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Abstract 

The demand for data center services, driven by the surge in online applications and services, 

has propelled energy consumption to unprecedented levels. While renewable energy 

provides an attractive and more environmentally friendly alternative to existing energy 

resources, renewable intermittency is a major issue for grid operators. Accurate energy 

predictions are thus paramount to maintaining optimal services and energy provisions 

amidst a shift towards greener energy for more sustainable data centers.  

Artificial Neural Networks (ANN) are powerful learning machines adopted for several 

decades for prediction problems. Recent years have seen increased interest in ANN, led by 

advancements in AI and computing hardware. Despite the significant progress, ANNs are 

notoriously hard to train and extremely difficult to interpret as the relationships between 

the input variables and the output responses are often hard to tease apart. The structure of 

ANN can considerably impact its performance as it has a direct dependency on the model 

architecture and parameters. Achieving high performance accuracy and the ability to 

generalize across different problem sets remains a big challenge for ANNs. For example, 

an over-trained model becomes too large and complex, is more prone to overfitting, and 

cannot make accurate predictions as it does not generalize well to new data. Additionally, 

the more complex a network, the more difficult it is to explain the relationships learned by 

the model. 

Traditionally, most research focus on model parameter learning, where gradient-based 

methods are frequently applied to optimize connection weights and biases. In contrast, 

model architecture learning is manually set based on experience or trial-and-error 

experimentation. However, this approach suffers several constraints, including limiting the 

search space of candidate solutions with a predefined number of neurons and connections.  

To address these limitations, a novel ANN called the Evolutionary Lean Neural Network 

(EVLNN) is developed in this thesis. EVLNN uses an improved Genetic Algorithm (GA) 

to optimize ANN architecture and parameters, offering greater training flexibility than 

traditional approaches. The proposed approach has the advantage of simplifying energy 
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prediction tasks by allowing one to specify parameters such as the minimum and maximum 

network size, the transfer functions, feedforward architecture, or architecture with feedback 

for time series forecasting. In this approach, structural optimality properties of the problem 

are formulated and solved with an implementation of an improved GA that includes species 

parallelism, intra-and-inter species crossover, and a two-stage mutation. EVLNN serves as 

a global search algorithm by locating a parsimonious ANN that can provide a more 

generalized solution. Sensitivity analysis mechanisms are designed into the algorithm to 

help with interpretability and understanding of the model.  

In developing the EVLNN algorithm, a set of benchmark functions was used to empirically 

evaluate and compare the algorithm’s performance with other well-established algorithms 

- Particle Swarm Optimization (PSO), Differential Evolution (DE), and the standard 

Genetic Algorithm (GA). The results showed EVLNN’s ability to generalize well by 

locating the peaks in all the test functions, whereas the other algorithms have located the 

peaks in all but one test function. 

The EVLNN algorithm was applied to two energy prediction problems in this thesis. The 

first application is in predicting the energy consumption of a Hadoop testbed. Using 

variables related to energy consumption from the Hadoop system, EVLNN accurately 

predicted its energy consumption and helped identify key energy influencing factors. It also 

performed more favorably than networks trained by PSO-NN, DE-NN, and GA-NN. The 

second application is in the forecasting of solar irradiance. EVLNN showed accurate 

forecasts in different settings of time resolutions (sample size) and using a different number 

of input variables. In most of those settings, EVLNN outperformed PSO-NN, DE-NN, GA-

NN, and the fully-connected Time Delay Backpropagation neural network (TD-BPNN). 

Accurate energy predictions underpin the essential improvements required in energy 

resource management for both data center owners and grid operators. Furthermore, the 

ability to explain and interpret the model behavior provides a basis for understanding the 

dynamics of energy consumption. This work has provided a simplified and flexible 

approach to ANN architecture design and parameter optimization to achieve interpretable 

models with high accuracy and good generalization properties for energy prediction 
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problems. The findings demonstrated that EVLNN could create parsimonious models for 

accurate energy prediction, which are also capable of discovering the relationships between 

key determinants of energy consumption. 
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Chapter 1  

1. Introduction 

1.1 The Nexus between Data Center Energy Efficiency and 

Renewables 

The demand for data center services has risen worldwide to support big data and digital 

services [1] [2]. This demand has propelled data center energy consumption to 

unprecedented levels. Based on the International Energy Agency (IEA) 2020 report, energy 

usage by global data centers in 2019 was approximately 200 Terrawatt hour (TWh) [3]. The 

consumption puts the data center at 1% of global electricity demand [4] and around 0.3% 

of overall carbon emissions. The continued upsurge of big data-driven by a plethora of 

social media applications, eCommerce websites, mobile gaming platforms, the Internet of 

Things (IoT), autonomous systems, and cryptocurrency is a growing concern for data center 

electricity use and its potential impact on the environment [5]. 

With existing efficiency resources almost fully tapped and the projected global data center 

compute instances potentially doubling within the next 3 to 4 years [6], an intentional effort 

to manage sustainable energy growth for data centers is pertinent. Instead of seeing data 

centers as an environmental threat, they provide the much-needed push to accelerate 

progression in renewables. In its Innovation Landscape for the Power Sector study, IRENA 

showed that data centers sit at the nexus of energy efficiency, renewable energy, and the 

burgeoning data economy in an increasingly digitalized world [7]. Amidst broader climate 

goals and the push for renewables and green data centers, accurate energy predictions can 

help address the challenges and opportunities for a more sustainable future.  

There have been proposals to design sustainable data centers with facilities enabled by 

supply and demand-side management to take advantage of efficiency gain by predicting 

and shifting workload demands to exploit renewables' time variations and availabilities [8] 

– [10]. However, integrating renewable energy sources in data centers is non-trivial as they 
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are far more complicated than traditional data centers [11] [12]. The complication can be 

viewed from both sides. Firstly, predicting demand-side requires precise accounting and 

knowledge of how the energy consumption of various workloads and server utilization 

varies non-linearly with localized conditions like temperature and humidity [13]. Secondly, 

predicting the supply-side generation requires an accurate renewable energy forecast that 

would allow grid operators to optimize clean electricity generation. For example, solar 

irradiance’s intermittency and stochastic behavior mean that solar power generation is not 

guaranteed, making it hard to predict its availability. Though sunrise and sunset events can 

be anticipated, as when the sun rises or sets each day is known, solar irradiance forecasting 

during the day remains challenging due to fluctuations in solar radiation from frequent 

cloud formation and changing weather patterns. Hence, advanced forecasting techniques 

and AI will become critical to integrating higher renewable energy shares into the grid to 

support greener data centers [14].  

1.1.1. Big Data and the Data Center Transformation 

In the last decade, the data center has transformed its computing platform to adapt to the 

era of data deluge, one of the most popular being the Hadoop platform. Hadoop consists of 

the Hadoop Distributed File System (HDFS) [15] with MapReduce [16] or Yet Another 

Resource Negotiator (YARN) [17] as software frameworks and has been widely adopted as 

an open-source Massively Parallel Processing (MPP) platform for big data applications. 

Internet media companies like Meta (formerly known as Facebook), Google, and Microsoft 

use platforms like Hadoop to process and analyze big data [18] – [20]. The Hadoop platform 

can scale into thousands of nodes in a single cluster, supporting hundreds of Petabytes (PB) 

of data to meet growing demands. The sheer scale and high fault-tolerant nature of Hadoop 

constitute a significant piece of the overall data center system. Inevitably, the intense energy 

usage from the Hadoop platform would be massive.  

1.1.2. Data Center Energy Demand 

In Meta’s data center alone, energy consumption surged by 33%, from 509 GigaWatt hour 

(GWh) in 2012 to 678 GWh from the year before. The company’s total data center energy 
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consumption increased by another 16% in 2013 to 822 GWh as it massively scaled up its 

cloud infrastructure to meet intense customer demands [21].  In 2019, the company’s 

electricity usage reached a new high of 5.1 TWh [22], a 50% increase from the previous 

year of 3.2 TWh in 2018 [23].  

Energy consumption of Google’s data centers has also increased from 2.86 TWh in 2011 to 

10.6 TWh in 2018 as computing power skyrocketed and data center capacity expanded to 

meet robust demand for data services [24] [25]. In 2019, the company announced that an 

investment of more than $13 billion would go into building new data centers and expanding 

existing ones [26]. Similar announcements were also made by top-ranked cloud service 

providers such as Amazon Web Services (AWS), Microsoft, and Tencent to continue their 

investment and building of data centers at hyper-scale [27] – [29].  

Consequently, studies have forecasted that data center electricity use could reach 2,967 

TWh/year by 2030 [30], reaching a level of consumption equivalent to one-quarter of 

worldwide electricity consumed in 2010 [31]. The European Union’s (EU’s) EURECA (EU 

Resource Efficiency Coordination Action) Project put the energy consumption of the 

European data center at 130 TWh in 2017 [32]. The Lawrence Berkeley National 

Laboratory (LBNL) in the United States (US) projected that US data center energy 

consumption at approximately 70 TWh in 2020 [3] [4]. Greenpeace cited that China’s data 

centers' energy consumption was 160 TWh in 2018 and is projected to reach 367 TWh by 

2023 [5]. At the same time, these data centers represent 3.8% of CO2 emissions [33], and it 

is estimated that by 2025, greenhouse gas emissions by data centers will have tripled since 

2010 [34]. 

1.1.3. Data Center Energy Efficiency Gains  

Most studies claiming enormous energy used by data centers often overlook strong 

countervailing energy efficiency trends that have occurred in parallel. Some of the 

considerable energy improvements came from technological advancements such as 

increased server, storage, networking equipment efficiencies, and greater use of 

virtualization technologies. Others came from increased gains in data center operational 
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efficiency. Together, it is possible to achieve substantial growth in digital services with 

much smaller growth in the energy footprint [35]. However, given the ever-growing 

demands for data center services, current strategies for energy efficiency improvement will 

not likely keep up with the rate of data center expansion.  

The industry's most notable data center energy efficiency metric is the Power Usage 

Effectiveness (PUE). PUE is calculated using the equation, 

𝑃𝑈𝐸 =  
𝑇𝑜𝑡𝑎𝑙 𝑃𝑜𝑤𝑒𝑟 𝑖𝑛𝑡𝑜 𝐷𝑎𝑡𝑎 𝐶𝑒𝑛𝑡𝑒𝑟

𝐼𝑇 𝐸𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡 𝑃𝑜𝑤𝑒𝑟
     (1.1) 

where, Total Power into Data Center is the energy dedicated solely to the data center, and 

IT Equipment Power is the energy consumed by equipment used to manage, process, store, 

or route data within the compute space. A PUE of 1, which would be ideal, means all the 

power going into the data center is being used to power IT equipment. World-class data 

centers are approaching a practical minimum in operating PUE of 1.1 or lower [36] [37], 

as they take advantage of economies of scale and leverage the latest technology and 

practices. However, the industry data centers’ PUE in a 12-year study has flattened out with 

an average of 1.67 in 2019 [38]. It is observed in the study that the reduction in the average 

PUE from 2007 to 2013 is mainly due to the adoption of methods such as hot and cold air 

separation, raising data center temperatures, or applying more control on computer room 

air-conditioning and power distribution. The PUE numbers indicate that energy efficiency 

gains leveraging conventional methods may have been dampened.  

1.1.4. Renewables and AI for Efficient Data Center Energy Management 

Explosive growth in data center infrastructure does not need to mean growth in emissions. 

Transitioning energy from thermal-based sources to renewables to power data centers could 

be a game-changer. By leveraging the attractive economics of renewables, and the 

increased efficiencies made possible by Artificial Intelligence (AI), energy-intensive data 

centers could be self-sustaining [39]. Research in AI and renewables-enabled data center 

sustainability is growing [40] – [43]. A recent example is the tropical data center testbed 

set up as a state-of-the-art facility for energy efficiency research [44]. The Uptime Institute 
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Intelligent Report on ‘Five data center trends for 2021’ concurs with this development, 

citing sustainability and AI as the leading trends for data centers in 2021 [45]. Operators 

that can successfully harness this energy source coupled with AI advancement might 

change how data centers operate in the future. Big technology companies such as AWS, 

Google, Microsoft, and Meta, are already integrating higher shares of renewable power 

(e.g., wind, solar, hydro, marine, and geothermal power) into their data centers or 

purchasing renewable energy credits (REC) to offset their fossil fuel usage [46] – [49].  

Among the renewable energies, clean electricity systems based on solar photovoltaic (PV) 

power generation is the fastest-growing energy source worldwide [50]. The accelerated 

deployment of solar PV globally, combined with the rapid development of the solar energy 

industry, has driven costs down. With the cost of renewable electricity falling, transition 

effort could be further boosted as power represents as much as 70% of the data center's total 

operating costs [51]. Currently, the issue limiting its growth is the intermittency of 

renewable energy. The intermittent nature of renewables means that electricity from these 

sources will not be continuously available. It also creates technical challenges in integrating 

renewable energy into the grid. Therefore, intermittent availability has been at the forefront 

of renewable energy research for a number of years to resolve the impacts of intermittent 

generation. With the advancements in AI, it is possible to alleviate the impacts of 

intermittent generation through accurate solar energy forecasting to further integrate solar 

capacity into the grid for a predictable generation.  

 

1.2 Energy Modeling and Prediction  

Energy prediction is of paramount significance for the optimal operation of systems and 

plants to meet their energy needs [52]. Accurate models of underlying systems are pivotal 

to predicting the systems’ behaviors. Such predictions are integral to business planning, 

resource management, and energy efficiency improvement. For example, data center 

planners can use energy consumption predictions to improve workload scheduling, 

resource allocation, and data replication or placement to achieve energy proportionality. 
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Grid operators require accurate forecasts of solar variability for reliable dispatch, ramp 

forecasting, or spinning of reserves from additional sources. Most works consider solving 

these problems separately. This research aims to lay the groundwork to bridge the gap 

between these two engineering problems by improving the generalizability of a predictive 

model capable of both demand-side and supply-side energy prediction. 

In general, the approaches used in modeling energy systems can be categorized into the 

physical and Machine Learning (ML) approaches. 

1.2.1 Physical Modeling Approach for Energy Prediction 

Most early studies and existing work that focus on physical models are based on 

mathematical equations describing a dynamic system's physical state. In the energy 

consumption modeling of data centers, [53] developed a general power consumption model 

for the Hadoop cluster, and [54] proposed an energy model for Hadoop workloads. In solar 

irradiance forecasting, [55] presented a physical satellite model based on participating 

atmospheric components, radiometers, and meteorological data. Global spectral numeric 

weather prediction models [56] are also popular models used to predict solar irradiance 

through weather phenomena occurring in the Earth’s atmosphere. These approaches to 

describing and analyzing energy predictions require a precise and clearly defined 

mathematical model that involves selecting appropriate meteorological features and 

collecting vast data.   

Energy modeling based on physical models is the most accurate. They also have the 

advantage of not requiring any historical data, making them flexible as they can simulate a 

future system so long as its physical properties are known. However, physical models are 

demanding since they must include all the necessary mathematical equations and data. 

Using the underlying physics to solve the equations numerically requires an expensive 

process of abstracting the full underlying properties of a nonlinear energy system to a high 

degree of accuracy, making this method unamenable. 
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1.2.2 Machine Learning Approach for Energy Prediction 

On the contrary, ML, a class of AI, uses a data-driven approach that seeks to match input-

output predictions to data that does not require the abstraction of complex underlying 

properties of the systems as in physical models. Its approach reverse engineers existing data 

to learn and discover patterns or hidden information in the system. While ML techniques 

have been adopted for several decades, interest in the field has grown in recent years, led 

by advancements in computing hardware and revolutionary development in AI. In 

particular, a class of ML techniques known as Artificial Neural Networks (ANN) and Deep 

Neural Networks (DNN) has seen a resurgence in energy prediction research [52]. In energy 

consumption modeling, Fuzzy Wavelet Neural Networks (FWNNs) were proposed as a 

control model to improve the energy efficiency of the Hadoop cluster [57]. Liang and Hu 

[58] presented a deep learning model to predict energy consumption using multiple energy-

related features acquired from a Hadoop cluster. The use of ANN or deep learning for solar 

energy forecasting is also widespread. Convolutional Neural Networks (CNNs) were 

employed to predict the sunshine duration [59], Recurrent Neural Network (RNN) was 

employed for solar radiation forecast [60], and Long Short-Term Memory (LSTM) models 

were successfully deployed to predict solar radiation [61]. 

While ANN-based ML methods can create models from data, it has several disadvantages. 

Firstly, the model training process can be time-consuming and expensive due to a large 

number of parameters and hyperparameters to optimize and often relies on expert 

knowledge and trial-and-error to determine the optimal structure. Secondly, while the 

powerful and versatile ANN is capable of learning the non-linear and intricate interactions 

between features, it is also more prone to overfitting with its complex structure, limiting its 

generalization ability. Thirdly, the more complex a network, the more difficult it is to 

interpret the cause of the results in relation to the inputs. Lack of interpretability prevents 

the model from being queried to understand which specific features are relevant for making 

predictions causing them to be less desirable for real-world applications. 
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1.3 Methods for Neural Network Structural Learning  

ANN's performance depends on two aspects – the model architecture and the model 

parameters. The model architecture consists of the number of hidden neurons and their 

connectivity, whereas the model parameters consist of connection weights and biases. 

Theoretically, an infinite set of model architecture associated with the model parameters 

representing the ANN structure exists, making it hard to locate an optimal model. Hence, 

selecting an appropriate network structure is non-trivial [62].   

The neural network structural learning problem can be viewed as an optimization or search 

problem where structural representations form the search landscape. In ANN design, a cost 

function can be formulated as the objective function to minimize, with the structural 

representations embodying learnable parameters for the optimization. Various optimization 

methods have been proposed in the past years to train ANNs. These methods can be 

categorized into gradient-based, reinforcement learning-based, and nature-inspired search 

[63].  

1.3.1. Gradient-Based Methods  

In gradient-based methods, the search moves towards the optimum solution in a continuous 

space using a gradient descent method. Candidate model architecture is sampled from the 

search space, trained on the training dataset by gradient-based methods, and evaluated on 

the validation dataset, guided by the objective (or cost) function. The target is to reduce the 

model’s predicted error averaged over the entire training dataset. The Backpropagation 

(BP) algorithm is commonly used to guide the training of ANN, where the error of the cost 

function is propagated backward through the network [64]. The derivatives of this error 

component are used to evaluate the search direction iteratively to help reproduce model 

architectures with higher performance [65]. The disadvantage of this method is that the 

objective function must be differentiable, limiting the selection of objective functions used 

to train the network [66]. Since model architecture is often discrete, this method 

necessitates converting the search space to continuous values if the gradient-based method 
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is used [67]. Another shortcoming with the gradient-based method is that it can easily get 

trapped in local minimas of the objective function. 

1.3.2. Reinforcement Learning-based Methods  

Reinforcement learning (RL) is a technique that trains intelligent agents to solve a specific 

task using a set of actions to maximize some accumulative rewards [68]. RL-based methods 

in network structural learning train an RNN controller using RL to generate DNN 

architectures represented by variable-length strings [69] [70]. During the DNN training, the 

accuracy or reward signal computed is used by RL to train the RNN. The RNN controller 

then determines a sequence of operator and connection tokens to construct the networks. 

Over time, the RNN will learn to improve the search as DNN architecture with higher 

accuracy will be given higher probabilities. However, the RL controller needs to try tens of 

actions to get a positive reward as a supervisory signal, making the training process 

inefficient [71].  

1.3.3. Nature-Inspired Search Methods  

Nature-inspired search methods are stochastic approaches that only use cost function values 

to drive the search process. They do not require the cost functions to be continuous or 

differentiable and use a population-based approach to search large spaces for candidate 

solutions [72]. Examples of nature-inspired search methods are Evolutionary Algorithms 

(EA), such as the Genetic Algorithm (GA) [73] and Differential Evolution (DE) [74], and 

Swarm Intelligence, such as the Particle Swarm Optimization (PSO) [75].  

GA is a bio-inspired search algorithm that allocates resources to explore new regions for 

solutions by successfully exploiting randomness and subsequently competing for survival 

based on an estimate of the fitness of the competing regions. A general process of this 

simulation comprises defining the solutions to the problem using genetic representation 

called chromosomes. These chromosomes collectively form a population of individuals. 

An objective function is then designed to evaluate the health of these individuals, where 

the solutions are subsequently ranked according to their fitness value. Next, healthier 
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individuals recombine to form new solutions through the generic operators of selection, 

crossover, and mutation designed to alter their genetic composites during reproduction. 

With iterations, the concept of survival of the fittest in simulated evolution is expected to 

lead to improved solutions. The iteration continued and converged when the fittest 

individual is found, or a stop conditions are met. 

DE is a heuristic algorithm for global optimization that uses a parallel direct search 

approach to optimizing system properties by appositely selecting the system parameters. 

Essentially, the steps in DE involve initializing a population where each individual is 

represented by a parameter vector of D dimensions. An objective function is defined, which 

is then employed to evaluate every generation in search of the best parameter vector. 

Selecting parameter vectors for the next generation is based on the Darwinian evolution 

rule, whereby the parameter vectors with better fittest are to be selected. The process 

converges when the best parameter vectors are found, or the stop conditions are met. 

PSO is a bio-inspired algorithm based on bird flock or fish school, where organisms teem 

in search of food (optima) by assessing their velocity and location (own best). This is done 

while following the optimum organism (global best) and at the same time interacting with 

each other (cognitive factor) and their environment (social factor). The PSO simulates this 

behavior by initializing a population of random solutions called particles. Each particle is 

a potential solution that searches for optima characterized by the particle’s velocity and 

position as it moves through the solution space. At each iteration, the particle determines 

its own best solution so far and the population's global best solution. With these values, the 

particle updates its velocity and positions at each iteration with learnings from the previous 

best particle and the global best particle. The iterative process converges when the global 

best particle is found, or the stop conditions are met. 

Due to their population-based, highly parallelizable, stochastic search approach, these 

algorithms have been known to overcome challenges presented by multiple objectives and 

multiple local optimal, making them more general than gradient-based methods [76]. In 

addition, they also have fewer meta-parameters than RL-based methods, making the 

algorithms simpler to implement [77]. For example, DE was successfully applied to 
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optimize LSTM for electricity prices prediction [78], and a combination of GA and DE was 

proposed to train ANN for short-term load forecasting [79]. Although EAs are prone to 

locate the global optimum, there is no guarantee of convergence to an optimal solution. 

 

1.4 Energy Prediction Challenges and the Evolutionary-based 

ANN Approach 

Accurate energy prediction is challenging due to its dependency on environmental 

conditions. For example, solar irradiance forecasting is affected by atmospheric conditions 

and changing cloud formation, and data center energy consumption by changes in 

applications and workloads. While the power of ANNs to approximate any function is well-

documented as these models are superior at recognizing patterns in data and generating 

accurate predictions, they are also prone to overfitting. ANN architecture design is also 

challenging, requiring human expertise and expensive trial-and-error efforts. Moreover, 

ANN’s complex structure often makes it unclear how the model approximates functions.  

Automating ANN design using an evolutionary-based approach can remove human 

intervention and eliminate the tedious trial-and-error process. The design can consider 

parsimony while capturing the meaning of nonlinear relationships between the inputs and 

the outputs, generalized for predictions of data center energy consumption on the demand 

side and forecasting of solar irradiance on the supply side. 

 

1.5 Aims of Research  

This research aims to make the problem of energy prediction simpler using an evolutionary-

based approach to ANN learning to produce an interpretable and generalized model. This 

will be achieved with a learning algorithm that uses several novel mechanisms of an 

improved GA for the structural optimization of ANNs based on parsimony. The algorithm 
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will include the design of a matrix encoding scheme allowing for learning feedforward and 

feedback ANNs. Two crossover strategies will be created to maintain species parallelism 

and intensify the search for promising basins of interest while exploring new parts of the 

search landscape. A two-stage mutation will be introduced to avoid local optima in complex 

problems by making small gene pool variations. Diversity measures will be implemented 

to track population diversity and provide information about the search behavior. The 

algorithm will also include an ensemble-based approach to sensitivity analysis to improve 

model interpretability and make it easier to identify input features that most affect the 

outputs.  

  

1.6 Key Contributions  

• A novel Evolutionary Lean Neural Network (EVLNN) has been designed to improve 

the interpretability and generalization of energy predictions. It uses an improved GA to 

optimize network parameters automatically, minimizing human experts' involvement 

and the costly, inefficient trial-and-error effort. 

• A unique structurally inclusive matrix encoding scheme is designed for feedforward 

and feedback propagation ANN models based on parsimony while not having 

complications of extra parameters in the representation, offering higher accuracy with 

fewer features and a smaller number of samples.  

• Intra-species and inter-species crossover strategies and a two-stage mutation involving 

weights and link-node mutation are developed to provide species parallelism amidst the 

explorative search for novel landscapes that aims to converge towards global optima.  

• An ensemble-based approach to sensitivity analysis is proposed to improve model 

interpretability, making it easier to identify input features that most affect the outputs 

and providing valuable insight into the underlying system, which cannot be obtained 

using typical black-box models.  
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• A diversity measure inspired by the linguistic complexity approach is implemented to 

track population diversity and provide information to aid in understanding evolutionary 

search behavior. 

  

1.7 Outline of Thesis  

Chapter 2 examines related work in energy prediction of Hadoop data centers and solar 

irradiance forecasting. Techniques introduced by these studies are appraised, and their 

limitations are highlighted. Gaps in the broader literature are discussed, and essential 

questions are raised in these areas.  

The fundamental concept and design of the EVLNN architecture are detailed in Chapter 3. 

An illustration of the EVLNN framework and a description of the search algorithm are also 

discussed. 

Chapter 4 investigates EVLNN’s search capability through a set of benchmark test 

functions and compares the model’s performance to modern meta-heuristic algorithms and 

the state-of-the-art niching EAs in the Congress on Evolutionary Computation (CEC) 2013 

and 2015 competitions. The results are analyzed and discussed in this chapter.  

In Chapter 5, EVLNN is applied to predict the energy consumption of a Hadoop cluster. 

This chapter also describes the Hadoop testbed setup and data collection process. The 

training of EVLNN is explained, and the energy consumption prediction by the model is 

evaluated and compared to ANNs trained using other EAs, namely PSO-NN, DE-NN, and 

GA-NN, respectively.  

In Chapter 6, EVLNN is applied to forecast solar irradiance in tropical weather. 

Meteorological data such as wind speed, ambient temperature and relative humidity, and 

solar PV surface temperature are used as input variables. The model is trained on datasets 

with four resolutions to provide predictions at time steps of 1-minute, 15 minutes, 30 

minutes, and 1-hour over a horizon of seven days. The use of a smaller scale of feature 
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subsets was investigated, with the performance of EVLNN in most prediction time-steps 

significantly better than PSO-NN, DE-NN, GA-NN, and TD-BPNN.   

Finally, Chapter 7 concludes the research findings and recommends the direction for future 

research. 



 

 

Chapter 2 

2. Related Work 

2.1 Introduction 

Sustainability is becoming a growing concern for data centers due to their enormous energy 

demand. Although the past decades have seen significant improvements in data center 

energy efficiency through academia, research, and industry efforts [80], data centers still 

generate a high carbon-intense footprint. Transiting existing data centers energy demands 

to low-carbon energy sources and renewables is essential to combat climate and 

environmental effects. Decarbonizing data centers can boost a sustainable digital world and 

mitigate the impact of climate change. As more data centers are expanding their renewable 

energy strategy through Renewable Energy Certificates (RECs) and considerable Power 

Purchase Agreements (PPA) [81], grid operators must guarantee the physical delivery of 

clean electricity on the local grid. However, weather and atmospheric changes affect energy 

production planning, necessitating renewable energy forecasts. With their variability and 

limited predictability, it is ever more critical to study renewable energy forecasting for 

reliable and smooth integration of clean energy production into the existing power grid [82].  

While data center energy research covers an extensive area, this chapter reviews existing 

literature on data center energy efficiency-related, specifically in the Hadoop cluster. In 

light of the increasing emphasis on solar energy due to its rapid growth over the last decade, 

this chapter also examines related work on time-series solar irradiance forecasting and its 

complex relationships between weather and meteorological variables [83].  
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2.2 Hadoop Energy Efficiency Studies 

Hadoop data centers can scale into thousands of nodes in a single cluster, supporting 

hundreds of Petabytes (PB) data. The energy consumed by such a cluster would be massive. 

The intensive energy consumption of the Hadoop cluster presents significant opportunities 

for energy optimization and research. The data center energy consumption process is shown 

in Figure 2.1. The total energy consumed by a data center can be determined from its 

Information and Communication Technology (ICT) load and the facility load. The ICT load 

comprises energy consumption from servers, storage, and networks. The facility comprises 

heating, ventilation, air conditioning (HVAC) load, and power distribution load. Alongside 

Figure 2.1 are techniques for energy efficiency studies broadly discussed in the literature 

primarily classified into five categories [80], [84], [85], depending on the emphasis of the 

methodology used to address the energy problem. The categories are energy-aware 

workload placement and scheduling, energy proportionality, Dynamic Voltage and 

Frequency Scaling (DVFS), data replication and storage efficiency, and modeling using 

machine learning techniques. Approaches using energy-aware workload placement and 

scheduling, and energy proportionality make up the majority of existing studies. However, 

machine learning techniques are gaining popularity.  



Chapter 2. Related Work       17 

 

 

 

 

Figure 2.1  Categories of energy-efficient studies and their application in the data center energy 

consumption process. 

2.2.1.  Energy-Aware Workload Placement Scheduling 

Researchers have long recognized the importance of energy-aware workload placement 

scheduling and energy proportionality. Most of the work in these fields focuses on using 

various techniques to schedule or place workloads on the most suitable nodes to minimize 

node overloads [86] [87].  

Krish et al. [88] proposed a heterogeneity-aware and power-conserving task scheduler for 

the Hadoop workload scheduling algorithm. The energy performance and characteristics of 

Hadoop applications on different hardware platforms were first profiled using metrics such 

as CPU, memory, storage, and network usage by the Energy Profiler. The power 
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characteristics based on workloads of different sizes were extrapolated from the Energy 

Profiler to be analyzed statistically to determine a suitable resource-application match. A 

scheduler subsequently allocates the resources in the optimal sub-cluster to the workloads. 

A placement policy was proposed to ensure that at least one replica of the data is available 

in a small subset of nodes called the Covering Subset (CS). This strategy allows the turning 

off of other sub-clusters not part of the CS to conserve energy, and the approach helped 

reduce energy consumption by 21%. This approach poses a scalability issue as the ability 

to profile a dynamic and changing environment accurately becomes challenging. 

Kulkarni [89] proposed scheduling tasks based on the thermal model in the data center to 

minimize the heat dissipated by the nodes and the cooling power overheads. The proposed 

method uses two thermal-aware schedulers to balance the temperature and reduce power 

consumption costs in the data center. The first is a dynamic scheduler that schedules jobs 

based on CPU and disk temperatures and utilization feedback given by the slave nodes. The 

second is a static scheduler that assigns the job to the slave nodes based on the jobs' profile, 

such as a CPU-intensive application, Disk intensive application, or both. When assigning 

the tasks to the nodes, the static scheduler would consider the CPU and Disk temperature 

at the time of scheduling to maintain the average CPU and Disk temperature across the 

Hadoop cluster. The new schedulers were implemented on top of Hadoop’s FIFO queue 

system and improved energy costs by 10-15%. However, these two schedulers worked on 

different principles and were not integrated. Integrating the schedulers using job profile 

knowledge with utilization would offer greater potential for energy savings. 

Mashayekhy et al. [90] modeled the MapReduce scheduling problem as a linear integer 

program and designed a greedy algorithm for solving this problem. The greedy algorithm 

called Energy-aware MapReduce Scheduling Algorithm (EMRSA) finds an energy-

efficient assignment of the MapReduce tasks to the compute nodes. The EMRSA solution 

achieved an average energy savings of 32% and 40% for large and small-scale MapReduce 

jobs, respectively. While the approach can gain higher energy savings, it does so at the 

expense of job completion time. The drawback is that time-sensitive and deadline-driven 

tasks would be adversely impacted. 
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Shao et al. [91] introduced the Multidimensional Knapsack Problem (MKP) technique to 

model the Energy-aware Fair Scheduling framework (EFS) for MapReduce job placement. 

An Energy-Aware Greedy Algorithm (EAGA) is applied to solve the MKP problem and 

realize task placement on energy-efficient nodes. The approach combined workload 

scheduling with energy proportionality to achieve more significant energy savings by 

transiting inactive nodes to an idle state or turning them off after a threshold duration. The 

experimental results showed a savings of 2% to 14%. Nonetheless, this approach's 

weakness is that the job's execution time relies on the user request deadline to accurately 

compute the number of resources needed in the cluster. Without knowing the job 

completion time, the performance of the dynamic node management strategy will be greatly 

impacted. 

2.2.2.  Energy Proportionality 

Other authors leverage the concept of energy proportionality and utilize techniques to ‘right 

size’ the data center. For example, a power-proportional server with 10% utilization should 

draw 10% of its maximum power. Leverich and Kozyrakis [92] presented Covering Subset 

(CS) strategy concept paper. CS is a group of nodes containing immediate data availability, 

even when all nodes outside this subset are disabled. An energy model was designed based 

linearly on CPU utilization to evaluate the power characteristics of the servers. It uses an 

energy-aware fair scheduler to assign Hadoop jobs to be performed over the minimum 

availability of all requested data in all nodes in the covering subset. At the same time, the 

rest of the nodes not in the subset can be gracefully powered down to conserve energy. This 

strategy had attained an energy reduction of between 9-50%. However, the high energy 

penalty for “awakening” the nodes from a powered down state countervails energy 

efficiency, reducing or neutralizing the energy savings. 

Building on Leverich’s work, Lang and Patel [93] proposed aggregating “live” data into 

subset nodes of the cluster and turning off nodes outside the CS subset. The proposed All-

In Strategy (AIS) takes an extreme approach to the CS strategy to power down an entire 

cluster to achieve deeper energy savings. The CS strategy designates that the CS nodes are 

to be kept online to maintain at least one copy of each unique data block on these nodes. 
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Hence the authors altered the HDFS data placement policy so that during periods of low 

utilization, some or all of the non-CS nodes can be powered down to save energy. For 

example, if 33% of the nodes are CS nodes, then only the CS nodes are online at this 

utilization. Different offline states were experimented with, like hibernate, stop grant (low 

power state), and shutdown. Offline states still draw power, albeit low, because the 

motherboard and network card are still powered on for remote management. It resulted in 

the hibernate offline state being the most energy-efficient overall due to its low power 

consumption in that offline state and low power transitioning cost to the online state. The 

authors presented the energy consumption model of the MapReduce cluster, denoted as 

𝐸(𝜔, 𝜈, 𝜂) is expressed as, 

𝐸(𝜔, 𝜈, 𝜂) = (𝑃𝑡𝑟𝑇𝑡𝑟) + (𝑃𝜔
𝑛 + 𝑃𝜔

𝑛̅)𝑇𝜔 + (𝑃𝑖𝑑𝑙𝑒
𝑚 + 𝑃𝑖𝑑𝑙𝑒

𝑚̅ )𝑇𝑖𝑑𝑙𝑒     (2.2) 

where 𝜔 is the simplified workload characteristics, 𝜈 is the specified time windows when 

running the workload, 𝜂  is the hardware characteristics, 𝑛  and is the number of nodes 

running the job, 𝑛̅ is the number of offline nodes during job processing, m and 𝑚̅ are the 

number of online nodes and offline nodes in the idle period, respectively, 𝑃𝑡𝑟 is the average 

transitioning power, 𝑃𝜔
[𝑛,𝑛̅]

  is the on/offline workload power, 𝑃𝑖𝑑𝑙𝑒
[𝑛,𝑛̅]

  is the on/offline idle 

power, 𝑇𝑡𝑟 is the time to transition nodes between power-up and power-down state, 𝑇𝜔 is 

the execution time of the workload, and 𝑇𝑖𝑑𝑙𝑒 is the idle time of the nodes. From Equation 

2.1, energy consumption can be reduced by reducing idle energy consumption 

(𝑃𝑖𝑑𝑙𝑒
𝑚 + 𝑃𝑖𝑑𝑙𝑒

𝑚̅ )𝑇𝑖𝑑𝑙𝑒. However, it is observed in Equation 2.1 that 𝑇𝑡𝑟 can have a significant 

impact on energy consumption, if 𝑇𝜔 is small. It was reported that the AIS method achieved 

26% more energy savings than the CS method by Leverich and Kozyrakis [92]. Nonetheless, 

a crucial aspect of AIS is the cost of transition 𝑇𝑡𝑟 and the negative secondary effects of 

degraded performance. Another drawback is that the workloads take longer to run as fewer 

worker nodes are available. However, the impact of the shortcomings can be mitigated with 

an accurate energy modeling and workload forecast system guiding the AIS energy 

management framework to keep optimal data availability at the highest energy savings 

possible. Such as how many nodes to power down and for how long.  
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Amur et al. [94] presented RABBIT, a power-proportional distributed file system (PPDFS) 

that uses data distribution in the HDFS to achieve power performance efficiency by 

ensuring a minimal number of powered-up nodes are active. RABBIT uses an equal-work 

data-layout policy for equal load sharing formulated as an optimization problem. The equal-

work data-layout policy first established p nodes as primary nodes, with one replica of the 

dataset, called the primary replica, distributed evenly over the primary nodes. Thus, keeping 

the p nodes on is sufficient for data availability, and where p << N, the total number of 

nodes, gives RABBIT a low minimum power setting. The results showed that this approach 

had achieved power-proportionality as low as 5% of the nodes in an active state to service 

MapReduce jobs in the entire Hadoop cluster. However, the efficiency of an equal-work 

data-layout policy may suffer in a dynamic data center environment where adding or 

removing nodes for maintenance is expected. This approach will lead to high energy 

overheads due to its equal-work data-layout policy. 

Lin et al. [95] proposed an energy-efficient and resilient data layout policy called eStor to 

address data disruption problems when turning off nodes. Le et al. [96] proposed a data 

placement method called Accordion, which uses data replication to arrange the data layout 

comprehensively and provide efficient gear-shifting. However, the approach will incur 

energy consumption overhead as the shifting of gears requires node reactivation during the 

transition. Kaushik et al. proposed GreenHDFS [97] and Predictive GreenHDFS [98], 

respectively, which rely on insightful data classification and energy-conserving placement 

policy to cluster nodes into various ‘hot’ and ‘cold’ activity levels and power down those 

‘cold’ nodes with substantially long periods of idleness. However, the approach suffers 

from performance impact when transitioning nodes from off mode to active mode.  

2.2.3.  Dynamic Voltage and Frequency Scaling 

Dynamic voltage and frequency scaling (DVFS) techniques are closely related to energy 

proportionality. These techniques adjust scalable power components such as CPUs by 

manipulating the operational frequency and voltage to regulate the power utilization in the 

processor based on the current load. The power consumption is mainly governed by the 

expression [99], 
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𝑃 = 𝐶𝑉2𝐹        (2.3) 

where P is the power, C is the switching capacitance, V is the supplied voltage, and F is the 

working frequency. Wirtz et al. [100] studied the effectiveness of DVFS in reducing energy 

costs by experimenting with three MapReduce workloads and applied three different DVFS 

scheduling policies with four frequencies: 0.8GHz, 1.3GHz, 1.8GHz, and 2.5GHz. Based 

on the results, DVFS scheduling could effectively improve energy. In particular for clusters 

with dominating idle power. However, DVFS does impose a performance penalty in return 

for energy cost savings, as extensive performance and energy profiling are required to 

achieve the balance.  

Hou et al. [101] investigated the impact of DVFS on energy saving in MapReduce/Hadoop 

implementation on cloud platforms. The proposed method uses distributed online 

optimization algorithms to optimize the time-averaged energy consumption of MapReduce 

jobs performed in two scenarios. These scenarios are fog-assisted with DVFS (limited data 

processing at the edge) and fog-coordinated with DVFS (dispatching data at the edge to the 

cloud) simulated using MATLAB software. The results indicated that the second scenario 

offered 32% higher energy savings than the first. Nonetheless, these works have assumed 

that the processors of the active servers operate at the same frequency and that raw data 

arriving at the fog nodes are identically distributed. Real-world deployment of Hadoop 

clusters in data centers is expected to host inhomogeneous computing elements with 

varying compute demands. Hence, it is unclear if the simulation results are close to or 

similar to the real world. 

2.2.4.  Data Replication and Storage Efficiency 

Replication is a common method applied in the Hadoop cluster to ensure redundancy. 

However, making multiple copies (the standard is three) of data blocks in the HDFS 

expands the storage capacity, which leads to increased energy consumption. Fan et al. [102] 

proposed replacing HDFS default replication of three with erasure coding to improve 

spatial and energy efficiency. The approach combines Redundant Array of Independent 

Disk 5 (RAID 5) and mirroring encoding with RAID 6 erasure encoding to lower triplicated 
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overheads to RAID-class redundancy. In this approach, storage overheads are reduced to 

1 +
1

𝑁
 and 

2

𝑁
 respectively, where 𝑁 is the number of repica blocks. However, the encoding 

period can be delayed if “hot” files in the Hadoop cluster are continually accessed. Cheng 

et al. [103] applied the Complex Event Processing (CEP) technique to analyze HDFS audit 

logs. Data are first distinguished into ‘hot’ and ‘cold’ types and then placed into active or 

standby storage in HDFS using replication or erasure coding. The erasure coding approach 

of adding redundancy in HDFS provides high reliability at a fraction of the cost of 

replication. However, erasure coding requires complex central management systems that 

affect HDFS’s overall performance and interoperability. Wei and Foo [104] successfully 

integrated Low-Density Parity Check (LDPC) coding into HDFS to improve storage 

efficiency with a less complex optimized equation-based repair algorithm. The basic 

principle behind this technique is to incorporate the Quality of Service (QoS) policy from 

the users as the first criterion for automatically adjusting and configuring the parameters 

related to the LDPC code [105]. The approach allows the existing resources to be used more 

efficiently to meet the time-sensitive requests allowing other applications access to the 

storage. While LDPC coding can reduce the storage footprint much further than erasure 

coding, the tradeoff is repair or decode overhead during node failures. The decoding 

complexity increases as the code length become longer, adding to the data recovery time. 

2.2.5. Modeling using Machine Learning Techniques  

The use of machine learning (ML) modeling techniques such as Artificial Neural Networks 

(ANN) for energy consumption modeling and prediction has gained renewed interest 

among data center energy researchers in recent years. Wang and Cao [106] proposed a 

control model that dynamically adjusts the energy ratio (power budget) at a predefined level 

to ensure performance goal is met. The control model's core is the Model Predictive Control 

(MPC) strategy and a feedback mechanism to keep the operation within the power budget. 

The MPC is based on fuzzy wavelet neural networks (FWNNs) to predict the nonlinear 

relationship to adapt to the dynamic workload. A large Hadoop cluster computing state 

sample is collected to form the training dataset. The trained model is deployed for energy 

efficiency ratio prediction. The control system uses the forecast information to conduct 
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CPU frequency scaling for each node in the Hadoop cluster. The combination of prediction 

and control allows this approach to increase energy efficiency by 5% to 12.6%. However, 

the structural design of FWNN is reliant on professional knowledge and practical 

experience, which can be time-consuming.  

Liang and Hu [107] established a deep learning model called Multiple Energy-Related 

Features (MERF) to predict energy consumption using multiple energy-related features 

acquired from a Hadoop testbed. The energy-related features are CPU utilization, Average 

Load, Memory Use, Map Read Task, Reduce Read Task, Map Write Task, Reduce Write 

Task, Network I/O Speed, Shuffle Size, File Size, Number of MapReduce Instructions, Disk 

Utilization, Transmission and Read/Write Ratio, Available Space in File System, Page 

Faults/sec, Byte Consumed per CPU second, Context Switches Rate, HDFS R/W 

Throughput, Disk Traffic, and Energy Consumption. The energy-related data is acquired by 

running MapReduce jobs and combining several open-source performance monitoring 

applications and tools such as Ganglia, Nagios, Zabbix, and Hadoop build-in counter for 

the acquisition work. The architecture of the deep learning model using a Deep Neural 

Network (DNN) was empirically determined, consisting of one input layer, three hidden 

layers, and one output layer. Each layer consists of hidden neurons 12-100-100-100-1. The 

energy-related features were selected using the Kullback-Leibler (KL) divergence, which 

measures the difference between two probability distributions. The MERF model 

outperformed five other machine learning models with higher prediction accuracy to offer 

a solution for improving energy efficiency. Nonetheless, DNN requires a large dataset for 

training, and the manually designed architecture can be inefficient and sub-optimal.  

Toha et al. [108] investigated different machine learning techniques, such as K-Nearest 

Neighbor (KNN), Support Vector Regression (SVR), and Additive Regression (AR), to 

predict the MapReduce cluster's total energy consumption, consisting of computational 

energy and cooling energy. The techniques using SVR and AR had achieved 97% accuracy. 

Using the prediction information, two methods, namely the Green MapReduce Cluster 

(GMC) and enhanced GMC (eGMC), were proposed to determine the number of active 

servers achieving an energy reduction of up to 47% to 76%. In their experiment, the authors 
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used MapReduce Wordcount applications to generate workload on the cluster and provided 

the Wikimedia dataset [109] as payloads for the Wordcount application. A total of 68 jobs 

with an average job size of about 150 MB were used in the experiment. By executing the 

workloads, data such as the response time, computational power, and cooling power over 

the same series of jobs were collected. The datasets collected were used to train the machine 

learning models to determine the minimum number of computing nodes needed to be 

activated. Though the high energy savings presented were apparent, the results were based 

on simulated data and achieved at the expense of performance degradation in some cases. 

The metrics used for performance measurement were response time, throughput, and 

waiting time. GMC experienced lower throughput, longer response time, and longer 

waiting time than other methods in their experiment. 

A summary of prior work reviewed is shown in Table 2.1. 

Table 2.1  A summary of prior work in Hadoop energy efficiency studies. 

Author Category Method Results Remarks 

Krish [88] Energy-aware 

job scheduling 

Applied application profiling 

and statistical analysis to find a 
suitable application-resource 

match. 

Power savings of 

21%. 

This approach poses a scalability 

issue as the ability to profile a 
dynamic and changing 

environment accurately becomes 

challenging. 

Kulkarni [89] Energy-aware 

job scheduling 

Applied thermal modeling and 

performed dynamic scheduling 

based on CPU, disk 
temperature, and utilization of 

the nodes, and static scheduling 

based on job profiles. 

Improvement of 

10-15% of energy 

cost. 

The two schedulers worked on 

different principles and were not 

integrated. Integrating the 
schedulers would offer more 

significant potential for energy 

savings. 

Mashayekhy 

[90] 

Energy-aware 

job scheduling  

Modeled the scheduling 

problem as an Integer Program, 

then designed a greedy 
algorithm called EMRSA to 

solve the problem.  

40% less energy 

consumption on 

average for small 
MapReduce jobs. 

The approach would affect time-

sensitive and deadline-driven 

tasks. 

Shao [91] Energy-aware 

job scheduling 

Modeled the scheduling 

problem as a Multidimensional 
Knapsack Problem, then 

designed a greedy algorithm 

called EAGA to solve the 
problem. 

2% - 14% less 

energy 
consumption. 

Requires knowing the workload 

completion time to calculate the 
resources required in the cluster. 

Leverich [92] Power-

proportionality 

Introduced covering subset 

(CS) for servers and applied 
energy-aware fair scheduling to 

assign tasks to the CS. 

Energy savings of 

between 9% to 
50%. 

High energy penalty for 

“awakening” the nodes from a 
powered down state. 

Lang [93] Power-
proportionality 

Modeled the energy 
consumption of Hadoop and 

proposed an ‘All-in-Strategy’ 

(AIS) to power down the entire 
cluster.  

Achieved 26% 
more energy 

savings than in 

[92]. 

High transition overhead to wake 
up nodes and performance 

degradation during the transition 

phase. 

Amur [94]  Power-

proportionality 

Used a load balancer to 

complement the equal-work 

policy that ensures each active 

Power 

proportionality 

achieved as low as 

Incur management and 

performance overhead in data 

rebuild parallelism. 
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Author Category Method Results Remarks 

node services the same number 
of blocks. 

5% of active 
nodes. 

Lin [95] Power-
proportionality 

Proposed replication strategy. Demonstrated 
40% of energy 

savings. 

Require analysis of data rebuild 
parallelism to reposition lost data  

Le [96] Power-
proportionality 

Applied data placement 
method. 

Improve by 20% 
compared with 

[94]. 

Shifting of gears requires node 
reactivation during the transition. 

Kaushik [97] Power-

proportionality. 

Applied data-classification 

technique known as 
GreenHDFS by partitioning 

cluster servers into hot and cold 

zones then putting cold servers 
to sleep. 

Achieved 26% 

energy savings. 

Access to files residing in a cold 

zone may suffer performance 
degradation as servers transition 

from off mode to active mode. 

There is also an energy penalty 
cost to wake up the servers. 

Kaushik [98] Power-

proportionality 

Incorporated predictive ability 

into GreenHDFS using ridge 
regression to guide file 

placement. 

Improved average 

response time by 
40% compared to 

GreenHDFS in 

[97].  

An aggressive policy can result in 

a higher number of access to the 
cold zone decreasing energy 

savings. 

Wirtz [100] DVFS Applied DVFS scheduling 
policy. 

Reduce energy by 
up to 23% 

Do not have a method to evaluate 
performance versus power in 

scheduling. 

Hou [101] DVFS Proposed a data dispatch 
strategy at the edge of the 

cloud. 

Increased energy 
efficiency by 

32%. 

The method might not work in an 
inhomogeneous computing data 

center. 

Fan [102] Data replication 

and storage 

Applied Erasure coding.  Energy savings of 

70%. 

The encoding period can be 

delayed if “hot” files are 
continually accessed.  

Cheng [103] Data replication 

and storage 

Used Complex Event 

Processing. 

Reduce storage 

overhead. 

Need to operate in real-time to 

schedule the placement of data 
effectively.  

Wei & Foo 

[104] [105] 

Data replication 

and storage 

Applied LDPC coding. Achieved 56.7% 

storage savings. 

A promising alternative to erasure 

coding such as Reed-Solomon 

Wang [106] Machine 

learning 

Proposed Fuzzy wavelet neural 

network (FWNN) trained to 
predict changing workloads to 

scale and control CPU 

frequency dynamically 

Energy efficiency 

increased by 5% 
to 12.6%. 

The FWNN structure design 

relies on professional knowledge 
and practical experience, which 

can be time-consuming. 

Liang [107] Machine 

learning 

Applied Deep neural network 

(DNN) trained with energy-

related features to predict the 
energy consumption of Hadoop 

cluster 

High predictive 

accuracy using 

KLIC for essential 
feature selection  

Requires large training dataset 

and the trial-and-error approach 

to DNN architecture search is 
time-consuming and sub-optimal. 

Toha [108] Machine 

learning 

Proposed Green MapReduce 

Cluster (GMC) and eGMC 
(enhanced) methods using 

Support Vector Regression 

(SVR) and Additive Regression 
(AR) for predictive analytics.  

Models achieved 

an energy 
reduction of 

between 47% to 

76%. 

The results were based on 

simulated data and achieved at 
the expense of performance 

degradation in some cases. 

 

 

2.3 Summary of Hadoop Energy Efficiency Studies 

Data centers already consume vast amounts of energy. The rapid acceleration of digital 

transformation will multiply this further. The state-of-the-art energy efficiency methods in 
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Hadoop are discussed, and their respective advantages and disadvantages are presented. 

The energy-aware job scheduling method improves the utilization of resources through 

workload placement to reduce the idleness of nodes. In some approaches, job profiling 

techniques are incorporated to obtain the essential job information in energy-efficient 

scheduling algorithms. In other approaches, it is accompanied by shutting down idle nodes 

to achieve deeper energy savings. However, most studies lack the usage of accurate 

predictions to essentially anticipate the changing workload environment or avoid 

unnecessarily high energy overheads in starting or waking up nodes.  

The DVFS method adjusts the CPU state for optimal energy performance according to the 

changing workload. Nevertheless, in a heterogeneous environment, the offered resources 

and energy performance ratio may differ from machine to machine, making the DVFS 

tuning complex and challenging. It may be possible that the complexity can be mitigated 

by introducing a predictive model to offer insights into changing workload and utilization 

trends. The methods proposed in data replication and storage efficiency have distinguished 

properties such as high data locality and low node idleness. However, if data can also be 

marked or predicted as ‘hot’ or ‘cold,’ data availability and parallelism in Hadoop data 

centers could be further improved with differentiated replication strategies and erasure 

coding implementation. 

Machine learning techniques have shown great potential in enhancing energy efficiency. 

ANNs models for energy prediction for data centers have become increasingly popular. 

Whether using a deep network with many hidden layers like CNN or a shallow network 

with one hidden layer largely depends on the problem instance. For CNN, there is the issue 

of solution complexity and the possibility of over-parameterization of the network. In the 

energy prediction applications for this work, shallow ANNs are more effective. 

Nonetheless, it is recognized that these networks are powerful learning machines that tend 

to overfit the training dataset. Implementing an evolutionary architecture search approach 

could prevent this drawback by locating a parsimonious ANN that can provide a more 

generalized solution. In addition, the reduced architectural complexity of shallow ANNs 

increases model transparency making these networks more interpretable than deep neural 
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networks. Model interpretability is essential in studying feature importance that affects 

energy consumption. Finally, a closer look reveals a paucity of literature on EA-based 

ANNs techniques for Hadoop energy efficiency study. To address the literature gap, a novel 

EVLNN design based on parsimony has been proposed to model the Hadoop system's 

energy consumption and gain insights into the underlying factors influencing its energy 

consumption.  

 

2.4 Solar Irradiance Forecasting Studies 

Despite the rapid increase in solar power penetration, solar power’s intermittency remains 

an issue that must be addressed. Solar power intermittency is due to two factors. Firstly, the 

“variability” or the fluctuation in solar irradiance caused by changing atmospheric 

conditions and cloud formations. Secondly, the “uncertainty” of the electricity generation 

which is ascribed to the inability to accurately forecast solar energy generation by the 

minutes, hours, days, or longer. Therefore, solar energy prediction at various temporal 

resolutions and forecast horizons is essential in scheduling and optimizing energy 

production.  

The methodologies for solar power forecasting involve a two-stage approach. The first 

stage is to forecast the solar irradiance at the surface level. The second stage is to transform 

the predicted irradiance into power production by modeling the solar PV power system or 

using the information to directly calculate the system's power output. Hence the challenge 

of solar PV power forecasting has been essentially recognized as similar to solar irradiance 

forecasting. Many studies only focus on solar irradiance forecasting since it is the most 

challenging element to model. The other reason is that solar radiation forecasting may be 

applied in fields other than solar PV energy planning and optimization.  

Another important concept of solar irradiance forecasting is the temporal aspect of forecasts. 

There are three concepts in the time definition of forecasts in the literature; the forecast 

horizon, the forecast resolution, and the forecast intervals [110]. The forecast horizon is the 
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length of time ahead of the predictions. The forecast resolution, or time-steps, describes the 

forecast's frequency, and the forecast interval denotes the time range of predictions. The 

predictive accuracy of different forecasting models is different, influenced by the different 

temporal resolution of input data and forecast horizon of output data [111]. Different 

forecasting classification is also related to the types of applications, and it is efficient within 

its range of time resolution and forecast horizons. For example, ramp forecasting and 

spinning reserves require an intra-hour forecast horizon with seconds to minutes resolution. 

Grid operations require an intra-day forecast horizon with minutes to hours resolution, and 

scheduling and electricity market trading and hedging require a day-ahead forecast horizon 

with hourly resolution.  

The literature review shows that solar forecasting methods can be broadly classified into 

Numerical Weather Prediction (NWP) models, satellite imaging, Total Sky Imagery (TSI), 

statistical analysis, and machine learning and AI. Several works, namely by Antonanzas et 

al. [110], Inman et al. [112], Diagne et al. [113], and Yang et al. [114], have provided a 

concise review and trend on solar forecasting techniques. The primary use of existing 

methods and their respective applications are illustrated in Figure 2.2 [113]. Different 

methods are used for different forecast horizons where each method is efficient. TSI uses 

images of cloud cover taken from the ground camera at intervals of several minutes. Image 

processing and cloud tracking techniques are applied to these images for real-time or now-

time forecasting for up to 30 minutes. Satellite imaging uses cloud images observed by 

satellites and then applies the Heliosat method to estimate solar surface irradiance [115]. 

The temporal resolution is about 30 minutes due to the time required to download the 

images. Image processing using satellite imaging is slower than the TSI, with a forecast 

horizon of an hour to several hours, up to a day ahead. Statistical analysis methods use past 

solar irradiance time series and meteorological data to predict future solar irradiance. 

Depending on the data acquired, temporal resolution can range from minutes to an hour for 

a forecast horizon from minutes to hours. NWP methods use current weather observations 

to predict the future states of the weather, where the outputs include temperature and 

irradiance. NWP models are the best fit for longer forecast horizons. Machine learning and 

AI, such as ANN and deep learning models, use a data-driven approach to learn hidden 
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patterns in data. Such models have complex structures that can learn nonlinear relationships 

between the input and output data to allow the prediction of output data for a given input. 

These powerful models have a wide range of applications and forecast horizons. 

The growing interest in applying machine learning and AI models for solar irradiance 

forecasting is an interesting observation in the literature. These methods, which rely on a 

data-driven approach, can draw on extensive data sets to derive insights into the 

correlations between all available parameters, inputs, and outputs, making them suitable 

for deployment across various time resolutions and forecast horizons. 

Figure 2.2  The figure shows the classification of the forecasting methods and their application in the 

temporal resolution and forecast horizon coverage. A higher forecast horizon leads to a higher error rate. 

2.4.1 Numerical Weather Prediction Methods 

NWP provides solar irradiance forecast weather conditions up to several days ahead using 

current weather conditions as input into mathematical models. The core methodology in 

NWP-based forecasting uses atmospheric data and the law of physics to govern the 

transition of the atmosphere from one state to another to predict solar radiation. Input 
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variables are meteorological measurements such as wind, temperature, humidity, and 

surface pressure; the forecast variable is solar irradiance. Selected well-known NWP 

models are the Global Forecast System (GFS) model and the North American Mesoscale 

(NAM) model by the National Centers for Environmental Prediction (NCEP), Regional 

Deterministic Prediction System (RDPS) model by the Canadian Meteorological Centre 

(CMC), and the Weather Research and Forecasting (WRF) model by the National Oceanic 

and Atmospheric Administration (NOAA). Yang et al. [116] applied the GFS model to 

capture the movement of clouds. Values of meteorological variables in the lower 

atmosphere were collected to build mathematical models for cloud predictions. The author 

observed that surface downward longwave flux had a positive bias tracked back to errors 

in the surface air temperature and proposed a method to correct the errors and improve the 

cloud fraction estimation. Larson et al. [117] evaluated the NAM and the RDPS models to 

forecast cloud fractions over a 12 x 12 km2 spatial grid with hourly temporal resolution. 

Additionally, predicted water vapor, Ozone, Carbon Dioxide, and aerosol concentrations 

were used to forecast GHI. An averaging method was adopted where irradiance forecast 

within a set distance of 100 km was spatially averaged to reduce forecast errors. Jimenez 

et al. [118] augmented the WRF model by incorporating cloud-aerosol interaction and 

cloud-radiation feedback to estimate surface irradiance accurately. Meteorological 

variables and effects of atmospheric aerosol were used to estimate direct and diffuse surface 

irradiance. The study showed that the influence of atmospheric aerosol components in 

clear-sky conditions is evident.  

NWP’s temporal resolution ranges from three to six hours, and spatial resolution ranges 

from 1 km to tens and hundreds of km. While NWP’s forecast horizon can reach a day or 

several days, the accuracy is generally low, with significant biases and random errors in the 

irradiance estimates as the atmospheric conditions are chaotic [119]. In addition, the 

method, relative to other methods, is more sensitive to initial conditions resulting in models’ 

forecasts which can diverge widely from each other. Improving NWP models requires good, 

relevant observation data combined with field campaigns [82]. Therefore, new models of 

NWP are still being tested and applied to operational NWP [120].  
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2.4.2 Satellite Imaging 

The extraterrestrial solar radiation incident outside the Earth’s atmosphere is a constant 

known by the symbol, 𝐺𝑠𝑐 where  𝐺𝑠𝑐 = 1,361
𝑊

𝑚2
. This radiation from the Sun is attenuated 

as it passes through the Earth’s atmosphere [121]. The presence of clouds, water vapor, and 

aerosols in the atmosphere diffuses part of the incoming solar radiation resulting in the 

division of the incident extraterrestrial beam irradiance into two distinct components, 

Direct Normal Irradiance (DNI) or beam irradiance and Diffused Horizontal Irradiance 

(DHI). The DNI radiation reaches the Earth’s surface without being absorbed or scattered. 

In contrast, the DHI is radiation scattered or diffused by the atmospheric constituents. Some 

radiation is also scattered and reflected off the Earth’s ground or water surfaces which is 

then reflected or re-scattered by the atmosphere to the observer. This also forms part of the 

DHI. The Global Horizontal Irradiance (GHI) received at the Earth’s surface is then the 

sum of the DHI and the DNI incident on the normal surface expressed as [122], 

𝐺𝐻𝐼 = 𝐷𝐻𝐼 + 𝐷𝑁𝐼 ∗  cos 𝜃     (2.4) 

where 𝜃  represents the solar zenith angle when the Sun is directly overhead, 𝜃  is zero. 

Therefore at 𝜃 = 0, the radiation exposure to the surface is most extensive. The incident 

radiation attenuated as it negotiates its way to the ground level through a complex series of 

multiple reflections, absorptions, and re-emissions due to interactions with atmospheric 

constituents is illustrated in Figure 2.3. From the figure, cloud cover and cloud optical depth 

(thick or thin) have the most decisive influence on solar irradiance at the surface level [113].  

In satellite imaging, images are provided as grayscale images. Each image pixel represents 

the radiance signal of solar radiation backscattered to space by the atmospheres and clouds. 

Pixels are then assigned to the respective classes based on their pixel brightness. Tarpley 

[123] defined three cloud classes: clear, partly cloudy, and cloudy. The number of pixels in 

each class is weighted to obtain fractional cloud cover and thus the estimated cloud 

thickness at the targeted area. The amount of solar radiation can then be forecasted as 

absorbed and scattered by clouds (Rayleigh scattering) and aerosols (Mie scattering), which 

is a function of clock thickness. Cloud motion vector fields were also determined to predict 
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irradiance for the next time-step. Hammer et al. [115] analyzed the satellite images for 

information on cloudiness. They used statistical means to derive the Cloud Motion Vectors 

(CMV), where the cloud movement is extrapolated to forecast GHI. Satellite imaging can 

provide up to several hours of solar irradiance forecasting with high spatial resolution. 

Rigollier et al. [124] proposed Heliosat-2, a method of analyzing Meteosat images that 

takes various empirical parameters presented in the Heliosat-1 method and expresses them 

into physical laws. This approach ensures a broader application as no ground measurement 

is required. While cloud movement obeys physical rules, atmospheric processes are 

turbulent, making them stochastic and challenging to model.  

Figure 2.3  The solar radiation components consist of GHI, DHI, and DNI. The solar zenith angle 𝜃 is the 

angle of the Sun relative to the line normal to the Earth’s surface. 

2.4.3 Total Sky Imager 

Like satellite imaging methods, Total Sky Imager (TSI) methods analyze the cloud by 

combining sky photos with image processing and cloud tracking techniques for real-time 

forecasts of GHI and DNI up to 30 minutes ahead. Instead of using satellites to obtain cloud 

imagery, ground-based TSI cameras are usually mounted on building roof-top to take a 
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360° view of the images of the sky above. The sky images are processed, and information 

on the ratio of the blue and red colors is used to distinguish whether the pixel presents a 

clear sky, thin clouds, or opaque clouds through the estimation of cloud cover fraction [125]. 

Successive images are analyzed for sky cover, cloud motion, and cloud shadows to derive 

cloud motion vectors where these cloud images are propagated forward in time to establish 

a correlation with solar irradiance resulting in a forecast [126]. Marquez and Coimbra [127] 

proposed a method to process sky images, classify them into clear, thin, opaque clouds, and 

compute cloud velocity to generate intra-hour irradiance prediction. Chow et al. [128] 

presented a cloud detection technique using the red and blue color ratio to estimate whether 

the dominant source on a pixel is the clear sky or cloudy. Sky images taken every 30 

seconds were processed to determine cloud cover. Solar irradiance is then estimated using 

the derived cloud cover coupled with an empirical clear sky model [129]. CMV was 

generated from consecutive sky images to predict cloud locations up to 5 minutes ahead 

through cross-correlating consecutive sky images using a network of 6 ground 

pyranometers over 2 km2. Yang et al. [130] processed the sky images taken at 30-second 

intervals to determine cloud cover, optical depth, and mean cloud field velocity. 

Information from several deployed pyranometers and frozen cloud advection were used to 

forecast cloud locations for up to 15 min horizons.  

Central to the methodology is the camera’s resolution of the pictures taken, such as the 

pixel elements, that would determine the accuracy of the cloud's distance from the imager. 

In addition, a limited range view from the groud-based imager provides only local 

meteorological information restricting the forecast horizon to approximately 30 minutes. It 

is possible to deploy an array of ground imagers to gather more information on local cloud 

formation and extend the forecast horizon. However, the stochastic nature of the local cloud 

formation may limit the correlation of successive cloud images and pose difficulties for 

ground-based imagery methods. In addition, to the challenges with cloud detection, forecast 

errors are more pronounced within the circumsolar region due to the distortion of the pixel’s 

blue and red color ratio caused by the forward scattering of sunlight by the presence of 

aerosols [131]. 
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2.4.4 Statistical Models for Solar Energy Forecasting 

Statistical models are commonly used to investigate variable relationships, patterns, and 

trends using historical solar-energy-related data. Bacher et al. [132] presented an approach 

first using a statistical smoothing technique to derive a clear sky model, then applying 

Autoregressive (AR) and the AR with Exogenous input (ARX) models to forecast solar 

power. The AR model had only the lagged values of solar power as inputs, whereas the 

ARX model added exogenous data from the NWP model as inputs. The ARX model 

produced better results, using solar power observations and NWPs as inputs. Li et al. [133] 

investigated the Autoregressive Moving Average (ARMA) model and the ARMA with 

Exogenous variables (ARMAX) model, in which the latter used the average of the past data 

and external variables as the predictors such as temperature, precipitation amount, 

insolation duration and humidity, to forecast solar power output. Chu et al. [134] proposed 

the Smart Autoregressive Moving Average (ARMA) model using lagged past values and 

errors to forecast solar irradiance. The Smart ARMA was optimized using a Genetic 

Algorithm (GA) trained ANN to determine the variables as inputs. Although the approach 

had corrected forecast bias and yielded better results than the ARMA model, particularly at 

higher solar variability, the performance was not significantly superior to the reference 

model at moderate to low solar variability. 

Gagne et al. [135] evaluated different statistical learning models, including gradient 

boosting, random forest, and linear regression models for solar irradiance forecasting. 

Cloud cover and aerosol information from NWP models were applied as input variables to 

the Model Output Statistics (MOS) approach. The authors incorporated other 

climatological information concerning spatial and temporal variability of each variable into 

the statistical learning models for correction at each observation. Nonetheless, the 

parameter configuration is an issue in this approach as it dramatically impacts model 

performance, leading to significant investment in model tuning. Diagne et al. [136] 

downloaded the forecasts of the GFS from the NCEP website and used them as input to the 

WRF model to predict solar irradiance. The predictions were compared with the 

observations on the ground to find the statistical relation and correct the error. However, 
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the approach required large and high-quality ground measurements relative to other models 

to evaluate the forecast accuracy and refine the model. Noia et al. [137] compared four 

models, Tarpley [123], Hay and Hanson [138], Justus et al. [139],  and Cano et al. [55], that 

utilized the MOS approach in the satellite imaging methods. This method includes 

independent predictors such as meteorological data, atmospheric transmissivity, and 

satellite image pixel brightness in regression equations to predict solar radiation. The 

drawbacks of these approaches are that it requires high-quality ground-based data for 

verification, and tuning may cause forecasting errors due to the localization of the 

pyranometer sites on the satellite images. 

 

2.5 Machine Learning and AI for Solar Energy Prediction 

2.5.1 Artificial Neural Network Models 

The research and application of ANN models for solar irradiance forecasting have gained 

renewed interest in recent years [140]. Crisosto et al. [141] trained a Levenberg-Marquardt 

(LM) Backpropagation Neural Network (LM-BPNN) with four years of data using all-sky 

images and measured global irradiance as input variables. The model could predict the 

irradiance in the first 10-30 minutes better than the reference persistence model. However, 

the accuracy is dependent mainly on the weather conditions beyond this forecast horizon. 

Faceira et al. [142] trained Multi-Layer Perceptron (MLP) based on the LM algorithm using 

cloudiness level and historical solar radiation data to predict hourly Global Solar Irradiance 

(GSI) by one day ahead. Model accuracy was measured using Mean Bias Error (MBE) and 

Root Mean Square Error (RMSE) with a t-test. Although architectures with up to 3 hidden 

layers were experimented with, no significant differences were observed in the performance 

of ANN with deeper layers. Nurcahyo et al. [143] presented a weather forecast system built 

using hybrid GA to optimize the weights and connections of Partially-Connection Neural 

Networks (PCNN). 

The study showed that trained PCNN had a Mean Absolute Percentage Error (MAPE) 

testing result of 35.53% compared to a Fully Connected Neural Network (FCNN) with 
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results of 38.82%. From this standpoint, it can be considered that PCNNs exhibited better 

generalization ability than their dense counterparts. Su et al. [144] proposed a hybrid ANN 

ensemble approach that uses a weighted average to combine predictions of the other ANN 

techniques into a single forecast, as shown in Table 2.2. The performance of hybrid ANN 

and the other ANN techniques was evaluated based on a six-day-ahead PV power forecast 

at half-hour resolution. The results were as follows: Hybrid ANN, NARXNN, ENN, ANFIS, 

ELM, GRNN, GABPNN, and BPNN. It must be pointed out that ANNs with dynamic 

feedback mechanisms such as the NARXNN and ENN were superior and that an evolved 

NN like GABPNN had provided a more accurate forecast than the standalone BPNN. It is 

also observed that non of the ten individual methods was superior in all four seasons. 

Table 2.2  Su et al. [144] proposed a hybrid ANN method compared to seven other ANN models. 

Comparison with Seven other ANN models Hidden Neurons 

1. Extreme Learning Machine (ELM)  4 to 20 

2. Backpropagation Neural Networks (BPNN) 4 to 14 

3. Nonlinear Autoregressive Neural Network with Exogenous Inputs 

(NARXNN) with 1:2 time-delay 

10 

4. GA optimization BPNN (GABPNN) 11 

5. Adaptive Network-based Fuzzy Inference System (ANFIS)  Randomly initialized 

6. Generalized Regression Neural Network (GRNN)  Same number as inputs 

7. Elman Neural Network (ENN) 4 to 8 

 

2.5.2 Deep Learning Models  

Another popular ANN-based method in the literature includes the use of deep learning for 

energy forecasting [145] [146], such as the Convolutional Neural Networks (CNNs) and 

the Long Short-Term Memory (LSTM) networks. Mulyadi and Djamal [59] employed 

CNN to predict sunshine duration with weather features consisting of temperature, 

humidity, and solar radiation length. The model achieved high accuracy of 98.84% for the 

training dataset but dropped to 54.55% for the new dataset. The apparent gap suggests 

strong evidence of overfitting. In addition, CNN training remains time-consuming because 

most parameters, such as the filter size, the number of filters, and the pooling size and 
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methods, are determined by empirical means. Different configurations can affect accuracy 

by as much as 50%. Capizzi et al. [60] employed wavelet-transformed to enhance Recurrent 

Neural Network (RNN) predictions for a 2-day solar radiation forecast. The model exploits 

the correlations between time-series solar radiation and meteorological variables such as 

wind speed, humidity, and temperature. The model produced a very low RMSE error 

compared to models obtained by hybrid ANNs. However, RNN is constrained by the 

vanishing gradient problem, especially when the dataset is large. Abayomi-Alli et al. [147] 

applied LSTM models successfully to predict solar radiation using weather and 

geographical variables. The inputs used were Longitude and Latitude, elevation, maximum 

and minimum temperature, precipitation, wind speed, relative humidity, tropospheric ozone, 

and solar radiation. High R2 values between actual and weather variables were also 

exhibited for solar radiation, maximum temperature, wind speed, relative humidity, and 

precipitation. The models achieved a prediction accuracy between 99.3% to 99.9%. 

Muhammad et al. [148] applied LSTM models to predict hourly and daily solar irradiance 

for a year ahead. The model achieved an MSE value of 10.4% in the hourly prediction for 

a year ahead. Nonetheless, LSTM models face similar challenges as the other deep learning 

methods, requiring manual tuning of many hyperparameters, such as epochs, layers, 

neurons, and optimizers, which is time-consuming. 

2.5.3 Hybridized Deep Learning Models  

Hybridized deep learning approaches in global solar radiation and PV forecasting have also 

gained popularity, for example, the integration of CNN with the LSTM network to form a 

CLSTM network. Ghimire et al. [149] proposed a hybrid CLSTM model trained using half-

hourly interval global radiation data for multi-step forecast horizons of 1-day up to 8 

months. The results showed that the hybrid CLSTM model outperformed the standalone 

CNN and LSTM. It also performed better than other models such as Gated Recurrent Unit 

(GRU), Recurrent Neural Network (RNN), Deep Neural Network (DNN), MLP, and 

Decision Tree (DT), with the lowest RMSE, MAE, and MAPE values for forecast horizons 

of 1-day, 1-week, 2-week, and 1-month. Similar outcomes were also seen by Wang et al. 

[150], who examined the hybrid CLSTM model for 1-day ahead PV power forecasting, 

where the best results were produced using three years of the input data sequence. 
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Compared with the LSTM model, the RMSE, MAE, and MAPE of the CLSTM model 

decreased by 13.82%, 30.39%, and 31.25%, respectively. Compared with the CNN model, 

RMSE, MAE, and MAPE decreased by 6.54%, 10.00%, and 12.00%, respectively. 

However, one of the CLSTM model’s shortcomings is the high computational cost, which 

increases significantly with the filter size. Additionally, the training data size must increase 

to be large enough to cover all features. 

2.5.4 Evolutionary-based ANN models 

The Evolutionary Algorithm (EA), with its bio-inspired metaheuristic search ability, has 

been widely used to find an optimal set of network parameters from a population of 

candidate solutions. Particle Swarm Optimization (PSO), Differential Evolution (DE), and 

Genetic Algorithm (GA) are well-known classes of EA applied to various optimization 

problems [131]. Dong et al. [151] proposed a novel CNN combined with a hybrid chaotic 

GA/PSO algorithm to optimize the CNN networks’ hyperparameters for solar irradiance 

prediction. Named CHA-CNN, the algorithm includes the PSO process that searches for 

optimal parameters such as kernel sizes, output feature maps, learning rate, number of 

epochs, and batch size. It introduced the notion of ‘chaos’ as a population initialization 

technique and employed GA to evolve the PSO particles’ update process. The hybrid CHA-

CNN with GA/PSO algorithm is compared to the manual parameter adjustment CNN, K-

means Radial Base Function (RBF), and Gradient Boot Regression Tree (GBRT). CHA-

CNN outperformed the other techniques, with the annual averaged MAE of the proposed 

method reduced by 49.47%, 47.6%, and 20.34%, respectively, compared with manual CNN, 

K-means-RBF, and GBRT. 

Ghimire et al. [152] proposed a Self-adaptive Differential Evolutionary ELM (SaDE-ELM) 

hybridized with swarm-based Ant Colony Optimization (ACO) for the prediction of Global 

Solar Radiation (GSR). The predictor dataset consists of 67 atmospheric, land, and oceanic 

climate variables. The SaDE-ELM is benchmarked against nine different models, including 

three variants of ELM, Genetic Programming (GP), PSO-NN, GA-NN, PSO-Support 

Vector Regression (PSO-SVR), GA-SVR, and Grid Search-SVR (GS-SVR). Test results 

showed that the SaDE-ELM model in terms of Coefficient of Determination (R2), RMSE, 
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and MAE performance indices were better than those nine models at 0.99, 0.405, and 0.506, 

respectively. The success of SaDE-ELM can be attributed to the ACO, which proved to be 

an effective feature selection algorithm. It is then combined with DE to select the network 

parameters for ELM to enable SaDE-ELM to overcome the slow weight updating process 

of classical ELM. 

Guijo-Rubio et al. [153] proposed an Evolutionary ANN (EANN) using satellite data as 

features for solar radiation prediction without the need for ground measurements or data 

based on atmospheric variables. The predictive variables used in the experiments were 

reflectivity, clear sky radiance, cloud index, solar radiation data from Copernicus 

Atmosphere Monitoring Service (CAMS) [154], and solar data from SolarGIS [155]. The 

target was global solar radiation. The author examined different activation functions, 

including the sigmoid function, the radial basis function, and the product function, and 

compared the performance of the evolutionary ANN with other ML regressors. This 

approach achieved a 2% improvement compared to the results obtained by an ELM and 

over 6% by numerical models based on satellite measurements. Meng et al. [156] utilized 

GA to optimize the weights and bias values of the BPNN with an artificial classification of 

history day to predict solar PV power. The input predictors were meteorological data, 

including ground irradiance, temperature, total cloud amount, total cloud amount, wind 

speed, and humidity, from the European Centre for Medium-Range Weather Forecasts 

(ECMWF). As variations in weather conditions are proportional to the PV power generation, 

the weather types were pre-classified into four different templates: sunny, cloudy, showers, 

and heavy rain. The proposed method trained the model and then searched historical sample 

data closely correlated to the forecast weather types, improving the PV power prediction 

accuracy. The normalized RMSE (nRMSE) and normalized MAE (nMAE) values obtained 

using this GA-BPNN with historical day classification improved by 3.45% and 11.6%, 

respectively, over GA-BPNN. Jaidee and Pora [157] proposed using GA to optimize the 

parameters of ANNs for very short-term solar power forecasting. The network types 

examined include GA-DNN, GA-LSTM, GA-Gated Recurrent Unit (GA-GRU), and GA-

Cuda Deep Neural Network Gated Recurrent Unit (GA-CuDNNGRU). Each network has 

23 inputs, eight outputs, and three hidden layers. The eight outputs provided eight time-
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steps with 30 mins each to produce a 4-hour ahead forecast. Test results showed that the 

GA-GRU and the GA-CuDNNGRU performed well, with RMSE values at 7.83% and 

7.87%, respectively.  

A summary of prior work reviewed in this section is shown in Table 2.3.  

Table 2.3  A summary of the prior work in solar irradiance forecasting. 

Author Classification Model Temporal and Spatial 

Resolution  

Remarks 

Yang  [116] Numerical 

Weather 

Prediction  

Applied the Global 

Forecast System 

(GFS) model and uses  

3 to 6-h resolution for a 

180 h horizon over a 70 

x 70 km2 spatial grid. 

The NWP model often resorts to 

different strategies for developing and 

evaluating new parameterization of 

physical models.  

Larson [117] Numerical 

Weather 
Prediction  

Applied the North 

American Mesoscale 
(NAM) model. 

1-h  resolution for a 1 to 

36-h horizon and a 3-h 
resolution for a 39 to 84-

h horizon, over a 12 x 12 

km2 spatial grid. 

Tend to overpredict the solar 

irradiance due to biases in the model 
predicting insufficient cloud cover. 

Jimenez [118] Numerical 
Weather 

Prediction 

Applied the Weather 
Research and 

Forecasting (WRF) 
model.   

3-h resolution 
interpolated to hourly for 

up to 24-h horizon over a 
13 x 13 km2 spatial grid. 

The inclusion of aerosol 
characterization emphasized the 

climatological impact, but it requires 
precise instrumentation to measure 

aerosol properties accurately. 

Tarpley [123] Satellite 

Imaging   

Applied image 

processing to estimate 
solar flux depletion 

and determine cloud 

motion vector fields. 

30 mins or 1-h resolution 

with a forecast horizon 
of up to 24-h over a 2.5 

x 2.5 km2 to 50 x 50 km2 

spatial grid.  

Ground pyranometers measurements 

are needed to tune parameters through 
statistical methods.  

Hammer 

[115] 

Satellite 

Imaging   

Applied image 

processing to analyze 

information on 
cloudiness and 

calculated cloud 

motion vectors  

30 mins resolution at a 

horizon of ten days, with 

a spatial resolution of 2.5 
x 2.5 km2. 

The formula relies on cloudiness as 

the sole atmospheric parameter for 

surface irradiance, ignoring the 
presence of atmospheric aerosol and 

particles as these are not considered. 

Rigollier 
[124] 

Satellite 
Imaging   

Presented the Heliosat-
2 model integrating 

satellite data with an 

improved Heliosat-1 
model  

1-h resolution at 5 and 
ten days horizon with a 

spatial resolution of 10 x 

10 km2. 

It required accurate and frequent 
calibration of the radiometers. 

Marquez 

[127] 

Total Sky 

Imager    

Applied image 

processing to classify 
clear, thin, and opaque 

clouds. 

1 min resolution with 3 

to 15 min horizon.  

Requires the sky imager to be co-

located with the solar PV plant with a 
larger plant requiring multiple 

imagers.   

Chow [128] Total Sky 
Imager    

Applied cloud 
detection technique 

and cloud motion 

vectors. 

30-sec resolution with a 
5 min horizon over a 2 x 

2 km2 spatial resolution. 

Circumsolar glare on the optics from 
the sky imager could affect image 

processing accuracy.  

Yang [130]  Total Sky 
Imager    

Applied image 
processing and cloud 

field velocity to 

predict cloud motion. 

30-sec resolution for up 
to 15 min horizons over 

a limited spatial 

resolution.  

Required deployment of multiple 
pyranometers to increase the forecast 

horizon. Higher errors within the 

circumsolar region due to scattering of 
sunlight caused by aerosols. 

Bacher [132]   Statistical 

Analysis 

Presented statistical 

smoothing and applied 
AR and ARX models. 

15 mins resolution with 

a horizon starting from 
1-h to 36-h.  

The ARX model that used solar power 

observations and NWPs as input 
produced better results with a 35% 

improvement of RMSE value over the 

reference model. 

Li [133] Statistical 
Analysis 

Applied time-series 
ARMA model and 

ARMAX model 

Forecast 1-day ahead 
power output of the PV 

system using 6 months 

of the training dataset. 

The ARMAX model outperformed 
other statistical methods and Radial 

Base Function (RBF) network.  
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Author Classification Model Temporal and Spatial 

Resolution  

Remarks 

Chu [134] Statistical 
Analysis 

Proposed a Smart 
ARMA model using a 

GA-trained ANN to 

optimize the input 
variables 

30-sec resolution with a 
forecast horizon of 5, 10, 

and 15 mins over a 

spatial resolution of 4 x 
4 km2. 

Although the forecast bias was correct 
and higher accuracy was achieved at 

higher solar variability, forecast errors 

were not consistently reduced at 
moderate to low solar variability. 

Gagne [135] Statistical 

Analysis 

Utilized NWP and 

MOS 

5 min resolution of 

hourly forecast up to 14 

to the 24-hour horizon. 

Parameter configuration is an issue as 

it dramatically impacts model 

performance, leading to significant 
investment in model tuning. 

Diagne [136] Statistical 

Analysis 

Utilized WRF and 

MOS 

Hourly resolution with 

up to 24 h forecast 
horizon over a spatial 

resolution of 3 km. 

Required large and high-quality 

ground measurements to evaluate the 
forecast accuracy and refine the 

model. 

Noia [137] Statistical 

Analysis 

Performed solar 

radiation forecasting 
using the MOS 

approach  

Hourly resolution at a 1-

day forecast horizon 
with a spatial resolution 

of 1.4 km x 1.4 km. 

Required high-quality ground-based 

data for verification and tuning may 
cause forecasting errors due to the 

localization of the pyranometer sites 

on the satellite images. 

Crisosto 

[141]  

Machine 

Learning and AI 

– Shallow 
Network 

Applied LM-BPNN 

model using irradiance 

and sky images are 
inputs. 

1 min resolution at 1-h 

forecast horizon. 

Achieved a 40% reduction in RMSE 

and MAE values compared to the 

reference persistence model. Predicted 
first 10 to 30 mins well, but accuracy 

is affected beyond this horizon. 

Faceira [142]  Machine 
Learning and AI 

– Shallow 

Network 

Applied LM Multi-
Layer Perceptron 

(MLP)  

Hourly resolution at 1-
day forecast horizon. 

Achieved a low MAPE value of 5.1%. 
Utilized MLP with 3 hidden layers 

with no significant performance 

improvement in ANN with deeper 
layers. 

Nurcahyo 

[143] 

Machine 

Learning and AI 

– Shallow 
Networks 

Applied hybrid GA 

and Partially-

Connection Neural 
Networks (PCNN) 

Weather prediction at 7-

day forecast horizon 

Achieved higher accuracy and lower 

MAPE values than GA-FCNN.  

Su [144] Machine 

Learning and AI 
– Shallow 

Network 

Proposed hybrid ANN 

using an ensemble 
approach to average 

the forecast skills  

Half-hour resolution at a 

6-day horizon. 

Achieved lowest nRMSE value at 

6.74% averaged over four seasons. 
None of the ten uncorrelated methods 

was superior in all four seasons, but 

combining them exhibited better 
results. 

Mulyadi [59] Machine 

Learning and AI 

– Deep Network 

Applied Convolutional 

Neural Networks 

(CNN) model 

Daily resolution at 1-

month forecast horizon 

Achieved a high accuracy of 98.84% 

for the training dataset but moderate 

accuracy of 54.55% for the new 
dataset suggesting strong evidence of 

overfitting.  

Capizzi [60] Machine 
Learning and AI 

– Deep Network 

Proposed Recurrent 
Neural Network 

(RNN) model with 

wavelet transform 

1-day resolution with a 
2-day forecast horizon 

Produced a very low RMSE error 
compared to models obtained by other 

hybrid ANNs. However, RNN is 

constrained by the vanishing gradient 
problem. 

Abayomi-Alli 

[147] 

Machine 

Learning and AI 
– Deep Network 

Applied Long Short-

Term Memory 
(LSTM) model 

1-day resolution with 35 

years of dataset split into 
70% training and 30% 

testing data. 

The model achieved an accuracy of 

99.3% to 99.9%. Nevertheless, LSTM 
training requires tuning many 

hyperparameters, such as epochs, 

layers, neurons, and optimizers. 

Muhammad 
[148] 

Machine 
Learning and AI 

– Deep Network 

Applied LSTM model Hourly and daily 
resolutions for a 1-year 

forecast horizon 

The model achieved an MSE value of 
10.4% in the hourly prediction for a 

year ahead. Requires time-consuming 

manual tuning of hyperparameters. 

Ghimire 

[149] 

Machine 

Learning and AI 

– Deep Network 

Proposed a hybrid 

CNN with LSTM 

(CLSTM) model 

30 mins resolution for 

several forecast horizons 

of 1-day, 1-week, 2-
week, 1-month up to 8-

month. 

The model achieved RMSE values of 

8.2%, 16.0%, 14.2%, and 32.8%, for 

the forecast horizon, of 1-d, 1-w, 2-w 
and 1-m, respectively. 

Wang [150] Machine 

Learning and AI 
– Deep Network 

Proposed a hybrid 

CLSTM model  

5 mins resolution for a 1-

day forecast horizon 
using 3 years of data 

were split into 90% for 

High computational cost, which 

increases significantly with the filter 
size. Additionally, the training data 
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Author Classification Model Temporal and Spatial 

Resolution  

Remarks 

training and 10% for 
testing. 

size must increase to be large enough 
to cover all features. 

Dong [151] Machine 

Learning and AI 
– Evolutionary 

Deep Network 

Applied CNN with a 

chaotic GA/PSO 
hybrid algorithm 

(CHA-CNN) to 

optimize the CNN 
networks’ 

hyperparameters 

3-hour resolution and 

prediction using nine 
years of the training 

dataset, one year of the 

testing dataset 

CHA-CNN equipped with a chaotic 

hybrid GA/PSO algorithm using 15 
meteorological attributes achieved an 

MAE reduction of 49.5%, 47.6%, and 

20.3%, respectively, compared with 
manually configured CNN, K-means-

RBF, and GBRT.  

Ghimire 
[152] 

Machine 
Learning and AI 

- Evolutionary 

Shallow 
Network 

Proposed Self-
adaptive differential 

evolutionary Extreme 

Learning Machine 
(SaDE-ELM) 

hybridized with ant 

colony optimization 
(ACO) 

6-hour resolution to 
predict monthly daily 

average. 176 months of 

the dataset were used, 
where 130 months were 

for training and 46 

months were for testing. 

ACO was used for feature selection, 
and DE was used for hyperparameter 

optimization to develop the 3-layer 

ELM model. The R2, RMSE, and 
MAE values performed at 0.99, 0.405, 

and 0.506, respectively, 

outperforming nine evolutionary 
ANNs. 

Guijo-Rubio 

[153] 

Machine 

Learning and AI 

- Evolutionary 
ANN 

Presented 

Evolutionary ANN 

(EANN) trained using 
satellite data 

1-h resolution for 1-h 

forecast horizon with a 

spatial resolution of 1 
km2 to 3 km2.  

The model achieved a 2% 

improvement compared to the results 

obtained by an ELM and over 6% by 
numerical models based on satellite 

measurements. 

Meng [156] Machine 
Learning and AI 

- Evolutionary 

ANN 

Applied GA-BPNN 
with weather type 

classification 

15 mins resolution at a 
1-day forecast horizon. 

6- month dataset was 

used with 5-m for 
training and 1-m for 

testing. 

Values of nRMSE and nMAE 
obtained using GA-BPNN with 

weather classification improved by 

3.45% and 11.6% over GA-BPNN. 

Jaidee [157] Machine 

Learning and AI 

Applied Genetic 

Algorithm Neural 
Network (GA-NN) 

30-mins resolution at 4-h 

forecast horizon.  

The models GA-GRU and the GA-

CuDNNGRU performed well with 
RMSE values at 7.83% and 7.87%, 

respectively. 

 

 

2.6 Summary of Solar Irradiance Forecasting Studies 

Solar irradiance and PV power forecasting are well discussed in the literature. The physical 

method relies on the law of physics to establish mathematical models to predict solar 

irradiance and calculate solar PV power generation. The prediction accuracy of the physical 

method is strongly dependent on the accuracy of the NWP information, but currently, it 

exhibits limitations in improving the accuracy of NWP.  

The statistical analysis method establishes the correlation mapping relationship between 

input-output data employing regression equations, parameter estimation, and correlation 

analysis of the processed historical data such as solar radiation and meteorological-related 

data to predict irradiance and PV power generation. Unlike the physical method, the 
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statistical analysis does not require a clear and complete understanding of the physical laws 

and their relationship with the PV system, but only a partial understanding and realization 

through various regression techniques.  

Hence, compared with the physical method, the statistical analysis method has the 

advantages of a more straightforward modeling approach. However, the prediction 

accuracy of the statistical method is strongly related to the quality of the historical data, 

which may be challenging to acquire in implementation. The prediction accuracy generally 

depends on the ability to process a higher-dimensional data set to ensure the effect, 

increasing the complexity and slowing down the prediction speed.  

Machine learning can efficiently extract high-dimensional complex nonlinear features and 

map them directly to the output. Due to this advantage, the machine learning-based 

prediction method has become one of the most commonly used methods in recent studies 

for solar irradiance forecasting. The literature review shows that the ANN-based prediction 

model significantly improved RMSE, MAE, and MAPE values compared to some typical 

physical or statistical prediction models. In addition, hybrid evolutionary-based ANN 

models have reported promising results in the literature.  

Many of the predictive models relied on a large number of satellite images and 

meteorological and atmospheric variables. These variables include solar radiation at the 

earth’s surface and top of the atmosphere, latent and sensible heat, wind stresses, surface 

rainfall and snowfall, cloud fraction, cloud condensate, atmospheric temperature, and 

humidity may be expensive to obtain. Moreover, the data from these variables requires to 

be accurate and of vast quantity for these models to be effective. To address this challenge, 

a novel EVLNN model is proposed that tries the reverse direction of what most forecast 

models do by selecting fewer and essential features while working with datasets with 

smaller sample sizes to achieve a model with higher accuracy.



 

 

Chapter 3 

3. Evolutionary Lean Neural Network 

3.1 Introduction 

This chapter details a novel machine learning (ML) approach, EVLNN, that combines the 

strength of several novel mechanisms of an improved GA to optimize a set of ANNs based 

on parsimony. This approach allows the modeling of nonlinear functions capturing the 

relationships between the inputs and the outputs while not having complications of extra 

parameters in the representation. The result is a generalized ANN model with a lean 

architecture offering higher accuracy, particularly when the number of features and samples 

is small [158]. Conventional ANN has a large amount of redundancy [159]. The 

unnecessary connections increase network complexity, leading to poor generalization and 

difficulty understanding the input-out relationships [160]. The EVLNN design based on 

parsimony contains only a subset of the entire set of possible connections of the ANN. By 

considering parsimony, network complexity can be reduced to help improve generalization 

and offer a better interpretation of the prediction outcome [161].  

 

3.2 The EVLNN Framework 

The EVLNN framework comprises two main components – the encoding scheme and the 

neural architecture search algorithm. EVLNN adopts a direct encoding method for 

genotype-phenotype mapping of the ANN architecture, where the mapping is achieved 

using a structurally inclusive chromosome matrix. Phenotypic information such as the 

number of neurons, the connection weights, and the type of connections (feedforward or 

feedback) are directly mapped onto a chromosome matrix. An improved GA with species 

parallelism introduced into the search algorithm categorically distinguishes these solution 

candidates into their respective genotypically similar species. Two crossover strategies, 
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namely intra-species and inter-species crossovers, are presented to allow species to 

exchange genetic information in search of global solutions. Intra-species crossover 

maintains parallelism by a careful recombination of similar species, while inter-species 

crossover seeks to discover new landscapes in the solution space. The differentiated search 

strategies aim to achieve both intensification and diversification of search. A two-stage 

mutation is proposed to avoid locally optimal solutions through incremental changes to the 

weights, bias, and network connections. The Mean Square Error (MSE) is employed as the 

objective function to guide the evolutionary process toward global optimality. An 

ensemble-based approach to sensitivity analysis is designed for insightful interpretations of 

the relationships between the input variables and the output responses. During the 

evolutionary process, species diversity and richness are tracked through three diversity 

measures. The information is used for studying EVLNN’s search behavior and parameter 

tuning. Figure 3.1 shows the framework of EVLNN, and the following sections describe 

the framework in detail.  

 

 

Figure 3.1  The EVLNN framework. 
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3.2.1 Encoding Scheme  

Encoding is the process of formulating the possible solutions to a given problem to a search 

space representation in the form of a chromosome [162]. The chromosome should carry the 

necessary information representing the solution's characteristics. The encoding scheme's 

design thus depends on the problem’ nature and can impact the efficiency of a search 

algorithm [163]. Structural optimization is a complex problem as many design parameters 

must be considered [164].  

The proposed encoding scheme in EVLNN uses a structurally inclusive chromosome 

matrix to convey information like the feedforward and feedback connectivity types, number 

of hidden layers, number of neurons, connection weights and connectivities. While the 

scheme is well-suited for a three-layer feedforward or feedback ANN, its basic encoding 

structure can be scaled to accommodate deeper layers. EVLNN’s search algorithm is 

applied to optimize the learnable parameters embodied in the chromosomes by simulating 

genetic evolution to propagate parent genetic properties in more highly fit chromosomes to 

the successor generations [165].  

3.2.2 Matrix-Based Chromosome Encoding 

A three-layer ANN structure can be represented by an 𝑚  x 𝑛  chromosome matrix as 

expressed in Equation 3.1, 

𝑥𝑖,𝑗         ∀𝑗= {1,… , 𝑛 } ∀𝑖= {1, … ,𝑚}    (3.1) 

where 𝑥𝑖,𝑗 represents the ith row and jth column of the matrix for the connection between 

nodes i and j, and its value is the weight of that connection. To describe the encoding 

scheme, any given feedforward three-layer ANN structure with 𝐼  input nodes, 𝐻  hidden 

nodes, and 𝑂 output nodes can be represented by an 𝑚 x 𝑛 chromosome matrix where 𝑚 

and 𝑛 are expressed in Equation 3.2 and 3.3, respectively,  

𝑚 = 𝐼 + 𝐵𝐼 + 𝐵𝐻 +  𝑂      (3.2) 

𝑛 = 𝐻       (3.3) 
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where 𝐵𝐼 and 𝐵𝐻 are single-bias nodes at the input layer and hidden layer, respectively.  

For example, Figure 3.2 illustrates the encoding of a given 3-layer feedforward ANN with 

two input nodes (I=2), five hidden nodes (H=5), and two output nodes (O=2). The 

dimension of the chromosome matrix representation for the ANN is determined by applying 

Equations 3.2 and 3.3, where,  

 M = 𝐼 + 𝐵𝐼 + 𝐵𝐻 +  𝑂 = 2 + 1 + 1 + 2 = 6     (3.4) 

and       𝑛 = 𝐻 = 5           (3.5) 

The sample chromosome matrix is shown in Figure 3.3, where it is formed through a 

collection of several vectors, namely the input vector (Figure 3.4a), the input bias vector 

(Figure 3.4b), the hidden bias vector (Figure 3.4c), and the output vector (Figure 3.4d).  

 

 

Figure 3.2  ANN encoding using a chromosome matrix. 



Chapter 3. Evolutionary Lean Neural Network    49 

 

 

 

Figure 3.3  A sample chromosome matrix. 

The input vector's element 𝑥𝑖,𝑗  corresponds to a connection weight, 𝑤(𝑖, 𝑗)  between the 

input node i and the hidden node j. Similar element mapping applies to the input bias vector 

and the output vector. For the hidden bias vector, each element corresponds to a connection 

weight between the hidden layer bias node i and the output layer node j. The remaining 

elements in the hidden bias vector are not used in the calculation.  

 

  

(a) Input vectors. 

 

   

(b) Input bias vector. 

          

 

(c) Hidden bias vector. 

 

 

(d) Output vectors. 

Figure 3.4(a-d)  A sample breakdown of a chromosome matrix. 
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Node 1 

Hidden 
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Hidden 
Node 3 

Hidden 
Node 4 

Hidden 
Node 5 

Input Node 1 (1,1) (1,2) (1,3) (1,4) (1,5) 

Input Node 2 (2,1) (2,2) (2,3) (2,4) (2,5) 

Input Bias  
Node, BI 

(3,1) (3,2) (3,3) (3,4) (3,5) 

Hidden Bias 
Node, BH 

(4,1) (4,2) (4,3) (4,4) (4,5) 

Output Node 1 (5,1) (5,2) (5,3) (5,4) (5,5) 

Output Node 2 (6,1) (6,2) (6,3) (6,4) (6,5) 

 

Chromosome 

Matrix 
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3.2.3 Model Representation  

With the formation of the chromosome matrix, a further step is needed to transform the 

chromosome matrix into its genotype form to present a traceable genotype-phenotype 

mapping. In EVLNN, genotypes are building blocks that represent feasible solutions to the 

problem in the fitness landscape. Model representation allows fitness information of the 

candidate solutions to be calculated and a set of genetic operators to influence the possible 

movement of the feasible solutions towards global optima in a minimum number of steps 

[165]. In this case, the ‘problem’ is optimizing the EVLNN model. Good genetic properties 

in the building blocks are propagated from parent to child as the phenotypes undergo spatial 

and weight changes in the fitness landscape [166]. At convergence, the fittest individual 

would have the optimized model found [167]. 

The explanation of the genotype-phenotype mapping in EVLNN is illustrated in Figures 

3.5 and 3.6. Figure 3.5 shows a sample chromosome matrix with connection weight values. 

The matrix is transformed to its genotype by removing the columns if the output vector 

column contains zero values. Elements with zero values in the genotype shown in Figure 

3.6a represent inactive connections in the phenotype (Figure 3.6b).  

 

 

 

 

 

Figure 3.5  A sample 6 x 5 chromosome matrix for a 3-layer EVLNN with two input variables and one 

output variable with a potential of up to 5 hidden neurons. 

For example, elements at indices (1, 2), (2,1), and (2,2) of the input vectors have zero values, 

and so are elements at indices (5,2) and (5,3) in the output vector. An element with zero 

values represents an inactive connection. 

 
Hidden 

Node 1 

Hidden 

Node 2 

Hidden 

Node 3 

Hidden 

Node 4 

Hidden 

Node 5 

Input Node 1 0.832 0 0.526 0.975 0.080 

Input Node 2 0 0 -0.818 0.604 0 

Input Bias 

Node 1 
0.021 -0.705 0.082 0.679 -0.070 

Hidden Bias 

Node 1 
-0.610 0.774 -0.193 0.700 -0.424 

Output Node 1 0.243 0 0 -0.703 0 

Output Node 2 0.174 -0.456 -0.085 -0.223 0 

Input vectors 

Input bias vector 

Hidden bias vector 

Output vectors 

Columns with all zero 
values to be removed 
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(a) Genotype        (b) Phenotype 

Figure 3.6(a-b)  Genotype-to-phenotype mapping for EVLNN. A zero value in the genotype corresponds to 

an inactive connection on the phenotype. 

3.2.4 EVLNN Architecture  

Figure 3.7 illustrates the relationship between the nodes, weights, connections, and 

activation functions and the information flow carried through the EVLNN artificial neurons 

using a set of equations presented in Equations 3.6 to 3.14. The hidden nodes h1, h2,…, hj 

are related to the input nodes x1, x2, …, xi via the respective weighted connections, w11, 

w12,…, wji, where wji represents the weighted connection from the input node xi to the hidden 

node hj.  

Likewise, the hidden nodes h1, h2,…, hj are related to the output nodes o1, o2, …, ok , via the 

respective weighted connections, w11, w21,…, wjk, where wjk represents the weighted 

connection from the hidden node hj to the output node ok. At the input side of the hidden 

node hj, in, weighted inputs are summed and combined with the input bias bj into a single 

value (Equation 3.6), which then undergoes an activation function, 𝜎𝑗(∙) in the hidden node 

(Equation 3.7), to obtain 𝑐. Similarly, at the input side of the output node, ℎ𝑗,𝑜𝑢𝑡 signals are 

weighted and summed, then combined with the output bias bk into a single value to obtain 

𝑜𝑘,𝑖𝑛 (Equation 3.8), which then undergoes an activation function, 𝜎𝑘(∙) in the output node 

to obtain 𝑜𝑘,𝑜𝑢𝑡 (Equation 3.9), the predicted value of the network. 
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ℎ𝑗,𝑖𝑛 = ∑ 𝑤𝑗𝑖 ∗ 𝑥𝑖 + 𝑏𝑗𝑖                 (3.6) 

ℎ𝑗,𝑜𝑢𝑡 = 𝜎𝑗(ℎ𝑗,𝑖𝑛)      (3.7) 

𝑜𝑘,𝑖𝑛 =  ∑ 𝑤𝑗𝑘 ∗ ℎ𝑗,𝑜𝑢𝑡𝑗 + 𝑏𝑘          (3.8) 

𝑜𝑘,𝑜𝑢𝑡 = 𝜎𝑘(𝑜𝑘,𝑖𝑛)      (3.9) 

 

 Figure 3.7  Relationships between nodes, weights, connections, and activation functions for a sample 

EVLNN showing Tanh and ReLU activation functions for the hidden and output nodes. 

As activation functions have their strengths and weaknesses [168], EVLNN allows the 

selection of various activation functions for the hidden and output nodes depending on the 

problem and the training dataset. These activation functions include the Hyperbolic Tangent 

(Tanh) function 𝜎𝑗,𝑡𝑎𝑛ℎ(∙) , the Sigmoid function 𝜎𝑘,𝑠𝑖𝑔𝑚𝑜𝑖𝑑(∙) , the Rectified Linear Unit 

(ReLU) function 𝜎𝑘,𝑟𝑒𝑙𝑢(∙), the Leaky ReLU function 𝜎𝑘,𝑙𝑟𝑒𝑙𝑢(∙) and the linear activation 

function 𝜎𝑘,𝑙𝑖𝑛𝑒𝑎𝑟(∙) . The function equations are expressed in Equations 3.10 to 3.14, 

respectively.  

  ℎ𝑗,𝑜𝑢𝑡 = 𝜎𝑗,𝑡𝑎𝑛ℎ(ℎ𝑗,𝑖𝑛) =
𝑒
(ℎ𝑗,𝑖𝑛)−𝑒

−(ℎ𝑗,𝑖𝑛)

𝑒
(ℎ𝑗,𝑖𝑛)+𝑒

−(ℎ𝑗,𝑖𝑛)
        (3.10) 

ℎ𝑗,𝑜𝑢𝑡 = 𝜎𝑗,𝑠𝑖𝑔𝑚𝑜𝑖𝑑(ℎ𝑗,𝑖𝑛) =
1

1+𝑒
−(ℎ𝑗,𝑖𝑛)

      (3.11)  

𝑜𝑘,𝑜𝑢𝑡 = 𝜎𝑘,𝑟𝑒𝑙𝑢(𝑜𝑘,𝑖𝑛) = max(0, 𝑜𝑘,𝑖𝑛) =  {
0       𝑖𝑓 𝑜𝑘,𝑖𝑛   < 0

𝑜𝑘,𝑖𝑛  𝑖𝑓 𝑜𝑘,𝑖𝑛   ≥ 0
   (3.12) 
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𝑜𝑘,𝑜𝑢𝑡 = 𝜎𝑘,𝑙𝑟𝑒𝑙𝑢(𝑜𝑘,𝑖𝑛) = 𝑎(𝑜𝑘,𝑖𝑛) + (𝑜𝑘,𝑖𝑛) =  {
𝑎(𝑜𝑘,𝑖𝑛) 𝑖𝑓 𝑜𝑘,𝑖𝑛    < 0 

𝑜𝑘,𝑖𝑛       𝑖𝑓 𝑜𝑘,𝑖𝑛     ≥ 0
  (3.13) 

𝑜𝑘,𝑜𝑢𝑡 = 𝜎𝑘(∙)        (3.14) 

 

3.3 The EVLNN Search Algorithm  

Various concepts of speciation in nature are being investigated in the literature [169]. The 

essence of speciation is contingent on the isolation of gene flow between subgroups [170]. 

There are two dominant views of speciation. The first is allopatric speciation. In allopatric 

speciation, the original population is split into isolated subpopulations caused by 

geographical barriers. This split prevented gene exchange between the isolated 

subpopulations [171]. The subpopulations, therefore, can evolve independently of the other, 

forming evolutionary independent new species. The second is sympatric speciation, where 

speciation occurs due to changes in population genetics under dissimilar selective pressure, 

specifically mating preference [172]. The evolution of mating preference continues after 

the post-mating isolation instigated further gene changes among the subgroups and 

subsequent differentiation in phenotype [173]. The divergence in phenotype increases the 

reproductive barrier between subgroups and gene flow, leading to evolutionary independent 

sympatric species [174].  

Inspired by the concept of ecological speciation in which species adapt and breed to locate 

resource basins or niches in a fitness landscape, the proposed framework is an improved 

GA for a multimodal search to locate the global optima. The EVLNN search algorithm, 

based on the framework in Figure 3.1, is described in the following. The algorithm source 

code is developed using the MATLAB R2020a software, and the pseudo-code can be found 

in Appendix A. A step-by-step outline of the EVLNN search algorithm is presented below, 

followed by a detailed description. 
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1. Population Initiation: A population of candidate solutions with 𝑚 x 𝑛 chromosome 

matrices is initiated with uniformly distributed random values between -1 to 1 

representing the connection weights. 

2. Speciation: The new chromosome matrices created are transformed into their 

respective genotypes of varying dimensions. Genotypes with the same dimension are 

subsequently speciated into their respective sub-populations. 

3. Ranking and Selection: The individuals are evaluated by a fitness function and 

subsequently ranked within their respective species. Selection pressure using the 

Stochastic Universal Sampling method is applied where individuals with higher fitness 

have more chance to be selected for crossover.  

4. Crossover: Two strategies are adopted to maintain species parallelism in the search 

process while exploring new landscapes in the solution space. These are the intra-

species crossover and the inter-species crossover. 

a. Intra-species crossover: The intra-species crossover restricts mating within 

individual species to maintain species parallelism and intensifies the search by 

propagating good genotypic properties to the next generation. This strategy 

allows species to parallel explore the search space around promising basins of 

interest. 

b. Inter-species crossover: The inter-species crossover is interspersed in the 

evolutionary process to diversify the search. Mating pairs are randomly selected 

from diverse species for crossover. If successful, the pair will produce offspring 

with novel structures. 

5.  Mutation: After the selected individuals have undergone the crossover, a two-stage 

mutation is implemented to avoid local optima through incremental changes to its 

architecture. The stages are the weights mutation and the link-node mutation. 

a. Weights mutation: The weights mutation attempts to perturb selected 

connection weights with uniformly distributed random values between -0.5 and 

0.5.  

b. Link-node mutation: The link-node mutation aims to change the neural 

network structure incrementally by re-enabling disabled links on the network.  
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6. Fitness Evaluation and Termination Criteria: The fitness of the new individuals 

(offspring) is evaluated, and healthier individuals continue onto the next generation 

propagating good genotypic properties. The algorithm terminates if the healthiest 

individual is found. Otherwise, the cycle repeats steps 2 to 6 until the termination 

criteria are met. 

7. Diversity Tracking: A diversity tracking mechanism is introduced to measure species 

richness, species evenness, and population diversity. These diversity measures are built 

into the EVLNN algorithm to provide much-needed insights into the algorithm’s search 

behavior.   

8. Ensemble-based Sensitivity Analysis: An ensemble-based approach to sensitivity 

analysis is incorporated into the algorithm to analyze the relationship between the input 

variables and the non-linear transformations the network learned at its output. By 

combining several uncorrelated sensitivity analysis methods, the sub-categorical 

contribution of the input variables to the output is ranked according to their relative 

importance to identify factors influencing the output.  

3.3.1 Population Initialization and Speciation 

At initialization, a population P of size p is generated as presented in Equation 3.15,  

𝑃 = {𝑁𝑁1, 𝑁𝑁2, 𝑁𝑁𝑖, … , 𝑁𝑁𝑝}    (3.15) 

where NNi is the ith individual in population P. The individual NNi is an 𝑚  x 𝑛 

chromosome matrix formed using Equation 3.1, with the matrix dimension determined 

using Equations 3.2 and 3.3. For example, Equation 3.16 shows a chromosome matrix 

where 𝑥𝑖,𝑗  stores a uniformly distributed random value between -1 and 1. These values 

represent the connection weights in the respective phenotype. 

𝑁𝑁𝑖 = [

𝑥1,1 𝑥1,2 ⋯ 𝑥1,𝑛
𝑥2,1 𝑥2,2 ⋯ 𝑥2,𝑛
⋮    ⋮   ⋱   ⋮

𝑥𝑚,1 𝑥𝑚,2 ⋯ 𝑥𝑚,𝑛

   ]     (3.16) 

 

where, 
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 𝑥𝑖,𝑗 = [−1 1]        (3.17) 

A sample chromosome matrix of an individual NNi is shown partially in Equation 3.18. 

𝑁𝑁1 = [

−0.8049 0.4121 ⋯ 0.5381
0.4430 −0.9363 ⋯ 0.1629
⋮                 ⋮      ⋱        ⋮

−0.6576 −0.7620 ⋯ −0.4363

   ]      (3.18) 

A set of 𝑚  x 𝑛  uniformly distributed random binary number matrices, 𝑏𝑖,𝑗  are then 

generated and used to perform element-wise matrix multiplication with 𝑥𝑖,𝑗 to create the 

basic structure of parsimonious networks using Equation 3.19, 

[

𝑥1,1 𝑥1,2 ⋯ 𝑥1,𝑛
𝑥2,1 𝑥2,2 ⋯ 𝑥2,𝑛
⋮    ⋮   ⋱   ⋮

𝑥𝑚,1 𝑥𝑚,2 ⋯ 𝑥𝑚,𝑛

]⨀

[
 
 
 
𝑏1,1 𝑏1,2 ⋯ 𝑏1,𝑛
𝑏2,1 𝑏2,2 ⋯ 𝑏2,𝑛
⋮    ⋮   ⋱   ⋮

𝑏𝑚,1 𝑏𝑚,2 ⋯ 𝑏𝑚,𝑛]
 
 
 

=

[
 
 
 
𝑥1,1 ∙ 𝑏1,1 𝑥1,2 ∙ 𝑏1,2 ⋯ 𝑥1,𝑛 ∙ 𝑏1,𝑛
𝑥2,1 ∙ 𝑏2,1 𝑥2,2 ∙ 𝑏2,2 ⋯ 𝑥2,𝑛 ∙ 𝑏2,𝑛

    ⋮             ⋮       ⋱        ⋮
𝑥𝑚,1 ∙ 𝑏𝑚,1 𝑥𝑚,2 ∙ 𝑏𝑚,2 ⋯ 𝑥𝑚,𝑛 ∙ 𝑏𝑚,𝑛]

 
 
 

  (3.19) 

 

A sample of the binary number matric, 𝑏1,1 is shown partially in Equation 3.20, 

𝑏1,1 = [   

0 1 ⋯ 1

1 1 ⋯ 0

   ⋮  ⋮  ⋱  ⋮   

1 0 ⋯ 1

]     (3.20) 

A sample of the resultant chromosome matrix after applying Equation 3.19 to Equations 

3.18 and 3.20 is shown partially in Equation 3.21, 

[

−0.8049 0.4121  ⋯   0.5381
0.4430 −0.9363  ⋯   0.1629

⋮             ⋮          ⋱        ⋮
−0.6576 −0.7620 ⋯ −0.4363

]⨀ [   

0 1 ⋯ 1
1 1 ⋯ 0
   ⋮  ⋮  ⋱  ⋮   
1 0 ⋯ 1

] = [

         0           0.4121   ⋯   0.5381
0.4430 −0.9363 ⋯       0
     ⋮               ⋮        ⋱        ⋮

    −0.6576         0       ⋯   0.4363

] (3.21) 

Two impacts resulted from this multiplication. Firstly, a chromosome matric that contains 

uniformly distributed zero values is generated. As elements in the chromosome matrix 

represent connection weights in the individual’s phenotype, a link is eliminated or disabled 

when the value is zero, making the network parsimonious. Secondly, the zero values in the 

chromosome matrix in the output vectors mean that individuals with different numbers of 

hidden nodes will be created. The EVLNN algorithm acted on this variation to separate the 

individuals into species. This speciation process is performed through a matrix operation 
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by removing the columns containing zero values in the output vector of the chromosome 

matrix. The result is a matrix, called a genotype, consisting of varying dimensions. The 

new population 𝑃′ can be expressed as a collection of a subpopulation of unique species 

expressed in Equation 3.22, 

𝑃′ = {𝑆𝑃1, 𝑆𝑃3, … , 𝑆𝑃𝑖 … , 𝑆𝑃𝐻}    (3.22) 

where SPi refers to species i given 1≤i ≤ H. In the phenotype context, i also identify the 

number of hidden nodes. In the speciation process, each SPi contains zero of more 

individuals expressed in Equation 3.23, 

 𝑆𝑃𝑖 = {𝑁𝑁𝑠𝑝𝑖,1 , 𝑁𝑁𝑠𝑝𝑖,2 , … , 𝑁𝑁𝑠𝑝𝑖,𝑗  | 𝑛𝑢𝑙𝑙}       (3.23) 

where 𝑁𝑁𝑠𝑝𝑖,𝑗 is the jth individual in species i given 1 ≤ j ≤ 100. The chromosome matrix 

NN1 of Equation 3.18 is illustrated in Figure 3.8 with all its elements. Its corresponding 

speciated individual genotype matrix, NNsp13,1, is shown in Figure 3.9.  

 

Figure 3.8  The chromosome matrix of NN1 of dimension 25x26 displaying all its element values. 

0 0.4121 0 -0.2967 0 -0.1372 -0.0215 0 0 0 0.2481 0 0 -0.4160 0.3331 -0.4964 0.3998 0 0.5403 0 -0.7616 0 -0.9608 0.0288 0 0.5381

-0.4430 0 0.9195 0 0 0.8213 0 0 0.7519 0 0 0 0.6363 0 0 0 0.2771 0.8872 0 0 0.8797 0 0 0 0 0

0 -0.4462 0 0.1705 0 0 0.8001 0.4894 0 0 -0.2090 0 0.6351 0 0 0.2342 -0.9328 0.2754 0 0 0.2911 0.0508 -0.1514 0 0.9778 0.8566

0.9150 -0.9077 0.1705 0.0994 0.3784 0 -0.2615 0 0 0 0 0 0.4449 0.9681 0 -0.4694 -0.8624 0.9154 -0.0573 0 0 0.0607 0 0 0 0.1602

0 -0.8057 0 0.8344 0.4963 -0.7089 -0.7776 0 0 0 0.9760 0.8094 0 -0.6657 0 0.6488 -0.3608 -0.5186 -0.9285 -0.5821 0.2786 0.7223 -0.6059 -0.6003 0.7309 0

0 0.6469 0.5025 0 -0.0989 0 0.5605 0 -0.5845 0 0 0.2197 0.3192 -0.7876 0 0.9653 0 0.3522 0 0.4186 0.0894 -0.0303 0.6434 -0.1861 0.2251 0

0 0.3897 -0.4898 0.5144 0 0.7386 0 -0.2630 0 0 0 0.2353 0.0372 -0.2552 0.1224 0 0 -0.4219 0 -0.5275 0 0 -0.1402 0.4974 0.9799 0.7254

0.9143 -0.3658 0.0119 0 0 0.1594 -0.5166 0 0 0 0 0 0 0 0 -0.3122 0 0 -0.0530 0 0.0878 0 0 0.6512 0 -0.0314

-0.0292 0 0.3982 0 0.8267 0 -0.1922 0 -0.5390 -0.1517 0.5924 0 0.2980 0 0.3384 0.1681 0 0.3903 0 0 0.4421 0 -0.2176 0.5799 0 0

0 0 0 0 -0.6952 0 -0.8071 0 0 0.0157 -0.8026 0.1534 0 -0.3210 -0.6191 -0.7845 0 -0.8640 -0.3178 0 0.0450 0 0.5382 0 0 -0.5812

0 0 0 -0.8483 0.6516 0.7061 0 0 0 -0.8290 0 -0.6342 -0.0924 0 -0.2622 0 0.9373 0 0 -0.0825 0 -0.3046 0 0 0 0.1046

-0.1565 0 0 0 0 0 0 0.5514 -0.5482 0 -0.3293 -0.5201 0 0.8407 0 0 0.0627 -0.5519 0 0 -0.5626 -0.7000 0 0 -0.0038 0.2598

0.8315 0.5310 -0.7228 0 0.9923 -0.2981 0 0 -0.6586 0 0 0.7730 0 -0.8946 0.9633 0 0 0 0.4769 0.5406 0 0 0.5102 0 0.8017 0

0 0 -0.7014 0 0 0.0265 0.1504 -0.1283 0 0 -0.7269 0 0 0.4757 0 0 0 0.6888 -0.5143 -0.2996 -0.7806 -0.4757 -0.2452 -0.7274 0.1493 0.2294

0 0 0 0 0 -0.1964 -0.8804 -0.1064 0 0.8577 0.4425 -0.0202 0 -0.4618 0.7110 0.1887 0.2219 0 0.8348 0 0 0 0 0.3573 0 -0.2752

0.3115 0 0 0 -0.7867 0 -0.5304 0 0 0.4607 -0.7865 0 0 -0.1543 0 -0.9550 0.5576 0 0 -0.1677 0 0.5099 0 -0.0096 0 -0.9009

0 0 0 0.1376 0 0 0 0.0170 0 -0.0228 0 0 -0.2181 0.0957 0 0 -0.1531 0 0 0 -0.1033 0 0 -0.6206 0.1720 -0.0209

0 0.2926 0 0 0 0 0 0.0215 0 0 0 0 0.6628 0 0 -0.3746 -0.8184 0 0 0 -0.2684 -0.1152 0 0 0 0

0 0 -0.5130 0 0.5498 -0.6322 0 0 -0.6304 0 0 0.0009 0.6067 0 -0.1435 0 -0.4671 0 0 -0.4871 0 0 0 -0.7048 0.3328 -0.7538

0 0.5094 0 0 0.6346 -0.5201 -0.9140 0.5897 0.8098 -0.0823 0 0 0 0.9661 0 -0.6425 0 -0.2265 0 0.2269 0.2558 -0.2815 0 -0.8901 -0.8330 0

0.5155 -0.4479 0 0 0.7374 -0.1655 0 0 0.9595 0.9262 0 0 -0.2015 -0.3971 0 -0.1542 -0.4380 0.8320 0.1524 0.1645 0.5440 0.4727 0 0 0 0

0.4863 0.3594 0 0 -0.8311 0 0 -0.2428 0 0 0.7818 0.3639 0.0538 0 0.1790 0 0 -0.9977 0 0.0815 0.8657 0 0 0.1211 0.3219 -0.6219

0 0 -0.4978 -0.3776 -0.2004 0.8054 0.4634 0 -0.7778 0 -0.3317 -0.9151 -0.1664 0.3327 0 0.1970 0 0 0 0 0 0.3668 0 0.8592 0.4595 -0.9147

0.2028 0.5792 0.5984 -0.9009 -0.4336 0.3069 -0.0207 0.9457 0.4970 0.1357 -0.4021 -0.4878 0.7731 -0.1064 0.6320 -0.8033 0.7192 -0.9447 0.7983 0.7999 0.0482 -0.7596 -0.6444 0.4122 0.6627 -0.9303

-0.6576 0 0 0 0 0 -0.0982 -0.2985 0 0 0 0.0433 0 0.3962 0 0.3919 0.7507 -0.0782 0.2889 0 -0.7223 0 0 0.1656 0.9646 0.4363
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Figure 3.9  The genotype matrix of speciated individual 𝑁𝑁𝑠𝑝13,1, with a matrix dimension of 25x13. 

In neural network architecture design, a typical three-layer network would enable the 

network to model any arbitrary function [175]. However, there is no precise approach to 

determining the appropriate network size, such as the number of hidden nodes, to prevent 

underfitting or overfitting. Most authors use trial-and-error estimation, an arbitrary scaling 

factor, or general rule-of-thumb methods to provide a starting point. One rule-of-thumb as 

a starting point to determine the number of hidden nodes would be two-thirds the size of 

the input nodes plus the output nodes. In applying EVLNN to the real-world problems in 

this work, the value of H or maximum evolvable hidden node size is set to 26. 

An illustration of an EVLNN population at initialization is shown in Figures 3.10 and 3.11. 

Figure 3.10 shows a scatter plot of a speciated population 𝑃′ consists of 100 individuals. 

Figure 3.11 shows a histogram plot of 𝑃′ with a normal distribution with 𝑃′={SP5, SP6 ,…, 

SP18}. It is observed that SP1 to SP4 and SP19 to SP26 have zero individuals. SP13 is the most 

populous, with 15 individuals, SP13 ={𝑁𝑁𝑠𝑝13,1 , 𝑁𝑁𝑠𝑝13,2 , … , 𝑁𝑁𝑠𝑝13,15} while SP7 and SP18  

are the least populous with only one individual each, where SP7  ={𝑁𝑁𝑠𝑝7,1} and SP18 = 

{𝑁𝑁𝑠𝑝18,1}.  

0 -0.0215 0 0 -0.4160 -0.4964 0.3998 0 0.5403 -0.7616 0.0288 0 0.5381

-0.4430 0 0 0 0 0 0.2771 0.8872 0 0.8797 0 0 0

0 0.8001 0.4894 0 0 0.2342 -0.9328 0.2754 0 0.2911 0 0.9778 0.8566

0.9150 -0.2615 0 0 0.9681 -0.4694 -0.8624 0.9154 -0.0573 0 0 0 0.1602

0 -0.7776 0 0.8094 -0.6657 0.6488 -0.3608 -0.5186 -0.9285 0.2786 -0.6003 0.7309 0

0 0.5605 0 0.2197 -0.7876 0.9653 0 0.3522 0 0.0894 -0.1861 0.2251 0

0 0 -0.2630 0.2353 -0.2552 0 0 -0.4219 0 0 0.4974 0.9799 0.7254

0.9143 -0.5166 0 0 0 -0.3122 0 0 -0.0530 0.0878 0.6512 0 -0.0314

-0.0292 -0.1922 0 0 0 0.1681 0 0.3903 0 0.4421 0.5799 0 0

0 -0.8071 0 0.1534 -0.3210 -0.7845 0 -0.8640 -0.3178 0.0450 0 0 -0.5812

0 0 0 -0.6342 0 0 0.9373 0 0 0 0 0 0.1046

-0.1565 0 0.5514 -0.5201 0.8407 0 0.0627 -0.5519 0 -0.5626 0 -0.0038 0.2598

0.8315 0 0 0.7730 -0.8946 0 0 0 0.4769 0 0 0.8017 0

0 0.1504 -0.1283 0 0.4757 0 0 0.6888 -0.5143 -0.7806 -0.7274 0.1493 0.2294

0 -0.8804 -0.1064 -0.0202 -0.4618 0.1887 0.2219 0 0.8348 0 0.3573 0 -0.2752

0.3115 -0.5304 0 0 -0.1543 -0.9550 0.5576 0 0 0 -0.0096 0 -0.9009

0 0 0.0170 0 0.0957 0 -0.1531 0 0 -0.1033 -0.6206 0.1720 -0.0209

0 0 0.0215 0 0 -0.3746 -0.8184 0 0 -0.2684 0 0 0

0 0 0 0.0009 0 0 -0.4671 0 0 0 -0.7048 0.3328 -0.7538

0 -0.9140 0.5897 0 0.9661 -0.6425 0 -0.2265 0 0.2558 -0.8901 -0.8330 0

0.5155 0 0 0 -0.3971 -0.1542 -0.4380 0.8320 0.1524 0.5440 0 0 0

0.4863 0 -0.2428 0.3639 0 0 0 -0.9977 0 0.8657 0.1211 0.3219 -0.6219

0 0.4634 0 -0.9151 0.3327 0.1970 0 0 0 0 0.8592 0.4595 -0.9147

0.2028 -0.0207 0.9457 -0.4878 -0.1064 -0.8033 0.7192 -0.9447 0.7983 0.0482 0.4122 0.6627 -0.9303

-0.6576 -0.0982 -0.2985 0.0433 0.3962 0.3919 0.7507 -0.0782 0.2889 -0.7223 0.1656 0.9646 0.4363
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Figure 3.10  Species distribution in a population as seen in a scatter plot. 

 Figure 3.11  Species distribution of a population as seen in a histogram. 

The number of hidden nodes in an ANN determines the dimensionality of the search 

landscape. It is, therefore, a direct indicator of the complexity of the function the network 

is capable of modeling [176]. The specific connectivity pattern of the phenotype will 

determine what portion of this space is being explored. The search space for the ANN 

phenotype can range from a network with a high number of hidden nodes and a high number 
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of connections (dense network) to a network with a low number of hidden nodes and a low 

number of network connections (parsimonious network). EVLNN is designed to model 

complex nonlinear functions with good generalization keeping the network parsimonious. 

The model achieves this by maintaining species parallelism, searching for promising 

solutions while locating new solutions in the landscape. The aim is to enhance the search 

ability by intensifying the search toward regions of interest while diversifying the search to 

learn different parts of the landscape. 

3.3.2 Ranking and Selection 

With the population genotypically speciated, individuals are then ranked according to their 

fitness within their respective species. The fitness of the individual 𝐹𝑖, is defined as  

𝐹𝑖 =
1

1+𝑀𝑖
       (3.24) 

where 𝑀𝑖 represents individual MSE expressed as 

𝑀𝑖 =
1

𝑛
 ∑  (𝑦𝑡 − 𝑦̂𝑡)

2𝑛
𝑡=1       (3.25) 

where 𝑦𝑡 is the known target and 𝑦̂𝑡 is the prediction at time t. 

In applying selection pressure, well-known selection methods for GA were studied [177]. 

These methods can be broadly categorized into proportional and elitist. The former 

maintains genetic diversity by preventing the population from converging to a local 

minimum but increasing convergence time. While the latter increases convergence speed, 

it is more likely to converge on a local minimum due to loss of genetic diversity. This work 

used Stochastic Universal Sampling (SUS) for its minimum spread and non-bias sampling 

scheme [178]. This sampling scheme aligns with the EVLNN’s species parallelism strategy 

to protect early structural innovation and prevent the fittest individuals from prematurely 

dominating the candidate solution space. 
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3.3.3 Intra-Species Crossover  

The intra-species crossover takes advantage of species parallelism to investigate multiple 

basins simultaneously. In the intra-species crossover,  breeding is restricted to genotypically 

similar individuals to preserve the genetic differentiation and parallelism of the population. 

By limiting the genetic drift, genotypically similar individuals reproduce after their kind 

and improve exploitation within the respective solution basins [179] [180].  

The intra-species crossover process in the EVLNN algorithm is illustrated in Figure 3.12, 

using the recombination of Species_4 as an example. The genotypes of Parent A and Parent 

B belong to 𝑆𝑃4, respectively is shown in Figure 3.12(a) and Figure 3.12(c). When these 

parents recombined at the mid-point of their genotypes, Child A and Child B are produced, 

with their genotypes shown in Figures 3.12(e) and 3.12(g), respectively. It is observed that 

intra-species crossover produces offspring that belongs to Species_4, as shown in Figures 

3.12(f) and 3.12(h). The intra-species crossover process preserves a differentiated 

landscape while refining the solution at multiple basins.  

Figure  3.12(a-h)  Example of intra-species recombination process for Species_4. 

-0.388 0 -0.062 -0.515 

0 0 0 0.035 

-0.703 0.678 0 0.337 

-0.100 -0.419 -0.282 -0.363 

0.299 0.591 0.782 0.072 

(a) 𝑆𝑃4 parent A 

genotype  
(b) 𝑆𝑃4 parent A 

phenotype  

-0.388 0 -0.148 -0.612 

0 0 0 -0.153 

-0.703 0.678 -0.803 0 

-0.100 -0.419 -0.100 -0.282 

0.299 0.591 0.299 0.782 

(e) 𝑆𝑃4 child A genotype (f) 𝑆𝑃4 child A 

phenotype  

0.875 0.799 -0.148 -0.612 

0 -0.054 0 -0.153 

0 0.586 -0.803 0 

0.840 -0.702 -0.100 -0.282 

0.494 0.996 0.299 0.782 

(c) 𝑆𝑃4 parent B 

genotype 

 

 

 

(d) 𝑆𝑃4 Parent B 

phenotype 

0.875 0.799 -0.062 -0.515 

0 -0.054 0 0.035 

0 0.586 0 0.337 

0.840 -0.702 -0.282 -0.363 

0.494 0.996 0.782 0.072 

(g) 𝑆𝑃4 child B genotype (h) 𝑆𝑃4Child B 

phenotype  

 



Chapter 3. Evolutionary Lean Neural Network    62 

 

 

3.3.4 Inter-Species Crossover  

A second recombination strategy, the inter-species crossover, is proposed to complement 

intra-species crossover. In particular, this strategy allows the exploration of new ANN 

structures in the architecture landscape for search optimization. Inter-species crossover 

strategy sporadically recombines dissimilar genotypes to generate novel solutions across 

genotypic boundaries. The intent is to create new possible solutions in the fitness landscape, 

contributing to exploration capability [181]. 

The inter-species crossover process is illustrated in Figure 3.13, using the recombination of 

Species_3 and Species_6 as an example. The genotypes of Parent A and Parent B belong to 

𝑆𝑃3  and 𝑆𝑃6 , respectively is shown in Figure 3.13(a) and Figure 3.13(c). When these 

parents recombined at the mid-point of their genotypes, Child A and Child B are produced, 

with their genotypes shown in Figures 3.13(e) and 3.13(g), respectively. It is observed that 

inter-species crossover produces offspring with phenotypes shown in Figure 3.13(f) and 

Figure 3.13(h) that do not resemble the phenotype of their parents shown in Figure 3.13(b) 

and Figure 3.13(d) in terms of the networks’ hidden node size. Thus the algorithm has 

created new fitness landscapes to explore. 

 

0.076 0 -0.439 

0 0 0.697 

0.820 0 0 

-0.150 0.383 -0.302 

0.018 0.986 0.234 

(a) 𝑆𝑃3 parent A genotype (b) 𝑆𝑃3 parent A phenotype   

 

(c) 𝑆𝑃6 parent B genotype 

-0.762 -0.370 0 0.771 0.110 0 

-0.975 0 0.142 -0.636 -0.866 0 

0 -0.163 0 0 0.265 -0.871 

-0.743 0.674 0.120 -0.340 0.611 -0.313 

-0.308 -0.682 -0.851 -0.213 -0.271 0.606 

(d) 𝑆𝑃6 parent B phenotype 

Figure 3.13(a-d)  Inter-species crossover for Species_3 and Species_6 resulting in Species_4 and Species_5. 
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(e) 𝑆𝑃4 child A genotype 

0.076 0.771 0.110 0 

0 -0.636 -0.866 0 

0.820 0 0.265 -0.871 

-0.150 -0.340 0.611 -0.313 

0.018 -0.213 -0.271 0.606 

(f) 𝑆𝑃4 child A phenotype  

 

 

(g) 𝑆𝑃5 child B genotype 

-0.762 -0.370 0 0 -0.439 

-0.975 0 0.142 0 0.697 

0 -0.163 0 0 0 

-0.743 0.674 0.120 0.383 -0.302 

-0.308 -0.682 -0.851 0.986 0.234 

(h) 𝑆𝑃5 child B phenotype  

Figure 3.13(e-h)  Inter-species crossover for Species_3 and Species_6 resulting in Species_4 and Species_5. 

3.3.5 Weights Mutation 

A two-stage mutation is introduced to the EVLNN algorithm to avoid the traps of local 

optima in complex problems. The aim is to inject small variations in the gene pool by 

producing incremental changes to the ANN architecture. The selected individual or mutant 

first undergoes a weights mutation followed by a link-node mutation.  

The weights mutation stage perturbs the connection weights of the selected chromosome 

matrix by a small value between -0.5 and 0.5. A weights-change matrix, WW, is first created 

with uniformly distributed random values between -0.5 and 0.5. A weights mutation 

probability matrix, PW, is then formed when a matrix, RW, a matrix with uniformly 

distributed random values between 0 to 1, is compared to the mutation probability. A value 

of ‘1’ (or the Boolean value of ‘TRUE’) is assigned to an element in PW if the respective R 

element is less than the mutation probability. A value of ‘0’ (or the Boolean value of 

‘FALSE’) is assigned if otherwise, as expressed in Equation 3.26, 

𝑃𝑊 = {   
1      𝑅𝑤 ≤ 𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦               
0      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                  

  (3.26) 
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After the weights mutation, a new individual, 𝑁′  is resulted using the following matrix 

operations shown in Equation 3.27, 

𝑁′ = 𝑁 + (𝑊𝑊 ∙ 𝑃𝑊)      (3.27) 

To illustrate, a sample matrix RW, is shown in Equation 3.28, 

𝑅𝑊 = 

[
 
 
 
 
 
     0.930 0.468  0.630   0.645 0.070    
  0.327 0.127  0.059 0.369 0.719    
 0.798 0.147 0.409
0.344 0.063 0.102
0.201
0.501

0.539
0.832

0.212
0.945

0.255
0.647
0.008
0.499

0.679    
0.601    
0.293    
0.784    ]

 
 
 
 
 

    (3.28) 

In EVLNN, the purpose of mutation is to introduce a slight adjustment to the chromosome 

matrix. Hence its probability is set to a low value, usually in the range of 1% to 2%. 

Supposing the Mutation Probability rate is 0.015, applying Equation 3.26, the weights 

mutation probability matrix, PW is, 

 

𝑃𝑊 =  

[
 
 
 
 
 
     𝐹𝐴𝐿𝑆𝐸 𝐹𝐴𝐿𝑆𝐸  𝐹𝐴𝐿𝑆𝐸   𝐹𝐴𝐿𝑆𝐸 𝐹𝐴𝐿𝑆𝐸    
  𝐹𝐴𝐿𝑆𝐸 𝐹𝐴𝐿𝑆𝐸 𝐹𝐴𝐿𝑆𝐸 𝐹𝐴𝐿𝑆𝐸 𝐹𝐴𝐿𝑆𝐸    
 𝐹𝐴𝐿𝑆𝐸 𝐹𝐴𝐿𝑆𝐸 𝐹𝐴𝐿𝑆𝐸
𝐹𝐴𝐿𝑆𝐸 𝐹𝐴𝐿𝑆𝐸 𝐹𝐴𝐿𝑆𝐸
𝐹𝐴𝐿𝑆𝐸
𝐹𝐴𝐿𝑆𝐸

𝐹𝐴𝐿𝑆𝐸
𝐹𝐴𝐿𝑆𝐸

𝐹𝐴𝐿𝑆𝐸
𝐹𝐴𝐿𝑆𝐸

𝐹𝐴𝐿𝑆𝐸
𝐹𝐴𝐿𝑆𝐸
𝑇𝑅𝑈𝐸
𝐹𝐴𝐿𝑆𝐸

𝐹𝐴𝐿𝑆𝐸
𝐹𝐴𝐿𝑆𝐸
𝐹𝐴𝐿𝑆𝐸
𝐹𝐴𝐿𝑆𝐸

    

]
 
 
 
 
 

 = 

[
 
 
 
 
 
 0 0 0 0 0
0 0 0 0 0
0 0 0
0 0 0
0
0

0
0

0
0

0
0
1
0

0
0
0
0

  

]
 
 
 
 
 

  (3.29) 

Note that the element selected for weights mutation has a value of 0.008, less than the 

Mutation Probability rate of 0.015. If, given that the weights change matrix, WW is, 

𝑊𝑊 =

[
 
 
 
 
 
     0.224   0.372  − 0.373   0.075 −0.312    
0.094   0.099      0.163 −0.368 −0.330    
0.139 −0.152 0.412
−0.500 −0.101 −0.080
−0.280
−0.347

−0.275
0.480

−0.013
−0.0372

−0.343
0.500
0.096
−0.152

0.234
0.389
0.356
0.464

 

]
 
 
 
 
 

    (3.30) 

and assuming the selected individual in SP5 has a chromosome matrix, N given as, 

𝑁 =

[
 
 
 
 
 
0.832       0          0.526 0.975 0.080
     0           0       −0.818 0.604 0
0.021 −0.705 0.082
−0.610 0.774 −0.193
0.243
0.174

0
−0.456

0
−0.085

0.679
0.700
−0.703
−0.223

−0.070
−0.424
0
0 ]

 
 
 
 
 

    (3.31) 

then the new individual, 𝑁′, is obtained after applying Equation 3.27, 
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𝑁′ = 

[
 
 
 
 
 
0.832       0          0.526 0.975 0.080
     0           0       −0.818 0.604 0
0.021 −0.705 0.082
−0.610 0.774 −0.193
0.243
0.174

0
−0.456

0
−0.085

0.679
0.700
−0.703
−0.223

−0.070
−0.424
0
0 ]

 
 
 
 
 

+       

 

(

  
 

[
 
 
 
 
 
     0.224   0.372  − 0.373   0.075 −0.312
0.094   0.099      0.163 −0.368 −0.330
0.139 −0.152 0.412
−0.500 −0.101 −0.080
−0.280
−0.347

−0.275
0.480

−0.013
−0.0372

−0.343
0.500
𝟎. 𝟑𝟓𝟔
−0.152

0.234
0.389
0.096
0.464 ]

 
 
 
 
 

∙

[
 
 
 
 
 
 0 0 0 0 0
0 0 0 0 0
0 0 0
0 0 0
0
0

0
0

0
0

0
0
1
0

0
0
0
0]
 
 
 
 
 

)

  
 

 (3.32) 

𝑁′ =

[
 
 
 
 
 
0.832       0          0.526 0.975 0.080
     0           0       −0.818 0.604 0
0.021 −0.705 0.082
−0.610 0.774 −0.193
0.243
0.174

0
−0.456

0
−0.085

0.679
0.700
−0.703
−0.223

−0.070
−0.424
0
0 ]

 
 
 
 
 

+

[
 
 
 
 
 
0 0 0 0 0
0 0 0 0 0
0 0 0
0 0 0
0
0

0
0

0
0

0
0

𝟎. 𝟑𝟓𝟔
0

0
0
0
0]
 
 
 
 
 

  (3.33) 

 𝑁′ =

[
 
 
 
 
 
0.832       0          0.526 0.975 0.080
     0           0       −0.818 0.604 0
0.021 −0.705 0.082
−0.610 0.774 −0.193
0.243
0.174

0
−0.456

0
−0.085

0.679
0.700
−𝟎. 𝟑𝟒𝟕
−0.223

−0.070
−0.424
0
0 ]

 
 
 
 
 

     (3.34) 

EVLNN then performs an integrity check on boundary limits of the changed weights to see 

if it is between -1 and 1. If the mutated weight value exceeds the set limits, this weight 

value is assigned -1 or 1, depending on which end of the boundary is exceeded.  

3.3.6 Link-Node Mutation 

In the link-node mutation stage, a vector V = [v1, v2, … , vn ] is formed and derived from 

matrix 𝑁′ where vi is the ith index location of the disabled links, and n is the number of 

disabled links in the matrix 𝑁′. A vector RL of length n with uniformly distributed random 

values between 0 and 1 is created, and similarly, a second vector RL2 with uniformly 

distributed random values between -0.5 and 0.5. The RL2 vector is a placeholder for 

connection weights for the links to be re-enabled. A probability matrix for link-node 

mutation, PL, is then formed using the expression in Equation 3.35, 

𝑃𝐿 = 𝑅𝐿2 ∙ (RL≤ Link-node Mutation Probability)  (3.35) 
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where Link-Node Mutation Probability, like the Mutation Probability in Equation 3.26, is 

kept small. Subsequently, a new individual, 𝑁′′, is formed through re-enabling the disabled 

links in 𝑁′ by assigning the weights from V to 𝑁′ expressed in Equation 3.36, 

𝑁′′ = 𝑁′(𝑉) = 𝑃𝐿      (3.36) 

To illustrate the link-node mutation process, Equation 3.37 shows the vector V of an 

individual in SP5. The vector elements indicate the index location of the disabled links of 

that individual, 𝑁′. 

𝑉 =

[
 
 
 
 
 
 
2
7
8
11
17
26
29
30]
 
 
 
 
 
 

       (3.37) 

If, given that the matrix, RL and RL2, respectively, are,  

𝑅𝐿 =

[
 
 
 
 
 
 
0.784
0.398
0.107
0.003
0.703
0.997
0.924
0.477]

 
 
 
 
 
 

      (3.38) 

and, 

 𝑅𝐿2 =

[
 
 
 
 
 
 
−0.051
   0.228
−0.253
   0.010
−0.295
   0.005
−0.402
   0.083]

 
 
 
 
 
 

      (3.39) 

And supposing that the Link-Node Mutation Probability rate is set to 0.015, applying 

Equation 3.35, the probability matrix PL is, 
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𝑃𝐿 =

[
 
 
 
 
 
 
−0.051
   0.228
−0.253
   0.010
−0.295
   0.005
−0.402
   0.083]

 
 
 
 
 
 

∙

(

 
 
 
 

[
 
 
 
 
 
 
0.784
0.398
0.107
0.003
0.703
0.997
0.924
0.477]

 
 
 
 
 
 

≤ 0.015

)

 
 
 
 

=

[
 
 
 
 
 
 
−0.051
   0.228
−0.253
   0.010
−0.295
   0.005
−0.402
   0.083]

 
 
 
 
 
 

∙

(

 
 
 
 

[
 
 
 
 
 
 
0
0
0
1
0
0
0
0]
 
 
 
 
 
 

)

 
 
 
 

=

[
 
 
 
 
 
 
0
0
0

0.010
0
0
0
0 ]

 
 
 
 
 
 

  (3.40) 

By applying Equation 3.36, the element in the fourth index position of PL replaces the 

fourth disabled link in 𝑁′ resulting in a new individual 𝑁′′. Therefore, after a two-stage 

mutation, 𝑁′′ is, 

𝑁′′ =

[
 
 
 
 
 
0.832       0          0.526 0.975 0.080
     0           0       −0.818 0.604 0
0.021 −0.705 0.082
−0.610 0.774 −0.193
0.243
0.174

𝟎. 𝟎𝟏𝟎
−0.456

0
−0.085

0.679
0.700
−𝟎. 𝟑𝟒𝟕
−0.223

−0.070
−0.424
0
0 ]

 
 
 
 
 

   (3.41) 

3.3.7 Fitness Evaluation and Termination Criteria 

The cost function in Equation 3.25 guides the evolutionary process towards convergence. 

At the end of one evolution cycle, the health of the genotypes is evaluated, and the 

population is ranked globally following their fitness evaluation using Equation 3.24. The 

top five percent of individuals with the best fitness are chosen to pass to the next generation 

(elitist solutions), replacing the weaker ones. This approach ensures that the mean 

population fitness advances gradually and that any potential early stagnation is avoided 

[182]. The best models form the next generation, and the iterations continue with the 

evolutionary process if the termination conditions are not met. 

The EVLNN algorithm checks the stop criteria at the end of each iteration. If the fittest 

individual meets a predefined value, or the maximum iteration is reached the evolutionary 

process tops. Else the whole evolution cycle repeats itself. For example, Figure 3.14 shows 

that EVLNN has achieved population convergence over 500 generations (or iterations) for 

the Himmelblau benchmark function used to evaluate EVLNN’s performance in Chapter 4. 

The plot shows the falling average MSE converging towards the solution during the search 

process. 
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Figure 3.14  Population convergence plot for the search for global optima for the Himmelblau benchmark 

function. 

3.3.8 Diversity Tracking  

During the evolutionary process, chromosomes are subjected to reorganizations. Hence, 

measuring the diversity in a population of individuals is essential to better understand 

EVLNN’s search characteristics, which can help to improve the algorithm’s performance. 

In EA, individuals' and populations' diversity can be measured at either the genotypic or 

phenotypic levels. Phenotype constituted by a fixed number p of real parameters in the p-

dimensional real space, ℝ𝑝 can be mathematically analyzed by diversity measures [183]. 

However, phenotypic level diversity measure does not lend itself to a straightforward 

approach for phenotype structure with variable topology and a number of parameters like 

the ANN [184].  

In this regard, the genotype space's focus on genotypic diversity measures is more 

appropriate for EVLNN. Nonetheless, conventional diversity measures for the whole 

population can be obtained from the diversity measure for pairs of individuals and 

subsequently combining all the pairwise distances between individuals. Examples are the 

hamming distance, gene-level entropy, and chromosome-level hamming distance [185]. 

These approaches require genomes that have fixed lengths and uniform structures. Defining 
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a measure of diversity for a population with variable-length genomes becomes more 

complicated as conventional approaches lack the mechanisms to effectively handle 

EVLNN’s variable-length genomes. This shortcoming has led to considering the Linguistic 

Complexity (LC) approach to population diversity measures [184].   

The concept of LC is to afford appropriate models to measure a language’s structural 

complexity. It generalizes from single strings to populations using the substring count to 

define the distance between strings. As population diversity is closely related to the concept 

of distance between individuals, a measure of diversity for the population can be obtained 

by estimating the number of different individuals that the population contains. In words, 

the diversity of the population is defined as n times the ratio of the total number of 

substrings in the population genome to the cumulative number of substrings in the genome 

of the individuals considered separately. The derived genome strings, 𝑠𝑖𝑗  from all 

individuals within the population are then used to calculate the population diversity, D(P) 

of a population 𝑃 = {𝑖1, 𝑖2, … , 𝑖𝑛} expressed in Equation 3.42 [184],  

𝐷(𝑃) = 𝐷({𝑖1, 𝑖2, … , 𝑖𝑛}) = 𝑛
|𝑆{𝑖2,𝑖2,…,𝑖𝑛}|

∑ |𝑆𝑖𝑗
|𝑛

𝑗=1

                               (3.42) 

where 𝑛  is the number of individuals in population P, 𝑆{𝑖1,𝑖2,…,𝑖𝑛}  is the total number of 

substrings, 𝑠𝑖𝑗  in the population (that is, considering only once those appearing in the 

genome string of multiple individuals) and |𝑆{𝑖1,𝑖2,…,𝑖𝑛}| its cardinality, and 𝑆𝑖𝑗 is the set of 

substrings of 𝑠𝑖𝑗 with |𝑆𝑖𝑗| its cardinality. 

To explain this relationship using an example, supposing there are three individuals, i1, i2, 

and i3, with genomes 𝑠𝑖1 = 𝑎𝑏𝑐, 𝑠𝑖2 = 𝑏𝑐𝑏, and 𝑠𝑖3 = 𝑎𝑏𝑎𝑑. We have: 

𝑆𝑖1 = {𝑎, 𝑎𝑏, 𝑎𝑏𝑐, 𝑏, 𝑏𝑐, 𝑐}, |𝑆𝑖1| = 6    (3.43) 

𝑆𝑖2 = {𝑏, 𝑏𝑐, 𝑏𝑐𝑏, 𝑐, 𝑐𝑏}, |𝑆𝑖2| = 5     (3.44) 

𝑆𝑖3 = {𝑎, 𝑎𝑏, 𝑎𝑏𝑎, 𝑎𝑏𝑎𝑑, 𝑏, 𝑏𝑎, 𝑏𝑎𝑑, 𝑎𝑑, 𝑑}, |𝑆𝑖3| = 9   (3.45) 
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𝑆{𝑖1,𝑖2,𝑖3} = {𝑎, 𝑏, 𝑎𝑏, 𝑏𝑐, 𝑎𝑏𝑐, 𝑏𝑐𝑏, 𝑎𝑏𝑎, 𝑐, 𝑎𝑏𝑎𝑑, 𝑏, 𝑐𝑏, 𝑐, 𝑏𝑎, 𝑏𝑎𝑑, 𝑎𝑑, 𝑑}, |𝑆{𝑖1,𝑖2,𝑖3}| = 16  (3.46) 

Therefore, applying Equation 3.42, the measure D(P) of diversity for the population 

constituted by the three individuals, i1, i2, and i3, is, 

𝐷({𝑖1, 𝑖2, 𝑖3}) = 3
|𝑆{𝑖1,𝑖2,𝑖3}|

|𝑆𝑖1|+|𝑆𝑖2|+|𝑆𝑖3|
= 3

16

6+5+9
= 2.4   (3.47) 

LC’s string-based approach overcomes the shortcomings of conventional methods by 

supporting highly reorganizable genomes of variable length in the calculation. This feature 

is essential because of its speciation process and accedes to EVLNN’s variable-length 

genomes. Hence, the possibility of using LC’s substring count approach to define a distance 

between individuals belonging to populations with variable length genomes is explored. 

The approach is adapted and described below for EVLNN’s implementation.  

A step-by-step outline of the adapted approach is explained below: 

1. Convert genotype to its genome structure: Individual genotype, 𝑖𝑗 of the population 

𝑃 = {𝑖1, 𝑖2… 𝑖𝑛}, where 𝑛 is the number of individuals in the population temporarily 

converted to their respective genome structure by locating the non-zero elements in the 

genotype and replacing them with ones (‘1’). 

2. Convert genome structure to a string: The element positions with the values of ones 

(‘1’) in the genome structure are retrieved to form a vector which constitutes the 

genome string, 𝑠𝑖𝑗 of that individual, 𝑖𝑗.  

3. Compute population diversity: The derived genome strings, 𝑠𝑖𝑗 from all individuals 

within the population are then used to calculate the population diversity, D(P) using 

Equation 3.42. 

To illustrate EVLNN’s population diversity computation process adapted from the LC 

concept, supposing there are two genotypic individuals, 𝑖1 and 𝑖2 and their genome strings, 

𝑆𝑖1and 𝑆𝑖2are shown in Equations 3.48 and 3.49, respectively, 
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𝑖1 =

[
 
 
 
 

0 −0.348 0
0 0    0.492

0.628 0    0.914
−0.583 −0.569 0.239
0.023     −0.345 0.295]

 
 
 
 

→

[
 
 
 
 
0 1 0
0 0 1
1 0 1
1 1 1
1 1 1]

 
 
 
 

 → 𝑆𝑖1 = {3,4,5,6,9,10,12,13,14,15} (3.48) 

and 

𝑖2 =

[
 
 
 
 
   0.865 0    0        −0.521
0 −0.649 0.211       0     

  0.170 0 0.914 −0.688
0.873 −0.109 −0.311   0.129
  0.723    0.052    0.295    0.566  ]

 
 
 
 

→

[
 
 
 
 
1 0 0 1
0 1 1 0
1 0 1 1
1 1 1 1
1 1 1 1]

 
 
 
 

→ 𝑆𝑖2 = {1,3,4,5,7,9,10,12,13,14,15,16,18,19,20}

 (3.49) 

The cardinality of 𝑆𝑖1 and 𝑆𝑖2, are, 

|𝑆𝑖1| =  |{3,4,5,6,9,10,12,13,14,15}| = 10    (3.50) 

|𝑆𝑖2| = |{1,3,4,5,7,9,10,12,13,14,15,16,18,19,20}|] = 15   (3.51)  

and 𝑆{𝑖1,𝑖2} the total number of substrings is, 

|𝑆{𝑖1,𝑖2}| = |{1,3,4,5,6,7,9,10,12,13,14,15,16,18,19,20}| = 16  (3.52) 

Therefore, applying Equation 3.42, the population diversity, D(P) for 𝑃 = {𝑖1, 𝑖2} is, 

𝐷({𝑖1, 𝑖2}) = 2
|𝑆{𝑖1,𝑖2}|

 |𝑆𝑖1|+|𝑆𝑖2|
= 2

16

10+15
= 1.28    (3.53) 

The explanation of the result above means that the two individuals correspond to 1.28 

equivalent individuals. If the two individuals, 𝑆𝑖1 and 𝑆𝑖2 are identical, then,  

𝐷({𝑖1, 𝑖2}) = 2
|𝑆{𝑖1,𝑖2}|

 |𝑆𝑖1|+|𝑆𝑖2|
= 1     (3.54) 

If the two individuals are completely diverse, D(P)=2. Hence 1 ≤ 𝐷(𝑃) ≤ 𝑛, where n is 

the size of the population. 

Although the adapted LC diversity measure provides insight into the diversity of the 

individuals within the population at time t, it could not show the relationships between the 

number of species and the number of individuals present. To achieve this, additional 
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diversity measures were introduced to EVLNN. Learning from studies in ecological 

speciation, a simple and effective practice is to use Shannon’s diversity and Shannon’s 

equitability. The Shannon Diversity index, H, provides information about species richness, 

specifically, the number of species present and the relative abundances of these different 

species. Here, H is defined as, 

𝐻 = −∑ 𝑝𝑖 ln(𝑝𝑖)
𝑆
𝑖=1                                                  (3.55) 

where 𝑝𝑖 is the proportion of the total sample represented by species i, ln is the Natural log, 

and S is the total number of unique species. The higher the value of H, the higher the 

diversity of species in the population. A higher H value also means a higher number of 

species and the evenness of their abundance. The lower the value of H, the lower the 

diversity. A value of H=0 indicates no diversity or that the population only has one species.  

The Shannon Equitability Index, EH provides information about species evenness, 

specifically, how similar the abundances of different species are, is defined as,  

𝐸𝐻 =
𝐻

𝐻𝑚𝑎𝑥
                                                         (3.56) 

where 𝐻𝑚𝑎𝑥 = ln(𝑆) is the maximum diversity possible, and H is the Shannon diversity 

index. The EH value ranges from 0 to 1, where 1 indicates complete evenness, that is, all 

groups have the same frequency. To provide some perspective, the following is an example 

that shows the calculation H and EH for two given populations with the data shown in Table 

3.1. 
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Table 3.1  Calculation of H and EH for two population samples. 

Population A (100 individuals, five species) 

Species Frequency 𝒑𝒊 𝒍𝒏(𝒑𝒊) 𝒑𝒊 ∗  𝒍𝒏(𝒑𝒊) 𝑯 = −∑ 𝒑𝒊 𝐥𝐧(𝒑𝒊)
𝟓
𝒊=𝟏   𝑬𝑯 =

𝑯

𝑯𝒎𝒂𝒙

 

A 40 0.40 -0.92 -0.37 

1.47 0.92 

B 21 0.21 -1.56 -0.33 

C 18 0.18 -1.71 -0.31 

D 9 0.09 -2.41 -0.22 

E 12 0.12 -2.12 -0.25 

Population B (100 individuals, five species) 

F 20 0.20 -1.61 -0.32 

1.61 1.00 

G 20 0.20 -1.61 -0.32 

H 20 0.20 -1.61 -0.32 

I 20 0.20 -1.61 -0.32 

J 20 0.20 -1.61 -0.32 

 

In Table 3.1, though Population A and Population B have the same number of individuals 

and species, H is higher for Population B than Population A. The higher H value indicates 

that Population B is more diverse in the evenness and abundance of species than Population 

A. For Population B, the EH value is 1.0 shows that there is complete evenness of species 

in this population. 

Figure 3.15 shows a sample diversity measure chart where EVLNN tracks three diversity 

indices, the population diversity (Equation 3.47) using the LC approach, the Shannon 

Diversity Index (Equation 3.55), and the Shannon Equitability Index (Equation 3.56).  

Figure 3.15  The diversity measurements chart produced by the EVLNN algorithm. 

The plot provides insight into EVLNN species diversity, richness, and evenness. The 

overall population diversity reduces from a value of two to about 1.3, indicating the 

population converges. However, the solutions are not entirely identical at the end of the 
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evolution cycles. The Shannon Diversity index declines from a value of about 2.5 to about 

1.5 at generation 35 onwards, indicating the number of species is reducing but stabilizes at 

generation 35. Shannon Equitability remains about 0.7 to 0.9, indicating changing species 

unevenness throughout the evolutionary process. These measures suggest that EVLNN has 

maintained diversity. 

3.3.9 Interpretability of EVLNN 

ANN are black-box models, and interpreting them is a significant challenge. With 

interpretability, ANN can considerably increase their adoption, particularly in the field of 

energy predictions, where valuable insights into the underlying system structure can be 

advantageous.  

Sensitivity Analysis (SA) approaches are often applied to black-box neural networks to 

attribute the output responses' importance to the input variables' contribution. However, 

these approaches are not straightforward, as some degree of inconsistency would be 

expected when interpreting the causal relationship between the output variable and a 

predictor of interest. In most cases, it has not been possible to reach a consensus on the 

best-performing method as SA methods can produce varying outcomes [183] ‒ [185]. A 

closer look at the above literature revealed that instability exists due to the SA methods 

applied. Most prior work has applied SA methods to a single trained neural network for 

analysis, which can have varying results. This inconsistency arises from the stochastic 

nature of the neural network modeling approach. The final trained state is determined by 

several factors, such as the network architecture and the initial random weights used [186].  

To overcome this inconsistency, several authors have proposed using ensemble ANN and 

averaging the network errors [184] – [186]. Pentoś [186] proposed the use of three SA 

methods, namely the Partial Derivatives (PaD) method, the Connection Weights (CW) 

method, and the Statistical Methods to SA on an ensemble of 20 ANN architecture to reduce 

the inherent instability. Luíza da Costa et al. [187] proposed a voting approach to evaluate 

the importance of rankings in the contribution of the input to the output of a trained ANN 

generated by five weight-based sensitivity analysis methods, namely Garson [188], Yoon 

et al. [189], Tsaur et al. [190], Howes and Crook [191], and Olden and Jackson [192]. 
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Instead of using the magnitude of variable importance, the most voted importance orders 

were considered to determine the final importance order. However, the approach is biased 

towards a homogeneous ensemble of weight-based sensitivity analysis methods. J. de Ona 

and Garrido [193] proposed applying heterogeneous sensitivity analysis methods to a set 

of trained ANNs to obtain a ranking of relative importance for each ANN and each method. 

These methods are the Perturb, the Profile, the CW, and the PaD. Then an approach based 

on calculating the ranking of variable’s relative importance for each method as a function 

of average importance values is obtained from every ANN in the set. However, using the 

magnitude of the variable’s relative importance in the calculation can be misleading. It may 

indicate an erroneous importance order due to the differences in the ANN topologies and 

connection weights.  

The aim of enabling interpretability in the EVLNN is to help identify major factors 

influencing the prediction. However, ensuring the outcome of SA methods can produce a 

reliable result is of great importance. To the author’s knowledge, the proposed EVLNN’s 

ensemble-based approach to sensitivity analysis is evaluated for the first time in this study 

[194]. The approach involves applying an ensemble SA methods described in [195]; namely, 

the PaD method [196] [197], the Perturb method [198], the Profile method [199] [200], and 

the CW method [192] [201], to a set of 50 identified EVLNN models based on parsimony. 

Subsequently, a data aggregation technique is employed to determine the relative 

importance of the input variable that influences the output. Figure 3.16 shows the block 

diagram of the proposed approach.  
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Figure 3.16  The proposed ensemble-based approach to sensitivity analysis 

The approach is described below, with its pseudo-code and detailed implementation 

explained in Appendix B. 

A step-by-step outline of EVLNN’s ensemble-approached to sensitivity analysis is 

explained below: 
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1. Trained EVLNN with the dataset: Trained a set of n parsimonious EVLNN models.  

2. Analyze variables and create categories: Analyze the input variables to identify and 

differentiate significant categories.  

3. Apply ensembled-based SA method: Apply the PaD, Perturb, Profile, and CW 

methods to every one of the n models to compute the importance values of each 

variable.  

4. Store importance values in a matrix: Store the calculated importance values of each 

variable by each method into a matrix. 

5. Transform the importance values into importance orders: Based on the importance 

values, transform them into importance orders with the variables ranked.   

6. Aggregate and average the importance orders over n models: Aggregate the 

importance orders over n models for each variable and method.  

7. Transfer importance orders to the categories: Transfer the importance orders to their 

respective categories and rank them.  

8. Aggregate the amount of voting for each category: Use a voting approach to 

evaluate the importance of ranking by aggregating the amount of voting. If there is a 

tie, the number of voting for the following positions is considered to break the tie.  

This approach is applied to a real-world problem to determine factors influencing the 

energy consumption of the Hadoop system. The results are presented and discussed in 

Chapter 5, demonstrating better stability in EVLNN’s interpretability, drastically reducing 

the potential inconsistency.  

 

3.4 The EVLNN Algorithm for Handling Multimodal 

Functions 

In order to validate and compare its performance to other optimization algorithms, the 

EVLNN algorithm design is subjected to a suite of benchmark test functions in Chapter 4. 

Benchmark test functions are artificially created to represent the nature of many real-world 

problems [202] to help validate the performances of optimization algorithms [203]. These 
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functions often consist of multimodal and multi-dimensional landscapes with multiple 

global optima. The steps below explain how the EVLNN algorithm handles multimodal 

function optimization, mainly how EVLNN’s speciation concept and novel intra-species 

and inter-species crossovers and mutation are applied in function optimization. 

 

A step-by-step outline of EVLNN’s approach to multimodal function optimization is 

explained below: 

1. Define the parameter values of EVLNN, such as the population size 𝑁𝑃, the maximum 

number of generations Gmax, the number of species 𝑁𝑠 , the intra-species crossover 

percentage XOp, the inter-species crossover probability XSp, the mutation percentage 

MUp, the mutation value range MUr, and the mutation matrix probability MXp.  

2. Initialize a population X of 𝑁𝑃 solution candidates,  𝐗 = {𝒙1, 𝒙2, … , 𝒙𝑁𝑃} where each 

solution candidate 𝒙𝑖 is a D-dimensional vector containing the variable values to be 

optimized, which are randomly and uniformly distributed between [𝑥𝑗
𝑙𝑜𝑤 𝑥𝑗

ℎ𝑖𝑔ℎ
] for the 

range of the input domain such that, 

𝑥𝑗,𝑖 = 𝑥𝑗
𝑙𝑜𝑤 + (𝑟𝑎𝑛𝑑(0,1). (𝑥𝑗

ℎ𝑖𝑔ℎ
− 𝑥𝑗

𝑙𝑜𝑤))                    (3.57) 

where j=1, 2, …, D; i=1, 2, …, NP with j and i being the variable and individual indexes, 

respectively. That is, xj,i is the jth variable of the ith individual.   

3. Encode each solution candidate 𝒙𝑖  of D-dimensional vector, into the form of a 

candidate chromosome matrix Y of variable length s, where 2 ≤ s ≤ Ns, (Ns is the 

number of species),  

𝐘 = [

𝑥1,𝑖
:
𝑥𝑗,𝑖
] = [

𝑥1,𝑖
1 … 𝑥1,𝑖

𝑠

: : :
𝑥𝑗,𝑖
1 … 𝑥𝑗,𝑖

𝑠
]                              (3.58) 

where the elements of the chromosome matrix are derived from dividing 𝑥𝑗,𝑖 into s 

parts such that, 

𝑥𝑗,𝑖 = ∑(𝑥𝑗,𝑖 .∗ 𝐖)                                            (3.59) 

where W is a vector of a weighted coefficient given by,     

     𝐖 =
𝑆 

∑𝑆
         (3.60) 
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where S is a uniformly distributed random integer with a vector of size between 2 and 

Ns using Equation 3.61 (the integers are generated through the function ‘randi’ in 

MATLAB). 

𝑆 = 𝑟𝑎𝑛𝑑(1, 𝑟𝑎𝑛𝑑𝑖([2, 𝑁𝑠]))    (3.61) 

4. Speciate the population of candidate solutions differentiated by the length of the 

chromosome matrix s and obtain the size of each species. 

5. Compute the function values of the ith solution candidate and calculate its absolute 

error, 𝜀𝑖 is, 

 𝜀𝑖 = |𝑓𝑚𝑖𝑛 − 𝑓(𝑥1, 𝑥2, … , 𝑥𝐷)|    (3.62) 

 

where fmin is the given function minima, and D is the number of variables or 

dimensions. The fitness Fi of the ith chromosome matrix is subsequently calculated 

using the value of 𝜀𝑖 from Equation 3.62, 

𝐹𝑖 =
1

1+𝜀𝑖
                                                 (3.63) 

6. Obtain the number of species and species size. 

7. For each species, rank the solution candidates based on their fitness value. 

8. Apply the Stochastic Universal Selection (SUS), a selection scheme employed to 

choose individuals for recombination and mutation. SUS is non-bias and ensures a 

minimum spread is maintained using a single random value to select the candidates at 

equally spaced intervals. Hence, it is likely that in SUS, weaker individuals of the sub-

population have equal chances to be chosen and, therefore, do not allow the fittest 

individuals to dominate the candidate space, prematurely killing the diversity. The SUS 

example is illustrated in Figures 3.17 and 3.18. Using the individual’s fitness, a 

selection probability for that individual is calculated as shown in Table 3.2 and mapped 

to a contiguous segment of a line such that the individual’s segment is equal in size to 

its fitness. The mapping is illustrated in Figure 3.17 using the fitness information in 

Figure 3.18(b). The starting position of the first pointer is given by a uniformly 

distributed random number in the range [0, 1]. For ten individuals to be selected, the 



Chapter 3. Evolutionary Lean Neural Network    80 

 

 

distance between the pointers is 1/10=0.1. A modulo function is applied to ensure an 

even number of individuals are selected. 

 

Table 3.2  Selection probability and fitness value. 

 

Number of 

Individuals 
1 2 3 4 5 6 7 8 9 10 

Fitness  

Value 
0.717 0.666 0.629 0.587 0.476 0.462 0.435 0.099 0.062 0.014 

Selection 

Probability 
0.17 0.16 0.15 0.14 0.11 0.11 0.10 0.02 0.01 0.00 

Probability 

Cummulation 
0.17 0.33 0.49 0.63 0.74 0.85 0.96 0.98 0.99 1.00 

 

 

Figure 3.17 The SUS mapping of an individual’s fitness to a contiguous segment. The selected individuals 

consist of the 1, 1, 2, 2, 3, 4, 4, 5, 6, and 7. 

 

Figure 3.18 illustrates steps 6 to 8 using a sample species of ten individuals undergoing 

the selection process for recombination and mutation. 

 

 

 

 

 

 

    1                                   2                              3                             4                          5                       6                    7          8   9 10 

0.0                                                  0.17                                      0.33                                   0.49                                 0.63                           0.74                       0.85             0.96 0.98 0.99 1.00 

Random  
number 

Pointer 1       Pointer 2          Pointer 3          Pointer 4         Pointer 5         Pointer 6         Pointer 7          Pointer 8          Pointer 9       Pointer 10 

Individuals:  
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0.014  0.717  0.476 

0.062  0.666  0.462 

0.435  0.629  0.435 

0.476  0.587  0.666 

0.629 
 

0.476 
 

0.717 

0.587  0.462  0.587 

0.099  0.435  0.666 

0.462  0.099  0.587 

0.717  0.062  0.717 

0.666  0.014  0.629 

(a)                                (b)                                 (c) 

Figure 3.18(a-c)  (a)  A subpopulation of individuals within a species with corresponding fitness. (b) 

Individuals are ranked within the species according to their fitness. (c) Apply SUS to select potential 

candidates for recombination and mutation. 

 

9. Perform recombination on the selected list by sequential pairing down the list. 

a. If there is only one individual in the species, then perform mutation. 

b. Generate a random number between 0 and 1 with normal distribution, and if the 

number ≤ XSp, perform inter-species crossover. 

c. Else perform intra-species crossover.  

10. Perform mutation on a selected list of individuals using the expression, 

𝒀𝒏𝒆𝒘 = 𝒀 + (𝑪 .∗ 𝑽)                                       (3.64) 

where 𝒀𝒏𝒆𝒘 is the new mutated individual of the original Y, the candidate chromosome 

matrix in Equation 3.58, C is the change matrix with element values within the 

mutation range MUr, 

𝑪 =  2 ∗ 𝑀𝑟 ∗ 𝑟𝑎𝑛𝑑(0,1) − 𝑀𝑈𝑟                           (3.65) 

and V is the mutation matrix obtained from performing a logical comparison between 

a randomly generated matrix and the mutation matrix probability, MXp,  

𝑽 = 𝑟𝑎𝑛𝑑(0,1) < 𝑀𝑋𝑝                                (3.66) 

11. Perform integrity checks on boundary limits. 

Selected list of individuals 

for recombination. 

Selected list of individuals 

for mutation. 
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12. Evaluate the offspring by comparing the fitness of the offspring with their parents. 

Weaker individuals are replaced with healthier ones. Repeat steps 7 to 12 until all 

species are evaluated. 

13. Rank individual fitness population-wise, and maintain elitism ELp of 5%, replacing 

individuals ranked in the bottom 5% with individuals from the top 5%.  

14. Create a next-generation parent population. 

15. If maximum generation reaches or stops, condition met, then stop. Otherwise, go to 

step 4. 

3.4.1 Intra-Species Crossover for Low-Dimensionality Problems 

Low-dimensionality test functions generally have two variables, 𝑥1 and 𝑥2 to optimized. 

To demonstrate the crossover process, Figure 3.19(a-b) shows two sample parents from 

Species_6, namely Parent_1 and Parent_2. Crossover occurs at the parents’ chromosome 

matrix mid-point, indicated by the red dotted lines in Figure 3.18. The offspring produced 

is shown in Figure 3.20(a-b).  

-0.5461 -0.1997 -0.4918 -0.4740 -0.1177 -0.0861 

0.2917 0.1067 0.2627 0.2532 0.0629 0.0460 

(a) Parent_1      (b)  Parent_2  

Figure 3.19(a-b)  Sample chromosome matrices of Parent_1 and Parent_2 in Species_6. 

 

 

(a) Child_1      (b)  Child_2  

Figure 3.20(a-b)  Chromosome matrices of new offspring, Child_1, and Child_2, after crossover of 

Parent_1 and Parent_2 in Species_6. 

For odd-numbered species, the crossover point in the chromosome matrix is determined by 

rounding up the mid-point value. For example, in Species_9, the midpoint crossover is 
9

2
=

4.5 round up to 5, that is, between the fifth and sixth column of the chromosome matrix.  

 

1.5713 0.5747 1.4152 1.3640 0.3386 0.2478 

0.1615 0.0591 0.1455 0.1402 0.0348 0.0255 

-0.5461 -0.1997 -0.4918 1.3640 0.3386 0.2478 

0.2917 0.1067 0.2627 0.1402 0.0348 0.0255 

1.5713 0.5747 1.4152 -0.4740 -0.1177 -0.0861 

0.1615 0.0591 0.1455 0.2532 0.09629 0.0460 
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3.4.2 Intra-Species Crossover for High-Dimensionality Problems 

For the EVLNN algorithm optimizing functions with high dimensionality, the formation of 

the chromosome matrix is modified to take into account the high number of variables of 

the test functions by increasing the number of rows in the chromosome matrix. For example, 

Figure 3.21(a-b) features a pair of parents from Species_4 where the respective 

chromosome matrix contains the values for variables 𝑥1, 𝑥2, 𝑥3, 𝑥4 𝑎𝑛𝑑 𝑥5.  

-2.2016 -4.3602 -3.8046 -3.4728  1.0484 -0.5084 3.3494 -4.0436 

2.6440 -4.5854 0.7075 3.0252  -2.4367 -4.2783 0.3942 4.7483 

2.6083 0.3166 -0.3147 -1.9407  1.5839 -2.7861 5.1003 -5.0924 

-1.2290 2.8698 -5.0176 0.2933  1.9451 4.2491 -4.3364 2.8261 

0.6972 4.4616 -1.6744 -3.4371  2.5510 -3.5736 -0.5893 3.2619 

 

(a) Parent_1                      (b)  Parent_2 

 

Figure 3.21(a-b)  Sample chromosome matrix of Parent_1 and Parent_2 in Species_4 for solving high 

dimensionality problems.  

Similarly, recombination occurs at the parents’ chromosome matrix mid-point, indicated by 

the red dotted lines in Figure 3.21(a-b). The offspring produced is shown in Figure 3.22(a-

b). 

-2.2016 -4.3602 3.3494 -4.0436  1.0484 -0.5084 -3.8046 -3.4728 

2.6440 -4.5854 0.3942 4.7483  -2.4367 -4.2783 0.7075 3.0252 

2.6083 0.3166 5.1003 -5.0924  1.5839 -2.7861 -0.3147 -1.9407 

-1.2290 2.8698 -4.3364 2.8261  1.9451 4.2491 -5.0176 0.2933 

0.6972 4.4616 -0.5893 3.2619  2.5510 -3.5736 -1.6744 -3.4371 

 
(a) Child_1       (b)  Child_2  

Figure 3.22(a-b)  Chromosome matrix of Child_1 and Child_2 are new offspring after recombination of 

Parent_1 and Parent_2 in Species_4. 

 

3.4.3 Function Optimization using EVLNN – An Example 

For illustration, the Himmelblau benchmark function is presented as an example of function 

optimization to demonstrate EVLNN’s species parallelism and search capabilities. A series 

of runs were performed, extensive data were collected during the experiment, and the 
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algorithm’s search characteristics were investigated and analyzed with visualization plots 

to explain EVLNN’s steps in the search optimization process.  

The Himmelblau-2D function has the mathematical equation expressed as,  

𝑓(𝑥) = (𝑥1
2 + 𝑥2 − 11)

2 + (𝑥1 + 𝑥2
2 − 7)2                   (3.67) 

The function’s 3D plot is shown in Figure 3.23, where the contour depicts a multimodal 

and multiple global optima landscape. Figure 3.24 shows the contour in 2D. The search is 

evaluated on 𝑥𝑖 ∈ [-6 6], for all i =1, …, d where d=2. The function has four global minima 

at f(x*)=0, at x* = (3, 2), x* = (-3.779, -3.283), x* = (-2.805, 3.131) and x* = (3.584, -

1.848). Four large red squares mark the locations of the global optima in the search 

landscape. 

Figure 3.25 shows the EVLNN’s species distribution at initialization. There are in total 125 

individuals and 14 species. As observed, individuals are not distributed evenly among the 

different species. SP3 or Species_3 has 13 individuals, the largest species, whereas 

Species_6 and Species_15 have five individuals each. They form the smallest species. 
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Figure 3.23  3D plot of the Himmelblau function with four global minima. 

Figure 3.24  Contour plot of the Himmelblau function with locations of the four global minima. 
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Figure 3.25  Species distribution at the initialization. 

Figure 3.26 shows the population at initiation presented on a 2D search landscape of the 

Himmelblau function in the range [-6 6]. Potential solutions are represented by various 

colored shapes on the landscape with similar colored shapes belonging to the same species. 

The species are initially scattered over the search landscape, searching for attractive basins 

shown by the four red squares in this multimodal contour.  

Figure 3.26  Landscape showing speciated solution candidates in generation one. 
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Figure 3.27 to 3.33 show the evolutionary map of the EVLNN algorithm captured in steps 

of ten generations from generation 20, 40, 60, to 100, then in steps of 200 generations from 

100 to 500. These plots visually depict how the population evolves on the objective function 

surface where the various species search for the global optima. More granular search steps 

are illustrated in Appendix C. 

Figure 3.27  At generation 20, species are seen drawing closer to the minima. 
 

Figure 3.28  At generation 40, Species_8 has become identical to the other species' search positions. 
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Figure 3.29  At generation 60, the search continues. 

 

Figure 3.30  At generation 100, there is a clear path on the movement of these remaining species. 
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Figure 3.31  At generation 300, all the species except Species_7 are seen inside one of the red squares. 

 

Figure 3.32  At generation 400, Species_7 has located one of the global minima.  
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Figure 3.33  At generation 500, all the species are inside one of the red squares where the global minima are 

located. 

Figure 3.34 shows the convergence rate of each of the 14 species, converging at a different 

rate to the global minima. At convergence, the global optima are found by SP3, SP2, SP5, 

and SP6, with the lowest error at 2.6998 x 10-6, 1.1689 x 10-6, 1.1638 x 10-5, and 2.7659 x 

10-7, respectively. 

Figure 3.34  Individual species convergence over 500 generations. 
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3.5 Chapter Summary 

In this chapter, the EVLNN framework is explained along with several novel mechanisms. 

Firstly, a structurally inclusive matrix encoding scheme is designed for model 

representation in the fitness landscape. Network information is encoded in a chromosome 

matrix, allowing the weights and structures to evolve simultaneously. Secondly, species 

parallelism is proposed for preserving structural innovation and giving potential solutions 

within the species a chance to thrive. It is achieved by introducing two crossover strategies, 

using intra-species crossover as the predominant recombination strategy but interspersing 

the computation with an occasional inter-species crossover. The strategies have maintained 

parallelization and intensified the search for promising regions of interest while exploring 

new parts of the fitness landscape. Thirdly, a two-stage mutation called the weights 

mutation and link-node mutation is introduced to prevent the search from being trapped in 

local optima by making incremental changes to the ANN weights and structures. The 

mutations are performed separately, injecting new alleles into the gene pool to prevent the 

population from stagnating too quickly. Fourthly, a diversity tracker mechanism is 

incorporated into the EVLNN algorithm to provide insights into the evolutionary search 

behavior that would benefit the fine-tuning of the GA parameters. Finally, an ensemble-

based approach to sensitivity analysis is implemented into the structure of the EVLNN to 

help explain the relationship between the input variables and the output. 

In addition, the EVLNN algorithm for handling multimodal function optimization is 

presented. While the purpose of EVLNN is to automate neural architecture search for 

energy prediction, its central concept of speciation can be applied to function optimization 

to evaluate the global search characteristic of EVLNN and the algorithm's generalization 

ability. 

 

 

 



 

 

Chapter 4 

4. Model Evaluation and Comparison 

4.1. Introduction 

This chapter describes the evaluation of the EVLNN algorithm using a broad set of 

benchmark test functions, including those recommended in the CEC 2013 and 2015 

Competitions [204] [205]. As far as possible, the test suite covers various problems, 

including unimodal, multimodal, multi-dimensional separable, and non-separable, for a 

comprehensive assessment of the EVLNN algorithm. The performance of the EVLNN is 

then compared to classic GA, meta-heuristic methods such as PSO and DE, and the state-

of-the-art niching algorithms from the CEC 2013 and 2015 Competitions. 

It is worth noting that benchmark test functions are artificially created and are often well 

designed. In contrast, real-world problems are much more diverse and can be very different 

from these test functions [206]. Thus, optimization algorithms that work well for test 

functions may not work well in real-world applications. As such, additional experiment 

using real-world time-series energy load data is also considered in this chapter to assess the 

effectiveness of EVLNN in handling real-world prediction problems. 

 

4.2. Test Methodology and Assumptions  

The implementation of the benchmark functions has been chiefly based on the source code 

from the IEEE CEC 2013 competition [207]  and public domain resources from [208] [209]. 

PSO, DE, and GA are implemented using public domain codes [210]. Standard parameter 

settings are used with no additional tuning when implemented in the PSO, DE, and GA 

algorithms. 
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The test made several assumptions. Firstly, the number of global optima is known. Secondly, 

the different distances between the global optima are known. Thirdly, modality information 

on the problem landscape is known. The EVLNN algorithm is executed for each problem 

from f1 to f16 in Tables 4.1 to locate all global optima at a given accuracy level, 𝜀 where 𝜀 

∈  {1.0E-01, 1.0E-02, …, 1.0E-05}. The accuracy 𝜀 , specifies the maximum allowable 

difference between a known global optima fopt (or minima, fmin) and the predicted solution 

f(x) expressed as, 

|𝑓𝑜𝑝𝑡 − 𝑓(𝑥)| ≤ 𝜀                                                   (4.1) 

Since the number of global optima is known, the algorithm’s performance in locating all 

global optimas over multiple runs can be measured in terms of the peak ratio (PR) success 

rate (SR) and the averaged number of evaluations to achieve a required accuracy 𝜀. Given 

a fixed maximum number of function evaluations (MaxFE), and required accuracy level 𝜀,  

PR, expressed in Equation 4.2, measures the average percentage of all known global optima 

found over multiple runs, 

𝑃𝑅 =
∑ 𝑁𝑃𝐹𝑖
𝑁𝑅
𝑖=1

𝑁𝑅∗𝑁𝐾𝑃
                                                     (4.2) 

where NPFi  represents the number of global optima found during the ith run, NKP 

represents the number of known global optima, and NR represents the number of runs. SR 

is expressed in Equation 4.3, which measures the success rate in the percentage of runs out 

of all runs, 

𝑆𝑅 =
𝑁𝑆𝑅

𝑁𝑅
                                                       (4.3) 

where NSR is the number of successful runs and NR is the number of runs. The 

recommended value is NR=50 from the CEC benchmark standard [202]. Therefore, a value 

of 1.0 indicates that all fifty runs found all global peaks, whereas a value of 0.0 means none 

of the peaks are found in any of the fifty runs. The best solutions found after a given number 

of evaluations in multiple runs are then checked if it is within the niche radius, r to be 

considered the global optima. The mean global optima found averaged over fifty runs on 
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these test functions are then compared with the CEC 2013 and 2015 competition algorithms 

to assess EVLNN’s competitiveness.  

Table 4.1 presents the parameters for performance measurement for the benchmark test 

functions f1 to f16 to determine if a niching algorithm has located all the global optima in 

the competition. The value of the niche radius r, the peak height, the number of global 

optima, and the maximum number of function evaluations MaxFE are referenced from 

[202].  

Table 4.1  Parameters used for performance measurement. 

Function                  Description  r Peak height No. of global optima MaxFE 

f1 Bohachevsky N.1 (2D) 0.5 0 1 2.0E+05 

f2 Booth (2D) 0.5 0 1 2.0E+05 

f3 Sphere (30D) 0.5 0 1 2.0E+05 

f4 Brown (30D) 0.5 0 1 2.0E+05 

f5 Ackley (2D) 0.5 0 1 2.0E+05 

f6 Rosenbrock (2D) 0.5 0 1 2.0E+05 

f7 Rastrigin (30D) 0.5 0 1 2.0E+05 

f8 Griewank (30D) 0.5 0 1 2.0E+05 

f9  Five-uneven-peak trap (1D) 0.01 200.0 2 5.0E+04 

f10  Equal Maxima (1D) 0.01 1.0 5 5.0E+04 

f11 Uneven Decreasing Maxima (1D) 0.01 1.0 1 5.0E+04 

f12  Himmelblau (2D) 0.01 200.0 4 5.0E+04 

f13  Six-hump Camel Back (2D) 0.5 1.031628453 2 5.0E+04 

f14  Shubert (2D) 0.5 186.7309088 18 2.0E+05 

f15  Vincent (2D) 0.2 1.0 36 2.0E+05 

f14  Shubert (3D) 0.5 2709.093505 81 4.0E+05 

f15 Vincent (3D) 0.2 1.0 216 4.0E+05 

f16 Modified Rastrigin (2D) 0.01 -2.0 12 2.0E+05 

 

4.2.1. Genetic Parameter Tuning for EVLNN 

Generic parameter settings can significantly impact the performance of EAs, and EVLNN 

is not an exception and must be tuned. The genetic parameters for EVLNN to be tuned are 
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the population size 𝑁𝑃, the maximum number of generations Gmax, the number of species 

𝑁𝑠, the intra-species crossover percentage XOp, the inter-species crossover probability XSp, 

the mutation percentage MUp, the mutation value range MUr, the mutation matrix 

probability MXp, and the elitism percentage ELp. A summary of the genetic parameters is 

shown in Table 4.2. 

 Table 4.2  The EVLNN genetic parameters and their description. 

EVLNN Genetic Parameters Description 

𝑁𝑃 Population size  

Gmax Max generation  

Ns Number of species 

XOp Intra-species crossover percentage 

XSp Intra-species crossover percentage 

MUp Mutation percentage 

MXp Mutation Matrix Probability 

MUr Mutation value range  

ELp Elitism percentage 

 

Generally, genetic parameters adopt different values under given environments. To avoid 

ad-hoc speculation of these parameter values with no guideline on what values might work 

better, fixing them requires a study of the possible effects of these parameters and their 

interaction with the quality of the solution. Therefore, a set of experiments is designed to 

establish the values of these genetic parameters. Given the fixed MaxFE budget and the 

number of global optima Gopt of a function under test, the process includes first establishing 

the values of Np and Gmax, then proceeding to determine XOp and MUp, and, finally, the 

values of XSp, MUr, and MXp. 

A) Tuning of Np and Gmax 

The parameters Np and Gmax are the first values to be determined. For three different values 

of MaxFE={5.0E+04, 2.0E+05, 4.0E+05} [202], the respective Np and Gmax are different. 

The most common value pairs for Np and Gmax used during the experiments are, 
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{Np, Gmax} = {

{125, 400}, {100, 500}      𝑓𝑜𝑟 𝑀𝑎𝑥𝐹𝐸 = 5.0E + 04 
{500, 400}, {400, 500}      𝑓𝑜𝑟 𝑀𝑎𝑥𝐹𝐸 = 2.0E + 05
{1000,400}, {800, 500}     𝑓𝑜𝑟 𝑀𝑎𝑥𝐹𝐸 = 4.0E + 05

   (4.4) 

 

As for Ns, the value is set using the equation, 

Ns = x * Gopt       (4.5) 

where 1.5 ≤ x ≤ 4.0 and Gopt is the number of optima. This range is determined empirically, 

with the value x = 1.5 being the most consistently used. However, if the search landscape 

has a low number of optima, the value for x is generally higher.  

B) Tuning of XOp and MUp and Result Analysis 

XOp and MUp are set to 80% and 20%, respectively, to provide a stable response. XSp, MUr, 

and MXp are then tuned collectively to provide an adequate balance in explorative and 

exploitative search. These three parameters are the most sensitive as slight variations in 

their values could lead to very different results.  

Table 4.3 presents three parameter sets used in EVLNN to optimize f15, Shubert (2D) 

function, as an example to explain the interactions between the parameters and the effects 

of the responses. Parameter set 2 yielded better PR results at higher accuracy of 𝜀 = 1.0E-

03 to 𝜀 = 1.0E-05, parameter set 3 yielded better PR results at lower accuracy of 𝜀 = 1.0E-

01 to 𝜀 = 1.0E-02. Parameter set 1 was the worst performer, all other parameters being held 

constant. Function f15 is thus fine-tuned with, Np = 400, Gmax = 500, Ns = 27 (see Equation 

4.5, where x is chosen as 1.5). This configuration provides an average of 15 individuals per 

species, given by, 
𝑁𝑝

𝑁𝑠
=

400

27
 ≈15. Parameter set 2 is therefore chosen. 
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Table 4.3  EVLNN experiment for Shubert (2D) function for MaxFE=2.0E+05. Np, Ns, and Gmax yielded 

different Peak Ratio (PR) results over a range of accuracy 1.0E-01 to 1.0E-0.5 for 50 runs. The best values 

for each accuracy level are in bold. 

Parameters Np Gmax Ns Gopt 
𝑵𝒔

𝑮𝒐𝒑𝒕
 

𝑵𝒑

𝑵𝒔
 PR 𝜺 

E
x

p
er

im
en

ts
 

S
et

 1
 

250 800 18 18 1 ~14 

0.372 1.0E-01 

0.326 1.0E-02 

0.020 1.0E-03 

0.000 1.0E-04 

0.000 1.0E-05 

S
et

 2
 

400 500 27 18 1.6 ~15 

0.504 1.0E-01 

0.504 1.0E-02 

0.498 1.0E-03 

0.450 1.0E-04 

0.276 1.0E-05 

S
et

 3
 

400 500 36 18 2 ~11 

0.778 1.0E-01 

0.648 1.0E-02 

0.213 1.0E-03 

0.042 1.0E-04 

0.008 1.0E-05 

 

C) Tuning of XSp, MXp, and MUr and Result Analysis 

The values of XSp, MXp, and MUr are subsequently determined for the Shubert (2D) 

function with MaxFE=2.0E+0. It was observed that a stable population was produced when 

XSp was set to between 1% to 2%. If XSp is set too high, inter-species recombination 

activities increase, reducing species size and eventually leading to extinction. Depending 

on the application, this outcome may not be desirable.  

This phenomenon can be illustrated with two separate populations configured with different 

XSp settings, at 1.5% and 4%, respectively, for the Shubert (2D) function evaluation. After 

500 generations, their respective species distributions are shown in Figure 4.1(a-b). For the 

population where XSp is set to 4%, it is observed that four species have had their species 

sizes reduced to 1, namely Species_2, Species_9, Species_12, and Species_27 (see Figure 

4.1b highlighted by red circles). A unity species size means the lone individual would not 

participate in recombination. Mutation only would significantly reduce the effectiveness of 

explorative search. Contrast this to the population where XSp is set to 1.5%, and species 

size remained an average of about 15 (see Figure 4.1a highlighted by a red dotted line). 
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This number remained relatively stable from the beginning. The experiment found evidence 

that a low value of XSp helps maintain the species population. This finding is significant as 

the tuning of XSp can determine EVLNN’s search behavior. For solving multimodal and 

multi-optima problems, the XSp value is recommended to remain small.  

 
(a)                                      (b) 

Figure 4.1(a-b)  Species distribution and XSp values at the end of 500 generations for the evaluation of 

the Shubert (2D) function. In (a), XSp set to 1.5% resulted in species with an average size of 15 holding 

stable from the start. In (b), XSp is set higher to 4% resulting in some species (highlighted in red circle) 

having a species size of 1.  

 

The value of MXp determines the number of genes in the change matrix participating in the 

mutation process. This parameter can take a broader range of values from 5% to 60%. 

Depending on the problem to be solved, the value of MXp can be adjusted. For example, a 

higher MXp value will expand the search in the vicinity of a basin, and a lower value will 

deepen the search toward a basin. Therefore, if the value is set too high, convergence may 

not happen; likewise, solutions may not be optimal if the values are too low. 

In conjunction with MXp, the parameter MUr determines the values to be added to the genes 

of the chromosome matrix in the selected mutant. The range of values for MUr is -0.1 ≤ 
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MUr ≤ 0.1 for small incremental changes. A narrower range of -0.02 ≤ MUr ≤ 0.02 is set for 

a small search range. A summary of the EVLNN algorithm’s parameter settings derived 

from the Shubert (2D) function evaluation is described in Table 4.4. The parameter tuning 

of EVLNN is problem-specific and needs to be fine-tuned for different function 

optimization. Nonetheless, the empirical rule-of-thumb derived from Table 4.4 provides a 

framework for EVLNN parameter tuning. 

Table 4.4  Lesson learned on the EVLNN parameters and settings derived from evaluating the Shubert 

(2D) function. 

EVLNN 

Parameters 
Values Empirical Lesson Learned 

𝑁𝑃 100, 400, 800 Higher Np values for search landscape with a high number of global 

optima.  

Gmax 400, 500 A higher value allows sufficient generations for species to evolve and 

converge to better solutions.  

Ns x * Gopt Gopt is the number of global optima and 1.5 ≤ x ≤ 4.0 with a higher value 

of x for multimodal high-dimensional functions. For low Gopt, x is set to 

a higher value. 

XOp 80% This percentage provides a stable evolutionary process. 

XSp 1% to 2% Higher XSp for multimodal functions with multiple global optima. With 

higher Ns, XSp needs to reduce accordingly to avoid species extinction. 

MUp 20% This percentage provides a stable evolutionary process. 

MXp 5% to 60% Higher MXp to avoid stagnation and local minima trap in challenging 

multimodal high dimensionality landscape. 

MUr -0.1 to 0.1 A narrower range is selected if the search space is small.  

ELp 5% This percentage provides a stable evolutionary process. 

 

 

4.3. Evaluation using Benchmark Test Functions  

Many benchmark functions for numerical optimization have been reported in the literature. 

However, there is no standard list or set of benchmark functions to validate and compare 

the performance of optimization algorithms [203]. In order to evaluate EVLNN’s search 
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abilities, a test suite is compiled to expose EVLNN to a wide variety of problems such as 

unimodal, multimodal, separable, non-separable, and multi-dimensional problems. The 

problem of function optimization is essentially finding the function's minima (or maxima).  

Unimodal test functions have only one global solution in the search landscape, whereas 

multimodal test functions have more than one local optimum in the search space. Single 

model optimization algorithms are the basis of more complex optimization algorithms such 

as multi-objective optimization and constrained optimization [211]. If the landscape is 

unimodal, the efficiency of EVLNN for local search can be tested. 

Multimodal test functions have multiple global optima or one global optima with many 

local minima in the search landscape. They are designed to test the ability of an algorithm 

to avoid local minima, often known as “traps.” If an algorithm encounters many minima in 

a search space, it could be trapped in one of them. Once trapped in the deceptive minima, 

the search algorithm becomes significantly hampered and may not recover by directing the 

search away from these deceptive minima to the proper optimal solution. The landscape 

modality is essential to test the speciation characteristic of EVLNN and the robustness of 

EVLNN’s crossover and mutation strategies for global search. The following equation 

shows a general optimization problem, 

minimize
𝑥

𝑓(𝑥)                   (4.6) 

where the optima may be a single value or a set of values which 𝑥∗ ∈ 𝐷 for all feasible 

points D in a search space. 

Separable functions have variables that are independent of each other. Hence each variable 

can be independently optimized. On the contrary, non-separable functions have variables 

that are interrelated or are not independent. Boyer et al. [212] described that a function of 

p variable is separable if it can be written as a sum of p functions of just one variable, that 

is, 

𝑓(𝑥1, 𝑥2, … , 𝑥𝑝) = ∑ 𝑓𝑖(𝑥𝑖)
𝑝
𝑖=1                                       (4.7) 
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Separable functions are relatively easier to solve than their non-separable counterpart. Non-

separable functions are problems where a portion of the variables interact amongst 

themselves [213]. Separability in the function landscape is thus considered for testing if 

EVLNN is capable of dealing with complicated fitness landscapes with mixed variable 

separability.   

Dimensionality is an important issue in a search landscape. It refers to the number of 

variables in the function. The search space increases exponentially as the number of 

variables or dimensions increases [214]. Test functions with varying dimensionality could 

present problems in such a way that contains few global minima but closely locate them to 

the local minima. Such problems are considered for effectively testing EVLNN’s 

exploration characteristics and performance around narrow basins in the search space. 

There is no fixed number of benchmark functions to test the reliability and performance of 

optimization algorithms. Most papers varied from a few up to about 20. Typically, a diverse 

test suite is selected to provide a good representation of the variety of unimodal, multimodal, 

separable, non-separable, and multi-dimensional problems. Tables 4.5 and 4.6 presents the 

test functions employed to evaluate the EVLNN algorithm. These are well-known 

optimization benchmark functions [204], [211] ‒ [213] widely used to test out new 

optimization algorithms.  
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Table 4.5  Benchmark test functions to evaluate the EVLNN algorithm. d is the number of 

dimensions, and Range is the input domain where the function is evaluated and 𝑓
𝑚𝑖𝑛

 is the global minimum. 

Test function Description Variable d Range fmin 

Unimodal, low dimensionality 

𝑓1(𝑥) = 𝑥1
2 + 2𝑥2

2 − 0.3 cos(3𝜋𝑥) − 0.4 cos(4𝜋𝑥2) + 0.7 Bohachevsky N.1 Separable 2 [-10 10] 0 

𝑓2(𝑥) =  (𝑥1 + 2𝑥2 − 7 )
2 + (2𝑥1 + 𝑥2 − 5 )

2 Booth Non-separable 2 [-2π 2π] 0 

Unimodal, high dimensionality 

𝑓3(𝑥) =  ∑𝑥𝑖
2

𝑑

𝑖=1

 Sphere Separable 30 [-5.12 5.12] 0 

𝑓4(𝑥) =  ∑(𝑥𝑖
2)(𝑥𝑖+1

2 +1)(𝑥𝑖+1
2 )(𝑥𝑖

2+1)

𝑑−1

𝑖=1

 Brown Non-Separable 30 [-1 4] 0 

Multimodal, low dimensionality 

𝑓5(𝑥) = −20 exp

(

 −0.2 √
1

𝑑
∑𝑥𝑖

2

𝑑

𝑖=1
)

 − exp (
1

𝑑
∑𝑐𝑜𝑠(2𝜋𝑥𝑖)

𝑑

𝑖=1

) + 20 +  𝑒𝑥𝑝(1) Ackley Separable 2 [-35 35] 0 

𝑓6(𝑥) =  ∑[100(𝑥𝑖+1 − 𝑥𝑖
2)2 + (1 − 𝑥𝑖)

2]

𝑑

𝑖=1

 Rosenbrock Non-separable 2 [-5 10] 0 

Multimodal, high dimensionality 

𝑓7(𝑥) = 10𝑑 +∑[𝑥𝑖
2 − 10 cos(2𝜋𝑥𝑖)]

𝑑

𝑖=1

 Rastrigin Separable 30 [-5.12 5.12] 0 

𝑓8(𝑥) = 𝑓(𝑥) = 1 +∑
𝑥𝑖
2

4000
−∏cos(

𝑥𝑖

√𝑖
)

𝑑

𝑖=1

 Griewank Non-separable 30 [-100 100] 0 

 

Figure 4.2 illustrates each function's different modality, dimensionality, and separability 

aspects. 

 

 

                 

 

 

  Unimodal            Multimodal 

Figure 4.2  A representative spread of test functions to evaluate EVLNN’s search capability. 

 f4 (x)  f7 (x) 

 f3(x)                                           f8(x) 

 f2 (x) f5(x)                                           

 f1(x)                                           f6 (x) 

   

L
o

w
 

d
im

en
si

o

n
al

it
y

 

Legend 

H
ig

h
 

d
im

en
si

o

n
al

it
y

 

Separable 

Non-separable 



Chapter 4. Modal Training and Comparison    103 

 

 

The Bohachevsky N.1-2D (f1) function is shaped like a bowl and evaluated on xi ∈ [-10 10], 

for all i = 1, 2. The Booth-2D (f2) function has non-separable variables and is evaluated on 

xi ∈ [-2𝜋 2𝜋], for all i = 1, 2. The Sphere-30D (f3) function is evaluated on xi ∈ [-5.12 5.12], 

for all i = 1, 2, …, 30 with a high dimensionality of 30 variables. The Brown-30D (f4) 

function is characterized by fine seesaw edges in the vicinity of the minima. The almost 

fractal landscape is extremely challenging to optimize by any global or local optimization 

methods. The f4 function is evaluated on xi ∈ [-1 4], for all i = 1, 2, …, 30 with a high 

dimensionality of 30 variables. The Ackley-2D (f5) function consists of a global minima 

with many local minima evaluated on xi ∈ [-35 35], for all i = 1, 2. The landscape of f5 has 

an almost flat outer surface with a large center aperture that plunges to 0 at the minima 

position. This landscape presents a risk for optimization algorithms to be trapped in one of 

its many local minima. The Rosenbrock-2D (f6) function is evaluated on xi ∈ [-2𝜋 2𝜋], for 

all i = 1, 2. The function is characterized by its valley shape landscape where the global 

minima lie in a narrow, parabolic valley, and convergence to the minima is difficult [215]. 

The Rastrigin-30D (f7) function is extremely multimodal. The many local minima are 

spaced evenly, forming a highly deceptive landscape for optimization algorithms. The f7 

function is evaluated on xi ∈ [-5.12 5.12], for all i = 1, 2, …, 30 with a high dimensionality 

of 30 variables. The Griewank-30D (f8) function is characterized by many regularly 

distributed local minima, posing a risk to the optimization algorithms trapped in the local 

optima. The f8 function is evaluated on xi ∈ [-100 100], for all i = 1, 2, …, 30 with a high 

dimensionality of 30 variables.  

Single objective problems can be transformed into the dynamic, niching composition as 

real-world problems with a complex optimization environment [211]. Table 4.6 is a list of 

test functions recommended by the CEC in 2013 and 2015 to test new algorithms [207] 

involving multiple satisfactory solutions and a large number of search variables to mimic 

the real-world environment. These benchmark test functions are employed in the 

experiment to test the search capability of EVLNN. Besides assessing the performance of 

EVLNN, these benchmark functions also act as a common platform for comparing EAs 

that incorporate niching methods to locate multiple optima, through the definition of 
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standard performance metrics, the maximum number of function evaluations, and accuracy 

levels. 

Functions f9 – f11 are one dimensional (1D) functions. The Five-Uneven-Peak Trap-1D (f9) 

function is evaluated on x ∈ [0 30], characterized by three local optima and two global 

optima. The global optima are located at the search space's margin, making the function 

difficult to solve. Both the Equal Maxima-1D (f10) and Uneven Decreasing Maxima-1D (f11) 

functions are evaluated on x ∈ [0 1]. The Equal Maxima-1D (f10 ) function is characterized 

by five evenly distributed global optima and is designed to test the stability of the niching 

method. The Uneven Decreasing Maxima-1D (f11) functions are characterized by one 

global optima and four local optima. The 1D test functions are important in studying the 

search characteristics of EVLNN. They can also be easily visualized in a 2D plot. 

Table 4.6  CEC 2013 and 2015 test functions for evaluating the EVLNN algorithm. d is the number of 

dimensions, and Range is the input domain where the function is evaluated and 𝑓
𝑚𝑖𝑛

 is the global minimum. 

CEC Benchmark Test Functions  

Test function Description Characteristic     d  Range fmin 

𝑓9(𝑥)= 

{
 
 
 
 

 
 
 
 

80(2.5 − 𝑥)   𝑓𝑜𝑟 0 ≤ 𝑥 ≤ 2.5,

64(𝑥 − 2.5)   𝑓𝑜𝑟 2.5 ≤ 𝑥 ≤ 5.0,

64(7.5 − 𝑥)   𝑓𝑜𝑟 5.0 ≤ 𝑥 ≤ 7.5,

28(𝑥 − 7.5)   𝑓𝑜𝑟 7.5 ≤ 𝑥 ≤ 12.5,

  28(17.5 − 𝑥)   𝑓𝑜𝑟 12.5 ≤ 𝑥 ≤ 17.5,

32(𝑥 − 17.5)  𝑓𝑜𝑟 17.5 ≤ 𝑥 ≤ 22.5,

32(27.5 − 𝑥)  𝑓𝑜𝑟 22.5 ≤ 𝑥 ≤ 27.5,

80(𝑥 − 27.5)  𝑓𝑜𝑟 27.5 ≤ 𝑥 ≤ 30.

     
Five-Uneven-

Peak Trap 

2 global optima,  

3 local optima 1 [0 30] 200 

𝑓10(𝑥) = 𝑠𝑖𝑛
6(5πx) 

Equal 

Maxima 

5 global optima,  

0 local optima 1 [0 1] 1 

𝑓11(𝑥) = 𝑒𝑥𝑝 (−2 log(2) (
𝑥 − 0.08

0.854
)
2

) 𝑠𝑖𝑛6 (5π (𝑥
3
4 − 0.05)) 

Uneven 

Decreasing 

Maxima 

1 global optima,  

4 local optima 1 [0 1] 1 

      

𝑓12(𝑥) = 200 − (𝑥1
2 + 𝑥2 − 11)

2 + (𝑥1 + 𝑥2
2 − 7)2 Himmelblau 

4 global optima,  

0 local optima  2 [-6 6] 200 

𝑓13(𝑥) =  −4 [(4 − 2.1𝑥1
2 +

𝑥1
4

3
)𝑥1

2 + 𝑥1𝑥2 + (4𝑥2
2 − 4)𝑥2

2] 
Six-hump 

Camel 

2 global optima,  

2 local optima 2 [-5 5] -1.0316 

𝑓14(𝑥) = −∏ ∑ 𝑗𝑐𝑜𝑠[(𝑗 + 1)𝑥𝑖 + 𝑗]
5
𝑗=1

𝑑
𝑖=1   Shubert 

d.3d global optima, 

760 local optima 

2 
[-10 10]d 

-186.7309,  

3 2709.094 

𝑓15(𝑥) =
1

𝑑
∑ sin(10 log(𝑥𝑖))

𝑑

𝑖=1
 Vincent 

6d global optima,     

0 local optima 

2 
[0.25 10]d 1 

3 

𝑓16(𝑥) =  −∑ (10 + 9 cos(2𝜋𝑘𝑖𝑥𝑖))
𝑑
𝑖=1 )  

Modified 

Rastrigin 

∏ 𝑘𝑖
𝑑
𝑖=1  optima, ki=1 

for i=1-3, 

0 local optima 
2 [0 1]d -2.0 
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The Himmelblau-2D (f12) function has four equal optima, with two closer to each other than 

the other 2. Its landscape has 0 local optima and is evaluated on xi ∈ [-6 6], for all i = 1, 2. 

The Six-hump Camel-2D (f13) function is characterized by 2 global optima and 2 local 

optima, is evaluated on xi ∈ [-6 6], for all i = 1, 2. The inverted Shubert-2D/3D (f14) and the 

inverted Vincent-2D/3D (f15) functions are difficult and intriguing. The inverted Shubert-

2D (f14) function is characterized by 760 local optima and 18 global optima in 9 pairs where 

each pair is very close to the other, but the distance between each pair is much greater. As 

the dimensionality d increases, the number of global optima increases by d.3d. The inverted 

Vincent-2D (f15) function has 6d global optima, but unlike the even distances between the 

global optima in f14, in the Vincent-2D (f15) function, the global optima have vastly different 

spacing between them. In addition to that, the Vincent function has no local optima. The 

Modified Rastrigin-2D (f16) function consists of 0 local optima and ∏ 𝑘𝑖
𝑑
𝑖=1  global optima, 

where k1=3, and k2=4, for d=2, the number of global optima is 12.  

The landscapes of functions f12 – f16 with multiple global optima and zero or more local or 

deceptive optima are essential in testing the performance of EVLNN, particularly its 

speciation ability in the global search for multiple optimas.  

4.3.1. Function Evaluations for f1 to f8 

The results from experiments using EVLNN for the benchmark test functions f1 to f8 given 

in Table 4.5 are presented in Table 4.7. The peak locations found by EVLNN at various 

iterations during the function evaluations of 2D landscapes f1, f2, f5, and f6 are shown in 

Figure 4.3. Figures 4.4 and 4.5 display the convergence characteristics of EVLNN for 

functions f1 to f8. 

From Table 4.7, EVLNN achieved 100% success for PR and SR for Bohachevsky N.1-1D 

(f1) and Booth-2D (f2) functions for all 𝜀. It also performed well for the Ackley-2D (f5) and 

Rosenbrock-2D (f6) functions, with an overall average of 81.2% and 93.2%, respectively, 

for locating the peaks for all 𝜀. Figure 4.3 presents the contour plots of the benchmark 

functions Bohachevsky N.1-2D (f1), Booth-2D (f2), Ackley-2D (f5), and Rosenbrock-2D 

(f6). The search pattern of EVLNN is illustrated by the red dots whose distribution is traced 
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at the 1st, 10th, 100th, 300th, and 500th iterations. The figure shows that EVLNN had 

converged at the optima of these benchmark functions.  

For the Sphere-30D (f3) and Brown-30D (f4) functions, EVLNN had 100% success for PR 

and SR at accuracy 𝜀 = 1.0E-01 and 𝜀 = 1.0E-02. However, it failed to locate the peaks 

where 𝜀  ≤ 1.0E-03. For the Rastrigin-30D (f7) function, EVLNN had 100% success for PR 

and SR at 𝜀 = 1.0E-01 but could not locate any peaks beyond the next accuracy level. For 

the Griewank-30D (f8) function, EVLNN achieved a PR of 32% at 𝜀 = 1.0E-01, dropping 

by an average of 7% at each accuracy level to 4% at 𝜀 = 1.0E-05. Benchmark functions 

with high dimensionality caused the size of the chromosome matrix to increase, leading to 

a higher number of gene elements to be handled. The crossover process thus became more 

complex, making EVLNN less efficient and capable of reaching an optimal result. 

Table 4.7  Peak ratios and success rates of EVLNN for test functions f1 to f8. 

Accuracy 

level, 𝜺 

f1 

Bohachevsky N.1-2D 

f2 

Booth-2D 

f3 

Sphere-30D 

f4 

Brown-30D 

PR SR PR SR PR SR PR SR 

1.0E-01 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

1.0E-02 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

1.0E-03 1.000 1.000 1.000 1.000 0.000 0.000 0.000 0.000 

1.0E-04 1.000 1.000 1.000 1.000 0.000 0.000 0.000 0.000 

1.0E-05 1.000 1.000 1.000 1.000 0.000 0.000 0.000 0.000 

Accuracy 

level, 𝜺 

f5 

Ackley-2D 

f6 

Rosenbrock-2D 

f7 

Rastrigin-30D 

f8 

Griewank-30D 

PR SR PR SR PR SR PR SR 

1.0E-01 1.000 1.000 1.000 1.000 1.000 1.000 0.320 0.000 

1.0E-02 1.000 1.000 0.980 0.980 0.000 0.000 0.220 0.000 

1.0E-03 1.000 1.000 0.940 0.940 0.000 0.000 0.140 0.000 

1.0E-04 1.000 1.000 0.880 0.880 0.000 0.000 0.080 0.000 

1.0E-05 0.060 0.060 0.860 0.860 0.000 0.000 0.040 0.000 
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Iterations 

 

Figure 4.3  Red dots illustrate the search patterns of EVLNN at the 1st, 10th, 100th, 300th, and 500th iterations 

of the function evaluations on the 2D landscapes of Bohachevsky N.1-2D (f1), Booth-2D (f2), Ackley-2D 

(f5), and Rosenbrock-2D (f6), respectively. 
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Figures 4.4 and 4.5 illustrate the algorithm’s convergence characteristics for functions f1 to 

f5 and f6 to f8, respectively. Slower convergence is observed for high dimensionality 

functions like the Sphere-30D (f3) (orange dotted plot) and Brown-30D (f4) (purple plot). 

EVLNN took about 400 generations and 200 generations, respectively, to reach good 

solutions. For the Rastrigin-30D (f7) function (cyan dotted plot) in Figure 4.5, EVLNN 

achieved an error value 𝜀 < 0.05 within the first 100 generations; however, beyond this 

value, it could not converge to better solutions shown by a prolonged period of ‘stagnation’ 

from generations 230 onwards. 

Figure 4.4  Convergence characteristics of EVLNN algorithm for f1 to f5. 

Figure 4.5  Convergence characteristics of EVLNN algorithm for f6 to f8. 
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Table 4.8 compares the PR and SR measurements between EVLNN and PSO, DE, and GA.  

Table 4.8  Peak Ratios (PR) and Success Rates (SR) of EVLNN, PSO, DE, and GA. 

f1, Bohachevsky 

N.1-2D 

EVLNN PSO DE GA 

PR SR PR SR PR SR PR SR 

𝜀 = 1.0E-01 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

𝜀 = 1.0E-02 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

𝜀 = 1.0E-03 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

𝜀 = 1.0E-04 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

𝜀 = 1.0E-05 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

f2, Booth-2D 
EVLNN PSO DE GA 

PR SR PR SR PR SR PR SR 

𝜀 = 1.0E-01 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

𝜀 = 1.0E-02 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

𝜀 = 1.0E-03 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

𝜀 = 1.0E-04 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

𝜀 = 1.0E-05 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

f3, Sphere-30D 
EVLNN PSO DE GA 

PR SR PR SR PR SR PR SR 

𝜀 = 1.0E-01 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

𝜀 = 1.0E-02 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

𝜀 = 1.0E-03 0.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 

𝜀 = 1.0E-04 0.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 

𝜀 = 1.0E-05 0.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 

f4, Brown-30D 
EVLNN PSO DE GA 

PR SR PR SR PR SR PR SR 

𝜀 = 1.0E-01 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

𝜀 = 1.0E-02 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

𝜀 = 1.0E-03 0.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 

𝜀 = 1.0E-04 0.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 

𝜀 = 1.0E-05 0.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 

f5, Ackley-2D 

EVLNN PSO DE GA 

PR SR PR SR PR SR PR SR 

𝜀 = 1.0E-01 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

𝜀 = 1.0E-02 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

𝜀 = 1.0E-03 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

𝜀 = 1.0E-04 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

𝜀 = 1.0E-05 0.060 0.060 1.000 1.000 1.000 1.000 1.000 1.000 

f6, Rosenbrock-2D 
EVLNN PSO DE GA 

PR SR PR SR PR SR PR SR 

𝜀 = 1.0E-01 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

𝜀 = 1.0E-02 0.940 0.940 1.000 1.000 1.000 1.000 0.960 0.960 

𝜀 = 1.0E-03 0.940 0.940 1.000 1.000 1.000 1.000 0.920 0.920 
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𝜀 = 1.0E-04 0.860 0.860 1.000 1.000 1.000 1.000 0.880 0.880 

𝜀 = 1.0E-05 0.820 0.820 1.000 1.000 1.000 1.000 0.860 0.860 

f7, Rastrigin-30D 
EVLNN PSO DE GA 

PR SR PR SR PR SR PR SR 

𝜀 = 1.0E-01 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 

𝜀 = 1.0E-02 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

𝜀 = 1.0E-03 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

𝜀 = 1.0E-04 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

𝜀 = 1.0E-05 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

f8, Griewank-30D 
EVLNN PSO DE GA 

PR SR PR SR PR SR PR SR 

𝜀 = 1.0E-01 0.320 0.320 1.000 1.000 1.000 1.000 1.000 1.000 

𝜀 = 1.0E-02 0.220 0.220 0.640 0.640 1.000 1.000 0.980 0.980 

𝜀 = 1.0E-03 0.140 0.140 0.280 0.280 1.000 1.000 0.920 0.920 

𝜀 = 1.0E-04 0.080 0.080 0.280 0.280 1.000 1.000 0.920 0.920 

𝜀 = 1.0E-05 0.040 0.040 0.280 0.280 1.000 1.000 0.920 0.920 

 

From Table 4.8, it is seen that the performance of EVLNN is comparable to PSO, DE, and 

GA for Bohachevsky N.1-1D (f1) and Booth-2D (f2) functions, where PR and SR are both 

at 100% across all 𝜀. For the Rosenbrock-2D (f6) function, PSO and DE performed well, 

with 100% of the peaks found at all 𝜀. The performance of EVLNN in these functions is 

comparable to GA, with an average PR of 91.2% and 92.4%, respectively, across all 𝜀. For 

the Sphere-30D (f3), Brown-30D (f4), and Ackley-2D (f5) functions, the peaks were found 

at all 𝜀 by the PSO, DE, and GA.  

However, this was not so for EVLNN, which only managed to find all peaks for Sphere-

30D (f3) and Brown-30D (f4) at 𝜀 = 1.0E-02. For the Ackley-2D (f5) function, EVLNN has 

achieved an accuracy at 𝜀 = 1.0E-04, whereas PSO, DE, and GA had a higher accuracy at 

𝜀 = 1.0E-05. It may be possible that the landscape for f5, with its many local minima around 

the global minima, had trapped the EVLNN species preventing them from finding better 

solutions. For Rosenbrock-2D (f6) function, EVLNN’s performance is comparable with GA 

but loses out to PSO and DE. EVLNN’s less desirable performance in high dimensionality 

problems, particularly for functions f3 and f4, is due to increased crossover complexity in 

handling larger chromosome matrix sizes. As dimensionality increases, the chromosome 

matrix size increases row-wise. This scenario presents a limitation in the search efficiency 

of EVLNN during crossover for real parameter optimization. Nonetheless, EVLNN is a 
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neural architecture search algorithm that aims to locate optimal parsimonious structures 

that could accurately predict the output of a time-series dataset. Hence the results should 

not impact its real-world application in structural optimization for predictions.  

Nonetheless, a bright spark for EVLNN is in the Rastrigin-30D (f7) function evaluation. It 

also has a high dimensionality of 30 variables. EVLNN was the only algorithm that found 

all peaks for the f7 function at accuracy level 𝜀 = 1.0E-01, whereas no peaks were found by 

PSO, DE, and GA. It is worth discussing the interesting facts revealed by the superior 

results of EVLNN. The main difference in the Rastrigin-30D (f7) function compared to the 

other high dimensional functions such as f3 and f4, where EVLNN did not fair well, is that 

f7 is hugely multimodal, with many local minima. However, the location of the minima is 

regularly distributed, forming a highly deceptive landscape for optimization algorithms. It 

is possible that the speciation capability of EVLNN helped navigate the search through this 

type of landscape. A similar conclusion was reached for the Shubert-2D (f14) test function, 

which has 18 global optima in 9 pairs with many local optima. EVLNN was the only 

algorithm that could locate the function peak at 𝜀 = 1.0E-05. Details of the Shubert-2D (f14)  

result are discussed in section 4.4.1. In the real world, the strength of EVLNN’s search 

algorithm could be applied to detect the source of hotspots (global optima) in data centers 

where there are multiple regions of hot spots (local optima) that are close to one another 

(multimodal).   

For Griewank-30D (f8) function, DE has the best performance, with 100% success in 

finding the peaks (PR=1.000) for all runs (SR=1.000) and at all 𝜀. Next are GA, PSO, and 

EVLNN, which achieved an average PR of 94.8%, 49.6%, and 14.4%, respectively, at all 

𝜀 . As EVLNN is designed for neural architectural search, its application as a function 

optimizer had a limited overall performance. However, EVLNN had located the peaks of 

functions f1 to f8, demonstrating that the algorithm generalizes better than PSO, DE, and 

GA for this set of test functions. 
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Figure 4.6 compares the convergence characteristics of EVLNN with PSO, DE, and GA for 

this function. The plots show that EVLNN converged to a lower error, whereas PSO, DE, 

and GA were stagnant at a higher error for f7. The trend from these plots suggests that PSO, 

DE, and GA would not converge to reasonable solutions even if given a higher number of 

iterations.  

Figure 4.6  The convergence characteristics of EVLNN, PSO, DE, and GA algorithms for the Rastrigin-

30D (f7) function. 

While EVLNN exhibited some weaknesses in high-dimensional problems, it still 

outperformed PSO, DE, and GA for the Rastrigin-30D (f7) function by successfully locating 

the peak at 𝜀 = 1.0E-01, where these algorithms had failed to do so. EVLNN, as a function 

optimizer for f7, had performed well specific to this function landscape. 

4.4. Comparative Analysis of other State-of-the-Art EAs 

The performance of the EVLNN algorithm was evaluated using test functions for (i) single 

optima, multimodal problems, and (ii) multi-optima, multimodal problems in Tables 4.5 

and 4.6, respectively. The results for (i) are compared to modern population-based meta-

heuristic algorithms, namely PSO and DE, and the classic GA is used as a reference. These 

algorithms generally converge to a single solution and are well-suited compared to 
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EVLNN’s search capability for solving single optima multimodal problems. The results for 

(ii) are compared to 21 state-of-the-art EAs from the CEC 2013 and CEC 2015 competitions. 

The EAs are presented in Table 4.9.  

Table 4.9 State-of-the-art EAs in the CEC 2013 and CEC 2015 competitions.  

Niching Algorithms  Description 
Year of CEC 

Competition 

1. DE/nrand/1/bin [216] Classic DE algorithm with dynamic and clustering 1  2013 

2. DE/nrand/2/bin [216] Classic DE algorithm with dynamic and clustering 2 2013 

3. Crowding DE/rand/1/bin [217] Classic DE algorithm extended with the crowding scheme 2013 

4. NMMSO&+ [218] Niching Migratory Multi-Swarm Optimizer algorithm 2015 

5. N-VMO [219] Niching Variable Mesh Optimization algorithm 2013 

6. dADE/nrand/1/bin# [220] Dynamic Archive Niching Differential Evolution Algorithm 1  2013 

7. dADE/nrand/2/bin [220] Dynamic Archive Niching Differential Evolution Algorithm 2 2013 

8. NEA1 [216] Niching Evolutionary Algorithm 1 2013 

9. NEA2#&+ [216] Niching Evolutionary Algorithm 2 2013 

10. DECG [221] DE algorithm using crowding and gradient descent 2013 

11. DELG [221] DE algorithm using local selection and gradient descent 2013 

12. DELS_ajitter [221] DE algorithm using local selection and ajitter global mutation  2013 

13. CMA-ES# [222] Covariance matrix adaptation evolution strategy 2013 

14. iPOP-CMA-ES [223] CMA-ES with increasing population size 2013 

15. ANSGAII [224] NSGAII with variable-space niching  2013 

16. PNA-NSGAII [224] Parameterless niching assisted NSGAII  2013 

17. LSEAEA [225] 
Localised search evolutionary algorithm using EAs for local 

search  
2015 

18. LSEAGP
&+ [226] LSEA using Gaussian process as its local search mechanism 2015 

19. ALNM [227] Active Learning Based Niching Method 2015 

20. MEA [228] Multinational Evolutionary Algorithm 2015 

21. MSSPSO [229] Multi-Sub-Swarm Particle Swarm Optimisation algorithm 2015 

#Top three winners of CEC 2013 
&Top three winners of CEC 2015 
+Top three winners of the overall CEC 2013 and CEC 2015  

According to the competition ranking [204] [205], the top-performing optimizer in the CEC 

2013 competition is the NEA2 algorithm proposed by Preuss [216]. The NEA2 hybridizes 

the CMA-ES algorithm with a control strategy that employs a simple heuristic to detect 

different search spaces and avoid multiple local searches in the same area. The 

dADE/nrand/1 algorithm proposed by Epitropakis et al. [220] came in second. The 

algorithm enhances the classic DE mutation strategies with local information from the 

current population to efficiently locate and maintain global optima. The classic CMA-ES 
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[222] was ranked third in the same competition. According to [216], the CMA-ES is likely 

the best method in Evolutionary Computation (EC) field. The algorithm uses a ‘restart’ 

strategy to detect stagnation by setting up a new population in a different area in the search 

space. 

The top-performing optimizer in the CEC 2015 competition is the NMMSO algorithm 

proposed by Fieldsend [218]. The sub-swarms in NMMSO provided the niching 

mechanism to optimize separate local modes dynamically. The NMMSO was also the 

winner averaged over the two competitions, followed by the NEA2, LSEAGP [226], and 

LSEAEA [225]. The LSEAGP employs a surrogate-based approach that uses the Gaussian 

correlation model, also known as a Gaussian Process, from the MATLAB Kriging toolbox 

[230] as a local surrogate model to automatically adapt to the number of niches depending 

on the characteristics of the landscape discovered. Distinct from the LSEAGP, the LSEAEA 

presents exploitative hill-climbing EAs rather than the surrogate models to drive the local 

search [225]. The test results and comparative analysis are discussed in the later sections.  

4.4.1. Function Evaluations for f9 to f16 

Table 4.10 presents the PR and SR results achieved by EVLNN for the benchmark test 

functions listed in Table 4.6 evaluated for all five levels of accuracy. From Table 4.10, 

EVLNN has achieved 100% success in locating the peaks for the Uneven Decreasing 

Maxima-1D (f11) and Six-hump Camel Back-2D (f13) functions for all 𝜀. It also attained an 

average PR of 79.4% and 84.3% for Equal Maxima-1D (f10) and Himmelblau-2D (f12) 

functions, respectively, for all 𝜀. EVLNN has done moderately well for Five-Uneven-Peak 

Trap-1D (f9), Shubert-2D (f14), and Modified Rastrigin-2D (f16), with an average PR at 

45.1%, 44.6%, and 59.1%, respectively. However, EVLNN had performed poorly with 

Vincent-2D (f15), Shubert-3D (f14), and Vincent-3D (f15), with an average PR of 37.3%, 

1.24%, and 8.8%, respectively. A common characteristic of these functions, f15 (2D), f14 

(3D), and f15 (3D), is that they have a high number of global optima, Gopt at 36, 81, and 216, 

respectively. Given that Gopt>>1, with reference to Table 4.2 and Equation 4.5, Ns, the 

number of species will be large. At a fixed budget MaxFE, the average species size 
𝑁𝑝

𝑁𝑠
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would be small. A small 
𝑁𝑝

𝑁𝑠
  might not contain sufficient genetic variability within the 

EVLNN species to generate good solutions during the crossover and mutation process for 

that species.  

Table 4.10  Peak ratios and success rates of EVLNN for test functions f9 to f16. 

Accuracy 

level, 𝜺 

f9 

Five-Uneven-

Peak Trap-1D 

f10 

Equal 

Maxima-1D 

f11 
Uneven Decreasing 

Maxima-1D 

f12 

Himmelblau-

2D 

f13 

Six-hump Camel 

Back-2D 

PR SR PR SR PR SR PR SR PR SR 

1.0E-01 0.850 0.700 0.836 0.360 1.000 1.000 0.905 0.620 1.000 1.000 

1.0E-02 0.830 0.660 0.836 0.360 1.000 1.000 0.905 0.620 1.000 1.000 

1.0E-03 0.470 0.200 0.828 0.360 1.000 1.000 0.905 0.620 1.000 1.000 

1.0E-04 0.100 0.000 0.788 0.300 1.000 1.000 0.885 0.540 1.000 1.000 

1.0E-05 0.003 0.000 0.684 0.160 1.000 1.000 0.615 0.100 1.000 1.000 

Accuracy 

level, 𝜺 

f14 

Shubert-2D 

f15 

Vincent-2D 

f14 

Shubert-3D 

f15 

Vincent-3D 

f16 

Modified 

Rastrigin-2D 

PR SR PR SR PR SR PR SR PR SR 

1.0E-01 0.504 0.000 0.387 0.000 0.057 0.000 0.140 0.000 0.878 0.140 

1.0E-02 0.504 0.000 0.387 0.000 0.005 0.000 0.101 0.000 0.872 0.140 

1.0E-03 0.498 0.000 0.387 0.000 0.000 0.000 0.091 0.000 0.708 0.000 

1.0E-04 0.450 0.000 0.380 0.000 0.000 0.000 0.071 0.000 0.373 0.000 

1.0E-05 0.276 0.000 0.338 0.000 0.000 0.000 0.037 0.000 0.125 0.000 

 

For function f9 at accuracy 𝜀  = 1.0E-05, it is observed that EVLNN produced a weak 

performance with a PR of 0.3%. One possible explanation for EVLNN’s low PR of 0.3% 

for function f9 may be attributed to EVLNN’s stochastic approach to solving large-scale 

optimization problems while ensuring generality.  

Figures 4.7 and 4.8 examine the algorithm’s search pattern on the contour map of functions 

f9 to f13 and f14 to f16, respectively. Figure 4.7 consists of 1D and 2D multimodal functions 

f9 to f13, and Figure 4.8 consists of scalable 2D multimodal functions f14 to f16. The search 

patterns of EVLNN are illustrated by the red dots whose distribution is traced at the 1st, 

100th, 200th, 400th, and 500th iterations of the function evaluations on these landscapes. 

These figures show most of the peak locations returned by EVLNN during the function by 

the 100th generation.  



Chapter 4. Modal Training and Comparison    116 

 

 

Iterations 

Figure 4.7  The search patterns of EVLNN for functions f9, f10, f11, f12, and f13. 

 

In Figure 4.8, the Shubert-2D (f14) function shows nine pairs of optima distributed evenly 

apart. In this landscape, EVLNN can converge to about half of them, although some species 

appeared trapped in the local optima located around the global optima. For the Vincent-2D 

(f15) function, out of the 36 global optima unevenly distributed on the landscape, EVLNN 

can locate approximately half of them. For the Modified Rastrigin-2D (f16) function, 

EVLNN can locate all the 12 basins with high PR at 87.8%, 87.2%, and 70.8% for accuracy 

at 𝜀 = 1.0E-1 to 1.0E-3, respectively, but lower PR at 37.3% and 12.5% for 𝜀 ={1.0E-4, 

1.0E-5},  respectively. 
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Figure 4.8  The search patterns of EVLNN for functions f14, f15, and f16, respectively. 

Figures 4.9 and 4.10 examine the convergence characteristics of EVLNN for functions f9 

to f13 and f14 to f16, respectively. For the Shubert-3D (f14) function (dotted lines in orange 

color), EVLNN took more than 250 iterations to locate better solutions. The iterations 

before were a period of ‘stagnation’ between generations 100 to 250. In evaluating the 

Shubert-3D (f14) function, small species sizes may have caused the lack of genetic variation, 

failing to produce sufficient ‘new alleles’ for the population.  
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Figure 4.9  Convergence characteristics of EVLNN for functions f9 to f13 

 

Figure 4.10  Convergence characteristics of EVLNN for functions f14 to f16 

The performance of EVLNN is compared to the results of a wide range of multimodal 

optimization algorithms listed in Table 4.8 for 𝜀 = 1.0E-03 to 1.0E-5. Table 4.11 shows that 

the state-of-the-art niching algorithms have superior performance, but EVLNN is also 

competitive. For example, EVLNN’s performance is on par with all the algorithms for the 

Uneven Decreasing Maxima-1D (f11) and Six-hump Camel-2D (f13) functions with an 

average PR score of 100% for all 𝜀 . For the Five-Uneven-Peak Trap-1D (f9) function, 
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EVLNN performed better than Crowding DE/rand/1/bin and MEA for 𝜀  = 1.0E-03 and 

better than DE/rand/1/bin for 𝜀  = 1.0E-05. For the Equal Maxima-1D (f10) function, 

EVLNN edged out iPOP-CMA-ES for 𝜀 = 1.0E-03 and 𝜀 = 1.0E-04. For the Himmelblau-

2D (f12) function, EVLNN outperformed iPOP-CMA-ES, ANSGAII, MEA, and MSSPSO 

at 𝜀 = 1.0E-03 and 𝜀 = 1.0E-04 and bettered ANSGAII, MEA, and MSSPSO at 𝜀 = 1.0E-

05.  

It is interesting to note that for the Shubert-2D (f14) function, EVLNN outperformed all the 

algorithms at 𝜀 = 1.0E-05, with a PR of 27.6%. None of the state-of-the-art EAs can locate 

the peak at this accuracy level. Examining the landscape of f14 (see Figure 4.8) shows that 

the landscape is characterized by many local optima, with 18 global optima positioned in 9 

pairs. The individual pairs are closely located together, but the distance between the pairs 

is much more significant and evenly distributed. A similar conclusion was reached for 

Rastrigin-30D (f7), where EVLNN was the only algorithm that found all peaks for the f7 

function at accuracy level 𝜀 = 1.0E-01. The results highlight the strength of EVLNN in 

locating global optima in a landscape where basins are close to each other. As the algorithm 

does not restrict species flocking to a basin if basins exist close to each other, the probability 

of EVLNN successfully locating the closely paired basins will be high.  

In a real-world scenario, EVLNN can be applied to detect the source of hotspots (global 

optima) in data centers where there are multiple regions of hot spots (local optima) close to 

one another (multimodal). EVLNN can also be used to locate the region with the highest 

solar irradiance (global optima) receiving more solar irradiation over a nearby region (local 

optima) with the highest potential to produce solar energy.   

For the Vincent-2D (f15) function, EVLNN’s performance surpassed DE/nrand/1/bin, 

DE/nrand/2/bin, iPOP-CMA-ES, and MSSPSO at 𝜀  = 1.0E-03 and 𝜀  = 1.0E-04, and 

DE/nrand/2/bin, iPOP-CMA-ES, MEA and MSSPSO at 𝜀 = 1.0E-05. For the Vincent-3D 

(f15) function, EVLNN outdid DE/nrand/2/bin, DELG, iPOP-CMA-ES and MSSPSO at 𝜀 

= 1.0E-03 and 𝜀 = 1.0E-04 and DELG, iPOP-CMA-ES and MSSPSO at 𝜀 = 1.0E-05. For 

the Modified Rastrigin-2D (f16) function, EVLNN’s performance topped iPOP-CMA-ES 

and MSSPSO at 𝜀 = 1.0E-03 and 𝜀 = 1.0E-04, and MSSPSO at 𝜀 = 1.0E-05.  
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Table 4.11  Comparison of Peak Ratios (PR) and Success Rates (SR) between EVLNN and the other state-

of-the-art niching algorithms.   

1. Function f9, Five-Uneven-

Peak Trap 

𝜀 = 1.0E-03 𝜀 = 1.0E-04 𝜀 = 1.0E-05 

PR SR PR SR PR SR 

EVLNN 0.470  0.140  0.100 0.000 0.003  0.000 

DE/nrand/1/bin 1.000 1.000 1.000 1.000 1.000 1.000 

DE/nrand/2/bin 1.000 1.000 1.000 1.000 1.000 1.000 

Crowding DE/rand/1/bin 0.090 0.000 0.020 0.000 0.000 0.000 

NMMSO*&+ 1.000 1.000 1.000 1.000 1.000 1.000 

N-VMO 1.000 1.000 1.000 1.000 1.000 1.000 

dADE/nrand/1/bin# 1.000 1.000 1.000 1.000 1.000 1.000 

dADE/nrand/2/bin 1.000 1.000 1.000 1.000 1.000 1.000 

NEA1 1.000 1.000 1.000 1.000 1.000 1.000 

NEA2#&+ 1.000 1.000 1.000 1.000 1.000 1.000 

DECG 1.000 1.000 1.000 1.000 1.000 1.000 

DELG 1.000 1.000 1.000 1.000 1.000 1.000 

DELS_ajitter 1.000 1.000 1.000 1.000 1.000 1.000 

CMA-ES# 1.000 1.000 1.000 1.000 1.000 1.000 

iPOP-CMA-ES 0.780 0.560 0.780 0.560 0.780 0.560 

ANSGAII 0.930 0.860 0.930 0.860 0.900 0.800 

PNA-NSGAII 1.000 1.000 1.000 1.000 1.000 1.000 

LSEAEA
* 1.000 1.000 1.000 1.000 1.000 1.000 

LSEAGP
*&+ 1.000 1.000 1.000 1.000 1.000 1.000 

ALNM* 1.000 1.000 1.000 1.000 1.000 1.000 

MEA* 0.050 0.000 0.050 0.000 0.050 0.000 

MSSPSO* 1.000 1.000 1.000 1.000 1.000 1.000 

2. Function f10 Equal Maxima 
𝜀 = 1.0E-03 𝜀 = 1.0E-04 𝜀 = 1.0E-05 

PR SR PR SR PR SR 

EVLNN 0.828       0.360 0.788       0.300 0.684       0.160 

DE/nrand/1/bin 1.000 1.000 1.000 1.000 1.000 1.000 

DE/nrand/2/bin 1.000 1.000 1.000 1.000 1.000 1.000 

Crowding DE/rand/1/bin 1.000 1.000 1.000 1.000 1.000 1.000 

NMMSO*&+ 1.000 1.000 1.000 1.000 1.000 1.000 

N-VMO 1.000 1.000 1.000 1.000 1.000 1.000 

dADE/nrand/1/bin# 1.000 1.000 1.000 1.000 1.000 1.000 

dADE/nrand/2/bin 1.000 1.000 1.000 1.000 1.000 1.000 

NEA1 1.000 1.000 1.000 1.000 1.000 1.000 

NEA2#&+ 1.000 1.000 1.000 1.000 1.000 1.000 

DECG 1.000 1.000 1.000 1.000 1.000 1.000 

DELG 1.000 1.000 1.000 1.000 1.000 1.000 

DELS_ajitter 1.000 1.000 1.000 1.000 1.000 1.000 

CMA-ES# 1.000 1.000 1.000 1.000 1.000 1.000 

iPOP-CMA-ES 0.772 0.180 0.752 0.160 0.732 0.140 

ANSGAII 1.000 1.000 1.000 1.000 1.000 1.000 

PNA-NSGAII 1.000 1.000 1.000 1.000 1.000 1.000 

LSEAEA
* 1.000 1.000 1.000 1.000 1.000 1.000 

LSEAGP
*&+ 1.000 1.000 1.000 1.000 1.000 1.000 

ALNM* 1.000 1.000 1.000 1.000 1.000 1.000 

MEA* 1.000 1.000 0.996 0.980 0.980 0.900 

MSSPSO* 1.000 1.000 1.000 1.000 0.952 0.760 



Chapter 4. Modal Training and Comparison    121 

 

 

3. Function f11 Uneven 

Decreasing Maxima 

𝜀 = 1.0E-03 𝜀 = 1.0E-04 𝜀 = 1.0E-05 

PR SR PR SR PR SR 

EVLNN 1.000      1.000 1.000      1.000 1.000      1.000 

DE/nrand/1/bin 1.000 1.000 1.000 1.000 1.000 1.000 

DE/nrand/2/bin 1.000 1.000 1.000 1.000 1.000 1.000 

Crowding DE/rand/1/bin 1.000 1.000 1.000 1.000 1.000 1.000 

NMMSO*&+ 1.000 1.000 1.000 1.000 1.000 1.000 

N-VMO 1.000 1.000 1.000 1.000 1.000 1.000 

dADE/nrand/1/bin# 1.000 1.000 1.000 1.000 1.000 1.000 

dADE/nrand/2/bin 1.000 1.000 1.000 1.000 1.000 1.000 

NEA1 1.000 1.000 1.000 1.000 1.000 1.000 

NEA2#&+ 1.000 1.000 1.000 1.000 1.000 1.000 

DECG 1.000 1.000 1.000 1.000 1.000 1.000 

DELG 1.000 1.000 1.000 1.000 1.000 1.000 

DELS_ajitter 1.000 1.000 1.000 1.000 1.000 1.000 

CMA-ES# 1.000 1.000 1.000 1.000 1.000 1.000 

iPOP-CMA-ES 1.000 1.000 1.000 1.000 1.000 1.000 

ANSGAII 1.000 1.000 1.000 1.000 1.000 1.000 

PNA-NSGAII 1.000 1.000 1.000 1.000 1.000 1.000 

LSEAEA
* 1.000 1.000 1.000 1.000 1.000 1.000 

LSEAGP
*&+ 1.000 1.000 1.000 1.000 1.000 1.000 

ALNM* 1.000 1.000 1.000 1.000 1.000 1.000 

MEA* 1.000 1.000 1.000 1.000 0.960 0.960 

MSSPSO* 1.000 1.000 1.000 1.000 0.940 0.940 

4. Function f12 Himmelblau 
𝜀 = 1.0E-03 𝜀 = 1.0E-04 𝜀 = 1.0E-05 

PR SR PR SR PR SR 

EVLNN 0.905       0.620 0.885       0.540 0.615      0.100 

DE/nrand/1/bin 1.000 1.000 1.000 1.000 1.000 1.000 

DE/nrand/2/bin 1.000 1.000 1.000 1.000 1.000 1.000 

Crowding DE/rand/1/bin 1.000 1.000 0.995 0.980 0.420 0.040 

NMMSO*&+ 1.000 1.000 1.000 1.000 1.000 1.000 

N-VMO 1.000 1.000 1.000 1.000 1.000 1.000 

dADE/nrand/1/bin# 1.000 1.000 1.000 1.000 1.000 1.000 

dADE/nrand/2/bin 1.000 1.000 1.000 1.000 1.000 1.000 

NEA1 1.000 1.000 1.000 1.000 0.990 0.960 

NEA2#&+ 1.000 1.000 1.000 1.000 0.990 0.960 

DECG 1.000 1.000 1.000 1.000 1.000 1.000 

DELG 1.000 1.000 1.000 1.000 1.000 1.000 

DELS_ajitter 1.000 1.000 1.000 1.000 1.000 1.000 

CMA-ES# 1.000 1.000 1.000 1.000 0.990 0.960 

iPOP-CMA-ES 0.725 0.160 0.725 0.160 0.725 0.160 

ANSGAII 0.470 0.020 0.320 0.000 0.155 0.000 

PNA-NSGAII 0.995 0.980 0.985 0.960 0.805 0.420 

LSEAEA
* 1.000 1.000 1.000 1.000 1.000 1.000 

LSEAGP
*&+ 1.000 1.000 1.000 1.000 1.000 1.000 

ALNM* 1.000 1.000 1.000 1.000 1.000 1.000 

MEA* 0.055 0.000 0.005 0.000 0.005 0.000 

MSSPSO* 0.010 0.000 0.005 0.000 0.000 0.000 

5. Function f13 Six-hump 

Camel 

𝜀 = 1.0E-03 𝜀 = 1.0E-04 𝜀 = 1.0E-05 

PR SR PR SR PR SR 

EVLNN 1.000      1.000 1.000      1.000 1.000      1.000 

DE/nrand/1/bin 1.000 1.000 1.000 1.000 1.000 1.000 
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DE/nrand/2/bin 1.000 1.000 1.000 1.000 1.000 1.000 

Crowding DE/rand/1/bin 1.000 1.000 1.000 1.000 1.000 1.000 

NMMSO*&+ 1.000 1.000 1.000 1.000 1.000 1.000 

N-VMO 1.000 1.000 1.000 1.000 1.000 1.000 

dADE/nrand/1/bin# 1.000 1.000 1.000 1.000 1.000 1.000 

dADE/nrand/2/bin 1.000 1.000 1.000 1.000 1.000 1.000 

NEA1 1.000 1.000 1.000 1.000 1.000 1.000 

NEA2#&+ 1.000 1.000 1.000 1.000 1.000 1.000 

DECG 1.000 1.000 1.000 1.000 1.000 1.000 

DELG 1.000 1.000 1.000 1.000 1.000 1.000 

DELS_ajitter 1.000 1.000 1.000 1.000 1.000 1.000 

CMA-ES# 1.000 1.000 1.000 1.000 1.000 1.000 

iPOP-CMA-ES 1.000 1.000 1.000 1.000 1.000 1.000 

ANSGAII 0.940 0.880 0.900 0.800 0.680 0.380 

PNA-NSGAII 1.000 1.000 1.000 1.000 1.000 1.000 

LSEAEA
* 1.000 1.000 1.000 1.000 1.000 1.000 

LSEAGP
*&+ 1.000 1.000 1.000 1.000 1.000 1.000 

ALNM* 1.000 1.000 1.000 1.000 1.000 1.000 

MEA* 1.000 1.000 0.640 0.420 0.070 0.000 

MSSPSO* 0.650 0.460 0.050 0.000 0.000 0.000 

6. Function f14 Shubert (2D) 
𝜀 = 1.0E-03 𝜀 = 1.0E-04 𝜀 = 1.0E-05 

PR SR PR SR PR SR 

EVLNN 0.498      0.000 0.450      0.000 0.276      0.000 

DE/nrand/1/bin 0.440 0.000 0.434 0.000 0.000 0.000 

DE/nrand/2/bin 0.669 0.000 0.669 0.000 0.000 0.000 

Crowding DE/rand/1/bin 0.972 0.740 0.107 0.000 0.000 0.000 

NMMSO*&+ 0.998 0.960 0.997 0.940 0.000 0.000 

N-VMO 0.940 0.360 0.670 0.000 0.000 0.000 

dADE/nrand/1/bin# 1.000 1.000 0.984 0.780 0.000 0.000 

dADE/nrand/2/bin 1.000 1.000 0.833 0.020 0.000 0.000 

NEA1 0.622 0.000 0.612 0.000 0.000 0.000 

NEA2#&+ 0.958 0.440 0.950 0.380 0.000 0.000 

DECG 0.997 0.940 0.997 0.940 0.000 0.000 

DELG 0.993 0.880 0.993 0.880 0.000 0.000 

DELS_ajitter 1.000 1.000 0.999 0.980 0.000 0.000 

CMA-ES# 0.782 0.020 0.776 0.020 0.000 0.000 

iPOP-CMA-ES 0.094 0.000 0.090 0.000 0.000 0.000 

ANSGAII 0.041 0.000 0.001 0.000 0.000 0.000 

PNA-NSGAII 0.523 0.000 0.473 0.000 0.000 0.000 

LSEAEA
* 0.996 0.920 0.993 0.880 0.000 0.000 

LSEAGP
*&+ 0.997 0.960 0.996 0.940 0.000 0.000 

ALNM* 1.000 1.000 1.000 1.000 0.000 0.000 

MEA* 0.004 0.000 0.000 0.000 0.000 0.000 

MSSPSO* 0.000 0.000 0.000 0.000 0.000 0.000 

7. Function f15 Vincent (2D) 
𝜀 = 1.0E-03 𝜀 = 1.0E-04 𝜀 = 1.0E-05 

PR SR PR SR PR SR 

EVLNN 0.387      0.000 0.380      0.000 0.338      0.000 

DE/nrand/1/bin 0.349 0.000 0.337 0.000 0.333 0.000 

DE/nrand/2/bin 0.276 0.000 0.276 0.000 0.275 0.000 

Crowding DE/rand/1/bin 0.715 0.000 0.709 0.000 0.716 0.000 

NMMSO*&+ 1.000 1.000 1.000 1.000 1.000 1.000 

N-VMO 0.945 0.140 0.901 0.000 0.806 0.000 

dADE/nrand/1/bin# 0.892 0.020 0.823 0.000 0.732 0.000 
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dADE/nrand/2/bin 0.872 0.000 0.757 0.000 0.644 0.000 

NEA1 0.691 0.000 0.657 0.000 0.640 0.000 

NEA2#&+ 0.918 0.060 0.914 0.040 0.911 0.040 

DECG 0.659 0.000 0.656 0.000 0.646 0.000 

DELG 0.582 0.000 0.582 0.000 0.582 0.000 

DELS_ajitter 0.467 0.000 0.462 0.000 0.452 0.000 

CMA-ES# 0.521 0.000 0.518 0.000 0.516 0.000 

iPOP-CMA-ES 0.112 0.000 0.111 0.000 0.111 0.000 

ANSGAII 0.668 0.000 0.509 0.000 0.346 0.000 

PNA-NSGAII 0.726 0.000 0.709 0.000 0.683 0.000 

LSEAEA
* 1.000 1.000 1.000 1.000 1.000 1.000 

LSEAGP
*&+ 1.000 1.000 1.000 1.000 1.000 1.000 

ALNM* 0.822 0.000 0.811 0.000 0.792 0.000 

MEA* 0.402 0.000 0.383 0.000 0.302 0.000 

MSSPSO* 0.202 0.000 0.030 0.000 0.004 0.000 

8. Function f14 Shubert (3D) 
𝜀 = 1.0E-03 𝜀 = 1.0E-04 𝜀 = 1.0E-05 

PR SR PR SR PR SR 

EVLNN 0.000      0.000 0.000      0.000 0.000      0.000 

DE/nrand/1/bin 0.113 0.000 0.112 0.000 0.113 0.000 

DE/nrand/2/bin 0.365 0.000 0.365 0.000 0.363 0.000 

Crowding DE/rand/1/bin 0.716 0.000 0.290 0.000 0.038 0.000 

NMMSO*&+ 0.983 0.180 0.981 0.180 0.980 0.180 

N-VMO 0.270 0.000 0.198 0.000 0.027 0.000 

dADE/nrand/1/bin# 0.545 0.000 0.431 0.000 0.356 0.000 

dADE/nrand/2/bin 0.724 0.000 0.660 0.000 0.613 0.000 

NEA1 0.059 0.000 0.055 0.000 0.054 0.000 

NEA2#&+ 0.240 0.000 0.240 0.000 0.239 0.000 

DECG 0.309 0.000 0.308 0.000 0.224 0.000 

DELG 0.611 0.000 0.611 0.000 0.510 0.000 

DELS_ajitter 0.000 0.000 0.000 0.000 0.000 0.000 

CMA-ES# 0.115 0.000 0.115 0.000 0.115 0.000 

iPOP-CMA-ES 0.020 0.000 0.020 0.000 0.020 0.000 

ANSGAII 0.000 0.000 0.000 0.000 0.000 0.000 

PNA-NSGAII 0.310 0.000 0.275 0.000 0.252 0.000 

LSEAEA
* 0.893 0.000 0.886 0.000 0.886 0.000 

LSEAGP
*&+ 1.000 1.000 1.000 1.000 1.000 1.000 

ALNM* 0.822 0.000 0.811 0.000 0.792 0.000 

MEA* 0.000      0.000 0.000      0.000 0.000      0.000 

MSSPSO* 0.000      0.000 0.000      0.000 0.000      0.000 

9. Function f15 Vincent (3D) 
𝜀 = 1.0E-03 𝜀 = 1.0E-04 𝜀 = 1.0E-05 

PR SR PR SR PR SR 

EVLNN 0.091      0.000 0.071      0.000 0.037      0.000 

DE/nrand/1/bin 0.099 0.000 0.095 0.000 0.094 0.000 

DE/nrand/2/bin 0.066 0.000 0.066 0.000 0.065 0.000 

Crowding DE/rand/1/bin 0.274 0.000 0.274 0.000 0.270 0.000 

NMMSO*&+ 0.920 0.000 0.917 0.000 0.913 0.000 

N-VMO 0.399 0.000 0.275 0.000 0.192 0.000 

dADE/nrand/1/bin# 1.000 1.000 1.000 1.000 1.000 1.000 

dADE/nrand/2/bin 0.479 0.000 0.335 0.000 0.260 0.000 

NEA1 0.407 0.000 0.381 0.000 0.359 0.000 

NEA2#&+ 0.584 0.000 0.581 0.000 0.579 0.000 

DECG 0.242 0.000 0.240 0.000 0.237 0.000 

DELG 0.012 0.000 0.012 0.000 0.012 0.000 
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DELS_ajitter 0.157 0.000 0.157 0.000 0.154 0.000 

CMA-ES# 0.274 0.000 0.273 0.000 0.272 0.000 

iPOP-CMA-ES 0.027 0.000 0.027 0.000 0.026 0.000 

ANSGAII 0.345 0.000 0.140 0.000 0.038 0.000 

PNA-NSGAII 0.318 0.000 0.298 0.000 0.276 0.000 

LSEAEA
* 1.000 1.000 1.000 1.000 1.000 1.000 

LSEAGP
*&+ 0.744 0.000 0.668 0.000 0.556 0.000 

ALNM* 0.289 0.000 0.264 0.000 0.150 0.000 

MEA* 0.130 0.000 0.112 0.000 0.054 0.000 

MSSPSO* 0.001 0.000 0.000 0.000 0.000 0.000 

10. Function f16 Modified 

Rastrigin (2D) 

𝜀 = 1.0E-03 𝜀 = 1.0E-04 𝜀 = 1.0E-05 

PR SR PR SR PR SR 

EVLNN 0.708      0.000 0.373      0.000 0.125      0.000 

DE/nrand/1/bin 0.998 0.998 1.000 1.000 1.000 1.000 

DE/nrand/2/bin 1.000 1.000 1.000 1.000 1.000 1.000 

Crowding DE/rand/1/bin 1.000 1.000 1.000 1.000 1.000 1.000 

NMMSO*&+ 1.000 1.000 1.000 1.000 1.000 1.000 

N-VMO 1.000 1.000 1.000 1.000 0.968 0.660 

dADE/nrand/1/bin# 0.981 0.280 0.967 0.140 0.947 0.020 

dADE/nrand/2/bin 1.000 1.000 1.000 1.000 1.000 1.000 

NEA1 0.983 0.840 0.973 0.740 0.960 0.660 

NEA2#&+ 1.000 1.000 0.988 0.860 0.980 0.760 

DECG 1.000 1.000 1.000 1.000 1.000 1.000 

DELG 1.000 1.000 1.000 1.000 1.000 1.000 

DELS_ajitter 1.000 1.000 1.000 1.000 1.000 1.000 

CMA-ES# 0.998 0.980 0.992 0.900 0.978 0.760 

iPOP-CMA-ES 0.343 0.000 0.313 0.000 0.303 0.000 

ANSGAII 0.998 0.980 0.953 0.580 0.695 0.060 

PNA-NSGAII 1.000 1.000 1.000 1.000 1.000 1.000 

LSEAEA
* 1.000 1.000 1.000 1.000 1.000 1.000 

LSEAGP
*&+ 1.000 1.000 1.000 1.000 1.000 1.000 

ALNM* 1.000 1.000 1.000 1.000 1.000 1.000 

MEA* 0.990 0.900 0.965 0.760 0.707 0.100 

MSSPSO* 0.048 0.000 0.007 0.000 0.000 0.000 
*Algorithms participated in the CEC 2015 Competition. The rest are in the CEC 2013 Competition. 
#Top three winners of CEC 2013 
&Top three winners of CEC 2015 
+Top three winners of CEC 2013 and CEC 2015 combined 

 

A re-rank is performed to assess the position of EVLNN against the state-of-the-art niching 

algorithms based on the PR scores at three accuracy levels, 𝜀 = {10-3, 10-4, 10-5} averaged 

over the ten multimodal benchmark functions f9 to f16 including f14 (3D) and f15 (3D). The 

ranking result is shown in Table 4.12. 
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Table 4.12  Overall performance of EVLNN is ranked together with the state-of-the-art niching algorithms 

from the CEC 2013 and CEC 2015 competitions based on the average PR score at three accuracy levels, 𝜀 = 

{10-3, 10-4, 10-5} over ten multimodal benchmark functions f9 to f16. 

S/N Algorithms 
Statistics for PR 

Rank 
Mean Std Dev 

1 EVLNN 0.500 0.369 19 

2 DE/nrand/1/bin 0.684 0.398 16 

3 DE/nrand/2/bin 0.715 0.374 15 

4 Crowding DE/rand/1/bin 0.654 0.394 17 

5 NMMSO 0.956 0.179 1 

6 N-VMO 0.786 0.339 8 

7 dADE/nrand/1/bin 0.889 0.238 4 

8 dADE/nrand/2/bin 0.839 0.262 6 

9 NEA1 0.748 0.344 12 

10 NEA2 0.836 0.287 7 

11 DECG 0.784 0.329 9 

12 DELG 0.783 0.346 10 

13 DELS_ajitter 0.728 0.400 14 

14 CMA-ES 0.741 0.352 13 

15 iPOP-CMA-ES 0.480 0.390 20 

16 ANSGAII 0.565 0.400 18 

17 PNA-NSGAII 0.754 0.318 11 

18 LSEAEA 0.955 0.180 2 

19 LSEAGP 0.932 0.203 3 

20 ALNM 0.852 0.279 5 

21 MEA 0.397 0.425 21 

22 MSSPSO 0.330 0.447 22 

 

Based on the average PR score at three accuracy levels, 𝜀  = {10-3, 10-4, 10-5} over ten 

multimodal benchmark functions f9 to f16, the overall performance of EVLNN is ranked 19 

out of 22 algorithms with an average PR score of 0.500 and a standard deviation of 0.369. 

The top three algorithms are NMMSO, LSEAEA, and LSEAGP. The bottom three are iPOP-

CMA-ES, MEA, and MSSPSO.  

As observed, the performance of EVLNN in this set of benchmark tests is relatively weaker 

than the other state-of-the-art EAs presented in the CEC 2013 and CEC 2015 competitions. 

It is important to note that the CEC algorithms are designed for the competition focusing 

on real-parameter optimization, whereas EVLNN is a parsimonious ANN built for 

forecasting. The CEC algorithms performed better as they are tailored to lower or higher 

dimension problems, and the algorithms’ parameters need to be re-tuned in case of different 

benchmark functions [231]. On the other hand, the objective of EVLNN is to evolve 
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parsimonious ANN models that result in improved generalization and interpretability for 

practical applications. This distinct difference between EVLNN and the compared CEC 

algorithms lies in the nature of the problem.  

The CEC test functions are well-known benchmarks in the evolutionary computing 

research community, and it serves as a gold standard for search algorithm design and 

comparison. The functions are well-designed and are typically unconstrained with a 

multimodal landscape consisting of minima, optima, and saddle points. The stringent 

standard presented by the CEC test functions with their parameter settings set a high 

benchmark for comparing different niching methods. In the algorithm design process, the 

strength and limitations of EVLNN are better understood through the set of test functions. 

Nonetheless, real-world problems are more diverse, with isolated regions that can be very 

different from these test functions. Thus an algorithm’s good results for the test functions 

may not translate to good results in the real world. In this regard, an added experiment using 

open-access real-world time-series data for benchmark testing is introduced for comparison 

and to help assess the applicability of EVLNN. 

 

4.5. Time-series Electricity Load Data as Benchmark for 

Forecasting 

Test functions are generally “well behaved” functions with regular domains, while realistic 

problems have many nonlinear complex constraints, and the domains can be formed by 

many isolated regions or islands [206]. Various open-access data platforms have made 

datasets available to be analyzed to advance machine learning technologies. One example 

is the time-series dataset for electricity load forecasting made available by MATLAB for 

researchers and AI engineers to develop predictive models in the energy sector. It consists 

of historical electricity loads of Sydney, electricity prices for the Australian market, the 

Sydney temperature, and New South Wales weather data sampled at 30 minutes intervals 

from 2006 to 2010 [232]. In this experiment, a subset of one month’s data from 1st to 31st 

July 2010, consisting of a sample size of 1,490 out of a potential 87,600, was extracted for 
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model training. The split of 70% for training and 30% for testing resulted in the training 

datasets of 1,043 samples. This sample size is not extensive considering the high variability 

of electricity load. The identified model is evaluated for a day-ahead forecast on 1 August 

2010. The aim of selecting a one-month dataset from a five-year dataset is to test the 

predictive accuracy of EVLNN with a small sample size. Reducing the reliance on large 

datasets has potential for real-world applications where models that generalize well on 

smaller sample sizes can reduce the cost of implementation. A summary of the input and 

response variables is shown in Table 4.13, and their descriptive statistics are shown in Table 

4.14. 

Table 4.13  Input features and response variable used. 

Input Features Abbreviation 

x1(t): Dry Bulb Temperature at time t DB 

x2(t): Dew Point Temperature at time t DP 

x3(t): Wet Bulb Temperature at time t WB 

x4(t): Relative Humidity at time t RH 

x5(t): Electricity prices at time t EP 

Response Variable Abbreviation 

y1(t): Electricity load at time t EL 

 

Table 4.14  A summary of the descriptive statistics of a real-world dataset used to evaluate EVLNN’s 

performance for electricity load forecasting. 

Input Feature  Unit and Symbol Range Min Max Mean Std Dev 

x1(t) DB degree Celsius, oC 15.00 oC 6.00 oC 21.00 oC 12.59 oC ± 2.91 oC 

x2(t) DP degree Celsius, oC 14.90 oC -0.30 oC 14.60 oC 7.94 oC ± 3.40 oC 

x3(t) WB degree Celsius, oC 12.50 oC 4.30 oC 16.80 oC 10.37 oC ± 2.47 oC 

x4(t) RH Percentage, % 66.00 % 33.00 % 99.00 % 75.04 % ± 15.39 % 

x5(t) EP Australian Dollar, 

AUD 

104.44 AUD 3.96 AUD 108.40 AUD 27.40 AUD ± 7.30 AUD 

Output Feature Unit and Symbol Range Min Max Mean Std Dev 

y1(t) EL MegaWatt hour, 

MWh 

6290.40 
MWh 

6617.72 
MWh 

12908.12 
MWh 

9688.56 
MWh 

± 1356.72 
MWh 

 

Figure 4.11 shows the dataset consisting of a sample size of 1,490, where 70% is used for 

training (blue plot) and 30% for testing (red plot) EVLNN, PSO-NN, DE-NN, and GA-NN 

models. The identified models are then deployed to forecast a one-day electricity load on 
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1st August 2010 (green plot). The dataset is first normalized to values between 0 and 1. 

Subsequently, 50 runs of the experiments are conducted, and their performances are 

averaged and shown in Table 4.15. While PSO-NN has the lowest training MSE value, 

EVLNN has the lowest testing MSE value and standard deviation. The identified models 

from each algorithm are applied to forecast a one-day electricity load in Sydney, Australia, 

on 1st August 2010.  

Figure 4.11  Time-series electricity load from 1st July 2010 to 1st August 2010. The blue and red plots 

indicate the training and testing dataset. The green plot is an out-of-sample dataset used to evaluate the 

models. 

 

Table 4.15  Comparing the training and testing MSE scores averaged over 50 runs. 

Models 
Training MSE Testing MSE 

Mean Std Dev Mean Std Dev 

EVLNN 0.02936 0.00322 0.03228 0.00332 

PSO-NN 0.02496 0.00155 0.04202 0.00599 

DE-NN 0.02593 0.00153 0.03899 0.01005 

GA-NN 0.03004 0.00304 0.03368 0.00400 

  

The predicted plot is shown in Figure 4.12. EVLNN predicted well at the first upturn but 

undercompensated at the first downturn and the second upturn. DE-NN and GA-NN 
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predicted well at the first upturn but overcompensated at the first downturn and the second 

upturn. PSO-NN had a better prediction at the first downturn but overcompensated at the 

first and second upturn.  

The results indicated that PSO-NN, DE-NN, and GA-NN have higher positive biases, over-

compensating at the upturns. In contrast, EVLNN has a lower negative bias, under-

compensating at the upturns. Overall, EVLNN has the lowest test MSE compared to PSO-

NN, DE-NN, and GA-NN, whose values are 0.0356, 0.0578, 0.0189, and 0.0401, 

respectively. The result demonstrated that EVLNN is closer to detecting the peaks than 

troughs in a time-series dataset. Another crucial statistical measure is the standard deviation 

value. All the other models, except EVLNN, suffer from higher testing standard deviation 

values. While EVLNN tends to have a lower negative bias, it does not suffer from a high 

standard deviation. It can be reasoned that these models represent the features of the 

training dataset very well but failed to generalize to the testing dataset compared to EVLNN. 

To achieve a low standard deviation value, search algorithms must produce near-optimal 

models to consistently converge to the global optima of the cost function. Therefore, 

EVLNN has performed comparatively well in this real-world application. 

Figure 4.12  One-day electricity load forecast for Sydney, Australia, for an out-of-sample dataset from 1st 

August 2010 at 0000H to 2nd August 2010 at 0000H, at 30 mins time resolution.  
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4.6. Chapter Summary 

This chapter evaluated EVLNN with a comprehensive set of benchmark functions to assess 

the algorithm’s performance. EVLNN’s search capability tested with benchmark functions 

f1 to f8 demonstrated that EVLNN had a strong ability to locate the global optima in low-

dimensional unimodal and multimodal landscapes. In particular, EVLNN had achieved an 

average PR of 100% for Bohachevsky N.1-1D (f1), and Booth-2D (f2), and 81.2% and 

93.2% for Ackley-2D and Rosenbrock-2D (f6) functions across all 𝜀 = {10-1, 10-2, 10-3, 10-

4, 10-5}. This result is comparable to the performance of PSO, DE, and GA. However, for 

high-dimensional optimization problems, such as the Sphere-30D (f3), Brown-30D (f4), 

Rastrigin-30D (f7), and Griewank-30D (f8) functions, EVLNN’s average PR and SR values 

were lower compared to PSO, DE, and GA. EVLNN’s less desirable performance in high 

dimensionality problems is due to a drop in search efficiency caused by increased crossover 

complexity due to a larger chromosome matrix size. Nonetheless, the bright spot is that for 

the Rastrigin-30D (f7) function, EVLNN can locate 100% of the optima at 𝜀={10-1} for all 

runs. In contrast, PSO, DE, and GA are unsuccessful, with a PR of 0%. inferior 

Test results from benchmark functions, f9 to f16, again demonstrated that EVLNN had 

performed well for 1D and 2D multimodal test functions  f9 to f13 across all 𝜀 = {10-1, 10-2, 

10-3, 10-4, 10-5}. For the Uneven Decreasing Maxima (f11,) and Six-hump Camel Back (f13) 

functions, EVLNN recorded a PR of 100% for all 𝜀. The algorithm also produced a high 

PR of 84.3% and 79.4% for the Himmelblau (f12) and Equal Maxima (f10) functions. For 

the scalable multimodal functions f14 to f16, EVLNN performed moderately well for the 

Modified Rastrigin (f16), Shubert-2D (f14), and Vincent-2D (f15) functions, with PR of 59.1%, 

44.6%, and 37.6%, respectively. However, for the Five-Uneven-Peak Trap (f9) function, 

EVLNN could not find any peaks at 𝜀 = {10-4, 10-5}. EVLNN also suffered from locating 

the peaks associated with Shubert-3D (f14) and Vincent-3D (f15) functions, coping only with 

PR of 1.24% and 8.8%, respectively. These optimization functions exposed EVLNN’s 

weaknesses in high-dimension problems. One possible explanation may be that the smaller 

species have fewer genetic variability to evolve to better solutions. 
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Nonetheless, it is interesting to note that EVLNN had outperformed all the CEC 2013 and 

CEC 2015 niching algorithms in the Shubert-2D (f14) function, where it managed a PR 

score of 27.6% at 𝜀 = {10-5}. In contrast, all the other niching algorithms were unsuccessful 

with 0% at this accuracy level. Overall, EVLNN’s average PR score of 0.500 across the ten 

benchmark functions f9 to f16 (including Shubert-3D and Vincent-3D) is ranked 19 out of 

22 CEC 2013 and CEC 2015 state-of-the-art niching algorithms, with its performance 

ahead of iPOP-CMA-ES, MEA, and MSSPSO. Despite the relatively weaker results by 

EVLNN compared to other CEC algorithms, a distinct difference lies in the algorithm 

design purpose. That is, the CEC algorithms are focused on real-parameter optimization, 

whereas EVLNN is an ANN that is built for forecasting. The performance of EVLNN was 

thus validated using the open-access real-world time-series electricity load data as a 

benchmark for forecasting. The results demonstrated that EVLNN is promising and 

applicable for real-world energy prediction problems.  

 



 

 

Chapter 5 

5. Energy Consumption Prediction in 

Hadoop Cluster  

5.1. Introduction 

Data centers provide several platforms for managing and processing big data; the Hadoop 

platform is one of the most popular [233]. With its rich ecosystem composed of a set of 

feature-rich development tools, Hadoop’s popularity grew and is extensively used today by 

Corporations, Enterprises, and Internet companies to analyze data-intensive problems [234] 

[235] [236]. While Hadoop is highly scalable and fault-tolerant for processing massive data, 

the energy consumed by Hadoop data centers is intense. This phenomenon has presented 

significant optimization opportunities and attracted extensive interest in its energy 

efficiency research. Energy consumption prediction methods are critical to data center 

sustainability efforts to improve the energy efficiency of Hadoop data centers. However, 

due to complexity and heterogeneity in data center scenarios, it is difficult to estimate 

energy consumption accurately using conventional approaches. This chapter presented 

EVLNN as an ML model for Hadoop energy consumption prediction using multiple 

energy-related features. System environment, applications, and hardware-related data are 

collected from a Hadoop testbed for model training. The identified models were compared 

with neural networks trained using other EAs, namely Particle Swarm Optimization (PSO-

NN), Differential Evolution (DE-NN), and Genetic Algorithm (GA-NN). The results 

showed that EVLNN had outperformed the other models, verifying EVLNN’s predictive 

accuracy and the capability to generalize to new data. Further experiments were conducted 

to determine the factors contributing to energy consumption using the ensemble-based 

approach to sensitivity analysis, where input variables from the identified models were 

analyzed to assess their relative importance.  
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5.2. Hadoop – Background 

Hadoop is a distributed file system architecture for massively parallel processing (MPP). 

The architecture combines the Hadoop File System (HDFS) [15] in the data layer and 

MapReduce version one [16] or MapReduce version two [237] in the software, forming a 

new computing paradigm. Hadoop emerged as an open-source Apache project in 2009 and 

constituted a new area in academic research in the MPP system [233] [238] [239] [240]. In 

Hadoop’s Client-Master-Slave architecture, the master in the data layer is known as the 

NameNode, and the slaves are known as the DataNodes. The files stored in HDFS are first 

divided into fixed-size blocks by the NameNode and subsequently replicated and 

distributed across the DataNodes in the Hadoop cluster for enhanced performance and 

reliability. In the software layer, the JobTracker daemons manage the cluster resources and 

the parallel processing of the HDFS data via the MapReduce jobs submitted by the client. 

The client is any machine interacting with and requesting services from the Hadoop cluster. 

Upon receiving the MapReduce job, JobTracker then communicates to the NameNode to 

determine the DataNodes where the data is located. It then divides the jobs to MapReduce 

tasks and assigns them to the TaskTracker daemons that reside in the DataNodes to process 

them. Each TaskTracker is configured with a static allocation of fixed-size “slots” where a 

map slot, known as a mapper, and a reduced slot, known as a reducer, are used by the map 

task or reduce task, respectively. In addition, the TaskTracker provides job progress 

information to the JobTracker that monitors the overall status of the job. The number of 

mappers created is dependent on the number of input file splits, and the number of reducers 

is configured by the system administrator. The map task processes the data and outputs a 

list of key-value pairs as intermediate data. The intermediate data will then be shuffled and 

sorted using the keys and subsequently merged. The reducer task processes the intermediate 

data, further reducing them into smaller units and writing the result in HDFS. This Client-

Master-Slave architecture allows Hadoop to scale and handle big data well. Figures 5.1 and 

5.2 depict the execution of a MapReduce job. Details of the map and reduce phases can be 

found in [241].  
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Figure 5.1  The MapReduce software layer architecture. 

Figure 5.2  The MapReduce job’s computation phases. 

 

5.3. The Hadoop Testbed  

A local testbed was set up to study the energy performance of Hadoop. The setup consists 

of a 120-core Hadoop cluster, an intelligent power distribution unit to measure energy 

consumption, and software monitoring tools to collect energy-related data from the Hadoop 

cluster to analyze and train the EVLNN model.  
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5.3.1. Physical Testbed Setup  

Figure 5.3 shows the physical infrastructure and connectivity of the Hadoop testbed set up 

for the experiment. The testbed comprises five servers configured to form one Hadoop 

NameNode and four Hadoop DataNodes. The NameNode is running on an HP ProLiant 

DL360P Generation 8 server that comes with 64 Gigabyte (GB) memory, dual-socket 

Intel(R) Xeon(R) CPU E5-2667 @ 2.90GHz with a 6-core CPU cum hyper-threading 

technology.  

 

Figure 5.3  The Hadoop testbed. 

The DataNodes runs on HP ProLiant DL380P Generation 8 servers with 48 GB memory, 

dual-socket Intel(R) Xeon(R) CPU E5-2640 @ 2.50GHz 6-core CPU cum hyper-threading 

technology. Hyper-threading is a process by which a CPU divides up its physical cores 

into virtual cores that are treated as physical cores by the operating system. CPUs with six 

cores use this process to create four threads or four virtual cores. Hence, the Hadoop cluster 

consists of five servers with dual-core sockets with 6-core CPUs, forming a total of 120-

core with hyper-threading enabled. All nodes were installed with the open-source CentOS 

version 6.5 Linux operating system and Apache Hadoop version 0.20.1. The nodes are 
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interconnected via a top-of-rack (TOR) Gigabit Ethernet switch with 1 Gigabit per second 

(Gbps) connections. In addition, a Raritan intelligent Power Distribution Unit (iPDU) 

provides power connection to the clusters and is used to measure and record the power 

consumption by the nodes. The JobTracker daemon was installed in the NameNode. All 

DataNodes were installed with the TaskTracker daemons.    

5.3.2. Hadoop Software Configuration  

The Hadoop daemons were configured via four primary eXtensible Markup Language 

(XML) files, namely, hdfs-site.xml, core-site.xml, mapred-site.xml, and yarn-site.xml. Most 

of the parameters in the XML files are left in their default settings except for the following 

parameters configured, as shown in Table 5.1, that ensured a stable system performance.  

Table 5.1  Hadoop configuration parameters and values. 

Hadoop Configuration 

Parameter 

Description Value Configuration 

File 

dfs.replication Replication factor 2 hdfs-site.xml 

mapred.child.java.opts Java virtual machine (JVM) heap 

size for the MapReduce processes 

512 MB mapred-site.xml 

mapreduce.task.io.sort.mb The total amount of buffer memory 

to use while sorting files, in 

megabytes 

200 MB mapred-site.xml 

mapreduce.map.sort.spill.percent The soft limit in the serialization 

buffer. Once reached, a thread will 

begin to spill the contents to the 

disk in the background. 

0.9 mapred-site.xml 

mapreduce.task.io.sort.factor The number of streams to merge at 

once while sorting files. This 

parameter determines the number 

of open file handles. 

20 mapred-site.xml 

dfs.blocksize The default block size for new 

files, in bytes. 

128 MB hdfs-site.xml 

 

5.3.3. Monitoring Tools for Data Acquisition  

A set of monitoring tools was installed to collect system parameters data and analyze energy 

consumption. These parameters can be classified into the application, system hardware, 

power and environment, which require separate acquisition tools. Application data were 
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acquired using built-in Hadoop job-related counters [242]. Data from system hardware 

parameters were acquired using Ganglia (version 3.7.1) [243], an open-source performance 

monitoring software that measures the utilization of various system metrics such as CPU, 

memory, and networks [244]. Data from the power and environmental parameters were 

acquired through the Simple Network Management Protocol (SNMP) software. The SNMP 

software communicates with the intelligent Power Distribution Unit (iPDU) to extract 

power consumption, temperature, and humidity information. The iPDU contains the SNMP 

Management Information Base (MIB), which can be queried through their respective 

SNMP Object Identities (OIDs). Table 5.2 shows the SNMP OID strings configured in the 

SNMP Manager software to retrieve those data.  

Table 5.2  SNMP OID strings and polling interval for power consumption data. 

Hadoop Cluster 

Components 

iPDU 

Outlet 

SNMP OID String Description Polling 

Interval (secs) 

NameNode 1 1.3.6.1.4.1.13742.6.5.4.3.1.4.1.1.5 Active power 5 

DataNode1 2 1.3.6.1.4.1.13742.6.5.4.3.1.4.1.2.5 Active power 5 

DataNode2 3 1.3.6.1.4.1.13742.6.5.4.3.1.4.1.3.5 Active power 5 

DataNode3 4 1.3.6.1.4.1.13742.6.5.4.3.1.4.1.4.5 Active power 5 

DataNode4 5 1.3.6.1.4.1.13742.6.5.4.3.1.4.1.5.5 Active power 5 

Network Switch 6 1.3.6.1.4.1.13742.6.5.4.3.1.4.1.6.5 Active power 5 

Temperature sensor 10 1.3.6.1.4.1.13742.6.3.5.3.1.3.1.12.10 Temperature 5 

Humidity sensor 11 1.3.6.1.4.1.13742.6.3.5.3.1.3.1.12.11 Humidity 5 

 

 

5.4. Predictive Modeling for the Hadoop System  

5.4.1. Payload Generation, Workload Simulation, and Data Acquisition 

Two commonly used Hadoop applications, Wordcount and Terasort, were used to simulate 

workloads on the Hadoop testbed. These applications are commonly employed for energy 

efficiency and performance studies in Hadoop research [245] [246]. Wordcount is a simple 

application that counts the number of times each word (key) appears (value) in the input 
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dataset. Wordcount has many real-world applications in text analytics. For example, by 

analyzing the word frequency of Twitter data related to weather, one can learn about the 

liveliness of climate discussion on social media. Terasort comes with Hadoop, and it is used 

to sort key-value tuples. This application is generally used for benchmarking the 

performance of Hadoop systems. 

In order to simulate the workloads, payloads must be generated for the Wordcount and 

Terasort applications. Various payload sizes from 100 MB to over 100 GB were created. 

For Wordcount, the payloads are generated using the Linux command-line interface’s ‘>>’ 

redirection symbol to append multiple text files into a large file. For Terasort, the payloads 

are generated using the Teragen application in Hadoop. Teragen can generate large datasets 

to be sorted by Terasort.  

During workload simulation, the Wordcount and Terasort were run the payload files in sizes 

100MB, 200MB, 300MB, …, 100GB, and beyond. In the process, energy-related data such 

as disk I/O, network transfer, memory, and computational activities [247] were then 

acquired through tools such as Ganglia, SNMP, and Hadoop built-in counters. The data 

were subsequently used to train the EVLNN model for energy consumption prediction.  

Most energy consumption research for Hadoop focuses only on acquiring a few input 

features. EVLNN uses multiple energy-related input features to provide insight into the 

feature's importance relative to the system energy consumption. A total of 23 input features 

and the energy consumption data were acquired from the Hadoop testbed. These features 

and their methods of acquisition are presented in Table 5.3. 
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Table 5.3  A list of 23 input features and one output variable for data acquisition from the Hadoop testbed. 

Category Parameters Unit Description 
Method of 

Acquisition 

System 
Utilization 

1. Cluster CPU utilization (system) % Percentage of CPU time used by the kernel Ganglia 

2. Cluster CPU utilization (user)  % Percentage of CPU time used by user space 

processes to run applications  

Ganglia 

3. Cluster CPU utilization (wait)  % Percentage of CPU  time spent waiting for 

input or output operations, like reading or 
writing to disk. 

Ganglia 

4. Cluster CPU time spent Seconds Cluster CPU time spent during the 
MapReduce process  

Hadoop counters 

5. Memory use GB The part of the memory used for processing 
out of the total available physical memory 

Ganglia 

6. Memory cache GB The part of the memory used to cache the 

contents of frequently-used disk data  

Ganglia 

7. Memory buffer MB Memory buffered during MapReduce process Ganglia 

8. System process Number Number of processes running Ganglia 

Disk I/O 

Activities 

9. File: Map byte read 

10. File: Reduce byte read 
11. File: Map byte written 

12. File: Reduce byte written 

13. HDFS: Reduce byte written 

GB 

GB 
GB 

GB 

GB 

Data read by Mapper from local disk 

Data read by Reducer from local disk 
Data written by Mapper to local disk 

Data written by Reducer to local disk 

Data written by Reducer to HDFS 

Hadoop counters 

Hadoop counters 
Hadoop counters 

Hadoop counters 

Hadoop counters 

14. Reduce Shuffle bytes (Total) GB Data transferred from Map to Reduce Hadoop counters 

Network  
Transfer 

15. Network (In) Gbps Data received Ganglia 

16. Network (Out) Gbps Data transmitted Ganglia 

Job Profile 17. File size GB Size of MapReduce jobs Hadoop counters 

18. Job completion time Hour Time taken to finish a MapReduce job Hadoop counters 

19. Number of Mappers  Number Job’s instruction number Hadoop counters 

20. Number of Reducers Number Job’s instruction number Hadoop counters 

21. Workload type Number 0 for Wordcount, 1 for Terasort N.A. 

Environment 22. Rack Relative Humidity  % Relative humidity measured within the rack  SNMP 

23. Rack Temperature oC Rack temperature hosting the cluster SNMP 

Energy 1. Energy consumption kWh Energy consumed by cluster (output variable) SNMP 

 

 

 



Chapter 5. Energy Consumption Prediction in Hadoop Cluster  140 

 

 

5.4.2. Exploratory Data Analysis  

Data exploration was initially performed to analyze and better understand the energy 

consumption of the Hadoop cluster. Figure 5.4 presents the instantaneous power of a 

Terasort MapReduce job on a 50 GB payload file. The data was acquired via SNMP polling 

at an interval of 5 seconds. It was observed that individually, the DataNodes (also called 

the worker nodes) had almost similar power consumption patterns. The consumed power 

of the DataNodes was also higher than the NameNode (also known as the head node). This 

pattern was expected as DataNodes executes the Mapper and Reducer programs, whereas 

NameNode only manages the metadata and job scheduling. Figure 5.5 shows the 

aggregated power where there was an initial surge in the power consumption to almost 

1400 W before it receded to a mean value of 1037.86 W. The elapsed time to execute the 

Terasort application was 36 minutes and 18 seconds (or 2,178 secs) with a 50 GB payload.  

Figure 5.4  Instantaneous power chart for Terasort application with a 50 GB payload. 



Chapter 5. Energy Consumption Prediction in Hadoop Cluster  141 

 

 

 Figure 5.5  Aggregated power chart for Terasort application with a 50 GB payload. 

A similar analysis was performed for a Wordcount MapReduce job with a 50 GB payload. 

However, the chart in Figure 5.6 depicts a distinctly different power consumption pattern 

where higher power is consumed but at a shorter elapsed time. Figure 5.7 shows the 

aggregated power, sustained at approximately 1520 W for at least 200 seconds. The mean 

power consumed was 1330.23 W over the elapsed time of the Wordcount application of 

697 seconds. 

Figure 5.6  Instantaneous power chart for Wordcount application with a 50 GB payload. 
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Figure 5.7  Aggregated power chart for Wordcount application with a 50 GB payload. 

Instantaneous power varies all the time; hence the dataset is considered too noisy for model 

training. There are ways to smooth out the constant fluctuation of instantaneous power. One 

of them is to work with mean power or energy data. Mean power represents the power 

consumed over a specific period, and mean energy represents the mean load performed 

over that period. The cluster’s energy consumption E, therefore, can be calculated using 

Equation 5.1,  

𝐸 = 𝑃𝑇                                  (5.1) 

where P is the power measured in Watts and T is the period measured in seconds to perform 

the work. Equation 5.1 could also be enhanced when dealing with cumulative energy 

change by integrating the instantaneous power, P(t), in a period between t1 and t2, given in 

Equation 5.2, 

𝐸 = ∫ 𝑃(𝑡) 𝑑𝑡
𝑡2
𝑡1

                                                  (5.2) 

However, the function of the power consumption curve is generally not known. Hence the 

energy consumed by Terasort and Wordcount workloads over an interval [𝑡1 𝑡2]  can be 

approximated by the area under the curve for that period. The computed result was thus 

0.62 kWh and 0.25 kWh, respectively. Comparatively, the Terasort application, while 
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needing lower power but a longer elapsed time, consumed more than twice the energy level 

of the Wordcount application, which needed higher power but shorter elapsed time.  

With that initial understanding, three additional workloads of payload sizes, 55 GB, 60 GB, 

and 65 GB, were generated. The energy consumption pattern was further analyzed with 

data collected from the energy-related features. The result is presented in Table 5.4. Several 

observations can be drawn for the Wordcount application; firstly, energy consumption 

generally increases with the file size. However, I/O activities counters were low, such as 

map byte read, map byte written, reduce byte read, reduce byte written, and reduce shuffle 

byte. This observation suggests the Wordcount application is light on disk I/O activities. 

Secondly, the CPU and memory utilization counters were high, such as cluster CPU (user), 

memory (use), and system (process). This observation suggests that the Wordcount 

application is compute-intensive.  
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Table 5.4  Energy-related features and their respective data obtained from executing the MapReduce 

Wordcount and Terasort workloads with different payload sizes. 

Energy-Related Metric 

MapReduce Workloads 

50 GB 55 GB 60 GB 65 GB 

WC* TS^ WC TS WC TS WC TS 

Map Byte Read (GB) 3.16 50.35 3.48 55.38 3.80 61.42 4.12 66.46 

Map Byte Written (GB) 3.36 100.15 3.69 110.17 4.03 122.19 4.37 132.20 

Reduce Byte Read (GB) 0.17 50.07 0.19 55.07 0.21 61.08 0.22 66.09 

Reduce Byte Written (GB) 0.17 50.08 0.19 55.08 0.21 61.09 0.22 66.10 

Reduce Byte Written HDFS (GB) 0.00 50.17 0.00 55.18 0.00 61.20 0.00 66.22 

CPU Time Spent (min) 288.15 154.85 313.80 129.58 351.70 150.69 381.03 148.80 

Reduce Shuffle Byte Total (GB) 0.17 50.07 0.19 55.07 0.21 61.08 0.22 66.09 

Number of Mappers 187 200 205 220 224 244 243 264 

Number of Reducers 1 115 1 115 1 115 1 115 

Cluster CPUs (Systems) (%) 1.9 4.3 2.0 4.0 2.4 4.5 1.9 4.6 

Cluster CPUs (User) (%) 49.6 8.2 47.9 9.3 50.1 9.0 44.5 9.8 

Cluster CPU (wait) (%) 0.5 11.2 0.5 16.2 1.6 17.8 0.5 22.7 

Memory (Use) GB 85.2 93.9 84.7 92.8 81.4 95.3 83.3 93.7 

Memory (Cache) GB 68.3 75.3 69.1 74.4 70.1 70.1 67.2 39.6 

Memory (Buffer) MB 1.0 10.3 1.0 12.3 1.0 14.1 1.0 46.2 

System (Process) 226.8 69.9 246.8 58.7 231.8 81.0 252.9 77.0 

Network (IN) (kbps) 9.6 274.4 8.6 431.6 11.4 340.8 9.0 406.3 

Network (OUT) (kbps) 9.6 277.3 8.6 436.5 11.3 352.5 8.9 418.0 

Elapsed Time in mins 10.6 36.6 10.4 28.0 12.8 32.3 14.1 30.8 

Rack Relative Humidity (%) 50.0 50.0 51.0 50.0 50.0 50.0 46.0 50.0 

Rack Temperature (oC) 23.3 23.4 23.4 23.9 23.9 23.9 26.5 23.9 

Mean Active Power (kW) 1.33 1.04 1.42 1.04 1.38 1.03 1.46 1.05 

Cumulative Energy (kWh) 0.26 0.63 0.25 0.48 0.27 0.56 0.34 0.54 

*WC is Wordcount job, ^TS is Terasort job. 

In comparison, energy consumption for the Terasort application generally doubled that of 

the Wordcount application for the same payload. I/O activity counters such as reduce shuffle 

byte, the number of mappers, and the number of reducers were high. The CPU time spent 

counter was half the Wordcount application and did not increase with payload size. The 

cluster CPU (user) counter was low, with a mean of around 9.08%. The cluster CPU (wait) 

counter increased with file size, and the system (process) counter was comparatively lower 

and generally stable. The memory use counter was comparatively higher, and the network 

(IN/OUT) counters were high in both directions. These observations suggest that the 

Terasort application is light on CPU demand, high in I/O, and high in network traffic; hence, 
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the Terasort application is I/O-intensive. Table 5.5 summarizes the feature analysis and 

characterization of the different MapReduce workloads and their impact on energy 

consumption. 

Table 5.5  Analysis and characterization of the WordCount and Terasort workloads. 

Features Wordcount Application Terasort Application 

Energy consumption Increases with file size Constant 

Mapper I/O activities Low High 

Reducer I/O activities Low High 

Shuffle activities Low High 

CPU time spent Increases with file size Constant 

Number of mappers Increases with file size Increases with file size 

Number of reducers Low, constant High, constant 

CPU (user) – used by applications High Low 

CPU (system) - used by the kernel Very low Low 

CPU (wait) - waiting for I/O Very low Low 

Memory (use) High High 

Memory (cache) High High 

Memory (buffer) Very low Very low, can be unpredictable 

System processes High Moderate 

Network traffic Low High 

Elapsed time Low High 

 

To further explore the characteristics of the energy-related features, the plots of these 

features for Terasort and Wordcount workloads for payloads from 50 GB to 65 GB at one 

GB increment. The plots consist of CPU, Memory, Network utilization, Number of System 

Processes, Temperature, Humidity, I/O activities (Number of Mappers and Reducers), CPU 

time spent, Elapsed Time, and Energy Consumption. It can be observed from Figure 5.8 

that the energy consumption for Terasort workloads was higher than Wordcount workloads. 

This observation is due to the longer elapsed time taken by Terasort workloads to complete 

the job for the same payload. However, when computed at a per-second level, Terasort and 

Wordcount workloads consumed an average of 17.52 kWh/s and 23.23 kWh/s, respectively. 

The analysis found evidence that compute-intensive workloads consumed higher energy 

than I/O intensive workloads due to higher CPU (user) utilization, CPU time spent, and 

system (process). 
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Figure 5.8  Energy-related features for MapReduce and Terasort workloads with various payload sizes. 
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5.4.3. Data Transformation and Normalization  

The data acquired in their raw format was first transformed to their respective standard 

units, such as file size to Gb, network traffic to kilobits per second (kbps), and energy to 

kWh. After that, the data is normalized using min-max scaling as shown in Equation 5.3 to 

values between 0 and 1 before model training, 

𝑧𝑖 =
𝑥𝑖−min(𝑥)

max(𝑥)−min(𝑥)
                                              (5.3) 

where x = (x1, … xn), min(x), and max(x) are the minimum and maximum values of variable 

x, respectively, and zi is the normalized data of xi in the ith sample.  

5.4.4. Model Training  

The energy-related data acquired from executing the Wordcount and Terasort jobs, used for 

model training, is split into 70% training and 30% testing set. The model training was 

executed in 50 trials. The best individuals from each trial are identified by their lowest 

training MSE values. These 50 identified individuals are then applied to predict the output 

using the testing dataset. EVLNN’s performance is computed by averaging the MSE results 

of the training and testing dataset obtained in the 50 trials. Then, the results are compared 

to the MSE results produced by models trained using PSO-NN, DE-NN, and GA-NN. 

The EVLNN model is shown in Figure 5.9. It consists of 23 input features, and the output 

to predict is the energy consumption.  
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Figure 5.9  The EVLNN model with 23 input variables and one response variable.  

The hyperparameter settings for EVLNN are given in Table 5.6, with its genetic operators 

shown in Table 5.7. The EVLNN search algorithm is applied to identify an optimal 

parsimonious ANN for Hadoop energy consumption prediction. 

Table 5.6  EVLNN’s hyperparameter settings. 

EVLNN’s Hyper Parameter Description 

Input layer neuron 23 

Hidden layer neuron 1 to 26 

Output layer neuron 1 

Hidden layer activation function Sigmoid function  

Output layer activation function Pureline 

Network type Feedforward MLP 

Network connections Partially connected 
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Table 5.7  EVLNN’s operators and values. 

EVLNN Operators Value 

Population size 100 

Max generation 100 

Intra-species crossover probability 0.9 

Inter-species crossover probability 0.01 

Mutation probability 0.01 

Link-node mutation probability 0.01 

Weights Mutation range -0.5 to 0.5 

Replacement probability 0.05 

At initialization, a population of 100 individuals is created and subsequently speciated. 

Figure 5.10 shows a normal species distribution at initialization, where the horizontal axis 

represents species ID, and the vertical axis represents the size of the species.  For example, 

Species_13 has the highest number of individuals at the start with 23 individuals, and 

Species_8 and Species_19 have only one individual each.  

Figure 5.10  Species distribution at population initialization. 

As crossover and mutation occur through the EVLNN process to search for optimal 

parsimonious structures, the species growth pattern also changes, as seen in Figure 5.11. 

This changing pattern is depicted by the varying height of each bar in the population 

histogram captured from generation 20 to generation 100 at an interval of 20 generations. 
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For example, at the 20th generation, most species have around the same number, but 

Species_7, Species_8, and Species_10 have extinct, and a new Species_22 has spawned. In 

the 40th generation, the population is concentrated around Species_13, and another new 

Species_21 has spawned. In the 60th generation, there was a shift in species concentration 

from Species_12 to Species_14. This trend continued until the 100th generation, with slight 

movement in between. The varying species size and the emergence and disappearance of 

species highlighted the effects of speciation, crossovers, and mutations of EVLNN in a 

continual search for the fittest landscape. 
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 Figure 5.11  Histogram showing the species distribution for the EVLNN population from 20th generation to 

100th generation at intervals of 20 generations. 

Figure 5.12 examines the growth pattern of each species in the EVLNN population in detail. 

The diagram reflects the growth and shrinks trend among species 1 to 26 during the 

evolutionary search for the optimal global structure. As more individuals with higher fitness 

evolve in that species, the species size grows at the expense of other species as the total 

population remains constant. This phenomenon can be observed from Species_12 to 

Species_16. Species_12 to Species_14 eventually grew to an average size of 20, and 
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Species_15 and Species_16 to ten. Generally, optimal solutions would come from species 

with a larger subpopulation. A declining trend is observed for Species_17 to Species_19, 

starting from around the 10th generation. These species ended in a very small population or 

extinction, signifying that the species' fitness could not compete globally. Similarly, 

Species_7 to Species_11 had a brief growth for around the first 20 generations. After that, 

these species could not thrive as they were being replaced with healthier individuals in the 

population. Almost a flat line trend is observed for Species_20 to Species_26, highlighting 

zero or marginal growth, while Species_1 to Species_6 did not spawn any individuals.  

 

Figure 5.12  Species growth charts depicting their respective growth patterns. 

The EVLNN algorithm implemented a diversity tracker with three indices, popdiversity, 

shannondiversity, and shannonequitability, to track population diversity for insights into its search 

behavior. The popdiversity tracks how diverse the population is through individuals’ 

phenotype structures, the shannondiversity tracks the species abundance, and the 

Species 26 
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shannonequitability tracks the species evenness or how close in numbers each species is. Figure 

5.13 shows the chart of these three indices during one of the experiments. 

Figure 5.13  Tracking for solution diversity. 

The observed constant variability for the popdiversity plot in Figure 5.13 implied that 

individuals' phenotype structure within the population is continually changing. The 

popdiversity value measured at 2.60 at the start and 1.45 at the end of 100 generations 

indicated a convergence trend as individuals within the population became more similar. 

The observed downward slope of the shannonindex plot started at an initial value of 2.41 and 

ended at 1.79 after 100 generations. The gradual slope implied that the population had 

converged to fewer species than it started. This result is expected as species thrive in a good 

landscape towards convergence. In addition, the observed shannonequitability plot reduced 

from a value of 0.91 to 0.78. The reducing value signifies that species unevenness has 

decreased slightly. The results showed that while the abundance of species decreases 

towards convergence, EVLNN’s species parallelism characteristics attempt to maintain 

species evenness during the search process.  

Figure 5.14 shows the convergence of EVLNN. It is observed that the fittest individual was 

located in the 98th generation with a training MSE of 0.00164. The solution's architecture 

was a parsimony ANN with 12 hidden nodes and 243 connections from Species_12. The 

model was subsequently scored using the testing dataset, where the results are discussed in 

the next section. 
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 Figure 5.14  Convergence of EVLNN with the lowest MSE value of 0.00164 at the 98th generation. 

 

 

5.5. Results and Discussion 

5.5.1. Model Testing and Comparison 

EVLNN was trained using the energy-related dataset acquired from executing Wordcount 

and Terasort workloads. Its performance is subsequently compared with those ANNs 

trained using other modern metaheuristic methods, Particle Swarm Optimization (PSO-

NN), Differential Evolution (DE-NN), and the conventional Genetic Algorithm (GA-NN). 

The operators and values of these EA-based learning techniques are shown in Table 5.8(a-

c). The population size, maximum number of iterations, and the hyperparameters of the 

EA-based networks were kept the same as EVLNN’s. 
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Table 5.8(a-c)  EA-based ANN with their learning techniques, operators, and values. 

            (a)                           (b)                                                         (c) 

Particle Swarm Optimization   Differential Evolution   Classic Genetic Algorithm 

Operators Values  Operators Values  Operators Values 

Population size 100  
Population 

size 
100  

Population size 100 

Max Generation 250 

Max Iterations 100 
 

Max Iterations 250 
 

Crossover probability 0.8 

C0 0.1 Upper bound 1 Mutation probability 0.01 

C1 1.5 
 Lower bound -1  

Link-node mutation probability 0.01 

C2 2.5 Weights Mutation range -0.5 to 0.5 

 

Table 5.9 presents the MSE results of EVLNN, PSO-NN, DE-NN, and GA-NN. The 

training and testing MSE scores are computed by taking the best MSE results obtained in 

each of the 50 trials and computing the mean, respectively. While PSO-NN’s training error 

was lower than EVLNN, its testing error was much higher. It also had a higher standard 

deviation for the testing MSE. One possible reason could be that PSO-NN was overfitting 

the training dataset. As such, it could not generalize to the new dataset resulting in a much 

higher MSE for the testing dataset. EVLNN’s average testing MSE score of 0.00230 was 

superior to PSO-NN, DE-NN, and GA-NN testing MSE scores of  0.00310, 0.01041, and 

0.01071, respectively. In another observation, the higher standard deviation values of all 

the other models, except EVLNN, indicated that these models suffer from a higher spread 

of MSE values from the mean. The results showed that EVLNN had higher accuracy with 

better consistency when predicting new unseen data. 

Table 5.9  Comparing the training and testing, MSE scores averaged over 50 runs. 

Models 
Training MSE Score Testing MSE Score 

Mean Std Dev Mean Std Dev 

EVLNN 0.00180 0.00038 0.00230 0.00042 

PSO-NN 0.00146 0.00041 0.00310 0.00195 

DE-NN 0.01015 0.00287 0.01041 0.00307 

GA-NN 0.01060 0.00441 0.01071 0.00416 
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Figure 5.15 shows the EVLNN’s prediction output plotted against the target output. It can 

be seen that the predicted plot tracked the target plot indicating that the trained EVLNN 

generalized well to the existing system. The results confirm the findings that EVLNN is 

capable of accurately predicting the Hadoop energy consumption. 

Figure 5.15  EVLNN’s Energy consumption prediction for the Hadoop testbed. 

5.5.2. Model Convergence Characteristics 

The convergence characteristics of EVLNN were compared with those from PSO-NN, DE-

NN, and GA-NN, as shown in Figure 5.16. From the figure, PSO-NN, DE-NN, and GA-

NN displayed similar convergence patterns whereby long periods of stagnation (or 

plateaus) existed during the evolutionary search process before a better solution was found.  

The plateaus signify that these algorithms may be trapped in deceptive local minima and 

could not find ‘a way out’ to better solutions for an extended period. In EVLNN’s case, 

however, the convergence pattern showed a trend of decreasing MSE values without any 

period of stagnation. The results demonstrate two things. First, species parallelism enables 

EVLNN to diversify the search to different parts of the landscape. Second, EVLNN’s two-
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fold crossover strategies enable the algorithm to explore other basins of interest for optimal 

solutions reducing the chance of the individuals becoming trapped in local minima.  

 

Figure 5.16  Convergence characteristics of EVLNN, PSO-NN, DE-NN, and GA-NN models. 

 

5.5.3. Structural Comparison of the Identified Networks 

The learned structures from EVLNN and the various EAs are shown in Table 5.10. Using 

a naïve method for assessing the physical complexity of network structures based on the 

number of hidden neurons and connections, DE-NN had the most complex structure, with 

an average of 20 hidden neurons and 348 connections. In contrast, GA-NN had the simplest, 

with an average of 11 hidden neurons and 149 connections. However, neither of these 

structures was able to predict the energy consumption accurately.  EVLNN, with an average 

of 15 hidden neurons and 314 connections, had achieved the best performance reflected in 

the testing MSE score. Based on the results obtained, it could be inferred that networks 

with a higher number of hidden neurons. However, they could present additional 

representational power and have a downside as their excessive number of free parameters 

will increase the risk of overfitting. In the same context, networks that trim back excessively, 

leaving fewer hidden neurons, will adversely limit their predictive ability due to the 

insufficient capacity of the ANN. In another observation, it appears that the number of 

connections has a lesser impact on predictive accuracy. EVLNN and DE-NN had around 



Chapter 5. Energy Consumption Prediction in Hadoop Cluster  158 

 

 

the same number of connections, but the performance of EVLNN was about 4.5 times better, 

with an average of five fewer hidden neurons. Finally, while DE-NN had the most complex 

structure and GA-NN had the simplest, they produced almost similar performance. This 

result verifies that different phenotypic representations can produce behaviorally equivalent 

ANNs [248]. 

Table 5.10  Comparison of the trained neural network structures averaged over 50 runs. 

Models 
Number of Hidden Neurons Number of Connections 

Min Max Mean SD Min Max Mean SD 

EVLNN 9 20 15 2 208 438 310 46 

PSO-NN 8 20 13 3 97 219 153 28  

DE-NN 12 25 20 3 158 538 348 86 

GA-NN 8 15 11 2 95 216 149 28 

  

The result agrees with the literature since networks with large neuronal structures could be 

counter-productive. The excessive hidden neurons will probably encourage each to 

memorize the relationships between input and output dataset, decreasing error on the 

training set but not necessarily generalizing well to new data on the testing set. Similarly, 

insufficient hidden neurons would lead to poor performance. However, it remains unclear 

to which degree the number of hidden neurons is ‘excessive.’ The findings in Table 5.10 

suggest that EVLNN had outperformed the other models. EVLNN delivers significantly 

better results due to its novel search approach combining speciation and crossover 

strategies and mutation to perform search parallelly from multiple hidden nodes, 

emphasizing architecture search rather than just evolving its behavior. The stochastic search 

nature of EVLNN has few constraints on the species to evolve ANN of different numbers 

of hidden nodes within the solution space. EVLNN is a promising algorithm for optimizing 

neural network architecture that can reduce human intervention in the training process. 

Neural network design faces a vast search space of different ANN architectures. EVLNN 

could effectively explore the architectural landscape and discover optimal structures that 

generalize well, minimizing the need for expert knowledge and time-consuming trial-and-

error effort.  
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5.5.4. Ensemble-based Sensitivity Analysis Approach to Determine Input Variable 

Importance  

An ensemble-based approach to SA was applied to investigate and interpret the contributing 

factors to energy consumption. The goal of this approach is to achieve stability in model 

interpretation. The details of the ensemble SA method, consisting of the Connection 

Weights (CW) method [188], the Pad method [192], the Perturb method [198], and the 

Profile method [200] and their pseudo-codes, are explained in detail in Appendix B.  

The CW method calculates the relative importance of the inputs to the neural network 

output (see Equations B.17 and B.18). The method is based on the concept that the neurons' 

output depends on the input neurons' contributions subjected to the connection weights’ 

magnitude and direction. Inputs with higher connection weights represent a higher 

excitation level of activation at the output of the neurons. They, therefore, are relatively 

more important in predicting than inputs with lower connection weights.  

The PaD method calculates the relative contribution of the neural network outputs using 

the Sum of the Square Partial Derivatives (SSD) (see Equation B.14). The method is based 

on the Backpropagation (BP) algorithm, which is used to compute the partial derivatives of 

the cost function with respect to each weight.  

The Perturb method computes the relative importance of each variable by predicting the 

output at the network by progressively applying white noise to each input variable while 

keeping the other variables constant. The predicted output is subsequently used to calculate 

the new MSE, which is then compared to the original MSE. The relatively more important 

variable is expected to significantly influence the network's output, exhibited by a more 

significant difference between the MSEs. 

The Profile method calculates the relative importance of each input variable by varying the 

values of the input variable while the remaining input variables are kept constant. The input 

values change with a scale range fixed with an initial setting to their minimum value, the 

first quartile, median, third quartile, and maximum values, resulting in five output values. 

The median values over the scale range are identified to obtain a profile curve. The 
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difference between the maximum and minimum values from the profile curve is computed. 

The more significant the difference, the more influence that input variable has on the output 

variable. 

The 23 input features (See Table 5.11) are mapped according to their affinity into five major 

energy-related categories, as shown in Table 5.12. These categories are System Utilization, 

Disk I/O Activities, Network Transfer, Job Profile, and the Environment. The ensemble SA 

method is applied to the 50 identified EVLNN models from the 50 runs of EVLNN training. 

These are the best individuals or optimal solutions from each of the runs. The relative 

importance of each input variable for each EVLNN model is calculated and stored in a 

matrix. 

Table 5.11  Input Variables of the EVLNN model. 

Input Number Variables 

1 Cluster CPUs (Systems) 

2 Cluster CPUs (User) 

3 Cluster CPUs (wait) 

4 CPU Time Spent 

5 Memory (Use) 

6 Memory (Cache) 

7 Memory (Buffer) 

8 System (Process) 

9 File: Map byte read 

10 File: Reduce byte read 

11 FILE: Map byte written 

12 File: Reduce byte written 

13 HDFS: Reduce byte written 

14 Reduce Shuffle Bytes (Total) 

15 Network (IN) 

16 Network (OUT) 

17 File Size 

18 Job Completion Time 

19 Number of mappers 

20 Number of reducers 

21 Workload type 

22 Humidity 

23 Temperature 

  

The importance values were subsequently transformed into importance orders and averaged 

over the 50 models in each SA method. Table 5.13 shows the orders; however, no consensus 

among the four methods was observed at this stage. For example, the CW and Profile 

methods ranked input variable 21 (workload type) as the most important contributor to 
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energy consumption. The PaD and Perturb methods ranked input variable 17 (file size) as 

the most important. Comparatively, the input variable 17 (file size) was ranked second and 

third in the Profile and CW methods, respectively. In contrast, input variable 21 (workload 

type) was ranked fourth in the Perturb method but 19th in the PaD method. 

Table 5.12  Five energy-related categories  (differentiated by their respective colors). 

  Categories 

1 Job Profile 

2 System Utilization 

3 Disk I/O 

4 Network Transfer 

5 Environment 
 

 

Table 5.13  Ranking of input variable importance averaged over 50 identified EVLNN models. 

Rank 
Sensitivity Analysis Method 

CW PaD Perturb Profile 

1 21 17 17 21 

2 5 2 18 17 

3 17 7 4 9 

4 19 9 21 4 

5 1 18 2 18 

6 20 11 14 10 

7 16 19 3 13 

8 12 15 12 14 

9 2 6 19 11 

10 14 4 20 12 

11 10 22 13 1 

12 8 1 10 19 

13 7 23 11 20 

14 11 5 5 2 

15 3 20 1 6 

16 4 8 6 16 

17 23 14 8 7 

18 18 12 9 3 

19 13 21 16 22 

20 6 16 15 5 

21 15 13 7 15 

22 22 3 23 8 

23 9 10 22 23 

 

Next, the importance orders were transferred to the categories, shown in Table 5.14. It can 

be observed that the method has resulted in a more consistent model interpretation in which 

all four SA methods agreed with the ranking of Job Profile as the most critical factor 
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contributing to energy consumption. The Job Profile category, as presented in Table 5.14, 

consists of the input features: file size, workload type, job completion time, the number of 

mappers, and reducers. If there is a tie, the amount of voting positions is adopted to break 

the tie (See Table 5.15). For example, in the case of position two, System Utilization and 

Disk I/O categories garnered two votes each for position two, which indicated a tie. Then 

the amount of voting for the following position is considered to break the tie. Thus, in the 

final result, the order of importance was Job Profile, followed by System Utilization (most 

votes for positions two and three), Disk I/O, Network , and finally the Environment. The 

resulting descriptions are interpretable, providing insight into the system of interest. While 

it is expected that the categories were not all ranked the same by all four methods, this 

approach has exhibited good stability by dramatically reducing the inconsistency. 

Table 5.14  Ranking of factors contributing to energy consumption by categories. 

Rank CW PaD Perturb Profile 

1 1 1 1 1 

2 2 2 3 3 

3 4 5 2 2 

4 3 4 4 4 

5 5 3 5 5 
 

 

Table 5.15  Amount of votes received by each category. 

  Voting Count  

  
Categories 

Position 

1 

Position 

2 

Postion 

3 

Position 

4 

Position 

5 

Final 

Position 

1 Job Profile 4 0 0 0 0 1 

2 System Utilization 0 2 2 0 0 2 

3 Disk I/O 0 2 0 1 1 3 

4 Network Transfer 0 0 1 3 0 4 

5 Environment 0 0 1 0 3 5 
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5.6. Chapter Summary 

The Hadoop cluster is a parallel distributed system with dynamic and nonlinear behavior. 

The energy consumption of a Hadoop cluster using EVLNN was successfully modeled. 

The performance of EVLNN is better than ANNs evolved using other modern state-of-the-

art metaheuristics EAs such as PSO-NN, DE-NN, and conventional GA-NN. The testing 

MSE scores for EVLNN, PSO-NN, DE-NN, and GA-NN were 0.00230 (± 0.00042), 

0.00310 (± 0.00195), 0.01041 (± 0.00307), and 0.01071 (± 0.00416), respectively. The 

experimental results showed that EVLNN could effectively explore the architecture 

landscape and discover optimal structures using several mechanisms of an improved GA, 

such as species parallelism, intra-and-inter species crossovers, and a two-stage mutation. 

In addition, the EVLNN architecture with reduced network complexity was interpretable, 

using an ensemble-based approach to sensitivity analysis combined with a data aggregation 

technique. The approach was successfully implemented to extract the underlying energy 

characteristics of the system by informing how various input parameters affect the system’s 

output. The results highlighted that the most important contribution to the Hadoop energy 

consumption is the Job Profile category. This category consists of the workload types 

(compute-intensive or I/O intensive), file size (size of the payload), job completion time, 

and the number of mappers (which is dependent on the payload size and the HDFS block 

size) and reducers. This aspect of the research suggests that EVLNN is a competitive and 

promising method for energy prediction. EVLNN exhibited good generalizability and 

interpretability. Its ensemble-based approach to sensitivity analysis has produced a more 

consistent interpretation of the energy consumption influencing factors, which is essential 

in contributing to the research in data center sustainability.  



 

 

Chapter 6 

6. Solar Irradiance Forecasting in 

Tropical Region 

6.1. Introduction 

Clean electricity system based on solar photovoltaic (PV) power generation is rapidly 

growing worldwide. Cumulative solar PV capacity reached almost 400 Gigawatt (GW) and 

generated over 460 Terawatt hours (TWh) in 2017 [249]. This capacity represents around 

2% of global power output, and by 2023, the world will have one trillion watts of installed 

solar PV capacity. Solar power intermittency remains a significant issue for data centers’ 

transition to renewable energy despite its rapid penetration. Solar power intermittency can 

be due to two factors. Firstly, the “variability” of solar power generation is caused by 

fluctuations in solar radiation from changing cloud conditions during the day. Secondly, the 

“uncertainty” of the electricity generation is due to grid operators not knowing the 

electricity production at multiple timescales with perfect accuracy. Therefore, integrating 

solar electricity into the data center electricity grid will be particularly challenging as the 

variability of solar resources means solar power generation is not guaranteed. The solar 

irradiance forecast data can be used to calculate the PV power output, assisting grid 

operators in determining the power output capacity. Hence accurate forecasting cum 

better planning can mitigate the effects of variability and uncertainty associated with 

intermittency and is essential for further integration of renewable energy into the grid [250].  

In this chapter, EVLNN was applied to forecast time series solar irradiance. The training 

dataset covers a four-year database between 2013 to 2016 consisting of meteorological 

variables. A subset of data was extracted from the database to train the EVLNN model to 

predict solar irradiance over a forecast horizon of seven days at four different time steps: 

1-min, 15-min, 30-min, and hour. The performance of EVLNN is compared to well-known 

EA-based neural networks modeled with Particle Swarm Optimization (PSO-NN), 
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Differential Evolution (DE-NN), and the classic Genetic Algorithm (GA-NN). A fully 

connected nonlinear time-delay neural network (TD-BPNN) trained using Levenberg-

Marquardt (LM) backpropagation (BP) algorithm is included as a reference to evaluate the 

performance of the models.  

 

6.2. The Solar Photovoltiac Testbed 

A small-scale 1 kW PV system grid-connected Solar PV testbed located on the rooftop of 

the School of Engineering at Nanyang Polytechnic was used for the experiment. The 

experimental dataset covers the period from 2013 to 2016.  

6.2.1. Experimental Testbed 

The PV system testbed is mounted at 1.38° N 103.85° E, 40 m above ground level. The 

solar panels are tilted at approximately 15° to the horizontal plane to optimize the energy 

harvest from the equatorial sunshine. It also prevents rainwater from being trapped by the 

panel frame, which could cause dirt deposited on the panel after evaporation. Weather 

instruments are also installed, along with a data logger that collects and records data at 15-

second intervals. Table 6.1 summarizes the information on the Solar PV testbed setup.  

Table 6.1  Solar PV test panel and location information. 

Parameters Specifications 

Site Name School of Engineering, Nanyang Polytechnic 

Site Latitude 1.38o N 

Site Longitude 103.85o E 

Solar PV Panel (Wp) 1 kW 

Solar Panel Type MultiCrystal PV modules 

Solar Panel Efficiency 16% 

Panel Tilt Angle 15o 
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Figure 6.1 shows the PV panels and the associated meteorological measurement 

instruments. These instruments include the pyrometer, wind vane, anemometer, barometer, 

rain gauge, temperature sensor, and humidity sensors. The schematic diagram of the PV 

monitoring system is shown in Figure 6.2. 

Figure 6.1  Left: Meteorological Measuring Instruments for rainfall, wind direction, and wind speed. Right: 

Rooftop solar panel testbed. 

  

 

 

  

 

 

 

 

 

 

Figure 6.2  Schematic diagram of the PV monitoring system. 
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6.3. Data Preparation 

6.3.1. Initial Data Exploration 

Figure 6.3 shows a box plot of the distribution of daily irradiance observed at the PV 

location for each month in 2016. It was noted that the median daily irradiation was the 

lowest in June, recorded at 2.95 kWh/m2, whereas the median daily irradiation was the 

highest in March, recorded at 4.36 kWh/m2. February and September were months with 

high daily irradiation too.  

 Figure 6.3  Distribution of daily irradiance in 2016 for each month at latitudes 1.38oN and 103.85oE. 

A scatter plot in Figure 6.4 shows high irradiance variability throughout the year. This 

phenomenon is expected as the tropical region experiences frequent cloud formation and 

unexpected weather changes. The annual daily average irradiation in 2016 was about 3.78 

kWh/m2 (± 1.15 kWh/m2), and the total annual irradiation was 1,383 kWh/m2. Figure 6.5 

shows a box plot of the hourly irradiance distributed throughout 2016. The hourly mean 

irradiance is shown in a red curve. The chart depicts that irradiance is highly correlated to 

the hours of the day. A typical day follows the pattern where it starts with a low GHI, 

reaches the peak value around solar noon, and finally descends to a low again in the evening. 
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Figure 6.4  Scatter plot of the daily irradiance with the red line indicating the mean irradiance in 2016. 

Figure 6.5  Hourly irradiance distribution in 2016 with the red curve indicating the mean. 

To further explore and analyze irradiance variability, a typical day was chosen on 1st March 

2016, where the clear sky GHI, DHI, and DNI values are plotted at the exact location 

(1.38°N, 103.85°E) using the McClear Clear Sky Model from the Copernicus Atmosphere 

Monitoring Service (CAMS) McClear Clear-Sky Irradiation service [154]. Figure 6.6 

shows the GHI, DHI, and DNI on 1st March plotted in red, magenta, and green, respectively. 

The per-minute solar irradiance on 1st March is plotted in blue. From Figure 6.6, it can be 

seen that solar irradiance in the tropics is generally associated with high variability in the 
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time series, where high irradiance values were often preceded and followed by large drops 

in irradiance that resulted in a large magnitude of the fluctuation. 

 Figure 6.6  Irradiance profile on 1st March 2016. 

6.3.2. Selecting Training Data Length 

After the initial data exploration from our database, the next step is to decide the length of 

the training. For practical reasons, the best combination for the training set was N=30 days, 

with fewer days proving insufficient and more days did not yield better results [251]. This 

approach is adopted where N=30 days is used as a window period to explore the database 

further. The 2013 to 2016 database revealed that most days are similarly characterized by 

high irradiance variability with differing magnitudes on different days, except for those 

days with rain, where the irradiance patterns were different.  

6.3.3. Determining Forecast Horizon and Time-Step for Predicting Solar Irradiance 

A forecast horizon is how far into the future a sufficiently good prediction can be made. 

The concept of forecast horizon in solar can be categorized as long-term (1-10 years), 

medium-term (one month to one year), short-term (one hr or several hours to one day or 

several days), and very short-term (one min to several mins) [252] depending on the 

application. A forecast horizon of several days and an hourly time-step prediction are 

common in the literature [119], [253], [254]. In tropical regions, intra-hour and inter-hour 
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solar intermittency can be high caused by the temporal change of cloud structure influenced 

by cloud motion or frequent tropical rainfall. This work investigates the intermittency at 

four different time steps: 1-min, 15-min, 30-min, and hourly, with a forecast horizon of 

seven days. Based on findings during the initial data exploration stage, a forecast horizon 

of seven days would likely contain days with dry and wet weather conditions that can 

sufficiently provide an indication of how well the model generalizes to data into the future.  

6.3.4. Pre-processing of Data  

The dataset for 2016 was explored, and the training set in March 2016 was eventually 

selected. An important consideration when selecting a representative month is its good mix 

of weather conditions. Although February's daily solar irradiance distribution holds a good 

spread (see Figure 6.3), it only had one day of rain for the entire month, which may not be 

representative. The selected dataset has a 15-second time resolution. Figure 6.7 shows the 

time-series solar irradiance for March 2016, consisting of 178,560 data samples. The month 

experienced ten wet days of various rainfall intensity on the fourth, fifth, sixth, seventh, 

eighth, tenth, thirteenth, fourteenth, twentieth, and twenty-first day of March indicated by 

the rain gauge readings of 0.4mm/hr, 3.6mm/hr, 0.2mm/hr, 3.6mm/hr, 2.0mm/hr, 5.2mm/hr, 

11.6mm/hr, 0.2mm/hr, 4.8mm/hr, 12.2mm/hr, respectively. Of the ten days of rain, four 

were light (< 2.5 mm/hour), three were moderate (> 2.5 mm/hour,  < 7.5 mm/hour), and 

two were heavy (> 7.5 mm/hour), while the rest were dry days. 

 

 

Figure 6.7  Solar irradiance raw data for March 2016 with rain gauge reading indicated. 
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Four training sets of 1-min, 15-min, 30-min, and hourly time resolution were extracted from 

this raw dataset to train the predictive models for short-term irradiance forecasting. The 

testing set is taken from the first seven days of April 2016. 

Table 6.2 summarizes the descriptive statistics for the four training sets. It can be observed 

that the lower the time resolution, the higher the information lost. For example, the 

maximum irradiance of 1,237.67 W/m2 sampled at an hourly resolution compared to the 

maximum irradiance of 1,066.90 W/m2 sampled at the 1-min resolution has a reduction of 

13.8%.  

Table 6.2  Solar irradiance statistics at various time resolutions. 

Training 

Set 

Resolution Minimum 

(W/m2) 

Maximum 

(W/m2) 

Mean 

(W/m2) 

Std Dev  

(W/m2) 

Training 

Samples 

Testing 

Samples 

1 1 min 0.29 1,237.67 183.84 275.59 43,710 9,870 

2 15 min 0.32 1,113.97 182.72 273.69 2,914 658 

3 30 min 0.33 1,079.04 185.31 277.43 1,457 329 

4 1 hour 0.35 1,066.90 183.36 273.12 729 165 

 

It is observed that the hourly dataset has a relatively small sample size of 729. Unlike large 

datasets, small datasets rendered most machine learning techniques impractical for 

predictive modeling as the lack of data makes it hard for models to map the input and output 

relationship in the dataset. Nonetheless, it is essential to investigate the performance of 

EVLNN trained with a small dataset of a few hundred samples. From an implementation 

viewpoint, reducing the reliance on extensive training datasets for solar irradiance 

forecasting has its advantages, as meteorological data are complex and expensive to acquire 

due to the high cost of weather and atmospheric measurement instrument.  

Figure 6.8 shows the per minute irradiance testing dataset from 1st to 7th April 2016. Two 

of the seven days were rainy days. The first was measured at 43.2 mm/hr on 3rd April 

between 14:29 to 15:29, with relative humidity (RH) reaching 96.84%. After this time, the 

rain gauge measurement did not increase, but solar irradiance increased to a high of 276.7 

W/m2 at 18:00 before decreasing to almost zero at 19:13. The second rainy day was 

measured at 13.8 mm/hr on 5th April between 16:25 to 17:25, with RH reaching 80.21% 

during this period. The non-rainy days during this period exhibited the irradiance of a 

typical sunny day in the tropics with high variability.  
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Figure 6.8  Irradiance testing dataset from 1st to 7th April 2016. 

In summary, the testing dataset presents interesting variability and challenges with a mix 

of wet and dry days for solar irradiance forecasting. 

6.3.5. Exploring and Selecting the Features 

There are broadly three models of ANN in the literature; those using exogenous inputs 

[255] [256] [257], those using univariate endogenous input [258], and those using both 

[259]. Exogenous inputs usually include meteorological data such as temperature, humidity, 

rainfall, and wind speed, and endogenous inputs include solar irradiance, temperature, or 

PV output power. The exogenous time-series inputs features {𝑥1(𝑡), 𝑥2(𝑡), … , 𝑥7(𝑡), } 

collected from the dataset for training the models are shown in Table 6.3 and the statistical 

description of the features in Table 6.4.  

Table 6.3  Input features for EVLNN. 

Input Features Abbreviation 

x1(t): Ambient Temperature at time t AT 

x2(t): Relative Humidity at time t RH 

x3(t): Rain Gauge reading at time t RG 

x4(t): Wind Speed at time t WS 

x5(t): Wind Direction at time t WD 

x6(t): Atmospheric Pressure at time t AP 

x7(t): PV panel surface Temperature at time t PT 
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Table 6.4  Statistical Analysis of Input Feature Data Obtained for the Period in March 2016. 

Input Feature Unit, Symbol Range Min Max Mean Std Dev 

x1(t) AT Degree Celsius, oC 12.4oC 25.1oC 37.5oC 29.7oC 2.5oC 

x2(t) RH Percentage, % 55.8% 38.0% 93.8% 71.2% 11.8% 

x3(t) RG millimeter per hour, mm/h 12.2 mm/h 0 mm/h 12.0 mm/h 0.5 mm/h 1.8 mm/h 

x4(t) WS meter per second, m/s 8.0 m/s 0 m/s 8.0 m/s 0.9 m/s ± 0.7 m/s 

x5(t) WD Degree, o 360o 0o 360o 91.1o ± 101.5o 

x6(t) AP millibar, mbar 5.8 mbar 1008.0 mbar 1013.8 mbar 1010.9 mbar ± 0.9 mbar 

x7(t) PT Degree Celsius, oC 33.3oC 24.3oC 57.6oC 31.9oC ± 7.3oC 

 

The Pearson Correlation Coefficient (PCC) method is applied to explore the correlation 

between the individual input variables with the solar irradiance response variable. The PCC 

measures the strength of a linear association between two variables, x and y, expressed in 

Equation 6.1.  

𝑟 =  
∑(𝑥−𝑥̅)(𝑦−𝑦̅)

√∑(𝑥−𝑥̅)2(𝑦−𝑦̅)2
      (6.1) 

Figure 6.9 shows the PCC result plotted in a comparison bar chart. PT and AT input 

variables have strong positive correlations with irradiance with 0.89 and 0.77, respectively. 

On the other hand, the input variable RH has a strong negative correlation with a value of 

-0.71. All the input variables are meteorological data except PT. Meteorological data are 

expensive to acquire as they require costly weather instruments. On the contrary, PV is a 

temperature sensor data that is inexpensive to acquire due to its affordability and low setup 

cost. 
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 AT RH RG WS WD AP PT 

r 0.77 -0.71 -0.12 0.35 0.13 0.05 0.89 

 

Figure 6.9  Pearson correlation between the input variables, AT, RH, RG, WS, WD, AP, and PT, and the 

response variable, solar irradiance. 

6.3.6. Normalizing the Dataset 

Data normalization, also known as feature scaling, is subsequently performed to ensure the 

input variables’ magnitude is the same as inputs of different scale affects learning speed. 

Specifically, the min-max scaling is used to normalize the training set between the range of 

-1 to 1 governed by Equation 6.2, where x’ is the transformed value of x and xmin and xmax 

is the minimum and maximum value of x in the dataset, respectively. 

𝑥′ = 2 ∗ [
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
] − 1              (6.2) 

6.3.7. Preparing the Feature Sets for Model Training 

The training of the models is conducted in two phases, as depicted in Table 6.5 and Figure 

6.10. In the first phase, feature set one comprising seven input features, as listed in Table 

6.5, is used. In the second phase, a smaller scale of features AT, RH, and PT has a stronger 
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correlation where |𝑃𝐶𝐶|  ≥ 0.7 (Figure 6.9) was selected to form three subsets consisting 

of AT, RH, and PT, in subset one, AT and PT in subnet two, and PT in subset three. The 

combination of features in the subsets is based on the features’ |𝑃𝐶𝐶| where the feature 

with a lower value is eliminated when reducing the feature size in the following subsets, 

eventually having only one feature in the last subnet. The four feature sets are then used to 

train the models to forecast solar irradiance at four different time-steps. Experimentation 

with various feature sets is designed to evaluate the generalization capability of EVLNN.   

Table 6.5  Input and target features of phases 1 and 2 for model training. 

Input features 

Target Feature for both 

PHASES 1 and 2 PHASE 1 

PHASE 2 

Feature 

Subset 1 

Feature 

Subset 2 

Feature 

Subset 3 

AT 

RH 

RG 

WS 

WD 

AP 

PT 

AT 

RH 

PT 

AT 

PT 

PT 

IRR 

 

 

Figure 6.10  Four feature sets to train the EVLNN model for multiple time-step predictions. 
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6.4. Model Training 

6.4.1 Designing EVLNN Architecture for Time-Series Forecasting 

Figure 6.11 presents the EVLNN architecture with feedback for time series forecasting. 

The feedback structure allows lagged values, t-h at the output (where h is the number of 

time-steps), to be used as inputs to the network. The future values of a time-series response 

variable, 𝑦𝑘 can be forecasted based on their past values. In the EVLNN architecture, the 

solar irradiance output at the previous time 𝑦𝑡−ℎ, … , 𝑦𝑡−3, 𝑦𝑡−2, 𝑦𝑡−1 is fed back as input to 

predict the solar irradiance output at the current time steps, 𝑦𝑡, 𝑦𝑡+1, 𝑦𝑡+2 , … , 𝑦𝑡+𝑚 

alongside the rest of the exogenous inputs, 𝑥𝑖(𝑡−ℎ)  where i=1, 2, …, 7. These input 

variables are described in Table 6.3.  

In the model training, the lagged delay of two predicted time-step is taken and made 

available to the model for the forecast on the next step. Predicted values are cleansed of the 

noise at the network's output before feeding back to the inputs. 

 

 

Figure 6.11  The figure illustrates four feature sets comprising various input features used to evaluate 

EVLNN’s performance. 
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6.4.2 Error Metrics for Model Performance Comparison 

A large number of error metrics have been used by authors to evaluate and compare the 

different methods and their solar energy forecast accuracies. As each statistical metric 

focuses on a specific aspect of point distribution, no unique metric is valid for all situations. 

Instead, researchers usually include several metrics to assess model performance as each 

one adds information about the model's accuracy [260]. Table 6.6 lists the widely used 

forecast error metrics and their respective descriptions and computations. Equations 6.3 to 

6.7 in the list are Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean 

Bias Error (MBE), Mean Absolute Percentage Error (MAPE), coefficient of determination 

or R-squared (R2), respectively. The error performance of EVLNN is evaluated against 

ANNs trained with other EAs. The ANNs are PSO-NN, DE-NN, and GA-NN, and a fully 

connected Time-delay BPNN (TD-BPNN) trained using the Levenberg-Marquardt (LM) 

algorithm is used as a benchmark. In Table 6.6, the forecast error is expressed at time t as 

𝑒𝑡 = 𝑦𝑡 − 𝑦̂𝑡  where 𝑦𝑡 𝑎𝑛𝑑 𝑦̂𝑡   are the actual and predicted values, respectively, n is the 

number of samples, and k is the number of predictors.  

Table 6.6  Error metrics used to evaluate EVLNN against other models.  

 

Metric Description Computation 

RMSE RMSE squares the errors before calculating their mean, 

followed by taking the square root of the mean. It 

provides a good measure of the model’s accuracy. 

√
1

𝑛
 ∑ (𝑒𝑡)2

𝑛
𝑡=1           (6.3)  

MAE MAE averages the absolute error of each predicted and 

measured pair. It measures how big an error from the 

forecast is on average. 

1

𝑛
 ∑  |𝑒𝑡|

𝑛
𝑡=1           (6.4) 

MBE MBE estimates the average bias in the model between 

over and underprediction. 
−
1

𝑛
 ∑  𝑒𝑡

𝑛
𝑡=1           (6.5) 

MAPE MAPE compares the error ratio over the actual in 

percentage terms from different series on different 

scales. 

100

𝑛
 ∑  |

𝑒𝑡

𝑦𝑡
|𝑛

𝑡=1           (6.6) 

R2 Coefficient of Determination (R2) measures the 

strength of the relationship between the model and the 

predictors. It measures how well the predictors explain 

future responses on a scale of 0 to 1. 

1 − [
∑ 𝑒𝑡

2𝑛
𝑡=1

∑ (𝑦𝑡−𝑦̅)2
𝑛
𝑡=1

]      (6.7) 



Chapter 6. Solar Irradiance Forecasting in Tropical Region   178 

 

 

6.4.3 Training of EVLNN 

Fifty trials were conducted with 250 iterations to train the models for four time-step 

predictions. The identified models are then applied to forecast solar irradiance using out-

of-sample data as a test dataset, and the results are summarized in Table 6.7. In Table 6.7, 

it is observed that EVLNN had outperformed all the other EAs reaching low MSE values 

of 0.0480, 0.0446, 0.0441, and 0.0350 for each of the hourly, 30-min, 15-min, and 1-min 

time-step predictions, respectively, demonstrating good generality across diverse sizes of 

training datasets. The superior results can be attributed to the EVLNN algorithm for neural 

architecture search. TD-BPNN, a fully connected network, only outperformed EVLNN in 

the 1-min time-step prediction with a lower MSE value of 0.0175 compared to EVLNN’s 

0.0350. However, TD-BPNN could not generalize to other datasets and time-step 

predictions. Figure 6.12(a-d) compares the MSE convergence values reached by the EA-

based learning algorithms at various time-step predictions. The left and right y-axes of the 

graphs show the normalized MSE and actual MSE values, whereas the x-axes show the 

number of iterations or generations. 

Table 6.7  Sample statistics of training MSE values averaged over N=50 runs tested for various models at 

each time-step prediction. Embolden figures to represent better results. 

 

 

 

 

 

 

 

 

Time-step Models Mean N Std Dev 
Std. Error 

Mean 

Hourly 

EVLNN 0.0480 50 0.0011 0.0002 

PSO-NN 0.0501 50 0.0007 0.0001 

DE-NN 0.0700 50 0.0080 0.0011 

GA-NN 0.0623 50 0.0068 0.0010 

TD-BPNN 0.1305 50 0.0112 0.0016 

30-min 

EVLNN 0.0446 50 0.0009 0.0001 

PSO-NN 0.0448 50 0.0006 0.0001 

DE-NN 0.0657 50 0.0079 0.0011 

GA-NN 0.0581 50 0.0084 0.0012 

TD-BPNN 0.0786 50 0.0067 0.0010 

15-min 

EVLNN 0.0441 50 0.0009 0.0001 

PSO-NN 0.0441 50 0.0007 0.0001 

DE-NN 0.0623 50 0.0071 0.0010 

GA-NN 0.0543 50 0.0054 0.0008 

TD-BPNN 0.0534 50 0.0038 0.0005 

1-min 

EVLNN 0.0350 50 0.0007 0.0001 

PSO-NN 0.0371 50 0.0007 0.0001 

DE-NN 0.0529 50 0.0054 0.0008 

GA-NN 0.0451 50 0.0038 0.0005 

TD-BPNN 0.0175 50 0.0035 0.0005 
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It is observed that EVLNN and PSO-NN converged faster to lower MSE. GA-NN has a 

slower convergence rate at the start. However, it overtook DE-NN after around 100 

generations and converged to a lower MSE than DE-NN for all time-step predictions. The 

superiority of getting a lower MSE by EVLNN and PSO-NN demonstrated that EVLNN, 

with its species parallelism technique, and PSO-NN, with its swarm-based approach, had 

achieved superior results in navigating the architecture landscape to locate the optimal 

networks. However, DE-NN and GA-NN could not escape from local structural minima 

and hence were trapped at higher MSEs. The result is consistent with the experiments 

performed in Chapter 5 when predicting the Hadoop energy consumption, where EVLNN 

and PSO-NN also outperformed DE-NN and GA-NN.   

(a) Hourly time-step prediction. 
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(b) 30-min Time-Step Prediction. 

 

 

(c) 15-min Time-Step Prediction. 
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(d) 1-min Time-Step Prediction. 

Figure 6.12(a-d)  Average training MSE repeated over 50 runs for various time-steps predictions 

 

6.4.4 Model Convergence Speed and Rate 

The experiment found that EVLNN has converged to a lower MSE faster, outpacing the 

other EA-based algorithms in all time-step predictions. The convergence speed is gauged 

based on the number of iterations each algorithm takes to reach specific checkpoint MSE 

values. In contrast, the average convergence rate is based on Equation 6.8, where ∆𝑦 is the 

change in the dependent variable y and ∆𝑥 is the change in independent variable x for a 

function f on a given interval [x1, x2]. 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 𝑅𝑎𝑡𝑒 =  
∆𝑦

∆𝑥
=

𝑓(𝑥2)−𝑓(𝑥1)

𝑥2−𝑥1
      (6.8) 

In calculating convergence speed, the values chosen are from 10x10-2 to 4x10-2 in steps of 

0.01. Our findings are summarized in Table 6.8. The results demonstrated that EVLNN 

convergences to these values faster than the other EA-based algorithms. For instance, in 

the per-minute time-step prediction, EVLNN took 1 generation (or iteration) to reach the 
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MSE value of 7x10-2, whereas PSO, DE-NN, and GA-NN took 6, 69, and 102 iterations, 

respectively. In the hourly time-step prediction, EVLNN took nine iterations to reach the 

MSE value of 7x10-2, and PSO-NN took 15 iterations. However, DE-NN and GA-NN 

stagnated after 108 and 172 iterations, respectively, making minimal improvement. When 

calculating the average convergence rate, the entire iteration length is applied before 

stagnation sets in, up to 250 iterations. The results in Table 6.8 showed that EVLNN has 

the fastest convergence rate for 1-min, 15-min, and 30-min time-step predictions, whereas 

PSO-NN has the fastest convergence rate for the hourly time-step prediction. 

Table 6.8  Comparison of convergence speed and rate. Embolden figures to indicate the best results. 

Note: A ‘hypen’ (‘-‘) means stagnation with minimal improvement. 

Time-step 

(training 

sample) 

EVLNN PSO-NN DE-NN GA-NN 
MSE 

Value 
Convergence Rate (

∆𝒚

∆𝒙
) 

No. of iterations or generations 

1-min 

(53,580) 

1  2 7 29 10 x 10-2 
EVLNN =

10𝑥10−2−4𝑥10−2

32−1
= 𝟏𝟗. 𝟑𝟓𝒙𝟏𝟎−𝟒 

 

PSO-NN =
10𝑥10−2−4𝑥10−2

90−2
= 6.82𝑥10−4 

 

DE-NN = 
10𝑥10−2−7𝑥10−2

69−7
= 4.84𝑥10−4 

 

GA-NN = 
10𝑥10−2−6𝑥10−2

156−29
= 3.15𝑥10−4 

1  3 11 53 9 x 10-2 

1 5 23 71 8 x 10-2 

1 6 69 102 7 x 10-2 

4 9 - 156 6 x 10-2 

10 15 - - 5 x 10-2 

32 90 - - 4 x 10-2 

15-min 

(3,572) 

1 4 16 40 10 x 10-2 
EVLNN =

10𝑥10−2−5𝑥10−2

28−1
= 𝟏𝟖. 𝟓𝟏𝒙𝟏𝟎−𝟒 

 

PSO-NN =
10𝑥10−2−5𝑥10−2

57−4
= 9.43𝑥10−4 

 

DE-NN = 
10𝑥10−2−8𝑥10−2

118−16
= 1.96𝑥10−4 

 

GA-NN = 
10𝑥10−2−7𝑥10−2

186−40
= 2.05𝑥10−4 

1 6 43 69 9 x 10-2 

2 8 118 107 8 x 10-2 

5 12 - 186 7 x 10-2 

11 16 - - 6 x 10-2 

28 57 - - 5 x 10-2 

- - - - 4 x 10-2 

30-min 

(1,786) 

1 5 26 55 10 x 10-2 
EVLNN =

10𝑥10−2−5𝑥10−2

38−1
= 𝟏𝟑. 𝟓𝟏𝒙𝟏𝟎−𝟒 

 

PSO-NN =
10𝑥10−2−5𝑥10−2

56−5
= 9.80𝑥10−4 

 

DE-NN = 
10𝑥10−2−8𝑥10−2

163−26
= 1.46𝑥10−4 

 

GA-NN = 
10𝑥10−2−7𝑥10−2

222−55
= 1.80𝑥10−4 

2 6 49 81 9 x 10-2 

4 8 163 128 8 x 10-2 

7 12 - 222 7 x 10-2 

15 22 - - 6 x 10-2 

38 56 - - 5 x 10-2 

- - - - 4 x 10-2 

Hourly 

(894) 

1 5 42 70 10 x 10-2 
EVLNN =

10𝑥10−2−5𝑥10−2

164−1
= 3.06𝑥10−4 

 

PSO-NN =
10𝑥10−2−6𝑥10−2

29−5
= 𝟒. 𝟏𝟔𝒙𝟏𝟎−𝟒 

 

DE-NN = 
10𝑥10−2−9𝑥10−2

108−42
= 1.52𝑥10−4 

 

GA-NN = 
10𝑥10−2−8𝑥10−2

172−70
= 1.96𝑥10−4 

2 7 108 104 9 x 10-2 

4 9 - 172 8 x 10-2 

9 15 - - 7 x 10-2 

17 29 - - 6 x 10-2 

164 - - - 5 x 10-2 

- - - - 4 x 10-2 
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6.5. Results and Discussion 

6.5.1. Model Testing and Analysis for Phase 1 – Use of Multiple Features 

Table 6.9 shows the sample statistics of the MSE score for the testing dataset averaged over 

50 runs for each predictive time-step for phase one of the experiment. All seven features 

were used to train the models. It is observed that PSO-NN has achieved a low MSE score 

for hourly, 30-min, and 15-min time-step predictions, followed by EVLNN. As for the 1-

min time-step prediction, TD-BPNN was ranked top.  

Table 6.9  Sample statistics of MSE scores averaged over N=50 runs for each time-step prediction. 

Embolden figures represent the best results. 

Time-step 

(Sample Size) 
Models Mean N 

Std 

Deviation 

Std Error 

Mean 

Hourly (894 

samples) 

EVLNN 0.0524 50 0.0056 0.0008 

PSO-NN 0.0482 50 0.0044 0.0006 

DE-NN 0.0673 50 0.0194 0.0027 

GA-NN 0.0581 50 0.0134 0.0019 

TD-BPNN 0.0610 50 0.0136 0.0019 

30-min (1,786 

samples) 

EVLNN 0.0542 50 0.0038 0.0005 

PSO-NN 0.0518 50 0.0034 0.0005 

DE-NN 0.0689 50 0.0187 0.0026 

GA-NN 0.0597 50 0.0111 0.0016 

TD-BPNN 0.0623 50 0.0046 0.0007 

15-min (3,572 

samples) 

EVLNN 0.0425 50 0.0027 0.0004 

PSO-NN 0.0403 50 0.0015 0.0002 

DE-NN 0.0593 50 0.0094 0.0013 

GA-NN 0.0545 50 0.0098 0.0014 

TD-BPNN 0.0473 50 0.0043 0.0006 

1-min (53,580 

samples) 

EVLNN 0.0376 50 0.0013 0.0002 

PSO-NN 0.0381 50 0.0011 0.0002 

DE-NN 0.0567 50 0.0081 0.0011 

GA-NN 0.0479 50 0.0052 0.0007 

TD-BPNN 0.0264 50 0.0027 0.0004 

 

In using multiple features for prediction, EVLNN generally performed well in all the 

experiments. Its ranking is below PSO-NN, except for the 1-min time-step prediction where 

EVLNN is below TD-BPNN but above PSO-NN. The results demonstrated EVLNN’s 

generalization capability with sparse or dense datasets. The findings confirmed that 

EVLNN is a competitive technique outperforming DE-NN and GA-NN while comparable 

to PSO-NN for 30-min and 1-min time-step predictions. EVLNN’s technique with intra-
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species and inter-species recombination strategy provides diversity balance to give the 

algorithm a generality when working with sparse or dense datasets. It is observed that TD-

BPNN with fully connected layers performed poorly against the partially connected 

networks trained using EAs in the hourly predictions. This result may be attributed to the 

fact that a small dataset might be sufficient for low complexity models but insufficient to 

train a complex model such as the TD-BPNN. However, the strength of TD-BPNN is seen 

as the size of the dataset increased with shorter time-step predictions. In the 1-min time-

step prediction, it was observed that TD-BPNN had outperformed all the other EA-based 

techniques. 

A multiple paired sample t-test was conducted to compare EVLNN’s performance with the 

other learning techniques to investigate if there were statistical differences between 

condition means. Bonferroni method is used to correct the p-value using 𝑝 =
𝛼

𝑛
 , where 𝛼 

is the original p-value and n is the number of paired samples tests performed. At α=0.01 

and n = 10, we obtained p ≤ 0.001. Table 6.10 shows the results of the paired samples t-

test. 

Table 6.10  Paired Samples Test. Embolden figures denotes the paired differences between EVLNN’s 

average testing MSE scores and the other model, which are lower and statistically significant. 

 

 

Paired Differences 

t df 

Sig. (2-

tailed) Mean 

Std. 

Deviation 

Std 

Error 

Mean 

Confidence Interval of 

the Difference (99%) 

 Lower Upper 

H
o

u
rl

y
 

Pair 1 EVLNN – PSO-NN 0.0042 0.0069 0.0010 0.0016 0.0068 4.314 49 0.000 

Pair 2 EVLNN – DE-NN -0.0149 0.0205 0.0029 -0.0227 -0.0071 -5.142 49 0.000 

Pair 3 EVLNN_– GA-NN -0.00580 0.0142 0.0020 -0.0111 -0.0004 -2.864 49 0.006 

Pair 4 EVLNN – TD-BPNN -0.0086 0.0148 0.0021 -0.0142 -0.0029 -4.075 49 0.000 

3
0

-m
in

 

Pair 5 EVLNN – PSO-NN 0.0024 0.0059 0.0008 0.0002 0.0047 2.896 49 0.006 

Pair 6 EVLNN – DE-NN -0.0147 0.0197 0.0028 -0.0221 -0.0072 -5.272 49 0.000 

Pair 7 EVLNN – GA-NN -0.0055 0.0120 0.0017 -0.0100 -0.0009 -3.227 49 0.002 

Pair 8 EVLNN – TD-BPNN -0.0080 0.0060 0.0009 -0.0103 -0.0058 -9.493 49 0.000 

1
5

-m
in

 

Pair 9 EVLNN – PSO-NN 0.0022 0.0030 0.0004 0.0011 0.0034 5.257 49 0.000 

Pair 10 EVLNN – DE-NN -0.0168 0.0099 0.0014 -0.0205 -0.0130 -12.016 49 0.000 

Pair 11 EVLNN – GA-NN -0.0119 0.0101 0.0014 -0.0157 -0.0081 -8.369 49 0.000 

Pair 12 EVLNN – TD-BPNN -0.0048 0.0047 0.0007 -0.0065 -0.0030 -7.249 49 0.000 

1
-m

in
 

Pair 13 EVLNN – PSO-NN -0.0005 0.0019 0.0003 -0.0012 0.0002 -1.813 49 0.076 

Pair 14 EVLNN – DE-NN -0.0191 0.0083 0.0012 -0.0222 -0.0159 -16.287 49 0.000 

Pair 15 EVLNN – GA-NN -0.0103 0.0057 0.0008 -0.0125 -0.0082 -12.895 49 0.000 

Pair 16 EVLNN – TD-BPNN 0.0112 0.0031 0.0004 0.0101 0.0124 25.799 49 0.000 
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The results highlighted that for hourly time-step prediction, there was a significant average 

difference between the MSE scores (𝑡49 = 4.314, 𝑝 < 0.001) of EVLNN and PSO-NN. 

On average, EVLNN’s testing MSE scores were 0.0042 points higher (99% CI [0.0016, 

0.0068]). In comparison with DE-NN and TD-BPNN, EVLNN’s average MSE scores were 

0.0149 (99% CI [-0.0227, -0.0071]) and 0.0086 (99% CI [-0.0142, -0.0029]) points lower, 

respectively. These differences were statistically significant ((𝑡49 = −5.142, 𝑝 < 0.001) 

and (𝑡49 = −4.075, 𝑝 < 0.001)). In comparison with GA-NN, the average difference in 

the testing MSE scores between EVLNN and GA-NN were not significant ( 𝑡49 =

−2.864, 𝑝 < 0.001). In the 30-min time-step prediction, the difference between EVLNN’s 

average MSE scores and PSO-NN was not statistically significant. In the 15-min time-step 

prediction, EVLNN’s average MSE scores were significantly higher than PSO-NN but 

lower than DE-NN, GA-NN, and TD-BPNN. In the per min time-step prediction, EVLNN’s 

average MSE scores were significantly lower than DE-NN and GA-NN but significantly 

higher than TD-BPNN. 

6.5.2. Comparison of 7-Day Forecasting Horizon Plots  

The forecast horizon of seven days from 1st to 7th April 2016 is used to evaluate the 

forecast proficiency of the models. The predicted solar irradiance values by the models are 

denormalized to W/m2 and plotted against the actuals for comparison in Figure 6.13 to 

Figure 6.16. Figure 6.13 shows the forecast result for the hourly time-step resolution. In 

general, the models could reasonably predict the hourly irradiance, as demonstrated by the 

prediction trend that tracked the actual values, except for the first and third day, highlighted 

by the red circles, where the prediction did not match up against the actual values. The 

predictions overcompensated the actual values towards the peak in the first red circle. The 

models predicted an upturn in the second circle, but the actual data was a downturn. Further 

analysis was later conducted, in particular, to investigate EVLNN’s predictive accuracy on 

those days.  
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Figure 6.13  Hourly time-step predictions where circled portion indicates prediction with little success. 

Figure 6.14 shows the results of the 30-min time-step predictions. It is observed that DE-

NN had over-predicted parts of days three, four, and five. TD-BPNN had over-predicted 

parts of days three, five, and seven, and EVLNN overcompensated the peak on day five. 

However, unlike the hourly prediction, the overcompensation issue did not occur on day 

one of this experiment. Nonetheless, prediction for day three solar irradiance remains 

challenging for all the models. 

Figure 6.14  30-min time-step predictions. 
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Figure 6.15 shows the results of the 15-min time-step predictions. The models’ predictions 

for part of day three and day five did not match up to the actual. The models overpredicted 

the solar irradiance in those regions. Nonetheless, EVLNN’s prediction was the least 

overcompensation for day five compared to the other models. 

Figure 6.15  15-min time-step predictions. 

Figure 6.16 shows the results of the per min time-step predictions. The charts are separated 

by the respective protocols for clarity due to the huge number of samples. It is observed 

that the models were able to track the actual plot in general, although each had varying 

accuracy. DE-NN overpredicted days three and five and underpredicted days two, four, six, 

and seven. All the models overpredicted the solar irradiance for part of day five.  
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Figure 6.16  Per min time-step predictions. 

Further analysis was performed for predictions on 1st and 3rd April 2016. Figures 6.17 and 

6.18 compare the individual algorithms' target and predicted irradiance. The irradiance on 

1st April 2016 was observed to have much higher variability than the other days. A heavy 

downpour occurred on 3rd April, which disrupted solar irradiance for at least an hour. 
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Despite these phenomena, EVLNN has generally performed well. For 1-min and 15-min 

time-step predictions, EVLNN, with the other EA-based ANNs, has successfully predicted 

the target curve. While TD-BPNN has the best per-minute prediction, it performed poorly 

against EVLNN for the other time-step predictions. The results proved that EA-based 

ANNs with partial connectivity are capable of modeling complex non-linear functions like 

high variability solar irradiance. EVLNN’s species parallelism, crossovers strategies, and 

two-stage mutation have helped maintain an effective search producing good generalization 

across all time-step predictions.  

Figure 6.17  Comparison of target and predicted irradiance on 1st April 2016 for all time-steps. 
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Figure 6.18  Comparison of target predicted irradiance on 3rd April 2016 for all time-steps. 

6.5.3. Model Testing and Analysis for Phase 2 – Use of Smaller Number of Input 

Features 

Feature data for solar irradiance forecasting are generally expensive to collect due to the 

high weather and meteorological instrument cost. The selection of fewer and essential 

attributes can reduce the dimensionality of the data, resulting in a simpler model and 

making model implementation less expensive. This experiment investigates EVLNN’s 

performance and ability to generalize using a smaller scale of feature subsets for training. 

In the selection, features with a higher absolute PCC value were chosen from the original 

seven features to form three subsets. These features are solar panel surface temperature 

(PT), ambient temperature (AT), and relative humidity (RH), whose PCC values are 0.89, 

0.77, and -0.71, respectively. The feature subsets were grouped as shown in Table 6.11. 

Table 6.11  Smaller scale of feature subsets are used for training the EVLNN models. 

Experiments Number of 

input features 

Features 

Set 1 (original) 7 x1(t) = AT, x2(t) = RH, x3(t) = RG, x4(t) = 

WS, x5(t) = WD, x6(t) = AP, x7(t) = PT 

Set 2 (new) 3 x1(t) = PT, x2(t) = AT, x3(t) = RH 

Set 3 (new) 2 x1(t) = PT, x2(t) = AT 

Set 4 (new) 1 x1(t) = PT 
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The experiment results in Table 6.12 showed that EVLNN continued to perform well, if not 

better, under fewer input features. In particular, the EVLNN model trained with a single 

input feature had the lowest testing MSE scores for hourly, 30-min, and 15-min time-step 

predictions compared to the other models. Trained with two and three input features, the 

EVLNN models have also performed well with the lowest testing MSE scores for both 

hourly and 30-min time-step predictions. The results found clear support for the EVLNN 

model trained with fewer input features. It is notable that EVLNN trained with a single 

feature, specifically using only solar panel surface temperature as input, performed well, 

giving good results in the hourly, 30 min, and 15 min time-step predictions. Moreover, solar 

panel surface sensor temperature is more inexpensive to acquire than meteorological data. 

This result compares favorably to ANN models in current studies that predominantly use 

meteorological variables as inputs. 

Table 6.12  Sample statistics of MSE scores averaged over N=50 runs for all models using a smaller scale 

of feature subsets. Embolden figures to mean the best result for that time-step prediction. 

  Models 
Mean MSE 

Score 
N Std. Deviation 

Std. Error 

Mean 

T
h

re
e 

in
p
u

t 
fe

at
u

re
s 

H
o

u
rl

y
 

EVLNN 0.0459 50 0.0028 0.0004 

PSO-NN 0.0476 50 0.0031 0.0004 

DE-NN 0.0501 50 0.0066 0.0009 

GA-NN 0.0491 50 0.0051 0.0007 

TD-BPNN 0.0610 50 0.0138 0.0020 

3
0

-m
in

 

EVLNN 0.0504 50 0.0015 0.0002 

PSO-NN 0.0532 50 0.0025 0.0004 

DE-NN 0.0552 50 0.0062 0.0009 

GA-NN 0.0553 50 0.0060 0.0008 

TD-BPNN 0.0623 50 0.0047 .0007 

1
5

-m
in

 

EVLNN 0.0422 50 0.0010 0.0001 

PSO-NN 0.0410 50 0.0011 0.0002 

DE-NN 0.0437 50 0.0027 0.0004 

GA-NN 0.0438 50 0.0032 0.0005 

TD-BPNN 0.0473 50 0.0043 0.0006 

1
-m

in
 

EVLNN 0.0361 50 0.0005 0.0001 

PSO-NN 0.0386 50 0.0007 0.0001 

DE-NN 0.0413 50 0.0025 0.0004 

GA-NN 0.0416 50 0.0032 0.0005 

TD-BPNN 0.0264 50 0.0027 0.0004 

T
w

o
 i

n
p

u
t 

fe
at

u
re

s 

H
o

u
rl

y
 

EVLNN 0.0454 50 0.0016 0.0002 

PSO-NN 0.0459 50 0.0032 0.0005 

DE-NN 0.0459 50 0.0048 0.0007 

GA-NN 0.0486 50 0.0056 0.0008 

TD-BPNN 0.0541 50 0.0095 0.0013 
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3
0

-m
in

 

EVLNN 0.0499 50 0.0014 0.0002 

PSO-NN 0.0523 50 0.0026 0.0004 

DE-NN 0.0526 50 0.0041 0.0006 

GA-NN 0.0529 50 0.0048 0.0007 

TD-BPNN 0.0573 50 0.0037 0.0005 

1
5

-m
in

 

EVLNN 0.0409 50 0.0007 0.0001 

PSO-NN 0.0402 50 0.0006 0.0001 

DE-NN 0.0415 50 0.0016 0.0002 

GA-NN 0.0417 50 0.0016 0.0002 

TD-BPNN 0.0474 50 0.0028 0.0004 
1

-m
in

 

EVLNN 0.0355 50 0.0004 0.0001 

PSO-NN 0.0383 50 0.0006 0.0001 

DE-NN 0.0391 50 0.0012 0.0002 

GA-NN 0.0394 50 0.0013 0.0002 

TD-BPNN 0.0288 50 0.0005 0.0001 

O
n

e 
in

p
u

t 
fe

at
u

re
 

H
o

u
rl

y
 

EVLNN 0.0453 50 0.0012 0.0002 

PSO-NN 0.0497 50 0.0016 0.0002 

DE-NN 0.0493 50 0.0023 0.0003 

GA-NN 0.0493 50 0.0028 0.0004 

TD-BPNN 0.0671 50 0.0172 0.0024 

3
0

-m
in

 

EVLNN 0.0497 50 0.0010 0.0001 

PSO-NN 0.0525 50 0.0008 0.0001 

DE-NN 0.0520 50 0.0020 0.0003 

GA-NN 0.0528 50 0.0018 0.0003 

TD-BPNN 0.0563 50 0.0078 0.0011 

1
5

-m
in

 

EVLNN 0.0418 50 0.0004 0.0001 

PSO-NN 0.0421 50 0.0003 0.0000 

DE-NN 0.0424 50 0.0008 0.0001 

GA-NN 0.0421 50 0.0001 0.0001 

TD-BPNN 0.0477 50 0.0024 0.0003 

1
 m

in
 

EVLNN 0.0376 50 0.0003 0.0000 

PSO-NN 0.0416 50 0.0032 0.0005 

DE-NN 0.0408 50 0.0007 0.0001 

GA-NN 0.0404 50 0.0007 0.0001 

TD-BPNN 0.0308 50 0.0006 0.0002 

 

6.5.4. Statistical Analysis of Models’ Forecasting Accuracy with Fewer Inputs 

A multiple paired sample t-test with Bonferroni correction was conducted to compare 

significant differences between the testing MSE scores averaged over 50 runs for the 

various learning techniques. At α = 0.01, the adjusted p-value for pairwise comparison 

where the p-value is required for significance would be p ≤ 0.001. Table 6.13 shows the 

results of the paired samples t-test. 
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Table 6.13  Paired samples t-test. Embolden figures denotes the paired differences between EVLNN’s 

average testing MSE scores and the other model, which are lower and statistically significant. 

  

Pair Paired Samples 

Paired Differences 

t df 

Sig. (2-

tailed) Mean 

Std. 

Deviation 

Std. 

Error 

Mean 

99% Confidence Interval 

of the Difference 

Lower                 Upper 

3
 i

n
p

u
ts

 

H
o

u
rl

y
 1 EVLNN – PSO-NN -0.0017 0.0045 0.0006 -0.0034 -0.0000 -2.704 49 0.009 

 2 EVLNN – DE-NN -0.0042 0.0071 0.0010 -0.0069 -0.0015 -4.199 49 0.000 

 3 EVLNN – GA-NN -0.0032 0.0057 0.0008 -0.0054 -0.0010 -3.923 49 0.000 

 4 EVLNN – TD-BPNN -0.0151 0.0148 0.0021 -0.0207 -0.0095 -7.210 49 0.000 

3
0

-m
in

  5 EVLNN – PSO-NN -0.0028 0.0031 0.0004 -0.0039 -0.0016 -6.232 49 0.000 

 6 EVLNN – DE-NN -0.0047 0.0064 0.0009 -0.0072 -0.0023 -5.217 49 0.000 

 7 EVLNN – GA-NN -0.0048 0.0066 0.0009 -0.0073 -0.0023 -5.191 49 0.000 

 8 EVLNN – TD-BPNN -0.0118 0.0050 0.0007 -0.0137 -0.0099 -16.696 49 0.000 

1
5

-m
in

  9 EVLNN – PSO-NN 0.0012 0.0014 0.0002 0.0007 0.0017 6.331 49 0.000 

 10 EVLNN – DE-NN -0.0014 0.0029 0.0004 -0.0026 -0.0003 -3.499 49 0.001 

 11 EVLNN – GA-NN -0.0016 0.0032 0.0005 -0.0028 -0.0003 -3.415 49 0.001 

 12 EVLNN – TD-BPNN -0.0051 0.0044 0.0006 -0.0067 -0.0034 -8.252 49 0.000 

1
-m

in
  13 EVLNN – PSO-NN -0.0026 0.0008 0.0001 -0.0029 -0.0022 -21.669 49 0.000 

 14 EVLNN – DE-NN -0.0053 0.0026 0.0004 -0.0063 -0.0043 -14.643 49 0.000 

 15 EVLNN – GA-NN -0.0056 0.0031 0.0004 -0.0068 -0.0044 -12.599 49 0.000 

 16 EVLNN – TD-BPNN 0.0097 0.0027 0.0004 0.0086 0.0107 24.995 49 0.000 

2
 i

n
p

u
ts

 

H
o

u
rl

y
  17 EVLNN – PSO-NN -0.0005 0.0033 0.0005 -0.0017 0.0008 -.996 49 0.324 

 18 EVLNN – DE-NN -0.0004 0.0052 0.0007 -0.0024 0.0015 -.584 49 0.562 

 19 EVLNN – GA-NN -0.0032 0.0056 0.0008 -0.0053 -0.0010 -3.958 49 0.000 

 20 EVLNN – TD-BPNN -0.0087 0.0093 0.0013 -0.0122 -0.0051 -6.571 49 0.000 

3
0

-m
in

  21 EVLNN – PSO-NN -0.0024 0.0032 0.0005 -0.0036 -0.0012 -5.211 49 0.000 

 22 EVLNN – DE-NN -0.0027 0.0044 0.0006 -0.0043 -0.0010 -4.299 49 0.000 

 23 EVLNN – GA-NN -0.0030 0.0047 0.0007 -0.0048 -0.0013 -4.599 49 0.000 

 24 EVLNN – TD-BPNN -0.0074 0.0040 0.0006 -0.0089 -0.0059 -13.238 49 0.000 

1
5

-m
in

  25 EVLNN – PSO-NN 0.0008 0.0008 0.0001 0.0004 0.0011 6.542 49 0.000 

 26 EVLNN – DE-NN -0.0005 0.0018 0.0003 -0.0012 0.0002 -2.043 49 0.046 

 27 EVLNN – GA-NN -0.0008 0.0018 0.0003 -0.0014 -0.0001 -2.979 49 0.004 

 28 EVLNN – TD-BPNN -0.0064 0.0029 0.0004 -0.0075 -0.0053 -15.446 49 0.000 

1
-m

in
  29 EVLNN – PSONN -0.0028 0.0007 0.0001 -0.0030 -0.0025 -27.663 49 0.000 

 30 EVLNN – DE-NN -0.0036 0.0012 0.0002 -0.0041 -0.0032 -21.208 49 0.000 

 31 EVLNN – GA-NN -0.0039 0.0014 0.0002 -0.0044 -0.0034 -19.874 49 0.000 

 32 EVLNN – TD-BPNN 0.0067 0.0006 0.0001 0.0065 0.0069 84.695 49 0.000 

1
 i

n
p

u
t 

H
o

u
rl

y
  33 EVLNN – PSONN -0.0044 0.0020 0.0003 -0.0052 -0.0036 -15.598 49 0.000 

 34 EVLNN – DE-NN -0.0040 0.0027 0.0004 -0.0051 -0.0030 -10.443 49 0.000 

 35 EVLNN – GA-NN -0.0040 0.0029 0.0004 -0.0051 -0.0029 -9.616 49 0.000 

 36 EVLNN – TD-BPNN -0.0218 0.0171 0.0024 -0.0283 -0.0153 -9.005 49 0.000 

3
0

-m
in

  37 EVLNN – PSONN -0.0028 0.0012 0.0002 -0.0033 -0.0024 -16.592 49 0.000 

 38 EVLNN – DE-NN -0.0023 0.0023 0.0003 -0.0032 -0.0014 -7.054 49 0.000 

 39 EVLNN – GA-NN -0.0030 0.0021 0.0003 -0.0038 -0.0023 -10.241 49 0.000 

 40 EVLNN – TD-BPNN -0.0066 0.0079 0.0011 -0.0096 -0.0036 -5.848 49 0.000 

1
5

-m
in

  41 EVLNN – PSONN -0.0003 0.0005 0.0001 -0.0005 -0.0001 -3.937 49 0.000 

 42 EVLNN – DE-NN -0.0006 0.0008 0.0001 -0.0010 -0.0003 -5.320 49 0.000 

 43 EVLNN – GA-NN -0.0003 0.0006 0.0001 -0.0005 -0.0001 -3.383 49 0.001 

 44 EVLNN – TD-BPNN -0.0059 0.0023 0.0003 -0.0068 -0.0050 -17.837 49 0.000 

1
-m

in
  45 EVLNN – PSONN -0.0039 0.0032 0.0005 -0.0051 -0.0027 -8.783 49 0.000 

 46 EVLNN – DE-NN -0.0031 0.0008 0.0001 -0.0034 -0.0028 -27.447 49 0.000 

 47 EVLNN – GA-NN -0.0027 0.0008 0.0001 -0.0030 -0.0024 -24.537 49 0.000 

 48 EVLNN – TD-BPNN 0.0069 0.0006 0.0001 0.0067 0.0071 85.453 49 0.000 

 

When using PV as a single input feature, superior results were seen in the hourly, 30-min, 

and 15-min time-step predictions, where EVLNN’s average testing MSE scores are 
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significantly better than PSO-NN, DE-NN, GA-NN, and TD-BPNN. In the 1 min 

prediction, there were significant differences in the testing MSE scores between EVLNN 

and PSO-NN ( 𝑡49 = −8.783, 𝑝 < 0.001) , EVLNN and DE-NN ( 𝑡49 = −27.447, 𝑝 <

0.001) and, EVLNN and GA-NN (𝑡49 = −24.537, 𝑝 < 0.001). Extensive results of this 

analysis confirmed that EVLNN is a competitive model for solar irradiance prediction. 

More precisely, in the presence of fewer features, EVLNN achieved the most consistent 

and robust results. 

6.5.5. Comparison of Error Metrics 

The error metrics RMSE, MAE, adjusted R2 (Coefficient of Determination), MBE, and 

MAPE, are computed using the denormalized W/m2 predicted values. Their values are 

evaluated to compare the model performance. Figure 6.19 presents the scores of the various 

error metrics using a bar chart for comparison. For hourly and 30-min time-step predictions, 

EVLNN trained with a smaller scale of feature subsets obtained better results with lower 

RMSE and MAE scores and higher Adjusted R2 scores than other models. EVLNN trained 

with a single input feature (solar PV surface temperature) has performed exceptionally well, 

showing better results for RMSE, MAE, and adjusted R2 in the hourly, 30-min, and 15-min 

time-step predictions than other models. 
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Figure 6.19  Error matrices are presented in a bar chart for comparison. In separate experiments, models 

were trained using seven, three, two, and single input features. 

Table 6.14 shows the error scores averaged over 50 runs for the models trained with a single 

input feature for various time-step predictions. The values of error metrics, RMSE, and 

MAE are displayed in a denormalized form in W/m2. It is observed that EVLNN has 

performed better than PSO-NN, DE-NN, GA-NN, and TD-BPNN in the hourly time-step 

prediction. In terms of percentage, EVLNN’s RMSE values improved by 4.5%, 4.1%, 4.1%, 

and 17.3%, respectively, MAE value improved by 9.2%, 9.9%, 8.2%, and 20.2%, 

respectively and Adjusted R2 value improved by 2.5%, 2.5%, 2.5%, and 12.3%, 

respectively. Similar results were also seen in the 30-min time-step prediction, where 

EVLNN’s RMSE, MAE, and Adjusted R2 values are better than PSO-NN, DE-NN, GA-

NN, and TD-BPNN. For the 15-min time-step prediction, EVLNN’s values for RMSE and 

MAE were better than the other models but tied with PSO-NN and GA-NN for the Adjusted 

R2 value. In the 1 min time-step prediction, EVLNN error scores are better than PSO-NN, 

DE-NN, and GA-NN except for TD-BPNN. In this time-step prediction, TD-BPNN has 

outperformed EVLNN taking advantage of the power of fully connected networks in the 

presence of a large dataset. However, when the sample interval increases, TD-BPNN 

performance decreases. The results suggest that a fully connected ANN suffers from 

difficulties with generalization because of overfitting. Another interesting observation is 
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EVLNN’s MBE scores, which were more negative than the other models. This finding 

suggests that the EVLNN’s search characteristic is more conservative and biased toward 

under-predicting. For the TD-BPNN, though smaller overall negative MBE scores were 

observed, it tends to over predict, as indicated by the RMSE scores for hourly, 30-min, and 

15-min time-step prediction for larger sample intervals. 

Table 6.14  Comparison of error matrices averaged over 50 runs for models trained with a single input 

feature. Embolden figures to mean the best result for that time-step prediction. 

 

Error Metrics 

RMSE (W/m2) MAE (W/m2) Adjusted R2 MBE (W/m2) MAPE (%) 

Mean 
Std 

Dev 
Mean Std Dev Mean 

Std 

Dev 
Mean 

Std 

Dev 
Mean 

Std 

Dev 

P
re

d
ic

ti
o

n
 T

im
e-

S
te

p
 

H
o

u
rl

y
 

EVLNN 104.08 1.37 54.12 0.83 0.82 0.00 -30.79 2.15 50.17 2.81 

PSO-NN 109.00 1.70 59.61 0.68 0.80 0.01 -29.00 1.92 47.96 0.87 

DE-NN 108.58 2.46 60.08 1.00 0.80 0.01 -27.61 3.85 48.05 1.44 

GA-NN 108.50 3.04 58.98 0.80 0.80 0.01 -29.26 3.45 48.40 1.46 

TD-BPNN 125.79 14.73 67.78 6.18 0.73 0.07 -17.36 8.45 281.21 89.58 

3
0
=

m
in

 

EVLNN 111.51 1.05 56.13 0.63 0.82 0.00 -24.03 1.76 52.12 1.83 

PSO-NN 114.62 0.91 58.44 0.26 0.81 0.00 -21.77 1.39 47.79 0.55 

DE-NN 114.04 2.13 58.80 0.74 0.81 0.01 -20.78 4.06 47.93 1.19 

GA-NN 114.87 1.92 58.84 0.66 0.81 0.01 -22.49 2.42 49.29 1.18 

TD-BPNN 118.41 7.33 64.59 2.51 0.80 0.03 -8.27 2.69 78.27 19.88 

1
5
-m

in
 

EVLNN 107.53 0.50 55.91 0.58 0.84 0.00 -11.40 1.07 55.17 1.57 

PSO-NN 107.90 0.34 57.11 0.60 0.84 0.00 -7.82 1.17 50.98 0.53 

DE-NN 108.34 0.98 57.47 0.95 0.83 0.00 -8.47 3.17 51.36 1.23 

GA-NN 107.92 0.73 57.07 1.03 0.84 0.00 -7.72 2.20 51.70 1.25 

TD-BPNN 114.85 2.74 59.71 1.08 0.81 0.01 -3.80 2.67 51.53 5.77 

1
-m

in
 

EVLNN 108.06 0.43 57.61 0.50 0.84 0.00 -10.02 1.30 60.04 1.31 

PSO-NN 111.38 1.21 59.87 0.73 0.82 0.01 -9.00 8.23 56.94 3.57 

DE-NN 112.46 0.96 60.52 1.38 0.83 0.00 -5.96 3.48 58.85 1.23 

GA-NN 111.88 0.89 59.19 1.27 0.83 0.00 -6.44 2.43 58.85 1.69 

TD-BPNN 97.71 0.86 52.79 0.67 0.87 0.00 -2.00 0.83 50.56 0.65 

 

These results suggest that EVLNN has the superiority of getting lower RMSE and MAE 

and higher R2 requiring fewer features. The findings show that the strength of EVLNN lies 

in the ability to predict accurately despite a smaller amount of features. It is also important 

to note that using only one error indicator may be insufficient, and more than one error 

indicator should be considered when objectively investigating the performance of 

predictive models.  
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6.6. Chapter Summary 

Solar power intermittency threatens to reduce power generation from solar radiation, 

making data center energy transition to renewables challenging. Accurate prediction of 

solar irradiance is a critical research topic that can help manage risk, compensate for the 

variations of solar PV power and accelerate data center energy transition to renewables.  

In this chapter, the EVLNN model is presented for solar irradiance forecasting. EVLNN’s 

predictive performance for 1-min, 15-min, 30-min, and hourly time-step using fewer input 

features has been investigated. In the model development, MSE was employed as the 

objective function to minimize, and test statistics were adopted to investigate statistical 

differences in the condition means between paired samples. The predictive accuracy of 

EVLNN was measured using a range of five error matrices: RMSE, MAE, adjusted R2, 

MBE, and MAPE.  

It was observed that EVLNN trained with a single input feature had performed better than 

PSO-NN, DE-NN, GA-NN, and TD-BPNN in the hourly time-step prediction, where 

EVLNN’s RMSE values improved by 4.5%, 4.1%, 4.1%, and 17.3%. Also, EVLNN’s MAE 

values improved by 9.2%, 9.9%, 8.2%, and 20.2%, respectively and Adjusted R2 values 

improved by 2.5%, 2.5%, 2.5%, and 12.3%, respectively. Similar results were also seen in 

the 30-min time-step prediction, where EVLNN’s RMSE, MAE, and Adjusted R2 values 

were better than PSO-NN, DE-NN, GA-NN, and TD-BPNN. For the 15-min time-step 

prediction, EVLNN’s values for RMSE and MAE were better than the other models but 

tied with PSO-NN and GA-NN for the Adjusted R2 values.  

The experiments showed that EVLNN performed substantially better than the other models 

in three error indicators. The results also confirmed that EVLNN is a preferred model 

requiring a smaller scale of feature subsets and training datasets. When trained with a single 

input feature using the solar PV surface temperature, EVLNN performed well, giving 

superior results to the models trained by other EAs. This is an important finding as 

acquiring non-meteorological data is more straightforward and less expensive. This means 

that EVLNN compares favorably to most ANNs in the literature, generally trained with 
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meteorological data, which is expensive due to the setup and maintenance cost of weather 

instruments or stations. These results show that EVLNN is a promising solution for solar 

irradiance forecasting with resilient qualities to cope with the solar variability in the tropics.  



 

 

Chapter 7 

7. Conclusion and Future Work 

The rapid acceleration of digital services has skyrocketed data center energy consumption 

to unprecedented levels. Accurate energy prediction can improve data center energy 

consumption and accelerate the transition to renewables for a more sustainable future. 

While ANNs are powerful learning machines for modeling complex nonlinear systems, 

they are non-interpretable and prone to overfitting due to their redundant architecture. 

Moreover, the design of ANN relies heavily on human experts and trial-and-error efforts, 

making it a time-consuming and expensive task. Methods that can make this task more 

efficient and provide insights into the relationships between the variables and energy 

consumption are desirable. 

A comprehensive review of Hadoop data center energy efficiency in Chapter 2 led to an 

observed gap in the literature where the application of EA-based ANN is still limited for 

energy consumption predictions of Hadoop systems. Similarly, a review of time-series solar 

irradiance forecasting techniques reflects a general trend in the literature requiring a 

relatively large number of variables and datasets. 

In this research, the problem of energy prediction is made efficient using an evolutionary-

based approach to ANN learning, known as EVLNN, to produce parsimonious ANN with 

interpretability and improved generalizability. Automating the parameter learning of ANN 

has also minimized the dependency on human experts and costly trial-and-error efforts. The 

result is a relatively frugal ANN model, which also captures the meaning of nonlinear 

relationships between the inputs and the outputs.  



Chapter 7. Conclusion and Future Work          200 

 

 

7.1. The EVLNN Model for Energy Prediction 

7.1.1 EVLNN Framework, Architecture, and Algorithm 

The EVLNN model consisting of its framework, architecture, and search algorithm, was 

described in Chapter 3. The design of EVLNN has achieved its goal of a generalized and 

interpretable model for energy prediction applications. This is realized through EVLNN’s 

several novel mechanisms that support species parallelism amidst the explorative search. A 

structurally inclusive matrix encoding scheme based on parsimony has been designed to 

accommodate problem representation of a feedforward and feedback ANN. The intra-

species and inter-species crossover strategies and a two-stage mutation with weights and 

link-node have been created to automate the search for global solutions of parsimonious 

networks. An ensemble-based approach to sensitivity analysis has been proposed to 

improve model interpretability, making it easier to identify input features that most affect 

the outputs, and providing valuable insight into the factors influencing the predictions.  

7.1.2 EVLNN’s Search Capability and Performance in Benchmark Test Functions 

in Comparison with other EAs 

The search capability of EVLNN was investigated in Chapter 4 through a set of 16 

benchmark test functions [207] [261]. The first set of benchmark functions (see Table 4.4) 

demonstrated EVLNN’s ability to locate the global optima in low-dimensional unimodal 

and multimodal landscapes. In particular, EVLNN had achieved an average Peak Ratio 

(PR) of 100% for the Bohachevsky N.1-2D (f1) and Booth-2D (f2) functions across all 𝜀 = 

{10-1, 10-2, 10-3, 10-4, 10-5}. EVLNN also achieved an average PR of 100% for the Ackley-

2D function (f5) at 𝜀 = {10-1, 10-2, 10-3, 10-4}, but only a PR of 6% at 𝜀 = {10-5}. For the 

Rosenbrock-2D (f6) function, PSO and DE performed better than EVLNN for all 𝜀 =  {10-

1, 10-2, 10-3, 10-4, 10-5} with an average PR of 100%, whereas EVLNN and GA had an 

average PR of 91.2% and 92.4%, respectively. For high-dimensionality functions, 

EVLNN’s performance was less desirable. For example, for the Griewank-30D (f8) function, 

DE had the best performance, followed by GA, PSO, and EVLNN. For the Sphere-30D (f3) 

and Brown-30D (f4) functions, EVLNN could only locate the peaks at 𝜀  = {10-1, 10-2}. 
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While EVLNN had a moderate overall performance, it is the only algorithm that had located 

the peaks of all the test functions, f1 to f8, including f7, Rastrigin-30D, demonstrating that 

the algorithm generalizes better than PSO, DE, and GA in this set of test functions.  

The performance of EVLNN was compared to the state-of-the-art EAs presented in the 

CEC 2013 and CEC 2015 competitions using a second set of benchmark functions from 

the competitions (see Tables 4.5 and 4.11). EVLNN recorded an average PR score of 100% 

for the Uneven Decreasing Maxima-1D (f11) and Six-hump Camel Back-2D (f13) functions 

across all 𝜀 = {10-1, 10-2, 10-3, 10-4, 10-5}. EVLNN performed moderately well, achieving 

an average PR score of 59.1% and 44.6%, and 37.6% for the Modified Rastrigin-2D (f16), 

Shubert-2D (f14), and Vincent-2D (f15) functions, respectively. For the Himmelblau-2D (f12) 

and Equal Maxima-1D (f10) functions, EVLNN attained an average PR score of 84.3% and 

79.4% for all 𝜀, respectively. Nonetheless, EVLNN is the only algorithm that had located 

the peak for the Shubert-2D (f14) function at 𝜀 = 1.0E-05, with a PR of 27.6%. At the same 

time, the other EAs failed at this accuracy level, demonstrating the generalizability of 

EVLNN. In the overall assessment, EVLNN was ranked 19 out of 22 algorithms presented 

in the CEC competitions, outperforming iPOP-CMA-ES, MEA, and MSSPSO. The ranking 

is based on the average PR score across 10 CEC multimodal benchmark functions, where 

EVLNN achieved an average PR score of 50%. Overall, EVLNN had demonstrated the 

ability to locate the global optima in low-dimensional unimodal and multimodal landscapes 

and, on average, 50% of the global optima in high-dimensional multimodal landscapes. 

It is important to note that the state-of-the-art algorithms developed for the CEC 

competition focus on real-parameter optimization. In contrast, EVLNN is a parsimonious 

ANN built for forecasting. Therefore, the EVLNN’s search capability and applicability to 

real-world problems were further assessed in Chapter 4. Using open-access real-world 

time-series data as a benchmark to forecast electricity load for the experiment, EVLNN had 

achieved a better performance in terms of a lower testing MSE score than ANNs trained 

using PSO, DE, and GA.  
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7.2. Application to Hadoop Energy Consumption Prediction 

For a more thorough experiment, a physical testbed was set up to test the ability of EVLNN 

to model data center energy consumption, which was discussed in Chapter 5. The testbed 

consisted of a 120-core Hadoop cluster where a combination of CPU-intensive and I/O-

intensive MapReduce jobs, such as the WordCount and TeraSort applications typically used 

in the literature, with varying payloads were executed to simulate real-world workloads. 

Energy-related data from 23 parameters, the highest number of variables examined 

compared to similar studies performed in the literature, were collected via monitoring tools 

like Ganglia, SNMP protocol, and build-in Hadoop counters. The EVLNN model was 

trained using 70% of the dataset and tested with the remaining 30% to predict the Hadoop 

energy consumption. Its performance was compared to ANN trained with other EAs such 

as PSO-NN, DE-NN, and the classic GA-NN. EVLNN’s testing MSE score of 0.00230 

(±0.00042) outperformed the testing MSE score of PSO-NN, DE-NN, and GA-NN, which 

were recorded at 0.00310 (± 0.00195), 0.01041 (± 0.00307), and 0.01071 (± 0.00416), 

respectively. The result demonstrated that EVLNN is a competitive search algorithm 

capable of predicting the energy consumption of a Hadoop cluster.  

In addition, factors influencing energy consumption were also successfully investigated 

using EVLNN’s ensemble sensitivity analysis. 23 energy-related input variables were 

classified into five categories: job profile, system utilization, disk I/O, network transfer, 

and the environment. The relative importance of individual variables was aggregated and 

averaged across four chosen sensitivity analysis methods. The outcome of the category 

ranking placed job profile as the most critical factor contributing to energy consumption, 

followed by system utilization, disk I/O, network transfer, and finally, the environment. The 

findings attributed file size, workload type, job completion time, and the number of mappers 

and reducers as significant factors influencing energy consumption. This insight can 

provide potential ways to manage data center energy efficiency better.  
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7.3. Application to Solar Irradiance Forecasting 

A small-scale PV system setup with weather instruments was used as a testbed to evaluate 

EVLNN’s solar irradiance forecasting ability in the real world. One month of raw data in 

March 2016 was sampled at 1-min, 15-min, 30-min, and hourly time resolutions to create 

four datasets. These datasets were used to train the EVLNN model to forecast solar 

irradiance over seven days. The 1-min dataset had the largest sample size of 53,580, and 

the hourly data had the smallest sample size of 894. The input features were ambient 

temperature, relative humidity, rain gauge reading, wind speed, wind direction, atmospheric 

pressure, and PV panel surface temperature. EVLNN’s performance was investigated 

through two experimental phases. The first phase involved seven input features, while the 

second involved fewer input features. The approach of selecting fewer and essential 

attributes was an attempt to achieve the reverse of what most forecast models do, that is, 

relying on many meteorological and atmospheric input features. Phase two investigated 

EVLNN’s generalization capability using fewer features. In analyzing the results from the 

experiments, the best scenarios and applications of EVLNN are in forecasting solar 

irradiance at the hourly and 30-min time-step resolutions with a smaller subset of input 

features of three and fewer. 

EVLNN’s performance in phase one was superior to DE-NN, GA-NN, and TD-BPNN for 

the hourly, 30-min, and 15-min predictions. EVLNN was also superior to PSO-NN, DE-

NN, and GA-NN for the 1-min prediction. However, EVLNN’s performance was below 

PSO-NN in the hourly, 30-min, and 15-min predictions and below TD-BPNN in the 1-min 

prediction. The results demonstrated EVLNN’s generalization capability with sparse or 

dense datasets, and the findings confirmed that EVLNN is a competitive technique.  

EVLNN’s performance improved in phase two, showing the approach can generalize better 

with few features. For the hourly and 30-min time-step predictions, EVLNN trained with 

three or fewer features obtained better results with lower RMSE and MAE scores and 

higher Adjusted R2 scores than the other models. In particular, in the hourly time-step 

prediction, EVLNN trained with PV as the single input feature performed better than PSO-

NN, DE-NN, GA-NN, and TD-BPNN. In terms of percentage, EVLNN’s RMSE values 
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improved by 4.5%, 4.1%, 4.1%, and 17.3%, respectively, MAE value improved by 9.2%, 

9.9%, 8.2%, and 20.2%, respectively and Adjusted R2 value improved by 2.5%, 2.5%, 2.5%, 

and 12.3%, respectively. Improved results were also seen in the 30-min time-step prediction. 

For the 15-min time-step prediction, EVLNN’s RMSE and MAE scores were better than 

the other models and comparable to PSO-NN and GA-NN’s Adjusted R2 scores. In the 1-

min time-step prediction, EVLNN’s error scores were better than PSO-NN, DE-NN, and 

GA-NN except for TD-BPNN. The TD-BPNN had outperformed EVLNN taking 

advantage of the power of fully connected networks in the presence of a large dataset. 

However, TD-BPNN’s performance decreases in tandem with sample size, suggesting that 

a fully connected ANN suffers from difficulties with generalization because of overfitting. 

The findings provided evidence of EVLNN’s generalized capability as the algorithm can 

attain good results for sparse or dense datasets. By selecting fewer and essential features, 

EVLNN achieved even higher accuracy. 

The experiments tested EVLNN’s ability to generalize and predict accurately. It is clear 

that the strength of EVLNN lies in a smaller scale of feature subsets, especially when 

EVLNN was trained with PV as the single input feature, the model’s performance was more 

superior. In scenarios where acquiring meteorological data can be time-consuming and 

costly, EVLNN is a preferred approach. Its ability to generalize well with fewer features 

makes it more straightforward and less expensive to implement.  

 

7.4. Future Work 

EVLNN is designed to locate parsimonious ANN with improved generalizability and 

interpretability. However, there are shortcomings in the EVLNN framework if it is used to 

solve optimization problems based on real parameters. One area of improvement concerns 

the handling of higher dimensionality problems. The design of EVLNN’s matrix encoding 

scheme does not scale well for high-dimensional problems, as observed in EVLNN’s low 

peak ratio score at an accuracy level of 1.0E-03 and better for Sphere-30D, Brown-30D, 

Rastrigin-30D, Griewank-30D, Shubert-3D, and Vincent-3D benchmark functions. The 
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genotypic crossovers performed for real parameter optimization at the matrices level do not 

generate sufficient novel genetic material to create new solutions. One improvement for 

future work is to take the higher dimensional multimodal problem and reduce it to multiple 

low-dimensional multimodal problems. Instead of recombining two single large 

chromosome matrices, the main chromosomes matrix can be subdivided into smaller sub-

chromosome structures or subsets for recombination at the matrix subset level. The 

recombined matrix at the subset level can then be recombined at a higher level to form their 

original dimension as the new offspring. This way, more alleles in the chromosome matrix 

can be enhanced with new genetic materials to search for novel solutions.   

Another area of improvement is enhancing the diversity tracking mechanism for adaptive 

crossover and mutation. The diversity measure provides insight into the species' evolution 

and can be used to automatically tune selective genetic parameters to improve the 

algorithm’s search behavior making the algorithm adaptive. This can be achieved by 

modifying the fitness function to incorporate elements of the diversity information, species 

size, and MSE into the learning to influence the search operation.  

The third area for future work is integrating EVLNN’s solar irradiance forecast ability with 

Hadoop’s energy prediction. The research has laid the groundwork with a predictive model 

capable of both demand-side and supply-side energy prediction. Future work can bridge 

the gap between these two engineering problems by using EVLNN to aid the data center 

transition to renewables. An integrated solution that can predict and accurately balance 

power consumption demand with renewable energy supply can accelerate the 

decarbonization of data centers and begin the transition of this industry to a more 

sustainable future.  

The fourth area is the further analysis and comparison of EVLNN with the other state-of-

the-art time-delay models. Time-Delay Neural Networks (TDNN) allow the networks to 

have a finite dynamic response to time series data by introducing a delay at the network's 

input. The EVLNN design is a special case of TDNN that channels its output back into the 

input nodes at a delay of up to several time-steps. Competitive analysis of these two 
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architectures over diverse datasets and input features deserves a thorough investigation in 

future work. 

Lastly, further investigation on the predictive accuracy of EVLNN for other renewable 

sources such as wind and geothermal energy could be conducted. A model that can predict 

a diverse mix of renewable sources could help to accelerate the higher penetration of 

renewables into the traditional grid.  
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Appendices 

A. The EVLNN Pseudo Code 

Figure A.1 Pseudo-code for EVLNN 

Algorithm 1 The EVLNN Pseudo Code 

// Initialization 
1. main(MAX_Iteration, popSize) 
2. set control parameters 
3. generate a set of feasible solutions uniform random distribution, called popVector of size popSize 
4. popVector=rand(popSize) 

// Map phenotype (or real values) to chromosomes vectors  
5. chromVector=map(popVector) 

// Speciation 
6. for i=1 to size of chromVector do 

// Assign chromosomes to species vector 
7.       species_id=length(chromVector(i)) 
8.       spVector(species_id)=chromVector(i) 
9. end for 

// Loop until condition is met 
10. while globalBestVector not found AND iteration < MAX_Iteration do 

// Evaluate and rank species 
11.       for each spVector do 

// Evaluate fitness of feasible solutions and rank solutions within species 
12.          spVectorRanked=rank(eval(spVector)) 
13.      end for 

// Mating selection and recombination 
14.     for each species do  

// Intra-species recombination 
15.           for i = 1 to size of spVectorRanked do  
16. // Select pair uniformly and stochastically 
17.                ParentA=SUS(spVectorRanked)  
18.                ParentB=SUS(spVectorRanked) 
19. // Inter-species recombination 
20. // Check if inter-species crossover probability is met 
21. // if so randomly select 2nd parent from the general population 
22.                if crossspecies_crossover_probability > rand() 
23.                     ParentB=rand(1, popVector) 
24.                end if       

// Perform single-point crossover 
25.      ChildA=Parent1A+Parent2B 
26.      ChildB=Parent2A+Parent2B 

// Compare fitness of parent-child 
27.            if fit(ChildA,ChildB) > fit(ParentA, Parent B) 
28. // Store new feasible solutions      
29.                  newVector(ChildA, ChildB) 
30.            else 
31.                 newVector(ParentA, ParentB) 
32.           end if 

// Check feasible solutions 
33.            if newVector is unfeasible 
34.               Repair and Update newVector  
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35.           end if 
36.       end for 

// Mutation 
// Select remaining solutions as mutants  

37.        for i = 1 to size of Remain(spVectorRanked) do  
38.           generate changeVector 
39.           generate probabilityVector 

// Prepare mutation vector for link and weights mutation 
40.           mutationVector=changeVector*probabilityVector 
41.           mutant=Remain(spVectorRanked) 
42.           mutant=mutant*mutationVector 

// Store new feasible solutions 
43.          newVector(mutant) 

// Check feasible solutions 
44.              if newVector is unfeasible 
45.                 Repair and Update newVector  
46.             end if 
47.        end for 

// Update chromosome vector and species vector and evaluate global best 
48.    for each newVector do 

// Evaluate fitness of feasible solutions and rank solutions globally 
49.          newVectorRanked=rank(eval(newVector)) 
50.    end for 

// Replace bottom individuals with healthier individuals 
51.    bottomIndex=bottomIndex(newVectorRanked) 
52.    topIdex=topIndex(newVectorRanked) 
53.    newVectorRanked(bottomIndex)=newVectorRanked(topIndex) 
54. // Update chromosome vector 
55.    chromVector=newVectorRanked 
56.    spVector=chromVector 
57. // Obtain genome map of each individual 
58.    genome[]=getGenome(spVector) 

// Evaluate global best 
59.    globalBestVector=maxfit(chromVector) 

// Diversity Calculation 
60. // Perform diversity calculation and plot the trends 
61. diversity_calc(genome[], popSize) 
62. plot_diversity() 
63. end while 

// Ensemble-based Sensitivity Analysis 
64. SA=sensitivity_analysis_calc() 
65. return(globalBestVector, SA) 
66. end main 
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Figure A.2  Pseudo-code for diversity calculation 

Algorithm 2 Diversity Calcuation Method 

1: function diversity_calc (genome, popSize) 

// Find non-zero elements in the genome_array and return the indices corresponding to the non-zero  

// entries. This is to convert the genome to number string for diversity calculation 

2: num_genome=0 

3: populationSize=popSize 

4: for i=1 to size of individual genome do 

5:      num_genome=num_genome+(genome(i)) 

6: genome[]=find_non_zero(genome) 

7: end for 

8: unique_genome=genome[] 

9: for i=1 to population_size do 

10:     unique_genome=union(unique_genome, genome[i]) 

11:     total_genome=total_genome+size(genome[i]) 

12:     i=i+1; 

13: end for 

14: // Calculate population diversity 

15: pop_diversity=population_size*(size(unique_genome)/total_genome); 

16: // Calcuate Shannon’s diversity 

17: species=unique(sort(genome[])) 

18: individuals=genome[]; 

19: shannon=[species,histcount(individuals(),species)] 

20: species_diversity_index=0; 

21: for i=1 to size of shannon array do 

22:     temp=-[(shannon[i]/sum(shannon[])*log(shannon[i]/sum(shannon[])]; 

23:     species_diversity_index=species_diversity_index+temp; 

24: end for 

25: species_equitability_index=species_diversity_index/log(size(species[])) 

26: return(pop_diversity,species_diversity_index,species_equitability_index) 

27: end function 
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B. Sensitivity Analysis Methods 

B.1 Methodology for the PaD Method 

In implementing the Partial Derivatives (PaD) method, the relative contribution of the 

Multi-Layer Perceptron (MLP) outputs is computed using the Sum of the Square Partial 

Derivatives (SSD) obtained per input variable [192] [197]. This method is based on the 

Backpropagation (BP) algorithm, which is used to compute the partial derivatives of the 

cost function with respect to each weight parameter [280]. The expression for the SSD 

implemented in the EVLNN algorithm is,  

𝑠𝑖𝑘,𝑆𝑆𝐷 = ∑ (𝑠𝑖𝑘|𝑥𝑗)
2𝑁

𝑗=1       (B.1) 

where 𝑠𝑖𝑘|𝑥𝑗 refers to the sensitivity of the output of the kth neuron in the output layer to the 

input of the ith neuron evaluated in 𝑥𝑗 and N refers to the number of samples in the dataset. 

Figure B.1 shows the Pseudo-code for the PaD method. 

Figure B.1  Pseudo-code for the PaD method. 

Algorithm 1 Partial Derivative Method 

28: function PaD_METHOD (W, B, N, H, I, O, X) 

29: // INPUT: Parameter values of the fittest individual EVLNN including weights W, bias B, sample size  

30: // N, number of hidden neurons H, number of inputs I, number of outputs O and the testing dataset, X 

31: // OUTPUT: Ranking of the relative contribution of the input variables to the output variable   

32: for n = 1 to N do  

33:      for j = 1 to H do  

34:           for i = 1 to I do 

35:                   //  Calculate the weighted sum (zij) at the input i to the hidden neurons, j 

36:                   zij= ∑ (𝑤𝑖𝑗𝑖,𝑗 ∙ 𝑥𝑖) + 𝑏𝑗 

37:           end for 

38:           // Calculate the output of the activation function (hj) at the hidden neuron, j 

39:          hj = 1 / (1+exp(-zij))     // for Sigmoid activation function 

40:      end for 

41:      for k = 1 to O do 

42:           // Calculate the weighted sum zjk at the input of kth output neuron 

43:           zjk=∑ (𝑤𝑗𝑘𝑗,𝑘 ∙ ℎ𝑗) + 𝑏𝑘  

44:      end for 

45:           //  Calculate the output of EVLNN (yk) at the kth output neuron 

46:           yk=zjk      // for Pure line, f(x)=x activation function  

47:      // Calculate the derivation, f’(hj) at the hidden neuron, j 

48:      for j = 1 to H do  

49:           f’(hj)= hj ∙ (1 - hj ) 
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50:      end for 

51:      // Calculate the derivation, f’(yk) at the output neuron, k 

52:      for l = 1 to O do 

53:           f’(yk)= 1 

54:      end for 

55:      // Calculate the variation of the output variable yk, with respect to the input variables xi 

56:      // using the chain rule  

57:      for i = 1 to I do 

58:           var_y_xi = ∑ ( 𝑓′(𝑦𝑘) ∙ 𝑤𝑗𝑘 ∙ 𝑓
′(ℎ𝑗) ∙ 𝑤𝑖𝑗)𝑖   

59:      end for 

60:      for  i = 1 to I do  

61:      // Calculate the mean sensitivity, Si  

62:           S[i] = 
∑ (𝑣𝑎𝑟𝑦𝑥𝑖

)𝑖
𝑁 

63:      // Calculate the sum of the squared partial derivatives (SSD) for each input variable 

64:           SSD[i] = ∑ [(𝑆𝑖).
2

𝑖 ] 

65:      end for 

66:      for  i = 1 to I do  

67:      // Calculate the relative importance of each input variables in percentage terms 

68:      RI[i]=(SSD[i]/∑𝑆𝑆𝐷)× 100 

69:      end for 

70: // Sort the relative importance in ascending order 

71: ranked_RI=sort(RI) 

72: return(ranked_RI) 

73: end function 

 

The algorithm first imports the optimized parameters of the trained EVLNN. Then the 

values of ℎ𝑗  and 𝑧𝑖𝑗 are calculated. ℎ𝑗  is the output value of the jth hidden neuron with a 

Sigmoid activation function expressed in Equation B.2, and 𝑧𝑖𝑗 is the weighted sums at the 

input of the jth hidden neuron given by Equation B.3, 

 ℎ𝑗 =
1

1+𝑒
−𝑧𝑖𝑗

                                                         (B.2) 

𝑧𝑖𝑗 = ∑ (𝑤𝑖𝑗 ∙ 𝑥𝑖𝑖,𝑗 ) + 𝑏𝑗                                                (B.3)  

where 𝑤𝑖𝑗 is the connection weight between the jth hidden neuron and the ith input neuron 

and xi is the value of the ith input variables, and 𝑏𝑗  is the bias at the jth hidden neuron. 

Subsequently, 𝑦𝑘 and 𝑧𝑗𝑘 are calculated. 𝑦𝑘 is the output value of the kth output neuron with 

a Pure Line activation function (f(x)=x) expressed in Equation B.4 and 𝑧𝑗𝑘 is the weighted 

sums at the input of the kth output neuron given by Equation B.5, 

𝑦𝑘 = 𝑧𝑗𝑘                                                        (B.4) 
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𝑧𝑗𝑘 = ∑ 𝑤𝑗𝑘 ∙ ℎ𝑗𝑗,𝑘 + 𝑏𝑘                                             (B.5)  

where 𝑤𝑗𝑘 is the connection weight between the kth output neuron and the jth hidden neuron 

and hj is the output of the jth hidden neuron, and 𝑏𝑘 is the bias at the kth hidden neuron. Next, 

the variation in the output value yk with respect to the variation in the input variables xi is 

calculated by applying the chain rule given by Equation B.6,    

𝜕𝑦𝑘

𝜕𝑥𝑖
(𝑿𝑛) = ∑

𝜕𝑦𝑘

𝜕𝑧𝑗𝑘
∙
𝜕𝑧𝑗𝑘

𝜕ℎ𝑗
∙
𝜕ℎ𝑗

𝜕𝑧𝑖𝑗
𝑖,𝑗,𝑘 ∙

𝜕𝑧𝑖𝑗

𝜕𝑥𝑖
                                   (B.6) 

where  

𝜕𝑦𝑘

𝜕𝑧𝑗𝑘
= 𝑓′(𝑦𝑘) = 1                                                  (B.7) 

𝜕𝑧𝑗𝑘

𝜕ℎ𝑗
= 𝑤𝑗𝑘                                                        (B.8) 

 
𝜕ℎ𝑗

𝜕𝑧𝑖𝑗
= 𝑓′(ℎ𝑗) = ℎ𝑗 ∙ (1 − ℎ𝑗)                                          (B.9) 

and                                                     
𝜕𝑧𝑖𝑗

𝜕𝑥𝑖
= 𝑤𝑖𝑗                                                          (B.10) 

from which Equation B.11 and B.12 are obtained, 

 
𝜕𝑦𝑘

𝜕𝑥𝑖
(𝑿𝑛) = ∑ 𝑓′(𝑦𝑘) ∙ 𝑤𝑗𝑘 ∙ 𝑓

′(ℎ𝑗) ∙ 𝑤𝑖𝑗𝑖,𝑗,𝑘                               (B.11) 

= ∑ 1 ∙ 𝑤𝑗𝑘 ∙ ℎ𝑗 ∙ (1 − ℎ𝑗) ∙ 𝑤𝑖𝑗𝑖,𝑗,𝑘                               (B.12) 

Following, the mean sensitivity value Si can be calculated using the output value yk with 

respect to the variation for each input variable xi expressed in Equation B.13, 

𝑆𝑖 =
1

𝑁
∑

𝜕𝑦𝑘

𝜕𝑥𝑖
𝑛                                                   (B.13) 

With the sensitivity obtained for each variable, the relative contribution of each input 

variable can be acquired by calculating the sum square partial derivatives (SSD) shown in 

Equation B.14,  
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𝑆𝑆𝐷𝑖 = ∑ (𝑆𝑖)
2𝑁

𝑖                                               (B.14) 

The input variable with the highest SSD value has the most influence on the output variable. 

This value is then divided by the sum of SSD from which the relative importance of each 

input variable in percentage terms is computed and subsequently ranked.  
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B.2 Methodology for the Profile Method 

The profile method analyzes the relative importance of each input variable by varying the 

values of the input variable along with a scale range. In contrast, the remaining input 

variables are kept at fixed values [200]. The scale consists of a chosen number of intervals 

between its minimum and maximum initial data value. Each input variable 𝑥𝑖 is increased 

in steps following the scale, keeping all other variables fixed with an initial setting to their 

minimum value, the first quartile, median, third quartile, and maximum values. Hence, for 

each variation 𝑥𝑖 in the scale point, five output values will be obtained, one from each 

quantile. The median output is measured to obtain a curve that displays the variation profile 

for every variable. The difference between the maximum and minimum values from the 

profile curve is computed. The more significant the difference, the more influence that input 

variable has on the response variable. Figure B.2 shows the pseudo-code for the Profile 

method. 

Figure B.2  Pseudo-code for the Profile method. 

Algorithm 2 Profile Method 

1: function PROFILE_METHOD (W, B, N, H, I, O, X) 

2: // 

3: // INPUT: Parameter values of the fittest individual EVLNN including weights W, bias B, sample size  

4: // N, number of hidden neurons H, number of inputs I, number of outputs O and the testing dataset, X 

5: // OUTPUT: Ranking of the relative contribution of the input variables to the output variable   

6: // 

7: // Sort input values in ascending order rowwise 

8: sorted_xi=sort(xi) 

9: for i = 1 to 9 do 

10:      //  Create a scale with 11 steps for the input variable xi, starting from minimum to maximum 

11:      //  in steps of 10% to 90% , where scale[0]=xmin , scale[10]=xmax , and scale[1,…,9] is given below 

12:      scale[i]= 𝑥𝑖 × (0.1 × 𝑖) 
13: end for 

14: for j = 1 to 3 do 

15:      // Create 5 quantiles starting from minimum sample size of 1, to 1st quantile, median, 3rd quantile 

16:      // and maximum sample size, where quantiles[0]=1, quantiles[4]=size(X),  

17:      // and quantiles[1,..,3] is given below  

18:      quantiles[j]=[𝑠𝑖𝑧𝑒(𝑋) × (0.25 × 𝑗)]  
19: end for 

20: for i = 1 to I do  

21:      for q = 1 to 5 do  

22:           sorted_xi=sorted_xi(:,quantiles[j]) 

23:           for s = 1 to  11 do 

24:                    sorted_xi=sort_xi(:,scale[i]) 

25:                 // Calculate the new predicted output, yp of the EVLNN model with the new input, xi 
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26:                 yp[s,q]=EVLNN(W, B, N, H, I, O, sorted_xi)   
27:           end for 

28:      end for 

29:      // Sort rowwise so that the median value can be extracted 

30:      for s = 1 to 11 do 

31:           sorted_yp[s,:]=sort(yp[s,:]) 

32:      end for 

33:      // The median value is in the third column 

34:      MEDIAN[i]=sorted_yp[:,3] 

35: end for 

36: for i = 1 to I do 

37:      // Calculate the difference between the max and min output values and rank the input variables 

38:      // that have the most influence on the output variable 

39:      RI[i]=max(MEDIAN[i])-min(MEDIAN[i]) 

40: end for 

41: // Sort the relative importance in ascending order 

42: ranked_RI=sort(RI) 

43: return(ranked_RI) 

44: end function 

 

The first step of the Profile method is to sort the input values in ascending order. Next, a 

scale of 11 steps, scale[1,..,11] is created to form new input values consisting of the 

minimum, 10%, 20%, 30% 40%, 50%, 60%, 70%, 80%, 90% and maximum value of the 

input variable. At each input value xi from its minimum to its maximum, the values of the 

rest of the input variables are held fixed, first at their minimum value, followed by first 

quartile, median, third quantile, and finally maximum values. With the new input values,  

the predicted output at the EVLNN model is subsequently computed, resulting in five 

output values for each variation of xi, which are then ranked. The median values are 

identified over the scale range to obtain a profile curve with variation for every variable. 

The difference between the maximum and minimum median values is determined to 

identify the input variables relative to their importance. The higher the difference, the more 

influence the input has on the output. The Profile method is illustrated with a schema shown 

in Figure B.3.   
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Figure B.3  Profile method schema. 
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B.3 Methodology for the Perturb Method 

In implementing the perturb method, the value of the selected variable is perturbed while 

the other variables are kept at their original values [198]. The formula is expressed as, 

𝑥𝑖 = 𝑥𝑖 + 𝛿𝑗        (B.15) 

where 𝛿𝑗 or white noise is progressively applied to each variable of the identified model at 

incremental steps (j=1, 2, …) of the original value, xi, and the output is then measured. 

Injecting white noise at the input variables causes the response variable at the output to 

increase [281]. This increase in the neural network output is subsequently assessed to 

determine which predictor is relatively more important than the rest. The predictor who 

affects the change the most is the most influential. Though the relationship between the 

predictors and the response variables is not strictly monolithic, less sensitive predictors 

should not significantly affect the neural network outputs with considerable white noise. In 

contrast, predictors with high relative importance should cause material variation to the 

neural network outputs when white noise is injected. Figure B.4 shows the pseudo-code for 

the Perturb method. 

Figure B.4  Pseudo-code for the Perturb method. 

Algorithm 3 Perturb Method 

1: function PERTURB_METHOD (W, B, N, H, I, O, X, mse_ori) 

2: // 

3: // INPUT: Parameter values of the fittest individual EVLNN including weights W, bias B, sample size  

4: // N, number of hidden neurons H, number of inputs I, number of outputs O, the testing dataset, X and 

5: // the original results of the Mean Square Error (MSE) 

6: // OUTPUT: Ranking of the relative contribution of the input variables to the output variable   

7: // 

8: // Sort input values in ascending order rowwise 

9: sorted_xi=sort(xi) 

10: for i = 1 to I do 

11:      for j = 1 to 5 do 

12:           //  Perturb input variable xi in 5 steps at 10% to 50% of the original value 

13:           p[i]= [𝑥𝑖 + (𝑥𝑖 × (0.1 × 𝑗)) 

14:           // Copy the original values of input data set 

15:           perturbed_X[:]=X[:] 

16:           // Replace the value of input variable xi with new perturbed values 

45:           perturbed_X[i]=p[i]      

46:           // Calculate the new predicted output, yp of the EVLNN model with the new input, xi 

47:            yp=EVLNN(W, B, N, H, I, O, perturbed_X)   
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74:           // Calculate the MSE using the function mse_cal 

75:           perturbed_mse[i,j] = mse_cal(Xtarget, yp)  

17:      end for 

18:      // Calculate the mean MSE with the perturbed input values 

19:      ave_mse=[sum(perturbed_mse)]/5 

20:      // Calculate the relative importance of each input variable by computing the absolute difference  

21:      // of the new MSE with the original MSE 

22:      RI[i]=|mse_mean−mse_ori| 

23: end for 

24: // Sort the relative importance in ascending order 

25: ranked_RI=sort(RI) 

26: return(ranked_RI) 

27: end function 

 

The steps in the Perturb method include applying a perturbation, 𝛿  to each input, xi, as 

expressed in Equation B.14.  

𝑥𝑖 = 𝑥𝑖 + 𝛿                     (B.16) 

Five steps of perturb amount equivalent to 10%, 20%, 30%, 40%, and 50% of the original 

value are applied progressively to compute the predicted output at the EVLNN model while 

keeping the other inputs to their original value. The result of the predicted output is 

subsequently used to calculate the MSE. After the five steps of perturbation, the mean MSE 

mse_mean is computed. This mse_mean is then compared with the original MSE mse_ori 

(obtained before the perturbation). The difference obtained represents the relative 

contribution of the input variable. The input variable that has a more significant influence 

on the output variable than the rest would exhibit a more significant difference between the 

MSEs. The Perturb method is illustrated with a schema shown in Figure B.5. 
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Figure B.5  Perturb method schema. 
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B.4 Methodology for the Connection Weights Method 

The importance of neural network connection weights has been investigated in the works 

of [188], [192], [201], [282]. The connection weights in a neural network are the links 

between the neurons from the inputs to the outputs. Hence, its outputs depend on the 

contributions of the inputs subjected to the connection weights’ magnitude and direction. 

Inputs with higher connection weights represent a higher excitation level of activation at 

the output of the neurons. Therefore, they are relatively more important in predicting than 

inputs with lower connection weights. Inputs with positive connection weights increase the 

value of the predictive response, and inputs with negative connection weights decrease the 

value of the prediction response. In this study, the Weights method was applied to calculate 

the relative importance of the inputs to the neural network output, using Equation B.17 and 

Equation B.18 [195] [201], 

𝑄𝑖ℎ =
|𝑤𝑖ℎ|

∑ |𝑤𝑖ℎ|
𝑛𝑖
𝑖=1

                                               (B.17) 

where 𝑤𝑖ℎ refers to the absolute value of the connection weight between the input neuron, 

i, and the hidden neuron, h, and 𝑄𝑖ℎ is the ratio of the absolute value of the connection 

weight and the sum of the absolute value of the connection weights of all input neurons i, 

and, 

    𝑅𝐼(%)𝑖 =
∑ 𝑄𝑖ℎ
𝑛ℎ
ℎ=1

∑ ∑ 𝑄𝑖ℎ
𝑛𝑖
𝑖=1

𝑛ℎ
ℎ=1

 x 100                                       (B.18) 

where RI is the percentage relative importance of all output weights attributable to the input 

variables, is the ratio of the sum of 𝑄𝑖ℎ for each hidden neuron and the sum for each hidden 

neuron of the sum for each input neuron of 𝑄𝑖ℎ. Figure B.6 shows the pseudo-code for the 

Connection Weights method. 
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Figure B.6  Pseudo-code for the Connection Weights method. 

Algorithm 4 Connection Weights Method 

1: function CONN_WEIGHTS_METHOD (W, B, N, H, I, O, X) 

2: // INPUT: Parameter values of the fittest individual EVLNN including weights W, bias B, sample size  

3: // N, number of hidden neurons H, number of inputs I, number of outputs O, the testing dataset, X   

4: // OUTPUT: Ranking of the relative contribution of the input variables to the output variable   

5: // Take the absolute values of the neural network weights  

6: W_positive=|W| 

7: // For each hidden neuron and each input variable xi, multiply the absolute value of the hidden-  

8: // output layer W_positivejk connection weight by the absolute value of the hidden-input layer connection  

9: // weight W_positiveij.  

10: for j = 1 to H do 

11:      for i = 1 to I do 

12:           P[i,j] = W_positive[i,j] × W_positive[j,k] 

13:      end for 

14: end for 

15: for j = 1 to H do 

16:      for i = 1 to I do 

17:      // Divide P by the sum for all the input variables Qij 

18:      Q[i,j]=P[i,j]/ ∑ 𝑃[𝑖, 𝑗] 
19:      end for 

20: end for 

21: // Compute the sum of the influence for each input  

22: S[i] = ∑𝑄[𝑖, 𝑗] 
23: S2 = ∑𝑆[𝑖] 
24: for i = 1 to I do 

25: // Divide Si by the sum for all the input variables, S2, and express as a percentage to compute relative  

26: // importance which is the distribution of all output weights attributable to the given input variable. 

27: RI[i]=(S[i]/S2) × 100 

28: end for 

29: // Sort the relative importance in ascending order 

30: ranked_RI=sort(RI) 

31: return(ranked_RI) 

32: end function 

 

The first step in the Connection Weights method is to take the absolute values of the 

connection weights of the identified EVLNN model. Then, for each hidden neuron, 

compute the product of the connection weight from the input to the hidden neuron, with the 

connection weight from the hidden to the output neuron, to obtain the array Pij, 

𝑃𝑖𝑗 = 𝑤𝑖𝑗 ∙ 𝑤𝑗𝑘                                                   (B.19) 

where j is the number of hidden neurons, wij is the connection weight between the input 

neuron i and the hidden neuron j, and wjk is the connection weight between the hidden 
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neuron j and the output neuron k. Subsequently, for each hidden neuron, divide Pij by the 

sum of all input variables Pij, to obtain Qij, 

𝑄𝑖𝑗 =
𝑃𝑖𝑗

∑𝑃𝑖𝑗
                                                     (B.20) 

Following, for each input neuron, the product Qij is summed to obtain Si, 

𝑆𝑖 = ∑ 𝑄𝑖𝑗𝑖                                                     (B.21) 

Finally, Si is divided by the sum of all the input variables and then multiplied by 100 to 

compute the percentage relative importance, RI(%), 

𝑅𝐼𝑖(%) = (
𝑆𝑖

∑𝑆𝑖
) × 100                                           (B.22) 

A higher RI value represents the input variable's more significant influence over the output 

variable. The Connection Weights method is illustrated with a schema shown in Figure B.7. 

 

Figure B.7  Connection Weights schema. 
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C. Analysis of EVLNN’s Search Pattern 

C.1 The Himmelblau-2D Function  

The Himmelblau benchmark function is used to illustrate EVLNN’s search operation. 

Detailed data during the experiment was collected. With the help of visualization plots, the 

algorithm’s search characteristics were investigated and analyzed to explain EVLNN’s 

search process. The Himmelblau-2D (f11) function has the mathematical equation expressed 

as,  

𝑓11(𝑥) = (𝑥1
2 + 𝑥2 − 11)

2 + (𝑥1 + 𝑥2
2 − 7)2               (C.1) 

The 3D plot of the function is shown in Figure C.1, where the figure depicts four global 

optima. The global minima 𝑓(𝑥∗) = 0, are at 𝑥∗= (3, 2), (-3.779, -3.283), (-2.805, 3.131) 

and (3.584, -1.848). Figure C.2 shows the contour landscape in 2D. The search is evaluated 

on 𝑥𝑖 ∈ [-6 6], for all i =1, …, d where d=2.  

Figure C.1  3D plot of the Himmelblau function with four global minima 
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Figure C.2  Contour plot of the Himmelblau function with locations of the four global minima 

Figure C.3 shows the population at initiation presented on a 2D search landscape of the 

Himmelblau function in the range [-6 6]. Potential solutions are represented by various 

colored shapes on the landscape with similar colored shapes belonging to the same species. 

The species are initially scattered over the search landscape, searching for attractive basins. 

The function has four global minima at f(x*)=0, at x* = (3, 2), x* = (-3.779, -3.283), x* = 

(-2.805, 3.131) and x* = (3.584, -1.848). Four large red squares mark these locations in the 

search landscape. Figure C.4(a) shows the species distribution at initialization. There are in 

total 125 individuals and 14 species. As observed, individuals are not distributed evenly 

among the different species. SP3 or Species_3 has 13 individuals, the largest species, 

whereas Species_6 and Species_15 have five individuals each. They form the smallest 

species. Figure C.4(b) shows the population convergence rate over 500 generations. The 

average MSE falls steeply in the first 20 generations and needs about 400 generations to 

converge to good solutions. Figure C.5 shows the convergence rate of each of the 14 species, 

converging at a different rate to the global minima. Species_15 has the slowest convergence 

rate suggesting that this species was stuck at a local minimum in the search landscape. 

Nonetheless, the species eventually converged along with the other species. 



Appendices       251 

 

 

Figure C.3  Landscape showing speciated solution candidates in generation 1. 

 

 
(a)                                                                (b) 

Figure C.4(a-b)  (a) Species distribution at the initialization. (b) Population convergence over 500 

generations.  
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Figure C.5  Individual species convergence over 500 generations. 

 

Figure C.6 to Figure C.20 shows the evolutionary map of the EVLNN algorithm captured 

in steps of ten generations from generations 10, 20, 30, … to 100, 150, 200, then in steps 

of 100 generations to 500. These plots visually depict how the population evolves on the 

objective function surface where the various species are highlighted using different colored 

shapes. The four global optima are highlighted using red squares.  
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Figure C.6  At generation 10, species move towards the basins of interest depicted by the 

four red squares. 

 

 

Figure C.7  At generation 20, species are seen drawing closer to the minima 
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Figure C.8  At generation 30, species are becoming similar based on their positions.  

 

 

Figure C.9  At generation 40, Species_8 has become identical in their search positions like 

the other respective species.  
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Figure C.10  At generation 50, most species are near global minima except Species_7, 

which seems stuck in a local minima.  

 

 

Figure C.11  At generation 60, the search continues.  
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Figure C.12  At generation 70, some species are seen inside the global minima's red square.  

 

 

Figure C.13  At generation 80, Species_11 are now identical in their search positions.  
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Figure C.14  At generation 90, more species are inside one of the red squares, with the 

remaining six species still trying to locate the minima.  

 

 

Figure C.15  At generation 100, the remaining species can be seen converging towards the 

minima.  

 



Appendices       258 

 

 

Figure C.16  At generation 150, Species_7 has moved out of the local minima and towards 

the global minima.  

 

 

Figure C.17  At generation 200, most species have landed inside one of the red squares.  
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Figure C.18  At generation 300, all the species except Species_7 can be seen inside one of 

the red squares.  

 

 

Figure C.19  At generation 400, Species_7 has located one of the global minima.  
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Figure C.20  At generation 500, all the species have found the global minima indicated by 

the red squares.  

 

 

C.2 Heatmap Visualization  

Additional analysis of EVLNN’s search behavior for the Himmelblau-2D (f11) function is 

performed using a visual heatmap. The active heatmap visualization is written in MatLab 

R2020a software. Figure C.21 shows the heatmap at the end of EVLNN’s search operation 

for f11. The numbers in columns two to five represent the proximity of the species’ 

Euclidean distance to the global minima. The species' Mean Absolute Error (MAE) is also 

calculated and indicated in the heatmap in the first column. The heatmap’s warmer colors 

represent that the species is further away from the global minima, whereas the cooler colors 

represent that the species is nearer to the global minima. From Figure C.21, Species_2 is 

the best performer in the diagram with the lowest MAE of 0.0000 and a mean Euclidean 

distance of 0.00016 to global minima two (-3.779, -3.283). Species_7 is the worst performer 

with the MAE of 0.00024 and a mean Euclidean distance of 0.0020 to global minima three 

(-2.805, -3.131). Species_2, Species_4, Species_8, Species_9, and Species_10 have located 

the global-minima-two with the Euclidean distance measured at 0.00016, 0.00086, 0.00170, 

0.00117, and 0.00118, respectively. Species_3, Species_11, and Species_15 have located 
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global-minima-one at (3,2) with the Euclidean distance measured at 0.00056, 0.00242, and 

0.00319, respectively. Species_5, Species_7, and Species_12 have located global-minima-

three at (-2.805, -3.131) with the Euclidean distance measured at 0.00072, 0.00220, and 

0.00078, respectively. Species_6, Species_13, and Species_14 have located global-minima-

four at (3.584, -1.848) with the Euclidean distance measured at 0.00071, 0.00271, and 

0.00205, respectively. The heatmap illustrates an important finding that EVLNN’s 

speciation approach has achieved the parallelism required to locate all the global optimas 

with low MAE values. The best solutions for the 4 global minima are found in Species_3, 

Species_2, Species_5 and Species_6 at (3,2), (-3.779, -3.283), (-2.805, 3.132) and (3.584, -

1.848), respectively. 

 

Figure C.21  Analysis of  EVLNN search behavior using a visual heatmap.  
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In addition, a bubble chart, written in MatLab R2020a software, is used to analyze and 

visualize the species density around the respective global basins. Figure C.22 shows the 

bubble chart at the end of EVLNN’s search operation with a larger bubble size 

corresponding to a higher species density and a higher number of solution candidates. The 

number of solution candidates present at the global minima 1, 2, 3, and 4 is 27, 49, 26, and 

23, respectively, resulting in different bubble sizes. From Figure C.22, is observed that the 

distribution of the species on each basis was uneven. This outcome is expected as EVLNN 

takes a stochastic approach in the explorative search process, resulting in an even number 

of solution candidates at the various basins. 

Figure C.22  Analysis of  EVLNN search behavior using a bubble chart. 

 


