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Abstract 

The transition from late pregnancy to early lactation implies metabolic and 

endocrine changes for accomplishing the adaptation to the rapid increase of milk 

production. Voluntary feed intake can usually not cover the energy and nutrient 

requirements in the first weeks of lactation, and dairy cows thus need to mobilize body 

reserves, mainly from adipose tissue. The extent of this mobilization that can be assessed 

by recording backfat thickness (BFT), varies between animals but is commonly more 

pronounced in cows that are over-conditioned at calving. Over-conditioned cows are at 

greater risk for developing metabolic disorders, such as ketosis, and thus for compromised 

welfare and performance than cows of normal or lean body condition. Making use of a 

large dataset including also health records from a herd with 1,709 multiparous Holstein 

cows, the objectives of this thesis work were (1) to characterize the variation in pre-calving 

back fat thickness (BFT) and the subsequent BFT loss during early lactation, and to relate 

it to milk production, health condition, and selected blood variables, (2) to perform an 

untargeted metabolomics analysis for comparing the metabolome in blood serum of 

selected subgroups differing in body condition loss, health status and in dietary methionine 

(Met) supply, and (3), to undertake proteome analyses in other subgroups of animals that 

were either lean or over-conditioned before calving but were otherwise not differing in 

health status and Met supply. Animals from which serum samples and BFT records were 

available both at day 25 ante partum (ap) and day 30 post partum (pp) were selected (n 

=713) and subjected to K-means cluster analyses. Five clusters were obtained each 

considering the BFT-ap and the difference between BFT-ap and BFT pp (ΔBFT). The 

clusters were validated and the serum samples analysed for non-esterified fatty acids 

(NEFA), ß-hydroxybutyrate (BHB), for two adipokines, i.e., adiponectin and leptin, and 

for one inflammation marker (Haptoglobin). In confirmation of the literature, cows in the 

clusters with greater ΔBFT underwent more intense lipolysis and ketogenesis than cows 

with smaller ΔBFT. Cows categorized as very fat ap had lesser milk yields than other 

clusters. No differences in the serum metabolome at day 30 pp were detectable in cows 

with different ΔBFT, health status, and Met supply (n = 184). Even though the subset was 

further limited to fat versus lean cows (n = 30 in total) that were all healthy and did not 

receive supplemental Met for the proteome analysis, no differences were observed between 

the two groups. The findings about the classical variables recorded were largely 

confirmatory whereas the multivariate results from metabolomics and proteomics could not 

further extend the current knowledge about the relationship between body condition, fat 

mobilization, and metabolism. 
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Kurzfassung 

Der Übergang von der späten Gravidität zur frühen Laktation bringt metabolische 

und endokrine Veränderungen mit sich, um die Anpassung an den schnellen Anstieg der 

Milchproduktion zu bewältigen. Die freiwillige Futteraufnahme kann den Energie- und 

Nährstoffbedarf in den ersten Wochen der Laktation in der Regel nicht decken, so dass 

Milchkühe Körperreserven, v.a. Fett, mobilisieren müssen. Das Ausmaß dieser 

Mobilisierung, das durch die Erfassung der Rückfettdicke (BFT) beurteilt werden kann, 

variiert tierindividuell, ist aber bei Kühen, die beim Abkalben überkonditioniert sind, meist 

stärker ausgeprägt. Überkonditionierte Kühe haben ein höheres Risiko für die Entwicklung 

von Stoffwechselstörungen wie Ketose und damit für eine Beeinträchtigung des 

Wohlbefindens und der Leistung als Kühe mit normaler oder magerer Körperkondition. 

Unter Verwendung eines großen Datensatzes, der auch Gesundheitsdaten aus einer Herde 

mit 1.709 pluriparen Holstein-Kühen enthielt, waren die Ziele dieser Arbeit: (1) die BFT-

Variation vor dem Abkalben (ante partum, ap) und des anschließenden BFT-Verlustes 

während der frühen Laktation in ihrer Beziehung zu Milchleistung, Gesundheitszustand 

und ausgewählten Blutvariablen zu charakterisieren, (2) das Metabolom im Blutserum 

ausgewählter Untergruppen, die sich in Bezug auf den Verlust der Körperkondition, den 

Gesundheitszustand und die Methionin (Met)-Zufuhr mit der Nahrung unterscheiden, 

mittels einer untargeted Metabolomics-Analyse zu vergleichen, (3) auch das Proteom in 

anderen Untergruppen von Tieren, die vor dem Kalben entweder mager oder 

überkonditioniert waren, sich aber ansonsten nicht in Bezug auf den Gesundheitszustand 

und die Met-Zufuhr unterschieden, zu untersuchen. Es wurden zunächst Tiere ausgewählt, 

von denen Serumproben und BFT-Aufzeichnungen sowohl am Tag 25 ap als auch am Tag 

30 post partum (pp) verfügbar waren, und einer K-Means-Cluster-Analyse unterzogen. 

Sowohl für den ap BFT-Wert als auch für die Differenz zwischen BFT-ap und BFT-pp 

(ΔBFT) wurden jeweils fünf Cluster erhalten. Die Cluster wurden validiert und die 

Serumproben auf nicht veresterte Fettsäuren (NEFA), ß-Hydroxybutyrat (BHB), auf zwei 

Adipokine (Adiponectin und Leptin) und auf einen Entzündungsmarker (Haptoglobin) 

untersucht. Wie in der Literatur beschrieben, durchliefen die Kühe in den Clustern mit 

größerem ΔBFT eine intensivere Lipolyse und Ketogenese als Kühe mit kleinerem ΔBFT. 

Kühe, die als sehr fett eingestuft wurden, hatten eine geringere Milchleistung als andere 

Cluster. Bei Kühen mit unterschiedlichem ΔBFT, Gesundheitszustand und Met-

Versorgung (n = 184) waren keine Unterschiede im Serum-Metabolom am Tag 30 pp 

nachweisbar. Auch die für die Proteom-Analysen vorgenommene Reduzierung der 

Untergruppen auf fette und magere Kühe (insgesamt n = 30), die alle gesund waren und 

kein zusätzliches Met erhielten, wurden keine Unterschiede zwischen den beiden Gruppen 

festgestellt. Die Ergebnisse zu den erfassten klassischen Variablen waren weitgehend 

bestätigend, während die multivariaten Ergebnisse aus Metabolomics und Proteomics unter 

den gewählten Bedingungen das derzeitige Verständnis der Beziehungen zwischen 

Körperkondition, Fettmobilisierung und Stoffwechsel nicht weiter vertiefen konnten. 
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Chapter 1 - Introduction 

1.1 The dairy cow’s transition from pregnancy to lactation and the interrelationship with 

body condition  

The so-called transition period in dairy cows was defined as the time from 3 weeks 

before to 3 weeks after parturition (Drackley, 1999). Especially in early lactation, dairy 

cows are typically in a status of negative energy balance (NEB) because voluntary feed 

intake is insufficient to meet the increased nutrient requirements for milk synthesis 

(Drackley, 1999). This reduction in feed intake may result in a less efficient adaptation to 

lactation. The transition period is overall characterized by major changes in the digestive, 

metabolic, and endocrine system with actions that must be operative at the time of calving 

(Figure 1). The NEB caused by the reduced dry matter intake and the increased energy 

demand after parturition leads to an increased lipolysis and gluconeogenesis and is also 

associated with a higher ketogenic status (i.e., higher level of BHB in the blood), which 

causes an increased inflammatory status post-partum.  Due to this status, the high cellular 

metabolism and upregulated immune gene expression increase even more the energy 

requirements of the animals in a phase in which there is a reduced dry matter intake.  The 

failure of one or more of these systems may lead to metabolic diseases, for example, 

ketosis, but also to infectious diseases such as mastitis, and metritis due to a compromised 

immune defence. 
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Figure 1. Major interactions between the immune, endocrine and metabolic systems in dairy cows during the transition 
period. Inflammation post-partum, intense cellular metabolism and upregulated immune gene expression increase energy 
requirements when dry matter (from Esposito et al., 2014) 

 

All these diseases compromise the cow’s well-being and may lead to culling or death 

(McGuffey, 2017). Another important aspect to consider for the health of the animals is the 

body condition around calving. In optimal circumstances, dairy cows are capable of 

efficiently using body fat to produce high milk yields already in the first weeks of 

lactation. However, cows with a high body condition score (BCS; ranging from 1, very 

thin cow, to 5, over-conditioned cow) around calving are at greater risk of developing 

metabolic disorders, such as ketosis but also impaired fertility (Gillund et al., 2001; 

Bernabucci et al., 2005; Roche et al., 2009; Rathbun et al., 2017). Moreover, it is important 

to underline that not only the BCS around calving is a key element, but also the extent of 

BCS loss during the transition from pregnancy to lactation has important implications in 

the metabolic health of dairy cows (Rathbun et al., 2017). A loss of one unit of BCS has 

been shown to double the risk of ketosis (Duffield et al., 1998; Rathbun et al., 2017). 

Moreover, an extensive loss of the body's energy reserves is also associated with impaired 

immune function, which may increase the risk for infectious diseases such as endometritis 
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(Torres et al., 2020). Body condition around calving is thus considered one of the most 

relevant determinants of BCS loss: the greater the BCS is at calving, the more body 

reserves will be mobilized, leading to an increased risk of metabolic disorders (Roche et 

al., 2007b). It is thus recommended to avoid over-conditioning in animals in the weeks 

before parturition, and this can be assessed using ultrasound measurements of the backfat 

thickness (BFT; Schröder and Staufenbiel, 2006), which are more precise and reproducible 

compared to a visual assessment of the BCS. 

 The major problem when studying and evaluating how dairy cows accumulate body 

reserves and how these reserves are mobilized is that they vary among different animals, 

even if they are fed and managed in the same way, and the reasons for this variation are 

still mostly unknown. In previous studies using proteomics, it was observed that over-

conditioned cows around calving exhibited changes in pathways related to the acute 

inflammatory response and in the regulation of complement and coagulation cascades 

(Ghaffari et al., 2020b). Similarly, using a targeted metabolomics approach, Ghaffari et al. 

(2020a) identified divergent metabotypes even within well-characterized phenotypes of 

over-conditioned dairy cows at calving with a severe subsequent loss of BC.  

 With this background, it is important to understand what the requirements of the 

animals are for supporting their productivity, and to avoid losses in performance or even, 

in serious situations, the loss of the animal, all of which would decrease the dairy farmer’s 

income. Particular focus should thus be on  the transition period, during which dairy cattle 

start developing a NEB and tend to reduce their dry matter intake (DMI) at a time when 

nutrient intake should optimally support foetal growth and milk production, respectively 

(Bell et al., 2000).  

 Drackley (1999) reported that cows with health disorders around calving produced 

7.2 kg less milk per day during the first 20 d post-partum period as compared to healthy 

cows. Concerning the relation between BCS at calving and milk yield, there are conflicting 
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reports in the literature. As comprehensively reviewed by Roche et al. (2009), there is no 

clear linear relationship between BCS and milk yield, however, over-conditioned cows 

tend to produce less milk. 

In case of prolonged metabolic disorders, the most common problems in dairy cows 

are: parturient paresis (milk fever or hypocalcaemia), fatty liver, ketosis, and laminitis 

(McGuffey, 2017). In the next sub-sections, the classical variables in blood that should be 

considered to control the health of the dairy cows will be highlighted, and some strategies 

to improve animal health around calving will be outlined. In this regard, seeking further 

improvements in nutritional management is essential: supporting the animal in this phase, 

and fully understand the metabolic processes which take place during the transition period 

is the key to have healthy and high-producing dairy cows at the farm level.  

 

1.1.1 Measurements in blood plasma or serum for evaluating metabolic health in dairy 

cows  

To evaluate the health and the metabolic response in dairy cows during the 

transition period, and to identify potential differences between animals with different BCS 

before calving or with a different BCS loss, a common approach is to test the concentration 

of various parameters in the circulation. In relation to individual analytes the spectrum 

reaches from enzyme activities such as aspartate amino transferase (AST) or γ-glutamyl 

transferase (GGT), metabolites (e.g., non-esterified fatty acids (NEFA), ß-hydroxybutyrate 

(BHB), calcium, and glucose), metabolic hormones (e.g., insulin, leptin, adiponectin, 

growth hormone and insulin-like growth factor-1 (IGF-1)), and markers of oxidative status 

and inflammation. Besides these “classical” variables that are largely evaluated by 

univariate statistical models, the use of OMICs technologies for assessing the entire 

metabolome or the proteome is gaining increasing interest. 
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In the next paragraphs, some of the “classical variables” that were also assessed in 

the experimental approaches within this thesis will be introduced in more detail. The 

selection of the following variables has been made to evaluate the lipolytic and ketogenic 

status of the animals (NEFA, BHB), the relation between body condition and body 

condition loss in relation to the endocrine activity of the adipose tissue (leptin and 

adiponectin), and finally the inflammation status of the cows (haptoglobin). 

 

Non-esterified fatty acids (NEFA) 

The NEB is related to mobilization of body reserves, mainly fat. In consequence of 

increasing lipolysis, more NEFA are released into the bloodstream (Li et al., 2016) and 

then reach the liver. There NEFA can be a) oxidized for ATP production, b) deposited as 

triglycerides in the hepatocytes (which can lead to a fatty liver syndrome), c) exported 

from the liver via lipoproteins, or d) can be partially oxidized to ketone bodies (Reynolds 

et al., 2003). The evaluation of the NEFA concentrations is particularly important to 

evaluate dry cows’ management and nutrition in dairy herds. The concentration in serum 

can be used as an indicator of the energy balance of the animals: the greater the 

concentration of NEFA is, associated with a reduced oxidation, the more severe are the 

negative energy balance and the rate of lipolysis. 

 

ß-hydroxybutyrate (BHB) 

As highlighted in the previous paragraph, elevated concentrations of NEFA are 

associated with increased lipolysis. When the animals are not entirely able to deal with the 

increased level of NEFA, ketogenesis will increase, and may result in pathological 

increases in the circulating concentration of ketone bodies.  
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The BHB is considered as a ketone body (together with acetone and acetoacetate), 

albeit it is, strictly speaking, not a ketone body since it is lacking a keto group. Ketogenesis 

increases when the NEFA, released from adipose tissue, cannot be completely oxidized 

(Ingvartsen, 2006). This is particularly pronounced when lipolysis is excessive (Benedet et 

al., 2019). Elevated concentrations of ketone bodies in the blood are defined by common 

thresholds as hyperketonaemia (HYK), which can be subclinical (BHB ≥ 1.2 μmol/L) or 

clinical (BHB > 1.4 μmol/L) (Duffield et al., 2009). The HYK may negatively affect milk 

production, health, and immunity. The BHB is the most commonly used analyte to 

diagnose HYK as it is the most stable and most abundant ketone body in blood and also in 

milk (Duffield et al., 2009). Body condition is also a factor that is related to the 

concentration of BHB in blood. Gärtner et al. (2019) observed that over-conditioned cows 

ante partum (ap) and cows with an extensive mobilization had greater circulating BHB 

concentrations than cows at normal BCS, underlining that over-conditioned animals are 

less able to overcome the metabolic challenges of the transition period, thus entering a 

metabolic imbalance. 

Apart from metabolites such as NEFA and BHB, the assessment of the 

concentration of various metabolic hormones can also provide insights into the metabolic 

status. The adipokines, i.e. hormones produced by the adipose tissue that can act in an 

endocrine but also in an autocrine/paracrine manner, are of particular interest. Adipokines 

may also indicate the metabolic changes around calving; in dairy cows, the best studied 

adipokines are leptin and adiponectin. 

 

Leptin 

Leptin plays an important role in glucose and lipid metabolism, by stimulating 

lipolysis, inhibiting lipogenesis, and increasing fatty acid oxidation (Block et al., 2003; 
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Chilliard et al., 2005). Leptin is also involved in regulating metabolic functions connected 

with insulin sensitivity, and inflammation (Ahima and Lazar, 2008; Galic et al., 2010). The 

circulating leptin concentrations are positively related to body fat and increasing leptin 

concentrations have a negative feedback on feed intake (Morrison et al., 2001). 

The concentration of leptin in dairy cows varies depending on the stage of the 

lactation cycle. Specifically, leptinaemia is higher one month before calving and then 

decreases between the last 4 weeks before calving, reaching the lowest concentration 

around the first week post partum (pp), before increasing again during the subsequent 

weeks (Chilliard et al., 2005).  

It is also important to underline that the BCS of the animals is highly related to the 

leptin concentration, meaning that fatter animals ante-partum have greater concentrations 

of plasma leptin (Meikle et al., 2004). 

 

Adiponectin 

Amongst the adipokines, adiponectin is one of the most abundant (Chilliard et al., 

2005). In contrast to leptin, adiponectin tends to have lower concentrations in over-

conditioned individuals (Kadowaki and Yamauchi, 2005). Adiponectin inhibits lipolysis in 

the adipose tissue and decreases insulin resistance by increasing fatty acid oxidation 

(Yamauchi et al., 2001). 

As mentioned before, in dairy cows, adiponectin might be an indicator of the 

metabolic changes around calving. Overall, its concentration gradually decreased before 

parturition, reaching a nadir at calving, and then slowly increasing thereafter (Singh et al., 

2014; Sauerwein and Häußler, 2016). Thus, the reduced concentration of adiponectin 

around calving is necessary to promote peripheral insulin resistance, which leads to better 

nutrient partitioning to the mammary gland in which the uptake of glucose is insulin-

independent (Bell, 1995). 
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Haptoglobin (Hp) 

During the transition period, dairy cows normally display some signs of 

inflammatory response related to the metabolic switch between pregnancy and lactation, 

even without showing signs of infection (Sordillo et al., 2009). However, excessive 

inflammatory reactions require substantial amounts of energy, mainly glucose and can thus 

lead to metabolic diseases. Therefore sick animals should be identified early to ensure a 

fast treatment and thus increase welfare at the herd level (Barragan et al., 2018). For this 

reason, the use of biomarkers of inflammation, such as the acute phase protein haptoglobin, 

was suggested to evaluate the level of inflammation in dairy cows (Huzzey et al., 2009). 

Haptoglobin is an acute-phase protein and a non-specific marker of inflammation 

(Ceciliani et al., 2012) and can be useful to detect common transition disorders at an early 

stage (Huzzey and Overton, 2013). It is mainly released by hepatocytes during an 

inflammatory event in response to proinflammatory cytokines (Ametaj et al., 2005). The 

Hp concentration is higher with increasing severity of  the inflammatory responses. In 

dairy cows, Hp is used as a marker of inflammation that could be used in clinical 

diagnosis, by monitoring the health throughout the lactation period (Ceciliani et al., 2012). 

Particularly relevant is the association of a high concentration of Hp with an increased 

incidence of calving difficulties, retained placenta, metritis, and endometritis, as well as a 

decrease in milk production in dairy herds (Huzzey et al., 2009; Shin et al., 2018). Thus, 

screening dairy cows for Hp in research trials can be an important tool for assessing the 

health status. 

 

1.1.2 Strategies to improve health around calving 

 The majority of health problems in dairy cows happens during the periparturient 

period; these problems result from an unsuccessful metabolic adaptation to the changes 

from gestation to lactation (Ingvartsen, 2006) and comprise mainly fatty liver, ketosis, 
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rumen acidosis, and displaced abomasum. However, these problems are multifactorial 

diseases that are inter-related and are also associated with inadequate feeding and/or 

management. In the next paragraphs, an overview of the main strategies to reduce the 

incidence of these pathologies is provided and represented in Figure 2. 

 

Figure 2. Summary of the most common strategies to improve dairy cows’ health around calving  

 

Reduction of feed intake before calving 

 Over-conditioned cows have a greater risk of developing pathologies around 

calving (Grummer, 1993). As widely reported in the literature, there is a positive 

correlation between the ap body weight and the amount of mobilization, meaning that 

fatter animals would mobilize more body reserves, thus increasing the risk of metabolic 

diseases. The body condition of dairy cows should then be at its optimum, i.e., between 3.0 

and 3.25 (Roche et al., 2009) on a 1–5 scale (1: very thin, 5: very fat; (Edmonson et al., 

1989). A BCS in this range is considered as optimal for adapting to possible dietary 

inadequacies without having to excessively mobilize body reserves but also supporting 

milk production (Ingvartsen, 2006). For this reason, it is important to focus on providing 

adequate diets to achieve the targeted BCS at calving.  
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 However, feed intake restriction before calving might be beneficial, as it increased 

DMI after parturition as well as milk yield: when limiting feed intake in dairy cows during 

the prepartum period to 80% of the predicted requirements the peripartal NEFA curve was 

demonstrated to peak at lesser concentrations than in animals fed ad libitum (Overton and 

Waldron, 2004), and also to increase insulin sensitivity (Holtenius et al., 2003).  

 

Controlling the length of the dry period 

 The dry period is the time of roughly 6 to 8 weeks before calving in which cows are 

not milked, and during which cows have a resting period before giving birth necessary to 

maximize milk production in the subsequent lactation (Kok et al., 2017). Not milking the 

animals during this time permits the mammary gland to renew its epithelial cells at a faster 

rate compared to when it would be producing milk (Capuco et al., 1997), resulting in a 

higher number of renewed cells at calving, which can explain the subsequent peak of 

production after calving. 

 New management strategies that were proposed to reduce the NEB in early 

lactation include a shortening or even the omission of the dry period. Thereby the peak of 

milk yield can be reduced or postponed to later stages of lactation when voluntary feed 

intake has sufficiently increased to meet the metabolic requirements (Grummer and 

Rastani, 2004). By the overall reduction of NEB in the first weeks after calving, the 

incidence of metabolic disturbances may also be reduced (Kok et al., 2019).  

 

Dietary management 

 The metabolic changes that dairy cows undergo during the onset of lactation are 

also strictly connected to an increase in their nutrient requirements, which is mostly related 
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to the need of the animal to synthesize milk lactose, fat, and protein in the mammary gland 

(Bell, 1995): a cow producing 30 kg of milk at day 4 after calving, requires 2.7, 4.5, and 

2.0 fold greater amounts of glucose, fatty acid, and amino acids (AA) as compared to the 

ap situation. This increase is not followed by the same increase in DMI after calving, in 

contrast, the DMI in the first week pp can even be reduced to 30-50% of the values of late 

pregnancy (Roche et al., 2007a). For this reason, the cows need to mobilize body fat 

reserves, as well as protein and calcium, and also increase hepatic gluconeogenesis. This in 

turn may increase the risk of metabolic diseases as described in the previous paragraphs. 

Thus, apart from the management strategy related to the length of the dry period, feeding is 

of central importance for the metabolic adaptation of dairy cows during the transition 

period (Roche et al., 2013b). 

 A proper feeding strategy needs first of all to guarantee the integrity and the health 

of the rumen, which plays a key role in the dairy cows’ overall health, e.g. it modulates the  

host’s immune responses (Zebeli and Metzler-Zebeli, 2012). A smooth adaptation between 

the close-up and start of lactation is fundamental (Drackley and Cardoso, 2014), and a 

sufficient amount of physically effective NDF (peNDF) in the diet is needed, to prevent pH 

depression and thus acidosis. The increased need for energy requires more energy-dense 

rations but feeding more concentrates without allowing for adequate adaptation of the 

ruminal wall and the microbiota, can lead to the respective health disturbance and thus 

exacerbate the situation. Besides diet composition, the actual feeding management is also 

extremely important in this phase to protect rumen health (Zebeli et al., 2015). For 

example, giving too large meals in a very short amount of time could predispose dairy 

cows to rumen disorders because of the decrease of pH in the rumen itself (Krause and 

Oetzel, 2006). This is because of the reduced salivary secretion when cows ingest a large 

meal in a short time, which results in the decrease of the capacity of the rumen to adapt 

that results in the reduction of the rumen pH (Beauchemin et al., 2008). 
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Attention should be especially paid to avoid an excess of energy intake during the 

prepartum phase, as the cows should not increase their BCS, otherwise it could become a 

risk factor as described in the previous paragraphs. However, increasing the amount of 

concentrate in the close-up is important to allow the rumen epithelium to adapt and at the 

same time, it will prepare the microbiota for grain-rich diets, typical in the fresh period 

right after parturition (Drackley and Cardoso, 2014). 

Another important aspect to consider is the level of other nutrients, such as 

metabolizable protein, vitamins, and minerals (Drackley and Cardoso, 2014). The most 

relevant problem when analysing the mineral balance can be identified as hypocalcaemia. 

However, this is not in focus of this thesis and will thus not be addressed in detail.  

 During the transition period, lipid mobilization and the NEB were primarily 

investigated; however, protein mobilization is another fundamental aspect that should be 

considered (Bell et al., 2000). The dietary levels of protein in the prepartum diet influence 

the tissue protein accretion. For this reason, increasing the level of the metabolizable 

protein (MP) supply can be beneficial as it can increase the reserves in maternal tissues 

that can be used by the cows after calving (Cardoso et al., 2021). The MP is defined as the 

true protein which is absorbed by the intestine and that results from both the microbial 

protein and the proteins bypassing the rumen. Increasing the MP supply is very important 

as it can also increase milk production, as reported by Larsen et al. (2014). 

 

Use of additives to improve dietary management 

 Apart from feeding animals with a balanced diet, the use of feed additives can also 

support dairy cows in adapting to the changing nutrient demands which happen during the 

transition period. 

The dietary use of fatty acids is obvious when aiming at increasing the energy content of 

the diet, however, the portion of fat that can be included in a ruminant’s diet is limited, 
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otherwise it would compromise ruminal fermentation. Specific fatty acids, i.e., conjugated 

linoleic acids (CLA), provide the possibility of improving animal health around the 

transition period (Esposito et al., 2013). Feeding CLA in a form protected from rumen 

digestion reduced the milk fat (Castañeda-Gutiérrez et al., 2007) and thus decreased the 

energy content of the milk. Milk fat synthesis normally requires more than the 50% of the 

energy needed for  total milk production (Bauman et al., 2011). Thus, a reduction of milk 

fat synthesis can reduce the energy demand for milk production (De Veth et al., 2004) and 

may finally alleviate metabolic stress. Other papers corroborated this notion demonstrating 

that CLA can improve animal health and performance by reducing NEFA and BHB, and 

increasing the DMI (Baumgard et al., 2001; Bernal-Santos et al., 2003; Pappritz et al., 

2011). 

 Choline is another important supplement commonly used in dairy cows` nutrition. 

Choline is a trimethylated quaternary amine which is involved in the transport of fat from 

the liver, it provides methyl groups for transmethylation reactions, and is required in the 

synthesis of phosphatidylcholines in cell membranes (Hartwell et al., 2000; Zahra et al., 

2006). In dairy cows’ nutrition, it has been demonstrated that supplementing rumen-

protected choline can increase milk fat synthesis (Erdman et al., 1984) and can be used to 

treat cows affected by fatty liver after parturition (Cooke et al., 2007). 

 Carnitine is another important supplement which is essential for the mitochondrial 

β-oxidation of long-chain fatty acids (Carlson et al., 2007). A supplementation of L-

carnitine can improve the utilisation of NEFA, and it is associated as a limiting factor for 

fatty acid metabolism (LaCount et al., 1995). Supplementing the diet of dairy cows with L-

carnitine lead to a reduction of triglyceride accumulation in the liver (Carlson et al., 2006), 

and an increased level of BHB in plasma (Pirestani and Aghakhani, 2018), which can 

indicate a modulation in the lipid and energy metabolism (Meyer et al., 2020). 
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 The importance of the dietary level of protein has been mentioned before; however, 

more specifically, the supply with AA, not just crude protein, is  crucial for performance 

and health of dairy cows. The ways of achieving this supply also have environmental 

consequences: feeding high levels of protein will not necessarily improve the supply of AA 

since the AA composition, not just the amount of protein, determine the nutritional value. 

Protein of high biological quality is degraded in the rumen and the supply of essential AA 

is thus not ensured. Moreover, high quality protein is expensive, not only in terms of 

economic value but also when considering land use and therefore it should rather go to 

non-ruminants or directly to human consumption; when feeding low quality protein to 

ruminants, the AA supply is compromised and will result in increased nitrogen excretion 

but not accretion in animal products, thus increasing the environmental impact (Lee et al., 

2012). For these reasons, supplementation of individual AA is an effective alternative. 

Feeding dairy cows with a balanced AA supply was demonstrated to increase milk 

production (Gidlund et al., 2015). Insufficient supply of essential AA may interrupt protein 

synthesis (Kim and Lee, 2021). Amongst the essential AA in dairy cows, methionine (Met) 

has been widely studied, and is particularly relevant in this thesis. The animal trial from 

which data and samples were used, was designed to test the effects of this AA in terms of 

milk production, health, and body condition of dairy cows.  

 

Methionine (Met) 

Methionine is one of the essential AA, and it is formed by an asymmetrical 

molecule that can occur as L-methionine (laevus, left) or as D-methionine (dexter, right). 

The DL-Met is a mixture of the two forms, typically represented in equal amounts, 

producing a racemic mixture. It is non-polar, aliphatic, and contains sulphur (as does 

cysteine).  
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The supplementation of Met to dairy cows during the transition period is not a new 

feeding strategy. The first paper on feeding a rumen-protected Met was published by 

Broderick et al. (1970; cited by Schwab and Broderick, 2017) who fed Met to early- to 

mid-lactation Holstein cows. The rumen-protection is important to circumvent the 

degradation by the rumen microorganisms, otherwise, the half-life in the rumen would be 

approximately 2.4 h only (Emery, 1971). Today, there are different types of rumen-

protected Met with different core-protection approaches (i.e. enzyme resistant, pH-

sensitive, lipid film). Furthermore, another important aspect that must be considered while 

supplementing AA is the ratio between Lysine and Met. It is known that maintaining a 

ratio of Lys to Met of 3:1 will maximise the metabolic availability and thus help meeting 

the productive requirements of dairy cows (McGuffey, 2017). 

Methionine is typically considered as the first-limiting AA for lactating cows 

(NRC, 2001) and among the multiple biological functions besides milk protein synthesis 

for which Met availability is important, the most relevant functions, especially during the 

transition period, include lipoprotein synthesis in the liver, synthesis of antioxidant 

proteins, and synthesis of immune-related proteins (Zhou et al., 2016b; Batistel et al., 

2017), as summarised in Figure 3. Moreover, Met plays a critical role in the synthesis of 

carnitine, which is involved in lipid metabolism (Chandler and White, 2017). 

More general, the effects of the dietary Met supplementation in dairy cows can be 

seen at different levels: in terms of milk yield, in terms of health and fertility, and finally at 

the metabolic level, where it plays a crucial role as methyl-donor.  
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Figure 3. Main outcome of Met supplementation and of Met restriction on metabolism, oxidative stress, and diseases in 
mammals (from Martínez et al. 2017) 

 

Effect of methionine on milk yield in dairy cows  

The potential effects of Met on milk yield were also investigated, and are also 

summarized on Table 1. Batistel et al., (2017) observed that supplementing Met at 0.09 and 

0.10% (~20 g/d) of the DM in the ap and pp periods, respectively (to ensure a ratio of Lys 

to Met in metabolizable protein close to 2.8:1) with an ethyl-cellulose rumen-protected 

Met (RPM), Mepron (Evonik Nutrition and Care GmbH, Hanau-Wolfgang, Germany), to 

multiparous cows (n = 30) increased their DMI (+1.65 kg/d), milk yield (+4.1 kg/d), fat 

yield (+0.175 kg/d), milk protein yield (+0.2 kg/d), milk lactose yield (+0.25 kg/d), 3.5% 

FCM (+4.3 kg/d) and ECM (+4.4 kg/d) as compared to control cows not receiving the Met 

supplement (n = 30). These positive results on milk production were likely driven by the 

increased DMI and the improved liver function. These results were partially confirmed by 

Osorio et al. (2013) who supplemented 15 multiparous cows with MetaSmart (MS) (0.19% 

of DM; ~25 g/d), another coated Methionine composed of small beads of Met with a 

specific pH-sensitive coating that protects the AA during its passage through the animal’s 

rumen (Adisseo Inc., Antony, France). Similarly, they also supplemented 18 multiparous 
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cows (n = 24 in the control group) with Smartamine MTM (SM) (0.07% of DMI; ~ 8 g/d), 

an ester of the analog Met designed to optimize AA balancing in dairy cow rations 

(Adisseo Inc.). They found, when Lys is adequate to achieve an approximately 2.9:1 

Lys:Met ratio, an improvement in milk production (+2.4 kg/d for MS and +4.3 kg/d for 

SM) which was related to an increased in voluntary DMI. This could be explained by the 

Met characteristic of being a lipotropic agent which can help to clear lipid accumulation 

from the liver by stimulating, at least in part, hepatic Very Low Density Lipoprotein 

(VLDL) formation, and thus supporting lipid export into the circulation and providing 

energy to the organism (Osorio et al., 2013).  

In contrast, Chen et al. (2011) tested 70 lactating cows (50 multiparous and 20 

primiparous) and did not find any effect on DMI, milk yield, or 3.5% fat corrected milk 

(FCM) in animals receiving RPM (Smartamine MTM, Adisseo, Alpharetta, GA, USA) at 

2% of DMI. However, the authors found differences in ECM yield, which was higher in 

Met supplemented cows (+3.1 kg/d). Moreover, Piepenbrink et al. (2004) tested 48 dairy 

cows, feeding 16 animals with 0.09% or 0.18% of DM of a Met analog (DL-2-hydroxy-4-

methylthiobutanoic acid), but did not detect increases in milk yield or fat yields. Similarly, 

Preynat et al. (2009) fed 24 cows with 9 and 18 g of Mepron-85/d (Degussa AG, 6 Hanau, 

Germany) pre- and post-calving, respectively, and did not find any effect on milk yield, fat 

yields, or protein yields. 

These studies, selected as the most representative of the works already published, 

are partly contradictory. However, the reported results were likely not unequivocal because 

different types of Met were used, and the conditions and the experimental designs were not 

the same in the various studies. 
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Table 1. Summary of the effect of a Methionine supplementation on milk yields, health, and reproduction according to the 
most representative works already published. 

 

Effects of methionine on health and fertility in dairy cows 

As mentioned above, during the transition period, the immunometabolic status of 

dairy cows is altered due to changes in liver function, inflammation, and oxidative stress. 

Feeding management may improve the physiological state and the immune status of the 

animals (Zhou et al., 2016). One strategy could be supplementing Met directly, or its 

derivate metabolites (e.g. glutathione, taurine, polyamines), which are well-known 

immune-nutrients in non-ruminants, that may support the immune functions by increasing 

Reference  Type of supplementation Observed effects  

(compared to a control group of animals) 

   Effects on milk yields   

Batistel et al. 2017 ~20 g/d of Meprom1 both ap and 

pp 

DMI (+1.65 kg/d), milk yield (+4.1 kg/d), fat 

yield (+0.175 kg/d), milk protein yield (+0.2 

kg/d), milk lactose yield (+0.25 kg/d), 3.5% FCM 

(+4.3 kg/d) and ECM (+4.4 kg/d) 

 

Osorio et al. 2013 ~25 g/d of MetaSmart2 both ap 

and pp 

Milk yield (+2.4 kg/d), increased voluntary DMI 

Osorio et al. 2013 ~8 g/d of Smartamine3 both ap 

and pp 

Milk yield (+4.3 kg/d),  increased voluntary DMI 

Chen et al. 2011 2 % of DM of Smartamine both 

ap and pp 

No differences on DMI, milk yield, or 3.5% fat 

corrected milk 

Piepenbrick et al. 2004 0.09% or 0.18% of DM of a Met 

analog (DL-2-hydroxy-4-

methylthiobutanoic acid)  both 

ap and pp 

No differences on milk or fat yields 

Preynat et al. 2009 9 and 18 g of Mepron-85/d both 

ap and pp 

No differences on milk, fat, or protein yields 

  Effects on health   

Zhou et al. 2016 0.08% of DM of Smartamine 

both ap and pp 

Better immune response: greater phagocytosis and 

increased oxidative burst 

Greater levels of albumin 

Greater levels of interleuikin-6 

Vailati-Riboni et al. 

2017 

0.08% of DM of Smartamine 

both ap and pp 

Reduced pro-inflammatory hyper- response  

  Effects on fertility   

Ardalan and Rezayazdi 

2020 

18 g/d of Smartamine both ap 

and pp 

Reduced calving to conception interval (-0.8 

services) and days open (-26.8 days) 

Suess et al. 2019 27 g/d of Meprom pp No differences in reproductive performances 
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their activity (Vailati-Riboni et al., 2017). The effect of Met on health and fertility in 

ruminants was tested only recently, but the idea is that Met supplementation will exert 

beneficial effects on dairy cows’ innate immune system. The work of Zhou et al. (2016) 

was supported by the finding that supplementing Met, Smartamine MTM (Adisseo NA, 

Alpharetta, GA, USA) at a rate of 0.08% of DM, 21 cows (81 in total) resulted in a better 

immune response in terms of greater phagocytosis and oxidative burst capabilities upon 

pathogen challenges. Met-supplemented cows had greater blood albumin concentrations 

compared with cows fed without Met supplemented, which might indicate that Met-

supplemented cows were in better health since albumin is considered as a negative acute-

phase protein (Eckersall, 1995). Surprisingly, interleukin-6, which acts mostly as a pro-

inflammatory cytokine, was also higher in Met-supplemented cows, which led also to a 

greater blood neutrophil oxidative burst. These results were confirmed also by Vailati-

Riboni et al. (2017), who found that a Met supplementation, Smartamine MTM (Adisseo 

NA, Alpharetta, GA, USA) at a rate of 0.08% of DM, to 30 cows (60 in total) was able to 

lessen the pro-inflammatory hyper-response which cows undergo around parturition. 

Reproductive performance is another major aspect that must be taken into 

consideration for a good management. Reproduction is highly influenced by nutrition and 

management during the transition period. Few works have studied the effect of Met on 

cows’ fertility, but Ardalan and Rezayazdi (2010) found that feeding 18 g/d of rumen-

protected methionine (RPM), Smartamine MTM (Adisseo, Antony, France) to 10 cows 

(n=40 in total: n=10 received rumen-protected choline, n=10 both Met and choline, and 

n=10 were the control group) from 4 weeks ap onwards reduced services per conception (-

0.8 services) and days open of lactating dairy cows (-26.8 d) but did not have any effect on 

days to first oestrus and the number of pregnant cows. In general, this might be explained 

by the longer period of a negative protein balance in higher-producing cows, putting them 

at greater risk of reproductive problems, because of the tight connection between protein 
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metabolism and fertility (Ardalan and Rezayazdi, 2010). Therefore, feeding RPM could 

help the cows’ metabolism to adapt to the challenges in the transition period and thus lead 

to improved fertility. On the other side, Süss et al. (2019) recently reported from their 

study with 1,863 cows in total, that supplementation half of these cows with approximately 

27 g/d rumen-protected Met (Mepron®, Evonik Nutrition & Care GmbH, Hanau, 

Germany) did not lead to any differences between the 2 groups with regard to reproductive 

performance, evaluated as the percentage of dairy cows which were successfully 

inseminated, either at the first insemination, either in the following ones.  The study of 

Süss et al. (2019) is also the basis of the present thesis. The contradictory results might be 

in general explained by different farm management practices, or by the different time and 

duration of the Met supplementation, which could influence the effectiveness of the 

treatment itself. 

 

1.2 Evaluation of multivariate data by use of machine learning 

For the planned use of OMICs analyses in the large herd trial mentioned above 

(Süss et al. 2019), the number of samples should be reduced for reasons of costs, and also 

for selecting samples from animals that were most representative for the status to be tested 

(i.e., Met supplementation or not, healthy or not, divergent in body condition). In view of 

the great number of animals and samples, such a selection only “by eye” is certainly not 

state of the art or acceptably objective. Machine learning is a field of computer science in 

which the machine is trained to complete some specific tasks. It has developed from the 

area of research of computational learning and pattern recognition in the area of artificial 

intelligence (Dhall et al., 2020). Training is thus on some data sets, and then, various 

algorithms are applied so that predictions can be made to learn more from the given data 

sets (Das et al., 2015), by thus establishing patterns and relevant relationships between 

parameters. 
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Within the machine learning analyses, there are two main basic approaches: supervised and 

unsupervised learning. The main difference between the two is that one uses labeled data 

to help predict outcomes (supervised), whilst the other does not (unsupervised), as 

summarised in Table 2. 

Table 2. Comparison between supervised and unsupervised learning (from Dhall et al., 2020) 

Parameters Supervised learning Unsupervised learning 

Definition Supervised learning is defined as that type of 

machine learning in which there is input and output 

variables and an algorithm helps to understand the 

mapping function from input to output 

Unsupervised learning is a type of 

machine learning that includes only 

input and no output variables 

Type of data The data in supervised learning is labelled, and it 

predicts the output from the given input data 

The data in unsupervised learning 

is unlabelled, and prediction is 

made by inheriting structure from 

the given input data 

Accuracy Supervised learning provides more reliable and 

accurate results 

Unsupervised learning produces 

average results as compared to the 

supervised learning 

Complexity The computational complexity in the case of 

supervised learning is too complex 

The computational complexity in 

the case of unsupervised learning is 

less 

 

1.2.1 Supervised learning 

 Supervised algorithms need to use labelled data, which are split into two different 

parts: a testing data set and a training data set (Kotsiantis et al., 2006). Moreover, the 

trained data set has some output that has to be predicted, and thus the task is to make these 
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algorithms learn from similar patterns obtained from the various test on the training data 

set to then apply them to the testing data set to predict the output results.  

In general, supervised learning can be divided into two major types when analysing data: 

- Classification: known also as logistic regression, it is used to classify between two 

or more classes (Dey, 2016). 

- Regression: it is used to study the relationship between dependent and independent 

variables (Dhall et al., 2020). 

 

1.2.2 Unsupervised learning 

 Unsupervised algorithms do not require labelled data as the algorithm is based 

solely on the input data. Thus, the training data set is used both for creating and training 

the model itself; on the other side, the testing data set is used for helping the prediction of 

the correct values (Dey, 2016). The final prediction is thus based on the outcome of the 

previous test, and it learns from the previously used features. 

In general, unsupervised learning can be divided into two major types when analysing data: 

- Clustering: it is used for grouping unlabelled data based on their similarities or 

differences. The most common algorithm is the k-means, as it creates k-distinct 

groups (or clusters) of similar data (Dey, 2016). 

- Dimensionality reduction: it is used when the number of features (or dimensions) in 

the dataset is too big, and thus, needs to be reduced. For example, the Principal 

Component Analysis (PCA) is an algorithm that converts two-dimensional data into 

one-dimensional data. These techniques are used to make complex data more 

accessible and fast to analyse (Dey, 2016). 
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1.2.3 Using machine learning in animal sciences 

 In the field of animal science, especially when working on big datasets, such as the 

one derived from complex system biology analyses, these machine learning approaches are 

starting to be widely used as they can provide actionable knowledge when working on 

large data sets while aiming to improve metabolic profiling research (Ghaffari et al., 2019). 

Also when studying animal behaviour, machine learning approaches can solve tasks that 

would be otherwise time-consuming or too complex to analyse, such as classifying species, 

individuals, or even behaviours in complex data sets (Valletta et al., 2017). 

Machine learning is a powerful tool as it can give a hypothesis-free approach which 

can be needed in complex data sets in which the relationship of the measured variables is 

unknown, and thus, where many classical statistical models would fail to detect any 

differences; a machine learning approach might open new ideas and hypotheses to describe 

a data set variation (Valletta et al., 2017). As briefly explained in the previous sections, 

many are the available algorithms that can be used, ranging from regression, classification, 

to clustering and dimensionality reduction, just to mention the most common ones. With 

the increased number of data collected, and the increase in power of computers, these 

methods are of rapidly increasing interest, especially with the development of easy-to-use 

packages (Valletta et al., 2017). 

 

1.3 Metabolomics 

 Metabolomics is the comprehensive study of all the metabolites in an organism 

which are influenced by genetic and environmental factors (Singh et al., 2019). 

Metabolites are defined as small molecules (whose mass ranges from 50 to 1500 Daltons 

(Da), such as sugars, lipids, AA, and fatty acids. Thus, they represent all the molecules that 

have disparate physical properties and which represent the intermediate or final products of 

complex biological interactions (Clish, 2015). 
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Hence, metabolomics is the study that allows a complete and very precise description of 

the metabolome, defined as the complete set of metabolites found within a cell, tissue, or 

biological sample in a specific time point which are necessary for the growth, maintenance 

or normal function in a specific physiological state (Oliver et al., 1998; Harrigan and 

Goodacre, 2003; Singh et al., 2019). 

Metabolomics can then be divided into two major approaches: targeted and 

untargeted (Roberts et al., 2012). Each of the methods have their own advantages and 

disadvantages (Table 3), which will be discussed in the next paragraphs. 

 

Table 3. Untargeted versus Targeted Metabolomics Studies. Adapted from Schrimpe-Rutledge et al. (2016)  

Metabolomics studies 

Targeted Methods Untargeted Methods 

For validation/quantification For discovery 

Hypothesis-driven Hypothesis-generating 

Subset analyses Broad analyses 

Correlated to reference standards Correlated to databases and/or libraries 

Identification known (quantitative analyses) Identification not known (qualitative analyses) 

Can permit an absolute quantification Relative quantification 

 

 

1.3.1 Targeted metabolomics 

 Targeted (or validation-based) metabolomics uses multiple-reaction monitoring 

(MRM) mode in order to determine a predefined set of metabolites (Zhou et al., 2016), 

which in turn permits obtaining both high sensitivity and selectivity. Thereby targets of 

interest can be identified by excluding background signals of the matrix (Cao et al., 2020). 
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These advantages qualify targeted metabolomics as the gold standard for the quantification 

of metabolites (Zhou et al., 2016). This method is thus ideal when trying to measure well-

defined groups of metabolites and to confirm a hypothesis (Schrimpe-Rutledge et al., 

2016), i.e., quantitative comparison of two groups from which you should expect metabolic 

differences at a specific time-points. 

 

1.3.2 Untargeted metabolomics 

 In contrast to the previous method, untargeted (or discovery-based) metabolomics 

focuses on the overall detection associated with a relative quantitation of the metabolome 

(Schrimpe-Rutledge et al., 2016). 

Due to its comprehensive nature, this method is usually coupled with chemometric 

techniques, such as multivariate analyses, in order to reduce the large datasets that are 

generated into a smaller set of manageable signals (Roberts et al., 2012). It is important to 

highlight that these signals then need to be identified using analytical chemistry, as the 

method itself does not identify the individual metabolites during the analysis itself. For this 

reason, untargeted analyses are mostly used when novel target are to be discovered, since 

the targeted method is restricted by definition to a previously selected asset of targets 

(Roberts et al., 2012). 

 

1.3.3 Methods of analyses 

 From an analytical perspective, there also are several methods to pursue 

metabolomics studies. Presently, the most popular methods are gas chromatography–mass 

spectrometry (GC/MS), liquid chromatography–mass spectrometry (LC/MS), and capillary 

electrophoresis–mass spectrometry (CE/MS) (Singh et al., 2019). Within the LC/MS 

techniques, two of the most relevant are the High Performance Liquid Chromatography 

(HPLC), ultra-high-performance liquid chromatography–mass spectrometry (UHPLC) 
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(Scalbert et al., 2009; Singh et al., 2019), but will not be further discussed as they are not 

in focus of this thesis. 

Another key technique to perform metabolomics analysis is represented by the 

nuclear magnetic resonance (NMR), one of the most widely used technique of 

metabolomics which provides direct information on the chemical structure. It is a non-

destructive, relatively fast, and highly reproducible high throughput analytical platform 

that requires a reduced sample preparation (Sotelo and Slupsky, 2013). 

In order to select the appropriate methodology, dynamic range, accuracy, precision, 

selectivity, coverage, detection limit, and price, should be considered. 

As an example, the classical workflow for processing metabolomics (Figure 4) data 

sets would include:  

- Sample collection and preparation; 

- Data acquisition using one of the methods highlighted above (e.g., NMR, LC/MS, 

GC/MS); 

- Spectral processing: which includes all the data processing relative to noise 

filtering, peak alignment, normalization, etc.; 

- Data analysis (via supervised or unsupervised analysis) and metabolites 

identification; 

- Biological interpretation (e.g., pathway analysis) 

 

 

Figure 4. Example of a typical workflows for untargeted metabolomics analyses 
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1.3.4 Application of metabolomics in animal science 

 Metabolomics analysis, by using advanced analytical chemistry techniques, permits 

measurement of large numbers of metabolites quickly and comprehensively in the targeted 

individual (Goldansaz et al., 2017), permitting many scientists to obtain a more complete 

picture of system-wide metabolism and biology. Metabolomics thus became an 

increasingly popular “omics” approach which assists in an efficient phenotypic 

characterization of microorganisms, plants, but also humans and animals (Goldansaz et al., 

2017). Especially in animal science, metabolomics can now be used in various types of 

trials, ranging from nutritional, disease related, to toxicological and/or environmental, with 

the further possibility of comparing them at different time points (Zhang et al., 2012). This 

permits scientists to have a comprehensive view of animals’ metabolism, which can 

provide insights into how to improve health, nutrition, production, reproduction, but also to 

study the final products delivered from livestock, such as meat, milk, as well as products 

therefrom (Singh et al., 2019).  

 

1.4 Proteomics 

Proteomics is defined as the study which aims at the characterization of the 

complete set of proteins present in a cell, organ, or organism in a specific time point 

(Wilkins et al., 1996). Proteomics approaches can be used to address a variety of scientific 

questions, such as (a) proteome profiling, (b) localization and identification of post-

translation modifications, (c) comparison of proteins expression in different individuals, 

and (d) analyses of protein-protein interaction (Chandramouli and Qian, 2009). Proteomics 

thus aims to study the proteome, defined for the first time by (Wasinger et al., 1995) as the 

“total protein complement of a genome.” The latter paper determined a transition between 

a one-protein-at-a-time analysis into a more global approach, in which proteins were 

starting to be studied in a large scale (Wilkins, 2009). 
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In the last years, proteomics (but in general all the “omics” approaches) has developed 

rapidly, also attributed to the improvement in technology and bioinformatics tools 

(Ceciliani et al., 2018a). 

 However, before giving an overview on the different types of analyses, another 

problem should be addressed: the concept of high- and low-abundance proteins. In 

mammals for example, the top ten most abundant proteins represent approximately 90% of 

the whole plasma proteome, while the other 10% is present in a very wide dynamic range 

(Liumbruno et al., 2010). Similarly, in cows’ milk, the most abundant proteins are 

represented by the caseins which represent roughly 78% of the total protein concentration, 

with another 17% made up of whey proteins (Bendixen et al., 2011; Roncada et al., 2012). 

This can be problematic because some methods are able to detect and identify small 

numbers of proteins but fail in detecting and quantifying proteins which are less abundant 

(Millioni et al., 2011). For this reason, the targeted depletion of the most abundant proteins 

is often used to increase both the depth of proteome identification and to increase the 

sensitivity of targeted analyses for specific proteins (Tu et al., 2011). 

Proteomics can be divided in a great variety of methods (Chandramouli and Qian, 

2009), as shown in Table 4. Each of the methods has its own advantages and 

disadvantages. 

Table 4. Common proteomics technologies and their applications, strengths and limitations (adapted from Chandramouli 
and Qian, 2007) 

Technology Applications Strengths Limitations 

2DE Protein separation, 

quantitative profiling 

Relative 

quantification, 

sensitive to protein 

processing 

Poor separation of acidic, basic, 

hydrophobic and low abundant 

proteins, large amount of 

sample required 

DIGE Protein separation, 

quantitative profiling 

Relative 

quantification  

Same as 2DE approaches, and 

difficulties in labelling proteins 

without lysine, requires special 

equipment 
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Protein array Quantitates specific 

proteins for 

diagnostics 

(biomarkers or 

antibody 

detection) and 

discovery research 

High-throughput, 

low sample 

consumption, high 

sensitivity 

Small sample amounts: limited 

replication, targeted approach 

 

 

Mass Spectrometry Primary tool for 

protein identification 

and characterization 

Functional analyses, 

data mining and 

knowledge discovery 

No individual method to 

identify all the proteins, 

sensitivity is a problem 

Bioinformatics Analyses of 

qualitative and 

quantitative data 

Functional analyses, 

data mining 

No integrated pipeline for 

processing data 

2DE: Two-dimensional electrophoresis 

DIGE: Difference Gel Electrophoresis 

 

1.4.1 Methods of analysis 

 In 1970, Laemmli (1970) firstly described a denaturing polyacrylamide gel system 

utilizing sodium dodecyl sulfate (SDS) to separate protein molecules based on size, which 

is the base of the One-dimensional SDS-Polyacrylamide Gel Electrophoresis (1D SDS-

PAGE). 

The first and earliest method for proteomics analyses is the two-dimensional 

electrophoresis (2DE), developed even prior to the definition of the term proteomics 

(Klose, 1975). This technique was the only one that could be routinely applied for parallel 

quantitative expression profiling of complex proteins (Görg et al., 2004). The 2DE requires 

the separation of complex proteins mixtures by molecular charge in the first dimension and 

by mass in the second dimension (Chandramouli and Qian, 2009). It is widely used for 

qualitative experiments, as its reproducibility is limited, and its inability to detect low 

abundance proteins is a drawback (Chandramouli and Qian, 2009).  

 A variation of the previous method is the Fluorescence 2D Difference Gel 

Electrophoresis (2D-DIGE), in which proteins are labelled with the fluorophores Cy2, Cy3 

and Cy5 prior to the 2DE procedure (Ünlü et al., 1997). CyDyes are cyanine dyes that 
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carry an N-hydroxysuccinimidyl ester reactive group that binds the e-amino group of 

lysine residues in proteins. The limits of this method are the inability to label protein 

without lysine and the requirement for special equipment to pursue the analyses 

(Chandramouli and Qian, 2009). Nevertheless, the DIGE technique has higher sensitivity 

than the 2DE and is also more reproducible when comparing samples under similar 

electrophoretic conditions (Van Den Bergh and Arckens, 2005). 

 Protein arrays, also known as protein chips, are formed by immobilizing 

individually-purified proteins on a microscopic slide-based surface (Huang and Zhu, 

2017). Depending on their applications, they can be classified into three categories: 

analytical, functional, and revere-phase protein arrays (Sutandy et al., 2013) – which will 

not be discussed as not part of the present thesis. Recently, protein arrays have seen a great 

development due to the development of new high-throughput methodologies, making these 

methods highly sensitive and capable of measuring hundreds of known proteins in different 

biological matrices, and enabling this methodology to be an important tool for quantitative 

proteomics studies, diagnostic discovery, and biomarkers development (Goshima et al., 

2008; Chandramouli and Qian, 2009). The advantage of this method is the possibility to 

have a global overview of the proteome and to simultaneously screen for protein-protein 

interactions as well as post-translation modifications (Nijdam et al., 2009). However, the 

challenges of applying this method derive from the difficulty in creating a comprehensive 

expressions library, the management of the high-throughput large quantity of data, and the 

adaptation of DNA microarray to accommodate protein substrates (Phizicky et al., 2003). 

 Similarly to metabolomics analyses in which the aim is to identify the metabolites, 

the mass spectrometer is the primary tool when aiming at the identification of individual 

proteins (Chandramouli and Qian, 2009). Mass spectrometers consist of an ion source, a 

mass analyser, and an ion detection system. A complete analysis of proteins by mass 

spectrometers has three major steps: protein ionization and generation of gas-phase ions, 
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separation of ions according to their mass to charge ratio, and detection of ions (Mann et 

al., 2001). There are multiple methodologies to pursue a mass spectrometry study, as 

comprehensively reviewed by (Han et al., 2008), however, this is not in focus of this thesis 

and will thus not be addressed in detail. 

 The final step of a proteomics analyses is the bioinformatics part, in which the data 

collected from the analyses need to be evaluated. The major problem when analysing the  

results is that proteomics analyses can generate a huge amount of data, and there are 

different pipelines to evaluate these data, and not all of them are capable of generating real 

biological insights (Chandramouli and Qian, 2009). 

As an example, the classical workflow for processing proteomics (Figure 5) data 

sets would include:  

- Sample collection and protein extraction; 

- Data acquisition (MS-based proteomics); 

- Analysis: data dependent or independent acquisition; 

- Data processing (single-shot-proteins, number of peptide per protein, features 

analysis); 

- Statistical analysis (supervised or unsupervised analysis) 

- Biological interpretation (e.g., pathway analysis) 

 

Figure 5. Example of a typical workflows for untargeted proteomics analyses 
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1.4.2 Applications of proteomics in animal science 

 As previously addressed in the metabolomics section, “omics” approaches are now 

used to obtain a more complete picture of system-wide metabolism and biology. 

Proteomics can thus be used to obtain a snapshot on the condition of cells, tissues, or body 

fluids in a specific time point (Ceciliani et al., 2018a). For this reason, proteomics analyses 

in animal sciences have recently increased, even though they still represent a minority in 

the proteomics world (Bilić et al., 2018). Proteomics is currently used in a variety of 

studies, aiming at researching energy metabolism regulation, parasite tolerance, disease 

response, or feed efficiency (Soares et al., 2012; Bilić et al., 2018). As proteins are 

involved in many metabolic processes of an individual, studying the proteome is becoming 

fundamental in order to fully understand the biochemical and physiological aspects of farm 

animal biology and its relation to health and productivity (Soares et al., 2012). 

In future research, as it was outlined in the work of Chait (2011), there is still the need to 

improve sample handling and sensitivity of detection to allow the analysis of smaller 

samples, and at the same time develop even further methodologies for measuring low 

abundance proteins. Moreover, as reported by Almeida et al. (2021), proteomics analyses 

may play a pivotal role in animal science research focussed on environment and 

sustainability, being the perfect tool to complement the traditional research areas (nutrition, 

genetics, physiology, and others). 
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Chapter 2 – Objectives 

The body condition of dairy cows is known to be related with animal health and 

performance. Cows entering lactation in an over-conditioned status are more prone to lose 

body reserves and thus susceptible to metabolic distress which may result in the 

development of various health disturbances and diseases. So far, most of the studies 

investigating the relation between body fat and metabolic adaptations during the transition 

period have classified cows by using arbitrarily defined thresholds for BCS or BFT. 

However, this is not necessarily the  most appropriate and definitive way of grouping and 

is also inefficient when studying large data sets.  

To further study the variation during the transition period of dairy cows, our objectives 

were: 

(1) To select by means of machine learning (to reduce at the minimum a human selection 

which could results biased and unprecise) a representative number of dairy cows, from 

which samples comprising the most informational value based on performance, health and 

BFT data could be derived, 

(2) To characterize the inter-individual variation in the relationship between pre-calving 

BFT and subsequent BFT loss during early lactation in a large dairy herd, in terms of milk 

production, health condition, and circulating concentration of metabolites (NEFA, BHB), 

metabolic hormones (leptin and adiponectin), and an inflammatory marker (haptoglobin) 

both ante and post partum; all these variables are important during the transition period as 

they can be indicator of the metabolic status of dairy cows around calving, but also, 

(3) To apply metabolomics and proteomics analyses to have a complete overview on the 

metabolome and proteome. Specifically, subgroups of animals (selected as the most 

representative ones) were identified and tested to determine whether cows differing in 

body condition ap and/or with a different mobilization around calving would differ when 
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analysing the serum proteome and metabolome around 30 DIM, respectively. Moreover, a 

metabolomics analysis was carried out to study whether the effect of a Methionine 

supplementation when considering animals with different body condition and/or with a 

different clinical status (i.e., affected or not by endometritis).  

We hypothesized that over-conditioned and/or high mobilizing dairy cows around 

calving will be different in their subsequent metabolic changes from normal and under-

conditioned cows when looking at classical variables, and in addition we aimed to evaluate 

the differences of dairy cows’ metabolome and proteome during their pp depending on 

their BC loss, diet, and BFT ap, respectively.   
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3.1 Abstract  

The objectives of this study were (1) to characterize the interindividual variation in 

the relationship between ap backfat thickness (BFT) and subsequent BFT loss during early 

lactation in a large dairy herd using cluster analysis, (2) to compare the serum 

concentrations of metabolites (non-esterified fatty acids, ß-hydroxybutyrate), metabolic 

hormones (leptin and adiponectin), and an inflammatory marker (haptoglobin) among the 

respective clusters, and (3) to compare lactation performance and uterine health status in 

the different clusters. An additional objective was (4) to investigate differences in the 

serum variables mentioned above and in milk yield of over-conditioned (OC) cows that 

differed in the extent of BFT loss. Using data from a large study of 1,709 multiparous 

Holstein cows, we first selected those animals from which serum samples and BFT results 

(mm) were available at d 25 (± 10) ap and d 30 (± 3 d) pp. The remaining 713 cows (parity 

of 2 to 7) were then subjected to cluster analysis: different approaches based on BFT of the 

cows were performed. K-means (unsupervised machine learning algorithm) clustering 

based on BFT-ap alone identified five clusters: lean (5-8 mm BFT, n = 50), normal (9 - 12 

mm, n = 206), slightly fat (SF; 13 - 16 mm, n = 203), just fat (JF; 16 - 22 mm, n = 193), 

and very fat (VF; 23 - 43 mm, n = 61). Clustering by difference between BFT-ap and BFT 

pp (ΔBFT) also revealed five clusters: extreme loss (17 - 23 mm ΔBFT, n = 16), moderate 

loss (9 - 15 mm, n = 119), little loss (4 - 8 mm, n = 326), no loss (0 - 3 mm, n = 203), and 

gain (-8 to -1 mm, n = 51). Based on the blood variables measured, our results confirm that 

cows with greater BFT losses had higher lipolysis and ketogenesis than cows with less 

BFT loss. The serum variables of cows that gained BFT did not differ from normal cows. 

Milk yield was affected by the BFT-ap cluster, but not by the ΔBFT cluster. Cows 

categorized as VF had lesser milk yield than other clusters. We further compared the OC 

cows that had little or no BFT loss (i.e., 2% of VF, 12% of JF, and 31% of SF, OC-no loss, 

n = 85) with the OC cows that lost BFT (OC-loss, n = 135). Both NEFA and BHB pp 
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concentrations and milk yield were greater in OC-loss cows compared with the OC-no-loss 

cows. The serum concentration of leptin ap was greater in OC-loss than in the OC-no-loss 

cows. Overall, OC cows lost more BFT than normal or lean cows. However, those OC 

cows with a smaller loss of BFT produced less milk than OC cows with greater losses. 

Key words: dairy cows, cluster analysis, transition period, body condition loss 
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3.2 Introduction  

Dairy cows face physiological challenges during the transition from late pregnancy 

to lactation (Drackley, 1999). In early lactation, dairy cows are typically in a state of 

negative energy balance (NEB) because feed intake is insufficient to meet the increased 

nutrient requirements for milk synthesis (Drackley, 1999). Although metabolizing body fat 

for milk production is very important, it is known that cows with a high body condition 

score (BCS) around calving are at greater risk of developing metabolic disorders, mainly 

ketosis, and impaired fertility (Bernabucci et al., 2005; Roche et al., 2009; Rathbun et al., 

2017). In addition to the BCS around calving, the magnitude of BCS loss during the 

transition from pregnancy to lactation may be even more important for metabolic health 

than BCS alone (Rathbun et al., 2017). A loss of one unit of BCS on a 5-point-scale double 

the risk of ketosis (Duffield et al., 1998; Rathbun et al., 2017). Excessive loss of body 

energy reserves has also been associated with impaired immune function, increasing the 

risk of infectious diseases such as endometritis (Esposito et al., 2014). For milk yield, 

reports in the literature are conflicting, and as comprehensively reviewed by (Roche et al., 

2009), there is no linear relationship between BCS at calving and milk yield. Body 

condition around calving is considered as the main determinant of BCS loss, i.e., the 

greater BCS is at calving, the more body reserves are mobilized pp, increasing the risk of 

metabolic disorders (Roche et al., 2007b). Therefore, it is generally recommended to avoid 

over-conditioning before calving and to protect against excessive losses during the 

transition period.  

In addition to BCS, body fat reserves can also be assessed by ultrasonic 

measurements of the backfat thickness (BFT; Schröder and Staufenbiel, 2006). The 

accumulation of body fat reserves and the extent to which these reserves are mobilized 

varies among individuals. The reasons for this variation are largely unknown. Using 

plasma proteomics, it has been shown that over-conditioning around calving is associated 
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with changes in signalling pathways related to the acute inflammatory response and 

regulation of complement and coagulation cascades (Ghaffari et al., 2020b). Furthermore, 

using targeted metabolomics, divergent metabotypes have been identified even within 

well-characterized phenotypes with high BCS and BFT at calving and severe subsequent 

BCS and BFT loss (Ghaffari et al., 2020a). Thus, individual cows with comparable body 

fat portions appear to differ in how they manage their fat reserves during the transition 

period, even when fed and managed in the same manner. 

With this background, we used a cluster analytic approach on 713 animals to 

identify clusters of cows based on either ap BFT (BFT-ap) or the BFT change during the 

transition period (BFT loss, ΔBFT), with thresholds that were not arbitrary but were 

derived solely from the data set used. We used data and samples from a previously 

described feeding trial (Süss et al., 2019). The objectives of the present study were (1) to 

characterize the interindividual variation in the relationship between ap BFT and 

subsequent BFT loss during early lactation in a large dairy herd, (2) to estimate into which 

ΔBFT cluster cows from the different BFT-ap clusters would develop, and (3) to compare 

milk yield, uterine health (mainly prevalence of endometritis and hyperketonaemia), and 

metabolic and inflammatory status (serum variables: non-esterified fatty acids, ß-

hydroxybutyrate, leptin, adiponectin, and the acute phase protein haptoglobin) among the 

different clusters. The descriptive comparisons of cows from a large dairy herd with 

divergent BFT ap status extend the knowledge about the biological variation in body 

condition ap and their after-effects on the mobilization of body reserves. The information 

about this variation within the same herd kept under the same management conditions on a 

commercial dairy farm is relevant for researchers and dairy farmers for finding strategies 

of either eliminating less efficient animals or aiming at “personalized” feeding and 

management systems. 
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3.3 Material and Methods 

This study was approved by the Slovakian Regional Veterinary Food 

Administration, and by the institutional ethics committee of the University of Veterinary 

Medicine, Vienna, Austria (ETK-09/02/2016). The animal experiment was conducted from 

March 2016 to November 2017 in a commercial dairy farm in Slovakia, where about 2,400 

Holstein-Friesian cows are kept. 

 

3.3.1 Animals, diets, records, and samplings 

The current study extends the study by (Süss et al., 2019) in which the effect of 

dietary supplementation with rumen-protected methionine (Met) on reproductive 

performance was tested in 1,709 multiparous Holstein cows. All animals received the same 

basal diet as a total mixed ration (TMR) during pregnancy and lactation as reported 

previously (Süss et al., 2019). Cows were offered the TMR twice daily and adjusted to 

achieve refusal rates of 5 to 10%. After calving and leaving the fresh group (between d 8 

and 40 pp), the cows were assigned to either a basal diet (control) or the basal diet plus 

approximately 27 g/d of rumen-protected Met (Mepron®, Evonik Operations GmbH, 

Hanau, Germany) which was added to the mineral and vitamin premix and fed in the TMR 

until the end of the observation period (70 d pp). 

As represented on Figure 6, on d 25 ± 10 ap and d 31 ± 3 pp (means ± SD), BFT 

was assessed by ultrasound (Easi-Scan, IMV imaging, Bellshill, Scotland, UK; 7.5 MHz 

linear probe with wrist display) as previously described (Schröder and Staufenbiel, 2006). 

Cows were evaluated for metritis at d 5 pp by assessment of vaginal discharge and body 

temperature, and for endometritis at d 31 ± 3 pp by vaginal examination and uterine 

cytology (Süss et al., 2019). Endometritis was diagnosed using a modified vaginal 

discharge score (Williams et al., 2005) to classify vaginal mucus as (E0) clear mucus; (E1) 

≤ 50% non-white or white mucopurulent material; and (E2) ≥ 50% off-white or white 
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mucopurulent material. Furthermore, uterine cytology samples were collected using the 

Cytobrush method, as described by (Kasimanickam et al., 2004). These samples were then 

prepared by rolling the brush onto a clean glass slide. On the farm, the slides were 

immediately fixed and stained (LT-SYS, Labor und Technik, Berlin, Germany) and 

evaluated under the microscope (x 400 magnification) by counting a total of 300 cells to 

determine the percentage of polymorphonuclear neutrophils (PMN; (Melcher et al., 2014). 

The cutoff point for diagnosing subclinical endometritis was 5% PMN (Madoz et al., 

2013). Based on the vaginal examination and uterine cytology, cows were classified as 

healthy (vaginal discharge score = E0, proportion of PMN < 5%) or affected by 

endometritis: subclinical endometritis (SE; vaginal discharge score = E0, proportion of 

PMN ≥ 5%) or clinical endometritis (CE; vaginal discharge ≥ E1). 

 

Figure 6. Representation of the sampling and data collection from the animal study 

 

Blood samples were collected from a coccygeal vessel using vacuum tubes coated 

with a clot activator for serum collection (Süss et al., 2019), on the same day as the BFT 

measurements. In the samples, serum ß-hydroxybutyrate (BHB) was used to classify cows 

as normal or hyperketonaemia using a BHB threshold of 1.2 mM (Süss et al., 2019). Two 

metabolic hormones (leptin and adiponectin), an acute-phase protein (haptoglobin), and 

two metabolites [BHB and non-esterified fatty acids (NEFA)] were measured in serum as 

described below. Cows were milked twice daily in a rotating milking parlor and milk 

production was recorded daily throughout the study. Milk production (kg/d) is expressed as 

a weekly average. Only cows from which all records and samples were available and 
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which were assigned to the control group or Met treatment no later than d 20 pp were 

included in the present study, resulting in a total of 713 cows. 

 

3.3.2 Clustering of the Cows according to BFT and to BFT Loss 

The k-means (unsupervised machine learning algorithm) analysis procedure of the 

SAS package (PROC FASTCLUS; SAS Institute 253 Inc, Cary, NC) was used with the 

mean, median, sum, and standard deviation of BFT at 25 ± 10 d ap (BFT-ap) or BFT loss 

(delta-BFT; ΔBFT = BFT at d 25 ap minus BFT at d 31 pp) as key features for each cluster 

procedure. The number of clusters was determined by tests based on the separation 

between clusters and homogeneity within clusters. To validate the clusters, we estimated 

the optimal number of clusters for k-means clustering using the direct method in R (V 

4.0.3; R Core Team, 2019). This method aims to optimize a criterion, the sum of squares 

within clusters or the average silhouette, using the method of elbows and average 

silhouette (Rousseeuw, 1987). Statistical power was defined as the probability of the 

cluster analysis to reject the null hypothesis (no clustering found), which was defined by an 

average silhouette width above 0.5 (Kaufman and Rousseeuw, 1990).  

 

3.3.3 Laboratory Analysis of all 713 cows (ap and pp samples) 

The concentrations of BHB and NEFA were measured spectrophotometrically 

(HORIBA ABX SAS, Montpellier, France) at the Research Institute for Farm Animal 

Biology (FBN) in Dummerstorf (Germany) using the following kits: BHB (#RB1008, 

Randox Laboratories Limited, County Antrim, United Kingdom) and NEFA (#434-91795, 

Wako Chemicals GmbH, Neuss, Germany). The two kits are formed by semi-quantitative 

dipstick which can detect acetone and acetoacetate for the BHB, and a quantitative test for 

the detection of NEFA. Depending on the quantity detected, the different colours will be 
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detected by the spectrophotometer, resulting with the concentration of the two metabolites 

in the serum. Adiponectin, leptin, and haptoglobin were measured using ELISA methods 

developed in-house (Sauerwein et al., 2004; Hiss et al., 2009; Mielenz et al., 2013). For the 

adiponectin ELISA, the intra- and inter-assay coefficients of variation (CV) were 9.8 and 

13.4%, respectively. The intra- and inter-assay CV were 9.2 and 13.4% for leptin and 8.9 

and 11.6% for haptoglobin, respectively. 

 

3.3.4 Statistical analyses  

A repeated-measures model was fitted to the data (both blood and milk) using a 

linear mixed-effects model with SPSS software (IBM® SPSS® Statistics 24.0, Armonk, 

NY, USA), using treatment (BFT-ap clusters, ΔBFT clusters, or BFT-loss), time (d, wk), 

time × treatment interaction, MET supplementation (control or MET), uterine health status 

(healthy, subclinical, or clinical endometritis), parity as fixed effects, and cow as a random 

effect. In the preliminary data analysis, 2-way interactions (treatment × uterine health 

status; treatment × Met supplementation; time × Met supplementation; time × uterine 

health status) were included in the model as a fixed effect, but the result of this preliminary 

statistical analysis showed no significant effect of the 2-way interactions on the tested 

variables in this study. Therefore, these 2-way interactions were disregarded in the final 

statistical analysis of the data. All data were tested for normal distribution using the 

UNIVARIATE procedure of SAS (Shapiro-Wilk test), and variables that were not 

normally distributed were log10-transformed to meet the assumptions of normality and 

homoscedasticity of the residuals. Data are presented as means ± SEM, and Tukey-Kramer 

adjustment was applied to account for multiple comparisons. Significance was declared at 

P ≤ 0.05 and a trend at 0.05 < P ≤ 0.10. 
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3.4 Results  

3.4.1 Characteristics of the clusters obtained for BFT-ap 

Five clusters were determined based on BFT-ap: lean (LEN, 5 to 8 mm BFT), 

normal (NOR, 9 to 12 mm BFT), slightly fat (SF, 13 to 16 mm BFT), just fat (JF, 16 to 22 

mm BFT), and very fat (VF, 23 to 43 mm BFT). Figure 7A shows a histogram indicating 

the frequency (number of animals) in the obtained clusters. The Gaussian distribution 

showed anomalous skewness and kurtosis coefficients, and the Shapiro-Wilk test for the 

obtained clusters was significant, indicating that the data were not normally distributed 

(Figure 7A). There were fewer cows in the LEN (n = 50, 7%) and VF (n = 61, 8.6%) 

clusters, with the majority observed in NOR (n = 206, 28.9%), SF (n = 203, 28.5%), and JF 

(n = 193, 27.1%).  

For the different BFT-ap clusters, milk yield and serum parameters are presented in 

Figures 7B and 7C, respectively. Milk yield was affected by BFT-ap cluster, time, parity, 

and uterine health (P < 0.01). Cows categorized as VF had lesser milk yield than other 

clusters. Milk yield increased with time (P < 0.01) and reached a plateau around 7-8 wk of 

lactation. The serum concentration of BHB was affected by BFT-ap cluster (P < 0.01), 

time (P < 0.01), cluster × time interaction (trend, P = 0.06), and Met (P = 0.02). The 

concentration of NEFA was affected by BFT-ap cluster (P < 0.01), time (P < 0.01), cluster 

× time interaction (trend, P = 0.08), parity (P < 0.01). The concentrations of NEFA and 

BHB after calving were greater in VF and JF compared with the other clusters. The leptin 

concentrations were affected by BFT-ap cluster and time (P < 0.01; Figure 7C). Compared 

with the other treatment groups, the VF group had the highest concentration of ap-leptin, 

whereas the LEN group had the lowest. The adiponectin concentrations in serum were 

affected only by time and decreased after calving. The concentrations of Hp in serum were 

affected by the main effects or by the cluster × time interaction. As expected, circulating 
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concentrations of NEFA and BHB increased, whereas leptin and adiponectin decreased 

from ap to pp.  

In addition, no differences were found among clusters when other factors, including 

Met treatment, health status, and parity were considered (Supplemental Table S1). The 

incidence of endometritis was assessed at d 30 pp, but we did not observe any differences 

among the 5 different BFT-ap clusters, neither in uterine health status nor in calving and 

conception intervals (Supplemental Table S2). 

 

 

Figure 7. Characteristics of the clusters based on backfat thickness ap (BFT-ap): LEN: lean, BFT 5 to 8 mm; NOR: 
normal, BFT 9 to 12 mm; SF: slightly fat, BFT 13 to 16 mm; JF: just fat, 16 to 22 mm; VF: very fat, 23 to 43 mm. (A) 

histogram of the distribution, and (B) milk yield (means ± SEM), (C) serum concentration (means ± SEM) of various 
metabolites (NEFA and BHB), metabolic hormones (leptin and adiponectin) and of the acute phase protein (haptoglobin) 
in samples collected ap (30 d before calving) and pp (30 d after calving). Uterine health = cows were classified as 
healthy or affected by endometritis based on vaginal examination and uterine cytology. Vaginal discharge score = clear 
mucus proportion of PMN < 5% or affected by endometritis: subclinical endometritis (vaginal discharge score = ≤ 50% 
off-white or white, proportion of PMN ≥ 5%) or clinical endometritis (≥ 50% off-white or white mucopurulent material). 
PMN = proportion of polymorphonuclear neutrophils. 
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3.4.2 Characteristics of the clusters obtained for ΔBFT 

When the k-means clustering was based only on ΔBFT, 5 clusters were obtained, as 

shown in Figure 8A. Evaluation of the Gaussian distribution showed anomalous skewness 

and kurtosis coefficients, and the p-value of the Shapiro-Wilk test for the clusters obtained 

for ΔBFT was less than 0.01, indicating that the data were not normally distributed (Figure 

8A). A smaller number of cows were observed in the extreme loss (EL, n = 16, 2.2%) and 

gain (GN, n = 51, 7.2%) clusters, whereas the majority of cows were found in the small 

loss (SL, n = 326, 45.7%), moderate loss (ML, n = 119, 16.7%), and no loss (NL, n = 201, 

28.2%) clusters.  

Figure 8 shows milk yield (Figure 8B) and serum variables (Figure 8C) associated 

with the ΔBFT clusters. Milk yield was affected by time, parity, and uterine health (P < 

0.01), but not by the ΔBFT cluster, Met, or the cluster × time interaction. The BHB 

concentration in serum was affected by ΔBFT cluster (P < 0.01), time (P < 0.01), cluster × 

time interaction (P = 0.02), and MET (P = 0.02) but not by parity and uterine health. The 

NEFA concentrations were influenced by ΔBFT cluster (P < 0.01), time (P < 0.01), cluster 

× time interaction (P = 0.01), and parity (P < 0.01), but not by Met and uterine health. The 

NEFA and BHB concentrations pp were greater in EL and ML than in the other clusters. 

Serum leptin concentrations were affected by time (P < 0.01) but not by ΔBFT cluster, 

cluster × time interaction, parity, Met, and uterine health. Serum adiponectin 

concentrations were affected only by the ΔBFT cluster and cluster × time interaction and 

were lower in EL cows compared with other clusters ap. Serum Hp concentrations were 

affected by the main effects, and by the cluster × time interaction. 
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Figure 8. Characteristics of the clusters based on backfat thickness loss from ap to pp (ΔBFT): EL: extreme loss (ΔBFT 
from 17 to 23 mm); ML: moderate loss (9 to 15 mm); SL: small loss (4 to 8 mm); NL: no loss (0 to 3 mm); GN: gain (-8 
to -1 mm). (A) histogram of the distribution, and (B) milk yield (means ± SEM), (C) serum concentration (means ± SEM) 
of various metabolites (NEFA and BHB), metabolic hormones (leptin and adiponectin) and of the acute phase protein 

(haptoglobin) in samples collected ap (30 d before calving) and pp (30 d after calving). Uterine health = cows were 
classified as healthy or affected by endometritis based on vaginal examination and uterine cytology. Vaginal discharge 
score = clear mucus proportion of PMN < 5% or affected by endometritis: subclinical endometritis (vaginal discharge 
score = ≤ 50% off-white or white, proportion of PMN ≥ 5%) or clinical endometritis (≥ 50% off-white or white 
mucopurulent material). PMN = proportion of polymorphonuclear neutrophils. 

3.4.2 Apportionment of the cows in the BFT-ap clusters to the ΔBFT clusters 

To illustrate the presumed dependence of BFT loss on BFT-ap, we used a Sankey 

plot diagram (Figure 9) for showing the proportion of dairy cows from the different BFT-

ap clusters that were classified into the different ΔBFT clusters. We observed that 98% of 

VF cows, 88% of JF cows, and 69% of SF cows were assigned to the ΔBFT clusters with 

greater losses compared with NOR or LEN cows. We further used the Sankey plot results 

to compare the over-conditioned (OC) cows that had little or no BFT loss (i.e., the 2% of 

VF, the 12% of JF, and the 31% of SF; n = 85) with the OC cows that lost BFT (n = 135).  



48 

 

 

Figure 9. Sankey plot for representing the apportionment of animals in five BFT-ap clusters [LEN: lean, BFT 5 to 8 mm; 
NOR: normal, BFT 9 to 12 mm; SF: slightly fat, BFT 13 to 16 mm; JF: just fat, 6 to 22 mm; VF: very fat, 23 to 43 mm.] 
to the five ΔBFT clusters [EL: extreme loss (ΔBFT from 17 to 23 mm); ML: moderate loss (9 to 15 mm); SL: small loss (4 
to 8 mm); NL: no loss (0 to 3 mm); GN: gain (-8 to -1 mm)]. 

 

The resulting groups, designated as OC with little or no BFT loss (OC-no loss) and OC 

with severe to normal loss (OC-loss), were then compared for milk yield (Figure 10A) and 

their serum concentrations of the assessed variables (Figure 10B). Milk yield was affected 

by the OC-ΔBFT (OC with different BFT losses) groups, time, parity, and uterine health 

(P < 0.01), but not by Met supplementation, or the group × time interaction. Milk yield 

was greater in the OC-loss cows than in OC-no-loss cows (P < 0.01). The BHB 

concentration in serum was affected by the OC-ΔBFT group (P < 0.01), time (P < 0.01), 

group × time interaction (trend, P = 0.09), and Met (trend, P = 0.07) but not by parity and 

uterine health. The NEFA concentration was affected by the OC-ΔBFT group (P < 0.01), 

time (P < 0.01), group × time interaction (trend, P = 0.10), parity (trend, P = 0.07), but not 

by Met and uterine health. The pp concentrations of NEFA and BHB were greater in OC-

loss than in the OC-no-loss cows. Serum adiponectin was affected only by time (P < 0.01) 

and leptin was affected by the OC-ΔBFT group, time, and uterine health (P < 0.01), but not 
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by the group × time interaction, parity, and Met. The ap concentration of leptin was greater 

in OC-loss than in the OC-no loss cows, whereas none of the fixed effects tested was 

significant for Hp. 

 

Figure 10. (A) Milk yield (means ± SEM), (B) serum concentration (means ± SEM) of various metabolites (NEFA and 
BHB), metabolic hormones (leptin and adiponectin) and of the acute phase protein haptoglobin in samples collected ap 
(30 d before calving) and pp (30 d after calving) in overconditioned cows with different backfat thickness (BFT) loss. 

OC-no-loss = overconditioned cows with little or no BFT loss, OC-loss = overconditioned cows with severe to normal 
loss. Uterine health = cows were classified as healthy or affected by endometritis based on vaginal examination and 
uterine cytology. Vaginal discharge score = clear mucus proportion of PMN < 5% or affected by endometritis: 
subclinical endometritis (vaginal discharge score = ≤ 50% off-white or white, proportion of PMN ≥ 5%) or clinical 
endometritis (≥ 50% off-white or white mucopurulent material). PMN = proportion of polymorphonuclear neutrophils. 

Supplemental Figure S1 shows the frequency of cows supplemented with or 

without rumen-protected Met in different clusters. A description of the distribution of 

endometritis, and hyperketonaemia, as described by Süss et al. (2019), after our clustering 

based on BFT-ap and ΔBFT is shown in the Supplemental Tables S1 and S3, respectively. 

The frequency of cows with different parities in the different clusters is shown in 

Supplemental Figure S2. The calving to conception intervals (CI) calculated for the BFT-

ap clusters for both the lactation cycles preceding and following the current study are 

presented in Supplemental Table S2. In summary, the portion of cows receiving Met 

supplementation ranged from 37.5 to 58.8% in all clusters (mean ± SD: 49.1 ± 7.9%), and 
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there was also no apparent shift in the proportion of animals with diagnoses among 

clusters. 

   

3.5 Discussion 

This study was conducted to characterize individual variation in the relationship 

between ap BFT and subsequent loss of BFT during early lactation in large dairy herds and 

to estimate which ΔBFT clusters cows from the different ap BFT clusters would develop. 

In addition, we examined milk yield, uterine health (focusing on endometritis and 

hyperketonaemia), and metabolic and inflammatory status among the different clusters. 

The extent of body fat mobilization during this transition varies between cows and usually 

shows positive correlations with the ap body condition of the animal (Weber et al., 2013). 

In the current study, there were no differences between the ΔBFT clusters for milk yield 

but there was a significant difference in milk yield of the clusters obtained for BFT-ap. In 

our study, VF cows produced less milk compared to the other clusters. This might have 

been due to lower breeding values for milk yield in these cows. Moreover, less milk yield 

in the preceding lactation might, in turn, result in a more positive energy balance thus 

allowing the animals to accumulate more body fat. Unfortunately, neither breeding values 

nor milk yields and feed intake of the preceding lactation were available in this study. 

There is no conclusive evidence on how BCS may impact milk yield in dairy cows. Several 

studies examining the effect of BCS on milk yield found no significant association, 

whereas others found an association between BCS and milk production. For example, in an 

analysis of 2,463 lactation records of pasture-based dairy cows by (Roche et al., 2007c), 

milk yield was found to be nonlinearly related to BCS at calving and the highest milk yield 

was found at a calving BCS of 3.50. A positive relationship between BCS loss (between 

calving and nadir) and milk yield was observed by (Roche et al., 2007c). In contrast, 

(Gobikrushanth et al., 2019) reported no association between pp BCS change categories 
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and cumulative milk yield in early lactation up to 25 and 90 days in milk, but peak and 

305-d milk yield were greater in cows with extreme losses (loss ≥ 0.75 BCS units) 

compared to cows gaining BCS (≥ 0.25 units). Other studies found no association of BCS 

at calving or BCS change during early lactation with daily milk yield or daily energy-

corrected milk yield in dairy cows [Pires et al., 2013 (up to 7 wk pp); Carvalho et al., 2014 

(up to 3 wk pp)]. 

As shown in the Sankey plot, we observed that most OC cows (98% of VF and 

88% of JF cows) were assigned to the ΔBFT clusters with greater losses compared with 

NOR or LEN cows. Furthermore, in this study, OC cows with little or no BFT loss (OC-no 

loss) produced less milk than OC cows with severe to normal losses (OC-loss). Likely, OC 

cows that do not lose their BCS during early lactation do not have the genetic merit to 

produce more milk. Smith and McNamara (1990) reported that cows with higher genetic 

merit for milk production experience greater lipolysis and mobilization of body reserves 

during early lactation, resulting in greater BCS loss and NEB. 

It is well documented that with increased lipolysis and release of fatty acids from 

adipose tissue into the bloodstream, the hepatic capacity for FA oxidation is exceeded, 

leading to increased ketogenesis and also fatty liver (McFadden, 2020; Ghaffari et al., 

2021). In the current study, we observed greater blood concentrations of NEFA and BHB 

in VF and JF as well as EL and ML cows compared with the other clusters. Moreover, also 

the cows with severe to normal loss (OC-loss) had greater NEFA and BHB concentrations 

than OC-no-loss cows, thus indicating a more negative energy balance and a greater 

allocation of energy to the mammary gland to produce more milk. However, feed intake 

could not be assessed in this study and thus we cannot substantiate the potential 

relationship of BFT loss with feed intake and energy balance. 

The circulating concentrations of BHB and NEFA have been reported to reach 

greater levels in multiparous than in primiparous cows (Meikle et al., 2004). In multiparous 
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cows, (Nowroozi-Asl et al., 2011) also reported that greater incidences of subclinical 

ketosis in cows with more lactations. In our study, we observed that the BHB and NEFA 

values increased from parity 2 to 5 but were lesser in parity 6 and 7 compared to parity 5. 

However, the lesser values in parity 6 and 7 could be due to the relatively small sample 

size in our analysis. 

In the current study, serum leptin concentrations decreased after calving in all 

clusters, as shown in previous studies (Reist et al., 2003; Kokkonen et al., 2005; Schuh et 

al., 2019), which is associated with the onset of NEB and a decrease in feed intake 

(Chilliard et al., 2005). The high leptin concentrations in VF cows are consistent with the 

notion that adiposity is an important determinant of leptinaemia (Chilliard et al., 2005). 

Similarly, in a previous study, ap plasma leptin concentration was highest in the high BCS 

group and did not differ between the moderate and low BCS groups (Pires et al., 2013). 

However, no BFT-ap effects were observed on leptin concentrations after calving, as 

previously observed (Holtenius et al., 2003; Pires et al., 2013). 

In the current study, serum adiponectin concentration decreased after calving. The 

decrease in blood adiponectin concentration and lower mRNA abundance in tissues after 

calving may be due to increased lipolysis (Singh et al., 2014). In the current study, serum 

adiponectin concentration was affected only by the ΔBFT cluster and was lower in EL 

cows compared to the other clusters. Our results suggest that BFT is more closely related 

to leptin than adiponectin in dairy cows during the ap period, but this relationship might 

disappear as parturition approaches because adiponectin and leptin concentrations decrease 

after calving. Therefore, during early lactation, BFT loss associated with NEB may 

become more important than the degree of ap body fat in determining adiponectin 

concentration (Giesy et al., 2012; Singh et al., 2014; De Koster et al., 2017). This could 

explain why the degree of BFT loss was not associated with ap leptin concentration in our 

experiment. 
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Besides being an acute-phase protein (APP), Hp has also been identified as an 

adipokine in cattle (Saremi et al., 2012). However, given the much lower abundance of Hp 

mRNA in adipose tissue compared with liver, the contribution of adipose tissue-derived 

Hp to blood levels is likely well below 1%, even considering the greater tissue mass of 

adipose tissue (Saremi et al., 2012). Accordingly, we did not detect differences in 

circulating Hp concentrations in any of the BFT-related comparisons. In terms of animal 

health, differences might have been expected when comparing cows with different health 

statuses, especially for uterine infections; however, this was not the case, but also the 

association between Hp concentrations and metritis was reported to be weak (Hirvonen et 

al., 1999; Pohl et al., 2015) or even absent (Yasui et al., 2014).  

 

3.5.1 Study limitations and other considerations 

One of the limitations of this study was that DMI could not be recorded in this 

study, although it is likely associated with changes in BCS. However, in commercial herds 

such as the current study, DMI records are hardly possible. The animals in this study were 

from a feeding trial in which supplementation with rumen-protected Met was tested. 

Although the diets contained enough Met, Met was supplemented to see if more Met could 

affect reproduction. The Met treatment did not affect performance and health status as 

reported previously (Süss et al., 2019). Considering that Met acts as a methyl donor for the 

synthesis of carnitine, which is important for the transport of FA into mitochondria for 

beta-oxidation, effects of Met on lipid metabolism in dairy cows seem likely (Chandler and 

White, 2017). The portion of hyperketotic cows (≥ 1.2 mmol/L BHB) from the basic trial 

with a total of 1,709 cows was not different in the control and the Met-supplemented group 

(11.7% versus 12.3%); furthermore, the portion of cows with BFT < 14 mm was the same 

in both groups (81.9% and 82.6%, respectively; Süss et al., 2019). In contrast, in the 

current study with a subset of these cows, Met-treatment was significant for BHB in all 
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three comparisons, i.e., for BFT-ap, ΔBFT, and OC-loss/no loss. The portion of Met-

supplemented and non-supplemented cows was similar in each cluster (Supplemental 

Figure S1). However, given these differences being limited to the ap period, when the Met 

supplementation was not yet started, the significance for Met in the general model that 

included both ap and pp values, is not considered as meaningful, and we thus refrain from 

further interpretation. In general, the lack of differences between the control group and the 

Met group on any of the variables tested could be related to the relatively late start of 

supplementation, i.e., only within the first 20 days after calving. (Batistel et al., 2017) 

recommended starting supplementation one week before calving and continuing it for at 

least 60 days after calving to observe differences in lactation performance. 

 

3.6 Conclusion 

 The variables measured in blood confirmed that cows with greater BFT losses had 

increased lipolysis and ketogenesis. Cows that gained BFT did not differ from normal 

cows in their serum variables. Differences in milk yield were limited to the BFT-ap 

clusters with cows categorized as VF producing less milk than the other clusters. Non-

uniform adaptive responses to lactation were particularly observed for the over-conditioned 

cows: OC-no loss cows produced less milk and also had increased lipolysis and 

ketogenesis as compared to OC-no-loss cows. This study outlines the variability in the 

intensity of mobilizing body fat reserves in response to the metabolic changes related to the 

onset of lactation in cows of different body fat content before calving. The findings derived 

from a relatively large number of cows from the same herd on a commercial dairy 

enterprise are of interest for both dairy farmers and researchers; the clustering approaches 

described herein provide a quick and efficient method to identify extreme groups for 

specific management and also for outlining further comparisons, e.g., when planning more 
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expensive and sophisticated analyses such as proteomics or metabolomics on selected 

samples. 
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Chapter 4 - Metabolomics 

4.1 Introduction  

In Chapter 3, we have confirmed that over-conditioned animals ap and/or animals 

losing a lot of condition around calving, had increased lipolysis and ketogenesis compared 

with cows with a normal BC and/or losing less condition. In general, we demonstrated that 

both clustering methods (BFT-ap and Δ-BFT) were efficient in creating relevant groups. 

As per the objectives of our thesis, we thus wanted to further compare these clusters to 

fully understand whether these groups would also be different when considering their 

metabolite patterns by applying a metabolomics analysis. 

As previously described in Chapter 1, metabolomics is the comprehensive study of 

all the metabolites in a biological sample (Singh et al., 2019). Recently, the use of 

untargeted metabolomics revealed that most of the metabolites which increase their 

concentration from late pregnancy to early lactation were connected to lipid and energy 

metabolism, whilst the metabolites which displayed a pattern of decreasing their 

concentration were associated with AA metabolism (Luo et al., 2019). Identifying the 

metabolites and the metabolic pathways that are associated with over-conditioning during 

the transition period is important to fully understand the mechanisms and the reasons of 

over-conditioning. We thus used an untargeted metabolomics approach to provide a more 

comprehensive picture of the metabolism of dairy cows with different BC around 

parturition. The untargeted nature of the method would have permitted us to investigate 

whether novel compounds (not yet contained in databases, or not yet associated with the 

lipid or energy metabolism of dairy cows) played a significant role during the transition 

period (Gloaguen et al., 2017). 

Moreover, since our study extends the work of Suess et al. (2019) in which the 

effect of dietary supplementation of Met on reproductive performance was tested in a large 

commercial dairy farm, we wanted to test in a subgroup of animals whether the Met 
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supplementation would have had some effects on the metabolism. As reported in Chapter 

3, we did not observe any difference between animals receiving Met as a supplementation 

in terms of milk production or classical blood variables. We hypothesised that the lack of 

differences when considering these two elements could have been due to the relatively late 

start of the supplementation, i.e. starting only within the first 20 days after calving, 

whereas Batistel et al. (2017) recommended starting the supplementation one week before 

calving. However, we hypothesized that even though no effects were seen in our previous 

analyses, that the metabolome will differ between the control and the Met supplemented 

group. This hypothesis is formulated form the premise that Methionine is involved in 

several crucial functions in metabolism; in dairy cows Met is particularly important during 

the transition period, e.g., for lipoprotein synthesis in the liver, synthesis of antioxidant 

proteins, synthesis of immune-related proteins, and the synthesis of carnitine (Zhou et al., 

2016c; Batistel et al., 2017; Chandler and White, 2017). 

To test this hypothesis we set the following objectives: 

(1) evaluating how the metabolome differs between animals with different BC ap and/or 

with a different BC loss around calving; 

(2) studying the differences between animals receiving a control diet or a diet 

supplemented with Met. 

 

4.2 Material and Methods 

4.2.1 Animals 

 Starting from the dataset used to analyse the classical variables (already described 

in Chapter 3), a meaningful subset of samples to study the effects of the Met 

supplementation and the effects of the BC on the metabolome of dairy cows after calving 

had to be selected for the cost-efficient use of the complex analyses. 
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 From the 713 cows that were previously mentioned, we further limited the subset to 

those cows that were inseminated before 70 DIM (i.e., not requiring any hormonal 

treatment), and animals considered free from endometritis (healthy) or diagnosed with a 

severe endometritis, as explained in the Chapter 3 and in the paper of Süss et al. (2019), 

resulting in the selection 184 animals. From these animals, untargeted metabolomics (LC-

MS) was carried out in two batches of the serum samples that were collected at 31 ± 3 

DIM and stored at -80 °C until analysis. 

For our analyses, a subgroup of 177 animals was analysed to study the BC loss 

effect using PiMP (explained below), following the clustering showed in Chapter 3, 

animals were grouped according to their extent of BS and BFR loss: Extreme loss (n = 7), 

Moderate loss (n = 26), Small loss (n = 86), No loss (n = 44), and Gain (n = 14). Moreover, 

animals from Batch 1 (n = 92) were used for the preliminary evaluation of the dietary 

treatment, including control cows (n = 54) and the cows receiving the  Met supplement 

group (n = 38). In contrast, all the 184 animals were used to study the interactions between 

BC loss, diet treatment, and uterine health status (healthy or diagnosed with endometritis) 

when considering the batch corrected data as explained below. 

 

4.2.2 Metabolomics analyses 

 This part of the study has been done in collaboration with Glasgow Polyomics, 

which provided support in terms of the study design, sample preparation, and data 

generation and analyses. 

 

Samples preparation 

 All solvents used were of the highest purity and suitable of LC-MS analysis. The 

samples were thawed at 4 °C and metabolites were extracted using a chloroform, methanol, 
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and water (1:3:1) mixture. A mix of chloroform, methanol, and water (1:3:1; 975 µL)  was 

added to 25 µL of serum sample and extracted on a cooled (4 °C) vortex mixer for 5 min. 

The mixture was centrifuged for 3 min at 13,000 g at 4 °C, and then the supernatant was 

separated and stored at -80 °C until used for the LC-MS analysis. 

 

Liquid chromatography-Mass spectrometry (LC-MS) analysis 

  All samples were analysed on a Thermo Scientific Q-Exactive Orbitrap mass 

spectrometer running in positive/negative switching mode. This was connected to a Dionex 

UltiMate 3000 RSLC system (Thermo Fisher Scientific, Hemel Hempstead, UK) using a 

ZIC-pHILIC column (150 mm x 4.6 mm, 5 µm column, Merck Sequant, Gillingham, UK).  

The column was maintained at 40 °C and samples were eluted with a linear gradient (20 

mM (NH4)2CO3 in water, A, and acetonitrile (Rathburn Chemicals Limited, UK), B) over 

26 min at a flow rate of 0.3 mL/min represented in Table 5. 

Table 5. The solvent gradient  of  20 mM (NH4)2CO3 in water, A, and acetonitrile, B for the metabolomics analysis 

Time (min) % A % B 

0 20 80 

15 80 20 

15 95 5 

17 95 5 

17 20 80 

24 20 80 

 

The injection volume was 10 μL and samples were maintained at 5 °C before injection. For 

the MS analysis, a Thermo Orbitrap Q-Exactive (Thermo Fisher Scientific, Hemel 
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Hempstead, UK) was operated in polarity switching mode and the MS settings were 

as follows: 

• Resolution: 70,000 

• AGC: 1e6 

• m/z range: 70-1050 

• Sheath gas: 40 

• Auxiliary gas: 5 

• Sweep gas: 1 

• Probe temperature: 150 °C 

• Capillary temperature: 320 °C 

 

For positive mode ionisation: source voltage +3.8 kV, S-Lens RF Level 30.00, S-Lens 

Voltage -25.00 (V), Skimmer Voltage -15.00 (V), Inject Flatopole Offset -8.00 (V), Bent 

Flatapole DC -6.00 (V). For negative mode ionisation: source voltage-3.8 kV. 

The calibration mass range was extended to cover small metabolites by the inclusion of 

low-mass calibrants with the standard Thermo calmix masses (below m/z 138), butylamine 

(C4H11N1) for positive ion electrospray ionisation (PIESI) mode (m/z 74.096426), and 

COF3 for negative ion electrospray ionisation (NIESI) mode (m/z 84.9906726). To 

enhance calibration stability, lock-mass correction was also applied to each analytical run 

as shown on the next page in Table 6. 
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Table 6. Lock-mass correction applied to each analytical run of the metabolomics study for both positive and negative 
mode 

 Positive Mode Lock masses Negative Mode Lock masses  

Number of lock masses 3 1  

Lock mass #1 (m/z) 83.0604 89.0244  

Lock mass #2 (m/z) 149.0233 /  

Lock mass #3 (m/z) 445.1200 /  

 

Samples were divided into two batches of 92 samples each, and they were run with the 

same machine settings. 

Twenty pool samples have been created by adding 5 μL of each samples and have 

been analysed. These pool samples were then compared and used to assess the quality 

control. Moreover, six matrix blank were used to ensure that the data matrix used for 

statistical analysis and biological interpretation reflected the biological system being 

studied. 

4.2.3 Data analysis 

  The data obtained from the LC-MS analysis were converted with the MS convert 

tool of Proteo Wizard (msConvertGUI, http://proteowizard.sourceforge.net/) into mzXML 

files for PiMP (Polyomics integrated Metabolomics Pipeline) and also into mzML files for 

the batch correction part. Generally, an mzXML document contains all the information of 

one level of MS (Deutsch, 2010). An mzML contains the same information but also carries 

the fragmentation data. 

We analysed our data using two different approaches: one (PiMP) to analyse 

pairwise and combinatorial comparisons, and a batch correction pipeline to analyse more 

complex data. 

http://proteowizard.sourceforge.net/
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The Polyomics integrated Metabolomics Pipeline (PiMP) 

 The Polyomics integrated Metabolomics Pipeline (PiMP) is a comprehensive and 

integrated web-enabled pipeline that offers automated and user-friendly analysis from mass 

spectrometry data acquisition to biological interpretations (Gloaguen et al., 2017). 

The processing of metabolomics data in PiMP is made of five principal and sequential 

tasks: (1) project administration, (2) data upload, (3) quality control, (4) analysis 

parameters, and (5) data interpretation. The pipeline supports pairwise and combinatorial 

comparisons only. 

The analysis components in PiMP are based on an R pipeline built around the XCMS 

software (http://metlin.scripps.edu/download/; Smith et al., 2006) for the feature detection, 

and mzMatch.R (Scheltema et al., 2011) for the general metabolomics pre-processing 

tasks, such as alignment, batch correction, and identification (Gloaguen et al., 2017).  

Once the analysis is completed, the results are returned on the same web application via a 

PiMP-specific XML format, which can allow further analysis of the data with a new 

computational pipeline, if the same output schema is maintained (Gloaguen et al., 2017). 

The same results can also be exported into text files for further processing outside PiMP. 

 In our study, we used PiMP to evaluate the preliminary results of the effect of the 

BC loss around parturition, and the effects of the Met supplementation. It is important to 

underline that this approach permits analysis of only one batch at a time. 

 

Batch correction pipeline developed by Glasgow Polyomics 

 In our second approach, we wanted to have a complete overview of our data, thus 

understanding whether there were any differences when considering the BC loss, the diet, 

and the uterine health status of the dairy cows. Moreover, we wanted to analyse the data of 

both batches at the same time. As multiple comparisons were needed, PiMP could not be 

http://metlin.scripps.edu/download/
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used; for this reason, a different pipeline developed by Glasgow Polyomics was used. The 

first step of this analysis is the batch correction, as our sample size was particularly large 

and had to be run in two batches. This correction is necessary because even though data are 

generated from the same machine, they often show different characteristics (Liu et al., 

2020). Multiple approaches can be used to solve this problem, such as processing the data 

as a single batch and consider the variation of between-batch data as random noise, or pre-

processing each batch individually, followed by an alignment of features between the 

features from each separate batch (Brunius et al., 2016; Liu et al., 2020). 

In our study, a pipeline in R (R Core Team, https://www.R-project.org/, 2020) developed 

by Glasgow Polyomics was used. The used R code is provided in the Annex, and a brief 

description of the pipeline is provided in the next paragraph. 

  Similar to PiMP, the pipeline for the batch correction works combining both 

XCMS and mzMatch.R, and it requires a series of sequential steps, briefly described 

below:  

- Relative Standard Deviation (RSD) filter: it calculates the relative standard 

deviation (the ratio of the mean to the standard deviation) for all features. Any 

features with an RSD lower than a predefined threshold are excluded; 

- Minimum detection: the number of measured values is counted for each feature, 

and any of the features with less than a predefined minimum number of values is 

removed; 

- Noise filter: it permits to reduce the level of noise and redundancy of the signals;  

- Intensity filter: it is an equalization step that removes the signal intensity drift 

between the two different batches; 

- Gap filling: it allows us to recover features that were discarded during the data pre-

processing or were simply not detected; 

https://www.r-project.org/
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- Batch correction: it is the final step that puts together all the filters applied before 

and it normalises them. 

Once all the filters have been applied, the peaks are merged in a single mzXML file, ready 

to be processed for statistical analysis. 

 

4.2.4 Statistical analyses 

 Following the PiMP pipeline, data interpretation was performed within the web 

platform itself. First, the peaks were annotated/identified based on mass and mass/retention 

time match to known standards respectively. Second, group-wise comparisons were 

performed to identify differences (fold-change). The fold-change is then associated with a 

statistical difference. Within this analysis, peaks with an adjusted p-value, calculated by 

applying the Benjamini-Hochberg procedure which decreases the false discovery rate,  

lower than 0.05 were considered significant. 

When considering the other pipeline, batch corrected data were subsequently 

analysed using the online platform Metaboanalyst (https://www.metaboanalyst.ca), an 

easy-to-use online web tool that can be used to analyse a multitude of data, with 

metabolomics being one of them. The platform permits the performing of data analysis, 

data interpretation, and, eventually, integration with other omics data (Chong et al., 2019). 

 The first process when uploading data on Metaboanalyst is data normalization, and 

it is formed by three steps: row-wise standardisation, data transformation, and data scaling. 

In our project, data were not row-wise standardized as this step was already performed 

within our metabolomics data analysis pipeline (see above). However, we did transform 

our data via a Log10 transformation, and we applied a range scaling, by which the means 

were centred and divided by the value range of each feature. An example of normalization 

https://www.metaboanalyst.ca/
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is given in Figure 11, from which we can see the transformation of skewed data (left) into 

approximately conform data. 

 

Figure 11. Kernel density plots before(left) and after (right) normalization. The distribution of data over a continuous 
interval is shown. In the graphs represented herein, all the 184 samples have been normalised. 

 

Following the normalisation, both univariate (one-way ANOVA) and multivariate analyses 

(Principal Component Analysis (PCA) and Partial Least Squares-Discriminant Analysis 

(PLS-DA)) methods were applied. When considering the ANOVA, pairwise comparisons 

were also done using Fisher's least significant difference method (Fisher's LSD). Results 

were considered significant with a P-value < 0.05. 
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4.3 Result 

 Before heading into the results, we observed the chromatograms of both positive 

and negative ion mode (Figure 12). 

 

 

Figure 12. Representation of two exemplar figures relative to positive ion (top) and negative ion (bottom) mode 
chromatograms of bovine serum. Specifically, the graphs represent one cluster (Small Loss) of Batch 1. X-axes represent 

the retention time (t) and the y-axes the abundance. 

 

4.3.1 Application of the PiMP pipeline 

BC Loss 

 The two batches were singularly analysed on PiMP to have a preliminary overview 

of the quality of the analyses. 

Metabolomics analysis identified 76 unique compounds matched to known 

standards, from the analysis of Batch 1, and 82 unique compounds for Batch 2 (full list on 

the Supplemental Table S4). Pairwise comparisons have been performed between the five 

clusters, in both batches, but without  finding significant differences. 
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Subsequently, data from Batch 1 were exported, and evaluated using MetaboAnalyst. First, 

a PCA was plotted (Figure 13) as we wanted to observed trends, visualise the distribution 

of the cluster and possible outliers.  

 

Figure 13. Principal Component Analyses of the 92 samples of Batch 1 to study the differences between the different 
clusters. Each dot in the graph represents a cow in each cluster. 

 

The PCA did not show any separation between the clusters and also the components (PC 1 

and PC 2 forming the x and y-axis, respectively, percent values) were very low, 

considering that 70% amongst the first two or three components are commonly considered 

as acceptable (Jollife and Cadima, 2016). 

To further exploit our data, a PLS-DA was performed. When compared to PCA, PLS-DA 

has the advantage of achieving a dimensionality reduction but maintaining the awareness 

of class labels (Ruiz-Perez et al., 2020). As shown in Figure 14A, the five clusters were 

separated, however, there was a clear division in each cluster, which likely indicated that 

peaks could have been identified as background noise.  



68 

 

A  B  

Figure 14. Partial Least Squares - Discriminant Analysis (PLS-DA) of the 92 samples of Batch 1. A: PLS-DA before the 
screening of the dataset for background noises and peaks not associable to metabolites. B: PLS-DA after the filtering of 
the dataset. Each dot represents a cow in each cluster. 

 

For further filtering the dataset, we screened the data by removing all the peaks which 

could have been identified as background noise as well as peaks which were not associable 

to metabolites; we then reapplied a PLS-DA on these screened data. In Figure 14B, the 

clusters were well separated, and the distribution of the samples within each cluster was 

more homogenous. However, the components (PC 1 and PC 2 forming the x and y-axis, 

respectively, percent values) were still very low. To estimate the error rate of this analysis 

cross-validation was performed; the respective results are presented in Figure 15. 
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Figure 15. Plots obtained by the cross-validation method applied on partial least squares-discriminant analysis (PLS-
DA) data. The PLS-DA cross-validation data displayed a negative Q2, indicating that the model is not predictive or is 
overfitted. 

 

R2, defined as “the part of variance of the responses that is explained for the calibration 

model samples,” is normally used to measure the quality of the prediction model. 

However, when using a cross-validation model, this parameter is called Q2, and represents 

the quality of the model prediction. Moreover, the higher the difference between R2 and 

Q2, the less predictive the model is (Bevilacqua and Bro, 2020). 

The Q2 values which estimates the predictive ability of the model, should be > 0.5 

(Golbraikh and Tropsha, 2002). A negative value of Q2, as shown in Figure 15, means that 

the model is not predictive or is overfitted, likely because of the use of too many variables 

and thus, the indicated differences between the clusters could not be considered any 

further. 
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Dietary supplementation (Con versus Met) 

 Batch 1 was analysed on PiMP to have a preliminary overview of the quality of the 

analyses and to determine whether there was a diet treatment effect in our study. 

Metabolomics analysis identified 65 unique compounds matched to known standards (full 

list on the Supplemental Table S4). One group-wise comparison has been performed 

between the control and the Met supplement group, but no differences were observed.  

Subsequently, data from Batch 1 were exported and evaluated using MetaboAnalyst.  

 

Figure 16. Principal Component Analyses of the 92 samples of Batch 1 to study the differences between the different 
dietary treatments. Each dot in the graph represents a cow in each group. 

 

The PCA (Figure 16) did not show any separation between the groups and also the 

components (PC 1 and PC 2 forming the x and y-axis, respectively, percent values) were 

very low. As per the other analyses that were carried out, also in this case there was no 

clear separation of the data in the two groups, and the cross-validation results following the 

PLS-DA were low, i.e. negative Q2, meaning again that the model was not predictive.  
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4.3.2 Application of Batch corrected data pipeline 

 Following the preliminary results, data were batch-corrected as previously 

described to understand whether there were any differences when considering all the 184 

samples and considering all the different factors (diet treatment, BC loss, and uterine 

health status). To evaluate the batch corrected, the BC loss was used as the main factor and 

the other two (i.e. diet treatment and health status) were considered as cofounding factors. 

The batch correction led us to obtain a high number of peaks (around 20,000), and due to 

the untargeted metabolomics methods that were used, a comprehensive assignment of them 

to defined metabolites was not possible. Some peaks were identified against authentic 

standards, defined as authentic compounds that are collected in a spectral library and 

subsequently used to compare with the peaks acquired from biological samples (Xiao et 

al., 2012). Only 73 metabolites were identified from the negative mode, and 46 metabolites 

from the positive mode. 

An ANOVA analysis was performed, but no significant differences between groups 

were found. Pairwise comparisons were performed between the five clusters as well, but 

also yielded no differences. 

Similarly, the PCA (Figure 17) did not show any separation between the clusters, 

and also the components (PCA1 and PCA2 forming the x and y-axis, respectively, percent 

values) were very low.  
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Figure 17. Principal Component Analysis of the 184 samples to evaluate potential differences between the different 
clusters, with diet treatment and uterine health status as co-factors. Each dot in the graph represents a cow in each 
cluster. 

The PLS-DA (Figure 18) showed again no clear separation between the five clusters but 

the distribution of the samples within each cluster was homogenous. The cross-validation 

(Figure 19) showed a negative Q2 as previous results. 

 

Figure 18. Partial Least Squares - Discriminant Analysis of the 184 samples of the batch-corrected data. Each dot 
represents a cow in each cluster. 
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Figure 19. Plots obtained by cross-validation method applied on partial least squares-discriminant analysis (PLS-DA) 
data. The PLS-DA cross-validation data displayed a negative Q2, indicating that the model is not predictive or is 

overfitted. 

 

4.4 Discussion 

 The combination of XCMS and mzMatch.R. XCMS (Smith et al., 2006) applied 

herein is the most cited pre-processing tool in the metabolomics literature (Coble and 

Fraga, 2014). It incorporates matched filtration, peak detection, retention time alignment, 

and peak matching. As for its pipeline, it first filters the data by peak detection, it then 

looks for common peaks between the different files and it finally uses them as standards to 

calculate a non-linear retention time to correct the profiles of each data file (Coble and 

Fraga, 2014). When the data are finally aligned, it reports the peaks into a table for 

statistical analysis. On the other side, mzMatch.R (Scheltema et al., 2011) is a modular, 

open-source, and platform-independent data processing pipeline for metabolomics data. 

This platform was based on the PeakML file format, which is the more common 

framework used between all the tools and can be thus integrated with XCMS. As for its 

pipeline, mzMatch.R features several tools, which can be identified as: peak extraction, 

matching, filtering, normalisation, derivative detection, and identification (Scheltema et al., 

2011). Other pre-processing tools exist, such as MZmine (Katajamaa and Orešič, 2005), 

the second most cited pre-processing tool in metabolomics-related literature (Coble and 
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Fraga, 2014). MZmine also supports several stages of pre-processing data, including 

spectral filtering, peak detection, alignment, and normalization (Katajamaa and Orešič, 

2005). Contrary to the previous tools, apart from open sources formats (such as mzML, 

mzXML), it supports proprietary formats (such as Thermo RAW). 

In terms of tool performance, as reviewed by Coble and Fraga (2014), both XCMS and 

MZmine can provide satisfactory quantitative results for LC/MS data, and both tools 

require a significant level of manual input when deciding which parameters to use, how to 

process peak tables, and during the subsequent validation. For the present thesis, we 

decided to pursue the metabolomics data analyses using a combination of XCMS and 

mzMatch.R as it is the standard work pipeline used by the Glasgow Polyomics facility. 

 In Chapter 3, we have described how dairy cows with different patterns of BC loss 

around calving were different in terms of classical blood variables indicating that animals 

with greater BC loss had increased lipolysis and ketogenesis. In contrast, cows that gained 

BFT did not differ from normal cows in their serum variables. We thus pursued a 

metabolomics analysis aiming at describing their differences at the metabolome level, 

hypothesizing that we could differentiate the metabolite patterns between an animal with a 

diverse BC loss around calving. This approach has been already used in humans for 

differentiating metabolite patterns from metabolically healthy obese and metabolically 

unhealthy obese patients (Bagheri et al., 2018), and was recently also used for dairy cows 

(Ghaffari et al., 2020a). Moreover, Luo et al. (2019) also applied an untargeted 

metabolomics analysis that revealed that metabolites involved in lipid and energy 

metabolism were increasing their concentration from late pregnancy to early lactation, 

whereas the metabolites related to the metabolism of AA tended to decrease. However, in 

our study, we did not see any differences amongst the clusters, both when using the PiMP 

pipeline and the batch-corrected data. A possible explanation could be that the samples 

selected for analysis (as mentioned previously, around 30 days after calving), were taken 
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too late to observe metabolic differences, as animals might have already recovered from 

their negative energy balance. Moreover, albeit metabolomics provides and precise 

description of the metabolome in a specific time point (Singh et al., 2019), longitudinal 

changes with time can only be addressed if samples from several other timepoints could be 

considered. Luo et al. (2019), for example, collected samples 21 days before calving and 

on the day of calving, permitting them to have an overview on the variation of the 

metabolome at different timepoints. 

We then focused on the Met supplementation, and also in this case, we did not see 

any differences when comparing the control to the Met supplemented group. We 

previously reported (Chapter 3) that no effects were found in terms of Met treatment when 

considering the classical variables, and similarly, we did not find any differences at the 

metabolome level. We assume that the lack of differences between the two groups could be 

due to the late start of the supplementation, i.e. only around 20 days after calving. Batistel 

et al. (2017), recommended starting a Met supplementation before calving and continuing 

it for at least 8 weeks after calving to observe a difference in terms of lactation 

performance. Moreover, due to the large number of animals involved in the study of Süss 

et al. (2019), recording the feed intake of each cow was impossible, and thus, we would not 

have the certainty that all the cows in the Met group received the same amount of the 

supplemented AA.  

Lastly, a limitation of the study could have been its complexity. The high number 

of samples made the comparison between the high number of peaks obtained by each 

samples (around 20,000) and a comprehensive assignment of them to defined metabolites 

difficult. There is no automatic way of doing so, and manual processing and validation of 

the data would have been an almost prohibitive task, as also reported by Coble and Fraga 

(2014). Moreover, running multivariate analyses on our complete dataset, made of roughly 
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20,000 signals, with some of them identified as noise, probably contributed to the 

reduction of the statistical power of the model itself. 

Possible future steps of this research would likely involved the analyses of multiple 

time points to evaluate the time effect, but also a different grouping of the animals in order 

to reduce the complexity of the study. A targeted approach might also be carried out to 

evaluate whether specific metabolites differed between the different clusters (e.g. 

metabolites related to the lipid metabolism). 

 

4.5 Conclusions 

 The metabolomics analysis used herein showed neither differences between the 

BC-loss clusters nor the groups receiving the Met supplement or not. Our initial aim to 

describe the differences at the metabolome level of dairy cows with a different BC loss 

was not fulfilled by this study. As limitation, the variety of co-factors affecting our study 

likely contributed to creating a complex data analysis. Further studies would likely have to 

consider more time points within the transition period, and a more controlled study in 

terms of onset of the treatment as well as dosage of Met should be carried out in less 

animals. Moreover, a targeted approach might be useful to quantify metabolites level and 

determine the differences found in the pathways of interest. 
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Chapter 5 - Proteomics 

5.1 Introduction  

 As reported in Chapter 4, we have not observed differences in the metabolome of 

dairy cows when considering BC-based grouping or the Met supplementation. Hence, 

when aiming at a proteomics approach, we decided to further narrow down the subgroups 

to animals with different BFT-ap but otherwise homogenous characteristics to avoid too 

many fixed factors in evaluating the multifactorial results. 

 As detailed in Chapter 1, proteomics is the study that aims at the characterization of 

the proteins present in a cell, organ, or organism in a specific time point (Wilkins et al., 

1996). Due to recent technical developments, the application of proteomics has gained 

increasing interest in research including animal science (Ceciliani et al., 2018b; Ghaffari et 

al., 2020b). The proteins circulating in the blood are of interest as they carry valuable 

biological information (Geyer et al., 2016). Many studies have already evaluated and 

described the proteome of dairy cows affected with hypocalcaemia (Fan et al., 2017), 

endometritis (Miller et al., 2019), or intramammary infection (Kim et al., 2011). However, 

even though the association between different levels of BCS change, milk production and 

reproductive performance, as well as blood metabolites, was reported in several studies 

(Carvalho et al., 2014; Barletta et al., 2017; Gobikrushanth et al., 2019), the serum or 

plasma proteome was not/hardly investigated for its relation to BCS and BCS change. This 

approach can be beneficial as the identification of proteins that are associated with 

different BC around calving may explain the mechanisms involved in the pathophysiology 

of over-conditioning in dairy cows (Ghaffari et al., 2020b). Moreover, when conducting 

proteomics analysis, the serum or the plasma proteome are not the only targets. The 

characterisation of the liver proteome (Swartz et al., 2021) identified proteins involved in 

fatty acid metabolism, mitochondrial dysfunction, and inflammation. Similarly, the 

characterisation of the adipose tissue’s proteome (Takiya et al., 2019) can also be very 
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informative when aiming at studying the metabolism. It can be considered as an endocrine 

organ that also produces cytokines, which can then modulate the inflammatory response 

(Han et al., 2017).  

 A factor to consider when working with proteomics, as already mentioned in 

Chapter 1, is the concept of high- and low-abundance proteins. The depletion of the most 

abundant proteins is often performed to increase the depth of proteome identification and 

to subsequently increase the sensitivity of the analyses (Tu et al., 2010). However, the 

depletion might also lead to bias as there might be cross-reactions of the antibodies used in 

immuno-depletion (Bellei et al., 2011) and thus compromise the informational value. 

However, recent bioinformatical developments have improved the use of un-depleted 

proteins (Amon et al., 2019). We therefore used in a pilot experiment the depleted and 

fractionated serum samples to enrich the spectral library used for the actual measurements. 

The results of depleted and un-depleted pilot samples were then combined from a regular 

data acquisition method (“data-dependent”). As expected, more protein groups were 

identified in un-depleted than in depleted/fractionated samples. To avoid the problem of 

missing values, we applied a “data-independent acquisition” method for the actual 30 

serum samples. The comparison of non-depleted vs. depleted samples would only have 

yielded technical knowledge but no biological insights. With the possibility of the data-

independent acquisition, we finally used un-depleted serum samples. 

 My objective was to determine whether the serum proteome of dairy cows that are 

fat ap was different from lean animals. To pursue this comparison, we also decided to limit 

the effect of possible cofactors, and thus selected animals that were all healthy and in the 

control group, i.e. not receiving Met supplementation. 
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5.2 Material and Methods 

5.2.1 Animals 

 Starting from the dataset used for the metabolomics analysis (already described in 

Chapter 4), we further selected animals as we wanted to reduce the number of factors that 

could be confounding factors in the analysis. In particular, we wanted to have a complete 

overview of the BC status of the animals. 

For this reason, from the 184 cows that were previously analysed in terms of 

metabolomics, we further selected those cows which were considered free of endometritis 

(as described by Suess et al., 2019) and were in the control group, thus, not receiving the 

Met supplementation. Second, instead of considering all the five clusters previously 

identified, animals representing the extreme clusters were selected, i.e. cows with a BFT < 

13 mm (lean) or > 17 mm (fat) ap (same time point as used in Chapter 3) and having parity 

2 or 3 (2nd parity: n =  17; 3rd parity: n  = 13). A total of 30 cows (n = 16, > 17 mm; n = 14, 

< 13 mm) were obtained. From these animals, a proteomics analysis was carried out as 

described below on serum samples that were collected at 31±3 DIM and stored at -80 °C 

until analysis.  

 

5.2.2 Proteomics analyses 

 This part of the study was done in collaboration with the Core Facility Mass 

Spectrometry Unit of the Institute of Biochemistry and Molecular Biology of the 

University of Bonn, and the Core Unit for Bioinformatics Data Analysis (CUBA) of the 

University of Bonn, which supported in terms of study design, sample preparation, data 

generation and analysis. 
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Library creation 

 A preliminary analysis of randomly selected serum samples from our study was 

performed for creating our library of proteins and peptides in support of future statistical 

analyses. To do so, 20 random serum samples were selected from our study, and they were 

pooled (20 µL of each sample). One pool aliquot (“Pool A”) was then prepared for the LC-

MS/MS analysis (see paragraphs below), whilst “Pool B” underwent a depletion procedure 

using the large capacity Proteominer kit (Catalog #1633007, Bio-Rad Laboratories, 

Hercules, CA, USA). The kit permits is formed by a highly diverse bead-based library of 

combinatorial peptide ligands, which simultaneously dilutes high-abundance proteins and 

concentrates the low-abundance ones. In particular, high-abundance proteins saturate their 

high-affinity ligands whilst their excess protein is washed away. On the contrary, low-

abundance proteins are concentrated on their specific affinity ligand(s). 

After depletion, Pool B was also prepared for the LC-MS/MS analysis (see paragraphs 

below). 

 

Peptide preparations 

 For library generation, depleted and non-depleted protein samples were subjected 

to in-solution preparation of peptides on centrifugal filter units (modified from Manza et 

al., 2005; Masuda et al., 2008; Wiśniewski et al., 2009; Leon et al., 2013). Protein 

solutions were loaded onto centrifugal filter units with a 10 kDa cut-off modified PES 

membrane (polyether sulfone, Pall Filtersystems, Crailsheim, Germany) and reduced with 

20 mM dithiothreitol at 55 °C for 30 min. Alkylation of thiol groups was done with 40 mM 

acrylamide for 30 min at room temperature. After another buffer exchange, 250 ng of 

trypsin (Promega GmbH; Walldorf, Germany) was added in 20 mM triethylammonium 

bicarbonate, 0.5% sodium deoxycholate (SDC) in a total volume of 50 µL. Digestion 
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proceeded for 10 h at 37 °C. Peptides were collected and SDC was precipitated with 

Trifluoroacetic acid (TFA; 2% final). The remaining SDC was removed by phase transfer 

with an equal volume of ethyl acetate. By using this methodology, Filter aided sample 

preparation, disposable centrifugal ultrafiltration units allow detergent depletion, protein 

digestion, and isolation of peptides which are released by proteases from undigested 

material. By using consecutive protein digestion with different proteases, the generation of 

peptide fractions with minimal overlap is enabled, which considerably increases the 

number of identifications and protein sequence coverage. Peptides were then pooled and 

dried in a vacuum concentrator, dissolved in IPG buffer (i.e. ampholyte-containing buffer) 

pH = 3 - 10 (GE Healthcare, Solingen, Germany), and fractionated with an OffGel device 

(Agilent GmbH, Waldbronn, Germany) according to the manufacturer’s instructions. Dried 

peptide fractions were re-dissolved and desalted using ZipTip C18 tips (Thermo Fisher 

Scientific, Bremen, Germany). These are ready-to-use pipette-tip columns of C18 resin that 

permit a fast and efficient capture, concentration, desalting and elution of peptides for 

MALDI mass spectrometry and other methods. Two µL of the individual serum samples 

were prepared with iST 96x sample preparation kit (Preomics GmbH, Martinsried, 

Germany) according to the manufacturer’s recommendations. 

 

 LC-MS/MS analysis 

Peptide separation was performed on a Dionex Ultimate 3000 RSLC nano HPLC 

system (Dionex GmbH, Idstein, Germany). The autosampler was operated in μL-pickup 

mode. Peptides were dissolved in 0.1% 30 µL FA (solvent A). One µl was injected onto a 

C18 analytical column (200 mm length, 75 µm inner diameter, ReproSil-Pur 120 C18-AQ, 

1.9 µm). Peptides were separated during a linear gradient from 5% to 35% solvent B (90% 

acetonitrile, 0.1% Formic acid (FA)) at 300 nL/min. The nano-HPLC was coupled online 

to an Orbitrap Fusion Lumos mass spectrometer (Thermo Fisher Scientific, Bremen, 
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Germany). The data-dependent acquisition was performed for library generation with a 

gradient length of 120 min. Ions between 350 and 1500 m/z were scanned in the Orbitrap 

detector every 3 seconds with a resolution of 1.2⋅105 (AGC target 2⋅105). Polysiloxane 

(445.12002 Da) was used for internal calibration (typical mass error ≤ 1.5 ppm). In a top-

speed method, peptides were subjected to higher energy collision-induced dissociation 

(HCD: 1 Da isolation, threshold intensity 25000, stepped collision energy 25, 30, 35%) and 

fragments analysed in the Orbitrap with target 8⋅104 and maximum inject time 50 ms. 

Fragmented peptide ions were excluded from repeat analysis for 20 sec.  

For data-independent acquisition (DIA) peptide separation was performed with a 

gradient length of 110 min. Scan parameters were adapted from (Amon et al., 2019): 40 

windows of 15 Da plus 0.5 Da overlap were set covering m/z 399.5 to 1000.5. Isolated ions 

were fragmented with stepped HCD as above and fragments detected in the Orbitrap 

detector (profile mode) with a resolution of 30,000 in the range of 200-1800 m/z. AGC 

target was 5⋅105, maximum injection time 50 ms. Every 3 sec an MS1 scan was recorded 

(350-1500 m/z, resolution 1.2⋅105, target 2⋅105). Samples were run in three batches.  

 

5.2.3 Data analysis 

  Raw data processing was performed with Spectronaut 14.10 (Biognosys AG, 

Schlieren, Switzerland) with a hybrid library approach that included DDA and DIA data 

mostly with default settings. Protein sequences were taken from Uniprot Bos taurus 

reference proteome (UP000009136, 37.882 entries) along with the MaxQuant database of 

common contaminants (245 entries). Fragment group-based quantifications were exported 

for further data analysis. 

 The statistical analyses of the fragment ion level data (peak-area intensity values) 

were performed in the R software environment (R version 3.6) (R Core Team, 

https://www.R-project.org/, 2020). Proteins detected by only one feature (i.e. unique 

https://www.r-project.org/
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peptide) were considered as single-hit proteins and removed from the analysis. Feature 

level data were variance-stabilized and transformed using the VSN package (Huber et al., 

2002). To estimate protein abundances following normalization, feature level data were 

summarized on the protein level using Tukey’s median polish algorithm (Tukey, 1977). 

Prior to the main statistical analysis, peptides were analysed by LC-MS/MS, then 

filtering and data cleaning steps were applied to clean the dataset from noise and unreliable 

measurements. These steps are summarised as follows:  

1) Features (defined by combining the following parameters: PeptideSequence, 

PrecursorCharge, FragmentIon, ProductCharge) with less than 3 measurements 

across runs were removed, 

2) Single-shot-proteins (i.e. proteins with detected via single peptide) were filtered 

out, 

3) Feature intensities with values smaller than 0.1 were considered as missing and 

replaced by NA (not available), 

4) Multiple measurements of the same features were tagged as individual data points. 

The statistical analysis was performed on the remaining data. The dataset at this point 

consisted of 231 proteins, with 16739 underlying features. 

Two different statistical approaches were then applied to address the missing data. 

In the first approach, the missing values were imputed by applying the k-nearest neighbour 

algorithm (KNN) (Hastie et al., 1999), implemented in the R package imputeLCMD 

(Package and Lazar, 2015). In the second approach, the missing values were imputed as 

seen before, instead, the batches were modelled using an additional fixed effect in the 

statistical model, as a batch effect was detected, as explained in the results section. 

The differential expression analysis was carried out using the R package limma 

(Ritchie et al., 2015). A linear model was fitted to calculate the contrast between the two 

condition BFT levels, defined as > 17 mm and < 13 mm. In all analyses, the parameter 
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parity was added to the statistical model as fixed-effect. As explained above, in the second 

approach the batch parameter was also modelled as an additional fixed-effect. 

The resulting P-values were adjusted for multiple testing and the false discovery rates 

(FDR) were calculated by the Benjamini-Hochberg method. The Volcano plots, heatmaps, 

and PCA plots were generated using ggplot2 (Wickman, 2016), ComplexHeatmap (Gu et 

al., 2016) and FactoMineR (Lê et al., 2008) packages, respectively. 

 

5.3 Results 

In the first approach evaluating the 30 samples, four significant proteins between 

the two groups (lean vs fat) were found: A5PJ69 (Serpina-10), A0A3Q1MQV3 (not 

known), A0A140T897 (not known), and P80195 (glycosylation-dependent cellular 

adhesion molecule 1). The Top 20 proteins are shown in the Annex (Supplemental Table 

S5). 

The Volcano plots of log2 fold changes (x-axis) and their associated -log10 transformed p-

values (y-axis) of all identified proteins in the different conditions are given in Figure 20, 

and the PCA is represented in Figure 21.  

 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/cell-adhesion
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/cell-adhesion
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Figure 20. Volcano plots of log2 fold changes (x-axis) and their associated -log10 transformed p-values (y-axis) of all 
identified proteins in the fat vs lean animals comparison. The horizontal red line represents the 5% FDR threshold on the 

first contrast (lean vs fat). Based on our first approach: missing values were imputed by applying the k-nearest neighbour 
algorithm (KNN), and parity considered in the model. 

 

 

Figure 21. Principal component analysis of the top proteins identified in our first statistical approach: missing values 
were imputed by applying the k-nearest neighbour algorithm (KNN), and parity considered in the model. 
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However, when looking at the heatmap of the missing values (NA) in protein level 

data (Figure 22), the presence of a batch effect that clustered samples based on their 

processing date were observed.  

 

Figure 22. Heatmap of the missing values (NA) in the 3 batches. Each Batch then defines the date of the samples 
analyses.  

 

For this reason, in the second approach, the batches were modelled as a fixed effect. With 

this model, no significant proteins were identified when comparing fat vs lean animals. 

The Volcano plots of log2 fold changes (x-axis) and their associated -log10 transformed p-

values (y-axis) of all identified proteins in the different conditions are given in Figure 23, 

and the PCA is represented in Figure 24. 
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Figure 23. Volcano plots of log2 fold changes (x-axis) and their associated -log10 transformed p-values (y-axis) of all 
identified proteins in the fat vs lean animals comparison . Based on our second approach: missing values were imputed 
by applying the k-nearest neighbour algorithm (KNN), parity and batch considered in the model. 

 

  

Figure 24. Principal component analysis (PCA) of the top proteins identified in our second approach: missing values 
were imputed by applying the k-nearest neighbour algorithm (KNN), parity and batch considered in the model. 
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However, from the top 5 proteins identified in this second approach, having a -log10 P > 2, 

four were also significant in the first approach without batch correction: A5PJ69 (Serpina-

10), A0A140T897 (Albumin), A0A3Q1MQV3 (Thrombospondin-1), P80195 

(glycosylation-dependent cellular adhesion molecule 1 (Glycam-1)). O02659 (Mannose-

binding protein C) was the additional protein. Specifically, the Mannose binding protein, 

Serpina-10 and Glycam-1 had a higher expression in the above 17 mm group compared to 

the below 13 mm group (log2 FC = - 0.33, - 0.41, and – 0.42, respectively). On the 

contrary, albumin and Thrombospondin-1 had a higher expression in the below 13 mm 

group (log2 FC = 0.31 and 0.62, respectively). The list of the top 20 proteins is shown in 

the Annex (Supplemental Table S6).  

 

5.4 Discussion 

 In Chapter 3, the different patterns of BC loss around calving and the metabolic 

differences of dairy cows with a different BFT-ap were described by assessing some 

“classical” blood variables. Accordingly, greater BFT-ap was associated with increased 

lipolysis and ketogenesis. Evaluating the metabolome in pp samples of dairy cows with 

different BC (Chapter 4), no differences were identified. Too many factors might have 

compromised the informational value of the statistical models applied and it was  thus 

decided to focus the proteomics analysis exclusively on the BC ap. We aimed at 

identifying important proteins associated with over-conditioning around calving to further 

understand the metabolism of dairy cows. Surprisingly, we found only 5 proteins that 

differed between both groups when the batch effect was not considered. When batches 

were considered, these proteins were no longer significant but remained as top proteins 

according to their FDR-values.  

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/cell-adhesion
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The mannose-binding protein C is a calcium-dependent lectin involved in the 

immune response; specifically, it is an acute-phase protein that has the role to activate 

the lectin complement pathway, and it is involved in host defence pathways (Ng et al., 

1996). In dairy cows, a higher concentration of this protein could be associated to heat 

stress as it might activate blood coagulation (Min et al., 2016). In our study, the 

concentration of this protein was higher in the fat animals ap, however, in the literature 

there is no explanation why this protein may differ in expression between fat and lean 

dairy cows. Moreover, as the animals were managed in the same farm, a situation of heat 

stress would have likely affected both groups.  

SERPINA10, a member of the serpin family, was reported to have a role in blood 

coagulation as well since it inhibits the activated factors Z and XI in blood coagulation 

(Law et al., 2006). However, there are no current papers reporting the effect of this protein 

in dairy cows or cattle, and thus, its relevance is still unknown. 

The Glycosylation-dependent cell adhesion molecule 1 (Glycam-1) is an abundant 

protein in the plasma of dairy cows (Miller et al., 2019) and it likely inhibiting the 

process of cell adhesion (Choe et al., 2010). Its plasma concentration tends to be higher in 

animals with severe endometritis, as reported by Miller et al., (2019). In our proteomics 

study, we did not have animals diagnosed with endometritis, however, we have observed 

that Glycam-1 tended to be more abundant in the fat animals, which might indicate a 

higher status of inflammation in dairy cows, resulting from a shift in the production of 

adipokines towards a pro-inflammatory profile in over-conditioned cows (Alharthi et al., 

2018; Depreester et al., 2018). Moreover, as seen in Chapter 3, the greater blood 

concentrations of NEFA and BHB in over-conditioned cows compared to normal or lean 

ones, underline an increased ketogenetic status, which can be associated with an increased 

level of inflammation ante and post-partum (Abuajamieh et al., 2016). 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/acute-phase-protein
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/complement-lectin-pathway
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/cell-adhesion
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The PCA plots (Figures 21 and 24) confirmed that there was no separation of the 

two groups. This might be retrospectively explained by the time the samples were 

collected. As discussed already for the metabolome, the animals had already undergone 

and largely completed the process of metabolic adaptation regarding the body condition 

around 30 d pp, and thus potential preceding differences might have levelled off. In the 

study of (Ghaffari et al., 2020b) for example, samples were collected -49 d before 

parturition, and +7 and +21 d after parturition. In this way, a time effect could be captured 

and the variation of the proteome between the time points and the groups, as well as the 

interaction thereof was analysed. In the present proteomics analyses, measuring the 

samples ante and post-partum might have yielded significance and might have permitted us 

to evaluate how fat and lean animals cope with the transition period. 

 Finally, the use of a DIA approach permitted us to detect a higher number of 

peptides compared to a data dependent acquisition (in our study only use for the library 

creation), as the first method interrogates all the peptides within a selected m/z windows 

(e.g. 40 windows of 15 Da plus 0.5 Da overlap were set covering m/z 399.5 to 1000.5 in 

our study), which contains normally around the 90% of the peptides (Pino et al., 2020). 

Whilst a data dependent acquisition would focus on a fixed number of the most abundant 

peptides which would be then selected for a second stage tandem mass spectrometry 

(MS/MS) (Li et al., 2020). For this reason, using a data independent acquisition permitted 

to fragmentate all peptides which were defined within our m/z window allowing a more 

complete and accurate analysis of the proteins in our study, which was also important to 

detect the less abundant proteins, thus increasing the dynamic range of our analysis. 

  

5.5 Conclusion 

Our initial aim to describe the serum proteome of dairy cows with different BC 

status ap was thus reached, but differences between the groups could not be detected in this 
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study. In this proteomics approach, selecting just one time point for the analysis must 

retrospectively be considered as a limitation.  
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Chapter 6 – General discussion and Conclusions 

The overall aim of this thesis was to investigate the relation between body fat and 

the metabolic adaptation which occurs during the transition period. For this, three studies 

were carried out (classical variables, metabolomics, and proteomics). The first study aimed 

to characterize the inter-individual variation in relation to pre-calving BFT and subsequent 

BFT loss during early lactation in a large dairy herd, by individuating clusters of animals 

with different BFT-ap or ΔBFT and by evaluating them in terms of milk production, health 

condition, and circulating concentration of metabolites (NEFA, BHB), metabolic hormones 

(leptin and adiponectin), and an inflammatory marker (haptoglobin) both ap and pp. The 

second study was conducted to characterize the metabolome of a subgroup of cows to 

assess the metabolic differences of animals with a different BC loss or receiving a different 

diet, i.e. control diet or supplemented with Met. In the third and last study, a proteomics 

approach was used to have a complete overview of the proteome of dairy cows selected as 

fat or lean ap but receiving the same diet and being all healthy. It was hypothesized that 

these studies could extend the knowledge about the biological variation in body condition 

around the transition period. Moreover, we expected to have a deeper understanding of the 

biological processes when looking at the OMICs level. 

 From our first approach, the present thesis characterized the relationship between  

ap BFT and the subsequent loss of BFT during early lactation in a large cohort of dairy 

cows. It is known from the literature that the extent of BC loss during the transition period 

varies between individual animals, but it is usually positively associated with the ap BC of 

dairy cows (Weber et al., 2013). In our study, we did not observe any difference when 

considering the milk production of animals with different BC loss around calving, but we 

have identified differences when considering the BFT-ap, as it was observed that VF 

tended to produce less milk in comparison to the other clusters. Gobikrushanth et al. (2019) 

found no association between pp BC and milk production but the peak yield as well as the 
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305-d milk yield were greater in cows with extreme losses compared to cows gaining BC. 

Roche et al. (2007c) instead, found a positive relationship between BCS loss (between 

calving and highest value of BCS) and milk yield. Moreover, in the present study, greater 

concentrations of NEFA and BHB were observed in over-conditioned animals ap and in 

dairy cows with greater BC losses. This is in line with the literature as it is well 

documented that increased lipolysis and the resulting release of fatty acids from the 

adipose tissue into the bloodstream, may exceed the hepatic capacity for fatty acid 

oxidation, thus leading to increased ketogenesis and fatty liver (McFadden, 2020; Ghaffari 

et al., 2021), which in turn may result in metabolic disorders (Bernabucci et al., 2005; 

Roche et al., 2009; Rathbun et al., 2017). 

In the present study, the leptin concentrations in serum changed throughout the transition 

period as described earlier (Reist et al., 2003; Kokkonen et al., 2005; Schuh et al., 2019), 

i.e., the concentration decreased after calving in all clusters. This is connected to the onset 

of the NEB and a decrease in feed intake (Chilliard et al. 2005). It was also confirmed that 

very fat cows ap had greater leptin concentrations, thus underpinning the positive 

relationship between adiposity and leptinaemia (Chilliard et al. 2005). Similarly, the 

adiponectin concentration also decreased after calving in all clusters, indicating reduced 

insulin sensitivity; however, in contrast to leptin, there were no differences between the BC 

ap clusters. Considering the clusters made with respect to BC loss, animals with greater 

BC losses had lesser concentrations of adiponectin both ap and pp. Thus, BC loss seems to 

be closer related to the adiponectin concentration than the BC status ap (Singh et al., 2014; 

De Koster et al., 2017). Finally, when considering  Hp, we haven’t seen any differences 

among the clusters. 

In the second approach, the aim was to characterise the metabolome of dairy cows 

clustered by their BC loss around calving, but also considering their diet (i.e. control diet 

vs Met supplemented). From the previous approach, different patterns of BC loss were 
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identified and differences were observed when considering selected blood variables that 

are related to lipolysis and ketogenesis. When applying a metabolomics approach, 

identifying the differences at the metabolome levels of the different clusters was our main 

goal. In recent  studies (Ghaffari et al., 2020a; Luo et al., 2019), metabolomics was already 

used to differentiate metabolite patterns in animals with different BC. Using a targeted 

approach, Ghaffari et al. (2020a) were able to differentiate within a cohort of over-

conditioned cows subgroups that were metabolically healthy or unhealthy. Luo et al. 

(2019) described the most important metabolic patterns during late pregnancy and early 

lactation. We also aimed at identifying such differences, however, in this thesis project no 

differences were identified between the clusters. A possible limitation could have been the 

selection of only one time point for the analysis. Besides being unable to follow 

longitudinal changes (which was not our goal), 30 days after calving might have been too 

late for identifying differences between the clusters since most of the metabolic adaptations 

to lactation could have already been accomplished at that time. A possible alternative, 

could have been to select multiple time points, as done by the works of Luo et al. 2019 and 

Ghaffari et al. (2020a), and observe the variation of the metabolome in the difference time 

point, e.g. a time point ap, at calving, and pp. However, when aiming to study 

physiological mechanisms underlying potential treatment effects through metabolomics on 

a large number of samples, selecting specific time points is desirable for a cost-efficient 

use of the complex analyses. 

We then focused on the Met supplementation, but also in this case, no differences were 

observed when comparing the animal groups the Met supplemented diet or the control diet. 

We hypothesise that the lack of differences between the two groups could be due to the late 

start of the supplementation, i.e. only around 20 days after calving. Batistel et al. (2017), 

reported that a Met supplementation should start before calving and be continued for at 

least 8 weeks after calving to observe differences in milk production. Moreover, due to the 
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large number of animals involved in the study of Süss et al. (2019), the individual feed 

intake was not recorded recording, and thus, we would not have the certainty that all the 

cows in the Met group received the same amount of the supplemented amino acid. In 

support of this, no differences were observed between the two groups when comparing the 

(semi-quantitatively assessed) concentrations of Met from the metabolomic profiles in 

serum (data not shown). Finally, it is important to underline that the animals in the control 

group were not receiving a Met-deficient diet, and thus the additional supply of Met in the 

treatment group might have been unable to elicit additional effects. Both from the study of 

Süss et al. (2019) and the present study, no differences were observed nor in terms of 

fertility, nor in terms of milk production. 

In the last approach, the aim was to identify important proteins associated with the 

over-conditioning around calving to further understand the metabolism of dairy cows. 

Deviating from what was done in the metabolomics approach, we further limited the 

number of the animals in the study to reduce the number of factors to consider in the 

statistical models to have appropriate statistical power. Thus, the analysis was focussed on 

selected dairy cows to evaluate exclusively the proteins associated with an over-

conditioning around parturition. However, no proteins were significant, and the top 

identified proteins were the mannose-binding protein C, SERPINA10, and the Glycam-1. 

The former is a calcium-dependent lectin involved in the immune response which can be 

considered as an acute-phase protein. Its role is to activate the lectin complement pathway 

and it is involved host defence pathways (Ng et al., 1996). The SERPINA10 is a member 

of the serpin family, and it is reported to have a role in blood coagulation (Law et al., 

2006), however, no relevance has been found in dairy cows up to the present time. Finally 

the Glycam-1 is an abundant protein in the plasma of dairy cows and it tends to have 

greater concentration in animals with severe endometritis (Miller et al., 2019). However, in 

the current proteomics study, all animals were diagnosed as free from endometritis. 
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Similar to the metabolomics study, also in this approach the chosen time point might have 

been not ideal when aiming at describing the BC loss. Selected a series of time points as 

done by Ghaffari et al. (2020b) might have been a better strategy, but again, the selection 

of one specific time point was necessary for a cost-efficient use of the complex analysis. 

 Moreover, with the development of new cutting-edge methodologies, future 

research should also focus on the phospho-proteomics of the adipose tissue in dairy cows. 

In fact, as also reported in the work of Daddam et al. (2021), few studies have reported the 

difference at the phospho-proteome in the adipose tissue. This analysis might in fact permit 

to have a better overview on the lipid metabolism and the regulation of protein related 

specifically to the adipose tissue. This new approach, together with the integration of 

different omics techniques, such as metabolomics, lipidomics, proteomics and possibly 

transcriptomics, will certainly help to produce a complete overview on the changes in the 

metabolomics of dairy cows and would permit to further evaluate the metabolic variation 

around the transition period. 

 

Conclusions 

The body condition of dairy cows is known to be related to animal health and 

performance. In this study, we aimed to find out more about the metabolic differences that 

could be present between animals with different BC ap or with a different BC loss. To do 

so, three different approaches have been used to study the metabolism at different levels: 

the first aiming to study “classical variables,” the second aiming to study the metabolome, 

and the third one aiming to study the proteome. Moreover, contrary to what has been done 

so far, i.e. using an arbitrary threshold to classify dairy cows based on their body condition, 

a new approach based on machine learning was used. The clustering approach used in this 

thesis represents a quick and efficient method to identify clusters of similar animals and 
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might be used at the farm level to quickly identify extreme groups for specific management 

and also when planning new experiments. 

This thesis confirmed that over-conditioned dairy cows and/or with a greater BC loss 

around calving had increased lipolysis and ketogenesis, but no differences were identified 

between normal loss and animals which gained condition. Milk production differences 

were not consistent throughout the study, meaning that there is still a great individual 

variability between dairy cows when adapting to the onset of a lactation. 

The metabolomics and proteomics studies did not yield the results we were expecting, and 

thus, the initial aim of describing the difference of both the metabolome and the proteome 

of dairy cows with different BC was not fulfilled. The complex data analysis, the single 

time point analysed, and the impossibility of having a more controlled study in terms of 

feed intake and Met supplementation could be the main reason for the obtained results. 

However, as on one hand a study with a controlled number of animals might be easier to 

control, large animal studies permit to have a wider amount of data and might be more 

representative of a real farm situation. Both the approaches have their own advantages and 

disadvantages, and their aspects should be considered when aiming for future studies.   
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Chapter 7 - Summary 

 The transition from late pregnancy to early lactation is one of the most critical 

times during a dairy cows’ life. The key points of this period are: drastic changes in 

nutrient balance, metabolic and endocrine shifts related to parturition, and the rapidly 

increasing milk production. To support the latter, dairy cows need to mobilize body 

reserves from adipose tissues; the extent of this mobilization varies between animals but is 

commonly more pronounced in cows that are over-conditioned at calving. This may then 

result in a greater risk of developing metabolic disorders, such as ketosis, and impaired 

fertility. Moreover, not only the level of body condition (BC) around calving is important, 

but also the magnitude of BC loss from pregnancy to lactation has to be considered when 

looking at the metabolic health of dairy cows. An excessive loss of body energy reserves 

has also been associated with impaired immune function, leading to an increased risk of 

infectious diseases.  

Thus, the aims of the present thesis were (1) to characterize the variation in pre-

calving back fat thickness (BFT, recorded by ultrasound, reflects body condition) and 

subsequent BFT loss during early lactation in a large dairy herd by relating the variation 

observed to milk production, health condition, and selected blood variables; (2) to perform 

an untargeted metabolomics analysis to characterize the metabolome in selected subgroups 

differing in body condition loss, health status and in dietary methionine supply; and finally 

(3), to perform a proteomics analysis on further selected subgroups of animals receiving 

the same diet and being all classified as healthy to determine the differences at the 

proteome level between fat and lean dairy cows ante partum (ap). 

 In the first study (Chapter 3), we aimed at characterizing the inter-individual 

variation in the relationship between ap BFT and subsequent BFT loss during early 

lactation in a large dairy herd, and to compare milk yield, uterine health (mainly 

prevalence of endometritis and hyperketonaemia), and metabolic and inflammatory status. 
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For the latter, the concentration of non-esterified fatty acids (NEFA), ß-hydroxybutyrate 

(BHB), leptin, adiponectin, and haptoglobin (Hp) were measured to provide information 

about ketogenesis (BHB), lipolysis (NEFA), regulation of energy metabolism (the 

adipokines adiponectin and leptin), and inflammation (Hp as positive acute phase-protein).  

For doing so, 713 animals were selected from a previous study performed in a large 

commercial dairy farm comprising 1,709 dairy cows in total. Blood samples were collected 

at the same time as the BFT measurements (25 ± 10 days ap and 30 ± 3 days post partum 

(pp) [means ± SD]). K-means (unsupervised machine learning algorithm) clustering was 

performed: one approach considered only the BFT-ap, and the second one the BFT-loss 

between ap and pp. Five clusters were obtained and validated for both approaches. Results 

from the blood variables confirmed that cows with a greater body condition loss also had 

elevated lipolysis and ketogenesis as compared to cows with lesser losses;  animals gaining 

condition did not differ from normal cows in this respect. Furthermore, over-conditioned 

cows ap had lesser milk yield compared to the other cows, whilst there were no differences 

in milk production when comparing animals with different body condition loss. 

Expectedly, the leptin concentration was also greater in over-conditioned cows with greater 

losses. To conclude, this study described the variability in the intensity of body fat 

mobilization in response to the metabolic changes related to the onset of lactation in cows 

with a different body condition before calving. 

 In the second study (Chapter 4), we aimed at (1) evaluating the metabolome of 

dairy cows with different body condition loss around calving and being free of 

endometritis, and (2) studying the differences between animals receiving a standard control 

diet versus a diet with an extra supplementation of Methionine. To achieve this, a further 

subgroup was selected from the previous 713 animals, including only those cows that were 

inseminated before 70 days in milk and were diagnosed as free from endometritis, i.e. 184 

animals entering the study. From these, an untargeted metabolomics (LC-MS) analysis was 
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performed in serum samples collected at 30 ± 3 days after calving. Cows were clustered as 

previously reported (Chapter 3), to study the body condition loss effect via the Polyomics 

integrated Metabolomics Pipeline (PiMP). Subsequently, the results from the analysis of 

Batch 1 (n = 92) and Batch 2 (n = 92) were analysed individually for a preliminary 

evaluation of the diet treatment, by comparing the control group (n = 54 and n = 52 for 

Batch 1 and 2, respectively) against the Met supplemented group (n = 38 and n = 40, for 

Batch 1 and 2, respectively). Furthermore, all the animals were used to analyse the 

interactions between BC loss, diet treatment, and uterine health status (healthy vs 

endometritis) via supervised and unsupervised analyses. No differences were detectable 

when comparing the body condition loss clusters and also for the nor the Met 

supplemented group versus the control group. The possible reasons for this negative 

finding might be related to the time of sampling but might also have been due to the 

complexity of the comparisons involving many co-variables.  

 In the third and last study (Chapter 5), we aimed at determining whether the plasma 

proteomes of dairy cows that are over-conditioned ap differed from lean animals. For this, 

a further subgroup of 30 dairy cows was selected, comprising animals exclusively from the 

control group that were all considered healthy (i.e. free from endometritis) but were 

classified as being either over-conditioned or lean ap. From these animals, a proteomics 

analysis was carried out on serum samples collected at 30 ± 3 days after calving. Also in 

the comparison, no differences between the two groups were identifiable, even though the 

complexity of the design was substantially reduced.. 

In summary, the results obtained from the analyses of the classical variables 

(Chapter 3) largely confirmed the literature, whilst the OMICs results (Chapter 4 and 5) 

could not broaden the current understanding about the relationship between body 

condition, fat mobilization and metabolism.   
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Appendix A: Supplementary materials 

A.1 R code 

Code used in R by the Glasgow Polyomics facility for the Pipeline of the batch correction. 

The script presented below is currently set up for the Negative mode. The batch correction 

for the positive mode is not presented as the processing is the same, the only variation is 

the file referencing. 

##Test 

##HOMAGE pipeline 

library(rJava) 

library(mzmatch.R) 

mzmatch.init(version.1=FALSE, memorysize=80000) 

 

library(gptk) 

library(outliers) 

library(XML) 

source("/home/gb174a/gpModel.R") 

source("/home/gb174a/batchSetup.R") 

setwd("/home/gb174a/RubenBatchCorrection/mzMLNegative") 

 

 

##"groups" is an R list. If your files are in individual directories you can create it using: 

 

library(tools) 

groups <- list() 

groups$pooled <-

unique(file_path_sans_ext(basename(dir(path="/home/gb174a/RubenBatchCorrection/mz

MLNegative/pooled")))) 

groups$mtxblk <-

unique(file_path_sans_ext(basename(dir(path="/home/gb174a/RubenBatchCorrection/mz

MLNegative/mtxblk")))) 

groups$Std1 <-

unique(file_path_sans_ext(basename(dir(path="/home/gb174a/RubenBatchCorrection/mz

MLNegative/Std1")))) 

groups$Std2 <-

unique(file_path_sans_ext(basename(dir(path="/home/gb174a/RubenBatchCorrection/mz

MLNegative/Std2")))) 

groups$Std3 <-

unique(file_path_sans_ext(basename(dir(path="/home/gb174a/RubenBatchCorrection/mz

MLNegative/Std3")))) 

groups$NoCond <-

unique(file_path_sans_ext(basename(dir(path="/home/gb174a/RubenBatchCorrection/mz

MLNegative/NoCond")))) 

groups$Cond0 <-

unique(file_path_sans_ext(basename(dir(path="/home/gb174a/RubenBatchCorrection/mz

MLNegative/Cond0")))) 
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groups$Cond1 <-

unique(file_path_sans_ext(basename(dir(path="/home/gb174a/RubenBatchCorrection/mz

MLNegative/Cond1")))) 

groups$Cond2 <-

unique(file_path_sans_ext(basename(dir(path="/home/gb174a/RubenBatchCorrection/mz

MLNegative/Cond2")))) 

groups$Cond3 <-

unique(file_path_sans_ext(basename(dir(path="/home/gb174a/RubenBatchCorrection/mz

MLNegative/Cond3")))) 

groups$Cond4 <-

unique(file_path_sans_ext(basename(dir(path="/home/gb174a/RubenBatchCorrection/mz

MLNegative/Cond4")))) 

 

 

mzMLpath <- getwd() 

files <- dir(mzMLpath,full.names=TRUE,pattern="\\.mzML$",recursive=TRUE) 

show(files) 

 

inputFile = "combined_highintensity_gapfilled.peakml" 

outputFile = "combined_highintensity_gapfilled_corrected.peakml" 

sampleTypesToKeep <- names(groups[!names(groups) %in% "mtxblk"]) 

 

mzMLfiles <- dir(full.names=TRUE,pattern="\\.mzML$",recursive=TRUE) 

outputfiles <- paste(sub(".mzML","",mzMLfiles),".peakml",sep="") 

 

 

xset <- xcmsSet(mzMLfiles, method='centWave', ppm=2, peakwidth=c(5,100), 

snthresh=3,  

                prefilter=c(3,1000), integrate=1, mzdiff=0.001, verbose.columns=TRUE, 

                fitgauss=FALSE, nSlaves=16) 

##xset2 <- retcor(xset, method='obiwarp',profStep=0.01) 

 

  

xsets <- split (xset,xset@filepaths) 

  

peakMLparallel <- function(x) 

{ 

library(mzmatch.R) 

mzmatch.init (version.1 = FALSE) 

xset <- xsets[[x]] 

PeakML.xcms.write.SingleMeasurement 

(xset=xset,filename=outputfiles[x],ionisation="detect",addscans=20,writeRejected=FALS

E,ApodisationFilter=TRUE) 

} 

  

if (length(xsets)==length(mzMLfiles)) 

{ 

  

cl <- makeCluster (8, type="SOCK") 

clusterExport (cl,varlist=c("xsets","outputfiles")) 

system.time(clusterApply(cl,1:length(outputfiles),peakMLparallel)) 

stopCluster(cl) 
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} else 

{ 

cat ("xcms set does not contains peaks for all mzML samples.") 

} 

 

##mzmatch.ipeak.Combine(sampleList=sampleList, rtwindow=30, combination="set", 

ppm=5, outputfolder="combined") 

 

 

MainClasses <- dir () 

dir.create ("combined_RSD_filtered") 

dir.create ("combined_RSD_rejected") 

dir.create ("combined") 

for (i in 1:length(MainClasses)){FILESf <- dir 

(MainClasses[i],full.names=TRUE,pattern="\\.peakml$",recursive=TRUE) 

OUTPUTf <- paste ("combined/",MainClasses[i],".peakml",sep="") 

if(length(FILESf)>0){mzmatch.ipeak.Combine 

(i=paste(FILESf,collapse=","),v=T,rtwindow=30,o=OUTPUTf,combination="set",ppm=5,l

abel=paste(MainClasses[i],sep="")) 

RSDf <- paste ("combined_RSD_filtered/",MainClasses[i],".peakml",sep="") 

REJf <- paste ("combined_RSD_rejected/",MainClasses[i],".peakml",sep="") 

if(length(FILESf)>1) 

mzmatch.ipeak.filter.RSDFilter(i=OUTPUTf,o=RSDf,rejected=REJf,rsd=10,v=T) else 

file.copy(OUTPUTf,RSDf)}} 

INPUTDIR <- "combined_RSD_filtered" 

FILESf <- dir (INPUTDIR,full.names=TRUE,pattern="\\.peakml$") 

mzmatch.ipeak.Combine(i=paste(FILESf,collapse=","),v=T,rtwindow=30,o="combined.pe

akml",combination="set",ppm=5) 

 

mzmatch.ipeak.filter.SimpleFilter(i="combined.peakml", 

o="filteredMinDetectionsPooled.peakml", mindetections=30, setnames="pooled") 

 

mzmatch.ipeak.filter.NoiseFilter(i="combined.peakml",o="combined_noisef.peakml",coda

dw=0.8,) 

 

mzmatch.ipeak.filter.SimpleFilter(i="combined_noisef.peakml", 

o="combined_highintensity.peakml", minintensity=100000) 

 

##basepeak extract for file size reduction 

mzmatch.ipeak.sort.RelatedPeaks (i="combined_highintensity.peakml", v=T, 

o="mzMatch_output.peakml",basepeaks="mzMatch_basepeaks.peakml",ppm=5,rtwindow

=6) 

 

##Gapfill  

PeakML.GapFiller(filename = "combined_highintensity.peakml", ionisation = "detect", 

Rawpath = NULL, outputfile = "combined_highintensity_gapfilled.peakml", ppm = 0, 

rtwin = 0, fillAll=TRUE) 

 

##BatchCorrect 

batchCorrect(groups, files, inputFile, outputFile, sampleTypesToKeep, qcLabel="pooled") 
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mzmatch.ipeak.sort.IdentifyPeaksets(i="combined_highintensity_gapfilled_corrected.peak

ml", o="Corrected_Identified.peakml") 

 

annot <- 

paste("relation.id,relation.ship,codadw,charge,id,identification,adduct,moleculeName") 

DBS <- dir(paste(find.package("mzmatch.R"), "/dbs", sep=""), full.names=TRUE) 

DBS 

DBS <- paste(DBS[c(4,7,8,9)],collapse=",") 

 

mzmatch.ipeak.util.Identify(i="Corrected_Identified.peakml", 

o="Corrected_Identified_DBS.peakml", ppm=5, databases=DBS) 

 

##create text file for uncorrected data 

mzmatch.ipeak.convert.ConvertToText (i="mzMatch_basepeaks.peakml", 

o="uncorrectedOutput.txt",v=T,annotations=annot) 

 

##create text file for corrected data 

mzmatch.ipeak.convert.ConvertToText (i="Corrected_Identified_DBS.peakml", 

o="Corrected_Identified_DBS.txt",annotations=annot) 

 

 

##Added text converts if required for trouble-shooting  

 

##mzmatch.ipeak.convert.ConvertToText (i="combined_highintensity.peakml", 

o="combined_highintensity.txt",annotations=annot) 

##mzmatch.ipeak.convert.ConvertToText (i="combined_highintensity_gapfilled.peakml", 

o="combined_highintensity_gapfilled.txt",annotations=annot) 

##mzmatch.ipeak.convert.ConvertToText (i="combined.peakml", 

o="combined.txt",annotations=annot) 
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A.2 Figures 

 

Supplemental Figure S1. Frequency (N) of cows supplemented with or without rumen-protected methionine in different 
clusters. Five BFT-ap clusters: [LEN: lean, BFT 5 to 8 mm; NOR: normal, BFT 9 to 12 mm; SF: slightly fat, BFT 13 to 
16 mm; JF: just fat, 16 to 22 mm; VF: very fat, 23 to 43 mm]. Five ΔBFT clusters [EL: extreme loss (ΔBFT from 17 to 23 
mm; ML: moderate loss (9 to 15 mm); SL: small loss (4 to 8 mm); NL: no loss (0 to 3 mm); GN: gain (-8 to -1 mm)], and 
two OC-ΔBFT clusters: [OC-no-loss = overconditioned cows with little or no BFT loss, OC-loss = overconditioned cows 
with severe to normal loss]. 
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Supplemental Figure S2. Frequency of cows with different parities (2 to 7) in the different clusters. Five BFT-ap 
clusters: [LEN: lean, BFT 5 to 8 mm; NOR: normal, BFT 9 to 12 mm; SF: slightly fat, BFT 13 to 16 mm; JF: just fat, 16 
to 22 mm; VF: very fat, 23 to 43 mm]. Five ΔBFT clusters [EL: extreme loss (ΔBFT from 17 to 23 mm; ML: moderate 
loss (9 to 15 mm); SL: small loss (4 to 8 mm); NL: no loss (0 to 3 mm); GN: gain (-8 to -1 mm)], and two OC-ΔBFT 
clusters: [OC-no-loss = overconditioned cows with little or no BFT loss, OC-loss = overconditioned cows with severe to 
normal loss].   
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A.3 Tables 

Supplemental Table S1. Description of the distribution of the Methionine treatment, endometritis, and hyperketonaemia 
as described by Süss et al. 2019, following our clustering based on the BFT-ap. 

Item Very fat Just fat Slightly fat Normal Lean 

BFT (mm) 23-43 17-22 13-16 9 - 12 5 - 8 

Number of cows 61 193 203 206 50 

Diagnoses (5 DIM)  

Puerperal metritis1, (%) 

Clinical metritis2, n (%) 

 

6 (9.8) 

2 (3.3) 

 

6 (3.1) 

25 (13.0) 

 

7 (3.4) 

33 (16.3) 

 

4 (1.9) 

40 (19.4) 

 

6 (12.0) 

13 (26.0) 

Diagnoses (31 DIM)      

Subclinical endometritis3, n (%) 11 (18.0) 33 (17.1) 32 (15.8) 34 (16.5) 9 (18.0) 

Clinical endometritis4, n (%) 14 (23.0) 48 (24.9) 53 (26.1) 49 (23.8) 12 (24.0) 

Hyperketonaemic 5 (3, 5, and 8 DIM) 12 (19.7) 25 (13.0) 33 (16.3) 40 (19.4) 13 (26.0) 

1 Cows were classified based on vaginal discharge and body temperature > 39.5 °C as puerperal metritis  
2 Cows were classified based on vaginal discharge score and body temperature ≤ 39.5 °C as puerperal metritis 
3Cows were classified based on a vaginal discharge score and uterine cytology. Cows with clear mucus and ≥ 5% 

polymorhonuclear neutrophils (PMN) in the cytobrush sample were classified as being affected with subclinical 
endometritis 
4 Cows with vaginal discharge containing off‐white or white mucopurulent material and ≥ 5% polymorhonuclear 
neutrophils (PMN) in the cytobrush sample were classified as being affected with clinical endometritis 
5 Hyperketonaemic: Serum concentrations of BHB on DIM 3, 5 and 8 at least once ≥ 1.2 mM 
1 – 5 the classification with the underlying assessments are described in detail by Süss et al. (2019)  
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Supplemental Table S2. Calving to conception interval (CI) calculated for the BFT-ap-clustered animals. CI-pre 
represents the CI interval of the cows before our trial, whilst the CI after represents the CI subsequent to our study. 

Item 

Cluster (BFT-ap)1  P-value 

VF JF SF NOR LEN SEM Cluster MET 
Uterine 

health2 
Cluster × MET 

CI current (d) 383 384 378 371 372 7,8 0.35 0.27 0.83 0.18 

CI after (d) 391 389 387 385 378 9,6 0.85 0.34 0.34 0.18 
1 Cluster: VF= very fat, 23 to 43 mm; JF = just fat, JF, 16 to 22 mm; SF = slightly fat, BFT 13 to 16 mm; NOR= normal, 

BFT 9 to 12 mm; LEN = lean, BFT 5 to 8 mm. 
2Uterine health = cows were classified as healthy or affected by endometritis based on vaginal examination and uterine 
cytology. Vaginal discharge score = clear mucus proportion of PMN < 5% or affected by endometritis: subclinical 
endometritis (vaginal discharge score = ≤ 50% off-white or white, proportion of PMN ≥ 5%) or clinical endometritis (≥ 
50% off-white or white mucopurulent material). PMN = proportion of polymorphonuclear neutrophils. 

 

Supplemental Table S3. Description of the distribution of the Methionine treatment, endometritis, and hyperketonemia 
as described by Süss et al. 2019, following our clustering based on the ΔBFT. 

Item Extreme Loss Moderate Loss Small Loss No Loss Gain 

ΔBFT (mm) 17 - 23 9 - 15 4 - 8 0 - 3 -8 - -1 

 Number of cows 16 119 326 201 51 

Diagnoses (5 DIM)       

Puerperal metritis1, n (%) 2 (12.5) 9 (7.6) 7 (2.1) 10 (5.0) 1 (2.0) 

Clinical metritis2, n (%) 2 (12.5) 13 (10.9) 48 (14.7) 38 (18.9) 12 (23.5) 

Diagnoses (31 DIM) 

     

Subclinical endometritis3, n (%) 3 (18.8) 16 (13.4) 59 (18.1) 31 (15.4) 10 (19.6) 

Clinical endometritis4, n (%) 5 (31.3) 31 (26.1) 82 (25.2) 49 (24.4) 9 (17.6) 

Hyperketonaemic 5  

(3, 5, and 8 DIM) 

3 (18.8) 24 (20.2) 36 (11.0) 9 (4.5) 1 (2.0) 

1 The cows were classified based on vaginal discharge and body temperature > 39.5 °C as puerperal metritis  
2 The cows were classified based on vaginal discharge score and body temperature ≤ 39.5 °C as puerperal metritis 
3The cows were classified based on a vaginal discharge score and uterine cytology. Cows with clear mucus and ≥5% 

polymorhonuclear neutrophils (PMN) in the cytobrush sample were classified as being affected with subclinical 
endometritis 
4 Cows with vaginal discharge containing off‐white or white mucopurulent material and ≥5% polymorhonuclear 
neutrophils (PMN) in the cytobrush sample were classified as being affected with clinical endometritis 
5 Hyperketonaemic: Serum concentrations of BHB on DIM 3, 5, and 8 at least once ≥ 1.2 mM 
1 – 5 the classification with the underlying assessments was described in detail by Süss et al. (2019) 
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Supplemental Table S4. List of the matched metabolites for the Metabolomics analysis performed using PiMP. The 
analysis on the BC loss led to the identification of 76 metabolites for the Batch 1 and 82 metabolites for the Batch 2, 
whilst the analysis of the Control vs Methionine supplemented diet led to the identification of 65 metabolites. 

Peak ID Name Formula 

BC Loss Batch 1 
  

9 Betaine C5H11NO2 

10 Creatinine C4H7N3O 

21 L-Proline C5H9NO2 

24 L-Glutamine C5H10N2O3 

46 L-Leucine C6H13NO2 

51 L-Valine C5H11NO2 

58 L-Arginine C6H14N4O2 

63 L-isoleucine C6H13NO2 

65 Nicotinamide C6H6N2O 

66 L-Citrulline C6H13N3O3 

75 L-Phenylalanine C9H11NO2 

80 N(pi)-Methyl-L-histidine C7H11N3O2 

81 L-Carnitine C7H15NO3 

84 O-Acetylcarnitine C9H17NO4 

90 Choline C5H13NO 

103 beta-Alanine C3H7NO2 

103 L-Alanine C3H7NO2 

111 L-Methionine C5H11NO2S 

147 L-homoserine C4H9NO3 

147 L-Threonine C4H9NO3 

149 L-Tryptophan C11H12N2O2 

158 trans-4-Hydroxy-L-proline C5H9NO3 

158 5-Aminolevulinate C5H9NO3 

162 L-Tyrosine C9H11NO3 

185 L-Glutamate C5H9NO4 

185 O-Acetyl-L-serine C5H9NO4 

193 L-Ornithine C5H12N2O2 

216 L-Lysine C6H14N2O2 

222 Phenylacetylglycine C10H11NO3 

229 Glycine C2H5NO2 

292 N-Acetyl-D-glucosamine C8H15NO6 
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299 Isonicotinic acid C6H5NO2 

299 Nicotinate C6H5NO2 

300 Cytidine C9H13N3O5 

303 sn-glycero-3-Phosphocholine C8H20NO6P 

356 Pantothenate C9H17NO5 

368 L-Asparagine C4H8N2O3 

690 D-Glucosamine C6H13NO5 

850 N-Acetylglutamine C7H12N2O4 

881 Adenine C5H5N5 

1133 (R)-Lactate C3H6O3 

1142 (R)-3-Hydroxybutanoate C4H8O3 

1143 citrate C6H8O7 

1189 5-Oxoproline C5H7NO3 

1254 (S)-Malate C4H6O5 

1290 Taurine C2H7NO3S 

1325 L-Serine C3H7NO3 

1499 allantoin C4H6N4O3 

1503 sucrose C12H22O11 

1503 Maltose C12H22O11 

1572 D-glucose C6H12O6 

1572 D-Fructose C6H12O6 

1588 Uridine C9H12N2O6 

1616 (R)-2-Hydroxyglutarate C5H8O5 

1636 D-Gluconic acid C6H12O7 

1662 Deoxyuridine C9H12N2O5 

1698 Phthalate C8H6O4 

1702 Pyruvate C3H4O3 

1706 thymine C5H6N2O2 

1727 Oxalate C2H2O4 

1789 Methylmalonate C4H6O4 

1789 Succinate C4H6O4 

1868 D-Galacturonate C6H10O7 

1890 Maleic acid C4H4O4 

1932 D-Erythrose C4H8O4 

1953 cis-Aconitate C6H6O6 
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1983 L-Aspartate C4H7NO4 

2046 Orotate C5H4N2O4 

2062 2-Methylcitrate C7H10O7 

2103 Itaconate C5H6O4 

2170 L-Kynurenine C10H12N2O3 

2185 Malonate C3H4O4 

2322 L-Cystine C6H12N2O4S2 

2335 L-2-Aminoadipate C6H11NO4 

2353 Methylcysteine C4H9NO2S 

2458 L-Cystathionine C7H14N2O4S 

BC Loss Batch 2 
  

10 Betaine C5H11NO2 

11 Creatinine C4H7N3O 

22 L-Glutamine C5H10N2O3 

25 L-Proline C5H9NO2 

29 L-Leucine C6H13NO2 

38 L-Valine C5H11NO2 

43 L-Arginine C6H14N4O2 

54 L-Citrulline C6H13N3O3 

63 L-isoleucine C6H13NO2 

66 L-Carnitine C7H15NO3 

69 O-Acetylcarnitine C9H17NO4 

70 L-Phenylalanine C9H11NO2 

78 N(pi)-Methyl-L-histidine C7H11N3O2 

84 beta-Alanine C3H7NO2 

84 L-Alanine C3H7NO2 

87 Choline C5H13NO 

92 L-Methionine C5H11NO2S 

120 Phenylacetylglycine C10H11NO3 

121 L-Tryptophan C11H12N2O2 

127 L-Tyrosine C9H11NO3 

128 trans-4-Hydroxy-L-proline C5H9NO3 

128 5-Aminolevulinate C5H9NO3 

153 L-Lysine C6H14N2O2 

169 L-Ornithine C5H12N2O2 
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181 4-Trimethylammoniobutanoate C7H15NO2 

182 Hypoxanthine C5H4N4O 

184 Inosine C10H12N4O5 

189 L-Glutamate C5H9NO4 

189 O-Acetyl-L-serine C5H9NO4 

204 L-Kynurenine C10H12N2O3 

214 Cytidine C9H13N3O5 

227 L-Asparagine C4H8N2O3 

227 Glycylglycine C4H8N2O3 

235 sn-glycero-3-Phosphocholine C8H20NO6P 

238 Glycine C2H5NO2 

370 Pyridoxal C8H9NO3 

505 cytosine C4H5N3O 

542 Pantothenate C9H17NO5 

623 Isonicotinic acid C6H5NO2 

623 Nicotinate C6H5NO2 

625 Imidazole-4-acetate C5H6N2O2 

967 L-Cystine C6H12N2O4S2 

993 N-Acetylglutamine C7H12N2O4 

1296 L-Cystathionine C7H14N2O4S 

1435 (R)-Lactate C3H6O3 

1437 (R)-3-Hydroxybutanoate C4H8O3 

1468 citrate C6H8O7 

1525 5-Oxoproline C5H7NO3 

1542 Taurine C2H7NO3S 

1549 (S)-Malate C4H6O5 

1550 Taurocholate C26H45NO7S 

1565 L-homoserine C4H9NO3 

1565 L-Threonine C4H9NO3 

1570 allantoin C4H6N4O3 

1597 (R)-2-Hydroxyglutarate C5H8O5 

1599 L-Serine C3H7NO3 

1670 D-glucose C6H12O6 

1806 D-Fructose C6H12O6 

1858 Uridine C9H12N2O6 
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1881 D-Gluconic acid C6H12O7 

1885 Orotate C5H4N2O4 

1910 thymine C5H6N2O2 

1917 Orthophosphate H3O4P 

1928 Pyruvate C3H4O3 

1933 2-oxobutanoate C4H6O3 

1935 Deoxyuridine C9H12N2O5 

1951 Methylmalonate C4H6O4 

1951 Succinate C4H6O4 

2000 D-Galacturonate C6H10O7 

2008 Oxalate C2H2O4 

2014 Maleic acid C4H4O4 

2016 L-Aspartate C4H7NO4 

2040 L-Rhamnose C6H12O5 

2280 D-Erythrose C4H8O4 

2332 D-Threose C4H8O4 

2369 Malonate C3H4O4 

2411 2-Methylcitrate C7H10O7 

2514 L-2-Aminoadipate C6H11NO4 

2646 Methylcysteine C4H9NO2S 

2714 N-acetyl-L-glutamate C7H11NO5 

2751 D-glucose 6-phosphate C6H13O9P 

2751 D-Fructose 6-phosphate C6H13O9P 

Diet 
  

8 Betaine C5H11NO2 

9 Creatinine C4H7N3O 

19 L-Proline C5H9NO2 

22 L-Glutamine C5H10N2O3 

41 L-Leucine C6H13NO2 

46 L-Valine C5H11NO2 

52 L-Arginine C6H14N4O2 

55 L-isoleucine C6H13NO2 

56 L-Citrulline C6H13N3O3 

62 L-Phenylalanine C9H11NO2 

66 N(pi)-Methyl-L-histidine C7H11N3O2 
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67 L-Carnitine C7H15NO3 

69 O-Acetylcarnitine C9H17NO4 

74 Choline C5H13NO 

78 beta-Alanine C3H7NO2 

78 L-Alanine C3H7NO2 

79 L-Methionine C5H11NO2S 

99 L-homoserine C4H9NO3 

99 L-Threonine C4H9NO3 

101 L-Tryptophan C11H12N2O2 

108 trans-4-Hydroxy-L-proline C5H9NO3 

108 5-Aminolevulinate C5H9NO3 

112 L-Tyrosine C9H11NO3 

125 L-Kynurenine C10H12N2O3 

126 L-Glutamate C5H9NO4 

126 O-Acetyl-L-serine C5H9NO4 

134 L-Ornithine C5H12N2O2 

150 L-Lysine C6H14N2O2 

160 Glycine C2H5NO2 

216 Cytidine C9H13N3O5 

218 sn-glycero-3-Phosphocholine C8H20NO6P 

273 Pantothenate C9H17NO5 

367 Imidazole-4-acetate C5H6N2O2 

495 D-Glucosamine C6H13NO5 

607 N-Acetylglutamine C7H12N2O4 

629 Adenine C5H5N5 

798 (R)-Lactate C3H6O3 

804 (R)-3-Hydroxybutanoate C4H8O3 

805 citrate C6H8O7 

822 5-Oxoproline C5H7NO3 

889 (S)-Malate C4H6O5 

891 Taurine C2H7NO3S 

907 L-Serine C3H7NO3 

993 allantoin C4H6N4O3 

1026 2-oxobutanoate C4H6O3 

1064 Uridine C9H12N2O6 
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1100 (R)-2-Hydroxyglutarate C5H8O5 

1157 D-Gluconic acid C6H12O7 

1196 Deoxyuridine C9H12N2O5 

1274 Pyruvate C3H4O3 

1276 thymine C5H6N2O2 

1287 Oxalate C2H2O4 

1330 Methylmalonate C4H6O4 

1330 Succinate C4H6O4 

1349 L-Asparagine C4H8N2O3 

1386 D-Galacturonate C6H10O7 

1391 Maleic acid C4H4O4 

1408 D-Erythrose C4H8O4 

1455 L-Aspartate C4H7NO4 

1500 Orotate C5H4N2O4 

1540 Itaconate C5H6O4 

1594 Malonate C3H4O4 

1694 L-Cystine C6H12N2O4S2 

1702 L-2-Aminoadipate C6H11NO4 

1720 Methylcysteine C4H9NO2S 
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Supplemental Table S5. List of serum proteins, ranked from most significant to least significant difference, when 
comparing fat (> 17 mm BFT-ap) and lean (< 13 mm BFT-ap) cows around 30 days pp before batch correction. 

Accession number Protein name logFC Adjusted 

 P-values 

Number of  

peptides 

A5PJ69;ENSEMBL:ENSBTAP00000013050 Serpina-10 -0,48837 0,027493064 19 

A0A3Q1MQV3;F1N3A1;Q28178;Q28194 Thrombospondin-1 0,612369 0,035821363 33 

A0A140T897 Albumin 0,329112 0,041883647 79 

P80195 Glycam-1 -0,42626 0,041883647 8 

Q0IIK2 Serotransferrin 0,282352 0,108636396 62 

A0A3Q1NJR8 Antithrombin-III -0,41649 0,108636396 42 

A0A3Q1LPG0 Uncharacterized 0,415912 0,152854686 16 

P28800 Alpha-2-antiplasmin -0,25557 0,161457242 28 

O46375 Transthyretin 0,530579 0,255958023 11 

A0A452DIP8;P00743 Coagulation factor X -0,25321 0,258126154 7 

Q95M17 Acidic mammalian chitinase -0,45715 0,285758818 6 

E1B805 Uncharacterized -0,23359 0,285758818 46 

Q7SIH1 Alpha-2-macroglobulin 0,153953 0,285758818 120 

G5E5V1 Ig-like domain-containing protein 0,341764 0,285758818 2 

P00735 Prothrombin 0,214239 0,285758818 18 

A0A3Q1LSR2;A0A3Q1MWQ1;Q2TBQ1 Coagulation factor XIII B chain 0,184355 0,288404294 7 

ENSEMBL:ENSBTAP00000024466 Uncharacterized 0,25933 0,288404294 24 

F1MU18 Oncostatin M receptor -0,23532 0,288404294 5 

A0A452DJK6;Q9TTE1 Serpin A3-1 0,214363 0,288404294 14 

A0A3Q1LJT1 Ig-like domain-containing protein 0,379165 0,288404294 4 
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Supplemental Table S6. List of 20 top proteins, ranked from most significant to least significant, when comparing fat (> 
17 mm BFT-ap) and lean (< 13 mm BFT-ap) cows around 30 days pp, after batch correction. 

Accession number Protein name logFC Adjusted 

 P-values 

Number  

of peptides 

O02659 Mannose-binding protein C -0,332704791 0,238923619 5 

A5PJ69;ENSEMBL:ENSBTAP00000013050 Serpina-10 -0,408026729 0,238923619 19 

A0A140T897 Albumin 0,310556949 0,238923619 79 

A0A3Q1MQV3;F1N3A1;Q28178;Q28194 Thrombospondin-1 0,619818428 0,238923619 33 

P80195 Glycam-1 -0,416668089 0,242044758 8 

Q0IIK2 Serotransferrin 0,262609702 0,3692708 62 

A0A3Q1LSR2;A0A3Q1MWQ1;Q2TBQ1 Coagulation factor XIII B chain 0,232170446 0,3692708 7 

A0A452DHX8 Amine oxidase 0,34725141 0,3692708 9 

E1BF81;ENSEMBL:ENSBTAP00000023402 Uncharacterized -0,386020093 0,3692708 13 

A0A3Q1NJR8 Antithrombin-III -0,359122724 0,389884694 42 

A0A452DHZ7;Q3T0E5 Adipocyte plasma  

membrane-associated protein 

0,312742937 0,389884694 6 

P80012 von Willebrand factor 0,397288548 0,389884694 5 

G5E5V1 Ig-like domain-containing protein 0,375108439 0,389884694 2 

A8E654;F1N6W9 COL18A1 protein 0,267779017 0,423381125 2 

P00735 Prothrombin 0,202152344 0,538574188 18 

O97764 Zeta-crystallin 1,082213139 0,580251316 2 

A0A3Q1LPG0 Uncharacterized 0,328847396 0,580251316 16 

F1N1I6;Q3SX14 Actin-depolymerizing factor 0,158086124 0,580251316 48 

A0A452DIP8;P00743 Coagulation factor X -0,210069018 0,580251316 7 

E1BFN6 Dihydropyrimidinase -0,418413614 0,580251316 2 
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