

Foo, Yong Wee (2022) Energy prediction using evolutionary lean neural

networks. PhD thesis.

https://theses.gla.ac.uk/83020/

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study,

without prior permission or charge

This work cannot be reproduced or quoted extensively from without first

obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any

format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author,

title, awarding institution and date of the thesis must be given

Enlighten: Theses

https://theses.gla.ac.uk/

research-enlighten@glasgow.ac.uk

https://theses.gla.ac.uk/83020/
https://theses.gla.ac.uk/
mailto:research-enlighten@glasgow.ac.uk

Energy Prediction Using Evolutionary Lean

Neural Networks

Yong Wee Foo

Submitted in fulfillment of the requirements for the

Degree of Doctor of Philosophy

James Watt School of Engineering

College of Science and Engineering

University of Glasgow

July 2022

i

Abstract

The demand for data center services, driven by the surge in online applications and services,

has propelled energy consumption to unprecedented levels. While renewable energy

provides an attractive and more environmentally friendly alternative to existing energy

resources, renewable intermittency is a major issue for grid operators. Accurate energy

predictions are thus paramount to maintaining optimal services and energy provisions

amidst a shift towards greener energy for more sustainable data centers.

Artificial Neural Networks (ANN) are powerful learning machines adopted for several

decades for prediction problems. Recent years have seen increased interest in ANN, led by

advancements in AI and computing hardware. Despite the significant progress, ANNs are

notoriously hard to train and extremely difficult to interpret as the relationships between

the input variables and the output responses are often hard to tease apart. The structure of

ANN can considerably impact its performance as it has a direct dependency on the model

architecture and parameters. Achieving high performance accuracy and the ability to

generalize across different problem sets remains a big challenge for ANNs. For example,

an over-trained model becomes too large and complex, is more prone to overfitting, and

cannot make accurate predictions as it does not generalize well to new data. Additionally,

the more complex a network, the more difficult it is to explain the relationships learned by

the model.

Traditionally, most research focus on model parameter learning, where gradient-based

methods are frequently applied to optimize connection weights and biases. In contrast,

model architecture learning is manually set based on experience or trial-and-error

experimentation. However, this approach suffers several constraints, including limiting the

search space of candidate solutions with a predefined number of neurons and connections.

To address these limitations, a novel ANN called the Evolutionary Lean Neural Network

(EVLNN) is developed in this thesis. EVLNN uses an improved Genetic Algorithm (GA)

to optimize ANN architecture and parameters, offering greater training flexibility than

traditional approaches. The proposed approach has the advantage of simplifying energy

ii

prediction tasks by allowing one to specify parameters such as the minimum and maximum

network size, the transfer functions, feedforward architecture, or architecture with feedback

for time series forecasting. In this approach, structural optimality properties of the problem

are formulated and solved with an implementation of an improved GA that includes species

parallelism, intra-and-inter species crossover, and a two-stage mutation. EVLNN serves as

a global search algorithm by locating a parsimonious ANN that can provide a more

generalized solution. Sensitivity analysis mechanisms are designed into the algorithm to

help with interpretability and understanding of the model.

In developing the EVLNN algorithm, a set of benchmark functions was used to empirically

evaluate and compare the algorithm’s performance with other well-established algorithms

- Particle Swarm Optimization (PSO), Differential Evolution (DE), and the standard

Genetic Algorithm (GA). The results showed EVLNN’s ability to generalize well by

locating the peaks in all the test functions, whereas the other algorithms have located the

peaks in all but one test function.

The EVLNN algorithm was applied to two energy prediction problems in this thesis. The

first application is in predicting the energy consumption of a Hadoop testbed. Using

variables related to energy consumption from the Hadoop system, EVLNN accurately

predicted its energy consumption and helped identify key energy influencing factors. It also

performed more favorably than networks trained by PSO-NN, DE-NN, and GA-NN. The

second application is in the forecasting of solar irradiance. EVLNN showed accurate

forecasts in different settings of time resolutions (sample size) and using a different number

of input variables. In most of those settings, EVLNN outperformed PSO-NN, DE-NN, GA-

NN, and the fully-connected Time Delay Backpropagation neural network (TD-BPNN).

Accurate energy predictions underpin the essential improvements required in energy

resource management for both data center owners and grid operators. Furthermore, the

ability to explain and interpret the model behavior provides a basis for understanding the

dynamics of energy consumption. This work has provided a simplified and flexible

approach to ANN architecture design and parameter optimization to achieve interpretable

models with high accuracy and good generalization properties for energy prediction

iii

problems. The findings demonstrated that EVLNN could create parsimonious models for

accurate energy prediction, which are also capable of discovering the relationships between

key determinants of energy consumption.

Contents

ABSTRACT ... i

LIST OF TABLES .. ix

LIST OF FIGURES ... xv

LIST OF ABBREVIATIONS ... xxiv

LIST OF SYMBOLS .. xxx

LIST OF PUBLICATIONS .. xxxiii

ACKNOWLEDGMENT ... xxxv

AUTHOR’S DECLARATION ... xxxvi

RIGHTS STATEMENT .. xxxvii

1. INTRODUCTION ... 1

1.1 The Nexus between Data Center Energy Efficiency and Renewables 1

1.1.1. Big Data and the Data Center Transformation 2

1.1.2. Data Center Energy Demand .. 2

1.1.3. Data Center Energy Efficiency Gains .. 3

1.1.4. Renewables and AI for Efficient Data Center Energy

Management ... 4

1.2 Energy Modeling and Prediction .. 5

1.2.1 Physical Modeling Approach for Energy Prediction 6

1.2.2 Machine Learning Approach for Energy Prediction........................... 7

1.3 Methods for Neural Network Structural Learning ... 8

1.3.1. Gradient-Based Methods .. 8

1.3.2. Reinforcement Learning-based Methods ... 9

1.3.3. Nature-Inspired Search Methods .. 9

1.4 Energy Prediction Challenges and the Evolutionary-based ANN Approach 11

1.5 Aims of Research .. 11

1.6 Key Contributions .. 12

1.7 Outline of Thesis .. 13

2. RELATED WORK .. 15

2.1 Introduction .. 15

2.2 Hadoop Energy Efficiency Studies .. 16

2.2.1. Energy-Aware Workload Placement Scheduling 17

2.2.2. Energy Proportionality ... 19

2.2.3. Dynamic Voltage and Frequency Scaling ... 21

2.2.4. Data Replication and Storage Efficiency ... 22

2.2.5. Modeling using Machine Learning Techniques 23

2.3 Summary of Hadoop Energy Efficiency Studies ... 26

2.4 Solar Irradiance Forecasting Studies .. 28

2.4.1 Numerical Weather Prediction Methods ... 30

2.4.2 Satellite Imaging ... 32

2.4.3 Total Sky Imager .. 33

2.4.4 Statistical Models for Solar Energy Forecasting 35

2.5 Machine Learning and AI for Solar Energy Prediction 36

2.5.1 Artificial Neural Network Models.. 36

2.5.2 Deep Learning Models ... 37

2.5.3 Hybridized Deep Learning Models .. 38

2.5.4 Evolutionary-based ANN models ... 39

2.6 Summary of Solar Irradiance Forecasting Studies ... 43

3. EVOLUTIONARY LEAN NEURAL NETWORK .. 45

3.1 Introduction .. 45

3.2 The EVLNN Framework .. 45

3.2.1 Encoding Scheme ... 47

3.2.2 Matrix-Based Chromosome Encoding ... 47

3.2.3 Model Representation ... 50

3.2.4 EVLNN Architecture .. 51

3.3 The EVLNN Search Algorithm .. 53

3.3.1 Population Initialization and Speciation ... 55

3.3.2 Ranking and Selection .. 60

3.3.3 Intra-Species Crossover .. 61

3.3.4 Inter-Species Crossover .. 62

3.3.5 Weights Mutation ... 63

3.3.6 Link-Node Mutation ... 65

3.3.7 Fitness Evaluation and Termination Criteria 67

3.3.8 Diversity Tracking .. 68

3.3.9 Interpretability of EVLNN ... 74

3.4 The EVLNN Algorithm for Handling Multimodal Functions 77

3.4.1 Intra-Species Crossover for Low-Dimensionality Problems 82

3.4.2 Intra-Species Crossover for High-Dimensionality Problems 83

3.4.3 Function Optimization using EVLNN – An Example 83

3.5 Chapter Summary ... 91

4. MODEL EVALUATION AND COMPARISON .. 92

4.1. Introduction .. 92

4.2. Test Methodology and Assumptions .. 92

4.2.1. Genetic Parameter Tuning for EVLNN .. 94

4.3. Evaluation using Benchmark Test Functions ... 99

4.3.1. Function Evaluations for f1 to f8 ... 105

4.4. Comparative Analysis of other State-of-the-Art EAs 112

4.4.1. Function Evaluations for f9 to f16 ... 114

4.5. Time-series Electricity Load Data as Benchmark for Forecasting 126

4.6. Chapter Summary ... 130

5. ENERGY CONSUMPTION PREDICTION IN HADOOP CLUSTER 132

5.1. Introduction .. 132

5.2. Hadoop – Background .. 133

5.3. The Hadoop Testbed ... 134

5.3.1. Physical Testbed Setup ... 135

5.3.2. Hadoop Software Configuration ... 136

5.3.3. Monitoring Tools for Data Acquisition .. 136

5.4. Predictive Modeling for the Hadoop System ... 137

5.4.1. Payload Generation, Workload Simulation, and Data Acquisition. 137

5.4.2. Exploratory Data Analysis .. 140

5.4.3. Data Transformation and Normalization .. 147

5.4.4. Model Training ... 147

5.5. Results and Discussion ... 154

5.5.1. Model Testing and Comparison .. 154

5.5.2. Model Convergence Characteristics ... 156

5.5.3. Structural Comparison of the Identified Networks 157

5.5.4. Ensemble-based Sensitivity Analysis Approach to Determine

Input Variable Importance .. 159

5.6. Chapter Summary ... 163

6. SOLAR IRRADIANCE FORECASTING IN TROPICAL REGION 164

6.1. Introduction .. 164

6.2. The Solar Photovoltiac Testbed .. 165

6.2.1. Experimental Testbed ... 165

6.3. Data Preparation ... 167

6.3.1. Initial Data Exploration .. 167

6.3.2. Selecting Training Data Length .. 169

6.3.3. Determining Forecast Horizon and Time-Step for Predicting

Solar Irradiance .. 169

6.3.4. Pre-processing of Data ... 170

6.3.5. Exploring and Selecting the Features ... 172

6.3.6. Normalizing the Dataset ... 174

6.3.7. Preparing the Feature Sets for Model Training 174

6.4. Model Training ... 176

6.4.1 Designing EVLNN Architecture for Time-Series Forecasting 176

6.4.2 Error Metrics for Model Performance Comparison 177

6.4.3 Training of EVLNN .. 178

6.4.4 Model Convergence Speed and Rate .. 181

6.5. Results and Discussion ... 183

6.5.1. Model Testing and Analysis for Phase 1 – Use of Multiple

Features .. 183

6.5.2. Comparison of 7-Day Forecasting Horizon Plots 185

6.5.3. Model Testing and Analysis for Phase 2 – Use of Smaller

Number of Input Features .. 190

6.5.4. Statistical Analysis of Models’ Forecasting Accuracy with Fewer

Inputs .. 192

6.5.5. Comparison of Error Metrics .. 194

6.6. Chapter Summary ... 197

7. CONCLUSION AND FUTURE WORK .. 199

7.1. The EVLNN Model for Energy Prediction .. 200

7.1.1 EVLNN Framework, Architecture, and Algorithm 200

7.1.2 EVLNN’s Search Capability and Performance in Benchmark

Test Functions in Comparison with other EAs............................... 200

7.2. Application to Hadoop Energy Consumption Prediction 202

7.3. Application to Solar Irradiance Forecasting ... 203

7.4. Future Work .. 204

REFERENCES .. 207

APPENDICES ... 233

ix

List of Tables

Table 2.1 A summary of prior work in Hadoop energy efficiency studies. 25

Table 2.2 Su et al. [144] proposed a hybrid ANN method compared to seven other ANN

models. .. 37

Table 2.3 A summary of the prior work in solar irradiance forecasting. 41

Table 3.1 Calculation of H and EH for two population samples. 73

Table 3.2 Selection probability and fitness value. .. 80

Table 4.1 Parameters used for performance measurement. .. 94

Table 4.2 The EVLNN genetic parameters and their description. 95

Table 4.3 EVLNN experiment for Shubert (2D) function for MaxFE=2.0E+05. Np, Ns, and

Gmax yielded different Peak Ratio (PR) results over a range of accuracy 1.0E-01 to 1.0E-

0.5 for 50 runs. The best values for each accuracy level are in bold. 97

Table 4.4 Lesson learned on the EVLNN parameters and settings derived from evaluating

the Shubert (2D) function. ... 99

Table 4.5 Benchmark test functions to evaluate the EVLNN algorithm. d is the number of

dimensions, and Range is the input domain where the function is evaluated and 𝑓𝑚𝑖𝑛 is the

global minimum. ... 102

Table 4.6 CEC 2013 and 2015 test functions for evaluating the EVLNN algorithm. d is the

number of dimensions, and Range is the input domain where the function is evaluated and

𝑓𝑚𝑖𝑛 is the global minimum. .. 104

Table 4.7 Peak ratios and success rates of EVLNN for test functions f1 to f8. 106

Table 4.8 Peak Ratios (PR) and Success Rates (SR) of EVLNN, PSO, DE, and GA. .. 109

x

Table 4.9 State-of-the-art EAs in the CEC 2013 and CEC 2015 competitions. 113

Table 4.10 Peak ratios and success rates of EVLNN for test functions f9 to f16. 115

Table 4.11 Comparison of Peak Ratios (PR) and Success Rates (SR) between EVLNN and

the other state-of-the-art niching algorithms. .. 120

Table 4.12 Overall performance of EVLNN is ranked together with the state-of-the-art

niching algorithms from the CEC 2013 and CEC 2015 competitions based on the average

PR score at three accuracy levels, 𝜀 = {10-3, 10-4, 10-5} over ten multimodal benchmark

functions f9 to f16. ... 125

Table 4.13 Input features and response variable used. ... 127

Table 4.14 A summary of the descriptive statistics of a real-world dataset used to evaluate

EVLNN’s performance for electricity load forecasting. ... 127

Table 4.15 Comparing the training and testing MSE scores averaged over 50 runs. 128

Table 5.1 Hadoop configuration parameters and values. ... 136

Table 5.2 SNMP OID strings and polling interval for power consumption data. 137

Table 5.3 A list of 23 input features and one output variable for data acquisition from the

Hadoop testbed. ... 139

Table 5.4 Energy-related features and their respective data obtained from executing the

MapReduce Wordcount and Terasort workloads with different payload sizes. 144

Table 5.5 Analysis and characterization of the WordCount and Terasort workloads. 145

Table 5.6 EVLNN’s hyperparameter settings... 148

Table 5.7 EVLNN’s operators and values. ... 149

Table 5.8(a-c) EA-based ANN with their learning techniques, operators, and values. .. 155

xi

Table 5.9 Comparing the training and testing, MSE scores averaged over 50 runs. 155

Table 5.10 Comparison of the trained neural network structures averaged over 50 runs.

 ... 158

Table 5.11 Input Variables of the EVLNN model. ... 160

Table 5.12 Five energy-related categories (differentiated by their respective colors). . 161

Table 5.13 Ranking of input variable importance averaged over 50 identified EVLNN

models. .. 161

Table 5.14 Ranking of factors contributing to energy consumption by categories. 162

Table 5.15 Amount of votes received by each category. .. 162

Table 6.1 Solar PV test panel and location information. .. 165

Table 6.2 Solar irradiance statistics at various time resolutions..................................... 171

Table 6.3 Input features for EVLNN. ... 172

Table 6.4 Statistical Analysis of Input Feature Data Obtained for the Period in March 2016.

 ... 173

Table 6.5 Input and target features of phases 1 and 2 for model training. 175

Table 6.6 Error metrics used to evaluate EVLNN against other models. 177

Table 6.7 Sample statistics of training MSE values averaged over N=50 runs tested for

various models at each time-step prediction. Embolden figures to represent better results.

 ... 178

Table 6.8 Comparison of convergence speed and rate. Embolden figures to indicate the

best results. .. 182

xii

Table 6.9 Sample statistics of MSE scores averaged over N=50 runs for each time-step

prediction. Embolden figures represent the best results. ... 183

Table 6.10 Paired Samples Test. Embolden figures denotes the paired differences between

EVLNN’s average testing MSE scores and the other model, which are lower and

statistically significant. .. 184

Table 6.11 Smaller scale of feature subsets are used for training the EVLNN models. 190

Table 6.12 Sample statistics of MSE scores averaged over N=50 runs for all models using

a smaller scale of feature subsets. Embolden figures to mean the best result for that time-

step prediction. .. 191

Table 6.13 Paired samples t-test. Embolden figures denotes the paired differences between

EVLNN’s average testing MSE scores and the other model, which are lower and

statistically significant. .. 193

Table 6.14 Comparison of error matrices averaged over 50 runs for models trained with a

single input feature. Embolden figures to mean the best result for that time-step prediction.

 ... 196

xv

List of Figures

Figure 2.1 Categories of energy-efficient studies and their application in the data center

energy consumption process. .. 17

Figure 2.2 The figure shows the classification of the forecasting methods and their

application in the temporal resolution and forecast horizon coverage. A higher forecast

horizon leads to a higher error rate. ... 30

Figure 2.3 The solar radiation components consist of GHI, DHI, and DNI. The solar zenith

angle 𝜃 is the angle of the Sun relative to the line normal to the Earth’s surface. 33

Figure 3.1 The EVLNN framework. .. 46

Figure 3.2 ANN encoding using a chromosome matrix. .. 48

Figure 3.3 A sample chromosome matrix. .. 49

Figure 3.4(a-d) A sample breakdown of a chromosome matrix. 49

Figure 3.5 A sample 6 x 5 chromosome matrix for a 3-layer EVLNN with two input

variables and one output variable with a potential of up to 5 hidden neurons. 50

Figure 3.6(a-b) Genotype-to-phenotype mapping for EVLNN. A zero value in the genotype

corresponds to an inactive connection on the phenotype. ... 51

Figure 3.7 Relationships between nodes, weights, connections, and activation functions

for a sample EVLNN showing Tanh and ReLU activation functions for the hidden and

output nodes. ... 52

Figure 3.8 The chromosome matrix of NN1 of dimension 25x26 displaying all its element

values. .. 57

Figure 3.9 The genotype matrix of speciated individual 𝑁𝑁𝑠𝑝13,1 , with a matrix

dimension of 25x13. .. 58

xvi

Figure 3.10 Species distribution in a population as seen in a scatter plot. 59

Figure 3.11 Species distribution of a population as seen in a histogram.

 ... 59

Figure 3.12(a-h) Example of intra-species recombination process for Species_4. 61

Figure 3.13(e-h) Inter-species crossover for Species_3 and Species_6 resulting in

Species_4 and Species_5. .. 63

Figure 3.14 Population convergence plot for the search for global optima for the

Himmelblau benchmark function. ... 68

Figure 3.15 The diversity measurements chart produced by the EVLNN algorithm....... 73

Figure 3.16 The proposed ensemble-based approach to sensitivity analysis 76

Figure 3.17 The SUS mapping of an individual’s fitness to a contiguous segment. The

selected individuals consist of the 1, 1, 2, 2, 3, 4, 4, 5, 6, and 7. 80

Figure 3.18(a-c) (a) A subpopulation of individuals within a species with corresponding

fitness. (b) Individuals are ranked within the species according to their fitness. (c) Apply

SUS to select potential candidates for recombination and mutation. 81

Figure 3.19(a-b) Sample chromosome matrices of Parent_1 and Parent_2 in Species_6. 82

Figure 3.20(a-b) Chromosome matrices of new offspring, Child_1, and Child_2, after

crossover of Parent_1 and Parent_2 in Species_6. .. 82

Figure 3.21(a-b) Sample chromosome matrix of Parent_1 and Parent_2 in Species_4 for

solving high dimensionality problems. ... 83

Figure 3.22(a-b) Chromosome matrix of Child_1 and Child_2 are new offspring after

recombination of Parent_1 and Parent_2 in Species_4. .. 83

Figure 3.23 3D plot of the Himmelblau function with four global minima. 85

xvii

Figure 3.24 Contour plot of the Himmelblau function with locations of the four global

minima. .. 85

Figure 3.25 Species distribution at the initialization. ... 86

Figure 3.26 Landscape showing speciated solution candidates in generation one. 86

Figure 3.27 At generation 20, species are seen drawing closer to the minima. 87

Figure 3.28 At generation 40, Species_8 has become identical to the other species' search

positions. ... 87

Figure 3.29 At generation 60, the search continues. .. 88

Figure 3.30 At generation 100, there is a clear path on the movement of these remaining

species. .. 88

Figure 3.31 At generation 300, all the species except Species_7 are seen inside one of the

red squares. .. 89

Figure 3.32 At generation 400, Species_7 has located one of the global minima. 89

Figure 3.33 At generation 500, all the species are inside one of the red squares where the

global minima are located. .. 90

Figure 3.34 Individual species convergence over 500 generations. 90

Figure 4.1(a-b) Species distribution and XSp values at the end of 500 generations for the

evaluation of the Shubert (2D) function. In (a), XSp set to 1.5% resulted in species with an

average size of 15 holding stable from the start. In (b), XSp is set higher to 4% resulting in

some species (highlighted in red circle) having a species size of 1. 98

Figure 4.2 A representative spread of test functions to evaluate EVLNN’s search capability.

 ... 102

xviii

Figure 4.3 Red dots illustrate the search patterns of EVLNN at the 1st, 10th, 100th, 300th,

and 500th iterations of the function evaluations on the 2D landscapes of Bohachevsky N.1-

2D (f1), Booth-2D (f2), Ackley-2D (f5), and Rosenbrock-2D (f6), respectively. 107

Figure 4.4 Convergence characteristics of EVLNN algorithm for f1 to f5. 108

Figure 4.5 Convergence characteristics of EVLNN algorithm for f6 to f8. 108

Figure 4.6 The convergence characteristics of EVLNN, PSO, DE, and GA algorithms for

the Rastrigin-30D (f7) function. .. 112

Figure 4.7 The search patterns of EVLNN for functions f9, f10, f11, f12, and f13. 116

Figure 4.8 The search patterns of EVLNN for functions f14, f15, and f16, respectively. ... 117

Figure 4.9 Convergence characteristics of EVLNN for functions f9 to f13 118

Figure 4.10 Convergence characteristics of EVLNN for functions f14 to f16 118

Figure 4.11 Time-series electricity load from 1st July 2010 to 1st August 2010. The blue

and red plots indicate the training and testing dataset. The green plot is an out-of-sample

dataset used to evaluate the models. .. 128

Figure 4.12 One-day electricity load forecast for Sydney, Australia, for an out-of-sample

dataset from 1st August 2010 at 0000H to 2nd August 2010 at 0000H, at 30 mins time

resolution. .. 129

Figure 5.1 The MapReduce software layer architecture. ... 134

Figure 5.2 The MapReduce job’s computation phases... 134

Figure 5.3 The Hadoop testbed. ... 135

Figure 5.4 Instantaneous power chart for Terasort application with a 50 GB payload. . 140

 Figure 5.5 Aggregated power chart for Terasort application with a 50 GB payload. ... 141

xix

Figure 5.6 Instantaneous power chart for Wordcount application with a 50 GB payload.

 ... 141

Figure 5.7 Aggregated power chart for Wordcount application with a 50 GB payload. 142

Figure 5.8 Energy-related features for MapReduce and Terasort workloads with various

payload sizes. .. 146

Figure 5.9 The EVLNN model with 23 input variables and one response variable....... 148

Figure 5.10 Species distribution at population initialization. ... 149

 Figure 5.11 Histogram showing the species distribution for the EVLNN population from

20th generation to 100th generation at intervals of 20 generations. 151

Figure 5.12 Species growth charts depicting their respective growth patterns. 152

Figure 5.13 Tracking for solution diversity. ... 153

 Figure 5.14 Convergence of EVLNN with the lowest MSE value of 0.00164 at the 98th

generation. ... 154

Figure 5.15 EVLNN’s Energy consumption prediction for the Hadoop testbed. 156

Figure 5.16 Convergence characteristics of EVLNN, PSO-NN, DE-NN, and GA-NN

models. .. 157

Figure 6.1 Left: Meteorological Measuring Instruments for rainfall, wind direction, and

wind speed. Right: Rooftop solar panel testbed. ... 166

Figure 6.2 Schematic diagram of the PV monitoring system... 166

Figure 6.3 Distribution of daily irradiance in 2016 for each month at latitudes 1.38oN and

103.85oE. ... 167

Figure 6.4 Scatter plot of the daily irradiance with the red line indicating the mean

irradiance in 2016. ... 168

xx

Figure 6.5 Hourly irradiance distribution in 2016 with the red curve indicating the mean.

 ... 168

Figure 6.6 Irradiance profile on 1st March 2016. ... 169

Figure 6.7 Solar irradiance raw data for March 2016 with rain gauge reading indicated.

 ... 170

Figure 6.8 Irradiance testing dataset from 1st to 7th April 2016...................................... 172

Figure 6.9 Pearson correlation between the input variables, AT, RH, RG, WS, WD, AP, and

PT, and the response variable, solar irradiance. .. 174

Figure 6.10 Four feature sets to train the EVLNN model for multiple time-step predictions.

 ... 175

Figure 6.11 The figure illustrates four feature sets comprising various input features used

to evaluate EVLNN’s performance. .. 176

Figure 6.12(a-d) Average training MSE repeated over 50 runs for various time-steps

predictions ... 181

Figure 6.13 Hourly time-step predictions where circled portion indicates prediction with

little success. .. 186

Figure 6.14 30-min time-step predictions. ... 186

Figure 6.15 15-min time-step predictions. ... 187

Figure 6.16 Per min time-step predictions. .. 188

Figure 6.17 Comparison of target and predicted irradiance on 1st April 2016 for all time-

steps. .. 189

Figure 6.18 Comparison of target predicted irradiance on 3rd April 2016 for all time-steps.

 ... 190

xxi

Figure 6.19 Error matrices are presented in a bar chart for comparison. In separate

experiments, models were trained using seven, three, two, and single input features. ... 195

Figure A.1 Pseudo-code for EVLNN .. 233

Figure A.2 Pseudo-code for diversity calculation .. 235

Figure B.1 Pseudo-code for the PaD method. .. 236

Figure B.2 Pseudo-code for the Profile method. .. 240

Figure B.3 Profile method schema. .. 242

Figure B.4 Pseudo-code for the Perturb method. ... 243

Figure B.5 Perturb method schema. ... 245

Figure B.6 Pseudo-code for the Connection Weights method. 247

Figure B.7 Connection Weights schema. ... 248

Figure C.1 3D plot of the Himmelblau function with four global minima 249

Figure C.2 Contour plot of the Himmelblau function with locations of the four global

minima ... 250

Figure C.3 Landscape showing speciated solution candidates in generation 1. 251

Figure C.4(a-b) (a) Species distribution at the initialization. (b) Population convergence

over 500 generations. .. 251

Figure C.5 Individual species convergence over 500 generations. 252

Figure C.6 At generation 10, species move towards the basins of interest depicted by the

four red squares. .. 253

Figure C.7 At generation 20, species are seen drawing closer to the minima 253

xxii

Figure C.8 At generation 30, species are becoming similar based on their positions. ... 254

Figure C.9 At generation 40, Species_8 has become identical in their search positions like

the other respective species. .. 254

Figure C.10 At generation 50, most species are near global minima except Species_7,

which seems stuck in a local minima. ... 255

Figure C.11 At generation 60, the search continues. .. 255

Figure C.12 At generation 70, some species are seen inside the global minima's red square.

 ... 256

Figure C.13 At generation 80, Species_11 are now identical in their search positions. 256

Figure C.14 At generation 90, more species are inside one of the red squares, with the

remaining six species still trying to locate the minima. .. 257

Figure C.15 At generation 100, the remaining species can be seen converging towards the

minima. .. 257

Figure C.16 At generation 150, Species_7 has moved out of the local minima and towards

the global minima. ... 258

Figure C.17 At generation 200, most species have landed inside one of the red squares.

 ... 258

Figure C.18 At generation 300, all the species except Species_7 can be seen inside one of

the red squares. .. 259

Figure C.19 At generation 400, Species_7 has located one of the global minima. 259

Figure C.20 At generation 500, all the species have found the global minima indicated by

the red squares. .. 260

Figure C.21 Analysis of EVLNN search behavior using a visual heatmap. 261

xxiii

Figure C.22 Analysis of EVLNN search behavior using a bubble chart. 262

xxiv

List of Abbreviations

ACO Ant Colony Optimization

AI Artificial Intelligence

AIS All-In Strategy

ALNM Active Learning Based Niching Method

ANFIS Adaptive Network-based Fuzzy Inference System

ANN Artificial Neural Network

ANSGAII NSGAII with variable-space niching

AR Additive Regression

ARMA Autoregressive Moving Average

ARMAX ARMA with Exogenous variables

ARX Autoregressive with Exogenous inputs

AT Ambient Temperature

AWS Amazon Web Services

BP Backpropagation

CAMS Copernicus Atmosphere Monitoring Service

CEC Congress on Evolutionary Computation

CEP Complex Event Processing

CLSTM Convolutional Neural Network with Long Short-Term Memory

CMA-ES Covariance matrix adaptation evolution strategy

CMC Canadian Meteorological Centre

CMV Cloud Motion Vectors

CNN Convolutional Neural Network

Crowding

DE/rand/1/bin

Classic DE algorithm extended with the crowding scheme

CS Covering Subset

CW Connection Weights

dADE/nrand/1/bin Dynamic Archive Niching Differential Evolution Algorithm 1

dADE/nrand/2/bin Dynamic Archive Niching Differential Evolution Algorithm 1

DE Differential Evolution

DECG DE algorithm using crowding and gradient descent

xxv

DELG DE algorithm using local selection and gradient descent

DELS_ajitter DE algorithm using local selection and ajitter global mutation

DE/nrand/1/bin Classic Differential Evolution algorithm with dynamic and

clustering 1

DE/nrand/2/bin Classic Differential Evolution algorithm with dynamic and

clustering 2

DE-NN Differential Evolution based Neural Network

DHI Diffused Horizontal Irradiance

DNI Direct Normal Irradiance

DNN Deep Neural Network

DT Decision Tree

DVFS Dynamic Voltage and Frequency Scaling

EA Evolutionary Algorithm

EAGA Energy-Aware Greedy Algorithm

EANN Evolutionary Artificial Neural Network

ECMWF European Centre for Medium-Range Weather Forecasts

EFS Energy-aware Fair Scheduling

eGMC enhanced Green MapReduce Cluster

ELM Extreme Learning Machine

EMRSA Energy-aware MapReduce Scheduling Algorithm

ENN Elman Neural Network

EU European Union

EURECA European Union Resource Efficiency Coordination Action

EVLNN Evolutionary Lean Neural Network

FCNN Fully Connected Neural Network

FWNN Fuzzy Wavelet Neural Networks

GA Genetic Algorithm

GABPNN Genetic Algorithm optimized BPNN

GA-CuDNNGRU Genetic Algorithm-Cuda Deep Neural Network Gated Recurrent

Unit

GA-DNN Genetic Algorithm-Deep Neural Network

GA-GRU Genetic Algorithm-Gated Recurrent Unit

GA-LSTM Genetic Algorithm-Long-Short Term Memory

xxvi

GA-NN Genetic Algorithm based Neural Network

GA-SVR Genetic Algorithm based Support Vector Regression

GB Gigabyte

Gbps Gigabit per second

GBRT Gradient Boot Regression Tree

GFS Global Forecast System

GHI Global Horizontal Irradiance

GMC Green MapReduce Cluster

GP Genetic Programming

GRNN Generalized Regression Neural Network

GRU Gated Recurrent Unit

GSR Global Solar Radiation

GS-SVR Grid Search-Support Vector Regression

GW Gigawatt

GWh Gigawatt hour

HDFS Hadoop Distributed File System

IEA International Energy Agency

IoT Internet of Things

iPDU Intelligent Power Distribution Unit

iPOP-CMA-ES CMA-ES with increasing population size

kbps Kilobits per second

KL Kullback-Leibler

KNN K-Nearest Neighbor

KW Kilowatt

KWh Kilowatt Hour

LBNL Lawrence Berkeley National Laboratory

LC Linguistic Complexity

LDPC Low-Density Parity Check

Leaky ReLU Leaky Rectified Linear Unit

LM Levenberg-Marquardt

LM-BPNN Levenberg-Marquardt Backpropagation Neural Network

LSEAEA Localised search evolutionary algorithm using EAs for local search

xxvii

LSEAGP LSEA using Gaussian process as its local search mechanism

LSTM Long Short-Term Memory

MAE Mean Absolute Error

MAPE Mean Absolute Percentage Error

MBE Mean Bias Error

MEA Multinational Evolutionary Algorithm

MERF Multiple Energy-Related Features

MIB Management Information Base

MKP Multidimensional Knapsack Problem

ML Machine Learning

MLP Multi-Layer Perceptron

MOS Model Output Statistics

MPC Model Predictive Control

MPP Massively Parallel Processing

MSE Mean Square Error

MSSPSO Multi-Sub-Swarm Particle Swarm Optimisation algorithm

NAM North American Mesoscale

NARXNN Nonlinear Autoregressive Neural Network with Exogenous inputs

NCEP National Centers for Environmental Prediction

NEA1 Niching Evolutionary Algorithm 1

NEA2 Niching Evolutionary Algorithm 2

nMAE normalized MAE

NMMSO Niching Migratory Multi-Swarm Optimizer algorithm

NOAA National Oceanic and Atmospheric Administration

nRMSE normalized RMSE

N-VMO Niching Variable Mesh Optimization algorithm

NWP Numerical Weather Prediction

OID Object Identity

PaD Partial Derivative

PB Petabytes

PCC Pearson Correlation Coefficient

PCNN Partially-Connection Neural Networks

xxviii

PNA-NSGAII Parameterless niching assisted NSGAII

PPA Power Purchase Agreement

PR Peak Ratio

PSO Particle Swarm Optimization

PSO-NN Particle Swarm Optimization based Neural Network

PSO-SVR PSO-Support Vector Regression

PT Panel Temperature

PUE Power Usage Effectiveness

PV Photovoltaic

QoS Quality of Service

R2 Coefficient of Determination

RAID Redundant Array of Independent Disk

RBF K-means Radial Base Function

RDPS Regional Deterministic Prediction System

REC Renewable Energy Credits

ReLU Rectified Linear Unit

RH Relative Humidity

RI Relative Importance

RMSE Root Mean Square Error

RNN Recurrent Neural Network

SA Sensitivity Analysis

SaDE-ELM Self-adaptive Differential Evolutionary Extreme Learning Machine

SNMP Simple Network Management Protocol

SR Success Rate

SSD Sum of the Square Partial Derivatives

SUS Stochastic Universal Sampling

SVR Support Vector Regression

Tanh Hyperbolic Tangent

TD-BPNN Time Delay Backpropagation Neural Network

TSI Total Sky Imagery

TWh Terrawatt hour

US United States

xxix

WRF Weather Research and Forecasting

XML eXtensible Markup Language

YARN Yet Another Resource Negotiator

xxx

List of Symbols

𝐵𝐼 A single-bias nodes at the input layer

bj Input bias at node j

𝐵𝐻 A single-bias nodes at the hidden layer

D(P) Population diversity of population P

𝐸𝐻 Shannon’s equitability index

ELp Elitism percentage

fmin Function minima

fopt Function optima

Gmax Maximum number of generations

Gopt Number of optima

H Shannon diversity index

hj Hidden node j

hj, in Sum of weighted inputs at hidden node h

ℎ𝑗,𝑜𝑢𝑡 Output value at hidden node j

𝑖𝑗 Individual genotype

MaxFE Maximum number of function evaluations

MUp Mutation percentage

MUr Mutation value range

MXp Mutation matrix probability

N Individual’s chromosome matrix

𝑁′ New individual’s chromosome matrix

xxxi

𝑁′′ New individuals with re-enabled links in N'

𝑁𝑃 Population size

𝑁𝑠 Number of species

𝑁𝑁𝑖 The ith individual in population P

𝑁𝑁𝑠𝑝𝑖,𝑗 Speciated jth individual within the subpopulation of species i

NPFi Number of global optima found during the ith run

NR Number of runs

NSR Number of successful runs

𝑜𝑘,𝑖𝑛 Input at output node k

ok Output node k

𝑜𝑘,𝑜𝑢𝑡 Output at output node node k

P Population size

𝑃′ Speciated population

PL Probability matrix for link-node mutation

PW Probability matrix for weights mutation

𝑄𝑖ℎ Ratio of the absolute value of the connection weight and the sum of the

absolute value of the connection weights of all input neurons

RL A vector created with normally distributed random generated elements of

values between 0 and 1 for link-node mutation

RL2 A second vector created with normally distributed random generated

elements of values between -0.5 and 0.5 for link-node mutation

RW A normally distributed random generated matrix with elements of values

between 0 and 1

𝑠𝑖𝑗 Genome string of individual 𝑖𝑗

𝑆𝑖𝑗 The set of substrings of 𝑠𝑖𝑗

xxxii

𝑆{𝑖1,𝑖2,…,𝑖𝑛} Total number of substrings, 𝑠𝑖𝑗 in the population

SPi Subpoulation of species i

𝑤𝑖𝑗 Connection weight between the input node i and the hidden node j

Wp Peak Watt of Solar Panel

WW Weights-change matrix

𝑥𝑖𝑗 Represents the ith row and jth column of the matrix for the connection

between nodes i and j

XOp Intra-species crossover percentage

XSp Inter-species crossover probability

𝜎𝑗(∙) Activation function at node j

𝜎𝑗,𝑡𝑎𝑛ℎ(∙) Hyperbolic Tangent (Tanh) activation function at node j

𝜎𝑘,𝑙𝑖𝑛𝑒𝑎𝑟(∙) Linear activation function at node k

𝜎𝑘,𝑙𝑟𝑒𝑙𝑢(∙) Leaky ReLU activation function at node k

𝜎𝑘,𝑟𝑒𝑙𝑢(∙) Rectified Linear Unit (ReLU) activation function at node k

𝜎𝑘,𝑠𝑖𝑔𝑚𝑜𝑖𝑑(∙) Sigmoid activation function at node k

xxxiii

List of Publications

1. Y. W. Foo and C. Goh, “Solar Irradiance Forecasting with Fewer Features and

Small Dataset using EVLNN", IEEE Open Access J. Power Energy, June 2022

(Under Review).

2. Y. W. Foo and C. Goh, “Solar Irradiance Forecasting in Tropical Weather using an

Evolutionary Lean Neural Network,” 2021 IEEE Congress on Evolutionary

Computation (CEC), 2021, pp. 490-497, doi: 10.1109/CEC45853.2021.9504875.

3. Y. W. Foo, C. Goh, L. Chan, and Y. Li, “Generalized Hybrid Evolutionary

Algorithm Framework with a Mutation Operator Requiring no Adaptation,”

International Conference on Simulated Evolution and Learning (SEAL) 2017,

Springer International Publishing AG 2017, pp. 486-498.

4. Y. W. Foo, C. Goh, Y. Li, “Speciation and Diversity Balance for Genetic

Algorithms and Application to Structural Neural Network Learning,” IEEE

International Joint Conference on Neural Networks (IJCNN), 2016, pp. 1283-1290.

5. Y. W. Foo, C. Goh, Li, Yun, “Machine Learning with Sensitivity Analysis to

Determine Key Factors Contributing to Energy Consumption in Cloud Data

Centers,” International Conference on Cloud Computing Research and Innovation

(ICCCRI), 2016, pp. 107-113.

6. Y. W. Foo, C. Goh, H.C. Lim, Z-H Zhan, and Y. Li, “Evolutionary Neural Network

Based Energy Consumption Forecast for Cloud Computing,” International

Conference on Cloud Computing Research and Innovation (ICCCRI), 2015, pp.

53-64.

7. Y. W. Foo, C. Goh, H.C. Lim, and Y. Li, “Evolutionary Neural Network Modeling

for Energy Prediction of Cloud Data Centers,” International Symposium on Grids

xxxiv

and Clouds 2015 (ISGC2015) - Highly Distributed Computing Systems,

Proceedings of Science Vol. 239.

8. Z-G Chen, Z-H Zhan, H-H Li, K-J Du, J-H Zhong, Y.W. Foo, Y. Li, and J. Zhang,

“Deadline Constrained Cloud Computing Resources Scheduling through an Ant

Colony System Approach,” International Conference on Cloud Computing

Research and Innovation (ICCCRI), 2015, pp. 112-119.

9. Y. Wei, Y.W. Foo, K.C. Lim, F. Chen, “The Auto-configurable LDPC Codes for

Distributed Storage,” IEEE 17th International Conference on Computational

Science and Engineering (ICCSE), 2014, pp. 1332-1338.

10. Y. Wei, Y. W. Foo, “A Cost-Effective and Reliable Cloud Storage,” IEEE 7th

International Conference on Cloud Computing (ICCC), 2014, pp. 938-939.

xxxv

Acknowledgment

“Two roads diverged in a wood, and I,

I took the one less traveled by,

And that has made all the difference.”

- An excerpt from “The Road Not Taken” by Robert Frost

Making a choice is simple; sticking to it is hard. However, the irony is that you will never

know you have made the “right” choice. Since “way leads on to way,” one will never get

the chance to experience the other road and can never know which was less traveled. At the

end of the journey, we always rewrite our own histories to justify our decisions. And that

makes all the difference.

The completion of this thesis has been a bittersweet journey. Without the tireless prayers,

boundless love and support from my wife Jane, and unflagging encouragement from my

daughters, Gladys and Natalie, I would never have come this far. Their love, patience,

understanding, and tolerance of my shortcomings have been my comfort and strength.

I am grateful for my brother, Yong Chean, who is an example and inspiration in my life and

keeps me motivated in my research work. Many thanks to Steven Tan, who lent me his

quiet but essential support in this journey.

Special thanks to my supervisor, Dr. Cindy Goh, for the guidance and advice. I am grateful

and honored to have had the opportunity to work with such an excellent supervisor. Thanks

to Joo Hock, Cheng Leong, Leslie, and Lai Meng for the company. They have made my

journey all the more memorable with their waves of laughter during relaxation time

and sympathetic ears at times of difficulty.

Last but not least, I want to thank my God and Father in Heaven, who is my pillar, fortress,

and deliverer, my rock, in whom I take refuge, my shield, and salvation. I am nothing

without Him. And that makes all the difference.

xxxvi

Author’s Declaration

I hereby declare that this thesis was composed and originated from work entirely carried

out by myself. The work contained herein is my own except where explicitly stated

otherwise in the text, and that this work has not been submitted elsewhere in consideration

for a higher degree or professional qualifications.

xxxvii

Rights Statement

Copyright © 2022 by Yong Wee Foo. All rights reserved.

This thesis or any portion thereof may not be reproduced or used in any manner whatsoever

without the express written permission or consent of the author and information derived

from it should be acknowledged.

Chapter 1

1. Introduction

1.1 The Nexus between Data Center Energy Efficiency and

Renewables

The demand for data center services has risen worldwide to support big data and digital

services [1] [2]. This demand has propelled data center energy consumption to

unprecedented levels. Based on the International Energy Agency (IEA) 2020 report, energy

usage by global data centers in 2019 was approximately 200 Terrawatt hour (TWh) [3]. The

consumption puts the data center at 1% of global electricity demand [4] and around 0.3%

of overall carbon emissions. The continued upsurge of big data-driven by a plethora of

social media applications, eCommerce websites, mobile gaming platforms, the Internet of

Things (IoT), autonomous systems, and cryptocurrency is a growing concern for data center

electricity use and its potential impact on the environment [5].

With existing efficiency resources almost fully tapped and the projected global data center

compute instances potentially doubling within the next 3 to 4 years [6], an intentional effort

to manage sustainable energy growth for data centers is pertinent. Instead of seeing data

centers as an environmental threat, they provide the much-needed push to accelerate

progression in renewables. In its Innovation Landscape for the Power Sector study, IRENA

showed that data centers sit at the nexus of energy efficiency, renewable energy, and the

burgeoning data economy in an increasingly digitalized world [7]. Amidst broader climate

goals and the push for renewables and green data centers, accurate energy predictions can

help address the challenges and opportunities for a more sustainable future.

There have been proposals to design sustainable data centers with facilities enabled by

supply and demand-side management to take advantage of efficiency gain by predicting

and shifting workload demands to exploit renewables' time variations and availabilities [8]

– [10]. However, integrating renewable energy sources in data centers is non-trivial as they

Chapter 1. Introduction 2

are far more complicated than traditional data centers [11] [12]. The complication can be

viewed from both sides. Firstly, predicting demand-side requires precise accounting and

knowledge of how the energy consumption of various workloads and server utilization

varies non-linearly with localized conditions like temperature and humidity [13]. Secondly,

predicting the supply-side generation requires an accurate renewable energy forecast that

would allow grid operators to optimize clean electricity generation. For example, solar

irradiance’s intermittency and stochastic behavior mean that solar power generation is not

guaranteed, making it hard to predict its availability. Though sunrise and sunset events can

be anticipated, as when the sun rises or sets each day is known, solar irradiance forecasting

during the day remains challenging due to fluctuations in solar radiation from frequent

cloud formation and changing weather patterns. Hence, advanced forecasting techniques

and AI will become critical to integrating higher renewable energy shares into the grid to

support greener data centers [14].

1.1.1. Big Data and the Data Center Transformation

In the last decade, the data center has transformed its computing platform to adapt to the

era of data deluge, one of the most popular being the Hadoop platform. Hadoop consists of

the Hadoop Distributed File System (HDFS) [15] with MapReduce [16] or Yet Another

Resource Negotiator (YARN) [17] as software frameworks and has been widely adopted as

an open-source Massively Parallel Processing (MPP) platform for big data applications.

Internet media companies like Meta (formerly known as Facebook), Google, and Microsoft

use platforms like Hadoop to process and analyze big data [18] – [20]. The Hadoop platform

can scale into thousands of nodes in a single cluster, supporting hundreds of Petabytes (PB)

of data to meet growing demands. The sheer scale and high fault-tolerant nature of Hadoop

constitute a significant piece of the overall data center system. Inevitably, the intense energy

usage from the Hadoop platform would be massive.

1.1.2. Data Center Energy Demand

In Meta’s data center alone, energy consumption surged by 33%, from 509 GigaWatt hour

(GWh) in 2012 to 678 GWh from the year before. The company’s total data center energy

Chapter 1. Introduction 3

consumption increased by another 16% in 2013 to 822 GWh as it massively scaled up its

cloud infrastructure to meet intense customer demands [21]. In 2019, the company’s

electricity usage reached a new high of 5.1 TWh [22], a 50% increase from the previous

year of 3.2 TWh in 2018 [23].

Energy consumption of Google’s data centers has also increased from 2.86 TWh in 2011 to

10.6 TWh in 2018 as computing power skyrocketed and data center capacity expanded to

meet robust demand for data services [24] [25]. In 2019, the company announced that an

investment of more than $13 billion would go into building new data centers and expanding

existing ones [26]. Similar announcements were also made by top-ranked cloud service

providers such as Amazon Web Services (AWS), Microsoft, and Tencent to continue their

investment and building of data centers at hyper-scale [27] – [29].

Consequently, studies have forecasted that data center electricity use could reach 2,967

TWh/year by 2030 [30], reaching a level of consumption equivalent to one-quarter of

worldwide electricity consumed in 2010 [31]. The European Union’s (EU’s) EURECA (EU

Resource Efficiency Coordination Action) Project put the energy consumption of the

European data center at 130 TWh in 2017 [32]. The Lawrence Berkeley National

Laboratory (LBNL) in the United States (US) projected that US data center energy

consumption at approximately 70 TWh in 2020 [3] [4]. Greenpeace cited that China’s data

centers' energy consumption was 160 TWh in 2018 and is projected to reach 367 TWh by

2023 [5]. At the same time, these data centers represent 3.8% of CO2 emissions [33], and it

is estimated that by 2025, greenhouse gas emissions by data centers will have tripled since

2010 [34].

1.1.3. Data Center Energy Efficiency Gains

Most studies claiming enormous energy used by data centers often overlook strong

countervailing energy efficiency trends that have occurred in parallel. Some of the

considerable energy improvements came from technological advancements such as

increased server, storage, networking equipment efficiencies, and greater use of

virtualization technologies. Others came from increased gains in data center operational

Chapter 1. Introduction 4

efficiency. Together, it is possible to achieve substantial growth in digital services with

much smaller growth in the energy footprint [35]. However, given the ever-growing

demands for data center services, current strategies for energy efficiency improvement will

not likely keep up with the rate of data center expansion.

The industry's most notable data center energy efficiency metric is the Power Usage

Effectiveness (PUE). PUE is calculated using the equation,

𝑃𝑈𝐸 =
𝑇𝑜𝑡𝑎𝑙 𝑃𝑜𝑤𝑒𝑟 𝑖𝑛𝑡𝑜 𝐷𝑎𝑡𝑎 𝐶𝑒𝑛𝑡𝑒𝑟

𝐼𝑇 𝐸𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡 𝑃𝑜𝑤𝑒𝑟
 (1.1)

where, Total Power into Data Center is the energy dedicated solely to the data center, and

IT Equipment Power is the energy consumed by equipment used to manage, process, store,

or route data within the compute space. A PUE of 1, which would be ideal, means all the

power going into the data center is being used to power IT equipment. World-class data

centers are approaching a practical minimum in operating PUE of 1.1 or lower [36] [37],

as they take advantage of economies of scale and leverage the latest technology and

practices. However, the industry data centers’ PUE in a 12-year study has flattened out with

an average of 1.67 in 2019 [38]. It is observed in the study that the reduction in the average

PUE from 2007 to 2013 is mainly due to the adoption of methods such as hot and cold air

separation, raising data center temperatures, or applying more control on computer room

air-conditioning and power distribution. The PUE numbers indicate that energy efficiency

gains leveraging conventional methods may have been dampened.

1.1.4. Renewables and AI for Efficient Data Center Energy Management

Explosive growth in data center infrastructure does not need to mean growth in emissions.

Transitioning energy from thermal-based sources to renewables to power data centers could

be a game-changer. By leveraging the attractive economics of renewables, and the

increased efficiencies made possible by Artificial Intelligence (AI), energy-intensive data

centers could be self-sustaining [39]. Research in AI and renewables-enabled data center

sustainability is growing [40] – [43]. A recent example is the tropical data center testbed

set up as a state-of-the-art facility for energy efficiency research [44]. The Uptime Institute

Chapter 1. Introduction 5

Intelligent Report on ‘Five data center trends for 2021’ concurs with this development,

citing sustainability and AI as the leading trends for data centers in 2021 [45]. Operators

that can successfully harness this energy source coupled with AI advancement might

change how data centers operate in the future. Big technology companies such as AWS,

Google, Microsoft, and Meta, are already integrating higher shares of renewable power

(e.g., wind, solar, hydro, marine, and geothermal power) into their data centers or

purchasing renewable energy credits (REC) to offset their fossil fuel usage [46] – [49].

Among the renewable energies, clean electricity systems based on solar photovoltaic (PV)

power generation is the fastest-growing energy source worldwide [50]. The accelerated

deployment of solar PV globally, combined with the rapid development of the solar energy

industry, has driven costs down. With the cost of renewable electricity falling, transition

effort could be further boosted as power represents as much as 70% of the data center's total

operating costs [51]. Currently, the issue limiting its growth is the intermittency of

renewable energy. The intermittent nature of renewables means that electricity from these

sources will not be continuously available. It also creates technical challenges in integrating

renewable energy into the grid. Therefore, intermittent availability has been at the forefront

of renewable energy research for a number of years to resolve the impacts of intermittent

generation. With the advancements in AI, it is possible to alleviate the impacts of

intermittent generation through accurate solar energy forecasting to further integrate solar

capacity into the grid for a predictable generation.

1.2 Energy Modeling and Prediction

Energy prediction is of paramount significance for the optimal operation of systems and

plants to meet their energy needs [52]. Accurate models of underlying systems are pivotal

to predicting the systems’ behaviors. Such predictions are integral to business planning,

resource management, and energy efficiency improvement. For example, data center

planners can use energy consumption predictions to improve workload scheduling,

resource allocation, and data replication or placement to achieve energy proportionality.

Chapter 1. Introduction 6

Grid operators require accurate forecasts of solar variability for reliable dispatch, ramp

forecasting, or spinning of reserves from additional sources. Most works consider solving

these problems separately. This research aims to lay the groundwork to bridge the gap

between these two engineering problems by improving the generalizability of a predictive

model capable of both demand-side and supply-side energy prediction.

In general, the approaches used in modeling energy systems can be categorized into the

physical and Machine Learning (ML) approaches.

1.2.1 Physical Modeling Approach for Energy Prediction

Most early studies and existing work that focus on physical models are based on

mathematical equations describing a dynamic system's physical state. In the energy

consumption modeling of data centers, [53] developed a general power consumption model

for the Hadoop cluster, and [54] proposed an energy model for Hadoop workloads. In solar

irradiance forecasting, [55] presented a physical satellite model based on participating

atmospheric components, radiometers, and meteorological data. Global spectral numeric

weather prediction models [56] are also popular models used to predict solar irradiance

through weather phenomena occurring in the Earth’s atmosphere. These approaches to

describing and analyzing energy predictions require a precise and clearly defined

mathematical model that involves selecting appropriate meteorological features and

collecting vast data.

Energy modeling based on physical models is the most accurate. They also have the

advantage of not requiring any historical data, making them flexible as they can simulate a

future system so long as its physical properties are known. However, physical models are

demanding since they must include all the necessary mathematical equations and data.

Using the underlying physics to solve the equations numerically requires an expensive

process of abstracting the full underlying properties of a nonlinear energy system to a high

degree of accuracy, making this method unamenable.

Chapter 1. Introduction 7

1.2.2 Machine Learning Approach for Energy Prediction

On the contrary, ML, a class of AI, uses a data-driven approach that seeks to match input-

output predictions to data that does not require the abstraction of complex underlying

properties of the systems as in physical models. Its approach reverse engineers existing data

to learn and discover patterns or hidden information in the system. While ML techniques

have been adopted for several decades, interest in the field has grown in recent years, led

by advancements in computing hardware and revolutionary development in AI. In

particular, a class of ML techniques known as Artificial Neural Networks (ANN) and Deep

Neural Networks (DNN) has seen a resurgence in energy prediction research [52]. In energy

consumption modeling, Fuzzy Wavelet Neural Networks (FWNNs) were proposed as a

control model to improve the energy efficiency of the Hadoop cluster [57]. Liang and Hu

[58] presented a deep learning model to predict energy consumption using multiple energy-

related features acquired from a Hadoop cluster. The use of ANN or deep learning for solar

energy forecasting is also widespread. Convolutional Neural Networks (CNNs) were

employed to predict the sunshine duration [59], Recurrent Neural Network (RNN) was

employed for solar radiation forecast [60], and Long Short-Term Memory (LSTM) models

were successfully deployed to predict solar radiation [61].

While ANN-based ML methods can create models from data, it has several disadvantages.

Firstly, the model training process can be time-consuming and expensive due to a large

number of parameters and hyperparameters to optimize and often relies on expert

knowledge and trial-and-error to determine the optimal structure. Secondly, while the

powerful and versatile ANN is capable of learning the non-linear and intricate interactions

between features, it is also more prone to overfitting with its complex structure, limiting its

generalization ability. Thirdly, the more complex a network, the more difficult it is to

interpret the cause of the results in relation to the inputs. Lack of interpretability prevents

the model from being queried to understand which specific features are relevant for making

predictions causing them to be less desirable for real-world applications.

Chapter 1. Introduction 8

1.3 Methods for Neural Network Structural Learning

ANN's performance depends on two aspects – the model architecture and the model

parameters. The model architecture consists of the number of hidden neurons and their

connectivity, whereas the model parameters consist of connection weights and biases.

Theoretically, an infinite set of model architecture associated with the model parameters

representing the ANN structure exists, making it hard to locate an optimal model. Hence,

selecting an appropriate network structure is non-trivial [62].

The neural network structural learning problem can be viewed as an optimization or search

problem where structural representations form the search landscape. In ANN design, a cost

function can be formulated as the objective function to minimize, with the structural

representations embodying learnable parameters for the optimization. Various optimization

methods have been proposed in the past years to train ANNs. These methods can be

categorized into gradient-based, reinforcement learning-based, and nature-inspired search

[63].

1.3.1. Gradient-Based Methods

In gradient-based methods, the search moves towards the optimum solution in a continuous

space using a gradient descent method. Candidate model architecture is sampled from the

search space, trained on the training dataset by gradient-based methods, and evaluated on

the validation dataset, guided by the objective (or cost) function. The target is to reduce the

model’s predicted error averaged over the entire training dataset. The Backpropagation

(BP) algorithm is commonly used to guide the training of ANN, where the error of the cost

function is propagated backward through the network [64]. The derivatives of this error

component are used to evaluate the search direction iteratively to help reproduce model

architectures with higher performance [65]. The disadvantage of this method is that the

objective function must be differentiable, limiting the selection of objective functions used

to train the network [66]. Since model architecture is often discrete, this method

necessitates converting the search space to continuous values if the gradient-based method

Chapter 1. Introduction 9

is used [67]. Another shortcoming with the gradient-based method is that it can easily get

trapped in local minimas of the objective function.

1.3.2. Reinforcement Learning-based Methods

Reinforcement learning (RL) is a technique that trains intelligent agents to solve a specific

task using a set of actions to maximize some accumulative rewards [68]. RL-based methods

in network structural learning train an RNN controller using RL to generate DNN

architectures represented by variable-length strings [69] [70]. During the DNN training, the

accuracy or reward signal computed is used by RL to train the RNN. The RNN controller

then determines a sequence of operator and connection tokens to construct the networks.

Over time, the RNN will learn to improve the search as DNN architecture with higher

accuracy will be given higher probabilities. However, the RL controller needs to try tens of

actions to get a positive reward as a supervisory signal, making the training process

inefficient [71].

1.3.3. Nature-Inspired Search Methods

Nature-inspired search methods are stochastic approaches that only use cost function values

to drive the search process. They do not require the cost functions to be continuous or

differentiable and use a population-based approach to search large spaces for candidate

solutions [72]. Examples of nature-inspired search methods are Evolutionary Algorithms

(EA), such as the Genetic Algorithm (GA) [73] and Differential Evolution (DE) [74], and

Swarm Intelligence, such as the Particle Swarm Optimization (PSO) [75].

GA is a bio-inspired search algorithm that allocates resources to explore new regions for

solutions by successfully exploiting randomness and subsequently competing for survival

based on an estimate of the fitness of the competing regions. A general process of this

simulation comprises defining the solutions to the problem using genetic representation

called chromosomes. These chromosomes collectively form a population of individuals.

An objective function is then designed to evaluate the health of these individuals, where

the solutions are subsequently ranked according to their fitness value. Next, healthier

Chapter 1. Introduction 10

individuals recombine to form new solutions through the generic operators of selection,

crossover, and mutation designed to alter their genetic composites during reproduction.

With iterations, the concept of survival of the fittest in simulated evolution is expected to

lead to improved solutions. The iteration continued and converged when the fittest

individual is found, or a stop conditions are met.

DE is a heuristic algorithm for global optimization that uses a parallel direct search

approach to optimizing system properties by appositely selecting the system parameters.

Essentially, the steps in DE involve initializing a population where each individual is

represented by a parameter vector of D dimensions. An objective function is defined, which

is then employed to evaluate every generation in search of the best parameter vector.

Selecting parameter vectors for the next generation is based on the Darwinian evolution

rule, whereby the parameter vectors with better fittest are to be selected. The process

converges when the best parameter vectors are found, or the stop conditions are met.

PSO is a bio-inspired algorithm based on bird flock or fish school, where organisms teem

in search of food (optima) by assessing their velocity and location (own best). This is done

while following the optimum organism (global best) and at the same time interacting with

each other (cognitive factor) and their environment (social factor). The PSO simulates this

behavior by initializing a population of random solutions called particles. Each particle is

a potential solution that searches for optima characterized by the particle’s velocity and

position as it moves through the solution space. At each iteration, the particle determines

its own best solution so far and the population's global best solution. With these values, the

particle updates its velocity and positions at each iteration with learnings from the previous

best particle and the global best particle. The iterative process converges when the global

best particle is found, or the stop conditions are met.

Due to their population-based, highly parallelizable, stochastic search approach, these

algorithms have been known to overcome challenges presented by multiple objectives and

multiple local optimal, making them more general than gradient-based methods [76]. In

addition, they also have fewer meta-parameters than RL-based methods, making the

algorithms simpler to implement [77]. For example, DE was successfully applied to

Chapter 1. Introduction 11

optimize LSTM for electricity prices prediction [78], and a combination of GA and DE was

proposed to train ANN for short-term load forecasting [79]. Although EAs are prone to

locate the global optimum, there is no guarantee of convergence to an optimal solution.

1.4 Energy Prediction Challenges and the Evolutionary-based

ANN Approach

Accurate energy prediction is challenging due to its dependency on environmental

conditions. For example, solar irradiance forecasting is affected by atmospheric conditions

and changing cloud formation, and data center energy consumption by changes in

applications and workloads. While the power of ANNs to approximate any function is well-

documented as these models are superior at recognizing patterns in data and generating

accurate predictions, they are also prone to overfitting. ANN architecture design is also

challenging, requiring human expertise and expensive trial-and-error efforts. Moreover,

ANN’s complex structure often makes it unclear how the model approximates functions.

Automating ANN design using an evolutionary-based approach can remove human

intervention and eliminate the tedious trial-and-error process. The design can consider

parsimony while capturing the meaning of nonlinear relationships between the inputs and

the outputs, generalized for predictions of data center energy consumption on the demand

side and forecasting of solar irradiance on the supply side.

1.5 Aims of Research

This research aims to make the problem of energy prediction simpler using an evolutionary-

based approach to ANN learning to produce an interpretable and generalized model. This

will be achieved with a learning algorithm that uses several novel mechanisms of an

improved GA for the structural optimization of ANNs based on parsimony. The algorithm

Chapter 1. Introduction 12

will include the design of a matrix encoding scheme allowing for learning feedforward and

feedback ANNs. Two crossover strategies will be created to maintain species parallelism

and intensify the search for promising basins of interest while exploring new parts of the

search landscape. A two-stage mutation will be introduced to avoid local optima in complex

problems by making small gene pool variations. Diversity measures will be implemented

to track population diversity and provide information about the search behavior. The

algorithm will also include an ensemble-based approach to sensitivity analysis to improve

model interpretability and make it easier to identify input features that most affect the

outputs.

1.6 Key Contributions

• A novel Evolutionary Lean Neural Network (EVLNN) has been designed to improve

the interpretability and generalization of energy predictions. It uses an improved GA to

optimize network parameters automatically, minimizing human experts' involvement

and the costly, inefficient trial-and-error effort.

• A unique structurally inclusive matrix encoding scheme is designed for feedforward

and feedback propagation ANN models based on parsimony while not having

complications of extra parameters in the representation, offering higher accuracy with

fewer features and a smaller number of samples.

• Intra-species and inter-species crossover strategies and a two-stage mutation involving

weights and link-node mutation are developed to provide species parallelism amidst the

explorative search for novel landscapes that aims to converge towards global optima.

• An ensemble-based approach to sensitivity analysis is proposed to improve model

interpretability, making it easier to identify input features that most affect the outputs

and providing valuable insight into the underlying system, which cannot be obtained

using typical black-box models.

Chapter 1. Introduction 13

• A diversity measure inspired by the linguistic complexity approach is implemented to

track population diversity and provide information to aid in understanding evolutionary

search behavior.

1.7 Outline of Thesis

Chapter 2 examines related work in energy prediction of Hadoop data centers and solar

irradiance forecasting. Techniques introduced by these studies are appraised, and their

limitations are highlighted. Gaps in the broader literature are discussed, and essential

questions are raised in these areas.

The fundamental concept and design of the EVLNN architecture are detailed in Chapter 3.

An illustration of the EVLNN framework and a description of the search algorithm are also

discussed.

Chapter 4 investigates EVLNN’s search capability through a set of benchmark test

functions and compares the model’s performance to modern meta-heuristic algorithms and

the state-of-the-art niching EAs in the Congress on Evolutionary Computation (CEC) 2013

and 2015 competitions. The results are analyzed and discussed in this chapter.

In Chapter 5, EVLNN is applied to predict the energy consumption of a Hadoop cluster.

This chapter also describes the Hadoop testbed setup and data collection process. The

training of EVLNN is explained, and the energy consumption prediction by the model is

evaluated and compared to ANNs trained using other EAs, namely PSO-NN, DE-NN, and

GA-NN, respectively.

In Chapter 6, EVLNN is applied to forecast solar irradiance in tropical weather.

Meteorological data such as wind speed, ambient temperature and relative humidity, and

solar PV surface temperature are used as input variables. The model is trained on datasets

with four resolutions to provide predictions at time steps of 1-minute, 15 minutes, 30

minutes, and 1-hour over a horizon of seven days. The use of a smaller scale of feature

Chapter 1. Introduction 14

subsets was investigated, with the performance of EVLNN in most prediction time-steps

significantly better than PSO-NN, DE-NN, GA-NN, and TD-BPNN.

Finally, Chapter 7 concludes the research findings and recommends the direction for future

research.

Chapter 2

2. Related Work

2.1 Introduction

Sustainability is becoming a growing concern for data centers due to their enormous energy

demand. Although the past decades have seen significant improvements in data center

energy efficiency through academia, research, and industry efforts [80], data centers still

generate a high carbon-intense footprint. Transiting existing data centers energy demands

to low-carbon energy sources and renewables is essential to combat climate and

environmental effects. Decarbonizing data centers can boost a sustainable digital world and

mitigate the impact of climate change. As more data centers are expanding their renewable

energy strategy through Renewable Energy Certificates (RECs) and considerable Power

Purchase Agreements (PPA) [81], grid operators must guarantee the physical delivery of

clean electricity on the local grid. However, weather and atmospheric changes affect energy

production planning, necessitating renewable energy forecasts. With their variability and

limited predictability, it is ever more critical to study renewable energy forecasting for

reliable and smooth integration of clean energy production into the existing power grid [82].

While data center energy research covers an extensive area, this chapter reviews existing

literature on data center energy efficiency-related, specifically in the Hadoop cluster. In

light of the increasing emphasis on solar energy due to its rapid growth over the last decade,

this chapter also examines related work on time-series solar irradiance forecasting and its

complex relationships between weather and meteorological variables [83].

Chapter 2. Related Work 16

2.2 Hadoop Energy Efficiency Studies

Hadoop data centers can scale into thousands of nodes in a single cluster, supporting

hundreds of Petabytes (PB) data. The energy consumed by such a cluster would be massive.

The intensive energy consumption of the Hadoop cluster presents significant opportunities

for energy optimization and research. The data center energy consumption process is shown

in Figure 2.1. The total energy consumed by a data center can be determined from its

Information and Communication Technology (ICT) load and the facility load. The ICT load

comprises energy consumption from servers, storage, and networks. The facility comprises

heating, ventilation, air conditioning (HVAC) load, and power distribution load. Alongside

Figure 2.1 are techniques for energy efficiency studies broadly discussed in the literature

primarily classified into five categories [80], [84], [85], depending on the emphasis of the

methodology used to address the energy problem. The categories are energy-aware

workload placement and scheduling, energy proportionality, Dynamic Voltage and

Frequency Scaling (DVFS), data replication and storage efficiency, and modeling using

machine learning techniques. Approaches using energy-aware workload placement and

scheduling, and energy proportionality make up the majority of existing studies. However,

machine learning techniques are gaining popularity.

Chapter 2. Related Work 17

Figure 2.1 Categories of energy-efficient studies and their application in the data center energy

consumption process.

2.2.1. Energy-Aware Workload Placement Scheduling

Researchers have long recognized the importance of energy-aware workload placement

scheduling and energy proportionality. Most of the work in these fields focuses on using

various techniques to schedule or place workloads on the most suitable nodes to minimize

node overloads [86] [87].

Krish et al. [88] proposed a heterogeneity-aware and power-conserving task scheduler for

the Hadoop workload scheduling algorithm. The energy performance and characteristics of

Hadoop applications on different hardware platforms were first profiled using metrics such

as CPU, memory, storage, and network usage by the Energy Profiler. The power

Chapter 2. Related Work 18

characteristics based on workloads of different sizes were extrapolated from the Energy

Profiler to be analyzed statistically to determine a suitable resource-application match. A

scheduler subsequently allocates the resources in the optimal sub-cluster to the workloads.

A placement policy was proposed to ensure that at least one replica of the data is available

in a small subset of nodes called the Covering Subset (CS). This strategy allows the turning

off of other sub-clusters not part of the CS to conserve energy, and the approach helped

reduce energy consumption by 21%. This approach poses a scalability issue as the ability

to profile a dynamic and changing environment accurately becomes challenging.

Kulkarni [89] proposed scheduling tasks based on the thermal model in the data center to

minimize the heat dissipated by the nodes and the cooling power overheads. The proposed

method uses two thermal-aware schedulers to balance the temperature and reduce power

consumption costs in the data center. The first is a dynamic scheduler that schedules jobs

based on CPU and disk temperatures and utilization feedback given by the slave nodes. The

second is a static scheduler that assigns the job to the slave nodes based on the jobs' profile,

such as a CPU-intensive application, Disk intensive application, or both. When assigning

the tasks to the nodes, the static scheduler would consider the CPU and Disk temperature

at the time of scheduling to maintain the average CPU and Disk temperature across the

Hadoop cluster. The new schedulers were implemented on top of Hadoop’s FIFO queue

system and improved energy costs by 10-15%. However, these two schedulers worked on

different principles and were not integrated. Integrating the schedulers using job profile

knowledge with utilization would offer greater potential for energy savings.

Mashayekhy et al. [90] modeled the MapReduce scheduling problem as a linear integer

program and designed a greedy algorithm for solving this problem. The greedy algorithm

called Energy-aware MapReduce Scheduling Algorithm (EMRSA) finds an energy-

efficient assignment of the MapReduce tasks to the compute nodes. The EMRSA solution

achieved an average energy savings of 32% and 40% for large and small-scale MapReduce

jobs, respectively. While the approach can gain higher energy savings, it does so at the

expense of job completion time. The drawback is that time-sensitive and deadline-driven

tasks would be adversely impacted.

Chapter 2. Related Work 19

Shao et al. [91] introduced the Multidimensional Knapsack Problem (MKP) technique to

model the Energy-aware Fair Scheduling framework (EFS) for MapReduce job placement.

An Energy-Aware Greedy Algorithm (EAGA) is applied to solve the MKP problem and

realize task placement on energy-efficient nodes. The approach combined workload

scheduling with energy proportionality to achieve more significant energy savings by

transiting inactive nodes to an idle state or turning them off after a threshold duration. The

experimental results showed a savings of 2% to 14%. Nonetheless, this approach's

weakness is that the job's execution time relies on the user request deadline to accurately

compute the number of resources needed in the cluster. Without knowing the job

completion time, the performance of the dynamic node management strategy will be greatly

impacted.

2.2.2. Energy Proportionality

Other authors leverage the concept of energy proportionality and utilize techniques to ‘right

size’ the data center. For example, a power-proportional server with 10% utilization should

draw 10% of its maximum power. Leverich and Kozyrakis [92] presented Covering Subset

(CS) strategy concept paper. CS is a group of nodes containing immediate data availability,

even when all nodes outside this subset are disabled. An energy model was designed based

linearly on CPU utilization to evaluate the power characteristics of the servers. It uses an

energy-aware fair scheduler to assign Hadoop jobs to be performed over the minimum

availability of all requested data in all nodes in the covering subset. At the same time, the

rest of the nodes not in the subset can be gracefully powered down to conserve energy. This

strategy had attained an energy reduction of between 9-50%. However, the high energy

penalty for “awakening” the nodes from a powered down state countervails energy

efficiency, reducing or neutralizing the energy savings.

Building on Leverich’s work, Lang and Patel [93] proposed aggregating “live” data into

subset nodes of the cluster and turning off nodes outside the CS subset. The proposed All-

In Strategy (AIS) takes an extreme approach to the CS strategy to power down an entire

cluster to achieve deeper energy savings. The CS strategy designates that the CS nodes are

to be kept online to maintain at least one copy of each unique data block on these nodes.

Chapter 2. Related Work 20

Hence the authors altered the HDFS data placement policy so that during periods of low

utilization, some or all of the non-CS nodes can be powered down to save energy. For

example, if 33% of the nodes are CS nodes, then only the CS nodes are online at this

utilization. Different offline states were experimented with, like hibernate, stop grant (low

power state), and shutdown. Offline states still draw power, albeit low, because the

motherboard and network card are still powered on for remote management. It resulted in

the hibernate offline state being the most energy-efficient overall due to its low power

consumption in that offline state and low power transitioning cost to the online state. The

authors presented the energy consumption model of the MapReduce cluster, denoted as

𝐸(𝜔, 𝜈, 𝜂) is expressed as,

𝐸(𝜔, 𝜈, 𝜂) = (𝑃𝑡𝑟𝑇𝑡𝑟) + (𝑃𝜔
𝑛 + 𝑃𝜔

𝑛̅)𝑇𝜔 + (𝑃𝑖𝑑𝑙𝑒
𝑚 + 𝑃𝑖𝑑𝑙𝑒

𝑚̅)𝑇𝑖𝑑𝑙𝑒 (2.2)

where 𝜔 is the simplified workload characteristics, 𝜈 is the specified time windows when

running the workload, 𝜂 is the hardware characteristics, 𝑛 and is the number of nodes

running the job, 𝑛̅ is the number of offline nodes during job processing, m and 𝑚̅ are the

number of online nodes and offline nodes in the idle period, respectively, 𝑃𝑡𝑟 is the average

transitioning power, 𝑃𝜔
[𝑛,𝑛̅]

 is the on/offline workload power, 𝑃𝑖𝑑𝑙𝑒
[𝑛,𝑛̅]

 is the on/offline idle

power, 𝑇𝑡𝑟 is the time to transition nodes between power-up and power-down state, 𝑇𝜔 is

the execution time of the workload, and 𝑇𝑖𝑑𝑙𝑒 is the idle time of the nodes. From Equation

2.1, energy consumption can be reduced by reducing idle energy consumption

(𝑃𝑖𝑑𝑙𝑒
𝑚 + 𝑃𝑖𝑑𝑙𝑒

𝑚̅)𝑇𝑖𝑑𝑙𝑒. However, it is observed in Equation 2.1 that 𝑇𝑡𝑟 can have a significant

impact on energy consumption, if 𝑇𝜔 is small. It was reported that the AIS method achieved

26% more energy savings than the CS method by Leverich and Kozyrakis [92]. Nonetheless,

a crucial aspect of AIS is the cost of transition 𝑇𝑡𝑟 and the negative secondary effects of

degraded performance. Another drawback is that the workloads take longer to run as fewer

worker nodes are available. However, the impact of the shortcomings can be mitigated with

an accurate energy modeling and workload forecast system guiding the AIS energy

management framework to keep optimal data availability at the highest energy savings

possible. Such as how many nodes to power down and for how long.

Chapter 2. Related Work 21

Amur et al. [94] presented RABBIT, a power-proportional distributed file system (PPDFS)

that uses data distribution in the HDFS to achieve power performance efficiency by

ensuring a minimal number of powered-up nodes are active. RABBIT uses an equal-work

data-layout policy for equal load sharing formulated as an optimization problem. The equal-

work data-layout policy first established p nodes as primary nodes, with one replica of the

dataset, called the primary replica, distributed evenly over the primary nodes. Thus, keeping

the p nodes on is sufficient for data availability, and where p << N, the total number of

nodes, gives RABBIT a low minimum power setting. The results showed that this approach

had achieved power-proportionality as low as 5% of the nodes in an active state to service

MapReduce jobs in the entire Hadoop cluster. However, the efficiency of an equal-work

data-layout policy may suffer in a dynamic data center environment where adding or

removing nodes for maintenance is expected. This approach will lead to high energy

overheads due to its equal-work data-layout policy.

Lin et al. [95] proposed an energy-efficient and resilient data layout policy called eStor to

address data disruption problems when turning off nodes. Le et al. [96] proposed a data

placement method called Accordion, which uses data replication to arrange the data layout

comprehensively and provide efficient gear-shifting. However, the approach will incur

energy consumption overhead as the shifting of gears requires node reactivation during the

transition. Kaushik et al. proposed GreenHDFS [97] and Predictive GreenHDFS [98],

respectively, which rely on insightful data classification and energy-conserving placement

policy to cluster nodes into various ‘hot’ and ‘cold’ activity levels and power down those

‘cold’ nodes with substantially long periods of idleness. However, the approach suffers

from performance impact when transitioning nodes from off mode to active mode.

2.2.3. Dynamic Voltage and Frequency Scaling

Dynamic voltage and frequency scaling (DVFS) techniques are closely related to energy

proportionality. These techniques adjust scalable power components such as CPUs by

manipulating the operational frequency and voltage to regulate the power utilization in the

processor based on the current load. The power consumption is mainly governed by the

expression [99],

Chapter 2. Related Work 22

𝑃 = 𝐶𝑉2𝐹 (2.3)

where P is the power, C is the switching capacitance, V is the supplied voltage, and F is the

working frequency. Wirtz et al. [100] studied the effectiveness of DVFS in reducing energy

costs by experimenting with three MapReduce workloads and applied three different DVFS

scheduling policies with four frequencies: 0.8GHz, 1.3GHz, 1.8GHz, and 2.5GHz. Based

on the results, DVFS scheduling could effectively improve energy. In particular for clusters

with dominating idle power. However, DVFS does impose a performance penalty in return

for energy cost savings, as extensive performance and energy profiling are required to

achieve the balance.

Hou et al. [101] investigated the impact of DVFS on energy saving in MapReduce/Hadoop

implementation on cloud platforms. The proposed method uses distributed online

optimization algorithms to optimize the time-averaged energy consumption of MapReduce

jobs performed in two scenarios. These scenarios are fog-assisted with DVFS (limited data

processing at the edge) and fog-coordinated with DVFS (dispatching data at the edge to the

cloud) simulated using MATLAB software. The results indicated that the second scenario

offered 32% higher energy savings than the first. Nonetheless, these works have assumed

that the processors of the active servers operate at the same frequency and that raw data

arriving at the fog nodes are identically distributed. Real-world deployment of Hadoop

clusters in data centers is expected to host inhomogeneous computing elements with

varying compute demands. Hence, it is unclear if the simulation results are close to or

similar to the real world.

2.2.4. Data Replication and Storage Efficiency

Replication is a common method applied in the Hadoop cluster to ensure redundancy.

However, making multiple copies (the standard is three) of data blocks in the HDFS

expands the storage capacity, which leads to increased energy consumption. Fan et al. [102]

proposed replacing HDFS default replication of three with erasure coding to improve

spatial and energy efficiency. The approach combines Redundant Array of Independent

Disk 5 (RAID 5) and mirroring encoding with RAID 6 erasure encoding to lower triplicated

Chapter 2. Related Work 23

overheads to RAID-class redundancy. In this approach, storage overheads are reduced to

1 +
1

𝑁
 and

2

𝑁
 respectively, where 𝑁 is the number of repica blocks. However, the encoding

period can be delayed if “hot” files in the Hadoop cluster are continually accessed. Cheng

et al. [103] applied the Complex Event Processing (CEP) technique to analyze HDFS audit

logs. Data are first distinguished into ‘hot’ and ‘cold’ types and then placed into active or

standby storage in HDFS using replication or erasure coding. The erasure coding approach

of adding redundancy in HDFS provides high reliability at a fraction of the cost of

replication. However, erasure coding requires complex central management systems that

affect HDFS’s overall performance and interoperability. Wei and Foo [104] successfully

integrated Low-Density Parity Check (LDPC) coding into HDFS to improve storage

efficiency with a less complex optimized equation-based repair algorithm. The basic

principle behind this technique is to incorporate the Quality of Service (QoS) policy from

the users as the first criterion for automatically adjusting and configuring the parameters

related to the LDPC code [105]. The approach allows the existing resources to be used more

efficiently to meet the time-sensitive requests allowing other applications access to the

storage. While LDPC coding can reduce the storage footprint much further than erasure

coding, the tradeoff is repair or decode overhead during node failures. The decoding

complexity increases as the code length become longer, adding to the data recovery time.

2.2.5. Modeling using Machine Learning Techniques

The use of machine learning (ML) modeling techniques such as Artificial Neural Networks

(ANN) for energy consumption modeling and prediction has gained renewed interest

among data center energy researchers in recent years. Wang and Cao [106] proposed a

control model that dynamically adjusts the energy ratio (power budget) at a predefined level

to ensure performance goal is met. The control model's core is the Model Predictive Control

(MPC) strategy and a feedback mechanism to keep the operation within the power budget.

The MPC is based on fuzzy wavelet neural networks (FWNNs) to predict the nonlinear

relationship to adapt to the dynamic workload. A large Hadoop cluster computing state

sample is collected to form the training dataset. The trained model is deployed for energy

efficiency ratio prediction. The control system uses the forecast information to conduct

Chapter 2. Related Work 24

CPU frequency scaling for each node in the Hadoop cluster. The combination of prediction

and control allows this approach to increase energy efficiency by 5% to 12.6%. However,

the structural design of FWNN is reliant on professional knowledge and practical

experience, which can be time-consuming.

Liang and Hu [107] established a deep learning model called Multiple Energy-Related

Features (MERF) to predict energy consumption using multiple energy-related features

acquired from a Hadoop testbed. The energy-related features are CPU utilization, Average

Load, Memory Use, Map Read Task, Reduce Read Task, Map Write Task, Reduce Write

Task, Network I/O Speed, Shuffle Size, File Size, Number of MapReduce Instructions, Disk

Utilization, Transmission and Read/Write Ratio, Available Space in File System, Page

Faults/sec, Byte Consumed per CPU second, Context Switches Rate, HDFS R/W

Throughput, Disk Traffic, and Energy Consumption. The energy-related data is acquired by

running MapReduce jobs and combining several open-source performance monitoring

applications and tools such as Ganglia, Nagios, Zabbix, and Hadoop build-in counter for

the acquisition work. The architecture of the deep learning model using a Deep Neural

Network (DNN) was empirically determined, consisting of one input layer, three hidden

layers, and one output layer. Each layer consists of hidden neurons 12-100-100-100-1. The

energy-related features were selected using the Kullback-Leibler (KL) divergence, which

measures the difference between two probability distributions. The MERF model

outperformed five other machine learning models with higher prediction accuracy to offer

a solution for improving energy efficiency. Nonetheless, DNN requires a large dataset for

training, and the manually designed architecture can be inefficient and sub-optimal.

Toha et al. [108] investigated different machine learning techniques, such as K-Nearest

Neighbor (KNN), Support Vector Regression (SVR), and Additive Regression (AR), to

predict the MapReduce cluster's total energy consumption, consisting of computational

energy and cooling energy. The techniques using SVR and AR had achieved 97% accuracy.

Using the prediction information, two methods, namely the Green MapReduce Cluster

(GMC) and enhanced GMC (eGMC), were proposed to determine the number of active

servers achieving an energy reduction of up to 47% to 76%. In their experiment, the authors

Chapter 2. Related Work 25

used MapReduce Wordcount applications to generate workload on the cluster and provided

the Wikimedia dataset [109] as payloads for the Wordcount application. A total of 68 jobs

with an average job size of about 150 MB were used in the experiment. By executing the

workloads, data such as the response time, computational power, and cooling power over

the same series of jobs were collected. The datasets collected were used to train the machine

learning models to determine the minimum number of computing nodes needed to be

activated. Though the high energy savings presented were apparent, the results were based

on simulated data and achieved at the expense of performance degradation in some cases.

The metrics used for performance measurement were response time, throughput, and

waiting time. GMC experienced lower throughput, longer response time, and longer

waiting time than other methods in their experiment.

A summary of prior work reviewed is shown in Table 2.1.

Table 2.1 A summary of prior work in Hadoop energy efficiency studies.

Author Category Method Results Remarks

Krish [88] Energy-aware

job scheduling

Applied application profiling

and statistical analysis to find a
suitable application-resource

match.

Power savings of

21%.

This approach poses a scalability

issue as the ability to profile a
dynamic and changing

environment accurately becomes

challenging.

Kulkarni [89] Energy-aware

job scheduling

Applied thermal modeling and

performed dynamic scheduling

based on CPU, disk
temperature, and utilization of

the nodes, and static scheduling

based on job profiles.

Improvement of

10-15% of energy

cost.

The two schedulers worked on

different principles and were not

integrated. Integrating the
schedulers would offer more

significant potential for energy

savings.

Mashayekhy

[90]

Energy-aware

job scheduling

Modeled the scheduling

problem as an Integer Program,

then designed a greedy
algorithm called EMRSA to

solve the problem.

40% less energy

consumption on

average for small
MapReduce jobs.

The approach would affect time-

sensitive and deadline-driven

tasks.

Shao [91] Energy-aware

job scheduling

Modeled the scheduling

problem as a Multidimensional
Knapsack Problem, then

designed a greedy algorithm

called EAGA to solve the
problem.

2% - 14% less

energy
consumption.

Requires knowing the workload

completion time to calculate the
resources required in the cluster.

Leverich [92] Power-

proportionality

Introduced covering subset

(CS) for servers and applied
energy-aware fair scheduling to

assign tasks to the CS.

Energy savings of

between 9% to
50%.

High energy penalty for

“awakening” the nodes from a
powered down state.

Lang [93] Power-
proportionality

Modeled the energy
consumption of Hadoop and

proposed an ‘All-in-Strategy’

(AIS) to power down the entire
cluster.

Achieved 26%
more energy

savings than in

[92].

High transition overhead to wake
up nodes and performance

degradation during the transition

phase.

Amur [94] Power-

proportionality

Used a load balancer to

complement the equal-work

policy that ensures each active

Power

proportionality

achieved as low as

Incur management and

performance overhead in data

rebuild parallelism.

Chapter 2. Related Work 26

Author Category Method Results Remarks

node services the same number
of blocks.

5% of active
nodes.

Lin [95] Power-
proportionality

Proposed replication strategy. Demonstrated
40% of energy

savings.

Require analysis of data rebuild
parallelism to reposition lost data

Le [96] Power-
proportionality

Applied data placement
method.

Improve by 20%
compared with

[94].

Shifting of gears requires node
reactivation during the transition.

Kaushik [97] Power-

proportionality.

Applied data-classification

technique known as
GreenHDFS by partitioning

cluster servers into hot and cold

zones then putting cold servers
to sleep.

Achieved 26%

energy savings.

Access to files residing in a cold

zone may suffer performance
degradation as servers transition

from off mode to active mode.

There is also an energy penalty
cost to wake up the servers.

Kaushik [98] Power-

proportionality

Incorporated predictive ability

into GreenHDFS using ridge
regression to guide file

placement.

Improved average

response time by
40% compared to

GreenHDFS in

[97].

An aggressive policy can result in

a higher number of access to the
cold zone decreasing energy

savings.

Wirtz [100] DVFS Applied DVFS scheduling
policy.

Reduce energy by
up to 23%

Do not have a method to evaluate
performance versus power in

scheduling.

Hou [101] DVFS Proposed a data dispatch
strategy at the edge of the

cloud.

Increased energy
efficiency by

32%.

The method might not work in an
inhomogeneous computing data

center.

Fan [102] Data replication

and storage

Applied Erasure coding. Energy savings of

70%.

The encoding period can be

delayed if “hot” files are
continually accessed.

Cheng [103] Data replication

and storage

Used Complex Event

Processing.

Reduce storage

overhead.

Need to operate in real-time to

schedule the placement of data
effectively.

Wei & Foo

[104] [105]

Data replication

and storage

Applied LDPC coding. Achieved 56.7%

storage savings.

A promising alternative to erasure

coding such as Reed-Solomon

Wang [106] Machine

learning

Proposed Fuzzy wavelet neural

network (FWNN) trained to
predict changing workloads to

scale and control CPU

frequency dynamically

Energy efficiency

increased by 5%
to 12.6%.

The FWNN structure design

relies on professional knowledge
and practical experience, which

can be time-consuming.

Liang [107] Machine

learning

Applied Deep neural network

(DNN) trained with energy-

related features to predict the
energy consumption of Hadoop

cluster

High predictive

accuracy using

KLIC for essential
feature selection

Requires large training dataset

and the trial-and-error approach

to DNN architecture search is
time-consuming and sub-optimal.

Toha [108] Machine

learning

Proposed Green MapReduce

Cluster (GMC) and eGMC
(enhanced) methods using

Support Vector Regression

(SVR) and Additive Regression
(AR) for predictive analytics.

Models achieved

an energy
reduction of

between 47% to

76%.

The results were based on

simulated data and achieved at
the expense of performance

degradation in some cases.

2.3 Summary of Hadoop Energy Efficiency Studies

Data centers already consume vast amounts of energy. The rapid acceleration of digital

transformation will multiply this further. The state-of-the-art energy efficiency methods in

Chapter 2. Related Work 27

Hadoop are discussed, and their respective advantages and disadvantages are presented.

The energy-aware job scheduling method improves the utilization of resources through

workload placement to reduce the idleness of nodes. In some approaches, job profiling

techniques are incorporated to obtain the essential job information in energy-efficient

scheduling algorithms. In other approaches, it is accompanied by shutting down idle nodes

to achieve deeper energy savings. However, most studies lack the usage of accurate

predictions to essentially anticipate the changing workload environment or avoid

unnecessarily high energy overheads in starting or waking up nodes.

The DVFS method adjusts the CPU state for optimal energy performance according to the

changing workload. Nevertheless, in a heterogeneous environment, the offered resources

and energy performance ratio may differ from machine to machine, making the DVFS

tuning complex and challenging. It may be possible that the complexity can be mitigated

by introducing a predictive model to offer insights into changing workload and utilization

trends. The methods proposed in data replication and storage efficiency have distinguished

properties such as high data locality and low node idleness. However, if data can also be

marked or predicted as ‘hot’ or ‘cold,’ data availability and parallelism in Hadoop data

centers could be further improved with differentiated replication strategies and erasure

coding implementation.

Machine learning techniques have shown great potential in enhancing energy efficiency.

ANNs models for energy prediction for data centers have become increasingly popular.

Whether using a deep network with many hidden layers like CNN or a shallow network

with one hidden layer largely depends on the problem instance. For CNN, there is the issue

of solution complexity and the possibility of over-parameterization of the network. In the

energy prediction applications for this work, shallow ANNs are more effective.

Nonetheless, it is recognized that these networks are powerful learning machines that tend

to overfit the training dataset. Implementing an evolutionary architecture search approach

could prevent this drawback by locating a parsimonious ANN that can provide a more

generalized solution. In addition, the reduced architectural complexity of shallow ANNs

increases model transparency making these networks more interpretable than deep neural

Chapter 2. Related Work 28

networks. Model interpretability is essential in studying feature importance that affects

energy consumption. Finally, a closer look reveals a paucity of literature on EA-based

ANNs techniques for Hadoop energy efficiency study. To address the literature gap, a novel

EVLNN design based on parsimony has been proposed to model the Hadoop system's

energy consumption and gain insights into the underlying factors influencing its energy

consumption.

2.4 Solar Irradiance Forecasting Studies

Despite the rapid increase in solar power penetration, solar power’s intermittency remains

an issue that must be addressed. Solar power intermittency is due to two factors. Firstly, the

“variability” or the fluctuation in solar irradiance caused by changing atmospheric

conditions and cloud formations. Secondly, the “uncertainty” of the electricity generation

which is ascribed to the inability to accurately forecast solar energy generation by the

minutes, hours, days, or longer. Therefore, solar energy prediction at various temporal

resolutions and forecast horizons is essential in scheduling and optimizing energy

production.

The methodologies for solar power forecasting involve a two-stage approach. The first

stage is to forecast the solar irradiance at the surface level. The second stage is to transform

the predicted irradiance into power production by modeling the solar PV power system or

using the information to directly calculate the system's power output. Hence the challenge

of solar PV power forecasting has been essentially recognized as similar to solar irradiance

forecasting. Many studies only focus on solar irradiance forecasting since it is the most

challenging element to model. The other reason is that solar radiation forecasting may be

applied in fields other than solar PV energy planning and optimization.

Another important concept of solar irradiance forecasting is the temporal aspect of forecasts.

There are three concepts in the time definition of forecasts in the literature; the forecast

horizon, the forecast resolution, and the forecast intervals [110]. The forecast horizon is the

Chapter 2. Related Work 29

length of time ahead of the predictions. The forecast resolution, or time-steps, describes the

forecast's frequency, and the forecast interval denotes the time range of predictions. The

predictive accuracy of different forecasting models is different, influenced by the different

temporal resolution of input data and forecast horizon of output data [111]. Different

forecasting classification is also related to the types of applications, and it is efficient within

its range of time resolution and forecast horizons. For example, ramp forecasting and

spinning reserves require an intra-hour forecast horizon with seconds to minutes resolution.

Grid operations require an intra-day forecast horizon with minutes to hours resolution, and

scheduling and electricity market trading and hedging require a day-ahead forecast horizon

with hourly resolution.

The literature review shows that solar forecasting methods can be broadly classified into

Numerical Weather Prediction (NWP) models, satellite imaging, Total Sky Imagery (TSI),

statistical analysis, and machine learning and AI. Several works, namely by Antonanzas et

al. [110], Inman et al. [112], Diagne et al. [113], and Yang et al. [114], have provided a

concise review and trend on solar forecasting techniques. The primary use of existing

methods and their respective applications are illustrated in Figure 2.2 [113]. Different

methods are used for different forecast horizons where each method is efficient. TSI uses

images of cloud cover taken from the ground camera at intervals of several minutes. Image

processing and cloud tracking techniques are applied to these images for real-time or now-

time forecasting for up to 30 minutes. Satellite imaging uses cloud images observed by

satellites and then applies the Heliosat method to estimate solar surface irradiance [115].

The temporal resolution is about 30 minutes due to the time required to download the

images. Image processing using satellite imaging is slower than the TSI, with a forecast

horizon of an hour to several hours, up to a day ahead. Statistical analysis methods use past

solar irradiance time series and meteorological data to predict future solar irradiance.

Depending on the data acquired, temporal resolution can range from minutes to an hour for

a forecast horizon from minutes to hours. NWP methods use current weather observations

to predict the future states of the weather, where the outputs include temperature and

irradiance. NWP models are the best fit for longer forecast horizons. Machine learning and

AI, such as ANN and deep learning models, use a data-driven approach to learn hidden

Chapter 2. Related Work 30

patterns in data. Such models have complex structures that can learn nonlinear relationships

between the input and output data to allow the prediction of output data for a given input.

These powerful models have a wide range of applications and forecast horizons.

The growing interest in applying machine learning and AI models for solar irradiance

forecasting is an interesting observation in the literature. These methods, which rely on a

data-driven approach, can draw on extensive data sets to derive insights into the

correlations between all available parameters, inputs, and outputs, making them suitable

for deployment across various time resolutions and forecast horizons.

Figure 2.2 The figure shows the classification of the forecasting methods and their application in the

temporal resolution and forecast horizon coverage. A higher forecast horizon leads to a higher error rate.

2.4.1 Numerical Weather Prediction Methods

NWP provides solar irradiance forecast weather conditions up to several days ahead using

current weather conditions as input into mathematical models. The core methodology in

NWP-based forecasting uses atmospheric data and the law of physics to govern the

transition of the atmosphere from one state to another to predict solar radiation. Input

Chapter 2. Related Work 31

variables are meteorological measurements such as wind, temperature, humidity, and

surface pressure; the forecast variable is solar irradiance. Selected well-known NWP

models are the Global Forecast System (GFS) model and the North American Mesoscale

(NAM) model by the National Centers for Environmental Prediction (NCEP), Regional

Deterministic Prediction System (RDPS) model by the Canadian Meteorological Centre

(CMC), and the Weather Research and Forecasting (WRF) model by the National Oceanic

and Atmospheric Administration (NOAA). Yang et al. [116] applied the GFS model to

capture the movement of clouds. Values of meteorological variables in the lower

atmosphere were collected to build mathematical models for cloud predictions. The author

observed that surface downward longwave flux had a positive bias tracked back to errors

in the surface air temperature and proposed a method to correct the errors and improve the

cloud fraction estimation. Larson et al. [117] evaluated the NAM and the RDPS models to

forecast cloud fractions over a 12 x 12 km2 spatial grid with hourly temporal resolution.

Additionally, predicted water vapor, Ozone, Carbon Dioxide, and aerosol concentrations

were used to forecast GHI. An averaging method was adopted where irradiance forecast

within a set distance of 100 km was spatially averaged to reduce forecast errors. Jimenez

et al. [118] augmented the WRF model by incorporating cloud-aerosol interaction and

cloud-radiation feedback to estimate surface irradiance accurately. Meteorological

variables and effects of atmospheric aerosol were used to estimate direct and diffuse surface

irradiance. The study showed that the influence of atmospheric aerosol components in

clear-sky conditions is evident.

NWP’s temporal resolution ranges from three to six hours, and spatial resolution ranges

from 1 km to tens and hundreds of km. While NWP’s forecast horizon can reach a day or

several days, the accuracy is generally low, with significant biases and random errors in the

irradiance estimates as the atmospheric conditions are chaotic [119]. In addition, the

method, relative to other methods, is more sensitive to initial conditions resulting in models’

forecasts which can diverge widely from each other. Improving NWP models requires good,

relevant observation data combined with field campaigns [82]. Therefore, new models of

NWP are still being tested and applied to operational NWP [120].

Chapter 2. Related Work 32

2.4.2 Satellite Imaging

The extraterrestrial solar radiation incident outside the Earth’s atmosphere is a constant

known by the symbol, 𝐺𝑠𝑐 where 𝐺𝑠𝑐 = 1,361
𝑊

𝑚2
. This radiation from the Sun is attenuated

as it passes through the Earth’s atmosphere [121]. The presence of clouds, water vapor, and

aerosols in the atmosphere diffuses part of the incoming solar radiation resulting in the

division of the incident extraterrestrial beam irradiance into two distinct components,

Direct Normal Irradiance (DNI) or beam irradiance and Diffused Horizontal Irradiance

(DHI). The DNI radiation reaches the Earth’s surface without being absorbed or scattered.

In contrast, the DHI is radiation scattered or diffused by the atmospheric constituents. Some

radiation is also scattered and reflected off the Earth’s ground or water surfaces which is

then reflected or re-scattered by the atmosphere to the observer. This also forms part of the

DHI. The Global Horizontal Irradiance (GHI) received at the Earth’s surface is then the

sum of the DHI and the DNI incident on the normal surface expressed as [122],

𝐺𝐻𝐼 = 𝐷𝐻𝐼 + 𝐷𝑁𝐼 ∗ cos 𝜃 (2.4)

where 𝜃 represents the solar zenith angle when the Sun is directly overhead, 𝜃 is zero.

Therefore at 𝜃 = 0, the radiation exposure to the surface is most extensive. The incident

radiation attenuated as it negotiates its way to the ground level through a complex series of

multiple reflections, absorptions, and re-emissions due to interactions with atmospheric

constituents is illustrated in Figure 2.3. From the figure, cloud cover and cloud optical depth

(thick or thin) have the most decisive influence on solar irradiance at the surface level [113].

In satellite imaging, images are provided as grayscale images. Each image pixel represents

the radiance signal of solar radiation backscattered to space by the atmospheres and clouds.

Pixels are then assigned to the respective classes based on their pixel brightness. Tarpley

[123] defined three cloud classes: clear, partly cloudy, and cloudy. The number of pixels in

each class is weighted to obtain fractional cloud cover and thus the estimated cloud

thickness at the targeted area. The amount of solar radiation can then be forecasted as

absorbed and scattered by clouds (Rayleigh scattering) and aerosols (Mie scattering), which

is a function of clock thickness. Cloud motion vector fields were also determined to predict

Chapter 2. Related Work 33

irradiance for the next time-step. Hammer et al. [115] analyzed the satellite images for

information on cloudiness. They used statistical means to derive the Cloud Motion Vectors

(CMV), where the cloud movement is extrapolated to forecast GHI. Satellite imaging can

provide up to several hours of solar irradiance forecasting with high spatial resolution.

Rigollier et al. [124] proposed Heliosat-2, a method of analyzing Meteosat images that

takes various empirical parameters presented in the Heliosat-1 method and expresses them

into physical laws. This approach ensures a broader application as no ground measurement

is required. While cloud movement obeys physical rules, atmospheric processes are

turbulent, making them stochastic and challenging to model.

Figure 2.3 The solar radiation components consist of GHI, DHI, and DNI. The solar zenith angle 𝜃 is the

angle of the Sun relative to the line normal to the Earth’s surface.

2.4.3 Total Sky Imager

Like satellite imaging methods, Total Sky Imager (TSI) methods analyze the cloud by

combining sky photos with image processing and cloud tracking techniques for real-time

forecasts of GHI and DNI up to 30 minutes ahead. Instead of using satellites to obtain cloud

imagery, ground-based TSI cameras are usually mounted on building roof-top to take a

Chapter 2. Related Work 34

360° view of the images of the sky above. The sky images are processed, and information

on the ratio of the blue and red colors is used to distinguish whether the pixel presents a

clear sky, thin clouds, or opaque clouds through the estimation of cloud cover fraction [125].

Successive images are analyzed for sky cover, cloud motion, and cloud shadows to derive

cloud motion vectors where these cloud images are propagated forward in time to establish

a correlation with solar irradiance resulting in a forecast [126]. Marquez and Coimbra [127]

proposed a method to process sky images, classify them into clear, thin, opaque clouds, and

compute cloud velocity to generate intra-hour irradiance prediction. Chow et al. [128]

presented a cloud detection technique using the red and blue color ratio to estimate whether

the dominant source on a pixel is the clear sky or cloudy. Sky images taken every 30

seconds were processed to determine cloud cover. Solar irradiance is then estimated using

the derived cloud cover coupled with an empirical clear sky model [129]. CMV was

generated from consecutive sky images to predict cloud locations up to 5 minutes ahead

through cross-correlating consecutive sky images using a network of 6 ground

pyranometers over 2 km2. Yang et al. [130] processed the sky images taken at 30-second

intervals to determine cloud cover, optical depth, and mean cloud field velocity.

Information from several deployed pyranometers and frozen cloud advection were used to

forecast cloud locations for up to 15 min horizons.

Central to the methodology is the camera’s resolution of the pictures taken, such as the

pixel elements, that would determine the accuracy of the cloud's distance from the imager.

In addition, a limited range view from the groud-based imager provides only local

meteorological information restricting the forecast horizon to approximately 30 minutes. It

is possible to deploy an array of ground imagers to gather more information on local cloud

formation and extend the forecast horizon. However, the stochastic nature of the local cloud

formation may limit the correlation of successive cloud images and pose difficulties for

ground-based imagery methods. In addition, to the challenges with cloud detection, forecast

errors are more pronounced within the circumsolar region due to the distortion of the pixel’s

blue and red color ratio caused by the forward scattering of sunlight by the presence of

aerosols [131].

Chapter 2. Related Work 35

2.4.4 Statistical Models for Solar Energy Forecasting

Statistical models are commonly used to investigate variable relationships, patterns, and

trends using historical solar-energy-related data. Bacher et al. [132] presented an approach

first using a statistical smoothing technique to derive a clear sky model, then applying

Autoregressive (AR) and the AR with Exogenous input (ARX) models to forecast solar

power. The AR model had only the lagged values of solar power as inputs, whereas the

ARX model added exogenous data from the NWP model as inputs. The ARX model

produced better results, using solar power observations and NWPs as inputs. Li et al. [133]

investigated the Autoregressive Moving Average (ARMA) model and the ARMA with

Exogenous variables (ARMAX) model, in which the latter used the average of the past data

and external variables as the predictors such as temperature, precipitation amount,

insolation duration and humidity, to forecast solar power output. Chu et al. [134] proposed

the Smart Autoregressive Moving Average (ARMA) model using lagged past values and

errors to forecast solar irradiance. The Smart ARMA was optimized using a Genetic

Algorithm (GA) trained ANN to determine the variables as inputs. Although the approach

had corrected forecast bias and yielded better results than the ARMA model, particularly at

higher solar variability, the performance was not significantly superior to the reference

model at moderate to low solar variability.

Gagne et al. [135] evaluated different statistical learning models, including gradient

boosting, random forest, and linear regression models for solar irradiance forecasting.

Cloud cover and aerosol information from NWP models were applied as input variables to

the Model Output Statistics (MOS) approach. The authors incorporated other

climatological information concerning spatial and temporal variability of each variable into

the statistical learning models for correction at each observation. Nonetheless, the

parameter configuration is an issue in this approach as it dramatically impacts model

performance, leading to significant investment in model tuning. Diagne et al. [136]

downloaded the forecasts of the GFS from the NCEP website and used them as input to the

WRF model to predict solar irradiance. The predictions were compared with the

observations on the ground to find the statistical relation and correct the error. However,

Chapter 2. Related Work 36

the approach required large and high-quality ground measurements relative to other models

to evaluate the forecast accuracy and refine the model. Noia et al. [137] compared four

models, Tarpley [123], Hay and Hanson [138], Justus et al. [139], and Cano et al. [55], that

utilized the MOS approach in the satellite imaging methods. This method includes

independent predictors such as meteorological data, atmospheric transmissivity, and

satellite image pixel brightness in regression equations to predict solar radiation. The

drawbacks of these approaches are that it requires high-quality ground-based data for

verification, and tuning may cause forecasting errors due to the localization of the

pyranometer sites on the satellite images.

2.5 Machine Learning and AI for Solar Energy Prediction

2.5.1 Artificial Neural Network Models

The research and application of ANN models for solar irradiance forecasting have gained

renewed interest in recent years [140]. Crisosto et al. [141] trained a Levenberg-Marquardt

(LM) Backpropagation Neural Network (LM-BPNN) with four years of data using all-sky

images and measured global irradiance as input variables. The model could predict the

irradiance in the first 10-30 minutes better than the reference persistence model. However,

the accuracy is dependent mainly on the weather conditions beyond this forecast horizon.

Faceira et al. [142] trained Multi-Layer Perceptron (MLP) based on the LM algorithm using

cloudiness level and historical solar radiation data to predict hourly Global Solar Irradiance

(GSI) by one day ahead. Model accuracy was measured using Mean Bias Error (MBE) and

Root Mean Square Error (RMSE) with a t-test. Although architectures with up to 3 hidden

layers were experimented with, no significant differences were observed in the performance

of ANN with deeper layers. Nurcahyo et al. [143] presented a weather forecast system built

using hybrid GA to optimize the weights and connections of Partially-Connection Neural

Networks (PCNN).

The study showed that trained PCNN had a Mean Absolute Percentage Error (MAPE)

testing result of 35.53% compared to a Fully Connected Neural Network (FCNN) with

Chapter 2. Related Work 37

results of 38.82%. From this standpoint, it can be considered that PCNNs exhibited better

generalization ability than their dense counterparts. Su et al. [144] proposed a hybrid ANN

ensemble approach that uses a weighted average to combine predictions of the other ANN

techniques into a single forecast, as shown in Table 2.2. The performance of hybrid ANN

and the other ANN techniques was evaluated based on a six-day-ahead PV power forecast

at half-hour resolution. The results were as follows: Hybrid ANN, NARXNN, ENN, ANFIS,

ELM, GRNN, GABPNN, and BPNN. It must be pointed out that ANNs with dynamic

feedback mechanisms such as the NARXNN and ENN were superior and that an evolved

NN like GABPNN had provided a more accurate forecast than the standalone BPNN. It is

also observed that non of the ten individual methods was superior in all four seasons.

Table 2.2 Su et al. [144] proposed a hybrid ANN method compared to seven other ANN models.

Comparison with Seven other ANN models Hidden Neurons

1. Extreme Learning Machine (ELM) 4 to 20

2. Backpropagation Neural Networks (BPNN) 4 to 14

3. Nonlinear Autoregressive Neural Network with Exogenous Inputs

(NARXNN) with 1:2 time-delay

10

4. GA optimization BPNN (GABPNN) 11

5. Adaptive Network-based Fuzzy Inference System (ANFIS) Randomly initialized

6. Generalized Regression Neural Network (GRNN) Same number as inputs

7. Elman Neural Network (ENN) 4 to 8

2.5.2 Deep Learning Models

Another popular ANN-based method in the literature includes the use of deep learning for

energy forecasting [145] [146], such as the Convolutional Neural Networks (CNNs) and

the Long Short-Term Memory (LSTM) networks. Mulyadi and Djamal [59] employed

CNN to predict sunshine duration with weather features consisting of temperature,

humidity, and solar radiation length. The model achieved high accuracy of 98.84% for the

training dataset but dropped to 54.55% for the new dataset. The apparent gap suggests

strong evidence of overfitting. In addition, CNN training remains time-consuming because

most parameters, such as the filter size, the number of filters, and the pooling size and

Chapter 2. Related Work 38

methods, are determined by empirical means. Different configurations can affect accuracy

by as much as 50%. Capizzi et al. [60] employed wavelet-transformed to enhance Recurrent

Neural Network (RNN) predictions for a 2-day solar radiation forecast. The model exploits

the correlations between time-series solar radiation and meteorological variables such as

wind speed, humidity, and temperature. The model produced a very low RMSE error

compared to models obtained by hybrid ANNs. However, RNN is constrained by the

vanishing gradient problem, especially when the dataset is large. Abayomi-Alli et al. [147]

applied LSTM models successfully to predict solar radiation using weather and

geographical variables. The inputs used were Longitude and Latitude, elevation, maximum

and minimum temperature, precipitation, wind speed, relative humidity, tropospheric ozone,

and solar radiation. High R2 values between actual and weather variables were also

exhibited for solar radiation, maximum temperature, wind speed, relative humidity, and

precipitation. The models achieved a prediction accuracy between 99.3% to 99.9%.

Muhammad et al. [148] applied LSTM models to predict hourly and daily solar irradiance

for a year ahead. The model achieved an MSE value of 10.4% in the hourly prediction for

a year ahead. Nonetheless, LSTM models face similar challenges as the other deep learning

methods, requiring manual tuning of many hyperparameters, such as epochs, layers,

neurons, and optimizers, which is time-consuming.

2.5.3 Hybridized Deep Learning Models

Hybridized deep learning approaches in global solar radiation and PV forecasting have also

gained popularity, for example, the integration of CNN with the LSTM network to form a

CLSTM network. Ghimire et al. [149] proposed a hybrid CLSTM model trained using half-

hourly interval global radiation data for multi-step forecast horizons of 1-day up to 8

months. The results showed that the hybrid CLSTM model outperformed the standalone

CNN and LSTM. It also performed better than other models such as Gated Recurrent Unit

(GRU), Recurrent Neural Network (RNN), Deep Neural Network (DNN), MLP, and

Decision Tree (DT), with the lowest RMSE, MAE, and MAPE values for forecast horizons

of 1-day, 1-week, 2-week, and 1-month. Similar outcomes were also seen by Wang et al.

[150], who examined the hybrid CLSTM model for 1-day ahead PV power forecasting,

where the best results were produced using three years of the input data sequence.

Chapter 2. Related Work 39

Compared with the LSTM model, the RMSE, MAE, and MAPE of the CLSTM model

decreased by 13.82%, 30.39%, and 31.25%, respectively. Compared with the CNN model,

RMSE, MAE, and MAPE decreased by 6.54%, 10.00%, and 12.00%, respectively.

However, one of the CLSTM model’s shortcomings is the high computational cost, which

increases significantly with the filter size. Additionally, the training data size must increase

to be large enough to cover all features.

2.5.4 Evolutionary-based ANN models

The Evolutionary Algorithm (EA), with its bio-inspired metaheuristic search ability, has

been widely used to find an optimal set of network parameters from a population of

candidate solutions. Particle Swarm Optimization (PSO), Differential Evolution (DE), and

Genetic Algorithm (GA) are well-known classes of EA applied to various optimization

problems [131]. Dong et al. [151] proposed a novel CNN combined with a hybrid chaotic

GA/PSO algorithm to optimize the CNN networks’ hyperparameters for solar irradiance

prediction. Named CHA-CNN, the algorithm includes the PSO process that searches for

optimal parameters such as kernel sizes, output feature maps, learning rate, number of

epochs, and batch size. It introduced the notion of ‘chaos’ as a population initialization

technique and employed GA to evolve the PSO particles’ update process. The hybrid CHA-

CNN with GA/PSO algorithm is compared to the manual parameter adjustment CNN, K-

means Radial Base Function (RBF), and Gradient Boot Regression Tree (GBRT). CHA-

CNN outperformed the other techniques, with the annual averaged MAE of the proposed

method reduced by 49.47%, 47.6%, and 20.34%, respectively, compared with manual CNN,

K-means-RBF, and GBRT.

Ghimire et al. [152] proposed a Self-adaptive Differential Evolutionary ELM (SaDE-ELM)

hybridized with swarm-based Ant Colony Optimization (ACO) for the prediction of Global

Solar Radiation (GSR). The predictor dataset consists of 67 atmospheric, land, and oceanic

climate variables. The SaDE-ELM is benchmarked against nine different models, including

three variants of ELM, Genetic Programming (GP), PSO-NN, GA-NN, PSO-Support

Vector Regression (PSO-SVR), GA-SVR, and Grid Search-SVR (GS-SVR). Test results

showed that the SaDE-ELM model in terms of Coefficient of Determination (R2), RMSE,

Chapter 2. Related Work 40

and MAE performance indices were better than those nine models at 0.99, 0.405, and 0.506,

respectively. The success of SaDE-ELM can be attributed to the ACO, which proved to be

an effective feature selection algorithm. It is then combined with DE to select the network

parameters for ELM to enable SaDE-ELM to overcome the slow weight updating process

of classical ELM.

Guijo-Rubio et al. [153] proposed an Evolutionary ANN (EANN) using satellite data as

features for solar radiation prediction without the need for ground measurements or data

based on atmospheric variables. The predictive variables used in the experiments were

reflectivity, clear sky radiance, cloud index, solar radiation data from Copernicus

Atmosphere Monitoring Service (CAMS) [154], and solar data from SolarGIS [155]. The

target was global solar radiation. The author examined different activation functions,

including the sigmoid function, the radial basis function, and the product function, and

compared the performance of the evolutionary ANN with other ML regressors. This

approach achieved a 2% improvement compared to the results obtained by an ELM and

over 6% by numerical models based on satellite measurements. Meng et al. [156] utilized

GA to optimize the weights and bias values of the BPNN with an artificial classification of

history day to predict solar PV power. The input predictors were meteorological data,

including ground irradiance, temperature, total cloud amount, total cloud amount, wind

speed, and humidity, from the European Centre for Medium-Range Weather Forecasts

(ECMWF). As variations in weather conditions are proportional to the PV power generation,

the weather types were pre-classified into four different templates: sunny, cloudy, showers,

and heavy rain. The proposed method trained the model and then searched historical sample

data closely correlated to the forecast weather types, improving the PV power prediction

accuracy. The normalized RMSE (nRMSE) and normalized MAE (nMAE) values obtained

using this GA-BPNN with historical day classification improved by 3.45% and 11.6%,

respectively, over GA-BPNN. Jaidee and Pora [157] proposed using GA to optimize the

parameters of ANNs for very short-term solar power forecasting. The network types

examined include GA-DNN, GA-LSTM, GA-Gated Recurrent Unit (GA-GRU), and GA-

Cuda Deep Neural Network Gated Recurrent Unit (GA-CuDNNGRU). Each network has

23 inputs, eight outputs, and three hidden layers. The eight outputs provided eight time-

Chapter 2. Related Work 41

steps with 30 mins each to produce a 4-hour ahead forecast. Test results showed that the

GA-GRU and the GA-CuDNNGRU performed well, with RMSE values at 7.83% and

7.87%, respectively.

A summary of prior work reviewed in this section is shown in Table 2.3.

Table 2.3 A summary of the prior work in solar irradiance forecasting.

Author Classification Model Temporal and Spatial

Resolution

Remarks

Yang [116] Numerical

Weather

Prediction

Applied the Global

Forecast System

(GFS) model and uses

3 to 6-h resolution for a

180 h horizon over a 70

x 70 km2 spatial grid.

The NWP model often resorts to

different strategies for developing and

evaluating new parameterization of

physical models.

Larson [117] Numerical

Weather
Prediction

Applied the North

American Mesoscale
(NAM) model.

1-h resolution for a 1 to

36-h horizon and a 3-h
resolution for a 39 to 84-

h horizon, over a 12 x 12

km2 spatial grid.

Tend to overpredict the solar

irradiance due to biases in the model
predicting insufficient cloud cover.

Jimenez [118] Numerical
Weather

Prediction

Applied the Weather
Research and

Forecasting (WRF)
model.

3-h resolution
interpolated to hourly for

up to 24-h horizon over a
13 x 13 km2 spatial grid.

The inclusion of aerosol
characterization emphasized the

climatological impact, but it requires
precise instrumentation to measure

aerosol properties accurately.

Tarpley [123] Satellite

Imaging

Applied image

processing to estimate
solar flux depletion

and determine cloud

motion vector fields.

30 mins or 1-h resolution

with a forecast horizon
of up to 24-h over a 2.5

x 2.5 km2 to 50 x 50 km2

spatial grid.

Ground pyranometers measurements

are needed to tune parameters through
statistical methods.

Hammer

[115]

Satellite

Imaging

Applied image

processing to analyze

information on
cloudiness and

calculated cloud

motion vectors

30 mins resolution at a

horizon of ten days, with

a spatial resolution of 2.5
x 2.5 km2.

The formula relies on cloudiness as

the sole atmospheric parameter for

surface irradiance, ignoring the
presence of atmospheric aerosol and

particles as these are not considered.

Rigollier
[124]

Satellite
Imaging

Presented the Heliosat-
2 model integrating

satellite data with an

improved Heliosat-1
model

1-h resolution at 5 and
ten days horizon with a

spatial resolution of 10 x

10 km2.

It required accurate and frequent
calibration of the radiometers.

Marquez

[127]

Total Sky

Imager

Applied image

processing to classify
clear, thin, and opaque

clouds.

1 min resolution with 3

to 15 min horizon.

Requires the sky imager to be co-

located with the solar PV plant with a
larger plant requiring multiple

imagers.

Chow [128] Total Sky
Imager

Applied cloud
detection technique

and cloud motion

vectors.

30-sec resolution with a
5 min horizon over a 2 x

2 km2 spatial resolution.

Circumsolar glare on the optics from
the sky imager could affect image

processing accuracy.

Yang [130] Total Sky
Imager

Applied image
processing and cloud

field velocity to

predict cloud motion.

30-sec resolution for up
to 15 min horizons over

a limited spatial

resolution.

Required deployment of multiple
pyranometers to increase the forecast

horizon. Higher errors within the

circumsolar region due to scattering of
sunlight caused by aerosols.

Bacher [132] Statistical

Analysis

Presented statistical

smoothing and applied
AR and ARX models.

15 mins resolution with

a horizon starting from
1-h to 36-h.

The ARX model that used solar power

observations and NWPs as input
produced better results with a 35%

improvement of RMSE value over the

reference model.

Li [133] Statistical
Analysis

Applied time-series
ARMA model and

ARMAX model

Forecast 1-day ahead
power output of the PV

system using 6 months

of the training dataset.

The ARMAX model outperformed
other statistical methods and Radial

Base Function (RBF) network.

Chapter 2. Related Work 42

Author Classification Model Temporal and Spatial

Resolution

Remarks

Chu [134] Statistical
Analysis

Proposed a Smart
ARMA model using a

GA-trained ANN to

optimize the input
variables

30-sec resolution with a
forecast horizon of 5, 10,

and 15 mins over a

spatial resolution of 4 x
4 km2.

Although the forecast bias was correct
and higher accuracy was achieved at

higher solar variability, forecast errors

were not consistently reduced at
moderate to low solar variability.

Gagne [135] Statistical

Analysis

Utilized NWP and

MOS

5 min resolution of

hourly forecast up to 14

to the 24-hour horizon.

Parameter configuration is an issue as

it dramatically impacts model

performance, leading to significant
investment in model tuning.

Diagne [136] Statistical

Analysis

Utilized WRF and

MOS

Hourly resolution with

up to 24 h forecast
horizon over a spatial

resolution of 3 km.

Required large and high-quality

ground measurements to evaluate the
forecast accuracy and refine the

model.

Noia [137] Statistical

Analysis

Performed solar

radiation forecasting
using the MOS

approach

Hourly resolution at a 1-

day forecast horizon
with a spatial resolution

of 1.4 km x 1.4 km.

Required high-quality ground-based

data for verification and tuning may
cause forecasting errors due to the

localization of the pyranometer sites

on the satellite images.

Crisosto

[141]

Machine

Learning and AI

– Shallow
Network

Applied LM-BPNN

model using irradiance

and sky images are
inputs.

1 min resolution at 1-h

forecast horizon.

Achieved a 40% reduction in RMSE

and MAE values compared to the

reference persistence model. Predicted
first 10 to 30 mins well, but accuracy

is affected beyond this horizon.

Faceira [142] Machine
Learning and AI

– Shallow

Network

Applied LM Multi-
Layer Perceptron

(MLP)

Hourly resolution at 1-
day forecast horizon.

Achieved a low MAPE value of 5.1%.
Utilized MLP with 3 hidden layers

with no significant performance

improvement in ANN with deeper
layers.

Nurcahyo

[143]

Machine

Learning and AI

– Shallow
Networks

Applied hybrid GA

and Partially-

Connection Neural
Networks (PCNN)

Weather prediction at 7-

day forecast horizon

Achieved higher accuracy and lower

MAPE values than GA-FCNN.

Su [144] Machine

Learning and AI
– Shallow

Network

Proposed hybrid ANN

using an ensemble
approach to average

the forecast skills

Half-hour resolution at a

6-day horizon.

Achieved lowest nRMSE value at

6.74% averaged over four seasons.
None of the ten uncorrelated methods

was superior in all four seasons, but

combining them exhibited better
results.

Mulyadi [59] Machine

Learning and AI

– Deep Network

Applied Convolutional

Neural Networks

(CNN) model

Daily resolution at 1-

month forecast horizon

Achieved a high accuracy of 98.84%

for the training dataset but moderate

accuracy of 54.55% for the new
dataset suggesting strong evidence of

overfitting.

Capizzi [60] Machine
Learning and AI

– Deep Network

Proposed Recurrent
Neural Network

(RNN) model with

wavelet transform

1-day resolution with a
2-day forecast horizon

Produced a very low RMSE error
compared to models obtained by other

hybrid ANNs. However, RNN is

constrained by the vanishing gradient
problem.

Abayomi-Alli

[147]

Machine

Learning and AI
– Deep Network

Applied Long Short-

Term Memory
(LSTM) model

1-day resolution with 35

years of dataset split into
70% training and 30%

testing data.

The model achieved an accuracy of

99.3% to 99.9%. Nevertheless, LSTM
training requires tuning many

hyperparameters, such as epochs,

layers, neurons, and optimizers.

Muhammad
[148]

Machine
Learning and AI

– Deep Network

Applied LSTM model Hourly and daily
resolutions for a 1-year

forecast horizon

The model achieved an MSE value of
10.4% in the hourly prediction for a

year ahead. Requires time-consuming

manual tuning of hyperparameters.

Ghimire

[149]

Machine

Learning and AI

– Deep Network

Proposed a hybrid

CNN with LSTM

(CLSTM) model

30 mins resolution for

several forecast horizons

of 1-day, 1-week, 2-
week, 1-month up to 8-

month.

The model achieved RMSE values of

8.2%, 16.0%, 14.2%, and 32.8%, for

the forecast horizon, of 1-d, 1-w, 2-w
and 1-m, respectively.

Wang [150] Machine

Learning and AI
– Deep Network

Proposed a hybrid

CLSTM model

5 mins resolution for a 1-

day forecast horizon
using 3 years of data

were split into 90% for

High computational cost, which

increases significantly with the filter
size. Additionally, the training data

Chapter 2. Related Work 43

Author Classification Model Temporal and Spatial

Resolution

Remarks

training and 10% for
testing.

size must increase to be large enough
to cover all features.

Dong [151] Machine

Learning and AI
– Evolutionary

Deep Network

Applied CNN with a

chaotic GA/PSO
hybrid algorithm

(CHA-CNN) to

optimize the CNN
networks’

hyperparameters

3-hour resolution and

prediction using nine
years of the training

dataset, one year of the

testing dataset

CHA-CNN equipped with a chaotic

hybrid GA/PSO algorithm using 15
meteorological attributes achieved an

MAE reduction of 49.5%, 47.6%, and

20.3%, respectively, compared with
manually configured CNN, K-means-

RBF, and GBRT.

Ghimire
[152]

Machine
Learning and AI

- Evolutionary

Shallow
Network

Proposed Self-
adaptive differential

evolutionary Extreme

Learning Machine
(SaDE-ELM)

hybridized with ant

colony optimization
(ACO)

6-hour resolution to
predict monthly daily

average. 176 months of

the dataset were used,
where 130 months were

for training and 46

months were for testing.

ACO was used for feature selection,
and DE was used for hyperparameter

optimization to develop the 3-layer

ELM model. The R2, RMSE, and
MAE values performed at 0.99, 0.405,

and 0.506, respectively,

outperforming nine evolutionary
ANNs.

Guijo-Rubio

[153]

Machine

Learning and AI

- Evolutionary
ANN

Presented

Evolutionary ANN

(EANN) trained using
satellite data

1-h resolution for 1-h

forecast horizon with a

spatial resolution of 1
km2 to 3 km2.

The model achieved a 2%

improvement compared to the results

obtained by an ELM and over 6% by
numerical models based on satellite

measurements.

Meng [156] Machine
Learning and AI

- Evolutionary

ANN

Applied GA-BPNN
with weather type

classification

15 mins resolution at a
1-day forecast horizon.

6- month dataset was

used with 5-m for
training and 1-m for

testing.

Values of nRMSE and nMAE
obtained using GA-BPNN with

weather classification improved by

3.45% and 11.6% over GA-BPNN.

Jaidee [157] Machine

Learning and AI

Applied Genetic

Algorithm Neural
Network (GA-NN)

30-mins resolution at 4-h

forecast horizon.

The models GA-GRU and the GA-

CuDNNGRU performed well with
RMSE values at 7.83% and 7.87%,

respectively.

2.6 Summary of Solar Irradiance Forecasting Studies

Solar irradiance and PV power forecasting are well discussed in the literature. The physical

method relies on the law of physics to establish mathematical models to predict solar

irradiance and calculate solar PV power generation. The prediction accuracy of the physical

method is strongly dependent on the accuracy of the NWP information, but currently, it

exhibits limitations in improving the accuracy of NWP.

The statistical analysis method establishes the correlation mapping relationship between

input-output data employing regression equations, parameter estimation, and correlation

analysis of the processed historical data such as solar radiation and meteorological-related

data to predict irradiance and PV power generation. Unlike the physical method, the

Chapter 2. Related Work 44

statistical analysis does not require a clear and complete understanding of the physical laws

and their relationship with the PV system, but only a partial understanding and realization

through various regression techniques.

Hence, compared with the physical method, the statistical analysis method has the

advantages of a more straightforward modeling approach. However, the prediction

accuracy of the statistical method is strongly related to the quality of the historical data,

which may be challenging to acquire in implementation. The prediction accuracy generally

depends on the ability to process a higher-dimensional data set to ensure the effect,

increasing the complexity and slowing down the prediction speed.

Machine learning can efficiently extract high-dimensional complex nonlinear features and

map them directly to the output. Due to this advantage, the machine learning-based

prediction method has become one of the most commonly used methods in recent studies

for solar irradiance forecasting. The literature review shows that the ANN-based prediction

model significantly improved RMSE, MAE, and MAPE values compared to some typical

physical or statistical prediction models. In addition, hybrid evolutionary-based ANN

models have reported promising results in the literature.

Many of the predictive models relied on a large number of satellite images and

meteorological and atmospheric variables. These variables include solar radiation at the

earth’s surface and top of the atmosphere, latent and sensible heat, wind stresses, surface

rainfall and snowfall, cloud fraction, cloud condensate, atmospheric temperature, and

humidity may be expensive to obtain. Moreover, the data from these variables requires to

be accurate and of vast quantity for these models to be effective. To address this challenge,

a novel EVLNN model is proposed that tries the reverse direction of what most forecast

models do by selecting fewer and essential features while working with datasets with

smaller sample sizes to achieve a model with higher accuracy.

Chapter 3

3. Evolutionary Lean Neural Network

3.1 Introduction

This chapter details a novel machine learning (ML) approach, EVLNN, that combines the

strength of several novel mechanisms of an improved GA to optimize a set of ANNs based

on parsimony. This approach allows the modeling of nonlinear functions capturing the

relationships between the inputs and the outputs while not having complications of extra

parameters in the representation. The result is a generalized ANN model with a lean

architecture offering higher accuracy, particularly when the number of features and samples

is small [158]. Conventional ANN has a large amount of redundancy [159]. The

unnecessary connections increase network complexity, leading to poor generalization and

difficulty understanding the input-out relationships [160]. The EVLNN design based on

parsimony contains only a subset of the entire set of possible connections of the ANN. By

considering parsimony, network complexity can be reduced to help improve generalization

and offer a better interpretation of the prediction outcome [161].

3.2 The EVLNN Framework

The EVLNN framework comprises two main components – the encoding scheme and the

neural architecture search algorithm. EVLNN adopts a direct encoding method for

genotype-phenotype mapping of the ANN architecture, where the mapping is achieved

using a structurally inclusive chromosome matrix. Phenotypic information such as the

number of neurons, the connection weights, and the type of connections (feedforward or

feedback) are directly mapped onto a chromosome matrix. An improved GA with species

parallelism introduced into the search algorithm categorically distinguishes these solution

candidates into their respective genotypically similar species. Two crossover strategies,

Chapter 3. Evolutionary Lean Neural Network 46

namely intra-species and inter-species crossovers, are presented to allow species to

exchange genetic information in search of global solutions. Intra-species crossover

maintains parallelism by a careful recombination of similar species, while inter-species

crossover seeks to discover new landscapes in the solution space. The differentiated search

strategies aim to achieve both intensification and diversification of search. A two-stage

mutation is proposed to avoid locally optimal solutions through incremental changes to the

weights, bias, and network connections. The Mean Square Error (MSE) is employed as the

objective function to guide the evolutionary process toward global optimality. An

ensemble-based approach to sensitivity analysis is designed for insightful interpretations of

the relationships between the input variables and the output responses. During the

evolutionary process, species diversity and richness are tracked through three diversity

measures. The information is used for studying EVLNN’s search behavior and parameter

tuning. Figure 3.1 shows the framework of EVLNN, and the following sections describe

the framework in detail.

Figure 3.1 The EVLNN framework.

Chapter 3. Evolutionary Lean Neural Network 47

3.2.1 Encoding Scheme

Encoding is the process of formulating the possible solutions to a given problem to a search

space representation in the form of a chromosome [162]. The chromosome should carry the

necessary information representing the solution's characteristics. The encoding scheme's

design thus depends on the problem’ nature and can impact the efficiency of a search

algorithm [163]. Structural optimization is a complex problem as many design parameters

must be considered [164].

The proposed encoding scheme in EVLNN uses a structurally inclusive chromosome

matrix to convey information like the feedforward and feedback connectivity types, number

of hidden layers, number of neurons, connection weights and connectivities. While the

scheme is well-suited for a three-layer feedforward or feedback ANN, its basic encoding

structure can be scaled to accommodate deeper layers. EVLNN’s search algorithm is

applied to optimize the learnable parameters embodied in the chromosomes by simulating

genetic evolution to propagate parent genetic properties in more highly fit chromosomes to

the successor generations [165].

3.2.2 Matrix-Based Chromosome Encoding

A three-layer ANN structure can be represented by an 𝑚 x 𝑛 chromosome matrix as

expressed in Equation 3.1,

𝑥𝑖,𝑗 ∀𝑗= {1,… , 𝑛 } ∀𝑖= {1, … ,𝑚} (3.1)

where 𝑥𝑖,𝑗 represents the ith row and jth column of the matrix for the connection between

nodes i and j, and its value is the weight of that connection. To describe the encoding

scheme, any given feedforward three-layer ANN structure with 𝐼 input nodes, 𝐻 hidden

nodes, and 𝑂 output nodes can be represented by an 𝑚 x 𝑛 chromosome matrix where 𝑚

and 𝑛 are expressed in Equation 3.2 and 3.3, respectively,

𝑚 = 𝐼 + 𝐵𝐼 + 𝐵𝐻 + 𝑂 (3.2)

𝑛 = 𝐻 (3.3)

Chapter 3. Evolutionary Lean Neural Network 48

1

2

3

4

5

B

1

2 1

2

B

where 𝐵𝐼 and 𝐵𝐻 are single-bias nodes at the input layer and hidden layer, respectively.

For example, Figure 3.2 illustrates the encoding of a given 3-layer feedforward ANN with

two input nodes (I=2), five hidden nodes (H=5), and two output nodes (O=2). The

dimension of the chromosome matrix representation for the ANN is determined by applying

Equations 3.2 and 3.3, where,

 M = 𝐼 + 𝐵𝐼 + 𝐵𝐻 + 𝑂 = 2 + 1 + 1 + 2 = 6 (3.4)

and 𝑛 = 𝐻 = 5 (3.5)

The sample chromosome matrix is shown in Figure 3.3, where it is formed through a

collection of several vectors, namely the input vector (Figure 3.4a), the input bias vector

(Figure 3.4b), the hidden bias vector (Figure 3.4c), and the output vector (Figure 3.4d).

Figure 3.2 ANN encoding using a chromosome matrix.

Chapter 3. Evolutionary Lean Neural Network 49

Figure 3.3 A sample chromosome matrix.

The input vector's element 𝑥𝑖,𝑗 corresponds to a connection weight, 𝑤(𝑖, 𝑗) between the

input node i and the hidden node j. Similar element mapping applies to the input bias vector

and the output vector. For the hidden bias vector, each element corresponds to a connection

weight between the hidden layer bias node i and the output layer node j. The remaining

elements in the hidden bias vector are not used in the calculation.

(a) Input vectors.

(b) Input bias vector.

(c) Hidden bias vector.

(d) Output vectors.

Figure 3.4(a-d) A sample breakdown of a chromosome matrix.

 Hidden
Node 1

Hidden
Node 2

Hidden
Node 3

Hidden
Node 4

Hidden
Node 5

Input Node 1 (1,1) (1,2) (1,3) (1,4) (1,5)

Input Node 2 (2,1) (2,2) (2,3) (2,4) (2,5)

Input Bias
Node, BI

(3,1) (3,2) (3,3) (3,4) (3,5)

Hidden Bias
Node, BH

(4,1) (4,2) (4,3) (4,4) (4,5)

Output Node 1 (5,1) (5,2) (5,3) (5,4) (5,5)

Output Node 2 (6,1) (6,2) (6,3) (6,4) (6,5)

Chromosome

Matrix

Chapter 3. Evolutionary Lean Neural Network 50

3.2.3 Model Representation

With the formation of the chromosome matrix, a further step is needed to transform the

chromosome matrix into its genotype form to present a traceable genotype-phenotype

mapping. In EVLNN, genotypes are building blocks that represent feasible solutions to the

problem in the fitness landscape. Model representation allows fitness information of the

candidate solutions to be calculated and a set of genetic operators to influence the possible

movement of the feasible solutions towards global optima in a minimum number of steps

[165]. In this case, the ‘problem’ is optimizing the EVLNN model. Good genetic properties

in the building blocks are propagated from parent to child as the phenotypes undergo spatial

and weight changes in the fitness landscape [166]. At convergence, the fittest individual

would have the optimized model found [167].

The explanation of the genotype-phenotype mapping in EVLNN is illustrated in Figures

3.5 and 3.6. Figure 3.5 shows a sample chromosome matrix with connection weight values.

The matrix is transformed to its genotype by removing the columns if the output vector

column contains zero values. Elements with zero values in the genotype shown in Figure

3.6a represent inactive connections in the phenotype (Figure 3.6b).

Figure 3.5 A sample 6 x 5 chromosome matrix for a 3-layer EVLNN with two input variables and one

output variable with a potential of up to 5 hidden neurons.

For example, elements at indices (1, 2), (2,1), and (2,2) of the input vectors have zero values,

and so are elements at indices (5,2) and (5,3) in the output vector. An element with zero

values represents an inactive connection.

Hidden

Node 1

Hidden

Node 2

Hidden

Node 3

Hidden

Node 4

Hidden

Node 5

Input Node 1 0.832 0 0.526 0.975 0.080

Input Node 2 0 0 -0.818 0.604 0

Input Bias

Node 1
0.021 -0.705 0.082 0.679 -0.070

Hidden Bias

Node 1
-0.610 0.774 -0.193 0.700 -0.424

Output Node 1 0.243 0 0 -0.703 0

Output Node 2 0.174 -0.456 -0.085 -0.223 0

Input vectors

Input bias vector

Hidden bias vector

Output vectors

Columns with all zero
values to be removed

Chapter 3. Evolutionary Lean Neural Network 51

(a) Genotype (b) Phenotype

Figure 3.6(a-b) Genotype-to-phenotype mapping for EVLNN. A zero value in the genotype corresponds to

an inactive connection on the phenotype.

3.2.4 EVLNN Architecture

Figure 3.7 illustrates the relationship between the nodes, weights, connections, and

activation functions and the information flow carried through the EVLNN artificial neurons

using a set of equations presented in Equations 3.6 to 3.14. The hidden nodes h1, h2,…, hj

are related to the input nodes x1, x2, …, xi via the respective weighted connections, w11,

w12,…, wji, where wji represents the weighted connection from the input node xi to the hidden

node hj.

Likewise, the hidden nodes h1, h2,…, hj are related to the output nodes o1, o2, …, ok , via the

respective weighted connections, w11, w21,…, wjk, where wjk represents the weighted

connection from the hidden node hj to the output node ok. At the input side of the hidden

node hj, in, weighted inputs are summed and combined with the input bias bj into a single

value (Equation 3.6), which then undergoes an activation function, 𝜎𝑗(∙) in the hidden node

(Equation 3.7), to obtain 𝑐. Similarly, at the input side of the output node, ℎ𝑗,𝑜𝑢𝑡 signals are

weighted and summed, then combined with the output bias bk into a single value to obtain

𝑜𝑘,𝑖𝑛 (Equation 3.8), which then undergoes an activation function, 𝜎𝑘(∙) in the output node

to obtain 𝑜𝑘,𝑜𝑢𝑡 (Equation 3.9), the predicted value of the network.

 Hidden

Node 1

Hidden

Node 2

Hidden

Node 3

Hidden

Node 4
Input

Node 1
0.832 0 0.526 0.975

Input

Node 2
0 0 -0.818 0.604

Input Bias

Node 1
0.021 -0.705 0.082 0.679

Hidden Bias

Node 1
-0.610 0.774 -0.193 0.700

Output

Node 1
0.243 0 0 -0.703

Output

Node 2
0.174 -0.456 -0.085

-0.223

B

1

2

1

2

1

2

3

4

B

Input layer Hidden layer Output

 layer

(5,3) (5,2)

(2,2) (1,2) (2,1)

Chapter 3. Evolutionary Lean Neural Network 52

ℎ𝑗,𝑖𝑛 = ∑ 𝑤𝑗𝑖 ∗ 𝑥𝑖 + 𝑏𝑗𝑖 (3.6)

ℎ𝑗,𝑜𝑢𝑡 = 𝜎𝑗(ℎ𝑗,𝑖𝑛) (3.7)

𝑜𝑘,𝑖𝑛 = ∑ 𝑤𝑗𝑘 ∗ ℎ𝑗,𝑜𝑢𝑡𝑗 + 𝑏𝑘 (3.8)

𝑜𝑘,𝑜𝑢𝑡 = 𝜎𝑘(𝑜𝑘,𝑖𝑛) (3.9)

 Figure 3.7 Relationships between nodes, weights, connections, and activation functions for a sample

EVLNN showing Tanh and ReLU activation functions for the hidden and output nodes.

As activation functions have their strengths and weaknesses [168], EVLNN allows the

selection of various activation functions for the hidden and output nodes depending on the

problem and the training dataset. These activation functions include the Hyperbolic Tangent

(Tanh) function 𝜎𝑗,𝑡𝑎𝑛ℎ(∙) , the Sigmoid function 𝜎𝑘,𝑠𝑖𝑔𝑚𝑜𝑖𝑑(∙) , the Rectified Linear Unit

(ReLU) function 𝜎𝑘,𝑟𝑒𝑙𝑢(∙), the Leaky ReLU function 𝜎𝑘,𝑙𝑟𝑒𝑙𝑢(∙) and the linear activation

function 𝜎𝑘,𝑙𝑖𝑛𝑒𝑎𝑟(∙) . The function equations are expressed in Equations 3.10 to 3.14,

respectively.

 ℎ𝑗,𝑜𝑢𝑡 = 𝜎𝑗,𝑡𝑎𝑛ℎ(ℎ𝑗,𝑖𝑛) =
𝑒
(ℎ𝑗,𝑖𝑛)−𝑒

−(ℎ𝑗,𝑖𝑛)

𝑒
(ℎ𝑗,𝑖𝑛)+𝑒

−(ℎ𝑗,𝑖𝑛)
 (3.10)

ℎ𝑗,𝑜𝑢𝑡 = 𝜎𝑗,𝑠𝑖𝑔𝑚𝑜𝑖𝑑(ℎ𝑗,𝑖𝑛) =
1

1+𝑒
−(ℎ𝑗,𝑖𝑛)

 (3.11)

𝑜𝑘,𝑜𝑢𝑡 = 𝜎𝑘,𝑟𝑒𝑙𝑢(𝑜𝑘,𝑖𝑛) = max(0, 𝑜𝑘,𝑖𝑛) = {
0 𝑖𝑓 𝑜𝑘,𝑖𝑛 < 0

𝑜𝑘,𝑖𝑛 𝑖𝑓 𝑜𝑘,𝑖𝑛 ≥ 0
 (3.12)

Chapter 3. Evolutionary Lean Neural Network 53

𝑜𝑘,𝑜𝑢𝑡 = 𝜎𝑘,𝑙𝑟𝑒𝑙𝑢(𝑜𝑘,𝑖𝑛) = 𝑎(𝑜𝑘,𝑖𝑛) + (𝑜𝑘,𝑖𝑛) = {
𝑎(𝑜𝑘,𝑖𝑛) 𝑖𝑓 𝑜𝑘,𝑖𝑛 < 0

𝑜𝑘,𝑖𝑛 𝑖𝑓 𝑜𝑘,𝑖𝑛 ≥ 0
 (3.13)

𝑜𝑘,𝑜𝑢𝑡 = 𝜎𝑘(∙) (3.14)

3.3 The EVLNN Search Algorithm

Various concepts of speciation in nature are being investigated in the literature [169]. The

essence of speciation is contingent on the isolation of gene flow between subgroups [170].

There are two dominant views of speciation. The first is allopatric speciation. In allopatric

speciation, the original population is split into isolated subpopulations caused by

geographical barriers. This split prevented gene exchange between the isolated

subpopulations [171]. The subpopulations, therefore, can evolve independently of the other,

forming evolutionary independent new species. The second is sympatric speciation, where

speciation occurs due to changes in population genetics under dissimilar selective pressure,

specifically mating preference [172]. The evolution of mating preference continues after

the post-mating isolation instigated further gene changes among the subgroups and

subsequent differentiation in phenotype [173]. The divergence in phenotype increases the

reproductive barrier between subgroups and gene flow, leading to evolutionary independent

sympatric species [174].

Inspired by the concept of ecological speciation in which species adapt and breed to locate

resource basins or niches in a fitness landscape, the proposed framework is an improved

GA for a multimodal search to locate the global optima. The EVLNN search algorithm,

based on the framework in Figure 3.1, is described in the following. The algorithm source

code is developed using the MATLAB R2020a software, and the pseudo-code can be found

in Appendix A. A step-by-step outline of the EVLNN search algorithm is presented below,

followed by a detailed description.

Chapter 3. Evolutionary Lean Neural Network 54

1. Population Initiation: A population of candidate solutions with 𝑚 x 𝑛 chromosome

matrices is initiated with uniformly distributed random values between -1 to 1

representing the connection weights.

2. Speciation: The new chromosome matrices created are transformed into their

respective genotypes of varying dimensions. Genotypes with the same dimension are

subsequently speciated into their respective sub-populations.

3. Ranking and Selection: The individuals are evaluated by a fitness function and

subsequently ranked within their respective species. Selection pressure using the

Stochastic Universal Sampling method is applied where individuals with higher fitness

have more chance to be selected for crossover.

4. Crossover: Two strategies are adopted to maintain species parallelism in the search

process while exploring new landscapes in the solution space. These are the intra-

species crossover and the inter-species crossover.

a. Intra-species crossover: The intra-species crossover restricts mating within

individual species to maintain species parallelism and intensifies the search by

propagating good genotypic properties to the next generation. This strategy

allows species to parallel explore the search space around promising basins of

interest.

b. Inter-species crossover: The inter-species crossover is interspersed in the

evolutionary process to diversify the search. Mating pairs are randomly selected

from diverse species for crossover. If successful, the pair will produce offspring

with novel structures.

5. Mutation: After the selected individuals have undergone the crossover, a two-stage

mutation is implemented to avoid local optima through incremental changes to its

architecture. The stages are the weights mutation and the link-node mutation.

a. Weights mutation: The weights mutation attempts to perturb selected

connection weights with uniformly distributed random values between -0.5 and

0.5.

b. Link-node mutation: The link-node mutation aims to change the neural

network structure incrementally by re-enabling disabled links on the network.

Chapter 3. Evolutionary Lean Neural Network 55

6. Fitness Evaluation and Termination Criteria: The fitness of the new individuals

(offspring) is evaluated, and healthier individuals continue onto the next generation

propagating good genotypic properties. The algorithm terminates if the healthiest

individual is found. Otherwise, the cycle repeats steps 2 to 6 until the termination

criteria are met.

7. Diversity Tracking: A diversity tracking mechanism is introduced to measure species

richness, species evenness, and population diversity. These diversity measures are built

into the EVLNN algorithm to provide much-needed insights into the algorithm’s search

behavior.

8. Ensemble-based Sensitivity Analysis: An ensemble-based approach to sensitivity

analysis is incorporated into the algorithm to analyze the relationship between the input

variables and the non-linear transformations the network learned at its output. By

combining several uncorrelated sensitivity analysis methods, the sub-categorical

contribution of the input variables to the output is ranked according to their relative

importance to identify factors influencing the output.

3.3.1 Population Initialization and Speciation

At initialization, a population P of size p is generated as presented in Equation 3.15,

𝑃 = {𝑁𝑁1, 𝑁𝑁2, 𝑁𝑁𝑖, … , 𝑁𝑁𝑝} (3.15)

where NNi is the ith individual in population P. The individual NNi is an 𝑚 x 𝑛

chromosome matrix formed using Equation 3.1, with the matrix dimension determined

using Equations 3.2 and 3.3. For example, Equation 3.16 shows a chromosome matrix

where 𝑥𝑖,𝑗 stores a uniformly distributed random value between -1 and 1. These values

represent the connection weights in the respective phenotype.

𝑁𝑁𝑖 = [

𝑥1,1 𝑥1,2 ⋯ 𝑥1,𝑛
𝑥2,1 𝑥2,2 ⋯ 𝑥2,𝑛
⋮ ⋮ ⋱ ⋮

𝑥𝑚,1 𝑥𝑚,2 ⋯ 𝑥𝑚,𝑛

] (3.16)

where,

Chapter 3. Evolutionary Lean Neural Network 56

 𝑥𝑖,𝑗 = [−1 1] (3.17)

A sample chromosome matrix of an individual NNi is shown partially in Equation 3.18.

𝑁𝑁1 = [

−0.8049 0.4121 ⋯ 0.5381
0.4430 −0.9363 ⋯ 0.1629
⋮ ⋮ ⋱ ⋮

−0.6576 −0.7620 ⋯ −0.4363

] (3.18)

A set of 𝑚 x 𝑛 uniformly distributed random binary number matrices, 𝑏𝑖,𝑗 are then

generated and used to perform element-wise matrix multiplication with 𝑥𝑖,𝑗 to create the

basic structure of parsimonious networks using Equation 3.19,

[

𝑥1,1 𝑥1,2 ⋯ 𝑥1,𝑛
𝑥2,1 𝑥2,2 ⋯ 𝑥2,𝑛
⋮ ⋮ ⋱ ⋮

𝑥𝑚,1 𝑥𝑚,2 ⋯ 𝑥𝑚,𝑛

]⨀

[

𝑏1,1 𝑏1,2 ⋯ 𝑏1,𝑛
𝑏2,1 𝑏2,2 ⋯ 𝑏2,𝑛
⋮ ⋮ ⋱ ⋮

𝑏𝑚,1 𝑏𝑚,2 ⋯ 𝑏𝑚,𝑛]

=

[

𝑥1,1 ∙ 𝑏1,1 𝑥1,2 ∙ 𝑏1,2 ⋯ 𝑥1,𝑛 ∙ 𝑏1,𝑛
𝑥2,1 ∙ 𝑏2,1 𝑥2,2 ∙ 𝑏2,2 ⋯ 𝑥2,𝑛 ∙ 𝑏2,𝑛

 ⋮ ⋮ ⋱ ⋮
𝑥𝑚,1 ∙ 𝑏𝑚,1 𝑥𝑚,2 ∙ 𝑏𝑚,2 ⋯ 𝑥𝑚,𝑛 ∙ 𝑏𝑚,𝑛]

 (3.19)

A sample of the binary number matric, 𝑏1,1 is shown partially in Equation 3.20,

𝑏1,1 = [

0 1 ⋯ 1

1 1 ⋯ 0

 ⋮ ⋮ ⋱ ⋮

1 0 ⋯ 1

] (3.20)

A sample of the resultant chromosome matrix after applying Equation 3.19 to Equations

3.18 and 3.20 is shown partially in Equation 3.21,

[

−0.8049 0.4121 ⋯ 0.5381
0.4430 −0.9363 ⋯ 0.1629

⋮ ⋮ ⋱ ⋮
−0.6576 −0.7620 ⋯ −0.4363

]⨀ [

0 1 ⋯ 1
1 1 ⋯ 0
 ⋮ ⋮ ⋱ ⋮
1 0 ⋯ 1

] = [

 0 0.4121 ⋯ 0.5381
0.4430 −0.9363 ⋯ 0
 ⋮ ⋮ ⋱ ⋮

 −0.6576 0 ⋯ 0.4363

] (3.21)

Two impacts resulted from this multiplication. Firstly, a chromosome matric that contains

uniformly distributed zero values is generated. As elements in the chromosome matrix

represent connection weights in the individual’s phenotype, a link is eliminated or disabled

when the value is zero, making the network parsimonious. Secondly, the zero values in the

chromosome matrix in the output vectors mean that individuals with different numbers of

hidden nodes will be created. The EVLNN algorithm acted on this variation to separate the

individuals into species. This speciation process is performed through a matrix operation

Chapter 3. Evolutionary Lean Neural Network 57

by removing the columns containing zero values in the output vector of the chromosome

matrix. The result is a matrix, called a genotype, consisting of varying dimensions. The

new population 𝑃′ can be expressed as a collection of a subpopulation of unique species

expressed in Equation 3.22,

𝑃′ = {𝑆𝑃1, 𝑆𝑃3, … , 𝑆𝑃𝑖 … , 𝑆𝑃𝐻} (3.22)

where SPi refers to species i given 1≤i ≤ H. In the phenotype context, i also identify the

number of hidden nodes. In the speciation process, each SPi contains zero of more

individuals expressed in Equation 3.23,

 𝑆𝑃𝑖 = {𝑁𝑁𝑠𝑝𝑖,1 , 𝑁𝑁𝑠𝑝𝑖,2 , … , 𝑁𝑁𝑠𝑝𝑖,𝑗 | 𝑛𝑢𝑙𝑙} (3.23)

where 𝑁𝑁𝑠𝑝𝑖,𝑗 is the jth individual in species i given 1 ≤ j ≤ 100. The chromosome matrix

NN1 of Equation 3.18 is illustrated in Figure 3.8 with all its elements. Its corresponding

speciated individual genotype matrix, NNsp13,1, is shown in Figure 3.9.

Figure 3.8 The chromosome matrix of NN1 of dimension 25x26 displaying all its element values.

0 0.4121 0 -0.2967 0 -0.1372 -0.0215 0 0 0 0.2481 0 0 -0.4160 0.3331 -0.4964 0.3998 0 0.5403 0 -0.7616 0 -0.9608 0.0288 0 0.5381

-0.4430 0 0.9195 0 0 0.8213 0 0 0.7519 0 0 0 0.6363 0 0 0 0.2771 0.8872 0 0 0.8797 0 0 0 0 0

0 -0.4462 0 0.1705 0 0 0.8001 0.4894 0 0 -0.2090 0 0.6351 0 0 0.2342 -0.9328 0.2754 0 0 0.2911 0.0508 -0.1514 0 0.9778 0.8566

0.9150 -0.9077 0.1705 0.0994 0.3784 0 -0.2615 0 0 0 0 0 0.4449 0.9681 0 -0.4694 -0.8624 0.9154 -0.0573 0 0 0.0607 0 0 0 0.1602

0 -0.8057 0 0.8344 0.4963 -0.7089 -0.7776 0 0 0 0.9760 0.8094 0 -0.6657 0 0.6488 -0.3608 -0.5186 -0.9285 -0.5821 0.2786 0.7223 -0.6059 -0.6003 0.7309 0

0 0.6469 0.5025 0 -0.0989 0 0.5605 0 -0.5845 0 0 0.2197 0.3192 -0.7876 0 0.9653 0 0.3522 0 0.4186 0.0894 -0.0303 0.6434 -0.1861 0.2251 0

0 0.3897 -0.4898 0.5144 0 0.7386 0 -0.2630 0 0 0 0.2353 0.0372 -0.2552 0.1224 0 0 -0.4219 0 -0.5275 0 0 -0.1402 0.4974 0.9799 0.7254

0.9143 -0.3658 0.0119 0 0 0.1594 -0.5166 0 0 0 0 0 0 0 0 -0.3122 0 0 -0.0530 0 0.0878 0 0 0.6512 0 -0.0314

-0.0292 0 0.3982 0 0.8267 0 -0.1922 0 -0.5390 -0.1517 0.5924 0 0.2980 0 0.3384 0.1681 0 0.3903 0 0 0.4421 0 -0.2176 0.5799 0 0

0 0 0 0 -0.6952 0 -0.8071 0 0 0.0157 -0.8026 0.1534 0 -0.3210 -0.6191 -0.7845 0 -0.8640 -0.3178 0 0.0450 0 0.5382 0 0 -0.5812

0 0 0 -0.8483 0.6516 0.7061 0 0 0 -0.8290 0 -0.6342 -0.0924 0 -0.2622 0 0.9373 0 0 -0.0825 0 -0.3046 0 0 0 0.1046

-0.1565 0 0 0 0 0 0 0.5514 -0.5482 0 -0.3293 -0.5201 0 0.8407 0 0 0.0627 -0.5519 0 0 -0.5626 -0.7000 0 0 -0.0038 0.2598

0.8315 0.5310 -0.7228 0 0.9923 -0.2981 0 0 -0.6586 0 0 0.7730 0 -0.8946 0.9633 0 0 0 0.4769 0.5406 0 0 0.5102 0 0.8017 0

0 0 -0.7014 0 0 0.0265 0.1504 -0.1283 0 0 -0.7269 0 0 0.4757 0 0 0 0.6888 -0.5143 -0.2996 -0.7806 -0.4757 -0.2452 -0.7274 0.1493 0.2294

0 0 0 0 0 -0.1964 -0.8804 -0.1064 0 0.8577 0.4425 -0.0202 0 -0.4618 0.7110 0.1887 0.2219 0 0.8348 0 0 0 0 0.3573 0 -0.2752

0.3115 0 0 0 -0.7867 0 -0.5304 0 0 0.4607 -0.7865 0 0 -0.1543 0 -0.9550 0.5576 0 0 -0.1677 0 0.5099 0 -0.0096 0 -0.9009

0 0 0 0.1376 0 0 0 0.0170 0 -0.0228 0 0 -0.2181 0.0957 0 0 -0.1531 0 0 0 -0.1033 0 0 -0.6206 0.1720 -0.0209

0 0.2926 0 0 0 0 0 0.0215 0 0 0 0 0.6628 0 0 -0.3746 -0.8184 0 0 0 -0.2684 -0.1152 0 0 0 0

0 0 -0.5130 0 0.5498 -0.6322 0 0 -0.6304 0 0 0.0009 0.6067 0 -0.1435 0 -0.4671 0 0 -0.4871 0 0 0 -0.7048 0.3328 -0.7538

0 0.5094 0 0 0.6346 -0.5201 -0.9140 0.5897 0.8098 -0.0823 0 0 0 0.9661 0 -0.6425 0 -0.2265 0 0.2269 0.2558 -0.2815 0 -0.8901 -0.8330 0

0.5155 -0.4479 0 0 0.7374 -0.1655 0 0 0.9595 0.9262 0 0 -0.2015 -0.3971 0 -0.1542 -0.4380 0.8320 0.1524 0.1645 0.5440 0.4727 0 0 0 0

0.4863 0.3594 0 0 -0.8311 0 0 -0.2428 0 0 0.7818 0.3639 0.0538 0 0.1790 0 0 -0.9977 0 0.0815 0.8657 0 0 0.1211 0.3219 -0.6219

0 0 -0.4978 -0.3776 -0.2004 0.8054 0.4634 0 -0.7778 0 -0.3317 -0.9151 -0.1664 0.3327 0 0.1970 0 0 0 0 0 0.3668 0 0.8592 0.4595 -0.9147

0.2028 0.5792 0.5984 -0.9009 -0.4336 0.3069 -0.0207 0.9457 0.4970 0.1357 -0.4021 -0.4878 0.7731 -0.1064 0.6320 -0.8033 0.7192 -0.9447 0.7983 0.7999 0.0482 -0.7596 -0.6444 0.4122 0.6627 -0.9303

-0.6576 0 0 0 0 0 -0.0982 -0.2985 0 0 0 0.0433 0 0.3962 0 0.3919 0.7507 -0.0782 0.2889 0 -0.7223 0 0 0.1656 0.9646 0.4363

Chapter 3. Evolutionary Lean Neural Network 58

Figure 3.9 The genotype matrix of speciated individual 𝑁𝑁𝑠𝑝13,1, with a matrix dimension of 25x13.

In neural network architecture design, a typical three-layer network would enable the

network to model any arbitrary function [175]. However, there is no precise approach to

determining the appropriate network size, such as the number of hidden nodes, to prevent

underfitting or overfitting. Most authors use trial-and-error estimation, an arbitrary scaling

factor, or general rule-of-thumb methods to provide a starting point. One rule-of-thumb as

a starting point to determine the number of hidden nodes would be two-thirds the size of

the input nodes plus the output nodes. In applying EVLNN to the real-world problems in

this work, the value of H or maximum evolvable hidden node size is set to 26.

An illustration of an EVLNN population at initialization is shown in Figures 3.10 and 3.11.

Figure 3.10 shows a scatter plot of a speciated population 𝑃′ consists of 100 individuals.

Figure 3.11 shows a histogram plot of 𝑃′ with a normal distribution with 𝑃′={SP5, SP6 ,…,

SP18}. It is observed that SP1 to SP4 and SP19 to SP26 have zero individuals. SP13 is the most

populous, with 15 individuals, SP13 ={𝑁𝑁𝑠𝑝13,1 , 𝑁𝑁𝑠𝑝13,2 , … , 𝑁𝑁𝑠𝑝13,15} while SP7 and SP18

are the least populous with only one individual each, where SP7 ={𝑁𝑁𝑠𝑝7,1} and SP18 =

{𝑁𝑁𝑠𝑝18,1}.

0 -0.0215 0 0 -0.4160 -0.4964 0.3998 0 0.5403 -0.7616 0.0288 0 0.5381

-0.4430 0 0 0 0 0 0.2771 0.8872 0 0.8797 0 0 0

0 0.8001 0.4894 0 0 0.2342 -0.9328 0.2754 0 0.2911 0 0.9778 0.8566

0.9150 -0.2615 0 0 0.9681 -0.4694 -0.8624 0.9154 -0.0573 0 0 0 0.1602

0 -0.7776 0 0.8094 -0.6657 0.6488 -0.3608 -0.5186 -0.9285 0.2786 -0.6003 0.7309 0

0 0.5605 0 0.2197 -0.7876 0.9653 0 0.3522 0 0.0894 -0.1861 0.2251 0

0 0 -0.2630 0.2353 -0.2552 0 0 -0.4219 0 0 0.4974 0.9799 0.7254

0.9143 -0.5166 0 0 0 -0.3122 0 0 -0.0530 0.0878 0.6512 0 -0.0314

-0.0292 -0.1922 0 0 0 0.1681 0 0.3903 0 0.4421 0.5799 0 0

0 -0.8071 0 0.1534 -0.3210 -0.7845 0 -0.8640 -0.3178 0.0450 0 0 -0.5812

0 0 0 -0.6342 0 0 0.9373 0 0 0 0 0 0.1046

-0.1565 0 0.5514 -0.5201 0.8407 0 0.0627 -0.5519 0 -0.5626 0 -0.0038 0.2598

0.8315 0 0 0.7730 -0.8946 0 0 0 0.4769 0 0 0.8017 0

0 0.1504 -0.1283 0 0.4757 0 0 0.6888 -0.5143 -0.7806 -0.7274 0.1493 0.2294

0 -0.8804 -0.1064 -0.0202 -0.4618 0.1887 0.2219 0 0.8348 0 0.3573 0 -0.2752

0.3115 -0.5304 0 0 -0.1543 -0.9550 0.5576 0 0 0 -0.0096 0 -0.9009

0 0 0.0170 0 0.0957 0 -0.1531 0 0 -0.1033 -0.6206 0.1720 -0.0209

0 0 0.0215 0 0 -0.3746 -0.8184 0 0 -0.2684 0 0 0

0 0 0 0.0009 0 0 -0.4671 0 0 0 -0.7048 0.3328 -0.7538

0 -0.9140 0.5897 0 0.9661 -0.6425 0 -0.2265 0 0.2558 -0.8901 -0.8330 0

0.5155 0 0 0 -0.3971 -0.1542 -0.4380 0.8320 0.1524 0.5440 0 0 0

0.4863 0 -0.2428 0.3639 0 0 0 -0.9977 0 0.8657 0.1211 0.3219 -0.6219

0 0.4634 0 -0.9151 0.3327 0.1970 0 0 0 0 0.8592 0.4595 -0.9147

0.2028 -0.0207 0.9457 -0.4878 -0.1064 -0.8033 0.7192 -0.9447 0.7983 0.0482 0.4122 0.6627 -0.9303

-0.6576 -0.0982 -0.2985 0.0433 0.3962 0.3919 0.7507 -0.0782 0.2889 -0.7223 0.1656 0.9646 0.4363

Chapter 3. Evolutionary Lean Neural Network 59

Figure 3.10 Species distribution in a population as seen in a scatter plot.

 Figure 3.11 Species distribution of a population as seen in a histogram.

The number of hidden nodes in an ANN determines the dimensionality of the search

landscape. It is, therefore, a direct indicator of the complexity of the function the network

is capable of modeling [176]. The specific connectivity pattern of the phenotype will

determine what portion of this space is being explored. The search space for the ANN

phenotype can range from a network with a high number of hidden nodes and a high number

Chapter 3. Evolutionary Lean Neural Network 60

of connections (dense network) to a network with a low number of hidden nodes and a low

number of network connections (parsimonious network). EVLNN is designed to model

complex nonlinear functions with good generalization keeping the network parsimonious.

The model achieves this by maintaining species parallelism, searching for promising

solutions while locating new solutions in the landscape. The aim is to enhance the search

ability by intensifying the search toward regions of interest while diversifying the search to

learn different parts of the landscape.

3.3.2 Ranking and Selection

With the population genotypically speciated, individuals are then ranked according to their

fitness within their respective species. The fitness of the individual 𝐹𝑖, is defined as

𝐹𝑖 =
1

1+𝑀𝑖
 (3.24)

where 𝑀𝑖 represents individual MSE expressed as

𝑀𝑖 =
1

𝑛
 ∑ (𝑦𝑡 − 𝑦̂𝑡)

2𝑛
𝑡=1 (3.25)

where 𝑦𝑡 is the known target and 𝑦̂𝑡 is the prediction at time t.

In applying selection pressure, well-known selection methods for GA were studied [177].

These methods can be broadly categorized into proportional and elitist. The former

maintains genetic diversity by preventing the population from converging to a local

minimum but increasing convergence time. While the latter increases convergence speed,

it is more likely to converge on a local minimum due to loss of genetic diversity. This work

used Stochastic Universal Sampling (SUS) for its minimum spread and non-bias sampling

scheme [178]. This sampling scheme aligns with the EVLNN’s species parallelism strategy

to protect early structural innovation and prevent the fittest individuals from prematurely

dominating the candidate solution space.

Chapter 3. Evolutionary Lean Neural Network 61

3.3.3 Intra-Species Crossover

The intra-species crossover takes advantage of species parallelism to investigate multiple

basins simultaneously. In the intra-species crossover, breeding is restricted to genotypically

similar individuals to preserve the genetic differentiation and parallelism of the population.

By limiting the genetic drift, genotypically similar individuals reproduce after their kind

and improve exploitation within the respective solution basins [179] [180].

The intra-species crossover process in the EVLNN algorithm is illustrated in Figure 3.12,

using the recombination of Species_4 as an example. The genotypes of Parent A and Parent

B belong to 𝑆𝑃4, respectively is shown in Figure 3.12(a) and Figure 3.12(c). When these

parents recombined at the mid-point of their genotypes, Child A and Child B are produced,

with their genotypes shown in Figures 3.12(e) and 3.12(g), respectively. It is observed that

intra-species crossover produces offspring that belongs to Species_4, as shown in Figures

3.12(f) and 3.12(h). The intra-species crossover process preserves a differentiated

landscape while refining the solution at multiple basins.

Figure 3.12(a-h) Example of intra-species recombination process for Species_4.

-0.388 0 -0.062 -0.515

0 0 0 0.035

-0.703 0.678 0 0.337

-0.100 -0.419 -0.282 -0.363

0.299 0.591 0.782 0.072

(a) 𝑆𝑃4 parent A

genotype
(b) 𝑆𝑃4 parent A

phenotype

-0.388 0 -0.148 -0.612

0 0 0 -0.153

-0.703 0.678 -0.803 0

-0.100 -0.419 -0.100 -0.282

0.299 0.591 0.299 0.782

(e) 𝑆𝑃4 child A genotype (f) 𝑆𝑃4 child A

phenotype

0.875 0.799 -0.148 -0.612

0 -0.054 0 -0.153

0 0.586 -0.803 0

0.840 -0.702 -0.100 -0.282

0.494 0.996 0.299 0.782

(c) 𝑆𝑃4 parent B

genotype

(d) 𝑆𝑃4 Parent B

phenotype

0.875 0.799 -0.062 -0.515

0 -0.054 0 0.035

0 0.586 0 0.337

0.840 -0.702 -0.282 -0.363

0.494 0.996 0.782 0.072

(g) 𝑆𝑃4 child B genotype (h) 𝑆𝑃4Child B

phenotype

Chapter 3. Evolutionary Lean Neural Network 62

3.3.4 Inter-Species Crossover

A second recombination strategy, the inter-species crossover, is proposed to complement

intra-species crossover. In particular, this strategy allows the exploration of new ANN

structures in the architecture landscape for search optimization. Inter-species crossover

strategy sporadically recombines dissimilar genotypes to generate novel solutions across

genotypic boundaries. The intent is to create new possible solutions in the fitness landscape,

contributing to exploration capability [181].

The inter-species crossover process is illustrated in Figure 3.13, using the recombination of

Species_3 and Species_6 as an example. The genotypes of Parent A and Parent B belong to

𝑆𝑃3 and 𝑆𝑃6 , respectively is shown in Figure 3.13(a) and Figure 3.13(c). When these

parents recombined at the mid-point of their genotypes, Child A and Child B are produced,

with their genotypes shown in Figures 3.13(e) and 3.13(g), respectively. It is observed that

inter-species crossover produces offspring with phenotypes shown in Figure 3.13(f) and

Figure 3.13(h) that do not resemble the phenotype of their parents shown in Figure 3.13(b)

and Figure 3.13(d) in terms of the networks’ hidden node size. Thus the algorithm has

created new fitness landscapes to explore.

0.076 0 -0.439

0 0 0.697

0.820 0 0

-0.150 0.383 -0.302

0.018 0.986 0.234

(a) 𝑆𝑃3 parent A genotype (b) 𝑆𝑃3 parent A phenotype

(c) 𝑆𝑃6 parent B genotype

-0.762 -0.370 0 0.771 0.110 0

-0.975 0 0.142 -0.636 -0.866 0

0 -0.163 0 0 0.265 -0.871

-0.743 0.674 0.120 -0.340 0.611 -0.313

-0.308 -0.682 -0.851 -0.213 -0.271 0.606

(d) 𝑆𝑃6 parent B phenotype

Figure 3.13(a-d) Inter-species crossover for Species_3 and Species_6 resulting in Species_4 and Species_5.

Chapter 3. Evolutionary Lean Neural Network 63

(e) 𝑆𝑃4 child A genotype

0.076 0.771 0.110 0

0 -0.636 -0.866 0

0.820 0 0.265 -0.871

-0.150 -0.340 0.611 -0.313

0.018 -0.213 -0.271 0.606

(f) 𝑆𝑃4 child A phenotype

(g) 𝑆𝑃5 child B genotype

-0.762 -0.370 0 0 -0.439

-0.975 0 0.142 0 0.697

0 -0.163 0 0 0

-0.743 0.674 0.120 0.383 -0.302

-0.308 -0.682 -0.851 0.986 0.234

(h) 𝑆𝑃5 child B phenotype

Figure 3.13(e-h) Inter-species crossover for Species_3 and Species_6 resulting in Species_4 and Species_5.

3.3.5 Weights Mutation

A two-stage mutation is introduced to the EVLNN algorithm to avoid the traps of local

optima in complex problems. The aim is to inject small variations in the gene pool by

producing incremental changes to the ANN architecture. The selected individual or mutant

first undergoes a weights mutation followed by a link-node mutation.

The weights mutation stage perturbs the connection weights of the selected chromosome

matrix by a small value between -0.5 and 0.5. A weights-change matrix, WW, is first created

with uniformly distributed random values between -0.5 and 0.5. A weights mutation

probability matrix, PW, is then formed when a matrix, RW, a matrix with uniformly

distributed random values between 0 to 1, is compared to the mutation probability. A value

of ‘1’ (or the Boolean value of ‘TRUE’) is assigned to an element in PW if the respective R

element is less than the mutation probability. A value of ‘0’ (or the Boolean value of

‘FALSE’) is assigned if otherwise, as expressed in Equation 3.26,

𝑃𝑊 = {
1 𝑅𝑤 ≤ 𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3.26)

Chapter 3. Evolutionary Lean Neural Network 64

After the weights mutation, a new individual, 𝑁′ is resulted using the following matrix

operations shown in Equation 3.27,

𝑁′ = 𝑁 + (𝑊𝑊 ∙ 𝑃𝑊) (3.27)

To illustrate, a sample matrix RW, is shown in Equation 3.28,

𝑅𝑊 =

[

 0.930 0.468 0.630 0.645 0.070
 0.327 0.127 0.059 0.369 0.719
 0.798 0.147 0.409
0.344 0.063 0.102
0.201
0.501

0.539
0.832

0.212
0.945

0.255
0.647
0.008
0.499

0.679
0.601
0.293
0.784]

 (3.28)

In EVLNN, the purpose of mutation is to introduce a slight adjustment to the chromosome

matrix. Hence its probability is set to a low value, usually in the range of 1% to 2%.

Supposing the Mutation Probability rate is 0.015, applying Equation 3.26, the weights

mutation probability matrix, PW is,

𝑃𝑊 =

[

 𝐹𝐴𝐿𝑆𝐸 𝐹𝐴𝐿𝑆𝐸 𝐹𝐴𝐿𝑆𝐸 𝐹𝐴𝐿𝑆𝐸 𝐹𝐴𝐿𝑆𝐸
 𝐹𝐴𝐿𝑆𝐸 𝐹𝐴𝐿𝑆𝐸 𝐹𝐴𝐿𝑆𝐸 𝐹𝐴𝐿𝑆𝐸 𝐹𝐴𝐿𝑆𝐸
 𝐹𝐴𝐿𝑆𝐸 𝐹𝐴𝐿𝑆𝐸 𝐹𝐴𝐿𝑆𝐸
𝐹𝐴𝐿𝑆𝐸 𝐹𝐴𝐿𝑆𝐸 𝐹𝐴𝐿𝑆𝐸
𝐹𝐴𝐿𝑆𝐸
𝐹𝐴𝐿𝑆𝐸

𝐹𝐴𝐿𝑆𝐸
𝐹𝐴𝐿𝑆𝐸

𝐹𝐴𝐿𝑆𝐸
𝐹𝐴𝐿𝑆𝐸

𝐹𝐴𝐿𝑆𝐸
𝐹𝐴𝐿𝑆𝐸
𝑇𝑅𝑈𝐸
𝐹𝐴𝐿𝑆𝐸

𝐹𝐴𝐿𝑆𝐸
𝐹𝐴𝐿𝑆𝐸
𝐹𝐴𝐿𝑆𝐸
𝐹𝐴𝐿𝑆𝐸

]

 =

[

 0 0 0 0 0
0 0 0 0 0
0 0 0
0 0 0
0
0

0
0

0
0

0
0
1
0

0
0
0
0

]

 (3.29)

Note that the element selected for weights mutation has a value of 0.008, less than the

Mutation Probability rate of 0.015. If, given that the weights change matrix, WW is,

𝑊𝑊 =

[

 0.224 0.372 − 0.373 0.075 −0.312
0.094 0.099 0.163 −0.368 −0.330
0.139 −0.152 0.412
−0.500 −0.101 −0.080
−0.280
−0.347

−0.275
0.480

−0.013
−0.0372

−0.343
0.500
0.096
−0.152

0.234
0.389
0.356
0.464

]

 (3.30)

and assuming the selected individual in SP5 has a chromosome matrix, N given as,

𝑁 =

[

0.832 0 0.526 0.975 0.080
 0 0 −0.818 0.604 0
0.021 −0.705 0.082
−0.610 0.774 −0.193
0.243
0.174

0
−0.456

0
−0.085

0.679
0.700
−0.703
−0.223

−0.070
−0.424
0
0]

 (3.31)

then the new individual, 𝑁′, is obtained after applying Equation 3.27,

Chapter 3. Evolutionary Lean Neural Network 65

𝑁′ =

[

0.832 0 0.526 0.975 0.080
 0 0 −0.818 0.604 0
0.021 −0.705 0.082
−0.610 0.774 −0.193
0.243
0.174

0
−0.456

0
−0.085

0.679
0.700
−0.703
−0.223

−0.070
−0.424
0
0]

+

(

[

 0.224 0.372 − 0.373 0.075 −0.312
0.094 0.099 0.163 −0.368 −0.330
0.139 −0.152 0.412
−0.500 −0.101 −0.080
−0.280
−0.347

−0.275
0.480

−0.013
−0.0372

−0.343
0.500
𝟎. 𝟑𝟓𝟔
−0.152

0.234
0.389
0.096
0.464]

∙

[

 0 0 0 0 0
0 0 0 0 0
0 0 0
0 0 0
0
0

0
0

0
0

0
0
1
0

0
0
0
0]

)

 (3.32)

𝑁′ =

[

0.832 0 0.526 0.975 0.080
 0 0 −0.818 0.604 0
0.021 −0.705 0.082
−0.610 0.774 −0.193
0.243
0.174

0
−0.456

0
−0.085

0.679
0.700
−0.703
−0.223

−0.070
−0.424
0
0]

+

[

0 0 0 0 0
0 0 0 0 0
0 0 0
0 0 0
0
0

0
0

0
0

0
0

𝟎. 𝟑𝟓𝟔
0

0
0
0
0]

 (3.33)

 𝑁′ =

[

0.832 0 0.526 0.975 0.080
 0 0 −0.818 0.604 0
0.021 −0.705 0.082
−0.610 0.774 −0.193
0.243
0.174

0
−0.456

0
−0.085

0.679
0.700
−𝟎. 𝟑𝟒𝟕
−0.223

−0.070
−0.424
0
0]

 (3.34)

EVLNN then performs an integrity check on boundary limits of the changed weights to see

if it is between -1 and 1. If the mutated weight value exceeds the set limits, this weight

value is assigned -1 or 1, depending on which end of the boundary is exceeded.

3.3.6 Link-Node Mutation

In the link-node mutation stage, a vector V = [v1, v2, … , vn] is formed and derived from

matrix 𝑁′ where vi is the ith index location of the disabled links, and n is the number of

disabled links in the matrix 𝑁′. A vector RL of length n with uniformly distributed random

values between 0 and 1 is created, and similarly, a second vector RL2 with uniformly

distributed random values between -0.5 and 0.5. The RL2 vector is a placeholder for

connection weights for the links to be re-enabled. A probability matrix for link-node

mutation, PL, is then formed using the expression in Equation 3.35,

𝑃𝐿 = 𝑅𝐿2 ∙ (RL≤ Link-node Mutation Probability) (3.35)

Chapter 3. Evolutionary Lean Neural Network 66

where Link-Node Mutation Probability, like the Mutation Probability in Equation 3.26, is

kept small. Subsequently, a new individual, 𝑁′′, is formed through re-enabling the disabled

links in 𝑁′ by assigning the weights from V to 𝑁′ expressed in Equation 3.36,

𝑁′′ = 𝑁′(𝑉) = 𝑃𝐿 (3.36)

To illustrate the link-node mutation process, Equation 3.37 shows the vector V of an

individual in SP5. The vector elements indicate the index location of the disabled links of

that individual, 𝑁′.

𝑉 =

[

2
7
8
11
17
26
29
30]

 (3.37)

If, given that the matrix, RL and RL2, respectively, are,

𝑅𝐿 =

[

0.784
0.398
0.107
0.003
0.703
0.997
0.924
0.477]

 (3.38)

and,

 𝑅𝐿2 =

[

−0.051
 0.228
−0.253
 0.010
−0.295
 0.005
−0.402
 0.083]

 (3.39)

And supposing that the Link-Node Mutation Probability rate is set to 0.015, applying

Equation 3.35, the probability matrix PL is,

Chapter 3. Evolutionary Lean Neural Network 67

𝑃𝐿 =

[

−0.051
 0.228
−0.253
 0.010
−0.295
 0.005
−0.402
 0.083]

∙

(

[

0.784
0.398
0.107
0.003
0.703
0.997
0.924
0.477]

≤ 0.015

)

=

[

−0.051
 0.228
−0.253
 0.010
−0.295
 0.005
−0.402
 0.083]

∙

(

[

0
0
0
1
0
0
0
0]

)

=

[

0
0
0

0.010
0
0
0
0]

 (3.40)

By applying Equation 3.36, the element in the fourth index position of PL replaces the

fourth disabled link in 𝑁′ resulting in a new individual 𝑁′′. Therefore, after a two-stage

mutation, 𝑁′′ is,

𝑁′′ =

[

0.832 0 0.526 0.975 0.080
 0 0 −0.818 0.604 0
0.021 −0.705 0.082
−0.610 0.774 −0.193
0.243
0.174

𝟎. 𝟎𝟏𝟎
−0.456

0
−0.085

0.679
0.700
−𝟎. 𝟑𝟒𝟕
−0.223

−0.070
−0.424
0
0]

 (3.41)

3.3.7 Fitness Evaluation and Termination Criteria

The cost function in Equation 3.25 guides the evolutionary process towards convergence.

At the end of one evolution cycle, the health of the genotypes is evaluated, and the

population is ranked globally following their fitness evaluation using Equation 3.24. The

top five percent of individuals with the best fitness are chosen to pass to the next generation

(elitist solutions), replacing the weaker ones. This approach ensures that the mean

population fitness advances gradually and that any potential early stagnation is avoided

[182]. The best models form the next generation, and the iterations continue with the

evolutionary process if the termination conditions are not met.

The EVLNN algorithm checks the stop criteria at the end of each iteration. If the fittest

individual meets a predefined value, or the maximum iteration is reached the evolutionary

process tops. Else the whole evolution cycle repeats itself. For example, Figure 3.14 shows

that EVLNN has achieved population convergence over 500 generations (or iterations) for

the Himmelblau benchmark function used to evaluate EVLNN’s performance in Chapter 4.

The plot shows the falling average MSE converging towards the solution during the search

process.

Chapter 3. Evolutionary Lean Neural Network 68

Figure 3.14 Population convergence plot for the search for global optima for the Himmelblau benchmark

function.

3.3.8 Diversity Tracking

During the evolutionary process, chromosomes are subjected to reorganizations. Hence,

measuring the diversity in a population of individuals is essential to better understand

EVLNN’s search characteristics, which can help to improve the algorithm’s performance.

In EA, individuals' and populations' diversity can be measured at either the genotypic or

phenotypic levels. Phenotype constituted by a fixed number p of real parameters in the p-

dimensional real space, ℝ𝑝 can be mathematically analyzed by diversity measures [183].

However, phenotypic level diversity measure does not lend itself to a straightforward

approach for phenotype structure with variable topology and a number of parameters like

the ANN [184].

In this regard, the genotype space's focus on genotypic diversity measures is more

appropriate for EVLNN. Nonetheless, conventional diversity measures for the whole

population can be obtained from the diversity measure for pairs of individuals and

subsequently combining all the pairwise distances between individuals. Examples are the

hamming distance, gene-level entropy, and chromosome-level hamming distance [185].

These approaches require genomes that have fixed lengths and uniform structures. Defining

Chapter 3. Evolutionary Lean Neural Network 69

a measure of diversity for a population with variable-length genomes becomes more

complicated as conventional approaches lack the mechanisms to effectively handle

EVLNN’s variable-length genomes. This shortcoming has led to considering the Linguistic

Complexity (LC) approach to population diversity measures [184].

The concept of LC is to afford appropriate models to measure a language’s structural

complexity. It generalizes from single strings to populations using the substring count to

define the distance between strings. As population diversity is closely related to the concept

of distance between individuals, a measure of diversity for the population can be obtained

by estimating the number of different individuals that the population contains. In words,

the diversity of the population is defined as n times the ratio of the total number of

substrings in the population genome to the cumulative number of substrings in the genome

of the individuals considered separately. The derived genome strings, 𝑠𝑖𝑗 from all

individuals within the population are then used to calculate the population diversity, D(P)

of a population 𝑃 = {𝑖1, 𝑖2, … , 𝑖𝑛} expressed in Equation 3.42 [184],

𝐷(𝑃) = 𝐷({𝑖1, 𝑖2, … , 𝑖𝑛}) = 𝑛
|𝑆{𝑖2,𝑖2,…,𝑖𝑛}|

∑ |𝑆𝑖𝑗
|𝑛

𝑗=1

 (3.42)

where 𝑛 is the number of individuals in population P, 𝑆{𝑖1,𝑖2,…,𝑖𝑛} is the total number of

substrings, 𝑠𝑖𝑗 in the population (that is, considering only once those appearing in the

genome string of multiple individuals) and |𝑆{𝑖1,𝑖2,…,𝑖𝑛}| its cardinality, and 𝑆𝑖𝑗 is the set of

substrings of 𝑠𝑖𝑗 with |𝑆𝑖𝑗| its cardinality.

To explain this relationship using an example, supposing there are three individuals, i1, i2,

and i3, with genomes 𝑠𝑖1 = 𝑎𝑏𝑐, 𝑠𝑖2 = 𝑏𝑐𝑏, and 𝑠𝑖3 = 𝑎𝑏𝑎𝑑. We have:

𝑆𝑖1 = {𝑎, 𝑎𝑏, 𝑎𝑏𝑐, 𝑏, 𝑏𝑐, 𝑐}, |𝑆𝑖1| = 6 (3.43)

𝑆𝑖2 = {𝑏, 𝑏𝑐, 𝑏𝑐𝑏, 𝑐, 𝑐𝑏}, |𝑆𝑖2| = 5 (3.44)

𝑆𝑖3 = {𝑎, 𝑎𝑏, 𝑎𝑏𝑎, 𝑎𝑏𝑎𝑑, 𝑏, 𝑏𝑎, 𝑏𝑎𝑑, 𝑎𝑑, 𝑑}, |𝑆𝑖3| = 9 (3.45)

Chapter 3. Evolutionary Lean Neural Network 70

𝑆{𝑖1,𝑖2,𝑖3} = {𝑎, 𝑏, 𝑎𝑏, 𝑏𝑐, 𝑎𝑏𝑐, 𝑏𝑐𝑏, 𝑎𝑏𝑎, 𝑐, 𝑎𝑏𝑎𝑑, 𝑏, 𝑐𝑏, 𝑐, 𝑏𝑎, 𝑏𝑎𝑑, 𝑎𝑑, 𝑑}, |𝑆{𝑖1,𝑖2,𝑖3}| = 16 (3.46)

Therefore, applying Equation 3.42, the measure D(P) of diversity for the population

constituted by the three individuals, i1, i2, and i3, is,

𝐷({𝑖1, 𝑖2, 𝑖3}) = 3
|𝑆{𝑖1,𝑖2,𝑖3}|

|𝑆𝑖1|+|𝑆𝑖2|+|𝑆𝑖3|
= 3

16

6+5+9
= 2.4 (3.47)

LC’s string-based approach overcomes the shortcomings of conventional methods by

supporting highly reorganizable genomes of variable length in the calculation. This feature

is essential because of its speciation process and accedes to EVLNN’s variable-length

genomes. Hence, the possibility of using LC’s substring count approach to define a distance

between individuals belonging to populations with variable length genomes is explored.

The approach is adapted and described below for EVLNN’s implementation.

A step-by-step outline of the adapted approach is explained below:

1. Convert genotype to its genome structure: Individual genotype, 𝑖𝑗 of the population

𝑃 = {𝑖1, 𝑖2… 𝑖𝑛}, where 𝑛 is the number of individuals in the population temporarily

converted to their respective genome structure by locating the non-zero elements in the

genotype and replacing them with ones (‘1’).

2. Convert genome structure to a string: The element positions with the values of ones

(‘1’) in the genome structure are retrieved to form a vector which constitutes the

genome string, 𝑠𝑖𝑗 of that individual, 𝑖𝑗.

3. Compute population diversity: The derived genome strings, 𝑠𝑖𝑗 from all individuals

within the population are then used to calculate the population diversity, D(P) using

Equation 3.42.

To illustrate EVLNN’s population diversity computation process adapted from the LC

concept, supposing there are two genotypic individuals, 𝑖1 and 𝑖2 and their genome strings,

𝑆𝑖1and 𝑆𝑖2are shown in Equations 3.48 and 3.49, respectively,

Chapter 3. Evolutionary Lean Neural Network 71

𝑖1 =

[

0 −0.348 0
0 0 0.492

0.628 0 0.914
−0.583 −0.569 0.239
0.023 −0.345 0.295]

→

[

0 1 0
0 0 1
1 0 1
1 1 1
1 1 1]

 → 𝑆𝑖1 = {3,4,5,6,9,10,12,13,14,15} (3.48)

and

𝑖2 =

[

 0.865 0 0 −0.521
0 −0.649 0.211 0

 0.170 0 0.914 −0.688
0.873 −0.109 −0.311 0.129
 0.723 0.052 0.295 0.566]

→

[

1 0 0 1
0 1 1 0
1 0 1 1
1 1 1 1
1 1 1 1]

→ 𝑆𝑖2 = {1,3,4,5,7,9,10,12,13,14,15,16,18,19,20}

 (3.49)

The cardinality of 𝑆𝑖1 and 𝑆𝑖2, are,

|𝑆𝑖1| = |{3,4,5,6,9,10,12,13,14,15}| = 10 (3.50)

|𝑆𝑖2| = |{1,3,4,5,7,9,10,12,13,14,15,16,18,19,20}|] = 15 (3.51)

and 𝑆{𝑖1,𝑖2} the total number of substrings is,

|𝑆{𝑖1,𝑖2}| = |{1,3,4,5,6,7,9,10,12,13,14,15,16,18,19,20}| = 16 (3.52)

Therefore, applying Equation 3.42, the population diversity, D(P) for 𝑃 = {𝑖1, 𝑖2} is,

𝐷({𝑖1, 𝑖2}) = 2
|𝑆{𝑖1,𝑖2}|

 |𝑆𝑖1|+|𝑆𝑖2|
= 2

16

10+15
= 1.28 (3.53)

The explanation of the result above means that the two individuals correspond to 1.28

equivalent individuals. If the two individuals, 𝑆𝑖1 and 𝑆𝑖2 are identical, then,

𝐷({𝑖1, 𝑖2}) = 2
|𝑆{𝑖1,𝑖2}|

 |𝑆𝑖1|+|𝑆𝑖2|
= 1 (3.54)

If the two individuals are completely diverse, D(P)=2. Hence 1 ≤ 𝐷(𝑃) ≤ 𝑛, where n is

the size of the population.

Although the adapted LC diversity measure provides insight into the diversity of the

individuals within the population at time t, it could not show the relationships between the

number of species and the number of individuals present. To achieve this, additional

Chapter 3. Evolutionary Lean Neural Network 72

diversity measures were introduced to EVLNN. Learning from studies in ecological

speciation, a simple and effective practice is to use Shannon’s diversity and Shannon’s

equitability. The Shannon Diversity index, H, provides information about species richness,

specifically, the number of species present and the relative abundances of these different

species. Here, H is defined as,

𝐻 = −∑ 𝑝𝑖 ln(𝑝𝑖)
𝑆
𝑖=1 (3.55)

where 𝑝𝑖 is the proportion of the total sample represented by species i, ln is the Natural log,

and S is the total number of unique species. The higher the value of H, the higher the

diversity of species in the population. A higher H value also means a higher number of

species and the evenness of their abundance. The lower the value of H, the lower the

diversity. A value of H=0 indicates no diversity or that the population only has one species.

The Shannon Equitability Index, EH provides information about species evenness,

specifically, how similar the abundances of different species are, is defined as,

𝐸𝐻 =
𝐻

𝐻𝑚𝑎𝑥
 (3.56)

where 𝐻𝑚𝑎𝑥 = ln(𝑆) is the maximum diversity possible, and H is the Shannon diversity

index. The EH value ranges from 0 to 1, where 1 indicates complete evenness, that is, all

groups have the same frequency. To provide some perspective, the following is an example

that shows the calculation H and EH for two given populations with the data shown in Table

3.1.

Chapter 3. Evolutionary Lean Neural Network 73

Table 3.1 Calculation of H and EH for two population samples.

Population A (100 individuals, five species)

Species Frequency 𝒑𝒊 𝒍𝒏(𝒑𝒊) 𝒑𝒊 ∗ 𝒍𝒏(𝒑𝒊) 𝑯 = −∑ 𝒑𝒊 𝐥𝐧(𝒑𝒊)
𝟓
𝒊=𝟏 𝑬𝑯 =

𝑯

𝑯𝒎𝒂𝒙

A 40 0.40 -0.92 -0.37

1.47 0.92

B 21 0.21 -1.56 -0.33

C 18 0.18 -1.71 -0.31

D 9 0.09 -2.41 -0.22

E 12 0.12 -2.12 -0.25

Population B (100 individuals, five species)

F 20 0.20 -1.61 -0.32

1.61 1.00

G 20 0.20 -1.61 -0.32

H 20 0.20 -1.61 -0.32

I 20 0.20 -1.61 -0.32

J 20 0.20 -1.61 -0.32

In Table 3.1, though Population A and Population B have the same number of individuals

and species, H is higher for Population B than Population A. The higher H value indicates

that Population B is more diverse in the evenness and abundance of species than Population

A. For Population B, the EH value is 1.0 shows that there is complete evenness of species

in this population.

Figure 3.15 shows a sample diversity measure chart where EVLNN tracks three diversity

indices, the population diversity (Equation 3.47) using the LC approach, the Shannon

Diversity Index (Equation 3.55), and the Shannon Equitability Index (Equation 3.56).

Figure 3.15 The diversity measurements chart produced by the EVLNN algorithm.

The plot provides insight into EVLNN species diversity, richness, and evenness. The

overall population diversity reduces from a value of two to about 1.3, indicating the

population converges. However, the solutions are not entirely identical at the end of the

Chapter 3. Evolutionary Lean Neural Network 74

evolution cycles. The Shannon Diversity index declines from a value of about 2.5 to about

1.5 at generation 35 onwards, indicating the number of species is reducing but stabilizes at

generation 35. Shannon Equitability remains about 0.7 to 0.9, indicating changing species

unevenness throughout the evolutionary process. These measures suggest that EVLNN has

maintained diversity.

3.3.9 Interpretability of EVLNN

ANN are black-box models, and interpreting them is a significant challenge. With

interpretability, ANN can considerably increase their adoption, particularly in the field of

energy predictions, where valuable insights into the underlying system structure can be

advantageous.

Sensitivity Analysis (SA) approaches are often applied to black-box neural networks to

attribute the output responses' importance to the input variables' contribution. However,

these approaches are not straightforward, as some degree of inconsistency would be

expected when interpreting the causal relationship between the output variable and a

predictor of interest. In most cases, it has not been possible to reach a consensus on the

best-performing method as SA methods can produce varying outcomes [183] ‒ [185]. A

closer look at the above literature revealed that instability exists due to the SA methods

applied. Most prior work has applied SA methods to a single trained neural network for

analysis, which can have varying results. This inconsistency arises from the stochastic

nature of the neural network modeling approach. The final trained state is determined by

several factors, such as the network architecture and the initial random weights used [186].

To overcome this inconsistency, several authors have proposed using ensemble ANN and

averaging the network errors [184] – [186]. Pentoś [186] proposed the use of three SA

methods, namely the Partial Derivatives (PaD) method, the Connection Weights (CW)

method, and the Statistical Methods to SA on an ensemble of 20 ANN architecture to reduce

the inherent instability. Luíza da Costa et al. [187] proposed a voting approach to evaluate

the importance of rankings in the contribution of the input to the output of a trained ANN

generated by five weight-based sensitivity analysis methods, namely Garson [188], Yoon

et al. [189], Tsaur et al. [190], Howes and Crook [191], and Olden and Jackson [192].

Chapter 3. Evolutionary Lean Neural Network 75

Instead of using the magnitude of variable importance, the most voted importance orders

were considered to determine the final importance order. However, the approach is biased

towards a homogeneous ensemble of weight-based sensitivity analysis methods. J. de Ona

and Garrido [193] proposed applying heterogeneous sensitivity analysis methods to a set

of trained ANNs to obtain a ranking of relative importance for each ANN and each method.

These methods are the Perturb, the Profile, the CW, and the PaD. Then an approach based

on calculating the ranking of variable’s relative importance for each method as a function

of average importance values is obtained from every ANN in the set. However, using the

magnitude of the variable’s relative importance in the calculation can be misleading. It may

indicate an erroneous importance order due to the differences in the ANN topologies and

connection weights.

The aim of enabling interpretability in the EVLNN is to help identify major factors

influencing the prediction. However, ensuring the outcome of SA methods can produce a

reliable result is of great importance. To the author’s knowledge, the proposed EVLNN’s

ensemble-based approach to sensitivity analysis is evaluated for the first time in this study

[194]. The approach involves applying an ensemble SA methods described in [195]; namely,

the PaD method [196] [197], the Perturb method [198], the Profile method [199] [200], and

the CW method [192] [201], to a set of 50 identified EVLNN models based on parsimony.

Subsequently, a data aggregation technique is employed to determine the relative

importance of the input variable that influences the output. Figure 3.16 shows the block

diagram of the proposed approach.

Chapter 3. Evolutionary Lean Neural Network 76

Figure 3.16 The proposed ensemble-based approach to sensitivity analysis

The approach is described below, with its pseudo-code and detailed implementation

explained in Appendix B.

A step-by-step outline of EVLNN’s ensemble-approached to sensitivity analysis is

explained below:

Chapter 3. Evolutionary Lean Neural Network 77

1. Trained EVLNN with the dataset: Trained a set of n parsimonious EVLNN models.

2. Analyze variables and create categories: Analyze the input variables to identify and

differentiate significant categories.

3. Apply ensembled-based SA method: Apply the PaD, Perturb, Profile, and CW

methods to every one of the n models to compute the importance values of each

variable.

4. Store importance values in a matrix: Store the calculated importance values of each

variable by each method into a matrix.

5. Transform the importance values into importance orders: Based on the importance

values, transform them into importance orders with the variables ranked.

6. Aggregate and average the importance orders over n models: Aggregate the

importance orders over n models for each variable and method.

7. Transfer importance orders to the categories: Transfer the importance orders to their

respective categories and rank them.

8. Aggregate the amount of voting for each category: Use a voting approach to

evaluate the importance of ranking by aggregating the amount of voting. If there is a

tie, the number of voting for the following positions is considered to break the tie.

This approach is applied to a real-world problem to determine factors influencing the

energy consumption of the Hadoop system. The results are presented and discussed in

Chapter 5, demonstrating better stability in EVLNN’s interpretability, drastically reducing

the potential inconsistency.

3.4 The EVLNN Algorithm for Handling Multimodal

Functions

In order to validate and compare its performance to other optimization algorithms, the

EVLNN algorithm design is subjected to a suite of benchmark test functions in Chapter 4.

Benchmark test functions are artificially created to represent the nature of many real-world

problems [202] to help validate the performances of optimization algorithms [203]. These

Chapter 3. Evolutionary Lean Neural Network 78

functions often consist of multimodal and multi-dimensional landscapes with multiple

global optima. The steps below explain how the EVLNN algorithm handles multimodal

function optimization, mainly how EVLNN’s speciation concept and novel intra-species

and inter-species crossovers and mutation are applied in function optimization.

A step-by-step outline of EVLNN’s approach to multimodal function optimization is

explained below:

1. Define the parameter values of EVLNN, such as the population size 𝑁𝑃, the maximum

number of generations Gmax, the number of species 𝑁𝑠 , the intra-species crossover

percentage XOp, the inter-species crossover probability XSp, the mutation percentage

MUp, the mutation value range MUr, and the mutation matrix probability MXp.

2. Initialize a population X of 𝑁𝑃 solution candidates, 𝐗 = {𝒙1, 𝒙2, … , 𝒙𝑁𝑃} where each

solution candidate 𝒙𝑖 is a D-dimensional vector containing the variable values to be

optimized, which are randomly and uniformly distributed between [𝑥𝑗
𝑙𝑜𝑤 𝑥𝑗

ℎ𝑖𝑔ℎ
] for the

range of the input domain such that,

𝑥𝑗,𝑖 = 𝑥𝑗
𝑙𝑜𝑤 + (𝑟𝑎𝑛𝑑(0,1). (𝑥𝑗

ℎ𝑖𝑔ℎ
− 𝑥𝑗

𝑙𝑜𝑤)) (3.57)

where j=1, 2, …, D; i=1, 2, …, NP with j and i being the variable and individual indexes,

respectively. That is, xj,i is the jth variable of the ith individual.

3. Encode each solution candidate 𝒙𝑖 of D-dimensional vector, into the form of a

candidate chromosome matrix Y of variable length s, where 2 ≤ s ≤ Ns, (Ns is the

number of species),

𝐘 = [

𝑥1,𝑖
:
𝑥𝑗,𝑖
] = [

𝑥1,𝑖
1 … 𝑥1,𝑖

𝑠

: : :
𝑥𝑗,𝑖
1 … 𝑥𝑗,𝑖

𝑠
] (3.58)

where the elements of the chromosome matrix are derived from dividing 𝑥𝑗,𝑖 into s

parts such that,

𝑥𝑗,𝑖 = ∑(𝑥𝑗,𝑖 .∗ 𝐖) (3.59)

where W is a vector of a weighted coefficient given by,

 𝐖 =
𝑆

∑𝑆
 (3.60)

Chapter 3. Evolutionary Lean Neural Network 79

where S is a uniformly distributed random integer with a vector of size between 2 and

Ns using Equation 3.61 (the integers are generated through the function ‘randi’ in

MATLAB).

𝑆 = 𝑟𝑎𝑛𝑑(1, 𝑟𝑎𝑛𝑑𝑖([2, 𝑁𝑠])) (3.61)

4. Speciate the population of candidate solutions differentiated by the length of the

chromosome matrix s and obtain the size of each species.

5. Compute the function values of the ith solution candidate and calculate its absolute

error, 𝜀𝑖 is,

 𝜀𝑖 = |𝑓𝑚𝑖𝑛 − 𝑓(𝑥1, 𝑥2, … , 𝑥𝐷)| (3.62)

where fmin is the given function minima, and D is the number of variables or

dimensions. The fitness Fi of the ith chromosome matrix is subsequently calculated

using the value of 𝜀𝑖 from Equation 3.62,

𝐹𝑖 =
1

1+𝜀𝑖
 (3.63)

6. Obtain the number of species and species size.

7. For each species, rank the solution candidates based on their fitness value.

8. Apply the Stochastic Universal Selection (SUS), a selection scheme employed to

choose individuals for recombination and mutation. SUS is non-bias and ensures a

minimum spread is maintained using a single random value to select the candidates at

equally spaced intervals. Hence, it is likely that in SUS, weaker individuals of the sub-

population have equal chances to be chosen and, therefore, do not allow the fittest

individuals to dominate the candidate space, prematurely killing the diversity. The SUS

example is illustrated in Figures 3.17 and 3.18. Using the individual’s fitness, a

selection probability for that individual is calculated as shown in Table 3.2 and mapped

to a contiguous segment of a line such that the individual’s segment is equal in size to

its fitness. The mapping is illustrated in Figure 3.17 using the fitness information in

Figure 3.18(b). The starting position of the first pointer is given by a uniformly

distributed random number in the range [0, 1]. For ten individuals to be selected, the

Chapter 3. Evolutionary Lean Neural Network 80

distance between the pointers is 1/10=0.1. A modulo function is applied to ensure an

even number of individuals are selected.

Table 3.2 Selection probability and fitness value.

Number of

Individuals
1 2 3 4 5 6 7 8 9 10

Fitness

Value
0.717 0.666 0.629 0.587 0.476 0.462 0.435 0.099 0.062 0.014

Selection

Probability
0.17 0.16 0.15 0.14 0.11 0.11 0.10 0.02 0.01 0.00

Probability

Cummulation
0.17 0.33 0.49 0.63 0.74 0.85 0.96 0.98 0.99 1.00

Figure 3.17 The SUS mapping of an individual’s fitness to a contiguous segment. The selected individuals

consist of the 1, 1, 2, 2, 3, 4, 4, 5, 6, and 7.

Figure 3.18 illustrates steps 6 to 8 using a sample species of ten individuals undergoing

the selection process for recombination and mutation.

 1 2 3 4 5 6 7 8 9 10

0.0 0.17 0.33 0.49 0.63 0.74 0.85 0.96 0.98 0.99 1.00

Random
number

Pointer 1 Pointer 2 Pointer 3 Pointer 4 Pointer 5 Pointer 6 Pointer 7 Pointer 8 Pointer 9 Pointer 10

Individuals:

Chapter 3. Evolutionary Lean Neural Network 81

0.014 0.717 0.476

0.062 0.666 0.462

0.435 0.629 0.435

0.476 0.587 0.666

0.629

0.476

0.717

0.587 0.462 0.587

0.099 0.435 0.666

0.462 0.099 0.587

0.717 0.062 0.717

0.666 0.014 0.629

(a) (b) (c)

Figure 3.18(a-c) (a) A subpopulation of individuals within a species with corresponding fitness. (b)

Individuals are ranked within the species according to their fitness. (c) Apply SUS to select potential

candidates for recombination and mutation.

9. Perform recombination on the selected list by sequential pairing down the list.

a. If there is only one individual in the species, then perform mutation.

b. Generate a random number between 0 and 1 with normal distribution, and if the

number ≤ XSp, perform inter-species crossover.

c. Else perform intra-species crossover.

10. Perform mutation on a selected list of individuals using the expression,

𝒀𝒏𝒆𝒘 = 𝒀 + (𝑪 .∗ 𝑽) (3.64)

where 𝒀𝒏𝒆𝒘 is the new mutated individual of the original Y, the candidate chromosome

matrix in Equation 3.58, C is the change matrix with element values within the

mutation range MUr,

𝑪 = 2 ∗ 𝑀𝑟 ∗ 𝑟𝑎𝑛𝑑(0,1) − 𝑀𝑈𝑟 (3.65)

and V is the mutation matrix obtained from performing a logical comparison between

a randomly generated matrix and the mutation matrix probability, MXp,

𝑽 = 𝑟𝑎𝑛𝑑(0,1) < 𝑀𝑋𝑝 (3.66)

11. Perform integrity checks on boundary limits.

Selected list of individuals

for recombination.

Selected list of individuals

for mutation.

Chapter 3. Evolutionary Lean Neural Network 82

12. Evaluate the offspring by comparing the fitness of the offspring with their parents.

Weaker individuals are replaced with healthier ones. Repeat steps 7 to 12 until all

species are evaluated.

13. Rank individual fitness population-wise, and maintain elitism ELp of 5%, replacing

individuals ranked in the bottom 5% with individuals from the top 5%.

14. Create a next-generation parent population.

15. If maximum generation reaches or stops, condition met, then stop. Otherwise, go to

step 4.

3.4.1 Intra-Species Crossover for Low-Dimensionality Problems

Low-dimensionality test functions generally have two variables, 𝑥1 and 𝑥2 to optimized.

To demonstrate the crossover process, Figure 3.19(a-b) shows two sample parents from

Species_6, namely Parent_1 and Parent_2. Crossover occurs at the parents’ chromosome

matrix mid-point, indicated by the red dotted lines in Figure 3.18. The offspring produced

is shown in Figure 3.20(a-b).

-0.5461 -0.1997 -0.4918 -0.4740 -0.1177 -0.0861

0.2917 0.1067 0.2627 0.2532 0.0629 0.0460

(a) Parent_1 (b) Parent_2

Figure 3.19(a-b) Sample chromosome matrices of Parent_1 and Parent_2 in Species_6.

(a) Child_1 (b) Child_2

Figure 3.20(a-b) Chromosome matrices of new offspring, Child_1, and Child_2, after crossover of

Parent_1 and Parent_2 in Species_6.

For odd-numbered species, the crossover point in the chromosome matrix is determined by

rounding up the mid-point value. For example, in Species_9, the midpoint crossover is
9

2
=

4.5 round up to 5, that is, between the fifth and sixth column of the chromosome matrix.

1.5713 0.5747 1.4152 1.3640 0.3386 0.2478

0.1615 0.0591 0.1455 0.1402 0.0348 0.0255

-0.5461 -0.1997 -0.4918 1.3640 0.3386 0.2478

0.2917 0.1067 0.2627 0.1402 0.0348 0.0255

1.5713 0.5747 1.4152 -0.4740 -0.1177 -0.0861

0.1615 0.0591 0.1455 0.2532 0.09629 0.0460

Chapter 3. Evolutionary Lean Neural Network 83

3.4.2 Intra-Species Crossover for High-Dimensionality Problems

For the EVLNN algorithm optimizing functions with high dimensionality, the formation of

the chromosome matrix is modified to take into account the high number of variables of

the test functions by increasing the number of rows in the chromosome matrix. For example,

Figure 3.21(a-b) features a pair of parents from Species_4 where the respective

chromosome matrix contains the values for variables 𝑥1, 𝑥2, 𝑥3, 𝑥4 𝑎𝑛𝑑 𝑥5.

-2.2016 -4.3602 -3.8046 -3.4728 1.0484 -0.5084 3.3494 -4.0436

2.6440 -4.5854 0.7075 3.0252 -2.4367 -4.2783 0.3942 4.7483

2.6083 0.3166 -0.3147 -1.9407 1.5839 -2.7861 5.1003 -5.0924

-1.2290 2.8698 -5.0176 0.2933 1.9451 4.2491 -4.3364 2.8261

0.6972 4.4616 -1.6744 -3.4371 2.5510 -3.5736 -0.5893 3.2619

(a) Parent_1 (b) Parent_2

Figure 3.21(a-b) Sample chromosome matrix of Parent_1 and Parent_2 in Species_4 for solving high

dimensionality problems.

Similarly, recombination occurs at the parents’ chromosome matrix mid-point, indicated by

the red dotted lines in Figure 3.21(a-b). The offspring produced is shown in Figure 3.22(a-

b).

-2.2016 -4.3602 3.3494 -4.0436 1.0484 -0.5084 -3.8046 -3.4728

2.6440 -4.5854 0.3942 4.7483 -2.4367 -4.2783 0.7075 3.0252

2.6083 0.3166 5.1003 -5.0924 1.5839 -2.7861 -0.3147 -1.9407

-1.2290 2.8698 -4.3364 2.8261 1.9451 4.2491 -5.0176 0.2933

0.6972 4.4616 -0.5893 3.2619 2.5510 -3.5736 -1.6744 -3.4371

(a) Child_1 (b) Child_2

Figure 3.22(a-b) Chromosome matrix of Child_1 and Child_2 are new offspring after recombination of

Parent_1 and Parent_2 in Species_4.

3.4.3 Function Optimization using EVLNN – An Example

For illustration, the Himmelblau benchmark function is presented as an example of function

optimization to demonstrate EVLNN’s species parallelism and search capabilities. A series

of runs were performed, extensive data were collected during the experiment, and the

Chapter 3. Evolutionary Lean Neural Network 84

algorithm’s search characteristics were investigated and analyzed with visualization plots

to explain EVLNN’s steps in the search optimization process.

The Himmelblau-2D function has the mathematical equation expressed as,

𝑓(𝑥) = (𝑥1
2 + 𝑥2 − 11)

2 + (𝑥1 + 𝑥2
2 − 7)2 (3.67)

The function’s 3D plot is shown in Figure 3.23, where the contour depicts a multimodal

and multiple global optima landscape. Figure 3.24 shows the contour in 2D. The search is

evaluated on 𝑥𝑖 ∈ [-6 6], for all i =1, …, d where d=2. The function has four global minima

at f(x*)=0, at x* = (3, 2), x* = (-3.779, -3.283), x* = (-2.805, 3.131) and x* = (3.584, -

1.848). Four large red squares mark the locations of the global optima in the search

landscape.

Figure 3.25 shows the EVLNN’s species distribution at initialization. There are in total 125

individuals and 14 species. As observed, individuals are not distributed evenly among the

different species. SP3 or Species_3 has 13 individuals, the largest species, whereas

Species_6 and Species_15 have five individuals each. They form the smallest species.

Chapter 3. Evolutionary Lean Neural Network 85

Figure 3.23 3D plot of the Himmelblau function with four global minima.

Figure 3.24 Contour plot of the Himmelblau function with locations of the four global minima.

Chapter 3. Evolutionary Lean Neural Network 86

Figure 3.25 Species distribution at the initialization.

Figure 3.26 shows the population at initiation presented on a 2D search landscape of the

Himmelblau function in the range [-6 6]. Potential solutions are represented by various

colored shapes on the landscape with similar colored shapes belonging to the same species.

The species are initially scattered over the search landscape, searching for attractive basins

shown by the four red squares in this multimodal contour.

Figure 3.26 Landscape showing speciated solution candidates in generation one.

Chapter 3. Evolutionary Lean Neural Network 87

Figure 3.27 to 3.33 show the evolutionary map of the EVLNN algorithm captured in steps

of ten generations from generation 20, 40, 60, to 100, then in steps of 200 generations from

100 to 500. These plots visually depict how the population evolves on the objective function

surface where the various species search for the global optima. More granular search steps

are illustrated in Appendix C.

Figure 3.27 At generation 20, species are seen drawing closer to the minima.

Figure 3.28 At generation 40, Species_8 has become identical to the other species' search positions.

Chapter 3. Evolutionary Lean Neural Network 88

Figure 3.29 At generation 60, the search continues.

Figure 3.30 At generation 100, there is a clear path on the movement of these remaining species.

Chapter 3. Evolutionary Lean Neural Network 89

Figure 3.31 At generation 300, all the species except Species_7 are seen inside one of the red squares.

Figure 3.32 At generation 400, Species_7 has located one of the global minima.

Chapter 3. Evolutionary Lean Neural Network 90

Figure 3.33 At generation 500, all the species are inside one of the red squares where the global minima are

located.

Figure 3.34 shows the convergence rate of each of the 14 species, converging at a different

rate to the global minima. At convergence, the global optima are found by SP3, SP2, SP5,

and SP6, with the lowest error at 2.6998 x 10-6, 1.1689 x 10-6, 1.1638 x 10-5, and 2.7659 x

10-7, respectively.

Figure 3.34 Individual species convergence over 500 generations.

Chapter 3. Evolutionary Lean Neural Network 91

3.5 Chapter Summary

In this chapter, the EVLNN framework is explained along with several novel mechanisms.

Firstly, a structurally inclusive matrix encoding scheme is designed for model

representation in the fitness landscape. Network information is encoded in a chromosome

matrix, allowing the weights and structures to evolve simultaneously. Secondly, species

parallelism is proposed for preserving structural innovation and giving potential solutions

within the species a chance to thrive. It is achieved by introducing two crossover strategies,

using intra-species crossover as the predominant recombination strategy but interspersing

the computation with an occasional inter-species crossover. The strategies have maintained

parallelization and intensified the search for promising regions of interest while exploring

new parts of the fitness landscape. Thirdly, a two-stage mutation called the weights

mutation and link-node mutation is introduced to prevent the search from being trapped in

local optima by making incremental changes to the ANN weights and structures. The

mutations are performed separately, injecting new alleles into the gene pool to prevent the

population from stagnating too quickly. Fourthly, a diversity tracker mechanism is

incorporated into the EVLNN algorithm to provide insights into the evolutionary search

behavior that would benefit the fine-tuning of the GA parameters. Finally, an ensemble-

based approach to sensitivity analysis is implemented into the structure of the EVLNN to

help explain the relationship between the input variables and the output.

In addition, the EVLNN algorithm for handling multimodal function optimization is

presented. While the purpose of EVLNN is to automate neural architecture search for

energy prediction, its central concept of speciation can be applied to function optimization

to evaluate the global search characteristic of EVLNN and the algorithm's generalization

ability.

Chapter 4

4. Model Evaluation and Comparison

4.1. Introduction

This chapter describes the evaluation of the EVLNN algorithm using a broad set of

benchmark test functions, including those recommended in the CEC 2013 and 2015

Competitions [204] [205]. As far as possible, the test suite covers various problems,

including unimodal, multimodal, multi-dimensional separable, and non-separable, for a

comprehensive assessment of the EVLNN algorithm. The performance of the EVLNN is

then compared to classic GA, meta-heuristic methods such as PSO and DE, and the state-

of-the-art niching algorithms from the CEC 2013 and 2015 Competitions.

It is worth noting that benchmark test functions are artificially created and are often well

designed. In contrast, real-world problems are much more diverse and can be very different

from these test functions [206]. Thus, optimization algorithms that work well for test

functions may not work well in real-world applications. As such, additional experiment

using real-world time-series energy load data is also considered in this chapter to assess the

effectiveness of EVLNN in handling real-world prediction problems.

4.2. Test Methodology and Assumptions

The implementation of the benchmark functions has been chiefly based on the source code

from the IEEE CEC 2013 competition [207] and public domain resources from [208] [209].

PSO, DE, and GA are implemented using public domain codes [210]. Standard parameter

settings are used with no additional tuning when implemented in the PSO, DE, and GA

algorithms.

Chapter 4. Modal Training and Comparison 93

The test made several assumptions. Firstly, the number of global optima is known. Secondly,

the different distances between the global optima are known. Thirdly, modality information

on the problem landscape is known. The EVLNN algorithm is executed for each problem

from f1 to f16 in Tables 4.1 to locate all global optima at a given accuracy level, 𝜀 where 𝜀

∈ {1.0E-01, 1.0E-02, …, 1.0E-05}. The accuracy 𝜀 , specifies the maximum allowable

difference between a known global optima fopt (or minima, fmin) and the predicted solution

f(x) expressed as,

|𝑓𝑜𝑝𝑡 − 𝑓(𝑥)| ≤ 𝜀 (4.1)

Since the number of global optima is known, the algorithm’s performance in locating all

global optimas over multiple runs can be measured in terms of the peak ratio (PR) success

rate (SR) and the averaged number of evaluations to achieve a required accuracy 𝜀. Given

a fixed maximum number of function evaluations (MaxFE), and required accuracy level 𝜀,

PR, expressed in Equation 4.2, measures the average percentage of all known global optima

found over multiple runs,

𝑃𝑅 =
∑ 𝑁𝑃𝐹𝑖
𝑁𝑅
𝑖=1

𝑁𝑅∗𝑁𝐾𝑃
 (4.2)

where NPFi represents the number of global optima found during the ith run, NKP

represents the number of known global optima, and NR represents the number of runs. SR

is expressed in Equation 4.3, which measures the success rate in the percentage of runs out

of all runs,

𝑆𝑅 =
𝑁𝑆𝑅

𝑁𝑅
 (4.3)

where NSR is the number of successful runs and NR is the number of runs. The

recommended value is NR=50 from the CEC benchmark standard [202]. Therefore, a value

of 1.0 indicates that all fifty runs found all global peaks, whereas a value of 0.0 means none

of the peaks are found in any of the fifty runs. The best solutions found after a given number

of evaluations in multiple runs are then checked if it is within the niche radius, r to be

considered the global optima. The mean global optima found averaged over fifty runs on

Chapter 4. Modal Training and Comparison 94

these test functions are then compared with the CEC 2013 and 2015 competition algorithms

to assess EVLNN’s competitiveness.

Table 4.1 presents the parameters for performance measurement for the benchmark test

functions f1 to f16 to determine if a niching algorithm has located all the global optima in

the competition. The value of the niche radius r, the peak height, the number of global

optima, and the maximum number of function evaluations MaxFE are referenced from

[202].

Table 4.1 Parameters used for performance measurement.

Function Description r Peak height No. of global optima MaxFE

f1 Bohachevsky N.1 (2D) 0.5 0 1 2.0E+05

f2 Booth (2D) 0.5 0 1 2.0E+05

f3 Sphere (30D) 0.5 0 1 2.0E+05

f4 Brown (30D) 0.5 0 1 2.0E+05

f5 Ackley (2D) 0.5 0 1 2.0E+05

f6 Rosenbrock (2D) 0.5 0 1 2.0E+05

f7 Rastrigin (30D) 0.5 0 1 2.0E+05

f8 Griewank (30D) 0.5 0 1 2.0E+05

f9 Five-uneven-peak trap (1D) 0.01 200.0 2 5.0E+04

f10 Equal Maxima (1D) 0.01 1.0 5 5.0E+04

f11 Uneven Decreasing Maxima (1D) 0.01 1.0 1 5.0E+04

f12 Himmelblau (2D) 0.01 200.0 4 5.0E+04

f13 Six-hump Camel Back (2D) 0.5 1.031628453 2 5.0E+04

f14 Shubert (2D) 0.5 186.7309088 18 2.0E+05

f15 Vincent (2D) 0.2 1.0 36 2.0E+05

f14 Shubert (3D) 0.5 2709.093505 81 4.0E+05

f15 Vincent (3D) 0.2 1.0 216 4.0E+05

f16 Modified Rastrigin (2D) 0.01 -2.0 12 2.0E+05

4.2.1. Genetic Parameter Tuning for EVLNN

Generic parameter settings can significantly impact the performance of EAs, and EVLNN

is not an exception and must be tuned. The genetic parameters for EVLNN to be tuned are

Chapter 4. Modal Training and Comparison 95

the population size 𝑁𝑃, the maximum number of generations Gmax, the number of species

𝑁𝑠, the intra-species crossover percentage XOp, the inter-species crossover probability XSp,

the mutation percentage MUp, the mutation value range MUr, the mutation matrix

probability MXp, and the elitism percentage ELp. A summary of the genetic parameters is

shown in Table 4.2.

 Table 4.2 The EVLNN genetic parameters and their description.

EVLNN Genetic Parameters Description

𝑁𝑃 Population size

Gmax Max generation

Ns Number of species

XOp Intra-species crossover percentage

XSp Intra-species crossover percentage

MUp Mutation percentage

MXp Mutation Matrix Probability

MUr Mutation value range

ELp Elitism percentage

Generally, genetic parameters adopt different values under given environments. To avoid

ad-hoc speculation of these parameter values with no guideline on what values might work

better, fixing them requires a study of the possible effects of these parameters and their

interaction with the quality of the solution. Therefore, a set of experiments is designed to

establish the values of these genetic parameters. Given the fixed MaxFE budget and the

number of global optima Gopt of a function under test, the process includes first establishing

the values of Np and Gmax, then proceeding to determine XOp and MUp, and, finally, the

values of XSp, MUr, and MXp.

A) Tuning of Np and Gmax

The parameters Np and Gmax are the first values to be determined. For three different values

of MaxFE={5.0E+04, 2.0E+05, 4.0E+05} [202], the respective Np and Gmax are different.

The most common value pairs for Np and Gmax used during the experiments are,

Chapter 4. Modal Training and Comparison 96

{Np, Gmax} = {

{125, 400}, {100, 500} 𝑓𝑜𝑟 𝑀𝑎𝑥𝐹𝐸 = 5.0E + 04
{500, 400}, {400, 500} 𝑓𝑜𝑟 𝑀𝑎𝑥𝐹𝐸 = 2.0E + 05
{1000,400}, {800, 500} 𝑓𝑜𝑟 𝑀𝑎𝑥𝐹𝐸 = 4.0E + 05

 (4.4)

As for Ns, the value is set using the equation,

Ns = x * Gopt (4.5)

where 1.5 ≤ x ≤ 4.0 and Gopt is the number of optima. This range is determined empirically,

with the value x = 1.5 being the most consistently used. However, if the search landscape

has a low number of optima, the value for x is generally higher.

B) Tuning of XOp and MUp and Result Analysis

XOp and MUp are set to 80% and 20%, respectively, to provide a stable response. XSp, MUr,

and MXp are then tuned collectively to provide an adequate balance in explorative and

exploitative search. These three parameters are the most sensitive as slight variations in

their values could lead to very different results.

Table 4.3 presents three parameter sets used in EVLNN to optimize f15, Shubert (2D)

function, as an example to explain the interactions between the parameters and the effects

of the responses. Parameter set 2 yielded better PR results at higher accuracy of 𝜀 = 1.0E-

03 to 𝜀 = 1.0E-05, parameter set 3 yielded better PR results at lower accuracy of 𝜀 = 1.0E-

01 to 𝜀 = 1.0E-02. Parameter set 1 was the worst performer, all other parameters being held

constant. Function f15 is thus fine-tuned with, Np = 400, Gmax = 500, Ns = 27 (see Equation

4.5, where x is chosen as 1.5). This configuration provides an average of 15 individuals per

species, given by,
𝑁𝑝

𝑁𝑠
=

400

27
 ≈15. Parameter set 2 is therefore chosen.

Chapter 4. Modal Training and Comparison 97

Table 4.3 EVLNN experiment for Shubert (2D) function for MaxFE=2.0E+05. Np, Ns, and Gmax yielded

different Peak Ratio (PR) results over a range of accuracy 1.0E-01 to 1.0E-0.5 for 50 runs. The best values

for each accuracy level are in bold.

Parameters Np Gmax Ns Gopt
𝑵𝒔

𝑮𝒐𝒑𝒕

𝑵𝒑

𝑵𝒔
 PR 𝜺

E
x

p
er

im
en

ts

S
et

 1

250 800 18 18 1 ~14

0.372 1.0E-01

0.326 1.0E-02

0.020 1.0E-03

0.000 1.0E-04

0.000 1.0E-05

S
et

 2

400 500 27 18 1.6 ~15

0.504 1.0E-01

0.504 1.0E-02

0.498 1.0E-03

0.450 1.0E-04

0.276 1.0E-05

S
et

 3

400 500 36 18 2 ~11

0.778 1.0E-01

0.648 1.0E-02

0.213 1.0E-03

0.042 1.0E-04

0.008 1.0E-05

C) Tuning of XSp, MXp, and MUr and Result Analysis

The values of XSp, MXp, and MUr are subsequently determined for the Shubert (2D)

function with MaxFE=2.0E+0. It was observed that a stable population was produced when

XSp was set to between 1% to 2%. If XSp is set too high, inter-species recombination

activities increase, reducing species size and eventually leading to extinction. Depending

on the application, this outcome may not be desirable.

This phenomenon can be illustrated with two separate populations configured with different

XSp settings, at 1.5% and 4%, respectively, for the Shubert (2D) function evaluation. After

500 generations, their respective species distributions are shown in Figure 4.1(a-b). For the

population where XSp is set to 4%, it is observed that four species have had their species

sizes reduced to 1, namely Species_2, Species_9, Species_12, and Species_27 (see Figure

4.1b highlighted by red circles). A unity species size means the lone individual would not

participate in recombination. Mutation only would significantly reduce the effectiveness of

explorative search. Contrast this to the population where XSp is set to 1.5%, and species

size remained an average of about 15 (see Figure 4.1a highlighted by a red dotted line).

Chapter 4. Modal Training and Comparison 98

This number remained relatively stable from the beginning. The experiment found evidence

that a low value of XSp helps maintain the species population. This finding is significant as

the tuning of XSp can determine EVLNN’s search behavior. For solving multimodal and

multi-optima problems, the XSp value is recommended to remain small.

(a) (b)

Figure 4.1(a-b) Species distribution and XSp values at the end of 500 generations for the evaluation of

the Shubert (2D) function. In (a), XSp set to 1.5% resulted in species with an average size of 15 holding

stable from the start. In (b), XSp is set higher to 4% resulting in some species (highlighted in red circle)

having a species size of 1.

The value of MXp determines the number of genes in the change matrix participating in the

mutation process. This parameter can take a broader range of values from 5% to 60%.

Depending on the problem to be solved, the value of MXp can be adjusted. For example, a

higher MXp value will expand the search in the vicinity of a basin, and a lower value will

deepen the search toward a basin. Therefore, if the value is set too high, convergence may

not happen; likewise, solutions may not be optimal if the values are too low.

In conjunction with MXp, the parameter MUr determines the values to be added to the genes

of the chromosome matrix in the selected mutant. The range of values for MUr is -0.1 ≤

Chapter 4. Modal Training and Comparison 99

MUr ≤ 0.1 for small incremental changes. A narrower range of -0.02 ≤ MUr ≤ 0.02 is set for

a small search range. A summary of the EVLNN algorithm’s parameter settings derived

from the Shubert (2D) function evaluation is described in Table 4.4. The parameter tuning

of EVLNN is problem-specific and needs to be fine-tuned for different function

optimization. Nonetheless, the empirical rule-of-thumb derived from Table 4.4 provides a

framework for EVLNN parameter tuning.

Table 4.4 Lesson learned on the EVLNN parameters and settings derived from evaluating the Shubert

(2D) function.

EVLNN

Parameters
Values Empirical Lesson Learned

𝑁𝑃 100, 400, 800 Higher Np values for search landscape with a high number of global

optima.

Gmax 400, 500 A higher value allows sufficient generations for species to evolve and

converge to better solutions.

Ns x * Gopt Gopt is the number of global optima and 1.5 ≤ x ≤ 4.0 with a higher value

of x for multimodal high-dimensional functions. For low Gopt, x is set to

a higher value.

XOp 80% This percentage provides a stable evolutionary process.

XSp 1% to 2% Higher XSp for multimodal functions with multiple global optima. With

higher Ns, XSp needs to reduce accordingly to avoid species extinction.

MUp 20% This percentage provides a stable evolutionary process.

MXp 5% to 60% Higher MXp to avoid stagnation and local minima trap in challenging

multimodal high dimensionality landscape.

MUr -0.1 to 0.1 A narrower range is selected if the search space is small.

ELp 5% This percentage provides a stable evolutionary process.

4.3. Evaluation using Benchmark Test Functions

Many benchmark functions for numerical optimization have been reported in the literature.

However, there is no standard list or set of benchmark functions to validate and compare

the performance of optimization algorithms [203]. In order to evaluate EVLNN’s search

Chapter 4. Modal Training and Comparison 100

abilities, a test suite is compiled to expose EVLNN to a wide variety of problems such as

unimodal, multimodal, separable, non-separable, and multi-dimensional problems. The

problem of function optimization is essentially finding the function's minima (or maxima).

Unimodal test functions have only one global solution in the search landscape, whereas

multimodal test functions have more than one local optimum in the search space. Single

model optimization algorithms are the basis of more complex optimization algorithms such

as multi-objective optimization and constrained optimization [211]. If the landscape is

unimodal, the efficiency of EVLNN for local search can be tested.

Multimodal test functions have multiple global optima or one global optima with many

local minima in the search landscape. They are designed to test the ability of an algorithm

to avoid local minima, often known as “traps.” If an algorithm encounters many minima in

a search space, it could be trapped in one of them. Once trapped in the deceptive minima,

the search algorithm becomes significantly hampered and may not recover by directing the

search away from these deceptive minima to the proper optimal solution. The landscape

modality is essential to test the speciation characteristic of EVLNN and the robustness of

EVLNN’s crossover and mutation strategies for global search. The following equation

shows a general optimization problem,

minimize
𝑥

𝑓(𝑥) (4.6)

where the optima may be a single value or a set of values which 𝑥∗ ∈ 𝐷 for all feasible

points D in a search space.

Separable functions have variables that are independent of each other. Hence each variable

can be independently optimized. On the contrary, non-separable functions have variables

that are interrelated or are not independent. Boyer et al. [212] described that a function of

p variable is separable if it can be written as a sum of p functions of just one variable, that

is,

𝑓(𝑥1, 𝑥2, … , 𝑥𝑝) = ∑ 𝑓𝑖(𝑥𝑖)
𝑝
𝑖=1 (4.7)

Chapter 4. Modal Training and Comparison 101

Separable functions are relatively easier to solve than their non-separable counterpart. Non-

separable functions are problems where a portion of the variables interact amongst

themselves [213]. Separability in the function landscape is thus considered for testing if

EVLNN is capable of dealing with complicated fitness landscapes with mixed variable

separability.

Dimensionality is an important issue in a search landscape. It refers to the number of

variables in the function. The search space increases exponentially as the number of

variables or dimensions increases [214]. Test functions with varying dimensionality could

present problems in such a way that contains few global minima but closely locate them to

the local minima. Such problems are considered for effectively testing EVLNN’s

exploration characteristics and performance around narrow basins in the search space.

There is no fixed number of benchmark functions to test the reliability and performance of

optimization algorithms. Most papers varied from a few up to about 20. Typically, a diverse

test suite is selected to provide a good representation of the variety of unimodal, multimodal,

separable, non-separable, and multi-dimensional problems. Tables 4.5 and 4.6 presents the

test functions employed to evaluate the EVLNN algorithm. These are well-known

optimization benchmark functions [204], [211] ‒ [213] widely used to test out new

optimization algorithms.

Chapter 4. Modal Training and Comparison 102

Table 4.5 Benchmark test functions to evaluate the EVLNN algorithm. d is the number of

dimensions, and Range is the input domain where the function is evaluated and 𝑓
𝑚𝑖𝑛

 is the global minimum.

Test function Description Variable d Range fmin

Unimodal, low dimensionality

𝑓1(𝑥) = 𝑥1
2 + 2𝑥2

2 − 0.3 cos(3𝜋𝑥) − 0.4 cos(4𝜋𝑥2) + 0.7 Bohachevsky N.1 Separable 2 [-10 10] 0

𝑓2(𝑥) = (𝑥1 + 2𝑥2 − 7)
2 + (2𝑥1 + 𝑥2 − 5)

2 Booth Non-separable 2 [-2π 2π] 0

Unimodal, high dimensionality

𝑓3(𝑥) = ∑𝑥𝑖
2

𝑑

𝑖=1

 Sphere Separable 30 [-5.12 5.12] 0

𝑓4(𝑥) = ∑(𝑥𝑖
2)(𝑥𝑖+1

2 +1)(𝑥𝑖+1
2)(𝑥𝑖

2+1)

𝑑−1

𝑖=1

 Brown Non-Separable 30 [-1 4] 0

Multimodal, low dimensionality

𝑓5(𝑥) = −20 exp

(

 −0.2 √
1

𝑑
∑𝑥𝑖

2

𝑑

𝑖=1
)

 − exp (
1

𝑑
∑𝑐𝑜𝑠(2𝜋𝑥𝑖)

𝑑

𝑖=1

) + 20 + 𝑒𝑥𝑝(1) Ackley Separable 2 [-35 35] 0

𝑓6(𝑥) = ∑[100(𝑥𝑖+1 − 𝑥𝑖
2)2 + (1 − 𝑥𝑖)

2]

𝑑

𝑖=1

 Rosenbrock Non-separable 2 [-5 10] 0

Multimodal, high dimensionality

𝑓7(𝑥) = 10𝑑 +∑[𝑥𝑖
2 − 10 cos(2𝜋𝑥𝑖)]

𝑑

𝑖=1

 Rastrigin Separable 30 [-5.12 5.12] 0

𝑓8(𝑥) = 𝑓(𝑥) = 1 +∑
𝑥𝑖
2

4000
−∏cos(

𝑥𝑖

√𝑖
)

𝑑

𝑖=1

 Griewank Non-separable 30 [-100 100] 0

Figure 4.2 illustrates each function's different modality, dimensionality, and separability

aspects.

 Unimodal Multimodal

Figure 4.2 A representative spread of test functions to evaluate EVLNN’s search capability.

 f4 (x) f7 (x)

 f3(x) f8(x)

 f2 (x) f5(x)

 f1(x) f6 (x)

L
o

w

d
im

en
si

o

n
al

it
y

Legend

H
ig

h

d
im

en
si

o

n
al

it
y

Separable

Non-separable

Chapter 4. Modal Training and Comparison 103

The Bohachevsky N.1-2D (f1) function is shaped like a bowl and evaluated on xi ∈ [-10 10],

for all i = 1, 2. The Booth-2D (f2) function has non-separable variables and is evaluated on

xi ∈ [-2𝜋 2𝜋], for all i = 1, 2. The Sphere-30D (f3) function is evaluated on xi ∈ [-5.12 5.12],

for all i = 1, 2, …, 30 with a high dimensionality of 30 variables. The Brown-30D (f4)

function is characterized by fine seesaw edges in the vicinity of the minima. The almost

fractal landscape is extremely challenging to optimize by any global or local optimization

methods. The f4 function is evaluated on xi ∈ [-1 4], for all i = 1, 2, …, 30 with a high

dimensionality of 30 variables. The Ackley-2D (f5) function consists of a global minima

with many local minima evaluated on xi ∈ [-35 35], for all i = 1, 2. The landscape of f5 has

an almost flat outer surface with a large center aperture that plunges to 0 at the minima

position. This landscape presents a risk for optimization algorithms to be trapped in one of

its many local minima. The Rosenbrock-2D (f6) function is evaluated on xi ∈ [-2𝜋 2𝜋], for

all i = 1, 2. The function is characterized by its valley shape landscape where the global

minima lie in a narrow, parabolic valley, and convergence to the minima is difficult [215].

The Rastrigin-30D (f7) function is extremely multimodal. The many local minima are

spaced evenly, forming a highly deceptive landscape for optimization algorithms. The f7

function is evaluated on xi ∈ [-5.12 5.12], for all i = 1, 2, …, 30 with a high dimensionality

of 30 variables. The Griewank-30D (f8) function is characterized by many regularly

distributed local minima, posing a risk to the optimization algorithms trapped in the local

optima. The f8 function is evaluated on xi ∈ [-100 100], for all i = 1, 2, …, 30 with a high

dimensionality of 30 variables.

Single objective problems can be transformed into the dynamic, niching composition as

real-world problems with a complex optimization environment [211]. Table 4.6 is a list of

test functions recommended by the CEC in 2013 and 2015 to test new algorithms [207]

involving multiple satisfactory solutions and a large number of search variables to mimic

the real-world environment. These benchmark test functions are employed in the

experiment to test the search capability of EVLNN. Besides assessing the performance of

EVLNN, these benchmark functions also act as a common platform for comparing EAs

that incorporate niching methods to locate multiple optima, through the definition of

Chapter 4. Modal Training and Comparison 104

standard performance metrics, the maximum number of function evaluations, and accuracy

levels.

Functions f9 – f11 are one dimensional (1D) functions. The Five-Uneven-Peak Trap-1D (f9)

function is evaluated on x ∈ [0 30], characterized by three local optima and two global

optima. The global optima are located at the search space's margin, making the function

difficult to solve. Both the Equal Maxima-1D (f10) and Uneven Decreasing Maxima-1D (f11)

functions are evaluated on x ∈ [0 1]. The Equal Maxima-1D (f10) function is characterized

by five evenly distributed global optima and is designed to test the stability of the niching

method. The Uneven Decreasing Maxima-1D (f11) functions are characterized by one

global optima and four local optima. The 1D test functions are important in studying the

search characteristics of EVLNN. They can also be easily visualized in a 2D plot.

Table 4.6 CEC 2013 and 2015 test functions for evaluating the EVLNN algorithm. d is the number of

dimensions, and Range is the input domain where the function is evaluated and 𝑓
𝑚𝑖𝑛

 is the global minimum.

CEC Benchmark Test Functions

Test function Description Characteristic d Range fmin

𝑓9(𝑥)=

{

80(2.5 − 𝑥) 𝑓𝑜𝑟 0 ≤ 𝑥 ≤ 2.5,

64(𝑥 − 2.5) 𝑓𝑜𝑟 2.5 ≤ 𝑥 ≤ 5.0,

64(7.5 − 𝑥) 𝑓𝑜𝑟 5.0 ≤ 𝑥 ≤ 7.5,

28(𝑥 − 7.5) 𝑓𝑜𝑟 7.5 ≤ 𝑥 ≤ 12.5,

 28(17.5 − 𝑥) 𝑓𝑜𝑟 12.5 ≤ 𝑥 ≤ 17.5,

32(𝑥 − 17.5) 𝑓𝑜𝑟 17.5 ≤ 𝑥 ≤ 22.5,

32(27.5 − 𝑥) 𝑓𝑜𝑟 22.5 ≤ 𝑥 ≤ 27.5,

80(𝑥 − 27.5) 𝑓𝑜𝑟 27.5 ≤ 𝑥 ≤ 30.

Five-Uneven-

Peak Trap

2 global optima,

3 local optima 1 [0 30] 200

𝑓10(𝑥) = 𝑠𝑖𝑛
6(5πx)

Equal

Maxima

5 global optima,

0 local optima 1 [0 1] 1

𝑓11(𝑥) = 𝑒𝑥𝑝 (−2 log(2) (
𝑥 − 0.08

0.854
)
2

) 𝑠𝑖𝑛6 (5π (𝑥
3
4 − 0.05))

Uneven

Decreasing

Maxima

1 global optima,

4 local optima 1 [0 1] 1

𝑓12(𝑥) = 200 − (𝑥1
2 + 𝑥2 − 11)

2 + (𝑥1 + 𝑥2
2 − 7)2 Himmelblau

4 global optima,

0 local optima 2 [-6 6] 200

𝑓13(𝑥) = −4 [(4 − 2.1𝑥1
2 +

𝑥1
4

3
)𝑥1

2 + 𝑥1𝑥2 + (4𝑥2
2 − 4)𝑥2

2]
Six-hump

Camel

2 global optima,

2 local optima 2 [-5 5] -1.0316

𝑓14(𝑥) = −∏ ∑ 𝑗𝑐𝑜𝑠[(𝑗 + 1)𝑥𝑖 + 𝑗]
5
𝑗=1

𝑑
𝑖=1 Shubert

d.3d global optima,

760 local optima

2
[-10 10]d

-186.7309,

3 2709.094

𝑓15(𝑥) =
1

𝑑
∑ sin(10 log(𝑥𝑖))

𝑑

𝑖=1
 Vincent

6d global optima,

0 local optima

2
[0.25 10]d 1

3

𝑓16(𝑥) = −∑ (10 + 9 cos(2𝜋𝑘𝑖𝑥𝑖))
𝑑
𝑖=1)

Modified

Rastrigin

∏ 𝑘𝑖
𝑑
𝑖=1 optima, ki=1

for i=1-3,

0 local optima
2 [0 1]d -2.0

Chapter 4. Modal Training and Comparison 105

The Himmelblau-2D (f12) function has four equal optima, with two closer to each other than

the other 2. Its landscape has 0 local optima and is evaluated on xi ∈ [-6 6], for all i = 1, 2.

The Six-hump Camel-2D (f13) function is characterized by 2 global optima and 2 local

optima, is evaluated on xi ∈ [-6 6], for all i = 1, 2. The inverted Shubert-2D/3D (f14) and the

inverted Vincent-2D/3D (f15) functions are difficult and intriguing. The inverted Shubert-

2D (f14) function is characterized by 760 local optima and 18 global optima in 9 pairs where

each pair is very close to the other, but the distance between each pair is much greater. As

the dimensionality d increases, the number of global optima increases by d.3d. The inverted

Vincent-2D (f15) function has 6d global optima, but unlike the even distances between the

global optima in f14, in the Vincent-2D (f15) function, the global optima have vastly different

spacing between them. In addition to that, the Vincent function has no local optima. The

Modified Rastrigin-2D (f16) function consists of 0 local optima and ∏ 𝑘𝑖
𝑑
𝑖=1 global optima,

where k1=3, and k2=4, for d=2, the number of global optima is 12.

The landscapes of functions f12 – f16 with multiple global optima and zero or more local or

deceptive optima are essential in testing the performance of EVLNN, particularly its

speciation ability in the global search for multiple optimas.

4.3.1. Function Evaluations for f1 to f8

The results from experiments using EVLNN for the benchmark test functions f1 to f8 given

in Table 4.5 are presented in Table 4.7. The peak locations found by EVLNN at various

iterations during the function evaluations of 2D landscapes f1, f2, f5, and f6 are shown in

Figure 4.3. Figures 4.4 and 4.5 display the convergence characteristics of EVLNN for

functions f1 to f8.

From Table 4.7, EVLNN achieved 100% success for PR and SR for Bohachevsky N.1-1D

(f1) and Booth-2D (f2) functions for all 𝜀. It also performed well for the Ackley-2D (f5) and

Rosenbrock-2D (f6) functions, with an overall average of 81.2% and 93.2%, respectively,

for locating the peaks for all 𝜀. Figure 4.3 presents the contour plots of the benchmark

functions Bohachevsky N.1-2D (f1), Booth-2D (f2), Ackley-2D (f5), and Rosenbrock-2D

(f6). The search pattern of EVLNN is illustrated by the red dots whose distribution is traced

Chapter 4. Modal Training and Comparison 106

at the 1st, 10th, 100th, 300th, and 500th iterations. The figure shows that EVLNN had

converged at the optima of these benchmark functions.

For the Sphere-30D (f3) and Brown-30D (f4) functions, EVLNN had 100% success for PR

and SR at accuracy 𝜀 = 1.0E-01 and 𝜀 = 1.0E-02. However, it failed to locate the peaks

where 𝜀 ≤ 1.0E-03. For the Rastrigin-30D (f7) function, EVLNN had 100% success for PR

and SR at 𝜀 = 1.0E-01 but could not locate any peaks beyond the next accuracy level. For

the Griewank-30D (f8) function, EVLNN achieved a PR of 32% at 𝜀 = 1.0E-01, dropping

by an average of 7% at each accuracy level to 4% at 𝜀 = 1.0E-05. Benchmark functions

with high dimensionality caused the size of the chromosome matrix to increase, leading to

a higher number of gene elements to be handled. The crossover process thus became more

complex, making EVLNN less efficient and capable of reaching an optimal result.

Table 4.7 Peak ratios and success rates of EVLNN for test functions f1 to f8.

Accuracy

level, 𝜺

f1

Bohachevsky N.1-2D

f2

Booth-2D

f3

Sphere-30D

f4

Brown-30D

PR SR PR SR PR SR PR SR

1.0E-01 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1.0E-02 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1.0E-03 1.000 1.000 1.000 1.000 0.000 0.000 0.000 0.000

1.0E-04 1.000 1.000 1.000 1.000 0.000 0.000 0.000 0.000

1.0E-05 1.000 1.000 1.000 1.000 0.000 0.000 0.000 0.000

Accuracy

level, 𝜺

f5

Ackley-2D

f6

Rosenbrock-2D

f7

Rastrigin-30D

f8

Griewank-30D

PR SR PR SR PR SR PR SR

1.0E-01 1.000 1.000 1.000 1.000 1.000 1.000 0.320 0.000

1.0E-02 1.000 1.000 0.980 0.980 0.000 0.000 0.220 0.000

1.0E-03 1.000 1.000 0.940 0.940 0.000 0.000 0.140 0.000

1.0E-04 1.000 1.000 0.880 0.880 0.000 0.000 0.080 0.000

1.0E-05 0.060 0.060 0.860 0.860 0.000 0.000 0.040 0.000

Chapter 4. Modal Training and Comparison 107

Iterations

Figure 4.3 Red dots illustrate the search patterns of EVLNN at the 1st, 10th, 100th, 300th, and 500th iterations

of the function evaluations on the 2D landscapes of Bohachevsky N.1-2D (f1), Booth-2D (f2), Ackley-2D

(f5), and Rosenbrock-2D (f6), respectively.

Chapter 4. Modal Training and Comparison 108

Figures 4.4 and 4.5 illustrate the algorithm’s convergence characteristics for functions f1 to

f5 and f6 to f8, respectively. Slower convergence is observed for high dimensionality

functions like the Sphere-30D (f3) (orange dotted plot) and Brown-30D (f4) (purple plot).

EVLNN took about 400 generations and 200 generations, respectively, to reach good

solutions. For the Rastrigin-30D (f7) function (cyan dotted plot) in Figure 4.5, EVLNN

achieved an error value 𝜀 < 0.05 within the first 100 generations; however, beyond this

value, it could not converge to better solutions shown by a prolonged period of ‘stagnation’

from generations 230 onwards.

Figure 4.4 Convergence characteristics of EVLNN algorithm for f1 to f5.

Figure 4.5 Convergence characteristics of EVLNN algorithm for f6 to f8.

Chapter 4. Modal Training and Comparison 109

Table 4.8 compares the PR and SR measurements between EVLNN and PSO, DE, and GA.

Table 4.8 Peak Ratios (PR) and Success Rates (SR) of EVLNN, PSO, DE, and GA.

f1, Bohachevsky

N.1-2D

EVLNN PSO DE GA

PR SR PR SR PR SR PR SR

𝜀 = 1.0E-01 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

𝜀 = 1.0E-02 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

𝜀 = 1.0E-03 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

𝜀 = 1.0E-04 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

𝜀 = 1.0E-05 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

f2, Booth-2D
EVLNN PSO DE GA

PR SR PR SR PR SR PR SR

𝜀 = 1.0E-01 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

𝜀 = 1.0E-02 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

𝜀 = 1.0E-03 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

𝜀 = 1.0E-04 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

𝜀 = 1.0E-05 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

f3, Sphere-30D
EVLNN PSO DE GA

PR SR PR SR PR SR PR SR

𝜀 = 1.0E-01 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

𝜀 = 1.0E-02 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

𝜀 = 1.0E-03 0.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000

𝜀 = 1.0E-04 0.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000

𝜀 = 1.0E-05 0.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000

f4, Brown-30D
EVLNN PSO DE GA

PR SR PR SR PR SR PR SR

𝜀 = 1.0E-01 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

𝜀 = 1.0E-02 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

𝜀 = 1.0E-03 0.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000

𝜀 = 1.0E-04 0.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000

𝜀 = 1.0E-05 0.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000

f5, Ackley-2D

EVLNN PSO DE GA

PR SR PR SR PR SR PR SR

𝜀 = 1.0E-01 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

𝜀 = 1.0E-02 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

𝜀 = 1.0E-03 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

𝜀 = 1.0E-04 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

𝜀 = 1.0E-05 0.060 0.060 1.000 1.000 1.000 1.000 1.000 1.000

f6, Rosenbrock-2D
EVLNN PSO DE GA

PR SR PR SR PR SR PR SR

𝜀 = 1.0E-01 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

𝜀 = 1.0E-02 0.940 0.940 1.000 1.000 1.000 1.000 0.960 0.960

𝜀 = 1.0E-03 0.940 0.940 1.000 1.000 1.000 1.000 0.920 0.920

Chapter 4. Modal Training and Comparison 110

𝜀 = 1.0E-04 0.860 0.860 1.000 1.000 1.000 1.000 0.880 0.880

𝜀 = 1.0E-05 0.820 0.820 1.000 1.000 1.000 1.000 0.860 0.860

f7, Rastrigin-30D
EVLNN PSO DE GA

PR SR PR SR PR SR PR SR

𝜀 = 1.0E-01 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000

𝜀 = 1.0E-02 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

𝜀 = 1.0E-03 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

𝜀 = 1.0E-04 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

𝜀 = 1.0E-05 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

f8, Griewank-30D
EVLNN PSO DE GA

PR SR PR SR PR SR PR SR

𝜀 = 1.0E-01 0.320 0.320 1.000 1.000 1.000 1.000 1.000 1.000

𝜀 = 1.0E-02 0.220 0.220 0.640 0.640 1.000 1.000 0.980 0.980

𝜀 = 1.0E-03 0.140 0.140 0.280 0.280 1.000 1.000 0.920 0.920

𝜀 = 1.0E-04 0.080 0.080 0.280 0.280 1.000 1.000 0.920 0.920

𝜀 = 1.0E-05 0.040 0.040 0.280 0.280 1.000 1.000 0.920 0.920

From Table 4.8, it is seen that the performance of EVLNN is comparable to PSO, DE, and

GA for Bohachevsky N.1-1D (f1) and Booth-2D (f2) functions, where PR and SR are both

at 100% across all 𝜀. For the Rosenbrock-2D (f6) function, PSO and DE performed well,

with 100% of the peaks found at all 𝜀. The performance of EVLNN in these functions is

comparable to GA, with an average PR of 91.2% and 92.4%, respectively, across all 𝜀. For

the Sphere-30D (f3), Brown-30D (f4), and Ackley-2D (f5) functions, the peaks were found

at all 𝜀 by the PSO, DE, and GA.

However, this was not so for EVLNN, which only managed to find all peaks for Sphere-

30D (f3) and Brown-30D (f4) at 𝜀 = 1.0E-02. For the Ackley-2D (f5) function, EVLNN has

achieved an accuracy at 𝜀 = 1.0E-04, whereas PSO, DE, and GA had a higher accuracy at

𝜀 = 1.0E-05. It may be possible that the landscape for f5, with its many local minima around

the global minima, had trapped the EVLNN species preventing them from finding better

solutions. For Rosenbrock-2D (f6) function, EVLNN’s performance is comparable with GA

but loses out to PSO and DE. EVLNN’s less desirable performance in high dimensionality

problems, particularly for functions f3 and f4, is due to increased crossover complexity in

handling larger chromosome matrix sizes. As dimensionality increases, the chromosome

matrix size increases row-wise. This scenario presents a limitation in the search efficiency

of EVLNN during crossover for real parameter optimization. Nonetheless, EVLNN is a

Chapter 4. Modal Training and Comparison 111

neural architecture search algorithm that aims to locate optimal parsimonious structures

that could accurately predict the output of a time-series dataset. Hence the results should

not impact its real-world application in structural optimization for predictions.

Nonetheless, a bright spark for EVLNN is in the Rastrigin-30D (f7) function evaluation. It

also has a high dimensionality of 30 variables. EVLNN was the only algorithm that found

all peaks for the f7 function at accuracy level 𝜀 = 1.0E-01, whereas no peaks were found by

PSO, DE, and GA. It is worth discussing the interesting facts revealed by the superior

results of EVLNN. The main difference in the Rastrigin-30D (f7) function compared to the

other high dimensional functions such as f3 and f4, where EVLNN did not fair well, is that

f7 is hugely multimodal, with many local minima. However, the location of the minima is

regularly distributed, forming a highly deceptive landscape for optimization algorithms. It

is possible that the speciation capability of EVLNN helped navigate the search through this

type of landscape. A similar conclusion was reached for the Shubert-2D (f14) test function,

which has 18 global optima in 9 pairs with many local optima. EVLNN was the only

algorithm that could locate the function peak at 𝜀 = 1.0E-05. Details of the Shubert-2D (f14)

result are discussed in section 4.4.1. In the real world, the strength of EVLNN’s search

algorithm could be applied to detect the source of hotspots (global optima) in data centers

where there are multiple regions of hot spots (local optima) that are close to one another

(multimodal).

For Griewank-30D (f8) function, DE has the best performance, with 100% success in

finding the peaks (PR=1.000) for all runs (SR=1.000) and at all 𝜀. Next are GA, PSO, and

EVLNN, which achieved an average PR of 94.8%, 49.6%, and 14.4%, respectively, at all

𝜀 . As EVLNN is designed for neural architectural search, its application as a function

optimizer had a limited overall performance. However, EVLNN had located the peaks of

functions f1 to f8, demonstrating that the algorithm generalizes better than PSO, DE, and

GA for this set of test functions.

Chapter 4. Modal Training and Comparison 112

Figure 4.6 compares the convergence characteristics of EVLNN with PSO, DE, and GA for

this function. The plots show that EVLNN converged to a lower error, whereas PSO, DE,

and GA were stagnant at a higher error for f7. The trend from these plots suggests that PSO,

DE, and GA would not converge to reasonable solutions even if given a higher number of

iterations.

Figure 4.6 The convergence characteristics of EVLNN, PSO, DE, and GA algorithms for the Rastrigin-

30D (f7) function.

While EVLNN exhibited some weaknesses in high-dimensional problems, it still

outperformed PSO, DE, and GA for the Rastrigin-30D (f7) function by successfully locating

the peak at 𝜀 = 1.0E-01, where these algorithms had failed to do so. EVLNN, as a function

optimizer for f7, had performed well specific to this function landscape.

4.4. Comparative Analysis of other State-of-the-Art EAs

The performance of the EVLNN algorithm was evaluated using test functions for (i) single

optima, multimodal problems, and (ii) multi-optima, multimodal problems in Tables 4.5

and 4.6, respectively. The results for (i) are compared to modern population-based meta-

heuristic algorithms, namely PSO and DE, and the classic GA is used as a reference. These

algorithms generally converge to a single solution and are well-suited compared to

Chapter 4. Modal Training and Comparison 113

EVLNN’s search capability for solving single optima multimodal problems. The results for

(ii) are compared to 21 state-of-the-art EAs from the CEC 2013 and CEC 2015 competitions.

The EAs are presented in Table 4.9.

Table 4.9 State-of-the-art EAs in the CEC 2013 and CEC 2015 competitions.

Niching Algorithms Description
Year of CEC

Competition

1. DE/nrand/1/bin [216] Classic DE algorithm with dynamic and clustering 1 2013

2. DE/nrand/2/bin [216] Classic DE algorithm with dynamic and clustering 2 2013

3. Crowding DE/rand/1/bin [217] Classic DE algorithm extended with the crowding scheme 2013

4. NMMSO&+ [218] Niching Migratory Multi-Swarm Optimizer algorithm 2015

5. N-VMO [219] Niching Variable Mesh Optimization algorithm 2013

6. dADE/nrand/1/bin# [220] Dynamic Archive Niching Differential Evolution Algorithm 1 2013

7. dADE/nrand/2/bin [220] Dynamic Archive Niching Differential Evolution Algorithm 2 2013

8. NEA1 [216] Niching Evolutionary Algorithm 1 2013

9. NEA2#&+ [216] Niching Evolutionary Algorithm 2 2013

10. DECG [221] DE algorithm using crowding and gradient descent 2013

11. DELG [221] DE algorithm using local selection and gradient descent 2013

12. DELS_ajitter [221] DE algorithm using local selection and ajitter global mutation 2013

13. CMA-ES# [222] Covariance matrix adaptation evolution strategy 2013

14. iPOP-CMA-ES [223] CMA-ES with increasing population size 2013

15. ANSGAII [224] NSGAII with variable-space niching 2013

16. PNA-NSGAII [224] Parameterless niching assisted NSGAII 2013

17. LSEAEA [225]
Localised search evolutionary algorithm using EAs for local

search
2015

18. LSEAGP
&+ [226] LSEA using Gaussian process as its local search mechanism 2015

19. ALNM [227] Active Learning Based Niching Method 2015

20. MEA [228] Multinational Evolutionary Algorithm 2015

21. MSSPSO [229] Multi-Sub-Swarm Particle Swarm Optimisation algorithm 2015

#Top three winners of CEC 2013
&Top three winners of CEC 2015
+Top three winners of the overall CEC 2013 and CEC 2015

According to the competition ranking [204] [205], the top-performing optimizer in the CEC

2013 competition is the NEA2 algorithm proposed by Preuss [216]. The NEA2 hybridizes

the CMA-ES algorithm with a control strategy that employs a simple heuristic to detect

different search spaces and avoid multiple local searches in the same area. The

dADE/nrand/1 algorithm proposed by Epitropakis et al. [220] came in second. The

algorithm enhances the classic DE mutation strategies with local information from the

current population to efficiently locate and maintain global optima. The classic CMA-ES

Chapter 4. Modal Training and Comparison 114

[222] was ranked third in the same competition. According to [216], the CMA-ES is likely

the best method in Evolutionary Computation (EC) field. The algorithm uses a ‘restart’

strategy to detect stagnation by setting up a new population in a different area in the search

space.

The top-performing optimizer in the CEC 2015 competition is the NMMSO algorithm

proposed by Fieldsend [218]. The sub-swarms in NMMSO provided the niching

mechanism to optimize separate local modes dynamically. The NMMSO was also the

winner averaged over the two competitions, followed by the NEA2, LSEAGP [226], and

LSEAEA [225]. The LSEAGP employs a surrogate-based approach that uses the Gaussian

correlation model, also known as a Gaussian Process, from the MATLAB Kriging toolbox

[230] as a local surrogate model to automatically adapt to the number of niches depending

on the characteristics of the landscape discovered. Distinct from the LSEAGP, the LSEAEA

presents exploitative hill-climbing EAs rather than the surrogate models to drive the local

search [225]. The test results and comparative analysis are discussed in the later sections.

4.4.1. Function Evaluations for f9 to f16

Table 4.10 presents the PR and SR results achieved by EVLNN for the benchmark test

functions listed in Table 4.6 evaluated for all five levels of accuracy. From Table 4.10,

EVLNN has achieved 100% success in locating the peaks for the Uneven Decreasing

Maxima-1D (f11) and Six-hump Camel Back-2D (f13) functions for all 𝜀. It also attained an

average PR of 79.4% and 84.3% for Equal Maxima-1D (f10) and Himmelblau-2D (f12)

functions, respectively, for all 𝜀. EVLNN has done moderately well for Five-Uneven-Peak

Trap-1D (f9), Shubert-2D (f14), and Modified Rastrigin-2D (f16), with an average PR at

45.1%, 44.6%, and 59.1%, respectively. However, EVLNN had performed poorly with

Vincent-2D (f15), Shubert-3D (f14), and Vincent-3D (f15), with an average PR of 37.3%,

1.24%, and 8.8%, respectively. A common characteristic of these functions, f15 (2D), f14

(3D), and f15 (3D), is that they have a high number of global optima, Gopt at 36, 81, and 216,

respectively. Given that Gopt>>1, with reference to Table 4.2 and Equation 4.5, Ns, the

number of species will be large. At a fixed budget MaxFE, the average species size
𝑁𝑝

𝑁𝑠

Chapter 4. Modal Training and Comparison 115

would be small. A small
𝑁𝑝

𝑁𝑠
 might not contain sufficient genetic variability within the

EVLNN species to generate good solutions during the crossover and mutation process for

that species.

Table 4.10 Peak ratios and success rates of EVLNN for test functions f9 to f16.

Accuracy

level, 𝜺

f9

Five-Uneven-

Peak Trap-1D

f10

Equal

Maxima-1D

f11
Uneven Decreasing

Maxima-1D

f12

Himmelblau-

2D

f13

Six-hump Camel

Back-2D

PR SR PR SR PR SR PR SR PR SR

1.0E-01 0.850 0.700 0.836 0.360 1.000 1.000 0.905 0.620 1.000 1.000

1.0E-02 0.830 0.660 0.836 0.360 1.000 1.000 0.905 0.620 1.000 1.000

1.0E-03 0.470 0.200 0.828 0.360 1.000 1.000 0.905 0.620 1.000 1.000

1.0E-04 0.100 0.000 0.788 0.300 1.000 1.000 0.885 0.540 1.000 1.000

1.0E-05 0.003 0.000 0.684 0.160 1.000 1.000 0.615 0.100 1.000 1.000

Accuracy

level, 𝜺

f14

Shubert-2D

f15

Vincent-2D

f14

Shubert-3D

f15

Vincent-3D

f16

Modified

Rastrigin-2D

PR SR PR SR PR SR PR SR PR SR

1.0E-01 0.504 0.000 0.387 0.000 0.057 0.000 0.140 0.000 0.878 0.140

1.0E-02 0.504 0.000 0.387 0.000 0.005 0.000 0.101 0.000 0.872 0.140

1.0E-03 0.498 0.000 0.387 0.000 0.000 0.000 0.091 0.000 0.708 0.000

1.0E-04 0.450 0.000 0.380 0.000 0.000 0.000 0.071 0.000 0.373 0.000

1.0E-05 0.276 0.000 0.338 0.000 0.000 0.000 0.037 0.000 0.125 0.000

For function f9 at accuracy 𝜀 = 1.0E-05, it is observed that EVLNN produced a weak

performance with a PR of 0.3%. One possible explanation for EVLNN’s low PR of 0.3%

for function f9 may be attributed to EVLNN’s stochastic approach to solving large-scale

optimization problems while ensuring generality.

Figures 4.7 and 4.8 examine the algorithm’s search pattern on the contour map of functions

f9 to f13 and f14 to f16, respectively. Figure 4.7 consists of 1D and 2D multimodal functions

f9 to f13, and Figure 4.8 consists of scalable 2D multimodal functions f14 to f16. The search

patterns of EVLNN are illustrated by the red dots whose distribution is traced at the 1st,

100th, 200th, 400th, and 500th iterations of the function evaluations on these landscapes.

These figures show most of the peak locations returned by EVLNN during the function by

the 100th generation.

Chapter 4. Modal Training and Comparison 116

Iterations

Figure 4.7 The search patterns of EVLNN for functions f9, f10, f11, f12, and f13.

In Figure 4.8, the Shubert-2D (f14) function shows nine pairs of optima distributed evenly

apart. In this landscape, EVLNN can converge to about half of them, although some species

appeared trapped in the local optima located around the global optima. For the Vincent-2D

(f15) function, out of the 36 global optima unevenly distributed on the landscape, EVLNN

can locate approximately half of them. For the Modified Rastrigin-2D (f16) function,

EVLNN can locate all the 12 basins with high PR at 87.8%, 87.2%, and 70.8% for accuracy

at 𝜀 = 1.0E-1 to 1.0E-3, respectively, but lower PR at 37.3% and 12.5% for 𝜀 ={1.0E-4,

1.0E-5}, respectively.

Chapter 4. Modal Training and Comparison 117

Iterations

1 100 200 400 500

Figure 4.8 The search patterns of EVLNN for functions f14, f15, and f16, respectively.

Figures 4.9 and 4.10 examine the convergence characteristics of EVLNN for functions f9

to f13 and f14 to f16, respectively. For the Shubert-3D (f14) function (dotted lines in orange

color), EVLNN took more than 250 iterations to locate better solutions. The iterations

before were a period of ‘stagnation’ between generations 100 to 250. In evaluating the

Shubert-3D (f14) function, small species sizes may have caused the lack of genetic variation,

failing to produce sufficient ‘new alleles’ for the population.

Chapter 4. Modal Training and Comparison 118

Figure 4.9 Convergence characteristics of EVLNN for functions f9 to f13

Figure 4.10 Convergence characteristics of EVLNN for functions f14 to f16

The performance of EVLNN is compared to the results of a wide range of multimodal

optimization algorithms listed in Table 4.8 for 𝜀 = 1.0E-03 to 1.0E-5. Table 4.11 shows that

the state-of-the-art niching algorithms have superior performance, but EVLNN is also

competitive. For example, EVLNN’s performance is on par with all the algorithms for the

Uneven Decreasing Maxima-1D (f11) and Six-hump Camel-2D (f13) functions with an

average PR score of 100% for all 𝜀 . For the Five-Uneven-Peak Trap-1D (f9) function,

Chapter 4. Modal Training and Comparison 119

EVLNN performed better than Crowding DE/rand/1/bin and MEA for 𝜀 = 1.0E-03 and

better than DE/rand/1/bin for 𝜀 = 1.0E-05. For the Equal Maxima-1D (f10) function,

EVLNN edged out iPOP-CMA-ES for 𝜀 = 1.0E-03 and 𝜀 = 1.0E-04. For the Himmelblau-

2D (f12) function, EVLNN outperformed iPOP-CMA-ES, ANSGAII, MEA, and MSSPSO

at 𝜀 = 1.0E-03 and 𝜀 = 1.0E-04 and bettered ANSGAII, MEA, and MSSPSO at 𝜀 = 1.0E-

05.

It is interesting to note that for the Shubert-2D (f14) function, EVLNN outperformed all the

algorithms at 𝜀 = 1.0E-05, with a PR of 27.6%. None of the state-of-the-art EAs can locate

the peak at this accuracy level. Examining the landscape of f14 (see Figure 4.8) shows that

the landscape is characterized by many local optima, with 18 global optima positioned in 9

pairs. The individual pairs are closely located together, but the distance between the pairs

is much more significant and evenly distributed. A similar conclusion was reached for

Rastrigin-30D (f7), where EVLNN was the only algorithm that found all peaks for the f7

function at accuracy level 𝜀 = 1.0E-01. The results highlight the strength of EVLNN in

locating global optima in a landscape where basins are close to each other. As the algorithm

does not restrict species flocking to a basin if basins exist close to each other, the probability

of EVLNN successfully locating the closely paired basins will be high.

In a real-world scenario, EVLNN can be applied to detect the source of hotspots (global

optima) in data centers where there are multiple regions of hot spots (local optima) close to

one another (multimodal). EVLNN can also be used to locate the region with the highest

solar irradiance (global optima) receiving more solar irradiation over a nearby region (local

optima) with the highest potential to produce solar energy.

For the Vincent-2D (f15) function, EVLNN’s performance surpassed DE/nrand/1/bin,

DE/nrand/2/bin, iPOP-CMA-ES, and MSSPSO at 𝜀 = 1.0E-03 and 𝜀 = 1.0E-04, and

DE/nrand/2/bin, iPOP-CMA-ES, MEA and MSSPSO at 𝜀 = 1.0E-05. For the Vincent-3D

(f15) function, EVLNN outdid DE/nrand/2/bin, DELG, iPOP-CMA-ES and MSSPSO at 𝜀

= 1.0E-03 and 𝜀 = 1.0E-04 and DELG, iPOP-CMA-ES and MSSPSO at 𝜀 = 1.0E-05. For

the Modified Rastrigin-2D (f16) function, EVLNN’s performance topped iPOP-CMA-ES

and MSSPSO at 𝜀 = 1.0E-03 and 𝜀 = 1.0E-04, and MSSPSO at 𝜀 = 1.0E-05.

Chapter 4. Modal Training and Comparison 120

Table 4.11 Comparison of Peak Ratios (PR) and Success Rates (SR) between EVLNN and the other state-

of-the-art niching algorithms.

1. Function f9, Five-Uneven-

Peak Trap

𝜀 = 1.0E-03 𝜀 = 1.0E-04 𝜀 = 1.0E-05

PR SR PR SR PR SR

EVLNN 0.470 0.140 0.100 0.000 0.003 0.000

DE/nrand/1/bin 1.000 1.000 1.000 1.000 1.000 1.000

DE/nrand/2/bin 1.000 1.000 1.000 1.000 1.000 1.000

Crowding DE/rand/1/bin 0.090 0.000 0.020 0.000 0.000 0.000

NMMSO*&+ 1.000 1.000 1.000 1.000 1.000 1.000

N-VMO 1.000 1.000 1.000 1.000 1.000 1.000

dADE/nrand/1/bin# 1.000 1.000 1.000 1.000 1.000 1.000

dADE/nrand/2/bin 1.000 1.000 1.000 1.000 1.000 1.000

NEA1 1.000 1.000 1.000 1.000 1.000 1.000

NEA2#&+ 1.000 1.000 1.000 1.000 1.000 1.000

DECG 1.000 1.000 1.000 1.000 1.000 1.000

DELG 1.000 1.000 1.000 1.000 1.000 1.000

DELS_ajitter 1.000 1.000 1.000 1.000 1.000 1.000

CMA-ES# 1.000 1.000 1.000 1.000 1.000 1.000

iPOP-CMA-ES 0.780 0.560 0.780 0.560 0.780 0.560

ANSGAII 0.930 0.860 0.930 0.860 0.900 0.800

PNA-NSGAII 1.000 1.000 1.000 1.000 1.000 1.000

LSEAEA
* 1.000 1.000 1.000 1.000 1.000 1.000

LSEAGP
*&+ 1.000 1.000 1.000 1.000 1.000 1.000

ALNM* 1.000 1.000 1.000 1.000 1.000 1.000

MEA* 0.050 0.000 0.050 0.000 0.050 0.000

MSSPSO* 1.000 1.000 1.000 1.000 1.000 1.000

2. Function f10 Equal Maxima
𝜀 = 1.0E-03 𝜀 = 1.0E-04 𝜀 = 1.0E-05

PR SR PR SR PR SR

EVLNN 0.828 0.360 0.788 0.300 0.684 0.160

DE/nrand/1/bin 1.000 1.000 1.000 1.000 1.000 1.000

DE/nrand/2/bin 1.000 1.000 1.000 1.000 1.000 1.000

Crowding DE/rand/1/bin 1.000 1.000 1.000 1.000 1.000 1.000

NMMSO*&+ 1.000 1.000 1.000 1.000 1.000 1.000

N-VMO 1.000 1.000 1.000 1.000 1.000 1.000

dADE/nrand/1/bin# 1.000 1.000 1.000 1.000 1.000 1.000

dADE/nrand/2/bin 1.000 1.000 1.000 1.000 1.000 1.000

NEA1 1.000 1.000 1.000 1.000 1.000 1.000

NEA2#&+ 1.000 1.000 1.000 1.000 1.000 1.000

DECG 1.000 1.000 1.000 1.000 1.000 1.000

DELG 1.000 1.000 1.000 1.000 1.000 1.000

DELS_ajitter 1.000 1.000 1.000 1.000 1.000 1.000

CMA-ES# 1.000 1.000 1.000 1.000 1.000 1.000

iPOP-CMA-ES 0.772 0.180 0.752 0.160 0.732 0.140

ANSGAII 1.000 1.000 1.000 1.000 1.000 1.000

PNA-NSGAII 1.000 1.000 1.000 1.000 1.000 1.000

LSEAEA
* 1.000 1.000 1.000 1.000 1.000 1.000

LSEAGP
*&+ 1.000 1.000 1.000 1.000 1.000 1.000

ALNM* 1.000 1.000 1.000 1.000 1.000 1.000

MEA* 1.000 1.000 0.996 0.980 0.980 0.900

MSSPSO* 1.000 1.000 1.000 1.000 0.952 0.760

Chapter 4. Modal Training and Comparison 121

3. Function f11 Uneven

Decreasing Maxima

𝜀 = 1.0E-03 𝜀 = 1.0E-04 𝜀 = 1.0E-05

PR SR PR SR PR SR

EVLNN 1.000 1.000 1.000 1.000 1.000 1.000

DE/nrand/1/bin 1.000 1.000 1.000 1.000 1.000 1.000

DE/nrand/2/bin 1.000 1.000 1.000 1.000 1.000 1.000

Crowding DE/rand/1/bin 1.000 1.000 1.000 1.000 1.000 1.000

NMMSO*&+ 1.000 1.000 1.000 1.000 1.000 1.000

N-VMO 1.000 1.000 1.000 1.000 1.000 1.000

dADE/nrand/1/bin# 1.000 1.000 1.000 1.000 1.000 1.000

dADE/nrand/2/bin 1.000 1.000 1.000 1.000 1.000 1.000

NEA1 1.000 1.000 1.000 1.000 1.000 1.000

NEA2#&+ 1.000 1.000 1.000 1.000 1.000 1.000

DECG 1.000 1.000 1.000 1.000 1.000 1.000

DELG 1.000 1.000 1.000 1.000 1.000 1.000

DELS_ajitter 1.000 1.000 1.000 1.000 1.000 1.000

CMA-ES# 1.000 1.000 1.000 1.000 1.000 1.000

iPOP-CMA-ES 1.000 1.000 1.000 1.000 1.000 1.000

ANSGAII 1.000 1.000 1.000 1.000 1.000 1.000

PNA-NSGAII 1.000 1.000 1.000 1.000 1.000 1.000

LSEAEA
* 1.000 1.000 1.000 1.000 1.000 1.000

LSEAGP
*&+ 1.000 1.000 1.000 1.000 1.000 1.000

ALNM* 1.000 1.000 1.000 1.000 1.000 1.000

MEA* 1.000 1.000 1.000 1.000 0.960 0.960

MSSPSO* 1.000 1.000 1.000 1.000 0.940 0.940

4. Function f12 Himmelblau
𝜀 = 1.0E-03 𝜀 = 1.0E-04 𝜀 = 1.0E-05

PR SR PR SR PR SR

EVLNN 0.905 0.620 0.885 0.540 0.615 0.100

DE/nrand/1/bin 1.000 1.000 1.000 1.000 1.000 1.000

DE/nrand/2/bin 1.000 1.000 1.000 1.000 1.000 1.000

Crowding DE/rand/1/bin 1.000 1.000 0.995 0.980 0.420 0.040

NMMSO*&+ 1.000 1.000 1.000 1.000 1.000 1.000

N-VMO 1.000 1.000 1.000 1.000 1.000 1.000

dADE/nrand/1/bin# 1.000 1.000 1.000 1.000 1.000 1.000

dADE/nrand/2/bin 1.000 1.000 1.000 1.000 1.000 1.000

NEA1 1.000 1.000 1.000 1.000 0.990 0.960

NEA2#&+ 1.000 1.000 1.000 1.000 0.990 0.960

DECG 1.000 1.000 1.000 1.000 1.000 1.000

DELG 1.000 1.000 1.000 1.000 1.000 1.000

DELS_ajitter 1.000 1.000 1.000 1.000 1.000 1.000

CMA-ES# 1.000 1.000 1.000 1.000 0.990 0.960

iPOP-CMA-ES 0.725 0.160 0.725 0.160 0.725 0.160

ANSGAII 0.470 0.020 0.320 0.000 0.155 0.000

PNA-NSGAII 0.995 0.980 0.985 0.960 0.805 0.420

LSEAEA
* 1.000 1.000 1.000 1.000 1.000 1.000

LSEAGP
*&+ 1.000 1.000 1.000 1.000 1.000 1.000

ALNM* 1.000 1.000 1.000 1.000 1.000 1.000

MEA* 0.055 0.000 0.005 0.000 0.005 0.000

MSSPSO* 0.010 0.000 0.005 0.000 0.000 0.000

5. Function f13 Six-hump

Camel

𝜀 = 1.0E-03 𝜀 = 1.0E-04 𝜀 = 1.0E-05

PR SR PR SR PR SR

EVLNN 1.000 1.000 1.000 1.000 1.000 1.000

DE/nrand/1/bin 1.000 1.000 1.000 1.000 1.000 1.000

Chapter 4. Modal Training and Comparison 122

DE/nrand/2/bin 1.000 1.000 1.000 1.000 1.000 1.000

Crowding DE/rand/1/bin 1.000 1.000 1.000 1.000 1.000 1.000

NMMSO*&+ 1.000 1.000 1.000 1.000 1.000 1.000

N-VMO 1.000 1.000 1.000 1.000 1.000 1.000

dADE/nrand/1/bin# 1.000 1.000 1.000 1.000 1.000 1.000

dADE/nrand/2/bin 1.000 1.000 1.000 1.000 1.000 1.000

NEA1 1.000 1.000 1.000 1.000 1.000 1.000

NEA2#&+ 1.000 1.000 1.000 1.000 1.000 1.000

DECG 1.000 1.000 1.000 1.000 1.000 1.000

DELG 1.000 1.000 1.000 1.000 1.000 1.000

DELS_ajitter 1.000 1.000 1.000 1.000 1.000 1.000

CMA-ES# 1.000 1.000 1.000 1.000 1.000 1.000

iPOP-CMA-ES 1.000 1.000 1.000 1.000 1.000 1.000

ANSGAII 0.940 0.880 0.900 0.800 0.680 0.380

PNA-NSGAII 1.000 1.000 1.000 1.000 1.000 1.000

LSEAEA
* 1.000 1.000 1.000 1.000 1.000 1.000

LSEAGP
*&+ 1.000 1.000 1.000 1.000 1.000 1.000

ALNM* 1.000 1.000 1.000 1.000 1.000 1.000

MEA* 1.000 1.000 0.640 0.420 0.070 0.000

MSSPSO* 0.650 0.460 0.050 0.000 0.000 0.000

6. Function f14 Shubert (2D)
𝜀 = 1.0E-03 𝜀 = 1.0E-04 𝜀 = 1.0E-05

PR SR PR SR PR SR

EVLNN 0.498 0.000 0.450 0.000 0.276 0.000

DE/nrand/1/bin 0.440 0.000 0.434 0.000 0.000 0.000

DE/nrand/2/bin 0.669 0.000 0.669 0.000 0.000 0.000

Crowding DE/rand/1/bin 0.972 0.740 0.107 0.000 0.000 0.000

NMMSO*&+ 0.998 0.960 0.997 0.940 0.000 0.000

N-VMO 0.940 0.360 0.670 0.000 0.000 0.000

dADE/nrand/1/bin# 1.000 1.000 0.984 0.780 0.000 0.000

dADE/nrand/2/bin 1.000 1.000 0.833 0.020 0.000 0.000

NEA1 0.622 0.000 0.612 0.000 0.000 0.000

NEA2#&+ 0.958 0.440 0.950 0.380 0.000 0.000

DECG 0.997 0.940 0.997 0.940 0.000 0.000

DELG 0.993 0.880 0.993 0.880 0.000 0.000

DELS_ajitter 1.000 1.000 0.999 0.980 0.000 0.000

CMA-ES# 0.782 0.020 0.776 0.020 0.000 0.000

iPOP-CMA-ES 0.094 0.000 0.090 0.000 0.000 0.000

ANSGAII 0.041 0.000 0.001 0.000 0.000 0.000

PNA-NSGAII 0.523 0.000 0.473 0.000 0.000 0.000

LSEAEA
* 0.996 0.920 0.993 0.880 0.000 0.000

LSEAGP
*&+ 0.997 0.960 0.996 0.940 0.000 0.000

ALNM* 1.000 1.000 1.000 1.000 0.000 0.000

MEA* 0.004 0.000 0.000 0.000 0.000 0.000

MSSPSO* 0.000 0.000 0.000 0.000 0.000 0.000

7. Function f15 Vincent (2D)
𝜀 = 1.0E-03 𝜀 = 1.0E-04 𝜀 = 1.0E-05

PR SR PR SR PR SR

EVLNN 0.387 0.000 0.380 0.000 0.338 0.000

DE/nrand/1/bin 0.349 0.000 0.337 0.000 0.333 0.000

DE/nrand/2/bin 0.276 0.000 0.276 0.000 0.275 0.000

Crowding DE/rand/1/bin 0.715 0.000 0.709 0.000 0.716 0.000

NMMSO*&+ 1.000 1.000 1.000 1.000 1.000 1.000

N-VMO 0.945 0.140 0.901 0.000 0.806 0.000

dADE/nrand/1/bin# 0.892 0.020 0.823 0.000 0.732 0.000

Chapter 4. Modal Training and Comparison 123

dADE/nrand/2/bin 0.872 0.000 0.757 0.000 0.644 0.000

NEA1 0.691 0.000 0.657 0.000 0.640 0.000

NEA2#&+ 0.918 0.060 0.914 0.040 0.911 0.040

DECG 0.659 0.000 0.656 0.000 0.646 0.000

DELG 0.582 0.000 0.582 0.000 0.582 0.000

DELS_ajitter 0.467 0.000 0.462 0.000 0.452 0.000

CMA-ES# 0.521 0.000 0.518 0.000 0.516 0.000

iPOP-CMA-ES 0.112 0.000 0.111 0.000 0.111 0.000

ANSGAII 0.668 0.000 0.509 0.000 0.346 0.000

PNA-NSGAII 0.726 0.000 0.709 0.000 0.683 0.000

LSEAEA
* 1.000 1.000 1.000 1.000 1.000 1.000

LSEAGP
*&+ 1.000 1.000 1.000 1.000 1.000 1.000

ALNM* 0.822 0.000 0.811 0.000 0.792 0.000

MEA* 0.402 0.000 0.383 0.000 0.302 0.000

MSSPSO* 0.202 0.000 0.030 0.000 0.004 0.000

8. Function f14 Shubert (3D)
𝜀 = 1.0E-03 𝜀 = 1.0E-04 𝜀 = 1.0E-05

PR SR PR SR PR SR

EVLNN 0.000 0.000 0.000 0.000 0.000 0.000

DE/nrand/1/bin 0.113 0.000 0.112 0.000 0.113 0.000

DE/nrand/2/bin 0.365 0.000 0.365 0.000 0.363 0.000

Crowding DE/rand/1/bin 0.716 0.000 0.290 0.000 0.038 0.000

NMMSO*&+ 0.983 0.180 0.981 0.180 0.980 0.180

N-VMO 0.270 0.000 0.198 0.000 0.027 0.000

dADE/nrand/1/bin# 0.545 0.000 0.431 0.000 0.356 0.000

dADE/nrand/2/bin 0.724 0.000 0.660 0.000 0.613 0.000

NEA1 0.059 0.000 0.055 0.000 0.054 0.000

NEA2#&+ 0.240 0.000 0.240 0.000 0.239 0.000

DECG 0.309 0.000 0.308 0.000 0.224 0.000

DELG 0.611 0.000 0.611 0.000 0.510 0.000

DELS_ajitter 0.000 0.000 0.000 0.000 0.000 0.000

CMA-ES# 0.115 0.000 0.115 0.000 0.115 0.000

iPOP-CMA-ES 0.020 0.000 0.020 0.000 0.020 0.000

ANSGAII 0.000 0.000 0.000 0.000 0.000 0.000

PNA-NSGAII 0.310 0.000 0.275 0.000 0.252 0.000

LSEAEA
* 0.893 0.000 0.886 0.000 0.886 0.000

LSEAGP
*&+ 1.000 1.000 1.000 1.000 1.000 1.000

ALNM* 0.822 0.000 0.811 0.000 0.792 0.000

MEA* 0.000 0.000 0.000 0.000 0.000 0.000

MSSPSO* 0.000 0.000 0.000 0.000 0.000 0.000

9. Function f15 Vincent (3D)
𝜀 = 1.0E-03 𝜀 = 1.0E-04 𝜀 = 1.0E-05

PR SR PR SR PR SR

EVLNN 0.091 0.000 0.071 0.000 0.037 0.000

DE/nrand/1/bin 0.099 0.000 0.095 0.000 0.094 0.000

DE/nrand/2/bin 0.066 0.000 0.066 0.000 0.065 0.000

Crowding DE/rand/1/bin 0.274 0.000 0.274 0.000 0.270 0.000

NMMSO*&+ 0.920 0.000 0.917 0.000 0.913 0.000

N-VMO 0.399 0.000 0.275 0.000 0.192 0.000

dADE/nrand/1/bin# 1.000 1.000 1.000 1.000 1.000 1.000

dADE/nrand/2/bin 0.479 0.000 0.335 0.000 0.260 0.000

NEA1 0.407 0.000 0.381 0.000 0.359 0.000

NEA2#&+ 0.584 0.000 0.581 0.000 0.579 0.000

DECG 0.242 0.000 0.240 0.000 0.237 0.000

DELG 0.012 0.000 0.012 0.000 0.012 0.000

Chapter 4. Modal Training and Comparison 124

DELS_ajitter 0.157 0.000 0.157 0.000 0.154 0.000

CMA-ES# 0.274 0.000 0.273 0.000 0.272 0.000

iPOP-CMA-ES 0.027 0.000 0.027 0.000 0.026 0.000

ANSGAII 0.345 0.000 0.140 0.000 0.038 0.000

PNA-NSGAII 0.318 0.000 0.298 0.000 0.276 0.000

LSEAEA
* 1.000 1.000 1.000 1.000 1.000 1.000

LSEAGP
*&+ 0.744 0.000 0.668 0.000 0.556 0.000

ALNM* 0.289 0.000 0.264 0.000 0.150 0.000

MEA* 0.130 0.000 0.112 0.000 0.054 0.000

MSSPSO* 0.001 0.000 0.000 0.000 0.000 0.000

10. Function f16 Modified

Rastrigin (2D)

𝜀 = 1.0E-03 𝜀 = 1.0E-04 𝜀 = 1.0E-05

PR SR PR SR PR SR

EVLNN 0.708 0.000 0.373 0.000 0.125 0.000

DE/nrand/1/bin 0.998 0.998 1.000 1.000 1.000 1.000

DE/nrand/2/bin 1.000 1.000 1.000 1.000 1.000 1.000

Crowding DE/rand/1/bin 1.000 1.000 1.000 1.000 1.000 1.000

NMMSO*&+ 1.000 1.000 1.000 1.000 1.000 1.000

N-VMO 1.000 1.000 1.000 1.000 0.968 0.660

dADE/nrand/1/bin# 0.981 0.280 0.967 0.140 0.947 0.020

dADE/nrand/2/bin 1.000 1.000 1.000 1.000 1.000 1.000

NEA1 0.983 0.840 0.973 0.740 0.960 0.660

NEA2#&+ 1.000 1.000 0.988 0.860 0.980 0.760

DECG 1.000 1.000 1.000 1.000 1.000 1.000

DELG 1.000 1.000 1.000 1.000 1.000 1.000

DELS_ajitter 1.000 1.000 1.000 1.000 1.000 1.000

CMA-ES# 0.998 0.980 0.992 0.900 0.978 0.760

iPOP-CMA-ES 0.343 0.000 0.313 0.000 0.303 0.000

ANSGAII 0.998 0.980 0.953 0.580 0.695 0.060

PNA-NSGAII 1.000 1.000 1.000 1.000 1.000 1.000

LSEAEA
* 1.000 1.000 1.000 1.000 1.000 1.000

LSEAGP
*&+ 1.000 1.000 1.000 1.000 1.000 1.000

ALNM* 1.000 1.000 1.000 1.000 1.000 1.000

MEA* 0.990 0.900 0.965 0.760 0.707 0.100

MSSPSO* 0.048 0.000 0.007 0.000 0.000 0.000
*Algorithms participated in the CEC 2015 Competition. The rest are in the CEC 2013 Competition.
#Top three winners of CEC 2013
&Top three winners of CEC 2015
+Top three winners of CEC 2013 and CEC 2015 combined

A re-rank is performed to assess the position of EVLNN against the state-of-the-art niching

algorithms based on the PR scores at three accuracy levels, 𝜀 = {10-3, 10-4, 10-5} averaged

over the ten multimodal benchmark functions f9 to f16 including f14 (3D) and f15 (3D). The

ranking result is shown in Table 4.12.

Chapter 4. Modal Training and Comparison 125

Table 4.12 Overall performance of EVLNN is ranked together with the state-of-the-art niching algorithms

from the CEC 2013 and CEC 2015 competitions based on the average PR score at three accuracy levels, 𝜀 =

{10-3, 10-4, 10-5} over ten multimodal benchmark functions f9 to f16.

S/N Algorithms
Statistics for PR

Rank
Mean Std Dev

1 EVLNN 0.500 0.369 19

2 DE/nrand/1/bin 0.684 0.398 16

3 DE/nrand/2/bin 0.715 0.374 15

4 Crowding DE/rand/1/bin 0.654 0.394 17

5 NMMSO 0.956 0.179 1

6 N-VMO 0.786 0.339 8

7 dADE/nrand/1/bin 0.889 0.238 4

8 dADE/nrand/2/bin 0.839 0.262 6

9 NEA1 0.748 0.344 12

10 NEA2 0.836 0.287 7

11 DECG 0.784 0.329 9

12 DELG 0.783 0.346 10

13 DELS_ajitter 0.728 0.400 14

14 CMA-ES 0.741 0.352 13

15 iPOP-CMA-ES 0.480 0.390 20

16 ANSGAII 0.565 0.400 18

17 PNA-NSGAII 0.754 0.318 11

18 LSEAEA 0.955 0.180 2

19 LSEAGP 0.932 0.203 3

20 ALNM 0.852 0.279 5

21 MEA 0.397 0.425 21

22 MSSPSO 0.330 0.447 22

Based on the average PR score at three accuracy levels, 𝜀 = {10-3, 10-4, 10-5} over ten

multimodal benchmark functions f9 to f16, the overall performance of EVLNN is ranked 19

out of 22 algorithms with an average PR score of 0.500 and a standard deviation of 0.369.

The top three algorithms are NMMSO, LSEAEA, and LSEAGP. The bottom three are iPOP-

CMA-ES, MEA, and MSSPSO.

As observed, the performance of EVLNN in this set of benchmark tests is relatively weaker

than the other state-of-the-art EAs presented in the CEC 2013 and CEC 2015 competitions.

It is important to note that the CEC algorithms are designed for the competition focusing

on real-parameter optimization, whereas EVLNN is a parsimonious ANN built for

forecasting. The CEC algorithms performed better as they are tailored to lower or higher

dimension problems, and the algorithms’ parameters need to be re-tuned in case of different

benchmark functions [231]. On the other hand, the objective of EVLNN is to evolve

Chapter 4. Modal Training and Comparison 126

parsimonious ANN models that result in improved generalization and interpretability for

practical applications. This distinct difference between EVLNN and the compared CEC

algorithms lies in the nature of the problem.

The CEC test functions are well-known benchmarks in the evolutionary computing

research community, and it serves as a gold standard for search algorithm design and

comparison. The functions are well-designed and are typically unconstrained with a

multimodal landscape consisting of minima, optima, and saddle points. The stringent

standard presented by the CEC test functions with their parameter settings set a high

benchmark for comparing different niching methods. In the algorithm design process, the

strength and limitations of EVLNN are better understood through the set of test functions.

Nonetheless, real-world problems are more diverse, with isolated regions that can be very

different from these test functions. Thus an algorithm’s good results for the test functions

may not translate to good results in the real world. In this regard, an added experiment using

open-access real-world time-series data for benchmark testing is introduced for comparison

and to help assess the applicability of EVLNN.

4.5. Time-series Electricity Load Data as Benchmark for

Forecasting

Test functions are generally “well behaved” functions with regular domains, while realistic

problems have many nonlinear complex constraints, and the domains can be formed by

many isolated regions or islands [206]. Various open-access data platforms have made

datasets available to be analyzed to advance machine learning technologies. One example

is the time-series dataset for electricity load forecasting made available by MATLAB for

researchers and AI engineers to develop predictive models in the energy sector. It consists

of historical electricity loads of Sydney, electricity prices for the Australian market, the

Sydney temperature, and New South Wales weather data sampled at 30 minutes intervals

from 2006 to 2010 [232]. In this experiment, a subset of one month’s data from 1st to 31st

July 2010, consisting of a sample size of 1,490 out of a potential 87,600, was extracted for

Chapter 4. Modal Training and Comparison 127

model training. The split of 70% for training and 30% for testing resulted in the training

datasets of 1,043 samples. This sample size is not extensive considering the high variability

of electricity load. The identified model is evaluated for a day-ahead forecast on 1 August

2010. The aim of selecting a one-month dataset from a five-year dataset is to test the

predictive accuracy of EVLNN with a small sample size. Reducing the reliance on large

datasets has potential for real-world applications where models that generalize well on

smaller sample sizes can reduce the cost of implementation. A summary of the input and

response variables is shown in Table 4.13, and their descriptive statistics are shown in Table

4.14.

Table 4.13 Input features and response variable used.

Input Features Abbreviation

x1(t): Dry Bulb Temperature at time t DB

x2(t): Dew Point Temperature at time t DP

x3(t): Wet Bulb Temperature at time t WB

x4(t): Relative Humidity at time t RH

x5(t): Electricity prices at time t EP

Response Variable Abbreviation

y1(t): Electricity load at time t EL

Table 4.14 A summary of the descriptive statistics of a real-world dataset used to evaluate EVLNN’s

performance for electricity load forecasting.

Input Feature Unit and Symbol Range Min Max Mean Std Dev

x1(t) DB degree Celsius, oC 15.00 oC 6.00 oC 21.00 oC 12.59 oC ± 2.91 oC

x2(t) DP degree Celsius, oC 14.90 oC -0.30 oC 14.60 oC 7.94 oC ± 3.40 oC

x3(t) WB degree Celsius, oC 12.50 oC 4.30 oC 16.80 oC 10.37 oC ± 2.47 oC

x4(t) RH Percentage, % 66.00 % 33.00 % 99.00 % 75.04 % ± 15.39 %

x5(t) EP Australian Dollar,

AUD

104.44 AUD 3.96 AUD 108.40 AUD 27.40 AUD ± 7.30 AUD

Output Feature Unit and Symbol Range Min Max Mean Std Dev

y1(t) EL MegaWatt hour,

MWh

6290.40
MWh

6617.72
MWh

12908.12
MWh

9688.56
MWh

± 1356.72
MWh

Figure 4.11 shows the dataset consisting of a sample size of 1,490, where 70% is used for

training (blue plot) and 30% for testing (red plot) EVLNN, PSO-NN, DE-NN, and GA-NN

models. The identified models are then deployed to forecast a one-day electricity load on

Chapter 4. Modal Training and Comparison 128

1st August 2010 (green plot). The dataset is first normalized to values between 0 and 1.

Subsequently, 50 runs of the experiments are conducted, and their performances are

averaged and shown in Table 4.15. While PSO-NN has the lowest training MSE value,

EVLNN has the lowest testing MSE value and standard deviation. The identified models

from each algorithm are applied to forecast a one-day electricity load in Sydney, Australia,

on 1st August 2010.

Figure 4.11 Time-series electricity load from 1st July 2010 to 1st August 2010. The blue and red plots

indicate the training and testing dataset. The green plot is an out-of-sample dataset used to evaluate the

models.

Table 4.15 Comparing the training and testing MSE scores averaged over 50 runs.

Models
Training MSE Testing MSE

Mean Std Dev Mean Std Dev

EVLNN 0.02936 0.00322 0.03228 0.00332

PSO-NN 0.02496 0.00155 0.04202 0.00599

DE-NN 0.02593 0.00153 0.03899 0.01005

GA-NN 0.03004 0.00304 0.03368 0.00400

The predicted plot is shown in Figure 4.12. EVLNN predicted well at the first upturn but

undercompensated at the first downturn and the second upturn. DE-NN and GA-NN

Chapter 4. Modal Training and Comparison 129

predicted well at the first upturn but overcompensated at the first downturn and the second

upturn. PSO-NN had a better prediction at the first downturn but overcompensated at the

first and second upturn.

The results indicated that PSO-NN, DE-NN, and GA-NN have higher positive biases, over-

compensating at the upturns. In contrast, EVLNN has a lower negative bias, under-

compensating at the upturns. Overall, EVLNN has the lowest test MSE compared to PSO-

NN, DE-NN, and GA-NN, whose values are 0.0356, 0.0578, 0.0189, and 0.0401,

respectively. The result demonstrated that EVLNN is closer to detecting the peaks than

troughs in a time-series dataset. Another crucial statistical measure is the standard deviation

value. All the other models, except EVLNN, suffer from higher testing standard deviation

values. While EVLNN tends to have a lower negative bias, it does not suffer from a high

standard deviation. It can be reasoned that these models represent the features of the

training dataset very well but failed to generalize to the testing dataset compared to EVLNN.

To achieve a low standard deviation value, search algorithms must produce near-optimal

models to consistently converge to the global optima of the cost function. Therefore,

EVLNN has performed comparatively well in this real-world application.

Figure 4.12 One-day electricity load forecast for Sydney, Australia, for an out-of-sample dataset from 1st

August 2010 at 0000H to 2nd August 2010 at 0000H, at 30 mins time resolution.

Chapter 4. Modal Training and Comparison 130

4.6. Chapter Summary

This chapter evaluated EVLNN with a comprehensive set of benchmark functions to assess

the algorithm’s performance. EVLNN’s search capability tested with benchmark functions

f1 to f8 demonstrated that EVLNN had a strong ability to locate the global optima in low-

dimensional unimodal and multimodal landscapes. In particular, EVLNN had achieved an

average PR of 100% for Bohachevsky N.1-1D (f1), and Booth-2D (f2), and 81.2% and

93.2% for Ackley-2D and Rosenbrock-2D (f6) functions across all 𝜀 = {10-1, 10-2, 10-3, 10-

4, 10-5}. This result is comparable to the performance of PSO, DE, and GA. However, for

high-dimensional optimization problems, such as the Sphere-30D (f3), Brown-30D (f4),

Rastrigin-30D (f7), and Griewank-30D (f8) functions, EVLNN’s average PR and SR values

were lower compared to PSO, DE, and GA. EVLNN’s less desirable performance in high

dimensionality problems is due to a drop in search efficiency caused by increased crossover

complexity due to a larger chromosome matrix size. Nonetheless, the bright spot is that for

the Rastrigin-30D (f7) function, EVLNN can locate 100% of the optima at 𝜀={10-1} for all

runs. In contrast, PSO, DE, and GA are unsuccessful, with a PR of 0%. inferior

Test results from benchmark functions, f9 to f16, again demonstrated that EVLNN had

performed well for 1D and 2D multimodal test functions f9 to f13 across all 𝜀 = {10-1, 10-2,

10-3, 10-4, 10-5}. For the Uneven Decreasing Maxima (f11,) and Six-hump Camel Back (f13)

functions, EVLNN recorded a PR of 100% for all 𝜀. The algorithm also produced a high

PR of 84.3% and 79.4% for the Himmelblau (f12) and Equal Maxima (f10) functions. For

the scalable multimodal functions f14 to f16, EVLNN performed moderately well for the

Modified Rastrigin (f16), Shubert-2D (f14), and Vincent-2D (f15) functions, with PR of 59.1%,

44.6%, and 37.6%, respectively. However, for the Five-Uneven-Peak Trap (f9) function,

EVLNN could not find any peaks at 𝜀 = {10-4, 10-5}. EVLNN also suffered from locating

the peaks associated with Shubert-3D (f14) and Vincent-3D (f15) functions, coping only with

PR of 1.24% and 8.8%, respectively. These optimization functions exposed EVLNN’s

weaknesses in high-dimension problems. One possible explanation may be that the smaller

species have fewer genetic variability to evolve to better solutions.

Chapter 4. Modal Training and Comparison 131

Nonetheless, it is interesting to note that EVLNN had outperformed all the CEC 2013 and

CEC 2015 niching algorithms in the Shubert-2D (f14) function, where it managed a PR

score of 27.6% at 𝜀 = {10-5}. In contrast, all the other niching algorithms were unsuccessful

with 0% at this accuracy level. Overall, EVLNN’s average PR score of 0.500 across the ten

benchmark functions f9 to f16 (including Shubert-3D and Vincent-3D) is ranked 19 out of

22 CEC 2013 and CEC 2015 state-of-the-art niching algorithms, with its performance

ahead of iPOP-CMA-ES, MEA, and MSSPSO. Despite the relatively weaker results by

EVLNN compared to other CEC algorithms, a distinct difference lies in the algorithm

design purpose. That is, the CEC algorithms are focused on real-parameter optimization,

whereas EVLNN is an ANN that is built for forecasting. The performance of EVLNN was

thus validated using the open-access real-world time-series electricity load data as a

benchmark for forecasting. The results demonstrated that EVLNN is promising and

applicable for real-world energy prediction problems.

Chapter 5

5. Energy Consumption Prediction in

Hadoop Cluster

5.1. Introduction

Data centers provide several platforms for managing and processing big data; the Hadoop

platform is one of the most popular [233]. With its rich ecosystem composed of a set of

feature-rich development tools, Hadoop’s popularity grew and is extensively used today by

Corporations, Enterprises, and Internet companies to analyze data-intensive problems [234]

[235] [236]. While Hadoop is highly scalable and fault-tolerant for processing massive data,

the energy consumed by Hadoop data centers is intense. This phenomenon has presented

significant optimization opportunities and attracted extensive interest in its energy

efficiency research. Energy consumption prediction methods are critical to data center

sustainability efforts to improve the energy efficiency of Hadoop data centers. However,

due to complexity and heterogeneity in data center scenarios, it is difficult to estimate

energy consumption accurately using conventional approaches. This chapter presented

EVLNN as an ML model for Hadoop energy consumption prediction using multiple

energy-related features. System environment, applications, and hardware-related data are

collected from a Hadoop testbed for model training. The identified models were compared

with neural networks trained using other EAs, namely Particle Swarm Optimization (PSO-

NN), Differential Evolution (DE-NN), and Genetic Algorithm (GA-NN). The results

showed that EVLNN had outperformed the other models, verifying EVLNN’s predictive

accuracy and the capability to generalize to new data. Further experiments were conducted

to determine the factors contributing to energy consumption using the ensemble-based

approach to sensitivity analysis, where input variables from the identified models were

analyzed to assess their relative importance.

Chapter 5. Energy Consumption Prediction in Hadoop Cluster 133

5.2. Hadoop – Background

Hadoop is a distributed file system architecture for massively parallel processing (MPP).

The architecture combines the Hadoop File System (HDFS) [15] in the data layer and

MapReduce version one [16] or MapReduce version two [237] in the software, forming a

new computing paradigm. Hadoop emerged as an open-source Apache project in 2009 and

constituted a new area in academic research in the MPP system [233] [238] [239] [240]. In

Hadoop’s Client-Master-Slave architecture, the master in the data layer is known as the

NameNode, and the slaves are known as the DataNodes. The files stored in HDFS are first

divided into fixed-size blocks by the NameNode and subsequently replicated and

distributed across the DataNodes in the Hadoop cluster for enhanced performance and

reliability. In the software layer, the JobTracker daemons manage the cluster resources and

the parallel processing of the HDFS data via the MapReduce jobs submitted by the client.

The client is any machine interacting with and requesting services from the Hadoop cluster.

Upon receiving the MapReduce job, JobTracker then communicates to the NameNode to

determine the DataNodes where the data is located. It then divides the jobs to MapReduce

tasks and assigns them to the TaskTracker daemons that reside in the DataNodes to process

them. Each TaskTracker is configured with a static allocation of fixed-size “slots” where a

map slot, known as a mapper, and a reduced slot, known as a reducer, are used by the map

task or reduce task, respectively. In addition, the TaskTracker provides job progress

information to the JobTracker that monitors the overall status of the job. The number of

mappers created is dependent on the number of input file splits, and the number of reducers

is configured by the system administrator. The map task processes the data and outputs a

list of key-value pairs as intermediate data. The intermediate data will then be shuffled and

sorted using the keys and subsequently merged. The reducer task processes the intermediate

data, further reducing them into smaller units and writing the result in HDFS. This Client-

Master-Slave architecture allows Hadoop to scale and handle big data well. Figures 5.1 and

5.2 depict the execution of a MapReduce job. Details of the map and reduce phases can be

found in [241].

Chapter 5. Energy Consumption Prediction in Hadoop Cluster 134

Figure 5.1 The MapReduce software layer architecture.

Figure 5.2 The MapReduce job’s computation phases.

5.3. The Hadoop Testbed

A local testbed was set up to study the energy performance of Hadoop. The setup consists

of a 120-core Hadoop cluster, an intelligent power distribution unit to measure energy

consumption, and software monitoring tools to collect energy-related data from the Hadoop

cluster to analyze and train the EVLNN model.

Chapter 5. Energy Consumption Prediction in Hadoop Cluster 135

5.3.1. Physical Testbed Setup

Figure 5.3 shows the physical infrastructure and connectivity of the Hadoop testbed set up

for the experiment. The testbed comprises five servers configured to form one Hadoop

NameNode and four Hadoop DataNodes. The NameNode is running on an HP ProLiant

DL360P Generation 8 server that comes with 64 Gigabyte (GB) memory, dual-socket

Intel(R) Xeon(R) CPU E5-2667 @ 2.90GHz with a 6-core CPU cum hyper-threading

technology.

Figure 5.3 The Hadoop testbed.

The DataNodes runs on HP ProLiant DL380P Generation 8 servers with 48 GB memory,

dual-socket Intel(R) Xeon(R) CPU E5-2640 @ 2.50GHz 6-core CPU cum hyper-threading

technology. Hyper-threading is a process by which a CPU divides up its physical cores

into virtual cores that are treated as physical cores by the operating system. CPUs with six

cores use this process to create four threads or four virtual cores. Hence, the Hadoop cluster

consists of five servers with dual-core sockets with 6-core CPUs, forming a total of 120-

core with hyper-threading enabled. All nodes were installed with the open-source CentOS

version 6.5 Linux operating system and Apache Hadoop version 0.20.1. The nodes are

TOR Switch

NameNode

DataNode 1

DataNode 2

DataNode 3

DataNode 4

Cisco Catalyst 3500 switch

connecting the Hadoop

cluster

Namenode - HP ProLiant

DL360P Gen8, 2xCPU E5-

2667 @ 2.90GHz, 64 GB

RAM

Datanode1 to 4 - HP

ProLiant DL380P Gen8,

2xCPU E5-2640 @

2.50GHz, 48 GB RAM

Raritan iPDU

Raritan Intelligent

Power Distribution

Unit (iPDU) with

power meters and

environment sensors

SNMP

Manager

SNMP Manager

workstation setup to

retrieve environment

and energy-related

data from the Hadoop

cluster

Data cables

connecting the nodes

to the TOR switch

Power cables connecting

the nodes to the iPDU.

Chapter 5. Energy Consumption Prediction in Hadoop Cluster 136

interconnected via a top-of-rack (TOR) Gigabit Ethernet switch with 1 Gigabit per second

(Gbps) connections. In addition, a Raritan intelligent Power Distribution Unit (iPDU)

provides power connection to the clusters and is used to measure and record the power

consumption by the nodes. The JobTracker daemon was installed in the NameNode. All

DataNodes were installed with the TaskTracker daemons.

5.3.2. Hadoop Software Configuration

The Hadoop daemons were configured via four primary eXtensible Markup Language

(XML) files, namely, hdfs-site.xml, core-site.xml, mapred-site.xml, and yarn-site.xml. Most

of the parameters in the XML files are left in their default settings except for the following

parameters configured, as shown in Table 5.1, that ensured a stable system performance.

Table 5.1 Hadoop configuration parameters and values.

Hadoop Configuration

Parameter

Description Value Configuration

File

dfs.replication Replication factor 2 hdfs-site.xml

mapred.child.java.opts Java virtual machine (JVM) heap

size for the MapReduce processes

512 MB mapred-site.xml

mapreduce.task.io.sort.mb The total amount of buffer memory

to use while sorting files, in

megabytes

200 MB mapred-site.xml

mapreduce.map.sort.spill.percent The soft limit in the serialization

buffer. Once reached, a thread will

begin to spill the contents to the

disk in the background.

0.9 mapred-site.xml

mapreduce.task.io.sort.factor The number of streams to merge at

once while sorting files. This

parameter determines the number

of open file handles.

20 mapred-site.xml

dfs.blocksize The default block size for new

files, in bytes.

128 MB hdfs-site.xml

5.3.3. Monitoring Tools for Data Acquisition

A set of monitoring tools was installed to collect system parameters data and analyze energy

consumption. These parameters can be classified into the application, system hardware,

power and environment, which require separate acquisition tools. Application data were

Chapter 5. Energy Consumption Prediction in Hadoop Cluster 137

acquired using built-in Hadoop job-related counters [242]. Data from system hardware

parameters were acquired using Ganglia (version 3.7.1) [243], an open-source performance

monitoring software that measures the utilization of various system metrics such as CPU,

memory, and networks [244]. Data from the power and environmental parameters were

acquired through the Simple Network Management Protocol (SNMP) software. The SNMP

software communicates with the intelligent Power Distribution Unit (iPDU) to extract

power consumption, temperature, and humidity information. The iPDU contains the SNMP

Management Information Base (MIB), which can be queried through their respective

SNMP Object Identities (OIDs). Table 5.2 shows the SNMP OID strings configured in the

SNMP Manager software to retrieve those data.

Table 5.2 SNMP OID strings and polling interval for power consumption data.

Hadoop Cluster

Components

iPDU

Outlet

SNMP OID String Description Polling

Interval (secs)

NameNode 1 1.3.6.1.4.1.13742.6.5.4.3.1.4.1.1.5 Active power 5

DataNode1 2 1.3.6.1.4.1.13742.6.5.4.3.1.4.1.2.5 Active power 5

DataNode2 3 1.3.6.1.4.1.13742.6.5.4.3.1.4.1.3.5 Active power 5

DataNode3 4 1.3.6.1.4.1.13742.6.5.4.3.1.4.1.4.5 Active power 5

DataNode4 5 1.3.6.1.4.1.13742.6.5.4.3.1.4.1.5.5 Active power 5

Network Switch 6 1.3.6.1.4.1.13742.6.5.4.3.1.4.1.6.5 Active power 5

Temperature sensor 10 1.3.6.1.4.1.13742.6.3.5.3.1.3.1.12.10 Temperature 5

Humidity sensor 11 1.3.6.1.4.1.13742.6.3.5.3.1.3.1.12.11 Humidity 5

5.4. Predictive Modeling for the Hadoop System

5.4.1. Payload Generation, Workload Simulation, and Data Acquisition

Two commonly used Hadoop applications, Wordcount and Terasort, were used to simulate

workloads on the Hadoop testbed. These applications are commonly employed for energy

efficiency and performance studies in Hadoop research [245] [246]. Wordcount is a simple

application that counts the number of times each word (key) appears (value) in the input

Chapter 5. Energy Consumption Prediction in Hadoop Cluster 138

dataset. Wordcount has many real-world applications in text analytics. For example, by

analyzing the word frequency of Twitter data related to weather, one can learn about the

liveliness of climate discussion on social media. Terasort comes with Hadoop, and it is used

to sort key-value tuples. This application is generally used for benchmarking the

performance of Hadoop systems.

In order to simulate the workloads, payloads must be generated for the Wordcount and

Terasort applications. Various payload sizes from 100 MB to over 100 GB were created.

For Wordcount, the payloads are generated using the Linux command-line interface’s ‘>>’

redirection symbol to append multiple text files into a large file. For Terasort, the payloads

are generated using the Teragen application in Hadoop. Teragen can generate large datasets

to be sorted by Terasort.

During workload simulation, the Wordcount and Terasort were run the payload files in sizes

100MB, 200MB, 300MB, …, 100GB, and beyond. In the process, energy-related data such

as disk I/O, network transfer, memory, and computational activities [247] were then

acquired through tools such as Ganglia, SNMP, and Hadoop built-in counters. The data

were subsequently used to train the EVLNN model for energy consumption prediction.

Most energy consumption research for Hadoop focuses only on acquiring a few input

features. EVLNN uses multiple energy-related input features to provide insight into the

feature's importance relative to the system energy consumption. A total of 23 input features

and the energy consumption data were acquired from the Hadoop testbed. These features

and their methods of acquisition are presented in Table 5.3.

Chapter 5. Energy Consumption Prediction in Hadoop Cluster 139

Table 5.3 A list of 23 input features and one output variable for data acquisition from the Hadoop testbed.

Category Parameters Unit Description
Method of

Acquisition

System
Utilization

1. Cluster CPU utilization (system) % Percentage of CPU time used by the kernel Ganglia

2. Cluster CPU utilization (user) % Percentage of CPU time used by user space

processes to run applications

Ganglia

3. Cluster CPU utilization (wait) % Percentage of CPU time spent waiting for

input or output operations, like reading or
writing to disk.

Ganglia

4. Cluster CPU time spent Seconds Cluster CPU time spent during the
MapReduce process

Hadoop counters

5. Memory use GB The part of the memory used for processing
out of the total available physical memory

Ganglia

6. Memory cache GB The part of the memory used to cache the

contents of frequently-used disk data

Ganglia

7. Memory buffer MB Memory buffered during MapReduce process Ganglia

8. System process Number Number of processes running Ganglia

Disk I/O

Activities

9. File: Map byte read

10. File: Reduce byte read
11. File: Map byte written

12. File: Reduce byte written

13. HDFS: Reduce byte written

GB

GB
GB

GB

GB

Data read by Mapper from local disk

Data read by Reducer from local disk
Data written by Mapper to local disk

Data written by Reducer to local disk

Data written by Reducer to HDFS

Hadoop counters

Hadoop counters
Hadoop counters

Hadoop counters

Hadoop counters

14. Reduce Shuffle bytes (Total) GB Data transferred from Map to Reduce Hadoop counters

Network
Transfer

15. Network (In) Gbps Data received Ganglia

16. Network (Out) Gbps Data transmitted Ganglia

Job Profile 17. File size GB Size of MapReduce jobs Hadoop counters

18. Job completion time Hour Time taken to finish a MapReduce job Hadoop counters

19. Number of Mappers Number Job’s instruction number Hadoop counters

20. Number of Reducers Number Job’s instruction number Hadoop counters

21. Workload type Number 0 for Wordcount, 1 for Terasort N.A.

Environment 22. Rack Relative Humidity % Relative humidity measured within the rack SNMP

23. Rack Temperature oC Rack temperature hosting the cluster SNMP

Energy 1. Energy consumption kWh Energy consumed by cluster (output variable) SNMP

Chapter 5. Energy Consumption Prediction in Hadoop Cluster 140

5.4.2. Exploratory Data Analysis

Data exploration was initially performed to analyze and better understand the energy

consumption of the Hadoop cluster. Figure 5.4 presents the instantaneous power of a

Terasort MapReduce job on a 50 GB payload file. The data was acquired via SNMP polling

at an interval of 5 seconds. It was observed that individually, the DataNodes (also called

the worker nodes) had almost similar power consumption patterns. The consumed power

of the DataNodes was also higher than the NameNode (also known as the head node). This

pattern was expected as DataNodes executes the Mapper and Reducer programs, whereas

NameNode only manages the metadata and job scheduling. Figure 5.5 shows the

aggregated power where there was an initial surge in the power consumption to almost

1400 W before it receded to a mean value of 1037.86 W. The elapsed time to execute the

Terasort application was 36 minutes and 18 seconds (or 2,178 secs) with a 50 GB payload.

Figure 5.4 Instantaneous power chart for Terasort application with a 50 GB payload.

Chapter 5. Energy Consumption Prediction in Hadoop Cluster 141

 Figure 5.5 Aggregated power chart for Terasort application with a 50 GB payload.

A similar analysis was performed for a Wordcount MapReduce job with a 50 GB payload.

However, the chart in Figure 5.6 depicts a distinctly different power consumption pattern

where higher power is consumed but at a shorter elapsed time. Figure 5.7 shows the

aggregated power, sustained at approximately 1520 W for at least 200 seconds. The mean

power consumed was 1330.23 W over the elapsed time of the Wordcount application of

697 seconds.

Figure 5.6 Instantaneous power chart for Wordcount application with a 50 GB payload.

Chapter 5. Energy Consumption Prediction in Hadoop Cluster 142

Figure 5.7 Aggregated power chart for Wordcount application with a 50 GB payload.

Instantaneous power varies all the time; hence the dataset is considered too noisy for model

training. There are ways to smooth out the constant fluctuation of instantaneous power. One

of them is to work with mean power or energy data. Mean power represents the power

consumed over a specific period, and mean energy represents the mean load performed

over that period. The cluster’s energy consumption E, therefore, can be calculated using

Equation 5.1,

𝐸 = 𝑃𝑇 (5.1)

where P is the power measured in Watts and T is the period measured in seconds to perform

the work. Equation 5.1 could also be enhanced when dealing with cumulative energy

change by integrating the instantaneous power, P(t), in a period between t1 and t2, given in

Equation 5.2,

𝐸 = ∫ 𝑃(𝑡) 𝑑𝑡
𝑡2
𝑡1

 (5.2)

However, the function of the power consumption curve is generally not known. Hence the

energy consumed by Terasort and Wordcount workloads over an interval [𝑡1 𝑡2] can be

approximated by the area under the curve for that period. The computed result was thus

0.62 kWh and 0.25 kWh, respectively. Comparatively, the Terasort application, while

Chapter 5. Energy Consumption Prediction in Hadoop Cluster 143

needing lower power but a longer elapsed time, consumed more than twice the energy level

of the Wordcount application, which needed higher power but shorter elapsed time.

With that initial understanding, three additional workloads of payload sizes, 55 GB, 60 GB,

and 65 GB, were generated. The energy consumption pattern was further analyzed with

data collected from the energy-related features. The result is presented in Table 5.4. Several

observations can be drawn for the Wordcount application; firstly, energy consumption

generally increases with the file size. However, I/O activities counters were low, such as

map byte read, map byte written, reduce byte read, reduce byte written, and reduce shuffle

byte. This observation suggests the Wordcount application is light on disk I/O activities.

Secondly, the CPU and memory utilization counters were high, such as cluster CPU (user),

memory (use), and system (process). This observation suggests that the Wordcount

application is compute-intensive.

Chapter 5. Energy Consumption Prediction in Hadoop Cluster 144

Table 5.4 Energy-related features and their respective data obtained from executing the MapReduce

Wordcount and Terasort workloads with different payload sizes.

Energy-Related Metric

MapReduce Workloads

50 GB 55 GB 60 GB 65 GB

WC* TS^ WC TS WC TS WC TS

Map Byte Read (GB) 3.16 50.35 3.48 55.38 3.80 61.42 4.12 66.46

Map Byte Written (GB) 3.36 100.15 3.69 110.17 4.03 122.19 4.37 132.20

Reduce Byte Read (GB) 0.17 50.07 0.19 55.07 0.21 61.08 0.22 66.09

Reduce Byte Written (GB) 0.17 50.08 0.19 55.08 0.21 61.09 0.22 66.10

Reduce Byte Written HDFS (GB) 0.00 50.17 0.00 55.18 0.00 61.20 0.00 66.22

CPU Time Spent (min) 288.15 154.85 313.80 129.58 351.70 150.69 381.03 148.80

Reduce Shuffle Byte Total (GB) 0.17 50.07 0.19 55.07 0.21 61.08 0.22 66.09

Number of Mappers 187 200 205 220 224 244 243 264

Number of Reducers 1 115 1 115 1 115 1 115

Cluster CPUs (Systems) (%) 1.9 4.3 2.0 4.0 2.4 4.5 1.9 4.6

Cluster CPUs (User) (%) 49.6 8.2 47.9 9.3 50.1 9.0 44.5 9.8

Cluster CPU (wait) (%) 0.5 11.2 0.5 16.2 1.6 17.8 0.5 22.7

Memory (Use) GB 85.2 93.9 84.7 92.8 81.4 95.3 83.3 93.7

Memory (Cache) GB 68.3 75.3 69.1 74.4 70.1 70.1 67.2 39.6

Memory (Buffer) MB 1.0 10.3 1.0 12.3 1.0 14.1 1.0 46.2

System (Process) 226.8 69.9 246.8 58.7 231.8 81.0 252.9 77.0

Network (IN) (kbps) 9.6 274.4 8.6 431.6 11.4 340.8 9.0 406.3

Network (OUT) (kbps) 9.6 277.3 8.6 436.5 11.3 352.5 8.9 418.0

Elapsed Time in mins 10.6 36.6 10.4 28.0 12.8 32.3 14.1 30.8

Rack Relative Humidity (%) 50.0 50.0 51.0 50.0 50.0 50.0 46.0 50.0

Rack Temperature (oC) 23.3 23.4 23.4 23.9 23.9 23.9 26.5 23.9

Mean Active Power (kW) 1.33 1.04 1.42 1.04 1.38 1.03 1.46 1.05

Cumulative Energy (kWh) 0.26 0.63 0.25 0.48 0.27 0.56 0.34 0.54

*WC is Wordcount job, ^TS is Terasort job.

In comparison, energy consumption for the Terasort application generally doubled that of

the Wordcount application for the same payload. I/O activity counters such as reduce shuffle

byte, the number of mappers, and the number of reducers were high. The CPU time spent

counter was half the Wordcount application and did not increase with payload size. The

cluster CPU (user) counter was low, with a mean of around 9.08%. The cluster CPU (wait)

counter increased with file size, and the system (process) counter was comparatively lower

and generally stable. The memory use counter was comparatively higher, and the network

(IN/OUT) counters were high in both directions. These observations suggest that the

Terasort application is light on CPU demand, high in I/O, and high in network traffic; hence,

Chapter 5. Energy Consumption Prediction in Hadoop Cluster 145

the Terasort application is I/O-intensive. Table 5.5 summarizes the feature analysis and

characterization of the different MapReduce workloads and their impact on energy

consumption.

Table 5.5 Analysis and characterization of the WordCount and Terasort workloads.

Features Wordcount Application Terasort Application

Energy consumption Increases with file size Constant

Mapper I/O activities Low High

Reducer I/O activities Low High

Shuffle activities Low High

CPU time spent Increases with file size Constant

Number of mappers Increases with file size Increases with file size

Number of reducers Low, constant High, constant

CPU (user) – used by applications High Low

CPU (system) - used by the kernel Very low Low

CPU (wait) - waiting for I/O Very low Low

Memory (use) High High

Memory (cache) High High

Memory (buffer) Very low Very low, can be unpredictable

System processes High Moderate

Network traffic Low High

Elapsed time Low High

To further explore the characteristics of the energy-related features, the plots of these

features for Terasort and Wordcount workloads for payloads from 50 GB to 65 GB at one

GB increment. The plots consist of CPU, Memory, Network utilization, Number of System

Processes, Temperature, Humidity, I/O activities (Number of Mappers and Reducers), CPU

time spent, Elapsed Time, and Energy Consumption. It can be observed from Figure 5.8

that the energy consumption for Terasort workloads was higher than Wordcount workloads.

This observation is due to the longer elapsed time taken by Terasort workloads to complete

the job for the same payload. However, when computed at a per-second level, Terasort and

Wordcount workloads consumed an average of 17.52 kWh/s and 23.23 kWh/s, respectively.

The analysis found evidence that compute-intensive workloads consumed higher energy

than I/O intensive workloads due to higher CPU (user) utilization, CPU time spent, and

system (process).

Chapter 5. Energy Consumption Prediction in Hadoop Cluster 146

Figure 5.8 Energy-related features for MapReduce and Terasort workloads with various payload sizes.

Chapter 5. Energy Consumption Prediction in Hadoop Cluster 147

5.4.3. Data Transformation and Normalization

The data acquired in their raw format was first transformed to their respective standard

units, such as file size to Gb, network traffic to kilobits per second (kbps), and energy to

kWh. After that, the data is normalized using min-max scaling as shown in Equation 5.3 to

values between 0 and 1 before model training,

𝑧𝑖 =
𝑥𝑖−min(𝑥)

max(𝑥)−min(𝑥)
 (5.3)

where x = (x1, … xn), min(x), and max(x) are the minimum and maximum values of variable

x, respectively, and zi is the normalized data of xi in the ith sample.

5.4.4. Model Training

The energy-related data acquired from executing the Wordcount and Terasort jobs, used for

model training, is split into 70% training and 30% testing set. The model training was

executed in 50 trials. The best individuals from each trial are identified by their lowest

training MSE values. These 50 identified individuals are then applied to predict the output

using the testing dataset. EVLNN’s performance is computed by averaging the MSE results

of the training and testing dataset obtained in the 50 trials. Then, the results are compared

to the MSE results produced by models trained using PSO-NN, DE-NN, and GA-NN.

The EVLNN model is shown in Figure 5.9. It consists of 23 input features, and the output

to predict is the energy consumption.

Chapter 5. Energy Consumption Prediction in Hadoop Cluster 148

Figure 5.9 The EVLNN model with 23 input variables and one response variable.

The hyperparameter settings for EVLNN are given in Table 5.6, with its genetic operators

shown in Table 5.7. The EVLNN search algorithm is applied to identify an optimal

parsimonious ANN for Hadoop energy consumption prediction.

Table 5.6 EVLNN’s hyperparameter settings.

EVLNN’s Hyper Parameter Description

Input layer neuron 23

Hidden layer neuron 1 to 26

Output layer neuron 1

Hidden layer activation function Sigmoid function

Output layer activation function Pureline

Network type Feedforward MLP

Network connections Partially connected

CPU util (system)
CPU util (user)
CPU util (wait)
CPU time spent

Memory use
Memory cache
Memory buffer
System process
Map byte read

Reduce byte read
Map byte write

Reduce byte write
Reduce byte write to HDFS

Reduce Shuffle bytes
Network (In)

Network (Out)
File size

Job completion duration
Number of Maps

Number of Reduce
Workload type

Rack Relative Humidity
Rack Temperature

 Input Bias

Input Layer Hidden Layer

Energy Consumption

(kWh)

Output Layer

①
②
③
④
⑤
⑥
⑦
⑧
⑨
⑩
⑪
⑫
⑬
⑭
⑮
⑯
⑰
⑱
⑲
⑳
2 1
2 2
2 3
 B

. . .

Chapter 5. Energy Consumption Prediction in Hadoop Cluster 149

Table 5.7 EVLNN’s operators and values.

EVLNN Operators Value

Population size 100

Max generation 100

Intra-species crossover probability 0.9

Inter-species crossover probability 0.01

Mutation probability 0.01

Link-node mutation probability 0.01

Weights Mutation range -0.5 to 0.5

Replacement probability 0.05

At initialization, a population of 100 individuals is created and subsequently speciated.

Figure 5.10 shows a normal species distribution at initialization, where the horizontal axis

represents species ID, and the vertical axis represents the size of the species. For example,

Species_13 has the highest number of individuals at the start with 23 individuals, and

Species_8 and Species_19 have only one individual each.

Figure 5.10 Species distribution at population initialization.

As crossover and mutation occur through the EVLNN process to search for optimal

parsimonious structures, the species growth pattern also changes, as seen in Figure 5.11.

This changing pattern is depicted by the varying height of each bar in the population

histogram captured from generation 20 to generation 100 at an interval of 20 generations.

Chapter 5. Energy Consumption Prediction in Hadoop Cluster 150

For example, at the 20th generation, most species have around the same number, but

Species_7, Species_8, and Species_10 have extinct, and a new Species_22 has spawned. In

the 40th generation, the population is concentrated around Species_13, and another new

Species_21 has spawned. In the 60th generation, there was a shift in species concentration

from Species_12 to Species_14. This trend continued until the 100th generation, with slight

movement in between. The varying species size and the emergence and disappearance of

species highlighted the effects of speciation, crossovers, and mutations of EVLNN in a

continual search for the fittest landscape.

Chapter 5. Energy Consumption Prediction in Hadoop Cluster 151

 Figure 5.11 Histogram showing the species distribution for the EVLNN population from 20th generation to

100th generation at intervals of 20 generations.

Figure 5.12 examines the growth pattern of each species in the EVLNN population in detail.

The diagram reflects the growth and shrinks trend among species 1 to 26 during the

evolutionary search for the optimal global structure. As more individuals with higher fitness

evolve in that species, the species size grows at the expense of other species as the total

population remains constant. This phenomenon can be observed from Species_12 to

Species_16. Species_12 to Species_14 eventually grew to an average size of 20, and

Chapter 5. Energy Consumption Prediction in Hadoop Cluster 152

Species_15 and Species_16 to ten. Generally, optimal solutions would come from species

with a larger subpopulation. A declining trend is observed for Species_17 to Species_19,

starting from around the 10th generation. These species ended in a very small population or

extinction, signifying that the species' fitness could not compete globally. Similarly,

Species_7 to Species_11 had a brief growth for around the first 20 generations. After that,

these species could not thrive as they were being replaced with healthier individuals in the

population. Almost a flat line trend is observed for Species_20 to Species_26, highlighting

zero or marginal growth, while Species_1 to Species_6 did not spawn any individuals.

Figure 5.12 Species growth charts depicting their respective growth patterns.

The EVLNN algorithm implemented a diversity tracker with three indices, popdiversity,

shannondiversity, and shannonequitability, to track population diversity for insights into its search

behavior. The popdiversity tracks how diverse the population is through individuals’

phenotype structures, the shannondiversity tracks the species abundance, and the

Species 26

Chapter 5. Energy Consumption Prediction in Hadoop Cluster 153

shannonequitability tracks the species evenness or how close in numbers each species is. Figure

5.13 shows the chart of these three indices during one of the experiments.

Figure 5.13 Tracking for solution diversity.

The observed constant variability for the popdiversity plot in Figure 5.13 implied that

individuals' phenotype structure within the population is continually changing. The

popdiversity value measured at 2.60 at the start and 1.45 at the end of 100 generations

indicated a convergence trend as individuals within the population became more similar.

The observed downward slope of the shannonindex plot started at an initial value of 2.41 and

ended at 1.79 after 100 generations. The gradual slope implied that the population had

converged to fewer species than it started. This result is expected as species thrive in a good

landscape towards convergence. In addition, the observed shannonequitability plot reduced

from a value of 0.91 to 0.78. The reducing value signifies that species unevenness has

decreased slightly. The results showed that while the abundance of species decreases

towards convergence, EVLNN’s species parallelism characteristics attempt to maintain

species evenness during the search process.

Figure 5.14 shows the convergence of EVLNN. It is observed that the fittest individual was

located in the 98th generation with a training MSE of 0.00164. The solution's architecture

was a parsimony ANN with 12 hidden nodes and 243 connections from Species_12. The

model was subsequently scored using the testing dataset, where the results are discussed in

the next section.

Chapter 5. Energy Consumption Prediction in Hadoop Cluster 154

 Figure 5.14 Convergence of EVLNN with the lowest MSE value of 0.00164 at the 98th generation.

5.5. Results and Discussion

5.5.1. Model Testing and Comparison

EVLNN was trained using the energy-related dataset acquired from executing Wordcount

and Terasort workloads. Its performance is subsequently compared with those ANNs

trained using other modern metaheuristic methods, Particle Swarm Optimization (PSO-

NN), Differential Evolution (DE-NN), and the conventional Genetic Algorithm (GA-NN).

The operators and values of these EA-based learning techniques are shown in Table 5.8(a-

c). The population size, maximum number of iterations, and the hyperparameters of the

EA-based networks were kept the same as EVLNN’s.

Chapter 5. Energy Consumption Prediction in Hadoop Cluster 155

Table 5.8(a-c) EA-based ANN with their learning techniques, operators, and values.

 (a) (b) (c)

Particle Swarm Optimization Differential Evolution Classic Genetic Algorithm

Operators Values Operators Values Operators Values

Population size 100
Population

size
100

Population size 100

Max Generation 250

Max Iterations 100

Max Iterations 250

Crossover probability 0.8

C0 0.1 Upper bound 1 Mutation probability 0.01

C1 1.5
 Lower bound -1

Link-node mutation probability 0.01

C2 2.5 Weights Mutation range -0.5 to 0.5

Table 5.9 presents the MSE results of EVLNN, PSO-NN, DE-NN, and GA-NN. The

training and testing MSE scores are computed by taking the best MSE results obtained in

each of the 50 trials and computing the mean, respectively. While PSO-NN’s training error

was lower than EVLNN, its testing error was much higher. It also had a higher standard

deviation for the testing MSE. One possible reason could be that PSO-NN was overfitting

the training dataset. As such, it could not generalize to the new dataset resulting in a much

higher MSE for the testing dataset. EVLNN’s average testing MSE score of 0.00230 was

superior to PSO-NN, DE-NN, and GA-NN testing MSE scores of 0.00310, 0.01041, and

0.01071, respectively. In another observation, the higher standard deviation values of all

the other models, except EVLNN, indicated that these models suffer from a higher spread

of MSE values from the mean. The results showed that EVLNN had higher accuracy with

better consistency when predicting new unseen data.

Table 5.9 Comparing the training and testing, MSE scores averaged over 50 runs.

Models
Training MSE Score Testing MSE Score

Mean Std Dev Mean Std Dev

EVLNN 0.00180 0.00038 0.00230 0.00042

PSO-NN 0.00146 0.00041 0.00310 0.00195

DE-NN 0.01015 0.00287 0.01041 0.00307

GA-NN 0.01060 0.00441 0.01071 0.00416

Chapter 5. Energy Consumption Prediction in Hadoop Cluster 156

Figure 5.15 shows the EVLNN’s prediction output plotted against the target output. It can

be seen that the predicted plot tracked the target plot indicating that the trained EVLNN

generalized well to the existing system. The results confirm the findings that EVLNN is

capable of accurately predicting the Hadoop energy consumption.

Figure 5.15 EVLNN’s Energy consumption prediction for the Hadoop testbed.

5.5.2. Model Convergence Characteristics

The convergence characteristics of EVLNN were compared with those from PSO-NN, DE-

NN, and GA-NN, as shown in Figure 5.16. From the figure, PSO-NN, DE-NN, and GA-

NN displayed similar convergence patterns whereby long periods of stagnation (or

plateaus) existed during the evolutionary search process before a better solution was found.

The plateaus signify that these algorithms may be trapped in deceptive local minima and

could not find ‘a way out’ to better solutions for an extended period. In EVLNN’s case,

however, the convergence pattern showed a trend of decreasing MSE values without any

period of stagnation. The results demonstrate two things. First, species parallelism enables

EVLNN to diversify the search to different parts of the landscape. Second, EVLNN’s two-

Chapter 5. Energy Consumption Prediction in Hadoop Cluster 157

fold crossover strategies enable the algorithm to explore other basins of interest for optimal

solutions reducing the chance of the individuals becoming trapped in local minima.

Figure 5.16 Convergence characteristics of EVLNN, PSO-NN, DE-NN, and GA-NN models.

5.5.3. Structural Comparison of the Identified Networks

The learned structures from EVLNN and the various EAs are shown in Table 5.10. Using

a naïve method for assessing the physical complexity of network structures based on the

number of hidden neurons and connections, DE-NN had the most complex structure, with

an average of 20 hidden neurons and 348 connections. In contrast, GA-NN had the simplest,

with an average of 11 hidden neurons and 149 connections. However, neither of these

structures was able to predict the energy consumption accurately. EVLNN, with an average

of 15 hidden neurons and 314 connections, had achieved the best performance reflected in

the testing MSE score. Based on the results obtained, it could be inferred that networks

with a higher number of hidden neurons. However, they could present additional

representational power and have a downside as their excessive number of free parameters

will increase the risk of overfitting. In the same context, networks that trim back excessively,

leaving fewer hidden neurons, will adversely limit their predictive ability due to the

insufficient capacity of the ANN. In another observation, it appears that the number of

connections has a lesser impact on predictive accuracy. EVLNN and DE-NN had around

Chapter 5. Energy Consumption Prediction in Hadoop Cluster 158

the same number of connections, but the performance of EVLNN was about 4.5 times better,

with an average of five fewer hidden neurons. Finally, while DE-NN had the most complex

structure and GA-NN had the simplest, they produced almost similar performance. This

result verifies that different phenotypic representations can produce behaviorally equivalent

ANNs [248].

Table 5.10 Comparison of the trained neural network structures averaged over 50 runs.

Models
Number of Hidden Neurons Number of Connections

Min Max Mean SD Min Max Mean SD

EVLNN 9 20 15 2 208 438 310 46

PSO-NN 8 20 13 3 97 219 153 28

DE-NN 12 25 20 3 158 538 348 86

GA-NN 8 15 11 2 95 216 149 28

The result agrees with the literature since networks with large neuronal structures could be

counter-productive. The excessive hidden neurons will probably encourage each to

memorize the relationships between input and output dataset, decreasing error on the

training set but not necessarily generalizing well to new data on the testing set. Similarly,

insufficient hidden neurons would lead to poor performance. However, it remains unclear

to which degree the number of hidden neurons is ‘excessive.’ The findings in Table 5.10

suggest that EVLNN had outperformed the other models. EVLNN delivers significantly

better results due to its novel search approach combining speciation and crossover

strategies and mutation to perform search parallelly from multiple hidden nodes,

emphasizing architecture search rather than just evolving its behavior. The stochastic search

nature of EVLNN has few constraints on the species to evolve ANN of different numbers

of hidden nodes within the solution space. EVLNN is a promising algorithm for optimizing

neural network architecture that can reduce human intervention in the training process.

Neural network design faces a vast search space of different ANN architectures. EVLNN

could effectively explore the architectural landscape and discover optimal structures that

generalize well, minimizing the need for expert knowledge and time-consuming trial-and-

error effort.

Chapter 5. Energy Consumption Prediction in Hadoop Cluster 159

5.5.4. Ensemble-based Sensitivity Analysis Approach to Determine Input Variable

Importance

An ensemble-based approach to SA was applied to investigate and interpret the contributing

factors to energy consumption. The goal of this approach is to achieve stability in model

interpretation. The details of the ensemble SA method, consisting of the Connection

Weights (CW) method [188], the Pad method [192], the Perturb method [198], and the

Profile method [200] and their pseudo-codes, are explained in detail in Appendix B.

The CW method calculates the relative importance of the inputs to the neural network

output (see Equations B.17 and B.18). The method is based on the concept that the neurons'

output depends on the input neurons' contributions subjected to the connection weights’

magnitude and direction. Inputs with higher connection weights represent a higher

excitation level of activation at the output of the neurons. They, therefore, are relatively

more important in predicting than inputs with lower connection weights.

The PaD method calculates the relative contribution of the neural network outputs using

the Sum of the Square Partial Derivatives (SSD) (see Equation B.14). The method is based

on the Backpropagation (BP) algorithm, which is used to compute the partial derivatives of

the cost function with respect to each weight.

The Perturb method computes the relative importance of each variable by predicting the

output at the network by progressively applying white noise to each input variable while

keeping the other variables constant. The predicted output is subsequently used to calculate

the new MSE, which is then compared to the original MSE. The relatively more important

variable is expected to significantly influence the network's output, exhibited by a more

significant difference between the MSEs.

The Profile method calculates the relative importance of each input variable by varying the

values of the input variable while the remaining input variables are kept constant. The input

values change with a scale range fixed with an initial setting to their minimum value, the

first quartile, median, third quartile, and maximum values, resulting in five output values.

The median values over the scale range are identified to obtain a profile curve. The

Chapter 5. Energy Consumption Prediction in Hadoop Cluster 160

difference between the maximum and minimum values from the profile curve is computed.

The more significant the difference, the more influence that input variable has on the output

variable.

The 23 input features (See Table 5.11) are mapped according to their affinity into five major

energy-related categories, as shown in Table 5.12. These categories are System Utilization,

Disk I/O Activities, Network Transfer, Job Profile, and the Environment. The ensemble SA

method is applied to the 50 identified EVLNN models from the 50 runs of EVLNN training.

These are the best individuals or optimal solutions from each of the runs. The relative

importance of each input variable for each EVLNN model is calculated and stored in a

matrix.

Table 5.11 Input Variables of the EVLNN model.

Input Number Variables

1 Cluster CPUs (Systems)

2 Cluster CPUs (User)

3 Cluster CPUs (wait)

4 CPU Time Spent

5 Memory (Use)

6 Memory (Cache)

7 Memory (Buffer)

8 System (Process)

9 File: Map byte read

10 File: Reduce byte read

11 FILE: Map byte written

12 File: Reduce byte written

13 HDFS: Reduce byte written

14 Reduce Shuffle Bytes (Total)

15 Network (IN)

16 Network (OUT)

17 File Size

18 Job Completion Time

19 Number of mappers

20 Number of reducers

21 Workload type

22 Humidity

23 Temperature

The importance values were subsequently transformed into importance orders and averaged

over the 50 models in each SA method. Table 5.13 shows the orders; however, no consensus

among the four methods was observed at this stage. For example, the CW and Profile

methods ranked input variable 21 (workload type) as the most important contributor to

Chapter 5. Energy Consumption Prediction in Hadoop Cluster 161

energy consumption. The PaD and Perturb methods ranked input variable 17 (file size) as

the most important. Comparatively, the input variable 17 (file size) was ranked second and

third in the Profile and CW methods, respectively. In contrast, input variable 21 (workload

type) was ranked fourth in the Perturb method but 19th in the PaD method.

Table 5.12 Five energy-related categories (differentiated by their respective colors).

 Categories

1 Job Profile

2 System Utilization

3 Disk I/O

4 Network Transfer

5 Environment

Table 5.13 Ranking of input variable importance averaged over 50 identified EVLNN models.

Rank
Sensitivity Analysis Method

CW PaD Perturb Profile

1 21 17 17 21

2 5 2 18 17

3 17 7 4 9

4 19 9 21 4

5 1 18 2 18

6 20 11 14 10

7 16 19 3 13

8 12 15 12 14

9 2 6 19 11

10 14 4 20 12

11 10 22 13 1

12 8 1 10 19

13 7 23 11 20

14 11 5 5 2

15 3 20 1 6

16 4 8 6 16

17 23 14 8 7

18 18 12 9 3

19 13 21 16 22

20 6 16 15 5

21 15 13 7 15

22 22 3 23 8

23 9 10 22 23

Next, the importance orders were transferred to the categories, shown in Table 5.14. It can

be observed that the method has resulted in a more consistent model interpretation in which

all four SA methods agreed with the ranking of Job Profile as the most critical factor

Chapter 5. Energy Consumption Prediction in Hadoop Cluster 162

contributing to energy consumption. The Job Profile category, as presented in Table 5.14,

consists of the input features: file size, workload type, job completion time, the number of

mappers, and reducers. If there is a tie, the amount of voting positions is adopted to break

the tie (See Table 5.15). For example, in the case of position two, System Utilization and

Disk I/O categories garnered two votes each for position two, which indicated a tie. Then

the amount of voting for the following position is considered to break the tie. Thus, in the

final result, the order of importance was Job Profile, followed by System Utilization (most

votes for positions two and three), Disk I/O, Network , and finally the Environment. The

resulting descriptions are interpretable, providing insight into the system of interest. While

it is expected that the categories were not all ranked the same by all four methods, this

approach has exhibited good stability by dramatically reducing the inconsistency.

Table 5.14 Ranking of factors contributing to energy consumption by categories.

Rank CW PaD Perturb Profile

1 1 1 1 1

2 2 2 3 3

3 4 5 2 2

4 3 4 4 4

5 5 3 5 5

Table 5.15 Amount of votes received by each category.

 Voting Count

Categories

Position

1

Position

2

Postion

3

Position

4

Position

5

Final

Position

1 Job Profile 4 0 0 0 0 1

2 System Utilization 0 2 2 0 0 2

3 Disk I/O 0 2 0 1 1 3

4 Network Transfer 0 0 1 3 0 4

5 Environment 0 0 1 0 3 5

Chapter 5. Energy Consumption Prediction in Hadoop Cluster 163

5.6. Chapter Summary

The Hadoop cluster is a parallel distributed system with dynamic and nonlinear behavior.

The energy consumption of a Hadoop cluster using EVLNN was successfully modeled.

The performance of EVLNN is better than ANNs evolved using other modern state-of-the-

art metaheuristics EAs such as PSO-NN, DE-NN, and conventional GA-NN. The testing

MSE scores for EVLNN, PSO-NN, DE-NN, and GA-NN were 0.00230 (± 0.00042),

0.00310 (± 0.00195), 0.01041 (± 0.00307), and 0.01071 (± 0.00416), respectively. The

experimental results showed that EVLNN could effectively explore the architecture

landscape and discover optimal structures using several mechanisms of an improved GA,

such as species parallelism, intra-and-inter species crossovers, and a two-stage mutation.

In addition, the EVLNN architecture with reduced network complexity was interpretable,

using an ensemble-based approach to sensitivity analysis combined with a data aggregation

technique. The approach was successfully implemented to extract the underlying energy

characteristics of the system by informing how various input parameters affect the system’s

output. The results highlighted that the most important contribution to the Hadoop energy

consumption is the Job Profile category. This category consists of the workload types

(compute-intensive or I/O intensive), file size (size of the payload), job completion time,

and the number of mappers (which is dependent on the payload size and the HDFS block

size) and reducers. This aspect of the research suggests that EVLNN is a competitive and

promising method for energy prediction. EVLNN exhibited good generalizability and

interpretability. Its ensemble-based approach to sensitivity analysis has produced a more

consistent interpretation of the energy consumption influencing factors, which is essential

in contributing to the research in data center sustainability.

Chapter 6

6. Solar Irradiance Forecasting in

Tropical Region

6.1. Introduction

Clean electricity system based on solar photovoltaic (PV) power generation is rapidly

growing worldwide. Cumulative solar PV capacity reached almost 400 Gigawatt (GW) and

generated over 460 Terawatt hours (TWh) in 2017 [249]. This capacity represents around

2% of global power output, and by 2023, the world will have one trillion watts of installed

solar PV capacity. Solar power intermittency remains a significant issue for data centers’

transition to renewable energy despite its rapid penetration. Solar power intermittency can

be due to two factors. Firstly, the “variability” of solar power generation is caused by

fluctuations in solar radiation from changing cloud conditions during the day. Secondly, the

“uncertainty” of the electricity generation is due to grid operators not knowing the

electricity production at multiple timescales with perfect accuracy. Therefore, integrating

solar electricity into the data center electricity grid will be particularly challenging as the

variability of solar resources means solar power generation is not guaranteed. The solar

irradiance forecast data can be used to calculate the PV power output, assisting grid

operators in determining the power output capacity. Hence accurate forecasting cum

better planning can mitigate the effects of variability and uncertainty associated with

intermittency and is essential for further integration of renewable energy into the grid [250].

In this chapter, EVLNN was applied to forecast time series solar irradiance. The training

dataset covers a four-year database between 2013 to 2016 consisting of meteorological

variables. A subset of data was extracted from the database to train the EVLNN model to

predict solar irradiance over a forecast horizon of seven days at four different time steps:

1-min, 15-min, 30-min, and hour. The performance of EVLNN is compared to well-known

EA-based neural networks modeled with Particle Swarm Optimization (PSO-NN),

Chapter 6. Solar Irradiance Forecasting in Tropical Region 165

Differential Evolution (DE-NN), and the classic Genetic Algorithm (GA-NN). A fully

connected nonlinear time-delay neural network (TD-BPNN) trained using Levenberg-

Marquardt (LM) backpropagation (BP) algorithm is included as a reference to evaluate the

performance of the models.

6.2. The Solar Photovoltiac Testbed

A small-scale 1 kW PV system grid-connected Solar PV testbed located on the rooftop of

the School of Engineering at Nanyang Polytechnic was used for the experiment. The

experimental dataset covers the period from 2013 to 2016.

6.2.1. Experimental Testbed

The PV system testbed is mounted at 1.38° N 103.85° E, 40 m above ground level. The

solar panels are tilted at approximately 15° to the horizontal plane to optimize the energy

harvest from the equatorial sunshine. It also prevents rainwater from being trapped by the

panel frame, which could cause dirt deposited on the panel after evaporation. Weather

instruments are also installed, along with a data logger that collects and records data at 15-

second intervals. Table 6.1 summarizes the information on the Solar PV testbed setup.

Table 6.1 Solar PV test panel and location information.

Parameters Specifications

Site Name School of Engineering, Nanyang Polytechnic

Site Latitude 1.38o N

Site Longitude 103.85o E

Solar PV Panel (Wp) 1 kW

Solar Panel Type MultiCrystal PV modules

Solar Panel Efficiency 16%

Panel Tilt Angle 15o

Chapter 6. Solar Irradiance Forecasting in Tropical Region 166

Figure 6.1 shows the PV panels and the associated meteorological measurement

instruments. These instruments include the pyrometer, wind vane, anemometer, barometer,

rain gauge, temperature sensor, and humidity sensors. The schematic diagram of the PV

monitoring system is shown in Figure 6.2.

Figure 6.1 Left: Meteorological Measuring Instruments for rainfall, wind direction, and wind speed. Right:

Rooftop solar panel testbed.

Figure 6.2 Schematic diagram of the PV monitoring system.

0

500

1000

1

5
6
6

1
1
3
1

1
6
9
6

2
2
6
1

2
8
2
6

3
3
9
1

3
9
5
6

4
5
2
1

5
0
8
6

W
/m

2

Time in minutes

Solar Irradiance

0

500

1000

1
5
1
5

1
0
2
9

1
5
4
3

2
0
5
7

2
5
7
1

3
0
8
5

3
5
9
9

4
1
1
3

4
6
2
7

5
1
4
1P

o
w

er
 (

W
)

Time in minutes

Solar PV Power

Data Logger Data

Acquisition

System

Solar Irradiance Graph

Solar PV Panel Power Graph

Pyranometer

Solar PV Panel

Weather Instrument

https://www.google.com.sg/imgres?imgurl=https%3A%2F%2Fd3ecqbn6etsqar.cloudfront.net%2F45mUUdVh-ASW2PjIoDkCA6qq5-M%3D%2F0x720%2Fsmart%2F436985.jpg&imgrefurl=https%3A%2F%2Fcollection.maas.museum%2Fobject%2F474269&docid=6pnjfRGSvIil_M&tbnid=cOC2mXtAGumm0M%3A&vet=10ahUKEwi98tnzoJvlAhUSbn0KHZ49AuwQMwiAASgpMCk..i&w=1003&h=720&bih=495&biw=1093&q=solar%20PV%20system%20data%20logger&ved=0ahUKEwi98tnzoJvlAhUSbn0KHZ49AuwQMwiAASgpMCk&iact=mrc&uact=8
https://www.google.com.sg/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=2ahUKEwiRv7TEopvlAhVUaCsKHdAvDAIQjRx6BAgBEAQ&url=https%3A%2F%2Fhp-satis.com%2Furun%2Fp06781-425-hpe-ml30-gen10-e-2124-8gb-server%2F&psig=AOvVaw0Q8wAv-2uQGdWdPr6Gfp75&ust=1571125981993455

Chapter 6. Solar Irradiance Forecasting in Tropical Region 167

6.3. Data Preparation

6.3.1. Initial Data Exploration

Figure 6.3 shows a box plot of the distribution of daily irradiance observed at the PV

location for each month in 2016. It was noted that the median daily irradiation was the

lowest in June, recorded at 2.95 kWh/m2, whereas the median daily irradiation was the

highest in March, recorded at 4.36 kWh/m2. February and September were months with

high daily irradiation too.

 Figure 6.3 Distribution of daily irradiance in 2016 for each month at latitudes 1.38oN and 103.85oE.

A scatter plot in Figure 6.4 shows high irradiance variability throughout the year. This

phenomenon is expected as the tropical region experiences frequent cloud formation and

unexpected weather changes. The annual daily average irradiation in 2016 was about 3.78

kWh/m2 (± 1.15 kWh/m2), and the total annual irradiation was 1,383 kWh/m2. Figure 6.5

shows a box plot of the hourly irradiance distributed throughout 2016. The hourly mean

irradiance is shown in a red curve. The chart depicts that irradiance is highly correlated to

the hours of the day. A typical day follows the pattern where it starts with a low GHI,

reaches the peak value around solar noon, and finally descends to a low again in the evening.

Chapter 6. Solar Irradiance Forecasting in Tropical Region 168

Figure 6.4 Scatter plot of the daily irradiance with the red line indicating the mean irradiance in 2016.

Figure 6.5 Hourly irradiance distribution in 2016 with the red curve indicating the mean.

To further explore and analyze irradiance variability, a typical day was chosen on 1st March

2016, where the clear sky GHI, DHI, and DNI values are plotted at the exact location

(1.38°N, 103.85°E) using the McClear Clear Sky Model from the Copernicus Atmosphere

Monitoring Service (CAMS) McClear Clear-Sky Irradiation service [154]. Figure 6.6

shows the GHI, DHI, and DNI on 1st March plotted in red, magenta, and green, respectively.

The per-minute solar irradiance on 1st March is plotted in blue. From Figure 6.6, it can be

seen that solar irradiance in the tropics is generally associated with high variability in the

Chapter 6. Solar Irradiance Forecasting in Tropical Region 169

time series, where high irradiance values were often preceded and followed by large drops

in irradiance that resulted in a large magnitude of the fluctuation.

 Figure 6.6 Irradiance profile on 1st March 2016.

6.3.2. Selecting Training Data Length

After the initial data exploration from our database, the next step is to decide the length of

the training. For practical reasons, the best combination for the training set was N=30 days,

with fewer days proving insufficient and more days did not yield better results [251]. This

approach is adopted where N=30 days is used as a window period to explore the database

further. The 2013 to 2016 database revealed that most days are similarly characterized by

high irradiance variability with differing magnitudes on different days, except for those

days with rain, where the irradiance patterns were different.

6.3.3. Determining Forecast Horizon and Time-Step for Predicting Solar Irradiance

A forecast horizon is how far into the future a sufficiently good prediction can be made.

The concept of forecast horizon in solar can be categorized as long-term (1-10 years),

medium-term (one month to one year), short-term (one hr or several hours to one day or

several days), and very short-term (one min to several mins) [252] depending on the

application. A forecast horizon of several days and an hourly time-step prediction are

common in the literature [119], [253], [254]. In tropical regions, intra-hour and inter-hour

Chapter 6. Solar Irradiance Forecasting in Tropical Region 170

solar intermittency can be high caused by the temporal change of cloud structure influenced

by cloud motion or frequent tropical rainfall. This work investigates the intermittency at

four different time steps: 1-min, 15-min, 30-min, and hourly, with a forecast horizon of

seven days. Based on findings during the initial data exploration stage, a forecast horizon

of seven days would likely contain days with dry and wet weather conditions that can

sufficiently provide an indication of how well the model generalizes to data into the future.

6.3.4. Pre-processing of Data

The dataset for 2016 was explored, and the training set in March 2016 was eventually

selected. An important consideration when selecting a representative month is its good mix

of weather conditions. Although February's daily solar irradiance distribution holds a good

spread (see Figure 6.3), it only had one day of rain for the entire month, which may not be

representative. The selected dataset has a 15-second time resolution. Figure 6.7 shows the

time-series solar irradiance for March 2016, consisting of 178,560 data samples. The month

experienced ten wet days of various rainfall intensity on the fourth, fifth, sixth, seventh,

eighth, tenth, thirteenth, fourteenth, twentieth, and twenty-first day of March indicated by

the rain gauge readings of 0.4mm/hr, 3.6mm/hr, 0.2mm/hr, 3.6mm/hr, 2.0mm/hr, 5.2mm/hr,

11.6mm/hr, 0.2mm/hr, 4.8mm/hr, 12.2mm/hr, respectively. Of the ten days of rain, four

were light (< 2.5 mm/hour), three were moderate (> 2.5 mm/hour, < 7.5 mm/hour), and

two were heavy (> 7.5 mm/hour), while the rest were dry days.

Figure 6.7 Solar irradiance raw data for March 2016 with rain gauge reading indicated.

Chapter 6. Solar Irradiance Forecasting in Tropical Region 171

Four training sets of 1-min, 15-min, 30-min, and hourly time resolution were extracted from

this raw dataset to train the predictive models for short-term irradiance forecasting. The

testing set is taken from the first seven days of April 2016.

Table 6.2 summarizes the descriptive statistics for the four training sets. It can be observed

that the lower the time resolution, the higher the information lost. For example, the

maximum irradiance of 1,237.67 W/m2 sampled at an hourly resolution compared to the

maximum irradiance of 1,066.90 W/m2 sampled at the 1-min resolution has a reduction of

13.8%.

Table 6.2 Solar irradiance statistics at various time resolutions.

Training

Set

Resolution Minimum

(W/m2)

Maximum

(W/m2)

Mean

(W/m2)

Std Dev

(W/m2)

Training

Samples

Testing

Samples

1 1 min 0.29 1,237.67 183.84 275.59 43,710 9,870

2 15 min 0.32 1,113.97 182.72 273.69 2,914 658

3 30 min 0.33 1,079.04 185.31 277.43 1,457 329

4 1 hour 0.35 1,066.90 183.36 273.12 729 165

It is observed that the hourly dataset has a relatively small sample size of 729. Unlike large

datasets, small datasets rendered most machine learning techniques impractical for

predictive modeling as the lack of data makes it hard for models to map the input and output

relationship in the dataset. Nonetheless, it is essential to investigate the performance of

EVLNN trained with a small dataset of a few hundred samples. From an implementation

viewpoint, reducing the reliance on extensive training datasets for solar irradiance

forecasting has its advantages, as meteorological data are complex and expensive to acquire

due to the high cost of weather and atmospheric measurement instrument.

Figure 6.8 shows the per minute irradiance testing dataset from 1st to 7th April 2016. Two

of the seven days were rainy days. The first was measured at 43.2 mm/hr on 3rd April

between 14:29 to 15:29, with relative humidity (RH) reaching 96.84%. After this time, the

rain gauge measurement did not increase, but solar irradiance increased to a high of 276.7

W/m2 at 18:00 before decreasing to almost zero at 19:13. The second rainy day was

measured at 13.8 mm/hr on 5th April between 16:25 to 17:25, with RH reaching 80.21%

during this period. The non-rainy days during this period exhibited the irradiance of a

typical sunny day in the tropics with high variability.

Chapter 6. Solar Irradiance Forecasting in Tropical Region 172

Figure 6.8 Irradiance testing dataset from 1st to 7th April 2016.

In summary, the testing dataset presents interesting variability and challenges with a mix

of wet and dry days for solar irradiance forecasting.

6.3.5. Exploring and Selecting the Features

There are broadly three models of ANN in the literature; those using exogenous inputs

[255] [256] [257], those using univariate endogenous input [258], and those using both

[259]. Exogenous inputs usually include meteorological data such as temperature, humidity,

rainfall, and wind speed, and endogenous inputs include solar irradiance, temperature, or

PV output power. The exogenous time-series inputs features {𝑥1(𝑡), 𝑥2(𝑡), … , 𝑥7(𝑡), }

collected from the dataset for training the models are shown in Table 6.3 and the statistical

description of the features in Table 6.4.

Table 6.3 Input features for EVLNN.

Input Features Abbreviation

x1(t): Ambient Temperature at time t AT

x2(t): Relative Humidity at time t RH

x3(t): Rain Gauge reading at time t RG

x4(t): Wind Speed at time t WS

x5(t): Wind Direction at time t WD

x6(t): Atmospheric Pressure at time t AP

x7(t): PV panel surface Temperature at time t PT

Chapter 6. Solar Irradiance Forecasting in Tropical Region 173

Table 6.4 Statistical Analysis of Input Feature Data Obtained for the Period in March 2016.

Input Feature Unit, Symbol Range Min Max Mean Std Dev

x1(t) AT Degree Celsius, oC 12.4oC 25.1oC 37.5oC 29.7oC 2.5oC

x2(t) RH Percentage, % 55.8% 38.0% 93.8% 71.2% 11.8%

x3(t) RG millimeter per hour, mm/h 12.2 mm/h 0 mm/h 12.0 mm/h 0.5 mm/h 1.8 mm/h

x4(t) WS meter per second, m/s 8.0 m/s 0 m/s 8.0 m/s 0.9 m/s ± 0.7 m/s

x5(t) WD Degree, o 360o 0o 360o 91.1o ± 101.5o

x6(t) AP millibar, mbar 5.8 mbar 1008.0 mbar 1013.8 mbar 1010.9 mbar ± 0.9 mbar

x7(t) PT Degree Celsius, oC 33.3oC 24.3oC 57.6oC 31.9oC ± 7.3oC

The Pearson Correlation Coefficient (PCC) method is applied to explore the correlation

between the individual input variables with the solar irradiance response variable. The PCC

measures the strength of a linear association between two variables, x and y, expressed in

Equation 6.1.

𝑟 =
∑(𝑥−𝑥̅)(𝑦−𝑦̅)

√∑(𝑥−𝑥̅)2(𝑦−𝑦̅)2
 (6.1)

Figure 6.9 shows the PCC result plotted in a comparison bar chart. PT and AT input

variables have strong positive correlations with irradiance with 0.89 and 0.77, respectively.

On the other hand, the input variable RH has a strong negative correlation with a value of

-0.71. All the input variables are meteorological data except PT. Meteorological data are

expensive to acquire as they require costly weather instruments. On the contrary, PV is a

temperature sensor data that is inexpensive to acquire due to its affordability and low setup

cost.

Chapter 6. Solar Irradiance Forecasting in Tropical Region 174

 AT RH RG WS WD AP PT

r 0.77 -0.71 -0.12 0.35 0.13 0.05 0.89

Figure 6.9 Pearson correlation between the input variables, AT, RH, RG, WS, WD, AP, and PT, and the

response variable, solar irradiance.

6.3.6. Normalizing the Dataset

Data normalization, also known as feature scaling, is subsequently performed to ensure the

input variables’ magnitude is the same as inputs of different scale affects learning speed.

Specifically, the min-max scaling is used to normalize the training set between the range of

-1 to 1 governed by Equation 6.2, where x’ is the transformed value of x and xmin and xmax

is the minimum and maximum value of x in the dataset, respectively.

𝑥′ = 2 ∗ [
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
] − 1 (6.2)

6.3.7. Preparing the Feature Sets for Model Training

The training of the models is conducted in two phases, as depicted in Table 6.5 and Figure

6.10. In the first phase, feature set one comprising seven input features, as listed in Table

6.5, is used. In the second phase, a smaller scale of features AT, RH, and PT has a stronger

0.77

-0.71

-0.12

0.35

0.13
0.05

0.89

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

AT RH RG WS WD AP PT

Pearson Correlation Coefficient (PCC)

Chapter 6. Solar Irradiance Forecasting in Tropical Region 175

correlation where |𝑃𝐶𝐶| ≥ 0.7 (Figure 6.9) was selected to form three subsets consisting

of AT, RH, and PT, in subset one, AT and PT in subnet two, and PT in subset three. The

combination of features in the subsets is based on the features’ |𝑃𝐶𝐶| where the feature

with a lower value is eliminated when reducing the feature size in the following subsets,

eventually having only one feature in the last subnet. The four feature sets are then used to

train the models to forecast solar irradiance at four different time-steps. Experimentation

with various feature sets is designed to evaluate the generalization capability of EVLNN.

Table 6.5 Input and target features of phases 1 and 2 for model training.

Input features

Target Feature for both

PHASES 1 and 2 PHASE 1

PHASE 2

Feature

Subset 1

Feature

Subset 2

Feature

Subset 3

AT

RH

RG

WS

WD

AP

PT

AT

RH

PT

AT

PT

PT

IRR

Figure 6.10 Four feature sets to train the EVLNN model for multiple time-step predictions.

Set 1

(7 inputs)

WD

AP

RG

WS

AT

RH

PT

Set 2

(3 inputs)

Set 3

(2 inputs)

Hourly

dataset

30 min

dataset

15 min

dataset

1 min dataset

Training

Dataset

Set 4

(1 input)

EVLNN

training

Trained

model

Hourly

prediction

30 min

prediction

15 min

prediction

1 min

prediction

Irradiance
Testing

Dataset

Chapter 6. Solar Irradiance Forecasting in Tropical Region 176

6.4. Model Training

6.4.1 Designing EVLNN Architecture for Time-Series Forecasting

Figure 6.11 presents the EVLNN architecture with feedback for time series forecasting.

The feedback structure allows lagged values, t-h at the output (where h is the number of

time-steps), to be used as inputs to the network. The future values of a time-series response

variable, 𝑦𝑘 can be forecasted based on their past values. In the EVLNN architecture, the

solar irradiance output at the previous time 𝑦𝑡−ℎ, … , 𝑦𝑡−3, 𝑦𝑡−2, 𝑦𝑡−1 is fed back as input to

predict the solar irradiance output at the current time steps, 𝑦𝑡, 𝑦𝑡+1, 𝑦𝑡+2 , … , 𝑦𝑡+𝑚

alongside the rest of the exogenous inputs, 𝑥𝑖(𝑡−ℎ) where i=1, 2, …, 7. These input

variables are described in Table 6.3.

In the model training, the lagged delay of two predicted time-step is taken and made

available to the model for the forecast on the next step. Predicted values are cleansed of the

noise at the network's output before feeding back to the inputs.

Figure 6.11 The figure illustrates four feature sets comprising various input features used to evaluate

EVLNN’s performance.

.

.

Input node Legend

Hidden node

Output node

Bias node

Input to hidden node

Hidden to output node

Bias to hidden/output node

Output to hidden node

‘Zero’ weights connections

Output

x1(t)

x2(t)

x3(t)

x4(t)

x5(t)

x6(t)

x7(t)

𝑦𝑡ෝ (t),

Solar

Irradiance

𝑦𝑡ෝ (t-h), lagged values feedback

as input variables

𝑦𝑡ෝ (t-h), lagged values feedback

as input variables

Ambient Temperature,

Relative Humidity,

Rain Gauge,

Wind Speed,

Wind Direction,

Atmospheric Pressure,

PV panel surface

Temperature,

Chapter 6. Solar Irradiance Forecasting in Tropical Region 177

6.4.2 Error Metrics for Model Performance Comparison

A large number of error metrics have been used by authors to evaluate and compare the

different methods and their solar energy forecast accuracies. As each statistical metric

focuses on a specific aspect of point distribution, no unique metric is valid for all situations.

Instead, researchers usually include several metrics to assess model performance as each

one adds information about the model's accuracy [260]. Table 6.6 lists the widely used

forecast error metrics and their respective descriptions and computations. Equations 6.3 to

6.7 in the list are Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean

Bias Error (MBE), Mean Absolute Percentage Error (MAPE), coefficient of determination

or R-squared (R2), respectively. The error performance of EVLNN is evaluated against

ANNs trained with other EAs. The ANNs are PSO-NN, DE-NN, and GA-NN, and a fully

connected Time-delay BPNN (TD-BPNN) trained using the Levenberg-Marquardt (LM)

algorithm is used as a benchmark. In Table 6.6, the forecast error is expressed at time t as

𝑒𝑡 = 𝑦𝑡 − 𝑦̂𝑡 where 𝑦𝑡 𝑎𝑛𝑑 𝑦̂𝑡 are the actual and predicted values, respectively, n is the

number of samples, and k is the number of predictors.

Table 6.6 Error metrics used to evaluate EVLNN against other models.

Metric Description Computation

RMSE RMSE squares the errors before calculating their mean,

followed by taking the square root of the mean. It

provides a good measure of the model’s accuracy.

√
1

𝑛
 ∑ (𝑒𝑡)2

𝑛
𝑡=1 (6.3)

MAE MAE averages the absolute error of each predicted and

measured pair. It measures how big an error from the

forecast is on average.

1

𝑛
 ∑ |𝑒𝑡|

𝑛
𝑡=1 (6.4)

MBE MBE estimates the average bias in the model between

over and underprediction.
−
1

𝑛
 ∑ 𝑒𝑡

𝑛
𝑡=1 (6.5)

MAPE MAPE compares the error ratio over the actual in

percentage terms from different series on different

scales.

100

𝑛
 ∑ |

𝑒𝑡

𝑦𝑡
|𝑛

𝑡=1 (6.6)

R2 Coefficient of Determination (R2) measures the

strength of the relationship between the model and the

predictors. It measures how well the predictors explain

future responses on a scale of 0 to 1.

1 − [
∑ 𝑒𝑡

2𝑛
𝑡=1

∑ (𝑦𝑡−𝑦̅)2
𝑛
𝑡=1

] (6.7)

Chapter 6. Solar Irradiance Forecasting in Tropical Region 178

6.4.3 Training of EVLNN

Fifty trials were conducted with 250 iterations to train the models for four time-step

predictions. The identified models are then applied to forecast solar irradiance using out-

of-sample data as a test dataset, and the results are summarized in Table 6.7. In Table 6.7,

it is observed that EVLNN had outperformed all the other EAs reaching low MSE values

of 0.0480, 0.0446, 0.0441, and 0.0350 for each of the hourly, 30-min, 15-min, and 1-min

time-step predictions, respectively, demonstrating good generality across diverse sizes of

training datasets. The superior results can be attributed to the EVLNN algorithm for neural

architecture search. TD-BPNN, a fully connected network, only outperformed EVLNN in

the 1-min time-step prediction with a lower MSE value of 0.0175 compared to EVLNN’s

0.0350. However, TD-BPNN could not generalize to other datasets and time-step

predictions. Figure 6.12(a-d) compares the MSE convergence values reached by the EA-

based learning algorithms at various time-step predictions. The left and right y-axes of the

graphs show the normalized MSE and actual MSE values, whereas the x-axes show the

number of iterations or generations.

Table 6.7 Sample statistics of training MSE values averaged over N=50 runs tested for various models at

each time-step prediction. Embolden figures to represent better results.

Time-step Models Mean N Std Dev
Std. Error

Mean

Hourly

EVLNN 0.0480 50 0.0011 0.0002

PSO-NN 0.0501 50 0.0007 0.0001

DE-NN 0.0700 50 0.0080 0.0011

GA-NN 0.0623 50 0.0068 0.0010

TD-BPNN 0.1305 50 0.0112 0.0016

30-min

EVLNN 0.0446 50 0.0009 0.0001

PSO-NN 0.0448 50 0.0006 0.0001

DE-NN 0.0657 50 0.0079 0.0011

GA-NN 0.0581 50 0.0084 0.0012

TD-BPNN 0.0786 50 0.0067 0.0010

15-min

EVLNN 0.0441 50 0.0009 0.0001

PSO-NN 0.0441 50 0.0007 0.0001

DE-NN 0.0623 50 0.0071 0.0010

GA-NN 0.0543 50 0.0054 0.0008

TD-BPNN 0.0534 50 0.0038 0.0005

1-min

EVLNN 0.0350 50 0.0007 0.0001

PSO-NN 0.0371 50 0.0007 0.0001

DE-NN 0.0529 50 0.0054 0.0008

GA-NN 0.0451 50 0.0038 0.0005

TD-BPNN 0.0175 50 0.0035 0.0005

Chapter 6. Solar Irradiance Forecasting in Tropical Region 179

It is observed that EVLNN and PSO-NN converged faster to lower MSE. GA-NN has a

slower convergence rate at the start. However, it overtook DE-NN after around 100

generations and converged to a lower MSE than DE-NN for all time-step predictions. The

superiority of getting a lower MSE by EVLNN and PSO-NN demonstrated that EVLNN,

with its species parallelism technique, and PSO-NN, with its swarm-based approach, had

achieved superior results in navigating the architecture landscape to locate the optimal

networks. However, DE-NN and GA-NN could not escape from local structural minima

and hence were trapped at higher MSEs. The result is consistent with the experiments

performed in Chapter 5 when predicting the Hadoop energy consumption, where EVLNN

and PSO-NN also outperformed DE-NN and GA-NN.

(a) Hourly time-step prediction.

Chapter 6. Solar Irradiance Forecasting in Tropical Region 180

(b) 30-min Time-Step Prediction.

(c) 15-min Time-Step Prediction.

Chapter 6. Solar Irradiance Forecasting in Tropical Region 181

(d) 1-min Time-Step Prediction.

Figure 6.12(a-d) Average training MSE repeated over 50 runs for various time-steps predictions

6.4.4 Model Convergence Speed and Rate

The experiment found that EVLNN has converged to a lower MSE faster, outpacing the

other EA-based algorithms in all time-step predictions. The convergence speed is gauged

based on the number of iterations each algorithm takes to reach specific checkpoint MSE

values. In contrast, the average convergence rate is based on Equation 6.8, where ∆𝑦 is the

change in the dependent variable y and ∆𝑥 is the change in independent variable x for a

function f on a given interval [x1, x2].

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 𝑅𝑎𝑡𝑒 =
∆𝑦

∆𝑥
=

𝑓(𝑥2)−𝑓(𝑥1)

𝑥2−𝑥1
 (6.8)

In calculating convergence speed, the values chosen are from 10x10-2 to 4x10-2 in steps of

0.01. Our findings are summarized in Table 6.8. The results demonstrated that EVLNN

convergences to these values faster than the other EA-based algorithms. For instance, in

the per-minute time-step prediction, EVLNN took 1 generation (or iteration) to reach the

Chapter 6. Solar Irradiance Forecasting in Tropical Region 182

MSE value of 7x10-2, whereas PSO, DE-NN, and GA-NN took 6, 69, and 102 iterations,

respectively. In the hourly time-step prediction, EVLNN took nine iterations to reach the

MSE value of 7x10-2, and PSO-NN took 15 iterations. However, DE-NN and GA-NN

stagnated after 108 and 172 iterations, respectively, making minimal improvement. When

calculating the average convergence rate, the entire iteration length is applied before

stagnation sets in, up to 250 iterations. The results in Table 6.8 showed that EVLNN has

the fastest convergence rate for 1-min, 15-min, and 30-min time-step predictions, whereas

PSO-NN has the fastest convergence rate for the hourly time-step prediction.

Table 6.8 Comparison of convergence speed and rate. Embolden figures to indicate the best results.

Note: A ‘hypen’ (‘-‘) means stagnation with minimal improvement.

Time-step

(training

sample)

EVLNN PSO-NN DE-NN GA-NN
MSE

Value
Convergence Rate (

∆𝒚

∆𝒙
)

No. of iterations or generations

1-min

(53,580)

1 2 7 29 10 x 10-2
EVLNN =

10𝑥10−2−4𝑥10−2

32−1
= 𝟏𝟗. 𝟑𝟓𝒙𝟏𝟎−𝟒

PSO-NN =
10𝑥10−2−4𝑥10−2

90−2
= 6.82𝑥10−4

DE-NN =
10𝑥10−2−7𝑥10−2

69−7
= 4.84𝑥10−4

GA-NN =
10𝑥10−2−6𝑥10−2

156−29
= 3.15𝑥10−4

1 3 11 53 9 x 10-2

1 5 23 71 8 x 10-2

1 6 69 102 7 x 10-2

4 9 - 156 6 x 10-2

10 15 - - 5 x 10-2

32 90 - - 4 x 10-2

15-min

(3,572)

1 4 16 40 10 x 10-2
EVLNN =

10𝑥10−2−5𝑥10−2

28−1
= 𝟏𝟖. 𝟓𝟏𝒙𝟏𝟎−𝟒

PSO-NN =
10𝑥10−2−5𝑥10−2

57−4
= 9.43𝑥10−4

DE-NN =
10𝑥10−2−8𝑥10−2

118−16
= 1.96𝑥10−4

GA-NN =
10𝑥10−2−7𝑥10−2

186−40
= 2.05𝑥10−4

1 6 43 69 9 x 10-2

2 8 118 107 8 x 10-2

5 12 - 186 7 x 10-2

11 16 - - 6 x 10-2

28 57 - - 5 x 10-2

- - - - 4 x 10-2

30-min

(1,786)

1 5 26 55 10 x 10-2
EVLNN =

10𝑥10−2−5𝑥10−2

38−1
= 𝟏𝟑. 𝟓𝟏𝒙𝟏𝟎−𝟒

PSO-NN =
10𝑥10−2−5𝑥10−2

56−5
= 9.80𝑥10−4

DE-NN =
10𝑥10−2−8𝑥10−2

163−26
= 1.46𝑥10−4

GA-NN =
10𝑥10−2−7𝑥10−2

222−55
= 1.80𝑥10−4

2 6 49 81 9 x 10-2

4 8 163 128 8 x 10-2

7 12 - 222 7 x 10-2

15 22 - - 6 x 10-2

38 56 - - 5 x 10-2

- - - - 4 x 10-2

Hourly

(894)

1 5 42 70 10 x 10-2
EVLNN =

10𝑥10−2−5𝑥10−2

164−1
= 3.06𝑥10−4

PSO-NN =
10𝑥10−2−6𝑥10−2

29−5
= 𝟒. 𝟏𝟔𝒙𝟏𝟎−𝟒

DE-NN =
10𝑥10−2−9𝑥10−2

108−42
= 1.52𝑥10−4

GA-NN =
10𝑥10−2−8𝑥10−2

172−70
= 1.96𝑥10−4

2 7 108 104 9 x 10-2

4 9 - 172 8 x 10-2

9 15 - - 7 x 10-2

17 29 - - 6 x 10-2

164 - - - 5 x 10-2

- - - - 4 x 10-2

Chapter 6. Solar Irradiance Forecasting in Tropical Region 183

6.5. Results and Discussion

6.5.1. Model Testing and Analysis for Phase 1 – Use of Multiple Features

Table 6.9 shows the sample statistics of the MSE score for the testing dataset averaged over

50 runs for each predictive time-step for phase one of the experiment. All seven features

were used to train the models. It is observed that PSO-NN has achieved a low MSE score

for hourly, 30-min, and 15-min time-step predictions, followed by EVLNN. As for the 1-

min time-step prediction, TD-BPNN was ranked top.

Table 6.9 Sample statistics of MSE scores averaged over N=50 runs for each time-step prediction.

Embolden figures represent the best results.

Time-step

(Sample Size)
Models Mean N

Std

Deviation

Std Error

Mean

Hourly (894

samples)

EVLNN 0.0524 50 0.0056 0.0008

PSO-NN 0.0482 50 0.0044 0.0006

DE-NN 0.0673 50 0.0194 0.0027

GA-NN 0.0581 50 0.0134 0.0019

TD-BPNN 0.0610 50 0.0136 0.0019

30-min (1,786

samples)

EVLNN 0.0542 50 0.0038 0.0005

PSO-NN 0.0518 50 0.0034 0.0005

DE-NN 0.0689 50 0.0187 0.0026

GA-NN 0.0597 50 0.0111 0.0016

TD-BPNN 0.0623 50 0.0046 0.0007

15-min (3,572

samples)

EVLNN 0.0425 50 0.0027 0.0004

PSO-NN 0.0403 50 0.0015 0.0002

DE-NN 0.0593 50 0.0094 0.0013

GA-NN 0.0545 50 0.0098 0.0014

TD-BPNN 0.0473 50 0.0043 0.0006

1-min (53,580

samples)

EVLNN 0.0376 50 0.0013 0.0002

PSO-NN 0.0381 50 0.0011 0.0002

DE-NN 0.0567 50 0.0081 0.0011

GA-NN 0.0479 50 0.0052 0.0007

TD-BPNN 0.0264 50 0.0027 0.0004

In using multiple features for prediction, EVLNN generally performed well in all the

experiments. Its ranking is below PSO-NN, except for the 1-min time-step prediction where

EVLNN is below TD-BPNN but above PSO-NN. The results demonstrated EVLNN’s

generalization capability with sparse or dense datasets. The findings confirmed that

EVLNN is a competitive technique outperforming DE-NN and GA-NN while comparable

to PSO-NN for 30-min and 1-min time-step predictions. EVLNN’s technique with intra-

Chapter 6. Solar Irradiance Forecasting in Tropical Region 184

species and inter-species recombination strategy provides diversity balance to give the

algorithm a generality when working with sparse or dense datasets. It is observed that TD-

BPNN with fully connected layers performed poorly against the partially connected

networks trained using EAs in the hourly predictions. This result may be attributed to the

fact that a small dataset might be sufficient for low complexity models but insufficient to

train a complex model such as the TD-BPNN. However, the strength of TD-BPNN is seen

as the size of the dataset increased with shorter time-step predictions. In the 1-min time-

step prediction, it was observed that TD-BPNN had outperformed all the other EA-based

techniques.

A multiple paired sample t-test was conducted to compare EVLNN’s performance with the

other learning techniques to investigate if there were statistical differences between

condition means. Bonferroni method is used to correct the p-value using 𝑝 =
𝛼

𝑛
 , where 𝛼

is the original p-value and n is the number of paired samples tests performed. At α=0.01

and n = 10, we obtained p ≤ 0.001. Table 6.10 shows the results of the paired samples t-

test.

Table 6.10 Paired Samples Test. Embolden figures denotes the paired differences between EVLNN’s

average testing MSE scores and the other model, which are lower and statistically significant.

Paired Differences

t df

Sig. (2-

tailed) Mean

Std.

Deviation

Std

Error

Mean

Confidence Interval of

the Difference (99%)

 Lower Upper

H
o

u
rl

y

Pair 1 EVLNN – PSO-NN 0.0042 0.0069 0.0010 0.0016 0.0068 4.314 49 0.000

Pair 2 EVLNN – DE-NN -0.0149 0.0205 0.0029 -0.0227 -0.0071 -5.142 49 0.000

Pair 3 EVLNN_– GA-NN -0.00580 0.0142 0.0020 -0.0111 -0.0004 -2.864 49 0.006

Pair 4 EVLNN – TD-BPNN -0.0086 0.0148 0.0021 -0.0142 -0.0029 -4.075 49 0.000

3
0

-m
in

Pair 5 EVLNN – PSO-NN 0.0024 0.0059 0.0008 0.0002 0.0047 2.896 49 0.006

Pair 6 EVLNN – DE-NN -0.0147 0.0197 0.0028 -0.0221 -0.0072 -5.272 49 0.000

Pair 7 EVLNN – GA-NN -0.0055 0.0120 0.0017 -0.0100 -0.0009 -3.227 49 0.002

Pair 8 EVLNN – TD-BPNN -0.0080 0.0060 0.0009 -0.0103 -0.0058 -9.493 49 0.000

1
5

-m
in

Pair 9 EVLNN – PSO-NN 0.0022 0.0030 0.0004 0.0011 0.0034 5.257 49 0.000

Pair 10 EVLNN – DE-NN -0.0168 0.0099 0.0014 -0.0205 -0.0130 -12.016 49 0.000

Pair 11 EVLNN – GA-NN -0.0119 0.0101 0.0014 -0.0157 -0.0081 -8.369 49 0.000

Pair 12 EVLNN – TD-BPNN -0.0048 0.0047 0.0007 -0.0065 -0.0030 -7.249 49 0.000

1
-m

in

Pair 13 EVLNN – PSO-NN -0.0005 0.0019 0.0003 -0.0012 0.0002 -1.813 49 0.076

Pair 14 EVLNN – DE-NN -0.0191 0.0083 0.0012 -0.0222 -0.0159 -16.287 49 0.000

Pair 15 EVLNN – GA-NN -0.0103 0.0057 0.0008 -0.0125 -0.0082 -12.895 49 0.000

Pair 16 EVLNN – TD-BPNN 0.0112 0.0031 0.0004 0.0101 0.0124 25.799 49 0.000

Chapter 6. Solar Irradiance Forecasting in Tropical Region 185

The results highlighted that for hourly time-step prediction, there was a significant average

difference between the MSE scores (𝑡49 = 4.314, 𝑝 < 0.001) of EVLNN and PSO-NN.

On average, EVLNN’s testing MSE scores were 0.0042 points higher (99% CI [0.0016,

0.0068]). In comparison with DE-NN and TD-BPNN, EVLNN’s average MSE scores were

0.0149 (99% CI [-0.0227, -0.0071]) and 0.0086 (99% CI [-0.0142, -0.0029]) points lower,

respectively. These differences were statistically significant ((𝑡49 = −5.142, 𝑝 < 0.001)

and (𝑡49 = −4.075, 𝑝 < 0.001)). In comparison with GA-NN, the average difference in

the testing MSE scores between EVLNN and GA-NN were not significant (𝑡49 =

−2.864, 𝑝 < 0.001). In the 30-min time-step prediction, the difference between EVLNN’s

average MSE scores and PSO-NN was not statistically significant. In the 15-min time-step

prediction, EVLNN’s average MSE scores were significantly higher than PSO-NN but

lower than DE-NN, GA-NN, and TD-BPNN. In the per min time-step prediction, EVLNN’s

average MSE scores were significantly lower than DE-NN and GA-NN but significantly

higher than TD-BPNN.

6.5.2. Comparison of 7-Day Forecasting Horizon Plots

The forecast horizon of seven days from 1st to 7th April 2016 is used to evaluate the

forecast proficiency of the models. The predicted solar irradiance values by the models are

denormalized to W/m2 and plotted against the actuals for comparison in Figure 6.13 to

Figure 6.16. Figure 6.13 shows the forecast result for the hourly time-step resolution. In

general, the models could reasonably predict the hourly irradiance, as demonstrated by the

prediction trend that tracked the actual values, except for the first and third day, highlighted

by the red circles, where the prediction did not match up against the actual values. The

predictions overcompensated the actual values towards the peak in the first red circle. The

models predicted an upturn in the second circle, but the actual data was a downturn. Further

analysis was later conducted, in particular, to investigate EVLNN’s predictive accuracy on

those days.

Chapter 6. Solar Irradiance Forecasting in Tropical Region 186

Figure 6.13 Hourly time-step predictions where circled portion indicates prediction with little success.

Figure 6.14 shows the results of the 30-min time-step predictions. It is observed that DE-

NN had over-predicted parts of days three, four, and five. TD-BPNN had over-predicted

parts of days three, five, and seven, and EVLNN overcompensated the peak on day five.

However, unlike the hourly prediction, the overcompensation issue did not occur on day

one of this experiment. Nonetheless, prediction for day three solar irradiance remains

challenging for all the models.

Figure 6.14 30-min time-step predictions.

Chapter 6. Solar Irradiance Forecasting in Tropical Region 187

Figure 6.15 shows the results of the 15-min time-step predictions. The models’ predictions

for part of day three and day five did not match up to the actual. The models overpredicted

the solar irradiance in those regions. Nonetheless, EVLNN’s prediction was the least

overcompensation for day five compared to the other models.

Figure 6.15 15-min time-step predictions.

Figure 6.16 shows the results of the per min time-step predictions. The charts are separated

by the respective protocols for clarity due to the huge number of samples. It is observed

that the models were able to track the actual plot in general, although each had varying

accuracy. DE-NN overpredicted days three and five and underpredicted days two, four, six,

and seven. All the models overpredicted the solar irradiance for part of day five.

Chapter 6. Solar Irradiance Forecasting in Tropical Region 188

Figure 6.16 Per min time-step predictions.

Further analysis was performed for predictions on 1st and 3rd April 2016. Figures 6.17 and

6.18 compare the individual algorithms' target and predicted irradiance. The irradiance on

1st April 2016 was observed to have much higher variability than the other days. A heavy

downpour occurred on 3rd April, which disrupted solar irradiance for at least an hour.

Chapter 6. Solar Irradiance Forecasting in Tropical Region 189

Despite these phenomena, EVLNN has generally performed well. For 1-min and 15-min

time-step predictions, EVLNN, with the other EA-based ANNs, has successfully predicted

the target curve. While TD-BPNN has the best per-minute prediction, it performed poorly

against EVLNN for the other time-step predictions. The results proved that EA-based

ANNs with partial connectivity are capable of modeling complex non-linear functions like

high variability solar irradiance. EVLNN’s species parallelism, crossovers strategies, and

two-stage mutation have helped maintain an effective search producing good generalization

across all time-step predictions.

Figure 6.17 Comparison of target and predicted irradiance on 1st April 2016 for all time-steps.

Chapter 6. Solar Irradiance Forecasting in Tropical Region 190

Figure 6.18 Comparison of target predicted irradiance on 3rd April 2016 for all time-steps.

6.5.3. Model Testing and Analysis for Phase 2 – Use of Smaller Number of Input

Features

Feature data for solar irradiance forecasting are generally expensive to collect due to the

high weather and meteorological instrument cost. The selection of fewer and essential

attributes can reduce the dimensionality of the data, resulting in a simpler model and

making model implementation less expensive. This experiment investigates EVLNN’s

performance and ability to generalize using a smaller scale of feature subsets for training.

In the selection, features with a higher absolute PCC value were chosen from the original

seven features to form three subsets. These features are solar panel surface temperature

(PT), ambient temperature (AT), and relative humidity (RH), whose PCC values are 0.89,

0.77, and -0.71, respectively. The feature subsets were grouped as shown in Table 6.11.

Table 6.11 Smaller scale of feature subsets are used for training the EVLNN models.

Experiments Number of

input features

Features

Set 1 (original) 7 x1(t) = AT, x2(t) = RH, x3(t) = RG, x4(t) =

WS, x5(t) = WD, x6(t) = AP, x7(t) = PT

Set 2 (new) 3 x1(t) = PT, x2(t) = AT, x3(t) = RH

Set 3 (new) 2 x1(t) = PT, x2(t) = AT

Set 4 (new) 1 x1(t) = PT

Chapter 6. Solar Irradiance Forecasting in Tropical Region 191

The experiment results in Table 6.12 showed that EVLNN continued to perform well, if not

better, under fewer input features. In particular, the EVLNN model trained with a single

input feature had the lowest testing MSE scores for hourly, 30-min, and 15-min time-step

predictions compared to the other models. Trained with two and three input features, the

EVLNN models have also performed well with the lowest testing MSE scores for both

hourly and 30-min time-step predictions. The results found clear support for the EVLNN

model trained with fewer input features. It is notable that EVLNN trained with a single

feature, specifically using only solar panel surface temperature as input, performed well,

giving good results in the hourly, 30 min, and 15 min time-step predictions. Moreover, solar

panel surface sensor temperature is more inexpensive to acquire than meteorological data.

This result compares favorably to ANN models in current studies that predominantly use

meteorological variables as inputs.

Table 6.12 Sample statistics of MSE scores averaged over N=50 runs for all models using a smaller scale

of feature subsets. Embolden figures to mean the best result for that time-step prediction.

 Models
Mean MSE

Score
N Std. Deviation

Std. Error

Mean

T
h

re
e

in
p
u

t
fe

at
u

re
s

H
o

u
rl

y

EVLNN 0.0459 50 0.0028 0.0004

PSO-NN 0.0476 50 0.0031 0.0004

DE-NN 0.0501 50 0.0066 0.0009

GA-NN 0.0491 50 0.0051 0.0007

TD-BPNN 0.0610 50 0.0138 0.0020

3
0

-m
in

EVLNN 0.0504 50 0.0015 0.0002

PSO-NN 0.0532 50 0.0025 0.0004

DE-NN 0.0552 50 0.0062 0.0009

GA-NN 0.0553 50 0.0060 0.0008

TD-BPNN 0.0623 50 0.0047 .0007

1
5

-m
in

EVLNN 0.0422 50 0.0010 0.0001

PSO-NN 0.0410 50 0.0011 0.0002

DE-NN 0.0437 50 0.0027 0.0004

GA-NN 0.0438 50 0.0032 0.0005

TD-BPNN 0.0473 50 0.0043 0.0006

1
-m

in

EVLNN 0.0361 50 0.0005 0.0001

PSO-NN 0.0386 50 0.0007 0.0001

DE-NN 0.0413 50 0.0025 0.0004

GA-NN 0.0416 50 0.0032 0.0005

TD-BPNN 0.0264 50 0.0027 0.0004

T
w

o
 i

n
p

u
t

fe
at

u
re

s

H
o

u
rl

y

EVLNN 0.0454 50 0.0016 0.0002

PSO-NN 0.0459 50 0.0032 0.0005

DE-NN 0.0459 50 0.0048 0.0007

GA-NN 0.0486 50 0.0056 0.0008

TD-BPNN 0.0541 50 0.0095 0.0013

Chapter 6. Solar Irradiance Forecasting in Tropical Region 192

3
0

-m
in

EVLNN 0.0499 50 0.0014 0.0002

PSO-NN 0.0523 50 0.0026 0.0004

DE-NN 0.0526 50 0.0041 0.0006

GA-NN 0.0529 50 0.0048 0.0007

TD-BPNN 0.0573 50 0.0037 0.0005

1
5

-m
in

EVLNN 0.0409 50 0.0007 0.0001

PSO-NN 0.0402 50 0.0006 0.0001

DE-NN 0.0415 50 0.0016 0.0002

GA-NN 0.0417 50 0.0016 0.0002

TD-BPNN 0.0474 50 0.0028 0.0004
1

-m
in

EVLNN 0.0355 50 0.0004 0.0001

PSO-NN 0.0383 50 0.0006 0.0001

DE-NN 0.0391 50 0.0012 0.0002

GA-NN 0.0394 50 0.0013 0.0002

TD-BPNN 0.0288 50 0.0005 0.0001

O
n

e
in

p
u

t
fe

at
u

re

H
o

u
rl

y

EVLNN 0.0453 50 0.0012 0.0002

PSO-NN 0.0497 50 0.0016 0.0002

DE-NN 0.0493 50 0.0023 0.0003

GA-NN 0.0493 50 0.0028 0.0004

TD-BPNN 0.0671 50 0.0172 0.0024

3
0

-m
in

EVLNN 0.0497 50 0.0010 0.0001

PSO-NN 0.0525 50 0.0008 0.0001

DE-NN 0.0520 50 0.0020 0.0003

GA-NN 0.0528 50 0.0018 0.0003

TD-BPNN 0.0563 50 0.0078 0.0011

1
5

-m
in

EVLNN 0.0418 50 0.0004 0.0001

PSO-NN 0.0421 50 0.0003 0.0000

DE-NN 0.0424 50 0.0008 0.0001

GA-NN 0.0421 50 0.0001 0.0001

TD-BPNN 0.0477 50 0.0024 0.0003

1
 m

in

EVLNN 0.0376 50 0.0003 0.0000

PSO-NN 0.0416 50 0.0032 0.0005

DE-NN 0.0408 50 0.0007 0.0001

GA-NN 0.0404 50 0.0007 0.0001

TD-BPNN 0.0308 50 0.0006 0.0002

6.5.4. Statistical Analysis of Models’ Forecasting Accuracy with Fewer Inputs

A multiple paired sample t-test with Bonferroni correction was conducted to compare

significant differences between the testing MSE scores averaged over 50 runs for the

various learning techniques. At α = 0.01, the adjusted p-value for pairwise comparison

where the p-value is required for significance would be p ≤ 0.001. Table 6.13 shows the

results of the paired samples t-test.

Chapter 6. Solar Irradiance Forecasting in Tropical Region 193

Table 6.13 Paired samples t-test. Embolden figures denotes the paired differences between EVLNN’s

average testing MSE scores and the other model, which are lower and statistically significant.

Pair Paired Samples

Paired Differences

t df

Sig. (2-

tailed) Mean

Std.

Deviation

Std.

Error

Mean

99% Confidence Interval

of the Difference

Lower Upper

3
 i

n
p

u
ts

H
o

u
rl

y
 1 EVLNN – PSO-NN -0.0017 0.0045 0.0006 -0.0034 -0.0000 -2.704 49 0.009

 2 EVLNN – DE-NN -0.0042 0.0071 0.0010 -0.0069 -0.0015 -4.199 49 0.000

 3 EVLNN – GA-NN -0.0032 0.0057 0.0008 -0.0054 -0.0010 -3.923 49 0.000

 4 EVLNN – TD-BPNN -0.0151 0.0148 0.0021 -0.0207 -0.0095 -7.210 49 0.000

3
0

-m
in

 5 EVLNN – PSO-NN -0.0028 0.0031 0.0004 -0.0039 -0.0016 -6.232 49 0.000

 6 EVLNN – DE-NN -0.0047 0.0064 0.0009 -0.0072 -0.0023 -5.217 49 0.000

 7 EVLNN – GA-NN -0.0048 0.0066 0.0009 -0.0073 -0.0023 -5.191 49 0.000

 8 EVLNN – TD-BPNN -0.0118 0.0050 0.0007 -0.0137 -0.0099 -16.696 49 0.000

1
5

-m
in

 9 EVLNN – PSO-NN 0.0012 0.0014 0.0002 0.0007 0.0017 6.331 49 0.000

 10 EVLNN – DE-NN -0.0014 0.0029 0.0004 -0.0026 -0.0003 -3.499 49 0.001

 11 EVLNN – GA-NN -0.0016 0.0032 0.0005 -0.0028 -0.0003 -3.415 49 0.001

 12 EVLNN – TD-BPNN -0.0051 0.0044 0.0006 -0.0067 -0.0034 -8.252 49 0.000

1
-m

in
 13 EVLNN – PSO-NN -0.0026 0.0008 0.0001 -0.0029 -0.0022 -21.669 49 0.000

 14 EVLNN – DE-NN -0.0053 0.0026 0.0004 -0.0063 -0.0043 -14.643 49 0.000

 15 EVLNN – GA-NN -0.0056 0.0031 0.0004 -0.0068 -0.0044 -12.599 49 0.000

 16 EVLNN – TD-BPNN 0.0097 0.0027 0.0004 0.0086 0.0107 24.995 49 0.000

2
 i

n
p

u
ts

H
o

u
rl

y
 17 EVLNN – PSO-NN -0.0005 0.0033 0.0005 -0.0017 0.0008 -.996 49 0.324

 18 EVLNN – DE-NN -0.0004 0.0052 0.0007 -0.0024 0.0015 -.584 49 0.562

 19 EVLNN – GA-NN -0.0032 0.0056 0.0008 -0.0053 -0.0010 -3.958 49 0.000

 20 EVLNN – TD-BPNN -0.0087 0.0093 0.0013 -0.0122 -0.0051 -6.571 49 0.000

3
0

-m
in

 21 EVLNN – PSO-NN -0.0024 0.0032 0.0005 -0.0036 -0.0012 -5.211 49 0.000

 22 EVLNN – DE-NN -0.0027 0.0044 0.0006 -0.0043 -0.0010 -4.299 49 0.000

 23 EVLNN – GA-NN -0.0030 0.0047 0.0007 -0.0048 -0.0013 -4.599 49 0.000

 24 EVLNN – TD-BPNN -0.0074 0.0040 0.0006 -0.0089 -0.0059 -13.238 49 0.000

1
5

-m
in

 25 EVLNN – PSO-NN 0.0008 0.0008 0.0001 0.0004 0.0011 6.542 49 0.000

 26 EVLNN – DE-NN -0.0005 0.0018 0.0003 -0.0012 0.0002 -2.043 49 0.046

 27 EVLNN – GA-NN -0.0008 0.0018 0.0003 -0.0014 -0.0001 -2.979 49 0.004

 28 EVLNN – TD-BPNN -0.0064 0.0029 0.0004 -0.0075 -0.0053 -15.446 49 0.000

1
-m

in
 29 EVLNN – PSONN -0.0028 0.0007 0.0001 -0.0030 -0.0025 -27.663 49 0.000

 30 EVLNN – DE-NN -0.0036 0.0012 0.0002 -0.0041 -0.0032 -21.208 49 0.000

 31 EVLNN – GA-NN -0.0039 0.0014 0.0002 -0.0044 -0.0034 -19.874 49 0.000

 32 EVLNN – TD-BPNN 0.0067 0.0006 0.0001 0.0065 0.0069 84.695 49 0.000

1
 i

n
p

u
t

H
o

u
rl

y
 33 EVLNN – PSONN -0.0044 0.0020 0.0003 -0.0052 -0.0036 -15.598 49 0.000

 34 EVLNN – DE-NN -0.0040 0.0027 0.0004 -0.0051 -0.0030 -10.443 49 0.000

 35 EVLNN – GA-NN -0.0040 0.0029 0.0004 -0.0051 -0.0029 -9.616 49 0.000

 36 EVLNN – TD-BPNN -0.0218 0.0171 0.0024 -0.0283 -0.0153 -9.005 49 0.000

3
0

-m
in

 37 EVLNN – PSONN -0.0028 0.0012 0.0002 -0.0033 -0.0024 -16.592 49 0.000

 38 EVLNN – DE-NN -0.0023 0.0023 0.0003 -0.0032 -0.0014 -7.054 49 0.000

 39 EVLNN – GA-NN -0.0030 0.0021 0.0003 -0.0038 -0.0023 -10.241 49 0.000

 40 EVLNN – TD-BPNN -0.0066 0.0079 0.0011 -0.0096 -0.0036 -5.848 49 0.000

1
5

-m
in

 41 EVLNN – PSONN -0.0003 0.0005 0.0001 -0.0005 -0.0001 -3.937 49 0.000

 42 EVLNN – DE-NN -0.0006 0.0008 0.0001 -0.0010 -0.0003 -5.320 49 0.000

 43 EVLNN – GA-NN -0.0003 0.0006 0.0001 -0.0005 -0.0001 -3.383 49 0.001

 44 EVLNN – TD-BPNN -0.0059 0.0023 0.0003 -0.0068 -0.0050 -17.837 49 0.000

1
-m

in
 45 EVLNN – PSONN -0.0039 0.0032 0.0005 -0.0051 -0.0027 -8.783 49 0.000

 46 EVLNN – DE-NN -0.0031 0.0008 0.0001 -0.0034 -0.0028 -27.447 49 0.000

 47 EVLNN – GA-NN -0.0027 0.0008 0.0001 -0.0030 -0.0024 -24.537 49 0.000

 48 EVLNN – TD-BPNN 0.0069 0.0006 0.0001 0.0067 0.0071 85.453 49 0.000

When using PV as a single input feature, superior results were seen in the hourly, 30-min,

and 15-min time-step predictions, where EVLNN’s average testing MSE scores are

Chapter 6. Solar Irradiance Forecasting in Tropical Region 194

significantly better than PSO-NN, DE-NN, GA-NN, and TD-BPNN. In the 1 min

prediction, there were significant differences in the testing MSE scores between EVLNN

and PSO-NN (𝑡49 = −8.783, 𝑝 < 0.001) , EVLNN and DE-NN (𝑡49 = −27.447, 𝑝 <

0.001) and, EVLNN and GA-NN (𝑡49 = −24.537, 𝑝 < 0.001). Extensive results of this

analysis confirmed that EVLNN is a competitive model for solar irradiance prediction.

More precisely, in the presence of fewer features, EVLNN achieved the most consistent

and robust results.

6.5.5. Comparison of Error Metrics

The error metrics RMSE, MAE, adjusted R2 (Coefficient of Determination), MBE, and

MAPE, are computed using the denormalized W/m2 predicted values. Their values are

evaluated to compare the model performance. Figure 6.19 presents the scores of the various

error metrics using a bar chart for comparison. For hourly and 30-min time-step predictions,

EVLNN trained with a smaller scale of feature subsets obtained better results with lower

RMSE and MAE scores and higher Adjusted R2 scores than other models. EVLNN trained

with a single input feature (solar PV surface temperature) has performed exceptionally well,

showing better results for RMSE, MAE, and adjusted R2 in the hourly, 30-min, and 15-min

time-step predictions than other models.

Chapter 6. Solar Irradiance Forecasting in Tropical Region 195

Figure 6.19 Error matrices are presented in a bar chart for comparison. In separate experiments, models

were trained using seven, three, two, and single input features.

Table 6.14 shows the error scores averaged over 50 runs for the models trained with a single

input feature for various time-step predictions. The values of error metrics, RMSE, and

MAE are displayed in a denormalized form in W/m2. It is observed that EVLNN has

performed better than PSO-NN, DE-NN, GA-NN, and TD-BPNN in the hourly time-step

prediction. In terms of percentage, EVLNN’s RMSE values improved by 4.5%, 4.1%, 4.1%,

and 17.3%, respectively, MAE value improved by 9.2%, 9.9%, 8.2%, and 20.2%,

respectively and Adjusted R2 value improved by 2.5%, 2.5%, 2.5%, and 12.3%,

respectively. Similar results were also seen in the 30-min time-step prediction, where

EVLNN’s RMSE, MAE, and Adjusted R2 values are better than PSO-NN, DE-NN, GA-

NN, and TD-BPNN. For the 15-min time-step prediction, EVLNN’s values for RMSE and

MAE were better than the other models but tied with PSO-NN and GA-NN for the Adjusted

R2 value. In the 1 min time-step prediction, EVLNN error scores are better than PSO-NN,

DE-NN, and GA-NN except for TD-BPNN. In this time-step prediction, TD-BPNN has

outperformed EVLNN taking advantage of the power of fully connected networks in the

presence of a large dataset. However, when the sample interval increases, TD-BPNN

performance decreases. The results suggest that a fully connected ANN suffers from

difficulties with generalization because of overfitting. Another interesting observation is

Chapter 6. Solar Irradiance Forecasting in Tropical Region 196

EVLNN’s MBE scores, which were more negative than the other models. This finding

suggests that the EVLNN’s search characteristic is more conservative and biased toward

under-predicting. For the TD-BPNN, though smaller overall negative MBE scores were

observed, it tends to over predict, as indicated by the RMSE scores for hourly, 30-min, and

15-min time-step prediction for larger sample intervals.

Table 6.14 Comparison of error matrices averaged over 50 runs for models trained with a single input

feature. Embolden figures to mean the best result for that time-step prediction.

Error Metrics

RMSE (W/m2) MAE (W/m2) Adjusted R2 MBE (W/m2) MAPE (%)

Mean
Std

Dev
Mean Std Dev Mean

Std

Dev
Mean

Std

Dev
Mean

Std

Dev

P
re

d
ic

ti
o

n
 T

im
e-

S
te

p

H
o

u
rl

y

EVLNN 104.08 1.37 54.12 0.83 0.82 0.00 -30.79 2.15 50.17 2.81

PSO-NN 109.00 1.70 59.61 0.68 0.80 0.01 -29.00 1.92 47.96 0.87

DE-NN 108.58 2.46 60.08 1.00 0.80 0.01 -27.61 3.85 48.05 1.44

GA-NN 108.50 3.04 58.98 0.80 0.80 0.01 -29.26 3.45 48.40 1.46

TD-BPNN 125.79 14.73 67.78 6.18 0.73 0.07 -17.36 8.45 281.21 89.58

3
0
=

m
in

EVLNN 111.51 1.05 56.13 0.63 0.82 0.00 -24.03 1.76 52.12 1.83

PSO-NN 114.62 0.91 58.44 0.26 0.81 0.00 -21.77 1.39 47.79 0.55

DE-NN 114.04 2.13 58.80 0.74 0.81 0.01 -20.78 4.06 47.93 1.19

GA-NN 114.87 1.92 58.84 0.66 0.81 0.01 -22.49 2.42 49.29 1.18

TD-BPNN 118.41 7.33 64.59 2.51 0.80 0.03 -8.27 2.69 78.27 19.88

1
5
-m

in

EVLNN 107.53 0.50 55.91 0.58 0.84 0.00 -11.40 1.07 55.17 1.57

PSO-NN 107.90 0.34 57.11 0.60 0.84 0.00 -7.82 1.17 50.98 0.53

DE-NN 108.34 0.98 57.47 0.95 0.83 0.00 -8.47 3.17 51.36 1.23

GA-NN 107.92 0.73 57.07 1.03 0.84 0.00 -7.72 2.20 51.70 1.25

TD-BPNN 114.85 2.74 59.71 1.08 0.81 0.01 -3.80 2.67 51.53 5.77

1
-m

in

EVLNN 108.06 0.43 57.61 0.50 0.84 0.00 -10.02 1.30 60.04 1.31

PSO-NN 111.38 1.21 59.87 0.73 0.82 0.01 -9.00 8.23 56.94 3.57

DE-NN 112.46 0.96 60.52 1.38 0.83 0.00 -5.96 3.48 58.85 1.23

GA-NN 111.88 0.89 59.19 1.27 0.83 0.00 -6.44 2.43 58.85 1.69

TD-BPNN 97.71 0.86 52.79 0.67 0.87 0.00 -2.00 0.83 50.56 0.65

These results suggest that EVLNN has the superiority of getting lower RMSE and MAE

and higher R2 requiring fewer features. The findings show that the strength of EVLNN lies

in the ability to predict accurately despite a smaller amount of features. It is also important

to note that using only one error indicator may be insufficient, and more than one error

indicator should be considered when objectively investigating the performance of

predictive models.

Chapter 6. Solar Irradiance Forecasting in Tropical Region 197

6.6. Chapter Summary

Solar power intermittency threatens to reduce power generation from solar radiation,

making data center energy transition to renewables challenging. Accurate prediction of

solar irradiance is a critical research topic that can help manage risk, compensate for the

variations of solar PV power and accelerate data center energy transition to renewables.

In this chapter, the EVLNN model is presented for solar irradiance forecasting. EVLNN’s

predictive performance for 1-min, 15-min, 30-min, and hourly time-step using fewer input

features has been investigated. In the model development, MSE was employed as the

objective function to minimize, and test statistics were adopted to investigate statistical

differences in the condition means between paired samples. The predictive accuracy of

EVLNN was measured using a range of five error matrices: RMSE, MAE, adjusted R2,

MBE, and MAPE.

It was observed that EVLNN trained with a single input feature had performed better than

PSO-NN, DE-NN, GA-NN, and TD-BPNN in the hourly time-step prediction, where

EVLNN’s RMSE values improved by 4.5%, 4.1%, 4.1%, and 17.3%. Also, EVLNN’s MAE

values improved by 9.2%, 9.9%, 8.2%, and 20.2%, respectively and Adjusted R2 values

improved by 2.5%, 2.5%, 2.5%, and 12.3%, respectively. Similar results were also seen in

the 30-min time-step prediction, where EVLNN’s RMSE, MAE, and Adjusted R2 values

were better than PSO-NN, DE-NN, GA-NN, and TD-BPNN. For the 15-min time-step

prediction, EVLNN’s values for RMSE and MAE were better than the other models but

tied with PSO-NN and GA-NN for the Adjusted R2 values.

The experiments showed that EVLNN performed substantially better than the other models

in three error indicators. The results also confirmed that EVLNN is a preferred model

requiring a smaller scale of feature subsets and training datasets. When trained with a single

input feature using the solar PV surface temperature, EVLNN performed well, giving

superior results to the models trained by other EAs. This is an important finding as

acquiring non-meteorological data is more straightforward and less expensive. This means

that EVLNN compares favorably to most ANNs in the literature, generally trained with

Chapter 6. Solar Irradiance Forecasting in Tropical Region 198

meteorological data, which is expensive due to the setup and maintenance cost of weather

instruments or stations. These results show that EVLNN is a promising solution for solar

irradiance forecasting with resilient qualities to cope with the solar variability in the tropics.

Chapter 7

7. Conclusion and Future Work

The rapid acceleration of digital services has skyrocketed data center energy consumption

to unprecedented levels. Accurate energy prediction can improve data center energy

consumption and accelerate the transition to renewables for a more sustainable future.

While ANNs are powerful learning machines for modeling complex nonlinear systems,

they are non-interpretable and prone to overfitting due to their redundant architecture.

Moreover, the design of ANN relies heavily on human experts and trial-and-error efforts,

making it a time-consuming and expensive task. Methods that can make this task more

efficient and provide insights into the relationships between the variables and energy

consumption are desirable.

A comprehensive review of Hadoop data center energy efficiency in Chapter 2 led to an

observed gap in the literature where the application of EA-based ANN is still limited for

energy consumption predictions of Hadoop systems. Similarly, a review of time-series solar

irradiance forecasting techniques reflects a general trend in the literature requiring a

relatively large number of variables and datasets.

In this research, the problem of energy prediction is made efficient using an evolutionary-

based approach to ANN learning, known as EVLNN, to produce parsimonious ANN with

interpretability and improved generalizability. Automating the parameter learning of ANN

has also minimized the dependency on human experts and costly trial-and-error efforts. The

result is a relatively frugal ANN model, which also captures the meaning of nonlinear

relationships between the inputs and the outputs.

Chapter 7. Conclusion and Future Work 200

7.1. The EVLNN Model for Energy Prediction

7.1.1 EVLNN Framework, Architecture, and Algorithm

The EVLNN model consisting of its framework, architecture, and search algorithm, was

described in Chapter 3. The design of EVLNN has achieved its goal of a generalized and

interpretable model for energy prediction applications. This is realized through EVLNN’s

several novel mechanisms that support species parallelism amidst the explorative search. A

structurally inclusive matrix encoding scheme based on parsimony has been designed to

accommodate problem representation of a feedforward and feedback ANN. The intra-

species and inter-species crossover strategies and a two-stage mutation with weights and

link-node have been created to automate the search for global solutions of parsimonious

networks. An ensemble-based approach to sensitivity analysis has been proposed to

improve model interpretability, making it easier to identify input features that most affect

the outputs, and providing valuable insight into the factors influencing the predictions.

7.1.2 EVLNN’s Search Capability and Performance in Benchmark Test Functions

in Comparison with other EAs

The search capability of EVLNN was investigated in Chapter 4 through a set of 16

benchmark test functions [207] [261]. The first set of benchmark functions (see Table 4.4)

demonstrated EVLNN’s ability to locate the global optima in low-dimensional unimodal

and multimodal landscapes. In particular, EVLNN had achieved an average Peak Ratio

(PR) of 100% for the Bohachevsky N.1-2D (f1) and Booth-2D (f2) functions across all 𝜀 =

{10-1, 10-2, 10-3, 10-4, 10-5}. EVLNN also achieved an average PR of 100% for the Ackley-

2D function (f5) at 𝜀 = {10-1, 10-2, 10-3, 10-4}, but only a PR of 6% at 𝜀 = {10-5}. For the

Rosenbrock-2D (f6) function, PSO and DE performed better than EVLNN for all 𝜀 = {10-

1, 10-2, 10-3, 10-4, 10-5} with an average PR of 100%, whereas EVLNN and GA had an

average PR of 91.2% and 92.4%, respectively. For high-dimensionality functions,

EVLNN’s performance was less desirable. For example, for the Griewank-30D (f8) function,

DE had the best performance, followed by GA, PSO, and EVLNN. For the Sphere-30D (f3)

and Brown-30D (f4) functions, EVLNN could only locate the peaks at 𝜀 = {10-1, 10-2}.

Chapter 7. Conclusion and Future Work 201

While EVLNN had a moderate overall performance, it is the only algorithm that had located

the peaks of all the test functions, f1 to f8, including f7, Rastrigin-30D, demonstrating that

the algorithm generalizes better than PSO, DE, and GA in this set of test functions.

The performance of EVLNN was compared to the state-of-the-art EAs presented in the

CEC 2013 and CEC 2015 competitions using a second set of benchmark functions from

the competitions (see Tables 4.5 and 4.11). EVLNN recorded an average PR score of 100%

for the Uneven Decreasing Maxima-1D (f11) and Six-hump Camel Back-2D (f13) functions

across all 𝜀 = {10-1, 10-2, 10-3, 10-4, 10-5}. EVLNN performed moderately well, achieving

an average PR score of 59.1% and 44.6%, and 37.6% for the Modified Rastrigin-2D (f16),

Shubert-2D (f14), and Vincent-2D (f15) functions, respectively. For the Himmelblau-2D (f12)

and Equal Maxima-1D (f10) functions, EVLNN attained an average PR score of 84.3% and

79.4% for all 𝜀, respectively. Nonetheless, EVLNN is the only algorithm that had located

the peak for the Shubert-2D (f14) function at 𝜀 = 1.0E-05, with a PR of 27.6%. At the same

time, the other EAs failed at this accuracy level, demonstrating the generalizability of

EVLNN. In the overall assessment, EVLNN was ranked 19 out of 22 algorithms presented

in the CEC competitions, outperforming iPOP-CMA-ES, MEA, and MSSPSO. The ranking

is based on the average PR score across 10 CEC multimodal benchmark functions, where

EVLNN achieved an average PR score of 50%. Overall, EVLNN had demonstrated the

ability to locate the global optima in low-dimensional unimodal and multimodal landscapes

and, on average, 50% of the global optima in high-dimensional multimodal landscapes.

It is important to note that the state-of-the-art algorithms developed for the CEC

competition focus on real-parameter optimization. In contrast, EVLNN is a parsimonious

ANN built for forecasting. Therefore, the EVLNN’s search capability and applicability to

real-world problems were further assessed in Chapter 4. Using open-access real-world

time-series data as a benchmark to forecast electricity load for the experiment, EVLNN had

achieved a better performance in terms of a lower testing MSE score than ANNs trained

using PSO, DE, and GA.

Chapter 7. Conclusion and Future Work 202

7.2. Application to Hadoop Energy Consumption Prediction

For a more thorough experiment, a physical testbed was set up to test the ability of EVLNN

to model data center energy consumption, which was discussed in Chapter 5. The testbed

consisted of a 120-core Hadoop cluster where a combination of CPU-intensive and I/O-

intensive MapReduce jobs, such as the WordCount and TeraSort applications typically used

in the literature, with varying payloads were executed to simulate real-world workloads.

Energy-related data from 23 parameters, the highest number of variables examined

compared to similar studies performed in the literature, were collected via monitoring tools

like Ganglia, SNMP protocol, and build-in Hadoop counters. The EVLNN model was

trained using 70% of the dataset and tested with the remaining 30% to predict the Hadoop

energy consumption. Its performance was compared to ANN trained with other EAs such

as PSO-NN, DE-NN, and the classic GA-NN. EVLNN’s testing MSE score of 0.00230

(±0.00042) outperformed the testing MSE score of PSO-NN, DE-NN, and GA-NN, which

were recorded at 0.00310 (± 0.00195), 0.01041 (± 0.00307), and 0.01071 (± 0.00416),

respectively. The result demonstrated that EVLNN is a competitive search algorithm

capable of predicting the energy consumption of a Hadoop cluster.

In addition, factors influencing energy consumption were also successfully investigated

using EVLNN’s ensemble sensitivity analysis. 23 energy-related input variables were

classified into five categories: job profile, system utilization, disk I/O, network transfer,

and the environment. The relative importance of individual variables was aggregated and

averaged across four chosen sensitivity analysis methods. The outcome of the category

ranking placed job profile as the most critical factor contributing to energy consumption,

followed by system utilization, disk I/O, network transfer, and finally, the environment. The

findings attributed file size, workload type, job completion time, and the number of mappers

and reducers as significant factors influencing energy consumption. This insight can

provide potential ways to manage data center energy efficiency better.

Chapter 7. Conclusion and Future Work 203

7.3. Application to Solar Irradiance Forecasting

A small-scale PV system setup with weather instruments was used as a testbed to evaluate

EVLNN’s solar irradiance forecasting ability in the real world. One month of raw data in

March 2016 was sampled at 1-min, 15-min, 30-min, and hourly time resolutions to create

four datasets. These datasets were used to train the EVLNN model to forecast solar

irradiance over seven days. The 1-min dataset had the largest sample size of 53,580, and

the hourly data had the smallest sample size of 894. The input features were ambient

temperature, relative humidity, rain gauge reading, wind speed, wind direction, atmospheric

pressure, and PV panel surface temperature. EVLNN’s performance was investigated

through two experimental phases. The first phase involved seven input features, while the

second involved fewer input features. The approach of selecting fewer and essential

attributes was an attempt to achieve the reverse of what most forecast models do, that is,

relying on many meteorological and atmospheric input features. Phase two investigated

EVLNN’s generalization capability using fewer features. In analyzing the results from the

experiments, the best scenarios and applications of EVLNN are in forecasting solar

irradiance at the hourly and 30-min time-step resolutions with a smaller subset of input

features of three and fewer.

EVLNN’s performance in phase one was superior to DE-NN, GA-NN, and TD-BPNN for

the hourly, 30-min, and 15-min predictions. EVLNN was also superior to PSO-NN, DE-

NN, and GA-NN for the 1-min prediction. However, EVLNN’s performance was below

PSO-NN in the hourly, 30-min, and 15-min predictions and below TD-BPNN in the 1-min

prediction. The results demonstrated EVLNN’s generalization capability with sparse or

dense datasets, and the findings confirmed that EVLNN is a competitive technique.

EVLNN’s performance improved in phase two, showing the approach can generalize better

with few features. For the hourly and 30-min time-step predictions, EVLNN trained with

three or fewer features obtained better results with lower RMSE and MAE scores and

higher Adjusted R2 scores than the other models. In particular, in the hourly time-step

prediction, EVLNN trained with PV as the single input feature performed better than PSO-

NN, DE-NN, GA-NN, and TD-BPNN. In terms of percentage, EVLNN’s RMSE values

Chapter 7. Conclusion and Future Work 204

improved by 4.5%, 4.1%, 4.1%, and 17.3%, respectively, MAE value improved by 9.2%,

9.9%, 8.2%, and 20.2%, respectively and Adjusted R2 value improved by 2.5%, 2.5%, 2.5%,

and 12.3%, respectively. Improved results were also seen in the 30-min time-step prediction.

For the 15-min time-step prediction, EVLNN’s RMSE and MAE scores were better than

the other models and comparable to PSO-NN and GA-NN’s Adjusted R2 scores. In the 1-

min time-step prediction, EVLNN’s error scores were better than PSO-NN, DE-NN, and

GA-NN except for TD-BPNN. The TD-BPNN had outperformed EVLNN taking

advantage of the power of fully connected networks in the presence of a large dataset.

However, TD-BPNN’s performance decreases in tandem with sample size, suggesting that

a fully connected ANN suffers from difficulties with generalization because of overfitting.

The findings provided evidence of EVLNN’s generalized capability as the algorithm can

attain good results for sparse or dense datasets. By selecting fewer and essential features,

EVLNN achieved even higher accuracy.

The experiments tested EVLNN’s ability to generalize and predict accurately. It is clear

that the strength of EVLNN lies in a smaller scale of feature subsets, especially when

EVLNN was trained with PV as the single input feature, the model’s performance was more

superior. In scenarios where acquiring meteorological data can be time-consuming and

costly, EVLNN is a preferred approach. Its ability to generalize well with fewer features

makes it more straightforward and less expensive to implement.

7.4. Future Work

EVLNN is designed to locate parsimonious ANN with improved generalizability and

interpretability. However, there are shortcomings in the EVLNN framework if it is used to

solve optimization problems based on real parameters. One area of improvement concerns

the handling of higher dimensionality problems. The design of EVLNN’s matrix encoding

scheme does not scale well for high-dimensional problems, as observed in EVLNN’s low

peak ratio score at an accuracy level of 1.0E-03 and better for Sphere-30D, Brown-30D,

Rastrigin-30D, Griewank-30D, Shubert-3D, and Vincent-3D benchmark functions. The

Chapter 7. Conclusion and Future Work 205

genotypic crossovers performed for real parameter optimization at the matrices level do not

generate sufficient novel genetic material to create new solutions. One improvement for

future work is to take the higher dimensional multimodal problem and reduce it to multiple

low-dimensional multimodal problems. Instead of recombining two single large

chromosome matrices, the main chromosomes matrix can be subdivided into smaller sub-

chromosome structures or subsets for recombination at the matrix subset level. The

recombined matrix at the subset level can then be recombined at a higher level to form their

original dimension as the new offspring. This way, more alleles in the chromosome matrix

can be enhanced with new genetic materials to search for novel solutions.

Another area of improvement is enhancing the diversity tracking mechanism for adaptive

crossover and mutation. The diversity measure provides insight into the species' evolution

and can be used to automatically tune selective genetic parameters to improve the

algorithm’s search behavior making the algorithm adaptive. This can be achieved by

modifying the fitness function to incorporate elements of the diversity information, species

size, and MSE into the learning to influence the search operation.

The third area for future work is integrating EVLNN’s solar irradiance forecast ability with

Hadoop’s energy prediction. The research has laid the groundwork with a predictive model

capable of both demand-side and supply-side energy prediction. Future work can bridge

the gap between these two engineering problems by using EVLNN to aid the data center

transition to renewables. An integrated solution that can predict and accurately balance

power consumption demand with renewable energy supply can accelerate the

decarbonization of data centers and begin the transition of this industry to a more

sustainable future.

The fourth area is the further analysis and comparison of EVLNN with the other state-of-

the-art time-delay models. Time-Delay Neural Networks (TDNN) allow the networks to

have a finite dynamic response to time series data by introducing a delay at the network's

input. The EVLNN design is a special case of TDNN that channels its output back into the

input nodes at a delay of up to several time-steps. Competitive analysis of these two

Chapter 7. Conclusion and Future Work 206

architectures over diverse datasets and input features deserves a thorough investigation in

future work.

Lastly, further investigation on the predictive accuracy of EVLNN for other renewable

sources such as wind and geothermal energy could be conducted. A model that can predict

a diverse mix of renewable sources could help to accelerate the higher penetration of

renewables into the traditional grid.

References 207

References

[1] A. Shehabi et al., “United States Data Center Energy Usage Report,” 2016.

https://eta.lbl.gov/publications/united-states-data-center-energy

[2] A. Shehabi, S.J. Smith, E. Masanet, J. Koomey “Data center growth in the United States:

decoupling the demand for services from electricity use,” Environmental Research Letters,

Vol. 13, No. 12, 2018, p. 124030. DOI: https://doi.org/10.1088/1748-9326/aaec9c

[3] George Kamiya, “Data Centres and Data Transmission Networks,” International Energy

Agency, June 2020. https://www.iea.org/reports/data-centres-and-data-transmission-

networks

[4] https://yearbook.enerdata.net/electricity/electricity-domestic-consumption-data.html

[5] J. Nicola. “How to stop data centres from gobbling up the world's electricity.” Nature,

vol. 561, no. 7722, Sept. 2018, pp. 163+.

[6] Cisco, “Cisco Global Cloud Index: Forecast and methodology, 2016–2021 white paper”

(Cisco, document 1513879861264127, 2018).

[7] https://www.irena.org/publications/2020/Jun/Renewable-Power-Costs-in-2019

[8] P. Banerjee, C. D. Patel, C. Bash and P. Ranganathan, “Sustainable data centers: Enabled

by supply and demand side management,” 2009 46th ACM/IEEE Design Automation

Conference, 2009, pp. 884-887, doi: 10.1145/1629911.1630138.

[9] Z. Liu, Y. Chen, C. Bash, A. Wierman, D. Gmach, Z. Wang, M. Marwah, and Chris Hyser,

“Renewable and cooling aware workload management for sustainable data centers,”

SIGMETRICS Perform. Eval. Rev. 40, 1 (June 2012), pp. 175–186.

DOI:https://doi.org/10.1145/2318857.2254779

[10] S. Kwon, “Ensuring renewable energy utilization with quality of service guarantee for

energy-efficient data center operations,” Applied Energy, vol. 276, 2020, 115424, ISSN 0306-

2619, https://doi.org/10.1016/j.apenergy.2020.115424.

[11] L. Bird, M. Milligan, and D. Lew, “Integrating Variable Renewable Energy:

Challenges and Solutions,” National Renewable Energy Laboratory, Technical Report

Prepared under Task No. WE11.0820, 2013.

[12] T. N. Le, Z. Liu, Y. Chen, and C. Bash, “Joint capacity planning and operational

management for sustainable data centers and demand response,” In Proceedings of the

References 208

Seventh International Conference on Future Energy Systems (e-Energy '16). Association

for Computing Machinery, New York, NY, USA, Article 16, pp. 1–12.

DOI:https://doi.org/10.1145/2934328.2934344

[13] S. Pelley, D. Meisner and T. F. Wenisch, and J. W. Vangilder, “Understanding and

abstracting total data center power,” In Workshop on Energy-Efficient Design, 2009.

[14] IRENA (2019), Solutions to Integrate High Shares of Variable Renewable Energy. A

Report from the IRENA to the G20 Energy Transitions Working Group (ETWG).

International Renewable Energy Agency.

[15] S. Ghemawat, H. Gobioff, S-T Leung, “The Google File System,” Proceedings of the

19th ACM Symposium on Operating Systems Principles, ACM, Bolton Landing, NY

(2003), pp. 20-43.

[16] J. Dean J, S. Ghemawat, “MapReduce: Simplified data processing on large clusters,”

Commun. ACM, 51 (1) (2008), pp. 107-113.

[17] V. K. Vavilapalli et al., “Apache Hadoop YARN: yet another resource negotiator,”

SOCC '13: Proceedings of the 4th annual Symposium on Cloud ComputingOctober 2013

Article No.: 5 pp. 1–16. https://doi.org/10.1145/2523616.2523633

[18] A. Thusoo et al., “Data Warehousing and Analytics Infrastructure at Facebook,”

SIGMOD’10, Indianapolis, Indiana, USA, June 6–10, 2010.

[19] Bernard Marr, Big Data in Practice: How 45 Successful Companies Used Big Data

Analytics to Deliver Extraordinary Results. Chapter 38, Google: How Big Data is at the

Heart of Google's Business Model. Book Editor(s):Bernard Marr. First published: 01 April

2016. https://doi.org/10.1002/9781119278825.ch38

[20] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop Distributed File

System,” 2010 IEEE 26th Symposium on Mass Storage Systems and Technologies (MSST),

Incline Village, NV, 2010, pp. 1-10, doi: 10.1109/MSST.2010.5496972.

[21] Carbon and energy impact, https://www.fb-carbon.com/pdf/download2013.pdf, 2013.

[22] N. Sönnichsen, “Facebook electricity use worldwide 2011-2019,” Oct 15, 2020.

[23] https://sustainability.fb.com/wp-content/uploads/2019/08/2018-Sustainability-Data-

Disclosure.pdf

[24] https://services.google.com/fh/files/misc/google_2019-environmental-report.pdf

[25] N. Sönnichsen, “Google's energy consumption 2011-2018,” Oct 10, 2019.

References 209

[26] https://www.fiercetelecom.com/telecom/google-plans-to-invest-13-billion-u-s-2019,

[27] https://datacenternews.asia/story/aws-and-azure-spending-big-bucks-on-data-centres-

to-get-ahead

[28] https://www.crn.com/news/data-center/amazon-s-data-center-offensive-continues-in-

world-s-largest-market

[29] https://www.datacenterdynamics.com/en/news/tencent-plans-70bn-spree-giant-data-

centers-and-infrastructure-cloud-and-ai/

[30] A. Andrae and T. Edler, “On global electricity usage of communication technology:

trends to 2030,” Challenges 2015, 6 117–57; doi:10.3390/challe6010117

[31] 2012 Key World Energy Statistics, International Energy Agency, 2012.

[32] European Union’s (EU’s) EURECA (EU Resource Efficiency Coordination Action)

Project, 2017. https://www.dceureca.eu

[33]Internet usage worldwide - statistics & facts (2021).

https://www.statista.com/topics/1145/internet-usage-worldwide/

[34]F. Bordage, GreenIT (2019), https://www.greenit.fr/wp-

content/uploads/2019/11/GREENIT_EENM_etude_EN_accessible.pdf

[35] E. Masanet, N. Shehabi, N. Lei, S. Smith and J. Koomey, “Recalibrating global data

center energy-use estimates,” DOI: 10.1126/science.aba3758, Science 367 (6481), pp. 984-

986, 2020.

[36] https://www.google.com/about/datacenters/efficiency/

[37]https://web.archive.org/web/20160312205123/http://www.opencompute.org/learn/ene

rgy-efficiency/

[38] https://journal.uptimeinstitute.com/is-pue-actually-going-up/

[39] S. Ratka and F. Boshell, “The nexus between data centres, efficiency and renewables:

a role model for the energy transition,” June 26, 2020.

[40] Z. Liu, Y. Chen, C. Bash, A. Wierman, D. Gmach, Z. Wang, M. Marwah, and Chris

Hyser, “Renewable and cooling aware workload management for sustainable data centers,”

SIGMETRICS Perform. Eval. Rev. 40, 1 (June 2012), pp. 175–186.

DOI:https://doi.org/10.1145/2318857.2254779

References 210

[41] E. Oró, V. Depoorter, A. Garcia and J. Salom, “Energy efficiency and renewable energy

integration in data centres,” Renewable and Sustainable Energy Reviews, vol. 42, 2015, pp.

429-445, https://doi.org/10.1016/j.rser.2014.10.035.

[42] C. Koronen, M. Åhman and L.J. Nilsson, “Data centers in future European energy

systems—energy efficiency, integration and policy,” Energy Efficiency, 2020. vol. 13(1),

pp. 129-144.

[43] Z. Liu, H. Yu, R. Liu, M. Wang and C. Li, “Configuration optimization model for data-

center-park-integrated energy systems under economic, reliability, and environmental

considerations,” Energies, 2020, vol. 13(2), 448, doi:10.3390/en13020448.

[44]https://news.nus.edu.sg/nus-and-ntu-launch-first-of-its-kind-tropical-data-centre-

testbed/

[45] R. Ascierto, A. Lawrence, “Five data center trends for 2021”, UI Intelligence report

42, Dec 2020.

[46]https://sustainability.aboutamazon.com/environment/sustainable-

operations/renewable-energy

[47] https://www.google.com/about/datacenters/renewable/

[48]https://azure.microsoft.com/en-gb/global-infrastructure/sustainability/#carbon-

benefits

[49] https://sustainability.fb.com/data-centers/

[50] Centre for Climate and Energy Solutions, https://www.c2es.org/content/renewable-

energy/

[51] SSG (2017), “Power in the Data Center and its Cost Across the U.S.,” Site Selection

Group. https://info.siteselectiongroup.com/blog/power-in-the-data-center-and-its-costs-

across-the-united-states

[52] T. Hong, P. Pinson, Y. Wang R. Weron, D. Yang, and H. Zareipour, “Energy

Forecasting: A Review and Outlook,” IEEE Open Access Journal of Power and Energy,

2020, 7. 10.1109/OAJPE.2020.3029979.

[53] N. Zhu, L. Rao, X. Liu, and J. Liu, “Handling more data with less cost: Taming power

peaks in MapReduce clusters,” in Proc. APSYSWorkshop, 2012, pp. 3:1–3:6.

DOI: 10.1145/2349896.2349899

http://dx.doi.org/10.1145/2349896.2349899

References 211

[54] B. Feng, J. Lu, Y. Zhou, and N. Yang, “Energy efficiency for MapReduce workloads:

An in-depth study,” in Proc. 23rd ADC, Darlinghurst, Australia, 2012, vol. 124, pp. 61–70.

[55] D. Cano, J. M. Monget, M. Albuisson, H. Guillard, N. Regas, and L. Wald, “A method

for the determination of the global solar radiation from meteorological satellite data,” Solar

Energy, 1986, vol. 37, pp. 31-39.

[56] M. Ehrenforfer, “Spectral numerical weather prediction models,” Society for Industrial

and Applied Mathematics 2012.

[57] H. Wang and Y. Cao, “An Energy Efficiency Optimization and Control Model for

Hadoop Clusters,” in IEEE Access, vol. 7, pp. 40534-40549, 2019, doi:

10.1109/ACCESS.2019.2907018.

[58] Y. Liang and Z. Hu, “Prediction Method of Energy Consumption Based on Multiple

Energy-Related Features in Data Center,” 2019 IEEE Intl Conf on Parallel & Distributed

Processing with Applications, Big Data & Cloud Computing, Sustainable Computing &

Communications, Social Computing & Networking

(ISPA/BDCloud/SocialCom/SustainCom), Xiamen, China, 2019, pp. 140-146, doi:

10.1109/ISPA-BDCloud-SustainCom-SocialCom48970.2019.00030.

[59] A. Mulyadi and E. C. Djamal, “Sunshine Duration Prediction Using 1D Convolutional

Neural Networks,” 2019 6th International Conference on Instrumentation, Control, and

Automation (ICA), Bandung, Indonesia, 2019, pp. 77-81, doi: 10.1109/ICA.2019.8916751.

[60] G. Capizzi, C. Napoli and F. Bonanno, “Innovative Second-Generation Wavelets

Construction with Recurrent Neural Networks for Solar Radiation Forecasting,” IEEE

Transactions on neural networks and learning systems, vol. 23, no. 11, pp. 1805-1815, 2012.

[61] A. Abayomi-Alli, M. O. Odusami, O. Abayomi-Alli, S. Misra and G. F. Ibeh, “Long

Short-Term Memory Model for Time Series Prediction and Forecast of Solar Radiation and

other Weather Parameters,” 19th International Conference on Computational Science and

Its Applications (ICCSA), 2019, pp. 82-92.

[62] M. Hagan, H. Demuth, M. Beale and O. De Jesús. Neural Network Design (2nd

Edition), 2014.

[63] X. Zhou, A. K. Qin, Y. Sun and K. C. Tan, “A Survey of Advances in Evolutionary

Neural Architecture Search,” 2021 IEEE Congress on Evolutionary Computation (CEC),

2021, pp. 950-957, doi: 10.1109/CEC45853.2021.9504890.

References 212

[64] D.E. Rumelhart, G.E. Hinton, R.J. Williams, “Learning representations by back-

propagating errors,” Nature 323, 533–536 (1986). https://doi.org/10.1038/323533a0

[65] H. Pham and M. Y. Guan, “Efficient neural architecture search via parameter sharing,”

arXiv preprint arXiv:1802.03268, 2018.

[66] M. Gori and A. Tesi, “On the problem of local minima in backpropagation,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, 1992, vol. 14, pp. 76-86.

[67] H. Liu, K. Simonyan, and Y. Yang, “Darts: Differentiable architecture search,” arXiv

preprint arXiv:1806.09055, 2018.

[68] R. S. Sutton and A. G. Barto, “Reinforcement Learning: An Introduction,” in IEEE

Transactions on Neural Networks, vol. 9(5), pp. 1054-1054, Sept. 1998, doi:

10.1109/TNN.1998.712192.

[69] B. Zoph, and Q. V. Le, “Neural Architecture Search with Reinforcement Learning,”

Nov 2016, 2016arXiv161101578Z

[70] H. Pham and M. Y. Guan, “Efficient neural architecture search via parameter sharing,”

arXiv preprint arXiv:1802.03268, 2018.

[71] Y. Chen, G. Meng, Q. Zhang, and S. Xiang, “Renas: Reinforced evolutionary neural

architecture search,” in Proc. of the IEEE Conf. Comput. Vis. Pattern Recognit., 2019, pp.

4787–4796.

[72] B. Xue, M. Zhang, W. N. Browne, and X. Yao, “A survey on evolutionary computation

approaches to feature selection,” IEEE Trans. Evol. Comput., vol. 20, no. 4, pp. 606–626,

2015

[73] J. Holland, Adaptation in Natural and Artificial Systems. University of Michigan Press,

1975.

[74] R. Storn and K. Price, “Differential evolution – a simple and efficient adaptive scheme

for global optimization over continuous spaces,” Journal of Global Optimization, vol. 11,

pp. 341–359, 1997.

[75] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in IEEE International

Conference on Neural Networks. Perth, Australia: IEEE Service Center, 1995, pp. 1942–

1948.

[76] J.S Arora, “Introduction to Optimum Design,” 4th Ed. Academic Press, 2017,

https://doi.org/10.1016/C2013-0-15344-5

References 213

[77] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le, “Regularized evolution for image

classifier architecture search,” in Proceedings of the AAAI conference on artificial

intelligence, vol. 33, 2019, pp. 4780–4789.

[78] L. Peng, S. Liu, R. Liu, and L. Wang, “Effective long short-term memory with

differential evolution algorithm for electricity price prediction,” Energy, vol. 162, pp.

1301–1314, 2018.

[79] C. P. Joy, G. Pillai, Y. Chen and K. Mistry, “Micro-Genetic Algorithm Embedded

Multi-Population Differential Evolution based Neural Network for Short-Term Load

Forecasting,” 2021 56th International Universities Power Engineering Conference (UPEC),

2021, pp. 1-4, doi: 10.1109/UPEC50034.2021.9548262.

[80] M. Dayarathna, Y. Wen and R. Fan, “Data Center Energy Consumption Modeling: A

Survey,” in IEEE Communications Surveys & Tutorials, vol. 18, no. 1, pp. 732-794,

Firstquarter 2016, doi: 10.1109/COMST.2015.2481183.

[81] D. Mytton, “Renewable energy for data centers – renewable energy certificates, power

purchase agreements and beyond,” Uptime Institute Intelligence Report 44, Feb 2021.

[82] C. Sweeney, R.J. Bessa, J. Browell, and P. Pinson, “The future of forecasting for

renewable energy,” Wiley Interdiscip Rev Energy Environ, vol. 9 (2) (2020), p. e365. DOI:

10.1002/wene.365

[83] A. Lebedys, D.Akande, N. Elhassan, G. Escamilla, A. Whiteman and I. Arkhipova,

“Renewable energy statistics 2021,”

https://www.irena.org/publications/2021/Aug/Renewable-energy-statistics-2021

[84] F. Shabestari, A. M. Rahmani, N. J. Navimipour, and S. Jabbehdari, “A taxonomy of

software-based and hardware-based approaches for energy efficiency management in the

Hadoop,” Journal of Network and Computer Applications, 2019, vol. 126, pp. 162-177.

https://doi.org/10.1016/j.jnca.2018.11.007.

[85] A. Thakkar, K. Chaudhari, M. Shah, "A Comprehensive Survey on Energy-Efficient

Power Management Techniques,"(2020) Procedia Computer Science, 167, pp. 1189-1199.

doi: 10.1016/j.procs.2020.03.432.

[86] M. Usama, M. Liu, M. Chen, “Job schedulers for Big data processing in Hadoop

environment: testing real-life schedulers using benchmark programs,” Digital Commun.

Netw., vol. 3(4), (2017), pp. 260-273.

References 214

[87] M. Varga, A. Petrescu-Nita, F. Pop, “Deadline scheduling algorithm for sustainable

computing in Hadoop environment,” Comput. Secur., 76 (2018), pp. 354-366.

[88] K. Krish, M. Iqbal, M. Rafique, and A. Butt, “Towards energy awareness in Hadoop,”

Fourth International Workshop on Network-Aware Data Management (NDM), 2014, pp.

16-22.

[89] S. Kulkarni, “Cooling hadoop: temperature aware schedulers in data centers,” Auburn

University, Alabama, 2013.

[90] L. Mashayekhy, M. Nejad, D. Grosu, D. Lu, and W. Shi, “Energy-Aware Scheduling

of MapReduce Jobs,” Proceedings - 2014 IEEE International Congress on Big Data,

DOI:10.1109/BigData.Congress.2014.15.

[91] Y. Shao, C. Li, J. Gu, J. Zhang, and Y. Luo, “Efficient jobs scheduling approach for

big data applications,” Computers and Industrial Engineering, vol. 117, March 2018, pp.

249-261.

[92] J. Leverich and C. Kozyrakis, “On the energy (in)efficiency of Hadoop clusters,” ACM

SIGOPS Operating Systems Review 2010, vol. 44, no. 1, pp. 61-65.

[93] W. Lang and J. M. Patel, “Energy Management for MapReduce Clusters,” Proc.

VLDB Endow., vol. 3, no. 1-2, pp. 129-139, 2010.

[94] H. Amur, V. Gupta, G. R. Ganger, M. A. Kozuch, and K. Schwan, “Robust and flexible

power proportional storage,” SoCC '10 Proceedings of the 1st ACM symposium on Cloud

computing, 2010, pp. 217-228.

[95] B Lin, S Li, X Liao, Q Wu, and S Yang, “eStor energy efficient and resilient data

center storage,” International Conference on Cloud and Service Computing (CSC), 2011,

pp. 366 – 371.

[96] H. H. Le, S. Hikida and H. Yokota, “Efficient gear-shifting for a power-proportional

distributed data-placement method,” 2013 IEEE International Conference on Big Data,

Silicon Valley, CA, 2013, pp. 76-84, doi: 10.1109/BigData.2013.6691557.

[97] R. Kaushik, M. Bhandarkar, and K. Nahrstedt, “Evaluation and analysis of

GreenHDFS: a self-adaptive, energy-conserving variant of the Hadoop distributed file

system,” IEEE Second International Conference on Cloud Computing Technology and

Science (CloudCom), 2010, pp. 274 - 287.

References 215

[98] R. Kaushik, T. Abdelzaher, R. Egashira, and K. Nahrstedt, “Predictive data and energy

management in GreenHDFS,” International Green Computing Conference and Workshops

(IGCC), 2011, pp. 1-9.4

[99] K.M. Attia, M.A. El-Hosseini, H.A. Ali, “Dynamic power management techniques in

multi-core architectures: a survey study,” Ain Shams Eng. J., vol. 8 (3) (2017), pp. 445-

456. https://doi.org/10.1016/j.asej.2015.08.010

[100] T. Wirtz and R. Ge, “Improving MapReduce energy efficiency for computation

intensive workloads,” 2011 International Green Computing Conference and Workshops,

Orlando, FL, 2011, pp. 1-8, doi: 10.1109/IGCC.2011.6008564.

[101] S. Hou, W. Ni, S. Zhao, B. Cheng, S. Chen, and J. Chen, “Frequency-Reconfigurable

Cloud Versus Fog Computing: An Energy-Efficiency Aspect,” in IEEE Transactions on

Green Communications and Networking, vol. 4, no. 1, pp. 221-235, March 2020, doi:

10.1109/TGCN.2019.2953891.

[102] B. Fan, W. Tantisiriroj, L. Xiao and G. Gibson, “DiskReduce: RAID for data-

intensive scalable computing,” PDSW '09 Proceedings of the 4th Annual Workshop on

Petascale Data Storage, 2009, pp. 6-10.

[103] Z. Cheng, Z. Luan, Y. Meng, Y. Xu, D. Qian, A. Roy, N. Zhang and G. Guan,

“ERMS: an elastic replication management system for HDFS,” IEEE International

Conference on Cluster Computing Workshops 2012, pp. 32-40.

[104] Y. Wei and Y. W. Foo, “A Cost-Effective and Reliable Cloud Storage,” 2014 IEEE

7th International Conference on Cloud Computing, 2014, pp. 938-939, doi:

10.1109/CLOUD.2014.132.

[105] Y. Wei, Y. W. Foo, K. C. Lim and F. Chen, “The Auto-configurable LDPC Codes

for Distributed Storage,” 2014 IEEE 17th International Conference on Computational

Science and Engineering, 2014, pp. 1332-1338, doi: 10.1109/CSE.2014.254.

[106] H. Wang and Y. Cao, “An Energy Efficiency Optimization and Control Model for

Hadoop Clusters,” in IEEE Access, vol. 7, pp. 40534-40549, 2019, doi:

10.1109/ACCESS.2019.2907018.

[107] Y. Liang and Z. Hu, “Prediction Method of Energy Consumption Based on Multiple

Energy-Related Features in Data Center,” 2019 IEEE Intl Conf on Parallel & Distributed

Processing with Applications, Big Data & Cloud Computing, Sustainable Computing &

References 216

Communications, Social Computing & Networking

(ISPA/BDCloud/SocialCom/SustainCom), Xiamen, China, 2019, pp. 140-146, doi:

10.1109/ISPA-BDCloud-SustainCom-SocialCom48970.2019.00030.

[108] T. R. Toha, A. S. M. Rizvi, J. Noor, M. A. Adnan and A. B. M. A. Al Islam, “Towards

Greening MapReduce Clusters Considering Both Computation Energy and Cooling

Energy,” in IEEE Transactions on Parallel and Distributed Systems, vol. 32, no. 4, pp. 931-

942, 1 April 2021, doi: 10.1109/TPDS.2020.3029724.

[109] Wikimedia, “Wikimedia dump service.” Accessed: Oct. 28, 2017. [Online].

Available: https://dumps.wikimedia.org/enwiki/

[110] J. Antonanzas, N. Osorio, R. Escobar, R. Urraca, F.J. Martinez-de-Pison, F.

Antonanzas-Torres, “Review of photovoltaic power forecasting,” Solar Energy, 2016, vol.

136, pp. 78-111, https://doi.org/10.1016/j.solener.2016.06.069.

[111] S. Monjoly, M. André, R. Calif, T. Soubdhan, “Forecast Horizon and Solar Variability

Influences on the Performances of Multiscale Hybrid Forecast Model,” Energies 2019, 12,

2264. https://doi.org/10.3390/en12122264

[112] R. H. Inman, H. T.C. Pedro, C. F.M. Coimbra, “Solar forecasting methods for

renewable energy integration,” Progress in Energy and Combustion Science, 2013, Vol. 39,

pp. 535-576.

[113] M. Diagne, M. David, P. Lauret, J. Boland, N. Schmutz, “Review of solar irradiance

forecasting methods and a proposition for small-scale insular grids,” Renewable and

Sustainable Energy Reviews 2013, Vol. 27, pg. 65–76.

[114] D. Z. Yang, J. Kleissl, C. A. Gueymard, H. T.C. Pedro, C. F.M. Coimbra, “History

and trends in solar irradiance and PV power forecasting: A preliminary assessment and

review using text mining,” Solar Energy, 2018, vol. 168, pp. 60–101.

[115] A. Hammer, D. Heinemann, E. Lorenz, “Short term forecasting of solar radiation

based on satellite data,” In:EUROSUN2004 (ISES Europe Solar Congress), 2004, pp. 841–

8.

[116] F. Yang, H-L Pan, SK Krueger, “Evaluation of the NCEP global forecast system at

the ARM SGP site,” Monthly Weather Review, 2006, vol. 134(12), pp. 3668-3690.

References 217

[117] D.P. Larson, L. Nonnenmacher, C.F.M Coimbra, “Day-ahead forecasting of solar

power output from photovoltaic plants in the American Southwest,” Renew. Energy vol.

91, 2016, pp. 11–20. http://dx.doi.org/10.1016/j.renene.2016.01.039.

[118] P.A. Jimenez, J.P. Hacker, J. Dudhia, S.E. Haupt, J.A. Ruiz-Arias, C.A. Gueymard,

G. Thompson, T. Eidhammer, A. Deng, “WRF-Solar: Description and clear-sky assessment

of an augmented NWP model for solar power prediction,” Bull. Am. Meteorol. Soc., 2016,

vol. 97, pp. 1249-1264, 10.1175/BAMS-D-14-00279.1

[119] E. Lorenz, J. Hurka, D. Heinemann, H.G. Beyer, “Irradiance forecasting for the

power prediction on grid-connected photovoltaic systems,” IEEE J. Select. Top. Appl.

Earth Observ. Remote Sensing, 2009, vol. 2, no. 1, pp. 2-10.

[120] A. C. Lorenc, and M. Jardak, “A comparison of hybrid variational data assimilation

methods for global nwp,” Quarterly Journal of the Royal Meteorological Society, 2018, vol.

144(717), pp. 2748–2760. DOI: https://doi.org/10.1002/qj.3401

[121] RM Goody, YL Yung, “Atmospheric radiation: theoretical basis,” 2nd ed. Oxford

University Press; 1995.

[122] J. A. Duffie and A. B. William, “Solar Engineering of Thermal Processes 4th Edition”.

John Wiley & Sons, Inc. 2013.

[123] JD Tarpley, “Estimating incident solar radiation at the surface from geostationary

satellite data,” Journal of Applied Meteorology 1979, vol. 18(9), pp. 1172-81.

[124] C. Rigollier, M. Lefèvre, L. Wald, “The method heliosat-2 for deriving short wave

solar radiation from satellite images,” Solar Energy, 2004, vol. 77, pp. 159–69.

[125] D.W. Slater, C.N. Long, T.P. Tooman, “Total sky imager/whole sky imager cloud

fraction comparison,” In: Eleventh ARM ScienceTeam Meeting Proceedings, March 2001,

Atlanta, Georgia.

[126] S. Quesada-Ruiz, Y. Chu, J. Tovar-Pescador, H.T.C. Pedro, C.F.M. Coimbra,

“Cloud-tracking methodology for intra-hour DNI forecasting,” Solar Energy, vol. 102,

2014, pp. 267-275. https://doi.org/10.1016/j.solener.2014.01.030.

[127] R. Marquez and C.F.M. Coimbra, “Intra-hour DNI forecasting based on cloud

tracking image analysis,” Solar Energy vol. 91, 2013, pp. 327-336.

References 218

[128] C. W. Chow, B. Urquhart, J. Kleissl, M. Lave, A. Dominguez, J. Shields, B. Washom,

“Intra-hour forecasting with a total sky imager at the UC San Diego solar energy testbed,”

Solar Energy vol. 85(11), 2011, pp. 2881-2893.

[129] C. Rigollier, O. Bauer, L. Wald, “On the clear sky model of the ESRA - European

Solar Radiation Atlas - with respect to the Heliosat method,” Solar Energy 2000, vol. 68(1),

pp. 33-48.

[130] H. Yang, B. Kurtz, D. Nguyen, B. Urquhart, C.Wai Chow, M. Ghonima, J. Kleissl,

“Solar irradiance forecasting using a ground-based sky imager developed at UC San Diego,”

Solar Energy, vol. 103, 2014, pp. 502-524.

[131] X-S Yang, “Genetic Algorithms,” Nature-Inspired Optimization Algorithms,

Elsevier, 2014, pp. 77-87. https://doi.org/10.1016/B978-0-12-416743-8.00005-1.

[132] P. Bacher, H. Madsen, H. Nielsen, “Online short-term solar power forecasting,” Solar

Energy, 2004, vol. 83, pp. 1772–1783.

[133] Y. Li, Y. Su, L. Shu, “An ARMAX model for forecasting the power output of a grid

connected photovoltaic system,” Renew. Energy, 2014, vol. 66, pp. 78–89.

[134] Y. Chu, B. Urguhart, S. Gohari, H. Pedro, J. Kleissl, C. Coimbra, “Short-term

reforecasting of power output from a 48MWe solar PV plant,” Solar Energy, 2015, vol.

112, pp. 68–77.

[135] D.J. Gagne II, A. McGovern, S.E. Haupt, J.K Williams, “Evaluation of statistical

learning configurations for gridded solar irradiance forecasting,” Solar Energy vol. 150,

2017, pp. 383–393. http://dx.doi.org/10.1016/j.solener.2017.04.031.

[136] H. M. Diagne, M. David, J. Boland, N. Schmutz and P. Lauret, “Post-processing of

solar irradiance forecasts from WRF model at Reunion Island,” Solar Energy, 2014, vol.

105, pp. 99–108.

[137] M. Noia, C Ratto, and R. Festa, “Solar irradiance estimation from geostationary

satellite data: I. statistical models,” Solar Energy, 1993, vol. 51(6), pp. 449 – 456.

[138] J. E. Hay and K. J. Hanson, “A satellite-based methodology or determining solar

irradiance at the ocean surface during GATE,” Bull. American Meteorol. Soc., 1987, vol.

59, 1549.

References 219

[139] C. Justus, M. V. Paris, and J. D. Tarpley, “Satellite-measured insolation in the United

States, Mexico, and South America,” Remote Sensing of Environment, 1986, vol. 20, pp.

57-83.

[140] C. Voyant, G. Notton, S. Kalogirou, et al., “Machine learning methods for solar

radiation forecasting: a review Renewable Energy,” 2017, vol. 105, pp. 569-582.

[141] C. Crisosto, M. Hofmann, R. Mubarak and G. Seckmeyer, “One-Hour Prediction of

the Global Solar Irradiance from All-Sky Images Using Artificial Neural Networks,”

Energies, MDPI, Open Access Journal, vol. 11(11), pg. 1-16, Oct 2018. DOI:

10.3390/en11112906.

[142] J. Faceira, P. Afonso, P. Salgado, “Prediction of Solar Radiation Using Artificial

Neural Networks,” Proceedings of the 11th Portuguese Conference on Automatic Control,

pp. 397-406, CONTROLO’2014.

[143] S. Nurcahyo, F. Nhita, Adiwijaya, “Rainfall Prediction in Kemayoran Jakarta Using

Hybrid Genetic Algorithm (GA) and Partially Connected Feedforward Neural Network

(PCFNN),” International Conference on Information and Communication Technology

(ICoICT), 2014.

[144] D. Su, E. Batzelis, B. Pal, “Machine Learning Algorithms in Forecasting of

Photovoltaic Power Generation,” International Conference on Smart Energy Systems and

Technologies (SEST), 2019.

[145] H. Wang, Z. Lei, X. Zhang, B. Zhou and J. Peng, “A review of deep learning for

renewable energy forecasting,” Energy Conversion and Management, vol. 198, 2019,

Article number 111799.

[146] K. Kaba, M. Sarıgül, M. Avcı, H. M. Kandırmaz, “Estimation of daily global solar

radiation using deep learning model,” Energy 162 (2018) pp. 126-135.

[147] A. Abayomi-Alli, M. O. Odusami, O. Abayomi-Alli, S. Misra and G. F. Ibeh, “Long

Short-Term Memory Model for Time Series Prediction and Forecast of Solar Radiation and

other Weather Parameters,” 19th International Conference on Computational Science and

Its Applications (ICCSA), 2019, pp. 82-92.

[148] A. Muhammad, J. M. Lee, S. W. Hong, S. J. Lee and E. H. Lee, “Deep Learning

Application in Power System with a Case Study on Solar Irradiation Forecasting,” 2019

References 220

International Conference on Artificial Intelligence in Information and Communication

(ICAIIC), Okinawa, Japan, 2019, pp. 275-279, doi: 10.1109/ICAIIC.2019.8668969.

[149] S. Ghimire, R.C. Deo, N. Raj, J. Mi, “Deep solar radiation forecasting with

convolutional neural network and long short-term memory network algorithms,” Applied

Energy, vol. 253 (2019).

[150] K. Wang, X. Qi, H. Liu, “A comparison of day-ahead photovoltaic power forecasting

models based on deep learning neural network,” Applied Energy vol. 251 (2019).

[151] N. Dong, J-F Chang, A-G Wu, Z-K Gao, “A novel convolutional neural network

framework based solar irradiance prediction method,” International Journal of Electrical

Power & Energy Systems 114, Jan 2020, 105411.

https://doi.org/10.1016/j.ijepes.2019.105411.

[152] S. Ghimire, R.C. Deo, N.J. Downs and N. Raj, “Self-adaptive differential

evolutionary extreme learning machines for long-term solar radiation prediction with

remotely-sensed MODIS satellite and Reanalysis atmospheric products in solar-rich cities,”

Remote Sensing of Environment, vol. (212), June 2018, pp. 176-198.

[153] D. Guijo-Rubio, A.M. Durán-Rosal, P.A. Gutiérrez, A.M. Gómez-Orellana, C.

Casanova-Mateo, J. Sanz-Justo, S. Salcedo-Sanz, C. Hervás-Martínez, “Evolutionary

artificial neural networks for accurate solar radiation prediction,” Energy, vol. 210, 2020.

[154] http://www.soda-pro.com/web-services/radiation/cams-mcclear

[155] https://solargis.com/

[156] X. Meng, A. Xu, W. Zhao, H. Wang, C. Li and H. Wang, “A new PV generation

power prediction model based on GA-BP neural network with artificial classification of

history day,” International Conference on Power System Technology, POWERCON 2018.

[157] S. Jaidee and W. Pora, “Very Short-Term Solar Power Forecasting Using Genetic

Algorithm Based Deep Neural Network,” 4th International Conference on Information

Technology (InCIT), Nov 2019.

[158] K. Bashtova et al. (2022) Application of the Topological Gradient to Parsimonious

Neural Networks. In: Tuovinen T., Periaux J., Neittaanmäki P. (eds) Computational

Sciences and Artificial Intelligence in Industry. Intelligent Systems, Control and

Automation: Science and Engineering, vol 76. Springer, Cham.

https://doi.org/10.1007/978-3-030-70787-3_5.

References 221

[159] D. Elizondo, E. Fiesler, “A survey of partially connected neural networks,” Int J

Neural Syst. 1997 Oct-Dec;8(5-6):535-58. doi: 10.1142/s0129065797000513.

[160] S. Kang and C. Isik, “Partially connected feedforward neural networks structured by

input types,” in IEEE Transactions on Neural Networks, vol. 16(1), pp. 175-184, Jan. 2005,

doi: 10.1109/TNN.2004.839353.

[161] S. Desai, A. Strachan, “Parsimonious neural networks learn interpretable physical

laws,” Scientific Reports 11, Article number: 12761 (2021).

https://doi.org/10.1038/s41598-021-92278-w.

[162] D. Goldberg, “Genetic Algorithms in Search, Optimization and Machine Learning,”

Addison-Wesley, Reading, MA, 1989.

[163] A. Eiben and J. Smith, “Introduction to Evolutionary Computing.” Springer. 2007.

[164] M. Ahmad, M. Abdullah, and D. Han, “A Novel Encoding Scheme for Complex

Neural Architecture Search,” 2019 34th International Technical Conference on

Circuits/Systems, Computers and Communications (ITC-CSCC), JeJu, Korea (South), 2019,

pp. 1-4, doi: 10.1109/ITC-CSCC.2019.8793329.

[165] S. Ronald, “Robust encodings in genetic algorithms: a survey of encoding issues,”

IEEE International Conference on Evolutionary Computation, 1997, pp. 43-48.

[166] T. Hu, J. L. Payne, W. Banzhaf, J. H. Moore, “Evolutionary dynamics on multiple

scales: a quantitative analysis of the interplay between genotype, phenotype, and fitness in

linear genetic programming,” Genet Program Evolvable Mach (2012) vol. 13, pp. 305–337.

DOI 10.1007/s10710-012-9159-4.

[167] G. Bakırlı, D. Birant, A. Kut, “An incremental genetic algorithm for classification

and sensitivity analysis of its parameters,” Expert Systems with Applications, vol. 38(3),

March 2011, pg. 2609-2620. doi: 10.1016/j.eswa.2010.08.051.

[168] Siddharth Sharma, Simone Sharma, A. Athaiya, “Activation functions in neural

networks,” International Journal of Engineering Applied Sciences and Technology, 2020,

vol. 4(12), ISSN No. 2455-2143, pp. 310-316.

[169] J.A. Coyne and H.A. Orr, “Speciation,” 2004, Sunderland, MA: Sinauer Associates

vol. 545.

[170] H. D. Rundle and P. Nosil, “Ecological speciation,” Ecology Letters, (2005) vol. 8,

pp. 336–352. https://doi.org/10.1111/j.1461-0248.2004.00715.x

References 222

[171] W. D. Allmon, “A causal analysis of stages in allopatric speciation,” Oxford surveys

in evolutionary biology, vol. 8, pp. 219-219.

[172] D. I. Bolnick and B. M. Fitzpatrick, “Sympatric Speciation: Models and Empirical

Evidence,” Annual Review of Ecology, Evolution, and Systematics, 2017, vol. 38, pp. 459-

487.

[173] K. Kaneko, “Symbiotic sympatric speciation: consequence of interaction-driven

phenotype differentiation through developmental plasticity,” The Society of Population

Ecology and Springer-Verlag Tokyo, 2002, vol. 44, pp. 71–85.

[174] G. S. van Doorn, “Sexual selection and sympatric speciation,” CEES Progress Report,

2004.

[175] S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd Edition, Prentice-

Hall International, Upper Saddle River, N.J, 1999

[176] A. Hadjiivanov and A. Blair, “Complexity-based speciation and genotype

representation for neuroevolution,” 2016 IEEE Congress on Evolutionary Computation

(CEC), Vancouver, BC, 2016, pp. 3092-3101, doi: 10.1109/CEC.2016.7744180.

[177] K. Jebari, “Selection Methods for Genetic Algorithms,” International Journal of

Emerging Sciences, 2013, vol. 3, pp. 333-344.

[178] T. Pencheva, K. Atanassov, and A. Shannon, “Modelling of a stochastic universal

sampling selection operator in genetic algorithms using generalized nets,” Proceedings of

the 10th International Workshop on Generalized Net, 2009.

[179] W. M. Spears, “Simple Subpopulation Schemes,” Proceedings of the Third Annual

Conference on Evolutionary Programming, 1994, pp. 296-307.

[180] S. F. Galan, O. J. Mengshoel, and R. Pinter, “A Novel Mating Approach for Genetic

Algorithms,” Evolutionary Computation, 2012, vol. 21(2).

[181] E. Osaba, R. Carballedo, F. Diaz, E. Onieva, I. de la Iglesia and A. Perallos,

“Crossover versus Mutation: A Comparative Analysis of the Evolutionary Strategy of

Genetic Algorithms Applied to Combinatorial Optimization Problems,” The Scientific

World Journal, Hindawi Publishing Corporation, vol. 2014, Article ID 154676,

https://doi.org/10.1155/2014/154676.

References 223

[182] D. Bhandari, C. Murthy, & S.K. Pal, "Genetic algorithm with elitist model and its

convergence," Int. J. Pattern Recogn. vol. 10, pp. 731–747 (1996).

https://doi.org/10.1142/S0218001496000438

[183] S. Theodoridis and K. Koutroumbas, (2003) Pattern Recognition. 2nd Edition,

Academic Press, San Diego.

[184] C. Mattiussi, M. Waibel and D. Floreano, “Measures of diversity for populations and

distances between individuals with highly reorganizable genomes,” Evolutionary

Computation Journal, 2004, vol. 12(4) pp. 495-515.

[185] M. Črepinšek, S-H Liu, and M. Mernik, “Exploration and exploitation in evolutionary

algorithms: A survey,” ACM Comput. Surv. 45, 3, Article 35 (June 2013).

DOI:https://doi.org/10.1145/2480741.2480752

[186] K. Pentoś, “The methods of extracting the contribution of variables in artificial neural

network models – Comparison of inherent instability,” Computers and Electronics in

Agriculture, vol. 127, 2016, pp. 141-146, ISSN 0168-1699.

https://doi.org/10.1016/j.compag.2016.06.010.

[187] N. Luíza da Costa, M. Dias de Lima, R. Barbosa, “Evaluation of feature selection

methods based on artificial neural network weights,” (2021) Expert Systems with

Applications, 168, art. no. 114312. https://www.journals.elsevier.com/expert-systems-

with-applications. doi: 10.1016/j.eswa.2020.114312.

[188] G. D. Garson, “Interpreting Neural Network Connection Weights,” Artificial

Intelligence Expert, 1991, vol. 6, pp. 47-51.

[189] Y. Yoon, T. Guimaraes and G. Swales, “Integrating artificial neural networks with

rule-based expert systems,” Decision Support Systems, 1994, vol. 11(5), pp. 497–507.

https://doi.org/p10.1016/0167-9236(94)90021-3.

[190] S.-H. Tsaur, Y.-C. Chiu, and C.-H. Huang, “Determinants of guest loyalty to

international tourist hotels—a neural network approach,” Tourism Management, 2002, vol.

23(4), pp. 397–405. https://doi.org/10.1016/S0261-5177(01)00097-8.

[191] P. Howes, and N. Crook, “Using input parameter influences to support the decisions

of feedforward neural networks,” Neurocomputing, 1999. https://doi.org/10.1016/S0925-

2312(98)00102-7.

References 224

[192] J. Olden and D. Jackson, “Illuminating the “black box”: a randomization approach

for understanding variable contributions in artificial neural networks,” Ecological

Modelling, vol. 154(1–2), 2002, pp. 135-150, ISSN 0304-3800,

https://doi.org/10.1016/S0304-3800(02)00064-9

[193] J. de Ona and C. Garrido, “Extracting the contribution of independent variables in

neural network models: a new approach to handle instability,” Neural Comput & Applic,

25:859-869.

[194] Y. W. Foo, C. Goh and Y. Li, “Machine Learning with Sensitivity Analysis to

Determine Key Factors Contributing to Energy Consumption in Cloud Data Centers,” 2016

International Conference on Cloud Computing Research and Innovations (ICCCRI), 2016,

pp. 107-113, doi: 10.1109/ICCCRI.2016.24.

[195] M. Gevrey, I. Dimopoulos, S. Lek, “Review and comparison of methods to study the

contribution of variables in artificial neural network models,” Ecological Modelling, vol.

160(3), 2003, pp. 249-264. https://doi.org/10.1016/S0304-3800(02)00257-0.

[196] I. Dimopoulos, J. Chronopoulos, A. Chronopoulou-Sereli, S. Lek, “Neural network

models to study relationships between lead concentration in grasses and permanent urban

descriptors in Athens city (Greece),” Ecological Modelling, vol. 120(2–3), 1999, pp. 157-

165. https://doi.org/10.1016/S0304-3800(99)00099-X

[197] Y. Dimopoulos, P. Bourret and S. Lek, “Use of Some Sensitivity Criteria for

Choosing Networks with Good Generalization Ability,” Neural Processing Letter, 1995,

vol.2(6), pp. 1-4.

[198] X. Zeng, D.S. Yeung, “A quantified sensitivity measure for multilayer perceptron to

input perturbation,” Neural Computation. 2003, vol. 15(1), pp. 183–212. DOI:

10.1162/089976603321043757

[199] S. Lek, A. Belaud, P. Baran, I. Dimopoulos, and M. Delacoste, “Role of some

environmental variables in trout abundance models using neural networks,” Aquatic Living

Resources, (1996), vol. 9(1), pp. 23-29. doi:10.1051/alr:1996004

[200] S. Lek, A. Belaud, I. Dimopoulos, J. Lauga, J. Moreau, “Improved estimation, using

neural networks, of the food consumption of fish populations,” Marine and Freshwater

Research. 1995, vol. 46(8), pp. 1229–1236. DOI: 10.1071/MF9951229

https://doi.org/10.1016/S0304-3800(02)00257-0

References 225

[201] A. T. C. Goh, “Back-propagation Neural Networks for Modelling Complex Systems,”

Artificial Intelligence in Engineering, 1995, vol. 9, pp. 143-151.

[202] X-D Li, K. Tang, M. N. Omidvar, Z-Y Yang, and K. Qin, “Benchmark Functions for

the CEC’ 2013 Special Session and Competition on Large-Scale Global Optimization,”

2013.

[203] M. Jamil and X-S Yang, “A literature survey of benchmark functions for global

optimization problems,” Int. Journal of Mathematical Modelling and Numerical

Optimisation, vol. 4(2), pp. 150-194 (2013).

[204] X. Li, A. Engelbrecht, and M.G. Epitropakis, “Results of the 2013 IEEE CEC

Competition on Niching Methods for Multimodal Optimization,” IEEE Congress on

Evolutionary Computation, 20-23 June, Cancun, Mexico, 2013.

[205] X. Li, A. Engelbrecht, and M.G. Epitropakis, “Results of the 2015 IEEE CEC

Competition on Niching Methods for Multimodal Optimization,” IEEE Congress on

Evolutionary Computation, 25-28 May, Sendai, Japan, 2015.

[206] Nature-inspired computation and swarm intelligence algorithms, theory and

applications, Yang - Elsevier/Academic Press - 2020.

[207] X. Li, A. Engelbrecht, and M.G. Epitropakis, “Benchmark Functions for CEC’2013

Special Session and Competition on Niching Methods for Multimodal Function

Optimization,” Technical Report, Evolutionary Computation and Machine Learning Group,

RMIT University, Australia, 2013.

[208] https://github.com/mazhar-ansari-ardeh

[209] https://www.sfu.ca/~ssurjano/index.html

[210] http://www.yarpiz.com

[211] J. Liang, B. Y. Qu, P. N. Suganthan and A. G. Hernández-Díaz, “Problem definitions

and evaluation criteria for the CEC 2013 special session on real-parameter optimization,”

Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou, China and

Nanyang Technological University, Singapore, Technical Report, vol. 2012(12), pp. 3–18,

2013.

References 226

[212] D. O. Boyer, C. H. Martfnez, N. G. Pedrajas, ”Crossover Operator for Evolutionary

Algorithms Based on Population Features,” Journal of Artificial Intelligence Research, vol.

24, pp. 1-48, 2005.

[213] M. N. Omidvar, X. Li and X. Yao, “Cooperative Co-evolution with delta grouping

for large scale non-separable function optimization,” 2010, pp. 1-8. DOI:

10.1109/CEC.2010.5585979.

[214] X. Yao, Y. Liu, “Fast Evolutionary Programming,” Proc. 5th Conf. on Evolutionary

Programming, 1996.

[215] V. Picheny, T. Wagner, D. Ginsbourger, “A benchmark of kriging-based infill criteria

for noisy optimization,” Struct. Multidiscip. Optim., 48 (3) (2013), pp. 607-626

[216] M. Preuss. “Niching the CMA-ES via nearest-better clustering,” In Proceedings of

the 12th annual conference companion on Genetic and evolutionary computation

(GECCO ’10). ACM, New York, NY, USA, pp. 1711-1718, 2010.

[217] R. Thomsen, “Multimodal optimization using crowding-based differential evolution,”

In the IEEE Congress on Evolutionary Computation, 2004. CEC2004, vol.2, pp. 1382-1389,

19-23 June 2004.

[218] J. E. Fieldsend, “Running Up Those Hills: Multimodal search with the niching

migratory multi-swarm optimiser,” 2014 IEEE Congress on Evolutionary Computation

(CEC), Beijing, 2014, pp. 2593-2600, doi: 10.1109/CEC.2014.6900309.

[219] D. Molina, A. Puris, R. Bello and F. Herrera, “Variable mesh optimization for the

2013 CEC Special Session Niching Methods for Multimodal Optimization,” 2013 IEEE

Congress on Evolutionary Computation, Cancun, 2013, pp. 87-94, doi:

10.1109/CEC.2013.6557557.

[220] M. G. Epitropakis, Li, X., and Burke, E. K., “A Dynamic Archive Niching

Differential Evolution Algorithm for Multimodal Optimization,” IEEE Congress on

Evolutionary Computation, 2013. CEC 2013. Cancun, Mexico, pp. 79-86, 2013.

[221] J. Ronkkonen, “Continuous Multimodal Global Optimization with Differential

Evolution-Based Methods, Ph.D. thesis,” Lappeenranta University of Technology, 2009.

[222] N. Hansen and A. Ostermeier, “Completely Derandomized Self-Adaptation in

Evolution Strategies,” Evolutionary Computation, 2001, 9(2), pp. 159-195.

References 227

[223] A. Auger and N. Hansen, “A restart CMA evolution strategy with increasing

population size,” In the 2005 IEEE Congress on Evolutionary Computation, 2005. vol.2,

pp.1769-1776, 2-5 Sept. 2005.

[224] S. Bandaru and K. Deb, “A parameterless-niching-assisted bi-objective approach to

multimodal optimization,” 2013 IEEE Congress on Evolutionary Computation, Cancun,

2013, pp. 95-102, doi: 10.1109/CEC.2013.6557558.

[225] J. E. Fieldsend, “Using an adaptive collection of local evolutionary algorithms for

multimodal problems,” Soft Comput (2015) 19:1445–1460. DOI 10.1007/s00500-014-

1309-6.

[226] J. E. Fieldsend, “Multimodal Optimisation using a Localised Surrogates Assisted

Evolutionary Algorithm,” in UK Workshop on Computational Intelligence (UKCI 2013),

2013, pp. 88–95.

[227] Y. Zhou and K. Saitou, “An Active Learning Based Niching Method with Sequential

Binary Probabilistic Classification and Class Split Threshold Updating,” University of

Michigan, Ann Arbor.

[228] R. K. Ursem, “Multinational evolutionary algorithms,” in Proceedings of the

Congress on Evolutionary Computation, 1999, pp. 1633–1640.

[229] J. Zhang, D.-S. Huang, and K.-H. Liu, “Multi-Sub-Swarm Optimization Algorithm

for Multimodal Function Optimization,” in IEEE Congress on Evolutionary Computation,

2007, pp. 3215–3220.

[230] S. N. Lophaven, H. B. Nielsen, and J. Søndergaard, “DACE A Matlab Kriging

Toolbox,” Technical Report IMM-TR-2002-12, Informatics and Mathematical Modelling,

Technical University of Denmark, Tech. Rep., 2002.

[231] U. Škvorc, T. Eftimov and P. Korošec, “CEC Real-Parameter Optimization

Competitions:Progress from 2013 to 2018,” 2019, DOI: 10.1109/CEC.2019.8790158.

[232] D. Willingham (2021). Electricity Load Forecasting for the Australian Market Case

Study (https://www.mathworks.com/matlabcentral/fileexchange/31877-electricity-load-

forecasting-for-the-australian-market-case-study), MATLAB Central File Exchange.

Retrieved December 16, 2021.

References 228

[233] N. Maleki, A. Rahmani and M. Conti, “MapReduce: an infrastructure review and

research insights,” The Journal of Supercomputing, 2019, vol. 75 pp. 1-69. DOI:

10.1007/s11227-019-02907-5.

[234] S. Mazumdar and S. Dhar, “Hadoop as Big Data Operating System -- The Emerging

Approach for Managing Challenges of Enterprise Big Data Platform,” Proceedings of the

2015 IEEE First International Conference on Big Data Computing Service and

Applications, pp. 499-505.

[235] A. Ghazal, T. Rabl, M. Hu, F. Raab, M. Poess, A. Crolotte, and H-A Jacobsen,

“Bigbench: Towards an industry standard benchmark for big data analytics,” ACM

SIGMOD International Conference on Management of Data, ACM (2013), pp. 1197-1208.

DOI:https://doi.org/10.1145/2463676.2463712

[236] V. Chang, “An overview, examples, and impacts offered by emerging services and

analytics in cloud computing virtual reality,” Neural Comput. Appl. (2015)

[237] https://hadoop.apache.org/docs/stable/hadoop-yarn/hadoop-yarn-site/YARN.html

[238] J. Li, Y. Liu, J. Pan, P. Zhang, W. Chen, and L. Wang, “Map-Balance-Reduce: An

improved parallel programming model for load balancing of MapReduce,” Future

Generation Computer Systems, vol. 105, 2020, pp. 993-1001, ISSN 0167-739X,

https://doi.org/10.1016/j.future.2017.03.013.

[239] C. Xu and W. Zhuang, “Parallel Computing Framework Based on MapReduce and

GPU Clusters,” In Proceedings of the 4th International Conference on Computer Science

and Application Engineering, 2020. Association for Computing Machinery, New York, NY,

USA, Article 73, pp. 1-5. DOI:https://doi.org/10.1145/3424978.3425051.

[240] L. Belcastro, F. Marozzo and D. Talia, “Programming models and systems for Big

Data analysis,” International Journal of Parallel, Emergent and Distributed Systems, vol.

34(6), 2019, pp. 632-652, DOI: 10.1080/17445760.2017.1422501.

[241]https://hadoop.apache.org/docs/stable/hadoop-mapreduce-client/hadoop-mapreduce-

client-core/MapReduceTutorial.html

[242] Faraz, S. T. Chakradhar, A. Raghunathan, and T. N. Vijaykumar, “Tarazu: optimizing

MapReduce on heterogeneous clusters,” SIGARCH Comput. Archit. News 40, 1 (March

2012), pp. 61–74. DOI:https://doi.org/10.1145/2189750.2150984

References 229

[243] Monitoring with Ganglia, by Alex Dean et al., November 2012, Publisher(s): O'Reilly

Media, Inc. ISBN: 9781449329709.

[244] M. L. Massie, B. N. Chun, D. E. Culler, “The ganglia distributed monitoring system:

design, implementation, and experience,” Parallel Computing, vol. 30(7), 2004, pp. 817-

840, ISSN 0167-8191, https://doi.org/10.1016/j.parco.2004.04.001.

[245] Linh T.X. Phan, Z. Zhang, B.T. Loo, Insup Lee, "Real-time MapReduce Scheduling",

2010, University of Pennsylvania Department of Computer and Information Science,

Technical Report No. MSCIS-10-32.

[246] J. Veiga, R. R. Expósito, X. C. Pardo, G. L. Taboada and J. Tourifio, "Performance

evaluation of big data frameworks for large-scale data analytics," 2016 IEEE International

Conference on Big Data (Big Data), 2016, pp. 424-431, doi:

10.1109/BigData.2016.7840633.

[247]https://docs.cloudera.com/HDPDocuments/HDP2/HDP-2.0.0.2/bk_cluster-planning-

guide/content/typical-workloads.html

[248] X. and Y. Liu, “A new evolutionary system for evolving artificial neural networks,”

in IEEE Transactions on Neural Networks, vol. 8, no. 3, pp. 694-713, May 1997, doi:

10.1109/72.572107.

[249] https://www.iea.org/topics/renewables/solar/

[250] D. Lew, N. Miller, K. Clark, G. Jordan and Z. Gao, “Impact of High Solar Penetration

in the Western Interconnection,” NREL Technical Report (NREL/TP-5500-49667),

December 2010.

[251] M. P. Almeida, O. Perpinãń, L. Narvarte, “PV power forecast using a nonparametric

PV model,” Solar Energy 115 (2015), pp. 354-368.

[252] M. Q. Raza, M. Nadarajah, C. Ekanayake, “On recent advances in PV output power

forecast,” Solar Energy 136 (2016) pp. 125–144.

[253] X. Qing, Y. Niu, “Hourly day-ahead solar irradiance prediction using weather

forecasts by LSTM,” Energy 148 (2018) pp. 461-468.

[254] S. Leva, A. Dolara, F. Grimaccia, M. Mussetta and E. Ogliari, “Analysis and

validation of 24 hours ahead neural network forecasting of photovoltaic output power,”

Mathematics and Computers in Simulation, 2017, vol. 131, pp. 88-100.

http://dx.doi.org/10.1016/j.matcom.2015.05.010.

References 230

[255] M. Abuella, B. Chowdhury, “Solar Power Forecasting Using Artificial Neural

Networks,” North American Power Symposium (NAPS), 2015.

[256] C. Paoli, C. Voyant, M. Muselli, M-L Nivet, “Use of exogenous data to improve an

Artificial Neural Networks dedicated to daily global radiation forecasting,” 9th

International Conference on Environment and Electrical Engineering, 2010.

[257] G. Vanderstar, P. Musilek, A. Nassif, “Solar Forecasting using Remote Solar

Monitoring Stations and Artificial Neural Networks,” IEEE Canadian Conference on

Electrical & Computer Engineering (CCECE), 2018.

[258] H. Pedro, C. Coimbra, “Assessment of forecasting techniques for solar power

production with no exogenous inputs,” Solar Energy 86 (2012) pp. 2017–2028.

[259] A. F. Romero, F. L. Quilumba, H. N. Arcos, “Short-Term Active Power Forecasting

of a Photovoltaic Power Plant using an Artificial Neural,” IEEE Second Ecuador Technical

Chapters Meeting (ETCM), 2017.

[260] T.E Hoff, R. Perez, J. Kleissl, D. Renne, J. Stein, “Reporting of irradiance modeling

relative prediction errors,” Prog. Photovolt.: Res. Appl. 2013, vol. 21, pp. 1514–1519.

http://dx.doi.org/10.1002/pip.2225.

[261] K. Hussain, M. N. B. Mohd Salleh, S. Cheng, R. Naseem, “Common Benchmark

Functions for Metaheuristic Evaluation: A Review,” International Journal on Informatics

Visualization, vol. 1 (2017), No. 4-2. DOI: 10.30630/joiv.1.4-2.65.

[262] M. Hadzima-Nyarko, E. K. Nyarko, D. Morić, "A neural network based modelling

and sensitivity analysis of damage ratio coefficient," Expert Systems with Applications,

vol. 38(10), 2011, pp. 13405-13413, ISSN 0957-4174.

https://doi.org/10.1016/j.eswa.2011.04.169.

[263] Y. Sewsynker,E. B. Gueguim Kana, A. Lateef, "Modelling of biohydrogen

generation in microbial electrolysis cells (MECs) using a committee of artificial neural

networks (ANNs)," Biotechnology & Biotechnological Equipment, 2015, vol. 29(6), pp.

1208-1215. https://doi.org/10.1080/13102818.2015.1062732.

[264] M. Causse, J. Cameron, M. S. Masmoudi and T. Houcine, “Parsimonious Neural

Networks,” 2019.

[265] J. D. Olden, M. K Joy, R. G Death, “An accurate comparison of methods for

quantifying variable importance in artificial neural networks using simulated data,”

References 231

Ecological Modelling, vol. 178(3–4), 2004, pp. 389-397, ISSN 0304-3800.

https://doi.org/10.1016/j.ecolmodel.2004.03.013.

[266] Y. Dhebar, K. Deb, “Effect of a Push Operator in Genetic Algorithms for Multimodal

Optimization,” In: Mandal J., Dutta P., Mukhopadhyay S. (eds) Computational Intelligence,

Communications, and Business Analytics. CICBA 2017. Communications in Computer

and Information Science, vol 775. Springer, Singapore. https://doi.org/10.1007/978-981-

10-6427-2_1.

[267] J. Rönkkönen, X. Li, V. Kyrki, et al., “A framework for generating tunable test

functions for multimodal optimization,” Soft Comput 15, pp. 1689–1706, (2011).

https://doi.org/10.1007/s00500-010-0611-1.

[268] S. R. Young, D. C. Rose, T. P. Karnowski, S.-H. Lim, and R. M. Patton, “Optimizing

deep learning hyper-parameters through an evolutionary algorithm,” in Proc. Workshop

Mach. Learn. High Perform. Comput. Environ, 2015, p. 4.

[269] P. Linardatos, V. Papastefanopoulos, S. Kotsiantis, “Explainable AI: A Review of

Machine Learning Interpretability Methods,” Entropy 2021, vol. 23(1), 18.

https://doi.org/10.3390/e23010018

[270]https://www.greenpeace.org/international/press-release/24112/electricity-

consumption-from-chinas-internet-industry-to-increase-by-two-thirds-by-2023-

greenpeace/

[271] Q. Tang, S. Gupta, and G. Varsamopoulos, “Thermal-aware task scheduling for data

centers through minimizing heat recirculation,” In Cluster Computing, 2007 IEEE

International Conference on, pages 129 –138, sept. 2007.

[272] X. Li, “Adaptively choosing neighbourhood bests using species in a particle swarm

optimizer for multimodal function optimization,” in Proc. Genet. Evol. Comput. Conf.,

Seattle, WA, USA, 2004, pp. 105–116.

[273] M. G. Epitropakis, V. P. Plagianakos, and M. N. Vrahatis, “Multimodal optimization

using niching differential evolution with index-based neighborhoods,” in Proc. IEEE Congr.

Evol. Comput. (CEC), Brisbane City, QLD, Australia, Jun. 2012, pp. 1–8.

[274] X. Yao and Y. Liu, “Making use of population information in evolutionary artificial

neural networks,” IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 28, no. 3, pp. 417–425,

Jun. 1998.

https://doi.org/10.1007/s00500-010-0611-1

References 232

[275] J. L. Noyes, B3.5 Handbook of Neural Computation. London, U.K.: Chapman & Hall,

1997.

[276] M. Srinivas, L. M. Patnaik, “Genetic algorithms: A Survey,” Computer, June 1994.

https://doi.org/10.1109/2.294849.

[277] K. De Jong, W. Spears, “An Analysis of the Interacting Roles of Population Size and

Crossover in Genetic Algorithms,” 2006. 10.1007/BFb0029729.

[278] J. J. Grefenstette, “Optimization of Control Parameters for Genetic Algorithms,” in

IEEE Transactions on Systems, Man, and Cybernetics, vol. 16, no. 1, pp. 122-128, Jan.

1986, doi: 10.1109/TSMC.1986.289288.

[279] Y. W. Foo, C. Goh and Y. Li, “Speciation and diversity balance for Genetic

Algorithms and application to structural neural network learning,” 2016 International Joint

Conference on Neural Networks (IJCNN), Vancouver, BC, Canada, 2016, pp. 1283-1290.

[280] Z. Zhang, et al., “Opening the black box of neural networks: methods for interpreting

neural network models in clinical applications,” Annals of translational medicine vol. 6,11

(2018): 216. doi:10.21037/atm.2018.05.32

[281] M. Scardi, L.W. Harding, “Developing an empirical model of phytoplankton primary

production: a neural network case study,” Ecological Modelling, vol. 120(2–3), 1999, pp.

213-223. https://doi.org/10.1016/S0304-3800(99)00103-9

[282] M. Tsang, D. Cheng and Y. Liu, “Detecting Statistical Interactions from Neural

Network Weights,” 2017. https://arxiv.org/abs/1705.04977

Appendices 233

Appendices

A. The EVLNN Pseudo Code

Figure A.1 Pseudo-code for EVLNN

Algorithm 1 The EVLNN Pseudo Code

// Initialization
1. main(MAX_Iteration, popSize)
2. set control parameters
3. generate a set of feasible solutions uniform random distribution, called popVector of size popSize
4. popVector=rand(popSize)

// Map phenotype (or real values) to chromosomes vectors
5. chromVector=map(popVector)

// Speciation
6. for i=1 to size of chromVector do

// Assign chromosomes to species vector
7. species_id=length(chromVector(i))
8. spVector(species_id)=chromVector(i)
9. end for

// Loop until condition is met
10. while globalBestVector not found AND iteration < MAX_Iteration do

// Evaluate and rank species
11. for each spVector do

// Evaluate fitness of feasible solutions and rank solutions within species
12. spVectorRanked=rank(eval(spVector))
13. end for

// Mating selection and recombination
14. for each species do

// Intra-species recombination
15. for i = 1 to size of spVectorRanked do
16. // Select pair uniformly and stochastically
17. ParentA=SUS(spVectorRanked)
18. ParentB=SUS(spVectorRanked)
19. // Inter-species recombination
20. // Check if inter-species crossover probability is met
21. // if so randomly select 2nd parent from the general population
22. if crossspecies_crossover_probability > rand()
23. ParentB=rand(1, popVector)
24. end if

// Perform single-point crossover
25. ChildA=Parent1A+Parent2B
26. ChildB=Parent2A+Parent2B

// Compare fitness of parent-child
27. if fit(ChildA,ChildB) > fit(ParentA, Parent B)
28. // Store new feasible solutions
29. newVector(ChildA, ChildB)
30. else
31. newVector(ParentA, ParentB)
32. end if

// Check feasible solutions
33. if newVector is unfeasible
34. Repair and Update newVector

Appendices 234

35. end if
36. end for

// Mutation
// Select remaining solutions as mutants

37. for i = 1 to size of Remain(spVectorRanked) do
38. generate changeVector
39. generate probabilityVector

// Prepare mutation vector for link and weights mutation
40. mutationVector=changeVector*probabilityVector
41. mutant=Remain(spVectorRanked)
42. mutant=mutant*mutationVector

// Store new feasible solutions
43. newVector(mutant)

// Check feasible solutions
44. if newVector is unfeasible
45. Repair and Update newVector
46. end if
47. end for

// Update chromosome vector and species vector and evaluate global best
48. for each newVector do

// Evaluate fitness of feasible solutions and rank solutions globally
49. newVectorRanked=rank(eval(newVector))
50. end for

// Replace bottom individuals with healthier individuals
51. bottomIndex=bottomIndex(newVectorRanked)
52. topIdex=topIndex(newVectorRanked)
53. newVectorRanked(bottomIndex)=newVectorRanked(topIndex)
54. // Update chromosome vector
55. chromVector=newVectorRanked
56. spVector=chromVector
57. // Obtain genome map of each individual
58. genome[]=getGenome(spVector)

// Evaluate global best
59. globalBestVector=maxfit(chromVector)

// Diversity Calculation
60. // Perform diversity calculation and plot the trends
61. diversity_calc(genome[], popSize)
62. plot_diversity()
63. end while

// Ensemble-based Sensitivity Analysis
64. SA=sensitivity_analysis_calc()
65. return(globalBestVector, SA)
66. end main

Appendices 235

Figure A.2 Pseudo-code for diversity calculation

Algorithm 2 Diversity Calcuation Method

1: function diversity_calc (genome, popSize)

// Find non-zero elements in the genome_array and return the indices corresponding to the non-zero

// entries. This is to convert the genome to number string for diversity calculation

2: num_genome=0

3: populationSize=popSize

4: for i=1 to size of individual genome do

5: num_genome=num_genome+(genome(i))

6: genome[]=find_non_zero(genome)

7: end for

8: unique_genome=genome[]

9: for i=1 to population_size do

10: unique_genome=union(unique_genome, genome[i])

11: total_genome=total_genome+size(genome[i])

12: i=i+1;

13: end for

14: // Calculate population diversity

15: pop_diversity=population_size*(size(unique_genome)/total_genome);

16: // Calcuate Shannon’s diversity

17: species=unique(sort(genome[]))

18: individuals=genome[];

19: shannon=[species,histcount(individuals(),species)]

20: species_diversity_index=0;

21: for i=1 to size of shannon array do

22: temp=-[(shannon[i]/sum(shannon[])*log(shannon[i]/sum(shannon[])];

23: species_diversity_index=species_diversity_index+temp;

24: end for

25: species_equitability_index=species_diversity_index/log(size(species[]))

26: return(pop_diversity,species_diversity_index,species_equitability_index)

27: end function

Appendices 236

B. Sensitivity Analysis Methods

B.1 Methodology for the PaD Method

In implementing the Partial Derivatives (PaD) method, the relative contribution of the

Multi-Layer Perceptron (MLP) outputs is computed using the Sum of the Square Partial

Derivatives (SSD) obtained per input variable [192] [197]. This method is based on the

Backpropagation (BP) algorithm, which is used to compute the partial derivatives of the

cost function with respect to each weight parameter [280]. The expression for the SSD

implemented in the EVLNN algorithm is,

𝑠𝑖𝑘,𝑆𝑆𝐷 = ∑ (𝑠𝑖𝑘|𝑥𝑗)
2𝑁

𝑗=1 (B.1)

where 𝑠𝑖𝑘|𝑥𝑗 refers to the sensitivity of the output of the kth neuron in the output layer to the

input of the ith neuron evaluated in 𝑥𝑗 and N refers to the number of samples in the dataset.

Figure B.1 shows the Pseudo-code for the PaD method.

Figure B.1 Pseudo-code for the PaD method.

Algorithm 1 Partial Derivative Method

28: function PaD_METHOD (W, B, N, H, I, O, X)

29: // INPUT: Parameter values of the fittest individual EVLNN including weights W, bias B, sample size

30: // N, number of hidden neurons H, number of inputs I, number of outputs O and the testing dataset, X

31: // OUTPUT: Ranking of the relative contribution of the input variables to the output variable

32: for n = 1 to N do

33: for j = 1 to H do

34: for i = 1 to I do

35: // Calculate the weighted sum (zij) at the input i to the hidden neurons, j

36: zij= ∑ (𝑤𝑖𝑗𝑖,𝑗 ∙ 𝑥𝑖) + 𝑏𝑗

37: end for

38: // Calculate the output of the activation function (hj) at the hidden neuron, j

39: hj = 1 / (1+exp(-zij)) // for Sigmoid activation function

40: end for

41: for k = 1 to O do

42: // Calculate the weighted sum zjk at the input of kth output neuron

43: zjk=∑ (𝑤𝑗𝑘𝑗,𝑘 ∙ ℎ𝑗) + 𝑏𝑘

44: end for

45: // Calculate the output of EVLNN (yk) at the kth output neuron

46: yk=zjk // for Pure line, f(x)=x activation function

47: // Calculate the derivation, f’(hj) at the hidden neuron, j

48: for j = 1 to H do

49: f’(hj)= hj ∙ (1 - hj)

Appendices 237

50: end for

51: // Calculate the derivation, f’(yk) at the output neuron, k

52: for l = 1 to O do

53: f’(yk)= 1

54: end for

55: // Calculate the variation of the output variable yk, with respect to the input variables xi

56: // using the chain rule

57: for i = 1 to I do

58: var_y_xi = ∑ (𝑓′(𝑦𝑘) ∙ 𝑤𝑗𝑘 ∙ 𝑓
′(ℎ𝑗) ∙ 𝑤𝑖𝑗)𝑖

59: end for

60: for i = 1 to I do

61: // Calculate the mean sensitivity, Si

62: S[i] =
∑ (𝑣𝑎𝑟𝑦𝑥𝑖

)𝑖
𝑁

63: // Calculate the sum of the squared partial derivatives (SSD) for each input variable

64: SSD[i] = ∑ [(𝑆𝑖).
2

𝑖]

65: end for

66: for i = 1 to I do

67: // Calculate the relative importance of each input variables in percentage terms

68: RI[i]=(SSD[i]/∑𝑆𝑆𝐷)× 100

69: end for

70: // Sort the relative importance in ascending order

71: ranked_RI=sort(RI)

72: return(ranked_RI)

73: end function

The algorithm first imports the optimized parameters of the trained EVLNN. Then the

values of ℎ𝑗 and 𝑧𝑖𝑗 are calculated. ℎ𝑗 is the output value of the jth hidden neuron with a

Sigmoid activation function expressed in Equation B.2, and 𝑧𝑖𝑗 is the weighted sums at the

input of the jth hidden neuron given by Equation B.3,

 ℎ𝑗 =
1

1+𝑒
−𝑧𝑖𝑗

 (B.2)

𝑧𝑖𝑗 = ∑ (𝑤𝑖𝑗 ∙ 𝑥𝑖𝑖,𝑗) + 𝑏𝑗 (B.3)

where 𝑤𝑖𝑗 is the connection weight between the jth hidden neuron and the ith input neuron

and xi is the value of the ith input variables, and 𝑏𝑗 is the bias at the jth hidden neuron.

Subsequently, 𝑦𝑘 and 𝑧𝑗𝑘 are calculated. 𝑦𝑘 is the output value of the kth output neuron with

a Pure Line activation function (f(x)=x) expressed in Equation B.4 and 𝑧𝑗𝑘 is the weighted

sums at the input of the kth output neuron given by Equation B.5,

𝑦𝑘 = 𝑧𝑗𝑘 (B.4)

Appendices 238

𝑧𝑗𝑘 = ∑ 𝑤𝑗𝑘 ∙ ℎ𝑗𝑗,𝑘 + 𝑏𝑘 (B.5)

where 𝑤𝑗𝑘 is the connection weight between the kth output neuron and the jth hidden neuron

and hj is the output of the jth hidden neuron, and 𝑏𝑘 is the bias at the kth hidden neuron. Next,

the variation in the output value yk with respect to the variation in the input variables xi is

calculated by applying the chain rule given by Equation B.6,

𝜕𝑦𝑘

𝜕𝑥𝑖
(𝑿𝑛) = ∑

𝜕𝑦𝑘

𝜕𝑧𝑗𝑘
∙
𝜕𝑧𝑗𝑘

𝜕ℎ𝑗
∙
𝜕ℎ𝑗

𝜕𝑧𝑖𝑗
𝑖,𝑗,𝑘 ∙

𝜕𝑧𝑖𝑗

𝜕𝑥𝑖
 (B.6)

where

𝜕𝑦𝑘

𝜕𝑧𝑗𝑘
= 𝑓′(𝑦𝑘) = 1 (B.7)

𝜕𝑧𝑗𝑘

𝜕ℎ𝑗
= 𝑤𝑗𝑘 (B.8)

𝜕ℎ𝑗

𝜕𝑧𝑖𝑗
= 𝑓′(ℎ𝑗) = ℎ𝑗 ∙ (1 − ℎ𝑗) (B.9)

and
𝜕𝑧𝑖𝑗

𝜕𝑥𝑖
= 𝑤𝑖𝑗 (B.10)

from which Equation B.11 and B.12 are obtained,

𝜕𝑦𝑘

𝜕𝑥𝑖
(𝑿𝑛) = ∑ 𝑓′(𝑦𝑘) ∙ 𝑤𝑗𝑘 ∙ 𝑓

′(ℎ𝑗) ∙ 𝑤𝑖𝑗𝑖,𝑗,𝑘 (B.11)

= ∑ 1 ∙ 𝑤𝑗𝑘 ∙ ℎ𝑗 ∙ (1 − ℎ𝑗) ∙ 𝑤𝑖𝑗𝑖,𝑗,𝑘 (B.12)

Following, the mean sensitivity value Si can be calculated using the output value yk with

respect to the variation for each input variable xi expressed in Equation B.13,

𝑆𝑖 =
1

𝑁
∑

𝜕𝑦𝑘

𝜕𝑥𝑖
𝑛 (B.13)

With the sensitivity obtained for each variable, the relative contribution of each input

variable can be acquired by calculating the sum square partial derivatives (SSD) shown in

Equation B.14,

Appendices 239

𝑆𝑆𝐷𝑖 = ∑ (𝑆𝑖)
2𝑁

𝑖 (B.14)

The input variable with the highest SSD value has the most influence on the output variable.

This value is then divided by the sum of SSD from which the relative importance of each

input variable in percentage terms is computed and subsequently ranked.

Appendices 240

B.2 Methodology for the Profile Method

The profile method analyzes the relative importance of each input variable by varying the

values of the input variable along with a scale range. In contrast, the remaining input

variables are kept at fixed values [200]. The scale consists of a chosen number of intervals

between its minimum and maximum initial data value. Each input variable 𝑥𝑖 is increased

in steps following the scale, keeping all other variables fixed with an initial setting to their

minimum value, the first quartile, median, third quartile, and maximum values. Hence, for

each variation 𝑥𝑖 in the scale point, five output values will be obtained, one from each

quantile. The median output is measured to obtain a curve that displays the variation profile

for every variable. The difference between the maximum and minimum values from the

profile curve is computed. The more significant the difference, the more influence that input

variable has on the response variable. Figure B.2 shows the pseudo-code for the Profile

method.

Figure B.2 Pseudo-code for the Profile method.

Algorithm 2 Profile Method

1: function PROFILE_METHOD (W, B, N, H, I, O, X)

2: //

3: // INPUT: Parameter values of the fittest individual EVLNN including weights W, bias B, sample size

4: // N, number of hidden neurons H, number of inputs I, number of outputs O and the testing dataset, X

5: // OUTPUT: Ranking of the relative contribution of the input variables to the output variable

6: //

7: // Sort input values in ascending order rowwise

8: sorted_xi=sort(xi)

9: for i = 1 to 9 do

10: // Create a scale with 11 steps for the input variable xi, starting from minimum to maximum

11: // in steps of 10% to 90% , where scale[0]=xmin , scale[10]=xmax , and scale[1,…,9] is given below

12: scale[i]= 𝑥𝑖 × (0.1 × 𝑖)
13: end for

14: for j = 1 to 3 do

15: // Create 5 quantiles starting from minimum sample size of 1, to 1st quantile, median, 3rd quantile

16: // and maximum sample size, where quantiles[0]=1, quantiles[4]=size(X),

17: // and quantiles[1,..,3] is given below

18: quantiles[j]=[𝑠𝑖𝑧𝑒(𝑋) × (0.25 × 𝑗)]
19: end for

20: for i = 1 to I do

21: for q = 1 to 5 do

22: sorted_xi=sorted_xi(:,quantiles[j])

23: for s = 1 to 11 do

24: sorted_xi=sort_xi(:,scale[i])

25: // Calculate the new predicted output, yp of the EVLNN model with the new input, xi

Appendices 241

26: yp[s,q]=EVLNN(W, B, N, H, I, O, sorted_xi)
27: end for

28: end for

29: // Sort rowwise so that the median value can be extracted

30: for s = 1 to 11 do

31: sorted_yp[s,:]=sort(yp[s,:])

32: end for

33: // The median value is in the third column

34: MEDIAN[i]=sorted_yp[:,3]

35: end for

36: for i = 1 to I do

37: // Calculate the difference between the max and min output values and rank the input variables

38: // that have the most influence on the output variable

39: RI[i]=max(MEDIAN[i])-min(MEDIAN[i])

40: end for

41: // Sort the relative importance in ascending order

42: ranked_RI=sort(RI)

43: return(ranked_RI)

44: end function

The first step of the Profile method is to sort the input values in ascending order. Next, a

scale of 11 steps, scale[1,..,11] is created to form new input values consisting of the

minimum, 10%, 20%, 30% 40%, 50%, 60%, 70%, 80%, 90% and maximum value of the

input variable. At each input value xi from its minimum to its maximum, the values of the

rest of the input variables are held fixed, first at their minimum value, followed by first

quartile, median, third quantile, and finally maximum values. With the new input values,

the predicted output at the EVLNN model is subsequently computed, resulting in five

output values for each variation of xi, which are then ranked. The median values are

identified over the scale range to obtain a profile curve with variation for every variable.

The difference between the maximum and minimum median values is determined to

identify the input variables relative to their importance. The higher the difference, the more

influence the input has on the output. The Profile method is illustrated with a schema shown

in Figure B.3.

Appendices 242

Figure B.3 Profile method schema.

Appendices 243

B.3 Methodology for the Perturb Method

In implementing the perturb method, the value of the selected variable is perturbed while

the other variables are kept at their original values [198]. The formula is expressed as,

𝑥𝑖 = 𝑥𝑖 + 𝛿𝑗 (B.15)

where 𝛿𝑗 or white noise is progressively applied to each variable of the identified model at

incremental steps (j=1, 2, …) of the original value, xi, and the output is then measured.

Injecting white noise at the input variables causes the response variable at the output to

increase [281]. This increase in the neural network output is subsequently assessed to

determine which predictor is relatively more important than the rest. The predictor who

affects the change the most is the most influential. Though the relationship between the

predictors and the response variables is not strictly monolithic, less sensitive predictors

should not significantly affect the neural network outputs with considerable white noise. In

contrast, predictors with high relative importance should cause material variation to the

neural network outputs when white noise is injected. Figure B.4 shows the pseudo-code for

the Perturb method.

Figure B.4 Pseudo-code for the Perturb method.

Algorithm 3 Perturb Method

1: function PERTURB_METHOD (W, B, N, H, I, O, X, mse_ori)

2: //

3: // INPUT: Parameter values of the fittest individual EVLNN including weights W, bias B, sample size

4: // N, number of hidden neurons H, number of inputs I, number of outputs O, the testing dataset, X and

5: // the original results of the Mean Square Error (MSE)

6: // OUTPUT: Ranking of the relative contribution of the input variables to the output variable

7: //

8: // Sort input values in ascending order rowwise

9: sorted_xi=sort(xi)

10: for i = 1 to I do

11: for j = 1 to 5 do

12: // Perturb input variable xi in 5 steps at 10% to 50% of the original value

13: p[i]= [𝑥𝑖 + (𝑥𝑖 × (0.1 × 𝑗))

14: // Copy the original values of input data set

15: perturbed_X[:]=X[:]

16: // Replace the value of input variable xi with new perturbed values

45: perturbed_X[i]=p[i]

46: // Calculate the new predicted output, yp of the EVLNN model with the new input, xi

47: yp=EVLNN(W, B, N, H, I, O, perturbed_X)

Appendices 244

74: // Calculate the MSE using the function mse_cal

75: perturbed_mse[i,j] = mse_cal(Xtarget, yp)

17: end for

18: // Calculate the mean MSE with the perturbed input values

19: ave_mse=[sum(perturbed_mse)]/5

20: // Calculate the relative importance of each input variable by computing the absolute difference

21: // of the new MSE with the original MSE

22: RI[i]=|mse_mean−mse_ori|

23: end for

24: // Sort the relative importance in ascending order

25: ranked_RI=sort(RI)

26: return(ranked_RI)

27: end function

The steps in the Perturb method include applying a perturbation, 𝛿 to each input, xi, as

expressed in Equation B.14.

𝑥𝑖 = 𝑥𝑖 + 𝛿 (B.16)

Five steps of perturb amount equivalent to 10%, 20%, 30%, 40%, and 50% of the original

value are applied progressively to compute the predicted output at the EVLNN model while

keeping the other inputs to their original value. The result of the predicted output is

subsequently used to calculate the MSE. After the five steps of perturbation, the mean MSE

mse_mean is computed. This mse_mean is then compared with the original MSE mse_ori

(obtained before the perturbation). The difference obtained represents the relative

contribution of the input variable. The input variable that has a more significant influence

on the output variable than the rest would exhibit a more significant difference between the

MSEs. The Perturb method is illustrated with a schema shown in Figure B.5.

Appendices 245

Figure B.5 Perturb method schema.

Appendices 246

B.4 Methodology for the Connection Weights Method

The importance of neural network connection weights has been investigated in the works

of [188], [192], [201], [282]. The connection weights in a neural network are the links

between the neurons from the inputs to the outputs. Hence, its outputs depend on the

contributions of the inputs subjected to the connection weights’ magnitude and direction.

Inputs with higher connection weights represent a higher excitation level of activation at

the output of the neurons. Therefore, they are relatively more important in predicting than

inputs with lower connection weights. Inputs with positive connection weights increase the

value of the predictive response, and inputs with negative connection weights decrease the

value of the prediction response. In this study, the Weights method was applied to calculate

the relative importance of the inputs to the neural network output, using Equation B.17 and

Equation B.18 [195] [201],

𝑄𝑖ℎ =
|𝑤𝑖ℎ|

∑ |𝑤𝑖ℎ|
𝑛𝑖
𝑖=1

 (B.17)

where 𝑤𝑖ℎ refers to the absolute value of the connection weight between the input neuron,

i, and the hidden neuron, h, and 𝑄𝑖ℎ is the ratio of the absolute value of the connection

weight and the sum of the absolute value of the connection weights of all input neurons i,

and,

 𝑅𝐼(%)𝑖 =
∑ 𝑄𝑖ℎ
𝑛ℎ
ℎ=1

∑ ∑ 𝑄𝑖ℎ
𝑛𝑖
𝑖=1

𝑛ℎ
ℎ=1

 x 100 (B.18)

where RI is the percentage relative importance of all output weights attributable to the input

variables, is the ratio of the sum of 𝑄𝑖ℎ for each hidden neuron and the sum for each hidden

neuron of the sum for each input neuron of 𝑄𝑖ℎ. Figure B.6 shows the pseudo-code for the

Connection Weights method.

Appendices 247

Figure B.6 Pseudo-code for the Connection Weights method.

Algorithm 4 Connection Weights Method

1: function CONN_WEIGHTS_METHOD (W, B, N, H, I, O, X)

2: // INPUT: Parameter values of the fittest individual EVLNN including weights W, bias B, sample size

3: // N, number of hidden neurons H, number of inputs I, number of outputs O, the testing dataset, X

4: // OUTPUT: Ranking of the relative contribution of the input variables to the output variable

5: // Take the absolute values of the neural network weights

6: W_positive=|W|

7: // For each hidden neuron and each input variable xi, multiply the absolute value of the hidden-

8: // output layer W_positivejk connection weight by the absolute value of the hidden-input layer connection

9: // weight W_positiveij.

10: for j = 1 to H do

11: for i = 1 to I do

12: P[i,j] = W_positive[i,j] × W_positive[j,k]

13: end for

14: end for

15: for j = 1 to H do

16: for i = 1 to I do

17: // Divide P by the sum for all the input variables Qij

18: Q[i,j]=P[i,j]/ ∑ 𝑃[𝑖, 𝑗]
19: end for

20: end for

21: // Compute the sum of the influence for each input

22: S[i] = ∑𝑄[𝑖, 𝑗]
23: S2 = ∑𝑆[𝑖]
24: for i = 1 to I do

25: // Divide Si by the sum for all the input variables, S2, and express as a percentage to compute relative

26: // importance which is the distribution of all output weights attributable to the given input variable.

27: RI[i]=(S[i]/S2) × 100

28: end for

29: // Sort the relative importance in ascending order

30: ranked_RI=sort(RI)

31: return(ranked_RI)

32: end function

The first step in the Connection Weights method is to take the absolute values of the

connection weights of the identified EVLNN model. Then, for each hidden neuron,

compute the product of the connection weight from the input to the hidden neuron, with the

connection weight from the hidden to the output neuron, to obtain the array Pij,

𝑃𝑖𝑗 = 𝑤𝑖𝑗 ∙ 𝑤𝑗𝑘 (B.19)

where j is the number of hidden neurons, wij is the connection weight between the input

neuron i and the hidden neuron j, and wjk is the connection weight between the hidden

Appendices 248

neuron j and the output neuron k. Subsequently, for each hidden neuron, divide Pij by the

sum of all input variables Pij, to obtain Qij,

𝑄𝑖𝑗 =
𝑃𝑖𝑗

∑𝑃𝑖𝑗
 (B.20)

Following, for each input neuron, the product Qij is summed to obtain Si,

𝑆𝑖 = ∑ 𝑄𝑖𝑗𝑖 (B.21)

Finally, Si is divided by the sum of all the input variables and then multiplied by 100 to

compute the percentage relative importance, RI(%),

𝑅𝐼𝑖(%) = (
𝑆𝑖

∑𝑆𝑖
) × 100 (B.22)

A higher RI value represents the input variable's more significant influence over the output

variable. The Connection Weights method is illustrated with a schema shown in Figure B.7.

Figure B.7 Connection Weights schema.

Appendices 249

C. Analysis of EVLNN’s Search Pattern

C.1 The Himmelblau-2D Function

The Himmelblau benchmark function is used to illustrate EVLNN’s search operation.

Detailed data during the experiment was collected. With the help of visualization plots, the

algorithm’s search characteristics were investigated and analyzed to explain EVLNN’s

search process. The Himmelblau-2D (f11) function has the mathematical equation expressed

as,

𝑓11(𝑥) = (𝑥1
2 + 𝑥2 − 11)

2 + (𝑥1 + 𝑥2
2 − 7)2 (C.1)

The 3D plot of the function is shown in Figure C.1, where the figure depicts four global

optima. The global minima 𝑓(𝑥∗) = 0, are at 𝑥∗= (3, 2), (-3.779, -3.283), (-2.805, 3.131)

and (3.584, -1.848). Figure C.2 shows the contour landscape in 2D. The search is evaluated

on 𝑥𝑖 ∈ [-6 6], for all i =1, …, d where d=2.

Figure C.1 3D plot of the Himmelblau function with four global minima

Appendices 250

Figure C.2 Contour plot of the Himmelblau function with locations of the four global minima

Figure C.3 shows the population at initiation presented on a 2D search landscape of the

Himmelblau function in the range [-6 6]. Potential solutions are represented by various

colored shapes on the landscape with similar colored shapes belonging to the same species.

The species are initially scattered over the search landscape, searching for attractive basins.

The function has four global minima at f(x*)=0, at x* = (3, 2), x* = (-3.779, -3.283), x* =

(-2.805, 3.131) and x* = (3.584, -1.848). Four large red squares mark these locations in the

search landscape. Figure C.4(a) shows the species distribution at initialization. There are in

total 125 individuals and 14 species. As observed, individuals are not distributed evenly

among the different species. SP3 or Species_3 has 13 individuals, the largest species,

whereas Species_6 and Species_15 have five individuals each. They form the smallest

species. Figure C.4(b) shows the population convergence rate over 500 generations. The

average MSE falls steeply in the first 20 generations and needs about 400 generations to

converge to good solutions. Figure C.5 shows the convergence rate of each of the 14 species,

converging at a different rate to the global minima. Species_15 has the slowest convergence

rate suggesting that this species was stuck at a local minimum in the search landscape.

Nonetheless, the species eventually converged along with the other species.

Appendices 251

Figure C.3 Landscape showing speciated solution candidates in generation 1.

(a) (b)

Figure C.4(a-b) (a) Species distribution at the initialization. (b) Population convergence over 500

generations.

Appendices 252

Figure C.5 Individual species convergence over 500 generations.

Figure C.6 to Figure C.20 shows the evolutionary map of the EVLNN algorithm captured

in steps of ten generations from generations 10, 20, 30, … to 100, 150, 200, then in steps

of 100 generations to 500. These plots visually depict how the population evolves on the

objective function surface where the various species are highlighted using different colored

shapes. The four global optima are highlighted using red squares.

Appendices 253

Figure C.6 At generation 10, species move towards the basins of interest depicted by the

four red squares.

Figure C.7 At generation 20, species are seen drawing closer to the minima

Appendices 254

Figure C.8 At generation 30, species are becoming similar based on their positions.

Figure C.9 At generation 40, Species_8 has become identical in their search positions like

the other respective species.

Appendices 255

Figure C.10 At generation 50, most species are near global minima except Species_7,

which seems stuck in a local minima.

Figure C.11 At generation 60, the search continues.

Appendices 256

Figure C.12 At generation 70, some species are seen inside the global minima's red square.

Figure C.13 At generation 80, Species_11 are now identical in their search positions.

Appendices 257

Figure C.14 At generation 90, more species are inside one of the red squares, with the

remaining six species still trying to locate the minima.

Figure C.15 At generation 100, the remaining species can be seen converging towards the

minima.

Appendices 258

Figure C.16 At generation 150, Species_7 has moved out of the local minima and towards

the global minima.

Figure C.17 At generation 200, most species have landed inside one of the red squares.

Appendices 259

Figure C.18 At generation 300, all the species except Species_7 can be seen inside one of

the red squares.

Figure C.19 At generation 400, Species_7 has located one of the global minima.

Appendices 260

Figure C.20 At generation 500, all the species have found the global minima indicated by

the red squares.

C.2 Heatmap Visualization

Additional analysis of EVLNN’s search behavior for the Himmelblau-2D (f11) function is

performed using a visual heatmap. The active heatmap visualization is written in MatLab

R2020a software. Figure C.21 shows the heatmap at the end of EVLNN’s search operation

for f11. The numbers in columns two to five represent the proximity of the species’

Euclidean distance to the global minima. The species' Mean Absolute Error (MAE) is also

calculated and indicated in the heatmap in the first column. The heatmap’s warmer colors

represent that the species is further away from the global minima, whereas the cooler colors

represent that the species is nearer to the global minima. From Figure C.21, Species_2 is

the best performer in the diagram with the lowest MAE of 0.0000 and a mean Euclidean

distance of 0.00016 to global minima two (-3.779, -3.283). Species_7 is the worst performer

with the MAE of 0.00024 and a mean Euclidean distance of 0.0020 to global minima three

(-2.805, -3.131). Species_2, Species_4, Species_8, Species_9, and Species_10 have located

the global-minima-two with the Euclidean distance measured at 0.00016, 0.00086, 0.00170,

0.00117, and 0.00118, respectively. Species_3, Species_11, and Species_15 have located

Appendices 261

global-minima-one at (3,2) with the Euclidean distance measured at 0.00056, 0.00242, and

0.00319, respectively. Species_5, Species_7, and Species_12 have located global-minima-

three at (-2.805, -3.131) with the Euclidean distance measured at 0.00072, 0.00220, and

0.00078, respectively. Species_6, Species_13, and Species_14 have located global-minima-

four at (3.584, -1.848) with the Euclidean distance measured at 0.00071, 0.00271, and

0.00205, respectively. The heatmap illustrates an important finding that EVLNN’s

speciation approach has achieved the parallelism required to locate all the global optimas

with low MAE values. The best solutions for the 4 global minima are found in Species_3,

Species_2, Species_5 and Species_6 at (3,2), (-3.779, -3.283), (-2.805, 3.132) and (3.584, -

1.848), respectively.

Figure C.21 Analysis of EVLNN search behavior using a visual heatmap.

Appendices 262

In addition, a bubble chart, written in MatLab R2020a software, is used to analyze and

visualize the species density around the respective global basins. Figure C.22 shows the

bubble chart at the end of EVLNN’s search operation with a larger bubble size

corresponding to a higher species density and a higher number of solution candidates. The

number of solution candidates present at the global minima 1, 2, 3, and 4 is 27, 49, 26, and

23, respectively, resulting in different bubble sizes. From Figure C.22, is observed that the

distribution of the species on each basis was uneven. This outcome is expected as EVLNN

takes a stochastic approach in the explorative search process, resulting in an even number

of solution candidates at the various basins.

Figure C.22 Analysis of EVLNN search behavior using a bubble chart.

