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Abstract

Machine learning methods for solving inverse problems require uncertainty estimation to be
reliable in real settings. While deep variational models offer a computationally tractable way
of recovering complex uncertainties, they need large supervised data volumes to be trained,
which in many practical applications requires prohibitively expensive collections with spe-
cific instruments. This thesis introduces two novel frameworks to train variational inference
models for inverse problems, in semi-supervised and unsupervised settings respectively. In
the former, a realistic scenario is considered, where few experimentally collected supervised
data are available, and analytical models from domain expertise and existing unsupervised
data sets are leveraged in addition to solve inverse problems in a semi-supervised fashion.
This minimises the supervised data collection requirements and allows the training of ef-
fective probabilistic recovery models relatively inexpensively. This novel method is first
evaluated in quantitative simulated experiments, testing performance in various controlled
settings and compared to alternative techniques. The framework is then implemented in
several real world applications, spanning imaging, astronomy and human-computer interac-
tion. In each real world setting, the novel technique makes use of all available information
for training, whether this is simulations, data or both, depending on the task. In each ex-
perimental scenario, state of the art recovery and uncertainty estimation were demonstrated
with reasonably limited experimental collection efforts for training. The second framework
presented in this thesis approaches instead the challenging unsupervised situation, where no
examples of ground-truths are available. This type of inverse problem is commonly encoun-
tered in data pre-processing and information retrieval. A variational framework is designed
to capture the solution space of inverse problem by using solely an estimate of the observa-
tion process and large ensembles of observations examples. The unsupervised framework is
tested on data recovery tasks under the common setting of missing values and noise, demon-
strating superior performance to existing variational methods for imputation and de-noising
with different real data sets. Furthermore, higher classification accuracy after imputation are
shown, proving the advantage of propagating uncertainty to downstream tasks with the new
model.
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Chapter 1

Introduction

Many things that we are interested in exploring, studying and understanding are not directly
observable to us. Distant astronomical objects, particles too small to record images of and
even our own inner body structure, are all objects we cannot see directly. However, through
substantial engineering efforts, we sometimes get partial and indirect observations of these
objects, such as emitted radiation intensities or projective measurements. Inverse problems
are the processes through which we use these observations to retrieve estimates of the hidden
objects. Many problems in computing, scientific research and engineering can be elegantly
posed as inverse problems. As a result, solving inverse problems has been a major area of
study in mathematics and computer science for decades and is the basis of several technolo-
gies, especially for sensing and information retrieval.

Traditionally, inverse problems are approached by constructing analytical priors and obser-
vation models, reliant on domain expertise, and finding solutions which satisfy well both
observations and prior knowledge [1, 2]. Recently, as machine learning models developed
and data became increasingly available, learning approaches to solving inverse problems
emerged, providing largely superior performance and entirely new capabilities [3]. With
enough data available, one can train an inference model to map observations to hidden ob-
jects, drawing information directly from empirical experience, rather than analytically spec-
ified models and priors.

However, machine learning has important shortcomings and limitations that may not be cap-
tured by common inverse problem solving benchmarks in controlled environments. Their re-
liance on large data sets makes them expensive to apply in real world scenarios [3, 4, 5, 6, 7].
In addition, they often return compelling retrievals, because they are trained to return realistic
reconstructions from the training set [8, 9, 10]. This makes it difficult to identify mistakes,
with potentially critical consequences. This thesis studies and addresses these limitations,
designing learning frameworks for probabilistic machine learning models in two general
scenarios.
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1.1 Thesis Overview

In chapter 2, the general modelling of inverse problems is presented and classical methods
of solving them are reviewed, summarising the main ideas of iterative maximum a poste-
riori (MAP) inference and Bayesian inference. The main advances and types of models
for solving inverse problems with machine learning methods are then summarised, both in
supervised and unsupervised settings.

In chapter 3, a semi-supervised situation is studied, where examples of paired measurements
and ground-truth targets are scarce, while examples of targets alone are abundant and some
model of the observation process is available. This scenario is rather common in sensing
and imaging, as observations are obtained with the instruments and set-up of interest and
therefore are unique to the specific task at hand. Conversely, targets of interest tend to be
the same across many tasks. Examples include, natural images, skeletal tracking, medi-
cal images and others. This means that unlabelled examples are often available, or if they
need to be collected, they are relevant to different observation systems and therefore more
broadly applicable. In addition, for these physical observation processes, analytical approx-
imate models of how measurements are obtained from targets often exist, or can be built.
Such models constitute an additional source of information learning can benefit from. The
framework described in chapter 3 draws from all of these sources of information to train
a probabilistic learning model that can adequately capture the solution space of an inverse
problem with minimal supervised data collection requirements. This method was presented
in the article Variational Inference for Computational Imaging Inverse Problems [11], co-
authored with Jack Radford, Alex Turpin, Daniele Faccio and Roderick Murray-Smith. The
novel method is first tested in simulated experiments in chapter 3, where all experimental
conditions are controlled to test specific aspects of the frameworks and carry out compar-
isons with existing methods. In chapters 4 and 5, the proposed framework is then applied
to several practical applications, demonstrating the effectiveness of the new techniques and
their impact in different domains.

In chapter 4, the framework of chapter 3 is implemented to solve three computational imag-
ing inverse problems in Physics. In section 4.1, holographic image reconstruction is per-
formed with a variational learning model trained with the framework of chapter 3. This
task consists in recovering images which went through a physical Fourier transformation
from phase-less measurements. In section 4.2, objects embedded within a highly diffusive
medium are reconstructed from spatially and temporally resolved time-of-flight measure-
ments at the medium surface. The method of chapter 3 is used to train a variational recon-
struction model to recover embedded shapes using two different simulations, with different
cost-fidelity trade-offs. In section 4.3, components from the novel framework are used to
reconstruct parameters of astronomical bodies’ collisions, such as location in the sky and
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masses, from gravitational waves measurements recorded on earth. In this domain, the sim-
ulation of gravitational waves signal is rather accurate and is accepted by the community
as a sufficiently high-fidelity approximation. Therefore, in this domain, the inverse model
is directly trained with the analytical simulator as forward model. The application of the
models here presented to this domain was led by Hunter Gabbard and Chris Messenger and
co-authored with them, Ik Siong Heng and Roderick Murray-Smith [12].

In chapter 5, the framework of chapter 3 is applied in two human-computer interaction (HCI)
settings, reconstructing users’ physical interactions from limited sensor readings. In section
5.1, the scenario of finger pose recovery from capacitive screen reading is investigated. This
is a simple, but important and representative HCI example, where capacitive readings on a
10× 16 screen are used to infer the position and angle of incidence of the user’s finger. This
work was led by Roderick Murray-Smith and John H. Williamson, and co-authored with
Andrew Ramsay, Simon Rogers and Antoine Loriette [13]. In section 5.2, a more complex
setting is investigated, where hand gestures are reconstructed from radar signals recorded
with the Google Soli sensor. The framework of chapter 3 is used to train a probabilistic model
to reconstruct the gestures from Soli’s signals using supervised and unsupervised data, along
with a physical model of the radar sensing process. This work was done in collaboration with
the Google ATAP Soli team. The physical acquisitions were carried out by Andrew Ramsay
and the project was overseen by Roderick Murray-Smith and Nick Gillian (Google).

In chapter 6, the completely unsupervised scenario is studied, where no example of ground-
truth is available, but only a large ensemble of observations and a model describing the
observation process. This situation occurs often in data cleaning and pre-processing and
information retrieval. In chapter 6, it is shown how standard training frameworks for varia-
tional models often fail to capture uncertainty in the inverse model. Instead, a novel frame-
work, called the reduced entropy condition method, is proposed. The proposed framework
is demonstrated to have greatly improved ability to capture the uncertainty of reconstruc-
tion and capture the inverse model solution space. The framework is tested in the particular
situations of missing value imputation and de-noising, as these are the most commonly en-
countered in this unsupervised data recovery scenario. This framework was presented in the
article Tomographic Auto-Encoder: Unsupervised Bayesian Recovery of Corrupted Data

[14], co-authored with Pablo G Moreno, Andreas Damianou and Roderick Murray-Smith.
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1.1.1 Publications Summary

The material that constitutes this thesis was presented in several publications. These are
summarised below.

• [11] Tonolini, F., Radford, J., Turpin, A., Faccio, D., & Murray-Smith, R. (2020).
Variational inference for computational imaging inverse problems. Journal of Machine
Learning Research (JMLR), 21(179), 1-46.

• [12] Gabbard, H., Messenger, C., Heng, I. S., Tonolini, F., & Murray-Smith, R. (2019).
Bayesian parameter estimation using conditional variational autoencoders for gravitational-

wave astronomy, Nature Physics, vol. 18, no. 1, pp. 112–117, 2022.

• [14] Tonolini, F., Moreno, P. G., Damianou, A., & Murray-Smith, R. (2021, May).
Tomographic Auto-Encoder: Unsupervised Bayesian Recovery of Corrupted Data. In
International Conference on Learning Representations (ICLR).

• [13] Murray-Smith, R., Williamson, J. H., Ramsay, A., Tonolini, F., Rogers, S. &
Loriette, A. (2021) Forward and Inverse models in HCI:Physical simulation and deep

learning for inferring 3D finger pose, arXiv preprint arXiv:2109.03366, 2021.
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Chapter 2

Background and Related Work

An inverse problem is broadly identified as one in which a quantity or object of interest is
not directly observed, but rather needs to be inferred algorithmically from one or more mea-
surements [15, 1]. Many recovery tasks fall within this definition, such as de-convolution
[16, 17], computed tomography (CT) [18], structured illumination imaging [19] and infor-
mation retrieval [20, 21]. Traditionally, such retrieval tasks are modelled as inverse problems,
where a target signal x ∈ Rn is measured through a forward model y = f(x), yielding ob-
servations y ∈ Rm. The aim is then to retrieve the signal x from the observations y [15, 1, 2].
In the following subsections, the main advances in solving inverse problems are reviewed,
starting from linear models and user defined regularisation functions, to then focus on more
recent applications of learning based methods.

2.1 Linear models and Hand-crafted Priors

In many inverse problems, the forward observation model can be approximately described
as a linear operator A ∈ Rm×n and some independent noise ϵ ∈ Rm [1, 22], such that the
measurements y are assumed to be generated as

y = Ax+ ϵ. (2.1)

The noise ϵ is often modelled with simple statistics, such as Gaussian or Bernoulli distribu-
tions, depending on the observation setting. This choice of forward model is computationally
advantageous for retrieval algorithms, as it can be run efficiently through a simple linear pro-
jection, and is often a sufficiently good approximation to the “true” observation process, as
projective measurements are usually close to linear in many different settings, from imaging
to matrix completion.
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The difficulty in retrieving the observed signal x from an observation y in this context de-
rives from the fact that in many inverse problems of interest the operator A is often poorly
conditioned and consequentially the resulting inverse problem is ill-posed. Put differently,
the inverse A−1, or pseudo inverse (ATA)−1 is not well-defined and small errors in y result
in large errors in the naive estimation x ≃ A−1y. To overcome this issue, the classical ap-
proach is to formulate certain prior assumptions about the nature of the target x that help in
regularising its retrieval.

2.1.1 Maximum a Posteriori Inference

A widely adopted framework is that of maximum a posteriori (MAP) inference with ana-
lytically defined prior assumptions. The aim is to find a solution which satisfies the linear
observations well, while imposing some properties which the target x is expected to retain.
Under Gaussian noise assumptions, the estimate of x is recovered by solving a minimisation
problem of the form

argmin
x

1

2
||Ax− y||2 + λh(x), (2.2)

where || · || indicates the Euclidean norm, λ is a real positive parameter that controls the
weight given to the regularisation and h(x) is an analytically defined penalty function that
enforces some desired property in x. For example, in the case of images, it is common to
assume that x is sparse in some basis, such as frequency or wavelets, leading to ℓ1-norm
penalty functions of the form h(x) = ||Wx||1, where W is a unitary operator which maps x
to a sparse basis [22, 23, 24]. A second notable example is that of low rank in matrix com-
pletion settings h(x) = ||sv(x)||1, where sv(x) indicates the singular values of x reshaped
in a matrix form [25, 26]. For such choices of penalty, and other common ones, the objective
function of equation 2.2 is convex. This makes the optimisation problem solvable with a va-
riety of efficient methods [22, 27] and provides theoretical guarantees on the recoverability
of the solution [28].

The aforementioned framework has been widely applied to solve inverse problems. For in-
stance, many image restoration tasks, such as de-blurring, up-sampling and in-painting have
been formulated as ill-conditioned linear inverse problems and are solved as described above
[29]. Various more complex sensing models can also be cast as linear operators, leading to
the use of constrained optimisation in several systems that rely on ill-posed observations,
such as sparse CT [18], single pixel photography [30] and imaging of objects hidden from
view [31]. Figure 2.1 shows an example of reconstruction from a CT scan using constrained
minimisation with the total variation (TV) norm as regulariser. The reconstruction greatly
improves when inserting domain prior knowledge to regularise reconstruction. In this case,
as for many imaging applications, the assumption is that the target image is smooth and
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Figure 2.1: Example of reconstruction using constrained minimisation on a CT scan taken
from [32]. The bottom row shows enlarged central sections of the images on the top row.
a) ground truth, b) unconstrained minimisation reconstruction, c) constrained minimisation
with TV norm.

therefore displays a low TV norm.

2.1.2 Bayesian Inference

MAP inference aims at recovering a single optimal solution to a given inverse problem.
While such retrieval is arguably useful in many settings, it is not a complete description
of the solution space. For a given ill-posed inverse problem there may be many solutions
that satisfy similarly well the observed measurements and the prior assumptions. To capture
the variability of such solution spaces, hence implicitly estimating reconstruction errors, the
inverse problem can be cast as a Bayesian inference task; given an observation likelihood
p(y|x) and a signal prior p(x), the aim is to retrieve the posterior PDF of solutions

p(x|y) = p(y|x)p(x)
p(y)

, (2.3)

where p(y) =
∫
p(y|x)p(x)dx is the marginal likelihood of measurements. If the observation

likelihood is assumed to be a Gaussian PDF p(y|x) = exp(−||Ax−y||2/2σ2) and the prior is
chosen to be an exponential distribution p(x) = exp(−λh(x)), the minimisation of equation
2.2 is equivalent to maximising the posterior probability of equation 2.3 with respect to
x, which is the definition of MAP inference in Bayesian settings [33]. Estimating the full
distribution of solutions p(x|y) is generally much harder than simply finding its maximum
through MAP inference. In fact, exact inference of the posterior is intractable for most
inverse problems of interest.

Approximate inference for the aforementioned problem has been approached in different



2.2. Supervised and Semi-Supervised Settings 8

ways. A popular class of methods in settings of limited dimensionality is that of inference
through Markov chain Monte Carlo (MCMC) processes, with different choices of conditional
sampling having been proposed [34, 33, 35, 36, 37]. In these approaches, the posterior PDF
p(x|y) is estimated through chains of samples, where each sample is chosen conditioned on
the previous such that the distribution of samples as their number increases approaches the
true target one [34]. Several choices of conditional sampling have been proposed for accurate
estimation in different types of inverse problems [33, 35, 36, 37]. Despite their guarantees
of convergence to accurate approximations, MCMC methods are often prohibitively expen-
sive for many problems, such as imaging or information retrieval, as natural data of interest
is often rather high dimensional. A second class of approaches is that of variational infer-
ence. These methods aim to use a tractable parametric PDF to approximate the true posterior
p(x|y) [38, 39]. The parameters of the approximate model are optimised to best match the
intractable posterior [38, 39]. Though they do not provide the same guarantees as MCMC
methods, these approaches are typically more efficient and have been explored with differ-
ent PDFs and optimisation techniques, especially in the context of computational imaging
[40, 41, 42].

2.2 Machine Learning for Solving Inverse Problems

in Supervised and Semi-Supervised Settings

The increasing availability of data sets and continuous advancements in learning inference
models enabled new possibilities for solving inverse problems. Learning from real examples
allows to derive retrieval models directly from empirical experience, instead of relying on
analytically defined priors and observation processes. In some cases, this is done over a
direct mapping between observations and targets, while in others it is limited to capturing
prior knowledge about the target signals. The main classes of machine learning methods for
solving inverse problems are reviewed below.

Learning Inverse Mappings

Most learning approaches can arguably be described as inverse mapping models; with enough
example pairs available, a neural network can be trained to directly recover a signal x from
observations y [3]. Many neural architectures of this type have been developed to perform
different reconstruction tasks. For imaging and image processing tasks, convolutional neural
networks are popular choices due to their ability to capture local pixel dependencies in im-
ages [43, 32]. These models are trained solely with paired examples of observed targets X∗

as outputs and corresponding observations Y ∗ as inputs. These target-observation pairs are
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Figure 2.2: Learning inverse mappings. Schematic representation of the training (top) and
inference (bottom) procedures typically adopted when directly applying neural networks to
solving inverse problems. Empirically collected or simulated targets X∗ and corresponding
measurements Y ∗ are used to train a neural network. During inference, new measurements
yj are used as inputs to the trained neural network which returns an estimate of the corre-
sponding target xj as output.

collected from either experimental acquisitions or numerical simulations. Once the model
is trained, a new empirical observation yj can be mapped to the corresponding target recon-
struction estimate xj [3]. Figure 2.2 schematically illustrates the general framework.

Directly learning inverse mappings retains a number of advantages compared to analytical
methods. First, the model is trained with a set of ground-truths the target solution is assumed
to belong to, implicitly making the signal assumptions more specific than, for example, spar-
sity in some basis. Second, the observation model f(x) is not constrained to be linear, or
even differentiable; so long as a large number of signal-observations pairs is available the
network can be trained to perform the inversion. Third, once the model is trained, infer-
ence is non-iterative and thus typically much faster, allowing elaborate imaging systems to
retrieve reconstructions in real time and even at video rate.

State of the art performance has been demonstrated with specifically designed neural net-
works models in many common image processing tasks, such as deconvolution and super-
resolution [44, 45], as well as signal recovery from under determined projective measure-
ments [46]. Neural networks have also been used to perform entirely new forms of imaging,
learning from measured target-observations pairs in situations where the observation model
or signal prior can not be explicitly defined and consequentially analytical methods are not
applicable. Notable examples include inferring depth maps from RGB photographs [47], re-
covering natural images from hand drawings [48] and pose estimation with single cameras or
radio reflections [49, 50]. However, learned inverse mappings for solving inverse problems
retain two main problems. The first is that their accuracy of inference is entirely dependent
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on the available training targets and observations, leading to the need of carrying out lengthy
data collections or numerical simulations to ensure robustness. The second is that it is dif-
ficult to asses the reliability of a given reconstruction; the trained neural network returns
a deterministic estimate of the target that is usually in the range of the training examples,
making it difficult to recognise unsuccessful recovery.

2.2.1 Iterative Inference with Learned Priors

A second class of learning methods that is conceptually closer to analytical techniques is
that of MAP inference with learned prior knowledge. The general idea is to exploit a differ-
entiable analytic observation model to maximise the agreement with recorded observations,
as in traditional MAP inference, but build the regularising prior empirically, learning from
examples of expected signals [51]. The prior assumptions can be captured and induced in
different ways. One option is to train a function H(x) to quantify how much a target x is ex-
pected to belong to a given set of training examples. The solution is then found by iteratively
solving the minimisation problem

argmin
x

1

2
||Ax− y||2 + λH(x), (2.4)

whereA is a linear operator describing the observation process. Different choices of function
H(x) have been explored in recent works. One such choice is to train a discriminatorD(x) to
recognise targets which belong to the training class and then setting H(x) = s(log(D(x))),
where s( · ) is a Sigmoid function [52]. One other popular choice is to train a de-noising
function N(x) on the set of expected targets and then use the distance between a target and
its de-noised equivalent H(x) = ||x − N(x)|| [53, 54, 55]. Figure 2.3 schematically shows
this framework. Machine learning has also been implemented to train optimisation methods
to solve the minimisation of equation 2.4. In fact, the iterative update of the solution x

through the optimisation procedure in these settings is often interpreted as a recurrent neural
network [56, 57]. In such a way, the iterative inference precision is empirically adjusted to
the specific inversion task, hence gaining in efficiency and accuracy [58].

A second framework to infer learned properties in iterative MAP inference is that of con-
strained minimisation with generative models. In these techniques, a generative model, such
as a generative adversarial network (GAN) or a variational auto-encoder (VAE), is trained
with a data set of expected targets, resulting in a generator G(z) that can synthesise artificial
examples x in the range of interest from low-dimensional latent noise variables z. The so-
lution target is then assumed to be synthesised by such generator, resulting in the following
minimisation
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Figure 2.3: Illustration of learning penalty functions for solving inverse problems. During
training, a denoiser or discriminator is trained with a data set of expected targets. Dur-
ing inference, the target reconstruction is obtained by optimising x to jointly minimise the
cost function of the denoiser/discriminator and discrepancy with the observed measurement
through an analytic observation model.

argmin
z

1

2
||A ·G(z)− y||2. (2.5)

In such a way, the solution is constrained to be within the domain of the generative model,
as the recovered x is by definition generated from z, while at the same time agreement to
the measurements is induced by minimising the distance to the observations y. Iterative
inference with generative models has been demonstrated for linear observation processes
and phase-less linear observation processes [51, 59, 60]. Figure 2.4 schematically illustrates
this framework.

MAP inference with learned prior methods do eliminate the problem of data collection, as
training is performed using solely examples of targets, while the nature of observations is
incorporated through an analytically defined model [52]. However, compared to learning
inverse mappings, it comes with significant drawbacks. Firstly, the target-observations re-
lationship is described entirely by an analytical model, sacrificing the desirable ability of
machine learning to generalise mappings from empirical evidence. Secondly, these methods
infer a solution to an inverse problem iteratively, excluding real time reconstruction applica-
tions. Furthermore, like learned inverse mappings, the solutions returned are deterministic,
hence making it difficult to assess the reliability of a reconstruction.
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Figure 2.4: Illustration of constrained minimisation with generative models. During train-
ing, a latent variable generative model, such as a GAN or VAE, is trained with a data set
of expected targets. During inference, the target reconstruction is obtained by optimising
the latent variable z to maximise fidelity to the observed measurement through an analytic
observation model.

2.2.2 Conditional Generative Models

A promising direction to overcome the reliability problem is that of conditional genera-
tive models; instead of learning a deterministic mapping from observations to single recon-
structions, a generative model is trained to generate different targets conditioned on given
observations. The generation of multiple solutions from the same measurements can be
probabilistically interpreted as sampling from the recovered posterior distribution. From
these samples, uncertainty metrics, such as mean and standard deviation, can be inferred
and consequentially the expected reconstruction error can be estimated. These measures of
uncertainty can be propagated through further processing steps, greatly improving the reli-
ability of automated decisions or visualised in different ways to provide error descriptions
upon human inspection. Figure 2.5 schematically illustrates this type of model.

Recent advances in variational methods and adversarial models allow to train efficiently ap-
proximate inference through generative models that scale to the dimensionalities and num-
bers of examples typically needed for tasks of interest, such as image reconstruction [61,
62, 63]. Building upon these advancements, different conditional generative models have
been developed in recent years, with the most commonly adopted being conditional Gen-
erative Adversarial Networks (CGANs) and conditional variational auto-encoders (CVAEs)
[64, 65, 66].

Conditional generative models have been applied to perform a range of inference tasks, such
as classification [65], generation conditioned on classes [66, 67], image-from-text inference
[68, 69] and missing value imputation [70, 71]. Within computational imaging, they have
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Figure 2.5: Illustration of conditional generative models. During training, the conditional
latent variable generative model, such as a GAN or VAE, is trained with a data set of paired
targets and observations used as conditions. During inference, the trained conditional en-
coder outputs a latent distribution. This distribution is sampled to obtain different latent
variables z, which are then used as inputs to the generator. For each latent variable, the gen-
erator outputs a different realisation of the expected target.

been largely restricted to inference from simple deterministic observation, such as missing
pixels or down-sampling [66, 72], with the exception of recent work by [8], in which a
specifically designed GAN model is used to retrieve medical images from CT scans. The
direct application of conditional generative models for solving inverse problems is challeng-
ing because of the large data volumes requirements. Conditional generative models, in their
common form, need a large number of target-condition pairs to train upon. In many inverse
problems settings, this translates to the need of obtaining a large number of sufficiently ac-
curate target-observation examples, which are often unique to environmental conditions or
instrumentation and hence expensive to collect.

2.2.3 Semi-Supervised Conditional Generative Models

Another closely related extension of generative models is that of semi-supervised learning
with generative models. Similarly to conditional generative models, these methods introduce
conditions on their generations, but are able to train with data sets where conditions are
only available for a portion of the examples [73, 74, 75]. They achieve this by introducing



2.3. Machine Learning for Solving Inverse Problems in Unsupervised Settings 14

auxiliary models that map inputs to conditions and are trained jointly with the generator.
The auxiliary model is usually a neural network itself and acts as an extra encoder, mapping
targets to corresponding measurements or labels, which in turn are used by the generator as
conditions or latent variables to generate samples. The standard encoder and generator are
trained with the all data, supervised and unsupervised, as they only rely on the presence of
targets. The auxiliary model is instead trained with the labelled portion of the data, as it maps
targets to corresponding labels. In most cases, the auxiliary model is a classifier, which is
trained jointly with a class-conditional generator.

In some sense, one of the main frameworks presented in this thesis belongs to this class of
methods, as the forward model component plays an analogous role to the auxiliary model in
these systems, with some important differences that are discussed in section 3.

2.3 Machine Learning for Solving Inverse Problems

in Unsupervised Settings

A particularly challenging, yet common setting is that of unsupervised recovery. In these
situations, no example of target ground-truths is available, but only large data sets of ob-
servations and some knowledge of the observation process. For instance, one such case is
that of matrix completion in information retrieval [20, 25, 26]. In this setting, examples of
complete vectors are often not available and one can only rely on a large set of vectors with
missing values and knowledge of which entries are missing, e.g. the observation process.

2.3.1 Unsupervised Bayesian Recovery

Reconstructing posteriors in the unsupervised case is largely still an open problem. However,
several tasks that fall within this definition have been recently approached with Bayesian
machine learning methods. Arguably the most investigated is de-noising, i.e., given a noisy
data set alone, we wish to train a model to return clean samples. Several works solve this
problem by exploiting the natural tendency of neural networks to regularise outputs [76, 77,
78]. Other methods build LVMs that explicitly model the noise process in their decoder,
retrieving clean samples upon encoding and generation [79, 80].

A second notable example is that of missing value imputation. Corrupted data corresponds
to samples with missing entries. Recent works have explored the use of LVMs to perform
imputation, both with GANs [81, 82, 83] and VAEs [84, 85, 86, 87]. In the former, the
discriminator of the GAN is trained to distinguish real values from imputed ones, such that
the generator is induced to synthesise realistic imputations. In the latter, the encoder of a VAE
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Figure 2.6: Illustration of general framework to perform reconstruction in unsupervised set-
tings (VAE version). During training, the encoder returns latent space distributions from
measurements and the decoder takes latent variables z as inputs and generates targets real-
isations. The generated targets are mapped back to observations through a known observa-
tion model, e.g. zeroing out missing entries, in order to optimise data likelihood. During
inference, a new observation is passed through the encoder and then decoder to generate a
reconstructed target.

maps incomplete samples to a latent space, to then generate complete samples. Successful
unsupervised Bayesian missing value imputation has also been demonstrated with neural
processes, where a global latent representation is learned to generate input-output models
used to impute in each example [88].

Finally, Bayesian LVM methods have been used on other unsupervised tasks that can be cast
as special cases of data recovery problems. Amongst these, we find Multi-view generation
[89, 90], where the target clean data includes all views for each samples, but the observed
data only presents subsets. Blind source separation can also be cast as a recovery problem
and has been approached with GANs and VAEs [91, 92]. Figure 2.6 schematically show the
general framework with a VAE architecture.

These models proved to be successful at reconstructing data in their specific domain. How-
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ever, as part of the work in this thesis, it is shown in section 6.1.1 how exploiting a standard
VAE inference structure, similarly to several of the aforementioned methods, often leads to
posteriors of clean data that collapse on single estimates, sacrificing the probabilistic capa-
bility of LVMs.

2.4 Multi-Fidelity Bayesian Models

An important aspect of solving inverse problems with empirical learning methods treated
throughout this thesis is the modelling of accurate forward observation processes. These are
often estimated with some degree of accuracy with analytical models, but are better repre-
sented by the empirical data, where available. The availability of limited but very accurate
forward process realisations through empirical data and readily available, but less accurate
ones through analytical models is a setting often approach with a class of methods called
multi-fidelity models.

Multi-fidelity methods exploit both highly accurate but expensive data and less accurate but
cheaper data to maximise the accuracy of model estimation while minimising computational
cost [93]. In multi-fidelity Bayesian inference, the most accurate predictions, or high-fidelity
outputs, are considered to be draws from the underlying true density of interest and the aim is
to approximately recover such high-fidelity outputs from the corresponding inputs and low-
fidelity outputs of some cheaper computation [94]. Within Bayesian approaches to solve
inverse problems, multi-fidelity models have been used to minimise the cost of estimating
expensive forward processes, in particular with MCMC methods to efficiently estimate the
likelihood at each sampling step [95].

In Bayesian optimisation settings, the difference between high and low fidelity predictions
is commonly modeled with Gaussian processes, where approximate function evaluations are
made cheap by computing low-fidelity estimates and subsequently mapping them to high-
fidelity estimates with a Gaussian process [96, 97]. In many inverse problems settings ex-
plored throught this thesis, Gaussian process multi-fidelity models are difficult to apply, as
the available volume of data and the dimensionality of the targets and observations are poten-
tially very large. Recent work by [98] proposes to model high-fidelity data with conditional
deep generative models, which are instead capable of scaling to the volumes and dimension-
alities needed in many of these applications. The multi-fidelity component of the framework
presented here follows these ideas and exploits a deep CVAE to model high fidelity data
when inferring an accurate forward observation process.
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Chapter 3

Semi-Supervised Variational
Inference for Inverse Problems

Solving inverse problems is one of the most important yet challenging forms of algorithmic
information retrieval, with applications in Medicine, human-computer interaction (HCI), As-
tronomy and more. Bayesian machine learning methods are an attractive route to solve in-
verse problems, as they retain the advantages of learning from empirical data, while improv-
ing reliability by inferring uncertainty [8, 9]. However, fitting distributions with Bayesian
models requires large sets of training examples [10]. This is particularly problematic in imag-
ing and HCI settings, where measurements are often unique to specific instruments, resulting
in the necessity to carry out lengthy and expensive acquisition experiments or simulations to
collect training data [3, 4]. Consider, for example, the task of reconstructing three dimen-
sional environments from LIDAR measurements. Applying machine learning to this task
requires data, in particular, paired examples of 3D environments and signals recorded with
the particular LIDAR system to be employed. This means that, in principle, each LIDAR
system being developed for this task requires its own extensive data set of paired examples
to be collected, rendering the use of machine learning extremely impractical.

This chapter introduces a novel framework to train conditional variational models for solving
inverse problems leveraging in combination:

1. A minimal amount of experimentally acquired or numerically simulated ground truth
target-observation pairs.

2. An inexpensive analytical model of the observation process from domain expertise.

3. A large number of unobserved target examples, which can often be found in existing
data sets.
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In such a way, trained variational inference models benefit from all accessible useful data as
well as domain expertise, rather than relying solely on specifically collected training inputs
and outputs. Recalling the LIDAR example given above, the proposed method would allow
the joint utilisation of limited collections with the specific LIDAR instrument, a physical
model of LIDAR acquisition and any number of available examples of 3D environments to
train machine learning models. In this chapter, the novel framework is derived with Bayesian
formulations, interpreting the different sources of information available as samples from or
approximations to the underlying hidden distributions.

To address the expected scarcity of experimental data, the novel training strategy adopts a
variational semi-supervision approach. Similarly to recent works in semi-supervised VAEs,
an auxiliary model is employed to map abundantly available target ground-truths to corre-
sponding measurements, which are, in contrast, scarce [73, 74, 75]. The framework is named
variational inference for computational imaging (VICI), as it was initially developed and
demonstrated for imaging problems in [11]. However, as it is demonstrated in chapters 4 and
5, it is broadly applicable to different types of inverse problems. Figure 3.1 schematically
illustrates the framework and its components.

Compared with previous work on semi-supervised generative models inference [73, 74, 75],
the proposed framework introduces two important differences, specifically adapting to in-
verse problems with high-dimensional targets and observations:

i The auxiliary function incorporates a physical observation model designed with domain
expertise. In many settings, especially within imaging and HCI, the Physics of how
targets map to corresponding measurements is well understood and described by closed
form expressions. These are used to improve the quality of a reconstruction system.

ii Instead of training the two models simultaneously, a forward model is trained first and
then employed as a sampler in training the reconstruction model. This choice is made
to avoid that synthetic measurements, i.e. predicted by the auxiliary system, contain
more information about the targets than those encountered in reality. While this is not
a critical problem for most semi-supervised systems, as auxiliary models often predict
low-dimensional conditions such as labels, it very much arises in imaging settings, where
these conditions are instead measurements that have comparable or even higher dimen-
sionality than the targets. This high dimensionality of the conditions allows a system
training the two models jointly to pass rich information through the synthetic measure-
ments in order to maximise training reconstruction likelihood. By training the forward
process separately instead, this auxiliary model is induced to maximise fidelity to real
measurements alone, essentially providing an emulator.

In section 3.3, the proposed framework is quantitatively evaluated in simulated image recov-
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1

Figure 3.1: Proposed framework for training variational inference with diverse sources of
information accessible for solving inverse problems, illustrated with a de-blurring example.
a) Firstly, a multi-fidelity forward model is built to generate experimental observations. A
variational model is trained to reproduce experimental observations Y ∗ from experimental
ground truth targets X∗, exploiting simulated predictions ỹ given by some analytical obser-
vation model defined with domain expertise.
b) A CVAE learns to solve the inverse problem from a large data set of target examples
X with a training loop; target examples x are passed through the previously learned multi-
fidelity forward model to generate measurements y, which are used as conditions for training
the CVAE to generate back the targets x. This way, a large number of ground truth targets
can be exploited for learning, without the need for associated experimental measurements.
c) The trained CVAE can then be used to draw different possible solutions xj,i to the inverse
problem conditioned on a new observation yj .

ery experiments, making use of the benchmark data sets CelebA and CIFAR10 [99, 100].
In these experiments, different common transformations are applied to the images, includ-
ing Gaussian blurring, partial occlusion and down-sampling. Image recovery is then per-
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formed with variational models. The novel training framework proved significantly advan-
tageous across the range of tested conditions compared with standard training strategies.
Furthermore, reconstructions were found to consistently benefit from both improved analyt-
ical models and increasing number of simulated experimental acquisitions, demonstrating
the ability of the novel framework to exploit in combination different types of data and do-
main expertise. Throughout chapter 4, the proposed technique is implemented in various real
applications, making use of experimentally collected imaging and HCI data.

Differently from previous approaches, the proposed variational framework is built to learn
from all the useful data and models typically available in applied inverse problems. In the
following subsections the problem of Bayesian learning in this context is defined and the
components of the proposed variational learning method are derived and motivated.

3.1 Problem Description

3.1.1 The Bayesian Inverse Problem

The aim of solving an inverse problem is to recover a hidden target xj ∈ RN from some
associated observed measurements yj ∈ RM . In the Bayesian formulation, the measurements
yj are assumed to be drawn from an observation distribution p(y|xj) and the objective is to
determine the posterior p(x|yj); the distribution of all possible reconstructions. Following
Bayes’ rule, the form of this posterior is

p(x|yj) =
p(yj|x)p(x)

p(yj)
. (3.1)

The observation distribution p(y|x), often referred to as the data likelihood, describes the
observation process, mapping targets to measurements. Given any ground truth target xi
the corresponding measurements that are physically recorded yi are draws from the data
likelihood yi ∼ p(y|xi). The prior distribution p(x) models the assumed knowledge about
the targets of interest. This PDF is the distribution of possible targets prior to carrying out
any measurement. Finally, the marginal likelihood p(y) =

∫
p(x)p(y|x)dx is the distribution

of all possible measurements y. The goal of variational inference is to learn a non-iterative
approximation to the true intractable posterior distribution of equation 3.1 for arbitrary new
observations yj . That is, learning a parametric distribution rθ(x|y) which well approximates
the true posterior p(x|y) for any new observation yj ∼ p(y) and from which one can non-
iteratively draw possible reconstructions xj,i ∼ rθ(x|yj).
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3.1.2 Information Available in Semi-Supervised Settings

For inverse problems relying on instrumentation specific measurements, such as imaging and
HCI, there are generally three main sources of information that can be exploited to obtain the
best estimate of the target posterior. The first is empirical observations. Physical experiments
to collect sets of ground-truth targets X∗ ∈ RN×K and associated observations Y ∗ ∈ RM×K

can be recorded with the imaging apparatus of interest. The number of these acquisitions
K is normally limited by the time and effort necessary for experimental preparation and
collection, or alternatively by computational cost, if these are obtained through numerical
simulations. However, empirical target-observation pairs are the most accurate evaluation of
the true observation process and therefore can be very informative. A recorded observation
yk ∈ Y ∗ obtained when imaging a target xk ∈ X∗ can be interpreted as a sample from the
true data likelihood yk ∼ p(y|xk).

The second source of information is domain expertise. The measurement process, map-
ping targets to observations, is described by a physical phenomenon. With knowledge of
such phenomenon, one can construct a functional mapping, normally referred to as forward
model, which computes observations’ estimates ỹ from targets x. For instance, many ob-
servation processes in imaging settings can be approximately modelled by a linear transfor-
mation and independent Gaussian or Poisson noise [22]. It is clearly infeasible to obtain
analytical models that perfectly match reality. However, an analytical forward model can
provide inexpensive approximations ỹ to the true observations y that can be computed for
any target x. In the Bayesian formulation, a forward model can be interpreted as a closed
form approximation p(ỹ|x) to the true data likelihood p(y|x).

Lastly, many examples of the targets of interest X ∈ RN×L are often available in the form
of unlabelled data sets. Because collection of this type of data is independent of the imag-
ing apparatus, the number of available examples L is expected to be much greater than the
number of empirical acquisitions K. For example, many large image data sets containing
relevant targets for imaging applications are readily available and easily accessible. These
target examples xl ∈ X can be interpreted as draws from the prior distribution xl ∼ p(x). In
summary, the available sources of information are

• Limited sets of ground-truth targetsX∗ = {xk=1:K} and associated observations Y ∗ =

{yk=1:K}, the elements of which are point samples of the true data likelihood yk ∼
p(y|xk).

• An analytical forward model providing a closed form approximation for the true data
likelihood p(ỹ|x) ≈ p(y|x).

• A large set of target examplesX = {xl=1:L} corresponding to prior samples xl ∼ p(x),
where L≫ K.
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The framework described throughout this chapter aims at learning the best possible approx-
imate distribution rθ(x|y) by exploiting all the available sources of information described
above.

3.2 Multi-Fidelity Forward Modelling

Before training the inversion, an approximate observation distribution pα(y|x) is trained to
fit the true data likelihood p(y|x). Learning this observation distribution first allows effective
incorporation of domain expertise, as in inverse problems this is usually available in the form
of an analytical forward model. Furthermore, training the observation model is expected to
require far fewer training input-output pairs than training the corresponding inversion, as
most forward models are well-posed, while the corresponding inverse problems are often ill-
posed. A good approximation to the data likelihood pα(y|x) can therefore be learned with a
much lower number K of experimental ground-truth targets X∗ and measurements Y ∗ than
would be required to train a good approximate posterior rθ(x|y) directly.

In order to make use of the analytical approximation p(ỹ|x), hence incorporating domain
expertise in the training procedure, the approximate observation distribution is chosen as

pα(y|x) =
∫
p(ỹ|x)pα(y|x, ỹ)dỹ. (3.2)

In such a way, the inference of a measurement y, a high-fidelity prediction, from a target
x can exploit the output ỹ of the analytical forward model p(ỹ|x), which instead is con-
sidered a low-fidelity prediction. The parametric component to be trained is then the con-
ditional pα(y|x, ỹ), which returns high-fidelity sample measurements y from targets x and
low-fidelity predictions ỹ.

In many inverse problems, especially in imaging and HCI, measurements are high dimen-
sional and can present complicated posteriors that cannot be well captured by simple distri-
butions, such as Gaussians. To provide flexible inference in the general case, while retaining
efficiency of computation, the PDF pα(y|x, ỹ) is chosen to be a latent variable model of the
form

pα(y|x, ỹ) =
∫
pα1(w|x, ỹ)pα2(y|x, ỹ, w)dw. (3.3)

The two parametric distributions pα1(w|x, ỹ) and pα2(y|x, ỹ, w) are chosen to be Gaussian
distributions, the moments of which are outputs of neural networks with weights α1 and
α2 respectively.1 The model of equation 3.2 is then trained to fit the sets of experimental
ground-truth targets and measurementsX∗ and Y ∗, as these are point samples of the true data

1The distribution pα2
(y|x, ỹ, w) can alternatively be chosen to match some other noise model if the obser-

vation noise is known to be of a particular type, such as Poisson or Bernoulli.
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likelihood of interest yk ∼ p(y|xk). The optimisation to be performed is the log likelihood
maximisation

argmax
α1,α2

log pα(Y
∗|X∗) =

K∑
k=1

log

∫
p(ỹ|xk)

∫
pα1(w|xk, ỹ)pα2(yk|xk, ỹ, w)dwdỹ.

(3.4)
Due to the integration over latent variables w, the maximisation of equation 3.4 is intractable
to directly perform stochastically. However, problems of this type can be approximately
solved efficiently with a variational auto-encoding approach, in which a parametric recog-
nition model is used as a sampling function [61, 65]. The VAE formulation for the multi-
fidelity model is presented in detail in supplementary section A.2.1. Through this approach,
training of the parameters α = {α1, α2} and β can be performed through the following
stochastic optimisation:

argmax
α1,α2,β

K∑
k=1

V∑
v=1

[
S∑

s=1

log pα2(yk|xk, ỹk,v, ws)−DKL(qβ(w|xk, yk, ỹk,v)||pα1(w|xk, ỹk,v))

]
. (3.5)

This bound is maximised stochastically by drawing samples from the approximate distribu-
tion p(ỹ|x) and subsequently from a recognition model qβ(w|xk, yk, ỹ), which is chosen as
an isotropic Gaussian distribution, the moments of which are outputs of a neural network
taking as inputs targets x, high-fidelity measurements y and low-fidelity measurements ỹ.

Sampling from the approximate likelihood ỹv ∼ p(ỹ|xk) is equivalent to running the ana-
lytical forward observation model. For instance, in the case of a linear observation model,
the samples ỹv are computed as ỹv = Axk + ϵv, where A is the linear mapping given by
the model and ϵv is drawn from the noise process characteristic of the apparatus of interest.
Through Jensen’s inequality, a lower bound for the parametric distribution pα(y|x) can be
defined as

log pα(yk|xk) ≥
∫
p(ỹ|xk)

∫
qβ(w|xk, yk, ỹ) log

[
pα1(w|xk, ỹ)
qβ(w|xk, yk, ỹ)

pα2(yk|xk, ỹ, w)
]
dwdỹ

=

∫
p(ỹ|xk)

[∫
qβ(w|xk, yk, ỹ) log pα2(yk|xk, ỹ, w)dw −DKL(qβ||pα1)

]
dỹ,

(3.6)

where qβ(w|x, y, ỹ) is the recognition model, chosen as an isotropic Gaussian distribution,
the moments of which are outputs of a neural network taking as inputs targets x, high-fidelity
measurements y and low-fidelity measurements ỹ. DKL(qβ||pα1) is the KL divergence be-
tween the distributions qβ and pα1 defined as

DKL(qβ||pα1) =

∫
qβ(w|xk, yk, ỹ) log

qβ(w|xk, yk, ỹ)
pα1(w|xk, ỹ)

dw. (3.7)
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1

Figure 3.2: Multi-fidelity forward modelling. (a) The two conditional distributions
pα1(w|x, ỹ) and pα2(y|x, ỹ, w), parametric components of the multi-fidelity forward model
pα(y|x), are trained with an auto-encoding approach, making use of a recognition model
qβ(w|x, y, ỹ). These distributions are trained with an analytical forward model defining
p(ỹ|x), experimental ground-truth targets X∗ and corresponding observations Y ∗. (b) once
the parameters α = {α1, α2} have been trained, the learned distributions can be used to gen-
erate multi-fidelity estimates of observations yl,t from a new target xl. First, a low fidelity
estimate ỹv is generated through the analytical observation model p(ỹ|xl). Second, this es-
timate and the corresponding target are used to draw a latent variable from pα1(ws|xl, ỹv).
Third, the target xl, low-fidelity estimate ỹv and latent variablews are used to generate a high-
fidelity observation’s estimate yl,t by sampling from pα2(y|xl, ỹv, ws). Performing these op-
erations in sequence corresponds to running the multi-fidelity forward model yl,t ∼ pα(y|x).

As both pα1(w|xk, ỹ) and qβ(w|xk, yk, ỹ) are isotropic Gaussian distributions, a closed form
solution for the KL divergence exists and can be exploited in computing and optimising
the lower bound [61]. Pseudo-code for the multi-fidelity forward model training is given in
algorithm 1.

Once the weights α have been trained through the maximisation of equation 3.5, it is possible
to inexpensively compute draws yl,t from the multi-fidelity data likelihood estimate pα(y|xl)
given a new target xl as

yl,t ∼ pα2(y|xl, ỹv, ws), where ỹv ∼ p(ỹ|xl) and ws ∼ pα1(w|xl, ỹv). (3.8)
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Algorithm 1 Training the Forward Model pα(y|x)

Inputs: Analytical forward model from domain expertise p(ỹ|x); set of measured Ground-
truths X∗ = {xk=1:K}; corresponding set of measurements Y ∗ = {yk=1:K}; user-defined
number of iterations Niter; batch zise Kb ≤ K; Initialised weights {α(0)

1 , α
(0)
2 , β(0)}; user-

defined latent dimensionality, Jw.

0: for the n’th iteration in [0 : Niter]
for the k’th example in [0 : Kb]
ỹk ∼ p(ỹ|xk)
compute moments of p

α
(n)
1
(w|xk, ỹk)

compute moments of qβ(n)(w|xk, yk, ỹk)
wk ∼ qβ(n)(w|xk, yk, ỹk)
compute moments of p

α
(n)
2
(y|xk, ỹk, wk)

end
L(n) ← 1

Kb

∑Kb

k log p
α
(n)
2
(y|xk, ỹk, wk)−DKL(qβ(n)(w|xk, yk, ỹk)||pα(n)

1
(w|xk, ỹk))

α
(n+1)
1 , α

(n+1)
2 , β(n+1) ← argmax(L(n))

end =0

Computing a forward model estimate with the trained multi-fidelity likelihood consists of
three consecutive computations. First, a low-fidelity estimate ỹv is computed by running the
analytical forward model. Second, a latent variable ws is drawn from the latent distribution
pα1(w|xl, ỹv). Lastly, the high-fidelity measurement estimate yl,t is drawn from the condi-
tional pα2(y|xl, ỹv, ws). As all of these operations are computationally inexpensive, running
the resulting multi-fidelity forward model is also inexpensive.

3.2.1 Variational Inverse Model

To learn an inversion model, the approximate posterior distribution rθ(x|y) is trained to
recover targets from observations, exploiting the learned PDF pα(y|x) to generate measure-
ments from the large data set of target examples X . In such a way, training of the approx-
imate posterior rθ(x|y) can exploit the large number L ≫ K of target examples X , even
though no corresponding measurements are available, as estimates of these are generated
implicitly during training through the learned forward model pα(y|x). sampling synthetic
measurements from pα(y|x) also introduces variation in the training inputs to rθ(x|y), im-
proving generalisation in a similar way to noise injection strategies [101]. The target pos-
terior of equation 3.1 is intractable to directly evaluate or to draw samples from. This is
because, as described in section 3.1.1, the prior p(x) and likelihood p(y|x) are not directly
accessible, but only samples are available in the form of data sets. As a result, to find an ap-
proximate non-iterative solution PDF to the inverse problem, a parametric model rθ(x|y) is
trained to approximate the true intractable posterior p(x|y) over the distribution of expected
measurements p(y).
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The aim of this training stage is to train a parametric distribution rθ(x|y) to match the true
posterior p(x|y). To this end, the expectation of the cross entropy H[p(x|y), rθ(x|y)] under
the measurements’ distribution p(y) is minimised with respect to the model’s variational
parameters θ,

argmin
θ

Ep(y)H[p(x|y), rθ(x|y)] = argmax
θ

Ep(y)

∫
p(x|y) log rθ(x|y)dx. (3.9)

The optimisation of Equation 3.9 is equivalent to fitting rθ(x|y) to the true posterior p(x|y)
over the distribution of measurements that are expected to be observed p(y). This objective
function can be simplified to give

Ep(y)

∫
p(x|y) log rθ(x|y)dx =

∫∫
p(y)

p(y|x)p(x)
p(y)

log rθ(x|y)dxdy

=

∫
p(x)

∫
p(y|x) log rθ(x|y)dydx.

(3.10)

In order to stochastically estimate and maximise the expression of equation 3.10, drawing
samples from the prior xl ∼ p(x) and from the likelihood yl,t ∼ p(y|xl) needs to be real-
izable and inexpensive. In the case of the former, a large ensemble of samples is readily
available from the data set of target examples X . Therefore, to approximately sample from
the prior one only needs to sample from this data set. On the other hand, sampling from the
likelihood p(y|xl) is not possible, as the form of the true forward observation model is not
accessible. However, the previously learned multi-fidelity forward model pα(y|x), described
in subsection 3.2, offers a learned approximation to the data likelihood from which it is in-
expensive to draw realisations. The objective of equation 3.10 to be maximised can then be
approximated as

Ep(y)

∫
p(x|y) log rθ(x|y)dx ≃

∫
p(x)

∫
pα(y|x) log rθ(x|y)dydx. (3.11)

In this form, stochastic estimation is inexpensive, as prior samples xl ∼ p(x) can be drawn
from the data set X and draws from the approximate likelihood yl,t ∼ pα(y|xl) can be
computed by running the multi-fidelity forward model as described in subsection 3.2.

CVAE as Approximate Posterior

As target images and observations often lie on complicated manifolds, the approximate dis-
tribution rθ(x|y) needs to be of considerable capacity in order to accurately capture the vari-
ability of solution spaces in inverse problems, such as image reconstruction and pose esti-
mation. For example, pixel values in a distribution of natural images are highly correlated in
complicated ways. Therefore, a parametric function aiming to capture reconstruction PDFs
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of natural images needs to be sufficiently expressive to express these correlations. To this
end, and in order to retain computational efficiency, the approximating distribution rθ(x|y)
is chosen as a conditional latent variable model

rθ(x|y) =
∫
rθ1(z|y)rθ2(x|z, y)dz. (3.12)

The latent distribution rθ1(z|y) is an isotropic Gaussian distribution N (z;µz, σ
2
z), where its

moments µz and σ2
z are inferred from a measurement y by a neural network. The neural

networks may be convolutional or fully connected, depending on the nature of the observed
signal from which images need to be reconstructed. The likelihood distribution rθ2(x|z, y)
can take different forms, depending on the nature of the images to be recovered and require-
ments on the efficiency of training and reconstruction. In the experiments presented here,
the distribution rθ2(x|z, y) was set to either an isotropic Gaussian with moments determined
by a fully connected neural network, taking concatenated z and y as input, or a convolu-
tional pixel conditional model analogous to that of a pixelVAE [62], where each generated
pixel in the recovered image is conditioned on z and y, but also on the previously generated
neighbouring pixels.

Latent variable models of this type have been proven to be powerful conditional image gen-
erators [65, 66] and therefore are expected to be suitable variational approximators for pos-
teriors in imaging problems. With this choice of approximate posterior rθ(x|y), the objective
function for model training is

argmax
θ1,θ2

∫
p(x)

∫
pα(y|x) log

∫
rθ1(z|y)rθ2(x|z, y)dzdydx. (3.13)

As for the likelihood structure in the multi-fidelity forward modelling, directly performing
the maximisation of equation 3.13 is intractable due to the integral over the latent space
variables z. However, using Jensen’s inequality, a tractable lower bound for this expression
can be derived with the aid of a parametric recognition model qϕ(z|x, y).

As for the forward multi-fidelity model, the recognition model qϕ(z|x, y) is an isotropic
Gaussian distribution in the latent space, with moments inferred by a neural network, taking
as input both example targets x and corresponding observations y. This neural network
may be fully connected, partly convolutional or completely convolutional, depending on the
nature of the targets x and observations y. The VAE formulation for the Variational inverse
problem is presented in detail in supplementary section A.2.2. Making use of this lower
bound, we can define the objective function for the inverse model as

argmax
θ1,θ2,ϕ

L∑
l=1

T∑
t=1

[
S∑

s=1

log rθ2(xl|zs, yl,t)−DKL(qϕ(z|xl, yl,t)||rθ1(z|yl,t))

]
, (3.14)
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1

Figure 3.3: Variational inverse model. (a) The model is trained to maximise the evidence
lower bound on the likelihood of targets x conditioned on observations y. The posterior
components rθ1(z|y) and rθ2(x|z, y) are trained along with the auxiliary recognition model
qϕ(z|x, y). Instead of training on paired targets and conditions, as for standard CVAEs, the
model is given target examples X alone and generates training conditions y stochastically
through the previously learned multi-fidelity forward model pα(y|x). (b) Given new obser-
vations yj , samples from the approximate posterior rθ(x|yj) can be non-iteratively generated
with the trained model by first drawing a latent variable zj,i ∼ rθ1(z|yj) and subsequently
generating a target xj,i ∼ rθ2(x|zj,i, yj).

Figure 3.4: Graphical models for training of the multi-fidelity forward model and the varia-
tional inverse model.

where target examples are drawn from the large data set as xl ∼ X , measurements are gen-
erated with the multi-fidelity model as yl,t ∼ pα(y|xl) and latent variables are drawn from
the recognition model as zs ∼ qϕ(z|xl, yl,t), using the reparametrisation trick presented in
[61]. The variational approximate posterior rθ(x|y) is trained by performing the maximisa-
tion of equation 3.14 through steepest ascent. The training procedure is schematically shown
in Figure 3.3(a) and detailed as a pseudo-code in algorithm 2. The models employed dur-
ing training of the multi-fidelity forward model and the variational inverse model are both
summarised in the graphical models of figure 3.4.
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Algorithm 2 Training the Inverse Model rθ(x|y)

Inputs: Trained multi-fidelity forward model pα(y|x); set of unobserved ground-
truths X = {xl=1:L}; user-defined number of iterations Niter; batch zise
Lb ≤ L; Initialised weights {θ(0)1 , θ

(0)
2 , ϕ(0)}; user-defined latent dimensionality, Jz.

0: for the n’th iteration in [0 : Niter]
for the k’th example in [0 : Kb]
yl ∼ pα(y|xl)
compute moments of r

θ
(n)
1
(z|yl)

compute moments of qϕ(n)(z|xl, yl)
zl ∼ qϕ(n)(z|xl, yl)
compute moments of r

θ
(n)
2
(x|zl, yl)

end
L(n) ← 1

Lb

∑Lb

l log r
θ
(n)
2
(x|zl, yl)−DKL(qϕ(n)(z|xl, yl)||rθ(n)

1
(z|yl))

θ
(n+1)
1 , θ

(n+1)
2 , ϕ(n+1) ← argmax(L(n))

end =0

Inference

Once the variational parameters θ = {θ1, θ2} have been trained, the learned approximate
posterior can be used to generate draws xj,i ∼ rθ(x|yj) conditioned on new measurements
yj . Draws from the posterior are obtained by first drawing a latent variable zj,i ∼ rθ1(z|yj)
and subsequently generating a target xj,i ∼ rθ2(x|zj,i, yj). Such generated samples can be
interpreted as different possible solutions to the inverse problem and can be used in different
ways to extract information of interest. For instance, in the case of images, one can com-
pute per-pixel marginal means and standard deviations, in order to visualise the expected
mean values and marginal uncertainty on the retrieved targets. Figure 3.3(b) schematically
illustrates the approximate posterior sampling procedure.

It may be of interest to also estimate a single best retrieval x∗j given the observed measure-
ments yj , which would be the image yielding the highest likelihood rθ(x∗j |yj). This retrieval
can be performed iteratively, by maximising rθ(x|yj) with respect to x, as proposed by [65].
As the focus of this work is non-iterative inference, a pseudo-maximum non-iterative re-
trieval is instead used. Such retrieval is performed by considering the point of maximum
likelihood of the conditional Gaussian distribution in the latent space rθ1(z|yj), which is
by definition its mean µz,j . The pseudo-maximum reconstruction x∗j is then the point of
maximum likelihood of rθ2(x|µz,j, yj), which is also its mean µx,j . This pseudo-maximum
estimate adds the ability to retrieve an inexpensive near-optimal reconstruction, analogous to
that recovered by deterministic mappings.
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3.3 Simulated Experiments

To quantitatively test the proposed framework in fully controlled settings, simulated experi-
ments are performed with common image processing tasks, often used as inverse model ex-
amples. Experiments include Gaussian blurring, down-sampling and partial occlusion with
both CelebA and CIFAR examples [99, 100]. The test images are corrupted with the given
transformation and additive Gaussian noise. Variational models are then used to perform
reconstructions, with the aim of capturing the posterior of solutions to the resulting inverse
problem.

Conditional generative models for solving this type of problems are typically trained by
applying the known degradation to the whole training set and then using the degraded images
as conditions to train the model [66, 72]. With real imaging systems, obtaining degraded
images for training sets containing tens of thousands of examples is extremely expensive
and often unfeasible, as these need to be physically acquired or simulated with very high
accuracy to match the real measurements that will be encountered upon testing.

As a result, in the experiments presented here, to simulate real conditions, only a small sub-
set of images degraded with the true transformation is made accessible. However, the whole
training set of ground truth images remains available, as this does not rely on the particular
imaging instrument and can be sourced independently. In addition, an inaccurate degrada-
tion function is provided to simulate domain expertise. Inaccuracies compared to the true
transformation are simulated with errors on the transformation’s parameters. For example,
in the case of Gaussian blurring, the inaccurate observation model is given different Gaus-
sian point spread function (PSF) width and noise level compared to the true transformation
encountered upon testing.

3.3.1 Qualitative Comparison with Standard training of CVAEs

Experimental Details

As a first example, three different levels of Gaussian blurring and additive noise degradation
conditions are considered with 64 × 64 images. The models are given K = 3, 000 paired
examples generated with the true transformation to train upon. The inaccurate observation
model exploited by the proposed framework under-estimates the point spread function (PSF)
width and noise standard deviation by 25% compared to the true transformation.

First, CVAEs are trained directly, using K = 3, 000 available images and observations as
training targets and conditions respectively. Second, the same CVAE models are trained
with the proposed framework, making use of the same K = 3, 000 paired examples, but



3.3. Simulated Experiments 31

including the whole training set of L = 100, 000 unobserved targets from the CelebA data
set and the inaccurate blurring model.

The first set of experiments shown in figure 3.7 was carried out with a 64×64 down-sampled
and centered version of the CelebA data set. Three Gaussian blurring conditions were tested,
with increasing PSF width and noise standard deviation. In each case, the PSF and noise
where chosen differently for the true transformation, applied to the small set of paired exam-
ples and the test data, and an inaccurate observation model, used instead as the low-fidelity
model from domain expertise. In the first experiment (top row in figure 3.7), the true blur-
ring Gaussian PSF was set to have standard deviation σPSF = 2px and signal to noise ratio
(SNR) of 25dB, while the low-fidelity model was given σPSF = 1.5px and SNR = 28dB.
In the second experiment (middle row in figure 3.7), the true blurring Gaussian PSF was
set to have standard deviation σPSF = 4px and signal to noise ratio (SNR) of 16dB, while
the low-fidelity model was given σPSF = 3px and SNR = 20dB. In the third experiment
(bottom row in figure 3.7), the true blurring Gaussian PSF was set to have standard deviation
σPSF = 6px and signal to noise ratio (SNR) of 8dB, while the low-fidelity model was given
σPSF = 4px and SNR = 12dB.

The multi-fidelity forward model used in these experiment is composed of convolutional and
fully connected networks and the precise configuration of its components is illustrated in
figure 3.5. The inverse model, inferring reconstructed images from blurred observations, is
also the convolutional version shown in figure 3.6, both for the proposed training method and
for the CVAE standard training. The sizes of the filter banks W used are reported in table
3.1.

From the trained CVAE models, we extract four different types of reconstructions: i) a
pseudo-maximum reconstruction (Pmax in figure 3.7), reconstructed from the mean latent
variable of the conditional encoder’s distribution, ii) a mean reconstruction, averaging re-
constructions resulting from multiple draws of the conditional encoder’s distribution, iii)
a per-pixel standard deviation of these multiple reconstructions and iv) examples of these
individual multiple reconstructions (Draws from Posterior in figure 3.7).
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Figure 3.5: Parametric distributions’ structures for the convolutional version of the multi-
fidelity forward model. W⊛ indicates a convolution with filter bankW , while ⊛W indicates
a transpose convolution.
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Figure 3.6: Parametric distributions’ structures for the convolutional version of the multi-
fidelity forward model. W⊛ indicates a convolution with filter bankW , while ⊛W indicates
a transpose convolution. M indicates the masked convolution part of the PixelVAE model
(see [62]).
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Table 3.1: Filter banks of the multi-fidelity forward model and variational inverse model
used in the experiments of section 3.3.1. The table reports the filter bank name used in the
architectures shown in figures 3.5 and 3.6, filters height×width×number of channels and
strides of the convolutions.

Filters h × w × c Strides Filters h × w × c Strides
Wα1,1 12× 12× 10 2× 2 Wα1,2 12× 12× 10 1× 1
Wα1,3 12× 12× 10 2× 2 Wα1,4 12× 12× 10 2× 2
Wα1,5 12× 12× 10 4× 4 Wα1,6 12× 12× 10 2× 2
Wα1,7 12× 12× 10 2× 2 Wα1,8 12× 12× 10 8× 8
Wα1,9 12× 12× 10 2× 2 Wα1,10 12× 12× 10 4× 4
Wα1,11 12× 12× 3 1× 1 Wα1,12 12× 12× 3 1× 1
Wα2,1 12× 12× 10 2× 2 Wα2,2 12× 12× 10 2× 2
Wα2,3 12× 12× 10 4× 4 Wα2,4 12× 12× 10 2× 2
Wα2,5 12× 12× 10 1× 1 Wα2,6 12× 12× 10 2× 2
Wα2,7 12× 12× 10 2× 2 Wα2,8 12× 12× 3 1× 1
Wα2,9 12× 12× 3 1× 1
Wβ1 12× 12× 10 2× 2 Wβ2 12× 12× 10 1× 1
Wβ3 12× 12× 10 2× 2 Wβ4 12× 12× 10 2× 2
Wβ5 12× 12× 10 4× 4 Wβ6 12× 12× 10 2× 2
Wβ7 12× 12× 10 2× 2 Wβ8 12× 12× 10 8× 8
Wβ9 12× 12× 10 4× 4 Wβ10 12× 12× 10 2× 2
Wβ11 12× 12× 3 1× 1 Wβ12 12× 12× 3 1× 1
Wθ1,1 9× 9× 30 2× 2 Wθ1,2 9× 9× 30 1× 1
Wθ1,3 9× 9× 30 2× 2 Wθ1,4 9× 9× 30 2× 2
Wθ1,5 9× 9× 30 4× 4 Wθ1,6 9× 9× 30 2× 2
Wθ1,7 9× 9× 30 2× 2 Wθ1,8 9× 9× 30 8× 8
Wθ1,9 9× 9× 30 4× 4 Wθ1,10 9× 9× 30 2× 2
Wθ1,11 9× 9× 3 1× 1 Wθ1,12 9× 9× 3 1× 1
Wθ2,1 9× 9× 30 2× 2 Wθ2,2 9× 9× 30 2× 2
Wθ2,3 9× 9× 30 4× 4 Wθ2,4 9× 9× 30 2× 2
Wθ2,5 9× 9× 30 1× 1 Wθ2,6 9× 9× 30 2× 2
Wθ2,7 9× 9× 30 2× 2 Wθ2,8 9× 9× 3 1× 1
Mθ2,9 9× 9× 10 1× 1 Wθ2,10 9× 9× 3 1× 1
Wϕ1 9× 9× 30 2× 2 Wϕ2 9× 9× 30 1× 1
Wϕ3 9× 9× 30 2× 2 Wϕ4 9× 9× 30 2× 2
Wϕ5 9× 9× 30 4× 4 Wϕ6 9× 9× 30 2× 2
Wϕ7 9× 9× 30 2× 2 Wϕ8 9× 9× 30 8× 8
Wϕ9 9× 9× 30 4× 4 Wϕ10 9× 9× 30 2× 2
Wϕ11 9× 9× 3 1× 1 Wϕ12 9× 9× 3 1× 1
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Results and Discussion

Reconstruction examples are shown in Figure 3.7. With a limited amount of training ex-
amples available, the CVAE results into over-fitting and under-estimation of the posterior
variance, failing to explore the variability of the solution space (3.7(a)). This effect can be
observed particularly in the draws from the posterior for the most degraded example in the
bottom row figure 3.7(a). This is because the number of available paired examples is not
sufficient to train a CVAE capable of capturing the variability of the solution space and the
model over-fits; draws from the posterior are all very similar independently of how ill-posed
the de-convolution inverse problem is. Contrarily, by exploiting all available data and mod-
els with the proposed framework, the trained CVAE model adequately fits to the posterior of
possible solutions to the inverse model. As shown in figure 3.7(b), draws from the recovered
posterior diversify more as the inverse problem becomes increasingly ill posed, reflecting a
more accurate representation of the solution space variance.

Figure 3.7: Comparison between standard CVAE trained with paired examples and proposed
framework. (a) Posterior recovery obtained with a CVAE trained on 3, 000 available image-
observation pairs. (b) Posterior recovery obtained by training the CVAE with the proposed
framework, exploiting all sources of information available.



3.3. Simulated Experiments 36

3.3.2 Quantitative Comparison with Standard training of CVAEs

Experimental Details

To test the proposed framework in different conditions, multiple experiments analogous to
those illustrated in Figure 3.7, with different relative model errors, are performed varying the
number K of available image-observation pairs. This set of experiments was carried out on
a 32× 32 down-sampled version of the CelebA data set. Images are blurred with a Gaussian
PSF having a standard deviation of 2 pixels. As before, the standard CVAEs are trained
with the K image-observation pairs alone. The proposed framework is then applied in each
condition, exploiting the same K paired images and observations, L = 100, 000 unobserved
target examples and an inaccurate observation model. Two different inaccurate observation
models are used; a more accurate one with 10% under-estimation of PSF width and noise
level and a less accurate one, having 40% under-estimation.

After training each model, reconstructions are performed with 2, 000 test examples and two
quantitative measures are extracted: (i) the average peak signal to noise ration (PSNR) be-
tween the pseudo-maximum reconstructions and the original images and (ii) the evidence
lower bound (ELBO). The PSNR serves as a measure of deterministic performance, giving
an index of similarity between the ground truth and the most likely reconstruction. It is
defined as follows:

PSNR = 20 log10
Imax

|I −R|
,

where I is the ground-truth image, R is the reconstructed image and Imax is the maximum
pixel value in the ground-truth I . The PSNR is often use to quantify image reconstruction
quality because it approximates our understanding of how image quality is perceived by hu-
mans [102]. The latter is a measure of probabilistic performance, as it approximates the
log likelihood assigned by the model to the ground truths and consequentially is an index
of how well the distribution of solutions to the inverse model is captured. The log likeli-
hood log(p(x|y)) is a natural way to evaluate the probabilistic performance of models, as it
measures how likely the model is to generate the ground-truth x when given y.

The forward multi-fidelity model used in the proposed methods is built with the simple fully
connected structures of figure 3.8. The comparison CVAE and the inverse models are identi-
cal and are built with the fully connected structures of figure 3.9. Multi-fidelity forward mod-
els were built to have 300 hidden units in all deterministic layers, while the latent variable
w was chosen to be 100-dimensional. The inverse models, both for the proposed framework
and the comparative CVAE, were built with 2, 500 hidden units in the deterministic layers
and latent variables z of 800 dimensions.
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1

Figure 3.8: Parametric distributions’ structures for the fully connected version of the multi-
fidelity forward model. The output variables are sampled from Gaussian distributions having
the corresponding output moments shown.

1

Figure 3.9: Parametric distributions’ structures for the fully connected version of the inverse
model. The output variables are sampled from Gaussian distributions having the correspond-
ing output moments shown.

Results and Discussion

As shown in Figure 3.10, a standard CVAE yields very low peak signal to noise ratio (PSNR)
if the number K of available paired training data is below a few thousands, indicating poor
mean performance. The behaviour of the ELBO is even more dramatic, essentially sug-
gesting complete inability to capture the posterior of solutions with less than a few tens of
thousands paired examples. In many imaging settings, collecting such a high number of
image-observation pairs would be extremely expensive. Instead, by incorporating additional
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Figure 3.10: Posterior reconstruction from blurred CelebA images at varying number K of
paired training examples. (a) Average PSNR between reconstructed pseudo-maximum and
ground truth images. (b-c) ELBO assigned to the test set by the trained models.

cheap sources of information, the proposed framework displays appreciable performance
gains, as evaluated by PSNR and ELBO, even with very scarce paired image-observation
examples.

This experiment particularly highlights the role of the analytical observation model in the
proposed framework. The use of a more accurate observation model was found to sensibly
improve reconstructions at low numbers K of available paired examples, to then converge
towards similar performance as this was increased. This means that the accuracy of the
analytical observation model significantly affects the recovery when availability of empirical
evidence is low, but is progressively less influential as more data becomes available. This
behaviour is desired when designing inverse model reconstruction systems, as the model can
significantly use the information provided by domain expertise when empirical evidence is
scarce, but is then able to progressively abandon it in favour of real-world observations as
more measurements become available.
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3.3.3 Qualitative Comparison with alternative Training

Given the small number K of paired training data, a large number L of target examples and
an inaccurate observation model, one can conceive different naive ways to train a conditional
generative model for inversion:

i Standard conditional training; discard the availability of target examples and domain
expertise and train solely on K empirical target-observation pairs.

ii Use of domain expertise only; simulate a large number L of measurements from all
available targets through the analytical model and use these as pairs to train the model.

iii Combining the previous two approaches; the K targets for which empirical measure-
ments are available are paired with them, while the L unobserved targets are paired with
simulated measurements.

Experimental Details

These experiments were performed by reconstructing from blurred 64× 64 CelebA images,
blurred with a Gaussian PSF having standard deviation of 4 pixels and additive gaussian
noise, corresponding to a SNR of 16dB. The inaccurate observation model was instead given
a PSF with standard deviation of 3 pixels and no additive noise. In all cases, the CVAEs used
for reconstructions are identical and have the convolutional form shown in figure 3.6, with
the filter banks parameters listed in table 3.1. For the proposed VICI framework, the forward
model was of the convolutional form shown in figure 3.5, with the filter structures reported
in table 3.1.

Results and Discussion

Reconstructions obtained by training CVAEs with the three baseline approaches are com-
pared to the proposed method in Figure 3.11. When training with too few experimental
examples only (figure 3.11(a)), the CVAE over-fits and draws from the posterior are all very
similar. This is a symptom of the inability of the trained model to accurately capture uncer-
tainty in the reconstruction task. When using the available observation model only, ignoring
any empirical measurements (figure 3.11(b)), reconstructions display noticeable artefacts.
This is because the available observation model used for training does not match the true one
encountered upon testing and therefore test samples are out of distribution compared to the
training data. If the smaller portion of empirical measurements is added to the training set
as-is (figure 3.11(c)), the presence of real measurements in the training set improves recon-
struction marginally, but artefacts are still largely present, as the model cannot distinguish
between high fidelity real data and low fidelity simulations at training time. When using
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Figure 3.11: Posterior recovery from blurred. (a) CVAE trained with K = 3, 000 paired
examples alone. (b) CVAE trained with L = 100, 000 target examples and corresponding
simulated observations from the inaccurate observation model. (c) CVAE trained with K =
3, 000 paired examples in combination withL = 100, 000 target examples and corresponding
inaccurately simulated observations. (d) CVAE trained with proposed variational framework.

the novel VICI framework to train a CVAE for reconstruction (figure 3.11(d)), the differ-
ent sources of information are exploited in a principled way, resulting in accurate posterior
recovery; different draws explore various plausible reconstructions.
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3.3.4 Quantitative Comparison with alternative Training

Experimental Details

Experiments analogous to that described in the previous section were performed to recon-
struct 32×32 images from the CelebA data set and the CIFAR10 data set. Different degrada-
tion conditions are tested, including blurring, down-sampling and partial occlusion. For each
case, models are trained with K = 1, 000 and K = 10, 000 available training pairs. Four
different degradation conditions where tested, applying the following four degradations:

• × 2 Down-Sampling. The true transformation applied to the K observed images
consists of a ×2 down-sampling of the images in each dimension and a subsequent
blurring with a PSF having standard deviation 1.4 pixels. The low-fidelity accessible
model down-samples by 2, but does not apply any blurring afterwards (i.e. the source
of inaccuracy in the known forward model derives from ignoring blurring).

• Partial Occlusion. In the true transformation applied to the K observed images, a
rectangular section of 8 × 11 pixels is set to zero in a given position in all images.
The low-fidelity model places instead a 5 × 15 at random with a difference in central
position of dy = 2 and dx = −2.

• Gaussian Blurring, σPSF = 2.5px. The true transformation blurs the images with
a PSF having standard deviation σPSF = 2.5 pixels and additive Gaussian noise at
12dB. The low-fidelity analytical model instead blurs the images with a PSF having
standard deviation σPSF = 1.5 pixels and does not add any noise.

• Gaussian Blurring, σPSF = 1.5px. The true transformation blurs the images with
a PSF having standard deviation σPSF = 1.5 pixels and additive Gaussian noise at
16dB. The low-fidelity analytical model instead blurs the images with a PSF having
standard deviation σPSF = 1 pixels and does not add any noise.

The forward multi-fidelity model used in the proposed methods is built with the simple fully
connected structures of figure 3.8. All inversion models, competitive and proposed, are iden-
tical and were implemented with the fully connected version of the inverse model given in
figure 3.9. Multi-fidelity forward models were built to have 300 hidden units in all deter-
ministic layers, while the latent variable w was chosen to be 100-dimensional. The inverse
models, both for the proposed framework and the comparative training methods, were built
with 2500 hidden units in the deterministic layers and latent variables z of 800 dimensions.
Reconstructions are performed with 2, 000 test examples and average PSNR and ELBO are
computed. Each experiment is repeated 5 times with a different random seed to obtain error
bars and measures of statistical significance.
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Figure 3.12: average test PSNR between ground truth images and reconstructed pseudo-
maxima for (a) CelebA and (b) CIFAR10 images.

Results and Discussion

Figure 3.12 shows the average PSNR, while recovered ELBO values are reported in table
6.1. As the ELBO values are the primary focus of this study, the statistical significance of
these over the 5 repeats of the experiments is assessed by computing the two-sample t-test
p-values between the ELBO values obtained with the proposed VICI framework and each of
the competing training strategy. These p-values are shown in table 3.3.

The proposed framework proved advantageous across all tested conditions, both with respect
to the mean reconstruction quality, given by the mean PSNR values, and the recovered pos-
terior density matching, approximately measured by the ELBO values. It is also noticeable
how the choice of optimal approach amongst the three naive strategies is far from obvious;
which training method yields best performance is highly dependent on available number K
of image-observation pairs and type of transformation. In contrast, the proposed framework
consistently gives the best results, proving its ability to better exploit the provided informa-
tion, independently of the particular conditions.
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Table 3.2: Test set evidence lower bound (ELBO) for the proposed framework compared to
alternative methods of using the same information to train a CVAE.

Paired Simulations Paired+ Proposed
Examples Simulations

CelebA, K=1,000 −19827±771 −208± 403 11300± 454 14553± 20
×2 Down-sampling
CelebA, K=1,000 −21390 14124± 33 14751± 42 15134± 18
Partial Occlusion ±1655
CelebA, K=1,000 −16264±122 10581± 21 12371± 532 13365± 201
Blurring σ = 2.5px
CelebA, K=1,000 −13872 13152± 62 13805± 221 14189± 63
Blurring σ = 1.5px ±1298
CelebA, K=10,000 13450± 149 −208± 403 10303± 1192 14763± 2
×2 Down-sampling
CelebA, K=10,000 12902± 556 14124± 33 15043± 17 15187± 32
Partial Occlusion
CelebA, K=10,000 13265± 53 10581± 21 12635± 437 14672± 9
Blurring σ = 2.5px
CelebA, K=10,000 13502± 310 13152± 62 13936± 136 14842± 11
Blurring σ = 1.5px
CIFAR10, K=1,000 −21846 −3059± 987 12005± 921 14247± 19
×2 Down-sampling ±2128
CIFAR10, K=1,000 −23358 12890± 57 14118± 61 14702± 64
Partial Occlusion ±2188
CIFAR10, K=1,000 −18683± 51 10051± 82 12924± 296 13212± 195
Blurring σ = 2.5px
CIFAR10, K=1,000 −14390± 40 13008± 105 13869± 174 13988± 25
Blurring σ = 1.5px
CIFAR10, K=10,000 13496± 69 −3059± 987 12096± 577 14415± 23
×2 Down-sampling
CIFAR10, K=10,000 12171± 925 12890± 57 14427± 37 14789± 38
Partial Occlusion
CIFAR10, K=10,000 13134± 219 10051± 82 13094± 312 14348± 30
Blurring σ = 2.5px
CIFAR10, K=10,000 13402± 177 13008± 105 13974± 141 14540± 21
Blurring σ = 1.5px
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Table 3.3: Two-sample t-test p values between distribution of ELBO values obtained with
the proposed VICI framework and each of the baseline training methods. The p-values are
computed from distributions of 5 repeats of identical experiments with different random
seeds.

VICI with Paired
Examples

VICI with Simula-
tions

VICI with Paired +
Simulations

CelebA, K=1,000 3.35× 10−17 2.46× 10−16 2.60× 10−09

×2 Down-sampling
CelebA, K=1,000 3.75× 10−14 4.80× 10−15 5.28× 10−10

Partial Occlusion
CelebA, K=1,000 1.04× 10−21 4.13× 10−12 7.44× 10−04

Blurring σ = 2.5px
CelebA, K=1,000 4.63× 10−14 2.00× 10−11 9.94× 10−04

Blurring σ = 1.5px
CelebA, K=10,000 3.48× 10−10 2.11× 10−16 1.27× 10−06

×2 Down-sampling
CelebA, K=10,000 6.63× 10−07 1.48× 10−15 7.31× 10−08

Partial Occlusion
CelebA, K=10,000 6.28× 10−15 2.47× 10−23 1.65× 10−07

Blurring σ = 2.5px
CelebA, K=10,000 3.29× 10−07 5.15× 10−15 5.52× 10−09

Blurring σ = 1.5px
CIFAR10, K=1,000 5.15× 10−13 3.72× 10−13 5.60× 10−05

×2 Down-sampling
CIFAR10, K=1,000 8.48× 10−13 1.42× 10−07 2.30× 10−11

Partial Occlusion
CIFAR10, K=1,000 2.08× 10−18 1.84× 10−12 5.03× 10−02

Blurring σ = 2.5px
CIFAR10, K=1,000 3.62× 10−19 2.60× 10−10 9.48× 10−02

Blurring σ = 1.5px
CIFAR10, K=10,000 9.88× 10−12 3.39× 10−13 6.54× 10−07

×2 Down-sampling
CIFAR10, K=10,000 5.78× 10−05 9.35× 10−09 4.84× 10−08

Partial Occlusion
CIFAR10, K=10,000 3.4× 10−08 1.28× 10−17 6.74× 10−08

Blurring σ = 2.5px
CIFAR10, K=10,000 8.00× 10−09 2.83× 10−12 7.2210−07

Blurring σ = 1.5px
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Chapter 4

Enabled Applications in Physics

In this chapter, the variational learning technique presented in chapter 3 is applied to several
real Physics applications, where recovering objects of interest requires solving particularly
challenging inverse problems. In these examples, it is shown how the new framework is
able to provide rich descriptions of the solutions space to the corresponding inverse prob-
lem, capturing the complex uncertainty of these tasks and providing the ability to generate
diverse realisations, corresponding to the different possible solutions consistent with the in-
verse problem setting.

In sections 4.1 and 4.2, two experimental optics applications are explored, performing com-
putational imaging in holography and imaging through scattering media. In these scenarios,
it is shown how the technique presented in chapter 3 is able to successfully solve the inverse
problems and capture the uncertainty in the resulting complex posteriors, without needing
prohibitively extensive data collections. These results open the possibilities for these com-
plex systems to be scaled up beyond controlled laboratory settings to real world applications,
as data collection requirements are greatly reduced compared to typical supervised machine
learning approaches and uncertainty in the recoveries is well captured by the proposed mod-
els.

In section 4.3, a reduced version of the framework of chapter 3 is used to capture proba-
bility densities of astronomical parameters for black hole collisions from gravitational wave
measurements in simulation. Capturing these probability densities is of great importance
in gravitational wave astronomy, as they provide information needed for tuning instruments
to better recover ongoing events, e.g. turning telescopes towards the right sky location.
However, current methods built on MCMC samplers are often too slow to provide accurate
estimates in time to promptly observe events. Using components from the method of chapter
3, probability densities of interest are captured in sub-second times.
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Figure 4.1: Experimental set up used for holographic image reconstruction. A binary am-
plitude image is projected by the Digital Micromirror Device (DMD) and a lens placed at
the focal distance from the DMD display produces the corresponding Fourier image at the
camera.

4.1 Holographic image reconstruction

Sensor arrays, such as Charge Coupled Device (CCD) or complementary metal-oxide semi-
conductor (CMOS) cameras, are a ubiquitous technology that obtain a digital image of a
scene. However, cameras are only able to retrieve the intensity of the light field at every point
in space, computational techniques and additional elements in imaging set-ups are required
to obtain the full information of the light field, i.e. both amplitude and phase. Unfortunately,
it is not always possible to include the additional experimental components to the set-up and
therefore algorithms have been adapted to use only intensity images. Retrieving the full light
field information from intensity-only measurements is a very important inverse problem that
has been studied exhaustively during the last 40 years [103, 104, 105].

Machine learning methods have been proposed in this context to learn either phase or am-
plitude of images/light fields from intensity-only diffraction patterns recorded with a camera
[106, 107, 108]. Such an ability is desirable because the intensity images can be recorded
with cheap digital cameras, instead of expensive and delicate phase-sensitive instruments.
Following these recent advances, the variational framework proposed in chapter 3 is used
to solve the following problem: Given the camera intensity image of the diffraction pattern
at the Fourier plane, what is the amplitude of the corresponding projected image? This ap-
parently simple problem has multiple applications in areas such as material science, where
X-rays are used to infer the structure of a molecule from its diffraction pattern [109, 110],
optical trapping [111], and microscopy [112].
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Figure 4.2: Reconstructions from experimental Fourier intensity image data. (a) Target im-
ages projected by the DMD, (b) intensity Fourier image observed at the camera, (c) recon-
structions using other techniques (d) reconstructions obtained with the proposed variational
method, including pseudo-maximum, pixel-marginal mean, pixel-marginal standard devia-
tion and examples of draws from the recovered posterior.

4.1.1 Experimental set-up and Data

The experiment consisted of an expanded laser beam incident onto a Digital Micromirror
Device (DMD) which displays binary patterns, as shown in Figure 4.1. DMDs consist of an
array of micron-sized mirrors that can be arranged into two angles that correspond to “on”
and “off” states of the micromirror. Consequently, the amplitude of the light is binarised by
the DMD pattern and propagates toward a single lens. The lens, placed at the focal distance
from the DMD display, will cause the rays to form the Fourier image of the MNIST digit at
the camera.

To make the problem even harder, the system operates in a saturated condition, i.e. the in-
tensities received by the sensors are higher than what can be registered, resulting in blinding,
and with extremely low-resolution images. 9, 600 MNIST digits are displayed on the DMD
and the corresponding camera observations are recorded. This data is used as high fidelity
paired ground truths X∗ and measurements Y ∗. The remaining 50, 400 MNIST examples
are used as the large set of unobserved ground truth signals X . The analytical observation
model p(ỹ|x) is built as a simple intensity Fourier transform computation, to which we add
artificial saturation.
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Figure 4.3: Image posterior recovery from phase-less measurements. (a) CVAE trained with
the available K = 9, 600 paired examples alone. The size of this training set is too small
to obtain accurate posteriors. (b) CVAE trained with L = 50, 400 target examples and
corresponding simulated observations from the inaccurate observation model. Because the
observation model, i.e. a simple Fourier transform, does not match the true one encountered
upon testing, the image is not well recovered. (c) CVAE trained with K = 9, 600 paired
examples in combination with L = 50, 600 target examples and corresponding inaccurately
simulated observations. The presence of real measurements in the training gives more re-
alistic MNIST-like shapes, but the reconstruction is still inaccurate. (d) CVAE trained with
proposed variational framework. The sources of information are exploited in a principled
way, resulting in accurate posterior recovery.

4.1.2 Reconstruction

Differently from the analysis presented in chapter 3, this section additionally aims at com-
paring the novel framework to current state of the art holographic image reconstruction tech-
niques. For this reason, the baseline are chosen to be i) the Hybrid Input-Output (HIO) com-
plex light-field retrieval algorithm, typically used in classical approaches [103, 104, 105],
and ii) a 4-layer deep Artificial Neural Network (deep ANN), similar to the simple deep
learning approaches proposed more recently to tackle the problem [106, 107, 108]. Figure
4.2 shows, with a few examples, a qualitative comparison of the considered baselines and
proposed framework.

The HIO algorithm was tested only on the four images shown, as this iterative method, in
its standard form tested here, requires considerable time to reconstruct each image. Both
the ANN and the proposed framework are instead tested on 100 test images, for which we
compute and compare the PSNR. Using the ANN, the reconstruction PSNR is 11.15± 1.56,
whereas using the proposed method the PSNR is 13.12± 2.21. The difference was found
to be statistically significant, with a two-sample p-value of 9.98× 10−12.

On the one hand, given that the HIO retrieval algorithm is an iterative method that uses the
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light intensity pattern recorded by the camera at the Fourier plane at each iteration, it is not
expected to operate well in conditions of saturation and/or down-sampling (see supplemen-
tary A.1.1 for details). This is precisely what can be observed in Figure 4.2(c), where the
HIO algorithm simply predicts spots at some positions.

The results of a deep ANN show that a more accurate solution can be found. However, the
accuracy of the deep ANN to reconstruct ground truth is hindered by the limited training set
of 9, 600 experimental images. As shown in Figure 4.2(d), highly accurate reconstructed im-
ages are achieved with the proposed variational method which exploits the generative multi-
fidelity forward model to train the inverse model using the additional unobserved 50, 400

examples. Furthermore, the proposed method retrieves full posterior densities, from which
we can draw to explore different possible reconstructions as a result of the ill-posed nature
of the inverse problem.

In order to demonstrate the advantage of employing the proposed framework compared to
naive strategies in a real scenario, we repeat the evaluation of figure 3.11 for this physical
experiment. An example is shown in figure 4.3. Analogously to the simulated experiments,
using the experimental training set alone gives results of limited quality (figure 4.3(a)). This
is because the size of this experimental training set is too small to obtain accurate posteriors.
Using simulations in naive ways completely disrupts reconstructions, whether these are used
alone or combined with the experimental data (figure 4.3(b-c)), as in this experiments the
simulations are significantly different from real measurements. However, they are far from
useless, as including them in a principled way through the proposed framework gives signif-
icant improvement in reconstruction quality and good representation of the solution space,
as shown in the drawn examples (figure 4.3(d)).

Figure 4.4 illustrates further this posterior exploration capability. When progressively down-
sampling the resolution of experimentally measured observations, the pseudo-max recon-
structed image quality degrades and the range of possible solutions, visualised through the
different draws, extends. When down-sampling the experimental images to a resolution of
(16 × 16), the inverse problem becomes critically ill-posed such that the solution space be-
comes too varied to accurately recover the ground truth image.

4.2 Imaging Through Highly Scattering Media

Imaging through strongly diffusive media remains an outstanding problem in optical CI,
with applications in biological and medical imaging and imaging in adverse environmental
conditions [113]. Visible or near-infrared light does propagate in turbid media, such as
biological tissue or fog, however, its path is strongly affected by scattering, leading to the
loss of any direct image information after a short propagation length. The reconstruction of
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Figure 4.4: (a) Experimental Fourier intensity image data down-sampled to (28 × 28),
(22 × 22) and (16 × 16) (top to bottom) for (b) the same target image. (c) The proposed
variational framework which shows the reconstructed image quality degrades with decreas-
ing resolution of the measured data. As expected, the standard deviation and samples from
the recovered posterior show high variability to the solution when reaching the critically ill-
posed resolution limit of (16× 16).

a hidden object from observations at the scattering medium’s surface is the inverse problem
that will be addressed in this section.

4.2.1 Physical Experiment

Following the experimental implementation presented by [114], imaging is performed with
a 130 fs near-infrared pulsed laser and a single photon sensitive time of flight (ToF) camera
with a temporal resolution of 55 ps to perform transmission diffuse imaging. In these ex-
periments, different cut-out shapes of alphabetic letters were placed between two identical
2.5 cm thick slabs of diffusive material, with measured absorption and scattering coefficients
of µa = 0.09 cm−1 and µs = 16.5 cm−1 respectively. A schematic representation and a pho-
tograph of the set up are shown in Figure 4.5(a-b).

A pulse of light from the laser propagates through the diffusing material, reaches the hidden
object, which partially absorbs it, and then propagates further through the medium to the
imaged surface. The ToF camera records a video of the light intensity as a function of time as
it exits the medium. A video recorded with an empty piece of material is used as background
and subtracted to that obtained with the object present, thereby obtaining a video of the



4.2. Imaging Through Highly Scattering Media 51

Figure 4.5: Experimental set up for imaging through scattering media. (a) Schematic rep-
resentation of the experiment. A target object is embedded between two 2.5 cm-thick slabs
of diffusing material, with absorption and scattering properties comparable to those of bio-
logical tissue. One exposed face is illuminated with a pulsed laser and the opposite face is
imaged with the ToF camera. (b) A photograph of the same experimental set up. (c) Example
of the video recorded by the ToF camera as light exits the medium’s surface. Images show
the integration over all time frames (i.e. the image a camera with no temporal resolution
would acquire), a single frame of the video gated in time and the intensity profile of a line of
pixels at different times.

estimated difference in light intensity caused by the hidden object. An example of such
videos is shown in Figure 4.5(c). At this depth, more than 40 times longer than the photon’s
mean free path, the diffusion effect is so severe that even basic shapes are not distinguishable
directly from the videos. Furthermore, the measurements experience low signal-to-noise
ratio due to the low light intensity that reaches the imaged surface and the low fill factor of
the ToF camera, which is about 1%. Achieving accurate reconstructions with simple objects
in this settings, is a first important step towards achieving imaging through biological tissue
with near-infrared light and hence non-ionising radiation.

4.2.2 Training Data and Models

As target objects in these experiments are character-like shapes, the training images are taken
from the NIST data set of hand-written characters [115]. 86, 400 NIST images are used as
the large data set of unobserved target examples X . Because of experimental preparation, it
is infeasible to perform a large number of physical acquisitions to build a training set. How-
ever, the process of light propagation through a highly scattering medium can be accurately
described with the diffusion approximation, commonly adopted in these settings [114, 116].
The propagation of photons under this assumption is described by the following differential
equation

c−1∂Φ(r⃗, t)

∂t
+ µaΦ(r⃗, t)−D∇ · [∇Φ(r⃗, t)] = S(r⃗, t), (4.1)

where c is the speed of light in the medium, r⃗ is the spatial position, t is the temporal co-
ordinate, Φ(r⃗, t) is the photons flux, S(r⃗, t) is a photon source, here the illumination at
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the surface, and D =
(
3(µa + µs)

)−1. The measurements recorded by the ToF camera in
the experiment described above can be accurately simulated by numerically propagating the
photon flux Φ(r⃗, t) in space and time with appropriate boundary conditions at the edges of
the medium and a high absorption coefficient µa assigned to the object voxels. These simu-
lations are accurate, but expensive. To simulate the experiments of interest here they take in
the order of a few minutes per example to run on a TitanX GPU. Obtaining paired inputs and
outputs for tens of thousands of experiments is expensive. Instead, only 1, 000 examples of
the 84, 400 training targets were generated in this way and were taken as high-fidelity mea-
surement estimates Y ∗ from corresponding ground truth images X∗. An example of such
simulations for one of the test characters is shown in Figure 4.6(c-d).

Figure 4.6: Simulated and real measurements from the time of flight (ToF) Camera. Images
are single frames from the camera videos. (a) Image of the hidden object. (b) Simulated mea-
surement using the analytical solution from the linear approximation, taken as low-fidelity
estimate. (c) Simulation obtained by numerically propagating the diffusion equation, which
is accurate, but expensive. (d) Numerical simulation with added noise, used as high-fidelity
estimates of the measurements. (e) The real measurements recorded by the ToF camera for
this object.

In order to simulate measurements at a lower computational cost, a linear approximation of
the observation process can be exploited [114, 116]. For a delta function initial illumination
S(r⃗, t) = δ(r⃗ = r⃗′, t = t′) and an infinite uniform scattering medium, an analytical solution
for Φ(r⃗, t) exists:

Φ(r⃗, t; r⃗′, t′) =
c

[4πDc(t− t′)]3/2
× exp

[
− |r⃗ − r⃗′|2

4Dc(t− t′)

]
exp [−µac(t− t′)] . (4.2)

This solution constitutes a point spread function with which an analytical estimate of the
measurements can be computed through two consecutive convolutions. First, the illumina-
tion at the entering surface is convolved in 2D and time with the PSF of equation 4.2 to obtain
an estimate of the illumination at the object plane. Second, this estimate multiplied by the
object image at each time frame is convolved again with the PSF to estimate the intensity
field at the exiting surface, imaged by the ToF camera [114]. An example of such analyti-
cal estimates of the measurements is shown if Figure 4.6(b). These computations are much
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less expensive to perform than propagating numerically the diffusion equation, requiring
less than 100 ms per sample to run on a TitanX GPU. However, they introduce approxima-
tions which sacrifice the accuracy of the simulated measurements. In particular, they don’t
take into account any boundary condition and assume that the observation process is linear,
whereas in reality the light absorbed by some part of the object will affect the illumination
at some other part. This analytical observation model is taken as the approximate likelihood
p(ỹ|x) generating low-fidelity measurement’s estimates ỹ.

4.2.3 Results

The ToF videos recorded for three different shapes embedded in the scattering medium were
used to perform reconstructions. Firstly, the recovery is performed using the method pre-
sented by [114], consisting of a constrained minimisation with ℓ1 and total variation regular-
isation. Secondly, retrieval is performed with a CVAE trained with the proposed framework
and using the sources of information described above. Results are shown in Figure 4.7.

Figure 4.7: Reconstructions from experimental ToF videos. (a) Target images embedded in
the scattering medium, (b) integrated and gated frames from the ToF camera videos, con-
stituting the observed measurements, (c) reconstruction obtained using constrained optimi-
sation with ℓ1-norm and total variation regularisation and (d) reconstructions obtained with
the proposed variational method, including pseudo-maximum, pixel-marginal mean, pixel-
marginal standard deviation and examples of draws from the recovered posterior. The pro-
posed framework recovers arguably more accurate images compared to the state of the art,
while also allowing exploration of the manifold of possible solutions to the inverse problem.

The prior method is capable of retrieving general features of the objects embedded in the
scattering medium, but sometimes results in severe artefacts that make the images unrecog-
nisable. Furthermore, to obtain the displayed results, it is necessary to carefully tune the
penalty coefficients of the constrained optimisation for each example, making such retrieval
highly dependent on human supervision. Exploiting a more specific empirical prior, the pro-
posed framework allows to retrieve more accurate reconstructions, where the different let-
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ters are clearly recognisable. Moreover, this particularly ill-posed inverse problem example
highlights the importance of using a Bayesian approach; the solution space given a diffuse
ToF video is rather variable and, unlike constrained optimisation and other single estimate
methods, through the approximate posterior such variability can be captured by empirically
estimating uncertainty and visualising different drawn samples, as shown in Figure 4.7(d).
Note that, thanks to the proposed framework, the model was successfully trained with very
limited effort and resources; the large data set of targets was readily available independently
of the application of interest, while only 1, 000 expensive simulations were used, requiring
just a few tens of hours of simulation time on a single GPU to be generated.
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4.3 Gravitational Wave Astronomy

Gravitational wave (GW) detection is now commonplace [117, 118] and as the sensitivity
of the global network of GW detectors improves, O(100)s of transient GW events will be
observed per year [119]. In GW detection, the aim is to retrieve physical parameters of
collision events, usually collisions between black holes or neutron stars, in order to tune
instruments on earth, e.g. radio telescopes, and record such events, expanding our knowledge
of the astronomical bodies involved. For example, the most intuitive of these parameters is
the sky location, as shown in figure 4.8 on the top right. From GW signals, it is possible to
estimate a probability density of location in the sky where the event is taking place and turn
our radio telescopes towards these locations.

The main challenge in effectively using GW to carry out the aforementioned process is
speed. The current methods used to estimate their source parameters employ optimally sen-
sitive [120] but computationally costly Bayesian inference approaches [121] where typical
analyses have taken between 6 hours and 5 days [122]. Binary neutron stars (BNS) and neu-
tron stars black hole (NSBH) systems prompt counterpart electromagnetic (EM) signatures
are expected on timescales of 1 second – 1 minute and the current fastest method for alerting
EM follow-up observers [123], can provide estimates in O(1) minute, on a limited range of
key source parameters. This means that, in many cases, by the time posteriors are formed
using standard Bayesian methods, it is too late to tune recording instruments towards the
event.

In this section, part of the framework of chapter 3 is used to train a variational model to
recover these parameters of astronomical events from GW sensing. The proposed frame-
work sacrifices the theoretical guarantees of MCMC-based methods, such as those described
above, but provides several orders of magnitudes improvement in the computational speed,
being able to render posteriors of collision’s parameters in fractions of a second instead of
hours. This means that, with the new framework, we can estimate PDFs of parameters, such
as sky location, fast enough to tune our instruments and record collisions. An extended ver-
sion of this application, with higher dimensional distributions and additional evaluations, is
presented in [12].

4.3.1 Method

In this application, the forward model is taken as a simulation of the gravitational wave
sensing process alone, instead of a multi-fidelity model as described in chapter 3 and adopted
in the other applications. The inverse variational model employed has the general structure
described in section 3.2.1, but was built with a number of specific features that were included
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in order to specifically tailor the analysis to GW signals and event parameters recovery.
These modifications are as follows:

• Physically motivated decoder distributions: The decoder distributions rθ2(xi|z, y)
were designed to match the nature of the parameters xi to be modelled. The sky lo-
cation parameters α and δ were modelled with von Mises-Fisher distributions, which
is a close approximation to a 2D Gaussian wrapped on the surface of a sphere. Anal-
ogously, periodic parameters, such as binary inclination Θjn and polarisation angle
ϕ, were modelled with a von Mises distribution, which is the equivalent of the above
for a 1D circle. Finally, continuous parameters for which physical limits are known,
such as the masses of the colliding bodies m1 and m2, were modelled with truncated
Gaussians.

• 1D convolutional nets to process input signals: GW signals from different detectors
are taken as distinct channels containing time a time series. Therefore, all models tak-
ing signals y as inputs (rθ1 , rθ2 , and qϕ) were designed to have a 1D multi-channel con-
volutional network component, mapping GW signals to intermediate vectors, which
are then concatenated with other inputs before being mapped to outputs x or latent
variables z.

• Mixture of Gaussians Prior: PDFs of collision’s parameters are expected to be multi-
modal in many cases. While in principle a standard CVAE ca ngenerally approximate
multi-mdality, in practice it is quite difficult to obtain decoder networks which maps
single Gaussians distributions in the latent space to distinct distributions in sample
space. For this reason, the encoder model rθ1(z|y) is constructed as a mixture of
Gaussian, encoding signals y into M = 16 distinct Gaussian distributions.

The framework described above was named VItamin.

4.3.2 Experiments

Results are presented on 256 multi-detector GW test BBH waveforms in simulated advanced
detector noise [124] from the LIGO Hanford, Livingston and Virgo detectors. Variants of the
existing Bayesian approaches are compared to the variational model trained with the simula-
tor as described in section 3.2.1. Posteriors produced by the Bilby inference library [125]
are used as a benchmark in order to assess the efficiency and quality of the novel approach
with the existing methods for posterior sampling.

For the benchmark analysis 9 parameters are assumed to be unknown1: the component
masses m1,m2, the luminosity distance dL, the sky position α, δ, the binary inclination Θjn,

1This analysis omits the 6 additional parameters required to model the spin of each BBH component mass.
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the GW polarisation angle ψ, the time of coalescence t0, and the phase at coalescence ϕ0. For
each parameter a uniform prior is used, with the exception of the declination and inclination
parameters for which priors uniform in cos δ and sinΘjn respectively are employed. The
sampling frequency is 256 Hz, a time-series duration of 1 second, and the waveform model
used is IMRPhenomPv2 [126] with a minimum cutoff frequency of 20Hz. For each input
test waveform the benchmark analysis is run using multiple sampling algorithms available
within Bilby. For each run and sampler O(104) samples are extracted from the posterior
on the 9 physical parameters.

The training process of chapter 3 is implemented using as input 107 whitened waveforms
corresponding to parameters drawn from the same priors as assumed for the benchmark
analysis. The waveforms are also of identical duration, sampling frequency, and use the
same waveform model as in the benchmark analysis. The posterior results are produced
by passing each of the 256 whitened noisy testing set of GW waveforms as input into the
testing path of the trained inverse variational model. For each input waveform, the posterior
is sampled until 104 posterior samples have been generated on 7 physical parameters x =

(m1,m2, dL, t0,Θjn, α, δ).

In figure 4.8, the posterior reconstruction for a test example is shown and qualitatively com-
pared to two Bilby samplers, namely Dynesty and ptemcee. Two and one-dimensional
marginalised posteriors generated using the output samples from VItamin and the Bilby
samplers (Dynesty in blue, and ptemcee in green) are shown on the bottom-left half of
figure 4.8. The different two-dimensional plots show marginalised distributions over all but
two variables. From these plots, one can see that the distributions to be captured in this
application are of varied nature and in many cases multi-modal and therefore impossible to
capture adequately with parametric models. In this example, one can also see that VItamin
generates a multi-dimensional, multi-modal distribution which approximates very well that
returned by the more robust, but orders of magnitude slower MCMC samplers.

To quantitatively evaluate the proposed technique, VItamin and all other baseline samplers
were run over 256 generated test parameters-GW signals pairs. For each test example and
for each method samples are drawn to represent the respective distributions. The agreement
between samplers is then calculated by computing the KL divergence between distributions
with a k-nearest-neighbours method [127]. The KL divergences between VItamin and
baseline samplers are histogrammed in figure 4.9. The coloured histograms are generated
by computing the KL divergence between VItamin and the baseline sampler that is being
compared. These histograms show the distribution of disagreement between VItamin and
the baselines. The grey histograms in each plot are generated by computing the KL diver-
gences between the baseline being compared in each case and all other baselines. These
histograms show the distribution of disagreement amongst baselines. These result show that
VItamin reconstructs PDFs of collisions’ parameters that are in good agreement with the
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Figure 4.8: Corner plot showing one and two-dimensional marginalised posterior distri-
butions on the GW parameters for one test example. Filled red contours represent the
two-dimensional joint posteriors obtained with VItamin. Solid blue and green contours
are the corresponding posteriors output from benchmark analyses using the Dynesty and
ptemcee samplers respectively. In each case, the contour boundaries enclose 68, 90 and
95% probability. One dimensional histograms of the posterior distribution for each param-
eter from both methods are plotted along the diagonal. Black vertical and horizontal lines
denote the true parameter values of the simulated signal. A Mollweide projection of the sky
location posteriors from all three analyses are included at the top-right of the figure. All
results presented in this section correspond to a three-detector configuration but for clarity
only the H1 whitened noisy time-series y and the noise-free whitened signal (in blue and
cyan respectively) are plotted to the right of the figure.
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slower more accurate methods, as it disagrees with baselines similarly to how much the
baselines disagree with each other.

The significance of these results is most evident in the orders of magnitude increase in speed
over existing algorithms; All of the baseline samplers take in the order of hours to retrieve
PDFs of collision parameters, while VItamin can generate sufficient samples from test
inputs in the order of 10−2-10−1 seconds, depending on hardware resources. This speed im-
provement comes at little accuracy cost, as both qualitative and quantitative results show that
the proposed framework can produce PDFs of equivalent quality to the competing methods.

The approach was demonstrated using BBH signals but with additional work to increase sam-
ple rate and signal duration, the method can also be extended for application to signals from
BNS mergers (e.g., GW170817 [118], and GW190425 [128]) and NSBH systems where im-
proved low-latency alerts will be especially pertinent. Current Bayesian analyses limit the
amount of lead time it is possible to give EM partners in order to slew their telescopes to the
optimal location in the sky. By using the variational approach, parameter estimation speed
will no longer be a limiting factor in observing the prompt EM emission expected on shorter
time scales than is achievable with existing LIGO-Virgo Collaboration analysis tools such as
Bayestar [123].
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Figure 4.9: Histograms of KL divergence between VItamin and baseline samplers over
256 test simulations. In each plot, the grey histograms aggregate the KL divergences of the
baseline being compared and the other three baselines.
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Chapter 5

Applications in Human-Computer
Interaction

In this chapter, the framework of chapter 3 is applied to two human-computer interaction
(HCI) settings. In many novel deep learning enabled interaction modalities proposed for
consumer products, inexpensive sensors are employed to record signals from users’ interac-
tions and, ultimately, infer intention. A prime example is that of gesture interaction, where
a device has to record and interpret the user’s gestures, typically with non-video recording
sensors, such as sonar or radar. In these settings, recovering gestures and poses from limited
measurements is often an ill-posed problem, where the physical sensing process does not
allow to analytically uniquely reconstruct targets from measurements. Deep learning offers
the possibilities to use recorded data to map signals from embedded sensors to gestures and
poses. However, the two main issues identified in chapter 3 persist: i) without accurate mea-
sures of uncertainty, systems are susceptible to inference errors and ii) large training sets are
required to build models for each specific system, adding considerable cost to the develop-
ment of new devices. In this chapter, these two problems are addressed in HCI settings with
the framework of chapter 3.

In sections 5.1, the reconstruction of finger pose from a capacitive screen’s measurements is
performed with the novel framework. Simulation of capacitive fields are used to generate low
fidelity measurements in simulation, which are then combined with a smaller amount of real
recordings with associated ground-truths in order to train the variational mdels. In section
5.2, a more complex setting of hand gestures reconstruction is considered. one-second long
hand gestures are reconstructed from radar measurements recorded with the Google Soli
sensor. The advantage in reconstruction accuracy and uncertainty estimation when using the
novel method is demonstrated.
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5.1 Capacitive Sensing for HCI

In this section, the VICI framework of chapter 3 is applied to a simple HCI application,
demonstrating the advantage of modelling both the forward model with the multi-fidelity
system and the inverse, making use of simulated and real data. The resulting system con-
stitutes the sensing component of a general modelling practice for human interaction with
sensors. This section is partially extracted from recent work conducted by Roderick Murray-
Smith, John H. Williamson, Andrew Ramsay, Simon Rogers and Antoine Loriette [129].

Interactive systems must be able to sense and interpret human actions to infer their inten-
tions. HCI research continually explores the use of novel sensors to enable novel forms of
interaction, but lacks a coherent, consistent framework for characterising this process with
incrementally improving precision for different sensors and different human behaviours.
Common practice tends to be to hand-craft features and associated thresholds for specific
use-cases. This can be time-consuming, especially as the dimension of the sensors increases.
Furthermore, the thresholds for one application might not be appropriate for another (e.g.
touch typing vs continuous gestures).

For the field to make steady progress, a more general, formal framework for characterisation
of the pathway from human intent to sensor state is needed. This pathway can include formal,
computational models of human elements such as cognition and physiological processes, as
well as purely technical elements such as the characterisation of the physical processes of
the sensor.

In this section, the framework of chapter 3 is implemented to model and invert the latter
for the problem of finger pose estimation from capacitive sensing. Progress in design of
capacitive screen technology has led to the ability to sense the user’s fingers up to several
centimetres above the screen. However, the inference of position and pose, given only the
readings from the two-dimensional capacitive sensor pads, is a classic example of an ill-
posed inverse problem, making the solutions inherently uncertain.

5.1.1 Experimental Set-up

A touch screen of dimensions 6.1 × 9.7 cm was used, with a prototype transparent capaci-
tive sensor with an extended depth range of between 0 cm to 5 cm from the screen (although
accuracy decreases with height) and a resolution of 10 × 16 pads and a refresh rate of 120
Hz. Sampling is performed at 60Hz. It was embedded in a functional mobile phone (7.3 ×
13.7cm size), with an external casing making the prototype slightly deeper than normal mod-
ern smartphones. The screen was active during the measurements. It is a self-capacitance (as
opposed to the more common mutual capacitance) touch screen, with a checkerboard elec-
trode layout. Ground-truth finger pose was recorded using the Optitrack system and passive
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markers on the finger. Figure 5.1 shows a photo of the experimental set-up, along with a
schematic representation of the sensing process. The target to be reconstructed in this setting
is the finger posed, composed of the three spatial coordinates of finger tip position (x,y,z)
and the two inclination angles of the finger (pitch and yaw). With this set-up, a total of
40, 428 experimental acquisitions of finger poses paired with measured capacitive matrices
were collected.

Figure 5.1: a) Photo of the experimental set-up, where the user holds the index finger above
the capacitive screen, with the passive grey Optitrack trackers on their finger. b) Schematic
representation of the observation process and example of capacitive sensor’s readings, con-
stituting a 10× 16 intensity field.

5.1.2 Simulations and Multi-Fidelity Forward Model

A simulation of capacitive sensing was used as the low fidelity forward model within the
learning framework of chapter 3. The simulation was performed using a 3D finger ob-
ject created by attaching a hemisphere to one end of a cylinder. The default diameters of
the cylinder and hemisphere were both 9mm, while the total length of the finger object
was 10 cm (although all of these dimensions were defined as script parameters and could
be easily changed). This script runs finite element method (FEM) simulation and parses
the meshed charge values into total charge per plate values. These values represent the
charge/capacitance matrix. Figure 5.2 shows an example of simulation along with a simu-
lated 10× 16 capacitive measurement.

The forward model component of chapter 3 was then trained with the available 40, 428 phys-
ically acquired data to reproduce physical measurements, using the simulated ones described
above as low-fidelity examples. samples of multi-fidelity forward model generated measure-
ments compared to simulated ones are shown in figure 5.3. As shown, the multi-fidelity
forward model reproduces real measurements to a higher accuracy than the analytical simu-
lations.
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Figure 5.2: a) Example of FEM simulation. b) Example of resulting simulated capacitive
measurements.
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Figure 5.3: Multi-fidelity forward model generated measurements (lower row), compared to
real experimental ones (upper row) and simulated measurements (middle row).
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5.1.3 Inverse Model and Reconstructions

Having learned a suitable multi-fidelity forward model using the supervised available train-
ing data, this is integrated in the framework of chapter 3 to train an inverse, making use in
addition of 82, 231 unsupervised hand poses, for which only the generated fingers parame-
ters and simulated capacitive field images are available. For this unsupervised portion of the
data, measurements are generated using the trained multi-fidelity forward model throughout
the training of the inverse model, as described in chapter 3. Examples of test reconstructions
obtained with the trained inverse model are shown in figure 5.4. The model is able to recover
the finger’s parameters with a good degree of accuracy and the standard deviation computed
with its draws suitably adjusts to the reconstruction error in each degree of freedom, meaning
that uncertainty is adequately captured.

Figure 5.4: Reconstructions of finger poses’ parameters using the VICI framework of chapter
3. On the left, measurements recorded with the capacitive screen are shown, while on the
right the corresponding reconstructed finger pose parameters are shown with the standard
deviation recovered by the model.

To compare the novel learning framework to standard approaches, the experimental portion
of the data is used to train a conditional VAE having the same structure as the inverse model
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Table 5.1: Average RMSE to ground-truth of reconstructions with standard CVAE and VICI
framework for each coordinate and angle. Two-sample p-values are also shown for statistical
significance

Coordinates CVAE VICI p-value
x 0.1785cm 0.1841cm 5.21× 10−5

y 0.0891cm 0.0786cm 9.00× 10−46

z 0.1308cm 0.1098cm 9.39× 10−144

Pitch 9.968o 6.291o < 10−300

Yaw 7.669o 7.151o 9.63× 10−24

directly, without making use of the simulations. For this CVAE and the proposed framework,
reconstructions are computed over the test set. Figure 5.5 shows reconstructed coordinates
and finger’s angles plotted against the corresponding ground truth. The red line in each
plot corresponds to the exact reconstruction diagonal, i.e. the closer data points are to this
diagonal, the more accurate is their reconstruction. The average errors for each coordinate
and angle are reported in table 5.1, along with two-sample p-values to asses the statistical
significance of the observed difference in mean performance between the standard CVAE and
the VICI framework. Using the proposed framework results in improved mean performance
in all but the x position, which remains competitive, given the small difference in mean
performance. In particular, the error on the Pitch angle is greatly reduced.

The second aspect to evaluate and compare is the retrieval of uncertainty. Figure 5.6 shows
the empirical standard deviation, calculated on each degree of freedom through sampling
100 times from the models, plotted against the mean reconstruction error. Points above the
red line correspond to errors within one model’s standard deviation, while points above the
green line correspond to points within two standard deviations. Figure ?? Shows instead
histograms of error distributions compared to recovered standard deviations distributions for
both the baseline CVAE and the proposed VICI framework.

The CVAE model trained solely on experimental data is often over-confident about its infer-
ences. In figure 5.6, errors fall outwith two standard deviations more often than the expected
rate. This can be seen in the histograms of figure 5.7 too, where in all dimensions there is a
tail in the actual errors not covered by the standard deviation distribution. The inverse model
trained with the novel framework returns instead more accurate uncertainties and inaccu-
racies are largely present in over-estimates of uncertainty, rarely returning over-confident
reconstructions. Table 5.2 reports the correlation between error to the mean and retrieved
empirical standard deviation for each model. The VICI model presents a higher correlation
in all variables, except the y coordinate, where the CVAE presents slightly better correlation.
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Table 5.2: Correlations between mean error and retrieved empirical standard deviation for
the standard CVAE and VICI models. All correlations were found to have a p-value of
approximately zero, meaning they are statistically significant.

Coordinates CVAE VICI
x 0.487 0.498
y 0.455 0.445
z 0.410 0.462
Pitch 0.213 0.282
Yaw 0.425 0.493

The fact that the uncertainty retrieved by VICI, on average, correlates better with its error
than the standard CVAE means that using the extra information available through this model
results in better error calibration.

The difference in performance between a model trained using solely the available experimen-
tal data and one trained with the novel VICI framework of chapter 3 is even more evident
when the number of available experimental training examples is low. Figure 5.8 shows re-
construction performance metrics obtained with the two training methods at varying number
of available experimental training data between 5, 000 and 15, 000 examples. For the VICI
framework, the number of simulated examples incorporated in the training procedure is kept
constant as before at 82, 231. In low experimental data regimes, the mean performance of the
standard CVAE is significantly lower (resulting in higher RMSE) than the VICI framework
until the number of experimental samples exceeds 12, 000, at which point the performance of
the two frameworks is comparable. The probabilistic performance, measured by the ELBO,
is consistently better and much less sample size dependent for the VICI framework. These re-
sults show how the proposed VICI framework provide sensibly improved performance when
experimental data is scarce and makes models less dependent on its availability, reducing the
need to perform physical experiments in order to train the model.

5.1.4 Discussion

This section demonstrated the application of the VICI framework of chapter 3 to the HCI
scenario of finger pose reconstruction from capacitive measurements. The results shown
with this simple interaction example outline two important advantages of applying the VICI
framework in HCI. Firstly, the retrieval of uncertainty measures. As reconstructions of phys-
ical user interactions from sensors readings are often ill-posed, simply applying standard
machine learning techniques can easily yield compelling reconstructions that are far from
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the ground-truth targets. Accurate quantification of uncertainty is essential to machine learn-
ing enabled interaction, as systems need to propagate such uncertainty to make robust deci-
sions. The framework demonstrated above is capable of recovering such uncertainty quite
accurately, an therefore can be integrated as the physical interaction component of an HCI
system robust to ill posed inversions. Secondly, the proposed framework allows to incorpo-
rate physical models of the sensing process and simulated gesture into the learning proce-
dure, providing improved performance with no extra collection efforts. As often HCI system
rely on sensing processes the physics of which is well understood, this capability can enable
machine learning to be applied to HCI system with limited physical data collection. This
is especially relevant in HCI where physical collections need to be acquired with multiple
human users and therefore this process is generally time consuming.
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Figure 5.5: Mean reconstruction of each degree of freedom plotted against ground-truths for
the CVAE trained on paired experimental acquisitions only and incorporating simulations
using the VICI framework.
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63.3% errors ≤ σ

89.9% errors ≤ 2σ

58.6% errors ≤ σ

86.1% errors ≤ 2σ

66.2% errors ≤ σ

92.1% errors ≤ 2σ

66.0% errors ≤ σ

92.0% errors ≤ 2σ

57.9% errors ≤ σ

86.3% errors ≤ 2σ

66.4% errors ≤ σ

92.8% errors ≤ 2σ

66.2% errors ≤ σ

91.8% errors ≤ 2σ

73.3% errors ≤ σ

95.9% errors ≤ 2σ

79.6% errors ≤ σ

96.3% errors ≤ 2σ

64.5% errors ≤ σ

90.1% errors ≤ 2σ

Figure 5.6: Empirical standard deviation recovered plotted against reconstruction error. On
the left, the results obtained with the standard CVAE are shown, while on the right, the results
obtained with the VICI framework are shown.
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Figure 5.7: Distribution of mean errors compared to distribution of standard deviation re-
trieved with each model.
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Figure 5.8: Comparing the performance of a variational model trained with a standard CVAE
architecture using experimental data only and experimental and simulated data in combi-
nation using the VICI framework. The graphs show two different performance metrics at
varying number of available experimental examples. On the left, the RMSE to the recovered
mean and on the right the ELBO. Each experiment is repeated four times in order to obtain
error bars.



5.2. Radar for Gesture Interaction with Google Soli 73

5.2 Radar for Gesture Interaction with Google Soli

The framework presented in chapter 3 was applied and tested with the Google Soli mil-
limetre wave radar sensor [130, 131] for hand gesture inference. The Google Soli sensor is
a 60GHz, 1Tx 3Rx radar, built to sense motions through frequency modulated continuous
wave (FMCW) Doppler sensing. The high frequency allows to achieve a resolution in the
order of centimeters and velocities on the order of a tenth of a meter per second. In addition,
the three receivers allow to recover coarse angle of incidence through phase differences. The
resulting signal is processed into complex range doppler (CRD) images of size 64 × 8 (8
range bins and 64 velocity bins). Inferring hand gestures from a time series of these CRD
images is a challenging inverse problem, as scattered signals from different parts of the hand
can super-impose in the same time-velocity bins.

This is an important and representative inverse problem in HCI, where a relatively inexpen-
sive sensor, such as Soli, registers signals associated with with the human interaction, but
from which it is far from trivial to recover it. This application outlines the importance of two
features of the framework presented in chapter 3:

1. Capturing uncertainty in inferences. As many inverse problems of interest, mapping
radar signals to hand gestures is an ill-posed problem, meaning that for a given signal
there may be many distinct possible hand gestures. In this setting, it is also difficult
to predict which gestures can be recovered with good uncertainty and which are in-
stead difficult to distinguish for the Soli sensor. The framework of chapter 3 recovers
complex PDFs of possible reconstruction, hence characterising this uncertainty in the
inferred hand motions.

2. Incorporating domain expertise and unsupervised data to reduce data collection. In
order to train a machine learning model to reconstruct hand motions from the Soli
signals, fairly large training data sets of paired hand motions and Soli recordings are
needed. These acquisitions are specific to the particular Soli hardware configuration
and if the sensors improves or is embedded in a different device they would need to be
completely re-acquired. The framework of chapter 3 trains such models augmenting
the training set with unsupervised data and domain expertise, minimising the paired
acquisitions requirements.

5.2.1 Experimental Acquisition

The physical experiments to acquire paired gestures and Soli signals was performed by An-
drew Ramsey and the following set-up description is partially extracted by a technical report
to which he contributed. All data gathered for this section used the Soli hardware and a
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NaturalPoint OptiTrack motion tracking system with passive infrared markers to acquire
hand gestures ground truths. 3 Prime 13W cameras were positioned around the workspace
and linked to a PC running the NaturalPoint “Motive” application (version 2.2.0, running
on Windows 10). The cameras were calibrated using the recommended process, and all
IR-reflective objects in the fields of view were removed to avoid extraneous markers being
detected. The frame rate for all cameras was set to 100Hz. Figure 5.9 shows the physical
recording setup.

Figure 5.9: The OptiTrack recording setup showing the 3 cameras positioned around the
workspace and the Soli board on the desk.

A total of 7 passive IR markers were used to track hand motion. The marker locations were:
tip of thumb, tip of index finger, knuckle of index finger, tip of ring finger, tip of little finger,
knuckle of little finger, and back of palm. Figure 5.10 shows the markers attached to a glove
to help ensure consistent positioning across sessions. More markers could have been used,
but this can increase the chances of them becoming temporarily obscured during certain
movements. This in turn significantly increases the amount of time-consuming, manual
post-processing required.

Figure 5.10: The 7 passive IR markers used to track hand motions.
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With the set-up described above, two types of hand gestures were performed and recorded
and used to build two distinct data sets:

1. Coarse gestures: The first set of data recorded consisted of motions using the whole
hand, held in a mostly rigid posture with fingers parallel to the palm and thumb nat-
urally held at the side in the same plane. Motions used include horizontal swipes,
vertical bounces, circling over/around the Soli, and random movement within the 3D
space above the Soli.

2. Fine motion gestures: Subsequent data recording sessions focused on acquiring finer-
grained finger movements. A total of 5 types of gestures were recorded as part of this
data set: i) hand held horizontal over the Soli, with fingers together, while moving
thumb around, ii) starting from a horizontal and rigid hand position, bend all 4 fingers
back towards the palm at the middle knuckle while keeping the thumb extended to the
side, iii) continually drumming fingers in mid-air over the sensor, as if on a table, iv)
holding the hand horizontally while splaying all fingers in and out repeatedly and v)
keeping each finger straight and bending them down from the first knuckle individu-
ally.

For each type of gesture described above, time series of Optitrack markers’ locations and
paired Soli signals are recorded. The Soli signals are processed to obtain complex range-
doppler (CRD) 2D fields at each time frame, as it is standard for frequency-modulated con-
tinuous wave (FMCW) radar [131]. The CRD is a complex 2D field, where the horizontal
axis corresponds to source velocity, the vertical axis to source distance and the phase in each
pixel to the source angle of incidence. The resulting data consists of time series of spatial
coordinates for each marker and paired CRD videos (2D fields at each time frame).

5.2.2 Analytical Forward Model

The cheap low fidelity measurements in this context are analytically simulated Soli CRDs,
given a hand gesture. As the Physics of FMCW radar sensing is well understood, it is possi-
ble to efficiently simulate these in closed form. Segments connecting the tracked markers on
the hand are filled with an arbitrary number of scattering points, which are assigned a linear
combination of diffusive and reflecting property. For each time frame in the Optitrack time
series of markers locations, the position and velocity of each scattering point are computed
and used to simulate the corresponding CRD.

The radar observation model is assumed to be linear, meaning that a CRD is computed for
each scattering point and the final simulated CRD is obtained by summing the individual
CRDs computed for each point. A CRD for a single scattering point is computed as follows:
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1. The distance r from the Soli sensor and its derivative with respect to time v are com-
puted.

2. A Gaussian 2D field of dimensions samples per chirp/2 × chirps per burst

is generated, having the Gaussian mean in each dimension as µ = (r/Dr, v/Dv) and
standard deviation as σ = (1, 1), where Dr = c

2B
and Dv = cPRF

2fcl
. The Gaussian is

then multiplied by an intensity coefficient I = a
r2

+ b
r4

, where a and b are coefficients
determining the diffusive/reflective behaviour. This is the simulated amplitude range-
Doppler (ARD) field.

3. The angles of arrival in the xz and yz planes θ and ϕ are computed.

4. θ and ϕ are converted to phase differences in the rx signals as ∆θ2,0 = 2π(a/λ) sin(θ)

and ∆θ2,1 = 2π(a/λ) sin(ϕ).

5. two phase matrices are created, each of dimensions samples per chirp/2×
chirps per burst. The first, is set to ∆θ2,0 where ARD > 0.1 ∗ max(ARD) and 0

otherwise. Similarly, the second is set to ∆θ2,1 where ARD > 0.1 ∗max(ARD) and
0 otherwise.

Figure 5.11 shows some examples of analytically simulated CRDs compared to experimen-
tally recorded ones.

5.2.3 Data Sets

From the data acquisitions described in section 5.2.1 two distinct data sets are built; one for
coarse hand motions and one for the finer finger movements. From the time series recorded
in each setting, one second long time series of paired CRDs and Optitrack data are extracted.
These time series are obtained by stepping a one second long window by 25ms through the
recordings. Each one second long hand motion series is then used to generate low fidelity
CRDs using the simulation described in section 5.2.2. The resulting data sets are as follows:

1. a data set of 4100 one second long coarse hand motions, along with corresponding
experimental CRDs and analytically simulated CRDs.

2. a data set of 4700 one second long fine motion gestures, along with corresponding
experimental CRDs and analytically simulated CRDs.

In both cases, the data has the same format; the hand motion are 100×21 1D time series with
21 channels, each corresponding to one coordinate of an Optitrack tracker (x, y, z for each of
the 7 trackers). The CRDs, both experimental and simulated, are 8×64×25×3 3D volumetric
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Figure 5.11: Example of simulated Soli CRD frames compared to experimentally recorded
ones. Real hand gestures recorded with the Optitrack system are used to generate simulated
Soli CRDs, which are compared to those experimentally recorded with the Soli sensor.

samples, having 8 range bins, 64 velocity bins, 25 frames and 3 channels, corresponding to
ARD and the two phase differences between antennas. As the velocities observe with the
hand motions are limited, before using them as inputs/outputs, the CRD sizes are reduced by
taking only the central 32 velocity bins. This makes learning faster without losing significant
information. Before being used as inputs/outputs for the framework of chapter 3, the CRDs
are converted to two real and two imaginary fields. The structure of the data is shown in
figure 5.12.

To test the framework of chapter 3, these data sets are split in three parts; i) a supervised
training set, ii) an unsupervised training set and iii) a test set. For the supervised training
set (i), all data is taken, assuming this is the data collected synchronising Optitrack and Soli
acquisitions. For the unsupervised training set (ii), only the hand motions and simulated
CRDs are taken, as for these it is assumed that only hand models are available, but no syn-
chronised Soli acquisitions. For the test set (iii), a small amount of hand motions and paired
experimental CRDs is set aside to test reconstruction.

5.2.4 Multi-Fidelity Forward Model

The multi-fidelity forward model is built to recover high fidelity estimates of CRDs from Op-
titrack hand motions and simulated CRDs, which are considered to be low-fidelity estimates.
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Figure 5.12: Data formats used to train the framework of chapter 3 in the Soli setting. The
samples consist of one second long time series of hand motions paired to Soli sensor’s CRDs,
in the complex format shown in the figure, where the four CRD channels correspond to real
and imaginary components of complex fields having as amplitude the ARD and as phases
the phase differences between the central antenna and the other two.

This forward model is built to operate on a frame-by-frame basis, instead of processing en-
tire one-second-long time series. Data is extracted from samples of the format described in
section 5.2.3 as shown in figure 5.13. The forward model was built with fully connected
networks for its components.

Two different multi-fidelity forward models are trained using the supervised components of
each data set described in section 5.2.3 respectively. Examples of hand poses, analytically
simulated CRDs and muti-fidelity generated CRDs for two different motions are shown in
figure 5.14. With the multi-fidelity forward model, Soli CRDs can be generated with high
fidelity and can therefore be used to train the inverse, augmenting the supervised portion of
the data by providing CRDs for the unsupervised portion of the set.
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Figure 5.13: Data pre-processing used for training the multi-fidelity forward model architec-
ture. Four time bins of markers’ positions are extracted from the longer time series and their
velocities are computed with simple element wise gradient. The positions and velocities are
flattened and concatenated to give a single vector. Single time frames are extracted from
the CRDs in the complex form, flattened and concatenated to form a single vector. The two
vectors constitute an input–output pair for the forward model.
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Figure 5.14: Examples of multi-fidelity generated frames for one second long hand motions
using the multi-fidelity forward model. Simulated here refers to analytically simulated data
and multi-fidelity refers to data simulated using the trained multi-fidelity forward model. The
multi-fidelity model is able to generate both amplitudes and phase differences with much
higher fidelity than analytical simulations.
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5.2.5 Experimental Reconstruction Results

in these experiments, the supervised sets, for both coarse and fine hand motion sets, are com-
posed of 2000 examples. The unsupervised sets are composed of 2000 and 2600 examples
respectively. Finally, 100 examples are reserved for each set as test. With these, two sets of
experiments are performed, each using either coarse or fine motion data. As a baseline to
compare performance, a conditional VAE is trained to reconstruct hand motions from CRDs
using only the supervised portion of the set. To test the novel framework, the model is trained
as described in chapter 3, making use of both supervised and unsupervised portions of the
data, as well as the multi-fidelity forward model, previously trained on the supervised set
as described in section 5.2.4. Testing is performed by sampling from the trained models
using as inputs the test CRDs and hence form distributions of possible reconstructed hand
motions. Figures 5.15 and 5.16 show examples of reconstructions’ drawn from the recovered
posteriors with coarse and fine hand motions respectively.

These qualitative examples highlight the advantage of augmenting the data during training
using the VICI framework of chapter 3. The VICI recoveries are visibly more accurate
and the different draws explore more adequately the uncertainty space of the retrieval task,
while training with 2000 paired examples alone yields less accurate results overall, but also
collapsed draws that are all similar to each other, failing to capture the uncertainty in the
recovery.
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Figure 5.15: Example of reconstruction samples for the coarse hand motions by a CVAE, first
trained using only the supervised portion of the set and then trained with the VICI framework
of chapter 3, making use additionally of the forward model and unsupervised data.
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Figure 5.16: Example of reconstruction samples for the fine hand motions by a CVAE, first
trained using only the supervised portion of the set and then trained with the VICI framework
of chapter 3, making use additionally of the forward model and unsupervised data.
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Quantitative Evaluation

To quantitatively assess the performance of the VICI framework, different reconstruction
metrics are computed and compared between the two methods. These are as follows:

1. Per-frame RMSE: The root mean square error (RMSE) between the mean of the
recovered hand poses and the ground truth is computed in each frame in each test
motion. This is a metric which measures how close the mean reconstruction is to the
target, and therefore it is a deterministic measure.

2. Gaussian Fit Log Marginal Likelihood: All entries in the reconstructed hand mo-
tions are taken and a Gaussian is fit on each of them using the samples from the model.
The joint log likelihood these Gaussian assign to the ground truth test motions is then
evaluated. This is a probabilistic measure, but only of the marginal distributions per
sample, as it takes account of the variance of reconstruction in each entry, but discards
correlations.

3. ELBO: The ELBO assigned to the test set by the models is computed. This is the
most commonly used measure of performance for VAEs. It is an approximation (a
lower bound) to the true data log likelihood. Compared to the previous measure, it can
capture the full complexity of the true PDFs, but it is less robust.

Each of these metrics is evaluated with the two training strategies and compared. Results are
shown in tables 5.3 and 5.4.

Both qualitative and quantitative comparisons demonstrate that, in the situation where ex-
perimental training data is scarce, using the framework of chapter 3 provides considerable
advantage. The novel framework manages to incorporate into the training of models both
unsupervised hand motion examples, which can be simulated or generated with generative
models, and physical models of the Soli sensing process.
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Table 5.3: Reconstruction performance metrics with the coarse hand motions for direct train-
ing of a CVAE with 2000 supervised examples and training with the VICI framework of
chapter 3, making use of 2000 supervised examples, available unsupervised examples and
physical models of the Soli sensor (incorporated in the multi-fidelity forward model).

Per-Frame Gaussian Fit ELBO
RMSE Log Marginal

Exp. Only 0.088775 cm −4124.207 3197.079
(2000 Examples)
VICI Framework 0.073691cm −1826.493 6679.111
(2000 Sup + 2000 Unsup)
Two-sample 6.1× 10−37 2.1× 10−167 5.8× 10−277

p-values

Table 5.4: Reconstruction performance metrics with the fine hand motions for direct training
of a CVAE with 2000 supervised examples and training with the VICI framework of chapter
3, making use of 2000 supervised examples, available unsupervised examples and physical
models of the Soli sensor (incorporated in the multi-fidelity forward model).

Per-Frame Gaussian Fit ELBO
RMSE Log Marginal

Exp. Only 0.042554cm −1659.566 6393.266
(2000 Examples)
VICI Framework 0.035248cm −949.092 7344.824
(2000 Sup + 2600 Unsup)
Two-sample 5.1× 10−14 1.3× 10−187 1.5× 10−144

p-values
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Examples of Reconstructing Fine Motions

When training the model with the novel approach of chapter 3, combining limited supervised
and unsupervised data, fine motions can be reconstructed with a good degree of accuracy,
recovering the location in time of individual trackers on the hand with centimeter accuracy
with a wide variety of gestures. In figures 5.17 and 5.18 the particular case of pressing down
with individual fingers is examined in detail. The model trained with the novel framework
is able to recognise and reconstruct the motions of individual fingers pushing down, while
also returning accurate measures of uncertainty. These are results from the model trained
with the full variety of fine motions, and therefore it is trained to reconstruct a wider range
of gestures and not just those shown in figures 5.17 and 5.18.

Figure 5.17: Reconstruction of the hand while pushing down with the index finger. The
model trained with the novel framework is able to accurately track the location of the index
finger pushing down, while recognising the other fingers are not moving. It also returns a
suitable measure of uncertainty for each marker.
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Figure 5.18: Reconstruction of the hand while pushing down with the ring finger. As in
figure 5.17, the model trained with the novel framework is tracking the full hand motion,
also returning a measure of uncertainty. Here too, the model accurately tracks the movement
of the finger being pushed down, while recognising the other markers are fairly stationary.

Examples of Marginal Plots

Once a suitable probabilistic recovery model has been trained, one can distill any statistical
measure of interest from the model’s samples. For instance, figure 5.19 shows a marginal
map of hand position accuracy as a function of distance and inclination angle from the sensor.
Figure 5.20 shows an analogous map of tracker accuracy. These maps were built with un-
seen data from the test set only. The model’s own estimate of uncertainty (right-hand plots)
correlates well with the true recovery precision (middle plots). This means that measures
such as these ones can be recovered even without ground-truth data, but simply by acquiring
data with the Soli sensor alone, in normal operation.
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Figure 5.19: Plots of hand tracking average accuracy as a function of range and inclination
angle (Phi) from the Soli sensor. On the left, the test data density is plotted over the same
axes, in order to show how much data was available to compute this measure in each quan-
tised location. In the middle, the empirical tracking precision is shown, measured by the
RMSE to the ground-truth. On the right, the average standard deviation is shown, computed
using draws from the trained model only, hence without the need to use ground-truth hand
motions.

Figure 5.20: Plots of tracker positioning average accuracy as a function of range and incli-
nation angle (Phi) from the Soli sensor. On the left, the test data density is plotted over the
same axes, in order to show how much data was available to compute this measure in each
quantised location. In the middle, the empirical tracking precision is shown, measured by the
RMSE to the ground-truth. On the right, the average standard deviation is shown, computed
using draws from the trained model only, hence without the need to use ground-truth hand
motions.
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5.2.6 Discussion

With the application of the novel framework for semi-supervised inverse problems presented
in chapter 3, new capabilities for the Soli sensing system were demonstrated. Firstly, in
section 5.2.4, the multi-fidelity forward model was demonstrated to provide accurate simu-
lations that leverage physical models in combination to empirical data. With either of these
improving, the forward model, and the whole system as a result, are expected to improve
even further and extend to the general case of any hand motion. This would allow for the use
of simulated environments for the Soli sensor, which can be used to investigate interaction
designs and test performance entirely in software, other than augmenting training data for
inversion.

Second, the results of section 5.2.5 demonstrated that including models and unsupervised
data with the framework of chapter 3 in the training of a reconstruction model gives ap-
preciable improvement compared to only training with the available labelled data. In the
experiments presented here, using a few thousand gesture examples paired to Soli signal, us-
ing additional unlabelled data and a forward model allowed to train a rather accurate system,
which otherwise tends to over-fit and give inadequate reconstructions, as shown in figures
5.15 and 5.16.

Third, section 5.2.5 demonstrated that the our method is capable of recovering fine motions
with good accuracy, including tracking the movements of individual fingers, as shown in
figures 5.17 and 5.18. These results also show how the novel framework recovers good mea-
sures of uncertainty, with which one can extract different types of measure and informative
visualisations, such as those shown in section 5.2.5.
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Chapter 6

Variational Inference for
Unsupervised Inverse Problems

The framework presented in chapter 3 is built to solve inverse problems in which examples
of targets are available, giving examples of what reconstructions should look like in some
sense. However, there is many settings, particularly within information retrieval, where one
desires to retrieve targets solely from large data sets of partial or corrupted observations.
These type of problems can be considered as unsupervised inverse problems and commonly
occur in the early stages of a learning pipeline.

In fact, data sets are rarely clean and ready to use when first collected. More often than
not, they need to undergo some form of pre-processing before analysis, involving expert
human supervision and manual adjustments [132, 133, 134]. Filling missing entries, cor-
recting noisy samples, filtering collection artefacts and other similar tasks are some of the
most costly and time consuming stages in the data modeling process and pose an enormous
obstacle to machine learning at scale [135].

Traditional data cleaning methods rely on some degree of supervision in the form of a clean
dataset or some knowledge collected from domain experts. However, the exponential in-
crease of the data collection and storage rates in recent years, makes any supervised algo-
rithm impractical in the context of modern applications that consume millions or billions of
datapoints. This chapter introduces a novel variational framework to perform automated data
cleaning and recovery without any example of clean data or prior signal assumptions.

The Tomographic auto-encoder (TAE), is named in analogy with standard tomography. Clas-
sical tomographic techniques for signal recovery aim at reconstructing a target signal, such
as a 3D image, by algorithmically combining different incomplete measurements, such as
2D images from different view points, subsets of image pixels or other projections [136].
The TAE extends this concept to the reconstruction of data manifolds; the target signal is a
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Figure 6.1: (a) Example of Bayesian recovery from corrupted data with a Tomographic
Auto-Encoder (TAE) on corrupted MNIST. The TAE recovers posterior probability densities
q(x|yi, Ai) for each corrupted sample yi and known measurement Ai. We can draw from
these to explore different possible clean solutions. (b) Two dimensional Bayesian recovery
experiment. (i) Observed set of corrupted data Y , with the point we are inferring from yi
highlighted. (ii) Ground truth hidden clean data with the target point xi highlighted, along
with the posterior q(x|yi) (in this experiment Ai = 1 in all observations) reconstructed by a
VAE. (iii) Posterior q(x|yi) recovered with the TAE.

clean data set, where corrupted data is interpreted as incomplete measurements. The aim is
to combine these to reconstruct the clean data.

More specifically, as for the method presented in chapter 3 for semi-supervised situations,
the task of interest is performing Bayesian recovery, where degraded samples are not simply
transformed into clean ones, but probabilistic functions are recovered, with which diverse
clean signals can be generated, exploring the whole range of possible solutions to the inverse
problem and capturing uncertainty. As for other inverse problems, uncertainty is consider-
ably important when cleaning data. If one is over-confident about specific solutions, errors
are easily ignored and passed on to downstream tasks. For instance, in the example of figure
6.1(a), some corrupted observations yi and corresponding known measurements Ai are con-
sistent with multiple digits. If a single possibility was to be imputed for each sample, the true
underlying solution may be ignored early on in the modeling pipeline and the digit will be
consistently mis-classified. If instead accurate probability densities are recovered, one can
remain adequately uncertain in any subsequent processing task.

Several variational auto-encoder (VAE) models have been proposed for applications that can
be considered special cases of this problem [79, 84, 90] and, in principle, they are capable
of performing Bayesian reconstruction, as they are latent variable models which are able
to sample from their implicit PDFs. However, in this chapter, it is shown that surrogating
variational inference (VI) in a latent space with VAEs results in collapsed distributions that
do not explore the different possibilities of clean samples, but only return single estimates.
This pathology precludes the capability which is the focus of the work in this thesis; the
ability to perform Bayesian reconstruction and retrieve all different possible solutions to an
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inverse problem. To overcome this issue, the TAE performs approximate VI in the space
of recovered data instead, through the novel reduced entropy condition method, proposed
and detailed in section 6.1.3. The resulting posteriors adequately explore the manifold of
possible clean samples for each corrupted observation and, therefore, adequately capture the
uncertainty of the task.

Figure 6.1(a) shows inference examples using the TAE framework on MNIST with missing
values, where only 10% of pixels are observed with additive Gaussian noise. In this example,
the coordinates of the observed pixels are known and incrporated into the TAE framework
through observation masks Ai. The TAE algorithm is also compared to a standard VAE
approach in a simple 2D experiment shown in figure 6.1(b). In this experiment, 50 data points
lie along a randomly generated sinusoidal curve, shown in grey. Gaussian noise is added to
the data points to generate the observations, meaning that, in this case, the observation masks
Ai contain all ones. Both a standard VAE and the TAE are then used to recover a probability
density of an underlying clean data point xi using the corresponding corrupted observation
yi as input. Both models have identical architectures, with 2-dimensional latent spaces and
fully connected networks for their components. While the VAE posterior collapses to a single
point, the TAE reconstructs a rich posterior that adjusts to the data manifold.

The experiments the TAE framework is tested with presented in sections 6.2 and 6.2.4 focus
on data recovery from noisy samples and missing entries. This is one of the most common
data corruption settings being encountered in a wide range of domains with different types
of data [137, 138]. By testing the novel approach in this prevalent scenario, it can be closely
compared with recently proposed VAE approaches [84, 139, 85]. The experiments of section
6.2 show how the existing VAE models exhibit the posterior collapse problem while the TAE
produces rich posteriors that capture the underlying uncertainty. The TAE is then tested
on classification subsequent to imputation, demonstrating superior performance to existing
methods in these downstream tasks. In section 6.2.4, the TAE is used to perform automated
missing values imputation on raw depth maps from the NYU rooms data set [140].

6.1 Method

In order to frame the problem and understand the issues with standard variational methods
in this context, the data recovery task is viewed from a signal reconstruction prospective.
The final scope of a Bayesian data recovery method is to build and train a parametric prob-
ability density function (PDF) q(x|y, A), which takes as inputs corrupted measurements y
and known observation parameters A, where available, and generates different possible cor-
responding clean data x ∼ q(x|y, A) through sampling. For the rest of the chapter, the
known observation parameters A are left out of the modelling for simplicity and all poste-
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Figure 6.2: Training LVMs for data recovery. (a) Structure of the reconstruction LVM used
to infer approximate posteriors q(x|y) of clean data x from corrupted observations y as con-
ditional inputs. (b) Training of q(x|y) using a VAE. A prior in the latent space z is introduced
as a regulariser, however no explicit regularisation is imposed in x. (c) Training of q(x|y)
using our TAE model. An empirical prior p(x) =

∫
p(zp)p(x|zp)dzp is instead introduced in

clean data space x.

riors q(x|y, A) will be written as q(x|y). In the construction of this posterior, there are two
aspects that need to be designed: i) the structure of this conditional PDF and ii) the way it
will be trained to perform the recovery task.

Regarding the former, as natural data often lies on highly non-linear manifolds, the condi-
tional PDF needs to capture complicated modalities, e.g. the distribution of plausible images
consistent with one of the corrupted observations in figure 6.1(a). A suitable recovery PDF
q(x|y) needs to be able to capture such complexity. As in the semi-supervised case, a natural
choice to achieve high capacity and tractability is to construct q(x|y) as a conditional latent
variable model (LVM). As described in section 2.2.2 and also demonstrated by the novel
method presented in chapter 3, conditional LVM neural networks have achieved efficient
and expressive variational inference in many recovery settings, capturing complex solution
spaces in high dimensional problems, such as image reconstruction [66, 63, 8]. The condi-
tional LVM consists of a first conditional distribution q(z|y) mapping input corrupted data y
to latent variables z, and a second inference q(x|z, y) mapping latent variables to output clean
data x. The resulting PDF is q(x|y) =

∫
q(z|y)q(x|z, y)dz, where both q(z|y) and q(x|z, y)

are simple distributions, such as isotropic Gaussians, whose moments are inferred by neu-
ral networks taking the respective conditional arguments as inputs. Figure 6.2(a) shows a
graphical model for the conditional LVM.

While the choice of structure is fairly straightforward, the main difficulty lies in training the
recovery LVM in the absence of clean ground truths x. In the supervised and semi-supervised
cases, several established methods exist, including the novel one presented in chapter 3. With
even partial supervision, the observed distributions of clean data x conditioned on paired
observations y can be matched by parametric ones through a VAE or GAN training strategy
[65, 8, 11]. The focus of this chapter is instead the unsupervised situation, where only
corrupted data Y = {y1:N} is accessible, along with a functional form for the corrupted data
likelihood p(y|x), e.g., missing values and additive noise. Training a conditional LVM to fit
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posteriors without any ground truth examples x is rather challenging, as there is no target
data to encode from, in the case of VAE architectures, or adversarially compare with, in the
case of GAN models.

6.1.1 VAEs and the Posterior Degeneracy Problem

Variational auto-encoders (VAEs) have been proposed for several problems within this defi-
nition of unsupervised reconstruction [139, 79, 90, 87]. These methods lead to good single
estimates of the underlying targets. However, they easily over-fit their posteriors resulting
in collapsed PDFs q(x|y). Put differently, they are often unable to explore different possible
solutions to the recovery problem and return single estimates instead. Figure 6.1(b-ii) shows
this pathology in a two dimensional experiment.

The reason for this can be explained considering what the reconstruction LVM q(x|y) is
and how it is trained when directly employing a VAE in the unsupervised recovery scenario.
The VAE encodes latent vectors z from corrupted observations y with an encoder q(z|y)
and reconstructs clean data x with a decoder p(x|z). These two functions constitute the
reconstruction LVM q(x|y) =

∫
q(z|y)p(x|z)dz. As there are no clean ground truths x,

data likelihood is maximised by mapping reconstructed clean samples x back to corrupted
samples y with a corruption process likelihood p(y|x), e.g. zeroing out missing entries, to
maximise reconstruction of the observations y. Concurrently, regularisation in the latent
space is induced with a user defined prior p(z) (e.g. a unit Gaussian). The resulting lower
bound to be maximised during training can be expressed as follows:

LV AE = Eq(z|y) log p(y|z)−KL(q(z|y)||p(z)), (6.1)

where the observations likelihood is p(y|z) =
∫
p(x|z)p(y|x)dx and in some cases, such as

for missing values and additive noise, it is analytical. This bound for missing value imputa-
tion using a VAE can be derived as follows. The aim is to maximise the log likelihood of the
observed corrupted data y:

log p(y) = log

∫
x

∫
z

p(z)p(x|z)dz︸ ︷︷ ︸
p(x)

p(y|x)dx.
(6.2)

To obtain a tractable approximation to this likelihood, one can introduce a variational distri-
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bution in both clean data space and latent space q(x, z|y) and define a lower bound as

log p(y) ≥
∫
x

∫
z

q(x, z|y) log p(z)p(x|z)dz
q(x, z|y)

dzdx

+

∫
x

∫
z

q(x, z|y) log p(y|x)dzdx.
(6.3)

To obtain the VAE ELBO used in data recovery settings, the choice of this variational poste-
rior is q(x, z|y) = q(z|y)p(x|z). The ELBO can then be simplified to give

log p(y) ≥
∫
x

∫
z

q(z|y)p(x|z) log p(z)p(x|z)dz
q(z|y)p(x|z)

dzdx

+

∫
x

∫
z

q(z|y)p(x|z) log p(y|x)dzdx

=

∫
x

p(x|z)dx︸ ︷︷ ︸
=1

∫
z

q(z|y) log p(z)dz
q(z|y)

dz

+

∫
x

∫
z

q(z|y)p(x|z)dz log p(y|x)dx.

(6.4)

For situations in which the observations’ likelihood p(y|z) =
∫
x
p(x|z)p(y|x)dx has a closed

form, such as additive noise and missing entries, a tighter bound to the likelihood can be
defined by moving the integral in x in the second term inside the logarithm:

log p(y) ≥
∫
z

q(z|y) log p(z)dz
q(z|y)

dz

+

∫
z

q(z|y) log
[∫

x

p(y|x)p(x|z)dx
]
dz

=−KL(q(z|y)||p(z)) + Eq(z|y) log p(y|z)dx.

(6.5)

Note that, because p(x|z) simplifies in the KL term, this ELBO avoids variational inference
in the space of clean data x.

Viewing the VAE training from a signal reconstruction prospective, where the reconstruction
model is q(x|y) =

∫
q(z|y)p(x|z)dz, one can notice that no prior is directly introduced on

the hidden targets x, but only in the LVM latent space z. While regularising only in z may be
computationally desirable, if the decoder p(x|z) is of sufficient capacity, the model can learn
to collapse regularised distributions in z to single estimates in x, failing to capture the uncer-
tainty in the solution space of the inverse problem. In fact, this is induced by the objective
function of equation 6.1; the model finds broad distributions in the latent space q(z|y), which
minimise the KL divergence with p(z), but the generator p(x|z) can learn to collapse them
back to single maximum likelihood solutions in x, maximising Eq(z|y) log

∫
p(x|z)p(y|x)dx.

This effect may be counteracted by reducing the capacity of p(x|z) or the dimensionality of
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z, but doing so also reduces the capacity of the reconstruction model q(x|y), resulting in an
undesirable coupling between regularisation and posterior capacity.

6.1.2 Data Modelling View of the Problem

An alternative way to view the task and understand the posterior collapse problem is from
a data modelling prospective, which is perhaps more familiar to readers acquainted with
generative models and VAEs. In this view, the a priori goal is to build a model p(y) to capture
the observable data points yi. The model is constructed as a latent variable model p(y) =∫
x

∫
z
p(z)p(x|z)dzp(y|x)dx where p(y|x) is completely or partially fixed by the observation

model. To train this generative model using a VI approach, a recognition model q(x, z|y)
is introduced to train an ELBO on the log likelihood of the observations yi. The standard
VAE approach introduces a factorisation assumption in the construction of this recognition
model which is improper and results in the posterior collapse problem. Namely, as described
above through the data recovery prospective, the VAE assumes that q(x, z|y) = q(z|y)p(x|z).
Instead, given the generative structure described above, the formally correct factorisation is
q(x, z|y) = q(x|y)q(z|x). The TAE framework presented here applies this factorisation and
models q(x|y) as a conditional LVM itself. To reconcile this way of viewing the problem
and the resulting starting point to model the TAE with the data recovery ones presented
above, one simply needs to rename z above to zp and formalise the recognition model’s
LVM component as q(x|y) =

∫
q(z|y)q(x|z)dz, where now z is its own latent variable.

With this renaming of variables, the TAE development presented below follows from this
second perspective as well.

6.1.3 Separating Posterior and Prior: The Tomographic Auto-
Encoder

The premise of the model presented in this chapter to address the aforementioned problem
is simple: Introduce a prior p(x) in the hidden clean signal space. In particular, the proposed
method uses an empirical prior, having itself the form of an LVM p(x) =

∫
p(zp)p(x|zp)dzp.

An empirical prior, i.e. a prior which itself is trained with data, is chosen in order to better
capture the nature of clean data x, as this is a distribution over natural data. p(zp) is a unit
Gaussian and p(x|zp) is a neural network, the parameters of which are trained along those of
the posterior. In this way, approximate variational inference is performed in clean data space
x, instead of being surrogated to the reconstruction function’s latent space z. By doing so,
the capacity of the prior p(x) can be controlled to induce regularisation independently of the
capacity of the reconstruction model q(x|y) =

∫
q(z|y)q(x|z, y)dz. In fact, the capacity of

this prior model is kept limited to avoid over-fitting, i.e. p(x|zp) has many fewer parameters
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than q(x|z), ensuring that the prior does not over-fit. For this framework, An ELBO can be
formulated as follows. The likelihood to be maximise is

log p(y) = log

∫
x

∫
zp

p(zp)p(x|zp)dzp︸ ︷︷ ︸
p(x)

p(y|x)dx.
(6.6)

Similarly to the VAE ELBO case, a variational posterior q(x, zp|y) is used to find a lower
bound

log p(y) ≥
∫
x

∫
zp

q(x, zp|y) log
p(zp)p(x|zp)dzp
q(x, zp|y)

dzpdx

+

∫
x

∫
zp

q(x, zp|y) log p(y|x)dzpdx.
(6.7)

However, the TAE model does not make the assumption that the variational posterior has
the special form described in section 6.1.1 and instead set it to have the form q(x, zp|y) =

q(x|y)q(zp|x), separating posterior inference from observations y to clean data x and infer-
ence of prior latent variables zp. The resulting lower bound is

log p(y) ≥
∫
x

∫
zp

q(x|y)q(zp|x) log
p(zp)p(x|zp)
q(x|y)q(zp|x)

dzpdx+

∫
x

∫
zp

q(x|y)q(zp|x) log p(y|x)dzpdx

=

∫
x

q(x|y)
∫
zp

q(zp|x) log
p(zp)p(x|zp)
q(zp|x)

dzp︸ ︷︷ ︸
≥log p(x)

dx+

∫
x

∫
zp

q(zp|x)︸ ︷︷ ︸
=1

dzpq(x|y) log p(y|x)dx

−
∫
x

∫
zp

q(zp|x)dzp︸ ︷︷ ︸
=1

q(x|y) log q(x|y)dx

=Eq(x|y)
[
Eq(zp|x) log p(x|zp)−KL(q(zp|x)||p(zp))

]
+ Eq(x|y) log p(y|x) +H(q(x|y)).

(6.8)

The main technical challenge and focus of this chapter is how to compute and maximise the
self entropy of the approximate posterior H(q(x|y)), as this conditional distribution is an
LVM of the form q(x|y) =

∫
q(z|y)q(x|z, y)dz.

Reduced Entropy Condition

Direct computation of the entropy of an LVM model q(x|y) =
∫
z
q(z|y)q(x|z, y)dz is in-

tractable in the general case. [141] proposed an approximate inference method to compute
the gradient of the LVM’s entropy for variational inference in latent spaces. However, this
involves multiple samples to be drawn and evaluated with the LVM, which is expected to
scale in complexity as the dimensionality and capacity of the target distribution increase.
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In the TAE model, the aim is to approximately compute and optimise the entropy H(q(x|y))
for a distribution capturing natural data, which can be high-dimensional and lie on compli-
cated manifolds. In order to maintain efficiency in the entropy estimation, the TAE intro-
duces a new strategy; a class of LVM posteriors for which the entropy reduces to a tractable
form is identified and the posterior is approximately constrained to such a class in the ELBO
optimisation. The main result is summarized in the following theorem:

Theorem 1 If q(z|x,y)
q(z|y) = Bδ(z− g(x, y)), where δ( · ) is the Dirac Delta function, B is a real

positive parameter and g(x, y) is a deterministic function, then H(q(x|y)) = H(q(z|y)) +
Eq(z|y)H(q(x|z, y)).

We note that, in principle, given the clean data x, the The proof is as follows.

q(z|x, y)
q(z|y)

= Bδ(z − g(x, y)) =⇒ q(z|x, y)
q(z|y)

q(z′|x, y)
q(z′|y)

= 0, ∀x, z ̸= z′

=⇒ q(x|z, y)
q(x|y)

q(x|z′, y)
q(x|y)

= 0, ∀x, z ̸= z′

=⇒ q(x|z, y)q(x|z′, y) = 0, ∀x, z ̸= z′

=⇒ q(x|z′, y) = 0, ∀x ∼ q(x|z, y), z ̸= z′

(6.9)

Using the result of equation 6.9, the form of the entropy H(q(x|y)) for this special case can
be derived as the following:

H(q(x|y)) =−
∫
x

[∫
z

q(z|y)q(x|z, y)dz
]

· log
[ ∫

z′
q(z′|y)q(x|z′, y)dz′

]
dx

=−
∫
x

∫
z

q(z|y)q(x|z, y) · log
[ ∫

z′=z

q(z′|y)q(x|z′, y)dz′

+

∫
z′ ̸=z

q(z′|y)q(x|z′, y)dz′︸ ︷︷ ︸
eq.6.9 =⇒ =0

]
dzdx

= −
∫
z

∫
x

q(z|y)q(x|z, y) log [q(z|y)q(x|z, y)] dxdz

= −
∫
z

∫
x

q(z|y)q(x|z, y) log q(z|y)dxdz −
∫
z

∫
x

q(z|y)q(x|z, y) log q(x|z, y)dxdz

= −
∫
z

q(z|y) log q(z|y)dz −
∫
z

q(z|y)
∫
x

q(x|z, y) log q(x|z, y)dxdz

= H(q(z|y)) + Eq(z|y)H(q(x|z, y)),

(6.10)

obtaining the reduced tractable form of the entropy stated in theorem 1. Theorem 1 states
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that if the posterior over latent variables q(z|x, y) is infinitely more localised than the latent
conditional q(z|y), then the LVM entropy H(q(x|y)) has the tractable form given above.
This condition imposes the LVM posterior to present non-overlapping conditionals q(x|z, y)
for different latent variables z, but does not impose any explicit restriction to the capacity of
the model. The reduced entropy condition can be re-formulated as follows.

Eq(x,z|y) log
q(z|x, y)
q(z|y)

= C, C →∞. (6.11)

This equivalence can be proven by proving that one is both sufficient and necessary condition
for the other:

proof of necessary condition:

Eq(x,z|y) log
q(z|x, y)
q(z|y)

=

∫
z

q(z|y)
∫
x

q(x|z, y) log q(z|x, y)
q(z|y)

dxdz

=

∫
x

q(x|y)
∫
z

q(z|x, y) log q(z|x, y)
q(z|y)

dzdx

=

∫
x

q(x|y)
∫
z

q(z|x, y) log q(z|x, y)dzdx

−
∫
x

q(x|y)
∫
z

q(z|x, y) log q(z|y)dzdx

=

∫
x

q(x|y)
∫
z

q(z|x, y) log q(z|x, y)dzdx

−
∫
x

q(x|z, y)dx︸ ︷︷ ︸
=1

∫
z

q(z|y) log q(z|y)dz

=Eq(x|y)

∫
z

q(z|x, y) log q(z|x, y)dz︸ ︷︷ ︸
−H(q(z|x,y))

−
∫
z

q(z|y) log q(z|y)dz︸ ︷︷ ︸
−H(q(z|y))

.

(6.12)

If the above expression tends to infinity, either H(q(z|x, y)) → −∞ or H(q(z|y)) → ∞,
meaning that either q(z|x, y) → a Delta function, or q(z|y) → uniform. Either condition
implies q(z|x,y)

q(z|y) = Bδ(z − g(x, y)).

proof of sufficient condition:

Eq(x,z|y) log
q(z|x, y)
q(z|y)

=

∫
x

q(x|y)
∫
z

q(z|x, y) log q(z|x, y)
q(z|y)

dzdx

=

∫
x

q(x|y)
∫
z

q(z|y)q(z|x, y)
q(z|y)

log
q(z|x, y)
q(z|y)

dzdx.

(6.13)
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Now we set q(z|x,y)
q(z|y) = Bδ(z − g(x, y)):∫

x

q(x|y)
∫
z

q(z|y)Bδ(z − g(x, y)) logBδ(z − g(x, y))dzdx

=

∫
x

q(x|y)q(g(x, y)|y) logB δ(g(x, y)− g(x, y))︸ ︷︷ ︸
→∞,∀x

dx.
(6.14)

Therefore, q(z|x,y)
q(z|y) = Bδ(z − g(x, y)) is a sufficient condition for Eq(x,z|y) log

q(z|x,y)
q(z|y) →∞.

To train the posterior q(x|y), the ELBO LTAE is maximised with the reduced entropy, while
enforcing the condition of equation 6.11:

argmax Eq(x|y) log p(y|x) + Eq(x|y)
[
Eq(zp|x) log p(x|zp)−KL(q(zp|x)||p(zp))

]
+H(q(z|y)) + Eq(z|y)H(q(x|z, y)), s.t. Eq(x,z|y) log

q(z|x, y)
q(z|y)

= C, C →∞.
(6.15)

While the ELBO is now amenable to stochastic optimization, the constraint is intractable
since C →∞ and the posterior q(z|x, y) is intractable.

Relaxed Constraint

To render the constraint tractable, C is first relaxed to be a positive hyper-parameter. The
higher the value of C, the more localised q(z|x, y) is imposed to be compared to q(z|y) and
the closest the reduced entropy is to the true one.

To address the intractability of the posterior q(z|x, y), a variational approximation with a
parametric function r(z|x, y) is used. In fact, for any valid probability density r(z|x, y), it
can be proven that

Eq(x,z|y) log
q(z|x, y)
q(z|y)

≥ Eq(x,z|y) log
r(z|x, y)
q(z|y)

. (6.16)
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The proof is as follows.

Eq(x,z|y) log
q(z|x, y)
q(z|y)

=

∫
z

∫
x

q(x, z|y) log q(z|x, y)dzdx

−
∫
z

∫
x

q(x, z|y) log q(z|y)dzdx

=

∫
x

q(x|y)
∫
z

q(z|x, y) log q(z|x, y)dzdx

−
∫
z

∫
x

q(x, z|y) log q(z|y)dzdx

≥
∫
x

q(x|y)
∫
z

q(z|x, y) log r(z|x, y)dzdx

−
∫
z

∫
x

q(x, z|y) log q(z|y)dzdx

=Eq(x,z|y) log
r(z|x, y)
q(z|y)

,

(6.17)

Where the inequality derives from the positivity of the KL divergenceKL(q(z|x, y)||r(z|x, y)).
The above bound implicates that

Eq(x,z|y) log
r(z|x, y)
q(z|y)

= C ⇒ Eq(x,z|y) log
q(z|x, y)
q(z|y)

≥ C.

This means that imposing the condition with a parametric distribution r(z|x, y), which is
trained along with the rest of the model, ensures deviation from the set condition only by
excess. As the exact condition is met only at Eq(x,z|y) log

q(z|x)
q(z|y) → ∞, the constraint can

never be relaxed more than already set by the finite value of C.

The TAE Objective Function

Having defined a tractable ELBO and a tractable condition, one needs to perform the con-
strained optimisation

argmax Eq(x|y) log p(y|x) + Eq(x|y)
[
Eq(zp|x) log p(x|zp)−KL(q(zp|x)||p(zp))

]
+H(q(z|y)) + Eq(z|y)H(q(x|z, y)), s.t. Eq(x,z|y) log

r(z|x, y)
q(z|y)

= C.
(6.18)

To do this, the commonly adopted penalty function method [142, 143] is adopted and equa-
tion 6.18 is relaxed to an unconstrained optimisation with the use of a positive hyper-parameter
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λ:

argmax Eq(x|y) log p(y|x) + Eq(x|y)
[
Eq(zp|x) log p(x|zp)−KL(q(zp|x)||p(zp))

]
+H(q(z|y)) + Eq(z|y)H(q(x|z, y))− λ

∣∣∣∣Eq(z,x|y) log
r(z|x, y)
q(z|y)

− C
∣∣∣∣ . (6.19)

To train the model, equation 6.19 is maximised using the ADAM optimiser. Once the model
is trained, diverse reconstructions from a corrupt observation yi can be generated by sampling
from the posterior q(x|yi).

The objective of equation 6.19 is simplified to aid understanding. In the general case, the
corruption process p(y|x), mapping clean data x to degraded samples y, is controlled by
parameters that differ from sample to sample. We can distinguish these into observed pa-
rameters α and unobserved parameters β. For example, in the case of missing values and
noise, the indexes of missing entries in each sample are often observed parameters, while the
noise level is an unobserved parameter. The complete form of the corruption likelihood for
a clean sample xi is then p(y|xi, αi, βi).

Explicitly showing the parameters to be optimised, the objective function maximised to train
the TAE is the following

argmax
θ,ϕ

Eqϕ(x,β|y,α) log p(y|x, α, β)

+γEqϕ(x|y,α)
[
Eqϕ3 (zp|x) log pθ(x|zp)−KL(qϕ3(zp|x)||p(zp))

]
+H(qϕ1(z|y, α)) + γEqϕ1 (z|y,α)H(qϕ2(x|z, y, α))

−λ
∣∣∣∣Eqϕ(z,x|y,α) log

rϕ4(z|x)
qϕ1(z|y, α)

− C
∣∣∣∣ ,

(6.20)

where qϕ(x, β|y, α) =
∫
z
qϕ1(z|y, α)qϕ2(x|z, y, α)qϕ5(β|z, y, α)dz, qϕ(x|y, α)

=
∫
z
qϕ1(z|y, α)qϕ2(x|z, y, α)dz, qϕ(z, x|y, α) = qϕ1(z|y, α)qϕ2(x|z, y, α), ϕ = {ϕ1:5} are

the parameters of the inference models and θ are the parameter of the prior model.

Training

All expectations in the above expression are computed and optimised by sampling the corre-
sponding conditional distributions using the re-parametrisation trick characteristic of VAEs.

Because the prior LVM p(x) =
∫
p(zp)p(x|zp)dzp is training entirely with samples from the

posterior LVM, which is also training, the model can easily obtain high values for the prior
ELBO by generating collapsed samples x with the posterior and get stuck in an unfavourable
local minimum. To avoid this, a warm up strategy is employed. a positive parameter γ is
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defined, which multiplies the expectation of the prior ELBO and the entropy H(x|z, y):

argmax Eq(x|y) log p(y|x) + γEq(x|y)
[
Eq(zp|x) log p(x|zp)−KL(q(zp|x)||p(zp))︸ ︷︷ ︸

Prior ELBO, ≥p(x)

]
+H(q(z|y)) + γEq(z|y)H(q(x|z, y))− λ

∣∣∣∣Eq(z,x|y) log
r(z|x, y)
q(z|y)

− C
∣∣∣∣ .

(6.21)

The value of γ is initially set to zero. After a set number of iterations it is linearly increased
to reach one and kept constant for the remaining training iterations. A pseudo-code for the
TAE training procedure is given in algorithm 3.
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Algorithm 3 Training the TAE Model

Inputs: Corrupted observations Y = {y1:N}; Observed Parameters A = {α1:N} initial
model parameters, {θ(0), ϕ(0)}; user-defined posterior latent dimensionality, J ; user-defined
prior latent dimensionality, Jp; user-defined condition strength λ; user-defined condition pa-
rameter C; user-defined latent prior p(zp); user-defined initial warm-up coefficient γ0; user-
defined final warm-up coefficient γf ; warm-up start Nw0; warm-up end Nwf ; user-defined
number of iterations, Niter.

0: γ(k=0) ← γ0
0: for the k’th iteration in [0 : Niter − 1]

for the i’th observation
zi ∼ q

ϕ
(k)
1
(z|yi, αi)

xi ∼ q
ϕ
(k)
2
(x|zi, yi, αi)

βi ∼ q
ϕ
(k)
5
(β|zi, yi, αi)

zp,i ∼ q
ϕ
(k)
3
(zp|xi)

E(k)
i ← log p(yi|xi, βi)

P(k)
i ← log pθ(k)(xi|zp,i)

K(k)
i ← DKL(qϕ(k)

3
(zp|xi)||p(zp))

Hz(k)i ← H(q
ϕ
(k)
1
(z|yi, αi))

Hx(k)
i ← H(q

ϕ
(k)
2
(x|zi, yi, αi))

R(k)
i ← log r

ϕ
(k)
4
(zi|xi, yi, αi)

Q(k)
i ← log q

ϕ
(k)
1
(zi|yi, αi)

end
F(k) =

∑
i

(
E(k)

i + γ(k)
[
P(k)
i −K(k)

i + Hx(k)
i

]
+Hz(k)i − λ

∣∣∣R(k)
i −Q(k)

i − C
∣∣∣ )

θ(k+1), ϕ(k+1) ← argmax(F(k))

if k > Nw0 and k < Nwf

γ(k+1) ← γ(k) + (γf − γ0)/(Nwf −Nw0)
else
γ(k+1) ← γ(k)

end
end
=0

6.2 Experiments

The TAE framework is tested in a series of controlled experiments with different data sets.
First, in section 6.2.1, the quality of the recovered posteriors is evaluated through the ELBO
measured by an independent model, in order to obtain a quantitative measure of how well
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Figure 6.3: MNIST data recovery from missing entries and noise. (a) Recoveries using an
MVAE and the TAE, showing average reconstruction and samples from the trained posteri-
ors. (b) PSNR between ground truths and mean reconstruction. (c) ELBO assigned by the
recovered posteriors to the ground truth data.

latent variable models can capture the inverse problem solution space in completely unsu-
pervised settings. Secondly, in section 6.2.3, the recovery models are combined with a clas-
sification network in order to form a complete data pipeline and evaluate the TAE compared
to standard variational approaches with respect to typical down-stream tasks of interest.

6.2.1 Posterior Recovery

Experimental Conditions

All posterior recovery experiments presented in this subsection are performed on samples
that have been re-scaled from 0 to 1. In all cases, the sets are injected with additive Gaussian
noise having standard deviation 0.1. Subsequently, random binary masks are generated to
block out some entries, resulting in missing values. The proportion of missing entries in the
masks was varied to test the TAE and competing strategies in different limits.

In the experiment of figure 6.3, The MNIST dataset [144] is corrupted by introducing missing
values and additive Gaussian noise on the observed entry, as described above. Both a missing
value imputation VAE (MVAE), analogous to those presented in [84] and [139], and our
TAE model are trained with the corrupted data sets. The VAE and TAE are constructed such
that the structure of their posteriors q(x|y), i.e. the functions mapping corrupted data to
distributions of clean data at test time, are exactly the same. In this way, it is ensured that
differences in performance are due to the variational inference method employed and not the
choice of posterior model. In particular, both q(z|y) and q(x|z) are fully connected networks
with four layers, giving as outputs moments of Gaussian distributions. The posterior latent
space z is 20-dimensional. For the TAE, the prior networks p(x|zp) and q(zp|y) are also fully
connected layers, but their capacity is lower, having only two layers and a latent space zp
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of 8 dimensions. Figure 6.3(a) shows examples of mean reconstruction and posterior draws
from a situation with 90% missing values, while the plots in figure 6.3(b-c) show the RMSE
and ELBO respectively at varying ratio of available entries. Error bars are computed from
five repetitions of each experiment, each time performing a new random sub-sampling.

In the experiments of table 6.1, the TAE ELBO is evaluated further with Fashion-MNIST –
28 × 28 grey-scale images of clothing [145], and the UCI HAR dataset, which consists of
filtered accelerometer signals from mobile phones worn by different people during common
activities [146]. As before, the recovery of these data sets from observations affected by
missing values and additive noise is tested. In addition to the MVAE baseline, performance
is compared against the recently proposed missing values importance weighted auto encoder
(MIWAE) [85]. This model modifies the VAE ELBO by sampling multiple points from
the recognition model and building the log reconstruction term with a sum of contributions,
instead of a single decoding. The architectures of the models are identical to those described
above from the previous experiments with MNIST. In this set of experiments, the MIWAE
was trained with 20 samples of the latent space per encoding. The ELBO for each model
in different missing values situations is computed and reported in table 6.1. As before,
uncertainties are recovered from five repeats of the experiments.

To compute the ELBO in both sets of experiments described above, and in all further ex-
periments presented in this chapter, noiseless and complete test ground truths are emplied.
An ELBO evaluation strategy which is commonly adopted in fully unsupervised settings
[147, 148, 85] is employed. After each model is trained unsupervisedly, a posterior of the
form q(x|y) =

∫
q(z|y)q(x|z)dz is obtained, where for the MVAE and MIWAE, q(x|z) =

p(x|z). Given a test set of paired clean and corrupted samples xt and yt, a new paramet-
ric recognition model is constructed, which encodes latent distributions from ground-truths
qη(z|x). The following objective is then optimised:

argmax
η

Eqη(z|xt) log q(xt|z) +KL(qη(z|xt)|q(z|yt)). (6.22)

The above is a conditional VAE ELBO with conditional prior q(z|y) and is a lower bound
to the test likelihood of interest q(xt|yt). Note that the optimisation is performed over η
only, therefore the new recognition model q(z|x) is the only one which is affected by this
optimisation and the components of our reconstruction model q(z|y) and q(x|z) remain the
same as trained with the unsupervised training set. As a result, this new optimisation only
tightens the bound, rather than maximising the likelihood, As the aim is to use the hidden
groundtruths only to evaluate the likelihood and not improve it.
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Table 6.1: Bayesian recovery from noisy data with different percentages of missing entries.
Table shows the ELBO assigned by the retrieved posteriors to the ground truth clean data.
Two-sample p-values between the TAE results and the best of the competing strategies are
also reported for statistical significance.

MNIST Fashion-MNIST UCI HAR
50% 80% 50% 80% 50% 80%

MVAE 870± 6 803± 15 757± 1 723± 7 585± 4 471± 10
MIWAE 917± 4 780± 6 800± 7 766± 8 613± 6 584± 8
TAE 1719± 7 1536± 14 1326± 7 1094± 13 1014± 6 854± 52
p-values 1× 10−16 6× 10−13 1× 10−14 1× 10−11 2× 10−15 2× 10−8

Discussion

As shown in figure 6.3(b-c), the mean inference performance on the MNIST data set at
varying ratio of missing values is very similar for the two models (PSNR values), while the
probabilistic performance (ELBO values) is significantly higher for the TAE model. We can
see qualitative evidence of this difference in the reconstruction examples. The MVAE and
TAE return similarly adequate mean solutions, but the MVAE posterior’s draws are all very
similar, suggesting that the posterior has collapsed on a particular reconstruction. Contrarily,
the posteriors returned by the TAE explore different possible solutions that are consistent
with the associated corrupted observation. The ELBO values recovered with other data sets
shown in table 6.1 also show the same behaviour; the TAE posteriors return significantly
improved ELBO values, suggesting that the PDFs of reconstructed solutions capture more
adequately the true underlying solution space.

6.2.2 Posterior Recovery in Different Conditions

Structured Missings

A TAE is tested in a situation analogous to that shown in figure 6.3, but with structured
missing values instead of randomly missing ones. Note that this situation is different from
the missing not-at-random case, where the pattern of missing entries is dependent on the
clean sample. This condition still falls within the missing at random case, as the structure
of the missing entries is specific, but independent of the clean data. For each sample in
MNIST, only a small window of 10 × 10 pixels is made visible, randomly placed in each
example, while the rest of the images remain hidden. In addition, the values in the observed
window are subject to additive Gaussian noise, similarly to the missing-at-random case.
Reconstructions with the comparative MVAE and our TAE are shown in figure 6.4.
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Figure 6.4: Examples of Bayesian reconstructions with MVAE and TAE on structured miss-
ing values.

Similarly to the missing-at-random case, the MVAE collapses on single solutions, giving
draws from the posterior that are all very similar to each other. Contrarily, the TAE gives
more variation in the possible solutions exploring more appropriately the uncertainty in the
solution space. The MVAE ELBO over the clean data for this problem is 428, while the
TAE one is 638. The performance improvement provided by the TAE is analogous to that
observed with missing-at-random experiments.

Imputation Without Noise and De-noising

Experiments on MNIST analogous to those shown in figure 6.3 are performed, but, firstly, in
the absence of noise, in order to test performance on imputation alone, and secondly, testing
fully observed images at different levels of noise, in order to test de-noising alone. Each
tested ratio of observed entries, or noise levels, is repeated three times, re-generating the
patterns of missings each repeat in order to obtain error bars. Results are shown in figures
6.5 and 6.6 respectively.

In the case of imputation on clean data, shown in figure 6.5, the PSNR values between the
MVAE and the TAE are very similar. The TAE presents significantly superior ELBO values
at low ratios of observed entries, but in this case, the gap is reduced as more entries are
observed. This is because in the noiseless case, the solution space when most entries are
observed is much more localised than in the noisy case, and therefore the MVAE collapsed
posteriors do not fail as much to capture it. In the case of denoising (figure 6.6), as in
the missing value imputtion case, the MVAE and TAE perform very similarly in their
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mean reconstructions, but the TAE presents significantly better performance in capturing the
distributions of clean solutions, as the test ELBO values are higher.

Figure 6.5: Missing value imputation performance on MNIST in the absence of noise.

Figure 6.6: De-noising performance on MNIST.

Robustness to Hyper-parameters Choice

C and λ in equation 6.20 are hyper-parameters of our inference algorithm and need to be
user defined. In the experiments using the TAE, the optimal values are determined by cross-
validation, as described in supplementary B.2.1. However, the performance of TAEs was
found to be rather stable with respect to the choice of these hyper-parameters. Figure 6.7
shows a cross validation study where the TAE ELBO for MNIST is measured with 90%
missing values and additive noise.

As shown in figure 6.7, the performance of TAEs is robust to variations in hyper-parameters
C and λ over a broad range of values. If the values are too large, the model collapses during
optimisation, making such situations easy to diagnose. The two parameters also have an
intuitive meaning that helps in their selection. In practice, C controls the final value of
localisation and is desirable to be as high as stability of the optimisation allows. λ controls
how fast one is imposing the model to approach C.
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Figure 6.7: ELBO for MNIST with 90% missing values and additive noise as a function of
chosen hyper-parameters C and λ (in log scale).

Figure 6.8: Propagating uncertainty to a classification task.

6.2.3 Downstream Tasks

To investigate the advantage of capturing complex uncertainties with the TAE model, perfor-
mance is tested in downstream tasks. classification performance is tested on subsets of the
MNIST and Fashion-MNIST data sets, after recovery with the TAE. With both sets, experi-
ments are performed in situations where 10.000 examples are available, but corrupted with
missing entries and noise. 1, 000 of these are labelled with one of 10 possible classes and the
aim is to classify the remaining 9, 000. To do so, the TAE model is first trained on the full
set, then the recovered posteriors are used to generate multiple possible cleaned data for the
labelled sub-set and these are finally used to train a classifier.

To perform classification on the 9, 000 remaining examples, multiple possible cleaned data
samples are generated with the variational posteriors. Then, for each posterior sample, clas-
sification is performed and the results are used to build histograms. Examples are shown in
figure 6.8. Draws from the MVAE posterior are all very similar to each other. As a result,
the imputed images are almost always classified in the same way and the uncertainty of the



6.2. Experiments 111

task is underestimated. The TAE posterior explores varied possible solutions to the recovery
task. These can be recognised as different classes, resulting in less concentrated distributed
probabilities that better reflect the associated uncertainty.

To evaluate the performance, the class with the largest histogram is taken as the inferred
one. This experiment is performed for different ratios of missing values and several rep-
etitions, varying the subsets of labelled and unlabelled data used. Classification accuracy
results are shown in figure 6.9. Classifying using TAE imputations gives an advantage in this
downstream task over using raw corrupted data and MVAE imputations, especially when the
number of missing entries is high. This is because the MVAE collapses on single imputa-
tions, while the TAE generates diverse samples for each corrupted observation. The TAE
classifier trains with data augmentations consistent with observed corrupted images, instead
of single estimates.

Figure 6.9: Classification accuracy after imputation.

6.2.4 Missing Values in the NYU Depth Maps

In order to test the TAE architecture on a real unsupervised recovery problem, involving large
natural images, a convolutional version of the model is used to perform structured missing
value imputation on depth maps of indoors rooms collected with a Kinect depth sensor.
Missing entries are very common in depth maps recorded with such structured light sensors
[149], as semi-reflective surfaces facing away from the imaging instrument often deflect light
away from the sensor. Raw depth data from the NYU rooms dataset is used. This data set is
commonly used to test various computer vision systems [140, 150, 151, 152] exploiting 3D
information. This data set is composed of both RGB and matched depth images of indoors
rooms, 608 × 480 pixels in size. A small sub-set of the depth maps has been corrected by
imputing the missing entries and is popularly employed to train and test various learning
systems [150, 151, 152].

A large portion of the set is available only as raw data, which presents missing entries.
These are especially concentrated around objects’ edges and reflecting surfaces, breaking
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the common assumption of missing at random, making this task particularly challenging.
The TAE model is trained with a subset of this raw data set to perform imputation. In
this experiments, there is no ground-truth data with which one can quantitatively test the
performance, as the data employed comes from a real unsupervised imputation scenario,
where there is no examples of targets at all. This experiment demonstrates how the TAE
framework can be applied with relative ease to large real problems with high dimensional
data (608× 480 images) and give qualitatively reasonable results which avoid the problems
of other tested approaches. Examples are shown in figure 6.10.
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Figure 6.10: Unsupervised missing value imputation with the TAE model on raw depth maps
from the NYU rooms data set, compared with a median filter approach and the standard
MVAE. Missing pixels in the observed images are in white.

The median filter results in overly smoothed images and is unable to fill pixels that are
surrounded by large missing areas. The MVAE returns adequate reconstructions, however,
it over-fits to inaccurate solutions in certain locations, returning low uncertainty. The TAE
returns good reconstructions and assigns high uncertainty to locations where reconstructions
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are most inaccurate, as shown by the marginal standard deviations. The TAE generates
possibilities for the imputed pixels, which can be aggregated to recover a mean and standard
deviation to quantify uncertainty in the retrieved imputations. The imputation of this data set
was carried out with no signal prior, no particular domain expertise, temporal or structural
assumptions and no associated RGB images or examples of complete data. A convolutional
version of the TAE algorithm was simply run on the raw depth maps to impute the missing
values.
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Chapter 7

Conclusion

Probabilistic machine learning models hold a lot of potential for solving inverse problems in
many scientific and technological domains. However, there are several scalability obstacles
that make the application of these models impractical for real world settings. In this thesis,
these practical issues were considered and addressed by modelling the learning process in-
corporating all available data, supervised and unsupervised, and domain expertise about the
observation process, often available in the form of closed form mappings. In particular, this
thesis proposed two novel frameworks for training probabilistic recovery models for inverse
problems in two typical situations:

1. When acquiring paired ground-truth and measurements is expensive, and therefore
supervised data is scarce.

2. when there is no examples of ground-truths, but only observations.

The novel techniques proved successful at training probabilistic recovery models in these
settings and were demonstrated in a number of technically challenging, practical applica-
tions from the forefront of science and engineering. The new capabilities are expected to
broaden the applicability of learning methods to more practical scenarios and allow for the
development of machine learning enabled systems which are capable to self-assess their own
accuracy and be deployed safely and robustly, without excessive data collection costs.

7.1 The VICI Framework

Capturing uncertainty when solving inverse problems is critical, especially for machine
learning retrieval methods, where reconstructions are often compelling, even when not accu-
rate. Whether the recoveries are interpreted by humans or passed on to further computations,
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recovering accurate estimates of uncertainty provides essential robustness, as systems can
self-evaluate the confidence in their retrievals and be deployed safely. Through the experi-
ments of chapters 3, 4 and 5 it was demonstrated how learning accurate probabilistic models
that return uncertainties requires large amounts of supervised data, which in many practical
applications, such as those considered in this thesis, is impractical, as it adds large costs to
the development of reconstruction systems, because of the associated data collections. The
VICI framework of section 3 greatly mitigates this limitation, as it offers a principled way to
incorporate in the learning process unsupervised examples of targets and physical models of
the observation process, which are typically cheap sources of information. Both in the simu-
lated controlled experiments of chapter 3 and the application experiments of chapters 4 and
5, probabilistic models trained with this framework were proven to give accurate reconstruc-
tions and associated measures of uncertainty with limited data from physical acquisitions.

Chapters 4 and 5 demonstrated the advantages of applying the VICI framework of chapter
3 in several practical applications. The applications of these chapters demonstrated how ap-
plying the novel framework provides reconstruction systems of high accuracy and adequate
uncertainty quantification with limited experimental acquisitions. These results suggest that
using the VICI framework would allow the application of deep learning for inverse problems
in real scenarios more systematically. While with standard supervised learning, data would
need to be collected for each newly developed sensing system, with the framework of VICI,
a large data set of ground-truths can be continuously collected and used for any new recon-
struction or interaction system being developed, requiring only small amounts of data with
the new apparatus to be incorporated as high-fidelity samples. Adopting this framework is
expected to provide robust and accurate systems with greatly reduced data collection costs
in imaging, astronomy and HCI.

In general, the VICI framework allows for machine learning models applied to inverse prob-
lems to be less reliant on supervised data, compared to standard implementations, and instead
draw training information from various sources, e.g. unsupervised data and domain exper-
tise. This means that, in the development and continuous improvement of reconstruction
systems, developers have a choice of how to spend time and resources in the most efficient
way in order to build and improve their models. In some situations, collecting more paired
ground-truths and measurements can be relatively inexpensive and is the best source to invest
in, while in others it can be extremely time consuming and spending resources on improving
analytical models or gathering ground-truth data alone is comparably much more efficient.
The VICI framework allows these choices to be made and to combine any and all of the
available sources of information in a principled way, adapting to corner cases with little to
no structural change.

The main limitation of the VICI framework is the difficulty in evaluating uncertainty accu-
rately for inputs which are very different from training ones. The models constituting the
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learning framework are generally good at capturing aleatoric uncertainty, i.e. the inherent
variability of the forward or inverse model, but struggle to capture epistemic uncertainty, i.e.
the variability corresponding to model uncertainty. This is a limitation that broadly affects
deep neural networks and is currently intensively studied in machine learning. What this
means for the VICI framework, is that it can successfully train models with sparse supervised
examples, as demonstrated in chapters 3, 4 and 5, but these examples need to adequately span
the space of targets of interest. This still provides a way to greatly limit collection costs, but
makes it difficult to adapt models to completely new tasks without any experimental data.
An interesting future direction to address this limitation is that of adapting recent advances
in approximate Bayesian neural networks, such as dropout or deep ensembles, to the models
composing the VICI framework. In this way, the uncertainty returned by both forward and
inverse models would be more accurate, both near and far away from training data, opening
the attractive possibility to adapt probabilistic reconstruction models to new domains with
entirely simulated data.

A second attractive possibility for future research directions, allowed by the novel capability
of VICI to incorporate unsupervised ground-truth examples, is that of using unsupervised
generative models during the training process. Few available examples of ground-truths,
whether paired to measurements or not, can be used to train a generative model, such as a
VAE or a GAN. The trained generative model can then be incorporated in the training of
the inverse by continuously generating ground-truth examples and inferring corresponding
measurements with the multi-fidelity forward model. This would add a further level of data
augmentation to the training of the inverse model, expectedly improving performance and
robustness further.

7.2 The TAE Framework

Chapter 6 addresses the particular situation of unsupervised training of reconstruction sys-
tems, where only examples of observations are available, along with some model of the
observation process. This situation is commonly encountered in data pre-processing and in-
formation retrieval, where the quantities of interest are only partially available, with missing
entries and noise, or other corruptions. In these settings capturing uncertainty is extremely
important. If there are errors in data processing stages, these will be unavoidably passed
on to subsequent analysis and cause mistakes that are difficult to avoid or even diagnose.
If instead uncertainty is captured properly at the pre-processing stage, it can be propagated
to these subsequent tasks and provide accurate error estimates downstream. Application
of existing variational frameworks for these pre-processing tasks often results in a collapse
of the uncertainty estimation. The problem is analysed in detail in chapter 6 and a novel
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approach, which avoids this pathology, is presented. The novel method allows to recover
accurate posterior densities of clean data, given corrupted ones and result in more accurate
and adequately uncertain inferences in subsequent tasks.

The TAE framework allows unsupervised data cleaning and recovery to be performed with
adequate uncertainty estimation. In future work, the method could be expanded to prop-
erly model the missing-not-at-random situation, where the observation process is dependent
on the hidden clean data, e.g. entries more likely to be missing if the underlying entry
takes certain values. A similar strategy to that used by the TAE to impose a prior for clean
data and recover its PDF could be adapted to jointly model the observation model and its
dependency on the clean data itself. This would allow the extension of TAEs to the missing-
not-at-random case and extract useful information about the clean data from the observation
parameters, e.g. the pattern of missings.
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Appendix A

Semi-Supervised Experiments

A.1 Experimental Conditions

A.1.1 Holographic Image Reconstruction

We provide here more details on the HIO algorithm. The HIO algorithm is a Fourier transform-
based method for holographic reconstruction where some constraints are used as support. In
our case we have access to the amplitude at the camera plane and we assume that the phase
at the DMD plane is uniform accross all micromirrors. The HIO algorithm starts with a
random guess of the phase of the recorded image at the camera, performs an inverse Fourier
transform to obtain a guess of both amplitude and phase at the DMD plane, and replaces
the obtained phase with a uniform phase (one of our constraints). At this point, further con-
straints are added e.g. there is only image information at the central N ×M pixels of the
image (with N,M being arbitrary). After that, a forward Fourier transform is performed
and the corresponding amplitude is replaced by the image recorded by the camera. This
process is repeated iteratively. The problem is that if the recorded image is saturated and
down-sampled, the iterative process breaks after the first iteration. As a consequence, it is
impossible for the algorithm to converge towards a solution close to the ground truth. This is
precisely what we observe in Figure 4.2(c), where the HIO algorithm simply predicts spots
at some positions.

A.1.2 ToF Diffuse Imaging

The comparative iterative method was taken from [114], reproducing exactly the main re-
sults therein. For the proposed variational method, only the first 15 frames of the recorded
experimental video were used as observation, as most of the information is contained in the
rising front of the signal and around the peak. Consequentially, the corresponding frames
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in the two simulations (high and low fidelity) were used to train the model. The forward
multi-fidelity model for the proposed variational method was built with the fully connected
structures shown in figure 3.8, with all deterministic intermediate layers having 3000 hidden
units and latent variables w having 100 dimensions. The inverse model was also constructed
using fully connected structures, as shown in figure 3.9, with all deterministic intermediate
layers having 1500 hidden units and latent variables z having 800 dimensions.

A.2 Details of the Models’ Architectures

The different architectures for each inference distribution implemented in the presented ex-
periments are described here.

A.2.1 Multi-Fidelity Forward Model

The multi-fidelity forward model includes three parametric distributions, the parameters
of which are optimised during training (see figure 3.2); pα1(w|x, ỹ), pα2(y|x, ỹ, w) and
qβ(w|x, y, ỹ). Two versions of the multi-fidelity forward model were implemented. In the
first, the parametric distributions consist of fully connected layers mapping inputs to outputs’
Gaussian moments, from which samples are drawn upon training and inference. These struc-
tures are schematically represented in figure 3.8. In the second, the parametric distributions
consist of deeper convolutional recurrent layers, again mapping inputs to outputs’ Gaussian
moments, from which samples are drawn upon training and inference. These structures are
instead shown in figure 3.5.

A.2.2 Variational Inverse Model

Like the multi-fidelity forward model, the inverse model includes three parametric distribu-
tions (see figure 3.3); pθ1(z|y), pθ2(x|y, z) and qϕ(z|x, y). As before, two versions of the
inverse model were implemented. In the first, the parametric distributions consist of fully
connected layers mapping inputs to outputs’ Gaussian moments, from which samples are
drawn upon training and inference. These structures are schematically represented in figure
3.9. In the second, pθ1(z|y) and qϕ(z|x, y) consist of deeper convolutional recurrent layers,
again mapping inputs to outputs’ Gaussian moments, from which samples are drawn upon
training and inference. pθ2(x|y, z) is similarly built with convolutional layers, but the gener-
ation of the final images is performed conditioning on previously predicted adjacent pixels
with a masked convolution as described in [62]. These structures are instead shown in figure
3.6.
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Appendix B

Unsupervised Experiments

B.1 Evaluation ELBO

To evaluate the probabilistic performance of our method compared to others, we compute an
evaluation ELBO which relies on test ground truths. After each model is trained unsuper-
visedly, we obtain a posterior of the form q(x|y) =

∫
q(z|y)q(x|z)dz, where for the MVAE

and MIWAE, q(x|z) = p(x|z). Given the a test set of paired clean and corrupted samples xt
and yt, we construct a new parametric recognition model, which encodes latent distributions
from ground-truths qη(z|x). We then optimise the following:

argmax
η

Eqη(z|xt) log q(xt|z) +KL(qη(z|xt)|q(z|yt)). (B.1)

The above is a conditional VAE ELBO with conditional prior q(z|y) and is a lower bound to
the test likelihood we are interested in q(xt|yt). Note that we optimise over η only, therefore
the new recognition model q(z|x) is the only one which is affected by this optimisation and
the components of our reconstruction model q(z|y) and q(x|z) remain the same as trained
with the unsupervised training set. As a result, this new optimisation only tightens the bound,
rather than maximising the likelihood, which we want to evaluate as trained previously.

B.2 Experimental Conditions

B.2.1 Posterior Recovery

All posterior recovery experiments, with each of the three data sets tested, are performed
on samples that have been re-scaled from 0 to 1. In all cases, the sets are injected with
additive Gaussian noise having standard deviation 0.1. Subsequently, random binary masks
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are generated to block out some entries, resulting in missing values. The proportion of
missing entries in the masks was set as described in the main body in each case.

Experiments were repeated with re-generated binary masks 5 times. The means and error
bars shown in figure 4 and the uncertainty reported in table 1 were computed from these.
The MIWAE was trained with 20 weights per sample. After training, all posteriors q(x|y)
have identical structure and are tested in the same way, by training an inference network on
the test set to compute the ELBO values.

B.2.2 Classification Experiments

The TAE models for the MNIST and Fashion-MNIST experiments were trained in the con-
ditions described above. In each case, a random subset of 10, 000 samples is taken from the
corrupted set and the TAE and MVAE models are trained with it. A random subset of 1, 000
of these is selected and ground-truth lables for these samples are made available.

A classifier consisting in a single fully connected layer with leaky ReLu non-linearity is
trained to perform classification on this subset. For each stochastic training iteration of
this classifier, we generate samples associated with the corrupted observations and provide
the associated labels. After the classifier is trained, we test classification performance on
the remaining 9, 000 examples, by running the train classifier 400 times per sample, each
time generating clean data from a corrupted observation with the TAE and the MVAE. The
histograms shown in figure 5 are built by aggregating the resulting classification.

The above procedure is repeated 15 times. The resulting means and standard deviations of
the tested classification performance are shown in figure 6.

B.2.3 Training Conditions

Hyper-parameters of optimisation for the models were cross validated with the MNIST data
set at a proportion of missing entries of 0.9. Hyper-parameters common to all models were
determined by obtaining best performance with the MVAE model. Hyper- parameters spe-
cific to the TAE model were obtained by fixing the common parameters and cross validating
these. The resulting optimal hyper parameters were then used in all other experiments of
section 4.1 and 4.2, including those with different data sets. Common parameters are as fol-
lows: 500, 000 iterations with the ADAM optimiser in Tensorflow, an initial training of 2−4

and batch size of 20. The hyper-parameters specific to the TAE are instead: γ initially set
to 0.01 and then linearly increased to 1 between 50, 000 and 100, 000 iterations, λ = 2 and
C = 10. All experiments were performed using a TitanX GPU.
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B.2.4 NYU Rooms Experiments

For these experiments, we take a subset of 3612 depth maps from the NYU raw data set.
We slightly crop these in one dimension to be 480 × 608 images. The convolutional TAE
and MVAE to obtain the results of figure 7, were trained for 100, 000 iterations using the
ADAM optimiser in Tensorflow, with a batch size of 20 images and an initial training rate of
2 × 10−2. For the warm up, we initially set γ = 0.01 and linearly increase it to 1 between
10, 000 and 20, 000 iterations.
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