the solutions to the WDVV
equations [16, 17]. Dubrovin’s Frobenius manifolds give invariant coordinates free way to

1
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think about WDVV equations. In his work he gave differential geometric formulation of
WDVV equations as he proved that locally any solution of the WDVV equations defines
the structure of a Frobenius manifold and vice versa.

Let us briefly outline the setting of this relation before giving more details in the next
chapter. The main features of a Frobenius manifold M are the existence of an associative
commutative multiplication ◦ on each of its tangent space TtM and a holomorphic flat
metric η so that it has zero curvature. This metric is compatible with the multiplication,
that is

η(x ◦ y, z) = η(x, y ◦ z), x, y, z ∈ TtM. (1.3)

Another characters that play roles in the structure of a Frobenius manifold are two distin-
guished vector fields e, E ∈ Γ(TM). The vector field e is the unity for the multiplication
◦ and it is required to be flat with respect to the Levi-Civita connection of the metric
η, namely ∇e = 0. The other vector field E is called Euler vector field and the metric
and multiplication are assumed to be homogeneous with respect to this additional vector
field. Furthermore, there exists a symmetric (0, 3) tensor c related to the metric η and the
multiplication ◦ by the formula

η(x ◦ y, z) = c(x, y, z), x, y, z ∈ Γ(TM). (1.4)

The multiplication ◦ with condition (1.3) makes TM into a family of commutative as-
sociative algebras with unity e, which is a family of Frobenius algebras. The axioms of
the Frobenius manifold require that the tensor c is totally symmetric in all its arguments.
Such a condition implies local existence of a function F = F(t1, . . . , tN) on M called
the (free energy) prepotential of the Frobenius manifold M, and allows one to express
the structure constants of the multiplication in terms of the third order derivatives of the
function F , that is

cαβγ = c(α, β, γ) =
∂3F(t)

∂tα∂tβ∂tγ
, (1.5)

where variables ti, are flat coordinates of the metric η. Hence, by (1.3) and (1.5) the
flat metric η can be defined in terms of the third order derivatives of F which allows
to reformulate WDVV equations as the associativity condition of a multiplication ◦ in a
family of Frobenius algebras defined on the tangent spaces TtM. By this reason sometimes
WDVV equations are referred as associativity equations.

Let us recall some of the important known classes of solutions of WDVV equations they
are related to finite Coxeter groups W which are finite groups of linear transformations of
a real vector space V of dimension N generated by reflections.

There is a remarkable class of polynomial solutions of WDVV equations which corre-
sponds to (finite) Coxeter groups W [17]. In this case the Frobenius manifold M = MW
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is the (complexified) space of W-orbits in the reflection representation V of W . K. Saito
proved that there exists a flat structure on MW [51], and this structure can be presented as
a flat metric, which is known as the Saito metric. It has been shown by Dubrovin that the
orbit space MW admits the structure of a Frobenius manifold [17, Lecture 4]. Moreover,
his construction shows that the corresponding prepotential F of this Frobenius manifold
is a polynomial in the flat coordinates of the Saito metric. Following Dubrovin’s result
and conjecture, Hertling proved that under some assumptions every polynomial Frobenius
manifold arises in this way [32]. Thus, the orbit space construction gives all polynomial
solutions to the WDVV equations under certain assumptions. Note that the polynomial
prepotential corresponding to the space of orbits MW of a finite Coxeter group W cannot
be written explicitly in a simple way.

For any Frobenius manifold there is an associated almost dual Frobenius manifold in-
troduced by Dubrovin in [20]. In this new structure some of the axioms of a Frobenius
manifold are relaxed. New multiplication is considered on the tangent spaces which is
defined via the old multiplication of the Frobenius manifold and its Euler vector field.
Tangent spaces remain to be Frobenius algebras with respect to new multiplication and
new metric. There is also a new prepotential F∗ satisfying WDVV equations which are as-
sociativity conditions for the new multiplication. For the orbit space MW the prepotential
F∗ can be expressed in a simple form

F∗ = F rat =
∑
α∈A

α(x)2 logα(x), x ∈ V, (1.6)

where A = R is the root system of the group W . In this case the constant metric is the
W-invariant form on the vector space V of the reflection representation of the group W .

A class of solutions to WDVV equations (1.1) includes some prepotentials arising from
low-energy effective actions of N = 2 supersymmetric gauge theories in four dimensions via
Seiberg-Witten theory. More precisely, perturbative parts of Seiberg–Witten prepotentials
take the form (1.6) and solve WDVV equations. Note that the geometric structure of the
WDVV equations in Seiberg-Witten theory appears to be different from that of Frobenius
manifolds as for WDVV equations in the case of Seiberg-Witten theory there may be no full
structure of Frobenius manifolds associated with them. Marshakov, Mironov and Morozov
found in this context solutions (1.6) of WDVV equations for classical root systems R in
[39,40]. More generally, it has been shown in [40] that the prepotential

F rat =
∑
i,j

(
ν−(xi − xj)

2 log(xi − xj) + ν+(xi + xj)
2 log(xi + xj)

)
+ η

∑
i

x2i log xi (1.7)

solves WDVV equations for any value of η if ν+ = ν− or ν+ = 0. Suitable choices of
scalars η, ν+, ν− correspond to the prepotentials for the classical groups DN , BN and AN .
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Note that solutions corresponding to some deformations of the root system AN are also
contained in the family (1.7) when ν+ = 0 although this point was not emphasized in [40].
Solutions (1.6) for non-classical root systems were found by Gragert and Martini in [41].

Veselov found solutions F rat of the form (1.6) for non-crystallographic (Coxeter) root
systems as well as, more importantly, for not fully symmetric configurations of covectors
A ⊂ V ∗, where V can now be a complex vector space. He introduced the notion of a
∨-system [53] formulated in terms of linear algebra. The following theorem describes the
connection between ∨-systems and WDVV equations.

Theorem 1.1.1. [26, 53]. Under a non-degeneracy assumption configuration of vectors
A is a ∨-system if and only if the corresponding logarithmic prepotential (1.6) satisfies
WDVV equations.

Another equivalent statement that relates the class of ∨-systems and WDVV equations
is given via associativity of a multiplication defined on the tangent space of the complement
MA = V \ ∪α∈AΠα to the union of all hyperplanes Πα = {x ∈ V : α(x) = 0}. The
multiplication is given by the formula

u ∗ v =
∑
α∈A

α(u)α(v)

α(x)
α∨, u, v ∈ TxMA, (1.8)

where α∨ ∈ V is the vector corresponding to the covector α ∈ V ∗ with respect to a non-
degenerate bilinear form defined on V . The relation then is formulated by the following
statement.

Theorem 1.1.2. [26, 54] The multiplication (1.8) is associative if and only if A is a
∨-system.

This statement together with Theorem 1.1.1 leads to the fact that associativity of the
multiplication (1.8) is equivalent to the WDVV equations (1.1) for prepotential (1.6).

This property can also be reformulated in terms of flatness of a connection on the
tangent bundle TV [54]. The connection is given by the formula

∇u = ∂u −
∑
α∈A

α(u)

α(x)
α∨ ⊗ α. (1.9)

Then the following statement holds.

Theorem 1.1.3. [54] Connection (1.9) is flat if and only if A is a ∨-system.

As a corollary of this statement together with Theorem 1.1.1 it is easy to see that
the flatness condition for connection (1.9) is equivalent to the WDVV equations (1.1)
for prepotential (1.6). A closely related notion of the Dunkl system was introduced and
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studied in [14]. That structure for complex reflection groups was investigated further in
[5] in relation with Frobenius manifolds theory.

The class of ∨-systems is closed under the natural operations of taking subsystems [26]
and under restriction of a system to the intersection W of some of the hyperplanes Πα

where α ∈ A [25]. A brief formulations of these facts can be given as follows, more details
are given later in Chapter 2.

By a subsystem B ⊂ A we mean the intersection of A with a linear subspace in V .

Theorem 1.1.4. Let A be a ∨-system. Then under some non-degeneracy conditions any
subsystem B ⊂ A as well as the set of non-zero restricted covectors of A to the subspace
W are also ∨-systems.

By considering these two operations of taking subsystems and restrictions one can
obtain new solutions to the WDVV equations from known solutions. Note that the re-
striction of Coxeter root systems in general are not root sytems, so the class of ∨-systems
can be thought of as an extension of the class of Coxeter root systems that satisfies such
property. In fact, the class of ∨-systems contains multi-parameter deformations of the
root systems AN and BN ([13], see also [26] for more examples). The underlying matroids
were examined in [46]. The problem of classification of ∨-systems remains open.

Other remarkable solutions to WDVV equations that arise in theory of Frobenius
manifolds are trigonometric generalisation of solutions (1.6). These solutions have the
form

F trig =
∑
α∈A

cαf(α(x)) +Q, (1.10)

where cα ∈ C are some multiplicity parameters andQ is a cubic polynomial in x = (x1, . . . , xN)

and, often, in additional variable y, and f is a function of a single variable z given by

f(z) =
1

6
iz3 +

1

4
Li3(e

−2iz), (1.11)

where Li3 is the (trilogarithm) function so that f ′′′
(z) = cot z. The WDVV equations in

this case have the form

F trig
i (F trig

j )−1F trig
k = F trig

k (F trig
j )−1F trig

i , (1.12)

similar to equations (1.1) but they involve N + 1 variables x1, . . . , xN , xN+1 = y, where

(F trig
i )pq =

∂3F trig

∂xi∂xp∂xq
(i, p, q = 1, . . . , N + 1). (1.13)

Such solutions (for root system of type AN) appeared in five-dimensional Seiberg–Witten
theory as perturbative parts of prepotentials [40]. Solutions of the form (1.10) corre-
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sponding to (crystallographic) irreducible reduced root systems A = R of Weyl groups
and W-invariant multiplicities cα were studied by Hoevenaars and Martini in [33,42]. The
polynomial Q is W-invariant, and it was specified fully explicitly in the case of constant
multiplicity.

Such solutions also appear as prepotentials for the almost dual Frobenius manifold
structures on the extended affine Weyl groups orbit spaces [18, 21]– see [45] for type AN .
In some cases such solutions may be related to the rational solutions (1.6) by twisted
Legendre transformations [45].

Bryan and Gholampour found another remarkable appearance of trigonometric solu-
tions (1.10), or rather the corresponding associative product, in geometry as they studied
quantum cohomology of resolutions of (simple) A,D,E singularities [11]. The associative
quantum product on these cohomologies is governed by the corresponding solutions F trig

with A = AN , DN , EN respectively and with special multiplicities. The invariant cubic
polynomial Q is given in terms of the highest root of the root system. Furthermore, a
family of associative products was given in [11] for any irreducible reduced root system.
The corresponding prepotential can be checked to be of the form (1.10).

In Shen’s work [47, 48] families of Frobenius algebras in trigonometric settings are
considered. A related object is one-parameter family of torsion free and flat connections
on the tangent bundle of the complement of a toric arrangement associated with a root
system. This family of connections is the Dubrovin (deformed) connection ∇a and it has
the form

∇a
ũṽ = ∂ũṽ + aũ ∗ ṽ, (1.14)

where a ∈ C and the multiplication ∗ is defined so that each fiber of the tangent bundle of
the complement of a toric arrangement for a root system R with a W-invariant multiplicity
cα is endowed with Frobenius algebra structure. This associative multiplication is given
as follows.

Let E be the vector field corresponding to the additional variable y = xN+1, that is
E = ∂xN+1

. Consider two vector fields X̃ = X + λ1E, Ỹ = Y + λ2E, where X, Y ∈
V, λ1, λ2 ∈ C. The product ∗ is given by the formula

X̃ ∗ Ỹ =
1

2

∑
α∈R+

cα
1 + eα

1− eα
α(X)α(Y )α∨ − µ⟨X, Y ⟩E + λ2X + λ1Y + λ1λ2E. (1.15)

In this algebra E plays the role of the identity of the product. The corresponding potential
functions to these Frobenius algebras have the form (1.10). Shen finds the form of µ
explicitly so that multiplication (1.15) is associative which is equivalent to the flatness of
connection (1.14). This can be rephrased as explicit specification of polynomialQ in (1.10).
Thus it complements results from [33, 42] to the case of arbitrary invariant multiplicities
for all the reduced root systems.
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Solutions of WDVV equations of the form (1.10) without full Weyl symmetry were
considered by Feigin in [27] where the notion of a trigonometric ∨-system was introduced
and its close relation with WDVV equations was established. Feigin derived geometric
and algebraic conditions for a system of vectors with multiplicities so that the correspond-
ing function of the form (1.10) for a configuration A satisfies the WDVV equations (see
Definition 2.6.17 for precise definition of a trigonometric ∨-system). A key difference with
the rational case is the existence of a rigid geometrical structure of a series decomposition
of vectors from A parallel to a chosen one which generalizes the notion of strings for root
systems. In more detail, for any α ∈ A the set of vectors in A not collinear to α can be
decomposed as A \ ⟨α⟩ =

⊔
s Γ

s
α, where for any two covectors γ1, γ2 ∈ Γs

α one has either
γ1 + γ2 = mα or γ1 − γ2 = mα for some m ∈ Z. There are further algebraic conditions for
each series Γs

α. The following example illustrates such series/strings decompositions for
the root system BC2.

Example 1.1.5. Let A = {e1, 2e1, e2, 2e2, e1 ± e2} be the positive half of the root system
BC2. Then we have the following series:

Γ1
e1 = {e2, e1 ± e2}, Γ2

e1 = {2e2}; Γ1
e2 = {e1, e1 ± e2}, Γ2

e2 = {2e1};

Γ1
2e1 = {e1 ± e2}, Γ2

2e1 = {e2}, Γ3
2e1 = {2e2}; Γ1

2e2 = {e1 ± e2}, Γ2
2e2 = {e1}, Γ3

2e2 = {2e1};

Γ1
e1+e2 = {e1, e2}, Γ2

e1+e2 = {2e1, 2e2, e1 − e2}; Γ1
e1−e2 = {e1, e2}, Γ2

e1−e2 = {2e1, 2e2, e1 + e2}.

The algebraic conditions for each α-series have the form∑
β∈Γs

α

cββ(α
∨)β = bα (1.16)

for some b ∈ C, where α∨ is a vector corresponding to covector α under a certain identifi-
cation of V and V ∗. Under additional conditions it was shown in [27] that configuration
of covectors A with multiplicities c : A → C such that (1.10) is a solution of WDVV equa-
tions has to be a trigonometric ∨-system, and the converse statement holds true as well.
We give a version of this result below in Theorem 1.2.1.

All irreducible trigonometric ∨-systems with up to five vectors on the plane were de-
termined in [27] and some more examples were given.

The study of the trigonometric and rational cases is related as the next statement
illustrates.

Proposition 1.1.6. [27] If a configuration A with collection of multiplicities cα, α ∈ A is
a trigonometric ∨-system then configuration

√
cαα is a rational ∨-system, that is F rat =∑

α∈A cαα(x)
2 logα(x) is a solution of the WDVV equations on the space V .

However, due to the presence of the extra variable y in the trigonometric case the



CHAPTER 1. INTRODUCTION 8

WDVV equations are already nontrivial for dimV = 2 while the smallest nontrivial di-
mension of V in the rational case is 3.

Many-parameter deformations of solutions F trig for the classical root systems were
obtained by Pavlov from reductions of Egorov hydrodynamic chains [43]. In his work
Pavlov derived an effective algorithm to construct infinitely many particular solutions of
the WDVV equations written in an explicit form in the flat coordinates of correspond-
ing Egorov hydrodynamic type systems. Closely related many-parameter family of flat
connections in type AN was considered by Shen in [47,48].

It has been proven in [41] (see also [40]) that WDVV equations (1.1) can be written
equivalently in the form

FiB
−1Fj = FjB

−1Fi, i, j = 1, . . . , N, (1.17)

where B is any non-degenerate linear combination of matrices Fk with functional coeffi-
cients. Solution of WDVV equations of the form (1.10) when the cubic corrections are
absent, that is when Q = 0, does not exist in general even for the case of a root system
A = R and invariant multiplicities cα. However, such a solution is known to exist for
the root system BN and specific choice of invariant multiplicities [33]. In fact, in their
derivation Hoevenaars and Martini proved that for such a solution for the root system BN

the corresponding WDVV equations (1.17) are reduced to the commutativity equations

FiFj = FjFi, i, j = 1, . . . , N, (1.18)

as they found a matrix B = (Bij)
N
i,j=1 given as a linear combination of the third order

derivatives of the function F which is a multiple of the identity matrix of size N ×N.

Another area where WDVV equations or rather commutativity equations (1.18) emerge
is N = 4 supersymmetric mechanics. Relations of such mechanical systems with WDVV
equations were known since [56] and [9]. Similarly to the case of Seiberg-Witten theory,
there is no full structure of Frobenius manifolds in these settings. In order to construct
an N = 4 supersymmetric mechanical system, N (quantum) particles on a line with co-
ordinates xj and momenta pj = −i∂xj

, (j = 1, . . . , N) are considered. For each particle
four fermionic variables {ψaj, ψ̄j

a | a = 1, 2, j = 1, . . . , N} are assigned. These fermionic
variables are chosen so that they obey the standard (anti)-commutation rules. The N = 4

supersymmetry algebra then is generated by four supercharges {Qa, Q̄b | a, b = 1, 2}. Those
supercharges are differential operators in variables x1, . . . , xN whose coefficients depend
on particle coordinates x1, . . . , xN and the additional (fermonic) variables ψ. The N = 4

supersymmetry algebra has the form

{Qa, Qb} = {Q̄a, Q̄b} = 0, HSUSY = −1

2
(QaQ̄a + Q̄aQ

a), (1.19)
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where HSUSY is the supersymmetric Hamiltonian, and {·, ·} is the anti-commutator.
Wyllard in [56] (see also [9]) constructed a set of generators of N = 4 supersymmetric

mechanics, where his ansatz for the four supercharges involves two scalar prepotentials F
and W which depend on positions of particles only. The case when the second prepoten-
tionalW = 0 was also considered in [56] (see also [30,31]). The structure of such an algebra
forces functions F and W to satisfy a system of partial differential equations, which are
the commutativity equations (1.18) for F [9]. Wyllard’s ansatz for F has the form (1.6),
where A is the root system AN−1. Examples with root systems A = G2, B3 were discussed
in [56]. Wyllard’s potential for N = 4 supercharges was extended to other root systems
in [30, 31] where solutions for a small number of particles were considered. More gener-
ally, any rational ∨-system leads to N = 4 supersymmetric mechanical systems (see [4]).
Trigonometric solutions of the form (1.10) with Q = 0 to the commutativity equations
(1.18) were obtained in [3]. In this case A is an irreducible root system with more than one
orbit of the Weyl group, namely BCN , F4 and G2. These solutions were used to construct
N = 4 supersymmetric Hamiltonians in [3]. This gave, in particular, supersymmetric ver-
sion of quantum Calogero–Moser–Sutherland system of type BCN with two independent
coupling parameters. The corresponding solution F generalizes BN solution from [33].
More recently, other N = 4 supersymmetric extensions of Calogero–Moser–Sutherland
type systems were obtained in [38] for the models with many fermionic variables, and in
[22] for the models with extra spin variables.

There is also an important class of elliptic solutions of WDVV equations, which was
considered by Strachan in [44, 49] where, in particular, certain solutions related to AN

and BN root systems were found. The prepotentials appear as almost dual prepotential
associated to Frobenius manifold structures on AN and BN Jacobi groups orbit spaces
[7, 8]. Such solutions appear also in six-dimensional Seiberg–Witten theory [10].

1.2 Present work and plan of this thesis

1.2.1 Main results I (Chapter 3)

In the first part of the thesis (Chapter 3) we study trigonometric solutions F trig of the
form (1.10) of WDVV equations. Let us explain the relation between a trigonometric
∨-system and WDVV equations.

Let A ⊂ V ∗ be a finite set of covectors. Assume it belongs to a lattice of rank N .
Define the bilinear form GA (which will be assumed to be non-degenerate) on V by

GA(x, y) =
∑
α∈A

cαα(x)α(y), x, y ∈ V. (1.20)
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Let α∨ ∈ V be the vector corresponding to the covector α ∈ V ∗ with respect to the
bilinear form GA. Let U ∼= C be a one-dimensional vector space. Consider a function
F : V ⊕ U → C of the form

F =
1

3
y3 +

∑
α∈A

cαα(x)
2y + λ

∑
α∈A

cαf(α(x)), (1.21)

where λ ∈ C∗ and function f(z) given by (1.11).
Define the following two bilnear forms on Λ2V :

G
(1)
A (z, w) =

∑
α,β∈A

cαcβBα,β(z)Bα,β(w),

G
(2)
A
(
z, w) =

∑
α,β∈A+

cαcβGA(α
∨, β∨)Bα,β(z)Bα,β(w), (1.22)

where z, w ∈ Λ2V, and for any a, b ∈ V,

Bα,β(a⊗ b) = α ∧ β(a⊗ b) = α(a)β(b)− α(b)β(a).

In the formula (1.22) A+ is obtained by replacing some vectors from A with their opposite
ones and keeping the multiplicity unchanged so that the new configuration of vectors
belongs to a half-space.

The following theorem gives the relation between WDVV equations and trigonometric
∨-systems.

Theorem 1.2.1. [1, 27] Under some non-degeneracy conditions, the WDVV equations
(1.12) for the function (1.21) imply the following two conditions:

(1) A is a trigonometric ∨-system,
(2) Bilinear forms G(1)

A and G(2)
A are proportional: G(1)

A = λ2

4
G

(2)
A .

Conversely, if a configuration (A, c) satisfies conditions (1) and (2) then the WDVV
equations for the function (1.21) hold.

A version of Theorem 1.2.1 that relates solutions of the form (1.21) of WDVV equations
with the trigonometric ∨-systems was also given in [27, Theorem 1], and it was obtained
by analyzing WDVV equations for the function (1.21). In this thesis we derive and clarify
condition (2) of Theorem 1.2.1. Solution (1.21) depends on a scalar λ = λ(A,c) which is
invariant under linear transformations applied to the configuration A. In the case of root
systems A = R the scalar λ(R,c) may be thought of as a version of generalized Coxeter
number for the irreducible W-module Λ2V since it is given as a ratio of the two canonical
W-invariant symmetric bilinear forms G(1)

A and G(2)
A on Λ2V .

We define a multiplication ∗ on the tangent space Tx(V ⊗U), where x = (x1, . . . , xN+1),
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given by the formula

∂xi
∗ ∂xj

=
N+1∑
k,l=1

ηklFijk∂xl
, i, j = 1, . . . , N + 1, (1.23)

where ηkl is defined by ηij = (F−1
N+1)ij. We arrive at Theorem 1.2.1 by making use of

flatness of Dubrovin connection (1.14) and the following well-known result.

Theorem 1.2.2. The flatness of connnection (1.14) for all a ∈ C where the multiplication
∗ is given by (1.23) is equivalent to WDVV equations for the function F .

By working with the flatness conditions we arrive at equivalent identities for the config-
uration (A, c). These identities under some non-degeneracy conditions led to the trigono-
metric ∨-conditions (1.16) for each series. In our derivation we notice that certain condi-
tions for collinear vectors should be satisfied in order to study possible singularities in the
identities. Note that these conditions for collinear vectors were not considered in [27, The-
orem 1] although they are needed for the analysis. Formulation of Theorem 1.2.1 in the
thesis and [1] rectifies this. An important class of solutions of the form (1.21) of WDVV
equations is given by root systems with W-invariant multiplicities as we review above.
Theorem 1.2.1 gives another way to see this since any such configuration can be easily
checked to be a trigonometric ∨-system.

A natural problem to study is the operations of taking subsystems and restrictions in
the trigonometric case. Moreover, one has to clarify whether the resulting configurations
form trigonometric ∨-systems or not, and whether these two processes lead to new solutions
of WDVV equations. These questions are motivated by the rational version of ∨-systems.
Analogous questions for the rational case were answered positively in [26] (see also [24])
for taking subsystems and in [25] for the restriction operation, see Theorem 1.1.4 above.
Before we state our results for the trigonometric case, let us review the settings.

For any α ∈ A let δα := {γ ∈ A : γ ∼ α}, where ∼ stands for proportionality. Consider
a subsystem B = A∩W and assume that W = ⟨B⟩. Let W∨ = {α∨ ∈ V, α ∈ W}. Define
a bilinear form GB on V by

GB(u, v) :=
∑
β∈B

cββ(u)β(v), u, v ∈ V.

Define the subspace WB = {x ∈ V : β(x) = 0 ∀β ∈ B} ⊂ V . We show that the following
statements take place.

Theorem 1.2.3. The subsystem B of a trigonometric ∨-system A is also a trigonometric
∨-system if GB|W∨ is non-degenerate, where GB|W∨ is the restriction of the bilinear form
GB to the subspace W∨.
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Theorem 1.2.4. Let B ⊂ A be a subsystem. Assume that prepotential F satisfies WDVV
equations. Then under certain generic conditions on multiplicities, the function

FB = FB(ξ, y) =
1

3
y3 +

∑
α∈A\B

cαα(ξ)
2y + λ

∑
α∈A\B

cαf(α(ξ)),

where ξ ∈ WB, α = α|B, satisfies WDVV equations on WB ⊕ U.

In contrast to the rational case, the collinear vectors in the trigonometric case should
be taken into account and be dealt with as they are since proportional vectors cannot
be replaced with a single vector which is the case in the rational version. Thus a set
of collinear vectors {kiα : ki ∈ R, i = 1, . . . ,m, m ∈ N} in the rational case can be
equivalently replaced by a single covector α̃ = kα, where k2 =

∑m
i=1 k

2
i . This is also true

for the restricted systems where collinear vectors may appear. In the trigonometric case
if the restricted system contains collinear vectors we keep them with their multiplicities
and if a vectors α is repeated (up to a sign) with multiplicities ciα then we replace this
collection with the single vector α with multiplicity cα :=

∑
i c

i
α.

The following example illustrates restrictions for both the rational and trigonometric
cases.

Example 1.2.5. Let A = {e1, e2, e3, e1 ± e2, e1 ± e3, e2 ± e3, } be the positive half of
the root system B3. Let multiplicity cα = 1 for all α ∈ A. Let us restrict A to the
hyperplane x2 = x3. The rational restricted system is Arat = {e1,

√
6e2,

√
2(e1 ± e2)}, and

the trigonometric restricted system is Atrig = {e1, e2, 2e2, e1 ± e2} with the corresponding
multiplicities {1, 2, 1, 2}.

Note that we cannot show that given a solution of the form (1.21) a subsystem B
provides another solution. Also we cannot show that a restriction of a trigonometric
∨-system is a trigonometric ∨-system.

In order to apply Theorem 1.2.4 for classical root systems we firstly find a family of
solutions of the form (1.21) of WDVV equations corresponding to the (non-reduced) root
system BCN which depends on three independent multiplicity parameters. This result
generalizes the results found in [33], [42], [11] and [47] for root systems DN , BN and CN .
Then we apply the restriction operation to these solutions and we obtain a family of
solutions depending on (n + 3) parameters, where n = dimWB, which generalizes the
(n+ 1)-parametric family from [43]. This result is given in the following statement.

Theorem 1.2.6. Assume that parameters r, q, s and m1, . . . ,mn satisfy the relation r +

4s + 2q(mi − 1) ̸= 0 for any 1 ≤ i ≤ n. Then for a suitable subspace WB of dimension n
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the function

FB(ξ, y) =
1

3
y3 +

(
r + 4s+ 2q(

n∑
i=1

mi − 1)
)
y

n∑
i=1

miξ
2
i + λr

n∑
i=1

mif(ξi)

+ λ

n∑
i=1

(
smi +

1

2
qmi(mi − 1)

)
f(2ξi) + λq

n∑
i<j

mimjf(ξi ± ξj),

where ξ = (ξ1, . . . , ξn) ∈ WB, y ∈ U ∼= C, satisfies the WDVV equations on WB ⊕ U

provided that
(
r + 8s+ 2(

∑n
i=1mi − 2)q

)
q ̸= 0.

Similarly, the restriction process for type AN solutions gives a multi-parameter family
of solutions which can be specialized to Pavlov’s (n+1)-parametric family from [43] (there
seem to be typos in [43] for type An solutions). This result can be summarized as follows.

Theorem 1.2.7. Let ξ = (ξ1, . . . , ξn+1) ∈ Cn+1 and y =
∑n+1

i=1 ξi. Then prepotential

F = FB(ξ) = (
1

3
− t)y3 + ty

n+1∑
k=1

mk

n+1∑
i=1

miξ
2
i + 2t3/2

n+1∑
k=1

mk

n+1∑
i<j

mimjf(ξi − ξj)

satisfies WDVV equations in Cn+1 for any generic t,m1, . . . ,mn+1 ∈ C.

Solutions given by Theorems 1.2.6, 1.2.7 give certain deformations of BCN and AN

root systems solutions depending on many parameters. We show that in rank two all
trigonometric ∨-systems with small number of vectors fit into these families.

Theorem 1.2.8. Any trigonometric ∨-system with up to five vectors on the plane is a
deformation of type A2 or BC2.

The value of the scalar λ in solution (1.21) for each root system is given in the following
table.

Table 1.1: The scalar λ for root systems

R BCN G2 E6 E7 E8 F4 AN

λ

√
2
(
r+4s+2q(N−1)

)3/2
√
q
(
r+8s+2q(N−2)

)1/2 6(p+3q)√
p+9q

12
√
2p 9

√
6p 30

√
p 6

√
3(2q+p)√
4q+p

2(N + 1)
√
p

Here p is the multiplicity of short roots and q is the multiplicity of long roots in the
case of a reduced not simply-laced root system R. In the case of BCN the multiplicities
cα = c(α) are defined as follows:

c(ei) = r (1 ≤ i ≤ N), c(2ei) = s (1 ≤ i ≤ N), c(ei ± ej) = q (1 ≤ i < j ≤ N). (1.24)
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1.2.2 Main results II (Chapter 4)

In the second part of the thesis (Capter 4), we find multiparametric family of trigonometric
solutions without extra variable, that is solutions of the form (1.10) with Q = 0 for both
the WDVV equations (1.17) and the commutativity equations (1.18). These solutions are
associated with root system BCN and they generalize solutions found in [33] for type BN

root systems for the WDVV equations and they also generalize two-parameter solutions
found in [3] for the commutativity equations. The following statement takes place.

Theorem 1.2.9. Suppose that parameters r, s, q and m1, . . . ,mn satisfy the relation

r = −8s− 2q(
n∑

i=1

mi − 2).

Then the prepotential

F =
n∑

i=1

rmif(xi) +
n∑

i=1

(
smi +

1

2
qmi(mi − 1)

)
f(2xi) +

n∑
i<j

qmimjf(xi ± xj) (1.25)

satisfies both the WDVV equations FiF
−1
j Fk = FkF

−1
j Fi (i, j, k = 1, . . . , n) as well as the

commutativity equations FiFj = FjFi (i, j = 1, . . . , n).

This result is established firstly for the case of WDVV equations using a version of
restriction procedure, then it is proven for the commuttivity equations by specifying the
matrix B as a linear combination of the third order derivatives of F which is a multiple
of identity.

Restrictions of exceptional root systems by Theorem 1.2.4 give other examples of
trigonometric solutions of WDVV equations of the form (1.21). We work out all two-
dimensional cases explicitly in the Appendix. We also note that there are trigonometric
solutions which are not given as a restriction of root systems. An example is given in the
next statement.

Proposition 1.2.10. Let a configuration A ⊂ C4 consist of the following covectors:

ei, with multiplicity p, 1 ≤ i ≤ 3,

e4, with multiplicity q,

ei ± ej, with multiplicity r, 1 ≤ i < j ≤ 3,

1

2
(e1 ± e2 ± e3 ± e4), with multiplicity s,

where p, q, r, s ∈ C are such that 4r + s ̸= 0. Then this configuration is a trigonometric
∨-system and the corresponding prepotential of the form (1.21) gives a solution of WDVV
equations for some λ provided that p = 2r + s, q = s(s−2r)

4r+s
and ps ̸= 0.
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In analogy with trigonometric ∨-systems, we define Euclidean trigonometric ∨-systems.
In this case we have a Euclidean vector space V with inner product (·, ·) and a collection
of vectors A ⊂ V with multiplicity function c : A → C. The bilinear form GA given by
(1.20) is replaced in the considerations by the inner product (·, ·). The class of Euclidean
trigonometric ∨-systems contains root systems with Weyl invariant multiplicity.

Let us consider the function F given by the formula

F =
∑
α∈A

cαf((α, x)). (1.26)

We are interested in configurations A with a multiplicity function c(α) = cα, α ∈ A, such
that the following commutativity equations hold:

FiFj = FjFi, i, j = 1, . . . , N, (1.27)

where Fi is the N ×N matrix with entries

(Fi)pq = Fipq =
∂3F

∂xi∂xp∂xq
.

We investigate the relation between the commutativity equations (1.27) for the function
(1.26) and the class of Euclidean trigonometric ∨-systems. Analogously to Theorem 1.2.1
the following statement clarifies this relation.

Theorem 1.2.11. Under some non-degeneracy conditions, the commutativity equations
(1.27) for the prepotential (1.26) imply the following two conditions:

(1) A is a Euclidean trigonometric ∨-system,
(2)

∑
α,β∈A+

cαcβ(α, β)Bα,β(a, b)α ∧ β = 0 for every a, b ∈ V.

Conversely, if a configuration (A, c) satisfies conditions (1), (2) then commutativity
equations (1.27) hold.

Similarly to the trigonometric ∨-system case we show that the class of Euclidean
trigonometric ∨-system (under some non-degeneracy conditions) is closed under the natu-
ral operation of taking subsystems. We also show that the natural restriction process can
be applied to a given solution of the commutativity equations (1.27) to get new solutions.

We apply the restriction operation to the known solutions of the form (1.26) corre-
sponding to root systems BCN and F4 and we get new solutions by this procedure. These
new solutions imply existence of certain N = 4 supersymmetric Hamiltonians. We find a
multiparameter family of Hamiltonians which extends the supersymmetric Hamiltonians
found in [3] in the case of BCN . This result is given as follows.
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Theorem 1.2.12. Let Â ⊂ Cn be the configuration of vectors α with multiplicities cα
given by

m
−1/2
i ei, with multiplicity rmi, 1 ≤ i ≤ n,

2m
−1/2
i ei, with multiplicity smi +

1

2
qmi(mi − 1), 1 ≤ i ≤ n,

m
−1/2
i ei ±m

−1/2
j ej, with multiplicity qmimj, 1 ≤ i < j ≤ n,

where m1, . . . ,mn ∈ C∗. Let the Hamiltonian H be given by

H = −
n∑

i=1

∂2

∂xi2
+

1

2

∑
α∈Â

cα(α, α)
2

sin2(α, x)
+

1

4

∑
α,β∈Â

cαcβ(α, α)(β, β)(α, β) cot(α, x) cot(β, x) + Φ,

with the fermionic term

Φ =
∑
α∈Â

2cααiαj

sin2(α, x)

(
αlαkϵbcϵadψ

biψcjψ̄l
dψ̄

k
a + (α, α)ψaiψ̄j

a

)
,

where α = (α1, . . . , αn) and summation over repeated indices is assumed. Then H can be
included into N = 4 supersymmetry algebra for suitable supercharges Qa, Q̄b, a, b = 1, 2.

We also find new supersymmetric Hamiltonians corresponding to restrictions of the
root system F4.

We also show that under certain assumptions Euclidean trigonometric ∨-system defines
a trigonometric ∨-system.

1.2.3 Main results III (Chapter 5)

In the final part of the thesis (Chapter 5) we establish and explore the close relation
between the set of commutativity equations (1.27) and the WDVV equations

FiB
−1Fj = FjB

−1Fi, i, j = 1, . . . , N, (1.28)

where B is any non-degenerate linear combination of matrices Fk with functional coeffi-
cients. Starting with a function F = F (x1, . . . , xN) that satisfies commutativity equations
(1.27), the question arises under what conditions one can obtain a linear combination B

of the third order derivatives of F which is a multiple of the identity matrix so that the
two sets of equations (1.27) and (1.28) become equivalent. We answer this question and
reveal the sufficient non-degeneracy condition formulated as maximality of rank of a cer-
tain matrix associated with prepotential F . We give a general formula for the constant
metric B =

∑N
k=1A

kFk for arbitrary dimension N , where functions Ak are given as specific
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determinants of matrices of size N − 1. Namely,

Ak = (−1)k+1 det


F112 F212 · · · F(k−1)12 F(k+1)12 · · · FN12

F113 F213 · · · F(k−1)13 F(k+1)13 · · · FN13

...
... . . . ...

... . . . ...
F11N F21N · · · F(k−1)1N F(k+1)1N · · · FN1N

 . (1.29)

The following statement relates the commutativity equations and WDVV equations for
arbitrary dimension N .

Theorem 1.2.13. Assume that a function F = F (x1, . . . , xN) on V ∼= CN satisfies the
commutativity equations (1.27). Suppose that for a fixed i0, 1 ≤ i0 ≤ N the rank of the
matrix (Fi0ij) where 1 ≤ i, j ≤ N, i ̸= i0 is N − 1. Suppose also that there exists a non-
degenerate linear combination

∑N
i=1 η

iFi for some functions ηi. Then F is a solution of
WDVV equations (1.28), where the matrix B is given by B =

∑N
k=1A

kFk and functions
Ak are given by formula (1.29). Moreover, B is proportional to the identity matrix.

The vector field
∑N

k=1A
k∂xk

corresponding to the metric B is in fact proportional to
the identity vector field of the natural associative multiplication on the tangent spaces
T∗V given by

∂u ∗ ∂v = uivjFijk∂xk . (1.30)

Thus Theorem 1.2.13 implies the existence of the identity vector field for the multiplication
(1.30). We also give a generalized version of Theorem 1.2.13 in which the standard metric
δij is replaced with an arbitrary constant (non-degenerate) metric g. In this case we
consider equations of the form

Fijαg
αβFβkl = Fkjαg

αβFβil, (1.31)

where the summation over repeated indices is assumed. Under certain non-degeneracy
conditions we show that gαβ =

∑
k η

kFkαβ for some functions ηk.
Theorem 1.2.13 allows us to obtain new solutions of WDVV equations from known

solutions of the commutativity equations. We apply these results to solutions of the form
(1.26). Commutativity equations for function F of the form (1.26), where A is a root
system, are known to be satisfied if there are more than one orbits of the Weyl group
of the root system A, and multiplicities of different orbits have to be related (see [3]).
This leads to new solutions of WDVV equations for root systems BCN and F4 and their
restrictions. The corresponding identity fields can be given explicitly as the following
statement demonstrates for A = BC+

N , the positive half of the root system BCN .

Proposition 1.2.14. Assume that parameters r, s, q satisfy the condition r = −8s −
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2q(N − 2). Then the vector filed

e = h−1

N∑
k=1

sin 2xk∂xk
,

where h = 2q
∑N

k=1 cos 2xk + r, is the identity vector field for the multiplication (1.30),
where function F is given by

F =
N∑
i=1

(
rf(xi) + sf(2xi)

)
+ q

N∑
i<j

f
(
(xi ± xj)

)
.

We also find the identity vector field for the remaining cases of F4 and G2. The
following statement reveals the explicit formula of the identity field e for root system F4

under a specific relation between the two multiplicities.

Proposition 1.2.15. Let r be the multiplicity of the short roots and q be the multiplicity
of the long roots of root system F4. The identity vector field e for A = F+

4 under the
condition r = −2q is given by the formula

e = h−1

4∑
k=1

Ak∂xk
, (1.32)

where function h is given by the formula

h(x) =
1

2

(
12q +

∑
α∈F+

4

cα cos (2(α, x))
)
, (1.33)

and functions Ak are given by the formula

Ak = sinxk

(
cosxk(−1 +

∑
i ̸=k

cos 2xi)− 2
∏
i ̸=k

cosxi

)
.

The only other possibility for the multiplicities of root system F4 for the commutativity
equations to hold is r = −4q, and it is dealt with as well.

For the root system G2 its multiplicities p, q have to satisfy the condition (p+ 3q)(p+

9q) = 0 for the commutativity equations to hold [3]. We find the identity field explicitly
in both cases.

We also deal with the restrictions of a given solution of the commutativity equations
and observe that the identity vector field of a restricted system can be obtained by restrict-
ing the identity vector field of the original system. We apply this to the three-dimensional
restrictions of root system F4 (along the hyperplanes x4 = 0 and x3 = x4), and we find
the corresponding identity vector fields and deduce new solutions of WDVV equations of



CHAPTER 1. INTRODUCTION 19

the form (1.26).
Let us now describe the structure of the thesis more specifically.

1.2.4 Structure of the thesis

Chapter 2 contains introductory material on the theory of Frobenius manifolds. We de-
scribe the foundation and background topics which are relevant to our subsequent chapters.
These include the notations, basic definitions, and results one should be familiar with so
that to make the thesis self-contained.

In Section 2.1 we start by giving a brief introduction to the notions of Frobenius algebra
and Frobenius manifold as well as the appearance of the associativity (WDVV) equations
in these contexts. In Section 2.2 we recall key notions and some general properties of
Dubrovin connection which will be useful later. In Section 2.3 the concept of almost
Frobenius structure and its construction is reviewed including the intersection form and
Dubrovin’s almost duality. Orbit spaces of finite Coxeter groups examples are discussed
in Section 2.4 as an important class of Frobenius manifolds which admits polynomial
prepotentials.

Section 2.5 is devoted to reviewing the rational solutions of WDVV equations corre-
sponding to the class of (rational) ∨–systems. We also recall the natural operations of
restriction and taking subsystems of a ∨-system.

In Section 2.6 we introduce the class of trigonometric solutions F of WDVV equations
which involve an extra variable. These solutions are of the form (1.21) and are associated
with a configuration of vectors A with multiplicity function c : A → C. We give the
corresponding associative multiplication explicitly in Propositions 2.6.4, 2.6.5. Then we
work out Dubrovin’s connection explicitly and relate its flatness with WDVV equations for
the prepotential (1.21) in Theorem 2.6.14, which is known in general theory of Frobenius
manifolds.

In Subsection 2.6.2 we present the notion of a trigonometric ∨-system and we derive
some identities from the flatness condition of Dubrovin connections which lead to the
statement that relates trigonometric ∨-systems and WDVV equations. We present this
result in Theorem 2.6.21 (see also Theorem 1.2.1 above). Note that this result was es-
sentially given in [27], where it was derived from the WDVV equations directly. We also
note that some conditions regarding collinear vectors were missing in [27], and we clarify
the conditions which trigonometric ∨-system should satisfy in order to give a solution of
WDVV equations.

In Section 2.7 we introduce root systems of Weyl groups and prove that they give
examples of trigonometric ∨-systems. We also review the trigonometric solutions related
to root systems which can be found in [11,33,42,47,48].

We review the notion of Coxeter number and we give a version of generalized Coxeter



CHAPTER 1. INTRODUCTION 20

number in Section 2.8. The additional condition for a trigonometric ∨-system in our
Theorem 2.6.21 can be interpreted in terms of this number.

Considerations of Chapter 2 except for Sections 2.6.2, 2.7 are known from the previous
literature. The main new statement which is Theorem 2.6.21 improves its earlier version
from [27].

In Chapter 3 we investigate operations of taking subsystems and restrictions in Sec-
tions 3.1 and 3.2 respectively. Thus in Theorem 3.1.9 we show that a subsystem of a
trigonometric ∨-system is also a trigonometric ∨-system. Then in Theorem 3.2.4 we show
that one can restrict solutions of WDVV equations of the form (1.10) to the intersections
of hyperplanes to get new solutions. These results are analogous to the results for the
rational ∨-systems case.

In Section 3.3 we find solutions F trig for the root system BCN which depend on three
parameters. By applying restrictions we obtain in Sections 3.3 and 3.4 the multi-parameter
families of solutions F trig for the classical root systems thus recovering and extending
results from [43]. In the case of BCN we get a family of solutions depending on N + 3

parameters which can be specialized to Pavlov’s (N + 1)-parametric family from [43].
These solutions are given in Theorem 3.3.5 (see also Theorem 1.2.6 above). In Section 3.5
we consider solutions F trig for N = dimV ≤ 4. We show that solutions with up to five
vectors on the plane belong to deformations of classical root systems. The statement is
given in Propositions 3.5.4, 3.5.5 (see also Theorem 1.2.8 above). We also get new examples
of solutions F trig of the form (1.10) some of which cannot be obtained as restrictions of
solutions (1.10) for the root systems, see for example Proposition 1.2.10 above. Other
examples are also given in the chapter.

In Section 3.6 we revisit solutions F trig for the root systems studied in [11,33,42,47,48].
The polynomial Q in this case depends on a scalar γ(R,c) which is determined in these
references for any invariant multiplicity function c : R → C. We give a formula for γ(R,c) in
terms of the highest root of R generalizing a statement from [11] for special multiplicities.
The result corresponding to all the reduced not simply-laced root systems R is given in
Proposition 3.7.2.

We also find a related scalar λ(R,c) which is invariant under linear transformations
applied to the root system R. This scalar may be thought of as a version of generalized
Coxeter number (see e.g. [28]) for the irreducible W-module Λ2V since it is given as a
ratio of two canonical W-invariant symmetric bilinear forms on Λ2V . The main results of
Chapter 3 are published in [1].

In Chapter 4 we consider trigonometric solutions of WDVV equations without extra
variable. We review such solutions found in the previous literature in Section 4.1. In
Section 4.2 we generalize solution of the form (1.10) with Q = 0 corresponding to BN root
systems found in [33] so that it is included in (N + 2)-parametric family. The underlying
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configuration A is the positive half of BCN root system, and multiplicities are chosen in
a specific way. In order to get such a solution, we find firstly a two-parameter family of
solutions where the configuration A is the positive half of BCN and multiplicities are Weyl-
invariant. We find a metric B given as a linear combination of the third order derivatives
for these prepotentials, so that it is a multiple of the identity. The choice of the metric
B is motivated by the metric B for the root system BN which is contained in [33]. Then
we generalize these considerations in Section 4.3 to obtain the family of solutions with
many parameters corresponding to BCN solutions by taking special restrictions of these
solutions using procedure similar to one we applied in Section 3.3. This result is given in
Theorem 4.3.7.

In Section 4.4 we recall the construction of N = 4 supersymmetric mechanics and their
relations with the trigonometric solutions of WDVV equations. Then we use the multi-
parameter deformation of BCN solutions to construct N = 4 supersymmetric mechanical
systems. Thus we extend Hamiltonians with two independent coupling parameters found
in [3] into multiparameter family. This result is given in Theorem 4.4.7. The above
considerations of Chapter 4 are joint work with G. Antoniou and M. Feigin published in
[2].

In Section 4.5 we define Euclidean trigonometric ∨-systems for which the bilinear form
(1.20) is replaced by the standard inner product. We establish a close relation between
the commutativity equations with the class of Euclidean trigonometric ∨-systems and
generalize a result given in [3] for root systems.

In Section 4.6 we discuss the natural operation of taking a subsystem and show that
(under some non-degeneracy conditions) the subsystem of a Euclidean trigonometric ∨-
system is also a Euclidean trigonometric ∨-system.

In Section 4.7 we discuss the relation between Euclidean trigonometric ∨-systems and
trigonometric ∨-systems and show that an irreducible Euclidean trigonometric ∨-system
is a trigonometric ∨-system (under a non-degeneracy assumption). We also study the
relation between Euclidean trigonometric ∨-systems and (rational) complex Euclidean
∨-systems, which were introduced in [26] as a generalization of (rational) ∨-systems to
the class when the canonical form degenerates. We prove that if (A, c) is an irreducible
Euclidean trigonometric ∨-system then the set {√cαα} is a (rational) complex Euclidean
∨-system.

Finally, in Section 4.8 we apply the restriction procedure to a given solution of the
commutativity equations and prove that under some assumptions one can get new solutions
throughout this process. These multi-parameter solutions can be applied to construct
N = 4 supersymmetric mechanical systems.

In Chapter 5 we investigate the relation between the set of commutativity equations
and the set of WDVV equations in N -dimensional space. We show that under some non-
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degeneracy conditions the function F which satisfies the commutativity equations also
satisfies the WDVV equations. This is done by showing that the commutativity equations
lead to the existence of a non-degenerate linear combination (metric) B of matrices of the
third order derivatives Fk with functional coefficients Ak, (k = 1, . . . , N) where the matrix
B =

∑N
k=1A

kFk is proportional to the identity matrix. Therefore WDVV equations follow
from the commutativity equations. This leads to new solutions of WDVV equations.

Another way to interpret the linear combination
∑N

k=1A
kFk is to note that the corre-

sponding vector field
∑N

k=1A
k∂xk

is a multiple of the identity vector field for the natural
product associated with solution F of the commutativity equations. In Section 5.3 we find
the formula for the identity vector field in terms of F for arbitrary dimension N . In Sub-
section 5.5.1 we apply these results to establish that Euclidean trigonometric ∨-systems
lead to solutions of commutativity equations provided that certain additional conditions
hold. In Subsections 5.5.4–5.5.7 we give examples to illustrate these results for the root
system F4 and its restrictions as well as for the root system G2.

In the Appendix we present explicitly all the two-dimensional trigonometric ∨-systems
which are restrictions of root systems. We finish the appendix by listing all the known
trigonometric ∨-systems on the plane.



Chapter 2

Frobenius manifolds structures

In this chapter we provide an overview of notations, basic definitions and results including
rational and trigonometric ∨-systems, which one should be familiar with throughout the
rest of the thesis. We give a brief introduction to the notions of Frobenius algebra and
Frobenius manifold and we review the appearance of the associativity (WDVV) equations
in these contexts, which feature in this work.

2.1 Frobenius manifolds and WDVV equations

In this section we start by giving a brief introduction to the notion of Frobenius Algebra
and some general properties of Dubrovin connection which which will be useful later.

Definition 2.1.1. [17] Let A be some N -dimensional vector space over C endowed with
a symmetric non-degenerate bilinear form (metric) ⟨·, ·⟩ on A and a commutative multi-
plication of vectors

◦ : A× A→ A.

Then the 4-tuple
(
A, ◦, e, ⟨·, ·⟩

)
is said to constitute a (commutative, associative) Frobe-

nius algebra if the following conditions hold:

1. (A, ◦) is a commutative associative algebra over C with unity e;

2. The symmetric non-degenerate bilinear form ⟨·, ·⟩ together with the multiplication
◦ satisfy the following condition (Frobenius condition)

⟨X ◦ Y, Z⟩ = ⟨X, Y ◦ Z⟩, X, Y, Z ∈ A.

Remark 2.1.2. Let ω ∈ A∗ (ω : A→ C), be the map defined by

ω(v) = ⟨e, v⟩.

23
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Then we have
ω(u ◦ v) = ⟨e, u ◦ v⟩ = ⟨e ◦ u, v⟩ = ⟨u, v⟩.

Hence the non-degenerate metric ⟨·, ·⟩ determines the form ω and visa-versa. This linear
form ω is often called a trace form (or Frobenius form).

A Frobenius manifold has such a family of Frobenius algebra structure on each of
its tangent space which also possesses some additional properties. Before we state the
definition of the Frobenius manifold, let us introduce two tensors as follows.

Let ∇ be the Levi-Civita connection of the metric ⟨·, ·⟩, which has zero curvature, and
let us define the (0, 3)-tensor c given by the formula

c(X, Y, Z) := ⟨X ◦ Y, Z⟩, (2.1)

as well as the (0, 4)- tensor
(
∇W c

)
(X, Y, Z), which is given by the formula

(
∇W c

)
(X, Y, Z) := ∇W

(
c(X, Y, Z)

)
− c(∇WX, Y, Z)− c(X,∇WY, Z)− c(X, Y,∇WZ).

(2.2)
Let M be anN -dimensional complex smooth manifold equipped with a (non-degenerate)

metric η which does not need to be positive definite. For any p ∈ M we denote by ⟨·, ·⟩p
the restriction of η to the tangent space TpM. Sometimes we will omit p ∈ M in the
notation ⟨·, ·⟩p. Let ◦ : TpM×TpM → TpM be a commutative, associative multiplication
such that TpM is a Frobenius algebra. Let e ∈ Γ(TM) be the unity vector field for the
multiplication ◦. Denote the Levi-Civita connection of the metric η by ∇. Now we give
the definition of a Frobenius manifold.

Definition 2.1.3. [17] The set (M, ◦, e, η, E) is a Frobenius manifold, where E ∈ Γ(TM),

if the following properties hold:

1. The metric η is flat,

2. The unit vector field e is flat, that is ∇e = 0,

3. The two tensors c(X, Y, Z) and
(
∇W c

)
(X, Y, Z) given by formulas (2.1), (2.2) re-

spectively are totally symmetric,

4. The vector field E is linear in the flat variables, such that the corresponding group of
diffeomorphisms acts by conformal transformation on the metric and by rescalings
on the algebra on TtM, namely

• ∇(∇E) = 0,

• E⟨X, Y ⟩ − ⟨[E , X], Y ⟩ − ⟨X, [E , Y ]⟩ = D⟨X, Y ⟩,
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• [E , X ◦ Y ]− [E , X] ◦ Y −X ◦ [E , Y ] = d1X ◦ Y,
for some constants D, d1.

These axioms of the existence of the two totally symmetric tensors together with the
successive application of the Poincaré Lemma imply a local existence of a prepotential F
(called the free energy of the Frobenius manifold) which satisfies the WDVV equations of
associativity in the flat coordinates of the metric on M. Before we explain this fact in the
following statement, let us first explain the notion of a flat coordinates by recalling some
facts from the Riemannian geometry.

Let {xk}Nk=1 be a smooth coordinate system on an N -dimensional smooth manifold M.

With respect to this smooth coordinate system, let ∂i := ∂
∂xi

. Then locally, the Levi-Civita
connection ∇ can be described by how it behaves on the basis field {∂i} by

∇∂i∂j =
N∑
k=1

Γk
ij∂k, (2.3)

where the connection coefficients Γk
ij : U → C are called the Christoffel symbols. Now, let

us consider two vector fields X =
∑N

i=1 fi∂i, Y =
∑N

j=1 gj∂j, where f, g ∈ C∞(M). Then
by the properties of the connection and formula (2.3) it is easy to see that

∇XY =
N∑
i=1

( N∑
j=1

fj∂jgi +
N∑

j,k=1

Γi
jkfjgk

)
∂i.

If the metric is flat then there exists a coordinate system such that components of
the metric are constant and the Christoffel symbols of the Levi-Civita connection of the
metric are zero.

Proposition 2.1.4. Let M be an N-dimensional complex smooth manifold. Then there
exists locally a single holomorphic function F = F (t1, . . . , tN) defined on some region
M ⊂ CN and unique up to a polynomial of degree two such that

∂3F

∂ti∂tj∂tk
= c(

∂

∂ti
,
∂

∂tj
,
∂

∂tk
),

where c is the tensor given by (2.1) and {tk}Nk=1 is some flat coordinates on M.

Proof. It is known by Poincaré Lemma that one can locally solve the equation ∂kF = Gk

if and only if the condition ∂kGl = ∂lGk is satisfied for all k, l. Since ⟨·, ·⟩ is flat, one
can choose the flat coordinates {tk}Nk=1 such that the functions ⟨ ∂

∂tp
, ∂
∂tq

⟩ are constants.
Let ∂p := ∂

∂tp
, and cijk = c(∂i, ∂j, ∂k). By the axioms of the Frebinus manifold the tensor(

∇W c
)
(X, Y, Z) is totally symmetric, also note that in t-coordinates the tensor (2.2) re-

duces to
(
∇∂pc

)
(∂i, ∂j, ∂k) = ∂pcijk. Then by Poincaré Lemma we can introduce a potential
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Hjk such that
cijk = ∂i(Hjk).

But again by the axioms the tensor cijk is also totally symmetric, hence we have cijk = cjik,

that is ∂i(Hjk) = ∂j(Hik), with Hik = Hki (since cijk is totally symmetric). Then Poincaré
Lemma implies that we can introduce a potential Gk such that

Hik = ∂iGk.

Since Hik = Hki then we have
∂iGk = ∂kGi,

which again by Poincaré Lemma implies that there exists a prepotential F such that

Gk = ∂kF.

Hence the prepotential F exists, moreover, cijk = ∂i∂j∂kF .

Proposition 2.1.5. In the notations of Proposition 2.1.4, the associativity of the product
◦ is equivalent to the following condition

cijk(t)η
knclmn(t) = cljk(t)η

kncimn(t), cijm =
∂3F

∂ti∂tj∂tm
, (2.4)

for any 1 ≤ i, j, l,m ≤ N.

Proof. By choosing the variables tk (1 ≤ k ≤ N) to be flat coordinates of the metric η,
together with the condition ∇e = 0 means this can be done in such a way that e = ∂

∂t1
.

Hence by the normalization ∂1 := ∂
∂t1

= e, we have

ηij := ⟨∂i, ∂j⟩ = ⟨e ◦ ∂i, ∂j⟩ = c1ij

is a constant non-degenerate matrix. Let ηij = (ηij)
−1. Then the components of the

product ◦ are given by the functions

ckij = ηklcijl, (2.5)

which define an associative, commutative algebra

∂i ◦ ∂j|t := ckij(t)∂k (2.6)

on each tangent space TtM with unity e. By Proposition 2.1.4 the function F exists
and satisfies that cijm = ∂i∂j∂mF . The associativity of the multiplication ◦ reads in



CHAPTER 2. FROBENIUS MANIFOLDS STRUCTURES 27

t-coordinates
(∂i ◦ ∂j) ◦ ∂m = ∂i ◦ (∂j ◦ ∂m),

which is by formulae (2.5), (2.6) leads to following system of nonlinear partial differential
equations for the function F :

cijk(t)η
knclmn(t) = cljk(t)η

kncimn(t),

for any 1 ≤ i, j, l,m ≤ N as required.

Remark 2.1.6. (1) Equations (2.4) are known as the WDVV equations after Edward
Witten, Robbert Dijkgraaf, Erik Verlinde, and Herman Verlinde who discovered the system
of these equations for the first time [17].

(2) The invariant properties (4) in Definition 2.1.3 with respect to the Euler vector
field lead to demanding F be a quasi-homogeneous function, namely,

E(F ) = dFF + quadratic polynomial in t, (2.7)

for some constant dF .

The curvature form of any connection ∇ is defined by

R(X, Y )Z := [∇X ,∇Y ]Z −∇[X,Y ]Z, X, Y, Z ∈ Γ
(
TM

)
. (2.8)

We say that ∇ is a flat connection if it has zero curvature. The connection ∇ is said to
be torsion free if it satisfies the condition:

∇XY −∇YX = [X, Y ], (2.9)

where [·, ·] is the Lie bracket operator and X, Y are any smooth vector fields. The con-
nection ∇ is said to be compatible with the metric ⟨·, ·⟩ if it satisfies

Z⟨X, Y ⟩ = ⟨∇ZX, Y ⟩+ ⟨X,∇ZY ⟩

2.2 Dubrovin connection

Dubrovin connection (deformed flat connection) is a one-parameter family of flat con-
nections which is defined on a Frobenius manifold as follows. Let ∇ be a Levi-Civita
connection of a metric η, and ◦ define a multiplication of tangent vectors on a manifold
M. Then Dubrovin Connection ∇̃µ for any µ ∈ C (here µ is called the spectral parameter)
has the form

∇̃µ
XY = ∇XY + µX ◦ Y. (2.10)
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In the following two propositions we show some general properties for the Dubrovin con-
nection (2.10).

Proposition 2.2.1. The Dubrovin connection (2.10) is torsion free for any µ if and only
if the product ◦ is commutative.

Proof. By formula (2.10) we have

∇̃µ
XY − ∇̃µ

YX − [X, Y ] =
(
∇XY −∇YX − [X, Y ]

)
+ µ
(
X ◦ Y − Y ◦X

)
= µ

(
X ◦ Y − Y ◦X

)
since the Levi-Civita connection ∇ is a flat connection. This implies the statement.

Proposition 2.2.2. Assume that the product ◦ is commutative and the tensor c(X, Y, Z)
is a totally symmetric tensor. Then Dubrovin connection (2.10) is flat for any µ if and
only if the product ◦ is associative and the tensor T (X, Y, Z,W ) =

(
∇W c

)
(X, Y, Z) given

by (2.2) is totally symmetric.

Proof. By the definition of Dubrovin connection (2.10) its curvature (2.8) takes the form

R̃µ(X, Y )Z = R(X, Y )Z + µ
(
∇X(Y ◦ Z)−∇Y (X ◦ Z) +X ◦ ∇YZ − Y ◦ ∇XZ − [X, Y ] ◦ Z

)
+ µ2

(
X ◦ (Y ◦ Z)− Y ◦ (X ◦ Z)

)
, (2.11)

where R(X, Y )Z is the curvature of the Levi-Civita connection ∇ and it is equal to zero
since it is a flat connection. Together with the commutativity of the product ◦ relation
(2.11) reduces to the form

R̃µ(X, Y )Z = µ
(
∇X(Y ◦ Z)−∇Y (X ◦ Z) +X ◦ ∇YZ − Y ◦ ∇XZ − [X, Y ] ◦ Z

)
+ µ2

(
X ◦ (Z ◦ Y )− (X ◦ Z) ◦ Y

)
. (2.12)

While the vanishing of µ2-terms gives rise to the associativity of the multiplication ◦, we
will show that the vanishing of µ-terms is equivalent to the totally symmetric of the tensor
T (X, Y, Z,W ). To do so, let us take the product of µ-terms with any vector field W ∈ TM
via the bilinear form ⟨·, ·⟩, where ⟨u, v⟩ = η(u, v), u, v ∈ T∗M. Then by the compatibility
and torsion freeness of the Levi-Civita connection we have

⟨∇X(Y ◦ Z)−∇Y (X ◦ Z) +X ◦ ∇YZ − Y ◦ ∇XZ − [X, Y ] ◦ Z,W ⟩

=
(
∇X⟨Y ◦ Z,W ⟩ − ⟨Y ◦ Z,∇XW ⟩

)
−
(
∇Y ⟨X ◦ Z,W ⟩ − ⟨X ◦ Z,∇YW ⟩

)
+ ⟨X ◦ ∇YZ,W ⟩ − ⟨Y ◦ ∇XZ,W ⟩ − ⟨∇XY ◦ Z,W ⟩+ ⟨∇YX ◦ Z,W ⟩. (2.13)
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Using the notation c(X, Y, Z) = ⟨X ◦ Y, Z⟩ relation (2.13) can be rearranged as

⟨∇X(Y ◦ Z)−∇Y (X ◦ Z) +X ◦ ∇YZ − Y ◦ ∇XZ − [X, Y ] ◦ Z,W ⟩

=

(
∇X

(
c(Y, Z,W )

)
− c(∇XY, Z,W )− c(Y,∇XZ,W )− c(Y, Z,∇XW )

)

−

(
∇Y

(
c(X,Z,W )

)
− c(∇YX,Z,W ).− c(Y,∇XZ,W )− (X,Z,∇YW )

)
=
(
∇Xc

)
(Y, Z,W )−

(
∇Y c

)
(X,Z,W ) = T (Y, Z,W,X)− T (X,Z,W, Y ). (2.14)

Since c(X, Y, Z) is a totally symmetric tensor, then relation (2.14) tells that vanishing of µ-
terms is equivalent to the symmetric of the tensor T (X, Y, Z,W ) in all its four arguments.
Hence the statement follows by the above discussion together with relation (2.12).

Remark 2.2.3. Proposition 2.2.2 guarantees that on a Frobenius manifold, ∇̃µ is flat for
all µ.

The following two propositions are general facts that hold for any connection ∇ on the
tangent bundle TW, where W is a vector space.

Proposition 2.2.4. Let ∇ be a connection on the tangent bundle TW, where W is a vector
space of dimension N . Let x1, . . . , xN be coordinates in W and let ∂i := ∂xi

, (i = 1, . . . , N),

be the corresponding constant vector fields. Define ∇i := ∇∂xi
. Then [∇i,∇j]∂k = 0 for all

k implies that [∇i,∇j](Z) = 0, where Z =
∑N

i=1 zi(x)∂i ∈ Γ(TW ).

Proof. We have

∇j(Z) =
N∑
k=1

zk(x)∇j(∂k) +
N∑
k=1

(∂jzk)∂k.

Hence we have

∇i∇j(Z) =
N∑
k=1

zk∇i∇j(∂k) +
N∑
k=1

(∂izk)∇j(∂k) +
N∑
k=1

(∂i∂jzk)∂k +
N∑
k=1

(∂jzk)∇i(∂k). (2.15)

Similarly, we get (by exchanging i↔ j) the formula of ∇j∇i(Z), then we have

[∇i,∇j](Z) =
N∑
k=1

zk

(
∇i∇j −∇j∇i

)
∂k,

which implies the statement since [∇i,∇j]∂k = 0 for all k.

Proposition 2.2.5. In the notations of Proposition 2.2.4, let u, v, z ∈ Γ(TW ) be given by
u =

∑N
i=1 ui(x)∂i, v =

∑N
i=1 vi(x)∂i, z =

∑N
i=1 zi(x)∂i. If [∇i,∇j]∂k = 0 for all k, then

[∇u,∇v]Z = ∇[u,v]Z.



CHAPTER 2. FROBENIUS MANIFOLDS STRUCTURES 30

Proof. Firstly, we have

[u, v] =
[ N∑

i=1

ui∂i,

N∑
j=1

vj∂j

]
=

N∑
i,j=1

(
ui∂i(vj)∂j − vj∂j(ui)∂i

)
. (2.16)

Since ∇f1w1+f2w2Z = f1∇w1Z + f2∇w2Z, where f1, f2 are functions in W , then by (2.16)
we have

∇[u,v](Z) =
N∑

i,j=1

ui(∂ivj)(∇jZ)−
N∑

i,j=1

vj(∂jui)(∇iZ)

=
N∑

i,j,k=1

ui(∂ivj)∇j(zk∂k)−
N∑

i,j,k=1

vj(∂jui)∇i(zk∂k)

=
N∑

i,j,k=1

ui(∂ivj)(∂jzk)∂k +
N∑

i,j,k=1

uizk(∂ivj)(∇j∂k)

−
N∑

i,j,k=1

vj(∂jui)(∂izk)∂k −
N∑

i,j,k=1

vjzk(∂jui)(∇i∂k). (2.17)

On the other hand we have

∇vZ =
N∑

j,k=1

vjzk(∇j∂k) +
N∑

j,k=1

vj(∂jzk)∂k.

Hence we have

∇u∇vZ =
N∑

i,j,k=1

uivjzk(∇i∇j∂k) +
N∑

i,j,k=1

uizk(∂ivj)(∇j∂k) +
N∑

i,j,k=1

uivj(∂izk)(∇j∂k)

+
N∑

i,j,k=1

uivj(∂jzk)(∇i∂k) +
N∑

i,j,k=1

uivj(∂i∂jzk)∂k +
N∑

i,j,k=1

ui(∂ivj)(∂jzk)∂k. (2.18)

Similarly, (by swapping i↔ j, u↔ v) we get the formula of ∇v∇uZ and hence we have

[∇u,∇v](Z) =
N∑

i,j,k=1

uivjzk(∇i∇j∂k −∇j∇i∂k) +
N∑

i,j,k=1

uizk(∂ivj)(∇j∂k)

+
N∑

i,j,k=1

ui(∂ivj)(∂jzk)∂k −
N∑

i,j,k=1

vjzk(∂jui)(∇i∂k)−
N∑

i,j,k=1

vj(∂jui)(∂izk)∂k. (2.19)

The statement follows from relations (2.17) and (2.19) since [∇i,∇j]∂k = 0 for all k.
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2.3 Almost dual Frobenius structure

In this section we review the concept of almost Frobenius structure and its construction,
this includes the notion of the intersection form and Dubrovin’s almost duality.

2.3.1 The intersection form

Another important character naturally associated to any Frobenius manifold is the ex-
istence of a second flat metric [17]. This new metric is defined as an inner product of
1-forms on the cotangent bundle of the Frobenius manifold and it is related to the original
metric η, where the original metric η is used to provide an isomorphism between TM and
T ∗M. The second metric g is called the intersection form of the Frobenius manifold.

Definition 2.3.1. [17]. Let (M, ◦, e, η, E) be a Frobenius manifold. Let ω1, ω2 ∈ T ∗
t M be

two 1-forms, and let ω1◦ω2 be the product which is induced from the product of vectors in
TtM by the isomorphism η : TtM → T ∗

t M. The intersection form is a symmetric bilinear
form g defined on each of the cotangent space T ∗

t M by the formula

g(ω1, ω2) = E(ω1 ◦ ω2). (2.20)

In the flat coordinates {tk} for the metric η, we have

dtα ◦ dtβ = cαβγ (t)dtγ, cαβγ (t) = ηαληβνcλνγ. (2.21)

Then we have the Gram matrix

gαβ(t) := g(dtα, dtβ) = E(dtα ◦ dtβ) = cαβγ E(dtγ) (2.22)

with the basic property that ∂gαβ

∂t1
= ηαβ [17]. The following proposition gives the relation

between the original metric η and the new metric g (cf.[17], note that the proof of the
statement was omitted there).

Proposition 2.3.2. The intersection metric g is related to the original metric η by the
following relation:

g(E ◦ u, v) = η(u, v), u, v ∈ Γ(TM).

Proof. In some flat coordinates {tk} of M, let E = Eµ∂µ, u = ∂ρ, v = ∂λ. Then by formula
(2.6) we have

E ◦ u = Eµcβρµ(t)∂β.

Hence we have
g(E ◦ u, v) = Eµgβλ(t)c

β
ρµ(t). (2.23)
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Note that from relation (2.5) we have

cαβγ = ηεγc
ε
αβ. (2.24)

Now by formulae (2.21), (2.22) we have

gαβ(t) = ηαγηβεcγεµ(t)Eµ.

By multiplying both sides by gβλ(t) we get

δαλ = gαβ(t)gβλ(t) = gβλ(t)η
αγηβεcγεµ(t)Eµ.

Then by multiplying both sides by ηαρ and using formulae (2.5),(2.24) we have

ηλρ = Eµgβλ(t)ηλρη
βε
(
ηλγcγεµ(t)

)
= Eµgβλ(t)η

βε
(
ηλρc

λ
εµ(t)

)
= Eµgβλ(t)

(
ηβεcρεµ(t)

)
= Eµgβλ(t)c

β
ρµ(t). (2.25)

The statement follows by relations (2.23), (2.25).

Definition 2.3.3. Two contravariant metrics (·, ·)1 and (·, ·)2 form a flat pencil if:
(1) The metric

(·, ·)1 + µ(·, ·)2 (2.26)

is flat for all µ.
(2) The components of the Levi-Civita connection for the metric (2.26) have the form

1Γαβ
γ + µ 2Γαβ

γ ,

where 1Γαβ
γ and 2Γαβ

γ are the contravariant components of corresponding Levi-Civita con-
nections of metrics (·, ·)1 and (·, ·)2 respectively.

The following statement holds.

Proposition 2.3.4. [17] Let M be a Frobenius manifold and let η∗ be the metric induced
on T ∗M by the contravariant metric η. Assume that the Euler vector field E is invertible.
Then the intersection form g and the metric η∗ on M form a flat pencil.

Remark 2.3.5. Consider points t ∈ M where there exists E−1 ∈ TtM such that E−1 ◦ E = e.

Then from Frobenius condition with respect to the original metric η we have

η(E−1 ◦ u, v) = η(E−1, u ◦ v). (2.27)
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On the other hand from Proposition 2.3.2 we have

η(E−1 ◦ u, v) = g
(
E ◦ (E−1 ◦ u), v

)
= g(u, v). (2.28)

Hence from relations (2.27), (2.28) we have

g(u, v) = η(E−1, u ◦ v). (2.29)

Thus the metric g is well-defined on the points of M where the vector field E is an invertible
element of the algebra.

2.3.2 Dubrovin’s almost duality

The concept of almost duality was introduced by Dubrovin [20]. In the construction of this
structure one of the Frobenius manifold axioms is relaxed, but a solution of the WDVV
equations still exists. The unity vector field is not covariantly constant, that is the axiom
of the flatness of the identity vector field is relaxed.

Given a Frobenius manifold (M, ◦, e, ⟨·, ·⟩, E), one can define a new multiplication ⋆ on
the tangent bundle via the original product ◦ by twisting with the help of the Euler field
E as follows:

X ⋆ Y = E−1 ◦X ◦ Y, X, Y ∈ Γ(TM), (2.30)

where E ◦ E−1 = E−1 ◦ E = e. Hence, the new product (2.30) is well defined whenever E is
invertible. Now to construct new Frobenius algebra, we first define

M∗ := M\ {t ∈ M : E is not invertible}. (2.31)

Since ◦ is commutative and associative, then it is clear from (2.30) that ⋆ is also commu-
tative and associative. Also since

E ⋆ X = E−1 ◦ E ◦X = e ◦X = X,

then the Euler vector field E plays the role of the unity for the product (2.30). Moreover,
if g is the intersection form defined by formula (2.20) and w1, w2, w3 ∈ Γ(TM), then by
relations (2.29) and (2.30) we have

g(w1 ⋆ w2, w3) = g(E−1 ◦ w1 ◦ w2, w3) = η
(
E−1, (E−1 ◦ w1 ◦ w2) ◦ w3

)
. (2.32)

Since the product ◦ is commutative, then the right-hand side of relation (2.32) is sym-
metric in w1, w2, w3. Hence we have g(w1 ⋆ w2, w3) = g(w1, w2 ⋆ w3) which means that the
intersection form g satisfies the Frobenius condition with respect to the product ⋆, and
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hence the the tangent bundle TM∗ is endowed with the structure of a Frobenius algebra.
Let us denote this Frobenius algebra by Ap = (TpM, ⋆), p ∈ M∗. This algebra is called a
rescaling of the original algebra. Now we give the precise definition of almost Frobenius
manifold.

Definition 2.3.6. [20] Let M∗ be a smooth manifold equipped with a (non-degenerate)
metric g. Let ⋆ be a commutative, associative multiplication such that TpM∗ is a Frobenius
algebra. Let E , e ∈ Γ(TM∗). An almost Frobenius structure of the charge d ̸= 1 on the
manifold M∗ is the structure of a Frobenius algebra on the tangent spaces TpM∗ =

(TpM∗, ⋆, g), p ∈ M∗, depending (smoothly, analytically etc.) on the point p ∈ M∗. It
must satisfy the following axioms.

(1) The metric g is flat.
(2) In the flat coordinates p1, ..., pn for the metric g, the structure constants ∗

cijk of the
algebra Ap can be locally represented in the form

∗
cijk(p) = gil

∂3F ⋆(p)

∂pl∂pj∂pk
, (2.33)

for some function F ⋆(p) and gij = (dpi, dpj). The function F ⋆(p) must satisfy the following
homogeneity condition:

N∑
i=1

pi
∂F ⋆(p)

∂pi
= 2F ⋆(p) +

g(p, p)

1− d
.

(3) The vector field E (will be called the Euler vector field) takes the form

E =
1− d

2

N∑
i=1

pi
∂

∂pi
, (2.34)

and it is the unity of the Frobenius algebra.
(4) The vector field e has the form

e =
N∑
i=1

ei(p)
∂

∂pi

and being an invertible element of the Frobenius algebra Ap, p ∈ M∗ such that it acts by
shifts ν 7→ ν − 1 on the solutions of the system of equations

∂2p̃

∂pi∂pj
= ν

∗
ckij(p)

∂p̃

∂pk
, (2.35)

for some function p̃ = p̃(p; ν).

Such structure given by Definition 2.3.6 is also known as dual (almost) Frobenius man-
ifold. This is due to the following result.
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Theorem 2.3.7. [20] Let (M, ◦, e, ⟨·, ·⟩, E) be a Frobenius manifold. Then (M∗, ⋆, e, g, E),
where M∗, ⋆, g are given by formulae (2.31), (2.30), (2.29) respectively, is an almost
Frobenius structure. Furthermore (M∗, ⋆, E , g, E), satisfies all the axioms of Frobenius
manifold given in Definition 2.1.3 except axiom (2).

The following statement gives the relation between the almost Frobenius structure and
WDVV equations.

Theorem 2.3.8. [20] Let (M, ◦, e, ⟨·, ·⟩, E) be a Frobenius manifold. Let (M∗, ⋆, E , g, E),
be the corresponding almost dual Frobenius manifold where M∗, ⋆, g are given by formulae
(2.31), (2.30), (2.29) respectively. Then the function F ⋆ defined (locally) by the condition
(2.33) satisfies the WDVV equations in the flat coordinates {pi}Ni=1 of the metric g.

2.4 Orbit spaces examples

The construction of the Frobenius structure on the orbit spaces of finite Coxeter groups
was established in [19]. Flat pencils of metrics can be used to provide the (complexified)
orbit space of a finite Coxeter group with the structure of a Frobenius manifold. One of the
flat metrics on the complexified orbit space of a finite Coxeter group is given by invariant
bilinear form while the other one was found by K. Saito et al. [50]. Dubrovin used this
metric to construct the structure of a Frobenius manifold on the orbit space [17, Lecture
4]. It follows from the construction that the corresponding Frobenius prepotential which
solves the WDVV equations will be a polynomial in the flat coordinates {tk}Nk=1 of this
metric. Here we give a brief summary for this structure.

Definition 2.4.1. Let V = RN and let ⟨·, ·⟩ be the standard positive definite symmetric
bilinear form in V . A reflection is a linear operator s on V which sends some non-
zero vector α to its negative while fixing point-wise the hyperplane (called a mirror)
Πα = {x ∈ V : ⟨α, x⟩ = 0} orthogonal to α.

We will write s = sα. This map can be given as follows:

sαv = v − 2⟨v, α⟩
⟨α, α⟩

α, v ∈ V.

Indeed V = Rα ⊕ Πα, where Rα denotes the one-dimensional vector space spanned by α

Rα = {u ∈ V : u = rα, r ∈ R}.

Definition 2.4.2. Let R be a finite set of non-zero vectors in V such that:

1. R∩ Rα = {α,−α}, ∀α ∈ R,
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2. For any α ∈ R, sαR = R.

The set R is called a reduced Coxeter root system with associated reflection group W ,

where
W = ⟨sα : α ∈ R⟩.

W is called the Coxeter group of the root system R and it is a subgroup of the group
O(V ) of all orthogonal transformations of V .

Definition 2.4.3. A root system R is called irreducible if R cannot be written as a union
R = R1 ∪ R2 of two non-empty subsets R1,R2 of R orthogonal with respect to the
standard bilinear form ⟨·, ·⟩ on V , that is ⟨α, β⟩ = 0 for all α ∈ R1, β ∈ R2.

Definition 2.4.4. A root system R is called crystallographic root system if for all α, β ∈ R
the following condition holds:

2⟨α, β⟩
⟨α, α⟩

∈ Z.

The associated reflection group W is called Weyl group.

Consider a root system R. One can find a vector d ∈ V, such that ∀α ∈ R, ⟨d, α⟩ ≠ 0.

Then we can decompose the root system into two disjoint parts: R = R+ ∪ R−, where
R+ = R+(d) = {α ∈ R : ⟨d, α⟩ > 0} and R− = R−(d) = −R+(d).

Let V = RN and let W be a finite irreducible Coxeter group. By definition, W acts
on the vector space V. The action of the group W is extended linearly to the complexified
space V ⊗ C ∼= CN . The orbit space MW of W is defined by

MW = V ⊗ C
/
W ∼= CN/W .

Let us choose a basis in V such that {xk}Nk=1 is the corresponding coordinate system.
The group W acts also on these coordinates as well as on the symmetric algebra S(V ) ∼=
C[x1, . . . , xN ] of polynomials in these coordinates. A coordinate system on the orbit space
MW is given by choosing N homogeneous W-invariant polynomials y1(x), . . . , yN(x) ∈
S(V ) generating freely the ring C[x1, . . . , xN ]W ∼= C[y1, . . . , yN ] of W-invariant polynomials
on CN [17,19]. The degrees of these invariant polynomials are uniquely determined by the
Coxeter group. Let dα = deg(yα), and arrange the degrees such that

d1 > d2 ≥ · · · ≥ dN−1 > dN = 2.

The maximal degree d1 = h is called Coxeter number of the group W .

Theorem 2.4.5. [17] There exists a unique, up to an equivalence, Frobenius manifold
structure on the space of orbits of a finite Coxeter group with the following properties:

(1) the vector field e := ∂
∂y1

is unity field for the Frobenius manifold.
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(2) The Euler vector field is given by

E :=
1

h

N∑
i=1

diyi
∂

∂yi
.

(3) The intersection form is given by the formula

gαβ(y) :=
N∑
i=1

∂yα
∂xi

∂yβ
∂xi

.

The components gαβ(y) are polynomials in y1, . . . , yN . The corresponding connection one-
form is given by

N∑
γ=1

gΓαβ
γ (y)dyγ =

N∑
i,j,k=1

∂2yα
∂xi∂xj

∂yβ
∂xk

dxk

and it is also a polynomial one. Another metric η (called the Saito metric) which is given
by

ηαβ(y) :=
∂

∂y1

(
gαβ(y)

)
and the corresponding contravariant Levi-Civita connection

ηΓαβ
γ (y) :=

∂

∂y1

(g
Γαβ
γ (y)

)
.

(4) The pair of metrics g, η given in (3) form a flat pencil.

The following Theorem by Dubrovin gives the formula of the Frobenius prepotential
associated to the Frobenius manifold structure on the orbit space.

Theorem 2.4.6. [20] For any finite irreducible Coxeter group the prepotential F ⋆(z) for
the almost dual structure has the form

F ⋆(z) =
h

4

∑
α∈R

α(z)2 logα(z)2, (2.36)

where the roots are normalised so that ⟨α, α⟩ = 2, z ∈ CN \ ∪α∈R+Πα

Remark 2.4.7. Martini and Gragert showed in [41], by straightforward computation,
that function of type (2.36) corresponding to root systems of any semisimple Lie algebra
satisfies the WDVV equations. Note that the root systems of any semisimple Lie algebra
are the particular examples of the Coxeter systems.

Veselov in [53] also followed a different approach to obtain other examples of the
logarithmic solutions to the WDVV equations given by a formula of the form (2.36) where
R may no longer be a root system. The fact that prepotential (2.36) satisfies WDVV
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equations for any Coxeter root system was established by Veselov in [53] (see Corollary
2.5.6 below).

In Veselov’s work a special class of such solutions was investigated for some not fully
symmetric configurations of finite set of covectors A ⊂ V ∗ (so-called ∨-systems). These
kind of configurations were formulated in terms of linear algebra, and can be considered as
a generalization of the class of Coxeter systems. Deformed root systems were discovered
by Chalykh, Feigin and Veselov [12,52]. These multi parameters deformed versions of root
systems appeared in the theory of the generalised Calogero-Moser problems and it was
shown that they also give examples of the logarithmic solutions of the WDVV equations.

2.5 Rational solutions of WDVV equations

In this section we review the rational solutions of WDVV equations corresponding to the
class of (rational) ∨–systems. We also recall the natural operations of restriction and
taking subsystems of a ∨-system and present the known results related to this class.

2.5.1 (Rational) ∨-systems

An important class of soultions of WDVV has the form

F =
∑
α∈A

α(x)2 logα(x), x ∈ V, (2.37)

where A is a system of covectors in V. This class of solutions was given by Veselov in [53],
and the corresponding configurations A are known as ∨-systems. The class of ∨–systems
includes any two-dimensional system (trivial examples). This class also contains all Cox-
eter root systems. As we have seen in Section 2.4 that solutions of WDVV equations
constructed from a Coxeter group define the almost dual structure of the Frobenius mani-
folds defined on the space of orbits of these groups. These solutions can be expressed in the
form (2.37) with A = R+ (see Theorem 2.4.6). The class of ∨–systems includes also the
deformed versions of the Coxeter root systems related to simple Lie superalgebras coming
from the theory of the generalised Calogero-Moser systems, but the full classification of
the ∨-systems is still an open problem. It has been shown in [26] (see also references
therein) that the class of ∨-systems is closed under the natural operations of restriction
and taking subsystems. In this section we present the notion of ∨-system and we describe
the geometric conditions (∨- conditions) on such a special collection of covectors which are
necessary and sufficient for the corresponding function to satisfy the generalised WDVV
equations. We also give a proof that any Coxeter root system belongs to such a system.
We also summarize some important results which are found in the literature which con-
firms that (under some mild assumptions) a subsystem of a ∨-system is also a ∨-system
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[24, 26] and that the restrictions of a ∨-system to certain subspaces are also ∨-systems
[25,26].

For this section let V be an n-dimensional complex vector space and A ⊂ V ∗ be a
finite set of covectors in the dual space V ∗. To such a set one can associated the following
canonical form GA on V :

GA(x, y) =
∑
α∈A

α(x)α(y), x, y ∈ V. (2.38)

We will assume that the bilinear form (2.38) is non-degenerate, which establishes an iso-
morphism

ϕA : V → V ∗.

Let us denote the inverse ϕ−1
A (α) by α∨. let us also identify V ∼= V ∗ using the canonical form

GA and for any α, β ∈ V ∗, we define GA(α, β) := GA(α
∨, β∨). We will also assume without

loss of generality that A has no collinear vectors. Indeed, if a configuration has collinear
covectors {kiα, ki ∈ R, i = 1, . . .m, m ∈ N} then by replacing this group of covectors
with a single covector α̃ = kα, where k2 =

∑m
i=1 k

2
i , the corresponding prepotential (2.37)

is unchanged up to quadratic terms. The vector kα is removed from the configuration if
k = 0.

Definition 2.5.1. [53] The system A is called (rational) ∨-system if the following relations
(called ∨-conditions) are satisfied ∑

β∈π∩A

β(α∨)β∨ = λα∨, (2.39)

for any α ∈ A and any two-dimensional plane π ⊂ V ∗ containing α and some λ, which
may depend on π and α.

Define an operator Aπ : π
∨ → π∨ by the formula

Aπ :=
∑

β∈A∩π

β ⊗ β∨, (2.40)

that is Aπ(v) =
∑

β∈A∩π β(v)β
∨ for any v ∈ π∨. In this notation, for a fixed α ∈ A the

∨-condition (2.39) reads
Aπ(α

∨) = λα∨,

that is, α∨ is an eigenvector of Aπ with the eigenvalue λ. The following lemma is known
from linear algebra.

Lemma 2.5.2. If the operator Aπ given by (2.40) has at least three non-proportional
eigenvectors, then eigenvalues do not depend on the eigenvectors. Moreover, the operator
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Aπ is proportional to the identity.

By Definition 2.5.1, the condition for a system A to be a ∨-system is equivalent to the
following conditions:

• If π ∩ A = {α}, then the ∨-condition is obviously satisfied.

• If π ∩ A = {α, β}, where α ≁ β, then condition (2.39) means that α∨, β∨ are
orthogonal with repect to the bilinear form GA, that is β(α∨) = GA(β, α

∨) = 0.

• If |A∩π| > 2, then by Lemma 2.5.2 the scalar λ in condition (2.39) does not depend
on α, that is λ = λ(π). Moreover, the condition (2.39) means that bilinear forms GA

given by (2.38) and Gπ(x, y) =
∑

β∈A∩π β(x)β(y) restricted to the plane π∨ ⊂ V are
proportional:

Gπ|π∨×V = λGA|π∨×V .

To see this, take α ∈ π ∩ A and v ∈ V , then by using condition (2.39) we have

Gπ(α
∨, v) =

∑
β∈A∩π

β(α∨)β(v) =
∑

β∈A∩π

β(α∨)GA(β
∨, v) = λGA(α

∨, v)

which implies the result.

Originally ∨-system appeared in [53] as geometric reformulation of the Wittern-Dijkgraaf-
Verlinde-Verlinde (WDVV) equations for the prepotential (2.37). The (generalized) WDVV
equations have the form

FiF
−1
k Fj = FjF

−1
k Fi, i, j, k = 1, ..., n, (2.41)

where Fi is the matrix of third derivatives

(Fi)ab =
∂3F

∂xi∂xa∂xb
, i, a, b = 1, . . . , n.

The system (2.41) is equivalent to the system

FiG
−1Fj = FjG

−1Fi, i, j = 1, ..., n, (2.42)

where G is any non-degenerate linear combination

G =
n∑

i=1

ηi(x)Fi, (2.43)

for some analytic functions ηi(x) [41] (see also [40]). The following theorem shows the
equivalence of ∨-system conditions and the WDVV equations for the prepotential (2.37).
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Theorem 2.5.3. [26, 53] The prepotential (2.37) satisfies the WDVV equations (2.42) if
and only if A is a ∨-system.

Before we present the statement that gives the relation between root system and the
(rational) ∨-system, let us give some properties with respect to root systems.

Let V = Rn and let ⟨·, ·⟩ be the standard positive definite symmetric bilinear form on
V . Let R be a Coxeter root system in a real vector space V R, where complexification is
V. Let A = R+. We recall that by identifying V ∼= V ∗ using the canonical form GA and
for any α, β ∈ V ∗ we define

GA(α, β) := GA(α
∨, β∨). (2.44)

Also, since the bilinear form (2.38) is W-invariant then it is proportional to the standard
inner product ⟨·, ·⟩ on V. Let

GA(u, v) = µ⟨u, v⟩, µ ∈ R, u, v ∈ V. (2.45)

Also, one can identify V ∼= V ∗ using the standard inner product ⟨·, ·⟩ and for any α, β ∈ V ∗

we define
⟨α, β⟩ := ⟨α∨, β∨⟩. (2.46)

Thus relations (2.44)–(2.46) leads to the relation

GA(α, β) = µ⟨α, β⟩, µ ∈ R, α, β ∈ V ∗.

Lemma 2.5.4. Let A = R+. Let α ∈ A and let π ⊂ V ∗ be any two-dimensional plane
containing α. Then sαπ = π.

Proof. Let β ∈ π. Then by the definition of the reflection sα we have

sαβ = β −mα,

where m = 2⟨α,β⟩
⟨α,α⟩ ∈ Z. Since sαβ is a linear combination of vectors in the plane π then

sαβ ∈ π for all β ∈ π. The statement follows.

The following theorem gives us the relation between root system and the (rational)
∨-system.

Theorem 2.5.5. [53] Let R be a Coxeter root system in Rn. Then A = R+ is a ∨-system.

Proof. In order to check that A = R+ is a ∨-system we have to check that conditions
(2.39) hold. Fix α ∈ A. Let π be any two-dimensional plane containing α. Let β ∈ A∩ π.
Since R is invariant under the action of Weyl group, then sαβ ∈ R = R+∪R− = A∪(−A),
and hence either sαβ ∈ A or −sαβ ∈ A. If |A ∩ π| = 2, say A ∩ π = {α, β}, then by
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Lemma 2.5.4 sαβ = β. Hence GA(α, β) = µ⟨α, β⟩ = 0 and the ∨-condition holds in this
case. Assume that |A ∩ π| > 2. We study two cases:

Case (1). Assume that sαβ ≁ β. Let sαβ ∈ A. Then by Lemma 2.5.4 we have
sαβ ∈ A ∩ π. Let us now study the contribution of the pairs β and sαβ to conditions
(2.39). We have (we use (2.45) thoroughly)

GA(α, β)β
∨ +GA(α, sαβ)(sαβ)

∨

= GA(α, β)β
∨ +

(
GA(α, β)−

2⟨α, β⟩
⟨α, α⟩

GA(α, α)
)(
β∨ − 2⟨α, β⟩

⟨α, α⟩
α∨
)

= GA(α, β)β
∨ +

(
GA(α, β)− 2µ⟨α, β⟩

)(
β∨ − 2

⟨α, β⟩
⟨α, α⟩

α∨
)

= GA(α, β)β
∨ +

(
GA(α, β)− 2GA(α, β)

)(
β∨ − 2⟨α, β⟩

⟨α, α⟩
α∨
)

= GA(α, β)β
∨ −GA(α, β)β

∨ +
2⟨α, β⟩
⟨α, α⟩

GA(α, β)α
∨

=
2µ⟨α, β⟩2

⟨α, α⟩
α∨.

Hence the contribution of pairs of vectors β, sαβ ∈ A ∩ π in the left-hand side of ∨-
condition (2.39) is proportional to α∨. If −sαβ ∈ A then similarly the contribution of
pairs of vectors β,−sαβ ∈ A∩π in the left-hand side of ∨-condition (2.39) is proportional
to α∨.

Case (2). Assume that sαβ ∼ β. Assume firstly that sαβ ∈ A. Hence we have
β, sαβ ∈ A ∩ π. This implies that sαβ = β (since the only multiples of β are ±β). Hence for
this case the vector β is orthogonal to α and vector β has zero contribution in the left-hand
side of ∨-condition (2.39). Now assume that −sαβ ∈ A. Hence we have β,−sαβ ∈ A ∩ π.
This implies that sαβ = −β (since the only multiples of β are ±β). Thus we have

β − 2⟨α, β⟩
⟨α, α⟩

α = −β.

That is
β =

⟨α, β⟩
⟨α, α⟩

α.

But this means that β is proportional to α and hence β = α. Hence the contribution
of vector β in the left-hand side of ∨-condition (2.39) is proportional to α∨. The lemma
follows by the above considerations.

As a corollary of Theorems 2.5.3 and 2.5.5 the following statement holds.
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Corollary 2.5.6. [53] For any Coxeter root system R the function

F =
∑
α∈R+

α(z)2 logα(z)2

satisfies WDVV equations (2.41).

Remark 2.5.7. Note that all the results of ∨-systems have been originally proven for
real vector space in [53] then these results have been generalized to complex vector spaces
where the natural complex version of the ∨-systems appeared firstly in [26].

2.5.2 The associative product

Theorem 2.5.3 can also be reformulated in terms of flatness of a connection on the tangent
bundle TV [25,53]. By defining MA = V \ ∪α∈AΠα, it was shown that the considerations
of WDVV equations with respect to function (2.37) leads to the following multiplication
for the tangent vectors u and v on MA:

u ∗ v =
∑
α∈A

α(u)α(v)

α(x)
α∨, x ∈MA, u, v ∈ TxMA. (2.47)

It is clear from formula (2.47) that the multiplication ∗ is commutative.
Before we find the identity vector field for multiplication (2.47), let us define an operator

KA : V −→ V by the formula
KA :=

∑
α∈A

α⊗ α∨, (2.48)

that is KA(v) =
∑

α∈A α(v)α
∨ for any v ∈ V. The following property holds.

Lemma 2.5.8. The operator KA given by formula (2.48) is the identity operator that is
KA(v) = v for any v ∈ V.

Proof. Let u, v ∈ V. Then we have

GA(u,KA(v)) =
∑
α∈A

α(v)GA(α
∨, u) =

∑
α∈A

α(v)α(u) = GA(u, v).

Hence we have GA(u,KA(v)− v) = 0, for any u ∈ V. This implies the statement since the
bilinear form GA is non-degenerate.

The following proposition gives the identity vector field for the product (2.47).

Proposition 2.5.9. The vector field

E =
n∑

i=1

xi∂i ∈ Γ(TV ) (2.49)
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is the identity vector field of the multiplication (2.47).

Proof. Let v ∈ V . Then by formulae (2.47), (2.48) and Lemma 2.5.8 we have

E ∗ v =
∑
α∈A

α(x)α(v)

α(x)
α∨ =

∑
α∈A

α(v)α∨ = KA(v) = v.

The statement follows since by commutativity of ∗ we have v ∗ E = E ∗ v = v.

Proposition 2.5.10. The multiplication (2.47) satisfies the Frobenius algebra condition
with respect to the bilinear form (2.38), that is for any u, v, w ∈ TxMA for generic x ∈MA

the following condition holds:

GA(u ∗ v, w) = GA(u, v ∗ w).

Proof. By the product formula (2.47) we have

GA(u ∗ v, w) =
∑
α∈A

α(u)α(v)

α(x)
GA(α

∨, w) =
∑
α∈A

α(u)α(v)α(w)

α(x)
. (2.50)

The statement follows since the right-hand side of relation (2.50) is symmetric in u, v, w.

The following result relates the associativity of product ∗ and WDVV equations.

Proposition 2.5.11. [25] The associativity of the product (2.47) is equivalent to the
WDVV equations (2.41) for the prepotential F given by (2.37).

It has been shown in [25] that the associativity of multiplication (2.47) can be rewritten
as ∑

α ̸=β,α,β∈A

GA(α
∨, β∨)Bα,β(a, b)

α(x)β(x)
α ∧ β ≡ 0, (2.51)

where α ∧ β = α⊗ β − β ⊗ α, and Bα,β(a, b) = α ∧ β(a, b) = α(a)β(b)− α(b)β(a).

The following statement relates the associativity of the product (2.47) with the ∨-
system.

Theorem 2.5.12. [25] A is a ∨-system if and only if product (2.47) is associative.

Note that Theorem 2.5.3 follows from Proposition 2.5.11 and Theorem 2.5.12.
The following flat connection defined on tangent bundle TMA was introduced in [54]:

∇uv = ∂uv − ku ∗ v, (2.52)

where ∗ is the product given by formula (2.47) and k ∈ C is a parameter. The following
statement relates the flatness of connection (2.5.13) with the ∨-condition.
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Theorem 2.5.13. [54] The connection (2.52) is flat for any k ∈ C if and only if A is a
∨-system.

Remark 2.5.14. [25] For any ∨-system A the product (2.47) defines what is called loga-
rithmic Frobenius structure on A with prepotential (2.37). Provided that ∗ is associative,
the set (V, ∗, E , GA, E) satisfies all the properties of the Frobenius manifold except the
covariant constancy of the unit vector field (axiom (2) in Definition 2.1.3).

2.5.3 Subsystems of a ∨-system

Now we present notion of a subsystem of a ∨-system, then we proceed to theorems related
to this notion.

Definition 2.5.15. [26] Let A ⊂ V ∗ be a ∨-system. The subset B ⊂ A is called subsystem
if

B = A ∩W,

for some linear subspace W ⊂ V ∗. We will assume that W = ⟨B⟩. A subsystem B is called
reducible if B = B1 ∪B2 is a disjoint union of two non-empty subsystems orthogonal with
respect to the canonical form on V, that is GA(β1, β2) = 0, ∀β1 ∈ B1, β2 ∈ B2.

Definition 2.5.16. [26] Consider the following bilinear form on V

GB(x, y) :=
∑
β∈B

β(x)β(y), x, y ∈ V,

associated with subsystem B. The subsystem B is called isotropic if the restriction GB |W∨

of the form GB on to the subspace W∨ ⊂ V is degenerate and non-isotropic otherwise.

Theorem 2.5.17. [26] Any non-isotropic subsystem of a ∨-system is also a ∨-system.

Theorem 2.5.18. [26] For any subsystem B = A∩W of a ∨-system A, either GB |W∨×V

and GA |W∨×V are proportional or B is reducible.

2.5.4 Restrictions of ∨-systems

Let us now consider the restriction operation for ∨-systems.
For any subsystem B ⊂ A consider the corresponding subspace WB ⊂ V defined as the

intersection of hyperplanes β(x) = 0, where β ∈ B, that is

WB = {x ∈ V : β(x) = 0,∀β ∈ B}. (2.53)

For any α ∈ A let us denote the restriction α |WB as πB(α), that is πB(α)(x) = α(x). Let

πB(A) = {πB(α) : α ∈ A \ B}
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be the restriction of covectors α ∈ A on WB. Let MB = B \ ∪α∈A\BΠα. The following
statement shows that the class of ∨-systems is closed under the restriction operator.

Theorem 2.5.19. [25, 26] Assume that the restriction GA |WB is non-degenerate. Then
the restriction πB(A) of a ∨-system A to the subspace MB is also a ∨-system.

Remark 2.5.20. Note that Theorem 2.5.19 applied to a root system A gives ∨-systems
which are not root systems in general.

The following statement gives the solution of WDVV equations corresponding to the
restricted system.

Theorem 2.5.21. [25,26] The logarithmic Frobenius structure (2.47) with its correspond-
ing prepotential (2.37) has a natural restriction to the space MB with the prepotential

FB =
∑

α∈A\B

α(x)2 logα(x)2, x ∈MB,

which also satisfies the WDVV equations.

2.6 Trigonometric case

In this section we introduce the class of trigonometric solutions F of WDVV equations
which involve an extra variable. We present the notion of a trigonometric ∨-system and
we review results associated to this class.

2.6.1 Prepotential, product and Dubrovin connection

Let V be a vector space of dimension N over C and let V ∗ be its dual space. Let A be a
finite collection of covectors α ∈ V ∗ which belongs to a lattice of rank N.

Let us also consider a multiplicity function c : A → C. We denote c(α) as cα. We will
assume throughout that the corresponding symmetric bilinear form

G(A,c)(u, v) :=
∑
α∈A

cαα(u)α(v), u, v ∈ V (2.54)

is non-degenerate. We will also write GA for G(A,c) to simplify notations. The form GA

establishes an isomorphism ϕ : V → V ∗, and we denote the inverse ϕ−1(α) by α∨, where
GA(α

∨, v) = α(v) for any v ∈ V.

Let U ∼= C be a one-dimensional vector space. We choose a basis in V ⊕ U such that
e1, . . . , eN is a basis in V and eN+1 is the basis vector in U, and let x1, . . . , xN+1 be the
corresponding coordinates. We represent vectors x ∈ V, y ∈ U as x = (x1, ..., xN) and
y = xN+1. Consider a function F : V ⊕ U → C of the form
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F =
1

3
y3 +

∑
α∈A

cαα(x)
2y + λ

∑
α∈A

cαf(α(x)), (2.55)

where λ ∈ C∗ and function f is given by (1.11). The WDVV equations is the following
system of partial differential equations

FiF
−1
N+1Fj = FjF

−1
N+1Fi, i, j = 1, ..., N, (2.56)

where Fi is (N + 1)× (N + 1) matrix with entries (Fi)pq =
∂3F

∂xi∂xp∂xq
(p, q = 1, . . . , N + 1).

Let e1, ..., eN be the basis in V ∗ dual to the basis e1, ..., eN ∈ V. Then for any covector

α ∈ V ∗ we have α =
N∑
i=1

αie
i and α∨ =

N∑
i=1

α∨
i ei, where αi, α

∨
i ∈ C. Then

FN+1 = 2


∑
α∈A

cαα⊗ α 0

0 1

 , (2.57)

where we denoted by α both column and row vectors α = (α1, ..., αN), and α⊗α is N ×N
matrix with matrix entries (α⊗ α)jk = αjαk. Let us define

ηij = (FN+1)ij, ηij = (F−1
N+1)ij, (2.58)

where i, j = 1, . . . , N + 1. Now we will establish a few lemmas which will be useful later.
The next statement is standard.

Lemma 2.6.1. Let G̃ be the matrix of the bilinear form GA, that is its matrix entry
(G̃)ij = GA(ei, ej), where i, j = 1, . . . , N. Then for any covector γ = (γ1, ..., γN) ∈ V ∗ and
γ∨ = (γ∨1 , ..., γ

∨
N) ∈ V, we have G̃−1γT = (γ∨)T .

Let MA = V \ ∪α∈AΠα be the complement to the union of all the hyperplanes Πα :=

{x ∈ V : α(x) = 0}. For any vector a = (a1, . . . , aN+1) ∈ V ⊕ U let us introduce the
corresponding vector field ∂a =

∑N+1
i=1 ai∂xi

∈ Γ(T (V ⊕ U)). For any b = (b1, . . . , bN+1) ∈
V ⊕ U we define the following multiplication on the tangent space T(x,y)(MA ⊕ U):

∂a ∗ ∂b = aibjη
klFijk∂xl

, i, j, k, l = 1, . . . , N + 1, (2.59)

where ηkl is defined in (2.58) and the summation over repeated indices here and below
is assumed. It is clear from the definition that the multiplication ∗ is commutative and
distributive. The next statement follows from Proposition 2.1.5.

Proposition 2.6.2. The associativity of multiplication ∗ is equivalent to the WDVV equa-
tion (2.56).
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Let us introduce vector field E by

E = ∂xN+1
∈ Γ(T (V ⊕ U)).

For a fixed (x, y) ∈ MA ⊕ U after the identification T(x,y)(V ⊕ U) ∼= V ⊕ U we have that
E ∈ U .

Proposition 2.6.3. Vector field E is the identity for the multiplication (2.59).

Proof. For all 1 ≤ i ≤ N + 1 we have

∂xi
∗ E = ηkjFi,N+1,j∂xk

= ηkjηij∂xk
= ∂xi

.

Proposition 2.6.4. Let a = (a1, . . . , aN), b = (b1, . . . , bN) ∈ V, and let ∂a =
∑N

i=1 ai∂xi
,

∂b =
∑N

i=1 bi∂xi
. Then the product (2.59) has the following explicit form

∂a ∗ ∂b =
∑
α∈A

cαα(a)α(b)(
λ

2
cotα(x)∂α∨ + E). (2.60)

Proof. Note that ηm,N+1 = 1
2
δN+1
m for any m = 1, ..., N + 1, where δji is the Kronecker

symbol. Therefore from (2.59) we have

∂a ∗ ∂b = aibj(
N∑

k,l=1

ηklFijk∂xl
+

1

2
Fi,j,N+1∂xN+1

),

where
Fijk = λ

∑
α∈A

cααiαjαk cotα(x), 1 ≤ i, j, k ≤ N.

Then we have

N∑
k,l=1

aibjη
klFijk∂xl

= λ
∑
α∈A

N∑
k,l=1

cαα(a)α(b)αkη
kl cotα(x)∂xl

=
λ

2

∑
α∈A

cαα(a)α(b) cotα(x)∂α∨

(2.61)

by Lemma 2.6.1. Also by formula (2.57) we have that

1

2

N∑
i,j=1

aibjFi,j,N+1 =
∑
α∈A

cαα(a)α(b). (2.62)

The statement follows from formulas (2.61) and (2.62).
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If we identify vector space V ⊕U with the tangent space T(x,y)(V ⊕U) ∼= V ⊕U , then
multiplication (2.60) can also be written as

a ∗ b =
∑
α∈A

cαα(a)α(b)(
λ

2
cotα(x)α∨ + E), a, b ∈ V. (2.63)

The following proposition gives the explicit formula for the multiplication (2.59) on the
tangent space T(x,y)(MA ⊕ U).

Proposition 2.6.5. Let ũ = u + ρ1E, ṽ = v + ρ2E ∈ Γ(T (V ⊕ U)), where u, v ∈ V and
ρ1, ρ2 ∈ C. Then multiplication (2.59) takes the following form on T(x,y)(V ⊕ U) ∼= V ⊕ U :

ũ ∗ ṽ =
λ

2

∑
α∈A

cαα(u)α(v) cotα(x)α
∨ + ρ2u+ ρ1v +

(
GA(u, v) + ρ1ρ2

)
E. (2.64)

Proof. We have by Proposition 2.6.3

ũ ∗ ṽ = u ∗ v + u ∗ ρ2E + ρ1E ∗ v + ρ1E ∗ ρ2E = u ∗ v + ρ2u+ ρ1v + ρ1ρ2E.

Then formula (2.64) follows from formula (2.63).

Let us extend the bilinear form (2.54) to the symmetric bilinear form G̃A on V ⊕U by
defining

G̃A(u, v) = GA(u, v),

G̃A(u,E) = 0,

G̃A(E,E) = 1, (2.65)

for all u, v ∈ V. It is clear that the multiplication (2.64) is commutative. Let us now recall
the notion of Frobenius algebra in which its prepotential appears as a solution of WDVV
equations. The following result holds.

Proposition 2.6.6. The multiplication (2.64) satisfies the Frobenius algebra condition
with respect to the bilinear form (2.65), that is for any X̃, Ỹ , Z̃ ∈ T(x,y)(V ⊕U) for generic
(x, y) the following condition holds:

G̃A(X̃ ∗ Ỹ , Z̃) = G̃A(X̃, Ỹ ∗ Z̃).

Proof. Let X̃ = X+ρ1E, Ỹ = Y +ρ2E, Z̃ = Z+ρ3E, where X, Y, Z ∈ V, and ρ1, ρ2, ρ3 ∈
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C. Then by the product formula (2.64) we have

G̃A(X̃ ∗ Ỹ , Z̃) = λ

2

∑
α∈A

cαα(X)α(Y ) cotα(x)G̃A(α
∨, Z̃) + ρ2G̃A(X, Z̃) + ρ1G̃A(Y, Z̃)

+
(
GA(X, Y ) + ρ1ρ2

)
G̃A(E, Z̃)

=
λ

2

∑
α∈A

cαα(X)α(Y )α(Z) cotα(x) + ρ1GA(Y, Z) + ρ2GA(X,Z)

+ ρ3GA(X, Y ) + ρ1ρ2ρ3. (2.66)

The statement follows since the right-hand side of relation (2.66) is invariant under the
arbitrary permutations of X̃, Ỹ , Z̃.

Remark 2.6.7. The commutativity of the product (2.64) together with Proposition 2.6.6
imply that the 4-tuple

(
T (V ⊕U), ∗, E, G̃A

)
constitutes a commutative, associative Frobe-

nius algebra provided that the product ∗ is associative.

Let us now define the (deformed) Dubrovin connection corresponding to the multi-
plication (2.64). Let ∇0

X̃
Ỹ := ∂X̃ Ỹ be the trivial connection. We know that the trivial

connection is a torsion free and also a flat connection, that is

∇0
X̃
Ỹ −∇0

Ỹ
X̃ = [X̃, Ỹ ],

and
R0(X̃, Ỹ )Z̃ := [∇0

X̃
,∇0

Ỹ
]Z̃ −∇0

[X̃,Ỹ ]
Z̃ = 0,

for any smooth vector fields X̃, Ỹ , Z̃ ∈ Γ
(
T (V ⊕ U)

)
.

The Dubrovin connection (2.10) on the tangent bundle T (V ⊕ U) takes the form

∇µ
ũṽ = ∇0

ũṽ + µũ ∗ ṽ, (2.67)

where the multiplication ∗ is given by (2.64), and ∇0 is the trivial connection, and µ ∈ C.
The (0, 3)-tensor c given by formula (2.1) takes the form

c(X̃, Ỹ , Z̃) = G̃A(X̃ ∗ Ỹ , Z̃), (2.68)
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and the (0, 4)-tensor T 0 given by formula (2.2) takes the form

T 0(X̃, Ỹ , Z̃, W̃ ) :=
(
∇0

W̃
c
)
(X̃, Ỹ , Z̃)

= ∇0
W̃

(
c(X̃, Ỹ , Z̃)

)
− c(∇0

W̃
X̃, Ỹ , Z̃)− c(X̃,∇0

W̃
Ỹ , Z̃)− c(X̃, Ỹ ,∇0

W̃
Z̃)

= ∂W̃

(
c(X̃, Ỹ , Z̃)

)
− c(∂W̃ X̃, Ỹ , Z̃)− c(X̃, ∂W̃ Ỹ , Z̃)− c(X̃, Ỹ , ∂W̃ Z̃),

(2.69)

where X̃, Ỹ , Z̃, W̃ ∈ Γ
(
T (V ⊕ U)

)
, the product ∗ is given by formula (2.64) and G̃A is

given by formula (2.65).
The following statement takes place.

Proposition 2.6.8. The tensor c(X̃, Ỹ , Z̃) given by (2.68) is totally symmetric.

Proof. Let X̃ = X + ρ1E, Ỹ = Y + ρ2E, Z̃ = Z + ρ3E, where X, Y, Z ∈ Γ(TV ), and
ρ1, ρ2, ρ3 ∈ C∞(U). Then by the product formula (2.64) we have

c(X̃, Ỹ , Z̃) = G̃A(X̃ ∗ Ỹ , Z̃) = λ

2

∑
α∈A

cαα(X)α(Y )α(Z) cotα(x) + ρ1GA(Y, Z)

+ ρ2GA(X,Z) + ρ3GA(X, Y ) + ρ1ρ2ρ3. (2.70)

The statement follows since the right-hand side of relation (2.66) is invariant under the
arbitrary permutations of X̃, Ỹ , Z̃.

The following statement holds.

Proposition 2.6.9. For any vector fields X̃, Ỹ , Z̃, W̃ ∈ Γ
(
T (V ⊕ U)

)
, the (0, 4)-tensor

T 0(X̃, Ỹ , Z̃, W̃ ) given by formula (2.69) is totally symmetric in all its arguments.

Proof. Let X̃ = X+ρ1E, Ỹ = Y +ρ2E, Z̃ = Z+ρ3E, W̃ = W +ρ4E, where X, Y, Z,W ∈
Γ(TV ), and ρ1, ρ2, ρ3, ρ4 ∈ C∞(U). By formula (2.66) we have

c(X̃, Ỹ , Z̃) =
λ

2

∑
α∈A

cαα(X)α(Y )α(Z) cotα(x) + ρ1GA(Y, Z) + ρ2GA(X,Z)

+ ρ3GA(X, Y ) + ρ1ρ2ρ3.
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Then to find the explicit formula of the tensor (2.69) we have

∂W̃

(
c(X̃, Ỹ , Z̃)

)
= −λ

2

∑
α∈A

cαα(X)α(Y )α(Z)
α(W )

sin2 α(x)

+
λ

2

∑
α∈A

cα cotα(x)

((
∂W̃α(X)

)
α(Y )α(Z) + α(X)

(
∂W̃α(Y )

)
α(Z) + α(X)α(Y )

(
∂W̃α(Z)

))
+
(
ρ1∂W̃ G̃A(Y, Z) +

(
∂W̃ρ1

)
G̃A(Y, Z)

)
+
(
ρ2∂W̃ G̃A(X,Z) +

(
∂W̃ρ2

)
G̃A(X,Z)

)
+
(
ρ3∂W̃ G̃A(X, Y ) +

(
∂W̃ρ3

)
G̃A(X, Y )

)
+
((
∂W̃ρ1

)
ρ2ρ3 + ρ1

(
∂W̃ρ2

)
ρ3 + ρ1ρ2

(
∂W̃ρ3

))
.

(2.71)

Also using Frobenius condition we have

c
(
∂W̃ X̃, Ỹ , Z̃

)
= G̃A

(
∂W̃ X̃ ∗ Ỹ , Z̃

)
= G̃A

(
∂W̃ X̃, Ỹ ∗ Z̃

)
=
λ

2

∑
α∈A

cαα(Y )α(Z) cotα(x)G̃A(α
∨, ∂W̃ X̃) + ρ3G̃A(∂W̃ X̃, Y ) + ρ2G̃A(∂W̃ X̃, Z)

+ G̃A(Y, Z)G̃A(∂W̃ X̃, E) + ρ2ρ3G̃A(∂W̃ X̃, E). (2.72)

But using the compatibility condition we have

G̃A(α
∨, ∂W̃ X̃) = ∂W̃ G̃A(α

∨, X̃)− G̃A(∂W̃α
∨, X̃) = ∂W̃α(X), (2.73)

since ∂W̃α
∨ = 0. Also by the compatibility condition we have

G̃A(∂W̃ X̃, E) = ∂W̃ G̃A(X̃, E)− G̃A(, X̃, ∂W̃E) = ∂W̃ G̃A(X̃, E) = ∂W̃ (ρ1), (2.74)

since ∂W̃E = 0. Hence by relations (2.73) and (2.74) relation (2.72) becomes

c
(
∂W̃ X̃, Ỹ , Z̃

)
=
λ

2

∑
α∈A

cαα(Y )α(Z) cotα(x)∂W̃α(X) + ρ3G̃A(∂W̃ X̃, Y ) + ρ2G̃A(∂W̃ X̃, Z)

+
(
∂W̃ (ρ1)

)
G̃A(Y, Z) +

(
∂W̃ (ρ1)

)
ρ2ρ3. (2.75)

Similarly, we have

c
(
X̃, ∂W̃ Ỹ , Z̃

)
=
λ

2

∑
α∈A

cαα(X)α(Z) cotα(x)∂W̃α(Y ) + ρ3G̃A(X, ∂W̃ Ỹ ) + ρ1G̃A(∂W̃ Ỹ , Z)

+
(
∂W̃ (ρ2)

)
G̃A(X,Z) + ρ1

(
∂W̃ (ρ2)

)
ρ3. (2.76)
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Also we have

c
(
X̃, Ỹ , ∂W̃ Z̃

)
=
λ

2

∑
α∈A

cαα(X)α(Y ) cotα(x)∂W̃α(Z) + ρ2G̃A(X, ∂W̃ Z̃) + ρ1G̃A(∂W̃ Ỹ , Z)

+
(
∂W̃ (ρ3)

)
G̃A(X, Y ) + ρ1ρ2

(
∂W̃ (ρ3)

)
. (2.77)

Then by substituting relations (2.71), (2.75), (2.76) and (2.77) into the formula (2.69) and
making use of the compatibility condition when required the formula of the tensor (2.69)
reduces to

T (X̃, Ỹ , Z̃, W̃ ) =
(
∇0

W̃
c
)
(X̃, Ỹ , Z̃) = −λ

2

∑
α∈A

cαα(X)α(Y )α(Z)
α(W )

sin2 α(x)
. (2.78)

The statement follows since formula (2.78) is symmetric in all its arguments X̃, Ỹ , Z̃, W̃ .

Propositions 2.6.8, 2.6.9 together with Poincaré Lemma confirm the existence of Frobe-
nius prepotential as in the following proposition.

Proposition 2.6.10. There exists a (local) prepotential F̂ = F̂ (x1, . . . , xN , y) satisfies

∂X̃∂Ỹ ∂Z̃F̂ = G̃A(X̃ ∗ Ỹ , Z̃),

where the multiplication ∗ is given by formula (2.64) and X̃, Ỹ , Z̃ are flat vector fields.
This prepotential takes the form

F̂ =
y3

6
+
y

2

∑
α∈A

cαα(x)
2 +

λ

2

∑
α∈A

cαf(α(x)) =
1

2
F (x, y),

where F is the solution given by (2.55).

Proof. By Propositions 2.6.8, 2.6.9 the two tensors (2.1), (2.2) are totally symmetric in
all their arguments. Then Proposition 2.1.4 agrees of existence of the prepotential F̂ . Let
us denote by cX̃Ỹ Z̃

:= c(X̃, Ỹ , Z̃). Let us now find the explicit formula of the prepotential
F̂ corresponding to the flat connection ∇0 which can be extracted by integrating the
polynomial cX̃Ỹ Z̃ as follows.

By the formula of the multiplication (2.64) we have

∂X̃∂Ỹ ∂Z̃F̂ = cX̃Ỹ Z̃ = G̃A(X̃ ∗ Ỹ , Z̃) = λ

2

∑
α∈A

cαα(X)α(Y )α(Z) cotα(x) + ρ1GA(Y, Z)

+ ρ2GA(X,Z) + ρ3GA(X, Y ) + ρ1ρ2ρ3. (2.79)



CHAPTER 2. FROBENIUS MANIFOLDS STRUCTURES 54

Then it is easy to see that

∂X̃∂Ỹ ∂Z̃(
y3

6
) = ρ1ρ2ρ3. (2.80)

Also we can show that

∂X̃∂Ỹ ∂Z̃

(y
2

∑
α∈A

cαα(x)
2
)
= ρ1GA(Y, Z) + ρ2GA(X,Z) + ρ3GA(X, Y ). (2.81)

For the term λ
2

∑
α∈A cαα(X)α(Y )α(Z) cotα(x) we consider a function f to be such of

that f ′′′
(α(x)) = cotα(x) and hence we have

∂X̃∂Ỹ ∂Z̃

(∑
α∈A

cαf(α(x)
)
=
∑
α∈A

cαα(X)α(Y )α(Z) cotα(x). (2.82)

Then by relations (2.80)–(2.82) the prepotential F̂ in (2.79) takes the form

F̂ (x, y) =
y3

6
+
y

2

∑
α∈A

cαα(x)
2 +

λ

2

∑
α∈A

cαf(α(x)) =
1

2
F (x, y),

where F is the solution given by (2.55).

Remark 2.6.11. In the Definition 2.1.3 of the Frobenius manifold it is usually assumed
that the scaling constant d1 is nonzero. One can allow to choose d1 = 0. This happens
if we define E = e = E, that is the Euler vector field coincides with the identity of the
product. Then

E(F̂ ) = ∂y(F̂ ) =
1

2

(
y2 +

∑
α∈A

cαα(x)
2
)
,

which agrees with the relation (2.7) where dF = 0. Thus the set
(
V ⊕ U, ∗, E, G̃A, E

)
becomes a Frobenius manifold provided that the product ∗ is associative.

The following property holds.

Proposition 2.6.12. Dubrovin connection (2.67) is torsion free.

Proof. The statement follows from Proposition 2.2.2 since the product ∗ is commutative.

The curvature of connection (2.67) is defined by

R̃µ(X, Y )Z := [∇µ
X ,∇

µ
Y ]Z −∇µ

[X,Y ]Z, X, Y, Z ∈ Γ
(
T∗(V ⊕ U)

)
. (2.83)

The following result holds.
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Proposition 2.6.13. The flatness of the connection (2.67) is equivalent to the associa-
tivity of the product (2.64).

Proof. By Proposition 2.2.2 the flatness of the connection (2.67) is equivalent to the to-
tally symmetric of the tensor T 0(X̃, Ỹ , Z̃, W̃ ) given by formula (2.69) together with the
associativity of the product ∗ is given by (2.64). But from Proposition (2.6.9) the tensor
T 0 is totally symmetric, hence the statement follows.

As a corollary of Propositions 2.6.2, 2.6.13 the following result holds.

Theorem 2.6.14. The flatness of Dubrovin connection (2.67) for all µ is equivalent to
WDVV equations (2.56).

Let us now consider Λ2V ∗ as a subspace in (V ⊗ V )∗ given by the anti-symmetric
tensors, then we can define the quantity Bα,β : V ⊗ V → C as follows. For any α, β ∈ A
we define Bα,β := α ∧ β = α⊗ β − β ⊗ α ∈ Λ2V ∗, such that

Bα,β(a⊗ b) = α ∧ β(a⊗ b) = α(a)β(b)− α(b)β(a)

for any a, b ∈ V. The following property holds.

Lemma 2.6.15. For any α, β ∈ V ∗, a, b ∈ V we have

Bα,β(a ∧ b) = 2Bα,β(a⊗ b).

Proof. Since a ∧ b = a⊗ b− b⊗ a, then

Bα,β(a ∧ b) = Bα,β(a⊗ b− b⊗ a) = Bα,β(a⊗ b)−Bα,β(b⊗ a)

=
(
α(a)β(b)− α(b)β(a)

)
−
(
α(b)β(a)− α(a)β(b)

)
= 2
(
α(a)β(b)− α(b)β(a)

)
,

which implies the statement.

Let us introduce the following symmetric bilinear form G
(1)
A = G

(1)
(A,c), on the vector

space Λ2V ⊂ V ⊗ V given by

G
(1)
A (z, w) =

∑
α,β∈A

cαcβBα,β(z)Bα,β(w), (2.84)

where z, w ∈ Λ2V. It is easy to see that for z = u1∧v1, w = u2∧v2, where u1, u2, v1, v2 ∈ V ,
we have

G
(1)
A (z, w) = 8

(
GA(u1, u2)GA(v1, v2)−GA(u1, v2)GA(u2, v1)

)
, (2.85)

which is a natural extension of the bilinear form GA to the space Λ2V. It is also easy to
see that this form G

(1)
A is non-degenerate and that it is W-invariant.
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Since the flatness of connection (2.67) is equivalent to WDVV equations (2.56) one
expects that the flatness condition determines the restrictions on the scalar λ that lead
to a solution of form (2.55). The following proposition gives the condition in the solution
(2.55) which follows from the flatness of the corresponding connection.

Proposition 2.6.16. The flatness of Dubrovin connection (2.67) for all µ is equivalent
to the identity

∑
α,β∈A

(
λ2

4
cαcβGA(α

∨, β∨) cotα(x) cot β(x) + cαcβ

)
Bα,β(u⊗ v)Bα,β(z ⊗ w) = 0. (2.86)

Proof. Firstly, note that by Proposition 2.2.5 and formula (2.83), it is enough to study the
zero-curvature (flatness condition) by considering constant vector fields ũ, ṽ, z̃, and hence
the flatness condition for the connection (2.67) reduces to the formula

[∇µ
ũ,∇

µ
ṽ ](z̃) = 0. (2.87)

Let us now consider constant vector fields:

ũ = u+ ρ1E, ṽ = v + ρ2E, z̃ = z + ρ3E ∈ Γ(T (V ⊕ U)),

where u, v, z ∈ V and ρ1, ρ2, ρ3 ∈ C. By straightforward calculation we have

∇µ
ũ

(
∇µ

ṽ (z̃)
)
= −µλ

2

∑
α∈A

cα
α(u)α(v)α(z)

sin2 α(x)
α∨ +

µ2λρ1
2

∑
α>0

cαα(v)α(z) cotα(x)α
∨

+
µ2λρ2
2

∑
α>0

cαα(u)α(z) cotα(x)α
∨ +

µ2λρ3
2

∑
α>0

cαα(u)α(v) cotα(x)α
∨

+
µ2λ2

4

∑
α,β>0

cαcβα(u)β(v) cotα(x) cot β(x)(α⊗ α∨)(β ⊗ β∨)(z) + µ2GA(v, z)u

+ µ2
(
ρ1ρ2z + ρ1ρ3v + ρ2ρ3u

)
+ µ2

(
ρ1GA(v, z) + ρ2GA(u, z) + ρ3GA(u, v) + ρ1ρ2ρ3

)
E

+ µ2
(λ
2

∑
α>0

cαα(u)α(v) cotα(x)
)
E. (2.88)

Similarly, (by swapping u↔ v and ρ1 ↔ ρ2) we obtain the formula of ∇µ
ṽ

(
∇µ

ũ(z̃)
)
. Hence

the flatness condition (2.87) reduces to

0 =
µ2λ2

4

∑
α,β>0

cαcβ

(
α ∧ β(u⊗ v)

)
cotα(x) cot β(x)(α⊗ α∨)(β ⊗ β∨)(z)

+ µ2
(
GA(v, z)u−GA(u, z)v

)
. (2.89)
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Note that

(α⊗ α∨)(β ⊗ β∨)(z) = (α⊗ α∨)(β(z)β∨) = α(β∨)β(z)α∨ = GA(α
∨, β∨)β(z)α∨.

Hence identity (2.89) can be rewritten as

0 =
µ2λ2

4

∑
α,β>0

cαcβGA(α
∨, β∨) cotα(x) cot β(x)

(
α ∧ β(u⊗ v)

)
β(z)α∨

+ µ2
(
GA(v, z)u−GA(u, z)v

)
. (2.90)

Since the identity (2.90) valid for all vectors α, β > 0, then by exchanging α ↔ β we
get a similar identity in which adding them up together and multiplying the result by 4

µ2

gives the following identity

λ2
∑
α,β>0

cαcβGA(α
∨, β∨) cotα(x) cot β(x)

(
α ∧ β(u⊗ v)

)(
α(z)β∨ − β(z)α∨

)
+ 8
(
GA(v, z)u−GA(u, z)v

)
= 0. (2.91)

Let w ∈ V and let us calculate the bilinear form GA(w, ·) with respect to the identity
(2.91). We have

λ2
∑
α,β>0

cαcβGA(α
∨, β∨) cotα(x) cot β(x)

(
α ∧ β(u⊗ v)

)(
α(z)GA(β

∨, w)− β(z)GA(α
∨, w)

)
+ 8
(
GA(v, z)GA(u,w)−GA(u, z)GA(v, w)

)
= 0,

which can be rewritten as

λ2
∑

α,β∈A

cαcβGA(α
∨, β∨) cotα(x) cot β(x)

(
α ∧ β(u⊗ v)

)(
α ∧ β(z ⊗ w)

)
+ 8
(
GA(v, z)GA(u,w)−GA(u, z)GA(v, w)

)
= 0. (2.92)

But from Lemma 2.6.15 and relation (2.85) we have

8
(
GA(v, z)GA(u,w)−GA(u, z)GA(v, w)

)
= GA(u ∧ v, z ∧ w)

=
∑

α,β∈A

cαcβBα,β(u ∧ v)Bα,β(z ∧ w) = 4
∑

α,β∈A

cαcβBα,β(u⊗ v)Bα,β(z ⊗ w).

Hence the flatness condition (2.92) reduces to the required identity.
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2.6.2 Trigonometric ∨-systems

For a fixed α ∈ A identity (2.86) may contain singularities when tanα(x) = 0, and in
order to cancel these singularities we need further investigation. To do so, we need to
prove some results.

For each vector α ∈ A let us introduce the set of its collinear vectors from A:

δα := {γ ∈ A : γ ∼ α}.

Let δ ⊆ δα and α0 ∈ δα. Then for any γ ∈ δ we have γ = kγα0 for some kγ ∈ R. Note that
kγ depends on the choice of α0 and different choices of α0 give rescaled collections of these
parameters. Define Cα0

δ :=
∑
γ∈δ

cγk
2
γ. Note that Cα0

δ is non-zero if and only if C α̃0
δ ̸= 0 for

any α̃0 ∈ δ.

The WDVV equations for a function F can be reformulated using geometry of the
configuration A. Such a geometric structure is embedded in the notion of a trigonometric
∨-system. Before defining trigonometric ∨-system precisely we need a notion of series (or
strings) of vectors (see [27]).

For any α ∈ A let us distribute all the covectors in A \ δα into a disjoint union of
α-series

A \ δα =
k⊔

s=1

Γs
α,

where k ∈ N depends on α. These series Γs
α are determined by the property that for

any s = 1, . . . , k and for any two covectors γ1, γ2 ∈ Γs
α one has either γ1 + γ2 = mα or

γ1−γ2 = mα for some m ∈ Z. We assume that the series are maximal, that is if γ ∈ Γs
α for

some s ∈ N, then Γs
α must contain all the covectors of the form ±γ+mα ∈ A with m ∈ Z.

Note that if for some β ∈ A there is no γ ∈ A such that β ± γ = mα for m ∈ Z, then
β itself forms a single α-series. Note also that any α-series belongs to a two-dimensional
vector space.

By replacing some vectors from A with their opposite ones and keeping the multiplicity
unchanged one can get a new configuration whose vectors belong to a half-space. We will
denote such a system by A+. If this system contains repeated vectors α with multiplicities
ciα then we replace them with the single vector α with multiplicity cα :=

∑
i c

i
α.

Definition 2.6.17. [27] The pair (A, c) is called a trigonometric ∨-system if for all α ∈ A
and for any α-series Γs

α, one has the relation∑
β∈Γs

α

cβα(β
∨)α ∧ β = 0. (2.93)

Note that if β1, β2 ∈ Γs
α for some α, s, then α ∧ β1 = ±α ∧ β2 so the identity (2.93)
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may be simplified by cancelling wedge products. We also note that if A is a trigonometric
∨-system then A+ is the one as well.

Let us also define the following bilinear form G
(2)
A+

on Λ2V :

G
(2)
A+

(
z, w) =

∑
α,β∈A+

cαcβGA(α
∨, β∨)Bα,β(z)Bα,β(w), (2.94)

where z, w ∈ Λ2V.

The following statement shows that the bilinear form G
(2)
A+

is independent of the choice
of the positive system A+.

Lemma 2.6.18. For any positive systems A(1)
+ ,A(2)

+ for a trigonometric ∨-system (A, c)
we have G(2)

A(1)
+

= G
(2)

A(2)
+

.

Proof. Suppose firstly that two positive systems A(1)
+ ,A(2)

+ for a trigonometric ∨-system
(A, c) satisfy the condition

A(2)
+ =

(
A(1)

+ \ δα
)
∪
(
− δα

)
for some α ∈ A(1)

+ . Notice that vector α cannot be a linear combination of vectors in
A(1)

+ \ δα with positive coefficients. Hence for each α-series Γs
α in A(1)

+ we have∑
β∈Γs

α

cβα(β
∨) = 0 (2.95)

since Bα,β1 = Bα,β2 for all β1, β2 ∈ Γs
α.

Let us consider terms in G(2)

A(1)
+

(z, w) which contain α. They are proportional to

∑
β∈A(1)

+

cβGA(α
∨, β∨)Bα,β(z)Bα,β(w) =

∑
s

∑
β∈Γs

α

cβα(β
∨)Bα,β(z)Bα,β(w) = 0

by (2.95). The statement follows in this case.
In general, the system A(2)

+ can be obtained from the system A(1)
+ by a sequence of steps

where in each one we replace the subset of vectors δα with vectors −δα and the resulting
system is still a positive one. In order to see this, one moves continuously the hyperplane
defining A(1)

+ into the hyperplane defining A(2)
+ so that at each moment the hyperplane

contains at most one vector from A up to proportionality. The statement follows from the
case considered above.

As a consequence of Lemma 2.6.18 we can and will denote the form G
(2)
A+

as G(2)
A .

The following proposition holds.
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Proposition 2.6.19. Assume that prepotential (2.55) satisfies the WDVV equations (2.56).
Suppose that Cα0

δα
̸= 0 for any α ∈ A, α0 ∈ δα. Then the identity∑

β∈A\δα

cβα(β
∨) cot β(x)Bα,β(a⊗ b)α ∧ β = 0 (2.96)

holds for all a, b ∈ V provided that α(x) = 0.

Proof. By Theorem 2.6.14 the WDVV equations (2.56) are equivalent to the flatness of
connection (2.67), and by Proposition 2.6.16 the flatness condition of connection (2.67) is
equivalent to relation (2.86).

Let us consider terms in the left-hand side of relation (2.86), where β or γ is propor-
tional to α. The sum of these terms has to be regular at α(x) = 0. This implies that the
product(

λ2
∑
γ∈δα

k3γcγ cot γ(x)
)( ∑

β∈A\δα

cβα0(β
∨) cot β(x)Bα0,β(a⊗ b)α0 ∧ β

)
(2.97)

is regular at α(x) = 0. The first factor in the product (2.97) has the first order pole at
α(x) = 0 by the assumption that Cα0

δα
̸= 0 for any α ∈ A, α0 ∈ δα. This implies the

statement.

Similarly to Proposition 2.6.19 the following proposition can also be established.

Proposition 2.6.20. Assume that prepotential (2.55) satisfies the WDVV equations (2.56).
Suppose that Cα0

δ ̸= 0 for any α ∈ A, δ ⊆ δα, α0 ∈ δα. Then the identity (2.96) holds for
any a, b ∈ V provided that tanα(x) = 0.

The proof is similar to the proof of Proposition 2.6.19. Indeed, we have that expression
(2.97) is regular at α(x) = πm,m ∈ Z. Assumptions imply that the first factor in (2.97)
has the first order pole, which implies the statement.

A close relation between trigonometric ∨-systems and solutions of WDVV equations
is given by the following theorem.

Theorem 2.6.21. (cf.[27]) Suppose that a configuration (A, c) satisfies the condition
Cα0

δ ̸= 0 for all α ∈ A, δ ⊆ δα, α0 ∈ δα. Then WDVV equations (2.56) for the func-
tion (2.55) imply the following two conditions:

1. A is a trigonometric ∨-system,

2. Bilinear forms (2.84), (2.94) satisfy proportionality G(1)
A = λ2

4
G

(2)
A .

Conversely, if a configuration (A, c) satisfies conditions (1) and (2) then WDVV equations
(2.56) hold.
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The key part of the proof is to derive trigonometric ∨-conditions from WDVV equa-
tions, which goes along the following lines (see [27] for details). By Proposition 2.6.20
identity (2.96) holds if tanα(x) = 0. The identity (2.96) is a linear combination of
cot β(x)|tanα(x)=0, which can vanish only if it vanishes for each α-series. Hence identity
(2.96) implies relations (2.93) so A is a trigonometric ∨-system.

Remark 2.6.22. A version of Theorem 2.6.21 is given in [27, Theorem 1] without speci-
fying conditions Cα0

δ ̸= 0. However these assumptions seem needed in general in order to
derive trigonometric ∨-conditions for α-series in the case when δα \ {±α} ≠ ∅ as above
arguments and proofs of Propositions 2.6.19, 2.6.20 explain.

2.7 Root systems examples

An important class of trigonometric solutions of WDVV equations is given by (crystallo-
graphic) root systems A = R of Weyl groups W . Recall that a root system R satisfies the
property

sαβ = β − 2⟨α, β⟩
⟨α, α⟩

α ∈ R (2.98)

for any α, β ∈ R, and one has 2⟨α,β⟩
⟨α,α⟩ ∈ Z, where ⟨·, ·⟩ is a W-invariant scalar product on

V ∗ ∼= V. The corresponding Weyl group is generated by reflections sα, α ∈ R.
The following statement was established in [42] for the non-reduced root systems.

Theorem 2.7.1. (cf. [42]) Let A = R be an irreducible root system with the Weyl group
W and suppose that the multiplicity function c : R → C is W-invariant. Then prepotential
(2.55) satisfies WDVV equations (2.56) for some λ ∈ C .

Let us explain a proof of this statement different from [42] by making use the notion
of a trigonometric ∨-system and Theorem 2.6.21.

Proposition 2.7.2. Root system A = R with W-invariant multiplicity function c is a
trigonometric ∨-system.

Proof. Fix α ∈ R. Take any β ∈ R, and let γ = sαβ. Then from (2.98) we have that

β − γ = mα, m ∈ Z.

Hence β, γ ∈ Γs
α for some s. The bilinear form GR is W-invariant so is proportional to

⟨·, ·⟩. Therefore we have

cβ = cγ, GR(α, β) = −GR(α, γ), α ∧ β = α ∧ γ.
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Hence,
cβGR(α, β)α ∧ β + cγGR(α, γ)α ∧ γ = 0,

which implies trigonometric ∨-conditions (2.93).

It is easy to see that the bilinear form G
(1)
R is W-invariant, and the same is true for the

bilinear form G
(2)
R (see e.g. [3, Proposition 6.4]). Since W-module Λ2V is irreducible, the

forms G(1)
R and G(2)

R have to be proportional. By Theorem 2.6.21 this implies Theorem 2.7.1
provided that the form G

(2)
R is non-zero. The latter fact is claimed in [42] where the corre-

sponding solution of WDVV equations was explicitly stated for the constant multiplicity
function. It was found for any multiplicity function for the non-reduced root systems in
[47,48].

It follows that a positive half A = R+ of a root system R also defines a solution
of WDVV equations (2.56). We find the corresponding form G

(2)

R+ for the root system
R = BCN explicitly in Section 3.3. We also specify corresponding constants λ = λ(R,c) for
(the positive halves of) reduced root systems R in Section 3.6. Note that λ is invariant
under the linear transformations applied to A. In the root system case the scalar λ(R,c)

may be thought of as a version of the (generalized) Coxeter number for the case of the
representation Λ2V , as the usual (generalized) Coxeter number can also be given as a ratio
of two W-invariant forms on V ([6, 28]).

The value of the parameter λ was found in a few earlier works which we now recall.
1. Martini’s and Hoevenaars’ works
A prepotential F̃ of N + 1 variables (x1, . . . , xN , y) was considered in [42] in the form

F̃ (x, y) =
γ

6
y3 +

γ

2
y⟨x, x⟩+

∑
α∈R+

kαf̃(α(x)), (2.99)

where R+ is a positive half of the (crystallographic) root system R of rankN , the multiplic-
ity function k(α) := kα and the inner product ⟨·, ·⟩ are invariant under the corresponding
Weyl group W of R, γ ∈ C is depending on the root system R and function f̃ given by

f̃(z) =
1

6
z3 − 1

4
Li3(e

−2z) (2.100)

satisfies f̃ ′′′(z) = coth z. With respect to the extra variable y = xN+1 the matrix of the
third order derivatives

(FN+1)ij =
∂3F

∂N+1∂i∂j

becomes a multiple of the identity, more precisely (FN+1)ij = γδij. Hence the WDVV
systems (2.56) in this case reduces to the system

FiFj = FjFi.
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It has been shown that function (2.99) satisfies WDVV equations (2.56) and the corre-
sponding values of γ(R,c) were given explicitly (except for R = BCN , G2) where a constant
W-invariant multiplicity function was considered as the following statement explains.

Proposition 2.7.3. [42] The function (2.99) satisfies WDVV equations (2.56) and the
corresponding values of γ(R,c) for a constant W-invariant multiplicity function kα = 1 ∀α
are given in the following table:

R BN CN DN AN E6 E7 E8 F4

−γ2 2(2N − 3) 4(N + 2) 4(N − 2) (N + 1) 24 48 120 15

Remark 2.7.4. (1) A function of the form (2.99) was also considered in [33] for special
value of multiplicities were k(ei) = η, (1 ≤ i ≤ N), k(ei ± ej) = 1, (1 ≤ i < j ≤ N), and
it has been shown that function (2.99) for this case satisfies the WDVV system (2.56) if
and only if

η = −2(N − 2)− γ2

2
, (2.101)

which agrees with the value of γ given above where the values η = 1, 0 in (2.101) are
corresponding to the root systems of type BN , DN respectively.

(2) There seems to be typos in [42] in the values of γ which are given for root sys-
tems AN , E6, E8 as we will clarify that later when we generalize these results to general
multiplicities.

2. Bryan’s and Gholampour’s case
Solutions of WDVV equations of the form (2.99) can also be extracted from the consid-

erations in [11, Section 4], where a family of (Frobenius) algebras for irreducible reduced
root systems R ⊂ V ∗ of rank N with special multiplicities function were considered,
where V is a real N -dimensional vector space. The multiplication ∗ on the tangent space
T(x,y)(V ⊕ U) ∼= V ⊕ U, where dimU = 1, x ∈ V, y ∈ U was given by the formula

u ∗ v = ⟨u, v⟩E + γ̃−1
∑
β∈R+

cβ
⟨β, β⟩

β(u)β(v) coth β(x)β, (u, v ∈ V ), (2.102)

where γ̃ = γ̃(R,c) ∈ C, and E ∈ U is the identity of ∗. It was shown in [11] that this
multiplication is associative and satisfies the Frobenius condition. This gives rise to exis-
tence of solutions of WDVV equations corresponding to each root system. The constant
γ̃ = γ̃(R,c) was expressed in [11] in terms of the highest root θ of the root system R.

Proposition 2.7.5. [11] The function

F̃ (x, y) =
γ̃

6
y3 +

γ̃

2
y⟨x, x⟩+

∑
α∈R+

cα
⟨α, α⟩

f̃(α(x)) (2.103)
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corresponding to the multiplication (2.102) solves WDVV equations (2.56) and the value
of γ̃(R,c) in the solution (2.103) in the case of constant multiplicity function cα = t is given
by

γ̃2(R,c) = −t
2

8

(
⟨θ, θ⟩+

N∑
i=1

n2
i ⟨αi, αi⟩

)
.

3. Shen’s result
Note that in [47, 48] a prepotential function for a Frobenius structure was considered,

this prepotential gives a solution of WDVV equations for root systems R for arbitrary
(not simply-laced) root system R with invariant multiplicity. Let us recall that solution
which is given by

Φ = −y
3

6
+
µ

2
⟨x, x⟩y + 2µ

∑
α∈R+

kα
⟨α, α⟩

q(α(x)), (2.104)

for some scalar µ ∈ R, where kα is a W-invariant multiplicity function and the function q
satisfies q′′′(z) = −1

2
coth( z

2
). For each kα a product structure was defined on the tangent

bundle T (V ⊕U) which endows each fiber of T (V ⊕U) with Frobenius algebra structure.
Let us recall this algebra structure.

Let E = ∂xN+1
∈ Γ(T (V ⊕ U)). Consider two vector fields X̃ = X + λ1E, Ỹ =

Y + λ2E ∈ Γ(T (V ⊕ U)), where X, Y ∈ V, λ1, λ2 ∈ C. The product ◦ was defined by the
formula

X̃ ◦ Ỹ = −
∑
α∈R+

kα
⟨α, α⟩

coth(
z

2
)α(X)α(Y )α− µ⟨X, Y ⟩E + λ2X + λ1Y + λ1λ2E.

In this algebra E plays the role of the identity of the product. Then a family of the
corresponding Dubrovin connections ∇̃k was considered in which its flatness conditions
determine the value of µ for each root system. Note that the root system AN was treated
differently from our configuration’s form of type AN root system.

Proposition 2.7.6. [47] Function (2.104) solves WDVV equations (2.56) and the values
of µ in solution (2.104) for each root system are given in the following table:

R BN CN DN G2 E6 E7 E8 F4

µ q(p + (N − 2)q) p(2q + (N − 2)p) (N − 2)p2 3
4
(p + q)(p + 3q) 6p2 12p2 30p2 (p + q)(p + 2q)

Here p is the multiplicity of short roots and q is the multiplicity of long roots in a
reduced not simply-laced root system R.
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2.8 Generalized Coxeter number

In this section let V ∼= RN be a real Euclidean space of dimension N. Let R be a reduced
irreducible root system of rank N with the corresponding finite irreducible Coxeter group
W acting on the vector space V by compositions of reflections. Consider a system of
simple roots ∆ = {α1, . . . , αN} with the corresponding simple reflections s1, . . . , sN . Then
the product of all simple reflections s1 . . . sN ∈ W is called a Coxeter element. It is clear
that it depends on the choice of ∆, but the following proposition holds.

Proposition 2.8.1. [34] All Coxeter elements are conjugate in W .

Since all Coxeter elements are conjugate, they have the same order h, which is called
the Coxeter number of W .

In fact there are a few different ways to define the Coxeter number h of an irreducible
root system. In addition to the previous definition of the Coxeter number we also have
the following equivalent definitions:

• The Coxeter number h = 2m
N

, where m is the number of reflections in W . In the
crystallographic case, 2m+N is the dimension of the corresponding semi-simple Lie
algebra.

• If the highest root is
∑N

i=1miαi for simple roots αi, then the Coxeter number h =

1 +
∑N

i=1mi.

• The Coxeter number is the highest degree of a fundamental invariant of the Coxeter
group acting on polynomials (see Section 2.4).

A remarkable property that the Coxeter number admits, is that it can be written as
the factor of proportionality of two W-invariant bilinear forms. The statement is given in
the following proposition.

Proposition 2.8.2. [6] Let ⟨·, ·⟩ be the standard inner product on V which is assumed to
be non-degenerate and W-invariant. Then

∑
α∈R

⟨α, x⟩2

⟨α, α⟩
= h⟨x, x⟩ (2.105)

for all x ∈ V.

In fact relation (2.105) holds for any symmetric, non-degenerate and W-invariant bilin-
ear form on V as such a form is unique up to proportionality for irreducible group W . Since
the scalar λ in Theorem 2.6.21 appears as the coefficient of the proportionality between
two W-invariant bilinear forms G(1)

A and G(2)
A on Λ2V then for the case when A = R be a

root system the scalar λ can be thought as a generalized version of the Coxeter number h
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in this sense for the exterior square Λ2V of the reflection representation W of a Coxeter
group.



Chapter 3

Operations with trigonometric
∨-systems and solutions

In this chapter we consider the operation of taking subsystems of a trigonometric ∨-
system and the operation of restriction of a solution of WDVV equations. We prove
statements analogous to the results for the rational case. We also find trigonometric
solutions of WDVV equations corresponding to root systems and their restrictions as
well as some other non-Coxeter examples. We also generalize some results found in the
literature corresponding to trigonometric solutions of WDVV equations.

3.1 Subsystems of trigonometric ∨-systems

In this section we consider subsystems of trigonometric ∨-systems and show that they are
also trigonometric ∨-systems. An analogous statement for the rational case was shown in
[26] (see also [24]).

A subset B ⊂ A is called a subsystem if B = A∩W for some linear subspace W ⊂ V ∗.

The subsystem B is called reducible if B is a disjoint union of two non-empty subsystems,
and it is called irreducible otherwise. Consider the following bilinear form on V associated
with a subsystem B:

GB(u, v) :=
∑
β∈B

cββ(u)β(v), u, v ∈ V.

The subsystem B is called isotropic if the restriction GB|W∨ of the form GB onto the
subspace W∨ ⊂ V, where W = ⟨B⟩, is degenerate and B is called non-isotropic otherwise.

Remark 3.1.1. Suppose that B is reducible so that W = W1 ⊕W2 for some subspaces
W1,W2 ⊂ W where ⟨B⟩ = W and B ⊂ W1 ∪W2. Then one can show that GA(v1, v2) =

GB(v1, v2) = 0 for any v1 ∈ W∨
1 , v2 ∈ W∨

2 (see Corollary 3.1.7 below).

Let us prove some lemmas which will be useful for the proof of the main theorem of

67
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this section.

Lemma 3.1.2. Let A be a trigonometric ∨-system. Let B = A ∩W be a subsystem of
A for some linear subspace W ⊂ V ∗ such that W = ⟨B⟩. Consider the linear operator
M : V → W∨ given by

M :=
∑
β∈B

cββ ⊗ β∨, (3.1)

that is, M(v) =
∑
β∈B

cββ(v)β
∨, for any v ∈ V. Then

1. For any u, v ∈ V we have GA(u,M(v)) = GB(u, v).

2. For any α ∈ B, α∨ is an eigenvector for M.

3. The space W∨ can be decomposed as a direct sum

W∨ = Uλ1 ⊕ Uλ2 ⊕ · · · ⊕ Uλk
, k ∈ N, (3.2)

where λi ∈ C are distinct, and the restriction M |Uλi
= λiI, where I is the identity

operator.

Proof. Let u, v ∈ V. We have

GA(u,M(v)) =
∑
β∈B

cββ(v)GA(u, β
∨) =

∑
β∈B

cββ(u)β(v) = GB(u, v),

which proves the first statement.
Let us consider a two-dimensional plane π ⊂ V ∗ such that π contains α and another

covector from B which is not collinear with α. Let us sum up ∨-conditions (2.93) over
α-series which belong to the plane π. We get that∑

β∈π∩A

cβα(β
∨)α ∧ β =

∑
β∈π∩B

cββ(α
∨)α ∧ β = 0,

hence ∑
β∈π∩A

cββ(α
∨)β∨ = λπα

∨ (3.3)

for some λπ ∈ C. Let us now sum up relation (3.3) over all such two-dimensional planes π
which contain α and another non-collinear covector from B. It follows that M(α∨) = λα∨,

for some λ ∈ C, hence property (2) holds.
The set of vectors {α∨ : α ∈ B} spans W∨ since B spans W . As α∨ is an eigenvector

for M |W∨ for any α ∈ B we get that M |W∨ is diagonalizable, and W∨ has the eigenspace
decomposition as stated in (3.2).
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Lemma 3.1.3. Let A and B be as stated in Lemma 3.1.2. Suppose that B is non-isotropic.
Then

GB|Uλi
×V = λiGA|Uλi

×V , (3.4)

where λi ̸= 0 for all i = 1, . . . , k.

Proof. Let u ∈ V and v ∈ Uλi
for some i, where Uλi

is given by (3.2). Then by Lemma
3.1.2 we have

GA(u,M(v)) = λiGA(u, v) = GB(u, v).

Hence we have the required relation (3.4). Note that λi ̸= 0 for all i as otherwise
GB|Uλi

×V = 0 which contradicts the non-isotropicity of B.

Assume that the subsystem B = A∩W , W = ⟨B⟩, is non-isotropic so that the bilinear
form GB|W∨ is nondegenerate. Then it establishes an isomorphism ϕB : W

∨ → (W∨)∗. For
any β ∈ B, let us denote ϕ−1

B (β|W∨) by β∨B . The following lemma relates vectors β∨B and
β∨.

Lemma 3.1.4. In the assumptions and notations of Lemmas 3.1.2 and 3.1.3 let β ∈ B.
Let i ∈ N be such that β∨ ∈ Uλi

. Then β∨B = λ−1
i β∨.

Proof. Let u ∈ W∨. By Lemma 3.1.3 we have GB(β
∨, u) = λiβ(u). By the definition of

β∨B we have GB(β
∨B , u) = β(u). It follows that GB(λ

−1
i β∨ − β∨B , u) = 0, which implies

the statement since the form GB is non-degenerate on W∨.

Lemma 3.1.5. Let A and B be as stated in Lemma 3.1.2. Let α ∈ B and let i ∈ N be
such that α∨ ∈ Uλi

. Consider an α-series ΓB
α in B and let β ∈ ΓB

α. Then ΓB
α ⊂ Uλi

or
ΓB
α ⊆ {±β}.

Proof. Suppose firstly that β∨ ∈ Uλi
. Since any covector γ ∈ ΓB

α is a linear combination of
β and α, we get that γ ∈ Uλi

as required.
Suppose now that β∨ /∈ Uλi

. Then β∨ ∈ Uλj
for some j ̸= i. Since we have a direct sum

decomposition (3.2) it follows that ΓB
α ⊆ {±β}.

Lemma 3.1.6. Let A ⊂ V ∗ be a finite collection of covectors, and let B ⊂ A be a
subsystem. Let α, β ∈ B. Let ΓA

α ,Γ
B
α be the α-series in A and B respectively containing β.

Then the set ΓA
α coincides with the set ΓB

α.

Proof. Let γ ∈ ΓA
α . It follows that γ ∈ B. By maximality of ΓB

α, it follows that γ ∈ ΓB
α.

Hence ΓA
α ⊂ ΓB

α. The opposite inclusion is obvious.

Corollary 3.1.7. The statement of Remark 3.1.1 holds.

Proof. Let β1 ∈ B ∩W1, β2 ∈ B ∩W2. Consider a β1-series containing β2. It is easy to see
that this series contains no other elements. Hence GA(β

∨
1 , β

∨
2 ) = GB(β

∨
1 , β

∨
2 ) = 0.
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Proposition 3.1.8. In the assumptions and notations of Lemma 3.1.2 we have GB(u, v) =

0 for any u ∈ Uλi
and v ∈ Uλj

such that i ̸= j.

Proof. From Lemma 3.1.3 we have GB(u, v) = λiGA(u, v) = λjGA(u, v). HenceGA(u, v) =

0, which implies the statement.

Now we present the main theorem of this section.

Theorem 3.1.9. Any non-isotropic subsystem of a trigonometric ∨-system is also a
trigonometric ∨-system.

Proof. Let A be a trigonometric ∨-system and let B be its non-isotropic subsystem. Let
α ∈ B. Then α∨ ∈ Uλi

in the decomposition (3.2) for some i. Consider an α-series ΓB
α in

B. Let β ∈ ΓB
α. Then by Lemma 3.1.5 we have the following two cases.

(i) Suppose β∨ ∈ Uλi
. Then ΓB

α ⊂ Uλi
and by Lemmas 3.1.3, 3.1.4 we have

GB(α
∨B , β∨B) = λ−2

i GB(α
∨, β∨) = λ−1

i GA(α
∨, β∨).

Hence we have∑
β∈ΓB

α

cβGB(α
∨B , β∨B)α ∧ β = λ−1

i

∑
β∈ΓB

α

cβGA(α
∨, β∨)α ∧ β = 0

by Lemma 3.1.2 and since A is a trigonometric ∨-system. Hence the ∨-condition (2.93)
for B holds.

(ii) Suppose β∨ ∈ Uλj, where j ̸= i. Then GB(α
∨B , β∨B) = λ−1

i λ−1
j GB(α

∨, β∨) = 0, by
Proposition 3.1.8, and ΓB

α ⊆ {±β} by Lemma 3.1.5. Hence the ∨-condition (2.93) for B
holds.

3.2 Restriction of trigonometric solutions of WDVV equa-

tions

In this section we consider the restriction operation for the trigonometric solutions of
WDVV equations and show that this gives new solutions of WDVV equations. An analo-
gous statement in the rational case was established in [25].

Let
B = A ∩W (3.5)

be a subsystem of A for some linear subspace W = ⟨B⟩ ⊂ V ∗. Define

WB := {x ∈ V : β(x) = 0 ∀β ∈ B}. (3.6)
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Let us denote the restriction α|WB of a covector α ∈ V ∗ as πB(α), then

πB(A) = {πB(α) : πB(α) ̸= 0, α ∈ A \ B}

is the set of non-zero restrictions of covectors α ∈ A on WB. Define MB = WB \
⋃

α∈A\B Πα.

Consider a point x0 ∈ MB and tangent vectors u0, v0 ∈ Tx0MB. We extend vectors u0
and v0 to two local analytic vector fields u(x), v(x) in the neighbourhood U of x0 that are
tangent to the subspace WB at any point x ∈ WB∩U such that u0 = u(x0) and v0 = v(x0).
Consider the multiplication ∗ given by (2.63). We want to study the limit of u(x) ∗ v(x)
when x tends to x0. The limit may have singularities at x ∈ WB as cotα(x) with α ∈ B is
not defined for such x. Also we note that outside WB we have a well-defined multiplication
u(x) ∗ v(x).

The proof of the next lemma is similar to the proof of [25, Lemma 1] in the rational
case (see also [2]).

Lemma 3.2.1. The limit of the product u(x)∗v(x) exists when vector x tends to x0 ∈MB

and it satisfies

u0 ∗ v0 =
∑

α∈A\B

cαα(u0)α(v0)(
λ

2
cotα(x0)α

∨ + E). (3.7)

In particular, the product u0 ∗ v0 is determined by vectors u0 and v0 only.

Proof. We are going firstly to analyse the singular part of u(x) ∗ v(x) near a generic point
on the hyperplane Πβ = {x ∈ V : β(x) = 0}, where β ∈ B. We choose a basis {f1, ..., fN−1}
for Πβ and we extend this basis to the basis {f1, ..., fN−1, fN} for V such that β(fN) = 1.

Any x ∈ V can be represented as x =
∑N−1

i=1 sifi+tfN , where (s1, ..., sN−1, t) = (s, t) ∈ CN

and t = β(x). The vector fields u(x), v(x) can be represented as

u(x) = u(s, t) =
N−1∑
i=1

ζi(s, t)fi + a(s, t)fN ,

v(x) = v(s, t) =
N−1∑
i=1

ηi(s, t)fi + b(s, t)fN ,

where ζi, ηi, a, b are some analytic functions. Note that β(fi) = 0 for all i = 1, ..., N − 1

since fi ∈ Πβ.

Also since u(x0), v(x0) are assumed to be tangential to WB then for x0 with coordinates
(s0, 0), where s0 = (s01, ..., s

0
N−1), we must have β(u(x0)) = β(v(x0)) = 0. Hence we have

0 = β(u(x0)) =
N−1∑
i=1

ζi(s
0, 0)β(fi) + a(s0, 0)β(fN) = a(s0, 0)β(fN) = a(s0, 0).
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Similarly we have that b(s0, 0) = 0. Now we have

lim
t→0

β(u)β(v) cot β(x)β∨ = lim
t→0

a(s, t)b(s, t)β∨ cot t = lim
t→0

a(s, t)b(s, t)β∨

t
. (3.8)

As the coefficients a(s, t) and b(s, t) are analytic then for s = s0 we have

a(s0, t) = tã(t),

b(s0, t) = tb̃(t),

where ã(t), b̃(t) are some analytic functions. Hence (3.8) implies that

lim
t→0

β(u)β(v) cot β(x)β∨ = lim
t→0

tã(t)b̃(t)β∨ = 0.

This means that u(x) ∗ v(x) is non-singular at β(x) = 0 and that β term vanishes when
we calculate the product at Πβ. Lemma follows as β is an arbitrary element from B and
WB =

⋂
γ∈B

Πγ.

Now for the subsystem B ⊂ A given by (3.5) let

S = {α1, . . . , αk} ⊂ B, (3.9)

where k = dimW, be a basis of W. The following lemma shows that multiplication (3.7)
is closed on the tangent space T∗(MB ⊕ U).

Lemma 3.2.2. Let B ⊂ A be a subsystem. Assume that prepotential (2.55) correspond-
ing to a configuration (A, c) satisfies WDVV equations (2.56). Suppose that Cα0

δα
̸= 0

for any α ∈ S, α0 ∈ δα. If u, v ∈ T(x,y)(MB ⊕ U), where x ∈ WB, y ∈ U, then one has
u ∗ v ∈ T(x,y)(MB ⊕ U), that is

∗ : T(x,y)(MB ⊕ U)× T(x,y)(MB ⊕ U) → T(x,y)(MB ⊕ U),

where multiplication ∗ is given by (3.7).

Proof. Suppose that the subspace WB given by (3.6) has codimension 1 in V, and let α ∈ S.

We have B = δα. Let x ∈ MB ⊂ Πα. Let u, v ∈ T(x,y)(Πα ⊕ U). Then u and v can be
written as u = auu + buE, v = avv + bvE, where u, v ∈ Πα, and au, bu, av, bv ∈ C. By
Proposition 2.6.19 we have∑

β∈A\δα

cβGA(α
∨, β∨) cot β(x)α(z)β(u)α(w)β(v) = 0 (3.10)

for any z, w ∈ V. By taking z, w /∈ Πα we derive from (3.10) that
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∑
β∈A\B

cβα(β
∨)β(u)β(v) cot β(x) = 0,

which implies the statement by Lemma 3.2.1.
Let us now consider WB of codimension 2. Let S = {α1, α2}. By the above arguments

u ∗ v ∈ T(x,y)(Παi
⊕ U)

if x ∈ Παi
is generic and u, v ∈ T(x,y)(Παi

⊕ U), (i = 1, 2). By Lemma 3.2.1, u ∗ v exists
for x ∈ MB and hence u ∗ v ∈ T(x,y)

(
(Πα1 ∩ Πα2)⊕ U

)
. This proves the statement for the

case when WB has codimension 2. General B is dealt with similarly.

Let us assume that GA|WB is non-degenerate. Then we have the orthogonal decompo-
sition

V = WB ⊕W⊥
B .

Vector α∨ ∈ V can be represented as

α∨ = α̃∨ + w, (3.11)

where α̃∨ ∈ WB and w ∈ W⊥
B . By Lemmas 3.2.1, 3.2.2 we have associative product

u ∗ v =
∑

α∈A\B

cαα(u)α(v)(
λ

2
cotα(x0)α̃∨ + E),

where x0 ∈MB, u, v ∈ WB.

For any γ ∈ W ∗
B we define γ∨WB ∈ WB by GA(γ

∨WB , v) = γ(v), ∀v ∈ WB.

Lemma 3.2.3. Suppose that the restriction GA|WB is non-degenerate. Then α̃∨ = πB(α)
∨WB

for any α ∈ V ∗.

Proof. From decomposition (3.11) we have

α(v) = GA(α
∨, v) = GA(α̃∨ + w, v) = GA(α̃∨, v)

for any v ∈ WB. It follows that GA(πB(α)
∨WB − α̃∨, v) = 0, which implies the statement

as GA|WB is non-degenerate.

Let us choose a basis in the space WB ⊕ U such that f1, . . . , fn is a basis in WB, n =

dimWB, and fn+1 is the basis vector in U, and let ξ1, . . . , ξn+1 be the corresponding coor-
dinates. We represent vectors ξ ∈ WB, y ∈ U as ξ = (ξ1, ..., ξn) and y = ξn+1. The WDVV
equations for a function F : WB ⊕ U → C is the following system of partial differential
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equations:
FiF

−1
n+1Fj = FjF

−1
n+1Fi, i, j = 1, ..., n, (3.12)

where Fi is (n + 1) × (n + 1) matrix with entries (Fi)pq = ∂3F
∂ξi∂ξp∂ξq

(p, q = 1, . . . , n + 1).
The previous considerations lead to the following theorem.

Theorem 3.2.4. Let B ⊂ A be a subsystem, and let S be as defined in (3.9). Assume
that prepotential (2.55) satisfies WDVV equations (2.56). Suppose that Cα0

δα
̸= 0 for any

α ∈ S, α0 ∈ δα. Then the prepotential

FB = FB(ξ, y) =
1

3
y3 +

∑
α∈A\B

cαα(ξ)
2y + λ

∑
α∈A\B

cαf(α(ξ)), ξ ∈ WB, y ∈ U ∼= C, (3.13)

where α = πB(α), satisfies the WDVV equations (3.12). The corresponding associative
multiplication has the form

u ∗ v =
∑

α∈A\B

cαα(u)α(v)(
λ

2
cotα(ξ)α∨WB + E), (3.14)

where ξ ∈MB, u, v ∈ T(ξ,y)MB.

Proof. It follows by Lemmas 2.6.2, 3.2.1–3.2.3, that multiplication (3.14) is associative.
The corresponding prepotential has the form (4.44) and it satisfies WDVV equations (3.12)
by Lemma 2.6.2.

In general a restriction of a root system is not a root system, so we get new solutions
of WDVV equations by applying Theorem 3.2.4 in this case. In Sections 3.3, 3.4 and 3.6
we consider such solutions in more details.

3.3 BCN type configurations

In this section we discuss a family of configurations of BCN type and show that it gives
trigonometric solutions of the WDVV equations. Let the set A = BC+

N consist of the
following covectors:

ei, 2ei, (1 ≤ i ≤ N), ei ± ej, (1 ≤ i < j ≤ N).

Let us define the multiplicity function c : BC+
N → C by c(ei) = r, c(2ei) = s, c(ei±ej) = q,

where r, s, q ∈ C. We will denote the configuration (BC+
N , c) as BC+

N(r, s, q). It is easy to
check that

GA(u, v) = h⟨u, v⟩, u, v ∈ V, (3.15)
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where
h = r + 4s+ 2q(N − 1) (3.16)

is assumed to be non-zero, and ⟨u, v⟩ =
∑N

i=1 uivi is the standard inner product for
u = (u1, . . . , uN), v = (v1, . . . , vN). For any α, β ∈ V ∗, (α ∧ β)2 : V ⊗ V → C denotes the
square of the covector α ∧ β ∈ (V ⊗ V )∗.

Lemma 3.3.1. The following two identities hold:∑
1≤i<j<k≤N

(
(ei ∧ ej)2 + (ei ∧ ek)2 + (ej ∧ ek)2

)
= (N − 2)

∑
1≤i<j≤N

(ei ∧ ej)2 (3.17)

and ∑
1≤i<j<k<l≤N

(
(ei ∧ ej)2 + (ei ∧ ek)2 + (ei ∧ el)2 + (ej ∧ ek)2 + (ej ∧ el)2 + (ek ∧ el)2

)
=

1

2
(N − 2)(N − 3)

∑
1≤i<j≤N

(ei ∧ ej)2. (3.18)

Proof. Note that ∑
1≤i<j<k≤N

(ei ∧ ej)2 =
∑

1≤i<j≤N

(N − j)(ei ∧ ej)2, (3.19)

∑
1≤i<j<k≤N

(ei ∧ ek)2 =
∑

1≤i<k≤N

(k − i− 1)(ei ∧ ek)2, (3.20)

and ∑
1≤i<j<k≤N

(ej ∧ ek)2 =
∑

1≤j<k≤N

(j − 1)(ej ∧ ek)2. (3.21)

By adding together relations (3.19)–(3.21) we get identity (3.17).
We also have ∑

1≤i<j<k<l≤N

(ei ∧ ej)2 =
∑

1≤i<j≤N

1

2
(N − j − 1)(N − j)(ei ∧ ej)2, (3.22)

∑
1≤i<j<k<l≤N

(ei ∧ ek)2 =
∑

1≤i<k≤N

(N − k)(k − i− 1)(ei ∧ ek)2, (3.23)

∑
1≤i<j<k<l≤N

(ei ∧ el)2 =
∑

1≤i<l≤N

1

2
(l − i− 2)(l − i− 1)(ei ∧ el)2, (3.24)

∑
1≤i<j<k<l≤N

(ej ∧ ek)2 =
∑

1≤i<j≤N

(N − j)(i− 1)(ei ∧ ej)2, (3.25)

∑
1≤i<j<k<l≤N

(ej ∧ el)2 =
∑

1≤j<l≤N

(l − j − 1)(j − 1)(ej ∧ el)2, (3.26)
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and ∑
1≤i<j<k<l≤N

(ek ∧ el)2 =
∑

1≤k<l≤N

1

2
(k − 2)(k − 1)(ek ∧ el)2. (3.27)

Then by adding together identities (3.22)–(3.27) we obtain identity (3.18).

Proposition 3.3.2. The quadratic forms G(1)
A , G

(2)
A corresponding to the bilinear forms

G
(1)
A (·, ·), G(2)

A (·, ·) given by formulas (2.84), (2.94) respectively have the following forms:

G
(1)
A = 2h2

∑
1≤i<j≤N

(ei ∧ ej)2, (3.28)

and
G

(2)
A = 4q

(
r + 8s+ 2(N − 2)q

)
h−1

∑
1≤i<j≤N

(ei ∧ ej)2, (3.29)

where h is given by (3.16).

Proof. Let us first prove identity (3.28). Note that G(1)
A is a quadratic polynomial in r, s

and q. The terms containing r2 add up to

2r2
∑

1≤i<j≤N

(ei ∧ ej)2. (3.30)

Similarly, the terms containing s2 add up to

32s2
∑

1≤i<j≤N

(ei ∧ ej)2. (3.31)

The terms containing rs add up to

2rs
∑

1≤i<j≤N

(
(ei ∧ 2ej)2 + (2ei ∧ ej)2

)
= 16rs

∑
1≤i<j≤N

(ei ∧ ej)2. (3.32)
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Now the terms containing rq have the form

2rq
∑

1≤i<j≤N

((
ei ∧ (ei + ej

))2
+
(
ei ∧ (ei − ej

))2
+
(
ej ∧ (ei + ej)

)2
+
(
ej ∧ (ei − ej)

)2)
+ 2rq

∑
1≤i<j<k≤N

((
ei ∧ (ej + ek

))2
+
(
ei ∧ (ej − ek

))2
+
(
ek ∧ (ei + ej)

)2
+
(
ek ∧ (ei − ej)

)2
+
(
ej ∧ (ei + ek)

)2
+
(
ej ∧ (ei − ek)

)2)
= 8rq

∑
1≤i<j≤N

(ei ∧ ej)2 + 2rq
∑

1≤i<j<k≤N

((
ei ∧ ej + ei ∧ ek

)2

+

(
ei ∧ ej − ei ∧ ek

)2

+

(
ei ∧ ek + ej ∧ ek

)2

+

(
ei ∧ ek − ej ∧ ek

)2

+

(
ei ∧ ej − ej ∧ ek

)2

+

(
ei ∧ ej + ej ∧ ek

)2
)

= 8rq
∑

1≤i<j≤N

(ei ∧ ej)2 + 8rq
∑

1≤i<j<k≤N

(
(ei ∧ ej)2 + (ei ∧ ek)2 + (ej ∧ ek)2

)
= 8rq(N − 1)

∑
1≤i<j≤N

(ei ∧ ej)2 (3.33)

by Lemma 3.3.1. Similarly, the terms containing sq add up to

32sq(N − 1)
∑

1≤i<j≤N

(ei ∧ ej)2. (3.34)

The terms containing q2 have the form

2q2
∑

1≤i<j≤N

(
(ei + ej) ∧ (ei − ej)2

)
+ 2q2

∑
1≤i<j<k≤N

((
(ei + ej) ∧ (ei + ek)

)2
+
(
(ei + ej) ∧ (ei − ek)

)2
+
(
(ei − ej) ∧ (ei + ek)

)2
+
(
(ei − ej) ∧ (ei − ek)

)2
+
(
(ei + ej) ∧ (ej + ek)

)2
+
(
(ei + ej) ∧ (ej − ek)

)2
+
(
(ei − ej) ∧ (ej + ek)

)2
+
(
(ei − ej) ∧ (ej − ek)

)2
+
(
(ei + ek) ∧ (ej + ek)

)2
+
(
(ei + ek) ∧ (ej − ek)

)2
+
(
(ei − ek) ∧ (ej + ek

)2
+
(
(ei − ek) ∧ (ej − ek

)2)
+ 2q2

∑
1≤i<j<k<l≤N

((
(ei + ej) ∧ (ek + el)

)2
+
(
(ei + ej) ∧ (ek − el)

)2
+
(
(ei − ej) ∧ (ek + el)

)2
+
(
(ei − ej) ∧ (ek − el)

)2
+
(
(ei + ek) ∧ (ej + el)

)2
+
(
(ei + ek) ∧ (ej − el)

)2
+
(
(ei − ek) ∧ (ej + el)

)2
+
(
(ei − ek) ∧ (ej − el)

)2
+
(
(ei + el) ∧ (ej + ek)

)2
+
(
(ei + el) ∧ (ej − ek)

)2
+
(
(ei − el) ∧ (ej + ek)

)2
+
(
(ei − el) ∧ (ej − ek)

)2)
. (3.35)
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Expression (3.35) is equal to

8q2
∑

1≤i<j≤N

(ei ∧ ej)2 + 24q2
∑

1≤i<j<k≤N

(
(ei ∧ ej)2 + (ei ∧ ek)2 + (ej ∧ ek)2

)
+ 16q2

∑
1≤i<j<k<l≤N

(
(ei ∧ ej)2 + (ei ∧ ek)2 + (ei ∧ el)2 + (ej ∧ ek)2 + (ej ∧ el)2 + (ek ∧ el)2

)
= 8q2(N − 1)2

∑
1≤i<j≤N

(ei ∧ ej)2 (3.36)

by Lemma 3.3.1. By adding together expressions (3.30)–(3.34) and (3.36) we get identity
(3.28).

Let us now prove identity (3.29). Note that hG(2)
A is a quadratic polynomial in r, s and

q and that terms containing r2, rs and s2 all vanish. Terms containing rq in hG
(2)
A are

given by

2rq
∑

1≤i<j≤N

(
ei(ei + ej)∨

(
ei ∧ (ei + ej)

)2
+ ei(ei − ej)∨

(
ei ∧ (ei − ej)

)2
+ ej(ei + ej)∨

(
ej ∧ (ei + ej)

)2
+ ej(ei − ej)∨

(
ej ∧ (ei − ej)

)2)
= 4rq

∑
1≤i<j≤N

(ei ∧ ej)2.

(3.37)

Similarly, the terms containing sq in hG(2)
A add up to

32sq
∑

1≤i<j≤N

(ei ∧ ej)2. (3.38)

Finally, the terms containing q2 in hG(2)
A are given by

2q2
∑

1≤i<j<k≤N

(
(ei + ej)

(
(ei + ek)∨

)(
(ei + ej) ∧ (ei + ek

))2
+ (ei + ej)

(
(ei − ek)∨

)(
(ei + ej) ∧ (ei − ek

))2
+ (ei − ej)

(
(ei + ek)∨

)(
(ei − ej) ∧ (ei + ek

))2
+ (ei − ej)

(
(ei − ek)∨

)(
(ei − ej) ∧ (ei − ek

))2
+ (ei + ej)

(
(ej + ek)∨

)(
(ei + ej) ∧ (ej + ek

))2
+ (ei + ej)

(
(ej − ek)∨

)(
(ei + ej) ∧ (ej − ek

))2
+ (ei − ej)

(
(ej + ek)∨

)(
(ei − ej) ∧ (ej + ek

))2
+ (ei − ej)

(
(ej − ek)∨

)(
(ei − ej) ∧ (ej − ek

))2
+ (ei + ek)

(
(ej + ek)∨

)(
(ei + ek) ∧ (ej + ek

))2
+ (ei + ek)

(
(ej − ek)∨

)(
(ei + ek) ∧ (ej − ek

))2
+ (ei − ek)

(
(ej + ek)∨

)(
(ei − ek) ∧ (ej + ek

))2
+ (ei − ek)

(
(ej − ek)∨

)(
(ei − ek) ∧ (ej − ek

))2)
. (3.39)
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Expression (3.39) is equal to

2q2
∑

1≤i<j<k≤N

((
ei ∧ ek − ei ∧ ej + ej ∧ ek

)2
+
(
ei ∧ ek + ei ∧ ej − ej ∧ ek

)2
+
(
ei ∧ ek − ei ∧ ej − ej ∧ ek

)2
+
(
ei ∧ ej + ei ∧ ek + ej ∧ ek

)2)
= 8q2

∑
1≤i<j<k≤N

(
(ei ∧ ej)2 + (ei ∧ ek)2 + (ej ∧ ek)2

)
= 8q2(N − 2)

∑
1≤i<j≤N

(ei ∧ ej)2

(3.40)

by Lemma 3.3.1. By adding together expressions (3.37), (3.38) and (3.40) we get identity
(3.29).

The previous proposition allows us to prove the following theorem.

Theorem 3.3.3. Prepotential (2.55) for the configuration (A, c) = BC+
N(r, s, q) satisfies

WDVV equations (2.56) with

λ =
( 2h3

q
(
r + 8s+ 2(N − 2)q

))1/2, (3.41)

where h is given by (3.16), provided that q(r + 8s+ 2(N − 2)q) ̸= 0.

Proof. Firstly, BC+
N(r, s, q) is a trigonometric ∨-system by Proposition 2.7.2. Secondly,

by Proposition 3.3.2 we have that G(1)
A − λ2

4
G

(2)
A = 0 if λ is given by (3.41). The statement

follows by Theorem 2.6.21.

Theorem 3.3.3 gives a generalization of the results in [33], [42], [11] and [47], where, in
particular, solutions of the WDVV equations for the root systems DN , BN and CN were
obtained (see Section 2.7). Following [33], [42] consider the function F̃ of N + 1 variables
(x1, . . . , xN , y) of the form

F̃ (x, y) =
γ

6
y3 +

γ

2
y⟨x, x⟩+

∑
α∈R+

cαf̃(α(x)), (3.42)

where R+ is a positive half of the root system R, multiplicities cα are invariant under the
Weyl group, γ ∈ C and function f̃ given by (2.100). Note that f̃(z) = −f(−iz).

Let us explain that our solution (2.55) for the configuration BC+
N(r, s, q) leads to a

solution of the form (3.42).

Proposition 3.3.4. Function F̃ given by (3.42) with R+ = BC+
N satisfies WDVV equa-

tions (2.56) if
γ2 = −2q(r + 8s+ 2(N − 2)q). (3.43)
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Proof. By formula (3.15) solution F given by (2.55) for A = BC+
N has the form

F (x̃, ỹ) =
1

3
ỹ3 + hỹ

N∑
i=1

x̃2i + λ
∑

α∈BC+
N

cαf(α(x̃)), (3.44)

where we redenoted variables (x, y) by (x̃, ỹ). By changing variables x̃ = −ix, ỹ = γλ
2h
y

and dividing F by −λ solution (3.44) takes the form (3.42) provided that γ2λ2 = −4h3

which is satisfied for γ given by (3.43).

Let n ∈ N and let m = (m1, . . . ,mn) ∈ Nn be such that

n∑
i=1

mi = N. (3.45)

Let us consider the subsystem B ⊂ A = BC+
N given by

B = {e
∑i−1

j=1 mj+k − e
∑i−1

j=1 mj+l, 1 ≤ k < l ≤ mi, i = 1, . . . , n}.

Let us also consider the corresponding subspace WB = {x ∈ V : β(x) = 0,∀β ∈ B}. It can
be given explicitly by the equations

x1 = · · · = xm1 = ξ1,

xm1+1 = · · · = xm1+m2 = ξ2,

...

x∑n−1
i=1 mi+1 = · · · = xN = ξn,

where ξ1, . . . , ξn are coordinates on WB. Let us now restrict the configuration BC+
N(r, s, q)

to the subspaceWB. That is we consider non-zero restricted covectors α = πB(α), α ∈ BC+
N

with multiplicities cα, and we add up multiplicities if the same covector on WB is obtained
a few times. Let us denote the resulting configuration as BCn(q, r, s;m). It is easy to see
that it consists of covectors

f i, with multiplicity rmi, 1 ≤ i ≤ n,

2f i, with multiplicity smi +
1

2
qmi(mi − 1), 1 ≤ i ≤ n,

f i ± f j, with multiplicity qmimj, 1 ≤ i < j ≤ n,

where f 1, . . . , fn is the basis in W ∗
B corresponding to coordinates ξ1, . . . , ξn.

As a corollary of Theorem 3.2.4 and Theorem 3.3.3 we get the following result on
(n + 3)-parametric family of solutions of WDVV equations, which can be specialized to
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(n+ 1)-parametric family of solutions from [43].

Theorem 3.3.5. Let ξ = (ξ1, . . . , ξn) ∈ WB, y ∈ U ∼= C. Assume that parameters r, q, s
and m satisfy the relation r + 4s+ 2q(mi − 1) ̸= 0 for any 1 ≤ i ≤ n. Then function

FB(ξ, y) =
1

3
y3 +

(
r + 4s+ 2q(N − 1)

)
y

n∑
i=1

miξ
2
i + λr

n∑
i=1

mif(ξi)

+ λ

n∑
i=1

(
smi +

1

2
qmi(mi − 1)

)
f(2ξi) + λq

n∑
i<j

mimjf(ξi ± ξj), (3.46)

where N is given by (3.45), satisfies the WDVV equations (3.12) if λ =
(

2h3

q
(
r+8s+2(N−2)q

))1/2,
where h is given by (3.16), and

(
r + 8s+ 2(N − 2)q

)
q ̸= 0.

Proof. We only have to check that cubic terms in (3.46) have the required form. For any
ξ ∈ WB we have

∑
α∈BC+

N

cαα(ξ)
2 = r

n∑
i=1

miξ
2
i + 4

n∑
i=1

(
smi +

1

2
qmi(mi − 1)

)
ξ2i

+ 2q
∑

1≤i<j≤n

mimj(ξ
2
i + ξ2j ). (3.47)

Note that

∑
1≤i<j≤n

mimj(ξ
2
i + ξ2j ) =

1

2

n∑
i,j=1

mimj(ξ
2
i + ξ2j )−

n∑
i=1

m2
i ξ

2
i =

n∑
i=1

(N −mi)miξ
2
i

by formula (3.45). Hence (3.47) becomes

∑
α∈BC+

N

cαα(ξ)
2 =

(
r + 4s+ 2q(N − 1)

) n∑
i=1

miξ
2
i

as required.

Solution (3.46) gives a generalization of the results in [43]. Let us recall the following
solution of WDVV equations from that paper. Consider the function ΦBCn of n + 1
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variables (x1, . . . , xn, y) of the form

ΦBCn =
µ2

6
y3 +

µ

2
y

n∑
i=1

εix
2
i +

n∑
i=1

εi(1 + εi)

32

(
Li3(e

4xi) + Li3(e
−4xi)

)
− 2 + µ+

∑n
k=1 εk

8

n∑
i=1

εi

(
Li3(e

2xi) + Li3(e
−2xi)

)
+

1

16

∑
i<j

εiεj

(
Li3(e

2(xi+xj)) + Li3(e
−2(xi+xj)) + Li3(e

2(xi−xj)) + Li3(e
−2(xi−xj))

)
,

(3.48)

where µ ̸= 0, µ, εi ∈ C, i = 1, . . . , n. It is stated in [43] that ΦBCn satisfies WDVV
equations.

Proposition 3.3.6. Assume that µ ̸= −1. Then solution (3.46) for the configuration
BCn(q, r, s;m) reduces to solution (3.48) if one specifies parameters

mi =
2s− q

q
εi, r =

q1/2
(√

2(2 + µ)− 2N(qµ)1/2(1 + µ)1/2
)

(
µ(1 + µ)

)1/2 ,

s =
2qµ(1 + µ) +

(
2qµ(1 + µ)

)1/2
4µ(1 + µ)

, q ∈ C. (3.49)

Proof. First, solution (3.46) has the general formula (where we redenoted the varible ξ by
x̃)

F =
1

3
y3 +

(
r + 4s+ 2q(N − 1)

)
y

n∑
i=1

mix̃
2
i +

λ

2

∑
α∈BCn(q,r,s;m)

cαf(α(x̃)),

which takes the following form after making the change of variable x̃ = −ix

F =
1

3
y3 −

(
r + 4s+ 2q(N − 1)

)
y

n∑
i=1

mix
2
i −

λ

2

∑
α∈BCn(q,r,s;m)

cαf̃(α(x)), (3.50)

where f̃ ′′′
(z) = coth z. Note that

f̃(α(x)) + f̃(−α(x)) = −1

4

(
Li3(e

2α(x)) + Li3(e
−2α(x))

)
.



CHAPTER 3. OPERATIONS WITH TRIGONOMETRIC SOLUTIONS 83

Hence solution (3.50) takes the form

F =
1

3
y3 −

(
r + 4s+ 2q(N − 1)

)
y

n∑
i=1

mix
2
i +

λ

8

n∑
i=1

rmi

(
Li3(e

2xi) + Li3(e
−2xi)

)
+
λ

8

n∑
i=1

(
smi +

1

2
qmi(mi − 1)

)(
Li3(e

4xi) + Li3(e
−4xi)

)
+
λ

8

n∑
i=1

qmimj

(
Li3(e

2(xi+xj)) + Li3(e
−2(xi+xj)) + Li3(e

2(xi−xj)) + Li3(e
−2(xi−xj))

)
.

(3.51)

By dividing solution (3.51) by 2 and dividing solution (3.48) by µ2 and comparing the
corresponding coefficients in both solutions, we get the following set of equations

(
r + 4s+ 2q(N − 1)

)
mi = − 1

µ
εi, λmi

(
2s− q + qmi

)
=
εi(1 + εi)

µ2

λrmi = −2
(2 + µ+

∑n
k=1 εk

µ2

)
εi, λqmimj =

εiεj
µ2

,

which are satisfied for the given values (3.49).

Note that the case µ = −1 is not covered by the generalization given in the Proposition
3.3.6 since parameters r, s, λ are not defined. Let us also recall another solution from [43]
which has the form

ΦCn =
µ2

6
y3 +

µ

2
y

n∑
i=1

εix
2
i +

n∑
i=1

εi(
∑n

k=1 εk − 2εi)

8

(
Li3(e

2xi) + Li3(e
−2xi)

)
− 1

2

∑
i<j

εiεj

(
Li3(e

(xi+xj)) + Li3(e
−(xi+xj)) + Li3(e

(xi−xj)) + Li3(e
−(xi−xj))

)
, (3.52)

where µ ̸= 0, µ, εi ∈ C, i = 1, . . . , n.

Proposition 3.3.7. Solution (3.46) for the configuration BCn(q, r, s;m) reduces to solu-
tion (3.52) if one specialized parameters

mi = εi, r = 0, q =
4

µ(µ−N)
, s =

µ+N − 2

µ(µ−N)
, (3.53)

where N =
∑n

i=1mi.

Proof. First, solution (3.46) with r = 0 has the general form

F =
1

3
y3 + 2

(
2s+ q(N − 1)

)
y

n∑
i=1

mix̃
2
i +

λ

2

∑
α∈Cn

cαf(α(x̃)),
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where we redenoted the variables ξi by x̃i. It takes the following form after making the
change of variable x̃ = −ix

2
:

F =
1

3
y3 − 1

2

(
2s+ q(N − 1)

)
y

n∑
i=1

mix
2
i −

λ

2

∑
α∈Cn

cαf̃(α(
x

2
)), (3.54)

where f̃ ′′′
(z) = coth z. Similarly to the proof of Proposition 3.3.6, solution (3.54) then

takes the form

F =
1

3
y3 − 1

2

(
2s+ q(N − 1)

)
y

n∑
i=1

mix
2
i

+
λ

8

n∑
i=1

(
smi +

1

2
qmi(mi − 1)

)(
Li3(e

2xi) + Li3(e
−2xi)

)
+
λ

8

n∑
i=1

qmimj

(
Li3(e

(xi+xj)) + Li3(e
−(xi+xj)) + Li3(e

(xi−xj)) + Li3(e
−(xi−xj))

)
. (3.55)

By dividing solution (3.55) by 2 and dividing solution (3.52) by µ2 and comparing the
corresponding coefficients in both solutions, we get the following set of equations

(
2s+ q(N − 1)

)
mi = − 2

µ
εi, λqmimj = −8εiεj

µ2
,

λmi

(
2s− q + qmi

)
= 4
(µ− 2εi +

∑n
k=1 εk

µ2

)
εi,

which are satisfied for the given values (3.53).

3.4 AN type configurations

In this section we discuss a family of configurations of type AN and show that it gives
trigonometric solutions of the WDVV equations.

Let V ⊂ CN+1 be the hyperplane V = {(x1, . . . , xn+1) :
∑N+1

i=1 xi = 0}. Let A = A+
N

be the positive half of the root system AN given by

A = {ei − ej, 1 ≤ i < j ≤ N + 1}.

Let t = c(ei−ej) ∈ C be the constant multiplicity. The following lemma gives the relation
between covectors in A and their dual vectors in V .

Lemma 3.4.1. We have

(ei − ej)∨ =
1

t(N + 1)
(ei − ej), 1 ≤ i, j ≤ N + 1.
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Proof. Let x = (x1, . . . , xN+1), y = (y1, . . . , yN+1) ∈ V. Then the bilinear form GA takes
the form

GA(x, y) = t
N+1∑
i<j

(xi − xj)(yi − yj) = t(N + 1)
N+1∑
i=1

xiyi,

which implies the statement.

Now we can find the forms G(i)
A , i = 1, 2.

Proposition 3.4.2. The quadratic forms G(1)
A , G

(2)
A corresponding to the bilinear forms

G
(1)
A (·, ·), G(2)

A (·, ·) respectively have the following forms:

G
(1)
A = (N + 1)2t2

N+1∑
i,j=1

(ei ∧ ej)2,

and

G
(2)
A = t

N+1∑
i,j=1

(ei ∧ ej)2. (3.56)

Proof. For the first equality we have

G
(1)
A = t2

N+1∑
i<j

N+1∑
k<l

(
(ei − ej) ∧ (ek − el)

)2
=
t2

4

N+1∑
i,j,k,l=1

(
(ei ∧ ek)− (ei ∧ el)− (ej ∧ ek) + (ej ∧ el)

)2
= t2(N + 1)2

N+1∑
i,j=1

(ei ∧ ej)2

since
∑N+1

i=1 ei|V = 0. For equality (3.56) we have by Lemma 3.4.1 that

G
(2)
A = 2t2

∑
1≤i<j<k≤N+1

(
(ei − ej)

(
(ei − ek)∨

)(
(ei − ej) ∧ (ei − ek)

)2
+ (ei − ej)

(
(ej − ek)∨

)(
(ei − ej) ∧ (ej − ek)

)2
+ (ei − ek)

(
(ej − ek)∨

)(
(ei − ek) ∧ (ej − ek)

)2)
=

2t

N + 1

∑
1≤i<j<k≤N+1

(ei ∧ ej − ei ∧ ek + ej ∧ ek)2. (3.57)

Note that

N+1∑
i,j,k=1

(ei ∧ ej − ei ∧ ek + ej ∧ ek)2 = 3(N + 1)
N+1∑
i,j=1

(ei ∧ ej)2 (3.58)
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since
∑N+1

i=1 ei|V = 0. Also it is easy to see that

∑
1≤i<j<k≤N+1

(ei ∧ ej − ei ∧ ek + ej ∧ ek)2 = 1

6

N+1∑
i,j,k=1

(ei ∧ ej − ei ∧ ek + ej ∧ ek)2. (3.59)

Equality (3.56) follows from formulas (3.57)–(3.59).

This leads us to the following result which can also be extracted from [42].

Theorem 3.4.3. (cf. [42]) Prepotential (2.55), where y =
∑N+1

i=1 xi, for the configuration
(A, c) = (A+

N , t) satisfies WDVV equations

FiF
−1
j Fk = FkF

−1
j Fi, i, j, k = 1, . . . , N + 1,

where (Fi)pq =
∂3F

∂xi∂xp∂xq
, (p, q = 1, . . . , N + 1), with

λ = 2(N + 1)
√
t. (3.60)

Proof. Firstly, A is a trigonometric ∨-system by Proposition 2.7.2. Secondly, by Proposi-
tion 3.4.2 we have that

G
(1)
A − λ2

4
G

(2)
A =

(
(N + 1)2t− λ2

4

)
t
N+1∑
i,j=1

(ei ∧ ej)2,

which is equal to 0 for λ given by (3.60). It follows by Theorem 2.6.21 that F satisfies
WDVV equations (2.56) as a function on the hyperplane V ⊂ CN+1 which also depends
on the auxiliary variable y. Now we change variables to (x1, . . . , xN+1) by putting y =∑N+1

i=1 xi, which implies the statement.

Theorem 3.4.3 gives the value of the scalar λ for the general root system of type AN

for arbitrary multiplicity of its vectors. This result matches the result from [33], [42]
where, in particular, solutions for the root systems AN (with multiplicity equal to 1 for
its vectors) were obtained. Following [33], [42], consider the function F̃ given by (3.42).
We will explain that our solution (2.55) for the configuration (A+

N , t) leads to a solution
of the form (3.42). The following lemmas will be used.

Lemma 3.4.4. We have

∑
1≤i<j≤N+1

(x2i + x2j) = N
N+1∑
i=1

x2i .



CHAPTER 3. OPERATIONS WITH TRIGONOMETRIC SOLUTIONS 87

Proof.

∑
1≤i<j≤N+1

(x2i + x2j) =
1

2

(
N+1∑
i,j=1

(x2i + x2j)− 2
N+1∑
i=1

x2i

)
=

1

2

(
2(N + 1)

N+1∑
i=1

(x2i )− 2
N+1∑
i=1

x2i

)
,

which implies the required relation.

Lemma 3.4.5. We have

∑
α∈A+

N

α(x)2 = (N + 1)
N+1∑
i=1

x2i − y2, (3.61)

where y =
∑N+1

i=1 xi.

Proof. Let x ∈ CN+1. Then we have∑
α∈A+

N

α(x)2 =
∑

1≤i<j≤N+1

(xi − xj)
2 =

∑
1≤i<j≤N+1

(x2i + x2j − 2xixj)

= N
∑

1≤i<j≤N+1

x2i − 2
∑

1≤i<j≤N+1

xixj (3.62)

by Lemma 3.4.4. Note that

2
∑

1≤i<j≤N+1

xixj =
N+1∑
i,j=1

xixj −
N+1∑
i=1

x2i =
N+1∑
i=1

xi

N+1∑
j=1

xj −
N+1∑
i=1

x2i

=
(N+1∑

i=1

xi
)2 − N+1∑

i=1

x2i = y2 −
N+1∑
i=1

x2i .

Hence, the lemma follows.

As we have seen in Section 2.7 that solutions of WDVV equations corresponding to
root systems were obtained by Hoevenaars and Martini. Let us recall their solution for
type AN root system and show that our solution leads to such a solution.

Proposition 3.4.6. (cf.[33], [42]) Function F̃ given by

F̃ (x, y) =
γ

6
y3 +

γ

2
y
( N∑

i=1

x2i −
y2

N + 1

)
+
∑
α∈A+

N

f̃(α(x))

=
N − 2

6(N + 1)
γy3 +

γ

2
y

N∑
i=1

x2i +
∑
α∈A+

N

f̃(α(x)), (3.63)

where the variable y is defined by y =
∑N+1

i=1 xi, satisfies WDVV equations (2.56) for root
system AN and the value of γ is given by −γ2 = N + 1.
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Proof. Let cα = t = 1. Then by Lemma 3.4.5 solution (2.55) has the form

F (x̃, ỹ) =
−2

3
ỹ3 + (N + 1)ỹ

N+1∑
i=1

x̃2 + λ
∑
α∈A+

N

f(α(x̃)), (3.64)

where we redenoted variables (x, y) by (x̃, ỹ). By changing the variable x̃ = −ix̂, one
accordingly has ỹ = −iŷ where ŷ =

∑N+1
i=1 x̂i. Then by dividing the resulting solution by

−λ and calling it F̂ we get

F̂ =
2i

3λ
ŷ3 − (N + 1)i

λ
ŷ

N+1∑
i=1

x̂i
2 +

∑
α∈A+

N

f̃(α(x̂)). (3.65)

Now let us replace variable x̂ with x̂i = xi + Sy, where S = −λγi−2(N+1)
2(N+1)2

. Accordingly one
can show that change of variable for ŷ takes the form ŷ = γλ

2(N+1)
iy. Hence solution (3.65)

takes the form

(λ2γ2 + 6(N + 1)3
(
(N + 1)s2 + 2s

)
12(N + 1)3

)
γy3 +

γ

2
y

N+1∑
i=1

x2i +
∑
α∈A+

N

f̃(α(x)). (3.66)

In order to compare functions (3.66) and (3.42), we let
λ2γ2+6(N+1)3

(
(N+1)s2+2s

)
12(N+1)3

= N−2
6(N+1)

,

which implies the required value of γ since λ = 2(N + 1).

Let us now apply the restriction operation to the root system AN . Let n ∈ N and
m = (m1, . . . ,mn+1) ∈ Nn+1 be such that

∑n+1
i=1 mi = N+1. Let us consider the subsystem

B ⊂ A given as follows:

B = {e
∑i−1

j=1 mj+k − e
∑i−1

j=1 mj+l, 1 ≤ k < l ≤ mi, i = 1, . . . , n+ 1}.

The corresponding subspace WB defined by (3.6) can be given explicitly by the equations

x1 = · · · = xm1 ,

xm1+1 = · · · = xm1+m2 ,

...

x∑n
i=1 mi+1 = · · · = xN+1.

Define covectros f 1, . . . , fn+1 ∈ W ∗
B by restrictions f i = πB

(
e
∑i

j=1 mj
)
. Let us denote by

An(t;m) the restriction of the configuration A+
N to the subspace WB. It consists of the
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following covectors:

f i − f j, with multiplicity tmimj, 1 ≤ i < j ≤ n+ 1. (3.67)

The following result holds, which is closely related to a multi-parameter family of solutions
found in [43] (see also [47]).

Theorem 3.4.7. The prepotential

F (ξ) = (
1

3
− t)y3 + ty

n+1∑
k=1

mk

n+1∑
i=1

miξ
2
i + 2t3/2

n+1∑
k=1

mk

n+1∑
i<j

mimjf(ξi − ξj), (3.68)

where ξ = (ξ1, . . . , ξn+1) ∈ Cn+1 and y =
∑n+1

i=1 ξi, satisfies WDVV equations

FiF
−1
k Fj = FjF

−1
k Fi, i, j, k = 1, . . . , n+ 1,

where (Fi)pq =
∂3F

∂ξi∂ξp∂ξq
, (p, q = 1, . . . , n+ 1), for any generic t,m1, . . . ,mn+1 ∈ C.

Proof. Let us suppose firstly thatmi ∈ N for all i = 1, . . . , n+1. DefineN = −1+
∑n+1

i=1 mi.

By Theorem 3.4.3 function (2.55) with A = A+
N and λ given by (3.60) is a solution of

WDVV equations (2.56). By Theorem 3.2.4 the prepotential given by

F (ξ, y) =
1

3
y3+ ty

n+1∑
i<j

mimj(ξi− ξj)2+2(N +1)t3/2
n+1∑
i<j

mimjf(ξi− ξj), ξ ∈ WB, (3.69)

as a function on WB ⊕ C satisfies WDVV equations. Note that

n+1∑
i<j

mimj(ξi − ξj)
2 =

n+1∑
i<j

mimj(ξ
2
i + ξ2j )− 2

n+1∑
i<j

mimjξiξj. (3.70)

Note also that

n+1∑
i<j

mimj(ξ
2
i + ξ2j ) =

1

2

n+1∑
i,j=1

mimj(ξ
2
i + ξ2j )−

n+1∑
i=1

m2
i ξ

2
i =

n+1∑
i=1

(N + 1−mi)miξ
2
i , (3.71)

and that ∑
1≤i<j≤n+1

2mimjξiξj =
( n+1∑

i=1

miξi

)2
−

n+1∑
i=1

m2
i ξ

2
i . (3.72)

By making use of relations (3.70)–(3.72) the function (3.69) takes the form

F (ξ, y) =
1

3
y3+(N+1)t

n+1∑
i=1

miξ
2
i y−t(

n+1∑
i=1

miξi)
2y+2(N+1)t3/2

n+1∑
i<j

mimjf(ξi−ξj). (3.73)
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By setting y =
∑n+1

i=1 miξi and moving to variables (ξ1, . . . ξn+1) ∈ Cn+1 solution (3.73)
takes the required form (3.68). The case of complex mi follows from the above considera-
tions since F depends on mi polynomially.

Remark 3.4.8. (1) We note that Theorem 3.4.3 and the solution F given by (2.55) is valid
if one takes any generic linear combination of coordinates xi to form the extra variable
y =

∑N+1
i=1 aixi, ai ∈ C. The corresponding solution after restriction is given by the formula

F (ξ) =
1

3
y3 + ty

n+1∑
i<j

mimj(ξi − ξj)
2 + 2(N + 1)t3/2

n+1∑
i<j

mimjf(ξi − ξj),

where y is a linear combination of ξ1, . . . , ξn+1, ξi ∈ C.
(2) A multi-parameter family of solutions related to the root system of type An was

stated in [43, Section 5.2]. We expect that our solution (3.73) is equivalent to the family
of solutions in [43]. It seems that there is a typo in the formula of the solution for type
An in [43], since that it seems to not satisfy the WDVV equations.

3.5 Further examples in small dimensions

In Section 3.2 we presented the method of obtaining new solutions of WDVV equations
through restrictions of known solutions. We applied it to classical families of root systems
in Sections 3.3, 3.4. Similarly, starting from any root system and the corresponding
solution of WDVV equations one can obtain further solutions by restrictions. In the next
proposition we deal with a family of configurations in 4-dimensional space which in general
is not a restriction of a root system.

Proposition 3.5.1. Let a configuration A ⊂ C4 consist of the following covectors:

ei, with multiplicity p, 1 ≤ i ≤ 3,

e4, with multiplicity q,

ei ± ej, with multiplicity r, 1 ≤ i < j ≤ 3,

1

2
(e1 ± e2 ± e3 ± e4), with multiplicity s,

where p, q, r, s ∈ C are such that 4r + s ̸= 0. Then A is a trigonometric ∨-system if

p = 2r + s, (3.74)

q =
s(s− 2r)

4r + s
, (3.75)



CHAPTER 3. OPERATIONS WITH TRIGONOMETRIC SOLUTIONS 91

and ps ̸= 0. The corresponding prepotential (2.55) with

λ = 6
√
3(2r + s)(4r + s)−1/2 (3.76)

is a solution of WDVV equations.

Proof. For x = (x1, x2, x3, x4), y = (y1, y2, y3, y4) ∈ C4 the bilinear form GA is given by

GA(x, y) = (p+ 4r + 2s)(x1y1 + x2y2 + x3y3) + (q + 2s)x4y4.

To simplify notations let us introduce covectors

α1 =
1

2
(e1 + e2 + e3 + e4), α2 =

1

2
(e1 + e2 + e3 − e4),

α3 =
1

2
(e1 + e2 − e3 + e4), α4 =

1

2
(e1 − e2 + e3 + e4),

α5 =
1

2
(e1 − e2 − e3 + e4), α6 =

1

2
(e1 − e2 + e3 − e4),

α7 =
1

2
(e1 + e2 − e3 − e4), α8 =

1

2
(e1 − e2 − e3 − e4).

Because of B3×A1-symmetry it is enough to check the trigonometric ∨-conditions for the
following series only:

Γe1 = {α1, α8}, Γe4 = {α1, α2}, Γe1+e2 = {α1, α7}, Γ1
α1

= {α2, e
4}, Γ2

α1
= {α3, e

3},

Γ3
α1

= {α5, e
2 + e3}.

Trigonometric ∨-conditions for the series Γe1 ,Γe4 ,Γe1+e2 are immediate to check. Let us
consider the trigonometric ∨-condition for α1-series. We have

α1(α
∨
2 ) =

3q + 4s− p− 4r

4(p+ 4r + 2s)(q + 2s)
, α1(e

4∨) =
1

2(q + 2s)
, α1 ∧ α2 = −α1 ∧ e4,

which implies the ∨-condition (2.93) for Γ1
α1

since s(3q+4s−p−4r)−2q(p+4r+2s) = 0

by relations (3.74), (3.75).
Also we have

α1(α
∨
3 ) =

q + p+ 4r + 4s

4(p+ 4r + 2s)(q + 2s)
, α1(e

3∨) =
1

2(p+ 4r + 2s)
, α1 ∧ α3 = −α1 ∧ e3,

which implies the ∨-condition for Γ2
α1

since s(q+ p+4r+4s)− 2p(q+2s) = 0 by relations
(3.74), (3.75).

Finally, we have

α1(α
∨
5 ) =

p+ 4r − q

4(p+ 4r + 2s)(q + 2s)
, α1((e

2 + e3)∨) =
1

p+ 4r + 2s
, α1 ∧ α5 = −α1 ∧ (e2 + e3),
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which implies the ∨-condition for Γ3
α1

since s(p + 4r − q) − 4r(q + 2s) = 0 by relations
(3.74), (3.75).

Let us now find the quadratic form G
(1)
A . By straightforward calculations we get

G
(1)
A = 2

(
p2 + 8pr + 4ps+ 16rs+ 16r2 + 4s2

) 3∑
i<j

(
ei ∧ ej

)2
+ 2(pq + 2ps+ 4qr + 2qs+ 8rs+ 4s2)

3∑
i=1

(
ei ∧ e4

)2
=

18(2r + s)2

4r + s

(
(4r + s)

3∑
i<j

(
ei ∧ ej

)2
+ s

3∑
i=1

(
ei ∧ e4

)2)
. (3.77)

Now let us find the quadratic form G
(2)
A . We have

G
(2)
A = pr

3∑
i=1

3∑
j<k

ei
(
(ej ± ek)∨

)(
ei ∧ (ej ± ek)

)2
+ ps

3∑
i=1

8∑
j=1

ei(α∨
j )
(
ei ∧ αj

)2
+ rs

3∑
i<j

8∑
k=1

(ei ± ej)(α∨
k )
(
(ei ± ej) ∧ αk

)2
+ s2

8∑
i,j=1

αi(α
∨
j )(αi ∧ αj)

2

+ r2
3∑

i<j

3∑
k<l

(ei ± ej)((ek ± el)∨)
(
(ei ± ej) ∧ (ek ± el)

)2
=

4pr

p+ 4r + 2s

3∑
i<j

(ei ∧ ej)2 + 2ps

p+ 4r + 2s

4∑
i=2

(e1 ∧ ei)2

+
4rs

p+ 4r + 2s

(
(e1 ∧ e2)2 + (e1 ∧ e3)2 + 2(e2 ∧ e3)2 + 2(e1 ∧ e4)2 + (e2 ∧ e4)2 + (e3 ∧ e4)2

)
+

8r2

p+ 4r + 2s

3∑
i<j

(ei ∧ ej)2 + 2s2

p+ 4r + 2s

(
(e2 ∧ e3)2 − 4r

s
(e1 ∧ e4)2 + (e2 ∧ e4)2 + (e3 ∧ e4)2

)
.

(3.78)

By making further use of relations (3.74), (3.75) the expression (3.78) can be simplified to
the form

G
(2)
A =

2

3
(4r + s)

3∑
i<j

(ei ∧ ej)2 + 2

3
s

3∑
i=1

(ei ∧ e4)2. (3.79)

The final statement of the proposition follows from formulas (3.77), (3.79) and Theorem
2.6.21.

Remark 3.5.2. We note that for special values of the parameters configuration A is a
restriction of a root system (cf. [25] where the rational version of this configuration was
considered). Thus if r = 0 and p = q = s then A reduces to the root system D4. If
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r = 1, s = 4, then p = 6 and q = 1 and the resulting configuration is the restriction of the
root system E7 along subsystem of type A3. If s = 2r then the resulting configuration is
the restriction of the root system E6 along subsystem of type A1 × A1.

Further solutions of WDVV equations can be obtained from Proposition 3.5.1 by re-
stricting the configuration A.

Proposition 3.5.3. Let A1 ⊂ C3 be the configuration

A1 = {2e1, e1, e2, e3, e1 ± e2,
1

2
(e2 ± e3),

1

2
(2e1 ± e2 ± e3)},

with the corresponding multiplicities {r, 2p, p, q, 2r, 2s, s}, where p, q, r, s ∈ C. Let configu-
ration A2 ⊂ C3 consist of the following set of covectors:

ei, with multiplicity p+ s, 1 ≤ i ≤ 3,

ei + ej, with multiplicity r + s, 1 ≤ i < j ≤ 3,

ei − ej, with multiplicity r, 1 ≤ i < j ≤ 3,

e1 + e2 + e3, with multiplicity q + s.

Suppose that relations (3.74), (3.75) hold and that ps(4r + s) ̸= 0. Then A1,A2 are
trigonometric ∨-systems which also define solutions of WDVV equations given by formula
(2.55) with λ given by (3.76).

Proof of this proposition follows from an observation that configuration A1 can be
obtained from the configuration A from Proposition 3.5.1 by restricting it to the hyper-
plane x1 = x2 (up to renaming the vectors). Similarly, configuration A2 can be obtained
by restricting the configuration A to the hyperplane x1 + x2 + x3 − x4 = 0 (and up to
renaming the vectors). Other three-dimensional restrictions of the configuration A give
restriction of the root system F4 and a configuration from BC3 family.

Rational versions of configurations A1,A2 were considered in [25]. Note that configu-
ration A1 has collinear vectors 2e1, e1, so its rational version has different size.

Two-dimensional restrictions of A are considered below in Proposition 3.5.6 and Propo-
sition 3.5.9, or can belong to BC2 family of configuration, or have the form of configuration
G2 or appear in [27, Proposition 5].

Let us now consider examples of solutions (2.55) of WDVV equations where configura-
tion A contains a small number of vectors on the plane. The next two propositions confirm
that trigonometric ∨-systems with up to five covectors belong to A2 or BC2 families.

Proposition 3.5.4. Any irreducible trigonometric ∨-system A ⊂ C2 consisting of three
vectors with non-zero multiplicities has the form (3.67) where n = 2 for some values of
parameters.
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Proof. By [27, Proposition 2] any such configuration has the form A = {α, β, γ} with the
corresponding multiplicities {cα, cβ, cγ}, where vectors in A satisfy α±β±γ = 0 for some
choice of signs. It is easy to see that equations

tm1m2 = cα, tm1m3 = cβ, tm2m3 = cγ,

for m1,m2,m3, t ∈ C can be resolved.

Proposition 3.5.5. Any irreducible trigonometric ∨-system A ⊂ C2 consisting of four
or five vectors with non-zero multiplicities has the form BC2(r, s, q;m) for some values of
parameters.

Proof. By [27, Proposition 3] any irreducible trigonometric ∨-system A consisting of four
vectors has the form A = {2e1, 2e2, e1±e2} in a suitable basis, and the corresponding mul-
tiplicities {c1, c2, c0} where c0 ̸= −2ci for i = 1, 2. Now we require parameters r, s, q,m1,m2

to satisfy

sm1 +
1

2
qm1(m1 − 1) = c1,

sm2 +
1

2
qm2(m2 − 1) = c2,

qm1m2 = c0, r = 0,

which can be done by taking

s =
1

m1

(
c1 −

c0(m1 − 1)(2c1 + c0)

2m1(2c2 + c0)

)
,

q =
c0(2c1 + c0)

m2
1(2c2 + c0)

, m2 =
(2c2 + c0)m1

2c1 + c0
, m1 ∈ C \ {0}.

By [27, Proposition 4] any irreducible trigonometric ∨-system B consisting of five vec-
tors in a suitable basis has the form B = {e1, 2e1, e2, e1±e2}, and the corresponding multi-
plicities {c1, c̃1, c2, c±} satisfy c+ = c− and 2c̃1c2 = c+(c1− c2), where (c1+4c̃1+2c+)(c2+

2c+) ̸= 0. In order to compare the configuration B with the configuration BC2(r, s, q;m),
we require parameters r, s, q,m1,m2 to satisfy

rm1 = c1, rm2 = c2, qm1m2 = c+,

sm1 +
1

2
qm1(m1 − 1) = c̃1, sm2 +

1

2
qm2(m2 − 1) = 0.

These equations can be solved by taking

r =
c1
m1

, s =
c+(c1 − c2m1)

2c2m2
1

, q =
c+c1
c2m2

1

, m2 =
c2m1

c1
, m1 ∈ C \ {0}.
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In the rest of this section we give more examples of trigonometric ∨-systems on the
plane, which can be checked directly or using Theorem 2.6.21. The configuration in the
following proposition can be obtained by restricting configuration A1 from Proposition
3.5.3 to the plane 2x1 + x2 − x3 = 0.

Proposition 3.5.6. Let

A = {e1, 2e1, e2, e1 + e2, e1 − e2, 2e1 + e2} ⊂ C2

be with the corresponding multiplicities {4a, a, 2a, 2a, 2(a − b), 2ab
4a−3b

}, where 4a− 3b ̸= 0.

Then A is a trigonometric ∨-system provided that a(2a − b) ̸= 0. The corresponding
solution of the WDVV equations has the form (2.55) with λ = 6

√
3(2a− b)(4a− 3b)−1/2.

The configuration in the following proposition can be obtained by restricting configu-
ration A1 from Proposition 3.5.3 to the plane x1 = x2.

Proposition 3.5.7. (cf. [27]) Let

A = {e1, e2, 2e2, 1
2
(e1 ± e2),

1

2
(e1 ± 3e2)} ⊂ C2

be with the corresponding multiplicities {a(3a−2b)
3a+4b

, 3a + 2b, b, 3a, a}. Then A is a trigono-
metric ∨-system. The corresponding solution of the WDVV equations has the form (2.55)
with λ = 6(3a+ 2b)(3a+ 4b)−1/2.

Remark 3.5.8. If we let b = 0 for the configuration in Proposition 3.5.7 then we recover
the root system G2 with special multiplicities.

The configuration in the following proposition can be obtained by restricting configu-
ration A1 from Proposition 3.5.3 to the plane x3 = 0.

Proposition 3.5.9. Let

A = {e1, 2e1, e2, 2e2, e1 ± e2, e1 ± 2e2} ⊂ C2

be with the corresponding multiplicities {2a, a
2
− b

4
, 2b, a, b, a− b

2
}, where a ̸= 0. Then A is

a trigonometric ∨-system and the corresponding solution of the WDVV equations has the
form (2.55) with λ = 6

√
6a
(
4a− b

)−1/2
.

In the next two propositions we give examples of trigonometric ∨-systems with nine
and ten covectors on the plane.
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Proposition 3.5.10. (cf. [27]) Let

A = {e1, 2e1, e2, e1 ± e2,
1

2
(3e1 ± e2),

1

2
(e1 ± e2)} ⊂ C2

be with the corresponding multiplicities {a, b, a
3
, b, a

3
, a}. Then A is a trigonometric ∨-

system provided that a ̸= −2b. The corresponding solution of the WDVV equations has the
form (2.55) with λ = 6(a+ 2b)(a+ 4b)−1/2.

Note that if b = 0 then after rescaling e2 →
√
2e2 this configuration reduces to the

positive half of the root system G2.

Proposition 3.5.11. (cf. [27]) Let

A = {e1, 2e1, e2, 2e2, e1 ± e2, e1 ± 2e2, 2e1 ± e2} ⊂ C2

be with the corresponding multiplicities {6a, 3a
2
, 6a, 3a

2
, 4a, a, a}. Then A is a trigonometric

∨-system provided that a ̸= 0. The corresponding solution of the WDVV equations has the
form (2.55) with λ = 15a1/2.

The following configuration containing 14 vectors on the plane.

Proposition 3.5.12. Let

A = {e1, 2e1, 3e1, e2, 2e2, 3e2, e1 ± e2, 2(e1 ± e2), 2e1 ± e2, e1 ± 2e2} ⊂ C2

be with the corresponding multiplicities {3a, 3a
2
, a
3
, 3a, 3a

2
, a
3
, 2a, a

2
, a, a}. Then A is a trigono-

metric ∨-system provided that a ̸= 0. The corresponding solution of the WDVV equations
has the form (2.55) with λ = 5(6a)1/2.

The following configuration containing 9 vectors on the plane which does not belong
to any restrictions of Coxeter root system for general values of multiplicities.

Proposition 3.5.13. Let

A = {e1, 2e1, 3e1, e2, 2e2, e1 ± e2, 2e1 ± e2} ⊂ C2

be with the corresponding multiplicities {2b(3b+2a)
b+2a

, b(3b+2a)
b+2a

, 2b(b−2a)
3(b+2a)

, 2a + 3b, a, 2b, b}, where
b + 2a ̸= 0. Then A is a trigonometric ∨-system provided that b(3b + 2a) ̸= 0. The
corresponding solution of the WDVV equations has the form (2.55) with λ = 3

√
2(3b +

2a)(b+ 2a)−1/2.
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3.6 Exceptional root systems solutions revisited

We know that a function F with extra variable y given by formula (2.55) is a solution
of WDVV equations (2.56) if the nonzero constant λ ∈ C exists. In Section 3.2 we have
shown that any restricted function of a solution F also gives a solution of WDVV equations
with the same value of λ. This fact can be used to find the value of λ for any configuration
through out the process of restriction. This can help us to determine the value of the
scalar λ for a higher dimensional configuration by making restriction of the configuration
to obtain a restricted system in a small dimension which make it easier to calculate. Also
if two configurations have the same restricted system then actually one can derive the
value of λ for one of these configurations whenever the value of λ is known for the other
configuration. In this section we will make use of this procedure to find the value of λ for
root systems of type E6, E7, E8, F4 and G2. Following [33,42], recall that WDVV equations
(2.56) have solutions of the form

F̃ (x, y) =
γ

6
y3 +

γ

2
y⟨x, x⟩+

∑
α∈R+

cαf̃(α(x)), (x ∈ V, y ∈ C), (3.80)

where V ∼= CN and R ⊂ V ∗ is a root system of rank N , multiplicities cα and the inner
product ⟨·, ·⟩ are invariant under the Weyl group, γ = γ(R,c) ∈ C and function f̃ is
given by (2.100). By identifying V ∼= V ∗ via the standard inner product ⟨·, ·⟩, we define
⟨α, β⟩ := ⟨α∗, β∗⟩. The corresponding values of γ(R,c) were given explicitly in [33, 42] for
constant multiplicity functions cα = t ∀α (except for R = BCN , G2), they were found in
[11] for special multiplicities and in [47,48] for arbitrary (non-reduced) root system R with
invariant multiplicity. For type E root systems we have

γ(E6,t) = 2i
√
6t, γ(E7,t) = 4i

√
3t, γ(E8,t) = 2i

√
30t.

Similarly to analysis of the BCN case in Section 3.3 these solutions lead to solutions F of
the form (2.55) for A = R+ and the corresponding values of λ = λ(R,c) are given by

λ(E6,t) = 12
√
2t, λ(E7,t) = 9

√
6t, λ(E8,t) = 30

√
t. (3.81)

We recall that λ(R,c), in contrast to γ(R,c), is invariant under linear transformations
applied to R. An alternative way to derive values (3.81) is to apply Theorem 3.2.4 to
already known solutions. Thus λ(E6,t) can be derived, for example, by considering the
four-dimensional restriction of E6 along a subsystem of type A1 ×A1 as this restriction is
equivalent to the configuration from Proposition 3.5.1 when parameter s = 2r. Likewise
restriction of E7 along a subsystem of type A3 gives the same configuration from Proposi-
tion 3.5.1 with r = 1 and s = 4. Similarly, restriction of E8 along a subsystem of type D6
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gives the configuration of type BC2 which allows to get λ(E8,t).

3.6.1 E6 type configuration

Proposition 3.6.1. Let A = E+
6 be the positive half of the root system E6 consisting of

the following vectors

ei ± ej, 1 ≤ i < j ≤ 5,

1

2
(e1 ± e2 ± e3 ± e4 ± e5 ±

√
3e6), with odd number of plus sign,

where all vectors have the same multiplicity r. Then the corresponding solution of the
WDVV equations has the form (2.55) with λ = 12

√
2r.

Proof. From Remark 3.5.2, since the restriction of the root system E6 along subsystem
of type A1 × A1 gives the same configuration one can obtain from the configuration A in
Proposition 3.5.1 by putting the parameter s = 2r in proposition 3.5.1, then the value of
the scalar λ for the root system E6 is the same value of λ for A in Proposition 3.5.1 when
s = 2r. Let us recall the value of λ for A in Proposition 3.5.1 which is given by

λ =
6
√
3(2r + s)√
4r + s

.

Hence for s = 2r we have λ = 12
√
2r. This proves the proposition.

In the following proposition we show that our solution F for the root system E6 takes
the form of the solution obtained in [33] for E6.

Proposition 3.6.2. [42] Function F̃ given by (3.42) satisfies WDVV equations (2.56) for
root system E6 and the value of γ is given by γ = 2i

√
6.

Proof. For the root system E6 as defined above we have

∑
α∈E+

6

cαα(x)
2 = 12r

6∑
i=1

x2i .

Let us take parameter r = 1. Then the solution F given by (2.55) takes the form

F (x̃, ỹ) =
1

3
ỹ3 + 12ỹ

6∑
i=1

x̃2i + λ
∑
α∈E+

6

f(α(x̃)), (3.82)

where we redenoted variables (x, y) by (x̃, ỹ). By changing variables x̃ = −ix and ỹ = γλ
24
y

and dividing by −λ solution (3.82) takes the form (3.42) provided that γ2λ2 = −6912

which is satisfied for γ = 2i
√
6.
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Remark 3.6.3. There seems to be a typo in [42] as the value of γ stated in [42] for root
system E6 should be 2i

√
6 instead of i

√
6.

3.6.2 E7 type configuration

Here we discuss a family of E7 type configurations and show that it gives trigonometric
solutions of the WDVV equations.

Let V be the hyperplane in C8 consisting of vectors whose coordinates add up to 0.

Let E+
7 be the positive half of the root system E7 consisting of the following vectors in C8

1

2
(e1 ± e2 ± e3 ± e4 ± e5 ± e6 ± e7 ± e8), (3.83)

ei − ej, 1 ≤ i < j ≤ 8, (3.84)

where the sum of all eight coordinates of vectors (3.83) is zero. Let t ∈ C be the multiplicity
of all vectors (3.83), (3.84).

Before we discuss solutions of WDVV equations corresponding to the root system E7,

the following lemma will be used.

Lemma 3.6.4. For A = E+
7 , consider the extra variable y given by y =

∑8
i=1 xi. Then we

have ∑
α∈E+

7

α(x)2 = 18
8∑

i=1

x2i −
9

4
y2. (3.85)

Proof. Let x = (x1, . . . , x8) ∈ C8. Then we have

∑
α∈E+

7

α(x)2 =
1

4
(x1 ± x2 ± x3 ± x4 ± x5 ± x6 ± x7 ± x8)

2 +
∑

1≤i<j≤8

(xi − xj)
2

=
9

4

(
7

8∑
i=1

x2i −
8∑

i=1

xi

8∑
j ̸=i

xj
)
=

9

4

(
7

8∑
i=1

x2i −
8∑

i=1

xi(y − xi)
)

=
9

4

(
8

8∑
i=1

x2i − y2
)

which gives the required result.

In the following proposition we show that our solution F for the root system E7 takes
the form of the solution obtained in [33] for E7.

Proposition 3.6.5. Let E+
7 be the positive half of the root system E7 as defined above.

Then the corresponding solution of the WDVV equations has the form (2.55) with A = E+
7
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and y =
∑8

i=1 xi, satisfies WDVV equations

FiF
−1
k Fj = FjF

−1
k Fi, i, j, k = 1, ..., 8, (3.86)

if
λ = 9

√
6t. (3.87)

Proof. From Remark 3.5.2, since the restriction of the root system E7 along subsystem of
type A3 gives the same configuration one can obtain from the configuration A in Propo-
sition 3.5.1 by putting parameters r = 1, s = 4, p = 6, q = 1 in proposition 3.5.1, then the
value of the scalar λ for the root system E7 is the same value of λ for A in Proposition
3.5.1 for this special choices of parameters. Let us recall the value of λ for A in Proposition
3.5.1 which is given by

λ =
6
√
3(2r + s)√
4r + s

.

Hence for r = 1, s = 4, p = 6, q = 1 we have λ = 9
√
6. This proves the proposition.

Proposition 3.6.6. [42] Function F̃ given by

F̃ (x, y) =
γ

6
y3 +

γ

2
y
( 8∑

i=1

x2i −
y2

8

)
+
∑

α∈E7
+

f̃(α(x))

=
5

48
γy3 +

γ

2
y

8∑
i=1

x2i +
∑

α∈E7
+

f̃(α(x)), (3.88)

where the variable y is defined by y =
∑8

i=1 xi, satisfies WDVV equations (3.86) and the
value of γ is given by γ2 = −48.

Proof. Let cα = 1. Then by Lemma 3.6.4 solution (2.55) takes the form

F (x̃, ỹ) = −23

12
ỹ3 + 18ỹ

8∑
i=1

x̃2i + λ
∑
α∈E+

7

f(α(x̃)), (3.89)

where we redenote variables (x, y) by (x̃, ỹ). By changing the variable x̃ = −ix̂, one
accordingly has ỹ = −iŷ where ŷ =

∑8
i=1 x̂i. Then by dividing the resulting solution by

−λ and calling it F̂ we get

F̂ =
23

12λ
iŷ3 − 18i

λ
ŷ

8∑
i=1

x̂2i +
∑
α∈E+

7

f̃(α(x̂)). (3.90)

Now let us replace variable x̂ with x̂ = x + sy, where s = γλi−36
288

. Accordingly we have
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ŷ = γλi
36
y. Hence solution (3.90) takes the form

γ
(8s2 + 2s

2
+

23γ2λ2

559872

)
y3 +

γ

2
y

8∑
i=1

x2i +
∑
α∈E+

7

f̃(α(x)). (3.91)

In order to compare function (3.88) with (3.91), we let 8s2+2s
2

+ 23γ2λ2

559872
= 5

48
, which implies

that
γ2 = −23328

λ2
.

Since λ = 9
√
6, we get the required value of γ.

We can also have a slightly different solution associated with root system E7.

Proposition 3.6.7. Function F̃ given by

F̃ (x, y) =
γ

6
y3 +

γ

2
y

8∑
i=1

x2i +
∑

α∈E7
+

f̃(α(x)), (3.92)

where the variable y is defined by y =
∑N+1

i=1 xi, satisfies WDVV equations (3.86) and the
value of γ is given by −γ2 = 66.

Proof. As in the proof of Proposition 3.6.6 we get relation (3.91), and in order to compare
function (3.92) with (3.91), we let 8s2+2s

2
+ 23γ2λ2

559872
= 1

6
, which implies that

γ2 = −32076

λ2
.

Since λ = 9
√
6, we get the required value of γ.

3.6.3 E8 type configuration

In the following proposition we derived the solution of WDVV equations corresponding to
the root system E8 using the restriction operation in order to reduce the dimension.

Proposition 3.6.8. Let A = E+
8 be the positive half of the root system E8 consisting of

the following vectors

ei ± ej,with multiplicity t, 1 ≤ i < j ≤ 8,

1

2
(e1 ± e2 ± e3 ± e4 ± e5 ± e6 ± e7 ± e8), with multiplicity t,

where the sum of all eight coordinates is even. Then the corresponding solution of the
WDVV equations has the form (2.55) with

λ = 30
√
t. (3.93)
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Proof. Let us restrict the root system E8 to the subspace where

x1 = x2 = x3 = x4,

x5 = x6 = x7 = x8.

The resulting restricted system (after renaming vectors) is given by

A = {2e1, 2e2, e1 + e2, e1 − e2, 2(e1 + e2), 2(e1 − e2)}

with the corresponding multiplicities 12t, 12t, 32t, 32t, t, t. Let us make the following linear
transformation

e1 + e2 → ẽ1,

e1 − e2 → ẽ2.

The resulting equivalent system is given by

Ã = {ẽ1, ẽ2, 2ẽ1, 2ẽ2, ẽ1 + ẽ2, ẽ1 − ẽ2}

with the corresponding multiplicities {32t, 32t, t, t, 12t, 12t}. We note that the configura-
tion is of type BC2, hence the value of the scalar λ of E8 is the same of that for the
restricted configuration Ã. The value of λ for Ã is given by (3.41) with

r = 32t, s = t, q = 12t,

which gives the required value of λ.

In the following proposition we show that our solution F for the root system E8 takes
the form of the solution obtained in [33] for E8.

Proposition 3.6.9. [42] Function F̃ given by (3.42) satisfies WDVV equations (2.56) for
root system E8 and the value of γ is given by γ = 2i

√
30.

Proof. For the root system E8 as defined in Proposition 3.6.8 we have

∑
α∈E+

8

cαα(x)
2 = 30t

8∑
i=1

x2i .

Let us take parameter t = 1. Then the solution F given by (2.55) takes the form

F (x̃, ỹ) =
1

3
ỹ3 + 30ỹ

8∑
i=1

x̃2i + λ
∑
α∈E+

8

f(α(x̃)), (3.94)
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where we redenoted variables (x, y) by (x̃, ỹ). By changing of variables x̃ = −ix, ỹ = γλ
60
y

and dividing by −λ solution (3.94) takes the form (3.42) provided that γ2λ2 = −108000

which is satisfied for γ = 2i
√
30.

Remark 3.6.10. There seems to be a typo in [42] as the value of γ stated in [42] for root
system E8 should be i2

√
30 instead of i

√
320.

3.6.4 F4 type configuration

Proposition 3.6.11. Let A = F+
4 be the positive half of the root system F4 with the

multiplicity function c given by

c
(1
2
(e1 ± e2 ± e3 ± e4)

)
= c(ei) = s, (1 ≤ i ≤ 4),

c(ei ± ej) = r, (1 ≤ i < j ≤ 4), (3.95)

where r, s ∈ C. Then in the corresponding solution (2.55) of the WDVV equations (2.56)
we have

λ = λ(F4,c) = 6
√
3(2r + s)(4r + s)−1/2. (3.96)

Proof. We note that the restriction of the configuration defined in Proposition 3.5.1 to the
hyperplane x4 = 0 gives the same configuration as one gets by restricting A =F+

4 to the
hyperplane x4 = 0. Hence λ is given by formula (3.76).

Proposition 3.6.11 has the following implication for the corresponding solution of the
form (3.80), which is also contained in [47].

Proposition 3.6.12. [47] For R = F4 with the multiplicity function (3.95) we have

γ2(F4,c)
= −(s+ 2r)(s+ 4r).

Proof. We have
∑

α∈F+
4
cαα(x)

2 = 3(s+ 2r)
∑4

i=1 x
2
i . Then solution F given by (2.55) for

A = F+
4 takes the form

F (x̃, ỹ) =
1

3
ỹ3 + 3(s+ 2r)ỹ

4∑
i=1

x̃2i + λ
∑
α∈F+

4

cαf(α(x̃)), (3.97)

where λ is given by (3.96), and we redenoted variables (x, y) by (x̃, ỹ). By dividing F by
−λ and changing variables x̃ = −ix, ỹ = γλ

6(s+2r)
y, solution (3.97) takes the form (3.80)

provided that γ2λ2 = −108(s+ 2r)3, which implies the statement.

Let us now find the value of λ for R = G2.
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3.6.5 G2 type configuration

Proposition 3.6.13. Let A = G+
2 be the positive half of the root system G2 with the

multiplicity function given by

c(
√
3e1) = c(

√
3e1

2
± 3e2

2
) = q, c(e2) = c(

√
3e1

2
± e2

2
) = p, (3.98)

where q, p ∈ C. Then in the corresponding solution (2.55) of the WDVV equations (2.56)
we have

λ = λ(G2,c) = 6(p+ 3q)(p+ 9q)−1/2. (3.99)

Proof. Note that by restricting the configuration A2 defined in Proposition 3.5.3 to the
hyperplane x1 + x2 + x3 = 0 we get the two-dimensional configuration

Ã2 = {e1, e2, e1 + e2, e1 − e2, e1 + 2e2, 2e1 + e2}

which can be mapped to the configuration G2 by a linear transformation. The correspond-
ing multiplicities satisfy

p = 3(r + s), q = r,

which implies the statement by Proposition 3.5.3 and Theorem 3.2.4.

Proposition 3.6.13 has the following implication for the corresponding solution of the
form (3.80), which is also contained in [47].

Proposition 3.6.14. [47] For R = G2 with multiplicity function (3.98) we have

γ2(G2,c)
= −3

8
(p+ 3q)(p+ 9q).

Proof. We have
∑

α∈G+
2
cαα(x)

2 = 3
2
(p+3q)(x21 + x22). Then solution F given by (2.55) for

A = G+
2 takes the form

F (x̃, ỹ) =
1

3
ỹ3 +

3

2
(p+ 3q)ỹ(x̃21 + x̃22) + λ

∑
α∈G+

2

cαf(α(x̃)), (3.100)

where λ is given by (3.99), and we redenoted variables (x, y) by (x̃, ỹ). By dividing F by
−λ and changing variables x̃ = −ix, ỹ = γλ

3(p+3q)
y, solution (3.100) takes the form (3.80)

provided that γ2λ2 = 27
2
(p+ 3q)3 which implies the statement.

3.7 Bryan-Gholampour solutions revisited

Solutions of WDVV equations of the form (3.80) were also obtained in [11]. More ex-
actly, consider the multiplication ∗ on the tangent space T(x,y)(V ⊕ U) ∼= V ⊕ U, where
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dimU = 1, x ∈ V, y ∈ U which is given by

u ∗ v = ⟨u, v⟩E + γ̃−1
∑
β∈R+

cβ
⟨β, β⟩

β(u)β(v) coth β(x)β, (u, v ∈ V ), (3.101)

γ̃ = γ̃(R,c) ∈ C and E ∈ U is the identity of the product (3.101). It was shown in [11] that
this multiplication is associative. It can be seen (cf. Section 2.1 above) that associativity
of (3.101) is equivalent to the statement that function

F̃ (x, y) =
γ̃

6
y3 +

γ̃

2
y⟨x, x⟩+

∑
α∈R+

dαf̃(α(x)), (3.102)

where dα = cα
⟨α,α⟩ satisfies WDVV equations, hence γ̃ = γ̃(R,c) = γ(R,d).

Let {α1, . . . , αN} be a basis of simple roots of R. Recall that there exists the highest
root θ = θR =

∑N
i=1 niαi ∈ R such that, for every β =

∑N
i=1 piαi ∈ R, we have ni ≥ pi for

all i = 1, . . . , N [6]. The constant γ̃ = γ̃(R,c) was expressed in [11] in terms of the highest
root of the root system R.

Proposition 3.7.1. [11] The value of γ̃(R,c) in the solution (3.102) in the case of constant
multiplicity function cα = t is given by

γ̃2(R,c) = −t
2

8

(
⟨θ, θ⟩+

N∑
i=1

n2
i ⟨αi, αi⟩

)
.

Now we give a generalization of Proposition 3.7.1 to the case of non-constant multi-
plicity function. Let p be the multiplicity of short roots and q be the multiplicity of long
roots in a reduced not simply-laced root system R.

Proposition 3.7.2. We have

γ̃2(R,c) = −1

8

(
a0⟨θ, θ⟩+

N∑
i=1

ain
2
i ⟨αi, αi⟩

)
, (3.103)

where scalars ai for all irreducible reduced not simply-laced root systems are given as fol-
lows. (1) Let R = BN with the basis of simple roots

α1 = e1 − e2, . . . , αN−1 = eN−1 − eN , αN = eN .

Then

a0 = a1 = aN = pq, ai = q2, (2 ≤ i ≤ N − 1). (3.104)
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(2) Let R = CN with the basis of simple roots

α1 = e1 − e2, . . . , αN−1 = eN−1 − eN , αN = 2eN .

Then

a0 = a1 = aN = pq, ai = p2, (2 ≤ i ≤ N − 1). (3.105)

(3) Let R = F4 with the basis of simple roots

α1 = e2 − e3, α2 = e3 − e4, α3 = e4, α4 =
1

2
(e1 − e2 − e3 − e4).

Then

a0 = a2 = a4 = pq, a1 = p2, a3 = q2. (3.106)

(4) Let R = G2 with the basis of simple roots α1 =
√
3e1

2
− 3e2

2
, α2 = e2. Then

a0 = p2, a1 = pq, a2 = q2. (3.107)

Proof. It follows from Proposition 3.3.4 that

γ̃2(BN ,c) = −q(p+ (N − 2)q).

Note that θBN
= e1+e2 = α1+2(α2+ · · ·+αN). Then it is easy to see that the substitution

of (3.104) into formula (3.103) gives the same value of γ̃(BN ,c). Similarly, we have

γ̃2(CN ,c) = −p
(
2q + (N − 2)p

)
,

which is equal to the value given by formula (3.103) after substitution ai from (3.105) and
by using θCN

= 2e1 = 2(α1 + · · ·+ αN−1) + αN . It follows from Proposition 3.6.12 that

γ̃2(F4,c)
= −(p+ q)(p+ 2q).

Note that θF4 = e1+e2 = 2α1+3α2+4α3+2α4. Then it is easy to see that the substitution
of values (3.106) into formula (3.103) gives the same value of γ̃(F4,c). Similarly, it follows
from Proposition 3.6.14 that

γ̃2(G2,c)
= −3

8
(p+ q)(p+ 3q),

which is equal to the expression in formula (3.103) after the substitution of (3.107) and
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by using θG2 =
√
3e1 = 2α1 + 3α2.

It is not clear to us how to formulate Proposition 3.7.2 for any not simply-laced (re-
duced) root system in a uniform way.

Let us also give another formula for γ̃(R,c) in terms of the dual root system R∨ of R
where R∨ = {β∨ : β ∈ R}, and β∨ = 2β

⟨β,β⟩ . Then we have

γ̃2(R,c) = −⟨θ, θ⟩2

32

(
a0⟨θ∨, θ∨⟩+

N∑
i=1

n2
i ai⟨α∨

i , α
∨
i ⟩
)
, (3.108)

where coefficients ni ∈ Z≥0 are determined by the expansion θ∨ =
∑N

i=1 niα
∨
i . Formula

(3.108) follows from formula (3.103) by observing the relation ni =
ni⟨αi,αi⟩

⟨θ,θ⟩ for 1 ≤ i ≤ N.

Let us explain how solutions for root systems considered above correspond to solutions
considered by Shen in [47,48].

Note that in [47, 48] a prepotential function for a Frobenius structure was considered,
this prepotential gives a solution of WDVV equations for root systems R. Let us first
recall that solution which is given by

Φ = −y
3

6
+
y

2
c
∑
α∈R+

α(x)2 +
∑
α∈R+

kα
a(α∨, α∨)

α(α∨)
q(α(x)), (3.109)

where kα is a W-invariant multiplicity function, the function q satisfies

q
′′′
(z) =

1

2
(
1 + ez

1− ez
) = −1

2
coth(

z

2
),

and a(·, ·) is a symmetric bilinear form that satisfies

a(u, v) = µ⟨u, v⟩, (3.110)

for some scalar µ ∈ R, and c is a constant corresponding to the bilinear form a and satisfies

a = c
∑
α>0

α⊗ α. (3.111)

Let us explain that the solution (3.102) leads to a solution of the form (3.109).
Firstly, by (3.110) and (3.111) we have

c
∑
α∈R+

α(x)2 = a(x, x) = µ⟨x, x⟩. (3.112)
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Also, since α∨ = 2α
⟨α,α⟩ then we have

α(α∨) = 2, a(α∨, α∨) =
4µ

⟨α, α⟩
. (3.113)

Hence by substituting relations (3.110) and (3.113) in (3.109) and dividing the resulting
function by 1

2µ
we get

Φ̂(x, y) =
1

2µ
Φ = − y3

12µ
+
y

4
⟨x, x⟩+

∑
α∈R+

kα
⟨α, α⟩

q(α(x)). (3.114)

On the other hand for the solution (3.102), let us make change of variable by putting
x = x̃

2
. Note that f̃( z

2
)) = −1

4
q(z). Also, let cα = kα. Then after multiplying the solution

(3.102) by −4, we get

F (1)(x̃, y) = −2γ̃

3
y3 − γ̃y

2
⟨x̃, x̃⟩+

∑
α∈R+

kα
⟨α, α⟩

q(α(x̃)). (3.115)

Now in order to compare (3.115) with (3.114) we make a change of variable by putting
y = − ỹ

2γ̃
in (3.115). Hence (3.115) becomes

F (2)(x̃, ỹ) =
ỹ3

12γ̃2
+
ỹ

4
⟨x̃, x̃⟩+

∑
α∈R+

kα
⟨α, α⟩

q(α(x̃)). (3.116)

Solutions F (2) given by (3.116) coincides with solution Φ̂ given by (3.114) if we identify
x̃ = x, ỹ = y and µ = −γ̃2.

The values of γ̃2 for not simply-laced root systems BN , CN , F4, G2 are given in Proposi-
tion 3.7.2. Note also that since γ̃ = γ̃(R,c) = γ(R,d), then by Propositions 3.3.4, 3.4.6, 3.6.2,
3.6.6, 3.6.9 the values of γ̃2 for simply-laced root systems DN , AN , E6, E7, E8 are given by

R DN AN E6 E7 E8

−γ̃2 (N − 2)s2 (N+1)
4

s2 6s2 12s2 30s2

where cα = s is the multiplicity of all vectors α in the simply-laced root system R. This
matches the scalar µ = −γ̃2 given in [47].



Chapter 4

Trigonometric solutions without extra
variable

In this chapter we consider trigonometric solutions of WDVV equations without extra
variable. We review such solutions found in the literature. We generalize solutions of this
type found in [33] corresponding to the root systems BN . Our initial solution corresponds
to the root system BCN with Weyl-invariant multiplicities. Then we obtain a family
of solutions with N + 2 multiplicity parameters corresponding to the root system BCN

solutions by the restriction procedure. We also use these solutions to construct N = 4

supersymmetric mechanical systems.

4.1 Solutions of WDVV and related equations

Let F = F (x1, . . . , xn) be a function in V ∼= Cn. Consider a vector field

e =
n∑

i=1

Ai(x)∂xi
,

where Ai(x) = Ai(x1, . . . , xn) are some functions. Define n× n matrix B = (Bij)
n
i,j=1 by

Bij = e(Fij) =
n∑

k=1

Ak(x)Fijk, i, j = 1, . . . , n, (4.1)

where

Fijk =
∂3F

∂xi∂xj∂xk
.

Recall that WDVV equations (2.56) can be written equivalently in the form [41] (see

109
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also [40])
FiB

−1Fj = FjB
−1Fi, i, j = 1, . . . , N, (4.2)

where B is any linear combination of matrices Fk. We have in Chapter 2 the class of
trigonometric solutions of WDVV equations (4.2) which have the form

F =
∑
α∈A

cαf((α, x)) +Q, (4.3)

where A is a finite set of vectors in V ∼= CN , cα ∈ C, are some multiplicity parameters,
the function f is given by (1.11), and Q = Q(x, y) is a cubic polynomial which depends
on (x1, . . . , xN) and the auxiliary variable y ∈ C. We have presented solutions of the
form (4.3) for all root systems A = R+. Also, solutions of the form (4.3) without full
Weyl symmetry were considered where A is a trigonometric ∨-system. We also have
shown that the class of trigonometric ∨-systems includes all root systems with W-invariant
multiplicities (Proposition 2.7.2).

In general, in the case when the cubic corrections are absent, that is Q = 0 the
corresponding solution of the form (4.3) does not exist even for the case of root system
A with invariant multiplicities cα. However, in [33] Hoevenaars and Martini found such a
solution for the root system of type BN and specific choice of invariant multiplicities. Their
result with respect to BN root system is given by the following theorem ([33, Theorem
2.3]).

Theorem 4.1.1. [33] The function

F (x1, . . . , xN) =
∑

1≤i<j≤N

(
f̃(xi − xj) + f̃(xi + xj)

)
+ η

N∑
i=1

f̃(xi),

where function f̃ is given by (2.100), satisfies WDVV equations (4.2) if and only if η =

−2(N − 2).

The main idea of the proof of Theorem 4.1.1 in [33] is to find an appropriate invertable
metric B such that WDVV equations (4.2) holds. In their proof of Theorem 4.1.1 the
corresponding metric B was chosen in a specific way to be a multiple of identity, and
hence the WDVV equations (4.2) reduce to the commutativity formula

FiFj = FjFi, i, j = 1, . . . , N. (4.4)

Solutions of the form (4.3) for equations (4.4) for root systems BCN , F4, G2 with special
collections of invariant multiplicities were found in [3]. Before we summarize these results,
let us prove the following statement.
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Proposition 4.1.2. Let A be a finite set of vectors in V ∼= CN and cα ∈ C, be some
multiplicity parameters. Let

F =
∑
α∈A

cαf((α, x)), (4.5)

where the function f is given by (1.11). Let

F̂ =
∑
α∈A

cαf̃((α, x̃)),

where function f̃ is given by (2.100). Then we have
(1) F satisfies WDVV equations (4.2) if and only if F̂ satisfies WDVV equations (4.2),
(2) F satisfies the commutativity equations (4.4) if and only if F̂ satisfies the commu-

tativity equations (4.4).

Proof. By making the change of variable x = −ix̃ we have

f(x) = f(−ix̃) = 1

6
i(−ix̃)3 + 1

4
Li3(e

−2i(−ix̃)) = −(
1

6
x̃3 − 1

4
Li3(e

−2x̃)) = −f̃(x̃).

The result follows since ∂3F
∂xj∂xk∂xl

= i∂3F
∂x̃j∂x̃k∂x̃l

.

The following theorem gives the solution of equations (4.4) corresponding to the root
system BCN (see [3, Theorem 6.6], see also [4]).

Theorem 4.1.3. [3] The function

F =
N∑
i=1

(
rf(xi) + sf(2xi)

)
+ q

N∑
i<j

f(xi ± xj)

satisfies conditions (4.4) if and only if r = −8s− 2(N − 2)q.

The following theorem gives the solution of equations (4.4) corresponding to the root
system F4 (see [3, Theorem 6.8], see also [4]).

Theorem 4.1.4. [3] The function

F = r
4∑

i=1

f(xi) + r
∑

ϵi∈{1,−1}

f
(1
2
(ϵ1x1 + ϵ2x2 + ϵ3x3 + ϵ4x4)

)
+ q

4∑
i<j

f(xi ± xj)

satisfies conditions (4.4) if and only if r = −2q or r = −4q.

The following theorem gives the solution of equations (4.4) corresponding to the root
system G2 considered in three-dimensional space (see [3, Theorem 6.9], see also [4]).
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Theorem 4.1.5. [3] The function

F = s

3∑
i<j

f
(
xi − xj) +

r

2

∑
σ∈S3

f(2xσ(1) − xσ(2) − xσ(3))

satisfies conditions (4.4) if and only if s = −3r or s = −9r.

Remark 4.1.6. (1) It was shown in [4, Remark 4.5.7] (see also [3]) that if R = AN−1

with constant multiplicity then equations (4.4) do not hold.
(2) In [3] solutions of the commutativity equations of the form (4.5) were considered

with f replaced by f̃ . Proposition 4.1.2 allows us to deal with the stated trigonometric
version of these results.

A question arises as to whether usual WDVV equations hold for these prepotentials
considered in Theorems 4.1.3, 4.1.4, 4.1.5. Since WDVV equations (4.2) are equivalent to
the system (4.4) when the metric B is proportional to the standard metric δji , the question
reduces to the question whether the identity metric can be obtained as a linear combination
of the third order derivatives for these prepotentials. We answer this question positively
for the case of the root system BCN . In fact we find (N+2)-parametric family of solutions
whose underlying configuration A is the positive half of BCN root system. The choice of
the metric B is motivated by the metric B for the root system BN which was chosen in
[33]. Thus the (N +2)-parametric family of solutions reduces to the two-parameter family
of prepotentials given in Theorem 4.1.3 after specialization of parameters. In fact we
show firstly that a two-parameter family of prepotentilas given in Theorem 4.1.3 satisfies
WDVV equations (4.2) for a suitable combination of the third order derivatives of the
prepotential which gives metric B proportional to the identity. This also generalized
Theorem 4.1.1. Then we generalize these considerations to obtain the family of solutions
with many parameters by taking special restrictions of these solutions using procedure
similar to one we applied in Section 3.3.

4.2 Metric for a family of BCn type configurations

We are going to present solution F to the equations (4.2) for a suitable vector field e. This
solution is related to BCn root system with prescribed multiplicities of the root vectors.

ei, with multiplicity rmi, 1 ≤ i ≤ n,

2ei, with multiplicity smi +
1

2
qmi(mi − 1), 1 ≤ i ≤ n,

ei ± ej, with multiplicity qmimj, 1 ≤ i < j ≤ n,
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where e1, . . . , en is the standard basis in Cn. Note that if all the multiplicities mi = 1 then
the configuration reduces to the configuration BCn(r, s, q) which is a positive half of the
root system BCn with an invariant collection of multiplicities r, s, q.

Let us consider the function F given by (4.3) with Q = 0, that is

F =
∑

α∈BCn(r,s,q;m)

cαf((α, x)). (4.6)

More explicitly the function F can be written as follows:

F =
n∑

i=1

rmif(xi) +
n∑

i=1

(
smi +

1

2
qmi(mi − 1)

)
f(2xi) +

n∑
i<j

qmimjf(xi ± xj). (4.7)

Let us now define the matrix (4.1) by taking

Ak = sin 2xk, (4.8)

where k = 1, ..., n. This choice is motivated by [33] where a solution of WDVV equation
(4.2) for the root system Bn was obtained.

Let us also define the following functions:

bij =

{
cot(xi + xj) + cot(xi − xj), 1 ≤ i ̸= j ≤ n,

0, i = j,

and
bi = cotxi, b̃i = cot 2xi, i = 1, . . . , n.

Lemma 4.2.1. We have the following expression for the third order derivatives of F :

Fklt = rmkbkδklδlt + 4(2smk + qmk(mk − 1))̃bkδklδlt + qδklδlt

n∑
j=1
j ̸=k

mjmkbkj (4.9)

+ qmtmkbtkδkl + qmlmkblkδkt + qmkmlbklδlt,

where k, l, t = 1, ..., n, and δ is the Kronecker symbol.

Proof. We note that the first two terms in (4.9) are obtained from the first two terms in
formula (4.7). The last term in (4.7) contributes the following sum in Fklt:

q
n∑

i<j

mimj

(
(δki + δkj)(δli + δlj)(δti + δtj) cot(xi + xj) (4.10)

+(δki − δkj)(δli − δlj)(δti − δtj) cot(xi − xj)
)
.
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We rearrange some of the terms in (4.10) as follows:

q
n∑

i<j

mimj(δkiδliδti + δkjδljδtj) cot(xi + xj) = q

n∑
j=1
j ̸=k

mjmkδklδlt cot(xk + xj), (4.11)

and

q
n∑

i<j

mimj(δkiδliδti − δkjδljδtj) cot(xi − xj) = q

n∑
j=1
j ̸=k

mjmkδklδlt cot(xk − xj). (4.12)

The sum of expressions (4.11) and (4.12) equals the third term in (4.9). Further on, let
us collect the following terms from (4.10):

q
n∑

i<j

mimj

(
δkiδliδtj + δkjδljδti

)
cot(xi + xj) =

{
qmtmkδkl cot(xt + xk), t ̸= k,

0, t = k,
(4.13)

and

q
n∑

i<j

mimj

(
δkiδliδtj − δkjδljδti

)
cot(xj − xi) =

{
qmtmkδkl cot(xt − xk), t ̸= k,

0, t = k.
(4.14)

The sum of the terms (4.13) and (4.14) equals to qmtmkbtkδkl. Similarly, the sum of the
terms

q
n∑

i<j

mimj

(
δkiδljδtj + δkjδliδti

)
cot(xi + xj) =

{
qmkmlδlt cot(xk + xl), k ̸= l,

0, k = l,

and

q
n∑

i<j

mimj

(
δkiδljδtj − δkjδliδti

)
cot(xi − xj) =

{
qmkmlδlt cot(xk − xl), k ̸= l,

0, k = l

equals qmkmlbklδlt. Finally, the sum of the following terms

q

n∑
i<j

mimj

(
δkiδljδti + δkjδliδtj

)
cot(xi + xj) =

{
qmlmkδkt cot(xl + xk), l ̸= k,

0, l = k,

and

q
n∑

i<j

mimj

(
δkiδljδti − δkjδliδtj

)
cot(xj − xi) =

{
qmlmkδkt cot(xl − xk), k ̸= l,

0, l = k
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equals qmlmkblkδkt. The statement follows.

Lemma 4.2.2. We have the following identities:

Akbkj + Ajbjk = 2(cos 2xk + cos 2xj), 1 ≤ j ̸= k ≤ n, (4.15)

and

Akbjk + Ajbkj = 0, j, k = 1, . . . , n, (4.16)

where Ak is given by (4.8).

Proof. We have

Akbkj + Ajbjk =
Ak sin 2xk − Aj sin 2xj
sin(xk + xj) sin(xk − xj)

=
cos 4xk − cos 4xj
cos 2xk − cos 2xj

,

which implies the first formula (4.15). Identity (4.16) follows similarly.

Now we show that the matrix B is diagonal. Moreover, it is proportional to a constant
diagonal matrix under a particular restriction on the parameters r, q, s.

Proposition 4.2.3. The matrix B = B(x) with the matrix entries

Blt =
n∑

k=1

AkFklt, l, t = 1, . . . , n

is diagonal. Furthermore, if the multiplicities r, q, s and m satisfy the relation

r = −8s− 2q(N − 2), (4.17)

where N =
∑n

k=1mk, then the matrix B takes the form

Blt = mlh(x)δlt, (4.18)

where h(x) = 2q
∑n

k=1mk cos 2xk + r.

Proof. It follows by Lemma 4.2.1 that for l ̸= t

Blt = qmlmt(Albtl + Atblt),

which is equal to zero by Lemma 4.2.2.
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Let us now consider the diagonal entries of B. We have by Lemmas 4.2.1, 4.2.2

Bll = rmlAlbl + 4
(
2sml + qml(ml − 1)

)
Alb̃l + q

n∑
k=1
k ̸=l

mkml(Alblk + Akbkl)

= 2rml cos
2 xl + 4

(
2sml + qml(ml − 1)

)
cos 2xl + 2q

n∑
k=1
k ̸=l

mkml(cos 2xk + cos 2xl).

Then

Bll = 2rml cos
2 xl + 4

(
2sml + qml(ml − 1)

)
cos 2xl + 2q(N − 2ml)ml cos 2xl

+ 2qml

n∑
k=1

mk cos 2xk

= ml

((
r + 8s+ 2q(N − 2)

)
cos 2xl + 2q

n∑
k=1

mk cos 2xk + r
)
,

which implies the statement.

Since now the matrix B is constructed to be proportional to the identity matrix, then
WDVV equations (4.2) are equivalent to the system of equations (4.4) in this case. Now we
define a commutative algebra on TxV as follows. Below summation over repeated indices
will be assumed. Let us now assume that multiplicities mi = 1 for all i = 1, ..., n. For any
vector v = (v1, . . . , vn) ∈ V let us introduce the vector field ∂v = vi∂xi

∈ Γ(TV ). For any
u = (u1, . . . , un) ∈ V we define the following multiplication on the tangent space TxV for
generic x ∈ V :

∂u ∗ ∂v = Fijkuivj∂xk
. (4.19)

Note that multiplication (4.19) defines a commutative algebra on TxV . The following
theorem takes place.

Theorem 4.2.4. Suppose that parameters r, s and q satisfy the linear relation (4.17).
Then function

F = r

n∑
i=1

f(xi) + s

n∑
i=1

f(2xi) + q
∑

1≤i<j≤n

(
f(xi + xj) + f(xi − xj)

)
(4.20)

satisfies WDVV equations (4.2) where B is determined by (4.1) and (4.8). Also, multipli-
cation (4.19) is associative.

Proof. It has been shown in [3] that the function (4.20) satisfies the following system of
equations if the linear relation (4.17) holds:

FiFj = FjFi, (4.21)
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for all i, j = 1, . . . , n. It then follows from Proposition 4.2.3 that conditions (4.21) are
equivalent to WDVV equations (4.2) since the matirx B is proportional to the identity
matrix. Also it is easy to see that associativity of the multiplication (4.19) is equivalent
to the relation (4.21).

Thus, Theorem 4.2.4 leads to Theorem 4.1.3 by the given metric B. Moreover, by
letting parameters s = 0, q = 1, r = η, Theorem 4.2.4 coincides with Theorem 4.1.1, and
in this way a generalisation of Theorem 4.1.1 is obtained. In fact, one can consider a
generalisation of the configuration BCN and show that the corresponding function also
satisfies WDVV equations. By this we aim to generalize Theorem 4.2.4 to the configuration
BCn(q, r, s;m), that is to the case of arbitrary multiplicities mi. This generalization can
be formulated as follows. In the remaining part of the chapter we prove generalization
of Theorem 4.2.4 to the configuration BCn(q, r, s;m), that is to the case of arbitrary
multiplicities mi. This generalization can be formulated as follows.

Theorem 4.2.5. Suppose parameters r, s, q and m satisfy the relation

r = −8s− 2q(N − 2), (4.22)

where N =
∑n

i=1mi. Then prepotential (4.7) satisfies WDVV equations (4.2) where B =∑n
i=1 sin 2xiFi.

Remark 4.2.6. Theorem 4.2.5 generalizes Theorem 2.3 from [33]. In this case we have
all mi = 1 and s = 0. Then putting q = 1 we get the standard BN root system and the
condition (4.22) reduces to r = −2(N − 2) which is the multiplicity of the short root of
BN root system considered in [33].

Remark 4.2.7. In the rational limit solutions (4.7) of WDVV equations reduce to Bn

family of ∨-systems found in [13].

4.3 Proof through restrictions

Let A be the configuration A = BCN(r, s, q) ⊂ W ∼= CN , N ∈ N. Let e1, . . . , eN be the
standard basis of W. Let (·, ·) be the standard inner product which is defined by

(x, y) =
N∑
i=1

xiyi, (4.23)

where x = (x1, . . . , xN), y = (y1, . . . , yN) ∈ W. Let n ∈ N and m = (m1, . . . ,mn) with
mi ∈ N such that

∑n
i=1mi = N . Let us consider subsystem B ⊂ A as follows:

B = {e∑i−1
j=1 mj+k − e∑i−1

j=1 mj+l, 1 ≤ k < l ≤ mi, i = 1, . . . , n}.
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Now let us consider the corresponding subspace of W of dimension n given by

WB = {x ∈ W : (β, x) = 0,∀β ∈ B}.

More explicitly, vectors x = (x1, . . . , xN) ∈ WB satisfy conditions:

x1 = · · · = xm1 ,

xm1+1 = · · · = xm1+m2 ,

...

x∑n−1
i=1 mi+1 = · · · = xN .

For any vector v = (v1, . . . , vN) ∈ W let us define the vector field ∂v = vi∂xi
∈ TW .

For any u = (u1, . . . , uN) ∈ W we define the following multiplication on the tangent plane
TxW for generic x ∈ W :

∂u ∗ ∂v = uivjFijk∂xk
, (4.24)

where the function F is given by

F =
∑
α∈A

cαf((α, x)). (4.25)

Assume that parameters r, s, q and m satisfy the relation r = −8s − 2q(N − 2). Then
multiplication (4.24) is associative by Theorem 4.2.4 (applied with n = N). Note that
function (4.25) satisfies

Fijk =
∑
α∈A

cααiαjαk cot(α, x),

hence multiplication (4.24) can be expressed as follows:

∂u ∗ ∂v =
∑
α∈A

cα(α, u)(α, v) cot(α, x)∂α. (4.26)

If we identify W with TxW ∼= W, then multiplication (4.26) takes the form

u ∗ v =
∑
α∈A

cα(α, u)(α, v) cot(α, x)α. (4.27)

Define MB = WB \
⋃

α∈A\B Πα, where Πα = {x ∈ W : (α, x) = 0}. Consider now a point
x0 ∈ MB and two tangent vectors u0, v0 ∈ Tx0MB. We extend vectors u0 and v0 to two
local analytic vector fields u(x), v(x) in the neighbourhood U of x0 that are tangent to the
subspace WB at any point x ∈MB∩U such that u0 = u(x0) and v0 = v(x0). Now we want
to study the limit of u(x) ∗ v(x) when x tends to x0. The limit may have singularities at
x ∈ WB as cot(α, x) with α ∈ B is not defined for such x. Also we note that outside WB
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we have a well-defined multiplication u(x) ∗ v(x). Similarly to the rational case considered
in [25] and trigonometric case with extra variable [1] the following lemma holds.

Lemma 4.3.1. The product u(x) ∗ v(x) has a limit when x tends to x0 ∈MB given by

u0 ∗ v0 =
∑

α∈A\B

cα(α, u0)(α, v0) cot(α, x0)α. (4.28)

In particular u0 ∗ v0 is determined by u0 and v0 only.

Now we are going to show that the product u0 ∗ v0 belongs to Tx0MB. We will need
the following lemma (cf. [25], [1]).

Lemma 4.3.2. Let α ∈ A. Let x ∈ Πα be generic. Then the identity∑
β∈A
β≁α

cβ(α, β) cot(β, x)Bα,β(a, b)α ∧ β = 0 (4.29)

holds for all a, b ∈ V provided that (α, x) = 0, where Bα,β(a, b) = (α, a)(β, b)− (α, b)(β, a)

and α ∧ β = α⊗ β − β ⊗ α.

Proof. For any β ∈ A such that β ≁ α let γ = sαβ, where sα is the orthogonal reflection
about Πα. Note that cot(γ, x) = cot(β, x) at (α, x) = 0. Also note that

(α, γ) = −(α, β), Bα,γ(a, b) = Bα,β(a, b), α ∧ γ = α ∧ β.

We have that either γ or −γ is an element of A. Suppose firstly that γ ∈ A. Then

cβ(α, β) cot(β, x)Bα,β(a, b)α ∧ β + cγ(α, γ) cot(γ, x)Bα,γ(a, b)α ∧ γ = 0 (4.30)

at (α, x) = 0 since multiplicities are BN -invariant. If one replaces γ with −γ then (4.30)
holds as well.

Proposition 4.3.3. Let u, v ∈ TxMB where x ∈MB. Then u ∗ v ∈ TxMB.

Proof. By Lemma 4.3.1 it is enough to show that∑
β∈A\B

cβ(β, u)(β, v)(α, β) cot(β, x) = 0 (4.31)

for all α ∈ B. Assume firstly that WB has codimension 1. By Lemma 4.3.2 we get∑
β∈A
β≁α

cβ(α, β) cot(β, x)
(
(α, a)(β, b)− (α, b)(β, a)

)(
(α, y)(β, z)− (α, z)(β, y)

)
= 0 (4.32)
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for any a, b, y, z ∈ V and generic x ∈ Πα. Assume that a, y /∈ Πα and let b = u ∈ Πα and
z = v ∈ Πα. Then (α, b) = (α, z) = 0 and relation (4.32) implies that∑

β∈A
β≁α

cβ(α, β)(β, u)(β, v) cot(β, x) = 0.

As WB has codimension 1 the relation β ≁ α is equivalent to β ∈ A\B and lemma follows.
Let us now suppose that WB has codimension 2. Let α, γ ∈ B be non-proportional

to each other. By the above arguments for generic x ∈ Πα and u, v ∈ TxΠα, we have
u ∗ v ∈ TxΠα. Similarly, if x ∈ Πγ is generic and u, v ∈ TxΠγ, then u ∗ v ∈ TxΠγ. By
Lemma 4.3.1, u ∗ v exists for x ∈MB and u, v ∈ TxMB. It follows that for any x ∈MB we
have u ∗ v ∈ TxMB, which proves the statement for the case when WB has codimension 2.

General WB is dealt with similarly.

Consider now the orthogonal decomposition

W = WB ⊕W⊥
B (4.33)

with respect to the standard inner product. Any α ∈ W can be written as

α = α̃ + w, (4.34)

where α̃ ∈ WB is the orthogonal projection of vector α to WB and w ∈ W⊥
B . For any

x0 ∈MB and u, v ∈ Tx0MB one can represent product u ∗ v as

u ∗ v =
∑

α∈A\B

cα(α, u)(α, v) cot(α, x0)α̃ (4.35)

by Proposition 4.3.3. Hence, we have

∂u ∗ ∂v =
∑

α∈A\B

cα(α, u)(α, v) cot(α, x)∂α̃. (4.36)

Let us define vectors fi, 1 ≤ i ≤ n, by

fi =

mi∑
j=1

e∑i−1
s=1 ms+j. (4.37)

These vectors form a basis for WB.

The following lemma gives the general formula for the orthogonal projection of any
vector u ∈ W to WB.
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Lemma 4.3.4. Let u =
∑N

i=1 uiei ∈ W. Then the projection ũ has the form

ũ =

(
1

m1

m1∑
i=1

ui, . . . ,
1

m1

m1∑
i=1

ui︸ ︷︷ ︸
m1

, . . . ,
1

mn

mn∑
i=1

u∑n−1
s=1 ms+i, . . . ,

1

mn

mn∑
i=1

u∑n−1
s=1 ms+i︸ ︷︷ ︸

mn

)
. (4.38)

Let us now project A to the subspace WB. Notice that by Lemma 4.3.4 we have

ẽ∑i−1
s=1 ms+1 = · · · = ẽ∑i

s=1 ms
= m−1

i fi, i = 1, . . . , n.

Let us denote the projected system as Ã = BCn(q, r, s;m) ⊂ WB ∼= Cn. It consists of
vectors α with the corresponding multiplicities cα given as follows:

f̂i = m−1
i fi, with multiplicity rmi, 1 ≤ i ≤ n,

2f̂i = 2m−1
i fi, with multiplicity smi +

1

2
qmi(mi − 1), 1 ≤ i ≤ n,

f̂i ± f̂j = m−1
i fi ±m−1

j fj, with multiplicity qmimj, 1 ≤ i < j ≤ n.

By Lemma 4.3.4, for any α ∈ W, its orthogonal projection has the form

α̃ =
n∑

k=1

α̃kfk,

where the basis fk is given by (4.37) and

α̃k =
(α̃, fk)

(fk, fk)
=

(α, fk)

mk

. (4.39)

Let us define
F̃ (x̃) =

∑
γ∈Ã

cγf((γ, x̃)), (4.40)

where

x̃ =
n∑

i=1

x̃ifi ∈ WB. (4.41)

Note that function (4.40) can also be represented as

F̃ (x̃) =
∑

α∈A\B

cαf((α, x̃)).

Let F̃i be the n × n matrix constructed from the third-order partial derivatives of the
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function F̃ , that is

(F̃i)jk = F̃ijk =
∂3F̃

∂x̃i∂x̃j∂x̃k
,

i, j, k = 1, . . . , n.

The following lemma gives another way to represent multiplication (4.36) on WB.

Lemma 4.3.5. The multiplication (4.36) takes the form

∂fi ∗ ∂fj =
n∑

k=1

m−1
k F̃ijk∂fk , i, j = 1, ..., n.

Proof. We rearrange ∂α̃ in the right-hand side of (4.36) as

∂α̃ =
n∑

k=1

α̃k∂fk =
n∑

k=1

m−1
k (α, fk)∂fk

by (4.39). Therefore the multiplication (4.36) can be rewritten as

∂fi ∗ ∂fj =
∑

α∈A\B

n∑
k=1

cαm
−1
k (α, fi)(α, fj)(α, fk) cot(α, x̃)∂fk

=
n∑

k=1

m−1
k F̃ijk∂fk , i, j = 1, ..., n,

as required.

Let HB be the matrix of the restriction of the standard inner product on WB in the
basis f1, . . . , fn. That is

(HB)lt = (fl, ft) = mlδlt, l, t = 1, . . . , n. (4.42)

Lemma 4.3.6. The matrix HB can be written as a linear combination

HB =
n∑

i=1

aiF̃i,

where functions ai are given by ai = h(x̃)−1sin 2x̃i, and h(x̃) = 2q
∑n

k=1mk cos 2x̃k + r.

Proof. By Proposition 4.2.3 and (4.42), we haveHB = h(x̃)−1B(x̃), whereB(x̃) =
n∑

i=1

(sin 2x̃i)F̃i.

This implies the statement.

The previous considerations allow us to prove the following theorem, which is a version
of stated earlier Theorem 4.2.5 where multiplicities mi do not have to be integer.
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Theorem 4.3.7. Suppose parameters r, s, q and m satisfy the relation

r = −8s− 2q(N − 2), (4.43)

where N =
∑n

i=1mi. Then the prepotential

F̃ =
∑
α∈Ã

cαf((α, x̃)), x̃ ∈ WB, (4.44)

satisfies the WDVV equations

F̃iB
−1F̃j = F̃jB

−1F̃i, i, j = 1, ..., n, (4.45)

where B =
∑n

i=1 sin 2x̃iF̃i.

The corresponding associative multiplication has the form

u ∗ v =
∑
α∈Ã

cα(α, u)(α, v) cot(α, x̃)α

for any u, v ∈ Tx̃MB, x̃ ∈MB.

Proof. Let us assume firstly that mi ∈ N for any i. Consider the multiplication

u ∗ v =
∑

α∈BCN (r,s,q)

cα(α, u)(α, v) cot(α, x)α (4.46)

on the tangent space TxW for x ∈ W. By Theorem 4.2.4 the multiplication (4.46) is
associative. Now as x tends to x̃ ∈MB, by Lemmas 4.3.1, 4.3.5 and Proposition 4.3.3 this
product restricts to an associative product on the tangent space Tx̃MB which has the form

∂fi ∗ ∂fj =
n∑

l=1

m−1
l F̃ijl∂fl , 1 ≤ i, j ≤ n. (4.47)

The associativity condition

(∂fi ∗ ∂fj) ∗ ∂fk = ∂fi ∗ (∂fj ∗ ∂fk),

for any i, j, k = 1, . . . , n, can be rearranged as

n∑
l=1

m−1
l F̃ijl∂fl ∗ ∂fk =

n∑
l=1

m−1
l F̃jkl∂fi ∗ ∂fl .
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Hence, we have

n∑
l=1

m−1
l F̃ijlF̃lkp =

n∑
l=1

m−1
l F̃jklF̃ilp, (4.48)

for any i, j, k, p = 1, . . . , n. In the matrix form we have

F̃iH
−1
B F̃k = F̃kH

−1
B F̃i.

By Lemma 4.3.6 we obtain relation (4.45) where B =
∑n

i=1 sinh 2x̃iF̃i as required. This
proves the theorem for the case when mi ∈ N. Since mi can take arbitrary integer values
the statement follows for general mi as well.

4.4 Application to supersymmetric mechanical systems

One of the topics where (generalised) WDVV equations emerge include N = 4 supersym-
metric mechanics. These corresponding differential equations are similar to what we have
discussed in Chapter 2 but they rather have the form of commutativity

FiFj = FjFi, i, j = 1, . . . , N, (4.49)

where Fi is the matrix of the third order derivative of a prepotential F given by

Fijk =
∂3F

∂xi∂xj∂xk
, i, j, k = 1, . . . , N.

Wyllard in [56] (see also [9]) constructed a set of generators of N = 4 supersymmetric
mechanics, where his ansatz for the four supercharges involves two scalar prepotentials F
and W which depend on position of particles only. The case when the second prepoten-
tional W = 0 was also considered in [56] (see also [30, 31]), and we will be interested in
this case only. The structure of such an algebra forces functions F and W to satisfy a
system of partial differential equations. The setting of the structure leads to the result
that the function F obeys the comutativity equations [9].

There are two approaches to deal with the arising system of partial differential equa-
tions [9]. The first way is to start with a particular known solution of the commutativity
equations (4.49) for the prepotential F and then construct an N = 4 superconformal
multi–particle model associated to it. Alternatively, one can start with a bosonic confor-
mally invariant multi–particle mechanics and then seek a solution of equations (4.49) that
will provide an N = 4 superconformal extension. We follow the first approach. Motivated
by the family of multi-parameters solutions (4.7) we obtained in the previous section for
BCN type root system, we apply these solutions in order to construct N = 4 supersym-
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metric mechanical systems. Note that trigonometric solutions of WDVV equations were
used to construct N = 4 supersymmetric Hamiltonians in [3]. This gave, in particular, su-
persymmetric version of quantum Calogero–Moser–Sutherland system of type BCN with
two independent coupling parameters. We extend this Hamiltonian into multiparameter
family. Note also that any rational ∨-system leads to N = 4 supersymmetric mechanical
systems (see [4] and references therein).

4.4.1 Notations and ansatz for supercharges (trigonometric set-

tings)

Particles can be classified in two general classes: bosons and fermions. Bosons and fermions
have very different physical behaviour. One of the main differences is that bosonic fields
obey canonical commutation relations, that is, involve the commutators [a, b] = ab −
ba, while fermionic fields obey canonical anti-commutation relations, that is, involve the
anticommutators {a, b} = ab + ba. In order to implement an N = 4 supersymmetric
mechanical system, consider N (quantum) particles on a line with coordinates xj and
momenta pj = −i∂xj

, (j = 1, . . . , N), to each of which we assign four fermionic variables.
Let us denote them by {ψaj, ψ̄j

a | a = 1, 2, j = 1, . . . , N}. They obey the standard (anti)-
commutation rules (a, b = 1, 2, j, k = 1, . . . , N):

[xj, pk] = iδjk, {ψaj, ψ̄k
b } = −1

2
δjkδab, {ψaj, ψbk} = {ψ̄j

a, ψ̄
k
b } = 0.

Then there are four supercharges {Qa, Q̄b | a, b = 1, 2} which generate the N = 4 super-
symmetry algebra. The N = 4 supersymmetry algebra has the form

{Qa, Qb} = {Q̄a, Q̄b} = 0, HSUSY = −1

2
(QaQ̄a + Q̄aQ

a), (4.50)

where HSUSY is the supersymmetric Hamiltonian.
Two different representations of N = 4 supersymmetry algebra were constructed in [3]

(see also references therein for one of the representations). The corresponding supercharges
depend on a prepotential of the form (4.3) (with Q = 0). This prepotential is assumed to
satisfy equations of the form (4.4). In our application we follow the considerations of [3]
of N = 4 supersymmetry algebra, so let us recall these settings.

Let ϵab, ϵab be the fully anti-symmetric tensors in two dimensions such that ϵ12 = ϵ21 = 1.
These tensors are used to lower and raise indices, for example Qa = ϵabQb, Q̄a = ϵabQ̄b.

Further fermionic variables are introduced by

ψj
a = ϵabψ

bj, ψ̄aj = ϵabψ̄j
b . (4.51)



CHAPTER 4. TRIGONOMETRIC SOLUTIONS WITHOUT EXTRA VARIABLE 126

They satisfy the following useful relations:

{ψj
a, ψ̄

bk} =
1

2
δjkδba, {ψaj, ψ̄bk} =

1

2
δjkϵab, {ψj

a, ψ̄
k
b } =

1

2
δjkϵba. (4.52)

Throughout it is assumed that summation over repeated indices takes place (even when
both indices are either low or upper indices) unless it is indicated that no summation is
applied.

A function F = F (x1, . . . , xN) of the form (4.3) with Q = 0 is considered, that is

F =
∑
α∈A

cαf((α, x)), (4.53)

where A is a finite set of vectors in V ∼= CN , cα ∈ C, are some multiplicity parameters,
the function f is given by (1.11).

The function F is assumed to satisfy the commutativity equations

FrjkFkmn = FrmkFkjn, (4.54)

where Frjk =
∂3F

∂xr∂xj∂xk
for any r, j, k,m, n = 1, . . . , N .

For the first representation the supercharges are of the form

Qa = prψ
ar + iFrjk⟨ψbrψj

b ψ̄
ak⟩,

Q̄c = plψ̄
l
c + iFlmn⟨ψ̄l

dψ̄
dmψn

c ⟩,

a, c = 1, 2, where the symbol ⟨. . . ⟩ stands for the anti-symmetrisation. That is given N

operators Ai, (i = 1, . . . , N) we define

⟨A1 . . . AN⟩ =
1

N !

∑
σ∈SN

sgn(σ)Aσ(1) . . . Aσ(N). (4.55)

The following statement takes place.

Theorem 4.4.1. [3] Let us assume that F satisfies conditions (4.54). Then for all a, b =
1, 2 we have

{Qa, Qb} = {Q̄a, Q̄b} = 0 and {Qa, Q̄b} = −2Hδab ,

where the Hamiltonian H is given by

H =
p2

4
− ∂iFjlk

2
(ψbiψj

b ψ̄
l
dψ̄

dk − ψi
bψ̄

bjδlk +
1

4
δijδlk) +

1

16
FijkFlmnδ

nmδjlδik.
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Furthermore, the rescaled Hamiltonian H1 = 4H has the form

H1 = −∆+
1

2

∑
α∈A

cα(α, α)
2

sin2(α, x)
+
1

4

∑
α,β∈A

cαcβ(α, α)(β, β)(α, β) cot(α, x) cot(β, x)+Φ, (4.56)

where ∆ = −p2 is the Laplacian in V and the fermionic term

Φ =
∑
α∈A

2cααiαj

sin2(α, x)

(
αlαkψ

biψj
b ψ̄

l
dψ̄

dk − (α, α)ψi
bψ̄

bj
)
. (4.57)

For the second representation the supercharges are of the form

Qa = prψ
ar + iFrjkψ

brψj
b ψ̄

ak,

Q̄c = plψ̄
l
c + iFlmnψ̄

l
dψ̄

dmψn
c ,

a, c = 1, 2. Then the following statement on supersymmetry algebra takes place [3].

Theorem 4.4.2. [3]. Let us assume that F satisfies conditions (4.54). Then for all
a, b = 1, 2 we have

{Qa, Qb} = {Q̄a, Q̄b} = 0 and {Qa, Q̄b} = −2Hδab ,

where the Hamiltonian H is given by

H =
p2

4
− ∂rFjlk

2
(ψbrψj

b ψ̄
l
dψ̄

dk − ψr
b ψ̄

bjδlk) +
i

4
δnmFrmnpr. (4.58)

Furthermore, the rescaled Hamiltonian H2 = 4H, has the form

H2 = −∆+
∑
α∈A

cα(α, α) cot(α, x)∂α + Φ, (4.59)

where Φ is the fermionic term defined by (4.57).

The following result holds.

Proposition 4.4.3. [3]. Hamiltonians H1, H2 from Theorems 4.4.1, 4.4.2 respectively
satisfy gauge relation

δ−1 ◦H2 ◦ δ = H1,

where δ =
∏

α∈A sincα(α,α)/2(α, x).

The following theorem deals with BCN root system and has been proven in [3].
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Theorem 4.4.4. [3] Let R = BCN . Under the assumptions of Theorem 4.1.3 where the
positive half of the root system BCN is defined by

ηei, 2ηei, 1 ≤ i ≤ N ; η(ei ± ej), 1 ≤ i < j ≤ N,

where η ∈ C× is a parameter, the corresponding supersymmetric Hamiltonians given by
(4.56), (4.59), take the form

H1 = −∆+ η4
N∑
i=1

((8s+ 2(N − 2)q)(2(N − 2)qη2 − 1)

sin2 ηxi
+

16s(4sη2 + 1)

sin2 2ηxi

)
(4.60)

+ η4
N∑
i<j

4q(2qη2 + 1)

sin2(η(xi ± xj))
+ Φ̃,

and

H2 = −∆+ 2η3
N∑
i=1

(
8s cot 2ηxi − (8s+ 2(N − 2)q) cot ηxi

)
∂i (4.61)

+ 4qη3
N∑
i<j

cot(η(xi ± xj))(∂i ± ∂j) + Φ,

with Φ given by

Φ = 4η4
N∑
i=1

(−(8s+ 2(N − 2)q)

sin2 ηxi
+

16s

sin2 2ηxi

)(
ψbiψi

bψ̄
i
dψ̄

di − ψi
bψ̄

bi
)

+ 4η4
∑

ϵ∈{1,−1}

N∑
m<t

∑
i,j,l,k

qdmtidmtj

sin2(η(xm + ϵxt))

(
dmtldmtkψ

biψj
b ψ̄

l
dψ̄

dk − 2ψi
bψ̄

bj
)
,

where dmtk = dmtk(ϵ) = δmk + ϵδtk, and Φ̃ = Φ + const.

Remark 4.4.5. The supersymmetric Hamiltonians corresponding to root systems of type
F4 and G2 are given in details in [3] (see also [4]).

4.4.2 Multi-parametr generalization

In this section we generalize Theorem 4.4.4 by introducing extra parameters in the Hamil-
tonians following [2] .

Let us define coordinates x̂ = (x̂1, . . . , x̂n) ∈ Cn by x̂i = m
1/2
i xi (1 ≤ i ≤ n). Let Λ

be the n × n diagonal matrix Λ = (m
1/2
i δij)

n
i,j=1. Let F be given by formula (4.7) with

relation (4.17) on parameters r, q, s. By Proposition 4.2.3 the matrix B can be represented
as B = h(x)Λ2. Let us define a function F̂ (x̂) such that F̂ (x̂) = F (x(x̂)). Consider the
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n× n matrices F̂k with entries

(F̂k)lt = F̂klt =
∂3F̂

∂x̂k∂x̂l∂x̂t
, (4.62)

k, l, t = 1, . . . , n. Note that F̂k = m
−1/2
k Λ−1FkΛ

−1, where Fk is the matrix with entries
(Fk)lt = Fklt. Let B̂ be the n × n matrix with entries B̂ij = hδij, where h = h(x(x̂)) is
given in Proposition 4.2.3.

Proposition 4.4.6. The metric B̂ can be represented as

B̂ =
n∑

k=1

m
1/2
k sin(2m

−1/2
k x̂k)F̂k,

and the function F̂ satisfies generalised WDVV equations of the form

F̂iF̂j = F̂jF̂i, (4.63)

for all i, j = 1, . . . , n.

Proof. The first part of the statement is immediate by Proposition 4.2.3. Consider the
left-hand side of (4.63). We have

F̂iF̂j = (mimj)
−1/2Λ−1FiΛ

−2FjΛ
−1 = h(mimj)

−1/2Λ−1FiB
−1FjΛ

−1. (4.64)

It follows by Theorem 4.2.5 that the rightmost expression in (4.64) is unchanged if one
swaps i and j, hence the statement follows.

It follows by Proposition 4.4.6 that the function F̂ satisfies such type of equations,
hence we obtain in this way two supersymmetric Hamiltonians Hi, i = 1, 2 for a family
of BCn type configurations. We give these Hamiltonians in detail. Let us consider the
following configuration Â ⊂ Cn of vectors α with multiplicities cα:

m
−1/2
i ei, with multiplicity rmi, 1 ≤ i ≤ n,

2m
−1/2
i ei, with multiplicity smi +

1

2
qmi(mi − 1), 1 ≤ i ≤ n,

m
−1/2
i ei ±m

−1/2
j ej, with multiplicity qmimj, 1 ≤ i < j ≤ n,

where m1, . . . ,mn ∈ C∗. Consider n (quantum) particles on a line with coordinates x̂j and
momenta pj = −i∂x̂j

, (j = 1, . . . , n), to each of which we associate four fermionic variables
ψaj, ψ̄j

a, a = 1, 2. These variables may be thought of as operators acting on wavefunctions
which depend on bosonic and fermionic variables. Let ϵab be the fully anti-symmetric
tensors in two dimensions such that ϵ12 = −ϵ21 = 1.
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Fermionic variables are assumed to satisfy the following (anti)-commutation relations
(a, b = 1, 2; j, k = 1, . . . , n):

{ψaj, ψ̄k
b } = −1

2
δjkδab, {ψaj, ψbk} = {ψ̄j

a, ψ̄
k
b } = 0.

We consider supercharges of the form

Qa = −i ∂
∂x̂r

ψar + iF̂rjk

(
ϵbcϵdaψ

brψcjψ̄k
d −

1

2
ψarδjk

)
,

Q̄a = −i ∂
∂x̂l

ψ̄l
a + iF̂lmn

(
ϵbdϵacψ̄

l
dψ̄

m
b ψ

cn − 1

2
ψ̄l
aδnm

)
,

where a = 1, 2, F̂ijk is defined in (4.62), and we assume summation over repeated indices.
Let ∆ =

∑n
j=1 ∂

2
x̂j

be the Laplacian in Cn. We have the following statement on the
supersymmetry algebra which follows from [3] (see Theorems 4.4.1, 4.4.2 above).

Theorem 4.4.7. For all a, b = 1, 2 the supercharges Qa, Q̄b satisfy N = 4 supersymmetry
algebra relations

{Qa, Qb} = {Q̄a, Q̄b} = 0, and {Qa, Q̄b} = −1

2
H1δab,

where the Hamiltonian H1 is given by

H1 = −∆+
1

2

∑
α∈Â

cα(α, α)
2

sin2(α, x̂)
+

1

4

∑
α,β∈Â

cαcβ(α, α)(β, β)(α, β) cot(α, x̂) cot(β, x̂) + Φ,

(4.65)

with the fermionic term

Φ =
∑
α∈Â

2cααiαj

sin2(α, x̂)

(
αlαkϵbcϵadψ

biψcjψ̄l
dψ̄

k
a + (α, α)ψaiψ̄j

a

)
. (4.66)

The Hamiltonian H1 is formally self-adjoint. Similar considerations (see [3]) yield not
self-adjoint Hamiltonian of the form

H2 = −∆+
∑
α∈Â

cα(α, α) cot(α, x̂)∂α + Φ (4.67)

with the same fermionic term Φ. In fact Hamiltonians H1, H2 satisfy gauge relation
H2 = gH1g

−1, where g =
∏

α∈Â sincα(α,α)/2(α, x̂) (see Proposition 4.4.3 above). Super-
symmetric Hamiltonians H1, H2 given by formulas (4.65), (4.67) give multi-parameter
generalization of the two-parameter supersymmetric Hamiltonians related to the root sys-
tem BCn considered in [3].
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4.5 Commutativity equations and Euclidean trigono-

metric ∨-systems

In this section let A be a finite set of vectors in an N -dimensional Euclidean space V
with the bilinear inner product (·, ·). Let cα ∈ C, α ∈ A be some multiplicity parameters.
Assume that A belongs to a lattice of rank N . For each vector α ∈ A we recall the set of
its collinear vectors from A:

δα := {γ ∈ A : γ ∼ α}.

Let δ ⊆ δα and α0 ∈ δα. Then for any γ ∈ δ we have γ = kγα0 for some kγ ∈ R. Note that
kγ depends on the choice of α0 and different choices of α0 give rescaled collections of these
parameters. Define Cα0

δ :=
∑
γ∈δ

cγk
2
γ. Note that Cα0

δ is non-zero if and only if C α̃0
δ ̸= 0 for

any α̃0 ∈ δ. Let us also recall the definition of series of vectors.
For any α ∈ A let us distribute all the vectors in A\δα into a disjoint union of α-series

A \ δα =
k⊔

s=1

Γs
α

where k ∈ N depends on α. These series Γs
α are determined by the property that for

any s = 1, . . . , k and for any two covectors γ1, γ2 ∈ Γs
α one has either γ1 + γ2 = mα or

γ1 − γ2 = mα for some m ∈ Z. We assume that the series are maximal, that is if γ ∈ Γs
α

for some s ∈ N, then Γs
α must contain all the covectors of the form ±γ +mα ∈ A with

m ∈ Z.
Let us now define Euclidean trigonometric ∨-system in analogy with trigonometric

∨-system with the bilinear form GA replaced by the inner product (·, ·).

Definition 4.5.1. The pair (A, c) is called a Euclidean trigonometric ∨-system if for all
α ∈ A and for any α-series Γs

α, one has the relation∑
β∈Γs

α

cβ(α, β)α ∧ β = 0. (4.68)

Now we give two examples which illustrate this notion. The corresponding canonical
form GA is identically zero in both cases.

Proposition 4.5.2. Let A = {e1, 23e2,
1
2
e1 ± 1

6
e2,

1
2
(e1 ± e2)} ⊂ C2 with the correspond-

ing multiplicities {−2,−3
2
, 3, 1}. Then A is a Euclidean trigonometric ∨-system with the

bilinear form defined by (x, y) = x1y1 − 3x2y2, where x = (x1, x2), y = (y1, y2) ∈ C2.

Proof. To simplify notations let us introduce the following vectors:

α1 = e1, α2 =
2

3
e2, α3 =

1

2
e1 +

1

6
e2, α4 =

1

2
e1 −

1

6
e2, α5 =

1

2
(e1 + e2), α6 =

1

2
(e1 − e2).
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Then we have the following α-series:

Γ1
α1

= {α2}, Γ2
α1

= {α3, α4}, Γ3
α1

= {α5, α6},

Γ1
α2

= {α1}, Γ2
α2

= {α3, α6}, Γ3
α2

= {α4, α5},

Γ1
α3

= {α1, α4}, Γ2
α3

= {α2, α6}, Γ3
α3

= {α5},

Γ1
α4

= {α1, α3}, Γ2
α4

= {α2, α5}, Γ3
α4

= {α6},

Γ1
α5

= {α1, α6}, Γ2
α5

= {α2, α4}, Γ3
α5

= {α3},

Γ1
α6

= {α1, α5}, Γ2
α6

= {α2, α3}, Γ3
α6

= {α4}.

We also have the following inner products:

(α1, α2) = 0, (α1, α3) =
1

2
, (α1, α4) =

1

2
, (α1, α5) =

1

2
, (α1, α6) =

1

2
,

(α2, α3) = −1

3
, (α2, α4) =

1

3
, (α2, α5) = −1, (α2, α6) = 1, (α3, α4) =

1

3
,

(α3, α5) = 0, (α3, α6) =
1

2
, (α4, α5) =

1

2
, (α4, α6) = 0, (α5, α6) = 1.

Then it is easy to check that condition (4.68) holds for all α-series, α ∈ A.

Remark 4.5.3. Let Ã be the configuration of covectors on the plane given in Proposi-
tion 3.5.7. That is Ã = {e1, e2, 2e2, 1

2
(e1 ± e2), 1

2
(e1 ± 3e2)} ⊂ C2 with the corresponding

multiplicities {a(3a−2b)
3a+4b

, 3a + 2b, b, 3a, a}. Then for x = (x1, x2), y = (y1, y2) ∈ C2 we have
the canonical form

GÃ(x, y) =
3(3a+ 2b)

3a+ 4b

(
ax1y1 + (3a+ 4b)x2y2

)
.

By letting multiplicity b = −3
2
a we get the following configuration Ã1 = {e1, 2e2, 1

2
(e1 ±

e2), 1
2
(e1 ± 3e2)} with the corresponding multiplicities {−2a,−3

2
a, 3a, a}. For this config-

uration the canonical form GÃ1
≡ 0. We regularise GÃ1

by defining a new non-degenerate
bilinear form as follows

(x, y) = − lim
b→− 3a

2

GÃ(x, y)

3a+ 2b
= x1y1 − 3x2y2. (4.69)

Note that configuration A given in Proposition 4.5.2 contains vectors dual to the
covectors in system Ã1 with respect to the form (4.69).

Proposition 4.5.4. Let A = {2e1, 12e2, e1±
1
2
e2, e1±e2} ⊂ C2 with the corresponding mul-

tiplicities {−1
4
, 2, 1,−1

2
}. Then A is a Euclidean trigonometric ∨-system with the bilinear

form defined by (x, y) = x1y1 + 2x2y2, where x = (x1, x2), y = (y1, y2) ∈ C2.
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Proof. To simplify notations let us introduce the following vectors:

α1 = 2e1, α2 =
1

2
e2, α3 = e1 +

1

2
e2, α4 = e1 −

1

2
e2, α5 = e1 + e2, α6 = e1 − e2.

Then we have the following α-series:

Γ1
α1

= {α2}, Γ2
α1

= {α3, α4}, Γ3
α1

= {α5, α6},

Γ1
α2

= {α1}, Γ2
α2

= {α3, α4, α5, α6},

Γ1
α3

= {α1, α4}, Γ2
α3

= {α2, α5}, Γ3
α3

= {α6},

Γ1
α4

= {α1, α3}, Γ2
α4

= {α2, α6}, Γ3
α4

= {α5},

Γ1
α5

= {α1, α6}, Γ2
α5

= {α2, α3}, Γ3
α5

= {α4},

Γ1
α6

= {α1, α5}, Γ2
α6

= {α2, α4}, Γ3
α6

= {α3}.

We also have the following inner products:

(α1, α2) = 0, (α1, α3) = 2, (α1, α4) = 2, (α1, α5) = 2, (α1, α6) = 2,

(α2, α3) =
1

2
, (α2, α4) = −1

2
, (α2, α5) = 1, (α2, α6) = −1, (α3, α4) =

1

2
,

(α3, α5) = 2, (α3, α6) = 0, (α4, α5) = 0, (α4, α6) = 2, (α5, α6) = −1.

Then it is easy to check that condition (4.68) holds for all α-series, α ∈ A.

Remark 4.5.5. Let Ã be the configuration of covectors on the plane given in Proposi-
tion 3.5.9. That is Ã = {e1, 2e1, e2, 2e2, e1 ± e2, e1 ± 2e2} ⊂ C2 with the corresponding
multiplicities {2a, a

2
− b

4
, 2b, a, b, a − b

2
}. Then for x = (x1, x2), y = (y1, y2) ∈ C2 we have

the canonical form
GÃ(x, y) = 6a(x1y1 + 2x2y2

)
.

By letting multiplicity a = 0 we get the following configuration Ã1 = {2e1, e2, e1± e2, e1±
2e2} with the corresponding multiplicities {− b

4
, 2b, b,− b

2
}. For this configuration the

canonical form GÃ1
≡ 0. We regularise GÃ1

by defining a new non-degenerate bilinear
form as follows

(x, y) = lim
a→0

GÃ(x, y)

6a
= x1y1 + 2x2y2. (4.70)

Note that configuration A given in Proposition 4.5.4 contains vectors dual to the covectors
in system Ã1 with respect to the form (4.70).

Let us consider the function F given by the formula (4.53). We are interested in con-
figurations A with a multiplicity function c(α) = cα, α ∈ A, such that the commutativity
equations (4.49) hold.

In what follows we investigate the relation between the commutativity equations (4.49)
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for the function (4.53) and Euclidean trigonometric ∨-systems.

Lemma 4.5.6. The commutativity equations (4.49) for the function (4.53) are equivalent
to the identity ∑

α,β∈A

cαcβ(α, β) cot(α, x) cot(β, x)Bα,β(a, b)α ∧ β = 0, (4.71)

for all a, b ∈ V, where Bα,β(a, b) = α ∧ β(a, b) = (α, a)(β, b)− (α, b)(β, a).

Proof. Let Fa be the N × N matrix of the third order derivatives of the function (4.53)
with entries

(Fa)ij =
∂3F

∂xa∂xi∂xj
.

Then from the formula (4.53) we have

(Fa)ij =
∑
α∈A

cα(α, a)αiαj cot(α, x).

Hence we have

FaFb =
∑

α,β∈A

cαcβ(α, a)(β, b)(α, β) cot(α, x) cot(β, x)α⊗ β = 0.

Therefore the commutativity equations (4.49) which are equivalent to the condition [Fa, Fb] = 0

can be written as ∑
α,β∈A

cαcβ(α, β) cot(α, x) cot(β, x)Bα,β(a, b)α⊗ β = 0. (4.72)

By exchanging α and β one gets a similar identity to (4.72) and by subtracting the resulting
identity from identity (4.72) we get the required identity.

The following result takes place.

Lemma 4.5.7. Assume that prepotential (4.53) satisfies the commutativity equations
(4.49). Suppose that Cα0

δ ̸= 0 for any α ∈ A, δ ⊆ δα, α0 ∈ δα. Assume that the iden-
tity ∑

α,β∈A

cαcβ(α, β) cot(α, x) cot(β, x)Bα,β(a, b)α ∧ β = 0 (4.73)

holds for any a, b ∈ V and α ∈ A provided that tan (α, x) = 0. Then A is a Euclidean
trigonometric ∨-system.

Proof. Fix α ∈ A such that tan (α, x) = 0. Let us consider terms in the left-hand side of
identity (4.73), where γ = kγα, kγ ∈ R, that is γ is proportional to α. The sum of these
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terms has to be regular at tan(α, x) = 0. This implies that the product(∑
γ∈δα

k3γcγ cot(γ, x)
)( ∑

β∈A\δα

cβ(α0, β) cot(β, x)Bα0,β(a, b)α0 ∧ β
)

(4.74)

is regular at tan(α, x) = 0. The first factor in the product (4.74) has the first order pole at
tan(α, x) = 0 by the assumption that Cα0

δα
̸= 0 for any α ∈ A, α0 ∈ δα. This implies that∑

β∈A\δα

cβ(α0, β) cot(β, x)Bα0,β(a, b)α0 ∧ β = 0. (4.75)

Since all the vectors β ∈ A \ δα can be found in one of the disjoint α-series, then (4.75) is
equivalent to the identity∑

s

∑
β∈Γs

α

cβ(α0, β) cot(β, x)Bα0,β(a, b)α0 ∧ β = 0. (4.76)

But the sum in (4.76) is a linear combination of functions cot(β, x)|tan(α,x)=0 which can
vanish only if it vanishes for each α-series (see [23,27]) , hence we have∑

β∈Γs
α

cβ(α0, β) cot(β, x)Bα0,β(a, b)α0 ∧ β = 0 (4.77)

for all α-series Γs
α.

Now we will show that identities (4.77) imply that A is a Euclidean trigonometric
∨-system. Let us fix a particular element β0 ∈ Γs

α0
. Then for any γ ∈ Γs

α0
we have

γ+εβ0 = mα0, wherem ∈ Z and ε = ±1.We have cot(γ, x) = ε cot(β0, x) andBα0,γ(a, b) =

εBα0,β0(a, b) provided that tan(α0, x) = 0. Hence relation (4.77) implies the Euclidean
trigonometric ∨-condition

∑
β∈Γs

α0
cβ(α0, β)α0 ∧ β = 0.

Note that if A is a Euclidean trigonometric ∨-system then this guaranties that the
left-hand side of identity (4.71) is non-singular. Since all vectors from A belong to an
N -dimensional lattice then the left-hand side of identity (4.71) is a rational function in
suitable exponential variables which has degree zero and therefore is a constant. In order
to find this constant, by changing some of the vectors from A to their opposite ones we
can assume that all vectors from A belong to a half space, hence form a positive system
A+. Then in an appropriate limit in a cone cot(α, x) → i for all α ∈ A+ identity (4.71)
reduces to ∑

α,β∈A+

cαcβ(α, β)Bα,β(a, b)α ∧ β = 0.

From these considerations together with Lemmas 4.5.6, 4.5.7 we have the following result.

Theorem 4.5.8. Suppose that a configuration (A, c) satisfies the condition Cα0
δ ̸= 0 for
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any α ∈ A, δ ⊆ δα, α0 ∈ δα. Then the commutativity equations (4.49) for the prepotential
(4.53) imply the following two conditions:

(1) A is a Euclidean trigonometric ∨-system,
(2)

∑
α,β∈A+

cαcβ(α, β)Bα,β(a, b)α ∧ β = 0 for any a, b ∈ V.

Conversely, if a configuration (A, c) satisfies conditions (1), (2) then commutativity
equations (4.49) hold.

The following statement confirms that the class of Euclidean trigonometric ∨-systems
contains root systems with W-invariant multiplicity.

Proposition 4.5.9. Root system A = R with W-invariant multiplicity function c is a
Euclidean trigonometric ∨-system.

Proof. Fix α ∈ R. Take any β ∈ R, and let γ = sαβ = β − 2(α,β)
(α,α)

α. Since 2(α,β)
(α,α)

∈ Z we
get that β, γ ∈ Γs

α for some s. We have

cβ = cγ, (α, β) = −(α, γ), α ∧ β = α ∧ γ.

Hence the contribution of β and γ to the sum in (4.68) gives

cβ(α, β)α ∧ β + cγ(α, γ)α ∧ γ = 0,

which implies that R is a Euclidean trigonometric ∨-system.

As a corollary of Proposition 4.5.9 and Theorem 4.5.8 the following result takes place.

Corollary 4.5.10. [3] Let A = R+ be a positive half of the root system R. Then the
commutativity equations (4.49) are satisfied for the function (4.53) if and only if∑

α,β∈R+

cαcβ(α, β)Bα,β(a, b)α ∧ β = 0 (4.78)

holds for any a, b ∈ V .

The result [3, Theorem 6.5] states that if a root system with invariant multiplicity
satisfies property (2) of Theorem 4.5.8 then commutativity relations (4.49) hold. It has
been shown in [3] that relation (4.78) is satisfied for root systems R = BCN , F4, G2 with
special invariant multiplicities, see Theorems 4.1.3, 4.1.4, 4.1.5 above. Thus Theorem 4.5.8
may be viewed as a generalization of this statement for the class of Euclidean trigonometric
∨-systems.

Solutions of commutativity equations can be applied to construct N = 4 supersym-
metric mechanical systems, see Theorems 4.4.1, 4.4.2 above. Hamiltonians corresponding
to root systems R = BCN , F4, G2 were given explicitly in [3] (see also [4]) for more details.
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4.6 Subsytems of a Euclidean trigonometric ∨-system

In this section we study the process of taking of a subsystem of a Euclidean trigonometric
∨-system and we prove some results analogous to those of trigonometric ∨-systems in
Chapter 3. The section ends up with the main theorem which shows the fact that under
some non-degeneracy conditions subsystems of a Euclidean trigonometric ∨-system A is
also a Euclidean trigonometric ∨-system. Let us first recall the definition of a subsystem.

Definition 4.6.1. Let A ⊂ V be a Euclidean trigonometric ∨-system. A subset B ⊂ A
is called a subsystem if

B = A ∩W,

for some linear subspace W ⊂ V. The subsystem B is called reducible if B is a disjoint
union of two non-empty subsystems B = B1 ∪ B2. The subsystem B is called irreducible
if it is not reducible. We will also equip subsystem B ⊂ A with the multiplicity function
which is the restriction of the multiplicity function c : A → C on B.

Let A be a finite set of vectors in V ∼= CN , and let cα ∈ C, α ∈ A be some multiplicity
parameters. Assume that A belongs to a lattice of rank N . Let B = A ∩ W be a
subsystem of A where W ⊂ V be some n-dimensional linear space. Assume also that
W = ⟨B⟩. Assume now for this section that A is a Euclidean trigonometric ∨-system, that
is for all α ∈ A and any α-series Γs

α the following condition holds.∑
β∈Γs

α

cβ(α, β)α ∧ β = 0. (4.79)

We say that the subsystem B is non-isotropic if the inner product (·, ·)W := (·, ·)|W , is
non-degenerate on W .

Define the linear operator M : W → W given by

M =
∑
β∈B

cββ ⊗ β, (4.80)

that is, M(u) =
∑

β∈B cβ(β, u)β, for any u ∈ W . In what follows we prove some lemmas
which are useful to prove the main theorem of this section later.

Lemma 4.6.2. Let A be a Euclidean trigonometric ∨-system and B = A ∩ W be its
subsystem. Then

1. Any α ∈ B is an eigenvector of M, that is Mα = λα for some λ ∈ C.

2. The vector space W can be decomposed as

W = Uλ1 ⊕ Uλ2 ⊕ · · · ⊕ Uλk
, k ∈ N, (4.81)
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where λi ∈ C and M |Uλi
= λiI, where I is the identity operator.

Proof. Firstly, let α ∈ A. Consider a two-dimensional plane π ⊂ V containing α and
another vector from A non-collinear to α. Let us sum up the Euclidean trigonometric
∨-condition (4.79) over α-series which belong to the plane π. Then∑

β∈π∩A

cβ(β, α)β = λα, (4.82)

holds for some λ = λ(α, π).

Secondly, let α ∈ B. Consider a collection of two-dimensional planes π1, . . . , πk such
that α ∈ πi ⊂ W for any i = 1, . . . , k and for any β ∈ B there exist i, (1 ≤ i ≤ k) such
that β ∈ πi. Define linear operator Mπi

: W → W, by

Mπi
:=

∑
β∈πi∩A

cββ ⊗ β.

It follows from (4.82) that
Mπi

(α) = λiα, (4.83)

for some λi ∈ C. Now sum the equation (4.83) over all two-dimensional planes π1, . . . πk,
gives

k∑
i=1

λiα =
k∑

i=1

Mπi
(α) =

k∑
i=1

∑
β∈πi∩A

cβ(β, α)β

=
∑

β∈W∩A

cβ(β, α)β + (k − 1)cα(α, α)α

=M(α) + (k − 1)cα(α, α)α.

Hence M(α) = λα, where λ =
∑k

i=1 λi + (1− k)cα(α, α). Thus α is an eigenvector for M
for any α ∈ B which proves the first statement.

Let us now prove the second statement. As α is an eigenvector for the operator M for
any α ∈ B, we have that M is diagonalizable since ⟨B⟩ = W , and we have an eigenspace
decomposition

W = Uλ1 ⊕ Uλ2 ⊕ · · · ⊕ Uλk
, k ∈ N

where λi ∈ C and M |Uλi
= λiI, where I is the identity operator. This proves the second

statement.

The following two lemmas relate the series of vectors in A and B.

Lemma 4.6.3. Let A and B be as stated in Lemma 4.6.2. Let α ∈ B be such that α ∈ Uλi

for some i ∈ N. Consider an α-series ΓB
α in B and let β ∈ ΓB

α. Then either ΓB
α ⊂ Uλi

or
ΓB
α ⊂ {±β}.
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Proof. For β ∈ ΓB
α we have the following tow possible cases.

Case (i) β ∈ Uλi
. Then for any γ ∈ ΓB

α we have for some m ∈ Z that γ = mα+β ∈ Uλi

or γ = mα− β ∈ Uλi
. Hence ΓB

α ⊂ Uλi
.

Case (ii) β /∈ Uλi
. Hence β ∈ Uλj

for some j ̸= i. Then for any γ ∈ ΓB
α we have that

γ ∈ Uλi or γ ∈ Uλj since decomposition (4.81) is the direct sum. Note that γ /∈ Uλi as
otherwise for some m ∈ Z we will have β = mα−γ ∈ Uλi, or β = mα+γ ∈ Uλi, which is a
contradiction. Note also that γ /∈ Uλj

unless γ = ±β as otherwise for some m ∈ Z we have
mα = β + γ ∈ Uλj

or mα = β − γ ∈ Uλj
which is a contradiction. Hence ΓB

α ⊂ {±β}.

Lemma 4.6.4. Let A and B as stated in Lemma 4.6.2. Let α, β ∈ B. Let ΓA
α ,Γ

B
α be the

α-series in A and B respectively containing β. Then the set ΓA
α is equal to the set ΓB

α.

Proof. Let γ ∈ ΓA
α . Then γ = mα + β ∈ B, (or γ = mα − β ∈ B) for some m ∈ Z. Thus

γ ∈ ΓB
α by the maximality of ΓB

α. Hence ΓA
α ⊂ ΓB

α. The opposite conclusion is obvious.
Therefore ΓB

α = ΓA
α .

Proposition 4.6.5. In the assumptions and notations of Lemma 4.6.2 we have (u, v) = 0

for any u ∈ Uλi
and v ∈ Uλj

such that i ̸= j.

Proof. It is clear that (M(u), v) = (u,M(v)) for any u, v ∈ W . Now for any u ∈ Uλi
and

v ∈ W we have
(M(u), v) = λi(u, v).

On the other hand for any u ∈ W and v ∈ Uλj
we have

(u,M(v)) = λj(u, v).

Hence for u ∈ Uλi
, v ∈ Uλj

, i ̸= j we have

(λi − λj)(u, v) = 0.

Thus (u, v) = 0 since λi ̸= λj.

Now we present the main theorem in this section.

Theorem 4.6.6. Any non-isotropic subsystem of a Euclidean trigonometric ∨-system is
also a Euclidean trigonometric ∨-system.

Proof. Let A be a Euclidean trigonometric ∨-system and let B be a non-isotropic subsys-
tem of A. We will show that the Euclidean trigonometric ∨-conditions hold in B.

Let α ∈ B be such that α ∈ Uλi
, i ∈ N. Consider an α-series ΓB

α in B. Let β ∈ ΓB
α. By

Lemma 4.6.3 we have the following two cases.



CHAPTER 4. TRIGONOMETRIC SOLUTIONS WITHOUT EXTRA VARIABLE 140

Case (i) β ∈ Uλi
. Then ΓB

α ⊂ Uλi
. In this case we have∑

β∈ΓB
α

cβ(α, β)α ∧ β =
∑
β∈ΓA

α

cβ(α, β)α ∧ β = 0

since ΓB
α = ΓA

α by Lemma 4.6.4 and that A is Euclidean trigonometric ∨-system.
Case (ii) β /∈ Uλi

. Then β ∈ Uλj
for some j ̸= i. Hence (α, β)W = 0 by Proposition 4.6.5

and moreover ΓB
α ⊂ {±β} by Lemma 4.6.3. Hence Euclidean trigonometric ∨-conditions

hold for B in this case as well.

4.7 Euclidean trigonometric ∨-systems and complex Eu-

clidean ∨-systems

Now let us discuss the relation between Euclidean trigonometric ∨-systems and complex
Euclidean ∨-systems. Let us first recall some definitions and relations related to the
complex Euclidean ∨-systems following [26]. Let V be a complex Euclidean space, which
is a complex vector space with a non-degenerate bilinear form (·, ·). We will identify V

with the dual space V ∗ using this form.

Definition 4.7.1. [26] Let A be a finite set of vectors in V . We say that the set A is
well-distributed if the canonical form

Grat
A (x, y) =

∑
α∈A

(α, x)(α, y), x, y ∈ V,

is proportional to the form (·, ·).

Definition 4.7.2. [26] The set A ⊂ V is called a (rational) complex Euclidean ∨-system
if it is well-distributed in V and any of its two-dimensional subsystems is either reducible
or well-distributed in the corresponding plane.

Note in this definition we allow the canonical form Grat
A to be degenerate. In analogy

to Definition 4.7.1 let us introduce the trigonometric version.
For a subset A ⊂ V with multiplicity function c : A → C, where cα := c(α), consider

the bilinear form GA on V given by

GA(x, y) =
∑
α∈A

cα(α, x)(α, y), x, y ∈ V. (4.84)

Definition 4.7.3. We say that the pair (A, c) is well-distributed in V if the bilinear form
(4.84) is proportional to the form (·, ·).
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As we identify the vector space V with its dual space V ∗ and A ⊂ V , we will understand
the trigonometric ∨-system (A, c) as a collection of vectors satisfying relations∑

β∈Γs
α

cβGA(α, β)α ∧ β = 0 (4.85)

for all α ∈ A and all α-series Γs
α, where GA is given by formula (4.84).

Now let (A, c) be a Euclidean trigonometric ∨-system, that is conditions (4.68) hold.
Define the linear operator M : V → V given by

M =
∑
β∈A

cββ ⊗ β, (4.86)

that is, M(u) =
∑

β∈B cβ(β, u)β, for any v ∈ V . Assume also that the linear span ⟨A⟩ = V.

The following statement takes place.

Lemma 4.7.4. Let (A, c) be a Euclidean trigonometric ∨-system. Then

1. Any α ∈ A is an eigenvector of M, that is Mα = λα for some λ ∈ C.

2. The vector space V can be decomposed as

V = Vλ1 ⊕ Vλ2 ⊕ · · · ⊕ Vλk
, k ∈ N, λi ∈ C, (4.87)

where M |Vλi
= λiI, and I is the identity operator, and λi ̸= λj for i ̸= j.

Proof. Firstly, let α ∈ A. Since A is a Euclidean trigonometric ∨-system then for each
α-series Γs

α condition (4.68) is equivalent to the relation∑
β∈Γs

α

cβ(β, α)β = νsα (4.88)

for some νs = νs(α, π).

Now we have

M(α) =
∑
β∈A

cβ(β, α)β

=
∑
β∈A
β≁α

cβ(β, α)β +
∑
γ∈A
γ∼α

cγ(γ, α)γ

=
∑
s

∑
β∈Γs

α

cβ(β, α)β +
∑

k : kα∈A

ckα(kα, α)kα

=
∑
s

νsα +
∑

k : kα∈A

k2ckα(α, α)α

= λα,
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where λ =
∑

s νs +
∑

k : kα∈A k
2ckα(α, α). This proves the first statement.

Secondly, the space V is spanned by A. As any vector α ∈ A is an eigenvector for the
operator M , the operator M is diagonalizable, and we have an eigenspace decomposition

V = Vλ1 ⊕ Vλ2 ⊕ · · · ⊕ Vλk
, k ∈ N, λi ∈ C

where M |Vλi
= λiI, and I is the identity operator. This proves the second statement.

Since A ⊂ V = Vλ1 ⊕ · · · ⊕ Vλk
, then A can be represented as

A = A1 ⊔ · · · ⊔ Ak, (4.89)

where Ai := A ∩ Vλi
⊂ Vλi

, i = 1, . . . , k, and Ai ∩ Aj = ∅ for i ̸= j. The following two
lemmas relate the series of vectors in A and its components Ai.

Lemma 4.7.5. Let A be a Euclidean trigonometric ∨-system. Let α ∈ A be such that
α ∈ Vλi

for some i ∈ N. Consider an α-series Γs
α in Ai and let β ∈ Γs

α. Then either
Γs
α ⊂ Vλi

or Γs
α ⊂ {±β}.

Proof. For β ∈ Γs
α we have the two possible cases.

Case (i) β ∈ Vλi
. Then for any γ ∈ Γs

α we have that γ = mα + εβ ∈ Vλi
for some

m ∈ Z and ε = ±1. Hence Γs
α ⊂ Vλi

.

Case (ii) β /∈ Vλi
. Hence β ∈ Vλj

for some j ̸= i. Then for any γ ∈ Γs
α we have that γ ∈

Vλi
or γ ∈ Vλj

since decomposition (4.87) is the direct sum. Note that γ /∈ Vλi
as otherwise

we will have β = mα + εγ ∈ Vλi
, for some m ∈ Z and ε = ±1, which is a contradiction.

Note also that γ /∈ Vλj
unless γ = ±β as otherwise we have mα = β + εγ ∈ Vλj

for some
m ∈ Z and ε = ±1, which is a contradiction. Hence Γs

α ⊂ {±β}.

Lemma 4.7.6. Let α, β ∈ Ai. Let AΓs
α,

AiΓt
α be the α-series in A and Ai respectively

containing β. Then the set AΓs
α is equal to the set AiΓt

α.

Proof. Let γ ∈ AΓs
α. Then γ = mα + εβ ∈ Ai, for some m ∈ Z and ε = ±1. Thus

γ ∈ AiΓt
α by the maximality of AiΓt

α. Hence AΓs
α ⊂ AiΓt

α. The opposite inclusion is
obvious. Therefore AiΓt

α = AΓs
α.

We will denote Vλi
by Vi. Thus we have M |Vi

= λiI.

Proposition 4.7.7. We have (u, v) = 0 for any u ∈ Vi and v ∈ Vj such that i ̸= j.

Proof. It is clear that (M(u), v) = (u,M(v)) for any u, v ∈ V . Now for any u ∈ Vi and
v ∈ V we have

(M(u), v) = λi(u, v).
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On the other hand for any u ∈ V and v ∈ Vj we have

(u,M(v)) = λj(u, v).

Hence for u ∈ Vi, v ∈ Vj, i ̸= j we have

(λi − λj)(u, v) = 0.

Thus (u, v) = 0 since λi ̸= λj.

The following statement takes place.

Lemma 4.7.8. Restriction (·, ·)i of the bilinear form (·, ·) onto the subspace Vi is non-
degenerate.

Proof. Suppose that v ∈ Vi satisfies (v, u)i = 0 for all u ∈ Vi. By Proposition 4.7.7 we
have (v, u) = 0 for all u ∈ V . Hence v = 0 since (·, ·) is non-degenerate.

The following statements relate the Euclidean trigonometric ∨-systems and the trigono-
metric ∨-systems.

Theorem 4.7.9. If A is a Euclidean trigonometric ∨-system then subsystem Ai = A∩Vi
is well-distributed in the subspace Vi with the bilinear form (·, ·)i for all i. Furthermore, if
the bilinear form

GAi
(u, v) =

∑
α∈Ai

cα(α, u)(α, v), u, v ∈ Vi

is non-degenerate on Vi (equivalently, GAi
is non-zero), then Ai is a trigonometric ∨-

system.

Proof. By Lemma 4.7.4 we have M |Vi
= λiI. Hence for any u, v ∈ Vi we have

GA(u, v) = (M(u), v) = λi(u, v). (4.90)

Note also that by Proposition 4.7.7 and formula (4.90) we have for any u, v ∈ Vi that

GAi
(u, v) =

∑
α∈Ai

cα(α, u)(α, v) =
∑
α∈A

cα(α, u)(α, v) = GA(u, v) = λi(u, v). (4.91)

Thus subsystem Ai is well-distributed in the subspace Vi for all i.
Let us now assume that GAi

is non-degenerate on Vi, that is λi ̸= 0. Let α ∈ Ai.
Consider an α-series Γs

α in Ai. Then by Lemmas 4.7.5, 4.7.6 and formulas (4.90), (4.91)
we have ∑

β∈Γs
α

cβGAi
(α, β)α ∧ β = λi

∑
β∈Γs

α

cβ(α, β)α ∧ β = 0
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since A is a Euclidean trigonometric ∨-system. This proves the statement.

The following statement takes place as a corollary of Theorem 4.7.9.

Corollary 4.7.10. If (A, c) is an irreducible Euclidean trigonometric ∨-system and GA

is non-degenerate then (A, c) is a trigonometric ∨-system.

Proof. Since A is irreducible then we have V = V1 and M |V1 = λ1I. Then by Theorem
4.7.9 A∩V1 = A is a trigonometric ∨-system since the bilinear form GA is non-degenerate.
This proves the statement.

Let π be a two-dimensional plane in V which contains two non-proportional vectors
from A.

Proposition 4.7.11. Let A be a Euclidean trigonometric ∨-system. Then the set of
vectors A ∩ π is well-distributed in π or the system A ∩ π is reducible.

Proof. Let α ∈ A ∩ π. Define a linear operator Mπ : π → π, by

Mπ :=
∑

β∈A∩π

cββ ⊗ β.

Let us sum up the Euclidean trigonometric ∨-condition (4.68) over α-series which belong
to the plane π. Then ∑

β∈A∩π

cβ(β, α)β = λα, (4.92)

holds for some λ = λ(α). Suppose that A ∩ π is irreducible. Then λ does not depend on
α and Mπ = λI. Therefore∑

β∈A∩π

cβ(β, u)(β, v) = (Mπ(u), v) = λ(u, v),

and the set A ∩ π is well-distributed. This proves the statement.

Let us also note that if the subsystem A∩ π is reducible then it is contained in a pair
of orthogonal lines, which is easy to see from the Euclidean trigonometric ∨-conditions.

The following statement relates the Euclidean trigonometric ∨-system and the (ratio-
nal) complex Euclidean ∨-system.

Proposition 4.7.12. Let (A, c) be an irreducible Euclidean trigonometric ∨-system. Then
the set of vectors

√
cαα is a (rational) complex Euclidean ∨-system.

Proof. Firstly, since A is irreducible then by Lemma 4.7.4 we have A = A1 ⊂ V = V1 and
M |V1 = λ1I. Then by Theorem 4.7.9 we have that A1 = A is well-distributed.

Secondly, by Proposition 4.7.11 we have that any two-dimensional subsystem A∩ π is
well-distributed or reducible. Since the form GA coincides with the canonical form for the
system {√cαα} in the rational case, the statement follows.
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4.8 Restricted solutions of commutativity equations

In this section we apply the restriction procedure to a given solution to the commutativity
equations in analogy to what we have done in Chapter 3 with the solution of WDVV
equations.

Let B = A ∩W be a subsystem of A for some n-dimensional linear subspace W =

⟨B⟩ ⊂ V. Define
WB := {x ∈ V : (β, x) = 0 ∀β ∈ B}. (4.93)

Let (·, ·)B be the restriction of (·, ·) on WB, and assume that it is non-degenerate. Let
us denote by πB(α) the orthogonal projection of α ∈ V to the subspace WB with respect
to the inner product (·, ·). Let πB(A) = {πB(α) : πB(α) ̸= 0, α ∈ A}. Note that we
include each vector once even if it can be obtained as different projections. We define the
multiplicity c(πB(α)) :=

∑
γ∈A c(γ) where πB(γ) = πB(α). Let

S = {α1, . . . , αn} ⊂ B (4.94)

be a basis of W . Let f1, . . . , fn be an orthonormal basis of the space WB, and let ξ1, . . . , ξn
be the corresponding orthonormal coordinates in WB. Define MA = V \

⋃
α∈A Πα, and

MB = WB \
⋃

α∈A\B Πα, where Πα = {x ∈ V : (α, x) = 0}. The following statement
shows that the class of solutions of commutativity equations corresponding to Euclidean
∨-systems is closed under the restrictions.

Theorem 4.8.1. Assume that prepotential (4.53) satisfies commutativity equations (4.49).
Let B ⊂ A be a subsystem, and let S be as defined in (4.94). Suppose that Cα0

δ ̸= 0 for
any α ∈ S, α0 ∈ δα. Then the prepotential

FB =
∑

α∈A\B

cαf((α̃, ξ)), ξ ∈MB, (4.95)

where α̃ = πB(α), satisfies the commutativity equations

(FB)i(FB)j = (FB)j(FB)i, i, j = 1, . . . , n, (4.96)

where (FB)i is the n× n matrix with entries

((FB)i)pq = (FB)ipq =
∂3FB

∂ξi∂ξp∂ξq
.

Proof. First for any u = (u1, . . . , uN), v = (v1, . . . , vN) ∈ V let us consider the vector
fields ∂u =

∑N
i=1 ui∂xi

, ∂v =
∑N

i=1 vi∂xi
∈ TxMA. We define the following multiplication
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on the tangent space TxMA:
∂u ∗ ∂v = uivjFijk∂xk

, (4.97)

where the summation over repeated indices here and below is assumed. It is easy to check
that the associativity of the multiplication ∗ is equivalent to the commutativity equations
(4.49). From the formula (4.53) we have

Fijk =
∑
α∈A

cααiαjαk cot (α, x).

Hence multiplication (4.97) takes the form

∂u ∗ ∂v =
∑
α∈A

cα(α, u)(α, v) cot (α, x)∂α. (4.98)

By identifying V ∼= TxV , we have

u ∗ v =
∑
α∈A

cα(α, u)(α, v) cot (α, x)α. (4.99)

Consider now a point x0 ∈MB and two tangent vectors u0, v0 ∈ Tx0MB. We extend vectors
u0 and v0 to two local analytic vector fields u(x), v(x) in the neighbourhood U of x0 that
are tangent to the subspace WB at any point x ∈ MB ∩ U such that u0 = u(x0) and
v0 = v(x0). The following lemma holds and its proof is similar to the proof of Lemma
3.2.1

Lemma 4.8.2. The limit of the product u(x)∗v(x) exists when vector x tends to x0 ∈MB

and it satisfies
u0 ∗ v0 =

∑
α∈A\B

cα(α, u0)(α, v0) cot(α, x0)α. (4.100)

In particular, the product u0 ∗ v0 is determined by vectors u0 and v0 only.

The following lemma holds and it shows that multiplication (4.98) is closed on the
tangent space Tx0MB.

Lemma 4.8.3. Let u, v ∈ Tx0MB where x0 ∈MB. Then u ∗ v ∈ Tx0MB.

The proof of Lemma 4.8.3 is similar to the proof of Lemma 3.2.2. It uses analogue
of Proposition 2.6.20 which claims that the following identity holds for any a, b ∈ V if
tan(α, x) = 0: ∑

β∈A\δα

cβ(α, β) cot(β, x)Bα,β(a⊗ b)α ∧ β = 0.
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Then for u, v ∈ Tx0MB, x0 ∈MB, the product (4.98) takes the form

∂u ∗ ∂v =
∑

α∈A\B

cα(α̃, u)(α̃, v) cot (α̃, x0)∂α̃. (4.101)

By using the orthonormal basis f1, . . . , fn of WB we rearrange ∂α̃ as

∂α̃ =
n∑

k=1

(α̃, fk)∂fk .

Hence for x0 = ξ =
∑n

i=1 ξifi we have

∂fi ∗ ∂fj =
∑

α∈A\B

n∑
k=1

cα(α̃, fi)(α̃, fj)(α̃, fk) cot (α̃, ξ)∂fk

=
n∑

k=1

F̃ijk∂fk , i, j = 1, . . . , n, (4.102)

where F̃ (ξ) =
∑

α∈A\B cαf(α, ξ) = FB. Now multiplication (4.102) is associative and it is
easy to check that its associativity is equivalent to the commutativity equations

F̃iF̃j = F̃jF̃i, i, j = 1, . . . , n.

Hence the restricted prepotential on WB corresponding to the restricted system satisfies
the commutativity equations, which proves the theorem.

As a corollary of Theorems 4.8.1 and 4.1.3 the following result takes place.

Corollary 4.8.4. Under the assumption of Theorem 4.1.3 on multiplicities, all the func-
tions of the form (4.53) corresponding to restricted systems of the root system BCN satisfy
the commutativity equations.

Note that in Section 4.2 we proved Corollary 4.8.4 following a different approach,
by relating WDVV equations (4.2) with the commutativity equations for the restricted
systems of the root system BCN . See Theorem 4.2.5.

Similarly, as a corollary of Theorems 4.8.1 and 4.1.4 the following result takes place.

Corollary 4.8.5. Under the assumptions of Theorem 4.1.4 on multiplicities, all the func-
tions of the form (4.53) corresponding to the three-dimensional and two-dimensional re-
stricted systems of the root system F4 satisfy the commutativity equations.

Solutions of the commutativity equations corresponding to the projected systems of
root systems BCN and F4 imply existence of certain N = 4 supersymmetric Hamiltonians
given by formulas (4.56), (4.57) and (4.59) in Theorems 4.4.1 and 4.4.2.
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In the case of BCN root system the Hamiltonians of its restricted systems are given in
Theorem 4.4.7 by formulas (4.65), (4.66) and (4.67).

In the case of F4 root system there are two projected systems in dimension three
and four projected system in dimension two. The projected systems on the plane are
given in Appendix A.1, where these configuration are given explicitly and denoted by
(F4, A2)1, (F4, A

2
1), see Table A.1 below. The configurations (F4, A2)2 and (F4, B2) are

equivalent to root systems G2 and BC2, these cases were considered in [3]. The other four
cases in dimension two and three are new. Let us give details of the three-dimensional
projected systems of F4.

Consider the positive half of root system F4 consisting of vectors

F+
4 = {ei (1 ≤ i ≤ 4), ei ± ej (1 ≤ i < j ≤ 4),

1

2
(e1 ± e2 ± e3 ± e4)}.

Let r be the multiplicity of short roots and let q be the multiplicity of long roots. Then
we have the following three-dimensional projected systems.

• The projected system (F4, A1)1 of F4 to the hyperplane x4 = 0 consists of the
following set of vectors:

ei, with multiplicity r + 2q, 1 ≤ i ≤ 3,

ei ± ej, with multiplicity q, 1 ≤ i < j ≤ 3,

1

2
(e1 ± e2 ± e3), with multiplicity 2r.

• The projected system (F4, A1)2 of F4 to the hyperplane x3 = x4 consists of the
following set of vectors (after making change of variables and renaming vectors):

e1, e2, with multiplicity r,
√
2e3, with multiplicity q,

√
2

2
e3, with multiplicity 2r,

e1 ± e2, with multiplicity q,

1

2
(e1 ± e2), with multiplicity 2r,

e1 ±
√
2

2
e3, e2 ±

√
2

2
e3, with multiplicity 2q,

1

2
(e1 ± e2 ±

√
2e3), with multiplicity r.

Theorem 4.8.6. Let (Â, c) be one of the configurations (F4, A1)1, (F4, A1)2, (F4, A2)1, (F4, A
2
1).

Then the function F =
∑

α∈Â cαf((α, x)), where f ′′′
(z) = cot z, satisfies the commutativity
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equations, where x ∈ C3 for the first two configurations and x ∈ C2 for the last two con-
figurations and parameters r, q satisfy the condition r = −2q or r = −4q. Furthermore,
the corresponding Hamiltonians (4.56), (4.59) satisfy the supersymmetry algebra relations
stated in Theorems 4.4.1, 4.4.2



Chapter 5

Commutativity equations and WDVV
equations

In this chapter we investigate the relation between the set of commutativity equations
and the set of WDVV equations in N -dimensional space. This leads to new solutions for
WDVV equations from known solutions of the commutativity equations.

Let V ∼= CN . Let F = F (x1, . . . , xN) be a function on V . We recall that it has been
proven in [41] (see also [40]) that the (generalized) WDVV equations

FiF
−1
j Fk = FkF

−1
j Fi, i, j, k = 1, . . . , N (5.1)

can be written equivalently in the form

FiB
−1Fj = FjB

−1Fi, i, j = 1, . . . , N, (5.2)

where B is any non-degenerate linear combination of matrices Fk with functional coeffi-
cients Ak, (k = 1, . . . , N). If the matrix B happens to be a multiple of identity for some
functions Ak, then WDVV equations (5.2) reduce to the commutativity equations

FiFj = FjFi, i, j = 1, . . . , N. (5.3)

The natural question to investigate is when there exists such a linear combination B which
is proportional to the standard metric δij. We do this in this section.

Let us assume that the function F = F (x1, . . . , xN) satisfies the commutativity equa-
tions (5.3). Let us denote by [Fi, Fj](a,b) the (a, b)-entry of the commutator [Fi, Fj], that
is we have the explicit form

[Fi, Fj](a,b) =
N∑

m=1

(FiamFjbm − FibmFjam).

150
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Since the function F satisfies the commutativity equations then we have

[Fi, Fj](a,b) =
N∑

m=1

(FiamFjbm − FibmFjam) = 0, (1 ≤ i, j, a, b ≤ N).

These equations imply the following identity for any 1 ≤ i, j, k ≤ N :

FijkFiii =
N∑

m=1

FijmFikm −
∑
m̸=i

FiimFjkm, (5.4)

which is obtained from [Fi, Fk](i,j) = 0, k ̸= i, j. We also have

FijjFiii + FiijFjjj =
N∑

m=1

F 2
ijm −

∑
m ̸=i,j

FiimFjjm, (5.5)

for i ̸= j, which is obtained from the identity (5.4) for k = j.
Observe also the equality of matrix entries [Fa, Fb](i,j) = [Fi, Fj](a,b). Let us also intro-

duce the following notation

[Fi, Fj]
{m}
(a,b) = FiamFjbm − FibmFjam, (5.6)

where there is no summation over m in the right-hand side. Let us define a matrix
B = (Bij)

N
i,j=1 with the entries given as a linear combination of the third order derivatives

of F :

Bij =
N∑
k=1

AkFkij, (5.7)

for some functions Ak = Ak(x1, . . . , xN). Now we will investigate when there exists such a
combination B so that equations (5.3) imply the equations (5.2). For that it is sufficient
to deduce that the matrix B is proportional to the identity.

Before we start our investigation, let us recall the formula of Laplace expansion in
multiple rows of a determinant from linear algebra which will be used later.

Let Q be a given N × N matrix. Let [N ] = {1, 2, . . . , N} and let I be a fixed subset
of [N ]. Let J be another subset of [N ] where subsets J and I has the same size, that is
|J | = |I|. Let I ′

, J
′ be the complements of I, J respectively in [N ]. We want to calculate

the determinant of Q by expanding along all rows which belong to the subset I. This
leads to the formula

detQ =
∑
J⊂[N ]

σJ detQIJ detQI′J ′ , (5.8)

where QIJ is a matrix composed of rows I and columns J of the matrix Q, and σJ = (−1)s

with s =
∑

i∈I i+
∑

j∈J j.
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5.1 Constant metric in dimension two

The commutativity equations for dimension two is the equation F1F2 = F2F1 which is
equivalent to the single relation

F122F111 + F112F222 − F 2
112 − F 2

122 = 0. (5.9)

Note that WDVV equations hold for any function F on the plane. In the next proposition
we give the formulas for coefficients A1, A2.

Proposition 5.1.1. Assume that the function F = F (x1, x2) satisfies the commutativity
equation (5.9). Let

A1 = F122, A2 = −F112. (5.10)

Then the matrix B = A1F1 + A2F2 is a multiple of the identity matrix.

Proof. Firstly, we have
B12 = B21 = A1F112 + A2F122 = 0

by (5.10). Secondly, we have

B11 = A1F111 + A2F112 = F122F111 − F 2
112,

B22 = A1F122 + A2F222 = F 2
122 − F112F222.

By relation (5.9) we have B11 = B22. This proves the proposition.

5.2 Constant metric in dimension three

In this section we assume that N = 3.

Proposition 5.2.1. Assume that the function F satisfies the commutativity equations
(5.3). Then the matrix Q given by

Q =

F112 F122 F123

F113 F123 F133

F123 F223 F233

 (5.11)

is singular.

Proof. Let D be the determinant of the matrix Q. We have

D = detQ = F112(F233F123 − F133F223)− F122(F113F233 − F133F123) + F123(F113F223 − F 2
123).

(5.12)
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Firstly, from relation (5.4) we have

F123F111 = F112F113 + F122F123 + F123F133 − F112F223 − F113F233, (5.13)

F123F222 = F112F123 + F122F223 + F123F233 − F122F113 − F223F133. (5.14)

Secondly, by multiplying relation (5.5) for i = 1, j = 2 by F123 we have

F123(F122F111 + F112F222) = F123(F
2
112 + F 2

122 + F 2
123 − F113F223). (5.15)

Now by substituting relations (5.13), (5.14) into the left-hand side of relation (5.15) we
get D = 0. This proves the proposition.

As a corollary of Proposition 5.2.1 the following statement takes place.

Corollary 5.2.2. Assume that the function F satisfies the commutativity equations (5.3).
Then there exists a non-zero solution (A1, A2, A3) for the following system of equations:

B12 =
3∑

m=1

AmF12m = 0, B13 =
3∑

m=1

AmF13m = 0, B23 =
3∑

m=1

AmF23m = 0. (5.16)

Proof. To prove the statement, it is enough to show that commutativity equations imply
that the coefficient matrix corresponding to the homogeneous system of equations (5.16)
is singular. Since this coefficient matrix is given by formula (5.11) the statement follows
from Propositin 5.2.1.

Define

A1 = det

(
F122 F123

F123 F133

)
= F122F133 − F 2

123, A2 = − det

(
F112 F123

F113 F133

)
= F113F123 − F112F133,

A3 = det

(
F112 F122

F113 F123

)
= F112F123 − F113F122. (5.17)

Proposition 5.2.3. Assume that the function F satisfies the commutativity equations
(5.3). Then functions Ai, (i = 1, 2, 3) given by (5.17) solve the system of equations

B12 =
3∑

m=1

AmF12m = 0, B13 =
3∑

m=1

AmF13m = 0, B23 =
3∑

m=1

AmF23m = 0. (5.18)

Proof. After substituting of functions Ai, (i = 1, 2, 3) into the formula of B12 we get a
determinant with repeated rows, which is equal to zero. Similarly, the equality B13 = 0 is
also satisfied. Let us now check that B23 = 0. We have

B23 = A1F123 + A2F223 + A3F233.
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After substituting the values of A1, A2, A3 we get that B23 = detQ, where Q is the matrix
given by (5.11). The statement follows from Proposition (5.2.1).

Let us define the coefficient matrix

Q =

(
F112 F212 F312

F113 F213 F313

)
(5.19)

corresponding to the system of equations B12 = 0, B13 = 0.
The following statement takes place.

Proposition 5.2.4. Assume that the rank of of the matrix Q given by formula (5.19) is
equal to two. Then the diagonal entries of matrix B =

∑3
m=1A

mFm, where Am are given
by formula (5.17), are equal; B11 = Bii for i = 2, 3.

This proposition is a particular case of Proposition 5.3.4 below which is valid for any
dimension N ≥ 3, so we postpone the proof until Section 5.3.

As a corollary of Propositions 5.2.3 and 5.2.4 the following statement takes place.

Proposition 5.2.5. Assume that the matrix Q given by formula (5.19) has rank two. Then
the matrix B =

∑3
m=1A

mFm, where Am are given by relations (5.17), is proportional to
the identity matrix.

5.3 Constant metric in general

Let us now assume N ≥ 4. Let V be an N -dimensional space. Let F = F (x1, . . . , xN)

be a function such that commutativity equations (5.3) hold. Let us also define functions
Ak, (k = 1, . . . , N) by the formula

Ak = (−1)k+1 det


F112 F212 · · · F(k−1)12 F(k+1)12 · · · FN12

F113 F213 · · · F(k−1)13 F(k+1)13 · · · FN13

...
... . . . ...

... . . . ...
F11N F21N · · · F(k−1)1N F(k+1)1N · · · FN1N

 . (5.20)

That is Ak are given by the determinant of the (N −1)× (N −1) matrix corresponding to
equations B12 = B13 = · · · = B1N = 0 after removing the kth column. In this section the
summation over repeated indices will be assumed provided that one of indices is subscript
and the other is superscript.
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Lemma 5.3.1. For any function F = F (x1, . . . , xN) which satisfies the commutativity
equations (5.3) the following relation holds

det

Fa1r Fb1r Fc1r

Fa1t Fb1t Fc1t

Fart Fbrt Fcrt

 = −
∑
m̸=t

det

Fa1r Fb1r Fc1r

Fa1m Fb1m Fc1m

Farm Fbrm Fcrm

 , (5.21)

where 1 ≤ a, b, c ≤ N and 2 ≤ r < t ≤ N .

Proof. We have by the first row expansion and commutativity equations

det

Fa1r Fb1r Fc1r

Fa1t Fb1t Fc1t

Fart Fbrt Fcrt

 = Fa1r det

(
Fb1t Fc1t

Fbrt Fcrt

)
− Fb1r det

(
Fa1t Fc1t

Fart Fcrt

)

+ Fc1r det

(
Fa1t Fb1t

Fart Fbrt

)
= Fa1r[F1, Fr]

{t}
(b,c) − Fb1r[F1, Fr]

{t}
(a,c) + Fc1r[F1, Fr]

{t}
(a,b)

= −Fa1r

∑
m̸=t

[F1, Fr]
{m}
(b,c) + Fb1r

∑
m̸=t

[F1, Fr]
{m}
(a,c) − Fc1r

∑
m̸=t

[F1, Fr]
{m}
(a,b)

= −
∑
m ̸=t

det

Fa1r Fb1r Fc1r

Fa1m Fb1m Fc1m

Farm Fbrm Fcrm

 .

This proves the statement.

The following statement takes place.

Lemma 5.3.2. Suppose that the function F = F (x1, . . . , xN) satisfies the commutativity
equations (5.3). Then the matrix

Q =



F112 F212 · · · FN12

F113 F213 · · · FN13

...
... . . . ...

F11r F21r · · · FN1r

...
... . . . ...

F11t F21t · · · FN1t

...
... . . . ...

F11N F21N · · · FN1N

F1rt F2rt · · · FNrt



, (5.22)

where 2 ≤ r < t ≤ N is singular.
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Proof. Let D = detQ. Let Ri denote the ith row in the matrix Q. Let us now perform
Laplace expansion of D along rows number r − 1, t − 1, N , that is along the following
rows of Q:

Rr−1 = (F11r, F21r, . . . , FN1r),

Rt−1 = (F11t, F21t, . . . , FN1t),

RN = (F1rt, F2rt, . . . , FNrt),

In the notations of Laplace expansion formula (5.8) we choose I = {r − 1, t − 1, N} and
J = {a, b, c}, where 1 ≤ a < b < c ≤ N . Hence we have

QIJ =

Fa1r Fb1r Fc1r

Fa1t Fb1t Fc1t

Fart Fbrt Fcrt

 . (5.23)

By formula (5.8) the determinant D takes the form

D =
∑
J

σJ detQI′J ′ det

Fa1r Fb1r Fc1r

Fa1t Fb1t Fc1t

Fart Fbrt Fcrt

 , (5.24)

where I ′
, J

′ are the complements of I, J respectively in [N ] = {1, . . . , N}, σJ = (−1)s and
s =

∑
i∈I i +

∑
j∈J j = N + r + t + a + b + c− 2. Now by Lemma 5.3.1 the determinant

(5.24) can be rewritten equivalently as

D = −
∑
J

σJ detQI′J ′

(∑
m̸=t

det

Fa1r Fb1r Fc1r

Fa1m Fb1m Fc1m

Farm Fbrm Fcrm

)

=
∑
m̸=t

det



F11r F21r · · · FN1r

F11m F21m · · · FN1m

F112 F212 · · · FN12

...
... . . . ...

F11µ F21µ · · · FN1µ

...
... . . . ...

F11N F21N · · · FN1N

F1rm F2rm · · · FNrm


,

where µ runs from 2 to N excluding r and t. Hence D = 0 since for each m the determinant
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contains a pair of repeated rows. Hence the matrix Q is singular as required.

The following statement takes place.

Proposition 5.3.3. Assume that the function F = F (x1, . . . , xN) satisfies the commu-
tativity equations (5.3). Assume also that the rank of the matrix (F1ij), where 2 ≤ i ≤
N, 1 ≤ j ≤ N , is N − 1. Then the coefficient matrix corresponding to the system (5.7)
where functions Ak, (k = 1, . . . , N) are given by formula (5.20), is diagonal.

Proof. Let us consider the system of linear equations

B1m =
N∑
k=1

AkF1km = 0, (5.25)

for some functions Ak = Ak(x1, . . . , xN). The system (5.25) represents a homogeneous
system of N − 1 linear equations in N variables Ai, (i = 1, . . . , N). The assumption that
rank of the matrix P = (F1ij), where 2 ≤ i ≤ N, 1 ≤ j ≤ N , is N − 1 implies that the
system (5.25) has a non-trivial solution which is unique up to proportionality.

Now, fix 2 ≤ s ≤ N . The direct substitution of the functions Ak given by formula (5.20)
into the right-hand side of relation (5.25) gives a row expansion of the determinant with the
repeated rows, hence the equation B1s = 0 is satisfied. Note also that Ak ̸= 0 for some k
since the rank of the matrix P isN−1. Now we will check the other non-diagonal equations,
namely, we will show that off-diagonal entries Brt = 0, where 2 ≤ r < t ≤ N . In order
to do so, we add one row corresponding to the non-diagonal entry Brt to the coefficient
matrix of the linear system (5.25) and we will show that the matrix is singular. This
will imply the existence of a non-trivial solution to the resulting system of N equations.
Indeed, as the first N − 1 equations have a unique solution given by (5.20) up to the
proportionality, it also has to solve the last equation. Thus we consider the equations

B1m = 0, (m = 2, . . . , N), Brt = 0, 2 ≤ r < t ≤ N. (5.26)

Then the coefficient matrix Q corresponding to equations (5.26) is given by formula (5.22)
which is a singular matrix as required by Lemma 5.3.2. This proves the statement.

The following statement gives further property for the matrix of the system (5.7).

Proposition 5.3.4. Under the assumption of Proposition 5.3.3 the matrix of the system
of linear equations (5.7), where function Ak, (k = 1, . . . , N) are given by formula (5.20),
satisfies

B11 = Bpp, (5.27)

for all p.
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Proof. Let us first consider the case p = 2. Since the matrix (F1jk),where (2 ≤ j ≤ N, 1 ≤
k ≤ N) has the maximal rank N − 1, this implies that there exists some q (1 ≤ q ≤ N)

such that F12q ̸= 0. Following the idea of the proof of Proposition 5.3.3, let us consider
the following set of homogeneous equations:

B1m = 0, 2 ≤ m ≤ N,

F12q(B11 −B22) = 0. (5.28)

It is sufficient to show that the coefficient matrix corresponding to equations (5.28) is
singular. Let Q be the coefficient matrix corresponding to equations (5.28), That is

Q =



F112 F212 · · · FN12

F113 F213 · · · FN13

...
... . . . ...

F11N F21N · · · FN1N

F12q(F111 − F122) F12q(F211 − F222) · · · F12q(FN11 − FN22)


. (5.29)

Let D = detQ. Now from the identity (5.4) for i = 1, j = 2, k = q, we have

F12qF111 =
N∑

m=1

F12mF1qm −
N∑

m=2

F11mF2qm.

Similarly, from the identity (5.4) for i = 2, j = 1, k = q, we have

F12qF222 =
N∑

m=1

F12mF2qm −
∑
m ̸=2

F1qmF22m.

Let Ri denote the ith row in the matrix Q. Then we have

Rk = (F11(k+1), F21(k+1), . . . , FN1(k+1)), (1 ≤ k ≤ N − 1),

RN = (rN1, rN2, . . . , rNN), (5.30)

where

rN1 =
∑
m̸=2

F1qmF12m −
∑
m ̸=1

F11mF2qm,

rN2 =
∑
m̸=2

F1qmF22m −
∑
m ̸=1

F12mF2qm,

rNk = F12q(Fk11 − Fk22), (3 ≤ k ≤ N).

Now let us perform the following row operation on the matrix Q and let Q̃ be the resulting
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matrix:

RN → R̃N = RN − F11qR1 +
N∑
k=2

F2qkRk−1.

Let r̃Nk be the kth element in the row R̃N of the matrix Q̃. We have

r̃N1 =
∑
m̸=1,2

F1qmF12m,

r̃N2 =
∑
m̸=1,2

F1qmF22m,

r̃Nk =
N∑

m=1

F2qmF1km − F12qF22k − F11qF12k, (3 ≤ k ≤ N). (5.31)

Note that

det



F112 F212 · · · FN12

F113 F213 · · · FN13

...
... . . . ...

F11N F21N · · · FN1N

F12m F22m · · · FN2m


= 0

for any 3 ≤ m ≤ N by Lemma 5.3.2. Therefore one can add the row corresponding to
equation B2m = 0, (3 ≤ m ≤ N) to the last row of the matrix Q̃ without changing its de-
terminant D. Let S2m = (F12m, F22m, . . . FN2m). Let us now add the rows −F1qmS2m, (m =

3, . . . , N) consecutively to the last row of Q̃. The last row (r̂N1, r̂N2, . . . , r̂NN) of the re-
sulting matrix has the form

r̂N1 = 0, r̂N2 = 0,

r̂Nk =
N∑

m=1

F2qmF1km −
N∑

m=1

F1qmF2km = −[F1, F2](q,k), (3 ≤ k ≤ N).

Since [F1, F2](q,k) = 0 by the commutativity equations, we get r̂Nk = 0 for all 1 ≤ k ≤ N .
Therefore D = 0. This proves that B11 = B22. Similarly, one can prove that B11 = Bpp

for all p.

As a corollary of Propositions 5.3.3 and 5.3.4 the following statement takes place.

Theorem 5.3.5. Under the assumptions of Proposition 5.3.3 the matrix (5.7), where
functions Ak, (k = 1, . . . , N) are given by formula (5.20), is proportional to the identity.

We also have the following result.

Proposition 5.3.6. Under the assumptions of Proposition 5.3.3 suppose also that there ex-
ists a non-degenerate linear combination G = ηkFk for some functions ηk, (k = 1, . . . , N).
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Let B = AkFk, where functions Ak are given by formula (5.20) and Ak ̸= 0 for some
k = 1, . . . , N . Then B is a non-zero multiple of the identity matrix.

Proof. From Theorem 5.3.5 we know that the matrix B is proportional to the identity. It
remains to show that B is not the zero matrix. Let Bij =

∑N
k=1A

kFijk = hδij for some
function h = h(x). We will show that h ̸= 0. Assume that h = 0. Then AkFijk = 0. Hence
ηlAkFljk = 0 which means that the non-zero vector (A1, . . . , AN) belongs to the kernel of
the form G (cf. a similar argument in [26]). Therefore G is degenerate, which contradicts
the assumption of G. Hence h ̸= 0 and the statement follows.

The following theorem is a corollary of Theorem 5.3.5 and Proposition 5.3.6, and it
confirms that function F which satisfies the commutativity equations also solves WDVV
equations under some non-degeneracy conditions.

Theorem 5.3.7. Assume that the function F = F (x1, . . . , xN) on V ∼= CN satisfies the
commutativity equations (5.3). Suppose that for a fixed i0, 1 ≤ i0 ≤ N the rank of the
matrix (Fi0ij) where 1 ≤ i, j ≤ N, i ̸= i0 is N − 1. Suppose also that there exists a non-
degenerate linear combination G = ηiFi for some functions ηi, (i = 1, . . . , N). Then F

is a solution of WDVV equations (5.2) where the matrix B is given by B = AkFk where
functions Ak are given by formula (5.20).

Proof. From Theorem 5.3.5 we know that for i0 = 1 the matrix (5.7), where functions
Ak, (k = 1, . . . , N) are given by formula (5.20), is proportional to the identity. Note that
the same arguments can be applied for any i0 and the matrix (5.7) is proportional to the
identity in this case as well. Moreover, from Proposition 5.3.6 we know that the matrix
(5.7) is a non-zero matrix, therefore the system of WDVV equations (5.2) is equivalent to
the system of commutativity equations (5.3) and the statement follows since F solves the
commutativity equations.

Remark 5.3.8. Note that under the assumptions of Theorem 5.3.7, function F also
satisfies WDVV equations

FiF
−1
j Fk = FkF

−1
j Fi, i, j, k = 1, . . . , N

provided that matrices Fj are non-degenerate. Indeed these equations follow from equa-
tions (5.2) for any particular non-degenerate combination B = AiFi by the result from
[41] (see also [40]). It also follows that F satisfies the WDVV equations

FiG
−1Fj = FjG

−1Fi, i, j = 1, . . . , N

for any non-degenerate linear combination G of matrices Fi.
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5.4 The identity field

In this section we define a natural multiplication on the tangent planes T∗V associated
with a solution F of the commutativity equations. We find the identity vector field of this
multiplication and establish that it is proportional to the vector field

∑N
k=1A

k∂xk
, where

functions Ak were defined in Section 5.3. Thus we will express the identity vector field in
terms of F for arbitrary dimension N .

For any functions u = (u1, . . . , uN), v = (v1, . . . , vN) : V → V , consider vector fields
∂u = ui∂xi , ∂v = vi∂xi ∈ Γ(TV ). Let us define the following multiplication on the tangent
space TxV for generic x ∈ V :

∂u ∗ ∂v = uivjδklFijk∂xl . (5.32)

Note that multiplication (5.32) defines a commutative algebra on TxV .
Consider a vector field

e = ek∂xk , (5.33)

where ek = ek(x1, . . . , xN) are some functions. Consider the N ×N matrix B = (Bij)
N
i,j=1

given by
Bij = e(Fij) = ekFijk, i, j = 1, . . . , N. (5.34)

The following statement takes place.

Proposition 5.4.1. The following statements are equivalent:
(1) The matrix B with entries given by (5.34) is equal to the identity,
(2) The vector field e given by formula (5.33) is the identity vector field of the multi-

plication (5.32).

Proof. From relations (5.32), (5.33) and (5.34) we have

e ∗ ∂v = eivj∂xi ∗ ∂xj = eivjFijk∂xk = Bjkv
j∂xk . (5.35)

Let us firstly assume that Bjk = δjk. Then relation (5.35) reduces to

e ∗ ∂v = δjkv
j∂xk = vj∂xj = ∂v.

That is statement (2) follows from (1).
Secondly, assume that e is the identity vector field of the multiplication (5.32). Then

from relation (5.35) we have

e ∗ ∂v = Bjkv
j∂xk = ∂v = vj∂xj .

This implies that Bjk = δjk, that is statement (1) holds. This proves the statement.
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Proposition 5.4.1 allows us to reformulate Theorem 5.3.5 as follows.

Theorem 5.4.2. Assume that the function F = F (x1, . . . , xN) on V ∼= CN satisfies the
commutativity equations (5.3). Suppose that for a fixed i0, 1 ≤ i0 ≤ N the rank of the
matrix (Fi0ij) where 1 ≤ i, j ≤ N, i ̸= i0 is N − 1. Suppose also that there exists a
non-degenerate linear combination G = ηiFi for some functions ηi, (i = 1, . . . , N). Then
there exists a unique vector field e = ek∂xk , where ek = ek(x1, . . . , xN) are some functions,
such that e(Fij) = δij. Moreover, the vector field e is the identity vector field of the
multiplication (5.32), and it has the form ek = h−1Ak, where functions Ak are given by
formula (5.20) and h = AkFkii (for any i = 1, . . . , N).

Proof. From Theorem 5.3.5 we know that the matrix B with its entries given by formula
(5.7), and functions Ak, (k = 1, . . . , N) are given by formula (5.20), is proportional to the
identity matrix. That is we have

B = AkFk = hIN , (5.36)

where IN is the N × N identity matrix and h = AKFkii for any i = 1, . . . , N . Let
B̃ = h−1B. Thus B̃ is the identity matrix and its entries have the form

B̃ij = h−1AkFijk = δij. (5.37)

Now let e = h−1Ak∂xk . Then by (5.37) we have e(Fij) = h−1AkFijk = δij. Therefore, by
Proposition 5.4.1 the vector field e = h−1Ak∂xk is the identity vector field of the multipli-
cation (5.32) since the matrix (5.37) is the identity matrix. This proves the theorem.

Now we are going to generalize Theorem 5.3.7 to the case of arbitrary constant metric
g in place of the standard metric δij. Thus we start with equations of the form

Fijαg
αβFβkl = Fkjαg

αβFβil, (5.38)

where the summation over repeated indices is assumed, and we will show that metric g
can be represented as a linear combination of the third order derivatives of the function
F under some non-degeneracy assumptions.

Theorem 5.4.3. Let F = F (x1, . . . , xN) be a function on CN that satisfies equations of the
form (5.38) for some constant non-degenerate matrix (gαβ), where i, j, k, l, α, β = 1, . . . , N .
Let Ĉ be the constant matrix of change of variables such that

yi = Ĉi
jx

j, (5.39)

where y1, . . . , yN is a new coordinate system and the matrix g satisfies the relation Ĉα
i Ĉ

β
j g

ij =

δαβ. Let F̃ (y) = F (x). Suppose that there exists i0, (1 ≤ i0 ≤ N) such that the matrix
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(F̃i0ij(y)) has rank N − 1, where 1 ≤ i, j ≤ N, i ̸= i0. Then there exists a unique vector
field e = ek(x)∂k for some functions ek, (k = 1, . . . , N) such that

e(Flm) = ek(x)Fklm = glm, (5.40)

where (glm) is the inverse matrix for (gαβ).

Before we prove the theorem, we give firstly a prove of the following lemma which is
needed.

Lemma 5.4.4. Relation Ĉα
i Ĉ

β
j g

ij = δαβ implies that
∑

αβ Ĉ
α
c Ĉ

β
d δ

αβ = gcd, where the
matrix Ĉ is defined by formula (5.39).

Proof. Firstly, note that for any matrices G and H, if GH = Id, where Id is the identity
matrix, then HG = Id. This is easy to show as GH = Id implies that H = G−1 and
we know that GG−1 = G−1G = Id. Now, let us multiply relation Ĉα

i Ĉ
β
j g

ij = δαβ by Ca
α,

we get Ĉβ
j g

aj = Ca
β . By multiplying this relation by Cb

β we get gab =
∑

β C
a
βC

b
β. This

relation after multiplying it by gac becomes δbc =
∑

β C
a
βC

b
βgac. Let us also multiply this

relation by Ĉα
b so we get Ĉα

c = Ca
αgac. Finally, by multiplying this relation by Ĉα

d we get∑
α Ĉ

α
c C

α
d = gcd which is equivalent to the relation

∑
αβ Ĉ

β
c C

α
d δ

αβ = gcd. This proves the
lemma.

Now we give the proof of Theorem 5.4.3.

Proof. Let C be the matrix such that Ci
kĈ

k
j = δij. Thus we have xi = Ci

jy
j. We also have

∂xj = Ĉi
j∂yi , ∂yj = Ci

j∂xi . (5.41)

Since Ĉα
i Ĉ

β
j g

ij = δαβ, then this implies that

Ĉ l
aĈ

m
b δ

lm = gab (5.42)

by Lemma 5.4.4. From (5.41) we have the following relations:

Fj(x) = ∂xjF (x) = Ĉi
j∂yiF̃ (y) = Ĉi

jF̃i(y). (5.43)

Similarly, we have
F̃m(y) = Cj

mFj(x). (5.44)

Hence, we have the following relation:

Fpjk(x) = Ĉm
p Ĉ

i
jĈ

l
kF̃mil(y). (5.45)
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By multiplying relation (5.45) by Cp
aC

j
bC

k
c we get

F̃abc(y) = Cp
aC

j
bC

k
c Fpjk(x). (5.46)

Now let us consider the system of equations (5.38), that is,

Fijαg
αβFβkl = Fkjαg

αβFβil. (5.47)

Then from relation (5.45) we see that relations (5.47) are equivalent to

Ĉp
i Ĉ

q
j Ĉ

r
αF̃pqrg

αβĈa
βĈ

b
kĈ

d
l F̃abd = Ĉs

kĈ
q
j Ĉ

r
αF̃sqrg

αβĈa
βĈ

b
i Ĉ

d
l F̃abd. (5.48)

By relation (5.42) we reduce relation (5.48) to

Ĉp
i Ĉ

b
kF̃pqrδ

arF̃abd = Ĉs
kĈ

b
i F̃sqrδ

arF̃abd. (5.49)

By multiplying equation (5.49) by Ci
nC

k
m this equation reduces to

F̃nqrδ
arF̃amd = F̃mqrδ

arF̃and, (5.50)

that is F̃m and F̃n commutes. Now since rank(F̃i0ij) = N − 1, then by Theorem 5.3.5
there exists a unique vector field e given in the coordinate system y1, . . . , yN by

e(y) = ej(y)∂yj

such that for the function F̃ we have

e(F̃αβ(y)) = ej(y)F̃jαβ(y) = δαβ. (5.51)

Now we will show that e(Fab(x)) = gab. From relation (5.45) we have

∂xiFab(x) = Fiab(x) = Ĉk
i Ĉ

l
aĈ

m
b F̃klm(y).

Hence we have
Ci

j∂xiFab(x) = Ĉ l
aĈ

m
b F̃jlm(y).

This equation implies that

ej(y(x))Ci
j∂xi

Fab(x) = ej(y(x))F̃jlm(y)Ĉ
l
aĈ

m
b = δlmĈ

l
aĈ

m
b = gab

by relation (5.42) as required. This proves the theorem.

To conclude this section we illustrate Theorem 5.4.3 by considering prepotential F
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coming from a Frobenius manifold.

Example 5.4.5. Consider the prepotential F of an N -dimensional Frobenius manifold
given by

F (t) = Q+ f(t2, . . . , tN), (5.52)

where Q is a cubic term given by

Q =
1

2

(
(t1)2tN + t1

N−1∑
i=2

titN+1−i
)
. (5.53)

We assume that F (t) satisfies the equations FiGFj = FjGFi for all i, j = 1, . . . , N, where

G = G−1 =


0 · · · 0 1

0 · · · 1 0

0
... 0 0

1 · · · 0 0

 . (5.54)

It is immediate to check that G = F1. Now we are going to derive this equality by applying
Theorem 5.4.3.

Let C, Ĉ be the constant matrices of the change of variables such that Ĉ = C−1 and

ti = Ci
jx

j, xi = Ĉi
jt

j, (5.55)

where x1, . . . , xN is a new coordinate system and the matrix G = (gij) satisfies the relation
Ĉα

i Ĉ
β
j g

ij = δαβ. Then matrix C is given as follows:

C =



− i
2

0 1
2

. . . ...

− i
2

1
2

0 1 0

i 1
... . . .

i 0 1


, or C =



− i
2

0 1
2

. . . ...

− i
2

1
2

0 0

i 1
... . . .

i 0 1


,

for N being odd or even respectively. That is the ij-entries Ci
j of the matrix C are given

by
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• If N is odd let b = N+1
2

, then the entries are

C1
1 = C2

2 = · · · = Cb−1
b−1 = − i

2
,

Cb
b = Cb+1

b+1 = · · · = CN
N = 1,

C1
N = C2

N−1 = · · · = Cb−1
b+1 =

1

2
,

Cb+1
b−1 = Cb+2

b−2 = · · · = CN
1 = i,

and all the other entries are zeros.

• If N is even let b = N
2
, the entries are

C1
1 = C2

2 = · · · = Cb
b = − i

2
,

Cb+1
b+1 = Cb+2

b+2 = · · · = CN
N = 1,

C1
N = C2

N−1 = · · · = Cb
b+1 =

1

2
,

Cb+1
b = Cb+2

b−1 = · · · = CN
1 = i,

and all the other entries are zeros.

The matrix Ĉ is given as follows:

Ĉ =



i 0 − i
2

. . . ...

i − i
2

0 1 0

1 1
2

... . . .

1 0 1
2


, or Ĉ =



i 0 − i
2

. . . ...

i − i
2

0 0

1 1
2

... . . .

1 0 1
2


,

for N being odd or even respectively. Hence we have the following relations. Firstly, for
N being odd number we have

∂xk =



− i

2
∂t1 + i∂tN , k = 1,

− i

2
∂tk + i∂tN+1−k , 2 ≤ k ≤ N − 1

2
,

∂tk , k =
N + 1

2
,

1

2
∂tN+1−k + ∂tk ,

N + 3

2
≤ k ≤ N − 1,

1

2
∂t1 + ∂tN , k = N.
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Secondly, for N being even number we have

∂xk =



− i

2
∂t1 + i∂tN , k = 1,

− i

2
∂tk + i∂tN+1−k , 2 ≤ k ≤ N

2
,

1

2
∂tN+1−k + ∂tk ,

N

2
+ 1 ≤ k ≤ N − 1,

1

2
∂t1 + ∂tN , k = N.

Let F̃ (x) = F (t). Define F̃jkl(x) = ∂xj
∂xk

∂xl
F (t). Since ∂x1f(t2, . . . , tN) = i∂xNf(t2, . . . , tN),

we also have

∂x1∂x1∂xrf(t2, . . . , tN) = i∂x1∂xN∂xrf(t2, . . . , tN), 2 ≤ r ≤ N,

∂x1∂xj∂xkf(t2, . . . , tN) = i∂xN∂xj∂xkf(t2, . . . , tN). (5.56)

The following relations are also easy to verify:

∂x1∂x1∂xrQ(t1, . . . , tN) = i∂x1∂xN∂xrQ(t1, . . . , tN) = 0, 2 ≤ r ≤ N − 1,

∂x1∂x1∂xNQ(t1, . . . , tN) = i∂x1∂xN∂xNQ(t1, . . . , tN),

∂x1∂xj∂xkQ(t1, . . . , tN) = i∂xN∂xj∂xkQ(t1, . . . , tN), j ̸= k,

∂x1∂xk∂xkQ(t1, . . . , tN) = i∂xN∂xk∂xkQ(t1, . . . , tN)− i, 1 ≤ k ≤ N. (5.57)

Hence relations (5.56), (5.57) imply the relations

F̃11r = iF̃1Nr, 2 ≤ r ≤ N, (5.58)

F̃1jk = iF̃Njk, j ̸= k, (5.59)

F̃1kk = iF̃Nkk − i, 1 ≤ k ≤ N. (5.60)

Assume that there exists j0, (1 ≤ j0 ≤ N) such that the matrix (F̃j0jk(x)) has rank
N − 1, where 1 ≤ j, k ≤ N, j ̸= j0. One can now define the matrix B = AkF̃k, where
Ak are given by formula (5.20), and there exist at least r, where (1 ≤ r ≤ N), such
that Ar ̸= 0. Now from relations (5.58), (5.59) and formula (5.20) it is easy to see that
A1 = iAN and that Ak = 0 for 2 ≤ k ≤ N − 1 since the right-hand side of formula (5.20)
for 2 ≤ k ≤ N − 1 is a determinant of a matrix which contains two proportional columns.
Thus the matrix B takes the form

B = A1F̃1 + AN F̃N = AN(iF̃1 + F̃N). (5.61)

Hence for j ̸= k we have Bjk = AN(iF̃1jk + F̃Njk) = 0 by (5.59). Let us now find Bkk. We
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have from (5.60) that

Bkk = A1F̃1kk + AN F̃Nkk = iAN(iF̃Nkk − i) + AN F̃Nkk = AN .

Hence we have shown that B = hIN , where h = AN . Let us now define the vector field
e = ek∂xk by e = h−1Ak∂xk . Then we have

e = h−1
(
A1∂x1 + AN∂xN

)
= h−1AN

(
i∂x1 + ∂xN

)
= i∂x1 + ∂xN = ∂t1 .

As expected, this formula coincides with the well-known formula of the identity field of a
Frobenius manifold.

Remark 5.4.6. We note that the maximality of rank condition is sufficient but not
necessary for the existence of the identity. Indeed, in the case of Example 5.4.5 with
N = 2 we have

F̃112 =
1

4
− f

′′′
(ix1 + x2), F̃122 = − i

4
+ if

′′′
(ix1 + x2).

Then the matrix
(
F̃112 F̃122

)
has rank zero if f(t2) = 1

24
(t2)3. Nonetheless e = ∂t1 is the

identity field.

5.5 Applications

In this section we explore the close relation between commutativity equations and WDVV
equations established in Section 5.3 through the existence of the identity field. This leads
to new solutions of WDVV equations.

5.5.1 Applications to Euclidean trigonometric ∨-systems

Let us recall the function F given by the formula (4.53)

F =
∑
α∈A

cαf((α, x)), (5.62)

where A is a finite set of vectors in V ∼= CN , cα ∈ C, are some multiplicity parameters,
where the function f is given by (1.11). Let us recall some notations from Section 4.5. Let
A be a finite set of vectors in a Euclidean space V with the bilinear inner product (·, ·).
Let cα ∈ C, α ∈ A be some multiplicity parameters. Assume that A belongs to a lattice
of rank N . For each vector α ∈ A we recall the set of its collinear vectors from A:

δα := {γ ∈ A : γ ∼ α}.
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Let δ ⊆ δα and α0 ∈ δα. Then for any γ ∈ δ we have γ = kγα0 for some kγ ∈ R. Note that
kγ depends on the choice of α0 and different choices of α0 give rescaled collections of these
parameters. Define Cα0

δ :=
∑
γ∈δ

cγk
2
γ. Note that Cα0

δ is non-zero if and only if C α̃0
δ ̸= 0 for

any α̃0 ∈ δ.

As a corollary of Theorems 4.5.8, 5.3.7, the following statement takes place.

Theorem 5.5.1. Suppose that a configuration (A, c) satisfies the following conditions
(1) A is a Euclidean trigonometric ∨-system,
(2)

∑
α,β∈A+

cαcβ(α, β)Bα,β(a, b)α ∧ β = 0,
(3) Cα0

δ ̸= 0 for any α ∈ A, δ ⊆ δα, α0 ∈ δα,

(4) The function F given by formula (5.62) satisfies that for a fixed i0 the rank of the
matrix (Fi0ij), where 1 ≤ i, j ≤ N, i ̸= i0, is N − 1,

(5) There exists a non-degenerate linear combination G = CiFi for some functions
Ci, (i = 1, . . . , N).

Then function (5.62) satisfies both the commutativity equations (5.3) and the WDVV
equations (5.2), where the entries of the matrix B = (Bij)

N
i,j=1 are given by formula (5.7)

and functions Ak = Ak(x1, . . . , xN) are given by formula (5.20).

We have shown in Theorem 4.8.1 that the class of solutions of commutativity equations
corresponding to Euclidean ∨-systems is closed under the restrictions. As a corollary of
Theorem 4.8.1 and Theorem 5.3.7, the following statement takes place.

Theorem 5.5.2. In the notations and under the assumptions of Theorem 4.8.1, assume
that prepotential (5.62) satisfies the commutativity equations (5.3). Let B ⊂ A be a
subsystem of rank n. Suppose that the prepotential

FB =
∑

α∈A\B

cαf((α̃, ξ)), ξ ∈MB, (5.63)

satisfies that for a fixed i0 the rank of the matrix (FB)i0ij, where 1 ≤ i, j ≤ n, i ̸= i0, is
n− 1. Then prepotential (5.63) satisfies the WDVV equations of the form

(FB)iB
−1(FB)j = (FB)jB

−1(FB)i, i, j = 1, . . . , n, (5.64)

where (FB)i is the n× n matrix with entries

((FB)i)pq = (FB)ipq =
∂3FB

∂xi∂xp∂xq

and the entries of the matrix B = (Bij)
n
i,j=1 are given by formula (5.7) (with N=n) and

functions Ak = Ak(x1, . . . , xn) are given by formula (5.20) provided that B ̸= 0.
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5.5.2 New solutions of WDVV equations

In this subsection we check that maximal rank assumption from Theorem 5.4.2 is satisfied
in the example related to root system F4. This leads to a new solution of WDVV equations.

Consider the positive half of root system F4 consisting of vectors

F+
4 = {ei (1 ≤ i ≤ 4), ei ± ej (1 ≤ i < j ≤ 4),

1

2
(e1 ± e2 ± e3 ± e4)}. (5.65)

Let r be the multiplicity of the short roots and let q be the multiplicity of the long roots.
We assume that r, q ̸= 0.

Recall that by Theorem 4.1.4 (see [3]) function (5.62) for the collection A = F+
4 satisfies

commutativity equations (5.3) if and only if r = −2q or r = −4q. Now we will check that
the condition of Theorem 5.3.5 is satisfied for both cases.

Consider the following 3× 4 matrix

Q =

F112 F212 F312 F412

F113 F213 F313 F413

F114 F214 F314 F414

 . (5.66)

Matrix Q is the coefficient matrix corresponding to the homogeneous system of equations
B12 = B13 = B14 = 0 where B1m is given by formula (5.25) for some functions Ak =

Ak(x1, x2, x3, x4), where function F has the form (5.62) and A = F+
4 is given by formula

(5.65). The following statement takes place.

Lemma 5.5.3. Matrix Q has rank three.

Proof. To show that rank(Q) = 3, we will show that the following 3×3 sub-matrix Q̃ has
rank three, where

Q̃ =

F112 F212 F312

F113 F213 F313

F114 F214 F314

 . (5.67)

That is we will show that matrix (5.67) is not singular. Let D = D(x) = det Q̃. From
(5.67) we have

D(x) = F112(F123F134 − F133F124)− F122(F113F134 − F114F133) + F123(F113F124 − F114F12).

(5.68)
We will establish that D(x0) ̸= 0, where x0 = (x1, 0, 0, x4). We have the following third
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order derivatives:

F112 = q
(
cot (x1 + x2)− cot (x1 − x2)

)
+
r

8

(
cot (

x1
2

+
x2
2

+
x3
2

+
x4
2
)

− cot (
x1
2

− x2
2

− x3
2

− x4
2
) + cot (

x1
2

+
x2
2

− x3
2

− x4
2
)− cot (

x1
2

− x2
2

+
x3
2

− x4
2
)

+ cot (
x1
2

+
x2
2

+
x3
2

− x4
2
)− cot (

x1
2

− x2
2

− x3
2

+
x4
2
) + cot (

x1
2

+
x2
2

− x3
2

+
x4
2
)

− cot (
x1
2

− x2
2

+
x3
2

+
x4
2
)
)
,

F114 = q
(
cot (x1 + x4)− cot (x1 − x4)

)
+
r

8

(
cot (

x1
2

+
x2
2

+
x3
2

+
x4
2
)

− cot (
x1
2

− x2
2

− x3
2

− x4
2
)− cot (

x1
2

+
x2
2

− x3
2

− x4
2
)− cot (

x1
2

− x2
2

+
x3
2

− x4
2
)

− cot (
x1
2

+
x2
2

+
x3
2

− x4
2
) + cot (

x1
2

− x2
2

− x3
2

+
x4
2
) + cot (

x1
2

+
x2
2

− x3
2

+
x4
2
)

+ cot (
x1
2

− x2
2

+
x3
2

+
x4
2
)
)
,

F122 = q
(
cot (x1 + x2) + cot (x1 − x2)

)
+
r

8

(
cot (

x1
2

+
x2
2

+
x3
2

+
x4
2
)

+ cot (
x1
2

− x2
2

− x3
2

− x4
2
) + cot (

x1
2

+
x2
2

− x3
2

− x4
2
) + cot (

x1
2

− x2
2

+
x3
2

− x4
2
)

+ cot (
x1
2

+
x2
2

+
x3
2

− x4
2
) + cot (

x1
2

− x2
2

− x3
2

+
x4
2
) + cot (

x1
2

+
x2
2

− x3
2

+
x4
2
)

+ cot (
x1
2

− x2
2

+
x3
2

+
x4
2
)
)
,

F133 =q
(
cot (x1 + x3) + cot (x1 − x3)

)
+
r

8

(
cot (

x1
2

+
x2
2

+
x3
2

+
x4
2
)

+ cot (
x1
2

− x2
2

− x3
2

− x4
2
) + cot (

x1
2

+
x2
2

− x3
2

− x4
2
) + cot (

x1
2

− x2
2

+
x3
2

− x4
2
)

+ cot (
x1
2

+
x2
2

+
x3
2

− x4
2
) + cot (

x1
2

− x2
2

− x3
2

+
x4
2
) + cot (

x1
2

+
x2
2

− x3
2

+
x4
2
)

+ cot (
x1
2

− x2
2

+
x3
2

+
x4
2
)
)
,

F123 =
r

8

(
cot (

x1
2

+
x2
2

+
x3
2

+
x4
2
) + cot (

x1
2

− x2
2

− x3
2

− x4
2
)− cot (

x1
2

+
x2
2

− x3
2

− x4
2
)

− cot (
x1
2

− x2
2

+
x3
2

− x4
2
) + cot (

x1
2

+
x2
2

+
x3
2

− x4
2
) + cot (

x1
2

− x2
2

− x3
2

+
x4
2
)

− cot (
x1
2

+
x2
2

− x3
2

+
x4
2
)− cot (

x1
2

− x2
2

+
x3
2

+
x4
2
)
)
,
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F134 =
r

8

(
cot (

x1
2

+
x2
2

+
x3
2

+
x4
2
) + cot (

x1
2

− x2
2

− x3
2

− x4
2
) + cot (

x1
2

+
x2
2

− x3
2

− x4
2
)

− cot (
x1
2

− x2
2

+
x3
2

− x4
2
)− cot (

x1
2

+
x2
2

+
x3
2

− x4
2
)− cot (

x1
2

− x2
2

− x3
2

+
x4
2
)

− cot (
x1
2

+
x2
2

− x3
2

+
x4
2
) + cot (

x1
2

− x2
2

+
x3
2

+
x4
2
)
)
.

Now we have the following two cases to consider.
Case (1). r = −2q. We have

F112|x0 = 0, F123|x0 = 0, F134|x0 = 0,

F114|x0 = q
(
cot (x1 + x4)− cot (x1 − x4)− cot (

x1
2

+
x4
2
) + cot (

x1
2

− x4
2
)
)
,

F122|x0 = q
(
2 cotx1 − cot (

x1
2

+
x4
2
)− cot (

x1
2

− x4
2
)
)
,

F133|x0 = q
(
2 cotx1 − cot (

x1
2

+
x4
2
)− cot (

x1
2

− x4
2
)
)
.

Hence, the determinant (5.68) reduces to

D(x0) = F122F114F133

= q3
(
cot (x1 + x4)− cot (x1 − x4)− cot (

x1
2

+
x4
2
) + cot (

x1
2

− x4
2
)
)

×
(
2 cotx1 − cot (

x1
2

+
x4
2
)− cot (

x1
2

− x4
2
)
)2

̸= 0. (5.69)

Case (2). r = −4q. We have

F112|x0 = 0, F123|x0 = 0, F134|x0 = 0,

F114|x0 = q
(
cot (x1 + x4)− cot (x1 − x4)− 2 cot (

x1
2

+
x4
2
) + 2 cot (

x1
2

− x4
2
)
)
,

F122|x0 = 2q
(
cotx1 − cot (

x1
2

+
x4
2
)− cot (

x1
2

− x4
2
)
)
,

F133|x0 = 2q
(
cotx1 − cot (

x1
2

+
x4
2
)− cot (

x1
2

− x4
2
)
)
.

Hence, the determinant (5.68) reduces to

D(x0) = F122F114F133

= 4q3
(
cot (x1 + x4)− cot (x1 − x4)− 2 cot (

x1
2

+ 2
x4
2
) + cot (

x1
2

− x4
2
)
)

×
(
cotx1 − cot (

x1
2

+
x4
2
)− cot (

x1
2

− x4
2
)
)2

̸= 0. (5.70)

This proves the statement.
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Now let us define

A1 = det

F212 F312 F412

F213 F313 F413

F214 F314 F414

 , A2 = − det

F112 F312 F412

F113 F313 F413

F114 F314 F414

 ,

A3 = det

F112 F212 F412

F113 F213 F413

F114 F214 F414

 , A4 = − det

F112 F212 F312

F113 F213 F313

F114 F214 F314

 . (5.71)

As a corollary of Theorem 5.3.5 and Lemma 5.5.3 the following statement takes place.

Theorem 5.5.4. Consider the function

F = r
4∑

i=1

f(xi) + r
∑

εi∈{1,−1}

f
(1
2
(ε1x1 + ε2x2 + ε3x3 + ε4x4)

)
+ q

4∑
i<j

f(xi ± xj), (5.72)

Suppose that parameters r, q satisfy the conditions r = −2q or r = −4q. Define the vector
field

e =
4∑

i=1

Ai(x)∂xi , (5.73)

where functions Ai(x) are given by formulas (5.71). Define 4× 4 matrix B = (Bij)
4
i,j=1 by

Bij = e(Fij) =
4∑

k=1

Ak(x)Fijk, i, j = 1, . . . , 4. (5.74)

Then the matrix B is proportional to the identity matrix.

This leads us to another solution of WDVV equations.

Theorem 5.5.5. Consider the function (5.72) such that parameters r, q satisfy the con-
ditions r = −2q or r = −4q. Then F satisfies WDVV equations (5.2).

5.5.3 The identity field for root system F4

In this subection we consider A = F+
4 given by formula (5.65) and the corresponding

function of the form (5.62) which satisfies commutativity equations (5.3). We give explicit
simple formulas for the functions Ak (k = 1, 2, 3, 4), and we show that the metric B =∑4

k=1A
kFk is a multiple of the identity matrix I4. By uniqueness of the identity field

this implies, in particular, that these functions Ak coincides up to proportionality with
corresponding functions defined in Section 5.3 by determinant formulas.
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Let [4] = {1, 2, 3, 4}. Let us also introduce the following functions:

b1 = (A1 + A2 + A3 + A4) cot(
x1 + x2 + x3 + x4

2
),

b2 = (A1 + A2 − A3 − A4) cot(
x1 + x2 − x3 − x4

2
),

b3 = (A1 + A2 + A3 − A4) cot(
x1 + x2 + x3 − x4

2
),

b4 = (A1 + A2 − A3 + A4) cot(
x1 + x2 − x3 + x4

2
),

b5 = (A1 − A2 + A3 + A4) cot(
x1 − x2 + x3 + x4

2
),

b6 = (A1 − A2 − A3 − A4) cot(
x1 − x2 − x3 − x4

2
),

b7 = (A1 − A2 + A3 − A4) cot(
x1 − x2 + x3 − x4

2
),

b8 = (A1 − A2 − A3 + A4) cot(
x1 − x2 − x3 + x4

2
),

b9 = (A1 + A2) cot(x1 + x2), b10 = (A1 − A2) cot(x1 − x2),

b11 = (A1 + A3) cot(x1 + x3), b12 = (A1 − A3) cot(x1 − x3),

b13 = (A1 + A4) cot(x1 + x4), b14 = (A1 − A4) cot(x1 − x4). (5.75)

We consider separately two cases r = −2q and r = −4q.

5.5.4 F4 with the condition r = −2q

Assume that the multiplicity parameters r, q satisfy the condition r = −2q. Define

Ak = sinxk

(
cosxk(−1 +

∑
i ̸=k

cos 2xi)− 2
∏
i ̸=k

cosxi

)
, k = 1, 2, 3, 4. (5.76)

The following relation takes place.

Lemma 5.5.6. Functions Ak, (k = 1, 2, 3, 4) given by formula (5.76) satisfy the relation

4∑
i=1

εiA
i = sin(

ε1x1 + ε2x2 + ε3x3 + ε4x4
2

)
(
− 2 cos(

ε1x1 + ε2x2 + ε3x3 + ε4x4
2

)

+
∑

1≤i<j≤4
k,l∈[4]\{i,j}

k<l

cos(
εixi + εjxj − 3εkxk − 3εlxl

2
)−

∑
1≤i<j<k≤4
l∈[4]\{i,j,k}

cos(
εixi + εjxj + εkxk − 3εlxl

2
)
)
,

(5.77)

where εi ∈ {1,−1} for all i.

Proof. Let us substitute functions Ak, (k = 1, 2, 3, 4) from relation (5.76) into the left-hand
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side of the equation (5.77). Then by rearranging the terms one gets the formula

4∑
i=1

εiA
i =

1

2

( ∑
1≤i<j≤4

sin (2εixi + 2εjxj)−
4∑

i=1

sin (2εixi)
)

− 2
(
sin (ε1x1 + ε2x2) cos (ε3x3) cos (ε4x4) + sin (ε3x3 + ε4x4) cos (ε1x1) cos (ε2x2)

)
.

(5.78)

On the other hand we have

sin(
εixi + εjxj + εkxk + εlxl

2
) cos(

εixi + εjxj − 3εkxk − 3εlxl
2

)

=
1

2

(
sin (εixi + εjxj − εkxk − εlxl) + sin (2εkxk + 2εlxl)

)
. (5.79)

Also we have

sin(
εixi + εjxj + εkxk + εlxl

2
) cos(

εixi + εjxj + εkxk − 3εlxl
2

)

=
1

2

(
sin (εixi + εjxj + εkxk − εlxl) + sin (2εlxl)

)
. (5.80)

Now let M be the right-hand side of the equation (5.77). Then from relations (5.79) and
(5.80) we have

M = − sin (ε1x1 + ε2x2 + ε3x3 + ε4x4) +
1

2

∑
i<j
k<l

k,l ̸=i,j

(
sin (εixi + εjxj − εkxk − εlxl)

+ sin (2εkxk + 2εlxl)
)
− 1

2

∑
i<j<k
l ̸=i,j,k

(
sin (εixi + εjxj + εkxk − εlxl) + sin (2εlxl)

)
. (5.81)

Note that

sin (ε1x1 + ε2x2 + ε3x3 + ε4x4) = sin (ε1x1 + ε2x2) cos (ε3x3 + ε4x4)

+ cos (ε1x1 + ε2x2) sin (ε3x3 + ε4x4).

Note also that ∑
i<j
k<l

k,l ̸=i,j

sin (εixi + εjxj − εkxk − εlxl) = 0.
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Also we have

sin (ε1x1 + ε2x2 + ε3x3 − ε4x4) + sin (ε1x1 + ε2x2 − ε3x3 + ε4x4)

= 2 sin (ε1x1 + ε2x2) cos (ε3x3 − ε4x4),

and

sin (ε1x1 − ε2x2 + ε3x3 + ε4x4)− sin (ε1x1 − ε2x2 − ε3x3 − ε4x4)

= 2 cos (ε1x1 − ε2x2) sin (ε3x3 + ε4x4).

Thus, formula (5.81) can be rearranged as

M = − sin (ε1x1 + ε2x2)
(
cos (ε3x3 + ε4x4) + cos (ε3x3 − ε4x4)

)
− 1

2

4∑
i=1

sin (2εixi)

− sin (ε3x3 + ε4x4)
(
cos (ε1x1 + ε2x2) + cos (ε1x1 − ε2x2)

)
+

1

2

∑
1≤i<j≤4

sin (2εixi + 2εjxj).

(5.82)

It is clear that the right-hand side of the formula (5.82) is equal to the right-hand side of
the relation (5.78), which proves the lemma.

The following identity holds.

Lemma 5.5.7. Functions Ak, (k = 1, 2, 3, 4) given by formula (5.76) satisfy the identity

4∑
i=1

εiA
i cot(

ε1x1 + ε2x2 + ε3x3 + ε4x4
2

)

= −1− cos(ε1x1 + ε2x2 + ε3x3 + ε4x4) + cos(ε1x1 + ε2x2 − ε3x3 − ε4x4)

+ cos(ε1x1 − ε2x2 + ε3x3 − ε4x4) + cos(ε1x1 − ε2x2 − ε3x3 + ε4x4)

+
1

2

∑
1≤i<j≤4

cos(2εixi + 2εjxj)−
1

2

∑
i<j<k
l ̸=i,j,k

cos (εixi + εjxj + εkxk − εlxl)−
1

2

4∑
i=1

cos(2εixi).

(5.83)

where εi ∈ {1,−1} for all i.
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Proof. We have by Lemma 5.5.6 that

4∑
i=1

εiA
i cot(

ε1x1 + ε2x2 + ε3x3 + ε4x4
2

)

= cos(
ε1x1 + ε2x2 + ε3x3 + ε4x4

2
)
(
− 2 cos(

ε1x1 + ε2x2 + ε3x3 + ε4x4
2

)

+
∑

1≤i<j≤4
k,l∈[4]\{i,j}

k<l

cos(
εixi + εjxj − 3εkxk − 3εlxl

2
)−

∑
1≤i<j<k≤4
l∈[4]\{i,j,k}

cos(
εixi + εjxj + εkxk − 3εlxl

2
)
)
.

(5.84)

Firstly, we have

2 cos2(
ε1x1 + ε2x2 + ε3x3 + ε4x4

2
) = 1 + cos(ε1x1 + ε2x2 + ε3x3 + ε4x4). (5.85)

Secondly, we have

cos(
εixi + εjxj + εkxk + εlxl

2
) cos(

εixi + εjxj − 3εkxk − 3εlxl
2

)

=
1

2

(
cos(εixi + εjxj − εkxk − εlxl) + cos(2εkxk + 2εlxl)

)
. (5.86)

Also we have

cos(
εixi + εjxj + εkxk + εlxl

2
) cos(

εixi + εjxj + εkxk − 3εlxl
2

)

=
1

2

(
cos(εixi + εjxj + εkxk − εlxl) + cos(2εlxl)

)
. (5.87)

Relation (5.83) follows by substituting relations (5.85)–(5.87) into the right-hand side of
relation (5.84).

We will also need the following identity.

Lemma 5.5.8. For distinct i, j, k, l ∈ [4] we have

εiA
i + εjA

j = sin(εixi + εjxj)
(
cos(εixi + εjxj)− 2 cos(εkxk) cos(εlxl)

+ cos(εixi − εjxj)
(
− 1 + cos(2εkxk) + cos(2εlxl)

))
, (5.88)

where functions Ak (k = 1, 2, 3, 4) are given by formula (5.76) and εi ∈ {1,−1} for all i.
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Proof. From formula (5.76) we have

εiA
i + εjA

j =
1

2
εi sin(2xi)

(
− 1 +

∑
k ̸=i

cos 2xk

)
− 2εi sinxi

∏
k ̸=i

cosxk

+
1

2
εj sin 2xj

(
− 1 +

∑
k ̸=j

cos 2xk

)
− 2εj sinxj

∏
k ̸=j

cosxk

=
1

2

(
sin(2εixi) + sin(2εjxj)

)(
− 1 + cos(2εkxk) + cos(2εlxl)

)
+

1

2
sin(2εixi + 2εjxj)− 2 cos(εkxk) cos(εlxl) sin(εixi + εjxj). (5.89)

By applying formulas

sin(2εixi) + sin(2εjxj) = 2 sin(εixi + εjxj) cos(εixi − εjxj),

and
sin(2εixi + 2εjxj) = 2 sin(εixi + εjxj) cos(εixi + εjxj),

we see that relation (5.89) takes the form (5.88). This proves the lemma.

The following statement confirms that with the choice of the functions Ai given by
formula (5.76), the metric B =

∑4
k=1A

kxk is diagonal.

Proposition 5.5.9. The linear combination B =
∑4

k=1A
kFk, where functions Ak are

given by formula (5.76) and function F has the form (5.62), is a diagonal matrix.

Proof. Let us show that the entry B12 =
∑4

k=1A
kF12k = 0. In the notation of formulas

(5.75) we have

4

q
B12 = 4(A1 + A2) cot(x1 + x2)− 4(A1 − A2) cot(x1 − x2)−

4∑
i=1

bi +
8∑

i=5

bi. (5.90)
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By making use of Lemmas 5.5.7 and 5.5.8 formula (5.90) reduces to

4

q
B12 = 4

(
cos(x1 + x2)− cos(x1 − x2)

)(
cos(x1 + x2) + cos(x1 − x2)

)
− 8
(
cos(x1 + x2)− cos(x1 − x2)

)
cos(x3) cos(x4)

+ 2
(
cos(x1 + x2 + x3 + x4) + cos(x1 + x2 − x3 − x4)

)
− 2
(
cos(x1 − x2 + x3 − x4) + cos(x1 − x2 − x3 + x4)

)
− 2
(
cos(x1 − x2 + x3 + x4) + cos(x1 − x2 − x3 − x4)

)
+ 2
(
cos(x1 + x2 + x3 − x4) + cos(x1 + x2 − x3 + x4)

)
− 2
(
cos(2x1 + 2x2)− cos(2x1 − 2x2)

)
. (5.91)

Formula (5.91) can be rearranged as follows

4

q
B12 = 16 sin x1 sinx2

(
cosx1 cosx2 − cosx3 cosx4

)
+ 8
(
cos(x1 + x2)− cos(x1 − x2)

)
cosx3 cosx4 − 4 sin 2x1 sin 2x2

= 16 sin x1 sinx2

(
cosx1 cosx2 − cosx3 cosx4

)
+ 16 sinx1 sinx2 cosx3 cosx4

− 16 sinx1 sinx2 cosx1 cosx2 = 0. (5.92)

The other off-diagonal entries can be done by symmetry.

The following statement gives further property to the metric B.

Proposition 5.5.10. The linear combination B =
∑4

k=1A
kFk, where functions Ak are

given by formula (5.76) and function F has the form (5.62), is proportional to the identity
matrix.

Proof. By Proposition 5.5.9 we are left to show that B11 = Bss for all s = 2, 3, 4. Let us
consider s = 2. We have B11 =

∑4
k=1A

kF11k. In the notation of formulas (5.75) we have

q−1B11 = −2A1 cotx1 +
4∑

i=2

(
(A1 + Ai) cot(x1 + xi) + (A1 − Ai) cot(x1 − xi)

)
− 1

4

8∑
i=1

bi.

(5.93)

Also we have

q−1B22 = −2A2 cotx2 +
∑
i ̸=2

(
(A2 + Ai) cot(x2 + xi) + (A2 − Ai) cot(x2 − xi)

)
− 1

4

8∑
i=1

bi.

(5.94)
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Hence from (5.93), (5.94) we have

q−1(B11 −B22) = −2A1 cotx1 + 2A2 cotx2 +
4∑

i=3

(
(A1 + Ai) cot(x1 + xi)

+ (A1 − Ai) cot(x1 − xi)
)
−

4∑
i=3

(
(A2 + Ai) cot(x2 + xi) + (A2 − Ai) cot(x2 − xi)

)
.

(5.95)

Now by making use of Lemma 5.5.8 formula (5.95) reduces to

q−1(B11 −B22) = 2(cos2 x1 − cos2 x2)− 2 cos2 x1

4∑
i ̸=1

cos 2xi + 2 cos2 x2

4∑
i ̸=2

cos 2xi

+ 2 cosx1
∑

3≤i,j≤4
i ̸=j

cosxi
(
cos(x2 + xj) + cos(x2 − xj)

)
− 2 cosx2

∑
3≤i,j≤4

i ̸=j

cosxi
(
cos(x1 + xj) + cos(x1 − xj)

)
+
∑
3≤i≤4

(
cos2(x1 + xi) + cos2(x1 − xi)

)
−
∑
3≤i≤4

(
cos2(x2 + xi) + cos2(x2 − xi)

)
+ 2

∑
3≤i,j≤4

i ̸=j

cos(x1 + xi) cos(x1 − xi)
(
− 1 + cos 2x2 + cos 2xj

)
− 2

∑
3≤i,j≤4

i ̸=j

cos(x2 + xi) cos(x2 − xi)
(
− 1 + cos 2x1 + cos 2xj

)
. (5.96)

By applying identities

2 cos(a+ b) cos(a− b) = cos 2a+ cos 2b,

cos2(a+ b) + cos2(a− b) = 1 + cos 2a cos 2b,

cos(a+ b) + cos(a− b) = 2 cos a cos b,

2 cos2 a = cos 2a+ 1,

it follows that B11 −B22 = 0. Similarly one can check that B11 = Bss for s = 3, 4.

Since the metric B =
∑4

k=1A
kFk is a multiple of the identity matrix, we can write

B = hI4, where h = h(x) is some function. The coefficient of proportionality h = Bii for
any i = 1, 2, 3, 4. In order to find the explicit formula for the function h, let us first prove
some lemmas.
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Lemma 5.5.11. In the notation of formulas (5.75) we have

8∑
i=1

bi = −8− 4
4∑

i=1

cos 2xi + 2
∑

1≤i<j≤4

(
cos(2xi + 2xj) + cos(2xi − 2xj)

)
, (5.97)

where functions Ak are given by formula (5.76) and function F has the form (5.62).

Proof. Relation (5.97) follows by direct substitution of the formulas of bi from Lemma
5.5.7 into the left-hand side of relation (5.97).

Lemma 5.5.12. In the notation of formulas (5.75) we have

14∑
i=9

bi = 3− 12
4∏

i=1

cosxi − 3 cos 2x1 −
4∑

i=2

cos 2xi + 3
4∑

i=2

cos 2x1 cos 2xi

+ 2
∑

2≤i<j≤4

cos 2xi cos 2xj, (5.98)

where functions Ak are given by formula (5.76) and function F has the form (5.62).

Proof. From Lemma 5.5.8 we have

14∑
i=9

bi = 2
∑
2≤i≤4

j,k∈[4]\{1,i}
j ̸=k

cos(x1 + xi) cos(x1 − xi)
(
− 1 + cos 2xj + cos 2xk

)

− 2
∑
2≤i≤4

j,k∈[4]\{1,i}
j ̸=k

(
cos(x1 + xi) + cos(x1 − xi)

)
cosxj cosxk

+
4∑

i=2

(
cos2(x1 + xi) + cos2(x1 − xi)

)
. (5.99)

Relation (5.98) follows by applying the following identities to the right-hand side of relation
(5.99):

2 cos(a+ b) cos(a− b) = cos 2a+ cos 2b,

cos2(a+ b) + cos2(a− b) = 1 + cos 2a cos 2b,

cos(a+ b) + cos(a− b) = 2 cos a cos b.

Also we have the following relation which is easy to check directly.
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Lemma 5.5.13. ∑
εi∈{−1,1}

cos(x1 + ε2x2 + ε3x3 + ε4x4) = 8
4∏

i=1

cosxi.

The following statement gives the explicit formula of the coefficient of the proportion-
ality B ∼ I4.

Proposition 5.5.14. The linear combination B =
∑4

k=1A
kFk, where functions Ak are

given by formula (5.76) and function F has the form (5.62), has the form B = hI4, where
the function h = h(x) is given by

h(x) =
q

2

(
12− 2

4∑
i=1

cos 2xi − 2
∑

εi∈{−1,1}

cos (x1 + ε2x2 + ε3x3 + ε4x4)

+
∑

1≤i<j≤4
εj∈{−1,1}

cos (2xi + 2εjxj)
)
=

1

2

(
12q +

∑
α∈F+

4

cα cos (2(α, x))
)

=
1

2

(
−
∑
α∈F+

4

cα +
∑
α∈F+

4

cα cos (2(α, x))
)
= −

∑
α∈F+

4

cα sin
2 (α, x). (5.100)

Proof. From Proposition 5.5.10 we know that h = Bii for any i = 1, 2, 3, 4. In the notation
of formulas (5.75) we have

4

q
B11 = −8A1 cotx1 −

8∑
i=1

bi + 4
14∑
i=9

bi. (5.101)

Note that

2A1 cotx1 = −(1 + cos 2x1) + (1 + cos 2x1)
∑
i ̸=1

cos 2xi − 4
4∏

i=1

cosxi. (5.102)

Then by relations (5.101), (5.102) and Lemmas 5.5.11–5.5.13 we get

4

q
B11 = 24− 4

4∑
i=1

cos 2xi − 4
∑

εi∈{−1,1}

cos (x1 + ε2x2 + ε3x3 + ε4x4)

+ 2
∑

1≤i<j≤4
εj∈{−1,1}

cos (2xi + 2εjxj). (5.103)

Formula (5.100) follows from relation (5.103).

The following statement takes place.
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Proposition 5.5.15. Functions Ak given by formula (5.76) have the equivalent formula

Ak =
1

4q

∑
α∈F+

4

cα(ek, α) sin(2(α, x)), k = 1, 2, 3, 4. (5.104)

Proof. Firstly, formula (5.76) is equivalent to the formula

Ak = −1

2
sin 2xk +

1

2
sin 2xk

∑
i ̸=k

cos 2xi − 2 sinxk
∏
i ̸=k

cosxi. (5.105)

Secondly, it is easy to check that the following identities take place in dimension four:

sin 2xk
∑
i ̸=k

cos 2xi =
1

2

∑
i ̸=k

sin(2xk ± 2xi),∑
εs∈{−1,1}
s={i,j,l}

sin(xk + εixi + εjxj + εlxl) = 8 sinxk
∏
m̸=k

cosxm. (5.106)

From (5.106) formula (5.105) becomes

Ak =
1

4

(
− 2 sin 2xk +

∑
m ̸=k

sin (2xk ± 2xm)−
∑

εs∈{−1,1}
s={i,j,l}

sin(xk + εixi+ εjxj + εlxl)
)
. (5.107)

Now it is easy to check that the right-hand side of relation (5.107) is equal to the right-hand
side of formula (5.104). This proves the proposition.

The following statement is a corollary of Theorem 5.4.2 and Proposition 5.5.15.

Proposition 5.5.16. The identity vector field e for the collection A = F+
4 given by

formula (5.65) under the condition r = −2q is given by the formula

e = h−1Ak∂xk
, k = 1, 2, 3, 4. (5.108)

where function h is given by formula (5.100) and Ak is given by formula (5.104).

5.5.5 F4 with the condition r = −4q

Assume that the multiplicity parameters r, q satisfy the condition r = −4q. Define

Ak = sinxk

(
cosxk + 2

∏
i ̸=k

cosxi

)
, k = 1, 2, 3, 4. (5.109)

We establish that identity field in this case is proportional to Ak∂k by performing analysis
similarly to Section 5.5.4. The following relation takes place.
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Lemma 5.5.17. Functions Ak, (k = 1, 2, 3, 4) given by formula (5.109) satisfy the relation

4∑
i=1

εiA
i = sin(

ε1x1 + ε2x2 + ε3x3 + ε4x4
2

)
(
2 cos(

ε1x1 + ε2x2 + ε3x3 + ε4x4
2

)

+
∑

1≤i<j<k≤4
l∈[4]\{i,j,k}

cos(
εixi + εjxj + εkxk − 3εlxl

2
)
)
, (5.110)

where εi ∈ {1,−1}.

Proof. Let us substitute functions Ak, (k = 1, 2, 3, 4) from relation (5.109) into the left-
hand side of the equation (5.110). Then by rearranging the terms one can get the formula

ε1A
1 + ε2A

2 + ε3A
3 + ε4A

4 =
1

2

4∑
i=1

sin (2εixi)

+ 2
(
sin (ε1x1 + ε2x2) cos (ε3x3) cos (ε4x4) + sin (ε3x3 + ε4x4) cos (ε1x1) cos (ε2x2)

)
.

(5.111)

On the other hand we have

sin(
εixi + εjxj + εkxk + εlxl

2
) cos(

εixi + εjxj + εkxk − 3εlxl
2

)

=
1

2

(
sin (εixi + εjxj + εkxk − εlxl) + sin (2εlxl)

)
. (5.112)

Now let M be the right-hand side of the equation (5.110). Then by relation (5.112) we
have

M = sin (ε1x1 + ε2x2 + ε3x3 + ε4x4)−
1

2

∑
i<j<k
l ̸=i,j,k

(
sin (εixi + εjxj + εkxk − εlxl) + sin (2εlxl)

)
.

(5.113)

Note that

sin (ε1x1 + ε2x2 + ε3x3 + ε4x4) = sin (ε1x1 + ε2x2) cos (ε3x3 + ε4x4)

+ cos (ε1x1 + ε2x2) sin (ε3x3 + ε4x4).

Note also that

sin (ε1x1 + ε2x2 + ε3x3 − ε4x4) + sin (ε1x1 + ε2x2 − ε3x3 + ε4x4)

= 2 sin (ε1x1 + ε2x2) cos (ε3x3 − ε4x4),
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Also we have

sin (ε1x1 − ε2x2 + ε3x3 + ε4x4)− sin (ε1x1 − ε2x2 − ε3x3 − ε4x4)

= 2 cos (ε1x1 − ε2x2) sin (ε3x3 + ε4x4).

Thus, formula (5.113) can be rearranged as

M = sin (ε1x1 + ε2x2)
(
cos (ε3x3 + ε4x4) + cos (ε3x3 − ε4x4)

)
+

1

2

4∑
i=1

sin (2εixi)

+ sin (ε3x3 + ε4x4)
(
cos (ε1x1 + ε2x2) + cos (ε1x1 − ε2x2)

)
. (5.114)

It is clear that the right-hand side of relation (5.113) is equivalent to the right-hand side
of relation (5.111) which proves the lemma.

The following identity holds.

Lemma 5.5.18. Functions Ak, (k = 1, 2, 3, 4) given by formula (5.109) satisfy the identity

(ε1A
1 + ε2A

2 + ε3A
3 + ε4A

4) cot(
ε1x1 + ε2x2 + ε3x3 + ε4x4

2
)

= 1 + cos(ε1x1 + ε2x2 + ε3x3 + ε4x4)

+
1

2

∑
1≤i<j<k≤4
l∈[4]\{i,j,k}

(
cos(εixi + εjxj + εkxk − εlxl) + cos(2εlxl)

)
. (5.115)

where εi ∈ {1,−1} for all i.

Proof. We have by Lemma 5.5.17 that

(ε1A
1 + ε2A

2 + ε3A
3 + ε4A

4) cot(
ε1x1 + ε2x2 + ε3x3 + ε4x4

2
)

= cos(
ε1x1 + ε2x2 + ε3x3 + ε4x4

2
)
(
2 cos(

ε1x1 + ε2x2 + ε3x3 + ε4x4
2

)

+
∑

1≤i<j<k≤4
l∈[4]\{i,j,k}

cos(
εixi + εjxj + εkxk − 3εlxl

2
)
)
, (5.116)

Firstly, we have

2 cos2(
ε1x1 + ε2x2 + ε3x3 + ε4x4

2
) = 1 + cos(ε1x1 + ε2x2 + ε3x3 + ε4x4). (5.117)
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Secondly, we have

cos(
εixi + εjxj + εkxk + εlxl

2
) cos(

εixi + εjxj + εkxk − 3εlxl
2

)

=
1

2

(
cos(εixi + εjxj + εkxk − εlxl) + cos(2εlxl)

)
. (5.118)

Relation (5.115) follows by substituting relations (5.117), (5.118) into the right-hand side
of relation (5.116).

We will also need the following identity.

Lemma 5.5.19. For distinct i, j, k, l ∈ [4] we have

(εiA
i + εjA

j) = sin(εixi + εjxj)
(
cos(εixi − εjxj) + 2 cos(εkxk) cos(εlxl)

)
, (5.119)

where functions Ak (k = 1, 2, 3, 4) are given by formula (5.109) and εi ∈ {1,−1}.

Proof. From formula (5.109) we have

εiA
i + εjA

j =
1

2
(εi sin 2xi + εj sin 2xj) + 2(εi sinxi

∏
k ̸=i

cosxk + εj sinxj
∏
k ̸=j

cosxk)

=
1

2

(
sin(2εixi) + sin(2εjxj)

)
+ 2 cos(εkxk) cos(εlxl) sin(εixi + εjxj).

(5.120)

By applying formula

sin(2εixi) + sin(2εixi) = 2 sin(εixi + εjxj) cos(εixi − εjxj),

we see that relation (5.120) takes the form (5.119). This proves the lemma.

The following statement confirms that with the choice of the functions Ai given by
formula (5.109), the metric B =

∑4
k=1A

kFk is diagonal.

Proposition 5.5.20. The linear combination B =
∑4

k=1A
kFk, where functions Ak are

given by formula (5.109) and function F has the form (5.62), is a diagonal matrix.

Proof. Let us show that the entry B12 =
∑4

k=1A
kF12k = 0. In the notation of formulas

(5.75) we have

2

q
B12 = 2(A1 + A2) cot(x1 + x2)− 2(A1 − A2) cot(x1 − x2)−

4∑
i=1

bi +
8∑

i=5

bi. (5.121)
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By making use of Lemmas 5.5.18 and 5.5.19 formula (5.90) reduces to

2

q
B12 = 4

(
cos(x1 + x2)− cos(x1 − x2)

)
cosx3 cosx4

−
(
cos(x1 + x2 + x3 + x4) + cos(x1 + x2 − x3 − x4)

)
+
(
cos(x1 − x2 + x3 − x4) + cos(x1 − x2 − x3 + x4)

)
+
(
cos(x1 − x2 + x3 + x4) + cos(x1 − x2 − x3 − x4)

)
−
(
cos(x1 + x2 + x3 − x4) + cos(x1 + x2 − x3 + x4)

)
. (5.122)

Formula (5.122) can be rearranged as follows

q−1B12 = 4 sin x1 sinx2 cosx3 cosx4 − cos (x1 + x2)
(
cos (x3 + x4) + cos (x3 − x4)

)
+ cos (x1 − x2)

(
cos (x3 + x4) + cos (x3 − x4)

)
= 4 sin x1 sinx2 cosx3 cosx4 − 2 cosx3 cosx4

(
cos (x1 + x2)− cos (x1 − x2)

)
= 0.

The other off-diagonal entries can be done by symmetry.

The following statement gives further property to the metric B.

Proposition 5.5.21. The linear combination B =
∑4

k=1A
kFk, where functions Ak are

given by formula (5.109) and function F has the form (5.62), is proportional to the identity
matrix.

Proof. By Proposition 5.5.20 we are left to show that B11 = Bss for all s = 2, 3, 4. Let us
consider s = 2. We have B11 =

∑4
k=1A

kF11k. In the notation of formulas (5.75) we have

q−1B11 = −4A1 cotx1 +
4∑

i=2

(
(A1 + Ai) cot(x1 + xi) + (A1 − Ai) cot(x1 − xi)

)
− 1

2

8∑
i=1

bi.

(5.123)

Also we have

q−1B22 = −4A2 cotx2 +
∑
i ̸=2

(
(A2 + Ai) cot(x2 + xi) + (A2 − Ai) cot(x2 − xi)

)
− 1

2

8∑
i=1

bi.

(5.124)
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Hence from (5.123), (5.124) we have

q−1(B11 −B22) = −4A1 cotx1 + 4A2 cotx2 +
4∑

i=3

(
(A1 + Ai) cot(x1 + xi)

+ (A1 − Ai) cot(x1 − xi)
)
−

4∑
i=3

(
(A2 + Ai) cot(x2 + xi) + (A2 − Ai) cot(x2 − xi)

)
.

(5.125)

Now by making use of Lemma 5.5.19 formula (5.125) reduces to

q−1(B11 −B22) = −2(cos2 x1 − cos2 x2) + 2
4∑

i=3

cos (x1 + xi) cos (x1 − xi)

− 2
4∑

i=3

cos (x2 + xi) cos (x2 − xi)− 2 cosx1
∑

3≤i,j≤4
i ̸=j

cosxi
(
cos(x2 + xj) + cos(x2 − xj)

)
+ 2 cosx2

∑
3≤i,j≤4

i ̸=j

cosxi
(
cos(x1 + xj) + cos(x1 − xj)

)
. (5.126)

By applying the following identities

2 cos(a+ b) cos(a− b) = cos 2a+ cos 2b,

cos(a+ b) + cos(a− b) = 2 cos a cos b,

2 cos2 a = cos 2a+ 1,

it follows that B11 −B22 = 0. Similarly one can check that B11 = Bss for s = 3, 4.

Now since the metric B is a multiple of the identity matrix, let B = hI4 for some
function h = h(x). Before we find the explicit formula for the function h, let us prove
some lemmas.

Lemma 5.5.22. In the notation of formulas (5.75) we have

8∑
i=1

bi = 8 + 4
4∑

i=1

cos 2xi + 3
∑

εi∈{−1,1}

cos(x1 + ε2x2 + ε3x3 + ε4x4). (5.127)

where functions Ak are given by formula (5.109) and function F has the form (5.62).

Proof. Relation (5.127) follows by direct substitution of the formulas of bi from Lemma
5.5.18 into the left-hand side of relation (5.127).
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Lemma 5.5.23. In the notation of formulas (5.75) we have

14∑
i=9

bi = 3 cos 2x1 +
4∑

i=2

cosxi + 12
4∏

i=1

cosxi. (5.128)

where functions Ak are given by formula (5.109) and function F has the form (5.62).

Proof. From Lemma 5.5.19 we have

14∑
i=9

bi = 2
4∑

i=2

cos(x1 + xi) cos(x1 − xi)

+ 2
∑
2≤i≤4

j,k∈[4]\{1,i}
j ̸=k

(
cos(x1 + xi) + cos(x1 − xi)

)
cosxj cosxk. (5.129)

Relation (5.128) follows by making use of Lemma 5.5.13 and by applying the following
identities on the right-hand side of relation (5.129):

2 cos(a+ b) cos(a− b) = cos 2a+ cos 2b,

cos(a+ b) + cos(a− b) = 2 cos a cos b.

The following statement gives the explicit formula of the coefficient of the proportion-
ality B ∼ I4.

Proposition 5.5.24. The linear combination B =
∑4

k=1A
kFk, where functions Ak are

given by formula (5.109) and function F has the form (5.62), has the form B = hI4, where
the function h = h(x) is given by

h(x) = −q
(
6 +

4∑
i=1

cos 2xi + 8
4∏

i=1

cosxi

)
= −q

(
6 +

4∑
i=1

cos 2xi +
∑

εi∈{−1,1}

cos (x1 + ε2x2 + ε3x3 + ε4x4)
)

=
1

4

(
− 24q +

∑
α∈F+

4,s

cα cos(2(α, x))
)

= −1

2

(
36q +

∑
α∈F+

4,s

cα sin
2(α, x)

)
, (5.130)

where F+
4,s is the subset of short roots in F+

4 .
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Proof. From Proposition 5.5.21 we know that B is a multiple of the identity matrix, thus
the diagonal entries Bii are equal and hence h = Bii for any i = 1, 2, 3, 4. In the notation
of formulas (5.75) we have

2

q
B11 = −8A1 cotx1 −

8∑
i=1

bi + 2
14∑
i=9

bi. (5.131)

Note that

A1 cotx1 =
1

2
(1 + cos 2x1) + 2

4∏
i=1

cosxi. (5.132)

Then by relation (5.132) and Lemmas 5.5.22, 5.5.23 we get

2

q
B11 = −12− 2

4∑
i=1

cos 2xi − 16
4∏

i=1

cosxi. (5.133)

Formula (5.130) follows from relation (5.133).

The following statement takes place.

Proposition 5.5.25. Functions Ak given by formula (5.109) have the equivalent formula

Ak = − 1

8q

∑
α∈F+

4,s

cα(ek, α) sin(2(α, x)), k = 1, 2, 3, 4. (5.134)

Proof. Since ∑
εs∈{−1,1}
s={i,j,l}

sin(xk + εixi + εjxj + εlxl) = 8 sinxk
∏
m ̸=k

cosxm,

then formula (5.109) can be written equivalently as

Ak =
1

4

(
2 sin 2xk +

∑
εs∈{−1,1}
s={i,j,l}

sin(xk + εixi + εjxj + εlxl)
)

(5.135)

Then it is easy to check that the right-hand side of formula (5.135) is equal to the right-
hand side of formula (5.134).

The following statement is a corollary of Theorem 5.4.2 and Proposition 5.5.24.

Proposition 5.5.26. The identity vector field e for the collection A = F+
4 given by
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formula (5.65) under the condition r = −4q is given by the formula

e = h−1Ak∂xk
, k = 1, 2, 3, 4, (5.136)

where function h is given by formula (5.130) and Ak is given by formula (5.134).

5.5.6 Identity vector field for projections of F4

In this subsection we deal with the restrictions of a given solution of the commutativity
equations and find the corresponding identity vector field and its relation with the original
one before restriction. This process allows to obtain new solutions to WDVV equations.

The following statement explains this relation.

Proposition 5.5.27. Let F (x) be a function and e = ek∂xk
be a vector field such that

e(Fij) = δij. Let π be the hyperplane π := {x ∈ V : xN = 0} and let F̃ (x1, . . . , xN−1) =

F (x1, . . . , xN)|π. Suppose that e(x̃) ∈ Tx̃π for all x̃ ∈ π. Suppose also that (FNij)|π is
well-defined for all i, j = 1, . . . , N − 1. Let ẽ = e|π ∈ Γ(T∗π). Then ẽ(F̃ij) = δij.

Proof. Consider equality e(Fij) = δij for x ∈ π, i, j = 1, . . . , N−1. Note that (eN∂xN
Fij)|π =

0 since eN |π = 0 and FNij is well-defined for all i, j = 1, . . . , N − 1. It follows that
ẽ(F̃ij) = δij.

Now, recall that Corollary 4.8.5 confirms that all the functions of the form (5.62)
corresponding to the three-dimensional and two-dimensional projections of the root system
F4 under the conditions r = −2q or r = −4q satisfy the commutativity equations (5.3).
As an application of Proposition 5.5.27 we find the identity vector field for the three
dimensional projections of root system F4. Recall also that for F4 root system there are
two projections in dimension 3. Let us start with the first projected system.

The projected system (F4, A1)1 of F4 to the hyperplane x4 = 0 consists of the following
set of vectors:

ei, with multiplicity r + 2q, 1 ≤ i ≤ 3,

ei ± ej, with multiplicity q, 1 ≤ i < j ≤ 3,

1

2
(e1 ± e2 ± e3), with multiplicity 2r. (5.137)

For the projected system (5.137) where parameters r, q satisfy the condition r = −2q

the following statement takes place. Note that the configuration (5.137) in the case r =

−2q contains 10 vectors only with non-zero multiplicities.
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Theorem 5.5.28. The identity vector field ẽ for the restricted system (5.137), where
parameters r, q satisfy the condition r = −2q, exists and has the formula

ẽ = h̃−1

3∑
k=1

Ãk∂xk
,

where
Ãk = sinxk

(
cosxk

∑
i ̸=k

cos 2xi − 2
∏
i ̸=k

cosxi

)
, k = 1, 2, 3, (5.138)

and

h̃ =
q

2

(
10 +

∑
1≤i<j≤3
ε∈{−1,1}

cos (2xi + 2εxj)− 4
∑

ε2,ε3∈{−1,1}

cos (x1 + ε2x2 + ε3x3)
)

=
1

2

(
10q +

∑
α∈(F4,A1)1

cα cos(2(α, x))
)
=

1

2

(
−

∑
α∈(F4,A1)1

cα +
∑

α∈(F4,A1)1

cα cos(2(α, x))
)

= −
∑

α∈(F4,A1)1

cα sin
2(α, x). (5.139)

Proof. Let π be the hyperplane π := {x ∈ C4 : x4 = 0}, and let F̃ be the restriction
of the function F =

∑
α∈F+

4
cαf((α, x)) to the hyperplane π. That is F̃ (x1, x2, x3) =

F (x1, x2, x3, x4)|π. Note that identity vector field (5.108) for the collection A = F+
4 given

by formula (5.65), where parameters r, q satisfy condition r = −2q, satisfies e(Fij) = δij.
It is easy to see that (F4ij)|x4=0 is regular for all i, j = 1, 2, 3. Now let x̃ ∈ π. It is easy to
see that A4|x4=0 = 0 from formula (5.76). Hence by Proposition 5.5.27 there exist a vector
field ẽ that satisfies ẽ(F̃αβ) = δαβ, and it is given by ẽ = e|π = (

∑3
k=1 h

−1Ak∂xk
)|x4=0. Now

from formula (5.76) it is easy to check that (Ak)|x4=0 is equal to the stated form Ãk for
k = 1, 2, 3. Also by formula (5.100) it is easy to check that h|x4=0 has the stated formula
of h̃. Vector field ẽ is the identity field by Proposition 5.4.1. This complete the proof of
the theorem.

The following proposition gives an equivalent formula for functions (5.138).

Proposition 5.5.29. Function Ãk given by formula (5.138) can be written equivalently
as

Ãk =
1

4q

∑
α∈(F4,A1)1

cα(ek, α) sin (2(α, x)), k = 1, 2, 3. (5.140)
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Proof. Firstly, it is easy to check that the following identities take place in dimension three

sinxk
∏
m ̸=k

cosxm =
1

4

∑
i ̸=j ̸=k ̸=i

sin(xk ± xi ± xj),

sin 2xk
∑
i ̸=k

cos 2xi =
1

2

∑
m̸=k

sin(2xk ± 2xm).

Hence the right-hand side of formula (5.138) becomes

Ãk =
1

4

∑
m̸=k

sin(2xk ± 2xm)−
1

2

∑
i ̸=j ̸=k ̸=i

sin(xk ± xi ± xj). (5.141)

Now one can check that the right-hand sides of formulas (5.140) and (5.141) are equal.

For the projected system (5.137) where parameters r, q satisfy the condition r = −4q

the following statement takes place.

Theorem 5.5.30. The identity vector field ẽ for the projected system (5.137), where pa-
rameters r, q satisfy the condition r = −4q, exists and has the formula

ẽ = h̃−1

3∑
k=1

Ãk∂xk
,

where
Ãk = sinxk(cosxk + 2

∏
i ̸=k

cosxi), k = 1, 2, 3, (5.142)

and

h̃ = −q
(
7 +

3∑
i=1

cos 2xi + 8
3∏

i=1

cosxi

)
. (5.143)

Proof. Let π be the hyperplane π := {x ∈ C4 : x4 = 0}, and let F̃ be the restriction
of the function F =

∑
α∈F+

4
cαf((α, x)) to the hyperplane π. That is F̃ (x1, x2, x3) =

F (x1, x2, x3, x4)|π. Note that identity vector field (5.136) for the collection A = F+
4 given

by formula (5.65), where parameters r, q satisfy condition r = −4q, satisfies e(Fij) = δij. It
is easy to see that (F4ij)|x4=0 is regular for all i, j = 1, 2, 3. Now let x̃ ∈ π. It is easy to see
that A4|x4=0 = 0 from formula (5.109). Hence by Proposition 5.5.27 there exist a vector
field ẽ that satisfies ẽ(F̃αβ) = δαβ, and it is given by ẽ = e|π = (

∑3
k=1 h

−1Ak∂xk
)|x4=0. Now

from formula (5.109) it is easy to check that (Ak)|x4=0 is equal to the stated form Ãk for
k = 1, 2, 3. Also by formula (5.130) it is easy to see that h|x4=0 is equal to the stated form
of h̃. Vector field ẽ is the identity field by Proposition 5.4.1. This complete the proof of
the theorem.



CHAPTER 5. COMMUTATIVITY EQUATIONS AND WDVV EQUATIONS 194

The following statement is easy to check since the identities

sinxk
∏
m̸=k

cosxm =
1

4

∑
i ̸=j ̸=k ̸=i

sin(xk ± xi ± xj),

and ∑
ε2,ε3∈{−1,1}

cos(x1 + ε2x2 + ε3x3) = 4
3∏

m=1

cosxm

hold in dimension three.

Proposition 5.5.31. Functions Ãk given by formula (5.142) can be written equivalently
as

Ãk =
1

2

(
sin 2xk +

∑
i ̸=j ̸=k ̸=i

sin(xk ± xi ± xj)
)
, k = 1, 2, 3, (5.144)

and function (5.143) can be written as

h̃ = −q
(
7 +

3∑
i=1

cos 2xi + 2
∑

ε2,ε3∈{−1,1}

cos(x1 + ε2x2 + ε3x3)
)
. (5.145)

Now let π be the hyperplane π := {x ∈ C4 : x3 = x4}. Let us consider the projection
of the root system F4 to π, and let us denote the resulting system by Ã = (F4, A1)2. Let
us define vectors fi(1 ≤ i ≤ 4) by

f1 = e1, f2 = e2, f3 =
e3 + e4√

2
, f4 =

e3 − e4√
2

. (5.146)

Vectors f1, f2, f3 form a basis in π, where {ei}4i=1 is the standard basis. Then the projected
system Ã consists of vectors α with the corresponding multiplicities cα given as follows:

f1, f2, with multiplicity r,
√
2f3, with multiplicity q,

√
2

2
f3, with multiplicity 2r,

f1 ± f2, with multiplicity q,

1

2
(f1 ± f2), with multiplicity 2r,

f1 ±
√
2

2
f3, f2 ±

√
2

2
f3, with multiplicity 2q,

1

2
(f1 ± f2 ±

√
2f3), with multiplicity r. (5.147)

In order to make use of Proposition 5.5.27 let us perform the orthogonal change of variables
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(5.146). Let C be the constant 4× 4 matrix such that

x̃k =
4∑

i=1

Ck
i xi, (5.148)

where x̃1, x̃2, x̃3, x̃4 is a new coordinates system given by

x̃1 = x1, x̃2 = x2, x̃3 =
x3 + x4√

2
, x̃4 =

x3 − x4√
2

. (5.149)

Thus we have

C =


C1

1 C1
2 C1

3 C1
4

C2
1 C2

2 C2
3 C2

4

C3
1 C3

2 C3
3 C3

4

C4
1 C4

2 C4
3 C4

4

 =


1 0 0 0

0 1 0 0

0 0 1√
2

1√
2

0 0 1√
2

− 1√
2

 . (5.150)

Note also that x̃3|π =
√
2x3, and x̃4|π = 0. Hence the hyperplane π in the new coordinates

reads π = {x̃ ∈ C4 : x̃4 = 0}. Before we give the formula of the identity vector field for
the configuration (5.147), let us proof some general propositions.

The following statement confirms that commutativity equations are preserved under
orthogonal transformations.

Proposition 5.5.32. Let F = F (x1, . . . , xN) be a function on CN that satisfies commu-
tativity equations

FiFj = FjFi, i, j = 1, . . . , N.

Let C be the constant matrix of an orthogonal change of variables such that

x̃k = Ck
i xi, (5.151)

where x̃1, . . . , x̃N is a new coordinates system and summation over i is assumed. Let
Ĉ = C−1 so we have

Ĉk
αC

β
k = δβα. (5.152)

Then commutativity equations

F̃iF̃j = F̃jF̃i, i, j = 1, . . . , N,

where F̃ (x̃) = F (x), hold.
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Proof. Since ∂xi
= Ck

i ∂x̃k
, then we have

Fijk = C k̃
kC

j̃
jC

ĩ
i F̃ĩj̃k̃. (5.153)

Consider the commutativity equations

FijkFklm = FmjkFkli. (5.154)

Then by formula (5.153) equality (5.154) reads in the new coordinates as

C k̃
kC

j̃
jC

ĩ
iC

a
kC

b
lC

d
mF̃ĩj̃k̃F̃abd = Cm̃

mC
j̃
jC

k̃
kC

a
kC

b
lC

d
i F̃m̃j̃k̃F̃abd. (5.155)

Let us multiply both sides of equality (5.155) by Ĉm
α Ĉ

j
βĈ

l
γĈ

i
ϵ. We get

C k̃
kC

a
k F̃ϵβk̃F̃aαγ = C k̃

kC
a
k F̃αβk̃F̃aγϵ. (5.156)

But for the orthogonal transformation we have C k̃
kC

a
k = δk̃a. Hence equality (5.156) reduces

to

F̃ϵβaF̃aαγ = F̃αβaF̃aγϵ.

That is F̃ϵF̃α = F̃αF̃ϵ. This proves the proposition.

The next statement takes place.

Proposition 5.5.33. Let F (x) be a function and e = ek∂xk
be a vector field such that

e(Fij) = δij. Let C and Ĉ be as given in Proposition 5.5.32. Let F̃ (x̃) = F (x) and
ẽ(x̃) = e(x). Then ẽ(F̃αβ) = δαβ, with ẽ = ẽkC k̃

k∂xk̃
.

Proof. We have
ekFijk = δij. (5.157)

By relation (5.151) we have ∂xi
= Ck

i ∂x̃k
. Hence we have

Fijk = C k̃
kC

j̃
jC

ĩ
i F̃ĩj̃k̃. (5.158)

Let ek(x) = ẽk(x̃). Then by formula (5.158) relation (5.157) can be written as

ẽkC k̃
kC

j̃
jC

ĩ
i F̃ĩj̃k̃ = δij. (5.159)

Multiply equality (5.159) by Ĉi
αĈ

j
β. We get

ẽkC k̃
k F̃αβk̃ = Ĉi

αĈ
i
β. (5.160)



CHAPTER 5. COMMUTATIVITY EQUATIONS AND WDVV EQUATIONS 197

But for the orthogonal transformation we have Ĉi
αĈ

i
β = δαβ. Hence equality (5.160)

becomes

ẽkC k̃
k F̃αβk̃ = δαβ. (5.161)

Let ẽ = ẽkC k̃
k∂xk̃

. We have by relation (5.161) that ẽ(F̃αβ) = δαβ and hence ẽ is the identity
vector field by Theorem 5.4.2. The new identity vector field satisfies

ẽ(x̃) = ẽk(x̃)∂xk
= ek(x)∂xk

= e(x). (5.162)

This proves the proposition.

For the restricted system (5.147) where parameters r, q satisfy the condition r = −2q

the following statement takes place.

Theorem 5.5.34. The identity vector field ẽ for the system (5.147), where parameters
r, q satisfy the condition r = −2q, exists and has the formula

ẽ = h̃−1

3∑
k=1

Ãk∂x̃k
,

where

Ã1 = sin x̃1

(
cos x̃1(−1 + cos 2x̃2 + 2 cos

√
2x̃3)− cos x̃2(1 + cos

√
2x̃3)

)
,

Ã2 = sin x̃2

(
cos x̃2(−1 + cos 2x̃1 + 2 cos

√
2x̃3)− cos x̃1(1 + cos

√
2x̃3)

)
,

Ã3 =
1√
2
sin

√
2x̃3

(
− 1 + cos 2x̃1 + cos 2x̃2 + cos

√
2x̃3 − 2 cos x̃1 cos x̃2

)
, (5.163)

and

h̃ =
q

2

(
13− 2

(
cos 2x̃1 + cos 2x̃2 + 2 cos

√
2x̃3
)

− 2
∑

ε2,ε3∈{−1,1}

cos (x̃1 + ε2x̃2 + ε3
√
2x̃3) + 2

(
cos (2x̃1 +

√
2x̃3) + cos (2x̃1 −

√
2x̃3)

)
+ 2
(
cos (2x̃2 +

√
2x̃3) + cos (2x̃2 −

√
2x̃3)

)
− 4
(
cos (x̃1 + x̃2) + cos (x̃1 − x̃2)

)
+ cos 2

√
2x̃3 + cos (2x̃1 + 2x̃2) + cos (2x̃1 − 2x̃2)

)
=

1

2

(
13q +

∑
α∈Ã

cα cos(2(α, x̃))
)

=
1

2

(
−
∑
α∈Ã

cα +
∑
α∈Ã

cα cos(2(α, x̃))
)
= −

∑
α∈Ã

cα sin
2(α, x̃). (5.164)

Proof. Firstly, note that identity vector field (5.136) for the collection A = F+
4 given by for-

mula (5.65), where parameters r, q satisfy condition r = −2q, satisfies that e(Fij) = δij by
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Theorem 5.4.2. Let us make the change of variables (5.149). Let ê(x̃) = e(x) be the iden-
tity vector field in the new coordinates and let F̂ (x̃) = F (x). Then by Proposition 5.5.33
the vector field ê satisfies ê(F̂αβ) = δαβ. The hyperplane x3 = x4 in the new coordinates
can be represented as π̃ := {x̃ ∈ C4 : x̃4 = 0}. Let Âk(x̃) = Ak(x), k = 1, 2, 3, 4, where Ak

is defined by (5.76). We have

Â1 = sin x̃1

(
cos x̃1

(
− 1 + cos 2x̃2 + cos(

2x̃3 + 2x̃4√
2

) + cos(
2x̃3 − 2x̃4√

2
)
)

− 2 cos x̃2 cos(
x̃3 + x̃4√

2
) cos(

x̃3 − x̃4√
2

)
)
,

Â2 = sin x̃2

(
cos x̃2

(
− 1 + cos 2x̃1 + cos(

2x̃3 + 2x̃4√
2

) + cos(
2x̃3 − 2x̃4√

2
)
)

− 2 cos x̃1 cos(
x̃3 + x̃4√

2
) cos(

x̃3 − x̃4√
2

)
)
,

Â3 = sin(
x̃3 + x̃4√

2
)
(
cos (

x̃3 + x̃4√
2

)
(
− 1 + cos 2x̃1 + cos 2x̃2 + cos(

2x̃3 − 2x̃4√
2

)
)

− 2 cos x̃1 cos x̃2 cos(
x̃3 − x̃4√

2
)
)
,

Â4 = sin(
x̃3 − x̃4√

2
)
(
cos (

x̃3 − x̃4√
2

)
(
− 1 + cos 2x̃1 + cos 2x̃2 + cos(

2x̃3 + 2x̃4√
2

)
)

− 2 cos x̃1 cos x̃2 cos(
x̃3 + x̃4√

2
)
)
. (5.165)

Let e = ek(x)∂xk
, and let êk(x̃) = ek(x). Then e = ê = êk(x̃)Cm

k ∂x̃m , where coefficients
Cm

k are defined by (5.150).
We have that

he =
4∑

k,m=1

ÂkCm
k ∂x̃m = Â1∂x̃1 + Â2∂x̃2 +

(Â3 + Â4

√
2

)
∂x̃3 +

(Â3 − Â4

√
2

)
∂x̃4 , (5.166)

where h is defined in (5.5.14). From (5.165) it is clear that Â3|x̃4=0 = Â4|x̃4=0. Thus from
formula (5.166) we have

(∑4
k,m=1 Â

kCm
k ∂x̃m

)
|x̃4=0 ∈ T∗π̃. Hence ê|π̃ ∈ T∗π̃.

It is easy also to see that (F̂4ij)|x̃4=0 is regular for all i, j = 1, 2, 3. Hence by Proposition
5.5.27, the vector field ẽ given by ẽ = ê|π̃ = e|π = (

∑4
k=1 h

−1Ak∂xk
)|x3=x4 satisfies ẽ(F̃αβ) =

δαβ. Vector field ẽ is the identity field by Proposition 5.4.1. Now from formula (5.76) it is
easy to check that (Âk)|x̃4=0 = Ãk for k = 1, 2, and

(
Â3+Â4

√
2

)
|x̃4=0 = Ã3. Also by formula

(5.100) it is easy to check that h|x̃4=0 gives the stated form of h̃. This complete the proof
of the theorem.

The following proposition gives an equivalent formula for functions (5.163).

Proposition 5.5.35. Functions Ãk given by formula (5.163) can be written equivalently
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as
Ãk =

1

4q

∑
α∈(F4,A1)2

cα(ek, α) sin (2(α, x)), k = 1, 2, 3. (5.167)

Proof. The straightforward calculations of the right-hand side of formula (5.167) shows
that formula (5.167) leads to formulas (5.163) where the following basic identities are
applied when required

sin a+ sin b = 2 sin(
a+ b

2
) cos(

a− b

2
),

sin a− sin b = 2 cos(
a+ b

2
) cos(

a− b

2
),

cos a+ cos b = 2 cos(
a+ b

2
) cos(

a− b

2
).

For the projected system (5.147) where parameters r, q satisfy the condition r = −4q

the following statement takes place.

Theorem 5.5.36. The identity vector field ẽ for the system (5.147), where parameters
r, q satisfy the condition r = −4q, exists and has the formula

ẽ = h̃−1

3∑
k=1

Ãk∂x̃k
,

where

Ã1 = sin x̃1

(
cos x̃1 + cos x̃2(1 + cos

√
2x̃3)

)
,

Ã2 = sin x̃2

(
cos x̃2 + cos x̃1(1 + cos

√
2x̃3)

)
,

Ã3 =
1√
2
sin(

√
2x̃3)

(
1 + 2 cos x̃1 cos x̃2

)
, (5.168)

and

h̃ = −q
(
6 + cos 2x̃1 + cos 2x̃2 + 2 cos

√
2x̃3 + 8 cos x̃1 cos x̃2 cos

2 x̃3√
2

)
. (5.169)

Proof. Firstly, note that identity vector field (5.136) for the collection A = F+
4 given by

formula (5.65), where parameters r, q satisfy condition r = −4q, satisfies e(Fij) = δij by
Theorem 5.4.2. Let us make the change of variables (5.149). Let ê be the identity vector
field in the new coordinates and let F̂ (x̃) = F (x). Then by Proposition 5.5.33 the vector
field ê satisfies ê(F̂αβ) = δαβ. The hyperplane x3 = x4 in the new coordinates can be
represented as π̃ := {x̃ ∈ C4 : x̃4 = 0}. Let Âk(x̃) = Ak(x), k = 1, 2, 3, 4, where Ak is
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defined by (5.109). We have

Â1 = sin x̃1

(
cos x̃1 + 2 cos x̃2 cos(

x̃3 + x̃4√
2

) cos(
x̃3 − x̃4√

2
)
)
,

Â2 = sin x̃2

(
cos x̃2 + 2 cos x̃1 cos(

x̃3 + x̃4√
2

) cos(
x̃3 − x̃4√

2
)
)
,

Â3 = sin(
x̃3 + x̃4√

2
)
(
cos (

x̃3 + x̃4√
2

) + 2 cos x̃1 cos x̃2 cos(
x̃3 − x̃4√

2
)
)
,

Â4 = sin(
x̃3 − x̃4√

2
)
(
cos (

x̃3 − x̃4√
2

) + 2 cos x̃1 cos x̃2 cos(
x̃3 + x̃4√

2
)
)
. (5.170)

Let e = ek(x)∂xk
, and let êk(x̃) = ek(x). Then e = ê = êk(x̃)Cm

k ∂x̃m , where coefficients
Cm

k are defined by (5.150).
We have that

he =
4∑

k,m=1

ÂkCm
k ∂x̃m = Â1∂x̃1 + Â2∂x̃2 +

(Â3 + Â4

√
2

)
∂x̃3 +

(Â3 − Â4

√
2

)
∂x̃4 , (5.171)

where function h is defined in (5.130). From (5.165) it is clear that Â3|x̃4=0 = Â4|x̃4=0.
Thus from formula (5.166) we have

(∑4
k,m=1 Â

kCm
k ∂x̃m

)
|x̃4=0 ∈ T∗π̃. Hence ê|π̃ ∈ T∗π̃. It

is easy also to see that (F̂4ij)|x̃4=0 is regular for all i, j = 1, 2, 3. Hence by Proposition 5.5.27
the vector field ẽ given by ẽ = ê|π̃ = e|π = (

∑4
k=1 h

−1Ak∂xk
)|x3=x4 satisfies ẽ(F̃αβ) = δαβ.

Vector field ẽ is the identity field by Proposition 5.4.1. Now from formula (5.109) it is
easy to check that (Âk)|x̃4=0 = Ãk for k = 1, 2, and

(
Â3+Â4

√
2

)
|x̃4=0 = Ã3. Also by formula

(5.130) it is easy to check that h|x̃4=0 gives the stated form of h̃. This complete the proof
of the theorem.

The following statement is a corollary of Corollary 4.8.5 and Theorems 5.5.28, 5.5.30,
5.5.34, and 5.5.36.

Theorem 5.5.37. The function F given by formula (5.62) corresponding to configurations
(5.137) and (5.147) where r = −2q or r = −4q satisfies WDVV equations (5.2).

Let B = A ∩W be a subsystem of A for some n-dimensional linear subspace W =

⟨B⟩ ⊂ V. Let
WB := {x ∈ V : (β, x) = 0 ∀β ∈ B}.

Recall that πB(α) denotes the orthogonal projection of α ∈ V to the subspace WB with
respect to the inner product (·, ·) and πB(A) = {πB(α) : πB(α) ̸= 0, α ∈ A}. Let f1, . . . , fn
be an orthonormal basis of the space WB, and let ξ1, . . . , ξn be the corresponding orthonor-
mal coordinates in WB. Let us extend the orthonormal basis in WB to an orthonormal
basis f1, . . . , fn, fn+1, . . . , fN in V and let ξ1, . . . , ξn, ξn+1, . . . , ξN be the corresponding or-
thonormal coordinates in V .
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Then the following statement takes place.

Theorem 5.5.38. Let e be a vector field such that e(Fij) = δij for all i, j = 1, . . . , N ,
where Fij =

∂2F
∂xi∂xj

. Let F̂ (ξ1, . . . , ξN) = F (x1, . . . , xN) and ê(ξ1, . . . , ξN) = e(x1, . . . , xN).
Suppose that e(ξ) ∈ TξWB for all ξ ∈ WB. Let ẽ = ê|WB ∈ Γ(T∗WB). Then ẽ((FB)ij) = δij,

where (FB)ij =
∂2FB
∂ξi∂ξj

and function FB is given by formula (5.63).

Proof. Let C be the constant matrix of an orthogonal change of variable such that ξk =∑N
i=1C

k
i xi. Then by Proposition 5.5.33 we have ê(F̂ij) = δij where F̂ij = ∂2F̂

∂ξi∂ξj
, (i, j =

1, . . . , N). Hence ê(F̂ij|WB) = δij, (i, j = 1, . . . , n). The statement follows since ẽ = ê|WB ∈
Γ(T∗WB) and F̂ |WB = FB, F̂ij|WB = (FB)ij.

The following statement is a corollary of Theorem 5.5.38.

Theorem 5.5.39. Under the assumptions of Theorem 5.5.38 let e be the vector filed given
by

e = c0H
−1
∑
α∈A

cα sin(2(α, x))∂α, (5.172)

for some constant c0, where

H = H0 +
∑
α∈A

cα sin
2(α, x) (5.173)

for some constant H0. Let vector field ẽ be given by

ẽ = c0H̃
−1

∑
α̃∈πB(A)

cα̃ sin(2(α̃, ξ))∂α̃, ξ ∈ WB, (5.174)

where H̃ = H0+
∑

α̃∈πB(A) cα̃ sin
2(α̃, ξ). Then ẽ((FB)ij) = δij, i, j = 1, . . . n, where function

FB is given by formula (5.63).

Proof. For any α ∈ A we have the decomposition

α = α(1) + α(2), (5.175)

where α(1) = πB(α) ∈ WB and α(2) ∈ W⊥
B . Now for any ξ ∈ WB we have

H(ξ) = H0 +
∑
α∈A

cα sin
2(α, ξ) = H0 +

∑
α∈A

cα sin
2(α(1), ξ) = H0 +

∑
α̃∈πB(A)

cα̃ sin
2(α̃, ξ) = H̃(ξ).

(5.176)

Similarly, for any ξ ∈ WB we have∑
α∈A

cα sin(2(α, ξ))∂α =
∑
α∈A

cα sin(2(α
(1), ξ))∂α(1) =

∑
α̃∈πB(A)

cα̃ sin(2(α̃, ξ))∂α̃ (5.177)
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since e(ξ) ∈ TξWB by assumption. From (5.176) and (5.177) we have e(ξ) = ẽ(ξ). It
follows from Theorem 5.5.38 that ẽ((FB)ij) = δij. This completes the proof.

Note that root system F4 has four projected system on the plane (see the Appendix
for more details). Let us present these planar projections briefly.

• The projected system (F4, A2)1 which is obtained by projecting F4 to the subspace

W
(1)
B = {x ∈ C4, x1 = x2 = x3}, (5.178)

• The projected system (F4, A2)2 which is obtained by projecting F4 to the subspace

W
(2)
B = {x ∈ C4, x3 = x1 + x2, x4 = 0}, (5.179)

• The projected system (F4, B2) which is obtained by projecting F4 to the subspace

W
(3)
B = {x ∈ C4, x3 = x4 = 0}, (5.180)

• The projected system (F4, A
2
1) which is obtained by projecting F4 to the subspace

W
(4)
B = {x ∈ C4, x2 = x3, x4 = 0}. (5.181)

In the following theorem we apply Proposition 5.5.39 to the planar projections of the root
system F4.

Theorem 5.5.40. Let
e = − 1

4qH̃

∑
α∈Ã

cα sin(2(α, ξ))∂α, (5.182)

where
H̃ =

∑
α∈Ã

cα sin
2(α, ξ). (5.183)

Then ẽ(F̃ij) = δij, i, j = 1, 2, where F̃ =
∑

α∈Ã cαf((α, ξ)) and ξ1, ξ2 are an orthonormal
coordinates in C2, and A is one of the configurations (F4, A2)1, (F4, A2)2, (F4, B2), (F4, A

2
1)

with r = −2q.

Proof. Firstly, for root system F4, where parameters r, q satisfy r = −2q, the identity field
e given by formula (5.108) satisfies that e(Fij) = δij for all i, j = 1, 2, 3, 4. Secondly, it is
easy to check that for each of the given cases the condition e(x̃) ∈ Tx̃WB for all x̃ ∈ WB

holds. Hence the statement follows as a corollary of Proposition 5.5.16 and Theorem
5.5.39.
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For simplicity we will write πW (F+
4,s) = (F+

4,s,W ) for a subspace W ⊂ C4.

Theorem 5.5.41. Let
e =

1

4qH̃

∑
α∈Ã

cα sin(2(α, ξ))∂α, (5.184)

where
H̃ = 36q +

∑
α∈Ã

cα sin
2(α, ξ). (5.185)

Then ẽ(F̃ij) = δij, i, j = 1, 2, where F̃ =
∑

α∈Ã cαf((α, ξ)) and ξ1, ξ2 are an orthonormal
coordinates in C2, and A is one of the configurations (F+

4,s,W
(1)
B ), (F+

4,s,W
(2)
B ), (F+

4,s,W
(3)
B ),

(F+
4,s,W

(4)
B ) with r = −4q.

Proof. Firstly, for root system F4, where parameters r, q satisfy r = −4q, the identity field
e given by formula (5.136) satisfies that e(Fij) = δij for all i, j = 1, 2, 3, 4. Secondly, it is
easy to check that for each of the given cases the condition e(x̃) ∈ Tx̃W

(s)
B for all x̃ ∈ W

(s)
B ,

where s = 1, 2, 3, 4, holds. Hence the statement follows as a corollary of Proposition 5.5.26
and Theorem 5.5.39.

5.5.7 Identity vector field for G2

In this subsection we give the formula of the identity vector field for root system G2.
Let A = G+

2 be the positive half of the root system G2 with the multiplicity function
given by

c(
√
3e1) = c(

√
3e1

2
± 3e2

2
) = q, c(e2) = c(

√
3e1

2
± e2

2
) = p, (5.186)

where p, q ∈ C. Recall that by Theorem 4.1.5 function (5.62) corresponding to the collec-
tion A = G+

2 satisfies commutativity equations F1F2 = F2F1 if and only if p = −3q or
p = −9q. Define the vector field

e = A1(x)∂x1 + A2(x)∂x2 , x = (x1, x2), (5.187)

where functions Ai(x), i = 1, 2, are the functions given by formulas A1 = F122, A
2 =

−F112. Then the matrix B = A1F1 + A2F2 satisfies

Bij = e(Fij) =
2∑

k=1

Ak(x)Fijk, i, j = 1, 2. (5.188)

Moreover, the matrix B is proportional to the identity matrix. Let us now give the explicit
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formulas for functions A1, A2 for both cases. We have

A1 = F122 =

√
3p

8

(
cot (

√
3x1
2

+
x2
2
) + cot (

√
3x1
2

− x2
2
)
)

+
9
√
3q

8

(
cot (

√
3x1
2

+
2x2
2

) + cot (

√
3x1
2

− 3x2
2

)
)
,

A2 = −F112 = −3p

8

(
cot (

√
3x1
2

+
x2
2
)− cot (

√
3x1
2

− x2
2
)
)

+
9q

8

(
cot (

√
3x1
2

+
2x2
2

)− cot (

√
3x1
2

− 3x2
2

)
)
.

Now we have two cases to consider.
Case (1). p = −3q. We have

A1 =
√
3 sin

√
3x1

(
cos

√
3x1 + cosx2

(
cos 2x2 − 2

))
,

A2 = 3 sin x2

(
cos

√
3x1 cos 2x2 − cosx2

)
. (5.189)

The following proposition gives general formula for functions A1, A2.

Proposition 5.5.42. Functions A1, A2 given by formula (5.189) take the form

Ak =
1

2q

∑
α∈G+

2

cα(ek, α) sin(2(α, x)), k = 1, 2. (5.190)

Proof. Firstly, since cos 2x2 cosx2 =
1
2
(cos 3x2 + cosx2), then from (5.189) we have

A1 =

√
3

2
sin 2

√
3x1 +

√
3 sin

√
3x1 cosx2 cos 2x2 − 2

√
3 sin

√
3x1 cosx2

=
1

2

(√
3 sin 2

√
3x1 +

√
3 sin

√
3x1 cos 3x2 − 3

√
3 sin

√
3x1 cosx2

)
. (5.191)

It is easy to check that the right-hand side of formula (5.191) is equal to right-hand side
of formula (5.190) for k = 1.

Secondly, since cos 2x2 sinx2 =
1
2
(sin 3x2 + sinx2), then from (5.189) we have

A2 = 3 cos
√
3x1 sinx2 cos 2x2 −

3

2
sin 2x2

=
3

2

(
cos

√
3x1 sin 3x2 − cos

√
3x1 sinx2 − sin 2x2

)
. (5.192)

It is easy to check that the right-hand side of formula (5.192) is equal to right-hand side
of formula (5.190) for k = 2.

Now we have the linear combination B = AiFi = h(x)I2, where I2 is the 2× 2 identity
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matrix and function h(x) has the form

h(x) =
9q

4

(
cos 2

√
3x1 + (cos 2x2 − 2)(−3 + 4 cos

√
3x1 cosx2)

)
=

9

4

(
6q +

∑
α∈G+

2

cα cos(2(α, x))
)
=

9

4

(
−
∑
α∈G+

2

cα +
∑
α∈G+

2

cα cos(2(α, x))
)

= −9

2

∑
α∈G+

2

cα sin
2(α, x). (5.193)

The following statement takes place.

Proposition 5.5.43. The identity vector field e for the collection A = G+
2 defined by

(5.186) under the condition p = −3q is given by the formula

e = h−1(A1∂x1 + A2∂x2), (5.194)

where function h is given by formula (5.193) and A1, A2 are given by formula (5.190) with
k = 1, 2 respectively.

Case (2). p = −9q. We have

A1 =
√
3 sin

√
3x1 cosx2,

A2 = sinx2

(
cos

√
3x1 + 2 cosx2

)
. (5.195)

The following proposition gives general formula for functions A1, A2.

Proposition 5.5.44. Functions A1, A2 given by formula (5.195) take the form

Ak = − 1

9q

∑
α∈G+

2,s

cα(ek, α) sin(2(α, x)), k = 1, 2, (5.196)

where G+
2,s is the subset of short roots in G+

2 .

Proof. It is easy to check that the right-hand side of formula (5.196) for k = 1, 2 gives the
formula A1, A2 given by (5.195).

Now we have the linear combination B = AiFi = h(x)I2, where I2 is the 2× 2 identity
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matrix and function h(x) has the form

h(x) = −9q

2

(
3 + 2 cos

√
3x1 cosx2 + cos 2x2

)
=

1

2

(
− 27q +

∑
α∈G+

2,s

cα cos(2(α, x))
)

= −
(
27q +

∑
α∈G+

2,s

cα sin
2(α, x)

)
. (5.197)

The following statement takes place.

Proposition 5.5.45. The identity vector field e for the collection A = G+
2 defined by

(5.186) under the condition p = −9q is given by the formula

e = h−1(A1∂x1 + A2∂x2), (5.198)

where function h is given by formula (5.197) and A1, A2 are given by formula (5.196) for
k = 1, 2 respectively.

5.5.8 Identity vector field for BCN

In this subsection we give the formula of the identity vector field corresponding to root
system BCN based on our results from Chapter 4.

Recall that we have the configuration A = BC+
N ⊂ CN consisting of the following

vectors and their corresponding multiplicities

ei, with multiplicity r, 1 ≤ i ≤ N,

2ei, with multiplicity s, 1 ≤ i ≤ N,

ei ± ej, with multiplicity q, 1 ≤ i < j ≤ N, (5.199)

where e1, . . . , eN is the standard basis in CN . We have shown that if the multiplicities r,
s and q satisfy the relation

r = −8s− 2q(N − 2), (5.200)

then function
F =

∑
α∈A

cαf((α, x)) (5.201)
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satisfies both equations (5.2) and (5.3) with the matrix B given by

B =
N∑
k=1

sin 2xkFk. (5.202)

Moreover, the entries of the matrix B are given by the formula

Blt = h(x)δlt, l, t = 1, . . . , N, (5.203)

where

h(x) = r + 2q
N∑
k=1

cos 2xk. (5.204)

The following statement follows by Proposition 5.4.1.

Proposition 5.5.46. The identity vector field e for BC+
N under the condition (5.200) for

the multiplicity parameters is given by the formula

e = h−1

N∑
k=1

sin 2xk∂xk
, (5.205)

where function h is given by formula (5.204).

The following proposition gives an equivalent formula for the identity field (5.205).

Proposition 5.5.47. Let Â = {ek, k = 1, . . . , N} ⊂ BC+
N . Then the identity vector field

for BC+
N under the condition (5.200) for the multiplicity parameters has the formula

e = − 1

4q
H−1

∑
α∈Â

cα sin(2(α, x))∂α, (5.206)

where function H is given by

H =
r(2s− q)

q
+
∑
α∈Â

cα sin
2(α, x). (5.207)

Proof. Firstly, since cα = r for any α ∈ Â then we have

N∑
k=1

sin 2xk∂xk
=

1

r

N∑
k=1

∑
α∈Â

cα(ek, α) sin(2(α, x))∂xk
=

1

r

∑
α∈Â

cα sin(2(α, x))∂α. (5.208)
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Secondly, we have

r + 2q
N∑
k=1

cos 2xk = r +
2q

r

∑
α∈Â

cα cos(2(α, x))

= −8s− 2q(N − 2) +
2q

r

∑
α∈Â

cα
(
1− 2 sin2(α, x)

)
= −4q

r

(r(2s− q)

q
+
∑
α∈Â

cα sin
2(α, x)

)
. (5.209)

Then formula (5.206) follows by substituting formulas (5.208) and (5.209) into formula
(5.205).

5.5.9 Identity vector field for restrictions of BCN

In this subsection we give the formula of the identity vector field corresponding to root
system BCn(q, r, s;m) based on our results from Chapter 4.

Recall that we have the configuration A = BC+
N given by (5.199). Let n ∈ N and

m = (m1, . . . ,mn) with mi ∈ N such that
∑n

i=1mi = N . Let us consider subsystem
B ⊂ A as follows:

B = {e∑i−1
j=1 mj+k − e∑i−1

j=1 mj+l, 1 ≤ k < l ≤ mi, i = 1, . . . , n}.

Let us also consider the corresponding subspace WB of dimension n given by

WB = {x ∈ W : (β, x) = 0,∀β ∈ B}.

More explicitly, vectors x = (x1, . . . , xN) ∈ WB satisfy conditions:

x1 = · · · = xm1 ,

xm1+1 = · · · = xm1+m2 ,

...

x∑n−1
i=1 mi+1 = · · · = xN .

Note that vectors fi, 1 ≤ i ≤ n, given by

fi =
1

√
mi

mi∑
j=1

e∑i−1
s=1 ms+j (5.210)

form an orthonormal basis for WB. Now for any vector u =
∑N

i=1 uiei ∈ CN , let ũ be its
orthogonal projection to the subspace WB. The formula of ũ is given by Lemma 4.3.4.
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Now from Lemma 4.3.4 we have the following expression for the orthogonal projections of
basis ej, (1 ≤ j ≤ N) to the subspace WB in terms of the basis (5.210).

ẽm1+···+mi−1+1 = ẽm1+···+mi−1+2 = · · · = ẽm1+···+mi

=
1

mi

( 0, . . . , 0︸ ︷︷ ︸
m1+···+mi−1

, 1, . . . , 1, 0, . . . , 0︸ ︷︷ ︸
N−(m1+···+mi)

) =
fi√
mi

, 1 ≤ i ≤ n. (5.211)

Let us now project BC+
N to the subspace WB, and denote the projected system as Ã =

BCn(q, r, s;m) ⊂ WB ∼= Cn. Then configuration Ã consists of vectors α with multiplicities
cα:

m
−1/2
i fi, with multiplicity rmi, 1 ≤ i ≤ n,

2m
−1/2
i fi, with multiplicity smi +

1

2
qmi(mi − 1), 1 ≤ i ≤ n,

m
−1/2
i fi ±m

−1/2
j fj, with multiplicity qmimj, 1 ≤ i < j ≤ n. (5.212)

Now suppose that parameters r, s, q and m satisfy relation (5.200) with N =
∑n

i=1mi.
Consider the function

F̃ =
∑
α∈Ã

cαf((α, x̃)), x̃ ∈ WB. (5.213)

Note that (see Corollary 4.8.4, see also Proposition 4.4.6) function (5.213) satisfies the
commutativity equations

F̃iF̃j = F̃jF̃i i, j = 1, . . . , n.

It is easy to check that the identity field (5.206) satisfies that e(x̃) ∈ Tx̃WB for any
x̃ ∈ WB. Hence the following statement follows as a corollary of Theorem 5.5.39 and
Proposition 5.5.47.

Theorem 5.5.48. Let B̂ = {m−1/2
k fk, k = 1, . . . , n} ⊂ BCn(q, r, s;m). Then the identity

vector field for BCn(q, r, s;m) under the condition (5.200) for the multiplicity parameters,
where N =

∑n
i=1mi, has the formula

ẽ = − 1

4q
H̃−1

∑
α∈B̂

cα sin(2(α, x̃))∂α, x̃ ∈ WB (5.214)

where function H̃ is given by

H̃ =
r(2s− q)

q
+
∑
α∈B̂

cα sin
2(α, x̃). (5.215)
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5.5.10 Uniform formulas of identity field for (not simply-laced)

root systems and their projections

In this subsection we summarize the identity vector fields for all root systems with more
than one orbit as well as their restrictions.

The following theorem is a corollary of Propositions 5.5.16, 5.5.43.

Theorem 5.5.49. Let function F be given by (5.62). Consider a vector field e given by

e = c0H
−1
∑
α∈A

cα sin(2(α, x))∂α, (5.216)

for some constant c0, where

H = H0 +
∑
α∈A

cα sin
2(α, x)

for some constant H0. Then e(Fij) = δij if

• A = F+
4 given by formula (5.65) or A is one of the 3-dimensional projections

(F4, A1)1, (F4, A1)2 given by formulas (5.137), (5.147) respectively, or A is one of
the 2-dimensional projections (F4, A2)1, (F4, A2)2, (F4, B2), (F4, A

2
1), under the con-

ditions
r = −2q, c0 = − 1

4q
, H0 = 0,

• A = F+
4,s the subset of short roots in F+

4 or A is one of the 3-dimensional projections
of F+

4,s along the subspaces x4 = 0, x3 = x4 respectively, or A is one of the 2-
dimensional projections of F+

4,s to one of the subspaces W (1)
B , W

(2)
B ,

W
(3)
B , W

(4)
B given by formulas (5.178), (5.179), (5.180), (5.181) respectively, under

the conditions
r = −4q, c0 =

1

4q
, H0 = 36q,

• A = G+
2 given by formula (5.186) under the conditions

p = −3q, c0 = − 1

9q
, H0 = 0,

• A = G+
2,s the subset of short roots in G+

2 under the conditions

p = −9q, c0 =
1

9q
, H0 = 27q,

• A = {m−1/2
k fk, k = 1, . . . , n} ⊂ BCn(q, r, s;m), where BCn(q, r, s;m) is given by
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(5.212), under the conditions

r = −8s− 2q(
n∑

i=1

mi − 2), c0 = − 1

4q
, H0 =

r(2s− q)

q

where in this case if all mi = 1 (i = 1, . . . , n), then BCn(q, r, s;m) reduces to the
standard BC+

N with N =
∑n

i=1mi.



Chapter 6

Concluding remarks and open questions

6.1 Classification

In the current work we studied the trigonometric version of ∨-systems and trigonometric
solutions to WDVV equations related to these systems. We proved that under some non-
degeneracy conditions these collections are closed under the natural operations of taking
subsystems and restrictions respectively, which extends the corresponding results in the
rational case.

Solutions related to the trigonometric ∨-systems involve an extra variable which make
the classification problem non-trivial already for dimension two. The classification of
trigonometric ∨-systems remains an important open problem. We gave detailed descrip-
tion of all the known two-dimensional examples based on restrictions of root systems as
well as some examples which are not of this form. We note that these configurations
involve collinear vectors which makes the task of classification more challenging.

The existence of a rigid geometrical structure of a series decomposition of vectors in
the trigonometric ∨-system helped to classify such systems up to five vectors on the plane
(see [27]). In the current work we do further investigations and prove that these systems
up to five vectors on the plane actually belong to the family of BC2 and A2 root systems
and their deformations. We can also prove the following statement by working out the
conditions of the series decomposition of vectors.

Proposition 6.1.1. Let trigonometric ∨-system A on the plane consist of six vectors with
non-zero multiplicities. Assume that A contains exactly two pairs of proportional vectors.
Then A belong to the family of BC2(r, s, q;m) for some values of parameters.

We hope that these examples as well as the strong series conditions would be instru-
mental in achieving classification of the trigonometric ∨-systems which requires further

212
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work.

6.2 Commutativity equations and WDVV equations

Commutativity equations FiFj = FjFi appear in N = 4 supersymmetric mechanics. So-
lutions to these equations corresponding to root systems G2, BCN , F4 were given in [3].
In the current work we investigated and clarified the relation between the commutativity
and WDVV equations. We have shown that under certain non-degeneracy conditions the
commutativity equations imply the WDVV equations, which leads to new solutions of
WDVV equations from known solutions of the commutativity equations. We gave such
trigonometric solutions of WDVV equations (without extra variables) related to root sys-
tems BCN and F4 and their restrictions. It would be interesting to see whether there
are more Frobenius manifold structures associated to solutions of WDVV equations both
without and with the extra variable.



Appendix A

Trigonometric ∨-systems on the plane

In this appendix we present explicitly all the known trigonometric ∨-systems on the plane.
We follow Bourbaki’s work [6] for the presentation of root systems. Let us denote by (R,B)
the restriction of the root system R along the subsystem B.

A.1 Planar restrictions of root system F4

Recall that R = F+
4 is the positive half of the root system F4 with the multiplicity function

c given by

c
(1
2
(e1 ± e2 ± e3 ± e4)

)
= c(ei) = p, (1 ≤ i ≤ 4),

c(ei ± ej) = q, (1 ≤ i < j ≤ 4), (A.1)

where p, q ∈ C. Recall also that in the corresponding solution (2.55) of WDVV equations
(2.56) we have

λ = λ(F4,c) = 6
√
3(2q + p)(4q + p)−1/2. (A.2)

The basis of simple roots consists of

α1 = e2 − e3, α2 = e3 − e4, α3 = e4, α4 =
1

2
(e1 − e2 − e3 − e4).

The Dynkin graph of F4 is

α1 α2 α3 α4

Note that there are two different restrictions of the root system F4 along the root system
A2. The first one (F4, A2)1 is obtained by taking subsystem (A2)1 spanned by α1, α2. The
second one (F4, A2)2 is obtained taking subsystem (A2)2 spanned by α3, α4. The following
table gives all the planar restrictions of root system F4.
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Table A.1: Restricted systems of F4 on the plane

F4 root system

Subsystem Restricted system A Multiplicities |A|

(A2)1 e1, e2, 2e2, e1 ± e2, 1
2 (e

1 ± e2), 1
2 (e

1 ± 3e2) p, 3p, 3q, 3q, 3p, p 9

(A2)2 e1, e2, 1
2 (e

1 ± e2), 1
2 (3e

1 ± e2) 3(p+ q), q, 3(p+ q), q 6

B2 e1, e2, 2e1, 2e2, e1 ± e2 4p, 4p, q, q, p+ 4q 6

A2
1 e1, e2, 2e1, 2e2, e1 ± e2, e1 ± 2e2 2(p+ 2q), 4p, q, p+ 2q, 2p, 2q 8

The following equivalences take place:

• Configuration (F4, A2)1 is equivalent to the configuration given in Proposition 3.5.10.

• Configuration (F4, A2)2 is equivalent to root system G2 with invariant multiplicities.

• Configuration (F4, B2) belongs to the family of BC2 configurations.

• Configuration (F4, A
2
1) coincides with the configuration given in Proposition 3.5.9.

A.2 Planar restrictions of root system E8

Recall that R = E+
8 is the positive half of the root system E8 with the multiplicity function

c given by

ei ± ej,with multiplicity t, 1 ≤ i < j ≤ 8,

1

2
(e1 ± e2 ± e3 ± e4 ± e5 ± e6 ± e7 ± e8), with multiplicity t,

where the sum of all eight coordinates is even and t ∈ C.
Recall also that in the corresponding solution (2.55) of WDVV equations (2.56) we

have
λ = λ(E8,t) = 30

√
t. (A.3)

The basis of simple roots consists of

α1 =
1

2
e1 + e8 − 1

2
(e2 + e3 + e4 + e5 + e6 + e7), α2 = e1 + e2, α3 = e2 − e1,

α4 = e3 − e2, α5 = e4 − e3, α6 = e5 − e4, α7 = e6 − e5, α8 = e7 − e6.

The Dynkin graph of E8 is
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α1

α2

α3 α4 α5 α6 α7 α8

The following table gives all the planar restrictions of root system E8.

Table A.2: Restricted systems of E8 on the plane

E8 root system

Subsystem Restricted system A Multiplicities |A|

E6 e1, e2, 1
2 (e

1 ± e2), 1
2 (3e

1 ± e2) 27, 1, 27, 1 6

D6 e1, e2, 2e1, 2e2, e1 ± e2 32, 32, 1, 1, 12 6

A6 e1, 2e1, e2, 1
2 (e

1 ± e2), 1
2 (3e

1 ± e2) 35, 7, 1, 21, 7 7

A1 ×D5 e1, 2e1, e2, 2e2, e1 ± e2, 2e1 ± e2 32, 10, 20, 1, 16, 2 8

A1 ×A5 e1, 2e1, 3e1, e2, 2e2, e1 ± e2, 2e1 ± e2 30, 15, 2, 20, 1, 12, 6 9

A2 ×D4 e1, e2, 2e1, e1 ± e2, 1
2 (3e

1 ± e2), 1
2 (e

1 ± e2) 24, 8, 3, 3, 8, 24 9

A2 ×A4
e1, 2e1, 3e1, e2, 1

2 (e
1 ± e2), 1

2 (3e
1 ± e2),

1
2 (5e

1 ± e2)
30, 15, 5, 1, 15, 10, 3 10

A2
3 e1, 2e1, e2, 2e2, e1 ± e2, 2e1 ± e2, e1 ± 2e2 24, 6, 24, 6, 16, 4, 4 10

A2
1 ×A4

e1, 2e1, e2, 1
3 (e

1 + e2), 2
3 (e

1 + e2),
1
3 (2e

1 − e2), 1
3 (e

1 − 2e2), 2
3 (2e

1 − e2),
1
3 (5e

1 + 2e2), 1
3 (5e

1 − e2), 1
3 (4e

1 + e2)

20, 5, 2, 20, 10, 20, 10, 5, 2, 4, 10 11

A1 ×A2 ×A3
e1, 2e1, 3e1, 4e1, e2, 2e2, e1 ± e2,

2e1 ± e2, 3e1 ± e2
24, 18, 8, 3, 12, 1, 12, 6, 4 12

A2
1 ×A2

2

e1, 2e1, 3e1, e2, 2e2, 3e2, e1 ± e2,

2(e1 ± e2), 2e1 ± e2, e1 ± 2e2
18, 9, 2, 18, 9, 2, 12, 3, 6, 6 14

The following equivalences take place:

• The restriction (E8, E6) is equivalent to root system G2 with special multiplicities.

• The restriction (E8, D6) belongs to the family of BC2 configurations.

• The restriction (E8, A6) is equivalent to a configuration from the family given in
Proposition 3.5.7 with special multiplicities.

• The restriction (E8, A1 ×A5) belongs to the family of configuration given in Propo-
sition 3.5.13 with special multiplicities.
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• The restriction (E8, A1 ×D5) is equivalent to a configuration from the family given
in Proposition 3.5.9 with special multiplicities.

• The restriction (E8, A2 ×D4) belongs to the family given in Proposition 3.5.10 with
special multiplicities.

A.3 Planar restrictions of root system E7

Recall that R = E+
7 is the positive half of the root system E7 with the multiplicity function

c = t ∈ C given by

ei ± ej, 1 ≤ i < j ≤ 6, e8 − e7,

1

2

(
e8 − e7 +

6∑
i=1

(−1)ν(i)ei
)
,with

6∑
i=1

ν(i) odd.

Another realization of root system E7 is given earlier in Subsection 3.6.2. Recall also
that in the corresponding solution (2.55) of WDVV equations (2.56) we have

λ = λ(E7,t) = 9
√
6t. (A.4)

The basis of simple roots consists of

α1 =
1

2
e1 + e8 − 1

2
(e2 + e3 + e4 + e5 + e6 + e7), α2 = e1 + e2, α3 = e2 − e1,

α4 = e3 − e2, α5 = e4 − e3, α6 = e5 − e4, α7 = e6 − e5.

The Dynkin graph of E7 is

α1

α2

α3 α4 α5 α6 α7

Note that there are two different restrictions of root system E7 along the root system
A5. The first one (E7, A5)1 is obtained by taking subsystem the (A5)1 spanned by the
simple roots α1, α3, α4, α5, α6. The second one (E7, A5)2 is obtained by taking subsystem
the (A5)2 spanned by the simple roots α2, α4, α5, α6, α7. Note also that the restricted
system obtaining by taking the subsystem spanned by the simple roots α1, α2, α4, α5, α6

is equivalent to (E7, A5)1.
The following table gives all the planar restrictions of root system E7.
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Table A.3: Restricted systems of E7 on the plane

E7 root system

Subsystem Restricted system A Multiplicities |A|

D5 e1, e2, e1 + e2, e1 − e2 16, 16, 10, 1 4

(A5)1 e1, 2e1, e2, e1 ± e2 20, 1, 15, 6 5

(A5)2 e1, e2, 1
2 (e

1 ± e2), 1
2 (3e

1 ± e2) 15, 1, 15, 1 6

A1 ×D4 e1, e2, 2e1, 2e2, e1 ± e2 16, 16, 1, 1, 8 6

A1 ×A4
e1, e2, 1

3 (e
1 + e2), 2

3 (e
1 + e2), 1

3 (2e
1 − e2),

1
3 (e

1 − 2e2)
2, 5, 20, 5, 10, 10 6

A2 ×A3 2e1, 2e2, 4e2, e1 ± e2, e1 ± 3e2 1, 18, 3, 12, 4 7

A2
1 ×A3 e1, 2e1, e2, 2e2, e1 ± e2, e1 ± 2e2 12, 1, 16, 6, 8, 2 8

A1 ×A2
2 e1, 2e1, 3e1, e2, e1 ± e2, 2e1 ± e2 18, 9, 2, 9, 6, 3 8

A3
1 ×A2 2e1, 2e2, 4e2, e1 ± e2, 2(e1 ± e2), e1 ± 3e2 4, 12, 3, 12, 3, 4 9

The following equivalences take place:

• Configuration (E7, A5)1 belongs to the family of BC2 configurations.

• Configuration (E7, A5)2 is equivalent to the root system G2 with special multiplici-
ties.

• Configurations (E7, D5), (E7, A1 ×D4) belong to the family of BC2 configurations.

• Configuration (E7, A1 × A4) is equivalent to a configuration from the family given
in Proposition 3.5.6 with special multiplicities.

• Configuration (E7, A2 × A3) is equivalent to the configuration given in Proposi-
tion 3.5.7 with special multiplicities.

• Configuration (E7, A
2
1 ×A3) belongs to the family of configurations given in Propo-

sition 3.5.9 with special multiplicities.

• Configuration (E7, A
3
1 × A2) is equivalent to a configuration from the family given

in Proposition 3.5.10 with special multiplicities.
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A.4 Planar restrictions of root system E6

Recall that R = E+
6 is the positive half of the root system E6 with the multiplicity function

c = t ∈ C given by

ei ± ej, 1 ≤ i < j ≤ 5,

1

2

(
e8 − e7 − e6 +

5∑
i=1

(−1)ν(i)ei
)
,with

5∑
i=1

ν(i) even.

Recall also that in the corresponding solution (2.55) of WDVV equations (2.56) we
have

λ = λ(E6,t) = 12
√
2t. (A.5)

The basis of simple roots consists of

α1 =
1

2
e1 + e8 − 1

2
(e2 + e3 + e4 + e5 + e6 + e7), α2 = e1 + e2, α3 = e2 − e1,

α4 = e3 − e2, α5 = e4 − e3, α6 = e5 − e4.

The Dynkin graph of E6 is

α1

α2

α3 α4 α5 α6

The following table gives all the planar restrictions of root system E7.

Table A.4: Restricted systems of E6 on the plane

E6 root system

Subsystem Restricted system A Multiplicities |A|

D4 2e1, e1 ± e2 8, 8 3

A4 2e1, 2e2, e1 ± e2 1, 5, 10 4

A1 ×A3 e1, 2e1, e2, e1 ± e2 12, 1, 8, 4 5

A2 ×A2 e1, e2, 1
2 (e

1 ± e2), 1
2 (3e

1 ± e2) 9, 1, 9, 1 6

A2
1 ×A2

e1, e2, 1
3 (e

1 + e2), 2
3 (e

1 + e2), 1
3 (2e

1 − e2),
1
3 (e

1 − 2e2)
2, 2, 12, 3, 6, 6 6

The following equivalences take place:
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• The restriction (E6, D4) is equivalent to the root system A2.

• The restrictions (E6, A4), (E6, A1 ×A3) belong to the family of BC2 type configura-
tions.

• The restriction (E6, A2 × A2) is equivalent to the root system G2 with special mul-
tiplicities.

• The restriction (E6, A
2
1 × A2) is equivalent to a configuration from the family given

in Proposition 3.5.6 with special multiplicities.

A.5 Summary

Let us summarize all the known trigonometric ∨-systems on the plane. In addition to
configurations BC2(q, r, s;m), A2(t;m) and the root system G2 we have the following
configurations (with general multiplicities) coming from restrictions of the root systems:
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Table A.5: Planar restrictions of root systems

(R,B) Restricted system A Multiplicities λ |A|

(F4, A
2
1)

e1, e2, 2e1, 2e2,

e1 ± e2, e1 ± 2e2
2(p+ 2q), 4p, q,

p+ 2q, 2p, 2q

6
√
3(p+2q)√
p+4q

8

(F4, A2)
e1, 2e1, e2, e1 ± e2,

(3e1 ± e2)/2, (e1 ± e2)/2
p, q, p/3, q, p/3, p 6(p+2q)√

p+4q
9

(E8, A5 ×A1)
e1, 2e1, 3e1, e2, 2e2,

e1 ± e2, 2e1 ± e2
30t, 15t, 2t, 20t, t,

12t, 6t
30
√
t 9

(E8, A4 ×A2)
e1, 2e1, 3e1, e2, (e1 ± e2)/2,

(3e1 ± e2)/2, (5e1 ± e2)/2

30t, 15t, 5t, t, 15t,

10t, 3t
30
√
t 10

(E8, A
2
3)

e1, 2e1, e2, 2e2, e1 ± e2,

2e1 ± e2, e1 ± 2e2
24t, 6t, 24t, 6t, 16t,

4t, 4t
30
√
t 10

(E8, A4 ×A2
1)

e1, 2e1, e2, (e1 + e2)/3,

2(e1 + e2)/3, (2e1 − e2)/3,

(e1 − 2e2)/3, 2(2e1 − e2)/3,

(5e1 + 2e2)/3, (5e1 − e2)/3,

(4e1 + e2)/3

20t, 5t, 2t, 20t,

10t, 20t, 10t, 5t,

2t, 4t, 10t

30
√
t 11

(E8, A3 ×A2 ×A1)
e1, 2e1, 3e1, 4e1, e2, 2e2, e1 ± e2,

2e1 ± e2, 3e1 ± e2
24t, 18t, 8t, 3t, 12t,

t, 12t, 6t, 4t
30
√
t 12

(E8, A
2
2 ×A2

1)
e1, 2e1, 3e1, e2, 2e2, 3e2, e1 ± e2,

2(e1 ± e2), 2e1 ± e2, e1 ± 2e2
18t, 9t, 2t, 18t, 9t,

2t, 12t, 3t, 6t, 6t
30
√
t 14

(E7, A
2
2 ×A1) e1, 2e1, 3e1, e2, e1 ± e2, 2e1 ± e2 18t, 9t, 2t, 9t, 6t, 3t 9

√
6t 8
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In the next table we list all the known trigonometric ∨-systems which are not restric-
tions of root systems.

Table A.6: Non-Coxeter planar examples

A Multiplicities Conditions λ |A|

e1, 2e1, e2, e1 + e2,

e1 − e2, 2e1 + e2
4a, a, 2a, 2a,

2(a− b), 2ab
4a−3b

4a− 3b ̸= 0,

a(2a− b) ̸= 0

6
√
3(2a−b)√
4a−3b

6

e1, e2, 2e2, 1
2 (e

1 ± e2),
1
2 (e

1 ± 3e2)

a(3a−2b)
3a+4b , 3a+ 2b,

b, 3a, a
3a+ 4b ̸= 0 6(3a+2b)√

3a+4b)
7

e1, 2e1, 3e1, e2, 2e2,

e1 ± e2, 2e1 ± e2

2b(3b+2a)
b+2a , b(3b+2a)

b+2a , 2b(b−2a)
3(b+2a) ,

2a+ 3b, a, 2b, b

b+ 2a ̸= 0,

b(3b+ 2a) ̸= 0

3
√
2(3b+2a)√
b+2a

9

Note that

• The first configuration A with 6 vectors can be obtained by restricting the configu-
ration A1 along the plane 2x1 + x2 − x3 = 0, where A1 is the configuration given in
Proposition 3.5.3.

• The second configuration A with 7 vectors can be obtained by restricting the configu-
ration A1 along the plane x1 = x2, where A1 is the configuration given in Proposition
3.5.3.

• The third configuration A in the special case a = 0 reduces to the 8-vectors config-
uration (E7, A

2
2 × A1).
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